External economies and economic development

Author:

Tu, Peter Ninh Van

Publication Date:

1962

DOI:

https://doi.org/10.26190/unsworks/8416

License:

https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/62735 in https:// unsworks.unsw.edu.au on 2024-04-24

THE UNIVERSITY OF NEW SOUTH WALES

FACULTY OF COMMERCE
SCHOOL OF ECONOMICS

$\sqrt{4}$ XTERNAL \because CONOMIES
 FLND

EOONOMIC工 EVELOPMENT

Subnitted on November 1st, 1962
for the degree of Master of Commerce at the University of New South Wales by Peter NINH-VAN-TU, B. Com.

FOREWORD

I an greatly indebted to Professor M.C. Kemp and Dr. K. Rivett for their guidance and general assistance throughout. Professor Kemp's suggestions as to the mathematical formulation of certain problems and the handling of some of the more difficult manipulations have been particularly valuable. Dr. Rivett's devoted interest in the topic, his constructive comments and criticisms at various stages have been essential. Without their kind help, this thesis could not be written. However, I alone am responsible for the mistakes that remain.
P.N.V.T.

CONTHINTS

Chapter I Introduction. P. 1.
Chapter II Classification of External Economics. P. 4.
Chapter III External Economies and the Marginal Theory of Distribution.P.26.
Chapter IV External Economies and The Allocation of Resources. P. 37.
Chapter V External Economies and Investment Techniques. P. 55.
Chapter VI External Economies and Balanced Growth. P. 71.
Chapter VII Summary and Conclusion. P. 92,

CHAPTER I

Introduction

External Economies (henceforth abbreviated to E.E.) are not new in economic theory. A, Marshall first defined them as "those dependent on the general development of the industry". These economies take the form of "improved organisation, improved methods or machinery which are accessible to the whole industry", "development of mechanical appliances of division of labour and of the means of transport and improved organisation of all kinds", "advances made by subsidiary industries", "growth of correlated branches of industries which mutually assist one another, perhaps being concentrated in the same localities", "the growth of knowledge and the progress of the arts", "newspapers and trade and technical publications".

Marshall used the concept of E. D. to explain the falling industry supply curve in terms consistent with $p \in r f \in c t l y$ competitive equilibrium, in which each firm experiences rising marginal cost. Marshall's explanation salvages competition, but implies the

1. A. Marshall pp. $266,318,615,808,615,317$, 2.66.
inefficiency of the price aechanism: taxes and subsidies are required to harmonise private with social products.

With the cuoling duwn of the cost controversy kindled by this conclusion in the 1920's, E.E. faded int, the backgruund; but recently, with the resurgence of interest in econvaic development, it has returned to the stage in a new and versatile role.

Modern concepts of E.E. are still Marshallian: J.Viner defines then as "those which accrue to particular cuncerns as the result of the expansion of output by their industry as a whole, and which are irdependent of their own individual outputs".
J.Rcbinson defines External Ecunomics in marginal terras: "When a ncw firm enters the industry, it may enable all the firms to produce more cheaply, so that, while each produces at its minimu avorage cust, the cost of the minimum is (3)
reduced". External Economies are thus attributed to new entry, which, by adding output to that of the industry, causes the rarginal costs of component firms to shift downward.
2. J.Vines [29] p. 217 .
3. J.Rubinson [20) p. 340
M. Fleming defines External Economies as any "increment in direct not product, in net factor supply, in tax quantum, in government services, in net psychic income, in terns of trade ... which is brought about by the actions of a particular firm, (4) other than a change in its own direct net product".

In this thesis, I shall retain the Marshallian definition of External Economies as those economics (in the forms of greater output, lower costs, better profit) which depend on the development of the industry (or industries), and the exploitation of which no one firm alone could monopolize".

Various types of E.E. will be classified (ch.II) according to their "nodus operandi", and put to work in several branches of economic theory:
E.E. and the Marginal Theory of Distribution (Chapter III)
E.E. and the allocation of resources (Chapter IV)
E.E. and Investment Techniques (Chapter V)
E.E. and Balanced Growth (Chapter VI).

$$
\text { 4. M.Flering }[6] \text { p. 255-256 }
$$

Chapter II

CLASSIFICATION OF EXTERNAL ECONOMIES
"No men is a law unto hinself." Similarly, the $\in c$ nonic activitics (consumption and production) of a particular decision-making unit (household, firm, government) may change the econouic environment in the light of which a second unit takes decisions. If the change is "beneficial" tu the second unit, the activity of the first unit is said to generate an ecunony; if it is "detrimental", the activity is said to generate a disec numy. Whether the change is cunsidered beneficiel ur detrimental depends on the values of the beholder, the ecunumist. And he will nuraally choose the values of the second unit.

EXTERNAL ECONOMILS OF CONSUMPTION.
The interdependence of the Consurption and consumption plans of individuals and groups has long $b \in e n$ known. The cunsuaption of a particular comodity by an individual or a group may increase, decrease, or leave unchanged, the satisfaction of some others. A nuisy party, at which everyone enjoys hinself, cuuld be a nuisance to occupants of the flat next door. Well kept gardens, beautiful lawns, aodern buildings, on the other hand, beside the enjoyment and comport they provide their owners, are sonetines surces of satisfaction, available free of
charge, to passers-by and tuurists. Note, however, that the same activities may generate E.E. to some people and external disecunomies to others: a beautiful resicence cunfers E.E. of cunsumption on passers-by, but may cause envy and disquictude to a neighbour who wants to "kefp up with the Joneses", and who feels uncufortably inferior. The high income and cunsumption of sone people may give a person pain ur pleasure, and so may his knowledge of peuple's misery. All those cases are referred to as E.E. of Cunsumption. In what follows, how$\epsilon \mathrm{ver}$, I shall cuncentrate on the production side only.

EXTERNAL ECONOMIES OF PRODUCTION.
Production activities also generate E.E.
These may be the effects of producers on consumers (E.g. Pigou's example of factory smoke and laundry bills) and vice versa, but I shall confine ny attention to the interdependence of producers only.
E.E. nay $b \in d \in f i n c d$ as those economic gains (in the forn of greater output, luwer costs, or better prices accruing externally to the firns causing then), which depend on the general developnent of the industry (industrics) and which are not subject to exploitation by any one firm alone.

A distinction nay be made between total, average and arginal E.E. Tutal E.E. are the total difference wede to the output or revenue or profit of a firm I by the total level of activity of sune other firn II. This difference cuuld be ieasured by subtracting the output which firn I would pruduce or the revenue which it wuid ubtain if fira II did not exist, from the output it actually produces or the revenue it actually obtains when firv II operates. For example, if as a result of firs II achieving the level of production X_{2}, firm $I_{\text {, }}$ using the same amount of factors $1_{1}^{*}, S_{1}^{*}$ as before, experiences an increase in its output x_{1} fron say $x_{1}^{*}\left(l_{1}^{*}, s_{1}^{*}\right)$ to $X_{1}^{* *}\left(l_{1}^{*}, s_{1}^{*}, x_{2}\right)$, then the difference $x_{1}^{* *}-x_{1}^{*}$ is a neasure of total E.E. If the level of production X_{2} results in a downward shift of firn I's total cost curve fron say $C_{1}^{*}\left(x_{1}\right)$. to $C_{1}^{* *}\left(x_{1}, x_{2}\right)$ and in a consequent adjustment of output X_{1} sey from X_{1}^{*} to $X_{1}^{* *}$, so as to cquatc narginal cust and revenue again, then total E.E. may be neasured by the vertical distance (AB in fig.I or $a b$ tines x_{1} in fig. 4) between the two tutal cost curves, curresponding to the $n \in W l \in v \in 1 X_{1}^{* *}$.

Whether $A B$ (corresponding to $x_{I}^{* *}$) or $A^{1} B^{1}$ (corresponding to X_{1}^{*}) in fig. 1 is chosen as a measure of total E.E. is a matter of definition. The difference $b \in t w \in \in n A B$ and $A^{1} B^{1}$ may not be very great anyhow, \in especially when \mathbf{x}_{1}^{*} and $\mathbf{x}_{1}^{* *}$ are close to each other.

Average E.E. are obtained by dividing total E.E. by the number of units of $x_{2}, ~ i . \epsilon 。$
$\frac{x_{1}^{* *}\left(1_{1}^{*}, s_{1}^{*}, x_{2}\right)-x_{1}^{*}\left(l_{1}^{*}, s_{1}^{*}\right)}{x_{2}}$ or $\frac{A B}{x_{2}}$ (in fig.1)
in each case. Average E.E. are rather difficult to calculate, as it is not easy to single out the exact contribution to output or $r \in v \in n u \in$ which is made by each factor of production. It is easier to work at the margin: When all the factors of production of a firm are held constant, and the output produced, or factors used, by another firm are allowed to vary slightly, any difference made to the output or revenue of the first firm, as a result of this infinitesimal change, may $b \in$ taken to $b \in a$ measure of marginal E.E. Of curse, this difference may be negative, positive
or zero, depending on whether there exist external ciscconumies, $\in c o n o m i \epsilon s$ or no ec nomies at all, i.e. no interdependence $b \in t w \in \in$ the two producers in question.

Zero Marginal E.E. may imply complete absence of E.E., but may also indicate the point where all E.E. have been fully exploited, i.e. stationary values of the total i.E. curve. Second order conditions are normally needed to determine whether total F.E. are at a maximum or minimum at that puint. Where average E.E. are independent of the scale of firr II's operation, i.e., total economies are proportional to this scale of operation, the distinction between the average and marginal id. is futile, since they are the same. But when average z.E. vary with firm II's scale of operation, the two diverge: Marginal E.E. are greater than $a v \in r a g \in \mathbb{E} . E$. when the latter are an increasing function of firm II's scale of operation, and vice versa. Average E.E. need not be a straight line: they may be scalluped, fluctuating or discontinuous; in which case, marginal $\bar{L} \mathrm{E}$. would follow the same pattern.

ت.E. may $b \in t \in c h n o l o g i c a l ~ o r ~ p e c u n i a r y, ~ f a c t o r-~-~$ or output-generated, and static or dynanic. They may also be examined separately for the cases of perfect and imperfect conpetition in factor and product markets.

TECHNOLOGICAL AND PECUNIARY DXTZRNAL ECONOMIES (1)

Technological E.E. are the differences rade to output X_{1} of a firm by the presence of output x_{2} produced by, or factors $1_{2}, s_{2}$ used by, some other firn II, within or uatside the industry. This interaction is direct and external to the narket mechanism: products and factors are all neasured in appropriate physical units, and both factor costs and pruduct prices are left out of accuunt. If firn II could appropriate all his product x_{2} or charge firn I for this favourable interaction, there wuld be no 巴.ت.: the notion of D.E. implies in-appropriability.

Bconomies of this type are called, after Viner, Technological External Dcunomies, because firm II affects the technological conditions of firm I's pruduction directly, without the intermediun of narkct prices. This interaction helps reduce the
(1) Where the effects of one producer on another are detrinental or neutral, there exist External Diseconomies, and neutral ecunumies respectively. These may $b \in$ considered as the special cases where E. \mathcal{E}. are negative and zero respectively. I use E.E. in this general aganing.
(2) J. Viner, [29] p. 213
technological coefficients: the same level of output could be produced by using $l \in s s$ of each factor $\boldsymbol{I}_{1} S_{1}$; or alternatively, the use of the same amount of each factor now enables the production of a larger output. This reduction in production coefficient may be neutral in the sense that each factor is saved in the same proportion; but it may well be biased towards labour, or capital saving. Marshall's examples of "inproved organisation, improved methods, the growth of knowledge, trade and technical publications" consequent "on the general developnent of the industry" may be illustrations of technological E.E.

The picture may be sharpened by introducing
 dustries) is unly possible if at least one firn expands its scale of production, or at least one $n \in w$ firm is established. If this "narginal" firm enables the existing firms to produce more efficiently, it will create marginal technological. i. i. . In the case where this reduction in technological coefficient is due to innovation, it nay $b \in c a l l \in d$ innovational T.E. Pure research may be cunsidered as an invisible commodity, costly tu produce. But once it has been completed and its results have beєn published, it
(1) A.Marshall, [13] p. 615 and 808
becomes mure or less a free good susceptible of various applications. The adoption of new methods of production by application of these results will save factors and actualize innovational E.E. (1)

Professor Meade's unpaid factor case is another illustration of technological E.E.: in producing apples, the apple farmer also provides free food for bees. The increase in honey output without a corresponding increase in factors used, is due to the increase in apple blossoms.

Assume two firms producing X_{1} and x_{2} respectively, using the sane factors 1 and s. If the scale of operation of x_{2} influences the production of x_{1}, say if part of x_{2} or its by-product, now becuacs a free factor of production of x_{1}, the two production functions ally be written as:

$$
\begin{align*}
& x_{1}=f\left(l_{1}, s_{1}, x_{2}\right) \\
& x_{2}=g\left(l_{2}, s_{2}\right) \tag{1}
\end{align*}
$$

and their isoquants shown in the following diagrams:

(1) J.E.Meade $[14]$ pp. 54-67.

In fig. 2, each fariily of x_{1} isoquants (only one of which, x_{1}^{*}, is shown) corresponds to a givén $l \in v \in 1$ of production x_{2}^{*} in fig. 3. If x_{2} confers technological E.E. on x_{1}, an increase in x_{2} (from isoquant x_{2}^{*} to $x_{2}^{* *}$, with $\left.x_{2}^{* *}>\mathbf{z}_{2}^{*}\right)$ nay $b \in r \in p r \in s \in n t \in d$ as reducing the production coefficient of $x_{1}, i . \epsilon .$, the $x_{1}^{*} l \in v \in l$ cuuld $b \in$ produced with less of each factor, as indicated, in fig. 2, by a downward shift of $x_{1}^{*}\left(1_{1}, s_{1}, x_{2}^{*}\right)$ to $x_{1}^{* *}\left(1_{1}, s_{1}, x_{2}^{* *}\right)$, with $x_{1}^{*} \equiv x_{1}^{* *}$. On the other hand, isoquant $x_{1}^{* *}\left(l_{1}, s_{1}, x_{S}^{* *}\right)$, belonging to a different family to x_{1}^{*}, does not have to lie entirely below X_{1}^{*} : it may cut it fron abuve or below, i.e., technological E.e. need not be neutral: they cuuld $b \in$ factor-saving or -using.

We have been concerned so far with direct or technological E.E. When the effects of a level of procuction x_{2} are $f \in 1 t$ by the $r \in v \in n u e$ or profit of sune u ther firn I throush market nechanism, on the other hand, there is a case of pecuniary external ecunomies. These take the forms of better factor and/or product prices.

Changes in factor prices are often identified with E.E. As the industry expands, factor-supplying firms may kenefit, in their expansion, fron lower production custs, if they are producing under conditions of increasing returns. These wuuld be partly or totally
passed on tu their customers in the forms of lower factor prices.

If X_{2} confers pecuniary \mathcal{D}. H. on X_{1}, then a higher $l \in V \in 1$ of x_{2}, say $x_{2}^{* *}\left(\right.$ with $\left.x_{2}^{* *}>x_{2}^{*}\right)$, would cause the long run average cost $I A C_{1}^{*}$ (fig.4) to shift downward to LAC ${ }_{1}^{* *}$. There exists one $L_{A C}$ corresponding to each l@veI of industry output, changes in which are brought about by the entry of $n \in w$ firms or by the expansion of existing firms. (Here, that marginal firn causing the change and E.E., is referred to as firm II, producing \mathbf{x}_{2}). The vertical difference between $L A C_{1}^{*}$ and $L A C_{1}^{* *}$ is a measure of pecuniary $\mathrm{B} . \mathrm{D}$. in terms of cost savings, and the difference made to the industry supply is the measurement of $\overline{\mathcal{L}} \mathrm{E}$. in ferias of output. Industry costs would be lower as can be seen from fig. 5 (where A and B correspond to a and $b(f i g . ~ 4) r e s p e c t i v e l y) . ~$ It is easy to see that rising firms' marginal costs (at and b in fig. 4) both before and after the shift is compatible with falling industry marginal cost, io., constant returns to scale at firms' $l \in v \in 1$ (at a, b) under perfect competition with external economies, are
quite compatible with increasing returns to scale at industry level. This explains why a firm benefiting from E.E. cannot expand to the point of becoming a monopolist.

If a and b (fig.4) are the points corresponding to actual levels of production of the firm, $A B$ is the supply curve of the industry, the negative slope of which reflects E.E. Note that $A_{g} B_{y} . .$. is the locus of all the relevant points on the rising supply curves of the industry (not shown), corresponding to each number of component firms and each $l \in v \in l$ of their production. Where price is determined depends on the industry demand curve. So long as the latter cuts $A B$ from above, stability obtains. If it cuts $A B$ from below, the system is condemned to eternal instability; and if it coincides with $A B$, the system breaks down under the weight of indeterminacy. Note that $A B$ may $\epsilon v \in n t u a l l y$ reach a minimum and start rising, which occurs when P.E. have been fully exploited. Note also that LAC ${ }_{1}^{* *}$ (fig.4) need not be equidistant from $L A C_{1}^{*}$ at every point: $L A C_{l}^{* *}$'s minimum point may well lie to the right of the vertical going through LAC ${ }_{1}^{*}$'s minimum, which implies that x_{1} not only benefits from costs savings, but also from increasing returns: at the actual $l \in v \in l$ of production, $L A C_{1}^{* *}$ may $b \in$ increasing and $L A C_{1}$ constant or falling.

The removal of the assumption of perfect competition would not invalidate the analysis: when firms are free to fix their prices, and with unchanged demand conditions, low \in r cost conditions due to E.E. would generally mean larger jutput, lower prices and better profit, depending on the price elasticity of demand.

Beside the form of lowering production costs, pecuniary E.E. may also take the form of raising of, and increasing the demand for, the product of the beneficiary firus. The expansion of x_{2} is nornally associated with a fall in its price p_{2}. A lower p_{2} would cause the demand (d_{1}) for x_{1} to increase (decrease) if x_{1} and x_{2} are complenents (substitutes). In the complenentary case, p_{1} would normally rise unless the supply of x_{1} is infinitely elastic. This means a better $r \in v \in n u \in\left(R_{1}\right)$ for firm I, and, under unchanged cost conditions, a better profit (P_{1}). BVen if a higher price p_{1} in money terns does not obtain, a fall in p_{2} nay still $b \in$ a stimulus to the expansion of x_{1}, as p_{1} in teras of x_{2} (i. $\in \cdot \frac{p_{1}}{p_{2}}$) is better. All these are forns of pecuniary E.E.

The incone effect of the fall in p_{2} need not be confined to x_{1} and x_{2}, but could be spread on the denand for other comodities which will expand in response. This expansion pattern may be effected at the cost of
contraction of the industry producing the substitutes of x_{2}. This cxpansion-contraction pattern nuraally has effects on relative factor prices, except in the unlikely case where expansion just offsets contraction, and fector proportions are the sance in both the cuntracting and expanding industries.

The dissection of E.E. into technological and pecuniary is rather arbitrary: overall E.I. nay be zero and yet there aay exist either technological or pecuniary E.D. or both, but they may be offset by external disecunomies; or technological economies may $b \in$ offset by pecuniary disecunumies, and vice versa. For example, as output x_{1} increases due to an expansion of output x_{2}, the price p_{1} of x_{1} nay f all, leaving revenue (R_{1}) and profit (P_{1}) of firm I unaffected, i.e., there are zero overall E.E. in spite of the presence of technological E.E. Similarly, costs savings realised in the production of x_{1} due to x_{2} 's expansion nay be aatched by a fall in p_{1}, leaving R_{1} and P_{1} unaffected. Better prices (p_{1}) may be difficult to detect: as p_{2} falls, an unchanged price p_{1} really inplies a better $\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}$ and is a stimulus to the expansion of x_{1} : there exist $\mathbb{H} . E$. in real terms, not in money terins. Moreover, lower production costs, usually identified with pecuniary E.E., could be the result of either technological or pecuniary E.E. or both. Lower
costs could be a form either of technological or of pecuniary E.E. Lower factor prices may be the result of technological improvements realised in \mathbf{x}_{2} production, ic., pecuniary E.E. may bc the results of technological E.E.

The best way to express overall E.E. is perhaps to $r \in f \in r$ to the profit function (P_{1}) of the firm benefiting from E.E.:

$$
\begin{aligned}
& P_{1}=P_{1}\left(l_{1}, s_{1}, x_{2}\right) \ldots(2) \\
& \text { Where } \in P_{1}=\text { Profit of firm } I \\
& I_{1}, s_{1}=\text { factors used in firn } I \\
& \bar{x}_{1}=\text { output of each firm }(i=1,2)
\end{aligned}
$$

More explicitly, profit (P_{1}) nay be written as the difference between total revenue ($R_{1}=p_{1} x_{1}$) and total $\operatorname{cost}\left(C_{1}\left(l_{1}, S_{1}, x_{2}\right)\right)$, ie.

$$
\begin{equation*}
P_{1}=p_{1} x_{1}\left(l_{1}, s_{1}, x_{2}\right)-c_{1}\left(l_{1}, s_{1}, x_{2}\right) \tag{a}
\end{equation*}
$$

The effects of X_{2} on P_{1}, measuring outputgenerated E.E., could be expressed as:

$$
\frac{d P_{1}}{\partial x_{2}}=p_{1} \frac{\partial x_{1}}{\partial x_{2}}+x_{1}\left(\frac{\partial p_{1}}{\partial x_{1}} \frac{\partial x_{1}}{\partial x_{2}}+\frac{\partial p_{1}}{\partial \frac{\partial x_{2}}{}}\right)-\frac{\partial C_{1}}{\partial x_{2}} \ldots(2 b)
$$

 EDE.; $\frac{\partial C_{1}}{\partial x_{2}}$ and $x_{1} \frac{\partial p_{1}}{\partial x_{1}} \frac{\partial x_{1}}{\partial x_{2}}$ are \quad in i $x \in d$ and $x_{1} \frac{\partial p_{1}}{\partial x_{2}}$ is pure pecuniary E.E.
Now $\frac{\partial p_{1}}{\partial x_{1}}<0$ as a rule $\epsilon ; \frac{\partial x_{1}}{\partial x_{2}}>0$ and $\frac{\partial C}{\partial x_{2}}<0$ for the case of .E.E. and vice versa for External disecunomies; $\frac{\partial p_{1}}{\partial x_{2}}$ is positive if X_{1} and X_{2} are complementary and negative if they are competitive goods.

Under perfect cometition, any single firm is too suall to affect produc's price, i.e., p_{1} is a constant, and ($2^{\text {b }}$) becones

$$
\frac{d P_{1}}{d x_{2}}=p_{1} \frac{\partial x_{1}}{\partial x_{2}}-\frac{\partial C_{1}}{\partial x_{2}} \cdots \text { (2c) }
$$

a aarginalist cuncept which includes both technological and pecuniery E.E. The prufit function is thus an indicator of $\quad v \in r a l l$ E.E.

It is easy to see that profit (P_{1}) may be unaffected if technological E.E. arc neutralised by pecuniary Fxternal Disecunomies, and vice versa. Thus, although a good indicator of
Voverall З.ت., alther profit function, as a ncans of detecting various kinds of $\operatorname{Dconomies,~}$ is a poor discrininatore

FACTOR AND OUTPUT-GENERATED EXTERNAL ECONOMIES.
Technological and pocuniary E.E. may be either factor, or output-generated. When the level of output producod in firm 11 favourably affects firm I's profit (P_{1}), E.E. are output-generated. Tho oxamplos givon so far in tho abovo section aro all of this kind:

When the factors used in the production of X_{2} diroctly influence the production (X_{1}) or revenue (R_{1}) of the benoficiary firm I, thore are factor-genorated E. E. , i.c.
or $X_{1}=f\left(l_{1}, s_{1}, 1_{2}, s_{2}\right)$

or more genorally, $P_{1}=P_{1}\left(I_{1}, s_{1}, I_{2} s_{2}\right)$ whero P_{1} is the profit function, which takos into account both technological and pecuniary E.E.

Factor-gencratod technological E. E. may bo roprosentod in figure 6.:- Tho fevoureblo effect of a change in the level of factor (l_{2} or s_{2}) used in

Fig. 6.
may be shown as causing the production function to shift upward, thus increasing the productivity of the factors of production of the beneficiary firm. It is loft to the reader to visualise the ese of factor generated pecuniary . B. E., end the more general cisco of factor generated overall E.S. es roprosontod by $P_{1}\left(1_{1}, s_{1}, l_{2}, s_{2}\right)$. Where there arc fector-genoratcd E. E. , X_{2} is to bo mentally replaced by l_{2} end/or s_{2} in the previous section (pp. 10-19). For example (2a) on page 1 if is to be read:

$$
P_{1}=P_{1} X_{1}\left(1_{1}, s_{1}, r_{2}, s_{2}\right)-C_{1}\left(1_{1}, S_{1}, 1_{2}, S_{2}\right) \ldots \text { (2d) }
$$

and the results (ic) on page 18 are to be read as:

$$
\frac{d P_{1}}{d I_{2}}=p_{1} \frac{\partial^{x_{1}}}{\partial I_{2}}-\frac{\partial C_{1}}{\partial I_{2}} ; \quad \frac{d P_{1}}{d s_{2}}=p_{1} \frac{\partial x_{1}}{\lambda s_{2}}-\frac{\partial C_{1}}{\partial s_{2}} \ldots .(2 e)
$$

The lowering of cost $\left(\mathrm{C}_{1}\right)$ duce to the level of factors ($\mathrm{I}_{2}, \mathrm{~s}_{2}$) used by firm 11 , may be shown in figure 7.

Fig. 7
EAC_{1} ropresents the locus of the various averago costs curves of firm 1 corresponding to the actual lovel of x_{1}, given cach lovol of l_{2} or s_{2} usod. EAC C_{1} is downward sloping by the essumption of $E . E$. The reto et which $E A C_{1}$ falls dopends on whether X_{1} is produccd undor constant or decreasing or incroosing costs in the absence of E.E.

Tho horizontal axis could in fact bo split
up into I_{2} or s_{2} and x_{1} axGs: $E A C_{1}$ is \& function of both the scale of production of x_{1} and the lovel of factors l_{2}, s_{2} used by firm 11.

If the horizontel axis of fig. 7 ropresentod X_{1} only, the effects of E.E. could be shown, as bofore, by a downwera shift of the $B A C_{1}$: thoro gxists s differont $E A C_{1}$ curve corrosponding to gach lovgl of l_{2} or s_{2} :

Note thet the distinction betwecn factor and output-gonoratod E. B. is moaningful only when factors aro partly substitutable: when tho procuction function adnits of ε uniquo fector combination, output-gonoretod E. E. aro alsofactorgenorated E. T.

ST,TIC NTD DYNGIC XXT SNA EONOMIDS

تxtcrncl Ecunuiics may Isu be clossifice int. static anc. dynaic, which, in turn, ay be technologicel or pecuniary, factur ur utput-gencratod.

Ststic تـ. sccruing instantly: the precess of acjustant, the ti:e path of these acijustaents as well es the effucts of X_{2} 's past history on x_{1} or revenue $\left(R_{1}\right)$ or profit $\left(P_{1}\right)$ uf the beneficiary firm (I) are all telescuped.
 the production ur profit functions of the beneficiary fir:

$$
\begin{aligned}
& x_{1}=f\left(l_{1}, s_{1}, x_{2}\right) \\
& P_{1}=P_{1}\left(l_{1}, s_{1}, x_{2}, l_{2}, s_{2}\right)
\end{aligned}
$$

imply that as X_{2} or l_{2}, S_{2} appear, X_{1} ur P_{1} are affected without delay. Lilltese variables belong to the same perioc of tiae, or are rather timeless, und ated, anc the past behaviuur of $X_{2}, \mathbf{I}_{2} S_{2} \in \operatorname{Ex}$ (ts no influence on current x_{1} or P_{1}. In f act this is an versiaplification in mony ceses. The cuncept of dynaic E . F . takes the acjustant prucess into accounte.

There exist dynania $\dot{\text {. }}$. . whenever the product, revenue, custs, ur ure gencrally profit of a fira is dependent on, awn u ther facturs, the utput prociucec., or facturs usuc?, by sume other fira at sume previous

or using the profit function:

$$
\begin{aligned}
& P_{1_{t}}=P_{1}\left(I_{I_{t}}, s_{I_{t}}, \sum_{t}^{T} x_{2} t\right) \\
& \text { where } \in x_{i} \text { output e }(i=1,2) . \\
& P_{1}=\text { Profit of the beneficiary firn } \\
& I_{1} s=\text { factors of production }
\end{aligned}
$$

If these time periods are short enough, we may
consider the rate of change of time as continuous, ie.

$$
\begin{aligned}
& x_{1}(t)=f\left[1_{1}(t), s_{1}(t), \int_{=00}^{T} x_{2} d t \mid\right. \\
& \text { or } P_{1}(t)=P_{1}\left[I_{1}(t)_{1} s_{1}(t), \int_{W_{t} x} x_{2} d t \mid\right.
\end{aligned}
$$

Where w is weighted average
Pure research is an example of dynamic Research is an output, costly to produce, but under present institutions, it is nut always marketable. There usually is a time lag between invention and innovations, which gives $\mathbb{E} . \mathrm{J}$. a dynamic character.
\therefore firn which enters the industry in an established area would benefit, free of char et, frown the labour force already trained in previous periods by pioneering firms. That is an illustration of factor-icnerated. dynamic technological E.

Suppose that in the absence of -B. , output x_{1} grows

Thure is a different $A C$ line curresponcine to each $l \in v \in 1$ of production and rate of growth of x_{2} over tiac. $A B$ need not be a straifht and horizontal line: it agy Grow at an exponential rate, i. ϵ. upwarc sloping, or decline at a. certain rate, i.t. duwnwere sloping, in which case dould have to be adjusted upward or downward accordinely.

Dyneaic pecuniary ㄹ.Z. exhibit uch the same
features: there is a tiat lag between the expension of the industry (cue to the increase in the output of at least one fira, ulc ur new), and the tiae its effects on the profit function of the bencficiary firas are felt; a. tine lat between the fall in procuction costs and procuct price revision. Thuse pecuniary E.E. which take the forns of cost sevings may be pictured as giving the beneficiary firm's lon run averace cost curve a falling tine shepe. In Fi_{B}. 9, CC_{1} in the absence of E.E. is shown by the top line $C_{1}\left(1_{1}^{*}, s_{1}^{*}\right)$ and in the presence of S.E., by the buttur line.

The top line need not be a hurizontel straieht line, of curse, it aay be upwerd or cuwnward slopine, in which case the buttue line woulc heve to be adjusted
accordinẽly. For a horizuntal top line, the botton line nay be scallupec, fluctuatine, or my reach a Zinimum anci start rising, which iaplies that E. . . any eventually fe fully expluited. Newspapers, technical publications etc., ouins hanc in hand with the gencral developient if industries, pertly account for this fall in costs over time.

One of the cheracteristics of dynemic $\overline{3} . \mathrm{B}$. is cost irreversibility. In the literature, fig. 10 is usually crawn tu show irreversibility: $i s \mathrm{x}_{1}$ cuntracts, average cust (AC_{1}) wuld not follow the path it has taken in falline duwn when output expands. Blsewhere, it is said thet the falling supply schedule nust be interpreted as shuwing price as a function of the quantity supplied, not vice versa, as it \dot{a} akes no sense to say thet a.t lower prices firas would be willing and prepared to supply $\mathrm{zor} \epsilon$.

I think a good deal of confusion cuuld be avoided, if $w \in$ split the horizontal axis of fig. 10 into x_{1} and tine axis. When time is kept fixed, and AC_{1} is a function of output alone, the cost curve is perfectly reversible, pr vided plants and wachineries ere zeccano sets which cuuld be assembled, disiantled and reasse bled at no costs and in no tiae. Contracting output wuld then $=e a n$ hieher unit costs anc prices. That is the case of static \bar{Z}. with cost reversibility. Where
both output and tiat are allowed to vary, a foll in costs coulc itan a time long enourh for testes to be changed, technical know how to be acquired both froa the fira's own experience end froa thre of the industry, overhead investaents to be undertaken, population to grow. Contracting output to a saaller scale need not, and usually does not, $\in a n$ hieher costs: costs beheve as if they heve forgotten the $l \in v \in 1$ which they euerge froiz and are quite willing to lend beck on soae other spot on a low $\in \mathrm{l}$ level. That is dynaric E. E. with cost irreversibility.
 could be brought about by chenge in product price. As $p_{2} f a l l s, x_{1}$ would be demended in greater quantity if x_{1} and x_{2} are compleaentery. It usually takes time for this comple entarity to be developed or discovered. That is Eirschmen's (1)
"entailed wants". These time lags ake the dynanic J.E.

The above classification of \mathcal{T}. adopted here, iaperfect as it is, has the aerit of separating the direct and arket interdependence of producers, and are useful in the applications which are to follow.
(1) A.O.Hirschman (8) p.68.

ETERNAL ECONOMIES AND THE MARGINAL THEORY

OF DISTRIBUTION

The iarginal Theory of Distribution rests on the proof that if all factors of production are rewarded according to the values of their anginal product, then the total product will be exactly disposed of. The "adding up" problem goes back to the classical "residual" theory which considers rent and profit as residues left over when the other factors have received (I) their anginal product. Subsequently an attempt was made to prove that the residual rent or profit are also (2) rent or profit as marginal product.

The next development is to premise and assume product exhaustion, based on fixed coefficients of production. Euler's theorem has been used to prove that if the production function is homogeneous of first degree, ide., there is constant returns to scale and if each factor is paid its marginal product, total product is completely exhausted. Discussions are generally confined to perfect competition, as under monopoly, constant returns to scale
(1) A. Berry \{́lypp. 923-924.
(2) J.Chapnan (3) pp. 523-28.
(3) L.walras 130
K.Wicksell
do not normally obtain.
In what follows, an attempt will be made to show in a simplified model of perfect competition in both factor and product markets, the implications of $\bar{E} . \mathbb{B}$. for the Marginal Productivity theory of Distribution.

Imagine two firms producing identical or different products ($\epsilon .8$. milk, or milk and wheat). The scale of operation of these firms is assume to be too sail to affect factors and products' prices. In equilibrium, only normal profit is earned, and the scale of production is indicated by the point of tangency between $A C$ and the horizontal Demand curve. Constant returns to scale prevail at that point. Wife know that if each factor is paid its marginal product (which happens to be equal to average product at that point of tangency), total product is exactly disposed of Baler's theorem is very adequate for the purpose of explaining this.

$$
\begin{aligned}
& \text { Lat } x_{i}=\text { products }(i=1,2) \\
& l_{i}, s_{i_{i}} c_{i}=\text { factors } \\
& A=\text { constant }
\end{aligned}
$$

(1) For a review of the theories of distalductom J. Robinson \{19i pp.398-414. Striker \{27!
(2) The only case where constant returns to scale obtain under monopoly is that in which the monopolist's marginal cost and marginal revenue intersect vertically underneath the ainizu point of his average cost curve.

If the two production functions

$$
x_{i}=x_{i}\left(l_{i}, s_{i}, c_{i}\right) \ldots(1)
$$

arc both homogeneous of degree one in all l_{i}, s_{i}, c_{i}, we have, from Euler's theorem:

$$
x_{i}=\frac{\partial x_{i}}{\partial l_{i}} l_{i}+\frac{\partial x_{i}}{\partial s_{i}} s_{i}+\frac{\partial x_{i}}{\partial c_{i}} c_{i} \cdots \cdots(1 a)
$$

ie. if factors are rewarded accordingly to their derginal product, output will be exhausted. For a. verification, x_{i} gay be given a fora of, say, CobbDoubles function $x_{i}=A_{i} 1_{i}^{\alpha_{i}} s_{i}^{\beta i} c_{i}^{\gamma_{i}} \quad(i=1,2)$ complete exhaustion of products will follow from the assumption of homogeneity ide. of $\alpha_{i}+\beta_{i}+\gamma_{i}=1$.

If x_{i} confers F_{B} 。 on x_{1} and there is only one factor (l_{i}) used in each firn (the generalisation to the nany-factor case will be ae later), each producing under constant returns to scale, the two production functions assay be written as

$$
\begin{align*}
& x_{1}=f\left(l_{1}, x_{2}\right) \\
& x_{2}=g\left(l_{2}\right) \tag{2}
\end{align*}
$$

where f and 3 are homogeneous of degree one in l_{1}, x_{2} and in l_{2} respectively.

Competition will ensure the equalisation of factor's reward (w) in both firs, ide.

$$
\begin{aligned}
\mathrm{w}=\mathrm{f}_{1_{1}}=\mathrm{pg}_{1_{2}} \quad & \begin{array}{l}
\text { where } f_{1_{1}}=\frac{\partial f}{\partial 1_{1}} ; g_{1_{2}}=\frac{\partial g}{\partial I_{2}} \\
\\
\\
\\
\\
\\
\text { chosen as unit. }
\end{array}=\frac{p_{2}}{p_{1}} \text { i.e., the first commodity is }
\end{aligned}
$$

In fact, l_{2} does contribute to the production of x_{1} as an argument of x_{2} in ((\mathbf{C}), and is not r warded for it under laisser fair competition (3). To do justice to the factor generating E.E. socially optimal factor's $r \in w a r d$ should equate not $\mathrm{fl}_{1}=\mathrm{pgl}_{2}$ in (3) but

$$
\begin{equation*}
{ }^{f} I_{1}={ }^{p g} l_{2}\left(1+\frac{1}{p} f_{x_{2}}\right) \tag{4}
\end{equation*}
$$

To bring these optimum rewards about in a free enterprise economy, a subsidy rate of $100\left(\frac{1}{\mathrm{p}} \mathrm{f}_{\mathrm{x}_{2}}\right) \%$ would have to be paid to l_{2}, if l_{2} 's reward (w_{2}) is to be brought into equality with l_{1} 's $r \in w a r d ~\left(w_{1}\right)$; or a tax rate of $100\left(\frac{\frac{1}{p} f x_{2}}{\frac{1}{p}+\frac{1}{p} x_{2}}\right) \%$ would have to $b \in$ imposed on fire I, if w_{1} is to $b \in r \in d u c \in d$ to equality with w_{2}. The tax revenue, or the subsidy cost, is exactly equal to the abnormal profit $f_{X_{2}} x_{2}$ realised by firm I as a result of these output-gencrated B. $\mathrm{B}_{\text {. This "abnormal profit" is }}$ what is left over after l_{1} has been paid according to its private marginal product f_{1}. This governmental interference has the $\in f f e c t$ of preventing firn I from "reaping where it has not sown" and redistributing to Each factor according to its real contribution to social output.

The generalisation of this result to the manyfactor case does not challenge the validity of the above conclusions: (2) is extended to

$$
\begin{align*}
& x_{1}=f\left(l_{1}, s_{1}, c_{1}, x_{2}\right) \\
& x_{2}=g\left(l_{2}, s_{2}, c_{2}\right) \tag{5}
\end{align*}
$$

where $x_{i}:=$ outputs
$l_{i}, s_{i}, c_{i}=$ factors ($i=1,2$)
f,g are assumed hooogenous in all their argunents. Under individual profit aximization, the priva.te iaerginal Distribution Theory leads to

$$
\begin{aligned}
& f_{I_{1}}=p g_{I_{2}} \\
& {\underset{-s}{1}}=p g_{S_{2}} \\
& f_{c_{1}}=p g_{c_{2}}
\end{aligned}
$$

Under Pareto optiaality, the social zarginal distribution theory gives:

$$
\begin{align*}
& f_{l_{1}}=g_{l_{2}}\left(p+f x_{2}\right) \\
& f s_{1}=g_{s_{2}}\left(p+f x_{2}\right) \tag{6}\\
& f c_{1}=g_{c_{2}}\left(p+f x_{2}\right)
\end{align*}
$$

The comizunity could afford to pay factors this, under conditions of constant returns to scale, as social product is completely exhausted as can be seen from:

$$
\begin{aligned}
& l_{1}{ }^{n_{1}}{ }_{1}+s_{1} f_{s_{1}}+c_{1} f_{c_{1}}+\left({ }_{2} g_{1_{2}}+s_{2} g_{s_{2}}+c_{2} g_{c_{2}}\right)\left(p_{4} f_{x_{2}}\right) \\
& =x_{1}-f_{x_{2}} x_{2}+x_{2}\left(p+f_{x_{2}}\right)=x_{1+} x_{2} \quad \ldots(7)
\end{aligned}
$$

This total social factor payinent $x_{1}+\mathrm{px}_{2}$ is exactly equal to total sonital $r \in v \in n u \in x_{1}+\mathrm{px}_{2}$. Thus, under perfect coupetition in both factor and product :arkets, if one firl confers J.Z. on another and there are constant returns to scale, the payant to factors a.cording to their social arginal product will result in a complete exhaustion of products. The paynent according to their private areinal product will
under-6xhaust social output. harizet rewards fail to do justice to factors of production and governalent interference is needed to bring the Pareto optimum about.

Each firm confers Z.E. on the other.
There may be cases when the two products benefit each other. Each firm, in this case, confers T.E. on the other, and benefits from E.E. caused by the other firm. Again, only the one-factor case of outputgenerated $3 .$. . will be examined, the many-foctor case as well as the factor-generated $\mathrm{E} . \mathrm{E}$. are $\operatorname{l\in f}$ t to the reader. The homogeneity assumption will be lifted to give the problem a more general nature. The production functions may be written as:

$$
\begin{aligned}
& x_{1}=f\left(I_{1}, x_{2}\right) \\
& x_{2}=g\left(I_{2}, x_{1}\right)
\end{aligned}
$$

or given the definite forms of, say:

$$
\begin{align*}
x_{1}-1_{1}^{\alpha_{1}} x_{2}^{\beta_{1}} & =0 \\
x_{2}-1_{2}^{\alpha_{2}} x_{1}^{\beta_{2}} & =0 \ldots(8) \tag{8}\\
\text { where } x_{i} & =\text { outputs } \\
1_{i} & =\text { factors }(i=1,2)
\end{align*}
$$

Differentiating with respect to l_{1}

$$
\begin{aligned}
\frac{d x_{1}}{d l_{1}}-\beta_{1} \frac{x_{1}}{x_{2}} \frac{d x_{2}}{d l_{1}} & =\frac{a_{1}}{l_{1}} x_{1} \\
-\beta_{2} \frac{x_{2}}{x_{1}} \frac{d x_{1}}{d l_{1}} & +\frac{d x_{2}}{d l_{1}}
\end{aligned}=0
$$

Solving

Similarly, differentiating (8) with respect to l_{2} and solving:
Similarly, $\quad \frac{d x_{2}}{\overline{\mathrm{~d}} 1_{1}}=\frac{\alpha_{1} \beta_{2} \frac{x_{2}}{I_{1}}}{1-\beta_{1}^{\beta}}$

$$
\begin{aligned}
& \frac{d x_{1}}{d I_{2}}=\frac{\alpha_{2} \beta_{1} \frac{x_{1}}{I_{2}}}{1-\beta_{1} \beta_{2}} \\
& \frac{d x_{2}}{d I_{2}}=\frac{\alpha_{2} x_{2}}{1-\beta_{1} \beta_{2}}
\end{aligned}
$$

Social factorial rewards arc:

$$
\begin{align*}
& w_{1}^{*}=\frac{d x_{1}}{d I_{1}}+p \frac{d x_{2}}{d I_{1}}=\frac{\alpha_{1} x_{1}}{I_{1}} \frac{1+\beta_{2} p \frac{x_{2}}{x_{1}}}{1-\beta_{1} \beta_{2}} \\
& w_{2}^{*}=p \frac{d x_{2}}{d I_{2}}+\frac{d x_{1}}{d I_{2}}=\frac{\frac{\alpha_{2}}{I_{2}}\left(p x_{2}+\beta_{1} x_{1}\right)}{1-\beta_{1} \beta_{2}} \cdot \tag{9}
\end{align*}
$$

These are to be compared with private factors' rewards of::

$$
\begin{equation*}
w_{1}=f_{1_{1}}=\frac{\sigma_{1} x_{1}}{l_{1}} \tag{10}
\end{equation*}
$$

and $\quad w_{2}=p g_{I_{2}}=\frac{c_{2}}{I_{2}} p x_{2}$

This implies that under laisser fairy conditions, a subsidy rate cf
and of

$$
\beta_{2} \frac{p+\frac{\beta_{1} x_{1}}{x_{1}}}{1-\beta_{1} \beta_{2}} \text { would have to be paid to } I_{1}
$$

$$
\frac{\beta_{1} \frac{x_{1}}{x_{2}}\left(1+p \frac{\beta_{2} x_{2}}{x_{1}}\right)}{p\left(1-\beta_{1} \beta_{2}\right)} \cdot \cdot \cdot \cdot(11)
$$

to be paid to l_{2} to bring this Pareto optimality about. If the subsidy is paid, total factor rewards (W*) in this simple model would be:

$$
\begin{align*}
W^{*}=w_{1}^{*} 1_{1}+w_{2}^{*} 1_{2} & =\frac{\alpha_{1}\left(x_{1}+\beta_{2} p x_{2}\right)+\beta_{1}\left(p_{1}+x_{1} \underline{x}_{1}\right)}{1-\beta_{1} \beta_{2}} \\
& =\frac{1}{1-\beta_{1} \beta_{2}}\left[x_{1}\left(\alpha_{1}+\alpha_{2}^{\beta} \beta_{1}\right)+p x_{2}\left(\alpha_{1} \beta_{2}+\alpha_{2}\right)\right] \cdot \tag{12}
\end{align*}
$$

Whether this payment W* would exhaust social product or not, ie., whether $W^{*} \leq x_{1}+p x_{2}$, depends on $\alpha_{i}, \beta_{i}(i=1,2)$. As x_{1} and px_{2} in (12) are all positive economically, only ${c_{1}}_{1}+\alpha_{2} \beta_{1}$, $\alpha_{1}{ }^{\beta_{2}}+\beta_{1}$ and $1-\beta_{1} \beta_{2}$ call for examination.
Put $\alpha_{1}+\beta_{1}=c$

$$
\alpha_{2}+\beta_{2}=\alpha_{9}
$$

the two expressions $\alpha_{1}+\alpha_{2} \beta_{1}$ and $\alpha_{1} \beta_{2}+\beta_{1}$ may be written as:

$$
\begin{aligned}
\alpha_{1}+\alpha_{2}^{\beta}{ }_{1} & =c-\beta_{1}+\beta_{1}\left(\alpha-\beta_{2}\right) \\
& =\left(1-\beta_{1} \beta_{2}\right)+\beta_{1}(\alpha-1)+(c-1)
\end{aligned}
$$

Similarly,

$$
\alpha_{2}+\alpha_{1} \beta_{2}=\left(1-\beta_{1} \beta_{2}\right)+\beta_{2}(c-1)+(d-1)
$$

Three possible cases suggest themselves:
Case (1)

$$
\frac{\alpha_{1}+\alpha_{2}^{\beta} 1_{1}}{1-\beta_{1} \beta_{2}}>1 ; \quad \frac{\alpha_{1} \beta_{2}+\alpha_{2}}{1-\beta_{1} \beta_{2}}>1
$$

W* $>\mathrm{x}_{1}+\mathrm{p} \mathrm{x}_{2}$, ie., there is overexhaustion of social product. This implies that
(a) $B_{1} \beta_{2}<1$

$$
\text { or. } \quad \begin{aligned}
& \beta_{1}(d-1 \downarrow+(c-1)>0 \\
& \beta_{2}(c-1)+(d-1)>0
\end{aligned}
$$

$$
\begin{array}{ll}
c>1 & d>1 \text { for } \beta_{1}, \beta_{2} \ll \\
c>1 & d<1 \text { for } \beta_{1} \ll 0, \beta_{2}>0 \\
c<1 & d>1 \text { for } \beta_{1}>0, \beta_{2<0} \\
c>1 & d<1 \text { for } \beta_{1}, \beta_{2}<0
\end{array}
$$

(b) $\beta_{1} \beta_{2}>0$

$$
\text { or } \begin{aligned}
\beta_{1}(d-1)+(c-1) & <0 \\
\beta_{2}(c-1)+(d-1) & <0
\end{aligned}
$$

$$
\begin{array}{llll}
c>1 & d>1 & \text { for } \beta_{1}, \beta_{2}<0 \\
c>1 & d<1 & \text { for } \beta_{1}>0, & \beta_{2}<0 \\
c<1 & d>1 & \text { for } \beta_{1}^{1}<0, & \beta_{2}>0 \\
c<1 & d<1 & \text { for } \beta_{1}, & \beta_{2}^{2} \ll 0
\end{array}
$$

Case (2)

$$
\frac{\alpha_{1}+\alpha_{2} \beta_{1}}{1-\beta_{1} \beta_{2}}<1 ; \quad \frac{\alpha_{1} \beta_{2}+\beta_{1}}{1-\beta_{1} \beta_{2}}<1
$$

that mean product under-exhaustion, i.e., $W^{*}<x_{1}+p x_{2}$.
The sub-cases (a) and (b) are the same as those under case (1) except that (a) only holds if

$$
\frac{\alpha_{1}+\alpha_{2}^{\beta} 1}{1-\beta_{1}^{\beta} \beta_{2}}>0 \quad \text { and } \quad \frac{\alpha_{1} \beta_{1}+\alpha_{2}}{1-\beta_{1} \beta_{2}}>0
$$

Case (3)

$$
\frac{\alpha_{1}+\alpha_{2} \beta_{1}}{1-\beta_{1} \beta_{2}}=\frac{\alpha_{1} \beta_{2}+\beta_{1}}{1-\beta_{1} \beta_{2}}=1
$$

W* $=x_{1}+p x_{2}$, i.e., there is complete exhaustion of social output. This implies that $c=d=1$.

These three cases give a fairly general and complete picture of the implications of factor's payment according to their socikl marginal product, for the cases of external economies (in other words, $\left.{ }_{*}^{*}, \beta_{2}>0\right)$, external diseconomies $\left(\beta_{1}, \beta_{2}<0\right)$ and no externalities $\left(B_{1}=\beta_{2}=0\right)$, and all that in both firms at once or in one of them, i.e., $\beta_{1} \neq 0, \beta_{2}=0 ; \beta_{1} \leqslant 0, \beta_{2}=0$), the cases of increasing decreasing or constant returns to scale, i.e., $c_{i}+\beta_{i}$ are greater, less, than or equa_ to, zero ($\mathbf{i}=1,2$). Thus only under conditions of constant returns to scale, would the Marginal Theory of Distribution lead to complete cyhaustion of social output. That is the case of decreasing returns to each factor l_{i} taken separately in each firm, but constant returns to those taken together; i.e., the increasc in l_{j} by λ would lead to an increase in each output x_{i}. by less than λ, but to an increase in social output by λ; the private marginal product of factors falls short of their social marginal product. Sub-cases (a) aro more realistic conomi cally than (b) as normally $0<\beta_{1}, \beta_{2}<1$.

Finally, when only one firm confers Ein on the other, i.e., ${ }_{1} \beta_{2}=0$, which means either:
(i) $\quad \beta_{1}=0 ; \beta_{2}>0$, in which case, $\mathbb{7}^{*}=\alpha_{1} x_{1}+\left(\alpha_{1} \beta_{2}+\alpha_{2}\right) p x_{2 n}$ As $\beta_{1}=0$ implies $\alpha_{1}=1$, i.e, if \dot{x}_{2} in the production function $x_{1}=I_{1}^{\alpha_{1}} x_{2}^{\beta} 1$ (8) contributes nothing to output x_{1}, then I_{1} alone

1. Profossor's J.马. Moarc's unpair. factor (systom 5, $[147$, p. 58) is this spocial erso (3) extended to two factors.
produces the entire output x_{1}. Thus social factor payment becomes $W^{*}=x_{1}+p x_{2}\left(c_{2}+\beta_{2}\right)$, which implies complete, over-, or underexhaustion of social output, depending on whether $c_{2}+\beta_{2} \geqslant 1$.

Similarly, $\beta_{1} \beta_{2}=0$ may also mean:
(ii) $\beta_{2}=0 ; \beta_{1}>0$ and $W^{*}=\left(c_{1}+\alpha_{2} \beta_{1}\right) x_{1}+\alpha_{2} p x_{2}$
which, as above, implies $\alpha_{2}=1$ and $W^{*}=\left(\alpha_{1}+\beta_{1}\right) x_{1}+p x_{2} 1$ This again, means over-, or under-exhaustion of product depending on whether $\alpha_{1}+\beta_{1}<1$, i.e., on whether there are increasing or decreasing returns to scale in l_{1} and x_{2} in the function $x_{1}=I_{1}^{\alpha_{1}}{\underset{x}{\beta}}_{\beta}^{\beta}$ in (8). In the particular case of constant returns to scale in I_{1} and x_{2} in (8), complete exhaustion of product will follow again: Thus, system (2) above becomes a particular case of this overall picture.

Finally, in the particular case where $\beta_{1} \beta_{2}=1$, the whole system breaks down.

If subsidies rates (11) are to be paid to salvage competition and bring about Pareto optimum, the total subsidy costs would be:

$$
\begin{equation*}
\left.\frac{1}{1-\beta_{1} \beta_{2}} \Gamma_{1} x_{1}\left(\alpha_{1} \beta_{2}+\alpha_{2}\right)+\beta_{2} p x_{2}\left(\alpha_{1}+\alpha_{2}^{\beta_{1}}\right)\right] \ldots \tag{13}
\end{equation*}
$$

In the particular case of constant returns to scale, replacing c_{i} by $1-\beta_{i}(i=1,2)$ (Euler's theorem), in the above gives: $\beta_{1} x_{1}+\beta_{2} p x_{2}$, which is procisely the sum of abnormal profit realised in both firms together, after paying l_{i} the value of their marginal product to each firm. Thus, these subsidy costs may be met by a 100% profit tax. This tax on prodit would have its impact on the allocation of resources, which will be examined in the next chapter.

1. Professor Meade's unpaid factor case (system 4), [14] page 57 is this special case (ii) whore $\beta_{2}=0, \beta_{1}=1-\alpha^{\prime \prime}$ oth $\alpha_{1}, \beta_{1}>0$ extended to two factors.

BTT RNAL ECONOAIBS

AND THE LLLOCATION OF RMS JURCES

The effectiveness of competitive resources allocation in bringing about Pareto optimality had been questioned long ago by A.iarshall and A.C.Pigou. Government interference is therefore necessary.

This conclusion has been challenged.
This chapter is an application of the conclusions arrived at earlier, to the problein of r esource allocation, and an atterapt to show the validity of the iiarshall-Pigou argunent in a model where E.E. exist.
 $\mathrm{b} \in$ examined under perfect copetition in both factor and product markets. I shall start with the case of perfect competition with no E.E.g then introduce \mathbb{E}.E. to examine the difference they make.

(a) Perfect Co:ppition with no I.E.

The best way to study the allocation of $\mathrm{r} \in$ sources under perfect competition is, perhaps, to exanine the profit functions (P_{1} and P_{2}) of two firms. Profit is defined in the usual way as the difference between total $r \in v \in n u \in$ and total cost. The scale of operation of ϵ ach of the two firms in question is assumed to bc
(1) A. Marshall (13i pp.467-470
A.C.Pigou \{17] pp.172-179
(2) Seє Ch.I above, pp.1-4
too small to affect product and factor prices.
Profits are:

$$
\begin{align*}
& P_{1}=f\left(l_{1}, s_{1}\right)-C_{1}\left(l_{1}, s_{1}\right) \\
& P_{2}=p g\left(l_{2}, s_{2}\right)-C_{2}\left(l_{2}, s_{2}\right) \tag{1}
\end{align*}
$$

where f and g are the two production functions, $C_{i}=w l_{i}+r s_{i}(i=1,2)=$ cost functions
$1_{i}, s_{i}=$ factors of production used by two firms $w, r=f a c t o r ~ p r i c \in s$ which $a r \in$ equal for two
firing, ie. $\begin{aligned} & w_{1}=w_{2}=w \\ & r_{1}=r_{2}=r\end{aligned}$
$P=\frac{P_{2}}{P_{1}}$ io. $r_{1}=r_{2}=r$ comity one is taken as unit of measurement.

First order profit maximization conditions imply the following allocation of resources:

$$
\begin{align*}
& \frac{\partial P_{1}}{\partial I_{1}}=f_{I_{1}}-w=\frac{\partial P_{2}}{\partial I_{2}}=\mathrm{pg}_{1_{2}}-w=0 \\
& \frac{\partial P_{1}}{\partial s_{1}}=f_{s_{1}}-r=\frac{\partial P_{2}}{\partial s_{2}}=\operatorname{pg}_{s_{2}}-r=0 \\
& \begin{aligned}
\text { or } w & =f_{I_{1}}=p g_{I_{2}} \\
r & =f_{S_{1}}=\mathrm{pg}_{\mathrm{s}_{2}}
\end{aligned} \tag{2}
\end{align*}
$$

i.e., factors are used up to the point where an edittonal unit of any one factor would make no difference to profit P_{i}; in other words, up to the point where the value of factors! marginal product is equal to factor price.

Product prices will be
$P=\frac{f_{S 1}}{g_{S 2}}=\frac{f_{1_{1}}}{g_{12}}$
or $P=\frac{f_{S_{1}}}{f_{11}}=\frac{g_{S 2}}{g_{12}}$
i.e. factors are allocated in such a way that the ratio of their marginal product is the same in each firm.

Thus factors are paid according to the value of their private marginal product as seen by the profit maximizing firms working separately, and product prices are set at the competitive level. This business situation also reflects a social optimum, as can be seen by joining the two firms together:

$$
P=f\left(l_{1}, s_{1}\right)+p g\left(l_{2}, s_{2}\right)-w\left(l_{1}+l_{2}\right)-r\left(s_{1}+s_{2}\right)
$$

$$
\text { First order conditions also give } \frac{\partial P}{\partial l_{i}}=\frac{\partial P}{\partial s_{i}}=0 \quad(i=1,2)
$$

or $w=f_{1_{1}}=\mathrm{pg}_{1}$

$$
\begin{equation*}
r=f_{s_{1}}^{1}=\operatorname{pg}_{s_{2}} \text { and } p-\frac{f_{s_{1}}}{f_{1_{1}}}=\frac{g_{s_{2}}}{g_{l_{2}}} \tag{4}
\end{equation*}
$$

Thus, there is no divergence $b \in t w \in e n$ the private and social values of w, r and p.
(b) E.E. and Individual Profit maximization.

Let us now introduce technological E.E. into the above simplified model and retain all the other assumptions made.

Suppose part of x_{2} (or its sub-product, or factors used by x_{2}) now slips out of producer II's hands and favourably affects I's production. Then x_{2} could be considered as a fret factor, io.

$$
\begin{align*}
& P_{1}=f\left(l_{1}, s_{1}, x_{2}\right)-w l_{1}-r s_{1} \\
& P_{2}=p g\left(l_{2}, s_{2}\right)-w l_{2}-r s_{2} \tag{5}
\end{align*}
$$

Under perfect competition

$$
\begin{align*}
\mathrm{w} & =\mathrm{f}_{l_{1}}=\mathrm{pg}_{l_{2}} \\
\mathrm{r} & =\mathrm{f}_{\mathrm{s} 1}=\mathrm{pg}_{\mathrm{s}_{2}} \\
\mathrm{p} & =\frac{\mathrm{f}_{\mathrm{s} 1}}{\mathrm{~g}_{\mathrm{s} 2}}=\frac{\mathrm{f}_{l_{1}}}{\mathrm{gl}_{2}} \\
\text { or } \mathrm{gl}_{2} & =\frac{\mathrm{w}}{\mathrm{p}} ; \mathrm{g}_{\mathrm{s} 2}=\frac{\mathrm{r}}{\mathrm{p}} \tag{6}
\end{align*}
$$

i.e. factors are used up to the point where the contribution made by the last units to revenue is equal to their real cost at the margin. Thus, competitive allocation is the same as if no . B . existed at all. (c) Technological External Economies and Part to efficiency

The socially optimal resources allocation may be shown by joining the two firms together under a single management. First order joint profit maximization conditions imply:
$P=f\left[l_{1}, s_{1}, x_{2}\left(l_{2}, s_{2}\right)\right]+p g\left(l_{2}, s_{2}\right)-w\left(l_{1}+l_{2}\right)-r\left(s_{1}+s_{2}\right)$
First order conditions are:

$$
\begin{aligned}
& \frac{\partial P}{\partial I_{1}}=f_{I_{1}}-w=0
\end{aligned}
$$

$$
\begin{align*}
& \text { similarly, } \quad=\quad f_{S_{1}}=f_{X_{2}} g_{S 2}+\mathrm{pg}_{\mathrm{S}_{2}} \tag{3}
\end{align*}
$$

ie. factors are used up to the point where
(3) As a numerical example, we may put (p $=1$
and (8) becomes w of $1_{1}=f_{X_{2}} g_{1_{2}}+\mathrm{pE}_{12}$ $=£ 44=0.1 \times 40+40$
$r=f_{s 1}=f_{2} g_{s 2}+\mathrm{pg}_{s 2}$
$=£ 88=(0.1) 80+80$

$$
\begin{align*}
& g_{l_{2}}=\frac{w}{p+f_{x_{2}}}=\frac{f_{l_{1}}}{p+f_{x_{2}}} \\
& g_{s_{2}}=\frac{r}{p+f_{x_{2}}}=\frac{f_{s_{1}}}{p+f_{x_{2}}} \tag{9}\\
& p=\frac{f_{1_{1}}-f_{x_{2}} g_{1_{2}}}{g_{1_{2}}}=\frac{f_{s_{1}}-f_{x_{2} g_{x_{2}}} \ldots \text { (10) }}{g_{s_{2}}} \tag{10}\\
& =\frac{f_{l_{1}}}{g l_{2}}-f_{x_{2}}=\frac{f_{S_{1}}}{g_{S_{2}}}-f_{x_{2}} \\
& \text { A comparison of (9) and (10) with (6) shows that, so }
\end{align*}
$$ long as there are E.E., ie. $\mathrm{f}_{\mathrm{x}_{2}}>0$ ($\mathrm{g}_{\mathrm{I}_{2}}>0$ of course ϵ): (i) The use of factors in ira II will be pushed further in (9) than in (6), under the usual assumption of diminishing returns, ie., pushed to the point (9) where their marginal product declines further then at (6). (ii) ilternatively, if could be said that where E.E. prevail, the competitive product price (p) corresponding to the same output level (ie. et the output level where gl_{2} in (10) has the sain value as $\mathrm{g}_{1_{2}}$ in (6)) is higher than socially optimal price, as could be seen from (10). Only when there are no ㄹ.T., or when these have been fully exploited (ie. $f_{X_{2}}=0$) would Pareto efficiency give the sane results as competitive allocation. Thus, it seems clear that where E.E. are present, competitive allocation fails to bring about Par to optimality. The diarshall-Pigou conclusion is therefore perfectly valid in this case. Thus to save competition and bring about Paretian efficiency at once, a subsidy rate of $\frac{1}{p} f_{2}$ is to be given to firm II; or a tax rate

of $\frac{\frac{1}{p} f_{x_{2}}}{1+\frac{1}{1} f_{x_{2}}}$ is to be levied on factors used in
Under the subsidization scheme, allocation would be determined by the two conditions:

$$
g_{l_{2}}\left(1+\frac{1}{\bar{p} f_{x}{ }_{2}^{F}}\right)=\frac{f_{1}}{p}=\frac{w}{p}
$$

or $g_{1_{2}}=\frac{w}{p+f_{x_{2}}}$
similarly, $\quad \mathrm{g}_{\mathrm{s} 2}=\frac{\mathrm{r}}{\mathrm{p}+\mathrm{f}_{\mathrm{x}_{2}}}$
Under the tax scheme,

$$
\left.\begin{array}{rl}
g_{l_{2}} & =\frac{f_{l_{1}}}{p}\left(1-\frac{\frac{1}{p} f_{x_{2}}}{1+\frac{1}{p} f_{x_{2}}}\right.
\end{array}\right)
$$

Similarly,

$$
\begin{equation*}
g_{s_{2}}=\frac{f_{s_{1}}}{p+f_{x_{2}}}=\frac{r}{p+f_{x_{2}}} \tag{11}
\end{equation*}
$$

i.t., subsidization (4) taxation would lead to the sane resource allocation.
(4) In the numerical example (footnote 3, p.), it can $b \in s \in \in n$ that the tex rate $t=\frac{\frac{1}{\mathrm{p}} f_{x_{2}}}{1+\frac{1}{\mathrm{p}} \mathrm{fx}_{2}}=\frac{.1}{1+\cdot 1}=\frac{1}{11}$

Under tax
(at tax rate t)
$\begin{array}{lc}w_{1}(1-t)=w_{2} & w_{2}(1+0.1)=w_{1} \\ \text { or } £ 44\left(1-\frac{1}{11}\right)=£ 40 & \text { or } £ 40(1+0.1=£ 44\end{array}$
$r_{1}(1-t)=r_{2} \quad r_{2}(1+0.1)=r_{2}$
or $£ 88\left(1-\frac{1}{11}=£ 80\right.$ or $£ 80(1+0.1)=£ 88$

Fron the sbove anelysis, it is clear that:
(i) Only when no E.E. exist, or when they heve been fully exploited, would conpetitive allocation reflect Pareto efficiency. In other words, only when $x_{2}\left(l_{2}, s_{2}\right)$ is coizpletely absent from function f in (7), or when $f_{x_{2}}=0$, wuuld $w, r, g_{1_{2}}, g_{s_{2}}$, p under (c) be the sane as those under (a). In which case, no interference is warranted: coapetitive allocation is efficient and ensures Parto optinelity. But as soon es E.E. appear, they differ; taxes and subsidies prove necessery in order to bring then into equality with one another, i.e. to harmonise the private and social velues of factor and product prices.
(ii) Since taxation and subsidization would bring about the sene ellocation (ll) it mey $b \in$ tentatively suggested that where economic growthis to be meximized it would be best to resort to texation as a suurce of funds for productive re-investant. This raises the conflict between welfare and growth, or in other words, between the present and future generation's welfare. There are also political difficulties involved: the taxation course implies sacrificing the welfere of the present generation for thet of the future, but I do not propose to go into these here. Suffice to say that taxation would be the appropriate course if the ain is not maximizing living stenderd but economic growth.
(iii) is x_{2} expands in (11), the E.E. it $g \in n \in r a t \in s$ will
continue to benefit X_{1}, and to raise tex revenues in future years. Such a tex is likely to be a disincentive fur firm I, but it appears to haecits incidence on factors used in firm I, leaving untouched that part of abnormal profit P_{1}. We may examine these two cases $s \in p \cap r e t \in 1 y$.

If the tax incidence falls on entrepreneur I, producing under constant returns tu scale

$$
\begin{aligned}
& P_{1}=f_{1} l_{1}+f_{S_{1}} S_{1}+f_{x_{2}} X_{2}-\left(f_{1_{1}} l_{1}+f_{S_{1}} S_{1}\right) t-f_{I_{1}} l_{1}-f_{S_{1}} S_{1} \\
& \text { - } f_{x_{2}} X_{2}-t_{1} \\
& \text { where } t \text { is tax rate } \frac{\frac{1 f_{x_{2}}}{p}}{1+\frac{1}{p} f_{x_{2}}} \\
& C_{1}=\text { costs of firn } I \stackrel{p}{=} \mathrm{wl}_{1}+\mathrm{rs}_{1} \\
& =f_{1} 1_{1}+f_{S_{1}}{ }_{1}
\end{aligned}
$$

Abnormal profit of firn $I\left(=f_{X_{2}} X_{2}\right)$ is thus reduced by $t C_{1}$. So long as $f_{X_{2}} X_{2}>t C_{1}$, profit tax $n \in \in d$ not have disincentive $\in f f \in c t$, except at the margins, on the production of X_{1}. If $f_{X_{2}} X_{2}=t C_{1}$, firm I still earns normal profit. Only when $f_{X_{2}} x_{2}<t_{1}$ will tax have disincentive effect.

If tax $c a n$ be shifted entirely to factors, there would $b \in$ no changes in the cost figures, although factors $l_{1} S_{1}$ are now $l \in f t$ with $l \in s s$ money,i. $\in \cdot C_{1}$ (let), after paying the tax. This is equivalent to a wage-andrent cut, and abnormal profit $P_{1}=f_{X_{2}} x_{2}$ remains intact. In underdeveloped countries, wage earners have high marginal propensity to consume, landowners have conspicuous and 1 nvish expenditures patterns (sumptuous wedding n_{E}, wasteful funerals, extravagant entertainment
and other demonstretion items), profit earners remain the iasin severs. National incone cuuld be written as

$$
\begin{aligned}
Y & =R+W+P \\
& =C W+C r+S \\
& =C+S \\
& =C+I \\
\text { where } R, W & =\text { Rent and wage bills } \\
P & =\text { Profit } \\
C & =\text { iggregate consumption } \\
C w, C r & =\text { Consumption of wage and rent } \in \text { Prners } \\
I & =\text { Investanent } \\
S & =\text { Sevings }
\end{aligned}
$$

This is very much the "widow's cruse" case where w?ge and rent-earners spend all their incone and entrepeneurs s $\because v \in \operatorname{ll}$ theirs. Savings ere then invested, $S=I$. Taxing factore of production in this mudel is equivalent to forced savings, which is sorely needed for capital forantion. This course of action, provided it is feasible, does not interfere with the scale of firn II's production and raises reinvestible tax revenue at once without discoureging production X_{1} (by leeving its abnormal profit intact).

Subsidization, while bringing about Pereto efficiency, would not have the saile effects: with a subsidy rate of $\frac{1}{p} f_{x_{2}}$; factors used in x_{2} would $g \in t$ better rewards, enjoy a higher living stendard, x_{2} will expand thus benefiting x_{1}, but the cost of subsidy is to be incurred,
which would be ade vaileble for capital fornation under the taxation alternative. This course of action is equiv lent to a rise in wage end rent, and is surely recomizendable if the maximand is to be the welfere of the present generation at the expense of the future. Even if the "widow's cruse" assumption is removed, so long as the marginal prupensity to $s ? v \in$ out of profit (sp) exceeds the merginel prupensity to save out of factors' ${ }^{\prime}$ earning (Sf), the share of profit still determines capital formation, i.e.

$$
\begin{equation*}
\frac{I}{Y}=(S p-S f)^{\frac{P}{Y}}+S f \tag{13}
\end{equation*}
$$

This aeans that for given $S p$ and $S f$, an increase in the share or profit (\bar{Y}) will lead to an increase in investment ($\left(\frac{I}{Y}\right)$. This corruborates our belief in the taxation course as the most recomendable, on growth maximization grounds, as it redistributes incone in fevour of re-investible profit: ecunomic growth depending on $\frac{\bar{Y}}{\bar{Y}}$ and $\frac{I}{Y}$ depending on profit share.
(d) Pecuniary E.E. end Partto efficiency

The same conclusion about the allocation of resuurces holds for the case of pecuniary E.B., namely, the arket aechanism fails to bring about Pareto Efficiency, and interference is justified.
dissume that two firms produce the same comodity under perfect conpetition, and that there are uutput
(5) See N.Koldor fiol pp.83-100
generated pecuniary J.... in both industries:

$$
\begin{align*}
& \mathbb{C}_{1}=C_{1}\left(x_{1}, x_{2}\right) \\
& \mathbb{C}_{2}=C_{2}\left(x_{2}, x_{1}\right) \\
& P_{1}=p x_{1}-C_{1}\left(x_{1}, x_{2}\right) \\
& P_{2}=p x_{2}-C_{2}\left(x_{2}, x_{1}\right) \tag{14}
\end{align*}
$$

where $\mathbf{C}_{i}=$ costs of production of each firn (i - 1,2)
$\mathrm{P}_{\mathrm{i}}=$ profit
$\mathrm{x}_{\mathrm{i}}=$ outputs
X_{i} refer to the points on the respective isoquants of x_{i} tangent to given isocosts; ie., points of profit aeximization. This enables us to consider C_{i} as functions of x_{i} directly, not of different factor combinations (ie. other points on the same isoquants), as only one such combination satisfies the tangency requirements (i. ϵ_{∞} efficiency conditions).

In fact, $C_{i}\left(x_{1}, x_{2}\right)$ may not sufficiently distinguish pecuniary 3. , as they may still contain technological E.E. in then. For example, x_{2} may favourably affect C_{1} by cheapening factor prices(pecuniary) but also by increasing x_{1} without any corresponding increase in costs (technological), thus resulting in cheapening the cost per unit. To obviate this difficulty, the above equations may be made more explicit

$$
\begin{aligned}
& P_{1}=p x_{1}\left(l_{1}, s_{1}\right)-c_{1}\left[x_{1}\left(1_{1}, s_{1}\right), x_{2}\left(1_{2}, s_{2}\right)\right] \\
& P_{2}=p x_{2}\left(l_{2}, s_{2}\right)-c_{2}\left[x_{2}\left(1_{2}, s_{2}\right), x_{1}\left(1_{1}, s_{1}\right)\right](14 a)
\end{aligned}
$$

i.e. there is complete absence of technological E. ت.
x_{i} being produced by their own paid factors l_{i}, s_{i}. Individual profit maximization under perfect competition will allocate resources as to have:

$$
\begin{equation*}
\frac{\partial P_{i}}{\partial x_{i}}=0, \quad \text { i.e., } \quad p_{i}=\frac{\partial C i_{i}}{\partial x_{i}} \quad \text { and } \frac{\partial^{2} P_{i}}{\partial x_{i}^{2}}<0 \text { or } \frac{\partial^{2} C_{i}}{\partial x_{i}^{2}}>0 \tag{14d}
\end{equation*}
$$

ie. price equal to aerginal cost (MC) and iNC rising. The socially optimal allocation could be shown by joining the two firms together, ie.

$$
\begin{equation*}
p=p\left(x_{1}+x_{2}\right)-c_{1}\left(x_{1}, x_{2}\right)-c_{2}\left(x_{1}, x_{2}\right) \tag{15}
\end{equation*}
$$

.st stationary values, stability conditions require

$$
\begin{equation*}
p=\frac{\partial C}{\partial x_{1}}+\frac{\partial C_{2}}{\partial x_{1}}=\frac{\partial C_{2}}{\partial x_{2}}+\frac{\partial C_{1}}{\partial x_{2}} \tag{15a}
\end{equation*}
$$

and

$$
\left|\begin{array}{lll}
-c_{11}^{(1)}-c_{11}^{(2)} & -c_{12}^{(1)}-c_{12}^{(2)} \tag{15b}\\
-c_{12}^{(1)}-c_{12}^{(2)} & -c_{22}^{(1)}-c_{22}^{(2)}
\end{array}\right|>0
$$

(where $c_{11}^{(1)}=\frac{\partial^{2} c}{\partial x_{1}^{2}}, \quad c_{12}^{(2)}=\frac{\partial^{2} c}{\partial x_{1} \partial x_{2}}$ etch...
and $-C_{11}^{(1)}-C_{11}^{(2)}<0$
(6) To spell out the cost cheapening aspect of pecuniary 3.S., the above may be written more explicitly as:

$$
\begin{aligned}
& P_{1}=p x_{1}-s_{1} r\left(x_{2}\right)-l_{1} w\left(x_{2}\right) \\
& P_{2}=p x_{2}-s_{2} r\left(x_{1}\right)-l_{2} w\left(x_{1}\right) \quad \ldots(1 \cdot 4 b)
\end{aligned}
$$

or $\quad P_{1}=p f\left(l_{1}, s_{1}\right)-s_{1} r\left(s_{2}\right)-l_{1} w\left(l_{2}\right)$
$P_{2}=p g\left(l_{2}, s_{2}\right)-s_{2} r\left(s_{1}\right)-l_{2^{w}}\left(l_{1}\right) \ldots(14 c)$
As (14b) ond(14c) will arrive at the sane conclusions, as will be shown later, in what follows, I shall retain the simpler furl (14a) ie. the profit functions (14a) are free from all technulusical E.E. elements.
i.e. The sufficient conditions for (15a) to be naxina require the principal minors of the Hessian (15b) to all ternate in sign (provided the $C(i)$ functions are twice differentiable and Young's theorem holds).

This implies that for true maximum, $C_{11}^{(1)}+C_{22}^{(2)}>0$ and $a_{22}^{(1)}+C_{11}^{(2)}>0$, i.e.
price equal to marginal sociol cost (MiSC) (in ilia) and !SNC rising.

It could $b \in s \in e n$ at once that when E.E. are present in both firms, $\frac{\partial C_{2}}{\partial x_{1}}<0$ and $\frac{\partial C_{1}}{\partial x_{2}}<0$ and the equation of price with SiC would result in greater output in both firms, SiC being lower then private MC. Alternatively, it could be shown that the socially optimal price (in 15a) is lower then private competitive price(in 14).
(7) This follows from the alternation of signs of the

 (8) The reader could easily verify that the conclusions els hold for the wore explicit forms (14b) and (14c). egg. Under separate profit maximization

$$
\begin{aligned}
& \frac{\partial P_{i}}{\partial 1_{i}}=\frac{\partial P_{i}}{\partial s_{i}}=0 \quad(i=1,2) \\
& \mathrm{pf}_{1}=\mathrm{pg} 1_{2}=w \\
& \mathrm{pf}_{\mathrm{s}_{1}}=\mathrm{pg}_{s_{2}}=\frac{\mathrm{r}}{\mathrm{r}} \\
& \text { or } \mathrm{p}=\frac{\mathrm{w}}{\mathrm{fl}_{1}}=\frac{\mathrm{f}}{\mathrm{f}_{\mathrm{s} 1}}=\frac{\mathrm{w}}{\mathrm{~g} 1_{2}}=\frac{\mathrm{r}}{\mathrm{~g}_{\mathrm{s} 2}}
\end{aligned}
$$

or

The benefit to the consumers could be shown by a lower final equilibrium price: As a result of joint production, greater output is produced at the sane price, thus shifting the industry supply curve to the right,
8. (Continued) Under joint profit aaximization:
$p=p\left[f\left(l_{1}, s_{1}\right)+g\left(l_{2}, s_{2}\right]-\left(s_{1}+s_{2}\right) r\left(s_{1}, s_{2}\right)-\left(l_{1}+l_{2}\right) w\left(l_{1} l_{2}\right)\right.$
The same marginal conditions $\frac{\partial P}{\partial I_{i}}=\frac{\partial P}{\partial{ }^{2} s_{i}}=0 \quad l \in a d$ to
$\mathrm{pf}_{1_{1}}-\left(1_{1}+1_{2}\right) \frac{\partial w}{\partial I_{1}}=\mathrm{pg}_{1_{2}}-\left(1_{1}+\dot{1}_{2}\right) \frac{\partial \mathrm{W}^{\mathrm{s}} \mathrm{i}}{\partial I_{2}}=w$
$p f_{s_{1}}^{1}-\left(s_{1}+s_{2}\right) \frac{\partial r}{\partial s_{1}}=\operatorname{pg}_{s_{2}}^{2}-\left(s_{1}+s_{2}\right) \frac{\partial r^{2}}{\partial s_{2}}=r$
or $\left.p=\frac{1}{f_{1_{1}}} \Gamma w+\left(I_{1}+I_{2}\right) \frac{\partial w}{\partial I_{1}}\right]=\frac{1}{g_{s_{2}}}\left[m+\left(s_{1}+s_{2}\right) \frac{\partial r}{\partial s_{2}} \ldots(15 d)\right.$
The conclusions are still the same: with the payment of the same wage rate as under private maximization Pareto efficiency will ensure the employment of factors up to the point where the value of their marginal productivity declines further then under individual maximization, so long as there exist pecuniary E.E., ie., $\frac{\partial w}{\partial l_{i}}<0, \frac{\partial r}{\partial s_{i}}<0$. This implies e greater employment of $r \in s$ ores, under the usual assumptions of diminishing $r \in t u r n s$. Alternatively, it could be said that, corresponding to the sain levels of output produced and factors used, and with the sane payment to factors, the sucially optimal price, as could $b \in s \in \in n$ from (15d) is lower then individually optimal. price. Secund orders conditions are also fulfilled, and ere left tu the reader.
which would mean a lower new price provided the demand curve of the industry has less than infinite price elasticity. Lower price, greater output are the outcome. Better profits are also secured, which are a (9) measurement of $\mathcal{B} . \mathrm{E}$.

If the assumption of perfect competition is to be removed, the above becomes a comparison between the individual profit andmization of (15a) corrected:
(9) is a numerical example (15) may be given a fora: (conventional U-shaped cost curves):

$$
\begin{aligned}
& c_{1}=0.1 x_{1}^{2}+5 x_{1}+200-0.1 x_{2}^{2} \\
& c_{2}=0.3 x_{2}^{2}+3 x_{2}+100-0.02 x_{1}^{2} \\
& p=15
\end{aligned}
$$

Under perfect competition, individual profit maximization:

$$
\begin{aligned}
& \mathrm{Pi}_{\mathrm{i}}=15 \mathrm{x}_{\mathrm{i}}-\mathrm{C}_{\mathrm{i}} \\
& \begin{aligned}
\frac{\partial P_{1}}{\partial x_{1}}=15-.2 x_{1}-5=0 \text { or } x_{1}=50 \\
\frac{\partial P_{2}}{\partial x_{2}}=15-0.6 x_{2}-3=0 \text { or }=90 \\
\mathrm{P}_{2}-20 \\
\frac{\mathrm{PL}}{}=70
\end{aligned} \\
& \text { Total outputs of both firms }=x_{1}+x_{2}=70 \\
& \text { Total profits }=P_{1}+P_{2}=160
\end{aligned}
$$

Under Pareto efficiency, first order conditions require $P^{*}=15\left(x_{1}+x_{2}\right)-\left(C_{1}+C_{2}\right)$
$\frac{\partial P^{*}}{\partial X_{1}}=0$ or $x_{1}^{*}=62$
$\frac{\partial P^{*}}{\partial x_{2}}=0$ or $x_{2}^{*}=30$
Total output $=x_{1}^{*}+x_{2}^{*}=92$ which is better than 70 Total profit $=P_{1}^{*}+P_{2}^{*}=192.48---160$

Note how $\in \in \in$ that taxes and subsidies are normally
$p_{i}=\frac{\frac{\partial c_{i}}{\partial X_{i}}}{1+\frac{1}{\eta x_{i} p_{i}}} \quad$ wherch$\prod_{x_{i}} p_{i}=\frac{d x_{i}}{d p_{i}} \frac{p_{i}}{x_{i}} \quad$ or
:Price elasticity of demand
and $p_{1}^{*}=\frac{\frac{\partial C_{1}}{\partial x_{1}}+\frac{\partial C_{2}}{\partial x_{1}}}{1+\frac{1}{n_{1} p_{1}}}$
and. $p_{2}^{*}=\frac{\frac{\partial C_{2}}{\partial x_{2}}+\frac{\partial C_{1}}{\partial x_{2}}}{1+\frac{1}{n_{2} p_{2}}}$
(where $x_{i}^{*}, p_{i}^{*}=$ socially optimal product and their prices) (i=1,2)

It is clear that gu long as there are pecuniary E.E., i.e. $\frac{\partial C_{2}}{\partial x_{1}}<0$ and $\left.\frac{\partial \sigma_{1}}{\partial x_{2}}<0, p_{1}^{f_{i}^{*}}<p_{i} p_{i}=1,2\right)$ the firn's duwnward sloping demand curve implies that if $P_{I}^{P_{i}^{*}} \ll P_{1}$, then $x_{1}^{*}>x_{i}$ (fig. 12 and 13)
9. (continued) necessary devices to bring Pareto Efficiency conditions about. Thus to save competition and have Pareto efficiency at once, a tax is to be iapused on P_{1}^{*} and a subsidy is to be given to P_{2}^{*} as $P_{1}^{*}=125.6$ or $P_{1}^{*}>P_{1}$; but $P_{2}^{*}=66.8<P_{2} ;$ otherwise the lure of profit is insufficient for firm II to produce x_{2}^{*} - Tex-subsidy is all the more necessary if one sector suffers from external disecononies. This could be seen by changing the signs of either one of the last term of the cost functions, int.

$$
\begin{aligned}
C_{1} & =.1 x_{1}^{2}+5 x_{1}+200+.1 x_{2}^{2} \\
\text { or } \quad C_{2} & =.3 x_{2}^{2}+3 x_{2}+100+.02 x_{1}^{2}
\end{aligned}
$$

Fig. 12
IE under Perfect competition

Fig. 13
EE under imperfect competition

From the above, it culd be seen that Pareto efficiency cunditions iaply that under perfect colpetition, price is to be equated with sucial $\mathbb{N C}$, nut private iC. This equality ensures that the cunsumers rate of substitution will equal, not the individual rate of transforation but to the suciety's. For this to eventuate, the alternative to sucielisa is the well known tex-subsidy scherie, the regnitude of wich can be calculated from dezand and supply functions. Let these functions under private profit aximization $b \in D(p)$ and $S(p)$, and under Pareto uptizality $S_{i}^{*}(p)$. The equelity $S(p)=D(p)$ determines cupetitive price p, and the equality $s_{i}^{*}(p)=$ $D(p)$ deternines uptiaal price p^{*} and quantity $S_{i}^{*}\left(p^{*}\right.$. A unit tax t_{i} is thus needed, such that $S_{i}\left(p^{*}-t_{i}\right)=S_{i}^{*}\left(p^{*}\right)$, sulving, $t_{i}=f_{i}\left(p^{*}\right)$. (wide numerical example, footnote 8.pp. 49-50)

Thus we cone to the marshall-Pigou conclusion that
 short of, and the firas causing External Diseconomies
poduce beyond, the socially optimun level of sutput. Taxes and subsidies are necessary corrective measures to bring this social optimum about and salvage individual profit axizization. This secis to be against the popular belief that pecuninry …. do not call fur Guvernizent interference.

The same conclusions apply to both Technological and Pecuniery E.z.

EXTERNAL ECONOMILS AND INVESTVNNT TECFNIQUES

The problen of Investment Techniques has received some attention lately. This chapter is
 Techniques. It siaply purports to puint out the iaplications of \mathbb{T}. for the choice of techniques, with special reference to the latest work done on the (2) subject.

The Investiment Criteria put forth su far way be classified as uutput and growth maxinizing. Maximizing current uutput, for a given capital stjck, in a country where capital is scarce and labour superebundent, auounts tu the use of relatively mure labour per unit of capital. The adoption of labuur-intensive techniques in this cuntext, serves the short run policy ff maximizing natiunal income and enpluyment, but it implies a heavier wage bill to be paid, and a heavicr unit cost to incur, as the increase in uutput will eventually bc less than the increase in labuur cust. Wage earners having a high
(1) J.J.Polak $187 \mathrm{pp} .208-40$; N.S.Buchenen $\sqrt{2}] \mathrm{ch} .6$, A. ت.Kahn [9] pp.38-61; H.B.Chenery 44] pp.76-96; W.Galenson « H.Leibenstein [7]pp.343-70; A.K.Sen [〔\%] pp.561-84, $\angle 23 \mathrm{pp} .466-84$ and $\angle 24$. For a cunplete ibiliography on Investment Criteria, see United Nations [287 pp.30-45.
(2) $S \in \in$ A.K.Sen $[247$ •
narial propensity to consume, near enough to unity, savings available for investment would be sail, and the rate of growth of income would be slow. Labour intensjive methods would fail tu pass the test if the maxinand is not output but the surplus of output over current consumption, available for reinvestment, ie. if the maximend is the rate of ec nonic growth. This growth maximizing criterion, applied in an ccunuy where labour is abundant relative tu capital, ie., in Underdeveloped Countries, would lead to the employment of less labour per unit of capital, ie., to the adoption of capital intensive techniques. These mw, criteria normally lead to conflicting practical conclusions. This could be sh own in fig. 14.

Fig. 14

issuance, for simplicity, that we have a short-run production function $x=f\left(l_{1} s^{*}\right)$ homogeneous of degree one (say $x=A s^{\alpha_{1}} 1-\alpha$) where 1 is labour, s^{*} is a fixed capital stock sunchuw made available in the economy to start the ball rolling. OW shows total labour cost at a. constant wage rate. The capital cost of s^{*}, being a fix td cost, could be represented by adding a constant
to OW, i.e., the total cost schedule lies above OW and parallel to it. This would not alter the nature of the choice as the points of output maximization and surplus aexinization are still L and K (fig.14) respectively. Consider the Revenue function $R=\frac{s^{\alpha}}{} 1^{1-\alpha}$ and the Cost function $C=r s+w l$ where A is a constant, price is unity, or $u \quad n \in y$ price could be dispensed with by assuming that all costs are to be part in physical units of x. R is shown net of depreciation.

The Labour intensive technique will produce output $\mathrm{Ll}(\mathrm{L})$ (fig.14) Gaploying $01(\mathrm{~L})$ labour, thus maximizing output x, ie.,

$$
\begin{equation*}
\frac{\partial x}{\partial 1}=0 \frac{\partial 2_{x}}{\text { and }} \frac{0}{\partial 1^{2}}<0 \tag{1}
\end{equation*}
$$

The capital intensive technique will choose point K un the production curve, employing $I(K)$ and maximizing the surplus of output over cost ($x-C$), ie.

$$
\begin{align*}
& \frac{\partial}{\partial 1}(x-C)=0 \\
& \frac{\partial^{2}}{\partial 1} 2(x-C)<0 \tag{2}
\end{align*}
$$

(1) Except when this total cost curve lies above L, but below K on the production function $x=f\left(l_{1} s\right)$. In that case, the labour intensive technique (L) would result in a negative \in re-investible saving, and thus a negative rate of growth. (L) thus drops out leaving (K) alone for consideration.

If the Cost function is $r \in d u c \in d$, for siaplicity, to labour cost alone as shown in fig. 14, and if wage earners are assumed tu spend what they earn, capitalists to save what they get, the adoption of the capital intensive technique, in this context, leads to maximizing re-investible savings, ie.

$$
\frac{\partial}{\partial I}(x-w l)=0 \text { and } \frac{\partial 2}{\partial 1^{2}}(x-w I)<0
$$

Marginal conditions (1) and (2) determine labour employanent in each case.

If the production function $f\left(1_{1} s\right)$ is homogeneous of degree one, if the state of the arts and wage rate remain unchanged over ti ae, and if we keep reinvesting the surplus (x - wi) realised each year, we shell have:

$$
\begin{aligned}
& \frac{s_{1}}{s_{2}}=\frac{l_{1}}{I_{2}}=\frac{x_{1}}{x_{2}} \quad \text { or } \quad x_{2}-\frac{s_{2}}{s_{1}} x_{1} \\
& \text { and } \frac{s_{1}}{s_{n}}=\frac{l_{1}}{I_{n}}=\frac{x_{1}}{x_{n}} \text { or } x_{n}=\frac{s_{n}}{s_{1}} x_{1}
\end{aligned}
$$

where $s_{i}, l_{i}, x_{i}(i=1,2, \ldots, n) r \in p r \in s \in n t$ factors us $\in d$ and output produced in each year from 1 to n.

The sun total of output thus produced from 1 to n is
$x_{1}+x_{2}+x_{5}+\cdots \cdots+x_{n}$
$=x_{1}+\frac{s_{2}}{s_{1}} x_{1}+\frac{s_{3}}{s_{2}} \frac{s_{2}}{s_{1}} x_{1}+\cdots \cdots \cdot+\frac{s_{n}}{s_{1}} x_{1}$
$=x_{1}\left(1+\frac{s_{2}}{s_{1}}+\frac{s_{3}}{s_{1}} \ldots \ldots \cdot+\frac{s_{n}}{s_{1}}\right)$
or $\sum_{i=1}^{n} x_{i}=\frac{x_{1} \sum_{1}^{n}}{s_{1}} s_{i}$
Similarly, $i_{i=1}^{\sum_{i}^{n}} x_{i}=\frac{x_{1}}{1_{1}} \sum_{i=1}^{n} l_{i}$

So, each of the factors used and output produced will grow st the same rate, if this re-investrent process continues and production is under constant returns to scale, i.e.

$$
\begin{aligned}
& \frac{\Lambda s}{s}=\frac{\Lambda l}{1}=\frac{\Lambda x}{x} \\
& \text { or } \frac{\frac{\Lambda s}{\Lambda t}}{s}=\frac{\frac{\Lambda l}{\Lambda t}}{1}=\frac{\frac{\Lambda x}{\Lambda t}}{x}
\end{aligned}
$$

$$
\text { or when } \Delta t \rightarrow 0, \quad \frac{\dot{s}}{s}=\frac{\dot{l}}{1}=\frac{\dot{x}}{x}
$$

In other words, if the surplus (x - wl) is reinvested, the capital stock s, will becone s_{2} in year 2, s_{3} in year 3 and su on. With $s_{2}>s_{1}$ and $s_{3}>s_{2}$, the partial production function ffig. 14 will shift upward overtiae, and the locus of all the relevant points satisfying (1) and (2) will lie on the prolonged OL and OK respectively. I shall call then the two long run product curves $\operatorname{LTP}_{\mathrm{K}}$ and $\operatorname{LTP}_{\mathrm{L}}$. The sane degree of capital intensity (i. $\in \frac{0 s_{j}(K)}{01_{i}(K)}=a$ and $\frac{0 s_{j}(L)}{01_{i}(L)}=b, \quad a$ and b being two constants) will be adhêred to over tine. In other words, all the triangles $01_{i}{ }^{(K)} s_{i}(K)$ and $01_{i}{ }^{(L)} S_{i}(L)$ are similar $r \in s p \in c t i v \in l y$ (K and L refer to capital-, and labour-intensive techniques respectively; $i=1,2, \ldots .$. nth $y \in a r)$. If a fix $\in d$ cost of capital (rs) is tu be added each time, the short run fixed cost will be parallel to $O W$, but the locus of all the $r \in l \in v a n t$ points corresponding to each technique will havo a greater slope than does OW. I shall call them long
run cost curves $L R C_{K}$ and $L R C_{L}$ respectively with $L R C_{K}$ having a greater slope than $\operatorname{LRC}_{\mathrm{L}}$: It is also interesting to note that income distribution is different at different points on the Production Function ($O x$) (fig. 14): The choice of point K for example, implies a maximization of the capitalists' share. The choice of point L means an improvement of Labour's share. However, once any point on the production function $0 x$ has been chosen, in other words, when given income-distribution has been decided upon once for all at the beginning, the relative shares of capitalists and wage earners, will remain unchanged over time. So once the model starts working, the "widow's cruse" assumption is no longer needed. The assumption of a constant marginal propensity to save out of wage and profit respectively will be sufficient for the model to work, as income distribution does not change over time.

1. This should be obvious. fig. 14 could be reproduood.

If proof should be needed In fig. Ila, from similar triangles $\mathrm{OK}_{1} \mathrm{~W}_{1}$ and $\mathrm{OK}_{2}{ }^{W_{2}}$, we get:

Fig. 14a $\frac{\mathrm{OK}_{1}}{\mathrm{OK}_{2}}=\frac{\mathrm{OW}}{\mathrm{OW}_{2}}=\frac{\mathrm{K}_{1} \mathrm{~W}_{1}}{\mathrm{~K}_{2} \mathrm{~W}_{2}}$. From similar triangles $0 \mathrm{~K}_{1} \mathrm{~L}_{1}(\mathrm{~K})$ and $\mathrm{OK}_{2} \mathrm{I}_{2}\left(\mathrm{~K}_{2}\right)$ we get $\frac{\mathrm{OK}_{1}}{\mathrm{OK}_{2}}=\frac{\mathrm{K}_{1} 1_{1}\left(\mathrm{~K}_{1}\right)}{\mathrm{K}_{2} \mathrm{l}_{2}}\left(\mathrm{~K}_{2}\right) \quad=\frac{01_{1}\left(\mathrm{~K}_{1}\right)}{\mathrm{Ol}_{2}\left(\mathrm{~K}_{2}\right)}$ $: \frac{K_{1} W_{1}}{K_{2} W_{2}}=\frac{K_{1} I_{1}\left(K_{1}\right)}{K_{2} I_{2}\left(K_{2}\right)} \therefore \frac{K_{1} W_{1}}{K_{1} I_{1}}\left(K_{1}\right)=\frac{\# K_{2} W_{2}}{K_{2} 1_{2}}\left(K_{2}\right)$
ie., capitalists' share $K_{i}{ }^{W}{ }_{i} \quad(i=1,2, \ldots, n)$ does $K_{i} 1_{i}(K)$
not change over time. Similarly, for the labour intensive technique (K_{i} are to be replaced by L_{i} in fig. Ila and) the same results hold, ie. $L_{i} W_{i}$ remains constant over time.

The question now is that of comparing

at any time $U(1<U<n)$ to see which technique gives a greater time series of output up to U. In the light of our above analysis of External Economies, however, this comparison (5) leaves much to be desired. When output x or factors (I_{x}, S_{x}) used in sector x confer E.E. on some other sectors, y, z of the Economy, the acceptance or rejection of a technique on the basis of comparison (5) would not do justice to the project in question. Suppose sectors y or z benefit from E. E. generated by x or l_{x} or S_{x}. Then if we assume, for simplicity, that y and z are also produced under conditions of constant returns to scale, we can write

$$
y=y\left(l_{y}, S_{y}, x\right)=y_{1} 1 \neq y_{s} s+y_{x} x
$$

Similarly $z=z_{1} l \not z_{s} s \neq z_{x}$

$$
\begin{aligned}
& \text { where } y_{1} l=\frac{\partial z y}{\partial l} l_{y} \text { etc... } \\
& x, y, z=\text { outputs } x, y \text { and } z \\
& l_{x}, s_{x}=\text { factors used in sector } x .
\end{aligned}
$$

Where there are factor-generated technological E.E. write $Y\left(1_{y}, s_{y}, 1_{x}, s_{x}\right)$ for example, instead of $y\left(l_{y}, s_{y}, x\right)$.

If y and z are the yearly outputs, the total external effects (E_{x}) conferred on y and z by x from year 1 to n are:

$$
E_{x_{i}}=\sum_{1}^{n} Y_{x} x \neq \sum_{1}^{n} z_{x} x \ldots \ldots \ldots(6)
$$

The assessment of the social value of the two techniques should take $E_{X_{i}}$ into account, i.e., comparison (5) should become that of

Where $\underset{\frac{T}{1}}{V_{i}} \bar{x}_{i}(K)=\sum_{1}^{\frac{U}{1}} \bar{x}_{i}^{(K)} \neq \underset{x i}{\underset{i}{(K)}}$

i. G., the ${ }^{1}$ social value $\bar{x}_{i}(k)$ and $\bar{x}_{i}^{(L)}$ of the
two techniques K and L respectively includes both the time series of outputs produced by them and the time series of External Economies $E_{X}^{(K)}$ and $E_{X}^{(L)}$ the two techniques would generate, from year 1 to U, U being the year interested in. Comparison should bo made between these social values, and which technique is to be chosen depends on whether

Since all these output figures arc expected future val uss some discount has to be made. The introduction of U is one way of discounting them: any output produced beyond U is discounted to zero, and any output up to U has its full unåiscountcd value.

Similarly, when E.E. accrue in the forms of cost cheapening, the procoduro romains the same. If as x expands, factor price W becomes cheaper in y-sector, then $l_{y} \frac{\partial w}{\partial x}$ is a measure of this cost saving in any one year. Output y will usually expand to fulfill marginal conditions. If y - surplus is reinvested, those annual cost savings will have a time series themselves. This is due to x, and therefore, in the evaluation of x, this cost savings time series will heve to be deducted from the cost of x-production. Thus the social costs of x arc lower than its private costs. This case is left to the reader to visualiso in more detail.

1. An alternative method of discounting future output is to apply an arbitrary discount rate $\rho=\frac{1}{1+r}$ and compare $\frac{n}{4} p_{i}^{i} \bar{x}_{i}(K)$ with $\sum_{1}^{n} p \bar{x}_{i}$ (L) (n is the life of a project; if a project is assumed to last for over, $n=\infty$
(Footnote 3 continued)

The E.E. generatod by the two tochniques need not be the same. The capital intonsive technique for example, may givo rise to technological or pecuniary E. E. or both, whilc the labour intensive technique may not do so to the samo extent. Lookod at in this light, tho capital, or labour-intonsive tochniquos may best bo applicd in onc country rather then in another, in the same country at onc time rather than at another, depending, beside factor endowment, on the economic conditions, the stagc of oconomic devclopment, the atmosphere of growth. (E.G., Spirit of onterprise, of onthusiasm following an independenco movement, and so on). These are at least partly accountod for by $E_{x_{i}}$. Capital intonsive techniques, for exemple, would postulate as prorequisite conditions the existonce of some skilled labour, a certain state of the arts, a certain atmospherc in which it can survivg and prosper. Without a suitablc atmosphere, it would be abortive and doomcd to prometure extinction. An often cited examplo is thc casc of Pakistan whero mechanisation of agriculture took place at a time whon skilled labour was not available. Tractors broke down and could not be fixod, due to the absence of mechenics, garage and service stations etc...

In such cases, capital intonsive tochniques are to die of suffocation and inanition, not having the E.E. noeded; and would not generate any E.E. In these situations, labour intcnsive mothods may generate more E. E. It would bo advisablc to use labour intensive techniques in earlier stages of economic development oxcopt whore machinos ere necessary substitutes of
of skilled labour needed and not availablo - to build un conditions favourable to conomic growth, c. g., dams, roads, etc..

When theso conditions arc mature, when awakening has takon place, tho adhoronco to the traditional labour intonsive method may havo the effects of perpot+hting low productivity and slowing down cocomic growth. Theso aro nocossery conditions for a tochnique to gencrato E. E. This is important, gspocially in underdeveloped countries whero capital stock is small, merginal officiency of capital high, and the effeots of E.E. are all the more pronounced th an they mould be in dovelopod countrios.

The introduction of E. E. might roverse the choico mado without them. If, for examplo, tho excoss of $E_{X_{i}}^{\left(L_{i}\right)}$ ovor $E_{X_{i}}^{(K)}$ is large enough, then, adding thom up to the total products, streams may make the surplus of L groater than that of K, thus swinging our docision in favour of L on the very grounds of surplus maximization (2). Lobour intensive tochnique in such a casc would maximizo both current and futuro output, i. o. both current output and the ratc of growith of that output. The same thing could bo seid about K techniquo if $\mathrm{E}_{\mathrm{X}_{\mathrm{i}}}^{(\mathrm{K})}$ is sufficiently 上arger than $\mathrm{E}_{\mathrm{X}_{\mathrm{i}}}^{(\mathrm{L})}$. Thus the consideration of E.E. may cause a project or techniquo ${ }^{3}$ rojectod to bo scecoptcd and vicc vorsa.
3. Projoct and tochnique could bo uscd intorchangoably here es only the best tochniquo would bo choscn for each project, and thus for cach projoct, only one techrique is relevant. Thus, in torms of fig. 14, if tho total product curvo $f\left(1, s^{\text {F }}\right)$ lics ontircly below the cost curvo (ow), the project would bo rojected. With tho introduction of E_{x}, it might woll be acceptod. That is the case of most overhead

Investments. Railmays, for examplo, involvo heavy initial expenditures and losses porheps but their contribution to national incomc and wolfarc will justify their boing undortakon. As Extcrnal Economics E_{x} do not accruc to x -producors, a subsidy would havo to bc paid for x to bo undortaken by privato ontroponours. Thoso subsidies may bo financed by taxes raiscd on beneficiary sectors. If x is a public sector no subsidy would be neoded: this public business may afford to run at a loss, which loss could bo mado up by taxes raised in the Economy as a whole.

Thus, in the assessment of the social merit of an Investrent technique, comperison (g) should have to be used instead of (5). In other words, the choice of Invostment tochniques made in the light of this overall picture may be entirely differont from that mado by using other critoria. It would be difforent from "Polak -Buchanan-Kahn-Chencry², from Galenson-Loibonstein3, from Scn's't conclusions.

1. This problom has boon discussod in earlior chapters (ch. 111. \& IV).
2. J. J. Polak (18) pp 208-40; N. S. Buchanan (2)ch.6, A.E.Kahn (9) pp 38-61; H.B. Chenery (4) pp.76-96.
3. W. Galonson \& H. Lcibenstoin (7) pp. 343-70;
4. A.K. Son (22) 561-84; (23)pp. 466-84; (24)

Fig. 14 could bo adjustod to roflect E. E. vory roughly. In fig. 15, factor-goncrated E. E. aro shown. In y-sector tho short run production function $y\left(s_{y}^{\mathrm{F}}, 1_{y}\right)$ is shown in quadrant FII. With a given capital stock S_{y}^{F} (not shown),

Figure 15

I_{z}

Figure 16
the employment of I_{y}^{*} will produec y. If I_{x} genorates E. E. which benefit y, then $l_{x}^{\text {F }}$ will raiso y by $\Delta y=\bar{y}-y^{\text {F }}$ (quadrant 11 wherg only the contribution of 1_{x} to y is shown). That Δy is usually addod to y in quadrant 111 , but is roally attributable to l_{x}. Thus in the assossment of the social morit of $x, \Delta y$ should bo added, not to y (in quadrant lll) but to x (in quadrant 1), after being converted into appropriate units. This would bo equivalont to tho pertiel production function $X\left(I_{x}, S_{X}^{F}\right)$ boing shiftod upward, which would push both point K (surplus maximizing 2) and L (output maximizing 1) to the right, provided factor pricos do not chango. This implios a greator labour absorption for both tochniques, and a largor re-Investmont surplus.

In figure 16, output-generated E. E. are shown. A given of x producod (quadrant 1) is shown to increasc. the production of Z by ${ }^{\wedge} Z=\bar{Z}-Z^{\text {F }}$ (quadrent $1 V$). This ΔZ is usually added up to $Z^{F}\left(1_{z}, S_{z}\right)$ in quadrent lll, produced with a givon capitel stock S_{z} (not shown), and $1_{z}^{\text {F. }}$. In fact, this Δ_{Z} is sttributablo to the prosenco of output x, and thereforo should be added to x in the assessment of the latter's social merit. The shape of E. F. is convox to origin in fig. 16 , concavo in fig. 15. This reflects the fact that, at cortain stages, E. E. moy oxhibit incroasing returns bofore oventually roaching tho diminishing roturns phase. Thus, consiōered in isolation, only X^{F} is imputod to x in both casos. Bat with ㅍ.E., $\bar{x}=x^{*} z \Delta_{y} z_{\Delta z}$, or more prociscly

$$
\bar{x}=x^{\#} \pm \quad \Delta y P_{1} \neq \Delta Z P_{2} \text { whore } P_{1}=\frac{P_{y}}{P_{x}}
$$

$$
P_{2}=\frac{P_{z}}{P_{x}}
$$

i.c., x is tekon as unit of measurement. This roughly corresponds to our \bar{x} in (7) above, in a particular ycar. In terms of fig. 14 , the long run social total product curve thus correctod would lic above LTP_{k} or $\mathrm{LTP}_{\mathrm{L}}$ rospectivoly, as thc casc may be, whon E. E. are prosent and bolow them when external Disoconomics provail.

If the surplus of output over cost realis cd in oach soctor is ro-invested, x, y, z, will grow ot an cxponential rate. In figure 17, K end L reprosent the time sories

Fig. 17
of output x produced by adopting the capital -, and labour-intonsive techniquos respectively. The full lines $K \&$ L show their rate of growth in the absonco of … Le. Lebour intensivo tochnique (l) gives a groater initial output but less surplus avoilable for ro-Investment and consequently a slower rate of growth than the capital intensive technique (K) would give. Provided t is large enough, there would eventually come a period R^{1} where the cumulative output produced by K-technique will catch un with that producod by the L-technique, i.e. $\sum_{i=1}^{R} x_{i}^{(K)}=\sum_{i=1}^{R} x_{i}^{(L)}$

1. R is called "Period of Recovery" by A. K. Sen (24) p. $32 \& 33$.

For any poriod of time to the left of R., L-technicuc is to be preferred; and to the right of R, K-technicue is to be choson.

Now if x confors E . E . on some other sector y , the time serios of $y(t)$ (fig. 18) will shift upwerd, and becomes the broken line $y(t, x(t)$ in fig. 18. The producers of y reap where they have not sown: this net increase in y duo to output x is really ottributable to x, ε nd should be added to L and K in fig. 17. This would be equivalent to an upward shift of L and K, and normelly displace R to the right.

Whon technological E.E. are generated by factor l_{x}, L (fig. 17) would shift upward more than would K, os it employs relatively more labour. This will movo R to R^{1} to the right of R, in favour of L-tcchnicuc. In thc abscnce of E.E.., any puriod of timc longor than R will speak in favour of K-tochnique. Now the pcriod $R R^{1}$ would be in favour of L : The arrivel of R hes bocn dolayod by \boldsymbol{E}.E.

On tho other hand, if E.E. are generated by S_{x}, K would move upward more than would do L, thus shifting R to $R^{\prime \prime}$ ($R^{\prime \prime}$ booing to the left of R), thus tilting the choice in favour of K. technique. Any output during period $R^{\prime \prime} R$ would be produced by L-Technique, in the absence of E.E., and by K. Technique, when E.E. prevail. P. E. thus bring period R about sooner.

The effects of pecuniary E. E. may be analysed in a similar way: When y-sector benefits from cheaper factor price W, as a result of x-expansion, or 1_{x} used in $x-s c c t o r, y$-producers will employ more labour ($I^{\left(K^{1}\right)}$ instead of $l^{(K)}$ in fig. 19) and expand output y from $Y^{(K)}$ to $Y^{\left(K^{1}\right)}$ if they are to equate Marginal productivity of labour to real wage; ic. if they use capital intensive technique. Re-investible surplus may be greater,

Fig. 19

depending on the extent to which wis ll. In any case, in terms of fig. 18, the time series $Y(x(t), t)$ Will bo higher than $y(t)$ and the intercept of $Y(t, x(t)$ with the y-axis would be higher than that of $Y(t)$. If y-producers have chosen to maximize output $y(Y)$ in fig. 19) before, they would not employ any more labour end produce any more output, as output has beck maximised. But the re-invcstiblo surplus of output over labour cost as a result of x-generated pecuniary E. E. in tho form of w-cheapening will bo larger, and tho rato of growth of y will be faster. In terms of fig. 18 $Y(x(t), t)$ will have the same origin es $Y(t)$ at $t=0$, but will then diverge from $y(t)$ in the upward direction as time goes on.

Sirnilorly, if x-generated E.F. accrue in the form of r-cheapening, with the same initial surplus, a greatcr capital stock would be obtainable, which implies an upward shift of $y(1, s)$ and a greater reinvestible surplus of y over lebour cost if W remains unchanged. This means both a higher origin for $y(t)$ at $t=0$ and a grectcr rate of growth of y over time. All these benefits of E.E. are, of course, due to x, and should be taken into account in the assessment of the sociel value of Investrent techniques used in x. This could bo done by adding thesc streams of a. it. to the K \& Lings of fig. 18. The rosult would be a displecoment of R, which will alter tho choice mado without any consideretion paid to S. F. Again, taxes and subsidies may prove necossary for private entroponcurs to unácrtake tho production of X^{1}.

The reverse of this all could be said about External Diseconomics.

1. This point has boon discussed earlier. ch. 111 \& IV and footnote 1 p. 69.

The appreisal of Invostmont Tcchniques is thus to bc madc in the light of this dynamic ovorall picture, wherc E. F. pley an important part, rather than in isolation. Where no E.E. exist or ell W. T. are cxploitod, the private and social values of Invostmont Tochniques aro the some, but whero E.E. aro prosont, thgy diverge. This problem is vary important, as a woll chosen Investment Technique is the core of tho Invostrant problom, end capital formation dircctly detcrmines the rate of economic growth.

EXTERNAL ECONONIES AND BALANCED GROWTM

The idea of correlated growth linked with $E E$ goes as far back as A. Marshall: "The growth of correlated branches of industries which mutually assist one another..." 1. Next, A. Young and Rosengtein-Rodan ${ }^{2}$ could be considered the heralds of the Balanced Growth doctrine. R. Nurkse ${ }^{3}$ developed their idea along the same line. Like A. Young, he interpreted A. Smith's market size in terms of demand: "Where any single enterprise might appear quite inauspicious and impracticable, a wide range of projects in different industries may succeed because they will all support each other..." 4. A. Lewis ${ }^{5}$ joined in with a new emphasis put on the balance of Agriculture and Industrys, Export and home consumption.

The balanced growth doctrine has been challenged by M. Fleming, J. Sheahan, R. Findlay, A.O. Hirschman and P. Streeten ${ }^{6}$.

The concept of balanced growth scems to have a plastic meaning, susceptible of various interpretations. It may moan a simultaneous dovelopment of all industries, or, it may mean concentrated growth ${ }^{7}$; it may mean the rate of growth of outputs as determined by the community's marginal propensity to consumo agricultural products as compared with

1. A. Marshall [13], p. 441.
2. A. Young [31], pp. 527-42; P.N. Rosentein-Rodan [21]. pp. 202-11. 3. \& 4. R. Nurkse [15], chapter I, especially p. 13 \& $19 \cdot$
3. W.A. Lewis [12], pp. 275-83.
4. M. Fleming [6], pp. 241-56; J. Sheahan [25], pp. 183-97;
R. Findlay [5], pp. 339-46; A.O. Hirschman [8]; P. Sbrecten [26], pp. 167-90.
5. J. Sheahan, for example, writes: "If balanced growth includes the case of concentrated development of one or a few industries, then the point is acceptable; if it is meant to support the policy of matching production to demand changes by expanding most or all industries simultaneously, the position is untenable". [25]., p. 184.
manufactures ${ }^{8}$, or the rate of outputs growth as determined by the "pattern of consumers' demand for each others' products" 9.

In this paper, I shall define Balanced growth as accruing when all variables grow at the same rate. For example, a balanced growth of x, y, z exists when $\frac{\dot{x}}{x}=-\frac{\dot{V}}{y}=\frac{\dot{z}}{z}$ (where $\dot{x}=\frac{d x}{d t}$ etc...). I shall examine the problem of balanced growth where $E E$ are present, or, more precisely, I shall examine the conditions of feasibility and desirability of balanced growth, under static and dynamic EE.

FEASIBILITY OF BALANCED GROWTH

I. STATIC EXTERNAL ECONOMIES

When 1 Pe are present, there are technically necessary conditions for balanced growth. When these conditions are not fulfilled, insisting on balanced growth is asking the impossible. The one-factor case will be examined here, and the results will then be generalised to the manyfactor case.

Consider the two production functions:

$$
\begin{aligned}
x_{1}= & x_{1}\left[I_{1}(t), x_{2}(t)\right] \\
x_{2}= & x_{2}\left[I_{2}(t), x_{1}(t)\right] \\
\text { where } I_{i} & =\text { factor of production }(i=1,2) \\
x_{i} & =\text { output }(i=1,2) \\
t & =\text { time }
\end{aligned}
$$

The proportional rates of change of outputs are:

$$
\begin{aligned}
& \frac{\dot{x}_{1}}{x_{1}}=\frac{\partial x_{1}}{\partial I_{1}} \frac{\dot{I}_{1}}{x_{1}}+\frac{\partial x_{1}}{\partial x_{2}} \frac{\dot{x}_{2}}{x_{1}} \\
& \frac{\dot{x}_{2}}{x_{2}}=\frac{\partial x_{2} \dot{1}_{2}}{\partial l_{2} x_{2}}+\frac{\partial x_{2}}{\partial x_{1}} \frac{\dot{x}_{1}}{x_{2}} \quad \text { where } \dot{x}_{i}=\frac{d x_{i}}{d t} ; \dot{l}_{i}=\frac{d l_{i}}{d t} \\
& \text { 8. W.A. Lewis }[12\rfloor, p ? 278 \text { and 283. }
\end{aligned}
$$ 9. P. Strecten $[26]$, p. 170.

Or, in elasticity forms, putting $\lambda_{i}=\frac{\dot{i}_{i}}{1_{i}} ; \quad \mu_{i}=\frac{\dot{x}_{i}}{x_{i}}$ and $\eta_{x_{i} l_{i}}=\frac{\partial x_{i}}{\partial l_{i}} \frac{l_{i}}{x_{i}}=\frac{\partial\left(\log x_{i}\right)}{\partial\left(\log l_{i}\right)}=$ elasticity of x_{i} with $\underset{\text { etcspect to }}{\text { et co }} l_{i}$

$$
\begin{align*}
& \mu_{1}=\eta_{x_{1}} I_{1} \lambda_{1}+\eta_{x_{1} x_{2}} \mu_{2} \\
& \mu_{2}=\eta_{x_{2}} I_{2} \lambda_{2}+\eta_{x_{2} x_{1} \mu_{1}} \tag{3}
\end{align*}
$$

(1) One-factor case
(a) Balanced growth of outputs, i.c., $\mu_{1}=\mu_{2}=\mu(=$ constant $)$. Equation (3) becomes

$$
\begin{aligned}
& \mu\left(1-\eta_{\mathrm{x}_{1} \mathrm{x}_{2}}\right)=\eta_{\mathrm{x}_{1} I_{1} \lambda_{1}} \\
& \mu\left(1-\eta_{\mathrm{x}_{2} \mathrm{x}_{1}}\right)=\eta_{\mathrm{x}_{2} I_{2} \lambda_{2}}
\end{aligned}
$$

Solving, $\lambda_{1}=\frac{\mu\left(1-\eta_{x_{1} x_{2}}\right)}{\eta_{x_{1}} 1_{1}}$

$$
\text { and } \quad \lambda_{2}=\frac{\mu\left(1-\eta_{x_{2} x_{1}}\right)}{\eta_{x_{2}} 1_{2}} \cdots(4)
$$

λ_{1} and λ_{2} are the required rates of growth of inputs in this one-factor case with output-generated static EE , if balanced growth of outputs is to be achieved. In the particular case where (1) are homogeneous of degree one in all their arguments respectively, in other words, where there are constant returns to scale, $\eta_{x_{1}} I_{1}+\eta_{x_{1} x_{2}}=\eta_{x_{2} I_{2}}+\eta_{\mathrm{x}_{2} \mathrm{x}_{1}}=1$, and (4) becomes:

$$
\begin{align*}
& \lambda_{i}=\mu \tag{4a}\\
& \lambda_{1}=\lambda_{2}
\end{align*}
$$

i.c., the balanced growth of outputs, when production is under constant returns to scale, requires all inputs to grow at the same rate, which is equal to the rate of growth of outputs themselves. This result is obvious enough: if doubling inputs would double outputs, then the conditions for doubling outputs is doubling inputs.
(b) Balanced growth of inputs, ie., $\lambda_{1}=\lambda_{2}=\lambda$

Equation (4) could be written

$$
\begin{align*}
& \mu_{1}=\eta_{x_{1} I_{1}} \lambda+\eta_{x_{1} x_{2}} \mu_{2} \\
& \mu_{2}=\eta_{x_{2} I_{2}} \lambda+\eta_{x_{2} x_{1} \mu_{1}} \tag{5}
\end{align*}
$$

Solving

$$
\eta_{x_{1} 1_{1}} \lambda \quad-\eta_{x_{1} x_{2}}
$$

$$
\mu_{1}=\frac{\eta_{x_{2} 1_{2}} \lambda}{1} \frac{1}{-\eta_{x_{1}} x_{2}}
$$

$$
=\frac{\lambda\left(\eta_{x_{1} I_{1}}+\eta_{x_{1} x_{2}} \eta_{x_{2}} 1_{2}\right)}{1-\eta_{x_{1} x_{2}} \eta_{x_{2} x_{1}}}
$$

Similarly, $\mu_{2}=\frac{\lambda\left(\eta_{x_{2}} I_{2}+\eta_{x_{2} x_{1}} \eta_{x_{1} I_{1}}\right)}{1-\eta_{x_{1} x_{2}} \eta_{x_{2} x_{1}}} \cdots \cdot(5 a)$
In the particular case of constant returns to scale in both sectors, this becomes:

$$
\mu_{1}=\frac{\lambda\left[1-\eta_{x_{1} x_{2}}+\eta_{x_{1} x_{2}}\left(1-\eta_{x_{2} x_{1}}\right)\right]}{1-\eta_{x_{1} x_{2}} \eta_{x_{2} x_{1}}}=\lambda
$$

Similarly, $\mu_{2}=\lambda$, or $\mu_{1}=\mu_{2}=\lambda \ldots(5 b)$
Thus $\mu_{i}(i=1,2)$ are the required rates of growth of outputs in two sectors if the balanced growth of inputs is to be maintained. μ_{i} depend on the values of different elasticities. In the particular case of constant returns to scale, the two warranted rates of growth of outputs arc equal to each other and equal each to the rate of inputs' growth. In the general case, these rates of growth of outputs are unequal to each other and to the rate of growth of inputs, ie., $\mu_{1} \neq \mu_{2} \neq \lambda$ (sa).

(2) Many-factor case

Let us now consider the case of many factors, l_{i} and $s_{i}(i=1,2)$ in the two sectors, when there exist static WE. The production functions are:

$$
\begin{align*}
& x_{1}=x_{1}\left[I_{1}(t), s_{1}(t), x_{2}(t)\right] \tag{6}\\
& x_{2}=x_{2}\left[I_{2}(t), s_{2}(t), x_{1}(t)\right]
\end{align*}
$$

The proportional rates of outputs growth are:

$$
\begin{aligned}
& \frac{\dot{x}_{1}}{x_{1}}=\frac{\partial x_{1}}{\partial l_{1}} \frac{\dot{l}_{1}}{x_{1}}+\frac{\partial x_{1}}{\partial_{s_{1}}} \frac{s}{x_{1}}+\frac{\partial x_{1}}{\partial x_{2}} \frac{\dot{x}_{2}}{x_{1}} \\
& \frac{\dot{x}_{2}}{x_{2}}=\frac{\partial x_{2}}{\partial l_{2}} \frac{\dot{l}_{2}}{x_{2}}+\frac{\partial x_{2}}{\partial_{s_{2}}} \frac{\dot{s}_{2}}{x_{2}}+\frac{\partial x_{2}}{\partial x_{1}} \frac{\dot{x}_{1}}{x_{2}}
\end{aligned}
$$

or, in elasticity forms,

$$
\begin{aligned}
\mu_{1}= & \eta_{x_{1} I_{1}} \lambda_{i}+\eta_{x_{1}} s_{1} \gamma_{1}+\eta_{x_{1} x_{2} \mu_{2}} \\
\mu_{2}= & \eta_{x_{2} I_{2}} \lambda_{2}+\eta_{x_{2} s_{2}} \gamma_{2}+\eta_{x_{2} x_{1} \mu_{1}} \quad . \quad . \quad(6 a) \\
& \text { where } \mu_{i}=\frac{\dot{x}_{i}}{x_{i}} ; \quad \lambda_{i}=\frac{i_{j}}{\frac{i}{L}} ; \quad \gamma_{i}=\frac{s_{i}}{s_{i}} \quad(i=1,2)
\end{aligned}
$$

(a) Balanced growth of all inputs, i.c., $\lambda_{i}=\gamma_{i}=\lambda$ (= constant)

If we want all inputs to grow at a balanced rate, which, although actually a function of tine, is assumed, for simplicity, to be a constant (λ) over tine. Equation ($6 a$) now becomes:

$$
\begin{align*}
& \mu_{1}-\eta_{x_{1} x_{2} \mu_{2}}=\lambda\left(\eta_{x_{1} s_{1}}+\eta_{x_{1} I_{1}}\right) \\
& \mu_{2}-\eta_{x_{2} x_{1} \mu_{1}}=\lambda\left(\eta_{x_{2} s_{2}}+\eta_{x_{2} I_{2}}\right) \tag{7}
\end{align*}
$$

Solving,

$$
\mu_{1}=\frac{\lambda\left[\eta_{x_{1} s_{1}}+\eta_{x_{1} I_{1}}+\eta_{x_{1} x_{2}}\left(\eta_{x_{2} s_{2}}+\eta_{x_{2} I_{2}}\right)\right]}{1-\eta_{x_{1} x_{2}} \eta_{x_{2} x_{1}}}
$$

and

$$
\begin{equation*}
\mu_{2}=\frac{\lambda\left[\eta_{x_{2}} \dot{\mu}_{2}+\eta_{x_{2} I_{2}}+\eta_{x_{2}} x_{1}\left(\eta_{x_{1} s_{1}}+\eta_{x_{1} I_{1}}\right)\right]}{1-\eta_{x_{1} x_{2}} \eta_{x_{2} x_{1}}} \tag{7a}
\end{equation*}
$$

In the particular case of constant returns to scale in both sectors, ie., (6) are homogeneous of degree one in all their arguments, replacing $\eta_{x_{1}} s_{1}+\eta_{x_{1}} 1_{1}$ by $1-\eta_{x_{1} x_{2}}$ and $\eta_{x_{1}} s_{2}+\eta_{x_{2}} 1_{2}$ by $1-\eta_{x_{2}} x_{1}$ in (Ta) gives:

$$
\begin{aligned}
& \mu_{1}=\lambda \\
& \mu_{2}=\lambda
\end{aligned}
$$

$$
\begin{equation*}
\text { or } \mu_{1}=\mu_{2}=\lambda \tag{Tb}
\end{equation*}
$$

So if we want to maintain balanced growth of all inputs, i.e., $\lambda_{i}=\gamma_{i}$ where EE are present, the required rates of growth of outputs are given by μ_{1} and μ_{2} in (7a). Put in another way, if factors' supply in a country grow at a balanced rate, then the rates of growth of outputs we could obtain are μ_{1} and μ_{2} in (Fa). These μ_{i} depend on the value of different elasticities, and are usually unequal to each other, but proportional to the rate of growth of inputs. Only in the particular case of constant returns to scale are the two outputs required to grow at the same rate which is equal to that of inputs, ie., $\|_{1}=\mu_{2}=\lambda$ in (Tb). These results could be verified by using the production functions of the forms:

$$
\begin{aligned}
& x_{1}=I_{1} \alpha_{1} s_{1} \alpha_{2} x_{2}^{\alpha}{ }_{3} \\
& x_{2}=I_{2}^{\beta} 1 s_{2} \beta_{2} x_{1} \beta_{3}
\end{aligned}
$$

with $a_{1}+a_{2}+a_{3} \neq 1$ and

$$
\beta_{1}+\beta_{2}^{2}+\beta_{3}^{3} \neq 1 \text { in the general case, }
$$

and $\alpha_{1}+\alpha_{2}+\alpha_{3}=\beta_{1}+\beta_{2}+\beta_{3}=1$ in the case of constant returns to scale. The results could be obtained by simply replacing $\begin{array}{lllll}\eta_{x_{1} 1_{1}} \text { by } \alpha_{1} ; & \eta_{x_{1} s_{1}} \text { by } \alpha_{2} ; & \eta_{x_{1} x_{2}} \text { by } \alpha_{3} \\ \eta_{x_{2} I_{2}} \text { by } \beta_{1} ; & \eta_{x_{2} s_{2}} \text { by } \beta_{2} ; & \eta_{x_{2} x_{1}} \text { by } \beta_{3}, \text { in (7a): }\end{array}$

$$
\mu_{1}=\frac{\lambda\left[\alpha_{1}+\alpha_{2}+\alpha_{3}\left(\beta_{2}+\beta_{1}\right)\right]}{1-\alpha_{3} \beta_{3}}
$$

$$
\mu_{2}=\frac{\lambda\left[\beta_{2}+\beta_{1}+\beta_{3}\left(\alpha_{2}+\alpha_{1}\right)\right]}{1-\alpha_{3} \beta_{3}}
$$

fo the general case, and remembering that $\alpha_{1}+\alpha_{2}+\alpha_{3}=\beta_{1}+{ }_{2}+\beta_{3}=1$
where x_{1} and x_{2} are homogeneous of degree one,

$$
\mu_{1}=\frac{\lambda\left[1-\alpha_{3}+\alpha_{3}\left(1-\beta_{3}\right)\right]}{1-\alpha_{3} \beta_{3}}=\frac{\lambda\left(1-\alpha_{3} \beta_{3}\right)}{1-\alpha_{3} \beta_{3}}=\lambda
$$

and similarly, $\mu_{2}=\lambda$
for the case of constant returns to scale.
(b) Balanced growth of each input in both sectors,

$$
\text { i.e., } \frac{\dot{i}_{i}}{I_{i}}=\lambda \quad ; \quad \frac{\dot{s}_{i}}{s_{i}}=\gamma ; \text { and } \lambda \neq \gamma \quad(i=1,2)
$$

Equation (ba) now becomes

$$
\begin{aligned}
& \mu_{1}-\eta_{x_{1} x_{2} \mu_{2}}=\eta_{x_{1} 1_{1} \lambda}+\eta_{x_{1} s_{1} \gamma} \\
& -\eta_{x_{2} x_{1} \mu_{1}}+\mu_{2}=\eta_{x_{2} 1_{2}} \lambda+\eta_{x_{2} s_{2} \gamma} \cdot \cdot \\
& \eta_{x_{1} 1_{1}} \lambda+\eta_{x_{1} s_{1} y} \quad-\eta_{x_{1} x_{2}} \\
& \mu_{1}=\frac{\eta_{x_{2}} I_{2} \lambda+\eta_{x_{2} s_{2}} \gamma}{-\eta_{x_{2} x_{1}}^{1}} \frac{1}{-\eta_{x_{1} x_{2}}}=\frac{\lambda\left(\eta_{x_{1}} I_{1}+\eta_{x_{1}} x_{2}\right.}{1} \\
& =\frac{\lambda\left(\eta_{x_{1} I_{1}}+\eta_{x_{1} x_{2}} \eta_{x_{2}} I_{2}\right)+\gamma\left(\eta_{x_{1} s_{1}}+\eta_{x_{1} x_{2}}\right)}{1-\eta_{x_{1} x_{2}} \eta_{x_{2} x_{1}}} \\
& \mu_{2}=\frac{\lambda\left(\eta_{x_{2} I_{2}}+\eta_{x_{2} x_{1}} \eta_{x_{1} I_{1}}\right)+\gamma\left(\eta_{x_{2} s_{2}}+\eta_{x_{2} x_{1}} \eta_{x_{1} s_{1}}\right)}{1-\eta_{x_{1} x_{2}} \eta_{x_{2} x_{1}} \ldots \ldots(8 a)}
\end{aligned}
$$

Similarly,

Thus, when inputs grow at different rates, but each input grows at the same rate in each of the two sectors in which EE appear, outputs must grow at different rates, (i.c., $\mu_{1} \neq \mu_{2} \neq \lambda \neq \gamma$); insisting on balanced growth is advocating the impossible.
(c) Balanced growth of outputs (i.e., $\mu_{1}=\mu_{2}=\mu$ constant)

If inputs grow at different rates, but the same input used in one sector grows at the same rate as the same input in the other sector, i.e., $\frac{\dot{1}_{i}}{1_{i}}=\lambda ; \quad \frac{s_{i}}{s_{i}}=\gamma, \quad$ equation (6 a) becomes:

$$
\begin{aligned}
& \eta_{x_{1} 1_{1}} \lambda+\eta_{x_{1} s_{1} y}=\mu\left(1-\eta_{x_{1} x_{2}}\right) \\
& \eta_{x_{2} I_{2}} \lambda+\eta_{x_{2} s_{2}}=\mu\left(1-\eta_{x_{2} x_{1}}\right) \ldots(9)
\end{aligned}
$$

Solving,

$$
\begin{aligned}
& \lambda=\frac{\mu\left[\eta_{x_{2} s_{2}}\left(1-\eta_{x_{1} x_{2}}\right)-\eta_{x_{1} s_{1}}\left(1-\eta_{x_{2} x_{1}}\right)\right]}{\eta_{x_{1} 1} \eta_{x_{2}} n_{2}-\eta_{x_{2} 1_{2}} \eta_{x_{1} s_{1}}} \\
& \gamma=\frac{\mu\left[\eta_{x_{1} 1_{1}}\left(1-\eta_{x_{2} x_{1}}\right)-\eta_{x_{2} 1_{2}}\left(1-\eta_{x_{1} x_{2}}\right)\right]}{\eta_{x_{1} 1_{1}} \eta_{x_{2} s_{2}}-\eta_{x_{2} 1_{2}} \eta_{x_{1} s_{1}}} \ldots(9 a)
\end{aligned}
$$

If (Ga) is homogeneous of degree one with respect to all their arguments, ie., constant returns to scale prevail in both sectors, replacing $1-\eta_{x_{1} x_{2}}$ by $\eta_{x_{1} I_{1}}+\eta_{x_{1} s_{1}}$; and $1-\eta_{x_{2} x_{1}}$ by $\eta_{x_{2} I_{2}}+\eta_{x_{2} s_{2}}$ into (9) gives:

$$
\begin{align*}
\lambda & =\mu \\
\gamma & =\mu \\
\text { or, } \lambda & =\gamma=\mu \tag{gb}
\end{align*}
$$

ie., if outputs are to grow at a balanced rate, inputs do not have to grow at the same rate, nor does either one have to grow at the same rate as outputs' growth rate, except in the special case of constant returns to scale (gb). The rate of input growth are proportional to the balanced rate of growth of outputs, and their magnitude depends on various elasticities.

II. DYNAMIC EXTERNAL ECONOMIES

We now turn to the problem of balanced growth when dynamic EF exist. Output in one sector is now dependent, among other factors, on the rate of change of output produced, or factors used, in the other sector. Only the case of one factor of production under the conditions of output-generated dynamic EE will be examined here. The generalisation of the results to the many-factor case is left to the reader.

Consider the two production functions

$$
\begin{aligned}
x_{1}= & x_{1}\left(1_{1}, \dot{x}_{2}\right) \\
x_{2}= & x_{2}\left(1_{2}, \dot{x}_{1}\right) \quad \ldots . .(10) \\
& \text { where } x_{i}, l_{i} \text { are outputs and factors, } \\
& \dot{x}_{i}=\frac{d x_{i}}{d t} \quad \text { etc..., } t=\text { time, } i=1,2
\end{aligned}
$$

The proportional rates of growth of outputs are:

$$
\begin{aligned}
& \frac{\dot{x}_{1}}{x_{1}}=\frac{\partial x_{1}}{\partial I_{1}} \frac{\dot{I}_{1}}{x_{1}}+\frac{\partial x_{1}}{\partial \dot{x}_{2}} \frac{\ddot{x}_{2}}{x_{1}} \\
& \frac{\dot{x}_{2}}{\dot{x}_{2}}=\frac{\partial x_{2}}{\partial l_{2}} \frac{\dot{l}_{2}}{x_{2}}+\frac{\partial x_{2}}{\partial \dot{x}_{1}} \frac{\ddot{x}_{1}}{x_{2}} \cdots \cdot(10 a)
\end{aligned}
$$

If the rates of growth of outputs are a constant over time, and we assume they are, for simplicity, ice., $\frac{\dot{x}_{i}}{\mathbf{x}_{i}}=\mu$ (constant),

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\dot{x}_{i}}{x_{i}}\right)=\frac{\ddot{x}_{i} \ddot{x}_{i}-\dot{x}_{i}^{2}}{x_{i}^{2}}= 0 \\
& \quad \ddot{x}_{i} \\
& \quad \text { i.e., } \frac{\dot{x}_{i}}{\dot{x}_{i}}=\frac{\dot{x}_{i}}{x_{i}}=\mu .
\end{aligned}
$$

Substituting this into (10a), putting $\frac{\dot{x}_{i}}{x_{i}}=\mu$ and $\frac{l_{i}}{l_{i}}=\lambda_{i}$ gives, in elasticity forms:

$$
\begin{align*}
& \mu_{1}=\eta_{x_{1} 1_{1} \lambda_{1}}+\eta_{x_{1}} \dot{x}_{2} \mu_{2} \tag{10b}\\
& \mu_{2}=\eta_{x_{2} I_{2}} \lambda_{2}+\eta_{x_{2}} \dot{x}_{1} \mu_{1}
\end{align*}
$$

(a) Balanced Growth of Outputs, (ice., $\frac{\dot{x}_{i}}{x_{i}}=\mu, i=1,2$)

Equations 10b now become:

$$
\begin{aligned}
& \mu=\eta_{x_{1} I_{1} \lambda_{1}}+\eta_{x_{1}} \dot{x}_{2} \mu \\
& \mu=\eta_{x_{2} I_{2}} \lambda_{2}+\eta_{x_{2} x_{1} \mu} \cdot \cdot(10 c) \\
& \lambda_{1}=\frac{\mu\left(1-\eta_{x_{1}} \dot{x}_{2}\right)}{\eta_{x_{1} I_{1}}} \\
& \lambda_{2}=\frac{\mu\left(1-\eta_{x_{2}} \dot{x}_{1}\right)}{\eta_{x_{2} I_{2}}} \quad . \cdot \cdot(10 d)
\end{aligned}
$$

Soving,
where η stands for elasticity, eeg., $\eta_{x_{1} \dot{x}_{2}}=\frac{\partial x_{1} \dot{x}_{2}}{\partial \dot{x}_{2}}$

Thus, λ_{1} and λ_{2} in (10d) are the required rates of growth of inputs to ensure the balanced growth of outputs, when dynamic EE prevail in both sectors. If $\eta_{X_{1}} \dot{x}_{2}=\eta_{x_{2}} \dot{x}_{1}=1$, balanced growth breaks down: outputs would have to grow at an infinite rate ($\mu=$) and inputs would not have to grow at all (ic., $\lambda_{i}=0$).

This could be verified by giving (10) a form of, say,

$$
\begin{array}{ll}
x_{1}=1_{1}^{\alpha}\left(\dot{x}_{2}\right)^{\beta} & \text { or, } \frac{\dot{x}_{1}}{x_{1}}=\alpha_{1} \frac{\dot{l}_{1}}{l_{1}}+\beta_{1} \frac{\ddot{x}_{2}}{\dot{x}_{2}} \\
x_{2}=I_{2}^{\alpha_{2}}\left(\dot{x}_{1}\right)_{2}^{\beta} & \text { or, } \frac{\dot{x}_{2}}{x_{2}}=\alpha_{2} \frac{\dot{l}_{2}}{l_{2}}+\beta_{2} \frac{\ddot{x}_{1}}{x_{1}}
\end{array}
$$

For $\frac{\dot{x}_{i}}{x_{i}}=\mu$ constant, $(i=1,2), \frac{\ddot{x}_{i}}{\dot{x}_{i}}=\frac{\dot{x}_{i}}{x_{i}}=\mu, \operatorname{putting} \frac{\dot{1}_{i}}{l_{i}}=\lambda_{i}$ gives:

$$
\mu=\frac{\alpha_{1}}{1-\beta_{1}} \lambda_{\phi}=\frac{\alpha_{2}}{1-\beta_{2}} \lambda_{2}^{1}
$$

When $\beta_{i}=1$, only zero balanced growth is possible.
(b) Balanced Growth of inputs (ic., $\frac{\dot{l}_{i}}{l_{i}}=\lambda, \quad i=1,2$)

If inputs grow at the same rate λ in both sectors, (10b) would become:

$$
\begin{align*}
& \mu_{1}-\eta_{x_{1}} \dot{x}_{2} \mu_{2}=\eta_{x_{1} I_{1}} \lambda \\
& \mu_{2}-\eta_{x_{2} x_{1} \mu_{1}}=\eta_{x_{2} I_{2}} \lambda \tag{11}
\end{align*}
$$

Solving,

$$
\begin{aligned}
\mu_{1} & =\frac{\lambda\left(\eta_{x_{1} I_{1}}+\eta_{x_{1}} \dot{x}_{2} \eta_{x_{2}} I_{2}\right)}{1-\eta_{x_{1} \dot{x}_{2}} \eta_{x_{2}} \dot{x}_{1}} \\
\mu_{2} & =\frac{\lambda\left(\eta_{x_{1} I_{2}}+\eta_{x_{1} I_{1}} \eta_{x_{2}} \dot{x}_{1}\right)}{1-\eta_{x_{1}} \dot{x}_{2} \eta_{x_{2}} \dot{x}_{1}} \cdots \cdots(11 a)
\end{aligned}
$$

This could be verified by giving to (10) a form of, say,

$$
\begin{aligned}
& x_{1}=I_{1}^{\alpha}\left(\dot{x}_{2}\right)^{\beta} \\
& x_{2}=I_{2}^{\alpha} 2\left(\dot{x}_{1}\right)^{\beta} \\
& \mu_{1}=a_{1} \lambda+\beta_{1} \mu_{2} \\
& \mu_{2}=\alpha_{2} \lambda+\beta_{2} \mu_{1}
\end{aligned}
$$

for $\frac{\dot{I}_{i}}{l_{i}}=\lambda$,

Solving,

$$
\begin{aligned}
& \mu_{1}=\frac{\lambda\left(\alpha_{1}+\alpha_{2} \beta_{1}\right)}{1-\beta_{1} \beta_{2}} \\
& \mu_{2}=\frac{\lambda\left(\alpha_{2}+\alpha_{1} \beta_{2}\right.}{1-\beta_{1} \beta_{2}}
\end{aligned}
$$

Thus, if inputs grow at a balanced rate, the required rates of output growth are given in (11a). They are not equal to each other, and are both proportional to the rate of inputs' growth.

In the special cases where $\eta_{x_{1}} 1_{1}=-\eta_{x_{1}} \dot{x}_{2} \eta_{x_{2} I_{2}}, \mu_{1}=0$; and $\eta_{x_{2} I_{2}}=-\eta_{x_{1}} I_{1} \eta_{x_{2}} \dot{x}_{1}, \mu_{2}=0$, that is, only zero balanced growth is possible.

If $\eta_{x_{1}} \dot{x}_{2} \eta_{x_{2}} \dot{x}_{1}=1, \mu_{i}=$ and $\lambda=0$, i.e., outputs would have to grow at an infinite ratc and inputs do not have to grow at all: Balanced growth is doomed to break down.

DESIRABIIITY OF BALANCED GROWTH

So far, we have examined the technical possibility of Balanced Growth. We have seen the rates of growth of inputs required to ensure balanced growth of outputs in different casos. Similarly, we have seen the different rates of growth of outputs compatible with the given balanced growth of inputs. We have also examined the casos wherc balanced growth is bound to break down.

But the techntcal possibility, wherc it exists, of balanced growth is no guarantec that balanced growth will necessarily occur. In other words, even where balanced growth is technically feasible, it may not be desired by enterpreneurs who may find it unprofitable in the absence of subsidies. We now propose to examine the conditions of desirability of balanced growth.

Common sense tells us that for investment to be desirable, entrepreneurs must be able to dispose of their products profitably, i.e., there must be demand for their products. This scems to suggest that for balanced growth of outputs to be willingly undertaken, when it is technically possible, there must be balanced growth of demand, i.e., if $\frac{\dot{x}_{i}}{x_{i}}=\mu$, we must have $\frac{d_{i}}{d_{i}}=\mu$ (23)
(where $d_{i}=$ demand $(i=1,2)$ for outputs x_{1} and x_{2}) for investment in x_{i} to be undertaken by entrepreneurs having accurate foresight. We shall examine the conditions required to bring the rates of growth of d_{i} into line with μ, in the case consumers do not want to take up all x_{1} and x_{2} produced.

Thus, wo require domand to have a balanced rate of growth to keep in line with production, i.e., $\frac{d_{1}}{d_{2}}=\theta=$ constant over time, and we study the conditions required to bring this about.

The demand functions may be written in the usual way as dependent on price and income, eeg.,

$$
\begin{aligned}
d_{2}=(p+\theta) \alpha_{y}^{\beta} & \cdots \cdot . .(24) \\
\text { (where } y=\text { income, i.o., } y & =d_{1}+p d_{2} \\
& =(p+\theta) d_{2}
\end{aligned}
$$

and price p is in terms of the first commodity, ie., $p=\frac{p_{2}}{p_{1}}$) Thus $(p+\theta)$ is price in terms of p_{1}, with a new origin wo find convenient to introduce. Demand for x_{1} is written by way of residual

$$
\begin{aligned}
& d_{1}=y-p d_{2} \ldots \ldots(25) \\
& d_{2}=(p+\theta)^{\alpha_{y}^{\beta}}, \text { replacing } y \text { by }(p+\theta) d_{2}, \\
&=(p+\theta)^{\alpha_{d} \beta}(p+\theta)^{\beta} \\
&=(p+\theta)^{\alpha+\beta} d_{2}^{\beta} \\
& \therefore(p+\theta)^{\frac{\alpha+\beta}{1-\beta}}
\end{aligned}
$$

The rate of change of d_{2} is:

$$
\dot{\mathrm{d}}_{2}=\frac{\alpha+\beta}{1-\beta}(p+\theta)^{\frac{\alpha+\beta}{1-\beta}-1} \cdot(\dot{p}+\dot{\theta})
$$

And the proportional rate of change of d_{2} over time, (remembering that θ is a constant and $\dot{\theta}=0$), is:

$$
\frac{\dot{d}_{2}}{d_{2}}=\frac{\dot{p} \frac{\alpha+\beta}{1-\beta}(p+\theta)^{\frac{\alpha+\beta}{1-\beta}-1}}{(p+\theta)^{\frac{\alpha+\beta}{1-\beta}}}
$$

$$
\begin{align*}
& =\frac{\alpha+R}{1-\beta} \frac{\dot{p}}{p+\theta} \quad \cdots \cdots(26) \tag{26}\\
\text { or } \quad \frac{\dot{p}}{p+\theta} & =\frac{\dot{d}_{2}}{d_{2}} \frac{1-\beta}{\alpha+\beta} \cdots \cdot . .(27) \\
& =\mu_{2} \frac{1}{\alpha+\beta} \quad \text { where } \mu_{i}=\frac{\dot{d} i}{d_{i}}, \quad(i=1,2)
\end{align*}
$$

Similarly,

$$
\begin{aligned}
\mathrm{d}_{1} & =\mathrm{y}-\mathrm{pd} \\
& =\theta \mathrm{d}_{2} \\
& =\theta(p+\theta)^{\frac{\alpha+\beta}{1-\beta}}
\end{aligned}
$$

The proportional rate of growth of demand for x_{1} thus is:

$$
\begin{align*}
& \frac{\dot{d}_{1}}{d_{1}}=\frac{\frac{\alpha+\beta}{1-\beta} \theta(p+\theta)^{\frac{\alpha+\beta}{1-\beta}-1}}{\theta(p+\theta)^{\frac{\alpha}{1-\beta}}} \\
&=\frac{\alpha+\beta}{1-\beta} \frac{\dot{p}}{p+\theta} \tag{28}\\
&+\theta=\mu_{1} \frac{1-\beta}{\alpha+\beta} \quad \ldots \\
& \quad \therefore \mu_{1}=\mu_{2}=\mu
\end{align*}
$$

or $\frac{\dot{p}}{p+\theta}=\mu_{1} \frac{1-\beta}{\alpha+\beta}$
ie., demand for the two products must grow at the same rate as outputs.

For this to eventuate when people are reluctant to allocate all additional income on the expenditure of the commodities, in the proportion in which they are produced, ${ }^{i}$.e., when the income elasticity of demand is different from unity, in other words, when the marginal propensity to consume is different from the average propensity, a change in relative prices is a condition "sine qua non" to ensure balanced growth of outputs and of demands. The rate of change of relative prices required is given in (27) and (29).

I now examine the implications of assuming different values for price- and income-elasticities, ic., for α and β in (27) and (29).

Case (a)

$$
\begin{aligned}
& \alpha=-1 \\
& \frac{\dot{p}}{p^{*}}=\mu \frac{1-\beta}{\beta-1}=-\mu \\
& \text { where } p^{*}=p+\theta, \text { i.c., price with a new origin. }
\end{aligned}
$$

Case (b) $\quad \alpha=0$

$$
\frac{\dot{p}}{p^{*}}=\frac{1-\beta}{\beta} \mu
$$

Case (c) $\quad \alpha=\infty, \quad \frac{\dot{p}}{p^{*}}=0$
Case (d) $\quad-\infty<\alpha<-1$

$$
\text { Put } \alpha=-1-e \text { with } e>0
$$

$$
\begin{aligned}
\frac{\dot{p}}{p^{*}} & =\frac{1}{\mu}\left(\frac{-1+\beta-\varepsilon}{1-\beta}\right) \\
& =\frac{1}{\mu}\left(-1-\frac{\varepsilon}{1-\beta}\right)
\end{aligned}
$$

So $\frac{\dot{p}}{p^{*}}<0$ if $\beta<0$ and $\mu>0$ and $\frac{\dot{p}}{p^{*}} \Rightarrow 0$ if $\beta<-\alpha$ and $\mu>0$.

Case (c) $\quad \beta=1, \quad \frac{\dot{p}}{p^{*}}=0$
Case (f) $\quad \beta>1$ and $-\infty \leq \alpha \leq 0$

$$
0 \leq 8 \leq \infty
$$

(i) If $/ \alpha /</ \beta /, \frac{\dot{p}}{p^{*}}<0$
(ii) If $/ \alpha />/ 8 /, \frac{\dot{p}}{p^{*}}>0$

Case (g) $\quad \beta<1$

$$
\begin{array}{ll}
\frac{\dot{p}}{p^{*}}>0 & \text { for } / a /</ B / \\
\frac{\dot{p}}{p^{*}}<0 & \text { for } / a />/ B /
\end{array}
$$

Cast (h) $\quad B=0$

$$
\frac{\dot{p}}{p^{*}}=\frac{\mu}{\alpha} \gtrless 0 \text { depending on whether } \alpha \geqslant 0
$$

Case (i) $\quad / \alpha /=/ B /$

$$
\begin{aligned}
& \frac{p}{p^{*}}=+\infty \text { if } p<1 \\
& \frac{p}{p^{*}}=-\infty \text { if } B>1 \\
& \frac{p}{p^{*}}=\text { indeterminate if } R=1
\end{aligned}
$$

Limits of $\frac{\dot{p}}{p^{*}}$ as t tends to infinity and zero

$$
\gamma=\frac{\dot{p}+\theta}{p+\theta} \text { where } \theta=\text { constant, } \dot{\theta}=0 \text {, could be }
$$

written as:

$$
\begin{array}{ll}
\dot{p}-\gamma_{p}=\nu \theta, & \text { whose solution is } \\
p=A e^{\gamma t}-\theta & \text { where } A \text { is an arbitrary constant. }
\end{array}
$$

With the initial condition at $t=0$,

$$
p_{0}=A-\theta, \text { or } A=p_{0}+\theta
$$

The general solution of this differential equation is

$$
p(t)=\left(p_{0}+\theta\right) e^{\gamma t}-\theta \ldots \ldots(30)
$$

The proportional rate of change of relative price is:

$$
\frac{\dot{p}}{p}=\frac{\left(p_{0}+\theta\right) v e^{v t}}{\left(p_{0}+\theta\right) e^{\gamma t}-\theta}
$$

which is, by division of
fraction,

$$
=\frac{y 0}{\left(p_{0}+\theta\right) e^{\gamma t}-\theta}+\gamma
$$

Thus, if (1) $\quad \gamma<0$ and t tends to $\alpha_{3}\left(p_{0}+\theta\right) e^{\gamma t}$ tends to 0

$$
\begin{gathered}
\frac{\dot{p}}{p} \rightarrow \gamma+\frac{v \theta}{0-0} \longrightarrow 0 \\
\text { If } \gamma<0 \quad \text { and } t \rightarrow 0 \\
\frac{\dot{p}}{p} \longrightarrow \gamma+\frac{\gamma 0}{p_{0}+\theta-0} \longrightarrow \gamma+\frac{\gamma \theta}{p_{0}} \longrightarrow \gamma\left(1+\frac{\theta}{p_{0}}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \text { if (2) } \quad \gamma>0 \text { and } t \rightarrow \infty \\
& \frac{\dot{p}}{p} \rightarrow \gamma+\frac{\gamma \theta}{\infty-\theta} \longrightarrow \gamma \\
& \text { If } \gamma>0 \text { and } t \rightarrow 0 \\
& \frac{\dot{p}}{p} \longrightarrow \gamma+\frac{\gamma \theta}{-\theta} \longrightarrow 0 \text {. }
\end{aligned}
$$

This result could bo shown in figures 17 (for $\gamma>0$) and 18 (for $\vee<0$) or, alternatively, for $\gamma>0$ and $t \rightarrow \infty$, we may write $\frac{\dot{p}}{p} \rightarrow \gamma$ as $p \rightarrow \gamma p$ and consider γ as a slope of that linearised function; similarly, $\quad \dot{p}=\gamma\left(1+\frac{\theta}{p_{0}}\right)_{p}$

fig. 19

fig. 20

Some conclusions emerge from the above analysis: For balanced growth of outputs to be desirable, even when technical conditions of production are all fulfilled, demand must grow at the same rate as outputs. However, in a free socioty, there is no guarantee that consumers would gear their consumption pattorn to the rate of growth output. Domand is a matter of taste, determined by consumers' sovereignty in their utility maximization. This taste changes over time at different rates. As the community grows richer, the consumption of food and necessaries seem to grow at a slower rate than that of other items; in other words, income olasticity of demand for food is loss than unity. Similarly, consumers respond differently to changes in relative prices, depending on whether the comodity the
price of which falls, is a superior or inferior good.

The different cases above show the rate at wich relative orices must ciave, in order to oring deand into line with outputs ali the time. If the comodity is not prepared to take up everythin: that has been produce , then the price of the unwanted comority must fall relatively to other prices, to an extent sufficiert for it to be cleared. Case (c) for example, shows that if de and is infinitely price elastic, relative prices do not have to c an e in order to brin: balanced growti of outputs ane deman into lino with each other. Case (e) means trat if the i cone elasticity of de and is unity, i.e. nar ial propensity to co:suae equals avere e propensity to consume, no chan e in relative rices is "eede" to bring about the deland conditions of baluced rowth. This could be seen in fi . 21 where A

is the i itial oint of equilibrium between the sumpy of, and denand for, the two cou orities. Balancec rebr of out reans that t : a nous of all roduction pints $A, B, C . .$. is a straight line goin t rou h origin O, and the tan ents to the relevant transforation curves at A, B, C are all parillel, i.e. the ar,inal rete of transformation reans unchanfed as outputs srow. Malaces rowth of deland in lies that the locus of all relevant points of consumers' preferred position A, B, C on the indifference curves I, II, II (fig.2I) is also a straj ht line going thro h orizin $0, a: 3$ the tarsents to thase indifference curves at $A B, C$ etc... \quad all arallel to one another. Balanced rowth of outout aind deand terefore i ies that these two loci
in fact coincide with each other, and the tan ents to the vrious prodection possibi ities curves (measurin the rarginal rate of transformation) also coincide with the tancents to the various indifference curves (neasuino the mar inal rate of substitution). These tangents also neasure the equiliorium relative \quad rice p which, as can be seer, roes not have to change. That is the case where $\frac{p}{p}=0$.

In case (a) where price elasticity of derand is -1 , the pronortional rate of chance of relative prices and dewand vary inversely in exactly the same pronortions, when relative price falls, relative de and rises in the same proportions.

Simi'arly, the reain ne cases show, for different values of incme and price elasticities, the required rate of orice changes to nake balanced growth of desirable outputs.

It is hoped that the above analysis sheds some li, ht on the pro: e : of balanced srowth and helps remove so dombts about the roble: Thus when J. \quad. ave present, balanced rowth is possible in one cases, inoossible in so i e others. The conditions necessary to brin: about balanced rowth have been soelled out, and it is easy to see that, unless these conditions are fulfilled, balanced growth is just a chinera. The conditions of technical possibility of balanced growth mitht shed so:e lisht on both cases of "co:nlementary" (Nurkse) an" "co petitive" (Flening) relationsaips between industries. In the absence of technolo ical rogress, insistin on balanced rrowth of outputs where inouts do not grow at the required rate, is asking the impos ible: a "competitive" relationship develops. Like all necessary concitions, the technically necessary coditions of balanced rowth are no ouarartee that it ust occur: an an ropriate rate of deand srowth is also required, if subsidies are not to be used. Tnat is partly Lewis' case in reverse (ll.) Lewis let deand growth

set the vace and rears the rate of output growth to it. I let outputs grow at a balanced rate and eear the growth rate of deaand to it, by apororiate chanes in relative prices. But there are li its within which this chans can "do the tick": if foodstuff is to grow at a given rate, there is little the chanse in relative prices can do, to make people eat it all up: price -, and inco e elasticities are both important considerations. These cases of elasticitios have been studied in detail above.

Chapter VII

SUMMARY AND CONCLUSION

This thesis is an exercise in the classification of EE with some applications to economic theory. It is hoped that the classification has served to spell out more fully a concept which is so often heard of, amd which nevertheless, has remained rather vague. The few applications are intended to clarify such controversial issues as the Marginal Theory of Distribution, the allocation of resources, the choice of Investment Techniques and the problem of Balanced Growth, in a framework where EE are present.

Thus, the complete exhaustion of product, which is the core of the Marginal Theory of Distribution, has been shown to eventuate only in some particular cases. Where outputs are not produced under conditions of constant returns to scale, and there are EF, the payment to factors according to their social marginal product cannot exhaust social output (see chapter III).

The study of the problem of resources allocation has shown that EE cause the divergence between social and private values. Competitive allocation guided by the criterion of individual profit maximization and based on private values, falls short of (exceeds) the social optimun figures, when $E E$ (diseconomies) are present. This proves the validity of the Marshall-Pigou argument that Government interference is needed to bring about Pareto optimality and save free competition at once (chapter IV).

As far as the problen of Investment Techniques is concerned, it has been shown that, EE causing divergence between private and social values, adherence to private marginal conditions (i.e., equating the value of labour's marginal product with real wages, leading to the choice of a capital intensive technique, or taking on labour till the value of its marginal product is zero, leading to the choico of labour intensive technique) may both result in
a wrong choice of technique. Where there are no externalities, social and private values coincide, but when an Investment Technique generates $E E$, its private values understate its soicial merit. The choice is thus to be made according to these social values, in the light of an overall picture. It is easy to see that the choice thus made. would be different from the one actually made in the light of private values. Again, as these EE are not appropriable, taxes and subsidies are needed for the right choice to be made, by private investors.

The chppter on Balanced growth is intended to help clarify a controversial issue. It has shown the necessary and sufficient conditions of balanced growth where there are EE. These conditions cut right through the condusion which has led R. Nurkse ${ }^{1}$ to advocate the simultaneous development of all sectors as a means of providing market for one anothe's product; and Fleming ${ }^{2}$, P. Streeten ${ }^{3}$ to conclude that the reverse is recommendable. In fact, it is easy to see that R. Nurkse ${ }^{1}$ after A. Young and Rosenstein-Rodan ${ }^{5}$; overconcentrating attention on the demand side, only saw "complementary relationship" in balanced growth, while M. Fleming ${ }^{2}$, absorbed with the supply side, only saw "competitive relationship". In fact, in Marshall's terminology, the cutting is effected by both the upper and lower blades of a pair of scissors: Our necessary conditions state the feasibility or otherwise of balanced growth, and our "desirability" condition (chapter VI) examine Nurkse's complementary relations in detail, and in addition, the conditions necessary (changes in relative price) to turm "non-complementarity" into complementarity.

[^0]In the study of the "feasibility" conditions, a subproblem emerges for future investigation: Where EE are present, if inputs - do not grow at the rate required to have balanced output growth, what rate of factor substitution would be required in order to ensure balanced output growth. The problem may be formulated as follows:
Condition (a): Unbalanced input growth, ie.,

$$
\frac{\dot{1}}{I}=\lambda \quad \text { and } \quad \frac{\dot{s}}{s}=\gamma \quad \cdots(a)
$$

where λ and γ are two constants different from each other.

Condition (b) : Efficiency (i.e., full employment) growth, obtained by maximization of output $x_{2}=I_{2}^{\alpha_{2}} s_{2}^{\beta} x_{1}^{\sigma_{2}}$ subject to a constant level of production

$$
\begin{equation*}
x_{1}=1_{1}^{\alpha_{1}} s_{1}^{\bar{\beta}_{1}} x_{2}^{\sigma_{1}} \tag{1}
\end{equation*}
$$

This could be dealt with by using Lagrangean multiplier λ^{*}, and forming equation V (remembering that full employment is assumed, ic., $1=I_{1}+I_{2}$ and $s=s_{1}+s_{2}$):

$$
V=\left(1-1_{1}\right)^{\alpha_{2}\left(s-s_{1}\right)^{\beta} 2_{x_{1}}^{\sigma_{2}}+} \lambda^{*}\left[x_{1}-1_{1}^{\alpha_{1}} s_{1}^{\beta} 1\left\{\left(1-1_{1}\right)^{\alpha 2}\left(s-s_{1}\right)^{\beta} 2 x_{1}^{\sigma_{2}}\right\}_{1}^{\sigma_{1}}\right]
$$

First order conditions arc obtained by differentiating V with respect to s_{1}, I_{1} and λ^{*} and setting them equal to zero; which gives officient growth conditions:

$$
\begin{equation*}
\frac{\beta_{1} I_{1}}{\alpha_{1} s_{1}}=\frac{\beta_{2}\left(1-I_{1}\right)}{\alpha_{2}\left(s-s_{1}\right)} \tag{b}
\end{equation*}
$$

Condition (c): Balanced output growth, io., $\frac{\dot{x}_{i}}{x_{i}}=\mu \quad(i=1,2)$ or $\alpha_{1} \frac{\dot{i}_{1}}{I_{1}}+\beta_{1} \frac{\dot{s}_{1}}{s_{1}}+\sigma_{1} \mu=\alpha_{2} \frac{\dot{i}_{2}}{I_{2}}+\beta_{2} \frac{\dot{s}_{2}}{s_{2}}+\sigma_{2 \mu}=\mu \ldots$ (c)

If factors grow at the constant rates λ and γ, ie.,

Put $\frac{\dot{i}_{1}}{I_{1}}=\lambda_{1} \quad$ and $\quad \frac{\dot{s}_{1}}{s_{1}}=\gamma_{1}$

$$
\frac{\dot{i}_{2}}{I_{2}}=\lambda_{2} \quad \frac{\dot{s}_{2}}{s_{2}}=\gamma_{2}
$$

$$
\frac{I_{2}}{I_{1}}=\rho
$$

Then $\dot{i}_{1}+\dot{i}_{2}=\lambda\left(l_{1}+l_{2}\right)$
or, $\lambda_{1}+\lambda_{2} \rho=\lambda(1+\rho)$
Similarly, $\quad \dot{s}_{1}+\dot{s}_{2}=\gamma\left(s_{1}+s_{2}\right)$

$$
\text { or } \quad \gamma_{\cdot 1}+\gamma_{2} \frac{s_{2}}{s_{1}}=\gamma\left(1+\frac{s_{2}}{s_{1}}\right)
$$

As $s_{2}=s-s_{1}$ and $l_{2}=1-1_{1}$, replacing $\frac{s_{2}}{s_{1}}$ by
$\frac{\alpha_{1}{ }_{2} I_{2}}{\alpha_{2}{ }_{1} I_{1} I_{1}}=\frac{\alpha_{1} B_{2}}{\alpha_{2} \beta_{1}} \rho \quad$ from condition (b), gives

$$
\gamma_{1}+\gamma \frac{\alpha_{1} \beta_{2}}{\alpha_{2}^{\beta} 1_{1}}=\gamma\left(1+\frac{\alpha_{1} \beta_{2}}{\alpha_{2} \beta_{1}} \rho\right) \ldots \text { (3) }
$$

Wo now have to satisfy the three equations (c), (2) and (3), in 5 unknowns $\lambda_{1}, \lambda_{2}, \gamma_{1}, \gamma_{2}$ and μ. If the constant μ happens to be the value μ determined by the technical production conditions compatible with the rates of input growth and efficiency
conditions, we arc loft with 3 equations in 4 unknowns. Tho usual way to solve them is to assign to conc of the unknowns an arbitrary value and solve tho system in terns of it. Another way is to assuric
$\frac{l_{2}}{l_{1}}$ constant here, and have $\dot{i}_{2}=\rho I_{1}$ or $\frac{\dot{1}_{2}}{I_{2}}=\frac{\dot{i}_{1}}{I_{1}}$
or $\quad \lambda_{2}=\lambda_{1} \ldots \ldots$ (4)

And (2) gives $\lambda_{1}(1+\rho)=\lambda(1+\rho)$

$$
\text { or } \quad \lambda_{1}=\lambda \ldots \text { (5) }
$$

Thus we have 2 equations in two unknowns γ_{1}, γ_{2} ie.,

$$
\begin{aligned}
\beta_{1} \gamma_{1} & =\beta_{2} \gamma_{2}=\left(\alpha_{2}-\alpha_{1}\right) \lambda+\left(\sigma_{2}-\sigma_{1}\right) \mu \\
\gamma_{1} & +\frac{\alpha_{1}{ }_{2}{ }_{2} \rho}{\alpha_{2}^{\beta}{ }_{1}} \gamma_{2}=\gamma\left(1+\frac{\alpha_{1} B_{2}}{\alpha_{2} \beta_{1}} \rho\right)
\end{aligned}
$$

which could be solved for γ_{1} and $\gamma_{2^{n}}$ However, this is true only for the particular case where μ as determined by the system happens to bc the constant rate μ at which wo want outputs to grow, and $\lambda_{1}=\lambda_{2}=\lambda$ happens to satisfy efficiency conditions (b). That is needed is a general answer to the question.

Finally, it is important to bear in mind the difficulty of empirical measurement of EF , as various factors are so entangled that it is rather impossible to isolate and identify them with absolute certainty. For example, when a firm experiences a better profit, it is difficult to say which part of that profit is due to technological progress, to windfall elements, to internal economies and finally to EwE. The blurred line of demarcation between technological and pecuniary, factor and output-generated, E also constitutes another difficulty .n All these practical difficulties whit ch surround us should warn us against the danger of inconsiderate applications of the results of this analysis for any policy rocomondation, without specific and careful consideration.

r

Abbreviations for Journals

> A.E.R. Limericon Fconomic Review
> B.O.U.I.S. Bulletin of the Oxford University Institute of Statistics
> C.J.E. Canadian Journal of Economics anc? Political Scicnce
> E.D.C.C. Economic Develoment and Cultural Change B.J. Economic Journal
> ToR. Beonomic Recorr?
> I。BoJo, Io E.Rog Indian Tcononic Journalg Review.
> I.PoP. International Economic Papers
> J.P.E. Journal of Political Fconomy M. M. Manchester School of Beonomics and Social Studies
> O.E.P。g NoS. Oxforc Economic ?n⿹ers, New Series
> Q.J.E. Gu?terly Journal of EconomicsR.E.Stat。 Reviow of Economics an? Statistics R.E.Stud. Review of Econonic Studies

1．BERRY，A．Report of the British Assiciation for the Advencement of Scienco（1890），pp．923－924。
2．BUCHLNAN，N．S．Intomational Investmont and domestic welfare， Some aspects of international borowine and lendinc： in the כost－war perion，New York，1946．

3．CHAPLiAN，JoThe memuneration of employers， E．J．，16：523－28，Decomber 1906．
4．CHENERY，H．B．Thc aŋplication of Investment Criteria， Q．J．A． $67: 76-96$ ，FOb．1953．
5．FINDLAY，R．International Specialisation and the concopt of Balanced Growth：A comment，Q．J．F．73：339－46，May 1959．
6．FLFMinNG，J．M．External Econonies and the doctrine of Balanced Growth，E．J．65：241－56，Junc 1955．
7. GALENSON, W. \& LBIBENSTEIN, H. Invostraent Criteria, Productivity and economic devolopront, Q.J.E.69:343-70, fuce 1955.
8. HIRSChMAT A.O. The Stratocy of conoric feveloment, Yale U.P., New Haven, Connecticut, 1958.
9. KAHf, A.E. Invostrient Critoria in Devclopraent Prograns, Q.J.J. 65:38-61, Fcb. 1951.
10. KALDOR, N. Alternative Theorics of Distribution, RoI. st t. $23 ; 83-100$, no 2, 1956.

12. Lemis, ‥A. The Theory of Economic Growth, G. Allon\&Unwin, London, 1957.
13. MaRSHALL, A. Principles of Economics, 8th ed., Mclifillen, Lancon, 1920.
14. NEAD: J.E. Extemal Econories and Discconomies in a compotitive situntion, E.J. 62:54-67, March 1952.
15. NURKSE, R. Problems of Canital Formation in Underdevelonoc?

Countries, B.Blackwell, Oxford, 1955.
16. NURKSE, R. Balanced Growth on Static Lssumptions, E.J., 66:365-67, June 1956.
17. PIGOU, H.C. Wealth nnd Wolfare, Mclillan, London, 1912.
18. POLiK, J.J. Balance of Payments problons of countries roconstructine with the hclp of foreien loans, Q.J.T. 57:208-40, Feb. 1943.
19. ROBINSON, J. Julcr's Theorern and the Problom of Distribution, R.J. 44:398-414, Sept. 1934.
20. ROBINSON, J. The Economics of inperfect competition, hicliillan, London, 1934.
21. ROS:NSTEIN-RODAN, P.N. Probloms of industrinlisation of Eastorn and Southeastern Europe, E.J. 53:202-11, June-Sept. 1943.
22. $S \mathbb{N}$, A.K. Some notes on the choice of capital intensity in develoment plannine, Q.J.E. 71:561-84, Nov. 1957.
23. SEN, h.K. The choice of capital intensity further considered a.J.E. 73: 466-84, Aucust 1959.
24. SEAN, h.K. The choice of Techniques, B. Bleckwell, Oxford, 1960.
25. SH:AH/N, J. International suecielization and the conce?t of Balanced Growth, Q.J.ت. 72:183-97, liay 1958.
26. STRETMN, P. Unbalanced Crowth, O.E.P., N.S.S. 11:167-90, Juno 1959.
27. STIGLRR, G.J. Proauction and Distribution Theorios, Mcifillan, Now York, 1941 (7th printine 1956).
28. UNITGD NATIONS Critcria for allocatine Invostment resources anone various ficlds of developnent in Underdeveloped Economios, Economic Bulletin for Asia and the Far East, vol. XII, No 1, 30-45, Junc 1961.
29. VINER, J. Cost curvos and Supply Curves, Zeischirft fur Nationalokonomie, III, 1931, 23-46, Set. 1931, romintoc in the Anerican Economic hssociation Readines in Price Theory, G. Allon \& Unwin, London 1956, ヤ2. 192-232.
30. WALRAS, L. Elenents almeononie jolitique jure, 3rd edition, F. Rouce, Lausanne 1896.
31. WICKSELL, K. Lectures on Political Economy, Transl. by T. Classen and ec. by L. Robbins, Routledece \& Kecan, London, 1934 (vol. I).
32. YOUNG, h. Increasinc retums and economic prociress, \#.J. $38: 527-42$, Dec. 1928.

33. LRNDT, H? Ex. External Economics in conomic growth, E.R. $31: 192-214$, Nov. 1955.
34. AZUNI, K. \& JAFFR: A.J. The birth rate and cottace industrios in underdeveloped countries, E.D.C.C. $9(1): 52-63$, Oct. 1960.
35. BATOR, F.M. Copital procuctivity, input allocation and srowth, Q.J.E. 71: 86-106, Fcb. 1957.
36. The anatony of market failure, Q.J.E. 72:351-79, AuEE 1958.
37. BENH/M, F.C. Taxation and the relative prices of factors of production, Econonica N.S., 2:198-203, Hay 1935.
38. BRUTON, H.J. Growth models and Underdevelopod Economies; J.P.E. 63:322-36, huE. 1955.
39. CHENERY, H.B. The role of industrialization in development profrans, A.E.R.(pep. \& proc.) 45:40-57, May 1955.
40. CLisRMiONTE, F.F. Fricdrich List and the historical concept of balanced Erowth, I.E.R. 4, No 3:24-44, Feb. 1959.
41. CLAPHAN, J.H. Of empty concmic boxes, E.J. 32:305-14, Sept. 1922.
42. The economic boxes; a rejoinder, E.J. 32: 560-63, Dec. 1922.
43. DAVIS, O.A. \& WHINSTON, 4 . Externalities, welfare and the Theory of games, J.P.E. 70:241-63, June 1962.
44. DHAR, P.N. Some aspects of technical progress in small scale incustries, I.T.R. 3 No 1:67-76, Feb. 1956.
45. ThSON, W.T. On Strumilin's model, Soviet Sturios I:334-42, April 1950.
46. ECKAUS, R.S. The factor roportions problem in Underdeveloped areas, A.E.R., 45:539-65, Sept. 1955.
47. ELLIS, H.S. \& FELLNJR, W. External Economies and diseconomies, A.B.R. 33: 493-511, Sept. 1943.
48. FINDLAY, R. \& GRUBERT, H. Factor intensities, Technøilogical progress and the terms of trade, O.F.P., N.S., 11:111-21, Feb. 1959.
49. FINDLLY, Ro International specialization and the concept of balanced growth: Comment, Q.J.T. $73: 339-46$, May 1959.
50. FINDDIAY, R. Economic growth and the Distributive Shares,

RoToStud. 27(3):167-79, June 1960.
51. FELLNER, W. \& RLLIS, H.S. , see 47 above.
52. FLEMING, J. $\mathrm{H}_{\text {. Rejoinder to Professor Nurkse, }}$
E.J. 66:537-39, Sept. 1956.
53. FOSTER, C.D. Surplus criteria for Investment,
B.O.U.I.S. 22(4):337-59, Nov. 1960.
54. GRNIFICK, D. Economic Development and productivity analysis: the case of Soviet metal working, Q.J.E. 71:205-33, May 1957.
55. GRUBERT, H. \& FINDLAY, R. See 48.
56. HAMKINS, E.K. Investment in Roads in Underdeveloped countries, B.O.U.I.S. 22(4):359-71, Nov. 1060.
57. HNNDRY, J.B. Land tenure in South Vietnam,
B.D.C.C. 9(1):27-44, Oct. 1960.
58. HERPUN, T. The role of cottage and small scale industries in hisian economic development, E.D.C.C.4(4):356-67, July 1956。
59. - A reply, E.D.C.C.4(4):356-70, July 1956.
60. HIRSCHMAN, A.O. Investment policies and dualism in UncerCeveloped countries, A. ..R. $47 * 550-70$, Sept. 1957.
61. HOLZMiN, F.D. The Soviet Ural-Kuznetsk Combine: a study in investment criteria and industrialisation policies, Q.J.I. 71:368-405, Aug. 1957.
62. JAFFRE, A.J. \& LZZUNI, K. See 34.
63. K/LECKI, M. A Theory of profits, E.J. 52:258-67, June-Sept.1942.
64. KALDOR, N. A rejoinder to Mr. Findlay, R.E.Stud. 27(3):179-82, June 1960.
65. - \quad rejoinder to Mir. Intsumi and Professor Tobin, R.FF.Stud. 27(2):121-24, Feb. 1960.
66. Kemp, H.C. The efficiency of competition as an allocation of resources, Part I, C.J.T. 21:30-42, Feb. 1955.
67. The same, Part II, C.J.E. 21:217-27, May 1955.
68. The Mill-Bastable infant-industry dogma, J.J.F. $68: 65-67$, Feb. 1960.
69. KNIGHT, F.H. Some fallacies in the interpretation of social costs, Q.J.E. 38:352-606, Lug. 1924.
70. KOJIMA, K. Capital accumulation and the course of industrialisation with special reference to Japan, E.J. 70(280):757-69, Dec. 1960.
71. KUMAGAI, H. Bxternal Economies and the problem of Investment criteria, Osaka Economic Papers, 7(2):13-20, Feb.59.
72. LEMIS, W.i. Bconomic development with unlimited supplies of labour, H.S. 22:139-91, May 1954.
73. Unlimited labour: further notes, M.S. 26:1-32, Jan. 1958.
74. LITTLE, I.M.D. Critique of welfare Economies, B.Blackwell 1950.
75. MaRGOLIS, J. Secondary benefits, External Economies and the justification of public Investment, R.E.Stat. 39:284-91, Lug. 1957.
76. The economic evaluation of federal water resource development, A.ß.R. 49:96-111, March 1959.
77. NARAIN, D. Ratio of interchange between agricultural and manufactured goods in relation to capital formation in Underdeveloped Economies, IER 3(4):46-55, Aug.57.
78. NBLSON R.R. Growth models and the escape from the low level equilibrium trap: the case of Japan, F.D.C.C. 8(4):378-89, July 1960.
79. NEUBERGER, A note on two aspects of Investment decision making, Economia internazionale 13(4):655-64, Nov.1960.
80. NURKSE, R. Some international aspect of the problem of economic. development, A.E.R. 42:571-83, May 1952.
81. Notes on unbalanced growth, O.F.P., N.S. $295-97$, Oct. 1959.
82. OHLIN, G. Balanced economic growth in history, A.E.R. 49:338-53, May 1959.
83. OSHIMA, H.T. Investment criterie, saving propensity and economie development, I\&.J. 39:399-412, April 1959.
84. PIGOU, A.C. Empty economic boxes: a reply, E.J. 32:458-65, Dec. 1922.
85. Those empty boxes: Comment, E.J. 34:30-31, March 1924.
86. QAYMM, A. Theory of income generation and economic growth, E.J. 70:808-15, Dec. 1960.
87. RAJ, K.N. Application of Investment criteria in the choice between projects, I.E.R.3(2):22-39, Aug. 1956.
88. Small scale industries: Problem of Technological change, Economic Weekly, April 7 \& 14, 1956.
89. RAO, V.K.R.V. Investment, income and the multiplier in an Underdeveloped Economy, I.E.R. 1(1):55-67, Feb. 1952.
90. RANIS, G. Factor proportions in Japanese economic develpment, A.E.R. 47:594-607, Sept. 1957.
91. REDER, M.W. Studies in the Theory of Welfare Economics, Columbia U.P., New York, 1947.
92. Alternative Theories of Labour's Share, in Abramovitz: The Allocation of economic resources, Stanford U.P. :180-207, 1959。
93. RIVETT, K. The role of small scale industries in Asian development, The Australian Accountant 30:233-40, May 1960 。
94. ROBERTSON, D.H. Those empty boxes, E.J. 34:16-31, March 1924.
95. ROBINSON, J. Rising supply price, Economica N.S. 8:1-8,Feb.1941.
96. ROSTOW, W.W. The take off into self-sustained growth, E.J. 66:25-48, March 1956.
97. ROSTO, 7.7. Tho steges of cconomic growth, a non Commist manifosto, Cambridge U.P., 1961.
98. RYBCZINSKI, T.II. Factor ondowment and relative commodity prices, Economica N.S. 22:336-41, Nov. 1955.
99. SCITOVSKY, T. A note on velfare proposition in Economics, R.E.Stud. 9:77-88, Nov. 1941.
100. External Economies, Investment and foresight: A reply, J.P.E. 63:450-51, Oct. 1955.
101. Growth, balanced or unbalanced, in Abramovitz: The Allocation of economic resources, 207-17,
Stanford U.P. 1959.
102. SMN, i.K. Unemployment, relative prices and the saving potential, I. ت.R. 3(4):56-63, Aug. 1957.
103. SHINKAI, Y. On equilibrium growth of capital and labour, International Economic Review 1(2):107-112, Mey 1960.
104. SINGER, H.i. The mechanics of economic developmenta a quantitative approach, I.E.R. 1(2):1-18, fug. 1952.
105. SOLON, R.M. A sceptical note on the consistency of relative shares, A.E.R. 48:618-31, Sept. 1958.
106. SPENGLER, J.J. Cottage industries: a comment, D.D.C.C. 5:371-73, July 1957.
107. STEINER, P.O. Choosing among alternative public Invostmonts in the water resource fi玉ld, A.E.R.49;893-916, Dec.59.
108. STOCKFISH, J.A. External Economies, Investment and foresight, J.P.E. 63:446-49, Oct. 1955.
109. STRUMILIN, S. The time factor in the planning of capital Investment (translated), I.E.P. $1: 160-85,1951$.
110. SWN, T.7. Economic growth and capital accumulation, E.R. 32:334-61, Nov. 1956.
111. TASUGI, K. Problems on productivity of Japanese smaller incustries, Asian Affairs 2:427-41, Dec. 1957.
112. TOBIN, J. Towards a general Kalcorian Theory of distribution, R.E.Stuc. $27(2): 119-121$, Feb. 1960.

[^0]: 1. R. Nurkse [15] especially chapter I, pp. 4-31.
 2. M. Fleming 6 pp. 241-56.
 3. P. Streeten 26 pp. 167-0.0.
 4. A. Young 32 pp. 527-42.
 5. Rosentein-Rodan 21 .pp. 201-11.
 6. A. Marshall [93] p. 348 .
