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Abstract

Reservoir computing is an emerging neuromorphic computing paradigm for temporal pro-
cessing tasks that is also energy and memory-efficient. It has demonstrated promising
performance on chaotic modeling, speech processing and time series prediction. This
thesis presents theoretical and experimental studies aimed at expanding the toolkit for
temporal information processing by utilizing uniformly convergent dynamical systems as
reservoir computers. Reservoir computing offloads computations to naturally occurring or
engineered nonlinear dynamical systems and typically only a simple readout mechanism is
optimized to perform temporal tasks. The uniform convergence property ensures that the
computation performed is asymptotically independent of the reservoir computer’s initial
condition.

Physical reservoir computers are hardware implementations of reservoir computers for fast
signal processing. We propose two families of universal quantum reservoir computers as
physical reservoir computers–the Ising quantum reservoir computers and the gate-model
quantum reservoir computers–that are both based on uniformly convergent dissipative
quantum dynamics. We demonstrate numerically with the Ising scheme and experimen-
tally with the gate-model scheme, that small and noisy quantum reservoirs can tackle
nonlinear temporal tasks.

The study of quantum reservoir computers is followed by a theoretical effort in broadening
the applications of reservoir computers. We study a general architecture of reservoir com-
puting, in which reservoir computers governed by different dynamics are interconnected
in an output-feedback configuration. This architecture is motivated by the use of non-
linear closed-loop structures to better capture data that demonstrate nonlinear feedback
phenomena, akin to the Wiener-Hammerstein feedback model for system identification.
A theorem for interconnected reservoir computers to be uniformly convergent is derived.
We then show that uniformly convergent reservoir computers with output feedback imple-
ment a large family of nonlinear autoregressive models. Finally, we consider the reservoir
design problem and propose an efficient algorithm to optimize the reservoir internal pa-
rameters, and show the almost sure convergence to a Kuhn-Tucker point under noisy state
measurements.
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Notation

• R: the set of real numbers.

• C: the set of complex numbers.

• ι: the imaginary number ι =
√
−1.

• Z: the set of integers.

• Z−: the set of integers less than or equal to zero.

• Z≥k0 : the set of integers greater than or equal to k0 ∈ Z.

• Rn: the set of column vectors of dimension n with real entries.

• x>: the transpose of x ∈ Rn.

• ‖ · ‖: the Euclidean norm.

• (x1, x2): is a concatenation of vectors x1 ∈ Rn1 and x1 ∈ Rn2 into a column vector.

• Rn×m: the set of n×m real matrices.

• Cn×m: the set of n×m complex matrices.

• A>: the transpose of A ∈ Cn×m.

• A†: the conjugate transpose of A ∈ Cn×m.

• A � 0: positive definite matrix A.

• A � 0: positive semi-definite matrix A.

• A ≺ 0: negative definite matrix A.

• A � 0: negative semi-definite matrix A.

• ‖ · ‖p: the Schatten-p norm for complex matrices, defined as ‖A‖p = Tr(
√
A†A

p
)1/p,

where Tr(·) is the trace.

• (Rn)Z: the set of infinite sequences of vectors in Rn. That is, u ∈ (Rn)Z with
u = {uk}k∈Z and uk ∈ Rn for all k ∈ Z.
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• l∞n : the set of bounded infinite sequences of vectors in Rn. That is, u ∈ l∞n if
u = {uk}k∈Z with uk ∈ Rn and ‖u‖∞ := supk∈Z ‖uk‖ <∞.

• (Rn)Z− : the set of left-infinite sequences of vectors in Rn. That is, u ∈ (Rn)Z− with
u = {uk}k∈Z− and uk ∈ Rn for all k ∈ Z−.

• RZ, l∞ and RZ− : the set of real infinite sequences, the set of bounded real infinite
sequences and the set of real left-infinite sequences, respectively.

• DZ: the set of infinite sequences taking values in a compact set D ⊂ R.

• DZ− : the set of left-infinite sequences taking values in a compact set D ⊂ R.

• PZ−
n : is the canonical projection from (Rn)Z onto (Rn)Z− (we write PZ−

1 as PZ−).

• z−τn : time shift operator. For any τ ∈ Z, u ∈ (Rn)Z and k ∈ Z, z−τn (u)|k = uk−τ (we
write z−τ1 as z−τ ).

• ⊗: tensor product (Kronecker product).

• TrHB : partial trace over HB. That is, if ρ ∈ HA⊗HB where HA and HB are Hilbert
spaces and TrHB (ρ) is the partial trace over HB.

• ◦: function composition.

ix



Contents

Abstract iii

Acknowledgements iv

Inclusion of Publications Statement v

Publications vi

Notation viii

Contents x

List of Figures xvi

List of Tables xxi

1 Introduction 1

1.1 Reservoir computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Physical reservoir computing . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Noisy intermediate-scale quantum technology . . . . . . . . . . . . . 4

1.2.2 Quantum reservoir computers and related works . . . . . . . . . . . 6

1.3 Architectures of reservoir computers . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Stochastic modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

x



1.4 Reservoir design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Preliminaries 15

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Quantum systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Closed quantum systems . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Dissipative quantum systems . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Quantum noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Quantum computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Quantum gates and quantum circuits . . . . . . . . . . . . . . . . . 22

2.4 Reservoir computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 The uniform convergence property . . . . . . . . . . . . . . . . . . . 25

2.4.2 Sufficient conditions for the uniform convergence property . . . . . . 27

2.4.3 Filters and functionals . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Ising quantum reservoir computers 31

3.1 The universality property . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Fading memory property . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.2 Polynomial algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.3 The separation property . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.4 The universality theorem . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 A universal class of QRCs implemented by dissipative quantum systems . . 36

3.2.1 Uniform convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Fading memory and polynomial algebra . . . . . . . . . . . . . . . . 39

xi



3.2.3 Separation of points . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Overview of SA performance . . . . . . . . . . . . . . . . . . . . . . 47

3.3.2 SA performance under noise . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.3 Effect of different input encodings . . . . . . . . . . . . . . . . . . . 51

3.3.4 Further comparison with ESNs . . . . . . . . . . . . . . . . . . . . . 52

3.4 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Gate-model quantum reservoir computers 58

4.1 A universal class of QRCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 Invariance under certain noise . . . . . . . . . . . . . . . . . . . . . . 64

4.2 A subclass implementable on noisy gate-model quantum devices . . . . . . . 65

4.3 Realization of a subclass on current quantum hardware . . . . . . . . . . . 66

4.3.1 Implementation schemes . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.2 Unitary trick for efficient QRC predictions . . . . . . . . . . . . . . . 69

4.4 Proof-of-principle experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.1 Quantum circuits for QRCs . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.2 Experimental implementation . . . . . . . . . . . . . . . . . . . . . . 74

4.4.3 QRC task performance . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Interconnected reservoir computers 80

5.1 Stability concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 A UIOC small-gain theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Interconnected RCs for temporal tasks . . . . . . . . . . . . . . . . . . . . . 91

xii



5.3.1 Echo-state networks (ESNs) . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.2 Quantum reservoir computers (QRCs) . . . . . . . . . . . . . . . . . 94

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Nonlinear autoregression with reservoir computers 102

6.1 Uniformly convergent feedback dynamics . . . . . . . . . . . . . . . . . . . . 104

6.2 NARX(∞) models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.1 Asymptotic stationarity and ergodicity . . . . . . . . . . . . . . . . . 110

6.3 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3.1 Echo-state networks (ESNs) . . . . . . . . . . . . . . . . . . . . . . . 113

6.3.2 Lur’e systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3.3 Quantum reservoir computers (QRCs) . . . . . . . . . . . . . . . . . 116

6.4 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4.1 Nonlinear quantum optics . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4.2 Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.4.3 Coupled electric drive system . . . . . . . . . . . . . . . . . . . . . . 123

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7 Reservoir design 127

7.1 The reservoir design problem . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.1.1 Noisy state measurements . . . . . . . . . . . . . . . . . . . . . . . . 131

7.2 Simultaneous perturbation stochastic approximation . . . . . . . . . . . . . 131

7.3 Algorithm and its analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.3.2 Constructing regressors from four noisy state measurements . . . . . 136

xiii



7.3.3 Almost sure convergence . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.4 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.4.1 Sensitivity of reservoir internal parameters . . . . . . . . . . . . . . 144

7.4.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8 Conclusion and Future Directions 153

A Appendix for Chapter 4 157

A.1 Invariance under time-invariant readout error . . . . . . . . . . . . . . . . . 157

A.2 Monte Carlo estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.3 Implementation using QND measurements . . . . . . . . . . . . . . . . . . . 161

A.4 Hardware specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

A.5 Quantum circuits for QRCs . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

A.6 Full input-output sequential data . . . . . . . . . . . . . . . . . . . . . . . . 165

A.7 Measurement and simulation data . . . . . . . . . . . . . . . . . . . . . . . 166

B Appendix for Chapter 5 171

B.1 Proof of the UIOS Theorem 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . 171

B.2 Uniform convergence of Lur’e system . . . . . . . . . . . . . . . . . . . . . . 176

B.3 Trace inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

B.4 Noisy QRC simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

C Appendix for Chapter 6 182

C.1 Unitary gates for QRCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

C.2 Parameters of selected RCs . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

xiv



References 184

xv



List of Figures

1.1 Outline of the thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 From left to right are the quantum circuit diagrams of U3(θ, φ, λ), RX(θ), RY (θ)
and RZ(θ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 From left to right are the quantum circuit diagrams of CNOT and controlled-
U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Typical SA outputs during the evaluation phase, for the (a) LRPO, (b)
Missile (c) NARMA15 and (d) NARMA20 tasks. The leftmost, middle and
rightmost panels show the outputs for timesteps 1501–1530, 2001–2030 and
2471–2500, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Average SA NMSE for the (a) LRPO, (b) Missile, (c) NARMA15 and (d)
NARMA20 tasks, the error bars represent the standard error. For compar-
ison, horizontal dashed lines labeled with ‘Em’ indicate the average per-
formance of ESNs with m computational nodes, and horizontal dot-dashed
lines labeled with ‘Vo, p’ indicates the performance of Volterra series with
kernel order o and memory p. Overlapping dashed and dot-dashed lines are
represented as dashed lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Average SA NMSE under decoherence. Error bars represent standard errors. 50

3.4 Average sum of complex modulus of off-diagonal elements in the system
density operator for timesteps 1501–1550, under the (a) dephasing noise,
(b) decaying noise, (c) GAD with λ = 0.4 and (d) GAD with λ = 0.6. Row
n− 1 corresponds the n-qubit SA. . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Average NMSE for different input encodings, for the (a) LRPO, (b) Missile
(c) NARMA15 and (d) NARMA20 tasks. Error bars represent standard
errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xvi



3.6 Average SA NMSE as the state-space size and the number of computational
nodes vary for all computational tasks. The average NMSE for E256 with
the same number of computational nodes is plotted for comparison. The
data symbols obscure the error bars, which represent the standard error . . 54

3.7 Average ESNs NMSE as the state-space size and the number of computa-
tional nodes vary for all computational tasks. The data symbols obscure
the error bars, which represent the standard error . . . . . . . . . . . . . . . 55

4.1 Quantum circuit interpretation of the QRC subclass described in Sec. 4.2.
Here ρ(K)

k−1 and σK are two quantum registers (i.e., groups of qubits) whereas
ρ(uk) and ρεK are two single-qubit states. The unitaries U (K)

1 , U
(K)†
0 act

on ρ(K)
k−1, controlled by ρ(uk). The right-most operation (SW ’s) swaps the

states of ρ(K)
k−1 and σK , controlled by ρεK . . . . . . . . . . . . . . . . . . . . 65

4.2 Quantum circuit schematics for (a) U0(θ) and (b) U1(φ) employed in proof-
of-principle experiments, described by (4.7). Here jt and jc are the tar-
get and control qubits, respectively. The unitaries U0(θ), U1(φ) consist of
N0, N1 layers of highlighted gate operations, with each layer acting on a
different qubit pair (jt, jc). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Qubit coupling maps of the IBM superconducting quantum processors. (a)
The 20-qubit Boeblingen device. (b) Both the 5-qubit Ourense and Vigo
devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 The QRC’s predicted outputs for (a) the multi-step prediction problem and
(b) the map emulation problem. Rows and columns in (a) correspond to
different tasks and QRCs, respectively. The first column in (b) corresponds
to the multiplexed QRC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 The spatial multiplexing schematic. The same input sequence is injected
into two distinct 5-qubit QRCs. The internal states Tr(ρkZ(i)) of the two
QRCs are linearly combined to form a single output. . . . . . . . . . . . . . 77

5.1 Schematic of the interconnected system (5.5). . . . . . . . . . . . . . . . . . 85

5.2 Target outputs y′l′(k) and the closed-loop ESN outputs ŷ′l′(k) for k =
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Chapter 1

Introduction

1.1 Reservoir computing

The last two decades have witnessed a profound shift in computational paradigms from

von Neumann architecture digital computers to nature inspired computing systems that

address the demand for energy and memory-efficient intelligent devices. On one side of

the spectrum, biologically inspired systems simulated on digital computers–‘a machine

that thinks’, such as artificial neural networks, have demonstrated strong capacity for

solving temporal information processing tasks. They power text-to-speech synthesis [1],

voice search [2] and sequence-to-sequence machine translation [3] and show remarkable

performance in time series forecasting [4]. The success of artificial neural networks does

not come without costs. Current deep artificial neural networks require vast amounts of

computational resources to approach state-of-the-art performance [5,6]. Training for these

networks are mostly based on gradient-based methods that incur a long training time and

suffer from the vanishing and exploding gradient problems [7, 8]. Another criticism is

that although artificial neural networks began as an attempt to mimic the human brain

to perform tasks that digital computers had difficulties with, current models of artificial

neural networks do not sufficiently reflect neuronal functions in the brain [9].
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Reservoir computing (RC) has been proposed to circumvent the expensive computational

costs of artificial neural networks [10, 11]. The RC framework uses an arbitrary but fixed

nonlinear dynamical system, the ‘reservoir’, to map input signals into its high-dimensional

state space. Only a simple readout mechanism is trained (often via linear regression) to

approximate target output signals. The use of simple readout has connections to the

biological concept of mixed selectivity, as demonstrated in monkeys [12]. This simple

and fast training process drastically reduces the training cost compared with alternative

schemes such as recurrent neural networks, and is the key advantage of RC. In this thesis,

we focus on RCs described by discrete-time state space models. Other dynamical system

models, such as the delayed dynamical systems [13], are beyond the scope of this thesis.

A prominent example of RC are the echo state networks (ESN), which has demonstrated

remarkable ability to predict chaotic time series [10, 14]. Liquid state machines were

independently proposed to use a spiking neural network [15] with arbitrary but fixed

connectivity as the ‘reservoir’ to process input signals. Another attractiveness of the RC

framework is that naturally occurring dynamical systems (with certain properties) can

be exploited for temporal information processing. This is in sharp contrast to artificial

neural networks, which are software and simulation-based computing schemes. Following

the initial success of RC, different research directions have emerged:

• Hardware implementations of RC, physical reservoir computers (abbreviated as RCs),

for realizing fast processing speed with low computational costs.

• Introduction of new architectures and applications of RCs to improve their versatility.

• Development of algorithms to optimize internal parameters of RCs to improve their

performance.

This thesis pursues these research directions. We will expand on each direction in the

following sections.
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1.2 Physical reservoir computing

There is substantial interest in physical RCs, hardware implementations of RC for fast

processing using less memory and energy, as opposed to software-based implementation on

digital computers. The ease of implementation of the RC framework has brought forward

many successful experimental demonstrations of physical RCs. For instance, a spintronic

RC achieved state-of-the-art performance for spoken digit recognition [16], a photonic RC

demonstrated a million words per second speech classification with a low error rate [17]

and a FPGA-based RC reached an 160MHz rate for time series prediction [18]. Their

training efficiency also makes RC attractive for edge computing, where computations are

distributed at the ‘edges’ closer to the end users to reduce computation and transmission

overhead. See [19,20] for further examples of physical RCs.

Although these previous works have showcased excellent empirical performance on certain

tasks, the following question requires further investigation: what are the properties for

physical RCs to efficiently solve nonlinear temporal information processing tasks? Un-

surprisingly, nonlinearity is necessary for RCs to act as a nonlinear map between input

and output sequences; and high dimensionality determines the computational capacity of

RC [21]. This computational capacity can be interpreted as the number of linearly inde-

pendent functions of its stimuli the system can compute. Other properties for RC are the

uniform convergence property, the fading memory property and the separation property.

The uniform convergence property [22,23], also referred to as the echo state property [24],

ensures that the computation performed by an RC is asymptotically independent of its

initial condition. The fading memory property [25] states that the (infinite) output se-

quences of a RC should stay close if the corresponding (infinite) input sequences are close

in recent times. The fading memory property is important in a broad class of real-world

problems including spoken digit recognition [16] and neural modeling [15]. If a family of

RCs has the separation property, then there is a member in this family with sufficiently

rich dynamics to distinguish any two different input sequences.

If a family of RCs possesses the uniform convergence, fading memory and separation
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properties, then this family is universal for approximating nonlinear fading memory input-

output (I/O) maps [26, 27]. Any nonlinear fading memory map can be approximated

arbitrarily closely by some member of this family (in a certain norm), uniformly over

time. The well-known Volterra series [25] is universal for nonlinear fading memory maps.

Software-based classical RC schemes that are provably universal include the ESNs [27],

linear reservoirs with polynomial readouts (LRPO) and the non-homogeneous state affine

systems (SAS) [26]. The aforementioned liquid state machines have also been shown to

be universal. They have been implemented on hardware based on FPGA [28, 29] and

application-specific integrated circuits [30,31].

Despite recent interest in seeking universal RC schemes, few physical RCs with the univer-

sality property has been introduced. While this search is underway, we are witnessing a

spectacular growth in near-term quantum computing. Motivated by the increasing avail-

ability of quantum devices, in this thesis, we aim to develop universal physical RC schemes

on current noisy quantum computers.

1.2.1 Noisy intermediate-scale quantum technology

Quantum computers make use of quantum-mechanical phenomena such as superposition

and entanglement to perform computations. Data are encoded as quantum bits (qubits)

which can be in a superposition of 0 and 1 binary values simultaneously, hence the capabil-

ity to represent exponentially more information than the classical bits, making quantum

computers promising for solving problems that are previously untenable on conventional

digital computers. Followed by the seminar paper for Peter Shor [32], tremendous progress

in designing quantum algorithms that offer speedups over classical counterparts has been

made [33–35]. These algorithms implemented on quantum computers with 50–100 qubits

have the potential to surpass today’s most advanced classical supercomputers, but noise

in quantum operations will render the quantum computations unreliable.

We are in the midst of noisy intermediate-scale quantum (NISQ) technology era [36],

marked by noisy quantum computers consisting of roughly tens to hundreds of qubits.
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NISQ quantum computing machines are not equipped with quantum error correction and

are thus incapable of performing continuous quantum computation. Algorithms that offer

computational speedup, such as the Grover search, can only be demonstrated for very

small instances (with three qubits) on NISQ machines [37], and scaling up the number

of qubits with quantum error correction is still a distant goal. While awaiting for a full-

fledged quantum computer, there is a substantial interest in early applications of NISQ

devices that can accelerate the development of practical quantum computers, akin to how

the humble hearing aid sparked the development of integrated circuit technology [38].

Several research directions are being explored for NISQ machines. One direction is to

demonstrate ‘quantum supremacy’, in which NISQ machines can outperform the most

powerful digital supercomputers. Such tasks include sampling problems such as boson

sampling [39, 40] and sampling from random quantum circuits [41]. In 2019, Google

demonstrated a form of quantum supremacy on their gate-based superconducting quan-

tum devices [42]. Gate-based quantum devices transform input data according to a unitary

operation, specified as a sequence of quantum gate operations and measurements repre-

sented by a quantum circuit [43]. In the last few years, companies such as IBM [44],

Rigetti Computing [45] and IonQ [46], have made gate-based NISQ devices widely avail-

able as cloud-based services for commercial, academic and public use. Another direction

is to design hybrid quantum-classical algorithms using short-depth circuits. Many no-

table experimental demonstrations of NISQ devices employ hybrid algorithms for data

classification [47] and quantum chemistry [48]. NISQ devices are also used to solve cer-

tain classes of optimization problems. A prominent example is the quantum annealing

algorithm which employs quantum fluctuations to search for the solution of classical op-

timization problems [49]. Quantum annealing encodes problems using Ising Hamiltonians

and can be implemented on the commercially available D-Wave machines [50,51].

An emerging paradigm is to harness the computational capability of dissipative quantum

systems, that is, quantum systems under the effect of noise resulting from interactions

with the external environment. Dissipative quantum dynamics has been shown to realize

universal quantum computation [52] and has been applied in a time-delay manner for
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supervised quantum machine learning without intermediate measurements [53]. More

recently, quantum reservoir computers (QRCs) have been introduced to employ disordered-

ensemble dissipative quantum dynamics for classical temporal information processing [54,

55]. Numerical experiments show that this QRC scheme with a small number of qubits can

achieve comparable performance to classical RC schemes with a larger number of tunable

parameters. However, a theoretical framework for approximating nonlinear fading memory

I/O maps by QRCs is still lacking. In Chapter 3 of this thesis, we address this problem by

introducing a variation of this previous QRC scheme that is universal in approximating

nonlinear I/O maps with fading memory.

QRC schemes introduced in [54, 55] and Chapter 3 are based on Ising Hamiltonians and

are suitable for systems such as nuclear magnetic resonance (NMR) instruments [56] and

D-Wave machines. Such systems are generally for commercial use. On the other hand,

gate-based NISQ machines are becoming increasingly available for the general public.

However, realizing these QRC proposals in the quantum gate model remains challenging

due to the large number of quantum gates required to implement the Ising Hamiltonian

via Trotterization [57]. In Chapter 4 of this thesis, we address this question by proposing

a universal family of QRCs implementable on gate-based NISQ devices, and present proof-

of-principle experiments on IBM superconducting quantum processors [44].

1.2.2 Quantum reservoir computers and related works

QRC has attracted substantial research interests since its initial proposal in [54,55]. Here,

we take the opportunity to review some recent advances beyond the contributions of this

thesis.

For processing classical information, many new quantum implementations of the RC

scheme have been introduced. In [58], the authors utilize dissipative superconducting

quantum computers as QRCs, where the dissipative property is solely served by the in-

trinsic hardware noise. This is in contrast with our QRC proposal in Chapter 4, where

dissipation is engineered. Nevertheless, the scheme in [58] has not been shown to be
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universal. The work [59] proposes a universal family of QRCs implemented by Gaussian

states and [60] demonstrates that encoding the input to quantum or classical fluctuations

of a network of interacting harmonic oscillators achieve high performance comparable to

ESNs in several nonlinear tasks. A QRC scheme based on an ensemble of interacting spin-

1/2 particles has been proposed and demonstrated numerically using arrays of Rydberg

atoms [61]. In [62], continuous-variable QRCs with a single nonlinear oscillator are pro-

posed to reduce the measurement costs of discrete-variable QRCs. The work [63] details

numerical investigations of factors that influence the performance of QRCs implemented by

Ising Hamiltonians. The authors have empirically found conditions for an optimum input

data injection frequency and provided insights into the choice of measurement observables

for the QRC output.

QRC has also been proposed to process quantum information as opposed to classical

information. In [64], a QRC based on a 2D fermionic lattice is demonstrated to recog-

nize quantum entanglement and estimate nonlinear functions of an input quantum state,

such as entropy and log-negativity. The work [65] presents a QRC for quantum state

preparation. In [66], QRCs are demonstrated to induce robust quantum gate operations.

Recently, Kerr networks are employed as reservoir to classify stochastic time-dependent

signals for quantum state measurements [67]. In [68], a framework for QRC under continu-

ous heterodyne measurements is described and employed to classify quantum states of the

systems that are part of the same measurement chain as the QRC, providing insights into

measurement-contingent advantages and disadvantages of reservoir computing in quantum

regimes. For further development of QRC for both classical and quantum tasks, see the

recent reviews [69,70].

1.3 Architectures of reservoir computers

Since the initial success of RC schemes, researchers have been devising new architectures

of the original RC schemes to improve their performance and increase their versatility.

Inspired by deep neural network architectures, deepESN has been proposed [71–73] to
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concatenate multiple ESNs in a feedforward configuration. Detailed numerical experiments

suggest that deep layered ESNs allow an effective diversification of temporal representation

in the layers, by amplifying the effects of the richness of the dynamics measured by the

entropy [71]. RCs with output feedback (i.e., a RC’s output is fedback as its input at the

next discrete time step) have demonstrated a remarkable performance for chaotic time

series prediction [10,74].

The fundamental RC condition, the uniform convergence property or the echo state prop-

erty, has been generalized to the case of deepESN. The work [75] analyzes the contractivity

of nested ESNs and derives a sufficient condition for the echo state property to hold. How-

ever, for RC with output feedback, theoretical analysis of the uniform convergence prop-

erty is so far lacking. In Chapter 5, we consider a more general architecture where RCs

governed by different dynamics are interconnected in an output-feedback loop. This RC

architecture is motivated by the use of nonlinear closed-loop structures in block-oriented

models for system identification, such as the Wiener-Hammerstein feedback model, to bet-

ter capture data that exhibit nonlinear feedback phenomena [76, 77]. We then derive a

small-gain sufficient condition for interconnected RCs to be uniformly convergent. This

general theory opens up the potential for a vast number of RC configurations as nonlinear

candidate models for system identification and temporal information processing.

After the completion of Chapter 5, we became aware of an independent development

of a system identification methodology for Lur’e systems with static nonlinear output

feedback [78]. This methodology guarantees the uniform convergence property has been

proposed by exploiting special structures of Lur’e systems and only applies to this class

of systems. In contrast, we focus on deriving a general framework for interconnected

systems, potentially with different dynamics, to be uniformly convergent without specific

knowledge on the system structures.
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1.3.1 Stochastic modeling

Following the general theory we developed in Chapter 5, we then consider a specific RC

architecture–RCs with uniformly convergent output feedback dynamics, for time series

modeling and system identification.

One of the promising applications of the RC framework is chaotic time series predic-

tion [10, 74, 79]. However, these works model chaotic systems based on the dynamical

system paradigm in a deterministic way. For stochastic modeling, previous works [80, 81]

have investigated the potential of RC for approximating input-output maps under station-

ary stochastic inputs, and considered forecasting, reconstruction and filtering problems in

this context. Further substantial research efforts have been focused on testing the em-

pirical performance of RC for modeling stochastic time series; see e.g. [82, 83]. However,

a general theoretical framework that takes into account stability, stationarity, ergodicity

and Birkhoff-Khinchin ergodicity [84] of RC is still missing.

In Chapter 6, we show that RCs with uniformly convergent output feedback dynam-

ics implement infinite-order nonlinear autoregressive models with exogenous inputs, or

NARX(∞) models. We then show that such NARX(∞) models can be represented as a

nonlinear moving average models with exogenous inputs, or NMAX(∞) models. Through

this equivalence, we establish asymptotic stationarity and (Birkhoff-Khinchin) ergodicity

of the NARX(∞) models induced by RCs with uniformly convergent feedback dynamics.

We then employ these models for stochastic modeling and perform validation diagnostics

to evaluate the model quality. With this framework, a wide class of NARX(∞) models

can be realized, making RC a versatile scheme for stochastic modeling.

1.4 Reservoir design

The performance of RC not only depends on its architecture, but also its reservoir internal

parameters. This sensitivity to reservoir parameters has sparked studies in various linear
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and nonlinear memory capacity measures [21, 85, 86]. The work [81] extends previous

capacity measures that are defined using independent input signals to correlated and

stationary signals. The optimization of the reservoir internal parameters to improve the

RC performance is referred to as the reservoir design problem.

The reservoir problem presents two major challenges. Firstly, reservoir design based on

capacity measures is difficult since the capacity measures mentioned above are often a non-

convex and nonlinear function of the reservoir internal parameters. Secondly, algorithms

that optimize the reservoir internal parameters should preserve the training, energy and

memory efficiency of the RC framework. Several research directions have been proposed

to tackle these difficulties. One approach is to simplify the capacity measure and therefore

simplifying the optimization problem. In [87] a simplified model of time-delay reservoirs

is constructed as an approximation which allows a direct functional link between the

reservoir internal parameters and its performance. In [81], a Taylor series expansion is

used to approximate the capacity measure. These approximations are used to determine

the reservoir parameters by solving a well-structured optimization problem, however, they

might not adequately capture the full nonlinear model.

Another approach is to employ global optimization algorithm to optimize both the output

and internal parameters of the RC by minimizing the mean-squared error between the

target and predicted outputs [88,89]. However, global optimization methods often require

a lot of computational resources and exhibit slow convergence, making training of RCs

inefficient. To remedy these issues, heuristic algorithms, such as the FORCE learning

algorithm [90] and its variant [91] have been proposed to efficiently tune the reservoir

internal parameters. Although these heuristic algorithms have demonstrated success in

generating complex running and walking human motions, they provide no theoretical

convergence guarantee nor robustness to noise. An efficient algorithm that has a theoretical

convergence guarantee even under the effect of noise is still awaiting to be developed.

In Chapter 7, we propose an efficient algorithm to optimize the reservoir internal pa-

rameters by minimizing the mean-squared error. The proposed algorithm is a stochastic

approximation algorithm based on the simultaneous perturbation stochastic approxima-
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tion (SPSA) algorithm [92]. Our algorithm does not make approximations of the cost

function nor the model. Furthermore, we will show that using our algorithm, the reser-

voir internal parameters exhibit an almost sure asymptotic convergence to a Kuhn-Tucker

(KT) point even under the effect of state measurement noise. To ensure the convergence,

we only need four noisy state measurements to approximate the gradient regardless of the

number of optimization variables, making it efficient for high-dimensional problems.

1.5 Summary of contributions

This thesis is the synthesis of a number of research contributions and publications. Ci-

tations to the relevant publications where these contributions were presented will be pro-

vided.

1. The provision of a learning theory for dissipative quantum systems and the introduc-

tion of a universal class of QRCs governed by Ising Hamiltonians for approximating

nonlinear I/O maps with fading memory are presented in Chapter 3.

2. A detailed numerical study of the aforementioned universal QRC family is also pre-

sented in Chapter 3.

3. The proposal of a universal QRC family that are suitable for implementation on

gate-based NISQ machines is presented in Chapter 4.

4. Proof-of-principle experiments of the above QRC family on the remotely accessed

IBM superconducting quantum processors [44] are demonstrated in Chapter 4.

5. A small-gain theorem to provide sufficient conditions for interconnected dynamical

systems to be uniformly convergent is derived in Chapter 5.

6. The introduction of interconnected RCs as nonlinear models with closed-loop struc-

tures for system identification and their numerical demonstrations are presented in

Chapter 5

11
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Physical reservoir computers

Quantum reservoir computers

Interconnected 
reservoir computers for 

system identification

Reservoir design

Reservoir computers 
as NARX(∞) models

Uniformly convergent dynamics

Figure 1.1: Outline of the thesis.

7. The introduction of NARX(∞) models induced by RCs with uniformly convergent

output feedback dynamics is presented in Chapter 6.

8. The asymptotic stationarity, ergodicity and Birkhoff-Khinchin ergodicity of NARX(∞)

models induced by RCs are also established in Chapter 6.

9. A stochastic approximation algorithm is designed to optimize the reservoir internal

parameters under noisy state measurements and is shown to exhibit almost sure

convergence to a KT point in Chapter 7.

1.6 Outline

This thesis will study nonlinear convergent dynamics for temporal information processing

at various levels of abstraction as depicted in Fig. 1.1. We present the thesis in a ‘bottom-

up’ approach. As we traverse across the thesis, we initially focus on QRCs, a specific

hardware implementation of RC for approximating input-output maps, and then shift
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towards theoretical and numerical explorations of uniformly convergent systems for time

series modeling and system identification. In Chapter 2, we first introduce the background

to support ensuing development. We then detail our studies on quantum implementation

of RCs:

• Chapter 3: we develop a theory of learning nonlinear deterministic input–output

maps with fading memory by dissipative quantum systems. The theory identifies

the properties required for a class of dissipative quantum systems to be universal,

in that any input–output map with fading memory can be approximated arbitrarily

closely and uniformly over all inputs by a QRC of this class. We then introduce

an example universal class of dissipative quantum systems implemented by Ising

Hamiltonians. Numerical experiments illustrate that with a small number of qubits,

this class can achieve comparable performance to classical learning schemes with a

large number of tunable parameters.

• Chapter 4: the universal class of QRCs in Chapter 3 are suitable for ensemble sys-

tems such as NMRs. In this chapter. we propose a universal class of universal QRCs

that are suitable for current NISQ machines. Our proof-of-principle experiments

on cloud-based superconducting quantum computers demonstrate that small and

noisy quantum reservoirs can tackle high-order nonlinear temporal tasks. Our the-

oretical and experimental results pave the path for attractive temporal processing

applications of near-term gate-model quantum computers of increasing fidelity but

without quantum error correction, signifying the potential of these devices for wider

applications including neural modeling, speech recognition, and natural language

processing, going beyond static classification and regression tasks.

We then abstract away from specific hardware implementation to higher-level theoretical

explorations of interconnected uniformly convergent systems as RCs for temporal infor-

mation processing, expanding the toolbox of available nonlinear models in the literature.

In particular,

• Chapter 5: we introduce interconnected RCs as candidate nonlinear models with

13
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closed-loop structures for system identification. To model a system based solely

on input-output data, the candidate model with closed-loop structures should be

uniformly convergent, so that it asymptotically forgets its initial condition. We

derive a small-gain theorem to ensure the interconnected RCs have this property.

We numerically demonstrate the use of interconnected ESNs and QRCs to model a

feedback-controlled nonlinear system.

• Chapter 6: we travel from a deterministic setting to a probabilistic setting and

show that RCs with uniformly convergent output feedback dynamics implement

NARX(∞) models. We further establish the asymptotic stationarity and (Birkhoff-

Khinchin) ergodicity of these NARX(∞) models. We highlight the versatility of this

approach by employing classical and quantum RCs to model synthetic and real data

sets, further exploring their potential for stochastic modeling applications.

Finally, we arrive at the top of our ‘stack’ in Fig. 1.1 and consider the problem of reservoir

design:

• Chapter 7: we develop an algorithm to optimize the RC internal parameters un-

der state measurement noise. The algorithm is based on the SPSA algorithm [92]

and it inherits SPSA’s efficiency by using only four noisy state measurements to

approximate the gradient, regardless of the dimension of the optimization problem.

We show that even with noisy state measurements, the reservoir internal parame-

ters asymptotically and almost surely converge to a KT point. Numerical examples

demonstrate that the proposed algorithm can mitigate the negative effect of noise.

14



Chapter 2

Preliminaries

This chapter develops the preliminaries required for the development of Chapters 3–7. In

Sec. 2.1, the notation used throughout this thesis is introduced. Sec. 2.2 gives an overview

of closed quantum systems and dissipative quantum systems. In Sec. 2.3, we introduce

the basics of quantum circuits and quantum gates. Sec. 2.4.1 formally defines the uniform

convergence property, the key property used throughout this thesis. Sec. 2.4.2 states

sufficient conditions to guarantee the uniform convergence property for both quantum

and classical dynamical systems. Finally, Sec. 2.4.3 formally introduces the unique filters

and functionals a uniformly convergent system induces.

2.1 Notation

The notation used throughout this thesis is fairly standard, a summary can also be found

on pages iii-iv. The set of real (complex) numbers is denoted by R (C). The imaginary

number is denoted by ι =
√
−1. The set of integers is denoted by Z, Z− = {...,−1, 0} and

Z≥k0 denotes integers greater than or equal to k0 ∈ Z. Elements of Rn are real column

vectors. For any x ∈ Rn, x> is its transpose and ‖x‖ =
√
x>x is its Euclidean norm. For

any x1 ∈ Rn1 , x2 ∈ Rn2 , (x1, x2) ∈ Rn1+n2 is their concatenation into a column vector.
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The set of n × m real (complex) matrices is Rn×m (Cn×m). A positive (semi-)definite

matrix A is denoted by A � 0 (A � 0). A negative (semi-)definite matrix A is denoted

by A ≺ 0 (A � 0). For any A ∈ Cn×m, A> is its transpose, A† is its conjugate transpose

and ‖A‖p = Tr(
√
A†A

p
)1/p denotes the Schatten-p norm, where Tr(·) denotes the trace.

A square complex matrix A ∈ Cn×n is Hermitian or self-adjoint if A = A†. Hermitian

matrices are ubiquitous in quantum mechanics. The symbol ⊗ denotes a tensor product

between Hilbert spaces or an algebraic tensor product between operators. Suppose that

ρ ∈ HA ⊗HB, where HA and HB are Hilbert spaces. We let TrHB (ρ) denote the partial

trace of ρ over HB. The partial trace is a generalization of the trace and is an operator-

valued function. If ρ =
∑
m βmAm ⊗Bm, then TrHB (ρ) =

∑
m βmTr(Bm)Am.

The set of infinite sequences is denoted by (Rn)Z, that is, u ∈ (Rn)Z with u = {uk}k∈Z
and uk ∈ Rn for all k ∈ Z. The set of bounded infinite sequences is denoted by l∞n ,

i.e., u ∈ l∞n if u = {uk}k∈Z with uk ∈ Rn and ‖u‖∞ := supk∈Z ‖uk‖ < ∞. The set of

left-infinite sequences is (Rn)Z− , that is, u ∈ (Rn)Z− with u = {uk}k∈Z− and uk ∈ Rn

for all k ∈ Z−. For these aforementioned notations, we omit the superscript n for real

sequences, i.e., RZ = (R1)Z, l∞ = l∞1 and RZ− = (R1)Z− . In the quantum setting, we often

restrict ourselves to infinite (left-infinite) sequences DZ (DZ−) taking values in a compact

set D ⊂ Rn. PZ−
n : (Rn)Z → (Rn)Z− is the canonical projection (we write PZ−

1 = PZ−).

For any τ ∈ Z, z−τn is the time shift operator such that for any u ∈ (Rn)Z and k ∈ Z,

z−τn (u)|k := uk−τ (we write z−τ1 = z−τ ). Finally, ◦ denotes function composition.

2.2 Quantum systems

Quantum systems are governed by the basic postulates of quantum mechanics. These

postulates provide a description of nature at the atomic and subatmoic scale. This section

provides an overview of quantum systems, see [43,93] for an in-depth introduction.
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2.2.1 Closed quantum systems

The state space of any isolated quantum system is described by a Hilbert space (a com-

plex vector space equipped with inner product). A closed quantum system is completely

described by its state vector [43, Chapter 2.2.1].

The quantum bit (qubit) is a fundamental unit in quantum systems. A qubit has a two-

dimensional state space with |0〉 and |1〉 forming an orthonormal basis for that state space.

An arbitrary one-qubit state vector can be written as |ψ〉 = α|0〉 + β|1〉. Intuitively, |0〉

and |1〉 act as the values 0 and 1 a calssical bit can take. The important difference here is

that superpositions of |0〉 and |1〉, of the form α|0〉 + β|1〉, can exist. Here, α, β ∈ C and

|α|2 + |β|2 = 1. Physically, this means that when we measure the qubit in the Pauli-Z

basis (see (2.1)), we get either |0〉 with probability |α|2 or |1〉 with probability |β|2.

For a multi-qubit system, the state space is the tensor product of the state spaces of the

constituting systems. That is, an N -qubit system has a 2N -dimensional state space. An

important example is a two-qubit system with four orthonormal basis states |00〉, |01〉, |10〉

and |11〉. Here, |00〉 = |0〉 ⊗ |0〉 and analogously for |01〉, |10〉 and |11〉. These basis states

are examples of product states or separable states. Let H1, H2 be the Hilbert spaces of two

systems. We say that a state |ψ〉 ∈ H1⊗H2 on the composite system is a product state if

|ψ〉 = |ψ1〉⊗|ψ2〉, where |ψi〉 ∈ Hi for i = 1, 2. A pair of qubits can be in any superpositions

of the four basis states and a notable example is the Bell state or EPR pair |00〉+|11〉√
2 . The

Bell state is an entangled state and is the key ingredient in quantum teleportation and

superdense coding, see e.g. [43, Chapter 1.3.7 and Chapter 2.3]. In general, we say that a

state |ψ〉 ∈ H1 ⊗H2 is entangled if it cannot be written as a product state.

The evolution of a closed quantum system is described by a unitary transformation. That

is, the state |ψ〉 of the system at time t1 is related to the state |ψ′〉 of the system at time t1
by a unitary operator U which depends only on the times t1 and t2, given by |ψ′〉 = U |ψ〉.

Here, U †U = UU † = I, where I is the identity matrix (of suitable size). For NMR [54,56]

and D-Wave systems [51], the unitary evolution often takes the form U = e−ιH(t2−t1),

where H is an Ising Hamiltonian; see Chapter 3 for an example. For quantum computers,
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not all unitary operators are easy to implement. Fortunately, combinations of single-qubit

and two-qubit unitary operations that can implement any arbitrary unitary operation [43,

Chapter 4]. This will be the main topic of Sec. 2.3.

We consider projective measurements. A projective measurement is described by an ob-

servable M , a Hermitian matrix defined on the state space of the quantum system being

observed. By the spectral theorem, we can decompose M =
∑
m λmPm, where Pm is the

projector onto the eigenspace of M with eigenvalue λm. The eigenvalues λm correspond

to the possible outcomes of the projective measurement. Given a quantum state |ψ〉, the

probability of measuring outcome λm is P(λm) = Tr(Pm|ψ〉〈ψ|), where 〈ψ| = |ψ〉†. The

expectation value of M in the state |ψ〉 is 〈M〉 = Tr(M |ψ〉〈ψ|).

Projective measurements are usually performed in the Pauli matrices Z,X, Y bases, where

Z =

1 0

0 −1

 , X =

0 1

1 0

 , Y =

0 −ι

ι 0

 . (2.1)

Given a N -qubit state |ψ〉, the expectation value by measuring the i-th qubit in the Z

basis is 〈Z(i)〉 = Tr(Z(i)|ψ〉〈ψ|), where Z(i) acts on the i-th qubit as Z and acts on all

other qubits as the identity I.

So far, we have discussed the dynamics of closed quantum systems. Although fancinating

ideas can be achieved in such ideal systems, these ideas are tempered by noise in real

systems. It is crucial to understand real quantum systems under noise in order to develop

useful applications of them. This is the central topic for the following subsection.

2.2.2 Dissipative quantum systems

Dissipation is a ubiquitous phenomenon in real physical systems. A swinging pendulum

interacts with its environment through friction, resulting in dampened oscillations. Sim-

ilarly, quantum systems, and especially quantum computers, suffer from unwanted noise

resulting from interactions with the outside environment. A prominent example of noise
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is cross-talk in superconducting quantum computers, which arises from unwanted interac-

tions between the qubits and from leakage of the control signals onto qubits that are not

part of the desired operation [94].

The state of a N -qubit dissipative quantum system is described by a density operator, a

Hermitian matrix ρ ∈ C2N×2N with Tr(ρ) = 1 and ρ � 0. We write D(2N ) to denote the

set of 2N × 2N density operators. We remark that D(2N ) is a compact convex set. In this

thesis, we consider evolutions of a dissipative quantum system governed by completely

positive trace-preserving (CPTP) maps T (also referred to as quantum channels). We

remark that not all dissipative evolutions can be described by CPTP maps. A CPTP

map sends a set of density operators D(2N ) on the Hilbert space H1 = C2N×2N to density

operators D(2N ′) on the Hilbert space C2N′×2N′ (N ′ may or may not be the same as N).

A CPTP map preserves the physical properties of a density operator. That is, for any

ρ ∈ D(2N ), T (ρ) is again Hermitian, Tr[T (ρ)] = 1 and T (ρ) � 0. Furthermore, T is

completely positive, meaning that if we introduce an extra system on a Hilbert space H2

with arbitrary finite dimension, then I⊗T (A) � 0 for any positive operator A � 0 defined

on the composite system H2 ⊗H1, where I is the identity operator on H2. The complete

positivity property ensures that if ρH2⊗H1 is a density operator of the composite system

H2⊗H1, and if T only acts on H1, then I ⊗ T (ρH2⊗H1) is also a valid density operator of

the composite system; also see [43, Box 8.2].

An important example of a CPTP map is unitary transformation T (ρ) = UρU † for some

unitary matrix U . However, in general, T (ρ) may not be related to ρ by a unitary trans-

formation. A natural way to view dissipative quantum system is through an interaction

of a principal system with an environment. Let ρ be the density operator of the principal

system and ρenv be the density operator describing an environment. In this view, an ex-

ample of a CPTP map is T (ρ) = Trenv[U(ρ⊗ ρenv)U †], where U acts on both the system

and the environment, and Trenv[·] denotes the partial trace over the environment. CPTP

maps of this form will be utilized in Chapter 3 in quantum reservoir computers (QRCs)

for temporal information processing. Another example of a CPTP map is a convex combi-

nation of unitary transformations T (ρ) = aU0ρU
†
0 + bU1ρU

†
1 + cσ, where a, b, c ∈ [0, 1] and
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a+ b+ c = 1. Here, U0, U1 are two unitary matrices and σ is a fixed density operator. We

will exploit CPTP maps of this form in Chapter 4 to implement QRCs on current noisy

quantum computers.

Projective measurements for dissipative quantum systems are performed similarly as for

closed quantum systems. A projective measurement is described by an observable M =∑
m λmPm. Given a quantum state ρ, the probability of measuring outcome λm is given

by P(λm) = Tr(ρPm) and the expectation value of M of the state ρ is 〈M〉 = Tr(Mρ).

A state ρ of a composite system on a Hilbert space H1 ⊗H2 is called a product state if

ρ = ρ1 ⊗ ρ2, where ρi is a density operator on Hi for i = 1, 2. If ρ =
∑
k pkρ

k
1 ⊗ ρk2 where

pk ≥ 1,
∑
k pk = 1 and ρki are density operators of Hi, then ρ is separable. We say that ρ

is entangled if ρ is not separable.

2.2.3 Quantum noise

We have discussed the dynamics of dissipative quantum systems, quantum systems that are

impacted noise. Here, we introduce some important examples of quantum noise, including

depolarizing noise, dephasing noise, decaying noise and the generalized amplitude damping

(GAD) noise [43, Chapter 8]. These quantum noise examples are also examples of CPTP

maps.

The depolarizing noise replaces an N -qubit quantum state by the completely mixed state

I/2N with probability p and leaves the state unchanged with probability 1− p. That is, it

depolarizes the state with probability p. A state ρ under the depolarizing noise undergoes

the evolution Tdepolarize(ρ) = p I
2N + (1 − p)ρ. The depolarizing noise has a unique fixed

state I/2N such that Tdepolarize(I/2N ) = I/2N . This means that the depolarizing noise

causes any state to become the completely mixed state with time.

The dephasing noise describes the loss of quantum information without loss of energy

and is a noise process unique to quantum systems. A physical example of the dephasing

noise is when a photon scatters randomly as it travels through a waveguide. A single-
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qubit quantum state ρ under the dephasing noise is described by Tdephasing(ρ) = pρ +

(1 − p)ZρZ. For an N -qubit quantum state ρ, we apply the dephasing nooise on each

qubit as a simple model to approximate its effect. That is, Tdephasing(ρ) = TNdephasing ◦ · · · ◦

T 1
dephasing(ρ), where T jdephasing(ρ) = pjρ + (1 − pj)Z(j)ρZ(j). The dephasing noise causes

the off-diagonal elements of the density operator to decay exponentially to zero with time

without impacting the diagonal elements.

The decaying noise is also referred to as the amplitude damping noise and it describes

energy dissipation in a quantum system. A physical example of the decaying noise is

when a spin system at high temperature approaches equilibrium with its environment.

A single-qubit quantum state ρ under the decaying noise is governed by Tdecaying(ρ) =

E0ρE
†
0 + E1ρE

†
1, where

E0 =

1 0

0
√

1− p

 and E1 =

0 √
p

0 0

 .
The operators E0, E1 are referred to as Kraus operators. The decaying noise has a unique

fixed state |0〉〈0|, meaning that it relaxes any state to the ground state (i.e., corresponds

to zero energy or zero temperature) with time. This is different from the dephasing noise

in that the decaying noise impacts both the diagonal and off-diagonal elements of the

density operator.

The GAD noise is a generalization of the decaying noise and it describes the effect of

energy dissipation to an environment at finite temperature. A single-qubit state ρ under

the GAD noise is described by ρ =
∑3
i=0MiρM

†
i , where Mi = Mi(p, λ) are the Kraus

operators parameterized by a finite temperature parameter λ ∈ [0, 1] and a decaying rate

p ∈ [0, 1]. Here,

M0 =
√
λ

1 0

0
√

1− p

 ,M2 =
√
λ

0 √
p

0 0

 ,
M3 =

√
1− λ

√1− p 0

0 1

 ,M4 =
√

1− λ

 0 0
√
p 0

 .
When λ = 1, the GAD noise is the same as the decaying noise. The GAD noise also

21



CHAPTER 2. PRELIMINARIES

impacts both the diagonal and off-diagonal elements of the density operator. As for the

dephasing noise, for an N -qubit quantum system, we apply the decaying and GAD noise

to each qubit as a simple model to approximate their effects.

2.3 Quantum computing

Quantum computing utilizes intrinsic quantum mechanical effects, such as superposition

and entanglement introduced in the previous subsection, to perform quantum compu-

tation. For an in-depth introduction to quantum computing, we refer to the excellent

text [43]. In this section, we provide an overview of quantum gates and quantum circuits.

2.3.1 Quantum gates and quantum circuits

Most quantum computers implement a set of single-qubit and two-qubit gates that together

can realize any arbitrary unitary operation. The most general single-qubit gate is described

by the unitary operator

U3(θ, φ, λ) =

 cos(θ/2) −e−ιλ sin(θ/2)

eιφ sin(θ/2) eι(φ+λ)/2 cos(θ/2)

 , (2.2)

parameterized by θ ∈ [−2π, 2π], φ ∈ [−2π, 2π] and λ ∈ [−2π, 2π] [95]. Other commonly

used single-qubit gates include rotational-X gates RX(θ) = e−ιθX , rotational-Y gates

RY (θ) = e−ιθY and rotational-Z gates RZ(θ) = e−ιθZ , where X,Y, Z are the single-qubit

Pauli operators defined in (2.1).

The U3(θ, φ, λ) gate and controlled-NOT (CNOT) gate together can implement any arbi-

trary multi-qubit unitary operation [43, Sec. 4.5.2]. CNOT is a two-qubit gate described

by the unitary operator

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


. (2.3)
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U3(θ, φ, λ) RX(θ) RY (θ) RZ(θ)

Figure 2.1: From left to right are the quantum circuit diagrams of U3(θ, φ, λ), RX(θ), RY (θ)
and RZ(θ).

|c〉 •
|t〉

|c〉 •

|t〉 U

Figure 2.2: From left to right are the quantum circuit diagrams of CNOT and controlled-U .

CNOT operates on two qubits, a control qubit |c〉 and a target qubit |t〉. The action

of CNOT is given by |c〉 ⊗ |t〉 → |c〉 ⊗ |t ⊕ c〉, where ⊕ is modulo two addition. More

generally, given an arbitrary single-qubit unitary operation U , a controlled-U acts on a

control qubit |c〉 and a target qubit |t〉 via |c〉 ⊗ |t〉 → |c〉 ⊗ U |t〉 when |c〉 = |1〉, otherwise

|c〉 ⊗ |t〉 → |c〉 ⊗ |t〉.

In quantum computing, gates are often represented as quantum circuit diagrams. The

circuit diagrams of U3(θ, φ, λ), RX(θ), RY (θ) and RZ(θ) are shown in Fig. 2.1. Here, the

single line represents a qubit and the square box represents a single-qubit gate. The

circuit diagrams of CNOT and controlled-U gates are shown in Fig. 2.2. Here, the top

line represents the control qubit and the bottom line represents the target qubit.

We have mainly focused on providing an overview of quantum systems and quantum

computing. As the central theme of this thesis is temporal information processing on both

quantum and classical devices, we now turn to discussions on nonlinear dynamical systems

(including classical and quantum systems) in the context of reservoir computing.

2.4 Reservoir computing

Reservoir computing (RC) exploits nonlinear dynamical systems for temporal information

processing, processing input sequences to produce output sequences that approximate

some target outputs. In this thesis, we focus on single-output reservoir computers (also
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abbreviated as RCs) to approximate real-valued output sequences. A straightforward

extension for multiple outputs will be discussed shortly. Consider a discrete-time state

space model 
xk+1 = f(xk, uk),

ŷk = h(xk),
(2.4)

for all k ∈ Z. Here, uk ∈ Rn is the input and ŷk ∈ R is the RC output. The internal state

for a classical RC is denoted by xk ∈ RN with f : RN × Rn → RN and h : RN → R. For

a QRC, xk = ρk ∈ D(2N ) and we write (2.4) as
ρk+1 = f(ρk, uk),

ŷk = h(ρk),
(2.5)

where f : D(2N )× Rn → D(2N ) and h : D(2N )→ R.

The reservoir dynamics f = fγ is often parametrized by a parameter γ ∈ Rp (p is some

positive integer), chosen according to the task. In Chapters 3–6, we consider a fixed fγ

by choosing elements of γ and fixing them at the onset. In Chapter 7, we consider a more

general scenario in which γ can be optimized according to some criterion, a problem known

as the reservoir design problem [81, 96]. The readout parameters W ∈ Rm in h = hW are

optimized to match the target outputs.

We require the computations performed by an RC to be independent of its initial condition.

The key to achieve this is the uniform convergence property, which roughly speaking,

ensures that an RC asymptotically forgets its initial condition; see Sec. 2.4.1 for further

details. In practice, given an input sequence {u0, . . . , uL} and a target output sequence

{y0, . . . , yL}, we washout the effect of the initial condition of a uniformly convergent RC

using the first Lw data. We then optimize the readout parameters (or output weights)

W via least squares by minimizing 1
LT

∑Lt
k=Lw |yk − ŷk|

2, where LT = Lt − Lw. The rest

of the input-output data are used to assess the estimation quality. Although we focus on

single-output RCs here, it is a straightforward extension for multiple output channels. If

the target output is yk ∈ Rn′ , we employ n′ sets of output weights for a single RC, with

each set of output weights optimized to approximate each output channel.
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As alluded to before, the key property required in the RC scheme is the uniform conver-

gence property, which ensures that the RC asymptotically forgets its initial condition. We

now formally define the uniform convergence property.

2.4.1 The uniform convergence property

Roughly speaking, the uniform convergence property ensures that an RC has a bounded

reference state solution defined both backwards and forwards in time, and all other solu-

tions asymptotically converge to this reference state solution, independent of the initial

condition [22, 23]. The uniform convergence property is also referred to as the echo-state

property in the RC literature [24,97].

We will define the uniform convergence property with respect to a set of inputs u ∈ KZ,

where K ⊆ Rn is a subset of Rn. Of particular interests are the input set KZ where K is

compact and the set of bounded inputs l∞n and (Rn)Z. Let φ(k; k0, ξ) denote a solution to

(2.4) parameterized by u ∈ KZ, starting at time k0 with initial condition xk0 = ξ ∈ RN .

That is, for all k ≥ k0, φ(k + 1; k0, ξ) = f(φ(k; k0, ξ), uk) and φ(k0; k0, ξ) = ξ. A function

γ : [0,∞) → [0,∞) is a K function if it is continuous, strictly increasing and γ(0) = 0.

A K function is a K∞ function if it is unbounded. We say that β : [0,∞) × Z+ → R is

a KL function if β(0, ·) = 0, continuous and strictly increasing in the first argument, and

non-increasing in the second argument with limt→∞ β(s, t) = 0 for all s ∈ [0,∞) [98]. As

in [98,99], we do not require β ∈ KL to be continuous or strictly decreasing in the second

argument.

We first define the uniform convergence property for a classical RC.

Definition 2.1 (Uniform convergence property for classical RCs). [22, 23] A classical

RC described by (2.4) has the uniform convergence property (or is uniformly convergent)

with respect to inputs KZ if for any u ∈ KZ,

(i) there exists a unique and bounded solution x∗ ∈ (RN )Z to (2.4) that satisfies x∗k+1 =

f(x∗k, uk) for all k ∈ Z and supk∈Z ‖x∗k‖ <∞;
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(ii) there exists β ∈ KL (independent of u) such that, for any k, k0 ∈ Z with k ≥ k0 and

any ξ ∈ RN ,

‖x∗k − φ(k; k0, ξ)‖ ≤ β(‖x∗k0 − ξ‖, k − k0). (2.6)

We remark that the uniform convergence property is a property of the reservoir dynamics

f . The unique and bounded solution x∗ in Definition 2.1 is called the reference state

solution (determined by u and f). Equation (2.6) imposes that as k0 → −∞, any solution

φ(k; k0, ξ) to (2.4) asymptotically converges to the reference state solution x∗, independent

of its initial condition ξ. Here, ‘uniform’ means that for each xk0 , the bound β(‖x∗k0
−

ξ‖, k − k0) in (2.6) depends on k − k0 but not k0.

The uniform convergence property for a QRC is defined analogously in terms of the

Schatten-p norm ‖ · ‖p.

Definition 2.2 (Uniform convergence property for QRCs). [22, 23] An N -qubit QRC

described by (2.5) has the p-uniform convergence property (or is p–uniformly convergent)

with respect to inputs KZ if for any u ∈ KZ,

(i) there exists a unique solution ρ∗ ∈ D(2N )Z to (2.5) that satisfies ρ∗k+1 = f(ρ∗k, uk)

for all k ∈ Z;

(ii) there exists β ∈ KL (independent of u) such that, for any k, k0 ∈ Z with k ≥ k0 and

any density operator ξ ∈ D(2N ),

‖ρ∗k − φ(k; k0, ξ)‖p ≤ β(‖ρ∗k0 − ξ‖p, k − k0). (2.7)

We remark that the boundedness condition for the reference state solution ρ∗ is not in-

cluded in Definition 2.2. This is because the set of density operators D(2N ) is compact

and hence the condition supk∈Z ‖ρ∗k‖p <∞ always holds. In this thesis, we are interested

in quantum systems that are 2–uniformly convergent (see Chapter 3) and 1–uniformly

convergent (see Chapter 4).
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2.4.2 Sufficient conditions for the uniform convergence property

The uniform convergence property is a genuine condition that is not automatically satisfied

for all RCs. Here, we introduce two theorems to ensure the uniform convergence property

of a RC. The first theorem is useful for establishing the uniform convergence of a classical

RC, and the second theorem is useful for ensuring the uniform convergence of a QRC.

Theorem 2.1. [23, Theorem 1] A classical RC described by (2.4) is uniformly convergent

with respect to inputs KZ if there exists some N ×N positive definite matrix P and some

θ ∈ (0, 1) (independent of u) such that, for any u ∈ KZ,

sup
k∈Z
‖f(0, uk)‖P <∞, (2.8)

and for any x1, x2 ∈ RN and any k ∈ Z,

‖f(x1, uk)− f(x2, uk)‖P ≤ θ‖x1 − x2‖P , (2.9)

where ‖x‖P :=
√
x>Px.

Theorem 2.2. An N -qubit QRC described by (2.5) has the p–uniform convergence prop-

erty with respect to KZ if there exists some ε ∈ [0, 1) (independent of u) such that for any

uk ∈ K and any density operators ρ1, ρ2 ∈ D(2N ),

‖f(ρ1, uk)− f(ρ2, uk)‖p ≤ ε‖ρ1 − ρ2‖p. (2.10)

Proof. We first employ [23, Lemma 2] to show the existence of a solution defined and

bounded on Z. We then show its uniqueness.

Existence: [23, Lemma 2] states that if a QRC (2.5) admits a compact state-space, then

there exists a (state) solution ρ∗ of system (2.5) defined and bounded on Z. Since the set

of density operators forms a compact set, the existence of ρ∗ follows.

Uniqueness: Suppose that ρ∗ and ρ̂∗ are two (state) solutions of (2.5) defined and

bounded on Z. From (2.10), for any k, k0 ∈ Z with k ≥ k0, we have

‖ρ∗k − ρ̂∗k‖p ≤ ε(k−k0)‖ρ∗k0 − ρ̂
∗
k0‖p ≤ 2ε(k−k0),
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where the last inequality follows from ‖ρ∗k0
− ρ̂∗k0

‖p ≤ ‖ρ∗k0
‖p + ‖ρ̂∗k0

‖p ≤ 2. Taking k0 →

−∞, we have ‖ρ∗k − ρ̂∗k‖p ≤ 0 and hence ρ∗k = ρ̂∗k. Since this holds for any k ∈ Z, it follows

that the two solutions are the same.

Finally, to show that (2.7) in Definition 2.2 holds, for any initial density operator ρ, any

k, k0 ∈ Z with k ≥ k0, we have

‖ρ∗k − φ(k; k0, ρ)‖p = ‖f(ρ∗k−1, uk−1)− f(φ(k − 1; k0, ρ), uk−1)‖p

≤ ε‖ρ∗k−1 − φ(k − 1; k0, ρ)‖p
...

≤ εk−k0‖ρ∗k0 − ρ‖p.

(2.11)

Hence, the p–uniform convergence property follows.

2.4.3 Filters and functionals

A class of input-output (I/O) maps, mapping from u ∈ KZ to ŷ ∈ RZ, can be obtained

from RCs described by (2.4) or QRCs described by (2.5) satisfying the uniform convergence

property with respect to KZ. In particular, a uniformly convergent RC or QRC induces

a unique time-invariant and causal filter Mf,h : KZ → RZ that depends on the reservoir

dynamics f and the readout function h. When evaluated at any time k ∈ Z, ŷk =

Mf,h(u)|k := h(x∗k), where x∗ is the reference state solution to (2.4); also see [25,27]. For a

QRC, we write ŷk = Mf,h(u)|k := h(ρ∗k), where ρ∗ is the reference state solution to (2.5).

If h is uniformly continuous, this filter can be constructed by taking the initial time

k0 → −∞ as follows.

Theorem 2.3. Consider a uniformly convergent (with respect to inputs KZ) RC described

by (2.4) or a QRC described by (2.5). If h is uniformly continuous, then for any u ∈ KZ
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and any k ∈ Z,

ŷk = Mf,h(u)|k = h ◦ f(xk−1, uk−1)

= h ◦ f(f(xk−2, uk−2), uk−1)
...

= F(uk−1, uk−2, . . .),

(2.12)

where the following point-wise limit

Mf,h(u)|k = F(uk−1, uk−2, . . .)

:= lim
k0→−∞

h ◦ f(. . . f(f(ξ, uk0), uk0+1) . . .)
(2.13)

exists and is independent of the initial condition ξ.

Proof. The proof for a classical RC (2.4) and a QRC (2.5) is the same. We will present the

proof for a classical RC. Equation (2.12) follows from (2.4). To show that the point-wise

limit (2.13) exists, fix k ∈ Z and ξ. For any k0 ∈ Z with k0 ≤ k, consider a solution

φ(k; k0, ξ) to (2.4). Then (2.13) can be written as

Mf,h(u)|k = F(uk−1, uk−2, . . .) = lim
k0→−∞

h ◦ φ(k; k0, ξ).

We show that {h ◦ φ(k; k0, ξ)}k0≤k is a Cauchy sequence and thus (2.13) exists. Since h is

uniformly continuous, it suffices to show {φ(k; k0, ξ)}k0≤k is Cauchy.

Let k0 ≥ k′0 and x∗ be the reference state solution to (2.4). By (2.6) in Definition 2.1, we

have

‖φ(k; k0, ξ)− φ(k; k′0, ξ)‖ ≤ ‖x∗k − φ(k; k0, ξ)‖+ ‖x∗k − φ(k; k′0, ξ)‖

≤ β(‖x∗k0 − ξ‖, k − k0) + β(‖x∗k′0 − ξ‖, k − k
′
0)

≤ β(Rξ, k − k0) + β(Rξ, k − k′0),

where Rξ = max{‖x∗k0
− ξ‖, ‖x∗k′0 − ξ‖} < ∞. Since β ∈ KL, for any ε > 0 there exists

k∗0 ∈ Z such that for all k′0 ≤ k0 ≤ k∗0, β(Rξ, k − k0) + β(Rξ, k − k′0) < ε. It follows that

{φ(k; k0, ξ)}k0≤k is Cauchy for any fixed k and ξ.

To show that (2.13) is independent of ξ, let φ(k; k0, ξ
′) be another solution to (2.4) starting

at another initial condition ξ′ 6= ξ. Mimicking the argument above gives

‖φ(k; k0, ξ)− φ(k; k0, ξ
′)‖ ≤ β(‖x∗k0 − ξ‖, k − k0) + β(‖x∗k0 − ξ

′‖, k − k0).
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The limit (2.13) is independent of ξ now follows from taking k0 → −∞ and uniform

continuity of h.

By construction, the filterMf,h is time-invariant, meaning that it commutes with the time

shift operator Mf,h ◦ z−τn = z−τ ◦Mf,h for any τ ∈ Z. The filter Mf,h is also causal by

construction, meaning that for any u, v ∈ KZ such that uk = vk for all k ≤ T where T ∈ Z,

we have Mf,h(u)|k = Mf,h(v)|k for all k ≤ T .

There is a bijective correspondence between Mf,h and its associated functional Ff,h :

KZ− → R, defined as Ff,h(u′) := Mf,h(ũ′)|0 [25]. Here ũ′ are arbitrary extensions of

u′ ∈ KZ− to KZ. We can recover Mf,h from Ff,h via Mf,h(u)|k = Ff,h(PZ−
n ◦ z−kn (u)) for

any k ∈ Z. This bijection will be useful for establishing properties of the filter Mf,h by

establishing certain properties of the functional Ff,h, where the latter is often simpler. For

example, in Chapter 6 where we show that uniformly convergent RCs implement infinite-

order nonlinear autoregressive models, we prove that the Mf,h is measurable by showing

that Ff,h is measurable.
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Chapter 3

Ising quantum reservoir computers

In this chapter, we are interested in harnessing dissipative quantum systems governed

by Ising hamiltonians as QRCs (Ising QRCs) for temporal information processing. This

chapter is based on the publications [100] and [101].

As alluded to in the Introduction, QRCs have been introduced to harness complex real-

time dissipative quantum dynamics [54, 55]. This approach is a quantum implementation

of the classical RC scheme, in which a dissipative quantum system processes an input

sequence and produces an output sequence that approximates a target sequence. Here,

we are interested in approximating nonlinear I/O maps with fading memory. As pointed

out before, such maps can be approximated by a series expansion such as the Volterra

series [102] or a universal family of classical nonlinear dynamical systems such as liquid

state machines [15], ESNs [27], LRPO, and SAS systems [26]. However, a theoretical

framework for the learning of nonlinear fading memory I/O maps by quantum systems is

so far lacking. The main contributions of this chapter are

• The provision of a learning theory for dissipative quantum systems.

• The introduction of a universal class of QRCs governed by Ising hamiltonians for

approximating nonlinear I/O maps with fading memory.
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• A study of this universal class of Ising QRCs via numerical experiments.

The main tool employed here is the Stone-Weierstrass Theorem [103, Theorem 7.3.1]. This

theorem has been applied to show that neural networks are universal function approxi-

mators mapping from finite-dimensional vectors to finite-dimensional vectors [104]. The

work [26] uses the Stone-Weierstrass Theorem to establish a class of I/O maps induced by

SAS systems is universal. In this chapter, we employ a similar approach as [26] to show

that a class of I/O maps implemented by uniformly convergent QRCs is universal.

The universal class of Ising QRCs introduced in this chapter is suitable for ensemble

quantum systems such as NMR [56]. When implemented on ensemble quantum systems,

we can directly obtain the expectation of observables and the finite sampling error is

negligible. In the next chapter, we will introduce another universal class of QRCs that are

suitable for current NISQ machines, in which the finite sampling error must be taken into

account.

This chapter is organized as follows. Sec. 3.1 formulates the universality theory. In Sec. 3.2,

we introduce a universal class of Ising QRCs implemented by dissipative quantum systems.

Sec. 3.3 numerically demonstrates the emulation performance of the proposed universal

class. We also investigate the effect of input encodings and provide an in-depth comparison

with the ESN. Sec. 3.4 presents a conclusion and discusses future outlook.

3.1 The universality property

Consider a QRC consisting of N qubits undergoing discrete-time dissipative evolution:

ρk = T (uk)ρk−1, (3.1)

for k ∈ Z. Here, ρk = ρ(kτ) is the system density operator at time t = kτ , τ is a (fixed)

sampling time and T (uk) is a CPTP map for each uk. In this chapter, we focus on real-

valued inputs uk ∈ K for some compact set K ⊂ R. The scheme can be extended to

multiple input channels; see Chapters 5 and 6 for examples. In (3.1), the input sequence
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u = {uk}k∈Z determines the dissipative quantum system’s evolution. The output of the

dissipative quantum system is in the form

ŷk = h(ρk), (3.2)

where h : D(2N ) → R is a real functional of ρk. Equations (3.1) and (3.2) define a QRC

with input sequence u and output sequence ŷ. The overall I/O map in the long time limit

is in general nonlinear.

Recall from Chapter 2.4.3 that if a QRC described by (3.1) and (3.2) is uniformly con-

vergent with respect to inputs KZ (in this chapter, we consier 2–uniformly convergent

QRCs), then it induces a unique time-invariant and causal filter MT,h : KZ → RZ. Here,

MT,h is determined by the input-dependent CPTP map T (·) and the readout function h.

Furthermore, let FT,h : KZ− → R be the corresponding functional.

Our goal is find a universal class of QRCs described by (3.1) and (3.2). As alluded before,

we use the Stone-Weierstrass Theorem [103, Theorem 7.3.1] to establish universality.

Theorem 3.1. (Stone-Weierstrass [103, Theorem 7.3.1]) Let E be a compact metric space

and C(E) be the set of real-valued continuous functions defined on E. If a subalgebra A of

C(E) contains the constant functions and separates points of E, then A is dense in C(E).

In the following, we expand on each ingredient of the Stone-Weierstrass Theorem.

3.1.1 Fading memory property

The fading memory property is a property of the time-invariant and causal filter MT,h.

We say that MT,h has the fading memory property with respect to a decreasing sequence

w = {wk}k≥0, limk→∞wk = 0 if, for any two input sequences u, v ∈ KZ, |MT,h(u)|0 −

MT,h(v)|0| → 0 whenever supk∈Z− |w−k(uk − vk)| → 0. In other words, if the elements of

two sequences agree closely up to some recent past before time k = 0, then their output

sequences will also be close at time k = 0.
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Thanks to the bijection between MT,h and FT,h, we can re-formulate the fading memory

property as continuity of FT,h with respect to a weighted norm defined as follows.

Definition 3.1 (Weighted norm). For a null sequence w = {wk}k≥0, that is w : Z≥0 →

(0, 1] is decreasing and limk→∞wk = 0, define a weighted norm ‖ · ‖w on KZ− as ‖u‖w :=

supk∈Z− |uk|w−k.

Definition 3.2 (Fading memory). A time-invariant causal filter MT,h : KZ → RZ has the

fading memory property with respect to a null sequence w if and only if its corresponding

functional FT,h : KZ− → R is continuous with respect to the weighted norm ‖ · ‖w.

To emphasize that fading memory is defined with respect to a null sequence w, we will say

that MT,h is a w-fading memory filter and the corresponding functional FT,h is a w-fading

memory functional. We also state the following compactness result [26, Lemma 2].

Lemma 3.1 (Compactness). For any null sequence w, KZ− is a compact metric space

with the weighted norm ‖ · ‖w.

We write (KZ− , ‖ · ‖w) to denote the space KZ− equipped with the weighted norm ‖ ·

‖w. This space will play the role of the compact metric space E and w-fading memory

functionals will play the role of C(E) in the Stone-Weierstrass Theorem 3.1.

3.1.2 Polynomial algebra

Let w be a null sequence and FT,h, FT ′,h′ : KZ− → R be two w-fading memory functionals

induced by two uniformly convergent QRCs. We can readily define their product FT,h ×

FT ′,h′ : KZ− → R and their sum FT,h + λFT ′,h′ : KZ− → R for any λ ∈ R as

(HT,h ×HT ′,h′)(u) = HT,h(u)×HT ′,h′(u), (HT,h + λHT ′,h′)(u) = HT,h(u) + λHT ′,h′(u),

for any u ∈ KZ− .

Definition 3.3 (Polynomial algebra). Let w be a null sequence and Fw be a family of

w-fading memory functionals. We say that Fw forms a polynomial algebra consisting of
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w-fading memory functionals if given any FT,h, FT ′,h′ ∈ Fw, we have FT,h × FT ′,h′ ∈ Fw
and FT,h + λFT ′,h′ ∈ Fw for any λ ∈ R.

3.1.3 The separation property

We now introduce the last ingredient in the Stone Weierstrass theorem.

Definition 3.4 (Separation property). Let w be a null sequence and Fw be a family of

w-fading memory functionals defined on KZ−. We say that Fw has the separation property

or Fw separates points of KZ− if, for any u, v ∈ KZ− with u 6= v, there exists FT,h ∈ Fw
such that FT,h(u) 6= FT,h(v).

The separation property is a genuine condition that is often challenging to check. In this

chapter, we will use a power series argument to prove the separation property for a class

of fading memory functionals implemented by QRCs.

3.1.4 The universality theorem

We now state the main universality theorem as a direct consequence of the compactness

Lemma 3.1 and the Stone-Weierstrass Theorem 3.1.

Theorem 3.2. Let w be a null sequence and Mw be the set of w-fading memory filters.

Let Fw be the family of corresponding w-fading memory functionals defined on KZ−. If

Fw forms a polynomial algebra of C(KZ− , ‖ · ‖w), contains the constant functionals and

separates points of KZ−, then Fw is dense in C(KZ− , ‖ · ‖w). That is for any w-fading

memory filter M∗ and any ε > 0, there exists MT,h ∈Mw such that for all u ∈ KZ−,

‖M∗(u)−MT,h(u)‖∞ = sup
k∈Z
|M∗(u)|k −MT,h(u)|k| < ε.

Proof. Fw is dense follows from Lemma 3.1 and Theorem 3.1. To prove the second part of

the theorem, since Fw is dense in C(KZ− , ‖ · ‖w), for any w-fading memory functional F∗
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and any ε > 0 , there exists FT,h ∈ Fw such that for all u− ∈ KZ− , |F∗(u−)−FT,h(u−)| < ε.

For u ∈ KZ, notice that PZ− ◦ z−k(u) ∈ KZ− for all k ∈ Z, hence

|M∗(u)|k −MT,h(u)|k| =
∣∣∣F∗(PZ− ◦ z−k(u))− FT,h(PZ− ◦ z−k(u))

∣∣∣ < ε.

Since this is true for all k ∈ Z, therefore, for all u ∈ KZ, ‖M∗(u)−MT,h(u)‖∞ < ε.

We have introduced the universality property for approximating nonlinear I/O maps with

fading memory. In the following, we construct a class of QRCs implemented by dissipative

quantum systems equipped with the universality property.

3.2 A universal class of QRCs implemented by dissipative

quantum systems

We now specify a class of QRCs governed by dissipative quantum dynamics that is uni-

versal in approximating fading memory I/O maps defined on [0, 1]Z. The class consists of

systems that are made up of Ns non-interacting subsystems initialized in a product state

of the Ns subsystems, with subsystem K consisting of nK + 1 qubits, nK ‘system’ qubits

and a single ‘ancilla’ qubit. We label the qubits of subsystem K by an index iKj that runs

from j = 0 to j = nK , with iK0 labeling the ancilla qubit. The nK + 1 qubits interact via

the Hamiltonian

HK =
nK∑
j1=0

nK∑
j2=j1+1

J j1,j2K (X(iKj1 )
X

(iKj2 ) + Y
(iKj1 )

Y
(iKj2 )) +

nK∑
j=0

αZ(iKj ), (3.3)

where J j1,j2K and α are real-valued constants, while X(iKj ), Y (iKj ) and Z(iKj ) are Pauli X,

Y and Z operators of qubit iKj . The ancilla qubits for all subsystems are periodically

reset at time t = kτ and prepared in the input-dependent mixed state ρKi0,k = uk|0〉〈0| +

(1 − uk)|1〉〈1| (with uk ∈ [0, 1]). The system qubits are initialized at time t = 0 to some

density operator. The density operator ρKk of the Kth subsystem qubits evolves during

time (k − 1)τ < t < kτ according to ρKk = TK(uk)ρKk−1, where TK(uk) is the CPTP map

defined by TK(uk)ρKk−1 = TriK0
(
e−iHKτρKk−1 ⊗ ρKi0,ke

iHKτ
)
and TriK0 denotes the partial
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trace over the ancilla qubit of subsystem K. Let HK = I ⊗ · · · ⊗HK ⊗ · · · ⊗ I with Hk in

the K-th position, the total Hamiltonian of the Ns subsystems is H =
∑Ns
K=1HK . Writing

ρk =
⊗Ns
K=1 ρ

K
k , the overall dynamics of the Ns non-interacting subsystem is

ρk = T (uk)ρk−1 =
Ns⊗
K=1

TK(uk)ρKk−1. (3.4)

We now specify an output functional h associated with this system. We will use a single in-

dex to label all system qubits from the Ns subsystems running from 1 until n =
∑Ns
K=1 nK .

The ancilla qubits are not used in the output. The output functional h is defined to be of

the general form,

ŷk = h(ρk)

= C +
R∑
d=1

n∑
i1=1

n∑
i2=i1+1

· · ·
n∑

in=in−1+1

∑
ri1+···+rin=d

W
ri1 ,...,rin
i1,...,in

〈Z(i1)〉ri1k · · · 〈Z
(in)〉rink

(3.5)

where C is a constant, R is an integer and 〈Z(i)〉k = Tr(ρkZ(i)) is the expectation of the

operator Z(i). We note that the output functional h (the right hand side of the above) is

a multivariate polynomial in the variables 〈Z(i)〉k (i = 1, . . . , n). Thus, computing ŷk only

involves estimating the expectations 〈Z(i)〉k and the degree of the polynomial R can be

chosen as desired. If R = 1 then ŷk is a simple linear function of the expectations.

More generally, we can choose the output functional to be a multivariate polynomial in the

variables 〈X(i)〉k, 〈Y (i)〉k and 〈Z(i)〉k (i = 1, . . . , n). The class of QRCs with this more gen-

eral output functional is also universal since this class contains members of the QRC class

with the output functional (3.5). Increasing the number of observables can potentially im-

prove the emulation ability of a QRC, at the expense of performing more measurements.

Since the observables X(i), Y (i), Z(i) are non-commuting, quantum mechanics prevents si-

multaneous measurements of these observables. Therefore, to obtain 〈X(i)〉k, 〈Y (i)〉k and

〈Z(i)〉k, we need to perform 3n measurements instead of n measurements. In Sec. 4.3.2

of the next chapter, we will present a method that utilizes pre-measurement single-qubit

rotations to obtain the linear combination
∑n
i=1

∑
M={X,Y,Z}W

M
i 〈M (i)〉k with n measure-

ments. This means that forming the QRC prediction with a linear output (R = 1) requires
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only n measurements instead of 3n measurements. For simplicity, we will consider the out-

put functional (3.5) in this thesis. All mathematical proofs presented in this chapter and

the next chapter also apply to this alternative output functional.

The class specified above with output functional 3.5 is a variant of the QRC model in [54]

but is universal by the theory of the previous section. The differences are in the general

form of the output and, in our model, the ancilla qubit is not used in computing the output.

Also, we do not consider time-multiplexing. We remark that time-multiplexing can be in

principle incorporated in the model using the same theory. However, this extension is

more technical and will be pursued in a future work.

This family of QRCs exhibits three important properties. Let H0(2nK ) be the hyperplane

of of 2nK×2nK traceless Hermitian operators. Firstly, if for each subsystem K there exists

εK ∈ [0, 1) such that for all uk ∈ [0, 1], ‖T (uk)|H0(2nK )‖2−2 := supA∈H0(2nK ),A 6=0
‖T (uk)A‖2
‖A‖2 ≤

εK , then the QRC governed by (3.4) is 2–uniformly convergent. We only consider 2–

uniformly convergent QRCs in this chapter, and will drop the prefix ‘2’ from now on.

Secondly, the family forms a polynomial algebra consisting of systems that implement

fading memory maps. Lastly, uniformly convergent single-qubit QRCs with a linear out-

put (n = 1, Ns = 1 and R = 1) separates points of [0, 1]Z− . These properties and an

application of the Stone-Weierstrass Theorem [103, Theorem 7.3.1] guarantee the univer-

sality property for this family of QRCs.

3.2.1 Uniform convergence

We provide a sufficient condition for the QRC governed by (3.4) to be uniformly conver-

gent.

Lemma 3.2. An n-qubit QRC governed by (3.4) is uniformly convergent with respect to

[0, 1]Z− if, for each subsystem K there exists εK ∈ [0, 1) such that for all uk ∈ [0, 1],

‖T (uk)|H0(2nK )‖2−2 := supA∈H0(2nK ),A 6=0
‖T (uk)A‖2
‖A‖2 ≤ εK .

Proof. For each of the K subsystem, let ρK1 , ρK2 ∈ D(2n). Then ρK1 − ρK2 is a traceless
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Hermitian operator. For any uk ∈ K, we have,

‖T (uk)(ρ1 − ρ2)‖2 ≤ ‖T (uk)|H0(2nK )‖2−2‖ρ1 − ρ2‖2 ≤ εK‖ρ1 − ρ2‖2.

By Theorem 2.2 in Chapter 2, each of the K subsystem is uniformly convergent. Since

the subsystems are non-interacting and the QRC is always initialized in a product state,

hence the QRC governed by (3.4) is uniformly convergent.

We remark that if TK(·) satisfies the conditions in Lemma 3.2, then any two density

operators converge uniformly to one another under TK(·). This observation will be used

in the following subsection.

3.2.2 Fading memory and polynomial algebra

Let F = {FT,h} be the set of functionals induced by uniformly convergent QRCs gov-

erned by (3.4) and (3.5). We will show in Lemma 3.3 that the uniform convergence

and continuity of TK(·) are sufficient to guarantee that FT,h is fading memory with

respect to any null sequence. In Lemma 3.5, we show that F forms a polynomial al-

gebra, made of fading memory functionals. In the following, let L(C2n) be the set

of linear operators on C2n , and for a CPTP map T (·) and for all uk ∈ [0, 1], define

‖T (uk)‖2−2 := supA∈L(C2n ),‖A‖2=1 ‖T (uk)A‖2.

Lemma 3.3 (Fading memory). Consider an n-qubit QRC with dynamics (3.4) and output

(3.5). Suppose that for each subsystem K, the CPTP map TK(·) satisfies the condition in

Lemma 3.2, so that the QRC is uniformly convergent. Then for any null sequence w, the

induced filter MT,h and the corresponding functional FT,h are w-fading memory.

Proof. We first state the boundedness of CPTP maps [105, Theorem 2.1].

Lemma 3.4. For any CPTP map T : L(2nK )→ L(2nK ), we have ‖T‖2−2 ≤
√

2nK .
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Further, TK(·) defined in (3.4) is uniformly continuous. That is, for any x, y ∈ [0, 1],

‖TK(x)− TK(y)‖2−2 = sup
A∈L(C2n )
‖A‖2=1

‖(TK(x)− TK(y))A‖2

= sup
A∈L(C2n )
‖A‖2=1

‖TrKi0 (e−iHKτA⊗ (x− y)ZeiHKτ )‖2

= |x− y| sup
A∈L(C2n )
‖A‖2=1

‖TrKi0 (e−iHKτA⊗ ZeiHKτ )‖2

= |x− y|‖T̃K‖2−2,

(3.6)

where ‖T̃K‖2−2 <∞ since T̃K is a linear operator defined on a finite dimensional normed

space. Also recall that Tr(·) is continuous, that is, for any ε > 0, there exists δTr(ε) > 0

such that |Tr(A−B)| < ε whenever ‖A−B‖2 < δTr(ε) for any complex matrices A,B.

Let w be any null sequence. We will show the linear terms in the functional FT,h are

continuous with respect to the weighted norm ‖·‖w defined in Definition 3.1, and the con-

tinuity property of FT,h follows from the fact that finite sums and products of continuous

elements are also continuous.

Let ρ−∞ =
⊗Ns
K=1 ρ

K
−∞ and for any u ∈ [0, 1]Z− , let L(u) = Tr

(
Z(K)

(−→∏∞
k=0T (u−k)

)
ρ−∞

)
be a linear term in FT,h(u), where

−→∏∞
k=0T (u−k) is a time-ordered composition from left to

right. Since theNs subsystems are non-interacting, L(u) = Tr
(
Z(K)

(−→∏∞
k=0TK(u−k)

)
ρK−∞

)
.

Now for any u, v ∈ [0, 1]Z− ,

|L(u)− L(v)| =
∣∣∣∣Tr

(
Z(K)

((−→∏∞
k=0TK(u−k)

)
ρK−∞ −

(−→∏∞
k=0TK(v−k)

)
ρK−∞

))∣∣∣∣ ,
Denote ρKu =

(−→∏∞
k=NTK(u−k)

)
ρK−∞ and ρKv =

(−→∏∞
k=NTK(v−k)

)
ρK−∞ for some 0 < N <

∞, then∥∥∥∥Z(K)
((−→∏∞

k=0TK(u−k)
)
ρK−∞ −

(−→∏∞
k=0TK(v−k)

)
ρK−∞

)∥∥∥∥
2

≤
∥∥∥Z(K)

∥∥∥
2

(∥∥∥∥−→∏N−1
k=0 TK(u−k)−

−→∏
N−1
k=0 TK(v−k)

∥∥∥∥
2−2

∥∥∥ρKu ∥∥∥2
+
∥∥∥∥(−→∏N−1

k=0 TK(v−k)
)

(ρKu − ρKv )
∥∥∥∥

2

)
.

(3.7)

Since TK(uk) satisfies conditions in Lemma 3.2, any two density operators converge uni-

formly to one another. Therefore, for any ε > 0, there exists N(ε) > 0 such that for all
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N ′ > N(ε), ∥∥∥∥(−→∏N ′
k=0TK(v−k)

)
(ρKu − ρKv )

∥∥∥∥
2
<

δTr(ε)
2
∥∥Z(K)

∥∥
2
. (3.8)

Choose N ′ = N(ε) + 1, bound the first term in the sum of (3.7) by rewriting it as a

telescopic sum:∥∥∥∥−→∏N(ε)
k=0 TK(u−k)−

−→∏N(ε)
k=0 TK(v−k)

∥∥∥∥
2−2

=

∥∥∥∥∥∥
N(ε)∑
l=0

(
TK(v0) · · ·TK(v−(l−1))TK(u−l)TK(u−(l+1)) · · ·TK(u−N(ε))

−TK(v0) · · ·TK(v−(l−1))TK(v−l)TK(u−(l+1)) · · ·TK(u−N(ε))
) ∥∥∥∥

2−2

≤
N(ε)∑
l=0

∥∥∥TK(v0) · · ·TK(v−(l−1))
∥∥∥

2−2
‖TK(u−l)− TK(v−l)‖2−2

∥∥∥TK(u−(l+1)) · · ·TK(u−N(ε))
∥∥∥

2−2

≤ 2nK
N(ε)∑
l=0
‖TK(u−l)− TK(v−l)‖2−2 ,

(3.9)

where the last inequality follows from Lemma 3.4. We claim that for any ε > 0, if

‖u− v‖w = sup
k∈Z−

|uk − vk|w−k <
δTr(ε)

2nK+1
∥∥Z(K)

∥∥
2 (N(ε) + 1)‖T̃K‖2−2

wN(ε)

then |L(u)− L(v)| < ε. Indeed, since w is decreasing, the above condition implies that

max
0≤l≤N(ε)

|u−l − v−l|wN(ε) <
δTr(ε)

2nK+1
∥∥Z(K)

∥∥
2 (N(ε) + 1)‖T̃K‖2−2

wN(ε).

Since wN(ε) > 0, for all 0 ≤ l ≤ N(ε), |u−l − v−l| < δTr(ε)
2nK+1‖Z(K)‖2(N(ε)+1)‖T̃K‖2−2

. By

uniform continuity of TK(·) established in (3.6), we bound (3.9) by

2nK
N(ε)∑
l=0
‖TK(u−l)− TK(v−l)‖2−2 < 2nK

N(ε)∑
l=0

δTr(ε)
2nK+1

∥∥Z(K)
∥∥

2 (N(ε) + 1)
= δTr(ε)

2
∥∥Z(K)

∥∥
2
.

(3.10)

Since
∥∥∥ρKu ∥∥∥2

≤ 1, (3.7), (3.8) and (3.10) give

∥∥∥Z(K)
∥∥∥

2

(∥∥∥∥−→∏N(ε)
k=0 TK(u−k)−

−→∏N(ε)
k=0 TK(v−k)

∥∥∥∥
2−2

∥∥∥ρKu ∥∥∥2
+
∥∥∥∥(−→∏N(ε)

k=0 TK(v−k)
)

(ρKu − ρKv )
∥∥∥∥

2

)

< δTr(ε).

The result now follows from the continuity of Tr(·).
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Lemma 3.5 (Polynomial algebra). Consider a family of QRCs described by (3.4) and

(3.5) satisfying the conditions in Lemma 3.2, so that the QRCs are uniformly convergent.

Let F = {FT,h} be the induced family of functionals. Then for any null sequence w, F

forms a polynomial algebra consisting of w-fading memory functionals.

Proof. Consider any two QRCs described by (3.4) and (3.5), with n1 and n2 system

qubits respectively. Let T (m) be the CPTP map and h(m) be the readout function of

QRC m = 1, 2. Since both QRCs satisfy the conditions in Lemma 3.2, hence they are

uniformly convergent. Further, by Lemma 3.3, given any null sequence w, their induced

functionals FT (m),h(m) ∈ F are w-fading memory. We prove the result by showing that there

exists uniformly convergent QRCs described by (3.4) and (3.5) satisfying the conditions

in Lemma 3.2 implementing FT (1),h(1) ×FT (2),h(2) and FT (1),h(1) + λFT (2),h(2) for any λ ∈ R.

Let ρ(m)
k ∈ D(C2nm ) be the state of the m-th QRC. Let j1 = 1, . . . , n1 and j2 = 1, . . . , n2

be the respective qubit indices for the two systems. For the observable Z(jm) of qubit jm,

Tr
(
Z(j1)ρ

(1)
k

)
= Tr

(
(Z(j1) ⊗ I)(ρ(1)

k ⊗ ρ
(2)
k )
)
,

Tr
(
Z(j2)ρ

(2)
k

)
= Tr

(
(I ⊗ Z(j2))(ρ(1)

k ⊗ ρ
(2)
k )
)
,

where I is the identity operator. Therefore, we can relabel the qubit for the combined

system described by the density operator ρ(1)
k ⊗ρ

(2)
k by j, running from j = 1 to j = n1+n2.

Using this notation, the above expectations can be re-expressed as

Tr
(
Z(j1)ρ

(1)
k

)
= Tr

(
Z(j)ρ

(1)
k ⊗ ρ

(2)
k

)
, j = j1

Tr
(
Z(j2)ρ

(2)
k

)
= Tr

(
Z(j)ρ

(1)
k ⊗ ρ

(2)
k

)
, j = n1 + j2.

Following this idea, write out the outputs of two QRCs as follows,

ŷ
(1)
k = C1 +

R1∑
d1=1

n1∑
i1=1
· · ·

n1∑
in1=in1−1+1

∑
ri1+···+rin1 =d1

W
ri1 ,...,rin1
i1,...,in1

〈Z(i1)〉ri1k · · · 〈Z
(in1 )〉

rin1
k ,

ŷ
(2)
k = C2 +

R2∑
d2=1

n2∑
j1=1
· · ·

n2∑
jn2=jn2−1+1

∑
rj1+···+rjn2 =d2

W
rj1 ,...,rjn2
j1,...,jn2

〈Z(j1)〉rj1k · · · 〈Z
(jn2 )〉

rjn2
k .

Let n′ = n1 + n2 and R = max{R1, R2}, then for any λ ∈ R,

ŷ
(1)
k + λŷ

(2)
k = C1 + λC2 +

R∑
d=1

n′∑
k1=1
· · ·

n′∑
kn=kn−1+1

∑
rk1+···+rkn=d

W̄
rk1 ,...,rkn
k1,...,kn

〈Z(k1)〉rk1
k · · · 〈Z

(kn)〉rknk ,
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where the weights W̄ rk1 ,...,rkn
k1,...,kn

are changed accordingly. For instance, if all km ≤ n1, then

W̄
rk1 ,...,rkn
k1,...,kn

= W
ri1 ,...,rin1
i1,...,in1

, corresponding to the weights in the output ŷ(1)
k . Similarly, let

R = R1 +R2, then

ŷ
(1)
k ŷ

(2)
k = C1C2 +

R∑
d=1

n′∑
k1=1
· · ·

n′∑
kn=kn−1+1

∑
rk1+···+rkn=d

Ŵ
rk1 ,...,rkn
k1,...,kn

〈Z(k1)〉rk1
k · · · 〈Z

(kn)〉rknk ,

where Ŵ rk1 ,...,rkn
k1,...,kn

are changed accordingly. Therefore, ŷ(1)
k + λŷ

(2)
k and ŷ(1)

k ŷ
(2)
k again have

the same form as the right hand side of the multivariate polynomial readout function (3.5).

Furthermore, the QRC implementing ŷ(1)
k + λŷ

(2)
k and ŷ(1)

k ŷ
(2)
k is governed by T (1) ⊗ T (2),

again of the form (3.4). Since the two QRCs governed by T (1) and T (2) respectively are

non-interacting and are always initialized in a product state, hence the QRC governed by

T (1) ⊗ T (2) is uniformly convergent.

Finally, since sums and products of w-fading memory functionals is also w-fading memory,

it follows that F forms a polynomial algebra of w-fading memory functionals.

3.2.3 Separation of points

Consider a family of uniformly convergent QRCs described by (3.4) and (3.5) satisfying

the conditions in Lemma 3.2. Let F = {FT,h} be the induced family of functionals. To

show that the family F separates points of [0, 1]Z− , we state the following lemma whose

proof can be found in [106, Theorem 3.2].

Lemma 3.6. Let f(θ) =
∑∞
j=0 xjθ

j be a non-constant real power series, having a non-zero

radius of convergence. If f(0) = 0, then there exists β > 0 such that f(θ) 6= 0 for all θ

with |θ| ≤ β and θ 6= 0.

Lemma 3.7 (Separation of points). Consider a family of uniformly convergent QRCs

described by (3.4) and (3.5) satisfying the conditions in Lemma 3.2. Their induce a family

of functionals F = {FT,h} separates points of [0, 1]Z−.

Proof. Consider a single-qubit QRC with a single subsystem and a linear readout function

(n = 1, Ns = 1, R = 1) governed by (3.4), interacting with a single ancilla qubit. Order
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an orthogonal basis of L(C2) as B = {I, Z,X, Y }. Recall that the normal representations

of a CPTP map T and a density operator ρ are given by [43]

T i,j = Tr (BiT (Bj))
2 and ρi = Tr(ρBi)

2 ,

where Bi ∈ B. Without loss of generality, let τ = 1 and set J j1,j21 = J ∈ R for all j1, j2 in

the Hamiltonian given by (3.3). We obtain the normal representation of the CPTP map

T (uk) =



1 0 0 0

sin2(2J)(2uk − 1) cos2(2J) 0 0

0 0 cos(2J) cos(2α) − cos(2J) sin(2α)

0 0 cos(2J) sin(2α) cos(2J) cos(2α)


.

When restricted to the hyperplane of traceless Hermitian operators,

T |H0(2) =


cos2(2J) 0 0

0 cos(2J) cos(2α) − cos(2J) sin(2α)

0 cos(2J) sin(2α) cos(2J) cos(2α)


with

∥∥∥T |H0(2)

∥∥∥
2−2

= σmax(T |H0(2)) = | cos(2J)|. Here, ‖·‖2−2 is the matrix 2-norm and

σmax(·) is the maximum singular value. Choose J 6= zπ
2 for z ∈ Z, then | cos(2J)| ≤

1 − ε for some ε ∈ (0, 1]. By Lemma 3.2, this QRC is uniformly convergent and we

choose an arbitrary initial density operator ρ−∞ =
(

1/2 1/2 0 0
)T

, corresponding to

ρ−∞ = |0〉〈0|. Only taking the expectation 〈Z〉 in the output (3.5) by setting the degree

R = 1, then this QRC induces a functional FT,h(u) = W
[(−→∏∞

j=0T (u−j)
)
ρ−∞

]
2

+ C, for

all u ∈ [0, 1]Z− . Here,W ∈ R is the readout parameter and [·]2 refers to the second element

of the vector, corresponding to 〈Z〉 given the order of the orthogonal basis elements in B.

Choose W 6= 0. Given two input sequences u 6= v in [0, 1]Z− , consider two cases:

(i) If u0 6= v0, choose J = π
4 such that cos2(2J) = 0 and sin2(2J) = 1. Then

FT,h(u)− FT,h(v) = W (u0 − v0) 6= 0.

(ii) If u0 = v0, we have FT,h(u)− FT,h(v) = W sin2(2J)
∑∞
j=0

(
cos2(2J)

)j (u−j − v−j).

Let θ = cos2(2J), then given our choice of J , we have 0 ≤ θ ≤ 1− ε and sin2(2J) ≥ ε for

some ε > 0. Consider the power series f(θ) =
∑∞
j=0 θ

j(u−j − v−j), since |u−j − v−j | ≤ 1,
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f(θ) has a non-zero radius of convergence R such that (−1, 1) ⊆ R. Moreover, f(θ) is

non-constant and f(0) = 0. The separation of points follows from invoking Lemma 3.6.

3.3 Numerical experiments

We demonstrate the performance of the universal class introduced above. We focus on

single subsystem (N = 1) with system qubits n = {2, 3, 4, 5, 6}, and denote this subclass

as SA. We will drop the subsystem index K from now on. We introduce S > 0 such that

the Hamiltonian parameters J j1,j2/S, α/S = 0.5 and τS = 1 in (3.3) are dimensionless.

As in [54], we randomly choose J j1,j2/S from [−1, 1] and test the uniform convergence

property by checking if 50 initial density operators converge in 500 timesteps under an

input. Input u = {uk}, with each uk randomly uniformly chosen from [0, 0.2], is applied to

all tasks. We apply multitasking, in which the expectations 〈Z(i)〉k for all k are recorded

once, while the output weights in (3.5) are optimized independently for each task.

Three tasks are presented here. The first task is LRPO [26,102],
xk = Axk−1 + cuk

yk = ĥ(xk),

where ĥ is chosen to be a degree two multivariate polynomial, whose coefficients are ran-

domly chosen from [−0.1, 0.1]. We setA to be a diagonal block matrixA = diag(A1, A2, A3),

where A1, A2 and A3 are 200 × 200, 500 × 500 and 700 × 700 real matrices, respec-

tively. In this setting, each linear reservoir defined by Ai evolves independently, while

the output of the LRPO depends on all state elements xk ∈ R1400. Elements of Ai
(i = 1, 2, 3) are randomly chosen from [0, 4]. After randomly choosing elements of Ai, let

σmax(Ai) be the maximum singular value of Ai. We linearly re-scale each element of Ai
by A′i = Ai/σmax(Ai) × 0.9 and use these re-scaled A′i in the numerical examples. This

ensures the uniform convergence and fading memory properties of the LRPO system [26].

The next two tasks test SA to emulate systems that do not strictly implement fading
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memory maps as defined here. We simulate a missile [107] using ‘ode45’ in MATLAB [108],
ẋ1 = x2 − 0.1 cos(x1)(5x1 − 4x3

1 + x5
1)− 0.5 cos(x1)ũ

ẋ2 = −65x1 + 50x3
1 − 15x5

1 − x2 − 100ũ

where y = x2 is the output, with a sampling time of 4 × 10−4s for 1s and zero initial

condition. We make a change of variable ũ = 5u−0.5 so that the input range is the same as

in [107]. The NARMA models are often used to benchmark learning algorithms. NARMA

models depend on its time-lagged outputs and inputs, specified by a delay τNARMA,

yk = 0.3yk−1 + 0.05yk−1

τNARMA−1∑
j=0

yk−j−1

+ 1.5uk−τNARMAuk + γ.

We consider τNARMA = {15, 20, 30, 40}. For τNARMA = {15, 20}, we set γ = 0.1. For

τNARMA = {30, 40}, γ is set to be 0.05 and 0.04 respectively.

Initial conditions of SA and all tasks are washed-out with 500 timesteps, followed by 1000

training timesteps, where output weights are optimized via ordinary least squares. We

associate the output weights C and W ri1 ,...,rin
i1,...,in

in (3.5) with computational nodes. While

the number of computational nodes for SA can be chosen arbitrarily by varying the degree

R in the output, the state-space size of SA is 4n. This state-space size corresponds to

the number of real variables to describe the system density operator. Since the density

operator has unity trace, only up to at most 4n−1 of these nodes are linearly independent.

We compare the SA performance with the ESN’s and the Volterra series’s. An ESN with

state-space size m (Em) is given by [109]
xk = tanh(Wrxk−1 +Wiuk)

ŷk = W>o xk + wc,

(3.11)

where xk ∈ Rm and Wo ∈ Rm, wc ∈ R are output weights and tanh(·) is an element-wise

operation. The number of computational nodes is m + 1. Elements of Wr are uniformly

randomly chosen from [−2, 2] with σmax(Wr) < 1 to ensure the uniform convergence

and the fading memory properties. The Volterra series with kernel order o and memory p

(Vo, p) is ŷk = h0+
∑o
i=1

∑p−1
j1,··· ,ji=0 h

j1,··· ,ji
i

∏i
l=1 uk−jl [102]. The number of computational
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nodes is po+1−p
p−1 +1. We analyze the performance of all schemes using 1000 evaluation data

and the normalized mean-squared error

NMSE :=
2500∑

k=1501
|ȳk − yk|2/

2500∑
k=1501

∣∣∣∣∣yk − 1
1000

2500∑
k=1501

yk

∣∣∣∣∣
2

,

where y is the target output and ȳ is the approximated output. For each task and each

n, NMSEs of 100 convergent SA samples and ESNs are averaged for analysis.

The average NMSE for ESNs is obtained as in [54] to reflect the average ESN task per-

formance over different choices of reservoir parameters. Let S denote the set of 10 points

evenly spaced between [0.01, 0.99]. For each state-space size m and each of 100 ESNs, we

linearly re-scale elements of Wr as for LRPO so that σmax(Wr) = s for all s ∈ S. For

each s, the elements of Wi are randomly chosen within [−δ, δ], where δ is chosen from the

set I of 10 points evenly spaced between [0.01, 1]. Now, for the i-th (i = 1, . . . , 100) ESN

with parameter (m, s, δ), its NMSE is NMSE(m,s,δ,i). For each m, the average NMSE is
1
|S|

1
|I|

1
100
∑
s∈S

∑
δ∈I

∑100
i=1 NMSE(m,s,δ,i).

3.3.1 Overview of SA performance

We present an overview of SA performance in the LRPO, Missile, NARMA15 and NARMA20

tasks. The degree of the multivariate polynomial output (3.5) is R = 1. Fig. 3.1 shows

the typical SA outputs during the evaluation phase. It is observed that as the number of

system qubits n increases, the SA outputs better approximate the target outputs. This is

quantitatively shown in Fig. 3.2, which plots the average SA NMSE as n increases.

From Fig. 3.2, SA with a small number of computational nodes performs comparably as

ESNs and the Volterra series with a large number of computational nodes. The average

NMSE of 6-qubit SA with 7 computational nodes is comparable to the average NMSE of

E100 with 101 computational nodes in the LRPO task. On average, 5-qubit SA with 6

computational nodes performs better than V2, 22 with 504 computational nodes in the

Missile task. Similar observations hold for the NARMA tasks. Our results are similar

to the performance of the QRCs with time multiplexing reported in [54]. However, for
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Figure 3.1: Typical SA outputs during the evaluation phase, for the (a) LRPO, (b) Missile
(c) NARMA15 and (d) NARMA20 tasks. The leftmost, middle and rightmost panels show
the outputs for timesteps 1501–1530, 2001–2030 and 2471–2500, respectively.

Figure 3.2: Average SA NMSE for the (a) LRPO, (b) Missile, (c) NARMA15 and (d)
NARMA20 tasks, the error bars represent the standard error. For comparison, horizon-
tal dashed lines labeled with ‘Em’ indicate the average performance of ESNs with m
computational nodes, and horizontal dot-dashed lines labeled with ‘Vo, p’ indicates the
performance of Volterra series with kernel order o and memory p. Overlapping dashed
and dot-dashed lines are represented as dashed lines.
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the small number of qubits investigated, the rate of decrease in the average NMSE is

approximately linear despite the dimension of the Hilbert space increases exponentially as

n increases. For the NARMA tasks, the average NMSEs for 2-qubit and 6-qubit SA are

of the same order of magnitude. This suggests that a larger number of additional system

qubits is required to substantially reduce the SA error.

3.3.2 SA performance under noise

We further investigate the feasibility of SA under dephasing, and GAD channel; also

see [43, Chapter 8] and Sec. 2.2.3. We simulate the noise using the Trotter-Suzuki formula

[57, 110], in which we divide τS = 1 into δt = τS/50, and alternatively apply the unitary

interaction and each noise on system and ancilla qubits with noise strength γ/S, each for

a duration of δt. We set γ/S = {10−4, 10−3, 10−2}, which are experimentally feasible for

NMR ensembles [111] and some current superconducting machines [112].

The dephasing noise gives rise to the evolution ρ→ 1+e−2 γ
S
δt

2 ρ+ 1−e−2 γ
S
δt

2 Z(j)ρZ(j) for the

j–th qubit. The GAD channel gives rise to the evolution ρ→
∑3
l=0M

(j)
l ρ(M (j)

l )† for the

j–th qubit, where M (j)
l = M

(j)
l ( γS , λ) (l = 0, 1, 2, 3) acts on the j–th qubit and

M0 =
√
λ

1 0

0
√

1− p

 ,M2 =
√
λ

0 √
p

0 0

 ,
M3 =

√
1− λ

√1− p 0

0 1

 ,M4 =
√

1− λ

 0 0
√
p 0

 ,
with

√
1− p = e−2 γ

S
δt and √p =

√
1− e−4 γ

S
δt . We investigate the SA task performance

for λ = {0.2, 0.4, 0.6, 0.8, 1}. When λ = 1, we recover the decaying noise which takes a

state into the ground state |0〉〈0| in the long time limit.

Fig. 3.3 plots the average SA NMSE under the dephasing, decaying and GAD with λ =

{0.4, 0.6} for all noise strengths. Fig. 3.3 indicates that for γ/S = {10−4, 10−3}, all noise

types do not significantly degrade SA task performance. However, the impact of the noise
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Figure 3.3: Average SA NMSE under decoherence. Error bars represent standard errors.

strength γ/S = 10−2 is more pronounced, particularly for a larger number of system

qubits. The same observations hold for GAD with λ = {0.2, 0.8}.

SA is impacted by the decaying noise and the GAD channel since the expectations 〈Z(j)〉k
in the output depend on the diagonal elements of the system density operator, which are

affected by both noise. However, SA is also affected by the dephasing noise, which does

not change the diagonal elements. A possible explanation is that the off-diagonal elements

of the density operator become smaller and the density operator looks more like a classical

probability distribution. Alternatively, this could be viewed as the off-diagonal elements

contributing less to the overall computation. To support this explanation, for each n, we

average the sum of the complex modulus of off-diagonal elements in the system density

operator for the 100 n-qubit SA samples simulated above; see Fig. 3.4.
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Fig. 3.4 shows that as λ/S increases, the average sum decreases, particularly for γ/S =

10−2. Similar trends are observed for the GAD channel for all λ chosen, and the trend

persists as the timestep increases to 2500. This further indicates that although the output

of SA depends solely on the diagonal elements of the system density operator, nonzero off-

diagonal elements play a role in the SA emulation performance. This provides a plausible

explanation for the improved performance achieved by increasing the number of qubits,

thereby increasing Hilbert space size and the number of non-zero off-diagonal elements.

Further investigation into this topic is presented in Sec. 3.3.4.

Figure 3.4: Average sum of complex modulus of off-diagonal elements in the system density
operator for timesteps 1501–1550, under the (a) dephasing noise, (b) decaying noise, (c)
GAD with λ = 0.4 and (d) GAD with λ = 0.6. Row n− 1 corresponds the n-qubit SA.

3.3.3 Effect of different input encodings

Our proposed universal class encodes the input uk ∈ [0, 1] into the mixed state ρi0,k =

uk|0〉〈0|+ (1− uk)|1〉〈1|. Other input encoding possibilities include the pure state ρi0,k =

(√uk|0〉+
√

1− uk|1〉)(
√
uk〈0|+

√
1− uk〈1|) used in the QRC model [54], the phase ρi0,k =

1
2(|0〉+e−iuk |1〉)(〈0|+eiuk〈1|), and non-orthogonal basis state ρi0,k = uk|0〉〈0|+ 1−uk

2 (|0〉+
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|1〉)(〈0|+ 〈1|). We denote these encodings as mixed, pure, phase and non-orthogonal. For

the last three encodings, the universality of the associated QRCs has not been proven.

For all encodings, the Hamiltonian parameters are sampled from the same uniform dis-

tribution, and we choose the resulting uniformly convergent QRCs. We again test the

uniform convergence property by checking if 50 random initial density operators converge

to the same density operator in 500 timesteps. The number of system qubits and the

number of computational nodes for all encodings are the same. We average the NMSEs

of 100 uniformly convergent QRCs for each encoding. Fig. 3.5 shows that for all tasks,

the mixed state encoding performs better than other encodings on average. However, the

average NMSE for different input encodings for all computational tasks are of the same

order of magnitude. Moreover, as the number of system qubits increases, the errors of

different input encodings decrease at roughly the same rate. This comparison indicates

that the effect of different input encodings on the learning performance is not significant.
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Figure 3.5: Average NMSE for different input encodings, for the (a) LRPO, (b) Missile
(c) NARMA15 and (d) NARMA20 tasks. Error bars represent standard errors.

3.3.4 Further comparison with ESNs

Our numerical results so far and [54] both suggest that QRCs with a small number of

qubits achieve comparable performance to classical RCs with a large number of computa-

tional nodes. However, these comparisons do not address quantum system’s exponential

state-space size. One can also increase the state-space size of ESNs and the number of

computational nodes of SA, such that the state-space size and the number of computa-
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Table 3.1: Average 4-qubit SA and E256 NMSE for the LRPO, Missile, NARMA15,
NARMA20, NARMA30 and NARMA40 tasks. Results are rounded to two significant
figures. The notation (± se) denotes the standard error.

Task SA NMSE (± se) E256 NMSE (± se)

LRPO 0.20± 1.5× 10−2 0.019± 7.7× 10−4

Missile 0.48± 2.2× 10−2 0.49± 3.3× 10−3

NARMA15 0.61± 8.0× 10−3 0.32± 1.6× 10−4

NARMA20 0.68± 1.0× 10−2 0.67± 3.2× 10−4

NARMA30 0.67± 7.1× 10−3 0.67± 4.0× 10−4

NARMA40 0.64± 5.3× 10−3 0.66± 5.9× 10−4

tional nodes are similar for both models. Here we present a further comparison between

the SA model and ESNs, and provide insights on the possible advantage the SA model.

We focus on 4-qubit SA with a state-space size of 256 and 210 computational nodes (by

setting R = 6 in (3.5)). We compare this 4-qubit SA model’s average performance with

the average E256 task performance. The number of computational nodes for E256 is 257

and the average NMSE of 100 convergent E256s is reported. As shown in Table 3.1, for the

Missile and all the NARMA tasks, the average NMSEs for both models are of the same

order of magnitude, while E256 outperforms SA in the LRPO task. This comparison

suggests that when the state-space size and the number of computational nodes for both

models are similar, ESNs can outperform the SA model.

We further investigate under what scenario SA may perform better. We observe that

while the number of computational nodes is kept constant, increasing the state-space size

of SA induces an improvement. To demonstrate this, NMSEs of 100 4-, 5- and 6-qubit

SA samples are averaged for analysis. For each n-qubit SA, we vary its output degree R

such that its number of computational nodes ranges from 5 to 252. The chosen degrees

for 4-qubit SA are R4 = {1, . . . , 6}, for 5-qubit are R5 = {1, . . . , 5}, and for 6-qubit SA

are R6 = {1, . . . , 4}. For comparison, we simulate 100 convergent ESNs with reservoir

size 256 to perform the same tasks. For n-qubit SA, let Nn (n = 4, 5, 6) denote the

numbers of computational nodes corresponding to its output degrees Rn. The number of

computational nodes C for E256 is set to be in N4∪N5∪N6. We first optimize 257 output
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weights for E256 via standard least squares during the training phase. When C < 257 for

E256, we select C−1 computational nodes (excluding the tunable constant output weight)

with the largest absolute values and their corresponding state elements. These C − 1 state

elements are used to re-optimize C computational nodes (including the tunable constant

output weight) via standard least squares. During the evaluation phase, 256 state elements

evolve, only C − 1 state elements and C output weights are used to compute the output.
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Figure 3.6: Average SA NMSE as the state-space size and the number of computational
nodes vary for all computational tasks. The average NMSE for E256 with the same number
of computational nodes is plotted for comparison. The data symbols obscure the error
bars, which represent the standard error

Fig. 3.6 plots the 4-, 5-, and 6-qubit SA average NMSE as the number of computational

nodes increases. Two important observations are that increasing the number of compu-

tational nodes does not necessarily improve SA task performance, while increasing the

state-space size induces a noticeable improvement. For most tasks, despite 4-qubit SA

might perform worse than E256, increasing the state-space size allows SA to outperform
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Figure 3.7: Average ESNs NMSE as the state-space size and the number of computational
nodes vary for all computational tasks. The data symbols obscure the error bars, which
represent the standard error

E256, without extensively increasing its number of computational nodes.

In contrary, increasing the state-space size of ESNs while keeping the number of compu-

tational nodes fixed does not induce a significant computational improvement. To nu-

merically demonstrate this, the state-space size of ESNs is further increased to {300, 400,

500}, whose number of computational nodes is set to be the same as E256’s. These com-

putational nodes are chosen and optimized as above for E256. We average the NMSEs of

100 convergent ESNs for each reservoir size. As shown in Fig. 3.7, noticeable performance

improvements for ESNs are observed as the number of computational nodes increases, but

not as the state-space size varies. For the NARMA30 and NARMA40 tasks, the error in-

creases as the number of computational nodes increases. This could be due to overfitting,
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occurs when too many adjustable parameters are trained on limited training data [113].

On the other hand, this observation is less significant for SA. It would be interesting to

conduct further investigation into this behavior in future work.

The above observations have several implications. To improve the SA performance, one

can increase state-space size while only optimizing a polynomial number of computational

nodes. In contrary, enhancing emulation performance of ESNs requires more computa-

tional nodes and hence a larger state-space size. In the situation where the state-space

increases beyond what classical computers can simulate with reasonable resources (such as

memory), the ESN performance saturates, whereas the SA performance could be further

improved by increasing the number of qubits in a linear fashion. To further test this hy-

pothesis, the SA performance would need to be evaluated for a larger number of qubits on

a physical quantum system. A possible hardware implementation is on NMR ensembles

as suggested in [54]. Motivated by the availability of NISQ machines, a quantum circuit

implementation of the QRC would also be attractive. This will be the topic for Chapter 4.

3.4 Conclusion and outlook

We have developed a general theory for learning nonlinear I/O maps with fading memory

using QRCs implemented by dissipative quantum systems. This theory allows dissipative

quantum systems (that meet certain requirements but is otherwise arbitrary) to be com-

bined with a classical processor to learn I/O maps. We apply the theory to demonstrate

a universal class of dissipative quantum systems implemented by Ising Hamiltonians.

Numerical examples suggest that with a small number of qubits and a linear output,

this class can achieve comparable performance, in terms of the average normalized mean-

squared error, to ESNs and the Volterra series with a large number of parameters. More-

over, numerical results indicate that increasing QRC state-space size while fixing the num-

ber of computational nodes can improve performance on some tasks, whereas increasing

the ESN state-space size while fixing the computational nodes does not lead to noticeable
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improvement. This suggests that the possibly large Hilbert space of the quantum system

presents a potential resource in this approach, particularly for state-space sizes beyond

what can be simulated on a digital computer. To investigate this hypothesis, the scheme

would need to be tested for a larger number of qubits on a quantum hardware. In the

next chapter, we introduce a universal class of QRCs that can be implemented on current

NISQ devices, paving a path towards larger-scale experiments in the future.
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Chapter 4

Gate-model quantum reservoir

computers

Motivated by the increasing availability of NISQ devices, we propose a gate-model QRC

for temporal information processing on NISQ quantum computers. The use of quantum

systems as QRCs was initially proposed in [54] to harness disordered-ensemble quantum

dynamics for temporal information processing. This scheme is suitable for ensemble quan-

tum systems such as NMR [56]. However, it remained an open problem to show this QRC

class is universal. In the previous chapter, we address this problem by demonstrating that

a variation of the scheme proposed in [54] is universal for nonlinear fading memory maps.

However, realizing these previous QRC proposals on gate-model NISQ machines remains

challenging due to the large number of quantum gates required to implement the dynamics

via Trotterization [57].

This chapter is based on the publications [114] and [115]. The contribution of this chapter

is twofold:

• We propose a class of QRCs endowed with the fading memory and universality

properties that is not necessarily implemented by Ising Hamiltonians, circumventing

the need for Trotterization required in previous proposals.
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• We propose a realization of a subclass of the universal QRC class on NISQ devices

and present proof-of-principle experiments on remotely accessed IBM superconduct-

ing quantum processors [44], i.e., NISQ devices not yet equipped with quantum error

correction.

The QRC dynamics in this subclass can be implemented using arbitrary but fixed quan-

tum circuits, as long as they generate non-trivial dynamics. This could be, for instance,

quantum circuits that are classically intractable to simulate. The quantum circuits can

be of short lengths and can be implemented using single-qubit and multi-qubit quantum

gates native to the quantum hardware, without the need for precise tuning of their gate

parameters. Our proof-of-principle experiments show that QRCs with a small number of

noisy qubits can tackle nonlinear temporal tasks, even under current hardware limitations

and in the absence of readout and process error mitigation techniques. This work serves

as a theoretical and experimental realization of applying near-term gate-model quantum

computers to nonlinear temporal information processing tasks, opening an avenue for time

series modeling and signal processing applications of these devices.

This chapter is organized as follows. Sec. 4.1 presents our QRC proposal and the universal-

ity result. In Sec. 4.2, we then propose a subclass of the universal class suitable for imple-

mentation on current noisy gate-model quantum computers. Sec. 4.3 details two hardware

realizations of the aforementioned subclass of the universal class and presents more effi-

cient versions of both schemes. These efficient schemes could enable QRC’s potential for

more scalable temporal processing on gate-model quantum devices. Sec. 4.4 details our

proof-of-principle experiments performed on cloud-based IBM superconducting quantum

devices. We then discuss some future directions in Sec. 4.5. Lastly, concluding remarks

are provided in Sec. 4.6. Detailed experimental settings are provided in Appendix A.
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4.1 A universal class of QRCs

As in the previous chapter, we consider a QRC consists of Ns non-interacting subsystems

initialized in a product state, each subsystem K has nK number of qubits so that the

QRC has n =
∑N
K=1 nK qubits. The QRC’s system density operator ρk at time k evolves

according to

ρk = T (uk)ρk−1 =
Ns⊗
K=1

T (K)(uk)ρ
(K)
k−1, (4.1)

and the K-th subsystem density operator ρ(K)
k undergoes the evolution

T (K)(uk)ρ
(K)
k−1 = (1− εK)

(
ukT

(K)
0 + (1− uk)T

(K)
1

)
ρ

(K)
k−1 + εKσK , (4.2)

for input uk ∈ [0, 1]. Here, εK ∈ (0, 1], σK is an arbitrary but fixed density operator, and

T
(K)
0 and T (K)

1 are two arbitrary but fixed CPTP maps. Examples of such maps include

some naturally occurring quantum noise channels such as dephasing or GAD channels

discussed in Sec. 2.2.3. No precise tuning or engineering of the CPTP maps T (K)
0 , T

(K)
1 is

required for the QRC scheme and it should not generate trivial dynamics (e.g., we should

not choose T (K)
0 = T

(K)
1 ).

The QRC governed by (4.1)–(4.2) is 1–uniformly convergent as shown in the following

lemma.

Lemma 4.1 (Uniformly convergent). The QRC governed by (4.1) and (4.2) is 1–uniformly

convergent with respect to inputs [0, 1]Z.

Proof. We first show that each subsystem governed by (4.2) is 1–uniformly convergent.

For any density operators ρ, σ ∈ D(2nK ), uk ∈ [0, 1] and εK ∈ (0, 1], we have

‖T (K)(uk)(ρ− σ)‖1 = (1− εK)
∥∥∥(ukT (K)

0 + (1− uk)T
(K)
1

)
(ρ− σ)

∥∥∥
1

≤ (1− εK)‖ρ− σ‖1 ≤ 2(1− εK),
(4.3)

where the last inequality follows from [43, Theorem 9.2] and the convex combination

ukT
(K)
0 + (1− uk)T

(K)
1 is again a CPTP map. Applying Theorem 2.2 in Chapter 2 shows

that each subsystem is 1–uniformly convergent.

60



4.1. A UNIVERSAL CLASS OF QRCS

Since the Ns subsystems are non-interacting and the QRC is always initialized in a product

state, the QRC governed by (4.1)–(4.2) is 1–uniformly convergent.

In this chapter, we only consider 1–uniformly convergent QRCs and will drop the prefix ‘1’

from now on. We again specify the multivariate polynomial readout function (4.4) for the

QRC introduced above. This is the same readout function as in the previous chapter; see

(3.5). A simple linear form (R = 1) will be employed in our proof-of-principle experiments

in Sec. 4.4.

ŷk = h(ρk)

= C +
R∑
d=1

n∑
i1=1

n∑
i2=i1+1

· · ·
n∑

in=in−1+1

∑
ri1+···+rin=d

W
ri1 ,...,rin
i1,...,in

〈Z(i1)〉ri1k · · · 〈Z
(in)〉rink

(4.4)

Recall from Sec. 2.4.3 that (4.1) and (4.4) define a QRC implementing an I/O map MT,h.

This I/O map depends on the QRC dynamics T and the readout function h. We now

show that MT,h has the fading memory property.

Lemma 4.2 (Fading memory). For any null sequence w,MT,h induced by a QRC described

by (4.1) and (4.4) is w-fading memory.

Proof. Using the same argument in Lemma 3.3 in Chapter 3, it follows that MT,h is w-

fading memory if each K-th subsystem dynamics T (K)(uk) is uniformly continuous with

respect to the inputs uk ∈ [0, 1] for all K = 1, . . . , Ns. Let x, y ∈ [0, 1] and A ∈ C2nK×2nK ,

‖T (K)(x)− T (K)(y)‖1−1 = sup
A∈C2nK×2nK ,‖A‖1=1

∥∥∥(T (K)(x)− T (K)(y)
)
A
∥∥∥

1

= (1− εK)|x− y| sup
A∈C2nK×2nK ,‖A‖1=1

∥∥∥T (K)
0 (A)− T (K)

1 (A)
∥∥∥

1

≤ (1− εK)|x− y|
(∥∥∥T (K)

0

∥∥∥
1−1

+
∥∥∥T (K)

1

∥∥∥
1−1

)
≤ 2(1− εK)|x− y|,

where the last inequality follows from [105, Theorem 2.1]. We remark that Lemma 3.3 in

Chapter 3 is stated with respect to the Schatten–2 norm, but the same argument holds

for the Schatten–1 norm.
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For any null sequence w, consider the classMw of w-fading memory mapsMT,h. These w-

fading memory maps may be implemented by QRCs with different number of subsystems

Ns and number of qubits n. They may also be implemented by QRCs with different

readout parameters and readout degree R. Our main result shows that the class Mw is

universal for approximating nonlinear w-fading memory maps.

Theorem 4.1 (Universality). Let w be any null sequence. For any nonlinear w-fading

memory map M∗ and any δ > 0, there exists MT,h ∈ Mw implemented by some QRC

described by (4.1) and (4.4) such that for all u ∈ [0, 1]Z, supk∈Z |M∗(u)|k −MT,h(u)|k| < δ.

Proof. We employ the Stone-Weierstrass Theorem 3.1 as in Chapter 3. We have shown

the uniform convergence in Lemma 4.1 and the fading memory property in Lemma 4.2.

Let Fw = {FT,h} be the corresponding induced family of w-fading memory functionals. It

remains to show that F forms a polynomial algebra consisting of w-fading memory maps

and it separates points.

The family Fw forms a polynomial algebra follows from Lemma 3.5 in Chapter 3 and

the observation that for any two QRC dynamics T1(uk) =
⊗Ns

K=1 T
(K)
1 (ul) and T2(ul) =⊗N2

k=1 T
(k)
2 (ul), where each T (K)

1 , T
(K)
2 has the form (4.2), we again have T (uk)(ρ1⊗ ρ2) =

T1(uk)ρ1 ⊗ T2(uk)ρ2 is of the form (4.1). Furthermore, T (uk) = T1(uk) ⊗ T2(uk) is again

uniformly convergent when initialized in a product state. Therefore, Fw forms a polyno-

mial algebra consisting of w-fading memory maps.

Constant functions can be obtained by setting W ri1 ,...,rin
i1,...,in

= 0 in (4.4). It remains to show

that Fw separates points. We proceed similarly to Chapter 3.

Consider a single-qubit QRC with a linear readout function (n = 1, R = 1, Ns = 1). For

the rest of this proof, we drop the subsystem index K. This QRC consists of one system

qubit and one ancilla qubit denoted as ρa. Choose the dynamics

ρk = T (uk)ρk−1

= (1− ε)
(
ukTra

(
e−iH(ρk−1 ⊗ ρ0

a)eiH
)

+ (1− uk)Tra
(
e−iH(ρk−1 ⊗ ρ1

a)eiH
))

+ εK I
2
,
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where ρja = |j〉〈j| for j = 0, 1, Tra denotes the partial trace over ancilla ρa and ε ∈ (0, 1).

The map K I
2
is a CPTP map defined as K I

2
(X) = Tr(X) I2 for any X ∈ C2×2. The

Hamiltonian H is of the Ising type H = J(X(0)X(1) + Y (0)Y (1)) + α
∑1
j=0 Z

(j), where

X(j), Y (j) and Z(j) are the Pauli X,Y and Z operators on qubit j, with j = 0 being the

ancilla qubit.

We order an orthogonal basis for C2×2 as {I, Z,X, Y }. The matrix representation of the

above CPTP map is

T (ul) = |00〉〈00|

+ (1− ε)



0 0 0 0

sin2(2J)(2ul − 1) cos2(2J) 0 0

0 0 cos(2J) cos(2α) − cos(2J) sin(2α)

0 0 cos(2J) sin(2α) cos(2J) cos(2α)


(4.5)

Since the QRC is uniformly convergent, we can choose any initial condition ρ−∞ = |0〉〈0|

with the corresponding vector representation ρ∞ = 1
2

(
1 1 0 0

)>
. Taking a linear

readout function, the QRC implements FT,h(u) = 2W
[(−→∏∞

j=0T (u−j)
)
ρ−∞

]
2

+ C, where

[·]2 is the second element of the vector corresponding to 〈Z〉. Furthermore, choose W 6= 0.

Now given two distinct inputs u, v ∈ [0, 1]Z− , suppose that u0 6= v0. Then choose J such

that cos2(2J) = 0, then FT,h(u)0 − FT,h(v)0 = 2W (1− ε)(u0 − v0) 6= 0.

Suppose that u0 = v0. Choose ε ∈ (0, 1) and J such that (1 − ε) cos2(2J) ∈ (0, 1 − ε).

Then FT,h(u)0 − FT,h(v)0 = 2W sin2(2J)(1− ε)
∑∞
j=0

(
(1− ε) cos2(2J)

)j (u−j − v−j).

The above is a power series of the form f(θ) = 2W sin2(2J)(1−ε)
∑∞
j=0 θ

j(u−j−v−j), where

f(θ) has a nonzero radius of convergence and is non-constant since θ = (1− ε) cos2(2J) ∈

(0, 1− ε) and (1− ε) sin2(2J) ∈ (0, 1− ε). Furthermore, since we assume that u0 = v0, we

have f(0) = 0. Invoking [106, Theorem 3.2], there exists β > 0 such that f(θ) 6= 0 for all

|θ| ≤ β, θ 6= 0. This concludes the proof for separation of points. The universality ofMw

now follows from the Stone-Weierstrass Theorem.

Besides the universality property, our proposed universal QRC class exhibits invariance
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properties under certain hardware imperfections; see Sec. 4.1.1 below.

4.1.1 Invariance under certain noise

The universal family of QRCs is invariant and remains universal under certain stationary

Markovian noise processes modeled by CPTP maps. The K-th subsystem’s dynamics

(4.2) during some time interval τ(k − 1) ≤ t ≤ τk, where k is the time step and τ > 0, is

ρ
(K)
k = (1− εK)

(
ukT (K) ◦ T (K)

0 + (1− uk)T (K) ◦ T (K)
1

)
ρ

(K)
k−1 + εKT (K)(σK),

where T (K) ◦ T (K)
j is again some CPTP for j = 0, 1 and T (K)(σK) = σ′K is again some

fixed density operator. The resulting noisy dynamics again has the form (4.2) and the

form of QRC dynamics (4.1) also remains unchanged. That is, the universal family is

invariant and remains universal under such stationary Markovian noise processes.

Such a noise model is the noise model adopted in the IBM Qiskit simulator [116]. The

Qiskit noisy simulation approximates the hardware noise as a CPTP map being applied

after the application of a unitary gate. The noise parameters are estimated during periodic

calibrations on the hardware. Between two calibrations, the calibrated noise parameters

remain unchanged. However, during the experiments, the underlying hardware noise could

potentially be time-varying. Considering these factors, the agreement between our exper-

imental and Qiskit noisy simulation results (see Appendix A.7 for the data) indicate the

underlying hardware noise approximately preserves the QRC dynamics of the form (4.1)

during the experiments. If the underlying noise is non-stationary but changes slowly, the

QRC output weights can be re-trained periodically using most recently gathered data.

This remains challenging to demonstrate on current cloud-accessed NISQ devices but may

be possible on future NISQ machines.

Furthermore, QRC predicted outputs remain unchanged under time-invariant readout er-

ror whenever a linear readout function is used (i.e., R = 1 in (4.4), which is often employed

in practice and in our proof-of-principle experiments). This is because time-invariant read-

out error introduces a time-invariant linear transformation of the measurement data and
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Figure 4.1: Quantum circuit interpretation of the QRC subclass described in Sec. 4.2.
Here ρ(K)

k−1 and σK are two quantum registers (i.e., groups of qubits) whereas ρ(uk) and
ρεK are two single-qubit states. The unitaries U (K)

1 , U
(K)†
0 act on ρ(K)

k−1, controlled by ρ(uk).
The right-most operation (SW ’s) swaps the states of ρ(K)

k−1 and σK , controlled by ρεK .

when the output weightsW ri1 ,...,rin
i1,...,in

and C are optimized via linear regression, the resulting

QRC predicted outputs ŷk remain unchanged; see Appendix A.1 for the derivation.

4.2 A subclass implementable on noisy gate-model quantum

devices

With a limited number of qubits and current hardware restrictions, not all QRC dynamics

of the form (4.1)–(4.2) can be efficiently implemented. Here we describe a subclass of the

above universal QRC class implementable on current gate-model NISQ devices.

QRCs in this subclass are governed by (4.1)–(4.2) with unitary evolutions T (K)
j (ρ(K)

k−1) =

U
(K)
j ρ

(K)
k−1U

(K)†
j (j = 0, 1), where the unitaries U (K)

0 and U
(K)
1 are arbitrary but fixed.

In practice, U (K)
j can be implemented by native quantum gates of the NISQ devices,

possibly composed of single-qubit and multi-qubit gates each parameterized by some gate

parameter. These gate parameters can be chosen arbitrarily but fixed and should not

generate trivial dynamics (e.g., we should not have U (K)
0 = U

(K)
1 ), thus precise tuning of

these parameters is not required. In Sec. 4.4, we suggest some natural choices of U (K)
j

tailored for the cloud-based IBM quantum devices [44]. The QRC dynamics in this subclass

has a natural quantum circuit interpretation, see Fig. 4.1.
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In Fig. 4.1, the state ρ(uk) encodes the input uk as a classical mixture ρ(uk) = uk|0〉〈0|+

(1 − uk)|1〉〈1|, meaning that we apply U
(K)
0 ρ

(K)
k−1U

(K)†
0 with probability uk, and apply

U
(K)†
0 U

(K)
0 U

(K)
1 ρ

(K)
k−1U

(K)†
1 U

(K)†
0 U

(K)
0 = U

(K)
1 ρ

(K)
k−1U

(K)†
1 with probability 1− uk. Let ρ

(K)
k−1

denote the QRC’s K-th subsystem state after these operations. The state ρεK is a classical

mixture ρεK = (1 − εK)|0〉〈0| + εK |1〉〈1| that encodes the rate εK at which the K-th

subsystem forgets its initial conditions. That is, with probability εK , the states ρ(K)
k−1 and

σk are exchanged, equivalent to resetting the state ρ(K)
k−1 to the fixed density operator σK ;

otherwise the state ρ(K)
k−1 is unchanged with probability 1 − εK . We again associate the

readout function (4.4) to this QRC subclass.

4.3 Realization of a subclass on current quantum hardware

We present two implementation schemes of the subclass in Sec. 4.2 on current gate-model

NISQ computers. The first scheme takes into account some current hardware limita-

tions, and the second scheme employs quantum non-demolition (QND) measurements to

substantially reduce the number of circuit runs required. We further show that QRC’s

uniform convergence property leads to more efficient versions of both schemes. A method

to efficiently obtain the QRC prediction as a function of the quantum expectation values

of non-commuting observables is also introduced.

4.3.1 Implementation schemes

Here, we focus on n-qubit QRCs with a single subsystem (Ns = 1 in (4.1)) and drop the

subsystem index K in (4.2). The case with multiple subsystems (Ns > 1) is a straightfor-

ward extension. We may choose σ = |ψ〉〈ψ| with an easy to prepare pure state |ψ〉. In all

schemes, we initialize the QRC circuits in |0〉⊗n.

The first implementation is employed in our proof-of-principle experiments (see Sec. 4.4).

We consider NISQ devices that only allow pure state preparation. Instead of realizing

Fig. 4.1 that requires mixed state preparation, we implement QRCs through Monte Carlo
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sampling. We construct Nm circuits, such that for each circuit and at each timestep

k, we apply U0 and U1 with probabilities (1 − ε)uk and (1 − ε)(1 − uk), respectively;

otherwise the circuit is set in |ψ〉 with probability ε. Therefore, for each Nm circuits and

each time k, implementing the input-dependent QRC dynamics T (uk) in (4.1) amounts

to applying the gate sequence realizing U0 or U1, or resetting the circuit in |ψ〉. As Nm

is increased, the average of all measurements gives a more accurate estimate of the true

expectation 〈Z(i)〉k in the output (4.4), see Appendix A.2. Furthermore, some current

NISQ devices do not allow qubit reset, meaning that once a qubit is measured, it cannot

be re-used for computation. To estimate 〈Z(i)〉k, we re-initialize Nm circuits in |0〉⊗n and

re-apply T (ul) from time l = 1 to time l = k, and only measuring Z(i) at the final time k.

Each of the Nm circuits is run for S shots for each time k. To process a length-L input

sequence under the pure state and qubit re-set limitations requires NmSL circuit runs and

NmS(1 + · · ·+ L) = NmS(L+ 1)L/2 applications of T (uk).

If qubit reset is available, a more efficient scheme using QND measurements [117–120] can

be realized. QND measurements allow us to measure observables during the evolution

of a quantum system without increasing the uncertainty of the measurement outcomes.

More precisely, QND measurements can be defined as follows. Let K be a set of times (we

consider QND measurements in discrete-time here). At any time k ∈ K, we can choose to

measure some observable Ok of a quantum system. Note that one can measure a different

observable at each time. Suppose that up to time k, the quantum system undergoes the

unitary evolution Uk. Let jk(Ok) = U †kOkUk. Then a sequential measurement of {Ok}k∈K
is said to be a QND measurement if the commutator [jk(Ok), js(Os)] = 0 for all k, s ∈ K.

A QND measurement {jk(Ok)}k∈K is a well-defined classical stochastic process in the sense

that {jk1(Ok1), jk2(Ok2), . . . , jkn(Okn)} has a joint probability distribution for any n ∈ Z≥1

and any k1, k2, . . . , kn ∈ K. In particular, the process {jk(Ok)}k∈K has well-defined sample

paths. When a measurement is not QND, {jk(Ok)}k∈K is not a classical stochastic process.

This process can be thought of as a genuine quantum stochastic process that cannot be

realized on some classical probability space. For an introduction to quantum stochastic

processes, see [121, 122]. In Appendix A.3, we detial this more efficient implementation

using QND measurements.
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Using QND measurements, we no longer need to re-run the Nm circuits from time 1 to

estimate 〈Z(i)〉k. Instead we just run each of the Nm circuits S shots, meaning that for

each circuit we perform a QND measurement of Z(i) at time k, continue running the circuit

until the next measurement, and so forth. QND measurements ensure information encoded

in ρk is retained from one timestep to the next. This scheme requires NmSL applications

of T (uk) but only NmS circuit runs as opposed to NmSL runs in the first scheme. Since

qubit reset was not available when our proof-of-experiments were conducted in 2019, we

employed the first implementation scheme. More recently, the qubit-reset functionality

has become available on some NISQ devices such as the Honeywell device [123] and the

IBM devices [124]. It will be interesting to implement this QND scheme in such a device

in the future.

The QRC’s uniform convergence property leads to more efficient versions of both schemes.

LetM ≥ 1 be a fixed integer and suppose that we want to estimate 〈Z(i)〉k at a sufficiently

large timestep k (that depends on ε). Suppose we initialize Nm circuits in |0〉⊗n, re-

apply and re-run T (ul) from l = 1 as before. We then obtain the QRC states ρk−M at

timestep k −M and ρk at timestep k. Thanks to the uniform convergence property, we

can instead re-initialize the Nm circuits in |0〉⊗n at timestep k −M and from this time

onwards re-apply and re-run T (ul) according to inputs {uk−M+1, . . . , uk}. At timestep

k, we have the corresponding QRC state ρ̃k. By the uniform convergence property, we

can make the difference between ρk and ρ̃k negligible by choosing M appropriately based

on ε. If we perform repeated measurements on ρk and ρ̃k, the estimates of 〈Z(i)〉k and

〈Z̃(i)〉k = Tr(ρ̃kZ(i)) will also be close; see Appendix A.2 for the analysis.

The uniform convergence property can be readily exploited on current NISQ machines,

leading to efficient versions of both schemes. The first scheme now requires NmSL circuit

runs but only NmSM applications of T (uk). The second scheme now only needs NmS

circuit runs and NmSM applications of T (uk), both are independent of the input length

L, enabling QRC’s potential for fast and scalable temporal processing. In all schemes, it is

possible and perhaps advantageous to set S = 1 and run Nm circuits for a sufficiently large

Nm. It is possible to run the Nm circuits in parallel if multiple copies of the same hard-
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ware are available. The average of Nm measurements estimates 〈Z(i)〉, whose estimation

accuracy increases as Nm increases; see Appendix A.2 for the analysis.

Lastly, we remark that it is possible and perhaps advantageous to set S = 1 in all schemes

and run Nm circuits (possibly in parallel if multiple copies of the same quantum hardware

are available), for a sufficiently large Nm. The average of Nm measurements at time k

estimates 〈Z(i)〉k, with estimation accuracy increases as Nm increases.

4.3.2 Unitary trick for efficient QRC predictions

As alluded to in the last chapter, a more general form of the output functional as a

multivariate polynomial in the variables 〈X(i)〉k, 〈Y (i)〉k and 〈Z(i)〉k(i = 1, . . . , n) can be

used as the QRC output. However, since these observables are non-commuting, we cannot

measure them simultaneously. Using the first implementation scheme above, we need to

prepare each of the NmL circuits 3 times and perform a total of 3NmSLn measurements.

Using the QND implementation scheme, we need to prepare each of the Nm circuits 3

times and perform a total of 3NmSn measurements.

In this subsection, we present a unitary trick to obtain any linear combination of the form∑n
i=1

∑
M={X,Y,Z}W

M
i 〈M (i)〉k efficiently. A crucial observation here is that a linear QRC

output (with R = 1) is a linear combination of expectations. Once we have optimized

and fixed the output weights WM
i , we can form the linear combination as the QRC pre-

diction without obtaining the individual expectations 〈X(i)〉k, 〈Y (i)〉k and 〈Z(i)〉k. Using

this trick, the first implementation scheme only requires preparation of the NmL circuits

once and NmSLn measurements. The QND implementation only requires preparation of

the Nm circuiits once and NmSn measurements. That is, this trick allows us to increase

the number of observables in the QRC output without increasing the number of measure-

ments. We remark that when training the output weights, we still need to obtain the

individual expectations 〈X(i)〉k, 〈Y (i)〉k and 〈Z(i)〉k. Hence, this trick should only be used

after training and fixing the output weights.
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The unitary trick exploits the fact that WZ
i Z

(i) +W Y
i Y

(i) +WX
i X

(i) = CiV
†
i Z

(i)Vi, where

Ci =
√

(WX
i )2 + (W Y

i )2 + (WZ
i )2,

Vi =


√

(WX
i )2+(WY

i )2

Mi1
−WX

i −ιW
Y
i

Mi2√
(WX

i )2+(WY
i )2

Mi2

WX
i −ιW

Y
i

Mi1

 ,
Mi1 =

√
2(C2

i −WZ
i Ci),

Mi2 =
√

2(C2
i +WZ

i Ci).

In particular, we can re-express Vi as an arbitrary single-qubit rotational gate U3(θi, φi, λi),

U3(θi, φi, λi) =

 cos(θi/2) −eιλi sin(θ/2)

eιφi sin(θi/2) e−ι(φi+λi) cos(θi/2),

 (4.6)

where θi/2 = cos−1
(√

(WY
i )2+(WZ

i )2

Mi1

)
, φi = 0, and λi = − cos−1

(
WX
i√

(WX
i )2+(WY

i )2

)
if

W Y
i ≥ 0 and λi = cos−1

(
WX
i√

(WX
i )2+(WY

i )2

)
if W Y

i < 0. The single-qubit gate (4.6) can

be implemented on current NISQ machines. We can now express the linear QRC output

by ŷk =
∑n
i=1

∑
S={X,Y,Z}W

M
i 〈M (i)〉k =

∑n
i=1CiTr(V †i Z(i)Viρk). To estimate the linear

QRC output ŷk, we can apply the single-qubit rotational gates (4.6) on each of the i-th

qubit before measuring all the qubits.

We remark that applying the rotational gates (4.6) at each time step before measuring all

the qubits is equivalent to augmenting the QRC dynamics by the unitary ⊗ni=1Vi. That is,

the original QRC dynamics ρk+1 = (1− ε)(ukU0ρkU
†
0 +(1−uk)U1ρkU

†
1)+ εσ is augmented

to ρk+1 = (⊗ni=1Vi)
(
(1− ε)(ukU0ρk(U0)† + (1− uk)U1ρk(U1)†) + εσ

)
(⊗ni=1Vi)

†.

4.4 Proof-of-principle experiments

Two temporal information processing problems are posed to learn the I/O relationship

based on the given I/O data u, y. The first is the multi-step ahead prediction problem, in

which we are given inputs {u1, . . . , uL} and the corresponding outputs {y1, . . . , yL}. The

first LT < L input-output data is the training data. The goal is to use the training data to
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optimize the QRC readout parameters via ordinary least squares, so that the QRC output

match the target output for LT + 1, . . . , L. The second problem is the map emulation

problem, that is to optimize the QRC readout parameters to emulate an I/O map using p

different I/O train data of length L′, so that the total number of train data is pL′. When

given a previously unseen input, the task is for the QRC to approximate the corresponding

output of the target I/O map.

Five nonlinear tasks are chosen to test different computational aspects of the QRC pro-

posal. Tasks I-IV have the fading memory property. Tasks I and II test the QRC’s ability

to learn high-dimensional nonlinear maps. Both tasks are LRPO governed by [26,102],
xk = Axk−1 +Buk

yk = h̄(xk),

where A ∈ R2000×2000 and B ∈ R2000. To have the uniform convergence and fading memory

properties, we re-scale the maximum singular value so that σmax(A) = 0.5 for Task I and

σmax(A) = 0.99 for Task II, meaning that Task II retains the initial condition and past

inputs for a longer time duration. The sparsity of A determines the pairwise correlation

between state elements. We set A to be a full (dense) matrix for Task I and 95% sparse

for Task II using the Scipy ‘sparse’ command [125]. The readout function h̄ is a degree 2

polynomial in the state elements.

Task III is SAS, a recently proposed classical reservoir computing model that achieves

good performance in chaotic system modeling [26], described by
xk = p(uk)xk−1 + q(uk)

yk = wTxk,

where p(uk) =
∑4
j=0Aju

j
k and q(uk) =

∑2
j=0Bju

j
k are matrix-valued polynomials in the

input uk, Aj ∈ R700×700⊕R700×700 and Bj ∈ R700×1⊕R700×1, where
⊕

is the direct

sum. To have the uniform convergence and fading memory properties, we re-scale Aj ’s

maximum singular values so that σmax(Aj) < 1
3 for all j. Task IV tests the short-term
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memory by emulating a Volterra series with kernel order 5 and memory 2 [102],

yk = wc +
5∑
i=1

2∑
j1,...,ji=0

wj1,...,ji
i

i∏
k=1

uk−jk .

For the first three tasks, elements of A,Aj , B,Bj and w are uniformly randomly sampled

from [−1, 1]. The coefficients of readout function h̄ in Task II and the kernel coefficients

wj1,...,ji
i and wc in Task IV are also sampled from the same distribution.

Task V is a long-term memory map for testing the capability of the QRC beyond its

theoretical guarantee. Task V is a missile moving with a constant velocity in the horizontal

plane [107], 
ẋ1 = x2 − 0.1 cos(x1)(5x1 − 4x3

1 + x5
1)− 0.5 cos(x1)u

ẋ2 = −65x1 + 50x3
1 − 15x5

1 − x2 − 100u,

with y = x2. This missile dynamics is simulated using the (4, 5) Runge-Kutta formula in

MATLAB, with a sampling time of τ = 1/80 for 1 second.

We implement four distinct QRCs from the subclass described in Sec. 4.2 on three IBM

superconducting quantum processors [44]. Each QRC consists of a single subsystem (Ns =

1 in (4.1)) with a linear output function (R = 1 in (4.4)). Hereafter, we drop the subsystem

index K. A 4-qubit and a 10-qubit QRCs are implemented on the 20-qubit Boeblingen

device; qubits with lower gate errors and longer coherence times are chosen. The 5-qubit

Ourense and Vigo devices are used for two distinct 5-qubit QRs. These 5-qubit quantum

devices admit simpler qubit couplings but lower gate errors than the 20-qubit Boeblingen

device; see Appendix A.4 for hardware specifications. Through comparison among the

four QRCs, we can investigate the impact of the size of QRCs, the complexity of quantum

circuits implementing the QRC dynamics and the intrinsic hardware noise on the QRC’s

emulation performance.

4.4.1 Quantum circuits for QRCs

We require the uniformly convergent QRCs to forget initial conditions for approximating

fading memory maps. Traditionally, initial conditions are washed-out with a sufficiently
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long input sequence. Here we bypass the washout by choosing σ = (|0〉〈0|)⊗n and U0 so

that |0〉⊗n is the steady state of (4.1) under uk = 1, meaning that we can initialize the

QRC circuits in |0〉⊗n. Furthermore, U0 and U1 should be different and hardware-efficient

(e.g., easy to implement on the hardware) but sufficiently complex to produce non-trivial

quantum dynamics. We choose a circuit schematics (also see Fig. 4.2(a) and (b)),

U0(θ) =
N0∏
j=1

(
U

(jt)
3 (θjt)CXjcjtU

(jt)
3 (θjt)†

)
,

U1(φ) =
n⊗
i=1

U
(i)
3 (φ0i)

N1∏
j=1

(
n⊗
i=1

U
(i)
3 (φji)CXjcjt

)
,

(4.7)

where θjt = (θ0
jt ,θ

1
jt ,θ

2
jt) and φji = (φ0

ji ,φ
1
ji ,φ

2
ji) are gate parameters, each independently

and uniformly randomly sampled from [−2π, 2π]. Here U (i)
3 is an arbitrary rotation on

single qubit i [95] with inverse U (jt)
3 (θjt)† = U

(jt)
3 (−θ0

jt ,−θ
2
jt ,−θ

1
jt), and CXjcjt is the

CNOT gate with control qubit jc and target qubit jt; also see Sec. 2.3. These quantum

gates are native to the aforementioned IBM superconducting quantum processors, meaning

that no further decomposition into simpler gates is required to implement these chosen

gates [44]. The numbers of layers N0 and N1 are sufficiently large to couple all qubits

linearly while respecting the coherence limits of these devices. Here, linear coupling means

that qubit 0 is coupled to qubit 1 via CNOT, qubit 1 is coupled to qubit 2 via CNOT

and so on, but qubit 2 might not directly be coupled to qubit 0 via CNOT. Owing to the

more flexible qubit couplings in the Boeblingen device, circuits implementing the 4-qubit

and 10-qubit QRCs have more gates and random parameters than the 5-qubit QRCs’.

Figure 4.2: Quantum circuit schematics for (a) U0(θ) and (b) U1(φ) employed in proof-
of-principle experiments, described by (4.7). Here jt and jc are the target and control
qubits, respectively. The unitaries U0(θ), U1(φ) consist of N0, N1 layers of highlighted
gate operations, with each layer acting on a different qubit pair (jt, jc).

For the 4-qubit and 10-qubit QRCs on the Boeblingen device, we choose the number of
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Figure 4.3: Qubit coupling maps of the IBM superconducting quantum processors. (a)
The 20-qubit Boeblingen device. (b) Both the 5-qubit Ourense and Vigo devices.

layers N0 = N1 = 5 in (4.7). For the 5-qubit Ourense QRC, we implement a simpler form

of (4.7), given by U0 =
∏4
j=1 CXjcjt and U1(φ) =

⊗5
i=1 U

(i)
3 (φi).

To implement a different QRC dynamics on the 5-qubit Vigo device, we choose

U0(θ) =
3∏
j=1

(
R

(jt)
Y (θjt)CXjcjtR

(jt)
Y (θjt)†

)
, U1(φ) =

5⊗
i=1

R
(i)
X (φi).

Here R(i)
Y and R(i)

X are rotational Y and X gates on qubit i, respectively. For all QRCs,

natively coupled control and target qubits for the CNOT gates are chosen, meaning that a

CNOT gate can be directly applied to the qubit pair without additional gate operations.

See Fig. 4.3 for the device qubit coupling maps and Appendix A.5 for the circuit details.

4.4.2 Experimental implementation

We report on experiments demonstrating the first implementation scheme described in

Sec. 4.3. We choose a sufficiently large Nm = 1024 and ε = 0.1 for a moderate short-term

memory. To estimate 〈Z(i)〉k at time k, each of the Nm circuits implementing the QRCs

on the Boeblingen device and the 5-qubit QRs are run for S = 1024 and S = 8192 shots,

respectively. These shot numbers are chosen according to circuit execution times of the

devices, so that the experiments can finish in a reasonable amount of time.

We apply the four QRCs to the five nonlinear tasks on the multi-step ahead prediction and

map emulation problems. To implement the same washout as for the QRCs for each target

map, we inject a constant input sequence uk = 1 of length 50 followed by train and test
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inputs uniformly randomly sampled from uk ∈ [0, 1]. This change in the input statistics

leads to a transitory target output response. We remove the associated transients by

discarding the first four target input-output data and the corresponding QRC experimental

data, see Appendix A.6 for all data. For the multi-step ahead problem, training and testing

timesteps run from k = 5 to LT = 23 and LT + 1 = 24 to L = 30, respectively. For the

map emulation problem, p = 2 train input-output pairs running from k = 5 to L′ = 24

are used, followed by one unseen test input-output pair with the same time steps. The

number of train and test data in our proof-of-principle experiments is limited by the

length of quantum circuits allowed on the IBM quantum processors. Furthermore, these

cloud-based quantum processors are shared among users, making continuous experiments

infeasible and durations of experiments lengthy. Yet our work indicates that despite these

current limitations, NISQ devices can demonstrate learning of input-output maps and

supports QRC as a viable intermediate application of NISQ machines on the road to

full-fledged quantum devices equipped with quantum error correction.

To harness the flexibility of the QRC approach, a multi-tasking technique is used, in which

the four QRCs are evolved and the estimates of 〈Z(i)〉k for all time steps are recorded once,

whereas the readout parameters are optimized independently for each task. We evaluate

and compare the task performance of QRCs using the normalized mean-squared error

between prediction ŷ and target y, computed as

NMSE =
L∑

k=LT+1
|yk − ŷk|2/∆2

y,

where µ = 1
L−LT

∑L
k=LT+1 yk, ∆2

y =
∑L
k=LT+1(yk − µ)2. While the success of experimen-

tal demonstration of hybrid quantum-classical algorithms often requires error mitigation

techniques to reduce the effect of decoherence [126, 127], we remark that our results are

obtained without any process or readout error mitigation.

4.4.3 QRC task performance

As the number of qubits increases, the 10-qubit Boeblingen QRC is expected to perform

better than other QRCs. For the multi-step ahead prediction problem, we observe that
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Figure 4.4: The QRC’s predicted outputs for (a) the multi-step prediction problem and
(b) the map emulation problem. Rows and columns in (a) correspond to different tasks
and QRCs, respectively. The first column in (b) corresponds to the multiplexed QRC.

two qubits in the 10-qubit Boeblingen QRC experienced significant time-varying devia-

tions between the experimental data and simulation results on the Qiskit simulator; see

Appendix A.7. To remedy this issue, we set the corresponding readout parameters to

be zeros. The resulting 10-qubit Boeblingen QRC (with NMSE<0.08) outperforms other

QRCs with a smaller number of qubits on the first four tasks, and achieves an almost two-

fold performance improvement on Tasks II and III; see Table 4.1 for all NMSEs on the

multi-step ahead prediction problem. The 10-qubit Boeblingen QRC predicted outputs

follow the target outputs relatively closely as shown in Fig. 4.4(a). The 5-qubit Ourense

QRC admits very simple dynamics, in the sense that U0 is only a product of CNOT gates

and U1 consists only of single qubit rotational gates. On the other hand, the 5-qubit Vigo

QRC has more gate operations and gate parameters. The 5-qubit Ourense QRC is out-

performed by the 5-qubit Vigo QRC in all tasks. Considering that the Ourense and Vigo

devices have similar noise characteristics and the same qubit coupling map, this suggests

the QRC performance can be improved by choosing a more complex quantum circuit, in

the sense of having a longer gate sequence.

The 10-qubit Boeblingen QRC performs better on all tasks than the 5-qubit QRCs except

on Task V. This could be due to the impact of the higher noise level in the Boeblingen

76



4.4. PROOF-OF-PRINCIPLE EXPERIMENTS

Table 4.1: NMSEs on the multi-step ahead prediction problem.

Task 10-qubit 4-qubit 5-qubit 5-qubit
Boeblingen Boeblingen Ourense Vigo

I 0.051 0.088 0.24 0.070
II 0.072 0.12 0.68 0.22
III 0.043 0.10 0.25 0.081
IV 0.079 0.092 0.34 0.11
V 0.47 0.41 2.3 0.20

Table 4.2: NMSEs on the map emulation problem.

Task Multiplexed 5-qubit 5-qubit
QRC Ourense Vigo

I 0.20 0.26 0.32
II 0.13 0.27 0.23
III 0.16 0.46 0.26
IV 0.25 0.30 0.36
V 0.20 1.1 0.17

device and the fact that the output sequence is generated by a map that is not known

to be fading memory. Our universal class of QRCs can exploit the property of spatial

multiplexing as initially proposed in [55]; also see Fig. 4.5. Outputs of distinct and non-

interacting 5-qubit QRCs can be combined linearly to harness the computational features

of both members. Since the combined Ourense and Vigo devices have 10 qubits overall

as with the 10-qubit Boeblingen QRC but with lower noise levels, it would be meaningful

to combine the 5-qubit Vigo and Ourense QRCs via spatial multiplexing on the map

emulation problem. The results of this multiplexing is summarized in Table 4.2.

Figure 4.5: The spatial multiplexing schematic. The same input sequence is injected into
two distinct 5-qubit QRCs. The internal states Tr(ρkZ(i)) of the two QRCs are linearly
combined to form a single output.

The combination of two 5-qubit QRCs as discussed above achieves NMSE = 0.20, 0.13, 0.16,

0.25, 0.20 for the five tasks without any readout or process error mitigation. The predicted
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multiplexed QRC outputs corresponding to the unseen inputs follow the target outputs rel-

atively closely as shown in Fig. 4.4(b). Without spatial multiplexing, the 5-qubit Ourense

or the 5-qubit Vigo QRC show a worse performance in the first four tasks. The spatial

multiplexed 5-qubit QRC combines computational features from the constituent QRCs

and can achieve comparable performance to the individual members as well as gaining an

almost two-fold performance boost on Tasks II and III. We anticipate that spatial multi-

plexing of QRCs with more complex circuit structures and a larger number of qubits can

lead to further performance improvements.

4.5 Discussion

Current gate durations in the IBM superconducting NISQ devices can be as short as 35.5 ns

for single-qubit gates and 427 ns for CNOT gates (see Appendix A.4 for all gate durations).

Consider the scenario when QND measurements and a large number of identical quantum

hardware are available, so that the Nm circuits can be run in parallel (recall that we can

set S = 1). These fast gate operations suggest the QRC’s potential for real-time signal

processing.

However, the time it takes to measure the qubits poses a bottleneck. Current readout

durations are of one to ten microseconds on these superconducting devices [128]. Such

readout durations are very long considering that most qubit coherence times are only of

tens to a hundred microseconds. To minimize the time required for measurements, instead

of performing QND measurements and resetting the ancilla qubits at each timestep, we

can allocate L ancilla qubits for each QRC ‘system’ qubit and defer their measurements at

the last timestep. In this setting, measurements of these ancilla qubits can be performed

in parallel and the QRC can operate in a microsecond time-scale. Since this requires a

large number of qubits with sufficiently long qubit coherence times, real-time processing

for QRCs is more plausible on full-fledged quantum machines.

Recently, there are many different quantum computing platforms being studied in the QRC
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context. For instance, the work [129] proposes a photonic QRC, which has the potential

to implement fast input encoding and measurements. Such fast quantum devices may be

more feasible to facilitate real-time QRC in the near future.

4.6 Conclusion

We have proposed a class of QRCs endowed with the universality property that is im-

plementable on available noisy gate-model quantum hardware for temporal information

processing. Our approach can harness arbitrary but fixed quantum circuits native to

noisy quantum processors, without precise tuning of the circuit parameters. Our theo-

retical analysis is supported by proof-of-concept experiments on current superconducting

quantum devices, demonstrating that small-scale noisy quantum reservoirs can perform

non-trivial nonlinear temporal processing tasks under current hardware limitations, in

the absence of readout and process error mitigation techniques. We also detail more ef-

ficient implementation schemes of our QRC proposal that could enable QRC’s potential

for fast and scalable temporal processing. It is a future work of interest to realize these

more efficient protocols on quantum hardware. Our work indicates that quantum reservoir

computing can serve as a viable intermediate application of NISQ devices on the road to

full-fledged quantum computers.

Our approach is scalable in the number of qubits by offloading computations to noisy

quantum systems and utilizing classical algorithms with a linear (in the number of qubits)

computational cost to process sequential data. Guided by our theory, we applied the

spatial multiplexing technique initially proposed in [55], and demonstrate experimentally

that exploiting distinct computational features of multiple small noisy quantum reservoirs

can lead to a computational boost. As NISQ hardware becomes increasingly accessible

and the noise level is continually reduced, we hope that the quantum reservoir approach

will find useful applications in a broad range of scientific disciplines that employ temporal

information processing. We also hope for useful applications to be possible even with a

noise level above the threshold for continuous quantum error correction.
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Chapter 5

Interconnected reservoir

computers

In chapters 3 and 4, we focus on specific quantum implementations of reservoir comput-

ers for approximating nonlinear fading memory I/O maps. In the following chapters,

we abstract away from physical implementations to theoretical explorations of reservoir

computers. In particular, in this chapter, we explore interconnected RCs in closed-loop

configurations for emulating I/O maps. In the next chapter, we show that RCs with

output-feedback implement stationary and ergodic infinite-order nonlinear autoregressive

models.

This chapter is based on the publication [130]. We focus on approximating target I/O

maps in a black-box or data-driven fashion, i.e., approximation is solely based on I/O

data collected from the target I/O maps. Example nonlinear models for black-box system

identification include NARMAX [131], the Volterra series [25] and block-oriented models

[76, 77]. The use of closed-loop structures, such as in the Wiener-Hammerstein feedback

model, is motivated by modeling systems that exhibit nonlinear feedback behavior [77].

To approximate I/O maps, we require candidate models with closed-loop structures to

asymptotically forget their initial conditions. This leads to the main contributions of this
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chapter:

• We derive a small-gain theorem to ensure that interconnected dynamical systems

are UC and induce a well-posed I/O map in the sense of [132].

• We introduce interconnected RCs as nonlinear models with closed-loop structures

for emulating I/O maps, expanding the toolbox of available nonlinear models.

To derive this small-gain theorem, we introduce the uniform output convergence (UOC)

and the uniform input-to-output convergence (UIOC) properties. Roughly speaking, a

UOC system has a unique reference state solution with its reference output defined and

bounded both backwards and forwards in time. All other outputs asymptotically con-

verge to the reference output, independent of their initial conditions. The UIOC property

adapts the uniform input-to-state convergence (UISC) property [133] to output-feedback

interconnected systems. A UIOC system is UOC and the perturbation in its reference

outputs are asymptotically bounded by a nonlinear gain on the input perturbation. We

present a small-gain theorem for output-feedback interconnected systems to be UIOC, and

that the closed-loop system induces a well-posed I/O map in the sense of [132].

Our UIOC small-gain theorem is based on a small-gain theorem for time-varying discrete-

time systems in the uniform input-to-output stability (UIOS) framework, also presented

herein. This latter small-gain result is used to establish the UIOC small-gain theorem for

interconnected UOC systems. Small-gain criteria for time-invariant discrete-time input-

to-state stable systems can be found in [134,135], however, they do not carry over to time-

varying systems [136]. On the other hand, small-gain criteria for time-varying continuous-

time interconnected systems in the UIOS framework have been established [99, 137–139].

Ref. [140] develops a generalized small-gain theorem and can be applied to recover the

previous results derived in [99, 137, 138]. Ref. [138] is based on [141, Lemma 3, Prop.

2.5], which concerns continuous-time systems, and is not obvious that it is immediately

applicable to our setting. Here, we adopt the techniques in [140] to establish a UIOS small-

gain theorem for output-feedback interconnected time-varying discrete-time systems. In
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particular, we establish a link to bridge the continuous-time results of [140] with our

time-varying discrete-time setting.

This chapter is organized as follows. Sec. 5.1 introduces relevant stability concepts. Sec. 5.2

presents our main UIOC small-gain theorem. We also present the UIOS small-gain the-

orem, an intermediate result to arrive at the UIOC small-gain theorem. In Sec. 5.3, we

introduce interconnected RCs as candidate models with closed-loop structures and numer-

ically demonstrate their efficacy. We provide concluding remarks in Sec. 5.4.

Notation: we introduce some additional notations for this chapter. For a sequence u on Z,

‖u[k0,k]‖ := supk0≤j≤k ‖u(j)‖ for any k0 ∈ Z and k ≥ k0. We write |u[k0,k]| for a real-valued

sequence u. For any sequences u1, u2 on Z, u = (u1, u2) is given by u(k) = (u1(k), u2(k))

for all k ∈ Z.

5.1 Stability concepts

This section defines the uniform output convergence (UOC) (Definition 5.2) and the uni-

form input-to-output convergence (UIOC) (Definition 5.3) properties. See Table 5.1 for a

summary of relevant stability definitions. We first set some preliminaries.

For k ∈ Z, consider a time-varying discrete-time system,
x(k + 1) = f(k, x(k), u(k)),

y(k) = h(k, x(k), u(k)),
(5.1)

where x(k) ∈ Rnx is the state, u(k) ∈ Rnu is the input and y(k) ∈ Rny is the output.

Throughout this chapter, we assume that u ∈ l∞nu (recall that l∞nu is the set of infinite

sequences of vectors in Rnu) and define all stability concepts with respect to inputs u ∈ l∞nu .

We also assume that for each k ∈ Z, ‖f(k, x(k), u(k))‖ < ∞ and ‖h(k, x(k), u(k))‖ < ∞.

The last two conditions ensure that the system is non-singular at any time and for any

initial condition.
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The following definition of UOC adapts the uniform convergence (UC) property with

respect to inputs l∞nu ( [22, Definition 3] or Definition 2.1 in Sec. 2.4.1) to systems with

output of the form (5.1).

Definition 5.1. For any u ∈ l∞nu, a solution x∗(k) to (5.1) and its corresponding output

y∗(k) = h(k, x∗(k), u(k)) are a reference state solution and the corresponding reference

output, respectively, if they are defined for all k ∈ Z, with ‖x∗‖∞ := supk∈Z ‖x∗(k)‖ < ∞

and ‖y∗‖∞ := supk∈Z ‖y∗(k)‖ <∞.

Definition 5.2. System (5.1) is uniformly output convergent (UOC) if, for any input

u ∈ l∞nu,

(i) There exists a unique reference state solution x∗ with its corresponding reference

output y∗.

(ii) There exists β ∈ KL independent of u such that, for any k, k0 ∈ Z with k ≥ k0 and

x(k0) ∈ Rnx,

‖y∗(k)− y(k)‖ ≤ β(‖x∗(k0)− x(k0)‖, k − k0). (5.2)

We remark that the UOC property reduces to the the UC property when the output is

the state, i.e., y(k) = x(k). We emphasize that in this chapter, all gain functions (e.g., β

in (5.2)) are independent of the input u ∈ l∞nu .

Just as UC systems induce their unique filters (see Sec. 2.4.3 for a detailed discussion

on filters), so do UOC systems. Explicitly, a UOC system induces a filter (or an I/O

map) Mf,h : l∞nu → (Rny)Z that depends on f and h, such that Mf,h(u)|k := y∗k = h(x∗k),

where x∗ and y∗ are the reference state solution and the reference output. The filter Mf,h

is time-invariant and causal by construction. Furthermore, using the same argument in
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Theorem 2.3, this filter can be constructed as

y∗k = Mf,h(u)|k = h(k, f(k − 1, x(k − 1), u(k − 1)), u(k))

= h(k, f(k − 1, f(k − 2, x(k − 2), u(k − 2)), u(k − 1)), u(k))
...

= F(u(k), u(k − 1), u(k − 2), . . .),

where

F(u(k), u(k − 1), u(k − 2), . . .)

= lim
k0→−∞

h(k, f(. . . f(k0 + 1, f(k0, x(k0), u(k0)), u(k0 + 1)) . . . , u(k)).

Using (5.2) and applying a similar argument as in the proof of Theorem 2.3, we can see

that the above limit exists and is independent of the initial condition x(k0). Note that

Theorem 2.3 is derived for UC systems. While in Theorem 2.3 we require h(·) to be

uniformly continuous, we do not need this condition for the above limit to exist for UOC

systems. This is because (5.2) directly upper bounds ‖y∗(k)−y(k)‖ by a KL gain whereas

a UC system only has an upper bound for ‖x∗(k) − x(k)‖ (see (2.6)) and ‖y∗(k) − y(k)‖

for a UC system is not necessarily upper bounded by a KL gain.

The UIOC property further extends the UOC property, and ensures that the perturba-

tion in the reference outputs is asymptotically bounded by a nonlinear gain of the input

perturbation. The following definition of UIOC is a discrete-time analogue of the UISC

property defined in [133, Def. 3] adapted to systems with output of the form (5.1).

Definition 5.3. System (5.1) is uniformly input-to-output convergent (UIOC) if it is UOC

and for any u, u ∈ l∞nu, with the reference state solution x∗ and its reference output y∗ as-

sociated to u, and any solution x(k) with any initial condition x(k0) and the corresponding

output y(k) associated to u, there exists β ∈ KL, γ ∈ K such that, for all k0, k ∈ Z with

k ≥ k0,

‖y∗(k)− y(k)‖ ≤ max{β(‖x∗(k0)− x(k0)‖, k − k0), γ
(
‖(u− u)[k0,k]‖

)
}. (5.3)

If y(k) = x(k), then system (5.1) is uniformly input-to-state convergent (UISC) if it is UC
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and

‖x∗(k)− x(k)‖ ≤ max{β(‖x∗(k0)− x(k0)‖, k − k0), γ
(
‖(u− u)[k0,k−1]‖

)
}. (5.4)

We conclude this section by summarizing the aforementioned stability concepts and their

acronyms in Table 5.1.

Table 5.1: Summary of stability concepts and their acronyms.

Stability concept Acronym Definition
Uniformly output convergent UOC Definition 5.2

Uniformly convergent UC Definition 2.1
Uniformly input-to-output convergent UIOC Definition 5.3
Uniformly input-to-state convergent UISC Definition 5.3

5.2 A UIOC small-gain theorem

In this section, we present our main UIOC small-gain theorem (Theorem 5.1). For k ∈ Z,

consider the interconnected system (see Fig. 5.1),
x1(k + 1) = f1(x1(k), v1(k), u1(k))

y1(k) = h1(x1(k), v1(k), u1(k)),
x2(k + 1) = f2(x2(k), v2(k), u2(k))

y2(k) = h2(x2(k), v2(k), u2(k)),

(5.5)

with interconnections v1(k) = y2(k) and v2(k) = y1(k).

Figure 5.1: Schematic of the interconnected system (5.5).
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For subsystems j = 1, 2, xj(k) ∈ Rnxj are states, yj(k) ∈ Rnyj are outputs and uj(k) ∈

Rnuj are inputs with uj ∈ l∞nuj
. Throughout this chapter, we assume that the inter-

connected system (5.5) is well-posed [99]. That is, for any k, k0 ∈ Z with k ≥ k0, any

initial conditions xj(k0) and any inputs u1, u2, there exists a unique solution y(k) :=

(y1(k), y2(k)) ∈ Rny1+ny2 solving the algebraic equations y1(k) = h1(x1(k), y2(k), u1(k))

and y2(k) = h2(x2(k), y1(k), u2(k)).

For a well-posed system (5.5), let x(k) := (x1(k), x2(k)) ∈ Rnx1+nx2 be the closed-loop

solution to input u(k) := (u1(k), u2(k)) ∈ Rnu1+nu2 , starting at x(k0) = (x1(k0), x2(k0)).

Note that the closed-loop system is causal by definition.

We also assume that the subsystems in (5.5) are UOC. Each UOC subsystem induces an

I/O map Fj : l∞nvj×l
∞
nuj
→ l∞nyj

defined by Fj(vj , uj) = y∗j , where y∗j is the reference output.

By construction Fj is causal, meaning that for any τ ∈ Z and any vj ∈ l∞nvj , uj ∈ l
∞
nuj

,

Πτ ◦ Fj ◦Πτ (vj , uj) = Πτ ◦ Fj(vj , uj), (5.6)

where Πτ (vj , uj) = (vj(k), uj(k)) for k ≤ τ and zero otherwise. We say that system (5.5)

induces a well-posed closed-loop I/O map if the algebraic equations y1 = F2(y2, u2) and

y2 = F1(y1, u1) have a unique bounded solution y∗cl = (y∗1,cl, y∗2,cl) ∈ l∞ny1+ny2 , and the

closed-loop I/O map F(u) = y∗cl is causal [132], where u = (u1, u2) ∈ l∞nu1+nu2
. We

emphasize the difference between a well-posed system (5.5) and a well-posed closed-loop

I/O map induced by (5.5).

We now state our main UIOC small-gain theorem.

Theorem 5.1. Consider a well-posed system (5.5) with UOC subsystems j = 1, 2. For

any inputs uj ∈ l∞nuj , vj ∈ l
∞
nvj

, let x∗j and y∗j be the corresponding reference state solutions

and outputs. For any other inputs uj , vj with uj ∈ l∞nuj , let xj and yj be any corresponding

solutions and outputs with initial conditions xj(k0). Suppose that there exists βj ∈ KL

and γyj , γuj , σj , σuj , σ
y
j ∈ K such that, for all k0, k ∈ Z, k ≥ k0 and any xj(k0) ∈ Rnxj ,

‖y∗j (k)− yj(k)‖ ≤ max{βj(‖x∗j (k0)− xj(k0)‖, k − k0),

γyj (‖(vj − vj)[k0,k]‖), γuj (‖(uj − uj)[k0,k]‖)},
(5.7)
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‖x∗j (k)− xj(k)‖ ≤ max{σj(‖x∗j (k0)− xj(k0)‖),

σyj (‖(vj − vj)[k0,k−1]‖), σuj (‖(uj − uj)[k0,k−1]‖)}.
(5.8)

If γy1 ◦ γ
y
2 (s) < s (or equivalently γy2 ◦ γ

y
1 (s) < s [142, Chapter 8.1]) for all s > 0, for any

k0 ∈ Z and x(k0) ∈ Rnx1+nx2 , the closed-loop solution and its output are bounded, i.e.,

supk≥k0 ‖x(k)‖ < ∞ and supk≥k0 ‖y(k)‖ < ∞. Furthermore, the closed-loop system (5.5)

induces a well-posed closed-loop I/O map and system (5.5) is UIOC.

We remark that although Theorem 5.1 ensures the closed-loop solution x(k) is bounded,

in general, it does not guarantee the closed-loop system (5.5) is UISC, which would require

additional conditions; see Corollary 5.2.

The main idea in the proof of Theorem 5.1 is to use the Banach fixed point theorem

to prove that system (5.5) induces a well-posed closed-loop I/O map. To show that

system (5.5) is UIOC, we apply a change-of-coordinate argument in which the system

under consideration becomes time-varying of the form (5.10). We then apply a uniform

input-to-output stability (UIOS) small-gain theorem (Theorem 5.2) to system (5.10). The

UIOS small-gain theorem establishes the UIOC property of (5.5). We first define the UIOS

property and state Theorem 5.2 whose full proof is given in Appendix B.1.

Definition 5.4. System (5.1) is uniformly input-to-output stable (UIOS) if there exists

β ∈ KL and γ ∈ K such that, for any u ∈ l∞nu, k, k0 ∈ Z with k ≥ k0 and x(k0) ∈ Rnx,

‖y(k)‖ ≤ max
{
β (‖x(k0)‖, k − k0) , γ

(∥∥∥u[k0,k]

∥∥∥)} . (5.9)

Theorem 5.2. Consider a well-posed time-varying dynamical system
∆x1(k + 1) = f̃1(k,∆x1(k),∆v1(k),∆u1(k))

∆y1(k) = h̃1(k,∆x1(k),∆v1(k),∆u1(k)),
∆x2(k + 1) = f̃2(k,∆x2(k),∆v2(k),∆u2(k))

∆y2(k) = h̃2(k,∆x2(k),∆v2(k),∆u2(k)),

∆v1(k) = ∆y2(k), ∆v2(k) = ∆y1(k).

(5.10)
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For j = 1, 2, suppose that there exists βj ∈ KL and γyj , γuj , σj , σuj , σ
y
j ∈ K such that, for

any ∆vj ,∆uj with ∆uj ∈ l∞n∆uj
, k0, k ∈ Z with k ≥ k0 and ∆xj(k0) ∈ Rnxj ,

‖∆yj(k)‖ ≤ max{βj(‖∆xj(k0)‖, k − k0), γyj (‖∆vj[k0,k]‖), γ
u
j (‖∆uj[k0,k]‖)}, (5.11)

‖∆xj(k)‖ ≤ max{σj(‖∆xj(k0)‖), σyj (‖∆vj[k0,k−1]‖), σ
u
j (‖∆uj[k0,k−1]‖)}. (5.12)

If γy1 ◦γ
y
2 (s) < s for all s > 0, then for any k0 ∈ Z and ∆x(k0) ∈ Rnx1+nx2 , the closed-loop

solution and its output are bounded, i.e., supk≥k0 ‖∆x(k)‖ < ∞ and supk≥k0 ‖∆y(k)‖ <

∞. Furthermore, the closed-loop system (5.10) is UIOS; i.e., there exists β ∈ KL and

γ ∈ K such that, for all k, k0 ∈ Z with k ≥ k0 and any ∆x(k0) ∈ Rnx1+nx2 ,

‖∆y(k)‖ ≤ max{β(‖∆x(k0)‖, k − k0), γ(‖∆u[k0,k]‖)}.

We now detail the proof for Theorem 5.1.

Proof of Theorem 5.1. For any fixed inputs uj ∈ l∞nuj , the I/O map induced by each sub-

system is given by Fujj : l∞nvj → l∞nyj
,Fujj (vj) = y∗j . For any vj , vj ∈ l∞nvj , let k0 → −∞ and

take the supremum over k ∈ Z in (5.7),

‖Fujj (vj)−F
uj
j (vj)‖∞ ≤ γyj (‖vj − vj‖∞). (5.13)

Consider the composition Fu1
1 ◦ F

u2
2 : l∞nv2 → l∞nv2

. Applying inequality (5.13) twice, we

have ‖Fu1
1 ◦ F

u2
2 (v2)− Fu1

1 ◦ F
u2
2 (v2)‖∞ ≤ γy1 ◦ γ

y
2 (‖v2 − v2‖∞) < ‖v2 − v2‖∞. Therefore,

Fu1
1 ◦ F

u2
2 is a strict contraction on (l∞nv2 , ‖ · ‖∞). Its unique fixed point y∗1,cl ∈ l∞nv2 given

by the Banach fixed-point theorem [143] is the reference output of subsystem j = 1. The

corresponding reference output of subsystem j = 2 is y∗2,cl = Fu2
2 (y∗1,cl). A symmetric

argument shows that Fu2
2 ◦ F

u1
1 is a strict contraction defined on (l∞nv1 , ‖ · ‖∞).

To show that the closed-loop I/O map is causal, for any τ ∈ Z, consider y∗1,Πτ ∈ l∞nv2

the unique fixed point of FΠτ (u1)
1 ◦ FΠτ (u2)

2 . Causality follows if Πτ (y∗1,Πτ ) = Πτ (y∗1,cl).
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Re-express (5.6) as Πτ ◦ F
Πτ (uj)
j ◦Πτ (vj) = Πτ ◦ F

uj
j (vj), we have

Πτ (y∗1,cl) = Πτ ◦ Fu1
1 ◦ F

u2
2 (y∗1,cl)

= Πτ ◦ FΠτ (u1)
1 ◦Πτ (Fu2

2 (y∗1,cl))

= Πτ ◦ FΠτ (u1)
1 ◦Πτ ◦ FΠτ (u2)

2 ◦Πτ (y∗1,cl)

= Πτ ◦ FΠτ (u1)
1 ◦ FΠτ (u2)

2 ◦Πτ (y∗1,cl).

Similarly, Πτ (y∗1,Πτ ) = Πτ ◦FΠτ (u1)
1 ◦FΠτ (u2)

2 ◦Πτ (y∗1,Πτ ). Note that Πτ ◦FΠτ (u1)
1 ◦FΠτ (u2)

2

is a strict contraction, by the Banach fixed point theorem we have Πτ (y∗1,cl) = Πτ (y∗1,Πτ ).

To establish closed-loop UIOC, let x∗1,cl be the reference state solution to subsystem j = 1

with respect to input (y∗2,cl, u1) and analogously for x∗2,cl. Then x∗cl = (x∗1,cl, x∗2,cl) is the

closed-loop reference state solution. Let x(k) = (x1(k), x2(k)), y(k) = (y1(k), y2(k)) be

any other closed-loop solution and its corresponding output to another input u = (u1, u2),

starting at x(k0). From (5.7) and (5.8), the same argument as in the proof of Theorem 5.2

shows that supk≥k0 ‖x
∗
cl(k)− x(k)‖ <∞, supk≥k0 ‖y

∗
cl(k)− y(k)‖ <∞.

For j = 1, 2 and k ≥ k0, define ∆xj(k) = xj(k) − x∗j,cl(k), ∆yj(k) = yj(k) − y∗j,cl(k) and

∆uj(k) = uj(k)−uj(k). Let v∗1,cl = y∗2,cl and v∗2,cl = y∗1,cl, we have the time-varying systems

with states ∆xj(k), outputs ∆yj(k), inputs ∆uj(k), and interconnections ∆v1(k) = ∆y2(k)

and ∆v2(k) = ∆y1(k),

∆xj(k + 1) = fj(∆xj(k) + x∗j,cl(k),∆vj(k) + v∗j,cl(k),∆uj(k) + uj(k))

− fj(x∗j,cl(k), v∗j,cl(k), uj(k))

= f̃j(k,∆xj(k),∆vj(k),∆uj(k)),

∆yj(k) = hj(∆xj(k) + x∗j,cl(k),∆vj(k) + v∗j,cl(k),∆uj(k) + uj(k))

− hj(x∗j,cl(k), v∗j,cl(k), uj(k))

= h̃j(k,∆xj(k),∆vj(k),∆uj(k)).

From (5.7) and (5.8), ∆xj(k) and ∆yj(k) satisfy (5.11) and (5.12) in Theorem 5.2. Finally,

closed-loop UIOC follows from applying Theorem 5.2 to the above interconnected systems.
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Sometimes it is convenient to upper bound ‖y∗j (k) − y(k)‖ in (5.7) by a sum instead of

max of nonlinear gains. That is,

‖y∗j (k)− yj(k)‖ ≤βj(‖x∗j (k0)− xj(k0)‖, k − k0)

+ γyj (‖(vj − vj)[k0,k]‖) + γuj (‖(uj − uj)[k0,k]‖).
(5.14)

Theorem 5.1 can be applied to this scenario by re-writing (5.14) in terms of max of

nonlinear gains. If system (5.5) satisfies (5.14) instead of (5.7), to ensure UIOC of (5.5),

the condition γy1 ◦ γ
y
2 (s) < s for all s > 0 needs to be strengthened. We first present a

lemma (first discussed in [140]) that allows us to re-write (5.14) in terms of max.

Lemma 5.1. Given any λ ∈ K∞, for any a, b ≥ 0, it holds that a+ b ≤ max{a+λ(a), b+

λ−1(b)}.

Proof. Since λ ∈ K∞, its inverse λ−1 exists and is in K∞. Consider two cases. Suppose

b ≤ λ(a), then a+b ≤ a+λ(a) ≤ max{a+λ(a), b+λ−1(b)}. Otherwise, b > λ(a). Applying

λ−1 on both sides gives λ−1(b) > a and a+b < λ−1(b)+b ≤ max{a+λ(a), b+λ−1(b)}.

Theorem 5.1 and Lemma 5.1 lead to the following Corollary.

Corollary 5.1. Consider a well-posed system (5.5) with UOC subsystems. For any inputs

uj ∈ l∞nuj
, vj ∈ l∞nvj

, let x∗j and y∗j be the corresponding reference state solutions and

outputs. For any other inputs uj , vj with uj ∈ l∞nuj , let xj and yj be any corresponding

solutions and outputs with initial conditions xj(k0). Suppose that there exists βj ∈ KL

and γyj , γuj , σj , σuj , σ
y
j ∈ K such that, for all k0, k ∈ Z with k ≥ k0 and any xj(k0) ∈ Rnxj ,

(5.8) and (5.14) hold. If there exists λj ∈ K∞ such that for all s > 0,

(id+ λ1) ◦ γy1 ◦ (id+ λ2) ◦ γy2 (s) < s, (5.15)

where id is the identity map. Then for any k0 ∈ Z and x(k0) ∈ Rnx1+nx2 , the closed-

loop solution and output are bounded, i.e., supk≥k0 ‖x(k)‖ <∞ and supk≥k0 ‖y(k)‖ <∞.

Furthermore, system (5.5) is UIOC and induces a well-posed closed-loop I/O map.

90



5.3. INTERCONNECTED RCS FOR TEMPORAL TASKS

Proof. In Lemma 5.1, identify a with γyj (‖(vj−vj)[k0,k]‖) and b with βj(‖x∗j (k0)−xj(k0)‖, k−

k0) + γuj (‖(uj − uj)[k0,k]‖) for each j = 1, 2. Applying Lemma 5.1 to (5.14) gives

‖y∗j (k)− yj(k)‖ ≤ max{(id+ λj) ◦ γyj (‖(vj − vj)[k0,k]‖),

βj(‖x∗j (k0)− xj(k0)‖, k − k0) + γuj (‖(uj − uj)[k0,k]‖)

+ λ−1
j (βj(‖x∗j (k0)− xj(k0)‖, k − k0) + γuj (‖(uj − uj)[k0,k]‖))}

≤ max{β̂j(‖x∗j (k0)− xj(k0)‖, k − k0), (id+ λj) ◦ γyj (‖(vj − vj)[k0,k]‖),

γ̂uj (‖(uj − uj)[k0,k]‖)},

where β̂j(s, k) = 3 max{βj(s, k), λ−1
j (2βj(s, k))} and γ̂uj (s) = 3 max{γuj (s), λ−1

j (2γuj (s))},

with β̂j ∈ KL and γ̂j ∈ K. The result now follows from Theorem 5.1.

We can further apply Theorem 5.1 and Lemma 5.1 to system (5.5) with yj(k) = xj(k). In

this case, Theorem 5.1 ensures the UISC property of system (5.5), leading to the following

Corollary.

Corollary 5.2. Consider a well-posed system (5.5) with yj(k) = xj(k) and UC subsystems.

For any inputs uj ∈ l∞nuj , vj ∈ l
∞
nvj

, let x∗j be the corresponding reference state solutions.

For any other inputs uj , vj with uj ∈ l∞nuj , let xj be any corresponding solutions with initial

conditions xj(k0). Suppose that there exists βj ∈ KL and γyj , γuj ∈ K such that, for all

k0, k ∈ Z, k ≥ k0 and any xj(k0) ∈ Rnxj ,

‖x∗j (k)− xj(k)‖ ≤βj(‖x∗j (k0)− xj(k0)‖, k − k0)

+ γyj (‖(vj − vj)[k0,k−1]‖) + γuj (‖(uj − uj)[k0,k−1]‖).
(5.16)

If (5.15) holds, then for any k0 ∈ Z and x(k0) ∈ Rnx1+nx2 , the closed-loop solution is

bounded, i.e., supk≥k0 ‖x(k)‖ <∞. Furthermore, system (5.5) is UISC.

5.3 Interconnected RCs for temporal tasks

Nonlinear closed-loop model structures, such as the Wiener-Hammerstein feedback models,

have been proposed to better capture nonlinear feedback phenomena of the unknown
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system [76, 77]. Here we introduce interconnected RCs as candidate models, expanding

the toolbox of available nonlinear models for approximating I/O maps. We apply the

UIOC small-gain theorem to ensure that the closed-loop RC is UOC (or UC for state-

feedback interconnections), so that the estimated outputs for large times are determined

by the inputs but not by the closed-loop RC’s initial condition. As a concrete example,

we will apply the theorem to interconnected ESNs and QRCs to emulate the output

of an observed-based feedback-controlled Lur’e system modified from [144, Example 1],

described by 
z(k + 1) = Az(k) +Buu(k) +Bww(k) + 0.1G sin(Hz(k)),

y(k) = Cz(k),
(5.17)

where w(k) ∈ R is the input and

A =

1 1

0 1.1

 , Bu =

1

1

 , Bw =

−0.5

1

 , G =

0.5

1

 , H =
[
1 1

]
, C =

[
0.1 0.5

]
.

We implement a Luenberger observer with gain L = P−1Z ∈ R2 for the Lur’e sys-

tem (5.17), governed by

ẑ(k + 1) = Aẑ(k) +Buu(k) +Bww(k) + ρG sin(Hẑ(k))− P−1ZC(ẑ(k)− z(k)),

where P � 0. We then consider a linear state-feedback u(k) = −Kẑ(k) with gainK> ∈ R2.

In Appendix B.2, we show that with L> =
[
2.3258 2.1104

]
and K =

[
0.4956 1.006

]
,

the feedback-controlled Lur’e system (5.17) is UC.

Suppose that we have inputs wl(k), w′l′(k) ∈ R and their corresponding outputs yl(k), y′l′(k) ∈

R of the unknown system for 1 ≤ k ≤ L, 1 ≤ l ≤ M and 1 ≤ l′ ≤ M ′. I/O data

wl(k), yl(k) are for parameter estimation (using l = 1, . . . ,M1) and model selection (using

l = M1 + 1, . . . ,M) based on Akaike’s final prediction error [145]. I/O data w′l′(k), y′l′(k)

are for model evaluation. For each l and l′, we first washout the effect of RC’s ini-

tial condition for k = 1, . . . , Lw. Let ŷl(k) and ŷl′(k) be the RC’s outputs under in-

puts wl(k) and wl′(k), respectively. To optimize the RC output parameters, we minimize∑M1
l=1
∑L
k=Lw+1 |yl(k)− ŷl(k)|2. We estimate the model order based on FPEl, computed as

FPEl = 1
L− Lw

L∑
k=Lw+1

|yl(k)− ŷl(k)|2L− Lw + p

L− Lw − p
,
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where p is the number of RC output parameters. For each p, we randomly generate N

RCs and select a model out of Np models with the minimum FPE :=
∑M
l=M1+1 FPEl.

Here, FPE is the sum of all FPEl over the model selection data. For each of the model

validation data l′ = 1, . . . ,M ′, the selected model is assessed using the mean-squared error

MSEl′ = 1
L−Lw

∑L
k=Lw+1 |y′l′(k)− ŷ′l′(k)|2.

We set Lw = 500, L = 1500, N = 10, M = 10,M1 = 8 and M ′ = 2, with inputs

wl(k) and w′1(k) sampled uniformly over [−2, 2], independently for each k (persistently

exciting [145] with an order of 50 estimated by the ‘pexcit’ Matlab command), whereas

w′2(k) = sin(2πk/25) + sin(πk/5) as in [146].

5.3.1 Echo-state networks (ESNs)

Consider state-feedback interconnected ESNs of the form,
x1(k + 1) = tanh(A1x1(k) +Afb1 v1(k) +B1w(k)),

x2(k + 1) = tanh(A2x2(k) +Afb2 v2(k) +B2w(k)),
(5.18)

with interconnections v1(k) = x2(k) ∈ Rnx2 and v2(k) = x1(k) ∈ Rnx1 . Here, w ∈ l∞1 is

the input and tanh(·) is applied to a vector element-wise. We choose an output ŷ(k) =

W>1 x1(k) + W>2 x2(k) + ζ, where Wj ∈ Rnxj and ζ ∈ R is a bias term. The UC property

of each ESN is guaranteed by choosing σmax(Aj) < 1 and noticing its compact state-

space [22, Theorem 13]. We apply Corollary 5.2 to establish the UISC property for the

interconnected ESNs (5.18). For any k, k0 ∈ Z, let xj(k), xj(k) be any solutions to (5.18)

under inputs vj , w and vj , w respectively. Let δxj(k) = xj(k) − xj(k), δvj = vj − vj and

δw = w − w, then (5.16) in Corollary 5.2 is satisfied since

‖δxj(k)‖ ≤ σmax(Aj)k−k0‖δxj(k0)‖+
σmax(Afbj )

1− σmax(Aj)
‖δvj[k0,k−1]‖+ ‖Bj‖

1− σmax(Aj)
|δw[k0,k−1]|.

In Corollary 5.2, choose λ1(s) = λ2(s) = λs for some λ > 0. The interconnected

ESNs (5.18) is UISC if

σmax(Afb1 )
1− σmax(A1)

σmax(Afb2 )
1− σmax(A2) <

1
(1 + λ)2 . (5.19)
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Example 5.1. We consider interconnected ESN (5.18) with nx1 = nx2 ∈ {2, . . . , 5} (i.e.,

with number of output parameters p = 2nx1 + 1) to model the feedback-controlled Lur’e

system (5.17). For each ESN, elements of Aj , Afbj , Bj are sampled independently and

uniformly over [−1, 1]. We fix σmax(Aj) = 0.5, σmax(Afb2 ), and scale σmax(Afb1 ) so that

(5.19) holds. The minimum FPE achieved is FPE = 0.0023, with nx1 = nx2 = 4 and

p = 9. For this selected ESN, σmax(Afb1 ) = 0.15, σmax(Afb2 ) = 1.65 and (5.19) holds for

λ = 0.003. This results in MSE1 = 0.0012 and MSE2 = 0.0028 corresponding to the

evaluation data l′ = 1, 2, respectively. See Fig. 5.2 for the target y′l′(k) and the closed-loop

ESN outputs ŷ′l′(k).

Figure 5.2: Target outputs y′l′(k) and the closed-loop ESN outputs ŷ′l′(k) for k =
501, . . . , 540 with (a) l′ = 1 under a uniform random input w′1(k) and (b) l′ = 2 un-
der a sum of sinusoidals w′2(k) = sin(2πk/25) + sin(πk/5).

5.3.2 Quantum reservoir computers (QRCs)

Consider output-feedback interconnected QRC of the form (also see Fig. 5.3),
ρj(k + 1) = Tj(w(k), vj(k))ρj(k) + ε

(j)
φ φj ,

ŷj(k) =
∑nj
i=1 Tr(Z(i)ρj(k)),

(5.20)

with interconnections for j = 1, 2. Here Tj(w(k), vj(k)) = ε
(j)
w T (j)

w (w(k)) + ε
(j)
v T (j)

v (vj(k)),

ε
(j)
w + ε

(j)
v + ε

(j)
φ = 1 and ε

(j)
w , ε

(j)
v , ε

(j)
φ > 0. Subsystem j has nj qubits so that ρj(k)

and φj are two 2nj × 2nj density operators, with φj being fixed. For S ∈ {w, v}, the

input-dependent CPTP maps are

T (j)
S (x)ρj(k) =

[
g(x)T (j)

S,1 + (1− g(x))T (j)
S,2

]
ρj(k),
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where g(x) = 1/(1 + exp(−x)) is the logistic function with a globally Lipschitz constant

Lg = 1/4 and T (j)
S,1, T

(j)
S,2 are input-independent CPTP maps. We choose the output of the

closed-loop QRC as

ŷ(k) =
n1∑
i=1

W
(1)
i Tr(Z(i)ρ1(k)) +

n2∑
i=1

W
(2)
i Tr(Z(i)ρ2(k)) + ζ,

where W (j)
i , ζ ∈ R (j = 1, 2 and i = 1, . . . , nj) are the output parameters to be optimized

via ordinary least squares.

Figure 5.3: Schematic of an interconnected QRC described by (5.20).

Note that interconnected quantum systems do not generally take the form (5.20); see [147],

[148] and [149, Chapter 5]. System (5.20) can describe ensembles of identical quantum sys-

tems such as NMR ensembles [54], and quantum systems that can emulate such ensembles;

e.g., [115,150]. Such quantum systems have dynamics constrained by quantum mechanics,

but can otherwise be viewed as deterministic systems. Since the quantum subsystems

here do not interact quantum mechanically, the composite state ρ(k) for (5.20) can be

described by the direct sum of the subsystem density operators, ρ(k) = ρ1(k)⊕ ρ2(k), as

for interconnected classical systems. Consequently, the closed-loop system (5.20) is of the

form (5.5) and Theorem 5.1 is applicable. We remark that Theorem 5.1 and its subsequent

corollaries also hold for the Schatten 1–norm.

We now employ Corollary 5.1 to establish the UIOC of system (5.20). Recall from

Lemma 4.1 and [43, Theorem 9.2] that for any density operators ρ, ρ and any CPTP

map T , ‖T (ρ − ρ)‖1 ≤ ‖ρ − ρ‖1 . For any k, k0 ∈ Z with k ≥ k0, let ρj(k), ρj(k) be any
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solutions to inputs vj , w and vj , w, respectively. Let δρj(k) = ρj(k)− ρj(k), we have

‖δρj(k)‖1

≤ (ε(j)w + ε(j)v )‖δρj(k − 1)‖1

+ ε(j)v ‖T (j)
v (vj(k − 1))− T (j)

v (vj(k − 1))‖1−1

+ ε(j)w ‖T (j)
w (w(k − 1))− T (j)

w (w(k − 1))‖1−1

...

≤ (ε(j)w + ε(j)v )k−k0‖δρj(k0)‖1

+ ε(j)v

{
(ε(j)w + ε(j)v )k−k0−1‖T (j)

v (vj(k0))− T (j)
v (vj(k0))‖1−1

+ . . .+ ‖T (j)
v (vj(k − 1))− T (j)

v (vj(k − 1))‖1−1
}

+ ε(j)w

{
(ε(j)w + ε(j)v )k−k0−1‖T (j)

w (w(k0))− T (j)
w (w(k0))‖1−1

+ . . .+ ‖T (j)
w (w(k − 1))− T (j)

w (wj(k − 1))‖1−1
}
.

Define δvj = vj − vj and δw = w − w. Using the fact that ε(j)φ = 1 − (ε(j)w + ε
(j)
v ) and

‖T (j)
S (s)−T (j)

S (s)‖1−1 ≤ Lg‖T (j)
S,1 −T

(j)
S,2‖1−1|s− s| for any s ∈ R and S ∈ {v, w}, we have

‖δρj(k)‖1 ≤ (ε(j)w + ε(j)v )k−k0‖δρj(k0)‖1

+ (ε(j)v /ε
(j)
φ )Lg‖T (j)

v,1 − T
(j)
v,2‖1−1|δvj[k0,k−1] |

+ (ε(j)w /ε
(j)
φ )Lg‖T (j)

w,1 − T
(j)
w,2‖1−1|δw[k0,k−1]|

≤ 3 max{(ε(j)w + ε(j)v )k−k0‖δρj(k0)‖1,

(ε(j)v /ε
(j)
φ )Lg‖T (j)

v,1 − T
(j)
v,2‖1−1|δvj[k0,k−1] |,

(ε(j)w /ε
(j)
φ )Lg‖T (j)

w,1 − T
(j)
w,2‖1−1|δw[k0,k−1]|}.

(5.21)

Furthermore, let yj(k), yj(k) be the outputs associated to ρj(k), ρj(k). Applying Lemma B.3

in Appendix B.3 gives

|yj(k)− yj(k)| =
∣∣∣∣∣
nj∑
i=1

Tr(Z(i)δρj(k))
∣∣∣∣∣ ≤ nj‖δρj(k)‖1. (5.22)

To show that each QRC subsystem is UOC (with respect to the Schatten–1 norm), consider

δvj = δw = 0. From (5.21), we have ‖δρj(k)‖ ≤ (ε(j)w + ε
(j)
v )k−k0‖δρj(k0)‖1 with ε

(j)
w +

ε
(j)
v < 1. Applying Theorem 2.2 shows that each QRC subsystem is UC with respect to
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the Schatten–1 norm. Furthermore, from (5.21) and (5.22), we have |yj(k) − yj(k)| ≤

nj(ε(j)w + ε
(j)
v )k−k0‖δρj(k0)‖1, and hence UOC of each QRC subsystem.

We can upper bound ‖T (j)
S,1 − T

(j)
S,2‖1−1 ≤ 2 for S ∈ {w, v} [105, Theorem 2.1] in (5.21).

Equations (5.21), (5.22) show that (5.8), (5.14) in Corollary 5.1 hold. Choose λ1(s) =

λ2(s) = λs for some λ > 0 in Corollary 5.1, the closed-loop QRC (5.20) is UIOC if

(4ε(1)
v ε(2)

v LgLgn1n2)/(ε(1)
φ ε

(2)
φ ) < 1/(1 + λ)2. (5.23)

Example 5.2. We consider an interconnected QRC (5.20) with n1 = n2 ∈ {2, . . . , 5}

(i.e., p = 2n1 + 1) to model the feedback-controlled Lur’e system (5.17). For each QRC,

we fix ε(1)
w = 0.25, ε(1)

v = 0.1, ε(1)
φ = 0.65 and ε

(2)
w = 0.1, ε(2)

v = 0.45, ε(2)
φ = 0.45, such

that (5.23) holds for all values of n1 considered here. For j = 1, 2, φj is chosen with

its 1, 1-th element (φj)1,1 = 1 and zero otherwise. Each input-independent CPTP map is

governed by a unitary matrix U (j)
S,m, defined by T (j)

S,m(ρ) = U
(j)
S,mρ(U (j)

S,m)† for j,m = 1, 2 and

S ∈ {w, v}. More explicitly, we choose U (1)
w,1 = U

(1)
v,2 = U

(2)
w,1 = U

(2)
v,2 =

⊗n1
i=1 Z

(i). Other

unitaries are U (j)
S,m =

⊗n1
i=1 e

−ιθS,m,ji X(i). Parameters θS,m,ji are uniformly distributed on

[−π, π], independently for each S,m, j and i. The unitaries employed here are simple,

more complex unitaries that entangle qubits within a QRC subsystem can also be used;

e.g., see Chapter 4.

The minimum FPE is achieved at FPE = 0.0032 with n1 = n2 = 5 and p = 11, and (5.23)

holds for λ = 0.019. This selected QRC achieves MSE1 = MSE2 = 0.0015. See Fig. 5.4 for

the QRC outputs ŷ′l′(k) against the target outputs y′l′(k) for the evaluation data l′ = 1, 2.

In practice, QRCs implemented on NISQ hardware experience decoherence; see Sec. 2.2.3

for a brief introduction. To investigate the effect of decoherence on the modeling perfor-

mance measured by mean-squared error, we simulation the selected interconnected QRC

under dephasing and GAD channels, and apply a multi-qubit error modeled by a depolariz-

ing channel [116]. Output parameters of these QRCs are re-optimized under decoherence.

We simulate GAD channels with finite temperature parameters λ = {0.2, 0.4, 0.6, 0.8, 1}.

The decoherence strengths ψ = {10−4, 10−3, 10−2} for both channels are set to be experi-

mentally feasible in superconducting quantum devices [44]; see Appendix B.4 for detailed
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CHAPTER 5. INTERCONNECTED RESERVOIR COMPUTERS

Figure 5.4: Target outputs y′l′(k) and the closed-loop QRC outputs ŷ′l′(k) for k =
501, . . . , 540 with (a) l′ = 1 under a uniform random input w′1(k) and (b) l′ = 2 un-
der a sum of sinusoidals w′2(k) = sin(2πk/25) + sin(πk/5).

numerical settings. The simulated decoherence is a Markovian and stationary approxima-

tion of hardware noise. The proof-of-principle and numerical experiments in Chapter 4

suggest that this approximation is reasonable for some superconducting quantum devices.

The modeling performance under the GAD noise is similar to the noiseless case. Under

the GAD channels with decoherence strengths ψ = {10−4, 10−3}, the selected QRC achieves

the same MSE1 = MSE2 = 0.0015 as before. Under decoherence strength ψ = 10−2, the

selected QRC achieves MSE1 = MSE2 = 0.0016 when λ = {0.2, 0.4, 0.6, 0.8} and MSE1 =

0.0015,MSE2 = 0.0016 when λ = 1. The modeling performance under the dephasing noise

is the same as the noiseless case. These observations suggest that decoherence does not

significantly impact the interconnected QRC’s emulation ability.

The expectation values Tr(Z(i)ρj) for j = 1, 2 are estimated by averaging Mm measure-

ments, whose variances decrease at a rate proportional to 1/Mm; see Appendix A.2 for

the proof. So far, we have assumed that the finite sampling noise can be made negligible

by taking Mm to be very large. In practice, we must take this noise into account.

The framework presented in this chapter can accommodate the finite sampling noise.

Given a realization of the noise, the output-feedback interconnected QRC is governed by
ρj(k + 1) = Tj(w(k), vj(k))ρj(k) + ε

(j)
φ φj ,

ŷj(k) =
∑nj
i=1 Tr(Z(i)ρj(k)) + ej(k),

(5.24)
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with interconnections v1(k) = ŷ2(k) and v2(k) = ŷ1(k). Here, ej(k) =
∑nj
i=1 e

(i)
j (k), where

e
(i)
j (k) is the finite sampling noise when estimating the expectation value Tr(Z(i)ρj(k)).

We remark that ej is a bounded sequence with ej(k) ∈ [−2nj , 2nj ] for all k ∈ Z. This is

because for any i = 1, . . . , nj , Tr(Z(i)ρj(k)) ∈ [−1, 1] and its estimate also takes value in

[−1, 1]. Let z1(k) = e2(k), z2(k) = e1(k) and w̃j(k) = (w(k), zj(k)) be a concatenation of

w(k) and zj(k) into a column vector for j = 1, 2. We can re-express (5.24) in a form such

that w̃j(k) (j = 1, 2) are viewed as external inputs to the QRC subsystems. That is, we

can re-write (5.24) as
ρj(k + 1) = T̃j(w̃j(k), ṽj(k))ρj(k) + ε

(j)
φ φj ,

ỹj(k) =
∑nj
i=1 Tr(Z(i)ρj(k)),

(5.25)

with interconnections ṽ1(k) = ỹ2(k) and ṽ2(k) = ỹ1(k). Each QRC subsystem is governed

by T̃j(w̃j(k), ṽj(k)) = Tj(w(k), ṽj(k) + zj(k)).

We will apply Theorem 5.1 to ensure that the interconnected QRC (5.25) under finite

sampling noise is UIOC. The analysis below closely follows the analysis when there is no

finite sampling noise. Let ρj(k), ρ′j(k) be any solutions to inputs ṽj , w̃j = (w, zj) and

ṽ′j , w̃
′
j = (w′, z′j), respectively. We have

‖ρj(k)− ρ′j(k)‖1 ≤ (ε(j)w + ε(j)v )k−k0‖ρj(k0)− ρ′j(k0)‖1

+ (ε(j)v /ε
(j)
φ )Lg‖T (j)

v,1 − T
(j)
v,2‖1−1|(ṽj − ṽ′j + zj − z′j)[k0,k−1]|

+ (ε(j)w /ε
(j)
φ )Lg‖T (j)

w,1 − T
(j)
w,2‖1−1|(w − w′)[k0,k−1]|

≤ (ε(j)w + ε(j)v )k−k0‖ρj(k0)− ρ′j(k0)‖1 + 2(ε(j)v /ε
(j)
φ )Lg|(ṽj − ṽ′j)[k0,k−1]|

+ 2(ε(j)v /ε
(j)
φ )Lg|(zj − z′j)[k0,k−1]|+ 2(ε(j)w /ε

(j)
φ )Lg|(w − w′)[k0,k−1]|

≤ (ε(j)w + ε(j)v )k−k0‖ρj(k0)− ρ′j(k0)‖1 + 2(ε(j)v /ε
(j)
φ )Lg|(ṽj − ṽ′j)[k0,k−1]|

+ 2(ε(j)v /ε
(j)
φ )Lg‖(w̃j − w̃′j)[k0,k−1]‖+ 2(ε(j)w /ε

(j)
φ )Lg‖(w̃j − w̃′j)[k0,k−1]‖,

(5.26)

where the second inequality follows from ‖T (j)
S,1 − T

(j)
S,2‖1−1 ≤ 2 for S ∈ {w, v} [105,

Theorem 2.1] and |(ṽj − ṽ′j + zj − z′j)[k0,k−1]| ≤ |(ṽj − ṽ′)[k0,k−1]| + |(zj − z′j)[k0,k−1]|.

Moreover, the last inequality follows from |(zj − z′j)[k0,k−1]| ≤ ‖(w̃j − w̃′j)[k0,k−1]‖ and

|(w − w′)[k0,k−1]| ≤ ‖(w̃j − w̃′j)[k0,k−1]‖.
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Let ỹj(k), ỹ′j(k) be the outputs associated to ρj(k), ρ′j(k). Applying Lemma B.3 in Ap-

pendix B.3 again gives

|ỹj(k)− ỹ′j(k)| =
∣∣∣∣∣
nj∑
i=1

Tr
(
Z(i)(ρj(k)− ρ′j(k))

)∣∣∣∣∣ ≤ nj‖ρj(k)− ρ′j(k)‖1. (5.27)

Consider ṽj = ṽ′j and w̃j = w̃′j . From (5.26), we have

‖ρj(k)− ρ′j(k)‖1 ≤ (ε(j)w + ε(j)v )k−k0‖ρj(k0)− ρ′j(k0)‖1.

Applying Theorem 2.2 shows that each QRC subsystem is UC with respect to the Schatten–

1 norm. Furthermore, each QRC subsystem is UOC since

|ỹj(k)− ỹ′j(k)| ≤ nj(ε(j)w + ε(j)v )k−k0‖ρj(k0)− ρ′j(k0)‖1.

To show that the interconnected QRC is UIOC, define

γuj (‖w̃j − w̃′j‖[k0,k−1])

= 2 max{2(ε(j)v /ε
(j)
φ )Lg‖(w̃j − w̃′j)[k0,k−1]‖, 2(ε(j)w /ε

(j)
φ )Lg‖(w̃j − w̃′j)[k0,k−1]‖}.

Then γuj ∈ K. From (5.26) and (5.27), we have

‖ρj(k)− ρ′j(k)‖1 ≤ (ε(j)w + ε(j)v )k−k0‖ρj(k0)− ρ′j(k0)‖1

+ 2(ε(j)v /ε
(j)
φ )Lg|(ṽj − ṽ′j)[k0,k−1]|+ γuj (‖w̃j − w̃′j‖[k0,k−1])

≤ 3 max{(ε(j)w + ε(j)v )k−k0‖ρj(k0)− ρ′j(k0)‖1,

2(ε(j)v /ε
(j)
φ )Lg|(ṽj − ṽ′j)[k0,k−1]|, γuj (‖w̃j − w̃′j‖[k0,k−1])},

|ỹj(k)− ỹ′j(j)| ≤ nj(ε(j)w + ε(j)v )k−k0‖ρj(k0)− ρ′j(k0)‖1

+ 2nj(ε(j)v /ε
(j)
φ )Lg|(ṽj − ṽ′j)[k0,k−1]|+ njγ

u
j (‖w̃j − w̃′j‖[k0,k−1]).

Therefore, conditions (5.8) and (5.14) in Corollary 5.1 hold. We can again choose λ1(s) =

λ2(s) = λs for some λ > 0 in Corollary 5.1, the closed-loop QRC (5.25) is UIOC if

(4ε(1)
v ε(2)

v LgLgn1n2)/(ε(1)
φ ε

(2)
φ ) < 1/(1 + λ)2.

Note that this condition is the same as the condition (5.23) derived under the assumption

that we can obtain the expectation values Tr(Z(i)ρj) exactly without finite sampling noise.
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Example 5.3. To investigate the impact of finite sampling noise on the emulation per-

formance, we simulate the selected QRC with Mm = {103, 104, 105}. For Mm = 103, the

selected QRC achieves MSE1 = 0.0157 and MSE2 = 0.0222. These errors are signifi-

cantly larger than before, indicating that the finite sampling noise can negatively impact

the emulation performance. As Mm increases, the emulation performance improves. For

Mm = 104, we have MSE1 = 0.0057 and MSE2 = 0.0063. For Mm = 105, we have

MSE1 = MSE2 = 0.0024. These observations indicate that further investigations is needed

to understand and quantify the impact of finite sampling noise on emulation performance.

5.4 Conclusion

We present a small-gain theorem for output-feedback interconnected systems to be UOC

and UIOC systems, as a discrete-time counterpart of the continuous-time results in [151].

Our proof is based on a small-gain theorem for time-varying discrete-time systems in the

UIOS framework, also derived herein. The latter result bridges the gap between time-

invariant and time-varying discrete-time small-gain theorems in the literature [135,136].

Our small-gain theorems are applicable to important control problems, such as output

regulation and tracking [152]. We demonstrate an application of our small-gain theorems

to design parameters of interconnected reservoir computers for black-box system identifi-

cation. We introduce interconnected ESNs and QRCs as candidate models equipped with

closed-loop structures and demonstrate numerically their efficacy in modeling a feedback-

controlled system. We further investigate the effect of decoherence and finite sampling

error on the QRC’s estimation quality. In the next chapter, we will consider RCs with

output feedback dynamics which is a special case of the general interconnection considered

in this chapter. We will explore the use of uniformly convergent output-feedback dynamics

for stochastic modeling.
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Chapter 6

Nonlinear autoregression with

reservoir computers

The on-going quest for modeling increasingly complex systems has motivated a fruitful de-

velopment in nonlinear time series modeling and system identification [153,154]. These are

challenging problems that involve inferring unknown models from observed data. Substan-

tial interest has been focused on model structures that can capture nonlinear phenomena

of the unknown system. For instance, threshold model has been widely applied for ecol-

ogy and hydrology times series [155] and the autoregressive conditional heteroscedastic

model is useful for describing volatility clustering in financial data [156]; see [153] and

references therein. For nonlinear system identification, well-known model structures in-

clude the Volterra series [25], neural networks [146], nonlinear autoregressive exogenous

models [157] and block-oriented models [77].

In this chapter, we explore the use of RC for nonlinear time series modeling and system

identification, and demonstrate that a wide class of nonlinear autoregressive models can be

realized in this emerging computational paradigm. Together with their energy and memory

efficiency, our scheme makes RC an attractive and versatile scheme for signal processing

and control-oriented tasks. This chapter is based on the publication [158]. Central to our
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development is the uniform convergence property; see [22, 23] and Sec. 2.4.1. The main

contributions of this chapter are

• We show that RCs with uniformly convergent output feedback dynamics implement

infinite-order nonlinear autoregressive models with exogenous inputs, or NARX(∞)

models.

• We establish asymptotic stationarity and ergodicity of the output of NARX(∞)

models induced by RCs with uniformly convergent output feedback dynamics, and

further show that their outputs are ergodic in the sense of Birkhoff-Khinchin [84,

Theorem 24.1].

A key observation here is that the NARX(∞) models induced by uniformly convergent RCs

can also be expressed as infinite-order nonlinear moving average models with exogenous

inputs, or NMAX(∞) models. By exploiting this equivalence, we establish the asymptotic

stationarity and ergodicity of these NARX(∞) models.

Previous works [80, 81] have investigated the potential of RC for approximating input-

output maps under stationary stochastic inputs. Different from [80, 81], this chapter is

concerned with developing a general theory for realizing NARX(∞) models with RCs,

taking into account the stability of the model, and establishing conditions for the asymp-

totic stationarity and ergodicity properties of the output process of the NARX(∞) model.

We then use the NARX(∞) models for time series modelling and system identification

using synthetic and real-world data sets, and perform validation diagnostics to evaluate

the quality of the model fit.

To highlight the versatility of our proposal, we employ QRCs, ESNs and RCs implemented

by globally Lipschitz Lur’e systems to model several data sets. We cast parameter esti-

mation for these RCs as convex optimization problems. The data sets are collected from

diverse fields of interest, including nonlinear quantum optics (simulated on QuTiP [159]),

finance [160] and a coupled electric drive system [161]. Numerical experiments indicate

that ESNs, Lur’e systems and QRCs with only three to five parameters are able to describe
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these data sets.

The outline of this chapter is as follows. Sec. 6.1 presents NARX(∞) models realized by

RCs with uniformly convergent output feedback dynamics and establishes stationarity and

(Birkhoff-Khinchin) ergodicity of their outputs (under certain conditions). Sec. 6.3 details

parameter estimation for ESNs, Lur’e systems and QRCs as NARX(∞) models. Sec. 6.4

presents applications of RCs on modeling synthetic and real data. In Sec. 6.5, we discuss

the impact of RC state measurement noise on stochastic modeling. Concluding remarks

and future directions are presented in Sec. 6.6.

6.1 Uniformly convergent feedback dynamics

We are interested in implementing NARX(∞) models using RCs with output-feedback

(also see Fig. 6.1), 
xk+1 = g(xk, uk, yk),

ŷk = h(xk),
(6.1)

for all k ∈ Z, where xk ∈ RN is the state and u ∈ (Rn)Z is the input. The target

output yk ∈ R is related to the one-step ahead prediction ŷk via yk = ŷk + ek, where

ek ∈ R is an external noise. Later on, we will consider e and u modeled by discrete-

time stochastic processes. For now, we view e and u as sequences. We also consider an

equivalent representation of (6.1) given by
xk+1 = f(xk, uk, ek),

ŷk = h(xk),
(6.2)

where u and e are viewed as external inputs and

f(xk, uk, ek) := g(xk, uk, h(xk) + ek). (6.3)

In system identification, u is often designed to be persistently exciting [145] to sufficiently

excite all modes of the plant. In time series modeling, RCs make (one-step ahead) pre-

dictions ŷk of yk based on past observations and are not driven by input u. That is, (6.1)
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becomes 
xk+1 = g(xk, yk),

ŷk = h(xk).
(6.4)

We view time series modeling as a special case of system identification and present our

results on the latter problem.

Figure 6.1: Schematic of RCs operating in an output-feedback configuration described by
(6.1), where z−1 is the one-step time delay operator.

As alluded to in the Introduction, the uniform convergence property is central to our

ensuing development. This chapter focuses on RCs that are uniformly convergent with

respect to inputs u ∈ (Rn)Z and e ∈ RZ. We say that (6.1) is uniformly convergent if and

only if (6.2) is uniformly convergent.

Recall from Sec. 2.4.3 that if an RC governed by (6.2) is uniformly convergent (e.g., if

it satisfies Theorem 2.1 for classical RC or Theorem 2.2 for QRC), then it induces a

unique time-invariant and causal filter Uf,h : (Rn)Z ×RZ → RZ such that when evaluated

at any time k ∈ Z, ŷk = Uf,h(u, e)|k := h(x∗k), where x∗ is the reference state solution

to (6.2). There is a bijective correspondence between Uf,h and its associated functional

Ff,h : (Rn)Z− × RZ− → R, defined as Ff,h(u′, e′) := Uf,h(ũ′, ẽ′)|0 [25]. Here ũ′, ẽ′ are

arbitrary extensions of u′ ∈ (Rn)Z− and e′ ∈ RZ− to (Rn)Z and RZ, respectively. We can

recover Uf,h from Ff,h via Uf,h(u, e)|k = Ff,h(PZ−
n ◦ z−kn (u), PZ− ◦ z−k(e)) for any k ∈ Z

(recall that z−kn is the time shift operator z−kn (u)|k′ = uk′−k for any k′ ∈ Z). This bijection

will be useful for establishing statistical properties of the output of NARX(∞) models

realized by uniformly convergent RCs; see Lemma 6.2 and Lemma 6.3 below.

Furthermore, if h is uniformly continuous, the filter Uf,h can be constructed by taking the

initial time k0 → −∞ as in Theorem 2.3 in Sec. 2.4.3.
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Theorem 6.1. Consider an RC described equivalently by (6.1) or (6.2) such that (6.2) is

uniformly convergent. Let Uf,h be the unique time-invariant and causal filter induced by

(6.2). If h is uniformly continuous, then for any u ∈ (Rn)Z, e ∈ RZ and any k ∈ Z,

yk = Uf,h(u, e)|k + ek

= h ◦ f(xk−1, uk−1, ek−1) + ek

= h ◦ f(f(xk−2, uk−2, ek−2), uk−1, ek−1) + ek

...

= F(uk−1, uk−2, . . . , ek−1, ek−2, . . .) + ek,

(6.5)

where the following point-wise limit

Uf,h(u, e)|k = F(uk−1, uk−2, . . . , ek−1, ek−2, . . .)

:= lim
k0→−∞

h ◦ f(. . . f(f(ξ, uk0 , ek0), uk0+1, ek0+1) . . .)
(6.6)

exists and is independent of initial condition ξ ∈ RN .

In Theorem 6.1, we have written xk+1 = f(xk, uk, ek) as in (6.2). Alternatively, we can

write xk+1 = g(xk, uk, yk) as in (6.1), where g and f are related via (6.3). This leads to

the following Corollary.

Corollary 6.1. Consider an RC described equivalently by (6.1) or (6.2) such that (6.2)

is uniformly convergent. Let Uf,h be the unique time-invariant and causal filter induced by

(6.2). If h is uniformly continuous, then for any u ∈ (Rn)Z, e ∈ RZ and any k ∈ Z,

yk = G(uk−1, uk−2, . . . , yk−1, yk−2, . . .) + ek,

where the following point-wise limit

G(uk−1, uk−2, . . . , yk−1, yk−2, . . .)

:= lim
k0→−∞

h ◦ g(. . . g(g(ξ, uk0 , yk0), uk0+1, yk0+1) . . .)
(6.7)

exists and is independent of initial condition ξ ∈ RN .
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6.2 NARX(∞) models

We apply Corollary 6.1 to show that RCs described equivalently by (6.1) or (6.2), such that

(6.2) is uniformly convergent, f is continuous and h is uniformly continuous, implement

NARX(∞) models defined in (6.8) below. By Theorem 6.1, such NARX(∞) models can

also be expressed as NMAX(∞) models, defined in (6.9) below. We first introduce a

probabilistic framework.

Let (Ω,Σ,P) be a complete probability space on which all random variables are defined.

For an Rm-valued discrete-time stochastic process z, for any ω ∈ Ω, z(ω) = {zk(ω)}k∈Z
is a realization of z. We view z as a random sequence, i.e., z is a stochastic process if

z : (Ω,Σ) → ((Rm)Z, (Rm)Z) is measurable, where (Rm)Z is the σ-algebra generated by

cylindrical sets in (Rm)Z; e.g., see [84, Sec. 36].

Consider RCs described by (6.1) or (6.2) under Rn-valued and R-valued stochastic pro-

cesses u and e; i.e., u : (Ω,Σ)→ ((Rn)Z, (Rn)Z) and e : (Ω,Σ)→ (RZ,RZ) are measurable.

The state xk and the one-step ahead prediction ŷk are described by a stochastic RC:
xk+1 = g(xk,uk,yk),

ŷk = h(xk),

where yk = ŷk + ek. Stochasticity of y arises solely from the stochasticity of u and e, and

the maps g, h are deterministic.

For a uniformly convergent RC described by (6.1) or (6.2) with uniformly continuous h,

by Corollary 6.1, yk is described by a NARX(∞) model such that for all k ∈ Z,

yk = G(uk−1,uk−2, . . . ,yk−1,yk−2, . . .) + ek. (6.8)

For each ω ∈ Ω, the point-wise limit

G(uk−1,uk−2, . . . ,yk−1,yk−2, . . .) := lim
k0→−∞

h ◦ g(. . . g(ξ,uk0 , ek0) . . .)

exists almost surely (a.s.) and is independent of initial condition ξ ∈ RN .
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Equivalently, for a uniformly convergent RC described by (6.1) or (6.2) with uniformly

continuous h, by Theorem 6.1, yk is also described by a NMAX(∞) model, such that for

all k ∈ Z

yk = Uf,h(u, e)|k + ek

= F(uk−1,uk−2, . . . , ek−1, ek−2, . . .) + ek.
(6.9)

For each ω ∈ Ω, the point-wise limit

F(uk−1,uk−2, . . . , ek−1, ek−2, . . .) := lim
k0→−∞

h ◦ f(. . . f(ξ,uk0 , ek0) . . .)

exists a.s. and is independent of initial condition ξ ∈ RN .

We now show that if in addition, f defined by (6.3) is continuous, then the output y of

a NARX(∞) model given by (6.8) is a well-defined stochastic process. The proof utilizes

the equivalence between the NARX(∞) model and its corresponding NMAX(∞) model.

We also employ the following result.

Lemma 6.1. [84, Theorem 13.4] Suppose that f1, f2, . . . are real functions measurable

with respect to some sigma algebra Σ. If limn→∞ fn exists everywhere, then it is measurable

with respect to Σ.

Lemma 6.2. Consider an RC described equivalently by (6.1) or (6.2) such that (6.2) is

uniformly convergent. Let Uf,h : ((Rn)Z × RZ, (Rn)Z × RZ) → (RZ,RZ) be the unique

time-invariant and causal filter induced by (6.2). Suppose that h : RN → R is uniformly

continuous and f : RN × Rn × R → RN defined by (6.3) is continuous. Then Uf,h is

measurable and for any stochastic processes u and e, the output y of the NARX(∞) model

defined by (6.8) is a well-defined stochastic process.

Proof. Since y is also the output of the corresponding NMAX(∞) model (6.9), it follows

that y is a stochastic process if Uf,h is measurable. Recall the bijection between Uf,h

and its functional Ff,h. This bijection also implies that Uf,h is measurable if and only if

Ff,h is measurable; see [80, Sec. II]. To this end, it suffices to show that the functional

Ff,h : ((Rn)Z− × RZ− , (Rn)Z− × RZ−) → (R,B(R)) is measurable. By Theorem 6.1, for
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any u′ ∈ (Rn)Z− and e′ ∈ RZ− ,

Ff,h(u′, e′) = lim
k0→−∞

h ◦ f(. . . f(ξ, u′k0 , e
′
k0) . . .),

where the limit exists and is independent of initial condition ξ ∈ RN . Fix ξ ∈ RN , for any

k0 ∈ Z−, define F k0
f,h : (Rn)Z− × RZ− → R by

F k0
f,h(u′, e′) := h ◦ f(. . . f(ξ, u′k0 , e

′
k0) . . .).

Then limko→−∞ F
k0
f,h(u′, e′) = Ff,h(u′, e′) point-wise and by Lemma 6.1, Ff,h is measurable

if F k0
f,h is measurable for all k0 = {. . . ,−2,−1}. To show this, we write

F k0
f,h(u′, e′) = h ◦ fk0(Pk0

n (u′),Pk0(e′)),

where Pk0
n :=

∏−1
j=k0

P jn : (Rn)Z− → (Rn)−k0 , Pk0 :=
∏−1
j=k0

P j : RZ− → R−k0 . Here,

P jn(u′) = u′j and P j(e′) = e′j . Furthermore, fk0 : (Rn)−k0 × R−k0 → RN is given by

fk0(Pk0
n (u′),Pk0(e′)) = f(. . . f(ξ, u′k0 , e

′
k0) . . .).

Since h,Pk0
n and Pk0 are measurable, it remains to show that fk0 is measurable. To this

end, to simplify notation, for any i, j ∈ Z+, let u′k0−j:−1−i and e′k0−j:−1−i denote the con-

catenation of {u′k0−j , . . . , u
′
−1−i} and {e′k0−j , . . . , e

′
−1−i} into a column vector, respectively.

We can define fk0 recursively via

fk0−1(u′k0−1:−1, e
′
k0−1:−1) = f(fk0(u′k0−1:−2, e

′
k0−1:−2), u′−1, e

′
−1).

Using this recursion and continuity of f , an inductive argument on k0 shows that fk0 is

continuous. Hence Ff,h and Uf,h are measurable, and y defined by (6.8) is a well-defined

stochastic process.

In practice, when we are using NARX(∞) models for system identification, we are only

given the input time series u and the output time series y. With these data, we can produce

an one-step ahead predictoin ŷk = G(uk−1,uk−2, . . . ,yk−1,yk−2, . . .) of the target output

data yk. For time series modeling, the one-step ahead prediction is ŷk = G(yk−1,yk−2, . . .).

In both cases, the noise process e cannot be observed but it is useful for evaluating how
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well the NARX(∞) model fits the target data. More explicitly, we can impose a statistical

assumption on e and check if the residual êk = yk− ŷk has the same statistical properties

of ek; see [153] for further detail. This suggests that the one-step ahead prediction captures

useful information of the data. Throughout this chapter, we impose the following standard

assumptions on u and e:

Assumption 6.1. u and e are independent, and e is identically and independently dis-

tributed (iid).

Assumption 6.1 lays the basis for analyzing the RC residual êk = yk − ŷk. If the RC

prediction ŷ describes the target data y adequately, ê should be a proxy for e. We will

introduce some statistical tools to test this in Sec. 6.4.

6.2.1 Asymptotic stationarity and ergodicity

In this subsection, we derive conditions for which y defined by (6.8) is asymptotically

stationary and/or ergodic given that u, e are stationary and/or ergodic (see Definitions 6.1

and 6.2 below). We equip Rm with the Borel σ-algebra B(Rm).

Definition 6.1 (Stationarity). An Rm–valued stochastic process z̃ is stationary if for any

τ, ki ∈ Z, l ∈ Z+ and Hi ∈ B(Rm), where i = 0, . . . , l, it holds that

P(z̃k0 ∈ H0, . . . , z̃kl ∈ Hl) = P(z̃k0+τ ∈ H0, . . . , z̃kl+τ ∈ Hl).

A stochastic process z induces a probability measure Pz̃ = P ◦ z̃−1 on ((Rm)Z, (Rm)Z).

Ergodicity of z̃ is defined as followed.

Definition 6.2 (Ergodicity). An Rm–valued stochastic process z̃ is ergodic if for any

A ∈ (Rm)Z with (z−1
m )−1(A) = A, either Pz̃(A) = 0 or Pz̃(A) = 1, where (z−1

m )−1(A) is

the pre-image of A under the shift operator z−1
m .

Definition 6.3 (Birkhoff-Khinchin ergodic). An R-valued process z̃ is Birkhoff-Khinchin

ergodic if limL→∞
1
L

∑L−1
k=0 z̃k = E[z̃0] a.s., where E[·] is the expectation over P.
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Combining the discussion on [84, Page 526] and [84, Theorem 24.1], we also have the

following theorem.

Theorem 6.2. Suppose that z̃′k = H(z−km (z̃)) for all k ∈ Z, where z̃ is an Rm–valued

stationary and ergodic stochastic process. If H : (Rm)Z → R is measurable and integrable,

then z̃′ is Birkhoff-Khinchin ergodic.

To establish statistical properties of the output of a NARX(∞) model defined by (6.8),

we again exploit the bijective correspondence with its associated NMAX(∞) model given

by (6.9). We will also apply the following result.

Theorem 6.3. [84, Theorem 36.4] Suppose that an Rm–valued stochastic process z is

stationary and ergodic. Let U : ((Rm)Z, (Rm)Z) → (RZ,RZ) be measurable. Then the

stochastic process y defined by yk = U(z)|k for all k ∈ Z is stationary and ergodic.

Lemma 6.3. Consider an RC described equivalently by (6.1) or (6.2) such that (6.2)

is uniformly convergent. Under the assumptions of Lemma 6.2, the process y defined by

(6.8) is stationary (resp. ergodic) if u and e are stationary (resp. ergodic). Furthermore,

suppose that h ◦ x∗0 and e0 are integrable, where x∗ is the reference state solution to (6.2).

Then under the assumptions of Lemma 6.2, y is Birkhoff-Khinchin ergodic if u, e are

stationary and ergodic.

Proof. By (6.9), we have yk = Uf,h(u, e)|k + ek, where Uf,h is the unique filter induced

by (6.2). By Lemma 6.2, Uf,h is measurable. Now y is stationary (resp. ergodic), given

that u, e are stationary (resp. ergodic), follows from Theorem 6.3. To show the second

part of the Lemma, by Theorem 6.2, it suffices to show that Ff,h(PZ−
n (u), PZ−(e)) + e0 :

(Ω,Σ,P)→ R is integrable, where Ff,h is the functional induced by (6.2). Recall that∫
Ω

∣∣∣Ff,h(PZ−
n (u(ω)), PZ−(e(ω))) + e0(ω)

∣∣∣P(dω)

=
∫

Ω
|h(x∗0(ω)) + e0(ω)|P(dω)

≤
∫

Ω
(|h(x∗0(ω))|+ |e0(ω)|)P(dω).

Integrability of Ff,h(PZ−
n (u), PZ−(e)) +e0 now follows from the integrability of h ◦x∗0 and

e0.
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Remark 6.1. We remark that when h is uniformly continuous (as a sufficient condition

in Theorem 6.1), a sufficient condition for the integrability of h ◦ x∗0 is that there exists

0 < M < ∞ such that ‖x∗0‖ ≤ M a.s.. This holds for RCs with compact state spaces,

such as ESNs and QRCs. We also point out that e is stationary and ergodic due to the

iid assumption on e (Assumption 6.1) [84, Sec. 36].

6.3 Parameter estimation

In previous sections, we have shown that a large class of NARX(∞) models can be realized

by uniformly convergent RCs of the form (6.1). In this section, we present three example

RC classes, including ESNs, QRCs and RCs realized by Lur’e systems, as NARX(∞)

models. ESNs are pioneering software implementation of RC and have found successful

applications in chaotic system modelling [10]. Recently, there is substantial interest in

physical RC, hardware implementation of RCs for real-time stochastic modeling with low

energy and memory requirement. One potential hardware RC scheme is the Lur’e system,

which is ubiquitous in robitics [162]. While Lur’e systems have been of interest in stability

analysis and observer design [144], few stochastic modeling applications of them have

been developed. Here, we demonstrate that Lur’e systems, such as one-link flexible joint

robots, can implement NARX(∞) models for stochastic modelling. Another hardware

implementation of RC is the QRC, implemented on current noisy quantum machines, see

Chapter 4. Here, we extend the single-input QRCs introduced in Chapter 4 to multiple

inputs, and employ them for stochastic modeling.

These RCs are described by (6.1) or equivalently (6.2), where f and h satisfy the assump-

tions in Lemma 6.3. Furthermore, ESNs and QRCs admit a compact state-space, and

we will show that there exists 0 < M < ∞ such that ‖x∗0‖ ≤ M a.s. for a uniformly

convergent Lur’e system considered here. With these observations, by Lemma 6.3, these

RCs realize NARX(∞) models whose output y and their one-step ahead prediction ŷ

are stationary and ergodic. For these RCs, the one-step ahead prediction has the form

ŷk = W>h(xk) +Wc, where W ∈ RN ,Wc ∈ R are the output parameters to be estimated.
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Given time series data {y0, . . . ,yL} and {u0, . . . ,uL}, parametersW,Wc are optimized via

least squares based on {yL1+1, . . . ,yL2} and {uL1+1, . . . ,uL2}, so that ŷk approximates

the target yk (the first L1 data are for washing out the effect of the RC’s initial condition).

We apply Theorem 2.1 to (6.2) to ensure the RC’s convergence, the resulting optimization

of W,Wc becomes a constrained least squares problem,

min
W,Wc

1
Lt

L2∑
k=L1+1

|yk − ŷk|2, subject to G(W ) ≤ 0, (6.10)

where Lt = L2−L1. We will derive a convex constraint G(·) for each example RC model.

If ŷ2, y2 and yŷ are Birkhoff-Khinchin ergodic, then parameter estimation is consistent in

the sense that as Lt →∞, the cost function given in (6.10) becomes minW,Wc E[|y0− ŷ0|2]

a.s..

6.3.1 Echo-state networks (ESNs)

An ESN with state xk ∈ RN is governed by
xk+1 = tanh(Axk +Buk + Cyk),

ŷk = W>xk +Wc

(6.11)

where tanh(·) applies to a vector elementwise. Elements of A,B,C are drawn indepen-

dently and uniformly from [−1, 1] (for time series modeling, we set C = 0). To apply

Theorem 2.1, we re-express (6.11) in the form of (6.2) by substituting yk = ŷk + ek =

W>xk +Wc + ek into (6.11):

xk+1 = fESN(xk, uk, ek)

:= tanh((A+ CW>)xk + C(Wc + ek) +Buk).

We set P = I so that ‖x‖P = ‖x‖. Then for any u ∈ (Rn)Z and e ∈ RZ, supk∈Z ‖fESN(0, uk, ek)‖ <

∞ and (2.8) in Theorem 2.1 holds. To derive a convex constraint onW , for any x1, x2 ∈ RN

and any k ∈ Z, we have

‖fESN(x1, uk, ek)− fESN(x2, uk, ek)‖ ≤ σmax(A+ CW>)‖x1 − x2‖,
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where σmax(·) is the maximum singular value. By (2.9) in Theorem 2.1, an ESN is uni-

formly convergent if σmax(A + CW>) < 1. We optimize W,Wc for the ESN using Se-

DuMi [163] through YALMIP [164] by passing the non-strict inequality constraint: I A+ CW>

(A+ CW>)> I

 � 10−3I. (6.12)

6.3.2 Lur’e systems

Consider a Lur’e system with state xk ∈ RN described by
xk+1 = Axk +B tanh(uk) + C tanh(yk),

ŷk = W>xk +Wc,

(6.13)

where tanh(·) applies to a vector elementwise. Elements of A,B,C are drawn indepen-

dently and uniformly from [−1, 1] (for time series modeling, we set C = 0). Given any

P > 0, u ∈ (Rn)Z and e ∈ RZ, we re-express (6.13) in the form of (6.2) by substituting

yk = ŷk + ek into (6.13),

xk+1 = fLur′e(xk, uk, ek)

:= Axk + C tanh(W>xk +Wc + ek) +B tanh(uk)

and (2.8) in Theorem 2.1 holds since

sup
k∈Z
‖fLur′e(0, uk, ek)‖P := Mu,e <∞.

We show that (2.9) in Theorem 2.1 and hence the uniform convergence of a Lur’e system,

holds if for some P � 0, δ > 0 and θ ∈ (0, 1), the linear matrix inequalities (LMIs),

P − δI ≺ 0,

−θP A>P δWC> A>P

PA −P 0 0

δCW> 0 −δI 0

PA 0 0 P − δI


� 0

(6.14)
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are satisfied (we set δ = 0.001 and θ = 0.99 in our numerical examples).

More generally, we can consider Lur’e systems (6.13) with other globally Lipschitz func-

tions besides tanh(·). Here, we derive (6.14) for a more general class of globally Lipschitz

Lur’e systems described by

xk+1 = fLur′e(xk, uk, ek) = Axk +BΘ(uk) + CΦ(xk, uk),

where for any P � 0, u ∈ (Rn)Z and e ∈ RZ, supk∈Z ‖fLur′e(0, uk, ek)‖P <∞, so that (2.8)

in Theorem 2.1 holds. Suppose that there exists a N × N matrix X such that, for any

x1, x2 ∈ RN and uk ∈ Rn,

‖CΦ(x1, uk)− CΦ(x2, uk)‖ ≤ ‖X(x1 − x2)‖. (6.15)

Let z = x1 − x2 and w = CΦ(x1, uk)−CΦ(x2, uk), (6.15) becomes w>w − z>X>Xz ≤ 0,

that is, [
z> w>

] −X>X 0

0 I


z
w

 ≤ 0. (6.16)

Now (2.9) in Theorem 2.1 holds if there exists θ ∈ (0, 1) such that (Az+w)>P (Az+w)−

θz>Pz ≤ 0, that is,

[
z> w>

] A>PA− θP A>P

PA P


z
w

 ≤ 0. (6.17)

From (6.16), (6.17) holds if there exists δ > 0 such thatA>PA− θP A>P

PA P

− δ
−X>X 0

0 I

 � 0. (6.18)

Assuming that P − δI ≺ 0 and δ > 0, we claim that (6.18) is equivalent to

−θP A>P δX> A>P

PA −P 0 0

δX 0 −δI 0

PA 0 0 P − δI


� 0. (6.19)
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To see this, under the assumptions P − δI ≺ 0 and δ > 0, the Schur complement shows

that (6.18) is equivalent to A>PA − θP + δX>X − A>P (P − δI)−1PA � 0. The same

condition is obtained by applying the Schur complement twice to (6.19).

For the Lur’e system governed by (6.13), the Lipschitz condition (6.16) holds for X =

CW>, leading to (6.14). We optimize W,Wc for the Lur’e system using SeDuMi [163]

through YALMIP [164] (by replacing the strict LMI P − δI ≺ 0 in (6.14) with the non-

strict LMI P − δI � −10−4I).

To show that ‖x∗0‖ ≤ M < ∞ a.s. for a uniformly convergent Lur’e system (so that

Lemma 6.3 holds), first note that ‖x∗0‖P ≤
Mu,e

1−θ [23, Theorem 1], where x∗ is the reference

state solution under u, e. Therefore, it suffices to show that supu∈(Rn)Z,e∈RZ Mu,e < ∞.

Let P = LL> be the Cholesky decomposition of P for which (6.14) holds, then

Mu,e = sup
k∈Z
‖fLur′e(0, uk, ek)‖P

≤ sup
k∈Z

(‖C tanh(Wc + ek)‖P + ‖B tanh(uk)‖P )

≤ ‖C‖P + sup
k∈Z
‖L>B tanh(uk)‖

≤ ‖C‖P + ‖L>B‖
√
n.

Therefore, supu∈(Rn)Z,e∈RZ Mu,e <∞.

6.3.3 Quantum reservoir computers (QRCs)

Consider an N -qubit QRC described by
ρk+1 = (1− ε)T (uk, yk)ρk + ερ∗,

ŷk =
∑N
i=1WiTr(Z(i)ρk) +Wc,

(6.20)

where ρk is a 2N × 2N density operator, ρ∗ is an arbitrary but fixed density operator, Z(i)

is the Pauli-Z operator acting on qubit i and ε ∈ (0, 1). Throughout this chapter, we set

ρ∗ with (1, 1)–th element to be one and all other elements zero. The dynamics T (uk, yk)
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is a CPTP map determined by uk and yk. We consider

T (uk, yk) = 1
n+ 1

 n∑
j=1

g(u(j)
k )Tj + g(yk)Tn+1 +

n+ 1−
n∑
j=1

g(u(j)
k )− g(yk)

Tn+2

 ,
where u(j)

k is the j-th component of uk ∈ Rn. Here, g(·) ∈ [0, 1] is a continuous function

which can be chosen suitably according to the task. More generally, different g’s can be

applied to u(j)
k and yk (for time series modeling, we set g(uk) = 0). In this chapter, we

find that the globally Lipschitz logistic function g(s) = 1
1+exp(−s) with Lipschitz constant

Lg = 1/4 performs well. The input-independent CPTP maps Tl for l = 1, . . . n + 2 are

governed by unitary matrices Ul = Ul(γl) such that Tl(ρk) = UlρkU
†
l . For l = 1, . . . , n+ 1,

γl are randomly chosen and fixed at the onset, and we fix all elements of γn+2 to be π; see

Appendix C.1 for the details. Such QRCs are multi-input extension of the QRCs proposed

in Chapter 4 or [115]. They can be implemented on current NISQ machines using schemes

proposed in Chapter 4.

To establish the uniform convergence property, we invoke Theorem 2.2 with respect to

the Schatten 1–norm. That is, a QRC is 1–uniformly convergent if there exists some

θ ∈ (0, 1) (independent of u, e) such that, for any density operators ρj (j = 1, 2), any

k ∈ Z, u ∈ (Rn)Z and e ∈ RZ,

‖(1− ε)T (uk, yk,1)ρ1 + ερ∗ − ((1− ε)T (uk, yk,2)ρ2 + ερ∗)‖1 ≤ θ‖ρ1 − ρ2‖1,

where yk,j =
∑N
i=1WiTr(Z(i)ρj)+Wc+ek is the output associated to ρj . An upper bound

for the left-hand side of the above inequality is

‖(1− ε)T (uk, yk,1)ρ1 + ερ∗ − ((1− ε)T (uk, yk,2)ρ2 + ερ∗)‖1

≤ (1− ε)
(
‖ρ1 − ρ2‖1 + |g(y1)− g(y2)|

n+ 1 ‖Tn+1 − Tn+2‖1−1

)

≤
(

(1− ε) + 2Lg(1− ε)
n+ 1

N∑
i=1
|Wi|

)
‖ρ1 − ρ2‖1,

where the last inequality follows from ‖Tn+1 − Tn+2‖1−1 ≤ 2 [105, Theorem 2.2] and

|g(y1) − g(y2)| ≤ Lg|y1 − y2| ≤ Lg
∑N
i=1 |Wi|‖ρ1 − ρ2‖1; see Appendix B.3. A QRC

described by (6.20) is 1–uniformly convergent if there exists some θ ∈ (0, 1) such that the
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following convex constraint holds:
N∑
i=1
|Wi| −

θ + ε− 1
1− ε

n+ 1
2Lg

≤ 0. (6.21)

Throughout, we set θ = 0.99. We optimize W using the “fmincon” command in Matlab

by setting Ŵ , Ŵc = argminW,Wc

1
Lt

∑L2
k=L1+1 |yk − ŷk|2 as the initial guess.

We remark that (6.12), (6.14) and (6.21) are only sufficient for the uniform convergence.

Nevertheless, numerical experiments developed below suggest that ESNs, Lur’e systems

and QRCs under these constraints are adequate in describing the data sets considered.

It is an interesting and important future direction to find relaxation of these sufficient

conditions.

6.4 Numerical examples

We employ ESNs, Lur’e systems and QRCs to model three time series. For a non-

stationary time series, we remove its trend and seasonal components and model the remain-

ing stationary part. Stationarity is tested based on the augmented Dickey-Fuller [165] and

KPSS [166] tests within 95% confidence interval (CI). Given time series data {y0, . . . ,yL},

we randomly generate 50 ESNs, Lur’e systems withN = 2, . . . , 10, and 50 QRCs with qubit

number N = 2, . . . , 5, so that the number of output parameters is N + 1.

For each ESN, Lur’e system and QRC, we washout the effect of their initial conditions

using {y0, . . . ,yL1}, with Lw = L1 + 1 washout data points. Output parameters W,Wc

are optimized via constrained least squares (see Sec. 6.3) based on {yL1+1, . . . ,yL2}, with

Lt = L2 − L1 training data. The fitted ESNs, Lur’e systems and QRCs are selected

via Akaike’s final prediction error (FPE) criterion using validation data {yL2+1, . . . ,yL},

defined as

FPE :=
(
Lv +N + 1
Lv −N + 1

)
MSE,

where Lv = L− L2 is the number of validation data and

MSE := 1
Lv

L∑
k=L2+1

ê2
k = 1

Lv

L∑
k=L2+1

(yk − ŷk)2.
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We remark that FPE assumes the estimated output parameters are unbiased; e.g., see

[167]. Although this cannot be guaranteed in general, we observe that the decrease in

MSE is small as N increases and FPE prefers the lowest order N = 2. Furthermore, RCs

selected by FPE achieve residuals that satisfy Assumption 6.1, suggesting that they are

adequate in describing these time series data. We therefore choose N = 2 for all RCs on

all time series modeling tasks. It is a future research theme to develop model selection

methods for the proposed scheme. We test if the RC residuals êk are uncorrelated using

sample autocorrelation (ACF) via the ‘ggAcf’ command in R [168], and test if ek are

Gaussian using the Lilliefors test [169] and Q-Q plot (via the ‘lillietest’ and the ‘qqplot’

commands in Matlab).

Throughout, we set ε = 0.9 in (6.20) for QRCs. In practice, QRCs implemented on

NISQ devices experience decoherence. To investigate its effect on stochastic modeling

tasks, we simulate the selected QRCs under decoherence as in Appendix B.4. Output

parameters of these QRCs are re-optimized under the constraint (6.21). We simulate GAD

channels with finite temperature parameters λ = {0.2, 0.4, 0.6, 0.8, 1}. The decoherence

strengths ψ = {10−4, 10−3, 10−2} for both channels are set to be experimentally feasible

in superconducting quantum devices [44].

We employ the root mean-squared error (RMSE) to compare among different models on

the same time series data, where RMSE :=
√

MSE; see [170] for further discussions on

RMSE in the context of time series modeling. We report the selected RC’s RMSE and

the average RMSE of 50 randomly generated RCs with the same dimension N (or qubit

number) as the selected RC.

6.4.1 Nonlinear quantum optics

This example demonstrates that RCs can act as nonlinear Wiener filters to extracting the

signal part of a highly noisy time series from nonlinear quantum optics. Kerr-nonlinear

optical cavities are fundamental building blocks in realizing photonic sequential logic [171].

We consider a low-photon-number Kerr cavity with two input-output ports (Fig. 6.2(a) or

119



CHAPTER 6. NONLINEAR AUTOREGRESSION WITH RESERVOIR
COMPUTERS

[171, Fig. 2(a)]), whose internal mode is governed by a Hamiltonian H0 = ∆a†a+χ(a†)2a2,

where a is the annihilation operator, ∆ = 100 is the detuning from a reference frequency,

and χ = −5 governs the nonlinearity. The cavity is coupled to two incoming fields αinj(t)

via operators Lj = −ι√κja, where ι =
√
−1 and κj = 25 for j = 1, 2. Here, αin1(t) is a

coherent field with a constant amplitude η = 21.5 and αin2(t) is in the vacuum state.

Figure 6.2: (a) Kerr-nonlinear cavity with two input-output ports. The top mirror is
fully reflective (without loss) and the other mirrors are partially transmitting. (b) The
simulated trajectory of βk and the data employed.

We obtain a discretized trajectory βk = Tr((L2+L†2)ρk)+ηk from homodyne measurement

on the second output port with sampling time 10−3 on Qutip [159]. Here, ρk is the state at

time k and ηk is a quantum Gaussian white noise. Our goal is to employ RCs to separate

the ‘signal part’ αk = Tr((L2 + L†2)ρk) from the highly noisy βk. We simulate βk starting

in the vacuum state on a truncated Hilbert space of dimension 1000 for 6.4s and employ

the data after 5s until ρk reaches a steady state, see Fig. 6.2(b).

We set Lw = 99, Lt = 1000 and Lv = 300. ESN, Lur’e and QRC with N = 2 achieve

comparable RMSE and average RMSE, their residual sample ACFs show no autocorre-

lation within 95% CI and pass the Lilliefors test. See Table 6.1 for the p-values of the

Lilliefors test, dimension (or qubit number) N , RMSE and average RMSE. We report 0.5

for p-values≥ 0.5.

In Fig. 6.3(a)(b)(c), we observe that the ESN, QRC and Lur’e predictions follow the signal

αk with a normalized root mean-squared error between them of
√∑L

k=L2+1(αk−ŷk)2∑L

k=L2+1 α
2
k

=

0.0047, 0.0048, 0.0040, respectively. These suggest that these RCs can act as a nonlinear

Wiener filter, separating the signal αk from the noisy time series βk.
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Figure 6.3: The noisy time series βk, the signal αk = Tr((L2 + L†2)ρk), (a) the ESN
prediction, (b) the QRC prediction and (c) the Lur’e perdiction on the first 100 validation
data. (d) The ESN residual sample ACF (horizontal blue lines show the 95% CI). (e) The
ESN residual Q-Q plot. (f) The QRC residual sample ACF. (g) The QRC residual Q-Q
plot. (h) The Lur’e residual sample ACf. (i) The Lur’e residual Q-Q plot.

Table 6.1: Dimension (or qubit number) N , p-value, RMSE and average RMSE (RMSE)
of RCs for stochastic modeling.

Optics Finance Coupled eletric drive system
ESN Lur’e QRC ESN Lur’e QRC ESN Lur’e QRC

N 2 2 2 2 2 2 2 2 2
p-value 0.5 0.5 0.5 0.5 0.23 0.5 0.5 0.29 0.44
RMSE 1.12 1.10 1.12 0.047 0.047 0.049 0.10 0.11 0.11
RMSE 1.12 1.12 1.12 0.055 0.058 0.048 0.12 0.14 0.11

Fig. 6.3 also plots the RCs’ residual sample ACF and Q-Q plot. For all numerical examples,

we plot the residual sample ACF up to Lv/4 lags (Lv/4 is recommended for obtaining

reliable estimate of sample ACF [153]). We observe that all RCs’ residuals show no

autocorelation and pass the Lilliefors test with p-value≥ 0.5.

For all decoherence strengths, QRC obtains RMSE = 1.12 as the noiseless QRC, and its

residuals show no autocorrelation and pass the Lilliefors test with p-value≥ 0.5. Further-

more, QRC under decoherence can still effectively extract αk from βk.
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6.4.2 Finance

This time series describes weekly 5/1-year adjustable rate mortgage average (2005-2020) in

the US [160]. After removing trend and seasonal components using the ‘mstl’ R command

[168], the data is highly correlated up to 300 lags. This example tests RCs’ ability to

model highly correlated data. We set Lw = 100, Lt = 580 and Lv = 100. All RCs achieve

comparable RMSE. The QRC and Lur’e average RMSEs are similar to their RMSE,

whereas the difference for ESN is more pronounced. All RCs achieve uncorrelated residuals

(within 95% CI) and pass the Lillefors test; see Table 6.1 and Fig. 6.4. In Fig. 6.4, we

plot the target and predicted time series with the trend and seasonal components. These

observations suggest that these RCs are capable of modeling this highly correlated time

series.

Figure 6.4: The finance time series, (a) the ESN prediction, (b) the QRC prediction and
(c) the Lur’e prediction on validation data. (d) The ESN residual sample ACF. (e) The
ESN residual Q-Q plot. (f) The QRC residual sample ACF. (g) The QRC residual Q-Q
plot. (h) The Lur’e residual sample ACF. (i) The Lur’e residual Q-Q plot.

QRC under GAD experiences an increased RMSE. Despite this, QRC residuals under

decoherence show no autocorrelation within 95% CI and pass the Lilliefors test with p-

value≥ 0.35. This suggests that decoherence does not significantly impact the QRC’s

ability to model highly correlated data.
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6.4.3 Coupled electric drive system

We test the efficacy of RCs on modeling a single-input (i.e., uk ∈ R) single-output nonlinear

system consists of two electric motors driving a pulley using a flexible belt [161]. Input

data is a pseudo-random binary sequence with amplitude 0.5 and only L = 500 (10s at a

sampling time Ts = 0.02s) data are available, presenting a challenge for RCs.

We exploit spatial multiplexing, see Fig. 6.5. Outputs of two distinct and non-interacting

RC members are combined linearly. The first member processes both yk and uk as de-

scribed in Sec. 6.3, and the second only processes uk. We label each member’s parameters

with subscripts 1, 2. For simplicity, we set N = N1 = N2 so that dimensions of both

members (or numbers of qubits) are the same, with N = 2 preferred by FPE for all RCs.

For the second ESN and Lur’e member, we set C2 = 0 and σm(A2) = 0.7, where the latter

ensures convergence. For the multiplexed QRC, we set ε1 = 0.5 and ε2 = 0.9, and set the

second QRC’s CPTP map T (2)(uk) as

T (2)(uk) = g(uk)T
(2)
1 + (1− g(uk))T

(2)
2 ,

where T (2)
l (ρk) = U

(2)
l ρk(U

(2)
l )† for some arbitrary but fixed unitaries U (2)

l for l = 1, 2; see

Appendix C.1 for the details of these unitary matrices. The second QRC has no feedback

component and is uniformly convergent by construction; e.g. see Sec. 4.1. For all multi-

plexed RCs and QRCs, output parameters of their second member are not constrained.

As before, we perform model selection (see Appendix C.2 for the selected RCs’ parame-

ters) and residual analysis for all RCs, and check whether their residuals and inputs are

independent based on their sample cross-correlation via the “ggCcf” command in R [168].

We also numerically investigate the effect of decoherence on QRCs.

We set Lw = 20, Lt = 400 and Lv = 79. All RCs achieve comparable RMSE and average

RMSE, and they pass the Lilliefors test. Residuals of ESN and QRC are uncorrelated and

independent of inputs (within 95% CI); see Table 6.1 and Fig. 6.6. However, residuals

of the Lur’e system exhibit autocorrelation at lag 1, and this observation persists for

N = 2, . . . , 10, suggesting that the Lur’e system is unsuitable for this task.
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Figure 6.5: Schematic of spatial multiplexing. Here, xk and xk are the states of the first
and second RC member, respectively. The one-step ahead prediction of the multiplexed
RC is ŷk = W>1 h1(xk) +W>2 h2(xk).

Figure 6.6: The target output, (a) the ESN prediction, (b) the QRC prediction and (c)
the Lur’e prediction on validation data. (d) The ESN residual sample ACF. (e) The ESN
residual Q-Q plot. (f) The QRC sample ACF. (g) The QRC residual Q-Q plot. (h) The
Lur’e residual sample ACF. (i) The Lur’e residual Q-Q plot. The sample cross-correlation
between inputs and residuals for (j) the ESN, (k) the QRC and (l) the Lur’e.

Under both decoherence channels, residuals of QRC show autocorrelation at lag 1. Despite

this, the increase in the QRC RMSE is small, by at most 0.01 compared to the noiseless

QRC.
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6.5 Discussion

So far we have assumed that stochasticity only arises from the stochastic input u and

external noise e. For physical RCs, state measurement noise is another source of stochas-

ticity. Suppose that we can only obtain x̂k = xk + ηk, where ηk is measurement noise. In

general, the framework presented here does not apply to this setting unless the RC output

is a linear combination of the state elements. For a linear output ŷk = W>x̂k, we can

write yk = W>xk +W>ηk + ek and identify e′k = W>ηk + ek as the external noise. The

resulting NARX(∞) model is stationary and ergodic as long as u and e′ satisfy Assump-

tion 6.1. However, finite sampling noise for QRCs is not iid and the resulting NARX(∞)

model may not be stationary.

Here, we numerically investigate the effect of finite sampling noise on the QRC’s ability

to model time series. We simulate the selected QRCs with Mm = {103, 104, 105} number

of measurement for the three tasks presented above. For the nonlinear quantum optic

example, under all values of Mm, the selected QRC achieves the same RMSE = 1.12 and

RMSE = 1.12 as before. Its residuals show no autocorrelation and pass the Liliefors test

with p–value=0.44, 0.50, 0.50 corresponding to each value of Mm. Furthermore, the QRC

can still effectively extract the signal αk from βk, with normalized root mean-square errors

0.0046, 0.0048, 0.0048 for each Mm. These observations suggest that the finite sampling

noise does not impact the QRC’s ability to model the nonlinear quantum optic time

series. However, it shows a larger impact on the finance time series task. The QRC

shows a larger error with RMSE = 0.089, 0.067, 0.050 and RMSE = 0.096, 0.071, 0.051 for

each value of Mm, compared to RMSE = 0.049 and RMSE = 0.048 when there is no

finite sampling noise. For Mm = 103, the QRC residual shows autocorrelation at lags

1–4. For larger values of Mm, the QRC residual shows no autocorrelation and passes

the Liliefors test with p–value= 0.34, 0.50. For modeling the coupled electric system,

we observe RMSE = 0.19, 0.15, 0.12 and RMSE = 0.21, 0.16, 0.12 for each value of Mm.

These errors are larger than when there is no finite sampling noise (RMSE = 0.11 and

RMSE = 0.11). For Mm = 103, the QRC residuals again show autocorrelation at lags 1

and 2. For larger values of Mm, the QRC is able to describe the output time series of the
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coupled electric system, whose residuals show no autocorrelation and pass the Liliefors

test with p–value=0.50, 0.31.

6.6 Conclusion

We have introduced RCs with uniformly convergent output feedback dynamics as sta-

tionary and ergodic NARX(∞) for stochastic modeling. Our approach can harness high-

dimensional nonlinear dynamical systems (with certain properties but are otherwise arbi-

trary) for temporal information processing, making RC an efficient and versatile scheme

for control and signal processing tasks. We present and employ three example RC schemes,

including the ESNs, RCs realized by Lur’e systems and QRCs, to model several synthetic

and real data sets. Numerical experiments demonstrate that these RCs with a few tunable

parameters are adequate in modeling these data.

We have explored the application of RC for nonlinear stochastic modeling. Many exciting

problems remain open for future research, such as relaxing the current sufficient conditions

for the uniform convergence property, developing suitable model selection methods for the

proposed scheme and improving the modeling performance through optimizing the choice

of reservoir. With this view, this work opens the potential for the emergent reservoir

computing paradigm to tackle traditional challenges encountered in control and time series

modeling, further bridging these scientific disciplines.
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Reservoir design

In previous chapters, we have explored quantum implementations of the RC scheme and

different architectures of RCs for nonlinear system identification and time series modeling.

So far, we have exploited the training efficiency of RCs by choosing the internal parameters

of the reservoir dynamics randomly (with the uniform convergence property), and fixing

them at the onset. However, it has been observed that the RC emulation performance

can be significantly influenced by the internal parameters and the optimal parameters are

highly dependent on the task at hand [87, 172]. These observations have motivated the

reservoir design problem.

The reservoir design problem is the optimization of the reservoir internal parameters to

improve the RC emulation performance. In [21, 81], it has been shown that an RC’s

emulation ability depends on the number of independent state variables. Generally speak-

ing, to increase the number of independent state variables, one needs to also increase

the state-space dimension of the RC. This introduces additional computational costs for

software-based RCs and additional complexities for physical RCs. With this view, the

reservoir design problem is important when the RC has a fixed state-space size. In this

case, to improve the RC emulation performance, one can optimize the reservoir internal

parameters.
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The reservoir design problem has been tackled in [81, 87] using a Taylor expansion to

approximate a special class of time-delay RCs to simplify the optimization problem, but

this method may not fully capture the nonlinear model. Global optimization algorithms

have been employed for the reservoir design problem [88, 89]. However, these algorithms

often incur large computational costs. To remedy this issue, heuristic FORCE learning

algorithm and its variants [90,91] have been introduced. Despite their promising empirical

results, these heuristics may not provide a convergence guarantee.

Furthermore, for physical RCs, measurement noise is ubiquitous and should be taken into

account in the reservoir design problem. To our best knowledge, an efficient algorithm

that provides convergence guarantee even under state measurement noise is yet to be

developed. This leads to the main contributions of this chapter

• We propose an efficient stochastic approximation algorithm to optimize the reservoir

internal parameters.

• We show that the the proposed algorithm exhibits almost sure convergence to a

Kuhn-Tucker (KT) point under the effect of state measurement noise.

The proposed algorithm is based on the simultaneous perturbation stochastic approxima-

tion (SPSA) algorithm, which only uses two noisy measurements of the cost function to

approximate the gradient, regardless of the number of parameters to be optimized [92].

Our algorithm ensures convergence even when the RC output is a polynomial of arbitrary

degree in the noisy state elements. Roughly speaking, the key to the convergence is to

ensure that the gradient approximation is asymptotically unbiased. To achieve this, we

take inspirations from the publication [173] to design regressors using four noisy state

measurements, adopting the ‘double measurements’ technique used in econometrics for

unbiased off-line nonlinear regression [174]. These four noisy state measurements are used

to approximate the gradient to ensure that it is asymptotically unbiased. We employ our

algorithm to optimize the internal parameters of ESNs under state measurement noise to

emulate outputs of an LRPO and a finance time series. Numerical results suggest that
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the proposed algorithm can reduce the negative impact of noise on the emulation quality,

particularly for higher-order RC polynomial outputs.

This chapter is organized as follows. In Sec. 7.1, we introduce the reservoir design problem

and lay the assumptions on the state measurement noise. In Sec. 7.2, we introduce the

SPSA algorithm. Sec. 7.3 motivates the construction of the regressors using four noisy state

measurements and introduces our algorithm. We then prove its almost sure convergence

to a KT point. In Sec. 7.4, we demonstrate the efficacy of our algorithm in numerical

experiments. Discussions on future outlook of the reservoir design problem are presented

in Sec. 7.5. Finally, concluding remarks are presented in Sec. 7.6.

7.1 The reservoir design problem

We first introduce a probabilistic framework for this chapter. Random variables are defined

on a complete probability space (Ω,Σ,P) and let E[·] = EP[·] denote the expectation over P.

As in the previous chapter, z is a stochastic process if z : (Ω,Σ)→ ((Rm)Z, (Rm)Z) is mea-

surable, where (Rm)Z is the σ-algebra generated by cylindrical sets in (Rm)Z [84, Sec. 36].

For any random variable x, σ(x) is the sigma algebra generated by x. Recall the definitions

of stationarity (Definition 6.1) and Birkhoff-Khinchin ergodicity (Definition 6.3).

Consider an RC under a stochastic input process u : (Ω,Σ)→ ((Rn)Z, (Rn)Z)
xk+1(γ) = fγ(xk(γ),uk),

ŷk(γ) = hW (xk(γ)),
(7.1)

for all k ∈ Z, where xk(γ) ∈ RN is the reservoir state and ŷk(γ) ∈ R is the output. The

reservoir dynamics fγ is parametrized by γ ∈ C ⊂ Rp, where p is the number of parameters

and C is a compact set. Here, we constrain the reservoir parameters in a compact set to

reflect physical and numerical constraints in practical implementations.

The output function hW (·) is a multivariate polynomial of degree R in the components of

xk(γ) with coefficients W . We can write hW (xk(γ)) = W>h(xk(γ)), where W ∈ Rq and
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h(xk(γ)) ∈ Rq whose components consist of polynomial combinations (up to degree R) of

elements in xk(γ). That is, q = R +
(R

2
)

+ · · ·+
( R
R−1

)
+ 1. In general, not all polynomial

combinations need to be used, i.e., q < R+
(R

2
)

+ · · ·+
( R
R−1

)
+ 1. Since this is equivalent

to setting some elements of W to be zero, for ease of notation, we assume that h(xk(γ))

contains all polynomial combinations throughout this chapter.

Given a target output process y, the reservoir design problem is to optimize γ to minimize

F (γ) = minW E
[
|yk −W>h(xk(γ))|2

]
. Note that F (γ) is only a function of γ since the

solution forW is the Wiener solutionWWiener(γ) = E[h(xk(γ))h(xk(γ))>]−1E[h(xk(γ))yk]

(assuming that E[h(xk(γ))h(xk(γ))>] � 0) , also parametrized by γ.

In practice, we are often given a single realization of the target output y = y(ω) and

the corresponding input u = u(ω) of finite length L. Suppose that y2,yŷ and ŷ2 are

stationary and Birkhoff-Khinchin ergodic, then

E
[
|yk −W>h(xk(γ))|2

]
= lim

T→∞

1
T

T∑
k=1
|yk −W>h(xk(γ))|2 a.s.,

where xk(γ) is the RC state under the (deterministic) input u. We can approximate

the mean-squared error E
[
|yk −W>h(xk(γ))|2

]
by 1

L

∑L
k=1 |yk −W>h(xk(γ))|2 and the

problem is to optimize γ to minimize F (γ) = minW 1
L

∑L
k=1 |yk −W>h(xk(γ))|2.

To write the cost function F (γ) in vector form, define

H(γ) =


h(x1(γ))>

...

h(xL(γ))>

 , Y =


y1
...

yL

 . (7.2)

Then F (γ) = minW 1
L‖Y −H(γ)W‖2. Provided that the q columns of H(γ) are linearly

independent, the solution for W is W (γ) = (H(γ)>H(γ))−1H(γ)>Y and hence

F (γ) = 1
L

∥∥∥Y −H(γ)(H(γ)>H(γ))−1H(γ)>Y
∥∥∥2
.

We emphasize that since we are only given a realization u of the input process u and y of

the output process y, we view u and y as deterministic sequences. Hence, the vector Y is

also viewed as a deterministic vector throughout this chapter.
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7.1.1 Noisy state measurements

Noise is ubiquitous for physical RCs. We assume that we can obtain M noisy state

measurements x̂jk(γ) = xk(γ) + ejk, where j = 1, . . . ,M and {ejk} is the state noise. We

consider state noise that is independent of γ, this setting is generally encountered for

classical dynamical systems. However, for quantum systems, the finite sampling noise

depends on the state and γ. This will be further discussed in Sec. 7.5. We impose the

following assumptions on {ejk} throughout this chapter:

Assumption 7.1. The noise processes {ejk} (j = 1, . . . ,M) are independent processes.

Assumption 7.2. For any k ∈ Z and j = 1, . . . ,M , components of ejk are independent

with zero odd moments.

We remark that Assumption 7.2 applies to a broad class of noise processes {ejk} admitting

symmetric (around zero) distributions, e.g., Gaussian distribution.

7.2 Simultaneous perturbation stochastic approximation

Under the effect of state measurement noise, we can only obtain a noisy version F̂ (γ) of the

cost function F (γ). To optimize the reservoir internal parameters, an algorithm should

accommodate noisy measurements as well as preserve the training efficiency of the RC

framework. SPSA [92,175] is a promising candidate that uses two noisy objective function

measurements to approximate the gradient regardless of the number of parameters; see

Algorithm 1.

At each iteration l of the SPSA algorithm, the gradient estimate ĝSPSA
l (γl) of the true

gradient g(γl) (i.e., g(γl) is the gradient of the noiseless cost function F (·) evaluated at

γl) is

ĝSPSA
l (γl) =

[
F̂ (γ+

l
)−F̂ (γ−

l
)

2cl∆l,1
· · · F̂ (γ+

l
)−F̂ (γ−

l
)

2cl∆l,p

]>
, (7.3)

where γ±l = γl ± cl∆l and ∆l ∈ Rp is a vector of p mutually independent zero-mean

random variables {∆l,1,∆l,2, · · · ,∆l,p} that satisfy |∆l,j | ≤ M0 a.s., E[|∆−1
l,j |] ≤ M1 and
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E[∆−2
l,j ] ≤ M ′0 for j = 1, . . . , p and some M0,M1,M

′
0 < ∞ [92, Section III]. Often ∆l,j

is chosen to be distributed according to a symmetric Bernoulli distribution with support

in {−1, 1}. For simplicity, we allow γl ± cl∆l to lie outside of C but keep γl ∈ C at all

times using a projection ΠC(·) onto C as in [175]. Here, ΠC(γ) is defined as the nearest

point to γ on C, where the norm is the Euclidean norm. For some physical RCs whose

internal parameters are required to be strictly within the constraint set C at all times,

we can project γl onto a closed set Cl ⊂ C to obtain Pl(γl) so that Pl(γl) ± cl∆l ∈ C.

See [175, Page 890] for the explicit construction of Cl. We remark that our results also

apply to this setting when C is convex. We further remark that other choices of the gain

sequences {al}, {cl} in Algorithm 1 are possible, as long as they satisfy al, cl > 0 for all

l, liml→∞ al = 0, liml→∞ cl = 0,
∑∞
l=1 al = ∞ and

∑∞
l=1(al/cl)2 < ∞ [92, Section III–B].

The choices presented in Algorithm 1 are found to perform well in practice [176].

Algorithm 1 Constrained SPSA algorithm [175]
1: procedure SPSA(aSPSA, ASPSA, αSPSA, cSPSA, ρSPSA,KSPSA)

2: for l = 1 : KSPSA do

3: al = aSPSA/(l +ASPSA)αSPSA

4: cl = cSPSA/l
ρSPSA

5: γ+
l = γl + cl∆l

6: γ−l = γl − cl∆l

7: ĝSPSA
l (γl) =

[
F̂ (γ+

l
)−F̂ (γ−

l
)

2cl∆l,1
· · · F̂ (γ+

l
)−F̂ (γ−

l
)

2cl∆l,p

]>
. Gradient estimate

8: γl+1 = ΠC(γl − alĝSPSA
l (γl)) . ΠC(·) projects onto a compact set C

9: end for

10: return γKSPSA . The optimized reservoir internal parameters

11: end procedure

The attractiveness of Algorithm 1 is that under certain conditions, we have liml→∞ γl = γ∗

a.s., where γ∗ is a KT point [175, Proposition 1], [177, Theorem 3.5]. That is, there exists

µj ≥ 0 for j = 1, . . . , s such that g(γ∗) +
∑s
j=1 µj

dqj(γ∗)
dγ = 0 with qj(γ∗) = 0. Here,

g(·) is the gradient of the noiseless cost function and qj(·) are the inequality constraints

determined by the constraint set C. That is, we can write C = {γ : qj(γ) ≤ 0; j = 1, . . . , s}.
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7.3 Algorithm and its analysis

The crucial condition required for Algorithm 1 to converge a.s. to a KT point is that the

noisy cost function satisfies

F̂ (γ±l ) = F (γ±l ) + ε±l ,

where

E[ε+l − ε
−
l |γl,∆l] = 0 a.s. (7.4)

for all iterations l. This condition ensures that the gradient estimate ĝSPSA
l (γl) is asymptot-

ically unbiased in the sense that liml→∞ E[ĝSPSA
l (γl)−g(γl)|γl] = 0 a.s.; see [92, Lemma 1].

However, under noisy state measurements, our noisy cost function does not necessarily sat-

isfy (7.4).

7.3.1 Motivation

We provide some insight into why the noisy cost function does not necessarily satisfy (7.4).

Define

Ĥl,± =


h(x̂1(γ±l ))>

...

h(x̂L(γ±l ))>

 , Hl,± =


h(x1(γ±l ))>

...

h(xL(γ±l ))>

 (7.5)

where x̂k(γ) = xk(γ) + ek with measurement noise ek for k = 1, . . . , L. Assuming that

Ĥ>l,±Ĥl,± � 0 and H>l,±Hl,± � 0, we have

F (γ±l ) = 1
L
‖Y −Hl,±(H>l,±Hl,±)−1H>l,±Y ‖2 = 1

L

(
Y >Y − Y >Hl,±(H>l,±Hl,±)−1H>l,±Y

)
,

F̂ (γ±l ) = 1
L
‖Y − Ĥl,±(Ĥ>l,±Ĥl,±)−1Ĥ>l,±Y ‖2 = 1

L

(
Y >Y − Y >Ĥl,±(Ĥ>l,±Ĥl,±)−1Ĥ>l,±Y

)
and

ε±l = 1
L

[
Y >Hl,±(H>l,±Hl,±)−1H>l,±Y − Y >Ĥl,±(Ĥ>l,±Ĥl,±)−1Ĥ>l,±Y

]
.

To check if (7.4) holds, we may check if E[ε±l |γl,∆l] = 0 a.s.. However, checking this is

often difficult and cumbersome since ε±l is a nonlinear function of the noisy regressors Ĥl,±

that involves matrix inversion. To circumvent this problem, we propose to optimize the
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reservoir internal parameters γ and the RC output parameters W separately in a round

robin fashion. Explicitly, we first optimizeW using some noisy measurements of the state,

with W ∗ being the solution. We then optimize γ by fixing W ∗ and using another set of

noisy state measurements. That is, our noiseless cost function becomes

F (γ) = 1
L
‖Y −HW ∗‖2

and we employ the noisy cost function

F̂ (γ) = 1
L

∥∥∥Y − Ĥ(γ)W ∗
∥∥∥2

for the optimization of γ using a stochastic approximation method.

The above modification still does not guarantee (7.4) in general. To see this, we write

F (γ±l ) = 1
L
‖Y −Hl,±W

∗‖2 = 1
L

(
Y >Y − 2Y >Hl,±W

∗ + (W ∗)>H>l,±Hl,±W
∗
)

F̂ (γ±l ) = 1
L

∥∥∥Y − Ĥl,±W
∗
∥∥∥2

= 1
L

(
Y >Y − 2Y >Ĥl,±W

∗ + (W ∗)>Ĥ>l,±Ĥl,±W
∗
)

and observe that

ε±l = 1
L

[
2Y >Hl,±W

∗ − 2Y >Ĥl,±W
∗ + (W ∗)>Ĥ>l,±Ĥl,±W

∗ − (W ∗)>H>l,±Hl,±W
∗
]
,

where Ĥl,± and Hl,± are defined in (7.5).

To check if (7.4) holds, we may check if E[ε±k |γk,∆k] = 0 a.s.. However, this is generally

nonzero since ε±l contains even degree terms of the state measurement noise. For instance,

even if h(·) is linear, that is, consider Hl,± = Xl,± and Ĥl,± = X̂l,±, where

Xl,± =


x1(γ±l )>

...

xL(γ±l )>

 , X̂l,± =


x̂1(γ±l )>

...

x̂L(γ±l )>

 , El,± =


(e±1 )>

...

(e±L )>


with X̂l,± = Xl,± + El,± and e±k correspond to the state noise when measuring the states

x̂k(γ±l ). Using the tower property of conditional expectations and under Assumption 7.2,

we have
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E[ε±l |γl,∆l] = − 1
L
E
[
2Y >X̂l,±W

∗ − 2Y >Xl,±W
∗∣∣γl,∆l

]
+ 1
L
E
[
(W ∗)>X̂>l,±X̂l,±W

∗ − (W ∗)>X>l,±Xl,±W
∗∣∣γl,∆l

]
= − 1

L
2Y >E

{
E
[
El,±

∣∣W ∗, γl,∆l

]
W ∗

∣∣γl,∆l

}
+ 1
L
E
{

(W ∗)>E
[
E>l,±

∣∣W ∗, γl,∆l

]
Xl,±W

∗∣∣γl,∆l

}
+ 1
L
E
{

(W ∗)>X>l,±E
[
El,±

∣∣W ∗, γl,∆l

]
W ∗

∣∣γl,∆l

}
+ 1
L
E
{

(W ∗)>E
[
E>l,±El,±

∣∣W ∗, γl,∆l

]
W ∗

∣∣γl,∆l

}
= − 1

L
2Y >E

{
E [El,±]W ∗

∣∣γl,∆l

}
+ 1
L
E
{

(W ∗)>E
[
E>l,±

]
Xl,±W

∗∣∣γl,∆l

}
+ 1
L
E
{

(W ∗)>X>l,±E [El,±]W ∗
∣∣γl,∆l

}
+ 1
L
E
{

(W ∗)>E
[
E>l,±El,±

]
W ∗

∣∣γl,∆l

}
= 1
L
E
{

(W ∗)>E
[
E>l,±El,±

]
W ∗

∣∣γl,∆l

}
a.s.

which is nonzero in general since the even moments of the state noise is nonzero. Here,

the second equality follows since Xl,± is measurable with respect to σ(W ∗, γl,∆l). The

third equality follows since El,± is independent of W ∗, γl,∆l and the last equality follows

from Assumption 7.2 that E[El,±] = 0.

To address this problem, we propose to modify the noisy cost function by

F (γ) = 1
L

(
Y − V̂ (γ)W ∗

)> (
Y − Ṽ (γ)W ∗

)
, (7.6)

with V̂ (γ) and Ṽ (γ) essentially replacing the role of H(γ) defined in (7.2) and

E[ε±l |γl,∆l] = 1
L
E
[
2Y >Hl,±W

∗ − Y >Ṽl,±W ∗ − Y >V̂l,±W ∗
∣∣γl,∆l

]
− 1
L
E
[
(W ∗)>H>l,±Hl,±W

∗ − (W ∗)>V̂ >l,±Ṽl,±W ∗
∣∣γl,∆l

]
.

(7.7)

We want to construct regressors V̂ (γ) and Ṽ (γ) such that (7.7) is zero a.s.. A possible

choice is to obtain 2R noisy state measurements x̂jk(γ) = xk(γ) + ejk (j = 1, . . . , 2R) for

each k = 1, . . . L, where R is the degree of the output function hW (·). Let x̂jk,m(γ) denote
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the m–th component of x̂jk(γ), we define

v̂k(γ) =[x̂1
k,1(γ) · · · x̂1

k,n(γ) x̂1
k,1(γ)x̂2

k,1(γ) x̂1
k,1(γ)x̂1

k,2(γ) · · ·

x̂1
k,1(γ)x̂2

k,1(γ)x̂3
k,1(γ) x̂1

k,1(γ)x̂2
k,1(γ)x̂1

k,2(γ) · · · (x̂1
k,n(γ)x̂2

k,n(γ) · · · x̂Rk,n(γ))]>,

ṽk(γ) =[x̂R+1
k,1 (γ) · · · x̂R+1

k,n (γ) x̂R+1
k,1 (γ)x̂R+2

k,1 (γ) x̂R+1
k,1 (γ)x̂R+1

k,2 (γ) · · ·

x̂R+1
k,1 (γ)x̂R+2

k,1 (γ)x̂R+3
k,1 (γ) x̂R+1

k,1 (γ)x̂R+2
k,1 (γ)x̂R+1

k,2 (γ) · · ·

· · · (x̂R+1
k,n (γ)x̂R+2

k,n (γ) · · · x̂2R
k,n(γ))]>.

The regressors v̂k(γ) and ṽk(γ) now essentially replace the role of h(xk(γ)). Components

in v̂k(γ) and ṽk(γ) do not contain products of x̂jk,l(γ) for any fixed l, j of more than degree

one, e.g., they do not contain (x̂jk,1(γ))2 or (x̂jk,1(γ))2x̂jk,2(γ). Defining the regressors

V̂ (γ) =


v̂1(γ)>

...

v̂L(γ)>

 , V̂l,± =


v̂1(γ±l )>

...

v̂L(γ±l )>

 , Ṽ (γ) =


ṽ1(γ)>

...

ṽL(γ)>

 , Ṽl,± =


ṽ1(γ±l )>

...

ṽL(γ±l )>

 , (7.8)

then under Assumptions 7.1 and 7.2, (7.7) is zero a.s. since it no longer contains even

moments of elements in ejk for any j = 1, . . . , 2R. The caveat is that the number of

measurements increases as R increases.

7.3.2 Constructing regressors from four noisy state measurements

We show that only four measurements are sufficient to ensure that (7.7) is zero. From the

four noisy state measurements, we have

x̂1
k(γ) + x̂2

k(γ)
2 = xk(γ) + e1

k + e2
k

2 ,
x̂1
k(γ)− x̂2

k(γ)
2 = e1

k − e2
k

2 ,

x̂3
k(γ) + x̂4

k(γ)
2 = xk(γ) + e3

k + e4
k

2 ,
x̂3
k(γ)− x̂4

k(γ)
2 = e3

k − e4
k

2 .

These are the building blocks for v̂k(γ) and ṽk(γ). Recall that v̂k(γ), ṽk(γ) replace the role

of h(xk(γ)), whose components are polynomial combinations (up to degree R) of elements

in xk(γ). For each component m = 1, . . . , N of the state xk(γ), we recursively construct

variables t̂(1)
k,m(γ), t̂(2)

k,m(γ), . . . , t̂(R)
k,m(γ) to replace xk,m(γ), xk,m(γ)2, . . . , xk,m(γ)R appearing

in h(xk(γ)). For instance, for the first- and second-order terms:
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• Let t̂(1)
k,m(γ) = xk,m(γ) + e1k,m+e2k,m

2 . This plays the role of xk,m(γ).

• Let t̂(2)
k,m(γ) = (t̂(1)

k,m(γ))2 −
(
e1k,m−e

2
k,m

2

)2
. This plays the role of xk,m(γ)2.

To see this, note that (t̂(1)
k,m(γ))2 = xk,m(γ)2 + xk,m(γ)

(
e1
k,m + e2

k,m

)
+ 1

4

(
e1
k,m + e2

k,m

)2
.

To eliminate the even degree terms of e1
k,m, e

2
k,m, we subtract 1

4(e1
k,m − e2

k,m)2 from the

above, leading to t̂(2)
k,m(γ) = xk,m(γ)2 + xk,m(γ)

(
e1
k,m + e2

k,m

)
+ e1

k,me
2
k,m. More generally,

for the r–th degree term, we have

t̂
(r)
k,m(γ) = (t̂(1)

k,m(γ))r −
∑
d=2k,

1≤k≤br/2c

(
r

d

)
t̂
(r−d)
k,m (γ)

(
e1
k,m − e2

k,m

2

)d
. (7.9)

Replacing e1
k,m, e

2
k,m by e3

k,m, e
4
k,m in (7.9), we can define t̃(r)k,m(γ) analogously. We then

define v̂k(γ), ṽk(γ) using these new variables:

v̂k(γ) = [t̂(1)
k,1(γ) · · · t̂

(1)
k,N (γ) t̂

(2)
k,1(γ) t̂

(1)
k,1(γ)t̂(1)

k,2(γ) · · · t̂
(2)
k,N (γ)

t̂
(3)
k,1(γ) t̂

(2)
k,1(γ)t̂(1)

k,2(γ) · · · t̂
(3)
k,N (γ) · · · t̂

(R)
k,N (γ)]>,

ṽk(γ) = [t̃(1)
k,1(γ) · · · t̃

(1)
k,N (γ) t̃

(2)
k,1(γ) t̃

(1)
k,1(γ)t̃(1)

k,2(γ) · · · t̃
(2)
k,N (γ)

t̃
(3)
k,1(γ) t̃

(2)
k,1(γ)t̃(1)

k,2(γ) · · · t̃
(3)
k,N (γ) · · · t̃

(R)
k,N (γ)]>.

(7.10)

Remark 7.1. Observe that we can write v̂k(γ) = h(xk(γ)) + f(xk(γ), e1
k, e

2
k) and ṽk(γ) =

h(xk(γ)) + f(xk(γ), e3
k, e

4
k), where f(xk(γ), e1

k, e
2
k) and f(xk(γ), e3

k, e
4
k) are random vectors

with q components, and their m–th components have the form

f(xk(γ), e1
k, e

2
k)m =

Mm∑
j=1

αm,j(xk(γ))βm,j(e1
k, e

2
k),

f(xk(γ), e3
k, e

4
k)m =

Mm∑
j=1

αm,j(xk(γ))βm,j(e3
k, e

4
k).

(7.11)

Here, αm,j(xk(γ)) is a polynomial of elements in xk(γ) and βm,j(e1
k, e

2
k), βm,j(e3

k, e
4
k) are

polynomial of odd degrees of elements in e1
k, e

2
k and e3

k, e
4
k, respectively.

Remark 7.1 will be a key observation in our analysis.
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Equipped with regressors V̂ (γ) and Ṽ (γ) defined by (7.8) and (7.10), we propose a modified

constrained SPSA algorithm in Algorithm 2 and prove its almost sure convergence to a

KT point in the next subsection. Incorporating the round robin method to optimize γ

and W iteratively, we arrive at the overall algorithm shown in Algorithm 3.

Algorithm 2 Modified constrained SPSA algorithm
1: procedure MSPSA(W ∗, aMSPSA, AMSPSA, αMSPSA, cMSPSA, ρMSPSA,KMSPSA)

2: for l = 1 : KMSPSA do

3: al = aMSPSA/(l +AMSPSA)αMSPSA

4: cl = cMSPSA/l
ρMSPSA

5: γ+
l = γl + cl∆l

6: γ−l = γl − cl∆l

7: F (γ±l ) = 1
L(Y − V̂l,±W ∗)>(Y − Ṽl,±W ∗) . V̂l,±, Ṽl,± are defined in (7.8), (7.10)

8: ĝMSPSA
l (γl) =

[
F (γ+

l
)−F (γ−

l
)

2cl∆l,1
· · · F (γ+

l
)−F (γ−

l
)

2cl∆l,p

]>
. Gradient estimate

9: γl+1 = ΠC
(
γl − alĝMSPSA

l (γl)
)

. ΠC(·) projects onto a compact set C

10: end for

11: return γKMSPSA . The optimized reservoir internal parameters

12: end procedure

Algorithm 3 Reservoir design algorithm
1: procedure RCdesign(aMSPSA, AMSPSA, αMSPSA, cMSPSA, ρMSPSA,KMSPSA,K)

2: Randomize γ0 ∈ C

3: Construct V̂ (γ0) . V̂ (γ0) is defined in (7.8), (7.10)

4: W ∗0 = arg minW G(V̂ (γ0), Y,W )

5: for l = 1 : K do

6: γl=MSPSA(W ∗l−1, aMSPSA, AMSPSA, αMSPSA, cMSPSA, ρMSPSA,KMSPSA)

7: Construct V̂ (γl) . V̂ (γl) is defined in (7.8), (7.10)

8: W ∗l = arg minW G(V̂ (γl), Y,W )

9: end for

10: return γK ,W
∗
K . The optimized internal and output parameters

11: end procedure
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7.3.3 Almost sure convergence

To show that Algorithm 2 converges to a KT point a.s., we first prove the following lemma.

Lemma 7.1. Using regressors V̂ (γ) and Ṽ (γ) defined in (7.8) and (7.10), under Assump-

tions 7.1 and 7.2, we have E[ε+l − ε
−
l |γl,∆l] = 0 a.s. for all l, where ε±l = F (γ±l )−F (γ±l )

and F (γ±l ) is defined by (7.6).

Proof. As alluded to before, we prove a stronger property in which E[ε±l |γl,∆l] = 0 a.s.

for all l, where

E[ε±l |γl,∆l] = 1
L
E
[
2Y >Hl,±W

∗ − Y >Ṽl,±W ∗ − Y >V̂l,±W ∗
∣∣γl,∆l

]
− 1
L
E
[
(W ∗)>H>l,±Hl,±W

∗ − (W ∗)>V̂ >l,±Ṽl,±W ∗
∣∣γl,∆l

]
,

(7.12)

and Hl,± is defined in (7.5). We examine the first summand in (7.12). Using the tower

property of conditional expectations, we have

E
[
Y >V̂l,±W

∗∣∣γl,∆l

]
= Y >E

{
E
[
V̂l,±

∣∣W ∗, γl,∆l

]
W ∗

∣∣γl,∆l

}
a.s..

Recall from Remark 7.1 that v̂k = h(xk) + f(xk, e1
k, e

2
k). Let v̂k,m(γ±l ) be the m–th com-

ponent of v̂k(γ±l ). The k–th row and m–th column of the matrix conditional expectation

E
[
V̂l,±

∣∣W ∗, γl,∆l

]
is

E
[
V̂l,±

∣∣W ∗, γl,∆l

]
k,m

= E
[
v̂k,m(γ±l )

∣∣W ∗, γl,∆l

]
= E

[
h(xk(γ±l ))m + f(xk(γ±l ), e1

k, e
2
k)m

∣∣W ∗, γl,∆l

]
= h(xk(γ±l ))m +

Mm∑
j=1

αm,j(xk(γ±l ))E
[
βm,j(e1

k, e
2
k)
∣∣W ∗, γl,∆l

]

= h(xk(γ±l ))m +
Mm∑
j=1

αm,j(xk(γ±l ))E
[
βm,j(e1

k, e
2
k)
]

= h(xk(γ±l ))m a.s.,

where the third equality follows since h(xk(γ±l ))m and αm,j(xk(γ±l )) are measurable with

respect to σ(W ∗, γl,∆l), the second last equality follows since e1
k, e

2
k are independent of

σ(W ∗, γl,∆l) and the last equality follows from Assumptions 7.1 and 7.2. Therefore,
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E
[
V̂l,±

∣∣W ∗, γl,∆l

]
= Hl,± and E

[
Y >V̂l,±W

∗∣∣γl,∆l

]
= E[Y >Hl,±W

∗|γl,∆l] a.s.. A similar

argument shows that E
[
Y >Ṽl,±W

∗∣∣γl,∆l

]
= E[Y >Hl,±W

∗|γl,∆l] a.s.. As a result, the

first summand in (7.12) is zero a.s..

We now examine the second summand in (7.12). Using the tower property of conditional

expectations, we have

E
[
(W ∗)>V̂ >l,±Ṽl,±W ∗

∣∣γl,∆l

]
= E

{
(W ∗)>E

[
V̂ >l,±Ṽl,±

∣∣W ∗, γl,∆l

]
W ∗

∣∣γl,∆l

}
a.s..

The j–row and m–column of the matrix conditional expectation E
[
V̂ >l,±Ṽl,±

∣∣W ∗, γl,∆l

]
is

E
[
V̂ >l,±Ṽl,±

∣∣W ∗, γl,∆l

]
j,m

=
L∑
k=1

E
[
(h(xk(γ±l ))j + f(xk(γ±l ), e1

k, e
2
k)j)(h(xk(γ±l ))m + f(xk(γ±l ), e3

k, e
4
k)m)

∣∣W ∗, γl,∆l

]

=
L∑
k=1

h(xk(γ±l ))jh(xk(γ±l ))m

+
L∑
k=1

h(xk(γ±l ))jE
[
f(xk(γ±l ), e3

k, e
4
k)m

∣∣W ∗, γl,∆l

]

+
L∑
k=1

h(xk(γ±l ))mE
[
f(xk(γ±l ), e1

k, e
2
k)j
∣∣W ∗, γl,∆l

]

+
L∑
k=1

E
[
f(xk(γ±l ), e1

k, e
2
k)jf(xk(γ±l ), e3

k, e
4
k)m

∣∣W ∗, γl,∆l

]
a.s.,

where the last equality follows since h(xk(γ±l ))j and h(xk(γ±l ))m are measurable with

respect to σ(W ∗, γl,∆l). Expressing f(xk(γ±l ), e1
k, e

2
k) and f(xk(γ±l ), e3

k, e
4
k) as (7.11) in

Remark 7.1, using Assumptions 7.1 and 7.2, we have E
[
f(xk(γ±l ), e3

k, e
4
k)m

∣∣W ∗, γl,∆l

]
=

E
[
f(xk(γ±l ), e1

k, e
2
k)j
∣∣W ∗, γl,∆l

]
= E

[
f(xk(γ±l ), e1

k, e
2
k)jf(xk(γ±l ), e3

k, e
4
k)m

∣∣W ∗, γl,∆l

]
= 0

a.s.. Hence, E
[
V̂ >l,±Ṽl,±

∣∣W ∗, γl,∆l

]
= E

[
H>l,±Hl,±

∣∣W ∗, γl,∆l

]
a.s. and

E
[
(W ∗)>V̂ >l,±Ṽl,±W ∗

∣∣γl,∆l

]
= E

[
(W ∗)>H>l,±Hl,±W

∗∣∣γl,∆l

]
a.s..

As a result, the second summand in (7.12) is zero a.s..

We now establish the almost sure convergence of Algorithm 2 by applying a simplified

version of [175, Proposition 1] stated below.
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Theorem 7.1. [175, Proposition 1] Suppose that the following hold:

1. F (·) is three times continuously differentiable.

2. al, cl > 0, liml→∞ al = 0, liml→∞ cl = 0,
∑∞
l=1 al =∞ and

∑∞
l=1(al/cl)2 <∞.

3. The constraints qj(·) where C = {γ : qj(γ) ≤ 0; j = 1, . . . , s} are continuously

differentiable and at each γ ∈ ∂C, the gradients of the active constraints are linearly

independent.

4. Define π(g(γ)) = limδ→0,δ>0(ΠC(γ + δg(γ)) − γ)/δ [177, Page 191]. Let γ∗ be

an asymptotically stable point (which is a KT point) of the differential equation

dγ(t)/dt = −π(g(γ)), where g(·) is the gradient of the noiseless cost function F (·).

Let D(γ∗) be the domain of attraction for γ∗. Suppose that there exists a compact

set A ⊂ D(γ∗) such that γl ∈ A infinitely often.

5. For each l, {∆l,j} are independently identically distributed for j = 1, . . . , p and

symmetrically distributed about 0 with |∆l,j | ≤M0 <∞ a.s., E[|∆−1
l,j |] ≤M1 <∞.

6. For all l, E[∆−2
l,j ] ≤M ′0 <∞, E[(ε±l )2] ≤M ′1 <∞ and E[F (γ±l )2] ≤M ′2 <∞.

Then under Algorithm 2, liml→∞ γl = γ∗ a.s..

We remark that Theorem 7.1 is a simplified version of [175, Proposition 1]. In [175,

Proposition 1], the author includes an additional projection Pl(γl) onto a closed set Cl ⊂ C

so that Pl(γl)± cl∆l ∈ C. In Theorem 7.1, we allow γl ± cl∆l to lie outside of C but keep

γl ∈ C for all l. The proof for both Theorem 7.1 and [175, Proposition 1] are the same.

Proof. The proof is identical to the proof of [175, Proposition 1], which is based on [92,

Proposition 1] and [177, Theorem 5.3.1]. We sketch the proof here for completeness. The

main idea is to write

γl+1 = ΠC(γl − alg(γl)− albl(γl)− alξl(γl)),

where bl(γl) = E[ĝMSPSA
l (γl)|γl]− g(γl) and ξl(γl) = ĝMSPSA

l (γl)− E[ĝMSPSA
l (γl)|γl].
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Recall from Lemma 7.1 that E[ε+l −ε
−
l |γl] = E{E[ε+l −ε

−
l |γl,∆l]|γl} = 0 a.s.. Using the same

argument as [92, Lemma 1] shows that ‖bl(γl)‖ < ∞ a.s. for all l and liml→∞ bl(γl) = 0

a.s.. Furthermore, following the same argument as in [92, Proposition 1] shows that for

any η > 0,

lim
k→∞

P
(

sup
m≥k

∥∥∥∥∥
m∑
l=k

alξl(γl)
∥∥∥∥∥ ≥ η

)
= 0. (7.13)

Then the assumptions of [177, Theorem 5.3.1] are satisfied, and the result follows.

Remark 7.2. In the above proof, we have used (7.13) instead of A5.3.2 in [177], which

states that there is a T > 0 such that for each η > 0,

lim
n→∞

P

sup
j≥n

max
t≤T

∥∥∥∥∥∥
m(jT+t)−1∑
i=m(jT )

aiξi(γi)

∥∥∥∥∥∥ ≥ η
 = 0,

where m(t) = max{n :
∑n
l=1 al ≤ t} for t ≥ 0 and m(t) = 0 otherwise. While A5.3.2 is

sufficient to show the result of Theorem 7.1, condition (7.13) is a stronger condition and

can often be easier to verify; see [177, Page 29].

7.4 Numerical examples

We employ the proposed reservoir design Algorithm 3 to optimize the internal and output

parameters of ESNs to model the outputs of two tasks. Recall that the ESN is governed

by [10] 
xk+1 = tanh(Axk +Buk),

ŷk = hW (xk),

where σmax(A) < 1 to ensure the uniform convergence property. We optimize internal

parameters A and B using Algorithm 2. To preserve the uniform convergence property, we

set A to be diagonal and constrain its diagonal elements to [−0.9, 0.9]. We also constrain

elements of B to [−1, 1]. At each iteration of the algorithm, we apply an independent

additive Gaussian noise with mean zero and standard deviation σstd = {0.05, 0.1, 0.2} to
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the state to investigate the effect of noise on the optimization. This state measurement

noise satisfies Assumptions 7.1 and 7.2.

The first task is the LRPO task [25,26] described by
xk = ALRPOxk−1 +BLRPOuk,

yk = ĥ(xk),

where ĥ(·) is chosen to be a degree two multivariate polynomial, whose coefficients are

randomly and uniformly chosen from [−0.2, 0.2]. We set ALRPO to be a 500 × 500 real

matrix with σmax(ALRPO) = 0.5 to ensure its uniform convergence property. Elements

of ALRPO and BLRPO are randomly and uniformly generated from [−1, 1]. The input

sequence is randomly and uniformly chosen from uk ∈ [0, 1] for each k. For this task, we

use the first Lw = 100 data points to washout the effect of ESN’s initial condition. We

then optimize the internal and output parameters using the next Ltrain = 500 data points.

At each iteration of Algorithm 3, the output parameter W is optimized via ordinary least

squares, that is, W ∗l =
(
V̂ (γl)>V̂ (γl)

)−1
V̂ (γl)Y . We test the ESN performance using the

last Ltest = 100 data points. The ESN output during the testing phase is ŷk = v̂k(γ̂∗)>Ŵ∗,

where γ̂∗ and Ŵ∗ are the optimized internal and output parameters.

The second task is to perform one-step ahead prediction of the finance time series em-

ployed in Chapter 6. Recall that this time series describes weekly 5/1-year adjustable

rate mortgage average (2005–2020) in the US [160]. As before, we remove the trend and

seasonable components using the “mstl” command in R [168]. For this task, we consider

implementing a NARX(∞) model using an ESN with output-feedback (6.11) as in Chap-

ter 6. The first Lw = 100 data are used to washout the effect of the ESN’s initial condition.

The internal and output parameters are optimized using Ltrain = 500 data and the ESN

performance is evaluated using the last Ltest = 180 data. At each iteration of Algorithm 3,

the output parameterW is optimized by solving the following convex constrained program

using CVXPY [178]:

min
W
‖V̂ (γl)W − Y ‖2

subject to σmax(A+ CW>) ≤ 0.99.
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As shown in Sec. 6.3.1, this constraint ensures that the ESN with output-feedback is uni-

formly convergent and hence induces a stationary and Birkhoff-Khinchin ergodic NARX(∞)

model. As for the LRPO task, the ESN output during the testing phase for the finance

time series is ŷk = v̂k(γ̂∗)>Ŵ∗.

7.4.1 Sensitivity of reservoir internal parameters

The effect of optimizing the reservoir internal parameters depends on the sensitivity of the

RC’s performance to these parameters. In this subsection, we investigate the sensitivity

on the LRPO and finance time series tasks. In Figs. 7.1 and 7.2, we show the box plots of

the mean-squared error (MSE) for 100 randomly generated ESNs against the reservoir size

(i.e., the state-space size of the ESN) and the degree of the readout function at σstd = 0.05.

For each ESN, we randomly and uniformly sample diagonal elements of A from [−0.9, 0.9]

and the elements of B from [−1, 1].

In Figs. 7.1 and 7.2(a), we observe that the median ESN MSE decreases as the reservoir

size increases for the two tasks. However, the MSE quartile also decreases dramatically as

the reservoir size increases, suggesting that performance of ESNs with large state spaces is

less sensitive to their internal parameters for the chosen tasks. This means that optimizing

the ESN internal parameters when the state space is large may not be effective to improve

performance for the two tasks. The same trend is observed for different readout degrees

(linear, quadratic and cubic as shown in Figs. 7.1 and 7.2) and other values of σstd. An

exception is shown in Fig. 7.2(b), where the median MSE during the testing phase increases

for the cubic readout function as the reservoir size increases from 25 to 50. This behavior

could be caused by overfitting, which occurs when the model fits against the training

data extremely well and becomes unable to generalize well to test data. Indeed, Fig. 7.2

suggests that the ESN has a tendency to overfit when modeling the finance time series,

indicated by the steady decrease in MSEtrain but a slower decrease in MSEtest and its

large quartile as the reservoir size increases from 25 to 50. Based on these observations,

we choose a reservoir size of two for the ESN, which appears to be highly sensitive to
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changes in the reservoir internal parameters for the two tasks, to illustrate our proposed

algorithm.

(a) (b)

Figure 7.1: Box plot of the MSE of ESNs during (a) the training phase (MSEtrain) and
(b) the testing phase (MSEtest) for the LRPO task. The inset in (a) shows the box plot
for reservoir size 50 during the training phase.

(a) (b)

Figure 7.2: Box plot of the MSE of ESNs during (a) the training phase (MSEtrain) and
(b) the testing phase (MSEtest) for modeling the finance time series.

The above observations also suggest two directions to improve ESN performance. The

first is to increase the ESN state-space size, this has also been observed in Chapter 3 on

the NARMA tasks. The second is to optimize the internal parameters when the ESN

state-space size is small. With this view, reservoir design is suitable in situations where

increasing the reservoir size is more costly than the computational cost of the optimization

algorithm employed to tune the internal parameters.
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7.4.2 Performance

We employ Algorithm 3 to optimize the diagonal elements of A, elements of B and output

parameters W of the ESN. We set the number of iterations to be K = 250 in Algorithm 3

and the number of iterations for Algorithm 2 to be KMSPSA = 500. Furthermore, we set

αMSPSA = 0.7501, cMSPSA = 0.1 and ρMSPSA = 0.25 in Algorithm 2 for both tasks. For

the LRPO task, we set AMSPSA = 10 and aMSPSA = 0.1. For the finance time series task,

we set AMSPSA = 100 and aMSPSA = 0.001. These choices satisfy the condition Point #2

in Theorem 7.1. The hyper-parameters for Algorithm 2 are determined as follows. The

values of αMSPSA, ρMSPSA are set to be the same as in [92]. We then fix cMSPSA = 0.1 for

both tasks and choose aMSPSA, AMSPSA for each task for an appropriate step size al. We

set these values manually such that the internal parameter γl lies in the interior of the

constraint set C for most iterations. We remark that these hyper-parameters can influence

the performance of the algorithm on these tasks and there is no systematic procedure for

selecting them yet. Nevertheless, the work [179] provides some guidelines in setting these

values and some recent Python packages have implemented hyper-parameter optimization

based on grid search [180].

To investigate the effect of state measurement noise on the reservoir design algorithm, we

also employ Algorithm 1 to optimize the ESN internal parameters. We emphasize again

that in Algorithm 1, the noisy cost function is computed using the noisy regressor h(x̂k)

instead of the regressors v̂k and ṽk in Algorithm 2.

Fig. 7.3 plots the average ESN MSE against iteration for modeling the LRPO output,

averaged over 10 random initial guesses of the internal parameters. For all readout de-

grees, we observe that as σstd increases, the ESN performance worsens, indicating the

negative impact of noise. As the readout degree increases, the ESN performance under

Algorithm 1 (dashed lines in Fig. 7.3 denoted by SPSA) does not improve noticeably. This

is in contrast to the ESN performance under Algorithm 2 (solid lines in Fig. 7.3 denoted by

MSPSA), which shows noticeable improvement as the readout degree increases. Further-

more, as the readout degree increases, the performance discrepancy between Algorithm 1
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and Algorithm 2 is more pronounced. In particular, for a cubic readout function under

Algorithm 2, the ESN performance at σstd = 0.2 achieves a comparable ESN performance

under Algorithm 2 at σstd = 0.1. This suggests that the proposed algorithm can reduce the

negative impact of the noise, particularly when the readout degree and the noise variance

are large.

In Algorithm 3, W ∗ is optimized using the regressor V̂ (γ) instead of Ĥ(γ). This is chosen

because we optimize the internal parameters using V̂ (γ), Ṽ (γ) instead of Ĥ(γ). As a

result, it is natural to optimize W ∗ in terms of V̂ (γ). We provide numerical evidence to

demonstrate that optimizing the output parameterW using V̂ (γ) instead of Ĥ(γ) provides

a better performance. To test this, we optimize the ESN internal parameters using our

proposed modified SPSA Algorithm 2 as before using V̂ (γ), Ṽ (γ) but optimize the output

parameter as W ∗l =
(
Ĥ(γl)>Ĥ(γl)

)−1
Ĥ(γl)Y at each iteration of Algorithm 3, this is

referred to as USPSA. Fig. 7.4 plots the average ESN MSE for the LRPO task with a

cubic readout function under these methods. It is observed that MSPSA performs better

than USPSA for all values of σstd considered.

We further test the proposed algorithm on modeling the finance time series. Fig. 7.5

plots the average ESN MSE against iteration for the finance time series task with a cubic

readout function, averaged over 10 random initial guesses of the internal parameters.

Similar observations as for the LRPO task can be found. For this task, the advantage of

our algorithm is more pronounced as σstd increases. At the last iteration, the percentage

decreases in the average MSE between our algorithm and Algorithm 1 are 20.2% at σstd =

0.2, 9.8% at σstd = 0.1 and 1.6% at σstd = 0.05 during the training phase. The percentage

decreases during the testing phase are 21.2% at σstd = 0.2, 10.7% at σstd = 0.1 and 6.2%

at σstd = 0.05. This again suggests that the proposed algorithm is effective at reducing

the negative impact of the noise when the noise variance is large.

147



CHAPTER 7. RESERVOIR DESIGN

(a) (b)

(c) (d)

(e) (f)

Linear Linear

Quadratic Quadratic

Cubic Cubic

Figure 7.3: The average ESN MSE against iteration for the LRPO task. The first col-
umn shows the average ESN MSE during the training phase (MSEtrain) and the second
column shows the average ESN MSE during the testing phase (MSEtest). The first row
corresponds to a linear output, the second row corresponds to a quadratic output and the
third row corresponds to a cubic output. MSPSA refers to Algorithm 2 and SPSA refers
to Algorithm 1.

7.5 Discussion

The work in this chapter presents a stochastic approximation approach for designing the

reservoir under state measurement noise. There are several interesting extensions of the
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(a) (b)

Figure 7.4: The average ESN MSE against iteration for the LRPO task with a cubic
readout function under Algorithm 3 (labelled as SPSA) and Algorithm 3 where W ∗l =(
Ĥ(γl)>Ĥ(γl)

)−1
Ĥ(γl)Y (labelled as USPSA). (a) shows the average ESN MSE during

the training phase (MSEtrain) and (b) shows the average ESN MSE during the testing
phase (MSEtest).

(a) (b)

Figure 7.5: The average ESN MSE against iteration for the finance time series task with
a cubic readout function. (a) shows the average ESN MSE during the training phase
(MSEtrain) and (b) shows the average ESN MSE during the testing phase (MSEtest).

current proposal.

Throughout this chapter, we have assumed that the state noise is independent of the

internal parameter γ. Although this is a reasonable assumption for most classical RCs, for

QRCs this is not true. This is because the finite sampling noise from measuring a quantum

system depends on the quantum state; see Sec. 2.2. Furthermore, Assumption 7.2 may not

hold for QRCs. Consequentially, Lemma 7.1 and Theorem 7.1 may not hold. It remains
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an open problem following from this chapter to extend the approach herein to the setting

of QRC, if possible.

Another possible challenge of this extension is the barren plateau problem for quantum

systems [181]. The barren plateau problem was initially recognized in hybrid quantum-

classical algorithms for classical optimization problems and is derived using the Haar

measure on the unitary group. Roughly speaking, the Haar measure is akin to the uniform

distribution on the unitary group. A detailed discussion of the Haar measure is out of

the scope of this thesis, however, excellent references are available on this topic [182–184].

Hybrid quantum-classical algorithms often employ parametrized quantum circuits of the

form

U(θ) =
L∏
l=1

Ul(θl),

where Ul(θl) = exp(−ιθlVl) is a unitary gate parametrized by θl. Consider an objective

function F (θ) expressed as the expectation value over some Hermitian observable O,

F (θ) = Tr
(
ρ0U(θ)†OU(θ)

)
, (7.14)

where ρ0 is the initial state. The partial derivatives are of the form

∂F (θ)/∂θm = ιTr
(
ρ0U

†
m,−[Vm, U †m,+OUm,+]Um,−

)
,

where Um,− =
∏m−1
l=1 Ul(θl) and Um,+ =

∏L
l=m U(θl). Suppose that the circuit U(θ) is cho-

sen such that Um,−, Um,+ or both of them match the Haar distribution up to the second

moment (also referred to as unitary 2-designs), and the circuits Um,−, Um,+ are indepen-

dent. In this case, the expectation value of ∂F (θ)/∂θm over the Haar measure is zero.

Furthermore, the variance of ∂F (θ)/∂θm decreases exponentially as the number of qubits

increases. This poses a challenge for gradient-based methods to optimize θ. Examples of

such random quantum circuits include [185, 186]. In [186], the authors construct approx-

imate unitary-2 design circuits using gates that are diagonal in the Pauli-Z and Pauli-X

bases. Such approximate unitary-2 design circuits also cause the barren plateau problem.

For QRCs on gate-based quantum computers as in Chapter 4, their dynamics are described

by

ρk+1 = (1− ε)(ukU0(θ)ρkU0(θ)† + (1− uk)U1(φ)ρkU1(φ)†) + εσ,
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where U0(θ) =
∏L
l=1 U(θl), U1(φ) =

∏L′
l=1 U

′(φl) are two unitaries parametrized by θ and φ

respectively. Here, U(θl) = exp(−ιθlVl) and U ′(φl) = exp(−ιφlV ′l ). For ease of notation,

we will consider QRCs with linear outputs. The ensuing discussions also apply for poly-

nomial outputs. We also consider optimizing the QRC internal parameters θ, φ and its

output parametersW =
[
W1 · · · Wn

]>
in a round robin fashion. Here, n is the number

of qubits. Let W ∗ =
[
W ∗1 · · · W ∗n

]>
be the optimized output parameters. For a QRC

with linear output, the objective function is

F (θ, φ) = 1
T

T∑
k=1

(
yk −

n∑
i=1

W ∗i Tr
(
ρkZ

(i)
))2

.

The partial derivatives are of the form

∂F (θ, φ)
∂θm

= 2
T

T∑
k=1

(
yk −

n∑
i=1

W ∗i Tr
(
ρkZ

(i)
))(

−
n∑
i=1

W ∗i
∂

∂θm
Tr
(
ρkZ

(i)
))

,

and similarly for ∂F (θ, φ)/∂φm. Note that the expectation value Tr
(
ρkZ

(i)
)
can be writ-

ten as a sum of expectation values of the form (7.14). For instance, when k = 1,

Tr
(
ρ1Z

(i)
)

= (1− ε)
{
u1Tr

(
ρ0U0(θ)†Z(i)U0(θ)

)
+ (1− uk)Tr

(
ρ0U1(φ)†Z(i)U1(φ)

)}
+ εTr(σZ(i))

and ∂
∂θm

Tr
(
ρ1Z

(i)
)

= (1 − ε)u1ιTr
(
ρ0U

†
m,−[Vm, U †m,+Z(i)Um,+]Um,−

)
, where Um,− =∏m−1

l=1 Ul(θl) and Um,+ =
∏L
l=m U(θl). If Um,−, Um,+ or both of them are unitary 2-

designs and they are independent, then the expectation of ∂
∂θm

Tr
(
ρ1Z

(i)
)
over the Haar

measure is zero. Moreover, its variance decreases exponentially as the number of qubits

increases. When this is true for all k = 1, . . . , T , the partial derivative ∂F (θ, φ)/∂θm is

exponentially vanishing and poses a difficulty for our proposed gradient-based algorithm

to optimize the QRC internal parameters. To make matters more complicated, it has been

shown that quantum circuits comprising of only a few parametrized gates (as few as almost

linear in the number of qubits) can construct (approximate) unitary 2-designs [185,186].
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7.6 Conclusion

We have introduced a stochastic approximation algorithm to optimize the reservoir in-

ternal parameters that exhibits almost sure convergence to a KT point, even under state

measurement noise. Our proposed algorithm only uses four noisy state measurements to

approximate the gradient, making it efficient for high-dimensional problems. Key to our

algorithm is the construction of regressors using four noisy state measurements to ensure

that the gradient estimate is asymptotically unbiased. Numerical examples demonstrate

that our algorithm can mitigate the negative impact of state measurement noise for the

ESN on certain tasks, in particular for higher-order ESN polynomial outputs.

This chapter has only considered state measurement noise that is independent of the state

and the internal parameters. Although this assumption may be true for most classical

dynamical systems, for quantum systems, it is not valid. It may be challenging to extend

the current algorithm to QRCs. Furthermore, to investigate the reservoir design problem

for QRCs, it is important to address the barren plateau problem. These directions are

crucial to further improve the emulation ability of QRCs as well as to gain more insights

into the feasibility of quantum systems for other applications.
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Chapter 8

Conclusion and Future Directions

In this thesis, we have explored three main directions in using uniformly convergent dy-

namical systems as RCs for temporal information processing–quantum implementations

of the RC scheme, new architectures of RC with stability guarantee for system identifica-

tion and time series modeling, and an efficient algorithm for reservoir design. Although

our works have demonstrated some initial promising results in theoretical analysis, exper-

iments and numerical simulations, there are many challenging open problems to further

advance these works. We will discuss some of these open challenges below.

The first main question posed for QRCs is can they take advantage of the exponentially

large quantum state space to provide a speedup over their classical counterparts? Some

preliminary arguments have been put forward in the literature [54, 69]. It is argued that

a quantum speedup is most likely to occur from QRCs that process quantum information

[69]. This is because both encoding classical data in quantum states and reconstructing

classical representations of a quantum states generally require an exponential number of

operations. This belief is challenged by the recent work [187], which proves that quantum

kernel methods provide an exponential speedup for certain datasets with only classical

access to data. However, this work considers processing of (random) input vectors for

classification on a full-fledged quantum computer. This opens an opportunity to extend

this approach to the QRC that processes (infinite) input sequences for time series modeling
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and time series classification.

Another related question is the choice of quantum circuit structure that can provide a

performance advantage. This is referred to the expressive power of quantum circuits.

Notable examples are Boson sampling [39] and instantaneous quantum polynomial time

(IQP) circuits [188]. These works demonstrate a form of ‘quantum supremacy’ in which

the probability distribution generated by quantum devices can not be efficiently and ac-

curately sampled classically. More recently, this expressiveness has been studied in the

quantum machine learning context; see e.g. [189, 190]. The work [189] proves that cer-

tain parametrized quantum circuits with a simple structure can outperform any classical

neural network for generative tasks under the polynomial hierarchy hypothesis. In [190],

the authors show that shallow alternating layered circuits are almost as expressive as

hardware efficient circuits with a longer gate sequence measured by the frame potential

and KL–divergence. Such shallow alternating layered circuits are particularly suitable for

NISQ computers as the effect of noise is less severe for a shorter gate sequence. Taking

inspirations from these works, it would be interesting to develop methods for choosing

quantum circuit structures based on their expressive power for QRCs.

In this thesis, we have only considered QRCs implemented on superconducting NISQ

computers for proof-of-principle experiments. As discussed in Chapter 4, we are limited

by the long measurement times of these platforms, which make fast or real-time QRC

difficult to realize. Nevertheless, there are many other quantum computing platforms being

pursued in the QRC context. For instance, the work [129] considers QRCs implemented

on photonic quantum computers, which have the potential for fast input encoding and

fast measurements (e.g., the input data may be encoded using fast femtosecond lasers). A

study on implementing QRCs on these fast quantum devices will be important to facilitate

real-time QRCs.

Another avenue to explore is quantum–inspired RC instead of quantum implementation

of the RC scheme, where the gate-model QRC in Chapter 4 is implemented as a software-

based RC (for a small number of qubits on classical computers). The advantage of this

quantum–inspired RC scheme is that the uniform convergence property is always guaran-

154



teed. This is closely related to the recent work [191], which proposes a convex parametriza-

tion of stable recurrent neural networks 1 and observes a significant increase in the speed

of training and model performance. Furthermore, when simulated on classical computers,

we can control the memory depth of the quantum-inspired RC by choosing the ε parameter

appropriately. In the linear case, we can take ŷk = Tr(Wρk) as the output, where the

output weight W is any complex Hermitian matrix of the same dimension as the density

operator ρk.

With regard to employing interconnected RCs for system identification and time series

modeling, our framework could be improved in several directions. A natural future exten-

sion would be to relax the small-gain condition in Chapter 5 and the sufficient conditions

for the uniform convergence property in Chapter 6. A possible avenue to investigate this

relaxation is to consider local stability analysis as some systems only operate in specific

regimes. While we have derived a general theoretical framework to ensure the uniform

convergence property of interconnected RCs, guidance for selecting suitable models would

be useful for end-users. Many model selection methods based on information criteria have

been studied in the literature; see e.g. [145, 153, 167]. Nevertheless, most of these model

selection methods are developed for unconstrained optimization of the parameters, only a

few tackle model selection under constraints [192–196]. While developing a model selection

method for general constrained problems is challenging, we may be able to exploit the con-

vexity in the parameter optimization problems for a number of RC schemes. Investigating

model selection under convex constraints would be a natural extension of Chapter 6.

For the reservoir design problem, a natural continuation of the stochastic approximation

approach presented in Chapter 7 is to optimize the internal parameters of QRCs. This

may require a major extension of our current proposal, since the current framework only

1The authors consider stability using contraction analysis, which is closely related to
the uniform convergence property and also imposes conditions that all solutions ‘forget’
their initial conditions and converge to each other. However, these concepts were derived
independently and motivated distinctly, and should be distinguished. See [22] for an in-
depth comparison and the relationship between the uniform convergence property and
contraction analysis.
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considers state measurement noise that is independent of the state and the internal param-

eters. Another challenge is the barren plateau problem for quantum circuits [181]. Since

its initial recognition, many studies have proposed methods to mitigate the barren plateau

problem. The work [197] proposes an initialization strategy to ensure that the gradient

during the first parameter update is non-zero in expectation. However, there is no guar-

antee that the barren plateau problem does not occur for subsequent parameter updates.

The work [198] shows that the barren plateau problem is cost function dependent and that

defining a cost function with local observables leads to a polynomially vanishing gradient

as opposed to an exponentially vanishing one. However, this requires the parametrized

circuit to be short (in the order of the natural log of the number of qubits). In [199],

the authors show that limiting entanglement can mitigate the barren plateau problem, at

the expense of circuit expressiveness. A recent work [200] further shows that gradient-free

algorithms do not resolve the barren plateau problem, making gradient-free algorithms

inefficient to optimize gate parameters. To our best knowledge, the barren plateau prob-

lem is still a crucial challenge for the quantum community. Nevertheless, [201] shows that

quantum convolutional neural networks (QCNNs) do not suffer from the barren plateau

problem. The variance of the gradient vanishes no faster than polynomially, providing

an analytical guarantee for the trainability of randomly initialized QCNNs. Can we take

inspirations from this work to design QRCs without barren plateaus? This is a crucial to

further the development of the QRC scheme.
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Appendix for Chapter 4

A.1 Invariance under time-invariant readout error

When R = 1 in (4.4), the QRC predicted outputs ŷk remain unchanged under time-

invariant readout error. Let B = {|i〉} be the computational basis for an n-qubit system,

with i = 1, . . . , 2n. The readout error is characterized by a measurement calibration matrix

A whose i, j-th element Ai,j = Pr(i|j) is the probability of measuring the state |i〉 ∈ B

given that the state is prepared in the state |j〉 ∈ B.

We employ the readout error correction method described in [47]. For an n-qubit QRC,

at each timestep k, we execute 2n calibration circuits with each circuit initialized in one of

the 2n computational basis elements. The outcomes are used to create the measurement

calibration matrix Ak. The readout error at time step l is corrected by applying the

pseudo-inverse of Ak to the measured outcomes from the experiments.

For all experiments, the measurement outcomes are stored as the count of measuring each

basis elements in B. Let vk =
(
v1
k · · · v2n

k 1
)
, where vik is the count of measuring

|i〉 ∈ B at timestep k. Let zk =
(
〈Z(1)〉k · · · 〈Z(n)〉k 1

)
, where 〈Z(i)〉l is the finite-

sampled approximation of 〈Z(i)〉l for i = 1, . . . , n. Then we have zk = vkB, where B is
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a linear transformation. After applying readout error correction, we have z′k = vkA+
k B,

where A+
k is the pseudo-inverse of Ak. Let w denote a column vector of the readout

parameters, with C being the last element. To optimize w collect all measurement data

in a matrix v =
(
v>1 · · · v>L

)>
so that z =

(
z>1 · · · z>L

)>
= vB, where L is the

sequence length. The linear output of the quantum reservoir computer is ŷ = vBw.

Append a corresponding row and column to A†l to account for the bias term. Suppose

the readout error is time-invariant, then A+ = A+
k for k = 1, . . . , L. The QRC output

after readout error correction is ŷ′ = vA+Bw′. Assume that A+ has all rows linearly

independent, then ordinary least squares yields Bw′ = ABw. Now given test data with

readout error correction, vtestA
+Bw′ = vtestA

+ABw = vtestBw. Therefore, the QRC

predicted outputs are invariant under time-invariant readout error.

Back to Sec. 4.1.1.

A.2 Monte Carlo estimation

For all schemes described in Sec. 4.3, we can set S = 1 and run Nm Monte Carlo sampled

circuits (possibly in parallel if many copies of the same hardware are available) for a

sufficiently large Nm. We show that the average of all Nm measurements at timestep k

estimates 〈Z(i)〉k and its variance vanishes as Nm tends to infinity.

First consider estimating 〈Z(i)〉k by re-initializing each Nm circuit in |0〉⊗n and re-running

them from time 1 to time k according to inputs {u1, . . . , uk}. Recall that

〈Z(i)〉k = Tr(Z(i)ρk) = Tr(Z(i)T (uk) · · ·T (u1)(|0〉〈0|)⊗n),

where T (ul) is the input-dependent CPTP map defined in (4.1) for l = 1, . . . , k. Define

independent discrete-valued random variables Xk such that

Pr(Xk = 0) = (1− ε)uk, Pr(Xk = 1) = (1− ε)(1− uk), Pr(Xk = 2) = ε.
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To implement the QR, for each time k, we independently sample Nm random variables

Xk,j (j = 1, . . . , Nm) from the same distribution as Xk. Define

Tx =


T0, if x = 0,

T1, if x = 1,

Kσ, if x = 2,

where Kσ(ρ) = σ is a constant CPTP map that sends any density operator ρ to the

constant density operator σ in (4.2). The random CPTP maps TXk,j follow the same

distribution as Xk,j and are independent for each k and j. Furthermore, E[TXk,j ] = T (uk).

For the j-th circuit, we implement a sequence of (random) CPTP maps TXk,j · · ·TX1,j so

that at timestep k, the (random) QRC state is ρXk,j = TXk,j · · ·TX1,j (|0〉〈0|)⊗n, where

Xk,j = (X1,j , . . . , Xk,j). For each j-th circuit, we measure Z(i) and denote its random

outcome by Z(i)
k,j . Note that for j = 1, . . . , Nm, Z(i)

k,j are independent (but not neces-

sarily identically distributed) random variables taking values ±1 (eigenvalues of Z(i)) with

conditional probabilities (conditional on the random variables Xk,j)

Pr
(
Z(i)

k,j = z|Xk,j

)
= Tr

(
ρXk,jP (i)

z

)
, z = ±1,

where P (i)
±1 are the projectors such that Z(i) = P

(i)
+1 −P

(i)
−1. Consider the average of all Nm

measurement outcomes, by the law of total expectation,

1
Nm

Nm∑
j=1

E
[
Z(i)

k,j

]
= 1
Nm

Nm∑
j=1

E
[
E
[
Z(i)

k,j |Xk,j

]]

= 1
Nm

Nm∑
j=1

E
[
Tr
(
Z(i)ρXk,j

)]

= 1
Nm

Nm∑
j=1

Tr
(
Z(i)E[TXk,j ] · · ·E[TX1,j ](|0〉〈0|)⊗n

)

= 1
Nm

Nm∑
j=1

Tr
(
Z(i)T (uk) · · ·T (u1)(|0〉〈0|)⊗n

)
= Tr(ρkZ(i)) = 〈Z(i)〉k,

therefore the finite-sample estimate is unbiased. Moreover, using the fact that

E
[(
Z(i)

k,j

)2
]

=
∑
z=±1

z2Pr
(
Z(i)

k,j = z
)

= 1,
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the variance of the average of Nm measurements is

Var

 1
Nm

Nm∑
j=1

Z(i)
k,j

 = 1
N2
m

Nm∑
j=1

Var
[
Z(i)

k,j

]
= 1
Nm

(
1− 〈Z(i)〉2k

)
.

Using the uniform convergence property, to estimate 〈Z(i)〉k for a sufficiently large k (that

depends on ε), we re-initialize Nm circuits at time k −M and run the circuits according

to inputs {uk−M+1, . . . , uk}. Let 〈Z̃(i)〉k = Tr(Z(i)ρ̃k) where

ρ̃k = T (uk) · · ·T (uk−M+1)(|0〉〈0|)⊗n.

In this setting, for the j-th circuit, we implement a sequence of (random) CPTP maps

TXk,j · · ·TXk−M+1,j so that the (random) QRC state at time k is

ρX̃k,j = TXk,j · · ·TXk−M+1,j (|0〉〈0|)
⊗n,

where X̃k,j = (Xk−M+1,j , . . . , Xk,j). Let Z̃(i)
k,j be the random outcome of measuring Z(i).

The conditional probabilities are

Pr
(
Z̃(i) = z|X̃k,j

)
= Tr

(
ρX̃k,jP (i)

z

)
, z = ±1.

A similar argument as above shows that the average of all Nm measurements satisfies

E

 1
Nm

Nm∑
j=1

Z̃(i)
k,j

 = 〈Z̃(i)〉k, Var

 1
Nm

Nm∑
j=1

Z̃(i)
k,j

 = 1
Nm

(
1− 〈Z̃(i)〉2k

)
.

The uniform convergence property ensures that the bias (in mean) vanishes exponentially

fast, ∣∣∣∣∣∣E
 1
Nm

Nm∑
j=1

Z̃(i)
k,j

− 〈Z(i)〉k

∣∣∣∣∣∣ =
∣∣∣Tr

(
Z(i)(ρ̃k − ρk)

)∣∣∣ ≤ ‖ρ̃k − ρk‖1 ≤ 2(1− ε)M ,

where we have used the fact that for any Hermitian matrixA, |Tr(Z(i)A)| ≤ σmax(Z(i))‖A‖1,

with σmax(Z(i)) = 1 denotes the maximum singular value of Z(i). This shows that the

bias can be exponentially suppressed by choosing M appropriately based on ε, so that the

estimates of 〈Z̃(i)〉k and 〈Z(i)〉k are also close.

Back to Sec. 4.3.1.
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A.3 Implementation using QND measurements

We detail the second (more efficient) implementation scheme based on QND measurements

[120] described in Sec. 4.3.

To explain QND measurements, we first show that direct measurement of Z on a ‘system’

qubit is equivalent to coupling the qubit with an ancilla qubit via CNOT and measuring

Za, the Pauli Z operator acting on the ancilla qubit ‘a’ [43]. To see this, let |ψ〉sys =

α|0〉sys + β|1〉sys be the state of the system qubit. Prepare the ancilla qubit at the ground

state |0〉a. We write CNOT = |0〉〈0|sys ⊗ Ia + |1〉〈1|sys ⊗ Xa, where Ia and Xa are the

identity and Pauli X operators acting on the ancilla qubit. The system and ancilla state

after applying CNOT is |Ψ〉 = CNOT|ψ〉sys ⊗ |0〉a = α|00〉+ β|11〉.

Measurement of Za on the ancilla qubit is described by the projectors P+ = Isys ⊗ |0〉〈0|a
and P− = Isys ⊗ |1〉〈1|a. The probabilities and post-measurement system states are

Pr(+) = 〈Ψ|P+|Ψ〉 = |α|2, Tra (P+|Ψ〉〈Ψ|P+)
Pr(+) = |0〉〈0|sys,

Pr(−) = 〈Ψ|P−|Ψ〉 = |β|2, Tra (P−|Ψ〉〈Ψ|P−)
Pr(−) = |1〉〈1|sys,

where Tra(·) is the partial trace over the ancilla qubit.

|ψ〉k−1 U ′k
C

U ′k+1
C

|0〉⊗n |0〉⊗n

Figure A.1: Quantum circuit implementing the QND measurements by coupling ancilla
qubits |0〉⊗n with the QRC system qubits |ψ〉k−1.

Now for an n-qubit QRC, we associate each system qubit in the QRC with its ancilla

qubit. All n ancilla qubits are prepared in the ground state. Suppose that when restricted

to pure state preparation, we have drawn Nm circuits using Monte Carlo sampling. For

each of the Nm circuits and each time step k, we apply the aforementioned ancilla-coupled

measurement of Z(i) for each system qubit in the QRC. After measuring the n ancilla
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qubits, we reset and re-prepare them in the ground state for measurements at next time

k + 1; see Fig. A.1.

In Fig. A.1, |ψ〉k−1 denotes the state of the system (QRC) qubits and |0〉⊗n denotes the

ancilla qubits initialized in the groud state. Here we have grouped the system and ancilla

qubits and represent them using single wires. The unitary operator U ′k is U0 or U1 with

probabilities (1 − ε)uk and (1 − ε)(1 − uk) and U(k) = U ′kC, where C is a product of n

CNOT gates each acting on the i-th system-ancilla qubit pair. Measuring Z(i)
a on the i-th

ancilla qubit and resetting it at each time step k = 1, . . . , L is equivalent to having L

ancilla qubits associated to the i-th system qubit and measuring Z(i)
a,k (i.e., the k-th ancilla

qubit associated to the i-th system qubit). The resulting QRC dynamics is

T (uk)ρk−1 = (1− ε) (ukT0 + (1− uk)T1) ρk−1 + εσ,

where Tj(ρk−1) = TrA(UjCρk−1 ⊗ (|0〉〈0|)⊗nC†U †j ) for j = 0, 1, and TrA(·) is the partial

trace over all n ancilla qubits denoted by ‘A’.

We now show that the measured observables Z(i)
a,k commute at different times as required

by QND. More generally, we will show that Za,k =
⊗n

i=1O
(i)
a,k (k = 1, . . . , L), where for

each i we have O(i)
a,k = I(i) (the identity operator on the i-th qubit) or O(i)

a,k = Z
(i)
a,k, are

QND observables. Firstly, we have the commutator [Za,k, Za,j ] = 0 for all k, j = 1, . . . , L.

Denote the evolved observables in the Heisenberg picture by

Za(l) = U(1)† · · ·U(l)†Za,lU(l) · · ·U(1) = U †l:1Za,lUl:1,

where Ul:1 = U(l) · · ·U(1). For k, j = 1, . . . , L with j < k, we have

[Za(j), Za(k)] = U †j:1Za,jUj:1U
†
k:1Za,kUk:1 − U †k:1Za,kUk:1U

†
j:1Za,jUj:1

= U †j:1Za,jU
†
k:j+1Za,kUk:1 − U †k:1Za,kUk:j+1Za,jUj:1

= U †k:1[Za,j , Za,k]Uk:1 = 0,

where in the second last equality we have used the fact that Za,j commutes with the

future unitary operations Uk:j+1. If j > k, apply the same argument as above shows

[Za(j), Za(k)] = −[Za(k), Za(j)] = 0. The commutativity of Za(j) and Za(k) for all

j, k ≥ 1 means that the sequence {Za(j), j = 1, 2, . . .} has a joint probability distribution
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and constitutes a classical stochastic process. QND measurements on the sequence gives

a realization of this stochastic process.

Back to Sec. 4.3.1.

A.4 Hardware specifications

The experiments were conducted on the IBM 20-qubit Boeblingen (version 1.0.0), 5-qubit

Ourense (version 1.0.0) and 5-qubit Vigo (version 1.0.0) superconducting quantum proces-

sors [44]. The gate duration for an arbitrary single-qubit rotation gate U3 [95] is τU3 ≈ 71.1

ns for all qubits whereas the CNOT gate durations differ for different qubits.

See Fig. A.2 for the 4-qubit and 10-qubit Boeblingen QRC quantum circuits. The circuits

are chosen such that both QRCs have the same number of layers in U0 and U1. In this

setting, the maximum duration of a circuit executed on the Boeblingen device is the same

for both QRCs. The chosen qubits for the 4-qubit QRC and the 10-qubit QRC on the

Boeblingen device are Q = 0, 1, 2, 3 and Q = 0, 1, 2, 3, 5, 6, 7, 8, 10, 12. These qubits were

chosen due to their longer coherence times, shorter CNOT gate durations, smaller gate

and readout errors. During the experiment, the maximum readout error was 10−2 and

the maximum U3 gate error implemented was 10−3. The maximum CNOT gate error

implemented was 4.3×10−2 and the maximum CNOT gate duration was τCNOT ≈ 427 ns.

We assume that commuting gates can be executed in parallel. We choose N0 = N1 = 5

numbers of layers for U0 and U1 in the 4-qubit and 10-qubit Boeblingen QRCs. The

maximum length of any input sequence (including the transient) for the multi-step ahead

prediction and the map emulation problems is L = 30. Therefore, the maximum numbers

of U3 gate executions and CNOT gate executions is 5L = 5 × 30 = 150. The maximum

duration of a circuit executed on the Boeblingen device was 150× (τU3 + τCNOT) ≈ 150×

(71.1 + 427) = 74.7 µs, within the coherence times (T1, T2) for most qubits chosen.

The 5-qubit Ourense device achieves the same order of magnitude in readout errors, co-

herence times and CNOT gate durations as the 20-qubit Boeblingen device, but lower
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CNOT gate errors. For the Ourense device, the maximum U3 gate error and readout error

implemented were 0.9× 10−3 and 4.1× 10−2, and the maximum CNOT gate error imple-

mented was 8 × 10−3, a lower error compared to the Boeblingen device. The maximum

CNOT gate duration implemented was τCNOT ≈ 576 ns. For the 5-qubit Ourense QRC,

the circuit implementing U0 is longer than that for U1. The U0 circuit consists of four

CNOT gates, and the maximum duration of a circuit executed for the 5-qubit Ourense

QRC was 4L× τCNOT ≈ 70µs, also within the coherence limits of most qubits.

The 5-qubit Vigo device is similar to the 5-qubit Ourense device. They have the same qubit

couplings and share similar noise profile and hardware specifications. Rotational X and Y

gates were used on this device, with gate duration τ = 35.5 ns. The maximum single-qubit

gate error implemented was 0.8× 10−3 and the maximum readout error implemented was

7.8×10−2. The maximum CNOT gate error and gate duration implemented was 1.3×10−2

and τCNOT ≈ 462.2 ns, respectively. For this QRC, U0 is the longer circuit consisting of

three layers of single-qubit rotation Y gates and two layers of CNOT gates. Therefore,

the maximum duration of a circuit implemented was (3τ + 2τCNOT)L = (3 × 35.5 + 2 ×

462.2)× 30 ≈ 31 µs.

Back to Sec. 4.4.

A.5 Quantum circuits for QRCs

We detail the circuits implementing the QRC dynamics in our proof-of-principle experi-

ments presented in Sec. 4.4. The quantum circuits for the 4-qubit and 10-qubit Boeblingen

QRCs are shown in Fig. A.2. The quantum circuits for the 5-qubit Ourense and 5-qubit

Vigo QRCs are shown in Fig. A.3.

Back to Sec. 4.4.1.
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Figure A.2: Quantum circuits for the (a) 10-qubit QRC and (b) 4-qubit QRC on the
Boeblingen device.

Figure A.3: Quantum circuits for the (a) 5-qubit Ourense QRC and (b) 5-qubit Vigo
QRC.

A.6 Full input-output sequential data

In Fig. A.4, we show the full washout, train and test input-output target sequences for

both the multi-step ahead prediction and the map emulation problems. Fig. A.5 plots

the full target output sequences, the train and test QRC outputs on the multi-step ahead

prediction problem. Fig. A.6 plots the full target output sequences, the train and test

QRC outputs on the map emulation problem. In all figures, the transitory responses are

indicated by dotted lines.

Back to Sec. 4.4.

165



APPENDIX A. APPENDIX FOR CHAPTER 4

Figure A.4: Full washout, train and test input-output sequences for (a) the multi-step
ahead prediction problem and (b) the map emulation problem. The first row in (a) and
(b) shows the input sequences.

A.7 Measurement and simulation data

We simulate the four QRCs using the IBM Qiskit simulator under ideal and noisy condi-

tions. The noise models used are obtained from the device calibration data. We fetched

the updated device calibration data each time a job was executed on the hardware. The

circuits simulated are the same as the circuits employed for the experiments and so is the

number of shots. For the multi-step ahead prediction problem, the 10-qubit Boeblingen

QR experienced a significant deviation from simulated results on qubits Q = 1, 8 (see

Fig. A.7), resulting in larger NMSE = 0.26, 0.29, 0.068, 0.15, 6.1 for the four tasks. After

setting the readout parameters for Q = 1, 8 to be zero, this issue was circumvented at the

cost of using a fewer number of computational features. The resulting 10-qubit Boeblingen

QRC still achieves performance improvement over other QRCs with a smaller number of

qubits on the multi-step ahead prediction problem in the first three tasks. Although the

QRC predicted outputs are invariant under time-invariant readout errors as derived in Ap-

pendix A.1. However, for the 10-qubit Boeblingen QR, the deviations in qubits Q = 1, 8
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Figure A.5: The full target output sequences, the train and test output sequences of
the four QRCs for each task on the multi-step ahead prediction problem. Each column
corresponds to each n-qubit QRC outputs and each row corresponds to each task.

were time-varying. On the other hand, the 5-qubit Vigo device experienced almost time-

invariant deviations in qubit Q = 0 as shown in Figs. A.7 and A.8, but this does not

affect the performance of this QRC noticeably. The experimental results of the 5-qubit

Ourense QRC follow the noisy simulation results closely. For the map emulation problem,

the experimental results of both 5-qubit QRCs follow the simulated results closely, with

an almost time-invariant shift in Q = 0 for the 5-qubit Vigo QRC.

Back to Sec. 4.4.
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Figure A.6: The full target output sequences, the train and test output sequences of
the QRCs for each task on the map emulation problem. (a) Shows the two train output
sequences and (b) shows the test output sequence. The columns (from the left to the right)
correspond to the multiplexed 5-qubit QRCs, 5-qubit Ourense QRC and the 5-qubit Vigo
QRC. Each row corresponds to each task.
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Figure A.7: Input sequence, experimental and simulation results for each qubit of the four
QRCs at each time step k = 1, . . . , 30, for the multi-step ahead prediction problem.
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Figure A.8: Experimental and simulation results for each qubit i = 0, . . . , 4 and each time
step k = 1, . . . , 24, for the map emulation problem. Three input sequences are used in
this problem, labeled as inputs I, II and III. Row i in a sub-figure corresponds to the
experimental data for the i-th input sequence. Column j corresponds to the experimental
data for the j-th qubit. (a) Shows the experimental data for the 5-qubit Ourense QRC.
(b) Shows the experimental data for the 5-qubit Vigo QRC.
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Appendix for Chapter 5

B.1 Proof of the UIOS Theorem 5.2

To prove Theorem 5.2, we will apply Lemma B.1 below.

Lemma B.1. Consider a well-posed system (5.5). Suppose that for j = 1, 2, there exists

β̃j ∈ KL, γ̃uj , γ̃
y
j ∈ K with γ̃yj (s) < s for all s > 0 such that,for some M ∈ Z with M ≥ 2,

for any input ∆u ∈ l∞nu1+nu2
, any k0 ∈ Z and k1 ∈ Z≥0, and any ∆x(k0) ∈ Rnx1+nx2 ,

‖∆yj(k0 + k1)‖ ≤ max{β̃j(‖∆x(k0)‖, k1), γ̃yj (‖∆yj[k0+bk1/Mc,k0+k1]‖), γ̃
u
j (‖∆u[k0,k0+k1]‖)},

(B.1)

and

sup
k1∈Z≥0

‖∆yj(k0 + k1)‖ <∞.

Then there exists β̂j ∈ KL such that, for all k0 ∈ Z, k1 ∈ Z≥0,

‖∆yj(k0 + k1)‖ ≤ max{β̂j(‖∆x(k0)‖, k1), γ̃uj (‖∆u[k0,k0+k1]‖)}.

The main idea in the proof of Lemma B.1 is to apply a continuous extension argument

and [140, Lemma A.2] stated below in Lemma B.2.
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Lemma B.2. Given δ ∈ K∞ and T : (0,∞) × (0,∞) → R≥0 such that, (i) for all

ε > 0, s1 < s2 implies T (ε, s1) ≤ T (ε, s2); (ii) for all s > 0, limε→0+ T (ε, s) = ∞.

Then there exists β̂ ∈ KL such that, for each s > 0 and t1 ∈ R≥0, there exists some

ε ∈ As,t1 := {ε′ ∈ (0,∞) | t1 ≥ T (ε′, s)} ∪ {∞} such that min{ε, δ−1(s)} ≤ β̂(s, t1).

Proof of Lemma B.1. Fix k0 ∈ Z. For any k1 ∈ Z≥0, define zj(k1) = ‖∆yj(k0 + k1)‖ if

‖∆yj(k0 +k1)‖ > γ̃uj (‖∆u[k0,k0+k1]‖) and zj(k1) = 0 otherwise. From the assumption (B.1)

in Lemma B.1, we have that for some M ∈ Z,M ≥ 2,

zj(k1) ≤ max{β̃j(‖∆x(k0)‖, k1), γ̃yj (|zj[bk1/Mc,k1] |)}. (B.2)

We emphasize the implicit dependence zj(k1) = zj(k1, x(k0),∆u). We sample and hold

the left points to extend zj to a piecewise continuous function wj . For any t1 ∈ R≥0, define

wj(t1) =
∑∞
k1=0 1[k1,k1+1)(t1)zj(k1), where 1[k1,k1+1)(t1) = 1 if t1 ∈ [k1, k1 + 1) and zero

otherwise. For any τ, τ ′ ∈ R, let |wj[τ,τ ′] | := supτ≤τ≤τ ′ |wj(τ)|. Since bt1c ≤ t1 < bt1c+ 1,

we have wj(t1) = zj(bt1c) = wj(bt1c) and

|wj[t1/M,t1] | = |wj[bt1/Mc,bt1c] | = |wj[bbt1c/Mc,bt1c] | = |zj[bbt1c/Mc,bt1c] |. (B.3)

For s ∈ R≥0, let βj(s, t1) =
∑∞
k1=0 1[k1,k1+1)(t1)β̃j(s, k1). Then βj ∈ KL and βj(s, t1) =

β̃j(s, bt1c). From (B.2) and (B.3), we have that for all t1 ∈ R≥0,

wj(t1) ≤ max{βj(‖∆x(k0)‖, t1), γ̃yj (|wj[t1/M,t1] |)}. (B.4)

To apply Lemma B.2, we first show the following claims.

Claim (i): There exists δ ∈ K∞ such that for all t1 ∈ R≥0 and ∆x(k0) ∈ Rnx1+nx2 , we

have wj(t1) ≤ δ−1(‖∆x(k0)‖).

Proof of Claim (i). Note that |wj[0,∞) | := supt1∈R≥0 wj(t1) = supk1∈Z≥0 ‖∆yj(k0 + k1)‖ <

∞. From (B.4), we have

|wj[0,∞) | ≤ max{βj(‖∆x(k0)‖, 0), γ̃yj (|wj[0,∞) |)}.
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Since γ̃yj (s) < s for all s > 0, it follows that for any t1 ∈ R≥0,

wj(t1) ≤ |wj[0,∞) | ≤ βj(‖∆x(k0)‖, 0). (B.5)

Choose δ ∈ K∞ such that δ−1(‖∆x(k0)‖) ≥ βj(‖∆x(k0)‖, 0) (e.g., δ−1 = id + βj(·, 0))

gives the desired result.

Claim (ii): For any ε, r > 0, there exists T̂ε,r ∈ R≥0 such that for all t1 ≥ T̂ε,r, wj(t1) ≤ ε

whenever ‖∆x(k0)‖ ≤ r.

Proof of Claim (ii). The proof uses (B.5) and proceeds as in [138, Lemma 2.1]. Let ε, r >

0, if βj(‖∆x(k0)‖, 0) ≤ βj(r, 0) ≤ ε, then by (B.5), wj(t1) ≤ βj(‖∆x(k0)‖, 0) ≤ ε for all

t1 ∈ R≥0. Otherwise, since γ̃yj is strictly contractive, there exists nε,r ∈ Z≥0 such that the

nε,r-times composition (γ̃yj )(nε,r)(βj(r, 0)) ≤ ε. For i = 1, . . . , nε,r, let τi ∈ R≥0 be the first

time instance such that βj(r, τi) ≤ (γ̃yj )(i)(βj(r, 0)) so that τi ≤ τj for j = i + 1, . . . , nε,r.

Define τ̂0 = 0 and τ̂i = max{τi,Mτ̂i−1}. We will show by induction that for t1 ≥ τ̂i,

wj(t1) ≤ (γ̃yj )(i)(βj(r, 0)).

Claim (i) establishes the case for i = 0 (with (γ̃yj )(0) = id). Suppose the induction

hypothesis holds for t1 ≥ τ̂i. For t1 ≥ τ̂i+1, we have t1 ≥ τi+1 and t1/M ≥ τ̂i. From (B.4),

wj(t1) ≤ max{βj(‖∆x(k0)‖, τi+1), γ̃yj ◦ (γ̃yj )(i)(βj(r, 0))}

= (γ̃yj )(i+1)(βj(r, 0)).

Claim (ii) follows from choosing T̂ε,r ≥ τ̂nε,r .

Let T̂ε,r be given by Claim (ii). As in [140, Proposition 2.7], define T (ε, r) = r/ε +

inf{T̂ε′,r′ |r ≤ r′, ε′ ∈ (0, ε]}. Then T (·, ·) satisfies the conditions in Lemma B.2. Fix

s = ‖∆x(k0)‖ > 0 (the case for s = 0 is immediate), any t1 ∈ R≥0 and the set As,t1 . By

Claim (ii), wj(t1) ≤ ε for all ε ∈ As,t1 . Let β̂j ∈ KL and ε ∈ As,t1 be given by Lemma B.2,

such that min{ε, δ−1(‖∆x(k0)‖)} ≤ β̂j(‖∆x(k0)‖, t1). Then

• If δ−1(‖∆x(k0)‖) ≤ ε, then by Claim (i) we have wj(t1) ≤ δ−1(‖∆x(k0)‖) ≤

β̂j(‖∆x(k0)‖, t1).
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• If ε < δ−1(‖∆x(k0)‖), then ε <∞ and wj(t1) ≤ ε ≤ β̂j(‖∆x(k0)‖, t1).

Therefore, for all t1 ∈ R≥0, wj(t1) ≤ β̂j(‖∆x(k0)‖, t1). In particular, for all k1 ∈ Z≥0,

wj(k1) = zj(k1) ≤ β̂j(‖∆x(k0)‖, k1). By definition of zj(k1), we have the desired result.

We now prove Theorem 5.2. The proof adapts [138, Theorem 2.1] to discrete-time systems

of the form (5.5). We first show that supk≥k0 ‖∆x(k)‖ < ∞ and supk≥k0 ‖∆y(k)‖ < ∞,

then we apply Lemma B.1 with M = 4 to show that system (5.5) is UIOS.

Proof of Theorem 5.2. From (5.11), we have that for all k ≥ k0 and j = 1, 2,

‖∆yj[k0,k]‖ ≤ max{βj(‖∆xj(k0)‖, 0), γyj (‖∆vj[k0,k]‖), γ
u
j (‖∆uj[k0,k]‖)}.

Substituting ∆v1 = ∆y2, ∆v2 = ∆y1 and the bound for ‖∆y2[k0,k]‖ into that of ‖∆y1[k0,k]‖,

we have

‖∆y1[k0,k]‖ ≤ max{β1(‖∆x1(k0)‖, 0), γy1 ◦ β2(‖∆x2(k0)‖, 0),

γy1 ◦ γ
y
2 (‖∆y1[k0,k]‖), γ

y
1 ◦ γ

u
2 (‖∆u2[k0,k]‖), γ

u
1 (‖∆u1[k0,k]‖)}

≤ max{β1(‖∆x1(k0)‖, 0), γy1 ◦ β2(‖∆x2(k0)‖, 0),

γy1 ◦ γ
u
2 (‖∆u2[k0,k]‖), γ

u
1 (‖∆u1[k0,k]‖)},

(B.6)

where the last inequality follows from γy1 ◦ γ
y
2 (‖∆y1[k0,k]‖) < ‖∆y1[k0,k]‖. A symmetric

argument shows that

‖∆y2[k0,k]‖ ≤ max{β2(‖∆x2(k0)‖, 0), γy2 ◦ β1(‖∆x1(k0)‖, 0),

γy2 ◦ γ
u
1 (‖∆u1[k0,k]‖), γ

u
2 (‖∆u2[k0,k]‖)}.

(B.7)

Recall that ∆uj ∈ l∞nuj
for j = 1, 2. From (B.6) and (B.7), supk≥k0 ‖∆yj(k)‖ < ∞.

Substituting ∆v1 = ∆y2 and ∆v2 = ∆y1 in (5.12), it follows that supk≥k0 ‖∆xj(k)‖ <∞.

It remains to show that system (5.5) is UIOS.

174



B.1. PROOF OF THE UIOS THEOREM 5.2

Upper bound ‖∆vj[k0,k−1]‖ in (5.12) by (B.6) and (B.7), using ‖∆xj(k0)‖ ≤ ‖∆x(k0)‖ and

‖∆uj[k0,k]‖ ≤ ‖∆u[k0,k]‖, we have

‖∆x(k)‖ ≤ 2 max{‖∆x1(k)‖, ‖∆x2(k)‖}

≤ 2 max
j=1,2

{
σj(‖∆x(k0)‖), σyj (‖∆vj[k0,k]‖), σ

u
j (
∥∥∥∆u[k0,k]

∥∥∥)}
≤ max

{
σ(‖∆x(k0)‖), γ(

∥∥∥∆u[k0,k]

∥∥∥)} ,
(B.8)

where σ(s) = 2 max{σ1(s), σ2(s), σy1(β2(s, 0)), σy2(β1(s, 0)), σy1◦γ
y
2 (β1(s, 0)), σy2◦γ

y
1 (β2(s, 0))}

and γ(s) = 2 max{σu1 (s), σu2 (s), σy1 ◦ γ
y
2 ◦ γu1 (s), σy2 ◦ γ

y
1 ◦ γu2 (s), σy1 ◦ γu2 (s), σy2 ◦ γu1 (s)}.

Consider subsystem j = 1 and (5.11). For any k1 ∈ Z≥0 and k0 ∈ Z, let k0 + dk1/2e be

the initial time and k = k0 + k1. Then k − (k0 + dk1/2e) = bk1/2c and

‖∆y1(k0 + k1)‖ ≤ max{β1(‖∆x1(k0 + dk1/2e)‖, bk1/2c),

γy1 (‖∆y2[k0+dk1/2e,k0+k1]‖), γ
u
1 (‖∆u1[k0+dk1/2e,k0+k1]‖)}

≤ max{β1(‖∆x(k0 + dk1/2e)‖, bk1/2c),

γy1 (‖∆y2[k0+dk1/2e,k0+k1]‖), γ
u
1 (‖∆u[k0,k0+k1]‖)}.

(B.9)

Consider subsystem j = 2 and (5.11). Let k0+bk1/4c be the initial time. For any dk1/2e ≤

k1 ≤ k1, let k = k0 +k1. Then k−(k0 +bk1/4c) = k1−bk1/4c ≥ dk1/2e−bk1/4c ≥ dk1/4e,

∥∥∥∆y2(k0 + k1)
∥∥∥ ≤ max{β2(‖∆x2(k0 + bk1/4c)‖, k1 − bk1/4c),

γy2 (‖∆y1[k0+bk1/4c,k0+k1]
‖), γu2 (‖∆u2[k0+bk1/4c,k0+k1]

‖)}

≤ max{β2(‖∆x(k0 + bk1/4c)‖, dk1/4e),

γy2 (‖∆y1[k0+bk1/4c,k0+k1]‖), γ
u
2 (‖∆u[k0,k0+k1]‖)}

(B.10)

Note that the right-hand side of the last inequality in (B.10) does not depend on k1. Now

taking supdk1/2e≤k1≤k1
on both sides of (B.10) shows that

‖∆y2[k0+dk1/2e,k0+k1]‖ ≤ max{β2(‖∆x(k0 + bk1/4c)‖, dk1/4e),

γy2 (‖∆y1[k0+bk1/4c,k0+k1]‖), γ
u
2 (‖∆u[k0,k0+k1]‖)}.

(B.11)

Upper bounding ‖∆y2[k0+dk1/2e,k0+k1]‖ in (B.9) using (B.11) and upper bounding ‖∆x(k0 +
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dk1/2e)‖ in (B.9) using (B.8), we have

‖∆y1(k0 + k1)‖ ≤ max{β1(σ(‖∆x(k0)‖), bk1/2c),

γy1 ◦ β2(σ(‖∆x(k0)‖), dk1/4e),

γy1 ◦ γ
y
2 (‖∆y1[k0+bk1/4c,k0+k1]‖), γ

y
1 ◦ γ

u
2 (‖∆u[k0,k0+k1]‖),

γu1 (‖∆u[k0,k0+k1]‖), β1(γ(‖∆u[k0,k0+k1]‖), 0),

γy1 ◦ β2(γ(‖∆u[k0,k0+k1]‖), 0)}.

(B.12)

Let γ̃y1 (s) = γy1 ◦γ
y
2 (s), β̃1(s, k1) = max{β1(σ(s), bk1/4c), γy1 ◦β2(σ(s), bk1/4c)} and γ̃u1 (s) =

max{γy1 ◦ γu2 (s), γu1 (s), β1(γ(s), 0), γy1 ◦ β2(γ(s), 0)}. By a symmetric argument, we can

define β̃2 and γ̃u2 analogously. Here, β̃j ∈ KL and γ̃uj ∈ K for j = 1, 2. Re-writing (B.12)

in terms of β̃j and γ̃j , we have

‖yj(k0 + k1)‖ ≤ max{β̃j(‖x(k0)‖, k1), γ̃yj (‖yj[k0+bk1/4c,k0+k1]‖), γ̃
u
j (‖u[k0,k0+k1]‖)},

where γ̃yj (s) < s for all s > 0 by strict contractivity of γy1 ◦ γ
y
2 (·) and γy2 ◦ γ

y
1 (·). Recall

that we have shown supk1∈Z≥0 ‖∆yj(k0 + k1)‖ < ∞. Invoking Lemma B.1 with M = 4,

there exists β̂j ∈ KL such that for all k0 ∈ Z and k1 ∈ Z≥0,

‖∆yj(k0 + k1)‖ ≤ max{β̂j(‖∆x(k0)‖, k1), γ̃uj (‖∆u[k0,k0+k1]‖)}.

Let k = k0 + k1, γ(s) = 2 maxj=1,2{γ̃uj (s)} and β(s, k) = 2 maxj=1,2{β̃j(s, k)}. It follows

that

‖∆y(k)‖ ≤ 2 max{‖∆y1(k)‖, ‖∆y2(k)‖} ≤ max{β(‖∆x(k0)‖, k − k0), γ(‖∆u[k0,k]‖)}

for all k, k0 ∈ Z with k ≥ k0 and any initial condition ∆x(k0) ∈ Rnx1+nx2 .

Back to Sec. 5.2.

B.2 Uniform convergence of Lur’e system

We show that the observer-based feedback-controlled Lur’e system (5.17) is uniformly

convergent. The design is based on a convergence approach, which has been applied to
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Figure B.1: Schematic of the closed-loop system (B.13) consisting of the plant and the
observer error dynamics.

observer-based control in continuous-time [133]. To illustrate this for a more general class

of nonlinear systems, we consider a nonlinear plant

z(k + 1) = f(z(k), u(k), w(k)), y(k) = h(z(k)),

with state z(k) ∈ Rnz , control u(k) ∈ Rnu , external input w ∈ l∞nw and output y(k) ∈ Rny .

Construct an observer,

ẑ(k + 1) = f(ẑ(k), u(k), w(k))− L(h(ẑ(k))− y(k)),

where u(k) = φ(ẑ(k)) and L(s) = 0 if s = 0. In general, L can be a nonlinear function.

Let ∆z(k) = ẑ(k)− z(k), then u(k) = φ(∆z(k) + z(k)) and the observer error dynamics is

∆z(k + 1) = f̂(∆z(k), z(k), w(k))

= f(∆z(k) + z(k), u(k), w(k))

− f(z(k), u(k), w(k))− L(h(∆z(k) + z(k))− h(z(k))),

where z(k), w(k) are viewed as inputs to the error dynamics. Consider the interconnected

system (B.13) (see Fig. B.1),
z(k + 1) = f(z(k), φ(v1(k) + z(k)), w(k)),

∆z(k + 1) = f̂(∆z(k), v2(k), w(k)),
(B.13)

with interconnections v1(k) = ∆z(k) and v2(k) = z(k). Here, w is the input. Our goal is

to employ Theorem 5.1 to design the observer gain L(·) and the controller u(k) = φ(ẑ(k))

such that the above closed-loop system is UISC and hence UC. To this end, we consider

the following Corollary.
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Corollary B.1. Consider a well-posed system (B.13). Suppose that for any inputs v2, w

with w ∈ l∞nw , there exists β2 ∈ KL such that, for any k, k0 ∈ Z, k ≥ k0 and ∆z(k0) ∈ Rn∆z ,

‖∆z(k)‖ ≤ β2(‖∆z(k0)‖, k − k0). (B.14)

Suppose that the z-subsystem is UC and let z∗ be the reference solution to v1, w. For

any other input v1, w with w ∈ l∞nw , let z be any solution. Suppose that there exists

β1 ∈ KL, γy1 , γw1 ∈ K such that for any k0, k ∈ Z, k ≥ k0 and z(k0) ∈ Rnz ,

‖z∗(k)− z(k)‖ ≤ β1(‖z∗(k0)− z(k0)‖, k − k0)

+ γy1 (‖(v1 − v1)[k0,k−1]‖) + γw1 (‖(w − w)[k0,k−1]‖).
(B.15)

It follows that system (B.13) is UISC.

Proof. By [22, Remark 5], for any inputs v2, w, ∆z∗2 = 0 is the unique and bounded

reference state solution, so that the ∆z-subsystem is UC. To show closed-loop UISC, let

∆z(k) be any solution to inputs v2, w with initial condition z(k0). Equation (B.14) implies

that for any gains γy2 , γw2 ∈ K,

‖∆z(k)‖ = ‖∆z∗(k)−∆z(k)‖

≤ β2(‖∆z∗(k0)−∆z(k0)‖, k − k0) + γy2 (‖(v2 − v2)[k0,k−1]‖)

+ γu2 (‖(w − w)[k0,k−1]‖)}.

The above equation and (B.15) shows that (5.16) in Corollary 5.2 hold. We now show

that (5.15) in Corollary 5.2 is satisfied and hence the closed-loop UISC of system (B.13).

Observe that id+ γy1 ∈ K∞ with (id+ γy1 )−1 ◦ γy1 (s) < s for all s > 0. Let λ1, λ2 ∈ K∞ be

arbitrary. The result follows from choosing γy2 (s) = ((id+λ1)◦(id+γy1 )◦(id+λ2))−1(s).

For the Lur’e system (5.17), the observer error dynamics ∆z(k) = ẑ(k) − z(k) satisfies
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(B.14) if there exists Z ∈ R2, P � 0, ε > 0 and θ ∈ (0, 1) such that

(P − εI) ≺ 0,

−θP A>P − C>Z> ερ(GH)> A>P − C>Z>

PA− ZC −P 0 0

ερGH 0 −εI 0

PA− ZC 0 0 P − εI


� 0.

(B.16)

This can be shown by applying the Schur complement in essentially the same way as in

Sec. 6.3.2.

Under a linear state-feedback law u(k) = −Kẑ(k) with gain K> ∈ R2, the Lur’e system

becomes

z(k + 1) = (A−BuK)z(k) + ρG sin(Hz(k))−BuK∆z(k) +Bww(k)

:= f̃(z(k),∆z(k), w(k)),
(B.17)

where ∆z(k), w(k) are viewed as inputs. Let z(k), z(k) be any solutions starting at

z(k0), z(k0) to inputs ∆z(k), w and ∆z(k), w, respectively. Let δz(k) = z(k)− z(k), then

‖δz(k)‖ ≤ λs‖δz(k − 1)‖+ σmax(BuK)‖∆z(k − 1)−∆z(k − 1)‖

+ ‖Bw‖|w(k − 1)− w(k − 1)|,
(B.18)

where λs = σmax(A − BuK) + ρσmax(GH). We employ Theorem 2.1 to show that the

plant (B.17) is UC. Firstly, consider ∆z = ∆z, w = w. From (B.18), we have ‖δz(k)‖ ≤

λs‖δz(k − 1)‖. Furthermore, note that for any ∆z ∈ l∞2 and w ∈ l∞1 , we have

sup
k∈Z
‖f̃(0,∆z(k), w(k))‖ ≤ ‖Bw‖‖w‖∞ + σmax(BuK)‖∆z‖∞ <∞.

By Theorem 2.1, if there exists K such that λs < 1, then the plant (B.17) is UC. Further,

the condition λs < 1 also ensures that the plant satisfies (B.15) in Corollary B.1. Finally,

applying Corollary B.1 shows that the closed-loop system (B.13) is UISC.

In this example, we can choose L> =
[
2.3258 2.1104

]
and K =

[
0.4956 1.006

]
, then

λs = 0.8687 and the linear matrix inequalities (B.16) hold for θ = ε = 0.001. Hence, the

closed-loop system (B.13) is UISC and hence UC.

Back to Sec. 5.3.
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B.3 Trace inequality

Lemma B.3. For any n×n Hermitian matrices A and B, we have |Tr(AB)| ≤ σmax(A)‖B‖1.

Proof. Let B =
∑n
j=1 λjvjv

†
j be the spectral decomposition of B, where {vj} forms an

orthonormal basis for Rn, where † is the adjoint. Let {ej} be the standard basis for Rn.

Then there exists a unitary matrix U such that vj = Uej for 1 ≤ j ≤ n. Therefore,

|Tr(AB)| =

∣∣∣∣∣∣
n∑
j=1

λjTr
(
e†jU

†AUej
)∣∣∣∣∣∣ ≤

n∑
j=1
|λj |

∣∣∣(U †AU)jj
∣∣∣ ,

where Xjj is the (j, j)-th element of a matrix X. For any Hermitian matrix A, by the min-

max theorem, we have λmin(A) = min√
x>x=1 x

>Ax ≤ Ajj ≤ λmax(A) = max√
x>x=1 x

>Ax.

Therefore, |Ajj | ≤ max{|λmin(A)|, |λmax(A)|} = σmax(A). By unitary invariance of singu-

lar values, |Tr(AB)| ≤ σmax(A)
∑n
j=1 |λj | = σmax(A)‖B‖1.

Back to Sec. 5.3.2.

B.4 Noisy QRC simulation

We simulate decoherence by applying the Kraus operators of dephasing and GAD channels

for all qubits, followed by a multi-qubit error modeled as a depolarizing channel Tp(ρ) =

(1 − pp)ρ + ppI2N /2N acting on all N qubits [116], where I2N is the 2N × 2N identity

matrix. Noise strength pp is set to be typical controlled-not gate errors on superconducting

quantum devices [44]. Typically, pp = 10−3 ∼ 10−2 and we set pp = 10−2. The dephasing

channel’s Kraus operators are M0(ψ) =
√

1+e−2ψ

2 I2,M1(ψ) =
√

1−e−2ψ

2 Z, where ψ is

the decoherence strength and Z is the Pauli-Z operator [43]. GAD channels are further

parametrized by a finite temperature parameter λ, with Kraus operators M1(ψ, λ) =
√
λ

1 0

0
√

1− p

, M2(ψ, λ) =
√
λ

0 √
p

0 0

, M3(ψ, λ) =
√

1− λ

√1− p 0

0 1

 ,M4(ψ, λ) =
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√
1− λ

 0 0
√
p 0

, where √1− p = e−2ψ and √p =
√

1− e−4ψ [43]. We remark that some

NISQ machines can achieve a nominal ψ = 10−3 [44].

Back to Sec. 5.3.2.
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Appendix C

Appendix for Chapter 6

C.1 Unitary gates for QRCs

We provide details on the unitaries Ul(γl) employed in Sec. 6.4 for the QRCs. In Sub-

secs. 6.4.1 and 6.4.2, QRCs only process yk and are governed by two unitaries. We set

U0(γ0) =
∏

(mc,mt)∈E C
mc,mt
Y (γm0 ), a sequence of controlled rotational-Y gates Cmc,mtY (γm0 ).

Here, mc,mt denote the control and target qubits for the m-th qubit pair, and γm0 is the

rotational angle. On some NISQ devices [44], Cmc,mtY (γm0 ) is implemented by decomposing

it as a sequence of controlled-NOT and single-qubit rotational-Y gates. The coupling map

E denotes the set of qubit pairs on which a controlled-NOT gate can be directly applied

without further decomposition. We set E to be the coupling map of the IBM Ourense

device [44]. We set U1(γ1) =
∏N
m=1R

m
X(π), where RmX(π) is the rotational-X gate on qubit

m with angle π and N is the number of qubits.

In Subsec. 6.4.3, we employ the spatial multiplexing technique. The first QRC member

processes both input uk ∈ Rn and output yk ∈ R, and it is governed by n + 2 unitaries.

For this QRC member, we have U (1)
l (γl) =

∏
(mc,mt)∈E C

mc,mt
Y (γml ) for j = 1, . . . , n + 1.

We set U (1)
n+2(γn+2) =

∏N
m=1R

m
X(π). The second QRC only processes input uk, and it is

governed by n+ 1 unitaries. We set U (2)
l (γl) =

∏
(mc,mt)∈E C

mc,mt
Y (γmj ) for l = 1, . . . n and
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U
(2)
n+1(γn+1) =

∏N
m=1R

m
X(π). For all unitaries, their angles γml , γml are uniformly randomly

sampled from [−π, π], independently for each m and l = 1, . . . , n+ 1.

Back to Sec. 6.4.

C.2 Parameters of selected RCs

We detail all parameters of the selected RCs in Sec. 6.4. The parameters for the selected

ESNs and Lur’e systems are summarized in Figs. C.1 and C.2, respectively. Note that

for the coupled electric drive system, A1, B1, C1 are the system matrices for the first ESN

or Lur’e member in their multiplexed configuration. Matrices A2, B2 describe the second

ESN or Lur’e member.

For the nonlinear quantum optics time series, we have γ1
0 = −0.15 and fix γj1 = π for

j = 1, 2. For the finance time series, γ1
0 = −1.81 and γj1 = π for j = 1, 2. For modeling the

coupled electric drive system, all selected multiplexed QRCs are 2-qubit, i.e., each QRC

member in the multiplexed QRC has 2 qubits. We set γ1
0 = 2.72, γ1

1 = −0.25, γ1
0 = 0.84

and γj1 = γj2 = π for j = 1, 2.

Figure C.1: Parameters of the selected ESNs.

Figure C.2: Parameters of the selected Lur’e systems.

Back to Sec. 6.4.
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