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Abstract

This thesis comprises, in the main, results obtained recently

by the author in the théory of partitions and closely related areas.

We begin with the study of a very general continued fraction,
an& qbtain explicit formulae for the convergents. These formulae are
transformed in various ways, so that, in the limit, most of the classical
results involving coqtinued fractions, due to such people as Ramanujan,
Gordon and Carlitz, are obtained. Moreover, our approach obviates

the need to quote such product-sum formulae as are given by Slater.

The polynomials which arise in this study are of great interest,
both from the point of view of analysis and of combinatorics. Their
analytic jinterest stems from the fact that they form an orthogonal
family, not previously studied, and generalise the extended q-Hermite
polynomials. A start is made on an investigation of this aspect,

but there remain some open questions.

On the other hand, many combinatorial applications of the
polynomials have been found. We are led to discover a new polynomial
identity which implies the célebrated Rogers—-Ramanujan identities. We
give a new proof Sylvester's remarkable refinement of Euler's
‘partition theorem using the polynomials, and the proof gives rise to
a new polynomial identity which implies Lebesgue's identity. Our
final combinatorial application is to prove two identities of Slater.
There is, undoubtedly, much that deserves to be learnt about these

polynomials.

(iv)



We then turn to an investigation of several problems in the
theory of partitionms. We give proofs, again via polynomials, of
celebrated identities due to Euler and Jacobi, and use these identities
to give an elementary proof of a very teautiful result of Ramanujan.
Elementary proofs are given of some partition relations of Kolberg,

and it is shown that there are an infinite family of such relationms.

Not much is known concerning the parity of p(n), the
number of partitions of n. We define r(n), an arithmetic
function which grows far less quickly than p(n), give a recurrence
for r(n), and show how p(n) and r(n) are related modulo 4.
These results contain, as a corollary, the relations modulo 2 for

p(n) given by MacMahon.

We close with the proof of a result given by Ramanujan

in his recently discovered 'lost" notebook, concerning an unusual

continued fraction. This result contains earlier results of
Eisenstein and Andrews, amongst others. Once again our approach
is via the convergents, and explicit formulae are found. This gives

rise to another family of polynomials which may have further interesting

properties.
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Chapter 1 Iﬁtroduction

The theory of partitions is probably the oldest branch of
additive number theory. It is primarily concerned with decompositions
of integers into sums of integers. The subject originated with
L. Euler, and its fitful development is marked by the major
contributions of a small number of men, among them J.J. Sylvester,

P.A. MacMahon, B. Gordon and G.E. Andrews. This development has
been closely linked to the study of transformations of series.
For example, Euler considered - p(n), the total number of partitionms

of n, and showed that*
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Notable contributors to the study of such series include C.F. Gauss,
E. Heine, C.G,J. Jacobi, L.J. Rogers, S. Ramanujan, G.N. Watson and
W.N. Bailey. It is fair to say that these areas are as active today

as they have ever been.

As the study of partitions and related series advanced,
Ramanujan and others were able to apply their knowledge to results
on continued fractions. The oldest and most famous theorem in this

regard is the Rogers-Ramanujan continued fraction

* Throughout the thesis, |q| < 1. All results are then true as stated,

except at those points where a denominator may vanish.
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The first half of this thesis is devoted to reversing the historical
relationship between such continued fractions and the theory of
partitions and series, Indeed by considering the convergents to
the continued fraction

2
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we are led in Chapter 2 to an extensive study of a new family
Pn(a,b,c,q) of polynomials with diverse applicatioms. For example

we show that*
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This tesult yields the first of the celebrated Rogers-Ramanujan
identities on letting n 4 © Indeed, numerous such transformations
are found, so that the representations of almost all the classical
infinite continued fractions as quotients of theta-series become
: tranéparent fromvthe convergents. Among the new continued fractions
that we discover utilising 6ur approach is
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The polynomials Pn(a,b,c,q) generalise the previously

* All special notation is explained in the appendix.



studied, and well understood, extended q-Hermite polynomials.
In Chapter 3 we analyse this aspect of these polynomials. 1In

particular, some connection coefficient theorems are given.

We next utilise these polynomials in Chapter 4 to present
a new proof of Sylvester's remarkable partition theorem '"The number
of partitions of n into odd parts, s of which are distinct,
is equal to the number of partitions of n into distinct parts

with s sequences of consecutive parts."

While all previous analytic proofs have relied on

V.A. Lebesgue's identity

n+l

)
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n20
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we are able to treat the problem purely with our polynomials, and find

the new identity

r+s+l r
Z q( 2 )+(2)cr [r+s][n—r] -
r,s20 . r r+s
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itself a special gase of & general polynomial identity obtained
in Chapter 2. Lebesgue's identity follows from our result as

n > oo

In the same chapter is presented another new proof of Sylvester's
theorem which shows clearly how Sylvester's theorem is equivalent to

Lebesgue's identity.

Sylvester's partition theorem is a refinement of Euler's



partition theorem "The number of partitions of n into odd parts
is equal to the number of partitions of n  into distinct parts”.

Andrews has given a generalisation of Euler's theorem; his theorem

and three similar results are presented. One of these is
m
L) (sg:)) is equal to the number of partitions of n—r2
mell
n
with no even part greater than 2r". (1.4)

(Here Hn is the set of partitions of n into distinct parts,
and s(m) is the number of sequences of consecutive parts in T.)

Euler's theorem is the case r=0 .

The study in Chapter 4 of partitions with distinct parts and
exactly k  sequences leads naturally to the study of partitions
with distinct parts where now k bounds the length of sequences.
We discover the generating function for such partitions with all
parts less than n . In the case k=2, we are led to the

polynomial identity
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This identity in turn yields a combinatorial interpretation of two

identities of L.J. Slater, namely

2
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and

2
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Thus, the study of the polynomials in Chapters 2-5 has led to
various new results in the theory of partitionms. These polynomials
should, in the future, lead to further interesting work. As evidence
for this claim, we recall that one of I.J. Schur's most ingenious
proofs of the Rogers-Ramanujan identities was effectively based on

the polynomial identity

2 o 2
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An investigation of the partition-theoretic implications of this
identity led Andrews to his extensive study of sieves in partitionms.
No such explanation of (1.1) is known; however, as we come to
understand more about the Pn(a,b,c,q) we may well find the answer

to this and the other open questions mentioned in Chapters 2-5.

The remainder of the thesis presents several topics closely

related to the theme already developed.

G.H. Hardy nominated as the most beautiful identity given by

Ramanujan
n (1- Sn)S
z p(5n+4)q = 5 TT'—_Jlj;jg
n=0 n2l (1-q )

In Chapter 7 we give a truly elementary proof of this result, as well

as elementary proofs of the identities of 0.Kolberg,
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where P, = ) p(n)q"
n=i mod 5

Further, we prove that identities of the same sort hold not only for
the modulus 5, but for any modulus not a power of 2. Thus in

particular for the modulus 3,

if P, = ) p(m)q" , then
i o,
n=i mod 3
2 2 2 2 2 2 2 2 2 _

(1.5)

All that are needed to prove these results are the identities
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due respectively to Euler and Jacobi. The first of these follows
from the polynomial identity

i h| 2 ...
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while the second follows from the polynomial identity
n

n
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r=1 r=0
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1, (1.7)

both proved in Chapter 6.



- Not much is known concerning the behaviour of p(n) modulo
2. If we define r(n) to be the number of representations of

n as a sum

n = A(nl) + 4A(n2) + 16A(n3) + ...

2
where A(n) is the triangular number Y%(n"+n), then r(n)
grows far more slowly than p(n), and satisfies the simple

recurrence relation

r@n) = r() + ) r(a-(8k*- k) + T r(a-(8k>+ k) ,
k21 k=1
r(ntl) = r(n) + 7 r(-(8k>-3k)) + T r(a-(8k>+3K))
k>1 k>1
r(4n+3) = r(n) + ) r(n-(8k2-5k)) + T r(a-(8k%+5k))
k=1 K21
r(4nt6) = r(n) + § r(n-(8k>=7k)) + T r(n-(8k2+7k)) ,  (1.8)
k=1 k>1

and as we show in Chapter 8,

p(n) = r(m) +2 J r(n-2k%) mod 4 (1.9)
keS '

where S = {1,3,4,5,7,9,11,12,...} is the set of numbers k

with t(k) even, where t(k) = t is defined by 2% |k,

2t+llk )

This result contains as a corollary MacMahon's congruences modulo 2
for p(n), namely

p(4n) Zp(n) + J p(n-(8k2-Kk)) + § p(n- (8k%+k))
k>1 k=1

and so on.



It is well known that the identity

2
1
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is equivalent to Euler's partition theorem (mentioned earlier), while

the Rogers—-Ramanujan identities

2
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are equivalent to partition theorems, the first to

"The number of partitions of n  into parts which differ by
at least 2 is equal to the number of partitions of n  into parts

which are congruent to 1 or 4 modulo 5".

Several of the limiting cases of results we treat in Chapter 2

are amenable to partition-theoretic interpretation. We consider
2
n n. -1
Z Q) TT- (1-q7) : s
n20 2n n>0

nZ+1,+3,44,+5,47,49 mod 20

9n2+n n,-1
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n=t1,+2,+5,+6,+8,+9 mod 20

nztl,+4,%6,%7 mod 16

: 2n2 1
and ) ZL)—" = T (1-¢™~ ,
n>0 ‘92n n>0

nz=+2,+3,%4,%5 mod 16



all of which appear in Slater's compendium of such identities. We

show that, for example, the fourth yields
"The number of partitions of n,

n-= a1 + a2 + a3 + a4 + a5 + ...

with

a1 > 2, a,

- a > 0, az - a, > 2, a, - a, > 0, ag - 3, > 2,
is equal to the number of partitions of n into parts congruent

to 2, 3, 4, 5, 11, 12, 13 or 14 modulo 16." (1.10)

Straightforward proofs of Slater's identities also are included.
We remark that Gordon, W. Connor, and Andrews and Askey have,
independently, given partition-theoretic treatments of the first two

of the four identities given above.

In 1976, Andrews discovered a manuscript of Ramanujan which
he has called "the 'lost' notebook'. This manuscript, probably
written in the last year of Ramanujan's life, contains about six
hundred identities, of which Andrews has to date proved more than
half. One of these, with which Andrews had some difficulty, concerns

the unusual continued fraction

aq+iq bq}Xg? §92+Xq3 bq2+)\q4
1+ 1+ 1+ 1+

F(asb,)\sQ) = 1+

As in the case of the continued fraction of Chapter 2, our approach is
via the convergents, for which an explicit expression is obtained.
Ramanujan's result then follows easily. Some particular cases of

this result are
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-q

n20 (l-q ) (1 )

4n+2 2
(1-4"""

nZO(l—q4n+1)(l-q4n+3)

Again we have a new family of polynomials, which may prove as

fruitful as the Pn(a,b,c,q).

10.
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Chapter 2 A Continued Fraction

§1 We consider the continued fraction

F(a,b,c,q) = l+atb+ —3°2 €¢q-a__ ... (2.1.1)

1+a+bq+ 1+a+bq2+

As. we shall see, many of the continued fractions which have been
found by earlier writers to be expressible as products can be

obtained from (2.1.1) by specialisation of the parameters.

Indeed we show that (if |a| < 1)

F(a’b,C:Q) =
(r) r+l
q 2 b’ (-cq/b) // q 2 b" (-cq/b)
= r r
- L @ _@ fd @ (@ (2.1.2)

r=>0 q r a r+l ¢ r=0 q r r+l1

r

s (l_chr) (c/a)r (—cq/b)r (cq)r q3(2)+rarbr
r>1 (l-cqr) (aq)r (°b)r (C)r

= T . (2.1.3)
(cq/a)r (-cq/b)r (cq)r 3(2)+2rarbr

2 (1—cq2r+1)

r=0

(aq)r (_b)r+l (q)r ¢

There are many special cases of (2.1.2) and (2.1.3) in which the
series appearing on the right-hand-side can, via Jacobi's triple
product theorem (see Chapter 6), or some other device, be
expressed as products. In order to demonstrate the power of
(2.1.2) and (2.1.3), we give a number of these special cases, most,
but not all, of which have previously appeared in the literature,
before we turn to proofs. Note that (2.1.2) has appeared in
Hirschhorn (1974a). A result of the same type appears in Andrews

(1968) [Theorem 61].
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If in (2.1.3) we set a=b=0,c=1, we obtain

._.
+
o
o
s G
[}

1+ z (_1)r qqr(Sr—l)(l+qr)

rz1

Yo(-1)
r>0

r %r(5r+3 2r+1
q'i( ) q

(1- )

(qz;qs)m(q3;q§)w(q5;q5)w
(q ;qs)w(q4;q5)m(q5;q5)m

@200 @) @) @had),,  (2.1.4)

a result due independently to L.J. Rogers (1894) p.328 and

S. Ramanujan (1919b).

If in (2.1.3) we set q2 for q, a=0,b=gq,c=1,

we obtain

2
1+q+—3 = ... -
1+ + 14q +

2
1+ 3 -)F q4r —r(l+q2r)

rz1

2
+ +1
2 (_l)r qér 3r(l_q2r )

r20
3,8 ,5 .8, ,8 8
(@759 7),(a739 ) (a 739 7),

(q 590 368, a3,

3 8 5 8
(@7597) (a7359) / (q;qs)w(q7;q8)oo , (2.1.5)
a result due to B. Gordon (1965).

If in (2.1.2) we set a = 0, and subtract b, we obtain

C! C2
1+ 4 .. o=

1+bq+ l+bq2+

r+l r+l
*h

) z q br(--c/b)r // 2 q b (-cq/b%
r=0 (q)r r20 (q)r

(2.1.6)
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a result of Carlitz (1965),

ot t2 ) ottt
(-bq) —=— (-bq), —4
® éo(q% (-bq) . ez0 (@ (-ba)

t>0 (q) (- bQ) ; tzo (@), (-ba), (2.1.7)

a result stated by Ramanujan (Notebooks Vol. II p. 196). If

we now set b=1, we obtain

2 2
tt t t+t
R TR ey g
i 1+q + t20 (q7;q )t t20 (q7;q )t
= (—cq;qz)w/(-cqz;qz)°° , (2.1.8)

also a result of Carlitz (1965).

The special case c¢ = 1/q was given earlier by Gordon (1965).

If in (2.1.2) we subtract a , set ¢ =0 and b =

we obtain
l+a- —2 a 5 —
l+a+aq- l+a+aq™-
r r+l
z q(z) ar // z q( 2 )ar
- / — (2.1.9)
r20 (q)r(a)r ; 20 (q)r(a)r+1
Now, it is not harg to show (see 89.3) that
( ) 2
q 2 2r°-r 2r
(a), 1 — = ] 55— (2.1.10)
r>0 (@) (a) r20  (q7397)
and thence (put aq for q) that
r+l ‘
( 2 ) T 2r2+r 2r
(@, 1 8 8 -7 42 : (2.1.11)

r=0 (q)r(a)r+1 r20 (q2;q2)r
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It follows from (2.1.9), (2.1.10), (2.1.11) that

1+a- a a 2 e =
l+at+aq- 1l+at+aq”-
r2-r 2r 2r2+r 2r
= 7 EL———————- y L2 (2.1.12)
2 2 2
r20  (q7;q )r r20 (9739 )

If we now set q2 for q, a=q, and use the Rogers-Ramanujan

identities (see Appendix §8) we find that

1+q- —3 i— ... -
I+qHq "= l+qtq -
4r2 4r2+4r
N 4 4 4 &4
r20 (q ;q )r r>0 (q ;q )r
8 20 12 20 16 2
= (4739 k(g 39 L/(q q” )m(q 3q O)°° , (2.1.13)

Gordon (1965).

As a final example, if in (2.1.2) we subtract a, then

subtract b and set c¢=0, we obtain

- -2 a ve. =

l+a+bq- l+a+bq2-

r+l r+l

g 2 R
rgo (@) (@), rZo(q) (a) (2.1.14)

If we now set q2 for q, -a for a, and then b=a/q ,
we find

1+ a a -
l-g%aq+ l-a+aq3+

2 2

r r r
a Z q a
2 2 2 2
r20 (q73q9)_(-aiq ). r20 (q°;q )r(-a;qz)r+1

o[

(2.1.15)
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Now (see §9.3),

2 qrzar rz—rar
(-a3q7) ) ) 5 =) ﬂ—?ay—— (2.1.16)
r>0 (q ;q )r(-a;q )r r=0 r
and
r2 r r2
2 a r
(-2,97), 1 >3 > - [ 2. @
r20 (q7397) (-asq ) r20 r

From (2.1.15), (2.1.16) and (2.1.17) it follows that

1+ —= 2 cee =
. l-a+aq+ l-a+aq +
2 2
r -rr r r
= Z q a Z q a ] (2.1.18)
r=0 (q)r r20 (q)r

If we now set a = q, and use the Rogers-Ramanujan identities

once again, we find that

1+ —5 — .-
l-q+q"+ 1-q+q +
2 5 5 4,5
= (q ;qs)w(qB;q )o/ (@387) (@ 5a7), - (2.1.19)

§2. We prove (2.1.2) as follows: We can write

l+a+b+ —4=2 €9 5 ... =< an =
l+a+bq+ l+a+tbq + 1+a+bq
- Py (2-0>8:9) (2.2.1)
s 2.
Qn+1(a’b":"D
where
P0 =1, P1 = l4a+b ,
Qo =0, Ql =1,
and, for n 21, (2.2.2)
= n n— '
Pn+l (14+a+bgq )Pn+(cq a)Pn__1 ,

Qupp = (#atba™)Q +(cq™a)Q__,



It follows from (2.2.2) that
Qn+1(a,b,c,q) = Pn(a,bq,cq,q)

However, for the purposes of this chapter, we find that it is

16.

(2.2.3)

convenient to distinguish the Pn and Qn . and not use (2.2.3).

We set
It follows from (2.2.2) that
(1-z) (1-az)P(z) - z(b+cqz)P(qz) = 1 ,
(1-z) (1-az)Q(z) - z(b+cqz)Q(qz) = =z
We can write (2.2.5)
P(2) 1 zb(1+cqz/b) P(qz) .

(1-2) (1-az) T (1-2) (1-az)

_ z zb (14+cqz/b)
Q(z) = (1-2z) (1-az) + (1-2) (1-az) Q(qz)

It follows by iteration of (2.2.6) that

@ ¢
q“zb (-cqz/b)r
P(z) = )Pz = i ,
nz0 " 50 (Ppae2)y
(r+1
z . Z 2 zr+1br(—cqz/b)r
Q(z) = Qz =
nz0 ° r=0 (z)r+l(az)r+l
We now appeal to Abel's lemma. If 1lim Pn exists
n >
(and we shall 'see that it does if la|] < 1),
Po = lim P = lim (1-z)P(z)
n > © z>1-
r
)

r
q b (-cq/b)r

r=0 (q)r(a)r+l

(2.2.4)

(2.2.5)

(2.2.6)

(2.2.7)

(2.2.8a)
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and similarly

(r+1)
. q ? br(-cq/b)r
Q, = nliﬁw Q= rgo (q)r(a)r+1 (2.2.8b)

If we let n > in (2.2.1) and use (2.2.8), we obtain (2.1.2).

We can obtain explicit expressions for Pn and Qn from

(2.2.7), and then pass to the limit. Thus

q zrbr(-cqz/b)r

(2) 41(a2) gy

r20

(r) (s+1)
! q 2T q 2 (cz/b)° [;] )
r20 s=0 t20

r+t-

t
z

Il >~

x ¥ (az)" [rj“J ,
u=0

and, putting r = s+v , this becomes

s+v s+l
( 2 )+( 2 ) u, v

= X q a'b e’ x

» [s+v][s+t+v][s+u+v

z25+t+u+v '
s t u '

] (2.2.9a)

It follows that

+v s+1
G+

P - z q 2 2 aubvcs N
2s+t+utv=n

s+v. -s+t+v, -stu+t
57VIC 10T
s t u

s+l)
2 aubvcs N

X

]

s+v
(%5

[}
o~

x [s+'v][s+u+v][n--s--u:I

u s+v s (2.2.10a)
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and similarly,

s+v+1 s+l

( +(,70)
Q - z q 2 2 aubvcs "
n s,u,vz0
s+v, -s+u+v,-n-l-s-u-
C s ] u 10 sty 4 . (2.2.10b)

Letting n »> @ in (2.2.10a), we find that if |a| <l ,

s+v s+1
Co+C L)
Pw - z q 2 2 aubvcs y
s,u,v20
s+v, - s+u+v 1
X —
L s 1L u ] (q)s+v
s+v s+l
ot g sty 1
= ) q bc [ < ] ) X
s,v20 Vst
% z au [s+u+v]
u=0 u
s+v s+1
o0 s v 1 1
= I be Ul - @
s,v20 s+v s+v+l

and, putting s+v=r, this becomes

r s+l

() r (,7)
2°.r 1 1 2 S-T
= b (c/B)7L ]
rgo ¢ (q)r (a)r+1 SEO ‘ ‘ s
r
)

q b (-c/b)_

b

r20 (q)r(a)r+1

which is (2.2.8a).

(2.2.8b) follows similarly from (2.2.10b).

§3. Having proved (2.1.2) we proceed to prove (2.1.3).
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Watson's theorem (Watson (1929a), see Appendix §8) is

BC’ =
43 -N -
Ag Aq DEq
B’ C° A
/K, -a/A N, g A%
A,qvA, -q¥A, B, C, D, E, 9 ; q; — | -
(Aq/D)  (Aq/E) ¢ . BCDEQ
(Aq),, (Aq/DE) 877
N N _JL Ad A Ag Ag Aq_
/KQ ‘/K, B, C, D’ E’ _N
( q J
(2.3.1)

Letting B,D,N »> » in (2.3.1), we obtain

(;) Aq.r
; o -5 @,
r20 (q)rg%q
r
(aq/B), _ (-ACD) (©, (B, (), 3+ [-AZ]r
= T(aa) — q e . (2.3.2)
Be rzo UH Ay Ay @, -

If we now set A=c, C=c/a, E=-cq/b, we obtain

)
1 q 2 br('CQ/b)
P = t
® (1-a) 5y (@), (aq),
2r r
1 (-b), (1-eq™") (c/a)_ (-cq/b)_ (c)_ 3(2)+rarbr
(a) (e, by @0 Go, b, @, ¢
2r r

i 1 (-b) (s (1-eq™) (c/a) _(-eq/b)  (ecq), q3(2)+r ST ]

(1-a) (eq),, rx1 (l—cqr) (aq)r (—b)r (q)r

(2.3.3a)

If, on the other hand, in (2.3.2) we set A=cq, C=cq/a, E= -cq/b,

we obtain
(r+1
1 q 2 br(-cq/b)r
Q =
0 (1l-a) >0 (q)r(aq)r
r
b (-bg)g (1-cq®™HY) (cq/a), (-cq/b), (ca)_ q3(2)+2rarbr

(1-a) (eq®), r20 (l-c)  (aq), (-bq), (@),
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T
i 1 (-b), g (l-cq2r+1) (cq/a) . (=cq/b)_ (cq), q3(2)+2rarbr
(1-a) (ecq), .3 (aq) . (-b)_,; (@),
(2.3.3b)
It follows from (2.3.3) that
F(aab,C,Q) = Poo/Qoo
2r r
L6 (l=-cq“™) (c/a)r (-cq/b)r (cq)r q3(2)+rarbr
rz1 (l-cq") (aq), (=b), (),
(cq/a) (-cq/b)_ (eq) 3(D)+2r
z (I-Cq2r+l) (aq) t (-b) L L q 2 arbr
r20 aq r r+l (q)r
which is (2.1.3).
84 It is possible to transform the Pn’ Qn’ again via Watson's

theorem (2.3.1) in such a way that on letting n > © we obtain

(2.3.3) and thus (2.1.3) directly.

We have (2.2.7)

(;) r.r
0 q zb (—cqz/b)r
) Pa2 = (z)_,,(az)
n20 r=>0 r+l r+l1
)
2’ r. r
) q © z'b (-cqz/b) s T+s]
r>0 (az) 4y s30 T
Q)
= z a b (_CqZ/b)r [r+s] zr+s
r,s>0 (az)r+1 r
which, putting r+s = t, becomes
Q)
e Loa b" (-cqz/b)
_ r -t
- z z (az) [r]
t=0 r=0 r+l



(

r
2)

br(-cqz/b)r(l-qt)...(l~q

t-r+l

)

(]
o~
N
(a}

(aZ)r+1

t (q-t)r(-cqz/b)r

t=20 r=0

* l-az

Now, if we let
we obtain
-N
q , E
2%1 Aq
C

(Aq/E)N

(q)r(az)r+1

q
N

B’D->oo

E

N+1
; 95 Aqg

aqz

(q)

r

(-bqt)*

-t t
,-cqz/b3q;-bq ]
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(2.4.1a)

in Watson's theorem (2.3.1)

(1-a¢°) ©_ ®_ @, @,

- Ay 30 (1-a)

If we now set

-t

Aq,~ Ag
@, GH @,

t
q , -cqz/b; q; -bq

2¢l aqz

(b), . (-cq’"

z)

(C/a)r (-ch/b)r

A=cz, C=c/a, E=-cqz/b, N=t,

q

N+1
Aq r

)

(cz)

2(2)[

we obtain

-t

(q )

A2q2+N

\r

CE J

(2.4.2)

r

(cqz)t r>0 (l-c

= (-b) Y (l-cq
r=0

(-b) z (1-cq

r20

z)

2r

2r

z)

z)

(aqz)

(C/a)r (-cqz/b)r

(-b),

X

q

2(§)+r

(q)

r

(

t+1
cq 'z

(—abqtz)r

(cz)r

X

)

r

(aqz) . (-b), (cqz)t(l-CZ)(cqt+

r tr
) q

-t

(q

)

r

(c/a)r (—cqz/b)r

r

X q

1

(aqz),

(-b),

r
(cq'z) )

3(;)+r

q

rr

1z)

r

r

abz

3(;)+r

L;]arbrzr.

(2.4.3a)
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It follows from (2.4.1la) and (2.4.3a) that

Z Pnzn =
n20
(c/a)_ (-cqz/b) 1 3(5)+r
= z zt(-b)t z (l—cqzrz) L1 L - q 2 [lt_]arbrzr
t>0 r20 (az)r+l (-b)r (cq z)t+l
r
2r (c/a)r (—CqZ/b)r (-b)t 3(2)+r t, r. r r+t
= z (1-Cq Z) T (_b) q [r]a b z
r,t>0 (az)r+1 (cq z)t+1 r
which, on putting t = r+s, becomes
r
2r (c/a)r (—cqz/b)r r 3(2)+r r+s. r,r 2r+s
= )} (l-cq“'2) (-bq ) _q [F1a"b"2 .
r,s20 (az) +1 (c:qrzzr_’_s+1 s s
r (2.4.4a).
In the same way, we can show that
n
! oz =
n=0 n
r
_ 2r+l (Cq/a)r (-cqz/b)r r+l 3(2)+2r s
=1 (-cq”2) — (-bqa" ") _q [° %1
r,s=0 (az)r+1 (cq z)r+S+1
x aTpT 2r¥s+l (2.4.4b)
We have Z P 2" =
n
no 3(¢5) (-cqz/b)
+r -cqz
2 +
- Z (1-cq rz)(c/a)r(-bqr)sq 2 [rrs] arbr22r+s y - T
r,820 (az) 4y (ca 2) oy
3(r)+r
2
=)  (l-cq“Tz)(c/a)_(-bq") q 27 rts arbtz2r+s x
r s r
r,s20
t+l
r ( 2 ) r. t r+u u r+s+v r v
x ) q [ dCez/b)” ] U9 (az)” ] L 1 (eqf2)’
t=0 uz0 v=0

which, on putting r = t+w, becomes
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2t+2w t+w

z)(c/a)t+w (-bq ) x

= 2 (l-cq s

s,t,u,v,w20

3(tzw)+(t+w)+(t;1)+(t+w)v
Xq X

s+t+w][t+wj[t+u+w][s+t+v+w

] t u v

x [ ]

y at+u+'w

wct+vzs+3t+u+v+2w

b , (2.4.5a)

and similarly,

2t+2w+l t4w+l
cq

) X

Z)(cq/a)t+w(-bq S

) (1-
u

3(t;w)+2(t+w)+(t;1)+(t+w+1)v

Xq X

S t u v

N at+u+wbwct+vzs+3t+u+v+2w+1 . (2.4.5b)

It follows from (2.4.5a) that

P = ) (c/a)t+w(-bqt+w) x

s+3t+utv+2w=n s

3(t;w)+(t+w)+(t;1)+(t+w)v

x q at+u+'w

bwct+v

X

s+t+w- - t4w. - tHutw, s+t+viw
x [ < 1C t 1L a 1C v ]

t+w

)

-c ] (efa) , (-bq" ")

s+3t+u+v4+2w=n-1

t+w t+1
3( 2 )+3(t4w)+( 2 Y+ (t+w)v ttutw. W EY
x q a bec X

X[s+t+wJ[t+w][t+u+w][s+t+v+w]

S t u v
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t+w
- I (c/a),(-ba ™) }
t,u,v,w20 t+w n-3t-u-v-2w
thw t+l
3( 9 Y+ (t+w)+( 2 Y+ (t4+w) v huhe v 4y
" d a b c

_n-2t—u—v-w][t+w][t+uﬁw][n-2t—u—w]
t+w t u v

t+w
- ¢ z (C/a)t+w(_bq )n—1-3t-u—v—2w )
t,u,v,w20
t+w t+1
) 3( ’ ) +3(tHw)+( ) Y+H(t+w) v b Wty
q a bc X
x [n—l-zt-u-V-W][-t'l'w][ t+u'.'W][n-l-2t"‘u-W]
t+w t u v
t+w
= Y (c/a) _, (=bq ") x
t,u,v,w20 t+w n-3t-u-v-2w
t+w t+1
3( 2 )+ () +( 2 )+(t+w)vt+u+w w t+v
X q a b c
- + + A - =Uu=w -
" [t:w]Lt u+w][t v+wj[n 2t-u wJ
u v t+vt+w
t+w
- c 1 (c/a) , (-bg ) X
t,u,v,w20 t+w n-1-3t-u-v-2vw
t4+w t+1
3( 9 )+3(t+w) +( 9 Y+(t+w) v thu WtV
X q a bec x
t+w. - t+utw. - t+vtw. - n-1-2t-u-w,
Bl r !
x [ " 1 u 1C 10 vty . (2.4.6a)
and similarly,
t+wtl
= - X
Qn 2 (Cq/a)t+w( bq )n-1-3t-u—v-2w

t,u,v,w20

3(“2“")+2(t+w)+(t“;1)+(t+w+1)v

t+utw
X q a

bwct+v 9
t+w][t+u+w][t+v+w]rn—1-2t-u—w1

x [ f ]
t u v t+v+w



t+w+l
- cq 2 (cq/a)t+w(-bq )n-2—3t-u-v-2w 8
t,u,v,w20

t+w t+1
3( 9 Y+4 (t4w) +( 9 )+(t+w+1)vat+

x q u+wbwct+v
t4w, - t+utw - tHvtw n-2-2t-u-w
1 1
x [ ¢ il u I v il thviw
1f in (2.4.6a) we let n >, we obtain
t+w
P = ) (c/a) ,(-Pa e
t,u,v,w20

t+w t+1
3¢, Y+t +(, )+(t+W)vat+u+wbwct+v

X q X
< [t+w][t+u+w][t+v+w} ' 1
t v (q)t+v+w
t+w
-c ) (c/a)t+w(—bq ) %

t,u,v,w20

t+w t+1
3¢5, )+3(ehn)+(y )+(t+w)vat+u+wbwct+v §

x q

X

rtw][t+u+w][t+v+w] . 1

t v v CUNTINS

t+w
t,u 520 (C/a)t+w('bq o X

t+w t+l
, 3( 2 y+(eha)+( 2 ) t+tutu w t
X q a bec X

xttw][t+u+w] . S ) 1

-t u +w

(q)t+w (cqt )

©

(2.4.6b)



t+w
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-c ) (c/a),, (=bg ) *
t,u,w20. thw
t+w t+l
3 2 )+(t+w) +( 2 ) t+utw, w t
x q a bec X
t4w - t+utw 1 1
x Bl 1. .
t Y (@ 4y (cqt*-"’)a°
t4w
= ) (c/a),  (-bq ), X
t,w20 b
t+w t+1
. 3D+ e w e
| a be X
oty 1 1 1
€7 @Dy (g™ (2) Lyt
t+w
-c 7 (c/a) (-bq~ ), *
t,w20 thv
t+w t+l
3( 2 )+3(t+w) +( 2) W t
x q a be X
t V (eq” N, (a)t+w+1
which, putting t+w = 1, becomes
4
3(5)+r
= Z (c/a)r(—bqr)wq 2 a"" 7 %‘ . L . X
r20 ¥y (eq), r+l
x qu (c/b)
t=
3% +3r
-c z (c/a)r(-bqr)w q 2 a™’ . (1) lr (a)l
r20 . Ve (cq7), r+l
13 (ﬁz-l) t
x 1 q (c/b)
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r

3(2

I (-cq’® (e/a)_(-ba"), q
rz0

)+r rr
ab (-cq/b)r

1

r
(@) (eq) (a)_,,
(-b), (l_chr) (c/a)r (-cq/b)r (cq)r 3(;)+r

q
@_,, (v_ (@

r,r
ab

(cd)e 130 (1-cqb)

(-b),, (1-cq”") (e/a) (-ca/b) (@), 3(D+r _
Lo ] T Go, v, @, ¢ 2P
0 r21 (l-cq) Yy r Vo

l1-a  (cq)
which is (2.3.3a).

Similarly, if in (2.4.6b) we let n > ® , we obtain (2.3.3b).

We omit the details.

§5. We have obtained two quite different expression for Pn’
namely those in (2.2.10a) and in (2.4.6a). Equating them yields a
new polynomial identity which involves three parameters and which

implies the Rogers-Ramanujan identities.

Thus

s+v s+l
(34

)
2 q 2 aubvcs o
s,u,v20

s+v.-s+utv,-n-s-u
[ 1€ 1 ]
S u st+v

t+w

= Z (c/a) (-bqg ") %
t,u,v,w20 t+w n-3t-u-v-2w
t+w t+1
3( 9 )+ (t+w)+( 5 Y+(t+w) v b
*q a bc X

t+w. - t+utw, - t+v+w, - n=-2t-u-w
X ]
[ t I u I v il t+v+w
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t+w
- ¢ 2 (c/a)t+w( bq )n—l—3t—u—v—2w X
t,u,v,w=0
t+w t+1
3CIHERD DIV e vty
X q a bc X
rtHw o thutw, tviw o= 1-2t-u-w
X L t J[ u L v i t+V"“W ] (2.5.1)
This simplifies considerably in the case b =0 . Thus
2
z s _u S -stu.-n-s-u,
q a c . u _JL s
s,u=0
2t2+tv t+u t+v _tH+u. t+v, n-2t-u
= 1 (c/a)q a e L I
t,u,v20
2t2+2t+tv t+u t+v t+u  t+v,-n-1-2t-u
- 1 TiTets
c ) (c/a)tq a ¢ 0,10 e b - (2.5

t,u,v20
Since there is essentially only one appearance of n on each
side of (2.5.2), it should be possible to prove (2.5.2) by

induction.
Further, (2.5.2) can be written

2
z qs aucs rs+u][n-s~u]
s s

2
(c/a)tth attuct [tzuwtn‘it'ul 7 Vgt [“‘3t‘“3
t,u20 v=0

[}
S~

2
2t +2tat+uct [t:uj[n—l-Zt-u] z qutv [n-1-3t-u]

(c/a)tq t v

-c z
t,u20 v=0
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2
2t” t+u t t+u.n-2t-u t *
[
(c/a)tq a ¢ty It t n-3t-u (eq?)

"
o~

2
2t74+2t t+u t t:+uq.—n-1-2t—u_| t
- ) (c/a)tq a ¢ C g oL . ] Hn-1-3t-u (ecq ) . (2.5.3)

t Lt(5t-1) 2t -n-2t, t
q c [ ¢ - Hn-3t (cq))

L -1~
< J (-t q2t(5t+3)C2t o 1 2t] B, (cqt) . (2.5.4)
€50 t n-1-3t

The Rogers-Ramanujan identities follow on letting =n > « and
setting c=1, c=q. Thus, letting n > ® in (2.5.4), we

obtain

2
s

S
z % )c - Z (_l)tq%t(St-l) C2t 1 ' 1
s>0 Vg £>0 (q)

t
¢ Ceay

—c ) (_l)tq%t(5t+3) SEASN S 1t
t20 (q) (cq),

t

) _ :
) (_1)t(l_cq2t)q1t(5t 1)c2t | i
t20 (q)

t
¢ (eq ),

(C)t
TET; (2.5.5)

1

q%t(St—l)CZt
(c)

I (-1)%(1-cq®®)
© t>0

* Here Hn(x) = Z x° [:] (see Appendix §6).
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S S S (meq”®) Jar(se-1) 2¢ (D¢
(ca)g, t20 (l-cqt) (q)t
= Lo 147 (DY Q-eg®h ne(se-1) 2¢ (D
(cq) ~ze8 ) c } (2.5.6)
q 0o tZl (l_cqt) q (q)t . «Je

If in (2.5.6) we set c=1, and in (2.5.5) we set

c=q, we obtain

2
S
q 1 t t, t(5t-1)
= 1 + (-1) (l4+q")
<20 (q)s (q)m { tgl q )q }
I R MCHTOMCRTON
= 1/(q;q5)w(q4;q5)w , (2.5.7)
and
2
5 S *s _ 1 ) (_l)t(l_q2t+l)q%t(5t+3)
s50 (Vo (0s, 30

Gl— (q;qs)m(qa;qs)m(qs;qs)w

/(50 (50D, (2.5.8)

which are the Rogers-Ramanujan identities. Incidentally, if we
set c¢=1 and let q~>1 in (2.5.4) we obtain the following

formula for the Fibonacci numbers:

F = z (n—s)
n s20 s
- - -1- -1-3
= 1 EDEEEHTE L TR (2.5.9)
t20 t20
which follows easily from
] Pxte—t -1 X . (2.5.10)

n 3

n=0 l-x—x2 1-2x+x 1-2x+x3



8§6. If we compare coefficients of cr

we obtain

2
r -n-r-
S

1 - 9t -
z (_l)tqzt(St 1)+vt[n 2t]Ln 3t]

2t+v=r t v
-1-2 1o
- z (_l)tq%t(5t+3)+tv[n 1t .-t][n 1v3t]
2t+v=r-1
t=0 t ‘r-2t
- t %t (5t+3)+t(r-1-2t) n-1-2t. - n-1-3t,
tgo (-1 L ]
= z (_1) q q [ ¢ ][r_ztj
t=0
(t+1
- 1 (-Df 2 qrtE"'iTZt][::i:gtq
t=0
)
=1 DS Fm
t=0
t+1
- z (_1)tq 2 qrt[n-rltn—l-Zt]
t=>0 t n-r

Putting n+r for n ,

2 5
qr [:] - 2 (_1)tq 2 qrt[n1

t=0

[n+r—2tj

t n

t+l

we obtain the identity

_ 2 (-1)tq 2 qrt[2][n+r—l—2t]

t>0 n

This identity is also deducible fairly directly from

Watson's theorem. Let B,C,D,E »

in (2.3.1).

31.

on both sides of (2.5.4),

(2.6.1)

(2.6.2)
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2

I @f N1aT = ] Q-ag?HnSHTerD Ly 2
r20 t20 (Aq )N+1
= 1 (-ag?h (o)) Eq T IHEY [Nyt 2t (2.6.3)

t,v20

Now compare coefficients of A" on both sides of (2.6.3), and

obtain (2.6.2).

The identity (2.6.2) is a q-generalisation of the binomial
coefficient identity
+r- +r-1-
G 6 Y Gt WD S G DT e Y G (2.6.4)
t20 t20
which follows easily from
(1-xH" (1-x)"

(1+x)n = Se———t— . X —— . (2.6.5)
(1—x)n+1 (1—x)n+1

It would be nice to have a combinatorial proof of (2.6.2), for
this would give us significant insight into the Rogers-Ramanujan
identities. Indeed a first step would be a combinatorial

proof of (2.6.4). We note with regard to (2.6.4) that

I DD - ] i T
t=0 t>0
- z (- 1)l:(n)(n+t'-1 2t)
t=0
_ (n#r-1)! o) p(em1) L (ro2ekD)
(n=-1)!r! £20 t! (n+r-1)...(n+r-2t)
( _r -ril
- Sobr- D! o ~hs 2 2 -
(n=-1)!'r! 32 -n-r+l -n-r+2 ’
2 2
. Sotr-1)! (n-1) !n!
(n-1)!r! (n+r-1)!(n-1r)!
= (:) by the Pfaff-Saalschutz summation (see App'x §5). Thus

(2.6.4) is a special case of a non-trivial hypergeometric identity.
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Chapter 3 A Family of Orthogonal Polynomials
§1. We study the polynomials Pn(a,b,c,q) defined by
Po =1, P1 = l+a+b , (3.1.1a)

and for n 21,
P .. = (l+atbq")P + (cq -a)P (3.1.1b)
1 4 %," ted n-1 ° A e
These polynomials arise as the numerators of the convergents
to the continued fraction

2
cq-a cq -a

1+a+bq+ 1+a+bq2+

1+a+b+
considered in Chapter 2.

We can write (3.1.1b) as -

-n

_ n -n,__ . n
bP =q P (1+a)Pn+q (a-cq )Pn_1 . (3.1.2)

n+1_q—
By a theorem of Favard (1935) we deduce that the Pn form aﬁ
orthogonal family of polynomials in the variable b . As we

shall see, the Pn are, in the special case <c=a , closely
related to.the extended q-hermite polynomials. However, these

polynomials do not appear to have been previously studied in the

present generality. ) -

In §i:he shall state.avformula for the Pn’ simpler than
those found in Chapter 2. Ié'shows that the Pn reduce to
the extended q-Hermite polynomials wpen c=a, énd at the same‘
time solves the 'connection coéfficient problem" between the fully

.gemeral P and the simpler polynomials.

Proofs are given in §§3,4.
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§2. We shall show that
Pn(aQb’c)q) =
™+
= ] D" 2 a"e/a)_at(-bg™/a) L7 ™) (3.2.1)
2. 320 m m 2
,m
In particular, if c=a ,
i n
P (a,b,a,q) = ) a (-b/a),[,] (3.2.2)
n 250 -2
n n-2+1
= T (atb).... (atbgtly (zaD.. (g - )
220 (1-9) .... (l-qM)
It follows that
-n -n+2-1
Pn(a,b,a,q-l) = Z (a+b)....(a+b/q2-1) (l-q-l)...(l—q 2 )
220 (1-.q )... (1-q )
-() 2\ 2
- - -
= ) q 2" (b+a) ....(b+aq" D) (q “)2 ( 1% ?
220 Yy
-n
= z Q) (-bq)
20 Yy
= (—a/q)“hn(b;-q,-q/alq) , (3.2.3)
where the hn are the extended q-hermite polynomials
defined by
(g/bx) (@~ ™) .
h_(x;a,blq) = b" i f 2 ant . (3.2.4)
n 220 4y

The hn have been studied extensively by Andrews and Askey
(1980?) and are well understood. We mention just two properties

of these polynomials.
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n
(-D% b (xsa,bl02"  (a2), (b2),
-0 (q)n = (abxz/q)m (3.2.5)
and
-1
a
S hn(x;a,b|q)hm(x;a,b|q)(xa)m(xb)md(q,x)
b—l
0 if m#n
n 1-(3) |
(- Labl_ 2(@_(q) (a/b)_(b/a)_ if m=n  (3.2.6)
a-b © n ) ©
The formula corresponding to (3.2.5) for the Pn(a,b,a,q) is
P (a,b,a,q) (-bz)
—E_"?"T_"_— 2t = EOROMN (3.2.7)
n20 Yy 82) 0\ %) e
For, by (3.2.2),
P (a,b,a,q) n
n n z '3 n
—_——z = ] Y a“(-b/a) ,[}]
n>0 (@), n20 (Pn 50 2L
z z Zn n
= a“(-b/a) (,]
220 % n>4 (q)n .
N L les ;o2
g0 (@ 20 @y
. Ly 2P,
(2)y, g50 (D
1 (-b2)_
T @, (@,

The problem of finding the formula corresponding to (3.2.6)

for the Pn(a,b,a,q) is as yet unsolved.
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We have from (3.2.1) that

Pn(a,b,c,q)
(L
2 m n-m- 2 m n-2m
= z (-1)"q a (c/a)_ [ i) a (-bq /a),l ]
>0 m m 220 - 2
(™
= RZO -nT 2 a"(c/a) ("™ P, (a,bq",a,q) (3.2.8)

which shows how the Pn(a,b,c,q) are related to the Pn(a,b,a,q).

Before proving (3.2.1) we note that Andrews (unpublished)

has proved a somewhat different formula for the Pn’ namely
L m f4m- n-m
P (a,b,c,q) = ] c (-b/c),a (c/a) [, 20 ,"] (3.2.9)
n L m - % '3
2,m20

which again generalises (3.2.2).

A proof of (3.2.9) along the lines of the proof in §3

of (3.2.1) can easily be given.

§3. (3.2.1) was discovered empirically by the author in attempting
to generalise (3.2.2), which had been found earlier by Andrews.

Our first proof is purely a verification. Thus,

mt+1
2 L - -2
. lglz()(-l)mq am(C/a)ma (—qu/a)z[nmm][ngm]
o, (TSt ) )
- z (_1)r+sq 2 (_l)sarcsq 2 [r:Sj at(_bqr+s)uq 2 [t:u]

r,s,t,u=0

n-r-s. n-2r-2s
. r+s I t+u ]

X
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r+s+l s u
- z (_l)rar+tbucsq( 2 )+(2)+(r+s)u+(2) N
r,s,t,u=0
r+s. t+u - n-r-s. n-2r-2s
[ s 10 u 1 s 1 t+u ]
s+u s+1
vV,u s ( 2 )+( 2 ) s+u.st+utv,
= z abcagq L s 1C v S F
s,u,v20
r+l
T ( 2 Y+(s+u)r VqrN=-S-T
x rZO(-l) q (]
(s+u)+(s+1)
_ z avbucs 2 2 [s+u][s+u+v][n—s—vj
- U v20 q s v stu -
= Pn(a9b)C’Q)

Here we have used the identity

r+l

( )+(s+u)r
r 2 V,0=S-r, _ N-S-V
! (-D7q R I i (3.3.1)
r20 ,
which follows from
+utl
(xq° " ), 1
—— = (3.3.2)
(x)s+u+v+1 (x)s+u+1
on comparing coefficients of xn-28-u-v
§4. Another proof of (3.2.1), making use of the generating function

of the Pn’ can be given.
r
;)
q 2 zrbr(—cqz/b)
n r
z Pn(a,b,C,Q)Z = z (Z)
n20 r20

(3.4.1)
r+1$3%) 1y



)
2 rr
- 3 q " zb (-cqz/b), ) [r+s-.( 2)S
R (2) 11 > )
> s20
)
2. r s
= 2 T e (-CQZ/b)r [r+s] zr+s
r,s20 (z)r+1 r

and, putting r+s=t, this becomes

t () (-cqz/b)
] %" ] a? = 10/a"
t20 r=0 r+l

t (—cqz/b)r(q-t)

tt r t r
= ] az ) (-bq /a)
20 r=0 P (@,
-t
) atyt -cqz/b, q t
- z l1-z 2¢1 s q; —bq /a
t=0 qz

which, using the second iterate of Heine's transformation (see

App'x §3), becomes;

..t \
= 2ot b/a) ¢ ol a; a2
£20 l1-2z (qz) 271 —b/a, ’
X : (e/a) (@ 1w
= —5—‘ (-b/a) . (" "2)
t20 (z t+l t m=0 ZV-b/a)m(q)m
m+1
: t t t : ',
a z N m 2 rtaom
= 2.z - (-1) q (c/a) (-bg "/a) 1z
:zo (z)t+1 m=)'=0 t-m “m

which, on putting t = f+m, becomes

mt+1

= ] D" 2. "(c/8) 8 *(-bq"/a) (41 e
2,m20 bhn+l

zSL+2m

38.
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m+1
(G
= ] D" 2 a"(c/a) a"(-bg "/a) 017 N
2,m20
24+mtp, P
x 3 ]z
big Wm
m+1
(G
- ) 0(—1)“‘q 2 g c/a) at(-bq"/a) LIV RY ST L (5Lal2)
,M, P2
1t follows thét Pn(a,b,c,q)
- 3 (-1)mq(m;1 e /a) a 2 (bq/a) [ 2+m ey
2+2mtp=n 2 m
m+1
D)
= ) (-1 2 am(c/a)mal(-qu/a)z[zzm][zlzj
2,m=0 .
m+1
(G
_ 2 (—l)mq 2 am(c/a)mal(_qu/a)Qtn;m][nzfm]
2,m=0

which is (3.2.1), as required.

§5. We have
@ x
Z N z q b (- cqz/b)
P (a,b,c,q)z =
n>0 rs0 () py(a2)
Puttin 1 for a b for b £ for f
g 3 > 2 s 32 c, az or z,
we obtain
)
27 r. r
q ° z'b (-cqz/b)
Poa" (3,2, 8, )" = ] r
120 n'a’ a az 50 (Z)r+ (az)
= ) P ER q)z" . (3.5.1)

n=0
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It follows that

| = % (L b ¢
Pn(a,b,c,q) = a Pn > 2 az, q) . (3.5.2)
In particular, if c=a ,
n 1 b 1
Pn(a,b,a,q) = a Pn(;, 2 ;,q) , (3.5.3)

which also follows from (3.2.7).

(3.5.2), together with (2.2.10a), (2.4.6a), (3.2.1)

or (3.2.9), yields yet more formulae for Pn(a,b,c,q).

Thus, for instance, (3.5.2) together with (3.2.1) yields

Pn(a,b,c,q) =
(m+l

n m 27 -m -2 m, n-m.-n-2m
= - - 1]

§ z,gxz -17a a “(c/a)a "(=bq ), L7 AT

™t

= 7 a" ™ 2 (eca) . (™ Tea) (<bg™ LV MTA™ L (3.5.4)

9 o> 2" m L

,m=0
In particdlar if we set c=a, we obtain
n-%

P (ab,a,q) =} a (-b),[}], (3.5.5)

220

which should be compared with (3.2.2).

Comparison of (2.2.10) with (3.5.4) yields the identity

(s+v)+(s+1
2 2 v § s+v, s+ut+v. _n-s-u
. Ezoq a'b’e® 1% V5TV o]
(Tl
= zZ an—2m—JL q 2 (c-a)---(cqm-l-a)(—qu)z[n;m][n}zm] (3.5.6)
,m=0

which, as we shall see in Chapter 4, has a special case of considerable

significance.
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Chapter 4. Sylvester's Partition Theorem
§1. What must be one of the first partition theorems is Euler's

Theorem 4.1.1.

The number of partitions of n into odd parts is equal to the

number of partitions of n into distinct parts.

Sylvester (1884-6) stated and proved the following startling

refinement of Euler's theorem, namely

Theorem 4.1.2

The number, A(n,s), of partitions of n into odd parts,
s of which are distinct, is equal to the number, B(n,s), of
partitions of n  into distinct parts, with s sequences of

consecutive parts.

Andrews (1966) gave a proof of Theorem 4.1.2 based on generating
functions, later simplified by Hirschhorn (1974b). In 82 we see that
the polynomials which arise in this proof are intimately related to the
polynomials studied in Chapters 2 and 3. Indeed, using an explicit
expression obtained earlier for these polynomials we obtain a polynomial

identity which in the limit yields Theorem 4.1.2.

. In doing so, we are led to consider the special case ' a=0, b=q

of identity (3.5.6), which is

s+vel s
I ( 2 )+(2) s[s+v][n-s] -
s.,v20 9 ¢ s s+v
m m2 m+1 n-m
= I cq (g, [P, (4.1.3)

m20
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Thié new identity,which is easily proved directly, yields, as n+>®

&3
q (—c)r 2
rzOT— = () (-eq3q7),
(-cq;qz)m
— , (4.1.4)
(9597,

an identity attributed to V.A. Lebesgue (1840), and a special case
of the gq-analogue of Kummer's identity (see App'x §4). Lebesgue's
identity is essentially equivalent to Sylvester's theorem, as we

shall see in §3.

In his 1966 paper, Andrews also gives the following generalisation

of Euler's theorem.

Theorem 4.1.5

G(n,xr) = } (gin)] is equal to the number of partitions
mell(n)

of n with r distinct even parts and all other parts odd. Here
II(n) is the set of partitions of n  into distinct parts, and
g(m) is the .number of '"gaps" in the partition m , related to the

number of sequences s(m) by
g(m) = s(m)

unless the smallest part in T is 1, when
g(m) = s(m) - 1.

In 84 I present a simplified version of Andrews' proof of

Theorem 4.1.5 and prove the following further three new generalisations

of Theorem 4.1.1.
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Theorem 4.1.6

G(n,r) is equal to the number of partitions of n—r2-r

with no even part greéter than 2r.

Theorem 4.1.7

S(n,r) = Y (Sgr)) is equal to the number of partitions
mell(n)

of n+r with r distinct even parts and all other parts odd.

Theorem 4.1.8

S(n,r) is equal to the number of partitions of n—r2 with

no even part greater than  2r.

Theorem 4.1.1 is the case r=0 of each of Theorems

4.1.5-4.1.8.

§2. In order to prove Theorem 4.1.2, let B(n,s,%) denote the
number of partitions of n into distinct parts with s

sequences of consecutive parts, and no part greater than 2.

(4.2.1)
Then, as Andrews shows,
B(n,s,L) =
= B(n,s,?1) + (B(n-%,s,2~1) - B(n-%,s,2=2))
+ B(n-%,s-1,2-2) . (4.2.2)
Now let
Bz(a,q) = z B(n,s,%)asqn . (4.2.3)
n,s
Then
Bp(a,q) = 1, B,(a,q) = l4aq , (4.2.4a)
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and it follows from (4.2.2) that
Bo(a,q) =
(2,q)+a* (B, (a,q)-B, . (a,9))+aq B, . (a,q)
= BQ-I a,q)+q -1 a,q)- -2 a,q aq -2 a,q
= (1+q2)B (a,q)+(a-1) zB (a,q) | (4.2.4b)
g-1'2-4 9 Bg_p'ds ) te
It follows from (4.2.4) that
2 2

B (a,q) = P, (0,q,(a-1)q,q)+(a-1)qP,_,(0,q",(a~1)q",q) , (4.2.5)
where the Pn are the polynomials studied in Chapter 3. For,

by virtue of (3.1.1), the right-hand-side of (4.2.5) satisfies

(4.2.4), which defines the Bg(a,q) uniquely.

From (3.5.4), we have

Pz(o:q’(a'l)q’q)

m m2+m m

- Zo (@)™ g™, 7, (4.2.6)
m2 ‘
and
P2_1(0)q29(a-1)q2,q)
m m2+2m m+2 2-1-m
= ZO (a-1)"q a4 Vg joont @ 3 - (4.2.7)
m2

It follows from (4.2.5)-(4.2.7) that

2
I D" " "™,

B (a,q) =
L mzo
m-2-m L2-m+1, _2-m
x {q T+ (ke 7]
2 (@), 2
= 7 (a-D"" (=" )e-2m B (1t

2 (2:43)
2+1 z (a-l)mqm 59 g p
2, 2
m20 (97597), @y 00y

[
~
—

1

£a
N’

(4.2.8)



Letting

n

L > > in

) B(n,s)asqn
»S

which is Sylvester's

§3.

I now give an alternative proof of Sylvester's Theorem.

(4.2.8), we obtain
2
1 m m
_ (a-1) ¢
- 2 2
(c:x;c;z)a° w20 (q7397)

((1-a)q;q°)

2
(q597),
=TT 1+(a—l)q2r+1
r=0 | l_qu+1 )
( 2r+l )
aLUS =
r20 { 1-q

) A(n,s)asqn
n,s

Theorem.

’
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(4.2.9)

It is, in my opinion, as simple and as straightforward as any of

the proofs in the literature, including that of Ramamani and

Venkatachaliengar (1972), reproduced in Andrews (1976), and shows

clearly the equivalence of Sylvester's Theorem and Lebesgue's

identity (4.1.4).

P

u

*
B (n,S,P,O) =

and

* * *
B (n,s,p,l) = B (n-p,s-1,p-1,0) + B (n-p,s,p-1,1)

distinct parts, with s

1's

Let

(u=0 or

*
B (n,s,p,

u) be the number of partitions of

1)

Subtracting 1 from every part shows that

* *
B (n'P;SsP,O) + B (U‘P,Sap,l)

n

into

sequences of consecutive parts, and

(4.3.1)

(4.3.2)



Now let
* s n
B (a,Q) = z B(n,s,p,u)a q
p’u n,s

It follows from (4.3.2) that

* * *
= % P
Bp,o(a9q) q Bp,o(aw(I) +q Bp’l(a,Q) s
d B* * *
an = P P
p,1(a,q) aq Bp—l,O(a’q) +q Bp_l,l(a,q)

From (4.3.4) it follows that

* P *
p,O(a,q) l—qp o1 (a,q)
and that
* p-1 *
= aP aq
By,1(8:9) =4 [1 * 1_qp—1] Bp-1,1(@9)

*
A trivial induction yields, since B1 l(a,q) = aq
9

2 ( (
L(p"+3p)
%* -
B o(a,Q)*" iq————'p—— l+iq- cee |1+
P 1-q | 1 \
* %(p2+p) ag
B 1(a,q) = aq 1+ eee |1+
’ { 1-q {
* %* * ,
Let B (n,s,p) = B (n,s,p,0) + B (n,s,p,1) .
Then
%*
2 B (n,s,p)asqn =
n,s
%* *
- BP,O(a’q) + Bp,l(a’q)
5(p7H) | 1 C 1
S urhiidy R B OO P u
1-q° [ 1-q [ 14"
2 4 4
L ) -1
= Eﬂ_ff_jfz. 1+-2324 | ... I +.§33__J
1-¢° | 1-q | [ 1-¢"7)
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(4.3.3)

(4.3.4)

(4.3.5)

{aP+(1-¢P)}



p+l -
s 927 a-@eaya-(ea)g) ... (a-(-a)g®h
1-¢")  (1-q) ... (1-"7H
¢h
) q (l-a)p
(q)

P

Summing on p, we obtain

¢+l
I B(n,s)a’q" < 0,
B(n,s)a q = 1+
s p>1 (q)
E3h
; q (l-a)P
p30 (q)p

On the other hand,

n,s r=0 1

z A(n,s)a’® n 1T 1 +-§33§t£—
> q _q2r+1

((l-a)q;qz)°°

(q;qz)w

Thus Sylvester's Theorem is equivalent to

(p+1)
2 2
q ° (l-a)p ((1-a)q;q ),

(q)p

2
p=0 (9597 ),

which is Lebesgue's identity (4.1.4).

§4. We prove Theorems 4.1.5-4.1.8 as follows.

Let  G(n,r,k) = ) @™y
mell(n,k) T

47.

(4.3.8)

(4.3.9)

(4.3.10)

(4.3.11)

(4.4.1)
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where II(n,k) is the set of partitions of n into precisely

k distinct parts.

Andrews (1966) (equation 3.1) showed that

¢(n,r,k) = G(n-k,r,k) + G(n-k,r,k-1) + G(n-2k,r-1,k-1). (4.4.2)
If we let
Gk(a,q) = 3 G(n,r,k)arqn s (4.4.3)
n,r
then

k k 2k
Gk(a’q) =q G (a,q) +q G _,(a,9) +2aq G _,(a,q), (4.4.4)

or,

k k
G (a,q) = ﬂ—ilifﬂ—l G _p(asq) . (4.4.5)
1-q

A trivial induction, together with Go(a,q) =1, yields

3h
( q (-aq)y
G (a,q) = . (4.4.6)
k COM
That is,
(k+1)

rn q ? (-aq)k

] G(n,r,k)aq = o (6.4.7)
n,r : Py
Summing on k yields
)
q (-aq),
z G(n9r)arqn = Q)
n,r k>0 Ty
(-aqz;qz)oo
- 2
(9597,

( 2r+2
T (4.4.8)

£20 [l- 2r+l
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from which Theorem 4.1.5 follows.

We have

rn 1+aq2r+2
I ctnae = T | o
-q

n,r r=0 1
r r2+r
= TI- 1 a q
r20 1-¢2T* 130 (1-¢%) (1-¢%) ... (1-¢%)
r r2+r
+ b
r20  (1-q) (1-q%) ... (1-q2%)(1-¢Z**1y (1-¢%**3) ...
(4.4.9)
from which Theorem 4.1.6 follows.
Let S(n,r,k) = ) (Sﬂf)) : (4.4.10)
mell(n,k)
Using Andrews' device, it can be shown that
S(n,r,k) = S(n-k,r,k) + S(n-k,r,k-1) + S(n-2k+1l,r-1,k-1). (4.4.11)
Letting
s, (2,9 = ] s(,r,kaq" (4.4.12)
n,r
it follows as before that
(k+1)
2
q (--a)k
Sk(a,q) = (q)k . (4.4.13)
o1, k+1
5,
rn q ? (_a)k
] s(,r,k)aq = (4.4.14)

n,r (@)
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It follows from (4.4.14) and (4.4.7) that

S(n+r,r,k) = G(n,r,k) . : (4.4.15)
Summing on k yields
S(n+r,r) = G(n,r) . (4.4.16)

Theorems 4.1.7 and 4.1.8 follow from (4.4.16) taken together with

Theorems 4.1.5 and 4.1.6.
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Chapter 5. Further Combinatorial Aspects

of the Polynomials of Chapters 2,3

§1. It is well-known that the polynomials which arise in the study

of the continued fraction

2
£q <cq
1 + T+ 1+ (5.1.1)
namely
. .2 n=i
P_(0,0,c,q) = [ clq ["70] (5.1.2)
2j<n J

are capable of a combinatorial interpretation. Thus, Pn(0,0,c,q)
is the generating function for partitions into parts differing

by at least 2, with the parts all <n, and where the power

of c counts the number of parts (see Hirschhorn (1972),

MacMahon (1916) Art. 286).

In attempting to find a more general family of polynomials
with a combinatorial interpretation, George Andrews suggested the

possibility of finding the generating function for partitions into

distinct parts with all sequences of length less than k , and with
all parts <n. This generating function is, as we shall see in §2,
+1 L
e k(G .
j 2 _y X 727 n-j n-k&-1
! c'q L D7 7] k)[ kg 1 (5.1.3)

j=20 k<] (q

where again the power of c counts the number of parts.

In the case k=2, the expression in (5.1.3) is equal to
that in (5.1.2), by virtue of the fact that they generate the same
set of partitions. Equating the two expressions yields, as we shall

see in 8§83, the following identity of Slater (1951), [19], namely
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2

. 133,33 . .
T awdh § —Ek - YT a-g¥*ha-g%t
izl j20 (q73q )j(-q;q)2j jz0

(5.1.4)

We also obtain the companion identity

. il
(_1)Jq33 +2j

j 5j+2 5§+3
T k) ] ——5 = 1/ T a-¢7"H -7,
jzl 320 (7597, (-q39) 5., 320
J I+ (5.1.5)
which, we show, is equivalent to another identity of Slater
(loc.cit.), [15], namely
j 3j2—2j
i -1 5542 +3
T egdy [ —=4 - u T -1’1,
jz1 j20 (q7;q ).(-q;q)z. i 20
J ] (5.1.6)
§2. Let Tk(n,j;q) denote the generating function for partitions

with no part occurring more than k-1 times, with all parts < n ,

and with precisely j  parts. (5.2.1)

Then
z Tk(n’j;Q)Cj =
320

(1+cq+...+ck-1qk_1)(1+cq2+...+ck_1q2(k-l)) X ..

+Ck-1qn(k-l)

. X (1+cqn+... )

] fl-ckq“] r-ckq”‘) [_L_kg_‘i]

l—cqn

1

="

. n .
(1-c¥ (@) x TT (-cq?)”
3=1 5=1

(- ()30
(-cq3q)
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%
)
2
= T ' T ettt h
220 (q7) m20
241
k(" )+m _
= ] Mmoot 2 (1 . h (5.2.2)
£,m=0 (q7)
It follows that
T, (n,35q) =
241
_ Qk(z )+m n n+m-1
= 1 (=D7q ) . [T2773
k&+4m=j ()
241, .
) p KO ¥k n+j-k8-1
= I (-D7q [0 o U]
K2<j CRN
2
k(,)+3 .
L "2 n n+j-ki-1
= 1 (-D7q [,] [T (5.2.3)
kR<j 25 j-k2

Now let Sk(n,j;q) denote the generating function for
partitions into distinct parts with all sequences of length less
than k, with all parts < n, and with j parts.

Subtracting 0,1,...,j-1 respectively from the j parts shows

that
o
S(misa) = q 7 T, (n-3,53q) (5.2.4)
j Ly,
- o ? I oente 2 gy ok
K< P I
33h kG
ol I N G Dl B e b N ot BN CHF 30
k<) (q7)



It follows that

!

320

Sk(n,j 3q) cj =

3+ I}
dq 27 1 ntq T ™
320 k< (q

which is (5.1.3).

§3.

Letting

320

We have, by virtue of what was said in 81, that

54.

. L2
I (riy -
j
j+1 %
. OTh 25) . o
dg 27y (-ntq ? "1, “.fggll (5.3.1)
j20 2053 ()
n > ® , we obtain
2 §+1 [}
33 . (Fo0) 2(3)
E%é%" - 7 g 27 3 DY 2 . 12 < ;
j j20 205j (%97, Vj-20
% j+1
2(,) -,
(-l)za 2 ch 2
20 (a%5a0), 3220 Wi-2e
% j420+1
g 2(3) je2e C 2 )
(-1)7q ) c q
220 (qz;qz)2 j20 (@)
L. 20+1 -
20+, ) <)
Fenty T 2 cJa ¥ (¥4
220 (qz;qz)l 320 (@)
. 022(—1)2 3" 20+1 2042
1 (14cq ) (14cq ) ...

220 (qz;qz)z
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. 2
2%, % 3%
h| c (- q 1
= T Qteq’) ] 7 32 ) 723
jz1 220 (q7;q )2 (1+cq) (14cq”) ... (14cq
2
20, % 3%
= TT (+egdy 7§ > é‘l) 4 (5.3.2)
jz1 220 (97397)g (=cq3q),,

If in (5.3.2) we set c=1, and use the first Rogers-Ramanujan

identity, we obtain

2
o 1yl 3 . .
T ey ] = U TT a->3*h g%
j2l $O (a7597),(-939) 320

which is (5.1.4), while if we set c¢=q and use the second Rogers-

Ramanujan identity, we obtain

22, ..
(_1)Jq3J +2j

=TT -1 1-¢*"3)
j(-q;<1)2j+1 j=20

T () J

2
j21 j20 (q ;qz)
which is (5.1.5).
Now,
5 352421
(-1)3g>7 T4

) =

2 2
320 (q7;q )j(-q;q)2j+1

: as2 .
ﬁi(_l)Jqu +2j Il ) 25+1 J

j=0 (qz;qz)j(-q;q)2j 14q23¥1

. as2 . 2,
(-1)3g33+23 (-1)3+1g357+43+1

+
320 (qz;qz)j(-q;q)2j j20 (qz;qz)j(--<1;q,)2j+1

2
i 312404
. 1. (-1)3q337+23

2
cndg¥H

2, 2 :
21 (q73q )j_l(-q;q)zj_1 jz1 (qz;qz)j(-q;q)2j
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2
3 _337-2j . . .
-1+ ] {(1-a%0) (1e?hy4 ¥}

j21 (q7;q )j(-q;q)2j )

(1ylg¥ -

= 1+
2 2

=1 ; .(-q; .

h| (07549 )J( q q)ZJ

2
0333523
=l)g (5.3.3)

2 2
j 20 H . (-q;
j20 (q7;q )J( q q)zj

(5.1.6) follows from (5.1.5) together with (5.3.3).



Chapter 6. Jacobi's Triple-Product Identity

57.

§1. The identity referred to in the title of this chapter is

Jacobi's celebrated identity (Gesammelte Werke, Vol.l, pp.232-4)

0 2

- - - 2
TI- (1+a qur 1) (l+aq2r 1) (l—q r) - z arqr
r21 ‘r= -0

This ideptity plays a role of great importance in the
theory of partitions and related areas, and in particular in

those areas touched upon in this thesis.

Thus, if we set qk/2 for q, --qR/2 for a,

obtain

T (1-g"7 378 (1gk ) (k)

rzl
v r_YkrZsg
= ] (-DgFr T
==
r %krz-%lr %kr2+%2r
=1+) (- (q +q )
rzl
while if we set qk/2 for gq, qu'/2 for a, we obtain

TT (g ™37 (glrdeily (o gk

r21

.'= f q%kr2+%2r

r=-0©

2, 2
= 1+ Zl (q%kr 12r+ q&kr +£r)
r2

In particular, setting k=3, =1 in (6.1.2) yields

Euler's identity (Opera Ommia Series Prima, Vol. VIII, p.334)

(6.1.1)

(6.1.2)

(6.1.3)
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2 2
2_1
T (=45 = 1+ J (D5 (P /Fmg3r /29wy (6.1.4)
rz1 r21
We have had occasion in Chapter 2 to use other special cases
of (6.1.2) and (6.1.3) without comment, and will do so again in

Chapters 7, 8, 10.

L

A further consequence of (6.1.1), obtained by setting q°
1
for q, —aq;5 for a, dividing by 1- 2’ then letting
a+ 1 (the limiting process requires some justification) is

Jacobi's identity (Gesammelte Werke, Vol. 1, pp236-7)

%(r2+r)

TT1 (1-g5)3 = T (-DF(2r+l)q (6.1.5)

r> r20
We shall make good use of (6.1.4) and (6.1.5) in

Chapter 7.

Jacobi's identity (6.1.1) can be derived from an identitv
due to Ramanujan (Notebooks, Vol.II, p.196) recently given easy
proofs by Andrews and Askey (1978) and Ismail (1977) . A proof
of Ramanujan's identity, and the derivation from it of (6.1.1)

are given in the Appendix,§7.

Alternatively, one can obtain (6.1.1) by simply letting

i,j > in the identity

i 2
-1 2r-1 - i+
T (1+a q“r ) T%'(l+aq2r 1) = % arqr [%+J]', (6.1.6)
. i+r
r=1 r=1 =-i
i)' i . 2
where [jJ is obtained from [j] by replacing q by q° .

The identity (6.1.6), ascribed by Hirschhorn (1976) to MacMahon, is
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actually much older; R. Askey has traced it back as far as

Schweins (1819). Indeed, (6.1.6) can be written

2 Y . 2. it . 2 ..
q1 a1 TT (1+(aq 21)q2r+1) = ql a Zo(aq 21)r.qr [1133. ,
r=1 , r=

(6.1.7)
and so is seen to be equivalent to the q-binomial theorem (see
Appendix §2). In 82 we present the proof by induction of (6.1.6)
given by Hirschhorn (loc.cit.). This proof is a verification;
it is neater than the related proof given by Grosswald (1966) in

which (6.1.6) is 'generated'.

We can obtain a finite version of (6.1.5) from (6.1.6) as

1L 1
follows. Set i=n+l, j=n, set q°: for q, -aq? for a,

divide by 1 - é’, and let a > 1. We then have

n
Y (-1)F(2r+l)q ] . (6.1.8)

r=0

%(r2+r) [2n+l
n—

o r.2
r=1

Identity (6.1.8), first observed by Hirschhorn (1977) is
particulérly simple, and yields (6.1.5) on letting n > ®
Because it works so nicely, I give, in 83, a direct proof by

induction of (6.1.8).

Finally, we note that (6.1.4) can be written

2 2
q TT (1_q24r) - q+ z (_l)r (q(ﬁr—l) + q(6r+1) ) (6.1.9)
r>1 rz1

while (6.1.5) can be written

2
e TT =a®3 = T (cD)F s’

r21 r20

(6.1.10)



It follows easily from (6.1.9) and (6.1.10) that if o =‘% or % .
and we write
g TT (1=-q{om2e . 5 oF (6.1.11)
r>1 20
then the Co.p 2re multiplicative. That is
9
a,rs - Sa,rla,s if (rys) =1 . (6.1.12)
Ramanujan (1916) stated and Mordell (1917) proved that more
generally if o] is any divisor of 12, or if a = %- or % .
and if the Cy.r 2re defined by (6.1.11), then (6.1.12) holds.
]
§2. In order to prove (6.1.6), let
+j
S, . = Z aTq" [ty (6.2.1)
1,] re—i 1+r
Then, if i>0,
s ) i rr {[i+j-1 - 2i+2r[i+j-l]'}
i, L aq itr-1 4 i+r
r=-i
j .& .-
_ r r2 i+j-1."' 2i=1 51 r+1 r2+2r+1 i+j-1."
= ) aq [ ]+ q L i
. it+r-1 a . i+r
r=-i+l r=-i
J . - J
r 12 i4§-1." 21-1 r r? i+j-1."
= 1 Cr-1? +73 I aa Gip
r=-i+l r=-i+l
2i-1
= |1+ - -1,y (6.2.2)
while if j >0 ,
j ) 2 )
1+j- 1 j=2r_i+j-1
Si,j = z {[ i+r ta [i+r-1] }

60.
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S, . =

i,3

61.

i+r-1

j-1 2 i giy 3 1 r2oort] f4do1!
rr [1Iir1] + aq j-1 Z af lqr 2r 1[1 3j 1J
r=-i =-i+l
j-1 2 . ' . j=1 2 ... '
rr - i+j-1 2j-1 r r-i+j-1
z 2 a [ i+r ] +ag z aq [ i+r ]
r=-i r=-1

(1+aq23'1)s

i,j-1
0.0 " 1, it follows by induction that for i,j > 0
9
L -1 2-1y 2r-1
TT (1+a q ) (1+aq ) s
r=1 r=1

which is (6.1.6).

§3. In order to prove (6.1.8), let
n r 1y (r24r) - 2n+1
s = zo (-1) " (2r+l)q g
Then for n >0,
s = If (-1) T (2r+1) 1’z(rz“”r){[ 2n g T 20y
n re0 - q n-r-1 q n-r
n-1 Lo 2
_ _In\E (r"+r) 2n
= rZo (-1)" (2r+l)q [pet?
n o r %(rz-r) 2n
+q" ] (-1)7(2r+l)q (="
r=0 n-r
- nil (_1)r(2;+1) %(r2+r){[2n—l ]+ n+r+1[2n-1 ]}
=0 q n-r-1 q n-r-2
n 2 r %(rz-r)'-Zn-l n+r_2n-1
+ qa ] (-1) (2r+l)q {t 1 +a 273}

r=0

(6.2.3)

(6.2.4)

(6.3.1)
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n-1
= 7 (-DF(2r+l)q
r=0

%(r2+r) 2n-1
[ ]
n-r-1

n n-2 r 15
+q ] (-1) (2r+l)q
r=0

2n-1
n-r-2

r2+3r+2)

t ]

o L
+q" J DFr+)q?
r=0

2
(r -r)[2n—1]
n-r

2n nil

r=0

%(r2+r)[2n-l]

r
(-1 (2r+l)q o

+q

- (l+q2n)sn—l

2
- 1 -

+ qn z (_l)r l(2r-1)q1(r +r)[;?;;h]

=]

n-1 2
+ g T ™ e 20T 2 )
r=1

- (1+q2n)sn~l

1

ng 2
- qn{ZEi::fJ + T (DY (2r-1)+2r+3) }q2F T 2071 g3
r=

1 n-r-1
_ 2n
= (4978 _,
n"l 1 2
- 2q" § (DT @r41)q 2 T 201y
& n-r-1
r=0
2
= (1-29"H"Ms__,
n,2
(1-q) Sn-l (6.3.2)
Since So=1, it follows by induction that for n > 0 ,
A r,2
Sn = TT' (1-q5)*° , (6.3.3)

r=1
which is (6.1.8).
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Chapter 7. Some Relations involving the Partition Function
§1, Let p(n) denote the number of partitions of n.
-1
Then I} pmq" = TT (1-¢M . (7.1.1)
n20 n>1

Ramanujan (1919a) conjectured, on the basis of the evidence

provided by a table of values of p(n) that

p(5n+4) = 0 mod 5, (7.1.2)
p(7n+5) = 0 mod 7, (7.1.3)
p(11ln+6)= 0 mod 11, (7.1.4)

and more generally that

if A =5%7P11° and 24\ = 1 mod 4, then

p(mA + )) =0 mod A . (7.1.5)

He succeeded (Ramanujan (1919a),(1921)) in proving this
conjecture for certain choices of (a,b,c); in particular,
he proved (7.1.2)-(7.1.4), but (7.1.5) was seen by S.Chowla to be
false as it stands. The following theorem is the result of
the work of G.N.Watson (1938) and A.O0.L. Atkin (1967).
Theorem 7.1.6

1f 8=5%°11°, and 240 = 1mod A, then

p(nd + A) = 0 mod 52702021 ¢

In 82 I give an elementary proof of (7.1.2), based on a
technique for "splitting" the generating function of the p(n)
A similar proof can be given for (7.1.3), but I have not succeeded

in proving (7.1.4) by the same method.
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Ramanujan (1919a) proved the identity

I pGat)™ = 5{TT a-¢°5H°/ TTa-¢H¢r . @.1.1

n20 rz1 r>1

G.H. Rardy (1927) pp.xxxiv-v, says "It would be difficult to find
more beautiful formulae than the Rogers—-Ramanujan identities but
if I had to select one formula from all Ramanujan's work, I would
agree with Major MacMahon in selecting [the above identity]."

In §2 I give an elementary proof of (7.1.7). The proofs I give

in §2 canbe shown to be related to those of 0.Kolberg (1957).

Kolberg (loc.cit) has further shown that if

P, = y p(n)q" , (7.1.8)
n=i mod 5
then
2
PP, +P Py - 2P,° =0, (7.1.9)
2_
PgPy + P4P, - 2P,°= 0, (7.1.10)
2_
3PP, - 2PP, - P,7=0 . (7.1.11)

In §3 I prove (7.1.9)-(7.1.11), and in 84 I further show that
similar(polynomial identities hold for any modulus not a power

of 2. In particular, we will see in 85 that if

P, = ) p(n)q" (7.1.12)
n=i mod 3
then
2 2 2 2_ 2 2 2 2 2_, .
(P0 PIPZ)(Pz POPl) + (P2 POPl)(Pl -popz) + (P1 -POPZ)(PO -PlPZ) =0.
(7.1.13)
In 861 employ the same techniques to prove that F = 0 mod 5,

Sn+4

where the Fn are the Fibonacci numbers.
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§2. In order to prove (7.1.2), write
TT -4 = ¢(a) , (7.2.1)
n21
and suppose w5=1, w# 1. (7.2.2)
Then } pmq" = 1/6(q)
n=0

= 66 @26 WD) 6(w*a) /6(0)d WD W bW Do wie). (7.2.3)

Consider the denominator of (7.2.3),

¢ = 6(q)0(we)o W’ dwowq) =

TT- (l_qr)(l_qur)(1_w2rqr)(1_w3rqr)(1_w4rqr)

rz1

T a-¢H> T a-5H
r=0(5) r#0(5)

T a-°H° T a-¢°5H
r>1 r#0(5)

T a-¢°H% 7 T a-¢>H
r>l £=0(5)

TT (1_q5r)6 / TT-(l_q25r)

r>1 r>1

@@>)%/6%) . (7.2.4)

We now consider the numerator of (7.2.3). We have (6.1.4)

that

0(@) = 1+ ] (-DF(q

r21

2 2
3r /2-%r  3Y /24%r
2 +q )_

= 0 Q)+, (D), (@) | (7.2.5)

where ¢i(q) contains all terms of ¢(q) of which the

exponent is congruent to i mod 5. (Note that ¢3(q)=¢4(q)= 0

since 3r2/2 + %r £ 3,4 mod 5.)
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It follows from (7.2.5) that

d(wq) = ¢O + w(bl + w2¢2 .

dwle) = ¢y +u’e, +u'e,
dbwq) = o, + wo, + wh,
dw'e) = oy + u'e, + 0, (7.2.6)

and thence that the numerator

6w (w2 iow e =
4 3 2 3 3 2.2
+ (=000, = 6,05 + 6200 + (05 ~6,07 + 2026,6,)
+ (0] - 30020, + 6503 . (7.2.7)
It follows from (7.2.3), (7.2.4) and (7.2.7) that

) PG = (6 - 636, + 260,62/
n2

) p(5n+1)q5n+l

n20

(~6g0) = bb; + 610/ ,

I p0sm2)a™™2 = (=400, - 6,0, + 6500 /0

n20

I p(sma™™ = (45 - 0,07 + 20%6,6,0/0

n20

Y p(5nt+4) o™

4 2 2.2
= (&) = 3¢,0,0, + 04050/ . (7.2.8)
020 1 07172 ~ Y0"2

We further have (6.1.5) that

2
@(@)> = T (1T (2r+1) = D)
r>0
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That is,

3 3 2 3.2
(656, +6,) (65+30,05) + (9, +3650))
2, 442 3
+ (30,87 + 3056,) + (674666,6,)
+ (3062 + 3670,

2
) (-1) T (2r+1)q 5T *D) (7.2.9)
r20

Since %(r2+r) # 2,4 mod 5, it follows from (7.2.9) that

2 2
30,0, + 3649, 0, (7.2.10)
d 3062 + 36%, = 0 (7.2.11)
an 0%2 192 s
From both (7.2.10) and (7.2.11) it follows that
o0, = - ¢2 | (7.2.12)
072 1 te
It follows from (7.2.8) and (7.2.12) that
I p(5nts)q>"t = 5¢f/¢ . (7.2.13)
n20

(7.1.2) follows directly from (7.2.13).

Further, we have

b=, (_1)rq3r2/2-%r+ z(_l)rq3r2/2+%r
L 32225021 (5) 3r2 /2441 (5)

(758> 1 a5l
= 3 (_1)5S+1q6(755 +25s+2) y (-1)°8 1q4(75$ 25s5+2)
2

s20 s=1

2 2
= —q{1 + [ (-1)5(q#755 -238), (7557 4258)

sx1

- -q TT- (1_q75r—50)(1_q75r-25)(1_q75r)
r21

= —q TT (1_q25r)

r>1

= -q $(¢®) . (7.2.14)



It follows from (7.2.4), (7.2.13) and (7.2.14) that

z p(5n+4)q5n+4

= 5% (6(q®))°/(6(a>N) 8,
n>0 ‘

or

T op(sn+a)® = 5(6(a°))° /(@ ,

n20

which is (7.1.7).

§3. We have shown (7.2.8) that

IR ICEVICICR N

o
(]

where

43 2
wo = ¢0 = ¢1¢2 + 2¢0¢1¢2 ’

by = - 000, - 0005 + 6700
_ .3 3. 22
U, = - 030, - 6,67 + 6207

4 3 2
W3 = ¢2 = ¢0¢1 + 2¢0¢1¢2 s

o 2 2.2

and where (7.2.12)
_ 2
¢0¢2 = - ¢1
It follows that

4 3
¢0 - 3¢1¢2 s

<
o
"

= - ¢g¢l + 2¢%¢§ >

<
—
|

b, = 20265 - 665 ,
by = - 30,07 + 65

4
v, = 561

68.

(7.2.15)

(7.2.16)

(7.3.1)

(7.3.2)
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4 4

Vg, = Sogo) - 15676,

b T 2.6

4 4 7 2.6
4o,8) - 4610, + 010,

<
N
i

+

6 2 7 4 4
Vgby = 20067 + 70,0] + 3616,

Vb, = 156g0] + 610y

w2 = 0% - wogel + wley
Vb, = - 20007 + 30° - 20260,
by = - 30007 - 867 - 30200

vio= 2580 (7.3.3)

and so

Vb, * U¥y - 205 = 0, (7.3.4)
Wb, + Wb, - 205 = 0, (7.3.5)
30, - by - Vs = 0 . (7.3.6)

(7.1.9) - (7.1.11) follow from (7.3.4) - (7.3.6) together with

(7.3.1).

84, For m=>1, i=0,1,...,m-1, let

P, = ) p(n)q" (7.4.1)
n=i mod m

We prove the following as yet unpublished results:

Theorem 7.4.2.

»

If m is not of the form 2a38 s then there is at

least one non-trivial polynomial in P ,P

0 Pl homogeneous
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of degree m-1, which, considered as a series in q, is

identically zero.
Theorem 7.4.3.

If m is not a power of 2, then there is at least one

non-trivial polynomial in P «yP homogeneous of degree

0"’ m-1"

3(m-1), which, considered as a series in q, is identically

zZero.

Proof of Theorem 7.4.2.

o,B

Suppose m is not of the form 2737. Then there is a
prime p, p # 2,3, with p|m . Since p = * 1 mod 6, (p,24)=1.

As j runs through a complete set of residues mod p, so does

"

2435+1, So, for some j the congruence x2 243+1 mod p has

no solution. For these j, the congruence (6ri1)2 = 243+1

. 2 .
has no solution, so the congruence -%r * Lr j mod p has no solution,

w

from which it follows that the congruence 3 21 Lr = j mod m

has no solution.

Now write

"

2 1 2
¢ = d€q) = TT (1-¢5) =1 + ¥ (.1)1'(q3r /2-%r Bt /24y
r21 r>1

¢0 + ¢1 +...+ ¢m (7.4.4)

where, as in §2, ¢i contains all terms of ¢ of which the

exponent is congruent to i mod m .

Then for those j  for which the congruence 3r2/2t Lr =j mod m

has no solution,

b. = 0 . (7.4.5)



Now, writing P =P(q) = ) p(n)q”, and
n20

we have

¢ = 1/pP

The denominator of (7.4.6),

P(q) = P(q)P(wq)...P(wm-lq)_

. m
is a series in q , for

P(wg) = P(wq)P(wlq)...PW™ Qr(q) = P(q),

so if we write

r
P9 = } aaqa ,
r=0
then
r
wa_ = a ,
r T
so for r # 0 mod m, a = 0
Further, we have
P = Py +P 4. +P
so
m-1
P(wq) = P0 + wPl +...+Ww Pm_1 .
:“P(wzq) = P+ WP, +..40"2p
0 1 m-1
P(wm-lq) = P. + mm-lP +...+ wP
0 1 m-1

Thus the numerator of (7.4.6) is

P(wq)P(w2q) ... P(w™ Lq)

m-1 ) m-1
= (PO+wP1 +...+w ?m_l)X...X(P0+m P1+...+me_1)
o Q
’ 0 m-1
) c(czo,...,ozm__l)P0 Pm_1

a0+...+am_l=m—1

P(wq)P(wzq)...P(mm-lq)/P(q)P(wq)..
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e21Ti/m

m-1

P(w

qQ).

(7.4

(7.4.

(7.4.

(7.4.

(7.4.

(7.64.

(7.4.

(7.4.

.6)

7)

8)

.9)

10)

11)

12)

13)

14)
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It follows from (7.4.4), (7.4.6), (7.4.7) and (7.4.14) that

Q.

a
- 0 m-1
Ogtdy *eeot b g = y c(ao,...,am_l)Po . /P (7.4.15)
a.+...+0 =m-1
0 m-1
whence
o o
0 m-1
¢; = ) TR A Sy
o, +...+0 =m-1
0 m-1
a1+2a2+...+(m-l)am_12 i mod m (7.4.16)

Thus, for each j for which ¢j =0, we obtain a polynomial

in Po,...,P homogeneous of degree m-1, which,

m-1’

congsidered as a series in q, is identically zero, viz.

) %  %m-1
c(Onyeees0 JP ...P = 0. (7.4.17)
o t...+0  =m-1 0 m—f 0 m-1
0 m-1
al+2a2+...+(m-1)am_l Z jmod m
. - m-2_1 .
It is easy to check that the coefficient of PO Pj is
e(m-2,0,...,0,1,0,...0) = ol + o?I+ ..+ ™ VI 4o, (7.4.18)

so the polynomial is non-trivial.

Proof of Theorem 7.4.3.

Suppose m is not a power of 2. Then there is a prime p, p#2,
with plm. Since p =1mod2, (p,8 =1. As j runs
through a complete set of residues mod p, so does 8j+l. So for
some  j, the congruence x2 = 8j+1l mod p has no solution.

For these j, the congruence (2r+1)2 = 8j+l mod p has no
solution, so the congruence %r2+%r = j mod p has no solution,
from which it follows that the congruence %r2+%r = jmod m has

no solution.
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Now write
3 r %r2+%t
v=0¢" = ) (-1) (2r+l)q
r20
= wo + wl +...+ wm-l . (7.4.19)

where wi contains all those terms of Y 1in which the

exponent is congruent to i mod m .

For those j for which the congruence %r2+%r S j mod m

has no solutions, we have

wj = 0 . (7.4.20)
Now,
- 3
Yo teeet ¥ = (0g +eet Op )
B B

0 m-1
= ) d(BrseeesB ). .0 (7.4.21)

Byt +B, =3 0 m-1770 m-1

(each coefficient d(BO,...,B ) is 1,3, or 6), from which

m-1

it follows that

B B

v, = 1 d(Bys.rB 0,000 T (7.4.22)

m-1

Bl+282+. . .+(m—1)Bm_ =i mod m

1

Thus, for those j for which the congruence %r2+%r Z j mod m

has no solution, we have

B, B
16y - -0 " = 0. (7.4.23)

d(B.,...,B
_ 0’ “m-1
80+...+Bm_1-3

81+282+...+(m-1)8m_ Z jmod m

1
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If in (7.4.23) we substitute (7.4.16) and multiply throughout by
P3, we obtain a polynomial in PO""’Pm-l’ homogeneous of
degree 3(m-1), which, considered as a series in q, is

identically zero.

Further, the coefficient d(2;0,...,0,1,0,...,0) of

¢g¢j in w3 is 3, while the coefficient c¢(m-1,0,...,0)

of Pz_l in ¢, 1s 1, and the coefficient
¢(m-2,0,...,0,1,0,...0) of Pg-sz in ¢j is, as noted
in (7.4.18), non-zero, so the coefficient of Pgm.an in the

above polynomial is non-zero, so the polynomial is non-trivial.

§4. Suppose m=3,

The congruence %r2+%r = 2 mod 3 has no solutions, so
wz =0 . (7.5.1)

Now,

3
Vgt W, = (O5+0,+0,)

L cadiadigd
= (OgH 0460, 0,)
+ (3020 +3670,+3026 )

2 2 2
+ (30001+30,07+30,00) (7.5.2)

80

Uy = Gorb e +60,010,

V= 3056,43630,43030,
v, = 3¢0¢f+3¢1¢§+3¢2¢§ : | (7.5.3)

It follows from (7.5.1) and (7.5.3) that

g1+30,074300 = 0. (7.5.4)
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Turther, .
| _ 2 2
¢O+¢1+¢2 = (P0+wPl+m PZ)(P0+u P1+wP2)/P
= [(P2-p.P.) + (P2-P.® ) + (P2-P P.)]/P (7.5.5)
0 12 2 °0°1 1 02 . T
SO
¢ = (P2-p.P)/P
0 0 172
¢, = (p2-p P )/P
1 2701
_ 2
6, = (PP p)/P . (7.5.6)

It follows from (7.5.4) and (7.5.6) that

2 2 2
-P P )(PI-POPZ)

2 2 2
3(Py-P P,) (Py=P P )" + 3(P,-P,P,

2

2 2
+ 3(P1—P0P2)(P0-P1P2) =0 . (7.5.7)

(Note that the coefficient of Png is 3 x 12X -1 =-3 40,

so the polynomial is non-trivial.)

Dividing by 3, we obtain

2 2 2 2 2 2 2 2 2 _
(PO-PIPZ)(Pz-POPl) + (PZ-POPI)(PI—POPZ) + (Pl-Pon)(PO—Ple) =0,
(7.5.8)

which is (7.1.13).

As a second example of the foregoing, let m=5. The
congruences 3r2/2 + Lr £ 3, 4 md5 have no solutions so

¢, = 0 (7.5.9)

and ¢ = 0. ' (7.5.10)

4
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Now, ¢o + ¢1 + ¢2 + ¢3 + ¢4 =

_ L2 .3 4 2 4 3
= (PP |+ P+ P ot P, ) (Pt P 410 P, +P 4P, )

3 4 2 4 3 2
X (P0+w P1+wP2+w P3+w PA)(PO+w P1+w P2+w P3+uP4)/P (7.5.11)

from which it follows that

b 2 2 2 2 2
¢0 = (Po - 3POP1P4 - 3P0P2P3 + 2P0P1P3 + 2P0P1P2 + ZPOPZPA

-P P3 - F3P'

2 3 2.2
174 = P1PP4P, - PPy - FoP,

+ 2P.,P.P, - PP, + P

of3fs - P1P) P

2.2 3
+ P2P3 - P3P4)/P

o) = (—ng1 + ZPSPZP4 + 2popfp4 - PP PP, - POPg
- 3PP, - PiPy + PPS - 3P\P,P; + 2P P3P,
o+ 2P§P3P4 - Png + PZ)/P
¢, = (-P?)p2 + ngf + 2P(2)P3P4 - PP P,P, - 3P0P1P§ + 2POP§P3
- POPZ - pr4 + 2P§P2P3 - PlP; + 2P1P3Pz + P§PZ
-3,p2p, + P)/P
¢y = (-ng3 + 2P§P1P2 + ngi - POPi - PP P4P, - 3POP§P4
+ 2P0P2P§ + 2PfP2P4+ prg - 3P1P§P3- Ple
+ P;’ + 2f2P3P2 - nga)/P
and ‘_
¢, = (~P3P4 + 2P§P1P3 + ngg - 3P0P§P2 + 2P0P1PZ - PP,P4P,
- PoPg + P? - 3P§P3P4 + 2P1P§P4 + 2?1P2P§ - ng3

3 2.2 : ,
- PZP4 + P3P4)/P . (7.5.12)
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Thus (7.5.9) becomes

3 2 2

| 2.2 3
- B, + 2P0P P, + POPS - B(Ps - PP PP, - 3PPIP,
2 .2 2.2 2 3 4
+ 2P0P2P3 + 2P1P2P4 + P1P3 - 3P1P2P3 - P1P4 + P2
+ 2P.P.P2 - PP, =0 (7.5.13)
2PaPy - B3R, = -3-

while (7.5.10) becomes

3 2 2.2 ' 2 2
- P0P4 + 2P0P1P3 + P0P2 - 3P0P1P2 + 2P0P1P4 - P0P2P3PA
3. 4 2 2 2 3
- P0P3 + P1 - 3P1P3P4 + 2P1P2P4 + 2P1P2P 3" P2P3
3 2.2
- P2P4 + P3P4 =0 . (7.5.14)

6. The technique developed in §2 can be applied far more widely
than has so far been indicated. Taus, for example, we can use

it to prove that

F5n+4 Z=0rod S5 . (7.6.1)
We start with
n 2
F=F() = ) Faq =1/(1-q-q") = 1/¢ . (7.6.2)
n20
Here
O = Gt oty (7.6.3)
where
6 = 1, 6. = -q, 6. = -q> (7.6.4)
o b} 1 q, 2 q L] L] L]
(Notice that ¢3 = ¢4 =0 and ¢0¢2 = - ¢f s Jjust as

in the case of the partition function.)

As before, if w5 =1, w#l,

F = $(we)6@2q) ... 6(w'qQ)/6(q)d(wq) ... (D) . (7.6.5)
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The denominator of (7.6.5),
o = 6(q)o(uq) ... dlu'q)
= (1-9-% (1-wg-02q?) (1-?q-0*q?) (1-0’g-ug?) (1-w*q-w3eD)
is. a power series in q5 , and is easily computed to be
= 1 - llq5 - q10 . (7.6.6)

The numerator of (7.6.5) is, similarly,

$(0a) 6 (w2q) 6w (w'q) =

= (1_mq.w2q2)(1.m2q.m4q2)(1-w3q-wq2)(1-m4q—w3q2)
= 1+q+ 2q2+ 3q3 + SqA - 3q5 + 2q6 - q7 + q8 . (7.6.7)
It follows that
Z FS an = (1-3q5)/(1-11q5-q10) ,
n
n=0
5n+1 6 5 10
L Fo 0 = (q+20)/(1-11g7=q ) ,
n20
5n+2 2 7 5 10
I Fo o0 = (2q"-q)/(-11g°=q") ,
n20
+ 1
) F5n+3q5n 3 1 334¢%) /(1-118°-410) |
nz0
Sn+4 4 5 10
ngo Fo 449 = 5q¢ /(1-11¢°-q ) . (7.6.8)

In particular, it follows from (7.6.8) that
] F "o 5/(1-11g-g) ' (7.6.9)
Sn+49 -=q /) > *e
n20
and that

2 0 mod 5. (7.6.10)
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Chapter 8. The Parity of the Partition Function

§1. Whereas something is known of the arithmetic behaviour of p(n)
modulo 5,7 and 11 for example, (see Chapter 7), very little is knownm

concerning the parity of p(n).

Kolberg (1959) proved (see §2)

Theorem 8.1.1: p(n) is even infinitely often and odd infinitely

often.

In order to obtain a better picture, it is desirable to have a
table of values. Since p(n) grows very quickly, it is convenient

to make use of the following result of P.A. MacMahon (1921), namely

Theorem 8.1.2 Modulo 2,
p(én) = p(n) + | p(n-(8k%-k)) + ] p(n-(8k>+k))

K21 K1

pl4n+l) = p(n) + 2 p(n—(8k2-3k))+ 2 p(n—(8k2+3k))
K21 K1

p(4n+3) = p(a) + ) p(n-(8k2-5k)+ J p(n-(8k>+5K))
K21 K21

p(bnt6) = p(n) + § p(n-(BK>-TkN+ J pln-(8K’+7K)) .

k=1 k21

Indeed, J.R. Parker and D. Shanks (1967) computed a table for
ns 2 x 106 and found that p(n) seeems to be distributed

randomly modulo 2.

We prove the following rgsults, to appear in Hirschhorn (1980?),
which improve on Theorem 8.1.2. Here p*(n) denotes the number
of partitions of n into distinct odd parts, r(n) denotes the
number of solutions with n, 2
n =4 + 4A(nz) + 16A(ny) + ...

2 0 of the equation
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where A(n) = Ln(n+l), and t(n) =t 1is defined by 2t|n,

21y o

Theorem 8.1.3

p(n) = p*(n) = r(n) mod 2
Theorem 8.1.4
*
p(n) 2 p (n) 2 r(n)

Theoggm 8.1.5

r(0) =1, r(2) =0, and for n =20 ,
r(dn) = r(n) + § r(a-(8k*-k)) + T r(n-(8k*+)),
k=1 k>1
rbntl) = r(n) + ) r(o-(8k>-3k)) + T r(a-(8k+3Kk) ,
11 K51
2 2
r(4n+3) = r(n) + ) r(n-(8k°-5k)) + ) r(n-(8k“+5k)) ,
k21 k>1
r(4nt6) = r(n) + J r(n-(8k°-7K)) + | r(n-(8k°+7K))

k=1 k>1

Theorem 8.1.6

p(n) = p*(n) +2 ) p*(n—2k2) mod 4
k=1

Theorem 8.1.7

p(n) Zr(n) +2 J r(n—2k2) mod 4
t(k) even

Theorem 8.1.8

P*(n) = r(n) + 2 ) r(n-8k2) mod 4
t(k) even

Clearly, Theorem 8.1.2 is a corollary of Theorems 8.1.3 and

8.1.5, while Theorem 8.1.3 is a corollary of Theorems 8.1.7 and 8.1.8.
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Further, Theorem 8.1.4 greatly understates the facts. Indeed,
p(n) is far greater than r(n). The first few values of p(n),

*
p (n) and r(n) are given in the following table:

n o 1 2 3 4 5 6 1 8 9 10 11 12

p(n) 1 1 2 3 5 7 11 15 22 30 42 56 77
*
p (n) 1 1 0 1 | 1 1 1 2 2 2 2 3
r(n) 1 1 0 1 1 1 1 1 0 0 2 0 1
§2. We have
Y pm)q" = 1/ T] (1-¢™ . (8.2.1)
n=0 n>1
Therefore
TT (1-4™ § p(m)q" = 1. (8.2.2)
n=1 n=0

Since (6.1.3)
n n %(Snz-n) %(3n2+n)
TT (1-q) =1+ ] (-1)'(q +q ), (8.2.3)
nx1 n=1
it follows that
- 2 ' L (32
p(n) = ) p(o-%(3k“-k)) + ) p(n-35(3k“+k)) (8.2.4)
k=1 k=1
Suppose  p(n) is even only finitely often.

Then p(n) is odd for n2m (say) But if n = %(3m2+m)+m

we have

p(n) = p(n-1) + p(n-2) -- + ....

- (-1)™(p(a-%(3n>-m)) + p(n-%(3m>+m)))

p(n-1) + p(n-2) -- + .....
- -D"(p(2m) + p(m))

which is even, a contradiction.
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On the other hand, suppose p(n) is odd only finitely often.
Then p(n) 1is even for n 2m (say). But if n = %(3m2+m) .
p(n) = p(n-1) + p(n-2) -- + .,..
m 2 2
+ (-1) ((p(n-%(3m“-m)) + p(n- %(3m"+m))
= p(n-1) + p(n-2) -- + ...
m
+ (-1) " (p(m) + p(0)) ,
which is odd, again a contradiction.
Thus Theorem 8.1.1 is proved.

§3. We have

} pm)q" = 1/TT (1 -4
n20 n1

= TTa+MAT (1-4
nl

nzl

-7 (14e2Y) T [1 + 92“]

n21 ‘n 1 - q2n
* n 1 + ¢°®
= Jemaq . T |7/ (8.3.1)
n20 n2l '1 - q
*
= 1P (n)q" mod 2 (8.3.2)
n=0
since
+ 2n 9 2n
1+9 . 1429 : | pod2. (8.3.3)
1 - q2n 1 - q2n

It follows from (8.3.2) that

p(n) = p (n) mod 2. (8.3.4)



83.

Further,

I prme® = T (™™

n20 nx1

T[_ (1+q4n-3)(1+q4n-1)

n>1

which by (6.1.3)

2 2
{1+ 3 (¢® ™™ ™M TT (14"
n>1 r2l

2 qA(n)/-ﬂ- (1_q4n)

n=0 n>1
= I ™ 5o P (8.3.5)
n=0 n20
which by (8.3.4)
= I ™ 7 2 )" mod 2. (8.3.6)
n20 n=0

It follows by iteration of (8.3.6) that, mod 2,

- 16A
2 P*(n)qn = Z qA(n)Z q4A(n) ) q .
n=0 n=0 n20 n20
= I rmq", (8.3.7)
n=0
so
p*(n) = r(n) mod 2 . (8.3.8)

(8.3.4) and (8.3.8) constitute Theorem §.1.3.

Clearly p(n) 2 p (n) . (8.3.9)

Let us write
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if

a 2b for every n . (8.3.10)

We have by (8.3.5) and (8.3.9) that

*
z p (n)qn -3 qA(n) ) p(n)q4“
n20 n20 n20

v

Z qA(n) z p*(n)qén . (8.3.11)
n20 n20

It follows by'iteration of (8.3.11) that

] pwg® 2 ) rmq” (8.3.12)
n=0 n20
or
*
p (n) 2 r(n) . (8.3.13)

(8.3.9) and (8.3.13) constitute Theorem 8.1.4.

We have

2 v(’n)qn - z qA(n) z qAA(n) z q16A(n)

LI )

n=0 n20 n0 220
= 1™ 5 rmgt . (8.3.14)
n20 n20

If we now substitute

) qA(n) = (3 qA(Sn) N qA(8n+7))
n20 n20

+ ( z qA(8n+1) + qA(8n+6) )
n20

+ [ ; qA(33+21+qA(8n+5)) + [ z qA(8n+3) + qA(8n+4) )
n20 n20Q
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, 2 2 2 2
- {1+ Z (q32n 4n q32n +4n )} + a{1+] (q32n -12n q32n +12n)}

n21 . ) n21
3 32n2-20n. 3202420n vy, 6 32n2-28n.  32n+28n
+q {1 + zl (@70 " g Y+ q {1+Zl(q + q V1
n2 n2

(8.3.15)

into (8.3.14), and compare coefficients, we obtain Theorem 8.1.5.

We have (8.3.1)

] p(n)q® Zp(n)q“ TT ( )

n20 n20 n21 1-q

= 1p (n)q T (l:ﬂ__ )
n20 n2l +q

= Yo ™ TT (1-¢2 (1-¢*™"2)
n20 n21

= J p*(n)qn/ TT'(I-qan-z)z(lvq

n=0 nxl

4n)

which,by (6.1.2)

2
= J p*(n)qn/ {142 J¢~-1)"q 2n }

n20 n2} ‘
= § p (mq® x {142 { 20’ } mod 4 (8.3.16)
n20
Q‘
since .
an 2n2 8n2
14 q 1 +2 -1)q 1+ -q =1 [ 4 . 8.3.17
{1 +2] " H I (-1%" 4}‘,1 nod 4 ( )

n21 nx1 n2

B

Theorem 8,1.6 follows from (8.3.16).

Modulo 4, we have by (8.3.16) and (8.3.5),
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2
] pmq" = {1+2 J %" ) p (n)q" mod 4
n20 n21 n=0
2
= {1+2 ¥ R ) qA(n) ) p(mq™™ . (8.3.18)
n2l n20 n20

It follows by iteration of (8.3.18) that, mod 4,

2 2
I pmq” ={1+2 } q2n Hi+2] qsn Jooo x ¥ r()q"
n20 n21 n21 n20

2n2 8n2 n
={1+2( La™ + Jq" +.0Fx ] g
n>1 n21 - n20

2
={1+2 ] t@+Dq®™ } x | r(mq"
n21 n20

= {1+2 7§ ™} T rmq” (8.3.19)
t(n)even n>0

from which Theorem 8.1.7 follows.

Finally, we have from (8.3.5) and (8.3.19) that, mod 4,

*
I pma® = ™ 7§ pme™®
n20 n20 n=0
2
A
= 7™ (1427 &) T rme™
n20 t(n)even n20
8n2 n
={1+2 } e} ) rmq", (8.3.20)
t(n)even n20

from which Theorem 8.1.8 follows.
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Chapter 9. Some Partition Theorems of the Rogers-Ramanujan Type
§1. It is well known that the identity
‘/z(r2+r) 2 .
= 1/(q;q") (9.1.1)
r2>0 (q)r ®

is equivalent to Euler's partition theorem

Theorem 9.1.2

The number of partitions of n into distinct parts is
equal to the number of partitions of n  into odd parts,
while the Rogers-Ramanujan identities
r

_
r=0 (q)r

= () ahad), (9.1.3)

and
gr2+r 2.5 .35
= 1/(q7397) (d73597) (9.1.4)
£ (q) © o
r20 r
are, as first realised by MacMahon (1916)Art.276, equivalent,

respectively, to the partition theorems

Theorem 9.1.5

The number of partitions of n into parts which differ
by 2 is equal to the number of partitions of n into parts
congruent to 1 or 4 mod 5,
and

Iheorem 9.1.6

The number of partitions of n into parts which differ by 2,
but with no 1's, is equal to the number of partitions of n into

parts congruent to 2 or 3 mod 5.
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L.J. Slater (1951 ) gave a list of 130 identi;iés involving
q-series and infinite products, some of which other than those
already considered can be interpreted as results about partitions.
Thus for example, the four identities, Slater (loc.cit.) [79]=(98],

941, [381=[86] and [39]=[83], proved in §§3,4,

2
r 2 7
y -737—— = 1/{(q;qzo)w(q3;q20)w(q4;qzo)w(qs;q 0)w(q ;qzo)m(q9;qzo)m
rz0 4 2r
15 16 2 7 2 19 20
.(qll;qzo)m(q13;q20)m(q ;2% _@'%e®N_ @340 @ %5q )}
(9.1.7)
2

r +4+r
2 2 2
e Y T R T R T o IO Ao M M T MM T o MK o B
rs0 (Wory

.(qll;qzo)m(qlz;qzo)w(qla;qzoLxéj;qzo)w(qls;qzo)w(qlg;qzo)m}
(9.1.8)
2’ +2r 16, 4 16, , 6 16, , 7 16
r20 (@), [, = 1/{(a3507 (038 )@ 30 Dla’3a gy
(qg;q16)m(qlo;ql6)w(q12;q16)w(q15;q16)m} 9.1.9)
and
2r2
2 1 3 1 4 1
I 35— = {@a ®)u@ia' a0 0050,
r20 2r
1 12 1 13 1
. (athq 6)m(q 234 6)w(q 3q 6)m(qla;qm)w}
(9.1.10)

yield, respectively, as we prove in §2,

Theorem 9,1.11.'

The number of partitions of n ,

n= al + a2 + a3 + ...

with

a1>322a3>a42'as>

is equal to the number of partitions of n into parts congruent

to 1,3,4, 5,7, 9, 11, 13, 15, 16, 17 or 19 mod 20,
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Theorem 9.1,12

The number of partitions of =n ,

ns=s a1 + a2 + a3j+ ceee

with

a12a2>a32a4>a52 cee

is equal to the number of partitions of n into parts congruent

to 1, 2,5,6,38,9, 11, 12, 14, 15, 18 or 19 mod 20,

Theorem Q.l.l%

The number of partitions of n,
n = a + a2 + a3 + ...
with

a, - a, 2 2, a; - a, 20, a, - a, 22, a. - a, > 0,....

is equal to the number of partitions of n into parts congruent to

¥, 4, 6, 7, 9, 10, 12 or 15 mod 16, and

Théorem 9.1.14

The nﬁmber of partitions of n ,
? = a1 + a2 + a3 +....
with
a, z 2, dzA" a, 20, 53 - a, 2 2, a, = a, 20, ag - a

4 2.2,..

is equal tp the number of partitions of n into parts congruent

to 2, 3, 4, 5,711, 12, 13 o 14 mod 16.

Whereas Theorems 9.1.11 and 9.1.12 have appeared previously
in the literature (Gordon (1965), W. Connor (1975)), Theorems 9.1.13

and 9.1.14 are new. All four are to appear in Hirschhorn (1979?a).
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Andrews has pointed out that, as we show in 85, the left
hand side of (9.1.9) enumerates the number of partitions of 2n+l
into distinct odd parts, while the left-hand side of (9.1.10)
enumerates the number of partitions of 2n into distinct odd

parts, giving further partition theorems.

§2, We start by proving Theorem 9.1.11. Let pl(n)

denote the number of partitions of n,

+ a, +a, +....

n=a 2 3

1
with a, > a, > a3 > a, 2a. > ...,

Any such partition of n has for some r 21, 2r-1 or 2r parts.

Suppose n = a, + a, + ag + ...+ aZr_1
with a, >a, =z a3 > «een 2 a, | .
Then
351 21, aZr—Z 21, aZr—B 2 2, vee a, 2 r-1, a, 2r .

If we subtract

1 from §2r_1, 1 from 3yr.2° 2 from 8yp-30 oo T from a;

2

there remains a partition of n-¢’ into at most 2r-1 parts,
]
and this process is reversible, giving a one-to-one correspondence

between the two sets of partitions.

Similarly, if n = a, + a, +a

2 3 + ... +a

2r

with a, >a, 2 a, 2 eiee > a4, >

then A 21, 3.1 22, a 2 22, ..., a, 2r, a, 2 r+l,

and if we subtract

1 from Qops 2 from a1’ 2 from a2r_2 sesey T+l from a »



the remains a partition of

and again the process is reversible, giving a one-to one correspondence.

Thus

n>1

91.

n-(r2+2r) into at most 2r parts,

2 2
n Z r . r +2r
1+ z p,(n)g =1+ 4 9 _
1 r21 @orr p31 @y
z [ qr2 qr2+2r }
= 1+ +
r>1 (q)Zr—l (q)Zr
r2
= 5 A=, (9.2.1)
r=0 (q)Zr

which, by (9.1.7),

The proofs

yields Theorem 9.1.11.

of Theorems 9.1.12-9.1.14 are similar.

Thus, if pz(n) denotes the number of partitions of n,
n = a1 + a2 + a3 + ....
with a, 2 a2 > a3 2 a4 > a5 >
then
z n z r2+r-1 Z r2+r
1+ p,(n)g = 1+ + 4
N 31 Worp 35 @y
r2+r r2+3r+1
=[” @ ]* L [%q) D ]
1 r=1 2r 2r+1
r2+r
= ?97____ , (9.2.2)
r20 ‘V2r+l

which, by (9.1.8),

If p3(n)

yields Theorem 9.1.12.

denotes the number of partitions of n,

n = a + a2 + a3 + ....
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with
a, - a; 2 2, az - a, 2 0, a, - ayz2 2, ag - a, 2 0, .
then
. n 2r2-1 2r2+2r
* ngl p3(n)q B rgl (q)Zr—l ' rzl (q)2r
_ [1 . —Ji—J '+ Z [ q2r2+2r . q2r2+4r+l]
(q)l r21 (q)Zr (q)2r+1 J
2r2+2r
= s (9.2.3)

r20 (Djpy

which, by (9.1.9), yields Theorem 9.1.13.

Finally, if p4(n) denotes the number of partitions of n,

n=a, +a, +a, + ....

1 2 3
with
a) 2, a2 -a 2 0, a3 - a2 2, aa - a3 2 0, aS - a4 22
then
n 2r2 q2r2+2r
1+ Z p,(n)qg = + + e
ns1 4 21 @ 51 Dy
2 2
2r 2r°42r
b [T% *q()]
r>1 Vor-1 Yoy
2r2
r>0 (q)2r ’

which, by (9.1.10), yields Theorem 9.1.14.

(9.2.4)
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§3. In order to prove (9.1.7) we first establish the identity
%(rz—r)ar 2r2—r32r
(a) = (9.3.1)
© 30 (@), 50 (qz;qz)r
Thus, (r)
%(rz—r)ar q 2 ar(aqr)w
(a)m r=0 (q)r(a)r ) r20 (q)r
r s
(2) r 138 r.s (2)
-y 92 ) (-1)"(ag ) g
rz0 (q)r s20 (q)s
r+s
r+s s ( 2 )
-7 2 g
r,sz20 (q)r(q)s
e &
-y 24’ 15t
t;o (@), sgo Dt
t
. 2 @,
= ’ ‘jfL « 55 (see App'x 86)
t even q)t (qz;qz)t/2

a2rq35(2r)(2r-1)

r>0 (qz;qz)r

which is (9.3.1).

If in (9.3.1) we set q2 for q, a=q and use the first
Rogers-Ramanujan identity, we obtain

) r? 4’
(q93q )co z L . Z . W

r20 (q)Zr r20 (qa;ql')r

1/(q4;qzqg(q16;q2°)

(9.3.2) -
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SO
r2
TST__ = 1/(q;q2)m(q4;q
r20 ‘Yor

20, , 16, 20

) (@ 73597 )

oo @

7
= 1/{(q;qzo)m(qB;qzo)m(q4;qzo)m(qs;qzo)w(q ;qzo)w(qg;qzo)°°

11 1320 15 20 16, 20 17 q20

1
(q ;qzo)w(q 30 )o@ 7597 D@ 59 ) (g7 q 9;q20

)y ( I B

which is (9.1.7).

In order to prove (9.1.8) we first establish the identity

2 qrzar r2ar
(-asq7) z 5 3 > = Z %ET—- + (9.3.3)
r20 (q7;q )r(-a;q )r+1 r>0 r
Thus,
2
2 qr a’
(-a;q%), ] =

2 2 2
r20 (q ;q )r(-a;q )r+1

2
r r
- z q a (_aq2r+2;q2)
2 2
r20 (q ;q ),

o o]

r2 r 2r.s sz+s
9 _a_ ) (ag” ) g
2
r=0 (qz;q )r s=0 (q2;q2)S

r+s s (r+s)2
a q4

r,s20 (qzsqz)r(qz;qz)s

at t2 t t
= 1 2, 2 ) a° [s:| 2
t20 (q973q7), s=0 @)
2 2
X CHTON

. (see App'x §6)
t20 (q2;q2)t (@),
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2
at¢"

t20 (D

which is (9.3.3).

If in (9.3.3) we set a=q, and use the second Rogers-

Ramanujan identity, we obtain

2 qr2+r z r2+r
(-q3q7) ) 2 =
20 (qz;qz)r(-q;q ) 41 rs0 (W
2.5 5
= 1/(q";q )w(q3;q ) S (9.3.4)
SO
2
ro+r
2 2 5 3.5
4 5 = 1/(-q3597) (a735q97) (a73q7),

2 2
r20 (q ;q )r(-q;q )r+1

10 10

9
Lo (=a597 ) e

1/{(-q;qlo)m(—q3;q1°)w(—q5;qlo)w(-q7;q

10

2 7 10 10
. (q ;qlo)w(q | )m(q3;q )w(q8;q ool

0

1/{(—q;qlo)m(qz;qlo)m(-qs;qlo)m(qs;qlo)m(—qg;ql )y -

@®:4*%_'*:4%% ]

20 2 20 0 2
1/{t-q34*"_a%:4*)_(-a°;4° )w(q6;qzo)m(qs;qzo)m(—qg;q O)m .

11 20 12 2 14 20 1 2 1 2 1 20
(-q" 7397 (qa" "3q O)m(q 397 7) (=q %:0%%)_(a'%5q o)m(-q %4 )}

[+

(9.3.5)
If in (9.3.5) we put =-q for q, we obtain
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r2+r

4

r=0 (q)2r+1

6 2
= 1/{(q;qzo)m(qz;qzo)w(qs;qzo)w(q 3q o)m(qs;qzo)w(q9;qzo)m .
11 20 1220 15 20 16 20 18 20 19, 20
@'1a®_@'2:6%%_ @ ?:0%0 0% (0'%¢%0) (@547 )
which is (9.1.8) .
84, We now prove (9.1.9) and (9.1.10)
2 L2
X 2r+42r ) q1(r 1) . 1_(_Ur }
r50 (Vo rs0 (@ 2
L (2= L L(r2- 1
) q_%. l.{ gfz(r r)(qz)r 5 )t qz(r‘ f)(qé)r |
2 r20 (q)r r=0 (q)r
-k 1 r+ +
=q 23 { T 0+d7) - T (1-4d79)
r 20 r=0
3 3
L 1 2r- 2 . 2r-} 2r-2 2r-}
= q s { T 0+ 90 +q7 Y- TT (1-¢""J01 - ¢"779}
r=1 r 20

® 2 % 2
-4 1 1 +5 i

- g7 — .31 1 FTT -] (DT P

TT(]--q ) =—00 =0

r 21

by (6.1.3) and (6.1.2)

oy 1 °z° 2 (1-(-1)F
- 4q 2 2 { 2 J

(@75q7),, r=-=
-k 1 Y (2r-1)2%2r-1)
= q° —5—— 1 q

2 2
(q7397) r=-0o

i'

® 2
1 4r”-3r
2 Z q
(@7397) r=-©
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w 2
1 z 4T"43r
5 q

(qz;qz)oo r=-~

MHasa™® %50 044" (%00 (050" (%54

- 8r-1
—— T 0+ - 6
(97597), 2]
by (6.1.3)
8
-j;ljg—— (-q;qs)w(-q7;q8)w(q8;q )eo
(97597)
1 14 16
1 (a’sa 6)oo (@739 e I
) q 39 )
(qz;qz)co (q;qs)°° (a’3q )eo
{(qz;qls)w(qs;q16)m(q14;q16)w(q16;q16)m}/

16

oo

16

.(q9;q16)w(qlo;ql6)m(q12;q16)m(q14;q16)w(q15;ql6)w(q16;q )}
1
= 1/{(a;0"®_(a":a'®_(c%sq 6)w(q7;ql6)oo :
1 1 1
. (@3q 6)m(q 0;q16)w(q 2;q16)m(q15;q16)w}
which is (9.1.9), while
2r2 %rz r
q _ q 1+(-1)
) (q) =1 (q) { 2 }
r20 2r r20 r
L(r2_ L 2_
- 1y gHT T (T + 1 DT ¢ D) (BT
2 r>0 (q)r r>0 (q)r
= 34 T (™) + T (14"}
r=0 r=0
3 3
1 2r- - - -
= 3 U T (1%® 2) (¥ 79 + TT (1-¢°7 2)(1-a""79)}
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) 2 o 2
1 +
e L T AR T A
-rr(l-q ) =—00 r=-—00
rz1
1 > Py 14(-DF
= 5 L e {77}
(g3597), r=—
1 X 4rter
5 T2 2 L q
q73q97), ==
1 8r-5 8r-3 8r
= = - T (7)) (e ) (1-q)
(97397), rzl
1 8 5 8 8 8
= 5 (-q3;q )oo(973a ) (q 7359 ),
(97359 )
6 16 10 16
1 (@39 ) (@730 ) g g
- 58 (@739 )

(qz;qz)°° (q3;q8)co (9739 ),

6, 16

{@®a'®) (%), 0'%e*®)(q'%;:q"®

)}/

16

/{(qz;qle)w(qg;q16)m(q4;qlé)w(qs;ql6)m(q6;ql6)m(q8;q )

16, 12 16, . 13 16, , 14 16, , 16 16

. (qlosql6)m(qll;q JRCRET RS TN CEET Rae U CRAEY R N C RS T RO W

= 1/{(a%0"®_@%a'®) (a*30'®) @54

(= <]

11 16 12 13 1
R R TN T B TR Rt T o WU BT oW

which is (9.1.10),
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§5. We now justify the remarks made at the end of §1.

A partition of 2n+l1 into distinct odd parts must for some
rz20 contain 2r+l parts. If we subtract 1,3,5,¢..,4r+]
respectively from these parts, there remains a partition of
(2n+1) - (4r2+4r+1) into at most 2r+l even parts. Thus,
if p*(n) denotes the number of partitions of 2n+l into

distinct odd parts, we have

2
4r 44+l
¥ o 2n+
] payg™ = ] & —— (9.5.1)
n20 r20 (q 3q )2r+1
from which it follows that
* n 2r2+2r
Z P (n)q - . 2 (Q) ’ (9.5.2)
n20 r20 ‘Y2r41

as asserted.

"k
Similarly, if p (n) dendtes the number of partitions

of 2n into distinct odd parts, then

2
* % 2n 4r
I p (" = ---9——-—2 5 , (9.5.3)
n20 r20 (97397,
or,
o 2
2 **( , n 2r
n20 P ) r20 i%?;: ’ (9-3.4)

again as asserted.
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Chapter 10. . A Continued Fraction of Ramanujan

§1. In 1976, G.E. Andrews discovered a manuscript of Ramanujan
(1920?) containing more than six hundred identities. (For the
interesting details of this discovery, see Andrews (1979).) One of

these identities concerns the continued fraction

ag+iq bq+Aq2 aq2+)\q3 bq2+)\q4

F(a,b,A,q) = 1 +

1+ 1+ 1+ 1+ v '
(10,1.1)
Ramanujan states without proof that
F(a,b,A,q) = G(a,b,A)/G(aq,b,Aq) (10.1.2)
where
14(“2“‘)( ... (aq" D
G(a,b,l) = z q : oo 0 -Q, -
n20 (1-q)...(l-q ) (l+bqg)...(l+bq ")
(10.1.3)

Andrews (loc.cit.) proves (10.1.2) directly, though
with some difficulty. In 82 we give a proof via the convergents

to F(a,b,x,q).

Applying Watson's theorem (2.3.1) to the numerator and
denominator of (10.1.2) yields

F(a:bsA’Q) =

2r
(1-Aq™") (=A/b)_ (-A/a)_ (Aq) 2
1+ . r r r q55(31: +r)(_ab)r
rz1 (l-1Aq") (-bq)r (-aq)r (@),
) (1-Aq2r+1) (-Aq/b)r(-x/a)r (Aq)r q%(3r2+3r)(_ab)r
50 (-bq) (-aq) ., (@)
(10.1.4)

(10.1.4) contains as corollaries several elegant continued
fractions, all given by Ramanujan (1920?), some of which have appeared

previously in the literature. Thus,
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q SE ﬂi TT (1_q5n+2)(1 5n+3)
1+ e = (10.1.5)
1+ 1+ 1+ 020 (1_q5n+l)q_q5n+4)
(Rogers (1894) p.328, Ramanujan (191%)),
2 3 2 4 5 2
1+% qli % q 1—:1 _<1L__ c.=1/7 (-1)nq;5(“ ) (10.1.6)
n=0
(Eisenstein (1844)) ,
2. 4 3.6 6n+3. 2
T G G M e A T (I=g . )
T+ 1+ 1+ n20 (1-q°"1) (125775,

(10.1.7)
(watson (1929b) p.236, Gordon (1965) p.742, Andrews (1968)),

2 3 2 4 5 4n+2, 2
red L E 4 L - T )43
+ + + + n20 (l-q n+ ) (1-q n+ ).
(10.1.8)
(Ramanujan (19207)) , -
2 4 3,6 8
1+39 a4 g9 g . 1T (1_q )(1 q§n+5)
1+ 1+ 1+ 1+ n>0 8n+1 St 7
- (1- )(1- )
(10.1.9)
(Ramahujan (19207)) ,
and
2 2 4 3 6 2 |
1_11:1 ll—q q_l-q vee = 1/ ) (l)nq3n +2n(1+q2n+1)
n20
_ (10.1.10)
(Ramanujan (19207)).
§2. Our main result, proved in §3, is
1+ aq+\q Egjxq aq’+>\qz“_1 - P2n;1(a’b’k)
1+ 1+ teet A i
1 Pzn_z (b > aq H AQ) )
2 n,, 2n P, (a,b,)\)
+ -+ g s Uy
1+ 249 betlg - R (10.2.1)

Pyn-1(b-84,29)
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where

2
Pn(a,b,)\) = z asbt)\u qA(S)+A(t)+St+Su+tu+u

X

[n+1—s—t-u][[(n+1)/2]-t-u][[n/2]-s-u]
u s t

’

(10.2.2)
the sum is taken over all s,t,u > 0 such that s+t+u < [(n+l1)/2],

A(n) = %(n2+n), and where for our present purposes, [ 0] =1.

Letting n »> ® in (10.2.1) and (10.2.2), we obtain

P(a,b,\)
= 2£38,0,2)
F(a’ba)\sq) P(b,aq,%q) s (10.2.3)
where
g (DI Hstesuttute’
P(a,b,)) = J a%p0A" 4 ( (10.2.4)
s, t,u20 q)s(q)t(q)u
Now, it is obvious from (10.2.4) that
P(a,b,A) = P(b,a,A) . (10.2.5)
Also
P(a,b,A) = JT (1+bq™) .G(a,b,A) (10.2.6)
n>1
where G(a,b,A) is given by (10.1.3).
For,
2
A(s)+A(t)+st+suttutu
P(a,b,A)) = J 250" 4
s,t,u20 (q)s(q)t(q)u
2
+su+ A +
) z Sy qA(S)>su u q (t)(bgs u)t
s,uz0 (q)s(q)u» t=0 (q)t
2
A(s)+sutu
s,u s+u+l
= ] a’) (-bq )

$,u20 (@ (@)
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aS)¢ A(s)+su+u2
= (-bq) 2 ( q‘ '
® s,u20 q)s(q)u(-bq)s+u
A(n)

A(u-1)-n
= (-bg) ¥ -—j———-_ )) a®\Y% L]
n>0 (q)n( bq)n s+u=n v

@ g v/

= (-bq), ]

n=0 (q)n(-bq)n

=TT +bq™ 6(a,b,N) .
n21

From (10.2.3), (10.2.5) and (10.2.6) it follows that

, P(a,b,A) G(a,b,))
= =
2,200 = Fhagbh)  ~ ClaqsbiAq)
which is (10.1.2)
83, We establish (10.2.1) by showing that if Pn(a,b,A) is

defined by (10.2.2) then

P =1, P1 = l4+aq+)q s (10.3.1)

and

2
Pn(a,b,l) = Pn_l(b,aq,kq) + (agq+iq) Pn_z(aq,bq,kq ) .

(10.3.2)
We can write (10.3.2)
P_(a,b,}) aqt+iq
= 1+ . 10.3.3
Pn_l(b,aQ»)\q) [ Pn—l(b’aq’)\q) ] ( )
2
P _,(aq,bq,Aq")

(10.2.1) follows by iteration of (10.3.3), together with

(10.3.1).

In order to prove (10.3.1), write

P (a,b,}) = ] asbtxuqf(s’t’“)cn(s,:,u) | (10.3.4)
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where

f(s,tyu) = A(s)+A(t)+st+su+tu+u2 (10.3.5)
and

¢ (s,t,0) = [n+1—3—t—u][[(n+1)/§]-t-u][[n/2]:s-u]
(10.3.6)
It is trivial to show that
f(t,s,u) = f£f(s,t,u) ,
s+t+ut+f(s-1,t,u) = £(s,t,u) ,

and s+t+2u-1+f(s,t,u-1) = f(s,t,u) . (10.3.7)

Also
cn_2(s,t,u-1)+qu(cn_2(s-l,t,u)+qscn_1(t,s,U))‘=
= cn(s,t,u) . (10.3.8)
For,
cn_z(s—l,t,u)+qscn_l(t,s,u) =

- [n-s—t—u][[(n—l)/2]-t—u][[n/2]-s—u]

+
u s-1 t

s[n-t—s—u][[n/ZJ-s—u][[(n-l)/2]-t—u]
u t S

+q

n-s-t-u,-[n/2]-s-u_( [ (n~-1)/2]-t-u s-[(n-1)/2]-t-u
=0, . I el al . 1}

[n—s;t-u][[n/2];s-u][[(n+1)/§]—t—u] ,

and so

cn_z(s,t,u-1)+qu(cn_2(s-l,t,u)+qscn_1(t,S.u)) =
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[n-z:g-u][[(n+1)/22-t—u][[n/2];s-u]

1

+ qu[n—s;t-u][[n/ZJ-:—u]HKn+1)/2]-t-u]

[ (n+1)/2])-t-u,-[n/2]-s-u.j-n-s-t-u,, u-n-s-t-u
[ ST T L e T

n+1-s-t-u][[(n+1)/2]-t-u][[n/2]-s—u]
u s t

= [

cn(s,t,u) .

It follows from (10.3.4), (10.3.7) and (10.3.8) that

2
P _,(b,aq,Aq)+(aq+rq)P _,(aq,bq,Aq") =

=

) bsatkuqt+u+f(S’t’u)cn_l(s,t,u)

u s+t+2u+1+f(s,t,u)c

+ a Z asbtk q n__2(s,t,u)

+ Z asbtkuqs+t+2u+l+f(s’t’u)cn_z(S,t,u)

z asbt)‘uqs+u+f(t,s,u)c

]

n—-l(t’s’u)

+ 24asbtkuqs+t+2u+f(s-l’t’u)cn_z(s—l,t,u)

+ - -
+ Z asbt}\uqs t+2u-1+£f(s,t,u l)cn_z(s,t,u—l)

- Z asbtkuqf(s,t,u) »

+
x {q° uCn_l(t,s,U)+qucn_2(s—l,t,u)+cn_2(s,t,u-1)}
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Z asbtluqf(s’t’“) «

% {Cn_z(s,t,u—1)+qu(cn_2(s—l.t,u)+qscn_l(t,s,u))}

2 asbt)\uqf (s,t,u)

cn(s,t,u)

Pn(a,b,k) R

which is (10.3.2), as required.
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Appendix

In this Appendix, we establish a number of fundamental results
in the theory of basic hypergeometric series. Most of these results
are quoted at some point in the body of the thesis, but their proofs
do not properly belong there. They are collected here rather than
cited because they are important to the thesis and are not easily

accessible.

§1. Notation

For n>1, let

(@), = (a;9), = (1-a)(1-aq)...(1-aq" ) , (A.1.1a)
and in particular,
@_ = (339), = (1-q) (1-g2) ... (1-g™ . (A.1.1b)
Then
(a)
(a) = — , (A.1.2)
n n .
(aq ),
and this is used to define (a)n for n <0, for a
not a power of q .
For nz2r 20, let
(q)
(?] = e, (A.1.3a)
r (@, (@) _
and more generally,
k
n (a*;q ),
(] = . (A.1.3b)

Kk
f (q) (qk;qk)r(qk;qk)ﬁ_r
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¢ [al’ ,ar;Q5X} =
r's
( Bl" ’BS
(o,) ...(a))
1’n r'’n n
X . (A.1.4)
030 (Q)n(Bl)n.--(Bs)n
(In general, |x| <1 for convergence.)
§2. The q-binomial theorem.
The gq-binomial theorem is
(a) (ax)
d,(asq;x) = 3 X" = - . (A.2.1)
170783 93% ngo (@) (x),
Proof:
1%0fasasx) - (d,(aiq5xq) =
(a)
n _n n
= o ¥ (1-9)
ngo (q)n
(a)
= I o x"
nzl  ‘Vp-l
- Z (a)n+1 n+l1
n20 (q)n
(a)
- 2 n xn(l_aqn)
n>0 (q)n
= x1¢0(a;q;x) - ax1¢0(a;q;xq) . (A.2.2)
It follpws that
(I-X)1¢o(a;q;x) = (l—aX)1¢o(a;q;xq) , (A.2.3)

or

1¢o(a;q;x) = l%f%%% 1cho(a;x;xq) . (A.2.4)



It follows by iteration that for n 21

19p(asasx) =
Letting n +> o ,

l¢0(a.q.x)

which is (A.2.1)

In particular, if
N S
(x)n+l
and letting n-> « we
1 =
(%),

while if in (A.2.1) we

we obtain

(-x), =

(ax)

. n
(X)n

we obtain

(ax),

(x)

oo}

in (A.2.1)

(an+l)°°
(%)

[+ ]

n+l
1¢0(q 3Q3X)

n+l

(q )r r

—< X
r20 (q)r

z (q)n+r %
@, (),

r20

Z [n+r] Xr

n
r20

obtajin

X

r20 (q)r ’
-an for
(-x)

@®
——f
(-xq™),,

r

l¢0(a;q;an)

we set

X,

-n

for

109.

@Aa.2.5)

we obtain

(A.2.6)

(A.2.6a)
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1¢0(q'n;q;-an)

-n
= z i(:___)_.)_.r_. (_an)r
r=0 a r
(l—q—n)...(l—q-n+r-1) rnonrr
= ) ) (-1)7q 'x
r=0 Uy
n r-1 n
= (1-¢)...(q "-q) <F
r>0 (q)r
) _
D R €0 VOUN ¢ i W
r=0 (q)r
r
()
= J q? (% 5 (A.2.7)
r>0
and letting n > s
r
; q(z)xr
(-x) = — (A.2.7a)
50 @Dy
§3. Heine's transformation, and its an and 3rd iterates.

We assume for the purposes of this sectign that

lal,Ib] < 1, [ef < lallv], |x| < |e|/{a]lb] .

*

Heine's transformation is

(b) (ax)

a, b, . . 2 e c/b, x. ..
2¢1 [ qu,X ] (c)oo(x)m 2¢1 [ ax,q,b ). (A.3.1)
Proof:
(a)_{(b)
b a, b; : = n*’‘n _n
271 [ . q;x ] L ?aszzzy; X
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®)e 7§ (a)n(cqn)m n

—— —— X
(c), n20 (q)n(bqn)m

(b)), (a)

n n n
= . ,0.(c/bjqsbq ) by (A.2.1)
@, Lo @, * - afol/biaiba by
_ (b),, ) (a), L (e/b) (bg™"
(e)g, n20 (q)n m20 (q)m
_ o, ; /)y o ; @y, o
(e),, m=0 (q)m n20 (q)n
(b) (c/b)
= bt — m.m .
T @, L, @, b %lesxa)
(), (c/b)_(axq™),
- .o — b by (A.2.1)
w20 (q), (xq),
) (b) ,(ax),, v(;p/b)m(x)m .
ic)wtx;é m20 cé)m(ax)m
NS W
= e i * %q5b 7,
@, &, 2 L

as required.

The 2nd iterate of Heine's traﬁgformation is

te/b),_ (bx)_
a’bv ey @ . abx/c, b
WX =T (x). 395 . A.3.2
291 [ Y x] @ 293 [ o q c/b] ( )
Proof;
() (ax) =
CTL I It . c/b, x,
2¢l [ c’q’x] (c)m (x) 2¢1 [ ax’q’b]

-}

(b) (ax) x.c/b

T @, 2 [, )

ax
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(b)), (ax) (e/b) (bx)

—_— abx/c, b, .
i wre R F ) I bx,q,c/b] by (A.3.1)
(c¢/b)_(bx) .
> © bx/c, b
N o, [* > 73q5¢/b ,
(c), (x), 271 [ bx ]

as required.
rd . .y . .
The 3 iterate of Heine's transformation is

(abx/c)°°

2% {a’z;q;x] "~ % [c/a’cib;q;abx/c] . (A.3.3)
Proof:
291 [a’z;q;x] - f;é;ﬁ?é;;gf 20, [abxlc’b:;q;c/b]
- f%é;iféz;iz 2%, {b’abxéi;q;c/bJ
= (ZI)):&ZZ& ;:z})(::(%:;g: 2% {C/a’cib';q;ab"/ °]
by (A.3.1)
. f:;;;glf 2¢1 [C/a’cib;q;ab%/c] ’
as required;
§4. The q-aﬁalogs of Geuss's théoreﬁ and of Kummer's theorem.

The q~analog of Gauss's theorem is

(c/a),(c/b),,
(c), (c/ab)_

2% [° c;q;C/ng = (el < lalloh . @a.4.1)
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Proof:
(b), (c/b)

2 [a’Z;Q;C/ab] ® O (c/ab)_ 291 [

C/b)C/ab;q;b} by (A.3-1)
c/b

(b),, (e/b),
= oo 1% (¢/absasb)

(©)_(c/ab)_
(b)w (C/b)co (c/a)°°

T ©clad), T . by (A.2.1)
(c/q) (c/b)

(c), (c/ab)_ °
as required. (We have established the result only for lb] <1,
but it is true more generally.)
The gq-analog of Kummer's theorem is

b (aq;qz)w(-q)w(aqz/bz;qz)°°

a, 1q;- - : X .
2¢)1 [ aq/b d q/b] (aq/b)m(-q/b)m (l ! > IQI)
(A.4.2)
Proof:
b b, a
o, [*° sqs-a/b] = ¢, [P @ q;-q/b
2 [ aq/b ] 21 [ aq/b ]
(a)_(-q)
it > q/bs'Q/b. .
(aq/b)(-q/b) 291 [ _q ,qaa] by (A.3.1)
(a) (-q), (q/b)n(—q/b)n .
—. (aq/b)w(-qlb)m HZO (q)n(—Q)n a
(a) (-a) (q2/b2;q2)n )

(agq/b)_(-q/b) ngo (qz;qz) )
n



(a) (-q), 2,2, 2
- EVDRETON 1% (q°/b73q7;a)
(a) ,(-),, (aq2/b2;q2)°°
(aq/b) (-q/b), (a3q%),

(aq39%)_(-9)_(aa’/v259%),
(aq/b) (-q/b),

114,

by (A.2.1)

as required. (We have established the result only for Ial <1,
but it is true more generally.) (A.4.2) is
(a) (b) . gn (aq;qz)m(-q)w(aqz/bz;qz)w
nsp  (@g(aa/b) b (aq/b)(-q/b)
Letting b >, we obtain
n+l
%)
g q (@), 2
= (aq;q ) (-q)
n20 (q)n
2
(aq;q )y
= — , (A.4.3)
(95 97)
an identity due to V.A. Lebesgue (1840).
(A.4.3) is easy to prove directly, thus:
(n+1) n+l
q ? () R )
0 n - Z o) Z (_1)mq 2 [n] am by (A.2.7)
n=0 Uy n>0 Yy m=0 m
. (2) . n+l
- -1) a Zg ’
m=0 () nm
(m) n+m+1
- z-—-——ﬂ——-~” 29——7——
m=0 n20
n
m m m m+1 n
- Z-—-)-—‘l——- z.‘L__is__.__
m0 m n=0 n
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2 .
m m m
p e a om0 (a2.7a)
m20 (q)m ®
2
mm m

(-1)'q a
= (-q)co z -
m20 (q)m ( q)m

69)
D™D 2 (@)™

2 2
m=0 (9739 )m

= (-q)m(aq;qz)°° by (A.2.7a)

2
(aq3q7),
= T
(95 9 ),
as required.
85. Saalschutz's theorem and its g-analog.

The q-analog of Saalschutz's theorem is

a,b, " oy (c/a)n(c/b)n
n-1 3439)= (o) (c/ab)

3, | (A.5.1)

¢, ab/cq

Proof:

We have, by (A.3.3) and (A.2.1), for |x| sufficiently small,

(abx/c)
29y [ 2 2 ;q;x] = “iTESZ“ 2%, [C/a’cib;q;abx/c]

c/a,c/b;

1Cbo(ab/c;q;x) 2¢1[ . q;abX/cJ ,
or,
(a)_(b) (c/a)_(c/b) (ab/c)
n n n = r r r 8
n=0 (q)n(c)n * rgo (q)r(c)r (abx/e) sgo (q)s *

(A.5.2)



Comparing coefficients of X"

(a)n(b)n~

(C/a)r(C/b)r (ab/C)S

yields

_ r
@ _©, i@ o, @, @
n (c/a)_(c/b)_  (ab/c)
-l oo T, @,
r=0 q r ¢ r q n-r
or,
(c/a) (x/b)  (ab/c) _ (@ r
@ _(© @ @ @/’ -
r=0 Vel ab/el, d n-r
(@) (b)
(c)n(ab/C)n
or,
n (c/a) (c/b), (=" a-g™ _
. : (ab/c)
r=0 (q)r(c)r (l-abqn—r/c) ces (1—abqn_1/c)
(a) (b)n
(c), (ab/e) ’
or,
no(c/a) (e/b)_ (4 ), PN ON
r=0 (Q)r (C)r (C/abqn-l)r (C)n(ab/C)n ’
If we now set a=C/A, b= C/B, c=C, we obtain
-n
n (A)r(B)r (@ ), i (C/A)n(C/B)n
r=0 (), (C), (AB/Cq“'l)r (c) (c/aB)
which is (A.5.1), as required.
If we replace a by qa , b by qb s C by qc and let

we obtain
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(A.5.3a)

(A.5,3b)

(A.5.3c)

(A.5.3d)



)

r=0

or

a(a+l)...(a+r-1)b(b+1)...(b+r~1) (-n) (-n+1)
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(-n+r-1)

1. 2 ... T

(c-a)...(c-a+n-1) (c-b)

c(c+l)...(c+r-1) (a+b-c-n+l1).. (a+b-c-n+r)

(c-b+n-1)

=

(c)

a, b, -n
3F)

¢, at+b-c-n+l 31

«..(ctn-1) (c-a-b)....(c-a=b+n-1)

(c-a)...(c-a+m-1) (c-b) ...

(c=bin-1)

(e¢) ...

I'(c—a+n) T (e=b+n)T (c)I (c-a-b)

I'(c-a)T (c-b)T (c+n)T (c-a-b+n)

which is Saalschutz's theorem.

86.

If H
n
then

Proof:

The polynomials

Hn(X)

—1
(2),(x2)

2 r-n
® = ] %0,
r=0
Hn(X) o
n=0 (q)n
Hn(X)
z =
n=0 (q)n

1

| .

(x2)y

(2)o

» by

(c+n-1) (c-a-b)...(c-a-b+n-1)

(A.2.6a)

(A.5.4)

(A.6,1)
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as required.

If in (A.6.1) we set x = -1, we obtain

Hn(-l) Zn _ 1
nso (@), (z2)(-2),
- 1
(zz;qz)oo
2n
= ; by (A.2.6a)

It follows that

Hn(—l) = 0 4if n is odd
(@,
5 if n is even. (A.6.2)
(@739 /p
1
On the other hand, if in (A.6.1) we set x = q/2 , we obtain
L. n
H (qg7)z ) 1
-~ = T
nz0 (W (2),(a°2),
s i
(z;q;’)oo

n

= Z L ﬁy (A.2.6a)
n20 (q%97)

1t follows that
(q)n

5. %
(@397

o

H (q%)
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. 2
or, putting q for q ,

n (qz'qz)
I a1 =~y - (A.6.3)
r=0 (a7) d n

§7. Ramanujan's lwl summation and Jacobi's triple product

identity. Ramanujan's lwl summation is

o (@, o4 (@ /a) (az)_(q/az)_
Z_m ®)_ T G@a, b, (=), b/az) (A.7.1)
Proof:
(az)_(q/az) &y . (q/b)s
= - ———= (b/az)® by (A.2.1
(z), (b/az)_ rgo (a), z sgo @, az? y ( )
(a) (q/b)
= 1 = =y ®/a)
r=0 (q)r qr
(a) (q/b)
+ vt ¥ : )n+r LI
nx1 o W @,
(a) (q/b)
+ ) r — oty yitT
n>1 rs0 Dy @
’ b
= 2¢1 [a a/ ;q;b/a]
_ q
(a) n
n__1n aq , q/b | .
+ ngl z (q)n 21 [ nt+l 395 b/aJ
(q/b) n+l
-Nn n n a, q /b .
+ ngl T /)" L0 [ e gq,b/a]
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(q/8) o(b)
(q)(b/a),
(a) (q/a)_ (bq"
+ 1 qaloo e
n=1 LI (qn+ )m(b/a)m
(a/b) wtl
+ ) 2 ——8 (b/a)"
nz1 (@, @,
(q/a)_ (b),
© T, ®/ay,
(q/a), (b) ;oo (a)
+ z
(@, ®7a), 5 (®)
(q/a), (b) b"(q/b
t e Lo e
g, 0 n21 an(q/a)n
(q/a), (b), (a)
o w1+l + ]
q), (b/a) (b)
o nx1 n n=1
(q/a), (b), ©  (a)
Z n zn
@, /@, L. ®
[ since by (A.1.2),
4
@&_ @, (bq™ ),
b - .
®)_ (ag™ ™), (b),,
(1-bg™) ... (1-bg )
(l—aq’n) . (1-aq-1)

(b/a),,
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by (A.4.1)



n+l
-0

n+l
-, )

(-1)"b"q (1-q/b) ... (1-q¢"/b)

(-1)"a"q (1-q/a) (1-q"/a)

b“(q/b)n

an(q/a)n

from which (A.7.1) follows. If in (A.7.1)

by z/a, and set b =0, we obtain

() (2) (q/2) ®
(a/a) (z/a) = 1

= 00

zn(a)n/an

If we now let a>o> we obtain

L}
o~

(@) (2) (q/2)

for

and putting q z,

q,

z n2n
q 2

n=-ow

(-qz;qz)w(—q/zmz)m(qz;qz)oo =

which is Jacobi's triple product identity.

88.

Watson's theorem is

a, q/a, -q/a, b, ¢ , d , e,

87

Ya, -v/a, aq/b, aq/c, aq/d, aq/e,

(aq),, (ag/de)_(aq/ef)_(aq/df)_
(aq/d) (aqfe) (aq/f)_(aq/def)

aq/bc, d , e , f

aq/b, aq/c, def/a

»45q
X

4%3

we obtain

f

aq/f

we replace

Watson's Theorem and the Rogers-Ramanujan identities.

y 45

121.

z
(A.7.2)
(A.7.3)
(A.7.4)

2 2
aq
badef

(A.8.1)



122.

provided that d, e, or f is of the form q-n, with n

a non-negative integer.

Proof:

The proof is by induction on n. (A.8.1) is trivially

true when d, e or f is 1. Assume it is true when d, e

or f is q-n, n < k-1. When f has the value q-k, (A.8.1)

can be written

ek(aq/d)k(aq/e)k_1 X

_ a2 k+2
.k a, q/a, -q¥a, b, c, d, e, q 3q;
x (l-aq /e) 8¢7 Kt bede
: va , -/a, aq/b,aq/c, aq/d, aq/e, aq

[aq/bc, d, e, q ;q;q} (A.8.2)

k
= e (aq), (aq/de) (0
k k473 aq/b,aq/c,de/aqk

Now, both sides of (A.8.2) are polynomials in e of

degree k. By the induction hypothesis, they are equal if e

-1 -(k-1)

takes any of the k  values 1, q «»q . Further

if e = aqk , the left-hand-side of (A.8.2) becomes

(aa) (aa/@), (@™ 7Py
2k k -k 2 k+2vk
(a), (l-a b d
§ a)y aq” ) ( )k (c)k ( )k (aq )k (q )k a“q
(Q)k (1-a) (aq/b)k (aq/c)k (aq/d)k (q-(k—l))k_l(aqk+1)kabcdqk

2
1 |
1*aqTE B 4 (o), (@), (a0,

(bed)(aq/b), (aq/c),,
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while the right-hand-side becomes

kK -k
k.k k-1 aq/bc, d, aq , q
(aq ) (aq), (l/dq™ "), . ,¢ : HH|
k k "~ 473 [ aq/b, aq/c, d ]
k.k k-1 aq/be aqk q
= (aq) (aq), (1/dg" )y . g, [FHPE jasq |
aQ/b, aQ/C
k-1
_ (€), (1/bg"" ")
= (aqk)k(aq)k(l/qu l)k : k ” K by (A.5.1)
(aq/b)k(c/aq')k
2
akq® (0, (aa), (1-1/aq"" Yy ... (1-174) (1-1/665" Y. .. (1-1/b)
(aq/b)k (l—c/aqk)...(l-c/aq)
K K
2 -5 -
K k -k -
4 (e DT T @ 0% T,
: k+1
(aq/b) w ~Co)
k (—l)kcka kq 2 (aq/C)k
2
D5 4y (), (@), (a0,
(bed)* (aq/b), (aq/e),

Thys the two sides of (A.8.2) are equal for k+l! values of e,
and so are identical. This proves (A.8.2), and so, by symmetry
-n

in d, e, f, (A.8.1) is true when d,e or f is q  , n<k.

This completes the proof of Watson's theorem.

If in (A.8.1) we take f =gq ', and let b,c,d,e > ® ,

we obtain

2r 4L -n
g (), (1-aq™)  4(;) (@ ), (a2qM¥2)F
S @, G-y f mHy "

=  (aq) — (aqn+1)r , (A.8.3a)
n (q%
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or
n sCyar . (maa”) @,
2 D" q a n+l [r]
r=0 (1-a) (aq )r
n Z(r)+r
- o, 1 a2 a7, (A.8.3b)
r=0
or,
2r
n 2 n 2 (1-aq” ) (a)
r“r nqy _ 1 r %(5r"-r) _2r r
2 a 2 [r] ~ (aq) Z -1)7q” a n+l L
=0 n r=0 (1-a) (aq” ),
(A.8.3c)
Now let n->®°, and we obtain
r2 2 2r (a)
) qQ a _ 1 y (_1)rq%(5r —r)aZr (l1-aq™ ") r
50 (@), (@aq), .30 (1-a) (@),
(A.8.4a)
-2 1) {1+ y (_l)rq%(Sr—r)a2r (l_anr) an)r
aq) r>1 (1- aqr) q)r
(A.8.4b)
If in (A.8.4b) we set a=1, we obtain
qrz 1 ' r 1/(51‘2—1') r
rgo (q)r i (@) Lis rgl -1)a (e d
L 2_ 1 2
_ (qg {1+ Zl (_1)r(qz(5r r)+ q‘Z(Sr +r))}
© r>
= TE%—' (qz;qs)w(d3;q5)m(q5;q5)°° by (A.7.4)
= 1/(q;q5)w(q4;q5)°° , (A.8.5a)
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which is the first Rogers-Ramanujan identity, while if in (A.8.4a) we

set a=q, we obtain

2

T N 1 ¥ %(5r2+3r) 2r+l
@. (@ I D7a (1=

r=0 r o r=0

)

{ 1+ z (_1)r(q%(5r2-3r)+ é%(5r2+3r))}

o r>1

) (dg (Q5q5)w(44;q5)w(q5;q5)°° by (A.7.4)

8

1/(q2;<15)<,°(q3;qs)°o , (A.8.5b)

the second Rogers-Ramanujan identity.
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