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Abstract 
 

This paper describes an approach for generating customized benchmark suites from a software architecture 

description following a Model Driven Architecture (MDA) approach. The benchmark generation and performance data 

capture tool implementation (MDABench) is based on widely used open source MDA frameworks. The benchmark 

application is modeled in UML and generated by taking advantage of the existing community-maintained code generation 

“cartridges” so that current component technology can be exploited. We have also tailored the UML 2.0 Testing Profile 

so architects can model the performance testing and data collection architecture in a standards compatible way. We then 

extended the MDA framework to generate a load testing suite and automatic performance measurement infrastructure. 

This greatly reduces the effort and expertise needed for benchmarking with complex component and Web service 

technologies while being fully MDA standard compatible. The approach complements current model-based performance 

prediction and analysis methods by generating the benchmark application from the same application architecture that the 

performance models are derived from. We illustrate the approach using two case studies based on Enterprise JavaBean 

component technology and Web services. 

Keywords: MDA; model-driven development; Performance; Testing; Code Generation 

 

1. Introduction 
Software technologies such as Enterprise Java Beans (EJBs), .NET and Web services have proven successful in the 

construction of enterprise-scale systems. However, it remains a challenging software engineering problem to ensure that an 

application architecture can meet its specified performance requirements.  
Various performance analysis models with prediction capabilities have been proposed to evaluate architecture designs 

during early phases of the application development cycle (Balsamo et al., 2004). Utilizing these models requires two 

distinct activities to be carried out by the application architect. The first requires the development of specific analytical 
models based on the application design. The second must obtain parameter values for the performance model using 

measurements or simulation. Both these activities require significant additional effort and specific expertise in 
performance engineering methods. Hence, we believe these are key inhibitors that have prevented performance 
engineering techniques from achieving wide-spread adoption in practice (Balsamo et al., 2004).  

With the growing interest in Model Driven Architecture (MDA) technologies, attempts to integrate performance 
analysis with MDA and UML have been made, aiming to reduce the performance modeling effort required.  The OMG’s 

MDA standard defines a way of transforming business domain models into Platform Independent Models (PIM) and then 
Platform Specific Models (PSM), and eventually to executable code. PSMs can also include a performance analysis model 
specific to a performance engineering method.  

Consequently, recent work has attempted model transformation from UML design models to method-specific 
performance analysis models. A more comprehensive and elaborate theoretical basis has been discussed in (Skene and 



Emmerich, 2003b).  This work has, to a large extent, improved on the earlier manually-oriented activities related to 
deriving analytical models from application designs. 

Parameter values in these performance analysis models also depend greatly on the underlying component and Web 
service framework used to implement the application. One method to obtain and tune these parameters is to run a 
benchmark application on the framework. This approach has proven to be useful (Gorton and Liu, 2003, Gorton et al., 

2003, Liu, 2004) with component-based technologies. Running benchmark applications can also help in predicting and 
diagnosing performance problems, including identifying bottlenecks, preliminary profiling and exploring core application 

characteristics. 
An effective benchmark suite includes a core benchmark application, a load testing suite and performance monitoring 

utilities.  In this regard, there are several limitations in current benchmarking approaches for performance analysis 

1. Existing industry benchmark standards and suites (e.g. ECperf/SPECjAppServer  and the TPC series) are not broadly 
suitable for performance modeling and prediction for two reasons. First, they are mainly designed for server vendors 

to showcase and improve their products, rather than reflecting a specific application’s performance characteristics. 
The application logic in these benchmarks is fixed and impossible to adapt to assist in predicting performance for a 
specific application under design. Second, these benchmark suites tend to be expensive to acquire and complex to use.   

2. Implementing a custom benchmark suite from scratch is costly and tedious. This is largely due to the complexity of 
modern component containers and Web service frameworks. The task difficulty is exacerbated by the ad hoc ways 

these technologies adopt for conducting performance measurement.  A benchmark implementation usually requires a 
large amount of container and framework infrastructure-related plumbing, even for a relatively simple benchmark 
design. Interestingly, this characteristic is particularly amenable to MDA-based code generation, which is efficient at 

generating repetitive but complicated infrastructure code. However, one capability that current MDA code generation 
frameworks lack is that they do not provide solutions to the generation of a load testing suite and performance data 
collecting utilities. 

3. The measurement data that needs to be collected for a performance analysis model is usually complicated. A minimal 
approach is typically preferred over a collect-all approach in order to reduce measurement overhead. This requires 

measurement configurations to be constantly revised against design models and analysis models which are being 
iteratively refined. Secondly, time series based correlation between measurement items (e.g. resource usage and 
service time) needs to be specified by referring to  multiple model elements.  An MDA approach enables such model 

element annotations through UML profiles. This makes fine tuning measurements against design and analysis model 
requirements easier. 

The aim of our work is to automate the generation of complete benchmark suites including monitoring utilities from a 
design description. The input is a UML-based set of design diagrams for the benchmark application, along with a load 
testing suite modeled in the UML 2.0 Testing Profile. The output is a deployable benchmark suite including the core 

benchmark application, load testing suite, performance data collecting utilities and configuration files for external 
container/framework specific monitoring and profiling utilities.  

Our work complements current performance analysis approaches as shown in Figure 1. Existing approaches usually 

start with a PSM. The PSM is then annotated with a performance analysis profile for a specific performance analysis 
method. The model is then transformed to a proprietary language format using XSLT. To populate the parameters, a 

benchmark application and associated monitoring utilities are built manually. In our approach, a PIM design is annotated 
with three types of profiles: a platform specific profile, a performance profile and a tailored UML 2.0 Testing profile. 
Minimal references among the profiles are captured using tagged values. A benchmark suite is then generated using all the 

profiles. Monitoring utilities have the information on what to collect for what analysis model parameters. Measurement 
results can then be used directly for populating analysis model parameters. Details of the analysis model generation and 

parameter population is presented in a separate paper (Liu et al., 2006).  
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Figure 1 Model Driven Performance Analysis 

 
To demonstrate the approach, two platforms have been selected that represent widely used target technologies in 

enterprise systems. These are the Java 2 Enterprise Edition (J2EE) component framework and the Axis Web service 

platform (Apache, 2005). By having a single platform independent model with minimal platform dependent markups, 
different deployable customized benchmark applications can be generated for different platforms, as we show in this 

paper. This demonstrates one of the central benefit of  MDA, namely productivity gains through model reuse. In addition, 
executing the generated benchmark application produces performance data in an analysis friendly format, along with 
automatically generated performance graphs.  

Our approach has a number of unique benefits: 

• The generated benchmark suite is based on a design that closely corresponds to the application of interest, and hence it 
captures the unique characteristics of the application. This should lead to the benchmark producing more representative 

measures of the eventual application.  

• Model driven code generation hides the complexities of the benchmark implementation from architects, and helps them 
focus on analyzing the benchmark results that are automatically produced.  It also greatly reduces the complexity behind 

the load testing suite and framework-specific performance data collecting utilities, which in many cases can take more 
time to understand and develop than the benchmark application itself (Grundy et al., 2005) 

• The approach derives the benchmark application from the same application model that the performance analysis model is 

derived from. This makes it possible to use the performance measurement data for analytical model validation and tuning 
model parameter values. This essentially complements the performance analysis framework  proposed in (Skene and 

Emmerich, 2003b). 

• Following MDA standards, including the UML 2.0 Testing Profile, and using existing open source MDA frameworks 
significantly reduces the learning curve of the approach. It also takes advantage of existing code generation “cartridges” 

exploiting the latest component technologies. The wide range of interoperable UML modeling tools (due to the 
MDA/UML compatibility standard) also makes the approach more amenable to adoption in practice. 

• A single PIM for the application logic is used for generating different platform specific infrastructures and  benchmark 

applications. Only minimal platform-specific property markup is required, and these are separated with the PIM. 

 

2. Related Work  
2.1 Performance Analysis with MDA 

It has been argued that the MDA approach is a suitable for facilitating performance analysis of large scale enterprise 
systems (Skene and Emmerich, 2003a) since it “permits natural and economical modeling of design and analysis domains 

and relationships between them, supporting both manual and automatic analysis.”  Some researchers have used MDA in 



performance analysis (Yilmaz et al., 2004, Weis et al., 2004, Rutherford and Wolf, 2003b, Marco and Inverardi, 2004), 
and typically focus on deriving analytical models from UML design models. A UML design model with appropriate 

profiles applied can be transformed into a specific analytical technique based proprietary model for further analysis. Most 
of these model transformations are based on XSLT. This means the mapping and transformation information is tangled 
within the XML query and transformation language, which has limitations for representing and validating mapping 

relationships (Czarnecki and Helsen, 2003).  
A more comprehensive framework has been proposed in (Skene and Emmerich, 2003b). It too advocates representing 

analytical performance models in UML using profiles. Thus, deriving analytical models from design models equates to 
standard model transformation in MDA. This has various standardization, validation and tooling advantages over using 
XSLT to transform designs into proprietary models.  

Analytical model-based performance analysis can not work without data to populate the model parameters. Populating 
parameters must utilize techniques such as simulation or estimation based on experience or historical data. These 

techniques require an in-depth understanding of the behavior of the actual system components and they encounter 
difficulties if applications use black box frameworks, which is common for most applications running on commercial 
component-based application servers or Web service frameworks. 

In such applications, measurements in the form of benchmarking and prototyping (Grundy et al., 2004) are used to 
obtain valuable information for architects. Comprehensive prototyping can however be expensive. To further exacerbate 

the problem, multiple benchmarking applications need to be constructed for different target platforms for comparison or 
deployment considerations. Industry standard benchmark results can not usually be used because the results are specific to 
the benchmark application itself, making it difficult to sensibly infer useful performance characteristics about the 

application under design. Combining model based analysis with small scale customized benchmarking has been introduced 
to solve this problem (Liu, 2004). This approach can work on different levels. Benchmarking and prototyping results can 
be combined with model-based estimation as a way of building confidence in performance predictions and ruling out 

potential inaccuracy. Benchmarking and prototyping data can also be directly fed into a performance model for more 
accurate prediction.  Some recent research has produced positive results (Liu and Gorton, 2004).  

We argue that deriving a customized benchmark application from the same application architecture design as the 
performance models are derived has great potential for validating and calibrating performance prediction models. This 
approach integrates customized benchmark generation and performance analysis model transformation into a single MDA-

based approach. 

 

2.2 Benchmark Generation 
There are a large number of code generation techniques and generator frameworks (Czarnecki and Helsen, 2003) that 

can be used in benchmark suite generation. We choose a model driven approach because code can be generated from 
architecture designs directly. This creates semantic links between our generated benchmark suite code and performance 

analysis models since they derive from the same application design model. Some pioneering work has been done on 
generating benchmark and prototyping applications using models, as in (Grundy et al., 2001, Grundy et al., 2004) (Liu et 

al., 2002, Rutherford and Wolf, 2003a). However, these have several limitations: 

• The code generators for the chosen technologies are built from scratch by the researchers. They do not utilize any 
extensible generator frameworks, or draw upon the large pool of existing code generation “cartridges” for the latest 

technologies that are maintained by an active community. When code generation cartridges are not exploited, any change 
to the chosen target technology or the introduction of a new technology requires significant extra work from the 
researchers.  

• These methods do not follow MDA standards. Most of them are built as proprietary modeling tools. Although some have 
used generic UML modeling tools, they use them to model proprietary modeling concepts. The models derived in this 
way are very different from UML architecture models in practice, and thus become throw-away artifacts. Consequently, 

existing industry experience with UML and code generation is not leveraged, making the code generation tasks for 
performance engineering an additional activity for developers to carry out, rather than a step in an incremental 

development process. Not following MDA may also compromise tool interoperability and semantic model traceability 
between derived models.  

• The load testing part of the benchmark suite can not be comprehensively modeled compared to using the UML 2.0 

Testing Profile. The latter distinguishes different testing elements (e.g. test context, test cases, data pool, data partition) 
within a testing environment. This makes load test suite modeling more modular, reusable and modifiable. Above all, it is 
standards-based. 

Our approach directly addresses these limitations, as the remainder of the paper explains. 



 

2.3 Performance Measurement 
Performance measurement for a benchmark suite includes end to end response time, throughput measurement and 

application server related performance measurement. For end to end performance data, the application needs to be 
instrumented or a profiler used. Both take significant software engineering effort.  

In our approach, the load testing suite is modeled in the UML 2.0 Testing Profile. A deployable implementation of 
performance data collection utilities for response time and throughput are automatically generated in the load testing 
client. Executing the application causes performance data to be collected as part of the test execution, with performance 

data displayed in generated graphs. 
Server-side performance related data can typically only be obtained using the particular component container’s 

management tools. These are currently mostly proprietary. However, this is changing as containers expose performance 
related information through programmatically accessible management components. For example, in J2EE, JMX-based 
(Java Management Extension) resource monitoring is becoming widely used and standardized. A similar approach is 

starting to be adopted in container-based Web service technologies (e.g. Enterprise Service Bus (ESB)) and standardized 
through Web Service Distributed Management, (WSDM) (OASIS, 2005) though they are still in a  very early stage. In our 
approach, we exploit this new capability with the J2EE WebLogic application server in one case study. We use either 

configuration files or scripts generated from UML design models using MDA to monitor application server related 
performance data. 

  

3. Customized Benchmark Generation using MDA 
The overall structure of the benchmark generation system and related process workflow is presented in the boxed area 

in Figure 2. It also shows on the left side of the diagram the relationship with model-based performance prediction. 
An application design in UML must be transformed manually or with tool assistance into a customized benchmark 

UML design model. This design usually represents the core characteristics of the application that are deemed by the 

architect to be the most performance critical. The criteria for this transformation are beyond the scope of this paper, as they 
depend on specific needs and characteristics of the project and performance analysis techniques.  

The benchmark UML design model begins with a PIM which reflects the application logic. The benchmark UML 

design model is then annotated with UML profiles for code generation, and a load testing suite is modeled using the UML 
2.0 Testing Profile. This UML model is then exported using XMI and becomes an input to the AndroMDA tool 

framework. We have extended the AndroMDA framework with a new cartridge to generate a load testing suite and 
associated performance monitoring functionality.  A cartridge is a collection of meta-model definitions (XML files), code 
generation handlers (code libraries) and templates. It can process model elements that have specified stereotypes and 

tagged values or model elements that meet certain conditions.  
Along with exploiting existing cartridges, a complete deployable customized benchmark suite can be generated that has 

the capability for extensive performance measurements. The same application design can also be transformed into an 
analytical performance model. The measurements obtained by the benchmark suite can be integrated with the performance 
model and used to validate or improve its results. Semantic mappings and explicit model transformation rules provided by 

the MDA approach make such integration straightforward and systematic. However, integration with analytical models is 
beyond the scope of this paper. 
 



 
Figure 2. Model Driven Benchmark Suite Generation 

 

3.1 Development Environment 
We use an open source extensible framework, AndroMDA , for MDA based code generation. The reasons for this are 

twofold: 

• The success of any code generation framework depends on the range of generation capabilities available, along with the 
extensibility of the framework itself. AndroMDA satisfies both of these requirements. Existing cartridges are maintained 
by a community of active developers. It also has no intrinsic limitations on extending it to platforms other than the 

current J2EE and Web (service) platforms. 

• For a model driven approach to generate deployable components, some implementation details need to be captured at the 
model level. This makes abstract modeling harder and models cluttered, as models should be a reasonable abstraction 

devoid of as many details as possible. AndroMDA separates UML and generated code from the manually provided 
business logic implementation in different directories. This allows us to have both a code generation capability and 

abstract modeling at the same time. This separation also makes iterative development possible, which is essential in 
practical model-driven development. 

We consequently have extended AndroMDA to support a subset of the UML 2.0 Testing Profile for load test suite 

generation. Based on the extended AndroMDA, benchmark designers can model their own benchmark application along with a 
load testing suite in UML. AndroMDA takes XMI outputs representing the UML design and generates deployable code using 

available code generation cartridges and our cartridge extensions.  

 

3.2 Benchmark Application Generation 
The core benchmark application generation simply exploits MDA development techniques using AndroMDA. The 

principle behind AndroMDA is to generate as much code as possible from marked PIMs. PIMs are modeled in a UML 

profile with platform independent stereotypes like “Entity”, “Service” and any necessary persistence information. PIMs 
can also be annotated with platform specific tagged values.  

After modeling, AndroMDA generates all necessary source files including business method interfaces and 
implementation skeletons. The implementation skeletons are stored in a separate directory so future code re-generation 
will not override the skeletons.  



Modeling and generating the benchmark application is not therefore a distinct engineering step from normal 
development activities. It can be considered as one of the steps in an incremental development process instead of a throw 

away performance prototyping activity. One PIM model can also be used to generate different deployable applications for 
different platforms with little modification. This can greatly reduce the cost and consequently the hurdle of performing 
performance engineering in practice.  
 

3.3 Load Test Suite Generation 
We model the load testing behavior using the UML 2.0 Testing Profile. This profile is an OMG standard, representing a 

comprehensive superset of existing widely used testing frameworks such as JUnit. Currently however, there is no test 
generator available based on the UML Testing Profile1. To develop a full test generation framework according to the 

profile is a major effort, and beyond our available resources. Hence we focused merely on modeling load tests using a 
subset of the profile and producing a default implementation of the model including both test logic and test data.  

To this end, we have implemented the following stereotypes in the UML 2.0 Testing Profile through extending 

AndroMDA: 

• SUT (System under Test):  This represents the application to be tested. It consists of one or more objects. The SUT is 
exercised via its public interface by Test Components. In our approach, the SUT is the entry point for the system (e.g. a 

remote session bean in J2EE) which will be exercised for load testing purposes only. 

• Test Context: This is a collection of test cases. In our approach, it consists of load test cases with a default 

implementation of loadTestAll(), which exercises all the business methods on the SUT. 

• Test Component: Test components are classes of a test system. A test component has a set of interfaces via which it 
communicates with the SUT. Since we provide a default implementation of load test cases, users do not have to model 

their own Test Components. These Test Components are manifested as default method implementations within the 
loadTestAll() method. Users can choose to model their own Test Components, which will be treated as any normal class 
communicating with the SUT. 

• Data Pool: A data pool is a collection of explicit values that are used by a test context or test components during testing. 
We use a data pool to model the load testing data used when calling each method on the SUT. The system will 
automatically generate random test data based on the data type and range specified.  The data pool can also be used to 

specify the transaction percentage mix for all business methods by using tagged values associated with the stereotype. 
These configuration capabilities allow users to accurately and easily model the anticipated work load.  

• Data Partition: Data partitions are logical values for a method parameter used in testing. It typically defines an 

equivalence class for a set of values. We use a Data Partition to partition the Data Pool into specific sections for load 
testing.  A Data Pool is general enough for other testing purposes, including functional testing. 

• Test Case: A test case is a specification of one or more test scenarios for the system. It includes what to test with which 

inputs and the results expected under various conditions. Test cases are modeled within a Test Context that consists of 
multiple test cases. In our approach, a loadTestAll() test case is implemented by default. It exercises all public methods 

on the SUT using randomly generated data modeled in a Data Pool and a selected Data Partition.  
Figure 3 illustrates the subset of the UML 2.0 Testing Profile modeled in MagicDraw 8.0 as metafacade extensions in 

AndroMDA. They all extend the existing AndroMDA metafacade to take advantage of the underlying framework. Each 

metafacade also includes a set of associated tagged values to specify detailed configurations.  (We omit the details of these 
extensions for clarity). The UML model can be exported as a profile which can be later used in a load testing suite 
modeled along with the benchmark application business logic.  

                                                           
1 The Eclipse Hyades project, which will eventually fully support it in terms of modeling (not automatic generation), 

remains in a nascent state 



 
Figure 3. Extending AndroMDA to support UML 2.0 Testing Profile 

 

Incremental and spike load simulation 
The initial set of test data is modeled rather simplistically. For example, users can only indicate an average transaction mix 

in the Data Pool. This is usually enough for normal load scenarios. However, many performance problems occur when a 
sudden request spike hits the application or the request load gradually increases over a period of time. To explore such 

scenarios, our cartridge supports a set of tagged values to reflect the common practice and terminology used in the  
performance engineering community (Gomez et al., 2005, TPC, 2004). Some examples are:  
 

• config.processes:  The number of processes the load generator should start.   

• config.threads: The number of threads that each process spawns. 

• configr.runs: The number of runs of the test each thread performs.  

• config.duration: The maximum length of time in milliseconds that each process should run for. 

• config.initialProcesses: The initial number of processes to start with. 

• config.processIncrement: The number of processes to increase or decrease for an incremental time interval. 

• config.processIncrementInterval: The time interval between starting up or stopping new processes. 

• config.stabilizationperiod:  An estimated time before a steady state period is reached. How to estimate the starting time of 

the steady state period is specific to the testing environment. Performance data collection only commences after the 
stabilization periods. 

 
Such values are directly configured on the model through tagged values. A configuration file is then generated on the 

first round of code generation. Subsequently, if only the configuration needs to be changed, it is possible to either change 
the configuration file directly or let the code generator re-generate the file without affecting the rest of the application. 

The AndroMDA extension for load test modeling and generation results in a new cartridge that can be put into the 
AndroMDA cartridge repository. It works with all other existing server-side generation cartridges. Our cartridge includes 
some supporting facilities and a library of handlers for code generation written in Java. This facilitates the reuse of existing 

cartridges and framework facilities. It also enables template writers to access the metafacades in templates using tags. The 
separation of OO based metamodeling with template based code generation provides flexibility and ease of use.  

We provide a complete template for generating a default implementation of the loadTestAll() test case with randomly 

generated data based on a data pool model. A database seeder is also generated to repopulate the database before a new 
test. These capabilities greatly reduce the extra effort involved in using the suite in load testing activities, in which 

performance testing is the main interests of the software engineer.  
 

3.4 Performance Data Collection 
In the above two sections, we have explained how we have used MDA principles to generate a benchmark suite 

including a core benchmark application and a load testing client. We also need to collect performance data for either 
informal analysis or to feed in to a performance analysis model. The data we need falls into two categories, namely: 



 

Application related profiling information: 

This includes end to end timings for requests and counts on method calls, CPU workload and memory status, garbage 
collection counts and so on. Much of this data must be obtained through running a profiler and system utilities. In our 

default load testing implementation, the end to end response time distribution, average response time and throughput are 
automatically recorded by the client. A response time distribution graph for each run is also automatically generated. This 
data is crucial for performance analysis, and is easy to obtain if the default implementation is used.  

 

Application server (middleware and framework) related information 

This includes health indicators of the application server or framework itself and component related information that 
may have performance implications. For example, when testing EJBs, the component pool, runtime cache status and data 
source pool usage can be inspected. This information is typically collected through an EJB container-proprietary user 

interface and with logging and export functions, and the effort required varies immensely between different EJB platform 
implementations.  

As mentioned in section 2.3, several J2EE containers have recently exposed container related information using JMX 

MBeans for both API based and scripting access. With the help of JMX based container monitoring, we can automate the 
container performance monitoring using script and configuration file generation. Importantly, the generation templates 

only need to be written once for each container and can be reused for different application designs.  
In our approach, two styles of accessing the information are available for the J2EE platform: 

• We can use the JMX Java API to query the MBeans directly. A generic MBean information query and collection program 

runs independently of the benchmark application, and reads a generated configuration file. The configuration file 
includes the name of the MBean providing the performance information, methods to be called and all necessary 
parameters. The data collecting program is J2EE container specific and needs to be developed once for each container. 

With MDA, this requires a generation template. The configuration file can then be automatically generated from the 
UML model for different application designs. Figure 4 is a snippet of such a generation template.  

• A more convenient solution is to leverage the scripting shell provided by some J2EE containers. In this case, no JMX-

based data collection program is involved. All that needs to be generated is appropriate scripts for collecting the 
measurement of interests. For example, third party applications like wlshell  for Weblogic JMX and the newly integrated 

WLST (BEA, 2004) for Weblogic 9.0 provide a scripting shell for accessing the information in MBeans. Figure 5 is an 
example of the generated scripts for collecting EJBPoolRuntime performance information. 

We provide both shell script and configuration file generation templates for the Weblogic platform. We assume by 

default the target of the performance measurement will be all the beans in the container and business methods supported. 
Architects can tailor this by commenting out unwanted parts in the generated files. 

 

 
Figure 4. A (partial) configuration generation template  

 

 
 Figure 5. JMX-based server side monitoring using scripts 

 # methods for Session and MDB Pool 
<XDtMethod:forAllMethods> 
<XDtMethod:methodName/>:<XDtMethod:methodNameWithout
Prefix/> 
</XDtMethod:forAllMethods> 
</XDtClass:forAllClass> 
… 
<XDtEjbSession:forAllBeans> 
EjbPoolRuntime:<XDtEjbSession:concreteFullClassName/> 

</XDtEjbSession:forAllBeans> 

#Get Runtime info for Session Bean and MDB 
ls /EJBPoolRuntime 
ejbpool = $LAST 
for $ejb in $ejbpool do 
   sb1 = get /EJBPoolRuntime/$ejb/AccessTotalCount 
   sb2 = get /EJBPoolRuntime/$ejb/IdleBeansCount 
   sb3 = get /EJBPoolRuntime/$ejb/BeansInUseCurrentCount 
end 



 
 

4. Case Studies 
We use the Stock-Online system (Gorton, 2000) as a case study to illustrate our approach. Stock-Online is a proven 

benchmark for evaluating various middleware platforms. The original system was developed for different J2EE platforms. 

Due to platform differences, there was significant effort involved in implementing the same design for different platforms, 
and keeping the benchmark application in line with component technology advancements required significant ongoing 

effort. Hence, it makes sense to use Stock-Online as a case study to demonstrate the amount of effort that can be saved 
utilizing MDA development and code generation.  

The case study’s aim is to generate the Stock-Online system, including a load testing suite, purely from UML models. 

To this end, two variations are generated using two J2EE platforms, for the WebLogic and JBoss platforms respectively, 
both using the same Oracle database backend. To demonstrate the effectiveness of our approach, the same UML model 

with minimal change is then used to generate a benchmark application for a Web services platform. The result 
demonstrates the amount of effort saved across vendor implementations in the same standard (two different J2EE 
application servers) and across totally different platforms (J2EE and Web services platforms) 

 

4.1. Benchmark Application Modeling for J2EE 
The server side logic is modeled using the UML and AndroMDA profiles shown in Figure 6. Domain components 

corresponding to persistent entities are marked using the stereotype <<Entity>>. Components which act as business 
process facades are marked using the stereotype <<Service>>. There are also tagged values associated with each 
stereotype for component attributes such as persistence, remote/local interface and other configuration settings. 

Dependencies among <<Entity>> and <<Service>> elements are marked using <<EntityRef>> if a reference exists 
between them. All of these values are J2EE platform independent. <<ValueRef>> and <<ValueObject>>  are stereotypes 

designed for a common J2EE pattern, namely the Value Object pattern. This is currently incorporated into the J2EE 
cartridges. 

 

 
Figure 6. Stock-Online benchmark application server side modelling 

 

We omit these tagged values in the presentation to reduce cluttering. In this case study, we do not use any platform 
specific features, so no platform specific annotations need to be included on the UML model. Hence the same design 
model is used for the both target platforms. 

 



4.2 Modeling the Load Testing Suite for J2EE 
The load testing suite for Stock-Online is modeled using a subset of the UML 2.0 Testing Profile with support from our 

extensions to AndroMDA. The load testing suite model for Stock-Online is shown in Figure 7. 

 
Figure 7. Stock-Online benchmark load test model 

 

 
Figure 8. Transaction type and percentage mix modeled using <<Data Pool>> 

 
The load testing entry point is the Broker bean. It is the front end component of the system under test, which is marked 

using <<SUT>>. ClientDemo is the <<TestContext>> which consists of test cases. Only the default loadTestAll() test case 

is included with its default implementation to be generated. For simplification, all the test data is modeled in TrxnData 
from which <<DataPartition>> LoadTestingTrxnData is derived. In more complicated situations, several test data classes 

may exist.  In <<DataPool>> TranDeck, we can also indicate the transaction mix percentage as tagged values shown in 
Figure 8. For example, queryStock represents 34.9% of all transactions and getHolding represents 11.7%. This data will be 
used in randomly generating test data which simulates the real work load. 

We then export both the core benchmark application and load testing suite UML diagrams into XMI compatible 
formats. Since we are not using any application server specific modeling information in our model, the exported UML 

model will be used for both WebLogic and JBoss code generation.  
 

4.3 Customized Benchmark Generation, Deployment and Execution 
By running the AndroMDA wizard, two EJB project directory structures are generated for WebLogic and JBoss 

respectively. These consist of a MDA directory for storing the exported UML model, and directories for storing source 
code and the future deployable application.  Project property files for specifying dependencies on the targeted platforms 

and other deployment configurations are also generated. We then copy the exported UML model into the designated MDA 
directory and run the code generation engine.  



Source code is generated based on the UML model. For the client side, the complete load testing suite is generated 
without the need for further modification. The load testing logic and random test data is derived from the load testing 

UML model and method signatures of the server-side component interface.  
The server-side component code is generated following EJB best practices, including value objects. Business logic 

inside each component method needs to be manually added by placing implementation code into a separate directory. This 

prevents overriding manual modification by subsequent code generation iterations. It also separates the implementation 
from the specifications (interfaces) which derive from the UML design. After adding the server side business logic code, 

the AndroMDA framework generates the deployable package. The generated application is almost a carbon copy of the 
manually written Stock-Online system (Gorton, 2000).The application is then deployed in the following environment: 

 

Table 1. Hardware and Software Configuration 
Machine Hardware Software 

Client  Pentium 4 CPU 2.80 GHz, 
512M RAM 

Windows XP, JDK1.4  

Application 
and database 
server  

Xeon Dual Processors, 2.66 
GHz, HyperThreading enabled, 
2G RAM 

WindowsXP Prof. 
JDK1.4 with settings –hotspot, –Xms512m and –Xmx1024m,  
Oracle 9i and thin JDBC driver  

 

4.4 Performance Output for Two J2EE Platforms 
The benchmark test workload, defined by the number of concurrent requests, is specified in the workload generator. We 

then run load tests and obtain the following performance results automatically: 

• Response time distributions in both log files and chart based graphs 

• Average response time for each request 

• Application throughput in terms of transactions per second. 
Figure 9 shows example response time distribution charts for two application servers under a workload of 100 

concurrent clients.  

 

 
Figure 9.  Samples of response time distribution on two J2EE application servers  

 
By utilizing the JMX-based monitoring and data collection techniques described in section 3.3, many server side 

internal parameters can be obtained. For example, Figure 10 shows the performance parameters automatically collected 
from benchmark execution for 100 clients on WebLogic application server with 20 server threads and 20 database 

connections. 
The performance data collected in this example is the same as we have been collecting in conducting various empirical 

studies on evaluating architecture candidates and platforms. Interested readers can refer to (Liu, 2004) for the details of the 

type of data collected and how to interpret the data for performance comparisons. Using the technology described in this 
paper, we now have a tool for automatically generating the core application and load testing components of benchmarks 

following MDA, and efficiently capturing the performance data. 
 
 

 
 



•••• JDBC Connection Pool 
PrepareStatement cache hit ratio = 99.999% 

Current # of active connections = 19 

# of pending requests = 0 

Average # of active connections = 12 

Maximal # of active connections = 20 

•••• Application Server Worker Thread Pool 
Current # of idle threads = 0 

Current # of pending requests = 79 

# of requests completed = 43,000 

•••• Entity Bean Cache  
Cache hit ratio = 69% 

Figure 10. Parameters collected based on automatically generated JMX monitoring configurations 

 

 

4.5 Benchmark application modeling for Web services 
 
For simplicity, we present only the different model parts from the J2EE case study since the majority of the models 

presented to the end users are identical.  
 

 
Figure 11. Benchmark Modeling for the Axis Web service platform 

 

.  
 

Figure 10 shows the load test modeling and the system under test (SUT) entry component (Broker).  
On server side, an extra <<WebService>> stereotype is used to annotate the Web service class. By default, all the 

operations can be assessed as Web services. If only selected methods need to be exposed as Web services, a method level 

stereotype <<WebServiceOperation>> can be used. In Web service modeling, many performance parameters can be made 
through configurations on the model directly, such as WSDL binding styles (RPC/Document) and binding use styles 

(Encoded/Literal). As annotated on the diagram through tagged values on the Broker class, we use the doc/literal wrapped 
pattern. The wrapped pattern is a slightly improved variation of the commonly used doc/literal style. This is considered the 
best configuration for performance. Such tuning largely depends on the server side cartridge. However, the values can be 

queried by the load testing client to conduct necessary style-specific testing and performance measurement.   



There is virtually no change on the client side modeling except the configuration of the endpoint through a tagged 
value. All the extra changes involved are encapsulated in the client cartridge. If a Web service targeted model is detected, 

the cartridge will generate Web service specific look-ups and a Web service client while the rest of the testing logic and 
data is untouched. 

 

 
 

4.6 Performance output for Axis web service platform 
 

The same set of performance data is collected for the Web service benchmark application.  Figure 11 shows the 
response time for 25 and 50 clients respectively. The spikes at the end of the 5000ms indicate all response times longer 

than 5000ms.2 Figure 12 shows the average response time and TPS in terms of number of threads in an incremental 
requests simulation scenario.   

Comparisons between different platforms are beyond the scope this paper.  

 

 
Figure 12. Samples of response time distribution for 25/75 clients on Axis 

 

 

 
Figure 13. Average response time and throughput on Axis in an incremental requests simulation 

 
 
 

 
 

 
 
 

                                                           
2 The range can be easily changed, and all raw response times are collected in text files for possible further analysis. 



Note that MDABench generates metrics such as timing details and distribution statistics. Distribution statistics allows a 
more in-depth view of the performance results compared to average response time and throughput. These enable us to 

identify critical irregularities and their causes during test runs of the benchmark. We also provide facilities to store the 
timing details. Timing details capture the time to execute each individual operation and are recorded in the results 
repository. This does of course incur performance and storage overhead. However, the timing information allows further 

correlation with other internal or external events which may have significant performance impacts. Performance collection 
utilities are based on our own extensive experience on performance testing.  

 
There are no JMX equivalents and performance APIs in Axis for internal performance or service performance 

monitoring. Thus we did not generate performance monitoring configurations files for obtaining such data as we did for 

J2EE platforms.  
 

 

 

4.7 Applying MDABench in the Real World 
 

We recently had the opportunity to test MDABench in a Web service-based e-Government project. The system allowed 
Australian tax payers to retrieve their medical costs for a given tax year directly from a Web service for lodging a tax 
return. Our aim was to assess the performance potential of the Web services involved.  

We were able to use the MDABench prototype in the measurement planning phase. We created test data models along 
with transaction mix and exception mix requirements using the UML 2.0 Testing profile as shown in Figure 14. We then 
used the model to communicate the essential measurements to system’s software engineers. Although we were not be able 

to deploy MDABench in the production environment due to security reasons, this exercise has given us considerable 
insights into using such a tool in real world. The lesson learned will be discussed in the next section. The full experience of 

this project is reported in (Liu et al., 2007). 
 

 
  

Figure 14. MDABench Model for e-Government Project 



 

 

5. Discussions  
 

5.1 Lessons Learned 
 

1)Tailoring UML is not always the best way 

UML profiles or Domain Specific Languages (DSL) are often used to serve very different purposes. That includes 
inventing new notations, facilitating task automation, adopting product lines, constructing GUIs, data structure traversal 

and so on. A different purpose requires a different design strategy. We identified the goals of our UML profile as the 
following: 
 

•  Add new visual notations for the performance testing domain 

•  Transform visual notations to code for  task automation 

•  Adopting a product line for performance testing for different platforms 
 

These goals require a strategy based upon abstracting concepts from existing infrastructures and best practices, and 
mapping them to modeling elements (stereotypes and tagged values). Since we are tailoring UML 2.0 Testing profile to 

achieve this, the mapping was not always smooth.  The UML 2.0 Testing profile is modeled upon a unit testing mindset in 
a local environment. It lacks some of the concepts in distributed testing coordination and data collection. We therefore had 
to insert these concepts ‘behind the scenes’ in templates rather than using explicit model elements.  We are currently 

exploring Microsoft’s DSL to model these concepts explicitly.   
 

2) A flexible test data modeling and  generation tool is very valuable. 

Existing performance tools have scripting and test recording features, but they lack test data modeling capabilities and 
are extremely limited in features for test data generation. During our projects, gaining full access to any real data for 

measurement was either prohibited or infeasible. Using generated test data is therefore the only option. To represent the 
system as realistically as possible and reduce testing effort, we need flexible test data modeling and generation tools to 

produce high quality data for a large number of requests types and their combinations.  
 

3) A distributed unified measurement utility is very valuable. 

During our projects, we found most ad hoc measurements were performed at different times, under different runtime 
conditions and using different tools. Correlating between these measurements was consequently very difficult. A unified 
measurement utility that can collect all necessary measurements at the same time would significantly increase the usability 

of the collected data. MDABench has the capability to conduct such distributed measurements in a unified framework. 
 

4) Supporting  Reusability 

When we first developed MDABench, we focused our attention on the J2EE platform. This implementation adhered to 
three design principles: 

• Decouple the test suite from the server side technology. Most information required to connect to the server side is 
gathered through querying the server-side Platform Independent Model (PIM). 

• We choose not to instrument any server-side technology cartridges. This allows the server-side cartridge to be evolved 

separately and be kept up-to-date to the latest technology developments. 

• The load testing suite modeling capability is strictly divided into a platform independent profile and platform dependent 

markings. The platform independent profile is a combination of the UML 2.0 Testing Profile and some load testing 
domain specific languages.  The platform dependent markings are all tagged values.  

These design principles have not only allowed us to move MDABench to Web service platform but also achieved a 

number of benefits for developers, For example, there are virtually no changes to the load testing suite architecture model 
except for the configuration of the endpoint through a tagged value when we move from an existing J2EE load testing 

model to a Web service load testing model. After the initial one-off effort of developing the Web services cartridge, one 
student took one day to change the benchmark model to the Web services annotation and conduct the test successfully.  



 
5) Supporting  Extensibility 

MDABench can be easily extended. This can be achieved in a number of ways: 

• Major utility components of MDABench provide either interfaces or abstract classes for overwriting existing 
implementations. 

• Components to interpret modeling elements strictly follow a chain of command pattern to enable delegations to any new 

model transformation and code generation interpreters. 

• A templating capability within cartridges provides a simple extension mechanism.  

Using these mechanisms, extending MDABench from J2EE to Web services took relatively little effort. However, it will 
be difficult to directly extend MDABench to the Microsoft .Net platform. Though MDABench theoretically could generate 

.Net applications, the UML-based modeling environment is not encouraged in Microsoft Visual Studio development 
environment. Microsoft has launched its own initiative on model driven development (Software Factories) and uses DSL 
as its modeling language. Thus, we are currently developing an MDABench equivalent using DSL. It will take advantage 

of the existing Visual Studio testing capabilities but raise the level of testing into a model driven level. 
 
 

5.2 Evaluation 
It took considerable effort to develop the original Stock-Online application for different middleware platforms, conduct 

load testing and collect performance data. Extending it to Web service platform later involved another round of similar 

effort. Though familiarization of the business logic might make it easier, the repetitive and error prone parts for testing and 
infrastructure plumbing are the components that have to be rebuilt for each platform. 

Using our extended framework, one student, the main developer of the AndroMDA extension but with no experience 

with J2EE, took one week to model the system and conduct the load tests on WebLogic. It took her another half day to 
deploy the system on JBoss and conduct the same load testing. It took us some time to adapt our testing suite cartridge to 

Web services. However, after this once-off effort, it took the student another day to change the benchmarking model with 
Web services annotation and conduct all the tests.  

We realize that this effort comparison is anecdotal, and we do not have accurate effort data from the original 

development team. It is also easier to develop the same application the second time. However, it is preliminary evidence 
that the effort spent on the basic plumbing code and load test suite has been absorbed by cartridge developers and code 

generation. Hence we believe the productivity savings afforded by this approach are potentially considerable. We are 
planning to conduct a thorough empirical investigation on this. Of course productivity is only one of the benefits. Quality 
is also improved by encapsulating best practices in the reusable cartridge, and portability and modifiability are achieved 

through MDA standards compatibility. 
In our case study, we are not using any vendor specific features in J2EE platform so one single UML model is used for 

both the JBoss and WebLogic platforms. If platform specific features are involved, the model has to be marked with 
platform specific information using tagged values. The additional complexity of using the platform specific features is also 
hidden by the code generation cartridges.  

For the Web service platform, we have only collected the basic response time and throughput data. The cartridge is also 
capable of doing spike and incremental load simulation. Extra Web services specific performance data such as message 
sizes can also be collected. There are no sophisticated APIs as in the J2EE component technologies for querying platform 

internal performance related or service related indicators. However, with the maturing of ESB platforms and the adoption 
of WSDM standards, such APIs or configuration-based performance monitor are appearing. We are investigating how to 

further adapt our cartridge to collect a more complete set of performance data for Web service platforms. 
Making changes to the design to generate a new version of the benchmark is also simpler. If new business components 

and methods are introduced, new implementation code needs to be added to the generated skeleton on the server side. No 

change needs to be made on the client load testing part. Changing design elements like stateful/stateless beans or Web 
service binding styles are simply a matter of changing the UML model. All the changes will be propagated in the source 

code and deployment information.  
In the process of developing our approach and implementation, we integrated performance engineering best practices 

from the various leading technologies and our own experience. The internal structured design of the load testing client is 

inspired by ECperf/SPECjAppser (ECperf, 2001). Performance metrics are based on industry standards such as TPC-W 
(TPC, 2004). Performance collecting utilities are based on our own long experience on performance testing. Incremental 



and spike simulation are inspired by Grinder 3 (Gomez et al., 2005). All these best practices are essentially encapsulated in 
the cartridge, and its use automatically supports these best practices through generated code structures and utilities. This is 

one of the main motivations behind MDABench. 
Generating a benchmark application is essentially not different from generating any software application. A benchmark 

application usually either captures the performance critical parts of the full application or acts as a way of exercising off-

the-shelf component framework services which you are interested in. By unifying benchmark related performance work 
with normal application development in a single consistent environment, we facilitate incremental design and 

development. This helps to incorporate performance engineering tasks into the SDLC with minimal cost. 

 

5.3 Limitations 
There are still several limitations of this approach: 

• AndroMDA is generic enough to support platforms other than the existing J2EE and Web service platforms. Still, the 
existing cartridges are limited to these two different types of platforms.  The lack of .NET platform support has limited us 
from applying our approach to a wider collection of platforms. However, new third party vendors such as ArcStyler have 

successfully provided MDA support for .NET. On the other hand, Microsoft has integrated a model based modeling 
capability (Domain Specific Modeling) in its new Visual Studio, along with potential interoperability with UML. 
Because our philosophy is to integrate architecture driven performance engineering into practical development 

environments, we are currently applying the same concepts presented in this paper to Microsoft DSL environment. 

• The default implementation of the load testing suite is still relatively simple. It covers only successful testing scenario 
generation. In real applications, performance of exception handling and transaction rollback is also a major concern. 

Currently, users have to implement such scenarios manually. We are considering integrating these both at the modeling 
level and in the default implementation in future versions. We will also take advantage of some other interesting concepts 

in UML 2.0 Testing Profile such as Arbiter and Verdict stereotypes for determining the success of the test run. 

 

6. Conclusion and Future Work 
This paper has presented an approach to generate a customized benchmark application from architecture designs based 

on the J2EE and Web service platform using MDA. An implementation of this approach based on extending an open 

source MDA framework has been described and demonstrated.  
A benchmark design is modeled with platform independent models in UML. A corresponding load testing suite is 

modeled following a subset of the UML 2.0 Testing Profile. Deployable code is then generated for both the core 

benchmark design and its associated load testing suite. The core application is generated by taking advantage of existing 
code generation cartridges maintained by the open source community. The load test suite generator has been developed by 

the authors, and fully integrates with the core application generation. Case studies using EJB component technology 
(Weblogic/JBoss) and the Axis Web services platform for the Stock-Online benchmark suite have demonstrated the tools 
and the generated outputs from load tests. 

This approach has several significant advantages over proprietary model-based CASE tool environments for benchmark 
generation. Using MDA and exiting open source MDA frameworks reduces the learning curve and training effort required, 

and improves model traceability and tool interoperability. The default implementation and test data generation saves a 
large amount of load testing effort. The approach also complements existing model-based performance prediction methods 
by providing the potential to use the benchmark results for calibrating and validating analytical performance models. The 

semantic traceability achieved through MDA makes this integration easier, and this remains a major objective of our future 
work.  
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