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1. Introduction 

1.1. Processing and regulation of RNA 
RNA is the centerpiece of life at the cellular level. It is much more than an 

intermediate molecule between DNA and proteins. Starting from its production process 

called transcription, RNA is subject to numerous regulatory steps to ensure the correct 

repertoire, quantity, and quality of gene expression. Moreover, there is considerable 

diversification of the components involved in transcriptional and post-transcriptional 

regulation as organismal complexity increases. Transcription is carried out by a single 

RNA polymerase enzyme in prokaryotes, but by three RNA polymerase complexes in 

plants and animals, which transcribe different classes of RNAs and recognise different 

promoter types.  

1.1.1. Transcriptional machinery 
In eukaryotes, RNA polymerase I (Pol I) transcribes ribosomal RNA (rRNA) 

genes, RNA polymerase II (Pol II) transcribes messenger RNA (mRNA), long non-

coding RNA (lncRNA), micro RNA (miRNA), small nuclear RNA (snRNA) and small 

nucleolar RNA (snoRNA) genes, and RNA polymerase III (Pol III) transcribes transfer 

RNA (tRNA) and 5S rRNA genes (Table 1.1) [1,2]. Eukaryotic RNA polymerases also 

require proteins called “transcription factors” that regulate transcription [3–5]. 
 

Type Transcription Product Location 

RNA Polymerase I rRNA (45S precursor > 28S, 18S, 5.8S) Nucleolus 

RNA Polymerase II mRNA, lncRNA, miRNA, snRNA, snoRNA Nucleoplasm 

RNA Polymerase III tRNA, 5S rRNA Nucleoplasm 

Table 1.1 - Types of RNA polymerases, their products, and localisation 

 

RNA polymerase I mediated ribosomal RNA transcription takes place in the 

nucleolus, where there are many copies of the rDNA gene. The transcription produces 

45S pre-rRNA, which is post-transcriptionally cleaved into 3 subsidiary species (28S, 
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18S, and 5.8S) and modified by Fib/Dkc with the help of C/D box and H/ACA box 

snoRNAs [6].  

Unlike other rRNAs, 5S rRNA is transcribed by Pol III, alongside tRNAs and 

other small RNAs [7]. The genes transcribed by Pol III are mostly defined as 

“housekeeping genes” and their transcription is tightly connected to the cell cycle and 

growth regulation. It, therefore, interacts with fewer regulatory proteins than Pol II [8] 

Pol II produces mRNAs and a range of regulatory and infrastructural RNAs and 

is highly regulated in response to developmental and environmental signals [2]. Co-

transcriptional processing of the RNA polymerase II transcripts ensures the maturation 

of these RNAs. The C-terminal domain (CTD) of RNA polymerase II is phosphorylated 

during elongation, leading to the recruitment of the proteins that catalyse 5’ capping, 

splicing, and 3’ processing, [9]. As polymerase II transits the polyadenylation site, 

usually indicated by a conserved AATAAA motif, enzymes responsible for 3’ 

processing and polyadenylation catalyses the cleavage of the precursor mRNA (pre-

mRNA) and polyadenylation from the 3’ end (Figure 1.1)  [10]. 

Figure 1.1 - The mRNA factory model: Coupling of pre-mRNA processing factors 
with the transcription machinery.  

Phosphorylation on different positions of the CTD leads to the recruitment of capping 
and poly(A) factors. Phosphorylated Ser5 (S5 P) residues are enriched on the 5’ end of 
the genes, whereas Phosphorylated Ser2 (S2 P) residues are enriched on the 3’ end of 
the genes.  Figure adapted from Saldi et al 2016 [11].  
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1.1.2. Post-transcriptional regulation of RNA 
Post-transcriptional regulation begins with the Gppp-cap formation and 

subsequent methylation of the cap leading to 7-methylguanosine at the 5’ end of the 

RNA. It is followed by the intron splicing and 3’end cleavage and polyadenylation, 

which results in a mature and functioning RNA [12]. Furthermore, RNA modifications 

occur during and after transcription, affecting processes such as splicing, localization, 

decay, and translation [13–19]. 

5’ end capping occurs once the first 25-30 nucleotides of the RNA have been 

transcribed [20]. There are three enzymes involved in this process to produce cap 0 

(Figure 1.2), whereas another enzyme produces cap1 [21,22]. Firstly, RNA 

triphosphatase enzyme removes one phosphate from the triphosphorylated RNA 

molecule on the 5’ end, leaving a diphosphate group. Secondly, RNA 

guanylyltransferase adds guanosine monophosphate (GMP) to the 5’end with 

diphosphate, which makes up the G cap. Finally, guanine-N7 methyltransferase adds a 

methyl group to the G cap at the seven position using S-adenosyl-methionine (SAM) as 

a source of methyl, which forms the cap 0 structure [21]. Furthermore, the ribose 

methylation of the nucleotide at the +1 position by m7G-specific 2′O methyltransferase 

(2′O MTase) leads to the formation of cap1 in higher eukaryotes (Figure 1.2) [22]. Cap 

structures play important roles in many cellular processes such as export of RNA from 

nucleus to cytoplasm, circularization of RNA via interaction of eukaryotic translation 

initiation factor 4 G (eIF4G) and poly(A) binding protein (PABP1), translation initiation, 

and creation of self RNA signature [22]. 
During transcription, mRNA is synthesised as a large precursor (pre-mRNA), 

containing coding parts (exons) and non-coding parts (introns). The introns are 

removed from the pre-mRNA and exons are brought together, to form mature mRNAs. 

This process also enables alternative splicing, which takes place in the majority of the 

transcripts, leading to an enormous diversity of coding and regulatory RNA isoforms 

[23,24]. Splicing is carried by the spliceosome, which is composed of small nuclear 

guide RNAs (snRNAs) and almost 100 proteins [25]. The spliceosome machinery 

recognises specific sites located at or near intron-exon junctions: the 5’ splice site (5’ 

SS), 3’ splice site (3’ SS), and branch site (BS). The branch site is usually located 

upstream of a pyrimidine-rich region called polypyrimidine tract (PPT)  [26]. Intron 

sequences usually start with a GU sequence at their 5’ end, and end with an AG 

sequence at its 3’ end [27]. Splicing is initiated with the nucleophilic attack from the 2’-

OH group of the adenosine located at the branch site to the phosphodiester bond of the 

5’SS. This exposes the 3’-OH end of the 5’exon and forms a lariat structure from the 
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interaction of branch site and 5’SS. Next, the  3’-OH end of the 5’ exon attacks the 

3’SS, which leads to the ligation of two exons and complete removal of the intron 

(Figure 1.3) [26].  

 

Figure 1.2 - Formation of the 5’ cap.  

Many enzymes are involved in the catalytic process of producing the 5’ cap, leading to 
the formation of cap 0 and in higher eukaryotes, cap 1. Figure adapted from 
Ramanathan et al, 2016 [22]. 

 

 

Figure 1.3 - RNA splicing overview.  

Precursor mRNA (pre-mRNA) is processed via splicing that leads to the formation of 
mature mRNA. Cis-regulatory sequences such as 5’ splice site (5’ SS), 3’ splice site (3’ 
SS), and branch site (BS) are located at or near intron-exon junctions. Splicing consists 
of two main steps; nucleophilic attack from A base of the BS to the 5’SS and formation 
of lariat structure, and attack of 5’exon to the 3’SS and formation of mature mRNA.  
Figure adapted from [28] 
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All mRNAs except histone mRNAs undergo 3’ end processing that leads to the 

endonucleolytic cleavage of the nascent transcript and the addition of a poly(A) tail 

[29]. The polyadenylation signal (AAUAAA), which determines the cleavage site, is 

located approximately 10-30 nucleotides upstream of the cleavage site. The 

polyadenylation signal is recognised by cleavage and polyadenylation specificity factor 

(CPSF), which is composed of at least five subunits (CPSF 30, CPSF 73, CPSF 100, 

CPSF 160, and hFip1) and catalyses the 3’ cleavage and recruitment of the poly(A) 

polymerase (PAP) to the cleaved site [30,31]. In addition to the polyadenylation signal, 

there are two other cis-elements that are important for the 3’ end processing and 

polyadenylation, namely the upstream UGUA-containing sequences (USE) and 

downstream GU- and G- rich sequences (DSE) [32–35]. USE is recognised by the 

cleavage factor I (CFI), whereas the DSE is recognised by the cleavage and 

stimulation factor (CstF) complexes [36]. Subsequent to the recognition of the cis-

regulatory elements by the protein complexes, CPSF 73 catalyses the endonucleolytic 

cleavage [37] and the exposed 3’ end of the RNA template is polyadenylated by a 

nuclear poly(A) polymerase.  

The length of the poly(A) tail is dependent on the interaction between CPSF 

complex, PAP, and nuclear poly(A)-binding proteins PABPN1 and PABP2 [38]. Poly(A) 

tails play an important role in the stability and translation of the mRNA by interacting 

with the poly(A)-binding proteins in the nucleus and cytoplasm [39,40]. Cytoplasmic 

poly(A)-binding proteins (PABPC) interact with poly(A) tail to protect mRNA from 

degradation and promote translation [41]. Subsequent to the deadenylation of mRNA, 

PABPC is dissociated, exposing mRNA for degradation and translational inactivation. 

For example, during maternal-to-zygotic transition (MZT) in zebrafish and frog 

embryos, a group of mRNAs are marked for decay by deadenylation [42,43]. Once 

deadenylated, however, mRNA can still be polyadenylated in cytoplasm by 

noncanonical PAPs in order to be reactivated for translation in response to a cellular 

signal [44,45].  

1.1.3. Chemical RNA Modifications 
Chemical alterations after their synthesis are common to all biological 

molecules including DNA, RNA and protein [46]. RNA modifications, collectively 

referred to as the “epitranscriptome” [47], have been known to exist for the last 60 

years  [47,48]. There are over 170 types of RNA modifications described to date, which 

alter the chemistry of all four bases, as well as the ribose moiety [47] of RNAs. 

Eukaryotic rRNA molecules contain about 200 modifications per molecule on average, 
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whereas eukaryotic tRNAs contain about 13 modifications per molecule. The function 

of RNA molecules heavily depends on the modifications decorating them. Moreover, 

modifications can alter the fate of the RNA molecules by affecting molecular processes 

such as their splicing pattern, stability, translation efficiency, and subcellular 

localization [13–19]. Furthermore, at least some RNA modifications are known to be 

reversible, which suggests that these modifications are dynamically regulated (see 
section 1.1.3.1). Consequently, RNA modifications have a great impact on biological 

processes such as development [49], inheritance [50], and cell fate [51]. Disruption of 

modifications has been associated with as many as 100 human diseases [52–56]. 

However, a major drawback to understanding the role and dynamics of modifications in 

specific RNAs is the paucity of sequencing-based detection techniques, which are only 

available for a handful of modifications (Figure 1.4). 

   
        

Figure 1.4 - Diversity of RNA modifications.  

Pie chart shows the RNA modifications discovered so far. RNA modifications 
associated with any disease are highlighted in red. RNA modifications with an 
established detection technique are circled in blue. Adapted from Jonkhout et al 2017 
[52]. 
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1.1.3.1. RNA Modification Machinery 
Recently, it has been shown that RNA modifications, which had been thought to 

be static alterations, are actually dynamic. This conclusion was drawn from the 

observation that N6-methyladenosine (m6A) can be removed by a protein called fat 

mass and obesity-associated protein (FTO) [57]. Subsequently, it was shown that it is 

actually the alkB homolog 5 (ALKBH5), not FTO, that can remove the m6A mark in-vivo 

(Figure 1.5) [58]. Enzymes that are responsible for adding the chemical modification 

are termed as “writers”, whereas the ones responsible for removing the modification 

are termed as “erasers”.  

 

Figure 1.5 - Mechanism of reversible m6A methylation. 

Writers for m6A modification, namely METTL3/METTL14 and METTL16 catalyses the 
modification, whereas ALKBH5 enzyme removes the modification. Figure adapted from 
Qin et al, 2020 [59]. 
 

Methylation is one of the most common types of RNA modifications and RNA 

methyltransferase enzymes catalyse the methylation of RNA by using SAM as a source 

of methyl group [60]. METTL3 is the first methyltransferase-like (METTL) gene family 

member discovered in 1994. METTL3, interacting with other proteins, catalyses the 

transfer of a methyl group to the N6 position of the adenine base (m6A) in mRNAs and 

ncRNAs [61]. A number of RNA methyltransferase writers are now known, including 

METTL, RNA Guanine-7 Methyltransferase (RNMT), NOP2/Sun RNA 

Methyltransferase (NSUN), Methylphosphate Capping Enzyme (MEPCE), tRNA 

Methyltransferase (TRMT), and BCDIN3 Domain Containing RNA Methyltransferase 

(BCDIN3D). There are also non-methyltransferase writes such as N-acetyltransferase 

10 (NAT10), tRNA isopentenyltransferase 1 (TRIT1), and Dyskerin Pseudouridine 

Synthase 1 (DKC1), which catalyse addition of  N4-acetylcytosine (Ac4c), N6-

isopentenyladenosine(i(6)A), and pseudouridine (Ψ), respectively [60].  
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In addition to FTO and ALKBH5, several other erasers have been identified. 

Studies have shown that ALKBH1 can demethylate RNAs possessing N3-

methylcytosine (m3C) and N1-methyladenosine (m1A) [62,63]. Despite the fact that both 

ALKBH2 and ALKBH3 can erase m1A and m3C, ALKBH2 is more active on both single 

and double-stranded DNAs, whereas ALKBH3 preferentially demethylates single-

stranded RNAs and DNAs [64,65]. 

Proteins that can recognise RNA modifications and interact with them to create 

action are termed as RNA “readers''. The best-studied family of RNA readers are the 

YTH domain proteins (YTHD), which are readers for m6A modifications. YTHDC1, for 

example, interacts with m6A-modified molecules and regulates splicing and translation 

efficiency [15,66,67]. Moreover, YTHDC2 mediates the interaction of m6A-modified 

RNA and CCR4-NOT complex, which then leads to faster decay of the mRNA [68]. 

Another family of m6A readers is the insulin-like growth factor 2 mRBP (IGF2BP) family, 

which are associated with increased half-life and translation of m6A methylated mRNAs 

[69]. In addition to m6A reader proteins, there is also 5-methylcytosine (m5C) “reader” 

called ALYRED that interacts with m5C modified mRNAs and aids in their export from 

nucleus to cytosol [70].  

Due to their ability to manipulate and interact with RNA modifications, these 

RNA modification-related proteins (RMPs) have been studied for their involvement in 

various biological processes [66,71–74]. Despite our knowledge about a group of RNA 

modification-related proteins that were studied in specific phenotypes with their loss of 

function, the literature is lacking a systematic analysis of these proteins [52]. 

1.1.3.2. Main Types of mRNA Modifications 
m6A is the most common type of modification on mRNAs [75]. In addition to 

mRNAs, they are also found in lncRNAs [76], primary miRNAs (pri-miRNA) [77] and 

rRNAs [78,79]. Enzymes responsible for the addition of m6A to mRNA, lncRNA and 

miRNA are identified as METTL3-METTL14 complexes [80], as well as stand-alone 

METTL16 enzymes [81]. The catalysis of m6A addition to rRNAs are performed by 

tRNA methyltransferase 112 (TRMT112)-METTL5 complex for 18S rRNA [82] and 

CCHC domain-containing protein 4 (ZCCHC4) for 28S rRNA [83]. m6A is involved in 

molecular processes such as RNA splicing, stability, localization, translation and 

structure [84–86] 

It should be noted that m6A had been mapped in PuGm6ACU sequences 

already in the 1980s [87,88], and that in 2012 Dominissini et al proposed the high-

throughput approach for deep sequencing-based m6A mapping [89]. This study 
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showed that the m6A sites were conserved throughout evolution and they were 

dynamically regulated. They also showed that m6A modification usually occurs in 

certain motifs containing RRACH (R: A or G, H:A, C, or U) (Figure 1.6) [89]. 

Furthermore, many more studies aimed to map the m6A using different approaches 

[90–92], and many aimed to quantify the m6A modification amount in a modified site 

[93–95]. However, a high-throughput and full quantitative measurement of modification 

fractions for each modified site have not been established.  

 
 

Figure 1.6 - Overview of the m6A-seq and findings. 

m6A-seq method relies on the fragmentation of the input RNA followed by 
immunoprecipitation (IP) of the m6A containing RNA fragments. Both 
immunoprecipitated and input are then sequenced using next-generation sequencing. 
m6A-seq revealed that m6A modifications are enriched within the RRACH  (R: A or G, 
H:A,C, or U) motif. Figure adapted from Dominissini et al, 2012 [89] 

 

m5C is a widespread modification in many types of RNAs, including tRNAs, 

mRNAs, rRNAs and enhancer RNAs (eRNAs) [96]. There are many functional 

implications of m5C modification, including RNA structure, stability, translation accuracy 



 
         

 

 

 
 
 

34 

and translational readthrough of stop codons [97–99]. Enzymes responsible for 

catalyzing m5C modification on RNAs include NSUN family proteins (NSUN1 to 7), and 

DNMT2 (TRMDT1) [96].  

Methods to map m5C modification include antibody pulldown and bisulphite 

treatment that converts unmethylated cytosine to uracil (U) and leaves m5C as it is 

[100–104]. Surprisingly, there have been many discrepancies between different studies 

in terms of the m5C location on the RNAs, which can be explained by the limitations in 

m5C antibody specificity and/or the difference in the efficiency of bisulfiphe treatments. 

A recent study with an improved pipeline pointed out that there are only a few hundred 

of m5C sites on human and mouse RNAs, which were found within a sequence that 

was similar to the m5C motif on tRNAs [104].  

m1A is present in high stoichiometry in tRNAs and rRNAs [105–108]. TRMT10 

and TRM6-TRM61 complexes are responsible for catalysing m1A modification on tRNA 

and mitochondrial rRNA [106,108], whereas RRP8 is responsible for catalysing the 

modification on rRNA [105]. Although it has been reported that both TRMT10 and 

TRM6-TRM61 complex also catalyse m1A modification on mRNAs, there is a 

controversy about the reliability of the discovered positions, such that one study reports 

a very low number and stoichiometry of sites [109], whereas the other one reports high 

number and stoichiometry of sites [110]. The author of the earlier study later published 

another analysis, confirming their results again and claiming that the latter study 

reported many false positives [111]. Methylation on the N1 position of adenosine on 

RNA disrupts the Watson-Crick base-pairing and alters the overall charge of the 

molecule drastically [112]. Due to these dramatic changes in the molecule, m1A is 

known to affect RNA-protein interactions, as well as secondary structure [113,114].  

Since m1A disrupts the Watson-Crick base pairing and hence affects reverse 

transcription (RT), mutations are introduced in the RT product. This property of the 

modification is used with the combination of antibody pull down and next generation 

sequencing, to map m1A modifications on mRNAs. [115–117]. Using this approach, 

m1A localization was shown to be enriched near the 5’ end of the RNA [112]. 

Surprisingly, a recent study showed that this enrichment was due to the cross-reactivity 

of the m1A antibody to the m7G cap [118]. 

Ψ is the most common modification in cellular RNA and it was also one of the 

first modifications to be discovered [119]. It is highly present in rRNA and tRNA, as well 

as many ncRNAs and mRNAs [120–123].  Uridine (U) is converted into Ψ by base-

specific isomerization, which is catalysed by pseudouridine synthases (PUSs). 

Pseudouridylation occurs either via RNA-dependent or RNA-independent pathway. The 
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RNA-dependent pathway includes dyskerin protein in humans that interact with H/ACA 

snoRNPs, which comprises H/ACA snoRNAs and their associated proteins (Figure 
1.7) [124]. This complex mainly modifies rRNAs via base-pairing of the snoRNAs with 

the target region. The RNA-independent pathway includes PUS proteins that target 

specific sites on tRNAs, rRNAs, ncRNAs and mRNAs [121–123,125]. The addition of 

pseudouridine into RNA alters RNA secondary structure, as well as strengths the 

sugar-phosphate backbone, base pairing and base stacking [120]. Furthermore, certain 

positions in ncRNAs and mRNAs were shown to be stress-responsive [120,121].  

Two main methods used to map pseudouridine transcriptome-wide, namely Ψ-

seq and PSI-seq, rely on using CMC to modify pseudouridine positions, which in turn 

leads to reverse transcription termination. Both of these methods identified hundreds of 

Ψ sites in human and yeast mRNAs[121,122,126]. An alternative approach is the RBS-

seq, which is a variation of the bisulphite sequencing. RBS-seq enables detection of Ψ 

at single-base resolution transcriptome-wide [127]. 

 

 

Figure 1.7 - Pseudouridylation pathways.  

(A) The RNA-dependent pseudouridylation is guided by H/ACA snoRNAs and their 
associated proteins, catalysed by Cbf5 (dyskerin in humans). (B) The RNA-
independent pseudouridylation is catalysed by PUS enzymes without guide snoRNAs. 
Figure adapted from Zhao et al, 2018 [128]. 

 
Internal 2’-O-methylation (Nm) is one of the most common types of RNA 

modification where the 2’hydroxyl (-OH) of the ribose sugar is methylated. Methylation 

of the ribose sugar can occur on any nucleotide and Nm is present in tRNAs, rRNAs, 

ncRNAs and mRNAs [129], with rRNA having more than 100 Nm sites [130]. Moreover, 

snRNAs in the spliceosomal complex contain Nm modifications that are essential for 



 
         

 

 

 
 
 

36 

the assembly and function of the complex [131,132]. Nm modification can be catalysed 

either by fibrillarin (FBL) which interacts with box C/D snoRNAs [133,134] or stand-

alone enzymes [135,136]. Since the 2’-OH group of the RNA is a key player in the RNA 

structure formation, its methylation could lead to drastic changes in RNA-protein 

interactions and RNA secondary structures  [137,138]. Furthermore, it alters the 

hydrophobicity of the molecule and protects the RNA from nuclease degradation 

[139,140].  

Three deep sequencing-based approaches have been proposed to map ribose 

methylations. RiboMethSeq relies on the ability of ribose methylation to be resistant to 

cleavage at alkaline conditions  [141–143]. This method was used to map ribose 

methylation dynamics in rRNA, tRNA and snRNAs [141–143]. 2′-OMe-Seq method, on 

the other hand, takes advantage of the low dNTP conditions, which leads to reverse-

transcription terminations at the ribose methylated positions. With this method, 12 

previously unannotated rRNA modifications were discovered  [144]. Finally, two 

different studies are relying on the ability of ribose methylation to be resistant to 

periodate ' DEF7GH cleavage, namely  [145–147] RibOxi-Seq and Nm-Seq. RibOxi-Seq 

was used to map ribose methylations in rRNA, whereas Nm-Seq was used to map 

ribose methylations in rRNA and mRNA [145–147]. 

1.1.3.3. RNA editing 
RNA is also ‘edited’ in eukaryotes by deamination of cytosine and adenosine to 

form uracil and inosine, respectively, which contributes to genetic diversity and 

plasticity by leading to changes in RNA sequence compared to its DNA template [148]. 

Impairment of RNA editing has been reported to be involved in cancer and 

neurodegenerative disorders [71,149,150]. 

The first occurrence of RNA editing was observed in the mRNA of human 

apolipoprotein B (apoB), where a C>U editing introduces a new stop codon which then 

leads to a smaller version of apoB protein (apoB48) in intestine (Figure 1.8) [151]. 

Later on, it was shown that the enzyme responsible for this editing is a deaminase 

protein called apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 

(APOBEC1), alongside with its cofactor apobec-1 complementation factor (ACF) 

[152].A>I editing was first observed in Xenopus, where RNA duplexes and double-

stranded RNAs (dsRNAs) were targeted for adenosine deamination [153,154].   
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Figure 1.8 - C>U editing of the apo-B gene. 

In the absence of the C>U editing in the liver, apo-B mRNA produces the Apo-B100 
protein. However, in the presence of the C>U editing in the intestine, CAA sequence is 
converted into UAA, which leads to an early stop codon. As a consequence, a smaller 
protein, Apo-B48 is produced in the intestine. 

 
In addition to APOBEC1, which arose in the amniotes, many other proteins are 

belonging to the activation induced cytidine deaminase/apolipoprotein B editing 

complex (AID/APOBEC) family, all of which are vertebrate-specific. The first member to 

arise was AID, which is involved in somatic rearrangement and hypermutation of 

immunoglobulin domain in adaptive immunity [155]. Other members of this family are 

APOBEC2 in the vertebrates, APOBEC3 in placental mammals and APOBEC4 in 

tetrapods [156]. Interestingly, a great expansion of the APOBEC3 in primates has led 

to the emergence of 7 APOBEC3 orthologs [157]. The first gene that appears in the 

vertebrates from the family is the AID, which is involved in adaptive immunity [155]. 

APOBECs edit cytosines in RNA and DNA [158], although only three of them are 

known to catalyse RNA editing; APOBEC1, APOBEC3A [159] and APOBEC3H [160].     
A>I editing of coding and noncoding sequences in RNA is catalysed by a family 

of proteins called adenosine deaminases acting on RNA (ADARs) [161,162]. Although 

the catalytic activity of ADAR (ADAR1) and ADARB1 (ADAR2) has been widely studied 

and proven, the catalytic activity ADARB2 (ADAR3) remains a question [163]. 

Additionally, the expression patterns of ADAR1 and ADAR2 proteins show that they are 

ubiquitously expressed in all tissues, whereas ADAR3 is specifically expressed in the 

brain [164].  ADAR2 targets GluR-B mRNA at a specific coding position, which leads to 
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the conversion of glutamine at the 607th amino acid position to arginine. This 

conversion diminishes the permeability of the AMPA receptor to calcium [165] and the 

absence of Adar2 in mice causes lethal seizures after birth [166]. 

Despite uncertainty about its catalytic activity, ADAR3 has been shown to play a 

role in cognitive processes such as learning and memory in mammals [167].  

A>I editing can be detected in the form of A-to-G mismatch in RNA sequencing 

data since inosine shows guanosine-like base-pairing properties. To distinguish RNA 

editing from single-nucleotide polymorphism (SNP), whole-genome sequencing (WGS) 

data needs to be used as reference [168–170]. Most A>I editing takes place in long 

duplex RNAs located in the noncoding regions of the mRNAs - untranslated regions 

(UTRs) and introns - which indicates involvement of RNA editing in the regulation of 

gene expression, splicing and binding of regulatory elements to the UTRs [171].  

Adenosine editing has expanded in vertebrate, mammalian and primate 

evolution, and in humans occurs largely in Alu elements, which invaded the primate 

lineage in three waves and occupy over 10% of the genome, with over 1 million copies  

[171,172]. The presence of inosine in RNA molecules has been reported to suppress 

the innate immune response [173–175]. 

There are two more ADAR-like vertebrate-specific proteins, ADAD1 (or testis 

nuclear RNA-binding protein, TENR) and ADAD2 (TENR-like) proteins, whose targets 

are still unknown [176,177]. Finally, tRNAs are edited by adenosine deaminases that 

act on tRNAs (ADATs) which are evolutionarily conserved in both prokaryotes and 

eukaryotes [178]. There are three ADAT enzymes (ADAT1-3) in humans and many 

other eukaryotes [179]. 

1.1.3.4. Biological functions of RNA modifications 
As the most common modification on mRNA, and one of the few whose 

positions can be assayed transcriptome-wide (using modification-specific antibodies, 

see below), m6A is one of the most extensively studied RNA modifications. m6A has 

been found to participate in numerous molecular processes including transcription 

[180], splicing [67,74], mRNA export [181], mRNA structure [182], mRNA stability [183], 

translation efficiency [15] and miRNA biogenesis [77]. Alterations in molecular 

processes due to the presence of m6A modifications is achieved by the interaction 

between m6A and reader proteins.  

The best-characterised family of the m6A reader proteins is the YTHD protein 

family, which was highlighted before. The archetypal representative of this family, 

YTHDF2, is involved in two mRNA degradation pathways via interacting with m6A sites 
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and other proteins [68]. First, m6A-containing mRNA is targeted by the deadenylase 

complex (CCR4–NOT complex) via its interaction with YTHDF2 [184–187]. 

Deadenylation of the mRNA exposes its 3’ end, which is then targeted by the exosome 

complex or DIS3-like proteins for 3’-5’ exoribonucleolytic cleavage [188,189]. Second, 

YTHDF2 recruits heat-responsive protein 12 (HRSP12), which is an adaptor between 

YTHDF2 and RNase P/MRP complex [185]. RNase P/MRP complex then acts as an 

endoribonuclease to cleave the mRNA containing m6A modification [185].  

Other YTHD proteins (e.g. YTHDF1, YTHDF2, YTHDF3, and YTHDC2)  are 

also involved in the degradation of m6A-containing mRNA [190–193]. In addition, other 

proteins regulate the stability of RNA, including the IGF2BP family of proteins [69], 

human antigen R (HuR) [194], proline-rich coiled-coil 2 A (PRRC2A) [195], Ras-

GTPase-activating protein SH3 domain-binding protein (G3BP1) [196], and fragile X 

mental retardation protein (FMRP) [197].  

The role of m6A in biological processes has also been widely studied. Depletion 

of methyltransferases Mettl3 or Mettl14 in mice revealed that m6A is essential for 

embryo development and differentiation [51,198,199].  In zebrafish, many maternal 

mRNAs are degraded by a Ythdf2-mediated pathway and the depletion of Ythdf2 

causes a developmental delay [200]. In flies, m6A is essential for neuronal functions 

and sex determination [49,201].  

Demethylation of m6A is also essential for biological processes, including 

spermatogenesis [202] and adipogenesis [183,203]. Finally, targeted inhibition of 

erasers FTO and/or ALKBH5 by small molecule inhibitors leads to reduced cancer 

progression [13], which shows the importance of m6A methylation in cancer. 

m5C is another well-studied RNA modification, most of our understanding of 

which comes from the abundant RNAs such as tRNAs and rRNAs that are modified by 

m5C in multiple locations. In tRNAs, m5C modification has been suggested to affect 

tRNA structure, stability and codon-anticodon interactions [204]. In rRNAs, on the other 

hand, loss of m5C modification causes disruptions in the rRNA folding, as well as 

translational read-through of premature stop codons [99]. Furthermore, m5C 

modifications were reported to be highly enriched in the 3’UTR of mRNAs or near 

translation initiation codon, revealed by bisulfiphe-sequencing analysis 

[70,101,205,206].  

Despite their known locations, the functional consequences of the m5C 

modifications on mRNA are still uncertain. One interesting study suggests that a 

nuclear export factor ALYREF interacts with the m5C containing RNAs and the 

depletion of this protein leads to nuclear retention of these RNAs [70]. Consistent with 
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its critical role in RNA metabolism that is highlighted above, m5C modification has been 

associated with various biological processes. Most of our understanding of the role of 

m5C in these processes comes from the loss-of-function studies of the 

methyltransferases. Mutations in the NSUN2 gene have been associated with 

autosomal-recessive intellectual disability [207], Dubowitz-like syndrome [208], 

disrupted neurogenesis, and impaired brain development [209]. Furthermore, 

mutations in the NSUN3 gene have been associated with mitochondrial deficiency, 

leading to developmental disorders in humans [210]  and impaired differentiation of 

embryonic stem cells in mice [211]. Finally, NSUN7, which is predominantly expressed 

in testis, has been shown to play an important role in male fertility [212].  

Ψ is a product of C-C glycosidic isomerization of a uridine base. The difference 

in its chemical properties from uridine leads to a stronger base pairing with adenine 

and a firmer phosphodiester backbone [213]. This alteration in the chemical properties 

of the RNA molecule can affect the secondary/tertiary structure, protein interactions, 

anticodon recognition, and misreading in the modified RNA.  In tRNAs, for example, Ψ 

modifications are essential for the tertiary of tRNA and these conformational changes 

due to the modification affect the role of the modified tRNA in translation [214–216]. On 

the other hand, the presence of Ψ modification in the stop codons was shown to 

convert them into missense codons [217]. Although the effect of Ψ modification on 

mRNA stability remains controversial [121,218], it has been established that Ψ 

modification of synthetic mRNAs increases their evasion of the innate immune system 

and enhances their translation, the basis of the new generation of mRNA vaccines, 

pioneered against Covid19 [219–221]. Moreover, studies on PUS enzymes have 

shown their association with multiple human diseases including Celiac disease [222], 

X-linked ichthyosis [223], Crohn's disease [222], and mitochondrial myopathy and 

sideroblastic anemia [224]. 

Nm is another common type of RNA modification on RNA molecules, which 

differs from the other methylations by its presence in the ribose sugar, rather than the 

base. Nm alters the fate of the modified RNA molecule by increasing its hydrophobicity, 

protecting it against nucleolytic cleavage, altering its interactions with protein and other 

RNAs, and stabilizing its helical structures [139,140,225–227]. For instance, Nm has 

been shown to stabilise A-form duplexes and stabilise the RNA-RNA base pairs on 

modified RNAs [228–231]. Moreover, Nm modification has been shown to distort RNA-

protein interactions[138], as well as RNA tertiary structures [137].  

Being an abundant modification, Nm is involved in many biological processes. 

Loss-of-function of the pseudouridine writes enzyme fibrillarin resulted in disruption of 
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the translation machinery [232], whereas overexpression of the same enzyme led to 

enhanced translation, leading to increased proliferation of breast cancer cells [233]. Nm 

modification is also important for spliceosome assembly and function due to its 

presence in snRNAs [131,132]. For example, depletion of Nm modification of U6 

snRNA leads to alterations in splicing, resulting in impaired spermatogenesis in mice 

[234].  

1.2. Mapping RNA modifications 
Due to their abundance, most of our understanding of RNA modifications came 

from tRNA and rRNA modifications detected by thin-layer chromatography (TLC) and 

high-performance liquid chromatography (HPLC), methods that are outdated now 

[235,236]. These methods historically detected only abundant RNA modifications since 

they have low sensitivity. Although the catalogue of the modifications on abundant 

RNAs was established decades ago, it remains a challenge to map RNA modifications 

in less abundant RNAs.  

1.2.1. Liquid Chromatography Mass Spectrometry (LC-MS/MS) 
Liquid chromatography-tandem mass spectrometry (LCMS/MS) is an accurate 

method that provides both qualitative and quantitative information on the RNA 

modifications and can be used as an orthogonal method to “validate” predicted sites 

[237]. It relies on differences in biophysical properties between modified and canonical 

nucleosides, such as molecular mass and lipophilicity [238]. To be analysed by LC-

MS/MS, RNA molecules first need to be digested with enzymes such as nuclease P1, 

phosphodiesterase, and alkaline phosphatase, which leads to the formation of 

nucleosides [239]. The main RNA modifications that can be analysed by LC-MS/MS 

are the abundant types of RNA modifications that occur mostly on tRNAs and rRNAs 

[237]; therefore a transcriptome-wide mapping of RNA modifications using LC-MS/MS 

is far from reality. Finally, an exceptional advantage of LC-MS/MS is its ability to do 

untargeted identification of the RNA modifications, which can be used for a novel type 

of modification discovery [240].   

1.2.2. Next-generation sequencing 
Most transcriptome-wide modification mapping has been achieved using NGS-

based methods. Since RNA modifications are not abundant in mRNA, earlier methods 

relied on enriching modification sites by immunoprecipitation using modification-specific 

antibodies (Figure 1.9) [89]. These methods were called methylated RNA 
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immunoprecipitation followed by sequencing (MeRIP-seq) and initially used for m6A 

modification (named m6A-seq). These early studies showed that m6A modifications are 

more common on mRNA than previously thought before and are dynamically regulated 

[89,90].  

Most NGS techniques are based on sequencing-by-synthesis (SBS) 

technology, such that, reverse-transcription of the RNA into cDNA is followed by a 

second strand is synthesis with fluorophore tagged DNA molecules. Some naturally 

occurring RNA modifications (m1A, m3C, m1acp3Y,m3U, m1G, m22G) are known to 

disrupt Watson-Crick base pairing and therefore cause reverse transcription errors 

[117,241]. When encountered with these modifications, reverse transcriptase either 

falls from the template, leading to RT drop-off or introduces a mismatch. This error 

signature has been used to detect modifications for over a decade [115,116,242–244]. 

As outlined before, however, only a few RNA modifications cause reverse 

transcription errors. Therefore, treatment of the RNA template with chemicals that 

selectively react with the modified residues has been widely used to expand the 

repertoire of RNA modifications that can be detected. RNA modifications that can be 

detected by treating with a chemical include Ψ via CMCT treatment [121,122,126], m5C 

via bisulfite treatment [245], and ac4C via sodium cyanoborohydride treatment [246] 

(Figure 1.9). Additionally, Nm can be detected in the reverse transcription product by 

either alkaline treatment, which exposes the Nm sites in the form of fragments 

protected from the alkaline hydrolysis or reverse transcription in the presence of low 

dNTP concentration, which leads to pausing of the reaction [117,247]. 

NGS-based methods have provided valuable information about RNA 

modifications since their discovery. Without NGS coupled mapping, we would not have 

been able to appreciate the diversity, plasticity, and abundance of RNA modifications. 

However, NGS-based methods have important limitations. First, specific chemical 

reagents or antibodies are only available for a handful of modifications [248],[117]. In 

addition, an antibody specific to a modification may cross-react with other 

modifications, and current studies suggest a high amount of false positives in reported 

sites [111,118]. A recent example is the demonstration of an m1A antibody cross-

reacting with the 5’cap, resulting in a high amount of false-positive m1A sites near the 

5’UTR [118].  
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Figure 1.9 - Main NGS-based methods to map RNA modifications.  

Antibody-based enrichment, coupled to NGS sequencing, leads to occurrence of 
“peaks” around the modified positions (left panel). Chemical-based method relies on 
the RT-drop off that is introduced by the modified site after interacting with the chemical 
(right panel). Figure adapted from Jonkhout et al, 2017 [52]. 

 
There are other limitations of the NGS technology, as the library preparation 

involves fragmentation, multiple ligation steps, and PCR amplification. Fragmentation 

of the RNA leads to the loss of isoform-specific information and the inability to detect 

co-occurring distant modifications in the same transcripts [249]. Moreover, PCR 

amplification and multiple ligations introduce biases in the sequencing data [250]. 

Finally, quantitative measurement of the modified sites, namely their stoichiometry, is 

often not possible with NGS-based methods [249].  
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1.2.3. Third-generation sequencing 
The third-generation sequencing technology platforms developed by Oxford 

Nanopore Technologies (ONT) [251] and Pacific Biosciences (PacBio) [47] have been 

proposed to be able to overcome the limitations in detecting RNA modifications in 

native RNA sequences. PacBio-based RNA modification detection techniques use the 

information from the kinetic changes of reverse transcriptases in the presence of a 

modified site [252]. Nanopore sequencing relies on the measurement of disruption in 

the ionic current when a nucleic acid template is passing through the protein nanopore, 

which is embedded on the membrane of the flow cell. Since it is a long-read 

sequencing technology and it can sequence direct RNAs without any manipulation, 

nanopore sequencing provides a unique opportunity to study RNA modifications 

directly in a single nucleotide and single molecule resolution in a quantitative manner 

[251].   

A pioneering study using direct ONT RNA sequencing showed that modified 

sites exhibit different current signals than unmodified sites in the same position in 

synthetic RNAs (Figure 1.10) [251]. Shortly afterwards, another study on direct RNA 

sequencing of the bacterial 16s rRNA illustrated that change in current intensity is also 

observed in in-vivo samples [253]. These findings triggered a number of subsequent 

studies to  detect RNA modifications using nanopore sequencing [254–260].   

 

Figure 1.10 - RNA modification detection using ONT direct RNA sequencing. 
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As RNA goes through a nanopore with the help of a motor protein, disruption in the 
ionic current is converted to a signal. This signal is altered in the presence of a 
modified site.  

1.3. Detection of Poly(A) tail lengths 
 Until recently,  the measurement of poly(A) tail lengths had mostly focused on 

individual mRNAs. The view on poly(A) tail length dynamics has vastly changed in the 

last few years, thanks to the new technologies. In this section, I will briefly canvass the 

traditional methods, as well as the recently established methods to measure poly(A) tail 

lengths. 

1.3.1. Low throughput methods 
The poly(A) tail lengths of many individual genes have been determined using 

low throughput methods such as Northern Blot, 3’ RACE, PCR, and Sanger 

sequencing-based methods. Northern Blot-based method assesses the poly(A) tail 

length by comparing full-length mRNAs with mRNAs lacking poly(A) tails as a result of 

RNase H treatment upon oligo(dT) annealing [261]. Due to its limitations including the 

intensive labor, requirement of a large amount of input, difficulty in assessing the 

difference in poly(A) tail length in long mRNAs, non-specific digestion of internal 

poly(A) stretches within the mRNA body, this method provided only a limited amount of 

information [262]. 3’ RACE uses an oligo-dT adapter primer that uses the poly(A) tail to 

prime the reverse transcription, and therefore the poly(A) tail length information is kept 

in the synthesised product, which can be further amplified using polymerase chain 

reaction (PCR) [263].  

Another PCR-based method relies on the enzymatic addition of G or I 

nucleotides to the 3’end of an RNA. PCR reaction then uses two primers, one of which 

is designed to anneal to the part where poly(A) ends and G/I tail starts, and another 

one is designed to anneal to the 150-200 bases upstream of the polyadenylation site. 

An alternative to the G/I tailing comes from using a linker RNA to ligate to the 3’end of 

the RNA, instead of a G/I tail and designing a primer to anneal to the linker, which then 

can be used for amplification [42].  

1.3.2. Next-generation sequencing-based methods  
 Despite the extensive use of NGS technology in almost all aspects of RNA 

biology, its use in measuring poly(A) tail dynamics fell behind. This was mostly 

because NGS methods do not favor long homopolymer sequences and library 

preparation methods selectively exclude the poly(A) tails [264]. Recently, several NGS-
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based methods have been made available with adjustments to the widely used 

protocols to characterise the poly(A) tail length dynamics.  One such method is PAL-

seq [42], which measures poly(A) tail lengths by incorporating fluorescent tags on 

biotinylated deoxyuridine triphosphate (dUTP) and then uses  signal intensity to 

quantify poly(A) tail length. While PAL-seq can provide accurate estimates of poly(A) 

tail lengths, it is technically complex, can present efficiency-related issues during the 

biotin-dUTP extension step, and can only capture 3’ ends of polyadenylated molecules.  

An alternative NGS-based method to quantify poly(A) tail lengths is TAIL-seq 

[265], which relies on the use of RNAse T1 to obtain short fragments, which are then 

ligated to 3’ and 5’ RNA adapters, subjected to cDNA synthesis, PCR amplification, 

and finally sequenced using Illumina platforms. Although these methods have provided 

information about poly(A) tail lengths in various organisms transcriptome-wide, they 

have several limitations. First, due to the way the library is prepared, a given poly(A) 

tail length cannot be assigned to a specific isoform, which leads to the loss of isoform-

specific tail length information. Second, NGS-based methods are unable to measure 

the length of tails if they are longer than the read length, which limits the analyses to 

shorter tail lengths. 

 

1.3.2. Long-read sequencing-based methods  
 With the development of long-read sequencing technologies, interest in using 

this technology to estimate poly(A) tail lengths have increased. The first methods 

include FLAM-seq [266] and PAIso-seq [267], which are based on PacBio technologies 

and can identify the tail-isoform relationship. However, these methods still include PCR 

amplification, multiple ligations, and/or G/I tailing, which introduce biases. Additionally, 

PacBio technology involves expensive sequencing instruments and only produces a 

limited amount of reads  [268–270]. Another long-read sequencing technology, direct 

RNA sequencing by ONT [271], has also been established as an alternative way to 

estimate poly(A) tail lengths [272]. However, this approach cannot capture RNAs that 

are deadenylated, contain non-canonical tail composition (e.g. polyuridine), or contain 

poly(A) tails shorter than 10 nucleotides. 
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1.4. Thesis Objectives 
This thesis aimed to develop and apply new approaches to characterise RNA 

modification and polyadenylation at single-molecule resolution using ONT nanopore 

sequencing.  

First (chapter 2), the thesis aimed to characterise the evolution and expression 

of RNA modification-related proteins (RMPs), which were previously poorly annotated 

and largely uncharacterised. The results reveal surprising heterogeneity in the 

expression patterns of RMPs across mammalian tissues and that RMPs are 

dysregulated in multiple cancer types.  

Second (chapter 3) we set out to develop a proof-of-principle method for the 

detection of RNA modifications, specifically m6A, by exploiting systematic errors and 

low base-calling qualities in direct RNA sequencing data. By using this information, an 

algorithm was trained with both m6A-modified and unmodified synthetic sequences 

which then was used to predict m6A modifications both in-vitro and in yeast mRNA. 

 Third (chapter 4)  we set out to expand the repertoire of the RNA modifications 

that can be detected with direct RNA sequencing by characterising specifically the 

distinct signature of the Ѱ-modified sites and de novo prediction of the Ѱ modifications 

in mRNAs, ncRNAs, and rRNAs. In doing so we uncovered a novel Ѱ modification in 

yeast mitochondrial rRNA, which we validated using orthogonal methods. The 

pseudouridylation dynamics across different environmental stresses were also 

explored. NanoRMS software, which can estimate per-site modification stoichiometries 

by using the current signal information, was developed.  

The fourth (chapter 5) part of this thesis introduces a method called Nano3P-

seq that is designed to capture any given RNA molecule from its 3’end, regardless of 

its polyadenylation status, without the need of PCR amplification or ligation of RNA 

adapters. Nano3P-seq was able to estimate abundances and tail lengths of various 

RNA biotypes, and their dynamically regulated tail lengths during vertebrate 

embryogenesis at the isoform-specific level, correlating with mRNA decay. 
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2. Integrative analyses of the RNA modification 
machinery reveal tissue- and cancer-specific 
signatures 

This chapter contains material described in the publication published in 

Genome Biology (Begik et al., 2020) [256].  

I generated all the data, performed all the analyses, and drafted the manuscript 

and figures with the help of other authors in the publication. 

Illustrations in Figures 2.8, 2.12 were drawn by Morghan C Lucas.  

Immunohistochemistry images in Figures 2.8, 2.9, 2.17,2.18, 2.19 were edited 

by Morghan C Lucas.  

TMA staining scores in Figures 2.17, 2.18 were calculated by Morghan C 

Lucas. 

Immunofluorescence experiments in Figure 2.12 were performed by Morghan C 

Lucas.  

Huanle Liu and Jose Miguel Ramirez contributed to developing custom scripts 

for the expression analysis. 

This work was supervised by Eva Maria Novoa and John S. Mattick. 
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2.1. Introduction 

As canvassed in the general introduction, technological advancements have 

revolutionised our understanding of RNA modifications, which can occur by removal 

(by deamination, often called ‘RNA editing’) or by the addition of chemical side groups 

on the ribose or base moieties. Insights into the physiological roles of specific RNA 

modification-related proteins (RMPs) have mostly come from naturally occurring 

phenotypes or diseases associated with their loss of function [52–56]. However, prior to 

the present study, a systematic annotation and characterization of RMPs across 

human tissues, cell types, and disease states were lacking. 

This chapter presents the compilation and analysis of the evolutionary history of 

90 RNA modification writers and the gene expression patterns of 146 human RMPs 

(Table S2.1) from 32 tissues, 10 species and 13,358 tumor-normal samples. The 

analyses revealed that many RMPs display restricted gene expression patterns and/or 

are dysregulated in specific types of cancer. Specifically, a vast proportion of RNA 

modification ‘writers’ were found to have undergone duplications (84%), typically 

accompanied by a change in their RNA target specificity and/or tissue expression 

patterns (82%). The most frequent change in tissue specificity is the acquisition of 

restricted testis-specific expression, suggesting that a significant portion of the human 

RNA modification machinery is likely devoted to sperm formation and maturation. 27% 

of human RMPs were also found to be significantly dysregulated in cancers, with the 

expression of several dysregulated RMPs being correlated with cancer prognosis. 

Overall, this work reveals an unanticipated heterogeneity of RMP expression across 

both normal and malignant cell types, and points towards several less-characterised 

RMPs, such as HENMT1 or LAGE3, as promising drug targets for anti-tumor therapies.   

       

2.2. Comprehensive annotation and evolutionary 
analysis of RNA modification writers 

To reveal the evolutionary history of the RNA modification machinery, I first 

compiled and manually curated a list of human RMPs (Table S2.1, see also Methods). 

Due to the wide chemical variety of RNA modifications, the evolutionary analysis was 

restricted to the catalytic domain of three major RNA modification ‘writer’ (RMW) 

classes: i) methyltransferases, ii) pseudouridylases and iii) deaminases. For each 

annotated RMW [52,273,274], Pfam domains of the catalytic domain were extracted 

and used as input for HMM-based searches against the human proteome. This 
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resulted in a total of 90 human RMWs, doubling the amount of annotated human 

RMWs in other resources [273]. To determine the evolutionary history and identify 

duplication events that occurred in each family, ortholog proteins from representative 

species were retrieved (see Methods), and phylogenetic trees were built to identify the 

number of duplications occurring within each family. Overall, this analysis identified 46 

duplication events (Figure 2.1A), which have mainly occurred in the base of Eukaryota, 

Metazoa and Vertebrata (Figure 2.1B).   
Duplications are often accompanied by changes in substrate specificity (Figure 

2.1C,D), at least in those RMWs where the substrate specificity has been reported. 

One such case is the family of m3C RNA methyltransferases, where the ancestral 

protein METTL2 modifies both tRNAArg and tRNAThr, whereas its paralog enzymes, 

METTL6 and METTL8, methylate tRNASer and mRNA, respectively [275] (Figure 2.1C). 

It is important to note that it is still questionable whether METTL8 is capable of 

methylating mRNAs, since there is a recent paper indicating that it methylates 

mitochondrial tRNAs [276]. Similarly, the N1-methylguanosine (m1G) 

methyltransferases TRMT10A and TRMT10B modify tRNAs in position m1G9  [277], 

whereas its paralog TRMT10C has been reported to place N1-methyladenosine (m1A) 

in mitochondrial tRNAs and mRNAs [109], in addition to m1G in tRNAs  (Figure 2.1D). 
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Figure 2.1 - Evolutionary analysis of RNA modification “writers”.  

(A) Detailed overview of the evolutionary history of RMW duplications during eukaryotic 
evolution. Red stars indicate that proteins do not target RNAs but they are in the same 
family with an RNA writer protein. Red lines indicate the evolutionary group in which 
the enzyme has appeared. (B) Histogram of RMW duplication events throughout 
eukaryotic evolution. Duplication events were inferred using multiple sequence 
alignments, coupled to maximum likelihood tree generation, for each family.(C), (D) 
Maximum likelihood phylogenetic trees of methyltransferase family METTL2A/2B/6/8 
(C) and TRMT10A/B/C (D). Cyan squares indicate the node where the duplication 
occurred. Numbers shown on the branches indicate bootstrapping values  
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2.3. Heterogeneity of expression patterns among 
duplicated RMPs is conserved across species 

We then wondered whether duplicated RMPs might have acquired distinct 

tissue expression patterns than the ancestral gene. To test this, I examined the 

heterogeneity of RMP expression patterns across tissues in human and mice, using 

publicly available RNASeq datasets [278–280] (Figure 2.2A, see also Figure 2.3A for 

gene-labeled heatmaps). For each gene and tissue, I computed ‘tissue specificity (TS) 

scores’ [281], which is defined as the deviation of gene expression levels in a given 

tissue, relative to the average expression across all tissues (see Methods). The results 

show that testis is the most distinctive tissue in terms of RMP gene expression 

patterns, both in human and mouse (Figure 2.2A,B). This was due to several RMPs 

being quasi-exclusively expressed in testis (e.g. ADAD1, ADAD2), but also to several 

RMPs whose expression levels have significantly increased this tissue (e.g. FBLL1, 

HENMT1, NSUN7). In contrast, other tissues such as the colon displayed none or few 

tissue-enriched RMPs (Figure 2.2B, see also Figure 2.3B). Moreover, RMP tissue 

expression patterns are largely conserved in both mouse and human (Figure 2.2C).  

To validate the tissue-specific RMP expression patterns, I performed 

quantitative Real-Time PCR (qRT-PCR) in four mouse tissues (brain, liver, lung and 

testis), finding similar expression patterns to those observed in the RNAseq datasets 

(Figure 2.4). I then examined whether tissue-specific RMP expression patterns would 

also be observed at the proteomic level, finding, in agreement with the transcriptomic 

analysis, that testis showed the most distinctive RMP protein expression levels and 

patterns among the 17 tissues analysed [282], whereas other tissues, such as the 

colon, displayed none or few tissue-enriched RMPs (Figure 2.5). 

The analysis was extended to additional amniote species, finding that testis was 

also the main outlier in terms of RMP expression patterns in all species analysed, 

supporting the notion that testis-specific RMP functionalities are evolutionarily 

conserved (Figure 2.2D, see also Figure 2.6). Overall, 89% of RMP duplication events 

were often followed by a change in tissue specificity (32.6%), target specificity (17.4%) 

or both (39.1%) (Figure 2.2E, and Figure 2.7), with a major over-representation of 

acquisition of testis-specific gene expression.  
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Figure 2.2 - Analysis of RMP tissue specificity expression in different species 

(A) Heatmap of z-scaled log(TPM) values of catalytic RNA writer proteins (M: 
methyltransferases; D: deaminases; P: pseudouridylases) throughout human and 
mouse tissues. In both, testis has the most distinct RMP expression pattern in which 
many genes show very high expression, whereas other tissues such as colon show 
moderate expression level of RMPs. (B) Scatter plots depicting tissue-specificity 
analysis, computed by representing the RMP mRNA expression values in a given 
tissue (y axis) relative to the mean mRNA abundance in all tissues (x axis). Testis has 
a significant number of tissue-specific genes in both human and mouse, while colon 
shows no tissue-specific genes in human and only one in mouse. Tissue-specific 
genes are labeled in red. (C) Venn diagram of the conservation of tissue specificity 
between human and mouse. (D) PCA of amniote tissues based on the log(RPKM) 
mRNA expression of their RMPs. The loadings plot (left) shows the contribution of each 
RMP to the clustering of amniote tissues. The scores plot (right) shows the clustering of 
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each tissue, where testis tissue (in red) is the main contributor to the variance of the 
data, and is found apart from the rest of the amniote tissues for every given species. 
(E) Schematic representation of the fate of the 46 RMW duplication events shown in 
Figure 1, showing that 89% of them suffered a change in their tissue and/or target 
specificity. 

 

Figure 2.3 - Tissue-specificity of RMPs in various tissues in human and mouse 

(A) Heatmap of z-scaled log2 TPM values of RMPs from human and mouse tissues. 
RMPs have been subdivided into 7 different classes depending on their annotated 
function: i) methylases, ii) deaminases, iii) pseudouridylases, iv) other writer activity, v) 
non-catalytic subunit, vi) readers and vii) erasers. RMPs have been individually 
clustered within each class. (B) PCA of human and mouse tissues based on the 
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expression of their RMPs across tissues. Only the first two principal components are 
shown. Variance explained by each principal component are shown in each axis. In the 
loadings plots, RMPs are colored following the same classification used in panel A. 
 

 

Figure 2.4 - Gene expression analysis of RMPs in mouse tissues 

Quantitative real-time PCR of 8 RMPs expressed in four mouse tissues (brain, liver, 
lung and testis) normalised to either GAPDH (A) or METTL5 (B). RMPs have been 
grouped into two categories, based on whether they are tissue-specific/enriched or 
non-tissue specific/enriched, as per RNAseq analysis. All the tissues are normalised to 
the brain tissue of their corresponding biological replicate. 
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Figure 2.5 - Protein levels of RMPs in human tissues 

(A) Heatmap of z-scaled log2 protein levels of RMPs in human tissues. RMPs have 
been subdivided into 7 classes depending on their annotated function: i) methylases, ii) 
deaminases, iii) pseudouridylases, iv) other writer activity, v) non-catalytic subunit, vi) 
readers and vii) erasers. RMPs have been individually clustered within each class. (B) 
Scatter plots depicting tissue-specificity analysis based on protein levels, which have 
been computed by representing the RMP mRNA expression values in a given tissue (y 
axis) relative to the mean mRNA abundance in all tissues (x axis). Scatter plots show 
that testis has a significant number of tissue-specific genes in human, whereas colon 
shows only one tissue-specific gene in human. Tissue-specific genes are labeled in 
red. 



 
               Chapter 2 

 
 
 

57 

 

Figure 2.6 - Evolutionarily conserved tissue-specific expression patterns of 
RMPs  

(A) Barplots depicting HENMT1 and ADAD1 expression values in different amniote 
species and tissues, showing conserved testis-specific expression of these enzymes. 
(B, C) Principal Component Analysis (PCA) of RMP expression values in primates, 
using as input the log(RPKM) expression of RMPs. Both scores (B) and loadings (C) 
are shown for the first two principal components. Variance explained by each PC are 
shown in each axis. (D) Barplots depicting ADARB1 and SERGEF expression values in 
different primate species and tissues, showing conserved brain- and cerebellum-
specific expression of these enzymes. 
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Figure 2.7 -  Analysis of target specificity of tissue specific and non-tissue 
specific genes  

(A) Non-tissue specific RMPs mainly target tRNAs, rRNAs and mRNAs. Tissue specific 
RMPs also target these RNAs, however the proportion of tRNA and rRNA targets is 
lower. Instead, tissue-specific RMPs target a higher proportion of small non-coding 
RNAs, including piRNA and eRNA. (B) RNA target specificity of tissue-specific RMPs. 
Only tissues that had 5 or more tissue-specific RMPs were included in the analysis 
(4/32). The final set of tissues that met this criterion were: testis (n=20), liver (n=6), 
bone marrow (n=6) and cerebellum (n=8). Liver and bone marrow mainly target tRNAs, 
rRNAs and mRNAs. In contrast, cerebellum and testis display a larger proportion of 
tissue-specific RMPs that target distinct families of small non-coding RNAs. 
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2.4. Testis-specific RMPs are mainly expressed during 
meiotic stages of spermatogenesis 

The process of sperm formation, termed spermatogenesis (Figure 2.8A), is a 

highly-specialised differentiation process in which transcriptional, post-transcriptional 

and translational regulation are highly orchestrated [283–286]. RNA modifications can 

influence pre-mRNA splicing, mRNA export, turnover, and translation, which are 

controlled in the male germline to ensure coordinated gene expression [287]. Recent 

works have shown that m6A depletion in mice dysregulates the translation of transcripts 

that are required for spermatogonial proliferation and differentiation [288]. Moreover, 

m5C modifications are essential for the transmission of diet-induced epigenetic 

information across generations in the epididymis [50]. However, whether additional 

RNA modifications may be involved in such orchestration is largely unknown.  

To identify at which stage of sperm formation and maturation testis-specific 

RMPs are involved, I gathered publicly available single-cell RNA sequencing data from 

mouse testis [289] (Figure 2.8B, see also Fig. 2.9A for gene-labeled heatmap). I first 

classified RMPs based on their gene expression patterns (see Methods), identifying 

four main expression patterns: (i) high expression only during mitotic stages 

(spermatogonia); (ii) high expression in both mitotic and meiotic stages 

(spermatogonia, spermatocytes, spermatids), although decreased in the latter; (iii) low 

expression throughout spermatogenesis; and (iv) high expression only during meiotic 

stages (spermatocytes and spermatids) (Figure 2.8B,C, see also Fig. 2.9B,C).  

The results show that the majority of RMPs, including those involved in placing, 

reading and removing m6A (VIRMA, YTHDC2, YTHDF2, ALKBH5, METTL14, METTL3) 

are highly expressed in spermatogonial cells, whereas their expression rapidly drops 

as the spermatogenic process begins (Figure 2.8B,C, see also Figure 2.9C). 

Interestingly, this is not the case for all RMPs, such as m5C methyltransferase NSUN7, 

which is not expressed in the early stages of spermatogenesis, but whose expression 

levels are drastically increased in spermatocytes and spermatids (Figure 2.9A,C). 

Similarly, the testis-specific adenosine deaminase ADAD1 is not expressed in the early 

stages of spermatogenesis, but its expression levels are greatly increased in meiotic 

stages. Depletion of NSUN7 or ADAD1 is known to cause infertility [212,290], 

suggesting that RMPs that are selectively expressed in meiotic stages of 

spermatogenesis are essential for proper sperm formation and/or maturation. However, 

the molecular mechanisms behind these infertility phenotypes are largely 

uncharacterised.  Similar expression patterns were observed when analyzing other 
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publicly available single-cell mouse spermatogenesis RNAseq datasets [291,292]  
(Figure 2.9, 2.10 and 2.11). 

I then investigated whether specific RMPs also showed increased expression 

patterns in the epididymis, relative to other tissues (Figure 2.9D). The analysis 

identified two RMPs as epididymis-enriched: (i) TRDMT1 -also known as DNMT2-, an 

m5C methyltransferase modifying position 38 in specific tRNAs [293], and (ii) METTL1, 

an N7-methylguanosine (m7G) tRNA methyltransferase, which has been shown to act 

on tRNAs [294]. Interestingly, TRDMT1 has been shown to play a major role in the 

transmission of paternal epigenetic information across generations [50]; however, 

whether METTL1 is involved in the transmission of such information is yet to be 

determined.  
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Figure 2.8 - Analysis of RMP gene expression during spermatogenesis.   

(A) Schematic representation of the four main phases of spermatogenesis: i) mitotic 
division of spermatogonia (SPG) into primary spermatocytes (PSC) ii) meiotic division 
of PSCs into secondary spermatocytes (SC), iii) meiotic division SCs into round 
spermatids (RST) and iv) spermiogenesis, in which round spermatids (RST) mature 
into elongated spermatids (EST). (B) Heatmap of RMP expression levels in mouse 
testis. RMPs were clustered into 4 groups based on k-means analysis of their 
normalised average mRNA expression values. (C) Violin plots of the expression 
patterns of each of the 4 identified clusters (D)  RNA median expression barplot and 
immunohistochemistry of NSUN7, NSUN2 and METTL14, depicting distinct protein 
expression levels along the different sections of the testis and epididymis, as well as 
different subcellular localizations. Brown color indicates a specific staining of the 
antibody whereas blue represents hematoxylin counterstain. 
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Figure 2.9 - Gene expression patterns of RMPS in spermatogenesis  

(A) Heatmap of RMP expression patterns during spermatogenesis, for each of the 4 
clusters identified using k-means. (B) Within groups, sum of squares was used to 
determine the optimal number of clusters in spermatogenesis RMP analysis, which is 
referred to as ‘Scree’s test’. Based on this test, the optimal number of clusters is 4, 
which corresponds to the elbow in the curve. (C) Principal Component Analysis (PCA) 
of spermatogenesis RMP expression values. Genes have been colored according to 
their corresponding cluster. (D) Scatter plot depicting tissue-specificity analysis of 
epididymis tissue, using as input the HPA dataset. Tissue-specific genes are labeled in 
red. (E) In the upper plot, mRNA expression values of HENMT1 for each 
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spermatogenesis maturation stage are shown. In the lower plot, immunostaining of 
mouse testis and epididymis using HENMT1 antibody is shown. Brown color indicates 
a specific staining whereas blue shows hematoxylin counterstain. Arrows show 
subcellular localization of HENMT1. SPG : spermatogonia  PCS : primary 
spermatocytes, SC: secondary spermatocytes , RS: round spermatids, ES: elongating 
spermatids. 

 

 

Figure 2.10 - Comparison of RMP expression changes during spermatogenesis 
using published single-cell RNA sequencing datasets.  

Heatmaps and violin plots of log counts shows the expression patterns of different 
gene clusters based on their expressional behavior during spermatogenesis from (A) 
Green et al., 2018 and (B) Xia et al., 2020. SPG : spermatogonia  PCS : primary 
spermatocytes, SC: secondary spermatocytes , RS: round spermatids, ES: elongating 
spermatids. 
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Figure 2.11 - Comparison of RMP expression patterns during spermatogenesis, 
using the data published by Green et al., 2018 and Jung & Wells et al., 2019  

Gene expression profiles from randomly selected genes – three genes per group 
identified using the initial analysis of single-cell RNA sequencing data (Green et al., 
2018) – were extracted using the interactive website from Jung and Wells et al. 2019. 
SPG : spermatogonia  PCS : primary spermatocytes, SC: secondary spermatocytes , 
RS: round spermatids, ES: elongating spermatids. 
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Figure 2.12 -  RNA expression patterns of a group of RMPs in different datasets 

Comparison of four RMP (HENMT1, NSUN2, NSUN7 and METTL14) expression 
changes during spermatogenesis using published single-cell RNA sequencing 
datasets. Barplots of log counts shows the expression patterns of different genes 
during spermatogenesis. SPG : spermatogonia  PCS : primary spermatocytes, SC: 
secondary spermatocytes , RS: round spermatids, ES: elongating spermatids. 

2.5. Immunohistochemistry reveals heterogeneity in 
RMP expression patterns along the epididymis 
It is well established that mRNA levels do not always correlate well with protein levels 

[295]. Thus, to assess whether our findings would hold at the protein level, 

immunohistochemistry was performed in both testis and epididymis to characterise the 

expression patterns of 4 RMPs at the protein level: (i) NSUN7, a putative m5C 

methyltransferase that has been shown to affect sperm motility [212,296]; (ii) NSUN2, 

an m5C tRNA methyltransferase involved in sperm differentiation [297]; (iii) METTL14, 

a component of the m6A methyltransferase complex, which has been shown to be 

dynamically regulated during spermatogenesis [288], and (iv) HENMT1, a piRNA 2’-O-
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methyltransferase responsible for transposon silencing during spermatogenesis [298] 

(Figure 2.8D, see also Figure 2.9E).  

NSUN7 is most highly expressed in spermatocytes, as well as in the initial 

segment and caput regions of the epididymis, in agreement with its role in the 

acquisition of sperm motility [212,296,299,300] (Figure 2.8D, left panels). Intriguingly, 

NSUN7 displayed vesicular-like localization in the epithelial cells of epididymal ducts, 

with significant accumulation in the apical surface. It is yet to be determined how 

NSUN7 depletion causes defects in sperm motility, as well as which are the targets of 

NSUN7 in testis and epididymal tissues. On the other hand, NSUN2 displayed high 

expression levels in spermatocytes and spermatids (Figure 2.8D, middle panels). It is 

also observed that NSUN2 is highly expressed in the initial segment of the epididymis, 

with decreased expression in the remaining epididymal sections. To identify the 

subcellular localization of NSUN7 and NSUN2, immunofluorescence assays were 

performed in mice testis, co-staining with either fibrillarin (FBL, nucleolar marker) or 

DEAD-Box Helicase 4 (DDX4, chromatoid body marker [301]) (Figure 2.13). NSUN2 

was mainly expressed in the adluminal compartment in the later stages of 

spermatogenic maturation in seminiferous tubules. Surprisingly, the expression of 

NSUN2 and DDX4 was quasi mutually exclusive, DDX4 being expressed in earlier 

stages of spermatogenesis, and NSUN2 being expressed in later stages. 

Colocalization of NSUN2 with DDX4 was not observed, in contrast to previous reports 

[297].  

METTL14 is also highly expressed in early spermatogenesis and down-

regulated during the subsequent stages at the mRNA level (Figure 2.8D, right panels), 

in agreement with the dynamic regulation of m6A levels during spermatogenesis [288]. 

This result was corroborated at the protein level using IHC, where METTL14-positive 

early spermatogenic cells are found in the periphery of the seminiferous tubules, while 

round spermatids and elongated spermatids, located in the very interior of the 

seminiferous tubules, and spermatozoa, found in the lumen of the seminiferous tubules 

and epididymis (see Figure 2.13), were negative. Finally, HENMT1 was mostly highly  

expressed in spermatogonia and secondary spermatocytes at the RNA level, however 

IHC of HENMT1 did not show stage- or cell-specific staining  (Figure 2.9E). Overall, 

these analyses showed that RMPs are dynamically expressed during spermatogenesis 

and during sperm maturation, and that, for the four genes investigated, protein 

expression patterns were largely in agreement with mRNA expression.  

 



 
               Chapter 2 

 
 
 

67 

 

Figure 2.13 -  Immunofluorescence of NSUN2 and NSUN7 RMPs in mouse testis 

(A) Schematic of the area and orientation of the seminiferous tubules in the confocal 
images. (B) Localization of NSUN2 (red) and nucleolus marker Fibrillarin (green), with 
arrows indicating nucleoli and arrow heads the nucleoli of Sertoli cells. (C) Localization 
of NSUN7 (red) and chromatoid body marker DDX4 (green), with arrows indicating 
chromatoid body structures. (D) Localization of NSUN2 (red) and DDX4 (green). (E) 
IgG isotype controls. Nuclei were counter-stained with Hoechst 33342 (blue) and a 
merge of all channels is shown in the far-right column. Scale bar = 25 μm. 
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2.6. Analysis of RMP expression in tumor-normal paired 
human samples reveals heterogeneity in RMP 
dysregulation across cancer types 

Due to their ability to modulate RNA metabolism and influence protein synthesis 

rates, RNA modifications have recently emerged as important regulators of cancer 

[302–304]. Several studies have shown that modulation of the RNA modification 

machinery can decrease the expression of specific oncogenes [72,305]. For example, 

in the case of glioblastoma, treatment with an FTO inhibitor was shown to decrease the 

expression levels of certain oncogenes [303]. Similarly, tRNA modifying enzymes 

NSUN2 and METTL1 can affect chemotherapy sensitivity by changing the methylation 

states of certain tRNAs [306]. Thus, understanding which epitranscriptomic players are 

dysregulated in each tumor type is essential to guide the research for future anticancer 

therapies targeting this regulatory layer.  

To this end, I performed an integrative analysis of RMPs gene expression 

across 13,358 tumor-normal paired human samples gathered from publicly available 

datasets [307], which included 28 different cancer types (Table 2.1). Firstly, I compared 

the expression patterns between paired tumor-normal samples by measuring the log2 

fold changes of median gene expression between tumor and normal paired samples, 

for each RMP and cancer type (Figure 2.14 and Methods).  

I found that certain cancer types, such as pancreatic adenocarcinoma (PAAD) 

and acute myeloid leukemia (LAML) showed significant dysregulation of a vast 

proportion of RMPs (Figure 2.14). Surprised by this result, we wondered whether these 

global up/down-regulation patterns could in fact be an artefact generated by the use of 

external datasets. Indeed, certain TCGA cancer types do not have real ‘matched’ 

tumor-normal data readily available, and often employ data from other publicly 

available datasets (e.g. GTEx) as ‘normal’ human tissue (Table 2.1).  
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Type Cancer Type Description 
TCGA 
(Tumor) 

TCGA 
(Normal) 

GTEX 
(Normal) Normal Tissue 

Normal  
Total 

ACC Adrenocortical carcinoma 77   127 Adrenal Gland 127 

BLCA Bladder Urothelial Carcinoma 407 19 9 Bladder 28 

BRCA Breast invasive carcinoma 1099 113 179 Breast 292 

CESC 

Cervical squamous cell carcinoma 
and 
endocervical adenocarcinoma 306 3 10 Cervix Uteri 13 

COAD Colon adenocarcinoma 290 41 304 Colon 345 

ESCA Esophageal carcinoma 182 13 271 Esophagus (Mucosa) 284 

GBM Glioblastoma multiforme 166 5 206 Brain  (Cortex, Frontal Cortex) 211 

HNSC 
Head and Neck squamous cell 
carcinoma 520 44   - 44 

KICH Kidney Chromophobe 66 25 27 Kidney 52 

KIRC Kidney renal clear cell carcinoma 531 72 27 Kidney 99 

KIRP 
Kidney renal papillary cell 
carcinoma 289 32 27 Kidney 59 

LAML Acute Myeloid Leukemia 173   70 Bone Marrow (K562 Cells) 70 

LGG Brain Lower Grade Glioma 523   206 Brain  (Cortex, Frontal Cortex) 206 

LIHC Liver hepatocellular carcinoma 371 50 110 Liver 160 

LUAD Lung adenocarcinoma 515 59 287 Lung 346 

LUSC Lung squamous cell carcinoma 498 50 287 Lung 337 

OV 
Ovarian serous 
cystadenocarcinoma 426   88 Ovary 88 

PAAD Pancreatic adenocarcinoma 179 4 165 Pancreas 169 

PCPG 
Pheochromocytoma and 
Paraganglioma 182 3   - 3 

PRAD Prostate adenocarcinoma 496 52 100 Prostate 152 

READ Rectum adenocarcinoma 93 10 304 Colon 314 

SARC Sarcoma 262 2   - 2 

SKCM Skin Cutaneous Melanoma 469 1 557 Skin 558 

STAD Stomach adenocarcinoma 414 36 173 Stomach 209 

TGCT Testicular Germ Cell Tumors 154   165 Testis 165 

THCA Thyroid carcinoma 512 59 278 Thyroid 337 

UCEC 
Uterine Corpus Endometrial 
Carcinoma 181 23 78 Uterus 101 

UCS Uterine Carcinosarcoma 57   78 Uterus 78 

 

Table 2.1 - Number of samples analysed for each cancer type, both in Normal 
and Tumor tissues 
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Figure 2.14 -  Heatmap of the RMP expression changes between tumor and 
normal samples, across 28 cancer types.   

RMP expression is measured as log2 fold change (log2FC), using the mean 
differences of all patients. Positive (red) values indicate up-regulation in the tumor, 
whereas negative (blue) values indicate down-regulation. 
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Figure 2.15 - Scatterplots showing expression levels of RMPs in matched tumor-
normal samples for all 28 cancer types analysed 

Values represent median log(TPM) across all patients. RMPs are shown in black, 
unless they are significantly up-regulated (red) or down-regulated (blue). Non-RMP 
genes are shown in grey. Pearson correlation values are shown for each cancer type. 
See Table 2.1 for abbreviations used for each cancer type. 
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To address this issue, I extracted the gene expression levels of all genes - not 

just RMPs - for each cancer type, finding that certain cancer types that employ GTEx 

data as source of ‘normal’ human tissues, such as LAML, display low Pearson 

correlation values between matched tumor-normal samples (r2=0.86), compared to 

those observed in other cancer types such as prostate adenocarcinoma (PRAD) 

(r2=0.98) (Figure 2.15). Thus, to identify which RMPs were significantly dysregulated in 

each cancer type, I computed ‘dysregulation scores’ [281], which take into account the 

global variance of the tumor-normal paired data, for each cancer type (Figure 2.16A). 

An RMP was considered as dysregulated in a given cancer type if its dysregulation 

score was higher than 2.5 standard deviations (SD) relative to the linear fit to the gene 

expression in the matched normal tissue (see Methods). Using this strategy, a total of 

40 RMPs were identified to be dysregulated in at least one cancer type (Table 2.2). 

Moreover, the ‘global’ up/down-regulation patterns found using log2 fold change 

comparisons were not observed (Figure 2.16B), suggesting that these results were in 

fact artefacts caused by the lack of proper ‘matched’ normal tissues for certain cancer 

types. 

2.7. Dysregulation score analyses of tumor-normal 
paired human samples identify LAGE3 and HENMT1 as 
top-ranked dysregulated RMPs 

We then asked whether specific RMP genes were recurrently up- or down-

regulated in multiple cancer types, as these could constitute promising drug targets that 

could be used to treat diverse cancer types. I identified 11 RMPs that were up-

regulated in two or more cancer types, as well as 8 RMPs which were consistently 

down-regulated in at least 2 cancer types (Figure 2.16C, see also Table 2.2). I found 

that the most frequently up-regulated RMP was HENMT1 (Figure 2.16D), a piRNA 2’-

O-methyltransferase which is highly expressed in gonadal cells, involved in 

transposable element (TE) mutagenesis protection [298,308,309]. Whether the global 

up-regulation of HENMT1 in cancer samples might be contributing to increased TE 

mutagenesis is currently unknown.  

The second most frequently up-regulated RMP was the L antigen family 

member 3 (LAGE3), a component of the complex responsible for the formation of N6-

threonylcarbamoyladenosine (t6A) in position 37 of tRNAs (Figure 2.16D). Interestingly, 

this modification is found in the anticodon stem-loop of many tRNAs decoding ANN 
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codons [310], and has been shown to affect both translation accuracy as well as 

efficiency [311]. Up-regulation of HENMT1 and LAGE3 expression levels was 

consistently observed in tumors from distinct stages, with the highest expression in 

stages III and IV (Figure 2.17).  

Short 
Name 

Up-regulated RMPs Down-regulated RMPs 

ACC BUD23, FBL, LAGE3, TRMT112, VIRMA ADAT2, APOBEC3G, TARBP1 

BLCA HENMT1 ADARB1 

BRCA LAGE3 TRMT9B 

CESC APOBEC3A, HENMT1 - 

COAD APOBEC1, DKC1, HENMT1 ADARB1 

ESCA HENMT1, RBM15, ZC3H13 ADAD2, METTL17 

GBM APOBEC3G, HSD17B10 ADARB2, FBLL1,  TARBP1 

HNSC HENMT1 - 

KICH ISCU - 

KIRC APOBEC3G - 

KIRP METTL27 - 

LAML APOBEC3A, HENMT1 - 

LGG HSD17B10, TRMT5 ADARB1, HENMT1, TARBP1 

LIHC LAGE3, METTL27, TARBP1 ADAT2, METTL17, NSUN6, TRMT11, ZC3H13 

LUAD LAGE3, METTL1, TFB2M ADARB1, APOBEC3A,TRMT9B 

LUSC DKC1, FBL, LAGE3, METTL1, METTL8 ADARB1, TRMT9B 

OV - YTHDC2 

PAAD APOBEC1, APOBEC3G, HENMT1 QTRT1, WDR6 

PCPG FBLL1 MPST 

PRAD - APOBEC3G, METTL17 

READ APOBEC1, DKC1, HENMT1 ADARB1 

SARC HENMT1 ADARB1, ISCU, SERGEF 

SKCM APOBEC3G - 

STAD HENMT1 METTL17,TRMT2A, WDR6 

TGCT EMG1, FBL, HNRNPC, HSD17B10, 
LAGE3, METTL9 

ADAD1, ADAD2 

THCA LAGE3, TRMT112 ADAT2, METTL17, TRMT9B, TRMU 

UCEC LAGE3 ADARB1 

UCS FBL, HENMT1, HSD17B10, LAGE3, TRMT112   

 

Table 2.2 - List of significantly dysregulated RMPs identified using dysregulation 
score-based analysis 
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Figure 2.16 - Expression analysis of RMPs in human tumor-normal paired 
samples.  

(A) Heatmap of z-scaled dysregulation scores of RMPs in tumor-normal paired 
samples, across 28 cancer types.  Positive (red) values indicate up-regulation in tumor 
samples, whereas negative (blue) values indicate down-regulation. Genes labeled as 
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red (up-regulated) and blue (down-regulated) represent top significantly dysregulated 
genes, which are also individually listed in panel C. (B) Scatter plot comparing RMP 
expression levels of matched tumor-normal samples, for the following cancer types:  
LAML (Acute Myeloid Leukemia) and UCS (Uterine Carcinosarcoma) BRCA (Breast 
invasive carcinoma) and KIRP (Kidney renal papillary cell carcinoma). Values 
represent median log(TPM) across all patients. Black data points indicate the 
expression of RMPs, where dysregulated genes are highlighted in red (up-regulated) or 
blue (down-regulated). Non-RMP genes are depicted in grey. (C) Barplot illustrates the 
number of cancer types in which significantly dysregulated genes are highlighted in red 
(up-regulated) or blue (down-regulated). Only RMPs that are dysregulated in more than 
2 cancer types are shown. For the full list of dysregulated RMPs, see Table 2.2. (D) 
Boxplots of log(TPM) mRNA expression values of HENMT1 (upper panel) and LAGE3 
(bottom panel) across all 28 cancer types analysed in this work. Green box plots 
represent normal samples, whereas red box plots represent tumor samples. Tumor-
normal pairs highlighted in cyan represent cancer types in which the RMP is 
significantly down-regulated, whereas those highlighted in orange represent those 
cancer types in which the RMP is up-regulated. Error bars represent standard deviation 
of mRNA expression levels across patients. Each data point represents a different 
patient sample. Abbreviations: ACC (Adrenocortical carcinoma), BLCA (Bladder 
Urothelial Carcinoma), BRCA (Breast invasive carcinoma), CESC (Cervical squamous 
cell carcinoma and endocervical adenocarcinoma), COAD (Colon adenocarcinoma), 
ESCA (Esophageal carcinoma), GBM (Glioblastoma multiforme), HNSC (Head and 
Neck squamous cell carcinoma), KICH (Kidney Chromophobe), KIRC (Kidney renal 
clear cell carcinoma), KIRP (Kidney renal papillary cell carcinoma), LAML (Acute 
Myeloid Leukemia), LGG (Brain Lower Grade Glioma), LIHC (Liver hepatocellular 
carcinoma), LUAD (Lung adenocarcinoma), LUSC (Lung squamous cell carcinoma), 
OV (Ovarian serous cystadenocarcinoma), PAAD (Pancreatic adenocarcinoma), PCPG 
(Pheochromocytoma and Paraganglioma), PRAD (Prostate adenocarcinoma), READ 
(Rectum adenocarcinoma), SARC (Sarcoma), SKCM (Skin Cutaneous Melanoma), 
STAD (Stomach adenocarcinoma), TGCT (Testicular Germ Cell Tumors), THCA 
(Thyroid carcinoma), UCEC (Uterine Corpus Endometrial Carcinoma), UCS (Uterine 
Carcinosarcoma).  

 

We then examined whether LAGE3 and HENMT1 would be upregulated in 

patient-derived samples  at the protein level. To this end, Tissue Microarrays (TMAs) 

were employed in combination with immunohistochemistry, analyzing a total of 72 

samples (cores) from both tumor and normal tissues, for 12 different cancer types. The 

results show that both LAGE3 and HENMT1 are upregulated in specific tumor types at 

the protein level (Figure 2.18A,B), although the observed differences were not found to 

be statistically significant (Figure 2.19). Nevertheless, the results suggest that LAGE3 

and HENMT1 have altered expression levels in specific cancer types also at the protein 

level. 

Finally, we asked whether the expression levels of RMPs might be correlated 

with cancer prognosis. I identified 283 cases where RMP expression patterns are 
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significantly associated with patient survival (Figure 2.18C). For example, high NSUN5 

expression levels in glioblastoma (GBM) are correlated with poor prognosis, in 

agreement with a recent study [312]. Similarly, this work revealed BUD23 expression to 

be correlated with cancer survival, in agreement with another recent study [313].  

Figure 2.17 - Expression analysis of LAGE3 and HENMT1 across cancer types 
and stages 

(A) Analysis of LAGE3 (left) and HENMT1 (right) mRNA expression levels across 
different cancer types and stages, relative to normal tissue expression levels. Median 
log(TPM) values from each cancer stage were normalised to the median log(TPM) of 
the normal tissue. Dashed lines depict cancer types in which LAGE3 or HENMT1 is not 
dysregulated, whereas full lines are used for cancer types in which the gene is 
dysregulated. (B) Violin plots of mRNA expression levels of LAGE3 and HENMT1 in 
individual cancer types (COAD, BRCA and KIRC) and across stages. Each dot 
represents the mRNA expression levels of a different individual.  
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Surprisingly, FTO expression levels are not significantly correlated with patient 

survival in LAML, despite this cancer type being used to test FTO inhibitors [314]. By 

contrast, LAGE3 expression levels were significantly correlated with patient survival in 

LAML (Figure 2.18D). Among all the RMP-cancer pairs studied, NSUN7 was identified 

as the top-ranked RMP in terms of prediction of lower grade glioma (LGG) patient 

survival (p=8e-24); although its biological role still remains uncharacterised. Future 

research will be needed to functionally dissect the role that NSUN7 plays in glioma, as 

well as to decipher why its expression levels are highly predictive of patient survival. 

Figure 2.18. Immunohistochemical analysis and prognostic value of RMPs 
expression levels in different cancer types. 



 
               Chapter 2 

 
 
 

78 

(A and B) Immunohistochemical analysis and images of normal and tumor LAGE-3 
stained LUSC (Lung squamous cell carcinoma), LIHC (Liver hepatocellular carcinoma) 
and PRAD (Prostate adenocarcinoma) (A) and HENMT-1 stained HGSC (High-grade 
serous carcinoma), LUSC and STAD (Stomach adenocarcinoma) TMAs (B). 
Representative cores and subsets are shown for each tissue and antibody, where the 
brown color indicates a specific staining of the antibody and blue represents the 
hematoxylin counterstain. Mean TMA score is plotted for each core, with three cores 
from different individuals per condition quantified. Two-sided Wilcoxon tests did not 
yield significant differences in any comparison, P-values of all tumor-normal 
comparisons for each cancer type and antibody are shown in Figure S13. (C) Heatmap 
of survival p-values of 146 RMPs across 28 cancer types. Survival p-values are 
calculated by comparing the prognosis of patients that express high (upper 50%) 
versus low (lower 50%) RMP levels. “N” column shows the number of patients included 
for the analysis of each cancer type. (D) Individual examples of survival plots where the 
expression levels of the RMP are predictive of cancer prognosis. P-values have been 
calculated by comparing the survival between patients expressing high levels (yellow, 
top 50%) versus low expression levels (blue, bottom 50%).   
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Figure 2.19 - Tissue microarray staining of HENMT1 and LAGE3 

(A) Schematic representation of the layout of the Tissue microarray (TMA) slide used 
for immunohistochemical analysis. (B) Overall staining pattern of TMAs using HENMT1 
and LAGE3 antibodies. Brown color indicates specific staining of the antibody, whereas 
blue represents the hematoxylin counterstain.  (C) TMA scores (mean of two 
independent blinded scorers) obtained for each cancer type included in the slide. Mean 
TMA score for each core is depicted with a horizontal line, whereas scores given to 
each individual core are shown as dots. P-values were computed using two-sided 
Wilcoxon tests. 
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2.8. Materials and Methods 

2.8.1. Compilation of human RNA modification-related proteins 
(RMPs)  

An initial list of human methyltransferases, deaminases and pseudouridylases 

was obtained by merging the lists available in the MODOMICS database 

(http://modomics.genesilico.pl/) and from a recently published review [52]. These lists 

were further initially completed with candidate genes by the addition of annotated 

proteins on Uniprot [274]. For each of these proteins, hidden Markov model (HMM) 

profiles of the corresponding PFAM catalytic domains were retrieved (Table 2.3) by 

querying the PFAM database (https://pfam.xfam.org/). Each HMM profile was then 

used to query the human proteome using the hmmsearch function from HMMER 

software v.3.2.1 (http://hmmer.org/). Proteins above the default threshold were kept as 

candidate RMW proteins. Related information for each of these proteins (modification 

type, target RNA, localization) was extracted from Uniprot, as well as from relevant 

literature [274]. Additional tRNA writer proteins were gathered from a recent study 

matching tRNA modifications to their writers [315]. Readers, erasers and non-catalytic 

subunit proteins were obtained from annotated Uniprot genes as well as from published 

literature [316]. APOBEC3G and APOBEC3A were included in the analyses due to 

recent literature showing their deamination activity on RNA molecules in vivo in 

addition to acting on DNA [159,160]. 

2.8.2. Phylogenetic analysis 
I first built a set of representative eukaryotic species, by choosing one species 

for each major phylogenetic clade for which complete proteomes were available. The 

final list of representative species consisted of 25 complete proteomes from UniProt 

[274], which included 23 eukaryal species, as well as 2 outgroups (1 bacteria and 1 

archaea). For each proteome and RMW, I performed HMM-based searches, as 

described above. Candidate orthologs were manually curated to ensure that I did not 

miss any ortholog in the analysis. For each curated ortholog dataset, multiple sequence 

alignments were built using MAFFT with G-INS-1 method [317]. Alignment files were 

used to construct maximum-likelihood phylogenetic trees using IQ-Tree with 

bootstrapping (n=5000) [318]. Consensus trees were visualised using FigTree v 1.4.4 

[319] and used to identify the duplication events. 
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PPFAM Domain Search Number PPFAM Domain Search Number 

A_deamin 1 Pox_MCEL 1 

AdoMet_Mtase 1 PseudoU_synth_1 1 

APOBEC_N 1 PseudoU_synth_2 1 

Bin3 1 RrnaAD 1 

dCMP_cyt_deam_1 1 SpoU_methylase 1 

DNA_methylase 1 TRM 1 

EMG1 1 TRM13 1 

Fibrillarin 1 TrmO 1 

FtsJ 1 tRNA_m1G_MT 1 

Gcd10p 1 tRNA_U5-meth_tr 1 

GCD14 1 TruB_N 1 

LCM 1 TruD 1 

MafB19-deam 1 TYW3 1 

Met_10 1 UPF0020 1 

Methyltr_RsmB-F 1 WD40 1 

Methyltransf_4 1 zf-GRF 1 

Methyltransf_10 1 WBS_methylT 1 

Methyltransf_11 1 DREV 2 

Methyltransf_15 1 Methyltransf_12 2 

Methyltransf_8 1 Methyltransf_5 2 

Methyltrn_RNA_3 1 MTS 2 

MT-A70 1 Rsm22 2 

PCIF1_WW 1     
 

Table 2.3 - PFAM domains used in phylogenetic analysis 
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2.8.3. Tissue specificity analysis 
Human mRNA expression levels (TPM-Transcripts Per Kilobase Million) for 

each of the 146 human RMPs were downloaded from the Genotype Tissue Expression 

(GTEx) dataset [278], version v7, as well as from the Human Protein Atlas (HPA) [320]. 

Three GTEX tissues (whole blood, transformed lymphocytes and transformed 

fibroblasts) were discarded from downstream analyses, as these have been previously 

considered as outliers that can bias the analyses [278] or are not normal tissues of the 

human body. mRNA expression levels for adult mouse tissues (TPM, Transcripts Per 

Kilobase Million) were obtained from a study that is part of  the ENCODE project [321]. 

For each dataset (HPA, GTEx, ENCODE), I log transformed the TPM values after the 

addition of a pseudocount. To determine which genes were tissue-specific, 

wecompared the expression levels of RMP in a given tissue to the median expression 

levels of RMPs across all tissues. I then calculated residuals (using rlm function), which 

is referred to as “tissue-specificity score” (TS), for each RMP to the regression line of 

each tissue. An RMP was considered tissue-specific if their TS was greater than 2.5 

standard deviation (SD), as previously described [281], which, in a normal distribution 

of the standardised residuals, equals to the region outside of the 97.9 percentiles.  

2.8.4.  RNA Extraction from mice tissues and Quantitative Real-
time PCR 

Brain, liver, lung and testis tissues were collected from 20 week old C57BL/6J 

mice in triplicate. RNA was extracted from tissues using TRIzol™ Reagent (15596018, 

Thermo Fisher Scientific) and Chloroform (C2432, Vidra Foc) as per manufacturer's 

instructions, and precipitated with isopropanol (BP2618-500, Thermo Fisher Scientific) 

and Pellet Paint® Co-Precipitant (69049, Novagen). Samples were DNase treated with 

Turbo™ DNase (AM2238, Thermo Fisher Scientific) for 15 minutes at 37°C and 

cleaned-up using Agencourt RNAClean XP beads (A63987, Beckman Coulter) as per 

manufacturer's instructions. Quality of the extracted RNA was assessed using 

Nanodrop™ Spectrophotometer 2000. cDNA was synthesised using Superscript II™ 

(18064014, Thermo Fisher Scientific) following the manufacturer's instructions. 

Quantitative Real-Time PCR (qRT-PCR) was performed with Power SYBR™ Green 

PCR Mix (4367659, Thermo Fisher Scientific) using ViiA™ 7 Real-Time PCR System 

as per manufacturer's instructions. For each primer pair, three biological replicates with 

three technical replicate reactions were performed (total of 9 reactions per primer pair). 

METTL5, which is expressed stably among the four mouse tissues studied [322], was 

used for normalization purposes. Results were also analysed using GAPDH for 
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normalization purposes. qRT-PCR plots were built using GraphPad Prism 8. All 

oligonucleotides used for qRT-PCR can be found listed  in Table 2.4. 

Species Gene Primer Sequence 5' > 3'  

Mouse ADAR3 Forward Primer GTCTGGAGGGCTAAGCAGTC 

Mouse ADAR3 Reverse Primer GCAAGGAAGGTTGACAGTATGC 

Mouse BUD23 Forward Primer GCATCTCGTAGCCGGAGAC 

Mouse BUD23 Reverse Primer CGTGAGTTGCGAACGTATTTCC 

Mouse NSUN7 Forward Primer TGGACCCAACGAGTGAAAGG 

Mouse NSUN7 Reverse Primer GTATTGGCGACTACATCCCCC 

Mouse RPUSD3 Forward Primer CCCAGATGCCTTTGCACCT 

Mouse RPUSD3 Reverse Primer GTCCGAGAGAAGTAAGGGGG 

Mouse TRDMT1 Forward Primer TACCACCCAAGTTATTGCTGC 

Mouse TRDMT1 Reverse Primer TCGTAAAGCACATGGACCTTC 

Mouse TRMT1L Forward Primer GATGCCCCTCTGATGCAGTTT 

Mouse TRMT1L Reverse Primer CGGACATCTCAACCCTGTCG 

Mouse METTL5 Forward Primer AACTAGAGAGTCGCCTGCAAG 

Mouse METTL5 Reverse Primer CTGCAACCGCTTTGTTTTCAA 

Mouse METTL1 Forward Primer CAGACCACACACTGCGCTA 

Mouse METTL1 Reverse Primer CATCCTTTGGATCATCATGGCTC 

Mouse HENMT1 Forward Primer TGGCAGAAAGCATACCGTG 

Mouse HENMT1 Reverse Primer ACCGTTGTTTGTATAATGGTGGT 

Mouse NSUN4 Forward Primer TGGGATAGTGTGAGTGCTAAGC 

Mouse NSUN4 Reverse Primer AAGCATCGAAGATTTGGGCTG 

Mouse GAPDH Forward Primer AGCCTCGTCCCGTAGACAAA 

Mouse GAPDH Reverse Primer AATCTCCACTTTGCCACTGC 

 

Table 2.4 - Primers used for qPCR 
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2.8.5. RMP expression analysis across tissues in amniote 
species 

mRNA expression levels of 12 amniote species (human, chimpanzee, bonobo, 

gorilla, orangutan, rhesus macaque, mouse, gray-short tailed opossum, platypus and 

chicken) were obtained from GSE30352 [323]. Normalised RPKM values of constitutive 

exons for both amniote and primate orthologs were used for downstream analyses. 

Heatmaps of the log transformed (with a pseudocount) and row (gene) z-scaled tissue-

wide mRNA expression values were built using complex heatmap R package. PCA 

analysis was performed using prcomp function of R and plots of scores (amniote and 

primate tissues) and loadings (orthologous genes) were plotted for the first two 

principal components using ggplot R package.  

2.8.6.  Analysis of RMPs expression during spermatogenesis 
Processed spermatogenesis data was extracted from GSE112393 [289]. Input 

data was used to perform k-means clustering of RMPs based on their expression 

profiles in different sperm cell populations. The optimal number of clusters was 

calculated by plotting the within groups sum of squares by number of clusters extracted 

using k-means function in R, following criteria used by Scree’s test.  Heatmaps were 

built using the complex heatmap R package. Violin plots were built using the ggplot R 

package. To assess the consistency of the results across diverse datasets, I analysed 

the RMP expression patterns from two additional mouse spermatogenesis studies 

[291,292]. For the first dataset, I used the same gene cluster groups and plotted the 

corresponding heatmap and violin plots using the ggplot R package (Figure 2.10). For 

the second dataset, I obtained the graphical representations for individual RMPs 

(Figure 2.11) from the interactive website accompanying the paper [292].  

2.8.7.  Immunohistochemistry 
Testis and epididymis from 6-12 week old C57BL/6J mice were fixed overnight 

at 4ºC with neutral buffered formalin (HT501128-4L, Sigma-Aldrich) and embedded in 

paraffin. Paraffin-embedded tissue sections (3 μm in thickness) were air dried and 

further dried at 60ºC overnight. Immunohistochemistry was performed using The 

Discovery XT Ventana Platform (Roche). Antigen retrieval was performed with 

Discovery CC1 buffer (950-500, Roche). Primary antibodies rabbit polyclonal anti-

NSUN2 (20854-1-AP, Proteintech), rabbit polyclonal anti-NSUN7 (PA5-54257, Thermo 

Fisher Scientific), rabbit polyclonal anti-HENMT1 (PA5-55866, Thermo Fisher 

Scientific), and rabbit polyclonal anti-METTL14 (HPA038002, HPA038002) were diluted 
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1:1000, 1:100, 1:150 and 1:2000 respectively with EnVision FLEX Antibody Diluent 

(K800621, Dako, Agilent) and incubated for 60 min. Secondary antibody OmniMap 

anti-rabbit HRP (760-4311) was incubated for 20 min. Detection of the labeling was 

performed using the ChromoMAP DAB (760-159, Roche). Sections were 

counterstained with hematoxylin (760-2021, Roche) and mounted with Dako Toluene-

Free Mounting Medium (CS705, Agilent) using a Dako CoverStainer (Agilent). 

Specificity of staining was confirmed with a rabbit IgG, polyclonal Isotype Control 

(ab27478, Abcam). Brightfield images were acquired with a NanoZoomer-2.0 HT 

C9600 digital scanner (Hamamatsu) equipped with a 20X objective. All images were 

visualised with a gamma correction set at 1.8 in the image control panel of the 

NDP.view 2 U123888-01 software (Hamamatsu, Photonics, France). Mice samples 

were collected, prepared as paraffin blocks, sliced and stained at the IRB 

Histopathology Facility.  Negative controls for each antibody were also included, which 

showed no staining (Figure 2.20). All IHC experiments were performed in biological 

triplicates. 

2.8.8.  Immunofluorescence 
Testis and epididymis from 12 week old C57BL/6J mice were embedded in 

Tissue-Tek® O.C.T™ Compound (4583, Sakura) and 12 µm sagittal sections were 

mounted on SuperFrost™ microscope slides (12372098, Thermo Fisher Scientific). 

Tissue sections were defrosted, circled with a PAP pen (Z377821, Sigma-Aldrich), 

fixed in 4% PFA (28908, Thermo Fisher Scientific) for 10 minutes and permeabilised in 

0.5% Triton-X 100 for 30 minutes (T8787, Sigma-Aldrich). Subsequently, sections were 

blocked in 5% BSA (A7906, Sigma-Aldrich) for 45 minutes at room temperature and 

incubated in primary antibody in 5% BSA overnight at 4°C. Primary antibodies were 

used at the following dilutions; 1:40 rabbit polyclonal anti-NSUN2 (20854-1-AP, 

Proteintech), 1:20 rabbit polyclonal anti-NSUN7 (PA5-55866, Thermo Fisher Scientific), 

1:50 mouse monoclonal anti-DDX4 (ab27591, Abcam), 1:250 mouse monoclonal anti-

Fibrillarin (38F3, Novus Biologicals) and 2 µg/mL IgG Isotype controls (G3A1 and 2791, 

Cell Signalling). Sections were incubated with 1:400 Alexa488-coupled anti-mouse (A-

11001, Thermo Fisher Scientific) and Alexa555-coupled anti-rabbit (A-21429, Thermo 

Fisher Scientific) secondaries and counter-stained with 1:10,000 Hoechst 33342 

(H3570, Life Technologies) for 2 hours at room temperature, then mounted with 

Fluoromount™ Aqueous Mounting Medium (F4680, Sigma Aldrich). Prepared slides 

were imaged on a Leica TCS SPE using a 63X NA1.4 oil objective. Three 1024x1024 

representative regions of interest were imaged per testis (n=3) over a 3D stack (3-5 µm 



 
               Chapter 2 

 
 
 

86 

depth with a z-step size of 1 µm), using a zoom factor of 2. All images were captured 

with a frame average of 4, with the exception of Hoechst which was imaged with a 

frame average of 2. 

 

Figure 2.20. Immunohistochemical staining of mouse testis and epididymis using 
isotype control rabbit IgG antibody (negative control).  

Brown color indicates antibody specific staining, whereas blue depicts hematoxylin 
counterstain. 
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2.8.9.  Analysis of RMP expression in tumor-normal paired 
human datasets 

TPM expression values were downloaded from the UCSC XENA Project, which 

contains the TCGA and GTEX RNA Seq data that is processed together to provide 

more reliable expression analysis with tumor and normal samples [307]. I discarded 

CHOL, THYM and DLBC tumor-normal tissue pairs due to lack of proper control of 

normal tissue (low number of patients) in these cancer types. Data was transformed 

into log2(TPM+1) for downstream analyses. For the log2(FC) analyses, I calculated the 

difference between median log2 expression levels between tumor and normal datasets, 

for each cancer type and RMP. For dysregulation analysis, I calculated the residuals 

(using rlm function in R) for all of the gene expression in a given tumor tissue and 

normal tissue pair, which has been previously termed as ‘dysregulation score’ (DS)  

[281].  I set the threshold of significance DS at 2.5 standard deviations (SD) as 

previously described [281], which, in a normal distribution of standardised residuals, 

equals to the region outside of the 97.9 percentiles. I then extracted the dysregulation 

scores of the RMPs and used it for further downstream analyses. For heatmap 

representations, dysregulation scores were scaled and centered, and the final heatmap 

was built using complex heatmap R package. Scatter plots of median log2 expression 

values for all genes in tumor-normal paired data were built using the ggplot R package, 

highlighting RMPs in black, significantly dysregulated RMPs in red (up-regulated in 

tumor) and blue (down-regulated in tumor), and non-RMP proteins were depicted in 

grey.  

2.8.10.  Survival Analyses 
Survival phenotypes were downloaded from the XENA Platform, using the 

“TCGA TARGET GTEX” cohort [307]. In order to analyse the survival data, I first 

determined patients that have “high” (upper 50% relative to average expression) and 

“low” (lower 50% relative to average expression) expression of a specific gene, and 

matched these patients with their overall survival information. I then used the survminer 

R package to plot survival curves for each gene and every cancer type, as well as to 

extract the survival p-values. P-values were transformed by inversion and subsequent 

log-transformation with a pseudocount [log(1/p+1)]. Heatmap of the survival p-values 

was built using the complex heatmap R package. Transformed survival p-values were 

visualised using ggplot. 
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2.8.11. Tumor microarray immunohistochemistry and analysis 
Multi organ tumor with adjacent normal tissue microarray slides with 

accompanying pathology grade, TNM (tumor, node and metastasis) classification and 

clinical stage information were purchased from US Biomax Inc (BCN721a). Each slide 

contains three malignant and three normal cores from 12 types of human organs 

(esophagus, stomach, colon, rectum, liver, lung, kidney, breast, cervix, ovary, prostate 

and pancreas), each core taken from different individuals. TMAs were stained at IRB 

Histopathology Facility. Primary antibodies rabbit polyclonal anti-HENMT1 (PA5-55866, 

Thermo Fisher Scientific) and rabbit polyclonal anti-LAGE3 (HPA036123, Sigma-

Aldrich) were diluted to 1:50. Secondary antibody OmniMap anti-rabbit HRP (760-

4311) was incubated for 20 min. Detection of the labelling was performed using the 

ChromoMAP DAB (760-159, Roche). For scoring of tissue microarrays, each core was 

given a score from 0 to 4 based on the proportion of positively stained cells: 0 

represents <2% of cells staining positive, 1 represents 2-25%, 2 represents 26-50%, 3 

represents 51-75% and 4 represents 76-100% staining of cells [324]. Two blinded 

independent people scored the stainings, following the guidelines described above. 

Both scorers were blind to both the antibody and tissue type. The scores from each 

scorer were averaged to obtain the final score per core. A two-sided Wilcoxon test was 

used to assess significance.  

2.9. Discussion 

Over the past decade, systematic efforts to detect and map RNA modifications 

have boosted the new field of epitranscriptomic research. Many proteins are involved in 

the writing, reading and erasing of RNA modifications but their roles in tumorigenesis 

and potential as therapeutic targets remain largely uncharacterised. To bridge this gap, 

here we have compiled a list of 146 human RNA modification-related proteins (RMPs) 

(Table S2.1), and have analysed the evolutionary history and gene expression patterns 

of 90 RMPs across 32 mammalian tissues, 10 species, 5 cell types and 13,358 tumor-

normal paired cancer samples.  

Through this analysis, a large number of duplication events were identified in 

multiple RNA modification families (Figure 2.1), often accompanied by the acquisition 

of restricted tissue expression patterns and/or change in its RNA target specificity. 

Therefore, RMP gene duplication is a strategy to acquire novel functions, and is 

typically achieved by altering the expression patterns and/or RNA target selectivity of 

the paralog proteins, in agreement with other analyses of gene evolution [325]. The 

majority of tissue-restricted RMPs are in fact testis-enriched (Figure 2.2), suggesting 
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that certain RMPs might play a pivotal role in sperm formation and maturation. 

Moreover, deletion of testis-enriched genes such as NSUN7, ADAD1 or HENMT1 

leads to male sterility [212,290,296,298]. 

At the beginning of spermatid elongation, nuclear condensation starts, and 

consequently the transcriptional machinery is shut down. Therefore, to provide proteins 

for the following maturation steps of sperm assembly, mRNAs have to be premade in 

spermatocytes and round spermatids, before nuclear condensation happens, and 

translationally repressed until needed [283–286]. Chemical RNA modifications provide 

an ideal platform to achieve the fine regulation that is required upon transcriptional 

shutdown, determining which RNAs are expressed, repressed, or undergo decay [13].  

In this regard, previous work has shown that METTL3/METTL14 mediated m6A 

modification is dynamically regulated in spermatogenesis [288]. Similarly, piRNA 

molecules in germ line cells are tightly regulated by HENMT1, via 2’-O-methylation of 

their 3’ends [298]. Here we show that a vast proportion of RMPs are dynamically 

regulated during spermatogenesis as well as during sperm maturation in the 

epididymis, and as such, may be involved in the regulation and decay of specific 

transcripts that occur during sperm formation and maturation (Figure 2.8).  

Recent studies have shown that specific RNA modifications are essential for the 

transmission of paternal diet-induced phenotypes intergenerationally [50]. I identified 

two RMPs (TRDMT1 and METTL1) whose expression is significantly enriched in 

epididymis (Figure 2.5), one of which (TRDMT1) was recently shown to be involved in 

the transmission of diet-induced paternal phenotypes across generations [50]. Whether 

METTL1 plays a role in intergenerational inheritance is yet to be deciphered; however, 

recent insights showing its role in miRNA maturation [326] suggest that this enzyme 

might be playing a role in miRNA-acquired inheritance of information.    

In the last few years, several studies have placed RNA modifications in the 

forefront of cancer research [72,302,304,327,328], mostly focused on the machinery 

responsible for writing and erasing m6A modifications. For many years, FTO was 

thought to be of special interest due to its association with obesity [329]. However, later 

studies proved this genome-wide association to be false [330], and that the single 

nucleotide variant present in the FTO intron was in fact associated with the activity of 

neighboring genes [330].  

Nonetheless FTO kept receiving special attention due to its perceived activity 

as an eraser of m6A [57], the most frequent type of RNA modifications present in 

mRNAs. However, this is now thought to be incorrect, as later studies showed that FTO 

is in fact an eraser of N6,2’O-methyladenosine (m6Am), which is much less abundant in 
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mRNAs [58,331]. Similarly, FTO has been proposed to constitute a promising target for 

antitumor therapies [314,328,332]. While FTO has been shown to play an important 

role in leukaemia [332], it is possible that additinal RMPs such as HENMT1, which is 

drastically dysregulated in this cancer type, might constitute a better drug target to 

inhibit leukemogenesis (Figure 2.16). 

Here I show that the expression of 40 RMPs is significantly altered in tumor 

samples, relative to their matched normal samples (Table 2.2 and Figure 2.16). 

Moreover, I identify two enzymes, LAGE3 and HENMT1, as the top recurrently up-

regulated RMPs across cancer types. Surprisingly, these proteins have so far received 

little attention in cancer research studies. LAGE3 mutations are known to cause 

multiple human diseases, including nephrotic syndrome and microcephaly [333]; 

however, its role in tumorigenesis and cancer progression is yet to be determined. The 

upregulation of LAGE3 and HENMT1 was validated using Tissue Microarrays (TMAs) 

across a battery of 12 cancer types (Figure 2.18). While several cancer types where 

LAGE3 and HENMT1 were consistently upregulated identified, the variability among 

cancer grades across the tumor cores, together with the low number of cores per tumor 

type (n=3) led to insufficient statistical power to identify significant expression changes. 

Future work will be needed to decipher the biological role of LAGE3 and HENMT1 in 

cancer, as well as its potential use as a target for diagnostic and prognostic purposes. 
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2.10. Supplementary Data 

Table S2.1 - List of human RNA modification–related proteins (RMPs) used in this 
study 
 

Symbol 
(HGNC) Category Modification Symbol Target 

ADAD1 Probable RNA Deaminase A-I NA 

ADAD2 Probable RNA Deaminase A-I NA 

ADAR RNA Deaminase A-I mRNA,ncRNA 

ADARB1 RNA Deaminase A-I mRNA,ncRNA 

ADARB2 
RNA Deaminase (Possibly 
inactive) A-I NA 

ADAT1 RNA Deaminase A-I tRNA(37) 

ADAT2 RNA Deaminase A-I tRNA(34) 

ADAT3 RNA Deaminase A-I tRNA(34) 

ALKBH1 RNA Methyl Eraser m1A, m5C tRNA, mt-tRNA 

ALKBH2 RNA Methyl Eraser m1A, m3C NA 

ALKBH3 RNA Methyl Eraser m1A, m3C mRNA, tRNA 

ALKBH5 RNA Methyl Eraser m6A mRNA 

ALKBH8 RNA Methylase mchm5U tRNA 

APOBEC1 RNA Deaminase C-U mRNA, HPV viralRNA 

APOBEC3A RNA Deaminase C-U cellular RNA, ssDNA (HIV) 

APOBEC3G RNA Deaminase C-U 
mRNA, ssDNA (HIV), HIV viral 
RNA 

BCDIN3D RNA Methylase mm(pN)  tRNA, miRNA 

BUD23 RNA Methylase m7G rRNA 

CBLL1 
RNA Methylase non-
catalytic subunit m6A mRNA 

CDK5RAP1 Other tRNA Writer ms2i6A  tRNA 
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CDKAL1 Other tRNA Writer ms2t6A  tRNA 

CIAO1 Other tRNA Writer s2U, mcm5S2U  tRNA 

CMTR1 RNA Methylase 2-O-M (Cap1) mRNA, snRNA 

CMTR2 RNA Methylase 2-O-M (Cap2) mRNA, snoRNA 

CTU1 Other tRNA Writer s2U, mcm5S2U  tRNA 

CTU2 Other tRNA Writer s2U, mcm5S2U  tRNA 

DIMT1 RNA Methylase m6, 6A rRNA(A1779-A1780) 

DKC1 RNA Pseudouridylase Ψ rRNA 

DUS2 Other tRNA Writer D  tRNA 

EIF3A RNA Methyl Reader m6A mRNA 

ELP1 Other tRNA Writer 
cm5U, ncm5U, mcm5U, 
mcm5S2U  tRNA 

ELP3 Other tRNA Writer 
cm5U, ncm5U, mcm5U, 
mcm5S2U  tRNA 

ELP4 Other tRNA Writer 
cm5U, ncm5U, mcm5U, 
mcm5S2U  tRNA 

ELP5 Other tRNA Writer 
cm5U, ncm5U, mcm5U, 
mcm5S2U  tRNA 

EMG1 RNA Methylase m1Y rRNA(18S rRNA- Y1248) 

FBL RNA Methylase Xm rRNA 

FBLL1 Probable RNA Methylase Xm Probable NA 

FTO RNA Methyl Eraser m6A(m) (Cap), m6A mRNA,tRNA, snRNA 

FTSJ1 RNA Methylase Xm tRNA(C32-G34) 

FTSJ3 RNA Methylase Xm rRNA, HIV RNA 

GTPBP3 Other tRNA Writer tm5U  tRNA 

HENMT1 RNA Methylase Xm (3'end) piRNA 

HNRNPA2B
1 RNA Methyl Reader m6A   

HNRNPC RNA Methyl Reader m6A   
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HSD17B10 Other tRNA Writer m1G,m1A  tRNA 

ISCU Other tRNA Writer s2U, mcm5S2U  tRNA 

JMJD6 RNA Methyl Eraser     

LAGE3 Other tRNA Writer t6A  tRNA 

LCMT2 Probable RNA Methylase NA Probable tRNA  

MEPCE RNA Methylase mm(pN)  snRNA 

METTL1 RNA Methylase m7G tRNA(G46) 

METTL14 
RNA Methylase non-
catalytic subunit m6A mRNA 

METTL15 Probable RNA Methylase m4C 16s rRNA in E.coli homolog 

METTL16 RNA Methylase m6A ncRNA,mRNA, U6 snRNA 

METTL17 Candidate RNA Methylase 
Probable rRNA 
Methylase rRNA in yeast homolog 

METTL27 Candidate RNA Methylase RNA Met ?  NA 

METTL2A RNA Methylase m3C tRNA(Thr-Arg) 

METTL2B RNA Methylase m3C tRNA(Thr-Arg) 

METTL3 RNA Methylase m6A mRNA 

METTL4 Probable RNA Methylaase m6A (?) NA 

METTL5 Candidate RNA Methylase Probable m2G 
small rRNA in prokaryotic 
homolog 

METTL6 RNA Methylase m3C tRNA(Ser) 

METTL8 RNA Methylase m3C mRNA 

METTL9 Candidate RNA Methylase RNA Met ? NA 

MOCS3 Other tRNA Writer s2U, mcm5S2U  tRNA 

MPST Other tRNA Writer s2U, mcm5S2U  tRNA 

MRM1 RNA Methylase Gm mt-rRNA (Gm1145)  

MRM2 RNA Methylase Um mt-rRNA 

MRM3 RNA Methylase Gm mt-rRNA(Gm1370) 
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MTO1 Other tRNA Writer tm5U  tRNA 

NAT10 Other tRNA Writer ac4C  tRNA 

NFS1 Other tRNA Writer s2U, mcm5S2U  tRNA 

NOP2 RNA Methylase m5c rRNA(28SRNA-c4447 ) 

NSUN2 RNA Methylase m5c 
tRNA(Leu) (C34,48), tRNA(Gly) 
(C48,C49,C50) 

NSUN3 RNA Methylase m5c mt-tRNA(C34) 

NSUN4 RNA Methylase m5c mt-rRNA 

NSUN5 RNA Methylase m5c rRNA(28SRNA-c3782 ) 

NSUN6 Probable RNA Methylase m5c tRNA 

NSUN7 Probable RNA Methylase m5c eRNA 

NUBP1 Other tRNA Writer s2U, mcm5S2U  tRNA 

OSGEP Other tRNA Writer t6A  tRNA 

OSGEPL1 Other tRNA Writer t6A  tRNA 

PCIF1 RNA Methylase m6A(m) (Cap) mRNA 

PUS1 RNA Pseudouridylase Ψ tRNA\mttRNA(U27,U28,U30) 

PUS10 RNA Pseudouridylase Ψ tRNA(U54,U55) 

PUS3 RNA Pseudouridylase Ψ tRNA(U38-U39) 

PUS7 RNA Pseudouridylase Ψ tRNA, tRFs, mRNA 

PUS7L 
Probable RNA 
Pseudouridylase Ψ NA 

PUSL1 
Probable RNA 
Pseudouridylase Ψ NA 

QTRT1 Other tRNA Writer Q  tRNA 

RBM15 
RNA Methylase non-
catalytic subunit m6A mRNA 

RBM15B 
RNA Methylase non-
catalytic subunit m6A mRNA 

RNMT RNA Methylase m7G mRNA 
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RPUSD1 
Probable RNA 
Pseudouridylase Ψ NA 

RPUSD2 
Probable RNA 
Pseudouridylase Ψ NA 

RPUSD3 RNA Pseudouridylase Ψ mt-mRNA 

RPUSD4 RNA Pseudouridylase Ψ 
mt-rRNA(16s rRNA-U1397), 
mt-tRNA(U39) 

RRP8 RNA Methylase m1A rRNA 

SERGEF Other tRNA Writer s2U, mcm5S2U  tRNA 

SPOUT1 Probable RNA Methylase NA miRNA 

TARBP1 RNA Methylase Gm HIV RNA 

TFB1M RNA Methylase m6, 6A mt-rRNA 

TFB2M RNA Methylase m6, 6A mt-rRNA 

TGS1 RNA Methylase m2,2,7G snoRNA, snRNA 

THG1L Other tRNA Writer xG  tRNA 

THUMPD1 Other tRNA Writer ac4C  tRNA 

THUMPD2 RNA Methylase m2G 
tRNA (Needs experimental 
validation) 

THUMPD3 RNA Methylase m2G 
mt-tRNA (Needs experimental 
validation) 

TP53RK Other tRNA Writer t6A  tRNA 

TPRKB Other tRNA Writer t6A  tRNA 

TRDMT1 RNA Methylase m5C tRNA(Asp)(C38) 

TRIT1 Other tRNA Writer i6A  tRNA 

TRMO RNA Methylase m6t6A tRNA (A37)(tRNA(Ser)(GCU) ) 

TRMT1 RNA Methylase m2,2G tRNA, mt-tRNA 

TRMT10A RNA Methylase m1G tRNA 

TRMT10B RNA Methylase m1G tRNA 

TRMT10C RNA Methylase m1G:m1A mt-tRNA,mt-mRNA 
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TRMT11 RNA Methylase m2G tRNA(G10 in yeast homolog) 

TRMT112 
RNA Methylase non-
catalytic subunit m7G rRNA 

TRMT12 RNA Methylase o2yW tRNA (imG-14) 

TRMT13 RNA Methylase Cm, Am tRNA (in rice homolog) 

TRMT1L Probable RNA Methylase m2,2G tRNA (?)  

TRMT2A RNA Methylase m5u tRNA(U54 in yeast homolog) 

TRMT2B RNA Methylase m5u tRNA(U54 in yeast homolog) 

TRMT44 RNA Methylase Um 
Um44 in tRNA(Ser) in yeast 
homolog 

TRMT5 RNA Methylase m1G tRNA(G37) 

TRMT6 
RNA Methylase non-
catalytic subunit m1A tRNA,mRNA 

TRMT61A RNA Methylase m1A tRNA,mRNA 

TRMT61B RNA Methylase m1A 
mt-tRNA (58),mt-mRNA,mt-
rRNA 

TRMT9B Probable RNA Methylase mchm5U tRNA 

TRMU Other tRNA Writer tm5S2U  tRNA 

TRUB1 RNA Pseudouridylase Ψ mRNA 

TRUB2 RNA Pseudouridylase Ψ mt-mRNA 

TYW3 RNA Methylase yW tRNA(Phe) in yeast homolog 

VIRMA 
RNA Methylase non-
catalytic subunit m6A mRNA 

WDR4 
RNA Methylase non-
catalytic subunit m7G tRNA(G46) 

WDR6 Other tRNA Writer Cm, Gm,f5Cm, hm5Cm  tRNA 

WTAP 
RNA Methylase non-
catalytic subunit m6A mRNA 

YRDC Other tRNA Writer t6A  tRNA 

YTHDC1 RNA Methyl Reader m6A   
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YTHDC2 RNA Methyl Reader m6A   

YTHDF1 RNA Methyl Reader m6A   

YTHDF2 RNA Methyl Reader m6A   

YTHDF3 RNA Methyl Reader m6A   

ZC3H13 
RNA Methylase non-
catalytic subunit m6A mRNA 

ZCCHC4 RNA Methylase m6A rRNA (28SrRNA-a4220) 
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3. Accurate detection of m6A RNA modifications 
in native RNA sequences 
 

This chapter contains material described in the publication published in Nature 

Communications (Liu and Begik et al 2019) [255].  

I performed the wetlab protocol optimisations and experiments with the 

assistance of other authors. I also contributed to drafting the manuscript. Following is 

the specific list of contributions that I made in this study:  

- Optimised in-vitro transcription, capping, and polyadenylation experiments that 

are necessary to synthesise modified RNA molecules. 

- Optimised direct RNA library preparation, which is necessary to produce data 

for the analyses. 

- Prepared direct RNA libraries of in-vitro constructs and yeast mRNA, which is 

the source of all the data produced for this paper. 

The co-first author of the paper Huanle Liu performed all the bioinformatics 

analyses.  

Morghan C. Lucas contributed to the wetlab protocol optimisations.  

Jose Miguel Ramirez performed base-caller comparison analyses. 

David Wiener performed yeast culturing and mRNA purification. 

Eva Maria Novoa supervised the project, with contributions of Schraga 

Schwartz, Christopher E. Mason, John S. Mattick, and Martin A. Smith.  
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3.1. Introduction 
ONT direct RNA sequencing makes it possible to sequence native RNA 

molecules. RNA modifications in these native RNA molecules are known to cause 

disruptions in the pore current that can be detected upon comparison of raw current 

intensities – also known as ‘squiggles’– [251,254]. However, current efforts have not 

yet yielded an efficient and accurate RNA modification detection algorithm, largely due 

to the challenges in the alignment and re-squiggling of RNA current intensities 

[334,335]. 

As an alternative strategy, in this chapter, we hypothesised that the current 

intensity changes caused by the presence of RNA modifications may lead to increased 

‘errors’ and decreased qualities from the output of base-calling algorithms that do not 

model base modifications (Figure 3.1A). Indeed, here we found that base-calling 

‘errors’ can accurately identify m6A RNA modifications in native RNA sequences, and 

propose a novel algorithm, EpiNano (github.com/enovoa/EpiNano), which can be used 

to identify m6A RNA modifications from RNA reads with an overall accuracy of ~90%. 

These results provide a proof of concept for the use of base-called features to identify 

RNA modifications using direct RNA sequencing, and open new avenues to explore 

additional RNA modifications in the future. 

3.2. Optimisation of the wet-lab protocols 
 In order to produce in-vitro transcribed RNAs, I first transformed the E. coli 

bacteria with plasmids containing sequences to be in-vitro transcribed (see Methods). 

Next, I isolated the plasmids from the bacteria cells, digested them with the restriction 

enzymes and cleaned them up using phenol-chloroform extraction. I verified the 

digestion with agarose gel electrophoresis (Figure 3.1).  

Linearised DNA was then used as a template for the in-vitro transcription (IVT), 

either in the presence of  ATP or N6-Methyladenosine-5'-Triphosphate(m6ATP). This 

resulted in IVT products that are fully modified with m6A on their Adenine positions. 

After cleanup, in-vitro transcribed RNA was run on TapeStation in order to ensure the 

full-length production (Figure 3.2). Then a 5’cap was added to the in-vitro transcribed 

RNAs to ensure their stability during manipulation. Furthermore, poly(A) tailing reaction 

ensured that the RNAs can be used for direct RNA sequencing library preparation. 

Poly(A) tail addition was confirmed on Tapestation (Figure 3.2). 
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Figure 3.1 - Agarose gel electrophoresis of the plasmid DNA.  
Curlcake 1-4 plasmids that contain the sequence to be in-vitro transcribed were 
digested and run on agarose gel after cleanup. Distinct bands in the digested lanes 
illustrate a complete digestion of the plasmid. 
 

 

Figure 3.2 - TapeStation output of the quality and quantity of the m6A-modified 
and unmodified in vitro transcription products.  

Curlcake 1-4 in-vitro transcribed RNAs before and after poly(A) tailing.  
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3.3. RNA modifications cause altered base-calling 
features in direct RNA sequencing reads 

Previous work has shown that ONT raw current intensity signals, known as 

‘squiggles’, can be subdivided into ‘events’, which correspond to consecutive 5-mer 

sequences shifted one nucleotide at a time (e.g., in the sequence AGACAAU, the 

corresponding 5-mer ‘events’ would be AGACA, GACAA, and ACAAU)[336–339]. 

Therefore, to systematically identify the current intensity changes caused by the 

presence of a given RNA modification, perturbations of the current intensity signals 

should be measured and analysed for each possible 5-mer (n=1024). 

  To this end, a set of synthetic sequences that comprised all possible 5-mers 

was designed (median occurrence of each 5-mer=10), while minimizing the RNA 

secondary structure (see Methods). I then employed direct RNA sequencing to 

characterise the differences of in vitro-transcribed constructs that incorporated either 

m6A instead of adenine, or unmodified ribonucleotides (‘unm’) (Figure 3.3A). 

Comparison of the two datasets revealed that base-called m6A-modified reads were 

significantly enriched in mismatches compared to their unmodified counterparts 

(Figure 3.3B and 3.3C), and that these ‘errors’ were mainly, but not exclusively, 

located in adenine positions. In addition to mismatch frequency, other metrics including 

per-base quality, insertion frequency, deletion frequency and current intensity, were 

significantly altered (Figure 3.3C and see also Figure 3.5). Moreover, these ‘errors’ 

were highly reproducible in independent biological replicates with respect to mismatch 

frequency, deletion frequency, per-base quality and current intensity (Figures 3.3D-G). 

By contrast, insertion frequencies were not reproducible across biological replicates, 

suggesting that this feature is likely unrelated to the presence of RNA modifications, 

and thus was not further considered in downstream analyses. 
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Figure 3.3 - Base-calling ‘errors’ can be used as a proxy to identify RNA 
modifications in direct RNA sequencing reads.  

(A) Schematic overview of the strategy used in this work to train and test an m6A RNA 
base-calling algorithm (B) IGV snapshot of one of the four transcripts used in this work. 
In the upper panel, in-vitro transcribed products containing m6A have been mapped, 
whereas in the lower panel the unmodified counterpart is shown. Nucleotides with 
mismatch frequencies greater than 0.05 have been coloured. (C) Comparison of m6A 
and A positions, at the level of per-base quality scores (left panel), mismatch 
frequencies (middle left panel), deletion frequency (middle right panel) and mean 
current intensity (right panel). All possible k-mers (computed as a sliding window along 
the transcripts) have been included for these comparisons (n=9,974) (D, E, F, G) 
Replicability of each individual feature - base quality (D), deletion frequency (E), 
mismatch frequency (F) and current intensity (G)- across biological replicates, for both 
unmodified (‘A’) and m6A-modified (‘m6A’) datasets. Comparison of unmodified and 
m6A-modified (‘A vs m6A’) is also shown for each feature. Correlation values shown 
correspond to Spearman’s rho. Error bars indicate s.d. 

 



 
          Chapter 3 

 
 
 

103 

 

 

 

Figure 3.4 - Replicability of the features extracted across replicates.  

(A) Comparison of features between m6A-modified datasets (replicate 1 and replicate 
2) and m6A-unmodified datasets (replicate 1 and replicate 2). Each dot corresponds to 
a different nucleotide of the synthetic constructs (n=9978) (B) Comparison of features 
and across datasets, comparing m6A-modified and unmodified datasets of replicate 1 
(upper panels) and of replicate 2 (lower panels).  
 

3.4. Base-calling ‘errors’ can accurately predict m6A 
RNA modifications in direct RNA sequencing reads 

These observed differences were then examined for their sufficiency to 

accurately classify a given site into “modified” or “unmodified”. For this aim, the 

analysis focused on 5-mers that matched the known m6A motif RRACH, as these 

would be the most relevant in which to detect m6A modifications.  To reveal whether 



 
          Chapter 3 

 
 
 

104 

the features from m6A-modified RRACH k-mers were distinct from unmodified RRACH 

k-mers, base-called features (base quality, mismatch frequency and deletion 

frequency) were compiled for each position of the k-mer (-2, -1, 0, +1, +2) (Figure 
3.5A, see also Figure 3.6), and performed Principal Component Analysis (PCA) of the 

features, finding that the two populations (m6A-modified and unmodified RRACH k-

mers) were largely non-overlapping (Figure 3.5B). As a control, same analysis was 

performed in k-mers with identical sequence context, but centered in C, G, or U 

(instead of A), finding that no differences could be observed between these populations 

(Figure 3.5C), suggesting that the observed differences are m6A-specific, and not 

dataset-specific.  

 

Figure 3.5 - Base-calling ‘errors’ alone can accurately identify m6A RNA 
modifications.   

(A) Base-called features (base quality, insertion frequency and deletion frequency) of 
m6A motif 5-mers, and for each position of the 5-mer, are shown. The features of the 
m6A-modified transcripts (‘m6A’) are shown in red, whereas the features of the 
unmodified transcripts (‘unm’) are shown in blue. (B, C) Principal component analysis 
(PCA) scores the plot of the two first principal components, using 15 features (base 
quality, mismatch frequency, deletion frequency, for each of the 5 positions of the k-
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mer) as input. The logos of the k-mers used in the m6A-motif RRACH set (left) and 
control set (right) are also shown. Each dot represents a specific k-mer in the synthetic 
sequence, and has been coloured depending on whether the k-mer belongs to the 
m6A-modified transcripts (red) or the unmodified transcripts (black). The contribution of 
each principal component is shown in each axis. (D, E, F, G) ROC curves of the SVM 
predictions using: i) each individual feature separately to train and test each model, at 
m6A sites (D); ii) combined features at m6A sites, relative to the individual features (E); 
iii) combined features at m6A sites relative to control sites, where the base-called 
‘errors’ information of neighbouring nucleotides has been included in the model (F); 
and iv) different mixtures of methylated and unmethylated reads, using the combined 
features model (G). Error bars indicate s.d. 

 

 

Figure 3.6 - Replicability of the base-called features of GGACU k-mers, for each 
position of the k-mers.  

Base-called features of m6A-modified datasets are depicted in red, whereas those from 
unmodified datasets are depicted in blue. Error bars indicate s.d. 

 

To statistically determine whether these features could be used to accurately 

classify a given site into ‘m6A-modified’ or ‘unmodified’, multiple Support Vector 

Machines (SVM) were trained using as input the base-called features from m6A-
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containing RRACH k-mers and unmodified RRACH k-mers (see Methods). We first 

tested whether each individual feature at position 0 (the modified site) was able to 

classify a given RRACH k-mer into m6A-modified or unmodified. The results show that 

base quality, deletion frequency and mismatch frequency alone were able to accurately 

predict the modification status with reasonable accuracy (70-86% accuracy, depending 

on the feature used) (Figure 3.5D, see also Methods).  By contrast, the current mean 

intensity values and current intensity standard deviation were poor predictors of the 

modification status of the k-mer (43-65% accuracy). As a control, the same set of 

features in control k-mers (i.e., those with the same sequence context, but centered in 

C, G or U) were used, finding that the features did not distinguish between m6A-

modified and m6A-unmodified datasets (see also Figure 3.7).  

  To improve the performance of the algorithm, we then examined whether a 

combination of the features might improve the prediction accuracy, finding that the 

combination of the 3 features (base quality, mismatch and deletion frequency) 

increased the accuracy of the model (88-91%) (Figure 3.5E). We then tested whether 

the inclusion of features from the neighbouring positions (-2, -1, +1, +2) might further 

improve the model. Indeed, we find that the inclusion of neighbouring features slightly 

improves the performance of the algorithm (accuracy = 97-99%), however, this was at 

the expense of increasing the number of false positives in the control k-mer set -which 

do not contain the modification- (Figure 3.5F, see also Figure 3.7), suggesting that 

features from neighbouring positions should not be employed with this model.  

It should be noted that the current algorithm has been trained using either 100% 

methylated or 100% unmethylated reads; however, in in vivo data, this will likely not be 

the scenario. Previous studies probing the m6A modification status in individual sites 

have estimated that m6A methylation in mRNAs occurs only partially, with methylation 

ratios ranging from 6% to 80% [94]. Therefore, we wondered whether the algorithm 

would be able to detect m6A modifications on mixtures of methylated and unmethylated 

reads. To test this, reads from both m6A-modified and unmodified datasets were 

sampled and mixed them in different proportions, to achieve partial methylation ratios 

of 0% (unmodified), 5%, 10%, 25%, 50%, 75%, 90%, 95% and 100% (fully modified). 

The algorithm performance is dependent on the proportion of methylated reads (Figure 
3.5G); however, even at 25% of methylation ratio, it predicts m6A sites with reasonable 

accuracy, with an area under the curve (AUC) of 0.72 (Figure 3.5G).  
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Figure 3.7 - ROC curves of SVM trained with single features compared to 
combined features.  

Performance of each replicate is shown separately in each plot.  
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3.5. Trained SVM models can predict m6A RNA 
modifications in in vivo datasets 

To assess whether these findings could be extended to in vivo datasets, I 

sequenced native polyA(+)-selected RNA from S. cerevisiae wild-type (wt) and "6&78'

knockout strains (Figure 3.8A and Methods). E6&78' yeast strains constitute an 

excellent background model to identify false positives in m6A analyses [340], as the 

deletion of ime4 results in complete elimination of m6A. Biological triplicates of 

polyA(+)-selected RNA from both wt and "6&78'strains were sequenced in independent 

flow cells (see Methods), producing more than 5 million sequenced reads. 

An initial assessment of the quality of the direct RNA sequencing runs showed 

that these were highly replicable both in terms of per-gene counts (spearman’s 

rho=0.945-0.948) and average per-read quality scores (Figure 3.8B, see also Figure 
3.9). EpiNano was then used to extract base-called features for all 6 samples. First, 

features corresponding to ~1300 known m6A-modified RRACH site, previously 

identified using antibody immunoprecipitation coupled to next-generation sequencing 

(m6A-Seq) were analysed [340]. Base-called features at m6A-modified RRACH sites 

were distinct across yeast strains (wt and "6&78), for all three metrics analysed (base 

quality, deletion frequency and mismatch frequency) (Figure 3.8C). These results were 

consistent across biological replicates, and are in agreement with our observations 

using in vitro constructs (Figure 3.3C). By contrast, this was not observed when 

comparing unmodified RRACH base-called features across yeast strains (Figure 3.10), 

suggesting that the observed differences were due to the presence of m6A. These 

results were further confirmed by individual inspection of ‘known’ m6A-modified sites, 

where both increased mismatch and deletion frequencies were consistently observed 

in wt m6A-modified positions, but not in their corresponding "6&78'sites (Figure 3.8D).  
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!"#$%&' ()*' +' ,&-./'0"12+/34&' -52' "6&78' ./%-"5.' .9:0' 2"./"5;/' <-.&+;-11&2' =&-/$%&.' -/'

>5:05'66A-modified RRACH sites.  

(A) Overview of the direct RNA sequencing library preparation using in vivo polyA(+) 
RNA from S. cerevisiae cultures (BH'A&41";-<"1"/3':='4&%+#&5&';:$5/.'$."5#'2"%&;/'AI@'

.&J$&5;"5#' -;%:..' 0"12+/34&' 3&-./' ./%-"5.' D/:4H' -52' "6&78' ./%-"5.' D6"221&H)' K9&'

;:%%&1-/":5' <&/0&&5' 0"12+/34&' -52' "6&78 strains is also shown (bottom). (C) 
Comparison of the observed mismatch frequencies in the 100% modified in vitro 
/%-5.;%"<&2' L.&J$&5;&.' D<1$&HM' $56:2"="&2' .&J$&5;&.' D%&2HM' 3&-./' "6&78' >5:;>:$/'

D#%&&5H'-52'3&-./'0"12+/34&'D;3-5H)'N-1$&.'=:%'&-;9'<":1:#";-1'%&41";-/&'-%&'.9:05)''DD) 
Base-called features (base quality, insertion frequency and deletion frequency) of 
RRACH 5-mers known to contain m6A modifications. Only features corresponding to 
the modified nucleotide (position 0) are shown. Features extracted from wild-type yeast 
reads (m6@+6:2"="&2H'-%&' .9:05' "5'<1$&M'09&%&-.' /9:.&' =%:6' "6&78' D$56:2"="&2H' =:%'

/9&'.-6&'.&/':=' >+6&%.'-%&' .9:05' "5' %&2)' DF) Genomic tracks of previously reported 

m6A-modified RRACH sites in yeast, identified using Illumina sequencing.  The m6@+

6:2"="&2' 5$;1&:/"2&' ".' 9"#91"#9/&2'0"/9' -' #%&&5' -./&%".>)' E5' /9&.&' 4:."/":5.M'0"12+/34&'

3&-./'./%-"5.'.9:0' "5;%&-.&2'6".6-/;9' =%&J$&5;"&.'-.'0&11'-.'2&;%&-.&2';:O&%-#&'+
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%&=1&;/"5#'"5;%&-.&2'2&1&/":5'=%&J$&5;3+'"5'-11'/9%&&'<":1:#";-1'%&41";-/&.M'09&%&-.'/9&.&'

=&-/$%&.' -%&' 5:/' :<.&%O&2' "5' -53' :=' /9&' /9%&&' "6&78' %&41";-/&.)' DG) Predicted m6A 

modification scores predicted by the trained SVM at known m6@+6:2"="&2'D5P(?(H'-52'

$5>5:05' D5P?QMRS7H' AA@BC' ."/&.M' <:/9' =:%' 3&-./' 0"12+/34&' -52' "6&78' 2-/-.&/.)' T+

O-1$&.' 9-O&' <&&5' ;:64$/&2' $."5#' U%$.>-1+V-11".' /&./)' ' @' ."/&' 0-.' "5;1$2&2' "5' /9&'

-5-13.".' "=' /9&%&'0&%&'6-44&2' %&-2.'4%&.&5/' "5'-11'?'3&-./'.-641&.)'W"/&.'0"/9'6:%&'

/9-5':5&'X@Y' "5' /9&'Z+6&%'0&%&'&[;1$2&2' =%:6'/9&'-5-13.".)' DH) ROC curve depicting 
the performance of EpiNano in yeast datasets (n=61,363 sites). Error bars indicate s.d. 

  

Figure 3.9 - Replicability of the direct RNA sequencing experiments across 
biological replicates expressed as log counts for each gene.  
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Each dot represents a gene, and the ime4gene has been highlighted in red. Correlation 
values shown correspond to Spearman’s rho.  

 

 

 
 

Figure 3.10 - Base-called features (base quality, insertion frequency and deletion 
frequency) of RRACH 5-mers 

Comparison of 5-mers known to contain m6A modifications (left panels) compared to 
those that are not known to contain m6A modifications (right panels). Only features 
corresponding to the modified nucleotide (position 0) are shown. Features extracted 
from wt yeast reads (m6A-modified) are shown in blue, whereas those from ime48'

D$56:2"="&2H'-%&'.9:05'"5'%&2)'\%%:%'<-%.'"52";-/&'.)2) 

 

To determine whether the trained SVM could be applied to in vivo datasets, we 

first investigated whether the global in vivo base-called features were consistent with 

those observed in vitro. Unmodified in vitro sequences (CC 0%) displayed similar 

mismatch frequencies to those observed in "6&78 strains, which also lack m6A 
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modifications (Figure 3.8E). By contrast, m6A-modified yeast RNAs (wt) showed 

intermediate mismatch frequencies between fully modified (CC 100%) and unmodified 

(CC 0%, yeast "6&78) sequences. Using linear regression, the median stoichiometry of 

m6A modifications in wt strains was estimated to be 12-30% (Figure 3.8F), which is in 

agreement with previous works, where m6A was found to be present at levels ranging 

from 7 to 69% (with a median of 23%) in yeast samples [341]. Altogether, these results 

reveal that non-random base-called ‘errors’ present in in vivo datasets are replicable, 

are in agreement with in vitro results, and are correlated with the presence of m6A RNA 

modifications in a given site.  

The SVM model that previously trained with m6A-modified and unmodified in 

vitro constructs was used to predict the transcriptome-wide m6A modification status of 

yeast RRACH sites, both in wt and ime48'2-/-.&/.)'@'."/&'0-.'>&4/' =:%'2:05./%&-6'

-5-13.&.'"='/9&%&'0-.'-/'1&-./']'%&-2'4&%'."/&'"5'&-;9':='/9&'."['.-641&.)'K9".';%"/&%":5'

0-.'6&/'<3'?]M]?('AA@BC'."/&.M'=%:6'09";9'(?('9-2'<&&5'%&4:%/&2'-.'L66A-modified’, 

based on Illumina sequencing[340].  Per-site SVM predictions for each biological 

replicate were then merged into a single ‘m6A modification score’ (see Methods). It 

should be noted that low read coverage leads to decreased accuracy (Figure 3.11); 

however, low coverage sites were retained in order to maximise the number of sites 

included in the analyses. First, the m6A modification scores of known m6A-modified 

RRACH sites (n=363) in wt and ime48'0&%&';:64-%&2M'="52"5#'/9-/'6:2"=";-/":5'.;:%&.'

"5'wt were significantly higher than those observed in "6&78'(p = 8e-14), for the same 

set of sites (Figure 3.8G). By contrast, modification scores of "6&78 known m6A-

modified RRACH sites (n=363) and unknown sites in the same strain, which do not 

contain m6A modifications, were relatively similar (p=0.01, Kruskal-Wallis test) (Figure 
3.8G). Interestingly, the method also identified significant differences in m6A 

modification scores when comparing wt and "6&78'unknown RRACH sites (p = 4e-43; 

Figure 3.8G), suggesting that there might be additional m6A-modified sites present in 

the transcriptome, apart from those identified using m6A-Seq[340]. Indeed, recent 

efforts using enzymatic-based m6A detection methods have reported that antibody-

based methods severely underestimate the number of m6A sites [341]. Overall, the 

model identifies m6A modifications in yeast datasets with an overall accuracy of 87.8%, 
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recovering 32% (117 out of 363) of known m6A-modified sites (Figure 3.8H), and with a 

specificity of 89%. 

3.6. EpiNano performance compared to methods 
relying on direct comparison of raw current intensities 

Previous efforts have attempted to identify RNA modifications from direct RNA 

sequencing samples by performing direct comparison of raw current intensities. This is 

the case of Tombo [334], a software originally developed for the detection of DNA 

modifications in nanopore sequencing data, which has recently been extended to 

detect RNA modifications. Identification of modifications from raw signal typically 

requires a two-step process: (i) re-squiggling of the raw signal to ‘align’ all reads 

mapping to the same genomic location, and (ii) comparison of raw current intensities 

across reads or samples.  First, we found that the re-squiggling step used by Tombo 

discards ~50% of the reads. From the re-squiggled reads, Tombo is able to identify 220 

out of the 363 known m6A-modified sites in yeast wt, thus recovering 59.6% of known 

sites. However, this increased recovery of true positives was at the expense of 

increased number of false positives (Tombo specificity= 69.8%; EpiNano specificity = 

89%). Thus, for the same set of 61,163 sites, Tombo correctly predicts known m6A 

sites with  accuracy of 69% and recovery of 59%, whereas EpiNano predicts them with 

an accuracy of 87% and recovery of 32%. 

Figure 3.11 - SVM performance is dependent on per-site read coverage.  
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(A) ROC curves depicting the effect of per-site read coverage in SVM performance 
(number of reads per-site tested: 1, 2, 3, 5, 10, 20, 30, 50, 100, 200 or 500). Different 
read coverages have been simulated by random subsampling of reads. For each 
simulated dataset, area under the curve (AUC) and the accuracy are shown. (BH'T&%+

."/&'%&-2';:O&%-#&'"5'3&-./'0"12+/34&'DVKH'-52'"6&78'>5:;>+:$/'DUFH'./%-"5.M'=:%'&-;9'

<":1:#";-1'%&41";-/&)'K9&'6&2"-5';:O&%-#&'=:%'-11'."/&.'".'2&4";/&2'"5'%&2)' 

 

Altogether, the in vivo analyses validate the findings using in vitro m6A-modified 

and unmodified sequences, and confirm the use of base-calling ‘errors’ as a proxy to 

identify m6A modifications in direct RNA sequencing datasets. Furthermore, the 

findings validate the use of in vitro constructs, transcribed with and without RNA 

modifications, as a valid strategy for training direct RNA sequencing base-calling 

algorithms, suggesting that similar approaches could be envisioned with additional 

datasets containing distinct RNA modifications in the future.  

 

3.7. Materials and Methods 

3.7.1. Synthetic sequence design 
Sequences were designed such that they would include all possible 5-mers, 

while minimizing the secondary RNA structure. For this aim, we employed the software 

curlcake (http://cb.csail.mit.edu/cb/curlcake/), which internally uses RNAshapes version 

2.1.6 (http://bibiserv.techfak.uni-bielefeld.de/rnashapes) to predict RNA secondary 

structure. The final output sequence given by the software was ~10kb long. For 

synthesis purposes, a total of 4 sequences were designed by splitting the 10kb 

sequence into smaller sequences of slightly different size (2329bp, 2543bp, 2678bp 

and 2795bp, which is named ‘Curlcake 1’, ‘Curlcake 2’, ‘Curlcake 3’ and ‘Curlcake 4’, 

respectively). Each sequence was designed with an internal strong T7 polymerase 

promoter, an additional BamHI site at the end of the sequence, and with all EcoRV and 

BamHI sites removed from the sequence. All 4 sequences were synthesised and 

cloned in pUC57 vector using blunt EcoRV by General Biosystems. Plasmids were 

double digested O/N with EcoRV-BamHI-HF, and DNA was extracted with Phenol-

Chloroform followed by EtOH precipitation. Plasmid digestion was confirmed by 

agarose gel. Digestion product quality was assessed with Nanodrop before proceeding 

to in vitro transcription (IVT).  
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3.7.2. In vitro transcription, capping and polyadenylation 
In vitro transcribed (IVT) sequences were produced using the Ampliscribe™ T7-

Flash™ Transcription Kit (Lucigen-ASF3507), using 1 ug of purified digestion product 

as starting material, following manufacturer’s recommendations. ATP was replaced by 

N6-Methyladenosine-5'-Triphosphate(m6ATP) (Trilink-N-1013;) for the IVT reaction of 

m6A-modified RNA. IVT reaction was incubated for 4 hours at 42°C. In vitro transcribed 

RNA was then incubated with DNAse I (Lucigen), followed by purification using 

RNeasy Mini Kit (Qiagen-74104). Integrity and quality of the RNA was determined 

using Agilent 4200 Tapestation, to ensure that a single product band of the correct size 

had been produced for each IVT product (Figure 3.2). Each IVT product was 5’ capped 

using Vaccinia Capping Enzyme (NEB-M2080S) following manufacturer’s 

recommendations. The capping reaction was incubated for 30 minutes at 37 °C. 

Capped IVT products were purified using RNA Clean XP Beads (Beckman Coulter-

A66514). Poly(A)-tailing was performed using E. coli Poly(A) Polymerase (NEB-

M0276S), following manufacturer’s recommendations. Poly(A)-tailed RNAs were 

purified using RNA Clean XP beads, and the addition of poly(A)-tail was confirmed 

using Agilent 4200 Tapestation (Figure 3.2). Concentration was determined using 

Qubit Fluorometric Quantitation. Purity of the IVT product was measured with 

NanoDrop 2000 Spectrophotometer.  

3.7.4. Yeast culturing 

W>]' ./%-"5.' $.&2' "5' /9".' ./$23'0&%&' W@3*7]' ;:64%"."5#' -' 2&1&/":5':=' I^K*Q'

D9&%&-=/&%M' %&=&%%&2' /:' -.' L0"12+/34&_HM' -52' W@3S??M' "5' 09";9' <:/9' I^K*Q' -52' E`\7'

0&%&' 2&1&/&2' D9&%&-=/&%M' %&=&%%&2' /:' -.' L"6&78_Ha' K9&.&' ./%-"5.' -%&' ;9-%-;/&%ised in 

Agarwala et al [342]. To induce synchronous meiotic entry, cells were grown for 24 hr 

in 1% yeast extract, 2% peptone, 4% dextrose at 30°C, diluted in BYTA (1% yeast 

extract, 2% tryptone, 1% potassium acetate, 50 mM potassium phthalate) to OD600 = 

0.2 and grown for another 16 h at 30°C, 200 rpm. Cells were then washed twice with 

water and re-suspended in SPO (0.3% potassium acetate) at OD600 = 2.0 and 

incubated at 30°C at 190 rpm. Cells were isolated from SPO following 5 hours and 

collected by 2 min centrifugation at 3000g. Pellets were snap frozen and stored at -

80ºC for RNA extraction. Three independent biological replicates for each strain were 

collected.  
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3.7.5. Yeast mRNA preparation 
Yeast total RNA samples were prepared using a modified protocol of 

nucleospin® 50 RNA kit (Machery-Nagel, cat 740955.50). Specifically, cells lysis was 

done in a 1.5ml tube by adding 450µl of lysis buffer containing 1M sorbitol (SIGMA-

ALDRICH), 100mM EDTA and 0.45µl lyticase (10U/µl). The sample was incubated in 

30°C for 30 minutes to break the cell wall, centrifuged for 10' at 3000 rpm, and the 

supernatant was removed. From this stage, extraction proceeded as in the protocol of 

nucleospin® 50 RNA kit, only substituting β-mercaptoethanol with DTT. Enrichment of 

polyadenylated RNA from total RNA was performed using Oligo(dT) dynabeads 

mRNA-DIRECT kit (Thermo Scientific, 61012) for small mRNA amounts.   

3.7.6. Direct RNA library preparation and sequencing 
RNA library for direct RNA Sequencing (SQK-RNA001) was prepared following 

the ONT Direct RNA Sequencing protocol version DRS_9026_v1_revP_15Dec2016. 

Briefly, 800 nanograms of Poly(A)-tailed and capped in vitro transcribed RNA –in the 

case of curlcakes– or 500 nanograms of yeast polyA+ RNA were ligated to ONT RT 

Adaptor (RTA) using concentrated T4 DNA Ligase (NEB-M0202T), and was reverse 

transcribed using SuperScript III Reverse Transcriptase (Thermo Fisher Scientific-

18080044). The products were purified using 1.8X Agencourt RNAClean XP beads 

(Fisher Scientific-NC0068576), washing with 70% freshly prepared ethanol. RNA 

Adapter (RMX) was ligated onto the RNA:DNA hybrid, and the mix was purified using 

1X Agencourt RNAClean XP beads, washing with Wash buffer (WSB) twice. The 

sample was then eluted in Elution Buffer (ELB) and mixed with RNA running buffer 

(RRB) prior to loading onto a primed R9.4.1 flow cell, and ran on a GridION (MinION 

for the second replicate) sequencer with MinKNOW acquisition software version 

v1.14.1 (v.1.15.1 for the second replicate in the curlcake experiment). The sequencing 

was performed in independent days and machines, with two biological replicates for 

each ‘curlcake’ experiment condition (non-modified and m6A-modified RNA, total of 4 

flow cells). Each biological replicate and condition was sequenced independently in a 

different flow cell. For the in vivo analysis in S. cerevisiaeM'/9%&&'<":1:#";-1'%&41";-/&.'=:%'

&-;9'3&-./'./%-"5'D0"12+/34&'-52'"6&78H'0&%&'.&J$&5;&2M'-52'&-;9'<":1:#";-1';:52"/":5'

-52'%&41";-/&'0-.'.&J$&5;&2'"5'-5'"52&4&52&5/'=1:0';&11'D/:/-1':='?'=1:0;&11.H)' 
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3.7.7. Base-calling, filtering and mapping 
Reads were locally base-called using Albacore 2.1.7 (Oxford Nanopore 

Technologies). Base-called reads were filtered using NanoFilt, a component from 

Nanopack with settings ‘-q 0 --headcrop 5 --tailcrop 3’, and mapped to the 4 synthetic 

sequences using minimap2 with the settings -ax map-ont. Mapped reads were then 

converted into mpileup format using Samtools version 1.4. For comparison, reads were 

also base-called with Albacore 2.3.4 and Guppy 2.3.1, finding that all base-callers 

showed increased mismatch frequencies in m6A-modified datasets (with the largest 

increased in A positions) and decreased qualities (Figure 3.12).  

3.7.8. Feature extraction 
To extract per-site features (mean per-base quality, mismatch frequency, 

insertion frequency and deletion frequency), BAM alignment files were converted to tab 

delimited format using sam2tsv from jvarkit. For each individual reference site, the 

mean quality of the aligned bases, the mismatch, insertion and deletion frequency was 

computed using in-house scripts (available on github). To extract current intensity 

information from individual reads, the h5py (version 2.7.0) module in python was used 

to parse each individual fast5 file. Reference sequences were slided with a window 

size of 5bp, and mean and standard deviation of current intensities was computed for 

each sliding window. All in-house python scripts used to extract the features described 

above are publicly available as part of EpiNano (github.com/enovoa/EpiNano).   
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Figure 3.12. Comparison of base-called features using different base-calling 
algorithms: Albacore 2.1.7, Albacore 2.3.4 and Guppy 2.3.1.  

(A, B, C) Per-base quality scores, mismatch frequencies and deletion frequencies at 
position 0, comparing m6A-modified reads (blue) to unmodified reads (red), using either 
Albacore version 2.1.7 (A), Albacore version 2.3.4 (B) or Guppy 2.3.1 (C). (D, E) 
Comparison of mismatch frequencies at position 0, grouped by the reference 
nucleotide, both for unmodified datasets (D) and m6A-modified datasets (E). Mismatch 
frequencies at A positions are consistently increased in m6A-modified datasets, and for 
all three base-callers tested. Error bars indicate s.d. 

3.7.9. Machine learning 
The set of extracted features of both m6A-modified and unmodified ‘curlcakes’ 

was used as input to train a Support Vector Machine (SVM).  Initial training (75% of the 

sites) and testing (25%) of the SVM was performed with m6A-modified and unmodified 

curlcake reads from one replicate (rep1). Multiple kernels (‘linear’, ‘poly’ and ‘rbf’) were 

compared, and the best performing kernel was retained. The model was validated on 

new sequencing runs of in vitro transcribed m6A-modified and unmodified sequences 

(rep2), which had not been used for initial training or testing of the SVM. The reported 

accuracy values refer to the predictions on replicate 2. The code to extract the set of 

features for machine learning from fastq and fast5 reads, the code for building the SVM 
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models, as well as the trained SVM models, are publicly available in github 

(github.com/enovoa/EpiNano). We should note that a limitation in utilizing in vitro 

transcription to generate all possible 5-mers is that 5-mers that contain more than one 

“A” will contain more than one modification in the kmer, e.g. AGACC will in fact be 

m6AGm6ACC, which are unlikely to occur in a biological context. Therefore, 5-mers that 

contained more than one A have been excluded from the analyses as well as from the 

training set. Accuracy of the model has been computed as the sum of correct m6A 

modification predictions - correctly predicted m6A-modified k-mers (true positives, TP) 

and correctly predicted unmodified k-mers (true negatives, TN)- divided by the total 

number of k-mers tested.  

3.7.10. Prediction of m6A modified sites in yeast using EpiNano 

EpiNano 0-.' $.&2' /:' &[/%-;/' 4&%+."/&' =&-/$%&.' D6&-5' 4&%+<-.&' J$-1"/3M'

6".6-/;9' =%&J$&5;3M' "5.&%/":5' =%&J$&5;3' -52' 2&1&/":5' =%&J$&5;3H' =%:6' /9&' 6-44&2'

b@`' ="1&.' :=' /9&' ."[' .-641&.' .&J$&5;&2' DVK%&4]M' VK%&4cM' VK%&4(M' "6&78%&4]M'

"6&78%&4cM' "6&78%&4(H)' 66A-modified RRACH sites with minimum coverage of 5 

reads/site were kept and scored using the previously trained SVM model. 5-mers 

containing more than one “A” in the motif were discarded from downstream analyses, 

as these k-mers had not been included in the training sets (see above). A total of 

61,163 sites  were analysed for each sample and replicate, from which 363 

corresponded to ‘known’  m6A-modified sites, which had been identified using Illumina 

sequencing  [343].  

M6@'6:2"=";-/":5'.;:%&.' =:%'&-;9'."/&'0&%&';:64$/&2'<3'6&%#"5#' /9&'WN`'4%&2";/&2'

4%:<-<"1"/"&.'-;%:..'%&41";-/&.)'W4&;"=";-113M'"='/9&'4%:<-<"1"/3'<&"5#'6:2"="&2'0-.'#%&-/&%'

/9-5'Q)Z'"5'-11'/9%&&'<":1:#";-1'%&41";-/&.'D.]M'.cM'.(HM'/9&'6:2"=";-/":5'.;:%&'D`H'0-.'.&/'

/:'])'F/9&%0".&M'/9&'6:2"=";-/":5'.;:%&'0-.'2&/&%6"5&2'<3';:64$/"5#'/9&'6&-5':='/9&'

4%:<-<"1"/"&.'D4.&$2:;:2&']H)'`:2"=";-/":5'.;:%&.'0&%&':</-"5&2'=:%'&-;9'."/&M'<:/9'=:%'

0"12+/34&'-52'"6&78'./%-"5.)' 

 

Pseudocode 1:''''"='D.]'d'Q)Z'e'.c'd'Q)Z'e'.('d'Q)ZHf' 
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M = 1                

else: 

M= (s1+s2+s3)/3 

 

 

To classify a site as “m6A-modified” or “unmodified”, the modification scores of 

each site, obtained for each of the two strains, were compared. Specifically, the 

modification ratio was calculated by dividing the modification score of the wild-type 

strains (MwtH' -52' /9&' 6:2"=";-/":5' .;:%&' :=' /9&' "6&78' ./%-"5.' DMko). A site was 

considered to be modified if the modification ratio was greater than 1.5 and the 

modification score in wild-type strains (Mwt) was greater than 0.5 (pseudocode 2).  

 

Pseudocode 2:     if (Mwt/Mko)>1.5 & Mwt> 0.5: 

status=modified 

else: 

status=unmodified 

 

Accuracy of the predictions was computed as the sum of correct m6A 

modification predictions - correctly predicted m6A-modified k-mers (true positives, TP) 

and correctly predicted unmodified k-mers (true negatives, TN)- divided by the total 

number of k-mers tested (n=61,163). Positive predictive value (PPV) was computed by 

dividing the number correctly predicted m6A-modified k-mers (true positives, TP) by the 

total number of m6A-modified k-mers included in the analysis (n=363).  

3.7.11. Prediction of m6A modified sites using Tombo 
First, Tombo version 1.5 [334] was run to align the raw signal and the base-

called reads sequences  (tombo resquiggleHM' <:/9' =:%'0"12' /34&' -52' "6&78' .-641&.)'

K9&5' /9&' K:6<:' L;-5:5";-1' .-641&' ;:64-%".:5_' 6&/9:2' Dtombo 

model_sample_compare) was used to identify significant shifts in raw signals in paired 

datasets (wt and "6&78). To maximise the number of predictions, the parameter --num-

most-significant-stored 14000000 was used, which approximates yeast genome size, 

and --minimum-test-reads 1. M6A modification scores for each site were computed by 

merging the Tombo predicted probabilities across replicates. Specifically, if the 

probability being modified was greater than 0.5 in all three biological replicates (s1, s2, 



 
          Chapter 3 

 
 
 

121 

s3), the modification score (M) was set to 1, as previously done for EpiNano. 

Otherwise, the modification score was determined by computing the mean of the 

probabilities (pseudocode 1).  A site was considered as modified if the modification 

score was greater than 0.5. 

3.8. Discussion 
The human epitranscriptome is still largely uncharted. Only a handful of the 170 

different RNA modifications that are known to exist have been mapped. Importantly, 

several of these modifications are involved in central biological processes, such as sex 

determination [49,201,344] or cell fate transition [51], and their dysregulation has been 

linked to multiple human diseases [52,53,55], including neurological disorders [345–

347] and cancers  [348–350].  Yet, our understanding of this regulatory layer is 

restricted to a few RNA modifications, largely due to the lack of a generic methodology 

to map them in a transcriptome-wide fashion.  

The establishment of the ONT platform as a tool to map RNA modifications has 

great potential to revolutionise our understanding of the epitranscriptome, as in 

principle, it should be capable of identifying RNA modifications in individual RNA 

sequences, and with single nucleotide resolution. Such ability would allow us to study 

the functions of the epitranscriptome in ways that, until now, have not been possible. 

Unfortunately, currently there is no software available that can predict RNA 

modifications from direct RNA sequencing reads with sufficient accuracy, limiting the 

applicability of direct RNA sequencing as a tool to identify RNA modifications. To tackle 

this limitation, a novel strategy was provided to identify RNA modifications from base-

called features, without the need of squiggling realignments or manipulation of raw 

current intensity datasets. 

Here it is shown that RNA modifications can be identified in the form of 

systematic and reproducible base-calling ‘errors’ in direct RNA sequencing datasets. 

These ‘errors’ can be detected in the form of altered per-base qualities, mismatch 

frequencies and deletion frequencies at the modified site. The method accurately 

detects modifications both in vitro (90% accuracy) and in vivo (87% accuracy), with an 

overall recovery of 32% of known sites. Despite the promising results, it is important to 

note, however, that the current method have several limitations as well as ample room 

for improvement.  

Firstly, the current algorithm does not predict RNA modifications in individual 

RNA molecules, but rather employs information from all the reads mapping to a specific 

site to determine whether a given position is modified or unmodified. Secondly, the 
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algorithm does not distinguish between different types of RNA modifications (e.g. m1A 

versus m6A). Future work will be needed to decipher whether different types of RNA 

modifications can be associated to distinct ‘error signatures’, which could be potentially 

used to identify the underlying RNA modification type. Thirdly, although m6A-modified 

RRACH k-mers globally display altered base qualities, mismatch frequencies and 

deletion frequencies, it should be noted that the contribution of each feature varies 

across different k-mers. For example, the presence of m6A in GGACA and GGACT k-

mers mainly affects the mismatch and deletion frequency, whereas in the case of 

GGACC, base quality and deletion frequency are the most altered features by the 

presence of m6A modifications (Figure 3.13). Future models that include k-mer specific 

training and testing could potentially improve the accuracy of prediction of modified 

sites, as well as reduce the number of false positives. In this regard, it is expected that 

by making the m6A-modified and unmodified datasets publicly available -both base-

called fastq and raw fast5-, these can be employed by the community to train different 

machine learning algorithms (e.g., signal-based machine learning, base-caller training, 

etc.), and thus lead to improved m6A RNA modification base-callers for the whole 

community. 

Overall, these results show that base-calling ‘errors’ can be used as an 

accurate and computationally simple solution to identify m6A modifications, which does 

not require the manipulation of raw current intensities or squiggle alignments. 

Moreover, the findings were extended to an in vivo system, showing that our algorithm 

can capture m6A-dependent changes that are present in wild-type SK1 yeast strains, 

while these are not observed in their ime48';:$5/&%4-%/.)'!$/$%&'0:%>'0"11'<&'5&&2&2'/:'

-;9"&O&'."5#1&' %&-2'AI@'6:2"=";-/":5'2&/&;/":5M'-.'0&11'-.' /:'&[4-52':$%' ="52"5#.' /:'

:/9&%'AI@'6:2"=";-/":5.) 
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Figure 3.13 -  Comparison of base-called features at position 0 in two different 
RRACH k-mers (GGACA and GGACC).  

b-.&+;-11&2'=&-/$%&.'=%:6'"6&78'D%&2H'-52'0"12+/34&'D<1$&H'./%-"5.'-%&'.9:05M'<:/9' "5'

/9&'=:%6':='<:[41:/.'-52'2&5."/3'9"./:#%-6.)'F513'>5:05'66A-modified RRACH sites in 
S. cerevisiae have been included in these plots. Error bars indicate s.d.
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4. Quantitative profiling of 
pseudouridylation dynamics in native RNAs 
with nanopore sequencing 

 

This chapter contains material described in the publication published in Nature 

Biotechnology (Begik and Lucas et al 2021) [351].  

I performed most of the wet-lab experiments and data analyses in this study.  

The co-first author of the paper Morghan C. Lucas performed the synthesis and 

sequencing of in-vitro constructs for Figure 4.1 and 4.2. She also contributed to making 

the figures using Adobe Illustrator. 

Leszek P. Pryszcz performed the analyses for Figure 4.8D, 4.9, 4.10, 4.15B-H-

I-J-K. He also established an RNA modification stoichiometry prediction algorithm. 

Jose Miguel Ramirez analysed the sequencing data of in-vitro constructs for 

Figure 4.1 and Figure 4.2  with the help of Morghan C. Lucas. 

Rebeca Medina performed the yeast culturing experiments in the presence of 

stress conditions.  

Ivan Milenkovic and Helaine Graziele Santos Vieira performed the yeast 

culturing in the presence of oxidative stress and  sucrose gradient experiments. 

Sonia Cruciani and Ivan Milenkovic contributed to the sequencing of snR-60,61 

and 62 KO yeast strains. 

Eva Maria Novoa and John S. Mattick supervised this study. 
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4.1. Introduction 
As mentioned earlier in the general introduction, algorithms to detect RNA 

modifications have been made available in the last few months [255,257,352], many of 

which rely on the use of systematic base-calling ‘errors’ caused by the presence of 

RNA modifications. However, to date the vast majority of efforts have been devoted to 

the detection of m6A modifications [255,257,258,352–355], and it is largely unknown 

whether other modifications of RNA bases may be distinguishable from their 

unmodified counterparts using this technology. Thus, a systematic, multiplexed and 

unbiased approach that can map and quantify diverse RNA modifications 

simultaneously in full-length molecules is currently missing.  

Here, the S. cerevisiae coding and non-coding transcriptome was examined at 

single molecule resolution using native RNA nanopore sequencing. Most RNA 

modifications cause systematic base-calling errors, and that the signature of these 

base-calling ‘errors’ can be used to identify the underlying RNA modification type. For 

example, pseudouridine typically appears in the form of U-to-C mismatches, whereas 

m5C modifications appear in the form of insertions. I then exploit the identified 

signatures to de novo predict RNA modifications in rRNAs, identifying two previously 

unreported Ѱ modifications in mitochondrial rRNA, which I confirm using CMC-probing 

coupled to nanopore sequencing (nanoCMC-seq). I demonstrate that one of these Ѱ 

modifications (15S:Ѱ854) is placed by the enzyme Pus4, which was previously thought 

to pseudouridylate only mRNAs and tRNAs[121]. Moreover, once RNA modifications 

have been accurately predicted using base-calling ‘errors’, the stoichiometry of a given 

Ѱ- or Nm-modified site can be estimated by clustering per-read features (current 

intensities and trace) of the modified regions. 

Then the dynamics of RNA modifications present in non-coding RNAs were 

explored. It has been proposed that differential rRNA modifications may constitute a 

source of ribosomal heterogeneity [356–358]. Indeed, previous studies have shown 

that temperature changes affect rRNA pseudouridylation levels, suggesting that cells 

may be able to generate compositionally distinct ribosomes in response to 

environmental cues [121,359,360]. Similarly, alterations in the stoichiometry of 2’-O-

methylation (Am, Cm, Gm, Um) [233,361,362] and pseudouridylation (Ѱ) [356–358] 

can affect translation initiation of mRNAs containing internal ribosome entry sites 

(IRES) [363,364]. Here we re-examine this question using direct RNA sequencing, and 

characterise the RNA modification dynamics in rRNAs, snRNAs and snoRNAs upon a 

battery of environmental cues, translational repertoires and genetic strains. Contrary to 

expectations, none of the environmental stresses tested lead to significant changes in 
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the ribosomal epitranscriptome. By contrast, this method does recapitulate previously 

reported heat-dependent Ѱ snRNA modifications, as well as identifies previously 

unreported heat-sensitive sites in snRNAs and snoRNAs. 

  Finally, we developed an algorithm named nanoRMS, which can predict Ѱ RNA 

modifications de novo, and estimate the stoichiometry of modification both in highly- 

and lowly-modified Ѱ and Nm sites across diverse types of RNA molecules, including 

rRNAs, sn/snoRNAs and mRNAs. This approach recapitulates known Pus1-dependent, 

Pus4-dependent and heat stress-dependent mRNA sites, as well as reveals Ѱ mRNA 

sites that had not been previously reported. Altogether, this work establishes a 

framework for the study of RNA modification dynamics using direct RNA nanopore 

sequencing, opening avenues to study the plasticity of the epitranscriptome at single 

molecule resolution. 

4.2. RNA modification detection depends on base-
calling and mapping algorithms 

Previous studies have shown that m6A RNA modifications can be detected in 

the form of non-random base-calling ‘errors’ in direct RNA sequencing datasets 

[255,257,258,353,354]. However, it is unclear how these ‘errors’ may vary with the 

choice of base-calling and mapping algorithms, and consequently, affect the ability to 

detect RNA modifications. Here, the performance of commonly used base-calling and 

mapping algorithms were compared on in vitro transcribed RNA sequences that 

contained all possible combinations of 5-mers, referred to as ‘curlcakes’ (CCs) [255], 

that included: (i) unmodified nucleosides (UNM), (ii) m6A, (iii) pseudouridine (Ѱ), (iv) 

m5C, and (v) 5-hydroxymethylcytosine (hm5C) (Figure 4.1A). In addition, a sixth 

dataset containing unmodified short RNAs (UNM-S), with median length of 200 

nucleotides, was included in the analysis to assess the effect of input sequence length 

in base-calling (see Methods). Each dataset was base-called with two distinct 

algorithms (Albacore and Guppy), and using two different versions for each of them, 

namely: (i) Albacore version 2.1.7 (AL 2.1.7); (ii) its latest version, Albacore 2.3.4 (AL 

2.3.4); (iii) Guppy 2.3.1 (GU 2.3.1); and (iv) a more recent version of the latter base-

caller, Guppy 3.0.3 (GU 3.0.3), which employs a flip-flop algorithm. The latest version 

of Albacore (2.3.4) base-called 100% of sequenced reads in all 6 datasets, whereas its 

previous version did not (average of 90.8%) (Figure 4.1B). By contrast, both versions 

of Guppy (2.3.1 and 3.0.3) produced similar results in terms of percentage of base-

called reads (99.96% and 100%, respectively). 
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  In order to assess whether the choice of mapper might affect the ability to 

detect RNA modifications, two commonly used long-read mappers, minimap2 [365] and 

GraphMap [366], were employed using either ‘default’ or ‘sensitive’ parameter settings 

(see Methods). Notably, both the choice of mapper and parameters used severely 

affected the number of mapped reads (Figure 4.1C). The most extreme case was 

observed with the Ѱ-modified dataset, where minimap2 was unable to map the majority 

of the reads (0-0.3% mapped reads) (Figure 4.1C,D, see also Figure 4.2A). By 

contrast, GraphMap ‘sensitive’ was able to map 35.5% of Ѱ-modified base-called 

reads, with only a minor loss in accuracy (3%) (Figure 4.2B), proving to be a more 

appropriate choice for highly modified datasets. 

4.3. Base-calling ‘error’ signatures can be used to 
predict RNA modification type 

While base-calling ‘errors’ can be used to identify m6A RNA modified sites 

[255,257,258], whether this approach is applicable for the detection of other RNA 

modifications, and whether these signatures could be employed to distinguish among 

distinct RNA modification types, is largely unknown. To this end, the base-calling errors 

caused by the presence of m6A, Ѱ, m5C and hm5C were systematically characterised. 

Regardless of the base-caller and mapper settings used, modified RNA sequences 

presented decreased quality scores (Figure 4.2C-E) and higher mismatch frequencies 

(Figure 4.1E), being these differences more prominent in Ѱ-modified datasets. 

Principal component analysis of base-calling ‘errors’ of each modified dataset (m6A, Ѱ, 

m5C and hm5C) -relative to unmodified- showed that this difference was greatest in Ѱ-

modified datasets (Figure 4.1F), and maximised in datasets that were base-called with 

GU 3.0.3. Thus, all four RNA modifications can be detected in direct RNA sequencing 

data; however, their detection is severely affected by the choice of both base-calling 

and mapping algorithms, and varies depending on the RNA modification type. 
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Figure 4.1 - Systematic analysis of base-calling and mapping algorithms for the 
detection of RNA modifications in direct RNA sequencing datasets.  

(A) Overview of the synthetic constructs used to benchmark the algorithms, which 
included both unmodified (UNM and UNM-S) and modified (m6A, m5C, hm5C and Ѱ) 
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sequences. For each dataset, we performed: i) comparison of base-calling algorithms, 
ii) comparison of mapping algorithms, iii) detection of RNA modifications using base-
called features and iv) comparative analysis of features to distinguish similar RNA 
modifications. (B) Barplots comparing the percentage of base-called reads using 4 
different base-calling algorithms in 6 different unmodified and modified datasets. (C) 
Relative proportion of base-called and mapped reads using all possible combinations 
(16) of base-callers and mappers included in this study, for each of the 6 datasets 
analysed. (D) IGV snapshots illustrating the differences in mapping for 3 distinct 
datasets: UNM, m6A-modified and Ѱ-modified when base-called with GU 3.0.3. 
Positions with mismatch frequencies greater than 0.1 have been colored, gray 
represents match to reference. (E) Comparison of global mismatch frequencies using 
different base-calling algorithms, for the 6 datasets analysed. Box, first to last quartiles; 
whiskers, 1.5x interquartile range; center line, median; points, outliers; violin, 
distribution of density. (F) Principal Component Analysis (PCA) using as input the 
base-calling error features of quality, mismatch frequency and deletion frequency in 
positions -2, -1, 0, 1 and 2, for all datasets base-called with GU 3.0.3 and AL 2.1.7 and 
mapped with GraphMap and minimap2 on sensitive settings. Only k-mers that 
contained a modification at position 0, and no other modifications in the 5-mer, were 
included in the analysis, and the equivalent set of unmodified k-mers was used as a 
control. (G) Mismatch frequency of each position of the 5-mers centered in the modified 
position (position 0). Box, first to last quartiles; whiskers, 1.5x interquartile range; 
center line, median; points, outliers. 
 

We then examined whether the base-called ‘errors’ observed in modified and 

unmodified datasets occurred in the modified position. We found that both m6A and Ѱ 

modifications led to increased mismatch frequencies at the modified site (Figure 4.1G), 

mainly in the form of U-to-C mismatches in the case of Ѱ modifications (Figure 4.2F). 

By contrast, m5C and hm5C modifications did not appear in the form of increased 

mismatch frequencies at the modified site; rather, these modifications appeared in the 

form of increased mismatch frequencies in the neighbouring residues (position -1 and 

+1 in the case of m5C modifications; position +1 in hm5C) (Figure 4.1G). Moreover, the 

base-called ‘error’ signatures of m5C and hm5C were also dependent on the sequence 

context (Figure 4.2G). Altogether, all four RNA modifications studied (m6A, m5C, hm5C 

and Ѱ) cause base-calling ‘errors’, and that these ‘errors’ follow specific patterns that 

depend on the RNA modification type. 
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Figure 4.2 - Bench-marking of base-calling and mapping algorithms enables 
dissection of RNA modification base-calling ‘error’ signatures and reveals their 
sequence context-dependence.  
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(A) IGV snapshots of unmodified (UNM), m6A-modified (m6A), m5C-modified (m5C), 
hm5C-modified (hm5C) or Ѱ-modified (Ѱ) in vitro transcribed sequence Curlcake 1, 
base-called using either Albacore 2.1.7 (AL 2.1.7) or Guppy 3.0.3 (GU 3.0.3), and then 
mapped using minimap2 or GraphMap in ‘sensitive’ mode. Nucleotides with mismatch 
frequencies greater than 0.1 have been colored. (B) Mean sequence identity of 
different combinations of base-calling and mapping algorithms, for each of the 6 in vitro 
transcribed datasets analysed. (C) Comparison of read lengths and per-read mean 
quality scores in different in vitro transcribed datasets (UNM, m6A, Ѱ, m5C, hm5C and 
UNM-S) when base-called using different algorithms (AL 2.1.7, AL 2.3.4, GU 2.3.1 or 
GU 3.0.3). Results show that read lengths do not largely vary across base-callers. By 
contrast, per-read quality strongly varies depending on the choice of base-calling 
algorithm. Box, first to last quartiles; whiskers, 1.5x interquartile range; center line, 
median; points, outliers. (D) Barplots of mean per-read quality show that per-read 
qualities are slightly decreased in all modified datasets, relative to unmodified ones, 
with this difference being most evident in GU 3.0.3 base-called data. (E) Boxplots of 
mean per-base quality of reads base-called with GU 3.0.3 show that per-base qualities 
are decreased in all modified datasets, relative to unmodified ones. Box, first to last 
quartiles; whiskers, 1.5x interquartile range; center line, median; points, outliers. (F) 
Ternary plots depicting the mismatch distribution of the unmodified (left) and modified 
(right) positions colored by log coverage, in 5 different datasets: unmodified (all left 
panels), m6A-modified (m6A), Ѱ-modified (Ѱ), m5C-modified (m5C), hm5C-modified 
(hm5C). Only modified nucleotides, and their relative unmodified counterparts in the 
UNM dataset, are shown. Each dot represents a different nucleotide in the reference. 
(G) Logo representations of the mismatch signatures generated by m5C and hm5C. 
Results show that the signatures are different depending on the modification, however, 
these also vary depending on the 5-mer sequence (reported on the left). 
 

4.4. Ѱ modifications can be detected as U-to-C 
mismatches 

We then examined whether the results obtained using in vitro transcribed 

constructs would be applicable to in vivo RNA sequences. To this end, total RNA from 

S. cerevisiae was prepared for direct RNA sequencing (see Methods). Visual 

inspection of the mapped reads revealed a high proportion of base-calling errors 

present in 25S and 18S rRNAs, as could be expected from sequences that are highly 

enriched in RNA modifications (Figure 4.3A). By contrast, 5S and 5.8S rRNAs did not 

show such base-calling errors, in agreement with their low level of modification. 
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Figure 4.3 - RNA modifications can be detected in yeast ribosomal RNA in the 
form of base-calling errors, and each RNA modification type shows a distinct 
‘error’ signature.  

(A) IGV snapshots of yeast ribosomal subunits 5S, 5.8S, 18S and 25S. Known 
modification sites are indicated below each snapshot and nucleotides with mismatch 
frequencies greater than >0.1 have been colored and gray represents match to 
reference or no mismatch (B) Comparison of base-calling features (base quality, 
mismatch, deletion and insertion frequency) from distinct RNA modification types 
present in yeast ribosomal RNA. The most descriptive base-calling error per 
modification is outlined in red. Only RNA modification sites without additional 
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neighboring RNA modifications in the 5-mer were included in the analysis: Ѱ (n=37), 
Gm (n=8), m1A (n=2), Am (n=14), m5C (n=2), Cm (n=8), ac4C (n=2), Um (n=7). Box, 
first to last quartiles; whiskers, 1.5x interquartile range; center line, median; dots: 
individual data points. (C) Ternary plots and barplots depicting the mismatch 
directionality for selected rRNA modifications (Ѱ, Am, Cm, Gm). Ѱ rRNA modifications 
tend towards U-to-C mismatches while Am, Cm and Gm modifications did not show 
specific mismatch directionality patterns. 
 

Then, I systematically analysed base-called features (mismatch, deletion, 

insertion and per-base qualities) of rRNA modified sites relative to unmodified ones 

(Figure 4.3B), and found that all rRNA modification types consistently led to decreased 

per-base qualities at modified sites, suggesting that per-base qualities can be 

employed to identify RNA modifications, but not the underlying RNA modification type. I 

found that Ѱ modifications caused significant variations in mismatch frequencies, in 

agreement with the observations using in vitro constructs. By contrast, other RNA 

modifications, such as 2’-O-methylcytidine (Cm) or m5C did not appear in the form of 

increased mismatch frequencies at modified sites, but rather, in the form of increased 

insertions. In addition, Ѱ modifications typically appeared in the form of U-to-C 

mismatches (Figure 4.3C, see also Figure 4.4), in agreement with the in vitro 

observations, whereas other RNA modifications such as 2’-O-methyladenosine (Am) 

did not cause mismatches with unique directionality. In conclusion, rRNA modification 

types can be detected in the form of altered base-called features in vivo, and that their 

base-calling ‘error’ signature is dependent on the RNA modification type. 

To confirm that the detected signal (U-to-C mismatches) in Ѱ positions was 

caused by the presence of the Ѱ modification, I compared rRNA modification profiles 

from wild type S. cerevisiae to those from snoRNA-knockout strains (snR3, snR34 and 

snR36) (Figure 4.5A, see also Table 5.1). These results show that changes in rRNA 

modification profiles were consistently and exclusively observed in those Ѱ positions 

reported as targets of each snoRNA. Moreover, the remaining Ѱ-modified positions 

were not significantly altered by the lack of Ѱ modifications guided by snR3, snR34 or 

snR36 (Figure 4.5B). 
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Figure 4.4 - Known yeast ribosomal RNA modifications show distinct base-
calling ‘error’ signatures.  

(A) IGV snapshots centered in distinct yeast ribosomal RNA modifications in 4 different 
yeast strains (wild type, snR3-KO, snR34-KO, snR36-KO, in descending order). Known 
rRNA modification sites are indicated below each snapshot. Nucleotides with mismatch 
frequencies greater than 0.15 have been colored. (B) Dotplots of base-calling errors 
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(deletion frequency, insertion frequency, mismatch frequency, and per-base quality) 
observed in modified 5-mers, centered in the modified position. Each dot corresponds 
to a different 5-mer. The total number of 5-mers included in the analysis varies 
depending on the abundance of each rRNA modification type in yeast rRNAs: Ѱ 
(n=46), Am (n=14), Cm (n=10), Gm (n=15) and Um (n=9). 5-mers that contain more 
than one modification in the 5-mer region were excluded from the analysis. Box, first to 
last quartiles; whiskers, 1.5x interquartile range; center line, median; points, individual 
data points. 
  

 

Strain snoRNA Modification Sites Predicted stoichiometry based on 
LC-MS/MS (%)* 

snR3-KO snR3 Ѱ 

25S:Ѱ2129 25S:2129 - 91% 

25S:Ѱ2133 25S:2133 - 100% 

25S:Ѱ2264 25S:2264 - 95% 

snR34-KO snR34 Ѱ 
25S:Ѱ2826 25S:2826 - 87% 

25S:Ѱ2880 25S:2880 - 100% 

snR36-KO snR36 Ѱ 18S:Ѱ1187 18S:1187 - 95% 

snR60-KO snR60 Am,Gm 
25S:Am817 25S:817 - 89% 

25S:Gm908 25S:908 - 100% 

snR61-KO snR61 Am 25S:Am1133 25S:1133 - 88% 

snR62-KO snR62 Um 25S:Um1888 25S:1888 - 95% 

 

Table 4.1 - List of snoRNA mutant yeast strains used in this work, including their 
described rRNA targets. Data taken from Taoka et al.,2016 [367]  
 

3 additional S. cerevisiae strains depleted of snoRNAs (snR60, snR61 and 

snR62, respectively) guiding 2’-O-methylation (Nm) at specific positions were then 

sequenced (Table 4.1). In contrast to Ѱ modifications, I found that 2’-O-methylations 

often caused increased errors not only at the modified position, but also at 

neighbouring positions (Figure 4.5C, see also Figure 4.6A). These errors disappeared 

in the knockout strain, confirming that neighbouring base-calling errors were indeed 

caused by the 2’-O-methylation (Figure 4.5C). On the other hand, while Ѱ 
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modifications mainly affected mismatch frequency, I observed that Nm modifications 

often affected several base-called ‘error’ features (mismatch, insertion and deletion 

frequency) (Figure 4.6B). Thus, we reasoned that combining all three features might 

improve the signal-to-noise ratio for the detection of 2’-O-methylated sites, and found 

that the combination of features led to improved detection of Nm-modified sites (Figure 
4.5D). 

Figure 4.5 - Pseudouridylation and 2’-O-methylations cause systematic base-
calling ‘errors’ as well as altered current intensities, and their signature 
disappears upon depletion of snoRNAs guiding the modification.  

(A) IGV snapshots of wild type and three snoRNA-depleted strains depicting the site-
specific loss of base-called errors at known Ѱ target positions (indicated by asterisks). 
Nucleotides with mismatch frequencies greater than 0.1 have been colored. (B) 
Comparison of snoRNA knockout mismatch frequencies for each base, relative to wild 
type, with snoRNA targets sites indicated in red, and non-target sites in gray. (C) IGV 
snapshots of wild type and three snoRNA knockout yeast strains depicting the site-
specific loss of base-calling errors at known Nm target positions. Nucleotides with 
mismatch frequencies greater than 0.1 have been colored. (D) Comparison of snoRNA 
knockout summed error frequencies for each base, relative to wild type, with snoRNA 
targets sites indicated in red, neighboring sites in blue and non-target sites in gray. 
(E,F) Distributions of per-read current intensity at known Ѱ-modified (E), 2’-O-
methylated (F) and negative control sites. Current intensities at Ѱ and 2’-O-methylated 
positions were altered upon deletion of specific snoRNAs relative to wild type, whereas 
no shift was observed in control sites. 
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Figure 4.6 - Base-calling signature of 2’-O-methylations often alter the 
neighboring positions, whereas Ѱ modifications mainly affect the modified site.  

(A) IGV snapshots centered on known yeast rRNA modified sites: Ѱ-modified sites are 
shown in the upper panels, whereas 2’-O-methylated sites are shown in the bottom 
panels. Nucleotides with mismatch frequencies greater than 0.15 have been colored. 
(B) Comparison of base-calling ‘errors’ (mismatch, deletion and insertion frequency) 
observed in snoRNA-depleted strains (snR60, top panels; snR61, middle panels, 
snR62, bottom panels) relative to wild type, with snoRNA target sites indicated in red, 
neighboring sites indicated in blue and non-target sites in gray. 
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4.5. Current intensity variations cannot accurately 
predict the modified site 

We then wondered whether Ѱ and Nm sites would also be detected at the level 

of current intensity changes. Certain Ѱ and Nm-modified sites, such as 25S:Ѱ2129 or 

25S:Am1133, showed drastic alterations in their current intensity values in the 

snoRNA-depleted strain, while no significant alteration was observed in control sites 

(Figure 4.5E,F). However, in other sites the distribution of current intensities did not 

significantly change in the knockout strain (18S:Ѱ1187, Figure 4.5E lower panel) or did 

not differ in their mean (25S:Ѱ2133, Figure 4.7A). 

  We hypothesised that deviations in current intensity alterations might not 

always be maximal in the modified site, but might sometimes appear in neighboring 

sites. To test this, I examined the difference in current intensity values along the rRNA 

molecules for each wild type-knockout pair (Figure 4.8A, see also Figure 4.7B). 

However, the highest deviations in current intensity were often not observed at the 

modified sites (Figure 4A lower panel). From all 6 Ѱ sites that were depleted in the 3 

knockout strains studied, only 2 of them (25S:Ѱ2826 and 25S:Ѱ2880) showed a 

maximal deviation in current intensity in the modified site (Figure 4.8B, see also 
Figure 4.7C). Similarly, depletion of Nm sites led to changes in current intensity values, 

but the largest deviations were not observed at the modified site (Figure 4.7C). In 

conclusion, current intensity-based methods can detect both Ѱ and Nm RNA 

modifications; however, base-calling errors are a better choice to achieve single 

nucleotide resolution, at least in the case of Ѱ RNA modifications.  

4.6. Detection of Ѱ and Nm modifications in individual 
reads 

Direct RNA sequencing produces current intensity measurements for each 

individual native RNA molecule. Thus, modification stoichiometries can be, in principle, 

estimated by identifying the proportion of reads with altered current intensity at a given 

site. To this end, I first examined the per-read current intensity values of wild type and 

knockout strains at the Ѱ- and Nm-depleted sites. Despite the significant variability of 

current intensities across reads, robust differences in current intensities across strains 

at the depleted RNA modified sites at the per-read level were observed (Figure 4.8C, 
upper panel). As a control, I performed the same analysis in Ѱ sites unaffected by 

snoRNA depletion, finding no significant differences between wild type and knockout 
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strains (Figure 4.8C, lower panel). However, in some sites such as 18S:1187, the per-

read shifts in current intensity between the wild type and knockout strain were far more 

modest (Figure 4.7D). Principal Component Analysis (PCA) of the current intensity 

values of 15-mer regions that contained the modified site showed that the reads 

clustered into two distinct populations: the first population mainly comprised unmodified 

reads from the snoRNA-depleted strain, whereas the second comprised reads from the 

3 other strains, which are mostly modified (Figure 4.8C right panels, see also Figure 
4.7E). 

  Suprisingly, Nanopolish software did not resquiggle the reads evenly across 

sites. For example, it failed at resquiggling the majority of reads in the region 

surrounding 25S:Ѱ2264 (Figure 4.7D). Thus, we wondered whether Tombo, which 

uses global resquiggling instead of local resquiggling, might overcome this limitation. 

Tombo resquiggling led to a global increase in the proportion of resquiggled reads 

(Figure 4.9A). Moreover, Tombo showed a uniform proportion of resquiggled reads 

along the same transcript, whereas Nanopolish showed a variable proportion of 

resquiggled reads depending on the site. Notably, Tombo was equally effective at 

resquiggling both modified and unmodified reads, whereas Nanopolish preferentially 

resquiggled unmodified reads relative to modified ones, biasing the 

unmodified:modified proportion up to 7:1 (Figure 4.9B). This uneven resquiggling from 

Nanopolish implies that using Nanopolish for predicting RNA modification levels at 

individual sites may cause a dramatic bias in the predicted stoichiometry of individual 

sites. Thus, based on these results, Tombo resquiggling was adopted instead of 

Nanopolish resquiggling for the prediction of RNA modification stoichiometries from 

individual RNA reads in all our downstream analyses. 
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Figure 4.7 - Pseudouridylations and 2’-O-methylations can be detected in the 
form of altered current intensities.  

(A) Distributions of per-read current intensity at known Ѱ-modified, 2’-O-methylated 
and negative control sites. Ѱ and 2’-O-methylated positions were altered upon deletion 
of specific snoRNAs relative to wild type, whereas no shift was observed in control 
sites. (B) Absolute differences in current intensity along the 25S rRNA and 18S rRNAs 
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upon depletion of snR34 and snR36, respectively, relative to the wild type strain. Red 
vertical lines indicate the KO pseudouridylation positions. (C) Comparison of mean 
current intensity changes for Ѱ and 2’-O-methyl knockout sites across each of the 
snoRNA knockout strains. The dotted vertical line indicates the modified position. (D) 
Per-read analysis of current intensities centered at 3 different Ѱ modified sites targeted 
by the snoRNAs depleted in each knockout strain (25S:Ѱ2129, 25S:Ѱ2264 and 
18S:Ѱ1187). In each panel, the per-read current intensities centered in the modified 
site are shown, both for the wild type (purple) and knockout strain (red: snR3; green: 
snR34; cyan: snR36). As a control, the same analysis was performed at a control site 
(25S:Ѱ986), using reads from wild type (purple) and snR34 knockout strain (green) 
showing no differences between the read populations. Each line indicates a single 
read. (E) Principal Component Analysis of the current intensity values of the 15-mer 
regions was performed, and the corresponding scatterplots of the two first principal 
components (PC1 and PC2) are depicted for 4 different Ѱ and Nm sites. Each dot 
corresponds to a different read, and is colored according to the strain.                 

4.7. Stoichiometry prediction using signal intensity, 
dwell time and trace  

Ѱ and Nm modifications can lead to significant alterations in the current 

intensity profiles at the modified region (e.g. 25S:Ѱ2880, Figure 4.8B-C). However, in 

other sites such as 18S:Ѱ1187, current intensity alone was insufficient to bin the reads 

into two separate clusters (Figure 4.7D,E), suggesting that, in addition to current 

intensity, other features might be needed to distinguish modified from unmodified 

reads.  

  Previous works predicting DNA modifications from individual nanopore reads 

typically relied on features such as signal intensity or dwell time to distinguish modified 

and unmodified read populations [368–371]. Here, in addition to these two features, we 

explored whether the use of ‘trace’ would improve our ability to predict RNA 

modification stoichiometry. Trace (also termed ‘base probability’) represents the 

probability that a given signal intensity chunk may be originating from each of the 4 

canonical bases (A, C, G and T/U). To this end, we first examined how the presence of 

Ѱ and Nm modifications altered each of the features (signal intensity, dwell time and 

trace) in Ѱ and Nm modified sites, both at snoRNA-targeted positions and control sites 

(Figure 4.10). In addition to signal intensity, base probability (trace) was significantly 

different in all examined sites. Moreover, in some sites such as 25S:Ѱ2264, trace was 

the most altered feature from those examined. By contrast, dwell time was not 

consistently different in snoRNA-targeted sites relative to wild type (e.g. 25S:Ѱ2264, 

25S:Ѱ2826, 18S:Ѱ1187). 
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Figure 4.8 - Loss of specific Ѱ rRNA modifications causes deviations in current 
intensity in regions surrounding the Ѱ sites.  

(A) Current intensity changes along the 25S rRNA molecule upon snR3 depletion, 
relative to the wild type strain. In the lower panel, a zoomed subset focusing on the two 
regions with the most significant current intensity deviations is shown; the first one 
comprising the 25S:Ѱ2129 and 25S:Ѱ2133 sites, and the second one comprising the 
25S:Ѱ2264 site. (B) Comparison of current intensities in the 15-mer regions 
surrounding Ѱ and 2’-O-methyl knockout sites, for each of the 4 strains. The dotted 
vertical line indicates the modified position. See also Figure S4 for current intensity 
changes in other knockout strains and sites. (C) Per-read current intensity analysis 
centered at the 25S:Ѱ2880 site targeted by snR34 (upper panel) and a control site, 
25S:Ѱ2880, which is not targeted by any of the knockouts (lower panel). For each site, 
Principal Component Analysis was performed using 15-mer current intensity values, 
and the corresponding scatterplot of the two first principal components (PC1 and PC2) 
is shown on the right, using as input the same read populations as in the left panels. 
Each dot corresponds to a different read, and is colored according to the strain. (D) 
Predicted stoichiometry of Ѱ- and Nm-modified sites using a k-nearest neighbors 
(KNN) algorithm trained to classify the reads into 2 classes: modified or unmodified. 
The features used to predict modifications status of every read from which 
stoichiometry was calculated were signal intensity (positions -1,0,+1) and trace 
(positions -1,0,+1). 
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Figure 4.9 - Systematic benchmarking of resquiggling softwares, machine 
learning algorithms and distinct feature sets for the prediction of RNA 
modification stoichiometry from individual RNA reads.  

(A) Comparative analysis of read resquiggling using Nanopolish and Tombo, depicting 
the relative proportion of resquiggled reads for each algorithm at each individual site. 
The Ѱ-modified sites and 2’-O-methylated sites were analysed independently, as they 
come from independent flowcells. Tombo shows uniform proportion of resquiggled 
reads along the same transcript, whereas Nanopolish shows variable proportion of 
resquiggled reads depending on the site. (B) Comparative analysis of read resquiggling 
using Nanopolish and Tombo, depicting the relative proportion of resquiggled reads 
from KO strains for a given position (relative to WT), using as input 1000 reads for each 
strain, and for each algorithm. If there is no difference in resquiggling depending on the 
presence or absence of modification, the expected proportion of KO:WT reads is 1. (C) 
Line chart of expected (X-axis) and observed (Y-axis) modification frequency for Ѱ-
modified and 2’-O-methylated positions. The absolute modification frequency difference 
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was estimated between two samples: KO (no modified reads) and WT (simulating 
varying levels of modification frequency: 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0). Modification 
stoichiometry was calculated using four different machine learning methods: two 
supervised (k-nearest neighbour (KNN) and random forest (RF)) and two unsupervised 
(K-means and gaussian mixture model (GMM). Five sets of distinct feature 
combinations have been tested for each algorithm and RNA modification type: current 
intensity (blue), trace (orange), dwell time (green), the combination of current intensity 
and trace (red) and the combination of current intensity and dwell time (purple). 
 

The use of distinct features for RNA modification stoichiometry was then 

systematically benchmarked. To this end, nanoRMS, a software that extracts signal 

intensity, trace and dwell time from individual reads, and then predicts RNA 

modification stoichiometry by using distinct feature combinations as well as various 

machine learning algorithms was built. Firstly, different mixes of modified (wild type) 

and unmodified (knockout) reads were generated to simulate varying read 

stoichiometry (0, 20, 40, 60, 80 and 100%), for each of the Ѱ and Nm positions for 

which knockouts were available (Table 4.1). Then, we examined how different 

supervised and unsupervised algorithms would predict the stoichiometry of each of the 

sites, and using distinct combinations of the 3 features (signal intensity, trace and dwell 

time) for each individual site (Figure 4.9C). These results show that the combination of 

signal intensity and trace outperformed all the other feature combinations for predicting 

both Ѱ and Nm modification stoichiometry, and that the supervised k-nearest neighbor 

(KNN) was the best performing algorithm. The k-means clustering algorithm (KMEANS) 

was the best-performing algorithm among the unsupervised clustering methods tested, 

although its performance in predicting Ѱ modification stoichiometry was slightly better 

than in the case of Nm modification stoichiometry predictions. Overall, nanoRMS can 

accurately predict Ѱ and Nm RNA modification stoichiometry from individual RNA 

reads (Figure 4.8D), with predicted stoichiometry values that are similar to those that 

have been previously reported by Mass Spectrometry [367]. 

4.8. De novo prediction reveals a Pus4-dependent 
mitochondrial Ѱ rRNA modification 

The identification of RNA modification-specific signatures allows us to perform 

de novo prediction of Ѱ RNA modifications transcriptome-wide using direct RNA 

sequencing. In this regard, S. cerevisiae mitochondrial rRNAs remains much less 

characterised than cytosolic rRNAs, with only 3 modified sites identified so far in S. 

cerevisiae LSU (21s) [372], and none in SSU (15S) rRNAs. Thus, we hypothesised that 
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direct RNA might reveal previously uncharacterised Ѱ-modified sites in mitochondrial 

rRNAs. To this end, I first determined the ‘error’-based thresholds (mismatch frequency 

and C mismatch frequency) that would distinguish unmodified uridines from 

pseudouridines in cytosolic rRNAs (Figure 4.11A). I then applied this filter to predict Ѱ 

modifications on 15S rRNA and 21s rRNA, identifying two novel candidate Ѱ sites 

(15S:854 and 15S:579) that displayed high modification frequency as well as U-to-C 

mismatch signature (Figure 4.11B,C). 

To further confirm that the two predicted 15S rRNA sites are pseudouridylated, I 

developed nanoCMC-seq, a protocol that identifies Ѱ modifications by coupling CMC 

probing with nanopore cDNA sequencing. This method allows capturing reverse-

transcription drop-off information by sequencing only the first-strand cDNA molecules 

of CMC-probed RNAs using a customised direct cDNA sequencing protocol (Figure 
4.11D, see also Methods). NanoCMC-seq captured known sites in cytoplasmic rRNA 

with a very high signal-to-noise ratio, as well as confirmed the existence of Ѱ in 

position 854 and 579 of 15S rRNA, validating the de novo predictions using direct RNA 

sequencing (Figure 4.11E, see also Figure 4.12A). 
I observed that 15S:Ѱ854 was embedded in a similar sequence context and 

structure as the t-arm of tRNAs, which contains a pseudouridylated (Ѱ55) position 

placed by Pus4 (Figure 4.11F). Given the resemblance between these two sequences 

and structures, I hypothesised that Pus4 might be responsible for this modification. To 

validate this hypothesis, I sequenced total RNA from a Pus4-deficient S. cerevisiae 

strain, finding that the 15S:854 position loses its mismatch signature upon deleting 

Pus4 gene, confirming that this site is not only pseudouridylated, but also that it is 

Pus4-dependent (Figure 4.11G, see also Figure 4.12B). Additionally, I observed that 

previously reported Pus4 target sites (TEF1:239,TEF2:239) [121,122,126] completely 

lost their mismatch signature in Pus4 knockout cells (Figure 4.12B,C), confirming that 

this method is able to capture previously reported Pus4-dependent Ѱ sites, in addition 

to previously unknown ones. 
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Figure 4.10 - Density plots of the per-read current intensity, trace and dwell time 
features in selected Ѱ and 2’-O-methylated rRNA sites.  

(A,B) Per-read distributions of current intensity (SI), trace (TR) and dwell time (DT) 
between respective mutants and wild type at Ѱ-modified (A), and 2’-O-methylated sites 
(B). Control sites, which are not affected by any of the knockouts, have been included 
in the analysis as negative controls. The distributions are plotted for the positions of 
interest (0) and two neighbouring positions: downstream (-1) and upstream (+1). The 
density distribution of each feature has been colored depending on the strain. X-axis 
scale depends on the feature type: SI is reported as median absolute deviation 
normalised signal intensity as reported by Tombo; TR is reported as reference-base 
probability (0-1 scaled), and DT is reported as log2 (observed/expected), where 
expected is dwell time mean value per base calculated for every read. 
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Figure 4.11 -  De novo prediction of Ѱ modifications reveals a novel Pus4-
dependent mitochondrial rRNA modification. (A) Density distributions of mismatch 
and C mismatch frequency in unmodified uridine (red) and pseudouridine (cyan) 
positions. The dashed lines represent the optimal cutpoints between two groups 
determined by maximizing the Youden-Index. In the right panel, the ROC curve 
illustrates the sensitivity and specificity at these two cutpoints. (B) IGV coverage tracks 
of the 15S mitochondrial rRNA, including a zoomed version showing the tracks 
centered at the 15S:854 and 15S:579 sites, in two biological replicates. Nucleotides 
with mismatch frequencies greater than 0.15 have been colored. (C) Location of the 
putative Ѱ854 modified site in the yeast mitochondrial ribosome. The PDB structure 
shown corresponds to 5MRC. (D) Validation of putative Ѱ sites with nanoCMC-Seq, 
which combines CMC treatment with Nanopore cDNA sequencing in order to capture 
RT-drops that occur at Ѱ-modified sites upon CMC probing. RT-drops are defined by 
counting the number of reads ending (3’) at a given position. (E) Predicted Ѱ sites 
U854 and U579 (orange) in the 15S rRNA are validated using nanoCMC-seq (upper 
panel). Dashed lines indicate the CMC-score threshold used for determining the 
positive sites (upper panel). As a control, we analysed the nanoCMC-seq results in 
other rRNAs (lower panel), finding that all positions with a significant CMC Score (>25) 
correspond to known Ѱ rRNA modification sites (blue). See also Figure S7A for CMC 
scores in additional rRNA transcripts. (F) The candidate Ѱ854 site is located at the 
852-860 loop of the 15S rRNA, which resembles the t-arm of the tRNAs that is modified 
by Pus4. The binding motif of Pus4 (RRUUCNA) matches the motif surrounding the 
854U site[121]. (G) Scatterplot of mismatch frequencies in WT and Pus4KO cells, 
showing that the only significant position affected by the knockout of Pus4 is 15S:U854 
(left panel). IGV coverage tracks showing that Pus4 knockout leads to depletion of the 
mismatch signature in the 15S:854 position (right panel), but not at the 15S:579 
position. 



 
               Chapter 4 

 
 
 

148 

  



 
               Chapter 4 

 
 
 

149 

Figure 4.12 - De novo prediction of Ѱ modifications reveals a novel Pus4-
dependent modification (15S:Ѱ854) in yeast mitochondrial rRNAs, and captures 
previously reported Pus4-dependent mRNA modifications.  

(A) NanoCMC-seq scores along the 21s mitochondrial LSU rRNA (upper panel) and 
the 25S cytosolic LSU rRNA (bottom panel). Dashed lines indicate the CMC-score 
threshold used for determining the positive sites. All the positions with a significant 
CMC Score (>25) correspond to known Ѱ rRNA modification sites (blue). (B) 
Comparison of mismatch frequency for each base in Pus4 knockout strains, relative to 
wild type, in positions mapped to yeast genome and rRNA, in two independent 
biological replicates. (C) IGV snapshots of wild type (rep1 and rep2) and Pus4 
knockout (rep1 and rep2) yeast strains with zoomed subsets depicting the site-specific 
loss of mismatch at known target positions. Nucleotides with mismatch frequencies 
greater than 0.15 have been colored. (D) Stress scores in previously reported heat-
responsive sn/snoRNA pseudouridylated sites (as defined by Schwartz et al 2014). 
Stress scores are calculated by taking the difference between mismatch frequency in 
stress (heat-shock, cold-shock, and oxidative) and normal conditions. (E) Stress scores 
in sn/snoRNA Ѱ sites that were not previously reported as heat-responsive. Our 
analysis identifies some of these sites as responsive to heat-stress. (F) Polysome 
profiles of ribosomal-bound RNA fractions isolated from untreated and stressed H2O2-
treated yeast cells. (G) Comparison of mismatch frequency for untreated vs H2O2-
treated input RNA (upper panel) and untreated vs H2O2-treated ribosome-bound RNA 
(lower panel). (H) Comparison of mismatch frequencies of ribosomal RNAs for different 
fractions (F1: Free, F2: Subunit, F3: Monosome, F4: Polysome). Each dot represents a 
base in the rRNA, with significantly altered Ѱ sites reproducible across biological 
replicates highlighted in red. The remaining Ѱ sites are shown in black and the rest of 
the sites in gray. All rRNA bases from cytosolic rRNAs were included in the analysis 
and plots. 
 

4.9. rRNA modification profiles do not vary upon 
oxidative or thermal stress 

Ribosomal RNAs are extensively modified as part of their normal maturation, 

and their modification landscape is relatively well-defined for a series of organisms 39,53–

57. Despite the central role that rRNA molecules play in protein translation, recent 

evidence has shown that rRNA modifications are in fact dynamically regulated 

[373,374], and that their alterations can lead to disease states [232,233,362,375–380]. 

Moreover, the stoichiometry of some pseudouridylated and 2′-O-methylated rRNA sites 

is cell-type dependent, suggesting that rRNA modifications may be an important source 

of ribosomal heterogeneity [363,367,381–384]. However, a systematic and 

comprehensive analysis of which environmental cues may lead to changes in rRNA 
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modification stoichiometries, which RNA modifications may be subject to this tuning, 

and to which extent, is largely missing. 

To assess whether rRNA modification profiles change in response to 

environmental stimuli, S. cerevisiae cells were treated with diverse environmental cues 

(oxidative, cold and heat stress) and their RNA was sequenced using direct RNA 

sequencing. Firstly, I confirmed that the rRNA modification profiles from independent 

biological replicates were highly reproducible (Pearson r2=0.976-0.996, see also 

Figure 4.13). Then, I examined whether exposure to stress would lead to significant 

changes in base-calling ‘errors’ in rRNA molecules, finding no significant differences in 

rRNA modification profiles between normal and stress conditions (Figure 4.14A). In 

contrast, I recapitulated previously reported changes in snRNA Ѱ modifications upon 

exposure to environmental cues [121] (Figure 4.14B, see also Figure 4.12D), as well 

as identified 8 additional Ѱ modification sites in snRNAs and snoRNAs whose 

stoichiometry varies upon heat exposure, which had not been previously described 

(Figure 4.14, see also Figure 4.12E) [121,122,359,385]. Overall, this approach 

confirmed previous reports and predicted novel Ѱ sites in ncRNAs whose modification 

levels vary upon heat shock exposure (Figure 4.14B-D, see also 4.12D-E), but did not 

identify any rRNA modified site to be varying in its stoichiometry upon any of the tested 

stress conditions. 

4.10. rRNA modification profiles do not vary across 
translational repertoires 

Next, we questioned whether pseudouridylation changes in distinct translational 

repertoires may be more nuanced, in that Ѱ levels may differ between rRNAs present 

in different translational fractions along a polysome gradient, which would not be 

detected when examining rRNAs as a whole. To test this, both total (input) and 

polysomal rRNAs from untreated and H2O2-treated yeast cells were sequenced (Figure 
4.12F). However, I observed no significant changes in Ѱ rRNA modification profiles 

when comparing rRNAs from actively translating ribosomes in untreated versus H2O2-

treated cells (Figure 4.12G). 
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Figure 4.13 - rRNA and ncRNA modification profile reproducibility across 
biological replicates of S. cerevisiae cells under diverse environmental cues.  

Pearson correlation coefficients are included for each pairwise comparison. Median 
Pearson across replicates was 0.985 for rRNA and 0.915 for ncRNAs. By contrast, the 
median pearson correlation between WT-heat in ncRNAs was 0.611 (replicate 1) and 
0.611 (replicate 2), illustrating that there are changes in the ncRNA mismatch scores 
that are not due to low replicability of the biological replicates. Only sites with coverage 
>30 reads were included in the analysis. A site was considered to be stress-responsive 
if the mismatch score is significantly changing in both replicates, relative to the control 
condition.  Each dot represents a uridine base. For rRNAs, all uridine bases were 
included in the plot, whereas for ncRNAs, only the reported ncRNA Ѱ sites were 
included. 
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Figure 4.14 - Comparative analysis of yeast rRNA and snRNA Ѱ modifications 
upon distinct environmental stresses identifies known and previously unknown 
heat-sensitive snRNA and snoRNA Ѱ modifications. 

(A) Comparison of mismatch frequencies for all rRNA bases from untreated or yeast 
exposed to oxidative stress (H2O2, left panel), cold stress (4ºC, middle panel) or heat 
stress (45ºC, right panel). Each dot represents a uridine base. All rRNA bases from 
cytosolic rRNAs were included in the analyses. (B) Comparison of mismatch 
frequencies in untreated versus stressed-exposed yeast cells (oxidative, cold or heat), 
in previously reported ncRNA Ѱ sites[121,122]. (C) W/%&..'.;:%&.'"5'.5g.5:AI@'h'."/&.'

;-1;$1-/&2'<3'8'6".6-/;9'=%&J$&5;3'<&/0&&5'9&-/'.9:;>'-52'VK)'(D) IGV snapshots 
of normal condition (rep1 and rep2) and heat shock condition (rep1 and rep2) yeast 
cells zoomed into the known sn/snoRNA Ѱ positions (indicated by an asterisk). 
Nucleotides with mismatch frequencies greater than 0.1 have been colored. Coverage 
for each position/condition is given on the top left of each row. (E) Profiles of ribosomal 
fractions isolated from yeast grown under normal conditions, using sucrose gradient 
fractionation, including free rRNAs which are not assembled into ribosomal subunits 
(F1), rRNAs from 40s and 60s subunits (F2), rRNAs extracted from monosomal 



 
               Chapter 4 

 
 
 

153 

fractions (F3) and polysome fractions (F4). (F) IGV snapshots of the two Ѱ sites that 
change stoichiometry between translational fractions and four representative Ѱ sites 
that show no significant change. Nucleotides with mismatch frequencies greater than 
0.1 have been colored. 

 

In an attempt to further dissect the different translational repertoires into a 

higher number of rRNA pools, we sequenced: i) rRNAs from unassembled free rRNA 

fractions (F1), ii) rRNAs from 40s and 60s subunits (F2), iii) rRNAs from monosomal 

fractions (F3) and iv) rRNAs from polysomal fractions (F4) (Figure .14E). While two 

positions showed slightly decreased levels of Ѱ (5.8S:Ѱ73 and 25S:Ѱ776) in the free 

rRNA fraction (F1) compared to assembled ribosomes and/or subunits, no significant 

changes were observed across the other translational fractions (Figure 4.14F, see also 

Figure 4.12H). Globally, these results indicate that differential rRNA modifications are 

likely not the mechanism employed by yeast cells to adapt to environmental stress 

conditions, in agreement with previous observations [122]. 

4.11. De novo prediction of Ѱ modifications in mRNAs 
Ribosomal RNAs are modified at very high stoichiometries[367,384]. By 

contrast, other molecules such as mRNAs are modified at lower stoichiometries, 

making the detection of their RNA modifications a much more challenging task[248]. To 

ascertain whether this methodology would be applicable to lowly modified RNA sites, 

such as those present in mRNAs, the performance of nanoRMS was first assessed in 

RNA molecules that contained Ѱ RNA modifications at low RNA modification 

stoichiometries (0, 3, 7 and 20%) (Figure 4.15A, see also Methods). The relative 

incorporation of Ѱ RNA modifications was validated using Mass Spectrometry. Then 

the quantitative performance of nanoRMS under low stoichiometry conditions using 

both KNN and k-means were assessed, finding that the combination of signal intensity 

and trace features yielded the most accurate results in terms of stoichiometry 

prediction (Figure 4.15B), in agreement with the previous results (Figure 4.9C). 

Next, I sequenced polyA(+)-selected RNA from S. cerevisiae wild type, Pus1 

knockout, Pus4 knockout and heat stress-exposed strains using direct RNA 

sequencing, in biological duplicates. Considering that mRNA sites are lowly modified, I 

restricted the de novo identification of mRNA Ѱ sites to those whose base-calling ‘error’ 

features significantly changed between pairwise conditions (Figure 4.15C, see also 

Methods), met the pseudouridine ‘error’ signature, and had a minimum coverage of 30 

reads in both conditions and biological replicates (see Methods). Through this 

approach, I predicted 13 Pus1-dependent Ѱ mRNA modifications, 14 Pus4-dependent 
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Ѱ mRNA modifications, 17 heat stress-dependent Ѱ mRNA modifications and 16 heat 

stress-dependent Ѱ ncRNA modifications, respectively (Figure 4.15D-G left panels), 

some of which were not previously reported to be Ѱ-modified. 
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Figure 4.15 - Quantitative prediction of pseudouridine stoichiometry 
transcriptome-wide and systematic benchmarking of nanoRMS using RNA 
molecules with diverse modification stoichiometries.  

(A) LC-MS/MS validation of pseudouridine incorporation at different proportions (0%, 
3%, 20%, 100%) in the in vitro transcribed products, relative to the expected 
incorporation (% ѰTP relative to UTP) (left panel). Dotplot illustrates the mismatch 
frequency distribution of the uridine positions in the in vitro transcribed products 
incorporated with different concentrations of Ѱ (right panel). Each dot represents one 
uridine position. (B) Stoichiometry predictions of the Ѱ incorporated in vitro 
transcription products using two different algorithms (KNN and k-means) with different 
current information (middle right and right panels). (C) Conditions and strains used to 
predict Ѱ mRNA modifications transcriptome-wide. (D-K) Transcriptome-wide Ѱ RNA 
modification predictions and predicted stoichiometries in mRNAs and ncRNAs, for 
Pus1-dependent mRNA Ѱ sites (D,H), Pus4-dependent mRNA Ѱ sites (E,I), heat 
stress-dependent mRNA Ѱ sites (F,J) and heat stress-dependent ncRNA Ѱ sites (G,K). 
(D-G) Venn diagrams depict the overlap between Ѱ sites predicted by our analysis and 
the previously reported pseudouridine sites. IGV snapshots of reported and not 
previously reported predicted sites illustrate the absence of the mismatch signature in 
the Pus1 (D) or Pus4 (E) knockout samples as well as under normal conditions, relative 
to heat stress conditions in mRNA (F) and ncRNA (G). The reported or predicted Ѱ site 
is indicated by an asterisk. Nucleotides with mismatch frequencies greater than 0.15 
have been colored. It should be noted that IGV snapshots that show a reference “A” 
with mismatch signature to G are genes that are in the minus strand (and thus are in 
reality positions showing U-to-C mismatch signatures). (H-K) Quantitative analysis of 
previously reported and de novo predicted Ѱ sites in mRNAs and ncRNAs. In the left 
panels, comparative scatterplots of mismatch frequency illustrate differentially modified 
sites of reported and de novo predicted Ѱ sites. In the right panels, stoichiometry 
prediction differences between WT and knockout strains (H-I) or between normal and 
heat stress conditions (J-K) are shown as boxplots. Box, first to last quartiles; whiskers, 
1.5x interquartile range; center line, median; points, individual Ѱ sites. 
 
 
  NanoRMS recovered 11% of previously reported Pus1-dependent Ѱ sites as 

well as 75% Pus4-dependent Ѱ sites, in addition to predicting 10 not previously 

reported Pus1 and 11 not previously reported Pus4-dependent mRNA Ѱ-modified sites 

. These novel predicted Ѱ mRNA sites displayed similar mismatch signatures to those 

observed in previously reported Ѱ sites (Figure 4.15D-E, right panels), were highly 

replicable across biological replicates, and their signature disappeared in Pus1 or Pus4 

knockout strains. Similarly, nanoRMS was able to capture previously reported heat-

responsive Ѱ sites present in mRNAs and ncRNAs, which resulted in predicting 17 

heat-responsive Ѱ mRNAs sites, among which 6 of them were previously reported Ѱ 

sites (Figure 4.15F), as well as 16 heat-responsive Ѱ ncRNAs sites, from which 10 

were previously reported Ѱ sites (Figure 4.15G). 



 
               Chapter 4 

 
 
 

156 

  Surprised by the relatively poor overlap between our predictions and previously 

reported Pus1 mRNA Ѱ-modified sites (3 out of 16 sites), as well as between predicted 

and previously reported heat stress-dependent sites (7 out of 128 sites), the individual 

per-read features at previously reported Pus1- and heat stress-dependent sites were 

inspected (Figure 4.16A,B). Indeed, the Ѱ sites that nanoRMS did not report as Pus1 

or heat stress-dependent were not significantly different for any of the features 

examined (current intensity, dwell time or trace). Thus, we wondered whether some of 

these sites might have been misassigned as Pus1 or heat stress-dependent by 

previous works. A closer examination of the overlap between Ѱ sites predicted by the 

two previously published studies using CMC probing coupled to Illumina sequencing 

[121,122], which is used to define the set of ‘previously reported Pus1-, Pus4- and heat 

stress-dependent Ѱ sites’, showed that the overlap was in fact very poor (Figure 
4.16C), both when examining the set of predicted mRNA and ncRNA Ѱ sites (7% and 

17%, respectively), as well as when examining the sets of predicted Pus1- and Pus4-

dependent mRNA and ncRNA Ѱ sites (6% and 50%, respectively). Altogether, our 

approach detected 100% of Pus1- and Pus4-dependent sites that were identified by 

both studies, but very few of those that were identified by only one of the studies. In 

conclusion, the poor overlap between our results and previously reported Ѱ sites is in 

fact a direct consequence of the poor overlap between the set of predicted Pus1-, 

Pus4- and heat stress-dependent mRNA and ncRNA Ѱ sites by the two previous 

studies (Figure 4.16C). 

Finally, nanoRMS was applied to predict the modification stoichiometry of all Ѱ 

sites predicted in mRNAs and ncRNAs. Reads were classified based on the per-read 

signal intensity and trace features from positions -1, 0, and +1 using the k-means 

unsupervised clustering algorithm (Figure 4.15H-K). As expected, per-read 

stoichiometry predictions were low in non-targeted Ѱ sites. By contrast, predicted Ѱ 

Pus1/Pus4/heat stress-dependent sites (which included all Ѱ sites) typically showed 

significant RNA modification stoichiometry changes, ranging from 5 to 50% change in 

their Ѱ modification stoichiometries between the two conditions. 

Altogether, differential ‘error’ Ѱ signatures are a useful approach to identify 

dynamic Ѱ RNA modifications across two conditions even at low stoichiometry sites, 

and that nanoRMS can be used to de novo predict and quantify the RNA modification 

stoichiometry dynamics, both in previously reported Ѱ sites as well as in de novo 

predicted Ѱ sites. 
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Figure 4.16 - Analysis of features in previously reported and novel mRNA Ѱ sites.  

(A,B) Per-read distributions of current intensity (SI), trace (TR) and dwell time (DT) in 
Pus1 KO and wild type S. cerevisiae strains (A) and Pus4 KO and wild type strains (B), 
for 4 different Ѱ sites (reported and novel). The distributions are shown for the features 
observed at the modified site (0) as well as at the two neighbouring positions: 
downstream (-1) and upstream (+1), both in predicted and not predicted Ѱ sites. The 
density of each feature has been colored depending on the sample. X-axis scale 
depends on the feature type: SI is reported as median absolute deviation normalised 
signal intensity as reported by Tombo; TR is reported as reference-base probability (0-
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1 scaled), and DT is reported as log2 (observed/expected), where expected is dwell 
time mean value per base. (B) Comparison of per-read distributions of current intensity 
(SI), trace (TR) and dwell time (DT) in normal (30°C) and heat (45°C) conditions, at 4 
different Ѱ sites (reported and novel). (C) Venn diagrams illustrate the overlap of 
predicted Ѱ sites in mRNAs and ncRNAs between two studies (Schwartz et al, 2014 
and Carlile et al, 2014). (D) Current intensity density plots showing altered current 
intensity distribution in positions 25S:Ѱ2826 (left panel) and 25S:Ѱ2880 (right panel), in 
the wild type strain (which corresponds to Ѱ-centered k-mers) and snR34 knockout 
strain (which corresponds to U-centered k-mers). Current intensity distribution of the 
equivalent 5-mers with C in the middle position are shown in blue. 
 

4.12. Materials and Methods 

4.12.1. Yeast culturing  
Saccharomyces cerevisiae (strain BY4741) was grown at 30ºC in standard YPD 

medium (1% yeast extract, 2% Bacto Peptone and 2% dextrose). The deletion strains 

snR3Δ, snR34Δ and snR36Δ were generated on the background of the BY4741 strain 

by replacing the genomic snoRNA sequence with a kanMX4 cassette as detailed in 

Parker et al. [386]. Cells were then quickly transferred into 50 mL pre-chilled falcon 

tubes, and centrifuged for 5 minutes at 3,000 g in a 4ºC pre-chilled centrifuge. 

Supernatant was discarded, and cells were flash frozen. For thermal stress, 

Saccharomyces cerevisiae BY4741 cultures were grown in 4 mL of YPD overnight at 

30ºC. The next day, cultures were diluted to 0.0001 OD600 in 200 mL of YPD and 

grown overnight at 30ºC shaking (250 rpm). When the cultures reached an OD600 of 

0.4-0.5, the cultures were divided into 3 x 50 mL subcultures, which were then 

incubated at 30ºC (control), 45ºC (heat shock) or 4ºC (cold shock) for 1 hour. Cells 

were collected by pelletting and snap freezing. For the analysis of rRNAs modifications 

across polysomal fractions, yeast BY4741 starter cultures were grown in 6 mL YPD 

medium at 30ºC with shaking (250 rpm) overnight. 100 mL of fresh YPD medium was 

inoculated with 10 µL of the stationary culture in a 250 mL erlenmeyer flask, in 

biological duplicates. Cells were incubated at 30ºC with shaking (250 rpm) until the 

cultures reached mid-exponential growth phase (O.D660.~ 0.4-0.6). Yeast cells were 

then treated with 1 mM H202 or left without treatment (control) for 30 minutes. 1 mL of 

cycloheximide stock solution (10 mg/mL) was added to each culture. Pus4 knockout 

strains (BY4741 MATa pus4::KAN) and its parental strain were obtained from the Yeast 

Knockout Collection (Dharmacon) and grown under standard conditions in YPD (1% 
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[w/v] yeast extract, 2% [w/v] peptone supplemented with 2% glucose) at 30°C unless 

stated otherwise.  

4.12.2. Total RNA extraction from yeast cultures 
Saccharomyces cerevisiae BY4741 ;&11.' D./%-"5.f' .5A(iM' .5A(7i' .5A(?iM'

.5A?Q8M'.5A?]8M'.5A?c8'-52'VKH'0&%&'9-%O&./&2'O"-';&5/%"=$#-/":5'-/'(QQQ'%46'=:%']'

6"5$/&M'=:11:0&2'<3'/0:'0-.9&.'0"/9'0-/&%)'AI@'0-.'4$%"="&2'=%:6'4&11&/&2';&11.'$."5#'

-' `-./&%T$%&' ,&-./' AI@' &[/%-;/":5' >"/' Dj$;"#&5M' `T,Q(]QQHM' -;;:%2"5#' /:'

6-5$=-;/$%&%_.' "5./%$;/":5.)'Total RNA was then treated with Turbo DNase (Thermo, 

#AM2238) with a subsequent RNAClean XP bead cleanup prior to starting the library 

preparation. For stress conditions and the Pus4KO strain, flash frozen pellets were 

resuspended in 700 µL Trizol with 350 µL acid washed and autoclaved glass beads 

(425-600 µm, Sigma G8772). The cells were disrupted using a vortex on top speed for 

7 cycles of 15 seconds (the samples were chilled on ice for 30 seconds between 

cycles). Afterwards, the samples were incubated at room temperature for 5 minutes 

and 200 µL chloroform was added. After briefly vortexing the suspension, the samples 

were incubated for 5 minutes at room temperature. Then they were centrifuged at 

14,000 g for 15 minutes at 4ºC and the upper aqueous phase was transferred to a new 

tube. RNA was precipitated with 2X volume Molecular Grade Absolute ethanol and 

0.1X volume Sodium Acetate. The samples were then incubated for 1 hour at -20ºC 

and centrifuged at 14,000 g for 15 minutes at 4ºC. The  pellet was then washed with 

70% ethanol and resuspended with nuclease-free water after air drying for 5 minutes 

on the benchtop. Purity of the total RNA was measured with the NanoDrop 2000 

Spectrophotometer. Total RNA was then treated with Turbo DNase (Thermo, 

#AM2238) with a subsequent RNAClean XP bead cleanup.  

4.12.3. mRNA extraction from yeast cultures 
Saccharomyces cerevisiae BY4741 (strains: BY4741 MATa pus4::KAN, 

BY4741 MATa pus1::KAN and BY4741 MATa) were cultured up to log phase at 30ºC. 

The cultures were then divided into two flasks and cultivated at 30ºC or 45ºC for 1 

hour. The cells were harvested via centrifugation at 3,000 rpm for 5 minutes and snap 

frozen. Total RNA was purified from pelleted cells using a MasterPure Yeast RNA 

extraction kit (Lucigen, MPY03100), according to manufacturer’s instructions. Total 

RNA was then DNAse-treated (Ambion, AM2239) at 37ºC for 20 minutes with a 
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subsequent clean up using RNeasy MinElute Cleanup Kit (Qiagen, 74204). 70-100 ug 

of total RNA was subjected to double polyA-selection using Dynabeads Oligo(dT)25 

(Invitrogen, 61002) and finally eluted in ice-cold 10 mM Tris pH 7.5.  

 

4.12.4. Polysome gradient fractionation and rRNA extraction 
 

Yeast pellets from 100 mL cultures were washed with 6 mL of ice-cold 

Polysome Extraction Buffer (PEB), which contained 20 mM Tris-HCl pH 7.4, 100 mM 

KCl, 10 mM MgCl2, 0.5 mM DTT, 0.1 mg/mL cycloheximide and 100 U/mL RNAse 

inhibitors (RNaseOUT, Invitrogen, #18080051). Cells were centrifuged for 5 minutes at 

3,000 g at 4ºC. Washing was repeated by adding 6 mL of ice-cold PEB, followed by 

centrifugation. Cells were then resuspended in 700 µL of ice-cold PEB, and transferred 

into pre-chilled 2 mL Eppendorf tubes containing 450 µL of pre-chilled RNAse-free 425-

600 μm diameter glass beads (Sigma G8772). Cells were lysed by vortexing at 

maximum speed for 5 minutes at 4ºC, followed by centrifugation also at maximum 

speed at bench centrifuge for 5 minutes at 4ºC. 10% of the supernatant was aliquoted 

into Trizol for total RNA isolation, and kept at -80ºC, which was later used as input. The 

remaining volume, corresponding approximately to 8 x 108 cells, was subsequently 

loaded onto the sucrose gradient. Linear sucrose gradients of 10-50% were prepared 

using the Gradient Station (BioComp). Briefly, SW41 centrifugation tubes (Beckman, 

Ultra-ClearTM 344059) were filled with Gradient Solution 1 (GS1), which consisted of 

20 mM Tris-HCl pH 7.4, 100 mM KCl, 10 mM MgCl2, 0.5 mM DTT, 0.1 mg/mL 

cycloheximide and 10% w/v RNAse-free sucrose. Solutions GS1 and GS2 were 

prepared with RNase-DNase free UltraPure water and filtered with a 0.22 µM filter. The 

tube was then filled with 6.3 mL of Gradient Solution 2 (GS2) layered at the bottom of 

the tube, which consisted of 20 mM Tris-HCl pH 7.4, 100 mM KCl, 10 mM MgCl2, 0.5 

mM DTT, 0.1 mg/mL cycloheximide and 50% w/v RNAse-free sucrose. The linear 

gradient was formed using the tilted methodology, with the Gradient Station Maker 

(Biocomp). Once the gradients were formed, 350 µL of each lysate was carefully 

loaded on top of the gradients, and tubes were balanced in pairs, placed into pre-

chilled SW41Ti buckets and centrifuged at 4ºC for 150 minutes at 35,000 rpm. 

Gradients were then immediately fractionated using the Gradient Station, and 20 x 500 

µL fractions were collected in 1.5 mL Eppendorf tubes, while absorbance was 

monitored at 260 nm continuously. Fractions were combined in the following way: the 

free rRNA (F1, fractions 1 and 2), the unassembled subunits (F2, fractions 3-6), the 

lowly-translating monosomes (F3, fractions 7-10) and the highly-translating polysomes 
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(F4, fractions 12-17). The pooled fractions were then concentrated using Amicon-Ultra 

100K columns (Millipore), and washed two times with cold PEB. The final volume was 

brought down to 200 µL, and RNA was extracted using TRIzol reagent. Purity of the 

RNA was measured with a NanoDrop 2000 Spectrophotometer.  

4.12.5. In vitro transcription of modified and unmodified RNAs  
The synthetic ‘curlcake’ sequences [255] used in this study are designed to 

include all possible 5-mers while minimizing the secondary RNA structure, and consist 

in 4 in vitro transcribed constructs: (i) Curlcake 1, 2244 bp; (ii) Curlcake 2, 2459 bp; (iii) 

Curlcake 3, 2595 bp, and (iv) Curlcake 4, 2709. The curlcake constructs were in vitro 

transcribed using Ampliscribe™ T7-Flash™ Transcription Kit (Lucigen-ASF3507) with 

either unmodified rNTPs (UNM), N6-methyladenosine triphosphate (m6ATP), 5-

methylcytosine triphosphate (m5CTP), 5-hydroxymethylcytosine triphosphate (hm5CTP) 

or pseudouridine triphosphate (ѰTP). All modified NTPs were purchased from TriLink. 

The sequences included in the short unmodified dataset (UNM-S), which included B. 

subtilis guanine riboswitch, B. subtilis lysine riboswitch and Tetrahymena ribozyme, 

were also produced by in vitro transcription using Ampliscribe™ T7-Flash™ 

Transcription Kit (Lucigen-ASF3507). All constructs were 5’ capped using vaccinia 

capping enzyme (NEB-M2080S) and polyadenylated using E. coli Poly(A) Polymerase 

(NEB-M0276S). Poly(A)-tailed RNAs were purified using RNAClean XP beads, and the 

addition of poly(A)-tail was confirmed using Agilent 4200 Tapestation. Concentration 

was determined using Qubit Fluorometric Quantitation. Purity of the IVT product was 

measured with NanoDrop 2000 Spectrophotometer. 

4.12.6. Direct RNA library preparation and sequencing of in 
vitro transcribed constructs 

The RNA libraries for direct RNA Sequencing (SQK-RNA001) were prepared 

following the ONT Direct RNA Sequencing protocol version 

DRS_9026_v1_revP_15Dec2016, which corresponds to the flowcell FLO-MIN106. 

Briefly, 800 ng of Poly(A)-tailed and capped RNA (200 ng per construct) was ligated to 

ONT RT Adaptor (RTA) using concentrated T4 DNA Ligase (NEB-M0202T), and was 

reverse transcribed using SuperScript III RT (Thermo Fisher Scientific-18080044). The 

products were purified using 1.8X Agencourt RNAClean XP beads (Fisher Scientific-

NC0068576), washing with 70% freshly prepared ethanol. RNA Adapter (RMX) was 

ligated onto the RNA:DNA hybrid, and the mix was purified using 1X Agencourt 

RNAClean XP beads, washing with Wash buffer (WSB) twice. The sample was then 

eluted in Elution Buffer (ELB) and mixed with RNA running buffer (RRB) prior to loading 
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onto a primed R9.4.1 flowcell, and ran on a MinION sequencer with MinKNOW 

acquisition software version 1.15.1. The sequencing was performed in independent 

days and using a different flowcell for each sample (UNM, m6A, m5C, hm5C, Ѱ, UNM-

S).  

4.12.7. Direct RNA library preparation and sequencing of yeast 
total RNAs and mRNAs 

Here we performed direct RNA sequencing of two types of S. cerevisiae RNA 

inputs: i) total RNA from S. cerevisiae, and ii) polyA-selected RNA from S. cerevisiae. 

Yeast total RNAs were polyadenylated using E. coli Poly(A) Polymerase (NEB, 

M0276S), following the commercial protocol, prior to starting the library prep. Yeast 

polyA-selected RNA was directly used as input to start the libraries since they already 

contain poly(A) tail. Four different direct RNA libraries were barcoded according to the 

recent protocol that our group recently published [387]. Custom RT adaptors (IDT) were 

annealed using following conditions: custom Oligo A and B were mixed in annealing 

buffer (0.01 M Tris-Cl pH 7.5, 0.05M NaCl) to the final concentration of 1.4 µM each in a 

total volume of 75 µL. The mixture was incubated at 94°C for 5 minutes and slowly 

cooled down (-0.1°C/s) to room temperature. RNA library for direct RNA Sequencing 

(SQK-RNA002) was prepared following the ONT Direct RNA Sequencing protocol 

version DRS_9080_v2_revI_14Aug2019 with half reaction for each library until the RNA 

Adapter (RMX) ligation step. Per reaction (half), 250 ng total of yeast RNAs were 

ligated to pre-annealed custom RT adaptors (IDT) [387] using concentrated T4 DNA 

Ligase (NEB-M0202T), and was reverse transcribed using Maxima H Minus RT 

(Thermo Scientific, EP0752), without the heat inactivation step. The products were 

purified using 1.8X Agencourt RNAClean XP beads (Fisher Scientific-NC0068576) and 

washed with 70% freshly prepared ethanol. 50 ng of reverse transcribed RNA from 

each reaction was pooled and RMX adapter, composed of sequencing adapters with 

motor protein, was ligated onto the RNA:DNA hybrid and the mix was purified using 1X 

Agencourt RNAClean XP beads, washing with Wash Buffer (WSB) twice. The sample 

was then eluted in Elution Buffer (EB) and mixed with RNA Running Buffer (RRB) prior 

to loading onto a primed R9.4.1 flowcell, and ran on a MinION sequencer with 

MinKNOW acquisition software version v.3.5.5. 

4.12.8. NanoCMC-seq 
CMC treatment was adapted from Schwartz et al [121] with minor changes. 

Briefly, 20 ug total RNA was incubated in NEBNext® Magnesium RNA Fragmentation 
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Module at 94°C for 1.5 minutes. The fragmented RNA was then incubated with either 

0.3 M CMC dissolved in 100 µL TEU buffer (50 mM Tris pH 8.5, 4 mM EDTA, 7 M 

Urea) or 100 µL TEU buffer (no CMC) for 20 minutes at 37°C. Reaction was stopped 

with 100 µL of Buffer A (0.3 M NaOAc and 0.1 mM EDTA, pH 5.6), 700 µL absolute 

ethanol, and 1 µL GlycoBlue (Thermo Scientific, AM9515). RNA in the stop solution 

was chilled on dry ice for 5 minutes, and then centrifuged at maximum speed for 15 

minutes at 4°C. Supernatant was removed and the pellet was washed with 70% 

ethanol. After air drying for a few minutes, the pellet was dissolved in 100 µL Buffer A 

and mixed with 300 µL absolute ethanol and 1 µL GlycoBlue. After chilling on dry ice for 

5 minutes, the solution was then centrifuged at maximum speed for 15 minutes at 4°C. 

Supernatant was removed, and the pellet was washed with 70% ethanol. After washing, 

the pellet was air dried, and resuspended in 40 µL of 50 mM sodium bicarbonate, pH 

10.4, and incubated at 37°C for 3 hours. Furthermore, RNA was mixed with 100 µL 

Buffer A, 700 µl ethanol, and 1 µL Glycoblue overnight at -20°C. The next day, the 

solution was centrifuged at maximum speed for 15 minutes at 4°C and the pellet was 

washed with 70% ethanol and dissolved in the appropriate amount of water after air 

drying. Unprobed and probed RNAs were treated with T4 Polynucleotide Kinase (PNK) 

(NEB, M0201S) as described above before proceeding with ONT Direct cDNA 

sequencing.  

Before starting the library preparation, 9 µL of 100 µM Reverse-transcription 

primer (Original ONT VNP: 5’ 

/5Phos/ACTTGCCTGTCGCTCTATCTTCTTTTTTTTTTTTTTTTTTTTVN 3’) and 9 µL of 

100 µM complementary oligo (CompA: 5’ GAAGATAGAGCGACAGGCAAGTA 3’ ) were 

mixed with 1 µL 0.2 M Tris pH 7.5 and 1 µL 1 M NaCl. The mix was incubated at 94°C 

for 1 minute and the temperature was ramped down to 25°C (-0.1°C/s) in order to pre-

anneal the oligos. Then, 100 ng polyA-tailed RNA was mixed with 1 µL pre-annealed 

VNP+CompA, 1 µL 10 mM dNTP mix, 4 µL 5X RT Buffer, 1 µL RNasin® Ribonuclease 

Inhibitor (Promega, N2511), 1 µL Maxima H Minus RT (Thermo Scientific. EP0742) and 

nuclease-free water up to 20 µL. The reverse-transcription mix was incubated at 60°C 

for 60 minutes and inactivated by heating at 85°C for 5 minutes before moving ontoice. 

Furthermore, RNAse Cocktail (Thermo Scientific, AM2286) was added to the mix in 

order to digest the RNA and the mix was incubated at 37°C for 10 minutes. Then the 

reaction was cleaned up using 1.2X AMPure XP Beads (Agencourt, A63881). In order 

to be able to ligate the sequencing adapters the the first strand, 1 µL 100 µM CompA 

was again annealed to the 15 µL cDNA in a tube with 2.25 µL 0.1 M Tris pH 7.5, 2.25 

µL 0.5 M NaCl and 2 µL nuclease-free water. The mix was incubated at 94°C for 1 
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minute and the temperature was ramped down to 25 °C (-0.1°C/s) in order to anneal 

the complementary to the first strand cDNA. Furthermore, 22.5 µL first strand cDNA 

was mixed with 2.5 µL Native Barcode (EXP-NBD104) and 25 µL Blunt/TA Ligase Mix 

(NEB, M0367S) and incubated in room temperature for 10 minutes. The reaction was 

cleaned up using 1X AMPure XP beads and the libraries were pooled into one tube that 

finally contains 200 fmol library. The pooled library was then ligated to the sequencing 

adapter (AMII) using Quick T4 DNA Ligase (NEB, M2200S) in room temperature for 10 

minutes, followed with 0.65X AMPure XP Bead cleanup using ABB Buffer for washing. 

The sample was then eluted in Elution Buffer (EB) and mixed with Sequencing Buffer 

(SQB) and Loading Beads (LB) prior to loading onto a primed R9.4.1 flowcell, and ran 

on a MinION sequencer with MinKNOW acquisition software version v.3.5.5. 

4.12.9. Analysis of nanoCMC-seq 
Reads were base-called with stand-alone Guppy version 3.6.1 with default 

parameters running in GPU, with built-in demultiplexing tool of Guppy. Unclassified 

reads were then demultiplexed further using Porechop with --barcode_threshold 50 

option (https://github.com/rrwick/Porechop). Then all the merged classified reads were 

mapped to cytosolic and mitochondrial ribosomal RNA sequences in S. cerevisiae using 

minimap2 default. Furthermore, a custom script was used to extract RT-drop signatures 

and the RT-drop scores were plotted using ggplot2. All scripts used to process 

nanoCMC-seq data with RT-Drop information have been made available in GitHub 

(https://github.com/novoalab/yeast_RNA_Mod). Notably, due to the 5’ end truncation of 

the nanopore sequencing reads by ~13 nt, RT-drop positions were shifted by 13 nt to 

accurately determine the exact RT-drop positions. To identify significant RT drops in a 

given transcript, I first computed RT-drop scores at each site, which took the difference 

in the coverage at a given position (0) relative to the previous position (-1). I then 

computed the difference (delta RT drop-off score) in RT-drop scores between CMC-

probed and unprobed conditions. Lastly, I normalised the delta RT drop-off score at 

each position by the median RT drop-off per transcript, leading to final CMC-Scores, 

which can be compared across transcripts. Positions with CMC-Score greater than 25 

were considered significant, i.e. to contain a pseudouridine. It should noted that the 

nanoCMC-seq signal-to-noise ratio is dependent on the coverage of the individual 

transcript.  
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4.12.10. Demultiplexing direct RNA sequencing  
Demultiplexing of the barcoded direct RNA sequencing libraries was performed 

using DeePlexiCon with default parameters [387]. Reads with demultiplexing 

confidence scores greater than 0.95 were kept for downstream analyses. I used a 

lower score in the case of polysomal fractions and mRNA runs (0.8), due to the low 

read coverage of some fractions and/or genes. It should be noted that the dataset was 

also analysed using 0.95 threshold, and results and conclusions of the analysis did not 

change, compared to those obtained using 0.80 threshold.  

4.12.11. Base-calling direct RNA sequencing 
Reads were base-called with stand-alone Albacore versions 2.1.7 and 2.3.4 

with the --disable_filtering parameter, and stand-alone Guppy versions 2.3.1 and 3.0.3 

with default parameters running in CPU. In-house scripts were used for computing the 

number of unique and common base-called reads between the different approaches, 

as well as to compare the tendency of each base-caller regarding read lengths and 

qualities. Both Albacore and Guppy are available to ONT customers via their 

community site (https://community.nanoporetech.com/). Differences between the base-

called features using distinct base-callers were determined using Kruskal-Wallis test 

with Bonferroni correction for pairwise comparisons, whereas differences between 

unmodified and modified sites were assessed using Mann-Whitney-Wilcoxon test.  

4.12.12. Mapping algorithms and parameters 
Reads were mapped using either Minimap2 [365] or GraphMap [366]. Minimap2 

version 2.14 was run with two different parameter settings: (i) minimap2 -ax map-ont, 

which is the recommended setting for direct RNA sequencing mapping, and thus is 

referred to as ‘default’, and (ii) minimap2 -ax map-ont -k 5, which is referred to as 

‘sensitive’. GraphMap version 0.5.2 was also run with two different parameter settings, 

for comparison, (i) graphmap align, using ‘default’ parameters, and (ii) graphmap align -

-rebuild-index -v 1 --double-index --mapq -1 -x sensitive -z 1 -K fastq --min-read-len 0 -

A 7 -k 5, which is expected to increase the tolerance to errors that may occur under the 

presence of RNA modifications, and thus is referred to as ‘sensitive’. Yeast total RNA 

runs were mapped to ribosomal RNAs and non-coding RNA transcripts using 

graphmap with default settings. Yeast poly(A)-selected runs were mapped to the yeast 

genome (SacCer3) using minimap2 with -ax splice -k14 -uf parameters. The scripts can 

be found in the GitHub repository https://github.com/novoalab/yeast_RNA_Mod.  
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4.12.13. Analysis of base-called features in curlcakes 
Sam files were transformed into bam files using Samtools version 1.9 [388], and 

were then sorted and indexed in order to visualise the data using the Integrative 

Genomics Viewer (IGV) version 2.4.16 [389]. Base-called features were extracted with 

EpiNano version 1.1 (https://github.com/enovoa/EpiNano). Principal Component 

Analysis (PCA) was used to reduce the dimensionality of the base-calling error data to 

visually inspect for base-calling differences, using as input the base-called features 

(mismatch frequency, deletion frequency and per-base quality) from all 5 positions of 

each k-mer. Only k-mers that contained a given modification once in the 5-mer were 

included in the analysis. All scripts used to analyse in vitro transcribed sequences 

using different base-calling algorithms and mappers, as well as to generate the Figures 

related to their analysis are available in 

https://github.com/novoalab/Best_Practices_dRNAseq_analysis.  

4.12.14. Analysis of base-called features in yeast RNAs 
Sam files were transformed into bam files using Samtools version 1.9 [388], 

then sorted and indexed in order to visualise the data using the Integrative Genomics 

Viewer (IGV) version 2.4.16 [389]. Base-called features were extracted using EpiNano 

version 1.1 with minor modifications, which consisted in including in the output csv file 

the directionality of mismatched bases (C_frequency, G_frequency, A_frequency, 

U_frequency). The modified EpiNano script can be found at 

https://github.com/novoalab/yeast_RNA_Mod. Scripts for the analysis and visualization 

of base-called features are also included in the same GitHub repository.  

4.12.15. Visualization per-read current intensities using 
Nanopolish  

Nanopolish eventalign output was processed to extract the current intensity 

values corresponding to the 15-mer regions centered in the modified sites, for the 

following sites: (i) 6 Ѱ rRNA sites for which knockout data was available (25S:2133, 

25S:2129, 25S:2826, 25S:2880, 25S:2264, 18S:1187), for all 4 sequencing datasets 

(wild type, snR3-KO, snR34-KO, snR36-KO); (ii) 4 Nm sites for which knockout data 

was available (25S:817, 25S:908, 25S:1133, 25S:1888), for all 4 sequencing datasets 

(wild type, snR60-KO, snR61-KO, snR62-KO); (iii) 7 Ѱ snRNA/snoRNA sites which 

were identified as heat-sensitive, for which there was a minimum of 100 reads of 

coverage. Reads with empty values in the 15-mer region in the Nanopolish eventalign 

output were omitted from the analysis.  
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4.12.16. Analysis of current intensity, dwell time and trace 
In this work, two different softwares to extract current intensity were used, 

namely Nanopolish [390] and Tombo [371]. Nanopolish was used to extract the aligned 

current intensity values per read and position, using the option --scale-events. Mean 

current intensity per-position was computed by summing the current intensities of all 

reads aligned to the same position, divided by the total number of reads mapping at a 

given position. All scripts used to process Nanopolish event align output, including 

scripts to display mean current intensity values along transcripts have been made 

available in GitHub (https://github.com/novoalab/nanoRMS).  

Signal intensity, dwell time and trace were retrieved using get_features.py 

script, which is available as part of nanoRMS. This program internally uses: minimap2 

(read alignment), Tombo (calculation of signal intensity and dwell time) and ont-fast5-

api (retrieval of trace). Trace represents the probability that a given signal intensity 

chunk may be originating from each of the 4 canonical bases (A, C, G and T/U), and it 

is reported relative to the reference base. For example, in a T reference position that is 

incorrectly reported as C (common base-calling error observed for Ѱ sites), the trace 

value will be reported for the reference base (T in this case). Then, the final read 

alignment and all the features are stored into sorted BAM files. All scripts necessary to 

retrieve and store per-read, per-position features and plot/calculate results are 

available within the nanoRMS GitHub repository 

(https://github.com/novoalab/nanoRMS).  

4.12.17. De novo prediction of pseudouridine modifications on 
yeast mitochondrial rRNAs 

To systematically identify Ѱ sites de novo based on the Ѱ base-calling 

signatures, I first extracted the mismatch frequency and per-base mismatch frequency 

(C_freq, A_freq, U_freq, G_freq) from both unmodified (U) and modified (Ѱ) sites from 

cytosolic ribosomal RNAs, from three biological replicates. As expected, C mismatch 

frequency (C_freq) and global mismatch frequency (mis_freq) showed clearly distinct 

distributions when comparing unmodified and Ѱ-modified sites (Figure 4.11A). I then 

determined the optimal cut-points for these two features using the cutpointr package in 

R with oc_youden_kernel method, which applies Kernel smoothing and maximises the 

Youden-Indexing. This approach predicted C_freq=0.137 and mis_freq= 0.587 as 

optimal cut-offs. For the mitochondrial ribosomal RNA, I filtered the uridine sites based 

on the selected features and assigned those that are replicable in three biological 

replicates as “candidate” pseudouridine sites. 
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4.12.18. De novo prediction of pseudouridine modifications in 
yeast mRNAs and non-coding RNAs 

Due to the lower stoichiometry of modification of noncoding RNAs (snRNA and 

snoRNAs) and mRNAs, I focused on analysis of the de novo detection of Ѱ sites 

whose pseudouridylation levels would be changing between two conditions, either by 

comparing normal and stress (heat-shock) conditions, or by comparing the base-calling 

‘error’ patterns of wild type strains and Pus1 or Pus4-deficient strains. Only sites which 

passed the coverage filter (n>30 reads) in both biological replicates from both 

conditions were considered in the analysis. Sites with minimal mismatch frequency 

difference of 0.1 between the two conditions in both replicates that met the identified Ѱ 

signature (C_freq=0.137 and mis_freq= 0.587) were considered as true Ѱ sites that 

were either heat-sensitive, Pus1-dependent, or Pus4-dependent, respectively.  

4.12.19. Prediction of RNA modification stoichiometry using 
nanoRMS 

Per-position features from individual reads were stored in BAM files using 

pysam (https://github.com/pysam-developers/pysam) and stored them either in Numpy 

arrays (https://numpy.org/) or Pandas DataFrames (https://pandas.pydata.org/) using 

the script get_features.py, which is available as part of nanoRMS. Models were trained 

with combinations of features with diverse ranges of sequence contexts surrounding 

the modified sites (k=1-15). Features used to predict stoichiometry included: (i) current 

intensity (SI), (ii) dwell time in the centre of the pore (at position 0, DT/DT0), (iii) dwell 

time at helicase centre (shifted by 10 positions, DT10) and (iv) base probability (trace, 

TR). Estimation of modification frequency was performed using unsupervised (GMM, 

KMEANS, IsolationForest, OneClassSVM) and supervised (KNN, RandomForest) 

machine learning methods implemented in sklearn (https://sklearn.org/). Plots were 

built using matplotlib and seaborn (https://seaborn.pydata.org/).   

Trained models were first benchmarked with unmodified (KO) and modified 

(WT) reads from rRNA mutants dataset, to identify which machine learning methods 

and which combination of features discriminated between modified and unmodified 

reads. Then, we tested how the diverse models would perform at diverse 

stoichiometries of modification. To this end, we simulated samples with varying levels 

of modification: 0%, 20%, 40%, 60%, 80% and 100% (using mixes of KO and WT 

reads) and estimated the modification level in those simulated samples by comparing 

them to KO (Figure 4.9C).  
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NanoRMS performed best when trained with signal intensity (SI) + trace (TR) as 

features, and when using KNN supervised models or KMEANS unsupervised models, 

both for Ѱ and Nm-modified sites. For mRNA and ncRNA analysis, only sites with more 

than 30 reads of coverage in all conditions and replicates were included for predicting 

RNA modification stoichiometry.  Prediction of RNA modification stoichiometry in 

mRNAs and non-coding RNAs was performed using signal intensity + trace as 

features, and k-means as classification algorithm. Stoichiometry changes were 

reported as the difference in predicted stoichiometry between the two conditions. All 

code and examples to predict RNA modification stoichiometry are available as part of 

the nanoRMS GitHub repository (https://github.com/novoalab/nanoRMS).  

4.13. Discussion 

RNA modifications regulate a wide range of biological processes [13,391,392]. 

They can modulate the fate of RNA molecules by altering mRNA splicing [234,393,394] 

or mRNA decay [395,396], as well as affect major cell and organism-level decisions, 

such as cellular differentiation [199,397] and sex determination[49,201,344]. While the 

biological relevance of RNA modifications is out of question, a major difficulty in 

studying them has been the need for tailored protocols to map each modification 

individually [48,249]. In this context, direct RNA nanopore sequencing can overcome 

many of the limitations that NGS-based methods suffer from, as it can sequence full-

length native RNA molecules, including their RNA modifications. 

  Direct RNA nanopore sequencing has been successfully applied in a wide 

variety of organisms [255,257,353,398–401]. However, the detection of distinct RNA 

modification types in individual native RNA molecules is still an unsolved challenge. 

While both current intensity-based and ‘error’-based methods have proven useful 

strategies to detect RNA modifications, these have been mainly focused on the 

detection of m6A [255,257,353,354]-, and are typically unable to predict which RNA 

modification type they are in fact detecting (e.g. m6A, Ѱ, Am or m5C) [352,371].  

Moreover, current algorithms to study RNA modifications using direct RNA sequencing 

are not quantitative. 

  To overcome these limitations, here we first explored how distinct RNA 

modifications may affect direct RNA nanopore signals and base-calling ‘errors’. 

Different RNA modification types (e.g. Ѱ versus m5C) produce distinct yet characteristic 

base-calling ‘error’ signatures, both in vitro (Figure 4.1, 4.2F) and in vivo (Figure 4.3). 

Consequently, base-calling errors can be used not only to predict whether a given site 

is modified or not, but also to identify the underlying RNA modification type. While 
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base-calling signatures depend to some extent on the surrounding sequence context, I 

find that Ѱ modifications lead to robust U-to-C mismatch signatures, which can be 

exploited for de novo prediction of Ѱ modifications (Figure 4.11). Through this 

approach, I identified two previously unreported Ѱ modifications in yeast 15S 

mitochondrial rRNA (15S:579 and 15S:Ѱ854), as well as confirmed reported Ѱ-

modified sites in rRNAs, snRNAs and mRNAs (Figures 4.5-4.15). Moreover, I revealed 

that Pus4, which was previously thought to modify only tRNAs and mRNAs, is the 

enzyme responsible for placing Ѱ854 in mitochondrial rRNA. These findings were 

further validated using nanoCMC-seq, a novel orthogonal method that can detect Ѱ 

modifications with single nucleotide resolution by coupling CMC probing to nanopore 

cDNA sequencing (Figure 4.11).  

  While Ѱ modifications can be detected both in the form of base-calling ‘errors’ 

and altered current intensities (Figures 4.5-4.8), the latter does not provide single 

nucleotide resolution, with maximal current intensity shifts often seen a few nucleotides 

away from the real modified site. Thus, current intensity-based methods alone may 

suffer from imprecisions in the assignment of the RNA-modified site. Here the 

combination of both approaches were proposed to be the optimal design to obtain 

stoichiometric information of Ѱ-modified sites with single nucleotide resolution. 

Specifically, once the site has been located using base-calling error features, per-read 

features (current intensity and trace) from the regions surrounding Ѱ or Nm-modified 

site are sufficient to robustly bin the reads into two separate clusters (modified and 

unmodified), and provide good estimates of Ѱ and Nm modification stoichiometries 

(Figure 4.8 and 4.15).   

One surprising feature of base-calling ‘errors’ is that fully modified sites do not 

always lead to same mismatch frequencies, suggesting that mismatch frequencies 

alone cannot be used per se as an estimation of the stoichiometry of the site (Figure 
4.3B). While within the same sequence context, higher mismatch frequencies 

correspond to higher modification levels, this same rule cannot be used to compare 

across distinct RNA-modified sites. It is speculated that the differences observed in 

mismatch frequency across different sites might be in fact a consequence of the 

distinct deviations in current intensity of the modified k-mer relative to unmodified 

counterparts (Figure 4.16D). 

Finally, it should be noted that while nanoRMS allows predicting and studying 

the dynamics of diverse RNA modifications in a quantitative manner, there are caveats 

and limitations, leaving ample room for future improvements. First, not all RNA 

modifications lead to strong alterations in the base-calling features and/or current 
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intensity patterns, such as 2'-O-methylcytosine (Cm), which is poorly detected in direct 

RNA sequencing datasets, compared to other RNA modifications (Figure 4.3C). 

Second, the detection of RNA modifications is partly dependent on the sequence 

context; for example, detect 25S:Gm908 could not be detected (Figure 4.5). Similarly, 

some Ѱ-modified sites, such as 18S:Ѱ1187, cause weaker alterations in base-calling 

features and current intensity shifts than other Ѱ-modified positions (Figures 4.8-4.8), 

although this limitation can be alleviated by the incorporation of additional features into 

the model (Figure 4.9C). Third, not all RNA modifications lead to base-calling errors 

with single nucleotide resolution, as with pseudouridine. For example, 2'-O-

methylations often affect neighboring bases (Figure 4.5C and 4.7A), making it 

challenging to de novo predict modified sites without any prior information. Fourth, 

stoichiometry prediction is heavily affected by the choice of resquiggling algorithms 

(Figure 4.9 and 4.17). For example, stoichiometry in 25S:Ѱ2264 could not be predicted 

when using resquiggling due to the low number of reads that the Nanopolish algorithm 

was able to resquiggle (Figure 4.7E); however, this limitation could be overcome when 

using Tombo resquiggling, leading to stoichiometry predictions similar to those 

observed using Mass Spectrometry (Figure 4.8D). Finally, it should be noted that while 

nanoRMS was successful at detecting RNA modification stoichiometry changes as low 

as 5-10% (Figure 4.15), the detection of RNA modification changes in low modification 

stoichiometry sites was only possible when using pairwise comparisons. 

Despite these challenges and limitations, this work provides a framework for the 

systematic and comprehensive analysis of the epitranscriptome with single molecule 

resolution, showing that direct RNA sequencing can be employed to estimate Ѱ and 

Nm modification stoichiometry as well as to de novo predict Ѱ RNA modifications 

transcriptome-wide, in rRNAs, ncRNAs and mRNAs. Future work will be needed to 

functionally dissect the biological roles and dynamics of RNA modifications, to better 

comprehend how and when the epitranscriptome is tuned to regulate diverse cellular 

functions. 
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Figure 4.17 - Benchmarking Ѱ and Nm stoichiometry predictions using signal 
intensity features from varying k-mer sizes and resquiggling softwares.  

(A) Comparison of stoichiometry prediction using signal intensity features of 3-mers 
(k=3) or 15-mers (k=15) centered in the modified site, using either Tombo or 
Nanopolish resquiggling. (B) Comparison of stoichiometry prediction using signal 
intensity features of 1, 3, 5, 7, 9, 11, 13 and 15-mers centered in the modified site from 
Tombo resquiggled reads. For each k-mer and resquiggling algorithm, we computed 
the stoichiometry using mixtures of reads from wild type and knockout strains for the 6 
pseudouridine (upper panels) and 4 2’-O-methylated sites (lower panels) used in this 
work. The colors of the boxplots correspond to the proportion of reads from the wild 
type strain, ranging from 0% (light blue, all reads come from knockout strain) to 100% 
(darkest blue, all reads come from wild type strain). Box, first to last quartiles; whiskers, 
1.5x interquartile range; center line, median; points, outliers. 
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5. Nano3P-seq: transcriptome-wide analysis 
of gene expression and tail dynamics using 
end-capture nanopore sequencing 

 
This chapter contains material described in the manuscript that is submitted for 

publication (Begik et al., 2021) [402].  

I have performed most of the wet-lab experiments and data analyses with the 

help of other authors in the publication. I also drafted the manuscript with Eva Maria 

Novoa. 

Huanle Liu contributed with custom scripts for the analysis of tails.  

Anna Delgado-Tejedor analysed the direct RNA sequencing of the zebrafish, 

which contributed to making the Figure 5.3 E, F. 

Cassandra Kontur, Antonio J. Giraldez and Jean-Denis Beaudoin provided the 

zebrafish embryo RNA samples used in the study. 

Eva Maria Novoa and John S. Mattick supervised this study. 
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5.1. Introduction 

One context where polyadenylation has been shown to play a major role in 

determining RNA fate and decay is vertebrate embryogenesis [403]. Indeed, vertebrate 

embryos undergo a major cellular reprogramming in the first hours post-fertilization, 

known as the Maternal-to-Zygotic Transition (MZT) [404]. During the MZT, maternally 

inherited RNAs and proteins are responsible for the activation of the zygotic genome, 

and are later replaced by the zygotic program [405,406]. Because the MZT begins in a 

transcriptionally silent embryo, it relies heavily on post-transcriptional regulatory 

mechanisms [404], including the modulation of the polyadenylation status of the RNA 

molecules [42,403]. Therefore, characterizing the dynamics of RNA polyadenylation is 

key to understanding how these modifications regulate the fate and function of RNA 

molecules.  

In the last few years, several transcriptome-wide methods to study the 

dynamics of polyadenylated (polyA) tails using next-generation sequencing (NGS) 

have become available, such as PAL-seq or TAIL-seq [42,265]. While these methods 

have been successfully employed to characterise the dynamics of polyA tail lengths in 

various contexts, they have several important caveats: (i) they provide a limited 

perspective on isoform-tail relationships due to the short read length nature of NGS-

based technologies; (ii) they do not provide single molecule resolution; (iii) they are 

severely affected by PCR amplification biases; and (iv) they can only measure tail 

lengths that are shorter than the read length.  

To overcome these limitations, the direct RNA sequencing (dRNA-seq) platform 

offered by Oxford Nanopore Technologies has been proposed as a means to study 

both the transcriptome and polyA tail lengths simultaneously [272]. To sequence native 

RNAs using dRNA-seq, polyA-tailed RNA molecules are ligated to a 3’ adapter that 

contains an oligo(dT) overhang (Figure 5.1A). Consequently, dRNAseq libraries will 

capture the full-length polyA tail; however, ligation will only occur on RNA molecules 

that anneal to the oligo(dT) overhang, thus capturing exclusively polyadenylated 

transcripts with tail lengths greater than 10nt. An alternative approach to study the 

transcriptome using nanopore technologies is direct cDNA sequencing (dcDNA-seq), 

but this approach is unable to sequence the polyA(-) transcriptome, in addition to being 

unable to capture the polyA tail length information (Figure 5.1A). Overall, both dRNA-

seq and dcDNA-seq nanopore library preparation protocols are limited to the 

sequencing of polyadenylated transcripts, and thus cannot provide a comprehensive 

view of both polyadenylated and deadenylated RNA molecules, in addition to being 

unable to capture RNA molecules with other types of RNA tails (e.g., polyuridine).  
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Here, we present a novel method that employs nanopore sequencing to 

simultaneously obtain per-isoform transcriptome abundance and tail lengths in full-

length individual reads, with minimal library preparation steps, which is termed 

Nanopore 3 Prime end-capture sequencing (Nano3P-Seq) (Figure 5.1A). Notably, 

Nano3P-seq uses template switching to initiate the reverse transcription, and therefore, 

does not require 3’ end adapter ligation steps, PCR amplification, nor second strand 

cDNA synthesis. Nano3P-Seq can capture any type of RNA molecule regardless of its 

3’ sequence, including polyA-tailed and non-tailed RNAs. Moreover, Nano3P-seq can 

accurately quantify RNA abundances in both the coding and non-coding transcriptome, 

and can be used to estimate tail lengths in individual RNA molecules, and is highly 

reproducible across biological replicates.  

5.2. Nano3P-Seq captures both polyadenylated and 
non-polyadenylated RNA molecules in a quantitative 
and reproducible manner 

Because nanopore sequencing is typically limited to the analysis of polyA(+) 

RNA molecules (Figure 5.1A), previous efforts have opted to perform an in vitro 

polyadenylation reaction of the total RNA [351] to capture non-polyadenylated RNAs in 

the sequencing run. While this option allows capture of any given transcript present in 

the sample, it also leads to a loss of polyA tail length information. Therefore, we 

reasoned that by coupling template switching to cDNA nanopore sequencing we would 

simultaneously capture the polyA(+) and polyA(-) transcriptome, while retaining the 

polyA tail length information from each individual RNA molecule (Figure 5.1A).  

In order to assess the ability of Nano3P-seq to sequence both polyA(+) and 

polyA(-) RNAs, I first sequenced two synthetic RNAs, one lacking a polyA tail, and a 

second that had been in vitro polyadenylated (see Methods) (Figure 5.2A-C). The 

results show that Nano3P-seq is able to capture both polyadenylated and non-

polyadenylated RNA molecules, as well as the diversity of polyA tail lengths in 

individual RNAs (Figure 5.2C). I then examined the performance of Nano3P-Seq in 

vivo samples, and sequenced total RNA samples from mouse brain, previously 

enriched in nuclear and mitochondrial content via subcellular fractionation to increase 

the content of non-coding RNAs [407] (see Methods). I confirmed that Nano3P-seq 

captured RNA biotypes that are typically polyadenylated (i.e. mRNAs, lincRNAs, 

processed transcripts) as well as non-adenylated (i.e. rRNA, miscRNA, snoRNA), the 

majority of them being  rRNA and mRNAs (Figure 5.1B, see also Figure 5.2D). In 

addition, the results confirmed that polyA tail length information was retained in 
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individual reads. Specifically, the majority of reads corresponding to mRNAs had polyA 

tails (Figure 5.1C, see also Figure 5.2E,F), whereas non-coding RNAs such as 

snoRNAs (Figure 5.2F) or snRNAs did not have polyA tails (Figure 5.2G), as could be 

expected.  

To assess the accuracy and reproducibility of Nano3P-seq to quantify RNA 

abundances, I then examined the performance of Nano3P-seq in synthetic RNA mixes 

(sequins) [408] that had been spiked into the samples in independent flow cells. The 

results showed that Nano3P-seq provided accurate estimates of RNA abundances 

(Pearson's r^2: 0.976) (Figure 5.1D), and that these quantifications were highly 

reproducible across replicables (Pearson’s r^2: 0.995) (Figure 5.2H).  

Figure 5.1 - Nano3P-seq captures polyadenylated and non-polyadenylated RNAs, 
while retaining polyA tail length information.  

(A) Schematic overview comparing 3 different library preparation methods to study the 
transcriptome using nanopore sequencing: i)  standard direct RNA nanopore 
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sequencing  (left panel), ii) standard direct cDNA nanopore sequencing (middle panel) 
and iii) Nano3P-seq (right panel). (B) Nano3P-seq captures a wide range of RNA 
biotypes in the mouse brain. (C) IGV snapshot of reads generated with Nano3P-seq, 
mapped to Ubb gene, illustrating the diversity of polyA tail lengths captured across 
different reads. The polyA tail region is shown in green. (D) Scatterplot of the expected 
and observed counts of sequins (Pearson’s r^2 : 0.976). Each dot represents a sequin. 
See also Figure 5.2.  Abbreviations: RMX, RNA adapter mix (provided with SQK-
RNA002 direct RNA sequencing library preparation kit); AMX: adapter mix  (provided 
with SQK-DCS109, direct cDNA sequencing library preparation kit).  
 

 

Figure 5.2 - Nano3P-seq captures non-poly(A)-tailed and poly(A)-tailed RNAs  

(A) Tapestation profiles of  synthetic RNAs (‘curlcakes’) after being in-vitro transcribed 
and poly(A) tailed (pA). (B) Tapestation profiles of the input RNA (curlcake mix) for 
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reverse-transcription and cDNA produced after annealing based or template-switching 
based (Nano3P-seq) reverse-transcription (C) IGV snapshots of synthetic RNAs 
illustrating that Nano3P-seq captures both non-polyadenylated (left) and 
polyadenylated (right) RNAs. In addition, a diversity of poly(A) tail lengths are also 
captured by Nano3P-seq, which are shown in green (right panel).(D) Pie chart showing 
the abundance of different RNA types in Nano3P-seq of nuclear/mitochondria enriched 
RNA. (E) IGV snapshot of reads mapping to Aldoc gene with poly(A) tail shown in 
green. (F) IGV snapshot of reads mapping to Rps3 and Snord15b genes. Poly(A) tail 
can be seen in green on the reads mapping to Rps3 mRNA, while it can’t be seen in 
Snord15b snoRNA. (G) IGV snapshot of reads mapping to Rn7sk miscRNA, which are 
not expected to contain poly(A) tails. (H) Correlation of per-gene counts observed in 
synthetic sequins that were used as spike-ins in the sequencing runs. 

 

5.3. Nano3P-seq recapitulates the dynamics of coding 
and non-coding RNAs during vertebrate 
embryogenesis  

Next, I examined the RNA dynamics that occurs during the MZT (Figure 5.3A) 

at single molecule resolution using Nano3P-seq. To this end, we isolated total RNAs 

from zebrafish embryos at 2, 4 and 6 hours post-fertilization (hpf) in biological 

duplicates, ribo-depleted the samples, and sequenced them using the Nano3P-seq 

protocol (Figure 5.4A-B, see also Methods). Quantification of the RNA abundances in 

both biological replicates showed that per-gene counts obtained using Nano3P-seq 

were highly reproducible across biological replicates  (r^2= 0.931-0.956) (Figure 5.3B).  
A comparative analysis of RNA population dynamics across time points showed 

that Nano3P-seq recapitulated the transcriptomic switch that occurs during the MZT 

[404,405], with a drastic decay of maternal mRNAs (Figure 5.3C), in agreement with 

previous studies [43,409]. Notably, in addition to polyadenylated RNAs, Nano3P-seq 

captured a wide variety of RNA biotypes without polyA tail that are also present in early 

embryo stages, finding that the abundance of non-coding RNA populations, including 

misc RNAs, scaRNAs and snoRNAs, increased as the MZT progressed (Figure 5.3D). 

By contrast, much fewer non-coding RNA populations were globally captured when 

using direct RNA nanopore sequencing on the same samples (Figure 5.3E).  

It’s noted, however, that mitochondrial rRNAs were not enriched in Nano3P-seq 

datasets relative to dRNAseq datasets (Figure 5.3F). Indeed, per-read analysis of 

mitochondrial rRNA reads revealed that a significant proportion of 16S mitochondrial 

rRNA contained a polyA tail, which explained the lack of enrichment of mitochondrial 
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rRNAs in Nano3P-seq datasets, relative to dRNAseq datasets.  In agreement with this 

observation, I found that polyA tailed 16S mitochondrial rRNAs were not only present in 

zebrafish, but also in mouse, suggesting that this feature is conserved across species, 

and not a sequencing artefact (Figure 5.4C-E), in agreement with previous reports 

[410].  

 

Figure 5.3 - Nano3P-seq captures a wide diversity of coding and non-coding 
RNAs and their expression dynamics during the MZT.  

(A) Schematic overview of the transcriptional change that occurs during the maternal-
to-zygotic transition (MZT) in zebrafish. (B) Scatterplots depicting the correlation of 
mRNA gene counts between biological replicates in three different time points during 
the MZT. (C) Changes in mRNA abundance during the MZT (t=2, 4 and 6 hpf), relative 
to 2 hours post-fertilization (hpf). Genes previously reported to have ‘maternal decay 
mode’ are depicted in red. (D) Barplots depicting the abundance of different RNA 
biotypes captured by Nano3P-seq during the MZT. (E) Relative proportion of coding 
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and noncoding RNAs captured using direct RNA sequencing (on PolyA-selected 
samples), Nano3P-seq (on PolyA-selected samples) and Nano3P-seq (on Ribo-
depleted samples). (F) RNA abundances of distinct biotypes captured using direct RNA 
sequencing (on PolyA -selected samples) (green), Nano3P-seq (on PolyA-selected 
samples) (orange) and Nano3P-seq (on Ribodepled samples) (dashed orange). See 
also Figure 5.4. 

 

Figure 5.4 - Analysis of abundances and poly(A) tails in mitochondrial rRNAs.  

(A) Tapestation profiles of RNAs from zebrafish embryos at different developmental 
time points (2,4,6 hours post-fertilization). Profiles include total RNA, ribodepleted RNA 
and poly(A)+ selected RNA. (B) Tapestation profiles of the reverse-transcription 
products of ribodepleted (left) and poly(A)+ selected (right) samples from zebrafish 
embryos collected at different developmental time points (2,4,6 hours post-fertilization). 
(C) mRNA abundances (log scaled) of 12s and 16s mitochondrial rRNAs in poly(A)+ 
selected (left) and ribodepleted (right) samples. (D) IGV snapshot of reads mapping to 
zebrafish 16s mitochondrial rRNA, where reads have been grouped as non-poly(A) 
tailed and poly(A) tailed based on their predicted poly(A) tail length. Poly(A) tail region 
is shown with an arrow. (E) IGV snapshot of reads mapping to mouse 16s 
mitochondrial rRNA, where reads have been grouped as non-poly(A) tailed and poly(A) 
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tailed based on their predicted poly(A) tail length. Poly(A) tail region is shown with an 
arrow.  
 

5.4. PolyA tail lengths can be accurately estimated 
using Nano3P-seq 

We then examined whether Nano3P-seq could be used to accurately estimate 

polyA tail lengths. It should noted that algorithms to detect polyA tails in native RNA 

nanopore sequencing reads are well established and benchmarked [272,390,401,411], 

but their applicability to cDNA reads, such as those from Nano3P-seq, remains unclear. 

To this end, I first examined whether the tailfindR polyA tail prediction software [411] 

would be able to capture the presence or absence of polyA tails on synthetic RNAs that 

were either polyadenylated or non-polyadenylated and had been sequenced using 

Nano3P-seq, finding that tailfindR was able to capture both polyadenylated and non-

polyadenylated Nano3P-seq reads (Figure 5.5A). Then, I assessed the accuracy of the 

polyA tail length predictions of tailfindR in Nano3P-Seq datasets that included a battery 

of synthetic RNAs (sequins) [408] with known polyA tail lengths. The results showed 

that polyA tail length estimations in Nano3P-seq data were highly reproducible across 

replicates (r^2= 0.993, Figure 5.6A,B), and with an accuracy similar to that observed 

when performing polyA tail length estimations in sequins that had been sequenced 

using dRNAseq (Figure 5.5B). Moreover, the variance of tail length estimates across 

reads that belonged to the same transcript was smaller in Nano3P-seq datasets than in 

direct RNA sequencing datasets (Figure 5.6C,D). Finally, I performed a comparative 

analysis of mouse mRNA polyA tail lengths with those from yeast and zebrafish. I 

observed that mouse mRNAs showed longest mRNA tails among the 3 species with 

median polyA tail lengths of 106nt, whereas the shortest polyA tail lengths were 

observed in yeast, with median polyA tail length of 25nt (Figure 5.5C), in agreement 

with previous studies [42]. 
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Figure 5.5 - Nano3P-seq can be used to accurately estimate polyA tail lengths in 
individual molecules.  

(A) polyA tail length estimates of non-polyadenylated and polyadenylated synthetic 
RNAs sequenced with Nano3P-seq. (B) Comparison of per-read polyA tail length 
estimates of R1 and R2 sequins, which contain 30 nt and 60 nt polyA tail lengths, 
respectively, calculated using dRNAseq (green) and Nano3P-seq (orange). (C) PolyA 
tail length distribution of yeast, zebrafish and mouse mRNAs represented as single 
transcript (left panel) and per-gene median (right panel).(D) PolyA tail length estimation 
of different gene types from nuclear/mitochondrial enriched mouse brain total RNA. 
Each dot represents a read. (E)  Replicability of per-gene polyA tail length distributions 
of zebrafish embryonic mRNAs between two biological replicates, for the three different 
time points analysed (2, 4 and 6 hpf) . (F) Median per-gene polyA tail length distribution 
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of zebrafish embryonic mRNAs at 2, 4 and 6 hpf. The first biological replicate is 
represented by a continuous line, whereas the second biological replicate is 
represented by a dashed line. (G) Comparative analysis of the mRNA abundances 
(shown as log2 counts) of zebrafish mRNAs that have been binned according to their 
previously annotated decay mode (maternal, miR-430, zygotic and rest) during 
embryogenesis (t= 2, 4 and 6 hpf). Statistical comparison of means was performed 
using Kruskal-Wallis test. (H) Median tail length estimations of zebrafish mRNAs that 
have been binned according to their decay mode (maternal, miR-430, zygotic and rest) 
at 2, 4 and 6 hpf. Statistical analyses were performed using Kruskal-Wallis test. See 
also Figures 5.6 and 5.7. 
 
 

5.5. Charting polyA tail length dynamics in vivo with 
Nano3P-seq 

We then wondered whether Nano3P-seq could be used to investigate the polyA 

tail length dynamics in vivo. I first examined the ability of Nano3P-seq to properly 

identify which RNA biotypes were polyadenylated in mouse brain total RNA samples, 

which had been previously enriched in nuclear/mitochondrial content to increase the 

proportion of ncRNAs. PolyA tails were mainly predicted on mRNAs, but also in 

lincRNAs and processed transcripts, which are also known to be polyadenylated 

[412,413] (Figure 5.5D).  

I next analysed the polyA tail length dynamics across developmental stages of 

zebrafish mRNAs during the MZT (t=2, 4 and 6 hpf). PolyA tail length estimates were 

highly reproducible across independent biological replicates sequenced in independent 

flowcells, and for all 3 time points studied (r^2= 0.899-0.970) (Figure 5.5E). I observed 

an overall increase in mean mRNA polyA tail lengths during the MZT (Figure 5.5F, see 

also Figure 5.6E,F), in agreement with previous reports (Figure 5.7A-B). All mRNAs 

examined were found to be polyadenylated, with the exception of histone mRNAs, 

which had a median polyA tail length of zero (Figure 5.6G, see also Table S2), in 

agreement with previous studies reporting their non-polyadenylated status [414]. 

Moreover, these findings show that Nano3P-seq is able to capture RNA molecules with 

structured 3’ends, such as those found in histones [415].  

Finally, I examined the correlation between polyA tail length dynamics and 

mRNA decay. To this end, mRNA transcripts were binned depending on their decay 

mode (maternal decay, zygotic activation-dependent decay, miR-430-dependent decay 

and no decay), as previously described [416]. I observed that the 3 groups of mRNAs 

that are known to decay (maternal, zygotic and miR-430) showed a significant 
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decrease in their mRNA abundances (Figure 5.5G), as could be expected. However, 

the patterns of polyA tail length dynamics heavily varied depending on the decay mode 

of the transcript (Figure 5.5H). Specifically, I observed that transcripts that decayed in 

a mir430-dependent manner showed a significant shortening of their polyA tail lengths 

during the MZT, in agreement with previous studies [43,417]. By contrast, in mRNAs 

with zygotic genome activation-dependent decay mode this shortening only occurred 

after 4 hpf, and maternal mRNAs did not present a shortening in their polyA tail 

lengths, but rather showed a consistent increase in their tail lengths throughout the 

MZT. These observations were also consistent with the reanalysis of the PAL-seq data 

(Figure 5.7C-D). These results show that not all decay modes are associated with 

shortening of transcript polyA tail lengths, and demonstrate the applicability of Nano3P-

seq to identify polyadenylated RNA populations, study their RNA abundance and 

estimate their polyA tail length dynamics, at both the global level and the level of 

individual transcripts. Moreover, these results highlight the potential of Nano3P-seq to 

provide mechanistic insights on different gene regulatory programs.  

Figure 5.6 - Analysis of poly(A) tail lengths using Nano3P-seq.  

(A) Current intensity plot of a synthetic poly(A)+ read, obtained using Nano3P-seq. The 
homopolymeric poly(T) region is highlighted in orange. (B) Replicability of median per-
gene poly(A) tail length estimation in sequins captured with Nano3P-seq. The poly(A) 
tail length of synthetic sequins is 30nt (R1_sequins) or 60nt (R2_sequins). (C) Overall 
comparison of poly(A) tail length estimation of R1 and R2 sequins which contain 30 nt 
and 60 nt poly(A) tail lengths, respectively, obtained using dRNAseq (green) and 
Nano3P-seq (orange). (D) Per-transcript variance of poly(A) tail length estimations of 



               
 

     Chapter 5 

 
 
 

185 

sequins obtained using dRNAseq (green) and Nano3P-seq (orange). (E) Distribution of 
poly(A) tail lengths in mRNAs across zebrafish developmental stages (2, 4 and 6hpf, 
shown in red, green and blue respectively) in two biological replicates (shown as full 
lines and dashed lines, respectively). (F) Median per-gene poly(A) tail length 
distribution of mRNAs during the zebrafish MZT (t=2, 4 and 6hpf). (G) IGV snapshot of 
reads mapping to hist1h2a6 mRNA, which do not contain poly(A) tails.  
 
 

 
 
 

Figure 5.7 - Comparison of poly(A) tail length estimations using PAL-Seq and 
Nano3P-seq.  

(A) Scatterplots of per-gene poly(A) tail length estimations using Nano3P-seq and PAL-
seq from zebrafish mRNAs at 2 hpf (left), 4 hpf (middle) and 6 hpf (right). Each dot 
represents the median poly(A) tail length of a given gene. (B) Boxplots depicting the 
distribution of poly(A) tail lengths during the zebrafish MZT, estimated using PAL-Seq 
(left) or Nano3P-seq (right). Statistical comparison of means was made using Kruskal 
Wallis test. (C) Comparative analysis of the mRNA abundance (shown as log2 RPKM) 
for the 4 groups of zebrafish mRNAs (maternal, miR-430, zygotic and rest) during 
embryogenesis (t= 2, 4 and 6 hpf) using PAL-seq data. Statistical comparison of means 
was performed using Kruskal-Wallis test. (D) Median tail length estimations of the 4 
groups of zebrafish mRNAs (maternal, miR-430, zygotic and rest) at 2, 4 and 6 hpf 
using PAL-seq data. Statistical analyses were performed using Kruskal-Wallis test. 
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5.6. Nano3P-seq captures isoform-specific differences 
in polyA tail dynamics during the MZT 

A major feature that sets apart nanopore sequencing from next-generation 

sequencing is its ability to produce long reads, allowing to study polyadenylation 

dynamics at the isoform level. Thus, we examined whether Nano3P-seq could identify 

differentially polyadenylated transcript isoforms during the MZT. 

To perform isoform-specific polyA tail dynamics analyses, individual reads were 

first assigned to their corresponding isoform based on the latest genome annotations 

(see Methods). Only those reads mapping to genes encoding for at least 2 annotated 

isoforms and with mapping coverage  greater than 10 reads per isoform were kept for 

further analyses. I first compared isoform-specific polyA tail lengths across isoforms 

encoded by the same gene, finding that 5.2% of analysed genes presented significant 

differences in their polyA tail lengths across isoforms , and that these differences were 

often conserved across the different time points analysed (Figure 5.8A). However, in 

other cases, the behaviour of polyA tails across isoforms was markedly distinct as the 

MZT progressed (Figure 5.8B,C, see also Figure 5.9), showing that the regulation of 

polyA tail dynamics occurs at the level of individual isoforms, and that these changes 

are likely missed in per-gene analyses if the dynamically regulated isoform is not the 

most abundant.  

I then examined whether polyA tail lengths significantly diverged across time 

points at per-isoform level, finding that 11.7% of analysed transcripts significantly 

varied their polyA tail lengths during the MZT (Figure 5.8D,E). These results show that 

polyA tail length dynamics is not only dependent on the gene and embryogenesis 

stage, but is also specific to individual transcript isoforms. Moreover, it demonstrates 

that Nano3P-seq can provide transcriptome-wide measurements of the polyadenylation 

status of diverse biological samples with both single read and single isoform resolution. 

5.7. Detection of isoform-specific RNA modifications 
using Nano3P-Seq 

RNA molecules are decorated with chemical modifications, which have been 

shown to be essential for the stability, maturation, fate and function of the RNAs 

[13,200,256,418]. Some of these modifications occur in base positions that are 

involved in the Watson-Crick base-pairing, causing a disruption during the reverse 

transcription, and consequently, can be seen as increased ‘errors’ and drop-off rates in 

RNA-seq datasets [115,127,244,419].  
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I examined the mismatch frequencies of pre-rRNAs and mature rRNAs in 

mouse and yeast using Nano3P-seq. Pairwise comparison of mismatch frequencies 

observed in reads mapped to pre-rRNAs relative to those mapped to mature rRNAs 

revealed that the correlation between the two samples was very high, with the 

exception of one nucleotide position, which corresponded to the m1acp3Y-modified 

position (Figure 5.10A,B). This observation was consistent both in mouse and yeast, 

and was accompanied by a marked drop-off in coverage just before the m1acp3Y 

modified site (Figure 5.10C,D). Therefore, the results demonstrate that m1acp3Y is a 

rRNA modification that is acquired in late rRNA maturation stages, as it is not present 

in pre-rRNA molecules, which is in agreement with previous observations [420]. 

Altogether, the results demonstrate that Nano3P-seq can identify isoform-specific 

and/or maturation-dependent RNA modifications in the form of altered mismatch 

frequencies and/or reverse transcription drop-offs.  
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Figure 5.8 - Isoform-specific polyA tail dynamics can be captured using Nano3P-
seq.  

(A,B) Comparison of polyA tail length distributions of reads mapping to distinct 
isoforms of eif4e1c (A) and khdrbs1a (B), measured at 3 time points during the 
zebrafish MZT. Only isoforms with more than 10 reads are shown.  Each dot 
represents the estimated polyA tail length from an individual read. The number of reads 
included in the analysis is shown below each boxplot. P-values have been computed 
using Kruskal-Wallis test and corrected for multiple testing using Benjamini-Hochberg. 
(C)  Detailed analysis of isoform-specific polyadenylation patterns of the khdrbs1a 
gene, from zebrafish embryos at 2 hpf using Nano3P-seq. All 4 annotated transcripts 
are shown at the top of the panel, from which only two are detected at 2 hpf. 
Polyadenylated tails of individual reads are shown in red. (D,E)'B:64-%".:5':='4:13@'
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Figure 5.9 - Analysis of Isoform-specific poly(A) tail dynamics using Nano3P-seq.  

Examples of genes with differentially polyadenylated isoforms between 2 and 6 hpf. 
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Figure 5.10 - Nano3P-seq identifies differential RNA modified sites in pre-rRNAs 
and mature rRNAs.  

(A) Comparison of the per-site mismatch frequencies observed in reads mapping to 
mouse (A) and yeast (B) 18S pre-rRNA, relative to 18S rRNA, showing that the unique 
outlier identified is m1acp3Y.  (C,D) IGV coverage tracks of reads mapping to mouse 
(C) and yeast (D) 18S rRNA (upper track) and 18S pre-rRNA (lower track), including a 
zoom on the position that is known to be modified with m1acp3Y. Positions with 
mismatch frequency lower than 0.1 are shown in gray.  

 

5.8. Materials and Methods 

5.8.1. In vitro transcription of RNAs  
The synthetic ‘curlcake’ sequences [255] (Curlcake 1, 2244 bp and  Curlcake 2, 

2459 bp) were in vitro transcribed using Ampliscribe™ T7-Flash™ Transcription Kit 

(Lucigen-ASF3507). Curlcake 2 was polyadenylated using E. coli polyA Polymerase 

(NEB-M0276S). polyA-tailed RNAs were purified using RNAClean XP beads. The 

quality of the in vitro transcribed (IVT) products as well as the addition of polyA tail to 

the synthetic constructs was assessed using Agilent 4200 Tapestation (Figure 5.1A). 
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Concentration was determined using Qubit Fluorometric Quantitation. Purity of the IVT 

products was measured with NanoDrop 2000 Spectrophotometer.  

5.8.2. Yeast culturing and total RNA extraction 
Saccharomyces cerevisiae (strain BY4741) was grown at 30ºC in standard YPD 

medium (1% yeast extract, 2% Bacto Peptone and 2% dextrose). Cells were then 

quickly transferred into 50 mL pre-chilled falcon tubes, and centrifuged for 5 minutes at 

3,000 g in a 4ºC pre-chilled centrifuge. Supernatant was discarded, and cells were 

flash frozen. Flash frozen pellets were resuspended in 700 µL Trizol with 350 µL acid 

washed and autoclaved glass beads (425-600 µm, Sigma G8772). The cells were 

disrupted using a vortex on top speed for 7 cycles of 15 seconds (the samples were 

chilled on ice for 30 seconds between cycles). Afterwards, the samples were incubated 

at room temperature for 5 minutes and 200 µL chloroform was added. After briefly 

vortexing the suspension, the samples were incubated for 5 minutes at room 

temperature. Then they were centrifuged at 14,000 g for 15 minutes at 4ºC and the 

upper aqueous phase was transferred to a new tube. RNA was precipitated with 2X 

volume Molecular Grade Absolute ethanol and 0.1X volume Sodium Acetate. The 

samples were then incubated for 1 hour at -20ºC and centrifuged at 14,000 g for 15 

minutes at 4ºC. The  pellet was then washed with 70% ethanol and resuspended with 

nuclease-free water after air drying for 5 minutes on the benchtop. Purity of the total 

RNA was measured with the NanoDrop 2000 Spectrophotometer. Total RNA was then 

treated with Turbo DNase (Thermo, #AM2238) with a subsequent RNAClean XP bead 

cleanup.  

5.8.3. RNA isolation from mouse brain  
In order to isolate nuclear/mitochondrial-enriched RNA from the mouse (Mus 

musculus) brain, I followed previously published protocols [421] with minor changes. A 

quarter of a C57BL6/J mouse brain was used for this protocol, and all samples and 

reagents were kept on ice during the protocol. Brain tissue was mined with a razor 

blade into smaller pieces. Cold Nuclei EZ Lysis Buffer (0.01 M Tris-Cl,pH7.5, 0.06M 

KCl, 0.001M EDTA, 1X Protease Inhibitor, 0.5% NP40) was added to the tissue in 1.5 

mL eppendorf tube. The sample was homogenised using a dounce, and the 

homogenate was transferred into a 2mL eppendorf tube. 1 mL of cold Nuclei EZ Lysis 

Buffer was added and mixed, followed by 4 minutes incubation on ice. During the 

incubation, the sample was gently mixed a couple of times using a pipette. 

Homogenate was filtered using a 70 um strainer mesh, and the flowthrough was 
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collected in a polystyrene round-bottom FACS tube and subsequently transferred into a 

new 2 mL tube. The sample was centrifuged at 500g for 5 minutes at 4°C and the 

supernatant was removed. The nuclei/mitochondria enriched sample was resuspended 

in another 1.5 mL EZ Lysis buffer and incubated for 5 minutes on ice. The sample was 

centrifuged at 500 g for 5 minutes 4°C and the supernatant was discarded (cytoplasm). 

500 uL Nuclei Wash and Resuspension Buffer (1M PBS, 1%BSA, RNase Inhibitor) was 

added to the sample and incubated for 5 minutes without resuspending to allow buffer 

interchange. After incubation, 1 mL of Nuclei Wash and Resuspension Buffer was 

added and the sample was resuspended. The sample was centrifuged at 500g for 5 

minutes at 4°C. The supernatant was removed and only ~50 ul was left. Using 1.4 mL 

Nuclei Wash and Resuspension Buffer, the sample was resuspended and transferred 

to a 1.5 mL eppendorf tube. The last washing step was repeated and the pellet was 

resuspended  in 300 uL Nuclei Wash and Resuspension Buffer. RNA was extracted 

using Trizol.  

5.8.4. Zebrafish breeding 
Wild-type zebrafish (Danio rerio) embryos were obtained through natural mating 

of the TU-AB strain of mixed ages (5–18 months). Mating pairs were randomly chosen 

from a pool of 60 males and 60 females allocated for each day of the month. Embryos 

and adult fish were maintained at 28 °C. 

5.8.5. Zebrafish total RNA extraction and polyA selection 
For RNA samples, 25 embryos per developmental stage and per replicate were 

collected and flash frozen in liquid nitrogen. Frozen embryos were thawed and lysed in 

1 mL TRIzol (Life Technologies) and total RNA was extracted using the manufacturer’s 

protocol. Total RNA concentration was calculated by nanodrop.  

For polyA-selected RNA samples, polyadenylated RNAs were isolated with oligo (dT) 

magnetic beads (New England BioLabs) according to the manufacturer’s protocol and 

eluted in 30 µL prior to nanodrop quantification.  

5.8.6. Zebrafish total RNA ribodepletion 
Ribodepletion was performed on zebrafish total RNA using riboPOOL oligos 

(siTOOLs, cat #055) following the manufacturer’s protocol. Briefly, 5 ug total RNA in 14 

uL was mixed with 1 uL resuspended riboPOOL oligos, 5 uL hybridization buffer and 

0.5 uL SUPERase•In RNase Inhibitor (Thermo Fisher,  AM2694). The mix was 

incubated for 10 minutes at 68°C, followed by a slow cool down (3°C/min)  to 37°C for 
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hybridization. In the meantime, Dynabeads MyOne Streptavidin C1 (Thermo Fisher, 

65001) beads were resuspended by carefully vortexing at medium speed. 80 uL of 

bead resuspension (10 mg/mL) was transferred into a tube, which then was placed on 

a magnetic rack. After aspirating the supernatant, 100 uL of bead resuspension buffer 

was added to the sample and beads were resuspended in this buffer by agitating the 

tube. Sample was placed on a magnet and the supernatant was aspirated. This step 

was performed twice. Beads were then resuspended in 100 uL of bead wash buffer 

and placed on magnet in order to aspirate the supernatant. Beads were then 

resuspended in a 160 uL depletion buffer. This suspension was then divided into two 

tubes of 80 uL, which will be used consecutively. 20 uL of hybridised riboPOOL and 

total RNA was briefly centrifuged to spin down droplets and it was pipetted into the tube 

containing 80 uL of beads in depletion buffer. The tube containing the mix was agitated 

to resuspend the solution well. Then the mix was incubated at  37°C for 15 minutes, 

followed by a  50°C incubation for 5 minutes. Immediately before use, the second tube 

containing 80 ul of beads was placed on a magnetic rack and the supernatant was 

aspirated. After the incubation at 50°C,  the first depletion reaction was placed on a 

magnet and the supernatant was transferred into the tube containing the other set of 

beads. The mix was incubated again at 37°C for 15 minutes, followed by a 50°C 

incubation for 5 minutes. After briefly spinning down the droplets, the mix was placed 

on a magnet for 2 minutes. The supernatant was transferred into a different tube and 

cleaned up using RNA Clean & Concentrator-5 (Zymo, R1013).  

5.8.7. Nano3P-Seq library preparation 
The protocol is based on the direct cDNA Sequencing ONT protocol 

(DCB_9091_v109_revC_04Feb2019), with several modifications to be able to perform 

TGIRT template switching. Before starting the library preparation, 1 µL of 100 µM 

R_RNA (Oligo: 5’ 

rGrArArGrArUrArGrArGrCrGrArCrArGrGrCrArArGrUrGrArUrCrGrGrArArG/3SpC3/ 3’) 

and 1 µL of 100 µM D_DNA (5’ 

/5Phos/CTTCCGATCACTTGCCTGTCGCTCTATCTTCN 3’ ) were mixed with 1 µL 0.1 

M Tris pH 7.5, 1 µL 0.5 M NaCl, 0.5 ul RNAse Inhibitor Murine (NEB, M0314S)  and 5.5 

ul RNase-free water. The mix was incubated at 94°C for 1 minute and the temperature 

was ramped down to 25°C (-0.1°C/s) in order to pre-anneal the oligos. Then, 100 ng 

RNA was mixed with 1 µL pre-annealed R_RNA+D_DNA oligo, 1uL 100 mM DTT,  4 µL 

5X TGIRT Buffer (2.25 M NaCl, 25 mM MgCl2, 100 mM Tris-HCl, pH 7.5), 1 µL 

RNasin® Ribonuclease Inhibitor (Promega, N2511), 1 µL TGIRT (InGex) and nuclease-
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free water up to 19 µL. The reverse-transcription mix was initially incubated at RT for 30 

minutes before adding 1 µL 10 mM dNTP mix. Then the mix was incubated at 60°C for 

60 minutes and inactivated by heating at 75°C for 15 minutes before moving to ice. 

RNAse Cocktail (Thermo Scientific, AM2286) was added to the mix in order to digest 

the RNA, and the mix was incubated at 37°C for 10 minutes. The reaction was then 

cleaned up using 0.8X AMPure XP Beads (Agencourt, A63881). In order to be able to 

ligate the sequencing adapters to the first cDNA strand, 1 µL 100 µM CompA_DNA (5’ 

GAAGATAGAGCGACAGGCAAGTGATCGGAAGA 3’) was annealed to the 15 µL 

cDNA in a tube with 2.25 µL 0.1 M Tris pH 7.5, 2.25 µL 0.5 M NaCl and 2 µL nuclease-

free water. The mix was incubated at 94°C for 1 minute and the temperature was 

ramped down to 25 °C (-0.1°C/s) in order to anneal the complementary to the first 

strand cDNA. Then, 22.5 µL first strand cDNA was mixed with 5 µL Adapter Mix (AMX), 

22.5 µL Rnase-free water and 50 µL Blunt/TA Ligase Mix (NEB, M0367S) and 

incubated in room temperature for 10 minutes. The reaction was cleaned up using 0.8X 

AMPure XP beads, using ABB Buffer for washing. The sample was then eluted in 

Elution Buffer (EB) and mixed with Sequencing Buffer (SQB) and Loading Beads (LB) 

prior to loading onto a primed  R9.4.1 flowcell. Libraries were run on either Flongle or 

MinION flowcells with MinKNOW acquisition software version v.3.5.5.  

5.8.8. Annealing based direct cDNA-Sequencing library 
preparation with TGIRT  

Some adjustments were made to the original Direct cDNA-Sequencing ONT 

protocol (SQK-DCS109), in order to be able to use TGIRT (InGex) as reverse 

transcription enzyme for nanopore sequencing, as this enzyme does not produce CCC 

overhang that is typically exploited by the direct cDNA sequencing library preparation 

protocol (Figure 5.1A). Briefly, 1 µL of 100 µM Reverse transcription primer VNP (5’ 

/5Phos/ACTTGCCTGTCGCTCTATCTTCTTTTTTTTTTTTTTTTTTTTVN 3’) and 1 µL of 

100 µM of in-house designed complementary oligo (CompA: 5’ 

GAAGATAGAGCGACAGGCAAGTA 3’) were mixed with 1 µL 0.2 M Tris pH 7.5, 1 µL 1 

M NaCl and 16ul RNase-free water. The mix was incubated at 94°C for 1 minute and 

the temperature was ramped down to 25°C (-0.1°C/s) in order to pre-anneal the oligos. 

Then, 100 ng polyA-tailed RNA was mixed with 1 µL pre-annealed VNP+CompA,, 1uL 

100 mM DTT,  4 µL 5X TGIRT Buffer (2.25 M NaCl, 25 mM MgCl2, 100 mM Tris-HCl, 

pH 7.5) , 1 µL RNasin® Ribonuclease Inhibitor (Promega, N2511), 1 µL TGIRT and 

nuclease-free water up to 19 µL. The reverse-transcription mix was initially incubated at 

RT for 30 minutes before adding 1 µL 10 mM dNTP mix. Then the mix was incubated at 
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60°C for 60 minutes and inactivated by heating at 75°C for 15 minutes before moving 

on to ice. Furthermore, RNAse Cocktail (Thermo Scientific, AM2286) was added to the 

mix in order to digest the RNA and the mix was incubated at 37°C for 10 minutes. Then 

the reaction was cleaned up using 0.8X AMPure XP Beads (Agencourt, A63881). In 

order to be able to ligate the sequencing adapters the the first strand, 1 µL 100 µM 

CompA was again annealed to the 15 µL cDNA in a tube with 2.25 µL 0.1 M Tris pH 

7.5, 2.25 µL 0.5 M NaCl and 2 µL nuclease-free water. The mix was incubated at 94°C 

for 1 minute and the temperature was ramped down to 25 °C (-0.1°C/s) in order to 

anneal the complementary to the first strand cDNA. Furthermore, 22.5 µL first strand 

cDNA was mixed with 5 µL Adapter Mix (AMX), 22.5 uL Rnase-free water and 50 µL 

Blunt/TA Ligase Mix (NEB, M0367S) and incubated in room temperature for 10 

minutes. The reaction was cleaned up using 0.8X AMPure XP beads, using ABB Buffer 

for washing. The sample was then eluted in Elution Buffer (EB) and mixed with 

Sequencing Buffer (SQB) and Loading Beads (LB) prior to loading onto a primed R9.4.1 

flowcell and ran on a MinION sequencer with MinKNOW acquisition software version 

v.3.5.5. 

5.8.9. Analysis of dRNA datasets  
Barcoded direct RNA sequencing (dRNA-seq) run was demultiplexed using 

DeePlexiCon [387]. Reads with demultiplexing confidence scores greater than 0.95 

were kept for downstream analyses. For sequins, reads were base-called using stand-

alone Guppy version 3.0.3 with default parameters and then the base-called reads 

were mapped to sequin sequences [408] with minimap2 with -ax splice -k14 -uf --MD 

parameters [365]. For zebrafish dRNA-seq samples, reads were base-called with 

Guppy version 4.0. Base-called reads were first mapped to maternal and somatic 

zebrafish ribosomal RNA sequences taken from [422] and then to the genome 

(GRCz11) with minimap2 [365] with -ax splice -k14 -uf --MD parameters. Mapped 

reads were intersected with ENSEMBL version 103 annotation (

Danio_rerio.GRCz11.103.2.gtf) using bedtools intersect option [423].  

5.8.10. Analysis of Nano3P-seq datasets 
All the Nano3P-seq runs were basecalled and demultiplexed using stand-alone 

Guppy version 3.6.1 with default parameters.  All runs were mapped using minimap2 

[365] with the following parameters: minimap2 -ax splice -k14 -uf --MD. For the 

synthetic constructs (curlcakes), base-called reads were mapped to Curlcake 1 and 2 

sequences [255], and mapped reads were then intersected with the annotations of 
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Curlcake 1 and 2 sequences to filter out the incomplete reads using bedtools. For yeast 

total RNA, I mapped the base-called reads to the S. cerevisiae genome (SacCer3), 

supplemented with ribosomal RNA; mapped reads were then intersected with 

SacCer64 annotation to filter out incomplete reads. For nuclear/mitochondrial enriched 

mouse brain RNA spiked in with sequins [408], I mapped the base-called reads to 

genome (GRCm38), supplemented with ribosomal RNA and sequin chromosome 

(chrIS). Mapped reads were then intersected with ENSEMBL version 102 annotation 

(Mus_musculus.GRCm38.102.gtf) and sequin annotation (RNAsequins.v2.2.gtf) in 

order to filter the incomplete reads. For zebrafish RNA, I first mapped the base-called 

reads to ribosomal RNAs and then to the genome (GRCz11). Mapped read starts  were 

then intersected with ENSEMBL version 103 annotation (

Danio_rerio.GRCz11.103.2.gtf) exon ends, in order to filter the incomplete reads. For 

assignment of reads to isoforms, IsoQuant package was used 

(https://github.com/ablab/IsoQuant) with Danio_rerio.GRCz11.103.2.gtf annotation. A 

complete step-by-step command line of the bioinformatic analysis done on Nano3P-

seq datasets can be found in the GitHub repository 

https://github.com/novoalab/Nano3P_Seq. 

5.8.11. Estimation of polyA tail lengths  
For direct RNA sequencing reads, polyA tail length estimation was performed 

using NanoTail, a module from Master of Pores [424], a nextflow workflow for the 

analysis of direct RNA datasets, which uses internally Nanopolish v0.11.1 [390]. In 

NanoTail, all reads stored in the fastq files are first indexed with nanopolish index using 

default parameters, and the function nanopolish polya is used to perform polyA tail 

length estimations.  

For Nano3P-seq reads, polyA tail length estimation was performed using 

tailfindR [411] with default parameters. I observed a consistent bias of 15nt in all 

tailfindR predictions benchmarked with known polyA tail lengths, possibly caused by 

the fact that tailfindR algorithms expect a double stranded cDNA, whereas Nano3P-seq 

polyA tail regions are single stranded cDNA regions. Therefore, all subsequent 

measurements were post-processed to adjust for this bias by subtracting 15nt to the 

predicted tail length. All code used to estimate polyA tail lengths and post-process 

Nano3P-seq data can be found at https://github.com/novoalab/Nano3P_Seq. 
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5.8.12. Animal Ethics 
Fish lines were maintained according to the International Association for 

Assessment and Accreditation of Laboratory Animal Care research guidelines, and 

protocols were approved by the Yale University Institutional Animal Care and Use 

Committee (IACUC). 

5.9. Discussion 
In the last few years, a variety of NGS-based high-throughput methods have 

been developed to characterise the 3’ ends of RNA molecules at a transcriptome-wide 

scale, including methods to reveal polyA tail sites (e.g., 3P-seq [403], PAS-seq [425], 

PAT-seq [426]) and to estimate polyA tail lengths (e.g., PAL-seq [42], TAIL-seq [265], 

mTAIL-seq [427]). A major limitation of NGS-based methods, however, is their inability 

to assign a given polyA tail length to a specific transcript isoform, thereby losing the 

isoform-specific tail length information. In addition, NGS-based methods cannot 

measure tail lengths greater than the read length, thus biasing our view of polyA tail 

dynamics to those transcripts that display shorter tail lengths.  

More recently, novel methods to estimate polyA tail lengths using Pacific 

BioSciences (PacBio) long-read sequencing technologies have been developed, such 

as FLAM-seq [266] and PAIso-seq [267]. Compared to NGS, these methods are able 

to capture isoform-tail relationships; however, they are still affected by PCR 

amplification biases and ligation biases, in addition to producing relatively modest 

outputs in terms of number of reads [268–270]. Moreover, PacBio typically requires 

expensive sequencing instruments that are not widely available. On the other hand, 

direct RNA nanopore sequencing [271] has also been proposed as an alternative long-

read sequencing technology to study polyA tail lengths [272]; however, this approach is 

unable to capture deadenylated RNAs, molecules with non-canonical tailings (e.g. 

polyuridine), or molecules with polyA tails shorter than 10 nucleotides (Figure 5.1A), 

thus biasing the view of the transcriptome towards polyadenylated molecules. 

Therefore, Nano3P-seq addresses these limitations by offering a simple, robust and 

cost-effective solution to study the coding and non-coding transcriptome 

simultaneously regardless of the presence or absence of polyA tail or 3’ tail 

composition, without PCR nor ligation biases, and with single-read and single-isoform 

resolution. Moreover, the use of TGIRT as reverse transcriptase in the Nano3P-seq 

protocol not only maximises the production of full-length cDNAs, but also ensures the 

inclusion of RNA molecules that are highly structured and/or modified, which would 
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often not be captured -or their representation would be significantly biased- using 

standard viral reverse transcriptases [428,429].  

Nano3P-seq provides quantitative measurements of RNA abundances (Figure 
5.1D) as well as captures diverse RNA biotypes regardless of their tail end composition 

(Figure 5.3D). It can be applied to diverse species with a distinct range of polyA tail 

lengths (Figure 5.5B,C), and can be used to study the dynamics of polyadenylation 

(Figure 5.5F-H and 5.8). Specifically, I demonstrate how Nano3P-seq provides per-

read resolution transcriptome-wide maps of RNA abundance and polyadenylation 

dynamics during the zebrafish MZT. The results show that transcripts targeted by mir-

430 decay in a deadenylation-dependent manner, whereas those targeted by the 

maternal and zygotic decay programs have distinct polyA tail length dynamics during 

the MZT (Figure 5.5G,H). Moreover, I identified isoform-specific regulation of 

polyadenylation, demonstrating that analyses at per-gene level are insufficient to 

capture the dynamics of polyadenylation during the zebrafish MZT (Figure 5.8A,B, see 

also Figure 5.9). Overall, Nano3P-seq can successfully identify polyadenylation 

changes across time points, across mRNA decay programs, and across isoforms, 

providing mechanistic insights on different gene regulatory programs.  

Using Nano3P-seq, I compared the zebrafish transcriptome from both ribo-

depleted and polyA+ selected transcriptomes during the zebrafish MZT. Because the 

vast majority of cellular RNA is composed of ribosomal RNA (rRNA), transcriptomic 

studies typically remove a significant portion of rRNA molecules to sequence a wider 

diversity of RNA biotypes. This can be achieved by i) ribo-depletion of the sample using 

biotinylated oligos that are complementary to rRNAs, or ii) via selective enrichment of 

polyA+ transcripts using oligo(dT) beads. We should note, however, that while these 

two approaches are often used interchangeably, its effect in the transcriptome 

composition is not equal. Nano3P-seq allows us to compare the effects of these two 

approaches both on the transcriptome composition and polyA tail length distribution. In 

terms of its effects in transcriptome composition, Ifind that ribo-depletion captures a 

larger variety of RNA biotypes compared to polyA+ selection, including several non-

polyA tailed RNA biotypes, as expected (Figure 5.3F). However, I did not observe a 

significant difference in the distribution of mRNA polyA tail lengths between the two 

methods (Figure 5.11), suggesting that oligo(dT) enrichments do not significantly bias 

the mRNA populations by preferentially enriching for those having longer polyA tails. 
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Figure 5.11 - Comparison of poly(A) tail length estimations using poly(A)-
selected and ribodepleted samples.  

(A) Distribution of per-gene mRNA poly(A) tail lengths from 4 hpf zebrafish embryos, 
isolated using either poly(A) selection (red) or ribo-depletion (cyan). (B) Comparison of 
median per-gene poly(A) tail length estimation between poly(A) selected and ribo-
depleted zebrafish mRNAs isolated at 4 hpf. Each dot represents a gene. (C) 
Comparison of median per-gene poly(A) tail length estimation of mRNAs in zebrafish 
ribo-depleted samples (replicate 1 and 2) isolated at 4 hpf. Each dot represents a gene. 

 
In addition, I performed a comparative analysis of zebrafish polyA tail lengths in 

libraries sequenced using either Nano3P-seq or direct RNA sequencing (dRNA-seq). I 

show that Nano3P-seq captures RNA molecules regardless of their tail ends, resulting 

in the capture of diverse RNA biotypes (Figure 5.1B and 5.2C-G) including 

deadenylated mRNA molecules (Figure 5.6E-F and 5.12A). By contrast, dRNA-seq 

could only capture longer polyadenylated transcripts as it relies on the presence of 

polyA tail lengths greater than 10 nucleotides. Indeed, when comparing the distribution 

of per-read polyA tail length estimations of mRNAs, I observed that Nano3P-seq 

captured mRNAs with predicted zero tail lengths, whereas dRNA-seq only captured 

reads with longer tails (Figure 5.12).  

Overall, this work demonstrates that Nano3P-seq can simultaneously capture 

both non-polyA tailed and polyA tailed transcriptome, making it possible to accurately 

quantify the RNA abundances and polyA tail lengths at a per-read and per-isoform 

level, while minimizing the amount of biases introduced during the library preparation. 



               
 

     Chapter 5 

 
 
 

200 

These features set Nano3P-seq as a potent, and low-cost method that can provide 

mechanistic insights on the regulation of RNA molecules and improve our 

understanding of mRNA tailing processes and post-transcriptional control. 

 

 

 

Figure 5.12 - Comparison of poly(A) tail length estimations between dRNAseq 
and Nano3P-seq.  

(A) Distribution of per-gene mRNA poly(A) tail lengths from 4 hpf zebrafish embryos 
isolated using poly(A) selection and sequenced with dRNAseq (green) or Nano3P-seq 
(orange). (B) Comparison of median per-gene poly(A) tail length estimation of poly(A)-
selected mRNAs isolated at 4 hpf with dRNAseq (green) or Nano3P-seq (orange). 
Each dot represents an mRNA. 
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6. Concluding Remarks 
Post-transcriptional regulation of RNA is essential for the functionality of these 

molecules. In order to be able to comprehend the range of post-transcriptional 

regulations, it is important to develop new approaches that provide more information. 

This thesis describes the adaptation of third-generation sequencing technologies to 

characterise the RNA modification and polyadenylation landscape at single molecule 

resolution.  

RNA modifications play central roles in cellular fate and differentiation. 

However, the machinery responsible for placing, removing, and recognizing more than 

170 RNA modifications remains largely uncharacterised and poorly annotated, and we 

currently lack integrative studies that identify which RNA modification-related proteins 

(RMPs) may be dysregulated in each cancer type. The work in this thesis first aimed to 

characterise the RNA modification-related proteins. In order to do so, I performed a 

comprehensive annotation and evolutionary analysis of human RMPs, as well as an 

integrative analysis of their expression patterns across 32 tissues, 10 species, and 

13,358 paired tumor-normal human samples. This analysis reveals an unanticipated 

heterogeneity of RMP expression patterns across mammalian tissues, with a vast 

proportion of duplicated enzymes displaying testis-specific expression, suggesting a 

key role for RNA modifications in sperm formation and possibly intergenerational 

inheritance.  

I also uncovered many RMPs that are dysregulated in various types of cancer, 

and whose expression levels are predictive of cancer progression. Surprisingly, I found 

that several commonly studied RNA modification enzymes such as METTL3 or FTO 

are not significantly upregulated in most cancer types, whereas several less-

characterised RMPs, such as LAGE3 and HENMT1, are dysregulated in many 

cancers. Overall, this part of the thesis provides novel targets for future cancer 

research studies targeting the human epitranscriptome, as well as foundations to 

understand cell type-specific behaviors that are orchestrated by RNA modifications. 

The epitranscriptomics field has undergone an enormous expansion in the last 

few years; however, a major limitation is the lack of generic methods to map RNA 

modifications transcriptome-wide. This thesis aimed to provide a proof of concept of 

using ONT direct RNA sequencing in order to detect m6A modification. This work 

shows that using direct RNA sequencing, N6-methyladenosine (m6A) RNA 

modifications can be detected with high accuracy, in the form of systematic errors and 

decreased base-calling qualities. Specifically, our algorithm, trained with m6A-modified 
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and unmodified synthetic sequences, can predict m6A RNA modifications with ~90% 

accuracy. This work then extends our findings to yeast data sets, finding that the 

method can identify m6A RNA modifications in-vivo with an accuracy of 87%. 

Moreover, this work further validates the method by showing that these ‘errors’ are 

typically not observed in yeast ime4-knockout strains, which lack m6A modifications. 

These results open avenues to investigate the biological roles of RNA modifications in 

their native RNA context. 

Expanding on the ability of nanopore sequencing to detect N6-

methyladenosine, this thesis also shows that other modifications, in particular 

pseudouridine (Ψ) and 2′-O-methylation (Nm), also result in characteristic base-calling 

‘error’ signatures in the nanopore data. Focusing on Ψ modification sites, I detected 

known and uncovered previously unreported Ψ sites in mRNAs, non-coding RNAs and 

rRNAs, including a Pus4-dependent Ψ modification in yeast mitochondrial rRNA. To 

explore the dynamics of pseudouridylation, yeast cells were treated with oxidative, cold 

and heat stresses and detected heat-sensitive Ψ-modified sites in small nuclear RNAs, 

small nucleolar RNAs, and mRNAs. Finally, this work has led to the development of a 

software, nanoRMS, that estimates per-site modification stoichiometries by identifying 

single-molecule reads with altered current intensity and trace profiles. This work 

demonstrates that Nm and Ψ RNA modifications can be detected in cellular RNAs and 

that their modification stoichiometry can be quantified by nanopore sequencing of 

native RNA. 

RNA polyadenylation plays a central role in RNA maturation, fate, and stability. 

In response to developmental cues, polyA tail lengths can vary, affecting the 

translatability and stability of mRNAs. As a final part of this thesis, I developed 

Nano3P-seq, a novel method that relies on nanopore sequencing to simultaneously 

quantify RNA abundance and tail length dynamics at per-read resolution. By employing 

a template switching-based sequencing protocol, Nano3P-seq can sequence any given 

RNA molecule from its 3'end, regardless of its polyadenylation status, without the need 

of PCR amplification or ligation of RNA adapters. I demonstrate that Nano3P-seq 

captures a wide diversity of RNA biotypes, providing quantitative estimates of RNA 

abundance and tail lengths in mRNAs, lncRNAs, sn/snoRNAs, scaRNAs and rRNAs. I 

find that, in addition to mRNAs and lncRNAs, polyA tails can be identified in 16S 

mitochondrial rRNA in both mice and zebrafish. Moreover, I show that mRNA tail 

lengths are dynamically regulated during vertebrate embryogenesis at the isoform-

specific level, correlating with mRNA decay. Overall, Nano3P-seq is a simple and 

robust method to accurately estimate transcript levels and tail lengths in full-length 
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individual reads, with minimal library preparation biases, both in the coding and non-

coding transcriptome. 
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