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Abstract 

Towards the goal of generating specific tissue from stem or progenitor cells for regenerative 

medicine, it will be necessary to understand the dynamics of stem and progenitor cell 

development and how environmental cues trigger cell migration, mitosis, apoptosis, and lineage 

fate. Observing the dynamic process in a continuous manner at the single-cell level will advance 

our knowledge of these processes. Long-term live cell imaging systems and computational 

methods to automatically identify and track progenitor cell migration and division will enable 

this study. 

The aims of this thesis were to develop a live cell imaging system with semi-automated software 

for tracking adherent cell lines and to apply this system to study cardiac stem cell development. 

The imaging system was benchmarked by tracking NIH3T3 cells in vitro for 4 days. Cardiac 

stem cells were enriched by fluorescent activated cell sorting (FACS) from the interstitial 

fraction of the mouse heart. These cells form colonies (c-CFU-F) which were tracked by live cell 

imaging. Green fluorescent protein (GFP) transgenic mice were used to report cCFU-F cells that 

express β-actin or platelet-derived growth factor receptor-a (PDGFR-a). These initial studies 

have focused on characterizing cell motility and cell cycle dynamics of cCFU-F subpopulations. 

The growth rate of NIH3T3 (482 cells) tracked by the live cell imaging system was similar to 

conventional culture methods. Lineage maps of PDGFR-α+ cell (164 maps) and β-actin + cell 

(352 maps) within passage 3 colonies were constructed by continuous cell tracking over a 5 day 

culture period. Two distinctive cell morphologies were indentified; large flattened-cells with low 

motility and highly motile spindle-shaped cells. The probabilities of mitosis of flattened- and 

spindle-shaped cells were estimated for each generation using Kaplan Meier statistics. There 

were significant differences between the cell cycle distribution and motility for these two 

subpopulations. Furthermore, Cox regression analysis was used to show that cell cycle 

progression was related to cell size and colony size. Large flattened-cells infrequently underwent 

asymmetric division giving birth to a small cell and large cell with a short and long cycle time 
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respectively. These studies have illustrated the value of lineage mapping cCFU-F, leading to a 

deeper understanding of cCFU-F growth dynamics. 
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Chapter 1   Introduction 

1.1 Research motivation 

The field of tissue engineering had been developed decades ago due to the increasing demand for 

tissue replacement and the lack of organ and tissue for transplantation. Diverse technologies and 

devices, including bioreactors, micro-fluidic devices, drug delivery systems, microinjection and 

microscopic imaging systems have accelerated development of this field, however tissue 

engineering is still far away from its stated long-term goal: ‘to control and regulate the potential 

of natural tissue regeneration for defect repair or even organ regeneration’ (Plonsey, 1999, Liao 

et al., 2008, Kelleher and Vacanti, 2010, Kohara and Tabata, 2010, Shokeir et al., 2010). 

Basically, research in tissue engineering has focused on three main themes: cells, scaffolds, and 

signals. However, how these elements interact is still not fully understood. 

The goal of regenerative medicine is to develop specific tissues from stem and progenitor cells. 

Progenitor cells possess less potential to differentiate than stem cells, and lie somewhere in the 

differentiation pathway between a stem cell and a terminally differentiated cell. The classical 

view is that cells progress from undifferentiated cell types to more specialized types over 

multiple rounds of division. The traditional belief is that lineage commitment is an irreversible 

process. However recent studies have demonstrated that many cell types have a degree of cell 

plasticity. Plasticity is the ability of lineage-committed cells to dedifferentiate and follow a 

different lineage pathway (Liao et al., 2008). However, the biggest obstacle to progress is to 

understand how external cues direct cell migration, mitosis and lineage fate. The central question 

is how to create culture environments that direct differentiation of  stem and progenitor cells into 

functional cells that can be maintained in-vitro and in-vivo (Theise, 2010).   

In the future stem cell biology will consider how cell-to-cell and cell-to-matrix interactions 

control the formation of complex tissue architectures. Complexity and chaos theories attempt to 
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describe the overall behavior of a system, (colony, tissue or organ) with limited knowledge of 

system components (Gustavsson et al., 2003, Mullassery et al., 2008). A systems biology 

approach aims to describe stem cell development from a single cell and multi-cellular tissue 

perspective. The approach adopted in this thesis is to understand tissue development from a 

detailed analysis of single cell behavior and to collect enough single cell data so that one 

understands population dynamics as well. 

The dynamics of stem and progenitor cell populations are characterized by their migration, 

division, change in phenotype and death. Conventional methodology for determining the cell 

doubling time and cell cycle is based on cell counting (Zhang et al., 2010), however important 

features, such as the timing of divisions and lineage choice cannot be inferred directly from this 

data because individual cell histories are not continuously tracked. There is a clear need to 

establish a quantitative and comparative framework for the analysis of cell populations by high 

throughput single-cell lineage tracking. This framework can also lead to a better understanding 

of the relationships, origins and biology of stem cells, seeking to discover ways to augment cell 

regeneration or stem cell therapy (Ahmed et al., 2007, Cohen et al., 2010, Eilken et al., 2008, 

Flaibani et al., 2009, Gustavsson et al., 2003, Khoshmanesh et al., 2008, Nordon et al., 2005, 

Thomas, 2010).  

This research will focus on establishing methodology to track progenitor cell migration and 

division in vitro by live cell imaging and develop semi-automated imaging processing software. 

A cell line, NIH3T3, and a primary cell progenitor type, cardiac colony forming unit-fibroblasts, 

were tracked using the developed methodology. This approach led to a clearer understanding of 

the dynamics of cardiac CFU-F. 

 

1.2 Thesis Aims 

With respect to the technique of lineage mapping by live cell imaging it is hypothesized that  

1. Live cell imaging is a scalable technology for high throughput study of progenitor cells.  
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2. Mother-daughter relationship and cell trajectories can be constructed from the time-lapse 
video by tracking the size and morphological changes of cells using a nearest neighbor 
algorithm. 

3. Long-term fluorescence imaging is non-destructive to cells with suitable control of 
phototoxicity. 

It is also hypothesized that  

1. Fibroblast colony-forming assay originally developed by Friedenstein (Friedenstein, 

1989a) can be adapted to quantify tissue-resident cardiac stem cells.  

2. Cardiac CFU-F is a heterogeneous population composed of different cell types 

characterized by their cell cycle behavior and lineage potential. 

To address these hypotheses the thesis has the following specific aims: 

1. Customize live cell imaging platform for long term imaging of cardiac stem cells  

2. Develop fluorescence imaging methods for long term tracking of GFP marked cells  

3. Develop software to segment cardiac stem cell division trees from cell growth videos  

4. Acquire enough data to characterize cardiac stem cell development 

5. Apply Kaplan-Meier statistics and Cox regression analysis of cell lifetime data to identify 

the different cell types that are present in cardiac CFU-F based on cell cycle kinetics and 

other live cell imaging characteristics i.e., motility and cell size. 

6. Quantify the transmission of cell cycle length from mother to daughter cells using lineage 

pedigrees. 

 

1.3 Thesis layout 

Chapter 2   A literature review covering relevant cell biological concepts; cell cycle, cell 

plasticity, and the biology of cardiac CFU-F. A review of live cell imaging methodologies and 

applications. 

Chapter 3   Investigates image processing algorithms and the Matlab image analysis tool box 

which was applied to the problem of automated and manual tracking of cell division, cell 

trajectories and construction of progenitor pedigrees 
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Chapter 4   Evaluates the performance of live cell imaging system and image processing 

software by tracking NIH3T3 cells over 4 days.  

Chapter 5     Characterizes development of cardiac CFU-F using the methodology developed in 

this thesis. Identification of two cell subtypes that comprise CFU-F with difference in cell cycle, 

motility and morphology. Application of Kaplan Meier and Cox regression analysis to determine 

the effect of cell subtype and colony size on the probability of cell mitosis. 
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Chapter 2   Literature Review 

2.1  Introduction 

In this chapter, background knowledge and terminologies for cell division and cell plasticity are 

reviewed. The literature of stem cell, cardiac fibroblasts, cell division tracking and image 

processing algorithms are then summarized and evaluated.  

2.2  Background 

2.2.1 Cell Division 

Cell division is the process in which a parent cell divides into two or more daughter cells. It 

concludes the cell cycle, during which the cell replicates DNA and transcribes and expresses 

genes required for cell structure and function. In eukaryotes the process of separation of 

replicated DNA into two sets of chromosomes that are segregated into daughter cells is known as 

mitosis. Cell division in prokaryotes is known as binary fission. Just prior to splitting of parent 

cells DNA is replicated (figure 2.1 b). Eukaryotes also have germ cells which segregate each set 

of chromosomes into two daughter cells, a process known as meiosis. The germ cell or gamete 

cannot divide again until fertilization. 
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Figure 2. 1  Schematic of cell cycle and three division pattern   a: Four phases of a cell cycle 

(Cooper, 2000)  Inner ring: G0: ‘resting phase’, quiescent/senescent the absence of RNA 

synthesis, G1: Gap phase, preparation of cellular materials for S phase, S: Synthesis phase, 

synthesis of DNA, G2: Gap phase, assemble of materials for mitosis. Outer ring: M: Mitotic 

phase, distribution of duplicated DNA into two daughters; I: Interphase. b: Three types of 

cell division 

For each cell cycle interphase refers to the time during which the cell prepares for mitosis with 

protein expression and cell growth referred to as gap phases (G1 and G2), duplication of 

centrioles and synthesis of DNA (S-phase) as depicted in figure 2.1a. Mitosis also referred to as 

M phase is subdivided into prophase (DNA condensation to form chromosomes), followed by 

prometaphase and metaphase (alignment of daughter chromatids at the central axis of the cell), 

anaphase (separation of chromatids) and cytokinesis (daughter cell cleavage and separation). The 

stages of cell cycle can be visualized using phase contrast or fluorescent microscopy or analysed 

by flow cytometry (Halter et al., 2009). Moreover, the rate of cell cycle progression determines 

the rate of cell growth and the volume of cytoplasm that is synthesized. 

2.1.2 Cell Plasticity 

The term plasticity refers to the capacity of tissue-derived stem cells to exhibit a phenotypic 

potential that includes cells comprising the tissue of origin, but also extends beyond the 

differentiated cell phenotypes of their resident tissue. There is an increased interest on the 

 

a b 
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plasticity of adult cells and their ability to divide or self-renew indefinitely, thus generating all 

the cell types of the organ from which they originate. Unlike embryonic stem cells, the use of 

adult stem cells in research and therapy is not considered to be controversial as they are derived 

from adult tissues rather than destroyed human embryos.  

Theise has proposed 4 plasticity mechanisms (Theise, 2010). The canonical mechanism for cell 

plasticity is the classical hierarchy for cell lineage differentiation which applies to both 

development and adult tissue maintenance and repair. The central dogma for this mechanism is 

that cells become increasing restricted with respect to tissue potential of cell subtype. The second 

mechanism for cell plasticity is dedifferentiation followed by a re-differentiation pathway, which 

is commonly found in amphibians, and is also well-documented in some fetal mammals and 

adult mammals. Thus a differentiated cell may move up the hierarchical differentiation pathway, 

a process referred to as dedifferentiation. The third pathway is the change from one lineage to 

another in response to cues from the microenvironment, presumably without any need to 

dedifferentiate. In this situation there will be no evidence that stem cells are formed during a 

direct lineage switch.  The last plasticity mechanism is nuclear reprogramming caused by cell-to-

cell fusion, nuclear fusion, and post-fusion reduction division. The non-canonical pathways are 

most commonly referred to as ‘plasticity’, and it remains an open question the extent to which 

these play a prominent role in normative physiology. Thus dedifferentiation and nuclear 

reprogramming may only be processes that have been observed in vitro, but do not contribute in 

any way to normal tissue maintenance. However, from a tissue engineering perspective this is 

not relevant. More importantly, the big question for regenerative therapies is how stem cells can 

be manipulated in vitro to realize their therapeutic potential.  
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Figure 2. 2 Four pathways of cell plasticity (Theise, 2010)   1:Canonical differentiation 

pathway. 2: Dedifferentiation and re-differentiation. 3: lineage commitment on response to 

microenvironment. 4: Nuclear reprogramming by (a) cell fusion, (b) nuclear fusion, and (c) 

post-fusion division.  

 

2.2  Stem Cells 

2.2.2 Definitions and terminologies 

Stem cells have been recognized as an importance source of cells for cell and tissue engineering 

applications because of their potential for self-renew through cell division and their ability to 

differentiate into a wide range of specific cell types. All tissues have stem cells, including the 

central nervous system and adult heart. However, the potential for self-renew and plasticity 

varies for different cell sources and at different stages of mammalian development. Recent 

studies demonstrate that embryonic stem cells, postnatal stem cells, and even terminally 

differentiated cells have a degree of cell plasticity under specific culture conditions (Theise, 

2010).  

This has led to some confusion as new in vitro techniques are developed to manipulate tissue-

derived stem cells. Using the canonical definition of cell plasticity - cells can only differentiate 
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into more restricted phenotypes - stem cells are classified as totipotent, pluripotent, multipotent 

and unipotent. Totipotent stem cells are from the fertilized oocyte and the descendants of the first 

two divisions, and are able to give birth to all types of cells and organs including germ cell types. 

Pluripotent stem cells are the cluster of cells from the inner cell mass (ICM), also named 

blastocyst, which is a hollow ball of cells formed after 4 days’ development of totipotent stem 

cells. They are able to differentiate to almost all cells derived from the three germ layers but not 

the placenta and supporting tissue of embryo. Pluripotency is also commonly used to indicate the 

potential of tissue restricted stem cells, for example pluripotent blood stem cells can give rise to 

all of the blood lineages. The majority of adult cells are multipotent, because their differentiating 

abilities are limited to a range of differentiated cell lineages that comprise the tissue or organ of 

origin. Unipotent stem cells are capable of generating one specific cell type, but they are less 

differentiated that the terminally differentiated cell type. For example a granulocyte colony 

grown on semisolid media will only give rise to granulocytes. The distinction between 

multipotent and pluripotent stem cells is somewhat subjective, depending on the field’s jargon or 

terminology. In the field of embryonic stem cell research, pluripotency refers to the potential to 

generate any somatic cell type derived from the 3 layered embryo stages. Recently it has been 

possible to induce pluripotency in fetal fibroblast by over expression and selection of the 

Yamanaka (Takahashi and Yamanaka, 2006) pluripotency genes. These cells were named as 

induced-pluripotent stem cells (iPS) (Alison and Islam, 2009, Baraniak and McDevitt, 2010, 

Godara et al., 2008). 

Colony forming unit-fibroblast (CFU-F) is a cell classification which is based on growth at 

limiting dilution of fibroblastic-like cells which form loosely associated colonies in liquid culture. 

These cells have a mesenchymal origin (i.e., form bone, cartilage, tendon and fat), the assay and 

classification originally developed by Friedenstein (FRIEDENS.AJ, 1970). The reprogramming 

of CFU-F from heart (cCFU-F) into functional cardiomyocytes let to the hypothesis that cCFU-F 

can be differentiated into a terminally differentiated lineage without first becoming a 

stem/progenitor cells (Tateishi et al., 2008, Wojakowski and Tendera, 2010). These observations 

provide the basis for a potential source of cells for cardiac regenerative therapy, though there 

have been very limited studies illustrating how this could be achieved. This review will endeavor 

to provide an overview of the biology of cCFU-F. 
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2.2.3 Biology of cardiac CFU-F 

Fibroblasts are widely distributed connective tissue cells of mesenchymal origin that produces 

variety of extracellular matrix (ECM) proteins and biochemical mediators, including collagens 

and fibronectin (Camelliti et al., 2005, Krenning et al., 2010, Porter and Turner, 2009, Zeisberg 

and Kalluri, 2010).  However, the identification of fibroblast is not based on its synthesis and the 

deposition of ECM, but generally depends on its special morphology, proliferation, and 

phenotypical characteristics. Morphologically, fibroblasts are flat, spindle shaped cells with 

multiple processes originating from the main cell body.  

Cardiac fibroblasts play numerous roles in cardiac development and vascular remodeling, as well 

as facilitating cardiac structure and function. The lack of a basement membrane and the display 

of a prominent Golgi apparatus and extensive rough endoplasmic reticulum in active state are 

distinctive characters of cardiac fibroblasts in all cardiac tissue. Although no true specific marker 

are established for identifying the fibroblast phenotype in various organs, some distinct cardiac 

fibroblast markers are examined in human and mouse cardiac tissue, for example, discoidin 

domain receptor (DDR2) and fibroblast-specific protein-1(Souders et al., 2009). Other highly 

expressed genes in cardiac fibroblasts are cadherin-11, vimentin, beta1-integrin, fibronectin, 

connexins and the fasciclin gene periostin(Porter and Turner, 2009).  

Myofibroblasts are a common cell type found in heart. They are characterized by a combination 

of fibroblast and smooth muscle markers with the exception of the myosin heavy chain (MHC) 

which is only expressed in mature smooth muscle cells. It was demonstrated that under 

appropriate conditions, for example, in response to injury, resting or quiescent fibroblasts 

isolated from the interstitial fraction of heart are activated with expression of a contractile 

phenotype including several smooth muscle markers that are not commonly observed on 

fibroblasts (Souders et al., 2009). Another study also reported that cardiac fibroblasts cultured in 

vitro at low density will differentiate into myofibroblasts as a transient phenotype (Masur et al., 

1996). These cells are induced by an amniotic membrane stromal extract to return back to 

fibroblasts in vitro (Hansson et al., 2009, Hattori and Fukuda, 2010, Joggerst and Hatzopoulos, 

2009, Krenning et al., 2010).  
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2.2.4 Adult cardiac CFU-F in heart repair  

Heart attack, stroke, and related diseases are the leading cause of death in the Western world, 

outstripping deaths due to all cancers combined. Improvements to medical therapy for acute 

coronary artery disease (myocardial infarction, MI) have lead to an epidemic of heart failure, a 

condition that is expected to increase exponentially (Camelliti et al., 2005, Gonzales and 

Pedrazzini, 2009, Hansson et al., 2009, Porter and Turner, 2009). 

Cardiovascular disease may result in loss of cardiac tissue through death of the cells by apoptosis 

and necrosis. The remaining myocytes are unable to reconstitute the lost tissue and the diseased 

heart deteriorates with time. Current therapies have limitations and are primarily focused on 

preventing the progression of disease, rather than repair or regeneration of healthy tissue and 

function. As a result, cell transplantation therapy (CTT) which has the potential to achieve 

cardiac repair, attracts increasing interest. It is stated in literature that suitable cells for 

transplantation might be cardiomyocytes, myoblasts grown from skeletal muscle, smooth muscle 

cells from blood vessels, or hematopoietic or mesenchymal stem cells. However, the prevalent 

static view of the myocardium implies that both myocyte death and regeneration have little role 

in cardiac homeostasis (Hansson et al., 2009, Hattori and Fukuda, 2010, Joggerst and 

Hatzopoulos, 2009) . Therefore, the search and investigation of resident adult cardiac stem cells 

had been considered futile because of the widely accepted lack of regeneration potential of this 

organ. 

In adult heart, although cardiac myocytes occupy 75% of normal cardiac tissue volume, they 

only account for 30% of total cell number. The majority of the remaining cells are fibroblasts. 

Considering the potential diversity of functional characteristics of cardiac fibroblasts and the 

self-regenerating potential of adult heart, it was hypothesized that cardiac stem cells exist in the 

interstitial cardiac fibroblast compartment (Murry et al., 2005). Previous studies by Richard 

Harvey’s group (Victor Chang Cardiac Research Institute, Sydney) had shown that contractile 

function of injured heart was recovered by injection of platelet derived growth factor with the 

cells that isolated from the interstitial cardiac fibroblasts compartment (Harvey et al., 2009).  On 

this basis, it is crucial to identify, quantify, and map cardiac fibroblast lineages in vitro, and to 
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study how environmental cues (growth factors, etc) coordinate their dynamic behavior in cardiac 

development, maintenance and disease.    

2.3  Cell Division Tracking 

The dominant technique used by most biologists to study cellular growth kinetics is to count 

cells at regular intervals, and to analyse the mixture of cells using fluorescent cellular markers 

either by fluorescent microscopy of flow cytometry. The frequency of observations is limited by 

lab workers office hours, and cell growth is inferred by interpolation or a geometric cell growth 

model (doubling time). With this approach many cellular events such as mitosis and lineage 

switching are missed, and sometimes data are over interpreted. The need for continuous 

observation of dynamic cellular processes arose out of the need to understand the exact cellular 

mechanism for lineage commitment and regeneration. For example as illustrated in figure 2.3 the 

production of 4 progeny from a single progenitor (a) has many possible mechanisms (b) 

(Schroeder, 2008).  

 
Figure 2. 3 The need for continuous observation of dynamic cellular process (Schroeder, 

2008) 
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Nordon et al (Ko et al., 2007, Nordon et al., 2005), developed a simple sorting strategy with flow 

cytometry and the vital fluorescent dye CFDA-SE to track cell division in bulk culture (Nordon 

et al., 1997). This technique played an important role in the study of renewal and differentiation 

of hematopoietic stem cells. However, the assignment of cell generation number is based on the 

assumption of serial halving of fluorescence intensity of CFDA-SE stained cells, and is highly 

depend on a correct subjective gating criterion.  

Kap-Hyoun et al (Ko et al., 2007), refined this method by including phenotypic analysis and a 

clustering and nearest neighbor algorithm for precise generation assignment, enabling analysis of 

multipotent cell differentiation dynamics. However this technique does not record the individual 

cell differentiation histories, due to the loss of relationship of individual cells because cells were 

not continuously tracked.   

Unlike flow cytometry, which displays snapshots of the cell population distribution with respect 

to generation number and immunophenotype, video microscopy and image analysis completely 

characterise division history and phenotype for single cells with construction of single clonal 

family trees (De Boer and Perelson, 2005, Flaibani et al., 2009, Hasbold and Hodgkin, 2000, Ko 

et al., 2007, Potter and Wener, 2005, Wallace et al., 2008). Schroeder et al (Schroeder, 2008),  

adopted continuous long-term imaging to generate single cell pedigrees which established that 

endothelial cells derived from mouse mesodemal cells could (rarely) generate blood cells 

providing direct evidence supporting the role of haemogenic endothelium during embryonic 

development. In this study detailed phenotypic pedigrees were generated by in situ staining with 

fluorescent conjugated moAbs allowing a precise lineage map to be construct for endothelial-

blood transitions.  

The rapid development of cell imaging technologies has led to recent advances in live cell 

imaging methods. These include development of computational methods for segmentation of 

cellular trajectories (Cohen et al., 2010, Dufour et al., 2005, Harder et al., 2009) using phase 

contrast (Wang et al., 2006, White et al., 2005, Wirtz, 2009, Yang et al., 2006) or fluorescent 

(Levi and Gratton, 2007, Li et al., 2010, Lobutova et al., 2009, Padfield et al., 2009, Wang et al., 

2005, Wang et al., 2006, Wirtz, 2009) images. The goal of this developing field is to extract 

biological information from time-lapse single cell observations in vivo or in vitro using 

automated imaging and image analysis technologies (Wang et al., 2006).  
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There is no single imaging method that is optimal for observation of all aspects of cell division 

and regeneration. To address specific biological hypotheses, an optimal combination of cellular 

model systems, fluorescent labeling and imaging technology is required (Schroeder, 2008). This 

approach raises three main technical challenges. Firstly, a suitable physiological culture system 

for long-term study of cell renewal and differentiation requires development. Secondly, multi-

molecular markers for identification of cells or stages of cell maturation are required. Thirdly, 

phototoxicity resulting from cellular imaging will need to be minimized although new imaging 

methods such as 2 photon excitation can dramatically reduce phototoxicity. Moreover, high 

temporal resolution is required for highly migratory cell types. Over a period of several days or 

weeks, high temporal imaging yields huge volumes of data. Developing computational methods 

to automate identification and tracking of cells is essential, because manual analysis and visual 

inspection of huge image stacks is a logistic nightmare. 

2.3.2 Imaging methodology 

Imaging methodology requires selection of a live-cell imaging modality and techniques for 

enhancing cellular contrast which is related to the imaging technique. Live cell imaging 

modalities are transmitted-light microscopy (TLM), wide-field fluorescence microscopy (WFM), 

confocal laser-scanning microscopy (CLSM), multi-photon confocal laser-scanning microscopy 

(MP-CLSM), spinning-disk confocal microscopy (SD-CM) and total internal reflection 

fluorescence microscopy (TIRFM). Suggestions for selecting imaging facilities on the basis of 

samples are provided in figure 2.4 (Frigault et al., 2009). 
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Figure 2. 4  Flow chart for selection of suitable microscope for long-term living cell imaging 

(Frigault et al., 2009) 

Experimentation with bright field or Kohler illumination and phase contrast microscopy 

techniques have been attempted in live cell imaging to improve image quality. Bright field 

illumination illuminates a sample with an evenly dispersed source of light, and the differences in 

light absorption within the sample produces the contrast perceived in the image. In comparison, 

phase contrast microscopy (PCM) exploits the refractive properties and thickness of different 
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structures. PCM enhances the contrast at the cell edges in comparison to bright field illumination, 

but the refractive properties of the cell refract light outwards towards the cell edge creating 

bright halos, distorting the actual cell edge in certain areas and also at the borders of cell 

organelles (Gustavsson et al., 2003). Differential interference contrast (DIC) is another possible 

microscopy technique. Although DIC provides higher contrast at the cell edge, DIC is quite 

expensive and does not offer drastic improvements compared to PCM (Frigault et al., 2009). 

Laser scanning confocal microscopy (LCSM) has also been used to image cellular boundaries. 

LCSM produces extremely detailed cellular images due to the excitation of thin sample sections, 

but in bright field mode LCSM produces an image comparable to that of PCM. LCSM is only 

truly effective when samples are prepared with immuno-fluorescence techniques. 

Surface staining using immuno-fluorescent staining is possible without fixation, though staining 

of intracellular structures requires membrane permeabilisation and fixation of cells to allow 

access of labeling antibodies to intracellular structures. Fixative reagents preserve many of the 

cellular structures, but will of course terminate the live cell imaging experiment. Hence, 

immuno-fluorescent staining is not a viable option for observation of internal structures within 

living cells.  

Fluorescence is triggered by excitation of an adsorbing material at a specific wavelength. The 

absorption of the irradiated light energy from the excitation source causes a jump in energy of 

the absorbing material resulting in the radiation of fluorescence from the sample as electrons 

return to their ground state (Drummond and Allen, 2008, Dzyubachyk et al., 2010a, Green, 2002, 

Muzzey and van Oudenaarden, 2009). Photobleaching results in loss of fluorescent potential 

after each excitation . During real-time fluorescence imaging of time-lapse studies, continuous 

excitation results in rapid photobleaching and phototoxicity so excitation sources must be 

switched on and off to minimize these effect (Kable, 2006, Frigault et al., 2009).  Ensuring a 

constant or replenishing supply of fluorescent dye may counteract photobleaching. This may be 

achieved by genetic insertion of green fluorescent protein (GFP) cDNA sequences adjacent to 

cellular DNA sequences coding for desired structures. Proper insertion of GFP cDNA sequences 

produces cellular proteins expressed with fluorescent protein tags. As a result, fluorescent protein 

gene reporter systems have vast potential for the field of live cell imaging. 
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Development of a non-destructive real-time fluorescence technique to visualize cellular 

membrane boundaries simplify image processing by contrast (Drummond and Allen, 2008) . 

However, development of Fluorescent protein probes or transgenic animals requires a significant 

development time for each biological application. Thus PCM is generally applicable and the 

most popular imaging method utilized for live cell imaging. Although the halo effect in PCM 

poses difficulties in cell segmentation and regular cleaning of the optical components is required 

to maintain high quality images, PCM is almost obligatory because of its low level of 

phototoxicity and high temporal and spatial resolution.  

The convenience of PCM presents significant problems with interpretation and segmentation of 

grey scale images. Post-processing of phase contrast images is required to compensate for 

uneven illumination (Wang et al., 2006). Li has successfully tracked the dynamics of various cell 

types by PCM (Li et al., 2007). The technical challenges for segmenting live cell images are 

discussed in much more detail in Chapter 3. 

In this study we utilized PCM in combination with fluorescent microscopy, fluorescent proteins 

and transgenic mouse models to collecting enough information for lineage mapping.  

 

2.3.3 Image acquisition 

There are always compromises between the quality of images, the amount of information 

collected and phototoxicity. Choosing suitable reagents for labeling cellular properties, keeping 

cells alive and minimizing the toxic effects in the imaging process are essential. 

Criteria for choosing fluorescent reagents are biocompatibility, quantum efficiency, cellular 

uptake, photobleaching and tissue penetration. Fluorescent proteins expressed by genetic labeling 

certainly biocompatible. It is reported that the genes encoding eGFP, enhanced cyan fluorescent 

protein and enhanced yellow fluorescent protein, venus, DsRed-MST and mRFP1 (monomeric 

red fluorescent protein) have been expressed in stem cells or mammalian cells without  an 

obvious change of phenotype, and considered to be highly non-toxic (Schroeder, 2008). 



18 
 

In addition to imaging technologies, live cell culture systems are required for long term growth 

of cells under the microscope objective. The live cell imaging system will require control of the 

following system parameters. 

Temperature 

The optimal temperature for cell culture is 37 ºC which mimics the human physiological 

environment. In order to keep a stable temperature during the cell culture, the incubator may 

enclose the whole microscope or just the microscope stage. 

Evaporative losses 

Evaporative losses during long term culture will increase media osmolarity and compromise cell 

growth. Thus it is necessary to humidify the samples by sparge the air/CO2 gas mixture through a 

water reservoir to humidify the sample chamber, while avoiding condensation damage to the 

mechanical components of microscope. 

pH 

For mammalian cells, a bicarbonate-based buffer is used to maintain the pH of the culture 

medium. A 5-10% CO2 concentration is required to maintain a physiological pH of 7.4. Frigault 

et al (Frigault et al., 2009), have a preference for bicarbonate/CO2 with 25mM HEPES buffering. 

As shown in figure 2.5, they compare the efficiency of CO2 dependent medium and CO2 

independent medium, and emphasized that bicarbonate contributes to many cellular process in 

addition to regulation of pH (Wang et al., 2006, White et al., 2005). 

Light exposure 

It is generally acknowledged that the damage to cells is inversely related to wavelength. Also 

photosensitivity to light of different wavelength differs between cells isolated from different 

sources. Red illumination is preferable for phase contrast imaging and 2 photon excitation for 

fluorescence imaging (Wang et al., 2006, White et al., 2005). In addition, light exposure can be 

controlled by the sampling frequency and light exposure time. Increasing the sampling frequency 

provides higher temporal resolution, but also may lead to a rise in photo-toxicity.  
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An assessment of phototoxicity is required for each kind of live cell experiment to assess the 

differential effects of cells and fluorescent probes, to define suitable sampling frequency and 

exposure time (Ford et al., 1996, Lee et al., 2002). More recently, methods have been proposed 

to minimize the light dose used for fluorescent excitation. Hoebe et al. designed a feedback 

control system to minimize the fluorescent light exposure significantly reducing phototoxicity 

and photobleaching (Hoebe et al., 2007, Nishigaki et al., 2006).  

Focus 

Most focus drift is due to the change of temperature, movement of medium, and mechanical 

slippage of Z-focus couplings for cheaper systems. Currently, most microscopy acquisition 

systems have real time software or more sophisticated external devices for automatic focusing of 

images. Once there are sufficient distinctive features in the field of view, autofocus software 

effectively maintains focus (Kable, 2006). 
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Figure 2. 5 Comparing the effect of different medium for mammalian cells (Frigault et al., 

2009) 
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2.4  Cellular Image processing 

There are several challenges to automate image processing, including the generally poor image 

quality (low contrast and signal-to-noise ratio SNR), the varying of density and shape of cell 

populations due to division and migration behaviors, as well as merging or overlapping cells (Al-

Kofahi et al., 2006). Many computerized methods for cell tracking have already been proposed. 

Many of these are open source software (Cohen et al., 2010, Harder et al., 2009, Li et al., 2008, 

Swedlow and Eliceiri, 2009), however, more algorithms are required to optimize the tracking 

task. Several trends can be observed in the development of cell tracking methods, indicating the 

superiority of particular algorithms for different applications. 

Generally, these methods can be classified as tracking by detection or tracking by model 

evolution. In the tracking by detection approach, cells are first segmented in individual frames 

based on intensity, texture, or gradient, then the detected cell are associated between two or more 

consecutive frames by optimizing certain objective functions. An example is shown in Figure 2.6 

and Equation 2.1, 2.2 (Al-Kofahi et al., 2006), and the implementation of the method will be 

explained in full detail in chapter 3. This approach is computationally efficient and robust, 

however, has problems detecting mitosis or segmenting cells at high density where there are 

multiple touching or overlapping cells (Al-Kofahi et al., 2006).  

 

Equation 2. 1  The mathematical expression calculating likelihood for moving cells (Al-

Kofahi et al., 2006) 

 

 Equation 2. 2  The mathematical expression for likelihood of dividing cells (Al-Kofahi et 

al., 2006) 
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Figure 2. 6  Automatic association of segmented cells between frames(Al-Kofahi et al., 2006) 

 

In the tracking by a model evolution approach (figure 2.7), cells are detected in the first frame, 

and then the detected cells and their measured features are used as a model to identify and match 

cells in consecutive frames. The model is also updated with each frame, and so evolves over time. 

 

Figure 2. 7  The concept of tracking by model evolution (Meijering et al., 2009) 
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2.4.2 Cell segmentation 

Segmentation is the process of dividing an image into parts of interests, creating a new image 

containing a label for each pixel indicating which segment it belongs. One approach for 

segmentation is to compare the value of each image pixel to a preset threshold and to score 

values above the threshold as foreground (Wu et al., 2010). It is the most commonly used 

method due to its simplicity, however, it demands high quality images in which cells are well 

separated and their intensities significantly and consistently differ from the background - a 

condition which is hard to achieve in live cell imaging process. Significant errors are inevitable 

when segmenting lower quality images by thresholding, which was illustrated in figure 2.8, due 

to image noise, autofluorescence, photobleaching, variation in illumination intensity and halos 

(Meijering et al., 2009) 

 

Figure 2. 8  Result of segmentation by thresholding (Meijering et al., 2009) 

 

A more sophisticated method for cell segmentation are based fitting predetermined models to 

image data (figure 2.9). This template matching approach works well for images showing 

consistent cell shape, but fails in the case of adherent cells which have variable morphology 

(Zhou and Wong, 2006). A more popular approach uses the watershed transform. which 

considers an image as a topographic relief map, with ‘filling’ introduced from the local intensity 

minima and dividing the image into regions and contours, called by analogy, ‘catchment basins’ 

and ‘watershed’, respectively. Although this approach has a tendency to be oversensitive to noise 
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and to yield over-segmentation, it has been successfully applied to cell segmentation in 

microscopic images, by combining of carefully designed pre- and post-processing strategies, 

such as marking and model based segment merging. (Al-Kofahi et al., 2006, Debeir et al., 2005, 

Yang et al., 2006) 

 

Figure 2. 9  Segmentation by a model based approach (Meijering et al., 2009) 

Most recently, interest in the use of deformable models has arisen. These are classified as 

parametric active contours models (Debeir et al., 2004, Debeir et al., 2005, Zimmer et al., 2002a, 

Zimmer et al., 2002b, Zimmer and Olivo-Marin, 2005) or as geometric active contour models 

implemented via level-set functions (Osher and Sethian, 1988).   

The latter method is deemed to be superior to the parametric models due to the ability to capture 

topological change spontaneously. Starting with a coarse, initial segmentation, deformable 

models are iteratively evolved in the image domain to minimize a predefined energy function. 

The specification of the energy function, which encapsulates important image features, will 

determine the active contour segmentation topology (Cohen et al., 2010, Dufour and Olivo-

Marin, 2008, Dufour et al., 2005, Dufour et al., 2010, Dzyubachyk et al., 2008, Dzyubachyk et 

al., 2010b, Jun et al., 2006, Li et al., 2008, Meijering et al., 2009, Padfield et al., 2008, Padfield 

et al., 2009, Padfield et al., 2006, Swedlow et al., 2009, Xinyu et al., 2009). Typically the energy 

function is based on image features, such as intensity, gradient, texture, or objective features, 

such as shape, boundaries, orientation, curvature, and similarity of these features. Such a 

combination of image features and prior biological knowledge had been successfully applied to 

segmenting tasks (Zimmer and Olivo-Marin, 2005) . However, limitations still exist, such as the 
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dependency of the special type and behavior of cells, the requirement for special conditions, and 

computational intensity.  

 

2.4.3 Cell motion tracking and trajectory mapping 

After segmentation, the second step in achieving cell tracking is cell association. This process 

includes cell identification and linking from frame to frame in the image sequence to create the 

cell trajectories (figures 2.6 and 2.7). The simplest method is associating cells frame to frame 

using the cell’s centroid using the nearest spatial distance with a constraint that prevents 

erroneous matching (Debeir et al., 2005). However, this method is unable to handle cells at high 

density or if cell motion is under sampled. To overcome the under sampling problem, additional 

cellular features such as intensity, area, volume, texture, surface area, curvature, orientation of 

axes etc were included in the determination of the closest neighbor (Al-Kofahi et al., 2006).  

Increasing the number of constraint features can reduce the risk of ambiguity. Similarly, Debeir, 

et al. applied mean-shift processes to iteratively compute cell position (Debeir et al., 2005, Yang 

et al., 2006) . 

Several cell segmentation methods can also be naturally extended to cell association. The 

concept of matching the template can serve as a basis for image registration between frames. 

Registration refers to the process of alignment of images, using intensity or geometry based 

features (Sage et al., 2005, Sbalzarini and Koumoutsakos, 2005, Yang et al., 2006). Methods 

based on the deformable models can perform association as using the segmentation results of any 

frame as the initialization for minimizing the objective function in the next frame with the help 

of a motion filter. For example, the classic ‘snake’ model, adaptive snakes which also employ 

repulsive forces between snakes (Zimmer et al., 2002a) and shift models (Debeir et al., 2005) 

utilize prior frame information to initialize the next frame. These are again nearest-neighbor 

linking approaches, which work well when the cell density is not too high and the imaging 

interval is high enough to limit the cell displacement to less than an average cell diameter.  

More sophisticated methods will be required to handle cell collisions, merging and division. 

There is a growing literature describing new image segmentation methods that may be applied to 
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live cell imaging. For example gradient- vector flows (Zimmer et al., 2002b) and adaptive 

motion filters which can handle both constant velocity movements and accelerated movements 

may be adapted to cell trajectory mapping (Li et al., 2007). Also probabilistic methods such as 

hidden Markov Chains and Bayesian Estimation may be applied to live cell motion tracking (Li 

et al., 2007, Li et al., 2008, Smal et al., 2006). 

 

Figure 2. 10    Example of cell tracking and cell trajectories using Bayesian Estimation (Li 

et al., 2008)  
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Chapter 3   Methodologies 

developed for cellular image 

tracking 

3.1   Introduction 

To analyze the large amount of image data acquired by time-lapse live-cell imaging,  

implementation of automatic or semi-automatic image processing methods to identify and track 

cells, and reconstruct cell pedigrees is a powerful tool to quantify cellular behavior and cell 

growth. However, there are numerous difficulties automating processing of cellular images 

limiting progress of this technology. Common problems associated with light microscopy are 

poor contrast and non-homogeneous image illumination. Cell tracking is impeded by difficulties 

associated with cellular collisions, irregular cell shapes, and complexities associated with 

segmentation of phase contrast microscopic images.  

Many image segmentation routines rely on homogeneous object illumination and contrast. 

However most imaging systems have non-uniform illumination and image acquisition hardware 

may not have uniform pixel sensor gain (CCD camera). Therefore it is a necessity to pre-process 

images prior to image segmentation and tracking. Classical algorithms for image enhancement 

that utilize the 2-D Fourier transform either operate in the spatial or frequency domain(Gonzalez, 

2008). A preprocessing step to improve the uniformity of image intensity and contrast is 

described in section 3.2.1, and section 3.4.1. 
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The accuracy of cellular segmentation routines is limited when cells merge or touch. This is an 

unresolved problem for the whole field. Well-established classical algorithms for image 

segmentation have been implemented, namely thresholding, edge detection and morphological 

dilation and erosion. A maximum curvature technique was used to separate objects with circular 

geometry, namely fluorescently labeled nuclei. Moreover, an interactive region growing 

algorithm was used to define cell boundaries for fluorescently labeled cells or phase contrast 

images. The algorithms that were developed are described in section 3.2.2 and section 3.4.2. 

The image tracking software contains six components as listed in figure 3.1; image enhancement, 

image segmentation, object tracking, manual confirmation, cell cycle estimation and pedigree 

construction. Manual confirmation is required to review and edit automatic segmentation results. 

Minimal user actions for editing such as mouse positioning and clicking are desirable because 

this will shorten analysis times.  

Image enhancement consists of contrast enhancement and background non-uniformity correction. 

Cells were segmented using edge detection, global thresholds, curvature estimation, 

morphological erosion and dilation as well as employing specific constraints based on cell 

specific properties. Cells were tracked over consecutive frames by matching cells with almost 

identical classifiers using a maximum likelihood and nearest neighbour metrics. Cell cycle 

estimation was based on a robust statistical approach, namely estimation of the empirical 

probability distribution for cell cycle times using the Kaplan Meier estimator. Division histories 

and differentiation pathways were displayed as pedigrees. 
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3.2   Fluorescent cell image segmentation 

This section described the process of how cell pedigrees are segmented from fluorescent cell 

image sequences. 

Background subtraction & Image enhancement 

Image segmentation 

Manual segmentation correction by Region growing 

Cell Cycle Estimation 

Objective tracking 

Manual correction of tracks 

Section 3.2.1   

Section 3.4.1 

Section 3.2.2   

Section 3.4.2 

Section 3.3 

Section 3.5 

Section 3.6    

Section 3.6.1     

Section 3.7    

Figure 3. 1 Diagram of semi-automated cell division tracking software
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3.2.1   Image background bias correction  
The background of fluorescent images is non-uniform due to the non-uniform illumination of 

excitation light. Figure 3.2(a) is a background image (no objects) whose 3D intensity profile 

ideally should be a smooth horizontal plane. However, the 3D intensity profile of a background 

image (figure 3.2(c)) is typically non-uniform, the pixel intensity increases gradually towards the 

center of image, and decreases at the four corners of the image. Noise which results in a ‘rough’ 

surface, is also an important factor that limits contrast and edge detection. 

 

 

 Figure 3. 2  Non-uniformity of background image intensity (a) Background image taken 

without objects, (b) intensity profile of ideal background, (c) intensity profile of the 

experimental background have background bias and noise. 

b a 

c 
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3.2.1.1   Rolling-ball filter 

The rolling–ball filter is a grayscale mathematical morphological filter, which was first proposed 

by Sternberg in 1983.(Sternberg.S, 1983) It simulates rolling a ball beneath the intensity profile 

of an image, removing the peaks that are untouched by the ball surface. To implement this 

algorithm, some backgrounds of mathematical morphological operations are essential for 

understanding. 

Mathematical morphological image processing(Gonzalez, 2008) is based on moving a pre-

defined structural element along the image, which is similar to spatially convolving the structure 

elements with the object image, however the process is based on set operations and therefore is 

nonlinear. The four important operations are dilation, erosion, opening and closing. Erosion is a 

‘shrinking’ or ‘thinning’ operation, figure 3.3. Dilation is the opposite operation of erosion, 

which ‘grows’ or ‘thickens’ objects. 

 

Figure 3. 3  Dilation and erosion with disk-shaped structure element sized 20 pixels 

Opening(Gonzalez, 2008) performs erosion first, followed by dilation, while closing operates 

dilation before erosion. Generally, opening smoothes the contour of an object, breaks narrow 

isthmuses, and eliminates thin protrusions, while closing fuses narrow breaks and long thin gulfs, 

eliminates small holes and fills gaps in the contour. Definition  of opening and closing 

operations(Gonzalez, 2008) are listed as equations below, 

bbf )(                                                          Equation 3. 1 
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                                                        Equation 3. 2   

where f(x,y) and b(i,j) are two discrete functions on two dimensional discrete space. f(x,y) is the 

pixel value of (x,y), and b(i,j) is a structure element of disk shape. 

Different shape and size of structure elements, in combination of the 4 basic morphological 

operations are achieve versatile aims in image processing. For binary images, 2-dimensional 

structure elements with different shape (square, disk, etc.) are utilized for various morphological 

results. While for gray scale images, 2 dimensional structure elements with a height or 3 

dimensional structure elements are more useful. In this study, the rolling ball filter is 

implemented via the classical top-hat transform, which filters image with 3D ball-shaped 

structuring elements(Li et al., 2008) to perform opening operation, followed by closing 

operations.  

                                                Equation 3. 3 

where r is the radius of the rolling-ball, and ballr is a ball-shaped structural element with radius 

equal to r.  

Cells isolated from the PDGFRα-mouse have nuclear accumulation of green fluorescent protein 

in cells which express the PDGFRα receptor (see Chapter 5). They have been imaged using 

fluorescent microscopy (figure 3.4). Comparing with the original image, figure 3.4(a), the 

background bias was removed from the image in figure 3.2(b). The image has a smoother more 

uniform background fluorescence. The estimated background bias by rolling ball filter is 

displayed in figure 3.2(c). However, the surface of background bias is far from smooth, which 

might introduce background image artifacts to the image. These variations are difficult to detect 

by eye, but will affect the accuracy of segmentation algorithms based on edge detection and 

thresholds.  
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Figure 3. 4  Demo of background estimation by rolling ball filter, a: original image; b: 

image after correction; c: estimated bias of background 

 

3.2.1.2   Polynomial surface fitting 

The second method used to calculate a background bias was to fit a polynomial surface to the 

background intensity. The equation of the polynomial equation is  

                                                       Equation 3. 4 

a b 

c 
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The surface was fitted to background image data by linear regression (Matlab Curve Fitting 

Toolblox). A polynomial with order  was used to estimate the bias for the image 

shown in figure 3.5. Note that a polynomial fit is smoother than the rolling ball filter, and is does 

not create background image noise. 

 

 
Figure 3. 5  Demo of background correction by polynomial fitting, a: original image; b: 

image after correction; c: background bias estimated by polynomial fitting  

 

a b 

c 
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3.2.2 Image background subtraction 

3.2.2.1 Intensity thresholding 

The simplest way for thresholding is to rely on the histogram of pixel intensity distribution, 

shown below (figure 3.6). 

 

 
Figure 3. 6 Illustration of thresholding using the image intensity histogram (Threshold=0.1), 

a: original gray scale image; b: binary image after thresholding; c: histogram of pixel 

intensity distribution 

A level for thresholding is selected using the pixel intensity distribution (figure 3.6c) and 

foreground information is depicted as a binary image (figure 3.6b). 

a b 

c 



36 
 

Otsu’s method(Otsu, 1979, Li et al., 2008, Gonzalez, 2008) for automatic threshold 

determination was used in this study. The Otsu one-level thresholding algorithm assumes that the 

image to be thresholded contains two classes of pixels (i.e.,. foreground and background), and 

then calculates the optimum threshold separating those two classes so that the intra-class 

variance (the weighted sum of variances of the two classes) is minimised(Li et al., 2008). 

 

Figure 3. 7  Illustration of auto-thresholding, a: original gray scale image; b: binary image 

after thresholding 

3.2.2.2   Maximum curvature determination 

As shown in the images above, cellular nuclei that make contact are recognized as a single 

nucleus. Therefore an algorithm to separate nuclei was required. There are two categories of 

algorithms proposed in literature for splitting merged cells(Makkapati and Naik, 2009). The first 

method fits a region, such as an ellipse(Gonzalez, 2008), to segment the dumbbell shape into two 

separate nuclei. The other method detects the maximum curvature of an edge circumscribing the 

thresholded binary image. In this thesis, the maximum curvature method(Makkapati and Naik, 

2009) was applied. 

Edge detection on a binary image results in an edge that circumscribes the object or 

blob(Gonzalez, 2008). But for phase contrast cell images, edge detection algorithms seldom are 

as successful as the human visual system. The ‘Canny’ edge detection algorithm explained in 

detail in chapter 3.3.2 was used in this study.  

a b 
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Figure 3. 8    Edges (Red) of blobs detected on black-white binary image  

Once the edges of each identified blob is segmented, and the curvature of each points along the 

edges are calculated using the equation shown below(Gonzalez, 2008), 

                                                                          Equation 3. 5 

where x and y are coordinates of the boundary points. The derivatives are computed by 

convoluting the boundary with Gaussian derivatives. Examples of detected points with curvature 

whose k values are larger than the threshold are shown in figure 3.9. 
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Figure 3. 9   Points detected with the maximum curvature value (blue points) 

The cleft between touching circles results in an edge with maximal curvature. All the maximum 

curvature points are then connected in pairs. Only those chords below a specified length 

constraint are used to separate merged nuclei (figure 3.10).   

 
Figure 3. 10  Illustration of blob splitting algorithm a: connection of maximal curvature 

points b: application of length constraint 

 

3.2.2.3 Noise removal  

In this thesis image noise is defined as segmented foreground information that is not object 

information. In this case the object information is cellular nuclei. Most of the noise not 
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eliminated by thresholding of fluorescent images as above is small. For example, the cell 

fragment at the bottom of the image shown in figure 3.11 would have been segmented using a 

fluorescent threshold, however this is clearly not an intact cell and would be considered as 

‘image noise’. However, for phase-contrast images, removal of image noise is a major problem. 

Briefly covered in Section3.2.1, image erosion(Gonzalez, 2008) is one method to remove trace 

amounts of noise, smoothing object edges at the same time. This however is only effective for 

the removal of small object noise. Increasing either the eroding structuring element or the 

number of erosions can remove large object noise. However, cellular objects are also eroded, 

thus eliminating crucial cellular details in the process. Therefore, image erosion is not an optimal 

method for noise removal in this study.  

Removal of image noise requires a two-step process; first, blobs or components are identified 

and labelled using pixel connectivity algorithms(Gonzalez, 2008). Then each component is 

classified using its pixel characteristics i.e., area, mean intensity, centroid, radius etc. Labelled 

components which have ‘typical’ pixel characteristics and fall within defined constraints are 

accepted as objects of interest, whilst outliers are considered to be image noise. The final 

segmented image has image noise removed (Figure 3.11). This method is elaborated in the 

following sections. 
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Figure 3. 11    Final segmentation result with the noise information removed 

3.2.2.4. Object connectivity 

Object connectivity is a fundamental process essential to binary region based image processing. 

It is a method used to differentiate objects based on pixel border relations(Gonzalez, 2008). A 

pixel in a two dimensional image is a square with four faces. In three dimensions the small image 

unit is a voxel, a six-faced cube. A group of pixels linked together form an image object. Object 

pixels are “connected” or linked either at the faces or the corners, hence the term connectivity. 

Standard image connectivity is defined as either “4” or “8-connectivity”(Gonzalez, 2008). Pixel 

connectivity is evaluated in the manner shown below: 
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Figure 3. 12   Connectivity   (a) 4-connectivity of interest pixel;  (b) 8-connectivity of 

interest pixel 

Any pixels adjacent to the edges of the pixels of interest or corners are considered “4-connected” 

figure 3.12(a). In the other case of figure 3.12 (b), object pixels either adjacent to the corners or 

edges of the pixel of interest are designated “8-connected” pixels. 

3.2.2.5. Component labelling 

As stated in the previous section, 8 and 4-connectedness are two pixel classification methods 

employed in 2D image processing. Adoption of either 8 or 4-connectedness will result in quite 

different regions as shown in figure 3.13(b-c). 

The choice of “8-connectivity” to label the original object in 3.13 (a) extracts one single object, 

formed by two apparent squares. In contrast, “4-connectivity” labelling produces two separate 

objects or squares numerically labelled in fig 3.13 (a). The discrepancy is a very subtle problem, 

but has quite a pronounced effect on the final results, as illustrated in 3.13 (b-c). 
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Figure 3. 13    Component labeling; (a) connected components, (b) component labelling by 

8-connectivities, (c) component labelling by 4-connectivities 

Many component labelling algorithms require the implementation of split/merge algorithms to 

group pixels defined by their “connectedness” in a specific region together. The image is 

searched and the pixels assigned to single objects using the connectivity method are labelled with 

consecutive numerical values. After the labelling of each image object, mainly arithmetic and 

geometric descriptive measures can be calculated to characterize these objects. The most useful 

characteristic in image noise removal is pixel area defined as the number of pixels forming a 

certain object; other useful characteristics will be described in the next section. Object size is an 

important parameter because the majority of the noise present in the image foreground 

segmented using a simple threshold are objects with surface area much smaller than the size of a 

cell or nucleus. In this study, 4-connectivity is chosen because it excludes image noise. The final 

segmented cellular image is displayed above in fig 3.13. 

 

3.2.2.6  Component feature measurement 

After segmentation, 6 features of each nuclei were determined for each labeled component 

( ‘regionprops’ function in Matlab image analysis toolbox).  
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1. Centroid (xij, yij) is the most common feature obtained to track cellular migration. It is 

essentially the centre of mass of the pixel distribution within the nuclear object body, figure 

3.14(a). 

2. aij is the number of pixels belongin to the component and represents cell volume, figure 

3.14(a) . 

3. To interpret the other features, an ellipse model is fitted to the segmented cell regions.  lij is 

the length of long axis. oij is the angle between the long axis of fitted ellipse and the 

horizontal line, denoted in figure 3.14b.  eij is eccentricity of each cell, which is denoted as 

the ratio of the length of the long and short axis, figure 3.14(a). 

4. Mij is the average pixel intensity of each segmented blob in figure 3.15. It is calculated on the 

combined images, which is the multiplication of gray scale images and segmented binary 

images.  

 

Figure 3. 14  Feature measurement  (a) calculation of component parameters, (b) 

calculation of orientation angle 

 

The six features are stored as a Matlab structure array (figure 3.15). 

 

a b 
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Figure 3. 15   Segmented cells in two consecutive frames and features recorded 

 

3.3 Cell trajectory mapping by feature matching 

Segmentation generates a sequence of images with segmented objects classified by their features 

as shown in the Matlab table (figure 3.15). The identification of specific cell states requires high 

quality of cell images and high segmentation accuracy. In our experiment, to track cells over 

time, a simple three-step feature matching method was adopted: i) Construction of likelihood-

score matrices for all cells in consecutive images. ii) To calculate frame-to-frame 

correspondence matrices and iii) To identify cell divisions and assign mother-daughter 

relationships. Suppose that the image sequence has P frames, image j has m cells and image j+1 

has n cells. A forward score matrix (m by n) and backward score matrix (n by m) describes the 

likelihood of a cell in image t corresponding to a cell in image j+1 and that of a cell in image j+1 

corresponding to a cell in image j, respectively. These matrices are further combined and 

transformed into a binary correspondence matrix with 1 indicating a correspondence between a 
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cell in image t and a cell in image j+ 1. These matrices are further transformed into a tracks-

information matrix and a cell-life matrix. The tracks-information matrix adds morphological 

descriptors for each time set in the track, and the cell-life matrix annotates cell division, 

apoptosis or a ‘lost’ cell. Cell division is identified by tracking the image sequence backwards to 

identify two tracks that merge to one track. Cell death is defined as a sudden stop of track within 

the tracking period where cells are observed to become non-adherent and disappear from the 

field of view. A lost cell is one that migrates outside of the field of view.  

To construct forward and backward scores for each pair of cells, a likelihood score is assigned to 

cell pairs. The likelihood calculator for cellular tracking has been well developed by Al-kofahi in 

2006 (Al-Kofahi et al., 2006). For cell i on frame j, features  are associated using parameter   

and , which are the previously estimated mean and covariance of a difference vector f calculated 

using a correctly (manually) labeled training set. The likelihood of cell movement between cell i 

in frame j and cell k in frame j+1 is calculated using a multivariate normal probability 

distribution, where N is the number of features examined, and the difference vector 

, is the difference in the features of cell pairs. 

         Equation 3. 6 

In our application, eight features  described in section 3.2.2.6, 

are sufficient to characterize each cell. Cells segmented in two consecutive frames are compared 

in pairs. The difference of features between each pair of cells in two consecutive frames is 

calculated below, 

                                                                        Equation 3. 7 



46 
 

A similar formula is used to calculate a backward difference vector which is the difference 

between features in frame i and i+1. Note that the forward and backward difference vector are 

not always equal. To combine information from the forward and backward likelihood matrices 

into a single correspondence matrix, we start by noting that a cell in image t can disappear (die), 

grow, or divide into two cells in image j+1. So, a cell in image j can only correspond to 0, 1, or 2 

cells in image j+1. We also assume that a cell in image j+1 can correspond to at most 0 or 1 cells 

in image j, which restates the fact that a cell is an orphan or a descendent of a cell in image j. We 

then combine the two score matrices using the dot product (element wise multiplication, not 

matrix multiplication) and calculate the row and column maxima in the combined score matrix; 

our algorithm then scans the combined score matrix to locate values that are both row and 

column maxima and assigns matches for corresponding cell pairs. During this process, if more 

than two cells in image j+1 can be assigned to one cell in image j, the backward score matrix is 

referenced so that the two cells with best scores are used to assign the matches. We repeat this 

process while excluding the cells in image j+1 that are already matched and enforcing the cell 

growth event restraints until no more correspondences can be found.  

For example, cells i in frame 1 (figure 3.15(a)) is associated to cell k in frame 2 (figure 3.15(b)), 

and stored in forward matrix Pf(i, k),and backward matrix Pb(k,i) in figure 3.16. The scores 

marked by red circle are the scores higher than the threshold. In the backward score matrix, the 

row maxima is the only one be chosen. While in forward score matrix, one or two cells can be 

found in each row. However, in the ‘Combine’ matrix where the backward and forward matrix 

multiplied together, the false matches were discarded by searching the row and column maxima. 

In figure 3.16(d), the combine matrix is depicted as a pixel heat map with good matches having 

warm colours (red). 
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Figure 3. 16  Sample scoring matrix calculated for cells in figure 3.15  

Once the correspondence matrices for all consecutive images are generated, we reconstruct the 

tracks-information matrix by linking the sequence of correspondence matrices. Individual tracks 

are obtained by backward linking the cells identified in the last frame to the cells in the first 

frame. For example, cells in figure 3.15 are finally associated in figure 3.17: 

 
Figure 3. 17  Feature matching results (a) frame 1 (b) Frame2 (c) associated pairs of cell 
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3.4 Phase contrast image segmentation 

This section describes the methodology used to segment cell division pedigrees from phase 

contrast image stacks.  

3.4.1 Contrast normalization and background bias 

correction 

Normalization is also called contrast stretching, which changes the range of pixel intensity values. 

The purpose of dynamic range expansion is to achieve consistency in dynamic range for a 

sequence of images and to maximise the range of pixel intensity values. For cell tracking 

normalisation of grey scale range is particularly important when using phase contrast 

images(Gonzalez, 2008). 

For our image data, the image to the intensity range was normalised to an 8 bit image intensity 

range (0 to 255) after correction for background bias. The method used for background bias 

correction was polynomial surface fitting described in section 3.2.1.2. Figure 3.18 compares the 

original image, subtracted background bias, and image after correction and normalization.   
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Figure 3. 18  Comparison of images before and after processing, a: original image; b: 

Background estimated by polynomial fitting; c: Image after background correction and 

normalization  

a 

b 

c 
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3.4.2 Background subtraction 

Phase contrast images generate contrast from changes in phase that occur due to refraction 

through the cell body, or the way light is reflected at the substratum (resulting in phase reversal 

and dark regions). Phase contrast images of adherent cell growth have common features; cell 

attachment to the substratum is darker than background, whereas cell thickness or rounding 

creates a signal which is much brighter than background. When a cell undergoes mitosis or 

division, three major phases can be observed: first, the cell will detach from the surface and 

begin to round up; second, the cytoplasm of the dividing cell separates into two distinct regions 

forming a characteristic dumbbell shape; and lastly, the two daughter cells are created from a 

single dividing cell. Following cell division and plating, cells will interact with their 

surroundings by forming attachments via integrin receptors with the underlying surface. Upon 

maturation and accumulation of these attachments the cells will begin to elongate or spread. 

Once fully spread, the cells will migrate along the underlying surface. 

Distinction between spreading and motile cells is sometimes difficult, especially when fully 

spread cells develop mature contacts to commence migration. Migration of cells is not possible 

without cell spreading because spreading forms many of the immature contacts with the 

substratum necessary to initiate cellular migration. The major distinguishing factor between 

spread/motile cells from dividing cells is a characteristic bright halo enclosing a dark cell body 

of low pixel intensity. 

Dividing cells are easily distinguished because a bright halo forms at cytokinesis. This may be 

due to the increased height of the cell, and refractive index differences between the cell body and 

the surrounding fluid. When observed in time lapse, divisions are easily visualized as transient 

bright spots. Since bright cells are distinct from spreading and motile cells, separate thresholds 

and segmentation methods are implemented for cell spreading and mitosis. 
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3.4.2.1 Edge detection 

Many edge detection methods have been developed because of its central importance in image 

processing. Region boundaries and edges are closely related, since there is often a sharp 

adjustment in intensity at the region boundaries. The basic principle behind most cellular edge 

detectors is to locate regions of maximum change in pixel intensity. The regions of maximum 

change can be determined from “zero-crossings” of the first derivative of the intensity profile 

(Gonzalez, 2008). 

 

 

 
Figure 3. 19  (a): Cropped demo image (432x495); (b): The image intensity profile; (c): The 

first derivative of image in x direction; (d): The first derivative of image in y direction 

The 2D- first order partial derivative of the image intensity profile is called the image gradient. 

In fig 3.19 (c) and (d), the gradient of image is saturated with zero crossings due to the 

fluctuation in background pixel intensity. But the zero-crossings of interest are adjacent to local 

a b 

c d 
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maxima. Zero-crossings associated with each maximum correspond to the increasing pixel 

intensity caused by the prominent bright cell halo, and to a lesser extent the darker cell body. 

Sensitivity parameters are incorporated into the edge detection method to only detect fluctuations 

within a specific range and to filter out ubiquitous zero-crossings contributed by variation in 

background pixel intensity, Uneven illumination produces additional fluctuations leading to 

errors in edge detection(Gonzalez, 2008). 

A Canny edge detector was utilized in this study to identify cellular edges. Application of the 

Canny edge detector is pictured below in fig 3.20 (a) & (b). The Canny edge detector has three 

primary goals: low error rate, edge points should be well localized, and the region boundary 

should be localised to a single edge(Gonzalez, 2008). For a mathematical discussion of this 

algorithm see Canny’s publication (Canny, 1986, Gonzalez, 2008). The algorithm can be 

summarized as the following steps: 

1. Smooth the image with a Gaussian filter 

2. Compute the gradient magnitude and angle images by calculating the 2D-first order 

partial derivatives of each pixel.  

3. Apply nonmaxima suppression to the gradient magnitude image 

4. Use high-and-low level thresholding (figure 3.20 (b)): a high threshold for low edge 

sensitivity and a low threshold for high edge sensitivity. Edge starts with the low 

sensitivity result and then grows it to include connected edge pixels from the high 

sensitivity result.  

5.  8-connectivity analysis (chapter 3.3.3) to detect and link edges 

As illustrated in figure 3.20(b), Canny edge detection together with well defined two level 

threshold can isolate regions of large contrast between the cellular membrane and the 

background; however, the imaging dilemma described in the literature review poses many 

barriers for complete and continuous edge detection of the cellular boundaries. Hence, the 

deficiencies of cellular edge detection can be offset by combination with other image processing 

methods. We combined the results of edge detection and bright halo thresholding together in 

figure 3.20. 
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Figure 3. 20  Comparison of Canny edge detection and thresholding (a) Canny edge 

detection, (b) Canny edge detection with high-low threshold, (c) thresholding of bright halo, 

(d) combination of (b) and(c)  

 

3.4.2.2 Object closing and filling 

Although the combination of edge and thresholded information recovers much of the image 

information of the cell bodies, quite a bit of information is still “lost”. Once again, the majority 

of the information is lost in the cellular boundaries of low contrast. Image object 

closing(Gonzalez, 2008) can be used to roughly interpolate regions of discontinuous cellular 

boundaries. As described in section 3.2.1.2, object closing consists of binary image dilation 

followed by erosion, which closes or interpolates the gaps within or in between objects governed 

by structuring elements (SE). Binary image dilation uses an SE or a binary mask similar to the 

one described before to determine local pixel intensity variation, however, the mask used in 

image dilation, more commonly referred to as an SE, can assume many basic geometric shapes. 

a b 

c d 
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Certain SE shapes are suited for specific image processing conditions. The size of SEs may also 

vary, depending on the type of segmentation desired and also the size of the objects(Gonzalez, 

2008). Similar to the rolling ball filter (3.2.1.1), the binary SE is moved and centered along each 

pixel. In dilation, the mask assigns the maximum value determined within the mask region to the 

pixel of interest. In contrast, erosion assigns the minimum value. The size and construction of the 

SE structure and binary element values govern the image segmentation. 

 
Figure 3. 21  Segmented cells, a: gray scale image; b: blobs founded by image filling; c: 

images have the background ‘zeroed’  

 

3.4.2.3 Further processing  

Application of the background subtraction eliminates the majority of the background pixels, 

isolating approximate regions which contain the following information: 

a 

b c 
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1. Majority of the pixels comprising the cell body 

2. Discontinuous cell edges 

3. Bright cell halos 

The combination of edge detection and histogram thresholding excluded discontinuous cell 

edges due to the low contrast of these structures. As previously discussed, poor image contrast of 

structures creates an overlap in pixel intensity between pixels of interest and the background. 

However, since the majority of background pixels have been zeroed, the overlap in pixel 

intensity between background and discontinuous cell edge pixels becomes less pronounced. The 

separation of background pixels from the pixels of interest is accentuated in the intensity maps 

displayed below in fig 3.22 (b & c). 

 
Figure 3. 22  Gray scale image and image with background mask in 2D and their 3D 

intensity profile, (a) gray scale image, (b) gray scale image with background mask, (c)  , (d)  

a b 

c d 
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Now that a large separation between the background and the pixels of interest exists, a final two-

level global threshold range can be utilized to isolate the cell bodies. The lower limit of the 

threshold range is set to a pixel intensity of 1, since the background is zero. The upper limit is set 

to the previously manually determined upper threshold. Everything falling in between the lower 

and upper threshold limits is incorporated. This new threshold range is adjusted and expanded to 

incorporate the discontinuous cell edges producing a more complete segmentation of the desired 

cell bodies, figure 3.23(b). 

 
Figure 3. 23   Compare of segmented object by background mask (a) and second global 

thresholding (b) 

As described earlier, dividing cells (fig 3.24(a)) can be easily segmented via global thresholding 

due to the pronounced bright pixels comprising the dividing cell, and also the extremely well 

defined boundary. The large separation between the background and bright pixel intensity, as 

illustrated in fig 3.24 (c), makes simple global thresholding tremendously effective, therefore the 

creation of a background mask as described in section 3.4.2.2 is needless. Parts of the bright cell 

are not incorporated into the thresholded cell in fig 3.24 (b), due to the dark intensity of the cell 

nucleus. In the case of dividing cells, binary object filling can be implemented to fill or 

interpolate the gaps from the thresholding because the cell boundaries are continuous and well-

defined. 

a b 
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Figure 3. 24   Mitotic cell and segmentation by thresholding (a) mitotic cell, (b) binary 

segmentation results by thresholding, (c) intensity of gray scale image of mitotic cell 

 

The last step of segmentation is removing the remaining noise, noted as small dots enclosed by 

blue lines in figure 3.25(a). Here, we use the component labelling method stated in section 

3.2.2.3.2 to remove these objects to avoid the over-erosion problem, which would result if on 

applied erosion. The final result of cellular segmentation on phase contrast image is showed in 

figure 3.25(b).   

b a 

c 
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Figure 3. 25   (a) Eroded binary image with noises, (b) Final result of segmentation with red 

contour 

 

3.5 Tracking by nearest neighbour determination 

Although several features of segmented cells can be obtained from phase contrast images, the 

tracking of objects is hard to achieved using the feature matching algorithm developed for 

fluorescent nuclei. The main obstacles are: 

1. The frequent shape changes for fibroblasts and other adherent cell types.  

2. Cell contact as cells grow to confluence. There are no suitable methods for correctly splitting 

connected adherent cells on phase contrast images. 

Because or irregular geometry of adherent cells it was not possible to define a feature mapping 

training set as was developed for matching fluorescent cell nuclei (section 3.3). For this study we 

adopted a nearest neighbor algorithm(Gonzalez, 2008) for cell centroid tracking. When cells are 

well separated and the frame rate of the image sequences is sufficient, cells can be distinctly 

separated by the distance of between cell centroids(location) for consecutive images because of 

small changes in cell position without large changes in cell morphology.  As a result, cells have 

the smallest distance in two consecutive frames are associated together, which is similar to 

feature matching in section 3.3, but the only feature that is matched is the centroid. Also by 

tracking backwards, the division of cell is identified as the merging of two different tracks into 

b a 
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one. Even though cell shape is heterogeneous, centroid position is a robust cellular feature that is 

commonly used to track fibroblast.  

The component labelling technique described earlier is quite useful to calculate the centroid of 

all the cells within an image. All the pixels of each cell are accessed individually via the labelling 

matrix from component labelling, and the centroid is determined individually for each cell. 

Alternately in this study, the distance transform (DT) can also be implemented to determine a 

central reference point for each cell.  

 

3.5.1 Distance transform and quasi-center of mass 

Distance transform(Gonzalez, 2008), also known as distance map or distance field, is a derived 

representation of a digital image. The choice of the term depends on the point of view on the 

object in question; whether the initial image is transformed into another representation, or it is 

simply endowed with an additional map or field. The map labels each pixel of the image with the 

distance to the nearest obstacle pixel. The most common type of obstacle pixel is a boundary 

pixel in a binary image.  

The Euclidian distance formula(Gonzalez, 2008) is the standard method to determine distance, 

which calculates the straight-line distance between two pixels. But slight variations of distance 

determination have also been implemented. The binary image produced from the DT conveys 

crucial image information: the size of objects, the ratio between the major and minor object axes 

can be inferred, and object morphology. In addition, to the crucial image information described 

above, the DT also provides a means to classify pixels within an object based on distance 

mapping. More importantly, pixels of minimum distance value designate object boundaries 

because border pixels are the nearest object pixels to the background.  On the other hand, pixels 

with maximum distance are the most distant from the background specifying a quasi-centre of 

mass (QCM).  

The DT issued to determine the group or region of pixels farthest from the image background for 

each object. This group or region of pixels is usually localized in the vicinity of the cell nucleus, 
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and the numerical approximation of the centroid can be applied to these regions to produce the 

QCM. 

 
Figure 3. 26   Distance transform of the gray scale image 

Referring above to fig 3.26(a), the centre of mass approximation would only be calculated for the 

region of maximum distance value or in this case the green to red region. On the other in hand in 

the case of the centroid, the centre of mass approximation would be calculated for the entire cell 

body in fig 3.26(b). The QCM has two advantages over the traditional centroid: 

1) The position of the QCM is almost always inside the cellular boundaries, whereas the centroid 

sometimes falls outside of cellular boundaries due to the numerical approximation. (This 

problem is accounted for in our system and will be addressed later) 

2) QCM can possibly identify cellular divisions, during mitosis the cellular morphology reshapes 

into an object which gives rise to two QCMs, as opposed to one centroid. 

Although the QCM is a major improvement over the cell centroid, a single reference point 

sometimes is not indicative of the behaviour of the entire cell body, hence there is some inherent 

bias in the cellular trajectory data extracted from single cellular reference points. However, 

centre of mass references are indicative of gross translocations of the entire cell body. 

3.6 Manual tracking and correction 

Validation of high-throughput time-lapse cell segmentation and tracking algorithms is a 

challenging task since most cell assays have many cells and rapid acquisition times (leading to 
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many time points) making manual validation time-consuming and tedious. We developed a 

simple edit-based validation program that consists of the following elements: i) It accepts a 

general input independent of the segmentation/tracking algorithm ii) Annotates the image with a 

cell numerical identify which allocates the cell to a track iii) A region-growing tool with 

predefined parameters (intensity growing threshold) to manually correct segmentation results iv) 

A manual tracking tool for editing and adding of tracks using  mouse-clicks on cell centroids, 

tracking one cell over a sequence of images. 

3.6.1 Region growing 

Region growing(Gonzalez, 2008) is a morphological tool for image segmentation and pixel 

classification. It is a procedure that groups pixels or sub-regions into larger regions based on the 

predefined criteria for growth. The growth starts from a set of ‘seed’ points within the growing 

regions, and extends to neighboring pixels which have the predefined properties similar to the 

seed. The first problem is the selection of similar criteria, which depends on object 

characteristics and the quality of image data. The most commonly used criteria is the range of 

pixel intensity and color, while some current applications utilized the gradient and entropy of an 

image(Gonzalez, 2008). Another problem is the formulation of stopping rules, which stop the 

growth when there are no more pixels to satisfy the criteria. The stopping limitations include 

thresholds of absolute or differential value of the pixel properties compared with the seed, and 

size, shape, or likeness of the candidate pixels related to the grown pixels which take in account 

of the growth ‘history’(Gonzalez, 2008).   

For this study intensity was main criteria for growth. The stopping rules were based on the 

average pixel intensity and size of the grown region. The growth procedure is stated as follow. 

Let f(x,y) denote an input image array; S(x,y) denote a seed array valued 1 at the locations of 

seed points and 0 elsewhere. And assume that S(x0,y0) equal to 1. Q denote the intensity 

threshold to be applied at each location (x,y). N denote threshold of the growing pixel number. V 

denote summary of growing points. Arrays V, f and S are assumed to be of the same size. 
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1. Let V(x0,y0)=1, Comparing the intensity threshold Q with the intensity differences 

between seed and its 8 connectivity shown as the template in figure. If f(x,y)<Q and (x,y) 

is not the boundary of whole image, let V(x,y) equal to 1, else equal to 0. 

                      

 
Figure 3. 27   Demo of region growing (8 connectivity) 

 

2. Calculate the number of 1 valued pixels within V. if Ni<N, let each of the 1 valued 

neighboring points count as the new seed, eg (x1, y1). Repeat step 1. When all the 8 

connectivity valued 0 in V, continue with step 3. 

3.  Label each connected blobs in V with different region label.  

In addition, the region growing function program incorporates interactive seed selection and 

threshold determination which helps manual inspection of the growing pace. The work flow 

is stated as below. 

c 

a b 
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Figure 3. 28  Region growing program; (a) flow chart of program; (b) examples (β-actin 

cCFU-F) of region growing, cell boundary was contoured by red 

a 

b 
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3.7 Cell Cycle Analysis 

It was shown over 30 years ago by Smith et al that the cell cycle time distribution follows a lag-

exponential function(Smith, 1973). Using the same observation here, the cell cycle analysis is 

performed by estimating the age-dependent probability for mitosis and apoptosis by Kaplan-

Meier (KM) analysis.  

The KM statistics(Kaplan and Meier, 1958, Nordon, 2011a) is a class of survival statistics, which 

relate the time that passes before some event occurs to one or more covariates that may be 

associated with that quantity. It is an non-parametric and empirical probability estimation which 

includes censored data. The use of censoring overcomes the problem of incomplete observation 

of life history. For example, one cannot observe the mitosis of all cells because many of them 

dead or lost before division. As a result, it is suitable for both large sample groups and small 

sample groups, although the survivor curve estimated from small sample group may have a 

relative larger error. 

 The age-dependent probability of mitosis is defined as the probability that a 

cell undergoes mitosis after time t. For the Smith-Martin model the age-dependent probability of 

mitosis is  

                                                   Equation 3. 8 

                                                   Equation 3. 9 

where L is a time lag, and the rate of the exponential process. 

Surprising, this model often approximates the cell cycle distribution of homogeneous cell 

populations 

As shown in figure 3.29, generation 2 cells which have been tracked for up to 100 hours are 

analyzed. The blue curve is the age-dependent probability distribution of cells remaining 

undivided (before mitosis). It is often called an empirical probability, because the probability is 

estimated using the data, does not make any assumption about the shape of the probability 

distribution and is thus a non-parametric statistic. The upper and lower dashed curves provide the 

95% confidential interval. Logarithm transformation of the probability distribution enables us to 
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fit the probability curve to a linear function with estimation of the rate of the exponential process 

(the slope is ) as well as the x intercept which is the lag time L. The red line in figure 3.29 is 

the linear regression result, with a lag which indicates the smallest cycle time. The mean of an 

exponential variant is   .  Thus the average cell cycle time is L+ . 

 

Figure 3. 29  Illustration of cell cycle analysis using cell division history and KM analysis 

(cardiac CFU-F isolated from a large colony, passage three, from the beta-actin GFP 

mouse) 

 

3.8 Summary 

Semi-automated cell tracking software was described in this chapter. The software has had great 

utility in this project. Firstly, it was successful applied for tracking green fluorescent protein 

(GFP) positive nuclei using the PDGFR-α GFP transgenic mouse. The software robustly tracked 

the majority of GFP+ cells in time-lapse fluorescent image sequences acquired by the live cell 

imaging system leading to the analysis of cardiac CFU-F development by Kaplan Meier analysis 

in chapter 5. Secondly, the computation time for segmenting cells was reduced to a few seconds 

for each image, which is comparable to other segmentation algorithms. Thirdly, the development 
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of an automated and robust curvature based method for separating adjacent nuclei correctly 

identified separate nuclei on fluorescent images. Moreover, the manual correction framework is 

efficient at certain times for correcting unsuccessfully cell segmentation and trajectory maps over 

image sequences.  

Future work will address problems associated with inaccurate cell and trajectory segmentation 

using phase contrast images, or images with poor quality such as low fluorescence images. . 

These problems are discussed in more detail in chapter 6. There will also be a need to 

incorporate the developed algorithms into a user friendly software platform (e.g., C++) which is 

optimised for speed, particular during interactive editing of segmented image stacks.  
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Chapter 4   Division Tracking of 

NIH3T3  

4.1  Introduction 

The cell line NIH3T3 was initially studied with a custom-built live cell imaging system to 

evaluate tracking software and statistical methods. NIH3T3 is a mouse embryonic fibroblast cell 

line, and has an average doubling time of 20 hours (Jainchil.Jl et al., 1969). A photo-toxicity 

assay was developed to assess the effect of fluorescent imaging on fibroblast survival. Cell death 

was detected by imaging irreversible cell detachment. The cell cycle time distribution of NIH3T3 

cells was estimated by Kaplan Meier analysis. The live cell imaging system was used to test the 

hypothesis that the cell cycle of mother and daughter cells are inherited by estimating the 

correlation coefficient for mothers/daughter and sibling cycle times.  

4.2  Materials and Methods 

4.2.1 Experiment setup 

One liter of Iscove’s Modified Dulbecco’s Medium (IMDM) with 1 mM L-glutamine, 25mM 

HEPES adjusted to pH 7.2, (Sigma) was prepared every two months. Media was sterilized by 

filtration through a 0.2um Acrocap filter unit (Pall Life Sciences). Sterile filtered media was 

stored at 4oC. Media was supplemented with 10% Fetal Bovine Serum (Invitrogen), 3.7g/L of 

sodium bicarbonate, and penicillin / streptomycin antibiotic solution (CSL Biosciences). NIH 

3T3fibroblasts were passaged 2-3 times per week with culture media and maintained below a 

surface density of 100,000 cells/25cm2. Cells were maintained in a 5% CO2 incubator at 37oC. 
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Cells were trypsinized (JRH Biosciences), and plated at a desired density of approximately 

10,000 cells/25cm2 8 hours before imaging. A plating density of ~10,000 cells/25cm2 was 

suitable for extraction of cellular trajectories because the number of cellular collisions were 

minimizes, thus reducing the cellular overlapping dilemma previously described. A temperature-

regulation system enclosed the entire microscope system at 37oC, and a smaller gas-tight 

environmental chamber maintained 5% CO2 environment around petri dishes (figure 4.1).  

Uniform heating was regulated by a custom-built PID controller (M168, AVR microcontroller) 

for closed-loop regulation of microscope incubator temperature at 37.0 ± 0.1 C. Temperature was 

measured using platinum 100 temperature probes placed inside microscope incubator 

compartment on top of the environmental chamber. The heater with fan was housed within the 

microscope incubator enclosure, its duty cycle set by the PID controller to maintain temperature 

at the 37.0 C set point. An infrared CO2 detector was connected to the output of the culture pod 

to check that the 5% CO2 concentration was maintained within the environmental chamber. The 

air/ CO2 mix was humidified by recirculation through an underwater sealed vent (figure 4.2).  

During transport of tissue culture plates from the tissue culture incubator to the imaging system 

condensation forms under the lids of petri dishes of a drop in temperature. Condensation refracts 

illuminated light and diminishes resolution within a focal plane. Therefore cells were placed 

inside the incubator for 2 hours prior to imaging to allow temperature equilibration and 

evaporation of condensation. Images were taken using an inverted Olympus IX70 microscope 

equipped with a 10x phase contrast objective and automated x, y, z-stage. A 12-bit peltier-cooled 

camera (1376×1032 pixels) with firewire interface (F-View II, SIS XM10 Trigger supplied by 

Olympus) captured images. Cell/M software (Olympus) was used to set a protocol that scanned 4 

positions every 2 minutes for 4 days.  
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Figure 4. 1  Cell culture chamber and front view of the Cell imaging stage (a) Cell culture 

chamber  (b) Front view of the imaging stage

 
Figure 4. 2   Design of the CO2 concentration control and hydration circuit 

One of the two dishes of cells served as a control sample to test the photo-toxicity of blue light 

excitation (figure 4.1). Phototoxicity was measured by continuous exposure to blue light for time 

intervals of up to 8 minutes. A phototoxicity matrix array was created on the cultured monolayer 
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by programming blue light exposure times for different x, y positions. Cell detachment at each of 

these positions was imaged at just before exposure, and at 16, 24, 48 and 72 hours after exposure. 

Maintaining focus was a major issue in all live cell imaging experiments, though this problem 

was totally resolved many months later when it was discovered that Olympus firmware was 

driving the z-focus coupling at a velocity that resulted in slippage. For tracking NIH3T3 cells 

with phase contrast imaging auto-focus software gave inconsistent results because bright or dark 

field edges were used by the software algorithm. By over exposure, which is in essence a 

thresholding technique, the autofocus algorithm in Cell/M only utilized dark field features over 

consecutive images (see Figure 4.3). This technique proved to be an efficient method for keeping 

fine focus for long term image series.  

       
Figure 4. 3   X10 Demo of the developed auto-focus method, a: PC image of NIH3T3 cells; b: 

over-exposure image, ET=100ms  

 

4.3  Results and Discussion 

4.3.1 Phototoxicity test 

Images were taken for 9 positions exposed to different doses of blue light. The cell detachment 

rate was counted for each position:  

                                           Equation 4. 1 

100μm 
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Figure 4.4 is an image montage showing micrographs of the 9 positions taken at 72 hours. 

Significant phototoxicity was detected after 2 minutes of blue light exposure; the number of 

detached cells (black inside, bright halo, round shape) accounts to more than 50% of the total cell 

number. Whilst this morphology is also seen during mitosis, cells will rapidly reattach to the 

surface after cell division. 

Figure 4.5 shows the proportion of detached cells versus time for the range of blue light doses. 

The detachment rate was more variable after 48 hours because of cell migration into the death 

zone. However, it is clear that even short blue light exposures were detrimental to NIH3T3 

viability. Thus there is a trade-off between the extra information obtained by fluorescent imaging 

and the loss of cell viability. 

 
Figure 4. 4  Snapshots taken for exposure groups at the end of culture  

 

100μm 
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Figure 4. 5   Cell detach rate of different light exposure vs time 

4.3.2 Trajectory maps  

All tracking software and statistical calculations were performed using the Matlab2010a image 

analysis and statistics toolboxes. Cell tracking over image sequences were performed manually 

by Julia Yin (B.E GSBmE UNSW). She identified cell tracks using the software described in 

chapter 2. 

The pedigrees of 44 colonies were constructed from tracking 482 cells within four fields of view 

over four days of culture. Figure 4.6 shows the complete trajectories of NIH3T3 at position one, 

where up to 4 generations are observed during the tracking experiment.  
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Figure 4. 6  Trajectories of 145 cell tracks in one field of view (P1) in four days culture 

 

4.3.3 Kaplan Meier Analysis 

The distribution for cell cycle lengths were estimated by the Kaplan Meier (KM) statistic for 

cells belonging to each generation. The KM statistic estimates the empirical probability of an 

event during a time interval from a time series data. The statistic is commonly used in medical 

research to estimate the empirical probability of survival (or response to therapy) using 

incomplete lifetime data.(Kaplan and Meier, 1958) KM analysis to cell lifetime data has only 

recently been recently applied to cell cycle analysis (Nordon, 2011a) and is a novel aspect of this 

thesis.  

It was assumed that cell cycle time had an exponential distribution because KM plots of log of 

probability could be approximated by a linear function. 
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    Equation 4. 2 

Here the probability that a cell divides after time t is Pr[T>t] where T is a random variable 

describing the cell cycle length. The exponential function is displaced to the right by a constant 

lag L which represents the minimum cell cycle time required for S and G1 phase of the cell cycle. 

The mean of an exponentially distributed random variable with parameter l is   . To estimate l it 
was assumed that cycle times were exponentially distributed (L=0). The KM estimated with 95%  

confidence interval at day 4 was used to estimate l with 95% confidence intervals (CI), and the 

average cycle time with  95% CI was estimated by taking the reciprocal of l ± 95% CI. 

Table 4.1 lists the average cell cycle time (± 95% CI) and lag time estimated for each generation, 

and also records the number of cells that were tracked. Figure 4.7 to Figure 4.8 shows the log 

transformed probability of mitosis for generation 0-3 as well as linear regression analysis of log 

transform data. The main findings are summarized below: 

1. Generation zero cells have no lag time. This is because their last mitosis occurred before 

the start of the experiment, and only the residual cell cycle time was observed. 

2. The lag time for generations 1-3 is between 10-15 hours. 

3. Average cell cycle time increase with consecutive generations. 
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Figure 4. 7   Kaplan Meier Analysis for NIH3T3 of four generations 

 

Figure 4. 8    KMA and cycle estimation for G0-G3 NIH3T3 
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Table 4. 1  cell cycle estimation results 

Generation 
% divide at 

day 4 

Average cell 

cycle time 

(hours) 

Lag time 

(hours) 

Tracked 

cell number 

0 80.29(7.36)  32.23(4.45) 0 101 

1 80.70(9.01)  23.70(5.64) 12 140 

2 73.84(17.88) 26.29(12.83) 10 154 

3 68.98(14.78)  27.21(3.15) 15 58 

4 0 ---------- ------- 29 

 

The significance of differences between 5 generations was determined by a Cox proportional 

hazards model described in detail in section 5.3.7. Table 4.2 lists the estimated relative hazard, 

error of relative hazards, the z statistic and the probability of the null hypothesis. Here the null 

hypothesis was no effect of generation number on the rate of mitosis. It was rejected because 

p<0.001. Therefore the effect of generation number of cell cycle is significant. 

Table 4. 2 Cox proportional regression for five generations 

Predictors  X                  

   (5 generations) 

Relative 

hazard   
Error of  z-statistic p-value 

Generations                   

1: G1, 2:G2, 3:G3, 4:G4, 5:G5 
-0.2981 0.0803 -3.7099 2.0736e-04 

 

4.3.4 Inheritance of cell cycle times by sisters and daughter 

cells 

As mentioned before, it was observed that siblings divided within a short time of each other. The 

inheritance of cell cycle times by sisters or daughter cells was estimated by performing 

regression analysis on these related cells. Figure 4.9 shows that sibling generation time is 
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correlated and has a regression line with a slope of 1. This means that the cell cycle duration of 

sister cells is almost identical, and that they divide almost synchronously. The correlation 

coefficient was R2=0.70, p= 1.94e-12. Red dots shown in figure 4.9 are sister cells that die by 

apoptosis or migrate outside of the field of view. These sister pairs were not included in the 

regression analysis. Moreover, there are a handful of outliers with large residuals (deviations 

from linear regression line) indicating that there are also some asymmetric divisions with quite 

different generation times. 

 
Figure 4. 9   Correlated sibling cycle (censored the missed and dead cell), with linear 

regression and residual plot; linear regression R2=0.70; k=1; p= 1.94e-12 

The correlation between mother and daughter cycle times was examined (figure 4.10(a)). Over 

121 mother daughter pairs were analyzed. In contrast to sisters, cell cycle times were not close to 

equal, but daughter cells had longer cycle times compared to mothers. The slope of the 

regression line was 29.32 and the correlation coefficient was 0.023 (p=0.0942).  Figure 4.10(b) 

shows that the average cell cycle time of mother cells is shorter than that of daughters.  
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Figure 4. 10  Correlated mother-daughter cycle (censored the missed and dead daughters);   

a: dot plot of pairs of mother-daughter cycle; b: average cell cycle  
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4.4  Conclusion 

The aim of this chapter was to determine the feasibility of tracking adherent cells (NIH3T3) 

using our live cell imaging system and to evaluate statistical methods for characterising cell 

cycle kinetics and the inheritance of cell generation times. A novel test for photo-toxicity was 

developed and showed that blue light excitation sources are quite toxic to NIH3T3 cells. 

Exposure to blue light for 2 minutes resulted in 50% of cells detaching. Exposure as short as 30 

seconds had measurable effects on cell detachment and death. 

482 NIH3T3 cells in 4 days of culture were tracked with the semi-automatic cellular tracking 

software developed in chapter 3. The probability of mitosis was estimated by Kaplan Meier 

analysis. Cell lifespan (time between successive mitoses) was approximated by an exponential 

distribution. The average cycle time estimated for NIH3T3 was 23.70 ±5.64 hours (± 95% CI), 

which was similar to the literature record of around 20 hours (Jainchil.Jl et al., 1969). Thus the 

growth of NIH3T3 in our culture and imaging system was found to be similar to conventional 

culture methods. 

In addition synchronization of sibling mitoses was observed. On the other hand there does not 

appear to be inheritance of generation times between mother and daughters, though a program 

for lengthening cycle times was observed. The average cycle time of daughters was longer than 

that of mothers. 

Overall, the cell cycle and lineage relationship results obtained in our tracking studies are close 

to those reported in the literature(Smith, 1973). The lag-exponential model of cell cycle was first 

reported by Smith-Martin, though they did not measure sibling and maternal cycle times. Nordon 

et al. (Nordon, 2011a) have quantified generation time inheritance in haematopoietic cell 

populations, though their studies showed that mother and daughter generations for granulocyte-

macrophage progenitors were correlated.  

 

 

  



80 
 

Chapter 5   Tracking of Cardiac 

CFU-F  

5.1 Introduction 

The recent discovery of endogenous cardiac stem cells in the post-natal heart (Chong et al., 2009) 

has led support for the ambitious goal of therapeutic cardiac regeneration. Although the 

biological origin of these cells is currently poorly understood, the epicardium has been identified 

as an important source of cells for cardiac repair.(Chong et al., 2009) We employed the colony 

forming unit fibroblast (CFU-F) assay (Friedenstein, 1989b) to characterize a subpopulation 

called cardiac CFU-F(cCFU-F) isolated by fluorescent activated cell sorting from the adult 

murine heart, and quantified their potential for colony formation, long term self-renewal and 

multi-potency (properties of true stem cells), and also assessed the role of the platelet-derived 

growth factor receptor alpha (PDGR-a) gene in the development of cCFU-F.  

Given the heterogeneous properties of cultures initiated with multipotent cells, it is hypothesized 

that cCFU-F is composed of cellular subsets with different potency and growth kinetics. To date 

cCFU-F colonies have been broadly classified according to their size. Small or ‘micro’ colonies 

generally have restricted differentiation potential and replating efficiency. On the other hand 

large colonies self-renew and are multipotent. In addition to having the characteristics of 

mesenchymal stem cells (form bone, cartilage and fat under appropriate culture conditions), 

cCFU also form fibromyocytes, smooth muscle, cardiomyocytes and endothelium (Harvey et al. 

personal communication). Therefore the first aim of this study was to identify cellular subsets 

from cCFU-F with specific cellular features - size, morphology, motility and PDGFR-a 
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expression - that correlate with growth kinetics. Platelet derived growth factor is a known 

mitogen, and may be responsible for regulating cardiac CFU-F cell cycle progression. 

Given that large colonies when replated generate large colonies, and small or microcolonies have 

poor replating ability, we would like to understand the mechanism for inheritance of colony size. 

A mechanism for inheritance of cell cycle kinetics is by vertical transmission of cell cycle times 

i.e, from mother to daughter cells. Previous studies have shown that haematopoietic cell 

generation times are correlated in sisters or mothers and daughters (Nordon, 2011a). Therefore 

the second aim was to perform a detailed pedigree analysis to determine whether mother-

daughter and sister cell cycle times were correlated. 

The limited replating efficiency and growth potential of small colonies may relate to longer cycle 

times or entry into a quiescent state, or increased apoptosis. It is hypothesised that cell cycle time 

is an epigenetic trait that determines whether a small or large colony is formed. Therefore the 

final aim of this study was to determine whether colony size correlates with the cycling status of 

cCFU-F. 

To summarise, live cell imaging with lineage tracing was used to address the following specific 

aims: 

1. Identify cCFU-F subsets with distinctive cell cycle behavior. 

2. Determine whether cell generation times are inherited from mother to daughter cells. 

3. Determine whether cell cycle length is an epigenetic trait that specifies colony size.  

5.2 Materials and Methods 

Phase contrast images of cardiac fibroblasts have indistinct cell boundaries making cell 

segmentation difficult. Therefore transgenic  mice that report gene expression using green 

fluorescent protein (GFP) were utilized to i) improve segmentation accuracy using a simple 

fluorescence threshold and ii) investigate the role of PDGFR-  signaling in regulation of cCFU-

F cell cycle. We first used PDGFR-  -GFP cells isolated from hearts of PDGFR- -GFP 

transgenic mice, which have one of the PDGFR-  genes replaced by enhanced GFP (EGFP). 

The expression pattern of the H2B-EGFP fusion protein mimics that of endogenous PDGFR  

gene (Hamilton et al., 2003). To address aim 1, i.e., to identify cCFU-F subsets that correlate 



82 
 

with cell cycle behavior, the cell cycle characteristics of cells expressing endogenous PDGFR  

(JAX® Mice, B6.129S4-PDGFRAtm11(EGFP)Sor/J (Hamilton et al., 2003)) as detected by GFP 

expression was determined. Cells were imaged using a combination of phase contrast and 

fluorescent microscopy. In a second study both PDGFR + and PDGFRA - cells were tracked 

using cCFU-F isolated from a transgenic mouse that ubiquitously expresses green fluorescent 

protein (β-actin-GFP) (JAX® Mice, CByJ.B6-Tg(CAG-EGFP)1Osb/J(Amano et al., 2004)). All 

cells were tracked in these studies making it possible to detect cell cycle differences between 

PDGFR  + and PDGFR  - cells. In addition to PDGFR  expression cell size, morphology and 

motility were quantified, to see whether these cellular characteristics correlate with cell cycle 

kinetics.  

Cardiac CFU-F was continuously tracked over a 5 day period. Kaplan Meier analysis was used to 

determine the cell cycle time distribution of gated cells. An immediate finding of this analysis 

was that large immotile cells which often had two nuclei had a longer cell cycle time compared 

to highly motile spindle-shaped cells. 

To address aim 2, the trajectories of mother and daughter cells were analyzed to determine if 

cycle times were correlated. To address the hypothesis that cell cycle length is the epigenetic trait 

that determines colony size (aim 3), individual cells were taken from large and small colonies 

and replated to determine if the cell cycle distribution differed for these two cellular sources. A 

Cox proportional hazards regression model (Matlab) was used to estimate the significance of the 

effect of colony size (large versus small) and cell subsets (high motility small cells versus low 

motility large cells) on cell cycle length.  

Cardiac CFU-F cells were isolated from the heart of PDGFR-  -GFP mice (JAX® Mice, 

B6.129S4-PDGFRAtm11(EGFP)Sor/J) or β-actin-GFP mice (JAX® Mice, CByJ.B6-Tg(CAG-

EGFP)1Osb/J), with collagenase II (Worthington Biochemical Co.), and were labeled with anti-

Sca-1 and anti PECAM-1 (BD Biosciences). The interstitial cell fraction of hearts were sorted by 

a FACS BDAria (BD Bioscences) collecting the Scal-1+ PECAM-1- population. 50,000 cells 

were innoculated on 75mm2 culture flasks. Cells were cultured in MEM  (Gibco) with 

2200mg/L Sodium Bicarbonate, 20% FCS, 1% Penicillin, 1% L-glutamine in a 37C incubator 

with 5% CO2. Culture medium was changed every 3 to 4 days, due to the fast medium 

consumption of these cells. Passaging was performed every 10-12 days ensuring that cells did 
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not grow beyond 60% confluence. Passage one harvested cells were frozen in -40oC and stored 

in liquid nitrogen. 

For PDGFR-  GFP mice, frozen passage 3 cells were thawed and cultured as described above. 

Note that GFP is expressed in the nucleus, and is not localized at the cellular membrane (figure 

5.1). 5000 cells were inoculated onto 35 mm2 culture dishes and grown in a standard tissue 

culture incubator for 24 hours prior to tracking inside the microscope incubator chamber (figure 

5.2). Media was replaced just prior to transfer into the microscope incubator.  

For β-actin GFP mice 2 large colonies and 2 small colonies from passage 1 cultures (e.g., Figure 

5.3) were picked up by O-ring and expanded separately under CFU-F culture condition. At day 

13 of passage 2, cells were tripsinized and 50 cells were inoculated onto two glass well-plates 

coated with Polyerystin, which have better transparency than plastic culture dishes. These 35 

mm2 dishes were grown in a standard tissue incubator for 24 hours prior to tracking inside the 

microscope incubator. 

The graphical user interface of the experiment manager of Cell/M software (Olympus) was used 

to program a large-field scanning protocol. Images were taken using an inverted Olympus IX70 

microscope equipped with a 10x (for PDGFR-  -GFP cell experiments, figure 5.1) or 4x (β-

actin GFP experiments, figure 5.4) phase contrast objective, a fluorescent illumination system 

and automated x, y, z-stage (Optiscan, Prior Scientific). A 12-bit peltier-cooled camera 

(1376×1032 pixels) with firewire interface (F-View II, SIS XM10 Trigger supplied by Olympus) 

captured images. PDGFR-  cells were imaged every 30 minutes for 5 days from a 5×6 

contiguous region (figure 5.2). Likewise β-actin GFP cells were imaged every 30 minutes for 5 

days, however there were only 50 cells at the start of culture, so 33 regions were selected so that 

one or two cells were initially at the centre of each scanning region. GFP was excited at 488 nM; 

PDGFR-  cells were exposed for 300 ms (figure 5.1), whilst β-actin GFP cells were exposed for 

100 ms (figure 5.4). 

At day 4, medium was replaced and image reference positions were re-aligned.  
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Figure 5. 1    X10 Superimposed GFP &phase contrast images of passage 3 PDGFR  -

GFP CFU-Fs Frame 127 @ position 17 

The second petri dish culture served as a control for the effect of phototoxicity (figure 5.2) and 

was imaged by fluorescence once a day as described in chapter 4.  

 

Figure 5. 2  snapshots of Environmental chamber and two petri-dish culture NIH3T3 cells 

at the end of experiment, H+: tracking sample; H-: control sample 

100μm 
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Figure 5. 3 Large colony and small colony X2 Frame

 

Figure 5. 4   X4 Frame 211(1675X2225 μm) @ position 15 of β-actin-GFP CFU-Fs 

 

100μm 
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5.3 Results and Discussion  

5.3.1 Trajectory maps for PDGFR-  GFP cCFU-F 

Tracking of passage 3 PDGFR- -GFP cCFU-F from image sequences was performed by the 

automatic fluorescent image tracking program, followed by manual confirmation and correction. 

The automatic and manual confirmation software was described in Chapter 2.  

137 lineage maps were constructed from cell tracking data accumulated over five days of culture. 

In Figure 5.5, montage images of a large field of view (5x6) are aligned, and phase contrast 

cellular images and green fluorescent nuclei images have been superimposed. Different cell 

tracks are marked with different colours. The cell trajectories are also plotted as 3D maps, in 

which the x and y axis are accordingly the x, y axis of 2D image and z axis is the tracking time 

points. In figure 5.5(b), a division occurs at approximately the 17th frame and can be clearly 

identified, as the splitting of one track into two tracks of different colours. 

By visual inspection and manual correction of the automatic tracking results, we identified two 

distinctive cell morphologies in culture; large flattened-cells with low motility and spindle-

shaped cells. Illustrated in figure 5.6, a large flattened-cell is in the upper left corner of the image 

and the nucleus is circled in red. Spindle-shaped cells are widely distributed in the image and the 

nuclei are circled in green. The expression of PDGFR- -GFP is in the nucleus, and does not 

localise at the cell membrane as a fusion cell surface receptor. Prominent trends are that large 

flattened-cells have a higher expression of PDGFR-  compared to small, spindle-shaped cells. 

The motility of spindle shaped cells is also significantly higher than flattened cells.  



87 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 5  Trajectories of PDGFR- PDGFR- -GFP+ cells over five day culture  (a) 

Trajectories of 137 PDGFR- -GFP+ cells in large field of view; (b) 3D-trajectories of cells 

in contoured region  
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Figure 5. 6   (X10frame (670X890μm)) Identification of large flattened-cell and spindle 

shaped cells 

 

5.3.2 Motility analysis (PDGFR-  GFP mouse) 

As illustrated in the dot plot in figure 5.7, x and y axes are cell displacement measured in pixels 

per hour for x and y directions, respectively.  Blue dots which indicate spindle cells, are mostly 

distributed within the blue polygonal region, while red dots representing large flat cells are 

centred within the red region. Spindle cells clearly have greater motility compared to flat cells.. 

This conclusion is further illustrated in figure 5.8, which compares the average velocity 

(pixels/hour) with standard error of the mean (SEM) for cells with different shapes (flat red, 

spindle blue), and division histories. During the tracking period, cells which have been observed 

to undergo at least one division appear to have greater motility compared to cells which undergo 

no divisions (quiescent cells). The effect of quiescence on motility was not significant as 

determined by a two way ANOVA (table 5.1). The effect of observing no divisions during the 

culture experiment did not significantly influence motility, (p=0.2267) but cell size was highly 

Debri 

Large flattened-cell 

Spindle shaped-cell 

100μm 
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significant (p=0.0005). However, flat cells with no PDGFR-a GFP expression were excluded 

from this analysis, because these cells boundaries are not distinct on phase contrast images. 

Experiments with beta-actin GFP mice resolved this problem (see below). 

 
Figure 5. 7   Comparison of motility of flat and spindle cells 
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Figure 5. 8   Comparison of cell motilities between cells with different shapes, and division 

histories 

 

Table 5. 1  Two-way ANOVA to determine the significance of size and division history 

affecting motility 
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5.3.3 Kaplan Meier analysis (PDGFR-  GFP mouse) 

Based on the observation of cell morphologies with differences in cell motility, the cell cycle 

time distribution of these subsets was analyzed by Kaplan Meier analysis (KMA) as described in 

section 3.6. Illustrated in figure 5.9, figure 5.10 and figure 5.11, the probability of division (y-

axis) after a specified cell age (x-axis), was estimated using the Kaplan Meier (KM) statistic. It 

was assumed that cell cycle time had an exponential distribution because KM plots of log of 

probability could be approximated by a linear function. 

 

    Equation 5. 1 

Here the probability that a cell divides after time t is Pr[T>t] where T is a random variable 

describing the cell cycle length. The exponential function is displaced to the right by a constant 

lag L which represents the minimum cell cycle time required for S and G1 phase of the cell cycle. 

The mean of an exponentially distributed random variable with parameter l is   . To estimate l it 
was assumed that cycle times were exponentially distributed (L=0). The KM estimated with 95%  

confidence interval at day 5 was used to estimate l with 95% confidence intervals (CI), and the 

average cycle time with  95% CI was estimated by taking the reciprocal of l ± 95% CI. 

It was not possible to know the birth time of cells that were plated at the start of the experiment. 

So-called generation zero cells are therefore analysed separately. For generation zero one 

assumes that the experiment commenced at uniformly sampled random times after cell division. 

The rate l of an exponentially distributed generation time should be equal to the rate of the 

residual time before cell division because exponential variables have independent 

increments(Bremaud, 1999) . The average cell cycle times for flattened-large and spindle-shaped 

cells were listed in table 5.2 below. From this data it appears that the cycle time of flattened-

large cells is much longer than spindle-shaped cells. Cox regression analysis was later used to 

determine the significance of the observed differences (see below). Due to the low turnover rate 

of flat cells very few divisions were observed, so the cell cycle time was not estimated.  
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Table 5. 2  Estimated Cell Cycle of Passage 3 CFU-F 

Cell Birth Cell Type 
% divide at 

day 5 

Cell cycle 

(hours) 

Lag time 

(hours) 

Tracked 

cell 

number 

Cell birth prior 

to experiment 

 

Flat 83.2 (11) 214.44(103.24) 1.49 48 

Spindle 28.6(20) 21.60(8.13) -1.17 22 

Cell birth during 

experiment 

Flat ----------- ---------- 5.75 10 

Spindle 53.55 (17) 135.89(29.91) 3.19 84 

 

 

 
Figure 5. 9   Kaplan Meier analysis of spindle cell cycle time distribution (birth during 

experiment) 
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Figure 5. 10    Kaplan Meier analysis of spindle cell cycle time distribution (birth before 

experiment) 

 
Figure 5. 11   Kaplan Meier analysis of flat cell cycle time distribution (birth before 

experiment) 
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Figure 5. 12  Proportion of GFP expression @127 frame of the large field of view 

It was observed that the majority of the flattened cells have a stronger expression of PDGFR-  

in comparison to small-spindled cells.  In figure 5.12, the proportion of GFP positive and 

negative cells were counted at the end of the experiment (frame 127). GFP positive cells are 

marked and numbered in green, and GFP negative cells are noted in red; 80.6% of all cells 

remain GFP positive and 19.4% of them have completely lost GFP expression. Thus PDGFR-   

was expressed in the majority of cells and KM estimates of cell generation times for the flat and 

spindle shaped cells may be close to total population values. At the conclusion of these 

experiments a number of technical shortcomings were noted:  

1. The 5x6 contiguous scanning field at x10 generated a large number of images. A smaller 

magnification (x5) would have been sufficient given the large size of cells 100 microns. 

In some extreme cases, a large cell occupied 1 to 2 fields-of-view at x10 magnification. 

As a result, the number of cells that were observed in one scanning experiment was 

limited, and the extension of scanning area to larger areas poses problems with data 

storage and processing.
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2. For these experiments the culture dish was scanned every hour. It was possible to track 

cells manually using visual inspection, though the sampling rate was not high enough for 

automated tracking of small cells with high motility and division rates. The scanning 

interval should be reduced to less than 30 minutes with x10.  

3. Large flattened cells were observed to form binucleated cells. Thus a more general 

definition of mitosis is required. Some cell types undergo the process of endomitosis 

(megakaryocytes, smooth muscle, skeletal muscle) without the division of the cell body. 

Thus the live cell classification should be based on division of the nucleus, rather than 

separation of cell bodies.  

4. Phase contrast images of cell boundaries were poorly defined because of the thin and 

spreading property of cCFU-Fs. Techniques for labeling actins with fluorescent proteins 

or staining with chemicals, which can increase the image contrast of cell boundary are 

desired. 

5. The initial seeding density of cCFU-Fs may affect cell growth rate, cycle time and 

differentiation outcomes. Studies reported in the literature (Masur et al., 1996) show that 

cultured cCFU-Fs at extremely low density differentiate into smooth muscle cells. As a 

result, a systematic study of the influence of seeding density on differentiation is required. 

Therefore in subsequent experiments cCFU-F was tracked at 30 minute intervals at x4 using 

cCFU-F isolated from the beta-actin GFP mouse. 

 

5.3.4 Trajectory maps for beta-actin GFP cCFU-F  

352 cells were tracked over five days of culture at 30 minute sampling intervals (211 frames) 

using the developed automated cell trajectory mapping software. Pedigrees for 48 colonies were 

constructed from cell trajectories.. Figure 5.13(a) and (b) show a complete trajectory map for a 

colony of spindle-shaped cells where up to 4 divisions are observed during the tracking 

experiment. From the 3D trajectories in figure 5.13(b), we can clearly identify the timing of 

divisions on the z axis. Notably siblings (same generation) have a similar lifespan and almost 

divide synchronously. The synchronicity between siblings will be examined in more detail later. 

Moreover, these tracking experiments confirm the observations made with the PDGFR-a mouse 
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with identification of two distinctive cell morphologies; large flattened-cells and spindle-shaped 

cells. 

 

Figure 5. 13  X4 Trajectories of colony @position 15,  a: 2D trajectories;  b: 3D trajectories, 

x y corresponds to the x, y axis of image frame, z axis is the frame number from 1 to 211, 

which corresponding to the time point from 1 to 105 hours. 

 

5.3.5 Motility analysis (beta-actin GFP mouse) 

Figure 5.14 (a) is a dot plot showing for cell motility in  x- and y- directions expressed in units of 

pixels/hour. Figure 5.14(b) compared the average speed of flat and spindle cells under different 

conditions. It is clear that the motility of large flattened cells is significantly lower than that of 

spindle-shaped cells, confirming the observations made with the PDGFR- -GFP mouse. 

100μm 
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Figure 5. 14  Comparison of motility of cells with different shape and division history with 

error-bar 
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5.3.6 Kaplan Meier analysis (beta-actin GFP mouse) 

The distribution of cells ages at mitosis was determined by Kaplan Meier analysis. Data for 

cCFU-F derived from small or large colonies was pooled. Figure 5.15 only shows the influence 

of cell size on cell cycle kinetics. During the five days of tracking, large cells (figure 5.15(a)) 

only have 3 generations, while small cells(figure 5.15(b)) have undergone 5 divisions in culture. 

It is shown later that large flattened cells, not matter whether they were selected from large or 

small colonies,  have slower turn-over rate and lower growth potential than small spindle cells.   

To further clarify the colony forming potential, cells from large colony and small colony are 

analysed separately. For this analysis data for small spindle cells and large flat cells are pooled. 

Figure 5.16 (a) displays the probability of mitosis of cells from large colony, and they have 

formed 5 generations in culture, meanwhile, cells from small colony only have 3 generations 

(figure 5.16(b)). This means that cells originating from large colonies have potential shorter 

cycle time compared to small colonies, regardless of cell size. Table 5.3 lists the average death 

rate of cell from different size colonies; cells from large colonies have a lower apoptosis rate. 

Table 5. 3  Average cell death rate in 5 days tracking 

Cell origin Average death in 5 days (%) 

Large colony 3.28 

Small colony 16.67 

Flat Cell 4.35 

Spindle Cell 5.06 
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Figure 5. 15  Kaplan Meier Analysis cell division age showing the influence of cell size and 

shape; a: large and flat cells; b: small and spindle cells  

a 

b 
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Figure 5. 16  Kaplan Meier analysis of cells with different origins, a: cells picked from large 

colonies; b: cells picked from small colonies 

a 

b 
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Thus cell cycle is related to both cell size and colony size. A more robust statistical comparison 

of cell lifetime data is made by performing Cox-regression analysis in section 5.3.7 

Table 5.4 lists the cell cycle (± 95% CI), lag time estimated for large and small cells for each 

generation from large and small colonies, respectively, and records the number of tracked cells. 

It appears that cell cycle distribution varies with generation number. A number of patterns were 

observed: Excluding generation 0 cells where total life span of cells was not observed, 

generation 1 cells sometimes had a longer cycle time than subsequent generations (small 

colonies, small cells or large colonies, large cells). There was also a tendency for small cells 

from large colonies to increase their cell cycle length. The period of observation was too short to 

make comments about more than one generation of large cells.  

Figure 5.17 shows KM plots for generation 0 cells where cell lifetime data has been pooled using 

categories based on cell size (small-spindle versus large-flat) and colony origin (small versus 

large). Cell cycle length is shortest in small cells from large colonies, followed by large cells 

from large colonies, small cells from small colonies and large cells from small colonies. Figure 

5.18 shows the same trends using data pooled from generations 1-5.  

Thus it is hypothesized cell cycle length is independently related to cell size and colony size. 

Cox regression analysis was used to test this hypothesis.  
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Figure 5. 17   KMA of G0 cells with different size and origin 

 
Figure 5. 18   KMA of G1-G5 cells with different size and origin 
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Table 5. 4  Estimated Cell Cycle Time 

Cell 

origin 

Cell 

Type 
Cell age 

% divide 

@ day 5 

Cell cycle 

(hours) 

Lag time 

(hours) 

Tracked 

cell num 

Small 

Colony 

 

Small 

Cell 

Generation 0 66.7 (11) 14.19(5.87) 2.75 18 

Generation 1 21.7(16) 120.33(53.67) 5.97 23 

Generation 2 20.0(30) 63.25(97.14) 5.75 10 

Generation 3 0 ------ ------ 4 

Large 

Cell 

Generation 0 45.80 (20) 64.73(24.21) 2.04 24 

Generation 1 0 ------ ----- 19 

Large 

Colony 

 

Small 

Cell 

 

Generation 0 93.75 (9) 10.33(4.23) 2.95 16 

Generation 1 70.83(18) 15.73(15.62) 1.56 24 

Generation 2 47.05(22) 16.76(8.39) 7.10 34 

Generation 3 43.75(17) 12.02(4.51) 6.25 32 

Generation 4 21.42(32) 80.96(108.81) 1.40 28 

Generation 5 0 ------- ------ 12 

Large 

Cell 

Generation 0 70.00 (10) 37.95(18.00) 3.07 20 

Generation 1 22.72(30) 81.19(103.43) 5.98 22 

Generation 2 40.00(25) 14.64(4.23) 11.18 10 

Generation 3 0 -------- -------- 8 
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5.3.7 Cox proportional hazards regression applied to cell 

survival data 

To determine the statistical significance of the observed differences between cell size and colony 

size, we tested our data by a proportional hazards model. Proportional hazards models and 

Kaplan Meier Analysis (Chapter 3.6) are commonly used to estimate survival in medical 

research. The application here to estimate the covariates associated with cell survival is 

somewhat novel. Cox regression analysis is used to assess the influence of a covariate (treatment 

or condition) that is relate to the time that passes before some event occurs. In medical research 

the covariate is commonly a treatment for cancer, and the event is disease-free survival. As 

applied here, the covariates are cell size and size of colony, and the event is cell mitosis. The 

proportional hazards model is used to determine whether the rate of mitosis is related to cell size 

or the size of colony origin.    

Proportional hazards model is a semi-parametric method. On one hand, the determination of the 

baseline hazards function is empirically performed without parameters using KM analysis. On 

the other hand, a parametric model is used to examine hazard rates and covariates. In a 

proportional hazards model, the unique effect of a unit increase in a covariate is multiplicative 

with respect to the hazard rate which is illustrated in equation 5.2.  

                                 Equation 5. 2 

where  is the relative hazards, and X are covariates,   is the non-parametric baseline 

hazards function.  

As a result, the hazard ratio is defined as the hazard function with given covariates x 

divided by the overall hazard function.  The logarithm of the hazard ratio is then a linear 

regression model where , the relative hazard, is to be estimated . 

                Equation 5. 3 

In our application, the proportional hazards model can give an estimate of the relative mitosis 

hazard ( ), their error, and p-value for different covariates. The covariates are colony size and 
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cell size. If p<0.01 there is a significant effect of cell size or colony, or both. For example, if 

large cells are defined by the categorical variable =1, (small cells =0), then exp( ) is the 

mitosis hazard ratio for large cells with respect to small cells. If the hazard ratio is significantly 

higher than 1, large cells have higher mitosis hazards than small cells. 

Our data were tested by Cox-hazards regression with different combination of covariates 

(predictors), the estimated relative hazards, error of hazard, z-test value and p-test value are 

listed in table 5.5 and table 5.6. 

Table 5. 5 Proportional hazards regression analysis for two covariates ( ) 

Gen 
Predictors  X      

 (2 groups) 

Relative 

hazard   

Error of  

 
z-statistic p-value 

G0 

Colony             

 (1: Large, 0:Small) 
0.9952 0.2490 3.9966 6.4259e-05 

Cell size             

  (1: Large, 0:Small) 
-0.9085 0.2707 -3.3570 7.8792e-04 

G1-G5 

Colony             

  (1: Large, 0:Small) 
0.8493 0.1898 4.4740 7.6787e-06 

Cell size             

  (1: Large, 0:Small)  
-1.6119 0.3082 -5.2294 1.7008e-07 

 

In table 5.6, the regression model results for 4 covariates are presented. The covariates are 

 If the colony size is large and the cell size small, then

, if the colony size is large and the cell size large, then , 

and so on. The rate of mitosis is significant different for all 4 subsets for generation 1-5, but only 

significant for large colonies and small cells, and small colonies and small cells in generation 0.  

By calculating the hazard ratio (exp( )) it is evident that small cells and large colony cell have 

higher mitosis hazards than large cells and small colonies, respectively. 

Moreover, the hazard ratio calculated from table 5.6 confirmed the observation of the cell cycle 

differences between cells with large or small size, from large or small colonies. The higher 
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mitosis hazards, indicates higher probability of mitosis and shorter cycle time. The Generation 0 

cells with mitosis hazards from high to low are large colony-small cells, small colony-small cells, 

large colony-large cells, and small colony-large cells. Late generation cells have similar mitosis 

hazards order, but have exchange of position between large colony-large cells and small colony-

small cells. 

Table 5. 6 Proportional hazards regression with 4 covariates (  

Gen 
Predictors X (4 subsets) Relative 

hazard   

Error of  

 
z-test p-test 

Colony Size Cell Size 

G0 

Large  Small  1.3257 0.2815 4.7088 2.49e-06 

Large Large  0.0152 0.2964 0.0514 0.9590 

Small  Small  0.8843 0.3285 2.8547 0.0043 

Small Large  -0.4777 0.3098 -1.4542 0.1459 

G1-G5 

Large  Small  0.5296 0.2043 2.5916 0.0096 

Large Large  -0.9373 0.3369 -2.7822 0.0054 

Small  Small  -1.0790 0.3636 -2.9677 0.0030 

Small Large  -2.7129 1.0103 -2.6849 0.0073 

 

Thus the observed differences in cell cycle for the cellular subsets defined by colony size and 

cell size have been confirmed by Cox regression analysis. 

 

5.3.8 Cycle correlation analysis 

As illustrated in figure 5.13(b), despite the heterogeneity of cell cycle lengths exhibited by 

different cell types, we found that siblings often divide within a short time of each other. A 
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comprehensive analysis is conducted by estimating the correlation coefficient for sibling cycle 

times is performed as the same method described in chapter 4.2.3 

Figure 5.19 is a bivariate dot plot showing that sibling cycle times are in most cases within the 

sampling time interval of 30 minutes. This is further supported by figure 5.20, in which dead or 

lost cells (migrate outside of the field of view) were censored where the correlation coefficient 

was R2=0.7853 (p=6.09e-47, m=361.49). These data indicate that the lineage relationship of 

sisterhood plays a role in determining cell generation time. Clearly, cell generation time is an 

important aspect of cell behavior regulating the growth of tissues, and is modulated during 

different states of lineage commitment. Bivariate analysis of mother-daughter generation times 

are described below.  

 

 
Figure 5. 19  Correlation of sibling cycle time 

 

We have noticed that in figures 5.19 and 5.20, there are a few outliers which have large residual 

errors. These are two pairs of siblings with asymmetric cycle times within the 10 outliners 

(|Residual|>10). An example of an asymmetric division is shown in Figure 5.21, which also 
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provides the evidence that large flat cell can give rise to small spindle cells. In the image 

sequence, Cell 95 remained a flat cell during the whole tracking period. Cell 96 divided into 97 

and 98 at the 27th hour, followed by division of 97 to 99 and 100 at 92nd hour. The birth cell 98 

did not divide any more, but grew to be large and flat. These observations support the hypothesis 

that the cell cycle length is related to cell size because asymmetric division gave rise to two 

different sized siblings, the smaller sibling having shorter generation time.  

 
Figure 5. 20    Linear regression of sibling cycle with censoring of lost or and apoptotic cells 

inindicated in figure 5.19). Correlation R2=0.7853, slope K=0.99  
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Figure 5. 21  Evidence of a flat cell giving birth to a spindle cell. Cell 95 remained a flat cell 

during the whole tracking period. Cell 96 divided into 97 and 98 at 27th hour, followed by 

division of 97 to 99 and 100 at 92th hour. Cell 98 did not divide any more, but grew to be 

large and flat. 

The relationship between mother and daughter cycle times is shown by a dot plot (figure 5.22a); 

201 pairs of mothers and daughters were identified. The dot distribution pattern is not along a 

line with gradient 1, but with a much higher gradient 72.89 (m=887.9, r2=0.0113, p=0.3325). 

This means that cell cycle times are increasing in progeny, so overall, the cycle time distribution 

should be moving to the right (longer generation times). Interestingly maternal cells with an 

average cycle time of around 20 hours give rise to progeny with a much larger range of cycle 

times (10 to 90 hours, average 33 hours, figure 5.22). A similar phenomenon was observed in 

NIH3T3s in chapter 4, another fibroblast cell line. Therefore cCFU-Fs that are activated by 

addition of serum in culture media are gradually returning to quiescence after few generations, 

which is most likely their resting state in vivo.  

100μm 100μm 

100μm 
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Figure 5. 22   Mother daughter cycle comparison  a: Bivariate dot plot of mother daughter 

cell cycle length, b: Average cell cycle time.  
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5.4 Conclusion 

Development of stem cell therapies in heart disease requires an understanding of cardiac lineage 

development and stem cell plasticity. Towards this end, a colony-forming assay originally 

developed by Friedenstein was adapted to quantify tissue resident cardiac stem cells. These cells 

give rise to fibroblastic colonies (cardiac colony forming units – fibroblast;  cCFU-F) which have 

features in common with the mesenchymal stem cell phenotype, but are able to differentiate at 

high efficiency into cardiac and smooth muscle. The goal of this chapter was to analyse cCFU-F 

by live cell imaging, to detail lineage relationships, and to correlate cell phenotype with cell 

cycle dynamics.  

A live cell imaging system and semi-automated in-house software was used to track the 

trajectories and divisions of cCFU-F colonies over extended culture periods. Cardiac CFU-F 

from the PDGFR  -GFP mouse and beta actin-GFP mouse were enriched from an interstitial 

cell fraction of hearts by FACS (PDGFR-a+, Sca1+/Pecam1-). Initial studies have focused on 

live cell imaging of GFP-positive cells (PDGFR  + and BA+), which have long-term growth 

potential in vitro. 

Lineage maps of PDGFR  + cells within passage 3 colonies (164 maps) and BA+ cells within 

passage 3 colonies (352 maps) were constructed from tracking cells over five days of culture. 

Two distinctive cell morphologies were indentified; large flattened-cells with low motility and 

spindle-shaped cells. The probability of mitosis was estimated by Kaplan Meier analysis. Cell 

lifespan (time between successive mitoses) was approximated by an exponential distribution. 

The average cycle time of flattened- and spindle-shaped cells varies in different generations. 

However, small spindle shaped cells have overall shorter cell cycle than large flattened cells, and 

differences between two subsets are statistically significant. Thus early passage cCFU-F is 

composed of at least two subpopulations with markedly different morphology and cell cycle 

kinetics. Moreover, the growth potential and colony forming ability of large colony cells are 

higher than that of small colony cells. We have confirmed the hypothesis cell cycle times are 

inversely related to colony size and directly related to cell size.  

Whilst sister cells have very similar cycle times, daughter cells have longer generation times 

compared to their mother so cCFU-F will return to quiescence over successive generations. 
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Furthermore, asymmetric divisions where large cells give rise to small spindle cells have been 

observed with a frequency of 2/40 providing a mechanism for generation of spindle shaped cells 

from large flat cells. Future work will focus on immunophenotyping these two cellular subsets to 

identify how cCFU-F growth and development is regulated by microenvironmental cues.  
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Chapter 6   Summary and Future 

Work 

The central goal of this thesis was to establish methodology for mapping lineage pedigrees by 

live cell imaging. The utility of live cell imaging is the ability to incorporate cellular dynamic 

properties into the phenotypic classification of cell subsets, greatly enhancing understanding of 

stem and progenitor cell development. The system hardware and software has been validated 

using NIH3T3 cells and primary cardiac CFU-F isolated from PDGFR-a-GFP or β-actin-GFP 

mice. In addition to developing enabling methodology for lineage mapping, the thesis has led to 

new and exciting observations that will contribute to the understanding cardiac CFU-F growth 

and development. Two subpopulations (large flat and small spindle cells) were identified with 

quite different live cell properties. Preliminary immunophenotypic characterisation using 

fluorescently labelled antibodies to intracellular antigens (Nkx2.5, Myosin Heavy Chain, SMA-α, 

Calponin), not presented in this thesis because of their preliminary nature, indicate that slowly 

dividing large-flat immotile cells are smooth muscle cells whilst the spindle shaped cells have a 

fibromyocyte phenotype.  

This thesis has addressed the following aims: 

1. Customized a live cell imaging platform for long term imaging of cardiac stem cells  

2. Developed a fluorescence imaging methods for long term tracking of GFP marked cells  

3. Developed software to segment cardiac stem cell division trees from cell growth videos  

4. Acquired enough data to characterize cardiac stem cell development 

5. Applied Kaplan-Meier statistics and Cox regression analysis of cell lifetime data to 

identify the different cell types that are present in cardiac CFU-F based on cell cycle 

kinetics and other live cell imaging characteristics i.e., motility and cell size. 
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6. Quantified the transmission of cell cycle length from mother to daughter cells using 

lineage pedigrees. 

Novel aspects of this study were the application of Kaplan-Meier and Cox regression analysis to 

cell lifetime data (Nordon, 2011b) as well as identification of two new functional phenotypes 

that comprise cCFU-F. 

 

6.1  Mapping lineage pedigrees by live cell imaging  

The aim of this study was to develop a microscope incubator system and software to semi-

automate tracking and segmentation of cell division and motion by continuous live cell imaging 

(aims 1-3). The growth rate of the cell line NIH3T3 in the microscope environmental chamber 

was similar to that of cells grown by standard tissue culture. The combination of region based 

and edge based segmentation methods improved the efficiency of cellular image segmentation; 

the feature measurement and likelihood matching methods enabled accurate association of cells 

between consecutive frames. The manual editing software platform helped in validation and 

visualization of the results.  

Despite the stated advantages of the software, there are still many problems to address. Shorter 

computation time will allow processing of large image stacks, as well as increasing the response time to 

manual edits. The method proposed in this study has similar computational speed to other systems 

implemented via Matlab (Cohen et al., 2010) . However, converting the algorithm to a compiled 

programming language (e.g., C++) would drastically improve the efficiency, especially manual editing.  

Secondly, development of more automated and robust cell tracking algorithms would improve the 

performance of this proposed method. The current segmentation method fails to separate overlapping 

cells in phase contrast images. Although manual interaction is inevitable at certain times, techniques 

which can separate merged cells automatically are important to reduce the level of editing required to 

correct overlapping tracks.  
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Figure 6. 1  X10 Phase contrast images taken at the 30th minute; (a) 10x phase contrast 

images; (b) Segmentated binary image of the foreground; (c) Distance transform using the 

binary masks in b. 

When difficult situations are encountered such as overlapping cells (figure 6.1) alternate 

segmentation methods will be required. For example in figure 6.1 two or more cells were 

overlapping. One may apply the distance transform to separate cells in the left image, because 

there are two local maxima (the yellow and red regions). However, the right hand image which 

contains 3 cells has a single maximum, so the distance transform would not work in this situation. 

An interactive platform with multiple segmentation algorithms will inevitably be required, since 

no single method will provide a robust solution in all situations. 

Surprisingly, we identified a few cases where NIH3T3 cells did not undergo cell separation after 

nuclear division. This process is called endomitosis and was observed quite frequently in cCFU-

F (large flat cells). In figure 6.2, it appears that cells detach from the surface and underwent 

mitosis at the 675th minute; however, instead of fully dividing into two separate cells at the 729th 

minute, the nuclei reattached to the culture surface, and were incorporated as a binuclear cell at 

c 

a 

b 

100μm 100μm 
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the 780th minute, and remained undivided until the end of tracking period (6032th minutes). The 

reason of this abnormal division pattern is still unknown, although multi-nucleated NIH3T3 have 

been identified long ago (Zelikoff et al., 1986). This pattern of division was not anticipated and 

resulted in a tracking error. Future versions of the software will need to distinguish between 

mitosis and endomitosis. 

 
Figure 6. 2  The failed division identified on X10 phase contrast image sequences, the cell 

was marked by the red arrow 

Lastly, a comprehensive statistical analysis of the automatic segmentation accuracy was not 

performed. Given that a variety of segmentation methods may be applied to an image stack, it 

will be necessary to benchmark each algorithm with respect to false positive and negative 

identification errors. Thus a tool that provides the user with feedback on how many errors were 

made at the end of manual correction would be invaluable for optimising segmentation 

algorithms and their parameters.  

100μm 100μm 100μm 100μm 

100μm 100μm 100μm 100μm 

100μm 
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6.2 Tracking cCFU-F 

The second goal of this study was to apply live cell imaging and lineage mapping to characterize 

cardiac CFU-F development (aims 4-6). Lineage maps of PDGFR-α+ cells (164 maps) and beta 

actin+ cells (352 maps) within passage 3 colonies were constructed by tracking cells over five 

days of culture. Two distinctive cell morphologies were identified; large flattened cells with low 

motility and spindle-shaped cells. The average cycle time of flattened- and spindle-shaped cells 

were estimated for each generation. Statistical analysis of cell cycle and motility confirmed 

significant differences between the two cell types.  

Cell cycle correlation analysis of mothers and daughters confirmed the observation that lineage 

relationships play a role in determining division rate (Al-Kofahi et al., 2006, Nordon, 2011a). 

Lastly asymmetric divisions where large cells gave rise to small and large cells with different 

cycle times suggest a possible mechanism by which spindle shaped cells are generated.  Even 

though the generation of large cells from small cells was not observed, more extensive studies 

are required to reject this possible transition. Future work will also examine the evolution of 

cCFU-F dynamic behavior with respect to passage number; by examining passage 0, it will be 

possible to determine whether the two populations already exist in vivo, or are generated by the 

in vitro culture system. Also the relationship between PDGFR-a gene expression and generation 

of cCFU-F and its subpopulations deserves a deeper analysis to establish a role in cardiac cell 

generation. This will be possible by crossing two transgenic mice strains i.e., PGDFR-a GFP 

mice with beta-actin DsRed mice, to track both PDGFR+ and PDGFR- cells using two colour 

fluorescence.  
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