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Abstract 

This thesis comprises, in the main, results obtained recently 

by the author in the theory of partitions and closely related areas. 

We begin with the study of a very general continued fraction, 

and qbtain explicit formulae for the convergents. These formulae are 

transformed in various ways, so that, in the limit, most of the classical 

results involving continued fractions, due to such people as Ramanujan, 

Gordon and Carlitz, are obtained. Moreover, our approach obviates 

the need to quote such product-sum formulae as are given by Slater. 

The polynomials which arise in this study are of great interest, 

both from the point of view of analysis and of combinatorics. Their 

analytic interest stems from the fact that they form an orthogonal 

family, not previously studied, and generalise the extended q-Hermite 

polynomials. A start is made on an investigation of this aspect, 

but there remain some open questions. 

On the other hand, many combinatorial applications of the 

polynomials have been found. We are led to discover a new polynomial 

iqentity which implies the celebrated Rogers-Ramanujan identities. We 

give a new proof Sylvester's remarkable refinement of Euler's 

partition theorem using the polynomials, and the proof gives rise to 

a new polynomial identity which implies Lebesgue's identity. Our 

final combinatorial application is to prove two identities of Slater. 

There is, undoubtedly, much that deserves to be learnt about these 

polynomials. 

(iv) 



We then turn to an investigation of several problems in the 

the~ry of partitions. We give proofs, again via polynomials, of 

celebrated identities due to Euler and Jacobi, and use these identities 

to give an elementary proof of a very 1:eautiful result of Ramanujan. 

Elementary proofs are given of some partition relations of Kolberg, 

and it is shown that there are an infinite family of such relations. 

Not much is known concerning the parity of p(n), the 

number of partitions of n. We define 

function which grows far less quickly than 

for r(n), and show how p(n) and 

r(n), an arithmetic 

p(n), give a recurrence 

r(n) are related modulo 4. 

These results contain, as a corollary, the relations modulo 2 for 

p(n) given by MacMahon. 

We close with the proof of a result given by Ramanujan 

in his recently discovered "lost" notebook, concerning an unusual 

continued fraction. This result contains earlier results of 

Eisenstein and Andrews, amongst others. Once again our approach 

is via the convergents, and explicit formulae are found. This gives 

rise to another family of polynomials which may have further interesting 

properties. 

(v) 



1. 

Chapter 1 Introduction 

The theory of partitions is probably the oldest branch of 

additive number theory. It is primarily concerned with decompositions 

of integers into sums of integers. The subject originated with 

L. Euler, and its fitful development is marked by the major 

~ontributions of a small number of men, among them J.J. Sylvester, 

P.A. MacMahon, B. Gordon and G.E. Andrews. This development has 

been closely linked to the study of transformations of series. 

FQr example, Euler considered p(n), the total number of partitions 

of n, and showed that* 

l 
n2:0 

n p(n)q 

.. 1 

= 1 

+ l 

1 
n (1-q) 

n 

n2:l 2 n (1-q)(l-q ) ... (1-q) 

2 n 
+ l 2 2 2 n 2 

n2:l (1-q) (1-q ) ... (1-q ) 

= l/{l + l (-l)n(q½(3n2-n)+q½(3n2+n))} 
p2: 1 

Notable contributors to the study of such series include C.F. Gauss, 

E. Heine, C.G.J. Jacobi, L.J. Rogers, S. Ramanujan, G.N. Watson and 

W.N. Bailey. It is fair to say that these areas are as active today 

as they have ever been. 

As the ~tudy of partitions and related series advanced, 

RaIQanujan and others were able to apply their knowledge to results 

on continued fractions. The oldest and most famous theorem in this 

regard is ~he Rogers-Ramanujan continued fraction 

* Throughout the thesis, !qi < 1. All results are then true as stated, 

except at those points where a denominator may vanish. 



1 + f+ 
2 

.L 
l+ 

3 
.9_ 
l+ 

2. 

= 

The first half of this thesis is devoted to reversing the historical 

relationship between such continued fractions and the theory of 

partitions and series. 

the continued fraction 

Indeed by considering the convergents to 

l+a+b+ cq-a 

l+a+bq+ 

2 cq -a 
2 l+a+bq + 

we are led in Chapter 2 to an extensive study of a new family 

P (a,b,c,q) n 
of polynomials with diverse applications. For example 

we show that* 

l 
r~O 

2 r 
q = I 

r~O 
(-l)r q½r(Sr-1) [n-2r] H ( r) 

r n-3r q 

This res~lt yields the first of the celebrated Rogers-Ramanujan 

( 1. 1) 

identities on letting n-+oo. Indeed, numerous such transformations 

are found, so that the representations of almost all the classical 

infinite continued fractions as quotients of theta-series become 

ttansparent from the convergents. Among the new continued fractions 

that we discover utilising our approach is 

1 +--9--
l-q+q2+ 

9 
4 1-q+q + 

The polynomials 

= 

P (a,b,c,q) n 

(1.2) 

generalise the previously 

* All special notation is explained in the appendix. 



studied, and well understood, extended q-Hermite polynomials. 

In Chapter 3 we analyse this aspect of these polynomials. In 

particular, some connection coefficient theorems are given. 

3. 

We next utilise these polynomials in Chapter 4 to present 

a new proof of Sylvester's remarkable partition theorem "The number 

of partitions of n into odd parts, 

is equal to the number of partitions of 

s 

n 

of which are distinct, 

into distinct parts 

with s sequences of consecutive parts." 

While all previous analytic proofs have relied on 

V.A. Lebesgue's identity 

l 
n~O 

c°+l) 
2 n-1 q (l+c) ... (l+cq ) 

n 
(1-q) ... (1-q ) 

= TT 
n~O 

[
l+cq2n+l] 

1 2n+l 
-q 

we are able to treat the problem purely with our polynomials, and find 

the new identity 

= ( 1. 3) 

itself a special ~ase of a· general polynomial identity obtained 

in Chapter 2. Lebesgue•s identity follows from our result as 

n + co 

In the same chapter is presented another new proof of Sylvester's 

theorem which shows clearly how Sylvester's theorem is equivalent to 

Leb~sgue's identity. 

Sylvester's partition theorem is a refinement of Euler's 



4. 

partition theorem "The number of partitions of n into odd parts 

is equal to the number of partitions of n into distinct parts". 

Andrews has given a generalisation of Euler's theorem; his theorem 

and three similar results are presented. One of these is 

II l (s (1T)) 
r is equal to the number of partitions of 2 

n-r 
m:IT 

n 

with no even part greater than 2r". (1.4) 

(Here 

and 

IT n is the set of partitions of n into distinct parts, 

s ('IT) is the number o~ sequences of consecutive parts in TI,) 

Euler's theorem is the case r=O • 

The study in Chapter 4 of partitions with distinct parts and 

exactly k sequences leads naturally to the study of partitions 

with distinct parts where now k bounds the length of sequences. 

We discover the generating function for such partitions with all 

parts less than n . In the case k=2, we are led to the 

polynomial identity· 

l = 
r?:0 

= r l (1.5) 
r?:0 2s~r 

This identity in turn yields a comM,natorial interpretation of two 

identities of L.J. Slater, namely 

TT 
nl 

= l/ TT (l-q5r+l)(l-q5r+4) 
r?:0 



and 

= 

5. 

l/ TT (l-q5r+2)(l-q5r+3) 
r ~o 

Thus, the study of the polynomials in Chapters 2-5 has led to 

various new results in the theory of partitions. These polynomials 

should, in the future, lead to further interesting work. As evidence 

for this claim, we recall that one of I.J. Schur's most ingenious 

proofs of the Rogers-Ramanujan identities was effectively based on 

the polynomial identity 

= 

An investigation of the partition-theoretic implications of this 

identity led Andrews to his extensive study of sieves in partitions. 

No such explanation of (1.1) is known; however, as we come to 

understand more about the P (a,b,c,q) 
n 

we may well find the answer 

to this and the other open questions mentioned in Chapters 2-5. 

The remainder of the thesis presents several topics closely 

related to the theme already developed. 

G.H. Hardy nominated as the most beautiful identity given by 

Ramanujan 

l 
n~O 

n p(5n+4)q = 
(1 5n)5 

s TT -g n 6 
n~l (1--q ) 

In Chapter 7 we give a truly elementary proof of this result, as well 

as elementary proofs of the identities of a.Kolberg, 



POP4 + 

POP2 + 

and 3P 1P2 -

where 

plp3 - 2P 2 = 2 

Pl4 - 2P 2 = 
1 

2P0P3 - p2 
4 = 

l p(n)qn 
n=i mod 5 

6. 

0 

0 

0 

Further, we prove that identities of the same sort hold not only for 

the modulus 5, but for any modulus not a power of 2. 

particular for the modulus 3, 

if P. = l p(n)qn then 
1. n=i mod 3 

Thus in 

2 2 2 2 2 2 2 2 2 
(Po-P1P2)<P2-PoP1) + (P2-POP1)(Pl-POP2) + (Pl-POP2)(PO-P1P2) = 0 

All that are needed to prove these results are the identities 

and 

TT (1-qn) = 1 + l (-l)n(q½(3n2-n) + q½(3n2+n)) 
n~l n~l 

TT 
n::!:l 

2 
(-l)n(2n+l)q½(n +n) 

(1.5) 

due respectively to Euler and Jacobi. 

from the polynomial identity 

The first of these follows 

(1. 6) 

while the second follows from the polynomial identity 

n 

TT (1. 7) 
r=l 

both proved in Chapter 6. 



7. 

· Not much is known concerning the behaviour of p(n) modulo 

2. If we define r(n) to be the number of representations of 

n as a sum 

w'qere b.(n) is the triangular number 2 ½(n +n), then r(n) 

grows far more slowly than p(n), and satisfies the simple 

recurrence relation 

r(4n) = 

r(4n+l) = 

r(4n+3) = 

r(4n+6) = 

r(n) + l 
k~l 

r(n) + l 
k~l 

r(n) + I 
k~l 

r(n) + }: 
k~l 

2 r(n-(8k - k)) + L r(n-(8k2+ k)) 
k~l 

2 r(n-(8k -3k)) + L r(n-(8k2+3k)) 
k~l 

2 r(n-(8k -Sk)) + }: r(n-(8k2+Sk)) 
k~l 

r(n-(8k2-7k)) + I r(n-(8k2+7k)) 
k~l 

and as we show in Chapter 8, 

p(n) ~ r(n) + 2 }: r(n-2k2) mod 4 
kES 

where S = {1,3,4,5,7,9,11,12, .•. } is the set of numbers k 

with t(k) even, where t (k) = t 

(1.8) 

( 1. 9) 

This result contains as a corollary MacMahon's congruences modulo 2 

for p(n), 

p(4n) 

and so on. 

namely 

- p<n> + I 
k~l 

p(n-(Bk2-k)) + L 
k~l 

2 p (n- (Bk +k)) 



8. 

It is well known that the identity 

2 ½(n +n) 1 
l q 

= TT 
n~O (q) n n~O o-/n+l) 

is equivalent to Euler's partition theorem (mentioned earlier), while 

the Rogers-Ramanujan identities 

2 n 1 
l .9...._ = 1T 

n~O (q)n n~O (l-q5n+l)(l-q5n+4) 

and 

n2+n 1 
l 

q 
= TT 

n~O (q) n n~O (l-q5n+2)(l-q5n+3) 

are equivalent to partition theorems, the first to 

"The number of partitions of n into parts which differ by 

at least 2 is equal to the number of partitions of 

which are congruent to 1 or 4 modulo S". 

n into parts 

Several of the limiting cases of results we treat in Chapter 2 

are amenable to partition-theoretic interpretation. 

2 
n 

9 l 
n~O (q) 2n 

= TT 
n>O 

n=±l,±3,14,±5,±7,±9 mod 

2 
n +n 

1T (l-qn)-1 I g 
= 

n~O (q)2n+l n>O 

We consider 

20 

n=±l,±2,±5,±6,±8,±9 mod 20 

2 
l 2n +2n TT 0 _ n)-1 9 = n~O (q)2n+l n>O q 

n=±l,±4,±6,±7 mod 16 

2n 2 

and l g = TT o-qn)-1 
n~O (q)2n n>O 

n::±2,±3,±4,±5 mod 16 



9. 

all of which appear in Slater's compendium of such identities. We 

show that, for example, the fourth yields 

"The number of partitions of n, 

with 

is equal to the number of partitions of n into parts congruent 

to 2, 3, 4, 5, 11, 12, 13 or 14 modulo 16." ( 1. 10) 

Straightforward proofs of Slater's identities also are included. 

We remark that Gordon, W. Connor, and Andrews and Askey have, 

independently, given partition-theoretic treatments of the first two 

of the four identities given above. 

In 1976, Andrews discovered a manuscript of Ramanujan which 

he has called "the 'lost' notebook". This manuscript, probably 

written in the last year of Ramanujan's life, contains about six 

hundred identities, of which Andrews has to date proved more than 

half. One of these, with which Andrews had some difficulty, concerns 

the unusual continued fraction 

F(a,b,).,q) = 1 + aq+Aq 
l+ 

2 bq+Aq 
l+ 

2 3 aq +).q 
l+ 

b 2+' 4 9 /\Q 
l+ 

As in the case of the continued fraction of Chapter 2, our approach is 

via the convergents, for which an explicit expression is obtained. 

Ramanujan's result then follows easily. 

this result are 

Some particular cases of 



1 ~ 92+q4 g3+q6 
+ l+ 1+ 1+ 

and 

~ 3 2+ 4 5 
1 + f+ .L. 9 9 _g__ 

1+ 1+ l+ 1+ 

Again we have a new family of polynomials, which may prove as 

fruitful as the P (a,b,c,q). 
n 

10. 



Chapter 2 A Continued Fraction 

§1 We consider the continued fraction 

F(a,b,c,q) = l+a+b+ cq-a 
l+a+bq+ 

2 
cq -a 

2 l+a+bq + 

11. 

(2.1.1) 

As we shall see, many of the continued fractions which have been 

found by earlier writers to be expressible as products can be 

obtained from (2.1.1) by specialisation of the parameters. 

Indeed we show that (if lal < 1) 

F(a,b,c,q) = 
r (r+l) 

= I 
<2) r 

q b (-cq/b) r 
2 r q b (-cq/b) r 

r;;;:O 

2r (c/a) (-cq/b)r (cq) r 3(2)+r 
1 + I (l-c9. ) r r rbr 

r (aq) (-b) (c) q a 
r;;;:l (1-cq ) r r r 

= 
(cq/a) (-cq/b) (cq) r 

(1-clr+l) 
3(2)+2r 

I r r r rbr 
(aq) r (-b) r+l (q)r 

q a 
r;;;:O 

(2.1.2) 

(2. 1. 3) 

There are many special cases of (2.1.2) and (2.1.3) in which the 

series appearing on the right-hand-side can, via Jacobi's triple 

product theorem (see Chapter 6), or some other device, be 

expressed as products. In order to demonstrate the power of 

(2.1.2) and (2.1.3), we give a number of these special cases, most, 

but not all, of which have previously appeared in the literature, 

before we turn to proofs. Note that (2.1.2) has appeared in 

Hirschhorn (1974a). A result of the same type appears in Andrews 

(1968) [Theorem 6]. 



If in (2.1.3) we set a= b = 0, c = 1, we obtain 

2 3 
1 .s..... 51- !L 

+1+ 1+ 1+ 

= 

= 

1 + I 
r;;::1 

= 

l (-l)r q½r(Sr+3)(l-q2r+l) 
r;;::0 

2 5 3 5 5 5 
(q ;q )oo(q ;q ).x,(q ;q )co 

5 4 5 5 5 
(q ;q )oo(q ;q )oo(q ;q )oo 

2 5 3 5 5 4 5 
= ( q ; q ) CO ( q ; q ) 00/ ( q ; q ) 00 ( q ; q ) 00' 

a result due independently to L.J. Rogers (1894) p.328 and 

S. Ramanujan (1919b). 

12. 

(2.1.4) 

If in (2.1.3) we set 
2 

q for q, a= 0, b = q, c = 1, 

we obtain 

= 

= 

3 8 5 8 8 8 
(q ;q )00(q ;q \»(q ;q )00 

= 8 7 8 8 8 
(q ;q )00(q ;q )00(q ;q )00 

= 

a result due to B. Gordon (1965). 

If in (2.1.2) we set a= 0, and subtract b, we obtain 

1 + cq 
l+bq+ 

2 
cq = 

2 
l+bq + r+l 

( 2 ) r 
= l _q ___ b_(-_c_lb_)_r 

r~0 (q)r 

(r+l 
2 ) r 

q b (-cq/b) r 

(2.1.5) 

(2.1.6) 



13. 

a result of Carlitz (1965), 

t t 2 

I 
2 

t t +t 
(-bq) l C 9 (-bq)(X) I C g 

= (q) t (-bq\ (q)t(-bq)t 00 
t~O t.::O 

t t 2 • 2 I 

I t t +t 
= l C 9 I C 9 (2.1.7) 

t.::O (q)t(-bq)t 
I t.::0 (q)t(-bq)t 

a result stated by Ramanujan (Notebooks Vol. II p. 196). If 

we now set b = 1, we obtain 

2 t t 2 r~o t t 2+t 
1 _..£9....... cg = I C 9 C 9 

+ l+q+ l+q2+ 2 2 2 2 t.::O (q ;q )t (q ;q \ 

2 2 2 
= (-cq;q )00/(-cq ;q ) 00 (2.1.8) 

also a result of Carlitz (1965). 

The special case c = 1/q was given earlier by Gordon (1965). 

If in (2.1.2) we subtract a, set c = 0 and b = a, 

we obtain 

1+-a- a a 
= 2 l+a+aq- l+a+aq -

(r) r I 
(r+l) r 

q 2 a q 2 a 
= l I l (q)/a)r I 

(q)r(a)r+l r~O r~O 
(2. 1. 9) 

Now, it is not hard to show (see § 9. 3) that r 
(2) r 2 q a 2r -r 2r 

(a)oo l ---- = l 9 a 
2 2 r.::O (q)r(a)r r~O (q ;q ) r 

(2.1.10) 

and thence (put aq for q) that 

(r+l) 2 
2 r 2r +r 2r 

(a) I q a = l 9 a 
00 2 2 r.::0 (q)r(a)r+l r~O (q ;q ) r 

(2.1.11) 



14. 

It follows from (2.1.9), (2.1.10), (2.1.11) that 

l+a- a a 
= 2 l+a+aq- l+a+aq -

2 

I 
2 2r -r 2r 2r +r 2r 

l 9 a l q a (2.1.12) = 2 2 2 2 r:?:0 (q ;q )r r:?:0 (q ;q ) r 

If we now set 
2 

q for q, a=q, and use the Rogers-Ramanujan 

identities (see Appendix §8) we find that 

l+q- g 
l+q+q3-

= 

= 
4r2 / 4r2+4r \ q \ _._9 __ 

l 4 4 l 4 4 
r:?:0 (q ;q )r r:?:0 (q ;q )r 

= 
8 20 12 20 4 20 16 20 

(q ;q \o(q ;q ~/ (q ;q )oo(q ;q )oc, 

Gordon (1965). 

As a final example, if in (2.1.2) we subtract a, then 

subtract band set c=O, we obtain 

1- a 

l+a+bq-

= l 

a 
2 l+a+bq -

(r+l) 
2 br q 

r:?:0 

2 

= 

I 
If we now set q for q, -a 

we find 

1 + a a = 
1-a+aq+ 3 1-a+aq + 

2 r r 
l q a = 2 2 2 r~O (q ;q )r(-a;q )r 

for a, and then b=a/q, 

I 
2 r r 

l 9 a -2 2 2 r:?:0 (q ;q )r(-a;q )r+l 

(2.1.13) 

(2.1.14) 

(2.1.15) 



Now (see §9.3), 

2 
2 

r r 
l 9 a 

(-a;q )oo 2 2 2 = 
r<::0 (q ·q) (-a·q) ' r ' r 

and 

2 
2 r r 

(-a,q )oo l g a 
2 2 2 

r<==O (q ;q )r(-a;q )r+l 

From (2.1.15), (2.1.16) and (2.1.17) it 

a l+---
1-a+aq+ 

= I 
r<==O 

a 
3 1-a+aq + 

2 
r -r r 

g a 
(q) r 

= 

2 
r r 

q a 
(q) r 

15. 

2 r -r r 
l 9. a 

(q) r r<==O 
(2.1.16) 

2 r r 
l 9. a = 

r<==O (q)r 
(2.1.17) 

follows that 

(2.1.18) 

If we now set a= q, 

once again, we find that 

and use the Rogers-Ramanujan identities 

1 + __ 9...___ 
2 1-q+q + 

= 

9 
4 1-q+q + 

= 

§2. We prove (2.1.2) as follows: We can write 

2 n 
l+a+b+ c9.-a c9. -a cg -a 

= 

l+a+bq+ 2 n l+a+bq + l+a+bq 

Pn+l(a,b,c,q) 
= 

Qn+ 1 (a, b ,'c, ~ 

where 

PO = 1, pl = l+a+b 

Qo = 0, Ql = 1 
' 

and, for n;:: 1 

n n · 
Pn+l • (l+a+bq )Pn+(cq -a)Pn-l 

= (l+a+bqn)Q +(cq0 -a)Q 1 n n-

(2.1.19) 

(2.2.1) 

(2.2.2) 



It follows from (2.2.2) that 

Qn+l(a,b,c,q) = P (a,bq,cq,q) 
n 

However, for the purposes of this chapter, we find that it is 

16. 

(2.2.3) 

convenient to distinguish the p and Q 
n n ' and not use (2.2.3). 

We set 

p (z) = L p zn' 
n::2:0 n 

Q (z) = I 
n::2:0 

n Q z • n 

It follows from (2.2.2) that 

We 

It 

(1-z)(l-az)P(z) - z(b+cqz)P(qz) = 1 

(1-z)(l-az)Q(z) - z(b+cqz)Q(qz) = z 

can write (2.2.5) 

P(z) 1 
+ 

z b ( l+cq z /b) 
p (qz) = (1-z) (1-az) (1-z) (1-az) 

Q(z) z + zb ( l+cqz/b) 
Q(qz) = (1-z) (1-az) (1-z) (1-az) 

follows by iteration of (2.2.6) that 

P(z) = L p zn = L 
n n::2:0 r::2:0 

Q(z) = L Q zn = L 
n::2:0 n r::2:0 

r 
(2) r r 

q z b (-cqz/b) r 
(z) r+l (az) r+l 

r+l 
( 2 ) r+l r 

q z b (-cqz/b) 

(z)r+l(az)r+l 
r 

We now appeal to Abel's lemma. 

(and we shall 'see that it does if 

If lim P exists 
n n + oo 

lal < 1), 

Poo = lim p = lim (1-z)P (z) 
n + oo n z + 1-r 

(2) r 

l 
q b (-cq/b) 

= r 

r::2:0 (q)r(a)r+l 

(2.2.4) 

(2.2.5) 

(2.2.6) 

(2.2.7) 

(2.2.8a) 
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and similarly 

~ = 
n -+ oo 

lim Q 
n 

= I 
r~O 

(r+l) 
2 r q b (-cq/b) r 

(2.2.8b) 

If we let n -+ oo in (2.2.1) and use (2.2.8), we obtain (2.1.2). 

We can obtain explicit expressions for 

(2.2.7), and then pass to the limit. Thus 

l p z n 
= 

n~O n 

r 
<2) r r 

q z b (-cqz/b) 
I r = 

(z)r+l(az)r+l r~O 

r (s+l) 
<2) r r r 

l I 2 s [r] l t = q z b q (cz/b) z 
r~O s=O s t~O 

and, putting r = s+v, this becomes 

= l 
s,t,u,v~O 

x [s+v][s+t+v][s+u+v] 
s t u 

2s+t+u+v 
z 

It follows that 

p 
n = l 

2s+t+u+v=n 

= l 
s,u,v~O 

X 

x [s+v][s+t+v][s+u+v] 
s t u 

X 

x [s+v][s+u+v][n-s-u] 
s u s+v 

P and from n 

[r+t] 
r 

X 

(2.2.9a) 

(2.2.lOa) 



and similarly, 

= l 
s ,u,v;;::o 

Letting n -+- oo 

l 
s, u, v;;::O 

= l 
s, v;;::O 

= 

X 

x 1s+v][s+u+v][n-l-s-u] 
~ s u s+v 

in (2.2.lOa), we find that if lal<l 

X 

X 

[s+v] _1 __ 

s (q)s+v 
X 

and, putting s+v=r, this becomes 

r (s+l) (2) r 1 1 
r 

= l q b 
(q)r (a)r+l l q 2 (c/b)s[r] 

s r;;::O s=O 
r 

<2) r 
q b (-c/b) 

l r = 
r;;::O (q)r(a)r+l 

which is (2.2.8a). 

(2.2.8b) follows similarly from (2 .2. lOb). 

§3. Having proved (2.1.2) we proceed to prove (2.1.3). 

18. 

(2.2.lOb) 
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Watson's theorem (Watson (1929a), see Appendix §8) is 

An -N 
BC,D,E,q q;q 

= 
M M DEq-N 
B ' C ' A 

= 
(Aq/D)N(Aq/E)N 

(Aq)N (Aq/DE)N x 8~7 

r. r. -N 
A,qvA, -qvA, B, C, D, E, q 

IA, - IA, ~. ~. ~. ~. 

A2 2 
q; q 

BCDEq-N. 

~ 
-N 

q 
(2.3.1) 

Letting B,D,N ~ 00 in (2.3.1), we obtain 

(r) 
q 2 (-!g_)r (E) 

l E r = 
r~O (q)r(~) 

r 

(Aq/E) 00 
(l-Aq2r) (C) (E) (A) r /_A2r 3(2)+2r 

l r r r la = (Aq) (1-A) (q) q . (2.3.2) 
(M) (M) (X) r~O r 

C r . 'E · r 

If we now set A=c, C=c/a, E=-cq/b, we obtain 

p = 
CX) 

1 
= (1-a) 

1 
= 

(1-a) 

l l (1-a) r~O 

(-b) 
__ oo l 
(cq) 00 r~O 

r 
(2) r 

q b (-cq/b) 
r 

(q)r(aq)r 

2r 
( 1-cq ) 

(1-c) 

(c/a) (-cq/b) (c) 3(2r)+r 
___ r r r rbr 

(aq) · (-b) _( _)_ q a 
r r q r 

2r r 
(-b) 

(X) 

(cq)oo 

(1-cq ) (c/a) (-cq/b) (cq) 3( 2)+r 
{l + l ___ r · r _(_)_r q--'-- arbr}. 

r~l (1-cqr) (aq)r (-b)r qr 
(2.3.3a) 

If, on the other hand, in (2.3.2) we set A=cq, C=cq/a, E= -cq/b, 

we obtain 

(r+l) 
2 r 

l q b (-cq/b) 
QCX) l r 

= (1-a) r~O (q)r(aq)r 

(l-cq2r+l) 
r 

1 (-bq)(X) (cq/a) (-cq/b)r ( ) 3(2)+2r cq rbr 
l r r q a 

= 2 (1-a) (cq) r~O (1-cq) (aq) (-bq) (q)r 
(X) r r 
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1 (-b) 
00 

=----(1-a) (cq) 00 
l 

(cq/a) (-cq/b) (cq) 3(r2)+2r 
(l-cq2r+l) r r r rbr 

(aq)r (-b)r+l (q)r q a r~O 

(2.3.3b) 

It follows from (2.3.3) that 

F(a,b,c,q) = Poo/Q00 

( l-cq2r) (c/a) (-cq/b) (cq) r 3(2)+r 
1 + l r r r rbr 

r (aq) (-b) (q) r 
q a 

= r~l ( 1-cq ) r r 

l 
r~O 

(cq/a) (-cq/b) (cq) 3(2r)+2r 
(1-cq2r+l) r r r rbr 

(aq)r (-b)r+l (q) q a r 

which is (2.1.3). 

§4 It is possible to transform the P Q again via Watson's n' n' 

theorem (2.3.1) in such a way that on letting n ~ 00 we obtain 

(2.3.3) and thus (2.1.3) directly. 

We have (2.2. 7) 

r 
<2> r r 

q z b (-cqz/b) 
l r 

(z)r+l(az)r+l r~O 

= 

r 
(2) r r 

l 
q z b (-cqz/b) r 

r<!O (az)r+l 

= 

r 
(2) r 

l q b (-cqz/b)r 

r,s<!O (az)r+l 

which, putting r+s = t, becomes 

r 

l zs[r+s] 
s~O r. 

[r+s] 
r 

r+s 
z 

(2) r 
t t q b (-cqz/b) 

l l r [t] = z 
(az)r+l t<!O r=O r 
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r 
t (2) r t t-r+l 

q b (-cqz/b) (1-q ) •.• (1-q ) 

I t I 
r 

= z 
(az) r+l (q) r 

t2:0 r=O 

-t t (q ) (-cqz/b) 

I t I r r (-bqt)r = z 
(q)r(az)r+l t2:0 r=O 

1 [ -t t l 2 t 
2<P 1 

q ,-cqz/b;q;-bq (2.4.la) = z . 1-az 
t2:0 aqz 

Now, if we let B,D ~ 00 in Watson's theorem (2.3.1) 

we obtain 

= 

= 

(1-Aq2r) (C) 
I-- r 

r2:0 (1-A) (Aq) 
C r 

(2.4.2) 

If we now set A=cz, C=c/a, E=-cqz/b, N=t, we obtain 

(-b) 
2r (c/a) (-cqz/b) (cz) ( -t) (1-cq z) 

t I r r . r q r 
= X 

(cqz\ ( t+l ) 
r2:0 (1-cz) (aqz) (-b) (q) r cq z r 

r r 
r 2 (2)+r t r 

X q (-abq z) 

2r (c/a) (-cqz/b) (cz) 
(-b) I r rx r 

= (1-cq z) X 

t t+l 
r2:0 (aqz) r (-b) (cqz)t(l-cz)(cq z)r r 

-(r) 
q 2(-l)rqtr(q-t) r 3( 2)+r 

r r r r 
X X q a b Z 

(q)r 

2r (c/a)r (-cqz/b) 1 3(r)+r 
(-b) I r 2 Lt] rbr r 

= (1-cq z) 
t r q r a z . 

r2:0 (aqz)r (-b) (cq z)t+l r 
(2.4.3a) 



It follows from (2.4.la) and (2.4.3a) that 

l 
nzO 

P zn = 
n 

22. 

r 
2 (c/a) (-cqz/b) 1 3( 2)+r 

l (1-cq rz) r r r q [~Jarbrzr 

r~O (az)r+l (-b)r (cq z)t+l 

l 
2r (c/a)r 

(1-cq z)----
(-cqz/b)r (-b)t 

= 
r,tzO (az)r+l 

r (-b) 
(cq z)t+l r 

which, on putting t = r+s, becomes 

2 (c/a) 
= l (1-cq rz) r 

r,szO (az)r+l 

In the same way, we can show that 

l Q zn = 
>O n 0-

2r+l (cq/a)r (-cqz/b)r 
= l (1-cq z) --- __ r_+_l ___ _ 

r,s~O (az)r+l (cq z)r+s+l 

We have l p zn = 
n 

rbr 2r+s+l 
X a Z 

(2.4.4a). 

(2.4.4b) 

3( r)+ ( /b) 
, 2r r 2 r r+s rbr 2r+s -cqz = l (1-cq z)(c/a) (-bq) q [ Ja z x ______ r __ 

nzO 

r s r r 
r,s20 (az)r+l (cq z)r+s+l 

3(r)+ 
2r r 2 r r+s 

= L (1-cq z)(c/a) (-bq) q [ J 
r s r r,s20 

rbr 2r+s a Z X 

r ( t+l) 

x l q 2 [~J(cz/b)t l 
t=O u:::0 

l 
v:::o 

wgich, on putting r = t+w, becomes 
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= I 
s,t,u,v,w<!:O 

(1 2t+2w )( /) (-bqt+w) -cq z c a t+w 8 
X 

3(t;w)+(t+w)+(t;l)+(t+w)v 
X q X 

x [s+t+w][t+w][t+u+w][s+t+v+w] x 
S t U V 

t+u+wbw t+v s+3t+u+v+2w x a c z , (2.4.Sa) 

and similarly, 

l Q zn = 
>O n n-

= I ( 1 2t+2w+l ) ( / ) ( b t+w+l) -cq z cq a - q x t+w s s,t,u,v,w<!:O 

3(t-;w)+2(t+w)+(t;l)+(t+w+l)v 
X q 

X [S+t+w][t+w][t+u+w][s+t+v+w] 
S t U V 

t+u+wbw t+v s+3t+u+v+2w+l 
X a C Z 

X 

X 

It follows from (2.4.Sa) that 

p 
n 

= ~ t+w 
l (c/a)t+w(-bq )s 

s+3t+u+v+2w=n 
X 

t+w t+l 
3( 2 )+(t+w)+( 2 )+(t+w)v + +w t+v 

x q at u bwc x 

x [s+t+w][t+w][t+u+w][s+t+v+w] 
S t U V 

- C I 
s+3t+u+v+2w=n-l 

X 

t+w t+l 
3( 2 )+3(t+w)+( 2 )+(t+w)v t+u+w w t+v 

X q a b C X 

x[s+t+w][t+w][t+u+w][s+t+v+w] 
S t U V 

(2 . 4. Sb) 



= 

= 

t+w 
l (c/a)t+w(-bq )n-3t-u-v-2w 

t,u,v,w<::0 
X 

t+w t+l 
3( 2 )+(t+w)+( 2 )+(t+w)v t+u+w w t+v 

q a b C X 

X 
,-n-2t-u-v-!, J r t+w J [ t+u+w J [ n-2 t-u-w] 
L t+w '-- t u V 

t+w 
c L (c/a)t+w(-bq )n-l-3t-u-v-2w 

t,u,v,w<::O 

X 

t+w t+l ( ) 

X 

X q 
3( 2 )+3(t+w)+( 2 )+ t+w v t+u+w w t+v 

a b C X 

X 
n-l-2t-u-v-wJrt+w][t+u+wJ[n-l-2t-u-wJ 

[ t+w . t U V 

X 

X 

t+w t+l ) 
3( )+( t+w)+( 2 )+( t+w v t+u+w w t+v 

2 a b C X q 

X 
t+w t+u+w][t+v+w,[n-2t-u-w 7 

[ 1 r ; " 
t .1 L U V - t+v+w 

t+w 
c L (c/a)t+w(-bq )n-l-3t-u-v-2w 

t,u,v,w~O 

X 

X 

t+w t+l ( ) 
3( 2 )+3(t+w)+( 2 )+ t+w v t+u+w w t+v 

a b C X q 

X 
t+w t+u+wyt+v+w][n-l-2t-u-w7 

[ t ][ U L V t+v+w -

and similarly, 

t+w+l 
I (cq/a)t+w(-bq )n-l-3t-u-v-2w 

t,u,v,w~O 

X 

X 

t+w t+l ) 
3( 2 )+2(t+w)+( 2 )+(t+w+l v t+u+w w t+v 

a b C X q 

X 
t+w t+u+w [t+v+w 1 rn-l-2t-u-w 7 

[ t ] [ U ] V ..1 ' t+v+w ..1 

24. 

(2.4.6a) 
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t-f-w+l X 

cq l (cq/a)t+w(-bq )n-2-3t-u-v-2w 
t,u,v,wc!:0 

X 

t+w t+l ( 1) 
3( 2 )+4(t+w)+( 2 )+ t+w+ V t+u+w W t+V 

8 b C X 
q 

[ t+w,.[t+u+w1[t+v+w][n-2-2t-u-w] 
X t I U ~ V . t+V-f-w 

(2.4.6b) 

If in (2.4.6a) we let n ~ 00 , we obtain 

p X 

00 

t+w t+l ) 
3( 2 )+(t+w)+( 2 )+(t+w v t+u+w w t+v 

X q a b C X 

x [t+w][t+u+wJ[t+v+wJ 
t U V 

1 

(q)t+v+w 

t+w 
- c l (c/a)t+w(-bq )00 

t, u, v ,wc!:O 

X 

X 

t+w t+l ) 
3( 2 )+3(t+w)+( 2 )+(t+w v t+u+w w t+v 

8 b C X 
q 

X [t+w][t+u+w][t+V-f-w] 
t U V 

1 

(q)t+v+w 

X 

X 

1 1 

(q) t+w t+w 
( cq )00 



~ t+w 
- c L (c/a)t+w(-bq )00 x 

t,u,w::?:0. 

t+w t+l 
J( z )+(t+w)+( 2) t+u+w wt 

X q 8 b C X 

1 1 

(q)t+w t+w ( cq )oo 

= l 
t,w::?:0 

- C l 
t,w;"?O 

t+w t+l 
J( 2 )+(t+w)+( 2) t+w wt 

X q 8 b C X 

X r t+w7 
L t ~ 

1 1 1 
( ) . t+w . ( ) 

q t+w (cq ) a t+w+l 
(X) 

3(t+w)+3(t+w)+(t+l) 
2 2 t+wbw t 

X q a C X 

X r t+w] 
~ t 

1 1 
t+w 

(cq )oo (a) t+w+l 

which, putting t+w = r, becomes 

= 

- C l 
r::?:0 

3(rz)+r 1 r r r 
( c / a) (-bq ) q • a b -. (q) r r. oo 

(t+l) 

q 2 (c/b)t 

3(2')+3r 
r · r r 

(c/a) (-bq) q a b 
r ex, 

1 
(q) r 

1 
r ( cq ) oo 

26. 

1 
(a)r+l 

X 

1 1 
X 



l 
r~O 

2r r (1-cq )(c/a) (-bq) r 00 

(-b) 
2r (c/a) (1-cq ) 

00 

I r 
= (cq) (a)r+l r 

00 r~O (1-cq) 

(-b) 2r 
1 (1-cq ) 

(cq): { 1+ l = 
1-a r r~l (1-cq) 

which is (2.3.3a). 

r 3( 2)+r 
r r 

q a b (-cq/b) 
r 

1 
X 

(-cq/b) (cq) r 3( 2)+r 
r r 

(-b) (q) r 
q a 

r 

(c/ a) r (-cq/b) 
r 

(cq) 
r 

(aq) r (-b) r (q)r 

27. 

rbr 

r 3( 2)+r 
rbr q a 

Similarly, if in (2.4.6b) we let n ~ 00 , 

We omit the details. 

we obtain (2.3.3b). 

§5. We have obtained two quite different expression for p , 
n 

namely those in (2.2.lOa) and in (2.4.6a). Equating them yields a 

new polynomial identity which involves three parameters and which 

implies the Rogers-Ramanujan identities. 

Thus 

I X 

s,u,v~O 

X [s+vJ[s+u+vJ[n-s-u] 
s u s+v 

= l t+w (c/a) (-bq ) t+w n-3t-u-v-2w t,u,v,w~O 
X 

x[t+w][t+u+w][t+v+w][n-2t-u-wJ 
t U V t+v+w 

} , 



C I t+w (c/a) (-bq ) X 

t, u, V ,w::?:0 t+w n-l-3t-u-v-2w 

X 

x rt+w][t+u+w 7 rt+v+w 1rn-l-2t-u-w] 
L t u - L v · t+v+w 

This simplifies considerably in the case b = 0 . 

l = 
s, u::?:0 

= l 
t, u, v::c:O 

2 
( I) 2t +tv t+u t+v [t+u1,t+v11 n-2t-u] 
Ca tq a C u -L V -- t+v 

Thus 

-c I 
2 

( /) 2t +2t+tv t+u t+v [t+u][t+v][n-l-2t-u] 
c a tq a c u v t+v 

t, u, v::c:O 

28. 

X 

(2.5.1) 

(2.5.2) 

Since there is essentially only one appearance of n on each 

side of (2.5.2), it should be possible to prove (2.5.2) by 

induction. 

l 
s,u::c:O 

= l 
t ,u::c:O 

- C l 
t,u~O 

Further, (2.5.2) can be written 

2 
s u s 

q a C 
[s+u][n-s .. u] 

s s = 

2 
( I ) 2t t+u t [ t+u 7[n-2t-u 7 
c a tq a c u .. t J 

r v tv [n-3t-uJ 
l C q V 

v2:0 



= l 
t ,u~O 

2 

t 
Hn-3t-u (cq ) 

29. 

* 

-c l 
t,u~O 

( I) 2t +2t t+u t rt+U7rn-l-2t-U7 
C a tq a C L j L ~ u t 

t 
H 1 3 (cq ) . n- - t-u 

(2.5.3) 

In particular, if a=O 

= , (-l)t ½t(5t-l) 2t [n-2t; 
l q C t ~ 

t~O 

t 
Hn-3t (cq ) 

-c 2. (-l)t q½t(5t+3)c2t [n-~-2t] Hn-l- 3t (cqt) 
t~O 

The Rogers-Ramanujan identities follow on letting n -+ oo 

setting c=l, c=q. Thus, letting n -+ oo in (2.5.4), 

obtain 

2 s s 
I" g C 
L (q) s~O s 

= l 
t~O 

1 
=~ 

00 

( -1) t q ½t ( 5 t - 1 ) 2t 1 1 l = C -- t 
t:2:0 (q)t (cq) 

00 

I (-1) tq½t(5t+3) 2t 1 1 
- C C t t~O (q) t ( cq ) oo 

(-l)t(l-cq2t)q½t(5t-l)c2t 1 i -- . 
t 

(q) t (cq ) 
00 

l 
t~O 

( l) t(l 2t) ½t(5t-l) 2t (c)t 
- -cq q C -

(q) t 

* Here H (x) = 
n (see Appendix §6). 

(2.5.4) 

and 

we 

(2.5.5) 



1 
= 

(cq) 
00 

1 
= (cq)oo 

l (-1) t 
t~O 

{ 1 + l. (-1) t 
t~ 1 

2t (1-cq ) 
t (1-cq ) 

2t 
(1-cs ) 

t (1-cq) 

½t(5t-1) 2t (cq)t 
q C (q)t 

½t(5t-1) 2t (cq) t 
} q C 

(q) t 

If in (2.5.6) we set c=l, and in (2.5.5) we set 

c=q, we obtain 

2 
s 

I L- = 
s~O (q)s 

and 
2 s +s 

l ........ 4~ 
(q) 00 s~O 

= 
1 

(q)oo 

5 4 5 
= l/(q;q )oo(q ;q )oo 

= 

2 5 3 5 
l/{q ;q )oo{q ;q \io 

30. 

(2.5.6) 

(2.5.7) 

(2.5.8) 

which are the Rogers-Ramanujan identities. Incidentally, if we 

set c=l and let q-+ 1 in (2.5.4) we obtain the following 

formula for the Fibonacci numbers: 

F = l (n-s) 
n s~O s 

= l (-l)t(n-2t) 2n-3t - l. (-l)t(n-l-2t) 2n-l-3t 

t~O t t~O t 
(2.5.9) 

which follows easily from 

l F X 
n 1 1 X 

= = n 2 3 3 n~O 1-x-x l-2x+x l-2x+x 
(2.5.10) 
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§6. If we compare coefficients of 

we obtain 

r 
c on both sides of (2.5.4), 

2 
r "n-r, 

q - r = 

= 

= 

= 

l 
2t+v=r 

(-l)tq½t(St-l)+vtcn-2tJ~n-3tJ 
t V 

l (-l) tq ½t (5t+3)+tv[ n- l-2t][ n-l-3t] 

2t+v=r-l t V 

\ ( l)t ½t(St-l)+t(r-2t)[n-2t~rn-3t 7 
l - q t ~ C r-2 t J 

t~O 

\ (-l)t ½t(St+3)+t(r-l-2t)rn-l-2t][n-l-3t, 
l q L t r-l-2tj 

t~O 

l 
t~O 

( t+l) 
(-l)t 2 rtrn-l-2t 7 [n-l-3t 7 

q q L t _J r-l-2t ~ 

l 
t~O 

Putting n+r for n, we obtain the identity 

l 
t~O 

This identity is also deducible fairly directly from 

Watson's theorem. Let B,C,D,E ~ 00 in (2.3.1). 

(2.6.1) 

(2.6.2) 
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l 
t~O 

= l (2.6.3) 
t,v~O 

Now compare coefficients of Ar on both sides of (2.6.3), and 

obtain (2.6.2). 

The identity (2.6.2) is a q-generalisation of the binomial 

coefficient identity 

(2.6.4) 

which follows easily from 

(l+x)n = - X (2.6.5) 

It would be nice to have a combinatorial proof of (2.6.2), for 

this would give us significant insight into the Rogers-Ramanujan 

identities. Indeed a first step would be a combinatorial 

proof of (2.6.4). We note with regard to (2.6.4) that 

l 
t~O 

= l 
t~O 

(n+r-1)! (-n) r(r-lJ ••• (r-2t+l) l . t 
= .. 

(n-l)!r! t~O t! (n+r-l) ••• (n+r-2t) 

( r -r+l 

l-n, -2 , 2 
= (n+r-1,l ! 

l2 1 (n-1) !r! -n-r+l -n-r+2 
2 2 

n+r-1 ! ~n-1) !n! - n-l)lr! (n+r-l)!(n-r)! 

- (~) by the Pfaff-Saalschutz summation (see App'x §5). r 
Thus 

(2.6.4) is a sp_ecial case of a non-trivial hypergeometric identity. 
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Chapter 3 A Family of Orthogonal Polynomials 

§1. We study the polynomials P (a,b,c,q) 
n 

and for 

po= 1, pl = l+a+b , 

n ~ 1, 

n n 
Pn+l = (l+a+bq )Pn+ (cq -a)Pn-l 

defined by 

(3.1.la) 

(3. 1. lb) 

These polynomials arise as the numerators of the convergents 

to the continued fraction 

cq-a l+a+b+ ------
l+a+bq+ 

considered in Chapter 2. 

2 
cq -a 

2 
l+a+bq + 

We can write (3.1.lb) as 

-n -n -n n bP = q P +l-q (l+a)P +q (a-cq )P 1 n n n n-
(3.1.2) 

By a theore~ of Favard (1935) we deduce that the 

orthogonal family of polynomials in the variable 

shall see, the p 
n are, in the special case 

related to.the extended q~hermite polynomials. 

P form an 
n 

b • As we 

c=a closely 

However, these 

polynomials do not appear to have been previously studied in the 

present $enerality . 

. . 

In § 2 ·we shall state a formula for the p 
n' simpler than 

those found in Chapter 2. It' shows that the p reduce to n 

the extended q-Hermite polynomials when c=a, and at the same 

time solves the "connection coefficient problem" between the fully 

. general p 
n and the simpler polynomials . 

Proofs are given in §§3,4. 



§2. We shall show that 

P (a,b,c,q) = 
n. 

= 

m+l 
\ m ( 2 ) m O m 2 
l (-1) q a (c/a) aN(-bq /a)n[n~m~[n~ m] 

t,~o m N N 

In particular, if c=a, 

P (a,b,a,q) 
n 

n n-t+l 
\ ( b) ( b t-1) (1-q ) .... (1-q ) 

= l a+ •... a+ q i 
t~O (1-q) . • . . {1-q ) 

It follows that 
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(3.2.1) 

(3.2.2) 

-1 
P (a,b,a,q ) 

n 
= 

\ t-1 (1-q-n) ... (l-q-n+£-l) 
l ( a+b) .... ( a+b / q ) _ 1 _ £ 

,Q,~O {1-q ) • . . {1-q ) 

R, 
-(2) t-1 -n 

= l q (b+a) .... (b+aq ){q )R, 
t~O 

-n 
(-a/b) £ (q ) £ 

(q) ,Q, 

R, 
(-bq) 

= (-a/q)¾n(b;-q,-q/a\q) 

where the h are the extended q-hermite polynomials 
n 

defined by 

h (x;a,b\q) 
n 

The h have been studied extensively by Andrews and Askey 
n 

(3.2.3) 

(3.2.4) 

(1980?) and are well understood. We mention just two properties 

of these polynomials. 



l 

n 
n (2) n 

(-1) q h (x;a,bjq)z 
n 

= 
n?O 

( az) 00 (bz) 00 

(abxz/q) 00 

and 

= 

-1 
a 

s:;:,,_ h (x;a,blq)h (x;a,blq)(xa) (xb) d(q,x) ""1n m oo oo 
-1 

b 

0 if m:/:n 

(-l)n 
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(3.2.5) 

(3.2.6) 

The formula corresponding to (3.2.5) for the P (a,b,a,q) is 
n 

P (a,b,a,q) (-bz) 
l n n 00 

(q)n 
z = (az) · (z) (3.2. 7) 

n~O 00 00 

For, by (3.2.2), 

P (a,b,a,q) n .t n l n n l _z_ l (q)n 
z = a (-b/a)£[.t] 

n?O n?O (q)n .t?O 

_Q, 
n 

= l a (-b/a).t l _z_ [n] 
.t?O n?£ (q)n £ 

£ (-b/a)£ £ n 
l a l z = z 

(q)n 9,?0 
( q) _Q, n?O 

1 9, (-b/a) 9, R, 
= 

( z)oo l a (q)R, 
z 

i?O 

1 (-bz) 
00 

= 
(z)oo (az) 

00 

The problem of finding the formula corresponding to (3.2.6) 

for the P (a,b,a,q) n is as yet unsolved. 



We have from (3.2.1) that 

P (a,b,c·,q) = 
n 

= l 
~o 

= 

(m+l) 
~ m 2 m n-m m 
l (-1) q a (c/a) [ J P 2 (a,bq ,a,q) ~o m m n- m 
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(3.2.8) 

which shows how the P (a,b,c,q) 
n 

are related to the P (a,b,a,q). 
n 

Before proving (3.2.1) we note that Andrews (unpublished) 

has proved a somewhat different formula for the 

P (a,b,c,q) 
n 

which again generalises (3.2.2). 

p , 
n namely 

A proof of (3.2.9) along the lines of the proof in §3 

of (3.2.1) can easily be given. 

(3.2.9) 

§3. (3.2.1) was discovered empirically by the author in attempting 

to generalise (3.2.2), which had been found earlier by Andrews. 

Our first proof is purely a verification. Thus, 

m+l 
m ( 2 ) m I m l (-1) q a (c/a)ma (-bq /a)i 

t,~O 

= l 
.r ,s, t, u~O 

n-r-s n-2r-2s 
x [ r+s ][ t+u J 



= l X 

r,s,t.~O 

X [r+s][t+u][n-r-s][n-2r-2s] 
s u r+s t+u 

= 

= 

= 

l 
s, u, v~O 

P (a,b,c,q) 
n 

X 

Here we have used the identity 

I 
r~O 

which follows from 

l 
= 

n-s-v 
[ s+u J 

(x)s+u+v+l (x)s+u+l 

on comparing coefficients of n-2s-u-v 
X 

X 

37. 

(3.3.1) 

(3.3.2) 

§4. Another proof of (3.2.1), making use of the generating function 

of the p , 
n 

can be given. 

n 
P (a,b,c,q)z n = l 

r~O 

r 
(2) r r 

q z b (-cqz/b) 
r 

(z)r+l(az)r+l 
(3.4.1) 



= 

r 
(2) r r 

q z b (-cqz/b) 
[r+sJ(az)s l r l (z)r+l r~O s~O r 

= 

r 
(2) r s 

q b a (-cqz/b) 
[r+s1 r+s l r 

(z)r+l 
z 

r,s~O r 

and, putting r+s=t, this becomes 

= 

= 

= 

t t t ( r) (-cqz/b) 
l l 2 r [t](b/a)r a z q 

t~O r=O (z)r+l r 

-t 
t t t (-cqz/b) (q ) t r l l r r a z 

(z)r+l(q)r 
(-bq /a) 

t~O r=O 

r ~ t t [-cqz/b, 

t~O 1 - z 2<P1 

-t 
q 

qz 

which, using the second iterate of Heine's transformation (see 

App'x §3), becomes-

= 

= 

= 

( 

l atzt (-b/a)t 

t:!!!O 1- z (qz) t 2<P1 

t t 
a z . 

(z)t+l 

t t I a z 
t~O (z)t+l 

-t 
q 

-b/a 
. 
' 

t+l l q; q z 

which, on putting t = t+m, becomes 

-
m+l 

~ m ( 2) m i m i+2m 
L (-1) q a (c/8) a (-bq /a) 0 [R,+m] __,z,--_ 

.e..~o m ~ R, (z) i-f1D+l 
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= l 
t,~o 

m+l 
m ( 2) m Q, m Q.+m 

(-1) q a (c/a) a (-bq /a) [ ] 
m i i 

R.+2m 
z X 

m+l 

= 
m ( 2 ) rn i rn i+m i+m+p 

t (-1) q a (c/a) a (-bq /a) 0 [ ][ J 
l ID x, Q_ R.+m 

Q.+2m+p 
z . 

Q.,m,p~O 

It follows that P (a,b,c,q) = 
n 

= 

= 

(m+l) 
t ( l)m 2 m( / ) Q,( m1 ) [Q.+m][Q.+m+p, 
l - q a c a ma -bq a Q, Q, Q.+m J 

R.+2m+p=n 

m+l 

I <-1)mq < z) am<cta)mai<-bqm/a)icn~mJcn-zmJ 

R.,~O 

which is (3.2.1), as required. 

§5. We have 

l 
n~O 

n 
p ( a, b, C, q) Z 

n = l 
r~O 

r 
(2)r r 

q z b (-cqz/b) 
r 

(z)r+l(az)r+l 
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(3.4.2) 

Putting 1 
a 

for a, b 
a 

for b, 
C 

2 
a 

for c, az for z, 

we obtain 

( r) 
2 r r 

y n (1 b c ) n 
q z b (-cqz/b) 

I r 
a P -, -, 2 , q z = 

(z)r+l(az)r+l n~O n a a r'.:?O a 

l n (3.5.1) = Pn(a,b,c,q)z 
n~O 



It follows that 

P (a,b,c,q) 
n 

= 

In particular, if c=a, 

P (a,b,a,q) 
n = 

anP (.! b c ) 
n a' a' 2' q_ 

a 

np (1 b 1 ) 
a n a' a' a'q 

which also follows from (3.2.7). 

(3.5.2), together with (2.2.l0a), (2.4.6a), (3.2.1) 

or (3.2.9), yields yet more formulae for P (a,b,c,q). 
n 
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(3.5.2) 

(3.5.3) 

Thus, for instance, (3.5.2) together with (3.2.1) yields 

P (a,b,c,q) = 
n 

= 

(m+l) 
\ n-2m-Q, 2 m-1 m n-m n-2m 
l a q (c-a) ... (cq -a)(-bq )Q,[ m ][ Q, J. 

Q,,1120 

In particular if we set 

P (a,b,a,q) 
n 

c=a, we obtain 

which should be compared with (3.2.2). 

Comparison of (2.2.10) with (3.5.4) yields the identity 

= 

(m+l) 
\ an-2m-Q, 2 m-1 m n-m n-2m 
l q (c-a) ... (cq -a)(-bq ) i m ][ Q, J 

R.,1120 

(3.5.4) 

(3.5.5) 

(3.5.6) 

which, as we shall see in Chapter 4, has a special case of considerable 

significance. 
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Chapter 4. Sylvester's Partition Theorem 

§1. What must be one of the first partition theorems is Euler's 

Theorem 4.1.1. 

The number of partitions of n into odd parts is equal to the 

number of partitions of n into distinct parts. 

Sylvester (1884-6) stated and proved the following startling 

refinement of Euler's theorem, namely 

Theorem 4.1.2 

The number, A(n,s), of partitions of n into odd parts, 

s of which are distinct, is equal to the number, B(n,s), of 

partitions of n into distinct parts, with s sequences of 

consecutive parts. 

Andrews (1966) gave a proof of Theorem 4.1.2 based on generating 

functions, later simplified by Hirschhorn (1974b). In §2 we see that 

the polynomials which arise in this proof are intimately related to the 

polynomials studied in Chapters 2 and 3. Indeed, using an explicit 

expression obtained earlier for these polynomials we obtain a polynomial 

identity which in the limit yields Theorem 4.1.2. 

In doing so, we are led to consider the special case· a=O, b=q 

of identity (3.5.6), which is 

= 

= l (4.1.3) 
m~O 



This new identity,which is easily proved directly, yields, as 

l ao 

(r+l) 
2 q (-c) 

r 
= 

= 

2 
(-cq;q )oo 

2 
(q ;q )CC> 
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(4.1.4) 

an identity attributed to V.A. Lebesgue (1840), and a special case 

of the q-analogue of Kummer's identity (see App'x §4). Lebesgue's 

identity is essentially equivalent to Sylvester's theorem,as we 

shall see in §3. 

In his 1966 paper, Andrews also gives the following generalisation 

of Euler's theorem. 

Theorem 4.1.5 

G(n,r) = l is equal to the number of partitions 
TIE!I(n) 

of n with r distinct even parts and all other parts odd. Here 

is the set of partitions of n into distinct parts, and II(n) 

g(TI) is the .number of "gaps" in the partition TI, related to the 

number of sequences S (TI) by 

g (TI) = S (TI) 

unless the smallest part in TI is 1, when 

g(TI) = s(TI) - 1 

In §4 I present a simplified version of Andrews' proof of 

Theorem 4.1.5 and prove the following further three new generalisations 

of Theorem 4.1.1. 



Theorem 4.1.6 

G(n,r) is equal to the number of partitions of 

with no even part greater than 2r. 

Theorem 4.1.7 

2 n-r -r 
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S(n,r) = l is equal to the number of partitions 
1rdI(n) 

of n+r with r distinct even parts and all other parts odd. 

Theorem 4.1.8 

S(n,r) is equal to the number of partitions of 2 n-r with 

no even part greater than 2r. 

Theorem 4.1.1 is the case r=O of each of Theorems 

4. 1.5-4.1.8. 

§2. In order to prove Theorem 4.1.2, let B(n,s,i) denote the 

number of partitions of n into distinct parts with s 

sequences of consecutive parts, and no part greater than i. 

Then, as Andrews shows, 

B(n,s,i) = 

= B(n,s,l-1) + (B(n-i,s,i-1) - B(n-t,s,i-2)) 

Now let 

= l 
n,s 

Then 

B0 (a,q) = 1, 

+ B(n-i,s-1,1-2) 

s n B(n,s,i)a q 

B1(a,q) = l+aq 

(4.2.1) 

(4.2.2) 

(4.2.3) 

(4.2.4a) 
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and it follows from (4.2.2) that 

= 

1 1 
= s1_1(a,q)+q (B1_1(a,q)-B1_2(a,q))+aq s1_2(a,q) 

1 1 (l+q )B1_1(a,q)+(a-l)q s1_2(a,q) "' (4.2,4b) 

It follows from (4.2.4) that 

2 2 
= P1(0,q,(a-l)q,q)+(a-1)qP1_1(0,q ,(a-l)q ,q) , (4.2.5) 

where the P are the polynomials studied in Chapter 3. For, 
n 

by virtue of (3.1.1), the right-hand-side of (4.2.5) satisfies 

(4.2.4), which defines the B1 (a,q) uniquely. 

From (3.5.4), we have 

P1 (0,q,(a-l)q,q) = 

= I 
m.::O 

and 

2 2 
P1_1(0,q ,(a-l)q ,q) = 

= 
2 

, (a-l)m m +2m(- m+2) (1-1-m] 
l q q 1-l-2m m 

m:.i:O 

It follows from (4.2.5)-(4.2.7) that 

2 , m m m+l 
B1(a,q) = l (a-1) q (-q )1-2m x 

m.i:O 

2 (q) 1-m 
I mm m+l = (a-1) q (-q )1-2m 

m.::O (q)m (q) 1-2m+l 

2 2 2 
(1-q1+1) 

mm (q ;q >.e.-m 
= l (a-1) g 

2 2 ~o (q ;q )m (q)1-2m+l 

(1-q1+1) 

(4.2.6) 

(4.2.7) 

(4.2.8) 
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Letting R, -+ 00 in (4.2.8), we obtain 

1 
2 mm 

l s n l (a-1) 9. B(n,s)a q = 2 2 2 
n,s (q;q )00 m;;:O (q ;q )m 

2 
( (1-a)q ;q )00 

= 2 
(q ;q )00 

= TT [ l+(a-l)9.2r+l l r;;: 0 1-q 
2r+l 

[ 2r+l l TT a9. = 1 + 2r+l 
r;;: 0 1-q 

l s n 
(4.2.9) = A(n,s)a q 

n,s 

which is Sylvester's Theorem. 

§3. I now give an alternative proof of Sylvester's Theorem. 

It is, in my opinion, as simple and as straightforward as any of 

the proofs in the literature, including that of Ramamani and 

Venkatachaliengar (1972), reproduced in Andrews (1976), and shows 

clearly the equivalence of Sylvester's Theorem and Lebesgue's 

identity (4.1.4). 

* Let B (n,s,p,u) be the number of partitions of n into 

p distinct parts, with s sequences of consecutive parts, and 

u l's (u = 0 or 1) • (4.3.1) 

Subtracting 1 from every part shows that 

* * * B (n,s,p,O) = B (n-p,s,p,O) + B (n-p,s,p,l) 

and 

* * * B (n,s,p,l) = B (n-p,s-l,p-1,0) + B (n-p,s,p-1,1) (4.3.2) 



Now let 

* B (a,q) 
p,u 

It follows from 

* B 0 (a,q) p, 

* and B p,l(a,q) 

From (4.3.4) it 

* 
Bp,Q(a,q) 

and that 

* 

I s n 
= B(n,s,p,u)a q 

n,s 

(4.3.2) that 

p * p * = q B 0 (a,q) + q B 1 (a,q) 
p, p, 

= p * 
aq B p- l , 0 (a, q) p * + q Bp-1,l(a,q) 

follows that 

np B* 
= ~ (a,q) 

1-qp p,l 

B 1(a,q) 
p, 

p-1 l + aq 
p-1 1-q 

* Bp-1,l(a,q) 

* A trivial induction yields, since B1 1(a,q) = aq , 
' 

2 
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(4.3.3) 

(4.3.4) 

(4.3.5) 

[ 1 + ~ l , , .~ [ I * 
½(p +3p) p-1 ] 

B 0 (a,q) = aq + ag 
p-1 p, 1-qp 1-q 

* aq½(pz+p) [1 +~ l [1 p-1 ] 
B 1(a,q) = + ag 

p-1 . p, 1-q 1-q 

(4.3.6) 

* * * Let B (n,s,p) = B (n,s,p,O) + B (n,s,p,l) (4.3.7) 

Then 

r * s n 
l B (n,s,p)a q = 

n,s 

* * = B 0 (a,q) + B 1(a,q) 
p' p, 

2 
aq½(p +p) 

[1 +~ l [ p-1 ] { qp +_(1-qp)} = 1 + aq 
1-qp 1-q 1-qp-l 

2 
aq½(p +p) 

[1 + ~ l · .. [ p-1 l = 1 + aq 
1-qP 1-q 1 p-1 -q 



= 

(p+l) 
q 2 (1-(1-a))(l-(l-a)g) p-1 (l-(1-a)g ) 

(1-qp) (1-q) o-l-1> 

(p;l) 
q (1-a) 

= 
(q)p 

Summing on p, we obtain 

s n l B(n,s)a q = 
n,s 

= 

On the other hand, 

l s n A(n,s)a q = 
n,s 

= 

(p+l) 
2 q (1-a) 

1 + l 
p~l (q\ 

(p+l) 
2 

l 
q (1-a) 

(q)p p~O 

[ I 
2r+l 

TT + ag 
1 2r+l r~O -q 

2 
((1-a)q;q )oo 

2 
(q;q )00 

Thus Sylvester's Theorem is equivalent to 

l 
p~O 

(p+l) 
q 2 (1-a) 
---,__-P = 

(q)p 

2 
( (1-a)q ;q )oo 

2 
(q ;q )oo 

which is Lebesgue's identity (4.1.4). 

p 

l 

§4. We prove Theorems 4.1.5-4.1.8 as follows. 

Let G(n,r,k) = 

47. 

(4.3.8) 

(4.3.9) 

(4.3.10) 

(4.3.11) 

(4.4.1) 
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wbere TI(n, k) is the set of partitions of n into precisely 

k distinct parts. 

Andrews (1966)(equation 3.1) showed that 

G(n,r,k) = G(n-k,r,k) + G(n-k,r,k-1) + G(n-2k,r-l,k-1). 

If we let 

then 

or, 

Gk(a,q) l r n 
= G(n,r,k)a q 

n,r 

G~(a,q) 
k k 

= q Gk(a,q) + q Gk-1 (a,q) 

Gk(a,q) 
k k 

= q (l+ag ) 
Gk-l(a,q) k 1-q 

2k 
+ aq Gk-l (a,q), 

A trivial induction, together with G0 (a,q) = 1, yields 

That is, 

n,r 

r n G(n,r,k)a q 

Summing on k yields 

~ r n 
l G(n,r)a q 

n,r 

= 

= 

= 

(k+l) 
2 

q (-aq\ 

(q)k 

2 2 (-aq ;q )oo 

2 
(q ;q )00 

( ·+ 2r+2] 
= TT l1 aq 

r~O 1-qZr+l 

(4.4.2) 

(4.4.3) 

(4.4.4) 

(4.4.5) 

(4.4.6) 

(4.4. 7) 

(4.4.8) 



from which Theorem 4.1.5 follows. 

We have 

[ l+aq 2r+2 l l r n TT G(n,r)a q = 2r+l n,r r~O 1-q 

2 
1 r r +r 

TT l a 
= 2 4 r~O 1-q 2r+l r~O (1-q ) (1-q ) ••• (1-q2r) 

2 r r +r a l • 2 (l-q2r)(l-q2r+l)(l-q2r+3) r~O (1-q)(l-q) ... 

from which Theorem 4.1.6 follows. 

Let S(n,r,k) = l (s(TI)) 
r 

ndf (n,k) 

Using Andrews' device, it can be shown that 
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(4.4.9) 

(4.4.10) 

S(n,r,k) = S(n-k,r,k) + S(n-k,r,k-1) + S(n-2k+l,r-l,k-1). (4.4.11) 

Letting 

Sk(a,q) = l 
n,r 

r n S(n,r,k)a q 

it follows as before that 

or, 

Sk(a,q) = 

l S(n,r,k)arqn = 
n,r 

(4.4.12) 

(4.4.13) 

(4.4.14) 
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It follows from (4.4.14) and (4.4.7) that 

S(n+r,r,k) = G(n,r,k) . (4.4.15) 

Summing on k yields 

S(n+r,r) = G(n,r) (4.4.16) 

Theorems 4.1.7 and 4.1.8 follow from (4.4.16) taken together with 

Theorems 4.1.5 and 4.1.6. 



Chapter 5. Further Combinatorial Aspects 

of the Polynomials of Chapters 2,3 

51. 

§1. It is well-known that the polynomials which arise in the study 

of the continued fraction 

namely 

2 
1 + ..£9. .£.S.._ 

l+ l+ 

= l 
2jSn 

are capable of a combinatorial interpretation. Thus, 

(5.1.1) 

(5.1.2) 

P (0,0,c,q) 
n 

is the generating function for partitions into parts differing 

by at least 2, with the parts all < n ' and where the power 

of C counts the number of parts (see Hirschhorn (1972), 

MacMahon (1916) Art. 286). 

In attempting to find a more general family of polynomials 

with a combinatorial interpretation, George Andrews suggested the 

possibility of finding the generating function for partitions into 

distinct parts with all sequences of length less than k, and with 

all parts < n . This generating function is, as we shall see in §2, 

(5.1.3) 

where again the power of C counts the number of parts. 

In the case k=2, the expression in (5.1.3) is equal to 

that in (5.1.2), by virtue of the fact that they generate the same 

set of partitions. Equating the two expressions yields, as we shall 

see in §3, the following identity of Slater (1951), [19], namely 
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TT o+qj) I 
j?:l j?:0 

(-l)jg 3j 2 5·+1 5·+4 _2......_...;..:2:_..;;i. ____ = i; TT o-q J ) o-q J ) . 

(q ;q )j(-q;q)2j j?:0 
(5.1.4) 

We also obtain the companion identity 

TT o+qj) I 
r::1 j?:o 

= 11 TT o-qsj+2) 0 _qsj+3) , 
j?: 0 

which, we show, is equivalent to another identity of Slater 

(loc.cit.), [15], namely 

3 .2 2· . J - J 

(5. 1.5) 

(-l)Jq 
2 2 

(q ;q ).(-q;q)2. 
J J 

= 11 TT c1-qsj+2)<1-qsj+3> . 
j ?:0 

(5.1.6) 

§2. Let Tk(n,j;q) denote the generating function for partitions 

with no part occurring more than k-1 times, with all parts ~ n, 

and with precisely j parts. 

= 

Then 

k-1 k-1 2 k-1 2(k-1) 
(l+cq+ .•• +c q )(l+cq + ... +c q ) x ••• 

n n 

n k-1 n(k-1) 
x (l+cq + ... +c q ) 

[l k nk l -c q 
n 1-cq 

= TT TT 

= 

j=l 

k k 
(-(cq) ;q ) n 

(-cq;q)n 

j=l 

(5.2.1) 
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= I 
m~O 

= 
k(l+l)+m 

, ck!-ttn (-1)1 q 2 n] cn-ttn-1] 
l [ 1 k 

l,m~O (q ) m 
(5.2.2) 

It follows that 

... 

= I 
kl:Sj 

1 k(;)+j n n+j-k!-1 
(-l) q [l] k [ j-k! J 

(q ) 
(5.2.3) 

Now let Sk(n,j;q) denote the generating function for 

partitions into distinct parts with all sequences of length less 

than k, with all parts < n, and with j parts. 

Subtracting 0,1, ... ,j-l respectively from the j parts shows 

that 

(j) 

Sk(n,j;q) • q 2 Tk(n-j,j;q) (5.2.4) 

I 
k!~j 

(5.2.5) 
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It follows that 

which is (5.1.3). 

§3. We have, by virtue of what was said in §1, that 

= 

- (5.3.1) 

Letting n ~ 00 , we obtain 

2 . (j;l) Jl 

l c~ l l 
Jl 2(2) 1 

(q)j = cJq (-1) q 
2 2 

j~O j~O 2Jl;S;j (q ;q )Jl 

1 

(q) j-2i 

Jl . cJ;1) .Q, 2(2) 

Ill l (-1) Q l 
cJg 

2 2 (q) j-2Jl Q.~O (q ;q >,i j~2.Q, 

-
.Q, 2R.+l 

2Jl Jl 2<2)+( 2 ) 
C (-1) Q 

2 2 
(q ;q ) Jl 

l 
j~O 

= 
2Jl+l 2Jl+2 

(l+cq ) (l+cq ) •.•• 
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2 

TT (l+cqj) l 
c2'\-o R.g 3R. 1 • 2 2 2 ZR.) j 2: 1 R.2:0 (q ; q ) R. (l+cq)(l+cq ) ... (l+cq 

2 

TT (l+cqj) I c2Q,~-l/g 3R. 
(5.3.2) .. 

j 2: l R.2:0 
2 2 (q ;q ).e.(-cq;q)2R. 

If in (5.3.2) we set c=l, and use the first Rogers-Ramanujan 

identity, we obtain 

= i; TT c1-qsJ+1><1-qsJ+4> , 
j 2:0 

which is (5.1.4), while if we set c=q and use the second Rogers

Ramanujan identity, we obtain 

1T (l+qj) l 
j2:l j2:0 

which is (5.1.5). 

Now, 

I 
j 2:0 

= 

• 

-

(-0\13j2+2j 

2 2 
( q ; q ) /-q ; q) 2 j + 1 

(-l)jg3j 2+2j 
l 2 2 j2:0 (q ;q )j(-q;q)2j 

r (-llj93j2+2j 

2 2 j 2:0 (q ;q >/-q;q)2j 

1 + r 
j~l 

= 

[1 -

+ l 
j~O 

= u TT o-q5J+2) o-lj+3> , 
j 2:0 

2 ·+1 l q J 

l+q2j+l 

( _ 1) j + 10 3 j 2 +4 j + 1 

2 2 
(q ;q )j(-q;q)2j+l 

+ l 
j 2: 1 2 2 

(q ;q )j(-q;q)2j 



= i + I 
j;:d 

= i + I 
j~l 

= 

(5.1.6) follows from (5.1.5) together with (5.3.3). 

56. 

(5.3.3) 
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Chapter 6. Jacobi's Triple-Product Identity 

§1. The identity referred to in the title of this chapter is 

Jacobi's celebrated identity (Gesammelte Werke, Vol.l, pp.232-4) 

00 2 
, r r 
l a q 

. r= -00 

This ideptity plays a role of great importance in the 

theory of partiUons and related areas, and in particular in 

those areas touched upon in this thesis. 

(6.1.1) 

Thus, if we set k/2 
q for 

9,,/2 
q' -q for a, we 

obtain 

TT ( l-qkr- ½k-½R.) ( l-qkr-½k+½R.) ( l-qkr) 
r~l 

00 

= l 
r=-oo 

= 

= 1 + l (-l)r(/~kr2-½tr+ q½kr 2+½h) 
r~l 

while if we set 

1T 
r:?:l 

k/2 
q 

= 

= 

for 

00 

l 
r=-00 

l + 

R./2 q, q 

In particular, setting k=3, 1=1 

for a, we obtain 

= 

in (6.1.2) yields 

Euler's identity (OperaOmnia Series Prima, Vol. VIII, p.334) 

(6.1.2) 

(6.1.3) 



r 
(1-q ) ::: 1 + I 

r~l 
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(-l) r ( q3r2 /2-½r +q 3r2 /2+½r) (6.1.4) 

We have had occasion in Chapter 2 to use other special cases 

of (6.1.2) and (6.1.3) without comment, and will do so again in 

Chapters 7, 8, 10. 

A further consequence of (6.1.1), obtained by setting ½ 
q 

for q, 
l 

-aq~ for a, dividing by 
1 

1- -a , then letting 

a~ 1 (the limiting process requires some justification) is 

Jacobi's identity (Gesammelte Werke, Vol. 1, pp236-7) 

= L (-l)r(2r+l)q½(r2+r) 
r~O 

We shall make good use of (6.1.4) and (6.1.5) in 

Chapter 7. 

(6. 1. 5) 

Jacobi's identity (6.1.1) can be derived from an identity 

due to Ramanujan (Notebooks, Vol.II, p.196) recently given easy 

proofs by Andrews and Askey (1978) and Ismail (1977) . A proof 

of Ramanujan's identity, and the derivation from it of (6.1.1) 

are given in the Appendix,§7. 

i,j -+ 00 

where 

Alternatively, one can obtain (6.1.1) by simply letting 

in the identity 

= 

is obtained from 

j r r 2[i+j], 
2 a q i+r 

r= -i 

by replacing q by 

(6.1.6) 

2 
q 

The identity (6 .1. 6), ascribed by Hirschhorn (1976) to MacMahon, is 
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actually much older; R. Askey has traced it back as far as 

Schweins (1819). Indeed, (6.1.6) can be written 

i+j 
qi \-i TI (l+(aq -2i)q2r+l) = 

r=l 
(6.1.7) 

and so is seen to be equivalent to the q-binomial theorem (see 

Appendix §2). In §2 we present the proof by induction of (6.1.6) 

given by Hirschhorn (loc.cit.). This proof is a verification; 

it is neater than the related proof given by Grosswald (1966) in 

which (6.1.6) is "generated". 

We can obtain a finite version of (6.1.5) from (6.1.6) as 

follows. 

divide by 

Set i=n+l, j=n, 
k 1 

set q 2 for q, -aq~ for a, 

1 
1 - -a ' 

= 

and let a-+ 1 We then have 

n 
l 

r=O 

Identity (6.1.8), first observed by Hirschhorn (1977) is 

particularly simple, and yields (6.1.5) on letting n-+ 00 

Because it works so nicely, I give, in §3, a direct proof by 

induction of (6.1.8). 

Finally, we note that (6.1.4) can be written 

= 
2 2 

q + l (-l)r (/6r-1) + q (6r+l) ) 
nl 

while (6.1.5) can be written 

2 
l (-l)r(2r+l)q(2r+l) 

r.?:0 

(6.1.8) 

(6.1.9) 

(6.1.10) 
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It follows easily from (6.1.9) and (6.1.10) that if 1 3 a= 2 or 2 

and we write 

q TT 
r~l 

(1 (12/c:t.)r)2a , r -q = l C q 
>O a,r r_ 

then the c are multiplicative. a,r That is 

C = C C if a.,rs a,r a,s (r,s) = 1 . 

Ramanujan (1916) stated and Mordell (1917) proved that more 

a is any divisor of 12, or if 1 
CL = 2 or 

(6.1.11) 

(6.1.12) 

3 
2 , generally if 

and if the C 
et, r 

are defined by (6.1.11), then (6.1.12) holds. 

§2. In order to prove (6.1.6), let 

j 
, r r 2[i+j J' 
la q i+r 

Then, if i 

s .. 1,J 

> 0 

= 
r=-i 

, 

j 2 
{ [~+j-1 J ' + 2i+2r[i+j-l] s. I r r = a q 1,j 1+r-l q i+r 

r=-i 

j 
2 . • 1 2i• l j-1 I 

= l r r [i+J- J + q l a a q ·+ 1 
i:=-i +l 1 r- a r=-i 

j ·2 2i-l j 
[i+j-1] I l r r + q l = a q a 

r•-i+l i+r-1 a r=-i+l 

= 

(6.2.1) 

I 

} 

2 r+l r +2r+l[i+j-l-' 
q i+r ~ 

r r\i+j-1] I 
q i+r-1 

(6.2.2) 

while if j > 0 

j 
, r r 2{[i+j-l]' + 2j-2r[i+j-1J'} 
l a q i+r q i+r-1 s. j l.. - r=-i 



61. 

j-1 2 I 2j-l 
j 

r-1 r 2-2r+l i+j-1 I 

l r r [ i+j-17 l = a q + aq a q [.+ l] 
r=-i 

i+r J 
r=-i+l 1 r-

j-1 2 
[ i+j-1] I 2j-l j-1 2 

[ i:j-1] 
I 

I r r l r r 
= a q + aq a q 

r=-i i+r r=- i 
i+r 

= 
2j-l 

( l+aq )S .. l 
1,J-

Since so,o = 1, it follows by induction that for i,j ~ 0, 

Si . = ,J 

i 

TT 
r=l 

( -1 2r-l) l+a q 

which is (6.1.6). 

§3. In order to prove (6.1.8), let 

n 
s = I 

n r=O 

Then for n > 0 , 

s n = 

= 

= 

n 
I (-1) r (Zr+l)q½(r2+r) {[ 2n J + n-r[ 2n J} 

n-r-1 q n-r 
r=O 

n-1 2 
, (- l) r ( 2 r+l) q ½ ( r +r) [ 2n J 
l n-r-1 r=O 

n 
+ qn I 

r=O 

n-1 2 L (-l)r(Zr+l)q½(r +r){[2n-l J + n+r+l[2n-l J} 
n-r-1 q n-r-2 r=O 

(6.2.3) 

(6.2.4) 

(6.3.1) 



= 

= 

= 

= 

= 

= 

n-1 2 
, (-l)r (Zr+l)q½(r +r) [ 2n-l J 
l n-r-1 

r=0 

n-2 2 
+ qn , (-1) r (Zr+l) ½(r +3r+2) [ 2n-l J 

l q n-r-2 
r=O 

n 
+ qn I 

r=O 

n-1 2 
+ q2n , (-l)r (Zr+l) ½(r +r)[ 2n-l J 

l q n-r-1 
r=O 

n-1 2 
+ qn , (-l)r-l(Zr-l) ½(r +r)[ 2n-l J 

l q n-r-1 
r=l 

n-1 2 
_ Zqn , (-l)r (Zr+l) ½(r +r)[ 2n-1 J 

l q n-r-1 
r=O 

(1-Z n+q2n)S 
q n-1 

Since s0=1, it follows by induction that for n ~ 0 , 

n 
s = TT n 

r=l 
which is (6.1.8). 
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(6.3.2) 

(6.3.3) 
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Chapter 7. Some Relations involving the Partition Function 

§ 1. Let 

Then 

p(n) denote the number of partitions of 

l 
n:2:0 

n p(n)q = 1T 
n~l 

n. 

Ramanujan (1919a) conjectured, on the basis of the evidence 

provided by a table of values of 

p(Sn+4) - 0 mod 5, 

p(7n+S) - 0 mod 7, 

p(lln+6)= 0 mod 11, 

and more generally that 

p(n) 

if and 24;\ = 1 mod 6, 

p(n6 + ;\) = 0 mod 6. 

that 

then 

(7.1.1) 

(7.1.2) 

(7.1.3) 

(7.1.4) 

(7.1.5) 

H~ succeeded (Ramanujan (1919a),(1921)) in proving this 

conjecture for certain choices of (a,b,c); in particular, 

he proved (7.1.2)-(7.1.4), but (7.1.5) was seen by S.Chowla to be 

false as it stands. The following theorem is the result of 

the work of G.N.Watson (1938) and A.O.L. Atkin (1967). 

Theorem 7.1.6 

If 6=5a7bllc, and 24;\ = 1 mod 6, then 

In §2 I give an elementary proof of (7.1.2), based on a 

technique for "splitting" the generating function of the p(n) 

A similar proof can be given for (7.1.3), but I have not succeeded 

in proving (7.1.4) by the same method, 



Ramanujan (1919a) proved the identity 

r 
n~O 

n p(Sn+4)q = 5 { TT 
r~l 

n-lr>5 I TTO-qr)6 } 
r~l 
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(7.1.7) 

G.H. Hardy (1927) pp .xxxiv-v, says ".It would be difficult to find 

more beautiful formulae than the Rogers-Ramanujan identities but 

if I had to select one formula from all Ramanujan's work, I would 

agree with Major MacMahon in selecting [the above identity]." 

In §2 I giv~ an elementary proof of (7.1.7). The proofs I give 

in §2 canbe shown to be related to those of O.Kolberg (1957). 

then 

Kolberg (loc,cit) has further shown that if 

P. = 
1 

l p(n)qn' 
n:::i mod 5 

2 
p Op 4 + p 1 p 3 - 2P 2 = O ' 

P0P2 + P3P4 - 2P 12= O 

3P l 2 - 2P 0P 3 - P / = 0 

In §3 I prove (7.1.9)-(7.1.11), and in §4 I further show that 

similar polynomial identities hold for any modulus not a power 

of 2. In particular, we will see in §5 that if 

= l p(n)qn 
n=i mod 3 

then 

(7.1.8) 

(7. 1. 9) 

(7.1.10) 

(7.1.11) 

(7.1.12) 

2 2 2 2 2 2 2 2 2 
(Po -P?2><P2 -POP!) + (P2 -Pl1><P1 -POP2) + (Pl -POP2)(Po -P/2> =O .. 

(7.1.13) 

In §61 employ the same techniques to prove that FSn+4 = 0 mod 5, 

where the F are the Fibonacci numbers. n 



§2. In order to prove (7.1.2), write 

1T (1-qn) = ~(q) ' 
n~l 

and suppose 
5 

W=l, IJJ'/ 1. 

Then l 
n 

p (n)q = 1/ ~(q) 
n~O 

Consider the denominator of (7.2.3), 

2 3 4 
~ • ~(q)~(wq)~(w q)~(w q)~(w q) = 

= 1T r r r 2r r 3r r 4r r (1-q )(1-w q )(1-w q )(1-w q )(1-w q) 
r~l 

- 1T 
r=0(5) 

= 

= 7T o-lr>6 / 7T (1-qsr) 
r .;:l r=O(S) 

= 7T (l-q5r)6 / 7T (l-q2Sr) 
r~l rcl 

= 

We now consider the numerator of (7.2.3). We have (6.1.4) 

that 

where ~1 (q) contains all terms of ~(q) of which the 

exponent is congruent to i mod S. (Note that ~3(q)=~4(q)= 0 

2 
since 3r /2 ± ½r i 3,4 mod 5.) 
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(7.2.1) 

(7.2.2) 

(7.2.4) 

(7.2.5) 



It follows from (7.2.5) that 

2 
cf>(wq) = <Po + u)cf>l + w <P2 , 

cf>(w2q) =<Po+ w2cf>l + w4<Pi , 

3 
=<Po+ w <P1 + W</l2 • 

4 3 
= 9o + w <P1 + w <1>2 • 

and thence that the numerator 

cj)(wq)cj)(w2q)cj)(w2q)<l>(w4q) = 

4 3 2 3 3 2 2 
= <<1>0 -<l>1<l>2 + 2<1>ocf>1<l>2) + <-<l>o<l>1 - <l>o<l>2 + <P1<P2) 

3 3 2 2 4 3 2 . 
+ .<-<l>o<Pz - <l>1<P2 + <Po<l>1) + <<P2 -<Po<P1 + 2<1>o<P1<P2> 

It follows from (7.2.3), (7.2.4) and (7.2.7) that 

\ p( 5n+2)q5n+2 = ( ~3~ ~ ~3 ~2~2)/~ 
l -~0~2 - ~1~2 + ~0~1 ~ ' 

n~O 

\ p(Sn+J)q5n+3 = (~4 ~ ~3 2~2~ ~ )/~ 
l ~2 - ~0~1 + ~0~1~2 ~ ' 

n.?0 

, p(Sn+4)q5n+4 = (~4 3~ ~2~ ~2~2)/~ 
l ~1 - ~0~1~2 + ~0~2 ~ 

~o 

We further have (6.1.5) that 

((j)(q))3 = l (-l)r(2r+l)q½(r2+r) 
r.?0 
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(7.2.6) 

(7.2.7) 

(7 .2.8) 



That is, 

= 

2 2 3 
+ ( 3~0~1 + 3~0$2) + ($1+6$0~1$2) 

2 2 
+ ( 3$0$2 + 3$1$2) 

l (-l)r(2r+l)q½(r2+r) 
r2".0 

Since ½(r2+r) 1 2,4 mod 5, it follows from (7.2.9) that 

2 2 
34>04>1 + 34>04>2 = 0 

and 
2 2 

34>0~2 + 3$1~2 = O 

From both (7.2.10) and (7.2.11) it follows that 

lt follows from (7.2.8) and (7.2.12) that 

l p(5n+4)q5n+4 = S~i/~ . 
n.!:0 

(7.1.2) follows directly from (7.2.13). 

Further, we have 

321/ 1 2 ~ = l (-l)rq r 2-~r+ l (-l)rq3r /2-+½r 
1 3r2/2-½r:1(5) 3r2/2-+l~r=1(5) 
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(7.2.9) 

(7.2.10) 

(7.2.11) 

(7.2.12) 

(7.2.13) 

2 2 l (-l)5s+lq½(75s +25s+2) + l (-l)5s-lq½(75s -25s+2) = 
s~O s2".l 

= -q 

- -q 

TT (l-q75r~5o)(l-q75r-25)(1-q75r) 
r~l 

r2".l 
25 = -q cf>(q ) (7.2.14) 



It follows from (7.2.4), (7.2.13) and (7.2.14) that 

or 

I p(Sn+4)q5n+4 = Sq4(<j)(q25))5/((jl(q5))6, 
n~O 

I p(5n+4)qn = 5((jl(q5))5/(<P(q))6 , 
n~O 

which is (7.1.7). 

§3. We have shown (7.2.8) that 

25 5 6 
pi = l)Ji,cp(q )/((jl(q )) , 

where 

tl>o 
4 3 2 = <Po - <P1<P2 + 2<Po<P1<P2 

iµ 1 
3 3 2 2 

= - <Po<P1 - <Po<P2 + <P1<P2 

1P2 
3 3 2 2 

= - <Po<P2 - <P1<P2 + <Po<P1 

tl>3 
4 3 2 

= <P2 - <Po<P1 + 2<Po<P1<P2 

1/14 
4 2 2 2 

= <P1 - 3<Po<P1<P2 + <Po<P2 

and where (7.2.12) 

<Po<P2 = - <1>2 
1 

It follows that 

"'o 
4 3 

= <Po - 3<1>1<P2 

"'1 
3 2 2 

= - <Po<P1 + 2<P1<P2 , 

"'2 
2 2 3 

= 2<Po<P1 - <P1<P2 , 

tl>3 
3 4 

= - 3<Po<P1 + <P2 , 

tl>4 = 5<P4 
1 
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(7.2.15) 

(7.2.16) 

(7.3.1) 

(7.3.2) 



and so 

,I, ,I, 3~4~4 ~7~ 2~2~6 
o/lo/3 = ~Oo/1 + 7~1~2 + o/lo/2 

1/Jo1/J4 + 1/J11/J3 - 21/J~ = 0 

ijJOijJ2 + 1/J31/J4 - 21/Ji = O 

(7.1.9) - (7.1.11) follow from (7.3.4) - (7.3.6) together with 

(7.3.1). 

§4. For m ~ 1, i = 0,1, ... ,m-l, 

P. 
1 

= l 
n=i mod m 

n p(n)q 

let 

We prove the following as yet unpublished results: 

Theorem 7.4.2. 

If m is not of the form then there is at 

69. 

(7.3.3) 

(7.3.4) 

(7.3.5) 

(7.3.6) 

(7.4.1) 

least one non-trivial polynomial in P0 , ... ,Pm-l homogeneous 
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of degree m-1, which, considered as a series in q, is 

identically zero. 

Theorem 7.4.3. 

If m is not a power of 2, then there is at least one 

non-trivial polynomial in homogeneous of degree 

3(m-1), which, considered as a series in q, is identically 

zero. 

Proof of Theorem 7.4.2. 

Suppose m is not of the form Then there is a 

prime p, p ,/: 2,3, with Since p = ± 1 mod 6, (p,24)=1. 

As j 

24j+l. 

runs through a complete set of residues mod p, so does 

So, for some j 

no solution. For these j, 

the congruence 

the congruence 

2 x - 24j+l mod p 

(6r±1) 2 = 24j+l 

has 

has no solution, so the congruence 3 2+ l • d 2r - ~r - J mo p has no solution, 

from which it follows that the congruence ¾r2± ½r = j mod m 

has no solution. 

Now write 

<t> = <t>(q) = TT r 
(1-q ) = 1 + l (-l)r(q3r2/2-½r+ q3r2 /2+1-'2r) 

r~l r~l 

= + ... + ,+. '+'m (7.4.4) 

contains all terms of where, as in §2, <l>i 

exponent is congruent to 

<I> of which the 

The"n for those j 

has no solution, 

i mod m. 

2 
for which the congruence 3r / 2 ± ½r = j mod m 

<f>·. = 0 
J 

(7.4.5) 



Now, writing P = P(q) = 

we have 

cp = 1/P 

I p(n)qn, 
n2:0 

and 

7 l. 

2'1Ti/m w = e 

2 m-1 m-1 
= P(wq)P(w q) ... P(w q)/P(q)P(wq) ... P(w q). 

The denominator of (7.4.6), 

P(q) 

is a series in 

m-1 
= P(q)P(wq) ... P(w q). 

m 
q , for 

2 m-1 
P(wq) = P(wq)P(w q) ... P(w q)P(q) = P(q), 

so if we write 

P(q) = 

then 

r w a = a r r 

so for rt O mod rn, 

Further, we have 

so 

r a q 
r 

a = 0 r 

P(wq) 
m-1 

= p O + wP 1 + · · · + w P m-1 ' 

:·, P(w2q) = 2 m-2 
p O + w p 1 + · · .+ w p rn- 1 

Thus the numerator of (7.4.6) is 

2 m-1 P(wq)P(w q) .•. P(w q) = 

m-1 m-1 
= (PO+wPl + .•. + w pm-l)x ... x(PO+w Pl+ ... +wPm-1) 

- (X 
p m-1 
m-1 

(7 .4.6) 

(7.4.7) 

(7 .4. 8) 

(7 .4.9) 

(7.4.10) 

(7.4.11) 

(7 .4.12) 

(7.4.13) 

(7 .4.14) 
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It follows from (7.4.4), (7.4.6), (7.4.7) and (7.4.14) that 

(7.4.15) 

whence 

= 
a.O a.m-1 

l c(a.o,···,a.m-l)PO ... Pm-1 /P 
a.o+ ••. +a.m-1 =m-1 

a. 1+2a.2+ ••. +(m-l)am-l= i mod m (7.4.16) 

Thus, for each j for which <P. = o, 
J 

we obtain a polynomial 

homogeneous of degree m-1, which, 

considered as a series in q, is identically zero, viz. 

(7.4.17) 

It is easy to check that the coefficient of p~2p~ is 

. 2j 
C ( m-2 , 0 , • • • , 0 , 1 , 0 , • . • 0) = WJ + W + + w(m-l)j,; 0 ' (7.4.18) 

so the polynomial is non-trivial. 

Proof of 'l'heorem 7.4.3. 

Suppose m is not a power of 2. Then there is a prime p, p#2, 

with Pim• Since p = 1 mod 2, (p,8) = 1. As j runs 

through a complete set of residues mod p, so does 8j+l. So for 

some j' the congruence 
2 

x - 8j+l mod p has no solution. 

For these j' the congruence (2r+l) 2 = 8j+l mod p has no 

solution, so the congruence ½r2+1~r = j mod p has no solution, 

from which it follows that the congruence ½r2+1~r = j mod m has 

no solution. 
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Now write 

1J, = cj)3 = r 
r;,:Q 

= it,o + ljJl + ... + "'m-1 (7.4.19) 

where it,i contains all those terms of 1J, in which the 

exponent is congruent to i mod m. 

For those j for which the congruence 2 
½r +1~r - j mod m 

has no solutions, we have 

= 0 (7. 4. 20) 

Now, 

"'o + ... + ljJm-1 = 

(7.4.21) 

(each coefficient 

it follows that 

is 1,3, or 6), from which 

(7.4.22) 

Thus, for those j 
2 

for which the congruence ½r +½r - j mod m 

has no solution, we have 

r = o. (7.4.23) 
s0+ •.. +sm- 1 =3 

B1+2S2+ ... +(m-1)8m-l - j mod m 
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If in (7.4.23) we substitute (7.4.16) and multiply throughout by 

we obtain a polynomial in P0 , ••• ,Pm-l' homogeneous of 

degree 3(m-l), which, considered as a series in q, is 

identically zero. 

Further, the coefficient d(2,0, ••• ,0,l,O, •.• ,O) of 

2 
<t>o4>j in "'j is 3, while the coefficient c(111-l,O, •.• ,O) 

of m-1 
Po in 4>o is 1, and the coefficient 

c(m•2,0, ••. ,0,1,0, •.• 0) in (j)j is, as noted 

in (7.4.18), non-zero, so the coefficient of p3m-4p in the 
0 j 

above polynomial is non-zero, so the polynomial is non-trivial. 

§4. Suppose m=3. 

The congruence ½r2+½r ~ 2 mod 3 has no solutions, so 

ij)2 = 0 • (7.5.1) 

Now~ 

= 

(7.5.2) 

so 

ij)2 = (7.5.3) 

It follows from (7.5.1) and (7.5.3) that 

2 2 2 
34>o4>1+34>14>2+34>24>o = 0 • (7.5.4) 



75. 

::urther, 

<l>o+4>i+<p2 = (Po-+i.uPl+!l.l2P2)(Po-11.J2Pl+<.uP2)/P 

2 (P;-P0P1) + 2 = [(PO-PlP2) + (P 1-P0P2)J/P (7.5.5) 

so 

<Po = (P;-P 1P2)/P 

cp 1 = (P;-P0P1)/P 

2 
<P2 = (P 1-P0P2)/P (7.5.6) 

It follows from (7.5.4) and (7.5.6) that 

(7.5.7) 

(Note that the coefficient of is 2 3 X 1 X -1 = -3 ~ Q, 

so the polynomial is non-trivial.) 

Dividing by 3, we obtain 

2 2 2 2 2 2 2 2 2 (P0-P 1P2)(P2-P0P1) + (P 2-P0P1)(P 1-P0P2) + (P 1-P0P2)(P0-P 1P2) = 0 , 

(7 .5.8) 

which is (7.1.13). 

As a second example of the foregoing, let m=S. The 

congruences 

and 

3r2/2 ± ½r = 3, 4 mod S 

<P3 = 0 

<1>4 = 0 

have no solutions so 

(7.5.9) 

(7.5.10) 



Now, ~o + ~1 + ~2 + ~3 + ~4 = 

= 

from which it follows that 

and 

+ 2P P2p p3p + P2p2 PPP p P p3 F3P. 
0 3 4 - 1 2 4 1 4 - 1·2 3 4 - ·1 3 - 2 4 
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(7.S.11) 

(7.5.12) 
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Thus (7.5.9) becomes 

(7.5.13) 

while (7.S.10) becomes 

(7.5.14) 

6. The technique deve:oped in §2 can be applied far more widely 

than has so far been indicated. Thus, for example, we can use 

it to prove that 

F5n+4 = 0 ir.od S • 

We start with 

Here 

where 

F • F(q) • l F qn = 1/(1-q-q2) = 1/$ 
>O n n-

$ = $0 + $1 + $2 

2 
$0 = l, $1 = -q, $2 = -q 

(Notice that $3 = $4 = 0 and 

in the case of the partition function.) 

As before, if 5 w • 1, w I 1 , 

just as 

2 4 4 
F = «p(wq)(/J(w q) ••• «p(w q)/«p(q)«l>(wq) ••• «l>(w q) • 

(7.6.1) 

(7.6.2) 

(7.6.3) 

(7.6.4) 

(7·.6.5) 



The denominator of (7.6.5), 

* • <l>(q)4>(wq) ••• <l>(w4q) 

• (l-q-q2)(l-wq-w2q2)(l-w2q-w4q2)(l-w3q-wq2)(l-w4q-w3q2) 

is.a power series in 

5 10 • 1 - llq - q • 

5 
q and is easily computed to be 

The n~rator of (7.6.5) is, similarly, 

cj>(wq)cj>(w2q)cj>(w3q)<l>(w4q) = 

• (l-wq-w2q2)(l-w2q-w4q2)(l-w3q-wq2)(l-w4q-w3q2) 

It fo.Uows that 

I F q5n = 
>O Sn n-

5 5 10 (1-3q )/(1-llq -q ) , 

In particular, it follows from (7.6.8) that 

and that 

F Sn+4 - 0 mod 5 • 
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(7.6.6) 

(7.6.7) 

(7 .6. 8) 

(7.6.9) 

(7. 6 .10) 
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Chapter 8. The Parity of the Partition Function 

§1. Whereas something is known of the arithmetic behaviour of p(n) 

modulo 5,7 and 11 for example, (see Chapter 7), very little is known 

concerning the parity of p(n). 

Kolberg (1959) proved (see §2) 

Theorem 8.1.1: p(n) 

often. 

is even infinitely often and odd infinitely 

In order to obtain a better picture, it is desirable to have a 

table of values. Since p(n) grows very quickly, it is convenient 

to make use of the following result of P.A. MacMahon (1921), namely 

Theorem 8.1.2 Modulo 2, 

p(4n) - p(n) + l p(n-(8k2-k)) + ). p(n-(8k2+k)) 
kc!:l kc!:l 

'p(4n+l) = p(n) + l p(n-(8k2-3k))+ l p(n-(8k2+3k)) 
kc!: l kc!: 1 

p(4n+3) = p(n) + l p(n-(8k2-Sk))+ l p(n-(8k2+5k)) 
kc!: 1 kc!: 1 

p(4n+6) = p(n) + l p(n-(8k2-7k))+ l p(n-(8k2+7k)) • 
kc!: 1 kc!: 1 

Indeed, J.R. Parker and D. Shanks (1967) computed a table for 

n s 2 x 106 and found that 

randomly modulo 2. 

p(n) seeeJDS to be distributed 

We prove the following results, to appear in Hirschhorn (1980?), 
.·, 

which improve on Theorem 8. 1. 2. * Here p (n) denotes the number 

of partitions of n into distinct odd parts, r(n) denotes the 

number of solutions with n1 ~ 0 of the equation 

n • 6(n1) + 46(n2) + 166(n3) + ... 



where 6(n) = ½n(n+l), and t(n) = t 

2 t+l k n . 

Theorem 8.1.3 

* p(n) - p (n) - r(n) mod 2 

Theorem 8.1.4 

* p(n) ;?: p (n) ;?: r(n) 

Theorem 8.1.5 

r(O) = 1, r(2) = 0, and for 

r(4n) r(n) l 2 = + r(n-(8k -k)) + 
k;?:l 

r(4n+l) = r(n) + L r(n-(8k2-3k)) + 
k;?:l 

r(4n+3) = r(n) + L r(n-(Bk2-Sk)) + 
k;?:l 

r(4n+6) = r(n) + 
2 L r(n-(Bk -7k)) + 

k;?:l 

Theorem 8.1.6 

p(n) * = p (n) + 2 l * 2 p (n-2k ) mod 4 
k;?:l 

Theorem 8.1.7 

p(n) = r(n) + 2 I 2 r(n-2k) mod 4 
t(k) even 

Theorem 8.1.8 

p*(n) = r(n) + 2 I r(n-Bk2) mod 4 
t(k) even 

80. 

is defined by 2t In, 

n;?: 0 ' 

l 2 r(n-(8k +k)), 
k;?:l 

). 2 r(n-(8k +3k)) 
k;?:l 

l 2 r(n-(8k +Sk)) 
k;?:l 

l 2 r(n-(Bk +7k)) . 
k;?:l 

Clearly, Theorem 8.1.2 is a corollary of Theorems 8.1.3 and 

8.1.5, while Theorem 8.1.3 is a corollary of Theorems 8.1.7 and 8.1.8. 



Further, Theorem 8.1.4 greatly understates the facts. 

p(n) is far greater than r(n). The first few values 

* P (n) and r(n) are given in the following table: 

n 0 1 2 

p(n) 1 1 2 

* P (n) 1 1 0 

r(n) 1 1 0 

§2. We have 

Therefore 

n p(n)q 

TT o-qn) 
n ~ 1 

Since ( 6 • 1. 3) 

3 4 5 

3 5 7 

1 l 1 

l 1 1 

= 

I p(n)qn = 
n~O 

TT <1-qn) = 1 + I 
n~l n~l 

it follows that 

6 7 8 9 

11 15 22 30 

l l 2 2 

1 1 0 0 

1 . 

p(n) 
2 . 2 

= I p(n-½(3k -k)) + I p(n-½(3k +k)) 
k~l ~1 

Suppose p(n) is even only finitely often. 

of 

10 

42 

2 

2 
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Indeed, 

p(n), 

11 12 

56 77 

2 3 

0 l 

(8.2.1) 

(8.2.2) 

(8.2.3) 

(8.2.4) 

Then p(n) is odd for n ~ m (say) But if 
2 

n = ½Om +m)+m 

we have 

p(n) = p(n-1) + p(n-2) -- ++ .... 

- (-l)m(p(n-½(3m2-m)) + p(n-½(3m2+m))) 

= p(n-1) + p(n-2) -- ++ ..... 
m - (-1) (p(2m) + p(m)) 

which is even, a contradiction. 
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On the other hand, suppose p(n) is odd only finitely often. 

Then p(n) is even for n ~ m (say). B~t if n • ½(3m2+m) , 

p(n) ~ p(nrl) + p(n-2) -- ++ 

m 2 2 + (-1) ((p(n-½(3m -m)) + p(n- ½(3m +m)) 

= p(n-1) + p(n-2) -- ++ 

m + (-1) (p(m) + p(O)) , 

which is odd, ag~in a contradiction. 

Thus Theorem 8.1.1 is proved, 

p. We have 

l p(n)qn ~ 1/ TT (1 - q0 ) 

n~O n~l 

= 

= lT ( 1+q2n ... 1) 
n~ 1 

* n .. l. P (n) q 
n~O 

\ * n l p (n)q 
n.?:0 

since 

TT (1 + g2n) . 
n~ 1 1 2n 

- q 

TT (1 + 92n) . 
1 2n n~l - q 

mod 2 

l + 92n 

1 2n 
- q 

2 2n 
= 1 + q - 1 mod 2 • 

1 2n 
- q 

It follows from (8.3.2) that 

* p(n) = p (n) mod 2. 

(8.3.1) 

ca.3.2) 

(8.3.3) 

(8.3.4) 



Further, 

= TT (l+q4n-3)(l+q4n-l) 
n 2'.l 

which by (6.1.3) 

= {1 + L 

= 

= 

n2'.l 

l q6(n) / TT (l-q4n) 
n2'.0 n2'.l 

L qMn) 
n2'.0 

}: p(n) q4n 
n2'.0 

which by (8.3.4) 

l q6(n) 
n2'.0 

It follows by iteration of (8.3.6) that, mod 2, 

$0 

, *<) n _ , 6(n), 46(n) 
l P n q = l q l q 

n2'.0 n~O n~O 

= 

* 

l 
n2'.0 

n 
r(n)q , 

l q 166(n) 

n~O 

p (n) = r(n) mod 2 . 

(8.3.4) and (8.3.8) constitute Theorem ij.1.3. 

* Clearly p(n) ~ p (n) • 

Let us write 

83. 

(8.3.S) 

(8.3.6) 

(8.3.7) 

(8.3.8) 

(8.3.9) 
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if 

a ~ b for every n. n n (8.3.10) 

We h~ve by (8.J.S) al)d (8.3.9) that 

~ l qMn) L P* (n)q 4n • (8.3.11) 
n~o ~o 

lt followa by iteration of (8.3.11) that 

(8.3.12) 

or 

* p (n) ~ r(n) . (8.3.1)) 

(8.3.9) ~nd (8.3.13) constitute Theorem 8.1.4. 

We !)ave 

l qA(n) l q46(n) I ql66(n) ••• 
~o n~O n~O 

= l qA(n) l r(n)q4n (8.3.14) 
n~O n~O 

lf we now substitute 

L qA(~). ( r qA(Sn) + q6(8n+7)) + ( l q6(8n+l) + q6(8n-+6)) 
n~O n~O n~O 

+ ( f qA(~n+2)+qA(8n+S)) + ( L qA(8n+3) + q6(8n+4)) 
n~O n~O 
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2 2 2 2 
{ 1 + I (q32n -4n+ q32n +4n ) } + q{ 1 + I (q32n -12n+ q32n +12n)} 

n~l n~l 

(8.3.15) 

into (8.3.14), and compare coefficients, we obtain Theofem 8.1.5. 

W~ have (8.3.1) 

l p(n)q 0 = l p\n)<f, TT (1±9~: ) 
n~O n~O n ~l 1-q 

~ * n TT 2n . 4n•2 : i p (n)q / (1-q )(1-q ) 
n~O n ~l 

t * n TT 4n-2 2 4n • l p (n)q / · (1-q ) (l~q ) 
~o n~l 

which,by (6.1.2) 

* 2 2 = L p (n) qn x { 1+2 l. ·Cft n } mod 4 . 
n:?0 ~l · 

lit 

since ., 

2 2 
{1 + 2I q2n }{l + 2 l (-l)tlq2n } -

2 
1 + 4 t q Sn = l mo4 4 

ftlij n~l n~l 

Theorem 8,1.6 follows f~om (8.3.16). 

Mod.ulo 4, we have by (8. 3.16) and (8.l.5), 

(8.3.16) 

(8.3.17) 
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n _ 2n2 * n L p(n)q ~ {1 + 2 l q } l p (n)q mod 4 
~~O n~l n~O 

2 
• {1 + 2 l q~n} l /~<n) l p(n)q4n . (8.3.18) 

n~l n~O n~O 

It follow~ by iteration of (8.3.18) that, mod 4, 

2 2 
- {' 1 + 2 l q2n }{ 1 + 2 l q Sn } . . . x l r( n) qn 

n~l n~l n~O 

$ { 1 + 2 ( r q 2n 2 + l. q Sn 2 + ... ) } X r r ( n) q n 
n~l n~l n~O 

2 
= {1 + 2 l (t(n)+l)q2n} X l r(n)qn 

n~l n~O 

2 
- {1 + 2 r q2n} ). r(n)qn 

t(n)even n~ 

from which Theorem 8.1.7 follows. 

Finally, we have from (8.3.5) and (8.3.19) ~hijt, mod 4, 

• r p (n)qn 
n~O 

t 6(n) 
- l q 

n~O 

t 4n l p(n)q 
n~O 

2 
= {1 + 2 l q8n} l r(n)qn, 

t(n)even n~O 

from which Theorem 8.1.8 follows. 

(8.3,19) 

(8,3.20) 
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Chap~er 9. Some Partition Theorems of the Rogers-R,amqnujan Type 

§I. His well known that the identity 

2 ½(r +r) 2 l 9 = 1/(q;q )00 (9. 1. 1) 
r:2:0 (q) r 

is equivalent to Euler's partition theorem 

Theorem 9.1.2 

The number of partitions of n into distinct parts is 

aqua~ to the ~umber of partitions of n into odd parts, 

whiie ~he Ro~ers-Ramanujan identities 

2 

~ 
r 5 4 5 s,__ = 1/(q;q )00(q ;q >00 r;"::0 (q) r 

and 
2 r +r 2 5 3 5 

l 9 
(q) r 

= 1/(q ;q )00(q ;q )00 
r~O 

are, as first tealised by MacMahon (1916)Art.276, equivalent, 

respectively, tp the partition theorems 

Theorem 9.1.5 

(9.1.3) 

(9.1.4) 

The number of partitions of n into parts which differ 

by 2 is equal to the number of partitions of 

congruent to 1 or 4 mod 5, 

and 

Theorem 9.1,6 

n into parts 

The number of partitions of n into parts which differ by 2, 

but with no l's. is equal to the number of partitions of n into 

parts congruent to 2 or 3 mod 5. 
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L.J. Slater (1951) gave a list of 130 identi~ies involving 

q-series and infinite products, some of which other than those 

already considered can be int~rpreted as results about partitions. 

Thus for example, the four identities, Slater (loc.cit.) [79]=[98], 

[94], [38]=[86] qnd [39]=[83], proved in §§3,4, 

r2 
, Q { 20 3 20 4 20 5 20 7 20 9 20 
l (q)~r ~ l/ (q;q )oo(q ;q )oo(q ;q )oo(q ;q )oo(q ;q )oo(q ;q )oo 

r~O ~ 

( 11, 20) ( 13. 20) ( 15. 20) ( 16. 20) ( 17. 20) ( 19, 20) } • q ,q 00 q ,q 0() q ,q 00 q ,q 00 q ,q 00 q ,q 00 

(9. 1. 7) 
2 

qr +r { 20 2 20 5 20 6 20 8 20 9 20 l (q) = 1/ (q;q )!Xl(q ;q )oo(q ;q )oo(q ;q )oo(q ;q )oo(q ;q )<Xl 
r~0 2r+l 

< .11. 20> < 12. 20> < 14. 20,c 15_ 20> < 1s. 20> < 19. 20) } • q ,q 00 q ,q 0() q ,q 'ap q ,q 00 q ,q 00 q ,q 00 
I 

(9.1.8) 

{ 16 4 16 6 16 7 16 
1/ (q;q )oo(q ;q )oo(q ;q )oo(q ;q )oo 

( 9, 16) ( 10, 16) ( 12. 16) ( 15, 16)} 
0 q ,q 00 q ,q 00 q ,q 00 q ,q .oo (9. 1.9) 

and 

2r2 
f q { 2 16 3 16 4 16 5 16 
l () = l/ (q ;q )oo(q ;q )oo(q ;q )oo(q ;q )oo 

r~O q 2r 
( 11, 16) ( 12, 16) ( 13, 16) ( 14, 16) } • q ,q 00 q ,q 00 q ,q 00 q ,q 00 

(9.1.10) 

yield, ~eapectively, as we prove in §2, 

Theor1:1m 9. 1. 11. 

The number of partitions of n, 

with 

al> a2 ~ a3 > a4 ~as> 

is equal to the number of partitions of n into parts congruent 

to 1, 3 , 4 , 5, 7, 9, 11, 13, 15, 16, 1 7 or 19 mod 20, 
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The number of partitions of n, 

with 

is equal to the number of partitions of n into parts congruent 

to 1, 2, 5, 6, 8, 9, 11, 12, 14, 15, 18 or 19 mod 20, 

!1Jeor~m 9.1,13 
I 

The number of partitions of n, 

with 

is equa.l ~o the number of partitions of n into parts congruent to 

l, 4, 6, 7, 9, 10, 12 or 15 mod·16, and 

r}ieorem 2-1,. 14 . 

The number of partitions of n, 

with 

is equal tp the.nwnber of partitions of n into parts congr'*nt 

to 2, l, 4, 5, 11, 12. 13 ot 14 mod 16. 

Whereas· Theorems 9. 1. 11 and 9 .1. 12 have appeared previously 

in the lit~rattite (Gordon (1965), W. Connor (1975)), Theorems 9.1.13 

and 9. 1. 14 are new. All foul;' are to appear in Hirschoorn (1979?a). 
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Andrews has pointed out that, as we show in §5, the left 

hand side of (9.1.9) enumerates the number of partitions of 2n+l 

into distinct odd parts, while the left-hand side of (9.1.10) 

enumerates the number of partitions of 2n into distinct odq 

parts, giving further partition theorems. 

§2. We start by proving Theorem 9.1.11. Let 

denote the number of partitions of n, 

with 

Any such partition of n has for some r ~ l , 2r-l or 2r parts. 

Then 

If we subtract 

1 from a 2r-l' l from a2r_2, 2 from a2r-J' •.• r from a1 , 

there remains a partition of n.-ra into at most 2r-l parts, 

and this process is reversible, giving a one-to-one correspond~nce 

between the two sets of partitions. 

$~larly, if 

w:j.th 

then a ~ l a > 2 >2 > > +l 2r' ' 2r-l - 'a2r-2 - ' •.• , 8 2 - r, 8 1 - r ' 

and if we su~tract 

1 frcu a2r, 2 from a 2r-l' 2 from a2r-Z , ••• , r+l from a1 , 
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the remains a partition of 
2 n-(r +2r) into at most 2r parts, 

and again the process is reversible, giving a one-to one correspondence. 

Thus 

r2 2 r +2r 
1 I n 1 + I 9. I 9 + p1(n)q = 

(q)2r-l 
+ 

(q)2r n~l r~l r~l 

2 2 

( 
r r +2r ) = 1 + l 9. + 9. 

r~l (q) 2r-l (q)2r 

2 r 
= l 9 (9.2.1) 

r~O (q)2r 

which, by (9.1.7), yields Theorem 9.1.11. 

The proofs of Theorems 9.1.12-9.1.14 are similar. 

Thus, if Pz (n) denotes the number of partitions of n, 

with 

then 

2 r +r-1 2 r +r 
1 l n l 9. I q + p2 (n)q = 1 + + 

n~l r~l (q)2r-l r~l (q)2r 

2 i+3r+l] 
(1 + ~) ( r +r 

= + I s + q 
r~l (q)2r (q)2r+l 

2 r +r 
= I __.g....__ 

r~O (q)2r+l 
(9.2.2) 

which, by (9.1.8), yields Theorem 9.1.12. 

If p3 (n) denotes the number of partitions of n, 



with 

then 

= 

= 

2r2-1 
I + L q + 

r~l (q)2r-l 

2r2+2r l _._9 __ 

r~l (q) 2r 
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( 
2r2+2r 2r 2+4r+ll + l q +-q __ _ 

r~l (q)2r (q)2r+l J 

2r2+2r l __ g __ 
r~O {q)2r+l 

(9.2.3) 

which, by (9.1,9), yields Theorem 9.1.13. 

Finally,if p4 (n) denotes the number of partitions of n, 

with 

then 

= 

= 

1 + l 
r~l 

1 + l 
r~l 

2 2 
l 9 r 

r~O (q)2 

(q) 2r-l 

') 2 
[ 

... r 
q 

(q) 2r-l 

which, by (9.1.10), yields Theorem 9.1.14. 

+ l 
2 2r +2r q 

r~l 

2r2+2r) + ..:.q ___ _ 

(q)2r 

(9.2.4) 
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§3. In order to prove (9.1.7) we first establish the identity 

(a) 
00 I 

r~O 

Thus, 

(a) 
00 I 

r~O 

which is (9.3.1). 

½(:r2-r) r 
2 2r -r 2r 

9 a l q a = (q)r(a)r 2 2 r~O (q ;q ) r 

r 
2 <2) r r 

½(r -r) r q a (aq ) 00 9. a = l (q)r(a)r (q) r r~O 

(r) (s) 
2 r ( l)s( r)s 2 

= I g a l - ag g 

r~O (q) r s~O (q) s 

(r+s) 
r+s( l)s 2 

= l a - 9 

r,s~O (q)r(q)s 

t 
t <2> t 

(-l)s[t] = l a g l 
t~O (q)t s~O s 

= l 2 2 
t even 

2r ½(2r)(2r-l) 
= l a 9 2 2 

r~O (q ;q )r 

(q ;q )t/2 

(9.3.1) 

(see App 'x §6) 

If in (9.3.1) we set 2 q for q, a=q and use the first 

Rogers-Ramanujan identity, we obtain 

2 
(q ;q )QO l 

r~O 

r2 
q = 

(q)2r 

= 

l 
r~O 

. 2 
4r 

9 
4 4 

(q ;q ) r 

1/( 4. 2Q.( 16. 20) q ,q {.g q ,q QO (9.3.2)· 



so 

= 

l 
r;;:o 

2 r 
9 

(q)2r 

{ 20 3 20 4 20 5 20 7 20 9 20 l/ (q;q )oo(q ;q )oo(q ;q )oo(q ;q )oo(q ;q )oo(q ;q )oo 
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( 11 20) ( 13 20) ( 15 20) ( 16 20) ( 17 20) ( 19 20) } q ;q 00 q ;q 00 q ;q 00 q ;q 00 q ;q 00 q ;q 00 

which is (9.l.7). 

Thus, 

In order to prove (9.1.8) we first establish the identity 

l 
r;;:o 

= l 
r;;:o 

= l 
t<!O 

= l 
no 

2 
r r 

9 a 
2 2 

(q ;q )r 

2 r r 
9 a 

2 2 
(q ; q ) r 

2 r r 
q a 

2 r r 
q a 

( 2r+2 2) -aq ;q oo 

l 
s~O 

2 
( 2r)s s +s aq g 

2 2 
(q ; q ) s 

r+s s (r+s) 2 
a 9 g 

t t 2 t 
a 9 l s [ t] 

2 2 q 
s (q2) (q ;q )t s=O 

t t 2 2 2 

2 r r 
= l q a 

r~O (q)r 

= 

a 9 
(q ;q ) t 

(see App'x §6) 2 2 (q) t (q ; q ) t 

(9.3.3) 



t t 2 
l a 9 

t~0 (q)t 

which is (9.3.3), 
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If in (9.3.3) we set a=q, and use the second Rogers-

Ramanujan identity, we obtain 

2 2 
2 

r +r r +r 
(-q;q )00 l = l q 

2 2 2 (q) r r~0 (q ;q )r(-q;q )r+l r~0 

2 S 3 5 
= l/(q ;q )oo(q ;q )oo (9.3.4) 

so 

2 r +r 
I 

r~0 

{ 10 3 10 5 10 7 10 9 10 
s 1/ (-q;q )00(-q ;q )00(-q ;q )00(-q ;q )00 (-q ;q )00. 

2 10 7 10 3 10 8 10 } • (q ;q )oo(q ;q )oo(q ;q )oo(q ;q )oo 

6 20 14 20 } 
• (q ;q )oo(q ;q )oo 

11 20 12 2n. 14 20 15 20 18 20 19 20 } • (-q ;q )(X)(q ;q -Joo (q ;q )oo(-q ;q \o(q ;q )00(-q ;q )oo 

(9.3.!>) 

If in (9.3.5) we put -q for q, we obtain 
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2 
r +r l _9 ____ _ 

r;;:0 (q)2r+l 

11 20 12 20 15 20 16 20 18 20 19 20 } 
• (q ,q \.,(q ;q \o(q ;q )oo(q ;q )oo(q ;q )oo(q ;q )oo , 

which is (9.1.8) . 

§4. We now prove (9.1.9) and (9.1.10) 

2r2+2r l .....,_g __ 

r~0 (q)2r+l 
= 

-½ = q I 
r;;:0 

½(r2-r) ½ r 
(-l)r q (q ) 

(q)r 
} 

= q-½ ½ f TT (1 + qr+1'2) 
r ;;:o 

3 3 

~ q-½_ ½ { TT (l + q2r-2)(l + q2r-½)- TT (l-q2r-2)(l _ /r-½)} 
r;;: 1 r ;;:O 

-½ 
00 2 00 2 1 ½ { I r +1'2r I (-l)rqr +1-1r} = q . q TT 0 _q2r) r=-oo r=-oo 

r ;;:l 
by (6.1.3) and (6.1.2) 

q-½ 
00 2 r 

= 1 l r +1'2r {1-(;1) } 
2 2 q 

(q ;q )00 r=-00 

-½ 
00 2 

= 1 l ( 2 r- 1 ) +1-1 ( 2 r- 1 ) q 
2 2 q 

(q ; q ) r=-oo 

00 2 
= 

1 l 4r -3r 
2 2 q 

(q ;q )00 r=-00 
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00 
4r2+3r 1 l = q 

2 2 
(q ;q )00 r=-00 

1 TT (l + q8r-7) (l + q8r-l) (l _ q8r) = 2 2 
(q ;q )00 r~J 

by (6.1.3) 

1 8 7 8 8 8 = {-q;q )00(-q ;q )00{q ;q )00 2 2 
(q ;q )00 

2 16 ( 14 16) 
1 (q ;q )00 q ;q 00 8 8 

= 7 8 (q ;q )00 
2 2 8 (q ;q )co (q;q )00 (q ;q )cio 

{ 2 16 8 16 14 16 16 16 } • (q ;q )oo(q ;q )00{q ;q )00(q ;q )00 / 

9 16 10 16 12 16 14 16 15 16 16 16 } 
0 (q ;q )00(q ;q )OO(q ;q )OO(q ;q )CIO(q ;q )00(q ;q )00 

9 16 10 16 12 16 15 16 } • (q ;q )oo(q ;q )00(q ;q )00(q ;q )oo 

which is (9.1.9), while 

2 2r2 l ...._g_ 
r~0 (q)2r 

½r r 
= l s.--=-_ {1+(;1) } 

r~0 (q)r 

1 . -
2 { I 

r~0 

½(r2-r)( ½)r q q 
(q)r 

2 
½(r -r)( ½)r 

+ l (-l)r q 9 } 
r~0 (q)r 

.. ½ { TT ( l+qr+1~ ) + TT ( 1-qr-+½ ) } 
r~O r~0 

3 3 
1 { TT ( l+q2r- 2 ) (l+q2r-½) + TT (l-q2r- 2 )(l-q2r-½)} = 
2 

r~l r~l 



= 

.. 

= 

• 

00 2 00 2 
1 1 J , qr +1~r + , (-l)rqr +½r} 

TT ( l-q2r) · 2 1 l f. 

rcl 

1 
2 2 

(q ;q )00 

1 
2 2 

(q ;q )oo 

1 
2 2 

(q ;q )00 

1 
2 2 

(q ;q )oo 

1 
2 2 

(q ;q )00 

00 

l 

r=-oo r=-oo 

TT (l+q8r-5) (1+q8r-3) (l-rq8r) 
rcl 

3 8 5 8 8 8 
(-q ;q )oo(-q ;q )oo(q ;q )oo 

6 16 
(q ;q )co 

3 8 
(q ;q )co 

10 16 
(q ;q )co 8 8 

5 8 (q ;q )00 

(q ;q )co 

I 6 16 8 16 10 16 16 16 } 
• l (q ;q )oo(q ;q )oo(q ;q )oo(q ;q )co / 

98. 

( 10. 16) ( 11, 16) ( 12, 16) ( 13, 16) ( 14. 16) ( 16, 16)} 
0 q ,q 00 q ,q 00 q ,q 00 q ,q 00 q ,q 00 q ,q 00 

{ 2 16 3 16 4 16 5 16 
• 1/ (q ;q )~(q ;q )oo(q ;q )oo(q ;q )co ' 

( 11, 16) ( 12, 16) ( 13, 16) ( 14, 16)} q tq 00 q ,q 00 q ,q 00 q ,q 00 

which is (9.1.10), 
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§5. We now justify the remarks made at the end of §1. 

A partition of 

r ~ 0 contain 2r+l 

2n+l into distinct odd parts must for some 

parts. If we subtract 1,3 ,5 , ••• , 4r+ 1 

respectively from these parts, there remains a partition of 

(2n+l) - (4r2+4r+l) into at most 2r+l even parts. Thus, 

* if p (n) denotes the number of partitions of 

distinct odd parts, we have 

l p*(n)q2n+l 
n~O 

from which it follows that 

= l 
r~O 

2 4r +4r+l q 
2 2 

(q ;q ) 2r+l 

2r2+2r * n 
P {n)q 

- . l _q ____ _ 

r~O (q)2r+l 

as psserted. 

2n+l into 

(9.5.1) 

(9.5.2) 

** Si.Ddlarly, if p {n) deC'Otes the number of partitions 

of 2n into distinct odd parts, then 

** (n)q2n 
4r2 

r p = I • s. 
2 2 , 

n~O r~O (q ;q >2r 
(9.5.3) 

or, 

z 2 

r ** n 
l ti5= p (n)q = 

r~O q)2r 
, 

n~O 
(9.5.4) 

again as aaserted. 
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Chapter 10. A Continued Fraction of Ramanujan 

~l. In 1976, G.E. Andrews discovered a manuscript of Ramanujan 

(1920?) containing more than six hundred identities. (For the 

in~eresting details of this discovery, see Andrews (1979).) One of 

these identities concerns the continued fraction 

where 

F(a,b,A,q) 'i' 1 aq+Aq 
+ l+ 

2 bq+Aq 
l+ 

2 3 2 4 
aq +Aq bq +Aq 

1+ l+ 

Ramanujan states without proof that 

F(a,b,A,q) = G(a,b,A)/G(aq,b,Aq) 

G(a,b,A) = l 
n~O 

½(n2+n) C. +') ( +· n-1) q a A ••• a Ag 
n n (1-q) .•. (1-q ) (l+bq) ... (l+bq ) 

Andrews (loc.cit.) proves (10.1.2) directly, though 

(10, 1. 1) 

(10.1.2) 

(10.1.3) 

with some difficulty. 

to F(a,b,A,q). 

In-§2 we give a proof via the convergents 

Applying Watson's theorem (2.3.1) to the numerator and 

denominator of (10.1.2) yields 

F(a,b,A,q) • 

(l-Aq2r) (-A/b) (-A/a) (Aq) 2 
1 + l r r r q½(3r +r)(-ab)r 

r r~l (1-.>.q) (-bq) (-aq) (q) r r r 

l (1-.>.q2r+l) (-.>.q/b\ (-A/a)r {Aq)r ½or2+3r) r 
(-bq) (-aq) ~ q (-ab) 

r~O r r+l r 

(10. 1.4) 

(10.1.4) contains as corollaries several elegant continued 

fractions, all given by Ramanujan (1920?), some of which have appeared 

previously in the literature. Thus, 



... 

2 3 _g__ _g_ _g__ 
l + l+ l+ l+ 

(Rogers 

2 3 
1 +__s_ .9.:.9- _q_ 

1- l+ 1-

= TT 
n~O 

(1894) p.328, 

2 4 5 q -q _q_ 
l+ 1-

(l-q5n+2)(l-q5n+3) 

(l-q5n+l)U-q5n+4) 

Ramanujan (1919b)), 

• • • = 1/ l (-l)nq ½(n2+n) 
n~O 

(Eisenstein (1844)) 

= TT 
n~O 
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(10.1.5) 

(10. 1.6) 

(10.1. 7) 

(Watson (1929b) p.236, Gordon (1965) p.742, Andrews (1968)), 

(10.1.8) 
(Ramanujan (1920?)) , 

,,.,2 4 3+q,6 8 
1 + ~1+ _g_ 51. - .9..... 

l+ l+ 1+ 

(lQ.1.9) 

(Rarnanujan (1920?)) , 

and 

§2. 

1 

1 

2 
-~ 1 1-

2 4 g -g 3 6 
q -q 

= 1/ l 
n~O 1- . 1-

(Ramanujan (1920?)). 

Our main result, proved in §3, is 

+ aq+>..9 bg,+Ag2 n+i 2n-l P20:_1(a,b,A) .... aq 9 -l+ l+ 1 P2n..;2 (b,aq,Aq) 

+ ag+>..g bg+Aq2 b n+A 2n P2n(a,b,A) q · g 
l+ ·1+ •••• 1 = 

P2n_ 1(b,aq,).q) 

(10.1.10) 

(10.2.1) 



where 

P (a,b,)..) n 

102. 

= X 

X [n+l-s-t-u][[(n+l)/2]-t-u][[n/2]-s-u] 
u s t 

(10.2.2) 

the sum is taken over all s,t,u ~ 0 such that s+t+u s [(n+l)/2], 

2 Mn) = ½(n +n), and where for our present purposes, 

Letting n-+ oo in (10.2.1) and (10.2.2), we obtain 

where 

Also 

F(a,b,A,q) = P(a,b,A) 
P(b,aq,Aq) 

P(a,p,A) = l asbtAu 
s,t,u~O 

2 6(s)-M(t)+st+su+tu+u 

(q)s(q)t(q)u 

Now, it is obvious from (10.2.4) that 

P(a,b,A) • P(b,a,A) . 

P(a,b,A) = TT 
nd 

n (l+bq) .G(a,b,A) 

where G(a,b,A) is given by (10.1.3). 

For, 

P( b ') = ~ 8 sbt,u a, ,11. l I\ 

s,t,u~O 

6(s)+6(t)+st+su+tu+u2 

(q)s(q)t(q)u 

(10.2.3) 

(10.2.4) 

(10.2.5) 

(10.2.6) 

= r asAu 
6(s)+su+u2 

96(t)(bqs+u)t 
~- l 

s,u~O (q) /q) u t~O (q) t 

2 

I asAu 
l\(s)+su+u 

(-bqs+u+l) = 
s,u~O (q)s(q)u 00 



= (-bq)oo l 
s,u<:'.0 

2 s,u 6(s)+su+u 
a I\ g 
(q)s(q)u(-bq)s+u 
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6(n) 
asAuq6(u-l)[n] (-bq) l 9 l = (q) (-bq) 00 u 

0<:'.0 n n s+u=n 

l 
q6(n) an(-)./a) 

n (-bq) = (q) (-bq) 00 

n<:'.0 n n 

= 1T (l+bqn) G(a,b,A) • 
n<:'.l 

From (10.2.3), (10.2.5) and (10.2.6) it follows that 

F( b , ) _ P(a,b,A) 
a, ' 11 'q - P( b A ) aq, ' q 

which is (10.1.2) 

= G(a,b,A) 
G(aq,b,Aq) 

§3. We ~stabiish (10.2.1) by showing that if P (a,b,A) 
n 

defined by (10.2.2) then 

and 

is 

(10.3.1) 

2 
P0 (a,b,A) = Pn_ 1(b,aq,Aq) + (aq+Aq) Pn_ 2(aq,bq,Aq) . 

(10.3.2) 
We can write (10.3.2) 

P (a,b,A) n 
P0 _ 1 (b,aq,Aq) = 1 + 

aq+).q 

[ 
P0 _ 1(b,aq,Aq)] 

pn-2(aq,bq,Aq2) 

(10.2.1) follows by iteration of (10.3.3), together with 

(10. 3 .1). 

In order to prove (10.3.1), write 

P (a,b,A) n 

(10.3.3) 

(10.3.4) 



where 

f(s,t,u) = 6(s)M(t)+st+su+tu+u2 

and 

( ) = [n+l-s-t-u][[(n+l)/2]-t-u][[n/2]-s-u] c s,t,u 
n u s t 

It is trivial to show that 

and 

For, 

f(t,s,u) = f(s,t,u) , 

s+t+u+f(s-1,t,u) = f(s,t,u) , 

s+t+2u-l+f(s,t,u-1) = f(s,t,u) . 

Also 

u s . 
c 2(s,t,u-l)+q (c 2(s-l,t,u)+q c 1(t,s,u)) = 
n- n- n-

= c (s,t,u) . 
n 

s c 2(s-l,t,u)+q c 1(t,s,u) n- n- = 

[ n-s-t-u [(n-1)/2]-t-u [n/2]-s-u + 
= ][ 1 ][ t J u s-

104. 

(10.3.5) 

(10.3.6) 

(10. 3. 7) 

(10.3.8) 

n-s-t-u [n/2]-s-u { [ (n-1)/2]-t-u s [ (n-1)/2]-t-u } 
= [ ][ t J [ 1 J+ q [ J u s- s 

n-s-t-u [n/2]-s-u [(n+l)/2]-t-u 
= [ u ][ t ][ s J 

and so 

u s c0 _ 2(s,t,u-l)+q (c0 _ 2(s-l,t,u)+q c0 _ 1(t,s,u)) 



105. 

;::: 
[n-s-t-u][[(n+l)/2]-t-u][[n/2]-s-u] 

u-1 s t 

= 

n+l-s-t-u [(n+l)/2]-t-u [n/2]-s-u 
[ ][ ][ t J u s 

It follows from (10.3.4), (10.3.7) and (10,3.8) that 

;::: t bs t,u t+u+f(s,t,u) ( ) 
l a A q c 1 s,t,u n-

+ a l sbt,u s+t+2u+l+f(s,t,u) ( ) 
~ A q cn_2 s,t,u 

sbt,u s+t+2u+l+f(s,t,u) ( ) a A q c 2 s,t,u n-

= t sbt,u s+u+f(t,s,u) (t ) la A q C l ,s,U n-

+ t sbt,u s+t+2u+f(s-l,t,u) . ( 1 ) la A q c0 _ 2 s- ,t,u 

+ t sbt,u s+t+2u-l+f(s,t,u-1) ( l} la A q c 2 s,t,u-n-

X { s+u u } q c 1(t,s,u)+q c 2 (s-l,t,u)+c 2(s,t,u-l) n- n- n-



= 

= 

= 

X 

x {c 2(s,t,u-l)+qu(c 2(s~l,t,u)+q 5 c 1(t,s,u))} 
n- n- n-

, sbt,u f(s,t,u) ( t ) 
l a /\ q C S, ,U 

P (a, b, )..) 
n 

n 

which is (10.3.2), as required. 
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Appendix 

In this Appendix, we establish a number of fundamental results 

in the theory of basic hypergeometric series. Most of these results 

are quoted at some point in the body of the thesis, but their proofs 

do not properly belong there. They are collected here rather than 

cited because they are important to the thesis and are not easily 

accessible. 

§1. Notation 

For n;:;: 1, let 

(a) 
n 

n-1 = (a;q) = (l-a)(l-aq) •.. (1-aq ) , n 

and in particular, 

Then 

and 

not 

(q) = 
n 

this is 

a power 

For 

(a) 
n 

used to 

of q 

n;:;: r ;:;: 

[n] 
r 

and more generally, 

n 
[r] k 

(q ) 

= 

= 

define 

O, 

= 

= 

2 n 
{1-q) (1-q ) ... (1-q ) . 

(a)c;,o 

n 
(aq )oo 

(a) n 

let 

(q)n 

{q)r(q)n-r 

for 

k k 
(q ;q )n 

n :5 

k k k le 
(q ;q )r(q ;q >ri-r 

0, 

(A. 1. la) 

(A. l. lb) 

(A. l. 2) 

for a 

(A.l.3a) 

(A.l.3b) 



For r,s ~ 0, let 

= 

(In generfll, lxl < 1 for convergence.) 

§2. The q-binomial theorem. 

l'h~ q-binomial theorem is 

(a) 
( = l __ n xn = 

l~O a;q;x) n2:0 (q)n 

Proof: 

(a) n n l n 
:II 

(q)n 
X (1-q ) 

n2:0 

(a) n l n = X 

n2:l (q)n-1 

I 
(a)n+l n+l = 
(q)n X 

n2:0 

(a) 
n n l n 

= 
(q)n 

X (1-aq ) 
n2:0 

It follpws that 

or 

(ruc)oo 

(x) 
00 

(1-ax) 
(1-x) 1cllo(a;~;xq) 
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(A.1.4) 

(A.2.1) 

(A. 2. 3) 

(A. 2. 4) 



It follows by iteration that for n ~ 1 

= 
(ax) 

n n 
_(_x_)_ l~O(a;q;xq) 

n 

Letting n-+- oo we obtain 

(ax) 00 

1<Po(a.q.x) = 
(x)oo 

which is (A. 2. 1) . 

In particular, if in (A.2.1) we set a=q 

1 
(xqn+l) 

00 

(x)n+l 
= 

(x)oo 

n+l 
= 1<fio(q ;q;x) 

( n+l) 

l 
q r r = 
(q) r 

X 

r~O 

I 
(q) n+r r = 

(q)n(q)r 
X 

r~O 

l [n+r] r = X 

r~O n 

and letting n-+ oo we obtatn 

1 (x) = 
00 

r r _x_ 
r~O _(q) r 

while if in (A.2.1) we put n -xq for -n x, q 

we obtain 

(-x>n = 
(-x) 

Q0 ,. 
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(A.2.5) 

n+l we obtain 

(A.2.6) 

(A.2.6a) 

for a , 



-n n = 1 <PO ( q ; q ; -xq ) 

-n 

l 
(q )r n r 

= (q) r 
(-xq ) 

r:2:0 

= l 
(l-q-n) .•• {l-9-n+r-l) (-l)rqnrxr 

r:2:0 (q) r 

n r-1 n 
l (1-q ) .•. (g -q) r = X 

r:2:0 (q) r 

(r) 
= l 2 (l- n) (l- n-r+l) r 9. q . • • g 

r:2:0 (q) r 
X 

r 

I 
<z) n r 

= q [r] X 

r:2:0 

and letting n -+ oo 

(r) 
2 r 

(-x) = l 
q X 

00 (q)r r;;.,O 

§3. Heine's transformation, and its 2nd and 3rd iterates. 

We assume for the purposes of this section that 

Heine's transformation is 

= 

Proof: 

(b ) 00 (ax)m 

(c)00 (x)m 
,1., [c/b,x. ·b)-2"'1 ,q, 

ax 

110. 

(A.2.7) 

(A.2.7a) 

(A.3.1) 



(b) ClO l = (c)o:> n2:0 

(b) co 
l = (c)co n~O 

(b)co 
::; 

(c) l 
00 n~O 

(b)oo 

l = 
(c)co ~o 

l 
m~O 

(b) co 
= (c)co l 

m2:0 

= 
(b) w (ax) 00 

(c)co(x)~ 

,_. ; 

n (a) (cq ) n co 
n 

(q)n(bq )oo 

(a) 
n n 

(q)n 
X 

(a)n n 
(q)n 

X 

(c/b) 
bm m 

(q)m 

(c/b)m m 
---b 

(q)m 

n 
X 

n 
1<Po(c/b;q;bq) by 

(c/b) 
(bq~)m l m 

m2:0 (q)m 

(a) 
(xqm)n I _n 

n~O (q)n 

m 
1<Po(a;q;xq) 

by (A. 2.1) 

(b)~(ax)ClO c/b 
-~-.-· <P ( '' x. ·b ', 

= (c)o:> (x): 2 1 ax,q, J 

as required. 

The 2nd iterate of Heine's tranit-formation is 

·:.i.. (abx/ c, b. . /b) 2•1 ,q,c 
· bx 

Proof; 

.. 

lll. 

(A. 2. 1) 

(A.3.2) 
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= 
(b) 00 (ax)00 

(c)oo (x)oo 

(clb)oo(bx)oo (abxlc, b ) 
(ax)oo (b)oo 2cj>l • b/q;clb by (A.3.1) 

(clb) (bx) 00 00 
= 

(c)oo (x)oo 
,i- [abxlc, b .. lb ) 2~1 ,q,c 

bx 

as required. 

The 3rd iterate of Heine's transformation is 

Proof: 

(abxlc) 
00 

= --,--,,--
(x) 

= 

00 

(clb) 00 (bx) 00 

(c) 00 (x) 00 

[cla,clb ) 
2cp 1 ;q;abxlc 

C 

,i- (abxlc, b .. lb] 2~1 ,q,c 
bx 

= (clb)00(bx)00 rb,abxlc .. lb] 
(c)

00 
(x) 2cj>l l ,q,c 

oo bx 

= 

= 

as required. 

(clb) 00 (bx)00 

(c) 00 (x)co 

(abx/c) 00 

(x) 
00 

(abxlc~(c)a> I I 
J" cj> (c a,c b·;q;abxlc) 

(bx) 00 (c b)co 2 1 c 

by (A.3.1) 

§4. The q-analogs of Gauss's theorem and of Kummer's theorem. 

Theq-analog of Gauss's theorem is 

(cla) 00 (c/b)ai 

= ~( c...,.)-~( c""'/ .... ab""'")-
a> 00 

(A.3.3) 

(A.4.1) 
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Proof: 

(b) (c/b) 
oo oo 2~1 (c/b,c/ab;q;b) by (A.3.1) 

(c)oo(c/ab)oo c/b 

= 

(b) 00 (c/b) 00 (c/a) 00 

= (c) 00 (c/ ah) 00 

. 
(b)oo 

by (A.2.1) 

(c/ q) 00 (c/b) 00 

= (c) 00 (c/ab) 00 

as required. (We have established the result only for Jbl < 1 , 

but it is true more generally.) 

The q-analog of Kummer's theorem is 

2 2 2 2 

2~1 [a, b ;q;-q/b] = 
aq/b 

(aq;q )oo(-q)oo(aq /b ;q )oo 
(aq/b)oo(-q/b)oo (lb/ > !qi) • 

(A.4.2) 

Proof: 

2~1 [a, b ;q;-q/b) = 
aq/b 2~1 [b, a ;q;-q/b) 

aq/b 

(a)oo(-q)oo 
[q/b ,-q/b ) = (aq/b) 00 (-q/b) 00 

2~1 ;q;a by (A.3.1) 
-q 

(a)oo(-q)oo (q/b) (-q/b) 
l n n ~n = (aq/b) 00 (-q/b) 00 (q) (-q) n~O n n 

(a) (-q) ( 2 /b 2. 2) 
00 00 

l 
q ,q n n :z 

(aq/b) (-q/b) a 2 2 
00 00 n~O (q ;q ) n 
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(a)co(-q)oo 2 2 2 .. 
(aq/b) 00 (-q/b) 00 

1<Po (q /b ;q ;a) 

(a)co(-q)oo 
2 2 2 

(aq /b ;q )00 

= ( aq /b) 00 ( -q / b ) 00 (a;q2)oo 
by (A. 2. l) 

2 2 2 2 
(aq;q )00 (-q) 00 (aq /b ;q )00 

= (aq/b) 00 (-q/b) 00 

as required. (We have established the result only for I a I < 1, 

but it is true more generally.) (A.4.2) is 

(a) (b) 
n n 

2 2 2 2 
(aq;q )00(-q)oo(aq /b ;q )oo 

(aq/b) 00 (-q/b) 00 

Letting b ~ 00, we obtain 

l 
2 

= (aq ;q )00(-q)oo 
n~O 

2 
(aq;q )00 

= (A. 4. 3) 
2 

(q; q ) CX) 

an identity due to V.A. Lebesgue (1840). 

(A.4.;3) is easy to prove directly, thus: 

(n+l) (n+l) 
q 2 (a) 2 n (m) 

l n r q l (-l)mq 2 c: J am by · (A,2. 7) = 
Jl~O (q)n n~O (q)n m=O 

(m) <°+l) 

... r ~-l)mg 2 .am I 
9 2 ' 

m~O (q)m n~m (q) n-m 

(m) <°+tn+l) 

r ( l)m 2 m 
l 

g_ 2 
= - 9 ~ 

m~O (q)m n~O (q_~n 

2 (n) 

r (-lJmgm am r 2 ~ m+l)n 
"" 9 9 

m~O (q)m n~O (q)n 



= l by (A.2.7a) 
mc?:0 

2 
( l)m m m 

= (-q) l - 9 a 
00 (q)m (-q)m mc?:0 

(m) 

= (-q) l 
(-l~m(g2) 2 (ag)m 

00 2 2 
m~O (q ;q )m 

2 by (A.2.7a) = (-q)oo(aq;q )oo 

2 
(aq;q )oo 

= 2 
(q; q )00 

as required. 

§S. Saalschutz's theorem and its q-analog. 

The q-analog of Saalschutz's theorem is 

b -n (c/a) (c/b) 
<p (a, , q ) n n 

3 2 b/ n-1 ;q;q = (c) (c/ab) 
c, a cq n n 

Proof: 

We have, by (A.3.3) and (A.2.1), for Ix! sufficiently small, 

or, 

z'P1 [ a, b ;q;x) = 
C 

= 

(abx/c) 00 

(x) 
00 

llS. 

(A. 5. 1) 

(c/a) (c/b) (ab/ c) 
r r (abx/c)r 2 ___ s xs 

(q)r(c)r s~O (q)s 
{A, 5. ;2) 



Comparing coefficients of n x yields 

or, 

or, 

or, 

If we 

which 

(a) (b) · (c/a)r(c/b)r (ab/c) r n n l s (ab/c) 
(q)n (c)n 

= 
(q) /c) r (q) s r+s=n 

n (c/a) (c/b) (ab/c) 
l r r n-r r = 

(q)r(c)r (q) (ah/ c) , 

l 
r=O 

n 
l 

r=O 

n 
l 

r=O 

r=O 

(c/a) (x/b) 
r r 

(r;/ a) (c/b) r r 

(c/a) (c/b) r r 
(q)r (c)r 

(ab/c) 
n-r 

(ab/ c) n 

n-r 

(a) (b) 
n n 

r (ab/c) 

= 
(c) (ab/c) 

1l n 

n-r ' n-1 (1-abq /c) ... (1-abq /c) 

(a) (b) 
n n 

= 
(c) (ab/c) 

n n 

-n 
(a) (b) (q ) r r n n 

n-1 q = 

= 

r (ab/c) 

(c/abq ) (c) (able) n n r 

now set a = C/A, b = C/B, C = C , we obtain 

(A) (B) -n (C/ A) (C/B) n (q ) r 
l r r r n n 

(AB/C n-l) 
q = 

r=O (q)r(C)r (C) (C/AB) q r n n 

is (A.5.1), as required. 

116. 

(A.5.3a) 

(A.5,3b) 

(A.5,3c) 

(A.5.3d) 

If we replace a by a 
q 

b b by q C c by q and let q ~ 1, 

we obtain 
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or 

~ a(a+l) .•. (a+r-l)b(b+l) ..• (b+r-1)(-n)(-n+l) .•••• (-n+r-1) 
l 1. 2 ••• r c(c+l} .•. (c+r-l)(a+b-c-n+l) •• (a+b-c-n+r) r=O 

F [a, 
3 2 

= 

b, -n 

(c-a) •.. (c-a+n-1) (c-b) .•.... (c-b+n-1) 
(c) .•• (c+n-1) (c-a-b) .... (c-a-b+n-1) 

c, a+b-c-n+l 

(c-a) ... (c-a+n-1) (c-b) • . • (c-b+n-l) 
(c) ... (c+n-1) (c-a-b) •.. (c-a-b+n-1) 

f(c-a+n)f(c-b+n)f(c)f(c-a-b) 
= f(c-a)f(c-b)f(c+n)f(c-a-b+n) 

which is Saalschutz's theorem. 

§6. The polynomials 

n 
If H (;ic) = I xr[n] 

n r=O r 

H (x) n then r n 
(q)n 

z = 
n.::O 

Proof: 

H (x) 

I n n 
(q)n 

z = 
n2'.0 

= 

= 

= 

H (x) 
n 

1 

n 
= l 

r=O 

(z) 00 (xz\,0 

n 
I z I (q)n n2'.0 r=O 

r 
I X I (q)r r2'.0 n2'.r 

r l _x_ l r2'.0 · (q)r n2'.0 

1 1 

xr[n] 
r 

n 
z 

(q)n-r 

n+r z 
(q)n 

(xz)00 • (z)00 
by (A.2.6a) 

(A.5.4) 

(A.6,1) 



as required. 

If in (A.6.1) we set x = -1, we obtain 

H (-1) 

l n n 
(q)n 

z 
n;?:0 

It follows that 

H (-1) 
n 

On the Other hand, if in 

1 
H (q~)z0 

l n 
(q)n n~O 

It follows that 

k 
H (q z) 

n 

= 

= 

= 

1 
(z) (-z) 

(X) (X) 

1 
2 2 

(z ;q )oo 

l 
n2::0 

2n 
z 
2 2 

(q ; q ) n 
by 

0 if n is odd 

2 2 . 
(q ;q )n/2 

if n 

(A,6.1) we set X = q ½ 

1 
= k 

(z) 00 (q 2z) 00 

1 
"' 

(z;q½)oo 

n 
l 

z by = k ½ 
n~O (q z;q )n 

(q)n 
= l ~ 

(q~;q2)n 

118. 

(A.2.6a) 

is even. (A.6.2) 

we obtain 

(A.2.6a) 



or, putting 
2 

q for 

119. 

q , 

(A.6.3) 

§ 7. Ramanujan's 1\/1 1 summation and Jacobi's triple product 

identity. Ramanujan's 

00 

I 
n=..oo 

(a)n n 
(b) z 

n 

Proof: 

(az)00 (q/az) 00 

(z) (b/az) 
00 00 

= l 
r:2:0 

+ I 
n:2:l 

(a) 
r 

(q) r 

n z 

(q) (b/a) 
00 00 

(q/a) (b) 
00 00 

(a) l __ r zr 
r~O (q)r 

(q/b) r 

(q)r 

l (a)n+r 

r~O (q)n+r 

(q/b) r 

(q) r 

(az) (q/ az) 
00 00 

(z) (b/ az) 
. 00 00 

I 
s~O 

(q/b)s s 
(b/ az) 

(q)s 

(b/ a) r 

+ I -n 
z 

(a) 
I r 

r::::O (q) r 

(q/b) + n r (b/a)n+r 
n~l 

= <P [a, q/b ;q;b/al 
2 1 J q 

+ l 
n::::l 

+ I 
n~l 

n 
z 

-n 
z 

(a) 
n 

(q)n 

n 
(aq , q/b 

2<P1 n+l ;q; 
q 

(b/a)n. <P (a, 
2 1 

b/a] 

qn+l/b 
n+l ;q;b/a) 

q 

(A.7.1) 

by (A. 2. 1) 



= 

= 

::: 

= 

r 
l 

+ 

(q/a)oo(b)co 

(q\o (b/a)oo 

(a) l n n 
z (q)n 

n~l 

+ l z-n 
n~l 

( q /a) oo (b ) oo 

(q)oo (b/a)oo 

(q/a)oo (b)co 
+ 

(q)oo (b/a)00 

(q/a)oo (b)oo 
+ 

(q)oo (b/a)oo 

(q/a)oo (b)oo 

(q)~ (b/a) 00 

(q/a)oo (b)oo 

(q) I (b/a) 
00 00 

l 
n2!l 

l 
n2!l 

{ 1 + 

00 

l 
n=-oo 

n 
(q/a)oo (bq )oo 

( n+l) (b/a) q 00 00 

(qn+l/a)oo(b)oo 

(qn+ 1 )oo (b/ a) oo 

n 
(a) 

n z 
(b)n 

-n 
b 0 (q/b) 

n z 
n 

a (q/a)n 

n 
(a) 

-n l z 
n l (b) + z 

n2! 1 n n2!l 

(a) 
n n 

(b) z 
n 

since by (A. 1.2), 

(a) (a)oo 
-n 

(bq )00 -n 
(b) = -n 

(b)oo -n (aq ) 
00 

-n . -1 
:;: 

(1,-bg } p-bg, 2 
... n . -1 

(1-aq ) (1-aq ) 

120. 

by (A. 4. 1 ) 

bn(q/b)n 
' 1 n 

a (q/a) 
n 



= 

= 

_,n+l) 
n n 2 (-1) b g (1-q/b) 

_ (n+l) 
n n 2 (-1) a q (1-q/a) 

bn(q/b)n 

n a (q/a)n l 

n (1-q /b) 

from which (A.7.1) follows. If in (A. 7 .1) 

by z/a, and set b = O, we obtain 

(q) oo (z)oo (q/ z) oo 00 

I n n 
(q/a) 00 (z/a) 00 

= z (a)n/a 
n=-oo 

If we now let a~ 00 we obtain 

= 

oo (n) 
L (-l)n q 2 zn 

m=-oo 

we replace 

and putting 
2 

q for q, -qz for z, we obtain 

CX) 

2 2 2 2 
(-qz;q )oo(-q/z;q )oo(q ;q )oo = I 

whicp is Jacobi's triple product identity. 

2 n n 
q z 

§8. Watson's Theorem and the Rogers-Ramanujan identities. 

Watson'~ 

atP7 

= 

X 

theorem is 

b • C d e ' [ a, q,'a, -qla, 

la, -la, aq /b , . aq/c, aq/d, aq/e, 

(aq) 00 (aq/de)00(aq/ef) 00 (aq/df) 00 

(aq}d) (aq/e) (aq/f) (aq/def) 
00 00 00 00 

X 

aq /be, d , e , f ; q; q 

[ aq/b, aq/c, def/a ) 

f q; 

aq/f 

121. 

z 

(A.7.2) 

(A.7.3) 

(A, 7. 4) 

2 2 

l a 9. 
bcdef 

(A. 8. 1) 
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provided that d, e, or f 

a non-negative integer. 

Proof: 

is of the form -n 
q with n 

The proof is by induction on n. (A.8.1) is trivially 

true when d, e or f is 1. Assume it is true when d, e 

or f is 
-n 

q , n :5: k-1. When f has the value -k 
q , (A.8.1) 

can be written 

k 
e (aq/d)k(aq/e)k-l X 

-k 
2 k+2 

k qla, -qla, b ' d ' \~de l x (1-aq / e) 8(j)7 [ a, C ' e ' q ; q; 
k+l la , -la, aq/b,aq/c, aq/d, aq/e, aq 

-k 
.+. [aq/bc, d , e , q 

4~3 k (A.8.2) 
aq/b,aq/c,de/aq 

Now, both sides of (A.8.2) are polynomials in e of 

degree k. By the induction hypothesis, they are equal if e 

takes any of the k values 
-1 -(k-1) 1, q , •.. ,q Further 

if 
k 

e = aq the left-hand-side of (A.8.2) becomes 

k k -(k-1) 
(aq ) (aq/ d)k (q )k-1 X 

(c)k (d)k 

(aq/c)k (aq/d)k 

( k) ( -k) [ 2 k+2]k aq k q k a q 
---

(q -(k-1) )k-1 (aqk+l)k abcdqk 
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while the right-hand-side becomes 

= 

= 

k -k 
k)k (l/d k-1) ,1, [aq/bc, d , aq , q (aq (aq)k q k · 4~3 

aq/b, aq/c, d 

k k k-1 (aq) (aq)k(l/dq )k 

k k k-1 (aq) (aq)k(l/dq )k 

k -k 
<P [8q/bc, aq , q ;q;q ] 

3 2 aq/b, aq/c 

k-1 
Cc\ 0/bq )k 

k (aq/b\ (c/aq \ 
by (A.5.1) 

(1-l/dqk-l) .•• (l-l/d)(l-l/bqk-l) •.• (1-1/b) 

(1-c/aqk) ... (1-c/aq) 

k k2 
a q (c)k(aq\ 

= 
(aq/b)k 

Th4s the two sides of (A.8.2) are equal for k+l values of 

ancl so are identical. This proves (A.8.2), and so, by synnnetry 

in d, e, f, (A. 8.1) is true when d,e or f is q -n , n '.':: k 

This cQmpletes the proof of Watson's theorem. 

If in (A.8.1) we take f = q-n, and let b,c,d,e ~ 00 , 

we obtain 

n 
l 

r=O 

(a) 
r 

(q)r = 

n 

e, 

= (aq)n l (A.8.3a) 
r=O 



or 

or, 

r 
~ r S(2)+2r 2r 
l (-1) q a 

r=O 

= 

n 

(aq) n 

2 

2r 
(1-aq ) 

(1-a) 

(a) 
r 

( n+l) 
aq r 

124. 

(A.8.3b) 

2r 

I (-l)rq½(Sr2-r)a2r 
(a) 

1 
(1-aq ) 

l 
r r [n] 

r [n]. 
q a = (aq) (aqn+ 1) 

r=O 
r r=O (1-a) n r 

(A.8.3c) 

Now let n-+oo, and we obtain 

2 
(-l)rq½(Sr2-r)a2r 

2r (a) r r 1 
l q a l 

(1-ag ) r 
= 

r~O (q) r (aq)oo r~O 
(1-a) (q)r 

(A.8.4a) 

1 
=--

(aq) 
00 

2r (aq) 
{ 1 + l (-l)rq½(5r-r)a2r (1-aq r) () r}. 

r~l (1- aq) qr 

If in (A.8.4b) we set a=l, we obtain 

2 r ls.__ 1 
r~O (q)r = (q)oo 

{ 1 + l (-l)rq½(Sr2-r)(l+qr)} 

r~l 

1 2 5 3 5 5 5 
= (q)oo (q ;q )oo(q ;q )oo(q ;q )oo by (A.7. 4) 

(A.8.4b) 

(A.8.5a) 

r 
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which is the first Rogers-Ramanujan identity, while if in (A.8.4a) we 

set a=q, we obtain 

2 r +r 
I .J--9 -

r2:0 (q) r 

1 
= (q) 00 

l (-l)rq½(Sr2+3r) (l-q2r+l) 
r2:0 

by 

2 5 3 5 
= l/ (q ;q )oo(q ;q )oo 

the second Rogers-Ramanujan identity. 

(A.7.4) 

(A.8.Sb) 
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