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Abstract

This thesis may be summarised as follows.
1
A resume is presented of the fundamentals of linkage closure 
algebra and screw system theory. These techniques are the 
chief tools used in the subsequent analyses. Other important 
phenomena and terms are defined.

2
Screw system theory is employed to develop a general method 
for determining limiting configurations of linkages, in 
respect of both joints and links. The method is applied to 
several individual chains. The significance of the reciprocal 
screw system in limiting configurations is also investigated.

3
Linkage joint motion limitation is considered by means of a 
method which makes use of the fact that a loop in such a 
limiting configuration lias transitory part-chain mobility.

4
Three matters, each of later significance, are considered.
The five-bar hybrid linkages obtained by combining Delassus 
three- and four-bar loops are listed. The special kinematic 
nature of coaxial screws in certain circumstances is 
investigated. An important theorem on the mobility of loops 
containing screw joints is established.

5
That group of thirteen four-bar linkages, each of mobility 
one and connectivity sum four, was isolated by Delassus more



than fifty years ago. For the reasons given, a fresh analysis 
is presented, culminating in the same results, but with 
greater detail.

6
To complete our survey of four-bar overconstrained linkages, 
it had been necessary to consider those containing screw 
joints and possessing connectivity sum in excess of four.
An attempt is made here, using linkage closure algebra, with 
almost complete success.

7
Although some particular mobile five-bar loops were known, 
no systematic procedure to isolate all of them had been 
mounted. Several categories are fully investigated here, 
using linkage closure algebra, and an indication is given of 
the steps required to complete the analysis.



Opening Remarks

The conceptual gulf between planar and spatial linkages, 
it must be conceded, is enormous. Certainly, designers of 
practical mechanisms appear to see spatial movement as a 
series of superimposed planar motions, and therefore 
obtainable only by combining variations of the handful of 
planar four-bars.. Little true spatial hardware has been 
developed, despite the availability of those linkages 
associated with the names of Bennett, Sarrus, Bricard, Ilyard, 
Delassus and Goldberg.

Part of the reason for this limited view is undoubtedly 
the fact that planar mechanisms have been known and used since 
antiquity. Application preceded theory, and latter-day 
synthesis has refined knowledge and expertise, but extended 
them by very little. Of course, manual graphical synthesis 
of planar mechanisms is well-developed, but it is out of the 
question for spatial ones. Three-dimensional linkage 
kinematics, let alone kinetics, is unknown territory to most 
engineering graduates, and there is no heritage of traditional 
spatial mechanisms for the designer to build upon. Moving 
from the plane to space is not simply a shift from two- to 
three-dimensional trigonometry, however considerable that alone 
may be. Also involved is an expansion from two to six kinds 
of kinematic joints, even if we limit ourselves to lower pairs. 
In addition, where a screw joint is involved, the equations of 
kinematics will include transcendental relationships.

It will be incumbent upon the design-minded spatial 
linkage kinematician to demonstrate any superiority of



three-dimensional mechanisms over their composite planar 
counterparts. In the meantime, those of us who are so 
inclined have it as our considerable task to first complete 
the analysis of spatial loops. Then, hopefully, we shall be 
well-prepared to begin synthesis. It is the still formidable 
area of analysis to which this thesis is addressed. I have 
directed my efforts towards unsolved problems, in the main, 
rather than the deeper geometrical principles, and have largely 
succeeded in that aim.

I see the following work as one of consolidation and 
extension of past research. Its ’originality' lies not in 
basic truths, which remain elusive, but in meeting kinematic 
challenges which others have been unable or unwilling to 
pursue. An example is the inclusion of screw joints in the 
analysis; past workers have avoided the algebraic difficulties 
they entail. I have depended heavily on previous researchers 
but, in so doing, have tied up some loose ends and filled in 
some gaps.

The quantity of algebraic material to follow makes the 
thesis bulkier than I should wish. For this reason partly, 
the text of the thesis has been made pithy rather than dis­
cursive. More detailed statements on similar aspects of 
linkage analysis can be found, for example, in references 
[30,45]. One realises the arduous nature of working through 
a mass of algebraic exposition, but any further reduction in 
the following presentation would make it impenetrable for the 
reader.

Chapter 1 of this work consists principally of basic



material, well-known or readily available to researchers in 
the field. This information is essential for the under­
standing of the subsequent analyses. The remainder of the 
thesis is original with me, except section 2.1 which is largely 
due to K. J. Waldron. Parts of chapters 2 and 5 have been 
published, in references [3,2,5] respectively.
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1
FUNDAMENTAL CONSIDERATIONS

Linkage algebra

A linkage is an assemblage of rigid bodies interconnected 

by kinematic joints. The joints may be any of an available 

multitude, but we shall restrict consideration to the most 

commonly used types, the so-called lower pairs in which, 

ideally, contact between the jointed bodies is entirely 

surface-to-surface. There are precisely [46] six lower 

pairs:

The screw or helical joint H, the revolute or hinge 

R and the prismatic or sliding joint P all have one 

degree of freedom. The revolute can be regarded as 

a screw joint with zero pitch and, theoretically, 

we may also think of the prismatic joint as a screw 

of infinite pitch.

The cylindric joint C has two degrees of freedom, 

permitting translation along its axis as well as 

independent rotation about it. The three prior 

joints can each be considered as degeneracies of 

this one; this particular property, in fact, will 

be used to great advantage in much of the 

following analyses.

The spherical or global joint S has three degrees 

of freedom, permitting independent rotations about

three axes.



The plane joint F, allowing completely free 
relative planar movement, also has three degrees 
of freedom.

If a rigid body were completely free to move in space, 
it would have six degrees of freedom - in a plane, it would 
have three degrees of freedom - in a straight line only, it 
would possess one degree of freedom. Let us denote by F 
the number of degrees of freedom relevant for a rigid body 
in a given context. Jointing a rigid body to a frame 
introduces constraints which reduce its number of degrees 
of freedom; the size of the reduction depends on the nature 
of the joint, and we have listed above the resulting numbers 
of degrees of freedom for the six lower pairs. To avoid 
confusion in terminology, the number of degrees of freedom 
of a joint j is called its connectivity, denoted by f..

Now, a linkage as a whole also possesses degrees of 
freedom - the number applicable we call its mobility M. The 
mobility of a linkage is the number of free variables which 
must be fixed to determine the values of all other such 
variables. These quantities are normally either joint 
rotation or translation, for example, input crank angle.
Most practical mechanisms have mobility one, and theoretical 
interest also is mainly centred on linkages with mobility of 
unity.

In the general case, there is a relationship among 
linkage mobility, joint connectivities and the appropriate 
number of degrees of freedom associated with the realm of 
operation of the linkage. This relationship, which can be
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simply expressed, is the celebrated Grubler or Kutzbach 

criterion, namely

J
M = F(L-l) - l (F-f.). (i)

j = l J

L is the number of members (links) in the linkage and J the 

number of joints. The quantity (L-l) is due to the necessity 

of choosing a frame of reference, or reference member, which 

may be any of the links comprising the linkage; the quantity 

(F-fj) is the number of constraints imposed by joint j.

It can be otherwise shown, for example in reference 

[45], for a linkage consisting of a single closed loop of 

jointed members that

M
J
1 fj = 1 J fl,J+l * (ii)

Here f^ j + i> the "connectivity of the joint linking members 

1 and J+l", is in fact some geometrical property of the 

linkage as a whole. It is, alternatively, a property of the 

’'closing” of the loop. Parenthetically, for such a loop, 

the number of members is equal to the number of joints. Let 

us therefore put L=J in equation (i), and compare the result 

with (ii). We have

J
M = F(J-l) - FJ + l f.

j=i J
j

= l q - f. (iii)j = i J

Thus, for a single closed loop,

1,J+1 F.
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We shall be concerned in this work only with linkages of the 
single closed loop form.

An example of a linkage obeying equation (iii) is the 
R-R-R-P- slider-crank mechanism in the plane. For this linkage, 
F=3 and f. = l, for all j J the mobility is one. Also following 
(iii), for mobility unity in space, a single closed loop all 
joints of which are turning pairs must have seven members.
Other examples of spatial linkages with expected mobility one 
are C-C-C-R-, S-S-R- and S-C-C-. In short, for mobility unity 
in a single closed loop spatial linkage, the connectivity 
sum of the joints present, according to (iii), must be seven.
It was discovered around the turn of the century, however, 
that there exist linkages which disobey the Griibler criterion. 
These, the so-called overconstrained linkages, have special 
geometrical properties which grant them mobility beyond that 
allowed by (iii) or (i). One of the simplest and certainly 
the most famous of these is the Bennett linkage [7] which 
possesses only four revolutes, their axes skew in space, 
and has mobility of one. The special relationships among 
lengths and twists of members in this linkage are responsible 
for its remarkable, unexpected mobility.

While these overconstrained linkages have mobility at 
variance with equation (iii), with the terms as defined, they 
could still be regarded as in accord with equation (ii), due 
to the flexible definition of f^ Unfortunately, for
most cases, there is no known way of pre-determining the 
value of f^ j+^ for a given linkage. The tendency among 
researchers, then, is to accept the Griibler criterion, 
modifying it where possible, and to regard overconstrained
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Fig. 1!



linkages as exceptions due to their singular geometrical 
properties.

It is theoretically possible, nevertheless, to analyse 
every closed linkage by attempting to solve the "closure 
equations". Many workers [1,2,4,5,14,35,36,45,47,48] have 
done just this and with particular reference to overconstrained 
linkages. The results obtained in this way are not so much 
parametric solutions, as existence criteria for the linkages 
under examination, that is dimensional conditions demanded 
of link lengths and twists in order for a linkage to be 
feasible. While early workers like Bennett and Bricard 
obtained relatively isolated linkages largely through 
inspiration, the more systematic technique of ’solving' a 
set of governing equations usually leads to families of 
solutions. Many of these sets of results have been found to 
include the Bennett linkage as a special case.

It is possible to represent the closure equations in a 
number of ways. The form and notation adopted here is 
basically that used by Waldron [45, 47], but altered slightly 
for universality. With reference to Fig. 1.1 (which actually 
applies specifically to the C-H-C-H- chain), we define the 
following terms.

a^ ^ + the constant length of the common perpendicular
between the axes of successive joints i and i+1

r^ the variable distance, measured along joint
axis i, between successive common perpendiculars; 
this symbol applies particularly to prismatic 
and cylindric joints
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i a quantity similar to , but constant, applying
especially to revolutes and screws; for a 
revolute, it is the so-called fixed offset 
the pitch of screw pair i

ou the angle of twist between the directions of
successive joint axes i and i+1

0^ the joint angle between the two common
perpendiculars relating to joint i

It should be recognised that, where a single closed loop has 
L members, joint L+l coincides with joint 1.

To render the algebra of the thesis a little less over­
powering in appearance, we shall abbreviate 'cos', 'sin' and 
' tan ' by c, s and t respectively - for example,

c0 j = cos 0 x .

The symbols p,o,t will each stand for ±1. k,l,m,n, will stand 
for the integers (-00 ,00), and M,N will refer to small sets of 
integers, as indicated. C and K will be constants, as 
de fined.

It can be shown [45] that, if we represent linkage joint 
positions by column vectors and displacements by 3><3 matrices, 
specifically putting

s . =—1 a. -l l + l U. == i •H
CDiu - s 0. i 0“ V. . , == 1 1 + 1 "i 0 0

0 •H
CDin o CD H- 0 0 cai i+1 -SOL ■1 1 + 1

r • i 0 0 1 0 sai i+1 ca ■ • , -ii l + l

we can simulate closure of the linkage by means of the relations
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Jn u- v. . ,. i -i =i i+i1=1
(iv)

and
J 1-1U, s, + £ ( n u. v. . j u- s.

=1 —1 • o • i =1 =1 1+1 -1 —]j = 2 1 = 1 JJ
(V)

(iv) clearly represents nine scalar equations, and
(v) three scalar equations.

It can be demonstrated that no more than three of the 
scalar equations included in (iv) are independent; thus (iv) 
and (v) together yield no more than six independent equations 
In the general case of a constrained (mobility = 1) spatial 
linkage, precisely six equations covered by (iv) and (v) are 
independent. For a given overconstrained linkage, an 
appropriate procedure to test mobility is to determine under 
what conditions we might have the suitably fewer number of 
independent equations - our guide will be the relevant value 
of f^ j+i' For example, a C-H-C-H- linkage has connectivity 
sum 6; for this loop to possess mobility 1, satisfaction of 
(ii) demands that f^ j + equals 5. Thus, a C-H-C-H- linkage 
must have only five independent closure equations. By the 
same reasoning, for say a R-R-R-R- linkage (connectivity sum 
4), mobility of unity would require that only three closure 
equations were independent.

An equivalent expression of the condition for a linkage 
to have mobility one is that the twelve closure equations 
have a single infinity of solutions. That is, any variable 
must be expressible as a unique function of any other variable. 
Since there are generally six independent equations among 
(iv) and (v), if the linkage under examination manifests less
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than seven variables, the implication is that these six 

equations are actually dependent. In practice, we 

successively eliminate variables until an equation containing 

only a single variable is obtained. This equation must be an 

identity in the variable if the original set of six equations 

is to be dependent [45,47].

In order to eliminate multiple solutions in this form of 

analysis, we make the following restrictions on the values of 

the constant quantities a^ ^ +^ ,ou ^ +

where the choice of I, one value only, is arbitrary.

We shall often find it convenient to replace a joint of 

connectivity greater than 1 by an equivalent chain of 

connectivity 1 joints. Thus, a cylindric joint might be 

replaced by a coaxial combination of two screws (of different 

pitch) or screw and revolute, or by a combination of screw 

and slider or revolute and slider with parallel axes. A 

spherical joint will usually be replaced by the equivalent 

combination of three concurrent revolutes, where we might 

choose the orientations of the axes to suit our purposes. We 

might replace a planar joint by any of the combinations 

-R-R-R-, -R-R-P-, -R-P-R-, -R-P-P-, -P-R-P-, where the prisms 

are parallel to the plane of the joint and the revolutes 

perpendicular to it. We should then generally locate the 

individual joint axes as convenient.

all i

0 < «i i + 1 < tt, all i^I > (1.1)

0 oij j + -j < 2tt , some I
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A dominant characteristic of mobile overconstrained 
linkages is the property of parallel or concurrent joint 
axes. It will be seen in part II of this work how both 
properties, particularly parallelism, can aid a systematic 
analysis of the mobility of linkages.

Some definitions

We shall, at-all times, be interested only in those 
linkages which are "proper” and have mobility one. A linkage 
is proper if none of its joints is replaceable by an 
alternative joint of lower connectivity while mobility is 
retained. An example of an improper linkage is that produced 
by replacing a slider in the P-P- two-bar by a cylindric 
joint. The cylindric pair would function as a slider, and 
the mobility of the linkage would remain unchanged. The 
cylindric joint would be locked in rotation - it would 
exhibit a "passive degree of freedom". Improperness always 
implies redundant joint connectivity, not excess mobility.

On occasion, we shall find a linkage with "part-chain 
mobility". This is a wide term which includes improperness, 
locked joints and greater mobility as special cases. The 
epithet applies when less than the full complement of joints 
present is required for mobility of a given loop. For example, 
a planar four-revolute linkage in which two revolutes are 
coaxial has part-chain mobility within those two joints.

There is a difference between a ’derivative* and a 
’degeneracy', and we shall use both terms. A derivative will 
be a linkage obtained from a mobile ’parent' loop (of higher 
connectivity sum) by reducing certain joint freedoms and
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imposing additional dimensional constraints. For example, 
the Bennett linkage (connectivity sum four) may be derived 
from a mobile C-H-C-H- chain (connectivity sum six). A 
degeneracy will be that linkage virtually produced when 
geometrical constraints are imposed on another loop of higher 
connectivity sum in an attempt to make ijt mobile. It is 
inappropriate to exemplify the term here, but cases will 
appear in part II.of the thesis.

Several times in part II, we shall make use of Bennett’s 
[8] spherical indicatrix. This device is of great value in 
detecting joint rotation capability in many linkages. In 
section 4.3, the proof of an important theorem will be based 
on it. Several workers [4,14,15,25,35,36,45,47,48] have 
utilised the device since Bennett first [9] applied it. The 
spherical indicatrix of a spatial linkage is produced by 
suppressing translation in joints. Thus, prismatic joints 
are locked, and cylindric and screw joints become turning 
pairs. The spherical indicatrix provides a representation, 
then, of the rotational joint motions of a given linkage. A 
spatial four-bar, for example, has as its spherical indicatrix 
a spherical quadrilateral. The kinematics of the indicatrix 
will be governed by the rotational closure equations (iv) 
alone. Just as the translational closure equations may be 
obtained from the algebraic dual of the rotational ones, a 
spatial linkage may be produced from the physical dual of its 
spherical indicatrix.

Apart from the special situations dealt with in chapter 
4, any joint of a spatial linkage will have rotational freedom 
if and only if the corresponding joint in the spherical
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indicatrix does. If a joint in the indicatrix is locked, 

then, the corresponding joint in the spatial loop will be 

locked in rotation, regardless of what translation is possible 

in its joints. Because the indicatrix contains only turning 

pairs, it will usually have a lower connectivity sum than 

its spatial counterpart; this reduction in the effective 

number of joint variables can be of great assistance in 

analysis.

The most important general use of the spherical indicatrix 

is its application to infer either parallelism or locking of 

certain joint axes. For example, the indicatrix of a C-H-P-P- 

four-bar is a R-R- spherical two-bar. But spherical two- and 

three-bar loops are not mobile unless the joints are coaxial.

If the turning pairs of the indicatrix are coaxial, the 

cylindric and screw joints of the original four-bar must be 

parallel. So we conclude that a fully mobile solution for 

the C-H-P-P- chain must have its cylindric and screw joint 

axes parallel.

Spatial linkage analysis has reached the stage where it 

has become essential to introduce additional symbols, either 

as shorthand or as aids to ready recognition of important 

features. We shall use the symbol J for a joint which is 

either arbitrary or undetermined as, for example, in the chain 

P-P-P-P-J-, which has part-chain mobility. In section 4.1 and 

thereafter, we shall employ the symbols - and = to indicate 

special joint relationships. The first will imply parallelism, 

as in the mobile P-P- and H-H-H-H-H-; the second will refer 

to certain pairs of coaxial joints, as in the Delassus linkage 

H=H-H=H-. Details concerning the use of these latter symbols 

will be given in section 4.2.
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Screw system theory
Any discrete finite change in spatial position of a 

rigid body may be described by a screwing motion about a 
unique axis with a certain associated screw pitch. The pitch 
relates linearly the translation of the body parallel to the 
axis with its rotation about the axis. By taking into account 
the time interval involved in very small spatial position 
changes, we develop the notion of the instantaneous angular 
velocity go of the screwing body about its spatial axis. The 
axis is referred to as the instantaneous screw axis (ISA) of 
the body at that instant of its gross motion. The pitch h 
associated with the instantaneous motion is regarded as a 
property of the ISA. By choosing an origin, we can locate the 
ISA by the direction cosines of go and the distance p connecting 
the origin with the axis. The perpendicular distance between 
the origin and the ISA is designated Pp, so that

p = pp + cw, (vi)

where c is a parameter. We can easily show that, if y is the 
velocity of that point in the moving body instantaneously at 
the origin,

y = hto + pxoj. (vii)

It is convenient for us to specify an ISA by its screw 
motor S = (a),y). These six independent co-ordinates allow 
us to determine the velocity of any point in the body. If 
go is non-zero, we define base vectors in the directions of go 

and y by the equations
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GO
(viii)

If the body is undergoing pure translation, go is zero, and 
then we define

If follows from elementary vector algebra that

(ix)

and

h = go . y

p = coxy~p ~ ~

> (1.2)

The ISA itself is determined by five parameters included in 

go, pp and h. The magnitude go is a sixth, independent quantity.

The general theory of screws was formulated by Ball [6] 

and given a vectorial interpretation by Everett [23]. The 

theory’s application to linkages was due largely to Hunt 

[27-30] and Waldron [41-46,49]. The significance of the 

theory for linkage analysis stems from the representation of 

the joint between two links as an ISA; the consequent rigid 

body screwing represents the motion of one link with respect 

to the other. For an open chain of links, the motion of the 

last relative to the first is then determined by superimposing 

all the individual relative motions. If the joints 1,2,...,J 

produce motions governed by

?i =
s2 — 2 * y2)

§j = hj-Hf’
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the resultant relative motion will be given by 

J
S = l S . = (w1+0)2+. . .+0)j,iJ1+y2 + . . ,+y,) . 

j = i

This composite motor is called a screw system. If we 

represent each ISA by the vector

b -
the screw system can be written as

J
s = I <*>.$. ,

j=l
(1.3)

a linear combination of the component vectors. The number 

of linearly independent component vectors is called the order 

of the screw system, and cannot be greater than six.

The connectivity of a linkage lower pair is, in general, 

the order of its screw system. This result is easily seen by 

replacing the joint with a chain of connectivity one joints.

It is possible, however, in certain configuration of a linkage, 

for the order of the screw system of a joint, or series of 

joints, to be instantaneously lower than the connectivity sum. 

Thus, the term instantaneous mobility is used in this context, 

and the matter will be of basic significance in part I of 

this thesis.

The screw system of a closed loop is obtained as for an 

open chain, but with the first and last (1 and J+l) members 

placed together in a closed configuration. The screw system 

of the joints of the closed loop has been called by Waldron 

the equivalent screw system (ESS), and its order is identical
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with the quantity f^ j+^ of equation (ii). We may therefore 
express the mobility of a closed loop by

J
M = l f. - (order of ESS). (x)

j-i J
The linkage will have instantaneous mobility of one if, at 
the instant being considered, the order of the ESS is one 
less than the connectivity sum of the loop. For full-cycle 
mobility of 1, the order of the ESS must be one less than the 
connectivity sum for almost all possible configurations of 
the linkage. There is, however, the likelihood of exceptional 
configurations, such as a limit position, when the order of 
the ESS is even lower.

For a screw system of high order, it is sometimes easier 
to make use of its reciprocal screw system. Two screws, given 
by

$1 = (^i

and $2 = (u>2 , y2) ,

are said to be reciprocal if and only if

Given a screw system, the reciprocal system is that consisting 
of all the screws which are reciprocal to every screw in the 
given system. If two systems are reciprocal, the sum of their 
orders equals six. Hence, instead of working with a given 
system of order five, one might be able to obtain the required 
results more readily by using the reciprocal one-system.



I

INSTANTANEOUS MOBILITY
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2
LIMIT POSITIONS VIA SCREW SYSTEM THEORY

Introduction

The occurrence of limit positions is a familiar 
phenomenon in both planar and spatial linkages of mobility 
one. A limit pos-ition occurs whenever motion about a joint 
momentarily ceases and then reverses. The limit positions 
of a linkage define its range of motion; thus, their 
locations are of interest to the designer. Alternatively, 
the absence of a position of motion limitation for a 
particular joint implies that continuous motion about that 
joint is possible. Such a joint may conveniently be used to 
drive the linkage.

Limit position analyses for a number of particular 
spatial linkages are available in the literature. Some 
workers [26,31,37] have approached the problem of locating 
limit positions by using the method of generated surfaces, or 
related methods. This approach is limited in its potential, 
since only relatively simple linkage geometries can be so 
treated.

Another technique, which also yields additional useful 
information, is that adopted by Duffy and others [16-22,24]. 
The first step is to successively eliminate variables from 
the linkage closure equations until only two selected 
variables remain, in such a way that we can write an explicit 
input-output equation. This equation is obviously itself of 
value. By requiring that the first derivative of the output
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variable be zero while that of the input is not, we are able 

to write down an equation in the input variable alone. In 

symbols,

6 = f(0.)

o = eo = f'(ei) x e.

g (ei) = f’te^ = o.

Equation (ii) can be solved, either algebraically or 

numerically, for the input variable 0^. Substitution of this 

value into equation (i) gives the corresponding value of 0q. 

Back substitution into the closure equations then yields the 

values of the remaining joint variables. The chief drawback 

of this procedure is the elimination process needed to reach 

an equation of the form (i). This is always difficult and, 

for more general linkage geometries, may be too complicated 

to be practicable. In view of the complexity of the 

elimination process, and the fact that relatively minor changes 

in the linkage geometry can completely alter its character, it 

is virtually necessary to approach each variation of linkage 

geometry as a separate problem. For example, establishing the 

input - output relationship for the R-R-C-R-C- chain is a 

different problem from determining it for the R-C-R-R-C- loop.

Another possible approach is to differentiate the closure 

equations with respect to time, set the derivative of the 

joint variable which is at a limit position to zero, and 

eliminate the remaining derivatives. The result is an 

algebraic equation between the joint variables. It may be 

solved simultaneously with the closure equations to obtain

(i)

(ii)
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the values of all joint variables at the limit position.

This approach has, in principle, a big advantage, in 
that algebraic elimination can be replaced by numerical 
solution of a system of non-linear algebraic equations. 
However, the equation derived from the elimination of the 
derivatives is usually enormously complicated. Also, the 
solution of such systems of non-linear equations numerically 
is not easy. The related algebraic method presented in the 
following section has the advantage that the additional 
required equation is usually much simpler than that given by 
the approach just described.
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2.1 Limit positions and the linkage screw system

A joint with connectivity one has, in each of its 
positions, a single unique screw axis. A joint with 
connectivity v:>l has a screw system of order v, each member 
of the system being a possible instantaneous screw axis for 
motion about the joint. Such a joint can, at any instant, 
be replaced by a chain with v connectivity one joints and 
v-1 additional links. In particular, cylindric, spherical 
and planar joints can be replaced by chains of connectivity 
one joints which are their kinematic equivalents in all their 
positions. We shall consider such substitutions to have been 
effected, so that we need deal only with linkages all joints 
of which have connectivity one.

A single-loop linkage can only have mobility one if the 
linkage screw system has order one less than the connectivity 
sum of the joints (See chapter 1.). At a limit position, one 
joint is instantaneously locked while the remainder of the 
linkage continues to move. Thus, the linkage obtained by 
locking the joint at which the limit position occurs is 
instantaneously mobile. In terms of screw systems, the screw 
system defined by the remaining joints of the linkage must 
decrease in order by at least one when a specified joint is 
at a limit position.

This result may either be used directly, in geometric 
form, or may be converted to algebraic form by means of motor 
notation. When used geometrically, success is largely 
dependent on geometrical peculiarities. A general approach 
is not feasible. Nevertheless, the technique is attractive 
in some cases.
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Using motor notation, we recall from chapter 1 that p is 

the position vector of any point on the ISA with respect to 

the origin of co-ordinates. The location of the origin is 

arbitrary, but it can often be chosen to advantage, dependent 

on the geometry of the particular linkage under examination. 

In a single closed loop linkage with N connectivity one 

joints, the following equations must be satisfied by the 

elements of the motors (uk,pk).

NI
i = l

(2.1.1)

These equations resemble the displacement closure equations 

and are, in principle, obtainable from them by manipulation 

of their time derivatives. They state that there is no net 

velocity of the linkage as a whole. The summations refer to 

the individual velocities due to each axis totalled around 

the loop.

Since ok and y. each have three components, we may rewrite 

the vector equations (2.1.1) above as six, normally independent, 

scalar equations in seven or less variables, m1,w2,....,Ww,

^M+l>••••>, w^ere N-M 4 3. In an overconstrained linkage, 

where N<7, the set of six equations will not be independent.

In any case, the number of independent equations will be again 

one less than the number of variables.

We used in the Introduction the fact that, when a joint 

variable attains a limit position, its first derived value is
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zero. But the screw motor incorporates the variable's first 
derivative. By putting w oi y, whichever is appropriate, 
equal to zero for a particular joint axis while allowing 
others to vary, we express motion limitation for that joint.
We are thus able to extract from equations (2.1.1) an 
algebraic condition, usually in determinantal form, to be 
satisfied at a limiting position. This condition, together 
with the linkage closure equations (or sometimes without them), 
enables us to determine the linkage configurations for the 
limit positions of the joint being considered.

In the next section, we present several linkages which 
have been analysed using this method. It is necessary to 
consider a wide selection of chains in order to observe the 
variations in specific lines of attack and nature of results 
obtained. In determining the instantaneous screw axes, we 
shall make constant use of the quantities s_^, IK and ^ + ^
as defined in chapter 1.



Fie. 2.2.2(b)
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2.2 Examples

The_ Benne_tt_ ]_inkage_

Refer to Fig. 2.2.1.

Rj = R2 = R3 = R4 = 0 a 1 2 a 3 4

a 1 2 s a 2 3

2 3

a

4 1

1 2

For this linkage, we find that

031 = co 1 k y j = 0

“4 = “4^S“23i+Ca23^ £4 = ' a23i

^4 = a2S“lC«23r5a23y

^2 = W2 ^S6iSOti 2i"C0lSOt12i + Cai2^ P 2 = S12 CC° 1 i + S 0 1 j )

h2 = ai2o32(ca12s01i-ca12ceij-sa12k) .

We set oj = 0 .

. . y =0
c 3

Thus, from equations (2.1.1), we obtain the scalar results 

below.

03 2 s 6 l sa l 2 = 0 (i)

W4S“23 ' “2Sa12C0l
= 0 (ii)

ojj + 03 2 ca 1 2 + 034 ca23 = 0 (iii)

a12032 ca12s61 0 (iv)

a23tU4Ca23 ~ ai2a)2C0l12C^l = 0 (v)

ai 2W2S011 2 ~ a2 3W4SCl2 3 0 (Vi)
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Assuming ca^/O, eliminating u)2c0i between equations (ii) and 

(v) yields

Thus, since ca12/ca23 for this linkage, we conclude that m4 = 0. 

Note that, if ca12=0, equation (v) implies that w =0.

From (vi) , co2 = 0 .

From (iii) , 0^ = 0.

We conclude that the Bennett linkage has no limit positions.

For comparison, let us now carry out a limit position analysis 

by direct differentiation of the closure equations. From 

section 5.7, we can write down the following relevant closure 

equations.

w4a12sa23(ca12-ca23) = 0.

0. + 0. = 2kTT2 4 (i)

0 l + 03 = 2 17T (ii)

(iii)

(s0xs02-c01c02ca12)sa23 = (c01+c02)sa12ca23+ca12sa23 (iv)

(v)

(s01c02+c01s02ca12)sa23 = - (s01+s02ca23)sax2 (vi)

Differentiating (ii) with respect to time and setting 03 equal 

to zero results in

i



From (i), in the same way, if 02 or 04 is zero, so is the 

other. We must assume, therefore, for a limiting position of 

joint 3, that neither is zero.

Differentiation of (iii) implies

(c61c62-s01se2ca12)e2sa 2 3 c0202sa12.

Since is not zero, by using (v), we conclude that

s a
c e 2 3 (a)

1 2

Taking the time-derivative of (vi) leads to

since 0 2

see that

(-s 0 s 6 +C0 c 0 cot )sa = - c 0 c ot s a, o,v 1 2 1 2 1 2'' 23 2 23 1 2 ’

is not zero. By comparison with equation (iv) , we

CeiSa12Ca23 = - Cai2S0l23-

Substituting for c0 from (a),

But this relationship cannot hold for the Bennett linkage.

We therefore conclude that 0 2= 0 4=O; that is, the linkage has 

no limit positions.

As suggested in the Introduction, this latter approach is 

considerably more devious than that based on screw system 

theory, despite the fact that we were dealing with essentially 

the same entities; for example,
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03 E “3-

Techniques which are basically elimination procedures, because
of the large number of variables present, must either be 
devious or produce greatly complex relationships. Screw 
system theory has the advantage of being more naturally 
connected with joint motion rather than displacement.

The Delassus linkage, P-H-P-H- 

Refer to Figs. 2.2.2.

n CD
»-
■

II O CD
OJ

II Q

a = . a = a12 2 3 3 4 = a =5- R=aR+ 2m7Th4 1 2 2 4

We shall demonstrate here that a judicious choice of origin 
can simplify the algebra.

With reference to Fig. 2.2.2(a), to determine the limit 
positions of screw joint 4, we locate the origin on joint 
axis 2. We can write down the following results for the motor
components.

“2 = y 2 = h(ja2k

a) 1 = 0 Hi =

w = 0~ 3 H3 = ’J3(Se2i'Ce2p

We set to =0.~ 4

Hh = 5
Using equations (2.1..1), we conclude that
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032 = 0

and, consequently,

0
1!CM
CDin

Setting c0 =t, we2 have that

Ki - TU3.

That is, j oints 2 and 4 reach their limit positions
simultaneously, at which time the linkage instantaneously
functions as a mobile two-slider.

Referring now to Fig. 2.2.2(b), in order to determine the 
limit positions of joint 1, we locate the origin on joint 3 
The following results are found for the motor components.

“3 = ° H3 =

= w2j p = - a i-(R+he)j i: 2 2 3 ~ v 2 2J i.

• * iS = hio2i ■ a23^2~

= ^(-aj) P4 = +

• • IS = r3aw4i - hoa)4j - a34w4k

001 =0 and we set y =0.

By equations (2.1,.1), then,

004 = goo2 .

Hence, since we cannot allow oo2 = 0,



Fid. 2.2.3

k
#W

Fia 2-2.4
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and P3 = “2 (a2 3+°a3 4) •

We may use the linkage closure equations to determine the 
values of the other joint variables for this instant.

The P-R-C-R- linkage

Refer to Fig. 2.2.3.

61 = * “2 3 = “3* = 0 a41 = “12 * 0

The linkage is improper for a12 = j.
Here we use a fairly general approach to demonstrate how we 
can select a joint variable at random for motion limitation 
analysis.
The closure equations for this linkage are as follows.

03 = 03 k~ 3 3 ~

“3> = 0
W2 = 00 2 k

0) , = 03, k~ 4 4 _

£2

Hs = 2
y3, = y

p2 = "
a23a)2|

£4 = a

y4 = a

Hi

02 + 03 + ®4 = (2k+ 1) TT (a)

+ a23ce2 + a,2= 0 (b)

s 0 + r s ct =3S u2 1 l^ui 2
0 (c)

+ R + r cot =2 1 u 1 2 0 (d)

the velocity expression for each joint:

sT
a23i ' R2^

34C63i + a34S03j
34“4(Se3i'Ce3p

+ r3R

(s0 sot i+c0 sa, i+ca, k) ^ 2 12~ 2 12-i 12
0
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From equations (2.1.1), we can write down the scalar equations 
below.

W 0 + 00 + co -02 3 4 (i)

Se2SCl12yi + a34S03U4 = 0 (ii)

C62S0!121J 1 + 32 3M2 - a34C03U4 = 0 (iii)

ca12yj + y 3, = 0 (iv)

We may now consider each joint freedom in turn. 

V ! = 0 :

From (iv) , y 3, = 0 .
From (ii), s03 = 0.
We may obtain the values of all other variables now from
equations (a)-(d).

o
IICM
3

For a non-trivial solution of equations (i)-(iv) , we require
that.

i i 0 0

0 a34S03 S62SOl12 0

0 -a34C03 C62S“l2 0

0 0 COl12 1 = 0 .

That is, s(62 + 0 3) = 0.

Thus, from (a), S04 = 0.

All other variables may be determined from equations (b)-(d). 

a) = 0:3

For a non-trivial solution of equations (i)-(iv), we require
that
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1 1 0 0

0 a 3 4 ^ 0 3 S 0 2 S a J 2 0

a 2 3 -a34C03 c02sa12 0

0 0 C0t12 1 =

That is, a34(s63cG2+c03s02) + a23s02 = 0, 

whence a34s04 + a23s02 - 0,

from equation (a).

Thus, from equation (c) , r2 =0.

As before, all other variable values may now be determined. 

y3, = 0:

From (iv), y x = 0 . 

a). = 0:4

From (ii), s02 = 0.

All other variable values may now be established from 

equations (a)-(d).

A H-C-C-H-_linka^e

Refer to Fig. 2.2.4.

We shall consider that known H-C-C-H- solution, for which there 

are two pairs of parallel joint axes.

B|2 = “34 = 0 a23 = %1 * 0

This linkage has a connectivity sum of six and, as will be 

seen below, solution of the limit position equations for one 

joint variable is no longer a trivial matter.

The closure equations for this linkage are as follows.
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0j + 62 = (2k + l)TT (a)

e3 + e4 = (21+1) tt (b)

"a4 l + a3 4C03 + a2 3 + a 1 2C02 = 0 (c)

a 3 4S © 3 +T 2S a2 3'8 1 2S 0 2CCX2 3+ (^ 1 + h 1 0 1 ) S a2 3 = 0 (d)

(R1*+h4eJ+r3 + r2Ca2 3 + ai2S02Sa2 3^Rl+hl0JCa2 3 = 0 (e)

The following results may be obtained for the motor components.

^3 w3k = 2

Ha- = ,k

to, = to, k~ 4 4 ^ a3[|^®3^ + ^34S03^+r3k

0), (a , s 6 i-a c0 j +h k)
4 k 34 3 ~ 34 3 J '■ J

00, (so, ,j+ca2 3k) - a23i-r2Sa23i'r2COl23k

y2 a23U2^Ca23i‘Sa23^

<J2 , = 0 jj2, = y2 , (sa2 3 j+ca2 3k)

= “l<;sa23j+ca23k)

P, = ■ ^12C02 + a23)i + (ai2Se!C“23-[R.thi°.]S“23 '

(ai2S02Sa23+ ^-kl+kl0X-^Ca23 + r2Ca23^k

• • P j — CL)j{aj2S02i+(hjSa,23 + a^2^-02^'^'23+a23^'(^,23^j

+ (h1ca2 3-a12c02sa23 - a2 3Sa2 3) k )

By means of equations (2.1.1), we obtain the required 

relationships below, after some simplification.

to 3 + to 2 = 0 (i)

co3 + 0)4 = 0 (ii)

Wj ai 2S02 + W4a3 4S03 = 0 (iii)

Wl(hlSa23 + ai2C02CCt23^ + h2« aCt2 3 ~ W 4 a 3 0 0 3 ” 0
(iv)

(0 ! (h J Ca2 3 " a 1 2 C0 2 Sa2 3+ h2 * ca2 3 + U3l+oo4hM = 0 (v)



Fia 2.2.5

k
***

Fig. 2.2.6
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By symmetry, there are only three joint variables to consider; 
in fact, they collapse into two.

Wj = 0 :
We see that, if either w or co2 is zero, so too is the other. 
From (iii) ,

s e = o.3

Corresponding values for the other joint variables may be now 
determined from the closure equations.

h2 , = 0 :
From (iii) and (iv), for a non-trivial solution, we require 
that

a»S63(hl5a23 + anCe2Can) + ai2Se2a33C03 = 0‘

Either 02 or 03 may be eliminated between this equation and 
(c) to obtain a quartic in c03 or c02 respectively. After 
the quartic is solved, the other variable values may be 
obtained by means of the closure equations.

The P-C-S-R- linkage

Refer to Fig. 2.2.5.
We consider the limit positions of the revolute. The actual 
connectivity sum of this linkage is not seven, but six [45].

“l2 = a34 = 0 a23 = r2 = r3 = 0

We may write the following expressions for linkage velocities.
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(jl) 1 k y i = o

yi. = yx ,k

y5 = ^ 5 Cccts k + sa51 j )

w2k p2 = ajgCcQji+sejj) + rxk

y2 = ai2W2^s6ii"c6iP

co 3 = a)3([ceis02sa23 + s01ce2sa23]i + [s 0 xs 02sa2 3-c6 1c02sa2 3 ] j +ca2 3k)

P3 = a!2 Cceii + s6ij) + r:k

* * i} 3 = ^3C{a12ca23sei + r1sa23c(ei + e2) }i

-{a12ca23c01-r1sa23s(01+e2)}j-a12sa23ce2k}]

We set a), = 0.^ 4 ^

y4 = o.

By equations (2.1.1), we now write down the six scalar velocity 
closure equations:

oo3sa2 3s (0 1 + 02) = 0 (i)

cJ3sa23c(ei + 02) = 0 (ii)

0) 1 +W2 + tt 3ca2 3 = 0 (iii)

ai2“2S0l = 0 (iv)

lJ5S0l5l‘ai2U)2C6l = 0 (v)

^ 5CC<5 1 +a 1 1 = 0 (vi)

From equation (iv), s0 = 0.
There are also the subsidiary results relating velocities,
such as
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w, = 0,

and 0), + 0) 2 0 .

The closure equations for this linkage, which are obtained 

from the general five-bar equations, may now be used to 

determine the values of all other joint variables.

The_ C-C-C-R-_link_age

Refer to Fig. 2.2.6.

This is the only constrained linkage we consider in this 

section. As for the last linkage treated, we shall exemplify 

the procedure by examining the conditions for motion limitation 

of the revolute only.

The linkage velocities may be expressed as follows.

go2 = co2k y2 = 0

w2, - 0 P2 t _ P2ik

“i(sai2i+cai2^ yi a 1 2W1 (COtl 2:!.~Sai 2^)

H, ' (S0t12j + Ca12^

aj3 = a>3 (s02sa2 3i-c02sa2 3 j+ca2 3k)

y 3 = oo3 ([a2 3ca2 3s02 + r2sa2 3c02 ]i

We set a) 0 .

0



5

Fla 2.2.7(a)

« 2

Fig. 2.2.7(b)

Fig. 2.2.7(c)

Fig. 2.2.7(dj
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Then, by (2.1.1), the following results must hold.

(i)

W 1 S a 1 2 ' a)3C02Sa23 = 0 (ii)

wicai2 + w2 + w3ca23 0 (iii)

(iv)

(vi)

Clearly, from (i)

s 0 = 0 .2

The corresponding values of the other joint variables may now 

be determined by using the four-bar closure equations.

The_ 5H-_ parallel -screw linkage 

Refer to Figs. 2.2.7.

For this case,

oj = co k : go = go k : to = go k : go = w k.~ 2 2 - ~ 3 3 ~ ~ 4 4 ~ ~ 5 5 ~

We set go = 0, 

so that y = 0.

Locating our reference frame at joint 4, we find the following 

results.

jj„ = h^k

(R3+h 3 6 3^

y = h co k + a go j~ 3 3 3 ~ 3 4 3 ~
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a„ c6, + a „,
2 3 3 3 4

-a23S03

v(R2+h2 02) + (R3+h 3 0 3)

P2 = h2io2k + u2{a23s03i + (a23c03 + a3J j}

£5 = a.5C04i + a 4 5S 6 4 i + (R4+h 4 0 4^

£5 = h5U5R + “5{a45S64i-a45Ce4j}

From equations (2.1.1) then,

“2 + “3
+ 104 + 105 = 0 (i)

a23S03U2 + a45S04W5 =
0 (ii)

+ a 3 4)“2 + a 3 4 w 3 a4 5 C 0 4 W 5 “ 0 (iii)

h2U2 + h3U3 + h 4U4 + h5“5 = 0 (iv)

For a non-trivial solution of equations (i)-(iv) we must have 

that

a s 6
2 3 3

a0 C0 +a..2 3 3 3 4 3 4

a S 0
4 5 u 4

a C0 
4 5 U 4

That is,

S2 3^4 5 "^3^ S ^3+® 4^ ~ a23a34^5_^4^S®3+a34a45^3_^2^S®4* ( a )

Now, for this linkage, the closure equations may be written as
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follows.

a5iS(64 + e5) + a45se

C0 . +4 a34 + a2 3C03 + a12c(0 2 + 0 3 ^ 0 (b)

S04 ' a2 3 S 6 3 - a12s(0 2 + 03^ = 0 (c)

9. + 02 + V V 0 5 = 2 TT (d)

+ RS + Vl + h 2 6;! + h393 + \e 4+h 5 0 5= 0 (e)

We assume that hj 1 h5 and eliminate 0 between (d) and (e) 
to obtain

Rj + R2 + R3 + R4 + R5 + 2 Tih 2 + (h2-h1)02 + (h3-h1)03 + (h4-h1)04

= (hi-h5)e5,

whence

05 = C + V* + K3 93 + K„04

an d 0, + 0 - C + K 0 + K 0 + (K +1) 0 .4 5 2 2 3 3 4 ' 4 (f)

For completely general parameter values, substitution of (f) 
into (b) and (c) will result in transcendental equations.
But if K2, K , K4 are rational numbers, the equations will not 
be transcendental. As an example, we choose

C = 0

K2 = 0, so that h2 = h

K = -1, so that h = h3 o o

K =-2, so that h4 = 2h3-hj

ai 2 a23 a34 a 4 5 a51 i 0
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Then e„ + 05 = - (03+9„),
and equations (a), (b), (c) become

s(e3+e4) = se4 - se3 (a)

c( 0 3 + 0 4) + c 0 4 + 1 + c 0 3 + c( 02 + 0 3) = 0 (0)

-s(03+04) + s04 -s03 - s(02+03) = 0. (y)

The choice of the value of C in fact governs the 'start angle' 
of a screw joint. Different values for C, as we shall see, 
yield totally different limiting configurations.
From equations (a) and (y) we have the immediate result that

s(02+03) = 0. (6)

Now, equation (a) may be re-expressed as

s03 (1 + c04) = s04(l-c03)
± /(l-c03)(l + c03)(1 + c© 4) = /(l-c04)(l + c04)(l-c03) ,

for which there are the three possible solutions

c03 = 1

c04 = -1 >

(1+C03)(1+C04) = (1-C03)(1-C04) 4 .

The possibilities resulting from the latter two of these are 
easily seen to be either contained in the first or to involve 
us in contradictions when substitutions into equations (3) 
and (y) are carried out.
We may conclude then that c03 = 1.
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So 03 = 0 and, from (6), se„ = 0. 
Hence ,

c 0 = ± 1.2

Substitution in (3) yields

2 c 0 4 + 2 = + 1,

whence _ n CD -r

II - 1 + .5
We conclude that O CD N>

II - 1

and c0, =4 - .5 .
Hence, ®2 = tt an d 0,4
From (d) and (e) ,

„ — 4TT j A b 7T 7Te5 = + _ and = -3 or y.

Either of these solutions is represented by the limiting 
configuration shown in Fig. 2.2.7(a). At first glance, it 
seems as if we have obtained the configuration for a 
stationary joint 5 rather than joint 1. In fact, both joints 
are here stationary; it happens that, for the pitch 
relationships chosen, joints 2, 3 and 4 are so arranged in 
Fig. 2.2.7(a) to result in their belonging to the same second 
order screw system. This fact allows the two remaining joints 
to be instantaneously at rest, although the linkage is mobile.

It is perhaps surprising that the only limit configuration 
obtained for stationary joint 1 was not produced by the other 
four joints being in line. Let us therefore look briefly at 
the consequences of assuming one of these three configurations 
as representing motion limitation for joint 1. The 
possibilities are shown in Figs. 2.2.7(b)-(d). We assume the



39

same values for K2 , K3> K4 as before, with h2 f h5, and the 

same relationships among the a^ ^ +

In Fig. 2.2.7(b)

e i
2 7T . 
3 ’

2 TT
3*

Since, from (f) above,

= C - 0 20 4 >

we conclude that a satisfactory value of C is —j. 

In Fig. 2.2.7(c),

0 i
2 TT 2 7T

0 2 = -3;

TT
3*

Again, since

0 - 20

we find that C = —j also satisfies in this case.

Note that this configuration also indicates a limiting 

position for joint 5.

In Fig. 2.2.7(d),

2 TT
3’ - 3; e3 = it; e4 = tt; 05

7 TTWe find that C = — j is a satisfactory value

2 TT
3*

We have presented in this section and the preceding one, 

as an alternative to current methods of limit position analysis, 

a new technique based on instantaneous screw theory. This 

approach is more direct, easier to apply and wider-ranging 

than its counterparts, as well as being inherently capable of 

yielding useful information about relationships between the
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velocities of different joints in a linkage. It is true, as 
with all aspects of spatial linkage analysis, that, as the 
number of links increases, so does the difficulty of solving 
a problem completely. On the other hand, in every case 
without exception, this technique will yield an algebraic 
condition among joint variables alone which is to be satisfied 
for a joint limit position. Such a condition can be inter­
preted, without further algebra, as a geometrical constraint 
on the linkage configuration concomitant with that joint’s 
stationary position.

Some of the examples treated here are linkages with 
screw joints. It is believed that this is the first time a 
limit position analysis has been presented for such loops. 
Although they are some of the simplest linkages incorporating 
screw joints, the method is, in principle, capable of handling 
more general geometries. It is true, however, that the 
resulting equations will frequently be transcendental.

In the examples given here, closed form solutions are 
available. This is not an essential feature of the method.
The augmented set of closure equations can be solved numerically 
to give limit positions for linkages of given dimensions and 
any degree of generality.
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2.3 Use of the reciprocal screw

The technique developed in section 2.1 and applied 

widely in section 2.2 is capable of producing, for every 

linkage, that extra relationship needed to determine a limit 

position, if it exists, for any joint variable. In this 

section, we shall present an alternative formulation, based 

on the same screw system theory, for the analysis of limit­

ing configurations of mobile linkages. This new development 

has the extra advantage of locating for us the reciprocal 

screws of the linkage’s limit position ESS and determining 

the pitches of those screws.

It became clear, through the number of examples used in 

2.2, that, as the connectivity sum of a linkage increased, so 

did the difficulty of finding its limit position configurations 

For the method below, however, the reverse is the case.

Linkages of higher connectivity sum have fewer reciprocal 

screws and their determination becomes, therefore, a smaller 

algebraic task than for chains of relatively low connectivity 

sum.

It was indicated in chapter 1 that the number of linearly 

independent , screws reciprocal to a screw system is equal to 

six less the order of the system. A linkage of mobility 1 and 

connectivity sum N has an ESS of order N-l. The order of its 

reciprocal screw system is therefore 7-N. Thus, a constrained 

linkage (connectivity sum 7) has no reciprocal screws during 

its gross motion. A Bennett linkage has three linearly 

independent reciprocal screws. When a joint variable reaches 

a limiting value, the order of the linkage's ESS decreases by 

one for mobility in the remainder of the loop. At such a



Fig. 2.3.1
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limiting configuration, then, the order of the reciprocal 

screw system increases by one. For a single joint variable 

limitation in a constrained linkage, therefore, there will be 

one reciprocal screw.

To locate the reciprocal screws associated with linkage 

mobility, instantaneous or full-cycle, we need only recall 

equation (1.4). Having found the linkage velocities, as we 

did in the examples of section 2.2, we may apply this equation 

to each of them in turn, thereby determining the reciprocal 

screw system. The pitch and location of a reciprocal screw 

in the system may be then found by application of equations 

(1.2).

We shall demonstrate the use of the procedure for full- 

cycle mobility in section 6.6. For our present purposes, it 

should be sufficient to apply the method to a linkage we did 

not treat in the last section, the constrained five-bar loop, 

R-C-C-R-R- (Fig. 2.3.1). We shall attempt to find the 

limiting configurations for hinge joint 5, knowing that the 

reciprocal screw system of the remaining joints for any such 

configuration consists of a single, unique screw. The linkage 

velocities are as follows.

^3

“3-

Hs “ °

P 31 =

H2 = a23MC0l23i"S0l23!O 

1J2, = U2-(sa23j+ca23k)

03, = O3i{s02sa12i+(c02sa1 2ca2 3 + ca12sa23)j + (-c02sa12sa23 + ca12ca23)k}

^ai2C02+^lSai2S®2+a23

"ai2s®2ca2 3+R1sa12ca2 3c02 + R1ca12sa2 3+r2sa23 

La12s02sa2 3-R1sa12sa2 3c02+R1ca12ca2 3 + r2ca2 3

w2 = u)2 (sa2 3 j +ca2 3k) 

w2 , = 0

Si
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• * Hi = w1Ua12ca12s62 + r2sa12c02)i

-(a32sa12sa23 + r2sa12ca2 3s02 + a23sa12sa23c02

“ai 2Cai2Ca2 3C®2~a2 3COt12COt2 3) J

- (a12sa12ca23-r2sa12sa23s02 + a23sai2ca23c®2 

+ a j 2ca3 2sa2 3 c 0 2 a 2 3Ccx32^ck.2 3) k} 

w4 = (s03sa34i-c03sa34j+ca34k)

y4 = w4{(a34ca34s63+r3sa34c03)i

(a34<~Ci34 3-'1'3^Ci34^®3)j-^34SCX34k}

We set 035 = 0.

y5 = 2

Let us represent the screw reciprocal to $ -$ by the

motor

= (a,3,y,6,e,c).

We now apply equation (1.4) to the reciprocal screw and each 

of the non-zero linkage velocities in turn.

3: U33c = 0; . . c = 0

3’ : y3,y=0; . . y = 0

2 1 : y2,sa2 3 3 = 0 ; . . 3 = 0

2 : 032 sa2 3e = 0; . . e = 0

1: oo1 (a3 2ca3 2s 02 + r2sa1 2c02) oc + U31sa12s026

4: “4(a34COl34S03+r3Sa34Ce3)a + aj4sa34s036

We see that, since a is the only non-zero component of ft, the 

reciprocal screw is parallel to i. Further, from the second 

of equations (1.2), Pp=0- We conclude that the reciprocal 

screw lies along the common normal from $2 to $ . We may 

write its ISA vector as
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$r = (1,0,0,^-, 0,0).

From the first of (1.2), we find that the pitch of the 
reciprocal screw may be given as

h = —. r a

The last two relations obtained by the application of (1.4) 
above may now be used to yield the results

6 - a12ca12s02+r2sa12c62 ^ 33„ca3„s63+r3S“34c63 
a sa12s02 sa3 4s0 3

Hence, the extra algebraic constraint to be satisfied for this 
linkage when 05 takes a limiting value is concisely expressed 
as

ai2 r 2 a34 r 3---  + ---  — ----  + --- >ta12 t02 t. a 3 4 10 3 (i)

The variables r2 and r3 may be eliminated from the solution 
procedure by making use of the translational closure equation 
(7.10) , given in the Introduction to chapter 7. We may 
rearrange this equation and the one obtained from it by 
advancing the indices by 3, producing the two following 
results.

r 2s 03 ='slx77{a51 ^C04C05'S e4s e5c0t4 s) +RsS Qi+sa 4 5+a4 5ce4 + a 34 + a2 3C03

+ a12(c02c03-s02s03ca23)+R1(s02c03sa12 + c02s03sa12coi23

+ s03cal2sa23) }
qr 3s 0 =----- {a 34(c02c03-s02s03ca23)+a23c02 + a12 + a51c01 + R5seisa5i

1 b a2 3

+ a45(c65c01-s05s01ca51)+R4(s05c01sa45+ce5s01sa45ca51

+ s01ca4Ssa5I) }

Substituting for r2 and r3 from these two equations into (i),
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we find the following relation.

S02S03Sa2 3 (a12Cai2Sa34_a34Sai2Ca34^

= sa12sa34{a51(ce2ce4c05-c62s04se5ca45-c01c03) 

+a45(ce2c04-c61c63ce5+s01c03s05ca51) 

+a34s63(ce2se3+se2ce3ca23)-a12se2(se2ce3+ce2s03ca23) 

+R5(c02s04sa45-s01c03sa51)

+R1c62(se2ce3sal2+ce2s03sal2ca23+se3cal2sa23) 

-R4c63(ceis65sa45 + seic05sa1)5ca51+seica45sa51) } (ii)

A second equation containing only joint angles is obtained by 
advancing the indices in equation (7.10) by 4:

a4 5 (cQ3c04_s03s04ca34)+R4s03sot34 + a34c03 + a2 3 + a12c02+R1s02sa12 

+a51(c01c02"S01s02ca12)+R5(s01c02sa51+c01s02sa51ca12+s02ca51sa12)

= 0 (iii)

Equations (ii) and (iii) may now be solved, in principle, 
simultaneously with three independent rotational five-bar 
closure equations, to yield the values of 0 -0g for the limit 
positions of joint 5. Certainly, for given linkage dimensions, 
solutions may be determined iteratively.
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2.4 On stationary points of a linkage

In the preceding sections, whenever we set coj=0 for joint 
j, we understood that rotation about that joint would 
instantaneously cease. That is, there would be no relative 
motion between the two links containing the joint. The 
practical significance of this fact lay in taking one of those 
links as permanently fixed. Then the other would be 
instantaneously fixed, and the joint variable 0^ would 
represent either an input or output angle. The analysis 
therefore indicated absolute motion limitation only if one 
of the two adjacent links was fixed to a frame of reference.
In this context, we offered a screw system technique as a 
viable alternative (albeit a more profound one) to those 
already available for investigating the stationary points of 
input-output relationships.

Screw system theory has wider application, however, 
because it is of the essence in rigid body motion, constrained 
or unconstrained. We have already mentioned some of the other 
facets of its latent power in the uses given it above. Consider 
now the matter of stationary values for any point in a linkage. 
We may write down a position vector p , referred to our fixed 
frame, which locates a given point P on a link. If we denote 
the velocity of P by y , the point is stationary in space when

Hp 0.

This result can be interpreted as a determinantal condition on 
linkage joint velocities. As in section 2.2, the condition 
yields algebraic constraints which, in principle, allow us to 
determine the linkage configurations for which the chosen point



is motionless.

Hence we may, by this technique, find the stationary 

configurations for all points on the couplers of any linkage. 

To illustrate the method, we shall take a sample from the 

linkages already analysed for joint limitation positions.

The Bennett linkage

Refer to Fig. 2.2.1.

Let us regard the link joining axes 4 and 1 as fixed, so that 

the coupler is the link between joints 2 and 3. Consider any 

point P on the coupler distant pa23 (0<p<l) from joint axis 

2. The location of P is given by

pp rai2C0l+Pa23CeiC02-Pa23C“12SeiS02'

ai2S0l+Pa23S0lCe2+Pa23Cai2C0lS02

>Pa23Sai2S62

By differentiation, we obtain the following result for the 

velocity of P.

y p r(-a‘12s01-pa23s01c02-pa23ca12c01s02)a)1

+ (- pa23c01s02-pa23ca12s01c02ju)2 

(a12c01+pa23c01ce2-pa23ca12seise2)u)1

+(-pa23se1se2+pa23ca12ceice2)w2

„ Pa23Sai2C02“2

The stationary positions of P are indicated by setting Pp=0. 

Since, by the results of section 2.2, we know that for
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all j, we may conclude here that

o
IICM
CDO s 02 =

SO

-a12s01-pa23ca12ac01 -pa2

CO
Q n CD

*—
•

ai2C0l-Pa23Cai2aSe1 "Pa2 CO
Q cn CD = 0

latter constraint implies

pa, a,, =r 12 2 3 o,

which cannot hold.

We therefore find that there is no point on the Bennett linkage 
which becomes stationary.

The^ P-R-C-R-_l inkage

Refer to Fig. 2.2.3.

We fix the link joining axes 2 and 3 and regard as coupler that 
joining axes 4 and 1. The point P to be considered will be 
distant pa41 from revolute axis 4. Then its position vector 
will be as follows.

r3 3 ^6 3+pa,, Jc0 3C0 „-Pa4 1 s 6 3s 6 „ '

a34Se3+Pa41S03C<VPa41Ce3Se4

,r3+R4



49

(-a3*Se3-Pa4.S03C(VPa4 1C03Se JU3

+ (“Pa41c03s04-pa1+1s03c04 ) w

(a3 4Ce3+Pa4 1C03Ce4_Pa4 1Se3S04)(jO3

+(-pa41s03s04+pa41c03c04)

l P 3 '

At stationary positions of P, Pp=0. Then

^ 3 * 0.

From the results of section 2.2, then,

1 = 0 and S03 = 0

expression for Pp above,

-pa4 1os04 -pa4!as0 4

a340+Pa4lOC94 Pa4!ace4

a), are non-zero. Then3 7 4

S 0 . = 04 C0. = T .4

c03 = a

0,

So we find that the coupler itself is stationary when s03=s04=O 
At this time, there is no translational motion in the prismatic 
and cylindric joints, but rotation continues about joints 2,3,4 
The accompanying values of the other joint variables may be 
found from the linkage's closure equations.
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The R -C - C - R -R-_ljLnka_ge

Refer to Fig. 2.3.1.

Here, we shall permanently fix the link between joints 2 and 

3 and consider the coupler joining axes 4 and 5. The point P 

will be distant pa45 from joint 4. The position vector of P 

will be given by

a34C®3+P^4 5C®3C'®4_Pa45C0<'34S®3S®4+^'4Sa34S®3 

a34S03+Pa45S03Ce.+Pa45Ca34C63S04-R4Sa34Ce3 

/3+Pa4SSa34S04 + R4CC134

"(-a34S03-Pa4 5S03C64~Pa45Ca34C03S04 + R4Sa34C03)°J3'

+ Cpa45ce3s64-pa1(5ca3^se3c01()&)4

(a34C03+Pa45Ce3Ce4-Pa45Ca34S03S04+R4Sa34S03^3

+(-pa45se3se4+pa45ca34ce3ce4)w4

P3l+Pa45sa34c04“4

In order for a non-trivial solution for oj3, go4, p , to be 

available, we must have the following relationship.

(-S03se4+ca34ce3c64)(-a34se3-pa45se3ce4-pa45ca34ce

+ R4SOl3 4C0 3)

= (-c83se4-ca34se3ce4) (a34ce3+pai(5ce3c04-paii5ca34se

+R4sa34s03)

3S04

S 0
3 4

Simplifying, we require that

Pa4 5S2a3 4S04C04 + a3 4S04 + R4Sa3 4CO!3 4C04 = 0.
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This equation can be solved for 0 , and substitution into the 
linkage's closure equations will permit the determination of 
the other joint variable values at the stationary positions 
of P.
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3
LIMIT POSITIONS VIA CONNECTIVITY SUM REDUCTION

3.1 The ploy

We know, from our investigations into gross mobility 
criteria for overconstrained linkages, that it is always some 
kind of geometric'specialty which is responsible for mobility 
in a linkage which has connectivity sum less than seven. The 
geometric constraints are in the form of relationships among 
the parameters of the linkage, that is the a^ ^ + i + 1’ ^i
and h^. The dimensional conditions so imposed provide the 
existence criteria for a linkage of a certain full-cycle 
mobility. There is another kind of geometric specialty, 
however, namely the actual configuration of the linkage, the 
spatial locations and orientations of the joints. For a 
linkage of gross mobility one, the configuration at any time 
ultimately depends on the value of one joint variable.
Generally, in a given linkage, there are configurations which 
produce a transient mobility greater than the full-cycle 
mobility. In particular, such a situation characterises the 
joint limit positions of the linkage.

At such a limit position, at least one linkage variable 
will be instantaneously fixed while the others continue to 
change. In effect, the original linkage is momentarily 
functioning as another mobile linkage of smaller connectivity 
sum and, often, fewer links. One of the difficulties in 
algebraic linkage analysis is that equations become considerably 
more formidable as the number of variables increases. In view
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of the previous statement, we might consider the possibility 
of actually reducing the number of variables involved in a 
limit position analysis. Suppose that we were to lock the 
joint which is to exhibit a stationary position, and to 
replace the given linkage by another which is identical apart 
from the absence of the joint freedom being examined. We 
might then try to determine the geometric (or algebraic) 
constraints on the remaining joint variables which permit 
instantaneous mobility of the replacement linkage. It would 
possibly be necessary to re-interpret any results in terms of 
the original linkage variables and parameters. The great 
significance of the suggested technique is that it enables 
us to treat equations of lesser complexity than we should 
otherwise face. It is basically a labour-saving device, and 
is obviously closely related to the technique outlined in the 
second-last paragraph of the Introduction to chapter 2.

Let us now formalise the procedure. Given a linkage and 
a particular joint freedom to consider, we shall fix the 
appropriate variable and thereby alter the character of the 
loop in that region. The linkage will have a lower 
connectivity sum and we might have to renumber the joints.
In doing so, we shall use roman capitals to distinguish them 
from the original numbering system. Where the number of links 
has been decreased, the new closure equations will be of lower 
order than the original ones. Also, near the joint being 
considered, the new variables and parameters will have a 
different meaning from their counterparts in the original 
linkage. At more than one joint distant from that being 
examined, however, variables and parameters will be unchanged
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in value. Having written down the closure equations for the 

replacement chain, we can, by direct differentiation, find 

the determinantal condition under which it will be 

instantaneously mobile. This condition, possibly together 

with the closure equations, allows us to solve, in principle, 

the limit position problem.



I

Fig. 3.2.2(a)

Fig. 3.2.2 (b)
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5.2 Examples

We shall illustrate the procedure by reference to some 

of the examples used in section 2.2.

The_ Bennett linkage

Refer to Fig. 3.2.1.

To consider the limit positions of joint 3, we fix that joint 

and introduce a new link connecting axes 2 and 4. We now 

have a three-bar loop and must renumber the joints, as shown. 

We investigate the possible instantaneous mobility of this 

three-bar. We can use the dimensional constraints

RI = 0 aI 11 ISotI II = aI IISaIII I*

Two appropriate closure equations are as follows.

cotII III

0 (ii)

Differentiation of (i) and (ii) yields the results

s0j0j = C0j0j = 0,

from which we may conclude

01 = 0j = 0.

It is then clear that the other two joints are also locked 

unless a12=u23; but this case has locked joints anyway. 

Hence, we again find that the Bennett linkage has no joint 

limit positions.

c0IsaIII IsaI II + caIII IcaI II

aI IIsGIsaIII I + RIIcaII III + RI11



n

Fig 3.2.3

n

4

Fig 3.24
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The P - H - P - H - _and_C_^C_^Cj^R-_ _I ink ages

Refer to Figs. 3.2.2 and 3.2.3.

We may consider the limit positions of joint 4 for both of 
these linkages simultaneously. In the same manner as for the 
Bennett linkage, we find that the following closure equation 
applies to the three-bar replacement loop.

-cQjjSttj- jjsajj m + cotj jjcoijj jjj = cam j U)

(Of course, for the P-H-P-H- chain, the equation can be 
simplified due to the dimensional constraints obtaining. Such 
simplification serves no purpose here, however.) 
Differentiation of (i) results in

s 611 ®11 = °*

Hence, in order for joint 2 (II) to remain mobile, we must 
have

s 0 2 = 0.

The values of the remaining joint variables for either linkage 
may be found by means of the closure equations.

To seek out the limit positions of a slider in the P-H-P-H- 
linkage, we fix joint 1 and introduce a link connecting joints 
4 and 2, as illustrated in Fig. 3.2.2(b). We may use the 
constraints

aIl III = aIII I = 2 CaI II = a c ° 111 " T*

The four following closure equations are relevant.
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a

oa

II 1—
1

1—
1

1—
1 n C
D

1—
l

1—
1 +

1—
1

(—
1

(—
1 +

1—
l

1—
1

i—
i n C
D

(—
1 +rms0i = 0 (i)

II I I I S 9 I I ■ aI 11 Is6I +rmc0i = 0 (ii)

SGII - S 0 j = 0 (iii)

c0 jS 0 +
II as 0jC0j j = 0 (iv)

By differentiation of the first three equations, we obtain 

the following results.

(-an IIIseII)eII + (“aIII is0i + rinc0i) 0i + s01r111 0

(aan m00!!) 0n+(‘ain Icei'rIIIs0I)0l + c 0 Ir 111 = 0

A noil-trivial solution of these equations requires that 

cejjtcQj (-aII]; IseI + rIIIceI)+s0I(aIII Ic0I + rIIIsej) > 

+ c0j {c0j(- aj j III^0II^^0I^^aII III^0II^^ — 0 *

Hence ,

rmc0ii aII IIIc0I^c0Is0II+as0IC0II^ 0,

by equation (iv) above.

Therefore, either or 00^ is zero. If 00^ = 0 , by (iv)

c0j = O. Then, by (ii) , a^j m = ain j> but suc^ a constraint 

does not generally hold. We conclude that

The linkage closure equations may be employed to determine 

the values of the other joint variables.



m

a

Fig. 3.2.5

I

Fig. 3.2.6



58

The_ P-R-C-R- and H-C-C-H- linkages

Refer to Figs. 3.2.4 and 3.2.5.

Let us consider the limit positions of joint 4 of the P-R-C-R- 

linkage by locking the joint and providing a link which 

connects joints 3 and 1. We may use the dimensional 

condition

“n hi = °-

Relevant closure equations for the replacement three-bar are 

as follows.

t/
J CD
 

1—1 II O (i)

ai I 1 C 6 I + ai I I I + aH IIIC0III = 0 (ii)

s 0111 + c e j s e j j = 0 (iii)

Differentiation of (ii) yields

aI I Is 0101 + aII IIIS0III0III = 0 .

Hence, by (i) , if Ojjj is not to be zero,

s 0111 = °*

Then, by (iii),

s62 = s 6 ji = 0.

The accompanying values of the other variables may be found 

from the closure equations.

Since, for the H-C-C-H- linkage, locking joint 4 and connecting 

joints 3 and 1 allows us to use the constraint
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the analysis follows the same lines as for the P-R-C-R- loop 
above. We may conclude, therefore, that

s 02 = 0 .

The P-C-S-R- linkage

Refer to Fig. 3.2.6.

We consider the limit positions of the revolute by locking 
it and connecting joints 3 and 5. We may assume the following 
dimensional conditions.

aI II = RII = aII III = 0

Let us use the two following relevant four-bar closure 
equations for the replacement linkage.

CaII III = " c0IVsotIII IVSaIV I + caIII IVCaIV I ^

aI 11c 61 + aIV I + a 111 IVC0IV + RI IIs6IVSaIII IV = 0

Equation (i) implies, as is clear physically, that 0jy is a 
constant, so that 6^=0. Differentiation of (ii) then yields

s 0 j 0 j = 0 ,

whence, for joint I to be mobile,

s 0 1 = s 0 j = 0.

Once again, the other variables may be evaluated by means of 
the closure equations.



II
FULL-CYCLE MOBILITY



SOME PRELIMINARY RESULTS

4.1 Delassus hybrid five-bars

After reviewing the work of Bennett, Myard and Goldberg 
in producing new mobile overconstrained linkages by combining 
mobile loops of smaller connectivity sum, Waldron [43,45] 
examined whole classes of such hybrid linkages, paying 
particular attention to those with six links. The six-bar 
hybrids which he tabulated were produced by aligning the 
eighty-four different suitable pairs available from the 
thirteen Delassus four-bars in such a way that a common 
joint from each member linkage was removed and the remainder 
of each loop fused with the other. The removed joints would 
coincide with the fixed relative ISA of the two links which 
connected the two original loops.

Although Waldron mentioned the five-bars which could be 
constructed in the same way from pairs of Delassus three- and 
four-bars, he regarded the resulting loops as being "not of 
much interest". These five-bars are of relevance in this 
work, however, especially in the remainder of this chapter 
and in chapter 7. Hence, in Table 4.1.1 below, the five-bar 
Delassus hybrids are listed, with reference to the loops 
whence they were constructed. The three columns of the table 
are assigned to the Delassus three-bars as indicated, and the 
thirteen rows to the Delassus four-bars, numbered as in 
chapter 5. The results presented in the table should not be 
regarded as original here, and the reader is referred to the
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abovementioned works of Waldron for a full account of the 

principles involved.

One of the most important features of the five-link 

hybrid linkages is the -H=H- and, to a lesser extent, the 

-H=P- joint combinations which are kinematically equivalent 

to single revolutes or slider. This matter will be discussed 

at length in the next section. The parallel-screw linkage, 

which appears so frequently in the table, also figures 

largely in chapter 7, where detailed references are given for 

it. Its basic form comprises five parallel screws of arbitrary 

pitch, but up to three of the screw joints may be replaced by 

arbitrarily oriented sliders, without affecting the mobility 

of the linkage.

Table 4.1.1 is necessarily concise and, because it is, 

lacks some precision. Some additional comment is in order 

here to amplify those results which are stated possibly too 

briefly. The P-P-P-H=H- hybrid obtained by combining d.6 

with H=H-P- is kinematically equivalent to d.6, the H=H 

combination acting as a slider; the linkage, however, might 

be alternatively regarded as a special case of a paralle1 -screw 

linkage, where the only two actual screw joints present are 

coaxial. There are five loops described as having part-chain 

mobility; some of them will exhibit permanently locked joints, 

whilst others will possess mobility greater than one. The 

many parallei-screw linkages which result are all special in 

some sense; for example, there are cases of coaxial screws, 

screws of equal pitch, and parallel screw joint and slider.
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4.2 On coaxial screws

Consider the 'sequence' of known overconstrained linkages, 
mobility one, P-P-, H-H-P- and In the first, the
two prismatic pairs are parallel; in the second, the screws 
are coaxial and parallel to the slider; the third consists 
of two parallel pairs of coaxial screw joints. All three 
loops have the same overall motion.

We can obtain the second chain from the first by 
replacing one of the sliders by a pair of coaxial screws.
Whilst the screws rotate with respect to each other, there is 
no net rotation of the combination. Their combined movement 
consists of translation only, so that together they act as a 
prismatic joint. Similarly, we may obtain the third from the 
second by replacing the other slider by another pair of 
coaxial screws. Within each coaxial combination there is 
rotation, but the only movement relating the two groups is 
pure translation parallel to them.

Now regard the 'incomplete sequence' of known over­
constrained linkages, mobility one, P-P-P- and H-H-P-P-. In 
the first, the three prismatic joints lie in parallel planes; 
in the second, the screws are coaxial and lie in a plane 
parallel to planes containing the sliders. For the reasons 
given above, we may complete the sequence with the two 
linkages, H-H-H-H-P- and H-H-H-H-H-H-. For the first of 
them, we have two pairs of coaxial screws and a slider, each 
joint axis being parallel to the same plane. For the second, 
the axes of the three pairs of coaxial screw joints are all 
parallel to the same plane. These two linkages have
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apparently not been previously described in any specific 
manner.

Let us now consider the general four-slider, and again 
generate linkages by the same technique. We obtain H-H-P-P-P-, 
H-H-H-H-P-P-, H-H-P-H-H-P- and H-H-H-H-H-H-P- chains. Once 
more, we have replaced prismatic joints by coaxial screw 
combinations which may produce the same net motion. In each 
case, the new linkage has mobility one. We could not, 
however, replace all four sliders by coaxial screws. 
Essentially, the behaviour of coaxial screw pairs as sliders 
depends on the rest of the loop constraining them to possess 
no net rotation. The constraint will hold for replacement 
of up to two prismatic pairs, but breaks down for the third.
The seven-bar H-H-H-H-H-H-P- mentioned above will not, in 
general, be so overcons trained, and will function as a 
mobility one constrained linkage. Replacement of all four 
sliding joints by coaxial screws would result in a chain of 
mobility two. The linkage consisting of four pairs of 
coaxial screws would be actually equivalent to a C-C-C-C- 
four-b ar.

For later convenience, we shall refer to the eleven 
relevant chains given above as ’prismatic linkages', since 
the motion of each joint (regarding a pair of coaxial screws 
as a single joint in this context) is purely translational. 
There are no other single-loop linkages which possess this 
property. The process of replacing -P- by -H-H- is precisely 
equivalent to Waldron's [43,45] development of hybrid linkages, 
if one of the primary chains used is the H-H-P- Delassus 
three-bar. Table 4.1.1 illustrates this fact.
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As a consequence of the above discussion, one might well 

reconsider the present convention for counting joints. Should 

a coaxial pair of screws equivalent to a slider be regarded 

as two joints, or one? Should the sequence of linkages,

P-P-, H-H-P-, be thought of as variations of a two-

bar linkage, where the H-H combination is seen as a special 

kind of connectivity one joint? We shall henceforth use a 

new notation, namely H=H, for the coaxial screws combination 

which acts as a slider, as a concession to the unique role 

played by it. It will also be of great assistance as a 

shorthand method of describing relevant loops, especially for 

a linkage with a large number of joints or more than one 

coaxial combination. For related reasons, we shall also use 

the notation J-J to indicate that two joints are parallel; 

in such a case, it may be inferred that the joints act in 

their normal manner, and that nothing more than parallelism 

is indicated. Both of these notations were employed to 

advantage in Table 4.1.1, and will be used to a much greater 

extent from now on.

Some weight is added to the consideration of the H=H 

combination as a single joint by comparing the independent 

closure equations of, for example, the P-P-, H=H-P-, H=H-H=H- 

sequence of linkages. The following equations are easily 

obtained by substituting the appropriate dimensional 

constraints into the two-, three- and four-bar sets of closure 

equations.

P-P- : rj + r2 = 0................ (i)

with c0j = c02 = - 1



00

H=H-P-: R,+R + h 0 + h 0 + r =0........................(i)
1 2 1 1 2 2 3 v J

e 1 + 02 = (2k + l) tt. . . . (ii)

with c03 = - 1

H=H-H=H-: R1 + R2 + R3 + R4+h101+h2 02 +h 3 0 3 +h 4 0 4 = 0 ........................ (i)

0X + 02 = (2k+l) 71____ (ii)

0 3 + 0 4 = (2 1 + 1) tt . . . . (ii i)

The number of independent closure equations in each case is, 

as expected, one less than the connectivity sum of the 

corresponding linkage. For the latter two linkages, however, 

we can restructure the closure equations and dimensional 

constraints so that they are directly comparable with those 

of the first linkage. The alternative formulation is given 

below.

H=H-P-: (CR1+h101] + [R2+h 2 02 ]) + r3 = 0 ....................(i)

with c(01+02) = c03 = - 1

H=H-H=H-: ([R1+h101]+[R2+h202])+([R3+h303]+[R4+h404])=O...(i)

with c(01+02)=c(03+04)=-l

Each of the three linkages is now described by one translational 

closure equation, relating the rectilinear motions of the two 

sliders or their equivalents. The subsidiary equations are 

either geometrical constraints, or relations which are 

internal to the sliding elements.

The prismatic linkages are not the only chains in which 

the H=H group may be used in place of a prismatic pair. Any 

known loop which is proper, has mobility one and connectivity 

sum less than six, with an available prismatic joint, may be



operated upon in the same manner. Such linkages as the 
F-H-P-, C-R-P-P- and C-R-R-P- may be so treated, thus 
producing an apparently new linkage, but with net motion 
characteristics the same as those of its progenitor.

It is often convenient to regard a cylindric joint as 
a pair of coaxial screws. Indeed, Hunt [30] considers the 
cylindric pair to be fundamentally so composed. In view of 
the preceding discussion, however, it becomes clear that, 
whilst we may always make the exact kinematic replacement of 
a pair of coaxial screws for a cylindric joint, we cannot 
always perform the reverse operation without introducing a 
passive degree of freedom. If, for example, we were to 
replace the H=H combination in H=H-P- by a cylindric pair, 
there would be no rotation of the new joint. All rotation 
involved in the H=H group is internal to it, and so the 
cylindric joint would function as a slider.

So far, we have been concerned solely with the equivalence 
of a pair of coaxial screws and a prismatic joint. But it is 
also possible for the H=H group to function as a revolute, 
where now all translational movement is internal to the 
combination. Examples of this latter equivalence are 
available in Table 4.1.1. Indeed, there are cases where the 
combination of parallel screw and prismatic joints acts as a 
pure turning pair. We shall denote this group by H=P, 
examples again being evident in Table 4.1.1. Here also, 
translational motion of the screw and slider is confined to 
within the combination. As remarked earlier, the net motion 
of a -H=H- or -H=P- combination is determined by the possible 
behaviour of the rest of the linkage, and ultimately therefore
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by the geometrical constraints present.

The fact that the -H=H- or -H=P- combination acts as a 
connectivity one joint does not imply a relationship with, 
say, the -S-S- group in the R-S-S-R- chain or the -S- joint 
in the S-R-P-R- linkage. In the former, the -S-S- combination 
has connectivity sum five because of the common joint axis; 
in the latter, the -S- joint has connectivity sum two because 
only two other turning pairs are present. Both of these 
examples evince a loss of one potential degree of freedom.
The -H=H- or -H=P- combination has suffered no such 
degeneracy; the two degrees of freedom are employed, but in 
completely different ways.



4.3 A theorem for linkages with screw joints

In chapters 6 and 7, we shall be concerned with 
establishing existence criteria for certain overconstrained 
linkages with screw joints. The transcendentality of the 
closure equations containing screw joint variables makes 
them extremely difficult to analyse. The problem can be 
significantly alleviated, however, in the cases where a simple 
relationship obtains among the pitches of some of the screw 
joints present. It would be of great value if, having solved 
such a special case, there were a means of using the result 
to solve the general problem. The purpose of this section 
is to provide that means. Without further comment here, we 
shall establish a theorem which allows us to proceed from 
the particular to the general, in this context; the theorem 
will be cited many times in later pages.

Consider a linkage being tested for mobility. Tie some 
screw pitches temporarily, for example by setting a 
pair of pitches equal.

(i) Suppose a certain joint is shown to be locked in 
rotation . Then that joint will be also locked in the 
spherical indicatrix. It the screw pitches are now 
untied, the spherical indicatrix will remain unchanged. 
Thus, the joint in the original linkage will be 
likewise locked in rotation.

(ii) Suppose that the linkage is found to be
rotationally mobile under certain dimensional conditions. 
The spherical indicatrix will be mobile. On untying the 
screw pitches, the spherical indicatrix will remain
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unchanged. In view of (i) , for the original linkage 
to be potentially mobile in rotation, the previously 
established constraints must remain.

We exclude from the foregoing consideration the 
rotational mobility of a screw joint which is part of 
a -H=H- group acting as a single prismatic pair in a 
mobile linkage. Rotational movement of either screw in 
the group is internal to the combination, and the group 
itself would not rightly appear in the spherical 
indicatrix.
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5
THE DELASSUS LINKAGES

Introduction

Etienne Delassus was probably the pioneer in the study 
of mobility of spatial linkages. Among his notable 
achievements was the determination of all four-bar linkages, 
connectivity sum four and mobility unity. In more recent 
times, Uimentberg and Yoslovich [15], Waldron [45,47,48] and 
others [1,2,4,5,9,10,25,32-36,38] have examined for mobility 
either whole classes of four-bar linkages or particular 
linkages using the procedure of solution of closure equations.

Delassus's group of overconstrained four-bars, however, 
remains a classic in the field. It must therefore appear 
odd that his work was largely either accepted without comment 
by later workers or ignored. Part of the reason is given by 
Waldron [45]: Delassus's reference [11] especially is
difficult to read, and so application of the techniques 
developed therein approaches incoherency. It is also worth 
noting that, whilst within two years Delassus produced eight 
[12] of the linkages, the remaining few [13] were not 
published for another two decades. This fact is an indication 
that the problem was far from simple, even for Delassus.

Because, then, there seemed to be at least a possibility 
that Delassus’s results were erroneous or incomplete, it was 
considered worthwhile to attempt a rederivation, with the 
presumably more powerful techniques now available. A new
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derivation would be of particular significance in that 

latter-day research which depends to some extent on Uelassus’s 

findings; examples are references [1,4,35,36,43,45,48]. A 

curious feature of Delassus's results was the absence of 

constraints relating to some of the constants in a linkage 

construction, particularly the fixed offsets of the joints.

For example, it seemed that, in every Delassus linkage, the 

constant was zero, for all i; this unlikely state of 

affairs helped to motivate the following investigation.

Whilst the analysis presented in this chapter is 

original, I have obviously proceeded with the belief that 

Uelassus’s findings were substantially correct. Without his 

prior inspiration, the following work would probably have 

not been attempted.

In this chapter, since we are interested in four-bar 

linkages, equations (iv) and (v) of chapter 1 are reducible 

to

U V U V U V U, V, ,=1=12=2=23=3=34=4=41

and U1?1 ♦ yiYllU2§l ♦ U1M12y2¥23U3?3

+ U V UV UV.Us =0=1=12=2=23=3=34=4-4

More conveniently, after Waldron [45,47], we may re-express 

them as follows, using the fact that the and are

orthogonal matrices.

T,r T,, T

U V U V T T T T= V, , 1U1 AV (i)= 1 = 1 2=2=23 =41 =4 =34 =3

§1 +
TV s= 23 - 2 + y3?3 + u3¥3,m, = ?• (ii)
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If we now expand (i) and (ii), using the definitions of s^, 
Ui and Yi p + we obtain the twelve scalar closure equations

c01c02 - s01s02ca12 = c03c04 - s03s04ca34 (5.1)

■CeiS02Ca2 3"SeiCe2CCl12Ca2 3+SeiSai2Sa2 3=Se3C64+C03S64Ca3.
(5.2)

C01s02sa23 + s03c©2caj2sa23 + s0jSa12ca23 = s0 sa34 (5.3)

s6, c0 +c6,s0 ca, =-c6,s6, ca, -S0C0, ca,, ca, + s0sa,,sa, ,1 2 1 2 12 3 4 41 3 4 34 41 3 34 41

(5.4)

s01s02ca23 + c0jC02ca12ca23 - c01sa12sa23

- s03s04ca41 + c03c04ca34ca41 - c03sa34sa41 (5.5)

SeiS02Sa23"C0lCe2Cai2Sa23"C0lSai2Ca23=Ce4Sa34Ca41+Ca34Sa41
(5.6)

s02sa12 = c03s04sa41 + s03c04ca34sa4x + s03sa34ca41 (5.7)

C02Sai2Ca23+Cai2Sa23=S03S04Sa4rC03C04Ca34Sa41-C03Sa34Ca41
(5.8)

- c02sa12sa23 + ca12ca23 = - c04sa34sa41 + ca34ca41 (5.9)

a41(c03c04-s03s04ca34)+r4s03sa34+a34c03+a23+a12c02

+ riSe2SOt12 = 0 (5.10)

a4l(S93Ce4+Ce3S04Ca3<.^'r4Ce3Sa34+a3'.S63+r2Sa23

- a12s02ca23+r1(c02sa12ca23+ca12sa23) = 0 (5.11)

a41S04SOt34 + r4COt34 + r3 + T2Ca23 + ai2S02SOt 2 3

+ riVa12ca23-c02sa12sa23) = 0 (5.12)
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It should perhaps be noted here that the forms (i), (ii) of 
the closure equations were arbitrary, although convenient, 
and a different choice would have produced a set of scalar 
equations noticeably varied in appearance from that given 
above. For example, analogously with equation (5.1) above, 
we might have obtained

c02c03 - s02s03ca2 3 = c04c01 - s04s01ca41.

Similar results can be easily written down for the other 
relationships by simple cyclic advancing of the indices.
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5.1 The strategy

To some extent, Delassus seems to have gone straight to 

the heart of the problem. That is, he sought out precisely 

those four-bar linkages which are mobile while possessing 

only joints of connectivity one. We could also adopt this 

approach, by testing every eligible loop in the closure 

equations and attempting to beat them into submission. There 

would be major drawbacks, such as the large number of 

linkages to be tried and the even more frightening prospect 

of checking a multitude of dimensional possibilities for 

each one. We should also, by such a method, be generally 

starting again with each new chain, having made no use of 

results obtained by treating a prior candidate.

We can, instead, reduce the sheer magnitude of the 

exercise by attacking the problem more systematically. We 

note that the closure equations can be considerably 

simplified by imposing certain dimensional constraints. We 

can, then, almost reverse the technique suggested above by 

dividing all four-bars into several categories, each one 

characterised by a particular set of dimensional constraints. 

We then fit into each category all appropriate linkages with 

connectivity sum four, inventing a sufficient number of 

convenient categories to cover all possibilities.

Having done so, we analyse each category in turn. Any 

set of dimensional conditions will immediately diminish the 

number of feasible linkages with mobility one and 

connectivity sum seven. These are quickly determined and 

become sub - categories. For a reason which will soon be clear, 

linkages containing spherical or plane joints may be excluded.



It was pointed out in chapter 1 that screws, revolutes and 
sliders can be regarded as degeneracies of cylindric joints, 
and that a revolute may be thought of as a screw joint of 
zero pitch. Now suppose we have established the feasibility 
of a certain linkage containing a cylindric joint, say joint 
2. If we constrain r2 to be a constant, joint 2 becomes a 
revolute; if we fix 02, the joint becomes a slider; 
demanding a linear relationship between r2 and 02 makes the 
joint a screw. The operation of restraining a joint variable 
in one such way will reduce the number of linkage variables 
by one. Then, in order for the closure equations to be 
formed into a new independent set, additional dimensional 
constraints will usually be demanded.

Each time we reduce the connectivity of a joint we are 
forced to accept more geometrical restrictions on the linkage 
construction. In so doing, we are constantly eliminating 
unworkable candidates. After the relevant number of 
reductions, the endpoint of each sub-category is reached, 
that is when every joint of the linkage is a slider or a 
screw (revolute). At this stage, we have isolated the 
Delassus linkages contained in the group along with the 
concomitant geometrical constraints. By the principle 
enunciated in chapter 1, each Delassus linkage will be 
governed by three independent closure equations in the four 
remaining joint variables.

As an example, let us briefly consider the category 
headed by the C-H-C-H- linkage, which has been thoroughly 
investigated (See section 6.2.). By joint connectivity 
reductions, this chain will eventually yield the H-H-H-H-,
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H-H-P-H- and P-H-P-H- derivatives, together with any relevant 

-R- derivatives, or eliminate them on the way. In addition, 

during the process, the C-H-H-H- and C-H-P-H- linkages will 

be tested for mobility. Thus, we reach our goal not directly, 

but via more general linkages. In so doing, we also reap the 

benefit of a mobility study for these higher order loops.

While following the general guidelines just put forward, 

it will be seen in the following sections that the detailed 

procedure for an arbitrary sub-category cannot be formalised. 

Special techniques must be applied in many cases; these will 

be explained as they are required. It is one of the strange 

and challenging aspects of linkage analysis, especially where 

screw joints are concerned, that singularities in one form 

or another continually recur. Mobility, in particular, is 

heavily dependent on geometric properties. In the recent 

past, a confusion between full-cycle mobility and transient 

mobility due to a linkage instantaneously adopting a certain 

position has led some researchers to incorrect conclusions.

Our classification scheme consists of splitting four- 

bars into those with parallel adjacent joint axes and those 

without. For the latter group, we must choose enough 

convenient categories to include all four-bar chains not 

covered by the former group. Consider now the following 

categories.

one pair of adjacent parallel joints 

two pairs of adjacent parallel joints 

three parallel joints 

all joints parallel

general C-H-C-H- derivatives (no two adjacent

joints parallel)
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On inspection, it is clear that these five categories 
will include as derivatives all connectivity sum four linkages 
except those with adjacent sliders and. non-parallel adjacent 
joint axes. Among these exclusions is the P’P-H-H-, no two 
adjacent joint axes parallel; thus, if we can easily treat 
the linkage with two adjacent sliders, we shall have also 
dealt with the case of two adjacent screws (revoiutes), which 
too is not completely covered by the above categories. 
(Strictly, we should also look at the category headed by the 
H-H-C-C- linkage, if it exists. It is evident from the 
results of sections 6.5 and 6.6, however, that, even if there 
is a proper, mobile H-H-C-C- linkage with no two adjacent 
joints parallel, its only connectivity sum four derivative 
will be the spherical linkage, Delassus solution number d.5.
We shall show, in those sections, that the H-H-C-C- linkage 
has the two mobile degeneracies of the spherical four-bar and 
the Bennett linkage, d.13.)

We can now proceed to analyse these slider chains and 
leave the five main categories for sections 5.2-5.6. The 
labels assigned to individual Delassus solutions are the 
chronologically-based ones chosen by Waldron in reference 
[45]. There seems to be no real point in altering them to 
suit the order in which they are uncovered here.

Spatial_ four^_sl_ider

a12 f 0, a23 f 0, a34 f 0, a41 f 0,tt

If any two of the prismatic axes are parallel, the linkage has 
part-chain mobility, and is based on a P-P- two-bar linkage.
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The general P-P-P-P- chain is known to be mobile. In terms 

of the closure equations, its mobility of unity is easily 

seen. Since all four joint angles are fixed, there are no 

rotational equations to be considered. There remain precisely 

three independent equations, the translational ones 

(5 . 10) - (5 .12) , in four unknowns r1-r1+.

Thus, mobility unity in the general case is established; 

special dimensional conditions may produce mobility greater 

than one. This is the Delassus solution d.6.

Threey s^ide_r_l i_nkages_

a12 1 0, a2 3 f 0, a34 f 0, a41 f 0,tt

Here we have three joint angles fixed, say 0 , 02, 0 . From 

(5.3) for example, since sa34 f 0, 04 is also fixed.

The linkage immediately degenerates to the P-P-P-P- chain 
which lias already been treated.

We conclude that there is no four-bar linkage with precisely 

three sliders and non-parallel joint axes.

Hence there can be no Delassus solution under these 

conditions.

Linkages_with two_ £dj_a£ent_s lqdeirs

a12 7* 0, a23 f 0, a34 t 0, a41 f 0,tt

Let us suppose that joints 1 and 2 are prismatic. Then, by 

(5.3) for example, since sa34 f 0, 04 is also fixed. We now 

have a three-slider chain which has previously been 

tre ated.

Again we have no Delassus solution.
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5.2 One pair of adjacent parallel joints 

Put

s* = °-
“12 ^ o, a2 3 i 0 , a„ J f 0 ,7t

From equation (5.9), joint 2 must be prismatic.

c0 soi12sa23 (ca12ca2 3-ca4x} (5.2.1)

From equations (5.8) and (5.2.1),

c(e3+04) - " ^ {ca12sa23+ c02sa12ca23}
^ U4 1

= sa 1sct—{ca23ca41-ca12}. (5.2.2)

From equations (5.3) and (5.6), joint 1 is also prismatic. 

Eliminating s0t and s02 between them,

c02ca12sa23 + sa12ca23 = - sa41c01

whence, by use of (5.2.1),

c0, = --- ----- {ca.,ca. ,-ca,,}. (5.2.3)1 ca SGI 1241 23 v Jbutl 2bUt4 1

From equation (5.2.2), if either joint 3 or 4 is a slider, 

then so is the other. This would give us a special case of 

the P-P-P-P- linkage with part-chain mobility.

We may assume then that neither of joints 3 and 4 is prismatic. 

Nor can both joints 3 and 4 be cylindric.

Evidently, (5.2.2) is the only independent rotational closure 

equation. Together with the translational equations, it
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provides us with four independent equations. Thus, any 

linkage with mobility one must have connectivity sum of five 

or less. In view of the foregoing, the only linkage of 

mobility unity with connectivity sum five is the P-P-H-C-, a 

special parallel-screw linkage [27,40,42,45].

To seek out mobile linkages of connectivity sum four, we may 

replace the cylindric joint by a screw only. Our three 

translational closure equations will be as follows.

+ r1(ca2Ssa12c92 + ca12sc.2i) = 0 (ii)

+ r:(ca12ca2 3-c02sa12sa23) = 0 (iii)

Eliminating r between equations (ii) and (iii) ,

sa2 3{R4+h4O4 + R3+h 3 0 3 } + a12s®2*

Eliminating r from this equation by means of (i),

+ sa23s02{R4 + h4e4+R3+h 3 0 3 } + ax 2s262

Using equation (5.2.2), we may rewrite this as
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s0 {sa [R +R +h (-0 + c2 23 4 3 4 3
- 1 Ca2 3Ca4 1 ~Ca1 2 

S a2 3 S 06 4 1 )+h 3 0 3 ;) ' a3uC“23S03}34 2 3 3

+ a3 4C02Ce3+a23Ce2+ai2+am{c62C(e3 + e4)"Ca2 3Se2S(e3 + e J J = 0

e 3 3 e 5
s0o{saoo(h -h )0 -a ca (0 - —+ —p-r- - ...)}2 23^3 4^3 34 23V 3 3! 5!

0,2 0 '
+ 53,062(1 - -in +2T 4T ...) + a23ce2.+ a,

CCX2 3C0t4 l“Cai 2+ s0 sa,,{R, + R^ + h c_12 2 3 ^ 4 3 4 sot 1 2sa^ ^

+ a4j{c02c ( 0 3 + 0 4 ) - ca23s02s(03 + 04)} = 0 (iv)

Remembering that 02 and (03+04) are constants, we now have 
an equation in variable 03 alone. For the postulated P-P-HrH- 
linkage to be mobile, we require that this last equation be 
an identity. Equating coefficients of 0 3 2 , 0 3 3 , 0 34,...., we 
must have that

a34 = 0 OR c02 = cot23= 0.

11
Regarding the coefficient of the remaining term in 0 *, we 
have that, since sa i- 0,

h, = h, OR s 0 = 0.

Now, from (i) , since sa12 f 0, r will be fixed unless s02 = 0. 
We may then conclude that s02 = 0 and the screw pitches are 
not necessarily equal. In fact, their equality results in a 
linkage with part-chain mobility.

Thus, from (5.7),
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Also, from (5.4) ,

S(e3 + ej = o.

s61 = 0.

Physically, s0 = 0 for example, means that the 4-1 and 1-2 

normals are at least parallel. So this condition, with the 

two similar ones obtained above, implies that the three 

(Joints 3 and 4 are coaxial because they are parallel and 

a34 = 0.) joint axes lie in parallel planes.

The other dimensional condition is the perhaps obvious one, 

not specified by Delassus, that

where

+

+

2 3

2 3

+ Qa41 

+ aa41

C01 = o, c02=t.

The resulting linkage is the Uelassus solution number d.8. 

c 0 2 = ca 2 3 = 0 

Consequently, from (5.2.1),

cau = 0.

Thus, the prisms are at rightangles to the screws.

From (5.2.3) ,

From (5.2.2),

c0j = 0.

C( 0 3 + 0 4) = - COl J 2,
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whence 0 3 + 0 4 = (2k + l) 7T-aa 1 .

Hence, equation (iv) becomes

a(h3-h4)03 + a12 + c{R4+R3+h 4 [ (2k +1) tt-aa 12 ] } = 0. 

Evidently,

h3 = h4 = h, say,

and

R3 + R4 + oa12 + h[ (2k + l) TT-aaj 2 ] = 0.

This latter dimensional constraint was not given by Delassus. 
The linkage is Delassus solution number d.3.
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5.5 Two pairs of adjacent parallel joints

Put

“34 = a12 = 0

a4 i = a2 3 °r 2tt-cx2 3 ,

where

Hence ,

0 < a2 3 < 77 .

ca4 j = ca2 3 sa41 = asa2 3

From equations (5.3) and (5.6), we may write

ei + e2 o 1 , 1 + (^2k7T + —77. (5.3.1)

Similarly, from equations (5.7) and (5.8),

es + e. 01 . 1 + CJ2 1 77 + —rt— 77 . (5.3.2)

Equations (5.1), (5.2), (5.4) and (5.5) are satisfied by 

(5.3.1) and (5.3.2). Equation (5.9) is identically 

satisfied.

Equations (5.10), (5.11) and (5.12) become, respectively,

- aa41 + a3 4c0 3 + a23 + a12c02 = 0 (5.3.3)

a34s03 + r2sa23 - a12s02ca23 + rjSa23 (5.3.4)

r4 + r3 + r2ca23 + a12s02sa23 + r1ca 2 3 0. (5.3.5)

Since there are only five independent equations, any proper 

linkage with mobility 1 must have connectivity sum no greater 

than six. By (5.3.1) and (5.3.2), if any joint is prismatic, 

then so too must be its adjacent parallel joint; this would make 

the linkage part-chain mobile. Likewise, we cannot have two



parallel cylindric joints.

For connectivity sum six, then, the only possibilities are 
C-H-C-U- and H-C-CcH-, which are special parallel - screw 
linkages [42,45]. Let us now consider the possibility of 
solutions with connectivity sum five. We have already 
excluded the chance of a prismatic joint. We shall then try 
replacing a cylindric joint by a screw.

C-H-C-H- sub-category

We replace cylindric joint 1 by a screw joint.

With the help of equation (5.3.1), equation (5.3.4) may be 
rewritten as

- a34s03 = - a12s02ca23 + sa23 (h2-h1)02

+ sa2 3 (R2 + R! + [2k + Lp-Jirhj).

Elimination of 03 between this equation and (5.3.3) leads 
to

a342 = ax22c202+(a23-oa4x)2+2ax2(a23-oa4i)c02+K2s2a23 

+ s2a23(h2-h1)2022+a122s202c2a23+2Ks2a23(h2-h1)02 

- 2Kax2sa23ca23s02-2a12sa23ca23(h2-hx)02s02, (

where • K = R2 + Rx + [2k + hj.

We expand c02 and s02 in (i) in terms of powers of 02, and 
then equate coefficients of like powers, since the equation 
must be an identity in that variable.



8 7

02 2* 0 - s x 2 2 s 2 a2 3 ~ a x 2 (a. 2 3 ~ oa 41) - 2 a ! 2 s a2 3 ca 2 3 (h 2 " h !)

+ s 2a2 3(h2 ~h x)2 

11 1e24: 0 = 3a122s2a23+j2‘a12(a23-^a41)+ja12sa23ca23(h2-hi)

2 1 1e2 6: 0 = - 45a122s2a23-^a12(a23-oa41-p:a12sa2 3ca2 3(h2-hi)

G2 • 0 - 2 \ 5 a 1 2 S a2 3 +2^X60"a 1 2 ^a2 3 ~ 0a 4 1 ) +2^T0"a 1 2S 062 3COt2 3 (^2 1 ) 

In order for there to be non-trivial solutions of a122s2a23,
ai 2 (a2 3_0a4 l) > ai2Sa23Ca23^2^l) and S 2 01 2 3 ^ 2 " ^ 1 ) 2 ’ *t W0Uld
be necessary for the following determinant to have the value 
zero.

-1
1
3
2 11 

45 ' 3OT ' 60 0

111 
315 20160 2520 0

Since such is not the case, we may conclude that

3 1 2 = 0 h 2 = hl‘

Hence, the resultant linkage has part-chain mobility within 
joints 1 and 2.

There is no need to take the analysis any further for this 
sub - category. There are no derivatives of the required type.

H-C-C-H- sub-category

If we replace either cylindric joint by a screw pair, the 
resulting loop will be precisely the same as the previously
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attempted C-H-C-H- derivative. Again, there will be no proper 
solution with mobility of unity.

For the dimensional conditions specified in this category, 
then, we find that there is no proper linkage with mobility 
one and connectivity sum less than six. More specifically, 
there can be no Delassus linkage.
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5.4 Three joint axes parallel 

Put

where

Hence ,

“3* = “23 = 0

“u = “12 or 2?T-a12 ,

0 < a x 2 < it .

CCX22 sa41 = asa12.

From equations (5.3) and (5.6), we deduce that joint 1 is 

prismatic.

1 + a

Equations (5.7) and (5.8) imply that

02 + 63 + 64 = 2k7T + 7T . (5.4.1)

Equation (5.9) is identically satisfied. Equations (5.1), 

(5.2), (5.4) and (5.5) are satisfied by the above results.

Equations (5.10), (5.11), (5.12) become, respectively,

a4 1C^3+94^+a3 4C03+a2 3+ ai2C92+riSe2SO''12 = 0

a41S(03+6J+a34SVai2S62 + riC02S“l2 = 0

r4 + r3 + r2 + riCai2 = 0 * (5.4.2)

We may use (5.4.1) to replace (03+04) by 02 in the first two 

of these equations. We may then eliminate s02 and c02 between 

them to write down the more convenient following equations.
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(5.4.3)

(5.4.4)

So linkages of connectivity sum five can be mobile. Those

are special paralle1-screw linkages [27,40 ,42 ,45 ]. We now 

test for mobility the connectivity sum four derivatives of 

these 1inkages.

P-H-H-C- sub-category

If we were to replace the cylindric joint by a slider, 04 

would be constant. From (5.4.3), it would then be implied 

that joint 2 were locked, unless a23 were zero. But, by

(5.4.4), if a23 were zero, joint 1 would be locked. We 

conclude that there is no relevant P-H-H-P- linkage in this 

category.

Let us replace the cylindric joint by a screw. Equation 

(5.4.2) may be now expressed as

This equation, together with (5.4.1), (5.4.3) and (5.4.4), 

gives us a set of four governing equations in four unknowns. 

For the linkage to have mobility of one, we must establish 

the conditions (or sets of conditions) under which only three 

of the equations are independent.

We note first that we cannot have a2 = 0 or a34 = 0 because, 

from (5.4.3), either implies the other, and both together, 

from (5.4.4), imply that joint 1 is locked.

with mobility one are the P-H-H-C- and P-H-C-H- chains, which

(i)
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Elimination of r between (5.4.4) and (i) leads to

cot
Ru+R3+Ro+h1 e, +h,0,+hJo4 3 2 44 33 22

1 2
1 2

(oa31)s04+a23se2) . (ii)

Let us assume for the present that h3 f 0. Then, 

multiplication of (5.4.1) by h3 allows us to eliminate 03 

between that equation and (ii). Consequently, we obtain

1 + a-.4 + R3 + R2 +(h4-h 3) 0 4+(h2-h 3) 02 + (2k + -y—)TTh3

ca 1 2 (aa, s0.+a„ ,s09).SOt v ~ ' 34 4 “2 3^u2
ui 2

Differentiation of this equation with respect to 0 yields

d0 ca d0
( ^ 5 A n + ^ 3 ^ ^ 9 ) *^h4_h3^ j0_+^h2_h3^ Sa,/ ^34^4 cf6 „ “23^2 (iii)1 2

Now, differentiation of (5.4.3) with respect to 02 results

d04
aa34S04 30--------- a23S02-2

d0.

(iv)

Elimination of yy between equations (iii) and (iv) (a3i+^0) 

yields the following result.

a2S(hOhJ)S02tOaJlh!‘hi)Sl54
ca
i^a23a3Js02c84 + ce2s61() (v)

1 2

Rearranging terms, and squaring both sides of the rewritten 

equation (v), leads to

a34 0C 2 0 4)(o[h2-h3] - ^
1 2
1 2 3 2 3 C 0 2 ^

(a,. -a,, c 6JCCh -h ]----v 2 3 23 2 J K 4 3 sa

1 2
a34C04)2’
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If we now substitute for c02 in this equation from (5.4.3), 
we obtain an equation in c04 alone, namely

' cot
3 4 (l-c2e4){(o[h.2-h3]+—U[ai2-0a41])2 + (a

ca 1 2
1 2 3 4 s a ce J1 2

■ 2oa3. + SiTT18,*-08*!^1 2 1 2

= {(a2 3 2 -[aau-a12-]2)-(a34c0j2-2oa34(oau-a12)c01|}

cot2 . r 12 ca
X ([h4 -h3 Y + [ ao.c0.]-2aol —Sai2 34 4 3 4 SC(

1 2
1 2
[h4-h3]ce4). (vi)

For joint 4 to be mobile, equation (vi) must be an identity 
in c04. Let us now equate coefficients of like powers of

cv
C3e : o(o[h2-h3] + j^[a12-oa41])=(h4-h3) - a-

ca 1 2
1 2 1 2

This result may be immediately simplified to

h - h = h - h ,2 3 4 3

whence h = h . (vii)2 4

We shall use the simplification of equation (vii) in the 
remaining equating of coefficients.

C V ^34 sH
ca, , ca

1 •) - (o[h -h ] + -_il[a,„-aa,. , ])
1 2 sai2“ 12 41

ca
(h2-h3)2 + (^r1)2(a2 3 2 ‘[<Ja41-a12]2)+4o5^-(aa4l-al2)(h2-h3)



Upon expansion, this equaticn may be readily simplified to 

yield
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coti 2
(——)2 (av S CL ' v bU12

ca 1 2
2 3 3 4 ) = 2a(a12-oa,1)——(h2-h3). (viii)1 2

c1 e4 :
ca2 12 ca2 f 12 \ 2(h2-h3)+aa (——) (a12-oa41)

34 SCt12 " 34 "SCX12
ca ca

a2 3*i^(h2-h3)-i^(h2-h3Haa41-a12)2+a(aa41-a12) (h2'h3)
(ix)

c 6 4 :
c a i 22 ( 1 ^ 2

3 4 (h -h )2 +a, 2 (---- )2(a -oa )V-2 3 J 34 ^sa „ V 12 4 r12
ca

+ 2aa„. 2——(h2-h 3) (a12-aa41)=a 234 sa 1 2 2 3 (h2 - h3) 2 - (h2-h3) 2 (°a4 rai 2) 2
(x)

Equations (viii)-(x) are to be satisfied simultaneously. The 

following consequences are apparent.

oa = a,, implies a „ 2 = a„ 241 12 r 34 23

h3 = h2 implies ca = 0

ca12 = 0 implies h3 = h2 or aa41 = a12,a 3 4 2 = a^2

Let us attempt to solve the equations subject to the 

restrictions

°a41 * 3 1 2 h3 ^ h 2 C0112 ^ °‘

Hence, equation (viii) may be replaced by 

ca
i^r1(a2 3 2 'asd^ = 2a(a12-oa41) (h2-h3) .

1 2

We may use this result in (ix) to obtain

Cai 22a(aa41-a12)(h2-h3)2+ca3 2(——)2(a12-oa )
12

CCX1 2
s a 2 ~ ^ 3 ^ (aa 4 1 ” a 1 2 ) +a(a12_0a41^^2 ^3)

(a)

+ 0,



which may be simplified to yield

(VM2 + 4^h2-h3)(aa41-a12) - a 3 4 2 (^)2.

Using (a) in this equation yields
cct

2(h2-h3)2 = (^)2(a232+a3y).
1 2

We now eliminate Ch2-h 3) from (x) by means of (a) and (3)

a3d{|(^-)2(a2 3 2 +a3 4 2) + (^-)Ua12-aa41)2 + (^)2(a 

i ca j 2
= 2(i^q7) (a2 3 +a3 42 ){a2 3 2 -(oa41-a12)2}

Simplifying and rearranging terms,

(oa41-a12)2(3a 3 4 2 +a2 3 2 ) = (a, 42-a2 3 2 ) 2 .

Elimination of (h -h ) between (a) and (3) yields

- a2 3 3

(a342'a232)2 = 2(oa41-a12)2(a342+a232)

which, when substituted into (y), leads to

3a 3 4 + a 2 3 2a3 42 + 2a2 3 2 ,

whence 2 2 
a 3 4 = a23 *

Because of equations (viii)-(x), this result implies

aa4i = ai2 or h3 = h2 > cal2 = 0

We may therefore summarise the solutions of equations 
(viii)-(x) by the two possibilities,

h 3 = h 2

and aa 4i = ai2

1 2

3 4 2 3

For both sets of conditions, equation (vii) also holds. Wre



shall consider these cases separately, and then look at the 
case which we previously eliminated from discussion, namely 
that for which

h, = 0.

h2 = h3 = h4 coj 2 = 0 :

Under these conditions, in view of (5.4.1), equation (5.4.2) 
is identically satisfied, subject to the additional 
dimensional constraint

So there are three independent closure equations, and we have 
isolated the Delassus linkage number d.2.

h2 = h4> 0a41 = a!2> aS„ = 3 2 3 *

In this case, equation (5.4.3) may be simplified to

C0 4 = OC0 2 ,

. . s04 = ots02

Hence, equation (5.4.4) may be rewritten as 

a23(T+l)s02 + rxsa12 = 0.

Now, if x=-l, this equation implies that joint 1 is locked. 
We conclude that t=1, and the equation may be written in the 
form

R + R + R + (2k + —~—) ith = 02 3 4 v 2 J

where h 2 = h 3 = h4=h.

whence 04 = T 0 2 + (21 + (a)

(b)
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Substitution for 04 from (a), with t=1, into equation (5.4.1) 
leads to

0 3 - - 20 2 + (2m+o)TT. (c)

Substitution for 04 from (a), with t=1, and for 03 from (c) 

into equation (i) yields

R4+R3+R2+h 3 { - 20 2 + (2m + o) tt }+h2 { 2 0 2 + (21+i~-) TiH-r j ca x 2 = 0.

That is ,

R4+R3+R2+(2m+a)7rh3 + (21+i-^)7rh2 + 2(h2-h3)02+rica12 = 0. (d)

Elimination of r between (b) and (d) results in 

sai2^R4+R3+R2 + (2m+a) tt h 3 + (21+^^) Tih2+2(h2-h3)02} = 2a23ca12s02.

This equation must be an identity in 0 for joint 2 to be 

mobile. Let us expand s02 in powers of 02 and then equate 

coefficients of like powers.

e23: 0 = - ia23ca12,

whence cai2 = 0-

Then, clearly,

So we have found merely a special case of Delassus solution

d. 2 .

h3 = 0:

Equation (ii), for this case, may be replaced by
c ct

R4+R3+R2+h404+h202 = —^(oa34s04+a23s02).
5U12



Then differentiation with respect to 02 yields
d04 c °t i 2 d 0 4

h- J§7 + h2 = 5^7(oa3 4ce43e^+a23ce2).

This equation is the same as (iii) above, with (h4-h3) and 
(h2-h3) replaced, respectively, by h4 and h2. The solution 
procedure will follow the same subsequent steps, and the only 
relevant linkage obtained will be the -R- derivative of d.2, 
the planar sliderrcrank chain.

We have seen that the only connectivity sum 4, mobility 1 
linkage in the present sub-category is the Delassus P-H-HrH- 
chain.

P-H-C-H- sub-category

If we replace the cylindric joint by a slider, 03 is fixed 
and we then have two equations, (5.4.1) and (5.4.3), in two 
variables, 02 and 04. Again, to allow mobility of joint 1, 
we cannot have a23 = 0 or a34 = 0. Let us rewrite equation 
(5.4.1) for this situation in the form

02 + Q4 = Y, (i)

where Y is constant. Then,

c02 = cyc04 + sys04.

We substitute for c02 into equation (5.4.3):

- oa41 + c04(a23CY-ca34) + a23sys04 + a12 = 0 (ii)

Clearly, from (ii),

sy = 0 cy = a a34 = a23 a12 = aa4].

Thus, using (i),



so2 = - as04.

Consequently, equation (5.4.4) demands that r = 0.

Thus, there is no P-H-P-H- linkage with the given initial 
dimensional constraints.

Replacing the cylindric joint by a screw yields the solution 
we obtained in the previous sub-category.

It might be noted that the P-H-H-C- and P-H-C-H- chains 
possess screw joints with completely arbitrary and independent 
pitches. So, the -R- derivatives are P-H-R-C-, P-R-H-C-, 
P-R-R-C-, P-R-C-H-, P-R-C-R-. There is, however, one 
restriction : if both screws are replaced by revolutes, the
resulting linkage for either generating loop will be improper 
in the singular case for which a12 = j — the linkage will 
then be based on a planar slider-crank. In fact, if the two 
screw pitches are equal and a12 = j, either chain will be 
improper and based on Eelassus solution d.2, obtained above.
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5.5 All joint axes parallel

01 1 2 012 3 a34 4 1 0

Equations (5.3) and (5.6)-(5.9) are identically satisfied.

Equations (5.1), (5.2), (5.4), (5.5) imply that

01 + °2 + °3 + °4 = 2kTr* (5.5.1)

Equations (5.10), (5.11) and (5.12) become, respectively,
a4ic(03 + 0J■+ a 3 4 cO 3 + a 2 3 + a12c02 = 0 (5.5.2)

a41s(03 + 04) + a 3 4s0 3 - a12s02 = 0 (5.5.3)

r4 + r3 + r2 + ri = 0. (5.5.4)

Since there are only four independent closure equations, any
relevant linkage of mobility unity obeying the above 
geometrical conditions must have connectivity sum of five or 
less .

By transposing terms in (5.5.2) and (5.5.3), then squaring and 
adding, we obtain after simplification

a4i2 + a342 + 2a41a c©^ = a?32 + a 2 + 2a a c© .2 3 12 2
(5.5.5)

By symmetry,

2+a 2 + 2a a cO3 4 2 3 2 + a 23423 3 12 41 12 4 1 1
(5.5.6)

We cannot allow more than one joint to be a slider, since such 
a linkage would exhibit part-chain mobility. Let us suppose 
that joint 2, say, is prismatic. From equations (5.5.5) and 
(5.5.6), rotational mobility of the other three joints will 
require that one of the three following sets of constraints 
is satisfied. The possibilities are
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au = 3 3 4 = 0 3 1 2 = 3 2 3 0 (5.5.a)

a41 = a 2 3 = 0 a j 2 a 3 4 0 (5.5.b)

a34 = a 1 2 = 0 a 2 3 = a 4 1 0 . (5.5.c)

If all the ^+^ were zero, there would remain only two 
closure equations.

The conditions (5.5.a) would eliminate closure equations (5.5.2) 
and (5.5.3), and so need not be further considered.
The conditions (5.*5.b), from equations (5.5.2) and (5.5.3), 
would fix 03; they are disallowed.
The set (5.5.c), from equations (5.5 . 1) - (5 . 5.3) , would fix

v
Thus, there can be no eligible linkage under these constraints.

We conclude that, for a four-bar with all joint axes parallel, 
there is no linkage of mobility one with any joint a slider 
which is exempt from part-chain mobility.

Thus, the only proper linkage of connectivity sum five, mobility 
unity, satisfying the above geometrical constraints is the 
C-H-H-H- chain.

It is worthy of note that this linkage has no proper C-R-R-R- 
derivative. This perhaps unexpected result is easily seen by 
reference to equation (5.5.4). Although the three screw 
pitches are nominally arbitrary and independent of each other, 
setting them all equal to zero will prevent translation of 
joint 1. We therefore have a counter-example to the hypothesis 
that a screw pitch may always be made zero. Here, at least one 
screw must have a non-zero pitch.

We may go further. Professor K. Hunt (Monash University,
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Victoria, Australia) has pointed out in correspondence that, 
when the three pitches are equal and non-zero, the C-H-HrH- 
linkage is still improper. Comparing equations (5.5.1) and 
(5.5.4) for this instance, it is seen that the cylindric joint 
is effectively a screw, with the same pitch as the other three 
joints. The linkage has degenerated to Delassus solution d.l, 
soon to be discussed. We reiterate in passing what was said 
in this connection in section 5.1. One needs to be constantly 
vigilant in spatial linkage analysis, because of the important 
consequences of geometric singularities.

We cannot replace the cylindric joint by a slider. Any 
feasible linkage of connectivity sum four, then, must be of 
the form H-H-H-H- if it is to satisfy the geometrical 
restrictions for this category.

Let us now attempt to seek out the possible H-H-H-H- linkages 
with all joint axes parallel. Equation (5.5.4) becomes

(Rx+R2+R3+R4) + hjOj + h202 + + h404 = (5.5.4')

Clearly, one solution is given by

h1=h2=h3=h4=h, say 
Rj + R2 + R3 + R4 + 2kTrh = 0.

These conditions make equations (5.5.1) and (5.5.4') equivalent, 
and yield the Delassus solution number d.l.

We next consider the possibility of one or more of the a^ 
being zero. Choose, for example,

= 0.



In order that joint 4 is not locked, equation (5.5.5) implies

either a34 = 0 or a41 = 0

a23 = a4i a 2 3 a 3 4

Now the conditions

3 1 2 = a41 = 0 a 2 3 a 3 it ^ ^ >

by equation (5.5.6), will result in the locking of joint 3, 
and so may be excluded. We also disallow the possibility that

3 1 2 ” a 2 3 ~ a 3 4 “ a 4 1 ”

since it would result in a linkage of mobility 2 consisting 
of four coaxial screws.
On the other hand, the conditions

a 1 2 “ a 3 4 ” ^ a 2 3 ~ a 4 1 ^ ^

satisfy equation (5.5.6).

Choosing any other a^ ^ + zero would result in an entirely 
analogous situation.

We conclude that there is precisely one solution in this group, 
that being the Delassus linkage number d.7, expressible as 
H=H-H=H-. Its dimensional constraints are, for example,

a i 2 a 3 4 2 3 a41 t 0

ai2 a23 a34 a41 0 .

We may replace closure equations (5.5.1)-(5.5.3) by

0X + 02 = (2 1 + 1) 7T 

03 + 04 = (2m+l)7T.

Equation (5.5.4*) remains unchanged. The offsets and pitches 
are arbitrary.



We may henceforth exclude the possibility of a normal link- 

length being zero or all pitches being equal.

Let us now consider the consequences of choosing

hl = h 3

Eliminating 0 and 03 between (5.5.1) and (5.5.4’) yields 

(h2-h1)02+(h4-h1)04 + (R1+R2+R3+R[+) + 2kTT hx = 0.

Now, if h2=h1, in order that joint 4 is not fixed, we must 

have that h,=h.. The converse is also true. We should then 

obtain the Delassus linkage d.l.

We may therefore assume that

h2 f hj h„ i h,

Then we may rewrite tlie last equation as

h - h. R +R +R + R, +2kTTh,4 1 1 2 3 4 109 = i---r— 0L + ------ i-- r--------2 Ri"h2 4 h,* h 2 (i)

Let us put for convenience

Ri+R2+R3 + R4 + 2k7Thi
Y = ------7,--------  , a constanth i ‘ h 2

By equation (i),

h - h h - h i
C02 = CY -h 00 CY'SC 3 SY-1 2 4

We substitute this result into (5.5.5), and expand the 

consequent equation in terms of powers of 04:
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f °42
l2 + a 3 4 2 + 2a4ia34|1 ' — +21 4!

1 h4_hl 2 1 h4_hl
a 2 3 2 +ai22 + 2a23a12cY<jl - ) +4T(K'frE70-5 “ "----

h 4 - h i h 4 - h x
2a23a12sY'{(f^Th70J ' 3T CH7^H70^ ' + •••• (ii)

Since we have excluded the possibilities a12=0, a23=0, h4=h1, 

and since equation (ii) is to be an identity in 04, by 

equating coefficients of odd powers of 04, we find that

s y = 0 .

Hence, cy = ± 1.

Let us now equate coefficients of © 2 and 0

a 4 1a 3 4 ~ a23a12CY ihrh2

a 4 1a 3 4 a23ai2CY
fh 4 -h X

i -h2

By division,

(h4-hp2 = (hrh2)2. (iii)

As a result,

cy = 1 and a4ia 34 a 2 3 a 1 2 *

Thus ,

Y = 2m7T,

whence R1+R2+R3 + R4 = 2tt [ (m-k)h 1 -mh2 ] . (iv)

Also, by equating coefficients of ©4° in (ii) , we have that



Fig. 5.5.1

2

Fig. 5.5.2
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= (a23+ai2)2’

whence a +a4 1 3 4 a +a2 3 12

(V)

(Vi)

The result a4la34 = a23ax2 together with (v) also implies that

KrsJ2 = (airai!)2-
whence alra3(=aii-ai! a41 a34 a1 2 a2 3 '

These alternative results, with (vi), imply respectively that

a, =a„, , a„ ,=a,„ or a, ,=a, „ , a _ =a_41 2 3 ’ 34 12 ----- 4 1 1 2 ’ 3 4 2 3

Result (iii) has two alternative consequences

(vii)

A h4+h2=2h1 B h4=h2

We shall examine them separately.

A:

K . . . h2

Result (iv) becomes

R1+R2+R3+R4 = 2ir[(m-k) —j ~ (m+k)

Equation (i) simplifies to

02 = 04 + 2m7T

In order to satisfy this last result, a ’plan view’ of the 

linkage must exhibit an uncrossed configuration, shown in 

Fig. 5.5.1.

We now test the two possibilities for link-length constraints, 

following result (vii).

Al:

If

a 4 1 a 2 3 a 3 4 = a 1 2 >
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we have, from (5.5.6), that

c03 = cOj ,

whence 03 = + Gx + 2m\.

(Physical requirements preclude the possibility of signing 
Oj with ±.)

Hence, our configuration in plan is a parallelogram with the 
screw-pitch conditions

We have obtained, in fact, a special case of solution number 
d.10, to be discussed later in this section.

A2 : 
If

41 d12 3 4 d2 3 >

we have, from (5.5.6), that

2 _ _ _ 2 2 „ „ ^ 2 0.a23 cos = a12 cos r

That is, with reference to Fig. 5.5.2,

2 3
(sm<f)J

1 2
^simp

which is just the sine rule for half of the figure shown.

So we have in this case a projected configuration in the shape 
of a kite, Delassus's "rhomboide" and solution number d.9.

The three independent closure equations may be written in
the form



/

Fig. 5.5.3

/

Fig. 5.5.4
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0. = 0. + 2mTr2 4

0j + 03 + 204 = 27T(k-m)
0 0 2 2 3 2 2 1( a23 cos —j = a12 cos .

The geometrical constraints are as specified above.

B:

Equation (i) here becomes

0O = - 0. + 2m7T.2 4

For this last result to hold, a ’plan view' of the linkage 
must show a crossed configuration, as in Fig. 5.5.3.

We proceed to test the two possibilities allowed by result 
(vii) .

B1:
If

a41 ^ 2 3 ^ 3 4 ci12J

from (5.5.6) we have that

c03 = cOx,

which is compatible with the configuration shown.

We have found Delassus’s anti-parallelogram linkage, number 
d. 11.

The independent closure equations may be given as

0„ + 0. = 2m7T2 4

- 0j + ©3 = 2(k-m)iT

L a23s(03+04) + a12(s03+s0j = 0.

The dimensional conditions are as given above.
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B2 :

For the conditions

a41-ai2 a 3 4 _ a 2 3

to be satisfied, it would be necessary that a pair of 

alternate joints be coaxial. This is easily seen by reference 

to Fig. 5.5.3. Then, however, all joints would be locked.

We conclude that no solution exists with such constraints.

Having investigated the consequences of all obvious geometric 

specialties for this category, we now consider the general 

case. It may be classified simply, in view of the foregoing, 

as

hi i h3.

We can assume that a. . . f 0, for all i.
l l + l ’

Eliminating 0 between (5.5.1) and (5.5.4*),

* R1+R2 + R3+R4 + 2k7ih1 + (h2-hi)02 + (hrh1)03 + (h|.-h1)01| 

If we put

R1+R2+R3+R4 + 2k7rh1

hl'h3

we may write the last equation as

0 .

h2-h, h4-h,
-0 _ +

hi'h3 2 hrh3 4
0,. + y • (i)

Thus ,

h -h h -h
0 +0 = 3 2 i 10 + v 4 3-0. + y.

3 4 Vh3 2 h 1 ~h 3 4
(ii)

Differentiation of (5.5.2) and (5.5.3) with respect to 0
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yields, respectively,

d(03+©4)
a41S^3+®4^ dO

dO
334S03 3/ - ai2S02 = 0

a^cCG +OJ
d(03+0„) do

+ a,,cO34"u3 dO " ai2C02 0>

By differentiating equations (i) and (ii) with respect to 

02, we may rewrite these last two equations as

a4ls(03+0„)

a41C(03+0O

[h2-hl h4 4- «■ 'h3 d04] ► -a sO ■3 4 3

ai2s0:

'h2'hl h 4 ~ h 1-f d04)
hrh3

k
'h3 d©2 hl’h3 hl‘h3

= 0

d 0 2

? i h -h dO ] fh -h h -h dO 12 1 4 3
^ + a34C03-

2 1 4 14- 4h -h h -h dO h -h h -h dO1 3
l

1 3 2j 1 3 1 3 2J

(iii)

' a!2C02 0 . (iv)

By adding equations (5.5.2) and (iv) and rearranging terms, 

we obtain

d04 a23(h3-h1) + (h3-h2)(a4 xc(03+04)+a34c03}
a4i (h4-h3)c(©3+04) + a34(hlf-h1)c© (v)

After subtracting (iii) from (5.5.3), we rearrange terms to 

obtain

de 4 _ (h3-h2){a41s(e3+04) + a 3 4s03}
307 " a41 Ch4-h3)S(03+04) + a34<X-hl)S03

dO 4
After eliminating between equations (v) and (vi) ,

simplification leads to

(vi)

a4ia34(h3'h2)S04 = a23{a4l(h4'h3)S(G3+04) + 334(h4'h1)503>•
(vii)

Elimination of s©3 between (5.5.3) and (vii) results in
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a h - h
S (0 3 +04 ) = —--  r-- r—S0

a 4 l h 3 ^ 1

a h - h3 4 2 3 _+ ---  *---*—S 0 „ .
2 3 h 3"h i 4 (viii)

Substitution for s(©3+04) from equation (viii) into (5.5.3) 
yields the result

S0
a h -h12 3 4

3 4
■SO.

h 3 ~ h 1 2
3 4 1 h 3 ~ h 2 „+ --- =-- =-S0, .

2 3 h 3"hi 4 (ix)

Since

s(©o+0u) - s03c©4 + c©3s©4,

from equations (viii) and (ix) we find that

1 2. h -h
c0 = --- i 2- 3 {a.. +a. c0. } + u i3 a2 3 h3-h 1 3 4 4 i 4 h3-h

h -h h -h4 1 4 3 ~------ + ------ C0,a. . a **4 1 3 4

S 0 ;
tsW

(X)

We may now use equations (ix) and (x) to eliminate 0 
from equation (5.5.2). Substituting for s© and c©3 *3

(5.5.2) yields, after simplification,

h -h
+ a342 + 2a34a41c0,} + a23 + a12c0.

2 3 3 11 1

s0 2h -(h3 +h3) S02 a12a3, h^-h,
-c0, a —=--.------ +s0 4 12 h3-hi s 0 a4 4 1 vs

s 0 a a h - hW2 4112 4 3
S0, a 3 4 h 3 - h l 0.

entirely
in

We may eliminate c©4 and then s©4 from this last equation by 
means of (5.5.5). Doing this and rearranging terms yields
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ai22Ch2-h3)+a232(h2-h1) r
{------------ r------------  + a12(2h2-h3-h1)c02}

2 3

x U [a 2 3 2 +ai22‘a4 12-a3^ + 2ai2a2 3C02]2}
4a412£l342

a j 2 2 {X - c20 2 }

a41 a34X <I77cVhd + i—Ch.-\)3 4 4 1

+ (h x +h 3-2h 4
4 1 a 3 4

(a 2+a 2 - a 22 3 a 1 2 a 4 1 a34~+2ai2a23C02)}2-
(Xi)

This last equation is in terms of c02 alone and must be an 

identity in that variable. Equating coefficients of c402 in 

(xi) leads to the requirement that

(2h2-h3-h1)2 = (hi+h3-2hi+)2.

The two solutions of this result are

and

h 2 = h 4

+ h4 = h, + h (xii)

The first of these has already been treated, by analogy with 

our above discussion for the constraint h1=h3.

We therefore accept the second as a relevant condition and 

substitute it into equation (xi) , simplifying it slightly:
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a 1 2 0^2 ^ 3 + a23 (h 2 “ h i )
{---------------------------  + a (h -h )c02}2“23

x {1 t-a23 +ai2 ""a 4 i "a 3 4 +2ai2a23C02] }4a4! a 3 4

= a122{l-c?02}

3. 3 i

x {-^(h3-h,J + -iich^hj
d 3 4 “41

+ C ^ 2 h4) y— — (a2 3 +ai2 ~a 4i "a 3 4 +2a12a23c02)}
4 13 4

(xiii)

Equating coefficients of c302 and making use of constraint 
(xii) yields, after simplification,

(a. i 2 2 ~ a 3 4 2 ) (h2 ~h 3) = (a4 ! 2 - a2 3 2 ) (h2 _h x) . (a)

Equating coefficients of c202 in (xiii), using constraints 

(xii) and (a) and the result that h2j^h4, we obtain, after 

considerable simplification, that

(h2-h„) (a412a31|2-a122a232)

= ^a2 3 2 +ai22-a4X2'a3 4 2>[a2 3 2 ':i12-h1)+ai22(h2-h3)]. (b)

Using constraints (xii), (a) and (b) and the result that 

h2^h4 , equating coefficients of cx02 in (xiii) leads, after 

simplifying, to

2[a._2(h.-h_) + a0 2(h -h )][a 2 a 2 - a 2 a. 2]12 v 2 3 J 2 3 v 2 1; 4 1 34 12 23

(h -h ) (a 2+a 2-a 2-a 2)(a 2a 2+a 2a 2) .V 2 4^ 2 3 12 41 3 4 ^ v 1 2 23 41 3 4 ; (C)

Using constraints (xii) , (a) , (b) and (c) and the result that

h2^h4, equating coefficients of c°02 in (xiii) and 

simplifying yields
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(a 2 a 2V 4 1 3 4 -a 2a 2)2 = a 2a 2 (a 2+a 2-a 2-a 2)2.12 23' 12 2 3 V 2 3 12 41 34' (d)

If either 2 2 2 2 
a41 a34 = a!2 a23 (e)

or a 2 3 2 + 3 1 2 2 = a 4 1 2 + a 3 4 2 . (f)

then, from (d) and the result that a^ ^ + -j f 0 for all i, the 
other is also implied.
Let us assume

■ ai| 1 3 4 2 * 3 1 2 2a232

a 2 3 + a 1 2 ■ ^ a 4 1 + a 3 4
2

Then, since h2^h4, eliminating the h^ between results (b) and 
(c) yields

2(a 2a 2-a 2a 2)2 = (a z+a z-a z-a z)V 4 1 34 12 23' V " 0 I- ... " '2+a 2-a 2-a 2 ^ 22 3 1 2 4 1 3 4

X (ai22a232+a412a342)'

Eliminating the LHS of this last equation by use of (d), we 
have that

whence

2a.22a232 = a!22a232 + 3 4 1 " 3 9 4 ' ’

2 2 2 2 
a!2 8 2 3 = a 4 1 a 3 4 *

This contradiction establishes the validity of results (e) and

(£).

Constraints (e) and (f) will satisfy equations (b)-(d) 
identically.
We have to consider the satisfaction of equation (a).

From result (e) ,

a a = a a4 1 3 4 1 2 2 3 (e‘)

Now, (e') and (f) together imply that
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a 4 1 = a 2 3 a 3 4 = a 1 2 2L a 41 = a 1 2 3 3 4 " 3 2 3

The first of these possibilities satisfies equation (a) 
without any more demands on the h^.

The second, from (a), generally requires that h =h , a 
contradiction.

We conclude that the only remaining solution for this category 
is defined by the constraints

a 4 1 ~~ a 2 3 a 3 4 _ a 1 2
A

hl + h3 = h2 + h4’

The linkage in ’plan view’ is a parallelogram, Delassus 
solution number d.10. It is illustrated in Fig. 5.5.4.

We may write the independent closure equations in the form

03 + 04 = (21 + 1) tt

©i + ©2 = (2m+l)7T

©4 = ©2 + 2n7T .

The fixed offsets are related by

R1+R2+R3+R4+ (2m+l)Trh1 + (21 + l)7rh3 + 2n7T(h4-h3) = 0.

We have found five solutions in this category, all of them 
derived from the C-H-H-H- linkage.



115

5.6 General C-H-C-H- derivatives
(no two adjacent joint axes parallel)

The linkages in this category are isolated in references [1,4] 

and in section 6.2 of this work. Equations II.1 in [1] and 

the corresponding Ilb.l of section 6.2 provide us with 

relationships which may be written jointly as

This equation satisfies (5.9) identically, if we also make 

use of the corresponding relationships, II.2 in [1] and IIb.2 

in section 6.2. Equations (5.1)-(5.8), only two of which are 

independent, become respectively, by (5.6.1),

02 = e04 - (2m + iy^-) tt . (5.6.1)

p(c01c04-as01s04ca12) = c03c04-s03s04ca34 (5.6.2)

(5.6.3)

p(-os01s04ca23+C0Jc04cax2ca2 3) - c01sa12sa23

S03S01(Ca4 j + C0 3 C0 4 Ca 3 4 C Ct 4 j “ C 0 3 S Cl 3 4 S Cl 4 j (5.6.6)

(5.6.7)

(5.6.8)

(5.6.9)
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We use as well, for convenience, an equation obtained by 

cycling the indices in (5.9). This equation could be used in 

place of one of the two independent equations from the set 

above. It is

-c0,sa,,sa, +ca ca1 4 1 12 4 1 12 cO sa sa +ca ca3 23 34 23 34 (5.6.10)

In addition, the results II.1, II.2, II.3 from [1] and Ilb.l, 

IIb.2, IIb.3 from section 6.2 render equations (5.10) and 

(5.11) equivalent.

From II.1 and Ilb.l we also deduce that

R2 + h02 = o(R4+h04)

whence, again using II.1 and Ilb.l, equations (5.10) and (5.12) 

may be written as

a41 (c03c04-s03S0ltca34) + (R4+h04)s03sa34+ a34c03

+ a23+p(ai2c04+aris04sai2) = 0 (5.6.11)

a41s04sa34+(R4+hO4)ca34+r3+a(R4+h04)ca23

+ poax 2s04sa23 + r1(ca12ca23-pc04sa12sa23)=O. (5.6.12)

For convenience, we rewrite jointly here results II.2 and II.3 

from reference [1] and IIb.2 and IIb.3 from section 6.2:

SOt12Sa23 = PSa34Sa4l

Cai 2 CCt2 3 Ca3 4Ca4 1

(5.6.1)
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ai2Sai2Ca23+a23Cai2Sa23=a34Sa34Ca41+a41Ca34SC\l

ai 2C011 2Sa2 3+a2 3SCll 2C0t2 3~^33 4C0t3 4Sa4 l + a4 1 Sa3 4C014 1 )-

(5.6.II)

Let us now examine derivatives with connectivity sum five. We 

first try to replace joint 3, say, by a slider.

From (5.6.8), if we fix 03, 04 will also be fixed unless

either A s03 = 0, c03 = a, sa12 = psa4 i

or B ca34=ca41=0, c03= pasa12-

A

By the first of constraints (5.6.1),

sa = sa2 3 3 4

s03 = 0 implies that joints 2, 3, 4 are in parallel planes.

From (5.6.9), equating coefficients of powers of c04,

ca2 3 = - aca34 ca12 = - aca41.

Then, from (5.6.10),

c0j = pa.

. . s0j = 0

So joint 1 is also prismatic, and joints 4, 1, 2 are in parallel 

planes.



3 1

Fig. 5.6.2

Fig. 5.6.3
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Now, this set of planes cannot be always parallel to the set 

containing joints 2, 3, 4 because, if it were, joints 2 and 

4 would be locked. Since, then, the two sets are generally 

non-paralle1, but they both include the screw joints, these 

joint axes must be parallel.

We may represent an 'end view' of the intersecting planes as 

shown in Fig. 5.6.1. Since the line of action of a prismatic 

joint is arbitrary,~we have here positioned the planes of 

action of the sliders so that they intersect on the common 

normal to the screw axes, between the screw axes. This has 

been done purely for convenience, and only the case p=a=l is 

illustrated.

With reference to the diagram,

fo 4

02 = it - (4>+40 = * say,

2tt - 0V 4

depending on the relative sense of the two screw directions.

Rotational closure equations (5.6.2)-(5.6.10) are identically 

satisfied.

The two translational equations reduce to

oa4ic0lt + oa34 + a23 + p(a12c04 + or1sa12s04) = 0 (5.6.11')

a4 1 SCt2 3 S®4+r 3+P°ai 2 S0t2 3 S® 4 + r 1 (CCX 1 2C0t2 3 " PC® 4SOtl 2S0t2 3 ) = 0*

(5.6.12')

Let us now test each of the applicable solutions found 

previously for the general C-H-C-H- linkage. Since, in the
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present instance, joints 1 and 3 are not rotationally mobile, 

the relevant results from [1] are those listed on page 27 therein 

which do not appear in Table 1. The appropriate ones from 6.2 

are those listed as [a]-[£] which do not appear in Table 6.2.1. 

Collectively, they are as follows.

p = l: -

A1. al2 a41 a23 a34 a12 a41 a23 a3 4 a= -1

A2: a12 + a34 = a23 + a„ , a12 = a41 a23 = a34=ir-a12 a=-1

A3 : 12 23 3 4 4 1 0 = ±1

A4: 31 2 + a23 = a 3 4 + 3 4 1 “l2 = “23 = “34 = »41 0= -1

A5 : a + a = a + a a. , = aall a, , = a, = tt - a, .12 41 23 34 12 34 23 1+1 12
0 = 1

A6; a12 = a23 = a34 = a41 «12=’-au a23=TI‘“3 4 0=1

p = -l: -

A7 : 1 2
3tt
2 2 3 3 4 4 1

7T
7 o = ±l

A8; a23 = a34 aJ2 = a4I = 0 a12 = 2ir-a41 «23=a34 a=-l

A9: a12 = a41 a23 = a34 = 0 a12 = w+a4i a23=T-a34 o = l

A10. 3.[+i ^i 2 + ^2 3 + ^34 a23 a41 ai2 77 77 a34 0=1

A11: a 2 3 = a 3 4 + a 4 1 + a1 2
a =a = a =2TT-a. „

2 3 3 4 4 1 1 2
0= -1

Ai2: a34 = a41 + a12 + a23 a23 = a34=ai2',r=7r-a41 0= -1

A13; a12 = a23 + a34 + a41 “34 = “41=lr-“23 = “l2-7T 0 = 1
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A1 :
Equation (5.6.11') becomes simply

r!S04 = 0,

which is inadmissible.

A2 :
Equation (5.6.11') reduces to

Sai2r1S04 = (ai2’a4l)(C04+1)-

It is clear that

ai2 * au'

Physically, a12=a41 would result in the screw joints being 
coaxial.
With reference to Fig. 5.6.1,

a 1 2 “ a 4 1 “ a 2 3 ~ a 3 4

becomes

d2cos(|) - d^cos^) = d2cosip - d4cosijj.

Since a12^a4 x , d2^d4.

. . COS(() = COSlji

Now, (p=-ip would place the sliders in planes parallel to each 
other. We conclude that

(p = ip.
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Thus, since a =7T-a and a=-l, the screws are directed in the 
same sense, and the sliders are bilaterally symmetric with 
respect to the plane containing the screws (See Fig. 5.6.2.).

A3:
This case will be covered under sub-section B.

A4 :
Equation (5.6.11’) reduces to

sai2 ris04 = (ai2~a4i)Cce4~l)•

As for A2, we cannot have a12=a41.
With reference to Fig. 5.6.1,

d2cos4> - d4coscf) = d4cos^ - d2cos^, 

whence coscf> = - cosij;.

The solution <|>+\J/=tt would make the slider planes parallel to 
each other. The solution

(p = IT + Ip

or Ip = TT + (p

yields an alternative version of the A2 result.

A5:
Equation (5.6.11’) reduces to

sai2r 2 s04 = - (a12 + a4J(c04 + l) •
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Here we must have

31 2 + a41 *

Again, joints 2 and 4 would be coaxial otherwise. 

With reference to the diagram,

d2cos4 + d4cos4 = d2cos ip + d4cosip.

Since a12 + a41 / 0, d2 + d4 f 0. Thus,

COS(j) = cos ip.

As for A2 , we disallow the solution <j> = - ip.

We conclude that

(p = ip.

Thus, since a=l and a12=a34, the screws are directed in the 

opposite sense, and the slider planes are again bilaterally 

symmetric with respect to the plane containing the screws 

(See Fig. 5.6.3.) .

Equation (5.6.11’) becomes simply

r1s04 = 0,

which is inadmissible.

A7 :

This case will be covered under sub-section B.
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A8 :
Equation (5.6.11’) again reduces to

r1s04 = 0,

which yields no solution.

A9:
The same result is obtained as for A8.

A10:
Equation (5.6.11’) becomes

ris04sai2 = (a4i"ai2)(c04+1)»

in which (a41-a12) cannot be zero. The only solution is an 
alternative form of the A5 result.

All:
Equation (5.6.11’) reduces to

r1s04sa12 = (a12+a41)(c04-l),

in which (a12+a41) cannot be zero. The solution for this case 
is another form of the A2 result.

Al 2 :
Here, equation (5.6.11’) becomes

r1s04sa12 = (a12+a41)(c04+l).

(a12+a ) cannot be zero, and the solution is another form of
the result for case A2.
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A13 :
For this case, equation (5.6.11*) reduces to

riS04Sai2 = Ca41-ai2Hc0tt-l) .

Again, (a41~ai2) as not zero, and the only solution is an 
alternative form of that found for case AS.

So, in cases A2, A4, A5, A10-A13, we have verified the Delassus 
linkage number d.12.

It might be noted that the values of rx and r3 are independent 
of the screw pitch and the screw joint offsets. This kind of 
independence is common to all the Delassus linkages with 
prismatic joints except number d.8.

In his list of four-bar linkages, Waldron [45,48] overlooked the 
fact that the above solution d.12 has mobile -R- derivatives free 
from part-chain mobility.

B
From equation (5.6.10),

cQj = posa2 3.

So joint 1 is also a slider.
From the first of constraints (5.6.1),

sa12sa23 = p,
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whence 5 TT 
2

We therefore have that

a 5 TT 
~2

c0 pa cO = a.

These conditions indicate precisely the two cases A3 and A7 

above. By the same reasoning as in sub-section A, the screw 

joints are parallel to each other, but there cannot be planes 

containing the sliders which are always mutually parallel.

Both sliders are normal to each screw joint.

The translational equations (5.6.11) and (5.6.12) become 

respectively

We have thus obtained Delassus solution number d.4.

We have also shown that there is no proper C-H-P-H- linkage 

with no two adjacent joint axes parallel.

We now investigate the possible solutions which result from 

replacing joint 1, say, by a screw. Equations (5.6.1) to 

(5.6.10) remain unchanged. Equation (5.6.11) becomes

aal)1ceit + oa3„ + a23 + pa12ce4 + ar1se4 = 0 (5.6.11")

a41s04+r3+paa12sG4-r1c04 = 0 . (5.6.12”)



126

a41(c03c©4-s03s04ca3 4) + (R4 + h04)s03sa3 4 + a3 4c03 + a2 3

+ pax2c04+p(Rx+h101)as04saj2 = 0. (5.6.a)

We must establish the conditions under which this equation is 
obtainable from the rotational equations.

Assuming for the present that ca34^0, and using equation (5.6.2), 
we can rewrite (5,6.a) as

S04ca34{a41p(c01c04-as01s04ca12)+a34c03+a23+pa12c04

+ p(Rx+hx0X)os04saj2} = - s03s04ca34(R4+hQ4)sa34.

Again using (5.6.2), this last equation becomes

S04ca34{a41p(c01c04-as01s04ca12)+a34c03+a23+pa12c0l

+ p(R1+h101)as04sa12} 

(R4+h04)sa34{pc01c04-c03c04-pas01s04ca12}

which, by use of (5.6.10), becomes

S04sa23scx34ca34{a41p(c01c04-as01s04ca12)+a23 + pa12c04 

+ p(R1+hi0l)as04sa12}

+ a3 4S04C“3^{CeiS“41Sai2+COl23COl3^Ca.lCCi12}

= (R +h04)psa23s2a34{c01c04-as01s04ca12}

- (R4+h04)sa34c04{c01sa41sa12+ca23ca34-ca41ca12). (5.6.b)

We consider now the effect of increasing 04 to

0 ' = 0 , + 2 TT .4 4
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Let the corresponding new value of 0 be 0J .

From equations (5.6.4) and (5.6.7), we may then write

pas 04 sa 23(c0j-c01) + (pc04ca12sa23 + sa12ca23)(s0{-S0X) = 0)

► (5.6 . c)

-(c04ca12sct23 + psa12ca23)(c©l-c01)+as04sa23(s0j-s01)= 0.

Let us consider the determinant of coefficients in equations 

(5.6 . c) .

D = pas04sa2 3

- (c04ca12sa23 + psa12ca2 3)

pc0i(Ca12sa23 + sa12ca23 

as04sa23

pc
9*s!“l2S!“!3t2C0tC“l2S“l2CC12 3Sa!3+PS

a c1 2 a + ps
2 3 ^ “23^

since sa12 ^ sct23 t °*

Hence, the only solution to equations (5.6.c) is

c0J = C0j s©J = S0j,

whence 0J = 0 + 2mr.

For the above changes in 0^ and 0 , we have from (5.6.b) that

S04SCX2 3Sa3 4C0t3 4 * 2llTT hi CTS04Sai2

= 27T h{sa2 3s2a34 (c01c04~as01s04ca1 2)

- sa34c04p(c01sa41sa12 + ca23ca34-caucct12) } ,

or
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onh sa12sa23ca34s2G4

= h{c01c04(sa23sa34-psa4xsax2)

+ c04p(ca4xcax2"ca23ca34)-as0xs04cai2sa23sa34} . (5.6.d)

Let us now 'solve' equations (5.6.4) and (5.6.7) to give us 

c0, and s0, in terms of c0, and s0,.11 4 4
We write as before

D pas04 sa 2 3

- (c04ca12sa23+psa12Ca2 3)

pc04ca12sa23+sa12Ca23

os04sa23

- pc204s2a12sza23 + 2c04ca12sa12ca23sa23 + ps/:a12Czot23

+ ps2 a2 3 f 0,

as we have previously shown.

Now put

s04sa34

p(c04sa34ca41+ca34sa41)

pc04ca12sa2 3 + saj2ca2 3

as04 sa2 3

- C204 (coij 2Ca4 i+a) Sa2 3sa3 4

- c04(ca12sa23ca34sa41+psa12ca23sa34ca41)

+ asa23sa34-psa12ca23ca34sa41 (5.6.e)

and
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D s pos©4sa23 s04sa34

-(c04ca12sa23+psa12ca23) p(c04sa34ca41+ca34sa41)

= S04c04(ca12+oca41)sa23sa34

Using Cramer's rule, we substitute the expressions for c0: and 
s0x obtainable from D, and Ds into equation (5.6.d):

anh1sa12sa23ca34(l-c204){-c204s2a23s2a12+2pc04ca12sa12ca23sa23

+ s2a12c2a23+s2a23}

= h[(sa23sa34-psa41sa12){-c204(pca12sa23ca34sa41

+ SOl12Ca23Sa34CCi4l)

+ C04(pasa23sa34-sa12ca23ca34sa41)

- c304p(ca12ca41+a)sa23sa34}

+ p(ca41ca12-ca23ca34){-c304s2a12s2a23

+ 2pc204ca12sa12ca23sa23+c04(s2a12c2a23+s2a23)}

- aca12sa23sa34{ (l-c204)c04p(ca12 + ocaitl)sa23sa34

+ (1-c204 )(sa12ca23sa34 + posa23ca34sa41) }] (5.6.g)

Since this equation must be an identity in c04, we may now 
equate the coefficients of powers of c04.
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c404: onh1sa12sa23ca34s2a23s2ax2 = 0

c 3 0 4 •' -2apnh1sa12sa23ca34Ca12sa12ca23sa23

(COtj 2 C 0t 4 pS0t2 3 S 0t 3 4 S 0t 2 3 S 0t 3 4 “ P S 0t 4 S Ct ^ 2J

ps a12s ot2 3 (cu4 1 ccl1 2 - ca2 3 ca 3 4)

+poca12s2a23s2a34(ca12+aca41)}

c204 : -anh1sa12sa23ca34(s2a23s2a12+s2a12c2a23+s2a23)

h{ (SOI2 3^3^ P^^4i^U32)(pCot^2Scx23Cot34Sct4j

+ Sai2Ca23Sa34Ca41^

2cotj 2 S Ot ^ 2 COt 2 3 S Ot 2 3 C C Ot 4 ^ C Ot ^ 2-C0t2 3 C Ot 3 4)

+ cca12sa23sa34(sa12c0t23sa34 + pasa23c0t34sa41)}

0^4 : 2panh1s2aj2s2a23ca34ca12ca23

h{ (sa2 3 sa3 4 psot4jSotj2)(opsot23sot34 sot22cot23cot34sot4j3

+ (ca4 j ca32-ca23ca34)p(s2a12c2a23+s2a23)

- POCa12s2a23s2a34(ca12+oca41)}

c°0 :
4

anhlsa12sa23ca3^(s2a12c2a23+s2a23)

= h{-aca12sa23sa34(sa12ca23sa34+pasa23ca34sa41)}

(5.6 . h)

From the first of these equations, we see that we must have 
n=0, h =0 or ca3 4 = 0.
We first show that n^O.
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For n to be zero, as 0 increases to Q+2tt, it would be 
necessary for 0 either to remain fixed or to reach an extremum 
and return subsequently to its original value. The first 
contingency is inadmissible; for the second to be the case, 
it would require that the differential of 0! become zero at some 
stage. Let us differentiate equation (5.6.4) with respect to

<v
opcO1c04sa23-ps01s04ca12sa23

d0 d© d©i
-paseiseiisa23a¥Upceicei)ca12sa233Q-+ceisoll2ca23ag- = c0tsan

d 0
I f = 0 , then

4
ac©, cO. sot „1 4 2 3 S0lS0,COl12Sa23 PC0„SC134 (5.6 . a)

By means of results (5.6.e) and (5.6.f), we may substitute 
'solutions' for sQ. and c0 in terms of sO and c© from11 4 4

equations (5.6.4) and (5.6.7) into equation (5.6.a):

asa23{'C304p(ca12ca41+a)sa2 3sa3 4

- c204 (pcaj 2sot23ca34sa41 + sa12ca23sa34ca41)

+ c04 (posa2 3Sa3 4-sa12ca2 3ca3i(sau) } 

-ca12sa23{(l-c204)c04p(ca12 + aca4x)sa2 3sa34 

+ (l-c204)(sa12ca23sa34+pasa23ca34sa41)}

= psa3 4{-c 304s2a12s2a23 + 2c204pca12sa12ca23sa23 

+ c04(s2a12c2a23+s2a23)}

This equation is to be an identity in c©4; we equate 
coefficients of powers of c©4.
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c3 04: -as2a23sa34p(ca12ca41+a)+pca12s2a23sa34(ca12+aca41

- =-ps2al2s2a23sa3^

c204: -asa23(pca12sa23ca34sa41+sa12ca23sa34ca41)

+ COtl 2S0t2 3 (SCX1 2Ca2 3SOt34 + PaSa23Ca34Sa4 1 ^

" ^ COt i 2Sai 2Ca2 3Sa2 3SCX3 4

C 0 4 • ^ S Ot 2 3 ( O P S Ot 2 3 S Ct 3 4 2^-^2 3 ^ Ot 3 4 S-Ol 4 1 )

- p c ck. ^ 2 s ot23sot34(cc(.j2'^cjco(.43) 

=psa34(s2a12c2a23+s2a23)

C°S„: -ca12saJ3(sa12ca2JsaJt+posa2Jcastsau) = 0

The second of these equations reduces to

-osa23sa12ca23sa34ca41 = ca12sa12ca23sa23sa34,

from which we conclude that

either cai2 = " aca4i or ca23 =

If ca12=-oca41/0, from equations (5.6.1),

ca23=-cca34 psa12=sa41 sa23=sa34.

(5.6.3)

Then equations (5.6.4) and (5.6.7) become 

pcG1(as04sa23)+s01(pc04ca12sa23+sa12ca23)=s04sa23 

~ c 0 3(pc04ca12sa23 + sa12ca2 3) + ps01(as04sa2 3) 

=-a(c04sa23ca12+pca23sa12).



133

But simultaneous satisfaction of these equations demands the 
fixing of either 0 or 04 .

If ca12=ca41=0, we see from equation (5.6.a) directly that 
0, or 0 is fixed.1 4

If ca23=0, from the last of equations (5.6.3) and the second 
of equations (5.6.1), we must have that

either ca, =ca, =0 or ca =0.l z h i 3 4

The former possibility has just been dealt with. For the 
latter to hold, from the first of (5.6.1),

Psai 2 = SOt4i •

Now, the third of equations (5.6.3) reduces to

l-ca12(ca12+aca41) = 1.

Hence, either ca12=0 or ca =-acau.

The second of these possibilities yields a sub-case of the 
situation we have just discussed.
The first, again by equation (5.6.a) directly, implies that 
0 or 0 is fixed.1 4

We conclude that n^O.

With reference to the satisfaction of the first of equations 
(5.6.h), we now investigate the consequences of choosing

0 .
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From the second of equations (5.6.1), we have 

either ca = 0 or ca,, = 0.12 2 3

From the first of equations (5.6.1),

if ca12 = 0, and if ca23 = 0,

sa2 3 = sa4j psa12 = sa41.

We shall look at each of these possibilities.

7T 3 7T _ _ 7T
ai2 “ 2 0r —2 a34~ 2 Sa23 “ sa41 •

We cannot allow ca23 or ca41 to be zero, since it would result 
in one of the cases referred to previously as A3 and A7.

Equation (5.6.4) becomes

ac01s04sa23+s01ca23=ps04,

whence
s0 jpca2 3

e (3) = ---------------------4 l-apc01sa23 

From equation (5.6.10),

c03 = pc0t.

From equation (5.6.8),

1 2 3
pa 1~opc03Sa2 3

Ca2 3s0, = p---- as© .
3 Ca41 1

whence
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We now substitute for c03 and s03, along with the other 
constraints, in equation (5.6.11):

Ca23a1+1pc01c04 + (R4 + h04 )--- pasO l + a3 4pc01 + a23 + pa12c04C0t4 1

+ (Rj+hj0j)as04 = 0

Allowing now 04 to increase to ©4 + 2tt, 01 to ©j + Zmr, we obtain 
from the last equation

^■^2 3ZTrhp ---- os0 +2nTrh, os0 = 0.ca41 i 1 4

That is,

ca
23 S 0 i C °t 2 3— s0 +nh i---- -pr-----m 1 1 1 -opcGj sa2 3

h (1-apc01sa23)+nhxca4x = 0.

Since this equation must be an identity in cOx, and n and 
ca41 are non-zero, we deduce that

h = hj = 0.

TTan =a,, = ~- psa =sa. . :23 342 12 41

Here, we cannot allow ca12 or ca41 to be zero for the same 
reason given above.

Equations (5.6.4) and (5.6.7) reduce to

s04(opcOj-1)+pc04s01caj2 = 0
ca

ps04as01-c01(ca1 2 (pc0j + ca h = 0
(5.6. y)
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In order that the joint angles remain variable, we must have 
that

pacQ1-1 

ops 01

That is,

s G:pcax 2

'Caj 2( pC0i +
ca 
c a b1 2

a-pc0x+pac 0l
ca 4 1
ca 1 2

c a 4 1
ca 1 2

0.

So we must have that

Making this substitution, we find from the first of equations 
(5.6.y) that

S 0 4
se. = pce^,-; e-apc0i)

which, in the second of (5.6.y), yields

aS 2©4(1~ pac01)-c204c2ai2(pcGj + a)

pc02 = a-
s204-c204c2ai2 

1-c20 s 2a.4 12

Now, from equation (5.6.10),

c 0 3 = pc01s2a12~ac2a12.

From equation (5.6.8),

s03oca12=pas04sa12-ps04sa12c03=ps04sa12 (a-pc01s2a1 2 + ac.2a12) 
s2e^c2e4c2ai 

1-c2e4s2a12
-pos01(sa12(l + c2a12-s2a12
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sO 1 2
S0,

12 1 -C 04s CL1 2
([l + c2a1 2 ] C1 -c204s2oti ]

-sza12[s204-c204c2a12])

s0
2psax 2cax

l-c20 s 2a, ,4 i z

We may now write equation (5.6.11) as

a41c04(pc01s2a12-ac2a12)+p(R4+h04).2sax 2cax
s0

l-c204s2ai2

+ a34(pc01s2a12-ac2a12)+a23+pa12c04+p(R1+h101)as04sa12=O.

Now allowing 04 to increase to 04 + 2tt, 0x to 01 + 2mr, we have 
from the last equation that

S042TTph. 2sa, „ ca, „ ------------- + 2n7Tph as© sa,o = 0.12 12 1 2n 2 1 4121-c 04s^a12

That is ,

2hca, +onh,(1-c20 s2a..) = 0.1/ l'- 4 12'

For this to be an identity in c04, and since ca12 and n are 

non-zero, we must have

h = hl = 0.

We have thus shown the constraint ca =0 to result in a special3 4

case of the possibility h1 = 0.



We may now assume that ca3i+^0 and satisfy the first of 

equations (5.6.h) by the constraint
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hj = 0

Let us suppose that h^O.

Then, from the last of equations (5.6 . h) , we have

either
p s a 1 2 s a 3 4

ca,, = 0 or ca,. = - oca, , ---------  .1 2 3 4 2 3 sa23 sa4j

We proceed to examine both of these possibilities.

ca12 = 0:

Since ca34^0, from equations (5.6.1), we have that

Then, from

C0t4 J = 0 S“23 = SCl34-

the second of equations (5.6.h),

0 = - ops2a23(s2a23-1) + ps2a23ca23ca34.

Now, we cannot allow caOQ=0, since it would result in ca,,=0. 7 2 3 7 34

Therefore,

CCl3 4 = - OC“23-

Equations (5.6.4) and (5.6.7) become 

opcOjs04sa23+PS0Jca2 = s04sa23

- pc0:ca23+pas01s04sa23 = - aca23, 

from which we deduce that either joint 1 or joint 4 is locked
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psa,2 sa 34
ca = - oca --- ---—:34 23 sa23sa41

From the second of equations (5.6.1), we have

4 1 oca
sa2 3sa4i

P'^^12^^34

From the second of equations (5.6.h),

(-oc2a1 •SC12 3SCt4 1 
2 PS“12S“34 +a)psa2-3sa34(sa23sa34-psa41sa1P

s 2a,s2a „p(-ac2a,1 2 2 3 v 1
Sa 2 3 S a 4 1

2 psa12sa34 + oc * a
P S a ^ 2 ^ ^ 3 4

23 s a s a:5U233U41 )

sa23sa4i
+ P°C0ll2S a23S °‘34(C“l2-C“l2 •

Therefore,

sa sa
C2ai2{^7^q7(s2a2 3S2a3 4-PS“l2S“2 3S0l3 4S4 1

+ s2a s2a -s2a s2a )+s2a s2a }12 23 23 34; 23 34

(s a23s a34 ps a 2 2 s a2 3 s a 3 4 s a 4 x) - c a23s a12s

Hence, using the first of equations (5.6.1),

PSa!2Sa34 
23 S012 3S0t4 1

S2a2 3S2a3 4^2ai2'^+s2ai2S2a2 3'c2a2 3S2ai2S2a

Therefore,

PSai2SOt34 
23 Sa23Sa41

2 2 PSai2SOt34
c a3 4“c a2 3 sa saC>U2 3 U4 1

sa sa 2
whence c2a (--------) - c2a23'-sa23sa41

PSa!2Sa34 
23 S0t23Sa41 0.

We cannot have ca23=0, as it would imply that ca34 = 0
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Hence

Thus

ca 3 4 oca 2 3 and ca 4 1 a ca 1 2

But we have already shown that such a set of conditions will 

lock either joint 1 or joint 4.

We conclude that

We have thus shown that the H-H-C-H- loop with no two adjacent 

joint axes parallel degenerates immediately to a R-R-C-R- 

chain. We have yet to examine the cylindric joint for mobility 

and to determine any other consequent dimensional conditions.

We shall first investigate the geometrical constraints 

concomitant with the result above that h1=h=0. To do this, we 

again look at equation (5.6.11), under now five separate 

headings:

h = 0

_ 3 7T
a 1 2 2 * - sa
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ai2 = a34 = 2’ Sa23 = Sau:

From Table 1 of reference [1] we see that there are only two 

possibilities, remembering that ax 2 = a2 3 = ct3 4 = a4 i =j is not 
admissible.

They are

(a). ^ 3 L 3-95 3 u i Oi „ cx2 34 a 2 3 “4 1 u23 U41 0= ± 1

(b). 312 ^23 a34 a4 1 ^ 0t23TT0t41 0±1

(3):

For this case, equation (5.6.11) becomes

a23C®3C®4 + ^4S^3 + ai 2C^3+a23+ai 2C®4+^iaS®4 0 *

From previous results, we have that

s0„ = QS0 s 0
s0,ca0,1 2 3

4 l-ac01sa23

C03 = c0i c0, ca ■{ os a
2 3

S °lCOt23 
23 1-°C0lSa23

-C01ca 2 3}

0Sa23"c0l
X-OC0J sa2 3

So equation (5.6.11) may be further rewritten as

a23^aSa23C0l"c20l^+aR4S0l^1"aC0lSa23^+ai2^C0l"ac20lSa23)

+ a23(l-ac01sa23)+a12(osa23-c01)+R1as01ca23 = 0.

That is,

ai 2QSa23(l “c20l ) +a? 3 (1 "c20i )+as0i (RiCa23+R4[l-ac0iS323]) = 0

By equating coefficients of like terms in s0j and c0x, since

COl23^0>
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R = 04
2 3

1 2 as a 2 3

So, in this case, it is clear that

- 1 and 2 3
1 2 2 3

We thus have a sub-case of what will be later referred to as 

solution D.

(b):

Here, equation (5.6.11) reduces to

R,s0 0 + R,asO. = 04 3 14

which, from previous results, may be written as

S9 1CC,2 3
R-aS0l + Rla 1T^0 s a1 2 3

Hence,

RjCa23+R4(ac0jsa23-1) = 0.

For this equation to be an identity in cO , since we cannot 

have ca23=0, we deduce that

R4 = R, = o.
Thus is' yielded a special case of the solution later called

C.

u23 u 3 4 2 * w1 2 ^4 1 *

From reference [1], Table 1, there are again only two 

possibilities, which are

(a) * a12 a4 1

(b) : a1 2 2 3

2 3 a 3 4

3 4 4 1

12 U41

= 0 a

0 = 1

1 2 4 1 0=-l



143

(a) :

Using prior results, equation (5.6.11) becomes

S04
ai2c®4^c®is ai2_c a x 2)+R4 . 2 sa x 2 ca x 2 2-cii04sza1 2

+ a23(c01s2a12-c2a12) + a2 3 + a t .ce^+R, sG^sc^ 2 = 0.

Hence,

2 R c u
ai 2C04S2ai 2 C C © i + 1 ) +a2 3s2ctl 2 (cOj+1) +Sai 2S04 ^Rl+-------------—) = 0.1-c204s2cx12
By the same prior results, this equation becomes

s«i2(s204-c204c2c<i2 + 1-c2ei)s2al2)(a12c04 + a23)

+ S04 CRj [l-c20l)s2al 2 ] + 2R4caj 2) = 0, 

or

2Sai2S2Mai2C04+a23)+S0URl[1~c204S2c,12:] + 2R4Cai2) =

Since ca12^0, by equating coefficients of like terms in sG^ 

and cO , we find that

R = R = a = a =0.1 4 12 2 3

We then have a special case of the chain treated later under 

the heading C.

(b) :
Equation (5.6.11) reduces to

R4S03 ' RlS04Sa!2 = °'

From previous results, we may rewrite this equation as
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s 0
2R4sa12ca12

1 -c204s2a1
-R sa s0 = 0,

1 12 4

2R ca, +R,(c20,s2a, -1) = 0
4 12 1 v 4 12 J

Thus, since ca12^0,

R4 “ R, “ 0-

Again we have a special case of the solution later referred 

to as C.

3 TT TT
ai2 2 y a3 4 2,Sa2 3 Sa41 *

From Table 6.2.1 of section 6.2, we see that there are two 

cases to consider, namely

(a) : a 23 = a32= a3- = 0 a23=“41 CT=±1

(b): ax 34 a23= a41 0 a„ = tt -a a = ±l2 3 4 1

(a):

Equation (5.6.11) becomes

a23C®3C®4 + R"4S®3 + a 2 3 + ORjSOj^ 0.

But, from previous results,

S0 = - OS0,
3 1

S0
-s 0 x ca 2 3 

4 ~ 1 + GC0J sa2 3

c0 = - C0.
as ZQ sa

C0 = ------------ --------—— + C0
l+ac01sa23 i

0Sa2 3+C®l

1+aC0lSCl23

Substituting into the above equation, we obtain
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a2 3s20l "GS01 (RlCa23+R4+aR4C0lSOt23) = 0*

By equating coefficients of like powers of Gx, since ca23 

cannot be zero, we deduce that

R4 _ ~ a2 3 - 0.

This will be seen as a special case of solution C.

(b):

Equation (5.6.11) may be written as

RtS93taUC03-ai2Ce/(,RlSe4 = °'

From prior results,

sO asO sO
- sO ca1 2 3

1 + acOj sa2 3

cQ cO cO,
as20lsa23 
l + acOisa2 3 - cO

asa23+c01 
l + OCOjSa^

Substituting into the above equation leads to

ai2Sa23s20l+s0l^aR4C0lSa23+R4_RlCa23^ = 0*

Again, since ca23^0, equating coefficients of like powers of 

Qi allows us to deduce that

1 2 0.

We have a special case of solution C.
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a,, = aQ, = T> "sa = sa2 3 3 *+ l 12 4 1

From Table 6.2.1, we see that there are two possibilities, 

namely

OU a2 3 = 3 3 4 al2 = a41 = 0 “l2 = 2”-“u 0 = 1

(b): a12 = a41 a23 = a34 0 an - it +a4i o= -1 .

(a):

Using previous results, equation (5.6.11) may be given as

s 0,
-2R1+sa1 2ca12

where

l-c204s2aj 2
-a23(c01s2ai2+c2ai2)+a23-R1se4sa12=O,

c0
c204c2ai2-s204

l-c204s2a12

Substituting, and simplifying,

2a2 3s^a1 2sz04-sa1 2s04 (2R4ccx1 2+Rl-R1c204s2a1 2) = 0

Therefore, since ca12 cannot be zero,

Rx R4 a2 3 0,

(b):

thus yielding a sub-case of solution C.

Here, from prior results, equation (5.6.11) may be expressed 

as

s0.
~ai2C04 (C0lS2ai 2~C ai 2^ "2R4Sai 2C0tl 1'C20l)S2a1 2

-a c0 12 4

+ RlS04Sai2 = °*

C01
s204-c204c2ai2

1-c204S2ai2
where
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After substituting for c© , and simplifying, we find that

2ax 2 c04 s 204s 2a: 2 + sa 1 2s04 {Rx c204s 2ax 2-Rx+ 2R1+ca1 2 } = 0.

Thence, since ca12^0, equating of coefficients of like powers 
of 0 leads to4

R = R = a = 0,1 4 12 ’

which imply a special case of solution C. 

ca3 4 f 0:

We substitute hl=h=0 into equation (5.6.b), along with the 
results for cOx and s0x from equations (5.6.e) and (5.6.f):

S04Sa23Sa34Ca34{a41p[‘c304p(Cai2Ca41+a)SOt23Sa34

- c204 (pca12sa23ca34sa41 + sa12cot23sa34ca41)

+ C04(apsa23sa34-sa12ca23ca34sa41)

- aca12sa23sa34s204c04p(ca12+aca41)

- ac«j 2 s 2 04 (sa1 2ca2 3sa3 4 + apsa2 3CCX3 4sa4 J 1 

+ [a23+pa12c04+pRias04sa12]

x [-c204s2a12s2a23+2pc04ca12sa12ca23Sa23+s2a12c2a23+s2a23-^

+ a34s04co(,34{scx4jSctj2^ ^ 0itp(^Uj2co(,lt^ + o)so(,23So(,34

- C04(pca12sa23ca34sa41+sa12ca23sa34ca41)

+ pasa2 3 sa3 4-sa! 2cot2 3cot3 4s ot4 ! 1 + [ ca2 3ca3 4 -ca4 Y caj 21 
x[-c204s2a12s2a23+2pc04ca12sa12ca23sa23+s2a12c2a23+s2a23]}
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= R4psa2 3s2a3 4{-c3 04 p(ca12ca41+a)sa2 3sa3 4 .

P 0 4 (P^^j 1

+ c04(apsa23sa34-sa12ca23ca34sa41)

-aca1 2s204cGt+p(ca1 2 + oca4 i)sa23sa34 

-oca12s204(sa12ca23sa34+pasa23ca34sa41)} 

-R4scx34c04{sa41sa12[-c204p(ca12ca41+a)sa23sa34

- c04(peaL2sa23ca34sa41 + sa12ca23sa34ca41)

+ pasa23sa34-saj2ca23ca34sa4:]

+ ^ CCX2 3 Ca 3 4 ~ Ca4 1 COt 1 2 ^

x [-c204s2a12s2a23+2pc04ca12sa12ca23sa23

+ s 2ol1 2c2a2 3 + s 2cx2 3 ] } (5.6.i)

We may separate equation (5.6.i) into two parts by thinking 
of the terms involving powers of c©4 and s04 as expanded in 
terms of powers of 0 . Taking first those terms which give 
rise to only even powers of 0, we have

poRlsa12sa23sa34ca34(l-c201()

x {-c204s2a12s2a23+2pc04ca12sa12ca23sa23+s2a12c2a23+s2a23}

= R4sa34{c304[-s2a23s2ot34(ca12ca41+a)+aca12s2a23s2a34(ca12 + aca41) 

+ psa12sa23sa34sa41(ca12ca41+o)

+ s cx12s a2 3 (ca2 3ca3 4 -ca4 x cax 2) ]

+ c20l([-psa23sa34(pca12sa23ca34sa1)1+sa12ca23sa34ca41)
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+paca12sa23sa34(sa12ca23sa34+apsa23ca34sa41)

+ (pcax 2sa23ca34sct4 ^saj 2Ca23Sot34Ca4l)Sot41Sai 2

2pC0tj2S0tj2CCX23S0t23 (CCL 2 3CCt3 4 2 )

+c04[psa23sa34(apsa23sa34-sa12ca23ca34sa41)

-oca1 2s2a23s2ot34 (ca x 2 + aca41)

-sa41sa12(pasa2 3sa34-sa12ca23ca34sa4x)

-(s2a12c2a23+s2a2 3)(ca2 3ca34-ca41ca12) ]

-opca12sa23sa34(sa12ca23sa34+posa23ca34sa41)}.

By inspection of the coefficient of c404 in this equation, 

since ca ^0, we deduce that
3 4' 7

Rx = 0.

Then, using the first of equations (5.6.1), the last equation 

becomes

0 = R4sa34{c30 [-as2a23s2a34+oc2a12s2a23s2a34+os2a12s2a 2 3

+ s2a, „ s2a„ , ca„ , ca. . ]12 23 23 34

+ c20 [psa12sa23ca s2a34(aca12-ca41)

sex ^ 2 sex ^ ^ (p ca j 2 sa 2 3 ca g 4 sa 4 ^ sa ^ 2 ca» 2 3 sa ^ 4 ca 41)

Ca 1 2 SOt 1 2 Ca 2 3 SOt 2 3 (Ca2 3 CCt3 4 ’C0l4 1 Ca 1 2 ^

+ c04 Cas2a23s2a34 -as2a23s2a34c2a12 -os2a12s2a2

-s2a, „ s2a0 , ca„ ca„ , -s2a, „ c2a0 „ ca„. ca,,
12 23 23 34 12 23 23 34

+s2ai2S2a4lca23ca34-s2a23ca23ca34+s2a23ca41ca12
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-s2a23s2a31,ca12cal(i + s2a12c2a23ca^cai2]

-pacal2sa23sa3 Jsa12ca23Sa34 + posa23Ca31(Sa1(1)} 

:R4sa34{c304[s2a12s2a23Ca34(ca23+aca34)]

+c204[sa12sa23ca23s2a34p(aca12-ca41)

^pC0i.j2S0t23^'^3i+S0(.it^'^S0(.22^'C^2 3^^34*“^4l3

-2pca12sa12ca23sa23(ca23ca34-ca41ca12)]

+ c04[-s2a12s2a23ca34.(ca23+aca34) + s2a12s2a23ca23ca 3 4

-ca23ca34(s2ax 2+s2a23-s2a12s2a41)

+cai2ca41(s2a23c2a34+s2a12c2a23)]

-pacotj 2sa2 3sa34 (sa12ca23sa34 + pasa23ca34sa4 l) } .

If we assume that R4^0, by inspection of the coefficient of 
c3Ql in the last equation, since ca34^0, we must have that
ca23=-aca34
But we have already shown that this constraint would lead to 
the locking of joint 1 or joint 4.

We conclude that

R = 0.4

We now examine that part of equation (5.6.i) consisting only 
of terms which give rise to odd powers of 04. We have, since 
ca3 4/0,
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pa4 1SCl2 3Sa3 Jc3®4^’Cai2Ca4r0+0c2cl12+Cai 2Ca4 JSCt2 3Sa 3 4

+ C 0 4 l- pP^l 2^^2 3Pa,3 4^^4 1 ^^12^'^2 3'^^’3 4^'^4 1

+ QCai 2SCX1 2C(X2 3Sa3 4 + PCOtl 2SCX2 3CCX3 4SCX4 1 ^

+ C04[apsa23sa34-sa1 2ca2 3Cas 4S°\ i“ P^c2a12Sa2 3sa 3 4

~ PCa i 2Sa2 3Sa3 4CCt4 1 ^

-aca12(sa12ca23Sa34 + pasa23ca34saitl)}

+ a23Sa23Sa34{‘c204S2ai 2 S 2 012 3 + 2 P ° 0 4 C 011 2 S a l 2 ° W 2 3 S W 2 3

+ s 2a c2cx +s2a }12 23 23J

+ pa sa sa {~c30 s2a s2a +2c20 pea sa ca Sa
12 23 34 4 12 23 4 12 12 23 23

+ C0js2a12c2a23 + s2a23)}

+ a3 4{c204["pSOl12SOt2 3Sa3 4Sam(Cai2Ca4 1+a)

-s2a s2a (ca ca -ca Ca, )]
12 23 23 34 41 12

+ C04[ "Sctj 2^a4 1 CpCa^^ 2Sa2 3 3 4 S a 4 1 + Sa,l 2Ca,2 3 S a 3 4P'0t4 1 ^

+ 2pca12sa12ca23sa23(ca23ca34-ca1(1ca12)]

+ Sa4 1S0l12(:POSCl2 3Sa3 4'Sai2C0t2 3Ca3 4Sa4 1)

+ (s2a12c2a23 + s2a23) (ca!3ca„-cauca12) }

0.

Then, using the first of equations (5.6.1),
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a-lSa23S“34{'c3 Vas2a12Sa23Sa34+c204-PSai2Sa3*Ca23(C,Cai2-C<\1) 

+c04p(aps2a12sa23sa34-sa12ca23ca34sa41-pca12sa23sa34ca,1)

■oca j 2 (sa1 2ca2 3sot3 4 + pasa2 3ca3 4sa4 J }

+ a {-c20, .s2a s2a (o + ca ca )
34 4 12 2 3 ^ 23 3 4 ;

+c04[-sal2sa41(pca12sa23ca34sa4l+sal2ca23sa34ca4l) 

+2pca12sa12ca23sa23(ca23ca34-ca41ca12)]

+as2a12s2a23-s2a12s2a41ca23ca34

+ (s2a12c2a23 + s2a23) (ca2 ,m, 4-ca„ , ca, 2) }

+a23Sa23Sa34{-c204S2ai2S2“23+2PC04C“l2Sai2Ca23Sa23

+ s 2ax 2c2a2 3 + s 2a23}

+ pai2Sa2 3Sa3 4{"c 304S2ai2S2a2 3+2Pc204Cai2Sai2COt2 3Sa2 3

+ C0Js2ai2C2a23 + S2a23^}

= 0. (5.6.J)

This equation is to be an identity in c©4. Clearly, one 
solution is

a = a = a = a =0.
1 2 2 3 3 4 4 1

We shall denote it by C.

This solution demands no constraints on the twist angles above 
those already established by equations (5.6.1). Equations 
(5.6.II) are identically satisfied. Hence, any of the C-H-C-H- 
solutions listed in Table 1 of reference [1] or Table 6.2.1 of 
section 6.2 is applicable here, after appropriate 
simplifications.
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To seek out other solutions, we equate coefficients of powers 

of c04 in equation (5.6.j).

c30 : a41sa34 = - opa12sa23

c204: pa41s2a34ca23(aca12-ca41)-a34sa12sa23(a+ca23ca34)

a23Sai2S2a23Sa34 + 2ai2Cai2COt23Sa23Sa34 = 0

c104: a4 x sa2 3sa3 4(asza12sa23sa34-psaj2ca23ca34sa4l

COt 1 2Sa2 3S013 4C014 1 )

+ a34[2pca12sa12ca23sct23(ca23ca34-ca41ca12)

sc1!s(lu(pc«12sa!3ca34sautsal2ca!!sail|call)]

+2a23pca12sa12ca23s2a23sa34

+ a12psa23sa31((s2a12c2a23 + s2a23)

c°04: -oa41ca12sa23sa34(sa12ca23sa34 + posa2 3ca34sa4 J

+a [os2a s2a -s2a s2a ca ca34 12 23 12 41 23 34

+(s2a12c2a23+s2a23)(ca23ca34-ca41ca12)]

+a23sa23sa3,(s2a12c2a23+s2a23) = 0

(5.6 . k)

Let us first assume that pa=l. Then, from the first of 

equations (5.6.k), it follows that a41=a12=0.

Then, by inspection of Table 1 in [1] and Table 6.2.1 in 

section 6.2, and excepting those cases covered by solution 

C, we must have that a23=a34^0.
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Substituting these results into the second of equations 

(5.6.k), we find that

(o + ca2 3ca3J + sa2 3Sa3 4 = 0-

That is,

ca ca = - (a + sa sa 1 .

Checking the relevant entries in Table 1 of [1] and Table 

6.2.1 of 6.2 yields the information that, in all cases, o=l 

(There are, therefore, actually no eligible cases in Table 

6.2.1.). Hence, this last requirement implies that

Ca23COt34 < - 1>

which is impossible.

We therefore conclude that

pa = - 1.

Let us first examine the relevant entries in Table 6.2.1 of 

section 6.2. Since p=-l for this table, we need only look at 

those cases for which a=l not already covered by C. We shall 

investigate each relevant case in turn.

a23=a41^0’ ai2 = a34=0> a12 = 2Tr_a34» a23 = 0i4i:

From the first of equations (5.6.k), a41=0. So this case 

will be included under C.

ai2 = a34^0> a23=a41 = 0> ai2 = ,T + a34’

From the first of equations (5.6.k), a12=0. This case will

also be included under C.
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^2 3 ^3 4^’ ^12 ^41 ^ > *^12 2 ^ ^ 4 j j ^23 ^ 3 4 ‘

The second of equations (5.6.k) implies that

1 + c 2a2 3 + S2a23 = 0.

So there is no solution for this case.

a23 a34 + a41+ai2> a23 CX34 a4 1 ^TT"ai 2 *

The first of equations (5.6.k) implies that

4 1 ai 2 »

whence a = a + 2a2 3 3 4 1 2

Then, in the second of equations (5.6.k),

a3,s2a23(l + c2a23) + (a3lt + 2ai2)s‘,oi23 + 2ai2c2a23S 

• • 2a3- + 2aiz = °>

whence a = a, = 0.3 4 12

Again, a special case of C is indicated.

2 3 0.

a3 4 = a4 1 +ai 2 + a2 3 > ai2'7T=0t2 3=a3 4 = 7T"a4 1 :

From the first of equations (5.6.k), we see that

a = a ,4 1 12

whence a„ = 2a, „ + a„ .3 4 1 2 2 3

In the second of equations (5.6.k), then,

^ai 2 + a2 3^ S a23 ( 1 + C tt2 3^ + a2 3S tt2 3 ’^1 2C tt2 3S a 2 3 ^

2 a 1 2 + 2 a 2 3 0,

ai 2 ~ a 2 3whence 0.
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A special case of C is once again indicated.

It only remains to test the entries in Table 1 of reference 
[1] not already covered by C for which o=-l. We find that 
there are only two possibilities:

(a) 1 2 3 4 2 3 4 1 1 2 3 4 2 3 a 4 1

(b) a12 + a41 a 2 3 + a 3 4 ai2 a 3 4 a 2 3 0t41 77 “ 06 x

(a)
The first of equations (5.6.k) may be rewritten as

This result will be an extra constraint on the linkage.

The other three of equations (5.6.k), by substitution of the 
various constraint relations, are all identically satisfied.

We call this solution D.

(b)
The first of equations (5.6.k) yields

a 4 i “ a 1 2 *

whence a23 + a34 = 2a12.

The second of equations (5.6.k) becomes

“ai2S2ai2Cai2^"Cai2+Cai2)"a34S2ai2^"1_c2ai2^

whence
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a3 4 (1 + C 0tl2^+a23S a 1 2 + 2 a x 2 C C(12 0.

Thus ,

a 2 3 a34 ^a2 3+a3 4)*“ ^1 2 + ^ai 2^ ^12 _ ^ >

so that

a = a2 3 3 4

Hence,

a,„ = a_ = a = a12 23 34 41

We -therefore obtain a special case of solution D.

The final step is to determine what further conditions, if 
any, are necessary for mobility of joint 3, by testing 
solutions C and D in equation (5.6.12).

For both solutions, since R4=h=0, R2 is also zero.

C
Equation (5.6.12) reduces to

r 3 = 0-

That is, we have a spherical four-bar, Delassus solution 
number d.5.

D
Equation (5.6.12) becomes

a41s04sot34 + r3 + a12as04sa23 = 0

which, by the first of equations (5.6.k), further simplifies
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to

Hence, we have the Bennett linkage, Delassus solution number 
d. 13 .

We have demonstrated that the general C-H-C-H- linkage has no 
proper derivatives of connectivity sum five and mobility one. 
Further, the only derivatives of connectivity sum four and 
mobility one are the relevant Delassus solutions, here given 
as A, B, C and D.
Solution C, it might be noted, does not include all spherical 
four-bars, but is limited to those governed by equations 
(5.6.1). The generalised d.5 linkage is a degeneracy of the 
H-C-C-II- loop, as already pointed out in section 5.1.
The preceding analysis gives some indication of the very 
special nature of the Bennett linkage, solution D. Of all the 
C-H-C-H- solutions, only two could be identified with d.13. 
Again, the Bennett linkage is obtainable as a degeneracy of 
H-C-C-II- .

We have also, in passing, taken the final step in establishing 
the standing of the general C-H-C-H- linkage, for the following 
reason. In references [1] and [4] and section 6.2, rotational 
mobility of all four joints of the C-H-C-H- linkage is 
confirmed, but it would be necessary, strictly, to demonstrate 
that the cylindric joints were translationally mobile. In 
other words, we should need to show that neither cylindric
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joint could be replaced by a screw or revolute without 
introducing further dimensional constraints into the linkage, 
or locking joints.

In the foregoing analysis, as preparation for solutions C and 
D, we tried to replace a cylindric joint by a screw. We found 
that the C-H-C-H- linkage immediately degenerated to either 
a spherical or Bennett chain. It is clear that the question 
of revolute replacement of a cylindric joint was included in 
the above process. Thus, the checking is complete and the 
C-H-C-H- linkage solutions are vindicated as proper, mobility 
one .
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5.7 The governing equations

Detailed below, for each Delassus linkage and each parent 

linkage encountered in the preceding analysis, is a set of 

corresponding independent closure equations and dimensional 

constraint relations. All of the equations given are readily 

derivable from information contained in the relevant sections 

above, possibly augmented by closure equations (5.1)-(5.9).

Whether or not a particular linkage has -R- derivatives 

free from part-chain mobility can be checked by setting any 

desired screw pitch equal to zero in the dimensional conditions 

and, less often, in the closure equations.

D e Is. s_s u s 1 in k a ^e s^

d.l

H-H-H-H-: screws parallel, pitches equal

01+02 + 03 + 04 = 2k7T (i)

a4 1C( ^ 3 + ® 4 •) + a3 4C®3 + a2 3+ai2C02 ~ ^ (ii)

a4isC03+04)+a34s03-a1 2 S 0 2 = 0 (iii)

where

R l + R 2 + R 3 +R 4 + 2 kiih = 0

d. 2

P-H-H-H-: screws parallel, pitches

screws

equal, slider normal to

02+03+04 - (2k+—)tr (i)

-°a4l'aa34C04+a23C®2+ai2 = 0 (ii)

oa,,s0 ,+a sO + r , sot , „3 4 4 2 3 2 1 1 2 = 0 (iii)
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where

d. 3

P-P-H-H-

where

and

d. 4

P-H-P-H-

where

0j= —tt and R2 + R3 + R4 + (2k+i^)TTh = 0

screws parallel, pitches equal, sliders normal to 

screws

03 + ©4 = (2k+l)7T - ooj

-a.,ca, +a,,c0 +a,,+ar,sa,n = 041 12 34 3 23 1 12

aa41sa12+a34s03+r2+r1ca12

(i)

(ii)

(iii)

s0 = s02 = a

R3 + R4 + oa12 + [ (2k + l) 7T-aa1 2 ]h = 0

screws parallel, pitches equal, sliders normal 

to screws

02 = cr04 - (2m+—2^)^

oa41c04+aa34+a23+pa12c04+or1s04 = 0

a41s04+r3+paa12s04-r1c04 = 0

(i)

(ii)

(iii)

c0j = pa c03 = a

R2 = aR4 + (2m+^-£-)7rhand
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d. 5

R-R-R-R-: spherical linkage

Here, since

R j = R 2 = R 3 = R4 = 0 

a,0 = a00 = a,, = a,, = 0,1 2 2 3 3 4 4 1 ’

the translational closure equations (5.10) - (5 .12) are 

identically satisfied. Three independent equations may be 

chosen from (5.1)-(5.9) to form the governing set.

d. 6

P-P-P-P-: spatial four-slider

The three translational closure equations (5.10) - (5.12) are 

here the three independent equations. The are fixed; one 

of them may be chosen freely, and the other three are determined 

in accordance with equations (5.1)-(5.9), assuming given 

angles of twist.

d. 7

H-H-H-H-: two parallel pairs of coaxial screws

CD + CD
N>

II (21+1)71 (i)

e3 + = (2m+l) tt (ii)

R1+R2+R3+R4+h101+h202+^3®3+^4®4 c 0 (iii)

where

a 1 2 3 4 a 2 3= a = 0 a„i t 0
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d. 8
P-P-H-H-: screws coaxial, sliders lying in planes parallel

to each other and to screws

03 + 04 = 2 k TT + —j^-7T (i)

r 2 SCX2 3 = QTr ! Sa4 i (ii)

R +R +h 0 +h 0 +r ca +r ca = 03 4 33 4U4 2 u23 1 U41 (iii)

whe re

c0j = a c02 = t

a12 + xa,, + aa2 3 4 1

a 1 2 + T£l23 + 0a41

d. 9

H-H-H-H-: screws parallel, kite shape in projection, pitches 

of screws in plane of symmetry equal to each other 

and to arithmetic mean of remaining two

02 = 04 + 2m7T

0j + 03 + 204 = 2 (k-m)7T
0 0 

? 2 ’ 2 ? 1a23 cos ~2 = ai2 cos —2

(i)

(ii)

(iii)

whe re

4 1 12 a34

h +h2 4

2 3

- (m + k) —j]Ri+R2 + R3+R4 = 27T[(m-k)
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d.10
screws parallel, parallelogram in projection, sums 
of pitches of diagonally opposite screws equal

0+0= (21 + 1) TT

0j + 02 = (2iti + 1)tt

04 = 02 + 2n7T

(i)

(ii)

(iii)

where

a 4 1 a2 3 3 4 a 1 2

h 1 + h 3 h2 + \

Ri+R2 + R3 + R4 + (2m+l) mh 1 + (21 + 1) ttIi

+ 2nTT (h -h3) = 0

d. 11
II-H-H-H- : screws parallel, anti-parallelogram in projection, 

pitches of alternate screws equal

02 + 04 = 2mTr

01 + 0 =2 (k-m) 7T

a23s(03 + 0j+ai2(s03+s01() = 0

(i)

(ii)

(iii)

where

a 4 1 a 2 3 a 3 4 a 1 2

\ = h 2 h 3 = hl

R1+R2+r3+r, 2 tt [ (m-k) hj -mh2 ]
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d. 12
P-H-P-H-: screws parallel, pitches equal, sliders bilaterally

symmetric with respect to the plane containing the 
screws

G 2 = O04 - (2m + tt (i)

aa41c04+aa34+a23+p(a12c04+ar1sa12s04) = 0 (ii)

aUSa23S04+r3+Paai2Sa23S04

+rl(caj2ca23-pc04sa12sa23) = 0 (iii)

where

cOj = pa c03 = a

ca12 = - aca41 ca23 = ” aca34

R2 = aR4 + (2m + —-y—) tth

further constraints demanded by each of the particular 
solutions - see 5.6A for details

d. 13
R-R-R-R-: Bennett linkage

02 + 04 = 2k7T (i)

Ql + 03 = 21 tt (ii)

AND
one equation from the following set, for example
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cG1s02sa23+s01c02cax2sa23+s01sax2ca23 = - s©2sa12 

S0Js02sa23-c01c02ca12sa23-c01sax2ca23 = c02sa12ca23+caj2sa23 

c01c02sa23-sGjs02ca12sa2g+cGjsax2+sa23+c02sa12 = 0 

-S01c02sa23-c01s02ca12sa23-s01sa12-s02ca23sa12= 0

s01s02sa12sa23=(c01+c02)(ca23-ca12)

where

a

a

a

1 2

1 2

2 3 sa 1 2

= 0

= a41

= <*41 i “i!

a i 2 s a 2 3

Par ent_li_nkages_

P-P-H-C-: (d.3, d.8)
screw and cylindric joints parallel

c(03+04) Ca23Ca41~CC612 

S0t2 3 S0t4 1
(i)

^4 i 2 ^^2 3^^4 i ca12)+a12sa41 (ca12ca23 ^ cx 4 ^)

+ a2 3 SOt4 1 SCX1 2 Sa2 3

+ a34sa41sa12sa23C03+r1sa41s2a12sa23s02 - 0 (ii)

^4 i sotj 2sa23s02-a1 2 s ex 2 3 s ot^ iCcx23s02 + a34scx23Scx4 jSOg

+r2s2a23sa41+r1sa41(cat2-ca23ca41) = 0 (iii)

a12sa23s02+r4+(R3+h3 03 )+r2ca23+r1cal4l (iv)
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whe re

cO
Ca4 lCai 2 COi23

sa4 3 s a ^ 2
cO

ca l 2Ca2 3 ~C0t4 1

Sai 2S0t2 3

two parallel C-H pairs

0J + e2 - (2k + 1+2a)ir (i)

03 + 04 = (21 + ii2)TT (ii)

-aa41+a31tc03 + a23 + a12c02 = 0 (iii)

a34S03+(R2+h202^Sa23“ai2S02Ca23+riSa23
= 0 (iv)

(R4+h404)+r3+(R2+h202)Ca23+ai2S02Sa23+ri ca23=0 (v)

two parallel C-H pairs

Oj + 02 = (2k + 12°)tt (i)

03 + 04 = (21 + ) TT (ii)

-°a41+a34C03+a23+ai2C02 = 0 (iii)

a3 4S^3 + 'I'2Sa2 3 a 1 2s02ca23+(R1+li101)sa23 0

(R4+1\0J+r3+r2ca2 3+ai2S02sa:2 3

+ (R +h G )ca = 0
V 1 1 1 ' 2 3

P-H-H-C-: (d.2)

screw and cylindric joints parallel

1 + a-02 + 03 + 04 - (2k + —2~-)

oa4Ic02+a34c03+a23+a12c02+rls02sa12 = 0

(iv)

(v)

(i)

(ii)

aa,,s0 +a,,s0 -a, s0 +r,c0 sa,„41 2 34 3 12 2 1 2 12
0 (iii)
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r,+ (R3 + h 3 03) + (R2 + h202)+riCai2 = 0

where

P-H-C-H

0 = —TT
U1 2 77

(d. 2)
screw and cylindric joints parallel 

0 2' + 0 3 + 0 4 = + —2g-) TT

-oa1)1c02 + a34c03 + a23 + a12c02 + r1s02sa12 = 0

aa4lS02+a34S03"ai2S02+rlC02Sai2 = 0

(R4+h404)+r3+(R2+h202)+rjCaj2 = 0

where

1 + a

C-H-H-H-: (d.l, d.7, d.9-d.ll)

all joint axes parallel

Ql + 02 + 03 + 04 = 2kTT

aMC(03+04)+a34C03+a23+ai2C02 = 0

a4is(03+04)+a31(s03-a12s02 = 0

(R4+h404)+fR3+h303)+(R2+h2G2^+ri = 0

C-H-C-H-: (d . 4 , d.5, d.12, d.13)

no two adjacent joint axes parallel

(iv)

(i)

(ii)

(iii)

(iv)

(i)

(ii)

(iii)

(iv)

governed by equations (5.6.1)-(5.6.12) and constraints (5.6.1) 

and (5.6.II)
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6

FOUR-BAR LINKAGE ANALYSIS

6.1 The task

Apart from some relatively minor errors (most of which 
are mentioned in this section and 6.2 below), Waldron [45, 
47,48] has listed the existence criteria for apparently all 
proper, single closed loop four-bars of mobility one, except 
where screw pairs are present. To complete the analysis of 
overconstrained four-bars, we shall consider in this chapter 
those remaining loops which contain screw joints. Elsewhere 
in reference [45], and in [42,44], Waldron has actually treated 
certain classes of four-bars containing screw pairs. Other 
relevant references for two of these classes are Voinea and 
Atanasiu [40] and Hunt [27].

In chapter 5 of this work, following Delassus [11-13], we 
were able to isolate all four-bar linkages with mobility one 
and connectivity sum four, along with some other loops of 
higher connectivity sum. It remains, therefore, to consider 
systematically only those linkages with screw joints of 
connectivity sum five, six and seven. In doing so, we shall 
make use of some of the references given above.

Conne_ct^ivity_sum_fJive l_oops_

The relevant four-bars in this category are the C-H-H-H-, 
C-H-H-P-, C-H-P-H-, C-H-P-P-, C-P-H-P- chains. Using the 
spherical indicatrix for each of the last four loops, we see 
that the cylindric and screw joints must be parallel, for 
mobility, in every case. Each of the four loops, then, will
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be a special case of the parallel-screw linkages [27,40,42,45] 
detailed in the Introduction to chapter 7. In addition, the 
C-H-H-P-, C-H-P-H-, C-H-P-P- chains are 'parent' linkages for 
some of the Delassus solutions, and are treated at some length 
in chapter 5, where their independent closure equations are 
given.

We now consider the C-H-H-H- chain. It is convenient to 
investigate all possibilities by checking through sections 
5.2-5.6. Any mobile C-H-H-H- loop must appear among the sub­
categories or derivatives developed in those sections. In so 
doing, we find that the only proper solution is the parent 
linkage isolated in section 5.5. This linkage has all joint 
axes parallel, and is therefore a special parallel - screw 
linkage. For this loop to be proper, the three screw pitches 
cannot be equal.

It is interesting to note that all the loops in this 
category have solutions and that those solutions are all 
parallei - screw linkages. Their -R- derivatives (except for 
the C-H-H-H- case), which were isolated by Waldron [45,47,48], 
are also proper parallel-screw linkages. Even the improper 
C-P-P-P-, which we did not have to consider here, can be 
regarded as a special parallel - screw linkage.

Co nn ec t_ i v i ty _s urn _s ix 1 oo p s

The linkages to be examined here are the C-C-H-P-,
C-H-C-P-, C-H-C-H-, C-C-H-H-, S-H-P-P-, S-P-H-P-, S-H-P-H-, 
S-P-H-H-, S-H-H-H-, F-H-P-P-, F-P-H-P-, F-H-P-H-, F-P-H-H-, 
F-H-H-H- chains. For the first two loops, the spherical 
indicatrix allows us to conclude that, for rotational mobility,
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the screw and cylindric joints are parallel. Then, each of 
these linkages will have part-chain mobility, based on the 
motion of a parallel-screw linkage, and so may be excluded.
(In fact, because the cylindric joints are parallel, there 
will be part-chain mobility based on the P-P- linkage.) We 
may replace the spherical joint in each of the S-H-P-P- and 
S-P-H-P- loops by three concurrent revolutes and set one of 
them parallel to-the screw joint axis. The spherical 
indicatrix then shows that all three revolutes are parallel 
or that one or more are locked with the remainder parallel to 
the screw. In any case, we see that the linkage must be 
improper, the spherical joint being replaceable by a single 
revolute. The only solutions will be based on Delassus four- 
bars. Thus, these two chains may also be eliminated. If we 
replace the planar joint in each of the F-H-P-P- and F-P-H-P- 
loops by three distinct revolutes all normal to the plane, 
the spherical indicatrix requires, for mobility, that the 
screw joint must also be normal to the plane. Each loop will 
then possess part-chain mobility based on the motion of a 
parallei - screw chain. We may therefore exclude these two 
linkages.

We have eliminated six of the fourteen potential linkages 
in this category. We shall now consider the two loops F-H-P-H- 
and F-P-H-H-. In each case, we may again replace the -F- joint 
by -R-R-R- normal to the plane. For a proper, mobility one 
linkage with no locked joints to result, the spherical 
indicatrix requires that the two screw pairs be parallel to 
each other, but not to the revolutes. We then have a linkage 
which is a special parallei-screw chain.
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The S-H-P-H- and S-P-H-H- loops require extended analyses 
and are fully treated below, in sections 6.3 and 6.4 
respectively. The groundwork for the C-II-C-H- linkage and 
about half of its many solutions were due largely to Baker 
and Waldron [1,4]. The remainder of the analysis is given in 
the next section. To analyse the C-C-H-H- linkage, it is 
convenient to make use of a C-C-R-R- analysis and the theorem 
of section 4.3. 'Unfortunately, the known results for the 
C-C-R-R- loop are doubtful. For this reason, a fresh 
treatment is presented in section 6.5.

The remaining three chains, C-C-H-H-, S-H-H-H- and F-H-H-H-, 
have, at this time, defied complete analysis. Because of the 
screw joints and the absence of simplifying geometrical 
properties, the general forms of these linkages give rise to 
relatively intractable algebraic equations. The extent to 
which the loops have been investigated is presented in section 
6.6.

Connectivi t_y_sum_sevepi_loops

General connectivity sum seven loops, we know, have 
mobility of unity. But not all linkages with connectivity 
sum seven can be regarded as general. The presence of joints 
with connectivity greater than one makes such linkages special, 
and often results in part-chain mobility. The eleven linkages 
to be considered in this category are the S-C-H-H-, S-H-C-H-, 
S-H-C-P-, S-C-P-H-, S-C-H-P-, F-C-H-H-, F-H-C-H-, F-H-C-P-, 
F-C-P-H-, F-C-H-P-, C-C-C-H- chains.

Using the spherical indicatrix, we see that the F-H-C-P-, 
F-C-P-H- and F-C-H-P- chains have part-chain mobility, being
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based on special parallei - screw linkages of the connectivity 
sum six type, since the screw and cylindric joints must be 
parallel in each loop. It is noted that Waldron [45,48], who 
defines "proper” differently, has listed the -R- derivatives 
of these loops as proper solutions. The S-H-C-P-, S-C-P-H- 
and S-C-H-P- chains are seen, through the spherical indicatrix, 
to have mobility one. They are based on special parallel-screw 
linkages of the connectivity sum six variety, the spherical 
joint being equivalent in each case to only two revolutes.
The remaining five linkages, namely S-C-H-H-, S-H-C-H-, 
F-C-H-H-, F-H-C-H- and C-C-C-H-, are all of mobility one and 
true connectivity sum seven, generally. Certain dimensional 
conditions could, of course, produce greater mobility, locked 
joints or smaller effective connectivity sum.
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6.2 On the C-H-C-H- linkage

Recently, Baker and Waldron [1,4] claimed to have 

completely solved the overconstrained C-H-C-H- linkage 

existence problem, and to have listed all the individual cases, 

in terms of the differing constraints on linkage parameters.* 

Unfortunately, as pointed out in an errata sheet for [2], all 

solutions had not been isolated. Inequalities (7) in [1,4] 

were over-restrictive. They may, however, be easily replaced 

by (1.1) of this work together with the constraints

saii+l ^

since the case of parallel adjacent axes has been dealt with.

If we now select 1=1 in (1.1), and take into account the 

solutions found in [1,4], any remaining cases will be 

governed by the restrictions (6.2.1).

0 « aii+1> i=l,...,4

“ii + l < 1T> i = 2,3,4 ■ (6.2.1)

a: 2 < 2tt

On reworking the analysis presented in [1,4] which leads to 

the preliminary solutions, we find that the wider set of 

constraints (1.1) requires us to examine two additional 

possibilities which are subject to the respective conditions 

given below.

The -R- derivatives of the C-H-C-H- solutions are also listed 
in [1]. This list should be consulted in preference to a 
corresponding, but incomplete, set in [45].
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lib: h4 = pNh 2, N> 0

Cai2Ca23 Ca34Ca41 " Sa!2Sa23 Sa34Sa41

S04 = ± S02 C04 = - C 0 2

IVb: P(iNh 2 + :), N>0

Cai2Ca23 " C0t34Ca41 "Sai2Sa2'3 " Sa34SCt41

S04 = ± S02 C04 = ~ C02

Each of the two types is also governed directly by (6.2.1)

As in [1,4], we may test 11b and IVb simultaneously by 

considering only the constraints common to them, namely

ca, ca0, - ca, ca,,12 2 3 34 41

SOtl 2SCX2 3 Sa3 4Sa4 1 ^

04 = 0 0 2 + (2k+l)7T 

together with (6.2.1),

Recalling closure equation (5.9), by taking the secondary 

part of its dual, we obtain

ai2fc02coii2sci2 3 + sai2cot2 3na23(c02sa12ca23 + ca12sa23)

a3it(c0itca3i,sai,i + soi3i)ca,)1)

= (R2+h202)S02Sai2Sa2 3'',:R4 + 1\00S0'*Sa3i,Sa4 1 ’ (6.2.2)

which is given as equation (8) in [1,4]. Using the third of 

equations (i), equation (6.2.2) may be replaced by
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ai2(c02ca,2sa23+sa12ca23)+a23(c02sai2ca23+cai2sa23)

^ 3 (C02CO(,34SO(,4 1 ^ ^ 3 4 ^^4 1 ^ ^4 1 (C02SO(.34C(X43- COtg^SOt^^}

(R2+h2G2^S02Sai2Sa23"CR4+h404)S04Sa34Sa41‘ (ii)

Differentiation of (ii) with respect to 0 leads to

S 0 2 ^ai 2Cai 2S0t2 3 + a2 3Sai 2 CCt 2 3+a 3 4 CCt 3 4 SCt4 1 + a 4 1 SCt3 4CS4 1 )

■h2s02sa1 2sa2 3 oh4s04sa34sau

+(R2+h2Q2)cG2sa12sa23-a(R4+h404)c04sa34sa41

Rearranging terms, multiplying throughout by s02 and applying 

the second and third of equations (i) then yields

-s202{a12ca12sa23 + a23sa12ca23 + a34ca34sa41 + a41sa31)ca41

+ Ch -h4 ]sax 2sa2 3 }

(R2 + h202)S02C02Scti2Sa2 3^R4 + h404)S04C02Sa3 4Sa4 1

Substitution of (ii) then results in

(c ©2 l){a12C0t12Sa2 3 + a2 3S0t12Ca2 3 + a3 4Ca3 4Sa4 1+ a4 1S0t3 4Ca4 1

+[h2-h4]sa12sa23}

C02{a12(c02ca12sci23 + sa12ca23)+a23(c02sa12ca23 + ca12sa23)

+ a34(c02ca34sa41-sa34ca41)+a41(c02sa34ca41-ca34sa4i) }

This equation may be simplified to



177

[h2-li4]sa1 2sa23c202

^^'12'^^'12^^'2 3"*'^'2 3^'^12^^'2 3 ^■3 4'^<“^3 4^''^4 1~^’4 1^'^3 4^^4 1-)'~'®2

( ^ 1 2 C Of, ^ 2 ^ ^ 2 3 + ^ 2 3^^1 2 ^ ^ 2 3"*"^34^^34^^4 l"*"^4 1 3 4 ^^4 j )

- [h2 -h4]sa12sa2 3

= 0. (iii)

For (iii) to be identically satisfied, we require, in view of 
(6.2.1), that

hu = h = h, say

ai2Sai2Ca23+a23Cai2Sa23'a34Sa34Ca4ra41Ca34Sa41

12Cai2Sa2 3 + a2 3S0l12Ca2 3 + a3 4C013 4Sa4 1+ a4 1Sa3 4C(14 1 *

(iv)

For type lib, the first of conditions (iv) requires only 
that pN=l. For type IVb, it is necessary that

R
ph = xNh + — ,7T

or R2 = Trnh, n=0, ±1,±2,....

Thus, IVb is a sub-type of lib.

Substitution of (i) and (iv) into equation (6.2.2) yields 

{R2+h02}s02sa12sa23 = {R4 + h[a02+(2k+l)7T]}as02sa12sct23.

Because of (6.2.1), this result is easily reduced to

R 2 = o{R4+(2k+l)nh},

or R2 - oR4 = (2m+l)Tih, m=0,±1,±2,....
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This relation together with equations (i) and (iv) provides 
us with the complete set of existence criteria for solution 
type lib. Rearranging them into the form used in [1,4], we 
have the following groups of constraints.

R2 - qR4 = (2m+l)7rh

where h„ = h, = h2 4

and 04 = o02 + (2k+l)7r

Ilb.l

Sai 2Sa2 3 Sot34Sa4i

ca12ca23 - Ca34Ca4i

IIb.2

ai2Sai2CCX23 + a23Cai2Sa23 a34S0t34Ca41 + a41Ca34Sa41
IIb.3

ai2Ca,12S0l23 + a23S0i12CCl23 "a34Ca34SCt41 a4 1Sa,34Ca4L

We shall also find it convenient to use the following result 
as an alternative to the first or third of Ilb.l.

r4 + h4©4 = a(R2+h2Q2) (v)

Determination of individuals possi_bi_l_ities.

Having isolated the one extra preliminary solution lib, 
we may now proceed to enumerate the separate potential 
solutions contained in it. It will be first necessary to 
determine the possible linkage constructions which satisfy 
both IIb.2 and IIb.3. We shall begin by solving equations 
IIb.2, and then consider what further constraints are imposed 
in order that IIb.3 be satisfied.

By analogy with the result in [1], we may deduce that the 
two means of satisfying IIb.2 are given by the following
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relations.

-sa 1 2 3 4 sa23 = sau1 ca,,ca'4 1 12^u23 ca,u ca34^^41

S a i 2 Sa4 1 Sa2 3 Sa3 4 COt12CCX23 Ca,34CC(,41

Now each of these possibilities possesses two solutions 

giving us in all the following four.

“n - 2l,-~ “st a23 = <*41

“l2 = 11 + a34 “23 = " ■ a41

“l! = 2,7 ‘ “41 “2 3 = a34

a12 = TT + a41
“23 = * ' a34

IIb.2.(i)

We proceed to substitute in turn each of the solutions 

Ilb.2.(i)-(iv) into equations IIb.3, to determine the 

corresponding sets of constraints for the a^ .

IIb.2.(i) with IIb.3:

ai2Sai2Ca23+a23Cai2Sa23=_a34Sai2Ca23+a41Cal2Sa23

ai 2 COt 1 2S0t2 3+a23SOtl 2Ca2 3 ~ a 3 4 Ca 1 2S0t2 3 + a4 lSai 2 C a 2 3

imply

(ai2+a34)Sai2Ca23 (-a4 1 ’a2 3) ^^1 2^^2 3

(a 1 2 + a3 4) Cai 2sa2 3 “ ^a4 1 ~a2 3^ sa1 2Ca2 3 -

(iv)

This pair of equations yields the four solutions given below.
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a23 a 4 1 a 1 2 a 3 4 0 a12 = 27T-a 3 4 a2 3 a4 1

3 TT
12 ~ a23 a34 a41 2

a 4 1 " a 2 3 a 1 2 + a 3 4 ai2 ^77 ~ 01 3 4 a23 a4 1 ai2 77

a 2 3 ” a 4 1 a 1 2 + a 3 4 ai 2 ^71 tt3 4 °2 3 tt4 1 tt3 4

IIb.2. (ii) with IIb.3:

a 1 2Sai 2CCt2 3 + a2 3Cai 2S0t2 3 a34Sai2CC123 a41CCt12Sa23

a 1 2 Ca 1 2 S a2 3 + a 2 3 S a 1 2 C a2 3 a34Cai2S0123 a 4 1 S a 1 2 C a 2 3 J

imply

^a23 + a41^Ca!2Sa23 ^ a 3 4 S1 2-^ SOtl 2C01 2 3

^23 + a4 JSai2C0t23 (a31f"'a12^Cai2Sa 2 3

Here, the four solutions are as follows

a,, = a, „ a„„ = a,3 4 1 2 2 3 4 1 = 0 a!2 = 77 + a34 a23 tt - a 4 1

3tt=__12 2 2 3 u3 4 u4 1 2

334 * a!2 = a 2 3 + a41 “l2 = 2lf ' “4! “23 “ “34 ‘ “li " "

a 1 2 - a 3 4 = a2 3 + 3 4 1 a!2 = 2 * ' “23 “34 = “u = “ 1 2 " ”

IIb.2.(iii) with IIb.3:

a 1 2Sai 2C0t2 3 + a2 3COtl 2Sa2 3 a34Cai2S0123 S4 1S0112C0123

ai 2Cai 2SCX2 3+a2 3SOtl 2Ca2 3 a 3 4 S a 1 2 C 01 2 3 ~ S 4 1 C 061 2 S a 2 3

imply
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(ai2 + a41^S0l12Ca23=^a3i)'a23)Cai2Sa 2 3

(a!2 + a4 JCai2S0t2 3=(a3 4-a2 3^Sa12Ca2 3 .

The four solutions here are listed below

23 “-34 12 4 1 0 a12 = 2tt - a41 a

3tt
1 2

2 3 3 4

a23 a3 4 a41 2

a 3 4 - 3 2 3 = 3 X 2 + a 4 1 2 2 IT - 01 ^ ^ a23 a34 ai2_Tf

a 2 3 ~ a 3 4 a 1 2 + a 4 1 ot = 2tt - a, , ot = a = a
12 41 23 34 41

IIb.2.(iv) with IIb.3:

ai2Sai2C0t23+a23C0l12Sa23 ’a34Cai2SOI,23+a41SOl12Ca23

ai2Cai2Sa23 + a23Sai2Ca23=-a34Sai2C0t23+a41Cai2Sa23

imply

^a23+a34^Cai2S0t23 ^41 ai2^Sai2C0t23

^a23+a34^Sai2Ca23 ~ ^ 4 l" &1 2 ^ Cai 2 S0t2 3 -

In this case, the four solutions are as follows

3 4 1 a 1 2 a 2 3 a 3 4

3 7T
06 1 2 Z

2 TT + 0t41 tt2 3

«23 = a34 = «41 = 2

IT ~ CL 3 4

a 4 1 " a l 2 a 2 3 + a 3 4 ai2 ^71 ~ a 3 4 a23 W4 1 ai2 77

a 1 2 a 4 1 a 2 3 + a 3 4 ai2 ^71 ~ tt2 3 a3 4 a 4 1 ai2 ~ 77

Only nine of the above sixteen potential solutions are 
distinct. They are listed below in a more systematic manner.
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Ca] a i 2
3tt

2 a2 3 = a34
7T

a4 1 2

1—
1

1__
1 a2 3 = a 4 1 a 1 2 a 3 4 = 0 ai 2 = 2 it - a 3 4 a2 3 a41

[tf] a 3 4 a 1 2 a 2 3 =
a 4 1 = 0 a x 2 = * + a 3, a23 ~ 7T~0t41

1---
1

"O1__
1

8 2 3
= a a

3 4 12
=

a 4 1
= 0

a!2 =
2 tt - a

4 1 “23 = a34

Le]
8 1 2

= a a
4 1 2 3

=
3 3 4

= 0 a!2 = 77 + a41 “n = ’ ‘ “34

l—
1

1__
1 a 4 1 a 1 2 + a 2 3

+
a 3 4 a 2 3 a 4 1 = a 1 2 -7T = 7T-a34

8 2 3 3 3 4 + a 4 1
+

a 1 2 a2 3 = a34 = a41 = 2ir - a12

[h] a 3 4 = a 4 1 + a 1 2
+

a 2 3 a2 3 a34 = a!2 - TT = TT - a41

1---
1

1__
1

8 1 2 = a 2 3 + 8 3 4
+

a 4 1 “34 = “41 = a!2 — 7T — 7T — a2 3

These are the solutions of equations lib .2 and lib .3. Equations
Ilb.l also apply to each of them.

Te^tin^ o£_pote^nt^ial_solut:ions

The nine different linkage arrangements isolated above, 
together with equations Ilb.l, represent possible C-H-C-H- 
solutions. They all permit mobility of joints 2 and 4. We 
shall now test them further by checking for rotational mobility 
of joint 3 (and, by symmetry, joint 1). This is achieved by 
substituting each of them in turn into closure equations (5.7) 
and (5.8). These equations may be simplified to the following 
two, respectively, by using the last of Ilb.l.

s0 sa, =-os0 c0,sa, -cQsGcasa, +S0 sa0,ca,. (6.2.3)212 2341 233441 33441 v '

C02Sai2COt2 3 + COl12SC12 3=:'aS02S03SOlm+C02C03COl3 4S“m

-c03 sa3 4 ca4: (6.2.4)
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For each potential solution, we shall eliminate 02 
between (6.2.3) and (6.2.4), and require that the resulting 
equation is an identity in 0 . We shall thereby determine 
for which values, if any, of a rotational mobility of joint 
3 is possible. Since equations (6.2.3) and (6.2.4) are 
rotational closure equations, the constraints on the link 
lengths in our potential solutions are here irrelevant.

Potential solution Lai:

Equations (6.2.3) and (6.2.4) are considerably simplified to 
the following two.

O = C03 '

0 = S©3 .

Clearly, no solution is possible.

Potential solution [2?]:

Equations (6.2.3) and (6.2.4) may be here written as follows.

S02^Sai2+aC03Sa23^+C02^S03Cai2Sa23^=”S03Sai2Ca23

s02(as03sa23)+ c 0 2(saj2ca2 3-c03ca12sa2 3) = -ca12sa2 3 + c03sa12ca2 3

We proceed to eliminate 02 between the equations by means of 
Cramer’s rule. In this context, the ’’determinant of 
coefficients” is

D = (sa12+oc03sa23)(sa12ca23-c03ca12sa23)-os203ca12s2a23

= c03sa12sa23(aca23-ca12)+s2a12ca23-aca12s2a23.

We shall assume that D^O, since this contingency will be 
covered under later headings, namely [/] and lg].
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With a view to 'solving’ the equations for s0 and c0 , we

now define D and D as follows, s c

DS =-S03SC‘l2COl2 3(Sai2CC‘2rC03Cai2Sa23)

-S03Caj 2Sot2 3 ( CCtl 2SCt2 3 + (“03Sai 2 2 3 )

s03(c2a12s2a23-s2a12c2a23)

DC =Oai2 + ac03Sa2 3) (-Ca12sa23 + c03sa12ca23)+os 203sa12sa23ca 2 3

C G 3 ( S a i 2Ca 2 3 ~ °C a 1 2 S a2 3+S a 1 2 S a2 3 ^ aCa2 3 ~ COt 1 2

Since s02 = and c02 = and s 202 + c2©2 = 1 , we have

that

D 2 = D2 - D 2 s c

That is, we require

s 03(c a x 2 s a23 s ot12c a2 3-^

{c03sa12sa23(aca23-ca12)+(s2a12ca23-oca12s2a23)}2 

-{c03(s2a12ca23-aca12s2a23)+sa12sa23(aca23-ca12)}2 

:(l-c203) {(s2aj 2ca23-aca12s2a23) 2-s2a12s2a23 (oca23-cct12)2}

:s203{s2ai2c2a23(s2ai2-s2a23)+c2a12s2a23(s2a23-s2a.2)}

:S 203 (s2a23-s2a12)(c2a12s2a23~s2a12c2a23) .

Now,

c 2 a s 2 a -s2a c2a =(1 -s2a )s2a -s2a (1-s2a )
12 23 12 23 12 23 12 23

s a2 3 s a12.
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We may conclude that [£>] permits full rotational mobility 

of the 1inkage.

Potential solution [c]:

We may write equations (6.2.3) and (6.2.4) as follows, for 

this case.

s02(sa12 + ac03sa23)-cO2(s03ca12sa23)=s0.3sa12ca23
_

s02(as03sa23)+c02(sa12ca23+c03ca12sa23)=-ca12sa23-c03sa12ca23 ,

As for [b], we eliminate 02 between the two equations. To 

this end, we define the following determinants.

D = (sa:2+oc03sa23)(sa12ca23+c03ca12sa23)+os203ca12s2a23

= c©3sa12Sa23(ca12+oca23)+s2a12ca23+aca12s2a23

Ds = S03sa12ca23(sa12ca23+c03ca12sa23)

'SG3Cai 2S0t2 3 (Cai 2Sa2 3 + C03Sai 2C0l23^

= s03(s2a12c2a23-c2a12s2a23)

- - (s a x 2+ ac0 3 sa 2 3) (ca j 2 sa 2 3+ c 0 3 s a x 2 ca2 3) - as ©3so(,1 2sa2 3ca2 3

-C03(S ai2Ca23+OCai2S a2 3^ ’Sai2S012 3 ^Cai2+OCOt2 3^

We may assume D^O, because such an eventuality is covered under 

[ft] and [i].
c r*

As for [b], since s©2 = pp and c02 = p-, we must have

D 2 = D2 - D s c
2 2



186

Substituting the respective expressions above, we require 
that

s2e3(s2a12c2a23-c2a12s2a23)2

= {c03sa12sa2 3(caj2 + aca23) + (s2a12ca23+aCai2s2a2 3) }2

-{c03(s2a12ca23+aca12s2a23)+sa12sa23(ca12+oca23)}2

= (l-c203){(s2a12ca2 3 + oca12s2a23)2-s2a12s2a23(ca12 + aca23)2}

=s203{s2a12c2a23(s2a12-s2a23)+c2a12s2a23(s2a23-s2a12)}.

By comparison with the relevant result for [b], we may conclude 
that [u] permits rotational motion about joint 3.

Potential solution [d]:

Equations (6.2.3) and (6.2.4) are reduced in this case to the 
fo1lowing two.

s02(l-oc03)sa12-cO2(s03ca23)sa12=(s03ca12)sa23

s02(osO3)sa12-cO2(ca23+c03ca23)sa12=(ca12+cO3ca12)sa23

If a=l, the equations are equivalent; 03 is determined in 
terms of 0 , which fact is compatible with linkage mobility 1. 
If o=-l, multiplication of the first equation by (l+c03), the 
second by s03, and subtraction yield the result

1 + c03 = 0,

which would indicate locking of joint 3 in rotation.
We may conclude that [d] is a solution only for a=l.
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Potential solution [e]:

Here, equations (6.2.3) and (6.2.4) are reduced as follows. 

sO2(l-ac03)sa12+c02(s03ca23)sa12=-(s03ca12)sa23
►

s02(as03)sa12-c02(ca23-c03cot23)sa12=(ca12-c03ca12)sa23

If a=l, multiplication of the first equation by (l-c03), the 
second by s03, and addition yield the result

1 - c03 = 0,

which would imply that joint 3 were locked in rotation.
If o=-l, the equations are equivalent; 03 is expressible in 
terms of 02 in the normal way for a mobility one linkage.
For [e] to be a solution, then, we require that o=-l.

Potential solution [/]:

For our present purposes, this case may be regarded as a 
special form of either [b] or [e]. Using the result for Le], 
the equation relating 02 and 03 reduces to

s02(l+c03) = s03(l+c02)caj2,

but the main consequence for [e] is here unaltered.
A solution is possible only for o=-l.

Potential solution Cg~\:

We may treat this case as a special form of either [b] or [dl. 

Using the result for the latter, the relationship between 02 
and 03 simplifies to

s02(l-c03) = - s03(1-c02)ca12.
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We may still conclude that a solution is possible only for
a=l.

Potential solution [/*]:

This case may be treated as a special form of either Q?] or 
[d]. Again, we may conclude that a solution here is possible 
only for o=l. The simplified relationship between 02 and 03 
is

S02(1-C03) = - S03 (l + c02)COj 2 .

Potential solution [£]:

We may here regard this potential solution as a special case 
of either [c] or [e]. Again, we may conclude that a solution 
is possible only for o=-l. The equation relating 02 and 0 
may be reduced to

s02(l+c03) = s03(1-c02)caj2.

The results of the above tests for potential solutions 
[a]-[£] are summarised in Tabl-e 6.2.1 below. The solutions 
given there all permit rotation of the four linkage joints.
We shall not demonstrate here that the solutions are proper, 
because this fact is established in section 5.6. That is, we 
may assume a true and active connectivity of two in each of 
the cylindric joints.
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Table 6.2.1

a2 3 a41 a 1 2 a 3 4 ^ ai 2 ^ ~ a34 tt2 3 a4 1 a= ± 1

S12 = a 3 4 3 2 3 = a41 = 0 ai2 = TT + a34 a23 = TT - a41 a = ±l

a. 0 = a„ a = a =02 3 3 4 4 1 1 2 a, „ = 2tt - a a = a1 2 4 1 2 3 3 4 a = +1

a. . = a, , a„, = a„, = 041 12 23 34 “l2 = 11 + akl “2i ' ' - “34 0=-1

a., = a.„ + a, „ + a,,41 12 23 34 “l2 ' ’ = “23 = a41 = 17 - “34 0='1

3 3 4 = a41 + 3 1 2 + a 2 3 “l2 ' ' = «23 = “34 = 17 ■ “41 0 = + 1

a 2 3 a34 + a4 1+ai2 277 ' “12 = “23 = “34 = “41 0 = + 1

a12 a23+a34+a41 “12 ‘ 77 = “34 = a41=7T ‘ “2 3 0='1

For each of the ten solutions in the table, equations 

Ilb.l hold, with the relevant value(s) of a. The last of 

equations Ilb.l is the closure equation relating 02 and 0 . A 

suitable closure equation relating 02 and 03 may be gleaned 

from the appropriate place among the tests above. A convenient 

closure equation relating 0 and 03 is that obtained by cycling 

the indices in (5.9), namely

-cG1sa41sa12 + ca41ca12=-c03sa23sa34 + cct23ca34. (6.2.5)

Two independent translational closure equations may be obtained 

from equation (5.10), one directly, the other by advancing the 

subscripts by 2. They are

a4i(-c02c03 + crs02s03ca3 4)+a(R2+h02)s03Sa3 4 + a3 4C03 + a23

+ax 2c02 + r1s02sa12 = 0 (6.2.6)
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and

a2 3 fc0ic02's0is02Cai2n(R2+he2)s01sa12+a12c01+a41

-a34c02-or3s02sa34= 0. (6.2.7)

Clearly, alternative equations may be used. One such 
alternative is that equation obtained by taking the secondary 
part of the dual of (6.2.5) to yield a relationship between 
r j and r3.

Just as in Cl], we may deduce the -R- derivatives of 
the solutions found above. Table 6.2.1 will remain unchanged, 
but equations (6.2.6), (6.2.7) and the first two of Ilb.l will 
be simplified by putting h=0. These C-R-C-R- linkages, of 
course, do not appear in Waldron’s [45] list.

A comparative note

In the Introduction to chapter 7, we shall remark at 
length upon the intrinsic value of algebraic techniques in 
linkage analysis, whilst showing that the earlier five-bar 
chains isolated were due to basically geometrical work. It 
is in order here, perhaps, to draw attention more briefly to 
a similar situation. The above results, coupled with those of 
[1], stand as a demonstration of the thoroughness of the 
algebraic approach. It would have to be conceded that, in 
comparison with a geometrical development, the algebraic 
analysis does not highlight the kinematic essence of the C-H-C-H- 
linkage, the spatial relationships among ax.es and links.

Waldron, in [44], was not seeking specifically C-H-C-H- 
linkages. He was considering the conditions for mobility of
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six-bar 1ine-symmetric linkages which, in their most general 
form, must contain three symmetric pairs of screw joints.
By allowing the screw axes of one pair to be coaxial with the 
screw axes of an adjacent pair, he produced a particular case 
of the C-H-C-H- solution given in [1] by the constraints

ai2 = a34 a 2 3 = a 4 1 a!2 = a34 a23 = Q41 R^R^IUTTh.

Waldron’s approach was through algebraic screw system theory, 
which allowed him to study definitively symmetric linkages 
of the generalised types which he sought to investigate, and 
which gave rise to by-products such as the C-H-C-H- chain 
mentioned above. The method certainly provided insights, and 
described some linkage motions elegantly, but it is incapable 
of unearthing the detailed, exhaustive results obtained in 
this section.

In the discussion to [44], Hunt also obtained the 
particular C-H-C-H- chain given above, but by pure geometrical 
means, and independently of the kind of general line- 
symmetry propounded by Waldron. Indeed, Hunt, by screw 
geometry alone, was able to offer a second C-H-C-H- solution, 
a special case of the solution listed in [1] with the 
constraints

a 1 2 a 4 l a 2 3 a 3 4 2 tt4 1 tt2 3 a3 4 R2R4 2m7Th.

This linkage, whilst possessing a line of quasi-symmetry, 
could not be included in the line-symmetric class of linkages 
examined by Waldron. Hunt’s geometrical treatment of mobile 
linkages is also of great value in exposing spatial 
relationships for certain classes of linkages, but is, again, 
completely unsuitable for comprehensive analysis. One feels



inclined, nevertheless, to liken the geometrician and 
algebraicist, respectively, to the artist and artisan; 
hopes that their works are always complementary.

192
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6.3 The S-H-P-H- linkage

The spherical joint in the S-H-P-H- linkage may be 
replaced by three concurrent revolutes. If two of the 
revolutes are arranged to be parallel to the two screws, the 
spherical indicatrix of the linkage shows that the third 
revolute must be either locked or parallel to one of the 
others. In either case, we conclude that the -S- joint is 
replaceable by only two revolutes, making the linkage 
kinematically equivalent to a R-H-P-H-R- five-bar chain. By 
direct reference to section 7.5, then, we may isolate any 
solutions for the present linkage. We need to impose the 
additional constraints,

h 5 = R 5 ~ 3 5 1 = R1 = hl = (6.3.1)

There are three cases to consider.

A
We may apply directly the results of part A of section 

7.5 here, with the added simplifications due to (6.3.1). We 
find that equations (7.5.4) and (7.5.5) are further reduced to 
the following two, respectively.

sa23(R2+h202) = asa34(R4+h404)

ca23(R2+h202) + ca34(R4+h404) + r3 = 0

These, together with (7.5.1’) and (7.5.2’), are the four 
independent closure equations of the linkage, which therefore 
has mobility one. The screws are concurrent at the centre of 
the spherical joint, and the plane containing them is parallel 
to a plane containing the slider.
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It is clear from the geometry of the linkage that o=-l.
If the slider is in the plane of the screws, its line of 
action must also pass through the centre of the spherical 
joint, and the linkage will be locked. In any case, it is 
evident that the present linkage is equivalent to a special 
case of the mobile P-P-P- three-bar.

It is important to note that this solution does not possess 
R- derivatives, for such linkages would exhibit part-chain 
mobility.

B
Using the results of part B of section 7.5, we find a 

second solution. It is a generalisation of the only S-R-P-R- 
linkage, which was isolated by Waldron [45,48]. The first 
three closure equations remain unchanged, but the fourth, 
using (6.3.1), is reduced to

r3 + ^a12sa2 3SO2 + 2(R2+h202)ca23 ~ 0.

The linkage is a special case of Waldron's plane-symmetric 
five-bar, and we have

a = - 1 a3 4 = a2 3 h4 = - h2 .

The two screw-revolute pairs of axes are symmetrically 
disposed with respect to the plane of symmetry, and the slider 
is normal to it. If a12=0, the linkage degenerates to a 
special case of solution A. If the screws are replaced by 
revolutes, we obtain the S-R-P-R- linkage.

C
A third solution is obtained by considering the results 

of part C of section 7.5. The first two closure equations do
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not change, but (6.3.1) allows us to simplify the other two. 
They become

a23+ai2C02+OSa34(R4+h4GJ = 0

and a12s02+ca34(R4+h40j + r3 = 0.

For this solution, joint 2 is a revolute and the slider is 
perpendicular to axes 1 and 2. Axes 4 and 5 are coaxial and 
also perpendicular to joints 1 and 2. The linkage is 
kinematically equivalent to a special case of the planar 
double-slider with adjacent revolutes.

Replacement of joint 4 by a revolute would result in 
part-chain mobility.

It might have been noted that, in the foregoing, we did 
not consider at all the possibility of any two of joints 2, 3 
and 4 being parallel. Let us now determine the consequences 
of such an eventuality. If joints 2 and 3 or joints 3 and 4 
were parallel, the linkage would be equivalent to a R-C-H-R- 
loop, which is a special case of a C-H-H-H- linkage. But we 
found in section 6.1 that the only proper C-H-H-H- loop, 
mobility unity, is that with all joint axes parallel. That 
case cannot be applied here, because making the two revolutes 
parallel would reduce the spherical joint to a single revolute.

We can see from the spherical indicatrix that parallelism 
of the screw joints 2 and 4 would demand parallelism of the 
three spherical joint axes (or locking of one or more, with 
parallelism of the others). This fact would imply that the
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linkage was improper, the spherical joint being replaceable 
by a revolute, the linkage thereby degenerating to a four-bar 
chain with connectivity sum four. Such a linkage has, of 
course, been thoroughly investigated in chapter 5.

In this context of improperness, it should perhaps be 
pointed out that replacement of a spherical joint by two 
concurrent revolutes, as we have done above, does not imply 
that the linkage is improper. As defined in chapter 1, a 
linkage is improper if a joint may be replaced by one other of 
lower connectivity without affecting the mobility of the 
chain. In our case, we replaced the -S- joint by a -R-R- 
combination of two other joints. Thus, the spherical joint 
of the S-H-P-H- linkage has true connectivity two.
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6.4 The S-P-H-H- linkage

As in section 6.3, we may replace the spherical joint in 
the present linkage by three concurrent revolutes. We again 
arrange two of the revolutes to be parallel to the screws.
From the spherical indicatrix of the resulting linkage, we see 
that the remaining revolute must be either locked or parallel 
to one of the others. The spherical joint is therefore 
replaceable by only two turning pairs, and the linkage 
equivalent to a R-P-H-H-R- five-bar. The following dimensional 
constraints may be applied.

Let us first consider the consequences of other joint 
axis parallelisms. If the two screws were parallel, 
parallelism of joints 1 and 5 would be implied; the spherical 
joint would then degenerate to a single revolute. If joints 
2 and 3 were parallel, the linkage would be equivalent to a 
R-C-H-R- chain, a special case of a C-H-H-H- four-bar; as 
shown in the previous section, such a possibility would again 
result in the -S- joint degenerating into a revolute. We may 
henceforth assume that

scx23 f 0 , sa34 f 0.

Now, Waldron [45,48] has solved the S-P-R-R- over­
constrained linkage problem. We may take advantage of this 
fact by employing the theorem of section 4.3. Apart from the 
singular case of coaxial screws, the theorem allows us to 
conclude that S-P-H-H- solutions are possible only for sets of
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constraints which allow mobile S-P-R-R- loops. Waldron found 
that there are no proper S-P-R-R- chains with mobility one.
He did, however, eliminate the possibility that a45=0, since 
it led to a linkage with part-chain mobility. We must 
investigate this case.

For the present linkage with a45=0, the chain becomes 
equivalent to a R-P-H-C- four-bar. From chapter 5, we see 
that there are no proper, mobility one chains of this form.
There are, however, two degeneracies of the form R^*P^R-P-, 
special cases of Delassus solutions d.4 and d.12. Both of these 
cases are applicable here, since our five-bar chain can assume 
the form R-P-R-H=R-, where the H=R combination acts as a 
slider. We therefore have two S-P-H-H- solutions, in both of 
which the screw adjacent to the slider has zero pitch, and the 
other screw axis passes through the centre of the spherical 
joint. For the d.4 case, joints 2 and 4 are perpendicular 
to joint axis 3, and the linkage is equivalent to a special 
planar double-siider.
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6.5 R-R-C-C- linkages?

During 1969, two researchers independently completed their
doctoral work, which included attempting a search for four-
bar, single closed loop linkages of mobility one. Both
searches were later published. Waldron’s [45,47,48] attempt

2was the more ambitious, seeking all such linkages which 
contained R,P,C,S and F joints, whilst Savage [35,36] confined 
himself to chains containing R,P and C joints. The two 
approaches differed from each other and, on comparison, it 
seems that, within his chosen area, Savage has overlooked some 
solutions. Waldron's results include all of Savage's with 
two apparent exceptions. They are particular R-R-R-P- and 
R-R-C-C- chains, the existence of which Savage has claimed to 
show. The first of them, having non-parallel adjacent joint 
axes, clearly cannot exist as a proper, mobility one linkage; 
reference to the spherical indicatrix or to Delassus's 
results (chapter 5) settles the matter. Savage evidently 
included the chain as one having a passive degree of freedom 
for most of its motion. This fact explains the first 
discrepancy.

The second discrepancy is more serious, and both authors 
referred to it. Waldron found that, apart from the case of two 
C-R groups, there were no proper solutions. He did point out, 
however, the existence of two improper solutions in which both 
cylindric joints had passive degrees of freedom; one solution 
was based on a Bennett linkage and the other on a four-bar 
spherical chain. Savage, on the other hand, listed several 
equations which he claimed represented the existence criteria 
for additional R-R-C-C- solutions. Neither author tested the
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authenticity of the other's work. In the interest of making 

available an authoritative list of four-bar solutions, a 

third, independent, analysis is here presented for the R-R-C-C- 

chain. The approach is again algebraic and, although similar 

in some respects to the previous two, it makes special use of 

symmetry and the notion of the dual.

Let us number the revolutes 1 and" 2 and the cylindric 

joints 3 and 4. If joints 3 and 4 were parallel, the linkage 

would possess part-chain mobility, and so may be disallowed. 

Parallelism of joints 1 and 2 implies, using the spherical 

indicatrix, parallelism of joints 3 and 4. Again using the 

spherical indicatrix, for joint axes 2 and 3 to be parallel, 

joints 4 and 1 must also be parallel, and vice-versa. This 

yields the only solution with parallel adjacent joint axes, 

and is a special case of Waldron's [42,45] and Hunt's [27,30] 

parallel screw linkages. Both Waldron and Savage acknowledged 

this solution. From this point, however, their findings 

diverged.

Having dealt with the only parallel adjacent axes case, 

we may henceforth make the following assumption.

su^^ + 2 ^ b » i 1> • • • >4

Let us also choose, in accordance with (1.1),

0 < aii + i < 71 > 1 = 4>!>2 1 
0 < a34 < 2tt. }

(i)

(ii)

Since each of joints 1 and 2 has connectivity one, we select 

from among all possible closure equations two nominally 

independent ones, both of which should contain precisely the
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two variables 0 and 02. We then attempt to find the conditions 
under which the two equations will be equivalent. These 
constraints can be interpreted as necessary existence criteria 
for R-R-C-C- chains.

Elimination of c04 between equations (5.6) and (5.9) 
results in

Se.S0!S“23Sa4l‘CeiCe2Cai2Sa!JSa,rC9lS“l2Ca2JSatfC02SC‘nS“!)Cau

C0l34~C0l12Ca23Ca41 '

It is very important, in view of a later stage in the analysis, 
to observe the symmetrical roles played by joints 1 and 2 in 
this equation. We now rewrite the equation in the form

s0j(s02sa23)sa41-c01(c02ca12sa23+sa12ca23)sa41

=c02sa12sa23ca41-ca12ca23ca41+ca34 . (6.5.1)

If we now write the dual of (6.5.1), take the secondary part, 
and rearrange terms, we can obtain the following equation.

s01(R2c02sa23sa41+a23s02ca23sa41+a41s02sa23ca41

+R1c02ca12sa23sa41+R1sa12ca23sa41)

+c01(R1s02sa23sa41+R2s02ca12sa23sa41+a12c02sa12sa23sa41

"a23C02Cai2Ca23Sa4l'a41C02Cai2Sa23COl41~ai2Cai2Ca23Sa41 

+ a23Sai2Sa23Sa4l'a41S0t12CCl23Ca4p

-R2s02sa12sa23ca41+a12c02ca12sa23ca41+a23c02sa12ca23ca41

”^4 i ^ 0 2 S (X j 2S0t2 3 S (X 4 2 S Ot ^ 2 2 3 ^ ^ 4 l+^2 3 ^ ^ 1 2 ^ ^ 2 3 ^ ^ 4 1

+ a ca ca sa -a sa
4 1 12 23 41 34 34

(6.5.2)
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Equations (6.5.1) and (6.5.2) contain only the two joint 

variables 0X and 02. We shall eliminate Ql between them by 

Cramer's rule, and proceed to find the conditions under which 

the resulting equation, in 02 alone, is an identity in that 

variable.

The 'determinant of coefficients' is given by D in

Ry-c 0 2 s a j 2 s a23 + l-c a12c a2 3) u, 2S02C02 sa, 2 s “23

+ 2RlC02Sai2Cai2Sa23COl23+R2C02Sa12Sa23Ca23

s^a 4 1

- a1!s92causa23ca23+a23s02san^2coll2s2a2j,

which is obtained after some simplification. Before continuing, 

it is first necessary to consider the possibility that D is 

identically zero. For such to be the case, we should require 

that the coefficients of c202 , s02c02, c02 and s02 and the 

constant term are all zero. We are therefore led to the 

results, in view of (i),

a, „ = a0 .12 2 3 R1 = 0

and either R„ = 0 2 or ca12 = ca23 = 0.

If R2=0, equation (6.5.2) reduces to

S0j(ait^S02Sot23^-'Ot4i)+^0i( ^4 1^1 2^^2 3^^>t 1

= 'a4 1C02Sai2Sa2 3Sa4 1+ a4 1Cai2Ca2 3SO14l'a3 4Sa3 4*

Eliminating the 0 terms between this equation and (6.5.1) 

results in

a.1Ca,l(C02Sai2Sa23Ca.l‘Cai2C“23Ca.l+Ca345

= Sau(-aMC02SanSa23Sa»1+auC“l2C“23Sau'a34Sa3j’

whence

a c0 sa sa -a ca, ca +a ca„ ca, +a sa., sa, _
41 2 12 23 41 12 23 41 34 41 34 34 41

0.
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Considering the coefficient of c02 and the constant term in 
this equation leads us to the conclusion that

a41 = a34 = °'

Substitution of the complete set of constraints

a 1 2 = 3 2 3 = a34 = a41 = R1 = R2 = 0

into equation (5:10) requires that either joint 4 is locked in 
translation or joint 3 is locked in rotation. Neither contingency 
is acceptable. In fact, under the constraints listed above, the 
linkage is mobile but improper, and is based on a spherical 
four-bar.

If, on the other hand, ca12=ca23=0, equations (6.5.1) 
and (6.5.2) reduce respectively to the two following.

s01s02sa41 = c02calfl + ca34

s0j (R2c02Scx4i + u4 iS02cot4i) R2s02ca4 l a4jC02sot4^ ^34^^34

Eliminating sQ1 between these two equations leads to, after 
some simplification,

a41S02C02+R2C02Ca34Sa41+a34S02Sa34Sa41+a41S02Ca34Ca41

+R2sa41ca41 = 0.

From inspection of the coefficients of s02c02, c02 and s02 
and the constant term, we conclude that

a 3 4 = a41 = 0

and either R2 = 0 or ca34 = ca41 = 0.
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In either case, substitution of the set

a1 2 a 2 3 a 3 4 a 4 1 ^ 1 ^

into equation (5.10) leads to the same result as before, 
namely an improper linkage based on a spherical four-bar, or 
one with otherwise locked joints.

We may therefore conclude that D ^ 0.

With a view to ’solving' equations (6.5.1) and (6.5.2) 
for s0x and c01? we now write down the appropriate 
determinants. Let us put

Ds = (c02sa12sa23ca41-cct12ca23ca41+ca31()

x(R1s02sa23sa41+R2s02ca12sa23sa41+a12c02sa12sa23sa41

-a23C02caj 2ca23sa41-a41c02ca12sa23ca41-a12ca12ca23sa41

+ a23s“i2sa23sa41-amsai2ca23cam)

+ sa41 (c02cot2 2sa23 + sa1 2ca23)

x(-R2se2sa12sa23ca41 + a12c02ca12sa23ca4l + a23ce2sa12ca23ca1)1

-auc02soi12sa23sa41 + a12sa12ca23ca41+a23ca12sa23ca41

taucai2Ca23S\ra3*st,JJ
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:R1s02c02sa12sza23sa41ca41+a12c202s2a23sa41ca41

~a41C ®2Sai2CCX12S 0123+a23C®2S0l41C0lU a41C02S ai2SCt23CCt 2 3

-R1s02ca12sa23ca23sa41ca41-R2s02sa23ca23sa41ca41

+ a c0 c2a, sa, ca, +a, c2an,sa, ca, +a, ,sa, ca, c2a,,
41 2 12 23 23 12 23 41 41 41 12 12 23

"a3'tC®2Cai2Sa23Sa34Sa41~a34Sai2Ca23SCl-3 4Sa1.l

+ Ca34(R1S02S“2 3SOl4 1+R2Se2C“12Sa2 3SO4 1+ai2C02Sai2Sa2 3Sa4 1

a23C02Cai2Ca23Sa4l"a41C02Cai2Sa23COl4l’ai2Cai2Ca23Sa41

"*"a2 3^0^! 2^^2 3 S 01 4 1 - 3.4jS0(.^2C0t23C0t4j3 j

and

Dc - S©2Sa2 3Sa4 1 ^ ~^2S®2Sai 2S0t2 3COt4 1 +ai 2C®2C0tl 2S0t2 3C0t4 1 

+ a23C®2Sai2Ca23C0t4l“a41C®2Sai2Sa23Sa41 

+ ai 2S0tl 2Ctt2 3COt4 l+a2 3Cai 2 S 01 2 3COt4 1 

+a41Cai2Ca23Sa4l'a34Sa34^ 

"(C©2S0(,12Sa23Ca41~Cai2Ca23Ca41+Ca34-)

X ^2C®2Sa2 3SOt4 l+a2 3S®2Ca2 3 SOt 4 l+a4 lS®2S0t2 3 Ca 4 1 

+RlC02Cai2Sa23Sa41+RlSai2Ca23Sa4l)
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R 2 S CX ^ 2 S ^2 i C 01 4 l + a l 2^ Ot23SOi4^COt4^

a41s02c02sa12s2a23+a12s02sa12sa23ca23sa[+1ca41

+a23S02Cai2Sa41Ca41-a34SG2Sa23Sa34?a41+a41S02Cai2Sa23Ca 2 3

-R1c202sa12ca12s2a23Sa41ca41+R1c02sa23ca23sa41ca41(c2a12-s2a12)

+R2c02ca12sa23ca23sa41ca41+R1sa12ca12c2a23sa41ca41

COt 3 4 (R2C®2S0t2 3SOi,4 l+a2 3S02CO!,2 3 S ^ 4 l+a4 ! S © 2 S a 2 3 CCi 4 1

+ R1c02ca12sa,23sa41+R1sa12ca23sa41).

Since c20. + s20, = 1, we must have D2 = D 2 + D 2.1 i * sc
That is,

s',a^i[-c202.R1s2ai2s2a23 + s02c02.ai2sa12s2a23

+c02{2R1ca12+R2}sa12sa23ca2

+ S02(a23Sai 2~ai 2C0tl 2Sa23Ca23^

+{R2ca12s2a23+R1(l-c2a12c2a23)}]

:[c202{a12sa41ca41-a41sa12ca12}s2a23+s02c02.R1sa12s2a23sa41ca41 

+c02{a23sa41ca41+a41(c2a12-s2a12)sa23Ca23-a34ca12sa23sa34sa41 

+ a12sa12sot23ca34sa41-a23Ca12Ca23Ca34sa41-a41ca12sot23Ca34ca41} 

+S02{-R1ca12ca23ca41-R2ca23ca41+R1ca34+R2ca12ca34}sa23sa41 

+ {(a12sa41ca41 + a41sot12ca12)c2a23-a12ca12ca23ca34sa41

+ a2 3SOl12SOl2 3Ca3 4SOl4l’a4 1Sai2COl2 3Ca3 4Ca4ra3 4Sai2Ca2 3SOl3 4Sa4 1 ^



2 0 7

+[-c2e2.R1sa12ca12s2a23sa41ca41

+s02c02{a12ca12sa41ca41-a41sa12}s 2 3

+c02(R1(c2a12-s2a12)ca23ca41

^R2C0t^ 1 Ri Ctti 2CH3 4 R2C0t21+}'S0(.22S0t(+j

+ S02{ai2S“l2SOl2 3Ca2 3SOl4 1Ca.. + a2 3C“l2Sa4 1COl,ra3 4Sa23Sa3 4S“4 1 

+ a4 1CC(1 2Sa2 3 CCt2 3 ~ a 2 3CCt2 3CCt3 4 S0t4 1 ~S4 1 SCX2 3 COt3 4 COt4 1 1

+{-R2sa12s2a23ca41+R1sa12ca12c2a23Ca41

-R1sa12ca23ca34}sa41]2. (iii)

Equating coefficients of the terms in s02c302, we have

^ 1 a 1 2 5 (X12S tt2 3 S K4 1

R^Sotj2^ *a41'^^12^'^12^'^ ^23

■Risai2cai2s2a23s“4ic«41{al2ca12sa41ca41-a4lsal2}s2a 2 3

from which we conclude, after simplification and using (i),

that either Rx=0 or a12=0.

Now equating coefficients of terms in c40 leads to

Ri2s'“I2s\ra12isZ“l2s\i
2,2

{a12sa41ca41-a41sa12ca12} s ai 2S a 4 1 c a4i

+Ri2s2a12c2a12s2a41c2a41-{al2ca12sa41ca41-a4lsa12}2

Putting a12 = 0 in this equation results in

R2s2a = - a 2,1 4 1 41 ’
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which can only hold if R = a41 = 0. We may therefore 
conclude that

Rj = 0. (iv)

Putting this result into the above equation yields

a„i2s2ai2 = a122s2atl

which, in view of equations (1.1) and (ii) , implies

a sa = a sa4 112 1 2 4 1 (V)

Equating coefficients of terms in sO2c202 and 

substituting results (iv) and (v) leads to

R2ai2s!“i!C<‘!!s!au=R2ai!{cau-c«i2Hca1!ca3t-c«2Sca,11)

+ ^2ai2^cai2Ca4i'^Uca12ca23ca41-ca3l<},

which implies R2=0, ai2 = 0 or ca23=ca3r

By (v), if a12 = 0, then a4l=0. Substituting =a12=a4x=0 

into equations (5.10) and (5.11) results in

r4S03S“3l. + a34C03+a23 = 0

and - I* 4 3 Sot 3 4 + a 3 4 S 0 3 +R2 Sa 2 3 0

Eliminating r between these equations yields

a34+a23C03+R2S“23S03 = 0‘

For mobility of joint 3 in rotation, we then require that 

R2=a23=a34=0- Previously discussed, these six constraints
result in a linkage with locked joints. We may therefore 

assume that a12^0.
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Now, the above results (iv) and (v) and the two 
remaining possibilities R2=0 or ca23=ca34 were obtained from 
equation (iii), by equating coefficients of certain powers 
of 02. Equation (iii) itself was produced by eliminating Q 
between (6.5.1) and (6.5.2). It was previously remarked that 
the variables 02 and 02 played symmetrical roles in the first 
of these equations; the second is derived from the dual of the 
first, and exhibits the same symmetry. If, then, we had 
chosen to eliminate 02 between (6.5.1) and (6.5.2), we should 
have obtained constraints analogous with those just cited.
In particular, by analogy with the set

Ri - 0 a41sa12 - a12Sa4i Ca23 ~ Ca34>

we may infer that

R2 ~ ^ a23S0112 ” ai2SOt23 C0t4 1 ~ COt 3 4 *

This potential solution is therefore a special case of the 
other, for which we have already established R2=0. We need 
consider it no further. Regarding now the alternative set

Rx — 2 ~ ^ ^4 1 ^^1 2 ~ ai 2^^4 1 j

by analogy we have that

R2 = R1 = 0 a23S“l2 = ai2S0t23- (Vi)

We now have only one potential solution to consider, 
that summarised by equations (v) and (vi). Substitution of 
these results into (iii) reduces it to the following equation, 
after some simplification.
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(l-cz02)a122s2a23sza41[c02sa12sa23+{l-ca12ca23)]

[c202{ca41_cai2}ai2s2a23
ca.. ca4 1

+ Ce2{ai2i^+ai2i^f(c2ai2'S2ai2)'a3'.Cai2S01 3 4

+ a,0 san,ca,, ,-a 1 2 c a o qCo6q i.-a 1 2121234 u12cft ^u23^u34 a12cnSU12 iU12
ca3 4ca 4 j}sa 2 3

+ { (ca41+ca12)a12c2oi23-a12cauca23ca 3 4

+ ai2S2a2 3Ca3 4-ai2C0l23C“34Ca4ra3 4Sai1CaJ3S0t3 4}]

+ (l-c2e!)s!a23[c02{ca12ca1(1-l}al2sa 2 3

ca
+ {a, sa, ca„ ca, +a 1 2-ca, , -a„ , sa1 2 1 2 2 3 4 1 1 2Sai2 4 1 3 4 3 4

ca
+ a 1 2 ca

■ca, , - a 2 3^ —3 4 Cg }]21 2 sa 23 12sa 34 i 2 sa 4i;jca.. - a
1 2 1 2 1 2

Equating coefficients of c302 in (vii) and simplifying 
considerably lead to the following result, since we have 
shown that a }2/0.

a „,sa, sa,,=a, (1-ca, ca,,+ca,,ca. -ca,,ca,,}34 12 34 12 12 34 12 23 23 34

By symmetry, therefore, we also have that

a3 4S0l12Sa3 4 = ai2{1-Ca12CCl3 4+C“l2Ca4 1-Ca4 1C0I34}

From the last two equations it is clear that

ca ca -ca ca =ca ca -ca ca .^ ! 2 2 3 ^2 3 3 4 1 2 4 1 4 1 3 4 ’
whence

(COt23’Ca4l) (Cai2"COl34^ = 0

Therefore, either ca, =ca’ 4 1 2 3 or ca34=ca12

(vii)

(viii)
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Let us first consider the former possibility. Because 

of (ii) we may conclude that a41 = a23. Substitution in (v) 

and subsequent division by the relevant equation of (vi), in 

view of (i) and the fact that a12^0, yield the result that 

a 4 i= a2 3 • If we now substitute a41=a23 and equation (viii) 

into (vii) we obtain, after simplification,

(1-c20 )s2a,,[c0 sa, sa, +{l-ca, ca,,}]^ 2 2 3 2 12 23 12 23

[c20{ca23-ca12}sa.

+ c0„ { 2 3-c^a
ca ca ca1 2 3 4 1 2

2ksa,, "12 sa12 Sa12 sa12 34 231 2

+ {ca34-ca2 3 }sot2 3 3

+(l-c202)[c02(ca12ca23-l}sa 

ca
+ {sax 2c2a2 3 + ; 1 2

2 3

ca
-ca

1 -12 +---- Ca
ca 3 4

1 2 23 sa12 sa 1 2 3, 1 2

Equating coefficients of c02 in this equation leads eventually

to the result

(ca12-ca3J2(l-ca12ca23) = 0,

from which we must have either ca34=ca12 or ca12ca23=l. Now, 

the second possibility can hold only if ca12 = ca2 3 = ±1. But 

such a result is disallowed by (ii) . We therefore conclude 

that ca34=ca12, which consequence is precisely the second case 

from above which we need to consider.

Now, ca34=ca12 implies that sa34=±sa12. Substituting 

for ca34 and sa34 in (viii) yields a34=±a12. Then, in view 

of (1.1) and the fact that ai2^0, we may conclude that 

a34=ai2; subsequently, a34=a12. Substitution of these 

results into (vii) and simplification lead to the equation
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(1 - c 2 G) ) s 2 a s 2 a, ,[c0 sa, sot +{l-ca ca }]
v 2 ' 23 41 2 12 23 12 23

[c2 02 {ca41-ca12}s 2 3

+c02(ca41-ca23}sa12sa 2 3

+ {ca c2 a + ca -ca -ca ca ca }]2L 4 1 2 3 1 2 2 3 2 3 1 2 41JJ

+(l-c202)s2a23[c02(ca12ca41-l}sa23+{ca23ca41-l}sa12]2.

Equating coefficients of c02 and considerable simplification 

result in the equation

(ca41-ca23)2 (l-ca23ca12) = 0.

As before, we can show that ca23ca ^1. Therefore ca41=ca23, 

and we return to the first case considered.

Collecting the consequences of examining both possibilities, 

we have the following results.

a34 " ai2 a41 “ a23

3 4 1 2 4 1 2 3

These relations together with (vi) are precisely the Bennett 

linkage constraints. What we have demonstrated in this 

section, then, is that the only two forms of mobile R-R-C-C- 

linkage, apart from the parallel adjacent axes cases, are both 

improper. One of them is based on the four-bar spherical 

linkage and the other on the Bennett linkage. Waldron's 

findings are thereby vindicated.
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6.6 The remaining connectivity sum six loops

It was indicated in section 6.1 that we are unable at 
this stage to complete the analysis of three of the four-bars 
with connectivity sum six. In this section, we shall set 
down the work which has been done and explain what further 
considerations must be given.

Th£ H-H-C-G- linkage^

If the screw joints of this linkage are parallel, the 
spherical indicatrix tells us that the cylinders must also be 
parallel to each other. But, if the cylindric joints are 
parallel, the linkage will have part-chain mobility, based 
on the motion of the P-P- two-bar. If one of the screws is 
parallel to its adjacent cylindric joint, we can see from the 
spherical indicatrix that, for rotational mobility, the other 
two joints must be parallel. Hence, there is one solution 
with parallel adjacent joint axes, given by H-C-C-H-. This 
loop is a special parallel-screw linkage, references for 
which are given in the Introduction to chapter 7.

Let us now consider the general case, in which no two 
adjacent joint axes are parallel. Recalling the theorem of 
section 4.3, we see that rotational joint mobility of the 
present linkage is possible only under the necessary 
dimensional conditions required for similar mobility of the 
same linkage with tied screw pitches. In particular, we 
think of the loop in which both screw pitches are set to zero, 
namely the R-R-C-C- linkage. Now, in the last section, we 
showed that the only two mobile R-R-C-C- chains were improper, 
and based on either the Bennett or spherical four-bar. Hence,
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we conclude that any H-H-C-C- solution must be bound by at 
least one of the following two sets of dimensional constraints

A: a 3 4 = a!2 a 4 1 = a 2 3 a34 = ai2 K41 = <*23

ai2SCX23 a2 3SOtl 2

B: 12 d2 3 d3 4 “4 1

Since the linkage has connectivity sum six, a gross 
mobility one solution will have joint ISAs which belong to a 
fifth order screw system. Hence, the mobile linkage will have 
a unique reciprocal screw in all of its configurations, with 
the possible exception of a few discrete positions. Let us 
attempt to isolate this reciprocal screw by the technique 
used in section 2.3.

If we position the origin on joint 4 in the usual way, 
the linkage velocities will be given as follows.

“4 = “.I y ^ =2
u4,= 0 y4, = P4 ,k

“3 = “3(SOl34j+COl34^ = a34t03(Ca34rSa34^

“3’= ? if 3 • = V (SOt34j + Ca34!f:i

“1 = oo, (s04sa41i-c04sa41j+ca41k) 

y, = oo, ([aucaus0/r4sa41ce4]i

~[a41ca1+1c01+-rltsai(1s04]j-ali,sa4,k)+h1to,

w2 - oo2 (s03 sa2 3 i+CcG 3 sa2 3 ca 3 4 + ca2 3 sa3 4 ] j

+ ^"C03Sa23Sol34 + Col23Ca34’1!f)



w2 ([r3sa23cO3 + a23ca23s03]i

- [ a2 3 sa2 3 s ct 3 4 + r 3sa2 3ca3 4s03 + a3 4 s a 2 3sa3 4 c0 3

_a23C0t23C0t34C®3-a34Ca23C0<,34^j 

+ ^'a2 3Sa2 3Ca3 4 + r3S012 3SOl3 4S®3’a3 4Sa2 3CCl3 4C®3 

-a23Ca23Sa34C03-a34Ca23Sa3^]^ + h2(?2

Suppose the abovementioned reciprocal screw is expressed as 

(fi,M) E (A,B,C,D,E,F).

Using equation (1.3) on each joint ISA in turn, we obtain 

the following results.

V F = 0

$ 4T* C = 0

^ 3 * Ba34COl34+ Es0l34 = 0

$3,: B = 0

E = 0

$ ! • A(altlca^1s04 + r4saklce4+h1s0llsa1,1)+Ds0^sa41 = 0 

$ : A(a ca s0 +r sa c0 +h s0 sa 1+Ds0 sa,, = 02 ^ 23 23 3 3 23 3 2 3 23' 3 23

It is now clear that the ISA of the reciprocal screw has 

components

(1,0,0) y = (j,o,0)

By means of equations (1.2), we see that, for this ISA,
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~np = 0~n and

So the screw lies along the common normal between the 

cylindric pairs.

We may easily write down the condition for a non-trivial 

solution for A and D from the above two equations containing 

them. It is

We have already shown that a H-H-C-C- solution of the 

required type must satisfy at least one of the sets of 

dimensional constraints given above as A and B. Let us 

determine the simplifications produced in (i) by applying each 

of the two sets of constraints. We find immediately that, 

for each of A and B, equation (i) is reduced to

For a satisfactory solution to exist, this equation must be 

compatible with the closure equations of the linkage.

We again recall the theorem of section 4.3 and consider 

the possibility of a solution for the case

h, = h = h.1 2

If a solution exists for this case, any requisite dimensional 

constraints (in addition to those given under A and B) must 

also apply to the more general linkage. With the screw pitches 

so tied, equation (ii) becomes, simply,

(i)

s04 (r3c03+h2s03) = s03 (rt+c04 + h1 s04) . (ii)

rjCOjSG, = r4s03c04. (iii)
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Let us consider, separately for the quasi-Bennett and quasi- 
spherical linkage conditions, the implications of equation

(iii) •

A:
Advancing the indices in closure equation (5.10) by 3 and 
using the quasi-Bennett constraints lead to the following 
equation.

S Cl 2 3 SCl2
a (c0!c0,-s02s0Jca23+-—c02 + l+——cGj)

°U12 U12

+ r3S02S“23+r4SeiSOl23 = 0

The simplified (5.9), with indices advanced by 1, allows us 
to rewrite this result as

ai2^C02C03SOt12'S02S03Sai2Ca2 3 + C02Sa2 3+Sai2+C03SOt2 3)

+Sai2Sa23fr3S02+r4S0q = °-

Now the first expression enclosed by parentheses is zero.
This result may be seen by, for example, advancing by 1 the 
indices of the third unnumbered closure equation given for the 
Bennett linkage (d.13) in section 5.7. Hence, the equation 
is reduced to

r3s02 + r4s0i = 0.

We may substitute in this equation for s02 from (5.7). We 
may also substitute for s0: by using a relationship analogous 
to (5.7), obtained by proceeding around the linkage in the 
opposite direction; to retain our sign convention in this 
relationship, the only change necessary is to give the opposite 
sign to each s0^. Making the substitutions, we obtain the 
following equation.
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= r (c0 s0 sa +s0 c0 ca sa +s0 sa ca )4 v 4 3 23 4 3 12 23 4 12 23

We have used the quasi-Bennett constraints to write the 

equation in this form. If we now eliminate r3 and r4 between 

this equation and (iii), we find the following relationship.

Now, we may substitute for each of the two expressions in 

parentheses by advancing by 2 respectively the first and 

fourth unnumbered closure equations given for the Bennett 

linkage in section 5.7. On doing so, we find that

The existence or non-existence of a solution depends on 

whether or not this result is compatible witli the established 

closure equations. If we substitute the relationship into 

the last unnumbered closure equation given for d.13, indices 

advanced by 2, we obtain

whence c04 = c03, and s04 = os©3.

as'GjScij 2sa2 3 2c03(ca2 3-ca12),

whence ac2 03 sa12sa23+2c03(ca23-cal 2)-asa12sa23 = 0.

But, by inspecting the coefficients of powers of c03 in this 

equation, we can only conclude that 03 is fixed, so that 

mobility of the linkage is precluded.
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We have therefore shown that there is no proper, mobility 1 

H-H-C-C- solution in this category with both screw pitches 

equal. By the provisions contained in the theorem of section 

4.3, then, there is no relevant H-H-C-C- solution under the 

quasi-Bennett dimensional constraints.

B:

Advancing the indices in closure equation (5.10) by 3 and 

using the quasi-spherical constraints leads immediately to

r3s02sa23 + r1+s01sa41 = 0.

As in A, we may substitute for s02 and s© by means of 

equations based on (5.7), and then eliminate r3 and r4 by 

using (iii) . Hence, we obtain

S03c04sa23(c03s04sa41+s03c04ca34sa41+s03sa34ca41)
v

= cG3S04Sa4i(s03C01(Sa23 + ce3s04Sa23Ca31( + s0liCa23Sa311)) 

which may be simplified to

s ©3su23(ca34sa4x+C04sa34ca4 l)

-s-04sa41(sa23ca34+c03ca23sa34) (a)

We can obtain an independent equation linking 03 and ©4 by 

advancing by 2 the indices in a closure equation produced in 

section 6.5, namely (6.5.1). Thus, we find

S03S04Sa2 3Sa4rC03C04Sa2 3Ca3 4Sa4 1-C03Sa2 3Sa3 4Ca4 1-C04Ca2 3SOt3 4SO\l

CCtl 2 COt2 3COi3 4C0t4 1 * (b)

Existence or non-existence of a satisfactory solution in this 

category depends on whether or not equations (a) and (b) are
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compatible. We have not been able, at this time, to reach 
a firm conclusion on the matter.

We have shown that, if there is a proper, mobility one 
H-H-C-C- linkage, it must be governed by the quasi-spherical 
constraints. Further, if equations (a) and (b) of B are 
incompatible, there will be no solution. If a solution with 
h1=h2 is found, using (a) and (b), further testing will be 
required to determine whether or not there is a solution for 
which the screw pitches are not equal.

The S-H-H-H-_linkage

As we did in other places, we may replace the spherical 
joint by three concurrent revolutes and set two of them 
parallel to the adjacent screw joint axes. We thus obtain a 
R-R-H-H-H-R- six-bar loop with the following dimensional 
constraints.

We shall consider the linkage under three separate headings. 

Three screw joint axes parallel:

We see immediately from the spherical indicatrix that, since 
parallelism of any two of the revolutes is not feasible, joint 
1 and one of joints 2 and 6 are locked. The spherical joint 
therefore acts as a single revolute, and any mobile loop will 
be improper, based on a Delassus four-bar.



Two adjacent screw joint axes parallel:

U1

Suppose, for example, that

a 3 4 0.

The spherical indicatrix shows that joint 1 is locked. The 

linkage degenerates to a five-bar and may be placed in the 

category of section 7.4. The results of that section 

indicate that the only possible solution is given as 

R-R-R-H=R-. That is, joints 3 and 4 take zero pitch and

The axis of screw joint 5 passes through the centre of the 

spherical joint and is perpendicular to the axes of joints 3 

and 4. The solution is kinematically equivalent to a planar 

slider-crank chain.

No two adjacent screw joint axes parallel:

The linkage will be governed by the six-bar closure equations 

For mobility, it is necessary that the equations be 

interdependent. Let us consider the translational equations 

which, under the present constraints, may be written as 

follows.

7T

- (R5 + h505)s04Sa4 5 = a2 3C03+a34+a45C04

+ a 5 6 (c04c05-s04s05ca45) (i)

-(R3+h303)s04sa (c03 c04-s03s04ca3 4)
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(Kt+h,04)s0tsn3*sa„=a23(c0ic0kcaJ^ats-s0is0,sats + c0Jsa34ca45) 

+ a34(c01(ca31(sa45 + sa3llca45) 

+a45(c04sa34ca45+ca34sa45) 

+a56(c04ce5sa34ca45-s04se5s«34

+c05ca34sa45) (iii)

Now, there are solutions for which

a23 = a56 = °'

We may deduce the result by applying the constraints to 
equation (iii), which then contains 04 as its only variable.
Let us equate coefficients of powers of 04 in the simplified 
equation, after expanding sG4 and c04 appropriately.

®41: R4 = 0

04°: a34(ca34sa45+sa34ca45)+a45(sa34ca45+ca34sa45) = 0 (a)

64 2 ' h4SCt34Sa,5 = 'rr(a34C0l34Sa45 + a,5SC,3.CCt45) ^

0 4 _ yrh 33k3 j- ^ t (a34cot34sct43 + a45sc(34cct45) (c)

From equations (b) and (c), it is clear that

h4 = 0

and a34ca34sa45 + a45sa34ca45 = 0. (d)

Hence, from (a),

a3 4 SCt3 4C0l4 5 + a45C0l34S0t45 = °- O)

Equations (d) and (e) have three solutions, namely
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and

a 3 4 a 4 5

a34 = a45

a 3 4 = a 4 5

0,

—

2

4 5 3 4

(We are free to choose both a,. and a, e less than tt .) In view 
of the other constraints applying, the first of the three 
solutions will yield only a linkage with part-chain mobility, 
in which the axis of joint 4 passes through the centre of the 
spherical joint.
The other two solutions do yield proper, mobility one linkages, 
however. In each of them, joint 4 has degenerated into a 
revolute with zero offset, and the axes of joints 3 and 5 
both pass through the centre of the spherical joint. Each of 
the linkages may be represented by R-R-H-R-H-R-, so that the 
loop is kinematically equivalent to a certain R-C-R-C- chain, 
since the two joint axes in each RCH combination are coaxial. 
The first of them may only be obtained as a special case of 
the solutions governed by equations II.b in reference [1], or 
given as linkage no. 4a.15 in [45] or no. 16 in [48]. The 
second may be obtained as a special case of any one of several 
of the solutions listed in Table 2 of reference [1], or of 
the -R- derivatives of the solutions listed in Table 6.2.1 of 
this work.

We have found above three distinct S-H-H-H- linkages of 
the required type; the analysis stands there at the time of 
writing this thesis. The next stage is to consider the 
implications of an S-R-R-R- analysis, by invoking the theorem 
of section 4.3, just as we proceeded from R-R-C-C- to H-H-C-C-
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above. The S-R-R-R- analysis has been carried out by Waldron 

[45,48]. That work will be a suitable starting-point, after 

all the solutions with part-chain mobility have been gathered.

The F~H-H-H-_linkage

We here replace the planar joint by three revolutes normal 

to the plane. The consequent six-bar chain R-R-H-H-H-R- may 

be assumed to have the following dimensional constraints.

5 6 6 1 1 2 2 3 = 0

Let us consider the loop under four different headings.

Three screw joint axes parallel:

In this case, the linkage is proper with mobility 1, being a 

special parallei-screw linkage [ 27,42,45] and a generalisation 

of the Sarrut linkage.

Two adjacent screw joint axes parallel:

Suppose, for example, joints 3 and 4 have parallel axes. By 

means of the spherical indicatrix, we see that joint 5 must be 

either parallel to 3 and 4 or parallel to the revolutes. The 

former possibility has just been dealt with. For the latter, 

we again obtain a proper, mobility 1 loop, a special parallel- 

screw linkage [42,45].

Screw joints parallel to revolutes:

If one of joints 3 and 5 is parallel to the revolutes, the 

spherical indicatrix requires, for mobility, that the two 

remaining screws be parallel to each other. We then obtain 

the linkage just dealt with.
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If both joints 3 and 5 are parallel to the revolutes, joint 
4 will be locked and the linkage will have part-chain 
mobility, based on the motion of a special parallel-screw 
linkage [27,40,42,45].

The general case:

The linkage will be governed by the six-bar closure equations 
which, for mobility, must be interdependent. Under the 
present constraints, and after some algebraic manipulation, 
the translational closure equations may be written as follows.

-(Rs + h 505)s04sa45=ai2(c02c03-s02s03ca23)+a3, + a1(5c0,

+a61(c04c05c06-s04s05c06ca45

-C04s0ss06ca56-s04c05s06ca45ca56 

+S04s06sa45sa56) (x)

-(R3 + h303)s04sci34=a12(cO2c03C04-s02s03c04ca23

-C02s03s04ca34-s02c03s04ca23ca34

+s02s04sa23sa34)

+ a3 4Ce4 + a4 5+a61,:C05C06‘S05S06C“56) UU

(R4+h404)s04sa34salt5 = a12 (.C02c03c04ca3 4sa4 5 -s02c03s04ca2 3sot4 5 

-s02s03c04ca23ca34sa45-c02s03s04sa45 

+c02c03sa34ca45-s02s03ca23sa34ca45)

+ a34(c04ca34sa45 + sa3[tca45)

+ a45 (C04Sa34Ca45 + Coi3i)Sa45)
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+a6l(C04C05C06Sa3*Ca,5-S0*Ce5S06Sa34Ca56

-C01)s0-5s06sa31|ca1|5ca56-s04s05c06sa31)

+ C05C06COl3 4Sa4 5'S05S06Ca3 4Sa4 5CCl5 6) ( 11 )

Two more equations wrorth recording because of their simplicity 

are obtained from the primary and secondary parts of the dual 

of a rotational closure equation. After applying the 

dimensional conditions, they may be written as follows.

-ce3sa23sa34+ca23ca34=-c05sa45sa56+ca45ca56 (iv)

^3+^3®3^S®3SOl23Sa3it ~334 3 S0t2 3 C013 4+CCt2 3 SOt3 4 ^

+a i 2 (s©2S®3Sot3 4 "C02cO3ca2 3Sa3 4 ~ c02 sa 2 3 ca 3 4 )

- (R5+h50 5) s05sa4 5sa5 6 ~ a 4 5 (c05ca4 5sci5 6 + sa4 5ca5 6)

+ a6 1 (S05S06Sa4 5_C05C06SOt4 5Ca5 6-C06Ca4 5Sa5 6) (V)

At this time, we have not been able to proceed satisfactorily 

beyond expressing the appropriate equations in an operative 

form.

We have isolated two proper, mobility one solutions. 

Probably, the best next step is to consider the implications of 

Waldron’s [45,48] F-R-R-R- analysis. In the same way as 

suggested for the S-H-H-H- linkage, we should make use of the 

theorem of section 4.3 to proceed to a final analysis of the 

F-H-H-H- loop.
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7
FIVE-BAR LINKAGE ANALYSIS

Introduction

We have reached the stage, in the science of determining 
existence criteria for overconstrained linkages, of being 
able to consider five-bar loops more generally. Waldron 
[45,47,48] and Savage [35,36] have, between them, published 
substantially exhaustive lists of existence criteria for all 
four-bar linkages not containing screw joints. The two works 
are largely in agreement about their common material; the 
only notable exception is dealt with in section 6.5 of this 
thesis. Almost all of the four-bars with screw joints have 
also been fully analysed by Delassus [11-13], Waldron [42,45], 
Hunt [27] and Baker [1,2,4,5], and in chapters 5 and 6 of 
this work. The only four-bars awaiting a complete analysis 
are specified in sections 6.1 and 6.6. At least one of their 
particular cases can be regarded as a special form of a five- 
bar chain. In any case, with only three four-bars yet 
unsolved, it is reasonable to begin an analysis of the 
linkages of one order higher.

Rather few five-bars, by comparison, have so far been 
isolated. Symmetry plays a significant role in linkage 
mobility analysis and, against four-bars and six-bars, 
linkages with five joints are wanting in obvious geometrical 
niceties. The known five-bar loops are listed below.
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1. parallel-screw linkages

(Refer to Voinea and Atanasiu [40], Waldron [42,45] and 
Hunt [27].)

(a) derived from five-bar loops

The basic linkage of this type is made up precisely of 
five parallel screw joints of arbitrary pitch. Up to 
three of the joints may be replaced by prismatic pairs, 
arbitrarily oriented. As well as the several general 
forms of mobility one, many special forms are possible, 
along with cases of greater mobility, depending on 
what additional geometrical constraints apply.

(b) derived from six-bar loops

Here, the fundamental linkage consists of two groups 
of parallel screw joints, there being at least two 
screws in each group. Screw pitches are arbitrary, and 
up to two of the screws may be replaced by arbitrarily 
oriented sliders. Again, there are several general
forms of mobility one, as well as special forms and

<
cases with greater mobility. The significance of this 
type for five-bar loops is that certain combinations 
of two joints may be replaced by single joints. Thus, 
a pair of coaxial screws of differing pitch is 
kinematically equivalent to a cylindric joint, and the 
six-bar loop becomes a five-bar of connectivity sum
six.
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2. plane-symmetric linkages 

(Refer to Waldron [44,45].)

If we exclude reference to the form which is equivalent 

to a special parallel-screw linkage and to the Myard 

(for which, see 4.) plane-symmetric five-bar, this type 

of chain has the following properties. The linkage has 

a plane of symmetry, and consists of two pairs of finite 

pitch screw joints and a slider. The two screws in 

each pair are symmetrically disposed with respect to the 

plane of symmetry, and the sum of their pitches is zero.

The two screws on either side of the plane of symmetry 

are parallel to each other. The prismatic joint is 

normal to the plane of symmetry. The common normals 

between consecutive joints are also in symmetrically 

disposed pairs, and the members of a pair have the same 

projection in the plane of symmetry.

3. Delassus hybrid five-bars

These chains, obtained by combining Delassus three- and 

four-bar solutions, are detailed in section 4.1 above.

4. Goldberg five-bar

(Refer to Goldberg [25] and Myard [32].)

This linkage is produced by combining a pair of Bennett 

chains in such a way that a link common to each may be 

removed and a pair of adjacent links may be rigidly 

attached to each other. The resultant loop will then 

have a pair of corresponding links with equal length and 

twist angle; two other adjacent links will have a combined 

length and angle of twist equal to those of the last link
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(which is that one derived from two links of the 
original chains).
The Myard plane-symmetric five-bar is the special case 
of the Goldberg five-bar for which the two Bennett 
chains are symmetrically disposed before combining 
them. They must therefore be mirror images of each 
other, the mirror being coincident with the plane of 
symmetry of the resultant linkage.

5. coaxial screw substitutes

In section 4.2, it was shown that, under certain 
conditions, a slider or a revolute in a mobile linkage 
could be replaced by a H=H or H=P combination, without 
altering the kinematics of the loop as a whole. Thus, 
eligible four-bar linkages may be converted into five- 
bars by such a replacement.

The five types of linkage summarised above, whether 
singular cases or groups, have something in common. They 
were all discovered by researchers following a very special 
line of enquiry in each case. They were not isolated because 
they were five-bars as such, or because of some particular 
properties exhibited by five-bars. It was just that five 
happened to be the appropriate number of links for mobility 
one for the kinds of motion characteristics being investigated. 
That is, the workers concerned did not begin with five links 
and look at the potentialities for mobility; they proceeded 
in the opposite direction. Whilst types 1. to 5. above must 
figure largely in a direct treatment of five-bar linkages, 
a progressive algebraic analysis is required in order to check
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out all possibilities.

The other advantage of an algebraic approach is that it 
yields the independent closure equations of the linkage under 
consideration. In the past, workers have not concerned 
themselves with setting out the final governing equations of 
mobile linkages. Such a step, however, will be of increasing 
importance in the establishment of input-output relationships, 
limit positions and even mere computer-produced pathplots. 
Geometry provides us with valuable insights, but ’number 
production' depends solely on algebraic results.

In chapter 5, we were able to isolate many mobile four- 
bar chains by examining groupings of linkages with parallel 
adjacent joint axes. There is no reason why we cannot adopt 
the same general procedure for five-bars, without specifically 
looking for mobility one loops with joints of connectivity 
one. Even if not as fruitful, in terms of the number of 
linkages uncovered, as for the four-bars, it is a suitable 
starting-point in a systematic treatment of five-link chains.

Within the following sections, then, we shall largely 
follow the same approach used in chapter 5, although confining 
ourselves to just those cases w'here there is parallelism 
between adjacent joint axes. An overview of what remains to 
be attempted will be given in the Conclusion to this chapter. 
It might be noted here that, for linkages with five members, 
any proper, mobile, overconstrained loop can have connectivity 
sum of only five or six.

For a chain containing five members, closure equations 
(iv) and (v) from the first section of chapter 1 become
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LIiV12y2y23y3v34y4y45y5v51 = I

and

d 1 S_1 + d1 V1 £^2^.2 i V i 2^.2 V2 3 U 3_S 3 +U_i Vi 2U2V2 3U3V3 4U4 S_4

+^i^i2U2v23y3v34y4v45y5s5 = o .

As in chapter 5, we follow Waldron’s [45,47] procedure and 
rewrite these equations as

rp rp rp rp rp

U V U V u = v u/v, /u, V,-— 1 — 1 2 — 2 ‘— 2 3 — 3 -—• 5 1 — 5 — ^ 5 — 4 •— 3 4

and
rp rp rp rp rp rp

V U V U s +V U s +s +U v s +U v AU v s = 0= 3 4.^4 = 4 5 = 5—5 =3 4^4_4 _3 ^3 1.2 3 _2 CL3 =2 3 =2 =1 2 Z-1 _

We may now expand the two matrix equations to yield the 
equivalent twelve scalar closure equations, as follows.

c01c02c03-s01s02c03ca12-cG1s02sQ3ca23-s01c02s03ca12ca23

+S0lS03Sai2Sa23=C04C05'S04S05Ca45 (7.1)

C01C02S03+S01S02s03cai2-C01S02c03ca2 3-S01c02c03ca12ca2 3

+ S01C03Sai2Sa23 S®4Cd5Ca34 + C®4S(05Ca34Ca45~S®5SOi,34Sa45

(7.2)

c01s02sa23 + s01c02ca12sa2 3 + s01sa12ca23

S04c05sa34+c04s05sa34ca45+s05ca34sa45 (7.3)

S01c02c03+c01s02c03ca12-50^02s03ca2 3 + c01c02s03ca12ca2 3

C01S03S“12Sa23='C04Se5Ca51-S04C05Ca.5Ca51

+ s0,sa, csac.4 4 5 5 1 (7.4)
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-s01c02sG3-c01s02s03ca12-s01s02c03ca23+c01c02c03ca12Ca23

C®lC®3Sai 2 Sa 2 3

-s0[ts05ca34ca51+c04cG5ca34ca45ca51-c04Cot34sa45sa51

C05Sa34Sa45Ca5l"Sa34Cait5Sa51
(7.5)

S01s02sa23-c01c02ca12sa23-c01sa12ca23

s04s05sa3 4 cot 5 j + c04c0 5sa3 4 ca4 5ca. 51 ~ c0 4 s a 3 4 s ot 4 5Sot51

+ c0 ca sa ca +ca ca sa
5 34 45 51 34 45 51

(7.6)

S02C03Sai2+C02S03Sai2Ca23+S03Cai2Sa 2 3

C04S05SO!,51+S04C05Ca45Sa51 + S04Sa45Ca51
(7.7)

S02S03 Sai 2 + C02C03SOtl 2C0t2 3 + C03COtl 2 S a 2 3

:s04s05ca34sa51-c04c05ca34ca45sa51-c04ca34sa45ca51

+c05sa34sa45sa5j Sa34Ca45Ca5i (7.8)

C02Sai 2Sa2 3 + COtl 2Ca2 3

:S04S05Sa34Sa5l'C04C05Sa34COt45Sa5l'C04Sa34Sa45Ca51

C05Ca34Sa45Sa,51+COt34C°i,45CO('51
(7.9)

a51(c04c05-s04s05ca45)+r5s04sa45+a45c04+a34+a23c03 

+r2s©3sa23+a12(c02c03-s02s03ca23)

+ ri (S02C03Sai2+C02S03Sai2Ca23 + S03Cai2SCt23:) = 0
(7.10)
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+r2c03sa23-a12(c02s03+s02c03ca23)

(7.11)

(7.12)

Again as in chapter 5, we may obtain alternative forms of 
the above twelve equations by cyclic advancing of the 
subscripts.

Armed with the governing equations, we now proceed to 
isolate the proper, mobility one five-bar solutions with the 
various combinations of parallel adjacent joint axes. We 
achieve complete success in all cases except that for which 
there is only one pair of adjacent joints parallel (section
7.6).
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7.1 All joint axes parallel

= a23 = a34 = a45 = a5i = °

Closure equations (7.3) and (7.6)-(7.9) are identically 
satisfied. Equations (7.1) and (7.5) yield

C^j+Og+Qg) = c(04+05),

and equations (7.'2) and (7.4) yield

-s(01+02+03) = s(0 4 + 0 5).

These results together imply that

0i + 02 + 03 + 04 + 05 = 2ktt . (7.1.1)

Equations (7.10)-(7.12) become, respectively,

a51C(0‘.+05)+a45C(Va3.,+a23C03+ai2C(02+03) = 0 (7.1.2)

a51S(04+05na.t5S04-a23S03-ai2S(:02+03) = 0 (7.1.3)

r5 + r4 + r3 + r2 + r! = 0. (7.1.4)

Since there are only four independent closure equations, all 
joints must have connectivity one if the linkage is to possess 
mobility unity. Only one of the parallel joints can be 
prismatic without making the linkage improper. Hence, the 
only possible linkages are H-H-H-H-H- and The
first of these is a general parallel-screw linkage, whilst 
the other is a special case of a parallei-screw type.
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7.2 Four joint axes parallel 

We may suppose that

“3- = = <*51 = °.

and ct12 = a23 or 2ir-a23, where 0<a12<2ir, 0<a23<ir.

We put sexi = osa23 .

Equation (7.9) yields the result that

c0o = - a.2

That is, joint 2 is prismatic, and sO2=0.

Equations (7.3), (7.6)-(7.8) are identically satisfied. 

Equations (7.1) and (7.S) yield

-00(6^63) = c(04 + 05) ,

whilst equations (7.2) and (7.4) yield

astOj+Og) = s(04+05).

Together, these results imply that

03+04+05 + 0l = 2kTT + —TT . (7.2.1)

Equations (7 .10) - (7.12), respectively, reduce to

a51c(04+05)+a45c04+a34+a23C03+r2s03sa23-aa12c03 = 0 (7.2.2)

a51s(04+05)+a45s04-a23s03+r2c03sa23+aa12s03 = 0 (7.2.3)

r5 + r4 + r3 + r2ca23 + rx = 0. (7.2.4)
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Again, there are four independent equations. The only 
possible proper linkages with mobility one here are 
P-H-H-H-H-, P-P-H-H-H- and P-H-P-H-H-. The first of them is 
a general parallel-screw linkage, and the other two are 
special cases.
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7.3 Three adjacent axes only parallel 

We choose

a2 3 ” “34 =

Equation (7.9) reduces to

C0 Ca4 5Ca5 i”Cai2
saL.sa4 5^5 1

establishing joint 5 as a slider.

Decreasing the indices in equation (7.9) by 1 results in an 

equation which reduces to

c0 Ca5 1Cai 2"Ca4 5

S(X5 1 SOt 1 2

As expected from symmetry, joint 1 is then also a slider

Equations (7.1) and (7.2) become respectively

c01c(02 + 03) -cax 2s01s(02 + 03)=c04c05-caIf 5s04s05 (i)

and

-c01s(02+03)-ca12s01c(02+03)=s04c05+ca45c04s05.

Squaring and adding these two equations results in an identity, 

after substituting for c01 and c05 from above. That is, the 

equations are dependent.

Equation (7.3) reduces to

s0x saj2 = s05sa45,

which is compatible with the above results for c0j and c05.
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Equations (7.4) and (7.5), respectively, reduce to

(ii)

and

-s01s(02+03)+ca12c01c(02+03)=ca51{-s04s05+ca45c04c05}

”sa4 5scx5! c04.

Squaring and adding these equations, and substituting for 
c0j and c05, results, after some manipulation,, in an identity. 
The equations are therefore dependent.

Equation (7.6) is identically satisfied by substitution for 
cQj and c05.

Equations (7.7) and (7.8) become, respectively, 

sa12s(02+03)=sa51(c04s05+ca45s04c05)+sa45ca51s04 (iii)

Again, squaring and adding results in an identity, showing 
that equations (iii) and (iv) are dependent.

If we now substitute for s(02+03) and c(02+03) from (iii) and 
(iv) into equation (i) we find, after manipulation, that an 
identity results.
An identity is also the consequence of a similar substitution 
from (iii) and (iv) into equation (ii).

and

(iv)

We therefore conclude that equations (7.1)-(7. 8) reduce to
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only one independent closure equation. The most convenient 

form of this equation is obtained by subtracting (iv) x c04 

from (iii) * s04 to produce

"Sdj2c(02+03+04) = ca45sa51c05+sa45ca51

whence

ca
Sa ^Ca4 5Ca51_Cai2^+Sa45Ca51 > U4 5

c(02+03+04)
ca4 5ca12 ca51 
s a 4 5 s cn j 2 (7.3.1)

If, instead, we eliminate c05 from equations (iii) and (iv) , 

we are led to the useful subsidiary relationship

S(02+03+04) S®5 S0j

sot5 j s"a 12 sa4 5 *

Translational closure equations (7.10) and (7.11) become, 

respectively,

asi (c0tc0s-s0tsesca,s)n5setsal|s+a„c0/a,4ta23ce, 

+a12c(02+e3)+r1sa12s(02+03) = 0

and

a5l(S0‘tC05 + C04Se5Ca4 5)-r5C0,SO1..5 + a4 5S(Va2 3S03

-a12s(02+03)+r1sa12c(02+03) = 0 •

Elimination of s0r and c0r between these two equations5 5

results in the more convenient alternative forms

a51C05+a45+a34C04+a23C (03+04)+a!2C(02+03+04)

+ r j sdj 2s (02 + 03 +0,,) = 0 (7.3.2)
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and

a51S®5C0145"r5Sa45'a34S^4"a23 s (0 3+04)-ai2S (02+0 3 + 04

+rxsax2c(02+O3+04) = 0. (7.3.3)

Equation (7.12) reduces to

a51Sa45S05+r5Ca45+r4+r3+r2+riCai2 0. (7.3.4)

Because there remain only four independent closure equations, 

any linkage of mobility one must have connectivity sum five. 

If more than one of joints 2, 3, 4 are sliders, we have 

part-chain mobility and, by equation (7.3.1), all joints are 

sliders. Any one of 2, 3, 4 can be a slider to yield a 

special case of a parallel-screw linkage of form P-P-H-H-P- 

or P-H-P-H-P-. The only other possibility is a general 

parallel-screw linkage of the form P-H-H-H-P-.
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7.4 One group of three and one group of two adjacent axes 
parallel

We may choose

and a23=a51 or 2Tr-a51 where 0<a23<27r, 0<a51<Tr.

Let us put

Sa2 3 - asa51.

Equation (7.9) is identically satisfied.

Equations (7.3) and (7.6), respectively, reduce to

s(0 ^ + 0 2 ) = 0

S Ot 5 i
and c(0. +0 ) = - ----  = - a.

1 2 Sa23

Together, these equations imply the result

01 + 02 = 2kir + tt . (7.4.1)

Then, equations (7.1), (7.5) and (7.8) each reduce finally 

to

c03 = - ac(04 + 05).

Similarly, each of equations (7.2), (7.4) and (7.7) reduces

ultimately to

s03 = os(04+05).

These two results may be summarised as

1 + a03 + 04 + 05 21 tt + ■it . (7.4.2)
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By equation (7.4.1), neither of joints 1 and 2 may be a 
slider without the other also being prismatic, and so making 
the linkage improper through part-chain mobility.
By equation (7.4.2), precisely one of joints 3, 4 and 5 may be 
a slider.

The first two translational closure equations reduce to 

a5ic(0, + 05)+a„5ce4 + a31( + a23ce3+r2s03sa23 

+ax2(c02c03-s02s03ca23)+r1s03sa23 = 0

a5 1S + 5S®4_a23S®3+r2C®3Sa23

-aj2(c02s03+s02c03ca23)+rJC03sa23 = 0.

By eliminating either r1 and r2 or a23 and a51 between them, 
these results may be alternatively expressed as

a23'aa51+a‘.5C(e3+0J+a3^C03 + a12C02 = 0 (7.4.3)

ri5a23+r!Sa23+auS(03<0JtaJ*S03‘ai2S02C“2 3 = °- (7.4.4)

Equation (7.12) simplifies to

r.C“23 + r2CB23 + r3tr/rS+ai2S02SC,23 = 0' (7.4.5)

Since there are five independent closure equations, a linkage 
of mobility one governed by them must have joint connectivity 
sum six. The six eligible chains are C-H-H-H-H-, C-H-H-H-P-, 
C-H-H-P-H-, C-H-P-H-H-, H-H-H-H-C-, All of these
linkages have been mentioned by Hunt [27] and Waldron [42,45].

To complete this category, we must now investigate the 
possibility of mobile chains with connectivity sum five. There
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are three sub - categories, listed below as A, B, C. We may 

cover all contingencies by looking at, in turn, the cases 

where joint 3 is prismatic, joint 4 is prismatic and all five 

joints are screws. In the first two cases, the other four 

joints must be screws.

A

Let us assume that 03 is fixed and consider the possibility 

of mobile H-H-P-H-H- linkages. Elimination of 04 from 

equations (7.10) and (7.11) yields, using (7.4.1) and (7.4.2),

a4 5 2 = a5 1Z + a 3 4 2 + a2 3 2+{R2 + Rl+(h2’hl)02+hl1T(2k + X^ 2 3

+ ai22{c20, + s 202c2°t2 3>-2<:la3.ta5ice3 + 2a23a3,)ce

1+Q-
+ 2a3 4^R2 + Rl + (h2 “hl^ 02+hi7T(2k + -y-) >S03Sa 2 3

+2ai2a34(c02c03-s02s03ca23)-2oa23a5i-2aai2a5iC0;

1 + a-+ 2ax 2a2 3c02-2a1 2 {R2 + R1 +(h2-hx) 02+h1Tr(2k+——) }s02sa23ca23 .

Taking only that portion of the equation which contains even 

powers of 0 , we have

a, c =a -4 5 5
1 + a-

1 2 + a 3 4 2 + a 2 3 2+{R2 + R1+h1Tr(2k+—■—-) } 2 s 2 a 2 3

+ (h2-h1 ) 202 2s2a23 + a122 (l-s202s2a23) -2aa31+a51c03

1 + a-
+ 2a2 3a3 4C03 + 2a3 4{R2 + Rl+h11l(:2k + —)}S03Sa 2 3

+ 2ax 2a34cO2c03-2aa23a51 2aa12a51c02 + 2a12a23c02

-2a12(h2-h1)02s02sa23ca23.
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Now, equating the coefficients of some even powers of 02 

yields the following results.

02 2: 0 = (h2-h1) zs za2 3-a1 2 2s2a2 32ax 2a3 4c03 - 20a! 2a51+2ax 2a2 3 }2 „ 2

2ai2(h2-hi)sa23ca23 
„ 2

(i)

ey: 3 s a2 3+^ry^ z a 1 2 a 3 4 3 " ^ aa i 2 a 5 1 + ^ a 1 2 a 2 3

+ 2yP-(h2-fri)sa23ca 2 3 (ii)

02 6: 2ai220= - -245 S a2 3 ~ ^ 2 3 1 2 a 3 4C® 3 ^ aa 1 2 a 5 1 + ^ 3 1 2 a 2 3

1 22-jp—(h2 -h i )sa23ca 2 3 (iii)

02 *
ai 22 1

O=-7T5S2a2 3 + 8T{2ai2a3.lC03-2oa12asl+2ai2a2 3}

+ 2-yy(h2-hi)sa2 3ca 2 3 (iv)

Elimination of the terms in braces between equations (ii) and 

(iii) leads to

6ai 22S2a2 3+ai 2 (^2 J Sa2 3Ca2 3 ~ 0 *

From (i), if a12=0, h2=h1; then joints 1 and 2 would be 

coaxial screws of equal pitch, the linkage consequently 

possessing part-chain mobility. Hence, a12^0 and

6ai2sa23+(h2-hi)ca23 = 0. (v)

Clearly, h ^h and ca23^0, for otherwise we should have that

ai2=0.

Elimination of the term in braces between (i) and (ii) results

in
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(h2 -hj) 2s 2ol2 3 + 3a -2a12(h2 _hi)sa2 3 ca2 3•

By means of (v), this equation reduces to

1
4 *

whence 1== _2 3 5 ‘

Therefore, in equation (i) , using (v),

4 a ^ 2 (h 2 hj)sa23ca2 3

Substituting this result into equation (iv), and again using 

(v), yields

= ^lyr(16 + 5 -12), 

a contradiction.

So there is no linkage of the type H-H-P-HCH- with mobility 

one. Neither will there be any with a revolute in place of 

any screw, since such a solution would have appeared in the 

foregoing under the dimensional condition h^=0, some i.

B

We next assume that 04 is fixed, and look for mobile chains of 

the form H-H-H-P-H-. Differentiating equations (7.4.3) and 

(7.4.4) with respect to 02, we obtain

y1 s a2 3

a 2
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{an 5s (03 + 0J+a3 4S03}307+ai 2S02 = 0

and
dQ

{a.SC(93+eJ+a!*C03)3e:t(h2'hl)Sa23-a,!C0!C«23 = 0-

Now, if { a45s(03+0^ )+a34sO3} = 0, from the first of these 
equations, a =0. Then, from (7.4.4), considering the 
coefficient of 0 , (h2-h1)=0. We should therefore have part- 
chain mobility.
Also, if {a. Cc(0 +0 )+a c0 }=0, from the second of the 
equations, (h -h )=0 and, from equation (7.4.3), a12=0. Part 
chain mobility is again implied.

d0 3
We may hence conclude that the coefficients of in the
equations are not zero. Eliminating the derivative between 
the equations,

ai2S02{a45C(03+04 )+a34C03>

{ (h2-hp sa2 3-a12c02ca2 3}{a4 5s(03+0lt)+a31,s03}

Using now equations (7.4.3) and (7.4.4),

ai2S02{aa5l'a23-ai2C02}

={ (h2-h1)sa23-a12c02ca23}{a12s02ca23-sa23[R2 + R1 + (h2-h1)02

+ h1u(2k + ]} .

We shall now equate coefficients of some odd powers of 02.

02 1 * a!2 (aa5 1-a2 3)=ai22s2°t2 3 + 2ai2Ch2'hl3Sa2 3Ca2 3-(h2-h1)2S2a23

(i)

0. 3: - ^4—(aa -a ) = -Ta 2s2a M-(h ~h )s« ca31 V 51 2 3 2 3 1 2 2 3 6 V 2 r 23 2 3

~ 12(h -h )sa ca
K 2 1 2 3 2 3 (ii)

2
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c ai2 . .16 p p 3 1 2 . . .
02 : T!~(aa5l'a2 3)=5Tai2 S a23+rT_(:h2'hl)Sa23Ca2

+ 4fi(h2-hi)sa23ca 2 3 (iii)

0 2 . y-f (aa5l_a23-) ~ 7~ra 12 ^ ^23 y I Ch2~hj)SCX23C0(,23
1 2 64 1 2

FT(h2‘h1)Sa23Ca 2 3 (iv)

From equation (i) ? if a =0, h2=h1. Since this would indicate 

part-chain mobility, we conclude that a12^0.
Eliminating the LHS of equations (ii) and (iii) between them,

6ax22s2a23+ai2sa23ca23(h2-hl) = 0.

Since a12^0,

6ax2sa23+ca23(h2-h1) = 0 (v)

We conclude that ca23/0 and h^hj since, otherwise, a12 would 

be zero.

Eliminating the LHS of equations (i) and (ii) between them, 

3a122s2a23+(h2-h1)2s2a23=-2a12sa23ca23(h2-h1).

Using equation (v), this reduces to

whence

12a

2cza

2 3

2 3

1
4 ’

4
5 and ps za 2 3

1
5’

as in part A. Hence, in (i), using (v) ,

ai22 1 312
ai2<>a5 1-a2 3)=-S— 2a12Sa2 3X6ai2Sa2 3 -5X36 ~T

- 4a122.
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In (iv) then, again using (v),

a
x6a

36 2
5x711 2 >

a contradiction.

Hence, there is no linkage with mobility unity of the type

For the same reason as given in part A, neither 

are there any solutions with revolutes in place of screws.

C

We consider finally possible mobile linkages of the form 

H-H-HCH-H-. We may eliminate 0X and 05 among the closure 

equations (7.4.1)-(7.4.5) to rewrite the last three in the form 

below.

Now there is a solution for which joints 1 and 2 are coaxial 

and the pitches of the other three screws are equal, given by 

. This linkage is kinematically equivalent to

a23'Oa51+a45C(03+04)+a34C03+ai2C02 = 0 (i)

-ai2s02ca2 3 = 0 (ii)

(iii)

Delassus four-bar d.2. In terms of the above closure equations, 

(iii) is reduced to a mere relationship among linkage constants 

by putting
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h3 = h4 = h5 ca23 = a12 = 0.

We may, and must, exclude this solution from the following 
discus sion.
In accordance with the theorem of section 4.3, let us suppose 
temporarily that h2=hx and h3=h4=h5. Equation (iii) becomes

R3 + Rlt + R5 + h5TT(21+^.)+ca23{R1+R2 + h1TT(2k+ip.)}

+ a 1 2 S02 Sot 2 3 0.

By considering the coefficient of s02, it is clear that a12 = 0 
Under the present conditions relating the screw pitches, this 
would imply part-chain mobility, and hence no solution.
We may now revert to the general case of unrelated screw 
pitches. In so doing, to ensure mobility, we must retain the 
dimensional constraint just determined. That is,

But then joints 1 and 2 will be kinematically equivalent to 
a cylindric pair and the chain may be regarded as a C-H-H-H- 
four-bar. From the results of chapter 5, however, we know 
that there is no such linkage with mobility unity.

Hence, apart from the H=H-H-II-H- linkage, there is no solution 
of the form H-H-H-H-H-, and consequently no other five-bar of 
the form J-J-J-J-J- with connectivity sum five and mobility one.
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7.5 Two pairs of adjacent axes parallel 

We take

1 2 '4 5 0.

Equations (7.6), (7.8) and (7.9) may be reduced, respectively, 

to the following three results.

c(01+02) CC15 1 Ca2 3 ~Ca3 4

sa51sa2 3 (7.5.1)

cO Ca2 3Ca3 4 _Ca5 1

2 3 3 4
(7.5.a)

c(04+0 5) COt3 4COt5 1 "C0t2 3
sa31+sa51 (7.5.2)

Hence, joint 3 is prismatic, and we may think of relations 

(7.5.1) and (7.5.2) as implying that

0i + 02 = constant 

and 04 + 05 = constant.

Closure equations (7.3) and (7.7) lead to the subsidiary 

result that

s(0i+02) s0 S(0 +0J
3 4 5 1 2 3

(7.5 .b)

The remaining rotational closure equations, (7.1), (7.2), (7.4)

and (7.5), are satisfied by the above results. The translational 

closure equations (7.10)-(7.12) reduce, respectively, to the 

following three equations.
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+r2S03Sa23+riS03Sa23 = 0 (7.5.3)

~r5Sa3 4 "r4Sa3 4+r2C®3 Sa2 3+r 1C®3 S0t2 3 = 0

(7.5.4)

+ r5Ca34 + r4C0i34+r3+r2Ca23 + riC0t23 = 0 (7.5.5)

Since there are at most five independent closure equations, a 

chain in this category with mobility one must have a connectivity 

sum of six or five. Now, none of joints 4, 5, 1 and 2 can be 

prismatic for, by equation (7.5.1) or (7.5.2), the joint 

parallel to it would also be locked in rotation. This would 

result in part-chain mobility.

The only solutions of connectivity sum six are C-H-P-H2H- and 

H-C-P-HcH-. Both of these linkages are derivatives of the 

six-bar parallel-screw linkages discovered by Waldron [42,45] 

and Hunt [27].

To find solutions of connectivity sum five, we need examine 

only those chains in which all joints, except 3, are screws.

We must determine the conditions under which equations (7.5.1)- 

(7.5.5) may be reduced to four independent equations. We note 

that (7.5.5) is the only equation which contains r3; it would 

be sensible, then, to concentrate on the other four equations.

We shall first consider, in a direct way, the possibilities 

when s03=0. We shall then investigate the other cases by means 

of the method of tying of screw pitches.
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From (7.5.b), we have

s(Gl+Q2) = s(04+05) = 0. 

If we put c03 = a

and c(0x+02) = t,

then c(04+05) = at.

-03-=-°

Hence, we may write

0j + 02 = —2~7T + ^m7T

04 + 05 = — 2-t-tt + 2n7T

We also have, for example, from (7.5) and (7.6), 

ca23 = ca34ca5x-axsa34sa5x
’ >

-rsa23 = ca34sa51+0Tsa34ca51 , 

whence we conclude that

ot 2 3 +aa34 + ra51 = 2Mtt , M=-l,...,2.

Equations (7.5.3) and (7.5.4) simplify to 

ora, +a c0 + a +oa +oa c0 = 05 1 4 5 4 3 4 2 3 1 2 2

a, s0,ca,,-aa, s0 ca„ -(R +hr0r)sa,,-(R,+ h,0,)sa,,45 4 34 12 2 23^5 5 5' 3 4 v 4 4 4' 34

(7.5.a')

(7.5.1*)

(7.5.2*)

(7.5.1*)

(7.5. c * )

(7.5.3*)

+a(R2+h202)sa23+a(R1+h1O1)sa23 0. (7.5.4*)
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From (7.5.3'), if either a or a45 is zero, then so is the 
other, in order that locking of joint 4 or joint 2 is not 
implied. We shall investigate this case and the alternative 
separately, in parts A and B below.

A
We assume that

which results in the number of independent closure equations 
being reduced to four, along with the dimensional constraint

a23 + °a34 + Ta51 = °’

The linkage indicated has mobility one and consists of two 
pairs of coaxial screws and a slider, all in parallel planes. 
It may be produced as a hybrid from Delassus's four-bar d.8 
and three-bar H=H-P~, as shown in section 4.1; it may 
alternatively be seen (section 4.2) as the result of a -P- 
replacement in d.8.
Equations (7.5.4) and (7.5.5) simplify to

asa23(R1+h101+R2+h202)=sa34(R4+h404+R5+h505)

ca23(R1 + h101+R2 + h202) + ca3l((R^ + h1(0^R5 + h505)+r3 = 0.

From these last two closure equations, if

a2 3 + aa34 = 2Ntt + > N=-1,0 or 1,

joint 3 becomes locked and the linkage degenerates to 
Delassus's four-bar d.7. But then, of course, sa51=0, so that 
the chain does not belong in the category currently being 
investigated.
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B

ai2 ^ 0 a45 ^ 0

Using (7.5.1’) and (7.5.2') to eliminate 0 and 0 from 

(7.5.4') results in

1 — T
as a 2 3 (R2 + R1+h1[ 2m+—— ] tt+ [ h2 - h1]02)-aa12ca23s02

1 — rr t
= sct3 4 (R4 + R5 + h5^2n+-^—]^+[h4-h5]04) -a4 5C0t3 4S04 . (i)

Differentiating w.r.t. © ,

OSa23^12^1l ]~aai 2 C0t-2 3 C02 d0 (Sa34^R4_R5-^ a 4 5 C a 3 4 C ® 4 ^ *
2

(ii)

But differentiation of (7.5.3') yields, since a45^0,

do,
Jo,

oa s0„ 
1 2 2

a. _ sO.4 5 4

Substitution of this result into (ii) and subsequent, squaring 

leads to

a4 5 2 s2 04 (sa23[h2-h1J-aj 2ca2 3c02)2

a 1 2 S ®2^SOi34^-\'^5^’a45COl34C^4^ (iii)

But equation (7.5.3') may be rewritten as

~C04 = ^(0anC92+a3/0a2it0TaS,) *

Using this result in (iii), we have
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{a452"[a23+aa3 44'^a51^2-a122c202-2ai2[a23+Oa3tt+Ta5i]c02}

x{s2a23[h2-h!]2 + a122c2a23c202 - 2ai2sa2 3ca23[h2-hi]c02) 

=a122(l-c202)

x((sa34[h4-h5]+aca34[a23+aa34+Ta51])2 + ax22c2a34c202

+2°ai2Ca34(Sa34[h4"h5]+OCa34[a23+0a34+Ta5i]^C02}’

Since this is an equation in powers of c02 alone, we may 
coefficients to zero.

c402 : ■ai2*C\i = - ai2*c2a34

Then, since a10,

C 2 a2 3 = c2q134

c 3 02: 2a123sa23ca23[h2-h1]-2a123c2a23[a23 + aa34 + Ta51]

-2aa 3ca (sa [h -h ] + aca [a +oa +ra ])1 2 3 4 v 34 4 5 3 4 L 2 3 3 4 5 1 ;

sot2 3^c^2 3 E h 2 - h ^ ) osa3 4ca3 4 [h5 h 4 )

Now, since c2a_ = c2a3 4 ,2 3

then s 2a„ = s 2 a .2 3 3 4

But, by allowing 0<a51<2iT, we may constrain a2 and 3 4

both less than tt . Hence,

s a -Sol2 3 3 4

ca2 3 C h2-hi] = aca34[h5-h4]

(iv)

equate

to be

(v)

(vi)
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c 0 : -ai22s20l2 3[h2-hl]2 + ai22c2a2 3(a.52-[a2 3+Oa3^ + Ta5l

+4ai22sa23Ca23Ch2-hl][a23+0a34+Ta5l]

a 12 (Sa34tl3[( h5] + oca34[a23 + aa34 + xa51]) +a12 c a

]2)

3 4

s2a23[h2'h1]2+a452c2a23

+4Sa23Ca23Ch2'hl][a23+0a34+Xa5l]

122c2“3^52“i4[hrhi32-2(ISCl3tCa34th4'hS][a23t0a3/Ta51]

Using results (v) and (vi), this equation reduces to

a3S!c2a23‘s2c,23[h2-hl]2 + 2Sa23Ca23[h2‘hl][a23t0a3* + Ta51] 

=ai22c2a34-S2a34[h4-h5]2. (vii)

Now, from (vi) ,

c2a23[h2-h1]2=c2a34[h5-h4]2.

We cannot have c2a23=c2a34=0 since, by (7.5.c'), we should then 
have that sa51=0. Such a result is disallowed in the present 
category. Hence,

[h2-h1]2 = [h 5-h4] (viii)

Therefore, in (vii),

a352c2a23+2S“23CC,23Ch2'lll][a23t‘,a3/Ta5.] = 2 1 2 ''C ' 01 3 4 ’ UX)

c102: -2a12s2a23[h2-h1Ha23 + aa34 + Ta51]

-2a12sa23ca23[h2-h1](a45 -[a23+aa34+Ta51] )

= 2aax 23ca34(sa34[h4-h5] + aca34[h23 + aa34 + Ta51])
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Using (ix), (v) and (vi), this result may be re-expressed as

[a2 3+ ea3 ^ + ra 5 j ] sa,2 3ca2 3 [h2 _h1 ]

Ca23+oa34+Ta5iKa122c2a23-s2a23[h2-h1]2). (x)

c°02: s2a23[h2-h1]2(ali52-[a23 + aa34 + Ta51]2)

~a 12 (s °23^it ^5-^ +2asa34ca3,([h4-h5][a23 + aa34 + Ta51]

+c2a34[a23+oa34+Ta51]2)

Using (ix) , (v), (vi) and (viii), this equation may be 

simplified to

[a23+oa34 + Ta5i] (a122c a23 + s2a23[h2-h3 ] 2)
s 3a 2 3[a2 3 + aa3 4 + Ta5iV2-E^[h1-h.2]2-2al22sa23Ca23)[h1-h2]. (xi)

From (x) or (xi) , if h =h , ^a23+aa34+Tasi• Let us assume 

that [a23+oa34+ra5x]^0 (and therefore that h ^h2). Then, from 

(x) and (xi) respectively,

a +aa +ra23 34 51

a23t0a3/«51

a122c2a 3-[h2-hl]2s2a23 
Ch2 _hi]sa23^^2 3

2(Ch1-h2]
s 3a 2 3
ca 2 3 12 SOt23CO(,23^^1l ^ 2 ^

ai 2 2 C 2 2 3 + ^h2_hl ^S2 '2 3

Hence, by equating the two results,

2[h2-h1]2s2a23(a122c2a23-[h2-h1]2s2a23)=a124c4a23-[h2-h1]4s4a 2 3

whence, after transposing terms,

(a!2 C a23-[h2-hl] S a23) = °-

ai 2 2C 2°-2 3 ■ CVhU2s2“23
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Then, in (x) say,

[a23 + 0a34+Ta51]!s“23Ca2J[h2'hl] = 0>

a contradiction. Therefore, we conclude that

a 2 3 + °a34 + ia 5 1 ® *

Hence, from result (ix),

a 1 2 = a 4 5 *

Now reconsider equations (7.5.iT), using (v). From the 

first,

C0t34Ca5 1 Ca23
'2 3 a isa 5 1

since sct51 f 0.

In the second, then,

C0t2 3 ~Ca3 4Ca5 1
a sa 5 1 Ca3 4Sa51 + Ca5l(

Ca34C“SrCa23

5 1

a(Ca23-Ca3 4Ca5l)=C0t3 4S2a5 1+Ca3 4C2015rCa2 3Casi

Transposing terms,

ca51(ca2 3-aca3 4) = - a(ca23-oca34).

If ca23/oca34, then ca51=-a. But then sa51=0, which is 

disallowed. Therefore,

CCt2 3 = OCa34‘

Hence, from result (vi) ,

hj - h2 = - (h5-h4).

(xii)

(xiii)

) •

(xiv)

(xv)

We may now check on the sufficiency of the above results, (v) 

and (xii)-(xv), by substituting them into equations (7.5.3')
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and (i), which we require to be equivalent. 

Equation (7.5.3*) reduces to

c04 + oc02 = 0,

whence < 04 = P02 + 2ktt +

and (i) consequently becomes

as a2 3 (R2 + R1 + h1 [2m-t~2—]tt+ [h2-h1]02)-aa12ca23s02 

= sa23(R, + R5 + h5[2n+t^I]7r+[hil-h2][p02 + 2k7r+iyo-7r])

-a12oca23 ps02(-a).

That is,

san(R/R5'o[Ri+R2 ] + h5[2n+tl|I]Tt-oh1[2ra+tp-]1i 

+ [h1-h2][2k+ii2]jr)+sa23[h1-h2]02 (p+o)

+ C0t2 3ai 2S02 (p+a) = 0*

For this equation to be an identity in 02, we must have

p = - a.

Hence, one of the independent closure equations will be 

04 +O02 = 2kTT + ~2~tt >

along with the dimensional condition 

R4+R5 + h5C 2n+-—7T-a(R2+R1+h1 [ 2m+-yT-] tt)

= [ h 2 - h j ][2k + i|2.]7r.

(xvi)

(xvii)
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Let us now reconsider closure equation (7.5.5) which, using 

results (7.5.2’), (v) , (xiii), (xiv) and (xvi), may be 

written as

ai2Sa23S02+ai2Sa23S02+^R5+h505^aCa23+^R4+h404^aCa23

+r3+(R2+h202)ca23+(R:+h101)ca23 = 0.

Using (7.5.1') and (7.5.2') to eliminate 05 and 0X, the last 

equation becomes

1 — tr3 + 2a12sa23s02 + ca?3 (R2 + R1+h1[ 2m+—]iT+[h2 - h1 ]02)

+ aca2 3 (R5 + R4+h5[ 2n+-—~]7r+[h4-h5 ]04) = 0.

We again use result (xvi) with (xv) to convert this last 

equation to the form

r3 + 2a12sa23s02 + cot23 (R2+R1+h1[ 2m+~^-]Tr) +ca2 3[h2~h1]02

+ aca2 3 (R5+R4+h5 [ 2n+-1y?-T-]7T) +aca2 3 [hx - h2 ] ([ 2k+i^-]TT-a02)

= 0.

Using now condition (xvii), the last equation reduces to 

r3 + 2a12sa23sO2 + 2[h2-h1]ca2 3 02 + 2 (R2 + R1+h1[ 2m+i^]TT) ca23

(xviii)

which is independent of a. The final set of four independent 

closure equations is then (7.5.1'), (7.5.2'), (xvi) and (xviii). 

If we summarise results (v) and (xiv) by the equation

a 3 4 a a 2 3
1- 

2 * (xix)

then (7.5.c') simplifies to



'elevation'

Fig 7.5.1

Fla 7,5.3
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2a 23 + Ta51 = (2M + tt . (xx)

The dimensional constraints for this case are now given by 
equations (7.5.a'), (xii) , (xiii), (xv), (xvii), (xix) and 
(xx). For convenience, we list them together below.

a23 + Oa34 + ^51 = 0 a12 = a45

hx _h2 = - (h5-hj

R4+R5 ~a(Ri+R2)

= -h5[2n+i^]TT + ahl[2m+i^]Tr+[h2-h1][2k+i|2]ii

2(oa3l<+ = 2a23 = - ia51 + (2M + i^-) it

We note here, in particular, the mutual independence of the 
various dimensional conditions; for example, prescribing 
stronger constraints on the normal link-lengths within (xii) 
makes no further demands on the screw pitches under (xv). We 
also see from result (xii) that, if a=+l, we must have t=-1, 
in order that a51 be positive.

Recalling the results

s(01+02) = s03 = s(04+05) = 0,

it is clear that all five joint axes lie in parallel planes. 
The two varieties of the solution are depicted, with the 
accompanying relationships, in Figs. 7.5.1 and 7.5.2.
The pairs of parallel screws are symmetrically disposed, in 
the lateral sense, from a plane perpendicular to the slider. 
It is now evident that Waldron's plane - symmetric five-bar



‘elevation'

a12 = a45

OCX 23 = OCX 3 4

51 ~ “^a34 f q23^

a34

'plan'
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(Refer to Introduction.) is a very special case of the present 
solution. The added constraints are

0--1 cl 5 l — ® a3 4 “ a2 3 >

and h_ = - h. h. = - h. .5 1 4 2

As already mentioned above, these two sets of restrictions may 
be applied independently of each other.'

In view of Waldron’s [44,45] screw-system analysis of his plane- 
symmetric five-bar, it seems to be worthwhile to pause here and 
present a similar analysis for the more general linkage. 
Referring to Fig. 7.5.3, we shall locate our origin of co­
ordinates at the point of intersection of screw axis 1 with 
the hypothetical plane of quasi-symmetry. Then the ISA vector 
components for screw axis 1 may be given by (Refer to chapter 

1.)

0! = c$i - s$j = h1(c$i - s$j).

Also, since

£s = - Ta5l£«

we have that

a5=c$i+s$j y5=h5(c$i+s$j)+Ta51(s$i-c$j).

Now, for equal and opposite relative angular velocities about 
these two joint axes, their resultant screw is obtained by 
simply adding the corresponding ISA components. Doing this, 
and normalising, the resultant screw is given by
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1 5
. /N
i Hi

h5+hl . h 5 ~h1
5 2 1 + ~1

Ta51 . Ta51
13J + -o— 13i - — j

. . h 1 5
h + h t a5 1 5 1
---- 9— + —9— t6 p 1 5

,Vhl „ Ta5K,(-r- -)k

In the same way, for screws 2 and 4, we should obtain the 

following results.

2 4 y24
h +h h -h4 2. 42—9— 1 + —9— 13j 51 ra

t Bi 51

h +h4 2 ra 51
2 4 tB 824

h4-h2 Ta 5 i
( 2 ’ ~2

Now, from equation (xv),

whence

hs + hi = h 4 + h2>

h 1 5 = h24.

So the two resultant screws are parallel and coplanar (in the 

plane of quasi-symmetry), and have the same pitch. The 

''simplified screw system" [44,45] of the linkage therefore 

consists of all screws of pitch hi parallel to i and in the 

plane of quasi-symmetry, together with all infinite pitch 

screws perpendicular to the plane. It is a screw system of 

order two. We may demonstrate these results easily as follows.

Consider the screw system defined by the two screws

a)1 = i jij = hi and co2 = 0 y2 = j.

A general screw of the system may be described by the motor

S = (oij i ,ha31i + y2 j ) .

Por 001 f 0,
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$ = (i,hi + ~- j),

^ 2whence pitch=h and p=—k.

For a) =0,

$ = (0,j).

Hence, all screws of the system are screws of finite pitch h 
parallel to and ceplanar with (uj.,^), or infinite pitch
screws parallel to (0,y ). It is also clear that all screws 
of either type will be contained in the system. The particular 
screw system applying here has been categorised by Hunt [30] 
as the "second special form" of the two-system. As Waldron 
has pointed out, the results of this latter screw system 
approach alone to a mobility study of the linkage would provide 
a necessary, but not sufficient, basis for inferring a 
mobility of one.

sQ3_^_0

We find it convenient here to reframe equations (7.5.1) and 
(7.5.2) in the forms

where K12 and K(+5 are constants. Using these equations, we 
may re-express equations (7.5.3) and (7.5.4) as, respectively,

(7.5.1")

Q + Q = KU 4 U 5 ^4 5 >
(7.5.2")

(7.5.ii")
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a5 1SK4 5Ca3 4-a2 3S03+a4 5S04Ca3 4-ai2^C02S03+S02C03Ca2 3^

•Sa34(R4+R5+Ch4‘h5]04 + h5K45)

+ c03sa23(R2 + R1+[h2-h1 lOj + hjK^) = 0. (7.5.iiiM)

Let us first consider the possibility that a12=a45=0. From 
(7.5.ii"), since 03 is constant, we may conclude that h2=h1.
Then, from (7.5.iii"), h[+ = h5. The resulting improper linkage 
has part-chain mobility. It consists of two mobile two-bars 
rigidly connected by a locked slider.

We now look at the implications of only one of a and a45 
being zero. The two alternatives are entirely analogous with 
each other. We shall subsequently consider the general 
situation.

C

We choose

a.* = 0.4 5

Since al2^0 and 03 is constant, we conclude from (7.5.iiM) 
that

C03 = ca2 3 = 0 hj = h, say

Let us put

S03 = a,

and we are free to choose a,3 = From (7.5.a),

5 1 0,

and we are free to choose a51 = j by allowing 0<a34<2'iT. Then,
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from (7.5.1), (7.5.2) and (7.5.b), we are led to the closure
equations

©i + 02 + aa34 = (2m+l)TT

and 0, + 0C = 2n7T + ai.*+ s 2

We also have the result

Equation (7.5.iiM) reduces to the dimensional condition 

aa3 4 + R2 + R1+h[ (2m+l) TT-aa3 4 ] = 0.

Equation (7.5.iiiM) simplifies to

a51Ca34 S2 3~ai 2C®2"°S0t3 4^4 + ^5 + \®4 + ^5®5^ ~

The last closure equation, obtained from (7.5.5), is

Oa5 1SOt3 4 + ai2S02 + CCt3 4(R4 + R5 + h404+h505) + r3 = 0.

The mobile linkage here represented has screw joints 1 and 2 
parallel with equal pitch, the slider perpendicular to them, 
and screws 4 and 5 coaxial and also perpendicular to screws 1 
and 2. This chain, H-H-P-H=H-, may be obtained from the 
Delassus linkage d.3 by means of one -P- replacement (Refer to 
section 4.2.).

D

We now attempt the most general case, having dealt with the more 
obvious potential singularities. To proceed, we shall use the 
approach of tying of screw pitches. We suppose temporarily 
that h2=h1 and h4=h5. Equations (7.5.iiM) and (7.5.iiiM) will
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then reduce to, respectively, the two following equations. 

-a45c04 = a51cK45 + a31t + a23c03 + a1 2 (c02c03-sQ2s03ca23)

+s03sa23(R2+Rx+h1K12) ^

-34 5SQ4ca,34~35 1 sK45ca34-a23s03-a12 (c02s03 + s02c03ca23)

-sa3 4(R4 + R5 + h5K4 5)+c03sa2 3(R2 + R1+h1K12) (ii)

We now differentiate equations (i) and (ii) with respect to 

0 to obtain the following results.

d0 4
a45S©4 “ “ a!2(S02C03+C02S03ca23) (iii)

d04
a4 5t'®4Ca3 4 d0 ~ ~ a 1 2 ( S 02 S 0 3 ” C 0 2 C 0 3 2 3(aV)

We have disallowed a45 = 0 and a12=0. From (ii), if ca34=0, for 

the equation to be an identity in 02, we must have s03=ca23=O. 

This possibility does not apply here. We may therefore
d04conclude that ca34^0. Hence, we are able to eliminate 

between (iii) and (iv) to obtain

(s02c03+c02s03ca23)c04ca34=(s02s03-c02c03ca23)sO4.

Squaring this equation and substituting for c04 from (i) 

results in

(s02c03+c02s03ca23)2c2a34[C+a12(c02c03-s02s03ca23)]2 

=(s02s03-c02c03ca23)2{a452-[C+a12(c02c03-s02s03ca23)]2}, 

where C = a5 , cK4 s + a3 4 + a2 3c03 + s03sa2 , 2 ) . O)

That is,
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au,2 Cs 202s 20 3 + c202c203c2a2 3-2s02s03c02c03ca2 3)

[s202s203+c202c203c2a23-2s02s03c02c03ca23

+c2a34(s202c203+c202s203c2a23+2s02s03c02c03ca23)] x 

[C2 + ai2 2(c202c2Q3 + s202s203C2a2 3-2s02c02s03c03ca2 3)

+2a12C(c02c03-s02s03ca23)]. (vi)

Equating only even powers of 02 in equation (vi) leads to

aUK2(s202S203+c202C203C2a23^

[s202s203+c202c203c2a23+c2a,u(s209c20,+c20os20,c2aoJ]3 4 2 3 2 3 23

[C2+a122(c2O2c203+s202s203C2a23)+2a12Cc02cO3]

-4[s02s03c02c03ca23c2a34-s02s03c02c03ca23] x

[a122s02c02s03c03ca23+a12Cs02s03ca23]. , (vii)

Equating only odd powers of 0in equation (vi) results in

2a452s03C02C03COl23

[s202s203+c202c203c2a23+c2a,k(s209c20,+c20,s20,c2aoj] x3 4 2 3 w 2 w 3 2 3

[2a122c02s03c03ca23+2a12Cs03ca23]

+ [2sO3c02c03ca2 3-2s03c02c03ca2 3c 2a3 4 ] x

tC2+ai22^C202C203+s202S203C2a23^+2ai2GC02C03^* (viii)

In equation (vii), equating the coefficients of c402 leads, 

after some algebraic manipulation, to

c203s 2 03 (l + c2C(, J2-(c20,-S20j2C2 - fr -c '\2r-22 3 2 3

{4c203s203c2a23-(c2O,-s20,c2a9J2}c2a,k.3 2 3 3 4 (ix)
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In equation (viii), equating coefficients of c302 will lead 

to the result

c0!ca23(2c20!s2a3/2c20,c2ci!Js2an-2c2ci!3s!a3t-s2a2J)=O. (x)

From the last equation, we must have c03=O, ca23=0 or the 

expression in parentheses zero. In equation (ix) , if c03 = O, 

since we do not allow sot 2 3 = sa3 4 = 0, we must have that ca23 = 0. 

Conversely, if ca23=0 in equation (ix), because we disallow 

s03=O, we conclude that c03=O.

If the expression in parentheses in equation (x) is zero, we 

have that

s2a +2c2a2 jS2a
c 2 0 3 = —-------- :-------  .

2s2a34(l + c2a2 3)

Substitution of this result into (ix) yields, after 

considerable algebraic manipulation,

(s4a23+4s2a34c2a23)(4c2a23c2a34~[l+c2a23]2) = 0.

Since the first parenthesised expression cannot be zero, we 

conclude that

4c2a23c2a34 = [l+c2a23l2.

It is easily seen that the only solution of this equation is

c a23 - c a34 - 1.

This result would imply that sa23=sa34=0, and so is unacceptable. 

We therefore find that

C03 = C Ot 2 3 0. (xi)
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Equation (viii) is then identically satisfied, and equation 

(vii) requires only that

a 2 = C2.45

Attempting to substitute result (xi) into equation (i), since 

a45^0, would require joint 4 to be locked. Hence there is no 

solution under the present circumstances of tied screw pitches 

We may therefore conclude that, in the general case, neither 

is there any solution.

The only connectivity sum five linkages in this category with 

mobility one, then, are those found in parts A, B and C.
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7.6 One pair of adjacent axes parallel

We have been unable, at this time, to complete the analysis for 

this category. We shall set out below the present extent of the 

analysis, and indicate what remains to be done.

We begin by putting

“51 = °-

We can consider the problem under three sub - categories, given 

below as A, B and C.

A

Equation (7.9) is simplified to

-c02sa12sa23+ca12ca23=-c04sa34sa45+ca34ca45. (7.6.1)

It is clear that, if either of joints 2 and 4 is locked in 

rotation, so is the other.

We assume in this sub-category that both of joints 2 and 4 are 

sliders. We therefore look for mobile linkages of the form 

J-T-J-P^J- .

All possibilities may be checked out as follows.

(i) If joints 1 and 5 are both screws, and rotation is 

possible about joint 3, we see from the spherical indicatrix 

that joints 1, 3, 5 are all parallel. We then have the 

solution a general parallel-screw linkage. If

rotation is not possible about joint 3, we have the solution 

H-P-P-P-H-, also a general parallei - screw linkage. In this 

latter case, if the screws are coaxial, the linkage can be 

expressed by P-P-P-H=H-, and is kinematically equivalent to
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the Delassus four-bar d.6.

(ii) If one of joints 1 and 5 is a screw and the other is 
cylindric, in view of (i), a linkage with part-chain mobility 
will result.

(iii) If both of joints 1 and 5 are sliders, or if one is 
prismatic and the other cylindric, the linkage will have part- 
chain mobility, based on the Delassus four-slider loop.

(iv) If one of joints 1 and 5 is helical and the other
prismatic, the spherical indicatrix implies that, if rotation 
is possible about joint 3, then that axis is parallel to the 
screw’s axis. We then have the solution, say, -, a
special parallel-screw chain. If rotation is not possible 
about joint 3, a linkage with part-chain mobility, based on 
d.6, will result.

B

We may now assume that neither of joints 2 and 4 is a slider. 
Let us consider here the possible solutions for which joint 3 
is prismatic. We therefore seek mobile linkages of the form

If both of joints 1 and 5 are prismatic, the linkage will 
have part-chain mobility, based on the P-P- chain.
If one of joints 1 and 5 is prismatic, we see, from the 
spherical indicatrix, that the three non-prismatic joints must 
be parallel. But then four adjacent axes are parallel and 
any solutions will have already been isolated in section 7.2.

We conclude that the only slider present is joint 3. Further, 
by the spherical indicatrix, joints 2 and 4 must be parallel.
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We see immediately that there are two solutions with

connectivity sum six, namely 1I-H-P-C-H- and H-H-P-H-C-. Both 

of them are special parallel-screw loops.

It only remains to seek out solutions, in this sub - category, 

with connectivity sum five. Any such linkage must have the 

form H-H-P"-H-H-. We thus have the additional constraint 

that

s03 = 0 c03 = a.

Advancing the indices in equation (7.9) by 4 and substituting 

the dimensional conditions results in

C 06 3 2 - UC04SOt23CCX34SOl43 ^^^2 3 ^ ^ 3 4 ^^4 5

- CO^CCK^^SOig^SOt^^^CO^gCOtg^COl^s. (i)

We may assume that

0 < a23, a34, a45 < tt .

Then, from (i), in order that 04 be not fixed, we conclude 

that

- , TT 1+0 /TTeither a2 3 = a34 = j or a34 = ~J~‘'n~oa23^2

where, in both cases,

ca = - oca, _.12 4 5

Advancing the indices in equation (7.9) by 1 and substituting 

the conditions on a51 and 03 leads to

-asa2 3sa34 + ca23ca34

= s05s01sa45sa12-c05c01sa.45sa12 + ca45ca12.
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Putting sa12 = psa45,

this equation, in view of the additional constraints just 

established, can be written as

ps2a45c(05+01)+oc2a45 = a.

• • c(05+0j) = ap (ii)

Equation (7.6.1) is, because of the same constraints, 

simplified to

c04 = pc02,

whilst equation (7.7) becomes

(iii)

ps04 = as02.

Results (ii), (iii) and (iv) may be summarised by

(iv)

05 = 2kTT + - 2Q PTT - 01
- (V)

-1

0 = 21TT + + 0 0'4 Z 2. J

Equations (7.1)-(7.6), (7.8) are identically satisfied by 

relations (v) , which are therefore the only two independent 

rotational closure equations.

Equation (7.12) is the only translational closure equation 

which contains the variable r3. Equations (7.10) and (7.11), 

respectively, are reducible to the following two.

Qa51(c01c02-s01s02ca12)+as02sa12(R5+h505+R1+h101)

+pa45c02+a34+aa23+^a!2c02 = 0 (vi)
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-aa51(c01s02ca23+s01c02ca12ca23-s01sa12sa23)-pa45s02ca23

-aa12s02ca23+(a[R2+h202]-[R4+h4O4])sa23

+ a(R5+h505 + Rl+hl0l) (C02SCXl2Ca23+Cai2Sa23^ = 0 Cvii)

We need to find under what conditions equations (v)-(vii) are 
reducible to three independent equations.
At this time, we have been unable to complete the analysis 
for this sub - category. It might be noted that there are 
certainly two solutions of equations (v)-(vii), both of which 
take the form H-P-H-H=H-. One of them is kinematically 
equivalent to the Delassus loop d.4, so that a23=a34=a45=^; 
the other functions as d.12, in which the sliders are not 
necessarily perpendicular to the screws. These solutions are 
the only two which contain a H=H group.

C

The last sub-category which needs to be considered is that 
for which none of joints 2, 3 and 4 is prismatic.
Again, we have not been able to conclude the analysis at this 
point. It is evident that several forms of parallel-screw 
linkage (connectivity sum six) will be solutions here, but the 
algebra required to isolate any other mobile loops will be 
quite difficult.
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Conclusion

We have attempted, in sections 7.1-7.6, to begin a 
systematic search for all mobile over - constrained five-bar 
linkages free from part-chain mobility. We have succeeded in 
isolating all solutions for five-bars with parallel adjacent 
joint axes, except for the case where only one pair of 
adjacent axes is parallel. Even there, we were able to find 
several of the solutions (and quite possibly all of them).

Most of the solutions of the five-bars investigated were 
general or special parallel-screw linkages, connectivity sums 
5 and 6. Other solutions isolated were kinematically equivalent 
to Delassus four-bars d.2, d.3, d.4, d.6, d,8, d.12. It is 
also clear that linkages equivalent to d.5 and d.13 would 
eventually be found in the analysis of part C, section 7.6.
The only really new linkage which emerged was, perhaps 
surprisingly, a considerable generalisation of Waldron’s plane- 
symmetric five-bar (solution B of section 7.5).

Once having completed the analysis for loops containing 
parallel adjacent joint axes, there is remarkably little 
involved in investigating the remaining five-bars. We may 
proceed as follows.

Chains with 4 or 5 sliders will have part-chain mobility, 
and may therefore be eliminated.
Linkages with 3 sliders must, by the spherical 
indicatrix, have the other two joints parallel. Hence, 
to preclude part-chain mobility, both joints must be 
screws, and the linkage will be a parallel-screw 
loop.
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Linkages containing 2 prismatic pairs must, by the 

spherical indicatrix, have the other three joint axes 

parallel. Such a chain will have been already covered, 

since at least two of the parallel axes must be 

adjacent. Again, solutions will be parallei-screw 

linkages.

Hence, the only linkages to be examined'are those for which no 

two adjacent joints are parallel and which contain a maximum 

of one prismatic pair. Specifically, we should be concerned 

with C-H-H-H-H-, P-C-H-H-H-, P-H-C-H-H- and their -H- 

(including -R-) and relevant -P- derivatives.



279

REFERENCES

1. BAKER, J.E. The C-H-C-H- Linkage M. Eng. Sc. Thesis, 
School of Mechanical and Industrial Engineering, The 
University of New South Wales, Jan. 1973

2. BAKER, J.E. The Delassus Linkages Research Report No. 
1973/AM/l, School of Mechanical and Industrial Engineering, 
The University of New South Wales, Jun. 1973

3. BAKER, J.E. and WALDRON, K.J. Limit Positions of Spatial 
Linkages via Screw System Theory A.S.M.E. Paper No. 
74-DET-107, Oct. 1974

4. BAKER, J.E. and WALDRON, K.J. The C-H-C-H- Linkage 
Mechanism and Machine Theory, 9 (1974), 3, 285-297

5. BAKER, J.E. The Delassus Linkages Proc. Fourth World 
Congress on the Theory of Machines and Mechanisms,
Newcastle upon Tyne, England, Sep. 8-13, 1975, Paper no.
9, 45-49

6. BALL, R.S. A Treatise on the Theory of Screws C.U.P., 
Cambridge, 1900

7. BENNETT, G.T. A Hew Mechanism Engineering, 76 (1903),
777-778

8. BENNETT, G.T. Deformable Octahedra Proc. Lond. Math.
Soc.,2s, 10 (1911), 1, 309-343

9. BENNETT, G.T. The Skew Isogram Mechanism Proc. Lond.
Math. Soc., 2s, 13 (1914), 151-173

10. BRICARD, R. Lemons de Cinematique Vol.2, Gauthier- 
Villars, Paris, 1927

11. DELASSUS, E. Sur les Systemes Articules Gauches, Premiere 
Partie Paris Ecole Normale Superieure, Ann. Sci., 3s,
XVII (Oct. 1900), 445-499

12. DELASSUS, E. Sur les Systemes Articules Gauchesi 
Deuxieme Partie Paris Ecole Normale Superieure, Ann.
Sci., 3s, XIX (Mar. 1902), 119-152

13. DELASSUS, E. Les Chavnes Articules Fermees et Deformables 
a Quatre Membres Bull. Sci. Math., 2s, 46 (1922), 1, 
283-304

14. DIMENTBERG, F.M. Determination of the Motions of Spatial 
Mechanisms (In Russian) IZD-VO Akad. Nauk., U.S.S.R.
1950

15. DIMENTBERG, F.M. and YOSLOVICH, I.V. A Spatial Four- 
Link Mechanism having Two Prismatic Pairs (Trans. C.W. 
McLarnan) J. Mechanisms, 1 (1966), 291-300



280

16. DUFFY, J. and GILMARTIN, M.J. Limit Positions of Four- 
Link Spatial Mechanisms - 1. Mechanisms Having Revolute 
and Cylindric Pairs J. Mechanisms 4 (1969), 261-272

17. DUFFY, J. and HABIB-OLAHI, H.Y. A displacement Analysis
of Spatial Five-Link 3R-2C Mechanisms - 1. On the Closures 
of the RCRCR Mechanism J. Mechanisms, 6 (1971), 289-301

18. DUFFY, J. and HABIB-OLAHI, H.Y. A Displacement Analysis
of Spatial Five-Link 3R-2C Mechanisms - Part 2: Analysis
of the RRCRC Mechanism J. Mechanisms, 6 (1971), 463-473

19. DUFFY, J. and HABIB-OLAHI, H.Y. A Displacement Analysis 
of Spatial Five-Link 3R-2C Mechanisms. Part 3. Analysis 
of the RCRRC Mechanism Mechanism and Machine Theory,
7 (1972) , 71 -84

20. DUFFY, J. and ROONEY, J. A Displacement Analysis of
Spatial Six-Link 4R-P-C Mechanisms. Part 1: Analysis
of RCRPRR Mechanism A.S.M.E. Paper No. 72-Mech-85

21. DUFFY, J. and ROONEY, J. A Displacement Analysis of
Spatial Six-Link 4R-P-C Mechanisms. Part 2: Derivation
of Input-Output Displacement Equation for RCRRPR Mechanism 
A.S.M.E. Paper No. 72-Mech-86

22. DUFFY, J. and ROONEY, J. A Displacement Analysis of
Spatial Six-Link 4R-P-C Mechanisms. Part 3: Derivation
of Input-Output Displacement Equation for RRRPCR 
Mechanism A.S.M.E. Paper No. 72-Mech-87

23. EVERETT, J.D. On a Hew Method in Statics and Kinematics 
Mess. Math., 45 (1875), 36-57

24. GILMARTIN, M.J. and DUFFY, J. Limit Positions of Four- 
Link Spatial Mechanisms - 2. Mechanisms Having Revolute3 
Cylindric and Prismatic Pairs J. Mechanisms, 4 (1969), 
273-281

25. GOLDBERG, M. Hew Five-Bar and Six-Bar Linkages in Three 
Dimensions Trans. A.S.M.E., 65 (1943), 649-661

26. GUPTA, V.K. and RADCLIFFE, C.W. Mobility Analysis of 
Plane and Spatial Mechanisms J. Eng. for Industry, Feb. 
1971, (A.S.M.E. Trans., B, 93, 1) 125-130

27. HUNT, K.H. Prismatic Pairs in Spatial Linkages J. 
Mechanisms, 2 (1967), 213-230

28. HUNT, K.H. Screw Axes and Mobility in Spatial Mechanisms 
via the Linear Complex J. Mechanisms, 2 (1967), 307-327

29. HUNT, K.H. Hote on Complexes and Mobility J. Mechanisms,
3 (1968), 3, 199-202

30. HUNT, K.H. Screw Systems in Spatial Kinematics Report 
No. MMERS 3, Department of Mechanical Engineering,
Monash University, Jun. 1970



281

31 .

32 .

33.

34.

35.

36.

37 .

38.

39.

40.

41.

42.

43.

44.

45.

JENKINS, E.M., CROSSLEY, F.R.E. and HUNT, K.H. Gross 
Motion Attributes of Certain Spatial Mechanisms J. Eng. 
for Industry, Feb. 1969, 83-90

MYARD, F.E. Contribution a la Geometrie des Systemes 
Articules Bull, de la Soc. Math, de France, 59 (1931), 
183-210

PAMIDI, P.R., SONI, A.H. and DUKKIPATI, R.V. Existence 
Criteria of an Over-constrained R-R-R-P-R Five-Link 
Spatial Mechanism Proc. Third World Congress for the 
Theory of Machines and Mechanisms, Kupari, Yugoslavia,
Sep. 13-20, 1971, Vol.D, Paper D-13, 189-198

PAMIDI, P.R., SONI, A.H. and DUKKIPATI, R.V. Necessary 
and Sufficient Existence Criteria of Overcons trained 
Five-Link Spatial Mechanisms with Helical3 Cylinder3 
Revolute and Prism Pairs A.S.M.E. Paper No. 72-Mech-47

SAVAGE, M. Doctoral Dissertation, Purdue University, Jun. 
1969

SAVAGE, M. Four-Link Mechanisms with Cylindric_, Revolute 
and Prismatic Pairs Mechanism and Machine Theory, 7 
(1972) , 191-210

SKREINER, M. Methods to Identify the Mobility Regions 
of a Spatial Four-Link Mechanism J. Mechanisms, 2 (1967), 
415-427

SONI, A.H. Existence Criteria of an Over constrained 
R-P-R-C-R- Five-Link Spatial Mechanism Proc. Third World 
Congress for the Theory of Machines and Mechanisms,
Kupari, Yugoslavia, Sep. 13-20, 1971, Vol.C, Paper C-14, 
179-188

SONI, A.H. and HARRISBERGER, L. Existence Criteria of 
Mechanisms A.S.M.E. Paper No. 68-MECH-33

VOINEA, R.P. et ATANASIU, M.C. Theorie Geometrique des 
Vis et Quelques Applications a la Theorie des Mecanismes 
Revue Roumaine des sci. tech.: serie de mec. appl.,
7 (1962), 4, 845-860

WALDRON, K.J. The Constraint Analysis of Mechanisms J. 
Mechanisms, 1 (1966), 101-114

WALDRON, K.J. A Family of Overconstrained Linkages J. 
Mechanisms, 2 (1967), 201-211

WALDRON, K.J. Hybrid Overcons trained Linkages J. 
Mechanisms, 3 (1968), 73-78

WALDRON, K.J. Symmetric Overconstrained Linkages J. Eng 
for Industry, Feb. 1969, (A.S.M.E. Trans., B, 91, 1) 
158-164

WALDRON, K.J. The Mobility of Linkages Doctoral 
Dissertation, Stanford University, Jul. 1969



282

46. WALDRON, K.J. A Method of Studying Joint Geometry 
Mechanism and Machine Theory, 7 (1972), 347-353

47. WALDRON, K.J. A Study of Overcons trained Linkage Geometry 
by Solution of Closure Equations - Part 1. Method of 
Study Mechanism and Machine Theory, 8 (1973), 95-104

48. WALDRON, K.J. A Study of Over constrained Linkage Geometry 
by Solution of Closure Equations - Part 2. Four-bar 
Linkages with Lower Pair Joints other than Screw Joints
Mechanism and Machine Theory, 8 (1973), 233-247

49. WALDRON, K.J. The Use of Motors in Spatial Kinematics 
IFToMM International Symposium on Linkages and Computer 
Design Methods, Bucharest, Romania, Jun. 7-13,'1973, Vol. 
B, Paper B-41, 535-545



Closing Remarks

Linkage analysis remains, to some extent, an art in 

search of general scientific techniques. It appears evident 

with each new linkage isolated, or each set of limit positions 

found, or whatever, that some general principle is being 

slowly revealed. An estimate of 'the general principle' 

sometimes allows us to proceed to another linkage or class of 

linkages, but ... no farther.

Whilst modern techniques are powerful by comparison of 

some sort, their very number is an indication of our essential 

lack of perception of the pervading principles of linkage 

motion: we have as yet no universal laws to apply. I

indicated in the Introduction to chapter 2 that there are 

several approaches available for solving limit position 

problems. Other workers have commented on the number of ways 

of analysing the closure of a linkage. The one clear emergent 

fact is the precedence one method lias over the others for a 

particular linkage, or linkage class. I believe, however, that 

the technique introduced and used in chapter 2 is the nearest 

we have come to a universal, deep-rooted analytical tool. One 

feels that geometry and screw system theory are of the essence 

in linkage analysis, and that raw algebra, whilst admittedly 

powerful, thorough and often short-cutting, is secondary.

It is conceivable that there will be no 'universal 

method', that our analyses must necessarily be piecemeal and 

opportunist. It is my hope, however, that dedicated linkage 

kinematicians will be spurred on to vindicate their belief in 

the existence of an underlying, albeit wel1-shrouded, body of 

truth to which all linkages are subservient.
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