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Abstract 

This thesis presents a study of disturbance management in production-inventory and 

supply chain systems. The study focuses on generating and analysing the recovery decision 

after the occurrence of a disturbance on a real-time basis. In this thesis, the developed 

approach was divided into several steps. At first, a plan was developed without considering 

any disturbance. Then a mathematical model was formulated to obtain a revised plan after 

the occurrence of a disturbance in the system. An efficient heuristic approach was 

proposed for solving the mathematical model in order to obtain the recovery plan. The 

mathematical model and heuristic approach were also extended to consider multiple 

disturbances, one after another as a series, on a real-time basis. Finally, the 

experimentation was conducted and the heuristic results were compared with other 

standard solution approaches to judge and validate the results. The framework was applied 

for managing production disruption: (1) in a single-stage imperfect production-inventory 

system, (2) in a two-stage production-inventory system, (3) in a three-stage mixed 

production-inventory system, and (4) in a supply chain network with multiple entities in 

each stage. The framework was also applied to two other models: (1) for managing 

demand fluctuation in a supplier-retailer coordinated system, and (2) for managing supply 

disruption in a three-tier supply chain system. In this thesis, three different types of 

disturbances were explored, namely (1) production disruption, (2) raw material supply 

disruption, and (3) demand fluctuation.  

In real-life situations, multiple disturbances, as a series, can happen at any time and at any 

stage of the system. This thesis considered multiple disturbances, one after another in a 

series, that may or may not affect the plans revised after previous disturbances. If a new 

disturbance occurs during the recovery time window of another, a new revised plan which 

considers the effects of both disturbances must be derived. Accordingly, as this is a 

continuous process, an extended mathematical model and heuristic approach was 
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developed to deal with a series of disturbances on a real-time basis, by incorporating a 

modified version of those developed for a single disturbance.  

The results of the experimental analysis showed that the optimal recovery plan is highly 

dependent on the shortage cost parameters such as, back orders and lost sales costs, and to 

the disturbance duration. For a certain range of disturbance duration and cost values, it was 

found that back orders were more attractive, and in such cases, back orders cost was less 

than the lost sales cost. On the other hand, when back orders cost were more than the lost 

sales cost, the solution had lost sales in their recovery plan.  

In the final work of the thesis, a simulation model was developed to analyse the effects of 

different types of randomly generated disturbance events that were not known in advance. 

The simulation model considered all three types of disturbances, namely (1) production 

disruption, (2) raw material supply disruption, and (3) demand fluctuation. A good number 

of random experiments were conducted to judge the simulation model, and to make the 

simulation model closer to real-world processes. 

The developed approaches were tested by solving a significant number of randomly 

generated test problems. The sensitivity analysis was carried out for the model parameters. 

Two of the models, developed in two-stage and three-stage production-inventory systems, 

were also tested using real-life cases from a pharmaceutical company. It was found that the 

developed approaches were more beneficial than the company’s existing practice. 
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𝑚1  Mark-up of selling price (𝑚1𝐶𝑃) – must be greater than 1 

𝑌𝑖,0

𝐷
  Cycle time for normal cycle 𝑖 

𝑀  Number of cycles in the revised planning window 

𝑋𝑖 Lot size for cycle 𝑖 in the revised planning window, for the manufacturer after the 

fluctuation (𝑖 = 1, 2, … . ,𝑀) 

𝑌𝑖  Lot size for cycle 𝑖 in the revised planning window, for the retailer after the 

fluctuation (𝑖 = 1, 2, … . ,𝑀) 

𝛥𝐷  Change of demand rate for the  fluctuation 

𝑇𝑑 Fluctuation period for the fluctuation 

𝑈𝑑  Unfulfilled demand after the fluctuation 

𝑞  Pre-fluctuation inventory level 
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Multiple fluctuations case 

𝑛  Fluctuation number  

𝑋𝑖,𝑛  Lot size for cycle 𝑖 in the revised planning window, for the manufacturer after the 

n
th

 fluctuation (𝑖 = 1, 2, … . ,𝑀) 

𝑌𝑖,𝑛  Lot size for cycle 𝑖 in the revised planning window, for the retailer after the n
th

 

fluctuation (𝑖 = 1, 2, … . ,𝑀) 

𝛥𝐷𝑛  Change of the demand rate for the n
th

 fluctuation 

𝑇𝑑,𝑛  Fluctuation period for the n
th

 fluctuation 

𝑈𝑑,𝑛  Unfulfilled demand after the n
th

 fluctuation 

𝑞𝑛  Pre-fluctuation inventory level 
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Chapter 8 

Single disruption case 

𝐷𝑗  Annual demand of the final product of retailer 𝑗 

𝐷 Annual total demand of the final product = ∑ 𝐷𝑗
𝐽
𝑗=1  

𝑑𝑖 Annual demand of raw material 𝑖  

𝐵1  Back order cost for the manufacturer ($ per unit per unit time) 

𝐵2 Back order cost for retailer ($ per unit per unit time) 

𝐵𝑞𝑘𝑗  Back order quantity of retailer 𝑗 during the 𝑘𝑡ℎ cycle 

𝐿1 Lost sales cost for the manufacturer ($ per unit) 

𝐿2 Lost sales cost for a retailer ($ per unit) 

𝐻1𝑖 Holding cost of raw material 𝑖 ($ per unit per year) 

𝐻2  Holding cost of the final product at the manufacturer ($ per unit per year) 

𝐻3𝑗 Holding cost of retailer 𝑗 ($ per unit per year) 

𝑁𝑖  Units of raw material 𝑖 required to produce one unit of the final product 

𝐾  Number of cycles in the revised plan – known from management 

𝑃 Annual production rate (𝑃 > 𝐷) 

𝑄 Production lot size  

𝑞𝑖 Supply lot size of raw material 𝑖  

𝑄𝑗 Delivery lot size of the final product for retailer 𝑗  

𝑆1𝑖 Ordering cost of raw material 𝑖 ($ per order) 

𝑆2 Set-up cost of the manufacturer ($ per order) 

𝑆3𝑗 Ordering cost of retailer 𝑗 ($ per order) 

𝑠𝑡 Set-up time after the production of a lot 

𝑇𝑖𝑑𝑙𝑒 Idle time after the production of a lot = 
𝑄

𝐷
−
𝑄

𝑃
− 𝑠𝑡 

𝑇𝑑𝑚 Supply disruption duration of the m
th

 raw material  

𝑋𝑘𝑖 Supply lot size of raw material 𝑖 in the revised plan  

𝑌𝑘 Production lot size in the revised plan  

𝑍𝑘𝑗  Delivery lot size of the final product to retailer 𝑗 in the revised plan  
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Multiple disruption case 

𝑙 Number of cycles to the current disruption from the previous disruption 

𝑋𝑘𝑖,𝑛 Supply lot size in the revised plan after the 𝑛𝑡ℎ  
disruption 

𝑌𝑘,𝑛 Production lot size in the revised plan after the 𝑛𝑡ℎdisruption 

𝑍𝑘𝑗,𝑛 Delivery lot size in the revised plan after the 𝑛𝑡ℎ  
disruption 

𝑇𝑑𝑚,𝑛 Actual disruption duration for the 𝑛𝑡ℎ disruption 
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Chapter 9 

𝑛  Number of planning periods in planning horizon 

𝐷𝑖 Demand of period 𝑖 

𝑃 Maximum production capacity of each period 

𝐵𝑖 Beginning inventory in period 𝑖 

𝐵𝑛+1 Beginning inventory which should be kept in period (𝑛 + 1) 

𝐸𝑖 Ending inventory in period 𝑖  

𝐴𝑃𝑖 Actual production in period 𝑖 

𝑆𝐶𝑖  Spare capacity in period 𝑖 

𝑅𝑖 Quantity received by retailer at period 𝑖 

𝑁 Units of raw material required to produce one unit of final product 

𝐴 Set-up cost at the manufacturing plant 

𝑟 Process reliability of manufacturing plant 

𝑅𝑀𝑖 Raw material supply quantity for period 𝑖  = 𝑁 ∗
𝐴𝑃𝑖

𝑟
 

𝐶𝑝 Production cost per unit 

𝐶𝑑 Delivery cost per unit 

𝐶𝑟 Raw material cost per unit 

𝐻1 Raw material holding cost per unit per period 

𝐻2 Ending inventory holding cost per unit 

𝐶𝐿 Cost per unit due to decrease of demand 

𝐶𝐼 Inspection cost as a percentage of the production cost 

𝐶𝑅 Rejection cost per unit 

𝑆 Selling price per unit 

𝐵 Back orders cost per unit per period 

𝐿 Lost sales cost per unit = revenue loss per unit + cost of reputation loss per unit 

𝑋𝑖 Production quantity in period 𝑖 in revised plan 

𝑌𝑖 Delivery quantity in period 𝑖 in revised plan 

𝑍𝑖 Raw material quantity in period 𝑖 in revised plan 

𝑏𝑖 Beginning inventory in revised plan  

𝑒𝑖 Ending inventory in revised plan 

 



 

 

xxvi 

 

Demand fluctuation parameter 

𝛿 Demand fluctuation amount 

Production disruption parameters 

𝑡𝑠 Disruption start time as fraction of duration of period 

𝑇𝑑𝑝 Disruption duration as fraction of duration of period (≤ 1- 𝑡𝑠)  

𝑞 Pre-disruption production quantity = 𝑡𝑠 ∗ 𝑃  

Supply disruption parameter 

𝑇𝑑𝑠 Disruption duration as fraction of duration of period (≤ 1) 
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Chapter 1 Introduction 

1.1 Overview 

The modelling of production-inventory, as well as supply chain management systems, is a 

challenging research topic in operations research and computer science. Production-

inventory and supply chain systems exist, in many organisations, in different forms and 

degrees, depending upon the size and nature of the organisations, the products produced 

and supplied, the production facilities, the wholesalers and the retailers. A key issue for the 

success of any organisation in a supply chain environment is ensuring the smooth 

functioning of each and every entity in their supply chain, while managing the predictable 

and unpredictable disturbances and risks. 

In reality, there are several disturbing factors that are involved in supply chain systems 

(Sodhi and Chopra, 2004), such as disruption in production and supply, fluctuation in 

demand, and uncertainty in demand and supply. An imperfect production environment is 

also an important factor that has a significant impact on a company’s production volume. 

Without a proper response to all these factors, the entire system can be imbalanced and the 

organisation may face huge financial loss, as well as loss of goodwill. 

In a supply chain system, the disturbing sources can be either external or internal. For 

example, natural disaster, machine breakdown, power failure, labour strike, and political 

instability are all causes for supply chain disruption and delay. These types of disturbances 

can happen at any part of the system and at any time. But the effect of the disturbance can 

propagate to the whole supply chain system from the upstream to the downstream stages. 

A disturbance interrupts the flow of materials and the system may become inoperable for a 

certain period of time, resulting in loss of productivity. Without a proper response, it can 

take longer time for the affected system to recover (Sheffi and Rice, 2005).  

In recent years, there have been many disturbances that have affected entire supply chain 

systems. For example, the 2011 earthquake and tsunami in Japan, which ultimately 

resulted in major supply chain disruptions across many sectors, caught many companies by 

surprise. The automotive supply chain, especially for the Japanese companies Toyota and 
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Honda, faced massive loss in their production and sales. In fact, Toyota lost its position as 

top global car producer in 2011 (Park et al., 2013). In the second half of 2011, a month 

long flooding in Thailand also had a significant impact on global supply capabilities in a 

number of high tech sectors. For example, Intel, a renowned disk drive company, lost 

about $1 billion in their sales in the fourth quarter of 2011, because they were unable to 

source the hard drives that were needed to make new machines.  

In previous studies, most researchers focused on modelling different production-inventory 

systems under ideal conditions, although some also considered process reliability and 

fuzziness of variables. Only a little has been done with the consideration of any 

disturbance in production and supply. The reported research has so far focused only on a 

single disturbance, either in the production or delivery system. But in real-life, multiple 

disturbances, one after another as a series, may occur in a system, with or without having 

dependency between them. So there is a need to study multiple disturbances cases on a 

real-time basis. The incorporation of process reliability and uncertainty, with multiple 

disturbances recovery, will make the proposed study unique, and also closer to real-life 

problem scenarios. In the supply chain environment, previous studies were conducted 

mainly with single line supply with one, two or three nodes. In practice, a supply chain is a 

complex network. It has multiple suppliers, production facilities, warehouses and retailers. 

Any form of disturbance in any node in the network, will affect other parts of the network 

that may hence incur huge financial loss as well as reputation damage (Supply Chain 

Resilience 2010 Report).  

In supply chain modelling, several real-life disturbing factors should be considered, such 

as: disruption or delay in production and supply, fluctuation in demand, uncertainty in 

demand, machine breakdown and natural disaster (Sodhi and Chopra, 2004). Production 

disruption is defined as any form of interruption that can be caused due to shortage of 

material, machine breakdown or unavailability, or any other form of disturbance (either 

accidental or man-made). Production disruption is a very familiar event in production 

environments. Disruptions or delay in supply is also a very common scenario in supply 

chain network. An entire network can be affected due to supply disruption or delay. 

Demand fluctuation is another important disturbing factor and a supply chain plan can be 

imbalanced due to this, and consequently an organisation can face financial and reputation 
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losses. The development of an appropriate real-time disturbance recovery policy can help 

to minimise losses and also maintain the goodwill of a company. In practice, a production 

system may not be perfect, as in cases where a fraction of the produced items can be 

defective. However, the percentage of defective items depends on operating conditions. It 

is generally accepted that higher process reliability, and hence lower percentage of 

defective products, usually entails higher operating costs. So process reliability is a key 

risk factor in imperfect production environments, which hence has significant impact on 

costs and profits. Uncertainty of product demand is also a real-life consideration when 

developing a production-inventory and supply chain model.  

The task involved in supply chain disturbance management modelling is not easy, 

especially when it is particularly sensitive to unexpected disruption (Hishamuddin, 2013). 

The case becomes more complex, when multiple disturbances, one after another, are 

considered. The most important task is to optimise the operational decisions, such as 

revised plan of supply, production and distribution, after the occurrence of each single or 

series of disturbances. So the development of appropriate methodologies, to recover from 

both a single and multiple disturbances under a real-life supply chain environment, will 

help decision makers to make accurate and prompt decisions during critical times. 

1.2 Motivation and Scope of Research 

This section briefly discusses the scope of the research in supply chain disturbance 

management, and the motivation for carrying out this thesis. 

Over the last few decades, one of the popular research topics in operations research and 

industrial engineering has been supply chain management. It is a challenging topic, as it 

involves multiple entities, such as suppliers, manufacturers, wholesalers and retailers. The 

topic becomes more challenging when any entity faces any sudden disturbance. In general, 

it is very important to develop a recovery plan to minimise the effect of any disturbance.  

Due to disturbance, the entire plan of an organisation can be distorted, such that shortage 

of goods and unfulfilled customer demand can occur. The development of an appropriate 

recovery policy can help to minimise losses and maintain the goodwill of a company. As of 
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the literature, there exist limited studies that considered disturbances in production and 

supply chain systems and that also developed approaches to obtain a recovery plan. A very 

few studies have been found in the literature, which developed a recovery model after the 

occurrence of a sudden disturbance. Xia et al. (2004) developed a general disruption 

management approach for a two-stage production and inventory control system that 

incorporated a penalty cost for deviations of the new plan from the original plan.  They 

introduced a disruption interval which is divided into three parts: pre-disruption, in-

disruption and post-disruption, which allowed detailed analysis of disruption effects. They 

formulated the model as a quadratic mathematical programming problem and introduced 

the concept of a disruption recovery time window. A production disruption recovery 

model, for a single disruption within a single-stage and single item production system, has 

been developed by Hishamuddin et al. (2012), for obtaining a recovery plan within a user 

defined time window, which was an extension of the model of Xia et al. (2004). The study 

considered back order, as well as a lost sales option. They further extended the concept to 

develop a transportation disruption recovery plan in a two-stage production and inventory 

system with a single supplier and a single retailer (Hishamuddin et al., 2013). Recently, 

they have also applied the back order and lost sales concepts to develop a supply disruption 

recovery model in a two-echelon supply chain system with a single supplier and a single 

retailer (Hishamuddin et al., 2014). As, only a very few research works have been found, it 

is not sufficient for real-life disturbance problems. 

In real-life, there are several disturbing factors, such as disruption in production and 

supply, fluctuation in demand, and imperfect production environment, which should be 

considered while developing a model for managing disturbance in a supply chain system. 

Any disturbances can happen suddenly, and cannot be predicted in advance. The task of 

optimising supply chain problems is not easy, especially when it is particularly sensitive to 

unexpected disturbance. Moreover, multiple types of disturbing factors may be present in a 

single problem. It is important for any organisation to optimise its operational decisions, 

after the occurrence of an unexpected disturbance, particularly for its production, supply, 

and distribution plan. In addition, in real-life cases, multiple disturbances can happen, one 

after another as a series, on a real-time basis. In this case, an appropriate strategy should be 

developed for managing multiple disturbances on a real-time basis. So a vital aspect of 
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supply chain disturbance management is the development of an appropriate quantitative 

approach, so that decision makers can make decisions promptly and accurately.  

1.3 Problem Statement 

In the modern era of business, every manufacturing and/or service organisation is a part of 

a supply chain system. Such systems have multiple tiers, such as supplier, manufacture and 

retailer, and multiple entities at each tier. An example of a three-tier supply chain system 

with multiple entities is presented in Figure 1.1. As a supply chain system consists of 

multiple entities at each tier, the supply, production and distribution system form a 

complex network. It is a challenging optimisation problem to determine the optimal 

supply, production and distribution plan for such a complex network. In this network, any 

entity can face some uncontrollable and sudden disturbances, such as disruption in supply 

at the supplier end, disruption at the production system, and fluctuation of demand at the 

retailer end. The effects of a disturbance are not merely local; rather there is a high 

probability of impact on the other entities in the multiple tiers of a supply chain 

(Hishamuddin, 2013). For example, consider a three-tier supply chain that has multiple 

suppliers, manufacturers and retailers. If there is a disturbance in this supply system, then it 

is more likely that the supply, production and distribution plans will be affected. So the 

entire supply chain plan should be re-optimised, for a certain future period, to minimise the 

effect of any disturbance. It becomes a more challenging optimisation problem when an 

optimal recovery plan is developed, after the occurrence of a disturbance, so that the effect 

of a sudden disturbance is minimised.  
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Figure 1.1: A three-tier supply chain network with multiple entities at each tier 

In the literature, many studies have investigated ways to deal with disturbance in supply 

chains. The majority of these works consider proactive mitigation approaches, as such 

disturbance management strategy, in which additional inventory is held in the system for 

the entire period to protect against disruptions. A very few works have been found in the 

literature which developed a cost effective recovery strategy for managing disturbance, 

after the occurrence of a disturbance (Hishamuddin, 2013). In this thesis, the recovery 

strategies include the actions, which are taken only after the occurrence of a disturbance. 

These strategies include pure backorders, pure lost sales, outsourcing, or a mix of them to 

handle shortages in satisfying demand (Hishamuddin, 2013). In the event of a disturbance, 

all parties, such as suppliers, manufacturers and retailers, which are affected, must react 

appropriately in a timely manner in order to minimise potential losses. In this thesis, the 
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objective is to minimise the effect of a disturbance in a supply chain system. The main 

decision is to determine revised supply, production and distribution schedule during the 

recovery-time window subject to demand, supply, production, and delivery constraints.  

In real-life situations, a supply chain system can also face multiple disturbances, one after 

another, as a series. When a disturbance occurs, a revised plan can be generated by solving 

the model for a single disturbance. If a new disturbance occurs after the recovery time 

window of another disturbance, then the later one can be considered as an independent 

disturbance and the recovery plan can be made in a similar manner as the previous one. 

After finalizing the revised plan, if another disturbance occurs within the recovery time 

window, then the supply, production and distribution plans need to be revised again to 

consider the effect of both disturbances. This makes the case more complex for recovery 

planning. In practice, to minimise the effect of disturbances, they must be dealt with on a 

real-time basis, whether there is a single occurrence of disturbance or a series of 

disturbances. In this thesis, the recovery plan is also generated for a series of disturbances, 

as long as disturbances take place in a system. 

The research problem considered in this thesis can be briefly summarised as follows.  

i. A real-life supply chain system with imperfect production process. 

ii. A disturbance is experienced at any point of the system and at any time. The 

disturbance includes disruption in supply and production, fluctuation in demand 

or a mix of them at both supply and demand. 

iii. Generating a revised plan for supply, production and distribution, just after the 

occurrence of a disturbance, so the system can return to its normal schedule 

after a certain period of time. 

iv. Generating a revised plan for a series of disturbances on a real-time basis. The 

plan may be revised after each disturbance, as long as disturbances take place in 

the system, while considering the effect of all previous disturbances. 

In this research, a few general assumptions have been made as follows. 

i. A single type of item is produced in the system. 

ii. The production rate is greater than the demand rate. 

iii. There is no inventory buffer in the system. 
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iv. There is no safety stock in the system. 

v. The recovery-time window begins immediately after the occurrence of a 

disturbance. 

vi. The recovery-time window is determined by the management of the 

organisation. 

1.4 Importance of this Research 

That supply chain disturbance management is an important problem, can be judged from 

two examples. The first, according to Sodhi and Chopra (2004), occurred because of 

lightning strikes at Phillips plant in New Mexico on March 17, 2000. This strike caused a 

massive surge in the surrounding electrical grid, and later it turned into a fire in the Royal 

Phillips Electronics plant and thereby damaged millions of microchips. Nokia Corporation 

and Ericsson were two major customers of the Phillips plant. To obtain backup supply, 

Nokia took proactive measures by redesigning its products and began switching its chip 

orders to other Phillips plant immediately after the fire disaster. In contrast, Ericsson 

employed a single sourcing policy. As a result, Ericsson had no other source of microchips, 

which consequently disrupted their production for months and cost $400 million in lost 

sales.  

The second case is based on a Business Continuity Institute’s study, entitled Supply Chain 

Resilience 2010, which reported that awareness of supply chain risks is increasing, but that 

many companies remain exposed to high levels of risk. They reported that seventy-two 

percent of survey respondents (310 organisations) experienced at least one disruption in 

their supply chain. The average number of supply chain disruptions reported by 

respondents was five, and for ten percent of companies the financial cost of supply chain 

disruptions was at least 500,000 Euros. Supply chain disruptions not only cause financial 

loss, but can also damage a company's brand or reputation as a result of third party failures. 

This fact was reported by twenty percent of companies that suffered damage to their 

reputation, while over fifty percent experienced a loss of productivity. In the retail sector, 

supply chain disruptions are almost always expected, and this sector has the worst 

problems with disruptions, with an average of ten per year.  
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From the above examples, it is clear that supply chain systems can be imbalanced because 

of inappropriate responses to disturbances, and organisations can consequently face huge 

financial loss, as well as loss of goodwill. Therefore, the development of efficient and 

accurate methodologies/algorithms to obtain optimal plans for inventory policies is a very 

important research topic. This has consequently sparked the interest of a wide range of 

researchers to study topics of supply chain disturbance management.  

In recent years, the amount of supply chain disturbance management research is increasing 

significantly, which can be judged from Figure 1.2, which shows that research on this topic 

has increased exponentially over the last decades. This graph, presented in Figure 1.2, was 

plotted based on a search with the keywords “supply chain disturbance management” from 

Scopus. Now-a-days, disturbance management is a most important issue for supply chain 

systems and both academicians and practitioners are motivated to contribute in this 

research area, which is also the motivation behind the thesis.  

 

Figure 1.2: The number of research articles on supply chain disturbance management since 

1995 (Source: Scopus) 
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1.5 Objective of the Thesis 

The main objective of this thesis, is to develop quantitative decision tools to deal with 

different types of disturbances within a supply chain. These tools consist of mathematical 

modelling and heuristics developed to solve such models. Specifically, it considers real-life 

problems, such as production and supply disruption, demand fluctuation, and imperfect 

production in production-inventory and supply chain systems. The objective is to first 

determine the optimal inventory policies for each node as a recovery strategy, then 

subsequently optimising the entire supply chain as a whole and to finally determine the 

optimal plan if a system faces either a single or multiple disturbances on a real-time basis. 

The main objective has been divided into seven sub-objectives that were sequentially 

performed during the course of this research. The sub-objectives are described below, 

along with the steps taken to achieve them. 

Objective 1: study an imperfect production-inventory system under production disruption. 

 Develop a new mathematical model for a production-inventory system under 

production disruption with consideration of process reliability. 

 Develop a solution approach to solve the mathematical model for managing a 

single disruption. 

 Extend the solution approach for managing multiple disruptions, one after another 

as a series, on a real-time basis. 

 Conduct experimental studies using different disruption scenarios. 

 Perform sensitivity analysis. 

Objective 2: study a two-stage production-inventory system under disruption. 

 Develop a mathematical model by extending the previous single-stage production-

inventory model to a two-stage system. 

 Develop an efficient solution approach to solve the mathematical model for 

managing a single disruption at any stage. 

 Extend the solution approach for managing multiple disruptions, at any stage as a 

series, on a real-time basis. 
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 Conduct experimental studies using different disruption scenarios. 

 Perform sensitivity analysis. 

 Implement the model to a real-world case from a pharmaceutical company. 

Objective 3: study a three-stage mixed production-inventory system under disruption. 

 Develop a mathematical model by extending the previous two-stage production-

inventory model to a three-stage system under a mixed production environment. 

 Develop an efficient heuristic to solve the mathematical model for managing a 

single disruption at any stage. 

 Extend the heuristic for managing multiple disruptions, at any stage as a series, on a 

real-time basis. 

 Conduct experimental studies using different disruption scenarios. 

 Perform sensitivity analysis. 

 Implement the model to a real-world case from a pharmaceutical company. 

Objective 4: study a supply chain network under production disruption. 

 Develop an ideal supply chain model and solve the model using traditional 

optimisation software. 

 Develop a mathematical model for managing disruption with multiple 

manufacturing plants, multiple distribution centres, and multiple retailers. 

 Develop an efficient heuristic to solve the mathematical model for managing a 

single disruption at any plant. 

 Extend the heuristic for managing multiple disruptions, at any plant as a series, on a 

real-time basis. 

 Conduct experimental studies using different disruption scenarios. 

 Perform sensitivity analysis. 

Objective 5: study demand fluctuation in a supplier-retailer coordinated system. 

 Develop a mathematical model in a two-stage supplier-retailer system under 

demand fluctuation. 
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 Develop an efficient heuristic to solve the mathematical model for managing a 

single fluctuation at the retailer end. 

 Extend the heuristic for managing multiple fluctuations, one after another as a 

series, on a real-time basis. 

 Conduct experimental studies using different fluctuation scenarios. 

 Perform sensitivity analysis. 

Objective 6: study supply disruption in a three-tier supply chain system. 

 Develop a mathematical model for a three-tier supply chain under raw material 

supply disruption. 

 Develop an efficient heuristic to solve the mathematical model for managing a 

single disruption at any supplier. 

 Extend the heuristic for managing multiple disruptions, at any supplier as a series, 

on a real-time basis. 

 Conduct experimental studies using different disruption scenarios. 

 Develop a simulation model to study real-world scenarios. 

 Perform sensitivity analysis. 

Objective 7: study multiple disturbances in a supply chain system and design a simulation 

model. 

 Develop a mathematical model for a supply chain system under different types of 

disturbances: production disruption, demand fluctuation and supply disruption. 

 Develop an efficient heuristic for managing each type of disturbance. 

 Extend the heuristic for managing multiple disturbances during a period. 

 Conduct experimental studies using different disturbance scenarios. 

 Design a simulation model to test random disturbance instances. 

 Perform sensitivity analysis. 
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1.6 Contributions to Scientific Knowledge 

There are several scientific contributions that this thesis proposes to the literature of supply 

chain disruption, chiefly consisting of development of new mathematical models and their 

solution approaches. The specific contributions are outlined as follows. 

 A real-time disruption recovery model for an imperfect production-inventory 

system is developed and an efficient solution approach is proposed to solve the 

model for both a single and multiple disruptions (Chapter 3), which is an extension 

of the work of Hishamuddin et al. (2012). The model determines the revised 

schedule and ensures recovery is achieved in a timely and cost effective manner. 

The model proposes a reactive strategy, after the occurrence of a disruption, on a 

real-time basis. The developed model also considers a more complex problem of 

multiple disruptions, one after another, as a series and determines a recovery plan 

after the occurrence of each disruption, as long as disruption takes place in the 

system. Both lost sales and back orders options are considered in the recovery 

strategy. To the best of my knowledge, this is an extended work that considers all 

the above characteristics in a single study.   

 The research work, developed in chapter 3, is extended for managing production 

disruption in a two-stage (chapter 4) and three-stage mixed (chapter 5) production-

inventory system and a supply chain network with multiple manufacturing plants, 

multiple distribution centres and multiple retailers (chapter 6). In all cases, an 

efficient mathematical model and heuristic approach is developed for managing 

both a single and multiple disruptions on a real-time basis. The models developed 

in chapters 4 and 5 are also implemented to real-world cases from a pharmaceutical 

company. A predictive mitigation approach is also developed in addition to the 

study in chapter 6. 

 Chapter 7 develops a quantitative approach for managing demand fluctuation in a 

supplier-retailer coordinated system. An efficient heuristic is developed for 

managing both a single and multiple fluctuations on a real-time basis. The 

developed approach revises the schedule after the occurrence of each fluctuation as 

long as fluctuations take place in the system. To the best of my knowledge, there is 
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no such work in the literature that develops an approach for managing real-time 

demand fluctuation.   

 A mathematical and simulation approach is developed for managing raw material 

supply disruptions in a three-tier supply chain (chapter 8). An efficient heuristic is 

developed first to obtain the revised plan after the occurrence of a disruption and 

after that the heuristic is extended to deal with multiple disruptions. The results are 

analysed and validated by carrying out experimental studies after developing a 

simulation approach. There is no such model in the literature that considers 

multiple disruptions in a three-tier supply chain.  

 Finally, a mathematical and simulation model is developed for managing different 

types of disturbances in a supply chain system (chapter 9). Disturbances due to a 

production disruption, demand fluctuation, and raw material supply disruption are 

considered in this study. An efficient mathematical and heuristic approach is first 

developed for managing each type of disturbance. A simulation model is also 

developed that tests random disturbance occurrences to make the model closer to 

the real-world instances. Finally, the results are validated by carrying out 

experimental studies using different disturbance scenarios and by performing a 

sensitivity analysis. To the best of my knowledge, there is no such work in the 

literature that considers all the above disturbances in a single study, and develops a 

simulation model for managing those disturbances. 

1.7 Organisation of the Thesis 

This thesis has ten chapters and is organized as follows: 

In chapter 1, an introduction to the thesis is presented. It first provides an overview of the 

research field, followed by the motivation and scope of the research. It also presents the 

problem statement and importance of the thesis. The objectives and a list of scientific 

contributions stemming from this research are also presented. The last section of the 

chapter presents the organisation of the thesis. 



Chapter 1: Introduction 15 

 

 

 

Chapter 2 provides a literature review and background study of the topics covered in this 

thesis. It provides a brief discussion on production-inventory and supply chain problems 

and their impact on real-life situations. Then the review is conducted on the basis of 

comparing various works published in this research domain, especially research that 

considered real-life risk factors, such as imperfect production process, disruption in 

production, supply, transportation, and fluctuation in demand while developing their 

models. The mathematical models and the solution approaches used in solving production-

inventory and supply chain models, using both hypothetical and real-world problem 

scenarios, are also reviewed. 

 In chapter 3, a production disruption management model is developed for an imperfect 

single-stage production-inventory system. A significant number of numerical examples and 

random experimentation are presented to explain the usefulness and benefits of the 

developed model. 

Chapter 4 extends the research work for a two-stage production-inventory system. Then a 

new mathematical model and heuristic approach is developed to deal with both single and 

multiple disruptions on a real-time basis.  

In chapter 5, the research work is further extended for managing disruption in a three-stage 

mixed production-inventory system. The results are analysed by developing a new 

heuristic for managing both a single and multiple disruptions, using both random data, and 

also a real-world case from a pharmaceutical company. 

A combined predictive and reactive mitigation approach for managing disruption in a 

supply chain network with multiple manufacturing plants, multiple distribution centres and 

multiple retailers is developed in chapter 6.  

Chapter 7 presents a new mathematical and heuristic approach for managing demand 

fluctuation for a supplier-retailer coordinated system. The model is developed for 

managing both a single and multiple fluctuations, one after another as a series, on a real-

time basis. A significant number of experiments are performed to analyse the results. 
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In chapter 8, a supply disruption management model is developed for a three-tier supply 

chain system. A new dynamic mathematical and heuristic approach is developed that is 

capable of dealing with a single and multiple supply disruptions on a real-time basis. This 

chapter also develops a simulation model to analyse the effect of randomly generated 

disruption events that are not known in advance.   

A simulation model for managing multiple types of disturbances in a supply chain system 

is developed in chapter 9. A new and efficient heuristic is proposed for each disturbance 

type, to obtain a revised plan after the occurrence of a disturbance on a real-time basis. The 

effects of different types of randomly generated disturbance events, not known in advance, 

are analysed by developing a simulation model.  

In chapter 10, the main findings from the thesis are summarized. The chapter concludes the 

thesis with a discussion of possible future research directions. 

Since this thesis discusses different types of models for real-life supply chain problems, 

such as production disruption, supply disruption, demand fluctuations, and imperfect 

production, it can be presented to readers in different ways. Figure 1.3 shows the flowchart 

of this thesis for readers with different interests. 
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Chapter 2 Literature Review 

In this chapter, a literature review is presented on the topic of disturbance management in 

production-inventory and supply chain systems. The review is conducted on the basis of 

comparing various works published in this research domain, especially the papers 

considered real-life risk factors such as imperfect production process, disruption in 

production, supply, and demand while developing the models for production-inventory and 

supply chain systems.  The emphasis is given on the assumptions and the types of 

problems considered in the published research. The focus is given on reviewing the 

mathematical models and the solution approaches in solving the models using both 

hypothetical and real world problem scenarios. Finally after the review, the research gaps 

are identified, which are the motivating factors for the research work in this thesis.  

2.1 Introduction 

Over the last half a century, one of the most widely studied research topics, in Operations 

Research and Industrial Engineering, is the production-inventory and supply chain system. 

Production-inventory and supply chain systems exist, in every organisation, in different 

forms and degrees, depending upon the size and nature of the organisation, the products 

produced and supplied, the production facilities, the wholesalers and the retailers. Ensuring 

the smooth functioning of each and every entity in a supply chain, and managing the 

predictable and unpredictable disturbances, is a key issue for the success of any 

organisation in a supply chain environment. 

Recently, the disturbance management has become an important topic in this research area. 

In reality, there are several disturbance factors that are involved in supply chain systems 

(Sodhi and Chopra, 2004), such as: disruption in the production, supply, transportation, 

and uncertainty in demand and supply. An imperfect production environment is also an 

important factor that has significant impacts on company’s production and supply. Without 

a proper response to all these factors, the entire system can be imbalanced and the 
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organisation will face huge financial loss, as well as loss of goodwill. An organisation 

should have an appropriate recovery plan that minimises the impact of risk factors in 

supply, production and distribution. 

A number of studies have been conducted in the past to develop models for facing risk in 

the production and supply chain systems. The literature basically consists of studies on 

various types of models, such as: models on imperfect production process, models 

production-inventory management with disruptions, models on supply chain management 

with disturbances, models used different solution approach, and models applied to a real-

life case.  In this chapter, the focus will be given on reviewing papers that incorporate the 

risk factors while developing models in production-inventory and supply chain systems.  

2.2 Models 

In the previous researches, a good number of papers developed models on production-

inventory and supply chain. These works are categorized into four classes: (i) modelling 

for ideal system, (ii) modelling for imperfect production process, (iii) modelling with risk 

and disruption, and (iv) modelling for disruption recovery.  

2.2.1  Modelling for the Ideal System 

During the early stage, researchers focused on developing production-inventory models 

under ideal conditions, where the system is 100% perfect (no disruption). A few examples 

of such studies are, the development of the basic economic order quantity (EOQ) model 

((Harris, 1990, reprint from 1913) and Wilson, 1934) and the development of the basic 

economic production quantity (EPQ) model (Taft, 1918), which was an extension of the 

EOQ model. Later, many researchers used EOQ and EPQ models in their studies. For 

example Cheng (1989) considered production process reliability in a single-stage imperfect 

production process to develop an EPQ model. Goyal and Gunasekaran (1990) also applied 

the basic concept of the EPQ model to determine optimal lot sizes in a multi-stage 

production system that minimised the sum of all costs. Other such extensions of EPQ 

models, in single-stage production-inventory systems, were developed in the research of 
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periodic review stochastic inventory system (Chan and Song, 2003), a single-item single-

stage inventory system with stochastic demand with periodic review where the system 

must order either none or at least as much as a minimum order quantity (Kiesmüller et al., 

2011), the studies in steady-state average inventory and backorder levels for each product 

(Shiue and Altiok, 1993), an effective production ordering policy in a capacity-constrained 

production and inventory system (Ishii and Imori, 1996) and a direct and intuitive way of 

deriving the lot sizes (Hill, 2000) and a mathematical model to determine the optimal batch 

size under a periodic delivery policy in a single-stage production-inventory system (Sarker 

and Khan, 2001). 

In supply chain systems, researchers also focused on developing models under ideal 

conditions during the early stage. A few examples of such supply chain studies include: a 

single product, single warehouse and multiple retailers based distribution system (Petrovic 

et al., 2008), a single manufacturer and single retailer model with demand and 

manufacturing cost as fuzzy variables (Zhou et al., 2008), a single period and two-stage 

supply chain coordination problem (Xu and Zhai, 2010) and a three-stage system 

consisting of supplier, manufacturer and retailer which produces a combination of perfect 

and imperfect quality items (Sana, 2011). Recently, Sana (2012) developed a model for a 

three stage supply chain where the systems may produce defective items. The production 

rate, order quantity and number of shipments are decision variables, where the objective is 

to maximise the expected total profit. Pal et al. (2012) developed an inventory model for 

multiple items produced by a manufacturer. It considered multiple suppliers, one 

manufacturer and multiple retailers with deterministic demand. They maximised the total 

integrated profit of the supply chain by determining the optimal ordering lot sizes of the 

raw materials. In recent years, a few more studies, on developing supply chain models 

under ideal conditions, can be found in Bottani and Montanari (2010), Choi et al. (2013), 

and Xu and Meng (2014). 

For a two-stage single item supply chain system, with a lot-for-lot condition under an ideal 

situation, a non-disruption model is developed by Banerjee (1986). This is worth 

introducing here, because our two-stage demand fluctuation model have been derived 
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based on this model. The original model is modified to incorporate the real-time demand 

fluctuation. The following notations were used in the model: 

𝐷 Annual demand or usage of the inventory item 

𝑃 Vendor’s annual production rate for this item 

𝐴 Purchaser’s ordering cost per order  

𝑆 Vendor’s set-up cost per set-up  

𝑟 Annual inventory carrying charge 

𝐶𝑣 Unit production cost incurred by the vendor 

𝐶𝑝 Unit purchase cost paid by the purchaser 

𝑄 Order or production lot size in units 

The general cost function for the purchaser was derived as follows: 

𝑇𝑅𝐶𝑝 =
𝐷𝐴

𝑄
+
𝑄

2
𝑟𝐶𝑝 (2.1) 

The general cost function for the vendor was derived as follows: 

𝑇𝑅𝐶𝑣 =
𝐷𝑆

𝑄
+
𝐷𝑄

2𝑃
𝑟𝐶𝑣 (2.2) 

In the previous production-inventory and supply chain studies, most researchers focused on 

modelling different lot-sizing, coordination and optimisation systems under ideal 

conditions. But in real-life situations, there are several risk factors that are involved in 

production and supply chain systems, such as: disruption in the production, demand and 

supply (Sodhi and Chopra, 2004),  imperfect production process and demand uncertainty. 

Without a proper response to all these risk factors, the entire system can be imbalanced and 

the organisation will face huge financial loss, as well as loss of goodwill. 

2.2.2 Modelling for Imperfect Production Process 

The above studies, with many others, are conducted under ideal conditions. However, 

imperfect production process is very common in real-life.  Process reliability is used to 

consider imperfect production environment, in the production-inventory modelling, that 
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has significant impact on costs and profits (Cheng, 1989). At first, process reliability was 

considered by Cheng (1989) in a single period inventory system and was formulated as an 

unconstrained geometric programming problem. Later it was extended by Bag et al. (2009) 

by considering product demand as a fuzzy random variable.  Recently, process reliability 

in an imperfect production process was incorporated to determine the optimal product 

reliability and production rate that achieves the highest total integrated profit (Sana, 2010), 

to study an unreliable supplier in a single-item stochastic inventory system (Mohebbi and 

Hao, 2008) and to analyse an EPQ model with price and advertising demands under the 

effect of inflation (Sarkar and Moon, 2011). Recently, Paul et al. (2013) also extended the 

model of Cheng (1989), that considered product demand and inventory holding cost as a 

fuzzy random variable and maximised the graded mean integration value of the total profit. 

Some other models, which considered process reliability while modelling in production-

inventory, were developed by Tripathy et al. (2003), Jaber et al. (2009), Leung (2007), 

Panda and Maiti (2009), Tripathy and Pattnaik (2011), Pal et al. (2013), and Masud et al. 

(2014). 

The models, developed for imperfect production process, extended the literature 

significantly. These works also helped to apply the models in many real-life production 

processes. But in this competitive business era, the consideration of only process reliability 

is not sufficient to make the model realistic. Other risk factors, such as disruption in 

supply, production and demand should be considered while developing a realistic 

production-inventory model. It is worth to discuss here, because imperfect production 

environment is considered while developing our real-time disruption recovery models for 

single-stage and two-stage production-inventory system. Process reliability is also 

considered for demand fluctuation model in a two-stage supply chain system.  

2.2.3 Modelling with Disruption 

Snyder et al. (2012) provided an extensive review on supply chain disruption management 

models. However, in order to meaningful review for this thesis, the focus is given on the 

most relevant and recent topics in these works and the disruption recovery models in 

supply chain systems. Disruption management strategies can be categorised into three main 
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groups (Tomlin, 2006): (i) mitigation strategies, (ii) recovery strategies, and (iii) passive 

acceptance.  Mitigation strategies require the company to act in advance of a disruption, 

regardless of whether the disruptions actually occur or not (Jr and Taskin, 2008). The 

examples of mitigation strategies include increasing of safety stock, multiple sourcing, 

expanding the capacity, increasing visibility and setting up alternative transportation 

modes (Jr and Taskin, 2008). The recovery strategies include the action, which is taken 

only after the occurrence of a disruption. This strategy may include alternative sourcing, 

rescheduling of plan for a future period and/or rerouting the transport system 

(Hishamuddin, 2013). Lastly, passive acceptance, which is accepting the risks without any 

action, may be more appropriate in certain solutions when the costs of mitigation or 

recovery strategies outweigh their potential advantages.  In the literature, most of the 

researches focused of mitigation strategies to manage the risks due to disruption. Recently, 

some researches have been carried out by applying recovery strategies. In case of sudden 

disruption, recovery strategies could be more effective than mitigation strategies. In this 

chapter, the focus will be given on reviewing papers that study on production-inventory 

and supply chain models for managing disruption risks. 
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Figure 2.1: Different disruptions in a supply chain system  
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Figure 2.1 presents a typical supply chain system with different disruptions. The supply 

chain disruption risk is classified into four categories: (i) disruption in production, (ii) 

disruption in supply, (iii) disruption in transportation, and (iv) fluctuation in demand, 

which are shown in Figure 2.1. Production disruption includes any form of interruption in 

the production that may be caused due to shortage of material, machine breakdown and 

unavailability, or any other form of disturbance (either accidental or man-made). A supply 

disruption can be defined as any form of interruption in the material supply that may be 

caused due to delay, unavailability, or any other form of disturbance. The transportation 

disruptions include any form of interruption in the transportation system between supplier 

and manufacturer, and manufacturer and retailer, that may be caused due to breakdown, 

road work, strike, and natural disaster like flood, earthquake etc. Lastly, demand 

fluctuation can be defined as any kind of variation in product demand at the retailer end. 

Demand can be increased or decreased for a certain period of time.  

2.2.3.1 Disruption in Production  

Lin and Gong (2006) analysed the impact of machine breakdown on an EPQ (Economic 

Production Quantity) model for deteriorating items in a single-stage production system. 

They considered a fixed period of repair time. They minimised an expected total cost per 

unit time, that consisting of setup, corrective maintenance, inventory carrying, 

deterioration, and lost sales costs. Widyadana and Wee (2011) extended the model of Lin 

and Gong (2006) for deteriorating items with random machine breakdown and stochastic 

repair time with uniform and exponential distribution. Recently, Wee and Widyadana 

(2013) considered production delay which is due to random machine unavailability and 

shortages to develop an integrated single-vendor single-buyer inventory model. They 

considered lost sales option, and two kinds of machine unavailability distributions 

uniformly and exponentially distributed. An EPQ model with a Poisson distributed 

machine breakdown was considered by Chiu et al. (2007) to determine an optimal 

production run time. They developed a total inventory cost function, under EPQ situations, 

with and without breakdown in a single-stage production system. They assumed some 

portion of the products produced was defective, which meant that it had to be scraped or 

reworked. Moinzadeh and Aggarwal (1997) considered a (s, S) production-inventory 
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policy with random disruptions and exponential time between breakdowns in an unreliable 

bottleneck system. A two-stage supply chain, consisting of retailer and supplier, was 

considered by Zeynep Sargut and Qi (2012), where random disruption may occur at both 

retailer and supplier, and where unfulfilled customer demand is lost. The proposed model 

minimises an expected annual cost in finding the order quantity of the retailer. Schmitt and 

Snyder (2012) developed an inventory model that considered two options: (i) an unreliable 

supplier and (ii) a reliable but expensive supplier. For both cases, they considered 

disruption and recovery probability with yield uncertainty to find the optimal order and 

reserve quantities.  

Recently, Hishamuddin et al. (2012) developed a production disruption recovery model in 

a single-stage production-inventory system, which considered both back order and lost 

sales options. Chiu et al. (2013) considered breakdown in equipment for developing an 

optimal replenishment policy for an economic production quantity (EPQ) inventory model. 

They assumed that the machine will go immediately to under repair whenever a breakdown 

occurs and the production resumes immediately after the machine is fixed and restored. 

Taleizadeh et al. (2014) considered interruption in the manufacturing process to develop an 

economic production quantity (EPQ) inventory model. They studied a multi-product and 

single-machine EPQ model and permitted the shortage as backordered.  

2.2.3.2 Disruption in Supply  

Supply disruption is another important consideration in production and inventory 

modelling. In the inventory and supply chain disruption management, highest numbers of 

works have been carried out for managing supply disruptions. In the early years, Parlar and 

Berkin (1991) and Parlar and Perry (1996) developed inventory models that considered 

supplier availability with deterministic product demand under a continuous review 

framework. Özekici and Parlar (1999) considered back orders to analyse a production-

inventory model under random supply disruptions.  Weiss and Rosenthal (1992) developed 

an optimal inventory policy for EOQ inventory systems which may have a disruption in 

either supply or demand. They considered disruption is known a priori and it lasts a 

random length of time. Some other models of supply disruptions that considered 
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deterministic or probabilistic product demand in their inventory models, can be found in 

Mohebbi (2003), Mohebbi (2004), Li et al. (2004), Tomlin (2006), Mohebbi and Hao 

(2008), Chopra et al. (2007), Qi et al. (2010) and Schmitt et al. (2010). There are a few 

studies that considered both supply and demand disruptions with deterministic product 

demand, such as Xiao and Yu (2006) and Ross et al. (2008).  

Recently, Hou et al. (2010) studied a buy-back contract between a buyer and a backup 

supplier when the buyer’s main supplier experiences disruptions and explored the main 

supplier’s recurrent supply uncertainty through comparative studies and numerical 

examples. Pal et al. (2012b) considered two suppliers to supply the raw materials to the 

manufacturer, where the main supplier may face supply disruption after a random time and 

the secondary supplier is perfectly reliable but more expensive than the main supplier, to 

develop a model in a multi-echelon supply chain.  Snyder (2014) introduced a simple but 

effective approximation for a continuous-review inventory model and considered supplier 

experiences “wet” and “dry” (operational and disrupted) periods whose durations are 

exponentially distributed. Recently, Qi (2013) considered two supplier concept; (i) supplier 

1: primary supplier (cheaper) and (ii) supplier 2: backup supplier (expensive but reliable) 

to manage supply disruption for a single item  continuous-review inventory problem. He 

considered two strategies to recover from a disruption; (i) If supplier 1 is available when 

the inventory level at the retailer reaches the reorder point, the retailer orders from supplier 

1 and (ii) the retailer will reroute to the backup supplier if supplier 1 still does not recover 

from the disruption when the cap of waiting is reached. Hishamuddin et al. (2014) applied 

the back order and lost sales concept to manage supply disruption in a two-stage supply 

chain, which consists of single supplier and single retailer.  Some other recent works on 

managing supply disruption can be found in Yang et al. (2009),  Li et al. (2010), Qi et al. 

(2010), Zhang et al. (2013), Hu et al. (2013), Yan et al. (2014), and Pal et al. (2014). 

2.2.3.3 Disruption in Transportation 

In the literature, transportation disruption has got much less attention compare to 

production and supply disruptions. This type of disruption stops the flow of goods, where 

as other types of disruption may stop production of goods and supply of raw materials as 
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well (Hishamuddin, 2013). Giunipero and Eltantawy (2004) discussed about transportation 

disruption in general in their study, but did not specify the strategies on how to fact it. 

Wilson (2007) investigated the effect of a transportation disruption on supply chain 

performance using system dynamics simulation in a 5-echelon supply chain system, which 

is presented in Figure 2.2. Four types of disruptions were considered in the study: (i) 

transportation disruption between the warehouse and the retailer, (ii) transportation 

disruption between the tier 1 supplier (manufacturer) and the warehouse, (iii) 

transportation disruption between the tier 2 supplier and the tier 1 supplier, and (iv) 

transportation disruption between the raw material supplier and the tier 2 supplier. It was 

observed that the greatest impact occurs when transportation is disrupted between the tier 1 

supplier and warehouse.  
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Figure 2.2: Flow of goods and information: the traditional structure (Wilson, 2007). 

Zhang and Figliozzi (2010) focused on the performance of international and domestic 

transport and logistics systems as perceived by Chinese importers and exporters. They 

provided significant information regarding international freight transport chains, the impact 

of delays on supply chain operations and the subsequent costs, companies’ delay and 

disruption planning, and managers’ perspectives on future transport and logistics 

developments. Unnikrishnan and Figliozzi (2011) formulated a mathematical model for a 

new type of freight network assignment problem in a dynamic environment and in the 

presence of probable network disruptions or significant delays. Recently, Hishamuddin et 

al. (2013) proposed a recovery strategy for managing transportation disruption in a two-

echelon supply chain system. They considered both back orders and lost sales options to 
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recover after the occurrence of a sudden disruption. Although Hishamuddin et al. (2013) 

proposed a quantitative strategy for managing disruption, there is still lack of analysis for 

multiple disruptions, on a real-time basis.  

2.2.4 Supply Chain Disruption and Risk Management  

Supply chain risk management is aimed at managing risks in complex and dynamic supply 

and demand networks (Wieland and Wallenburg, 2012). There are some papers in the 

literature which focused on managing supply chain network disruption and risks.  Tang 

(2006) presented certain “robust” strategies, for mitigating supply chain disruptions, which 

possess two properties. First, strategies for enabling a supply chain to manage the inherent 

fluctuations efficiently regardless of the occurrence of major disruptions. Second, 

strategies for making a supply chain become more resilient in the face of major 

disruptions. Craighead et al. (2007) derived six propositions relating the severity of supply 

chain disruptions to the supply chain design characteristics of density, complexity, and 

node criticality and to the supply chain mitigation capabilities of recovery and warning. 

Those six propositions augmented extant knowledge as to what risk factors are present 

within a supply chain, how vulnerable a supply chain is to these risks, how resilient a 

supply chain is to some given risks, and what can be done to prevent or reduce the 

occurrences of severe supply chain disruptions. Xiao et al. (2007) introduced a supply 

chain coordination model with one manufacturer and two competing retailers and studied 

the coordination of the supply chain with demand disruptions. They found that an 

appropriate contractual arrangement can fully coordinate the supply chain and the 

manufacturer can achieve a desired allocation of the total channel profit by varying the unit 

wholesale price and the subsidy rate. Manuj and Mentzer (2008) proposed a 

comprehensive risk management and mitigation model for global supply chains, that 

brought together the concepts, frameworks, and insights from several disciplines – 

primarily logistics, supply chain management, operations management, strategy, and 

international business management. Wu et al. (2007) presented a network-based modelling 

methodology to determine how changes or disruptions propagate in supply chains and how 

those changes or disruptions affect the supply chain system. The modelling approach 

provided insights to better manage supply chain systems that face disruptions and thus 
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allow quicker response times, lower costs, higher levels of flexibility and agility, lower 

inventories, lower levels of obsolescence and reduced demand amplification throughout 

the chain. Recently, Atoei et al. (2013) proposed a reliable capacitated supply chain 

network design model by considering random disruptions in both distribution centers and 

suppliers and determined the optimal location of distribution centers (DC) with the highest 

reliability, the best plan to assign customers to opened DCs and assigns opened DCs to 

suitable suppliers with lowest transportation cost. Bradley (2014) analysed the differences 

between frequent and rare risks for supply chain disruptions, and proposed a new and 

improved risk measurement and prioritization method to account for the characteristics of 

rare risks. Some other supply chain disruption and risk management model can be found in 

Kleindorfer and Saad (2009), Xiao et al. (2005), Yu and Qi (2004), Finch (2004), Huang et 

al. (2006), Skipper and Hanna (2009), Lavastre et al. (2012), Wu et al. (2013), Salehi 

Sadghiani et al. (2015), Friesz et al. (2011), and Chopra and Sodhi (2014). 

2.2.4.1 Multiple Sourcing 

Several papers have been found in the literature, which used multiple sourcing strategies to 

manage supply chain disruption risks. Yu et al. (2009) evaluated the impacts of supply 

disruption risks on the choice between the famous single and dual sourcing methods in a 

two-stage supply chain with a non-stationary and price-sensitive demand. They obtained 

the expected profit functions of the two sourcing modes in the presence of supply chain 

disruption risks and then identified critical values of the key factors affecting the final 

choice. Xanthopoulos et al. (2012) proposed a newsvendor-type inventory models for 

capturing the trade-off between inventory policies and disruption risks in a dual-sourcing 

supply chain. They developed the models for both risk neutral and risk-averse decision-

makers and obtained the closed-form analytical solutions the determination of the optimal 

expected total profit of the retailer/wholesaler.  

Recently, Gong et al. (2014) determined the optimal ordering and pricing policies in each 

period over a planning horizon, and analysed the impacts of supply source diversification. 

They showed that, when both suppliers are unreliable, the optimal inventory policy in each 

period is a reorder point policy and the optimal price is decreasing in the starting inventory 
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level of the period. They also showed that, having supply source diversification or higher 

supplier reliability increases the firm's optimal profit and lowers the optimal selling price. 

Silbermayr and Minner (2014) studied the supply interruptions mitigation and management 

with sourcing from multiple suppliers. They studied a supply chain with one buyer facing 

Poisson demand who can procure from a set of potential suppliers who are not perfectly 

reliable. They modelled by a Semi-Markov decision process where demands, lead times 

and availability of suppliers are stochastic. Some other models used multiple sourcing 

strategy to manage supply chain risk can be found in Blome and Henke (2009), Fang et al. 

(2013), Lu et al. (2011), Heese (2015), Serel (2015), Sajadieh and Thorstenson (2014), and 

Sawik (2014). 

2.2.5 Modelling for Disruption Recovery 

The disruption is a very familiar event in the production and supply chain environment. 

This is a concern because companies face financial, as well as reputation losses, due to 

disruption. Due to disruption, the entire plan of the organisation can be distorted causing 

shortage of goods and unfulfilled customer demand. The development of an appropriate 

recovery policy can help to minimise losses and maintain the goodwill of a company. As of 

the literature, there exist limited studies that considered disruptions in the production and 

supply chain system and that also develop approaches to obtain a recovery plan. If a 

system is disrupted for a given period of time (known as disruption duration), it is 

necessary to revise the production schedule (known as recovery plan) for some periods in 

the future (known as recovery time window) until the system returns to normal schedule 

(Hishamuddin et al., 2012). In some studies, it is assumed that the recovery time window 

must be specified by the management of the production system.  

A very few studies have been found in the literature, which developed a recovery model 

after the occurrence of a sudden disruption. Xia et al. (2004) developed a general 

disruption management approach for a two-stage production and inventory control system 

and they incorporated a penalty cost for deviations of the new plan from the original plan.  

They introduced the disruption interval which is divided into three parts: pre-disruption, in-

disruption and post-disruption, which allowed detailed analysis of disruption effects. They 

formulated the model as a quadratic programming problem and introduced the concept of a 
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disruption recovery time window.  Eisenstein (2005) introduced the flexible dynamic 

produce-up-to policy that is able to respond to disruption by adjusting the amount of idle 

time during recovery and re-established the target idle time as the schedule recover.  

A production disruption recovery model, for a single disruption within a single-stage and 

single item production system, has been developed by Hishamuddin et al. (2012), for 

obtaining a recovery plan within a user defined time window, which was an extension of 

the model of Xia et al. (2004). The study considered back order, as well as the lost sales 

option. They have further extended the concept to develop a transportation disruption 

recovery plan in a two-stage production and inventory system with single supplier and 

single retailer (Hishamuddin et al., 2013). Recently, they have also applied the back order 

and lost sales concepts to develop a supply disruption recovery model in a two-echelon 

supply chain system with single supplier and single retailer (Hishamuddin et al., 2014). 

Some other disruption recovery models in the production-inventory and supply chain 

system can be found in Gallego (1994), Qi et al. (2004), Tang and Lee (2005), Yang et al. 

(2005), Chen et al. (2015), and Shao and Dong (2012). 

The model developed by Hishamuddin et al. (2012), which was an extension of Xia et al. 

(2004), enhanced the disruption recovery literature significantly. The model considered the 

disruption in the form of schedule interruption that is not known in priori. The model 

considered both back order and lost sales option and developed an efficient heuristic to 

determine the optimal recovery plan and the recovery cycles, after the occurrence of a 

disruption, are presented in Figure 2.3. 
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Figure 2.3: Disruption recovery plan of Hishamuddin et al. (2012) 

The following notations are used to formulate the model of Hishamuddin et al. (2012): 

𝐴 Set-up cost for a cycle 

𝐷 Demand rate for a product 

𝐻 Annual inventory holding cost 

𝑃 Production rate 

𝑄 Production lot size in the original schedule 

𝑇𝑑 Disruption duration 

𝑞 Pre-disruption production quantity in a cycle 

𝑇0 Production time for 𝑞 

𝑢 Production down time for a normal cycle 

𝑡𝑒 Start of recovery time window 

𝑡𝑓 End of recovery time window 

𝑇 Production cycle time for a normal cycle 

𝜌 Production up time for a normal cycle 

𝐵 Unit back order cost per unit time 

𝐿 Unit lost sales cost  

𝑋𝑖 Production quantity for cycle 𝑖 in the recovery window 

𝑇𝑖 Production up time for cycle 𝑖 in the recovery window 

𝑆𝑡 Set-up time for a cycle 

𝛿 Idle time for a cycle  

𝑛 Number of cycles in the recovery window 
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The cost function, which is the sum of all the cost components in the recovery window, for 

their model is presented below: 

𝑇𝐶(𝑋𝑖, 𝑛) = (𝐴. 𝑛) + (
𝐻
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𝑛

𝑖=2

)

 
 

)

  
 

+ (𝐿 (𝑛𝑄 − (𝑋1 + 𝑞) −∑𝑋𝑖

𝑛

𝑖=2

)) 

 

 

 

 

 

 

 

 

 

(2.3) 

Subject to the following constraints, presented in (2.4) – (2.8): 

𝑋1 ≤ 𝑄 − 𝑞 (2.4) 

𝑋𝑖 ≤ 𝑄; for 𝑖 = 2,3,…., 𝑛 (2.5) 

∑𝑋𝑖

𝑛

𝑖=1

≤ 𝑃(𝑛𝑇 − 𝑛𝑆𝑡 − 𝑇𝑑) − 𝑞 (2.6) 

𝑋1 + 𝑞 +∑𝑋𝑖

𝑛

𝑖=2

≥ 𝑛𝑇𝐷 − (𝑛𝑄 −∑𝑋𝑖

𝑛

𝑖=1

− 𝑞) (2.7) 

∑𝑋𝑗

𝑖

𝑗=1

≥ 𝑖. 𝑄 + (𝑖 − 1)𝑃. 𝑢 − 𝑃. 𝑇𝑑 − 𝑃. 𝑖𝑆𝑡 − 𝑞 (2.8) 

This is the most closely related research, to the current study, where a single-stage 

production-inventory system with only one practical issue (i.e., production disruption) is 
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considered. The objective of their study was to minimise the total cost of recovery in a 

single occurrence of disruption. This study is interested to analyse the post disruption 

effects under imperfect production process, where the systems can face both a single and 

multiple disruptions, one after another as a series, on a real-time basis. To the best of 

knowledge, this is the first study to consider this. 

2.2.6 Summary of Literature Review for Different Models 

The summary of the literature review for different models is presented in Table 2.1. It is 

observed that, most of the studies considered single risk factor while developing the model. 

Most of the models considered a simple supply chain network with only a single 

occurrence of disruption. In real-life, multiple disruptions can happen one after another as 

a series. A very few models have been found in the area of disruption recovery and most of 

them developed a single disruption recovery model. So it can be said that there is a lack of 

quantitative disruption and risk management models to help the decision maker to make 

prompt and accurate decision. 
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Table 2.1: Summary of review for different models 

Modelling 

type 
Description Author (year) Remarks 

Imperfect 

production 

Production system is not 

100% perfect and 

produces some defective 

items. The term, process 

reliability, is used for 

imperfect production 

system. 

Cheng (1989); Bag et al. (2009); 

Sana (2010); Mohebbi and Hao 

(2008); Sarkar and Moon 

(2011); Paul et al. (2014); Jaber 

et al. (2009); Leung (2007); 

Masud et al. (2014); Panda and 

Maiti (2009); Sarkar (2012); 

Tripathy and Pattnaik (2011); 

Tripathy et al. (2003). 

The models, developed 

for imperfect 

production process, 

extended the literature 

significantly. But in this 

competitive business 

era, the consideration of 

only process reliability 

is not sufficient to make 

the model realistic. 

Disruption 

Production disruption: 

Any form of 

interruption in the 

production that may be 

caused due to shortage 

of material, machine 

breakdown and 

unavailability, or any 

other form of 

disturbance (either 

accidental or man-

made). 

Lin and Gong (2006); 

Widyadana and Wee (2011); 

Wee and Widyadana (2013); 

Chiu et al. (2007); Moinzadeh 

and Aggarwal (1997); Zeynep 

Sargut and Qi (2012); Schmitt 

and Snyder (2012); 

Hishamuddin et al. (2012); Chiu 

et al. (2013); Taleizadeh et al. 

(2014). 

Most of the developed 

models for managing 

production disruption 

considered a single-

stage production-

inventory system and 

only a single disruption. 

Supply disruption: 

Any form of 

interruption in the 

material supply that may 

be caused due to delay, 

unavailability, or any 

other form of 

disturbance. 

Parlar and Berkin (1991); Parlar 

and Perry (1996); Özekici and 

Parlar (1999);Weiss and 

Rosenthal (1992); Mohebbi 

(2003); Mohebbi (2004); Li et 

al. (2004); Tomlin (2006); 

Mohebbi and Hao (2008); 

Chopra et al. (2007); Qi et al. 

(2010);  Schmitt et al. (2010); 

Xiao and Yu (2006); Ross et al. 

(2008); Hou et al. (2010); Pal et 

al. (2012b); Snyder (2014); Qi 

(2013); Hishamuddin et al. 

(2014); Yang et al. (2009); Li et 

al. (2010); Qi et al. (2010); 

Zhang et al. (2013); Hu et al. 

(2013); Yan et al. (2014); Pal et 

al. (2014). 

Developed models for 

managing supply 

disruption mainly for a 

two-stage supply chain 

system with single 

supplier and single 

retailer and also for 

managing only a single 

disruption. 
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Table 2.1: Summary of review for different models (Continued) 

Modelling 

type 
Description Author (year) Remarks 

Disruption 

Transportation 

disruption: Any form 

of interruption in the 

transportation system 

that may be caused due 

to breakdown, road 

work, strike, and natural 

disaster like flood, 

earthquake etc. 

Giunipero and Eltantawy (2004);  

Wilson (2007); Zhang and 

Figliozzi (2010); Unnikrishnan 

and Figliozzi (2011); 

Hishamuddin et al. (2013). 

Transportation 

disruption has got much 

less attention compare 

to production and 

supply disruptions. 

Most of studies 

developed model for a 

single disruption. 

Supply 

chain risk 

Risk management in 

complex and dynamic 

supply and demand 

networks 

Atoei et al. (2013); Bradley 

(2014); Chopra and Sodhi 

(2014); Craighead et al. (2007); 

Finch (2004); Huang et al. 

(2006); Kleindorfer and Saad 

(2009); Lavastre et al. (2012); 

Manuj and Mentzer (2008); 

Skipper and Hanna (2009); Tang 

(2006); Wieland and Wallenburg 

(2012); Wu et al. (2007); Wu et 

al. (2013); Xiao et al. (2005, 

2007); Yu and Qi (2004); Blome 

and Henke (2009); Fang et al. 

(2013); Sajadieh and 

Thorstenson (2014); Sawik 

(2014); Yu et al. (2009); Gong et 

al. (2014); Silbermayr and 

Minner (2014); Xanthopoulos et 

al. (2012) 

A plenty of papers have 

been found in the 

literature. They 

considered different risk 

factors, such as risk 

from different 

disruptions, sourcing, 

flexibility, and 

reliability. No study 

considered all risk 

factors together in a 

single study. 

Disruption 

recovery 

Development of 

appropriate recovery 

policy, after the 

occurrence of a 

disruption, on a real-

time basis. 

Hishamuddin et al. (2012); 

Hishamuddin et al. (2014); 

Hishamuddin et al. (2013); 

Eisenstein (2005); Gallego 

(1994); Qi et al. (2004); Shao 

and Dong (2012); Tang and Lee 

(2005); Xia et al. (2004); Yang 

et al. (2005) 

A very few studies have 

been found in the 

literature, which 

developed a recovery 

models after the 

occurrence of a sudden 

disruption. No study 

considered all 

disruptions together. 
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2.3 Solution Approach 

In the literature, several solution approaches have been applied to solve the model. These 

approaches can be broadly classified as: traditional optimisation approach, heuristic 

approach, simulation approach, and search algorithm approach. In case of solving complex 

models, researchers focused on developing heuristic, rather than applying standard search 

algorithm. Many researchers used simulation techniques to solve and make the model as 

real world process. 

2.3.1 Traditional Optimisation Approach 

If the supply chain risk management problem is simple and static then it can be solved by 

using a traditional optimisation approach. A few examples of such researches include: use 

of linear programming (Kabak and Ülengin, 2011), geometric programming (Cheng, 1989; 

Bag et al., 2009; and Paul et al., 2013), quadratic programming (Xia et al., 2004), and 

branch and bound method (Baghalian et al., 2013).  In real-life situations, supply chain risk 

management model is a dynamic and complex problem. This limits the applicability of 

traditional optimisation approaches to solve the risk management model.  

2.3.2 Heuristic Approach 

Heuristics are a subset of strategies (Gigerenzer and Gaissmaier, 2011). Heuristic rules 

have the advantage of being simple to understand, easy to apply and very inexpensive to 

use in computer programs (Talbot and Patterson, 1979). A few papers have been found in 

the literature, which developed a heuristic to solve their model. Usually, the heuristic was 

developed when the mathematical model was complex to solve. In the production-

inventory and supply chain management field, several studies have been found in the 

literature, which developed a heuristic to solve the complex models. For example: for 

finding near optimal policies of a production-inventory system subject to exponential 

distributed disruptions (Moinzadeh and Aggarwal, 1997), for managing production 

disruption in a single-stage production-inventory system(Hishamuddin et al., 2012), for 

managing transportation disruption in a two-echelon supply chain (Hishamuddin et al., 
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2013), and for managing supply disruption in a two-echelon supply chain (Hishamuddin et 

al., 2014). 

Abboud (2001) developed an efficient algorithm to obtain the optimal solution, which 

relaxed the constant recovery length assumptions made by Moinzadeh and Aggarwal 

(1997). Arreola-Risa and DeCroix (1998) presented an algorithm, to find optimal decision 

variables and insights behaviour of the optimal policy parameters, for a continuous review 

inventory system with Poisson demand, zero lead time and partial backorders. 

Hishamuddin et al. (2012) developed an efficient heuristic approach to determine the 

optimal values of production quantities and number of recovery cycles for solving their 

recovery model in a single-stage production-inventory system. The heuristic consists of 

three main strategies. Strategy 1: the total back order plan, Strategy 2: the available 

capacity allocation and Strategy 3: the minimum back order requirement. Some other 

recent papers, which developed a heuristic, can be found in Hill and Galbreth (2008), 

Perron et al. (2010), Liu and Chen (2011),  Liao et al., (2009), and Al-Rifai and Rossetti 

(2007).   

2.3.3 Simulation Approach 

Simulation is defined as the imitation of the operation of a real-world process or system 

over time (Banks et al., 2001). Simulation enables decision makers to improve operational 

efficiency and performance through its ability to incorporate the inherent uncertainties in 

complex real system (Keskin et al., 2010).  It is a very common tool in the literature, which 

was used to evaluate the complex models in inventory and supply chain.  

In this section, a brief review, of using simulation approach in inventory and supply chain 

risk management, is discussed. Wu and Olson (2008) considered three types of risk 

evaluation models within supply chains: chance constrained programming (CCP), data 

envelopment analysis (DEA), and multi-objective programming (MOP) models. They 

modelled the various risks in the form of probability and simulation of specific probability 

distribution in a supply chain consisting of three levels and used simulated data with 

representative distributions.  Longo and Mirabelli (2008) presented an advanced modelling 

approach and a simulation model for supporting supply chain management. They 
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considered two objectives. The first objective was to develop a flexible, time-efficient and 

parametric supply chain simulator starting from a discrete event simulation package and 

the second objective was to provide a decision making tool for supply chain management. 

They analysed the effects of inventory control policies, lead times, customers’ demand 

intensity and variability, on different supply chain performance measures. Pierreval et al. 

(2007) performed a dynamic analysis of the behaviour of an automotive industry supply 

chain through simulation, which was based on Forrester’s system dynamic paradigms.  

In recent years, some studies were conducted by using the simulation approach. For 

example: application of Monte Carlo simulation for quantifying supply chain disruption 

risk (Schmitt and Singh, 2009), reducing risk from both supply disruptions and demand 

uncertainty in a multi-echelon supply chain(Schmitt and Singh, 2012), development of 

second version of supply chain operations reference model (SCOR), which is a simulation 

based tool for dynamic supply chain analysis (Persson, 2011) and the model was also 

tested in a case company: Alfa Laval at Ronneby, Sweden – a manufacturer of heat 

exchangers and analysis the effect of supply disruptions in a single-product inventory 

system which involved a supplier, a retailer, and differentiated customers by considering 

partial backordering when a stockout occurs (Li and Chen, 2010). Some other recent 

simulation studies can be found in Che (2012), Carvalho et al. (2012), Mobini et al. (2013), 

Betts (2014), and Ramanathan (2014).  

From the literature, it can be that simulation is a proven and strong tool for analysis of 

complex and dynamic systems. For this reason, the simulation technique is utilized for 

managing disruptions in production-inventory and supply chain systems. 

2.3.4 Search Algorithm 

Search algorithms, such as: genetic algorithm (GA), simulated annealing (SA), ant colony 

algorithm (ACA), and particle swarm optimisation (PSO) are also applied to solve the 

models developed in production-inventory and supply chain model. These are standard 

solution techniques to solve the model.  This is worth to discuss here, because standard 

search algorithm is used to develop a heuristic for solving the model for managing 

disruptions, in single-stage and two-stage production-inventory system, on a real-time 
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basis. Among the entire search algorithm, genetic algorithm was widely used. A few recent 

papers which used genetic algorithm can be found in Guchhait et al. (2013), Pasandideh et 

al. (2011), Gupta et al. (2009), Jawahar and Balaji (2009),  and Costa et al. (2010).  

Other search algorithm, such as SA, ACA and PSO were also applied to solve the model 

developed in production-inventory and supply chain. Simulated annealing was used in 

Kuik and Salomon (1990),  Tang (2004), and Diabat (2014). Ant colony algorithm was 

used by Silva et al. (2009), Nia et al. (2013), and Liao et al. (2011). Particle swarm 

optimisation was used by Yang and Lin (2010), and Deleris and Erhun (2005). 

The summary of the literature review for different solution approaches is presented in 

Table 2.2. It is observed that, most studies focused on using search algorithm to solve the 

models. A good number of works also have been found which developed heuristic and 

simulation approach to solve the complex models. In case of dynamic and complex 

problem, it is worth to develop a combined heuristic and simulation approach to make the 

model easy to implement and more closer to a real-world process. 
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Table 2.2: Summary of review for different solution approaches 

Solution 

approach 
Description Author (year) Remarks 

Traditional 

optimisation 

Includes linear 

programming, geometric 

programming, quadratic 

programming, branch 

and bound method. 

Cheng (1989); Bag et al. (2009); 

Paul et al. (2013); Kabak and 

Ülengin (2011); Xia et al. (2004); 

Baghalian et al. (2013). 

Not suitable to solve 

dynamic and complex 

problem. 

Heuristic 

Heuristics are a subset 

of strategies to find the 

near optimal solutions. 

Moinzadeh and Aggarwal (1997); 

Hishamuddin et al. (2012); 

Hishamuddin et al. (2013); 

Hishamuddin et al. (2014); 

Abboud (2001); Arreola-Risa and 

DeCroix (1998); Hill and 

Galbreth (2008); Perron et al. 

(2010); Liu and Chen (2011);  

Liao et al., (2009); Al-Rifai and 

Rossetti (2007).   

Simple to understand, 

easy to apply, 

computationally 

inexpensive. Not able 

to obtain optimal 

solution.  

Simulation 

The operation of a 

process or system over 

time to make it closer to 

a real-world process. 

Wu and Olson (2008);Longo and 

Mirabelli (2008); Pierreval et al. 

(2007); Schmitt and Singh (2009); 

Schmitt and Singh (2012); 

Persson (2011); Li and Chen 

(2010); Che (2012); Carvalho et 

al. (2012); Mobini et al. (2013); 

Betts (2014); Ramanathan (2014).  

Make the model 

closer to a real-world 

process when real-

world data is not 

available. 

Search 

algorithm 

Existing search 

algorithm, such as; 

genetic algorithm (GA), 

simulated annealing 

(SA), ant colony 

algorithm (ACA), and 

particle swarm 

optimisation (PSO). 

GA: Guchhait et al. (2013); 

Pasandideh et al. (2011); Gupta et 

al. (2009); Jawahar and Balaji 

(2009);  Costa et al. (2010). 

SA: Kuik and Salomon (1990);  

Tang (2004); Diabat (2014). 

ACA: Silva et al. (2009); Nia et 

al. (2013); Liao et al. (2011). 

PSO: Deleris and Erhun (2005); 

Yang and Lin (2010). 

Iterative method and 

higher computational 

time. 
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2.4 Application in Real-Life Case 

Application of the model in a real-life case is an important way to judge the model. Several 

recent studies have been found in the literature, which applied the model in a real-life case. 

A few examples include: managing disruptions within the supply chain of a large US 

retailer (Oke and Gopalakrishnan, 2009), simulation study for risk assessment and 

management of supply chain for an industrial case (Tuncel and Alpan, 2010), development 

of a set of propositions about how companies manage supply risks in financial crises by 

using in-depth case studies conducted among eight European enterprises (Blome and 

Schoenherr, 2011), application in an automotive spare parts manufacturer in Iran to 

manage supply chain disruption(Zegordi and Davarzani, 2012), design of robust supply 

chain against disruption and application in a real-life case study from the agri-food 

industry (Baghalian et al., 2013), developing sustainable supply chain for UK construction 

industry (Dadhich et al., 2015), and application of ethanol supply disruption management 

model and methodology to Brazilian refineries system (de Barros and Szklo, 2015).  

In the recent years, the researchers have started to implement their models in a real-life 

case. It is very important to judge the usefulness, benefits and applicability of the model.   

2.5 Chapter Summary 

In this chapter, a literature review has been presented in the field of managing disturbance 

and risk in production-inventory and supply chain systems. In this section, the review is 

summarized and future research directions are provided, based on the research gaps in the 

literature. 

2.5.1 Summary of Literature Review 

In the literature, most of the previous studies considered only one risk factor such as 

uncertainty, and a very little has been done for managing other disturbance and risk factors 

such as imperfect production process, and disruption in production, supply and demand, 

and their combination. No single study considered all disturbance and risk factors.  In 
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addition, the study on multiple disturbances on a real-time basis is very rare. However in a 

supply chain environment, any type of disturbance can happen, one after another, at any 

point in time. Furthermore, no study covered multiple disturbances, one after another as a 

series, whether dependent or independent, in a supply chain environment on a real-time 

basis.  By implementing the developed approach in real-world case problems, one can 

judge the performance of the approach. However a very few models were found to be 

implemented for real-life disturbance management. Some papers developed a heuristic to 

solve the model, but a very little has been done to develop the combined heuristic and 

simulation approach to operate the model as a real-world process.  So it can be concluded 

that more research is needed to develop a real-time disturbance and risk management 

system that covers all the risk factors. 

2.5.2 Research Direction 

From the literature review summarized above, it can be concluded that more research is 

needed to develop a disturbance management model that covers imperefect production 

process, and disruptions in production, supply and demand. Some of the future research 

directions include:  

i. Consideration of multiple disturbance and risk factors in a single study. 

ii. Development of a real-time disturbance management model for production-

inventory system. 

iii. Consideration of different disturbance and risk factors, such as disruption in 

production, demand, and supply and imperfect production process.  

iv. Extension of the disturbance management model for supply chain systems. 

v. Consideration of multiple disturbances, one after another as a series, either 

dependent or independent, on a real-time basis. 

vi. Development of both the heuristic and simulation approach: (a) to make the model 

simple, (b) to improve operational efficiency and performance of the model and (c) 

to operate the model as a real-life process. 

vii. Applying the developed approach in a real-life case to judge and validate the model.  
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In the literature, a reasonable number of works have been found in the area of supply chain 

disturbance and risk management. Still there is a lack of quantitative disturbance and risk 

management models to help the decision maker to make prompt and accurate decision. 

This thesis will take a step to fulfil the research gaps found in the literature by developing 

quantitative disturbance and risk management models in production-inventory and supply 

chain systems. 

In the next chapter, this thesis starts to fulfil the research gaps by developing a disruption 

recovery model for a single-stage imperfect production-inventory system. After then, it 

will extend the research on developing some other quantitative models for managing 

different types of disturbances in production-inventory and supply chain systems. 

 



 

Chapter 3 Single-Stage Imperfect Production-

Inventory System 

This chapter presents a new disruption recovery model for an imperfect single-stage 

production-inventory system. For it, the system may unexpectedly face either a single 

disruption or a mix of multiple dependent and/or independent disruptions. This chapter 

begins with a description of the problem, followed by the formulation of the mathematical 

model for rescheduling the production plan, after the occurrence of a single disruption, 

which maximises the total profit during the recovery time window. The mathematical 

model, developed for a single disruption, is solved by using both a pattern search and a 

genetic algorithm, and the results are compared using a good number of randomly 

generated disruption test problems. This chapter also presents an extension of single 

disruption case for managing multiple disruptions that occur one after another as a series, 

on a real-time basis and a new dynamic solution approach is developed for managing 

multiple disruptions. Finally, this chapter presents some numerical examples and a set of 

sensitivity analysis to explain the usefulness and benefits of the developed model.  

3.1 Introduction 

Batch production systems are very common and popular in advanced manufacturing 

environments. In these production systems, the products are produced and delivered in 

batches, because that helps to reduce costs and increase profitability. However, in real-life 

cases, the production process may not be perfect and they may face production 

interruptions, such as: machine breakdown, raw material shortage or any other type of 

system failure. In an imperfect production system, it is expected that a certain percentage 

of products will be defective. As a result, process reliability is considered as an important 

factor in real production environments. Hence, the consideration of production interruption 
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with process reliability, in any production-inventory system, will make the research 

problem closer to those in the real-world.  

In this chapter, a mathematical model is developed to deal with disruptions on a real-time 

basis. That means, the current plan is revised after experiencing any real disruption. Such a 

disruption is not known in advance and it is impossible to be predicted. It is assumed that 

both the disruption and the duration of disruption will follow a stochastic process. From 

the literature review, it is clear that the previous disruption management studies, in 

production-inventory systems, were mainly focused on managing a single disruption. In 

real-life, production processes can face multiple disruptions, one after another, as a series. 

These disruptions may or may not affect the recovery plans of the previous disruptions. If a 

new disruption occurs during the recovery time window of a previous disruption, a new 

recovery plan that considers the effect of both disruptions must be derived. So it could be a 

continuous process that must be dealt with on a real-time basis. This real-time disruption 

management, in an imperfect production-inventory system, is considered in this study. The 

most closely related research, to this study, is the one published by Hishamuddin et al. 

(2012), where they assumed that the production system produces 100% accurate items. 

Moreover, they developed the recovery model for managing only a single occurrence of 

disruption.  The problem presented in this chapter is much more complex because it has 

developed a mathematical model and solution approach that deals with both single and 

multiple (mix of dependent and/or independent) disruptions on a real-time basis. The 

model also considers process reliability because imperfect production processes are very 

common in real-life. The objective of this model is to maximise the total profit as the 

revenue varies with production process reliability.  The total profit function includes the 

revenues from the sale of non-defective items and the relevant costs. 

Here, first, a constrained non-linear mathematical model is developed for dealing with a 

single occurrence of disruption and solved the mathematical model to obtain a recovery 

plan by using both a pattern search and a genetic algorithm. A good number of disruption 

test problems have generated by using a uniform random distribution and the results, 
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obtained from both a pattern search and a genetic algorithm, are compared.  The model 

also considered a series of disruptions that occur at different points in time. If a new 

disruption occurs during the recovery time of another disruption, a revised recovery plan 

incorporating the effect of both disruptions must be derived, which makes the algorithm 

more complex. In this case, a new revised plan must be derived after the occurrence that 

considers the effect of both disruptions. So it is a continuous process that must be dealt 

with on a real-time basis. In this chapter, a new mathematical model and dynamic solution 

approach are developed to deal with a mix of multiple dependent and/or independent 

disruptions, as a series, on a real-time basis. To the best knowledge, this is the first 

quantitative approach, which extends the model of Hishamuddin et al. (2012) and develops a 

new mathematical model and solution approach for managing both single and multiple 

disruptions in an imperfect production-inventory system. The most closely related research 

work, to this chapter, is the one published by Hishamuddin et al. (2012), where a single-stage 

production system with single occurrence of production disruption is considered. The 

objective of their study was to minimise the total cost of recovery period in a single 

occurrence of disruption. The problem presented in this chapter is much more complex 

because two practical issues (production disruption and process reliability) and cases of 

both a single and multiple occurrences of disruptions are considered. The results for both 

the single and multiple disruptions are discussed, and some numerical examples are 

presented to demonstrate the usefulness of the proposed approach. With the proposed 

approach, manufacturers can determine a recovery plan in real-time, whenever their 

production system experiences either a single independent disruption or a series of a mix of 

dependent and independent disruptions. 

The main contributions of this chapter can be summarized as follows. 

i. Modelling a production-inventory system under production disruption. Here, the 

disruption is not known a priori and it is impossible to predict, so that requires that 

the production plan be revised after experiencing the disruption on a real-time 

basis.  
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ii. Considering process reliability while developing the disruption management 

model, because imperfect production processes are common in real-life.  

iii. Developing a new solution approach that deals with a mix of multiple dependent 

and/or independent disruptions, as a series, on a real-time basis.  

iv. Conducting experimental studies to analyse these approaches and perform 

sensitivity analysis using different disruption scenarios. 

3.2 Problem Description 

In this section, the problem of disruption in a single-stage imperfect production-inventory 

system is described. The system may face either a single or multiple disruptions during the 

production up-time. To manage the system efficiently, it is necessary to generate a 

recovery plan after the occurrence of each disruption. If the production system faces a new 

disruption after the recovery time window of the previously occurred disruption, then it is 

called a single disruption that is relatively simple to solve. However, if the system faces a 

new disruption within the recovery time window of a previous disruption, then the case 

becomes more complex, as the effect of both the previous and present disruptions must be 

taken into consideration to develop the revised plan.  

 

 

 

 

 

Figure 3.1: An ideal single-stage production system 

Figure 3.1 presents an ideal single-stage batch production-inventory system that produces 

one type of product. The product is produced in batches and after completing each batch, 

𝑄 

Time 
𝑇1,0 

𝑟𝑃 

𝑢1 

𝑋1,0 𝑋2,0 𝑋3,0 

𝑇2,0 𝑇3,0 
𝑢2 
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there is a production down time which is the summation of set-up and idle time. After that, 

production starts again for a new batch. In an ideal production-inventory system, the 

production quantity for each cycle i is 𝑋𝑖,0 (𝑖 = 1,2…𝑀), and they are all equal to 𝑄. As 

the system may produce some defective items, processing reliability is considered to 

calculate the effective production rate (𝑟𝑃). The recovery plan is a new schedule that 

includes the revised production quantities in each cycle, and ensuring the maximisation of 

the total profit in the recovery time window. The number of future cycles allocated to 

return to the original production schedule from the disrupted cycle, is known as the 

recovery time window, and is decided by the management of the organisation. As the 

model assumes that the production rate is higher than the demand rate, there is an idle 

timeslot between every two consecutive batches. If the production system is disrupted for a 

time period, known as disruption duration, the utilization of the idle timeslots, in future 

production cycles, may help to recover from the disruption. However, it may involve costly 

backorder and/or lost sales due to both a long disruption duration and delayed delivery.  

 

Figure 3.2: Disruption recovery plan after a single disruption 

Recovery plan after the first disruption 

Disruption 

Ideal production-inventory system with reliability r 

𝑄 

 

Time 

𝑟𝑃 

 

𝑋1 

 

𝑋2 

 

𝑇𝑑 

 

𝑇0 

𝑇1 𝑇2 𝑇3 

𝑞 

 

𝑋3 

 

𝑋4 

 



Chapter 3: Single-Stage Imperfect Production-Inventory System 50 

 

 

 

Figure 3.2 presents an example of a recovery plan after the occurrence of a single 

production disruption. The production system becomes inoperable for a certain period due 

to a disruption and after then it operates normally. The recovery plan starts just after the 

ending point of the disruption and continues during the recovery time window. For a single 

disruption case, the production quantities are revised during the recovery time window by 

utilizing the idle timeslots, which considers both the back orders and lost sales options. 

After the disruption, a recovery plan is proposed to revise the production quantities 𝑋𝑖;  𝑖 =

1,2, … ,𝑀, during the recovery time window, which is shown as a dashed line and the 

production plan is updated according the revised plan. In this case, the ideal production 

schedule is taken as a base plan. After the recovery time window, the production process 

returns to its normal schedule. 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Disruption recovery plan for a series of disruptions 

𝑡0 

Recovery plan after the first disruption 
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Figure 3.3 presents the recovery mechanism for multiple disruptions, one after another, as 

a series. In this case, the production quantities are revised after the occurrence of each 

disruption. Figure 3.3 presents the recovery plan for two dependent disruptions as a sample 

case. The effect of the previous disruption is taken into consideration while revising the 

production plan for the later disruption. After the first disruption, a recovery plan is 

proposed to revise the production quantities 𝑋𝑖,1;  𝑖 = 1,2, … ,𝑀, during the recovery time 

window, which is shown as a dashed line and the production plan is updated according to 

the revised plan. Again, after the second disruption, which is during the recovery time 

window of the first disruption, the production quantities in the each cycle 𝑋𝑖,2;  𝑖 =

1,2, … ,𝑀 are again revised while considering the effect of both disruptions, which is 

shown as a dotted line in Figure 3.3. The updated production plan, after the first disruption, 

is taken as a base environment while developing the recovery plan after the second 

disruption. So, the recovery plan after the second disruption is obtained by solving the 

problem under the updated production environment, such as updated disruption scenario, 

constraints and objective function. If there is any further disruption, the recovery 

mechanism will continue in the same way. This is a continuous process that must be dealt 

with on a real-time basis. The necessary changes can be dealt with by updating the decision 

variables, objective function and constraints of the model developed for the previous single 

disruption case. 

3.2.1 Notations used in the Study 

In this chapter, the following notations are used to formulate the mathematical model after 

the occurrence of a single disruption. 

𝑆𝑡  Set-up time for a cycle   

𝛿𝑖  Idle time for cycle 𝑖  

𝐷   Demand per year (units per year) 

𝐻   Holding cost per unit per year ($ per unit per year) 
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𝑟   Reliability of the production process – which is known from the historical data of 

the production system 

𝑄  Economic lot size per ideal production cycle with process reliability 𝑟   

𝐴   Set up cost per cycle ($ per set-up) 

𝑃  Production rate (units per year) in 100% reliable system 

𝑢𝑖  Production down time for cycle  𝑖 (set-up time + idle time)     =  

𝑆𝑡 + 𝛿𝑖 =
𝑋𝑖,0

𝐷
−
𝑋𝑖,0

𝑟𝑃
 

𝑀   Number of cycles in the recovery time window – given from management 

𝑇𝑑    Disruption duration 

𝑞   Pre-disruption production quantity  

𝑇0  Production time for 𝑞 = 
𝑞

𝑟𝑃
 

𝑋𝑖,0 Production quantity for normal cycle 𝑖 

𝑋𝑖 Production quantity for cycle 𝑖 of the recovery time window– which is the decision 

variable; 𝑖 = 1,2, … . . , 𝑀 

𝑇𝑖,0   Production up time for cycle 𝑖 of a normal cycle = 
𝑋𝑖,0

𝑟𝑃
 

𝑇𝑖  Production up time for cycle 𝑖 in the recovery time window = 
𝑋𝑖

𝑟𝑃
 

𝐵  Unit back order cost per unit time ($ per unit per unit time) 

𝐿  Unit lost sales cost ($ per unit) 

𝐶𝑃 Per unit production cost ($ per unit) 

𝐶𝑅   Rejection cost per unit ($ per unit) 

𝐶𝐼  Inspection cost as a percentage of production cost  

𝑚1  Mark-up of selling price (𝑚1𝐶𝑃) of each acceptable item, it must be greater than 1 

For the multiple disruptions case, the model is generalized by formulating the 

mathematical model after the occurrence of the n
th

 disruption. The following additional 

notations, with subscript, are used for a series of disruptions.  

𝛿𝑖,𝑛  Idle time for cycle 𝑖 before the n
th

 disruption  

𝑙 New disrupted cycle number from the previous disruption  
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𝑢𝑖,𝑛  Production down time for cycle  𝑖 before the n
th

 disruption (set-up time + idle time) 

 =  𝑆𝑡 + 𝛿𝑖,𝑛 =
𝑋𝑙+𝑖−1,𝑛−1

𝐷
−
𝑋𝑙+𝑖,𝑛−1

𝑟𝑃
 

𝑇𝑑,𝑛    Disruption duration of the n
th

 disruption 

𝑞𝑛   Pre-disruption production quantity of the n
th

 disruption  

𝑇0,𝑛  Production time for 𝑞𝑛 = 
𝑞𝑛

𝑟𝑃
 

𝑋𝑖,𝑛 Production quantity for cycle 𝑖 of the recovery time window after the n
th

 

disruption– which is the decision variable; 𝑖 = 1,2, … . . , 𝑀 

𝑇𝑖,𝑛  Production up time for cycle 𝑖 in the recovery time window after the n
th

 disruption 

= 
𝑋𝑖,𝑛

𝑟𝑃
 

3.2.2 Assumptions of the Study 

In this study a number of assumptions have been made, which are as follows. 

i. The production rate is greater than its demand rate.  

ii. A type of single item is produced in the production system. 

iii. All products are inspected and defective products are rejected.  

iv. The recovery cycle will start immediately after the disruption occurs. 

v. Total cost of interest and depreciation per production cycle 𝐹(𝐴, 𝑟) is inversely 

related to set-up cost (𝐴) and is directly related to the process reliability (𝑟), 

according to the following general power function (Cheng, 1989): 

𝐹(𝐴, 𝑟) = 𝑎𝐴−𝑏𝑟𝑐 

where a, b and c are positive constants chosen to provide the best fit of the estimated cost 

function (Cheng, 1989).  

To fulfill the demand on time, it is commonly assumed that the production rate is higher 

than its demand rate. However, for a higher demand rate, the model can easily be revised 

with an option for outsourcing. It was observed, that lot-for-lot production systems are 

common in many real-life production-inventory systems, which was discussed in Sarker 

and Khan (2001). From considering the customer satisfaction point of view, no defective 
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item will be delivered to the customers, which is important for many real businesses. To 

make the disruption recovery meaningful in practice, the recovery plan will be generated 

after each disruption is experienced by the system. In other words, the recovery plan is 

generated on a real-time basis. Finally, as an imperfect production process is considered, 

there is a significant amount of interest and depreciation cost and these have been 

considered in our mathematical model. The equation of interest and depreciation cost is 

taken from the paper of Cheng (1989).  

3.3 Model Formulation 

In this section, a mathematical model is developed after the occurrence of a single 

production disruption. In the following subsections, the equations for economic lot size (𝑄) 

are derived under an ideal condition, and the relevant costs and revenue after the 

occurrence of disruption. Finally, the disruption recovery problem is formulated as a non-

linear constrained optimisation problem, that maximises the total profit during the recovery 

time window, subject to capacity, demand, delivery and transportation constraints. The 

decision variables are the production quantities in each cycle during the recovery time 

window.  

3.3.1 Derivation of 𝑸 

For a single item batch production system, with the lot-for-lot condition under ideal 

conditions (as shown in Figure 3.1), as considered by Sarker and Khan (1999), along with 

process reliability, then the economic lot size can be formulated as  𝑄 = √
2𝐴𝑟𝑃

𝐻
.   

Here, 

Annual set-up cost =
𝐷

𝑄
𝐴  
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Annual holding cost  =
𝑄

2
𝐻

𝐷

𝑟𝑃
  

Total set-up and holding cost =
𝐷

𝑄
𝐴 +

𝑄

2
𝐻

𝐷

𝑟𝑃
  

To minimise total cost,  
𝑑

𝑑𝑄
(
𝐷

𝑄
𝐴 +

𝑄

2
𝐻

𝐷

𝑟𝑃
) = 0  

After simplifying, economic lot size, 𝑄 = √
2𝐴𝑟𝑃

𝐻
  (3.1) 

3.3.2 Cost Formulation 

In this section, equations for the different costs are derived that are involved in the 

recovery time window. These are the holding, set-up, back order, lost sales, production, 

rejection, inspection and interest and depreciation costs.  Holding cost is determined as unit 

holding cost multiplied by total inventory during the recovery time window, which is 

equivalent to the area under the curve of Figure 3.2. Set-up cost is calculated as cost per 

set-up multiplied by the number of set-ups in the recovery time window. Back order is the 

portion of an order that cannot be delivered at the scheduled time, but that will be delivered 

at a later date when available, and the back order cost is determined as the unit back order 

cost multiplied by the number of back order units and it’s time delay (Hishamuddin et al., 

2012). When there is a demand, but the item is out of stock and the customer will not wait 

for the stock to be replenished, lost sales cost exists. Lost sales cost is determined as unit 

lost sales cost multiplied by lost sales units (Hishamuddin et al., 2012). Unit production 

cost multiplied by the total quantity produced during the recovery time window is the total 

production cost. As the process reliability is  𝑟, the rejection rate is (1 − 𝑟). The rejection 

cost is determined as the rejection cost multiplied by the total rejected quantities (Paul et 

al., 2014). Inspection cost is considered as a certain percentage of the production cost ( 

Paul et al., 2014). The cost of interest and depreciation equation is considered as a general 

power function, which is taken from the paper of Cheng (1989).  



Chapter 3: Single-Stage Imperfect Production-Inventory System 56 

 

 

 

Holding cost 

= 𝐻 [
1

2
𝑞𝑇0 + 𝑞(𝑇𝑑 + 𝑆𝑡 + 𝑇1) +

1

2
𝑋1 𝑇1 + 

1

2
𝑋2 𝑇2 +⋯+

1

2
𝑋𝑀 𝑇𝑀] 

=
1

2
𝐻 [𝑞

𝑞

𝑟𝑃
+ 2𝑞 (𝑇𝑑 + 𝑆𝑡 +

𝑋1
𝑟𝑃
) + 𝑋1  

𝑋1
𝑟𝑃
+ 𝑋2

𝑋2
𝑟𝑃
+⋯+ 𝑋𝑀

𝑋𝑀
𝑟𝑃
] 

=
1

2
𝐻 [
𝑞2

𝑟𝑃
+ 2𝑞 (𝑇𝑑 + 𝑆𝑡 +

𝑋1
𝑟𝑃
) + 𝑋1  

𝑋1
𝑟𝑃
+ 𝑋2

𝑋2
𝑟𝑃
+⋯+ 𝑋𝑀

𝑋𝑀
𝑟𝑃
] 

=
1

2
𝐻 [

𝑞2

𝑟𝑃
+ 2𝑞(𝑇𝑑 + 𝑆𝑡) +

2𝑞𝑋1
𝑟𝑃

+∑
(𝑋𝑖)

2

𝑟𝑃

𝑀

𝑖=1

] 

 

 

 

 

 

 

 

(3.2) 

Set-up cost 

= 𝐴𝑀 

 

(3.3) 

Production cost  

= 𝐶𝑃𝑃 (∑𝑇𝑖 + 𝑇0

𝑀

𝑖=1

) 

=
𝐶𝑃
𝑟
(∑𝑋𝑖 + 𝑞

𝑀

𝑖=1

) 

 

 

 

(3.4) 

Rejection cost 

= 𝐶𝑅(1 − 𝑟)𝑃 (∑𝑇𝑖 + 𝑇0

𝑀

𝑖=1

) 

= 𝐶𝑅 (
1

𝑟
− 1)(∑𝑋𝑖 + 𝑞

𝑀

𝑖=1

) 

 

 

 

(3.5) 

Inspection cost  

=
𝐶𝐼𝐶𝑃
𝑟

(∑𝑋𝑖 + 𝑞

𝑀

𝑖=1

) 

 

 

(3.6) 
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Cost of interest and depreciation  

= 𝑀𝑎 (𝐴)−𝑏(𝑟)𝑐 

 

(3.7) 

Back-order cost  

= 𝐵 [(𝑋1 + 𝑞). 𝑑𝑒𝑙𝑎𝑦1 +∑𝑋𝑖. 𝑑𝑒𝑙𝑎𝑦𝑖

𝑀

𝑖=2

] 

= 𝐵 [(𝑋1 + 𝑞) [𝑇𝑑 +
𝑞

𝑟𝑃
+
𝑋1
𝑟𝑃
−
𝑋1,0
𝑟𝑃
]

+∑𝑋𝑖. [𝑇𝑑 + (𝑖−1)𝑆𝑡 +
𝑞

𝑟𝑃
+∑

𝑋𝑗

𝑟𝑃

𝑖

𝑗=1

−∑
 𝑋𝑗,0

𝑟𝑃

𝑖

𝑗=1

𝑀

𝑖=2

−∑(𝑢𝑗)

𝑖−1

𝑗=1

]] 

= 𝐵 [(𝑋1 + 𝑞) [𝑇𝑑 +
𝑞

𝑟𝑃
+
𝑋1
𝑟𝑃
−
𝑋1,0
𝑟𝑃
]

+∑𝑋𝑖. [𝑇𝑑 + (𝑖−1)𝑆𝑡 +
𝑞

𝑟𝑃
+∑

𝑋𝑗

𝑟𝑃

𝑖

𝑗=1

−∑
 𝑋𝑗,0

𝑟𝑃

𝑖

𝑗=1

𝑀

𝑖=2

−∑(
𝑋𝑗,0

𝐷
−
𝑋𝑗,0

𝑟𝑃
)

𝑖−1

𝑗=1

]] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3.8) 

Lost sales cost  

=  𝐿∑𝑋𝑖,0

𝑀

𝑖=1

− 𝐿𝑟𝑃(𝑇0 + 𝑇1 + 𝑇2 +⋯+ 𝑇𝑀) 

= 𝐿∑𝑋𝑖,0

𝑀

𝑖=1

− 𝐿𝑟𝑃 (
𝑞

𝑟𝑃
+
𝑋1
𝑟𝑃
+
𝑋2
𝑟𝑃
+⋯+

𝑋𝑀
𝑟𝑃
) 
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= 𝐿 (∑𝑋𝑖,0

𝑀

𝑖=1

−∑𝑋𝑖

𝑀

𝑖=1

− 𝑞) 

 

(3.9) 

3.3.3 Revenues 

The selling price of the acceptable items, during the recovery time window, is determined 

as unit selling price multiplied by the demand in the recovery time window.  

Revenues 

= 𝑚1𝐶𝑃 𝐷 [∑𝑇𝑖 + 𝑇0 +𝑀𝑆𝑡

𝑀

𝑖=1

] 

= 𝑚1𝐶𝑃 𝐷 [∑
𝑋𝑖
𝑟𝑃

𝑀

𝑖=1

+
𝑞

𝑟𝑃
+𝑀𝑆𝑡] 

 

 

 

(3.10) 

3.3.4 Final Mathematical Model 

The total profit during the recovery time window, which is the objective function, is 

determined after a particular disruption as follows: 

Total profit (TP) = Total revenues – Total costs 

After incorporating all the equations from (3.2) to (3.10), the objective function is obtained 

as follows: 
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𝑴𝒂𝒙𝑻𝑷(𝑋𝑖,𝑛) = 𝑚1𝐶𝑃 𝐷 [∑
𝑋𝑖
𝑟𝑃

𝑀

𝑖=1

+
𝑞

𝑟𝑃
+𝑀𝑆𝑡]

−
1

2
𝐻 [

𝑞2

𝑟𝑃
+ 2𝑞(𝑇𝑑 + 𝑆𝑡) +

2𝑞𝑋1
𝑟𝑃

+∑
(𝑋𝑖)

2

𝑟𝑃

𝑀

𝑖=1

]

− 𝐴𝑀 − [
𝐶𝑃
𝑟
+ 𝐶𝑅 (

1

𝑟
− 1) +

𝐶𝐼𝐶𝑃
𝑟
] (∑𝑋𝑖 + 𝑞

𝑀

𝑖=1

)

−𝑀𝑎 (𝐴1)
−𝑏(𝑟)𝑐

− 𝐵 [(𝑋1 + 𝑞) [𝑇𝑑 +
𝑞

𝑟𝑃
+
𝑋1
𝑟𝑃
−
𝑋1,0
𝑟𝑃
]

+∑𝑋𝑖. [𝑇𝑑 + (𝑖−1)𝑆𝑡 +
𝑞

𝑟𝑃
+∑

𝑋𝑗

𝑟𝑃

𝑖

𝑗=1

𝑀

𝑖=2

−∑
 𝑋𝑗,0

𝑟𝑃

𝑖

𝑗=1

−∑(
𝑋𝑗,0

𝐷
−
𝑋𝑗,0

𝑟𝑃
)

𝑖−1

𝑗=1

]]  

− 𝐿 (∑𝑋𝑖,0

𝑀

𝑖=1

−∑𝑋𝑖

𝑀

𝑖=1

− 𝑞) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3.11) 

Subject to the following demand, capacity, delivery and transportation constraints:   

𝑋𝑖,0 = 𝑄 (3.12) 

𝑋1 + 𝑞 ≤ 𝑋1,0 (3.13) 

𝑋𝑖 ≤ 𝑋𝑖,0 ;  𝑖 =  2, 3, . . . . , 𝑀 (3.14) 

𝑟𝑃 ≥ 𝐷 (3.15) 

𝑟 ≤ 1 (3.16) 
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∑𝑋𝑖 + 𝑞

𝑀

𝑖=1

≤ 𝑟𝑃 (∑
𝑋𝑖,0
𝐷

𝑀

𝑖=1

−𝑀𝑆𝑡 − 𝑇𝑑) (3.17) 

∑𝑋𝑖 + 𝑞

𝑀

𝑖=1

≥ (
∑ 𝑋𝑖 + 𝑞
𝑀
𝑖=1

𝑟𝑃
+𝑀𝑆𝑡)𝐷 − (∑𝑋𝑖,0

𝑀

𝑖=1

 –∑𝑋𝑖

𝑀

𝑖=1

− 𝑞) (3.18) 

𝑋1 + 𝑞

𝐷
−
𝑋2
𝑟𝑃
− 𝑆𝑡 ≥ 0 (3.19) 

𝑋𝑖
𝐷
−
𝑋𝑖+1
𝑟𝑃

− 𝑆𝑡 ≥ 0;  𝑖 =  2, 3, . . . . , 𝑀 (3.20) 

𝑇𝑑 +
𝑞

𝑟𝑃
+
𝑋1
𝑟𝑃
−
𝑋1,0
𝑟𝑃

≥ 0 (3.21) 

𝑇𝑑 + (𝑖−1)𝑆𝑡 +
𝑞

𝑟𝑃
+∑

𝑋𝑗

𝑟𝑃

𝑖

𝑗=1

−∑
 𝑋𝑗,0

𝑟𝑃

𝑖

𝑗=1

−∑(
 𝑋𝑗,0

𝐷
−
𝑋𝑗+1,0

𝑟𝑃
)

𝑖−1

𝑗=1

≥ 0;  

𝑖 =  2, 3, . . . . , 𝑀 

 

(3.22) 

𝑋𝑖 ≥ 0;  𝑖 =  1, 2, . . . . , 𝑀 (3.23) 

Equation (3.12) is the constraint for the cycle production quantity of the ideal system.  

Equations (3.13) and (3.14) ensure that the production quantity in each cycle of the 

recovery time window is less than or equal to the ideal production quantity due to delivery 

and transportation requirements.  Equation (3.15) ensures that the production rate of the 

item is greater than its demand rate. The process reliability constraint is confirmed by 

equation (3.16). Equation (3.17) represents the production capacity constraint during the 

recovery time window.  Demand during the recovery time window is met by equation 

(3.18). Non-negative idle time is ensured by (3.19) and (3.20). Equations (3.21) and (3.22) 

ensure non-negative delay time. The non-negativity constraint for all the decision variables 

is ensured by (3.23). 
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Similarly, for a series of disruptions, the formulation of the mathematical model can be 

updated after the n
th

 disruption by using the notations for multiple disruptions. The updated 

mathematical model for a series of disruptions is presented as follows.  

The objective function, after the n
th

 disruption, is determined as follows: 

𝑴𝒂𝒙𝑻𝑷(𝑋𝑖,𝑛) = 𝑚1𝐶𝑃 𝐷 [∑
𝑋𝑖,𝑛
𝑟𝑃

𝑀

𝑖=1

+
𝑞𝑛
𝑟𝑃
+𝑀𝑆𝑡]

−
1

2
𝐻 [
(𝑞𝑛)

2

𝑟𝑃
+ 2𝑞𝑛(𝑇𝑑,𝑛 + 𝑆𝑡) +

2𝑞𝑛𝑋1,𝑛
𝑟𝑃

+∑
(𝑋𝑖,𝑛)

2

𝑟𝑃

𝑀

𝑖=1

] − 𝐴𝑀

− [
𝐶𝑃
𝑟
+ 𝐶𝑅 (

1

𝑟
− 1) +

𝐶𝐼𝐶𝑃
𝑟
] (∑𝑋𝑖,𝑛 + 𝑞𝑛

𝑀

𝑖=1

)

−𝑀𝑎 (𝐴1)
−𝑏(𝑟)𝑐

− 𝐵 [(𝑋1,𝑛 + 𝑞𝑛) [𝑇𝑑,𝑛 +
𝑞𝑛
𝑟𝑃
+
𝑋1,𝑛
𝑟𝑃

−
𝑋𝑙,𝑛−1
𝑟𝑃

]

+∑𝑋𝑖,𝑛. [𝑇𝑑,𝑛 + (𝑖−1)𝑆𝑡 +
𝑞𝑛
𝑟𝑃
+∑

𝑋𝑗,𝑛

𝑟𝑃

𝑖

𝑗=1

𝑀

𝑖=2

−∑
 𝑋𝑙+𝑗−1,𝑛−1

𝑟𝑃

𝑖

𝑗=1

−∑(
𝑋𝑙+𝑗−1,𝑛−1

𝐷
−
𝑋𝑙+𝑗,𝑛−1

𝑟𝑃
)

𝑖−1

𝑗=1

]]  

− 𝐿 (∑𝑋𝑙+𝑖−1,𝑛−1

𝑀

𝑖=1

−∑
𝑋𝑖,𝑛
𝑟𝑃

𝑀

𝑖=1

− 𝑞𝑛) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3.24) 

 

Subject to the following demand, capacity, delivery and transportation constraints:   

𝑋𝑖,0 = 𝑄 (3.25) 

𝑋1,𝑛 + 𝑞𝑛 ≤ 𝑋𝑙,𝑛−1 (3.26) 



Chapter 3: Single-Stage Imperfect Production-Inventory System 62 

 

 

 

𝑋𝑖,𝑛 ≤ 𝑋𝑙+𝑖−1,𝑛−1 ;  𝑖 =  2, 3, . . . . , 𝑀 (3.27) 

𝑟𝑃 ≥ 𝐷 (3.28) 

𝑟 ≤ 1 (3.29) 

∑𝑋𝑖,𝑛 + 𝑞𝑛

𝑀

𝑖=1

≤ 𝑟𝑃 (∑
𝑋𝑙+𝑖−1,𝑛−1

𝐷

𝑀

𝑖=1

−𝑀𝑆𝑡 − 𝑇𝑑,𝑛) (3.30) 

∑𝑋𝑖,𝑛 + 𝑞𝑛

𝑀

𝑖=1

≥ (
∑ 𝑋𝑖,𝑛 + 𝑞𝑛
𝑀
𝑖=1

𝑟𝑃
+𝑀𝑆𝑡)𝐷

− (∑𝑋𝑙+𝑖−1,𝑛−1

𝑀

𝑖=1

 –∑𝑋𝑖,𝑛

𝑀

𝑖=1

− 𝑞𝑛) 

 

 

(3.31) 

𝑋1,𝑛 + 𝑞𝑛
𝐷

−
𝑋2,𝑛
𝑟𝑃

− 𝑆𝑡 ≥ 0 (3.32) 

𝑋𝑖,𝑛
𝐷
−
𝑋𝑖+1,𝑛
𝑟𝑃

− 𝑆𝑡 ≥ 0;  𝑖 =  2, 3, . . . . , 𝑀 (3.33) 

𝑇𝑑,𝑛 +
𝑞𝑛
𝑟𝑃
+
𝑋1,𝑛
𝑟𝑃

−
𝑋𝑙,𝑛−1
𝑟𝑃

≥ 0 (3.34) 

𝑇𝑑,𝑛 + (𝑖−1)𝑆𝑡 +
𝑞𝑛
𝑟𝑃
+∑

𝑋𝑗,𝑛

𝑟𝑃

𝑖

𝑗=1

−∑
 𝑋𝑙+𝑗−1,𝑛−1

𝑟𝑃

𝑖

𝑗=1

−∑(
𝑋𝑙+𝑗−1,𝑛−1

𝐷
−
𝑋𝑙+𝑗,𝑛−1

𝑟𝑃
)

𝑖−1

𝑗=1

≥ 0;  𝑖 =  2, 3, . . . . , 𝑀 

 

 

(3.35) 

𝑋𝑖,𝑛 ≥ 0;  𝑖 =  1, 2, . . . . , 𝑀 (3.36) 
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3.4 Solution Approach 

In this section, firstly, the mathematical model is solved, for a single occurrence of 

disruption, by applying a standard search algorithm. For experimentation, the test 

disruption problems are generated by using a uniformly random distribution. Then a 

solution approach was developed for managing multiple disruptions, as a series of 

disruptions, on a real-time basis. 

3.4.1 Solution Approach for a Single Disruption 

The mathematical model, for a single disruption, can be solved by applying a standard 

search algorithm. As there is no standard test set available for the disruption problem 

considered in this study, to validate the results, two different search techniques: pattern 

search (PS) and genetic algorithm (GA) have been chosen. A number of test problems have 

been generated by using a uniformly random distribution and solved those problems using 

both of the two techniques. The genetic algorithm is a very popular technique to solve 

complex non-linear constrained optimisation problems. GAs are general purpose 

optimisation algorithms which apply the rules of natural genetics to explore a given search 

space (Homaifar, Qi, and Lai, 1994). Pattern search is also a well-accepted technique, and 

can be applied to solve nonlinear constrained optimisation problems (Lewis and Torczon, 

2002). In this study, the pattern search technique is hybridized by the Latin hypercube 

search method. The results, obtained from both the GA and PS search techniques, are 

compared for a good number of randomly generated disruption test problems.  

3.4.2 Solution Approach for a Series of Disruptions 

In this section, a solution approach is proposed to generate the recovery plan for a series of 

disruptions on a real-time basis. When a disruption occurs, a recovery plan can be 

generated by solving the mathematical model for a series of disruptions, as presented in 

Section 3.3.4. The first disruption can be managed by using the single disruption case. 
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Then if a new disruption later occurs after the recovery time window of any previous 

disruption, it can be considered as another single disruption case that does not affect the 

revised plan of the previous disruption. But if a new disruption occurs within the recovery 

time window of any disruption, then it may affect the revised plan of the previous 

disruption, and the revised plan for that recovery time window must be considered as a set 

of additional restrictions. So after finalizing a recovery plan, if another disruption occurs 

within the recovery time window, then the recovery plan needs to be revised to consider 

the effect of both disruptions. This can be done by simply updating some of the 

parameters, to represent the changed scenario, in the same mathematical model. For 

example, the new disruption duration, the pre-disruption quantity, the cycle number from 

the previous disruption and the new limit on production in each cycle, must be updated to 

re-optimise the plan for the current disruption. The objective function and constraints are 

also updated for the changed situation. So a search technique can still be used, but it must 

be used again with the changed situation. Both the PS and GA search techniques have been 

used to develop the solution approaches for a series of disruptions on a real-time basis. In 

the proposed approach, the search technique must run every time after an occurrence of 

disruption, to re-optimise the recovery plan, as long as disruption takes place in the system. 

The main steps of the proposed solution approach for a series of disruptions, on a real-time 

basis, can be presented as follows. 

Step 1: Input all information about the ideal system and determine 𝑄 by using the equation 

(3.1). 

Step 2: Assign 𝑋𝑖,0 = 𝑄. 

Step 3: Set n =1 for the first disruption. 

Step 4: Input disruption scenario: disrupted cycle number (𝑙), pre-disruption quantity (𝑞𝑛) 

and disruption duration (𝑇𝑑,𝑛). 

Step 5: Initialize the starting time of the recovery time window from the beginning of the 

disrupted cycle. 

Step 6: Solve the mathematical model for a series of disruptions, as presented in Section 

3.3.4, by using a search algorithm (PS and GA), under the updated disruption scenario. 
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Step 7: Update the value of 𝑋𝑖,𝑛 as the revised lot size from Step 6 and record the revised 

production plan.  

Step 8: If there is any other disruption, go to Step 4 and repeat Steps 4-7. 

Step 9: Stop. 

The solution approaches were coded in MATLAB R2012a with the help of its optimisation 

toolbox, and were executed on an Intel core i7 processor with 8.00 GB RAM and a 3.40 

GHz CPU. The parameters used for PS and GA, to design the solution approach, are 

presented below. 

3.4.2.1 Parameters for PS 

The following parameters are used in the proposed PS based solution approach. 

Maximum number of iterations: 100* Number of variables  

Polling order: Success 

X tolerance: 1e-8 

Function tolerance: 1e-8 

Nonlinear constraint tolerance: 1e-8 

Cache tolerance: 1e-8 

Search method: Latin Hypercube 

Maximum function evaluations: 1000000 

Other parameters are set as default in the optimisation toolbox.  

3.4.2.2 Parameters for GA 

The following parameters are used in the proposed GA based solution approach. 

Population Size: 50 

Population type: Double vector 

Crossover Fraction: 0.8 

Maximum number of generations: 3,000 

Function tolerance: 1e-8 

Nonlinear constraint tolerance: 1e-8 
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Hybrid function: Pattern search 

Other parameters are set as default in the optimisation toolbox 

3.4.3 Range of Parameters 

For experimentation purposes, the following data ranges are considered with a discrete 

uniform distribution for the disruption problem.  

Pre-disruption quantity: 𝑞 = [0, 𝑄]  

Disruption duration: 𝑇𝑑 = [0.000001,  
𝑄−𝑞

𝑟𝑃
 ] 

Lost sales cost: 𝐿 = [1, 100] 

Back order cost: 𝐵 = [1, 150] 

Set-up cost: 𝐴 = [5, 300] 

Holding cost: 𝐻 = [1, 5] 

3.5 Experimentations and Results Analysis 

In this section, the results have been analysed for both a single and multiple disruptions on 

a real-time basis. In this chapter, a disruption scenario is defined as a combination of some 

pre-disruption situation and the timing of the duration of a disruption. In reality, these 

parameters follow a stochastic process, and in this chapter, uniform random variables are 

used for them. To test the proposed mathematical approach, seventy disruption test 

problems are generated by using a uniform probability distribution, by changing the 

parameters for the given intervals as presented in section 3.4.3, and have solved those 

problems using both PS and GA search techniques. The results, obtained from the two 

different search techniques, are also compared. As the comparison gave consistent results, 

the results of a few sample test problems are presented in this section.    
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3.5.1 Single Disruption  

For the single disruption problem, the following data were used to analyse the results. 

𝑃=500000, 𝐷=450000, 𝐴=50, 𝐻=1.2, 𝐵=10, 𝐿=15, 𝑆𝑡=0.000057, 𝐶𝑃=40, 𝐶𝐼=0.01, 𝐶𝑅=8, 

𝑎=1000, 𝑏=0.5, 𝑐=0.75, 𝑚1=2.5,  𝑀=5, 𝑟 = 0.95. 

From the given data, 𝑋𝑖,0 = 𝑄 is calculated as: 

𝑋𝑖,0 = 𝑄 = √
2𝐴𝑟𝑃

𝐻
≈ 6292 

Although the study has experimented on 70 random disruption test problems, for 

illustrative purpose, three different sample instances were generated by arbitrarily 

changing the disruption data. The parameters for the three instances are shown in Table 

3.1. 

Table 3.1: Disruption data for three test instances 

Test instance Disruption duration (𝑇𝑑) Pre-disruption quantity (𝑞) 

1 0.0025 850 

2 0.0060 1225 

3 0.0090 675 
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Table 3.2: Results for the three test instances 

Test 

instance 

Search 

Technique 

Production quantity in the recovery time 

window 
Total Profit 

(Best, Mean, STD) 
𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 

1 GA 544

2 

6292 6292 6292 6292 1640541, 1640503,15.5 

15 PS 544

2 

6292 6292 6292 6292 1640540, 1640502, 16.2 

2 GA 438

9 

5899 6180 6238 6292 1557556, 1557504, 14.8 

PS 446

5 

5898 6087 6275 6272 1557539, 1557496, 13.6 

3 GA 456

2 

5486 5750 6033 6292 1462235, 1462213, 12.7 

PS 481

6 

5598 5616 5896 6197 1462109, 1462091, 13.2 

The test instances were solved using both the PS and GA search techniques. The results 

(Best, Mean and STD) obtained, out of 30 independent runs, for all three test instances, 

have been presented in Table 3.2. The results include the revised production quantities in 

each of five cycles of the recovery time window and the total profit. The production system 

returns to the original production schedule after the recovery time window, with 𝑋6 = 

6292, 𝑋7 = 6292 and so on.  From Table 3.2, it is clear that both techniques generated very 

similar results. 

3.5.2 Comparison of Results 

In order to judge the consistency of the solutions, the best results, out of the 30 

independent runs, obtained from both the PS and GA search techniques have been 

compared. For this purpose, the results, obtained from both the PS and GA search 

techniques, have been compared for seventy random disruption test problems. The test 

problems are generated by using a uniform random distribution within the data range 

provide in Section 3.4.3. In this random experiment, the average percentage of deviation, 

between the results obtained from the two approaches, was only 0.003438%, which can be 

considered as negligible. Moreover, this deviation may merely be because of rounding of 
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the values of the decision variables. The average percentage of deviation of the results was 

calculated by using equation (3.37). The comparison of results, between two search 

techniques for seventy random disruptions, is presented in Figure 3.4. It is observed that 

the results, obtained from the two search techniques, are very much consistent. 

 

Figure 3.4: Comparison of results for seventy random disruption problems 

Average percentage of deviation 

=
1

𝑁
∑
|Total profit from GA−Total profit from PS|

Total profit from PS
× 100% 

 

(3.37) 

Here, 𝑁 = Number of test problems. 

3.5.3 Multiple Disruptions 

To demonstrate the usefulness of our proposed solution approach for solving multiple 

disruptions, as a series of disruptions, over a period of time, the basic data of the single 

disruption problem is used, which is presented in Section 3.5.1. In any production-

inventory system, a series of disruptions can occur, one after another, on a real-time basis. 
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If a disruption occurs after the recovery time window of another disruption, then the later 

one can be considered as an independent disruption, and a revised plan can be made 

similarly to the single disruption case. However, if a disruption occurs during the recovery 

time window of another disruption that occurred earlier, a revised plan, incorporating the 

effect of both disruption must be derived, which makes the case more complex for revised 

planning. For experimentation, the disruption scenarios for a series of disruptions, one after 

another, were generated randomly. Table 3.3 presents a case problem with different 

random combinations of disrupted cycle number, pre-disruption quantity and disruption 

duration. Although these disruptions can happen continuously, a case problem with only 

five disruptions is presented as a sample representation.  

The production quantities, during the recovery time window, are revised immediately after 

each disruption take places in the production system. The problem was solved using the 

solution approach, developed in Section 3.4.2 for a series of disruptions, and then the best 

result was recorded, out of 30 independent runs, for each disruption. After the first 

disruption, the production quantities (𝑋𝑖,1; 𝑖 = 1 − 5) were revised for the next five cycles 

of the recovery time window, as shown in Tables 3.4 and 3.5. Once again, the second 

disruption occurred within the recovery time window of the first disruption, and so the 

parameters, objective function and constraints were updated for the changed situation. So 

the new production quantities (𝑋𝑖,2; 𝑖 = 1 − 5) were then revised again immediately, after 

the occurrence of the second disruption, under the updated situation. This process 

continued if the system experienced any new disruption. For each disruption, the revised 

production quantities and the maximum total profit (best result) were recorded. Table 3.4 

presents the results obtained from the GA based approach and Table 3.5 for that of PS. It is 

also observed, that both techniques confirm very similar results.  
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Table 3.3: A case problem for series of disruptions 

Disruption 

number (𝑛) 

Disrupted cycle 

number from 

previous disruption 

(𝑙) 

Pre-disruption 

quantity (𝑞𝑛) 

Disruption duration 

(𝑇𝑑,𝑛) 

1 1 765 0.0030 

2 4 875 0.0055 

3 3 480 0.0100 

4 5 1090 0.0045 

5 3 585 0.0065 

... ... ... ... 

 

Table 3.4: The results obtained from GA based approach 

Disruption 

number 

(𝑛) 

Production quantity in the recovery time window 
Total 

Profit 
𝑋1,𝑛 𝑋2,𝑛 𝑋3,𝑛 𝑋4,𝑛 𝑋5,𝑛 

1 5527 6292 6292 6292 6292 1640383 

2 5417 5676 5949 6251 6292 1573316 

3 4569 5302 5569 5850 6148 1409071 

4 4789 6164 6170 6277 6292 1597157 

5 4898 5745 6029 6292 6292 1534123 

... ... ... ... ... ... ... 
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Table 3.5: The results obtained from PS based approach 

Disruption 

number 

(𝑛) 

Production quantity in the recovery time window 
Total 

Profit 𝑋1,𝑛 𝑋2,𝑛 𝑋3,𝑛 𝑋4,𝑛 𝑋5,𝑛 

1 5527 6292 6292 6292 6292 1640381 

2 5054 5943 6213 6134 6240 1573355 

3 4709 5344 5560 5824 6101 1414336 

4 4812 6029 6278 6255 6269 1594574 

5 5160 5889 6170 5947 6156 1537449 

... ... ... ... ... ... ... 

3.6 Sensitivity Analysis 

The total profit changes with the different parameters. In this section, changes of the total 

profit, in comparison with the back order cost, lost sales cost, disruption duration, 

production process reliability and pre-disruption quantity are analysed. For each study, 

only one variable is changed, and the remainder is kept the same as in section 3.5.1. This 

sensitivity is analysed for the recovery plan after the second disruption of the results 

analysis section, and the PS search technique was used to analyse the sensitivity. 

Figures 3.5 and 3.6 show the changes of the total profit with back order cost and lost sales 

cost respectively. In this analysis, disruption duration and pre-disruption quantity are kept 

constant as 0.01 and 0 respectively. The total profit decreases with the increment of both of 

the back order and lost sales cost. This means, that both of the back order and lost sales 

cost are present in the optimal solution. But the effect of the lost sales cost on the total 

profit is more than that of the back order cost because of compromises in the production 

quantities.  
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Figure 3.5: Changes of total profit with back order cost 

 

Figure 3.6: Changes of total profit with lost sales cost 

The total profit decreases with the length of the disruption duration, as shown in Figure 

3.7. In this analysis, the pre-disruption quantity is kept fixed as 0. It is observed, that when 

the disruption duration is between 0.001 and 0.003, the total profit does not change 

significantly, because only back orders are present in the solution. But after then, there is a 

linearly decreasing trend of the total profit. This is because of the introduction of lost sales 

cost in the solutions after the disruption duration becomes longer than 0.003. The total 

1416

1418

1420

1422

1424

1426

1428

1430

1432

10 20 30 40 50 60 70 80 90 100 110 120

T
o

ta
l 

P
ro

fi
t 

(T
h
o

u
sa

n
d

s)
 

Back order cost 

Total Profit Vs. Back order cost 

1250

1300

1350

1400

1450

1500

5 10 15 20 25 30 35 40 45 50 55 60

T
o

ta
l 

P
ro

fi
t 

(T
h
o

u
sa

n
d

s)
 

Lost sales cost 

Total Profit Vs. Lost sales cost 



Chapter 3: Single-Stage Imperfect Production-Inventory System 74 

 

 

 

profit increases with production process reliability, which is illustrated in Figure 3.8. The 

holding, set-up, production, inspection and rejection costs all decrease with the increment 

of process reliability. In this case, the maximum total profit is obtained when the 

production process produces 100% good products (process reliability is equal to 1).  There 

is no effect of the pre-disruption quantity on the total profit, which is shown in Figure 3.9. 

In this analysis, the disruption duration is kept constant as 0.01. 

 

Figure 3.7: Changes of total profit with disruption duration 

 

Figure 3.8: Changes of total profit with process reliability 
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Figure 3.9: Changes of total profit with pre-disruption quantity 

3.7 Chapter Summary 

The main objective of this chapter was to develop a disruption recovery plan in an 

imperfect production environment. In real-life production lines, a disruption can happen at 

any time at any point of production. Without a proper response to the disruption recovery, 

the organisation can face huge financial and reputation loss due to a disruption. So it is 

important to develop an appropriate recovery plan after the occurrence of a sudden 

disruption.  Moreover, imperfect production processes are very common in real-life and 

they have significant impacts on companies’ loss and profit. So it is also important to 

consider an imperfect production environment while developing a production-inventory 

model. In real-life situations, the production systems can face both single and multiple 

disruptions. In the single disruption case, disruption occurs suddenly when the production 

system operates under a pre-assigned plan.  In the multiple disruptions case, disruptions 

occur one after another as a series, and new disruptions may or may not affect the revised 

production plans of the previous disruptions. A new mathematical model and a dynamic 

solution approach were developed, which can handle both single and multiple disruptions, 
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on a real-time basis. This chapter also demonstrated how the proposed methodology can be 

implemented for real-time disruption recovery planning with some numerical examples 

and randomly generated test problems. 

An extension of the study of chapter 3, which considers demand uncertainty, is presented 

in Appendix A. 

In chapter 3, the disruption recovery problem for an imperfect single-stage production-

inventory system that is subject to production disruption has been addressed. The extension 

of this study is to explore the problem for a two-stage production-inventory system, which 

I have chosen as the direction of my research work in the next chapter.   

 



 

Chapter 4 Two-Stage Production-Inventory 

System 

This chapter extends the work from chapter 3, in which a new real-time disruption 

management model is presented for a two-stage production-inventory system. In this 

system, the production may be disrupted, for a given duration of time, either at one or both 

stages. In this chapter, firstly, a mathematical model is developed to suggest a recovery 

plan for a single occurrence of disruption at either stage. Secondly, multiple disruptions are 

considered, for which a new disruption may or may not affect the recovery plan of earlier 

disruptions. A new solution approach is proposed which deals with a series of disruptions 

over a period of time, which can be implemented for disruption recovery on a real-time 

basis. This chapter also presents some numerical examples and a real-world case study to 

explain the benefits of our proposed approach. 

4.1 Introduction 

The study in this chapter is an extension of the study in chapter 3. This chapter considers a 

two-stage batch production-inventory system that incorporates both production disruption 

and process reliability. Thus unlike the single-stage case considered in the previous 

chapter, the model in this chapter consists of two stages and the disruption can occur in 

either one stage or both stages at any time. The problem presented in this chapter is much 

more complex because a two-stage production-inventory system with process reliability is 

considered. In this study, methodologies have been developed for managing (i) a single 

occurrence of disruption at any stage, and (ii) a series of disruptions on a real-time basis. 

The main contributions of this chapter can be summarized as follows. 

i. Modelling a production-inventory system for a two-stage production-

inventory system under production disruption.  
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ii. Considering process reliability, because imperfect production processes are 

common in real-life.  

iii. Developing a dynamic solution approach that deals both a single and 

multiple disruptions at any stage on a real-time basis. 

iv. Implementing the model to a real-world case from a pharmaceutical 

company.  

4.2 Problem Description 

In this section, a two-stage production system is discussed that produces one type of 

product (also known as a single product). The product is produced in batches, and once a 

batch is completed at the first stage, the whole batch is then transported to the second stage 

for final processing. A typical two-stage single-item batch production system is presented 

in Figure 4.1, where the inventory built up in each stage is shown for batch processing. The 

production of non-defective items in any batch is dependent on the process reliability. As it 

is assumed that the production capacity is higher than the demand, there is an idle timeslot 

between the consecutive production batches. If the production system is disrupted for a 

given period of time, the utilization of the idle timeslots for production, may help to 

recover from the disruption. However, it may result in costly backorder and/or lost sales 

due to delayed delivery.  

Figure 4.2 shows a typical recovery plan where the system is recovered using the idle 

production time with a revision of the production quantity in each cycle. In this figure, the 

dashed line represents the revised production-inventory plan for the recovery of disruptions 

that occurred at the first and second stages. After the first disruption at the first stage, the 

production quantities, 𝑋𝑖,1 and 𝑌𝑖,1 (𝑖 = 1,2, … ,𝑀), are revised to generate the recovery 

plan, which is shown as a black dashed line. Again, for the disruption at the second stage, 

which is during the recovery time window of an earlier disruption, the production 

quantities 𝑋𝑖,2 and  𝑌𝑖,2 (𝑖 = 1,2, … ,𝑀) are revised to consider the effect of both of the 

disruptions, which is shown as a red dashed line. These disruptions may occur at any time, 

and the duration of disruption may vary from one occurrence to the next. After each 

disruption, the production quantity in each cycle must be revised, within the allowed 
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recovery time window, as a plan for recovery. The shaded area in Figure 4.2 represents the 

disruption duration in a production cycle. The system can also limit the recovery time 

window to a pre-specified number of production cycles.  
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Figure 4.1: An ideal two-stage production-inventory system  
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Figure 4.2: Recovery plan from the multiple disruptions  

If a disruption occurs after the recovery time window of another disruption, then the later 

one can be considered as an independent disruption and the recovery plan can be made 

similar to the previous one. However, a disruption occurs within the recovery time window 

of another disruption occurred earlier, it makes the case more complex for recovery 

planning. In practice, to minimise the effect of disruptions, they must be dealt with on a 

real-time basis, whether this is single occurrence of disruption or a series of disruptions. In 

this study, the disruption recovery problems are considered as follows: (i) single 

occurrence of disruption, (ii) a series of independent disruptions, and (iii) a series of mix of 

independent and dependent disruptions. 

4.2.1 Notations used in this Study 

To formulate the mathematical model, the following notations are used.  

𝑆𝑡1 Set-up time for a cycle at the first stage 

𝑆𝑡2 Set-up time for a cycle at the second stage 
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𝛿1𝑖,𝑛 Idle time for a cycle i before the n
th

 disruption at the first stage 

𝛿2𝑖,𝑛 Idle time for a cycle i before the n
th

 disruption at the second stage 

𝐷 Demand per year (units per year) 

𝐻1 Holding cost per unit per year at the first stage ($/unit/year) 

𝐻2   Holding cost per unit per year at the second stage ($/unit/year) 

𝑟   Reliability of the production process – which is known from the historical data of 

the production system 

𝑄   Combined production lot size per normal cycle with reliability r   

𝐴1   Set-up cost per cycle at the first stage ($ per set-up) 

𝐴2   Set-up cost per cycle at the second stage ($ per set-up) 

𝑃   Production rate (units per year) in 100% reliable system 

𝑙 New disrupted cycle number from previous disruption  

𝑋𝑖,0  Production quantity for a normal cycle i at the first stage 

𝑌𝑖,0  Production quantity for a normal cycle i at the second stage 

𝑋𝑖,𝑛 Production quantity for cycle i of the recovery window at the first stage after the n
th

 

disruption– which is a decision variable; i = 1, 2, 3, ........., M 

𝑌𝑖,𝑛 Production quantity for cycle i of the recovery window at the second stage after the 

n
th

 disruption– which is a decision variable; i = 1, 2, 3, ........., M 

𝑢1𝑖,𝑛  Production down time for cycle i before the n
th

 disruption at the first stage (set-up 

time + idle time) = 𝑆𝑡1 + 𝛿1𝑖,𝑛 =
𝑋𝑙+𝑖−1,𝑛−1

𝐷
−
𝑋𝑙+𝑖,𝑛−1

𝑟𝑃
 

𝑢2𝑖,𝑛  Production down time for cycle i before the n
th

 disruption at the second stage (set-

up time + idle time) = 𝑆𝑡2 + 𝛿2𝑖,𝑛 =
𝑌𝑙+𝑖−1,𝑛−1

𝐷
−
𝑌𝑙+𝑖,𝑛−1

𝑟𝑃
 

𝑀  Number of cycles to recovery the disruption – which is given by the management 

𝑇𝑑1,𝑛 Disruption duration in the n
th

 disruption at the first stage 

𝑇𝑑2,𝑛   Disruption duration in the n
th

 disruption at the second stage 

𝑞1,𝑛  Pre-disruption production quantity in the n
th

 disruption at the first stage 

𝑞2,𝑛  Pre-disruption production quantity in the n
th

 disruption at the second stage 

𝑇01,𝑛   Production time for 𝑞1,𝑛 = 
𝑞1,𝑛

𝑟𝑃
 

𝑇02,𝑛  Production time for 𝑞2,𝑛 = 
𝑞2,𝑛

𝑟𝑃
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𝑇1𝑖,0 Production up time for a normal cycle i at the first stage = 
𝑋𝑖,0

𝑃𝑟
 

𝑇2𝑖,0 Production up time for a normal cycle i at the second stage = 
𝑌𝑖,0

𝑃𝑟
 

𝑇1𝑖,𝑛 Production up time for a cycle i in the recovery window at the first stage after the 

n
th

 disruption = 
𝑋𝑖,𝑛

𝑃𝑟
 

𝑇2𝑖,𝑛 Production up time for a cycle i in the recovery window at the second stage after 

the n
th

 disruption = 
𝑌𝑖,𝑛

𝑃𝑟
 

𝑇𝑖𝑑𝑙𝑒,𝑛 Idle time of production at the stage 2 due to the n
th

 disruption at the first stage  

= 𝑇01,𝑛 + 𝑇𝑑1,𝑛 + 𝑇1,𝑛 − 𝑇𝑙,𝑛−1 = (
𝑞1,𝑛

𝑟𝑃
+ 𝑇𝑑1,𝑛 +

𝑋1,𝑛

𝑟𝑃
−
𝑋𝑙,𝑛−1

𝑟𝑃
) 

𝐵  Unit back order cost per unit time ($/unit/time) 

𝐿  Unit lost sales cost ($ per unit) 

𝐶𝑃1  Per unit production cost at the first stage ($ per unit) 

𝐶𝑃2 Per unit production cost at the second stage ($ per unit) 

𝐶𝑅1   Rejection cost per unit at the first stage 

𝐶𝐼1  Inspection cost as a percentage of the production cost at the first stage 

𝐶𝐼2   Inspection cost as a percentage of the production cost at the second stage  

𝑚1  Mark-up of the unit selling price [𝑚1(𝐶𝑃1 + 𝐶𝑃2)] of the acceptable items (must be 

greater than 1) 

4.2.2 Assumptions of the Study 

In this study, the following assumptions have been made: 

i. The production rate of the item is greater than its demand rate. 

ii. The original production line is perfectly balanced, that means the production rates 

for the item are equal for the both stages.  

iii. The recovery cycle will start just after the disruption occurs. The disruption can 

occur in either single or both stages at any point in time.  

iv. There are equal numbers of cycles in the disruption recovery windows of both 

stages. 

v. All products are inspected and defective products are rejected.  
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vi. The total cost of interest and depreciation per production cycle 𝐶(𝐴, 𝑟) is inversely 

related to set-up cost (𝐴) and is directly related to process reliability (r) according 

to the following general power function (Cheng, 1989): 

𝐶(𝐴, 𝑟) = 𝑎𝐴−𝑏𝑟𝑐 

Where a, b and c are positive constants chosen to provide the best fit of the estimated cost 

function. This assumption is based on the fact that to reduce the costs of production set-up 

and of scraping and reworking shoddy products, substantial investment in improving the 

reliability of the production process is necessary.  

4.3 Model Formulation 

In this section, a mathematical model is developed for a single occurrence of disruption at 

either stage of the production-inventory system. In the following few subsections, first, the 

equation for the economic production quantity is presented for a perfect system under an 

ideal situation, and the equations for relevant costs and revenue are derived for the 

imperfect production system under disruption. Finally, the disruption recovery problem is 

formulated as a non-linear constrained optimisation problem that maximises the total profit 

subject to capacity, demand, and stage linking constraints. The decision variables are the 

production quantities in each cycle during the recovery time window. Note that the total 

profit function is derived from the revenue from acceptable items and the relevant costs.  

4.3.1 Optimal 𝑸 under Ideal Conditions  

For a two-stage single item perfect production system, with lot-for-lot condition under an 

ideal situation as considered by Sarker and Khan (2001), the combined economic 

production quantity (as shown in Figure 4.1) can be formulated as 𝑄 = √
2𝑟𝑃 (𝐴1+𝐴2)

𝐻1+𝐻2
. 

Here, 

Annual set-up cost at the first stage =
𝐷

𝑄
𝐴1  
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Annual holding cost at the first stage  =
𝑄

2
𝐻1

𝐷

𝑟𝑃
  

Annual set-up cost at the second stage =
𝐷

𝑄
𝐴2  

Annual holding cost at the second stage  =
𝑄

2
𝐻2

𝐷

𝑟𝑃
  

Total cost = 
𝐷

𝑄
𝐴1 +

𝑄

2
𝐻1

𝐷

𝑟𝑃
+
𝐷

𝑄
𝐴2 +

𝑄

2
𝐻2

𝐷

𝑟𝑃
   

To minimise the total cost,  
𝑑

𝑑𝑄
(
𝐷

𝑄
𝐴1 +

𝑄

2
𝐻1

𝐷

𝑟𝑃
+
𝐷

𝑄
𝐴2 +

𝑄

2
𝐻2

𝐷

𝑟𝑃
) = 0 (4.1) 

After simplifying, 𝑄 = √
2𝑟𝑃(𝐴1+𝐴2)

𝐻1+𝐻2
 (4.2) 

4.3.2 Cost Formulation for the First Stage 

In this section, the different cost equations, for the first stage of an imperfect production 

process, are derived with a single occurrence of disruption. In Hishamuddin et al. (2012), it 

is assumed that 𝑄 is the regular lot size in every cycle and that when a disruption is 

experienced the revised lot sizes (decision variables) are represented as X1, X2, ..., XM, for 

the next M cycles. In their study, the cycle experiencing disruption is numbered as the first 

cycle in their study and the system allows M number of cycles to recover from disruption. 

To generalize the model under multiple disruptions, in this study, the revised lot quantities 

in a cycle i of the recovery window after n
th 

disruption are defined as 𝑋𝑖,𝑛 and 𝑌𝑖,𝑛 and the 

original lot quantities in a cycle i are represented as 𝑋𝑖,0 and 𝑌𝑖,0 in the first and second 

stage respectively. 

The costs considered in this study are the holding, set-up, production, rejection, inspection, 

and depreciation costs. The total holding cost is computed as the unit holding cost 

multiplied by the total inventory during the recovery time window, which is equivalent to 

the area under the curve of recovery window of Figure 4.2. The total set-up cost is equal to 

the cost per set-up multiplied by the number of set-ups in the recovery time window. The 

total production cost is obtained by multiplying the unit production cost by the total 

quantity produced during the recovery time window. As the production reliability is 

assumed to be r, the rejection rate is (1-r). The rejection cost is determined as the unit 
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rejection cost multiplied by the total number of rejected items (Paul et al., 2014). The 

inspection cost is considered as a certain percentage of the production cost. The cost for 

interest and depreciation is considered as a general power function as suggested by Cheng 

(1989).  

If a disruption occurs at the first stage of the system, at the l
th

 cycle from the previous 

disruption, the different costs are calculated as follows. 

Holding cost 

= 𝐻1 [
1

2
𝑞1,𝑛𝑇01,𝑛 + 𝑞1,𝑛(𝑇𝑑1,𝑛 + 𝑆𝑡1 + 𝑇11,𝑛) +

1

2
𝑋1,𝑛𝑇11,𝑛

+ 
1

2
𝑋2,𝑛𝑇12,𝑛 +⋯+

1

2
𝑋𝑀,𝑛𝑇1𝑀,𝑛] 

=
1

2
𝐻1 [𝑞1,𝑛

𝑞1,𝑛
𝑟𝑃

+ 2𝑞1,𝑛 (𝑇𝑑1,𝑛 + 𝑆𝑡1 +
𝑋1,𝑛
𝑟𝑃

) + 𝑋1,𝑛  
𝑋1,𝑛
𝑟𝑃

+ 𝑋2,𝑛
𝑋2,𝑛
𝑟𝑃

+⋯+ 𝑋𝑀,𝑛
𝑋𝑀,𝑛
𝑟𝑃

] 

=
1

2
𝐻1 [

(𝑞1,𝑛)
2

𝑟𝑃
+ 2𝑞1,𝑛(𝑇𝑑1,𝑛 + 𝑆𝑡1) +

2𝑋1,𝑛𝑞1,𝑛
𝑟𝑃

+ 𝑋1,𝑛  
𝑋1,𝑛
𝑟𝑃

+ 𝑋2,𝑛
𝑋2,𝑛
𝑟𝑃

+⋯+ 𝑋𝑀,𝑛
𝑋𝑀,𝑛
𝑟𝑃

] 

=
1

2
𝐻1 [

(𝑞1,𝑛)
2

𝑟𝑃
+ 2𝑞1,𝑛(𝑇𝑑1,𝑛 + 𝑆𝑡1) +

2𝑋1,𝑛𝑞1,𝑛
𝑟𝑃

+∑
(𝑋𝑖,𝑛)

2

𝑟𝑃

𝑀

𝑖=1

] 

 

 

 

 

 

 

 

 

 

(4.3) 

Set-up cost  

= 𝐴1𝑀 

 

(4.4) 

Production cost 

= 𝐶𝑃1𝑃 (∑𝑇1𝑖,𝑛 + 𝑇01,𝑛

𝑀

𝑖=1

) 

=
𝐶𝑃1
𝑟
(∑𝑋𝑖,𝑛 + 𝑞1,𝑛

𝑀

𝑖=1

) 

 

 

 

(4.5) 
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Rejection cost  

= 𝐶𝑅1(1 − 𝑟)𝑃 (∑𝑇1𝑖,𝑛 + 𝑇01,𝑛

𝑀

𝑖=1

) 

= 𝐶𝑅1 (
1

𝑟
− 1)(∑𝑋𝑖,𝑛 + 𝑞1,𝑛

𝑀

𝑖=1

) 

 

 

 

(4.6) 

Inspection cost  

=
𝐶𝐼1𝐶𝑃1
𝑟

(∑𝑋𝑖,𝑛 + 𝑞1,𝑛

𝑀

𝑖=1

) 

 

(4.7) 

Cost of interest and depreciation 

= 𝑀𝑎 (𝐴1)
−𝑏(𝑟)𝑐 

 

(4.8) 

If the disruption is at the second stage, at the l
th

 cycle from the previous disruption, the 

different costs are calculated as follows. 

Holding cost  

=
1

2
𝐻1 [∑

(𝑋𝑖,𝑛)
2

𝑟𝑃

𝑀

𝑖=1

] 

 

 

(4.9) 

Set-up cost   

= 𝐴1𝑀 

 

(4.10) 

Production cost  

= 𝐶𝑃1𝑃 (∑𝑇1𝑖,𝑛

𝑀

𝑖=1

) 

=
𝐶𝑃1
𝑟
(∑𝑋𝑖,𝑛

𝑀

𝑖=1

) 

 

 

 

(4.11) 

Rejection cost 

= 𝐶𝑅1(1 − 𝑟)𝑃 (∑𝑇1𝑖,𝑛

𝑀

𝑖=1

) 

= 𝐶𝑅1 (
1

𝑟
− 1)(∑𝑋𝑖,𝑛

𝑀

𝑖=1

) 

 

 

 

(4.12) 
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Inspection cost  

=
𝐶𝐼1𝐶𝑃1
𝑟

(∑𝑋𝑖,𝑛

𝑀

𝑖=1

) 

 

 

(4.13) 

Cost of interest and depreciation 

= 𝑀𝑎 (𝐴1)
−𝑏(𝑟)𝑐 

 

(4.14) 

4.3.3 Cost Formulation for the Second Stage 

In this section, the different costs are determined, which are involved at the second stage 

due to disruption in an imperfect production process. For a single disruption, the costs 

considered are: holding, set-up, back order, lost sales, production, inspection and 

depreciation costs.  As the second stage is considered as the finishing or packaging stage, it 

is assumed that there is no rejection cost in this stage. The holding, set-up, production, 

inspection and depreciation costs are determined in the same way as for the first stage. 

Back order is the portion of an order that cannot be delivered at the scheduled time, but 

will be delivered at a later date when available. This back order cost is determined as unit 

back order cost multiplied by back order units and it’s time delay (Hishamuddin et al., 

2012). When there is demand, but the item is out of stock and the customer will not wait 

for the item, the result is a lost sale. Lost sales cost is determined as unit lost sales cost 

multiplied by lost sales units (Hishamuddin et al., 2012).  

If the production system has a disruption at the first stage at the l
th

 cycle from the previous 

disruption, the following costs are calculated: 

Holding cost 

 = 𝐻2 [
1

2
𝑌1,𝑛𝑇21,𝑛 +

1

2
𝑌2,𝑛𝑇22,𝑛 +⋯+

1

2
𝑌𝑀,𝑛𝑇2𝑀,𝑛] 

 = 𝐻2 [
1

2
𝑌1,𝑛

𝑌1,𝑛
𝑟𝑃

+
1

2
𝑌2,𝑛

𝑌2,𝑛
𝑟𝑃

+⋯+
1

2
𝑌𝑀,𝑛

𝑌𝑀,𝑛
𝑟𝑃

] 

=
1

2
𝐻2  [∑

(𝑌𝑖,𝑛)
2

𝑟𝑃

𝑀

𝑖=1

] 

 

 

 

 

 

(4.15) 
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Set-up cost  

= 𝐴2𝑀 

 

(4.16) 

Back-order cost  

= 𝐵 [(𝑌1,𝑛). 𝑑𝑒𝑙𝑎𝑦1 +∑(𝑌2,𝑛. 𝑑𝑒𝑙𝑎𝑦𝑖

𝑀

𝑖=2

] 

= 𝐵 [(𝑌1,𝑛) [𝑇𝑖𝑙𝑑𝑒,𝑛 +
𝑌1,𝑛
𝑟𝑃

−
𝑌𝑙,𝑛−1
𝑟𝑃

]

+∑𝑌2,𝑛. [𝑇𝑖𝑙𝑑𝑒,𝑛 + (𝑖 − 1)𝑆𝑡2 +∑
𝑌𝑗,𝑛

𝑟𝑃

𝑖

𝑗=1

𝑀

𝑖=2

−∑
𝑌𝑙+𝑗−1,𝑛−1

𝑟𝑃

𝑖

𝑗=1

−∑(𝑢2𝑗,𝑛)

𝑖−1

𝑗=1

]] 

= 𝐵 [(𝑌1,𝑛) [𝑇𝑖𝑙𝑑𝑒,𝑛 +
𝑌1,𝑛
𝑟𝑃

−
𝑌𝑙,𝑛−1
𝑟𝑃

]

+∑𝑌2,𝑛. [𝑇𝑖𝑙𝑑𝑒,𝑛 + (𝑖 − 1)𝑆𝑡2 +∑
𝑌𝑗,𝑛

𝑟𝑃

𝑖

𝑗=1

𝑀

𝑖=2

−∑
𝑌𝑙+𝑗−1,𝑛−1

𝑟𝑃

𝑖

𝑗=1

−∑(
𝑌𝑙+𝑗−1,𝑛−1

𝐷
−
𝑌𝑙+𝑗,𝑛−1

𝑟𝑃
)

𝑖−1

𝑗=1

]] 

 

 

 

 

 

 

 

 

 

 

 

 

 

(4.17) 

Lost sales cost  

=  𝐿∑𝑌𝑙+𝑖−1,𝑛−1

𝑀

𝑖=1

− 𝐿𝑟𝑃(𝑇21,𝑛 + 𝑇22,𝑛 +⋯+ 𝑇2𝑀,𝑛) 

= 𝐿∑𝑌𝑙+𝑖−1,𝑛−1

𝑀

𝑖=1

− 𝐿𝑃𝑟 (
𝑌1,𝑛
𝑟𝑃

+
𝑌2,𝑛
𝑟𝑃

+⋯+
𝑌𝑀,𝑛
𝑟𝑃

) 
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= 𝐿 (∑𝑌𝑙+𝑖−1,𝑛−1

𝑀

𝑖=1

−∑𝑌𝑖,𝑛

𝑀

𝑖=1

) 

 

(4.18) 

Production cost  

= 𝐶𝑃2𝑟𝑃 (∑𝑇2𝑖,𝑛

𝑀

𝑖=1

) 

= 𝐶𝑃2 (∑𝑌𝑖,𝑛

𝑀

𝑖=1

) 

 

 

 

(4.19) 

Inspection cost  

= 𝐶𝐼2𝐶𝑃2(∑𝑌𝑖,𝑛

𝑀

𝑖=1

) 

 

(4.20) 

Cost of interest and depreciation 

= 𝑀𝑎 (𝐴2)
−𝑏 

(4.21) 

If the production system has a disruption at the second stage at the l
th

 cycle from the 

previous disruption, the following costs are calculated: 

Holding cost  

 = 𝐻2 [
1

2
𝑞2,𝑛𝑇02,𝑛 + 𝑞2,𝑛(𝑇𝑑2,𝑛 + 𝑆𝑡2 + 𝑇21,𝑛) + 

1

2
𝑌1,𝑛𝑇21,𝑛

+ 
1

2
𝑌2,𝑛𝑇22,𝑛+. . +

1

2
𝑌𝑀,𝑛𝑇2𝑀,𝑛] 

 = 𝐻2 [
1

2
𝑞2,𝑛

𝑞2,𝑛
𝑟𝑃

+ 𝑞2,𝑛 (𝑇𝑑2,𝑛 + 𝑆𝑡2 +
𝑌1,𝑛
𝑟𝑃
) + 

1

2
𝑌1,𝑛

𝑌1,𝑛
𝑟𝑃

+ 
1

2
𝑌2,𝑛

𝑌2,𝑛
𝑟𝑃

+⋯+
1

2
𝑌𝑀,𝑛

𝑌𝑀,𝑛
𝑟𝑃

] 

 =
1

2
𝐻2 [

(𝑞2,𝑛)
2

𝑟𝑃
+ 2𝑞2,𝑛(𝑇𝑑2,𝑛 + 𝑆𝑡2 ) +

2𝑞2,𝑛𝑌1,𝑛
𝑟𝑃

+ ∑
(𝑌𝑖,𝑛)

2

𝑟𝑃

𝑀

𝑖=1

] 

 

 

 

 

 

 

 

(4.22) 

Set-up cost  

= 𝐴2𝑀 

 

(4.23) 
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Back order cost  

= 𝐵 [(𝑌1,𝑛 + 𝑞2,𝑛). 𝑑𝑒𝑙𝑎𝑦1 +∑𝑌𝑖,𝑛. 𝑑𝑒𝑙𝑎𝑦𝑖

𝑀

𝑖=2

] 

= 𝐵 [(𝑌1,𝑛 + 𝑞2,𝑛) [𝑇𝑑2,𝑛 +
𝑌1,𝑛 + 𝑞2,𝑛

𝑟𝑃
−
𝑌𝑙,𝑛−1
𝑟𝑃

]

+∑𝑌𝑖,𝑛. [𝑇02,𝑛 + 𝑇𝑑2,𝑛 + (𝑖 − 1)𝑆𝑡2 +∑
𝑌𝑗,𝑛

𝑟𝑃

𝑖

𝑗=1

𝑀

𝑖=2

−∑
𝑌𝑙+𝑗−1,𝑛−1

𝑟𝑃

𝑖

𝑗=1

−∑(𝑢2𝑗,𝑛)

𝑖−1

𝑗=1

]] 

= 𝐵 [(𝑌1,𝑛 + 𝑞2,𝑛) [𝑇𝑑2,𝑛 +
𝑌1,𝑛 + 𝑞2,𝑛

𝑟𝑃
−
𝑌𝑙,𝑛−1
𝑟𝑃

]

+∑𝑌𝑖,𝑛. [
𝑞2,𝑛
𝑟𝑃

+ 𝑇𝑑2,𝑛 + (𝑖 − 1)𝑆𝑡2 +∑
𝑌𝑗,𝑛

𝑟𝑃

𝑖

𝑗=1

𝑀

𝑖=2

−∑
𝑌𝑙+𝑗−1,𝑛−1

𝑟𝑃

𝑖

𝑗=1

−∑(
𝑌𝑙+𝑗−1,𝑛−1

𝐷
−
𝑌𝑙+𝑗,𝑛−1

𝑟𝑃
)

𝑖−1

𝑗=1

]] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(4.24) 

Lost sales cost  

=  𝐿∑𝑌𝑙+𝑗−1,𝑛−1

𝑀

𝑖=1

− 𝐿𝑃𝑟(𝑇02,𝑛 + 𝑇21,𝑛 + 𝑇22,𝑛 +⋯+ 𝑇2𝑀,𝑛) 

= 𝐿∑𝑌𝑙+𝑗−1,𝑛−1

𝑀

𝑖=1

− 𝐿𝑟𝑃 (
𝑞2,𝑛
𝑟𝑃

+
𝑌1,𝑛
𝑟𝑃

+
𝑌2,𝑛
𝑟𝑃

+⋯+
𝑌𝑀,𝑛
𝑟𝑃

) 

= 𝐿 (∑𝑌𝑙+𝑗−1,𝑛−1

𝑀

𝑖=1

− 𝑞2,𝑛 −∑𝑌𝑖,𝑛

𝑀

𝑖=1

) 

 

 

 

 

 

 

(4.25) 
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Production cost   

= 𝐶𝑃2𝑟𝑃 (∑𝑇2𝑖,𝑛 + 𝑇02,𝑛

𝑀

𝑖=1

) 

= 𝐶𝑃2 (∑𝑌𝑖,𝑛 + 𝑞2,𝑛

𝑀

𝑖=1

) 

 

 

 

 

(4.26) 

Inspection cost  

= 𝐶𝐼2𝐶𝑃2(∑𝑌𝑖,𝑛 + 𝑞2,𝑛

𝑀

𝑖=1

) 

 

(4.27) 

Cost of interest and depreciation 

= 𝑀𝑎 (𝐴2)
−𝑏 

(4.28) 

4.3.4 Formulation for Revenue 

The selling price during the recovery time window is determined as the unit selling price 

multiplied by the demand during the recovery time window.   

If the system faces disruption at the first stage, then the revenue from the selling price in 

the recovery window is determined as follows: 

𝑇𝑅1 = 𝑚1(𝐶𝑃1 + 𝐶𝑃2) 𝐷 [∑𝑇2𝑖,𝑛 +𝑀𝑆𝑡2

𝑀

𝑖=1

]

= 𝑚1(𝐶𝑃1 + 𝐶𝑃2) 𝐷 [∑
𝑌𝑖,𝑛
𝑟𝑃

𝑀

𝑖=1

+𝑀𝑆𝑡2] 

 

 

(4.29) 

If the system faces disruption at the second stage, then the revenue from the selling price in 

the recovery window is determined as follows: 

𝑇𝑅2 = 𝑚1(𝐶𝑃1 + 𝐶𝑃2) 𝐷 [𝑇02,𝑛 +∑𝑇2𝑖,𝑛 +𝑀𝑆𝑡2

𝑀

𝑖=1

]

= 𝑚1(𝐶𝑃1 + 𝐶𝑃2) 𝐷 [
𝑞2,𝑛
𝑟𝑃

+∑
𝑌𝑖,𝑛
𝑟𝑃

𝑀

𝑖=1

+𝑀𝑆𝑡2] 

 

 

(4.30) 
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4.3.5 Final Mathematical Model 

The total profit function, that is the objective function, is determined for a particular 

disruption recovery time window as follows: 

Total Profit (TF) = Revenues from selling price - Total costs at the first stage - Total costs 

at the second stage, subject to the constraints presented in (4.31- 4.79). 

After a disruption in the first stage  

𝑋𝑖,0 = 𝑌𝑖,0 = 𝑄 

[Normal cycle production quantity is equal to 𝑄] 
(4.31) 

𝑋1,𝑛 + 𝑞1,𝑛 ≤ 𝑋𝑙,𝑛−1 

[𝑋1,𝑛 + 𝑞1,𝑛is less than or equal to 𝑋𝑙,𝑛−1 for delivery and 

transportation requirements] 

 

(4.32) 

𝑋𝑖,𝑛 ≤ 𝑋𝑙+𝑖−1,𝑛−1 ;  𝑖 = 2,3,4, … . . , 𝑀  

[𝑋𝑖,𝑛is less than or equal to 𝑋𝑙+𝑖−1,𝑛−1  for delivery and 

transportation requirements] 

(4.33) 

 

𝑌1,𝑛 = 𝑋1,𝑛 + 𝑞1,𝑛 

[To balance the production system] 
(4.34) 

𝑌𝑖,𝑛 = 𝑋𝑖,𝑛 ;  𝑖 = 2,3,4, … . . , 𝑀  

[To balance the production system] 
(4.35) 

𝑟𝑃 ≥ 𝐷 

[Production rate is greater than the demand rate] 

(4.36) 

𝑟 ≤ 1  

[Reliability must be less than or equal to 1] 

(4.37) 

∑𝑋𝑖,𝑛 + 𝑞1,𝑛

𝑀

𝑖=1

≤ 𝑟𝑃(∑
𝑋𝑙+𝑖−1,𝑛−1

𝐷

𝑀

𝑖=1

−𝑀𝑆𝑡1 − 𝑇𝑑1,𝑛) 

[Production capacity constraint at the first stage] 

(4.38) 

∑𝑌𝑖,𝑛

𝑀

𝑖=1

≤ 𝑟𝑃(∑
𝑌𝑙+𝑖−1,𝑛−1

𝐷

𝑀

𝑖=1

−𝑀𝑆𝑡2) 

 [Production capacity constraint at the second stage] 

(4.39) 

∑𝑌𝑖,𝑛

𝑀

𝑖=1

≥ (
∑ 𝑌𝑖,𝑛
𝑀
𝑖=1

𝑃𝑟
+𝑀𝑆𝑡2)𝐷 − (∑𝑌𝑙+𝑖−1,𝑛−1

𝑀

𝑖=1

 –∑𝑌𝑖,𝑛

𝑀

𝑖=1

) 

[Demand during recovery window is accounted for] 

(4.40) 
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𝑋1,𝑛 + 𝑞1,𝑛
𝐷

−
𝑋2,𝑛
𝑟𝑃

− 𝑆𝑡1 ≥ 0 

[Ensure non negative idle time at the stage 1] 

(4.41) 

𝑋𝑖,𝑛
𝐷
−
𝑋𝑖+1,𝑛
𝑟𝑃

− 𝑆𝑡1 ≥ 0; 𝑖 = 2,3, … ,𝑀 

 [Ensure non negative idle time at the stage 1] 

(4.42) 

𝑌1,𝑛
𝐷
−
𝑌2,𝑛
𝑟𝑃

− 𝑆𝑡2 ≥ 0 

 [Ensure non negative idle time at the stage 2] 

(4.43) 

𝑌𝑖,𝑛
𝐷
−
𝑌𝑖+1,𝑛
𝑟𝑃

− 𝑆𝑡2 ≥ 0; 𝑖 = 2,3, … ,𝑀 

 [Ensure non negative idle time at the stage 2] 

(4.44) 

𝑇𝑖𝑑𝑙𝑒,𝑛 +
𝑌1,𝑛
𝑟𝑃

−
𝑌𝑙,𝑛−1
𝑟𝑃

≥ 0 

[Ensure non-negative delay] 

 

(4.45) 

𝑇𝑖𝑙𝑑𝑒,𝑛 + (𝑖 − 1)𝑆𝑡2 +∑
𝑌𝑗,𝑛

𝑟𝑃

𝑖

𝑗=1

−∑
𝑌𝑙+𝑗−1,𝑛−1

𝑟𝑃

𝑖

𝑗=1

−∑(
𝑌𝑙+𝑗−1,𝑛−1

𝐷
−
𝑌𝑙+𝑗,𝑛−1

𝑟𝑃
)

𝑖−1

𝑗=1

≥ 0 

[Ensure non-negative delay] 

 

 

(4.46) 

𝑞1,𝑛
𝑟𝑃

+ 𝑇𝑑1,𝑛 +
𝑋1,𝑛
𝑟𝑃

−
𝑋𝑙,𝑛−1
𝑟𝑃

≥ 0 

[Ensure non-negative idle time at the second stage due to disruption 

at the first stage] 

(4.47) 

𝑞1,𝑛
𝑟𝑃

+ 𝑇𝑑1,𝑛 +∑
𝑋𝑗,𝑛

𝑟𝑃
+ (𝑖 − 1)

𝑖

𝑗=1

𝑆𝑡1

≤
𝑌𝑙,𝑛−1
𝑟𝑃

+ 𝑇𝑖𝑙𝑑𝑒,𝑛 +∑
𝑌𝑗,𝑛

𝑟𝑃
+ (𝑖 − 1)

𝑖−1

𝑗=1

𝑆𝑡2;  

𝑖 = 2,3,4, … . . , 𝑀 

[To ensure second stage production has been started after 

completing at the first stage]  

 

 

(4.48) 

𝑋𝑖,𝑛, 𝑌𝑖,𝑛 ≥ 0;  𝑖 = 1,2,3, … . ,𝑀 

 [Non-negativity constraint]   

 

(4.49) 
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After a disruption in the second stage  

 

𝑋𝑖,0 = 𝑌𝑖,0 = 𝑄 

[Normal cycle production quantity is equal to 𝑄]  

(4.50) 

𝑋1,𝑛 = 𝑋𝑙,𝑛−1 

[As 𝑋𝑙,𝑛−1 is already in produced at the first stage] 

(4.51) 

𝑋2,𝑛 = 𝑋𝑙+1,𝑛−1 

[As 𝑋𝑙+1,𝑛−1 is already in production at the first stage] 

(4.52) 

𝑋𝑖,𝑛 ≤ 𝑋𝑙+𝑖+1,𝑛−1; 𝑖 = 3,4, … . . , 𝑀 

[𝑋𝑖,𝑛is less than or equal to 𝑋𝑙+𝑖−1,𝑛−1 for delivery and 

transportation requirements] 

(4.53) 

𝑌1,𝑛 = 𝑋𝑙,𝑛−1 − 𝑞2,𝑛 

[𝑌1,𝑛is equal to 𝑋𝑙,𝑛−1 − 𝑞2,𝑛 as it is already produced at the first 

stage] 

(4.54) 

𝑌2,𝑛 = 𝑋𝑙+1,𝑛−1  

[As 𝑋𝑙+1,𝑛−1 is already in production at the first stage] 

(4.55) 

𝑌𝑖,𝑛 ≤ 𝑌𝑙+𝑖−1,𝑛−1;  𝑖 = 3,4, … . . , 𝑀 

[𝑌𝑖,𝑛 is less than or equal to 𝑌𝑙+𝑖−1,𝑛−1 for delivery and 

transportation requirements] 

(4.56) 

𝑌𝑖,𝑛 = 𝑋𝑖,𝑛; 𝑖 = 2,3,4, … . . , 𝑀  

[To keep the production process balanced]  

(4.57) 

𝑟𝑃 ≥ 𝐷  

[Production rate is greater than the demand rate] 

(4.58) 

𝑟 ≤ 1  

[Reliability must be less than or equal to 1] 

(4.59) 

∑𝑋𝑖,𝑛

𝑀

𝑖=1

≤ 𝑟𝑃 (∑
𝑋𝑙+𝑖−1,𝑛−1

𝐷

𝑀

𝑖=1

−𝑀𝑆𝑡1)  

[Production capacity constraint at the first stage]  

(4.60) 

∑𝑌𝑖,𝑛 + 𝑞2,𝑛

𝑀

𝑖=1

≤ 𝑟𝑃(∑
𝑌𝑙+𝑖−1,𝑛−1

𝐷

𝑀

𝑖=1

−𝑀𝑆𝑡2 − 𝑇𝑑2,𝑛) 

[Production capacity constraint at the second stage] 

(4.61) 
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∑𝑌𝑖,𝑛 + 𝑞2,𝑛

𝑀

𝑖=1

≥ (
∑ 𝑌𝑖,𝑛 + 𝑞2,𝑛
𝑀
𝑖=1

𝑃𝑟
+𝑀𝑆𝑡2)𝐷

− (∑𝑌𝑙+𝑖−1,𝑛−1

𝑀

𝑖=1

 –∑𝑌𝑖,𝑛

𝑀

𝑖=1

− 𝑞2,𝑛) 

[Demand during recovery window is accounted for] 

 

 

(4.62) 

𝑋𝑖,𝑛
𝐷
−
𝑋𝑖+1,𝑛
𝑟𝑃

− 𝑆𝑡1 ≥ 0 

[Ensure non negative idle time at the stage 1] 

(4.63) 

𝑌1,𝑛 + 𝑞2,𝑛
𝐷

−
𝑌2,𝑛
𝑟𝑃

− 𝑆𝑡2 ≥ 0 

[Ensure non negative idle time at the stage 2] 

(4.64) 

𝑌𝑖,𝑛
𝐷
−
𝑌𝑖+1,𝑛
𝑟𝑃

− 𝑆𝑡2 ≥ 0 

 [Ensure non negative idle time at the stage 2] 

(4.65) 

𝑇𝑑2,𝑛 +
𝑌1,𝑛 + 𝑞2,𝑛

𝑟𝑃
−
𝑌𝑙,𝑛−1
𝑟𝑃

≥ 0 

[Ensure non-negative delay]  

(4.66) 

𝑞2,𝑛
𝑟𝑃

+ 𝑇𝑑2,𝑛 + (𝑖 − 1)𝑆𝑡2 +∑
𝑌𝑗,𝑛

𝑟𝑃

𝑖

𝑗=1

−∑
𝑌𝑙+𝑗−1,𝑛−1

𝑟𝑃

𝑖

𝑗=1

−∑(
𝑌𝑙+𝑗−1,𝑛−1

𝐷
−
𝑌𝑙+𝑗,𝑛−1

𝑟𝑃
)

𝑖−1

𝑗=1

≥ 0 

[Ensure non-negative delay] 

 

 

(4.67) 

∑(
𝑋𝑙+𝑗−1,𝑛−1

𝐷
−
𝑋𝑙+𝑗,𝑛−1

𝑟𝑃
)

𝑖−1

𝑗=1

+∑
𝑋𝑗,𝑛

𝑟𝑃

𝑖

𝑗=2

≤
𝑞2,𝑛
𝑟𝑃

+ 𝑇𝑑2,𝑛 +∑
𝑌𝑗,𝑛

𝑟𝑃
+ (𝑖 − 1)

𝑖−1

𝑗=1

𝑆𝑡2 

[To ensure second stage production has been started after 

completing at the first stage] 𝑖 = 2,3,4, … . . , 𝑀 

 

 

(4.68) 

𝑋𝑖,𝑛, 𝑌𝑖,𝑛 ≥ 0;  𝑖 = 1,2,3, … . ,𝑀 

[Non-negativity constraint]    

(4.69) 
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4.3.6 Relationships between the Parameters  

Back order and lost sales play an important role in determining the optimal recovery plan. 

In fact, the optimal recovery plan is sensitive to the relative magnitude of back order and 

lost sales costs. A Lemma and a few propositions help to understand the relationships 

between these two cost parameters and the other parameters. Lemma 1 and proposition 1 

are derived to prove the condition of the existence of back order and lost sales respectively 

in the solution. Proposition 2 proves the effect of the disruption duration and proposition 3 

confirms the effect of process reliability on the solution. 

Lemma 1:  For a given 𝐴1, 𝐴2, 𝐻1, 𝐻2, 𝐵, 𝐿, if 𝑋𝑖,𝑛−1 = 𝑋𝑛−1, 𝑋𝑖,𝑛 = 𝑋𝑛 and 𝑌𝑖,𝑛−1 =

𝑌𝑛−1, 𝑌𝑖,𝑛 = 𝑌𝑛 then back orders are more attractive than lost sales, if the number of 

recovery cycles is equal or more than ⌈𝑀⌉. Here, 𝑀 =
 𝑃𝑟𝑇𝑑1,𝑛

𝑟𝑃(
𝑋𝑛−1
𝐷

−𝑆𝑡1)−𝑋𝑛−1
  for disruption at 

the first stage, and 𝑀 =
 𝑃𝑟𝑇𝑑1,𝑛

𝑟𝑃(
𝑌𝑛−1
𝐷

−𝑆𝑡2)−𝑌𝑛−1
 for disruption at the second stage. 

Proof: From the production capacity constraints (4.38) and (4.61), 

∑ 𝑋𝑖,𝑛 + 𝑞1,𝑛
𝑀
𝑖=1 ≤ 𝑟𝑃 (∑

𝑋𝑙+𝑖−1,𝑛−1

𝐷

𝑀
𝑖=1 −𝑀𝑆𝑡1 − 𝑇𝑑1,𝑛) [For first stage disruption] 

∑ 𝑌𝑖,𝑛 + 𝑞2,𝑛
𝑀
𝑖=1 ≤ 𝑟𝑃 (∑

𝑌𝑙+𝑖−1,𝑛−1

𝐷

𝑀
𝑖=1 −𝑀𝑆𝑡2 − 𝑇𝑑2,𝑛) [For second stage disruption] 

From the eq. (4.32) and (4.33) 

𝑋1,𝑛 + 𝑞1,𝑛 ≤ 𝑋𝑙,𝑛−1 

𝑋𝑖,𝑛 ≤ 𝑋𝑙+𝑖−1,𝑛−1; 𝑖 = 2,3,4, … . . , 𝑀 

From the eq. (4.54) - (4.57) 

𝑌1,𝑛 = 𝑋𝑙,𝑛−1 − 𝑞2,𝑛 

𝑌2,𝑛 = 𝑋𝑙+1,𝑛−1 

𝑌𝑖,𝑛 ≤ 𝑌𝑙+𝑖−1,𝑛−1;  𝑖 = 3,4, … . . , 𝑀 

𝑌𝑖,𝑛 = 𝑋𝑖,𝑛; 𝑖 = 2,3,4, … . . , 𝑀 

Using these upper bounds,  

∑𝑋𝑖,𝑛 + 𝑞1,𝑛

𝑀

𝑖=1

≤ 𝑟𝑃 (
𝑀𝑋𝑛−1
𝐷

−𝑀𝑆𝑡1 − 𝑇𝑑1,𝑛) 

∑𝑌𝑖,𝑛 + 𝑞2,𝑛

𝑀

𝑖=1

≤ 𝑟𝑃 (
𝑀𝑌𝑛−1
𝐷

−𝑀𝑆𝑡2 − 𝑇𝑑2,𝑛) 
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 After simplifying,  

 

𝑀 ≥
∑ 𝑋𝑖,𝑛 + 𝑞1,𝑛
𝑀
𝑖=1 + 𝑟𝑃𝑇𝑑1,𝑛

𝑟𝑃 (
𝑋𝑛−1
𝐷 − 𝑆𝑡1)

 (4.70) 

𝑀 ≥
∑ 𝑌𝑖,𝑛 + 𝑞2,𝑛
𝑀
𝑖=1 + 𝑟𝑃𝑇𝑑2,𝑛

𝑟𝑃 (
𝑌𝑛−1
𝐷 − 𝑆𝑡2)

 (4.71) 

 

Again from the constraints for disruption at the first stage, 

𝑋1,𝑛 + 𝑞1,𝑛 ≤ 𝑋𝑙,𝑛−1 

𝑋𝑖,𝑛 ≤ 𝑋𝑙+𝑖−1,𝑛−1; 𝑖 = 2,3,4, … . . , 𝑀 

From the constraints for disruption at the second stage, 

𝑌1,𝑛 = 𝑋𝑙,𝑛−1 − 𝑞2,𝑛 = 𝑌𝑙,𝑛−1 − 𝑞2,𝑛 

𝑌2,𝑛 = 𝑋𝑙+1,𝑛−1 = 𝑌𝑙+1,𝑛−1 

𝑌𝑖,𝑛 ≤ 𝑌𝑙+𝑖−1,𝑛−1;  𝑖 = 3,4, … . . , 𝑀 

Lost sales exist in the optimal solution only if 𝑋1,𝑛 + 𝑞1,𝑛 < 𝑋𝑙,𝑛−1, 𝑋𝑖,𝑛 < 𝑋𝑙+𝑖−1,𝑛−1 and 

𝑌1,𝑛+𝑞2,𝑛 < 𝑌𝑙,𝑛−1, 𝑌𝑖,𝑛 < 𝑌𝑙+𝑖−1,𝑛−1 . 

Using (4.70) and (4.71), back order will be more attractive compare to lost sales when,  

 

𝑀 ≥
𝑀𝑋𝑛−1 +  𝑟𝑃𝑇𝑑1,𝑛

𝑟𝑃 (
𝑋𝑛−1
𝐷 − 𝑆𝑡1)

 (4.72) 

𝑀 ≥
𝑀𝑌𝑛−1 +  𝑟𝑃𝑇𝑑2,𝑛

𝑟𝑃 (
𝑌𝑛−1
𝐷 − 𝑆𝑡2)

 (4.73) 

 

From the (4.72) and (4.73) 

⌈𝑀⌉ =
 𝑟𝑃𝑇𝑑1,𝑛

𝑟𝑃(
𝑋𝑛−1
𝐷 − 𝑆𝑡1) − 𝑋𝑛−1

 

[For the disruption at the first stage] 

(4.74) 

⌈𝑀⌉ =
 𝑟𝑃𝑇𝑑2,𝑛

𝑟𝑃 (
𝑌𝑛−1
𝐷 − 𝑆𝑡2) − 𝑌𝑛−1

 

[For the disruption at the second stage] 

(4.75) 

From the (4.74) and (4.75), this implies that, back orders will be more attractive compare 

to lost sales if the number of the recovery cycles is 𝑀 =
 𝑟𝑃𝑇𝑑1,𝑛

𝑟𝑃(
𝑋𝑛−1
𝐷

−𝑆𝑡1)−𝑋𝑛−1
 for disruption at 
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the first stage and 𝑀 =
 𝑟𝑃𝑇𝑑2,𝑛

𝑟𝑃(
𝑌𝑛−1
𝐷

−𝑆𝑡2)−𝑌𝑛−1
 for disruption at the second stage. Since M must 

be an integer so ⌈𝑀⌉ is used. 

 

Proposition 1: For a given 𝐴1, 𝐴2, 𝐻1, 𝐻2, 𝐵 , 𝐿, if 𝑋𝑖,𝑛−1 = 𝑋𝑛−1, 𝑋𝑖,𝑛 = 𝑋𝑛 and 𝑌𝑖,𝑛−1 =

𝑌𝑛−1, 𝑌𝑖,𝑛 = 𝑌𝑛and 𝐵 ≫ 𝐿, lost sales will exist in the recovery plan if the number of 

recovery cycles is less than 
 𝑟𝑃𝑇𝑑1,𝑛

𝑟𝑃(
𝑋𝑛−1
𝐷

−𝑆𝑡1)−𝑋𝑛−1
 for disruption at the first stage and 

 𝑟𝑃𝑇𝑑2,𝑛

𝑟𝑃(
𝑌𝑛−1
𝐷

−𝑆𝑡2)−𝑌𝑛−1
 for disruption at the second stage. 

Proof: This is the opposite consequence of Lemma 1.  

 

Proposition 2: The recovery time window will be longer with a longer disruption duration. 

Proof: From the (4.74) and (4.75),  

⌈𝑀⌉ =
 𝑟𝑃𝑇𝑑1,𝑛

𝑟𝑃 (
𝑋𝑛−1
𝐷 − 𝑆𝑡1) − 𝑋𝑛−1

 

[For the disruption at the first stage] 

 

⌈𝑀⌉ =
 𝑟𝑃𝑇𝑑2,𝑛

𝑟𝑃 (
𝑌𝑛−1
𝐷

− 𝑆𝑡2) − 𝑌𝑛−1

 

[For the disruption at the second stage] 

 

So, the recovery time window will be longer with a longer disruption duration.   

 

Proposition 3: The recovery time window will be shorter with higher process reliability. 

Proof: After reorganising the (4.74) and (4.75),  

⌈𝑀⌉ =
𝑇𝑑1,𝑛

(
𝑋𝑛−1
𝐷 − 𝑆𝑡1) −

𝑋𝑛−1
𝑟𝑃

 

[For the disruption at the first stage] 

 

⌈𝑀⌉ =
𝑇𝑑2,𝑛

(
𝑌𝑛−1
𝐷 − 𝑆𝑡2) −

𝑌𝑛−1
𝑟𝑃

 

[For the disruption at the second stage] 

 

It can be said that, with higher process reliability, the recovery time window will be 

shorter.  
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4.4 Solution Approach 

In this section, firstly, the model for the single occurrence of disruption at either the first or 

second stage is solved. Then a solution approach is developed for managing the production 

system with a series of multiple disruptions on a real-time basis.  

4.4.1 Solution Approach for a Single Disruption 

The mathematical model developed in the previous section, for a single disruption, is a 

constrained nonlinear programming model which can be solved using a standard search 

algorithm. To validate the results, two different search approaches: genetic algorithm (GA) 

and pattern search (PS) have been chosen, to solve the generated test problems.  

4.4.2 Solution Approach for a Series of Disruptions 

This section proposes a solution approach to generate a recovery plan for a series of 

disruptions on a real-time basis. When a disruption occurs, a recovery plan can be 

generated by solving the corresponding mathematical model as discussed in the preceding 

sub-section. After finalizing the recovery plan, if another disruption occurs within the 

recovery time window, the recovery plan needs to be revised. Note that the revised plan 

may need to be updated again, if any further disruption is experienced, and so on. Every 

time a disruption occurs, the optimisation model developed earlier remains the same; 

however, some of the parameters must be updated to represent the changed situation. For 

example, the length of new disrupted period, the number of cycles for recovery, the pre-

disruption quantity, and the new limit on production in each cycle must be updated to re-

optimise the current disruption scenario. These changes are reflected in the objective 

function and constraints for re-optimisation. So a search technique, such as the pattern 

search or genetic algorithm, can still be used, but instead repeatedly with the changed 

parameters and constraints. That means, the algorithm must run, every time a disruption 

takes place, to re-optimise the recovery plan. If there is no disruption, the system should 

follow the original production plan. The main steps of the proposed solution approach for a 

series of disruptions can be presented as follows. 
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Step 1: Determine 𝑄. 

Step 2: Assign 𝑋𝑖,0 = 𝑌𝑖,0 = 𝑄. 

Step 3: Set n=1, for the first disrupted cycle. 

Step 4: Set the start time of the recovery window to be the beginning of the disrupted cycle. 

Step 5: Update the parameters (such as disrupted stage and cycle number, the number of 

cycles for recovery window, and pre-disruption stock). 

Step 6: Solve the mathematical model using a search algorithm. 

Step 7: Update the value of 𝑋𝑖,𝑛 and 𝑌𝑖,𝑛 as the revised lot quantities from Step 6. 

Step 8: If there is any other disruption, go to Step 4. 

Step 9: Stop. 

The above mentioned solution approaches are coded in MATLAB R2012a with the help of 

its optimisation toolbox, and were executed on an Intel core i7 processor with 8.00 GB 

RAM and a 3.40 GHz CPU. Parameters are used for PS and GA to design the solution 

approach is presented below.  

4.4.2.1 Parameters for PS 

In the proposed PS based solution approach, following PS parameters are used to solve the 

model: 

Maximum number of iterations: 100* Number of variables  

Polling order: Success 

X tolerance: 1e-6 

Function tolerance: 1e-6 

Non-linear constraint tolerance: 1e-6 

Cache tolerance: 1e-6 

Search method: Latin hypercube 

Other parameters are set as the default in the optimisation toolbox.  

4.4.2.2 Parameters for GA 

In the proposed GA based solution approach, following GA parameters are used to solve 

the model: 

Population Size: 100 

Population type: Double vector 
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Hybrid function: Pattern search 

Crossover Fraction: 0.8 

Maximum number of generations: 5000 

Function tolerance: 1e-8 

Non-linear constraint tolerance: 1e-8 

Other parameters are set as the default in the optimisation toolbox.  

4.4.3 Parameters of the Disruption Problem 

For experimentation, the following range of data is considered for the disruption problem.  

Pre-disruption quantity: 𝑞1,𝑛 = [0,  𝑋𝑙,𝑛−1 ], 𝑞2,𝑛 = [0,  𝑌𝑙,𝑛−1 ] 

Disruption duration: 𝑇𝑑1,𝑛 = [0.00001,  
𝑋𝑙,𝑛−1

𝑟𝑃
 ], 𝑇𝑑2,𝑛 = [0.00001,  

𝑌𝑙,𝑛−1

𝑟𝑃
 ] 

Lost sales cost: 𝐿 = [5, 300] 

Back order cost: 𝐵 = [5, 500] 

Set-up cost: 𝐴1 = [5, 300], 𝐴2 = [5, 300] 

Holding cost: 𝐻1 = [1, 5], 𝐻2 = [1, 5] 

4.5 Experimentation and Results Analysis 

In this section, the results of single disruption, as well as multiple disruptions, have been 

analysed at either one or both stages. To test the proposed approach, 100 test problems 

have been solved. The test problems are generated randomly by changing the parameters 

for the given intervals as presented in section 4.4.3. The solutions have been compared 

with their upper and lower bounds. As the comparison shows consistent results, the result 

of few sample test problems have been presented in this section.   

4.5.1 Single Disruption 

The disruption recovery plan for a single disruption either at the first or second stage, has 

been generated, using both GA and PS, for two problem scenarios with the following data.  
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𝑆𝑡1=0.000057, 𝑆𝑡2=0.000045, 𝐴1=50, 𝐴2=30, 𝐻1=1.2, 𝐻2=1.3, D = 400000, r =0.90, 

P=500000, M=5, B=10, L=15, 𝐶𝑃1 = 30, 𝐶𝑃2 = 10, 𝐶𝑅1 = 12, 𝐶𝐼1 = 0.01, 𝐶𝐼2 = 0.01, 

𝑎 = 1000, 𝑏 = 0.5, 𝑐 = 0.75, 𝑚1 = 2.5 

For the first scenario, a disruption is considered at the first stage with a pre-disruption 

quantity of 1200 units and disruption duration of 0.0080. This problem has been solved 

using both the pattern search and genetic algorithm, and the results (Best, Mean, STD) 

obtained, out of 30 independent runs, have been presented in Table 4.1. The results include 

the revised lot quantities in each of the five cycles of the recovery window and the total 

profit.   

Table 4.1: Results for a single disruption at the first stage 

Approach 

Revised lot quantity 
Total Profit 

(Best, Mean, STD) 𝑋1,𝑛 𝑌1,𝑛 𝑋2,𝑛 𝑌2,𝑛 𝑋3,𝑛 𝑌3,𝑛 𝑋4,𝑛 𝑌4,𝑛 𝑋5,𝑛 𝑌5,𝑛 

PS 3792 4992 5366 5366 5366 5366 5366 5366 5366 5366 1158572, 1158406, 24.6 

GA 3820 5020 5337 5337 5366 5366 5366 5366 5366 5366 1158549, 1158375, 25.8 

 

The second scenario considered a disruption at the second stage, with a pre-disruption 

quantity of 600 units and disruption duration of 0.0076. The detailed results are presented 

in Table 4.2. From the results in Tables 4.1 and 4.2, it is clear that the solutions produced 

by both the techniques are very similar. 

Table 4.2: Results for a single disruption at the second stage 

Approach 

Revised lot quantity 
Total Profit 

(Best, Mean, STD) 𝑋1,𝑛 𝑌1,𝑛 𝑋2,𝑛 𝑌2,𝑛 𝑋3,𝑛 𝑌3,𝑛 𝑋4,𝑛 𝑌4,𝑛 𝑋5,𝑛 𝑌5,𝑛 

PS 4766 5366 5366 5366 5201 5201 5364 5364 5365 5365 1170445, 1170237,26.3  

GA 4733 5333 5366 5366 5198 5198 5366 5366 5366 5366 1170444, 1170226, 28.4 

4.5.2 Multiple Disruptions 

To demonstrate the usefulness of our proposed algorithm in solving different scenarios 

with multiple disruptions, over a period of time, the basic data of the single disruption 

cases is used. For experimental purposes, a series of random production disruptions were 
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generated at random point in time, either at the first or second stage. Table 4.3 presents a 

case problem with different random combinations of disrupted stage, disrupted cycle 

number, pre-disruption quantity, and disruption duration. Although these disruptions 

happen continuously, a case problem has been presented with only seven disruptions as a 

sample representation. The production quantities are revised immediately after each 

disruption takes place in the system. For the first disruption (from the Table 4.3), the 

production quantities (𝑋𝑖,1 and 𝑌𝑖,1 for 𝑖 =1 to 5) are revised for the next five cycles 

(recovery time window) as shown in Table 4.4. When the second disruption occurred 

within the recovery time window of the first disruption, the variables and constraints are 

updated for the changed environment. That means, the new variables 𝑋𝑖,2 and 𝑌𝑖,2 are now 

revised for the next five cycles (for new recovery time window for the second disruption) 

from the point of disruption. This process continues as long as disruptions occur in the 

system. The problem is solved using the proposed algorithm where the search algorithm 

(either PS or GA) is run for 30 times for each disruption, and the best result is then 

recorded. For each disruption, the revised production quantity in each cycle and the 

maximum total profit (best result) are presented, in Table 4.4 for the search technique PS, 

and in Table 4.5 for GA.  

 

Table 4.3: A disruption case problem 

Disruption 

number (n) 

Disrupted 

Stage 

Disrupted cycle number 

from previous disruption 

Pre-disruption 

quantity 

Disruption 

duration 

1 Second 1 750 0.0045 

2 First 2 450 0.0078 

3 Second 3 500 0.0030 

4 First 3 1225 0.0058 

5 Second 2 0 0.0068 

6 First 4 500 0.0098 

7 First 2 0 0.0087 

... ... ... ... ... 

 

 



Chapter 4: Two-Stage Production-Inventory System 104 

 

 

 

Table 4.4: The detailed results with PS 

Disruption 

number (n) 

Revised lot quantity 

Total Profit 
𝑋1,𝑛 𝑌1,𝑛 𝑋2,𝑛 𝑌2,𝑛 𝑋3,𝑛 𝑌3,𝑛 𝑋4,𝑛 𝑌4,𝑛 𝑋5,𝑛 𝑌5,𝑛 

1 5366 4616 5366 5366 5366 5366 5366 5366 5366 5366 1181054 

2 4678 5128 5365 5365 5348 5348 5358 5358 5347 5347 1163792 

3 5348 4848 5358 5358 5347 5347 5366 5366 5366 5366 1179532 

4 4121 5346 5366 5366 5366 5366 5366 5366 5366 5366 1179939 

5 5366 5366 5366 5366 5366 5366 5366 5366 5366 5366 1180563 

6 4082 4582 5128 5128 5350 5350 5230 5230 5359 5359 1111322 

7 4619 4619 5121 5121 5229 5229 5359 5359 5366 5366 1119822 

 

 

Table 4.5: The detailed results with GA 

Disruption 

number (n) 

Revised lot quantity 

Total Profit 
𝑋1,𝑛 𝑌1,𝑛 𝑋2,𝑛 𝑌2,𝑛 𝑋3,𝑛 𝑌3,𝑛 𝑋4,𝑛 𝑌4,𝑛 𝑋5,𝑛 𝑌5,𝑛 

1 5366 4616 5366 5366 5366 5366 5366 5366 5366 5366 1181053 

2 4682 5312 5316 5316 5366 5366 5366 5366 5366 5366 1163798 

3 5366 4866 5366 5366 5366 5366 5366 5366 5366 5366 1181523 

4 4141 5366 5366 5366 5366 5366 5366 5366 5366 5366 1180814 

5 5366 5366 5366 5366 5366 5366 5366 5366 5366 5366 1180560 

6 4165 4665 4884 4884 5366 5366 5366 5366 5366 5366 1111303 

7 4505 4505 4996 4996 5366 5366 5366 5366 5366 5366 1115328 

 

The total profits (best result) obtained from the pattern search and genetic algorithm based 

solution approach have also been presented in Tables 4.4 and 4.5 respectively. It is 

observed that both techniques confirm very similar results, but PS based solution approach 

performs slightly better than GA in most cases. GA is a stochastic search process that may 

converge towards local optima, or even arbitrary points rather than the global optimum of 

http://en.wikipedia.org/wiki/Local_optimum
http://en.wikipedia.org/wiki/Global_optimum
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the problem. On the other hand, PS is combined with the Latin hypercube search method 

and this helps it to provide better performance than other random search based algorithms. 

This may be the reason for PS’ slightly better solutions over GA in this study. 

4.5.3 Comparing with Lower and Upper Bounds 

The problem considered in this chapter is different from the existing literature in many 

different ways. So there is no algorithm or benchmark problem that can be used for 

comparison of our proposed algorithm. However, the upper bound and lower bound of the 

solutions can be derived and compared. For this purpose, two bounds have been derived 

and an alternative model as follows.  

 Upper bound that is based on the production-inventory system without any 

disruption (that is under ideal condition); 

 Lower bound that permits only lost sales to recover from disruption; and 

 An alternative model that considers recovery within the disrupted cycle. 

Upper bound: The total profit in a production-inventory system, for a given number of 

cycles (𝑛𝑐), under ideal condition (that is without any disruption) should be the upper 

bound of total profit that can be expressed as follows.  

Total Profit = Total Revenue – Total Cost 

= 𝑛𝑐{[𝑚1(𝐶𝑃1 + 𝐶𝑃2)𝑌𝑖,0]−
1

2
𝐻1 [

(𝑋𝑖,0)
2

𝑟𝑃
] − 𝐴1 −

𝐶𝑃1
𝑟
(𝑋𝑖,0) − (

1

𝑟
− 1) (𝑋𝑖,𝑛)

−
𝐶𝐼1𝐶𝑃1
𝑟

(𝑋𝑖,0) − 𝑎 (𝐴1)
−𝑏(𝑟)𝑐−

1

2
𝐻2 [

(𝑌𝑖,0)
2

𝑟𝑃
] − 𝐴2 − 𝐶𝑃2(𝑌𝑖,0)

− 𝐶𝐼2𝐶𝑃2(𝑌𝑖,0) − 𝑎 (𝐴2)
−𝑏} 

Lower Bound: Suppose the disruption is recovered via lost sales only. That means the 

shortage due to disruption will not be fulfilled. For a given number of cycles, the total 

profit for this system should be the lower bound, because the shortages are not managed in 

an efficient manner. In this system, the production quantity in the disrupted cycles will be 
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lower than the pre-assigned production quantity. For a given number of cycles, the lower 

bound can be calculated from {(Upper Bound) – (𝑛𝑐  ×  𝐿 × 𝑟𝑃 × 𝐷𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑖𝑜𝑑)}. 

An Alternative Model: An alternative model can be developed where the recovery must be 

planned within the disrupted cycle using the idle time of the cycle and lost sales as well as 

back order options. If the disruption duration is less than idle time of that cycle, then there 

will be no lost sales. This model uses the same principle of our disruption management 

model, but the only difference is that the system is recovered in one cycle. The total profit 

of this model will provide a tighter lower bound as discussed below. 

To calculate the bounds, 25 disruptions have generated randomly within 52 production 

cycles. The total profit, as well as the lost sales and back orders, for the upper bound, lower 

bound, alternative model and this model, are calculated and compared in Table 4.6.  

Table 4.6: Comparison of the results from 52 production cycles 

Cost or Profit  

(in million $) 

Upper 

Bound 

Disruption 

Recovery model 

Alternative 

Model 

Lower 

Bound 

Total back order cost 0 0.08262 0.00099 0 

Total lost sales cost 0 0.277 0.986 1.229 

Total profit 15.294 13.922 10.700 9.565 

The upper and lower bounds are the best and worst case scenarios of the production system 

respectively. From Table 4.6, it is clear that the proposed disruption recovery plan provides 

a much better solution than the lower bound as well as the tighter bound, while the 

alternative model shows better results than the lower bound solution. 

The total profit for each production cycle, obtained from the above four alternative 

solutions, is presented in Figure 4.3. When a production cycle faces a disruption, the total 

profit of that cycle goes to its lower bound if the system is recovered with only the lost 

sales option. However, for a disruption free cycle, the profit is the same as the original 

production system. For the lower bound scenario, it is observed that the profit goes down 

to negative in the 16
th

 and 28
th

 cycle because of the higher disruption duration in those 
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cycles. In summary, the proposed disruption model clearly shows significantly better 

solutions in comparison to both lower bounds. 

 

Figure 4.3: Total profit in each production cycle for different recovery techniques 

4.5.4 A Real-Life Case Study 

A real world production problem has been discussed in this section. A specific 

manufacturing line of a pharmaceutical company has been studied. The company produces 

several types of products such as tablet, capsule, syrup, ointment and cream, and injection 

and drops. Some of their products have very high demand that need special attention such 

as a dedicated production line for each product or few of them. A dedicated production line 

is studied that produces only one product (known as XPA-C tablet). This is basically a 

tablet of paracetamol group that is widely used as pain and fever reliever. The production 

process of the tablet is presented in Figure 4.4. In the process, first, the raw materials 

(paracetamol power, caffeine and binders) are mixed properly in the form of granulation. 

Then the mixture is moved to a compression machine that compresses the powder into 

tablets of uniform size and weight. To form a tablet, the granulated material is metered into 

a cavity formed by two punches and a die, and then the punches are pressed together with 
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http://en.wikipedia.org/wiki/Powder_%28substance%29
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http://en.wikipedia.org/wiki/Punch_%28engineering%29
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appropriate force to fuse the material together. To ensure quality of the products, the 

tablets are inspected during and after the compression. After finishing the compression 

process, the tablets are moved to the packaging section for blistering and packing. In 

blistering, the tablets are filled in a blister pack, which is known as a tablet strip, is useful 

for protecting the product against external factors such as humidity and contamination for 

extended periods of time. There are ten tablets per tablet strip. Finally, the tablet strips are 

filled in a carton and shipped to the store.  

 

 

 

 

Figure 4.4: Production process of the XPA-C tablet 

The tablets are produced in a batch in all processes of mixing, compression and packaging. 

After completing the processing of a batch in a stage, it is moved to the next stage for 

further processing. It was observed that the mixing stage has no record of disruption for a 

long period of time. For this reason, the mixing process is kept out of the disruption study. 

So the system is defined with compression and packaging processes, where the 

compression represents the first stage and the packaging as the second stage. Once a batch 

of tablets from compression is shipped to packaging area, the packaging is organized as a 

batch. Like any other manufacturing processes, the machine breakdown is a very common 

event in this production environment. After a breakdown, it takes some times to repair the 

machines and start the production again. Currently, the company is using only lost sales 

option, which is a substandard approach (as described in section 4.5.3), to recover from the 

disruptions. It is also observed that, breakdown can occur at any stage at any time and 

compression stage has more machine breakdown than packaging stage. It is also common 

that, a new breakdown can occur within the recovery time window of the previous 

breakdown. 
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This disruption case problem can be solved by using this proposed approach as outlined in 

section 4.5.3. To solve the disruption case problem, some data were collected directly from 

the production line and the historical record of the company. Some others are 

approximated by consulting with the plant manager.  

The annual forecasted demand is determined based on the historical record which is 

4928400 strips and the production capacity of the line is approximately 5916000 strips per 

year. Some defective items are produced in the systems. The process reliability is 

calculated as an average of non-defective items over the last five years which is 92%.  

After processing of each batch, it is a standard process to clean and inspect the machines 

thoroughly before starting a new batch. The time involved in checking and cleaning is 

considered set-up time. The set-up time is calculated as 0.525 hours for the compression 

stage and 0.438 hours for the packaging stage with the help of time study. The set-up cost 

is considered as the costs for labour in preparing raw materials, and cleaning and 

inspecting machines. As suggested by the company, the set-up cost is 1725 Taka (21.5625 

USD) for compression stage and 1075 Taka (13.4375 USD) for packaging stage. The 

annual holding cost per unit per year is approximated as 21 Taka (0.2625 USD) and 45 

Taka (0.5625 USD) for the compression and packaging stage respectively. The backorder 

and lost sales costs are also approximated as 1600 Taka/strip/year (20 USD) and 40 

Taka/strip (0.5 USD) respectively.  

Production, rejection and inspection costs are collected as follows. 

Production cost at compression stage = 15.5 Taka/strip (0.19375 USD) 

Production cost at packaging stage = 5.2 Taka/ strip (0.065 USD) 

Cost for rejection = 8 Taka/ strip (0.1 USD) 

Inspection cost for both stages = 1% of production cost 

Cost of interest and depreciation is approximated as based on theory (Cheng, 1989) with 

the parameters, 𝑎 = 1000, 𝑏 = 0.5, and 𝑐 = 0.75.  
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Table 4.7: Data for machine breakdown scenario 

Disruption 

number (n) 
Disrupted Stage 

Disrupted cycle 

number from previous 

disruption 

Pre-disruption 

quantity 

Disruption 

duration 

(hours) 

1 Compression  1 3550 11.2 

2 Packaging 11 0 6.3 

3 Compression 4 2040 8.1 

4 Compression 12 950 18.6 

5 Compression 7 1220 16.5 

6 Packaging 2 2425 14.2 

7 Compression 14 1160 22.8 

8 Compression 10 1840 5.8 

9 Packaging 14 210 15.4 

10 Compression 3 150 23.6 

 

The breakdown scenarios are collected from the company register. The proposed model 

has been implemented for a series of mix of ten dependent and independent disruptions for 

73 production cycles. Seven of those disruptions were occurred in the compression stage 

and the rest three are at packaging stage. The recovery plan after each disruption is 

implemented immediately. The breakdown scenarios are presented in Table 4.7.  

This disruption case problem is solved by our proposed approach. The batch sizes are 

revised immediately after each breakdown takes place in the system. The problem is solved 

using the PS based proposed algorithm and the best results are recorded. For each 

disruption, the revised batch size in each cycle and the maximum total profit are presented 

in Table 4.8.  

  

 

 

 

 

 

 

 

 

 



Chapter 4: Two-Stage Production-Inventory System 111 

 

 

 

Table 4.8: The detailed results using PS 

 

Disruption 

number (n) 

Revised batch size after the n
th
 disruption Total 

Profit 𝑋1,𝑛 𝑌1,𝑛 𝑋2,𝑛 𝑌2,𝑛 𝑋3,𝑛 𝑌3,𝑛 𝑋4,𝑛 𝑌4,𝑛 𝑋5,𝑛 𝑌5,𝑛 

1 16606 20156 21490 21490 21490 21490 21490 21490 21490 21490 28987 

2 21490 21490 21490 21490 21490 21490 21490 21490 21490 21490 30177 

3 18593 20633 21490 21490 21490 21490 21490 21490 21490 21490 29740 

4 18688 19638 21366 21366 21489 21489 21490 21490 21490 21490 27144 

5 18530 19750 21490 21490 21490 21490 21490 21490 21490 21490 27707 

6 19065 16640 21490 21490 21490 21490 21490 21490 21490 21490 28236 

7 17238 18398 19996 19996 21489 21489 21490 21490 21490 21490 25509 

8 19107 20987 21490 21490 21490 21490 21490 21490 21490 21490 30301 

9 21280 21070 21490 21490 21490 21490 21490 21490 21490 21490 27944 

10 18016 18166 19741 19741 21480 21480 21490 21490 21490 21490 25594 

 

Table 4.9: Comparison of the results from 73 production cycles 

 
Ideal System Proposed model Current Policy 

Total back order cost 0 11490.80 0 

Total lost sales cost 0 9358.48 44268.70 

Total profit 524691.50 497165.20 448782.98 

Percentage of improvement 10.78% 

Currently, the company is using only lost sales option to recover from production 

disruptions which is discussed in Section 4.5.3. The benefits of implementing of our 

disruption recovery model are summarized in Table 4.9. It is observed that, the proposed 

disruption technique clearly shows significantly better results in comparison to company’s 

current policy. Under an ideal condition, the company will have a total profit of 

524691.50USD from 73 production cycles. Under the disrupted environment, this profit 

reduces to 448782.98USD, if the company uses the lost sales option to recover from the 

disruptions. In this case, the total lost sales is 44268.70USD. If the proposed approach is 
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applied, the total profit will be increased to 497165.20USD with both back order and lost 

sales cost 11490.80 and 9358.48 USD respectively. In this case, the total profit is 10.78% 

more than the existing practice.  

4.6 Sensitivity Analysis 

There are some important variables that have a significant impact on the total profit.  These 

variables are: process reliability, disruption duration, pre-disruption quantity, back order 

cost and lost sales cost. In this section, the relationship of these variables with the total 

profit is analysed. The pattern search based algorithm was applied to perform the 

sensitivity analysis.  

This section presents a number of studies, in each of them one variable is changed. The 

reminder always have default values of 0.9 for process reliability, 0.008 for first stage 

disruption duration, 0.0085 for second stage disruption duration, 0 for pre-disruption 

quantity for both stages, 10 for back order and 15 for lost sales.  

 

Figure 4.5: Changes of total profit with reliability when disruption is in the first stage  

The relationship between process reliability and the total profit is shown in Figure 4.5.  It is 

observed from Figure 4.5, that the total profit is highest when process reliability is 0.91.  
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Figure 4.6 presents the changes to total profit as pre-disruption quantity changes when the 

process is disrupted at the first stage. It shows that, the total profit decreases very little with 

changes to pre-disruption quantity.  

 

Figure 4.6: Changes of total profit with the pre-disruption quantity when disruption is in 

the first stage  

 

Figure 4.7: Changes of total profit with first stage disruption duration  

The variation of total profit with disruption duration for when a process is disrupted at the 

first stage is presented in Figure 4.7. It is observed, that the total profit decreases very 

slowly when the disruption duration is less than 0.007. However, after then the rate of 
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decrement is very high. This is because of the existence of the lost sales cost. This is 

because when the disruption duration is high, then lost sales exists in the optimal solution.  

 

Figure 4.8:  Changes of total profit with back order cost  

Total profit decreases along with back order and lost sales cost for disruptions at either the 

first or second stage. Figures 4.8 and 4.9 show the changes of the total profit with the back 

order and lost sales cost respectively. From Figures 4.8 and 4.9, it is observed, that both 

back order and lost sales exist in the optimal solution.  

 

Figure 4.9: Changes of total profit with lost sales cost  
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Figure 4.10 presents the changes of total profit with pre-disruption quantity when the 

process is disrupted at the second stage. It is observed that the total profit decreases very 

little with increased pre-disruption quantity.  

 

Figure 4.10: Changes of total profit with pre-disruption quantity when disruption is in the 

second stage  

Total profit decreases with disruption duration when the process is disrupted at the second 

stage, as presented in Figure 4.11. After the disruption duration of 0.007, the rate of 

decrement is very high. This is because of existence of the lost sales in the optimal 

solution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Changes of total profit with second stage disruption duration  
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4.7 Chapter Summary 

The objective of this research was to develop a real-time recovery plan from production 

disruptions for a two-stage and single item batch production-inventory system. The model 

is developed to recover from either single disruption or a series of production disruptions 

on a real-time basis, while considering both back order and lost sales options. Process 

reliability was also considered because imperfect production processes are common and 

the total profit function was maximised to obtain optimal recovery plans. A pattern search 

and genetic algorithm based solution approaches were proposed to obtain the recovery plan 

either for a single or a series of disruptions. Both methods show similar results, but pattern 

search with the Latin hypercube search based solution approach performed better than the 

genetic algorithm based approach.  

It was assumed that the lot size is fixed throughout the planning period under ideal 

conditions. But in real-life situations, the lot is needed to be split to meet the transportation 

and warehouse capacity. In some situations, there may have more than two stages 

production systems but our model is applicable only for two-stage production system. The 

demand rate is assumed to be known and constant but practically, the demand can be 

fluctuated. There may have special orders outside of regular demand trend and sometimes 

a priority can be given to produce for special orders. For all these variations, the 

management must decide how to deal with them when the proposed approach is applied.  

In chapter 4, the disruption recovery problem for a two-stage production-inventory system 

with process reliability that is subject to production disruption has been addressed. The 

extension of this study is to explore the problem for a three-stage mixed production-

inventory system, which I have chosen as the direction of my research work in the next 

chapter.   

 

 



 

Chapter 5 Three-Stage Mixed Production-

Inventory System 

This chapter proposes a recovery plan for managing disruptions in a three-stage 

production-inventory system under a mixed production environment. First, a mathematical 

model is developed to deal with a disruption at any stage while maximising total profit 

during the recovery time window. A new and efficient heuristic is proposed for solving the 

developed mathematical model. Second, multiple disruptions are considered, where a new 

disruption may or may not affect the recovery plans of earlier disruptions. The heuristic, 

developed for a single disruption, is extended to deal with a series of disruptions so that it 

can be implemented for disruption recovery on a real-time basis. The heuristic solutions 

with are compared with those obtained by a standard search algorithm for a set of 

randomly generated disruption test problems. Finally, this chapter presents some numerical 

examples and a real-world case study to demonstrate the benefits and usefulness of the 

proposed approach. 

5.1 Introduction 

The study in this chapter is an extension of the study in chapter 4. This chapter considers a 

three-stage production-inventory system under mixed production environment. Thus unlike 

the two-stage case considered in the previous chapter, the model in this chapter consists of 

three stages and the disruption can occur at any stage at any time. The problem presented 

in this chapter is much more complex because a three-stage production-inventory system 

under mixed production environment is considered.  

Batch production is a very common and popular technique in manufacturing systems in 

which products are produced in batches to minimise the overall production cost while 

maximising utilization of the available capacity. Sometimes, the batch size and processing 

time can be constant, depending on the nature of the process, as well as on the capacity of 
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the equipment. In some cases, the processing time can be either dependent or independent 

of the batch sizes. For example, the mixing time of raw materials is independent of the 

batch size because a quantity of them which does not use the full capacity of the equipment 

can be mixed. In real-life production lines, it is very common to process materials or 

products in a series of stages, one after another, to obtain the final products. There are 

numerous industries, such as pharmaceutical, textile and manufacturing that produce 

products using multiple stages, during which the production environment can be either 

similar or different, and processes such as batch or continuous production or a combination 

of both. Even if the production environment is continuous, a product may be produced in 

batches due to there being higher production capacity than demand. 

This study has been motivated by the disruption scenarios observed in a real-life 

pharmaceutical production line. That production line consists of three sequential processes 

(known as mixing, compression, and packaging) which can easily be defined as three 

stages of the production process. The production process starts with a discrete batch 

production in the mixing stage and is followed by two continuous production processes in 

the compression and packaging stages. The production line is sometime disrupted, mainly 

due to machine breakdowns that occur at any stage of the line without having any prior 

knowledge. Although management repairs the machines as soon as possible, it is not easy 

to reschedule the production line to minimise the overall loss with a minimum effect on 

customer goodwill. This is a common problem in many industrial units, and hence it 

requires a new real-time problem solving approach, such as the disruption recovery method 

proposed in this chapter. 

In this chapter, a new and efficient heuristic is proposed for solving the developed 

mathematical model, with its results compared with the solutions obtained from a pattern 

search using a set of randomly generated disruption test problems. This study also 

considers multiple disruptions, one after another in a series, that occur in any stage at any 

point in time and may or may not affect the plans amended after previous disruptions. If a 

new disruption occurs during the recovery time window of another, a new revised plan 

which considers the effects of both disruptions must be derived. Accordingly, as this is a 

continuous process, the heuristic is extended to deal with a series of disruptions on a real-

time basis by incorporating a modified version of that developed for a single disruption. 
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This is the first quantitative model that develops a disruption recovery model for both a 

single and multiple disruptions, on a real-time basis, in a three-stage mixed production-

inventory system. Finally, this study shows how the proposed methodology can be applied 

to real-time disruption recovery planning, with randomly generated test problems, as well 

as a real-world case problem from the aforementioned pharmaceutical company. 

The main contributions of this chapter can be summarized as follows. 

i. Development of a mathematical model for disruption recovery in a three-stage 

mixed production-inventory system. As a disruption scenario is not known in 

advance and not possible to predict, the recovery plan is revised for periods after 

the disruption occurs on a real-time basis.  

ii. Development of a new efficient heuristic for generating a revised production plan 

after a disruption. 

iii. Extension of this heuristic to deal with multiple disruptions on a real-time basis. As 

any new disruptions may or may not affect the plans revised after previous ones, 

their scenarios may be considered dependent and independent, both of which the 

extended heuristic can handle. 

iv. Application of the developed methodology to a real-world case problem from a 

pharmaceutical company. 

5.2 Problem Description 

The ideal three-stage production system is shown in Figure 5.1. In it, stage 1 processes the 

raw materials as a batch and the production procedures in stages 2 and 3 are continuous. 

As the system requires different processing techniques, it is recognized as a mixed-

production environment. In Figure 5.1, 𝑋0 is the batch size in the first stage and, as it is 

less than or equal to the capacity of the equipment, the processing time is independent of it 

and, therefore, fixed. After the first stage, the whole batch is transferred to the second stage 

for further processing into smaller lots (size 𝑌0), whereby 𝑌0 is limited by the capacity of 

the transfer bucket and is equal to 
𝑋0

𝑛
, where 𝑛 is a positive integer. Then, each batch is 
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transferred to the third stage for further processing with a lot size of 𝑍0 and, finally, the 

finished products are transferred to storage.  

Stage 1: Batch production-

fixed batch size and constant 

processing time

Stage 2: Continuous production with sub-lots

(size of each sub-lot = Y0)

Stage 3: Continuous production with sub-lots 

(size of each sub-lot = Z0)

Usage of raw 

material

I2+St2

I3+St3

I1+St1

Production

Production

Batch size = X0Quantity

T0

Quantity

Quantity

Time

Time

Time
Storage

Y0

Z0

 

Figure 5.1: Ideal three-stage production system 

A disruption is any kind of interruption in a production system, for example, a machine 

breakdown, raw material shortage, power cut, labour strike, etc., which can happen in any 

stage and at any time in the process. Once the system is disrupted, it is assumed that it will 

be inoperable for a period of time, known as disruption duration, with the strategy taken to 

recover from the disruption known as a recovery strategy. In this chapter, to recover from a 

disruption, the following two cost factors are considered. 

i. Back orders: the portion of demand that cannot be fulfilled at the scheduled 

time but will be delivered at a later date, with a penalty, if the production 

system is capable.  

ii. Lost sales: the portion of demand lost if customers will not wait for the 

required stock to be replenished following the production process not being 

capable of fulfilling demand.  
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After the occurrence of a disruption in a system, its planned production quantities for all 

stages are revised for some periods in the future (known as recovery periods or recovery 

time windows) until the system returns to its normal schedule, which is known as a 

recovery plan (Paul et al., 2014, in press). As, if a disruption occurs in any stage, it has 

significant impacts on other stages because they all operate in a coordinated fashion, all 

their production plans must be revised after the occurrence of a disruption to minimise the 

overall loss incurred. Although, in this study, the recovery periods is assumed to be 

specified by the management of the system, it can be considered a decision variable in the 

model.  

In any industrial production environment, the system can face multiple disruptions, one 

after another, on a real-time basis. In this case, one disruption can occur within the 

recovery periods of another which is known as a dependent disruption and, as this is a 

complex situation, the combined effect of dependent disruptions should be considered in 

the development of a recovery plan. This is achieved by re-optimising the production 

schedule within the new recovery time window under the changed production 

environment. The proposed heuristic (discussed earlier) for dealing with a single disruption 

is later extended to consider multiple disruptions on a real-time basis and is capable of 

handling dependent, independent and mixes of dependent and independent disruptions on a 

real-time basis.  

5.2.1 Notation used in this Study 

To formulate the mathematical model, the following notations are used.  

𝑋0  Batch size in stage 1 under ideal conditions (known) 

𝑇0  Processing time of batch in first stage under ideal conditions (constant and known) 

𝑆𝑡1  Set-up time in stage 1 (time per set-up) 

𝑆𝑡2  Set-up time in stage 2 (time per set-up) 

𝑆𝑡3  Set-up time in stage 3 (time per set-up) 

𝐴1  Set-up cost in stage 1 ($ per set-up) 

𝐶𝑃1  Production cost per unit in stage 1 ($ per unit) 

𝐶𝑀1 Cost per unit material loss in stage 1 ($ per unit) 
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𝐷  Average demand per unit time 

𝐶𝑃2  Production cost per unit in stage 2 ($ per unit) 

𝐶2  Capacity of machine in stage 2 (units per unit time) 

𝐻2  Holding cost per unit per unit time in stage 2 ($ per unit per unit time) 

𝐶𝑃3  Production cost per unit in stage 3 ($ per unit) 

𝐶3  Capacity of machine in stage 3 (units per unit time) 

𝑛  Number of sub-lots in stages 2 and 3 for each full batch in stage 1    

 = ⌈
𝑋0

Capacity of transfer bucket between stages 2 and 3
⌉ 

𝑌0  Size of each sub-lot in stage 2 under ideal conditions =
𝑋0

𝑛
   

𝑍0  Size of each sub-lot in stage 3 under ideal conditions =
𝑋0

𝑛
 

𝐼1  Idle time after processing batch in stage 1 = 
𝑋0

𝐷
− 𝑇0 − 𝑆𝑡1 

𝐼2  Idle time after processing 𝑛 sub-lots in stage 2 = 
𝑋0

𝐷
−
𝑋0

𝐶2
− 𝑆𝑡2 

𝐼3  Idle time after processing 𝑛 sub-lots in stage 3 = 
𝑋0

𝐷
−
𝑋0

𝐶3
− 𝑆𝑡3 

𝑇𝑝  Pre-disruption duration 

𝑇𝑑  Disruption duration 

𝑇𝑅  Recovery time 

𝑀  Number of batches within recovery time window 

𝑋𝑖  Size of batch 𝑖 in stage 1 after disruption; 𝑓𝑜𝑟 𝑖 = 1,2, … ,𝑀 (decision variable) 

𝑌𝑗  Size of sub-lot 𝑗 in stage 2 after disruption; 𝑓𝑜𝑟 𝑗 = 1,2, … ,𝑀𝑛 (decision variable) 

𝑍𝑗  Size of sub-lot 𝑗 in stage 3 after disruption; 𝑓𝑜𝑟 𝑗 = 1,2, … ,𝑀𝑛 (decision variable) 

𝐵  Back orders cost per unit per unit time ($ per unit per unit time) 

𝐿  Lost sales cost per unit ($ per unit) 

𝑚1  Mark-up of unit selling price [𝑚1(𝐶𝑃1 + 𝐶𝑃2 + 𝐶𝑃2)] (must be greater than 1) 

5.2.2 Assumptions of the Study 

In this study, the following assumptions are made. 

i. The production rate in any stage is greater than the average demand rate. 

ii. A single item is produced in the system. 
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iii. The sizes of the sub-lots in stages 2 and 3 are determined based on the capacity 

of the transfer bucket.  

iv. The recovery time window begins immediately after the occurrence of a 

disruption which can occur in any stage at any point in time.  

The model is developed for a single type of item and, as is common, assumes that, to fulfil 

demand on time, the production rate is higher than the demand rate. However, for a higher 

demand rate, it can easily be revised by using an option for outsourcing. In a multi-stage 

production environment, it is common to use a transfer bucket to transport semi-processed 

materials between stages. In this study, the sub-lot sizes are determined based on the 

capacity of the transfer bucket to balance the production system. To make the recovery 

process meaningful in practice, the revised plan is generated after the disruption is 

experienced by the system, that is, on a real-time basis. 

5.3 Model Formulation 

In this section, a mathematical model is developed for a single disruption in any stage in a 

three-stage production system. Firstly, the equations are derived for different costs and 

revenue, and then the disruption recovery problem is formulated as a constrained 

mathematical model in which the objective is to maximise total profit during the recovery 

periods, with the total profit function derived by subtracting all the relevant costs from the 

revenue. Finally, relevant capacity, delivery, demand and stage-balancing constraints are 

developed to make the model realistic. The decision variables are revised production 

quantities in each cycle, and both the total back orders and lost sales during the recovery 

periods. In modelling the recovery planning problem, different batch sizes for different 

cycles are considered, for example, 𝑋𝑖 for cycle i in stage 1 and, similarly, 𝑌𝑖 and 𝑍𝑖 in 

stages 2 and 3 respectively. Although one lot size can be considered for all cycles in a 

stage, allowing different sizes makes the model more flexible (or more general) for 

optimisation. As the model uses both of back orders and lost sales costs, its solution may 

suggest different quantities for different production cycles in order to maximise total profit. 

To establish balanced coordination among the stages, the lot sizes in stages 2 and 3 are 

considered as equal. However, one can easily modify the model to have a different 
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relationship, such as one lot size in stage 3 being equal to multiple lot sizes in stage 2 or 

vice versa.  

5.3.1 Cost and Revenue Calculations 

In this section, the different cost and revenue equations are derived for a single disruption’s 

recovery time window considering the set-up, holding, production back orders and lost 

sales costs. The total set-up cost is determined as the cost per set-up multiplied by the 

number of set-ups, and the production cost the per unit production cost multiplied by the 

quantity produced, both during the recovery periods. The average holding cost is calculated 

as the unit holding cost multiplied by the total inventory during the recovery periods, the 

back orders cost as the unit back order cost multiplied by the number of back order units 

and its time delay, and the lost sales cost as unit lost sales cost multiplied by the number of 

lost sales units. The revenue during the recovery periods is determined as the unit selling 

price multiplied by the quantity produced during the recovery periods, and total profit, 

which is the objective function, calculated by subtracting all the costs from the revenue. 

5.3.2 Mathematical Model for Disruption at First Stage 

In some production environments, a batch of products (or semi-products) may be 

unacceptable due to the effects of a disruption during processing. In others, an entire batch 

of products may be either unaffected or recovered by applying corrective actions. For this 

reason, two scenarios are considered for disruption recovery in this mathematical model: 

(i) no loss of materials; and (ii) 100% loss of materials.  

5.3.2.1 Scenario 1: No Loss of Materials 

In this scenario, as there is no loss of materials due to a disruption, pre-disruption 

processed materials can be used during the recovery periods.  

Number of batches in recovery periods, 𝑀 = ⌈
𝑇𝑅

𝑇0+𝐼1
⌉  
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Cost formulation 

Set-up cost in first stage  

= 𝐴1𝑀 

 

(5.1) 

Production cost in first stage 

= 𝐶𝑃1 ∗ (𝑋1 + 𝑋2 +⋯+ 𝑋𝑀) 

= 𝐶𝑃1 ∗∑𝑋𝑖

𝑀

𝑖=1

 

 

 

(5.2) 

Production cost in the second stage  

= 𝐶𝑃2 ∗ (𝑌1 + 𝑌2 +⋯+ 𝑌𝑀𝑛) 

= 𝐶𝑃2 ∗∑𝑌𝑗

𝑀𝑛

𝑗=1

 

 

 

(5.3) 

Average raw material holding cost in the second stage  

=
𝐻2
2
∗ (𝑋1

𝑋1
𝐶2
+ 𝑋2

𝑋2
𝐶2
+⋯+ 𝑋𝑀

𝑋𝑀
𝐶2
) =

𝐻2
2𝐶2

∗∑𝑋𝑖
2

𝑀

𝑖=1

 

 

(5.4) 

Production cost in the third stage 

= 𝐶𝑃3 ∗ (𝑍1 + 𝑍2 +⋯+ 𝑍𝑀𝑛) = 𝐶𝑃3 ∗∑𝑍𝑗

𝑀𝑛

𝑗=1

 

 

(5.5) 

Back orders cost  

= 𝐵 ∗∑𝑋𝑖

𝑘

𝑖=1

(𝑇𝑑 + (𝑖 − 1)𝑆𝑡1 − 𝑖𝐼1) 

 

(5.6) 

Lost sales  

= 𝐿 ∗ (𝑀𝑋0 −∑𝑋𝑖

𝑀

𝑖=1

) 

 

(5.7) 

Revenue formulation 

Revenue  

= 𝑚1(𝐶𝑃1 + 𝐶𝑃2 + 𝐶𝑃3) ∗∑𝑋𝑖

𝑀

𝑖=1

 

 

(5.8) 
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Final mathematical model  

The objective function, total profit = total revenue – total costs, which is to be maximised 

and obtained by using equations (5.1) to (5.8) and subject to constraints (5.9) to (5.17). 

𝑋𝑖 ≤ 𝑋0; ∀𝑖 

[to ensure delivery and transportation constraints] 
(5.9) 

𝑌𝑗 ≤ 𝑌0; ∀𝑗 

[to ensure delivery and transportation constraints] 
(5.10) 

𝑍𝑗 ≤ 𝑍0; ∀𝑗 

[to ensure delivery and transportation constraints] 

(5.11) 

𝑀𝑋0 ≥∑𝑋𝑖

𝑀

𝑖=1

 

[to ensure delivery and transportation constraints] 

(5.12) 

𝐼1, 𝐼2, 𝐼3 ≥ 0 

[to ensure non-negative idle time] 
(5.13) 

𝑌(𝑖−1)𝑛+1 + 𝑌(𝑖−1)𝑛+2 +⋯+ 𝑌𝑖𝑛 = 𝑋𝑖; ∀𝑖 

[to balance batches and sub-lots] 
(5.14) 

𝑌𝑗 = 𝑍𝑗; ∀𝑗 

[to balance production system] 
(5.15) 

𝑇𝑑 + (𝑘 − 1)𝑆𝑡1 − 𝑘𝐼1 ≥ 0;  𝐹𝑜𝑟 𝑘 = 1,2, … , ⌈
𝑇𝑑
𝐼1
⌉ 

[to ensure non-negative delay] 

(5.16) 

𝑋𝑖, 𝑌𝑗 and 𝑍𝑗  ≥ 0; ∀𝑖, 𝑗 (5.17) 

5.3.2.2 Scenario 2: 100% Loss of Materials 

In this scenario, as materials are completely lost due to a disruption, the pre-disruption 

processed materials cannot be used during the recovery periods. Therefore, a recovery 

policy which is proposed, as the disruption duration is considered a summation of the pre-

disruption and actual disruption durations, it is (𝑇𝑑 + 𝑇𝑝).  
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Cost formulation 

Set-up cost in first stage  

= 𝐴1𝑀 

 

(5.18) 

Production cost in first stage  

= 𝐶𝑃1 ∗ (𝑋1 + 𝑋2 +⋯+ 𝑋𝑀) 

= 𝐶𝑃1 ∗∑𝑋𝑖

𝑀

𝑖=1

 

 

 

(5.19) 

Cost due to material loss  

= 𝐶𝑀1 ∗ 𝑋0 

 

(5.20) 

Production cost in the second stage 

 = 𝐶𝑃2 ∗ (𝑌1 + 𝑌2 +⋯+ 𝑌𝑀𝑛) = 𝐶𝑃2 ∗∑𝑌𝑗

𝑀𝑛

𝑗=1

 

 

(5.21) 

Average raw material holding cost in the second stage 

=
𝐻2
2
∗ (𝑋1

𝑋1
𝐶2
+ 𝑋2

𝑋2
𝐶2
+⋯+ 𝑋𝑀

𝑋𝑀
𝐶2
) =

𝐻2
2𝐶2

∗∑𝑋𝑖
2

𝑀

𝑖=1

 

 

(5.22) 

Production cost in the third stage  

= 𝐶𝑃3 ∗ (𝑍1 + 𝑍2 +⋯+ 𝑍𝑀𝑛) = 𝐶𝑃3 ∗∑𝑍𝑗

𝑀𝑛

𝑗=1

 

 

(5.23) 

Back orders cost  

= 𝐵 ∗∑𝑋𝑖

𝑘

𝑖=1

(𝑇𝑑 + 𝑇𝑝 + (𝑖 − 1)𝑆𝑡1 − 𝑖𝐼1) 

 

(5.24) 

Lost sales  

= 𝐿 ∗ (𝑀𝑋0 −∑𝑋𝑖

𝑀

𝑖=1

) 

 

 

(5.25) 

Revenue formulation 

Revenue  

= 𝑚1(𝐶𝑃1 + 𝐶𝑃2 + 𝐶𝑃3) ∗∑𝑋𝑖

𝑀

𝑖=1

 

 

(5.26) 
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Final mathematical model 

The objective function, total profit = total revenue – total costs, which is to be maximised 

and subject to constraints (5.27) to (5.35). 

𝑋𝑖 ≤ 𝑋0; ∀𝑖 

[to ensure delivery and transportation constraints] 
(5.27) 

𝑌𝑗 ≤ 𝑌0; ∀𝑗 

[to ensure delivery and transportation constraints] 
(5.28) 

𝑍𝑗 ≤ 𝑍0; ∀𝑗 

[to ensure delivery and transportation constraints] 
(5.29) 

𝑀𝑋0 ≥∑𝑋𝑖

𝑀

𝑖=1

 

[to ensure delivery and transportation constraints] 

(5.30) 

𝐼1, 𝐼2, 𝐼3 ≥ 0 

[to ensure non-negative idle time] 
(5.31) 

𝑌(𝑖−1)𝑛+1 + 𝑌(𝑖−1)𝑛+2 +⋯+ 𝑌𝑖𝑛 = 𝑋𝑖; ∀𝑖 

[to balance batches and sub-lots]  
(5.32) 

𝑌𝑗 = 𝑍𝑗; ∀𝑗 

[to balance production system] 
(5.33) 

𝑇𝑑 + 𝑇𝑝 + (𝑘 − 1)𝑆𝑡1 − 𝑘𝐼1 ≥ 0;  𝐹𝑜𝑟 𝑘 = 1,2, … , ⌈
𝑇𝑑 + 𝑇𝑝

𝐼1
⌉ 

[to ensure non-negative delay] 
(5.34) 

𝑋𝑖, 𝑌𝑗 and 𝑍𝑗 ≥ 0; ∀𝑖, 𝑗 (5.35) 

Proposition 1: the production system will be optimally recovered using only the back 

orders cost if (i) 𝑇𝑑 ≤ 𝑀𝐼1 for no loss of materials and (ii) (𝑇𝑑 + 𝑇𝑝) ≤ 𝑀𝐼1 for 100% loss 

of materials.  

Proof: the idle time after producing a batch in stage 1 is 𝐼1. As there are 𝑀 cycles in the 

recovery time window ( 𝑇𝑅), the total idle time in it is 𝑀𝐼1. 

If the disruption duration is less than 𝑀𝐼1, the production system is capable of managing 

the disruption duration within 𝑇𝑅 and there will only be a delay in product delivery.  

Therefore, it can be said that, if 𝑇𝑑 ≤ 𝑀𝐼1 for no loss of materials and (𝑇𝑑 + 𝑇𝑝) ≤ 𝑀𝐼1 for 
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100% loss of materials, the production process will be optimally recovered using the back 

orders cost. 

Proposition 2: sales will be lost in the recovery policy if (i) 𝑇𝑑 > 𝑀𝐼1 for no loss of 

materials and (ii) (𝑇𝑑 + 𝑇𝑝) > 𝑀𝐼1 for 100% loss of materials. 

Proof: this is the opposite consequence to that in Proposition 1.  

Proposition 3: the minimum recovery periods, without incurring lost sales in the solution, 

is (𝑇0 + 𝐼1) ∗ ⌈
𝑇𝑑

𝐼1
⌉ for no loss of materials and (𝑇0 + 𝐼1) ∗ ⌈

𝑇𝑑+𝑇𝑝

𝐼1
⌉ for 100% loss of 

materials. 

Proof: from the condition of the existence of only back orders for no loss of materials, 

 𝑇𝑑 ≤ 𝑀𝐼1  

 𝑀 ≥
𝑇𝑑

𝐼1
 

As 𝑀 is considered as an integer, it can be written as: 

 𝑀 ≥ ⌈
𝑇𝑑

𝐼1
⌉ 

 
𝑇𝑅

𝑇0+𝐼1
≥ ⌈

𝑇𝑑

𝐼1
⌉ [inserting value of 𝑀] 

After simplifying, 

𝑇𝑅 ≥ (𝑇0 + 𝐼1) ∗ ⌈
𝑇𝑑
𝐼1
⌉ (5.36) 

Similarly, for 100% loss of materials, 

𝑇𝑅 ≥ (𝑇0 + 𝐼1) ∗ ⌈
𝑇𝑑 + 𝑇𝑝

𝐼1
⌉ (5.37) 

5.3.3 Mathematical Model for Disruption at Second Stage 

The formulation of the mathematical model for a single occurrence of disruption in stage 2 

is presented as follows. 
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Cost formulation 

Number of batches in recovery periods, 𝑀 = ⌈
𝑇𝑅

𝑋0
𝐶2
+𝐼2
⌉  

𝑙 = disrupted sub-lot number (any single number between 1 and 𝑛)  

If 𝑇𝑝 ≥
𝑖𝑌0

𝐶2
, then 𝑙 = 𝑖 + 1; (𝑖 = 0,1, 2, . . , 𝑛 − 1) 

Pre-disruption raw material level, 𝑋𝑝  = 𝑋1 − 𝑇𝑝𝐶2  (5.38) 

Set-up cost at first stage  

= 𝐴1𝑀 

 

(5.39) 

Production cost at first stage 

= 𝐶𝑃1 ∗ (𝑋1 + 𝑋2 +⋯+ 𝑋𝑀) 

= 𝐶𝑃1 ∗∑𝑋𝑖

𝑀

𝑖=1

 

 

 

(5.40) 

Production cost at second stage 

= 𝐶𝑃2 ∗ (𝑌1 + 𝑌2 +⋯+ 𝑌𝑀𝑛) 

= 𝐶𝑃2 ∗∑𝑌𝑗

𝑀𝑛

𝑗=1

 

 

 

(5.41) 

 

Average raw material holding cost at second stage 

=
𝐻2
2𝐶2

∗∑𝑋𝑖
2

𝑀

𝑖=1

+ 𝐻2 ∗ { 𝑋𝑝𝑇𝑑 +∑𝑋𝑖

𝑘

𝑖=2

(𝑇𝑑 − (𝑖 − 1)𝐼2)} 

 

 

(5.42) 

Production cost at third stage  

= 𝐶𝑃3 ∗ (𝑍1 + 𝑍2 +⋯+ 𝑍𝑀𝑛) 

= 𝐶𝑃3 ∗∑𝑍𝑗

𝑀𝑛

𝑗=1

 

 

 

(5.43) 
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Back orders cost  

= 𝐵{(𝑌𝑙 + 𝑌𝑙+1 +⋯+ 𝑌𝑛) ∗ 𝑇𝑑 + (𝑌𝑛+1 + 𝑌𝑛+2 +⋯+ 𝑌2𝑛)

∗ (𝑇𝑑 − 𝐼2) +⋯+ (𝑌(𝑘−1)𝑛+1 + 𝑌(𝑘−1)𝑛+2 +⋯+ 𝑌𝑘𝑛)

∗ (𝑇𝑑 − (𝑘 − 1)𝐼2)} 

 

(5.44) 

Lost sales  

= 𝐿 ∗ (𝑀𝑛𝑌0 −∑𝑌𝑗

𝑀𝑛

𝑗=1

) 

 

(5.45) 

Revenue formulation 

Revenue  

= 𝑚1(𝐶𝑃1 + 𝐶𝑃2 + 𝐶𝑃3) ∗∑𝑌𝑖

𝑀𝑛

𝑖=1

 

 

(5.46) 

Final mathematical model  

The objective function, total profit = total revenue – total costs, which is to be maximised 

and subject to constraints (5.47) to (5.55). 

𝑋𝑖 ≤ 𝑋0; ∀𝑖 

[to ensure delivery and transportation constraints] 
(5.47) 

𝑌𝑗 ≤ 𝑌0; ∀𝑗 

[to ensure delivery and transportation constraints] 
(5.48) 

𝑍𝑗 ≤ 𝑍0; ∀𝑗  

[to ensure delivery and transportation constraints] 
(5.49) 

𝑌𝑗 = 𝑌0; 𝑗 = 1,2, … , 𝑙 − 1  

[to ensure pre-disruption production constraint] 
(5.50) 

𝐼1, 𝐼2 𝑎𝑛𝑑 𝐼3 ≥ 0  

[to ensure non-negative idle time]  
(5.51) 

𝑌(𝑖−1)𝑛+1 + 𝑌(𝑖−1)𝑛+2 +⋯+ 𝑌𝑖𝑛 = 𝑋𝑖; ∀𝑖 

[to balance batches and sub-lots]  
(5.52) 

𝑌𝑗 = 𝑍𝑗; ∀𝑗  

[to balance production system] 
(5.53) 

𝑇𝑑 − (𝑘 − 1)𝐼2 ≥ 0; 𝐹𝑜𝑟  𝑘 = 1,2, … , ⌈
𝑇𝑑
𝐼2
⌉ 

[to ensure non-negative delay] 
(5.54) 

𝑋𝑖, 𝑌𝑗 and 𝑍𝑗 ≥ 0; ∀𝑖, 𝑗 (5.55) 
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Proposition 4: the production system will be optimally recovered using only the back 

orders cost if 𝑇𝑑 ≤ 𝑀𝐼2 and using both the back orders and lost sales costs if 𝑇𝑑 > 𝑀𝐼2.  

Proof: as there are 𝑀 cycles in the recovery time window (𝑇𝑅), the total idle time in it 

is 𝑀𝐼2. If the disruption duration is less than 𝑀𝐼2, the production system is capable of 

producing all the lost items due to the disruption within 𝑇𝑅. So there will be a delay in 

product delivery, and in this case, having only back orders will be the most appropriate for 

generating the optimal solution. Therefore, it can be said that the production system will be 

optimally recovered using the back orders cost if 𝑇𝑑 ≤ 𝑀𝐼2.  

If the disruption duration is greater than the idle time, the system is not capable of 

producing all the lost items during the recovery periods. In this case, the system will utilize 

its idle time to produce some of the lost items. So the system will experience both lost sales 

and back orders (delay delivery) in generating solutions if 𝑇𝑑 > 𝑀𝐼2. 

Proposition 5: the minimum recovery periods, without incurring lost sales in the solution, 

is (
𝑋0

𝐶2
+ 𝐼2) ∗ ⌈

𝑇𝑑

𝐼2
⌉  

Proof: from the condition of the existence of only back orders,  

 𝑇𝑑 ≤ 𝑀𝐼2  

As 𝑀 is considered as an integer, it can be written as: 

 𝑀 ≥ ⌈
𝑇𝑑

𝐼2
⌉ 

 
𝑇𝑅

𝑋0
𝐶2
+𝐼2

≥ ⌈
𝑇𝑑

𝐼2
⌉ [inserting value of 𝑀] 

 

After simplifying, 

𝑇𝑅 ≥ (
𝑋0
𝐶2
+ 𝐼2) ∗ ⌈

𝑇𝑑
𝐼2
⌉ (proven) 
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5.3.4 Mathematical Model for Disruption at Third Stage 

The formulation of the mathematical model for a single occurrence of disruption in stage 3 

is presented as follows. 

Cost formulation 

Number of batches in recovery periods, 𝑀 = ⌈
𝑇𝑅

𝑋0
𝐶3
+𝐼3
⌉  

𝑙 = disrupted sub-lot number (any single number between 1 and 𝑛)  

Set-up cost at first stage  

= 𝐴1𝑀 

 

(5.56) 

Production cost at first stage  

= 𝐶𝑃1 ∗ (𝑋1 + 𝑋2 +⋯+ 𝑋𝑀) 

= 𝐶𝑃1 ∗∑𝑋𝑖

𝑀

𝑖=1

 

 

 

(5.57) 

Production cost at second stage  

= 𝐶𝑃2 ∗ (𝑌1 + 𝑌2 +⋯+ 𝑌𝑀𝑛) 

= 𝐶𝑃2 ∗∑𝑌𝑗

𝑀𝑛

𝑗=1

 

 

 

(5.58) 

Average raw material holding cost at second stage  

=
𝐻2
2𝐶2

∗∑𝑋𝑖
2

𝑀

𝑖=1

 
(5.59) 

Production cost at third stage  

= 𝐶𝑃3 ∗ (𝑍1 + 𝑍2 +⋯+ 𝑍𝑀𝑛) 

= 𝐶𝑃3 ∗∑𝑍𝑗

𝑀𝑛

𝑗=1

 

 

 

(5.60) 
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Back orders cost 

= 𝐵{(𝑍𝑙 + 𝑍𝑙+1 +⋯+ 𝑍𝑛) ∗ 𝑇𝑑 + (𝑍𝑛+1 + 𝑍𝑛+2 +⋯+ 𝑍2𝑛)

∗ (𝑇𝑑 − 𝐼3) +⋯
+ (𝑍(𝑘−1)𝑛+1 + 𝑍(𝑘−1)𝑛+2 +⋯+ 𝑍𝑘𝑛)

∗ (𝑇𝑑 − (𝑘 − 1)𝐼3)} 

 

 

(5.61) 

Lost sales  

= 𝐿 ∗ (𝑀𝑛𝑍0 −∑𝑍𝑗

𝑀𝑛

𝑗=1

) 

 

(5.62) 

Revenue formulation 

Revenue  

= 𝑚1(𝐶𝑃1 + 𝐶𝑃2 + 𝐶𝑃3) ∗∑𝑍𝑖

𝑀𝑛

𝑖=1

 

 

(5.63) 

Final mathematical model 

The objective function, total profit = total revenue – total costs, which is to be maximised 

and subject to constraints (5.64) to (5.72). 

𝑋𝑖 ≤ 𝑋0; ∀𝑖 

[to ensure delivery and transportation constraints] 
(5.64) 

𝑌𝑗 ≤ 𝑌0; ∀𝑗 

[to ensure delivery and transportation constraints] 
(5.65) 

𝑍𝑗 ≤ 𝑍0; ∀𝑗  

[to ensure delivery and transportation constraints] 
(5.66) 

𝑍𝑗 = 𝑍0; 𝑗 = 1,2, … , 𝑙 − 1 

[to ensure pre-disruption production constraint]  
(5.67) 

𝐼1, 𝐼2 𝑎𝑛𝑑 𝐼3 ≥ 0  

[to ensure non-negative idle time]  
(5.68) 

𝑍(𝑖−1)𝑛+1 + 𝑍(𝑖−1)𝑛+2 +⋯+ 𝑍𝑖𝑛 = 𝑋𝑖; ∀𝑖  

[to balance batches and sub-lots] 
(5.69) 

𝑌𝑗 = 𝑍𝑗; ∀𝑗  

[to balance production system] 
(5.70) 

𝑇𝑑 − (𝑘 − 1)𝐼3 ≥ 0; 𝐹𝑜𝑟  𝑘 = 1,2, … , ⌈
𝑇𝑑
𝐼3
⌉ 

[to ensure non-negative delay] 

(5.71) 
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𝑋𝑖, 𝑌𝑗 and 𝑍𝑗 ≥ 0; ∀𝑖, 𝑗 (5.72) 

Proposition 6: the production system will be optimally recovered using only the back 

orders cost if 𝑇𝑑 ≤ 𝑀𝐼3 and using both the back orders and lost sales costs if 𝑇𝑑 > 𝑀𝐼3.  

Proof: this is the same as that for Proposition 4. 

Proposition 7: the minimum recovery periods, without incurring lost sales in the solution, 

is (
𝑋0

𝐶3
+ 𝐼3) ∗ ⌈

𝑇𝑑

𝐼3
⌉  

Proof: this is the same as that for Proposition 5. 

5.4 Solution Approach 

With the help of the developed propositions, a heuristic is first developed to solve the 

model for a single occurrence of disruption. Then, it is extended to manage multiple 

disruptions, as a series, on a real-time basis. A disruption scenario can be defined as the 

combination of a disrupted stage, and pre-disruption and disruption durations. As, in 

reality, these parameters follow stochastic processes, in this study, uniform random 

variables are used to generate them. However, one can use different probability 

distributions. To judge the quality of the heuristic solutions, another standard search 

technique is also used to solve the model. 

5.4.1 Heuristic for Single Disruption 

The proposed heuristic for a single occurrence of disruption in any stage is described. 

Different parameters for an ideal system are input in Step 1 and disruption scenarios 

generated using uniformly random variables input in Step 2. If there is any disruption in 

stage 1, in Step 3, the model determines a recovery plan which is generated in Steps 4 and 

5 after occurrences of disruptions in stages 2 and 3 respectively. In steps 4 and 5, the 

production system utilizes the idle time for possible recovery from a disruption. If the idle 

time is greater than the disruption duration, then the production system is capable of 

producing the lost items due to the disruption, but there will be a delay in product delivery. 

For this reason, back orders will be the only appropriate means to generate the solution. If 
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the idle time is less than the disruption duration, then the production system is capable of 

producing only a part of the lost items during the recovery periods, and so the system will 

generate partly lost sales and partly delayed delivery (for back orders). When lost sales are 

appropriate for generating the solution, the minimum recovery periods, without incurring 

lost sales, is determined by using propositions 5 and 7. The steps in the proposed heuristic 

are as follows. 

Step 1: input scenarios of three stages in ideal production system. 

Step 2: input disrupted stage with pre-disruption (𝑇𝑝) and actual disruption (𝑇𝑑) period. 

Step 3: for disruption in stage 1, determine disruption duration. If materials completely lost, disruption 

duration equal to (𝑇𝑝 + 𝑇𝑑), otherwise, 𝑇𝑑 . 

 3.1: input recovery periods (𝑇𝑅). 

 3.2: determine number of batches and total idle time in 𝑇𝑅. 

 3.3: if total idle time ≥ disruption duration, obtain recovery plan using equations (5.73) to (5.75). 

 𝑋𝑖 = 𝑋0; ∀𝑖 (5.73) 

 𝑋𝑖 = 𝑋0; ∀𝑖 (5.74) 
 𝑍𝑗 = 𝑍0; ∀𝑗 (5.75) 

Determine all costs, revenue and total profit. 

 3.4: if total idle time < disruption duration, obtain recovery plan using equations (5.76) to (5.81). 

 𝑋1 = 0 (5.76) 
 𝑋𝑖 = 𝑋0; For 𝑖 = 2,3, … ,𝑀 (5.77) 
 𝑌𝑗 = 0; For 𝑗 = 1,2, . . , 𝑛 (5.78) 
 𝑌𝑗 = 𝑌0; For 𝑗 = 𝑛 + 1, 𝑛 + 2,… . ,𝑀𝑛 (5.79) 
 𝑍𝑗 = 0; For 𝑗 = 1,2, . . , 𝑛  (5.80) 
 𝑍𝑗 = 𝑍0; For 𝑗 = 𝑛 + 1, 𝑛 + 2,… . ,𝑀𝑛 (5.81) 

Determine all costs, revenue and total profit. 

Minimum recovery periods, without including lost sales in solution, (𝑇0 + 𝐼1) ∗ ⌈
 Disruption duration

𝐼1
⌉. 

Step 4: for disruption in stage 2 

 4.1: input disrupted sub-lot number (𝑙), disruption duration ( 𝑇𝑑) and recovery periods (𝑇𝑅). 

 4.2: determine total idle time in 𝑇𝑅 . 

 4.3: if total idle time ≥ disruption duration, obtain recovery plan using equations (5.82) to (5.84). 

 𝑋𝑖 = 𝑋0; ∀𝑖 (5.82) 
 𝑋𝑖 = 𝑋0; ∀𝑖 (5.83) 
 𝑍𝑗 = 𝑍0; ∀𝑗 (5.84) 

Determine all costs, revenue and total profit. 

 4.4: if total idle time < disruption duration,  

Lost time (𝑇𝐿) = 𝑇𝑑 − total idle time, 

Production capacity in lost time = 𝐶2𝑇𝐿  and 

  Number of sub-lots in lost time (𝑚) = ⌊
𝐶2𝑇𝐿

𝑌0
⌋ 

  Then, obtain recovery plan using equations (5.85) to (5.92). 

 

 𝑌𝑗 = 𝑌0; For 𝑗 = 1,2, . . ,2𝑛 (5.85) 
 𝑌𝑗 = 0; For 𝑗 = 2𝑛 + 1,2𝑛 + 2,… , 2𝑛 +𝑚 (5.86) 
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 𝑌2𝑛+𝑚+1 = 𝑌0 − 𝐶2𝑇𝐿 +𝑚𝑌0 (5.87) 
 𝑌𝑗 = 𝑌0; For 𝑗 = 2𝑛 + 𝑚 + 2, 2𝑛 + 𝑚 + 3, . . , 𝑀𝑛 (5.88) 
 𝑋1 = 𝑋0 (5.89) 
 𝑋2 = 𝑋0 (5.90) 
 𝑋𝑖 = 𝑌(𝑖−1)𝑛+1 + 𝑌(𝑖−1)𝑛+2 +⋯+ 𝑌𝑖𝑛; For 𝑖 = 3,4, . . , 𝑀 (5.91) 
 𝑍𝑗 = 𝑌𝑗; ∀𝑗  (5.92) 

Determine all costs, revenue and total profit. 

Minimum recovery periods, without including lost sales in solution, (
𝑋0

𝐶2
+ 𝐼2) ∗ ⌈

𝑇𝑑

𝐼2
⌉. 

Step 5: for disruption in stage 3 

 5.1: input disrupted sub-lot number (𝑙), disruption duration ( 𝑇𝑑) and recovery periods (𝑇𝑅). 

 5.2: determine total idle time in 𝑇𝑅 . 

 5.3: if total idle time ≥ disruption duration, obtain recovery plan from equations (5.93) to (5.95). 

 𝑋𝑖 = 𝑋0; ∀𝑖 (5.93) 
 𝑋𝑖 = 𝑋0; ∀𝑖 (5.94) 
 𝑍𝑗 = 𝑍0; ∀𝑗 (5.95) 

Determine all costs, revenue and total profit. 

 5.4: if total idle time < disruption duration,  

Lost time (𝑇𝐿) = 𝑇𝑑 − total idle time, 

Production capacity in lost time = 𝐶3𝑇𝐿  

  Number of sub-lots in lost time (𝑚) = ⌊
𝐶3𝑇𝐿

𝑍0
⌋ 

Then, obtain recovery plan from equations (5.96) to (5.103). 

 𝑍𝑗 = 𝑍0; For 𝑗 = 1,2, . . ,2𝑛  (5.96) 
 𝑍𝑗 = 0; For 𝑗 = 2𝑛 + 1,2𝑛 + 2,… , 2𝑛 + 𝑚  (5.97) 
 𝑍2𝑛+𝑚+1 = 𝑍0 − 𝐶3𝑇𝐿 +𝑚𝑍0 (5.98) 
 𝑍𝑗 = 𝑍0; For 𝑗 = 2𝑛 +𝑚 + 2,2𝑛 + 𝑚 + 3, . . , 𝑀𝑛 (5.99) 
 𝑌𝑗 = 𝑍𝑗; ∀𝑗 (5.100) 
 𝑋1 = 𝑋0 (5.101) 
 𝑋2 = 𝑋0 (5.102) 
 𝑋𝑖 = 𝑌(𝑖−1)𝑛+1 + 𝑌(𝑖−1)𝑛+2 +⋯+ 𝑌𝑖𝑛; For 𝑖 = 3,4, . . , 𝑀 (5.103) 

  Determine all costs, revenue and total profit. 

Minimum recovery periods, without including lost sales in solution, (
𝑋0

𝐶3
+ 𝐼3) ∗ ⌈

𝑇𝑑

𝐼3
⌉. 

Step 6: record the results. 

Step 7: stop. 

5.4.2 Extended Heuristic for Multiple Disruptions 

In this section, the heuristic developed for recovering from a single occurrence of 

disruption, is extended to manage multiple disruptions on a real-time basis. To do this, a 

recovery plan is obtained from the heuristic after each disruption, with the revised 

production scenarios saved and then used as a foundation for recovering from the next 
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disruption. The steps in the extended heuristic for managing multiple disruptions are 

described below. 

Step A: determine and input ideal conditions (fixed batch size, sub-lot size, machine capacity, difference cost 

data etc.). 

Step B: input disrupted stage, disruption duration and time since previous disruption. 

Step C: solve model with proposed heuristic developed in Section 5.4.1 using updated parameters, such as 

disruption scenario, objective function and constraints. 

Step D: update decision variables from Step C and record revised production plan after disruption. 

Step E: if another disruption, go to Step B and repeat Steps B-D. 

Step F: stop. 

5.4.3 An Alternative Approach 

The mathematical model developed in Section 3 for a single disruption is a constrained 

nonlinear one which can be solved using a standard search algorithm. As there is no 

standard test set available for the problem considered in this research, to validate and judge 

the quality of the results obtained from the heuristic, another approach, namely a pattern 

search (PS)-based technique, is chosen to solve it. Both methods were coded in MATLAB 

R2012a and executed on an Intel core i7 processor with 8.00 GB RAM and a 3.40 GHz 

CPU, with their best results from 10 independent runs compared. In the PS-based 

technique, the following parameters were used. 

Maximum number of iterations: 100* Number of decision variables  

Maximum function evaluation: 1000000 

Polling order: Random 

X tolerance: 1e-10 

Function tolerance: 1e-10 

Nonlinear constraint tolerance: 1e-10 

Cache tolerance: 1e-10 

Search method: Latin hypercube 

Other parameters were set as the defaults in the optimisation toolbox of MATLAB 

R2012a.  
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5.4.4 Range of parameters 

For experimentation, the following data range was considered with a discrete uniform 

distribution for the disruption problem.  

Disruption duration in the first stage: [0.0001, 𝑇0] 

Disruption duration in the second stage: [0.0001, 
𝑋0

𝐶2
]  

Disruption duration in the third stage: [0.0001, 
𝑋0

𝐶3
]  

Lost sales cost: 𝐿 = [2, 50] 

Back orders cost: 𝐵 = [0.1, 10] 

Set-up cost: 𝐴1 = [5, 300] 

Holding cost: 𝐻2 = [0.005, 2] 

 Production cost: 𝐶𝑃1,𝐶𝑃2, 𝐶𝑃3 =[0.5, 10] 

5.5 Analysis of Experimentation and Results 

In this section, the solutions for both the single and multiple disruption cases are analysed. 

To judge their quality those obtained from the proposed heuristic, this study has 

experimented using 90 disruption test problems randomly generated using a uniform 

random distribution by changing the parameters for the given intervals (presented in 

Section 5.4.4) which were solved using both the proposed heuristic and PS-based 

approaches. As their results were consistent, only those for a few sample test problems are 

discussed in this section. Then, the heuristic was modified for multiple disruptions on a 

real-time basis, as described in Section 5.4.2. 

5.5.1  Single Disruption 

In this section, the solutions for a single disruption are analysed. Although it was 

experimented on 90 random disruption test problems, for illustrative purposes, five 

different sample instances were used by arbitrarily changing the disruption data, with their 

parameters shown in Table 5.1. For the disruption in stage 1, the two scenarios, that is, 

with no loss of materials and 100% loss of materials, were considered test problems 1 and 
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2 respectively, with three other problems used for disruptions in stages 2 and 3, and the 

following data for analysing the results. Although, as production in stages 2 and 3 is 

continuous, it was considered that no set-up was required for them, it could be considered 

if appropriate. 

𝐷 = 8000 units per day, 𝑋0 = 3000 units, 𝑇0 = 0.30 days, 𝑆𝑡1 = 1 hour, 𝑆𝑡2 = 0, 𝑆𝑡3 = 0, 𝐴1 

= 50, 𝐶2 = 10000 units per day, 𝐶3 = 9000 units per day, 𝐶𝑃1 = 5, 𝐶𝑃2 = 3, 𝐶𝑃3 = 1, 𝐶𝑀1 = 

5, 𝐻2 = 0.01 per unit per day, bucket capacity = 1000 units, 𝐵 = 0.5, 𝐿 = 20,  𝑚1 = 2.5, 𝑇𝑅 

= 2 days. 

Table 5.1: Five test problems with single disruption 

Disruption problem Disrupted stage  
Disruption duration 

(days) 

Pre-disruption 

duration (days) 

1 
1 (no loss of 

materials) 
0.15 0.00 

2 
1 (100% loss of 

materials) 
0.23 0.035 

3 2 0.20 0.060 

4 3 0.10 0.085 

5 3 0.28 0.008 

The test problems shown in Table 5.1 were solved using the proposed heuristic and PS-

based techniques, with the results presented in Table 5.2. Both approaches provided similar 

solutions to all test problems. The heuristic showed insignificant changes in results for 

different runs and for PS technique, the best results recorded out of 10 independent runs. 

To recover from disruptions, only the back orders cost was used for problems 1, 3 and 4, 

only the lost sales cost for problem 2 and both for problem 5. If any recovery plan used the 

lost sales cost, the minimum recovery periods without lost sales were also determined. For 

problems 2 and 5, the minimum recovery periods were 2.667 and 2.625 days respectively 

(when using only the back orders cost). If management does not specify the recovery 

periods, the system may use this minimum recovery periods to avoid the lost sales cost.  
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Table 5.2: Results obtained from heuristic and PS 

Disruption 

problem 

Total profit 
Deviation 

(%) 

Computational 

time (seconds) Recovery  

strategy 

Minimum 

recovery 

periods 

without lost 

sales (days) 
Heuristic 

PS  

(best result) 
Heuristic PS 

1 241898.0 241898.0 0.0 1.60 4.72 Only back orders -- 

2 127177.5 127177.5 0.0 1.91 6.53 Only lost sales 2.667 

3 242409.5 242409.4 0.0 0.75 28.74 Only back orders -- 

4 242560.5 242560.5 0.0 0.74 28.60 Only back orders -- 

5 232442.2 232442.2 0.0 0.73 33.49 Both back orders 

and lost sales 
2.625 

To judge the quality of the solutions obtained from the proposed heuristic, 90 test problems 

with disruption were randomly generated using a uniform distribution. They were solved 

through both approaches, with the best results (out of 10 independent runs) obtained by the 

PS technique. Although the two approaches produced similar solution quality (with 

insignificant differences, as shown in Table 5.3), there was a significant difference in their 

computational times. In terms of quality, the average percentage of deviation, calculated 

using equation (5.104), between the results from the two approaches was only 0.00034% 

which could be considered negligible. Indeed, it may merely have been due to errors in 

rounding the values of the decision variables. Apart from its capability to produce quality 

solutions, the heuristic took significantly less average computational time than the PS 

technique (see the second column in Table 5.3). 

Percentage of deviation  

=
(Total profit from heuristc − Total profit from PS)

Total profit from PS
× 100% 

 

(5.104) 

 

 



Chapter 5: Three-Stage Mixed Production-Inventory System 142 

 

 

 

Table 5.3: Comparison of results for 90 different disruption test problems 

Approach Average computational time (seconds) 
Average percentage 

of deviation (%) 

Heuristic 1.024 
0.00034 

PS 20.36 

5.5.2 Multiple Disruptions 

To demonstrate the usefulness of the proposed heuristic for solving different scenarios with 

a series of disruptions over a period of time, this study used the basic data of the single 

disruption problem presented in Section 5.5.1 which could manage the first disruption. 

Then, if another occurred after the recovery periods of a previous one, it could be 

considered another single disruption that would not affect the revised plan based on the 

previous disruption. However, as a new disruption within the recovery periods of any 

previous one may affect this revised plan, its revised plan for its recovery periods must be 

considered a set of additional restrictions. For experimental purposes, a series of ten 

dependent disruptions, one after the other, with different conditions, is generated randomly 

as shown in Table 5.4. Although they could happen continuously, this study presents only 

ten as a sample representation. 

To maximise total profit in the system, the batch and sub-lot sizes were revised 

immediately after each disruption took place. The problem was then solved using the 

proposed heuristic for multiple disruptions, as presented in Section 5.4.2, with the results 

recorded after each disruption and shown in Table 5.5 for lost sales, back orders and total 

profit. It is observed that, in the recovery plans, there were only back orders for disruption 

numbers 1, 7, 8, 9 and 10, and to maximise total profit, only lost sales for disruption 

number 6 while both lost sales and back orders were present for disruption numbers 2, 3, 4 

and 5. 
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Table 5.4: Disruption scenarios for series of disruptions 

Disruption number Disrupted stage  
Disruption duration 

(days) 

Time since 

previous disruption 

(days) 

1 1 0.10 -- 

2 3 0.28 0.50 

3 2 0.16 0.67 

4 2 0.24 1.50 

5 3 0.18 0.67 

6 1 0.27 1.20 

7 1 0.20 1.60 

8 3 0.08 0.80 

9 2 0.22 0.33 

10 3 0.14 1.75 

.... .... .... .... 

 

Table 5.5: Results obtained from heuristic for series of disruptions 

Disruption number Total lost sales Total back orders Total profit 

1 0 212.50 242460 

2 5400 1186.60 232440 

3 5400 675.23 232960 

4 5400 705.23 232910 

5 5400 588.83 233040 

6 60000 0 142180 

7 0 1420.00 241253 

8 0 1227.50 241450 

9 0 1230.00 241440 

10 0 887.50 241790 

.... .... .... .... 
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5.6 A Real-Life Case Study 

The developed model was used to solve a real-world case problem involving a 

pharmaceutical company’s paracetamol tablet production line which had three stages, 

mixing, compression and packaging, and was dedicated to only one product. A flow 

diagram of the production line is presented in Figure 5.2. In this process, the raw materials 

were initially blended for a fixed time and then the blended material moved to the 

compression stage to shape each tablet. The shaped tablets were then blistered and packed 

in the third stage and, finally, the finished items were transferred to storage.  

 

 

 

 

 

 

Figure 5.2: Three-stage production process for pharmaceutical product 

The relevant data were collected from historical records, including a number of disruption 

scenarios, for all three stages in the case study. It was observed that machine breakdown 

was a common disruption, whereby the system became inoperable for a certain period of 

time. It was also observed that the compression and packaging stages had more machine 

breakdowns than the mixing stage. However, although the mixing stage suffered fewer 

disruptions, as the materials could be completely lost, scenarios of both loss and no loss of 

materials are considered for a disruption in the first stage. Moreover, it was observed that 

machine breakdown could occur in any stage at any time. Currently, the company uses 

only the lost sales cost to recover from disruptions which means that its production 

capacity during these periods always leads to shortages and materials are completely lost.  

This disruption problem could be solved by applying our developed model and the 

proposed heuristic. To demonstrate this, some data was collected directly from the 
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production line and historical records of the company while some was approximated by 

consulting with the plant manager.  

The average daily demand of 9,260 strips was determined from historical records, and the 

capacity of the mixing cylinder was approximately 168.3 kg (equivalent to 3,366 strips per 

batch and 10 tablets per strip) for the mixing stage. The processing time for a batch, which 

was independent of the batch size, was 0.3 days. The capacities of the compression and 

packaging stages were 10,960 strips per day and 10,230 strips per day respectively, and 

that of the transfer bucket used to transfer materials from the second to third stage 12,000 

tables (equivalent to 1,200 strips).  

After processing a batch in the mixing stage, it was the company’s standard procedure to 

clean the cylinder which involved some time and cost. The time was considered the set-up 

time and calculated as 1.10 hours following observations from a time study, and the set-up 

cost required for labour to prepare the raw materials and clean the cylinder was taken as 

2,250 Taka (28.125 USD), as the company suggested. As it was a dedicated continuous 

production line, the cleaning times for the compression and packaging stages could be 

considered negligible in comparison with the production time. Therefore, it was assumed 

their set-up times to be 0 in this case study. The back orders and lost sales costs were also 

approximated as 10 Taka/strip/day (0.125 USD) and 50 Taka/strip (0.625 USD) 

respectively while the daily holding cost per unit for materials used in compression was 

approximated as 0.4 Taka (0.005 USD).  

The following costs of production and material loss were collected. 

Production cost in mixing stage = 11.2 Taka/strip (0.14 USD) 

Production cost in compression stage = 7.6 Taka/strip (0.095 USD) 

Production cost in packaging stage = 6.5 Taka/strip (0.08125 USD) 

Cost per unit of material loss = 11.2 Taka/strip (0.14 USD) 

Based on the above, seven breakdown scenarios were observed within the observation 

period of 59 days and relevant data collected. Of them, four were in compression, two in 

packaging and one in mixing, as presented in Table 5.6. 
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Table 5.6: Data for disruption scenarios 

Disruption 

number (n) 
Disrupted stage 

Time since previous 

disruption (days) 

Disruption 

duration (hours) 

1 Compression -- 6.30 

2 Compression 10.50 4.27 

3 Packaging 1.20 6.94 

4 Compression 21.40 5.76 

5 Mixing 7.20 4.69 

6 Packaging 15.10 3.10 

7 Compression 1.60 5.38 

After consulting with the plant manager, the recovery periods was set as 2 days. Our 

proposed heuristic was implemented to solve the disruption problem. The total lost sales, 

back orders and profits in the revised plan for each disruption are presented in Table 5.7. 

Table 5.7: Detailed results using heuristic 

Disruption number 
Total lost sales 

(USD) 

Total back orders 

(USD) 
Total profit (USD) 

1 0 211.67 10738.89 

2 0 86.51 10874.02 

3 306.26 434.24 9989.91 

4 0 173.81 10779.41 

5 2103.80 0 6793.021 

6 0 76.03 10886.13 

7 0 147.16 10807.92 

 

The benefits of implementing the proposed model are presented in Table 5.8 which shows 

that it achieved significantly better results than the company’s current practice. Under ideal 

conditions, the company would have a profit of 253914.41 USD within the observation 

period of 59 days whereas, under the disrupted environment, this would reduce to 

234138.63 USD if the company used the lost sales cost to recover from disruptions, with a 
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lost sales cost of 10974.87 USD. However, if our proposed model was applied, total profit 

would increase to 248063.04 USD, with the back orders and lost sales costs 1129.35 and 

2410.00 USD respectively.  

Table 5.8: Comparison of results during observation period 

Cost/Profit 
Ideal system 

(no disruption) 
Proposed model Current practice 

Total cost of back orders 

(USD) 
0 1129.35 0 

Total cost of lost sales (USD) 0 2410.00 10974.87 

Total profit (USD) 253914.41 248063.04 234138.63 

 

A comparison of the daily total profits obtained has been presented graphically in Figure 

5.3. It confirms that the proposed approach obtains better results than the company’s 

current practice. It is observed that the total profit reduces significantly in the case of 

current practice when a disruption occurs. This is because the current practice uses only 

lost sales cost to recover from a disruption. However, our proposed model ensures 

minimum reduction of the total profit for the disruption scenarios. This is because the 

proposed model uses both back orders and lost sales costs to recover from a disruption. 

The only exceptional scenario is disruption number 5 in Table 5.6, where the total profit 

both from the current practice and the proposed model is same (Figure 5.3).  

The variation of total profit depends on the disruption duration, lost sales and back order 

costs. The change of total profit with duration of disruption, at all three stages, is presented 

in Figure 5.4, which shows that total profit decreases significantly with larger disruption 

durations. For disruption at the mixing stage, total profit decreases suddenly at the 

disruption duration of 3 hours, because of the commencement of lost sales due to product 

unavailability.  Before that, only back orders were used to generate the solution. For 

disruption at the packaging stage, total profit decreases from the disruption duration of 6 

hours because only back orders are optimal for less than 6 hours, but both back orders and 

lost sales are required after 6 hours to generate the best solutions. The rate of decrease of 

total profit with disruption duration is much lower for disruption at the compression stage. 
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This is because of the presence of only back orders in the best solution when the disruption 

duration is less than 9 hours, but after that, both back order and lost sales are required to 

generate the solutions. 

 

Figure 5.3: Graphical presentation of comparison of results from different approaches 

The changes of total profit with lost sales cost is presented in Figure 5.5. The disruption 

and pre-disruption durations were taken as 7 and 0 hours respectively for this analysis. The 

remainder of the parameters have the default values of the case study. It was observed, that 

for disruptions at the mixing and packaging stage, total profit decreases with lost sales cost. 

But the rate of decrement was much higher for disruption at the mixing stage. This is 

because of the presence of only lost sales in the solution for disruption at the mixing stage, 

and the presence of both lost sales and back order for disruption at the packaging stage. On 

the other hand, at the compression stage, total profit did not change with lost sales cost. 

This is because of the presence of only back orders in the solution.  

The relationship between total profit and back order cost is presented in Figure 5.6. The 

disruption and the pre-disruption durations were taken as 2 and 0 hours respectively for 

this analysis. Total profit decreases with back order cost for any disruption at the mixing, 

compression or packaging stage. This is because back order costs are always present in the 

solution for all cases.  
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Figure 5.4: Changes of total profit with disruption duration for the case study 

 

Figure 5.5: Changes of total profit with lost sales cost  
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Figure 5.6: Changes of total profit with back order cost  

In the above study, the proposed approach shows mostly better, but no worse performance, 

as compared to current practice. However, in some scenarios the proposed approach 

provides the same solution as current practice where the disruption is at the mixing stage 

and the disruption duration is more than 3 hours. This is because the proposed approach 

requires only lost sales cost to generate solutions, and current practice also uses lost sales 

in this scenario.  

This study has proposed the approach based on a real-life problem from a pharmaceutical 

company. However this disruption recovery model can be applied to other similar 

production systems that countenance single or multiple production disruptions at any 

stages. The study considered fixed lot sizes at different stages throughout the planning 

horizon, which was based on ideal production conditions. The considered production 

system also has a mix of discrete and continuous batch production. However, in some 

production systems, the lot may be split, or may not be fixed, to meet transportation and 

warehouse capacities. Although this approach is applicable to three-stage production 

systems, the concept can be used for any number of stages. The annual demand rate is 

assumed to be known and constant, but practically demand can fluctuate. There may also 

be special orders outside of the regular demand trend, and sometimes a priority should be 
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given to produce such special orders. For all these variations, management must decide 

how to deal with them when the proposed approach is applied.  

5.7 Chapter Summary 

The main objective of this study was to develop an appropriate recovery policy for 

managing disruptions in a three-stage mixed-production environment. A mathematical 

model was developed, and then a new heuristic for managing both single and multiple 

disruptions on a real-time basis proposed. The results from the heuristic were compared 

with those from another search algorithm for a set of randomly generated disruption test 

problems. Both approaches produced very similar results, with the average percentage of 

deviation only 0.00034% which can be considered negligible. The proposed approach was 

also implemented to solve a real-world disruption problem of a pharmaceutical company. 

It was proven that the developed mathematical model and proposed heuristic can be easily 

applied to manage both single and multiple disruptions in a three-stage mixed-production 

system. With the help of this model, an organisation could increase its profit margin and, 

thus, decrease its loss due to a disruption. Finally, as customer satisfaction could also be 

greatly increased, a company’s reputation could be enhanced. This proposed mathematical 

and heuristic technique offers a potentially very useful quantitative approach for helping 

decision-makers make prompt and accurate decisions regarding revising production plans 

whenever a sudden (or series of) disruption occurs in a mixed-production environment.  

In chapter 5, the disruption recovery problem for managing production disruption in a 

three-stage mixed production-inventory system has been addressed. The extension of this 

study is to explore the problem for a supply chain network, which I have chosen as the 

direction of my research work in the next chapter.   

 

 



 

Chapter 6 Mitigation Approaches for a Supply 

Chain Network 

In this chapter, a three-stage supply chain network, with multiple manufacturing plants, 

distribution centres and retailers, is considered. Under ideal conditions, an ideal plan is 

generated in an infinite planning horizon and updated in a finite planning horizon if there 

are any changes in the data. Then, a predictive mitigation planning approach is developed 

for obtaining a better supply chain plan. In it, as the production process in any 

manufacturing plant may face an unexpected disruption at any time, a quantitative model is 

formulated for determining production and distribution plans under disrupted conditions 

while minimising the total supply chain cost and revising these plans over a finite future 

planning period. Multiple disruptions are also considered as a series, where a new 

disruption may or may not affect the recovery plans of earlier disruptions and requiring the 

revision of some plans after the occurrence of each disruption on a real-time basis. An 

efficient heuristic capable of dealing with both single and multiple disruptions on a real-

time basis is developed. Finally, this chapter presents some numerical examples, and 

results comparison to explain both the usefulness and the advantages of the proposed 

approaches. 

6.1 Introduction 

A supply chain is a network that receives inputs or raw materials from suppliers, produces 

final products at its manufacturing facilities and delivers those products to customers 

through a distribution network. Every manufacturing and service industry is part of a 

supply chain network which can have multiple manufacturing plants, multiple distribution 

centres (DCs) and multiple retailers. There are numerous industries, such as the 

pharmaceutical, textile and manufacturing, that supply, produce and distribute products 

using a supply chain network. Depending on the number of entities in each tier of a 
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network, it can be very complex and, in a real-life one, any information can be changed at 

any time. Therefore, an ideal plan should be updated to incorporate changes in order to 

generate a better plan. Although some changes in data may be known well in advance, 

others may not but can be detected using appropriate prediction models. Such predictions 

will help to generate a better supply chain plan than the one designed for ideal conditions. 

Supply chain entities can also face many sudden uncontrollable problems, such as a 

production disruption in a manufacturing plant which can be defined as any form of 

interruption in the manufacturing system, including a material shortage, machine 

breakdown, natural disaster or any other form of accidental or man-made disturbance. 

Supply chain disruption management is an important research topic, as is obvious in the 

examples provided in Chapter 1.  

From the literature review, it is clear that most previous research focused on supply chain 

coordination and optimisation problems under ideal conditions, although a reasonable 

number of studies developed recovery models after the occurrence of a disruption on a 

real-time basis. Previous disruption recovery models in production-inventory and supply 

chain systems were focused mainly on developing models for a single disruption. 

Moreover, most previous supply chain models considered a single supplier and single 

retailer which limited their applicability in real-life situations.  

In this chapter, after generating the ideal supply chain plan, if there is any variation in the 

data in any period, this plan is updated for a finite period on a rolling horizon basis when 

the new information is known. In real-life situations, some changes may not be known in 

advance but can be predicted using appropriate prediction models. Therefore, in this 

chapter, a predictive mitigation planning approach is developed, with the predicted data 

used to generate a revised plan on a rolling planning horizon basis. Finally, a new attempt 

is made to develop a quantitative disruption recovery (reactive mitigation) model for a 

supply chain network consisting of multiple manufacturing plants, DCs and retailers. 

Disruptions due to technical and internal problems are considered, which take place more 

frequently (repetitive type) and for short durations. In real-life, a system can face a series 

of production disruptions (known as multiple disruptions), one after another, at any plant. 

If a new disruption occurs at any plant during the revised planning window of a previous 
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production disruption, the production and distribution plan must be revised again 

considering the effects of both disruptions. Therefore, this can be a continuous process that 

must be dealt with on a real-time basis. A real-time disruption management scenario in a 

three-tier supply chain network, where the disruptions are not known a priori, is considered 

in this study. This means that the current plan is revised immediately after a disruption 

occurs as this disruption is impossible to predict. As it is assumed that any disruption event 

is random, disruption scenarios are generated by using a uniformly random distribution to 

determine characteristics such as the disruptions’ start times and durations. A new 

mathematical and heuristic approach is developed for obtaining a revised plan after the 

occurrence of a single disruption or series of disruptions on a real-time basis.  

The main contributions of this chapter can be summarized as follows. 

i. Developing an updated supply chain plan for a finite period on a rolling horizon 

basis to incorporate any changes in the data. 

ii. Developing a predictive mitigation planning approach for obtaining a better supply 

chain plan. 

iii. Developing a new quantitative approach for managing production disruptions 

which are not known in advance. After a disruption, the production and distribution 

plan is revised for a finite period in the future on a real-time basis.  

iv. Developing a new heuristic for generating a revised plan after a production 

disruption. The heuristic results are compared with those from another established 

solution technique for a good number of randomly generated test problems.  

v. Extending the heuristic to deal with multiple disruptions on a real-time basis. This 

heuristic is capable of determining a revised plan after each disruption occurs for as 

long as disruptions take place in the system. 

6.2 Problem Description 

Firstly, this chapter develops a supply chain model under ideal conditions for an infinite 

planning horizon. Basically, this ideal plan is used to determine the cycle length which is 

required for planning and analysis. A three-tier supply chain network with multiple entities 
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in each tier (such as manufacturing plants, DCs and retailers) is considered, as presented in 

Figure 6.1. In the ideal system, products are produced in the manufacturing plants and then 

moved to DCs and, finally, distributed to retailers from the DCs according to retailers’ 

demands. The total supply chain cost is minimised to obtain the ideal production and 

distribution plan. The ideal system is formulated mathematically as a constrained 

programming problem, where the objective is to minimise the total supply chain cost 

subject to capacity, distribution and demand constraints. The decision variables are the 

production quantity in each plant 𝑖, and the quantities transported from plant 𝑖 to DC 𝑗, and 

from DC 𝑗 to retailer 𝑘.  

In a real-life situation, a supply chain’s input data may vary at any time due to, for 

example, changes in demand, cost, production capacity and amount of raw materials. If 

there is any variation in any period, the ideal plan must be updated with the new known 

information. In fact, the model is run on a rolling horizon basis to incorporate changes in 

the data and is known as an updated plan. 

Some changes in the data may be known well in advance, as discussed above. However, 

others may not be but can be detected using appropriate prediction models. Such 

predictions will help to generate a better plan than the one developed under ideal 

conditions. In this chapter, the predicted data are used with the rolling horizon planning 

model to generate the revised plan which is known as predictive mitigation, and its 

methodology illustrated in Figure 6.2. Historical data are used to calculate the base forecast 

which is updated by predicting some future event, such as a demand fluctuation, 

unexpected incident and natural incident, with examples presented in Table 6.1. A rule and 

logic-based fuzzy inference system (FIS) is used to quantify the value of a qualitatively 

predicted event, with its working principle illustrated in Figure 6.3 (Paul, 2015). If there is 

no future event, the base forecast is used for a prediction on which revision of the supply 

chain plan is based on a rolling horizon.  
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 Figure 6.1: Ideal supply chain network for infinite planning horizon 
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Figure 6.2: Process of prediction for predictive mitigation 
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Table 6.1: Examples of future events (Y - yes and N - no) 

Event 

Predicted period 

1 2 ….. F 

Demand fluctuation N N ….. Y 

Unexpected incident  N Y ….. N 

Natural incident Y N ….. N 
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Figure 6.3: Rule and logic-based FIS (Paul, 2015) 

Finally, this chapter develops a recovery plan which is actually a reactive mitigation. In 

real-life situations, any supply chain can face a sudden disruption at any time. After such 

an occurrence, the production and distribution plan must be revised for a finite period in 

the future so that losses can be minimised and the system returns to its ideal plan as 

quickly as possible.  
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A production disruption is a familiar event in any manufacturing environment. If there is a 

sudden disruption at any plant, as that plant will be inoperable for a certain period of time, 

there will be a loss of production quantity. Afterwards, the main objective is to minimise 

that loss by revising the production and distribution plan for a finite period in the future, 

with the revision mechanism presented in Figure 6.4. After a disruption with a duration of 

 𝑇𝑑𝑛, the plan is revised for a future finite planning period (e.g., for the next M periods) 

which is known as a recovery window.  

Disruption Period 1 Period 2 Period 3 Period 4 ….. Period M

Tdn

Recovery window (finite planning period)
 

Figure 6.4: Mechanism of recovery plan for managing disruption 

The considered system may face multiple disruptions, one after the other in a series, within 

its recovery window. When a disruption occurs, a revised plan can be generated by solving 

the mathematical model for a single disruption. After finalizing the revised plan, if another 

disruption occurs within the recovery window, this plan needs to be revised again to 

consider the effects of both disruptions. This can be done by simply updating some of the 

parameters in the same mathematical model, for example, the newly disrupted plant, the 

start time of the disruption, the disruption duration, the quantity produced before starting 

the revised plan and the demand to be filled, to represent the changed scenario in order to 

re-optimise the plan for the current disruption. After every disruption, the plan is revised 

for a finite period in the future as long as disruptions occur in the system.  

In this study, the following strategies for managing a disruption are considered. 

i. Back orders: if a production quantity is lost, the portion of demand that cannot 

be filled at the scheduled time but will be delivered at a later date when 

available is known as the back-orders quantity. 

ii. Lost sales: if the system is not capable of filling demand after a disruption and 

customers will not wait for stock to be replenished, demand is lost. 
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iii. Outsourcing: if the production system is not capable of filling the demand on 

time, management may want to purchase some items from another company at 

a higher cost.  

6.2.1 Notations used in this Study 

The following notations are used in this study to formulate the mathematical model. 

𝑖  Plant index 

𝑗  DC index 

𝑘  Retailer index 

𝐼 Number of plants 

𝐽 Number of DCs 

𝐾 Number of retailers 

𝑃𝑖 Production quantity of plant 𝑖 under ideal conditions 

𝐶𝑃𝑖 Maximum production capacity of plant 𝑖 under ideal conditions 

𝐶𝐷𝑗 Maximum handling capacity of DC 𝑗   

𝑋𝑖𝑗 Transportation quantity from plant 𝑖 to DC 𝑗 under ideal conditions 

𝑌𝑗𝑘 Transportation quantity from DC 𝑗 to retailer 𝑘 under ideal conditions 

𝐷𝑘 Demand of retailer 𝑘  

𝑝𝑖 Production cost per unit at plant 𝑖 

𝐻1𝑖 Holding cost per unit per period at plant 𝑖 

𝐻2𝑗 Handling cost per unit at DC 𝑗 

𝐻3𝑘 Holding cost per unit per period at retailer 𝑘 

𝑇1𝑖𝑗 Transportation cost per unit from plant 𝑖 to DC 𝑗  

𝑇2𝑗𝑘 Transportation cost per unit from DC 𝑗 to retailer 𝑘 
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𝑂𝐶𝑗 Operating cost of DC 𝑗 

𝑆𝐶𝑖 Spare capacity of plant 𝑖  

𝑡𝑛  Start time of disruption at n
th

 plant as fraction of period  

𝑇𝑑𝑛 Disruption duration for n
th

 plant as fraction of period 

𝑃𝑖𝑚
′   Production quantity after disruption at plant 𝑖 in period m 

𝑋𝑖𝑗𝑚
′   Transportation quantity from plant 𝑖 to DC 𝑗 after disruption in period 𝑚 

𝑌𝑗𝑘𝑚
′   Transportation quantity from DC 𝑗 to retailer 𝑘 after disruption in period 𝑚 

𝐷𝑘𝑚
′   Quantity received by retailer 𝑘 after disruption in period 𝑚 

𝐿   Lost sales cost per unit 

𝐵   Back-orders cost per unit per period 

𝑆   Outsourcing cost per unit 

𝑀   Number of periods in recovery window 

6.2.2 Assumptions of the Study 

In this study, the following assumptions are made. 

i. A single type of item is produced in the system.  

ii. No inventory buffers are present in the system. 

iii. The ideal plan is updated if any information changes. 

iv. The ideal plan is revised according to the predicted data. 

v. The recovery plan is developed after the occurrence of a disruption. 

vi. The revised plan considers back orders, lost sales and outsourcing options. 

6.3 Model Formulation 

In this section, the mathematical model is formulated for both an ideal and disrupted 

supply chain system. The ideal plan is updated if there are any changes in the data and also 
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revised according to any prediction of future changes for a finite planning period. In the 

case of managing a disruption, the model is re-formulated to incorporate the effect of a 

disruption and the production and distribution plan revised for a finite planning period. 

After the recovery window, the production and distribution plan reverts to its ideal plan. 

6.3.1 Formulation of Ideal Plan 

In this section, the different costs are calculated to formulate the mathematical model for 

the ideal system. The production cost is determined as the per unit production cost 

multiplied by the production quantity, the average holding cost as the unit holding cost 

multiplied by the total inventory, the transportation cost as the unit transportation cost 

multiplied by the transportation quantity, the total operating cost as the sum of the 

operating cost of each DC, and the handling cost of distribution the unit handling cost 

multiplied by the total handling quantity. Finally, the different costs are summed to obtain 

the objective function to be minimised subject to capacity, distribution and demand 

constraints, where 𝑃𝑖,  𝑋𝑖𝑗 and 𝑌𝑗𝑘 are decision variables. The final mathematical model is 

considered a constrained programming problem. 

Costs at plant 

Production cost   

=∑𝑝𝑖𝑃𝑖

𝐼

𝑖=1

 

 

(6.1) 

Average holding cost  

=∑
1

2
𝐻1𝑖𝑃𝑖

𝐼

𝑖=1

 

 

(6.2) 

Transportation cost  

=∑∑𝑇1𝑖𝑗𝑋𝑖𝑗

𝐼

𝑖=1

𝐽

𝑗=1

 

 

(6.3) 
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Costs at DCs 

Operating cost  

=∑𝑂𝐶𝑗

𝐽

𝑗=1

 

 

(6.4) 

Handling cost  

=∑∑𝐻2𝑗

𝐼

𝑖=1

𝐽

𝑗=1

𝑋𝑖𝑗 

 

 

(6.5) 

Transportation cost  

=∑∑𝑇2𝑗𝑘𝑌𝑗𝑘

𝐽

𝑗=1

𝐾

𝑘=1

 

 

(6.6) 

 

Costs at retailer 

Average holding cost  

=∑
1

2
𝐻3𝑘𝐷𝑘

𝐾

𝑘=1

 

 

(6.7) 

 

Objective function 

The total supply chain cost (𝑇𝐶), which is the objective function, is derived using 

equations (6.1) to (6.7) and equals the total plant cost + total DC cost + total retailer cost, 

𝑇𝐶 =∑𝑝𝑖𝑃𝑖

𝐼

𝑖=1

+∑
1

2
𝐻1𝑖𝑃𝑖

𝐼

𝑖=1

+∑∑𝑇1𝑖𝑗𝑋𝑖𝑗

𝐼

𝑖=1

𝐽

𝐽=1

+∑𝑂𝐶𝑗

𝐽

𝑗=1

+∑∑𝐻2𝑗

𝐼

𝑖=1

𝐽

𝑗=1

𝑋𝑖𝑗 +∑∑𝑇2𝑗𝑘𝑌𝑗𝑘

𝐽

𝑗=1

𝐾

𝑘=1

+∑
1

2
𝐻3𝑘𝐷𝑘

𝐾

𝑘=1

 

 

 

(6.8) 

Here, 𝑃𝑖, 𝑋𝑖𝑗 and 𝑌𝑗𝑘 are decision variables, subject to the following constraints. 
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 𝑃𝑖 ≤ 𝐶𝑃𝑖;  ∀𝑖 
(6.9) 

 𝑃𝑖 =∑𝑋𝑖𝑗

𝐽

𝑗=1

;  ∀𝑖 (6.10) 

∑𝑋𝑖𝑗

𝐼

𝑖=1

=∑𝑌𝑗𝑘;  ∀𝑗

𝐾

𝑘=1

 (6.11) 

∑𝑋𝑖𝑗

𝐼

𝑖=1

≤ 𝐶𝐷𝑗;  ∀𝑗 
(6.12) 

∑𝑌𝑗𝑘

𝐽

𝑗=1

= 𝐷𝑘;  ∀𝑘 (6.13) 

∑𝑃𝑖

𝐼

𝑖=1

=∑𝐷𝑘

𝐾

𝑘=1

 (6.14) 

𝑃𝑖, 𝑋𝑖𝑗 and 𝑌𝑗𝑘 ≥ 0; ∀𝑖, 𝑗, 𝑘 (6.15) 

The production quantity of each plant is less than or equal to the maximum capacity of that 

plant (equation (6.9)), the constraints for distribution from the plant to DCs and DCs to 

retailers equations (6.10) and (6.11) respectively, the capacity constraints of the DCs 

equation (6.12), the demand of the retailers equation (6.13) and total production is equal to 

total demand (equation (6.14)) while equation (6.15) is a non-negativity constraint.  

The formulations for the updated and predictive mitigation planning approaches are 

presented in Appendix B. 

6.3.2 Formulation for Reactive Mitigation Approach 

In this section, a mathematical model for revising the production and distribution plan for a 

finite planning period after the occurrence of a production disruption, with the objective of 

minimising the total supply chain cost, is developed. As the recovery strategy involves 

back orders, outsourcing and lost sales options, there are additional cost equations for 

them. The back orders cost is determined as the unit back orders cost multiplied by the 

number of back-orders units and the time delay (Paul et al, 2015, in press), the lost sales 

http://en.wikipedia.org/wiki/Turned_a
http://en.wikipedia.org/wiki/Turned_a
http://en.wikipedia.org/wiki/Turned_a
http://en.wikipedia.org/wiki/Turned_a
http://en.wikipedia.org/wiki/Turned_a
http://en.wikipedia.org/wiki/Turned_a
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cost as the unit lost sales cost multiplied by the number of lost sales units (Paul et al., 

2015) and the outsourcing cost by the quantity outsourced per unit purchase cost. 

If there is a disruption at the n
th

 plant for a duration of 𝑇𝑑𝑛  with a start time of  𝑡𝑛, the 

production quantity loss after a single disruption can be determined using equations (6.16) 

and (6.17). 

If 𝑡𝑛 + 𝑇𝑑𝑛 <
 𝑃𝑛

𝐶𝑃𝑛
 

𝐷′ =  𝐶𝑃𝑛 ∗ 𝑇𝑑𝑛 −𝑚𝑖𝑛 {∑𝑆𝐶𝑖

𝐼

𝑖=1

,∑𝐶𝑃𝑖 ∗ (1 − 𝑡𝑛 − 𝑇𝑑𝑛)

𝐼

𝑖=1

} (6.16) 

If  𝑡𝑛 + 𝑇𝑑𝑛 >
 𝑃𝑛

𝐶𝑃𝑛
 

𝐷′ = 𝐶𝑃𝑛 ∗ (
 𝑃𝑛
𝐶𝑃𝑛

− 𝑡𝑛) − 𝑚𝑖𝑛 {∑𝑆𝐶𝑖

𝐼

𝑖=1

,∑𝐶𝑃𝑖 ∗ (1 − 𝑡𝑛 − 𝑇𝑑𝑛)

𝐼

𝑖=1

} (6.17) 

As this quantity needs to be filled during the recovery window, back orders, lost sales and 

outsourcing options are considered so that the total supply chain cost during this time can 

be minimised.  

Costs at plant 

Production cost   

= ∑∑𝑝𝑖

𝐼

𝑖=1

𝑃𝑖𝑚
′

𝑀

𝑚=1

 

 

(6.18) 

Average holding cost  

= ∑∑
1

2
𝐻1𝑖

𝐼

𝑖=1

𝑃𝑖𝑚
′

𝑀

𝑚=1

 

 

(6.19) 

Transportation cost  

= ∑∑∑𝑇1𝑖𝑗𝑋𝑖𝑗𝑚
′

𝐼

𝑖=1

𝐽

𝑗=1

𝑀

𝑚=1

 

 

(6.20) 
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Cost at DCs 

Operating cost  

= 𝑀∑𝑂𝐶𝑗

𝐽

𝑗=1

 

 

(6.21) 

Handling cost  

= ∑∑∑𝐻2𝑗

𝐼

𝑖=1

𝐽

𝑗=1

𝑋𝑖𝑗𝑚
′

𝑀

𝑚=1

 

 

(6.22) 

Transportation cost  

= ∑∑∑𝑇2𝑗𝑘𝑌𝑗𝑘𝑚
′

𝐽

𝑗=1

𝐾

𝑘=1

𝑀

𝑚=1

 

 

(6.23) 

 

Costs at retailer 

Average holding cost  

= ∑∑
1

2
𝐻3𝑘𝐷𝑘𝑚

′

𝐾

𝑘=1

𝑀

𝑚=1

 

 

(6.24) 

Back orders cost  

= 𝐵 ∑ 𝑈𝑛𝑖𝑡𝑠 𝑑𝑒𝑙𝑎𝑦 𝑎𝑡 𝑝𝑒𝑟𝑖𝑜𝑑 𝑚 ∗ 𝑑𝑒𝑙𝑎𝑦𝑚

𝑀

𝑚=1

 

= 𝐵 [∑ 𝑚(∑𝑃𝑖𝑚
′

𝐼

𝑖=1

−∑𝑃𝑖

𝐼

𝑖=1

)

𝑀

𝑚=1

] 

 

 

 

(6.25) 

Outsourcing cost  

= 𝑆 (𝑀∑𝑃𝑖

𝐼

𝑖=1

+ 𝐷′ − ∑∑𝑃𝑖𝑚
′

𝐼

𝑖=1

𝑀

𝑚=1

) 

 

(6.26) 
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Lost sales cost  

= 𝐿 (𝑀∑𝑃𝑖

𝐼

𝑖=1

+ 𝐷′ − ∑∑𝑃𝑖𝑚
′

𝐼

𝑖=1

𝑀

𝑚=1

) 

 

 

(6.27) 

If 𝑆 ≤ 𝐿, then the lost sales cost = 0, otherwise the outsourcing cost =0. 

The total supply chain cost (𝑇𝐶), which is the objective function, is derived using 

equations (6.18) to (6.27) and equals the total plant cost + total DC cost + total retailer cost 

+ back orders cost + outsourcing cost + lost sales cost, where 𝑃𝑖𝑚
′ ,  𝑋𝑖𝑗𝑚

′ , 𝑌𝑗𝑘𝑚
′  and 𝐷𝑘𝑚

′  are 

decision variables.  

𝑃𝑖𝑚
′ ≤ 𝐶𝑃𝑖;  ∀𝑖,𝑚  (6.28) 

𝑃𝑖𝑚
′ =∑𝑋𝑖𝑗𝑚

′

𝐽

𝑗=1

;  ∀𝑖, 𝑚 (6.29) 

∑𝑋𝑖𝑗𝑚
′

𝐼

𝑖=1

=∑𝑌𝑗𝑘𝑚
′

𝐾

𝑘=1

;  ∀𝑗, 𝑚 (6.30) 

∑𝑋𝑖𝑗𝑚
′

𝐼

𝑖=1

≤ 𝐶𝐷𝑗,𝑚;  ∀𝑗,𝑚 (6.31) 

∑𝑌𝑗𝑘𝑚
′

𝐽

𝑗=1

= 𝐷𝑘𝑚
′ ;  ∀𝑘,𝑚 (6.32) 

𝑀∑𝑃𝑖

𝐼

𝑖=1

+ 𝐷′ ≥ ∑∑𝑃𝑖𝑚
′

𝐼

𝑖=1

𝑀

𝑚=1

 (6.33) 

𝑃𝑖, 𝑋𝑖𝑗 and 𝑌𝑗𝑘 ≥ 0; ∀𝑖, 𝑗, 𝑘 (6.34) 

The production quantity of each plant in the revised plan is less than or equal to its 

maximum capacity in the revised plan (equation (6.28)), the constraints for distribution 

from the plant to DCs and from DCs to retailers equations (6.29) and (6.30) respectively, 

the capacity constraint of the DCs equation (6.31), the constraint for the quantity received 

by each retailer equation (6.32), the total lost sales quantity, which should be non-negative, 

equation (6.33) and the non-negativity of the decision variables equation (6.34).  

http://en.wikipedia.org/wiki/Turned_a
http://en.wikipedia.org/wiki/Turned_a
http://en.wikipedia.org/wiki/Turned_a
http://en.wikipedia.org/wiki/Turned_a
http://en.wikipedia.org/wiki/Turned_a
http://en.wikipedia.org/wiki/Turned_a
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Proposition 1: for a given 𝑃𝑖, 𝐶𝑃𝑖, 𝐶𝐷𝑗 and 𝐷𝑘, and the n
th

 disrupted plant, if 𝐵 ≪ 𝐿, 𝑆, the 

recovery plan will use only the back orders option if 𝐷′ ≤ 𝑀∑ 𝑆𝐶𝑖
𝐼
𝑖=1 . 

Proof: let a production disruption occur at the n
th

 plant starting at period 𝑡𝑛 with a 

disruption duration of  𝑇𝑑𝑛. 

For a disruption, if the spare capacity is greater than or equal to the demand to be filled 

during the recovery window, as the production system is capable of producing and meeting 

that demand, the revised plan will utilize only the back-orders option as condition of 

existence of only back orders: 

 𝑀∑𝑃𝑖

𝐼

𝑖=1

+ 𝐷′ = ∑∑𝑃𝑖𝑚
′

𝐼

𝑖=1

𝑀

𝑚=1

  

  𝐷
′ = ∑∑𝑃𝑖𝑚

′

𝐼

𝑖=1

𝑀

𝑚=1

−𝑀∑𝑃𝑖

𝐼

𝑖=1

  

  𝐷′ ≤ 𝑀∑𝐶𝑃𝑖

𝐼

𝑖=1

−𝑀∑𝑃𝑖

𝐼

𝑖=1

 (using the equation (6.28)) 

  𝐷
′ ≤ 𝑀(∑𝐶𝑃𝑖

𝐼

𝑖=1

−∑𝑃𝑖

𝐼

𝑖=1

)  

  𝐷
′ ≤ 𝑀∑𝑆𝐶𝑖

𝐼

𝑖=1

 (6.35) 

Therefore, it can be said that, if 𝐷′ ≤ 𝑀∑ 𝑆𝐶𝑖
𝐼
𝑖=1 , the system will utilize only the back 

orders option. 

Proposition 2: for a given 𝑃𝑖, 𝐶𝑃𝑖, 𝐶𝐷𝑗 and 𝐷𝑘, and the n
th

 disrupted plant, the revised plan 

will use both the lost sales/outsourcing and back orders options if 𝐷′ > 𝑀∑ 𝑆𝐶𝑖
𝐼
𝑖=1 . 

Proof: this is the opposite consequence to that of Proposition 1. 
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6.4 Solution Approaches 

In this section, solution approaches for both ideal and disrupted systems are developed. A 

standard solution technique for solving the ideal supply chain system is proposed and 

applied to obtain updated and predictive mitigation plans for changes in the data and future 

predictions respectively. An efficient heuristic for managing a single disruption in the 

system is developed and then extended to be implemented for managing multiple 

disruptions on a real-time basis. 

6.4.1 Solution Approach for Generating Supply Chain Plan 

The ideal production and distribution plan is obtained using the branch and bound 

algorithm of the LINGO optimisation software to solve the model for the system which is a 

constrained programming problem, and is also applied to obtain the updated and predictive 

mitigation plans. 

6.4.2 Heuristic for Managing Single Disruption  

A heuristic is designed to obtain the revised plan after an occurrence of a single disruption 

at any plant. Firstly, both the ideal and disrupted systems are solved using the LINGO 

optimisation software and then the heuristic efficiently solves the disruption management 

model through the following steps. 

Step 1: Input all the information about production and distribution under ideal conditions. 

Step 2: Obtain an ideal production and distribution plan by solving the mathematical 

model for ideal situations and also determine the spare capacity in each plant. 

Step 3: Input a production disruption scenario involving a disrupted plant, disruption start 

time (𝑡𝑛) and disruption duration (𝑇𝑑𝑛). 

Step 4: Determine the production plan. 
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4.1. If 𝐵 ≤ 𝐿, 𝑆: 

4.1.1 if 𝐷′ ≤ 𝑀∑ 𝑆𝐶𝑖
𝐼
𝑖=1 , use the spare capacity to revise the plan until the 

unfilled demand is met; 

4.1.2 if 𝐷′ > 𝑀∑ 𝑆𝐶𝑖
𝐼
𝑖=1 , use both the spare capacity and lost 

sales/outsourcing options; 

 4.1.2.1 if 𝐿 > 𝑆, use the outsourcing option and 

4.1.2.2 if 𝐿 ≤ 𝑆, use the lost sales option. 

 4.2. If 𝐵 > 𝐿, 𝑆:  

  4.2.1 if 𝐿 > 𝑆, use the outsourcing option to revise the plan or 

  4.2.2 if 𝐿 ≤ 𝑆, use the lost sales option to revise the plan. 

Step 5: Determine the distribution plan. 

5.1. If 𝐷′ ≤ 𝑀∑ 𝑆𝐶𝑖
𝐼
𝑖=1 , determine the distribution plan by varying only the 

transportation quantity while using the same path as the ideal plan.  

5.2. If 𝐷′ > 𝑀∑ 𝑆𝐶𝑖
𝐼
𝑖=1 , determine the distribution plan by varying only the 

transportation quantity while using the same path as that obtained from LINGO 

for  𝐷′ > 𝑀∑ 𝑆𝐶𝑖
𝐼
𝑖=1 . 

Step 6: Record the results and determine the different costs. 

Step 7: Stop. 

6.4.3 Proposed Heuristic for Multiple Disruptions  

In this section, the heuristic first developed to manage a single disruption is extended to 

manage multiple production disruptions on a real-time basis. When a disruption occurs, a 

revised plan can be generated by solving the mathematical model using the proposed 

heuristic for a single disruption. Then, if another disruption occurs, the plan should be 

revised again to consider the effects of both disruptions. This can be done by simply 

updating some of the parameters in the same mathematical model to represent the changed 

scenario; for example, the newly disrupted plant, start time of the disruption, disruption 
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duration, quantity produced before starting the revised plan and demand to be filled in the 

revised plan. The objective function and constraints are also updated for the changed 

situation. Therefore, the heuristic for a single disruption can still be used but must be 

slightly modified for the changed situation to be capable of dealing with a series of 

disruptions on a real-time basis. In the proposed approach, the heuristic must be run every 

time a disruption occurs to re-optimise the revised plan while there are disruptions in the 

system. 

For a series of disruptions, the production quantity loss after the s
th

 disruption can be 

determined using equations (6.36) and (6.37). 

If 𝑡𝑛 + 𝑇𝑑𝑛 <
 𝑃𝑛

𝐶𝑃𝑛
 

𝐷′𝑠=𝐷
′
𝑠−1 − (∑∑𝑃𝑖𝑚

′

𝐼

𝑖=1

𝑙

𝑚=1

− 𝑙 ∗∑𝑃𝑖

𝐼

𝑖=1

) + 𝐶𝑃𝑛 ∗ 𝑇𝑑𝑛

−𝑚𝑖𝑛 {∑𝑆𝐶𝑖

𝐼

𝑖=1

,∑𝐶𝑃𝑖 ∗ (1 − 𝑡𝑛 − 𝑇𝑑𝑛)

𝐼

𝑖=1

} 

 

 

(6.36) 

If  𝑡𝑛 + 𝑇𝑑𝑛 >
 𝑃𝑛

𝐶𝑃𝑛
 

𝐷′𝑠 =𝐷
′
𝑠−1 − (∑∑𝑃𝑖𝑚

′

𝐼

𝑖=1

𝑙

𝑚=1

− 𝑙 ∗∑𝑃𝑖

𝐼

𝑖=1

) + 𝐶𝑃𝑛 ∗ (
 𝑃𝑛
𝐶𝑃𝑛

− 𝑡𝑛)

− 𝑚𝑖𝑛 {∑𝑆𝐶𝑖

𝐼

𝑖=1

,∑𝐶𝑃𝑖 ∗ (1 − 𝑡𝑛 − 𝑇𝑑𝑛)

𝐼

𝑖=1

} 

 

 

(6.37) 

Here, 𝑙 is the new disrupted period since the previous disruption. 

The main steps in the proposed heuristic for a series of disruptions on a real-time basis can 

be presented as follows. 

Step 1: Input all the information about production and distribution under ideal conditions. 

Step 2: Determine the optimal plan under ideal conditions. 
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Step 3: Input the disruption scenario (disrupted plant, disrupted period since the previous 

disruption, disruption start time (𝑡𝑛) and disruption duration (𝑇𝑑𝑛)). 

Step 4: Update the loss of production quantity using equations (6.36) and (6.37). 

Step 5: Revise the production plan for the corresponding disruption using the proposed 

heuristic developed in Section 6.4.2. 

Step 6: Record and update the optimal production and distribution plan from Step 5 after 

the disruption occurs.  

Step 7: If there is any other disruption, go to Step 3. 

Step 8: Stop. 

The heuristic for managing both a single disruption and multiple disruptions is coded in 

MATLAB R2012a and executed on an Intel core i7 processor with 8.00 GB RAM and a 

3.40 GHz CPU.  

6.5 Experimentations and Analysis of Results 

In this section, the experiments and results are discussed for both the ideal and disrupted 

systems, and the updated and predictive mitigation plans for a good number of randomly 

generated test problems. For the disrupted system, the results for both a single disruption 

and multiple disruptions are analysed. The test problems are solved using both the 

heuristic, and branch and bound algorithm of the LINGO optimisation software. To judge 

the quality of the heuristic solutions, the results, obtained from the two different 

techniques, are compared.  

6.5.1 Experimentation for Ideal System 

The following data were considered for an ideal supply chain network. 

𝐼 = 2; 𝐽 = 3; 𝐾 = 6;  𝐶𝑃𝑖 = [2000, 2700]; 𝐷𝑘 = [450, 500, 650, 725, 800, 1000]; 

𝐶𝐷𝑗 = [2500, 2000, 1500];  𝑝𝑖 = [19, 22]; 𝐻1𝑖 = [1.2, 1]; 𝐻2𝑗 = [1.5, 1.2, 0.8]; 
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𝐻3𝑘 = [1.5, 1.2, 0.8, 1.75, 1, 0.9];  𝑂𝐶𝑗 = [10000, 15000, 8000] 

𝑇1𝑖𝑗 = [
3.0 4.0 5.0
5.0 6.0 3.0

] ;  𝑇2𝑗𝑘 = [
6.0 2.0 4.0
8.0 5.0 3.0
6.0 2.0 8.0

    
3.0 6.0 4.0
2.0 6.0 4.0
6.0 6.0 7.0

] 

𝑇1𝑖𝑗 = [
3.0 4.0 5.0
5.0 6.0 3.0

] ;  𝑇2𝑗𝑘 = [
6.0 2.0 4.0
8.0 5.0 3.0
6.0 2.0 8.0

    
3.0 6.0 4.0
2.0 6.0 4.0
6.0 6.0 7.0

] 

The ideal system was solved using the branch and bound algorithm of the LINGO 

optimisation software, with the optimal plan for minimising the total supply chain cost 

obtained and presented in Table 6.2. The total minimum cost for the ideal system was 

156456.9. 

Table 6.2: Optimal production and distribution plan for ideal system  

Production 

plan 

Distribution plan 

 DC  Retailer 

P1 P2 Plant 1 2 3 DC 1 2 3 4 5 6 

2000 2125 

1 0 2000 0 1 0 0 0 0 0 625 

2 625 0 1500 2 0 0 650 725 250 375 

– – – – 3 450 500 0 0 550 0 

6.5.2 Experimentation for Updated and Predictive Mitigation Plans 

In this section, the results for both the updated and predictive mitigation plans are 

discussed using random data. 

6.5.2.1 Updated Plan 

The results for 50 random test problems were analysed and the test problems were 

generated by varying the demand and cost data. The problems were solved using LINGO 
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to obtain an updated plan in a finite planning horizon of three periods, with their total cost 

patterns presented in Figure 6.5. 

 

Figure 6.5: Total cost of random experimentation for updated plan 

6.5.2.2 Predictive Mitigation Plan 

In this section, the results were analysed for the predictive mitigation approach. The 

demand data was predicted by applying the rule and logic-based FIS developed using the 

fuzzy toolbox of MATLAB R2012a. Then, the plan was revised by solving the formulation 

for the predicted demand. For this analysis, the demand was predicted in the 3
rd

 period and 

revised the plan accordingly in a finite planning horizon of three periods using LINGO. 

Table 6.3 presents the range of data considered for different predicted events with the 

formula for obtaining the predicted value: 

predicted value = base forecast ± value from FIS (6.38) 

A number of rules was generated for relating all the inputs to their predicted values and 

then determine these values for 50 random test problems using the rule viewer of the FIS. 

For each test problem, the supply chain plan was revised according to LINGO’s 

predictions. The pattern of the total cost obtained from this experiment is presented in 

Figure 6.6. 
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Table 6.3: Range of data for predictions 

Event NH NM NL PL PM PH 

Demand 

fluctuation 
[-1 -0.8 -0.6] [-0.7 -0.5 -0.3] [-0.4 -0.2 0] [0 0.2 0.4] [0.3 0.5 0.7] [0.6 0.8 1] 

Unexpected 

incident 
--- --- --- [0 0.2 0.4] [0.3 0.5 0.7] [0.6 0.8 1] 

Natural 

incident 
[-1 -0.8 -0.6] [-0.7 -0.5 -0.3] [-0.4 -0.2 0] [0 0.2 0.4] [0.3 0.5 0.7] [0.6 0.8 1] 

NH: negative high, NM: negative medium, NL: negative low 

PL: positive low, PM: positive medium, PH: positive high 

 

 

Figure 6.6: Total cost pattern of random experimentation for predictive mitigation 

6.5.3 Single Disruption 

For the single disruption problem, the same basic data was used as for the ideal system. For 

illustrative purposes, sixteen different disruption scenarios were generated and their 

parameters are presented in Table 6.4. The disruption start times were classified as early, 
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middle and late, and disruption durations as low, medium and high. As, when the 

disruption start time was in the late range, it was not possible to have a high disruption 

duration because the latter was dependent on the former, two scenarios (1-L-H and 2-L-H) 

were absent from the design of this experiment. Then, 10 random test problems were 

generated for each scenario by varying the cost data using the following additional data. 

𝐵 = 10, 𝐿 = 50, 𝑆 = 60, and 𝑀 = 2 

Table 6.4: Design of experiment with total of sixteen scenarios 

Disrupted 

plant 

Disruption start 

time 
Disruption duration Scenario name 

1 0.60 (late) 

– – 

0.35 (medium) 1-L-M 

0.20 (low) 1-L-L 

1 0.30 (middle) 

0.55 (high) 1-M-H 

0.33 (medium)  1-M-M 

0.20 (low)  1-M-L 

1 0.10 (early) 

0.70 (high) 1-E-H 

0.50 (medium)  1-E-M 

0.18 (low) 1-E-L 

2 0.55 (late) 

– – 

0.30 (medium) 2-L-M 

0.15 (low) 2-L-L 

2 0.35 (middle) 

0.60 (high) 2-M-H 

0.40 (medium) 2-M-M 

0.10 (low) 2-M-L 

2 
0.05 (early) 

 

0.75 (high) 2-E-H 

0.30 (medium) 2-E-M 

0.12 (low) 2-E-L 
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The sixteen scenarios in Table 6.4, each with ten random test problems, were solved using 

both the heuristic and LINGO optimisation software. The results for all 160 random 

disruption test problems were compared and the average percentage of deviation between 

those obtained from the two approaches, calculated by equation (6.39), was only 0.0007% 

which, again, was negligible. Moreover, this may merely have been due to the rounding of 

the values of the decision variables. It can be said that the results obtained from the two 

approaches were very consistent. 

Average percentage of deviation 

 =
1

𝑁
∑
|Total profit from heuristic−Total profit from LINGO|

Total profit from LINGO
× 100%       

 

(6.39) 

Here, 𝑁 = total number of test problems. 

6.5.4 Series of Disruptions 

To demonstrate the usefulness of the proposed heuristic for solving different scenarios with 

multiple production disruptions, the same basic data was used as for the ideal and disrupted 

systems presented in Sections 6.5.1 and 6.5.3 respectively. In a supply chain system, a 

series of production disruptions can occur at any plant, one after another, on a real-time 

basis. The first disruption can be managed using the single disruption approach discussed 

in the previous section. If another disruption occurs at any plant during the recovery 

window of the previous one, as this may affect the revised plan of previous disruptions, 

this plan must be considered a set of additional restrictions. For experimental purposes, 

several random disruptions were generated to occur one after another. Table 6.5 presents 

cases with different random combinations of a disrupted plant, disruption start times and 

disruption durations. Although disruptions can happen continuously within a production 

cycle, Table 6.5 presents only five disruptions as a sample representation. The production 

and distribution plan were revised immediately after each disruption occurred in the 

system. The problem was solved using the proposed heuristic, and the results after each 

disruption for the total supply chain and total lost sales cost in the revised plan are 

presented in Table 6.6. As it was observed that, the system utilized both the spare capacity 
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and lost sales options for the first three disruptions for revising the plan and, capable of 

revising plan using only back-orders options for the 4th disruptions.  

Table 6.5: A case problem for multiple disruptions 

Disruption 

number 

Disrupted 

plant 

Disrupted 

period since 

previous 

disruption 

Disruption 

start time 

Disruption 

duration 

1 1 -- 0.05 0.85 

2 2 3 0.22 0.70 

3 2 1 0.55 0.25 

4 1 4 0.35 0.30 

5 2 2 0.70 0.10 

… … … … … 

   

Table 6.6: Summary of results for series of disruptions 

Disruption 

number 
Total cost 

Total back-

orders cost 

Total lost sales 

cost 

Total outsourcing 

cost 

1 379990 17250 4000 0 

2 376240 17250 250 0 

3 378990 17250 3000 0 

4 317912 250 0 0 

5 316830 0 0 0 

… … … … … 

6.5.5 Effect of Disruption Duration 

As the disruption duration has a significant impact on the total supply chain, back orders 

and lost sales costs, its relationships with these factors are analysed. This section presents a 
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number of studies, in each of which only one variable is changed while the other 

parameters have the default values of the ideal system presented in Section 6.5.1.  

Figures 6.7, 6.8 and 6.9 respectively show the changes in the total supply chain, back 

orders and lost sales costs for varying disruption durations. In this analysis, the disruption 

start time is kept constant at 0 and it is observed that the total supply chain cost increases 

with increasing durations of disruptions at both plants 1 and 2.  

In Figure 6.7, it is observed that the revised plan uses no additional cost when the 

disruption durations are less than or equal to 0.20 and 0.30 for disruptions at plant 1 and 2 

respectively. This is because the system utilizes the spare capacity of the disrupted period 

to fill the quantity loss. However, then there is an increasing trend in the total supply chain 

cost because of the introduction of back orders and lost sales costs in the solutions.  

 

 Figure 6.7: Changes in total supply chain cost for varying disruption durations 

Figure 6.8 presents changes in the back orders cost with different disruption durations. It is 

observed that they occur in the system after disruption durations of 0.2 and 0.3 at plants 1 

and 2 respectively and increase up to those of 0.65 and 0.85 respectively. Then, the lost 

sales cost appears in the system and the back orders cost becomes a fixed amount. 
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Figure 6.8: Changes in total back orders cost for varying disruption durations 

Figure 6.9 presents changes in the lost sales cost for different disruption durations. It is 

observed that they occur in the system after disruption durations of 0.6 and 0.85 at plants 1 

and 2 respectively and then increases. Previously, the system was capable of recovering 

using only the back orders option. 

 

Figure 6.9: Changes in total lost sales cost for varying disruption durations 
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6.6 Chapter Summary 

The main objective of this chapter was to develop both predictive and reactive mitigation 

planning approaches for a supply chain, and to revise the plans based on any future 

prediction and after the occurrence of a production disruption on a real-time basis. This 

chapter introduced a three-stage supply chain network model with multiple numbers of 

manufacturing plants, DCs and retailers. It was formulated as a constrained programming 

problem in which the objective was to minimise the total supply chain cost. The ideal 

supply chain system worked in an infinite rolling planning horizon. The plans were revised 

if there were any changes in data and predictions using the developed prediction 

methodology. The production and distribution plan was revised again after a disruption in 

the system for a finite planning period in the future so that the system could return to its 

ideal plan as quickly as possible. An efficient heuristic for obtaining a revised plan for 

either a single disruption or series of disruptions on a real-time basis was proposed. Sixteen 

different scenarios were developed, each with ten randomly generated disruption test 

problems, and compared the performances of the heuristic and LINGO for them. It was 

shown that the average percentage of deviation in the results was only a negligible 

0.0007%. Therefore, it can be said that the proposed mathematical and heuristic approach 

offers a potentially very useful quantitative means of helping decision makers arrive at 

prompt and accurate decisions regarding both predictive and reactive mitigation plans.  

The disruption recovery problems, for managing production disruption in different 

production-inventory and supply chain systems, have been addressed in this and previous 

chapters. As fluctuation in demand is one of the major sources of risk and it can imbalance 

the total supply chain plan, it would be interesting to investigate this specific type of 

disruption. Furthermore, considering the lack of research concerning demand fluctuation, I 

have considered it as the direction of my next research work, as discussed in the next 

chapter.   

 

 



 

Chapter 7 Managing Demand Fluctuation 

This chapter considers a supplier-retailer system, that operates under an agreed coordinated 

policy, with an imperfect production process and a possibility of having demand 

fluctuation. In this chapter, a dynamic planning process is proposed to deal with short-term 

demand fluctuations. To do this, a mathematical model is first developed for a single 

fluctuation, either for increasing or decreasing demand rate. The model generates a revised 

plan, after the occurrence of the fluctuation event. A new and efficient heuristic is 

proposed to solve the developed model. Secondly, multiple fluctuations are considered, for 

which a new occurrence may or may not affect the revised plan of earlier occurrences and 

the heuristic is extended so that is capable of dealing with multiple demand fluctuations on 

a real-time basis. A good number of random test problems is generated and also solved 

using a genetic algorithm, in order to compare the solutions with our heuristic. Finally, this 

chapter presents some numerical examples and sensitivity analysis to explain the 

usefulness of the developed model.  

7.1 Introduction 

This chapter deals with demand fluctuations on a real-time basis. That means, the current 

plan is revised after experiencing any real demand fluctuation. Such a fluctuation is not 

known in advance and it is impossible to be predicted. It is assumed that both the demand 

fluctuation and the duration of fluctuation will follow a stochastic process. To do this, a 

mathematical model is developed for dealing with a single occurrence of demand 

fluctuation. Heuristics are proposed to solve the models for managing both a single and 

multiple fluctuations. The objective in the model is to maximise the total profit as the 

revenue varies with production process reliability.  The main contributions of this chapter 

can be summarized as follows: 

i. Modelling a supplier-retailer coordinated system under demand fluctuation. Here, 

the demand fluctuation is not known in advance and it follows a stochastic process. 
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So the plan is revised, for a future period, after experiencing the fluctuation, on a 

real-time basis.  

ii. Developing a new heuristic to generate the revised plan after the occurrence of a 

demand fluctuation. The heuristic is able to produce quality solutions with little 

computational time. 

iii. Extending the heuristic to deal with multiple fluctuations on a real-time basis. In 

the multiple fluctuations case, any new fluctuations may or may not affect the 

revised plans of the previous fluctuations. These two cases may be introduced as 

dependent and independent scenarios. The extended heuristic is capable of dealing 

with both scenarios. 

For better understanding of the demand fluctuation problem, a definition of the different 

terms used in this chapter is provided below. 

Demand fluctuation: Any kind of variation in product demand. Demand can be increased 

or decreased for a certain period of time, which is known as the fluctuation period. 

Process reliability: Percentage of non-defective products produced in the production 

system (Cheng, 1989).  

Revised plan: If the demand variation occurs for a given period of time, it is necessary to 

revise the schedule for some periods in the future (known as a revised planning window) 

until the system returns to normal schedule. It is known as a revised plan. 

Backorder: If the demand rate is increased for a certain period of time, then the portion of 

demand that cannot be fulfilled at the scheduled time, but that will be delivered at a later 

date when available, is known as the backorder quantity.  

Lost sales: If the demand rate is increased for a certain period of time and the production 

process is not capable of fulfilling that demand, then customers will sometime not wait for 

the stock to be replenished, and so that demand is lost.  

Loss of production: If the demand rate is decreased for a certain period of time, then the 

production process has to reduce the lot size because of the decreasing demand, this will 

reduce profit. Note that, in this case, there are no backorder or lost sales.  
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7.2 Problem Description 

In this section, a two-stage supply-retailer coordinated system is discussed, where a 

manufacturer produces a single product and it is supplied to a retailer. The product is 

produced in batches, and once a batch is completed at the manufacturer, the whole batch is 

then transported to the retailer for sale to customers (Sarker and Khan, 1999). The system 

is presented in Figure 7.1, where the inventory built up in each stage is batch processed. 

The production of non-defective items in any batch is dependent on production process 

reliability. As it is assumed that the production capacity is higher than the demand, there is 

an idle time-slot between the consecutive production batches. The lot sizes of the 

manufacturer and retailer are assumed to be the same as this is a perfectly balanced system.  

Q1

rP

t1 t2

Manufacturer

Retailer

Time

Time

DQ2

 

Figure 7.1: Original supplier-retailer coordinated system  

The product demand can fluctuate, such as an increase or decrease in the demand rate, for a 

certain period of time. If the demand rate is increased for a given period of time, the 

utilization of idle time-slots in the production system may help to meet the additional 

demand. However, as the retailer receives the products as a lot, the additional demand must 

be met from the future supplies (that is from the revised lot). This may result in costly 

backorder and/or lost sales due to delayed delivery. If the demand is decreased for a given 

period of time, then the production process has to reduce the future lot size in some cycles 

to avoid excessive inventory.   
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Figure 7.2: Managing a single demand fluctuation  

Figure 7.2 shows a typical revised plan caused by an increasing demand rate, where the 

system uses the idle production time to update the production quantity for a given number 

of cycles. The revised production plan will start immediately after the cycle experiences 

the demand fluctuation. As shown in the figure, the demand fluctuation occurred with an 

increasing rate of ∆𝐷 for a period 𝑇𝑑. After the fluctuation period, the demand rate returned 

to its normal rate. As the system experienced an increased demand fluctuation for a period, 

there is an unfulfilled demand after the fluctuation. Our approach attempts to satisfy this 

unfulfilled demand by using the idle production time during the revised planning window. 

In the figure, the dashed line represents the revised plan after the demand fluctuation. After 

the occurrence of the demand fluctuation, the future lot sizes for the immediately next 

cycle of the fluctuated cycle, 𝑋𝑖 and 𝑌𝑖 (𝑖 = 1,2, … ,𝑀), will be determined to maximise the 

profit for the changed scenario, which is shown as a dashed line. Figure 7.3 shows an 

alternate case, namely for when the demand rate is decreased for a period. In this case the 

system, unless changed, will have some excess inventory at the end of the cycle. So the 

system has to reduce the future production lot size to match with the demand as soon as 

possible to avoid excessive inventory, as shown in Figure 7.3. 



Chapter 7: Managing Demand Fluctuation 185 

 

 

 

Q1

Q2

rP

t1 t2

Manufacturer

Retailer

Time

Time

Original system

Revised plan

D+ΔD

Td

Decreased 

demand rate

q

 

Figure 7.3: Revised plan for 𝑈𝑑 < 0 

7.2.1 Notations used in this Study 

In this chapter, the following notations have been used to formulate the model that is 

applied after the occurrence of a single fluctuation. 

𝑄1  Production lot size for manufacturer  = 𝑋𝑖,0  

𝑄2  Ordering lot size for retailer  = 𝑌𝑖,0  

𝑃  Annual production rate 

𝑟  Process reliability  

𝐷  Annual demand rate 

𝑆𝑡  Set-up time for a cycle for the manufacturer 

𝐻1  Holding cost for the manufacturer ($ per unit per year) 

𝐻2  Holding cost for the retailer ($ per unit per year) 

𝐴1  Set-up cost for the manufacturer ($ per set-up) 

𝐴2  Ordering cost for the retailer ($ per order) 

𝐶𝑃  Production cost per unit 

𝐶𝑅  Rejection cost per unit 

𝐶𝐼  Inspection cost as a percentage of production cost 

𝐶𝐿  Per unit cost due to loss of production 

𝐵  Back order cost ($ per unit per unit time) 

𝐿  Lost sales cost for retailer ($ per unit) 
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𝑚1  Mark-up of selling price (𝑚1𝐶𝑃) – must be greater than 1 

𝑌𝑖,0

𝐷
  Cycle time for normal cycle 𝑖 

𝑀  Number of cycles in the revised planning window 

𝑋𝑖 Lot size for cycle 𝑖 in the revised planning window, for the manufacturer after the 

fluctuation (𝑖 = 1, 2, … . ,𝑀) 

𝑌𝑖  Lot size for cycle 𝑖 in the revised planning window, for the retailer after the 

fluctuation (𝑖 = 1, 2, … . ,𝑀) 

𝛥𝐷  Change of demand rate for the  fluctuation 

𝑇𝑑 Fluctuation period for the fluctuation 

𝑈𝑑  Unfulfilled demand after the fluctuation 

𝑞  Pre-fluctuation inventory level 

7.2.2 Assumptions of the Study 

In this study, the following assumptions have been made. 

i. The actual production rate is greater than its demand rate. 

ii. The products are produced in a lot, and after the production of each lot, it is 

delivered to the retailer (a lot for lot system).  

iii. The recovery cycle will start immediately after the cycle that is experiencing 

the demand fluctuation.  

iv. There are equal numbers of cycles in the revised planning window of both 

stages. 

v. All products are inspected and defective items are rejected. 

To fulfill the demand on time, it is commonly assumed that the production rate is higher 

than its demand rate. However, for a higher demand rate, the model can easily be revised 

with an option for outsourcing. It was observed that, a lot-for-lot production and delivery 

system is common in many real-life production-inventory systems, which was discussed in 

Sarker and Khan (2001). Demand fluctuation is not new in many practical production-

delivery systems. To make the recovery process meaningful in practice, the revised plan 

will be generated after the demand fluctuation is experienced by the system. In other 

words, the revised plan is generated on a real-time basis. To have a balance supplier-

retailer coordinated system, it is assumed that both stages have an equal number of cycles 
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in the revised planning window. Such an assumption will help to better manage the flow of 

materials within the system. Finally, from the customer satisfaction point of view, no 

defective item will be delivered to the customers, which is important for many real 

businesses. 

7.3 Model Formulation 

In this section, a mathematical model is developed for a single occurrence of demand 

fluctuation, of either increasing or decreasing rate. In the following few subsections, an 

equation for the joint economic lot size is first presented under ideal conditions, and then 

the equations for relevant costs and revenue are derived, by considering imperfect 

production environment with demand fluctuation. Finally, the revised plan is formulated as 

a non-linear constrained optimisation problem that maximises the total profit, which is 

derived from the revenue from acceptable items and the relevant costs, subject to 

production capacity and product demand constraints. The decision variables are: the 

revised lot size, backorder quantity, lost sales quantity, and loss of production quantity, in 

each cycle during the revised planning window. 

7.3.1 Optimal Lot Size under Ideal Conditions 

For a two stage single item supply chain system, with a lot-for-lot condition under an ideal 

situation, as considered by Banerjee (1986), the joint economic lot size (as shown in the 

Figure 7.1) can be formulated as 𝑄1 = 𝑄2 = √
2𝐷(𝐴1+𝐴2)
𝐻1𝐷

𝑟𝑃
+𝐻2

. 

Here, 

Annual holding cost for manufacturer  =
𝑄1

2
𝐻1

𝐷

𝑟𝑃
  

Annual set-up costs for manufacturer = 
𝐷

𝑄1
𝐴1  

Annual holding costs for retailer =
𝑄2

2
𝐻2  
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Annual set-up cost for retailer =
𝐷

𝑄2
𝐴2  

So, annual total cost (𝑇𝐶) =
𝑄1

2
𝐻1

𝐷

𝑟𝑃
+

𝐷

𝑄1
𝐴1 +

𝑄2

2
𝐻2 +

𝐷

𝑄2
𝐴2   

Now, 𝑄1 = 𝑄2 = 𝑄 

So, 𝑇𝐶 =
𝑄

2
𝐻1

𝐷

𝑟𝑃
+
𝐷

𝑄
𝐴1 +

𝑄

2
𝐻2 +

𝐷

𝑄
𝐴2   

To minimise total cost, 
𝑑(𝑇𝐶)

𝐷𝑄
= 0   

 
𝐻1𝐷

2𝑟𝑃
−
𝐷𝐴1

𝑄2
+
𝐻2

2
−
𝐷𝐴2

𝑄2
= 0  

 𝑄2 =
2𝐷(𝐴1+𝐴2)
𝐻1𝐷

𝑟𝑃
+𝐻2

 

 𝑄∗ = √
2𝐷(𝐴1+𝐴2)
𝐻1𝐷

𝑟𝑃
+𝐻2

  

Joint economic lot size, 𝑄1 = 𝑄2 = √
2𝐷(𝐴1+𝐴2)
𝐻1𝐷

𝑟𝑃
+𝐻2

 (7.1) 

7.3.2 Calculation of 𝑼𝒅 after a Fluctuation 

The unfulfilled demand, which results from an increased demand rate, is calculated after 

the occurrence of a fluctuation. It is equal to the multiplication of the fluctuation period 

and the change of demand rate. 

𝑈𝑑 = 𝛥𝐷 × 𝑇𝑑 (7.2) 

i. If 𝑈𝑑 > 0, then the demand will be unfulfilled. It is  hence required to revise the 

production lot sizes for a future period and use idle timeslots to fulfill the demand if 

possible. Lost sales and/or backorder will be present in the revised plan. 

ii. If 𝑈𝑑 < 0, then the production process has to reduce the future lot size because of 

decreasing demand, which will hence decrease the overall profit. There will be no 

lost sales or backorder.  

iii. 𝛥𝐷 = 0 for the original supplier-retailer coordinated system  
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7.3.3 Cost Formulation for Manufacturer 

In this section, the different cost equations are derived, for the manufacturer, after a single 

demand fluctuation at the retailer end. The holding, set-up, production, rejection, 

inspection and interest and depreciation costs are considered in this study. The total 

holding cost is computed as the unit holding cost multiplied by the total inventory during 

the revised planning window. The total set-up cost is equal to the cost per set-up multiplied 

by the number of set-ups in the revised planning window. The total production cost is 

obtained by multiplying the unit production cost by the total quantity produced during the 

revised planning window. As the production reliability is assumed to be r, the rejection rate 

is (1-r). The rejection cost is determined as the unit rejection cost multiplied by the total 

number of rejected items. The inspection cost is considered as a certain percentage of the 

production cost (Paul et al., 2014). The cost for interest and depreciation is considered as a 

general power function as suggested by Cheng (1989).  

Holding cost   

= 𝐻1 ×
𝑋1
2
×
𝑋1
𝑟𝑃
+ 𝐻1 ×

𝑋2
2
×
𝑋2
𝑟𝑃
+⋯+ 𝐻1 ×

𝑋𝑀
2
×
𝑋𝑀
𝑟𝑃

 

=
𝐻1
2𝑟𝑃

× [𝑋1
2 + 𝑋2

2 +⋯+ 𝑋𝑀
2] 

=
𝐻1
2𝑟𝑃

× [∑𝑋𝑖
2

𝑀

𝑖=1

] 

 

 

 

 

(7.3) 

Set-up cost  

 = 𝐴1 ×𝑀 

 

(7.4) 

 

Production cost   

= 𝐶𝑃𝑃 × [∑
𝑋𝑖
𝑟𝑃

𝑀

𝑖=1

] =
𝐶𝑃
𝑟
× [∑𝑋𝑖

𝑀

𝑖=1

] 

 

 

(7.5) 

Rejection cost   

= 𝐶𝑅(1 − 𝑟)𝑃 × [∑
𝑋𝑖
𝑟𝑃

𝑀

𝑖=1

] 

 

 



Chapter 7: Managing Demand Fluctuation 190 

 

 

 

= 𝐶𝑅 (
1

𝑟
− 1) × [∑𝑋𝑖

𝑀

𝑖=1

] 
 

(7.6) 

Inspection cost  

=
𝐶𝑃𝐶𝐼
𝑟

× [∑𝑋𝑖

𝑀

𝑖=1

] 

 

(7.7) 

Cost of interest and depreciation   

= 𝑀𝑎 (𝐴1)
−𝑏𝑟𝑐 

 

(7.8) 

7.3.4 Cost Formulation for Retailer 

In this section, the different costs for the retailer are derived. The holding, ordering, lost 

sales, backorder cost and cost due to loss of production are considered for the cost 

formulation for the retailer. If 𝑈𝑑 ≥ 0, lost sales and backorder costs will be present in the 

formualtion. If 𝑈𝑑 < 0, costs due to loss of production will be present in the formulation. 

The total holding cost is computed as the unit holding cost multiplied by the total inventory 

during the revised planning window. The total ordering cost is equal to the cost per order 

multiplied by the number of orders in the revised planning window. Back order cost is 

determined as unit back order cost multiplied by back order units and it’s time delay 

(Hishamuddin et al., 2012). The lost sales cost is determined as unit lost sales cost 

multiplied by lost sales units (Hishamuddin et al., 2012). The cost due to loss of production 

is determined as units lost in production multiplied by lost production units.  
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For 𝑼𝒅 ≥ 0 

Holding cost  

=
𝐻2
2𝐷

[{𝑌1 −
(𝑌1 − 𝑌1,0)𝐷

𝑟𝑃
− 𝑈𝑑}

2

+ {𝑌2 −
(𝑌2 − 𝑌2,0)𝐷

𝑟𝑃
− (𝑌1,0 − 𝑌1 + 𝑈𝑑)}

2

+⋯

+ {𝑌𝑀 −
(𝑌𝑀 − 𝑌𝑀,0)𝐷

𝑟𝑃

− (∑ 𝑌𝑖,0

𝑀−1

𝑖=1

− ∑ 𝑌𝑖

𝑀−1

𝑖=1

+ 𝑈𝑑)}

2

] 

 

 

 

 

 

 

(7.9) 

Ordering cost   

= 𝐴2 ×𝑀 

 

(7.10) 

Lost sales cost   

= 𝐿 [𝑈𝑑 +∑𝑌𝑖,0 −

𝑀

𝑖=1

∑𝑌𝑖

𝑀

𝑖=1

] 

 

(7.11) 

Back order cost 

= 𝐵 × ∑ [units delayed in cycle 𝑖 × delay time of cycle 𝑖]𝑀
𝑖=1   

=  𝐵 × 𝑈𝑑 [
𝑈𝑑
𝐷
+
(𝑌1 − 𝑌1,0)

𝑟𝑃
] + 𝐵 × [

(𝑌1 − 𝑌1,0)𝐷

𝑟𝑃
×
(𝑌1 − 𝑌1,0)

𝑟𝑃
] + 𝐵

× (𝑌1,0 − 𝑌1 + 𝑈𝑑) [
𝑌1,0 − 𝑌1 + 𝑈𝑑

𝐷
+
(𝑌2 − 𝑌2,0)

𝑟𝑃
] + 𝐵

× [
(𝑌2 − 𝑌2,0)𝐷

𝑟𝑃
×
(𝑌2 − 𝑌2,0)

𝑟𝑃
] +⋯+ 𝐵

× (∑ 𝑌𝑖,0

𝑀−1

𝑖=1

− ∑ 𝑌𝑖

𝑀−1

𝑖=1

+ 𝑈𝑑) [
∑ 𝑌𝑖,0
𝑀−1
𝑖=1 − ∑ 𝑌𝑖

𝑀−1
𝑖=1 + 𝑈𝑑

𝐷

+
(𝑌𝑀 − 𝑌𝑀,0)

𝑟𝑃
] + 𝐵 × [

(𝑌𝑀 − 𝑌𝑀,0)𝐷

𝑟𝑃
×
(𝑌𝑀 − 𝑌𝑀,0)

𝑟𝑃
] 

 

 

 

 

 

 

 

(7.12) 
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For 𝑼𝒅 < 0 

Holding cost  

= |𝑈𝑑| ×
𝑌1,0
𝐷
× 𝐻2 +

𝐻2
2𝐷

[∑𝑌𝑖
2

𝑀

𝑖=1

] 

 

(7.13) 

Ordering cost   

= 𝐴2 ×𝑀 

 

(7.14) 

Cost due to loss of production  

= 𝐶𝐿|𝑈𝑑| 

 

(7.15) 

7.3.5 Formulation for Revenue 

The total revenue during the revised planning window is determined as the unit selling 

price multiplied by the products produced during that period as follows: 

Total revenue   

= 𝑚1𝐶𝑃 × [∑𝑌𝑖

𝑀

𝑖=1

] 

 

(7.16) 

7.3.6 Final Mathematical Model 

The total profit during the revised planning window, that is the objective function, is 

determined for a particular fluctuation as follows: 

Total profit (TP) = Total revenue - total costs for manufacturer – total costs for retailer. 

Subject to the following constraints: 

For 𝑼𝒅 ≥ 𝟎 

𝑋𝑖,0 = 𝑄1;  ∀𝑖 (7.17) 

𝑌𝑖,0 = 𝑄2;  ∀𝑖 (7.18) 
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𝑋𝑖 ≥ 𝑋𝑖,0;  ∀𝑖 (7.19) 

𝑌𝑖 ≥ 𝑌𝑖,0;  ∀𝑖  (7.20) 

𝑋𝑖 ≤ (
𝑋𝑖,0
𝐷
− 𝑆𝑡) 𝑟𝑃; ∀𝑖 (7.21) 

𝑌𝑖 ≤ 𝑌𝑖,0 + (∑𝑌𝑗,0

𝑖−1

𝑗=1

−∑𝑌𝑗

𝑖−1

𝑗=1

+ 𝑈𝑑) ; ∀𝑖 (7.22) 

∑𝑌𝑖,0

𝑀−1

𝑖=1

− ∑ 𝑌𝑖

𝑀−1

𝑖=1

+ 𝑈𝑑 ≥ 0 (7.23) 

∑𝑌𝑖

𝑀

𝑖=1

≤∑𝑌𝑖,0

𝑀

𝑖=1

+ 𝑈𝑑 (7.24) 

𝑟 ≤ 1 (7.25) 

𝑟𝑃 > 𝐷 (7.26) 

𝑌𝑖 = 𝑋𝑖;  ∀𝑖 
(7.27) 

𝑋𝑖, 𝑌𝑖  ≥ 0; ∀𝑖 
(7.28) 

For 𝑼𝒅 ≥ 𝟎 

𝑋𝑖,0 = 𝑄1;  ∀𝑖 (7.29) 

𝑌𝑖,0 = 𝑄2;  ∀𝑖  (7.30) 

𝑋𝑖 ≤ 𝑋𝑖,0;  ∀𝑖 (7.31) 

𝑌𝑖 ≤ 𝑌𝑖,0;  ∀𝑖 (7.32) 

∑𝑌𝑖

𝑀

𝑖=1

=∑𝑌𝑖,0

𝑀

𝑖=1

− |𝑈𝑑| (7.33) 

𝑟 ≤ 1 (7.34) 

𝑟𝑃 > 𝐷 (7.35) 
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𝑋𝑖 = 𝑌𝑖;  ∀𝑖  (7.36) 

𝑋𝑖, 𝑌𝑖  ≥ 0; ∀𝑖 (7.37) 

For 𝑈𝑑 ≥ 0, equations (7.17) and (7.18) ensure normal cycle lot size is equal to 𝑄1 and 𝑄2. 

Equations (7.19) and (7.20) ensure the revised lot size will be greater than the normal lot 

size because of the need to satisfy the unfulfilled demand.  Production capacity is met by 

equations (7.21) and (7.22). The unfulfilled demand cannot be negative in the revised 

planning window, which is ensured by equations (7.23) and (7.24). Equation (7.25) ensures 

that process reliability must be less than or equal to 1. The production rate is greater than 

the demand rate, which is met by equation (7.26). Equation (7.27) ensures the balanced 

coordinated system. The non-negativity constraint is ensured by equation (7.28).  

For 𝑈𝑑 < 0, equations (7.29) and (7.30) ensure normal cycle lot size is equal to 𝑄1 and 𝑄2. 

Equations (7.31) and (7.32) ensure the revised lot size will be equal or smaller than the 

normal lot size. Equation (7.33) ensures the reduction of lot size by |𝑈𝑑| to return to the 

original system. Equation (7.34) ensures that process reliability must be less than or equal 

to 1. The production rate must be greater than the demand rate, which is ensured by 

equation (7.35). Equation (7.36) ensures the balanced coordinated system. Another non-

negativity constraint is ensured by equation (7.37). 

7.3.7 Conditions of Existence of Different Costs 

The back order and lost sales costs play an important role in determining the revised plan 

for an increasing demand rate. In fact, the revised plan is sensitive to the relative 

magnitude of the back order and lost sales costs. The reduction of production is necessary 

if the demand rate is decreased. A few propositions help to understand the conditions of the 

existence of these three cost parameters in the solution. Proposition 1 and 2 are derived to 

prove the condition of the presence of back order and lost sales respectively in the solution. 

Proposition 3 proves the condition of the existence of loss of production and proposition 4 

confirms the condition of the presence of only lost sales in the solution.  
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Proposition 1: For a given 𝐴1, 𝐴2, 𝐻1, 𝐻2, 𝐵, 𝐿, 𝑀 and if  𝐵
𝑈𝑑

𝐷
≤ 𝐿 and 𝑈𝑑 > 0, then only 

back orders will be present in the solution when 𝑈𝑑 ≤ 𝑟𝑃 (∑
𝑋𝑖,0

𝐷

𝑀
𝑖=1 − ∑

𝑋𝑖,0

𝑟𝑃

𝑀
𝑖=1 −𝑀𝑆𝑡). 

Proof: After a
 
fluctuation, unfulfilled demand, 𝑈𝑑 = 𝛥𝐷 × 𝑇𝑑 

Now, idle time in the production cycle, 𝑖 = (
𝑋𝑖,0

𝐷
−
𝑋𝑖,0

𝑟𝑃
− 𝑆𝑡) 

As there are 𝑀 number of cycles in the revised plan, so total idle times in the revised 

panning window   

=∑
𝑋𝑖,0
𝐷

𝑀

𝑖=1

−∑
𝑋𝑖,0
𝑟𝑃

𝑀

𝑖=1

−𝑀𝑆𝑡 

Maximum production capacity in the idle times of the revised panning window 

= 𝑟𝑃(∑
𝑋𝑖,0
𝐷

𝑀

𝑖=1

−∑
𝑋𝑖,0
𝑟𝑃

𝑀

𝑖=1

−𝑀𝑆𝑡) 

When 𝑈𝑑 ≤ 𝑟𝑃 (∑
𝑋𝑖,0

𝐷

𝑀
𝑖=1 − ∑

𝑋𝑖,0

𝑟𝑃

𝑀
𝑖=1 −𝑀𝑆𝑡), then the production process is only capable 

to produce that 𝑈𝑑 by using only idle timeslots. So only back orders will then be present in 

the solution.  

Proposition 2 : For a given 𝐴1, 𝐴2, 𝐻1, 𝐻2, 𝐵, 𝐿, 𝑀 and if  𝐵
𝑈𝑑

𝐷
≤ 𝐿 and 𝑈𝑑 > 0, then lost 

sales will exist in the solution when 𝑈𝑑 > 𝑟𝑃 (∑
𝑋𝑖,0

𝐷

𝑀
𝑖=1 − ∑

𝑋𝑖,0

𝑟𝑃

𝑀
𝑖=1 −𝑀𝑆𝑡). 

Proof: It is the opposite consequence of Proposition 1. 

Proposition 3: For a given 𝐴1, 𝐴2, 𝐻1, 𝐻2, 𝐵, 𝐿 and 𝑀, loss of production quantity will be 

present in the solution when 𝑈𝑑 < 0.  

Proof: When demand rate decreases for a certain period of time, then 𝑈𝑑 becomes 

negative, which is shown in Figure 7.3. This means that some products (|𝛥𝐷| × 𝑇𝑑)  will 

remain at the end of that cycle at the retailer stage. The production process has to reduce 

the quantity (𝑈𝑑), to avoid excessive inventory within the revised planning period, to return 
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to the original system. So when 𝑈𝑑 < 0, loss of production quantity will be present 

because of reducing the production quantity by |𝑈𝑑|, as shown in Figure 7.3.  

Proposition 4: For a given 𝐴1, 𝐴2, 𝐻1, 𝐻2, 𝐵, 𝐿, 𝑀 and if 𝑈𝑑 > 0, then only lost sales will 

be present in the solution when 𝐵
𝑈𝑑

𝐷
> 𝐿.  

Proof: After a
 
fluctuation, unfulfilled demand 𝑈𝑑 = 𝛥𝐷 × 𝑇𝑑 

The minimum time required to get the next order is 
𝑈𝑑

𝐷
, that is the delay time.  

Now, 𝐵 = Back order cost per unit per unit time  

So, back order cost per unit in the delay time is 𝐵
𝑈𝑑

𝐷
.  

Again, 𝐿 = Lost sales cost ($ per unit) 

So, if 𝐵
𝑈𝑑

𝐷
> 𝐿, then the back order costs will be greater than the lost sales costs. That’s 

why only lost sales will be present in the solution when 𝐵
𝑈𝑑

𝐷
> 𝐿 and total profit is 

maximised.  

7.4 Solution Approach 

In this section, a heuristic is firstly developed, with the support of the propositions 

introduced in the last section, to solve the model for a single occurrence of fluctuation, 

either for increasing or decreasing demand rate. Then, the heuristic is further developed for 

managing multiple demand fluctuations on a real-time basis. A fluctuation scenario is 

defined as the combination of both the quantum and the duration of a demand variation. In 

reality, these parameters follow a stochastic process, and in this study, uniform random 

variables are assumed for them. However, one can consider Poisson or any other stochastic 

process.  
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7.4.1 Proposed Heuristic for a Single Fluctuation 

The heuristic for a single occurrence of fluctuation is briefly described here. For a single 

demand fluctuation, different parameters are initialized and joint economic lot sizes for the 

coordinated system are calculated by using equation (7.1),  𝑋𝑖,0 and  𝑌𝑖,0 are also assigned 

in Step 1. Demand fluctuation scenarios for an independent fluctuation are given as input 

through Steps 2 and 3. Unfulfilled demand is calculated in Step 4. Step 5 describes the 

solution technique for 𝑈𝑑 > 0. In Step 5(a), if backorder cost is less than lost sales cost, 

then the system uses idle timeslots of the revised planning window to obtain the revised 

plan. If the production system is capable of producing the excess demand in the revised 

planning window, then there will be no lost sales. Otherwise both backorder and lost sales 

options will be present in the solution. But if backorder cost is greater than lost sales cost, 

then the system will use only the lost sales option to obtain the results, which is described 

in Step 5(b). For 𝑈𝑑 ≤ 0, because of decreasing demand the production process has to 

reduce the lot size to obtain the solution, which is described in Step 6.  The lot sizes for 

both supplier and retailer are recorded and different costs and profit are calculated and 

recorded in Step 7.  

Step 1: Initialize the parameters and calculate 𝑄1 and 𝑄2 using equation (7.1). Assign 𝑋𝑖,0 = 𝑄1 and 𝑌𝑖,0 =
𝑄2.  

Step 2: Input the number of recovery cycles (𝑀) in the revised planning window. 

Step 3: Input the change of demand rate (𝛥𝐷) and the period (𝑇𝑑) of the fluctuation. 

Step 4: Determine the unfulfilled demand after the fluctuation by using the equation (7.2).  

Step 5: For 𝑈𝑑 > 0 

a) For (𝐵
𝑈𝑑

𝐷
) ≤ 𝐿   

i. If  𝑟𝑃 (
𝑋1,0

𝐷
−

𝑋1,0

𝑟𝑃
− 𝑆𝑡) ≥ 𝑈𝑑 

Then, calculate the revised lot size using equations (7.38) and (7.39). 

 𝑋1 = 𝑋1,0 + 𝑈𝑑 (7.38) 

 𝑋𝑖 = 𝑋𝑖,0;  𝑖 = 2,3, … ,𝑀 (7.39) 

ii. Else If  𝑟𝑃 (
𝑋1,0

𝐷
−

𝑋1,0

𝑟𝑃
− 𝑆𝑡) < 𝑈𝑑 ≤ 𝑟𝑃 (∑

𝑋𝑖,0

𝐷

2
𝑖=1 − ∑

𝑋𝑖,0

𝑟𝑃

2
𝑖=1 − 2𝑆𝑡) 

Then, calculate the revised lot size using equations (7.40), (7.41) and (7.42). 

 𝑋1 = 𝑋1,0 + 𝑟𝑃 (
𝑋1,0
𝐷

−
𝑋1,0
𝑟𝑃

− 𝑆𝑡) (7.40) 

 𝑋2 = 𝑋2,0 + 𝑈𝑑 − 𝑟𝑃 (
𝑋1,0
𝐷

−
𝑋1,0
𝑟𝑃

− 𝑆𝑡) (7.41) 
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 𝑋𝑖 = 𝑋𝑖,0;  𝑖 = 3,4, … ,𝑀 (7.42) 

....... 

iii. Else If 𝑟𝑃 (∑
𝑋𝑖,0

𝐷

𝑀−1
𝑖=1 − ∑

𝑋𝑖,0

𝑟𝑃

𝑀−1
𝑖=1 − (𝑀 − 1)𝑆𝑡) < 𝑈𝑑 ≤ 𝑟𝑃 (∑

𝑋𝑖,0

𝐷

𝑀
𝑖=1 −∑

𝑋𝑖,0

𝑟𝑃

𝑀
𝑖=1 −𝑀𝑆𝑡) 

Then, calculate the revised lot size using equations (7.43), (7.44), (7.45) and (7.46). 

 𝑋1 = 𝑋1,0 + 𝑟𝑃 (
𝑋1,0
𝐷

−
𝑋1,0
𝑟𝑃

− 𝑆𝑡) (7.43) 

 𝑋2 = 𝑋2,0 + 𝑟𝑃 (
𝑋2,0
𝐷

−
𝑋2,0
𝑟𝑃

− 𝑆𝑡) (7.44) 

 .......  

 𝑋𝑀−1 = 𝑋𝑀−1,0 + 𝑟𝑃 (
𝑋𝑀−1,0
𝐷

−
𝑋𝑀−1,0
𝑟𝑃

− 𝑆𝑡) 
(7.45) 

 𝑋𝑀 = 𝑋𝑀,0 + 𝑈𝑑 − 𝑟𝑃 [∑
𝑋𝑖,0
𝐷

𝑀−1

𝑖=1

− ∑
𝑋𝑖,0
𝑟𝑃

𝑀−1

𝑖=1

− (𝑀 − 1)𝑆𝑡] 
(7.46) 

iv. Else If 𝑈𝑑 > 𝑟𝑃 (∑
𝑋𝑖,0

𝐷

𝑀
𝑖=1 − ∑

𝑋𝑖,0

𝑟𝑃

𝑀
𝑖=1 −𝑀𝑆𝑡) 

Then, calculate the revised lot size using equation (7.47). 

 𝑋𝑖 = 𝑋𝑖,0 + 𝑟𝑃 (
𝑋𝑖,0
𝐷
−
𝑋𝑖,0
𝑟𝑃

− 𝑆𝑡) ;  𝑖 = 1,2, … ,𝑀 (7.47) 

b) For (𝐵
𝑈𝑑

𝐷
) > 𝐿   

Calculate the revised lot size using equation (7.48). 

 𝑋𝑖 = 𝑋𝑖,0;  𝑖 = 1,2, … ,𝑀  (7.48) 

Step 6: For 𝑈𝑑 ≤ 0 

Calculate the revised lot size using equations (7.49), (7.50) and (7.51). 

 𝑋1 = 𝑋1,0  (7.49) 

 𝑋2 = 𝑋2,0 − |𝑈𝑑| (7.50) 

 𝑋𝑖 = 𝑋𝑖,0;  𝑖 = 3,4, … ,𝑀  (7.51) 

Step 7: Record the revised lot size (𝑋𝑖) and update the revised lot size for retailer (𝑌𝑖). Also calculate total 

lost sale costs, backorder costs, costs due to loss of production and total profit and record the revised plan 

after the fluctuation.  

Step 8: Stop. 

7.4.2 Extended Heuristic for Multiple Fluctuations 

The following notations are considered for the multiple fluctuations case. 

𝑛  Fluctuation number  

𝑋𝑖,𝑛  Lot size for cycle 𝑖 in the revised planning window, for the manufacturer after the 

n
th

 fluctuation (𝑖 = 1, 2, … . ,𝑀) 
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𝑌𝑖,𝑛  Lot size for cycle 𝑖 in the revised planning window, for the retailer after the n
th

 

fluctuation (𝑖 = 1, 2, … . ,𝑀) 

𝛥𝐷𝑛  Change of the demand rate for the n
th

 fluctuation 

𝑇𝑑,𝑛  Fluctuation period for the n
th

 fluctuation 

𝑈𝑑,𝑛  Unfulfilled demand after the n
th

 fluctuation 

𝑞𝑛  Pre-fluctuation inventory level 

Figure 7.4 shows the management mechanism for multiple demand fluctuations on a real-

time basis. As shown in the figure, the first demand fluctuation occurred with an increasing 

rate of ∆𝐷1 for a period 𝑇𝑑,1. After the occurrence of the first demand fluctuation, the 

future lot sizes for the immediately next cycle of the fluctuated cycle, 𝑋𝑖,1 and 𝑌𝑖,1 (𝑖 =

1,2, … ,𝑀), will be determined to maximise the profit for the changed scenario, which is 

shown as a dashed line.  If a fluctuation occurs after the revised planning window of 

another fluctuation, then the later one can be considered as an independent fluctuation, and 

a revised plan can be made similarly to the previous one. However, if a fluctuation occurs 

during the revised planning window of another fluctuation that occurred earlier, a revised 

plan, incorporating the effect of both fluctuations must be derived, which makes the case 

more complex for revised planning.  

In Figure 7.4, the second fluctuation occurs with an increasing rate of ∆𝐷2 and for a 

period 𝑇𝑑,2, which is during the revised planning window of the first fluctuation.  After the 

second fluctuation, another revised plan must be derived, which incorporates the effect of 

both the first and second fluctuations. In Figure 7.4, after the second fluctuation, the 

production quantities 𝑋𝑖,2 and  𝑌𝑖,2 (𝑖 = 1,2, … ,𝑀) are revised again within the allowed 

revised planning window, to consider the effect of both fluctuations, which is shown with a 

dotted line. The plan is revised in the same way if there is any further demand fluctuation. 

These fluctuations may occur at any point in time, and the duration of fluctuation may vary 

from one occurrence to the next. After each fluctuation, the lot size in each future cycle 

must be revised, within the allowed revised planning window, as a plan for improvement.  

For multiple fluctuations cases, the unfulfilled demand (𝑈𝑑,𝑛) is calculated using equation 

(7.52). The portion of unfulfilled demand from any previous recovery is taken into 

consideration to derive the equation of 𝑈𝑑,𝑛. 
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𝑈𝑑,𝑛 = 𝑈𝑑,𝑛−1 + 𝛥𝐷𝑛 × 𝑇𝑑,𝑛 −∑𝑋𝑖,𝑛−1

𝑙

𝑖=1

+∑𝑋𝑖,0

𝑙

𝑖=1

 (7.52) 
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Figure 7.4: Managing multiple demand fluctuations  

To manage these situations the heuristic for a single fluctuation, is further developed for 

managing multiple fluctuations as a series of demand fluctuations on a real-time basis, 

which as described in the following. After the first fluctuation, the demand fluctuation 

scenarios are given as input in Step A and after then, the unfulfilled demand is calculated. 

Then the model is solved by using the heuristic developed for a single fluctuation and the 

revised plan is recorded. If there is any new fluctuation, the new fluctuation scenarios are 

given as input in Step F and the unfulfilled demand is calculated by using equation (52). 

Once again the model is solved by using the heuristic for the updated parameters. If there 

is any other fluctuation, this loop will be repeated as long as any more demand fluctuations 

take place in the system, during which the revised plan after each fluctuation is recorded. 

The steps of the extended heuristic are as follows. 

Step A: Input the change of the demand rate and the fluctuation period for the first fluctuation. 

Step B: Determine unfulfilled demand, 𝑈𝑑,𝑛 = 𝛥𝐷𝑛 × 𝑇𝑑,𝑛. 

Step C: Update the parameter 𝑈𝑑 = 𝑈𝑑,𝑛 and also update the decision variables as 𝑋𝑖 = 𝑋𝑖,𝑛 

and 𝑌𝑖 = 𝑌𝑖,𝑛.  

Step D: Solve the model by using steps 5 to 7 of the heuristic developed in Section 4.1 under the 

updated parameters.  

Step E: Record the revised plan after the fluctuation. 

Step F: If there is any other fluctuation,  
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F.1 Later when known, input the fluctuated cycle number (𝑙), change of demand rate (𝛥𝐷𝑛) 

and fluctuation period (𝑇𝑑,𝑛) for the fluctuation. 

F.2 Calculate 𝑈𝑑,𝑛 by using equation (52).Go to Step C. 

Step G: Stop. 

7.4.3 Parameters for the Demand Fluctuation Problem 

For experimentation, the following data range is considered with a discrete uniform (DU) 

distribution for the demand fluctuation problem.  

Pre- fluctuation inventory level:𝑞 = DU [0, 𝑌1,0]  

Fluctuation period:  

For 𝛥𝐷 > 0;  𝑇𝑑 = DU [0.0001,
𝑞

𝐷+𝛥𝐷
] 

For 𝛥𝐷 < 0; 𝑇𝑑 = DU [0.0001,
𝑞

𝐷
] 

Lost sales cost: 𝐿 = DU [5, 100] 

Back order cost: 𝐵 = DU [5, 1000] 

Set-up cost: 𝐴1 = DU [20, 500] 

Ordering cost:  𝐴2 = DU [20, 500] 

Holding cost: 𝐻1 = DU [1, 10], 𝐻2 = DU [1, 10] 

Process reliability: 𝑟 = DU [
𝐷

𝑃
, 1] 

7.5 Experimental Results and Analysis 

In this section, the results have been analysed for a single fluctuation, as well as multiple 

fluctuations on a real-time basis. For the experimentation, the fluctuation scenarios are 

generated using a uniform probability distribution, within the given intervals of the 

parameters, as presented in section 5.4.3. For a single demand fluctuation, the proposed 

heuristic is used, as developed in Section 4.1, for single fluctuation to analyse the results. 

Then the heuristic was modified for multiple fluctuations on a real-time basis, as indicated 

in Section 5.4.2. 
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7.5.1 Single Fluctuation 

The revised plan for a single fluctuation either for increasing or decreasing demand rate 

has been generated, using the proposed heuristic, for three problem scenarios with the 

following data.  

𝑃 = 500000, 𝑟 = 0.95, 𝐷 = 450000, 𝑆𝑡 = 0.000114, 𝐻1 = 2.5, 𝐻2 = 3.0, 𝐴1 = 120, 

𝐴2 = 150, 𝐶𝑃 = 40, 𝐶𝑅 = 40, 𝐶𝐼 = 0.02, 𝐶𝐿 = 15, 𝐵 = 20, 𝐿 = 15, 𝑎 = 1000, 𝑏 = 0.5, 

𝑐 = 0.75, 𝑚1 = 2, 𝑀 = 5 

7.5.1.1 Increasing demand rate 

Two different scenarios are considered to analyse the results for increasing demand rate. In 

scenario 1, it is observed that both backorders and lost sales are present in the revised plan 

and only backorders are present in the revised plan of scenario 2. As it is considered there 

are five production cycles in the revised planning window, the system will return to normal 

production plan at the sixth cycle after a fluctuation.  

i. Scenario 1 

The first fluctuation problem is given as: 

Pre- fluctuation inventory level: 6000 

Change of demand rate: 250000 

Fluctuation period: 0.007 

Next the fluctuation case problem was solved using the proposed heuristic for the single 

fluctuation. The results were obtained and are presented below: 

Lost sales costs = 2250 

Backorder costs = 414.5 

Costs due to loss of production = 0 

Total profit = 1225731 

Revised lot size: 

𝑋𝑖,1 = 7047, 7047, 7047, 7047, 7047 

𝑌𝑖,1 = 7047, 7047, 7047, 7047, 7047 
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It can be observed that both backorders and lost sales are present in the revised plan.  

ii. Scenario 2 

The second fluctuation problem is given as: 

Pre- fluctuation inventory level: 5000 

Change of demand rate: 200000 

Fluctuation period: 0.004 

The results were obtained and are: 

Lost sales costs = 0 

Backorder costs = 67.3 

Costs due to loss of production = 0 

Total profit = 1200237 

Revised lot size: 

𝑋𝑖,1 = 7047, 7047, 6887, 6727, 6727 

𝑌𝑖,1 = 7047, 7047, 6887, 6727, 6727 

It can be observed that only backorders are present in the revised plan. 

7.5.1.2 Decreasing demand rate 

The third fluctuation problem, for a decreasing demand rate, is given as: 

Pre- fluctuation inventory level: 5500 

Change of demand rate: -150000 

Fluctuation period: 0.006 

The results were obtained and are: 

Lost sales costs = 0 

Backorder costs = 0 

Costs due to loss of production = 13500 

Total profit = 1127471 

Revised lot size: 
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𝑋𝑖,1 = 6727, 5827, 6727, 6727, 6727 

𝑌𝑖,1 = 6727, 5827, 6727, 6727, 6727 

It can be observed that the revised plan in obtained by using only loss of production 

quantity. 

7.5.2 Results Comparison 

In order to judge the quality of the solutions of heuristic, the above three problems were 

also solved using a genetic algorithm (GA). GA is a very popular technique to solve 

complex nonlinear constrained optimisation problems. GAs are general purpose 

optimisation algorithms which apply the rules of natural genetics to explore a given search 

space (Homaifar et al., 1994). Both approaches were coded in MATLAB R2012a, and 

were executed on an Intel core i7 processor with 8.00 GB RAM and a 3.40 GHz CPU. The 

best results obtained from the GA, out of 10 independent runs, were compared with the 

heuristic results.  

Table 7.1: Results comparison between the heuristic and genetic algorithm 

Test 

case 

Fluctuation 

scenario 

Total Profit 
Deviation 

(%)  

Running time 

(Seconds) 

Heuristic 
GA 

(best result) 
Heuristic  GA 

1 

𝑞 = 6000 

𝛥𝐷 = 250000 

𝑇𝑑 = 0.007 

1225731 1225610 0.0098 0.90 88.74 

2 

𝑞 = 5000 

𝛥𝐷 = 200000 

𝑇𝑑 = 0.004 

1200237 1200263 0.0021 0.75   26.94 

3 

𝑞 = 5500 

𝛥𝐷 = -150000 

𝑇𝑑 = 0.006 

1127471 1127352 0.0105 0.82 1038.60 

The heuristic showed insignificant changes in results for different runs and for GA 

technique, the best results recorded out of 10 independent runs. It is observed that, the 

results, obtained from the heuristic and the genetic algorithm, are almost identical. Table 
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7.1 shows the comparison of the maximum total profit obtained and the computational time 

required, for three fluctuation scenarios, by the two approaches. For our experimentation, 

68 scenarios have been developed with uniformly random fluctuations within the range of 

data presented in section 7.4.3. The scenarios have then divided in two classes. Among all 

of the scenarios, 32 are longer range fluctuations, which have fluctuation periods greater 

than 0.005, and the other are shorter range fluctuations, which have fluctuation periods less 

than 0.005. The summary of the results, obtained from the heuristic and the GA, is 

presented in Table 7.2. It is observed that the average percentage of deviation between the 

results from the two approaches is very small. The percentage of deviation of the results 

was calculated by using equation (7.53). This deviation may merely be because of 

rounding the values of the decision variables. Apart from the ability to produce quality 

solutions, the heuristic has a significantly lower average computational time in comparison 

to the genetic algorithm approach.  

Percentage of deviation  

=
(Total profit from the heuristc − Total profit from GA)

Total profit from GA
× 100% 

(7.53) 

Table 7.2: Results comparison for 68 fluctuations cases 

Fluctuation class 
Average deviation 

(%) 

Average computational time 

(Seconds) 

Heuristic GA 

Longer range fluctuation  0.0089 0.7421 72.93 

Shorter range fluctuation 0.0023 0.7473 18.5 

7.5.3 Multiple Fluctuations 

To demonstrate the usefulness of our proposed heuristic in solving different scenarios with 

multiple fluctuations, over a period of time, the basic data is used from the single 

fluctuation cases.  
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Table 7.3: A demand fluctuation case problem 

Fluctuation 

number (𝑛) 

Disrupted cycle 

number from 

previous 

fluctuation (𝑙) 

Pre-fluctuation 

inventory level 

(𝑞𝑛) 

Change of 

demand rate 

(𝛥𝐷𝑛) 

Fluctuation 

period (𝑇𝑑,𝑛) 

1 -- 6500 300000 0.0065 

2 3 4500 -120000 0.0100 

3 5 5700 220000 0.0080 

4 2 3000 100000 0.0040 

5 3 4000 -200000 0.0060 

6 1 6000 250000 0.0030 

7 4 4200 100000 0.0050 

8 2 5500 180000 0.0070 

9 5 2000 -250000 0.0025 

10 4 3500 200000 0.0035 

...... ..... ..... ..... ..... 

In any supply chain system, a series of demand fluctuations can occur, one after another, 

on a real-time basis. The first fluctuation can be managed by using the single fluctuation 

approach discussed in the previous section. Then if a new fluctuation later occurs after the 

revised planning period of any previous fluctuation, it can be considered as another single 

fluctuation case that does not affect the revised plan of the previous fluctuation. But if a 

new fluctuation occurs within the revised planning window of any fluctuation, then it may 

affect the revised plan of the previous fluctuation, and the revised plan for that planning 

window must be considered as a set of additional restrictions. For experimental purposes, a 

series of random fluctuations was generated to occur one after another, either for 

increasing or decreasing demand rate. Table 7.3 presents a case problem with different 

random combinations of fluctuated cycle number, pre-fluctuation inventory level, and 

fluctuation period. Although the fluctuations happen continuously, a case problem is 
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presented with only ten fluctuations as a sample representation. The lot sizes were revised 

immediately after each fluctuation takes place in the system. The problem was solved by 

using the proposed heuristic for multiple fluctuations, which is presented in Section 7.4.2, 

and the result was recorded. Table 7.4 presents, for each fluctuation, the set of revised lot 

sizes in each cycle and also the maximum total profit.  

Table 7.4: The results for the demand fluctuation case problem 

Fluctuation 

number (𝑛) 

Revised lot size 
Total 

profit 𝑋1,𝑛 𝑌1,𝑛 𝑋2,𝑛 𝑌2,𝑛 𝑋3,𝑛 𝑌3,𝑛 𝑋4,𝑛 𝑌4,𝑛 𝑋5,𝑛 𝑌5,𝑛 

1 7047 7047 7047 7047 7047 7047 7047 7047 7047 7047 1222647 

2 6727 6727 6517 6517 6727 6727 6727 6727 6727 6727 1161853 

3 7047 7047 7047 7047 7047 7047 7047 7047 7047 7047 1225577 

4 7047 7047 7047 7047 7047 7047 7047 7047 6967 6967 1225264 

5 6727 6727 6087 6087 6727 6727 6727 6727 6727 6727 1140427 

6 6837 6837 6727 6727 6727 6727 6727 6727 6727 6727 1176159 

7 7047 7047 6907 6907 6727 6727 6727 6727 6727 6727 1189774 

8 7047 7047 7047 7047 7047 7047 7027 7027 6727 6727 1216243 

9 6727 6727 6102 6102 6727 6727 6727 6727 6727 6727 1141175 

10 7047 7047 7047 7047 6787 6787 6727 6727 6727 6727 1196750 

..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... 

7.5.4 Comparing with Two Alternative Approaches 

To compare the results of the proposed approach with two other alternative approaches, 

eight fluctuations have been generated randomly, for increasing demand rate, within 32 

cycles. The total profit, as well as the lost sales and back orders, for the two other 
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alternative approaches and our approach, are calculated and compared in Table 7.5. The 

two alternative approaches are: 

i. Managing with only lost sales: In this approach, the unfulfilled demand due to 

demand fluctuation is considered as lost sales. This means, from the next cycle 

of fluctuation, it will return to the normal schedule.  

ii. First cycle revision: This approach is the same as our model, except that the 

fluctuation will be recovered in one cycle. If the system is capable to produce 

the unfulfilled demand by using idle time of one cycle, then there will be no lost 

sales. Otherwise, the fluctuation will be recovered with both backorders and 

lost sales options.  

Table 7.5: Comparison of the results from 32 cycles 

Cost or Profit  
Original 

system 

Demand fluctuation 

management 

(Proposed approach) 

First cycle 

revision 

Managing 

with only 

lost sales 

Total backorder 

costs 
0 578.1 188.3 0 

Total lost sales costs 0 0 89400 127800 

Total profit 7502822 7799669 7502861 7375362 

From Table 7.5, it is clear that the proposed demand fluctuation management plan provides 

a much better solution than the other two alternative approaches, while the first cycle 

revision plan shows better results than the managing with only lost sales. 

The total profit for each cycle, obtained from the above three alternative solutions and the 

original system, is presented in Figure 7.5. When a cycle faces a fluctuation, the total profit 

of that cycle goes to its lower bound if the plan is revised with only the lost sales option. 

However, for a fluctuation free cycle, the profit is the same as the original production 

system. The first cycle revision approach shows better results than the lower bound. In 

summary, the proposed demand fluctuation management model clearly shows significantly 

better solutions in comparison to other alternative approaches. 
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Figure 7.5: Total profit in each cycle for different recovery techniques 

7.6 Sensitivity Analysis 

There are some important parameters that have a significant impact on the total profit. 

These parameters are: fluctuation period, back order cost, lost sales cost, process 

reliability, set-up cost, ordering cost and holding cost. In this section, the relationship of 

these variables with the total profit is analysed.  

This section presents a number of studies, where in each of them one parameter is 

considered. Other parameters will have the default values of 200000 for increasing demand 

rate, -100000 for decreasing demand rate, 0.009 for increasing demand fluctuation period, 

6000 for pre-fluctuation inventory level and the remainder are kept the same as in section 

7.5.1. 

The relationship between total profit and fluctuation period for increasing demand rate is 

presented in Figure 7.6. The total profit increases with the fluctuation period, because an 

increasing lot size is necessary to satisfy the unfulfilled demand. But after 0.008 of 

fluctuation period, the total profit decreases because of the commencement of lost sales 

200

210

220

230

240

250

260

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

P
ro

fi
t 

 p
er

 c
y
cl

e 
(T

h
o

u
sa

n
d

s)
 

Cycle number 

Fluctuated cycle number: 1, 5, 8, 13, 15, 18, 23, 27 

Profit per cycle of different recovery techniques for increasing demand rate 

Original system Managing with only lost sales

First cycle revision Demand fluctuation management



Chapter 7: Managing Demand Fluctuation 210 

 

 

 

costs. Backorder costs increase with fluctuation period. Figure 7.7 presents the changes of 

total profit with fluctuation period for a decreasing demand rate. Total profit decreases 

with fluctuation period because of the increasing costs due to loss of production.  

 

Figure 7.6: Changes of total profit, lost sales and backorder costs with a fluctuation period 

for an increasing demand rate 

 

Figure 7.7: Changes of total profit and costs due to loss of production with a fluctuation 

period for a decreasing demand rate 
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Figure 7.8: Changes of total profit, lost sales and backorder costs with B 

The effect of backorder cost on the total profit is illustrated in Figure 7.8. Total profit 

decreases with B, due to the increase of total backorder costs. Total lost sales costs remain 

unchanged. The total profit also decreases with L, due to the increase of total lost sales 

costs, which is presented in Figure 7.9. Total backorder costs remain unchanged.  

 

Figure 7.9: Changes of total profit, lost sales and backorder costs with L 
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Figure 7.10: Changes of total profit and other cost with process reliability 

Figure 7.10 demonstrates the effect of production process reliability on total profit and 

other relevant costs. Production, rejection, lost sales, backorder and inspection costs 

decrease, but the cost of interest and depreciation increase, with process reliability. Thus, 

total profit increases with process reliability.  

 

Figure 7.11: Changes of total profit and other costs with A1 
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The relationship between total profit and set-up cost is shown in Figure 7.11. Cost of 

interest and depreciation decreases and total set-up cost increases with the cost per set-up. 

Ultimately, total profit decreases with the increment of cost per set-up. Total profit 

decreases with the cost of per order, which is shown in Figure 7.12, because of the 

increasing total ordering cost.  

 

Figure 7.12: Changes of total profit and total ordering costs with A2 

 

Figure 7.13: Changes of total profit with H1 and H2 
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The relationship between total profit and per unit holding cost is presented in Figure 7.13. 

It is observed that the total profit decreases with per unit holding cost for both supplier and 

retailer.  

7.7 Chapter Summary 

The main objective of this study was to develop a disturbance management model in a 

two-stage supplier-retailer coordinated system due to demand fluctuations, and with an 

imperfect production process. The model was formulated as a non-linear constrained 

optimisation problem to maximise the total profit in the revised planning window, and a 

heuristic was proposed to obtain the revised plan, after the occurrence of a fluctuation. The 

model was also solved by using a genetic algorithm based search technique, with a 

uniformly distributed random fluctuation scenarios. It was observed that our proposed 

heuristic was capable of producing quality solutions with significantly less computational 

time, as compared to the genetic algorithm.  

In real life situations, multiple demand fluctuations can happen, whether dependent or 

independent, one after another as a series on a real-time basis. The extended heuristic was 

also capable to solve the model that deals with multiple demand fluctuations on a real-time 

basis. In this case, the solutions have been generated after each fluctuation with changed 

parameters. The proposed model offers a potentially very useful quantitative study to help 

decision makers to make prompt and accurate decisions on the revised plan, whenever a 

sudden or a series of demand fluctuations occur in a supply chain system.  

The disruption management problem, for managing demand fluctuation in a supplier-

retailer coordinated system, has been addressed in chapter 7. As supply disruption is also a 

major source of risk and it can also imbalance the supply chain plan, it would be 

interesting to investigate this specific type of disruption. Furthermore, considering the lack 

of research for managing supply disruption in three-tier supply chain, I have chosen it as 

my research work in the next chapter.   



 

Chapter 8 Managing Supply Disruption 

In this chapter, a quantitative approach is developed for managing supply disruption for a 

supply chain. A three-tier supply chain system is considered, with multiple raw material 

suppliers, a single manufacturer and multiple retailers, where the system may face sudden 

disruption in its raw material supply. First, a mathematical model is developed that 

generates a recovery plan after the occurrence of a single disruption. Here, the objective is 

to minimise the total cost during the recovery time window while being subject to supply, 

capacity, demand, and delivery constraints. An efficient heuristic is developed to solve the 

model for a single disruption.  Second, multiple disruptions are also considered, where a 

new disruption may or may not affect the recovery plans of earlier disruptions. A new 

dynamic mathematical and heuristic approach is also developed that is capable of dealing 

with multiple disruptions, one after another as a series, on a real-time basis. The heuristic 

solutions are compared with those obtained by a standard search algorithm for a set of 

randomly generated disruption test problems. Finally, this chapter develops a simulation 

model to analyse the effect of randomly generated disruption events that are not known in 

advance.   

8.1 Introduction 

In the modern business era, supply chains are an important part of many businesses. A 

manufacturing supply chain is a network which receives raw materials from suppliers as 

input, which it processes in manufacturing plants, to obtain final products for delivery to 

customers through a distribution network. A standard three-tier supply chain network 

consists of suppliers, manufacturers and retailers. Suppliers supply raw materials to 

manufacturers, and after processing in a manufacturing plant, final products are delivered 

to retailers according to their demand. In reality, a supply chain can face many 

uncontrollable problems, such as production and supply disruption (Sodhi and Chopra, 

2004). Without a proper response to those problems, a supply chain system can be 
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imbalanced, and an organisation can consequently face huge financial loss, as well as loss 

of customer goodwill. 

From the literature review, it is clear that most of the research developed supply chain 

models under ideal conditions. Although a few of them developed disruption recovery 

models, most of them considered a single supplier and a single retailer, which limits the 

applicability of such studies. To overcome this limitation, this chapter develops a 

quantitative and simulation approach to recover from a supply disruption, for a three-tier 

supply chain with multiple suppliers and multiple retailers. Existing studies developed 

disruption recovery policies for only a single supply disruption. In this chapter, a three-tier 

supply chain system is considered, that deal with both single, as well as multiple 

disruptions, on a real-time basis. Disruption events that are not known and cannot be 

predicted in advance are considered. A mathematical model is first developed for coping 

with a single supply disruption. Then a new efficient heuristic is proposed for generating a 

revised plan after a disruption. In the experimental study, a random probability distribution 

is used to generate disruption parameters, such as disrupted raw material, and disruption 

durations. Then, the mathematical model is solved to obtain the revised plan after the 

occurrence of a disruption. Multiple disruptions are also considered, one after another in a 

series, that can occur at any time at any supplier and that may or may not affect the plans 

revised after previous disruptions. If a new disruption occurs during the recovery time 

window of another, a new revised plan which considers the effects of both disruptions 

must be derived. Accordingly, as this is a continuous process, the mathematical model and 

the heuristic are extended to deal with a series of disruptions on a real-time basis, by 

incorporating a modified version of those developed for a single disruption. The heuristic 

solutions have compared with those obtained by a standard search algorithm for a good 

number of randomly generated disruption test problems to validate the performance of the 

proposed heuristic. Finally, a simulation model is developed to analyse the effect of 

randomly generated disruption events that are not known in advance. Many random 

experiments and their numerical results have been performed to explain the usefulness of 

the developed models and methodologies. 
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The main contributions of this chapter can be summarized as follows. 

i. Development of a new mathematical model for managing raw material supply 

disruption in a three-tier supply chain system with multiple suppliers, a single 

manufacturer and multiple retailers. As a disruption scenario is not known in 

advance and is not possible to predict, the recovery plan is revised for some future 

periods after the disruption occurs on a real-time basis.  

ii. Development of a new efficient heuristic for generating a revised plan after a 

disruption.  

iii. Extension of this heuristic to deal with multiple disruptions on a real-time basis. As 

any new disruptions may or may not affect the plans revised after the previous 

ones, their scenarios may be dependent or independent, both of which the extended 

heuristic can handle. 

iv. The conduct of many random experiments to validate the heuristics and develop a 

simulation model which closely emulates real-world processes. 

8.2 Problem Description 

A three-tier manufacturing supply chain system with multiple raw material suppliers and 

retailers is considered. It is assumed that each supplier supplies one type of raw material. 

That means the number of suppliers is equal to the number of different types of raw 

materials required in the production process. The products are produced in batches in a 

single manufacturing plant. After production, the products are delivered to the retailers 

according to their demand. In an ideal plan, the optimal supply, production and delivery 

quantities are 𝑞𝑖, 𝑄 and 𝑄𝑗 respectively, which is shown as a solid line in Figure 8.1. 

However the system can face a sudden supply disruption at any time. To manage the 

system efficiently, it is necessary to generate a recovery plan after the occurrence of a 

disruption. In Figure 8.1, after a supply disruption, a recovery plan is generated to revise 

the supply (𝑋𝑘𝑖), production (𝑌𝑘) and delivery (𝑍𝑘𝑗) quantities during the recovery time 

window, which is shown as a dashed line. The objective is to minimise the total cost during 

the recovery time window, while being subject to supply, production capacity, demand, 

and delivery constraints. 
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Figure 8.1: Recovery plan after the occurrence of a disruption 

In real-life situations, the supply chain system can face multiple supply disruptions, one 

after another, as a series. When a disruption occurs, a revised plan can be generated by 

solving the mathematical model for a single disruption. If a new disruption occurs after the 

recovery time window of another disruption, then the later one can be considered as an 

independent disruption and the recovery plan can be made similar to the previous one. 

After finalizing the revised plan, if another disruption occurs within the recovery time 

window, then the supply, production and delivery plan need to be revised again to consider 

the effect of both disruptions. This makes the case more complex for recovery planning. In 

practice, to minimise the effect of disruptions, they must be dealt with on a real-time basis, 

whether this is a single occurrence of disruption or a series of disruptions. For a series of 

disruptions, the plan is revised every time, after each occurrence of a disruption, as long as 

disruptions take place in the system. 
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8.2.1 Disruption Recovery Strategy 

A supply disruption can be defined as any form of interruption in the raw material supply. 

It may be caused due to delay, unavailability, or any other form of disturbance. The 

recovery/revised plan is a new schedule that includes the revised supply, production and 

delivery quantities in each cycle, for future periods, while ensuring the minimisation of the 

total cost in the recovery time window. The number of future cycles allocated to return to 

the original schedule from the disrupted cycle, defines the recovery time window, and is 

decided by the management of the organisation. As it is assumed that the production rate is 

higher than the demand rate, there is an idle timeslot between any two consecutive 

production cycles. If the raw material supply is interrupted for a time period, known as 

disruption duration, the utilization of the idle timeslots, in future production cycles, may 

help to recover from the disruption. However, it may also involve costly back order and/or 

lost sales due to a long disruption duration and delayed production and delivery.  In this 

chapter, to recover from a disruption, the following two options are considered. 

i. Back orders: the portion of demand that cannot be fulfilled at the scheduled time, 

but that will be delivered at a later date, with a penalty, if the system is capable.  

ii. Lost sales: the portion of demand lost if customers will not wait for the required 

stock to be replenished as a consequence of the system not being capable of 

fulfilling demand.  

8.2.2 Real-Time Disruption Recovery 

A disruption recovery plan is basically a rescheduling of supply, production and delivery 

plans for some future periods, after the occurrence of a disruption, in order to return to its 

normal plan. A disruption event that is not known and cannot be predicted in advance is 

considered. In this chapter, random disruption scenarios are considered which can be 

defined as combinations of disrupted raw material, and disruption durations. In any supply 

chain environment, the system can face multiple disruptions, one after another, on a real-

time basis. In this case, one disruption can occur within the recovery window of another, 

which is known as a dependent disruption, and as this is a complex situation, the combined 
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effect of dependent disruptions should be considered in the development of a recovery 

plan. This is achieved by re-optimising the supply, production and delivery plans within 

the new recovery window under the changed supply, production and delivery environment. 

The proposed mathematical model and heuristic (discussed earlier) for dealing with a 

single disruption are later extended to consider multiple disruptions on a real-time basis, 

and are capable of handling dependent, independent and mixtures of dependent and 

independent disruptions on a real-time basis. 

8.2.3 Notations used for a Single Disruption Case 

In this study, the following notations have been used for a single disruption case. 

𝐷𝑗  Annual demand of the final product of retailer 𝑗 

𝐷 Annual total demand of the final product = ∑ 𝐷𝑗
𝐽
𝑗=1  

𝑑𝑖 Annual demand of raw material 𝑖  

𝐵1  Back order cost for the manufacturer ($ per unit per unit time) 

𝐵2 Back order cost for retailer ($ per unit per unit time) 

𝐵𝑞𝑘𝑗  Back order quantity of retailer 𝑗 during the 𝑘𝑡ℎ cycle 

𝐿1 Lost sales cost for the manufacturer ($ per unit) 

𝐿2 Lost sales cost for a retailer ($ per unit) 

𝐻1𝑖 Holding cost of raw material 𝑖 ($ per unit per year) 

𝐻2  Holding cost of the final product at the manufacturer ($ per unit per year) 

𝐻3𝑗 Holding cost of retailer 𝑗 ($ per unit per year) 

𝑁𝑖  Units of raw material 𝑖 required to produce one unit of the final product 

𝐾  Number of cycles in the revised plan – known from management 

𝑃 Annual production rate (𝑃 > 𝐷) 

𝑄 Production lot size  

𝑞𝑖 Supply lot size of raw material 𝑖  

𝑄𝑗 Delivery lot size of the final product for retailer 𝑗  

𝑆1𝑖 Ordering cost of raw material 𝑖 ($ per order) 

𝑆2 Set-up cost of the manufacturer ($ per order) 

𝑆3𝑗 Ordering cost of retailer 𝑗 ($ per order) 
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𝑠𝑡 Set-up time after the production of a lot 

𝑇𝑖𝑑𝑙𝑒 Idle time after the production of a lot = 
𝑄

𝐷
−
𝑄

𝑃
− 𝑠𝑡 

𝑇𝑑𝑚 Supply disruption duration of the m
th

 raw material  

𝑋𝑘𝑖 Supply lot size of raw material 𝑖 in the revised plan  

𝑌𝑘 Production lot size in the revised plan  

𝑍𝑘𝑗  Delivery lot size of the final product to retailer 𝑗 in the revised plan  

8.2.4 Assumptions of the Study 

The following assumptions have been made in this study. 

i. The production rate is greater than the demand rate. 

ii. A single item is produced in the system. 

iii. The recovery plan starts just after the occurrence of a disruption. 

iv. The recovery plan considers both lost sales and back order options. 

v. No inventory buffers are present in the system. 

8.3 Mathematical Modelling 

In this section, a mathematical model is developed for managing a single occurrence of a 

disruption caused by a supply disruption, by firstly presenting a mathematical model for an 

ideal supply chain plan. Then, a revised plan is formulated as a constrained optimisation 

problem that minimises total cost, which is derived from the relevant costs, subject to 

production capacity, supply, delivery, and product demand constraints. The decision 

variables are the revised quantities of production, delivery, supply, back orders and lost 

sales during the recovery time window. Some propositions are also developed to analyse 

the properties of some important parameters. 

8.3.1 Mathematical Model for the Ideal Plan 

The economic supply, production and delivery sizes under ideal conditions are derived in 

this section. The optimal ideal plan is obtained by minimising the total annual holding, 

ordering and set-up cost.   
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Annual raw material holding cost =
𝑄𝐷

2𝑃
∑𝑁𝑖𝐻1𝑖

𝐼

𝑖=1

 (8.1) 

Annual raw material ordering cost =
𝐷

𝑄
∑𝑆1𝑖

𝐼

𝑖=1

 (8.2) 

Manufacturer annual holding cost =
𝑄

2
𝐻2
𝐷

𝑃
 (8.3) 

Manufacturer annual set-up cost =
𝐷

𝑄
𝑆2 (8.4) 

Retailer annual holding cost =
𝑄

2𝐷
∑𝐷𝑗𝐻3𝑗

𝐽

𝑗=1

 (8.5) 

Retailer annual ordering cost =
𝐷

𝑄
∑𝑆3𝑗

𝐽

𝑗=1

 (8.6) 

Total cost, 

𝑇𝐶 =
𝑄𝐷

2𝑃
∑𝑁𝑖𝐻1𝑖

𝐼

𝑖=1

+ 
𝐷

𝑄
∑𝑆1𝑖

𝐼

𝑖=1

+
𝑄

2
𝐻2
𝐷

𝑃
+
𝐷

𝑄
𝑆2 + 

𝑄

2𝐷
∑𝐷𝑗𝐻3𝑗

𝐽

𝑗=1

+
𝐷

𝑄
∑𝑆3𝑗

𝐽

𝑗=1

 

 

 

(8.7) 

Now, to minimise the total cost, 
𝑑

𝑑𝑄
(𝑇𝐶) = 0 

After simplifying, the optimal ideal plan is obtained from (8.8) – (8.10).  

𝑄 = √
2𝐷(∑ 𝑆1𝑖

𝐼
𝑖=1 + 𝑆2 + ∑ 𝑆3𝑗

𝐽
𝑗=1 )

𝐷
𝑃
∑ 𝑁𝑖𝐻1𝑖
𝐼
𝑖=1  +

𝐻2𝐷
𝑃 +

1
𝐷
∑ 𝐷𝑗𝐻3𝑗
𝐽
𝑗=1

 (8.8) 

𝑞𝑖 = 𝑁𝑖𝑄 (8.9) 

𝑄𝑗 =
𝑄𝐷𝑗

𝐷
 (8.10) 
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8.3.2 Mathematical Model for a Single Disruption 

In this section, a mathematical model is developed for managing a supply disruption. To 

formulate the mathematical model for determining the revised plan after a supply 

disruption, the costs of holding, ordering, set-up, back orders and lost sales are considered. 

Finally, a mathematical model is obtained in which the total cost is to be minimised subject 

to capacity, delivery, supply, and product demand constraints. 

8.3.2.1 Different Costs 

Raw material holding cost  

=∑
𝑋1𝑖
2

𝐼

𝑖=1

𝐻1𝑖
𝑌1
𝑃
+ ∑ 𝑋1𝑖
∀𝑖≠𝑛

𝑇𝑑𝑚𝐻1𝑖 +∑∑
𝑋𝑘𝑖
2
𝐻1𝑖

𝑌𝑘
𝑃

𝐼

𝑖=2

𝐾

𝑘=1

 

 

(8.11) 

Raw material ordering cost 

= 𝐾∑𝑆1𝑖

𝐼

𝑖=1

 

 

(8.12) 

Manufacturer holding cost 

=∑
𝑌𝑘
2

2𝑃

𝐾

𝑘=1

𝐻2 

 

(8.13) 

Manufacturer set-up cost 

= 𝐾𝑆2 

 

(8.14) 

Manufacturer back order cost 

= 𝐵1∑𝑌𝑘. 𝑑𝑒𝑙𝑎𝑦𝑘

𝐾

𝑘=1

 

Here,  

𝑑𝑒𝑙𝑎𝑦𝑘 = 𝑇𝑑𝑚 +∑
𝑌𝑖
𝑃

𝑘

𝑖=1

+ (𝑘 − 1)𝑠𝑡 −
(𝑘 − 1)𝑄

𝐷
−
𝑄

𝑃
 

 

 

(8.15) 

Manufacturer lost sales cost 

= 𝐿1(𝐾𝑄 −∑𝑌𝑘

𝐾

𝑘=1

) 

 

 

(8.16) 
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Retailer holding cost 

=∑∑
(𝑍𝑘𝑗 − 𝐵𝑞𝑘𝑗)

2

2𝐷𝑗

𝐽

𝑗=1

𝐾

𝑘=1

𝐻3𝑗 

 

(8.17) 

Retailer ordering cost 

= 𝐵2∑∑
𝑑𝑒𝑙𝑎𝑦𝑘
2

𝐵𝑞𝑘𝑗

𝐽

𝑗=1

𝐾

𝑘=1

 

 

(8.18) 

Retailer back order cost 

= 𝐵2∑∑
𝑑𝑒𝑙𝑎𝑦𝑘
2

𝐵𝑞𝑘𝑗

𝐽

𝑗=1

𝐾

𝑘=1

 

 

(8.19) 

Retailer lost sales cost 

= 𝐿2 (𝐾∑𝑄𝑗

𝐽

𝑗=1

−∑∑𝑍𝑘𝑗

𝐽

𝑗=1

𝐾

𝑘=1

) 

 

(8.20) 

8.3.2.2 Final Mathematical Model for a Single Disruption 

The total cost function, which is the objective function, is obtained by adding all the costs 

presented in (8.11) – (8.20) and subject to the following constraints presented in (8.21) – 

(8.28). 

𝑌𝑘 ≤ 𝑄; ∀𝑘 [To meet the delivery requirements] (8.21) 

𝑋𝑘𝑖 ≤ 𝑞𝑖;  ∀𝑖, 𝑘 [Raw material supply constraint] (8.22) 

𝑍𝑘𝑗 ≤ 𝑄𝑗;  ∀𝑗, 𝑘 [Final product delivery constraint] (8.23) 

𝑑𝑒𝑙𝑎𝑦𝑘 ≥ 0; ∀𝑘 [Non-negative delay time]  (8.24) 

𝑄

𝐷
−
𝑄

𝑃
− 𝑠𝑡 ≥ 0 [Non-negative idle time] (8.25) 

𝐾𝑄 −∑𝑌𝑘

𝐾

𝑘=1

≥ 0 [Lost sales quantity constraint] (8.26) 

∑𝑌𝑘

𝐾

𝑘=1

≤ 𝑃 (𝐾 ∗
𝑄

𝐷
− (𝐾 − 1) ∗ 𝑠𝑡 − 𝑇𝑑𝑚) [Production capacity constraints] (8.27) 



Chapter 8: Managing Supply Disruption 225 

 

 

 

𝑋𝑘𝑖, 𝑌𝑘, 𝑍𝑘𝑗 ≥ 0; ∀𝑖, 𝑗, 𝑘 [Non-negative constraint]    (8.28) 

Proposition 1: For a given 𝐻1𝑖, 𝐻2, 𝐻3𝑗, 𝑆1𝑖, 𝑆2, 𝑆3𝑗, 𝐷𝑗 , 𝑃, 𝐵1, 𝐵2, 𝐿1 and 𝐿2, the revised 

plan will only use the back order option if 𝑇𝑑𝑚 ≤ 𝐾𝑇𝑖𝑑𝑙𝑒. 

Proof:  Idle time per cycle, 𝑇𝑖𝑑𝑙𝑒 =
𝑄

𝐷
−
𝑄

𝑃
− 𝑠𝑡. As there are 𝐾 cycles in the recovery plan, 

so the total idle time during the revised plan is 𝐾𝑇𝑖𝑑𝑙𝑒. The quantity to be produced during 

the idle time is 𝑃𝐾𝑇𝑖𝑑𝑙𝑒. 

Now, quantity loss during the duration of the disruption is 𝑇𝑑𝑚𝑃. The system will thus be 

able to recover by using only back order options, if the quantity to be produced during the 

idle time is greater than the quantity loss during the disruption duration.  

So, 𝑃𝐾𝑇𝑖𝑑𝑙𝑒 ≥ 𝑇𝑑𝑚𝑃, hence 𝑇𝑑𝑚 ≤ 𝐾𝑇𝑖𝑑𝑙𝑒.  

Proposition 2: For a given 𝐻1𝑖, 𝐻2, 𝐻3𝑗, 𝑆1𝑖, 𝑆2, 𝑆3𝑗, 𝐷𝑗 , 𝑃, 𝐵1, 𝐵2, 𝐿1 and 𝐿2, both back 

order and lost sales will exist in the revised plan if 𝑇𝑑𝑚 > 𝐾𝑇𝑖𝑑𝑙𝑒. 

Proof: This is the opposite consequence of Proposition 1. 

Proposition 3: For a given 𝐻1𝑖, 𝐻2, 𝐻3𝑗, 𝑆1𝑖, 𝑆2, 𝑆3𝑗, 𝐷𝑗 , 𝑃, 𝐵1, 𝐵2, 𝐿1 and 𝐿2, the revised 

plan will only use the lost sales option if (𝐵1 + 𝐵2) (
𝑄

𝐷
−
𝑄

𝑃
− 𝑠𝑡) > (𝐿1 + 𝐿2). 

Proof: Idle time per cycle = 
𝑄

𝐷
−
𝑄

𝑃
− 𝑠𝑡 and total back order cost per unit per unit time =

𝐵1 + 𝐵2. So, back order cost per unit = (𝐵1 + 𝐵2) (
𝑄

𝐷
−
𝑄

𝑃
− 𝑠𝑡) 

Now, lost sales cost per unit = (𝐿1 + 𝐿2). Hence if (𝐵1 + 𝐵2) (
𝑄

𝐷
−
𝑄

𝑃
− 𝑠𝑡) > (𝐿1 + 𝐿2), 

then the back order cost will be higher than the lost sales cost, so it is favorable that the 

revised plan will only use the lost sales option. 

Proposition 4: For a given 𝐻1𝑖, 𝐻2, 𝐻3𝑗, 𝑆1𝑖, 𝑆2, 𝑆3𝑗, 𝐷𝑗 , 𝑃, 𝐵1, 𝐵2, 𝐿1 and 𝐿2, the back 

order quantity of retailer to its customers is 𝐵𝑞𝑘𝑗 = 𝑍𝑘𝑗 − 𝐷𝑗 (
𝑄

𝐷
− 𝑑𝑒𝑙𝑎𝑦𝑘) if 𝑍𝑘𝑗 ≥

𝐷𝑗 (
𝑄

𝐷
− 𝑑𝑒𝑙𝑎𝑦𝑘), and is 𝐵𝑞𝑘𝑗 = 0 if 𝑍𝑘𝑗 < 𝐷𝑗 (

𝑄

𝐷
− 𝑑𝑒𝑙𝑎𝑦𝑘). 
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Proof:  After a disruption, the delay time for delivering the final product of the 𝑘𝑡ℎ cycle 

to a retailer is 𝑑𝑒𝑙𝑎𝑦𝑘. So, the remaining period of the demand cycle is (
𝑄

𝐷
− 𝑑𝑒𝑙𝑎𝑦𝑘). The 

demand during the remaining period for retailer 𝑗 is 𝐷𝑗 (
𝑄

𝐷
− 𝑑𝑒𝑙𝑎𝑦𝑘). Now the quantity 

received by retailer 𝑗 in the 𝑘𝑡ℎ cycle is 𝑍𝑘𝑗. If 𝑍𝑘𝑗 ≥ 𝐷𝑗 (
𝑄

𝐷
− 𝑑𝑒𝑙𝑎𝑦𝑘), then the excess 

quantity than 𝐷𝑗 (
𝑄

𝐷
− 𝑑𝑒𝑙𝑎𝑦𝑘) should be back ordered. So, the retailer back order quantity, 

𝐵𝑞𝑘𝑗  = 𝑍𝑘𝑗 − 𝐷𝑗 (
𝑄

𝐷
− 𝑑𝑒𝑙𝑎𝑦𝑘) and if  𝑍𝑘𝑗 < 𝐷𝑗 (

𝑄

𝐷
− 𝑑𝑒𝑙𝑎𝑦𝑘), then the retailer back order 

quantity, 𝐵𝑞𝑘𝑗  = 0, because back orders are no longer needed in this condition.  

8.3.3 Dynamic Mathematical Model for a Series of Disruptions 

Based on the formulation of the mathematical model for a single disruption, developed a 

dynamic mathematical model have also developed for a series of disruptions. Here the 

mathematical model is presented after the 𝑛𝑡ℎ disruption. The following additional 

notations have been used for the mathematical formulation. 

𝑙 Number of cycles to the current disruption from the previous disruption 

𝑋𝑘𝑖,𝑛 Supply lot size in the revised plan after the 𝑛𝑡ℎ  
disruption 

𝑌𝑘,𝑛 Production lot size in the revised plan after the 𝑛𝑡ℎdisruption 

𝑍𝑘𝑗,𝑛 Delivery lot size in the revised plan after the 𝑛𝑡ℎ  
disruption 

𝑇𝑑𝑚,𝑛 Actual disruption duration for the 𝑛𝑡ℎ disruption 

The term 𝑇𝑑𝑚,𝑛
∗  is used as the disruption duration to determine the new revised plan, which 

considers the effect of both the previous and the current disruption. It is calculated by using 

the equations (8.29) and (8.30). 

For the first disruption: 

𝑇𝑑𝑚,1
∗ = 𝑇𝑑𝑚,1 

 

(8.29) 
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From the second disruption: 

𝑇𝑑𝑚,𝑛
∗

= {
𝑇𝑑𝑚,𝑛 + 𝑇𝑑𝑚,𝑛−1

∗ − 𝑙 (
𝑄

𝐷
−
𝑄

𝑃
− 𝑠𝑡) ;  if 𝑇𝑑𝑚,𝑛−1

∗ > 𝑙 (
𝑄

𝐷
−
𝑄

𝑃
− 𝑠𝑡)

𝑇𝑑𝑚,𝑛;  if 𝑇𝑑𝑚,𝑛−1
∗ ≤ 𝑙 (

𝑄

𝐷
−
𝑄

𝑃
− 𝑠𝑡) or 𝑙 > 𝐾

 

 

 

 

(8.30) 

8.3.3.1 Different Costs in the Recovery Plan after the 𝒏𝒕𝒉 Disruption 

Raw material holding cost 

=∑
𝑋1𝑖,𝑛
2

𝐼

𝑖=1

𝐻1𝑖
𝑌1,𝑛
𝑃
+ ∑ 𝑋1𝑖,𝑛
∀𝑖≠𝑛

𝑇𝑑𝑚,𝑛𝐻1𝑖 +∑∑
𝑋𝑘𝑖,𝑛
2

𝐻1𝑖
𝑌𝑘,𝑛
𝑃

𝐼

𝑖=2

𝐾

𝑘=1

 

 

(8.31) 

Raw material ordering cost 

= 𝐾∑𝑆1𝑖

𝐼

𝑖=1

 

 

(8.32) 

Manufacturer holding cost 

=∑
𝑌𝑘,𝑛
2

2𝑃

𝐾

𝑘=1

𝐻2 

 

(8.33) 

Manufacturer ordering cost 

= 𝐾𝑆2 

 

(8.34) 

Manufacturer back order cost 

= 𝐵1∑𝑌𝑘,𝑛 ∗ 𝑑𝑒𝑙𝑎𝑦𝑘,𝑛

𝐾

𝑘=1

 

Here,  

𝑑𝑒𝑙𝑎𝑦𝑘,𝑛 = 𝑇𝑑𝑚,𝑛 +∑
𝑌𝑖,𝑛
𝑃

𝑘

𝑖=1

+ (𝑘 − 1)𝑠𝑡 −
(𝑘 − 1)𝑄

𝐷
−
𝑄

𝑃
 

 

(8.35) 

Manufacturer lost sales cost 

=∑∑
(𝑍𝑘𝑗,𝑛 − 𝐵𝑞𝑘𝑗,𝑛)

2

2𝐷𝑗

𝐽

𝑗=1

𝐾

𝑘=1

𝐻3𝑗 

 

(8.36) 
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Retailer holding cost   

=∑∑
(𝑍𝑘𝑗,𝑛 − 𝐵𝑞𝑘𝑗,𝑛)

2

2𝐷𝑗

𝐽

𝑗=1

𝐾

𝑘=1

𝐻3𝑗 

 

(8.37) 

Retailer ordering cost 

= 𝐾∑𝑆3𝑗

𝐽

𝑗=1

 

 

(8.38) 

Retailer back order cost  

= 𝐵2∑∑
𝑑𝑒𝑙𝑎𝑦𝑘,𝑛

2
𝐵𝑞𝑘𝑗,𝑛

𝐽

𝑗=1

𝐾

𝑘=1

 

 

(8.39) 

Retailer lost sales   

= 𝐿2 (𝐾∑𝑄𝑗

𝐽

𝑗=1

−∑∑𝑍𝑘𝑗,𝑛

𝐽

𝑗=1

𝐾

𝑘=1

) 

 

(8.40) 

8.3.3.2 Final Mathematical Model for a Series of Disruptions 

The total cost function after the 𝑛𝑡ℎ disruption, which is the objective function, is obtained 

by adding all the costs in (8.31) – (8.40) and subject to the following constraints presented 

in (8.41) – (8.47). 

𝑌𝑘,𝑛 ≤ 𝑄; ∀𝑘 [To meet the delivery requirements] (8.41) 

𝑋𝑘𝑖,𝑛 ≤ 𝑞𝑖;  ∀𝑖, 𝑘 [Raw material supply constraint] (8.42) 

𝑍𝑘𝑗,𝑛 ≤ 𝑄𝑗;  ∀𝑗, 𝑘 [Final product delivery constraint] (8.43) 

𝑑𝑒𝑙𝑎𝑦𝑘,𝑛 ≥ 0; ∀𝑘 [Non-negative delay time]  (8.44) 

𝐾𝑄 −∑𝑌𝑘,𝑛

𝐾

𝑘=1

≥ 0 [Lost sales quantity constraint] (8.45) 

∑𝑌𝑘,𝑛

𝐾

𝑘=1

≤ 𝑃(𝐾 ∗
𝑄

𝐷
− (𝐾 − 1) ∗ 𝑠𝑡 − 𝑇𝑑𝑚,𝑛) [Production capacity constraints] (8.46) 

𝑋𝑘𝑖,𝑛, 𝑌𝑘,𝑛, 𝑍𝑘𝑗,𝑛 ≥ 0; ∀𝑖, 𝑗, 𝑘  [Non-negative constraint]    (8.47) 
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8.4 Solution Approaches 

In this section, a heuristic is developed to solve the developed model for a single 

disruption. To judge the quality of the heuristic solutions, the model is also solved by 

applying a pattern search (PS) technique, which is a standard search algorithm for solving 

constrained optimisation problems. A simulation model is also developed to make the 

disruption problem closer to a real-world process. Finally, the heuristic is extended for 

managing multiple disruptions, one after another as a series, on a real-time basis. Both the 

heuristics and the PS technique were coded in MATLAB R2012a, and were executed on an 

Intel core i7 processor with 8.00 GB RAM and a 3.40 GHz CPU. The parameters used in 

the PS technique are presented as follows.  

Maximum number of iterations: 100* Number of variables  

Polling order: Random 

X tolerance: 1e-8 

Function tolerance: 1e-8 

Non-linear constraint tolerance: 1e-8 

Cache tolerance: 1e-8 

Search method: Latin hypercube 

Maximum function evaluations: 10
6
 

Other parameters are set as the default in the optimisation toolbox of MATLAB R2012a.  

8.4.1 Proposed Heuristic for a Single Disruption 

In this section, a heuristic is developed for managing a single disruption. The steps of the 

heuristic are as follows. 

Step 1: Input all information about the ideal system. 

Step 2: Determine 𝑄, 𝑞𝑖 and 𝑄𝑗 for the optimal ideal plan by using (8.8) – (8.10) and also 

determine production time, cycle time and idle time. 

Step 3: Input disruption information, such as: disrupted raw material, disruption duration and 

recovery period. 

Step 4: If (𝐵1 + 𝐵2) (
𝑄

𝐷
−
𝑄

𝑃
− 𝑠𝑡) ≤ (𝐿1 + 𝐿2) and 𝑇𝑑𝑚 ≤ 𝐾 ∗ 𝑇𝑖𝑑𝑙𝑒, then 

 𝑌𝑘 = 𝑄; ∀𝑘 
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𝑋𝑘𝑖 = 𝑁𝑖 ∗ 𝑌𝑘; ∀𝑖, 𝑘 

𝑍𝑘𝑗 =
𝑌𝑘∗𝐷𝑗

𝐷
; ∀𝑗, 𝑘 

If 𝑇𝑑𝑚 ≤ 𝑇𝑖𝑑𝑙𝑒, then 

 𝑑𝑒𝑙𝑎𝑦1 = 𝑇𝑑𝑚 +
𝑌1

𝑃
−
𝑄

𝑃
 

𝑑𝑒𝑙𝑎𝑦𝑘 = 0; For 𝑘 = 2, 3,…., 𝐾 

If 𝑇𝑖𝑑𝑙𝑒 < 𝑇𝑑𝑚 ≤ 2𝑇𝑖𝑑𝑙𝑒, then 

 𝑑𝑒𝑙𝑎𝑦1 = 𝑇𝑑𝑚 +
𝑌1

𝑃
−
𝑄

𝑃
 

𝑑𝑒𝑙𝑎𝑦2 = 𝑇𝑑𝑚 +
𝑌1+𝑌2

𝑃
+ 𝑠𝑡 −

𝑄

𝐷
−
𝑄

𝑃
  

𝑑𝑒𝑙𝑎𝑦𝑘 = 0; for 𝑘 =  3, 4,…., 𝐾 

 …… 

If (𝐾 − 1)𝑇𝑖𝑑𝑙𝑒 < 𝑇𝑑𝑚 ≤ 𝐾𝑇𝑖𝑑𝑙𝑒, then 

𝑑𝑒𝑙𝑎𝑦𝑘 = 𝑇𝑑𝑚 + ∑
𝑌𝑖

𝑃
𝑘
𝑖=1 + (𝑘 − 1)𝑠𝑡 −

(𝑘−1)𝑄

𝐷
−
𝑄

𝑃
 ; ∀𝑘 

Step 5: If (𝐵1 + 𝐵2) (
𝑄

𝐷
−
𝑄

𝑃
− 𝑠𝑡) ≤ (𝐿1 + 𝐿2) and 𝑇𝑑𝑚 > 𝐾𝑇𝑖𝑑𝑙𝑒, then 

 𝑌1 = 𝑄  

𝑌2 = 𝑄 − 𝑃 [𝑇𝑑𝑚 − 𝐾 ∗ (
𝑄

𝐷
−
𝑄

𝑃
− 𝑠𝑡)]   

𝑌𝑘 = 𝑄; For 𝑘 = 3, 4,…., 𝐾 

𝑋𝑘𝑖 = 𝑁𝑖 ∗ 𝑌𝑘; ∀𝑖, 𝑘 

𝑍𝑘𝑗 =
𝑌𝑘∗𝐷𝑗

𝐷
; ∀𝑗, 𝑘 

𝑑𝑒𝑙𝑎𝑦𝑘 = 𝑇𝑑𝑚 +∑
𝑌𝑖

𝑃
𝑘
𝑖=1 + (𝑘 − 1)𝑠𝑡 −

(𝑘−1)𝑄

𝐷
−
𝑄

𝑃
 ; ∀𝑘 

Step 6: If (𝐵1 + 𝐵2) (
𝑄

𝐷
−
𝑄

𝑃
− 𝑠𝑡) > (𝐿1 + 𝐿2) then 

 𝑌1 = 𝑄 − 𝑇𝑑𝑚 ∗ 𝑃 

𝑌𝑘 = 𝑄; For 𝑘 = 2, 3,…., 𝐾 

𝑋𝑘𝑖 = 𝑁𝑖 ∗ 𝑌𝑘; ∀𝑖, 𝑘 

𝑍𝑘𝑗 =
𝑌𝑘∗𝐷𝑗

𝐷
; ∀𝑗, 𝑘 

𝑑𝑒𝑙𝑎𝑦𝑘 =0; ∀𝑘 

Step 7: Determine the lost sales and back order quantities. 

Step 8: Determine the different costs and record the results. 

Step 9: Stop. 
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8.4.2 Simulation Model 

A simulation model is developed to make the disruption model closer to a real-world 

problem by using the following steps. 

Step A: Generate a random number for choosing a disrupted raw material by using a 

uniform distribution. 

Step B: Generate a random number for the disruption duration by using an exponential 

distribution. 

Step C: Solve the disruption management problem by using the heuristic for a single 

disruption. 

Step D: Repeat steps A to C 2000 times. 

Step E: Record the results. 

Step F: Stop. 

8.4.3 Extended Heuristic for Multiple Disruptions 

The heuristic, developed for a single disruption, is extended for managing multiple 

disruptions, one after another as a series, on a real-time basis. To do this, a recovery plan is 

obtained from the heuristic after each disruption, with the revised production, supply and 

delivery plans saved and then used as a foundation for recovering from the next disruption. 

The steps in the extended heuristic for managing multiple disruptions are described below. 

Step 1: Input the disrupted raw material and 𝑇𝑑𝑚,1for the first disruption. 

Step 2: Update the parameter 𝑇𝑑𝑚 = 𝑇𝑑𝑚,1
∗  and also update the decision variables as 

𝑋𝑘𝑖 = 𝑋𝑘𝑖,1 and 𝑌𝑘 = 𝑌𝑘,1 and 𝑋𝑘𝑗 = 𝑋𝑘𝑗,1 

Step 3: Solve the model by using the heuristic for the single disruption under the updated 

parameters. 

Step 4: Record the revised plan and calculate the different costs. 

Step 5: If there is any other disruption,  
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5.1 Later when known, input the disrupted raw material, disrupted cycle number 

from the previous disruption (𝑙), and disruption duration (𝑇𝑑𝑚,𝑛) for the next 

disruption. 

5.2 Calculate 𝑇𝑑𝑚,𝑛
∗  by using equation (8.30). 

5.3 Update the disruption duration as 𝑇𝑑𝑚 = 𝑇𝑑𝑚,𝑛
∗  and also update the decision 

variables as 𝑋𝑘𝑖 = 𝑋𝑘𝑖,𝑛, 𝑌𝑘 = 𝑌𝑘,𝑛 and 𝑋𝑘𝑗 = 𝑋𝑘𝑗,𝑛. 

5.4 Go to step 3. 

Step 6: Record the results. 

Step 7: Stop. 

8.5 Experimentations and Results Analysis 

In this section, the results have been analysed for both the ideal and revised plans by 

performing random experimentations. The results for both a single and multiple disruptions 

have also analysed. 

8.5.1 Ideal Plan 

The following data are considered for the ideal supply chain plan with three raw material 

suppliers and four retailers. 

𝐼 =3; 𝐽 = 4; 𝐷𝑗 = [15,000, 25,000, 20,000, 30,000]; 𝑃 = 100,000; 𝑁𝑖 = [1, 3, 2];  

𝐻1𝑖 = [2, 2.5, 2.2]; 𝑆1𝑖 = [100, 80, 120]; 𝐻2 = 3; 𝑆2 = 150; 𝐻3𝑗 = [1.2, 1.5, 1.7, 1.4]; 

𝑆3𝑗 = [50, 60, 60, 50]; 𝑠𝑡 = 0.000228 

The equations (8.8) – (8.10) were used to determine the ideal plan which is obtained as 

follows. 

𝑄 = 2,689.6; 

𝑞𝑖 = [2689.6, 8068.8, 5379.2]; and 

𝑄𝑗 =[448.3, 747.1, 597.7, 896.5] 



Chapter 8: Managing Supply Disruption 233 

 

 

 

8.5.2 Results Analysis for a Single Disruption 

In this section, the solutions for a single disruption are analysed. Although it was 

experimented on many random disruption test problems, for illustrative purposes, six 

different sample instances were used by arbitrarily changing the disruption data, with their 

parameters shown in Table 8.1. The same data of the ideal plan was used with the 

following additional data to obtain the revised plan. 

𝐵1 = 20, 𝐵2 = 10, 𝐿1 = 25, 𝐿2 = 15 and 𝐾 = 5   

Table 8.1: Disruption instances for a single disruption 

Instance number Disrupted raw material Disruption duration 

1 1 0.005 

2 1 0.020 

3 2 0.010 

4 2 0.025 

5 3 0.008 

6 3 0.022 

The results for the disruption instances are presented in Table 8.2, which includes back 

orders, lost sales and total cost. It is observed that, the heuristic showed insignificant 

changes in results for different runs. For a sample representation, the revised plans for 

disruption instances 1 and 2 are presented in Table 8.3. 
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Table 8.2: Results for disruption instances 

Instance number 
Total Back Order 

Cost 

Total Lost Sales 

Cost 
Total Cost 

1 402.94 0 7236.50 

2 2,672.56 24790.60 34408.30 

3 1339.69 0 8131.25 

4 2904.75 44790.60 54272.06 

5 889.46 0 7738.52 

6 2762.74 32790.60 42351.55 

 

8.5.3 Results Analysis for a Single Disruption 

To judge the quality of the solutions obtained from the proposed heuristic, the solutions of 

150 test problems were compared with the best result (out of 30 independent runs) 

obtained from the pattern search. Those random test problems have been generated by 

using a uniform distribution and by varying the data of the disruption parameters. The 

comparison showed that the proposed heuristic is capable of producing high quality 

solutions. In terms of the quality of the solutions, the average deviation of results between 

the two approaches is only 0.000283%, which can be considered as negligible. The 

percentage of deviation was calculated by using the equation (8.48). 

Percentage of deviation  

=
|Total profit from heuristc−Total profit from PS|

Total profit from PS
× 100%     

 

(8.48) 
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Table 8.3: Revised plans for disruption instances 1 and 2 

Disruption 

instance 
Revised plan 

1 

Revised raw material supply plan 

Supplier 𝑋1𝑖 𝑋2𝑖 𝑋3𝑖 𝑋4𝑖 𝑋5𝑖 

1 2689.6 2689.6 2689.6 2689.6 2689.6 

2 8068.8 8068.8 8068.8 8068.8 8068.8 

3 5379.2 5379.2 5379.2 5379.2 5379.2 

Revised production plan 

𝑌1 𝑌2 𝑌3 𝑌4 𝑌5 

2689.6 2689.6 2689.6 2689.6 2689.6 

Revised delivery plan 

Retailer 𝑍1𝑗 𝑍2𝑗 𝑍3𝑗 𝑍4𝑗 𝑍5𝑗 

1 448.3 448.3 448.3 448.3 448.3 

2 747.1 747.1 747.1 747.1 747.1 

3 597.7 597.7 597.7 597.7 597.7 

4 896.5 896.5 896.5 896.5 896.5 
 

2 

Revised raw material supply plan 

Supplier 𝑋1𝑖 𝑋2𝑖 𝑋3𝑖 𝑋4𝑖 𝑋5𝑖 

1 2689.6 2069.9 2689.6 2689.6 2689.6 

2 8068.8 6209.6 8068.8 8068.8 8068.8 

3 5379.2 4139.7 5379.2 5379.2 5379.2 

Revised production plan 

𝑌1 𝑌2 𝑌3 𝑌4 𝑌5 

2689.6 2069.9 2689.6 2689.6 2689.6 

Revised delivery plan 

Retailer 𝑍1𝑗 𝑍2𝑗 𝑍3𝑗 𝑍4𝑗 𝑍5𝑗 

1 448.3 345.0 448.3 448.3 448.3 

2 747.1 575.0 747.1 747.1 747.1 

3 597.7 460.0 597.7 597.7 597.7 

4 896.5 690.0 896.5 896.5 896.5 
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8.5.4 Random Experimentation 

Many disruption test problems were generated randomly for each raw material supply, and 

solved them using the heuristic. The total cost pattern have been analysed for random 

occurrences of disruption over 500 random scenarios, and variations in the different costs 

according to the disruption duration.  

Five hundred random scenarios were generated for the duration of a supply disruption 

using an exponential distribution within the range of [0.0001, 1], and the total cost pattern, 

for disruption of raw material 1, is presented in Figure 8.2. It was determined that the mean 

and standard deviation values of the total cost were 13.2000 and 11.8620 thousand 

respectively, and the maximum and minimum values were 54.6130 and 6.7060 thousand 

respectively.  

 

Figure 8.2: Total cost vs. disruption number for disruption at raw material 1 

The variations in the different costs in relation to the duration of a supply disruption, for 

disruption of raw material 1, are presented in Figure 8.3. The total cost increases slowly 

when the duration is less than 0.014 because only back orders are present in the the revised 

plan. Then, the total cost increases at a higher rate with disruption durations because of the 

lost sales cost being included in the plan and both  back orders and lost sales are present in 

the revised plan. Figure 8.4 presents the variations of back orders and lost sales quantities 

in relation to the disruption duration for disruption of raw material 1. The back orders 
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quantity increases with the disruption duatrion when the duration is less than 0.014 and no 

lost sales are then present. After then, the lost sales quantity enters in the revised plan and 

both back orders and lost sales quantities are present. Similar properties have also been 

found for disruption of raw materials 2 and 3. 

 

Figure 8.3: Different costs vs. disruption duration for disruption of raw material 1 

 

Figure 8.4: Lost sales and back order quantity vs. disruption duration for disruption of raw 

material 1 
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[0.0001, 1], and the total cost patterns are presented in Figures 8.5 and 8.6 respectively. It 

was determined that the mean and standard deviation values of the total cost were 13.0800 

and 11.4840 thousand respectively, and the maximum and minimum values were 53.8530 

and 6.7044 thousand respectively for disruption of raw material 2 and those values were 

12.0260, 10.4250, 54.4580 and 6.7009 thousands respectively for disruption of raw 

material 3.  

 

Figure 8.5: Total cost vs. disruption number for disruption of raw material 2 

 

Figure 8.6: Total cost vs. disruption number for disruption of raw material 3 
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8.5.5 Simulation Results 

The simulation model presented in Section 8.4.2 was ran to make the supply chain 

disruption problem close to a real-world process. Random supply disruption durations were 

generated by using an exponential distribution, and the histogram of the disruption 

duration is presented in Figure 8.7. The different costs patterns for random disruption 

occurrences over the 2000 random scenarios are presented in Figure 8.8. The mean, 

standard deviation, maximum and minimum values of different costs were calculated, and 

they are presented in Table 8.4.  

 

Figure 8.7: Histogram of disruption duration for the simulation 

Table 8.4: Statistic of different costs for the simulation run 

Cost type 
Mean 

(Thousands) 

Standard deviation 

(Thousands) 

Maximum 

(Thousands) 

Minimum 

(Thousands) 

Total back 

orders cost 
1.0936 1.0005 2.9037 0 

Total lost 

sales cost 
4.5365 10.4750 44.7070 0 

Total cost 12.4370 11.2020 54.3960 6.7012 
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Figure 8.8: Simulation results of different costs for 2000 runs 

8.5.6 Results Analysis for a Series of Disruptions 

To demonstrate the usefulness of the proposed heuristic for solving different scenarios with 

a series of disruptions, one after another, over a period of time, the basic data of the single 

disruption problem presented in Sections 8.5.1 and 8.5.2 was used. The first disruption can 

be solved by using the heuristic developed for a single disruption. Then, if another 

disruption occurs after the recovery window of a previous one, it could be considered 

another single disruption that would not affect the revised plan based on the previous 

disruption. However, as a new disruption within the recovery window of any previous one 

may affect the previous revised plan, the revised plan for its recovery window must be 

considered as a set of additional restrictions. For experimental purposes, a series of ten 

dependent disruptions was generated randomly, one after another, as shown in Table 8.5. 

Although they could happen continuously, only ten is presented as a sample representation. 

To minimise the total cost in the system, the supply, production and delivery quantities 

were revised immediately, after each disruption took place, for the next five cycles. The 

problem was then solved using the proposed heuristic for multiple disruptions, as presented 

in Section 8.4.3, with the results recorded after each disruption, the total lost sales cost, 

total back orders cost and total cost are shown in Table 8.6.  
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Table 8.5: A random case for a series of disruptions 

Disruption 

number 

Disrupted raw 

material 

Disrupted cycle 

number 
Disruption duration 

1 2 -- 0.009 

2 3 4 0.016 

3 1 6 0.012 

4 3 8 0.007 

5 3 2 0.014 

6 2 8 0.020 

7 1 3 0.006 

8 1 5 0.022 

9 2 7 0.013 

10 3 4 0.018 

--- --- --- --- 

Table 8.6: Results for the series of disruptions 

Disruption 

number 

Total back 

orders 
Total lost sales Total cost 

1 1,105.22 0 7,892.47 

2 2,503.01 8,790.60 18,167.13 

3 1,871.36 0 8,846.95 

4 715.29 0 7,548.71 

5 2,481.99 6,706.85 16,071.98 

6 2,672.56 24,790.60 34,112.44 

7 2,574.09 15,664.97 25,198.68 

8 2,949.74 48,455.57 58,357.03 

9 2,171.73 0 8,971.95 

10 2,670.71 24,623.09 34,110.28 

--- --- --- --- 
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To compare and judge the heuristic solutions of the multiple disruptions, another solution 

approach have also developed for multiple disruptions by using the PS technique. Then the 

solutions of 30 randomly generated test problems were compared. The comparison showed 

that the average percentage of deviation was only the negligible amount of 0.000008%. So 

the proposed heuristic is also capable of handling multiple disruptions on a real-time basis. 

8.6 Chapter Summary 

The main objective of this chapter was to develop a quantitative approach to recover from 

supply disruptions in a three-tier supply chain system. A new mathematical and heuristic 

approach was developed for managing a single supply disruption. Then the mathematical 

model and the heuristic were extended to develop a dynamic approach for managing 

multiple supply disruptions on a real-time basis. These heuristics were validated by 

comparing the results from another standard solution technique which showed that the 

average percentage of deviation was a negligible amount for a good number of randomly 

generated test problems. A large set of random experiments was performed to analyse the 

characteristics of the developed models, and finally, a simulation model was developed to 

enable solving the supply disruption problem as a real-world process.  

The proposed approach offers a potentially very useful quantitative approach to help 

decision makers to make prompt and accurate decisions on a real-time recovery plan, 

whenever a sudden, or a series of supply disruptions, takes place in a three-tier supply 

chain system.  The supply chain system can return to its normal supply, production and 

delivery plan as quickly as possible after a supply disruption with the help of this approach, 

and thereby minimise its total costs and enhance its reputation.  

The disruption management problem, for managing supply disruption in a three-tier supply 

chain, has been addressed in chapter 8. In this and previous chapters, different types 

disruptions such as disruption production and supply and demand fluctuation have been 

considered. Each chapter focused on a distinctive disruption type. In real-world case, 

however, multiple types of disruption can happen in a single setting of supply chain. The 

next chapter will combine all the disruption types under a single supply chain system. The 
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effect of each and multiple types of disruption, on a three-tier supply chain, will be 

analysed and discussed by developing a quantitative and simulation approach. 

 

 

 

 

 



 

Chapter 9 A Simulation Model for a Supply 

Chain System 

This chapter presents a reactive mitigation approach for a three-tier manufacturing supply 

chain, which has a single supplier, single manufacturer and single retailer under imperfect 

production environment, in which three types of sudden disturbances are considered: 

demand fluctuation, and production and raw material supply disruptions. Firstly, a 

mathematical model is developed for generating an ideal plan under imperfect production, 

for a finite planning horizon, while maximising total profit and then re-formulated it by 

incorporating each type of disturbance. Then a new and efficient heuristic is proposed for 

each disturbance type to obtain the revised plan after the occurrence of a disturbance on a 

real-time basis. The heuristic solutions are compared with those obtained by a standard 

solution technique for a set of randomly generated test problems which demonstrates the 

consistent performance of the developed heuristics. Another heuristic is also developed for 

managing the combined effects of multiple disturbances in a period. The effects of 

different types of randomly generated disturbance events, not known in advance, are 

analysing by developing a simulation model. Finally, this chapter presents some numerical 

results and significant number of random experimentations to explain the usefulness of the 

developed models and methodologies. 

9.1 Introduction 

In real-life, every manufacturing and service organisation is part of a supply chain; for 

example, pharmaceutical, textile and manufacturing enterprises that supply, produce and 

distribute products use supply chain networks. In real-life situations, the production system 

of a manufacturing plant can be imperfect. This means that the manufacturing system can 

produce some defective items. Moreover, every supply chain has multiple entities, such as 

a supplier, manufacturing plant and retailer, which face many uncontrollable sudden 
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disturbances, such as a demand fluctuation at the retailer’s end, a production disruption in 

the manufacturing plant and a supply disruption at the supplier’s end (Paul et al., 2016). 

Every organisation should have appropriate strategies for managing these types of real-life 

factors in their supply chain system. 

Most previous studies in the literature considered ideal supply chain systems and a 

reasonable number developed models for after the occurrence of a disturbance on a real-

time basis. They were focused mainly on developing models for a single type of 

disturbance, with no one study considering multiple types of disturbances. Although some 

papers developed a heuristic to solve their models, very little has been done to develop a 

combined heuristic and simulation approach to make the model closer to a real-world 

process. Therefore, it can be said that more research is needed to develop a real-time 

disturbance management system that covers all types of disturbances. In this chapter, 

manufacturing process reliability is considered to develop the ideal supply chain plan as 

imperfect production processes are common in real-life. Mathematical and heuristic 

approaches are also developed for managing three types of disturbances, a demand 

fluctuation, and production and supply disruptions, on a real-time basis. In a real-life 

supply chain system, multiple types of disturbances can happen together during a single 

period. Therefore, another heuristic is also developed that considers the combined effects 

of multiple disturbances in a certain period. Finally, a simulation approach is developed for 

making the disturbance management problem closer to a real-world process and performs a 

great deal of random experimentation to validate the heuristics and analyse the results. 

The main contributions of this chapter can be summarized as follows. 

i. Consideration of manufacturing process reliability while developing the 

mathematical model for the ideal system and the ideal plan will be updated 

immediately if there are any changes in data. 

ii. Development of a new disturbance management model for a supply chain system 

which considers a demand fluctuation, and production and raw material supply 

disruptions. As such a disturbance scenario is not known in advance and follows a 

stochastic process, after it occurs, the original plan is revised for a future period on 

a real-time basis.  
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iii. Development of a new and efficient heuristic for each type of disturbance to 

generate the revised plan after the occurrence of a disturbance.  

iv. Development of a new heuristic capable of dealing with multiple disturbances in a 

period by considering their combined effects in order to develop the revised plan. 

v. The conduct of random experimentations to validate the heuristics and develop a 

simulation model which closely emulates real-world processes. 

For a better understanding of the disturbance management problem, definitions of the 

different terms used in this chapter are provided as follows. 

Process reliability: percentage of non-defective products produced in the production 

system (Cheng, 1989). 

Demand fluctuation: any kind of variation in product demand. Demand can be increased 

or decreased for a certain period of time which is known as its fluctuation period (Paul et 

al., 2014a). 

Production disruption: any kind of interruption in the production system (Paul et al., 

2014b); for example, machine breakdown, power cut, raw material shortage, etc. 

Supply disruption: any form of interruption to the raw material supply that may be caused 

by a delay, unavailability or any other form of disturbance (Hishamuddin et al., 2014). 

Ideal plan: a supply, production and delivery plan developed under ideal conditions (no 

disruption). 

Revised plan: if a disturbance occurs in the system, it is necessary to revise the plan for 

some periods in the future until the system returns to its normal schedule. 

Back orders: after the occurrence of a disturbance, a portion of demand that cannot be 

fulfilled at the scheduled time but will be delivered at a later date when available. 

Lost sales: if, after the occurrence of a disturbance, the production process is not capable 

of fulfilling that demand, as customers will sometimes not wait for stock to be replenished, 

demand is lost.  
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9.2 Problem description 

In this section, the different disturbance problems that occur in a real-life supply chain 

system are described and presented in Fig. 9.1. It is considered that a demand fluctuation 

can happen at the retailer end, a production disruption at the manufacturing plant and a 

supply disruption at the supplier end. After a disruption occurs in a system, the production, 

supply and delivery plan has to be revised so that the effect of the disruption is minimised; 

in other words, total profit is maximised.  

Manufacturing 

Plant
Retailer

Raw material 

supplier

Raw material supply 

disruption

Production 

disruption

Demand 

fluctuation

Disturbance type 3 Disturbance type 2 Disturbance type 1
 

Figure 9.1: Different disturbances in a supply chain system 

In this system, first, the ideal production, supply and delivery plan is developed for 𝑛 

periods under imperfect production system which is updated after each period for the next 

𝑛 periods on a rolling horizon basis. The term process reliability (𝑟) is used to express 

imperfect production environment. The ideal plan is presented in Table 9.1, where the 

decision variables are 𝐴𝑃𝑖, 𝑅𝑖, 𝑅𝑀𝑖, 𝐵𝑖 and 𝐸𝑖, and the total profit is maximised.   
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Table 9.1: Ideal plan for 𝑛 periods 

Variable Period 1 Period 2 Period 3 ... Period 𝑛 

Demand (𝐷𝑖) 𝐷1 𝐷2 𝐷3 ... 𝐷𝑛 

Production 

capacity (𝑃) 
𝑟𝑃 𝑟𝑃 𝑟𝑃 

... 
𝑟𝑃 

Actual 

production 

(𝐴𝑃𝑖) 
𝐴𝑃1 𝐴𝑃2 𝐴𝑃3 

... 
𝐴𝑃𝑛 

Beginning 

inventory (𝐵𝑖) 
𝐵1 𝐴𝑃1 +𝐵1 − 𝑅1 

∑𝐴𝑃𝑗

2

𝑗=1

−∑𝑅𝑗

2

𝑗=1

+ 𝐵1 

... 
∑𝐴𝑃𝑗

𝑛−1

𝑗=1

−∑𝑅𝑗

𝑛−1

𝑗=1

+ 𝐵1 

Ending 

inventory (𝐸𝑖) 
𝐴𝑃1 + 𝐵1 − 𝑅1 

∑𝐴𝑃𝑗

2

𝑗=1

−∑𝑅𝑗

2

𝑗=1

+ 𝐵1 

∑𝐴𝑃𝑗

3

𝑗=1

−∑𝑅𝑗

3

𝑗=1

+ 𝐵1 

... 

∑𝐴𝑃𝑗

𝑛

𝑗=1

−∑𝑅𝑗

𝑛

𝑗=1

+ 𝐵1 

Received by 

retailer (𝑅𝑖) 
𝐵1 + 𝐴𝑃1 − 𝐸1 𝐵2 + 𝐴𝑃2 − 𝐸2 𝐵3 + 𝐴𝑃3 − 𝐸3 

... 
𝐵𝑛 + 𝐴𝑃𝑛 − 𝐸𝑛 

Raw material 

quantity 

(𝑅𝑀𝑖) 
𝑅𝑀1 𝑅𝑀2 𝑅𝑀3 

... 
𝑅𝑀𝑛 

Table 9.2: Revised plan for managing disturbance 

Variable Period 1 Period 2 Period 3 ... Period 𝑛 

Production 

(𝑋𝑖) 
𝑋1 𝑋2 𝑋3 ... 𝑋𝑛 

Received by 

retailer (𝑌𝑖) 
𝑌1 𝑌2 𝑌3 ... 𝑌𝑛 

Beginning 

inventory 

(𝑏𝑖) 
𝑏1 𝑋1 + 𝑏1 − 𝑌1 ∑𝑋𝑗

2

𝑗=1

−∑𝑌𝑗

2

𝑗=1

+ 𝑏1 ... ∑𝑋𝑗

𝑛−1

𝑗=1

−∑𝑌𝑗

𝑛−1

𝑗=1

+ 𝑏1 

Ending 

Inventory 

(𝑒𝑖) 
𝑋1 + 𝑏1 − 𝑌1 ∑𝑋𝑗

2

𝑗=1

−∑𝑌𝑗

2

𝑗=1

+ 𝑏1 ∑𝑋𝑗

3

𝑗=1

−∑𝑌𝑗

3

𝑗=1

+ 𝑏1 ... ∑𝑋𝑗

𝑛

𝑗=1

−∑𝑌𝑗

𝑛

𝑗=1

+ 𝑏1 

Raw 

material 

quantity 

(𝑍𝑖) 

𝑍1 𝑍2 𝑍3 ... 𝑍𝑛 

Finally, this chapter develops a recovery plan which is actually a reactive mitigation. In 

real-life situations, any supply chain can face a sudden disturbance at any time. After such 
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an occurrence, the plan must be revised for a finite period in the future so that losses can be 

minimised and the system returns to its ideal plan as quickly as possible. After the 

occurrence of a disturbance, 𝑋𝑖, 𝑌𝑖, 𝑍𝑖, 𝑏𝑖 and 𝑒𝑖 are changed to obtain the revised plan 

presented in Table 9.2 while the objective is still to maximise total profit.  

9.2.1 Notations used in the Study 

The following notations are used in this study. 

𝑛  Number of planning periods in planning horizon 

𝐷𝑖 Demand of period 𝑖 

𝑃 Maximum production capacity of each period 

𝐵𝑖 Beginning inventory in period 𝑖 

𝐵𝑛+1 Beginning inventory which should be kept in period (𝑛 + 1) 

𝐸𝑖 Ending inventory in period 𝑖  

𝐴𝑃𝑖 Actual production in period 𝑖 

𝑆𝐶𝑖  Spare capacity in period 𝑖 

𝑅𝑖 Quantity received by retailer at period 𝑖 

𝑁 Units of raw material required to produce one unit of final product 

𝐴 Set-up cost at the manufacturing plant 

𝑟 Process reliability of manufacturing plant 

𝑅𝑀𝑖 Raw material supply quantity for period 𝑖  = 𝑁 ∗
𝐴𝑃𝑖

𝑟
 

𝐶𝑝 Production cost per unit 

𝐶𝑑 Delivery cost per unit 

𝐶𝑟 Raw material cost per unit 

𝐻1 Raw material holding cost per unit per period 

𝐻2 Ending inventory holding cost per unit 

𝐶𝐿 Cost per unit due to decrease of demand 

𝐶𝐼 Inspection cost as a percentage of the production cost 

𝐶𝑅 Rejection cost per unit 

𝑆 Selling price per unit 

𝐵 Back orders cost per unit per period 
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𝐿 Lost sales cost per unit = revenue loss per unit + cost of reputation loss per unit 

𝑋𝑖 Production quantity in period 𝑖 in revised plan 

𝑌𝑖 Delivery quantity in period 𝑖 in revised plan 

𝑍𝑖 Raw material quantity in period 𝑖 in revised plan 

𝑏𝑖 Beginning inventory in revised plan  

𝑒𝑖 Ending inventory in revised plan 

Demand fluctuation parameter 

𝛿 Demand fluctuation amount 

Production disruption parameters 

𝑡𝑠 Disruption start time as fraction of duration of period 

𝑇𝑑𝑝 Disruption duration as fraction of duration of period (≤ 1- 𝑡𝑠)  

𝑞 Pre-disruption production quantity = 𝑡𝑠 ∗ 𝑃  

Supply disruption parameter 

𝑇𝑑𝑠 Disruption duration as fraction of duration of period (≤ 1) 

9.2.2 Assumptions of the Study 

In this chapter, the following assumptions are made: 

i. The total production capacity is greater than its demand rate (𝑟𝑃 ∗ 𝑛 > ∑ 𝐷𝑖
𝑛
𝑖=1 ); 

ii. A single item is produced in the system; 

iii. A supplier can supply any amount of raw material; 

iv. The total cost of interest and depreciation per production cycle 𝐶(𝐴, 𝑟) is 

inversely related to set-up cost (𝐴) and is directly related to process reliability 

(r) according to the following general power function(Cheng, 1989): 

𝐶(𝐴, 𝑟) = 𝑎𝐴−𝑏𝑟𝑐 

where a, b and c are positive constants chosen to provide the best fit of the 

estimated cost function; 

v. The ideal plan is updated after each period for the next 𝑛 periods (rolling 

planning horizon); 

vi. The beginning inventory in the first period is known; and  

vii. The plan is revised after the occurrence of a disturbance on a real-time basis. 
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9.3 Mathematical Modelling 

In this section, a mathematical model is developed for managing a single occurrence of a 

disturbance caused by a demand fluctuation, production disruption or supply disruption by 

firstly presenting a mathematical model for an ideal supply chain plan. Then, a revised plan 

is formulated as a constrained optimisation problem that maximises total profit, which is 

derived from the revenue, obtained from acceptable items, minus relevant costs, subject to 

production capacity, delivery and product demand constraints. The decision variables are 

the revised quantities of production, delivery, supply, back orders and lost sales in each 

period in this plan. 

9.3.1 Mathematical Model for Ideal Plan 

In the ideal plan, the costs for production, rejection, inspection, depreciation, holding, 

delivery and raw material purchases as well as the revenue from acceptable items are 

calculated. Then, a mathematical model is developed as a constrained optimisation 

problem in which the objective is to maximise total profit subject to capacity, delivery, 

inventory and product demand constraints. 

Calculations of Different Costs and Revenue 

Total production cost 

=
𝐶𝑝

𝑟
∑𝐴𝑃𝑖

𝑛

𝑖=1

 

 

(9.1) 

 

Total rejection cost  

= 𝐶𝑅 (
1

𝑟
− 1)∑𝐴𝑃𝑖

𝑛

𝑖=1

 

 

 

(9.2) 

Total inspection cost  

=
𝐶𝐼𝐶𝑝

𝑟
∑𝐴𝑃𝑖

𝑛

𝑖=1

 

 

(9.3) 

Cost of interest and depreciation  

= 𝑛𝑎 𝐴−𝑏𝑟𝑐 

 

(9.4) 
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Raw material holding cost  

=
1

2
𝐻1∑𝑅𝑀𝑖

𝑛

𝑖=1

 

=
1

2𝑟
𝐻1𝑁∑𝐴𝑃𝑖

𝑛

𝑖=1

 

 

 

 

(9.5) 

Total raw material cost  

=∑𝐶𝑟𝑅𝑀𝑖

𝑛

𝑖=1

 

=
𝑁𝐶𝑟
𝑟
∑𝐴𝑃𝑖

𝑛

𝑖=1

 

 

 

 

(9.6) 

Total delivery cost  

=∑𝐶𝑑𝑅𝑖

𝑛

𝑖=1

 

 

(9.7) 

Total ending inventory holding cost  

= 𝐻2∑𝐸𝑖

𝑛

𝑖=1

 

 

(9.8) 

Total revenue  

= 𝑆∑𝐴𝑃𝑖

𝑛

𝑖=1

 

 

(9.9) 

 

Final Mathematical Model 

The objective function, total profit (TP) = total revenue – total costs, is obtained as: 

 

𝑇𝑃 = 𝑆∑𝐴𝑃𝑖

𝑛

𝑖=1

− [
𝐶𝑝

𝑟
∑𝐴𝑃𝑖

𝑛

𝑖=1

+ 𝐶𝑅 (
1

𝑟
− 1)∑𝐴𝑃𝑖

𝑛

𝑖=1

+
𝐶𝐼𝐶𝑝

𝑟
∑𝐴𝑃𝑖

𝑛

𝑖=1

+ 𝑛𝑎 𝐴−𝑏𝑟𝑐 +
1

2𝑟
𝐻1𝑁∑𝐴𝑃𝑖

𝑛

𝑖=1

+
𝑁𝐶𝑟
𝑟
∑𝐴𝑃𝑖

𝑛

𝑖=1

+∑𝐶𝑑𝑅𝑖

𝑛

𝑖=1

+ 𝐻2∑𝐸𝑖

𝑛

𝑖=1

] 

 

 

 

 

 

 

(9.10) 
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Here, 

𝑅𝑖 = 𝐵𝑖 + 𝐴𝑃𝑖 − 𝐸𝑖;  ∀𝑖 

𝐵𝑖 =∑𝐴𝑃𝑗

𝑖−1

𝑗=1

−∑𝑅𝑗

𝑖−1

𝑗=1

+ 𝐵1; ∀𝑖 ≠ 1 

𝐸𝑖 =∑𝐴𝑃𝑗

𝑖

𝑗=1

−∑𝑅𝑗

𝑖

𝑗=1

+ 𝐵1;  ∀𝑖 

𝑅𝑀𝑖 = 𝑁 ∗
𝐴𝑃𝑖
𝑟

 

subject to constraints (9.11) – (9.17).  

𝐸𝑖 ≥ 0; ∀𝑖  [Ending inventory cannot be negative] (9.11) 

𝐵𝑖 ≥ 0; ∀𝑖 
[Beginning inventory cannot be 

negative] 
(9.12) 

𝐸𝑛 = 𝐵𝑛+1 [Beginning inventory for (𝑛+1)
th

 period] (9.13) 

∑𝐴𝑃𝑖

𝑛

𝑖=1

=∑𝐷𝑖

𝑛

𝑖=1

− 𝐵1 + 𝐵𝑛+1 
[Total production must be equal to total 

demand] 
(9.14) 

𝐴𝑃𝑖 ≤ 𝑟𝑃 
[Actual production must be less than 

maximum production capacity]  
(9.15) 

𝑅𝑖 = 𝐷𝑖 
[Delivery quantity must be equal to 

demand] 
(9.16) 

𝐴𝑃𝑖, 𝑅𝑖 and 𝑅𝑀𝑖 ≥0 [Non-negativity constraint (9.17) 

9.3.2 Disturbance Management Model 

In this section, a mathematical model is developed for managing a demand fluctuation, 

with those for production and supply disruptions presented in Appendix C and Appendix D 

respectively.   
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9.3.2.1 Managing Demand Fluctuation 

To formulate the mathematical model for determining the revised plan after a demand 

fluctuation, the costs of production, rejection, inspection, depreciation, delivery, holding 

and raw material purchases are considered. For 𝛿 > 0, both back orders and lost sales costs 

are considered and, for 𝛿 < 0, the cost due to a decrease in demand, and determine revenue 

from the selling price. Finally, a mathematical model is developed in which total profit is 

to be maximised subject to capacity, delivery, product demand, and inventory constraints. 

(a) For 𝜹 > 0  

Total production cost  

=
𝐶𝑝

𝑟
∑𝑋𝑖

𝑛

𝑖=1

 

 

(9.18) 

Total rejection cost  

= 𝐶𝑅 (
1

𝑟
− 1)∑𝑋𝑖

𝑛

𝑖=1

 

 

(9.19) 

Total inspection cost  

=
𝐶𝐼𝐶𝑝

𝑟
∑𝑋𝑖

𝑛

𝑖=1

 

 

(9.20) 

Cost of interest and depreciation  

= 𝑛𝑎 𝐴−𝑏𝑟𝑐 

 

(9.21) 

Total raw material cost  

=∑𝐶𝑟𝑍𝑖

𝑛

𝑖=1

 

=
𝑁𝐶𝑟
𝑟
∑𝑋𝑖

𝑛

𝑖=1

 

 

 

 

(9.22) 

Raw material holding cost  

=
1

2𝑟
𝐻1𝑁∑𝑋𝑖

𝑛

𝑖=1

 

 

(9.23) 
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Total delivery cost  

=∑𝐶𝑑

𝑛

𝑖=1

𝑌𝑖 

 

(9.24) 

Total ending inventory holding cost  

= 𝐻2∑𝑒𝑖

𝑛

𝑖=1

 

 

(9.25) 

Back orders cost  

= 𝐵∑𝑖(𝑋𝑖 − 𝐴𝑃𝑖

𝑛

𝑖=1

) 

 

(9.26) 

Lost sales cost  

= 𝐿 (∑𝐴𝑃𝑖

𝑛

𝑖=1

+ 𝛿 −∑𝑋𝑖

𝑛

𝑖=1

) 

 

(9.27) 

Total revenue  

= 𝑆∑𝑋𝑖

𝑛

𝑖=1

 

 

(9.28) 

Final mathematical model for 𝜹 > 0 

The objective function, total profit = total revenue – total costs, which is to be maximised 

subject to constraints (9.29) – (9.36). 

𝑒𝑖 ≥ 𝐸𝑖; ∀𝑖 [Constraint of ending inventory] (9.29) 

𝑏𝑖 ≥ 𝐵𝑖; ∀𝑖 [Constraint of beginning inventory] (9.30) 

𝑋𝑖 ≤ 𝑟𝑃; ∀𝑖 
[Production quantity must be less than 

or equal to maximum capacity] 
(9.31) 

∑𝑋𝑖

𝑛

𝑖=1

≤∑𝐷𝑖

𝑛

𝑖=1

+ 𝑏𝑛+1 − 𝑏1 + 𝛿 
[Limitation of total production 

quantity] 
(9.32) 

∑𝑋𝑖

𝑛

𝑖=1

≥∑𝐴𝑃𝑖

𝑛

𝑖=1

 [Limitation of total production] (9.33) 

∑𝑌𝑖

𝑛

𝑖=1

≥∑𝑅𝑖

𝑛

𝑖=1

 [Limitation of total delivery]  (9.34) 
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∑𝑌𝑖

𝑛

𝑖=1

≤∑𝐷𝑖

𝑛

𝑖=1

+ 𝛿 [Limitation of total delivery] (9.35) 

𝑋𝑖, 𝑌𝑖, 𝑍𝑖 ≥0; ∀𝑖 [Non-negativity constraint] (9.36) 

(b) For 𝜹 < 0  

Total production cost  

=
𝐶𝑝

𝑟
∑𝑋𝑖

𝑛

𝑖=1

 

 

(9.37) 

Total rejection cost  

= 𝐶𝑅 (
1

𝑟
− 1)∑𝑋𝑖

𝑛

𝑖=1

 

 

(9.38) 

Total inspection cost  

=
𝐶𝐼𝐶𝑝

𝑟
∑𝑋𝑖

𝑛

𝑖=1

 

 

(9.39) 

Cost of interest and depreciation  

= 𝑛𝑎 𝐴−𝑏𝑟𝑐 

 

(9.40) 

Total raw material cost  

=∑𝐶𝑟𝑍𝑖

𝑛

𝑖=1

 

=
𝑁𝐶𝑟
𝑟
∑𝑋𝑖

𝑛

𝑖=1

 

 

 

 

(9.41) 

Raw material holding cost  

=
1

2𝑟
𝐻1𝑁∑𝑋𝑖

𝑛

𝑖=1

 

 

(9.42) 

Total delivery cost  

=∑𝐶𝑑

𝑛

𝑖=1

𝑌𝑖 

 

(9.43) 

Total ending inventory holding cost  

= 𝐻2∑𝑒𝑖

𝑛

𝑖=1

 

 

(9.44) 
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Cost due to decrease in demand  

= 𝐶𝐿 (∑𝐴𝑃𝑖

𝑛

𝑖=1

−∑𝑋𝑖

𝑛

𝑖=1

) 

 

(9.45) 

Total revenue  

= 𝑆∑𝑋𝑖

𝑛

𝑖=1

 

 

(9.46) 

Final mathematical model for 𝜹 < 0 

The objective function, total profit = total revenue – total costs, which is to be maximised 

subject to constraints (9.47) – (9.52). 

𝑒𝑖 ≥ 𝐸𝑖; ∀𝑖 [Constraint of ending inventory] (9.47) 

𝑏𝑖 ≥ 𝐵𝑖; ∀𝑖 [Constraint of beginning inventory] (9.48) 

𝑋𝑖 ≤ 𝑟𝑃; ∀𝑖 
[Limitation of production quantity of 

each period] 
(9.49) 

∑𝑋𝑖

𝑛

𝑖=1

=∑𝐷𝑖

𝑛

𝑖=1

+ 𝑏𝑛+1 − 𝑏1 − 𝛿 
[Limitation of total production 

quantity] 
(9.50) 

𝑌𝑖 =∑𝑅𝑖

𝑛

𝑖=1

− 𝛿 [Limitation of total delivery quantity] (9.51) 

𝑋𝑖, 𝑌𝑖, 𝑍𝑖 ≥0; ∀𝑖 [Non-negativity constraint] (9.52) 

9.4 Solution Approaches 

In this section, solution approaches are developed for both the ideal and revised plans, and 

some heuristics are proposed for solving the mathematical models developed to manage 

disturbances.  

9.4.1 Solution Approach for Ideal Plan 

As the mathematical model developed for the ideal plan belongs to a constrained program, 

it is solved using the SIMPLEX method.  
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9.4.2 Proposed Heuristic for Managing Disturbance  

A heuristic is developed for managing each disturbance type, i.e., a demand fluctuation, 

and production and supply disruptions, as well as another for handling multiple 

disturbances in a period. 

9.4.2.1 Heuristic 1 for Managing Demand Fluctuation 

The steps in heuristic 1 for managing a demand fluctuation are as follows. 

Step 1: Input data for ideal plan. 

Step 2: Determine and record ideal plan. 

Step 3: Determine spare capacity (𝑆𝐶𝑖) of each period. 

Step 4: Input demand fluctuation amount (δ).  

Step 5: For 𝛿 > 0 

 5.1 For 0≤ 𝛿 ≤ 𝑆𝐶1 

  If 𝐵 ≤ 𝐿, Then 

   𝑋1 = 𝐴𝑃1 + 𝛿 

   𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 2, 3…𝑛 

If 𝐵 > 𝐿, Then 

   𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 =1, 2, 3…𝑛 

5.2 For 𝑘 =2 to 𝑛 

For ∑ 𝑆𝐶𝑗
𝑘−1
𝑗=1 < 𝛿 ≤ ∑ 𝑆𝐶𝑗

𝑘
𝑗=1  

  If 𝐵 ≤
𝐿

𝑘
, Then 

   𝑋𝑖 = 𝐴𝑃𝑖 + 𝑆𝐶𝑖 ; 𝑖 = 1, 2, 3…𝑘 − 1 

   𝑋𝑘 = 𝐴𝑃𝑘 + 𝛿 − ∑ 𝑆𝐶𝑗
𝑘−1
𝑗=1  

𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 𝑘+1, 𝑘+2... 𝑛 

If 
𝐿

𝑘
< 𝐵 ≤

𝐿

𝑘−1
, Then 

𝑋𝑖 = 𝐴𝑃𝑖 + 𝑆𝐶𝑖 ; 𝑖 = 1, 2, 3…𝑘 − 1 

   𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 𝑘, 𝑘+1, 𝑘+2... 𝑛 

……….. 

If 
𝐿

2
< 𝐵 ≤ 𝐿, Then 

𝑋1 = 𝐴𝑃1 + 𝑆𝐶1  

𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 2, 3…𝑛 

If 𝐵 > 𝐿, Then 

   𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 =1, 2, 3…𝑛 

5.3 For 𝛿 > ∑ 𝑆𝐶𝑗
𝑛
𝑗=1  

  If 𝐵 ≤
𝐿

𝑛
, Then 

   𝑋𝑖 = 𝐴𝑃𝑖 + 𝑆𝐶𝑖 ; 𝑖 = 1, 2, 3…𝑛 

  If 
𝐿

𝑛
< 𝐵 ≤

𝐿

𝑛−1
, Then 

𝑋𝑖 = 𝐴𝑃𝑖 + 𝑆𝐶𝑖 ; 𝑖 = 1, 2, 3…𝑛 − 1 
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   𝑋𝑛 = 𝐴𝑃𝑛  
……….. 

If 
𝐿

2
< 𝐵 ≤ 𝐿, Then 

𝑋1 = 𝐴𝑃1 + 𝑆𝐶1  

𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 2, 3…𝑛 

If 𝐵 > 𝐿, Then 

   𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 =1, 2, 3…𝑛 

Step 6: For 𝛿 < 0 

𝑋1 = 𝐴𝑃1 − |𝛿|  
𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 2, 3…𝑛 

Step 7: Determine raw material required and final product delivery quantity. 

𝑌𝑖 = 𝐵𝑖 + 𝑋𝑖 − 𝐸𝑖; 𝑖 =1, 2, 3…𝑛 

𝑍𝑖 = 𝑁 ∗
𝑋𝑖

𝑟
 ; 𝑖 =1, 2, 3…𝑛 

Step 8: Determine different costs, total profit, and back orders and lost sales quantities. 

Step 9: Stop. 

9.4.2.2 Heuristic 2 for Managing Production Disruption 

The steps in heuristic 2 for managing a production disruption are presented in Appendix E. 

9.4.2.3 Heuristic 3 for Managing Raw Material Supply Disruption 

The steps in heuristic 3 for managing a raw material supply disruption are presented in 

Appendix F. 

9.4.3 Validation of Heuristics 

To validate the heuristics, 100 random test problems are generated for each disturbance 

type and solved them using both the respective heuristic and SIMPLEX method, and 

compared the results.  

9.4.4 Combined Effects of Multiple Disturbances 

A demand fluctuation happens at the retailer end, a supply disruption at the supplier end 

and a production disruption at the manufacturing plant. Multiple disturbances can happen 

together in a period, in which case, their effects must be considered when formulating a 

revised plan. A heuristic is proposed to deal with multiple disturbances and use random 

data to develop multiple disturbance scenarios. 
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9.4.4.1 Heuristic 4 for Managing Multiple Disturbances  

The steps in heuristic 4 for managing multiple disturbances in a period are presented in 

Appendix G. 

9.5 Simulation Model 

A simulation model is developed to make the supply chain disturbance problem closer to a 

real-world problem using the following steps. 

Step 1: Generate a random number for disturbance type (1-4). 

Step 2:  

2.1 if disturbance type = 1, generate a random number for amount of demand 

fluctuation (δ) using normal distribution with mean 500 and standard deviation 250.  

2.2 if disturbance type =2, generate random number for disruption start time (𝑡𝑠) 

using uniform distribution and disruption duration (𝑇𝑑𝑝) through exponential 

distribution between 0 and 1 and 0.00001 and 1– 𝑡𝑠 respectively.  

2.3 if disturbance type =3, generate a random number for supply disruption 

duration (𝑇𝑑𝑠) using Poisson distribution between 0.00001 and 1.  

2.4 if disturbance type = 4, generate random number for disturbance scenario of 

each disturbance type for multiple disturbances in a period. 

Step 3:  

3.1 if disturbance type =1, then run heuristic 1. 

3.2 if disturbance type =2, then run heuristic 2. 

3.3 if disturbance type =3, then run heuristic 3. 

3.4 if disturbance type = 4, then run heuristic 4. 

Step 4: Repeat steps 1-3 for 4000 times. 

Step 5: Record and analysis of results. 

Step 6: Stop. 
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The heuristics and simulation model are coded in MATLAB R2012a and executed on an 

Intel core i7 processor with 8.00 GB RAM and a 3.40 GHz CPU. 

9.6 Experimentations and Analysis of Results 

In this section, the results have been analysed for both the ideal and revised plans by 

performing random experimentations. 

9.6.1 Ideal Plan 

The following data are considered for the ideal supply chain plan. 

𝑛 = 12, 𝑃 =1200, 𝐵1 = 300, 𝐵𝑛+1 = 200, 𝑁 = 2, 𝐴 = 50, 𝐶𝑝 = 2, 𝐶𝑑 = 0.5, 𝐶𝑟 = 1.5,  

𝐻1 = 0.5, 𝐻2 = 0.5, 𝑆 = 20, 𝑟 = 0.98, 𝐶𝐼 = 0.02, 𝐶𝑅 = 4, 𝑎 = 1000, 𝑏 = 0.5, 𝑐 = 0.75, 

𝐷𝑖 = [1000 1200 1500 1100 1000 800 900 1200 1300 1200 1500 1000] 

The SIMPLEX method is used to solve the mathematical model developed in Section 9.3.1 

to obtain the ideal plan for the next 12 periods which is presented in Table 9.3 and has a 

total profit of 184.05 thousand. 

Table 9.3: Ideal plan  

Parameter 
Period 

1 

Period 

2 

Period 

3 

Period 

4 

Period 

5 

Period 

6 

Period 

7 

Period 

8 

Period 

9 

Period 

10 

Period 

11 

Period 

12 

𝐷𝑖 1000 1200 1500 1100 1000 800 900 1200 1300 1200 1500 1000 

𝐴𝑃𝑖 1048 1176 1176 1100 1000 1044 1176 1176 1176 1176 1176 1176 

𝐵𝑖 300 348 324 0 0 0 244 520 496 372 348 24 

𝐸𝑖 348 324 0 0 0 244 520 496 372 348 24 200 

𝑅𝑖 1000 1200 1500 1100 1000 800 900 1200 1300 1200 1500 1000 

𝑅𝑀𝑖 2139 2400 2400 2245 2041 2131 2400 2400 2400 2400 2400 2400 

9.6.2 Revised Plan 

The following additional cost data are considered to obtain the revised plan. 

𝐵 = 3, 𝐿 = 15 and 𝐶𝐿 =10 
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9.6.2.1 Revised Plan after a Demand Fluctuation 

In the case of a demand fluctuation, the revised plan is generated using its proposed 

heuristic. Although it was experimented using random data from both uniform and normal 

distributions, only a sample result, for 𝛿 = 500, is presented in the revised plan in Table 

9.4. 

Table 9.4: Revised plan after demand fluctuation 

Parameter 
Period 

1 

Period 

2 

Period 

3 

Period 

4 

Period 

5 

Period 

6 

Period 

7 

Period 

8 

Period 

9 

Period 

10 

Period 

11 

Period 

12 

𝑋𝑖 1176 1176 1176 1176 1176 1164 1176 1176 1176 1176 1176 1176 

𝑌𝑖 1128 1200 1500 1176 1176 920 900 1200 1300 1200 1500 1000 

𝑍𝑖 2400 2400 2400 2400 2400 2376 2400 2400 2400 2400 2400 2400 

Total profit = 184.84 thousand  

Total back orders cost = 6.096 thousand 

Total lost sales cost = 0 

9.6.2.2 Revised Plan after a Production Disruption 

In the case of a production disruption, the revised plan is generated using its proposed 

heuristic. Although it was experimented using random data from both uniform and 

exponential distributions, only a sample result, for 𝑡𝑠 =0.1 and 𝑇𝑑𝑝 =0.5, is presented in 

the revised plan in Table 9.5. 

Table 9.5: Revised plan after production disruption 

Parameter 
Period 

1 

Period 

2 

Period 

3 

Period 

4 

Period 

5 

Period 

6 

Period 

7 

Period 

8 

Period 

9 

Period 

10 

Period 

11 

Period 

12 

𝑋𝑖 588 1176 1176 1176 1176 1176 1176 1176 1176 1176 1176 1176 

𝑌𝑖 540 1200 1500 1176 1176 932 900 1200 1300 1200 1500 1000 

𝑍𝑖 2139 1461 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 

Total profit = 177.09 thousand  

Total back orders cost = 4.776 thousand 

Total lost sales cost = 1.14 thousand 
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9.6.2.3 Revised Plan after a Supply Disruption 

In the case of a supply disruption, the revised plan is generated using its proposed 

heuristic. Although it was experimented using random data from both uniform and Poisson 

distributions, only a sample result, for 𝑇𝑑𝑠 =0.6, is presented in the revised plan in Table 

9.6. 

Table 9.6: Revised plan after supply disruption 

Parameter 
Period 

1 

Period 

2 

Period 

3 

Period 

4 

Period 

5 

Period 

6 

Period 

7 

Period 

8 

Period 

9 

Period 

10 

Period 

11 

Period 

12 

𝑋𝑖 470 1176 1176 1176 1176 1176 1176 1176 1176 1176 1176 1176 

𝑌𝑖 422 1200 1500 1176 1176 932 900 1200 1300 1200 1500 1000 

𝑍𝑖 2139 1221 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 

Total profit = 173.70 thousand 

Total back orders cost = 4.776 thousand 

Total lost sales cost = 2.904 thousand 

9.6.3 Comparison of Results and Validation of Heuristics 

To validate the heuristics developed for managing demand fluctuation, and production and 

supply disruptions, 300 random test problems (100 for each disruption type) were 

generated by varying the back orders and lost sales cost data and disturbance parameters. 

Then, the test problems were solved using both the heuristic and SIMPLEX method. As the 

mean percentages of deviation between the respective heuristic and SIMPLEX results, 

calculated using equation (9.53), are almost 0.00% for all three disruption types, it can be 

said that the heuristics are capable of producing accurate solutions.  

The average percentage of deviation  

=
1

𝑀
∑

|Total profit from heuristc − Total profit from SIMPLEX|

Total profit from SIMPLEX
× 100% 

 

(9.53) 

Here, 𝑀 = the number of test problems.  

9.6.4 Which Disturbance Type is More Severe? 

To compare the severity of each disturbance type, 500 more test problems are generated 

for each disturbance using a uniform probability distribution and solved them using the 
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proposed corresponding heuristic. The means and standard deviations of total profit from 

the results are determined, as presented in Table 9.7. The following data range of 

disturbance parameters is considered. 

(a) Demand fluctuation amount = [0, ∑ 𝑆𝐶𝑖∀𝑖 ] 

(b) Supply disruption duration = [0.0001, 1] 

(c) Production disruption duration = [0.0001, 1-𝑡𝑠] 

Table 9.7: Total profit for each disruption type 

Disturbance type 
Total profit (thousands) 

Mean Standard deviation 

Demand fluctuation  185.19 0.3533 

Production disruption 178.08 5.3127 

Supply disruption  175.37 7.2898 

As can be seen, the mean total profit reduces significantly in the case of a supply 

disruption because the effect of this disruption starts at the beginning of, and may continue 

until the end of, a period. Therefore, it can be said that its effect is more severe than those 

of the other two.  

9.6.5 Experimentation using Random Data 

Five hundred random test problems are generated for each type of disturbance and solved 

them using the appropriate heuristic. The total profit pattern is analysed for random 

occurrences of disturbance over the 500 random scenarios, and variations in the different 

costs and total profit according to the amount of disturbance.  

9.6.5.1 Experimentation for Demand Fluctuation 

Five hundred random data scenarios are generated for demand fluctuations using a normal 

distribution with mean = 500 and standard deviation = 250, and present the total profit 

pattern in Figure 9.2. It was determined that the mean and standard deviation values of 

total profit are 183.77 and 2.1175 thousand respectively, and the maximum and minimum 

values 185.56 and 172.60 thousand respectively.  
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Figure 9.2: Total profit vs random demand fluctuation 

 

Figure 9.3: Different costs vs amount of demand fluctuation 

Figure 3 presents the variations in different costs with the amount of demand fluctuation. It 

was obeserved that the cost due to loss of demand exists only when the fluctuation amount 

is negative but there are no back orders or lost sales. However, when the fluctuation 

amonut is positive, both back orders and lost sales are present in the revised plan. The back 

orders cost increases with fluctuation amounts up to 512 when there are no lost sales 

because the revised plan is capable of fulfilling the demand using only back orders. Then, 
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lost sales is introduced into the plan and the back orders cost becomes a fixed amount so 

that both back orders and lost sales are present.  

The variations in total profit with demand fluctuation amounts are presented in Figure 9.4. 

For a negative fluctuation, the total profit decreases with the fluctuation amount but, for a 

positive one, it is greater than that in the ideal plan when the fluctuation amount is up to 

512 because the revenue earned is greater than the cost incurred due to the increase in 

demand. Then, the total profit decreases with the fluctuation amount because of the lost 

sales cost being introduced into the system. 

 

Figure 9.4: Total profit vs amount of demand fluctuation 
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when the disruption duration is less than 0.11. Then, the back orders cost is introduced into 

the system and increases with disruption durations up to 0.43 because the revised plan is 

capable of satisfying the production loss using only back orders. After a disruption 

duration of 0.43, the lost sales cost is included in the revised plan and the back orders cost 

becomes a fixed amount so that both back orders and lost sales costs are present.  

 

Figure 9.5: Total profit vs random production disruption 

 

Figure 9.6: Different costs vs duration of production disruption 
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The variations in total profit in relation to the duration of a production disruption are 

presented in Figure 9.7. The total profit does not change when the duration is less than 0.11 

because no back orders or lost sales costs are present and the revised plan is capable of 

compensating for the production loss in its first period. Then, the total profit decreases 

slowly with disruption durations up to 0.43 because only back orders are present. 

Following a disruption duration of 0.43, total profit decreases at a higher rate because of 

the lost sales cost being included in the plan. 

 

Figure 9.7: Total profit vs duration of production disruption 
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Figure 9.8: Total profit vs random supply disruption 

 

Figure 9.9: Different costs vs duration of supply disruption 
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Figure 9.10: Total profit vs duration of supply disruption 

9.6.5.4 Experimentation for Multiple Disturbances 

For this experimentation, 500 random scenarios are generated for multiple disturbances in 

a period and solve them using the proposed heuristic which considers the combined effects 

of multiple disturbances. The results are presented in Figure 9.11 in which it can be 

observed that total profit varies significantly and that the mean total profit reduces greatly 

with mean and standard deviation values of 165.70 and 9.4252 thousand respectively.  

 

Figure 9.11: Total profit vs random multiple disturbances 
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9.6.6 Simulation Results 

The simulation model, presented in Section 9.5, was run to make the supply chain 

disturbance problem close to a real-world process. The total profit pattern for random 

disturbance occurrences over the 4000 random scenarios is presented in Figure 9.12. The 

mean and standard deviation values of total profit were calculated as 176.85 and 9.2721 

thousand respectively, and the maximum and minimum values as 185.56 and 142.48 

thousand respectively.  

 

Figure 9.12: Total profit vs occurrences of random disruption from simulation run 
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experimentation was performed to analyse the characteristics of the developed models and, 

finally, a simulation model was developed to make solving a disturbance problem a real-

world process.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 10 Conclusions and Future Research 

This chapter briefly summarizes the research that has been conducted in this thesis, as well 

as its findings and conclusions. Possible directions for future research are also presented. 

10.1 Summary of Research and Conclusions 

In this thesis, disturbance management models for production-inventory and supply chain 

systems are studied, developed, and analysed.  In production-inventory systems, the 

models are developed for managing production disruption in single, two, and three-stage 

systems. In supply chain systems, the models are developed for managing production 

disruption, demand fluctuation, and supply disruption on a real-time basis.  

The framework of the developed models was divided into several steps. At first, an ideal 

plan was developed without any disturbance. Then a mathematical model was developed, 

as a constrained mathematical programming problem, to obtain a revised plan after the 

occurrence of a disturbance in the system. A heuristic approach was developed to solve the 

mathematical model to obtain the recovery plan. The mathematical model and heuristic 

approach were also extended to consider multiple disturbances, one after another as a 

series, on a real-time basis. Finally, random experimentation was conducted and the 

heuristic results were compared with other standard solution approaches to judge and 

validate the results.  

The framework was applied to six different problems from production-inventory and 

supply chain systems. The first four models were for managing production disruption for a 

(i) single-stage production-inventory, (ii) a two-stage production-inventory, (iii) a three-

stage mixed production-inventory, and (iv) a three-tier supply chain system. The remaining 

two models were for managing (v) demand fluctuation in a suppler-retailer system, and (vi) 

raw material supply disruption in a supply chain system. The replenishment decisions for 

the production, ordering, supply, and distribution quantities were determined, as well as the 
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quantity of back-orders and/or lost sales was also decided for the revised plan. Some 

managerial insights about how a decision maker should respond to all types of disturbances 

during the operations have been provided for all six models. In the final work, a simulation 

model was also developed to combine all the disturbances under a supply chain 

environment to investigate the effect of various disruption scenarios. The simulation model 

was also experimented with a good number of random test problems from different 

probability distribution. Several insights were also proposed from the simulation results. 

The experimental results and findings of each of the above contributions are summarised 

below. 

10.1.1  A Single-Stage Production-Inventory System with Disruption 

The main objective of this study was to develop a disruption recovery plan in an imperfect 

production environment. In real-life production lines, a disruption can happen at any time 

at any point of production. Moreover, imperfect production processes are very common in 

real life and they have significant impacts on companies’ loss and profit. So it is also 

important to consider an imperfect production environment while developing a production-

inventory model. In real-life situations, the production systems can face both single and 

multiple disruptions. In the single disruption case, disruption occurs suddenly when the 

production system operates under a pre-assigned plan.  In the multiple disruptions case, 

disruptions occur one after another as a series, and new disruptions may or may not affect 

the revised production plans of the previous disruptions. A new mathematical model and a 

dynamic solution approach was developed, which can handle both single and multiple 

disruptions, on a real-time basis.  

The model was categorised as a non-linear constrained optimisation program, which was 

solved using both GA and PS based heuristic approaches. The results obtained from both 

approaches were compared, for a good number of randomly generated disruption test 

problems, to judge the consistency of the results. The multiple disruptions, one after 

another as a series, were also considered, as multiple disruptions are very common in real-

life situations.  
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From analysis of the experimental results, it was observed that the recovery plan was 

dependent on the shortage cost parameters, such as back orders and lost sales costs, and to 

the disturbance duration. For a certain range of disturbance duration and cost values, it was 

found that back orders were more attractive, and in such cases, back orders cost was less 

than the lost sales cost. On the other hand, when back orders cost is more than the lost sales 

cost, the solution will have lost sales in the recovery plan. It was also demonstrated how 

the proposed methodology can be implemented for real-time disruption recovery planning 

with some numerical examples and randomly generated test problems. Additionally, a 

sensitivity analysis was performed to show the effects of various important parameters on 

the total profit of the system.  

10.1.2  A Two-Stage Production-Inventory System  

Chapter 4 extended the works in Chapter 3, to develop a disruption recovery model in a 

two-stage production-inventory system. The model was developed to recover from either 

single disruption or a series of production disruptions on a real-time basis, while 

considering both back order and lost sales options. Pattern search and genetic algorithm 

based solution approaches were proposed to obtain the recovery plan for either a single or 

a series of disruptions. The results were compared for a good number of randomly 

generated test problems. Both methods showed similar results, but pattern search with the 

Latin hypercube search based solution approach performed better than the genetic 

algorithm based approach. The proposed approach was also compared with two other 

existing practices: (i) only lost sales option and (ii) first cycle recovery. It was observed 

that the proposed disruption recovery plan provided a much better solution than the 

existing practices. The model was also implemented to a real-world case from a 

pharmaceutical company to validate the model, and found that the total profit was 10.78% 

more than the existing practice. Furthermore, the results and findings were similar to that 

of the models developed in Chapters 3 and 4, which also supports the validity of the model. 
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10.1.3  A Three-Stage Mixed Production-Inventory System 

In Chapter 5, the research extended the works in Chapter 4, to develop a recovery plan for 

a three-stage mixed production-inventory system. A mathematical model was developed, 

and then a new heuristic for managing both single and multiple disruptions on a real-time 

basis was proposed. The results from the heuristic were compared with those from another 

search algorithm for a set of randomly generated disruption test problems. Both approaches 

produced very similar results, with the average percentage of deviation being only 

0.00034%, which can be considered negligible. The proposed approach was also 

implemented to solve a real-world disruption problem of a pharmaceutical company. It was 

proven that the developed mathematical model and proposed heuristic can be easily 

applied to manage both single and multiple disruptions in a three-stage mixed-production 

system. 

10.1.4  A Supply Chain Network with Disruption 

The main objective of this chapter was to develop both predictive and reactive mitigation 

planning approaches for a supply chain, and to revise the plans based on any future 

prediction and after the occurrence of a production disruption on a real-time basis. Chapter 

6 introduced a three-stage supply chain network model with multiple numbers of 

manufacturing plants, DCs and retailers. It was formulated as a constrained programming 

problem in which the objective was to minimise the total supply chain cost. The ideal 

supply chain system worked in an infinite rolling planning horizon. The plans were revised 

if there were any changes in data and predictions were generated using the developed 

prediction methodology. The production and distribution plan was revised again after a 

disruption in the system for a finite planning period in the future, so that the system could 

return to its ideal plan as quickly as possible. An efficient heuristic for obtaining a revised 

plan for either a single disruption or series of disruptions, on a real-time basis, was 

proposed. An experiment was designed with sixteen different scenarios, each with ten 

randomly generated disruption test problems, and the performances of the heuristic and 

LINGO for them were compared. It was shown that the average percentage of deviation in 

the results was only a negligible 0.0007%. Therefore, it can be said that the proposed 
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mathematical and heuristic approaches offer a potentially very useful quantitative means of 

helping decision makers arrive at prompt and accurate decisions, regarding both predictive 

and reactive mitigation plans. 

10.1.5  Managing Demand Fluctuation 

Chapter 7 developed a risk management model in a two-stage supplier-retailer coordinated 

system with demand fluctuations, and with an imperfect production process. The model 

was formulated as a non-linear constrained optimisation problem to maximise the total 

profit in the revised planning window, and a heuristic was proposed to obtain the revised 

plan, after the occurrence of a fluctuation. The model was also solved by using a genetic 

algorithm based search technique, with uniformly distributed random fluctuation scenarios. 

It was observed that the proposed heuristic was capable of producing quality solutions with 

average deviations of 0.0089% and 0.0023% for longer and shorter range fluctuations 

respectively, and with significantly less computational time, as compared to the genetic 

algorithm. The proposed approach was also compared with two other alternative 

approaches, (i) managing with only lost sales and (ii) first cycle revision. It was observed 

that the proposed demand fluctuation management model clearly showed significantly 

better solutions in comparison to other alternative approaches. Additionally, a sensitivity 

analysis was also performed to show the effects of various important parameters on the 

total profit of the system.  

10.1.6  Managing Raw Material Supply Disruption 

The main objective of Chapter 8 was to develop a quantitative approach to recover from 

supply disruptions in a three-tier supply chain system. A new mathematical and heuristic 

approach was developed for managing a single supply disruption. Then the mathematical 

model and the heuristic were extended to develop a dynamic approach for managing 

multiple supply disruptions, one after another as a series, on a real-time basis. These 

heuristics were validated by comparing with the results from the PS technique, which 

showed that the average percentage of deviation was a negligible amount for a good 

number of randomly generated test problems. In terms of the quality of the solutions, the 
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average deviation of results between the two approaches was only a negligible amount of 

0.000283%. A large set of random experiments was performed to analyse the 

characteristics of the developed models. Finally, a simulation model was also developed to 

enable solving the supply disruption problem as a real-world process and the simulation 

model was analysed for 2000 random scenarios, which were generated by using an 

exponential distribution 

10.1.7  A Simulation Model 

Chapter 9 developed a disturbance management approach for a manufacturing supply 

chain system which considered demand fluctuations, and production and raw material 

supply disruptions under an imperfect production environment. A new mathematical model 

and an efficient heuristic were developed for each disturbance type to manage disturbances 

on a real-time basis. These heuristics were validated by comparing the results from another 

standard solution technique which showed that the average percentage of deviation was 

0.00% for a set of randomly generated test problems. Also, a new heuristic was developed 

to consider multiple disturbances in a period. Random experimentation was performed to 

analyse the characteristics of the developed models, and finally, a simulation model was 

developed to make solving a disturbance problem a real-world process, and the results 

were analysed for a large set of random test problems. 

10.1.8  Summary of Researches 

In summary, this thesis has contributed to the supply chain disturbance management 

literature in a number of ways. The models have been developed to manage real-world 

disturbances faced by many firms across their supply chain. In real-life cases, multiple 

disturbances can happen, one after another as a series. This is the most complex scenario, 

as the effect of both of the previous and current disturbances must be taken into 

consideration while developing the plan. This complex scenario has been considered in the 

developed models of this thesis.  An appropriate solution approach, for managing both a 

single and multiple disturbances, has been developed for each of the problem considered in 

this thesis. The development of these new solution approaches is considered as another 
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novel contribution of this thesis. The models can be run immediately after the occurrence 

of each disturbance and then the customised output will provide decisions without further 

processing of outputs and interpretations. The solution approaches can be used easily by 

any decision maker and it eliminates the cost of acquiring costly software to solve such 

models, while it facilitates firms to achieve a recovery schedule on a real-time basis. 

The proposed approaches offer a potentially very useful quantitative method for helping 

decision-makers arrive at prompt and accurate decisions regarding a real-time recovery 

plan, whenever a single and/or multiple disturbances takes place in a supply chain system. 

Using the developed models, an organisation can return to its normal supply, production 

and delivery schedule as quickly as possible after the occurrence of a disturbance, and 

thereby, increase its profit margin and enhance its reputation.  

10.2 Future Research Directions 

Various avenues of further research stem from the work carried out in this thesis. The 

current research can be extended in a number of different ways. Several potential works 

have been identified and are described below. 

In the presented research, the models were developed for managing disturbances, after the 

occurrence, on a real-time basis. Extending the models to develop a new approach for 

combining the predictive mitigation approach with real-time disturbance management 

techniques would be a worthwhile extension. Additionally, it would be worthwhile to 

incorporate environmental aspects, such as lowering supply chain costs by reducing travel 

distances, carbon emission, production costs, product waste, and unplanned activities. 

Another interesting extension would be to relax the assumption of a single type of item, so 

as to consider multiple types of items, as well as to analyse the impacts of disturbances on 

different types of items in a multi-tier supply chain system. 

In addition, several aspects could be introduced into the developed models, and some of 

them are listed as following. 
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i. Considering safety-stock level and analysing the effect of disturbance on safety 

stock, and determining the optimum level to minimise the effect of a disruption. 

ii. Considering lead time factors and analysing the effect of disturbance on lead 

time and disruption recovery. 

iii. Considering different shipment policies, such as the multiple-lot for lot, 

including equal-sized shipment policy, geometric shipment policy and mixtures 

of them. 

iv. Implementing the developed models to different types of real-life supply chain 

systems, such as food and coal supply chain systems. 
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Appendix A A Disruption Recovery Model with 

Demand Uncertainty  

This appendix presents an extension of the study performed in chapter 3. The model is 

extended by considering demand as uncertain variable. In this study, demand is taken as a 

triangular fuzzy number (TFN) to tackle uncertainty and the main objective is to maximise 

the graded mean integration value (GMIV) of it. 

A.1 Notations 

The notations are same as considered in chapter 3. Only change is in demand per year as 

demand is a fuzzy variable as following. 

𝐷 ̃   Fuzzy demand per year  

A.2 Costs and Revenues Formulation 

The formulation for different costs and revenues are similar as presented in chapter 3. The 

mathematical model is formulated as follows. 

Holding cost 

=
1

2
𝐻 [
(𝑞𝑛)

2

𝑟𝑃
+ 2𝑞𝑛(𝑇𝑑,𝑛 + 𝑆𝑡) +

2𝑋1,𝑛𝑞𝑛
𝑟𝑃

+∑
(𝑋𝑖,𝑛)

2

𝑟𝑃

𝑀

𝑖=1

] (A.1) 

Set-up cost  

= 𝐴𝑀  

 

(A.2) 

Production cost  

=
𝐶𝑃
𝑟
(∑𝑋𝑖,𝑛 + 𝑞𝑛

𝑀

𝑖=1

) 

 

(A.3) 
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Rejection cost  

= 𝐶𝑅 (
1

𝑟
− 1)(∑𝑋𝑖,𝑛 + 𝑞𝑛

𝑀

𝑖=1

) 

 

(A.4) 

Inspection cost  

=
𝐶𝐼𝐶𝑃
𝑟

(∑𝑋𝑖,𝑛 + 𝑞𝑛

𝑀

𝑖=1

) 

 

(A.5) 

Cost of interest and depreciation 

 = 𝑀𝑎 (𝐴1)
−𝑏(𝑟)𝑐 

 

(A.6) 

Back-order cost  

= 𝐵 [(𝑋1,𝑛 + 𝑞𝑛) [𝑇𝑑,𝑛 +
𝑞𝑛
𝑟𝑃
+
𝑋1,𝑛
𝑟𝑃

−
𝑋𝑙,𝑛−1
𝑟𝑃

]

+∑𝑋𝑖,𝑛. [𝑇𝑑,𝑛 + (𝑖−1)𝑆𝑡 +
𝑞𝑛
𝑟𝑃
+∑

𝑋𝑗,𝑛

𝑟𝑃

𝑖

𝑗=1

𝑀

𝑖=2

−∑
𝑋𝑙+𝑗−1,𝑛−1

𝑟𝑃

𝑖

𝑗=1

− (𝑖 − 1)𝑢]] 

 

 

 

 

(A.7) 

Lost sales cost  

= 𝐿 (∑𝑋𝑙+𝑖−1,𝑛−1

𝑀

𝑖=1

−∑𝑋𝑖,𝑛

𝑀

𝑖=1

− 𝑞𝑛) 

 

(A.8) 

Revenues 

= 𝑚1𝐶𝑃 𝐷 ̃ [∑
𝑋𝑖,𝑛
𝑟𝑃

𝑀

𝑖=1

+
𝑞𝑛
𝑟𝑃
+𝑀𝑆𝑡] 

 

(A.9) 

Total profit, the objective function, is derived by subtracting all costs from the total 

revenues.  Considering all the equations from (A.1) to (A.9), the objective function is 

obtained as follows. 

Max 𝑍 ̃ = Total Revenues- Total Costs   (A.10) 
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A.3 Fuzzy Parameter 

In this study, product demand is considered as a triangular fuzzy number (TFN) to tackle 

uncertainty. A TFN �̃� is specified by a triplet (𝑑1, 𝑑2, 𝑑3) and is defined by its continuous 

membership function µ�̃�(x): x → [0,1] as follows: 

µ�̃�(𝑥) =  

{
 
 

 
 𝐿(𝑥) = (

𝑥 − 𝑑1
𝑑2 − 𝑑1

)    𝑖𝑓 𝑑1 ≤ 𝑥 ≤ 𝑑2

𝑅(𝑥) = (
𝑑3 − 𝑥

𝑑3 − 𝑑2
)    𝑖𝑓 𝑑2 ≤ 𝑥 ≤ 𝑑3

0                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (A.11) 

𝐿(𝑥) and 𝑅(𝑥) indicate the left and right branch of the TFN  �̃� respectively. An 𝛼-cut of �̃� 

can be expressed by the following interval (Lee and Yao, 1998): 

𝐷(𝛼) = [𝑑1 + (𝑑2 − 𝑑1)𝛼,  𝑑3 − (𝑑3 − 𝑑2)𝛼],   𝛼 ∈ [0,1] 

The graded mean integration value (GMIV) of a LR-fuzzy number is introduced by Chen 

and Hsieh (1999). The graded mean integration representation method is based on the 

integral value of the graded mean 𝛼-level of the LR-fuzzy number for defuzzifing LR-

fuzzy numbers. By considering �̃� is a LR-fuzzy number and according to Chen and Hsieh 

(1999), the GMIV of �̃� is defined as:  

𝐺(�̃�) =
∫ (

𝛼
2)
{𝐿−1(𝛼) + 𝑅−1(𝛼)}

1

0
𝑑𝛼

∫ 𝛼𝑑𝛼
1

0

= ∫ 𝛼{𝐿−1(𝛼) + 𝑅−1(𝛼)}
1

0

𝑑𝛼 (A.12) 

A.4 Disruption Recovery with Fuzzy Demand 

In this section, fuzziness of demand is incorporated to the final mathematical model. The 

GMIV of the expected total profit function is evaluated. Relevant constraints are also 

developed with the GMIV of expected fuzzy demand. After simplifying the equation 

(A.10), the following equation of the total profit is obtained: 
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𝑍 ̃ = 𝐶 𝐷 ̃ + 𝑌   (A.13) 

Here, 

𝐶 = 𝑚1𝐶𝑃  [∑
𝑋𝑖,𝑛
𝑟𝑃

𝑀

𝑖=1

+
𝑞𝑛
𝑟𝑃
+𝑀𝑆𝑡] 

 

𝑌 = −
1

2
𝐻 [
(𝑞𝑛)

2

𝑟𝑃
+ 2𝑞𝑛(𝑇𝑑,𝑛 + 𝑆𝑡) +

2𝑋1,𝑛𝑞𝑛
𝑟𝑃

+∑
(𝑋𝑖,𝑛)

2

𝑟𝑃

𝑀

𝑖=1

] − 𝐴𝑀

− [
𝐶𝑃
𝑟
+ 𝐶𝑅 (

1

𝑟
− 1) +

𝐶𝐼𝐶𝑃
𝑟
] (∑𝑋𝑖,𝑛 + 𝑞𝑛

𝑀

𝑖=1

) −𝑀𝑎 (𝐴1)
−𝑏(𝑟)𝑐

− 𝐵 [(𝑋1,𝑛 + 𝑞𝑛) [𝑇𝑑,𝑛 +
𝑞𝑛
𝑟𝑃
+
𝑋1,𝑛
𝑟𝑃

−
𝑋𝑙,𝑛−1
𝑟𝑃

]

+∑𝑋𝑖,𝑛. [𝑇𝑑,𝑛 + (𝑖−1)𝑆𝑡 +
𝑞𝑛
𝑟𝑃
+∑

𝑋𝑗,𝑛

𝑟𝑃

𝑖

𝑗=1

−∑
𝑋𝑙+𝑗−1,𝑛−1

𝑟𝑃

𝑖

𝑗=1

𝑀

𝑖=2

− (𝑖 − 1)𝑢]] − 𝐿 (∑𝑋𝑙+𝑖−1,𝑛−1

𝑀

𝑖=1

−∑𝑋𝑖,𝑛

𝑀

𝑖=1

− 𝑞𝑛) 

 

Now, considering the fuzzy random demand D̃ with the given set of data 

(�̃�1, 𝑝1), (�̃�2, 𝑝2), (�̃�3, 𝑝3), … . . , (�̃�𝑣, 𝑝𝑣), the profit (�̃�) is also a fuzzy random variable and 

its expectation is a unique fuzzy number (Bag et al., 2009) which is,  

𝐸𝑍 ̃ = 𝐶∑ �̃�𝑘𝑝𝑘

𝑣

𝑘=1

+ 𝑌  

In this study, demand data are considered as a triangular fuzzy number (TFN). Demand 

TFN and associated probabilities are taken as a triplet (𝑑𝑘, 𝑑𝑘,𝑑𝑘̅̅ ̅) and (𝑝𝑘, 𝑝𝑘,𝑝𝑘̅̅ ̅) 

respectively. Here, k= 1, 2, 3...., v. Then the fuzzy expected profit function will also be a 

TFN, 𝐸𝑍 ̃ = (EZ, EZ, EZ̅̅̅̅ ) which is determined as follows: 

𝐸𝑍 = 𝐸[𝑍(𝛼 = 1)] = 𝐶∑𝑑𝑘 𝑝𝑘 +

𝑣

𝑘=1

𝑌  
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𝐸𝑍 = 𝐸[𝑍𝐿(𝛼 = 0) ] = 𝐶∑𝑑𝑘  𝑝𝑘 + 𝑌

𝑣

𝑘=1

 

𝐸𝑍 = 𝐸[𝑍𝑅(𝛼 = 0)] = 𝐶∑𝑑𝑘 ̅̅ ̅̅  𝑝𝑘 ̅̅̅̅ + 𝑌

𝑣

𝑘=1

 

Here the α-level set of the fuzzy number 𝐸𝑍 ̃ are considered as 𝐸𝑍(𝛼) = 𝐸[𝑍(𝛼)] =

[𝐸(𝑍𝐿(𝛼)), 𝐸(𝑍𝑅(𝛼))];  0 ≤ 𝛼 ≤ 1 and different 𝛼 -cut intervals for the fuzzy number 𝐸𝑍 ̃ 

are obtained for different 𝛼 between 0 and 1.Taking, 𝛼-cut on both sides of equation 

of 𝐸𝑍 ̃. 

𝐸�̃�𝛼 = 𝐶∑ �̃�𝑘𝛼𝑝𝑘𝛼 + 𝑌

𝑣

𝑘=1

  

The arithmetic interval of fuzzy demand and associated probabilities using an 𝛼-cut is 

determined as follows.  

�̃�𝑘𝛼 = [𝑑𝑘 + 𝛼 (𝑑𝑘 − 𝑑𝑘) , 𝑑𝑘 − 𝛼(𝑑𝑘 − 𝑑𝑘)] 

𝑝𝑘𝛼 = [𝑝𝑘 + 𝛼 (𝑝𝑘 − 𝑝𝑘) , 𝑝𝑘 − 𝛼(𝑝𝑘 − 𝑝𝑘)] 

 

By using these arithmetic intervals, 𝐸�̃�𝛼 is evaluated as: 

𝐸�̃�𝛼 = [[𝐶∑[𝑑𝑘 + 𝛼 (𝑑𝑘 − 𝑑𝑘)] [𝑝𝑘 + 𝛼 (𝑝𝑘 − 𝑝𝑘)]

𝑣

𝑘=1

+ 𝑌] ,

[𝐶∑[𝑑𝑘 − 𝛼(𝑑𝑘 − 𝑑𝑘)] [𝑝𝑘 − 𝛼(𝑝𝑘 − 𝑝𝑘)] 

𝑣

𝑘=1

+ 𝑌]] 

 

From the representation of graded mean integration methods based on the integral value of 

the graded mean 𝛼-level of the LR-fuzzy number of the total profit,  L−1(𝛼) and R−1(𝛼) 

are obtained as follows. 
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L−1(𝛼) = 𝐶∑[𝑑𝑘 + 𝛼 (𝑑𝑘 − 𝑑𝑘)] [𝑝𝑘 + 𝛼 (𝑝𝑘 − 𝑝𝑘)] +

𝑣

𝑘=1

𝑌 

R−1(𝛼) = 𝐶∑[𝑑𝑘 − 𝛼(𝑑𝑘 − 𝑑𝑘)] [𝑝𝑘 − 𝛼(𝑝𝑘 − 𝑝𝑘)]

𝑣

𝑘=1

+ 𝑌 

 

The unique fuzzy number G(𝐸𝑍 ̃) is determined by substituting the value of L−1(𝛼) and 

R−1(𝛼) to the equation (A.12), 

𝐺(𝐸𝑍 ̃) = ∫ [𝛼 [𝐶∑ [𝑑𝑘 + 𝛼 (𝑑𝑘 − 𝑑𝑘)] [𝑝𝑘 + 𝛼 (𝑝𝑘 − 𝑝𝑘)]

𝑣

𝑘=1

+ 𝑌]] 𝑑𝛼
1

0

+∫ [𝛼 [𝐶∑[𝑑𝑘 − 𝛼(𝑑𝑘 − 𝑑𝑘)] [𝑝𝑘 − 𝛼(𝑝𝑘 − 𝑝𝑘)] 

𝑣

𝑘=1

+ 𝑌]]
1

0

𝑑𝛼 

 

After integrating and simplifying the above equation of 𝐺(𝐸𝑍 ̃), the GMIV of the total 

profit function, which is to be maximised, and obtained as:  

Max G(𝐸𝑍 ̃) = 𝐶(𝑍1 + 𝑍2) + 𝑌 (A.14) 

 

Here, 

𝑍1 =∑  {
1

2

𝑣

𝑘=1

𝑑𝑘 𝑝𝑘 +
1

3
𝑑𝑘 (𝑝𝑘 − 𝑝𝑘) +

1

3
𝑝𝑘 (𝑑𝑘 − 𝑑𝑘) +

1

4
(𝑑𝑘 − 𝑑𝑘) (𝑝𝑘 − 𝑝𝑘)} 

𝑍2 =∑{
1

2

𝑣

𝑘=1

𝑑𝑘𝑝𝑘 −
1

3
𝑑𝑘(𝑝𝑘 − 𝑝𝑘) −

1

3
𝑝𝑘(𝑑𝑘 − 𝑑𝑘) +

1

4
(𝑑𝑘 − 𝑑𝑘)(𝑝𝑘 − 𝑝𝑘)} 

The GMIV of the expected fuzzy demand, G(𝐸𝐷 ̃) = 𝑍1 + 𝑍2 

Subject to the following constraints presented in (A.15) – (A.24): 
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𝑋𝑖,0 = 𝑄 (A.15) 

𝑋1,𝑛 + 𝑞𝑛 ≤ 𝑋𝑙,𝑛−1   (A.16) 

𝑋𝑖,𝑛 ≤ 𝑋𝑙+𝑖−1,𝑛−1 ;  𝑖 = 2,3,4, … . . , 𝑀   (A.17) 

𝑟𝑃 ≥ 𝐺(𝐸�̃�)    (A.18) 

∑𝑋𝑖,𝑛 + 𝑞𝑛

𝑀

𝑖=1

≤ 𝑟𝑃 (∑
𝑋𝑙+𝑖−1,𝑛−1

𝐺(𝐸�̃�)

𝑀

𝑖=1

−𝑀𝑆𝑡 − 𝑇𝑑,𝑛) (A.19) 

∑𝑋𝑖,𝑛 + 𝑞𝑛

𝑀

𝑖=1

≥ (
∑ 𝑋𝑖,𝑛 + 𝑞𝑛
𝑀
𝑖=1

𝑟𝑃
+𝑀𝑆𝑡)𝐺(𝐸�̃�)

− (∑𝑋𝑙+𝑖−1,𝑛−1

𝑀

𝑖=1

 –∑𝑋𝑖,𝑛

𝑀

𝑖=1

− 𝑞𝑛) 

 

 

(A.20) 

𝑋1,𝑛 + 𝑞𝑛

𝐺(𝐸�̃�)
−
𝑋2,𝑛
𝑟𝑃

− 𝑆𝑡 ≥ 0 (A.21) 

𝑋𝑖,𝑛

𝐺(𝐸�̃�)
−
𝑋𝑖+1,𝑛
𝑟𝑃

− 𝑆𝑡 ≥ 0;  𝑖 =  2, 3, . . . . , 𝑀 (A.22) 

𝑇𝑑,𝑛 +
𝑞𝑛
𝑟𝑃
+
𝑋1,𝑛
𝑟𝑃

−
𝑋𝑙,𝑛−1
𝑟𝑃

≥ 0 (A.23) 

𝑇𝑑,𝑛 + (𝑖−1)𝑆𝑡 +
𝑞𝑛
𝑟𝑃
+∑

𝑋𝑗,𝑛

𝑟𝑃

𝑖

𝑗=1

−∑
𝑋𝑙+𝑗−1,𝑛−1

𝑟𝑃

𝑖

𝑗=1

− (𝑖 − 1)𝑢 ≥ 0;  

𝑖 = 2,3,4,… . . , 𝑀 

(A.24) 

A.5 Solution Approach 

A genetic algorithm based heuristic is proposed to solve the model. Genetic algorithm is 

very popular technique to solve complex non-linear constrained optimisation problem. 

GAs are general purpose optimisation algorithms which apply the rules of natural genetics 

to explore a given search space (Homaifar et al., 1994). The heuristic is designed to make a 

recovery plan from a single or a series of production disruptions. The proposed heuristic 

revises the production lot size of each cycle as long as disruptions take place in the system.  
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For a series of disruptions, the heuristic revises the lot size of each cycle by considering the 

effect of all previous dependent disruptions. The proposed genetic algorithm based 

heuristic is presented in the Figure A.1. The above mentioned heuristic is coded in 

MATLAB R2012a with the help of its optimisation toolbox.  

In the proposed heuristic, following GA parameters are used to solve the model. 

Population size: 100; Population type: Double vector; Crossover fraction: 0.8; Maximum 

number of generations: 3000; Function tolerance: 1e-6; Nonlinear constraint tolerance: 1e-

6, and other parameters are set as default of the optimisation toolbox.  

Start

Determine Q

Assign Xi,0=Q

Identify the first disrupted cycle

Initialize starting time from 

beginning of the disrupted cycle

Input cycle number with pre-

disruption quantity and 

disruption period

Solve the model to revise 

production quantity using GA

Update Xi,n

Is there any other disruption?

Stop

No

Yes

Randomly generate initial 

population of chromosomes

Evaluate fitness function

Convergence

GA operations: selection, 

crossover, mutation

Update fitness function and 

individual

Meeting stopping  

criteria?

Return the chromosome with 

revised production quantity

No

Yes

Working principle of GA

 
 

Figure A.1: Flowchart of proposed GA based heuristic 
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A.6 Result Analysis 

Results have been analysed for both single and multiple disruptions on a real-time basis. 

For single disruption, there is only one random disruption in the system and there is no 

more disruption within the recovery period. For multiple disruptions, there is a series of 

disruptions, one after another, and results have been analysed on a real-time basis.    

A.6.1 Results Analysis for Single Disruption 

Following data are considered to analyse the results for a single disruption. 

𝑆𝑡 = 0.000057, 𝑢 = 0.000077, 𝐴 = 60, 𝐻 = 1.4, 𝑟 = 0.92, 𝑃 = 550000, 𝑀 = 5,

𝐵 = 20, 𝐿 = 25,  𝑇𝑑1 = 0.01,  𝑞1 = 500, 𝐶𝑃 = 40,  𝐶𝑅 = 15,  𝐶𝐼 = 0.01, 𝑎 = 1000, 𝑏 =

0.5, 𝑐 = 0.75,𝑚1 = 2.5, and demand data are considered as TFN which is shown in the 

Table A.1. 

Table A.1: Demand data as TFN and associated probabilities 

Demand rate Probability 

(300000, 320000, 340000) (0.050, 0.055, 0.060) 

(350000, 370000, 390000) (0.144, 0.150, 0.156) 

(400000, 420000, 440000) (0.293, 0.300, 0.307) 

(450000, 470000, 490000) (0.194, 0.202, 0.210) 

(500000, 520000, 540000) (0.104, 0.110, 0.117) 

(550000, 570000, 590000) (0.094, 0.100, 0.106) 

(600000, 620000, 640000) (0.088, 0.093, 0.098) 

 

The problem is solved using the proposed GA based heuristic. The results are obtained 

from 30 different runs. The best recovery plan after single disruption is shown in Table 

A.2. The production system returns to original schedule from the sixth cycle after the 

disruption with 𝑋6,1 = 6586, 𝑋7,1 = 6586 and so on. The maximum total profit in the 

recovery period is obtained as 1381112.5.  
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Table A.2: Best results obtained for the single disruption 

Revised production quantity 

Total profit 

𝑋1,1 𝑋2,1 𝑋3,1 𝑋4,1 𝑋5,1 

5305 5638 6066 6469 6563 1381112.5 

A.6.2 Results Analysis for a Series of Disruptions 

In this case, a series of disruptions is considered, which is shown in Table A.3. In this 

series of disruptions, seven disruptions are considered and each one occurs within the 

recovery period of the previous disruption. Other data remain same as in section A.6.1.  

Table A.3: Data for the series of disruptions 

Disruption 

number (n) 

Disrupted cycle number 

from previous disruption 

Pre-disruption 

quantity 

Disruption 

duration 

1 1 1000 0.0045 

2 2 650 0.0092 

3 3 500 0.0025 

4 5 1500 0.0065 

5 2 0 0.0110 

6 4 800 0.0098 

7 3 0 0.0078 

--- --- --- --- 

 

The production system with multiple disruptions is also solved using the GA based 

heuristic on a real-time basis. The results are obtained from 30 different runs. Production 

quantity in each cycle is revised after each disruption considering the effect of entire 

dependent disruptions to maximise the total profit in the recovery period. The best 

recovery plan obtained from the heuristic for the series of disruptions is shown in Table 

A.4. The production system returns to original schedule from the sixth cycle after each 

disruption with 𝑋6,𝑛 = 6586, 𝑋7,𝑛 = 6586 and so on.  
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Table A.4: Best results obtained for the series of disruptions 

Disruption 

number (n) 

Revised production quantity 

Total profit 

𝑋1,𝑛 𝑋2,𝑛 𝑋3,𝑛 𝑋4,𝑛 𝑋5,𝑛 

1 5585 6561 6545 6567 6563 1545915.7 

2 5272 5671 6111 6553 6572 1404616.5 

3 5611 6548 6570 6541 6550 1524257.8 

4 4804 6539 6433 6476 6522 1506722.6 

5 5271 5647 5994 6336 6381 1324912.7 

6 4941 5668 5936 6271 6532 1364154.2 

7 5657 5914 6049 6486 6443 1407321.9 

--- --- --- --- --- --- --- 

A.7 Summary 

The objective of this research was to incorporate demand uncertainty in developing a 

disruption recovery model in a production-inventory system, which was an extension of 

the study presented in chapter 3. A single or a series of disruptions on a real-time basis was 

considered to make the model applicable in practical problems. A genetic algorithm based 

heuristic was proposed to solve the model with single or multiple disruptions on a real-time 

basis. This model can be applied in an imperfect production process where the process 

countenances a single or multiple production disruptions and product demand is uncertain.  

 

 



 

Appendix B Formulation of Updated and 

Predictive Mitigation Plans 

B.1 Mathematical Formulation 

𝐹 Number of periods in finite planning horizon  

𝑃𝑖𝑓 Production quantity of plant 𝑖 at period 𝑓 

𝐶𝑃𝑖𝑓 Maximum production capacity of plant 𝑖 at period 𝑓 

𝐶𝐷𝑗𝑓 Maximum handling capacity of DC 𝑗 at period 𝑓 

𝑋𝑖𝑗𝑓 Transportation quantity from plant 𝑖 to DC 𝑗 at period 𝑓 

𝑌𝑗𝑘𝑓 Transportation quantity from DC 𝑗 to retailer 𝑘 at period 𝑓 

𝐷𝑘𝑓 Demand of retailer 𝑘 at period 𝑓 

𝑝𝑖𝑓 Production cost per unit at plant 𝑖 at period 𝑓 

𝐻1𝑖𝑓 Holding cost per unit per period at plant 𝑖 at period 𝑓 

𝐻2𝑗𝑓 Handling cost per unit at DC 𝑗 at period 𝑓 

𝐻3𝑘𝑓 Holding cost per unit per period at retailer 𝑘 at period 𝑓 

𝑇1𝑖𝑗𝑓 Transportation cost per unit from plant 𝑖 to DC 𝑗 at period 𝑓 

𝑇2𝑗𝑘𝑓 Transportation cost per unit from DC 𝑗 to retailer 𝑘 at period 𝑓 

𝑂𝐶𝑗𝑓 Operating cost of DC 𝑗 at period 𝑓 

Costs at plant 

Production cost  = ∑ ∑ 𝑝𝑖𝑓𝑃𝑖𝑓
𝐼
𝑖=1

𝐹
𝑓=1        (B.1) 

Average holding cost = ∑ ∑
1

2
𝐻1𝑖𝑓𝑃𝑖𝑓

𝐼
𝑖=1  𝐹

𝑓=1      (B.2) 

Transportation cost = ∑ ∑ ∑ 𝑇1𝑖𝑗𝑓𝑋𝑖𝑗𝑓
𝐼
𝑖=1

𝐽
𝑗=1

𝐹
𝑓=1      (B.3) 

Costs at DCs 

Operating cost = ∑ ∑ 𝑂𝐶𝑗𝑓
𝐽
𝑗=1  𝐹

𝑓=1       (B.4) 

Handling cost = ∑ ∑ ∑ 𝐻2𝑗𝑓
𝐼
𝑖=1

𝐽
𝑗=1 𝑋𝑖𝑗𝑓

𝐹
𝑓=1       (B.5) 
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Transportation cost = ∑ ∑ ∑ 𝑇2𝑗𝑘𝑓𝑌𝑗𝑘𝑓
𝐽
𝑗=1

𝐾
𝑘=1

𝐹
𝑓=1      (B.6) 

Cost at retailer 

Average holding cost = ∑ ∑
1

2
𝐻3𝑘𝑓𝐷𝑘𝑓

𝐾
𝑘=1

𝐹
𝑓=1      (B.7) 

Final Mathematical Model 

The total supply chain cost (TC), which is the objective function, is derived using 

equations (B.1) – (B.7), and equals the total plant cost + total DC cost + total retailer cost, 

with  𝑃𝑖𝑓, 𝑋𝑖𝑗𝑓 and 𝑌𝑗𝑘𝑓 decision variables, subject to the following constraints presented in 

(B.8) – (B.13). 

𝑃𝑖𝑓 ≤ 𝐶𝑃𝑖𝑓; ∀𝑖, 𝑓        (B.8) 

𝑃𝑖𝑓 = ∑ 𝑋𝑖𝑗𝑓
𝐽
𝑗=1 ; ∀𝑖, 𝑓        (B.9) 

∑ 𝑋𝑖𝑗𝑓
𝐼
𝑖=1 = ∑ 𝑌𝑗𝑘𝑓

𝐾
𝑘=1  ; ∀𝑗, 𝑓       (B.10) 

∑ 𝑋𝑖𝑗𝑓
𝐼
𝑖=1 ≤ 𝐶𝐷𝑗𝑓; ∀𝑗, 𝑓       (B.11) 

∑ ∑ 𝑃𝑖𝑓
𝐼
𝑖=1

𝐹
𝑓=1 = ∑ ∑ 𝐷𝑘𝑓

𝐾
𝑘=1

𝐹
𝑓=1        (B.12) 

𝑃𝑖𝑓, 𝑋𝑖𝑗𝑓 and 𝑌𝑗𝑘𝑓 ≥ 0; ∀𝑖, 𝑗, 𝑘, 𝑓      (B.13) 
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Appendix C Formulation for Managing 

Production Disruption 

In this appendix, the mathematical model for determining the revised plan after a 

production disruption is formulated. The costs of production, delivery, holding, raw 

materials, back orders and lost sales, and the revenue from the selling price are calculated. 

Finally, a mathematical model is developed in which the total profit to be maximised is 

subject to capacity, demand, delivery and inventory constraints.  

Total production cost =
𝐶𝑝

𝑟
∑ 𝑋𝑖
𝑛
𝑖=1       (C.1) 

Total rejection cost = 𝐶𝑅 (
1

𝑟
− 1)∑ 𝑋𝑖

𝑛
𝑖=1      (C.2) 

Total inspection cost =
𝐶𝐼𝐶𝑝

𝑟
∑ 𝑋𝑖
𝑛
𝑖=1       (C.3) 

Cost of interest and depreciation = 𝑛𝑎 𝐴−𝑏𝑟𝑐    (C.4) 

Total raw material cost = ∑ 𝐶𝑟𝑍𝑖
𝑛
𝑖=1 =

𝑁𝐶𝑟

𝑟
∑ 𝑋𝑖
𝑛
𝑖=1     (C.5) 

Raw material holding cost =
1

2𝑟
𝐻1𝑁∑ 𝑋𝑖

𝑛
𝑖=1      (C.6) 

Total delivery cost= ∑ 𝐶𝑑
𝑛
𝑖=1 𝑌𝑖      (C.7) 

Total ending inventory holding cost = 𝐻2∑ 𝑒𝑖
𝑛
𝑖=1     (C.8) 

Back orders cost = 𝐵∑ (𝑖 − 1)(𝑋𝑖 − 𝐴𝑃𝑖
𝑛
𝑖=2 )    (C.9) 

Lost sales cost = 𝐿(∑ 𝐴𝑃𝑖
𝑛
𝑖=1 − ∑ 𝑋𝑖

𝑛
𝑖=1 )     (C.10) 

Total revenue = 𝑆∑ 𝑋𝑖
𝑛
𝑖=1        (C.11) 

Final mathematical model 

The objective function, total profit = total revenue – total costs, which is to be maximised 

and subject to constraints (C.12) – (C.20). 

𝑒𝑖 ≥ 𝐸𝑖; ∀𝑖 [Constraint of ending inventory]     (C.12) 

𝑏𝑖 ≥ 𝐵𝑖; ∀𝑖[Constraint of beginning inventory]    (C.13) 

𝑋1 ≤ 𝑟(𝑃 − 𝑇𝑑𝑝 ∗ 𝑃) [Limitation of production quantity in first period] (C.14) 

𝑋𝑖 ≤ 𝑟𝑃; ∀𝑖 ≠1 [Limitation of production quantity in each period]  (C.15) 

𝑋𝑖 ≥ 𝐴𝑃𝑖; ∀𝑖 ≠1 [Constraint for production in revised plan]   (C.16) 

∑ 𝑋𝑖
𝑛
𝑖=1 ≤ ∑ 𝐷𝑖

𝑛
𝑖=1 + 𝑏𝑛+1 − 𝑏1 [Limitation of total production quantity] (C.17) 

∑ 𝐴𝑃𝑖
𝑛
𝑖=1 −∑ 𝑋𝑖

𝑛
𝑖=1 ≥0 [Constraint of lost sales quantity]    (C.18) 

∑ 𝑌𝑖
𝑛
𝑖=1 ≤ ∑ 𝐷𝑖

𝑛
𝑖=1   [Limitation of total delivery]    (C.19) 

𝑋𝑖, 𝑌𝑖, 𝑍𝑖 ≥0; ∀𝑖 [Non-negativity constraint]     (C.20) 



 

Appendix D Formulation for Managing Raw 

Material Supply Disruption 

In this appendix, the mathematical model is formulated for determining the revised plan 

after a supply disruption in which the total profit is maximised subject to the following 

capacity, demand, delivery and inventory constraints. 

Total production cost =
𝐶𝑝

𝑟
∑ 𝑋𝑖
𝑛
𝑖=1       (D.1) 

Total rejection cost = 𝐶𝑅 (
1

𝑟
− 1)∑ 𝑋𝑖

𝑛
𝑖=1      (D.2) 

Total inspection cost =
𝐶𝐼𝐶𝑝

𝑟
∑ 𝑋𝑖
𝑛
𝑖=1       (D.3) 

Cost of interest and depreciation = 𝑛𝑎 𝐴−𝑏𝑟𝑐    (D.4) 

Total raw material cost = ∑ 𝐶𝑟𝑍𝑖
𝑛
𝑖=1 =

𝑁𝐶𝑟

𝑟
∑ 𝑋𝑖
𝑛
𝑖=1     (D.5) 

Raw material holding cost =
1

2𝑟
𝐻1𝑁∑ 𝑋𝑖

𝑛
𝑖=1      (D.6) 

Total delivery cost= ∑ 𝐶𝑑
𝑛
𝑖=1 𝑌𝑖      (D.7) 

Total ending inventory holding cost = 𝐻2∑ 𝑒𝑖
𝑛
𝑖=1     (D.8) 

Back orders cost = 𝐵∑ (𝑖 − 1)(𝑋𝑖 − 𝐴𝑃𝑖
𝑛
𝑖=2 )    (D.9) 

Lost sales cost = 𝐿(∑ 𝐴𝑃𝑖
𝑛
𝑖=1 − ∑ 𝑋𝑖

𝑛
𝑖=1 )     (D.10) 

Total revenue = 𝑆∑ 𝑋𝑖
𝑛
𝑖=1        (D.11) 

Final mathematical model 

The objective function, total profit = total revenue – total costs, which is to be maximised 

subject to constraints (D.12) – (D.20). 

𝑒𝑖 ≥ 𝐸𝑖; ∀𝑖 [Constraint of ending inventory]     (D.12) 

𝑏𝑖 ≥ 𝐵𝑖; ∀𝑖[Constraint of beginning inventory]    (D.13) 

𝑋1 ≤ 𝑟(𝑃 − 𝑇𝑑𝑠 ∗ 𝑃) [Limitation of production quantity in first period] (D.14) 

𝑋𝑖 ≤ 𝑟𝑃; ∀𝑖 ≠1 [Limitation of production quantity in each period]  (D.15) 

𝑋𝑖 ≥ 𝐴𝑃𝑖; ∀𝑖 ≠1[Constraint for production in revised plan]   (D.16) 

∑ 𝑋𝑖
𝑛
𝑖=1 ≤ ∑ 𝐷𝑖

𝑛
𝑖=1 + 𝑏𝑛+1 − 𝑏1 [Limitation of total production quantity] (D.17) 

∑ 𝐴𝑃𝑖
𝑛
𝑖=1 −∑ 𝑋𝑖

𝑛
𝑖=1 ≥0 [Constraint of lost sales quantity]    (D.18) 

∑ 𝑌𝑖
𝑛
𝑖=1 ≤ ∑ 𝐷𝑖

𝑛
𝑖=1   [Limitation of total delivery]    (D.19) 

𝑋𝑖, 𝑌𝑖, 𝑍𝑖 ≥0; ∀𝑖 [Non-negativity constraint]     (D.20) 



 

Appendix E Heuristic 2 for Managing Production 

Disruption 

Step 1: Input data for ideal plan. 

Step 2: Determine and record ideal plan. 

Step 3: Determine spare capacity (𝑆𝐶𝑖) of each period. 

Step 4: Input production disruption start time (𝑡𝑠) and duration (𝑇𝑑𝑝) and determine loss of 

production = 𝑇𝑑𝑝 ∗ 𝑟𝑃. 

Step 5: If 0≤ 𝑇𝑑𝑝 ∗ 𝑟𝑃 ≤ 𝑆𝐶1, Then 

  𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 1, 2, 3…𝑛 

Step 6: For 𝑘 =2 to 𝑛 

For ∑ 𝑆𝐶𝑗
𝑘−1
𝑗=1 < 𝑇𝑑𝑝 ∗ 𝑟𝑃 ≤ ∑ 𝑆𝐶𝑗

𝑘
𝑗=1  

  If 𝐵 ≤
𝐿

𝑘−1
, Then 

   𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − 𝑇𝑑𝑝 ∗ 𝑟𝑃  

𝑋𝑖 = 𝐴𝑃𝑖 + 𝑆𝐶𝑖; 𝑖 = 2, 3…𝑘 − 1 

   𝑋𝑘 = 𝐴𝑃𝑘 + 𝑇𝑑𝑝 ∗ 𝑟𝑃 − ∑ 𝑆𝐶𝑗
𝑘−1
𝑗=1  

𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 𝑘+1, 𝑘+2... 𝑛 

If 
𝐿

𝑘−1
< 𝐵 ≤

𝐿

𝑘−2
, Then 

𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − 𝑇𝑑𝑝 ∗ 𝑟𝑃  

𝑋𝑖 = 𝐴𝑃𝑖 + 𝑆𝐶𝑖; 𝑖 = 2, 3…𝑘 − 1 

   𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 𝑘, 𝑘+1, 𝑘+2... 𝑛 

……….. 

If 
𝐿

2
< 𝐵 ≤ 𝐿, Then 

𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − 𝑇𝑑𝑝 ∗ 𝑟𝑃  

𝑋2 = 𝐴𝑃2 + 𝑆𝐶2  

𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 3, 4…𝑛 

If 𝐵 > 𝐿, Then 
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𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − 𝑇𝑑 ∗ 𝑟𝑃  

   𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 =2, 3…𝑛 

Step 7: For 𝑇𝑑 ∗ 𝑟𝑃 > ∑ 𝑆𝐶𝑗
𝑛
𝑗=1  

  If 𝐵 ≤
𝐿

𝑛−1
, Then  

𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − 𝑇𝑑𝑝 ∗ 𝑟𝑃  

   𝑋𝑖 = 𝐴𝑃𝑖 + 𝑆𝐶𝑖 ; 𝑖 =2, 3…𝑛 

  If 
𝐿

𝑛−1
< 𝐵 ≤

𝐿

𝑛−2
, Then 

𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − 𝑇𝑑𝑝 ∗ 𝑟𝑃  

𝑋𝑖 = 𝐴𝑃𝑖 + 𝑆𝐶𝑖 ; 𝑖 =  2, 3…𝑛 − 1 

   𝑋𝑛 = 𝐴𝑃𝑛  

……….. 

If 
𝐿

2
< 𝐵 ≤ 𝐿, Then 

𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − 𝑇𝑑𝑝 ∗ 𝑟𝑃  

𝑋2 = 𝐴𝑃2 + 𝑆𝐶2  

𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 3, 4…𝑛 

If 𝐵 > 𝐿, Then 

𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − 𝑇𝑑𝑝 ∗ 𝑟𝑃  

   𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 =2, 3…𝑛 

Step 8: Determine raw material required and final product delivery quantity. 

𝑌𝑖 = 𝐵𝑖 + 𝑋𝑖 − 𝐸𝑖; 𝑖 =1, 2, 3…𝑛 

𝑍1 = 𝑁 ∗
𝐴𝑃1

𝑟
  

𝑍2 =
1

𝑟
[𝑁 ∗ 𝑋2 − 𝑁 ∗ (𝐴𝑃1 − 𝑋1)]  

𝑍𝑖 = 𝑁 ∗
𝑋𝑖

𝑟
; 𝑖 = 3, 4…𝑛 

Step 9: Determine different costs, total profit and quantities of back orders and lost sales. 

Step 10: Stop. 



 

Appendix F Heuristic 3 for Managing Raw 

Material Supply Disruption 

Step 1: Input data for ideal plan. 

Step 2: Determine and record ideal plan. 

Step 3: Determine spare capacity (𝑆𝐶𝑖) of each period. 

Step 4: Input supply disruption duration (𝑇𝑑𝑠) and determine loss of production (𝐿𝑃). 

Step 5: If 0 ≤ 𝐿𝑃 ≤ 𝑆𝐶1, Then 

  𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 1, 2, 3…𝑛 

Step 6: For 𝑘 =2 to 𝑛 

For ∑ 𝑆𝐶𝑗
𝑘−1
𝑗=1 < 𝐿𝑃 ≤ ∑ 𝑆𝐶𝑗

𝑘
𝑗=1  

  If 𝐵 ≤
𝐿

𝑘−1
, Then 

   𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − 𝐿𝑃  

𝑋𝑖 = 𝐴𝑃𝑖 + 𝑆𝐶𝑖; 𝑖 = 2, 3…𝑘 − 1 

   𝑋𝑘 = 𝐴𝑃𝑘 + 𝐿𝑃 − ∑ 𝑆𝐶𝑗
𝑘−1
𝑗=1  

𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 𝑘+1, 𝑘+2... 𝑛 

If 
𝐿

𝑘−1
< 𝐵 ≤

𝐿

𝑘−2
, Then 

𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − 𝐿𝑃  

𝑋𝑖 = 𝐴𝑃𝑖 + 𝑆𝐶𝑖; 𝑖 = 2, 3…𝑘 − 1 

   𝑋𝑖 = 𝐴𝑃𝑖; 𝑖 = 𝑘, 𝑘+1, 𝑘+2... 𝑛 

……….. 

If 
𝐿

2
< 𝐵 ≤ 𝐿, Then 

𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − 𝐿𝑃  

𝑋2 = 𝐴𝑃2 + 𝑆𝐶2  

𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 3, 4…𝑛 

If 𝐵 > 𝐿, Then 

𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − 𝐿𝑃  

   𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 =2, 3…𝑛 
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Step 7: For 𝐿𝑃 > ∑ 𝑆𝐶𝑗
𝑛
𝑗=1  

  If 𝐵 ≤
𝐿

𝑛−1
, Then  

𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − 𝐿𝑃  

   𝑋𝑖 = 𝐴𝑃𝑖 + 𝑆𝐶𝑖 ; 𝑖 =2, 3…𝑛 

  If 
𝐿

𝑛−1
< 𝐵 ≤

𝐿

𝑛−2
, Then 

𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − 𝐿𝑃  

𝑋𝑖 = 𝐴𝑃𝑖 + 𝑆𝐶𝑖 ; 𝑖 =  2, 3…𝑛 − 1 

   𝑋𝑛 = 𝐴𝑃𝑛  

……….. 

If 
𝐿

2
< 𝐵 ≤ 𝐿, Then 

𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − 𝐿𝑃  

𝑋2 = 𝐴𝑃2 + 𝑆𝐶2  

𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 3, 4…𝑛 

If 𝐵 > 𝐿, Then 

𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − 𝐿𝑃  

   𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 =2, 3…𝑛 

Step 8: Determine raw material required and final product delivery quantity. 

𝑌𝑖 = 𝐵𝑖 + 𝑋𝑖 − 𝐸𝑖; 𝑖 =1, 2, 3…𝑛 

𝑍1 = 𝑁 ∗
𝐴𝑃1

𝑟
  

𝑍2 =
1

𝑟
[𝑁 ∗ 𝑋2 − 𝑁 ∗ (𝐴𝑃1 − 𝑋1)]  

𝑍𝑖 = 𝑁 ∗
𝑋𝑖

𝑟
; 𝑖 = 3, 4…𝑛 

Step 9: Determine different costs, total profit and quantities of back orders and lost sales. 

Step 10: Stop. 



 

Appendix G Heuristic 4 for Managing Multiple 

Disturbances 

Step 1: Input data for ideal plan. 

Step 2: Determine and record ideal plan. 

Step 3: Determine spare capacity (𝑆𝐶𝑖) of each period. 

Step 4: Input demand fluctuation, supply disruption and/or production disruption scenario.  

Step 5: Determine unfulfilled demand, 𝐷𝑢 = 𝛿 + (𝑇𝑑𝑠 + 𝑇𝑑𝑝) ∗ 𝑟𝑃 

Step 6: For 𝐷𝑢 > 0 

 6.1 For 0≤ 𝐷𝑢 ≤ 𝑆𝐶1 

  If 𝐵 ≤ 𝐿, Then 

   𝑋1 = 𝐴𝑃1 + 𝐷𝑢 − (𝑇𝑑𝑠 + 𝑇𝑑𝑝) ∗ 𝑟𝑃 

   𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 2, 3…𝑛 

If 𝐵 > 𝐿, Then 

   𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 =1, 2, 3…𝑛 

6.2 For 𝑘 =2 to 𝑛 

For ∑ 𝑆𝐶𝑗
𝑘−1
𝑗=1 < 𝐷𝑢 ≤ ∑ 𝑆𝐶𝑗

𝑘
𝑗=1  

  If 𝐵 ≤
𝐿

𝑘
, Then 

   𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − (𝑇𝑑𝑠 + 𝑇𝑑𝑝) ∗ 𝑟𝑃  

𝑋𝑖 = 𝐴𝑃𝑖 + 𝑆𝐶𝑖 ; 𝑖 = 2, 3…𝑘 − 1 

   𝑋𝑘 = 𝐴𝑃𝑘 + 𝐷𝑢 − ∑ 𝑆𝐶𝑗
𝑘−1
𝑗=1  

𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 𝑘+1, 𝑘+2... 𝑛 

If 
𝐿

𝑘
< 𝐵 ≤

𝐿

𝑘−1
, Then 

𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − (𝑇𝑑𝑠 + 𝑇𝑑𝑝) ∗ 𝑟𝑃  

𝑋𝑖 = 𝐴𝑃𝑖 + 𝑆𝐶𝑖 ; 𝑖 = 2, 3…𝑘 − 1 

   𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 𝑘, 𝑘+1, 𝑘+2... 𝑛 

……….. 

If 
𝐿

2
< 𝐵 ≤ 𝐿, Then 
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𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − (𝑇𝑑𝑠 + 𝑇𝑑𝑝) ∗ 𝑟𝑃  

𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 2, 3…𝑛 

If 𝐵 > 𝐿, Then 

   𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 =1, 2, 3…𝑛 

6.3 For 𝐷𝑢 > ∑ 𝑆𝐶𝑗
𝑛
𝑗=1  

  If 𝐵 ≤
𝐿

𝑛
, Then 

   𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − (𝑇𝑑𝑠 + 𝑇𝑑𝑝) ∗ 𝑟𝑃 

𝑋𝑖 = 𝐴𝑃𝑖 + 𝑆𝐶𝑖 ; 𝑖 =  2, 3…𝑛 

  If 
𝐿

𝑛
< 𝐵 ≤

𝐿

𝑛−1
, Then 

𝑋1 = 𝐴𝑃1 + 𝑆𝐶1 − (𝑇𝑑𝑠 + 𝑇𝑑𝑝) ∗ 𝑟𝑃 

𝑋𝑖 = 𝐴𝑃𝑖 + 𝑆𝐶𝑖 ; 𝑖 =  2, 3…𝑛 − 1 

   𝑋𝑛 = 𝐴𝑃𝑛  

……….. 

If 
𝐿

2
< 𝐵 ≤ 𝐿, Then 

𝑋1 = 𝐴𝑃1 + 𝑆𝐶1  

𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 2, 3…𝑛 

If 𝐵 > 𝐿, Then 

   𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 =1, 2, 3…𝑛 

Step 7: For 𝐷𝑢 < 0 

𝑋1 = 𝐴𝑃1 − |𝐷𝑢|  

𝑋𝑖 = 𝐴𝑃𝑖 ; 𝑖 = 2, 3…𝑛 

Step 8: Determine raw material required and final product delivery quantity. 

𝑌𝑖 = 𝐵𝑖 + 𝑋𝑖 − 𝐸𝑖; 𝑖 =1, 2, 3…𝑛 

𝑍𝑖 = 𝑁 ∗
𝑋𝑖

𝑟
 ; 𝑖 =1, 2, 3…𝑛 

Step 9: Determine different costs, total profit and quantities of back orders and lost sales. 

Step 10: Stop. 
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