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Abstract

The structural stability of a social network indicates the ability of the network to maintain

a sustainable service, which is important for both the network holders and the partici-

pants. Graphs are widely used to model social networks, where the coreness of a vertex

(node) has been validated as the ”best practice” for capturing a user’s engagement. Based

on this argument, we study the following problems: 1) reinforcing the network structural

stability by detecting critical users, with its efficient solution in distributed computation

environment; 2) monitoring each user’s influence on the network structural stability.

Firstly, we aim to reinforce a social network in a global manner, instead of focusing

on a local view as existing works, e.g., the anchored k-core problem aims to enlarge the

size of k-core with a fixed input k. We propose a new model so-called the anchored

coreness problem: anchoring a small number of users to maximize the coreness gain

(the total increment of coreness) of all the users in the network. We prove the problem

is NP-hard and show it is more challenging than the existing local-view problems. An

efficient greedy algorithm is proposed with novel techniques on pruning search space

and reusing the intermediate results. The algorithm is also extended to distributed en-

vironment with a novel graph partition strategy to ensure the computing independency

of each machine. Extensive experiments on real-life data demonstrate that our model is

effective for reinforcing social networks and our algorithms are efficient.

Secondly, although the static engagement of a user is well estimated by its core-

i



ness, each user’s influence on other users is not well monitored when its engagement is

weakened or strengthened. Besides, the dynamic of user engagement has not been well

captured for evolving networks. We systematically study the network dynamic against

the engagement change of each user. The influence of a user is monitored via two novel

concepts: the collapsed power to measure the effect of user weakening, and the anchored

power to measure the effect of user strengthening. The two concepts can be naturally in-

tegrated such that a unified offline algorithm is proposed to compute both the collapsed

and anchored followers for each user. When the network structure evolves, online tech-

niques are designed to maintain the users’ followers, which is faster than redoing the

offline algorithm by around 3 orders of magnitude.

ii



Publications

• Qingyuan Linghu, Fan Zhang, Xuemin Lin, Wenjie Zhang and Ying Zhang.

Global reinforcement of social networks: The anchored coreness problem. In Pro-

ceedings of the 2020 ACM SIGMOD International Conference of Management of

Data, pages 2211-2226. (Chapter 3)

• Qingyuan Linghu, Fan Zhang, Xuemin Lin, Wenjie Zhang and Ying Zhang. An-

chored coreness: efficient reinforcement of social networks. The VLDB Journal,

pages 1-26, 2021. (Chapter 3)

• Qingyuan Linghu, Fan Zhang, Xuemin Lin, Wenjie Zhang and Ying Zhang.

Towards User Engagement Dynamics in Social Networks. arXiv:2110.12193.

(Chapter 4)

• Fan Zhang, Qingyuan Linghu, Jiadong Xie, Kai Wang, Xuemin Lin, Wenjie

Zhang. Quantifying Node Importance over Network Structural Stability. VLDB

2023 (being submitted) (Chapter 4)

iii



iv



Dedication

my families

my supervisors

my friends

For their love and support

v



vi



Acknowledgements

I would like to begin by expressing my heart-felt gratitude to my supervisor, Prof.

Xuemin Lin, for his guidance and support, without which I would not be able to achieve

my present achievements. His insight and knowledge into the subject matter steered me

through this research. He gave me selfless guidance and helped me revise and polish my

research works. He never failed to motivate me during my doctoral studies even when

I was struggling to move forward with research. I am very lucky to have him as my

advisor and never expected to have such a good supervisor for the PhD program as well.

I am also thankful to my joint-supervisor Prof. Wenjie Zhang and Prof. Fan Zhang for

their helpful discussions and insightful suggestions for the work in this thesis.

Besides, special thanks to all the people I have met in this wonderful research group:

Prof. Ying Zhang, Dr. Xin Cao, Dr. Lu Qin, Dr. Longbin Lai, Dr. Xing Feng, Dr. Yang

Yang, Dr. Haida Zhang, Dr. Dian Ouyang, Dr. Xubo Wang, Dr. Wei Li, Dr. Dong Wen,

Dr. Chen Zhang, Dr. Kai Wang, Dr. You Peng, Dr. Boge Liu, Dr. Hanchen Wang,

Dr. Xuefeng Chen, Dr. Xiaoshuang Chen, Dr. Conggai Li, Dr. Maryam Ghafouri, Ms.

Danyang Wang, Ms. Yuanyuan Xu, Mr. Yu Hao, Mr. Yuren Mao, Mr. Yixing Yang,

Mr. Michael Ruisi Yu, Mr. Chenji Huang, Mr. Kongzhang Hao, Mr. Zhengyi Yang, Mr.

Peilun Yang, Mr. Yuanhang Yu, Mr. Gengda Zhao, Mr. Shunyang Li, Mr. Qingshuai

Feng, Mr. Yizhang He. The time we spent together will be memorized forever.

Last but not least, I would like to thank my families and friends for their love and support.

vii



Contents

Abstract i

Publications iii

Dedication v

Acknowledgements vii

Contents x

List of Figures xii

List of Tables xiii

List of Algorithms xv

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Global Reinforcement of Social Networks . . . . . . . . . . . . 4

1.2.2 User Influence Monitoring for Network Stability . . . . . . . . 5

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Global Reinforcement of Social Networks . . . . . . . . . . . . 6

viii



1.3.2 Efficient Parallel Solution of Network Reinforcement . . . . . . 8

1.3.3 User Influence Monitoring for Network Stability . . . . . . . . 8

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Literature Review 11

2.1 User Engagement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Cohesive Subgraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 k-Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 k-Truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Clique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.4 Parallel Computation for Cohesive Subgraphs . . . . . . . . . . 16

2.3 Influence Maximization . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Global Reinforcement of Social Networks 19

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Preliminaries and Problem Statement . . . . . . . . . . . . . . . . . . . 26

3.3 Problem Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 A Greedy Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.1 Core Component Tree . . . . . . . . . . . . . . . . . . . . . . 31

3.4.2 Restriction of Candidate Followers . . . . . . . . . . . . . . . . 35

3.4.3 Reuse of Intermediate Results . . . . . . . . . . . . . . . . . . 38

3.4.4 Coreness Gain Computation . . . . . . . . . . . . . . . . . . . 40

3.4.5 The GAC Algorithm . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Distributed Greedy Algorithm . . . . . . . . . . . . . . . . . . . . . . 51

3.5.1 Shell Component Partition . . . . . . . . . . . . . . . . . . . . 51

3.5.2 Independency and Reuse . . . . . . . . . . . . . . . . . . . . . 61

3.5.3 Computing Resource Scheduling . . . . . . . . . . . . . . . . . 64

ix



3.5.4 The DGAC Algorithm . . . . . . . . . . . . . . . . . . . . . . 66

3.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6.1 Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6.2 Efficiency of GAC . . . . . . . . . . . . . . . . . . . . . . . . 82

3.6.3 Efficiency of DGAC . . . . . . . . . . . . . . . . . . . . . . . 84

3.6.4 Scalability of DGAC . . . . . . . . . . . . . . . . . . . . . . . 87

3.7 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4 User Influence Monitoring for Network Stability 90

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Preliminaries and Problem Statement . . . . . . . . . . . . . . . . . . . 95

4.3 The Offline and Online Algorithms . . . . . . . . . . . . . . . . . . . . 98

4.3.1 The Shell Component Based Framework . . . . . . . . . . . . 98

4.3.2 The Maintenance w.r.t. Edge Streaming . . . . . . . . . . . . . 106

4.3.3 The Efficient Followers Computation . . . . . . . . . . . . . . 110

4.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4.1 Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.4.2 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.5 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5 Summary and Future Work 123

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

x



List of Figures

1.1 The k-Core Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Coreness v.s. Engagement . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 The Collapse of Friendster . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Check-in Number v.s. Coreness Value . . . . . . . . . . . . . . . . . . 21

3.2 A Toy Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Construction Example for Hardness Proofs . . . . . . . . . . . . . . . 30

3.4 Core Component Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Figures for Example 4, 5, 6 & 7 . . . . . . . . . . . . . . . . . . . . . 42

3.6 k-shell component . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.7 Shell Component Partition . . . . . . . . . . . . . . . . . . . . . . . . 55

3.8 Computing Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.9 Coreness Gain from Different Heuristics . . . . . . . . . . . . . . . . . 73

3.10 GAC v.s. Exact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.11 Distribution of Anchors on Coreness . . . . . . . . . . . . . . . . . . . 75

3.12 #Checkin, Coreness & k-Core Size . . . . . . . . . . . . . . . . . . . . 76

3.13 Time Cost, OLAK, GAC & DGAC . . . . . . . . . . . . . . . . . . . . 76

3.14 Coreness Gain on Different Inputs of k . . . . . . . . . . . . . . . . . . 77

3.15 Distribution of Followers on Coreness . . . . . . . . . . . . . . . . . . 78

3.16 Case Study on DBLP, b = 5 . . . . . . . . . . . . . . . . . . . . . . . . 79

xi



3.17 Variations of OLAK v.s. GAC & DGAC . . . . . . . . . . . . . . . . . 80

3.18 Time Cost of Different Algorithms . . . . . . . . . . . . . . . . . . . . 82

3.19 Visited Amount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.20 Time Cost, GAC, DGAC & ideal DGAC . . . . . . . . . . . . . . . . . 84

3.21 Time Cost varing b, GAC v.s. DGAC . . . . . . . . . . . . . . . . . . . 84

3.22 Time Cost, 1st-iteration v.s. Average of [2, 99]-iteration . . . . . . . . . 85

3.23 Time Cost of DGAC (skipping individual components) . . . . . . . . . 85

3.24 Time Cost, Varying the Number of Machines (8 threads) . . . . . . . . 87

3.25 Time Cost, Varying the Number of Threads (1 machine) . . . . . . . . . 88

4.1 Node Monitoring on Gowalla . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Illustration of Shell Component. . . . . . . . . . . . . . . . . . . . . . 99

4.3 Followers Computation. . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4 Followers Maintenance. . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5 # Updated Vertices w.r.t. Edge Streaming . . . . . . . . . . . . . . . . 116

4.6 # Followers Distribution on Vertex Coreness . . . . . . . . . . . . . . . 117

4.7 Computation Efficiency and Scalability . . . . . . . . . . . . . . . . . 118

4.8 Maintenance Time w.r.t. Edge Streaming . . . . . . . . . . . . . . . . . 121

xii



List of Tables

3.1 Anchored k-Core v.s. Anchored Coreness in Fig. 2 . . . . . . . . . . . 21

3.2 Summary of Notations throughout the Chapter . . . . . . . . . . . . . . 26

3.3 Summary of Notations for T . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Summary of Notations for SP , SC . . . . . . . . . . . . . . . . . . . . 53

3.5 Other Notations for DGAC . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Statistics of Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.7 Summary of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.8 Characteristics of Anchor Set . . . . . . . . . . . . . . . . . . . . . . . 74

3.9 Statistics of Top-b Solutions . . . . . . . . . . . . . . . . . . . . . . . 75

3.10 Coreness Gain, OLAK v.s. GAC . . . . . . . . . . . . . . . . . . . . . 75

3.11 Overlap of Followers Set, OLAK v.s. GAC . . . . . . . . . . . . . . . 77

4.1 Common Notations throughout the Chapter . . . . . . . . . . . . . . . 96

4.2 Shell Components in Figure 4.2 . . . . . . . . . . . . . . . . . . . . . 100

4.3 Followers Maintenance w.r.t. Removing (vc, vd) . . . . . . . . . . . . . 108

4.4 Followers Maintenance w.r.t. Inserting (vb, vc) . . . . . . . . . . . . . . 108

4.5 Statistics of Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.6 Percentage of Valid Collapsers & Anchors . . . . . . . . . . . . . . . . 115

xiii



List of Algorithms

1 CoreDecomp(G, A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 BuildCCT(G, PN ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 ResultReuse(x, G, T ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 FindFollowers(x, G, T ) . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Shrink(u) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 GAC(G, b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7 ShellPartition(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8 ShellConnect(u, G, SC) . . . . . . . . . . . . . . . . . . . . . . . . . . 57

9 MaintainSP(x, G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

10 FindFollowers(SC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

11 PruneCandidates(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

12 DecideAnchor(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

13 DGAC(G, b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

14 CoreDecomp(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

15 ShellDecomp(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

16 ShellConnect(u, S, SC) . . . . . . . . . . . . . . . . . . . . . . . . . . 101
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Chapter 1

Introduction

1.1 Background

hd

a

b c

e
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f

i

2-core

1-core

3-core

Figure 1.1: The k-Core Model

The analysis of social networks has been shown powerful in many applications with

the growing capacity and activity networking sites, e.g., TikTok, Instagram and Face-

book etc. Maintaining the structural stability of a social network is one of the significant

applications because it is an indicator for a sustainable service which is important for

both the network holders and the participants. Social networks are often modeled as

graphs when studied, where the users are represented by vertices and the relationship

1
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between users are represented by edges. In graph theory, The k-core [85, 76] model

is widely applied because its degeneration property well captures the engagement dy-

namics in real-life social networks. Given a graph, the k-core is defined as the maximal

subgraph where each vertex has at least k neighbors (degree) in the subgraph. For exam-

ple, in Figure 1.1, the subgraph in red circle is the 1-core satisfying the degree of each

vertex is not less than 1. Similarly, the subgraph in green (resp. blue) circle is the 2-core

(resp. 3-core) of the graph. The procedure k-core decomposition iteratively removes ev-

ery vertex with degree less than k. Then every vertex in the graph has a unique coreness

value, aka. core number, that is, the largest k s.t. the k-core contains the vertex. For the

example in Figure 1.1, the coreness of vertex i is 1, the coreness of vertex e, f, g & h

is 2, and the coreness of vertex a, b, c & d is 3.

Figure 1.2: Coreness v.s. Engagement

Existing works have well studied the effect of coreness on capturing the user en-

gagement. In [74], the coreness of a user is demonstrated as the ”best practice” for

its engagement. Figure 1.2 is from [74] which provides some empirical observations

regarding the departure of users and the correlation with their coreness. Because the

social networks where the users explicitly define their departure time are difficult to

access, they examined two snapshots of the Internet topology (CAIDA and OREGON Au-

tonomous Systems) with dropout information. Figure 1.2 visualizes the coreness of each
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user and its probability of departure, which shows the users with smaller coreness are

more possible to leave the network. This demonstrates the positive correlation between

a user’s engagement and its coreness value.

Figure 1.3: The Collapse of Friendster

Seki and Nakamura [86] further use the coreness of users to explain the collapse of

a real-life social network, i.e., Friendster, which was once popular in Asia and America

in the early 21st century. They reasonably explain the evolution of the number of active

users, which firstly increased then decreased with time going by. Figure 1.3 is from [86],

where each band shows the core structure of the network at a timestamp. Within a band,

the leftmost fragment presents the number of users with coreness less than 5, and the

next fragment presents the number of users with coreness between 5 and 9, and so on. It

is shown that the users with higher coreness values started collapsing at around the time

8.5× 107, however, the total number of active users reached the peak at around the time

9×107. This means the collapse of Friendster started from the center of k-core structure,

i.e., the users with higher engagement collapse before the total number of active users

start decreasing.
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1.2 Motivation

1.2.1 Global Reinforcement of Social Networks

The leave of users in a social network may cause negative influence to the engagement

level of their friends, and thus these friends may also choose to leave [74]. The cascade

of user departures can significantly bring down the overall user engagement (structural

stability) of a social network. Due to the degeneracy property as illustrated above, k-

core decomposition naturally models the process of user departure in a network. In [12],

Bhawalker and Kleinburg et al.assume that each user incurs an integer cost of k > 0 to

remain engaged and obtains a benefit of 1 from each of its neighbors who are engaged,

the natural equilibrium of this model corresponds to the k-core of the social network,

i.e., users with less than k engaged friends leave the network until the remained engaged

users form the k-core.

As the size of k-core is a feasible indicator of network stability, the anchored k-core

(AK) problem is proposed in [12]: given a graph G, and integer k and a budget b, anchor-

ing a set of b vertices in the graph s.t. the number of vertices in the k-core is maximized.

The degree (number of neighbors) of an anchored vertex is considered as positive infin-

ity, that is, an anchored vertex will stay in the k-core regardless of its original degree. It

is meaningful to reinforce a network by giving incentives to some users, e.g., anchored

vertices, such that they will keep engaged in the network and support the engagement of

other users [12].

Nevertheless, the AK problem is essentially to reinforce a network in a ”local” man-

ner: it focuses on enlarging the size of the k-core with a particular k value. Given a fixed

k, the AK problem can only increase the coreness of a partial set of vertices, i.e., the

vertices with coreness k − 1, proven in [102]. Besides, the valid vertices for anchoring

are from a small set of vertices, and anchoring other vertices are invalid for enlarging the
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size of k-core. Furthermore, determining a proper input value of k for the AK problem

is not straightforward.

As analyzed in the study of Friendster, the collapse may start from the users with

higher coreness values, instead of the assumption of the AK problem, i.e., users with

coreness less than k leave first. Thus, it is more promising to reinforce a social network

in a ”global” manner: considering the coreness increment of every user. Motivated by

the above fact, we propose a new model, anchored coreness (AC) problem: given a

graph G and a budget b, anchor a set of b vertices in the graph s.t. the coreness gain (the

total increment of coreness) of all the vertices is maximized. The followers of an anchor

vertex x are the vertices with coreness increased after anchoring x, except x.

1.2.2 User Influence Monitoring for Network Stability

In the study of network structural stability, it is essential to monitor the engagement of

the users in a network, and motivate or protect the critical users. The weakening and

strengthening of users are the two natural engagement dynamics of users in a social net-

work. Specifically, in [103] (resp. [12]), when weakening (resp. strengthening) a user,

we say it is collapsed (resp. anchored) such that its degree is regarded as 0 (resp. +∞).

When a user x is collapsed (resp. anchored), all the other users which decrease (resp. in-

crease) the coreness values due to collapsing (resp. anchoring) x are called x’s collapsed

followers (resp. anchored followers). Then, the influence of a user can be monitored by

two aspects: the collapsed power by computing its collapsed followers to measure the

effect of user weakening, and the anchored power by computing its anchored followers

to measure the effect of user strengthening.

The application of the novel user monitoring formulation can be summarized into

two aspects: 1) the monitored user, and 2) the follower users. For 1), it is important to

know how each monitored user can influence the network structural stability, which is
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reflected by the collapsed power and anchored power. That is, if a user is found to have

a large number of collapsed followers, it needs to be protected from leaving the network

as it can cause a cascade of many users leaving; If a user is found to have a large number

of anchored followers, it has potential to target at to promote a new service. For 2), it

is also important to know the identities of those specific follower users which change

their engagement levels due to the collapsing or anchoring of a monitored user. That

is, once a user has been found to leave the network, its collapsed followers need to be

paid attention to because they are in the risk of engagement decrease; once a user has

been anchored, observing its anchored followers can help track the outcome of service

promotion.

Motivated by the above promising applications, we aim to study the integration and

the efficient computation towards collapsed and anchored followers. Besides, real-life

social networks are always evolving, i.e., new signed-up users, new added friends of a

user etc. After a network evolves, the change of vertices’ collapsed followers and an-

chored followers can be significant. Thus, we also aim to efficiently maintain the correct

collapsed and anchored followers for each user against edge insertions and deletions of

the network.

1.3 Contribution

1.3.1 Global Reinforcement of Social Networks

To the best of our knowledge, we are the first to study the anchored coreness (AC)

problem. We prove the AC problem is NP-hard. Although the coreness gain can be

computed in O(m) time by core decomposition [10], a basic exact solution has to ex-

haustively compute the coreness gain on every possible anchor set with size b, which is

cost-prohibitive. We also prove the problem is APX-hard and the coreness gain func-
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tion is non-submodular. Although it is unpromising to estimate or predict the coreness

gain of multiple anchors, we observe that the change of coreness is relatively restricted

for one anchored vertex. Thus, we adopt a greedy heuristic to find the best anchor in

each iteration, while the candidate anchor set is still very large and a straightforward

implementation is still very time consuming.

Due to the huge number of candidate anchors, a well-designed reusing strategy is

necessary for a greedy heuristic which aims to exhaustively reuse the intermediate re-

sults from the executed iterations. To do so, we apply the tree structure T of core de-

composition [10] to divide all the vertices into tree nodes, where each tree node is an

atomic unit for deciding whether the computed results associated with the node can be

reused. Specifically, with the anchoring of one vertex x, we first prove the coreness of

a vertex (except the anchor) can increase by at most 1. Then, the followers of x can be

divided into different tree nodes of T . In each iteration, the number of x’s followers is

the coreness gain of anchoring x. Thus, if x was anchored and the follower set of each

vertex was computed (or reused) in the last iteration, for each candidate anchor u in cur-

rent iteration, we can efficiently decide whether the partial set of u’s followers associated

with a tree node keeps the same and can be reused.

Our proposed computation of coreness gain is adaptive to the reusing mechanism. If

a follower unit (in a tree node) cannot be reused, the follower computation is conducted

locally, i.e., within the tree node. Besides, we utilize the graph degeneracy ordering

(the vertex deletion sequence of core decomposition) to largely speed up the follower

computation. We also propose an upper bound of coreness gain to further prune can-

didate anchors, and well match the technique with the reusing mechanism to improve

efficiency. Combining all these techniques, our final GAC (Global Anchored Coreness)

algorithm is proposed to efficiently identify the best anchor in each iteration.
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1.3.2 Efficient Parallel Solution of Network Reinforcement

We then extend GAC to DGAC (Distributed) which is conducted in distributed comput-

ing environment. In order to reduce the communication cost among the machines, we

propose a graph partition strategy where the graph can be divided into shell component

partitions (partitions) induced by the subgraphs of k-shell component in the structure

SP . Therefore, for anchoring a vertex x, the followers of x are divided into different

partitions in SP . We prove x’s followers from different partitions are not overlapped and

the computation of followers from different partitions can be conducted concurrently and

independently. We also show the upper bound proposed in GAC is a reasonable estimate

of the time cost of computing x’s followers. Based on these, we propose a computing re-

source scheduling to make the machines evenly and independently share the computing

tasks. Similar to the reuse mechanism of GAC, the shell component partitions become

the units of deciding whether the associated computed results are reused.

1.3.3 User Influence Monitoring for Network Stability

To the best of our knowledge, no existing work studies each user’s influence for network

structural stability by systematically integrating the collapsed and anchored powers of

each user. The naive core decomposition [10] is a straightforward method to compute

the collapsed and anchored follower sets for each vertex, simply by regarding the degree

of each vertex as 0 and +∞. However, it is certainly cost-prohibitive due to the massive

search space. Core maintenance [105] is only to update the coreness value of each vertex

itself, after an edge is inserted into or removed from the graph. However, it cannot

compute or update the collapsed and anchored follower sets of each vertex. Because of

the novelty on the first study, we design and propose our new solution.

Firstly, we propose an offline algorithm to efficiently compute the collapsed and an-

chored follower sets of each vertex in parallel. Specifically, the graph is divided into
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multiple shell components induced by all the maximal connected subgraphs where each

vertex has the same coreness. Therefore, for either collapse or anchor a vertex x, the

follower sets are formed by some vertex subsets from the shell components. We prove

those vertex subsets are not overlapped and can be independently computed within each

shell component, so that any parallel architecture can be utilized to concurrently compute

the collapsed and anchored follower sets. Secondly, we propose an online algorithm to

efficiently update the collapsed and anchored follower sets of each vertex. When an edge

is inserted into or removed from the graph, we first adopt the state-of-the-art core main-

tenance algorithm ’k-order’ [105] to correctly update each vertex’s coreness. Then some

new induced shell components are efficiently collected, and the collapsed and anchored

follower sets of any vertex can be updated only based on the new shell components.

Because the scale of new shell components against one inserted or removed edge is con-

stant, our online maintenance algorithm can achieve around 3 orders of magnitude faster

than redoing the offline algorithm.

1.4 Organization

This thesis is organized as follows:

• Chapter 2 introduces the related works on user engagement, cohesive subgraphs

and influence maximization.

• Chapter 3 presents our new proposed model, i.e., anchored coreness, and its corre-

sponding algorithm GAC, followed by its parallel extension algorithm DGAC. The

experimental studies for GAC and DGAC can also be found in the chapter.

• Chapter 4 presents our new model of monitoring users’ influence on network struc-

tural stability, with its corresponding algorithms and experimental studies.
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• Chapter 5 summarizes our research and discusses several possible directions for

future work.



Chapter 2

Literature Review

2.1 User Engagement

In this thesis, the objective is to consider the structural stability of social networks, in

which the engagements of users play an critical role to improve the user stickiness and

avoid the collapse of network. The k-core model is widely applied because its degenera-

tion property well captures the engagement dynamics in real-life social networks, which

is verified by Malliaros and Vazirgiannis et al.in [74]. Garcia et al.[42] further use k-

core decomposition to explain the decline of Friendster which was once a popular social

network in Asia and America in the early 21st century. It is claimed that the collapse of

Friendster is stem from the engagements of users (determined by their coreness values)

steadily drop down. Under the assertion, their model reasonably explain the evolution

of the number of active users, which firstly increased then decreased with time going by.

Seki and Nakamura also explain the collapse of Friendster [86], in which they adopt an

individual-level model in [18] and conclude that the collapse started from the center of k-

core structure. Ugander et al.[91] emphasize that the neighborhood structure hypothesis

has formed the underpinning of essentially all the current models for social contagion.

11
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They argue that the probability of contagion is tightly controlled by the number of friends

in current subgraph, e.g., k-core, instead of by the actual number of friends in the whole

graph. Bhawalkar and Kleinberg et al.[12] propose the anchored k-core model to prevent

network unraveling based on game theory, in which the unraveling process terminates

when the remaining engaged users correspond to the k-core in the network. Specifically,

given a graph G, anchored k-core model aims to anchor b vertices to increase the largest

possible number of vertices in the k-core of G. They prove the problem is NP-hard.

Then an efficient approximate algorithm for the model is proposed by Zhang et al.in

[102]. Zhang et al.further propose the collapsed k-core model [103] to find the users

who can significant break the current k-core. Specifically, given a graph G, collapsed k-

core aims to remove b vertices in current k-core to decrease the largest possible number

of vertices in the k-core of G. This problem is also proved to be NP-hard.

2.2 Cohesive Subgraphs

Many cohesive subgraph models are studied in different scenarios, e.g., clique [16, 25],

quasi-clique [3, 82], k-core [76, 85, 15, 43], k-truss [29, 50, 93, 88], k-plexes [108, 30,

31], and k-ecc [22, 107]. In this section, we focus on the three widely applied models,

i.e., k-core, k-truss and clique, having incremental cohesiveness. Then we also study the

parallel computation for cohesive subgraphs.

2.2.1 k-Core

The concept of k-core and its computing algorithm are first introduced in [85] and [76],

where k-core is a the maximal subgraph where each vertex has at least k neighbors in

the subgraph. The coreness of a vertex is the largest value of k such that the k-core of

the graph contains the vertex. Core decomposition is the procedure for computing the
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coreness of each vertex in a graph [10].

AnO(m+n) in-memory algorithm for core decomposition is provided in [10], which

iteratively deletes each vertex with the smallest number of neighbors in the remaining

graph. For the graphs which are so massive that cannot fit in the main memory of a

machine, Wen et al.[97] and Cheng et al.[24] propose I/O efficient algorithms of core

decomposition. Coreness of vertices can also be estimated in a local computing way

[32, 79]. In [56], Khaouid et al.concludes it is affordable to perform core decomposition

for large graphs in a consumer PC. Core maintenance is the procedure of maintaining the

coreness of each vertex after inserting or deleting en edge in a dynamic graph. The state-

of-the-art core maintenance algorithm is proposed in [105], and other core maintenance

approaches include [5, 65, 84].

From the application perspective, the k-core is widely studied in different scenarios

such as community discovery [36, 39, 64], finding critical users [103, 101], influential

spreader identification [58, 91, 68, 73], discovering protein complexes [9], recognizing

hub-nodes in brain function networks [14], analyzing the structure of Internet [19], un-

derstanding software networks and its functional consequences [104], predicting struc-

tural collapse in ecosystems [78], and graph visualization [7, 106]. One of the reasons

why k-core enjoys much popularity in the theory is that it can be used as a subroutine for

computing more cohesive subgraphs [56], such as k-truss and clique with size k. The k-

core can also provide approximations for the densest subgraph problem and the densest

at-least-k subgraph problem [60].

2.2.2 k-Truss

Motivated by k-core, Cohen [29] proposes the model of k-truss, which is a maximal

subgraph where each edges has a support (number of common neighbors for its two end

vertices) of at least k − 2 in the subgraph. We also say each edge exists in at least k − 2
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triangles in the subgraph. Each k-truss of the graph is a subgraph of the (k − 1)-core

of the graph. As the k-truss model has requirements for the edges, not only does it cap-

ture the users’ engagements, but also it ensures the tie strength of relationship between

each pair of users. We say each edge in a graph has a trussness which is the largest k

such that the k-truss of the graph contains the edge. Then the trussness of each vertex

can be computed by the truss decomposition procedure. The first truss decomposition

algorithm [29] iteratively deletes the edge with the smallest support in the current graph.

It has a time complexity of O(
∑

v∈V (G)(deg(v)
2)). Wang et al.[93] then reduce its time

complexity to O(m1.5) by detecting the edges that decrease their supports after remov-

ing each edge. In [93], an I/O efficient algorithm is also studied when the graph cannot

completely fit in the main memory for truss decomposition.

In [106], Zhao et al.introduce the concept k-mutual-friend based on k-truss to capture

the cohesion in social interactions, with an I/O efficient algorithm to discover the corre-

sponding cohesive subgraphs. They further integrate these approaches to a community

visualizing system where the active social groups and interactions can be quickly lo-

cated. For probabilistic graphs, Huang et al.[50] extend the k-truss model such that each

edge needs to have at least γ (a given threshold) probability to be contained in at least

k − 2 triangles. Also in [50], a k-truss based community model is proposed to further

requires the edge connectivity inside a community. Then a corresponding community

search algorithm based on a compact tree-shape index is proposed. Furthermore, in dy-

namic graphs where edges are streamingly inserted and deleted, Huang et al.identify the

affected scope in the graph to conduct incremental k-truss community search.

2.2.3 Clique

The clique, being the subgraph model that has the most cohesiveness, has a long history

of being studied. Given a graph, a clique is defined as a subgraph in which each pair
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of vertices has an edge, which means every vertex is adjacent to each other vertex in

this subgraph. If there exists no supergraph of a clique S, S is a maximal clique; If

there exists no other clique in the graph having larger number of vertices than S, S is a

maximum clique. A clique can ensure the complete reachability and perfect familiarity

among its vertex set, but the definition is too strict for widespread applications, i.e.,

every two vertices are connected is not necessary in many real-life subgraphs. Therefore,

some models are proposed to relax the restrictions of clique and are applied in different

situations.

In [81], Pattillo et al.review the differences among the classic clique relaxation mod-

els. Six properties of clique are investigated including: distance, degree, domination,

density, diameter and connectivity, based on which a taxonomy of clique relaxation

models is introduced. They also provide some insights for choosing a specific relaxation

model over another. Luce [72] proposes the s-clique model that restricts the distance

between each two pair of vertices to be less or equal to s within the subgraph. However,

the intermediate vertices on a shortest path between two vertices of an s-clique may not

be included in the s-clique. s-club [6] is proposed to solve this issue, by requiring all

the intermediate vertices on a shortest path to be also included in the s-club, besides

all the restrictions of s-clique. Apart from focusing on the diameter of a subgraph as

s-clique and s-club, Abello et al.[3] proposes the quasi-clique model which requires the

edge density not to be less than a fixed threshold in a subgraph S. Specifically, the edge

density of S is the ratio of the actual number of edges in S to the potential number of

edges if each pair of vertices in S has an edge.

Maximal clique enumeration is a classic NP-hard graph problem, whose algorithms

are mostly based on backtracking search, e.g., [16]. Eppstein et al.[37] further accelerate

the maximal clique enumeration algorithm by heuristically selecting the pivots which

can potentially reduce the backtracking searching space. The overlaps among different
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cliques in a graph are also utilized to speedup the maximal clique enumeration algorithm

[94]. A variety of other clique computation algorithms in special circumstances are

widely studied, e.g., [26, 21], to name a few.

2.2.4 Parallel Computation for Cohesive Subgraphs

Some works about core decomposition in parallel environments have been studied re-

cently [52, 77, 20, 75, 38]. An algorithm for core decomposition on multicore platforms

is introduced in [52]. In [20], a distributed 2(1+ϵ) approximate algorithm of core decom-

position is proposed. Based on the distributed framework Spark [100], Mandal et al.[75]

use the think-like-a-vertex paradigm to conduct core decomposition. Towards core main-

tenance, some distributed or parallel algorithms are also proposed [8, 4, 49, 51]. In [49],

Hua et al.propose a structure called ’joint edge set’ to parallelize inserting/deleting a set

of edges, which is based on the idea of ’matching’ in [51].

There are also many works studying the parallel computation of other cohesive

subgraph models such as clique, k-plexes and k-truss. An algorithm implemented on

shared-memory multicore machine is introduced for the maximal clique enumeration

problem [34]. In [96], Wang et al.propose an approach for maximal clique and k-plexes

enumeration at the same time, which identifies the dense subgraphs by binary graph

partitioning, and it is implemented on MapReduce. In [30], a shared-nothing distributed

algorithm for k-plexes enumeration is proposed, but only limited to k = 2. In [31], Conte

et al.present D2K, which exploits the fact that large enough k-plexes have diameter 2,

so that the distributed implementation can handle very large graphs. For k-truss model,

Kabir et al.[53] and Smith et al.[89] develop the parallel algorithms for k-truss decom-

position on multicore (shared-memory) system. In [13], a performance exploration of

fine-grained parallelism for load balancing eager k-truss on GPU and CPU is presented.
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2.3 Influence Maximization

Apart from studying a user’s influence regarding its role in network structural stability,

another classic problem which investigates the node influence in networks is influence

maximization (IM), which focuses on a user’s role in information diffusion instead. The

IM problem is first presented in [55]. As the analysis of information diffusion has been

shown powerful in many applications including the adoption of political standpoints

and the commercial value in marketing, the IM problem is being extensively studied

in recent years, e.g., [23, 66, 41, 44, 45, 61, 67, 71, 80, 95, 46, 83], to name some.

Specifically, IM aims to select a set of k users in a network, aka. seed set with the

maximum influence spread, i.e., the expected number of influenced users via the seed

set in information diffusion is maximized. The most typical application of IM is viral

marketing [35], in which a company hopes to spread the purchase of a product from some

initially selected buyers, based on the social relationship between the users. Besides,

other typical applications include rumor control [17, 48], network monitoring [62] and

social recommendation [99].

The IM problem induces enormous research challenges despite its widespread ap-

plication potential. Firstly, how to model the information diffusion process in a social

network can significantly affect the influence spread of a seed set. Secondly, IM is proven

to be NP-hard for obtaining an optimal solution under most of the settings [23, 55, 70].

Moreover, the stochastic nature of information diffusion makes even the evaluation of

influence spread of any seed set is cost-prohibitive. It is shown in the above theoretical

results that it is very challenging to retrieve a optimal or near optimal seed set from a

massive social network. Thirdly, nowadays social networks are equipped with meta in-

formation, e.g., topical analysis, streaming content and location-based services etc. The

meta information brings new opportunities to improve the effectiveness of IM, by com-

bining IM with different contexts such as locations, timestamps and topic information
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etc. Then more technical challenges naturally arise when solving such context-aware IM

problems.



Chapter 3

Global Reinforcement of Social

Networks

3.1 Introduction

The leave of users in a social network may cause negative influence to the engagement

level of their neighbors (e.g., friends) in this network, and thus these neighbors may

choose to leave [74]. The continuous departure of users may lead to the leave of users

with many neighbors and significantly bring down overall user engagement (stability) of

a network. For instance, Friendster was a popular social network which had over 115

million users, while it is suspended due to contagious leave of users [42, 87].

Assume that each vertex v incurs an (integer) cost of k > 0 to remain engaged and

obtains a benefit of 1 from each neighbor of v who is engaged, the natural equilibrium of

this model corresponds to the k-core of the social network [11]. The k-core is defined as

the maximal subgraph in which every vertex has at least k neighbors in the subgraph [76,

85]. Given a graph, the k-core can be computed by iteratively removing every vertex

with degree less than k. Every vertex in the graph has a unique coreness value, that

19
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is, the largest k s.t. the k-core contains the vertex. The model of k-core is often used

in the study of network stability (engagement) as it well captures the dynamic of user

engagement, e.g., [74, 91, 86].

As the size of k-core is a feasible indicator of network stability, Bhawalkar and Klein-

burg et al. proposed the anchored k-core (AK) problem [11, 12]: given a graph G, an

integer k and a budget b, anchoring a set of b vertices in the graph s.t. the number of

vertices in the k-core is maximized. The degree (the number of neighbors) of an an-

chored vertex is considered as positive infinity, namely, an anchored vertex will stay in

the k-core regardless of its original degree. It is promising to reinforce a network by giv-

ing incentives to some users (e.g., anchored vertices) such that they will keep engaged

in the network and support the engagement of other users [12]. The anchored k-core

problem has been further studied on different aspects, e.g., the theoretical side [28, 27],

the experimental evaluation [42, 98] and the efficient solutions [102, 90].

Nevertheless, the anchored k-core (AK) problem is essentially to reinforce a network

in a “local” manner: it focuses on enlarging the size of the k-core with a particular k

value. As proved in [102], given an integer k, the AK problem can only increase the

corenesses of a partial set of vertices, e.g., the vertices with coreness k − 1. Besides, for

the AK problem, the valid vertices for anchoring are from a small set of vertices, and the

anchoring of other vertices cannot enlarge the size of k-core [102]. Moreover, it is very

hard to determine a good input value of k for the AK problem.

As analyzed in the study of Friendster, its collapse may start from the leave of users

in either the center cores (k-cores with large k values) [86] or the outside of center

cores [42], i.e, the collapse happens in a “global” way. As shown in [74], a user’s core-

ness is the “best practice” for measuring the engagement level of the user in a network.

We further examine the matching of coreness and user engagement in real social net-

works. For each integer k, we count the average number of user check-ins (as the



Chapter 3. Global Reinforcement of Social Networks 21

10

100

1000

1 6 11 16 31 36 41 46 51

#
c
h
e
c
k
in
s

21 26
coreness

Figure 3.1: Check-in Number v.s. Coreness Value

ground-truth user engagement) for the users with coreness equals to k. As shown in

Figure 3.1, the coreness value and check-in number in Gowalla [63] are in a positive

correlation, except for the disturbance on the center cores due to the small sample. So

it is more promising to reinforce a network in a “global” manner: considering the core-

ness increment of every user. Motivated by the above facts, we propose and study the

anchored coreness (AC) problem: given a graph G and a budget b, anchor a set of b ver-

tices in the graph s.t. the coreness gain (total increment of coreness) of all the vertices is

maximized. The followers of an anchor x are the vertices with coreness increased after

anchoring x, except x itself.

Table 3.1: Anchored k-Core v.s. Anchored Coreness in Fig. 2

Problem Input Anchor Followers Coreness

AK k = 3, b = 1 u1 u2, u3, u4 from 2 to 3
k = 4, b = 1 u5 u6, u7, u8 from 3 to 4

AC b = 1 u2
u3, u4 from 2 to 3
u7, u8 from 3 to 4

Example 3.1.1 Figure 3.2 shows a graph G of 13 vertices and their connections. The

coreness of each vertex is marked near the vertex, e.g., the coreness of u5 is 2. The k-core

of G is induced by all the vertices with coreness of at least k, e.g., the 3-core is induced

by u6, u7, ..., u12, and u13.

Table 3.1 records the results of anchored k-core (AK) problem and anchored coreness



22 Chapter 3. Global Reinforcement of Social Networks

2

3

3

1

2

2

2

3

𝑢11

𝑢3

𝑢12

𝑢1

𝑢9

𝑢4

𝑢10
𝑢2

𝑢13
𝑢6

𝑢7
𝑢5

4

4

4

4

4

𝑢8

Figure 3.2: A Toy Example

(AC) problem under different inputs. For instance, when k = 3 and b = 1, the AK

problem anchors u1 which will increase the coreness of u2, u3 and u4 from 2 to 3. We

can find that the anchoring of u2 according to AC has a larger coreness gain (i.e., 4)

compared to that of AK (i.e., 3). Besides, the AC problem improves the vertex coreness

from the vertices with different corenesses, while the AK model focuses on a partial set,

e.g., the vertices with coreness k − 1. Thus, AK and AC are inherently different, and the

solutions for AK cannot be used to solve the AC problem.

Challenges. To the best of our knowledge, we are the first to study the anchored coreness

(AC) problem. We prove the AC problem is NP-hard. Although the coreness gain can

be computed in O(m) time by core decomposition [10], a basic exact solution has to

exhaustively compute the coreness gain on every possible anchor set with size b, which is

cost-prohibitive. We also prove the problem is APX-hard and the coreness gain function

is non-submodular. Although it is unpromising to estimate the coreness gain of multiple

anchors, we observe that the change of coreness is relatively restricted for one anchored

vertex. Thus, we adopt a greedy heuristic to find the best anchor in each iteration, while

the candidate anchor set is still very large and a straightforward implementation is still

very time consuming.
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An efficient algorithm is proposed for the anchored k-core (AK) problem in [102],

while the AK model only considers the coreness gain from k−1 to k by maximizing the

size of k-core with a fixed k. Since the AC problem aims to maximize the coreness gain

from all the vertices with different corenesses, the solution in [102] cannot be applied

to solve the problem. Besides, the search space of the AC problem is much larger than

the AK problem because every vertex in the graph is possible to be a valid anchor to

improve the vertex coreness, while only a partial set of vertices related to k-core can be

valid anchors to enlarge the size of k-core for AK problem. Therefore, the AC problem

is even more challenging than the AK problem. It is critical to design strong strategies

to prune unpromising candidate anchors and speed up the computation of coreness gain.

Our Solution. Due to the huge number of candidate anchors, a well-designed reusing

mechanism (Section 3.4.3) is necessary for a greedy heuristic which aims to exhaustively

reuse the intermediate results from the executed iterations. To do so, we apply the tree

structure T (Section 3.4.1) of core decomposition [10] to divide all the vertices into tree

nodes, where each tree node is an atomic unit for deciding whether the computed results

associated with the node can be reused. Specifically, with the anchoring of one vertex

x, we first prove the coreness of a vertex (except the anchor) can increase by at most 1.

Then, the followers of x can be divided into different tree nodes of T . In each iteration,

the number of x’s followers is the coreness gain of anchoring x. Thus, if x was anchored

and the follower set of each vertex was computed (or reused) in the last iteration, for each

candidate anchor u in current iteration, we can efficiently decide whether the partial set

of u’s followers associated with a tree node keeps the same and can be reused.

The proposed computation of coreness gain (Section 3.4.4) is adaptive to the reusing

mechanism. If a follower unit (in a tree node) cannot be reused, the follower computation

is conducted locally, i.e., within the tree node. Besides, we utilize the graph degeneracy

ordering (the vertex deletion sequence of core decomposition) to largely speed up the
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follower computation. We also propose an upper bound (Section 3.4.5) of coreness

gain to further prune candidate anchors, and well match the technique with the reusing

mechanism to improve efficiency. Combining all these techniques, we propose the serial

greedy algorithm GAC (Section 3.4.5) which is conducted in single-machine computing

environment.

We then extend GAC to DGAC which is conducted in distributed computing envi-

ronment. In order to reduce the communication cost among the machines, we propose

a graph partition strategy where the graph can be divided into shell component parti-

tions (partitions) induced by the subgraphs of k-shell component in the structure SP

(Section 3.5.1). Therefore, for anchoring a vertex x, the followers of x are divided

into different partitions in SP . We prove x’s followers from different partitions are not

overlapped and the computation of followers from different partitions can be conducted

concurrently and independently. We also show the upper bound proposed in GAC is a

reasonable estimate of the time cost of computing x’s followers. Based on these, we pro-

pose a computing resource scheduling (Section 3.5.3) to make the machines evenly and

independently have computing tasks. Similar to the reuse mechanism of GAC, the shell

component partitions become the units of deciding whether the associated computed

results are reused.

Contributions. In the chapter, we overcome all the challenges with above solutions.

The preliminary version is published in [69]. Our main contributions are as follows:

• Motivated by many existing studies, we propose and explore the anchored coreness

problem to reinforce social networks which considers the engagement of every

user. We prove the problem is NP-hard and APX-hard. The problem is shown

to be more challenging than the anchored k-core problem which focuses on the

engagement of partial users.

• We propose a serial greedy algorithm for single-machine environment with novel
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techniques. With the tree of core decomposition, we introduce a mechanism to

reuse the intermediate results from the executed iterations. It exhaustively reuses

the computed result in each unit represented by a tree node. We also propose the

computation of coreness gain which is largely faster than core decomposition. An

upper bound of coreness gain is proposed to further prune unpromising candidates.

All the techniques are well equipped in the reusing mechanism.

• We propose a distributed greedy algorithm for anchored coreness problem in dis-

tributed computing environment. With the graph partition strategy based on k-shell

component, all the machines can independently and concurrently conduct com-

putations, i.e., the coreness gain computations of vertices are divided into inde-

pendent units regarding k-shell components. Our computing resource scheduling

strategy ensures the communication cost across machines is limited and comput-

ing tasks are evenly distributed. The techniques of reuse mechanism, computation

and upper bound of coreness gain in the serial algorithm are specifically designed

for our distributed algorithm.

• Comprehensive experiments are conducted on 8 real-life datasets to show that (1)

the proposed serial algorithm GAC is more effective than other heuristics on im-

proving vertex coreness; (2) the coreness gain from the AC model is much larger

than that of the AK model; (3) the coreness values of the anchors and followers

are more diverse in the AC model, compared with the AK model; and (4) our

proposed techniques for GAC largely improve the algorithm efficiency. (5) The

proposed distributed algorithm DGAC is significantly more efficient than GAC,

and the time cost is inversely proportional to the number of machines in general.
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Table 3.2: Summary of Notations throughout the Chapter

Notation Definition
G an unweighted and undirected graph
V (G); E(G) the vertex set of G; the edge set of G
n;m |V (G)|; |E(G)| (assume m > n)
u, v, x a vertex in G

E(u) the set of edges incident to u

N(u,G) the neighbour vertex set of u in G

Ck(G) the k-core of G
c(u,G) the coreness of u in G

A the set of anchor vertices
deg(u,G) |N(u,G)| if u /∈ A, or +∞ if u ∈ A

cA(u,G) the coreness of u in G with A anchored
b the budget for the number of anchors
g(A,G) the coreness gain of anchoring A in G

T the core component tree of G
F(x,G) the set of followers of x in G

H i
k(G) i-layer within the k-shell of G
P(u) the shell-layer pair of a vertex u. If P(u) = (k, i), u is in the

i-th layer of the k-shell, i.e., u ∈ H i
k(G).

x⇝ u an upstair path from x to u

CF (x) the candidate followers set of x
d+(x) the degree bound of x
UBσ(x) the upper bound of |F(x)|

3.2 Preliminaries and Problem Statement

We consider an unweighted and undirected graph G = (V,E), where V (G) (resp. E(G))

represents the set of vertices (resp. edges) in G. N(u,G) is the set of adjacent vertices

of u in G, which is also called the neighbour vertex set of u in G. Table 4.1 summarizes

some notations used throughout this chapter. Note that we may omit the input graph in

the notations when the context is clear, e.g., using deg(u) instead of deg(u,G).

Definition 3.2.1 k-core [76, 85]. Given a graph G, a subgraph S is the k-core of G,

denoted by Ck(G), if (i) S satisfies degree constraint, i.e., deg(u, S) ≥ k for each u ∈

V (S); and (ii) S is maximal, i.e., any supergraph S ′ ⊃ S is not a k-core.

If k ≥ k′, the k-core is always a subgraph of k′-core, i.e., Ck(G) ⊆ Ck′(G). Each
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Algorithm 1: CoreDecomp(G, A)
Input : a graph G, an anchor set A

Output : cA(u,G) for each u ∈ V (G)

k ← 1;1

while exist non-anchor vertices in G do2

while ∃u ∈ V (G) with deg(u) < k do3

deg(v)← deg(v)− 1 for each v ∈ N(u,G);4

remove u and its adjacent edges from G;5

cA(u,G)← k − 1;6

k ← k + 1;7

return cA(u,G) for each u ∈ V (G)8

vertex in G has a unique coreness.

Definition 3.2.2 coreness. Given a graph G, the coreness of a vertex u ∈ V (G), de-

noted by c(u,G), is the largest k such that Ck(G) contains u, i.e., c(u,G) = max{k |

u ∈ Ck(G)}.

Definition 3.2.3 core decomposition. Given a graph G, core decomposition of G is to

compute the coreness of every vertex in V (G).

In this chapter, once a set A of vertices in the graph G is anchored, the degrees of

the vertices in A are regarded as positive infinity, i.e., for each x ∈ A, deg(x,G) = +∞.

Every anchored vertex is called an anchor or an anchor vertex. The existence of anchor

vertices may change the corenesses of other vertices. We use cA(u,G) (resp. cx(u,G))

to denote the coreness of u in G with the anchor set A (resp. vertex x).

The computation of core decomposition with anchors is the same as that without

anchors [10], in which we recursively delete the vertex with the smallest degree in the

graph G. The time complexity is still O(m), because the only difference is that we do
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not delete the anchors in the core decomposition. The pseudo-code is shown in Algo-

rithm 14.

Definition 3.2.4 coreness gain. Given a graph G and an anchor set A, the coreness

gain of G regarding A, denoted by g(A,G), is the total increment of coreness for every

vertex in V (G) \ A, i.e., g(A,G) =
∑

u∈V (G)\A(c
A(u)− c(u)).

Problem Statement. Given a graph G and a budget b, the anchored coreness prob-

lem aims to find a set A of b vertices in G such that the coreness gain regarding A is

maximized, i.e., g(A,G) is maximized.

3.3 Problem Analysis

Theorem 3.3.1 Given a graph G, the anchored coreness problem is NP-hard.

Proof 3.3.1 We reduce the maximum coverage (MC) problem [54], which is NP-hard,

to the anchored coreness problem. Given a number b and a collection of sets where each

set contains some elements, the MC problem is to find at most b sets to cover the largest

number of elements.

Consider an arbitrary instance H of MC with c sets T1, .., Tc and d elements

{e1, .., ed} = ∪1≤i≤cTi, we construct a corresponding instance of the anchored core-

ness problem on a graph G. W.l.o.g., we assume b < c < d. Figure 3.3 shows an

example of 3 sets and 4 elements.

The graph G contains three parts: M , N , and some cliques. The part M contains c

vertices, i.e., M = ∪1≤i≤cwi where each wi corresponds to the set Ti in the MC instance

H . The part N contains d vertices, i.e., N = ∪1≤i≤dvi where each vi corresponds to

the element ei in H . For every i and j, if ei ∈ Tj in H , we add an edge between vi

and wj . For each vi in N , we create d cliques where each clique is a (d + 2)-clique (a
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clique of size d+ 2), and connect vi to one vertex of each clique. The construction of G

is completed.

Assume each element in H is contained by at least 1 set, for each wi ∈ M and

vj ∈ (V (G) \M), we have deg(wi) ≤ d < deg(vj). Recall that the core decomposition

of G iteratively deletes the vertices with degree less than k and assigns the coreness of

k−1 to the deleted vertices in current iteration, from k = 1, 2, ... to k = kmax. Thus, the

coreness of each wi ∈ M is deg(wi), as wi can only be deleted when k = deg(wi) + 1.

The coreness of each vj ∈ N is d, as vj is not deleted when k = d (due to the d cliques),

and vj is deleted when k = d + 1 (due to the deletion of every wi ∈ M ). Similarly, the

coreness of every vertex in a (d+ 2)-clique is d+ 1.

For each wi ∈ M , even if all the neighbors of wi are anchored, the coreness of

wi keeps the same, as wi will still be deleted when k = deg(wi) + 1. As we assume

b < c < d, for the anchoring of any b vertices, each non-anchor vertex u in a (d + 2)-

clique will still be deleted when k = d + 2 (coreness of u keeps the same), and thus the

anchoring of multiple anchors cannot increase the coreness of any non-anchor vi ∈ N

to larger than d + 1. So, for each non-anchor vi ∈ N , the coreness of vi increases by

1 (from d to d + 1) iff at least one vi’s neighbor in M is anchored. The optimal anchor

set A for anchored coreness problem corresponds to the optimal set collection C for

MC problem, where each vertex wi ∈ A corresponds to the set Ti ∈ C. If there is a

polynomial time solution for the anchored coreness problem, the MC problem will be

solved in polynomial time.

Then, we prove that there is no PTAS for the anchored coreness problem and thus it

is APX-hard unless P=NP.

Theorem 3.3.2 For any ϵ > 0, the anchored coreness problem cannot be approximated

in polynomial time within a ratio of (1− 1/e+ ϵ), unless P=NP.
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Figure 3.3: Construction Example for Hardness Proofs

Proof 3.3.2 We use the reduction from the MC problem same to the proof of Theo-

rem 3.3.1. For any ϵ > 0, the MC problem cannot be approximated in polynomial

time within a ratio of (1− 1/e+ ϵ), unless P = NP [40]. We have an anchor set A for

anchored coreness problem on G corresponding to a set collection C for MC problem,

where each wi ∈ A corresponds to Ti ∈ C. Let γ > 1 − 1/e, if there is a solution with

γ-approximation on the coreness gain for the anchored coreness problem, there will be

a γ-approximate solution on optimal element number for the MC problem.

Besides, the function of coreness gain is not submodular.

Theorem 3.3.3 The function g(·) of coreness gain is not submodular.

Proof 3.3.3 For two arbitrary anchor sets A and B, if g(·) is submodular, it must hold

that g(A) + g(B) ≥ g(A ∪ B) + g(A ∩ B). We consider a graph G where the vertex

set V = ∪1≤i≤6vi, the vertices in ∪2≤i≤5vi form a 4-clique, v1 connects to v2 and v3,

and v6 connects to v4 and v5. If A = {v1} and B = {v6}, g(A) + g(B) = 0 <

g(A ∪B) + g(A ∩B) = 4.
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3.4 A Greedy Approach

The hardness of the problem motivates us to develop an efficient heuristic algorithm.

We adopt a greedy heuristic which iteratively finds one best anchor in each of the b

iterations, i.e., the vertex with the largest coreness gain if anchored. To find the best

anchor in one iteration, we compute the coreness gain of every candidate anchor. The

time complexity of this heuristic is O(b ·n ·m). However, as our latter theorems indicate,

for the anchoring of one vertex, the change of coreness for other vertices is restricted and

the computation cost may be largely reduced. Also, our experiments on real graphs find

that the coreness gain from this greedy heuristic is much larger than other heuristics. To

improve the efficiency of the greedy algorithm, we aim to significantly reduce (1) the

number of candidate anchors and (2) the time cost of computing the coreness gain of one

anchor.

We firstly review the tree structure of core decomposition, which can be used to

speed up the greedy algorithm (Section 3.4.1), and the theorems of finding the candidate

followers which may increase the coreness due to the anchoring (Section 3.4.2). Based

on the tree and the theorems, we propose a mechanism to reuse the intermediate results

across iterations (Section 3.4.3), and the algorithm to compute the coreness gain of one

anchor by partially exploring the tree (Section 3.4.4). Combining the above with an up-

per bound technique for candidate anchors pruning, our final GAC algorithm is presented

(Section 3.4.5).

3.4.1 Core Component Tree

Definition 3.4.1 k-core component. Given a graph G and the k-core Ck(G), a sub-

graph S is a k-core component if S is a connected component of Ck(G).

According to the definition of k-core, for every integer k, we have disjointness prop-
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Table 3.3: Summary of Notations for T
Notation Definition
T [v] the tree node which contains the vertex v

TN a tree node
TN.K a specific coreness k associated with node TN

TN.V the set of vertices in tree node TN

TN.I the smallest vertex id in TN.V

TN.P the parent tree node of TN
TN.C the child tree node set of TN
CC(TN) the (TN.K)-core component containing TN.V

tca[u][id] the set of u’s neighbors in TN.V with TN.I = id

sn(u) the tree node id set where id ∈ sn(u) iff ∃v ∈ N(u) having c(v) ≥
c(u) ∧ T [v].I = id

pn(u) the tree node id set where id ∈ pn(u) iff ∃v ∈ N(u) having c(v) <
c(u) ∧ T [v].I = id

F [x][id] the follower set of x at tree node id, i.e., v ∈ F [x][id] iff v ∈
F(x) ∧ T [v].I = id

erty: every k-core component is disjoint from other k-core components in the same

k-core; and containment property: a k-core component is contained by exactly one (k-

1)-core component.

Tree Structure (T ). Given a graph G, the core component tree of G, denoted by T , or-

ganizes V (G) based on the k-core components with different k. Specifically, T contains

all the vertices in V (G) and each vertex is exclusively contained in one tree node. Given

a vertex v, T [v] is the tree node containing v.

We then clearly introduce the tree structure. Let TN denote a tree node. TN.K is

the coreness value associated with TN . The vertices in the subtree rooted at TN induce

a subgraph that is a (TN.K)-core component, denoted by CC(TN). We use TN.V to

denote the set of vertices in the tree node TN and all the vertices in TN.V have coreness

equal to TN.K. We assume each vertex in V (G) has a positive integer id as its unique

identifier, i.e., id ∈ [1, V (G)] ∧ id ∈ N. Let TN.I denote the smallest vertex id from

the vertices in TN.V . We use TN.P to denote the only parent tree node of TN , and

TN.C to denote the child tree node set of TN . The notations for T are summarized in



3.4.1 Core Component Tree 33

Algorithm 2: BuildCCT(G, PN )
Input : G : a connected graph, PN : a tree node

Output : T : the core component tree of G

kmin ← the smallest coreness from the vertices in V (G);1

TN ← an empty tree node ;2

TN.K := kmin; TN.P := PN ; PN.C := PN.C ∪ TN ;3

for each unassigned u ∈ V (G) with c(u) = kmin do4

u is set assigned;5

TN.V := TN.V ∪ {u};6

T [u] := TN ;7

TN.I := the smallest vertex id from the vertices in TN.V ;8

for each unassigned u ∈ V (G) in ascending coreness order do9

G′ ← the c(u)-core component containing u;10

T ← T ∪ BuildCCT(G′, TN );11

return T12

Table 3.3.

Algorithm 2 illustrates the structure of a core component tree. It can be implemented

in O(m) time as shown in [76]. If G is not connected, we build a tree for each connected

component of G. Given a connected graph G, we execute BuildCCT(G, ∅) to construct

the tree. Initially, every vertex in V (G) is unassigned. In each iteration, the algorithm

constructs a tree node TN and sets up its domains, e.g., TN.K (Line 2-3). Let kmin be

the smallest coreness from V (G), every unassigned vertex with coreness kmin is pushed

into TN.V and set to be assigned (Line 4-7). Note that the assigned or unassigned status

of a vertex is global. The construction follows a recursive DFS resulting in the expected

parent-child relation between two nodes (PN and TN ) based on the containment rela-

tion of k-core components (Line 9-11).
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Some notations for the tree are defined as follows.

Definition 3.4.2 tree node classified adjacency (tca). For a given graph G, we scan

the neighbour vertex set of each vertex and use the structure tca to organize them. We

partition the neighbors of a vertex according to the tree nodes they belong to, i.e., for a

vertex u, tca[u][id] is the set of u’s neighbors in the tree node TN with TN.I = id.

Definition 3.4.3 subtree adjacent nodes set (sn) Given a vertex u in a graph G, the

subtree adjacent nodes set of u, denoted by sn(u) is the id set of adjacent tree nodes

with the associated coreness not less than c(u), i.e., id ∈ sn(u) iff ∃v ∈ N(u,G) having

c(v) ≥ c(u) ∧ T [v].I = id.

Definition 3.4.4 parent adjacent nodes set (pn) Given a vertex u in a graph G, the

parent adjacent nodes set of u, denoted by pn(u) is the id set of adjacent tree nodes

with the associated coreness less than c(u), i.e., id ∈ pn(u) iff ∃v ∈ N(u,G) having

c(v) < c(u) ∧ T [v].I = id.
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Figure 3.4: Core Component Tree
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Example 3.4.1 In Figure 3.4, we have a graph G at left and its corresponding T at right.

Each solid-line box of the right is a tree node which corresponds to a dotted box of the

left. We have T [2] = TN2, TN2.K = 2 and TN2.I = 2, T [7] = TN3, TN3.K = 3 and

TN3.I = 5. For tca, sn and pn, for some instances, tca[2][5] = {7}, tca[2][2] = {3},

tca[7][2] = {2} and tca[7][5] = {5}; sn(2) = {2, 5} and pn(7) = {2}.

Note that, tca, sn and pn are the structures associated with T and can be retrieved

along with the building of T .

3.4.2 Restriction of Candidate Followers

If a vertex x is anchored, the set of candidate vertices which may increase their core-

nesses is restricted.

Theorem 3.4.1 If a vertex x is anchored in G, any non-anchor vertex u ∈ V (G) can

increase its coreness by at most 1.

Proof 3.4.1 We prove it by contradiction. Suppose there is a non-anchor vertex u ∈

V (G) with coreness increasing from k′ to k∗ after anchoring x and k∗ > k′ + 1. Let

M be the k∗-core after x is anchored, we have u ∈ M and deg(v,M) ≥ k∗ for every

vertex v ∈ M . If we delete x and its corresponding edges from M , we have deg(v,M \

{x ∪ E(x)}) ≥ k∗ − 1 for every v ∈ M because at most one edge is removed for each

vertex v ∈ M . Thus, M \ {x ∪ E(x)} ⊆ Ck∗−1(G). As u ∈ M and u ̸= x, we have

u ∈ Ck∗−1(G) and thus k′ ≥ k∗ − 1 which contradicts with k∗ > k′ + 1.

Tree Node Classified Follower Set (F ). Every non-anchor vertex with coreness in-

creased by anchoring x is named as a follower of x. The follower set of x in G is de-

noted by F(x,G) that contains all its followers. According to Theorem 3.4.1, g({x}) =

|F(x)|. We define F to divide the followers of an anchor based on tree node classified

adjacency. Specifically, for x ∈ V (G), v ∈ F [x][id] iff v ∈ F(x) ∧ T [v].I = id.
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A fast method to compute the followers will be introduced in Section 3.4.4. Note

that, when we record the follower sets, we do not store the specific followers of a vertex

x but only store the number of followers of x regarding each adjacent tree node, so the

space cost of F is O(m). The candidate followers of a vertex x can be extracted as

follows.

Theorem 3.4.2 If a vertex x is anchored in the graph G, we have F(x) ⊂⋃
id∈sn(x) T [id].V .

Proof 3.4.2 Let O denote a vertex deletion order of core decomposition on G without

the anchoring of x. Note that the deletion order may be different when there are some

vertices with same degree in the deletion procedure, while it is proved in [102] that any

order following Algorithm 14 leads to the same coreness result. We denote the graph

after anchoring x by Gx. After the anchoring of x, for every vertex u ∈ V (Gx) with

c(u,G) < c(x,G), we can follow the deletion order O of G in the core decomposition

of Gx, and then cx(u,Gx) = c(u,G) because the degree of u in the order keeps same

when u is visited and to be deleted. Let k′ = c(x,G), we have Ck′(Gx) = Ck′(G). Let

C denote the k′-core component containing x, for every vertex u ∈ {Ck′(Gx)− C}, we

have cx(u,Gx) = c(u,G) since u and x are not in the same connected component of

Ck′(Gx).

Consider a tree node TN in T of G with TN.I /∈ sn(x) and TN.K ≥ c(x,G).

The anchoring of x may make a vertex set V+ (from TN.P ) increase coreness and enter

CC(TN). However, for each v ∈ V+, v /∈ C(TN.K)+1(Gx) because, 1) the coreness

of a vertex can increase by at most 1 for one anchor, according to Theorem 3.4.1; 2)

x /∈ V+ otherwise TN.I ∈ sn(x) which contradicts the assumption. Thus, if we delete

the vertices in V+ before TN.V in core decomposition, each vertex u ∈ TN.V has the

same degree as in O when u is visited and to be deleted, i.e., cx(u,Gx) = c(u,G). Thus,

only the vertices in
⋃

id∈sn(x) T [id].V may be the followers of x.
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Algorithm 3: ResultReuse(x, G, T )
Input : x: the anchor vertex, G : a social network, T : the core component tree of G,

Output : the tree node set rn(u) for each vertex u ∈ V (G), where F [u][id] can be

reused for each id ∈ rn(u)

Vx :=
⋃

id∈sn(x) T [id].V ;1

rn(u) := sn(u) for each u ∈ V (G);2

for each v ∈ Vx do3

id := T [v].I; rn(v) := rn(v) \ {id};4

for each id′ ∈ pn(v) and each u ∈ tca[v][id′] do5

rn(u) := rn(u) \ {id};6

G′ ← CC(T [x]); P ′ ← T [x].P ;7

CoreDecomp(G′, {x});8

T ∗ ← BuildCCT(G′, P ′);9

T ′ ← T with the subtree rooted at P ′ replaced by T ∗;10

Get tca′, sn′ and pn′ from T ′;11

V ′
x :=

⋃
v∈Vx

T ′[v].V ;12

for each v ∈ V ′
x \ Vx do13

id := T [v].I; rn(v) := rn(v) \ {id};14

for each id′ ∈ pn′(v) and each u ∈ tca′[v][id′] do15

rn(u) := rn(u) \ {id};16

return rn(u) for every vertex u ∈ V (G)17
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3.4.3 Reuse of Intermediate Results

After one iteration of our greedy heuristic where we choose to anchor x, for each vertex

u ̸= x, suppose we have had the follower set F [u][id] for each tree node id ∈ sn(u) be-

fore anchoring x. To reuse the follower results after anchoring x, we apply Algorithm 3

to decide, for every vertex u, whether the follower set of u on each tree node keeps the

same in the next iteration.

According to Theorem 3.4.2, we get the affected vertex set Vx :=
⋃

id∈sn(x) T [id].V

(Line 1), and initialize the reusable node set rn(·) for each vertex (Line 2). We remove

the tree node ids from rn(·) where the followers cannot be reused in the next iteration

(Line 3-6). Then we run core decomposition on the subgraph CC(T [x]) with x anchored

(Line 7-8) and update the subtree rooted at x (Line 9-11). The update of T can find other

vertices which may be affected w.r.t x (Line 12-13). Similar to Line 3-6, we remove the

tree node ids from rn(·) where the followers cannot be reused by above affected vertices

(Line 13-16). In the implementation, for a vertex u, we easily avoid duplicate removals

in rn(u) triggered by u’s neighbors using tree node tags.

Algorithm 14 (Line 8) and Algorithm 2 (Line 9) both have O(m) time complexity.

In Line 3-6 and Line 13-16, each edge is accessed at most one time, respectively. So, the

time complexity of Algorithm 3 is O(m).

Lemma 3.4.1 After the anchoring of vertex x and the execution of Algorithm 3, for

every non-anchor vertex u ∈ V (G) and each id ∈ rn(u), we have 1) id ∈ sn′(u), 2)

T ′[id].K = T [id].K and 3) T ′[id].V = T [id].V .

Proof 3.4.3 We prove it by contradiction. To prove 1), suppose an id ∈ rn(u) has

id /∈ sn′(u). That means a⃝ T ′[id].V does not contain any neighbor of u or b⃝ T ′[id].V

contains the neighbors of u but also contains another vertex whose id′ < id so T ′[id].I =

id′ and id′ ∈ sn′(u).
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For a⃝, if vertex id itself did not increase its coreness, then the neighbors of u in

T [id].V must have increased their coreness and left T [id].V . So these neighbors belong

to Vx (Line 1 of Algorithm 3) and they are used to erase id at Line 3-6, which contradicts

with id ∈ rn(u); If id increased its coreness, id would make all the vertices in T [id].V

belong to Vx (Line 1), and then id is erased from rn(u) at Line 3-6 which contradicts

with id ∈ rn(u). For b⃝, if vertex id did not increase its coreness, it means there is a

vertex v with coreness increased and then joined T ′[id].V . For such v, v ∈ Vx which

makes the neighbors of u in T ′[id].V be included in V ′
x (Line 12). So, id is erased from

rn(u) at Line 13-16 which contradicts with id ∈ rn(u); If id increased its coreness, it

contradicts with id ∈ rn(u) because of the same reason when id increased its coreness

in a⃝.

To prove 2), suppose there is an id ∈ rn(u) having T ′[id].K ̸= T [id].K, that means

vertex id must have increased its coreness. So, all the vertices of T [id].V belong to Vx

(Line 1) which erased id from rn(u) at Line 3-6 and contradicts with id ∈ rn(u).

To prove 3), suppose there is an id ∈ rn(u) having T ′[id].V ̸= T [id].V . We already

proved that id ∈ sn′(u) and T ′[id].K = T [id].K. Thus, there must be c⃝ a vertex

v ∈ T [id].V increased c(v) and then left T [id].V , or d⃝ a vertex v joined in T ′[id].V

because its coreness increased.

For c⃝, v can make all vertices of T [id].V belong to Vx (Line 1) then erase id (Line

3-6). For d⃝, v can make u’s neighbors in T ′[id].V belong to V ′
x (Line 12) and can erase

id (Line 13-16). Both c⃝ and d⃝ contradict with id ∈ rn(u).

Theorem 3.4.3 After the anchoring of vertex x and the execution of Algorithm 3, let Gx

denote the graph with x anchored, considering a non-anchor vertex u ∈ V (Gx), for

each id ∈ rn(u) and each v ∈ T ′[id].V , we have v ∈ F(u,Gx) iff v ∈ F [u][id].

Proof 3.4.4 Let O denote a vertex deletion order of core decomposition on G without

anchoring x. Similar to the proof of Theorem 3.4.2, we follow the deletion order O
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in the core decomposition of Gx. Let k∗ = T ′[id].K. The anchoring of x may make

a vertex set V+ (from T [id].P ) increase coreness so enter CC(T ′[id]), but for each

v ∈ V+, v /∈ Ck∗+1(Gx) since the coreness of a vertex can increase by at most 1 for one

anchor according to Theorem 3.4.1. Also, we have T ′[id].K = T [id].K and T ′[id].V =

T [id].V from Lemma 3.4.1. Thus, V+ = ∅. Now we conclude each vertex u ∈ T ′[id].V

has the same degree as in O when u is visited and to be deleted in core decomposition

of Gx, i.e., cx(u,Gx) = c(u,G). So the followers of x at node id keeps the same after

anchoring x.

After anchoring x, the search space of followers for a non-anchor vertex u is within⋃
id∈sn′(u) T ′[id].V according to Theorem 3.4.2. By executing Algorithm 3, we get the

rn(u) so that a subset of search space
⋃

id∈rn(u) T ′[id].V does not need to be recom-

puted, as proven by Theorem 3.4.3. Essentially, we reduce the search space of follower

computation from
⋃

id∈sn′(u) T ′[id].V to
⋃

id∈sn′(u)\rn(u) T ′[id].V .

Example 3.4.2 In Figure 3.4, we can know that, anchoring vertex 1 can make 5, 6 and

7 the followers, which means F [1][5] = {5, 6, 7}. And anchoring vertex 2 can make 3,

4 and 7 the followers, which means F [2][2] = {3, 4} and F [2][5] = {7}. Now we have

sn(1) = {5} and sn(2) = {2, 5}. If we choose to anchor 1, then V1 := {5,6,7}, 5,

6 and 7 become the followers and join the child node of their current tree node. For

vertex 2, initially we have rn(2) = sn(2) = {2, 5}. But V1 makes rn(2) := rn(2) \ {5}.

Obviously, T [7].I = 5 and 7 is indeed not the follower of 2 any more. And we can see 3

and 4 are still the followers of 2, which confirms F [2][2] can be reused since 2 ∈ rn(2).

3.4.4 Coreness Gain Computation

In this section, we utilize the vertex deletion order in core decomposition to speed up the

follower computation. Recall that we have g({x}, G) = |F(x)| for an anchored vertex
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x.

Given a graph G, the k-shell, denoted by Hk(G), is the set of vertices in G with

coreness equal to k, i.e., Hk(G) = V (Ck(G)) \ V (Ck+1(G)). The vertices in the k-shell

can be further divided to different vertex sets, named layers, according to their deletion

sequence in the core decomposition (Algorithm 14). We use H i
k to denote the i-layer of

the k-shell, which is the set of vertices that are deleted in the i-th batch. Specifically,

when i = 1, H i
k is defined as {u | deg(u,Ck(G)) < k + 1 ∧ u ∈ Ck(G)}. The

deletion of the 1st-layer will produce the 2nd-layer. Recursively, when i > 1, H i
k =

{u | deg(u,Gi) < k+1 ∧ u ∈ Gi} where G1 = Ck(G) and Gi is the subgraph induced

by V (Gi−1) \H i−1
k on Ck(G).

Shell-layer Pair. Based on the above definition, each vertex u in the graph G has a

shell-layer pair (k, i), which means u in the i-th layer of the k-shell, i.e., u ∈ H i
k. We

record the shell-layer pair of every vertex u in P . Specifically, for every vertex v, it is

contained in the (P [v].i)-th layer of the (P [v].k)-shell in G. We define P [vi] ≺ P [vj] iff

P [vi].k < P [vj].k or P [vi].k = P [vj].k ∧ P [vi].i < P [vj].i.

Example 3.4.3 In Figure 3.5 (a), the 2-shell contains u1, u2 and u3, and the 3-shell

contains u4 and u5. However, u1 is the first to be deleted in core decomposition, because

u1 is the only one whose degree is less than 3 currently. After u1 being deleted with

P [u1] = (2, 1), edges (u1, u2) and (u1, u4) are deleted. Then, u2 becomes the only one

with degree less than 3, so u2 is deleted with P [u2] = (2, 2). Similarly, P [u3] = (2, 3).

Both P [u4] and P [u5] are equal to (3, 1) since they contradict the degree constraint at

the same time.

Definition 3.4.5 Upstair Path. We say there is an upstair path in G for u ∈ V (G) w.r.t

a given anchor vertex x if there is a path x ⇝ u where (i) for every vertex y in the path
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Figure 3.5: Figures for Example 4, 5, 6 & 7

except x, P [y].k = P [u].k; and (ii) for every two consecutive vertices v′ and v′′ from x

to u, (v′, v′′) ∈ E(G) and P [v′] ≺ P [v′′].

Example 3.4.4 In Figure 3.5 (b), we can compute the shell-layer pairs of the vertices

and get P [u1] = (1, 1), P [u2] = P [u3] = P [u4] = (2, 1), P [u5] = P [u6] = (2, 2) and P [u7]

= P [u8] = P [u9] = P [u10] = (3, 1). The path (u1, u2, u5) is an upstair path for u5 w.r.t

u1, because P [u1] ≺ P [u2], P [u2] ≺ P [u5], and P [u2].k = P [u5].k. (u2, u5) itself can

also be an upstair path for u5 w.r.t u2, because it does not contradict any constraint in

Definition 3.4.5. On the contrary, (u3, u4, u6) cannot be an upstair path for u6 w.r.t u3

because P [u3] = P [u4] (contradicts (ii) of Definition 3.4.5), neither nor (u3, u6, u8) for

u8 w.r.t. u3 because P [u6].k ̸= P [u8].k which contradicts the (i) of Definition 3.4.5.

Theorem 3.4.4 A vertex u ∈ V (G) is a follower of the anchor x implies that there is an

upstair path x⇝ u in G.

Proof 3.4.5 Before the anchoring of x in G, let k = c(u,G), all the neighbors of u in G

are classified into three sets: N0
u contains every neighbor v with P [v].k < P [u].k, i.e.,
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c(v,G) < c(u,G); N1
u contains every neighbor v with P [v].k = P [u].k and P [v].i <

P [u].i; and N2
u contains the other neighbors of u. (i) Suppose x ∈ N0

u ∪N1
u , (x, u) itself

is an upstair path from x to u. (ii) Suppose x ∈ N2
u , let O denote a vertex deletion order

of core decomposition on G without any anchors (Algorithm 14). We denote the graph

after anchoring x by Gx. For every vertex v ∈ V (Gx) with P [v] ≺ P [x], we can follow

the same deletion order O in the core decomposition of Gx, and then cx(v,Gx) = c(v,G)

because the degree of v in the order keeps same when v is visited and to be deleted.

Thus, cx(u,Gx) = c(u,G) and u is not a follower of x if x ∈ N2
u . So x /∈ N2

u . (iii)

Suppose x /∈ N0
u ∪N1

u ∪N2
u , u must have a neighbor v0 ∈ N1

u ∩ Ck+1(Gx); otherwise,

cx(u,Gx) = c(u,G) as in case (ii) following the deletion order O. Thus, if a vertex

vi ∈ Ck+1(Gx) \Ck+1(G), vi must have a neighbor vi+1 ∈ N1
vi
∩Ck+1(Gx) or vi+1 = x.

Recursively, u ∈ F(x) implies there is a path (x, ..., u) which is an upstair path from x

to u where each vertex in the path is a follower of x except x itself.
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Algorithm 4: FindFollowers(x, G, T )
Input : x : the anchor, G : a social network, T : the core component tree of G

Output : F [x][·] : tree node classified follower sets of x

x is set survived;1

for each non-reusable tree node id ∈ sn(x) \ rn(x) do2

H := ∅;3

if id = ix then4

H.push(u) for each u ∈ tca>=(x);5

else6

H.push(u) for each u ∈ tca[x][id];7

while H ̸= ∅ do8

u← H.pop();9

Compute d+(u);10

if d+(u) ≥ c(u,G) + 1 then11

u is set survived;12

for each v ∈ tca>=(u) and v /∈ H do13

H.push(v);14

else15

u is set discarded ;16

Shrink(u);17

F [x][id]← survived vertices\{x} ;18

return F [x]19
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Algorithm 5: Shrink(u)
Input : u : the vertex for degree check

for each survived neighbor v with v ̸= x do1

d+(v) := d+(v)− 1;2

T ← v If d+(v) < c(v,G) + 1;3

for each v ∈ T do4

v is set discarded;5

Shrink(v);6

Computing Followers. According to Theorem 3.4.4, the vertices without any upstair

path from the anchor vertex x cannot be a follower of x. We use CF (x) to denote

all the candidate followers of an anchor x, i.e., the vertices that can be reached by x

via upstair paths. Instead of doing core decomposition of the whole graph, we only

need to explore the candidate followers CF (x) to compute the follower set of x. We

use tca≤=(u) to denote the set of u’s neighbours where each neighbor v has P [v].k =

P [u].k ∧ P [v].i ≤ P [u].i. Similarly, tca>=(u) contains every u’s neighbour v with

P [v].k = P [u].k ∧ P [v].i > P [u].i. For simplicity, we use iu to denote the id of the

tree node which contains the vertex u, i.e., iu = T [u].I . Note that, tca≤=(u) and tca>=(u)

are easily retrieved along with core decomposition.

Algorithm 4 shows the pseudo-code for computing the followers. In each iteration,

we search the non-reusable tree nodes (Section 3.4.3) in T to compute the followers of

x in the nodes (Line 2, Algorithm 4). We maintain a min heap H to store the candidate

followers CF (x) which will be explored (Line 3-7 and 13-14). The key of a vertex

in H is its shell-layer pair with ties broken by the vertex id. In each tree node id ∈

sn(x)\ rn(x), we explore CF (x) in a layer-by-layer manner: from j-th layer to (j+1)-

th layer starting from x.

In the layer-by-layer search, a vertex is set as unexplored if it has never been checked
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with the degree constraint (Line 11). A vertex is set as survived if it survived the degree

check (Line 12), otherwise it is set as discarded (Line 16). The discarded vertices

will not be visited again, and a survived vertex may become discarded later due to the

deletion cascade. The vertices that are visited in the search, e.g., not in any upstair path,

are regarded as discarded.

Once a candidate follower u is discarded (Line 16), Algorithm 5 will be called to

recursively delete other vertices without sufficient degree bound due to the deletion of

u. After traversing all the candidate followers and deleting the candidates that cannot

survive the degree check, the remaining vertices in CF (x) are the true followers of x.

Note that the followers are separately computed and returned for each tree node (Line 2

and Line 18 of Algorithm 4).

The time complexity of Algorithm 4 isO(m), because each edge is accessed at most

three times: push neighbors into H , degree check, and compute the cascade of shrink.

Degree Check. The degree bound of a vertex u ∈ CF (x) is denoted by d+(u). Specifi-

cally, d+(u) = d+s (u) + d+u (u) + d>(u), in which d+s (u) (resp. d+u (u)) is the number of

survived (resp. unexplored) neighbors in {x} ∪ (tca≤=(u) ∩H) ∪ tca>=(u), and d>(u)

is the number of neighbors in
⋃

id∈sn(u)\{iu} tca[u][id]. The following theorem indicates

that we can exclude a candidate follower u if d+(u) < c(u,G) + 1. The discard of a

vertex may invoke the discard of other vertices, as shown in Algorithm 5. When the

deletion cascade terminates, the tags of all the vertices affected by the discard of u will

be correctly updated.

Theorem 3.4.5 A vertex u ∈ CF (x) cannot be a follower of x if d+(u) < c(u,G) + 1.

Proof 3.4.6 We denote the graph after anchoring x by Gx, and let k+ = c(u,G) +

1. We show if d+(u) < c(u,G) + 1, then deg(u,Ck+(Gx)) < k+, so u cannot be a

follower of x. u’s neighous can be divided into those in
⋃

id∈pn(u) tca[u][id], tca
≤
=(u) ∪
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tca>=(u) and
⋃

id∈sn(u)\{iu} tca[u][id], respectively. Obviously the neighbors of
⋃

id∈pn(u)

tca[u][id] are not in Ck+(Gx), because they cannot increase the coreness by 2 according

to Theorem 3.4.1. For the neighbors in tca≤=(u) ∪ tca>=(u), they are all considered in

d+s (u) or d+u (u), unless they are discarded or never pushed to H , both of which mean

they are not in Ck+(Gx). At last, for the neighbors in
⋃

id∈sn(u)\{iu} tca[u][id], they satisfy

|
⋃

id∈sn(u)\{iu} tca[u][id]| = d>(u). Since d+(u) considers all the neighbors of u which

are possible to be in Ck+(Gx), d+(u) is a degree bound of deg(u,Ck+(Gx)).

For simplicity, in the following examples, the id of a vertex ui is ui itself where

i ∈ [1, V (G)] ∧ i ∈ N. For two vertices ui and uj , we set ui < uj iff i < j.

Example 3.4.5 In Figure 3.5 (b), we explain an example of using Algorithm 4 to com-

pute the followers of u1 from a single tree node. For the core component tree T , we can

see there are three tree nodes TN1, TN2 and TN3, where TN1.V = {u1}, TN1.K = 1

and TN1.I = u1; TN2.V = {u2, u3, u4, u5, u6}, TN2.K = 2 and TN2.I = u2;

TN3.V = {u7, u8, u9, u10}, TN3.K = 3 and TN3.I = u7. Initially, u1 itself is set

survived and we push the only adjacent vertex u2 which is in tca[u1][u2] into the min

Heap H . Then we pop u2 and have d+s (u2) = 1, d+u (u2) = 2 and d>(u2) = 0, so u2

survives the degree check since d+(u2) = c(u2) + 1 and we set u2 survived. We put

the vertices of tca>=(u2) into the heap so u5 and u6 are now in H . We first explore u5

and have d+s (u5) = 1, d+u (u5) = 0, d>(u5) = 2 and d+(u5) = c(u5) + 1, so we set u5

survived. As tca>=(u5) = ∅, we do not put any more vertices into H for now. Then we

explore u6 and have d+s (u6) = 1, d+u (u6) = 0 and d>(u6) = 1. Note that, u3 and u4

are unexplored neighbors of u6 in tca≤=(u6), but they will not be added into H so cannot

be counted in d+u (u6). d+(u6) < c(u6) + 1 so we will discard it. As illustrated in Algo-

rithm 5, for each survived neighbor of u6 which is u2, we make d+(u2) = d+(u2)−1 = 2

so that d+(u2) < c(u2) + 1. So we discard u2 and make d+(u5) = d+(u5) − 1 = 2.
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Obviously d+(u5) < c(u5) + 1 and gets discarded. Finally, the heap H becomes empty

and anchoring u1 has no follower.

Reusing Followers. Since we compute the followers of x regarding each tree node

id ∈ sn(x) separately, it is simple to reuse the followers computed from the last it-

eration. Specifically, after anchoring each vertex x, we erase some follower results by

Algorithm 3. Once a tree node id is visited (Line 2, Algorithm 4), we first check whether

id ∈ rn(x) or not. If id ∈ rn(x), the follower set of x in this tree node is not erased by

Algorithm 3. Thus we do not need to compute these followers (Line 3-17, Algorithm 4)

again, and use the existing F [x][id] instead. If id /∈ rn(x), we execute the Line 3-17 of

Algorithm 4 to find the correct followers.

3.4.5 The GAC Algorithm

We first introduce an upper bound of follower number.

Upper Bound Based Pruning. We introduce an easy-to-compute upper bound to further

prune unpromising candidates before the computation of followers. For a vertex x, by

Equation 3.1, we firstly get the upper bound of followers from its own tree node T [x].

Then for each id ∈ sn(x) \ {ix}, we get an upper bound UB>
id(x) by Equation 3.2. At

last we can compute the total upper bound UBσ(x) by Equation 3.3. When tca>=(u) = ∅

for a vertex u, we set UBiu(u) to 0.

UBix(x) =
∑

u∈tca>=(x)(UBiu(u) + 1) (3.1)

UB>
id(x) =

∑
u∈tca[x][id](UBiu(u) + 1) (3.2)

UBσ(x) = UBix(x) +
∑

id∈sn(x)\{ix} UB>
id(x) (3.3)
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Theorem 3.4.6 Given a graph G and an anchor vertex x, |F [x][ix]| ≤ UBix(x), and for

each id ∈ sn(x) \ {ix}, |F [x][id]| ≤ UB>
id(x). So, g({x}, G) ≤ UBσ(x).

Proof 3.4.7 According to the Equation 3.1 and Equation 3.2, all the vertices of⋃
id∈sn(x) T [id].V which are reachable by x via upstair paths are counted at least once

in the equations. Therefore, based on Theorem 3.4.4, we can prove that |F [x][ix]| ≤

UBix(x) and |F [x][id]| ≤ UB>
id(x) for each id ∈ sn(x) \ {ix}. Then, based on Equa-

tion 3.3 and Theorem 3.4.2, we can conclude that g({x}, G) ≤ UBσ(x).

About the computation of the upper bound, after getting the partial ordering (i.e.,

shell-layer pairs) of V (G), we use topological sorting to construct a compatible total

ordering of V (G). Then we can accumulatively compute the upper bound of each vertex

with the reverse sequence of the total ordering with a time complexity of O(m).

Example 3.4.6 In Figure 3.5(a), after getting the shell-layer pair of each vertex,

P [u1] = (2, 1), P [u2] = (2, 2), P [u3] = (2, 3), and P [u4] = P [u5] = (3, 1). Now

in T , we have TN1 where TN1.V = {u1, u2, u3}, TN1.K = 2 and TN1.I = u1.

TN2.V = {u4}where TN2.K = 3 and TN2.I = u4. TN3.V = {u5}where TN3.K = 3

and TN3.I = u5. Then we get a total ordering of them: u1 ≺ u2 ≺ u3 ≺ u4 ≺ u5.

We compute their upper bounds following this order. For u4 and u5, UBu4(u4) =

UBu5(u5) = 0 since tca>=(u4) = tca>=(u5) = ∅. For u3, tca>=(u3) = ∅ so UBu1(u3) = 0.

tca[u3][u4] = {u4} and tca[u3][u5] = {u5} , so that UB>
u4
(u3) = (UBu4(u4) + 1) = 1

and UB>
u5
(u3) = (UBu5(u5)+1) = 1. Therefore, UBσ(u3) = UBu1(u3)+UB>

u4
(u3)+

UB>
u5
(u3) = 2. For u2, tca>=(u2) = {u3} so UBu1(u2) = (UBu1(u3) + 1) = 1, and

tca[u2][u5] = {u5} so that UB>
u5
(u2) = (UBu5(u5)+1) = 1. Then we have UBσ(u2) =

UBu1(u2) + UB>
u5
(u2) = 2. At last, we get tca>=(u1) = {u2} and tca[u1][u4] = {u4},

so we can get UBu1(u1) = (UBu1(u2) + 1) = 2, UB>
u4
(u1) = (UBu4(u4) + 1) = 1,

UBσ(u1) = UBu1(u1) + UB>
u4
(u1) = 3.
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Algorithm 6: GAC(G, b)
Input : G : a social network, b : number of anchors

Output : A : the set of anchor vertices

CoreDecomp(G, ∅);1

T ← BuildCCT(G, root);2

Compute upper bounds of follower numbers;3

for i from 1 to b do4

λ := −1; a := null;5

for each u ∈ V (G) with decreasing order UBσ(u) do6

if u /∈ A and UBσ(u) > λ then7

F [u] := FindFollowers(u, G, T );8

if |F [u]| > λ then9

a := u; λ := |F [u]|;10

A := A ∪ {a}; deg(a,G) := +∞;11

ResultReuse(a, G, T );12

Refine upper bounds;13

return A14

Upper Bound Refining. After anchoring a vertex in each iteration, we can retain and

update some computed upper bounds based on our tree node classified adjacency. Firstly,

for each id ∈ rn(u) of a non-anchor vertex u, UBix(x) or UB>
id(u) stays the same, so

does not need to be recomputed. Secondly, if F [u][id] has been computed and is not

erased in Algorithm 3, it can replace UBix(x) or UB>
id(u) so that a more accurate bound

is found.

Combining the Techniques. Algorithm 6 shows the detail of our final greedy algorithm

which combines all the proposed techniques. We firstly apply Algorithm 14 (Line 1) to

get the initial coreness of each vertex of the given graph G. Then, we apply Algorithm 2
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(Line 2) to build the core component tree for the first time, followed by the computing

of our upper bound of follower numbers (Line 3), which will be updated after anchoring

every vertex (Line 12-13). Then, the greedy heuristic starts (Line 4). In each iteration,

we use a to record the best anchor vertex found so far, and use λ to record the number

of followers of the best anchor (Line 5). We sequentially compute the followers for the

vertices in decreasing order of their upper bounds (Line 6). Only if the upper bound of

a vertex u is larger than λ and u is not an existing anchor (Line 7), we will continue

the follower computation for u (Line 8-10). Note that we will not compute the follower

number for u in the tree nodes where the numbers of followers do not change from last

iteration and can be reused. After the follower computation of current iteration, the best

anchor a is added to the set A, and the degree of a is set to be positive infinity. After b

iterations, Algorithm 6 returns the set A of b anchor vertices (Line 14).

3.5 Distributed Greedy Algorithm

We introduce a distributed greedy anchored coreness algorithm, DGAC, in which a master

machine is responsible for resource scheduling and multiple slave machines are respon-

sible for specific computing tasks. DGAC can further parallelize the computation via the

multithreads of each machine.

3.5.1 Shell Component Partition

In this subsection, we introduce the graph partition algorithm and its maintenance algo-

rithm after each iteration of the greedy strategy. We firstly define k-shell component,

followed by the definitions regarding shell component partition which can divide the

data graph into fine-grained units, thus helps balance the computation among all the

machines in distributed setting. Example 4.3.1 and Example 3.5.2 are the instances to
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illustrate k-shell component and shell component partition, respectively. Based on these,

we introduce Algorithm 7 (graph partition algorithm) and Algorithm 9 (partition main-

tenance algorithm), then prove their correctness.

5-clique

𝑢𝑢1
𝑢𝑢2

𝑢𝑢3
𝑢𝑢4

𝑢𝑢7
𝑢𝑢6

𝑢𝑢5

𝑢𝑢8

𝑢𝑢9

Figure 3.6: k-shell component

Definition 3.5.1 k-shell component. Given a graph G and the k-shell Hk(G), a sub-

graph Si
k is the i-th k-shell component of Hk(G), if Si

k is a maximal induced connected

component of Hk(G).

Example 3.5.1 In Figure 3.6, we have H1(G) = {u1}, H2(G) = {u2, u3, u4} and

H3(G) = {u5, u6, u7, u8, u9}. Within H1(G), S1
1 is the only k-shell component with

V (S1
1) = {u1}. Within H2(G), S1

2 is the only k-shell component with V (S1
2) =

{u2, u3, u4}. But within H3(G), we have two k-shell components S1
3 and S2

3 , in which

V (S1
3) = {u8, u9} and V (S2

3) = {u5, u6, u7}.

Shell Component Partition (SC, SF,SP). We use SC to denote a shell component

partition affiliated to one k-shell component Si
k, then SC has the following domains:

(1) SC.V , having u ∈ SC.V iff. u ∈ V (Si
k);

(2) SC.V −, having u ∈ SC.V − iff. c(u,G) < k and ∃(u, v) ∈ E(G) ∧ v ∈ SC.V ;



3.5.1 Shell Component Partition 53

Table 3.4: Summary of Notations for SP , SC

Notation Definition
SC a shell component partition affiliated to Si

k

SC.V the set of vertices with coreness equal to k of Si
k

SC.V − the set of vertices with coreness less than k of Si
k

SC.E the set of edges in SC

SC.h[u] number of u’s neighbors having higher coreness
SC.C the anchor candidates set in SC

SF [u][SC] the follower set of u in SC

SP[u] the set of shell component partitions containing u

(3) SC.E, having (u, v) ∈ SC.E iff. u ∈ SC.V ∧ v ∈ SC.V ∪ SC.V − ∧ (u, v) ∈

E(G);

(4) SC.h, having for each u ∈ SC.V , SC.h[u] = |{v | (u, v) ∈ E(G) ∧ c(v,G) >

c(u,G)}|;

(5) SC.C, the candidate anchor set in SC, which will be explained in Section 3.5.3

in detail.

(6) SP [u], the set of all the shell component partitions having u, i.e., SP [u] =

{SC | u ∈ SC.V ∪ SC.V −}.

(7) We use SF [u][SC] to denote the follower set of u in SC, i.e, SF [u][SC] =

{v | v ∈ F(u) ∧ v ∈ SC.V }.

All of the notations are summarized in Table 3.4.

Example 3.5.2 In Figure 3.7, we have 5 shell component partitions SC1, SC2, SC3,

SC4 and SC5, which are affiliated to 5 k-shell components S1
1 , S1

2 , S1
3 , S2

3 and S1
4 from

the example in Figure 3.6. For instance, SC4 is affiliated to S2
3 . V (S2

3) = {u5, u6, u7}

and E(S2
3) = {(u5, u6), (u6, u7)}. SC4.V = {u5, u6, u7}, SC4.V

− = {u1, u2} and

SC4.E = {(u1, u6), (u2, u7), (u5, u6), (u6, u7)}. For the edges between SC4.V and the

5-clique, we do not store those specific edges in SC4, but only record SC4.h[u5] = 3,

SC4.h[u6] = 1 and SC4.h[u7] = 3.
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Table 3.5: Other Notations for DGAC
Notation Definition
Si
k the i-th k-shell component

Vx (
⋃

SC∈SP[x] SC.V ) \ {x}
Gx the graph G with x anchored
GSC the subgraph formed by SC.V , SC.V −, SC.E
N≤(u, SC);
N>(u, SC)

set of such u’s neighbor v in SC with P[v].k = P[u].k ∧ P[v].i ≤
P[u].i or P[v].k < P[u].k (resp. P[v].k = P[u].k ∧ P[v].i >
P[u].i or P[v].k > P[u].k)

d+P (u, SC) the degree bound of u in partition SC

USC(u) the upper bound of u’s followers in SC

NS the number of slave machines
NT the number of threads within each slave machine
Master refer to the master machine
Slavei refer to the i-th slave machine
LB(u) Equation 3.4
LB Equation 3.5

Algorithm 7 partitions the datagraph G based on shell component partitions. Firstly,

we need to conduct core decomposition (Line 1) on G so that we can get the coreness

of each vertex. We traverse all the vertices with ascending order of coreness (Line 2).

Each vertex is marked unassigned to shell component partition as default. Each time

meeting an unassigned vertex u in Algorithm 7 (Line 3), we create a new SC for u, set

the related domains of SC and set u as assigned (Line 4-7). Then we call Algorithm 16

(details following) to recursively collect all the vertices which are supposed to be in SC

(Line 8), followed by adding SC to SP [u]. When all the vertices are set assigned (in

Algorithm 7 or Algorithm 16), we get the complete SP .

In Algorithm 16, for the vertex u, its neighbors N(u,G) are classified into 3 cate-

gories. Line 2-5 include such v ∈ N(u,G) with c(v) < c(u) to SC. Line 14-15 add such

v ∈ N(u,G) with c(v) > c(u) to SC.h[u]. For such v ∈ N(u,G) with c(v) = c(u),

apart from including v to SC, we also need to recursively call Algorithm 16 for v, be-

cause v ∈ SC.V . (Line 6-13)

After choosing an anchor vertex in each iteration, we use Algorithm 9 to maintain the
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Figure 3.7: Shell Component Partition

partition for the next iteration. We prove the maintenance by Algorithm 9 is correct. We

firstly set all the vertices as unassigned (Line 1-2). For the anchoring of x, we define

Vx = (
⋃

SC∈SP[x] SC.V ) \ {x}. Then, in the post-anchor graph Gx with anchoring x,

after updating the coreness of the anchor vertex and its followers (Line 3-5), any k-shell

component Si
k having ∃v ∈ Vx s.t. v ∈ V (Si

k) and its affiliated shell component partition

are updated by Line 6-13. The following lemmas and theorems prove the other shell

component partitions remain the same.

Lemma 3.5.1 For each non-anchor vertex u ∈ V (G) \ A, there is only one shell com-

ponent partition SC having u ∈ SC.V .

Proof 3.5.1 We prove it by contradiction. Assume u ∈ SC.V and u ∈ SC ′.V . Then

the Si
k that SC is affiliated to and the Si′

k′ that SC ′ is affiliated to satisfy 1) k = k′ =
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Algorithm 7: ShellPartition(G)
Input : G : the graph

Output : SP : the shell component partition of G

CoreDecomp(G, ∅);1

for each u ∈ V (G) in ascending c(u) order do2

if u is unassigned then3

SC ← an empty shell component partition;4

SC.V := SC.V ∪ {u};5

SC.h[u] := 0;6

u is set assigned;7

ShellConnect(u, G, SC);8

SP[u] := SP[u] ∪ {SC};9

return SP10

c(u); and 2) V (Si
k) and V (Si′

k′) belong to one connected component since they are both

connected to u. Thus, SC and SC ′ would be one shell component partition, which

contradicts our assumption. Proof completes.

For each u ∈ SC.V , we define deg(u, SC) as the degree of u in shell component

partition SC. deg(u, SC) = |{v | (u, v) ∈ SC.E}| + SC.h[u]. With this definition, we

can get the coreness for u ∈ SC.V , denoted by c(u, SC).

Lemma 3.5.2 For a shell component partition SC and a vertex u ∈ SC.V , the coreness

of u in SC is the same as the coreness of u in G, i.e., c(u, SC) = c(u,G).

Proof 3.5.2 Let O denote a vertex deletion order of core decomposition on G. And

O deletes all the vertices which can be deleted before each vertex in SC.V . After the

deletion, for each u ∈ SC.V , we denote the degree of u in G as deg(u,O). When

doing core decomposition on the subgraph formed by SC.V −, SC.V and SC.E, we
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Algorithm 8: ShellConnect(u, G, SC)
Input : u : a vertex, G : the graph, SC : the shell component partition containing u

for each v ∈ N(u,G) do1

if c(v) < c(u) then2

SC.E := SC.E ∪ {(u, v)};3

SC.V − := SC.V − ∪ {v};4

SP[v] := SP[v] ∪ {SC};5

else if c(v) = c(u) then6

SC.E := SC.E ∪ {(u, v)};7

if v is unassigned then8

SC.V := SC.V ∪ {v};9

SC.h[v] := 0;10

v is set assigned;11

ShellConnect(v, G, SC);12

SP[v] := SP[v] ∪ {SC};13

else if c(v) > c(u) then14

SC.h[u]++;15

else16

can delete all the vertices in SC.V − before SC.V , because their degrees are all 1, and

the remaining subgraph is denoted by SC ′. Then for each u ∈ SC.V , deg(u, SC ′) =

deg(u,O). Now we can follow the same order to delete the vertices in SC.V as they

follow in O. Thus, c(u, SC) = c(u,G) for each u ∈ SC.V .

Theorem 3.5.1 If a vertex x is anchored in the graph G, we have F(x) ⊂ Vx.

Proof 3.5.3 Consider a non-anchor vertex u /∈ Vx. According to Lemma 3.5.1, there

exists one SC, in which u ∈ SC.V , and x /∈ SC.V ∪SC.V −. According to Lemma 3.5.2,
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c(u,G) = c(u, SC). Because x /∈ SC.V ∪ SC.V −, when x is anchored, c(u, SC)

remains the same, so u /∈ F(x). Thus, F(x) ⊂ Vx.

Theorem 3.5.2 For a shell component partition SC in G, if for each u ∈ SC.V , there

does not exist a v ∈ Vx and a Si
k in Gx such that v ∈ V (Si

k) ∧ u ∈ V (Si
k), SC remains

the same in Gx.

Proof 3.5.4 We prove it by contradiction. If SC is different in Gx, it can either be 1)

SC.V − is different, 2) SC.V is different, 3) SC.E is different, or 4) SC.h is different.

For 1), let us assume SC.V − is different (SC becomes SC ′ in Gx). Si
k is the k-shell

component that SC ′ is affiliated to in Gx. This means ∃u ∈ SC.V − s.t. c(u,Gx) >

c(u,G) ∧ c(u,Gx) ≥ k. Because c(u,G) < k and u can increase its coreness at most

1 based on theorem 3.4.1, we have c(u,Gx) = k, which means u ∈ Vx ∧ u ∈ V (Si
k).

This contradicts the condition of the theorem.

For 2), let us assume SC.V is different. This means ∃u ∈ SC.V s.t. c(u,Gx) >

c(u,G). Based on Theorem 3.5.1, u ∈ Vx, so for each v ∈ SC.V , v ∈ Vx. This

contradicts the condition of the theorem.

For 3), when both SC.V − and SC.V remain the same in Gx, SC.E must be the

same.

For 4), let us assume SC.h is different. Then we have SC ′ in Gx where SC ′.V − =

SC.V −, SC ′.V = SC.V and SC ′.E = SC.E, but ∃u ∈ SC ′.V s.t. SC ′.h[u] >

SC.h[u] (none vertex’s coreness would decrease so SC ′.h[u] cannot be less). Because

N(u,G) are from SC.V −, SC.V or the neigbour vertices counted in SC.h[u], there

must be v ∈ N(u,G) ∩ (SC.V − ∪ SC.V ) increasing its coreness. This contradicts our

assumption.

We have proved all the shell component partitions are correctly updated by Algo-

rithm 9, now we clarify that, for each non-anchor vertex u, the set of shell component
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partitions containing u, SP [u], is updated correctly in Algorithm 9. Line 6-13 ensure all

the new created shell component partitions have been inserted into SP . Theorem 3.5.2

proves part of the shell component partitions remain the same, and Line 14-17 collects

all other expired shell component partitions. Then Line 18-19 erase them from SP .

Partition Complexity. The space complexity of our partition isO(2 ·m+n). The extra

storage O(n) is from SC.h where we do not need to store the specific edges but only

record a number SC.h[u] for each u. For time complexity, Algorithm 7, Algorithm 16

and Algorithm 9 are allO(m), because Algorithm 7 and Algorithm 9 are both dominated

by the subcall of Algorithm 16, and in Algorithm 16, each neighbor v ∈ N(u,G) of each

vertex u is accessed once.
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Algorithm 9: MaintainSP(x, G)
Input : x : the anchor vertex, G : the graph

for each u ∈ V (G) do1

u is set as unassigned;2

c(x) := +∞;3

for each u ∈ F [x] do4

c(u)++;5

for each SC ∈ SP[x] do6

for each unassigned u ∈ SC.V with u ̸= x do7

SC ′ ← an empty shell component partition;8

SC ′.V := SC ′.V ∪ {u};9

SC ′.h[u] := 0;10

u is set assigned;11

ShellConnect(u, G, SC ′);12

SP[u] := SP[u] ∪ {SC ′};13

D is the set of expired SC;14

for each assigned node u and each SC ∈ SP[u] do15

if u ∈ SC.V and SC is not new added then16

D := D ∪ {SC};17

for each SC ∈ D and each u ∈ SC.V − ∪ SC.V do18

SP[u] := SP[u] \ {SC};19
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3.5.2 Independency and Reuse

In this subsection, we introduce how each parallel unit (a slave machine, a thread of a

machine) can independently and concurrently compute the followers in each shell com-

ponent partition and how our partition strategy makes part of the computed followers

reusable in the next iteration.

Theorem 3.5.3 For each vertex u ∈ V (G), |F(u,G)| =
∑

SC∈SP[u] |SF [u][SC]|.

Proof 3.5.5 Based on Theorem 3.5.1, for each SC /∈ SP [u], SC does not have any

follower of u. Based on Lemma 3.5.1, for each SC and SC ′ with SC ∈ SP [u] ∧ SC ′ ∈

SP [u], SF [u][SC] and SF [u][SC ′] do not have any overlap. Based on Lemma 3.5.2,

SF [u][SC] can be correctly computed within each SC ∈ SP [u]. Therefore, |F(u,G)| =∑
SC∈SP[u] |SF [u][SC]|.

By Theorem 3.5.3, we know that each SF [u][SC] can be computed independently

and concurrently. In our parallel algorithm, we distribute each shell component partition

SC to one or more machines, and use SC.C to distribute the anchor candidates, so

that for each u ∈ V (G) and each SC ∈ SP [u], SF [u][SC] can be computed in the

only machine having u ∈ SC.C. The specific distributing strategy will be explained

in Section 3.5.3. Algorithm 10 presents how one machine computes the followers of

one shell component partition SC. As each single machine has multiple threads, we

can parallelly compute SF [u][SC] for each u ∈ SC.C (Line 2). The candidates in

SC.C are randomly and evenly allocated to each thread of a machine. For the subgraph

formed by SC.V −, SC.V and SC.E, denoted by GSC , we can get the shell-layer pair

(Section 3.4.4) of each u ∈ SC.V − ∪ SC.V . Then we have N≤(u, SC) to denote the

neighbors in N(u,GSC) where each neighbor v has P [v].k = P [u].k ∧ P [v].i ≤ P [u].i

or P [v].k < P [u].k. And we have N>(u, SC) to denote the neighbors in N(u,GSC)

where each neighbor v has P [v].k = P [u].k ∧ P [v].i > P [u].i or P [v].k > P [u].k.
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With N≤(u, SC) and N>(u, SC) of each u ∈ SC.V (Line 1), Line 3-15 can compute

the followers. Similar to the Degree Check in Section 3.4.4, we develop Degree Check

in Partition, and Theorem 3.5.4 ensures the correctness of Algorithm 10. For computing

the followers of each single u ∈ SC.C, the time complexity of Algorithm 10 is the same

as Algorithm 4,O(m). Considering the number of threads NT and the number of anchor

candidates n in the worst case, the time complexity of Algorithm 10 is O(n·m
NT

).

Degree Check in Partition. For a vertex u ∈ SC.V , the partition degree bound of u

in SC is denoted by d+P (u, SC). Specifically, d+P (u, SC) = d+s (u, SC) + d+u (u, SC) +

d>(u, SC), in which d+s (u, SC) (resp. d+u (u, SC)) is the number of survived (resp.

unexplored) neighbors in {x} ∪ (N≤(u, SC) ∩ H) ∪ N>(u, SC), and d>(u, SC) is

equal to SC.h[u]. The following theorem indicates that, for a shell component partition

SC, we can exclude a candidate follower u ∈ SC.V if d+P (u, SC) < c(u,G) + 1.

The discard of a vertex may invoke the discard of other vertices in SC.V . When the

deletion cascade terminates, the tags of all the vertices affected by the discard of u will

be correctly updated.

Theorem 3.5.4 A vertex u ∈ SC.V cannot be a follower if d+P (u, SC) < c(u,G) + 1.

Proof 3.5.6 According to the definitions of partition degree bound and the degree bound

in Section 3.4.4, for a vertex u ∈ SC.V , d+P (u, SC) = d+(u,G). And based on the proof

of Theorem 3.4.5, this theorem also holds.

Followers Reuse. In Algorithm 9, except those new added shell component partitions,

other shell component partitions in SP remain the same. For these unchanged ones,

due to the independency of followers computation across shell component partitions, the

computed followers in last iteration can be reused in the next iteration.
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Algorithm 10: FindFollowers(SC)
Input : SC : the shell component partition

Output : SF [·][SC] : the computed followers in SC

Get N≤(u, SC) and N>(u, SC) for each u ∈ SC.V ;1

for each x ∈ SC.C by parallel multi-threads do2

H := ∅;3

H.push(x);4

while H ̸= ∅ do5

u← H.pop();6

if d+P (u, SC) ≥ c(u,G) + 1 or u = x then7

u is set survived;8

for each v ∈ N>(u, SC) and v /∈ H do9

H.push(v);10

else11

u is set discarded ;12

Shrink(u) (Algorithm 5);13

for each survived vertex v except for x do14

SF [x][SC] := SF [x][SC] ∪ {v};15

return SF [·][SC]16
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3.5.3 Computing Resource Scheduling

In order to evenly utilize our computing resource (multiple machines and multithreads)

and limit the communication cost, we propose a scheduling strategy in this subsection.

Firstly, we propose a reasonable estimation of the computational amount of finding the

followers of a vertex in a shell component partition. We adapt the upper bound of fol-

lowers in Section 3.4.5 to upper bound in partition, then explain that it is a reasonable

estimation of computational amount.

Upper Bound in Partition. For a candidate anchor vertex x ∈ SC.V − ∪ SC.V , the

number of followers of x in SC, SF [x][SC], has an upper bound, denoted by UBSC(x).

We have UBSC(x) =
∑

u∈N>(x,SC)(UBSC(u)+1) if |N>(x, SC)| > 0 and UBSC(x) =

0 if |N>(x, SC)| = 0. We can accumulatively compute the upper bound in partition as

the way of Section 3.4.5. Based on Theorem 3.4.6, it is easy to prove that SF [x][SC] ≤

UBSC(x).

Distributing Strategy. When computing SF [u][SC] of u ∈ SC.C, the computational

amount is dominated by the heap traverse during Line 6-13 of Algorithm 10. And the

number of vertices that can be added into the heap H is correlated to UBSC(u), so we

adopt UBSC(u) as the estimated computational amount of SF [u][SC]. Along with the

followers reuse strategy mentioned in the last section, in each iteration, we only distribute

such computing task of SF [u][SC] which cannot be reused. We firstly get the estimated

average computational amount Cavg = (
∑

u∈V (G)

∑
SC∈SP[u] UBSC(u))/NS , where Ns

is the number of Slave machines. With a sequence S of all the computing tasks, in

which S(i) = SF [ui][SCi], and the computational amount Cj (initialized as 0) of each

machine Slavej , we distribute the tasks as following. Starting from Slave1 and S(1), if

UBSC1(u1) > 0, C1 = C1 + UBSC1(u1), we add u1 to SC1.C and send SC1 to Slave1,

so that S(1) is distributed to Slave1, until the j-th task S(j) is distributed to Slave1

satisfying
∑j

i=1 UBSCi
(ui) ≤ Cavg and

∑j+1
i=1 UBSCi

(ui) > Cavg. Then we can start
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distributing tasks for the next machine. For machine Slavej with j ∈ [1, Ns − 1], we

distribute tasks as the above way, and the last machine SlaveNs have all the remaining

tasks. Note that, it is easy to avoid sending one shell component partition multiple times

to one machine.

Master

Slave1
T1: 𝑆𝑆𝑆𝑆[𝑢𝑢3][𝑆𝑆𝑆𝑆2]
T2: 𝑆𝑆𝑆𝑆[𝑢𝑢4][𝑆𝑆𝑆𝑆2]
T3: 𝑆𝑆𝑆𝑆[𝑢𝑢8][𝑆𝑆𝑆𝑆3]
T4: 𝑆𝑆𝑆𝑆[𝑢𝑢2][𝑆𝑆𝑆𝑆3]

Slave2
T1: 𝑆𝑆𝑆𝑆[𝑢𝑢3][𝑆𝑆𝑆𝑆3]
T2: 𝑆𝑆𝑆𝑆[𝑢𝑢4][𝑆𝑆𝑆𝑆3]
T3: 𝑆𝑆𝑆𝑆[𝑢𝑢2][𝑆𝑆𝑆𝑆4]
T4: 𝑆𝑆𝑆𝑆[𝑢𝑢6][𝑆𝑆𝑆𝑆4]

Slave3
T1: 𝑆𝑆𝑆𝑆[𝑢𝑢1][𝑆𝑆𝑆𝑆4]
T2: 𝑆𝑆𝑆𝑆[𝑢𝑢6][𝑆𝑆𝑆𝑆5]
T3: 𝑆𝑆𝑆𝑆[𝑢𝑢8][𝑆𝑆𝑆𝑆5]

Slave4
T1: 𝑆𝑆𝑆𝑆[𝑢𝑢5][𝑆𝑆𝑆𝑆5]
T2: 𝑆𝑆𝑆𝑆[𝑢𝑢7][𝑆𝑆𝑆𝑆5]
T3: 𝑆𝑆𝑆𝑆[𝑢𝑢9][𝑆𝑆𝑆𝑆5]

Master
SF

Figure 3.8: Computing Schedule

Example 3.5.3 Figure 3.8 gives a scheduling example in the 5-machine distributed envi-

ronment and the example is about the graph G in Figure 3.6. Firstly, the Master machine

decomposes G into the five shell component partitions as in Figure 3.7. Then we compute

all the upper bounds in partition. In SC1, UBSC1(u1) = 0. In SC2, UBSC2(u2) = 0,

UBSC2(u3) = 1 and UBSC2(u4) = 2. In SC3, UBSC3(u9) = 0, UBSC3(u8) = 1 and

UBSC3(u2) = UBSC3(u3) = UBSC3(u4) = 2. In SC4, UBSC4(u5) = UBSC4(u7) = 0,

UBSC4(u6) = 2, UBSC4(u2) = 1 and UBSC4(u1) = 3. In SC5, for the vertices in the

5-clique, the upper bounds in partition are 0. UBSC5(u6) = 1, UBSC5(u8) = 2, and

UBSC5(u5) = UBSC5(u7) = UBSC5(u9) = 3. After using our distributing strategy, the

shell component partitions and the corresponding candidate anchors are distributed to
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4 Slave machines. When each machine has 4 threads, it can parallelly compute the fol-

lowers of candidate anchors within one machine. For instance, in Slave1, thread 1 (T1)

computes SF [u3][SC2], thread 2 (T2) computes SF [u4][SC2], thread 3 (T3) computes

SF [u8][SC3] and thread 4 (T4) computes SF [u2][SC3]. Each Slave sends the followers

to the Master, and Master collects them then has the complete SF .

3.5.4 The DGAC Algorithm

In this section, we firstly introduce our lower bound based pruning technique to further

accelerate our algorithm, then we combine all the elements and introduce the distributed

algorithm DGAC. In each iteration of the greedy strategy, the time cost of DGAC is dom-

inated by the parts of Section 3.5.1-3.5.3. Thus, for an anchoring budget b, the time

complexity of DGAC is O( b·n·m
NS ·NT

).

Lower Bound Based Pruning. In each iteration, we compute a lower bound of followers

LB(u) of each non-anchor vertex u ∈ V (G) \ A as Equation 3.4. Note that, for a shell

component partition SC ∈ SP [u], if SF [u][SC] has not been computed in last iteration

or cannot be reused, we let SF [u][SC] = ∅. Then we can compute a lower bound of

followers of this iteration LB as Equation 3.5. Theorem 3.5.5 shows how the lower

bound manages to prune some anchor candidates in each iteration.

LB(u) =
∑

SC∈SP[u]∧SF [u][SC]̸=∅ |SF [u][SC]| (3.4)

LB = max{LB(u) | u ∈ V (G) \ A} (3.5)

Theorem 3.5.5 Given LB in an iteration, for a non-anchor vertex u ∈ V (G) \ A,

UBσ(u) =
∑

SC∈SP[u](UBSC(u)). If UBσ(u) < LB, u is not the best anchor of the

iteration.
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Algorithm 11: PruneCandidates(G)
Input : G : a social network with all the above definitions as global variables

Compute UBSC(·) only for new added SC;1

LB := 0;2

for each u ∈ V (G) \A do3

UBσ(u) := 0; LB(u) := 0;4

for each SC ∈ SP[u] do5

if SF [u][SC] ̸= ∅ then6

UBσ(u) := UBσ(u) + |SF [u][SC]|;7

LB(u) := LB(u) + |SF [u][SC]|;8

else9

UBσ(u) := UBσ(u) + UBSC(u);10

if LB(u) > LB then11

LB := LB(u);12

for each u ∈ V (G) \A do13

if UBσ(u) > LB then14

for each SC ∈ SP[u] with SF [u][SC] = ∅ do15

SC.C := SC.C ∪ {u};16

Proof 3.5.7 According to Equation 3.5, there exists a u′ with LB(u′) = LB. We have

|F(u′)| ≥ LB(u′) from Equation 3.4 and have |F(u)| ≤ UBσ(u) from the definition of

UBσ(u). Given UBσ(u) < LB, we can conclude |F(u)| < |F(u′)|, so that u does not

have the maximum followers and cannot be the best anchor.

Based on the lower bound based pruning, Algorithm 11 is called after Algorithm 7

finishes the graph partitioning or Algorithm 9 maintains the partition, and before the

Master machine distributes specific computing tasks. Firstly, we only compute the upper
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Algorithm 12: DecideAnchor(G)
Input : G : a social network with all the above definitions as global variables

Output : a : the anchor vertex of current iteration

λ := −1; a := null;1

for each u ∈ V (G) \A do2

if ∃SC ∈ SP[u] with SF [u][SC] = ∅ then3

Continue;4

else5

F(u,G) :=
⋃

SC∈SP[u] SF [u][SC];6

if |F(u,G)| > λ then7

a := u; λ := |F(u,G)|;8

return a9

bound in partition of the vertices in the new added shell component partitions (Line 1).

In Line 3-10, we compute the upper bound UBσ(u) of the total number of followers for

each u ∈ V (G) \ A. Note that, for the reusable part of computed followers, we use

them for a tighter bound (Line 7). By only adding the reusable followers for a vertex u,

we can get the lower bound LB(u) (Line 8). The LB (Line 2, Line 11-12) is to record

the maximum LB(u) among u ∈ V (G) \ A. By LB, we can prune such vertex u with

UBσ(u) ≤ LB (Line 13-16). Only such vertex u with UBσ(u) > LB (Line 14) needs to

be added into SC.C for SC ∈ SP [u] where SF [u][SC] has not been computed in last

iteration (Line 15). The Master empties SC.C for each shell component partition SC in

SP before each iteration starts, and only considers the updated SC.C when distributing

the computing tasks.

Algorithm 12 is called after the Master machine collects the computed followers

result. Note that, for a vertex u ∈ V (G) \ A, if ∃SC ∈ SP [u] with SF [u][SC] = ∅

(Line 3), that means u is pruned by Algorithm 11, so does not need to be considered as
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Algorithm 13: DGAC(G, b)
Input : G : a social network, b : number of anchors

Output : A : the set of anchor vertices

SP := ShellPartition(G) [Master calling];1

for iteration from 1 to b do2

PruneCandidates(G) [Master calling];3

Use scheduling strategy (Section 3.5.3) [Master calling];4

for each Slavei with i ∈ [1, Ns] in parallel do5

for each received SCj
i of Slavei do6

SF [·][SCj
i ] := FindFollowers(SCj

i );7

Send SF [·][SCj
i ] to Master;8

Collect all the computed followers [Master calling];9

a := DecideAnchor(G) [Master calling];10

A := A ∪ {a}; deg(a,G) := +∞;11

MaintainSP(a, G) [Master calling];12

return A13

the anchor in the current iteration. We traverse all the non-anchor vertices (Line 2) and

keep updating the best anchor so far (Line 6-8). Finally, we get the best anchor in this

iteration (Line 9).

Combining all the elements, the abstract pseudo code of DGAC is summarized as

Algorithm 13.

DGAC for Single Machine The algorithm DGAC can be adapted to a parallel algorithm

in a single machine with multiple threads. The main changes are explained as follows:

(1) We regard each available thread as one independent slave machine when using

our distributing strategy.

(2) Instead of transferring data among machines, in one machine, we only need to
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assign different shell component partitions to each thread.

(3) Each thread independently calls Algorithm 10 to conduct computation. When

it comes to Line 2, each thread simply serializes the computation of followers for the

anchor candidates in its SC.C.

3.6 Experimental Evaluation

Datasets. We use eight real-life datasets in our experiments. Brightkite,

Gowalla, Youtube and Livejournal are from http://snap.stanford.

edu/. Arxiv, NotreDame, Stanford and DBLP are from http://konect.

uni-koblenz.de/. Due to the Space limitation, we abbreviate the dataset names

as their bold capital first letters when necessary. Table 4.5 shows the statistics of the

datasets, listed in increasing order of edge numbers.

Parameters. All the programs are implemented in C++ and compiled with G++ on

Linux. The experiments are conducted on a cluster with 9 machines having 1Gbps net-

work. They all have 3.4GHz Intel Xeon CPU with 4 cores (8 threads available) and Red-

hat system. We use MPICH [1] to transfer data among the machines and use OpenMP [2]

to utilize the multithreads within one machine.

Algorithms. Towards effectiveness, we mainly compare 6 algorithms with our GAC

algorithm, including 4 heuristics, the exact solution, and the algorithm for anchored k-

core problem. Towards the efficiency of our serial algorithm GAC, we incrementally

equip the baseline with our proposed techniques to evaluate the performance. Towards

the efficiency of our distributed algorithm DGAC, we compare its time cost (1 master +

8 slaves each with 8 threads as default) to GAC, then vary the number of slave machines

and the number of threads to test its scalability. We conducted experiments by varying

the budget b from 1 to 100 where the default value is 100. Table 3.7 lists all the evaluated
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Table 3.6: Statistics of Datasets
Dataset Nodes Edges davg dmax kmax

B. 58,228 194,090 6.7 1098 52
A. 34,546 421,578 24.4 846 30
G. 196,591 456,830 9.2 10721 51
N. 325,729 1,497,134 6.5 3812 155
S. 281,903 2,312,497 16.4 38626 71
Y. 1,134,890 2,987,624 5.3 28754 51
D. 1,566,919 6,461,300 8.3 2023 118
L. 3,997,962 34,681,189 17.4 14815 360

algorithms.

3.6.1 Effectiveness

Comparison with Other Heuristics. In Figure 3.9, we compare the coreness gain from

GAC with other heuristics (Rand, Deg, Deg-C, and SD). The motivation of the basic

methods are as follows. For Deg, a vertex with larger degree means the anchoring of it

can potentially influence more vertices through its large number of neighbour vertices.

For Deg-C, according to Theorem 7, anchoring a vertex u can only increase the coreness

of vertices with coreness higher than c(u). Thus, anchoring a vertex with relatively

higher degree and lower coreness may be more effective. For SD, the successive degree

of a vertex u is defined as deg≻(u) = |{v | v ∈ N(u,G) & P(v) ≻ P(u)}| where

P(u) = (k, i) means u is in the i-th layer of the k-shell. According to Theorem 7, for

a vertex u, only the vertices in N(u,G) that contribute to deg≻(u) is reached by u via

upstair paths. Thus, anchoring a vertex with large successive degree may be effective.

Table 3.7 shows the details.

As shown in Figure 3.9 (a), the performance of Rand is the worst as it chooses

random vertices to anchor. The performance of Deg and Deg-C are better than Rand as

they choose vertices with large degrees to anchor. SD has more coreness gain because the

vertices with higher successive degree have more candidate followers (Theorem 3.4.4).
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Table 3.7: Summary of Algorithms

Algorithm Description
Exact identifies the optimal solution by searching all possible combinations

of b anchors
Rand randomly chooses the b anchors from V (G)

Deg chooses the b anchors from V (G) with the highest degree
Deg-C chooses the b anchors with the highest value of deg(u,G) − c(u) for

each u ∈ V (G)

SD chooses the b anchors with the highest successive degree deg≻(·) for
every u ∈ V (G), where deg≻(u) = |{v | v ∈ N(u,G) & P(v) ≻
P(u)}|

OLAK the state-of-the-art algorithm for anchored k-core problem [102]
GAC Algorithm 6
DGAC Algorithm 13
DGAC(-C) DGAC without the time of data communication between machines.
GAC-U GAC without upper bound pruning (Section 3.4.5)
GAC-U-R GAC-U without result reusing (Algorithm 3)
Baseline GAC-U-R using core decomposition (Algorithm 14) to compute core-

ness gain, without Algorithm 4

Compared with the above heuristics, GAC achieves the much larger coreness gains on all

the datasets. The effect of varying b is shown in Figures 3.9 (c) and (d). The coreness

gain of GAC increases with larger b values and is better than all other four heuristics

under all the settings.

Comparison with Exact Solution. We also compare the result of GAC with the Exact

algorithm, which identifies the optimal b anchors by enumerating all possible combina-

tions of b vertices. Due to the huge time cost of Exact, we extract small datasets by

iteratively extracting a vertex and all its neighbours, until the number of extracted ver-

tices reaches 100. For both Brighkite and Arxiv, we extracted 10 such subgraphs

and report the average coreness gain of them. The runtimes are also reported. Figure 3.10

shows that the coreness gain of GAC is always at least 70% of Exact, and GAC is faster

than Exact by up to 5 orders of magnitude. Note that the coreness gain percentage of

GAC over Exact may increase with larger b values, e.g., from b = 4 to b = 5.

Characteristics of Anchor Set. Table 3.8 shows the average degree of anchors (Deganc)
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Figure 3.9: Coreness Gain from Different Heuristics

from GAC is much larger than the average degree of all the vertices in the graph (Degavg).

Then, we investigate the average ranking of an anchor in all the vertices regarding degree,

coreness, and successive degree, denoted by pDeg, pCN , and pSD, respectively. Accord-

ing to Theorem 3.4.4, a vertex with larger successive degree has more potential followers.

For each anchor x ∈ A, we get its ranking in all the vertices, denoted by Ox
Deg, Ox

CN

and Ox
SD, in ascending order of degree, coreness and successive degree, respectively.

Then pDeg =
∑

x∈A Ox
Deg

|A||V (G)| , pCN =
∑

x∈A Ox
CN

|A||V (G)| and pSD =
∑

x∈A Ox
SD

|A||V (G)| . Table 3.8 shows the

rankings of anchors are higher than around 80% of the vertices in the graph, i.e., the

anchors tend to be high-degree vertices while not the top vertices with extremely large

degrees. Besides, for the anchors, we find that PSD is slightly higher than PDeg and PCN

on 7 of the 8 datasets. However, the backward reasoning is not effective, i.e., the vertices
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Figure 3.10: GAC v.s. Exact

Dataset Degavg Deganc pDeg pCN pSD
Brightkite 7.35 37.76 0.884 0.891 0.893
Arxiv 24.37 29.71 0.670 0.663 0.678
Gowalla 9.67 43.86 0.904 0.919 0.919
NotreDame 6.69 11.28 0.808 0.828 0.846
Stanford 14.14 56.09 0.745 0.763 0.788
YouTube 5.27 81.85 0.985 0.982 0.982
DBLP 8.08 27.85 0.905 0.896 0.911
LiveJournal 17.35 145.74 0.935 0.940 0.943

Table 3.8: Characteristics of Anchor Set

with large successive degree are not effective anchors, as shown by SD in Figure 3.9.

Moreover, Figure 3.11 shows the distribution of 100 anchors (from GAC) on coreness is

relatively uniform, i.e., the coreness values of the anchors can be either small, moderate,

or large.

Analysis of Top-b Solutions In one iteration of the GAC algorithm, when there are more

than one best anchor, all of which have the same largest coreness gain, we break the

ties by the follower upper bound of the candidate anchors (Section 3.4.5). For clearness,

we denote GAC by GAC-UB. Besides, we may use other criteria to break the ties in the

greedy algorithm: choosing the vertex with the largest degree (denoted by GAC-DG), or

randomly choosing a vertex (denoted by GAC-RD). As shown in Table 3.9, the coreness

gains of different solutions (anchor sets) are very similar, where the values are denoted
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Figure 3.11: Distribution of Anchors on Coreness

Dataset GainUB GainDG GainRD JUB
DG JUB

RD

B. 2357 2598 2488 0.538 0.538
A. 5426 5391 5503 0.739 0.681
G. 4260 4259 4258 0.754 0.887
N. 2798 2803 2803 0.653 0.681
S. 7748 7695 7727 0.695 0.739
Y. 4571 4525 3782 0.361 0.370
D. 4159 4166 4396 0.802 0.695
L. 27067 27113 27072 0.869 0.887

Table 3.9: Statistics of Top-b Solutions

by GainUB, GainDG and GainRD accordingly, and the largest value for each dataset is

marked in bold. Moreover, as shown in Table 3.9, there are many common anchors in

different solutions, as the similarities (Jaccard Index) of the solutions are mostly over

0.5, where JUB
DG = |AUB∩ADG|

|AUB∪ADG| and JUB
RD = |AUB∩ARD|

|AUB∪ARD| . In terms of running time, the three

strategies are almost the same, because the time cost to break the ties is dominated by

other parts of the greedy algorithm.

Dataset B. A. G. N. S. Y. D. L.
avgOLAK 41% 34% 38% 4% 25% 36% 12% 21%
maxOLAK 61% 60% 66% 54% 70% 77% 46% 59%

Table 3.10: Coreness Gain, OLAK v.s. GAC
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Figure 3.13: Time Cost, OLAK, GAC & DGAC

Correlation with #Checkin We generate 19 different networks from Gowalla based on

the user check-ins, where the i-th network is the induced subgraph by the users with

at least 1 check-in during the (i + 1)-th month, except for the first and the last months

where the data is incomplete. We consider the number of user check-ins because a user

with more friends may be more active in Gowalla network.

For each network, we divide the sum of #checkins, the sum of coreness, and the

size of k-core, by the number of users, respectively. As shown in Figure 3.6.1, the
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Figure 3.14: Coreness Gain on Different Inputs of k

Dataset B. A. G. N. S. Y. D. L.
avgJaccard 0.021 0.006 0.004 0.002 0.019 0.005 0.001 0.004
maxJaccard 0.058 0.02 0.02 0.053 0.064 0.02 0.02 0.031

Table 3.11: Overlap of Followers Set, OLAK v.s. GAC

pattern of size proportions of k-cores are more fluctuated compared to the pattern of

average #checkins and average coreness, especially for large k values. However, if we

choose a small k for OLAK, it generally has small coreness gain as shown in Figure 3.14.

The pattern of average coreness over the first 7 months in Figure 3.6.1 is not similar to

average #checkins, which may due to the extremely few numbers of users (less than

100) for these months. Overall, using coreness values to reinforce a social network

(anchored coreness) is more reasonable than using the size of k-core (anchored k-core).

Comparison with OLAK. For each dataset, we run OLAK with every possible input of

k and record every time cost. In Figure 3.13, we use OLAK(avg) to denote the average

time of all the inputs k for each dataset, and use OLAK(all) to denote the total time of

all the inputs k. We compare OLAK(avg) and OLAK(all) with GAC and DGAC. Note

that, the anchor budget b = 100 for all the above algorithms. In Figure 3.13, we can see

OLAK(avg) is always the fastest, this is because for one single input k, the number of

anchor candidates is O(kmax) less than that of GAC. Even further, for each anchor can-
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Figure 3.15: Distribution of Followers on Coreness

didate, the search space of followers in OLAK is also O(kmax) less than that of GAC.

Therefore, GAC is theoretically O(k2
max) (resp. O(kmax)) slower than OLAK(avg)

(resp. OLAK(all)). Considering the value of kmax of each dataset in Table 4.5, our

algorithm GAC (resp. DGAC) runs efficiently, faster than OLAK(all) and around two

orders of magnitude (resp. one order of magnitude) slower than OLAK(avg).

Table 3.10 is added to show that the largest coreness gain (denoted by maxOLAK)

that OLAK can achieve only reaches 46%-77% of the coreness gain by GAC, on all the

datasets. For the anchor set Ak computed by OLAK with each possible input k, we com-

pute the total sum of coreness gain from all the vertices and all the coreness value with

the anchoring of Ak. Then, we can compute the largest and average coreness gain (de-

noted by maxOLAK and avgOLAK) for different k values on each dataset. Table 3.10 also

shows that avgOLAK is only 4%-41% of the coreness gain of GAC. Besides, Figure 3.14

shows the best k for OLAK is rather different for different datasets. There is no uniform

preference on large, moderate, or small k values for different datasets.

Figure 3.11 shows the distribution of 100 anchors from GAC and OLAK on coreness

value. Figure 3.15 shows the distribution of followers from GAC and OLAK on coreness
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(a) GAC (b) OLAK, k = 10

(c) OLAK, k = 20 (d) OLAK, k = 30

Figure 3.16: Case Study on DBLP, b = 5

value. For each coreness value xi on the horizontal ordinate of Figure 3.11 (resp. Fig-

ure 3.15), its value on the vertical ordinate is the number of anchors (resp. followers)

with original coreness value within (xi−1, xi]. We can see that the distribution of anchors

from GAC is relatively uniform, compared with the anchors from OLAK, where OLAK9

denotes the anchors from OLAK with k = 9. Given an input k, the coreness values of

the 100 anchors from OLAK can only be less than k (mostly have the coreness of k− 1),

which is consistent with the theory in [102]. Besides, Figure 3.15 shows the distribu-

tion of followers, which has the similar result as the distribution of anchors. We then

explore the overlap of anchoring results of GAC and OLAK by computing the Jaccard

Index between their anchor sets, which is shown in Table 3.11. Specifically, for each
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Figure 3.17: Variations of OLAK v.s. GAC & DGAC

dataset, GAC has the only anchor set AGAC . For each k value input to OLAK, we have

the anchor set Ak
OLAK , so we can compute the Jaccard Index Jk =

|AGAC∩Ak
OLAK |

|AGAC∪Ak
OLAK | . Then,

we compute avgJaccard (resp. maxJaccard) which is the average (resp. maximum) value

of Jk of all the inputs k. From Table 3.11, we can find the avgJaccard and maxJaccard of

all the datasets are quite small, which means the anchor set of OLAK and GAC have little

overlap.

Finally, we present a case study on DBLP dataset which is shown in Figure 3.16. We

choose the anchor budget b = 5 for GAC and OLAK (with inputs k = 10, 20, 30). As

the number of vertices and edges are huge for DBLP, we only visualise the anchors and

followers and the edges induced by them. Note that, the followers of OLAK are the ones

improving their coreness from any original coreness value. All the vertices are drawn

within a number of concentric circles. The followers are drawn by grey-color nodes, and

the ones having the same coreness value before the anchoring are put in the same circle.
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The anchors are drawn by bold black-color nodes. Note that, when we input k = 30 for

OLAK, the 5-th anchor has no follower, so there are 4 anchors in Figure 3.16 (d). We

can find the followers of GAC are much more than OLAK no matter which inputs. Also,

there are 16, 6, 4 and 2 circles in (a), (b), (c) and (d) respectively in Figure 3.16, which

means the followers of GAC are more diverse and this is consistent with the result of

Figure 3.15.

Comparison with Variations of OLAK. We reasonably adjust OLAK aiming to globally

reinforce social networks, i.e., to maximize the coreness gain from all the vertices but

not limited to the vertices in (k-1)-shell as in the original OLAK with a fixed input k. We

develop two variation algorithms OLAK-v1 and OLAK-v2. For both of them, on each

dataset, we firstly input every possible k value to the original OLAK with b = 100, to

get the anchor set Ak for each k ∈ [2, kmax]. The union of all such Ak is the candidate

anchors pool Ap of OLAK-v1 and OLAK-v2. Then OLAK-v1 works as follows: 1)

Compute the coreness gain g(u) for each u ∈ Ap; 2) In each of the 100 iterations, we

choose a non-anchor vertex in Ap that has the largest coreness gain on G as the new

anchor. OLAK-v2 works as follows: In each of the 100 iterations, we choose a random

k ∈ [2, kmax] in Ak, and we update the coreness gain of each non-anchor vertex (using

the reuse mechanism of GAC). Then we choose the vertex with the largest coreness

gain on current graph (with existing anchors) as the new anchor. Figure 3.17 (a) shows

the coreness gain of OLAK-v1 and OLAK-v2 comparing with GAC. We find that, the

coreness gain of GAC is always larger than OLAK-v1 and OLAK-v2. In larger datasets,

the coreness gain gap is even larger. Figure 3.17 (b) shows the time cost of OLAK-v1

and OLAK-v2 comparing with GAC and DGAC, we find either OLAK-v1 or OLAK-v2

is always slower than both GAC and DGAC.
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Figure 3.18: Time Cost of Different Algorithms

3.6.2 Efficiency of GAC

Overall Performance. Figure 3.18(a) shows the total running time of GAC, GAC-U and

GAC-U-R on all the 8 datasets when b = 100. GAC-U-R does not return on Youtube

and Livejournal after 10 days and thus the runtime is not reported. With our reusing

mechanism (Algorithm 3), GAC-U is faster than GAC-U-R by 1 order of magnitude on

average. Further benefitting from the upper bound based pruning (Section 3.4.5), the

runtime of GAC is usually faster than GAC-U by more than 3 times. The details are as

follows.

Efficient Followers Computing. Equipped with Algorithm 4, the efficient followers

computing of the anchors, GAC-U-R is faster than Baseline by at least 1 order of
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Figure 3.19: Visited Amount

magnitude on Brightkite, as shown in Figure 3.18(c). As it is very time-consuming

to compute the coreness gain of candidate anchors using core decomposition, we can

only report the runtime of Baseline on Brightkite.

Intermediate Result Reusing. By applying the core component tree (Section 3.4.1) and

the result-reusing mechanism (Algorithm 3), GAC-U always outperforms GAC-U-R on

runtime by at least 1 order of magnitude, as shown in Figure 3.18. Note that GAC-U-R

can only find 10 anchors on Livejournal within the time limit. The scalability of

GAC-U is also better than GAC-U-R in the experiments. The outperformance is because

we can prune the search space by reusing the intermediate results associated with the

tree nodes, when they keep the same for one anchoring. In Figure 3.19(a), the number

of visited tree nodes of GAC-U is around 10% of GAC-U-R.

Candidate Anchors Pruning. In Figure 3.18, we can see our final algorithm GAC

achieves further speedup based on GAC-U when the upper bound pruning is equipped
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Figure 3.21: Time Cost varing b, GAC v.s. DGAC

(Section 3.4.5). The processing time of GAC is only 20% − 30% of GAC-U because

GAC reduces the search space by pruning the vertices with insufficient upper bounds of

coreness gains. In Figure 3.19(a)-(b), the number of visited tree nodes and the number

of visited vertices in GAC are much less than that in GAC-U.

3.6.3 Efficiency of DGAC

We compare the efficiency of DGAC to GAC on all the 8 datasets. In this section, DGAC

is conducted on 9 machines (1 master + 8 slaves). As our cluster only has 1Gbps net-

work, the data communications between the master machine and slave machines occupy

a large proportion of running time. In Figure 3.20, we use DGAC(-C) to denote the
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Figure 3.23: Time Cost of DGAC (skipping individual components)

total running time minus communication time of DGAC, to also show the ideal algo-

rithm execution time. We can see that, with 8 slave machines having 8 available threads

each, DGAC is faster than GAC on all the datasets. On larger datasets such as DBLP and

Livejournal, the gap of time cost is more significant, i.e., DGAC is nearly one order

of magnitude faster than GAC. For smaller datasets such as Brightkite and Arxiv,

we find the data communication time takes more than half of the running time of DGAC,

in which the time of DGAC(-C) reflects the successful parallelization of DGAC. Fig-

ure 3.21(a)-(b) show the details of running time of GAC and DGAC with b from 1 to 100.

We can see that, the running time ratio of GAC and DGAC keeps stable with different b

values, which means DGAC keeps having the advantage of parallelization with different

input of anchor budget b.
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We find that, the time cost gaps of GAC and DGAC are different on different datasets.

In our resource scheduling strategy, an estimation of computation cost of anchoring a

vertex is used to assign the vertices for computation to each slave machine. The accuracy

of cost estimation is different on different datasets, while our proposed upper bound

for estimation is much more effective than other methods, e.g., degree, coreness and

partition size, in our preliminary experiments. As different anchor candidates of one

shell component partition can be assigned to different slave machines, the partition is

relevant to both the cost estimation and the data communication cost, while it is not the

deterministic factor. The time cost from each machine is more relevant to the assigned

vertex set for computation.

Validation of Individual techniques of DGAC. We validate three techniques of DGAC

individually which are reuse mechanism (Section 3.5.2), computing resource scheduling

(Section 3.5.3) and lower bound based pruning (Section 3.5.4). Running DGAC without

equipping the reuse mechanism is cost-prohibitive especially for large b. To show the

effectiveness of the reuse mechanism, we report the time cost of the 1st iteration and

the average time cost of 2-99 iterations in the greedy algorithm. The results are shown

in Figure 22. We can find the time cost of the first iteration is around one order of

magnitude more than the average time cost of 2-99 iterations. This is because DGAC

does not have any computed followers result to reuse at the first iteration, and our reuse

mechanism can decide a large part of computed followers to reuse in later iterations.

DGAC skipping the lower bound pruning is denoted by Skip-LB in Figure 23. And we

run DGAC using a random resource scheduling strategy (each shell component partition

is randomly sent to a slave machine which computes the followers of all the candidate

vertices in this partition), which is shown by Rand-Sch in Figure 23. We can find that,

DGAC is always the fastest. Skip-LB or Rand-Sch has close performance to DGAC in

some cases, while it fails on other cases. Thus, both our computing resource scheduling
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Figure 3.24: Time Cost, Varying the Number of Machines (8 threads)

strategy and lower bound pruning are effective for accelerating DGAC.

3.6.4 Scalability of DGAC

Varying the Number of Machines. We show the scalability of DGAC, varying the num-

ber of slave machines. In Figure 3.24, we use comm to separately show the time of

data communication with different number of slave machines. The time cost of DGAC is

roughly inversely proportional to the number of slaves machines (2, 4, 6 and 8) on most

of datasets. This is because we use the upper bound of followers (Section 3.5.3) as the

estimation of computational amount of finding followers. The time cost of data com-

munication (comm in Figure 3.24(a) - (b)) slightly increases with the number of slave

machines increasing. This is because the total data amount that needs to be transferred

is close with different number of machines, but more machines involved cause a slightly

more cost of data dividing and scheduling.

Varying the Number of Threads. We also vary the number of threads within one single

machine and test the cost of our algorithm in Figure 3.25. As Section 3.5.4 illustrates,

our DGAC algorithm is easily adpated to a parallel algorithm on one machine with mul-

tithreads, in which we simply treat each thread as one slave machine having only one
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Figure 3.25: Time Cost, Varying the Number of Threads (1 machine)

thread in DGAC to share the followers computing tasks. DGAC1
1, DGAC

2
1, DGAC

4
1 and

DGAC8
1 are conducted on 1 single machine with 1, 2, 4 and 8 threads respectively. Fig-

ure 3.25 shows the trend of time cost of these 4 algorithms with b from 1 to 100. We find

that, the more threads we use, the less time the algorithm costs. The most significant

time cost gap is between DGAC1
1 and DGAC2

1, and with the number of threads becoming

larger, the time cost gap becomes less. This is because with more threads involved, the

last finished thread becomes the bottleneck of the whole algorithm. We can also find

that the trends of the 4 lines are always similar, even though sometimes they do not grow

smoothly. This is because the effect of our reuse mechanism varies from different chosen

anchors in different iteration, but is regardless of the number of threads.

3.7 Chapter Conclusion

In this chapter, we propose and study the anchored coreness problem aiming to anchor a

set of vertices such that the coreness gain from all the vertices is maximized. We prove

the problem is NP-hard and APX-hard. A serial greedy algorithm is proposed to be

conducted in single-machine environment with a novel tree based result reusing mech-

anism. We also propose effective pruning techniques to reduce the search space. The



3.6.4 Scalability of DGAC 89

preliminary version is published in [69]. Then, we extend our algorithm to distributed

computing environment with a novel graph partition strategy to ensure the computing

independency of each machine. Extensive experiments on 8 real-life networks demon-

strate the effectiveness of our model and the efficiency of our algorithms. The reusing

mechanism and graph partition strategy shed light on the computations of other problems

on hierarchical decomposition, e.g., truss decomposition. It shows that the computation

can be divided into independent units and the reuse of intermediate results is feasible.



Chapter 4

User Influence Monitoring for Network

Stability

4.1 Introduction

The structural stability of a network indicates the ability of the network to maintain a

sustainable service and/or to defend the attacks from the competitors. In the study of

network stability, it is essential to monitor the engagement of the nodes in a network,

and then motivate or protect the critical nodes [69, 74]. For instance, Friendster was

a once popular social network with over 115 million users, but it is suspended due to

contagious leave of users with low engagement [42] [87].

Complex networks are often modeled as graphs when studied. In graph theory, the

k-core is defined as the maximal subgraph where each vertex has at least k neighbors

(degree) in the subgraph [76] [85]. Given a graph, the k-core decomposition iteratively

removes every vertex with degree less than k. Every vertex in the graph has a unique

coreness value, that is, the largest k s.t. the k-core contains the vertex. Existing works

have well studied the effect of coreness on capturing node engagement. In [74], the

90
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anchored follower        collapsed follower        monitored node

Figure 4.1: Node Monitoring on Gowalla

coreness of a node is demonstrated as the ”best practice” for its engagement. In [69],

the engagement of a node (e.g., the check-in number of a node) is further validated as

positive correlated with its coreness based on real-life experiments.

The weakening and strengthening of nodes are the two natural engagement dynamics

in a network. Specifically, in [103] (resp. [11]), when weakening (resp. strengthening)

a node, we say it is collapsed (resp. anchored) such that its degree is regarded as 0

(resp. +∞). When a node x is collapsed (resp. anchored), all the other nodes which

decrease (resp. increase) the coreness values due to collapsing (resp. anchoring) x are

called x’s collapsed followers (resp. anchored followers). As far as we know, against the

weakening and strengthening of a node, the engagement dynamic change of other nodes

has not been systematically studied. Thus, in this chapter, we compute the collapsed and

anchored followers of each node to monitor its influence on the engagement dynamics

of other nodes.
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Example 4.1.1 In the social network Gowalla [63], we monitor 4 nodes, the red, or-

ange, blue and green diamonds at the center of Figure 4.1. The collapsed followers (resp.

anchored followers) of a monitored node are visualized by the hollow circles (resp. solid

circles) with the same color. All the followers having the same coreness are presented

at the same distance from the center. We can find the following phenomena: 1) Different

nodes have very different number of followers, e.g., the orange node has the least fol-

lowers compared with the other 3 nodes; 2) The ratio of followers of the two categories

varies from different monitored nodes, e.g., the vast majority followers of the blue (resp.

orange) node are collapsed followers (resp. anchored followers), but the green and red

nodes have relatively even number of collapsed and anchored followers; 3) The coreness

of the followers are diverse, e.g., the followers are presented in many different distances

from the center even though we only monitor 4 nodes.

Based on Example 4.1.1, the applications of the new problem studied in this chapter

can be summarized into two aspects: 1) the monitored node, and 2) the follower nodes.

For 1), it is important to know how each monitored node can influence the network

structural stability, which is reflected by the collapsed power and anchored power. For

instance, the influence of the orange node is much less than the red node, in terms of both

collapsed and anchored powers. Specifically, the orange node has only a few anchored

followers and few collapsed followers. However, the engagement strengthening (resp.

weakening) of the red node can influence its large number of anchored (resp. collapsed)

followers. These anchored (resp. collapsed) followers originally have diverse engage-

ment levels as they have diverse coreness values, and they are likely to increase (resp.

decrease) their engagement levels. For 2), it is also important to know the identities of

those specific follower nodes which change their engagement levels due to the collaps-

ing and anchoring of a monitored node. For instance, in Example 4.1.1, when the social

network holder finds the blue node has collapsed, as it has plenty of collapsed followers,
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these follower nodes need to be paid attention because they are in the risk of engagement

decrease.

In this chapter, we study the integration and the efficient computation towards an-

chored and collapsed followers. It is obvious that the real-life social networks are al-

ways evolving, i.e., new signed-up user, new added friends of a user etc. After a network

evolves, the change of vertices’ collapsed followers and anchored followers can be dras-

tic which will be shown in our experimental study. Thus, we also aim to efficiently

maintain the correct collapsed and anchored followers for each node against edge inser-

tions and deletions, which helps us systematically monitor the node influence on network

structural stability.

Challenges. To the best of our knowledge, no existing work studies each node’s influ-

ence for network structural stability. Existing works only find the best b collapse [101]

(resp. anchor [69]) vertices to minimize (resp. maximize) the total coreness from all the

vertices, without computing the collapsed (resp. anchored) follower sets of every single

vertex. The only common concept is the definition of collapsing (resp. anchoring) a ver-

tex, but the computation objective is completely different. Our problem becomes more

challenging when maintaining the follower sets when the network evolves.

The naive core decomposition [10] is a straightforward method to compute the col-

lapsed and anchored follower sets for each vertex, simply by regarding the degree of

each vertex as 0 and +∞. However, it is certainly cost-prohibitive due to the massive

search space, i.e., when computing the collapsed or anchored follower set of each vertex,

the core decomposition algorithm traverses all the edges in the graph again, which makes

the time complexity be O(n ·m).

Core maintenance [105] is only to update the coreness value of each vertex itself,

after an edge is inserted into or removed from the graph. However, it cannot compute

or update the collapsed and anchored follower sets of each vertex. The computation
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of the collapsed and anchored follower sets is a non-trivial process based on the core-

ness of each vertex, and the maintenance of the two follower sets becomes even more

challenging against the network evolving.

Our Solution. Because of the novelty on the first study and the challenge on designing

the algorithm given no existing approach, we propose our new solution.

Firstly, we propose an offline algorithm to efficiently compute the collapsed and

anchored follower sets of each vertex in parallel. Specifically, the graph is divided into

multiple shell components induced by all the maximal connected subgraphs where each

vertex has the same coreness. Therefore, for either collapse or anchor a vertex x, the

follower sets are formed by some vertex subsets from the shell components. We prove

those vertex subsets are not overlapped and can be independently computed within each

shell component, so that any parallel architecture can be utilized to concurrently compute

the collapsed and anchored follower sets.

Secondly, we propose an online algorithm to efficiently update the collapsed and

anchored follower sets of each vertex. When an edge is inserted into or removed from

the graph, we first adopt the state-of-the-art core maintenance algorithm ’k-order’ [105]

to correctly update each vertex’s coreness. Then some new induced shell components

are efficiently collected, and the collapsed and anchored follower sets of any vertex can

be updated only based on the new shell components. Because the scale of new shell

components against one inserted or removed edge is constant, our online maintenance

algorithm can achieve 3 orders of magnitude faster than redoing the offline algorithm.

Contributions. We summarize the contributions of this chapter as follows.

• We propose a new model that first time studies the collapsed power and anchored

power to reflect the node influence on network structural stability by two symmet-

rical perspectives, i.e., one for node strengthening and the other for node weaken-

ing, which are corresponding to decreasing and increasing other nodes’ engage-
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ments respectively.

• We integrate the computation of collapsed power and anchored power of each node

by a novel concept, i.e., shell component, by which any parallel architecture can

be utilized to efficiently offline compute the two powers of each node.

• An online maintenance algorithm is proposed to efficiently update the collapsed

power and anchored power of each node, when an edge is inserted into or removed

from the network. This makes our model more applicable to real-life scenarios.

• Experiments conducted on 8 real-life datasets demonstrate that both our offline

computation and online maintenance algorithms are efficient, and our new pro-

posed model is effective.

4.2 Preliminaries and Problem Statement

We consider an unweighted and undirected graph G = (V,E), where V (G) (resp. E(G))

represents the set of vertices (resp. edges) in G. N(u,G) is the set of adjacent vertices

of u in G, which is also called the neighbour vertex set of u in G. Note that we may omit

the input graph for all the notations in the chapter when the context is clear, e.g., using

deg(u) instead of deg(u,G).

Definition 4.2.1 k-core. Given a graph G, a subgraph S is the k-core of G, denoted by

Ck(G), if (i) S satisfies degree constraint, i.e., deg(u, S) ≥ k for each u ∈ V (S); and

(ii) S is maximal, i.e., any supergraph S ′ ⊃ S is not a k-core.

If k ≥ k′, the k-core is always a subgraph of k′-core, i.e., Ck(G) ⊆ Ck′(G). Each

vertex in G has a unique coreness.
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Table 4.1: Common Notations throughout the Chapter

Notation Definition
G an unweighted and undirected graph
V (G); E(G) the vertex set of G; the edge set of G
n;m |V (G)|; |E(G)| (assume m > n)
u, v, w, x a vertex in G

N(u,G) the set of neighbors of u in G

deg(u,G) +∞ if u is anchored, 0 if u is collapsed, |N(u,G)| otherwise
Ck(G) the k-core of G
c(u,G) the original coreness of u in G

c−x (u,G) the coreness of u in G with collapsing x

c+x (u,G) the coreness of u in G with anchoring x
−F(x,G) the collapsed follower set of x in G
+F(x,G) the anchored follower set of x in G

Hk(G) the k-shell of G
SC[v] the only shell component containing v

S, S.V , S.E, S.c a shell component with its vertex set, edge set and coreness value
C[S] the collapser candidate set of S
A[S] the anchor candidate set of S
−F [x][S] the collapsed follower set of x in S
+F [x][S] the anchored follower set of x in S

Definition 4.2.2 coreness. Given a graph G, the coreness of a vertex u ∈ V (G),

denoted by c(u,G), is the largest k such that Ck(G) contains u, i.e., c(u,G) =

max{k : u ∈ Ck(G)}.

Definition 4.2.3 core decomposition. Given a graph G, core decomposition of G is to

compute the coreness of every vertex in V (G).

In this chapter, once a vertex x in the graph G is collapsed (resp. anchored), the

degree of x is regarded as zero (resp. positive infinity), i,e., deg(x,G) = 0 (resp.

deg(x,G) = +∞). Every collapsed (resp. anchored) vertex is called an collapser

or collapser vertex (resp. anchor or anchor vertex). The existence of collapser ver-

tices (resp. anchor vertices) may change the coreness of other vertices. We use c−x (u,G)

(resp. c+x (u,G)) to denote the coreness of u in G with collapsing (resp. anchoring) x.

The computation of core decomposition is shown in Algorithm 14, in which we re-
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Algorithm 14: CoreDecomp(G)
Input : a graph G

Output : c(u,G) for each u ∈ V (G)

k ← 1;1

while exist vertices in G do2

while ∃u ∈ V (G) with deg(u) < k do3

deg(v)← deg(v)− 1 for each v ∈ N(u,G);4

remove u and its adjacent edges from G;5

c(u,G)← k − 1;6

k ← k + 1;7

return c(u,G) for each u ∈ V (G)8

cursively delete the vertex with the smallest degree in the graph G. The time complexity

is O(m). Note that, the existence of collapser vertices and anchor vertices does not

change the adjacent vertices of each vertex in the graph, but it induces subtle difference

when conducting core decomposition. When there exists a collapser vertex x, x is auto-

matically deleted at first as its degree is zero. When there exists an anchor vertex x, we

do not delete x as its degree is positive infinity.

Definition 4.2.4 collapsed follower set. Given a graph G and the collapser vertex x, the

collapsed follower set of x in G is denoted by −F(x,G), and includes all other vertices

decreasing their coreness with collapsing x in G, i.e., −F(x,G) = {u ∈ V (G) : u ̸=

x ∧ c−x (u,G) < c(u,G)}.

Definition 4.2.5 anchored follower set. Given a graph G and the anchor vertex x, the

anchored follower set of x in G is denoted by +F(x,G), and includes all other vertices

increasing their coreness with anchoring x in G, i.e., +F(x,G) = {u ∈ V (G) : u ̸=

x ∧ c+x (u,G) > c(u,G)}.
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Problem Statement. Given a graph G, for each v ∈ V (G), we compute −F(v,G)

and +F(v,G). When an edge (u, u′) is inserted into (resp. removed from) G, we have

E(G)← E(G) ∪ {(u, u′)} (resp. E(G)← E(G) \ {(u, u′)}). Now for each v ∈ V (G),

we maintain −F(v,G) and +F(v,G).

Note that, vertex insertion (resp. removal) can be regarded as a sequence of edges

insertion (resp. removal).

4.3 The Offline and Online Algorithms

We introduce our algorithms of offline computing the collapsed follower set (CFS) and

anchored follower set (AFS) for each vertex in a graph, and online maintaining the two

sets each time when an edge is inserted to or removed from the graph. The computation

is based on shell component (4.3.1), by which the graph is partitioned into multiple atom

units. Any parallel architecture such as multi-threads can then be utilized to compute the

CFS and AFS in parallel. When an edge is inserted or removed, 4.3.2 shows how we

maintain the atom units. We prove that, by only conducting computation regarding those

new updated atom units, the CFS and AFS for each vertex can be efficiently maintained.

The further accelerating techniques for computing CFS and AFS are introduced in 4.3.3.

4.3.1 The Shell Component Based Framework

Definition 4.3.1 k-shell. Given a graph G, the k-shell, denoted by Hk(G), is the set of

vertices in G with coreness equal to k, i.e., Hk(G) = V (Ck(G)) \ V (Ck+1(G)).

Definition 4.3.2 shell component. Given a graph G and the k-shell Hk(G), a subgraph

S is a shell component of Hk(G), if S is a maximal induced connected component of

Hk(G).
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Figure 4.2: Illustration of Shell Component.

Theorem 4.3.1 For each vertex v ∈ V (G), there exists only one shell component S

having v ∈ V (S).

Proof 4.3.1 We prove it by contradiction. Assuming there are S1 and S2 with v ∈ V (S1)

and v ∈ V (S2). Then we have, for each u ∈ V (S1), c(u) = c(v) and u is connected with

v; For each u ∈ V (S2), c(u) = c(v) and u is connected with v. Thus, S1∪S2 satisfies the

definition of one single shell component, which contradicts with our assumption. Proof

completes.

Example 4.3.1 In Figure 4.2, we have H1(G) = {va}, H2(G) = {vb}, H3(G) =

{vc, vd, ve, vf , vg} and H4(G) = {vh, vi, vj, vk, vl}. For H1(G), S1 is the only shell

component of H1(G) with V (S1) = {va}. For H2(G), S2 is the only shell component

with V (S2) = {vb}. But within H3(G), we have two shell components S3 and S4, in

which V (S3) = {vc, vd} and V (S4) = {ve, vf , vg}, because S3 and S4 are not con-

nected by the edges among H3(G). For H4(G), S5 is the only shell component with

V (S5) = {vh, vi, vj, vk, vl}. The graph in Figure 4.2 will be often referred in the follow-

ing examples, so we summarize the notations in Table 4.2 for your convenience.

For a shell component S of Hk(G), we denote S.V , S.E and S.c as the vertex set,

edge set and the coreness of the vertices in S, i.e., S.V = V (S), S.E = E(S) and
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Table 4.2: Shell Components in Figure 4.2

Shell component S1 S2 S3 S4 S5

Vertex set va vb vc, vd ve, vf , vg vh, vi, vj , vk, vl

Algorithm 15: ShellDecomp(G)
Input : G : the graph

Output : SC : the index of shell components in G

CoreDecomp(G);1

for each unassigned u ∈ V (G) do2

S ← a new shell component;3

S.c := c(u,G);4

S.V := S.V ∪ {u};5

u is set assigned;6

ShellConnect(u, S, SC);7

SC[u] := S;8

return SC9

S.c = c(v,G) ∀v ∈ S.V . We use the structure SC to index the shell components for

all the vertices, in which for each v ∈ V (G), SC[v] is the only shell component having

v ∈ SC[v].V (Theorem 4.3.1). Algorithm 15 and Algorithm 16 illustrate the process of

decomposing each vertex into its shell component.

In Algorithm 15, firstly we need to conduct core decomposition (Line 1) on G so

that we can get the coreness of each vertex. We traverse all the vertices with each ver-

tex marked unassigned as default (Line 2). Each time meeting an unassigned vertex

u ∈ V (G), we create a new shell component S (Line 3), set the related domains of S

and set u as assigned (Line 4-6). Then we call Algorithm 16 (details in the next para-

graph) to recursively collect all the vertices which should be in S (Line 7), followed by

assigning SC[u] := S (Line 8). When all the vertices are set assigned (in Algorithm 15
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Algorithm 16: ShellConnect(u, S, SC)
Input : u : a vertex, S : the shell component containing u, SC : the shell component

index

for each v ∈ N(u,G) do1

if c(v) = c(u) then2

S.E := S.E ∪ {(u, v)};3

if v is unassigned then4

S.V := S.V ∪ {v};5

v is set assigned;6

ShellConnect(v, S, SC);7

SC[v] := S;8

or Algorithm 16), we get the complete SC. The time complexity of Algorithm 15 is

O(m) as we traverse each vertex’s neighbors once.

In Algorithm 16, for the vertex u, we traverse all its neighbors in N(u,G) (Line 1).

If c(v) = c(u) (Line 2), we add the edge (u, v) into S.E (Line 3). Note that (u, v) and

(v, u) are the same in our setting. Only if v is unassigned (Line 4), we add v into S.V

and recursively call Algorithm 16 to find all the vertices of S (Line 5-8).

C[·] and A[·]. We define two affiliated structures, the collapser candidate set C[·]

and the anchor candidate set A[·] w.r.t. all the shell components of G. For a shell

component S, C[S] = {v : v ∈ S.V ∨ c(v,G) > S.c ∧ N(v,G) ∩ S.V ̸= ∅}, and

A[S] = {v : v ∈ S.V ∨ c(v,G) < S.c ∧ N(v,G) ∩ S.V ̸= ∅}. C[·] and A[·] can be

straightforward computed according to their definitions, when traversing each vertex’s

neighbors in Algorithm 15 or Algorithm 16, without changing the time complexity. We

omit the specific process due to the limited space.

Lemma 4.3.1 If a vertex x is collapsed in G, any other vertex u ∈ V (G)\{x} decreases
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its coreness by at most 1.

Proof 4.3.2 Please refer to the proof of Theorem 4 in [101].

Lemma 4.3.2 If a vertex x is anchored in G, any other vertex u ∈ V (G)\{x} increases

its coreness by at most 1.

Proof 4.3.3 Please refer to the proof of Theorem 4.6 in [69].

Theorem 4.3.2 For collapsing x in G, another vertex u is x’s collapsed follower indi-

cates x ∈ C[S] s.t. u ∈ S.V .

Proof 4.3.4 We prove it by contradiction. Assuming u decreases its coreness since x

is collapsed, u ∈ S.V and x /∈ C[S]. This firstly means x /∈ S.V , according to the

definition of C[S], then we have the following possible situations: 1) c(x,G) < S.c; 2)

c(x,G) = S.c; 3) c(x,G) > S.c ∧N(x,G) ∩ S.V = ∅.

For situation 1), No matter x is collapsed or not, x is always deleted before u in

core decomposition (Algorithm 14), so that c−x (u) = c(u) which contradicts with our

assumption.

For situation 2), Consider deleting V (G) in core decomposition without collapsing

x. After all the vertices with coreness less than S.c are deleted, for each S ′ ̸= S s.t.

S ′.c = S.c, it is available to delete S ′.V before S.V . And S.V can remain in the graph

still satisfying for each v ∈ S.V , deg(v) ≥ S.c. We denote the deleted (resp. remained)

vertex set so far as V d (resp. V r). For each v ∈ V r \ S.V , c(v) > S.c. Because

c(x) = S.c and x /∈ S.V , we can conclude x ∈ V d. For the graph with collapsing x

(deleted firstly), let us then delete V d \ {x}. Now the remaining graph are still induced

by V r satisfying for each v ∈ V r, deg(v) ≥ S.c. Since u ∈ V r, u is not a collapsed

follower of x, which contradicts with our assumption.

For situation 3), in graph G without collapsing x, for each v ∈ S.V , we denote

N>(v) = {w ∈ N(v,G) : c(w) > S.c}. As c(v) = S.c, we have |N(v, S) ∪N>(v)| ≥
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S.c. With collapsing x in G, core decomposition firstly deletes each v ∈ V (G) s.t.

c−x (v) < S.c. Reconsider each w ∈ N>(v) s.t. each v ∈ S.V . For situation 3),

w ̸= x. And based on Lemma 4.3.1, c−x (w) ≥ S.c. Thus, w remains in the graph. Now

consider each v ∈ S.V , N>(v) are complete in the remaining graph, so we still have

|N(v, S) ∪ N>(v)| ≥ S.c. Thus, v is not a collapsed follower of x. As u ∈ S.V , this

contradicts with our assumption.We prove it by contradiction. Assuming there are S1

and S2 with v ∈ V (S1) and v ∈ V (S2). Then we have, for each u ∈ V (S1), c(u) = c(v)

and u is connected with v; For each u ∈ V (S2), c(u) = c(v) and u is connected with

v. Thus, S1 ∪ S2 satisfies the definition of one single shell component, which contradicts

with our assumption. Proof completes.

Theorem 4.3.3 For anchoring x in G, another vertex u is x’s anchored follower indi-

cates x ∈ A[S] s.t. u ∈ S.V .

Proof 4.3.5 We prove it by contradiction. Assuming u increases its coreness since x

is anchored, u ∈ S.V and x /∈ A[S]. This firstly means x /∈ S.V , according to the

definition of A[S], then we have the following possible situations: 1) c(x,G) > S.c; 2)

c(x,G) = S.c; 3) c(x,G) < S.c ∧N(x,G) ∩ S.V = ∅.

For situation 1), No matter x is anchored or not, x is always deleted after u in

core decomposition (Algorithm 14), so that c+x (u) = c(u) which contradicts with our

assumption.

For situation 2), Consider deleting V (G) in core decomposition without anchoring

x. After all the vertices with coreness less than S.c are deleted, it is available to delete

S.V before each S ′.V s.t. S ′ ̸= S and S ′.c = S.c. And each such S ′ can remain in the

graph still satisfying for each v ∈ S ′.V , deg(v) ≥ S.c. We denote the deleted vertex set

so far as V d. Because c(x) = S.c and x /∈ S.V , we can conclude x /∈ V d. For the graph

with anchoring x, as x /∈ V d, we can safely still delete V d following the same vertex



104 Chapter 4. User Influence Monitoring for Network Stability

sequence. Thus for each v ∈ V d, c+x (v) = c(v). Since u ∈ V d, u is not an anchored

follower of x, which contradicts with our assumption.

For situation 3), in graph G without anchoring x, for each v ∈ S.V , we denote

N<(v) = {w ∈ N(v,G) : c(w) < S.c} and N>(v) = {w ∈ N(v,G) : c(w) >

S.c}. As c(v) = S.c, we have |N(v, S) ∪ N>(v)| < S.c + 1. When conducting core

decomposition with anchoring x in G, reconsider each w ∈ N<(v) s.t. each v ∈ S.V .

For situation 3), w ̸= x. And based on Lemma 4.3.2, c+x (w) < S.c+1, thus each such w

is not in the (S.c+1)-core. Now consider each v ∈ S.V , N<(v) are not in the (S.c+1)-

core and we still have |N(v, S)∪N>(v)| < S.c+1. Thus, v is not an anchored follower

of x. As u ∈ S.V , this contradicts with our assumption.

Parallel Computation. For each v ∈ V (G), We define −F [v][S] = {u ∈ S.V : u ∈
−F(v,G)} and +F [v][S] = {u ∈ S.V : u ∈ +F(v,G)}, so as to compute v’s

collapsed followers and anchored followers in each atom unit, i.e., the shell compo-

nent. Based on Theorems 4.3.2 and 4.3.3, we know that for the vertex v, its collapsed

followers (resp. anchored followers) are only from each S.V s.t. v ∈ C[S] (resp.

v ∈ A[S]). Thus, in Algorithm 17, we parallelly compute −F [v][S] (resp. +F [v][S])

w.r.t. {S : v ∈ C[S]} (resp. {S : v ∈ A[S]}). Then −F(v,G) =
⋃

{S: v∈C[S]}
−F [v][S]

and +F(v,G) =
⋃

{S: v∈A[S]}
+F [v][S]. In order to unify the offline computation and

the online maintenance when any edge is inserted or removed, Algorithm 17 takes a

new shell component set Ŝ as an input. Now we let Ŝ contain all the shell compo-

nents in G, i.e., Ŝ :=
⋃

u∈V (G){SC[u]}, then call ParallelFollowerComp(C[·],

A[·], Ŝ). For each S ∈ Ŝ, whenever there exists an available thread (Line 1), the

computation in Line 2-7 can be conducted, followed by releasing this thread. As the

number of shell components in G is much more than the number of available threads,

the dynamic scheduling ensures the computing resources are mostly utilized in parallel.

Based on theorem 4.3.1, each −F [v][S] (resp. +F [v][S]) does not overlap with others,
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which means the threads are never wasted on redundant computations. The functions

FindCollapsedFollowers (Line 3) and FindAnchoredFollowers (Line 6)

are equipped with further accelerating techniques, which are presented by Algorithm 19

and Algorithm 20 in subsection 4.3.3, respectively.
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(a)                                                                 (b)

Figure 4.3: Followers Computation.

Example 4.3.2 For the graph in Figure 4.2, Figure 4.3 (a) shows the graph with col-

lapsing ve. We retain the notations in Example 4.3.1. Please refer to Table 4.2 for

your convenience. There are two shell components S1 and S4 such that ve ∈ C[S1] and

ve ∈ C[S4]. Then −F [ve][S1] and −F [ve][S4] can be computed in parallel. We have

−F [ve][S1] = {va} with c−ve(va) = 0, and −F [ve][S4] = {vf} with c−ve(vf ) = 2.

Example 4.3.3 For the graph in Figure 4.2, Figure 4.3 (b) shows the graph with an-

choring vb. We retain the notations in Example 4.3.1. Please refer to Table 4.2 for your

convenience. There are three shell components S2, S3 and S4 such that vb ∈ A[S2],

vb ∈ A[S3] and vb ∈ A[S4]. +F [vb][S2], +F [vb][S3] and +F [vb][S4] can be computed in

parallel. We have +F [vb][S2] = ∅, +F [vb][S3] = {vc, vd} with c+vb(vc) = c+vb(vd) = 4,

+F [vb][S4] = {vg} with c+vb(vg) = 4.
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Algorithm 17: ParallelFollowerComp(C[·], A[·], Ŝ)
Input : C[·] : the collapsed candidate set, A[·] : the anchored candidate set, Ŝ : the

new shell component set

Output : −F(v,G) and +F(v,G) for each v ∈ V (G)

for each S ∈ Ŝ in dynamic multithreads do1

for each v ∈ C[S] do2

−F [v][S] := FindCollapsedFollowers(v, S);3

−F(v,G) := −F(v,G) ∪ −F [v][S];4

for each v ∈ A[S] do5

+F [v][S] := FindAnchoredFollowers(v, S);6

+F(v,G) := +F(v,G) ∪ +F [v][S];7

return −F(v,G) and +F(v,G) for each v ∈ V (G)8

4.3.2 The Maintenance w.r.t. Edge Streaming

We consider the following two situations of edge streaming: 1) a single edge is removed

from the graph; 2) a single edge is inserted into the graph. Please note that, multiple

edges and vertices streaming can be regarded as a sequence of situations 1) and 2). We

maintain the collapsed follower set −F(v,G) and anchored follower set +F(v,G) for

each v ∈ V (G) by Algorithm 18 which unifies situations 1) and 2). Specifically, in the

updated graph G (E(G) ∪ {(vs, vt)} or E(G) \ {(vs, vt)}), we firstly adopt the state-

of-the-art algorithm of core maintenance in [105] to update c(u,G) for each u ∈ V (G)

(Line 1), followed by resetting each vertex as unassigned (Line 2-3). In Line 4, SC ′[·],

C ′[·] and A′[·] are initially copied from the current SC[·], C[·] and A[·], and they will

be properly updated. Line 5-13 collects the new shell components into Ŝ. Without

the need to call Algorithm 15 again for the whole graph, the maintenance process only

needs to start from each vertex u in SC[vs] and SC[vt] (Line 6). Line 7-12 do the same
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operations as Line 3-8 of Algorithm 15. Please note that C ′[·] and A′[·] can be updated

straightforward during Line 6-13 according to their definitions (Line 14), because only

A′[S ′] and C ′[S ′] for each S ′ ∈ Ŝ need to be updated. We denote an updated vertex set as

U =
⋃

S′∈Ŝ S
′.V (Line 15). By traversing all the old shell components of the vertices in

U (using SC instead of SC ′ in Line 16), we can remove the expired collapsed followers

and anchored followers (Line 17-20, using C[·] and A[·] instead of C ′[·] and A′[·]). At

last, for the new shell component set Ŝ, we call Algorithm 17 with inputting the updated

C ′[·] and A′[·] (Line 21) to compute the new followers.

(a)                                                                 (b)
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Figure 4.4: Followers Maintenance.

Example 4.3.4 In Figure 4.4 (a), we remove the edge (vc, vd) from the graph in Fig-

ure 4.2. All the notations in Example 4.3.1 (Table 4.2) are retained. S2 and S3 are

expired. We have the new S6 with S6.V = {vb, vd} and S6.c = 2, and the new S7 with

S7.V = {vc} and S7.c = 3. Table 4.3 shows all the updated shell components and the

vertices in C ′[·] and A′[·]. The collapsed and anchored followers of S1, S4 and S5 retain

the same (row 2-4). Only the collapsed and anchored followers of S6 and S7 need to be

computed (row 5-6).
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Example 4.3.5 In Figure 4.4 (b), we insert the edge (vb, vc) into the graph in Figure 4.2.

All the notations in Table 4.2 are retained. S2, S3 and S4 are expired. We have the new S8

with S8.V = {vb, vc, vd, ve, vf , vg} and S8.c = 3. Table 4.4 shows all the updated shell

components and the vertices in C ′[·] and A′[·]. The collapsed and anchored followers of

S1 and S5 retain the same (row 2-3). Only the collapsed and anchored followers of S8

need to be computed (row 4).

Table 4.3: Followers Maintenance w.r.t. Removing (vc, vd)

C′[·] A′[·]
S1 va, ve va
S4 ve, vf , vg, vh, vi, vj , vk, vl va, ve, vf , vg
S5 vh, vi, vj , vk, vl vc, vd, ve, vf , vg, vh, vi, vj , vk, vl
S6 vb, vd, vg, vk, vl vb, vd
S7 vc, vh, vk, vl vc

Table 4.4: Followers Maintenance w.r.t. Inserting (vb, vc)

C′[·] A′[·]
S1 va, ve va
S5 vh, vi, vj , vk, vl vc, vd, ve, vf , vg, vh, vi, vj , vk, vl
S8 vb, vc, vd, ve, vf , vg, vh, vi, vj , vk, vl va, vb, vc, vd, ve, vf , vg
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Algorithm 18: FollowerMaintain((vs, vt), G)
Input : (vs, vt) : the inserted or removed edge, G : the graph with E(G) ∪ {(vs, vt)}

or E(G) \ {(vs, vt)}

Conduct the core maintenance [105] to get c(u,G) for each u ∈ V (G);1

for each u ∈ V (G) do2

u is set as unassigned;3

SC′[·], C′[·], A′[·]← SC[·], C[·], A[·];4

Ŝ ← the new shell component set;5

for each unassigned u ∈ S.V s.t. each S ∈ {SC[vs],SC[vt]} do6

S′ ← a new shell component;7

S′.c := c(u,G);8

S′.V := S′.V ∪ {u};9

u is set assigned;10

ShellConnect(u, S′, SC′);11

SC′[u] := S′;12

Ŝ = Ŝ ∪ {S′};13

C′[·] and A′[·] are updated while doing Line 6-13;14

U ←
⋃

S′∈Ŝ S′.V ;15

for each S ∈
⋃

u∈U{SC[u]} do16

for each v ∈ C[S] do17

−F(v,G) := −F(v,G) \ −F [v][S];18

for each v ∈ A[S] do19

+F(v,G) := +F(v,G) \ +F [v][S];20

ParallelFollowerComp(C′[·], A′[·], Ŝ);21



110 Chapter 4. User Influence Monitoring for Network Stability

4.3.3 The Efficient Followers Computation

Now we introduce our efficient algorithms of computing the collapsed followers and

anchored followers of one vertex in one shell component. For each shell component S

in G, Algorithm 19 computes −F [v][S] for each v ∈ C[S], and Algorithm 20 computes

+F [v][S] for each v ∈ A[S]. Both of the algorithms need the higher coreness support of

each u ∈ V (G), which is introduced as follows.

Higher Coreness Support. For each u ∈ V (G), we define its higher coreness

support, denoted by HS(u), as the number of u’s neighbors having higher coreness than

u, i.e.,HS(u) = |{v ∈ N(u,G) : c(v) > c(u)}|. The higher coreness supports

are incidentally computed and recorded when traversing each vertex’s neighbours in

Algorithm 15.

Collapsed Followers Computation. In Algorithm 19, we utilize a queue Q (Line 1)

to explore the collapsed followers, starting from the collapser vertex x. If x ∈ S.V , x

is set discarded and pushed into Q (Line 2-3). Note that, all the vertices in S.V are not

discarded initially, and any discarded vertex (except for x) becomes a collapsed follower.

If x /∈ S.V , for each u ∈ N(x,G)∩S.V , we reduce HS(u) by 1 and push u into Q (Line

4-6). Then we traverse Q until it becomes empty (Line 7). Each time when we pop the

top vertex u (Line 8), if u ̸= x, we need to decide whether it is discarded (Line 9-12).

Specifically, we compute a degree upper bound d+(u) as Line 10 shows. If d+(u) < S.c,

u is set discarded, and we push each v ∈ N(u, S) into Q (Line 13-15). Note that, we

can avoid repeatedly push the same vertex into Q (Line 14). After traversing Q, all the

discarded vertices in S.V except for x form −F [x][S] (Line 16).
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Algorithm 19: FindCollapsedFollowers(x, S)
Input : x : the collapser candidate, S : a shell component

Output : −F [x][S] : the collapsed follower set of x in S

Q← a queue;1

if x ∈ S.V then2

x is set discarded; Q.push(x);3

else4

for each u ∈ N(x,G) ∩ S.V do5

HS(u) := HS(u)− 1; Q.push(u);6

while Q ̸= ∅ do7

u← Q.pop();8

if u ̸= x then9

d+(u) := HS(u) + |{v : v ∈ N(u, S) ∧ v is not discarded}|;10

if d+(u) < S.c then11

u is set discarded;12

if u is discarded then13

for each v ∈ N(u, S) with v is not discarded and v /∈ Q do14

Q.push(v);15

−F [x][S]← discarded vertices in S.V except for x ;16

return −F [x][S]17
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Anchored Followers Computation. We use Algorithm 20 to compute +F [x][S],

the anchored followers of x in S. The algorithm is straightforward adapted from the

Algorithm 4 of [69], so we omit the theoretical analysis and the proof of algorithm

correctness. Please also refer to Degree Check and Theorem 4.15 in section 4.4 of [69].

Instead, Example 4.3.6 illustrates the process of Algorithm 20 in detail. The core of

Algorithm 20 is utilizing the layer value of each vertex, which needs to be illustrated

firstly as follows.

Layer Value. The vertices in the k-shell can be further divided to different ver-

tex sets, named layers, according to their deletion sequence in the core decomposition

(Algorithm 14). We use H i
k to denote the i-layer of the k-shell, which is the set of

vertices that are deleted in the i-th batch. Specifically, when i = 1, H i
k is defined as

{u : deg(u,Ck(G)) < k + 1 ∧ u ∈ Ck(G)}. The deletion of the 1st-layer will produce

the 2nd-layer. Recursively, when i > 1, H i
k = {u : deg(u,Gi) < k + 1 ∧ u ∈ Gi}

where G1 = Ck(G) and Gi is the subgraph induced by V (Gi−1) \H i−1
k on Ck(G). For

each vertex u ∈ V (G), there is only one H i
k s.t. u ∈ H i

k during core decomposition, then

we denote l(u) = i as the layer value of u. Obviously, the layer values are incidentally

computed and recorded when conducting Algorithm 14.
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Algorithm 20: FindAnchoredFollowers(x, S)
Input : x : the anchor candidate, S : a shell component

Output : +F [x][S] : the anchored follower set of x in S

H ← a min heap w.r.t. the layer value of each vertex;1

if x ∈ S.V then2

x is set survived; H.push(x);3

else4

for each u ∈ N(x,G) ∩ S.V do5

HS(u) := HS(u) + 1; H.push(u);6

while H ̸= ∅ do7

u← H.pop();8

if u ̸= x then9

d+(u) := HS(u) + |{v : v ∈ N(u, S) ∧ l(v) ≤ l(u) ∧ (v is survived ∨ v ∈10

H)}|+ |{v : v ∈ N(u, S) ∧ l(v) > l(u) ∧ v is not discarded}|;

if d+(u) ≥ S.c+ 1 then11

u is set survived;12

if u is survived then13

for each v ∈ N(u, S) with l(v) > l(u) and v /∈ H do14

H.push(v);15

else16

u is set discarded ;17

Shrink(u) (Algorithm 21);18

+F [x][S]← survived vertices in S.V except for x ;19

return +F [x][S]20
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Algorithm 21: Shrink(u)
Input : u : the shrinked vertex

for each survived neighbor v with v ̸= x do1

d+(v) := d+(v)− 1;2

if d+(v) < S.c+ 1 then3

v is set discarded;4

T.add(v);5

for each v ∈ T do6

Shrink(v);7

Example 4.3.6 For the graph G in Figure 4.2 (Table 4.2), we follow all the notations

in Example 4.3.1. For vb, we need to compute +F [vb][S2], +F [vb][S3] and +F [vb][S4].

We follow the process of FindAnchoredFollowers(vb, S3) in Algorithm 20 as an

example. As vb /∈ S3.V (Line 4), we have HS(vd) = 2 + 1 = 3 (originally HS(vd) =

2 w.r.t. vk and vl) and vd is pushed into H (Line 5-6). After vd is popped (Line 8),

we compute d+(vd) (Line 10). Because l(vd) = 1, l(vc) = 2 and vc is not discarded,

d+(vd) = 3+0+1 = 4. Since S3.c = 3, vd is set survived (Line 11-12) and vc is pushed

into H (Line 13-15). Then vc is popped and d+(vc) = 3+1+0 = 4, so vc is set survived

and no more vertex is pushed into H . Now we can return +F [vb][S3] = {vc, vd}. Note

that, any vertex is neither discarded or survived unless it is explicitly set so. Once a

vertex needs to be set discarded (Line 17), it may cause a cascade of vertices discarded.

We call Algorithm 21 (Line 18) which recursively discards all the need-to-be vertices.
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Table 4.5: Statistics of Datasets
Dataset Nodes Edges davg dmax kmax

Facebook(F.) 22,470 170,823 15.2 709 56
Brightkite(B.) 58,228 194,090 6.7 1098 52
Github(H.) 37,700 289,003 15.3 9458 34
Gowalla(G.) 196,591 456,830 9.2 10721 51
NotreDame(N.) 325,729 1,497,134 6.5 3812 155
Stanford(S.) 281,903 2,312,497 16.4 38626 71
Youtube(Y.) 1,134,890 2,987,624 5.3 28754 51
DBLP(D.) 1,566,919 6,461,300 8.3 2023 118

Table 4.6: Percentage of Valid Collapsers & Anchors

Dataset F. B. H. G. N. S. Y. D.
Collapsers 61% 44% 49% 50% 24% 38% 28% 69%
Anchors 69% 70% 78% 74% 50% 33% 64% 54%

4.4 Experimental Evaluation

Datasets. We use 8 real-life datasets for experiments. Facebook, Brightkite,

Github, Gowalla & Youtube are from [63]. NotreDame, Stanford and DBLP

are from [59]. Due to the Space limitation, we abbreviate each dataset’s name as a unique

bold capital letter when necessary as in Table 4.5. Table 4.5 also shows the statistics of

the datasets, listed in increasing order of edge numbers.

Algorithms. To the best of our knowledge, no existing work studies each node’s influ-

ence for network structural stability. Other works aim to find a small number of critical

nodes to maximize (resp. minimize) other nodes’ engagements, e.g., anchored k-core

(resp. collapsed k-core), or maximize the spread of information, e.g., influence maxi-

mization. These works cannot be compared with our method in a reasonable way.

Parameters. All the programs are implemented in C++ and compiled with G++ on

Linux. The server has 3.4GHz Intel Xeon CPU with 4 cores (8 threads available) and

Redhat system. We adopt OpenMP to utilize the multithreads of the machine.
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Figure 4.5: # Updated Vertices w.r.t. Edge Streaming

4.4.1 Effectiveness

Percentage of Valid Collapsers & Anchors. In Table 4.6, for each dataset, we present

the percentage of vertices which have non-empty collapsed follower set (resp. anchored

follower set), which we call the valid collapsers (resp. valid anchors). Firstly, we can

find the percentages are higher than 50% on most datasets for both the valid collapsers

and valid anchors. This means both the collapsing and anchoring behaviors of vertices

indeed have apparent effects on the network, which demonstrates the necessity of mon-

itoring each vertex’s collapsed and anchored follower set. Secondly, we find on some

datasets such as Stanford and DBLP, the number of valid collapsers are more than

valid anchors. However, on all the other datasets, the number of valid anchors are more

than valid collapsers. This means vertex collapsing and vertex anchoring have different

influence on different networks due to the different network structures, thus it is nec-

essary to monitor each vertex’s influence via both the collapsed and anchored follower

set.

Followers Distribution on Vertex Coreness. In Figure 4.6, we present the distribution

of the number of followers (collapsed and anchored) on vertex’s coreness value. For

each dataset, kmax denotes the largest coreness value from all the vertices, which is

shown in the statistics of Table 4.5. We divide the coreness range [1, kmax] into 20
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Figure 4.7: Computation Efficiency and Scalability
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equal integer-width intervals, with the last remained interval combined with the second

last interval. For each coreness value xi on the horizontal ordinate of Figure 4.6, we

compute the mean number of collapsed followers (resp. anchored followers) of all the

vertices having their own coreness value within (xi−1, xi]. Note that, it is not necessary

for a graph that, for each value in [1, kmax], there exists vertices with coreness equal to

the value. For the values which no vertex has the coreness equal to, the mean numbers

of collapsed or anchored followers are considered as zero, e.g., the ’Collapsed’ lines of

NotreDame and DBLP in Figure 4.6. We then have the following observations. Firstly,

we can find on most coreness values on most datasets, the mean number of collapsed

followers are more than anchored followers. However, remember that in Table 4.6, the

number of valid anchors are more than valid collapsers on the contrary. This means the

collapsed followers and anchored followers reflect two different views of node influence

on network structural stability and it is necessary to monitor both of them. Secondly, we

find that, except when the coreness value is little, the number of collapsed and anchored

followers are not always positive-correlated with the coreness value. This demonstrates

that, we cannot simply decide a node’s influence on network structural stability simply

based on its own engagement, and it is essential to actually compute the collapsed and

anchored followers.

Amount of Updated Vertices w.r.t. Edge Streaming. On each dataset, we randomly

remove 100 edges and insert 100 edges. Each time an edge is removed or inserted, we

record the number of vertices which have updates in either the collapsed or anchored

follower set. The result is shown in Figure 4.5. The main boxes show the mean amount

of updated vertices. We can find that, either removing or inserting a single edge can

cause the update amount of other vertices from 101 to 104 on average. We also add the

error-bar on each box to show the minimum and maximum amount of updated vertices

among the 100 edge removal and insertion. We can find that the minimum amount of up-



120 Chapter 4. User Influence Monitoring for Network Stability

dated vertices are generally close to 1 and the maximum amount can reach up to around

105 in extreme cases (Brightkite and Youtube). The significant amount of ver-

tices in need of updating the follower sets demonstrates the necessity of our maintaining

technique regarding edge streaming.

4.4.2 Efficiency

Offline Computation Efficiency and Scalability. We vary the number of threads from

1, 2, 4 to 8 and test the efficiency and scalability of our offline algorithm of comput-

ing the collapsed and anchored follower set of each vertex. The time cost is presented

in Figure 4.7. We can find that, on all the datasets, the time cost tends to be less with

increasing the number of threads, for the computation of both collapsed and anchored

followers. This means our parallel algorithm based on separating the computation into

each shell component helps us take the advantage of parallel architecture. We find the

time cost is not always inversely proportional to the number of threads. This is because

different shell components can have drastically different number of collapsed (resp. an-

chored) candidates, and the overall time cost depends on the thread (or threads) running

the computation for the shell components having large number of candidates. Thus, the

future work can consider to deign the technique of separating such large shell compo-

nents, in order to more evenly distribute the computation tasks across multiple threads.

Online Maintenance Efficiency. We test the efficiency of our online maintenance algo-

rithm. As each real-life temporal network may have its own biased dynamic pattern, in

order to thoroughly test the efficiency of our maintenance algorithm in diverse situations

of edge insertion and removal, we randomly sample 100 edges for removal and insertion

respectively in all the datasets. Each time an edge is removed (resp. inserted), we record

the time cost of maintaining both the collapsed and anchored follower set for all the ver-

tices. In Figure 4.8, the main boxes compare the mean time cost of the 100 maintenance
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to the offline computation time, for edge removal (a) and edge insertion (b), respectively.

We can find that, the maintenance time is 2 to 4 orders of magnitude faster than the

offline computation, and the maintenance of edge insertion is generally faster than the

maintenance of edge removal. We also add the error-bars to show the minimum and

maximum maintenance time among the 100 edge removals and 100 edge insertions. We

can find that, in the worst cases, the maintenance time cost is still less than the time cost

of offline computation. And in the optimal cases, the maintenance time cost is constantly

little regardless of the scale of datasets. Overall, the experiments presented in Figure 4.8

demonstrate the efficiency of our maintaining technique for evolving networks.
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Figure 4.8: Maintenance Time w.r.t. Edge Streaming
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4.5 Chapter Conclusion

In this chapter, we innovatively propose a model that estimates a node’s influence on

the structural stability of the network by two views: the collapsed power and anchored

power. Then a parallel algorithm is proposed to compute each node’s collapsed and

anchored followers offline, equipped with online maintenance technique to update the

nodes’ followers when the network is evolving. Our effectiveness experiments on real-

life datasets demonstrate the necessity of both the collapsed power and anchored power.

Our efficiency experiments show that both our offline and online algorithms are efficient.



Chapter 5

Summary and Future Work

The study on social networks becomes increasingly important with the growing capac-

ity and activity networking sites, e.g., TikTok, Instagram and Facebook etc. Towards

the structural stability of social networks which is an important indicator for both the

network holders and the participants, three fundamental objectives are explored in this

thesis: (i) globally reinforce the stability of social networks considering the engagements

of all the users; (ii) develop the efficient parallel solution for the proposed social network

reinforcement model; and (iii) monitor each user’s influence regarding its role in network

structural stability.

5.1 Summary

Towards objective (i), we propose a new model, named anchored coreness, which is

innovative to globally reinforce the social network stability. Anchored coreness aims to

anchor a set of vertices such that the coreness gain from all the vertices is maximized.

As we prove this problem is NP-hard and APX-hard, we resort to greedy heuristic to

propose an efficient algorithm GAC. GAC is based on a novel tree structure so that the

intermediate results between different iterations of the greedy algorithm can be reused.

123
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GAC is also equipped with effective pruning techniques to reduce the search space of the

computations for the anchor candidates. We conduct extensive experiments on 8 real-life

social networks, which demonstrate the effectiveness of our new proposed model and the

efficiency of our greedy algorithm.

Towards objective (ii), based on GAC, we further extend the greedy algorithm to dis-

tributed parallel computing environment to provide a scalable solution for massive so-

cial networks. The parallel algorithm DGAC is based on a novel graph partition strategy

which ensures the computations regarding different anchor candidates can be concur-

rently and independently conducted on different machines or threads. More experiments

on the 8 real-life social networks show that DGAC holds good scalability with more ma-

chines and more threads in a machine sharing the computation. Our proposed parallel

algorithm also sheds light on the computations for other problems on hierarchical decom-

position, e.g., truss decomposition. It implies that the computation holds data locality

and can be divided into independent units.

Towards objective (iii), we propose a novel model to estimate a user’s influence on

the structural stability of a social network, by two views: the collapsed power and an-

chored power. The two powers are corresponding to two natural status of a user: engage-

ment weakening and engagement strengthening. The computations of each user’s col-

lapsed followers and anchored followers are integrated to an offline parallel algorithm,

and online maintenance technique is also proposed to update each user’s followers when

the social network is dynamically evolving. We conducted extensive effectiveness and

efficiency experiments on 8 real-life social networks, which demonstrate 1) both the col-

lapsed power and anchored power are necessary to capture; 2) both our offline and online

algorithms are efficient.
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5.2 Future Work

Deep learning has revolutionized many data mining and artificial intelligence tasks in

recent years, e.g., computer vision, speech recognition and natural language processing

etc. All the data in these tasks are typically represented in the Euclidean space. However,

many real-life data such as this thesis’s studied object, i.e., social networks, cannot be

represented in Euclidean space but are represented by graphs. Luckily, many studies on

extending deep learning approaches for graph data have emerged, among which graph

neural networks (GNNs) are the most typical deep learning architecture. Besides, rein-

forcement learning and graph embedding are also the modern machine learning methods

which enjoy more popularity nowadays. This section mainly discusses the potential of

machine learning models on further improving the effectiveness and efficiency of the

models proposed in this thesis.

Firstly, the computation of a vertex’s anchored followers is a common subroutine of

our global reinforcement model GAC, its parallel distributed extension DGAC and our

user influence monitoring model. Although we apply the pruning rules to reduce the

search space, it is still rather a time-consuming process. Thus, we can consider to train

a supervised learning model to estimate the anchored followers number for each vertex.

Specifically, we can offline compute the anchored followers number for part of vertices

as the training set, then train the parameters of one of the classic GNNs, e.g., GCN [57],

GraphSAGE [47] and GAT [92]. After the training, GPU architecture can be used to

efficiently estimate other vertices’ anchored followers number, which is potentially much

faster than computing each vertices’s actual anchored followers. With the help of transfer

learning technique, we can further adapt the estimation model trained from smaller social

networks to larger social networks without much more time of training.

Secondly, our proposed model anchored coreness is a combinatorial optimization

problem, which has much potential to be improved from the pure greedy heuristic, i.e.,
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the coreness gain of our pure greedy algorithm GAC may has a not little gap from the

optimal coreness gain. Utilizing supervised learning to estimate each vertex’s anchored

followers number still does not consider the unseen combinatorial structure of vertices.

In [33], Dai et al.claim the instances of the same type of optimization problem are solved

again and again on a regular basis, maintaining the same combinatorial structure, but

differing mainly in their data. This brings an opportunity for automatically designing a

heuristic algorithm which exploits the structure of such recurring problems, which is ad-

dressed by a unique combination of reinforcement learning and graph embedding in [33].

Thus, we can consider to apply such methods to learn a new heuristic algorithm for the

anchored coreness problem which may enjoy both better coreness gain and computation

efficiency.
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core view materializationand maintenance for large dynamic graphs. IEEE Trans.

Knowl. Data Eng., 26(10):2439–2452, 2014.

[5] H. Aksu, M. Canim, Y.-C. Chang, I. Korpeoglu, and Ö. Ulusoy. Distributed k-core
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