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Abstract

The remarkable complexity of modern applied problems often requires the use of proba-

bilistic models where the likelihood is intractable – in the sense that it cannot be numeri-

cally evaluated, not even up to a normalizing constant. The statistical literature provides

an extensive array of methods designed to bypass this constraint. Still, inference in this

context remains computationally challenging, particularly for high-dimensional models.

We focus on the important class of Approximation Bayesian Computation (ABC) meth-

ods.

Various state-of-the-art ABC techniques are combined to fit an intractable model that

describes the epidemiological dynamics of multidrug-resistant tuberculosis. This study

addresses a number of important biological questions in a principled manner, providing

useful insights to this extraordinarily relevant research topic.

We propose a functional regression adjustment ABC procedure that permits the esti-

mation of infinite-dimensional parameters, which effectively launches ABC into the non-

parametric framework. Two likelihood-free algorithms are also introduced. The first

exploits the principles of ABC and the so-called coverage property to recalibrate an auxil-

iary approximate posterior estimator. This approach further strengthens the links between

ABC and indirect inference, allowing a more comprehensive use of the auxiliary estimator.

The second algorithm employs the ABC machinery to build approximate samplers for

the intractable full conditional distributions. These samplers are then combined to form

a likelihood-free approximate Gibbs sampler. The granular nature of our approach (that

comes from breaking down the problem into small pieces) makes it suitable for highly-

structured problems. We demonstrate this property by fitting an intractable and very

high-dimensional state space model.
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Introduction

In statistical practice, the phenomenon under consideration is described by a probabilistic

model, p(X|θ), that assigns a probability to each possible outcome, X, given a parameter

vector θ. The so-called frequentist paradigm interprets θ as an unknown but fixed quan-

tity. In the Bayesian framework, in contrast, the (practitioner’s) uncertainty about the

model parameter is summarized by a prior distribution π(θ). Under the latter approach,

Bayes’ theorem then allows one to adequately process the information encapsulated in the

observed data Xobs. This learning machinery gracefully channels the available informa-

tion to the posterior distribution, π(θ|X) = p(X|θ)π(θ)/p(X), from which inference is

performed.

For most statistical models, the marginal likelihood p(X) is a complex, multidimen-

sional integral that cannot be directly evaluated, not even numerically – a distribution

that cannot be evaluated is said to be intractable. The statistical literature has a rich and

extensive array of methods for computing features of the posterior distribution (e.g. its

mean and quantiles) without directly evaluating p(X). These include but are not limited

to Markov Chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC). This thesis

focuses on the problem of statistical inference for models where not only the posterior

distribution normalizing constant p(Xobs) cannot be evaluated, but the likelihood p(X|θ)

itself is intractable. A number of strategies have been proposed to bypass this even harder

constraint. Composite likelihoods (Lindsay, 1988), Indirect inference (Gourieroux et al.,

1993), pseudo-marginal methods (Beaumont, 2003; Andrieu and Roberts, 2009) and syn-

thetic likelihoods (Wood, 2010) are all well-established classes of algorithms in this context.

We are particularly interested in the family of Approximate Bayesian Computation (ABC)

methods (Beaumont et al., 2002).

In its simplest formulation, known as rejection-ABC, the ABC algorithm avoids direct

evaluation of the likelihood by performing a sequence of three simple steps. First, a
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candidate parameter θ∗ ∼ π(θ) is drawn from the prior. Then, a synthetic (or pseudo)

sample, X∗ ∼ p(X|θ∗) is generated from the model conditionally on θ∗. Finally, θ∗ is

accepted as an approximate sample from the posterior distribution if, according to some

distance measure, S(X∗) ≈ S(Xobs), where S(·) is a function that collapses the data into a

lower-dimensional set of summary statistics. This algorithm implements what is arguably

the most obvious naive solution to the problem of estimation. Loosely speaking, to guess

which context (the true parameter) resulted in a given outcome (the observed dataset),

simply simulate a number of pairs (contexts, outcomes) and identify the contexts that

successfully replicated the outcome at hand. On the computational level, however, ABC

is remarkably inefficient. Notice that one needs to repeatedly draw full datasets from the

model.

Several papers have proposed solutions that improved the efficiency of ABC. Beaumont

et al. (2002), in the landmark paper Approximate Bayesian Computation in Population

Genetics, introduced the regression-adjustment technique, which we extensively exploit

and extend throughout this thesis. The idea involves using the synthetic samples to fit

regression models (of the form θ|s) to project the accepted particles into the space of the

exact partial posterior distribution p(θ|sobs). To lessen the ABC approximation error,

this procedure explicitly models the effect of accepting samples that are similar but not

identical to the observed summary statistics. More details about regression adjustment

is provided later in this thesis. Marjoram et al. (2003) embedded ABC into a Markov

Chain Monte Carlo algorithm in an attempt to increase the probability of generating a

candidate in the region of high posterior density. Sisson et al. (2007) used ABC to build an

approximate Sequential Monte Carlo (SMC) algorithm that targets the posterior through

a sequence of intermediate target distributions. Fearnhead and Prangle (2012) proposed

running a preliminary ABC analysis to roughly identify the support of the posterior and,

in a second stage, restrict the synthetic sampling to this more compact region. Prangle

(2016) implemented a lazy ABC that allows the algorithm to abandon some synthetic

samples that are likely to take too long to complete or to produce a synthetic sample

that would be rejected with very high probability. A reweighing step ensures that no

additional layer of approximation is induced. Nott et al. (2014) proposed the marginal

adjustment algorithm that mitigates the approximation error by correcting the ABC pos-

terior marginals. Precisely, they advocate estimating the marginals based on a reduced set
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of summary statistics and combine these estimates in a way that preserves the correlation

structure of the standard ABC estimate. Li et al. (2017) defined a copula-based formula-

tion that extended the marginal adjustment algorithm, improving the methods capacity

to capture bivariate correlations.

All these proposals have greatly expanded the reach of ABC to make room for ever more

challenging applications. Nevertheless, we have identified three major limitations that are

still in place. First, ABC was confined to the case of finite-dimensional parameter vectors,

and was therefore missing out on the fascinating advances made in area of nonparametric

Bayesian models. Second, to boost computational efficiency, most ABC approaches are not

able to properly estimate the posterior correlation – when applying regression-adjustment,

for instance, each component is usually modeled by an independent univariate regression

model. The adjustment can, in principle, be based on a multivariate specification, but

that creates technical complications, particularly for non-Gaussian error distributions,

that heavily limits the practical use of such implementations. Third, estimating high-

dimensional models (in the order of hundreds of parameters) is still extremely challenging.

This thesis proposes a list of solutions that partially address each of these issues.

Chapter 1 contains a detailed review of ABC, along with a brief discussion on related

likelihood-free methods. In Chapter 2, we combine a number of well-established ABC

methods to make possible the estimation of an intractable epidemiological model. This

chapter aims to give the reader a sense of the technical challenges that often arise when

using ABC in a real, complex problem. But most importantly, this study sheds light on

some important biological questions in regards to the evolution dynamics that lead to

multidrug-resistant tuberculosis.

Chapter 3 introduces a Bayesian nonparametric method for hierarchical modeling on

a set of related density functions, where grouped data in the form of samples from each

density function are available. Borrowing strength across the groups is a major challenge

in this context. To address this problem, we propose a hierarchically structured prior,

defined over a set of univariate density functions, using convenient transformations of

Gaussian processes. Inference is performed with a novel functional regression adjustment

ABC. The performance of the proposed method is illustrated via simulation studies and

an analysis of rural high school exam performance in Brazil.

In Chapter 4, a new likelihood-free algorithm for recalibrating an approximate posterior
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estimate is proposed. We show that it provides an useful additional layer of variation

reduction to ABC methods. In other non-ABC analyses, it adapts the ABC machinery to

correct deficiencies of an auxiliary estimation method. This work extends and strengthens

the links between ABC and indirect inference algorithms, allowing a more extensive use of

a misspecified auxiliary model. Illustrative examples are provided, along with a simulation

study that investigates the effects of recalibration under various conditions. The proposed

technique is applied to the estimation of the model parameters in a stereological extreme

value problem.

We introduce, in Chapter 5, a Likelihood-free approximate Gibbs sampler. Precisely,

we propose using ABC to approximate the so-called full conditional distributions, which

are then embedded in an otherwise intractable Gibbs sampler. By breaking the problem

(of estimating the full posterior) into smaller pieces (the full conditional distributions),

we are able to fit substantially more challenging models than would be possible using

vanilla ABC methods alone. We present two simulated toy examples that illustrate the

cases where the regression models used to build the approximations are and aren’t well

specified. To analyze a dataset of Airbnb rental prices we also implement an intractable

high-dimensional multivariate non-linear state space model.

Finally, we summarize the benefits and limitations of our contributions in the discussion

section, where we also identify promising avenues for further exploration.



Chapter 1

Background

Approximate Bayesian Computation methods are a family of simulation algorithms de-

signed to produce samples from an approximate posterior distribution. Such methods

were proposed as an alternative to standard Monte Carlo techniques to make statistical

inference possible for a class of applied problems where the likelihood function cannot be

evaluated. This chapter summarizes some of the most influential ABC approaches, partic-

ularly those directly related to the content introduced in the following chapters. Section

1.1 considers a simple introductory example of estimation via ABC. Then, in Section 1.2,

we explore more deeply the nature of each of the input elements that define an ABC sam-

pler (such as the summary statistics), taking the opportunity to provide some guidelines

in regards to the question of how to specify them in practice. To conclude, several ABC

approaches are reviewed in Section 1.3.

1.1 Introductory example

A rejection-ABC algorithm was previously described in the Introduction section. We

now turn our attention to a slightly more sophisticated version of ABC, known as ABC

importance sampling. The underlying principle is common to both implementations –

that is, to avoid direct evaluation of the likelihood by matching synthetic samples to an

observed dataset. But rather than simply rejecting or accepting a candidate parameter,

the latter algorithm generalizes the former by assigning an importance weight to each

approximate posterior sample.

The importance weights are defined by three interrelated components. First, a function
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to compute summary statistics from data, S(X), is chosen to reduce the dimension of the

objects being matched. Second, a distance metric, D(s, sobs) = ‖s− sobs‖, is employed to

measure the degree of similarity between a synthetic sample s and the observed summary

statistics sobs. Third, a weighting function, Kh(d), which is controlled by a bandwidth

parameter h, sets the importance weights according to D(s, sobs) – the bigger the distance

the smaller the weight.

Algorithm 1 produces weighted samples from the ABC posterior approximation given

by

πABC(θ|sobs) =
∫
Kh(‖S(x)− sobs‖)p(x|θ)π(θ)dx. (1.1)

It follows from Eq. (1.1) that if the analyst assigns weight proportional to one when the

observed summary statistics are perfectly reproduced (‖S(x) − sobs‖ = 0) and zero oth-

erwise, then Algorithm 1 generates exact samples from the partial posterior distribution

π(θ|sobs). However, this choice makes the sampler hopelessly inefficient, as the probabil-

ity of generating an acceptable match becomes prohibitively small. In general, specifying

those three components is a delicate, non-trivial task.

Algorithm 1 ABC Importance Sampling (vanilla version)
Inputs:

• A target posterior density π(θ|Xobs) ∝ p(Xobs|θ)π(θ), consisting of a prior distri-
bution π(θ) and a procedure for generating data under the model p(Xobs|θ).

• An integer Ñ > 0.
• An observed vector of summary statistics sobs = S(Xobs).
• A kernel function Kh(u) and scale parameter h > 0.

Sampling:
For i = 1, . . . , Ñ :

1. Generate θ(i) ∼ π(θ) from the prior.
2. Generate X(i) ∼ p(X|θ(i)) from the likelihood.
3. Compute the summary statistics s(i) = S(X(i)).
4. Assign θ(i) the weight w(i) ∝ Kh(‖s(i) − sobs‖).

Output: A set of weighted parameter vectors {(θ(i), w(i))}Ñi=1 ∼ πABC(θ|sobs).

Hereafter we explore – in a graphical, intuitive level – a simulated toy example to give

the reader a gentle introduction to the ABC machinery, with main focus on its opera-

tional aspects. For the sake of illustration, we consider a simple model characterized by a
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sequence of dependent stochastic events. Precisely, each observation, xi, i = 1, . . . , N , is

obtained by (a) drawing a sample from a normal distribution with mean θ and variance

1; and (b) if the value obtained in (a) is negative, multiplying it by -1 with probability

p = 0.5. The fundamental feature being that the action, or lack of thereof, in step (b)

is conditional on what happened in (a). Alternatively, this model can described by the

following equations:

xi =


|yi|, with probability p = 0.5.

yi, with probability 1− p = 0.5.

yi ∼ N(θ, 1).

We assigned a standard Gaussian prior for θ, which completes the (prior predictive)

data generative process under consideration. Conditioned on θ = −1, which we take as the

“true” parameter value, we simulated 50 samples from the model to act as the “observed”

dataset. The density function p(X|θ = −1) is depicted in the bottom-right plot in Figure

1.1.

The likelihood can be easily evaluated here. However, in more elaborated construc-

tions, where the number of probabilistic events are substantially higher, the conditional

structure becomes overwhelmingly complex, rendering the likelihood intractable (Luciani

et al., 2009; Tanaka et al., 2006). The epidemiological model analyzed in Chapter 2, for

example, assumes that, in each time step, several random events can take place for each

member of the population, depending on their current status – subjects can get infected,

recover, die, etc. The number of distinct ways in which the population could have reached

its final, observed state is extraordinarily large.

In this study, the univariate data is summarized by its sample mean, x̄, and standard

deviation, σ̂. The Euclidean distance and the Epanechnikov kernel were chosen as the

distance metric and the weighting function respectively. Algorithm 1 was then used to

generate Ñ = 1000 approximate samples from the ABC posterior distribution for a number

of tolerances h.

The upper-left plot in Figure 1.1 show the objects generated by Steps 1 to 3 of Al-

gorithm 1. Each parameter θ(1), . . . , θ(Ñ) is associated to two points in the plot – one

representing the mean and the other the standard deviation of the corresponding synthetic
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sample. The relationship between the parameter of interest and the summary statistics

forms an interesting pattern. When θ is large, the probability of generating a negative

sample y becomes negligible, so the density function effectively becomes a single normal

distribution centered at θ. In this region, the sample mean is sufficient for θ, while the

standard deviation becomes uninformative – notice the cluster formed around the true

standard deviation σ = 1. On the other side of the coordinate axis, when θ is, say, less

then -3, then each generated data point is reflected with probability 0.5, turning the den-

sity function into a mixture of two normals with opposite means. In this case, x̄ estimates

E(X|θ) ≈ 0, carrying no useful information about θ. The standard deviation, however,

assumes a linear, negative relationship with θ.

The vertical lines represent the “observed” summary statistics. We see that the model

can only reproduce σ̂ ≈ 1.5 if θ is in a neighborhood of -1. The plots in the right-hand-side

explore the relationship between θ and the computed Euclidean distances ‖s(i) − sobs‖.

Again, the observed patterns suggests that the distance can only be small if θ ≈ −1.

Step 4 of Algorithm 1 is illustrated by the following plots of Figure 1.1. We first set h

so that 25% of the candidate parameters are assigned positive weights. As the majority of

the original samples were discarded, the clouds of points now cluster more closely around

the vertical lines. As h is further reduced, the samples get even closer the space over which

the exact posterior is supported. On the other hand, the number of accepted samples also

shrinks, which prompts an increase in the Monte Carlo error. This trade-off, which is a

well-known feature of ABC methods, is observed in the bottom-left plot of Figure 1.1.

1.2 Constructing an ABC sampler in practice

For any given model, there are numerous ways to setup an ABC sampler. For a more

extensive introduction to the ABC literature, see Sisson et al. (2017a); Beaumont (2010);

Csillery et al. (2010); Lopes and Beaumont (2010); Bertorelle et al. (2010); Sisson and

Fan (2011); Turner and Van Zandt (2012); Blum et al. (2013). As illustrated in our toy

example, defining an appropriate weighting system is paramount to alleviate the ABC

approximation error.
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1.2.1 Summary statistics

Ideally, a set of sufficient summary statistics should be adopted, so that all available in-

formation is retained – in the sense that p(θ|Xobs) = p(θ|sobs). In addition, to increase

the sampler’s computational efficiency, the dimension of sobs should be kept as low as pos-

sible. That mitigates the so-called curse of dimensionality (Blum, 2010), which is a major

problem in the ABC context. This term refers to the practical difficulty in generating

synthetic samples that are “close” to the observed data when more than a few summery

statistics are considered. Or, from a more theoretical perspective, it means that the rate

in which πABC(θ|sobs) converges to π(θ|sobs), as a function of h, decreases dramatically

with the dimension of the summary statistic. In practice, fully accommodating these two

desirable properties (sufficiency and low dimension) is not generally possible. The ABC

literature was therefore compelled to propose various approaches to sensibly compact the

data (see Blum et al., 2013).

In our introductory example, we summarized univariate datasets by their sample mean

and standard deviation. This choice was inspired by statistical analogies. In Chapter 2.4.1

(Rodrigues et al., 2017a), we again follow this approach and condense the data, which is

akin to a design matrix of a regression model, by the unique elements of

(1|X)>(1|X),

where the vertical lines denote the addition of an extra column.

Domain knowledge is commonly abundant in statistical practice. Experts often know

beforehand what features of the data are related to the model parameters (Luciani et al.,

2009). In our toy example, because the negative samples change sign with a known

probability, the proportion of negative data points, for instance, is potentially informative

for θ.

Point estimators may still be available even when the likelihood is intractable. In

Section 5.4, we define as summary statistics the L-moment estimates (Peters et al., 2016)

of the parameters of the g-and-k distribution (Haynes, 1998). This choice results in a

reliable and easy-to-handle (in post-processing techniques) low-dimensional vector.

The principles of indirect inference (Gourieroux et al., 1993; Gleim and Pigorsch, 2013)

can also be employed in the ABC context (Drovandi et al., 2015; Martin et al., 2017;
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Drovandi et al., 2017). This powerful method makes use of an auxiliary, misspecified,

tractable model that offers a simplified representation of its intractable counterpart. The

maximum likelihood estimate (MLE), or maximum a posteriori probability (MAP) esti-

mate, of the auxiliary model is then used as a summary statistic in the ABC machinery.

Interesting applications of this technique are presented in Subsections 4.3.1 and 4.4. In

our introductory example of the previous section, one could assume that the likelihood

is sufficiently well approximated by a mixture of two Gaussian. The summary statistics

would then be defined as the MLE of the parameters of this misspecified model.

Non-parametrically representing the dataset is yet another way of deriving suitable

summary statistics. For instance, one could exploit the whole Kernel Density Estimator

(KDE), rather than just recording the mean and standard deviation. That is precisely

what we do in Section 3.3.1.

Instead of using one of the described approaches to directly define the summary statis-

tics, it is sometimes convenient to start with a large set of potentially informative features,

and then, in a second stage, reduce the dimension of s using a best subset selection ap-

proach. This can be executed based on various criteria, including measures of sufficiency

(Joyce and Marjoram, 2008), entropy of the posterior distribution (Nunes and Balding,

2010) and Akaike (AIC) and Bayesian Information Criteria (BIC) (Blum et al., 2013).

In an attempt to simplify the process of constructing appropriate summary statistics,

Fearnhead and Prangle (2012) proposed a semi-automatic approach. The authors advocate

using regression models and a preliminary ABC analysis to establish an estimator for the

posterior mean, as a function of data. Then, in a second round of ABC, for each synthetic

sample, they estimate the associated posterior mean, which is taken as the actual summary

statistic.

1.2.2 Distance metric

Next, once the observed data has been collapse down into a low-dimensional vector, one

needs to set a distance metric. The Euclidean distance (otherwise known as L2 distance)

is an obvious, but often suboptimal, option. In particular, when the summary statistics

are on substantially different scales (under the true model), the distances ‖s(i) − sobs‖

are dominated by the highest variability components of s. In that case, even if sufficient

summary statistics are in place, the algorithm will perform poorly.
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An appealing remedial measure to this problem is to standardize the entries of the sum-

mary statistics. However, that requires some knowledge of the variability of s, conditional

on the true parameter θ, which is obviously not available in advance.

There are a few documented ways to implement the standardization (e.g., Erhardt and

Sisson, 2016). The abc R function (Csilléry et al., 2012), for instance, divides, by default,

the components of s by the corresponding Median Absolute Deviation (MAD), computed

from the synthetic samples. Therefore, the standardization is based on the variability of

the prior predictive distribution, which may be considerably different than the one of the

true model.

Alternatively, a normalization may be performed implicitly, within the Mahalanobis

distance metric defined as

D(s, sobs) =
√

(s− sobs)′Σ−1
s (s− sobs) ,

where Σs denotes the covariance matrix of s|θ. Compared to the approach based on the

MAD, this has the advantage of taking into account the whole correlation structure. To

implement the normalization, Luciani et al. (2009) estimated Σs using samples generated

from p(s|θ̂), where θ̂ was an initial estimate of θ. Erhardt and Sisson (2016) showed that

this procedure outperformed the ABC implementation based on the Euclidean distance

on a stereological application.

Gutmann et al. (2017) framed the problem of quantifying the similarity between two

datasets as a classification problem – the idea involves resampling (or slicing) the observed

summary statistics sobs to create a collection of k replicates s̃1
obs, . . . , s̃

k
obs. Then, the the

distance D(s(i), sobs) is defined in terms of how accurately a (machine learning) classifier

can distinguish s̃1
obs, . . . , s̃

k
obs from the (resempled) synthetic samples s̃(i)1, . . . , s̃(i)k.

In Chapter 3, due to the functional nature of the summary statistics, we used the sum

of Kullback-Leibler (KL) divergences to measure the degree of separation (not distance in

the strict sense) between sets of density functions.

1.2.3 Weighting function

Throughout this thesis, we followed Beaumont et al. (2002) and took the Kernel function to

be the Epanechnikov kernel, defined as Kh(D) ∝ 1− (D/h)2 if D < h and zero otherwise.
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This function has the convenient property of assigning zero weight to all approximate

posterior samples for which the distance between the corresponding synthetic dataset and

the observed summary statistic is greater than h. That means that unsatisfactory samples

are promptly discarded, enhancing the computational efficiency (Fan and Zhang, 1999)

and reducing storage requirements.

Several other kernel weighting functions are available in the statistical literature. Nev-

ertheless, like other kernel density estimators, the ABC error is dominated by the choice

of h, rather then the actual form of Kh(D) (Blum, 2010). In practice, the bandwidth is

more naturally specified indirectly, through the acceptance fraction δ, which determines

the ratio of synthetic samples that are assigned positive weight.

For a fixed computational budget and ABC specification, finding the tolerance h that

minimizes the ABC error is impractical in all but the most trivial cases. In this context,

cross validation techniques allow the user to asses the effect of the choice of h on the

quality of the ABC estimate (Csilléry et al., 2012). These procedures involve using the

synthetic samples to compare several simulated ABC estimates (one for each of a number

of test sets) with the corresponding “true” parameters (which are known by construction)

in a standard leave-one-out approach.

Prangle et al. (2014) proposed a diagnostic to test whether the ABC posterior marginals

are well calibrated, in that the coverage property (as defined in Cook et al., 2006; Fearn-

head and Prangle, 2012; Prangle et al., 2014) is satisfied. If, for a given value of h the test

rejects the hypothesis that the approximate marginals are properly calibrated, then the

authors suggest further reducing the acceptance fraction (which comes at the expense of

the Monte Carlo error). In Chapter 4, we present an algorithm that exploits the diagnostic

output of such test to perform a recalibration-adjustment to the samples from an ABC

posterior approximation.

Bortot et al. (2007) treated the bandwidth as an unknown model parameter (see also

Ratmann et al., 2009), and then estimated it from the data within an ABC-MCMC sam-

pler (which we briefly describe in Section 1.3). Sisson et al. (2007), in turn, introduced

a Sequential Monte Carlo that allows the tolerance to be reduce gradually, through a se-

quence of ABC importance sampling stages (this technique is also considered in Section

1.3).
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1.3 ABC algorithms

The family of approximate Bayesian computation methods is rapidly growing, with new

schemes being proposed to boost algorithmic efficiency, reduce the approximation error

and extend the reach of likelihood-free models. For an up to date overview on ABC

methods, see Sisson et al. (2017a); Lintusaari et al. (2017).

For clarity of exposition only, we divide the ABC algorithms into three non-exclusive

categories. The first being composed by post-precessing techniques where the posterior

samples are adjusted in beneficial ways. The second class covers the strategies designed

to sample the candidate parameters from a more appropriate proposal distribution – and

therefore increase the probability of generating an acceptable match in the ABCmachinery.

Lastly, we consider the group of methods that, in different levels, address the curse of

dimensionality problem, fostering the capacity of ABC methods to accommodate high

dimensional models.

1.3.1 Post-processing adjustments

Based on distinct rationales, all methods described in this subsection share the same

underlying concept of moving the approximate posterior samples in an attempt to improve

the quality of the initial approximation.

We dedicate special attention to regression-adjustment techniques (Beaumont et al.,

2002; Blum and François, 2010; Blum et al., 2013) as these are exploited or extended in

each and every chapter of this thesis. To motivate their use, we revisit our introductory

example. For the uninitiated reader, Beaumont (2010) and Csillery et al. (2010) describe

the technique in a rather gentle and visual manner.

In the central-left plot in Figure 1.2, we re-reproduce (with rescaled axes) the weighted

synthetic samples for an acceptance rate of δ = 25%. However, for ease of explanation, we

only consider here the standard deviation summary statistic σ̂ (and not x̄). Our ultimate

goal is to generate exact samples from the posterior distribution, which, as previously

noticed, is restricted to the space depicted by the vertical line. Although no point falls

exactly in that region, a suitable regression model (from which the orange lines are created)

can be built to project the samples so that θ(i) behaves as an approximate sample from

π(θ|sobs), rather than an exact sample from π(θ|s(i)). This procedure therefore belongs to
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the class of conditional density estimation methods.

Beaumont et al. (2002) assumed a local linear model of the form

θ(i) = m(s(i)) + ε(i), (1.2)

where m(s(i)) = E(θ|s(i)) = α + β′s(i), and the ε(i) are independent zero-mean random

variables with common variance. The regression model parameters α and β are esti-

mated by the weighted least squares method – that is, they are obtained by minimizing∑Ñ
i=1w

(i)‖m(s(i))− θ(i)‖.

The approximate posterior samples are then adjusted to

θ̃(i) = m̂(sobs) + (θ(i) − m̂(s(i))) (1.3)

= θ(i) + β̂′(sobs − s(i)), (1.4)

where m̂(sobs) = Ê(θ|sobs) = α̂ + β̂′sobs is the estimated posterior mean, and the added

term represents the ith empirical residual. The geometrical interpretation of the orange

lines in Figure 1.2 are more easily understood through Eq. (1.4) – the correction depends

on the local linear model only though the estimated slope parameter β̂′. If the regression

model in Eq. (1.2) perfectly describes the underlying probabilistic relationship (in the

region such that D(s, sobs) < h), then the ABC sampler produces exact samples from

p(θ|sobs).

The model assumptions are generally not fully satisfied in practice. Figure 1.2 illus-

trates the role played by the acceptance rate in this context. Typically, when δ is large,

the regression model does not provide an adequate representation of the conditional dis-

tributions, leading to substantial systematic biases (upper-left plot). On the other end,

when δ is very low and the points are already close to sobs, the projection barely affects

the samples (the regression model nearly degenerates into a constant model, as seen in the

bottom-left plot). This behavior is also observed in Section 4.3.2, where we estimate the

parameters of a “twisted normal” distribution. The plots in the right-hand-side in Figure

1.2 show the adjustment effect in each case.

Blum and François (2010) extended the local linear model considered above in two

meaningful ways. First, they proposed an heteroscedastic construction to explicitly ac-

count for unequal error variances. Second, they suggested using neural networks to esti-
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mate non-linear conditional mean m(·) and variance σ2(·) functions. Adding to the effort

of making regression-adjustment more robust and suitable for a wider class of intractable

models, Blum et al. (2013) recommended using ridge regression to perform the projec-

tions, which avoids the risk of over-adjusting the posterior samples in the direction of

uninformative summary statistics. Chapter 3 (Rodrigues et al., 2016), in turn, extends

regression-adjustment to allow the estimation of infinite-dimensional parameters. This

requires fitting functional regression models (Ramsay and Silverman, 2005) in which the

dependent and the independent variables represent functional objects, rather than vectors.

Gutmann and Corander (2016) recently introduced a method that uses Bayesian op-

timisation techniques to make ABC more efficient. In this approach, the relationship

between the parameters θ and the distance metric D(s, sobs) is modeled. Therefore, while

regression-adjustment focuses on the information contained in the left-hand-side plots of

Figure 1.1, the Bayesian optimization for likelihood-free inference (BOLFI) exploits the

relationship shown in the right-hand-side plots.

Marginal adjustment (Nott et al., 2014) is yet another useful method that allows the

user to improve the precision of the marginal estimates while retaining the correlation

structure of a standard ABC estimator. The idea is to use ABC to estimate each posterior

marginal separately, using summary statistics that only need to be informative for the

individual parameter under consideration. These marginal estimates will be more accurate

simply because the lower dimensionality of the summary statistics reduces the curse of

dimensionality ABC error. The ABC samples (based on the full set of summary statistics)

are then shifted to match the individually fitted approximate marginals.

The effect of post-processing adjustments on the quality of the approximation is hard

to asses in practice. We propose in Chapter 4 a post-processing technique that recalibrates

an ABC estimator (or in fact any other Bayesian marginal posterior estimator), so that

the new estimate approximately satisfies the coverage property.
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Figure 1.2: The right-hand-side plots illustrate the mechanics of regression adjustment for different
acceptance ratios. The orange lines represent the projection induced by the assumed linear model.
Notice the different axis scales and the connection to Figure 1.1. Plots in the right-hand-side
overlays the ABC approximations before and after applying the linear regression adjustment.
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1.3.2 Methods for improving the proposal distribution

As previously mentioned, one of the main sources of error in ABC is that most of the

parameter values generate synthetic samples that are substantially different then the ob-

served summary statistics, particularly if the prior is diffuse with respect to the posterior.

Several families of methods have been created to tackle this particular problem.

Marjoram et al. (2003), for example, proposed the MCMC ABC algorithm. Similarly

to regular MCMC, in each iteration, a candidate parameter θ∗ is drawn from a proposal

distribution q(θ|θ(i−1)), conditional on the current parameter value θ(i−1). However, to

avoid direct evaluation of the likelihood, a synthetic dataset s∗ is drawn from p(s|θ∗).

Then, if D(s∗, sobs) < h, θ∗ is accepted (i.e. θ(i) = θ∗) with a Metropolis-Hastings

probability. Otherwise the chain remains unchanged (θ(i) = θ(i−1)). The MCMC ABC

algorithm indeed targets the partial posterior distribution (Marjoram et al., 2003).

After convergence, the chain is expected to stay in the region of high posterior density,

and therefore increase the probability of generating an acceptable match (as compared to

rejection ABC). However, it easily gets “stuck” in the tails of the posterior distribution, as

the condition D(s∗, sobs) < h will hardly be satisfied for an s∗ sampled from a parameter

in this region. The added synthetic simulation step also hampers the efficiency of the

algorithm, given that numerous synthetic datasets may need to be generated in each

MCMC iteration.

Fearnhead and Prangle (2012) suggested using a preliminary ABC analysis to roughly

learn the region A(θ) where the posterior has non-negligible mass. Then, in a second round

of ABC, the simulated samples are drawn from the truncated distribution π(θ)I(θ ∈ A),

which avoids time being wasted on samples that would almost certainly be rejected anyway.

The importance sampling ABC algorithm can be slightly adapted to allow the param-

eters to be generated from a more appropriate proposal distribution q(θ) (this implemen-

tation is detailed in Section 2.4). The sample weights are then set in a way that preserves

p(θ|sobs) as the target distribution. As with standard importance sampling, q(θ) should

be as close as possible to the unknown target distribution. In practice, however, finding a

suitable q(θ) is not always easy. Considering that, Sisson et al. (2007) introduced the se-

quential Monte Carlo ABC (SMC ABC) that provides a structured framework to address

this problem. In their scheme, a sequence of importance samplers is constructed in a way
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in which the proposal distribution gradually improves, becoming systematically closer to

the p(θ|sobs). A graphical illustration of this technique is available in Lintusaari et al.

(2017).

1.3.3 Mitigating the curse of dimensionality

All strategies described so far in this chapter are useful on their own or combined to

other methods. Nevertheless, even if we could draw candidate parameters from the best

possible proposal distribution (that is, the unknown posterior distribution itself), the curse

of dimensionality would still be present, imposing serious constraints in high-dimensional

models. Recognizing this fact, Prangle et al. (2016) proposed a clever sampling procedure

(named RE-ABC) that exploits rare event methods to estimate the likelihood function,

using this within the pseudo-marginal algorithm of Andrieu and Roberts (2009).

The concept of employing (auxiliary) statistical models to approximate the intractable

(target) model of interest has been developed in various forms. All these methods em-

pirically learn about (and correct for) the stochastic difference between the auxiliary and

the target models, otherwise one would be merely performing inference based on the

simplified (tractable but inadequate) representation of the phenomenon under considera-

tion. Examples of such model-based approximations include Bayesian indirect inference

(Drovandi et al., 2015, 2017), variational Bayes (Tran et al., 2017), synthetic likelihoods

(Wood, 2010; Ong et al., 2016), Gaussian mixture models (Bonassi et al., 2011), Gaussian

processes (Gutmann and Corander, 2016), Gaussian copula models (Li et al., 2017) and

regression density estimation (Fan et al., 2013).

Other techniques have been specifically designed to exploit the conditional architecture

of the likelihood. The reasoning here being that, whenever the intractable model can

be factorized into lower dimensional components, the summary statistics vector should

also allow a corresponding segmentation. For instance, in the estimation of a Bayesian

hierarchical model with θ = (θ(1), . . . ,θ(G),α), where α denotes the hyperparameters and

θ(g) are the parameters associated to group g, Bazin et al. (2010) notice that the posterior

distribution decomposes as p(θ,α|X) = p(α|X)∏G
g=1 p(θ(g)|α,X). Therefore, one may

summarize X into different groups of summary statistics, one for each component of θ, so

that the summary statistics comparisons are made in terms of lower dimensional vectors.

See also the expectation-propagation scheme by Barthelmé and Chopin (2014).
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Kousathanas et al. (2016) reformulated the MCMC ABC approach to increase the al-

gorithm’s acceptance rate. Their method combines two related innovations. First, they

suggest using a transition kernel that updates one parameter at a time. The proposal is

then accepted or rejected depending on the distance computed over a (low-dimension) vec-

tor of summary statistics – possibly specified as in Fearnhead and Prangle (2012) – that

only needs to be conditionally informative for the parameter being currently updated.

The method outperformed MCMC ABC by a sizable margin in some simulation stud-

ies. Nevertheless, the cost of generating multiple synthetic datasets (some of which are

unavoidably rejected) for each successful (individual) parameter update creates a heavy

computational burden.

In Chapter 5 we propose an approximate Gibbs sampler that combines both concepts

described in this section, namely, using auxiliary approximate models and decomposing

the posterior distribution in a beneficial manner. As in Kousathanas et al. (2016), we

also update one (or a few) parameter at a time, but the algorithms behave remarkably

differently. In our formulation, the ABC machinery is employed to approximate the full

conditional distributions, which then serve as the MCMC transition kernel. An important

advantage of our method is that once the approximations have been established, the

MCMC does not require simulation of new synthetic datasets.

As discussed above, ABC undoubtedly faces considerable challenges, and there is much

to be done. This is nevertheless a highly active area of statistical research, with numerous

opportunities to further develop and strengthen the existing methodologies. In the follow-

ing chapters we make new contributions in the areas of a) multidrug-resistant Tuberculosis

(MDR-TB), b) nonparametric density estimation, intractable hierarchical models, infinite

dimensional regression-adjustment, c) post-processing ABC techniques, d) approximate

Gibbs sampling for high dimensional ABC.



Chapter 2

Inferences on the acquisition of

multidrug resistance in

Mycobacterium tuberculosis using

molecular epidemiological data 1

2.1 Introduction

Tuberculosis (TB) is a lung disease caused by the bacterium Mycobacterium tuberculosis

which kills around 1.5 million people each year and remains a serious challenge for global

public health (WHO, 2015). Antibiotic drugs for treating TB have been available since the

mid 20th century, and currently implemented strategies for TB control rely on the efficacy

of these drugs. Treatment of TB involves combination therapy – in which multiple drugs

are administered together in part to improve killing efficacy. The “first-line” drugs used

in combination to treat tuberculosis are rifampicin, isoniazid, pyrazinamide, ethambutol

and streptomycin.

As with most other pathogens, resistance to antibiotic drugs has rapidly evolved in

M. tuberculosis. Streptomycin was the first of the first-line drugs to be developed and

deployed in 1943, but resistance was observed before the end of that decade (Mitchison,

1Published as: Rodrigues, G. S., Francis, A. R., Sisson, S. A., and Tanaka, M. M. (2017). Inferences on
the acquisition of multidrug resistance in Mycobacterium turbeculosis using molecular epidemiolgical data.
In Sisson, S. A., Fan, Y., and Beaumont, M. A. (Eds.), Handbook of Approximate Bayesian Computation,
in press, Chapman and Hall/CRC Press.
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1951; Gillespie, 2002). Of particular concern is the rise of bacterial strains resistant to

multiple drugs, as cases caused by them are difficult to treat successfully. Multidrug

resistance (MDR) is defined as resistance to both rifampicin and isoniazid. These are the

two most effective drugs against tuberculosis (when the strain is not resistant). Currently,

3.3% of new TB cases are multi-drug resistant (WHO, 2015). The occurrence of MDR-TB

strains that have additional resistance (called extensively drug resistant, XDR and totally

drug resistant, TDR) are particularly problematic and have the potential to cause large

outbreaks that are difficult to control (Gandhi et al., 2006). A better understanding of

how multiple drug resistance evolves would aid efforts to contain resistance and control

tuberculosis.

Genetic studies have established that many independent mutation events have led to

resistance (Ramaswamy and Musser, 1998). Although this suggests that mutation of genes

is an important source of resistance, model-based analysis of molecular data has revealed

that among resistant cases, most are due to the transmission of already resistant bacteria

(Luciani et al., 2009). It is therefore of interest to investigate whether or not this finding

also holds for multi-drug resistant tuberculosis.

The rates at which resistance evolves against different drugs vary. For instance, iso-

niazid resistance is known to be acquired faster than rifampicin resistance (Ford et al.,

2013; Gillespie, 2002; Nachega and Chaisson, 2003). The rates of mutation to resistance

per cell generation are low in absolute value; for example for isoniazid the rate is around

3× 10−8 and for rifampicin it is around 2× 10−10 (David, 1970; Gillespie, 2002), although

there is a high degree of variation across different lineages of M. tuberculosis (Ford et al.,

2013). One might therefore expect that double resistance of these drugs (MDR) evolves

at an exceedingly low rate (Nachega and Chaisson, 2003). However, MDR strains often

occur at appreciable frequencies (Zhao et al., 2012; Anderson et al., 2014) and a recent

study has presented a theoretical model showing how double resistance can evolve rapidly

within hosts (Colijn et al., 2011). It would be useful to establish whether such fast direct

acquisition of double resistance can be detected in bacterial isolates from epidemiological

studies.

To characterise patterns of TB transmission and drug resistance in a given geographic

region, bacterial isolates from TB patients are often genotyped using molecular markers

known as variable numbers of tandem repeats (VNTRs) which are repeated genetic se-
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Figure 2.1: VNTR loci mutate in a stepwise manner so that the number of repeat units at a
locus increases or decreases. In our analysis we assume that when mutation occurs at a locus j in
genotype i, the repeat number Vij increases or decreases by a single copy. We further assume that
a single unit (repeat number of 1) is an absorbing boundary. The hypothetical example shows how
mutation at locus number 13 creates a new VNTR genotype.

quences that exhibit variation across isolates. The source of this variation is mutation at

the VNTR genetic loci which leads to the expansion or contraction of repeat numbers at

those loci (Figure 2.1). A scheme for discriminating effectively among a set of isolates in-

volves considering repeat numbers at multiple VNTR sites. This molecular typing scheme

is called multi-locus VNTR analysis (MLVA); in the context of tuberculosis epidemiology

it is often known as mycobacterial interspersed repetitive units-VNTR (MIRU-VNTR)

(Mazars et al., 2001; Supply et al., 2006). Typing techniques such as MLVA have been

useful for tracking particular strains and understanding how drug resistance evolves and

disseminates at the epidemiological level (Monteserin et al., 2013; Anderson et al., 2014).

Here, we investigate the rates of drug resistance acquisition in a natural population us-

ing molecular epidemiological data from Bolivia (Monteserin et al., 2013). First, we study

the rate of direct acquisition of double resistance from the double sensitive state within

patients and compare it to the rates of evolution to single resistance. In particular, we

address whether or not double resistance can evolve directly from a double sensitive state

within a given host. Second, we aim to understand whether the differences in mutation

rates to rifampicin and isoniazid resistance translate to the epidemiological scale. Third,

we estimate the proportion of MDR TB cases that are due to the transmission of MDR

strains compared to acquisition of resistance through evolution. To address these problems

we develop a model of TB transmission in which we track the evolution of resistance to

two drugs and the evolution of VNTR loci. However, the available data (see Section 2.2)

is incomplete, in that it is recorded only for a fraction of the population and at a single

point in time. The likelihood function induced by the proposed model is computationally

prohibitive to evaluate and accordingly impractical to work with directly. We therefore
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approach statistical inference using approximate Bayesian computation techniques.

2.2 Data

The data set we use is taken from a study of tuberculosis in Bolivia (Monteserin et al.,

2013). Bolivia has a population of 11 million people and a TB incidence of 120 per 100,000

per year. This rate is comparable to the global incidence of TB (133 per 100,000 per year)

and to the rate in Peru, but is 3–6 times the TB incidence in neighbouring countries Brazil,

Paraguay, Uruguay, Argentina and Chile (WHO, 2015). In the molecular epidemiological

study, the investigators genotyped 100 isolates collected in 2010, which represented an

estimated 1.1% of the cases in Bolivia at the time of the study (Monteserin et al., 2013).

Each isolate was tested for drug sensitivity to five drugs. Here, we focus on resistance

against the two drugs isoniazid and rifampicin used to define multidrug resistance. Of the

100 isolates, 14 were found to be MDR, that is, resistant to both of these drugs, 78 were

sensitive to both drugs and the remaining 8 were resistant to isoniazid but sensitive to

rifampicin. No isolates were resistant to rifampicin while being sensitive to isoniazid.

In addition to these drug resistance profiles, each isolate was genotyped using 15 VNTR

loci. For example, an isolate in the data set, which was resistant to isoniazid but sensitive

to rifampicin, had the following 15 repeat numbers for its 15 VNTR loci: 143533233433527,

which together constitute its genotype. Variation in these genotypes occurs through a

process of mutation in which repeat numbers increase or decrease (see Figure 2.1).

Let g be the number of distinct genotypes present in a sample, and label the resistance

profiles by (0, INH, RIF, MDR), where 0 denotes sensitivity to both drugs, INH denotes

resistance to isoniazid and sensitivity to rifampicin, RIF denotes resistance to rifampicin

and sensitivity to isoniazid, and MDR denotes resistance to both drugs. The observed

data Xobs are then a g × 4 matrix of counts, such that each row gives the distribution of

isolates across the four resistance profiles for a given genotype and each column gives the

distribution of isolates across genotypes for a given resistance profile. The sum of entries

in a particular row is the number of isolates with that genotype, while the sum of entries

in a particular column is the number of isolates with that resistance profile. The data set

also includes a g × 15 matrix of repeat numbers from the VNTR genotyping.

The Bolivian data set is displayed in full in Table 2.1, which shows all g = 66 distinct
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genotypes and classifies all 100 isolates according to genotype and resistance profile. The

Xobs matrix is formed by combining the 0, INH, RIF and MDR columns.

Genotype 0 INH RIF MDR Genotype 0 INH RIF MDR

253533233433427 4 0 0 0 243413342212437 1 0 0 0
253533233433327 3 0 0 0 233312442212437 1 0 0 0
253533233433527 11 1 0 0 233313441212437 1 0 0 0
253533233433525 3 0 0 0 233413442212248 1 0 0 0
143533233433527 2 1 0 0 233413442212249 1 0 0 0
253333244232232 1 0 0 0 233213442212349 1 0 0 0
25333324423-232 1 0 0 0 231413542212335 1 0 0 0
254333243232342 0 2 0 2 232433242212436 1 0 0 0
263532232423139 3 0 0 0 234413442212436 1 0 0 0
223413442212437 2 0 0 0 434433452212427 1 0 0 0
233413542212347 0 1 0 2 256432342122237 2 1 0 0
244333244232332 0 0 0 1 256433342123236 2 0 0 0
244333244232322 1 0 0 0 247432342122136 1 0 0 0
245333244242332 1 0 0 0 268432252122227 0 1 0 0
254333244232232 0 0 0 1 268632252122227 1 0 0 0
254333244232332 1 0 0 0 221313352122338 0 0 0 1
254333244242332 1 0 0 0 263532233423148 1 0 0 0
253333244242232 1 0 0 0 360332233423138 1 0 0 0
252333243232232 0 0 0 1 263513233523344 1 0 0 0
252333243232332 0 0 0 1 253523233433527 1 0 0 0
251333243242332 1 0 0 0 253533232433527 1 0 0 1
252333243262222 0 0 0 1 253533232433427 1 0 0 0
244233234222322 1 0 0 0 253523133433527 1 0 0 0
233373242232325 1 0 0 0 253533133433527 1 0 0 0
252343242232524 1 0 0 0 353533233433427 0 0 0 1
25233234423251a 1 0 0 0 253533233433837 1 0 0 0
35234234423251a 1 0 0 0 253533233433237 1 0 0 0
233413442212338 0 1 0 0 254533233433537 0 0 0 1
233413442212335 1 0 0 0 253533233433536 1 0 0 0
233413442212337 1 0 0 0 252533233433428 1 0 0 0
21341344221233a 1 0 0 0 253534233433325 1 0 0 0
213413442212327 0 0 0 1 243533232433737 1 0 0 0
233413442212437 3 0 0 0 242433433433436 1 0 0 0

Table 2.1: Molecular data set compiled from Monteserin et al. (2013). All isolates were classified
according to their genotype and resistance profile. The symbol “a” represents 10 repeat units and
“-” represents missing data. The entries in the four columns sum to the total number of isolates,
100.

2.3 Model

In this Section we introduce a model that incorporates both VNTR-based genotyping and

drug resistance states. The dynamic variables of the model correspond to numbers of

cases of untreated and treated tuberculosis, their resistance states and VNTR genotypes

associated with these infections in the population. We will now briefly describe processes

involved in the model, and provide further details in the following Subsections.

An untreated case of TB can become detected and treated, and treatment involves a

combination of drugs including the two in question. Drug sensitive strains can acquire

resistance under treatment with some probability and thereby change their resistance
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state. Treated and untreated cases can infect susceptible individuals and convert them

to untreated cases. We disregard latent infections for simplicity (although latency is an

important feature of the natural history of tuberculosis), and focus on active infections

which are the larger source of new infections. Treated and untreated individuals can also

recover or die. Treated individuals enjoy an additional probability of recovery that depends

on the efficacy of the drugs, which in turn depends on the sensitivity or resistance of the

infecting strain. Treated and untreated cases are also associated with a VNTR genotype,

and this genotype evolves over time according to a stepwise mutation process for each

locus. Figure 2.2 shows the broad structure of the model with respect to treatment and

resistance states, while suppressing details of transmission, recovery, death and mutation

of the VNTR loci.

At the end of the period of evolution, a simple random sample of 100 isolates is taken

without replacement from the population, which matches the sample size of the Bolivian

dataset. This provides a full description of the generative process for the observable data.

Let G be the number of distinct genotypes in the population (the number of distinct

genotypes in the sample is g) and L be the number of VNTR loci used in the genotyping

scheme. For the Bolivian dataset L = 15. In the model, the variable G is unknown and

varies dynamically. We maintain three matrices which change through time: a G × L

matrix, V, which describes the VNTR genotypes; a G × 4 matrix, U, which describes

the numbers of untreated cases of tuberculosis classified according to VNTR genotype and

resistance state; and a G × 4 matrix T which describes the numbers of treated cases of

tuberculosis, again classified according to VNTR genotype and resistance state. It will be

useful to define a G × 4 matrix, W, whose entries are the total numbers of both treated

and untreated cases: W = U + T.

As it will be helpful to be able to pick out columns of these matrices, we adopt notation

for the standard basis vectors of Rn. Let ei denote the i-th basis (column) vector, so that

ei = (0, · · · , 0, 1, 0 · · · , 0)>, with the 1 in the i-th position. This allows us, for instance, to

write the columns of the matrix T corresponding to each resistance state as T0 = T e1,

TINH = T e2, TRIF = T e3 and TMDR = T e4, with similar notation for other matrices

(note that the dimension of the ei is left open but inferred from the matrix multiplication;

in this case they are in R4).

Further, writing 1i for the column vector in Ri whose entries are all 1, then the product
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T 14 is a G × 1 column vector whose entries are the numbers of individual cases of each

VNTR genotype in the treated population, and the product 1>G T 14 is the sum of all

the entries in T (the size of the treated population). Thus, we can write the size of the

susceptible population, S, as

S = N − 1>G W 14,

where 1>G W 14 is the size of the infected population, and where N is the total population

size which remains constant. We treat N as modelling the set of all individuals who come

in contact with infectious cases and so we exclude individuals who either do not encounter

infectious cases or are otherwise protected from infection. This variable therefore may be

smaller than the actual population size.

The components of each vector Tk for k = 0, INH, RIF or MDR, are integers, rep-

resenting the number of individual cases for each genotype. In the schematic diagram of

the model in Figure 2.2, we use Tk = 1>G Tk to represent the total population number of

treated individuals with resistance state k, with similar notation Uk = 1>G Uk to represent

the untreated populations. The matrix notation is gathered and shown in Table 2.2.

The arrows between populations in Figure 2.2 represent the directional rates of de-

tection and treatment τ and acquisition of resistance to each drug or set of drugs, so

that ρINH and ρRIF represent rates of acquisition of resistance to isoniazid and rifampicin

respectively and ρMDR the rate of double acquisition.

Symbol Meaning

V G× L matrix describing the VNTR genotypes.
U, T, W G × 4 matrices of untreated, treated and total

cases respectively, with columns corresponding
to resistance profiles.

Uk, Tk, Wk G × 1 column vector for resistance profile k of
untreated, treated and total cases respectively.

Uk, Tk, Wk Total population sizes of untreated, treated and
total with resistance profile k.

Ui,k, Ti,k, Wi,k (i, k) entries of the matrices U, T, W: the num-
ber of cases in each category with genotype i and
resistance profile k.

1i i× 1 column vector whose entries are all 1.
ei Column vector whose entries are 0 except for 1

in position i. Dimension determined by context.

Table 2.2: Summary of linear algebra notation.
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In this model time is discrete, and during each time step the following events takes

place in sequence.

1. Disease transmission giving rise to new cases;

2. Natural recovery, cure or death of cases;

3. Detection of cases which are then treated with drugs;

4. Conversion among resistant profiles in treated cases due to acquisition of resistance;

5. Mutation of the genetic marker (multiple VNTR loci).

The remainder of this Section provides details of how each of these events are modelled.

Readers wishing to focus on the statistical aspects of the ABC inference can skip these

subsections and go directly to Section 2.4.

We regard the above process as a discrete-time stochastic model rather than a discrete-

time approximation of a continuous-time stochastic process with rates approximating

probabilities, although the latter interpretation becomes more appropriate as the time

step length decreases. Here, rates of events will be treated as probabilities, which again

is appropriate when time steps are short. The rate parameters are measured in years but

we make time steps 1/12 of a year.

A summary of all model parameters, both fixed and to be estimated, and their mean-

ings, are provided in Table 2.3.

2.3.1 New infections

In our model, new infections occur by mass action. The per capita rate at which a

susceptible individual becomes infected by a case with resistance profile k is given by

βk/N times the number of infected cases in state k. The transmission parameters βk are

scaled by 1/N for convenience since realistic values of βk/N are typically very small, and

this ensures that the βk are on the natural “per person per unit time” scale.

The acquisition of resistance to antibiotics often comes at a cost to the fitness of the

bacterium, and we implement this fitness cost by assuming the transmission rate is lower

for cases that carry resistance. Specifically, we assume a cost of “c per drug”, so that if
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T0

TRIFTINH

TMDR

⇢RIF⇢INH

⇢MDR

⇢RIF ⇢INH

U0

URIFUINH

UMDR

⌧

⌧

⌧

⌧

Background parameters
� death rate
�k recovery rate
�k transmission rate
µ VNTR mutation rate
S susceptible population

Figure 2.2: Model structure for numbers of untreated (Uk) and treated (Tk) cases and per capita
rates of conversion (within-host substitution) among resistance classes. Rates are ρINH and ρRIF
for acquisition of resistance to isoniazid and rifampicin respectively, and ρMDR for single step
acquisition of resistance to both drugs. Detection (and treatment) of cases is shown with arrows
labelled with τ . Background parameters are shown in the table to the right, with rates per capita
per unit time, and resistance states k = 0, INH, RIF, MDR. The mutation process of the VNTR
locus is described in Section 2.3.5.

β0 is the transmission rate of sensitive cases, then cases resistant to one drug transmit

at rate βINH = βRIF = (1 − c)β0 and cases resistant to two drugs at βMDR = (1 − c)2β0.

Here, c = 0.1 is considered known and fixed based on previous analyses of molecular

epidemiological data (Luciani et al., 2009).

We now construct an expression for the average transmission probability across the

infected population. The matrix W records all infected cases with different resistance

states in each column, and the individuals corresponding to these columns have different

transmission rates β = (β0, βINH, βRIF, βMDR)>. If we write Dβ for the diagonal matrix

whose entries are from β, then the matrix WDβ is the infected population matrix W

whose columns have been scaled by the entries of β (the relevant transmission rates). The

expression

p = 1
N

1T
G WDβ 14

then gives the average transmission rate per susceptible individual. Since the population

size N is usually large and the time steps are short, the value for p will nearly always be

small. Accordingly, and to ensure that it does not exceed 1, we model the probability of

transmission per susceptible individual as p̃ = min{1, p}.
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Symbol Meaning Fixed value

δ rate of death and natural recovery 0.52
γ0 cure rate for resistance profile 0, when treated 0.5
γINH cure rate for resistance profile INH, when treated 0.25
γRIF cure rate for resistance profile RIF, when treated 0.25
γMDR cure rate for resistance profile MDR, when treated 0.05
N total susceptible population size in absence of disease 104

τ treatment and detection rate 0.5
c cost of resistance 0.1

Symbol Meaning Prior

β0 transmission rate for resistance profile 0 Gamma∗
µ mutation rate of VNTR per locus per unit time U(0, 1)

ρINH rate of acquisition of resistance to INH U(0, 1)
ρRIF rate of acquisition of resistance to RIF U(0, 1)
ρMDR rate of acquisition of resistance to INH and RIF U(0, 1)

Table 2.3: Summary of model parameters. The top set of parameters are given fixed values,
whereas the bottom set of parameters are allocated prior distributions and estimated using ABC.
Fixed values and priors are justified in Section 2.4.2. Rates are in units of per capita per year, but
the time unit is set to 1/12 year in simulations. ∗Specifically, β0 is assumed to follow a (shifted)
Gamma prior defined as β0− 0.68 ∼ Gamma(shape = 2, rate = 0.73). See Section 2.4.2 for further
details.

At each time step the number B of new infections is a random variable distributed as

B ∼ Binomial(S, p̃).

These B new infections are then allocated across VNTR genotypes and resistance profiles

according to the proportions represented by the matrix WDβ. That is, a multinomial ran-

dom sample distributes B according to the existing infected population and their relative

transmission rates, so that the resulting allocation is a G× 4 matrix ∆β. Finally, as new

infections are all assumed to be initially undetected, they are allocated to the untreated

subpopulation, so that the matrix U is updated to U→ U + ∆β.

2.3.2 Cure, recovery and death

Infected individuals who are untreated (the population represented by the counts U)

recover or die at rate δ = δr + δd per case per time unit, where δr > 0 is the rate of

recovery and δd > 0 is the rate of death due to any cause. The rate of cure due to

successful treatment may vary according to resistance profile, so this rate is given by γk
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for k = 0, INH, RIF, MDR. The number of cures, recoveries and deaths in a time step is

given by

R ∼ Binomial(U, δ)

for the untreated population, where U = 1>G U 14 is the total number of all untreated

cases, and

Ck ∼ Binomial(Tk, δ + γk),

for the treated population, where Tk is the number of treated individuals with resistance

profile k (as defined at the start of this Section). The R untreated recovered individuals

are distributed across both VNTR genotypes and resistance profiles with a multinomial

distribution according to the counts given in U. These are recorded in the G× 4 update

matrix ∆δ (so that the sum of the entries in ∆δ is R = 1>G ∆δ 14). Similarly, the Ck treated

recovered individuals of resistance profile k are distributed across the VNTR genotypes

according to the distribution observed in Tk. These recovered counts for all resistance

profiles are recorded in the G update matrix ∆δ+γ , which is constructed from the column

vectors of recovered treated counts for profile k in the order k = 0, INH, RIF and MDR.

The matrices U and T are then updated to U→ U−∆δ and T→ T−∆δ+γ respectively.

If the last instance of any genotype is removed by cure, recovery or death, the matrices

U,T,V are adjusted by removing the rows corresponding to those genotypes, and the

number of genotypes is updated with G→ G− 1.

Similarly to the case of new infections (Section 2.3.1), we assume that the recovery

rate due to treatment depends only on the number of drugs the infecting strain is resistant

to. Specifically, this implies that γINH = γRIF.

2.3.3 Detection and treatment

In this model, the detection of cases and the commencement of treatment are combined

as a single process. Detected cases are transferred from the untreated class to the treated

class. We denote this combined detection and treatment rate, per case, per unit time, as

τ > 0. With this rate we draw D individuals to transfer between untreated and treated

populations, where

D ∼ Binomial(U, τ).
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These D individuals are then allocated across VNTR genotypes and resistance profiles

according to the observed distribution of untreated cases, U. As before, this results in a

G× 4 update matrix ∆τ , which we use to update U→ U−∆τ and T→ T + ∆τ .

2.3.4 Acquisition of drug resistance

Individual treated cases are able to convert from one resistance profile to another through

adaptive evolution. That is, under drug treatment, natural selection acts to favour in-

creasing levels of resistance. As a result of this process, individuals may move from the

k = 0 resistance profile (sensitive to both drugs) to one of the other three resistance pro-

files: INH, RIF, or MDR (resistance to one or both drugs). Individuals may also move

from resistance to exactly one of the drugs (INH or RIF) to the multiple drug resistance

profile MDR. We respectively denote the rate of acquisition of resistance to INH or RIF

by ρINH and ρRIF, and denote the rate of acquisition of resistance from individuals in the

sensitive population to both drugs simultaneously by ρMDR. These conversions and rates

are illustrated schematically in Figure 2.2.

To model resistance acquisition, we select individuals to move between resistance pro-

files in the treated population i.e. between columns in the matrix T. Acquiring resistance

to the drug rifampicin will result in individuals moving from the column T0 to TRIF, and

from TINH to TMDR at a rate ρRIF. Similarly, acquiring resistance to the drug isoniazid

results in individuals moving from the column T0 to TINH, and from TRIF to TMDR at

a rate ρRIF. Simultaneous acquisition of resistance to both drugs moves individuals from

the column T0 to TMDR at the rate ρMDR. These movements occur between columns but

not across rows (infections do not change VNTR genotypes through this process).

Mechanistically, we can obtain the number of cases of genotype i transitioning from

resistance profile k to resistance profile k′, denoted Ai,k→k′ , as

Ai,0→∗ ∼ Multinomial(Ti,0, ρ0→∗)

Ai,INH→MDR ∼ Binomial(Ti,INH, ρRIF)

Ai,RIF→MDR ∼ Binomial(Ti,RIF, ρINH)

where Ai,0→∗ = (Ai,0→INH, Ai,0→RIF, Ai,0→MDR, Ai,0→0)> is the vector of cases transition-

ing from sensitivity, Ti,k is the entry of the matrix T corresponding to the genotype i
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and resistance profile k (see Table 2.2), and ρ0→∗ = (ρINH, ρRIF, ρMDR, 1−
∑
k ρk)> is the

vector of probabilities of these events.

If we denote ∆k→k′ as column vectors of counts of movements from resistance profile

k to k′ across all G genotypes, we can then construct the overall G× 4 update matrix

∆ρ = (∆0 | ∆INH | ∆RIF | ∆MDR) .

from the column vectors ∆k, which denote the total population change for resistance

profile k, where

∆0 = −(∆0→INH + ∆0→RIF + ∆0→MDR)

∆INH = ∆0→INH −∆RIF→MDR

∆RIF = ∆0→RIF∆INH→MDR

∆MDR = ∆0→MDR + ∆RIF→MDR + ∆INH→MDR.

The population of treated cases is then updated to T→ T + ∆ρ.

2.3.5 Mutation of the marker

The set of L = 15 VNTR loci constitute the genetic marker used to genotype bacterial

isolates (see Section 2.2). Each genotype is a list of numbers of tandem repeat units at the

L loci. The states of all VNTRs in the infected population are given by the G×L matrix

V with elements Vij describing the repeat number of locus j in genotype i. Each locus

mutates through a stepwise mutation process at rate µ per locus per case per unit time.

When mutation occurs, the repeat number Vij at a locus j of genotype i changes by +1 or

−1, each with probability 0.5. A repeat number of 1 is treated as an absorbing boundary

(i.e. there is zero probability of the repeat number increasing from 1 to 2) because at state

1 there is no longer a genetic sequence that is tandemly repeated and no mechanism such

as replication slippage acts to expand it from 1 to 2.

Mutation of the marker has the effect of moving cases between the rows of the ma-

trix W. We first identify the number of mutation events in the population, M , where

M ∼ Binomial(S, µ) and S = N − 1T
G W 14 is the size of the susceptible population (see

Section 2.3). The M cases are then distributed across the population of VNTR genotypes
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and resistance profiles, according to the entries of the matrices T and U. Each individual

case undergoing mutation corresponds to a specific entry in either T or U. This entry is

described by its VNTR genotype Vi = (Vi,1, . . . , Vi,L) where L = 15 for the Bolivian data,

and its resistance profile, k = 0, INH, RIF, MDR. The result of the mutation is a change

to the VNTR genotype, which is represented by a change in the repeat number at a single

locus, Vij , by ±1. This may or may not result in a VNTR genotype that is already present

in the population.

If the new VNTR genotype already appears as a row in the matrix V as an existing

type in the data, then there is no change to V. The matrix T or U on the other hand

is changed by subtracting 1 from one entry and adding one to another entry in the same

column (the resistance profile, k, does not change). In matrix terms, supposing the change

is to a treated case, this can be described by updating T → T − ei,j + ei,k, where ei,j is

the matrix whose entries are zero except for a 1 in the (i, j)-th position, and where the

VNTR genotype changes from row j to row k.

If the new VNTR genotype does not already appear in the population, then the matrix

V is expanded to include a new row describing the new genotype, so that V becomes a

(G+ 1)× 15 matrix. The update for T or U is the same as described above, except that

now both matrices are (G+ 1)× 4 dimensional. Subsequent to this update we increment

G → G + 1. If mutation of a VNTR genotype removes the last instance of the original

genotype from U and T the corresponding rows of matrices V, U and T are deleted,

requiring the update G→ G− 1.

2.3.6 Initial conditions of the model

The model covers the period from when drugs are introduced at time t = 0 to when sam-

pling occurs. Since the main first-line anti-tuberculosis drugs were discovered/developed

in the 1940s to early 1960s, we assumed treatment commenced around 1960 and ran the

simulation for a period of 50 years. We assumed that both drugs, isoniazid and rifampicin,

were introduced at the same time and are administered together in combination therapy.

The standard course of treatment includes both drugs along with other first-line drugs

(WHO, 2015).

We assume that at the start of the process all cases are sensitive to both drugs and

that the number of cases is at equilibrium in the absence of treatment and resistance.
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To compute this equilibrium state, we consider the differential equation describing the

deterministic version of the model ignoring VNTR genotypes. Namely,

dU

dt
= (β/N)SU − δU

where S = N −U and t indicates time. Setting dU/dt to zero and solving for the dynamic

variables we obtain equilibrium values of

Û = N

(
1− δ

β0

)
and Ŝ = δN

β

for U > 0.

The basic reproduction number of a pathogen R0 is defined to be the average number

of new infectious cases caused by a single infection in a completely susceptible population.

In our model, before there is any treatment, assuming all cases are doubly susceptible, a

single case on average persists for 1/δ years and generates Sβ0/N new cases per unit time

but since S = N in a wholly susceptible population then R0 = β0/δ.

All cases are initially untreated and sensitive. From time t = 0 treatment in the

population commences. To reintroduce into the model genetic variation at the marker loci,

the initial distribution of genotype clusters is a random sample drawn from the infinite

alleles model from population genetic theory (Ewens, 1972; Hubbell, 2001; Luciani et al.,

2008). The infinite alleles model depends on a single parameter, the diversity parameter,

which we set to 2ÛµL where Û is the number of cases, taken from the equilibrium value

described above, µ is the mutation rate per VNTR locus and L is the number of VNTR loci

used in genotyping isolates. To initialise the multi-locus VNTR genotypes, each genotype

is a sequence of random integers, of length L, with each VNTR number Vij drawn from a

discrete uniform distribution over {1, . . . , 10}. Although the initial distribution of genotype

clusters is set under the infinite alleles model, the mutation process for VNTRs brings the

distribution in line with the stepwise model over time.

The initial conditions are a function of the parameters which are set according to the

priors specified in Section 2.4.2.
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2.4 Inference with approximate Bayesian computation

For the model in Section 2.3, when the data are only observed at a single point in time, the

cost of evaluating the likelihood function is computationally prohibitive. This results from

the “incomplete” nature of the observed data (see Section 2.2) in the sense that we only

have access to a snapshot of the population, via the observed sample, at the time the study

was conducted, with no direct measurements of the system as it progressed. Computing

the likelihood then requires integrating over all potential trajectories the population could

have gone through before reaching its final, observed state.

As such we adopt approximate Bayesian computation (ABC) methods as a means of

performing Bayesian statistical inference for the unknown model parameters θ = (β0, µ,

ρINH, ρRIF, ρMDR)>. As observed in other chapters in this thesis, the ABC approximation

to the true posterior distribution is given by

πABC(θ|sobs) ∝ π(θ)
∫
Kh(‖s− sobs‖)p(s|θ)ds,

where π(θ) is the prior distribution, s = S(X) is a vector of summary statistics with

sobs = S(Xobs), p(s|θ) is the computationally intractable likelihood function for the sum-

mary statistics s, and Kh(u) = K(u/h)/h is a standard smoothing kernel with scale

parameter h > 0. In the following analyses we used the uniform kernel on [−h, h] for

Kh(u). The quality of the ABC approximation depends on the information loss in the

summary statistics s over the full dataset X, and the size of the kernel scale parameter h

with smaller h producing greater accuracy and increased computational cost. Choice of

both s and h are typically driven by the amount of expert knowledge and computation

available for the analysis.

For the present analysis we implement a version of a simple ABC importance sampling

algorithm, as outlined in the box. Given a suitable importance sampling distribution q(θ),

the algorithm produces a set of weighted samples from the ABC approximation to the

true posterior (θ(1), w(1)), . . . , (θ(Ñ), w(Ñ)) ∼ πABC(θ|sobs). As with standard importance

sampling, suitable choice of q(θ) is important to avoid high variance in the importance

weights, and also to avoid needlessly generating datasets s = S(X(i)), X(i) ∼ p(X|θ) for

which s(i) and sobs will never be close.
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Algorithm 2 ABC Importance Sampling

• A target posterior density π(θ|Xobs) ∝ p(Xobs|θ)π(θ), consisting of a prior distribu-
tion π(θ) and a procedure for generating data under the model p(Xobs|θ).

• A proposal density q(θ), with q(θ) > 0 if π(θ|Xobs) > 0.

• An integer Ñ > 0.

• An observed vector of summary statistics sobs = S(Xobs).

• A kernel function Kh(u) and scale parameter h > 0.

Sampling:
For i = 1, . . . , Ñ :

1. Generate θ(i) ∼ q(θ) from sampling density q.

2. Generate X(i) ∼ p(X|θ(i)) from the likelihood.

3. Compute the summary statistics s(i) = S(X(i)).

4. Assign θ(i) the weight w(i) ∝ Kh(‖s(i) − sobs‖)π(θ(i))/q(θ(i)).

Output:
A set of weighted parameter vectors {(θ(i), w(i))}Ñi=1 ∼ πABC(θ|sobs).

To determine a suitable importance sampling distribution q(θ) we adopt a two stage

procedure, following the approach of Fearnhead and Prangle (2012). In the first stage we

perform a pilot ABC analysis using a sampling distribution that is diffuse enough to easily

encompass the ABC posterior approximation obtained for a moderate value of the kernel

scale parameter h. We specified q(θ) ∝ π(θ)I(θ ∈ A) which is proportional to the prior,

but restricted to the hyper-rectangle A. Here, A is constructed as the smallest credible

hyper-rectangle that we believe contains the ABC posterior approximation. As such,

this q(θ) will identify the general region in which πABC(θ|sobs) is located. Specifically,

for θ = (β0, µ, ρINH, ρRIF, ρMDR)> we adopt q(θ) = π̃15(β0) × U(0, .005) × U(0, .01) ×

U(0, .005) × U(0, .001), where π̃15(β0) is the prior π(β0) for β0 specified in Section 2.4.2,

but truncated to exclude density above the point β0 = 15.

For posterior distributions with strong dependence between parameters, defining q(θ)

over such a hyper-rectangle may be inefficient as it will cover many regions of effectively

zero posterior density. Accordingly we construct the sampling distribution for the second

stage, with the lowest value of h, as a kernel density estimate of the previous ABC estimate

of the posterior distribution: q(θ) = ∑
iw

(i)L(θ|θ(i)), where L is a suitable kernel density

(not to be confused with the kernel Kh). This approach follows the ideas behind the
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sequential Monte Carlo-based ABC samplers of Sisson et al. (2007) and others. At each

stage the kernel scale parameter h is decreased, and determined as the value which results

in ∼ 2,000 posterior samples with non-zero weights, for the given computational budget.

To ensure greater efficiency at each stage we also performed a non-linear regression

adjustment using a neural network with a single hidden layer (see Blum and François,

2010; Csilléry et al., 2012; Beaumont et al., 2002), as implemented in the R package abc.

The adjustment used logistic transformations for the response.

For samples drawn from the final importance sampling distribution q(θ), the data gen-

eration procedure took on average ∼ 40 seconds in R. This is computationally expensive

from an ABC context, and could be reduced by recoding the simulator in a compiled

language such as C, or by adapting the “lazy ABC” ideas of Prangle (2016) to terminate

early those simulations that are likely to be rejected. In this implementation we per-

formed importance sampling from each distribution q(θ) in parallel on multiple nodes of

a computational cluster.

2.4.1 Summary statistics

Considering the matrix structure of the observed data Xobs (see Section 2.2), we determine

the information content in X as if it was the design matrix of a regression model and

summarise it accordingly. Specifically, we define the summary statistics s = S(X) to be

the upper-triangular elements of the matrix

(1g|X)>(1g|X),

where the vertical lines denote the addition of an extra column of ones. The added columns

of ones enriches the set of summary statistics by including the row and column totals of

X. Alternatively, these summary statistics can be described as:

i) g: the number of distinct genotypes in the sample.

ii) nk: the number of isolates with resistance profile k = 0, INH, RIF and MDR.

iii) ck,k′ = (Xk)>Xk′ : the dot product between the resistance profiles of k and k′ within

X.

Note that these summary statistics are over specified in that n0 +nINH +nRIF +nMDR
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equals the total number of isolates sampled from the population, which is known and

equal to the number of isolates in the observed data sample (100 for the Bolivian data).

Accordingly, and without loss of generality, we remove nMDR as a summary statistic to

avoid collinearity. In combination, this set of 14 summary statistics efficiently encapsulates

the available information about the covariance structure of the original dataset X, the

distribution of the isolates among the different resistance profiles and the degree of diversity

of isolates within the sample.

For the Bolivian dataset, there are g = 68 distinct genotypes, n0 = 78 sensitive isolates,

nINH = 8 isolates resistant to isoniazid only, nRIF = 0 isolates resistant to rifampicin only

and nMDR = 16 doubly resistant isolates (see Table 2.1). The remaining statistics, ck,k′ ,

are computed as:

0 INH RIF MDR

0 232 15 0 1

INH – 10 0 6

RIF – – 0 0

MDR – – – 18

Finally, in order to reduce the impact of summary statistics operating on different

scales, we compare simulated and observed summary statistics within the kernel Kh(‖s−

sobs‖) via the L 1
2
norm

‖s− sobs‖ = ‖S(X)− S(Xobs)‖ =

dim(s)∑
j=1

[S(X)j − S(Xobs)j ]
1
2

2

,

where dim(s) = 14 is the number of summary statistics. Alternative approaches could

rescale the statistics via an appropriate covariance matrix (e.g. Luciani et al., 2009; Erhardt

and Sisson, 2016) or use other norms, however the results in the following Section proved to

be robust to more structured comparisons, so we did not pursue this further. In particular

the following results were robust to these choices because of the use of a good (non-linear)

regression adjustment, which greatly improves the ABC posterior approximation, and

which has a larger impact on this approximation than the choice of metric ‖ · ‖.
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2.4.2 Parameter specifications and prior distributions

Of the 13 model parameters (see Table 2.3), eight of these are known well enough for the

purposes of our analysis to fix their values. Namely, the parameters (δ, γ0, γINH, γRIF, γMDR,

N, τ, c)> are set to these fixed values. We justify our choices for these values below. The

remaining five parameters θ = (β0, µ, ρINH, ρRIF, ρMDR)> are to be estimated, and require

a prior distribution specification.

The rate of death or recovery, δ, is fixed and set to be δ = 0.52 per case per year

following Dye and Espinal (2001) and Cohen and Murray (2004). Similarly, following Dye

and Espinal (2001), untreated individuals are detected and treated at rate τ = 0.5 per

case per year. The rates of recovery due to treatment, γk, for resistance profiles k = 0,

INH, RIF and MDR, can be written in terms of the probability of treatment success

pk = δr + γk
δd + δr + γk

.

We set the cure rates to be γ0 = 0.5, γINH = γRIF = 0.25, γMDR = 0.05, which, by using

δr = 0.2 (Dye and Espinal, 2001; Cohen and Murray, 2004), corresponds to treatment

success probabilities of approximately p0 = 0.69, pINH = pRIF = 0.58 and pMDR = 0.44.

These values are within the supported ranges in the literature, namely, p0 = 0.45− 0.75,

pINH = pRIF = 0.3 − 0.6 and pMDR = 0.05 − 45 (Blower and Chou, 2004). We chose

higher values within these ranges since Blower and Chou (2004) explored a wide range of

possibilities in models including epidemiologically pessimistic scenarios.

In a whole-genome sequencing study based on a dataset involving a Russian population,

Casali et al. (2014) state that the fitness cost of drug resistance is negligible for certain

bacterial strains (see also Pym et al., 2002). Nevertheless, the overall fitness cost, c, is

expected to be positive and to vary geographically, being ultimately determined by which

strains are predominantly circulating in the region. In this study, c was fixed and set to

be c = 0.1, according to estimates by Luciani et al. (2009).

To set the total population size N we first observe that because the sample of 100

isolates represents ∼ 1.1% of the population, this implies that the infected population is

9091. We expect that the number of susceptible individuals who are exposed to disease is

somewhat higher than this. Accordingly, we assumed that the total size of the population

susceptible to tuberculosis is N = 10, 000. Larger total population sizes can be used, at
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the price of greater computational overheads for generating data under the model.

Previous work estimated rates of resistance acquisition by mutation to be around

0.0025− 0.02 per case per year (Luciani et al., 2009). The rate of mutation of the VNTR

loci in M. tuberculosis was estimated to be around 10−3 per locus per case per year (Reyes

and Tanaka, 2010; Aandahl et al., 2012; Ragheb et al., 2013) but lower estimates have also

been found (Wirth et al., 2008; Supply et al., 2011). All of these mutation rates are much

lower than 1. We treat these mutation rate parameters as probabilities and conservatively

set the standard uniform distribution as a wide prior on each parameter. That is, for the

acquisition of resistance to isoniazid or rifampicin (or both), we specify priors for the rates

of resistance acquisition as ρINH, ρRIF, ρMDR ∼ U(0, 1). Similarly, for the mutation rate of

the VNTR molecular marker, µ, we use the prior µ ∼ U(0, 1).

The transmission parameter for doubly sensitive strains β0 is given the shifted gamma

prior

β0 − 0.68 ∼ Gamma(shape = 2, rate = 0.73)

where the parameters are chosen such that the resulting prior distribution of the basic

reproduction number R0 closely resembles the distribution obtained in a numerical analysis

of tuberculosis dynamics by Blower et al. (1995). Note that the prior on β0 is shifted in

order ensure the realistic condition that R0 > 1. A value of R0 lower than unity would

lead to extinction of M. tuberculosis.

We reiterate that we interpret the rate parameters as probabilities per time step and

handle the parameters so that their values remain in (0,1). This approximation increases

in accuracy as the time unit decreases. Here we divide the natural time unit of one year

into new units of 1/12 year per time step.

2.5 Competing models of resistance acquisition

We estimate the rates of acquisition of drug resistance to rifampicin and isoniazid by

fitting the model described in Section 2.3 to the Bolivian data (Monteserin et al., 2013)

with the ABC method described in Section 2.4. Additionally, by constraining particular

resistance-acquisition parameters ρk to produce meaningful submodels of the full model,

we are able to examine two specific biological questions. The relationships between the

two submodels and the full model are illustrated in Figure 2.3. First, we ask whether
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it is possible for multidrug resistance to evolve directly from doubly sensitive bacteria or

whether this direct conversion does not occur (i.e., ρMDR = 0: Submodel 1). Second, we

ask whether differences between rates of mutation to rifampicin and isoniazid resistance

are apparent at the epidemiological scale (i.e., ρINH = ρRIF = ρsingle: Submodel 2).

ρINH

ρINH

ρRIF

ρRIF

ρMDR

(a) Full model

ρINH

ρINH

ρRIF

ρRIF

(b) Submodel 1

ρsingle

ρsingle

ρsingle

ρsingle

ρMDR

(c) Submodel 2

Figure 2.3: Three candidate models of acquisition of multiple drug resistance. (a) The full model:
two different rates of conversion leading to acquisition of resistance and a rate of conversion from
resistance profile 0 to resistance profile MDR. This model is also shown in Figure 2.2. (b) Submodel
1: no direct conversion from resistance profile 0 to resistance profile MDR (ρMDR = 0). (c)
Submodel 2: same rate of conversion for the two drugs (ρINH = ρRIF = ρsingle).

Figure 2.4 illustrates the ABC marginal posterior density estimates of each parameter

under the three different sets of model assumptions. Under the full model there is a clear

visual difference between the rates of mutation of rifampicin and isoniazid resistance, with

the latter occurring at a much higher rate. In contrast, the rate of simultaneous resistance

acquisition appears to be higher than that for rifampicin alone. When eliminating the

possibility of simultaneous acquisition of multiple drug resistance ρMDR = 0 (Submodel

1), ρINH and ρRIF both increase, relative to the full model, to compensate for the imposed

restriction when fitting to the observed data (Figure 2.4b). Similarly, when we fix the

identity ρINH = ρRIF = ρsingle (Submodel 2) to impose a single rate of resistance acqui-

sition, the posterior density of this parameter moves to intermediate values compared to

the two distinct rates of acquisition estimated under the full model (Figure 2.4c). ABC

marginal posterior means and highest posterior density (HPD) credible intervals for all

models are reported in Table 2.4.

2.5.1 Can resistance to both drugs be acquired simultaneously?

To determine whether resistance to both drugs can evolve directly from a double sensitive

strain within an infection, we compare Submodel 1 (ρMDR = 0) against the full model.
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ρINH ρRIF ρMDR µ β0

Full model
Posterior mean 1.14× 10−3 1.67× 10−4 2.62× 10−4 1.64× 10−3 2.85
CI lower limit 3.40× 10−4 3.82× 10−6 3.93× 10−6 1.11× 10−3 0.97
CI upper limit 1.94× 10−3 4.28× 10−4 5.81× 10−4 2.40× 10−3 5.33

Submodel l
Posterior mean 1.60× 10−3 6.37× 10−4 – 1.59× 10−3 3.29
CI lower limit 4.55× 10−4 1.27× 10−4 – 1.03× 10−3 1.20
CI upper limit 2.49× 10−3 1.24× 10−3 – 2.19× 10−3 5.78

Submodel 2
Posterior mean 3.46× 10−4 – 1.56× 10−4 1.70× 10−3 2.81
CI lower limit 7.26× 10−5 – 6.62× 10−7 1.10× 10−3 0.86
CI upper limit 6.90× 10−4 – 3.76× 10−4 2.54× 10−3 5.20

Table 2.4: ABC posterior means with lower and upper limits of the 95% HPD (highest posterior
density) credibile intervals for each parameter of each fitted model.

Formal standard Bayesian model comparison typically occurs through Bayes factors. In

the ABC framework this task is complicated by the need to perform ABC with summary

statistics that are informative for the model indicator parameter, in addition to those

informative for the model specific parameters. Such summary statistics can not only be

difficult to identify, but the resulting composite vector of summary statistics can be high

dimensional, which may then produce more inaccurate inference than if each model was

analysed independently. See e.g. Robert et al. (2011); Marin et al. (2014) and Marin et al.

(2017, this volume) for a discussion of these issues. A useful alternative is to consider

posterior predictive checks or related goodness-of-fit tests (e.g. Thornton and Andolfatto,

2006; Csillery et al., 2010; Aandahl et al., 2012; Prangle et al., 2014).

Figure 2.5 shows the posterior predictive distribution of the summary statistics (n0, nINH+

nRIF, nMDR) described in Section 2.4.1, for the full model (panel (a)) and Submodel 1

(panel (b)), where a darker intensity indicates higher density. This predictive distribution

graphically illustrates each model’s ability to generate the observed summary statistics

(78, 8, 16), indicated by the asterisks, which represent the number of individuals in the

sample sensitive to both drugs (n0), resistant to a single drug (nINH +nRIF) and resistant

to both drugs (nMDR).

The predictive distributions for each model are diffuse, particularly for the full model.

This variability is expected given that the sample size is small (100 isolates) and that the

evolution of drug resistance from sensitivity is a relatively rare stochastic event. In the
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Figure 2.4: Estimated ABC marginal posterior densities for each estimated parameter under (a)
the full model, (b) Submodel 1 (ρMDR = 0), and (c) Submodel 2 (ρINH = ρRIF = ρsingle). Panel (d)
shows the estimated ABC marginal posterior density of the transmission rate β0 of the sensitive
strain for each model structure.

case of Submodel 1 (Figure 2.5 panel (b)) where we impose the condition ρMDR = 0, the

density of samples is shifted away from the bottom-right corner which represents double

resistance. This pattern is due to the lack of the direct route to multidrug resistance. The

observed data (asterisk) is in a region of low posterior predictive density under Submodel

1, and so we conclude that this model is not particularly supported by the data. In

contrast, the observed data lie more clearly within a moderately high density region of the

posterior predictive under the full model (Figure 2.5 panel (a)). This analysis therefore

suggests that of the two competing hypotheses, it is more likely that resistance to both

drugs can be acquired simultaneously (ρMDR > 0) than otherwise. Note, however, that
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(b) Submodel 1: ρMDR = 0

Figure 2.5: Posterior predictive distribution of (n0, nINH + nRIF, nMDR) under the full model
(panel (a)) and Submodel 1 (panel (b)). Darker intensity indicates higher posterior density. The
asterisk (*) indicates the observed data (78, 8, 16).

this direct route is not the only possible path to double resistance, which can still occur

in stages through single resistance.

2.5.2 Is resistance to both drugs acquired at equal rates?

In order to determine whether the rates of acquisition of resistance to the two drugs are

equal (ρINH = ρRIF), we compare Submodel 2 against the full model. Figure 2.6 depicts the

posterior predictive distribution of (nINH, nRIF) under each model – the number of cases

resistant only to isoniazid (nINH) and the number of cases resistant only to rifampicin

(nRIF) in the sample. The observed values of these summary statistics are nINH = 8

for isoniazid and nRIF = 0 for rifampicin, illustrated as the asterisk in Figure 2.6. As

Submodel 2 does not favor any drug over the other, the predictive surface is symmetric

with respect to the line nINH = nRIF. The extra flexibility provided by the full model

shifts the predictive distribution towards the observed data. While the distribution under

the full model comfortably accommodates the empirical point in a high density region,

the predictive distribution under Submodel 2 is much more diffuse. This indicates that

while the observed data is not unsupported under Submodel 2, it is far more likely to be

observed under the full model. As a result, we conclude that the evidence favours the

drugs being acquired at different rates; specifically, isoniazid resistance evolves faster than

rifampicin resistance.
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(b) Submodel 2: ρINH = ρRIF

Figure 2.6: Posterior predictive distribution of (nINH, nRIF) under the full model (panel (a)) and
Submodel 2 (panel (b)). Darker intensity indicates higher posterior predictive density. The asterisk
(*) indicates the observed data (8, 0).

2.5.3 The relative contribution of transmission and treatment failure to

MDR-TB

In addition to estimating the rates of acquisition of drug resistance and assessing whether

rates differ, we may also consider where doubly resistant cases come from. That is, esti-

mation of the relative contribution to multidrug resistant cases of transmission of existing

MDR-TB strains compared to treatment failure leading to evolution of multidrug resis-

tance. The posterior predicted samples generated under the full model provide a clear

portrait of the relative contribution of the different paths to achieving double resistance

(see e.g. Luciani et al., 2009) for an additional illustration of this procedure.

Table 2.5 shows the means, medians and the 95% HPD credible intervals for the pre-

dicted proportion of cases of double resistance from each potential source. These propor-

tions are obtained conditionally on there being at least one case of double resistance in

the predictive sample. Simulated samples of this nature account for 99.67% of all predic-

tive samples. The predictive distributions of the proportions are highly asymmetric (not

shown), making the median a more reliable point estimate than the mean.

In the overwhelming majority of posterior predictive samples, direct transmission was

the main source of acquisition of double resistance, followed by conversion in a single step

directly from a sensitive profile (from profile 0 to MDR) and conversion in two steps via

a state of resistance to a single drug (from profile 0 to INH to MDR, or from 0 to RIF to
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MDR). This analysis corroborates the finding from Section 2.5.1 that ρMDR is most likely

positive, and furthermore that this path is likely to be of even greater importance than

conversion in two steps.

Source Median Mean 95% Credible Interval

Transmission 0.9975 0.9655 (0.7826, 0.9999)
Conversion in one step 0.0023 0.0284 (0.0000, 0.1667)
Conversion in two steps 0.0000 0.0060 (0.0000, 0.0073)

Table 2.5: Contributions to MDR-TB from alternative sources. This table contains the posterior
medians and means and lower and upper limits of the 95% HPD credibility intervals for the
proportion of double resistance cases originating from each possible source.

2.6 Conclusions

In this chapter we have estimated epidemiological parameters describing the acquisition of

multi-drug resistance in M. tuberculosis from molecular epidemiological data (Monteserin

et al., 2013) using approximate Bayesian computation. The underlying model is intended

to capture essential processes that give rise to the data, namely, transmission of the dis-

ease, recovery or death, and within-host evolution giving rise to drug resistance and new

genotypes at the molecular marker loci. From this analysis we may draw three major

biological conclusions about the manner in which drug resistance arises.

First, there is an asymmetry in the acquisition of resistance to isoniazid and rifampicin.

Specifically, isoniazid resistance occurs approximately an order of magnitude more fre-

quently than resistance against rifampicin (see Table 2.4). This asymmetry in rates is

consistent with in vitro (that is, through laboratory experiments) microbiological esti-

mates of mutation rates per cell generation which find around 1 to 2 orders of magnitude

difference between the two rates (David, 1970; Ford et al., 2013).

Second, the analysis supports the occurrence of direct conversion from doubly drug

sensitive to doubly resistant (MDR) infections. This may be initially unintuitive because

under mutation alone, if mutation occurs at rate ρ per gene per unit time, the rate of

appearance of double mutants is ρ2, which would be vanishingly small if ρ is low. However,

using a mathematical model, Colijn et al. (2011) argued that direct conversion can occur

surprisingly fast because resistant cells are sometimes present at low frequencies in a

within-host population even before treatment commences. Our analysis of data at the
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epidemiological level is consistent with that theoretical result. This direct conversion

to double resistance is epidemiologically important as it accelerates the accumulation of

resistance, in that resistance evolution does not have to take place sequentially. Once

double resistant mutants appear, transmission of these mutants further increases their

prevalence in the population.

Third, the overwhelming majority of cases of multidrug resistant tuberculosis come

from transmission of already multidrug resistant strains (see Table 2.5), a finding that

is consistent with those of Luciani et al. (2009). This large contribution of transmission

occurs despite the 10% transmission cost of each resistance which results in a ∼ 20% cost

for MDR-TB. This implies that in controlling drug resistance, although there is widespread

concern about treatment failure leading to rising resistance, most resistant cases may be

due to transmission. Therefore, although it is important to support treatment adherence,

public health efforts may benefit from focusing more on preventing disease transmission.

That is, control measures that reduce the incidence of new cases are likely to help reduce

MDR-TB.

By developing epidemiological models with evolutionary processes we have been able

to estimate parameters describing how drug resistance – particularly multidrug resistance

– emerges in M. tuberculosis. Although there is existing knowledge of rates of mutation

to resistant states in vitro, there is a need to assess the extent to which those rates

translate to the epidemiological level. Large scale molecular epidemiological models, such

as those presented here, are highly complex and multidimensional, and as such, likelihood-

based analyses are not straightforward mathematically or computationally. In such cases,

approximate Bayesian computation methods present a practical and viable approach to

making statistical inferences, particularly as continually advancing molecular technologies

require dynamical models to be extended and refined.
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Functional regression approximate

Bayesian computation for

Gaussian process density

estimation 1

3.1 Introduction

We introduce a new statistical procedure for hierarchical modelling on a set of related

densities fi(x) for i = 1, . . . , g, based on random samples {Xij} such that Xij ∼ fi(x)

for j = 1, . . . , ni. The benefits of hierarchical modelling are well known in the parametric

context, where the same model is fitted to different but related datasets or groups, and

where model parameters are allowed to vary across groups (Gelman et al., 2004). A

hierarchical prior may be defined on the group varying parameters, and the data used

to determine how much pooling of information to perform across groups. The problem

considered here is the nonparametric equivalent of this. Here, the nonparametric density

functions fi(x) are thought to be related and we aim to share information hierarchically

to improve estimation of each density, especially for those densities fi(x) for which the

corresponding sample size ni is small.

Bayesian nonparametric methods have made enormous advances over the last two
1Published as: Rodrigues, G. S., Nott, David J. and Sisson, S. A. (2016), “Functional regression

approximate Bayesian computation for Gaussian process density estimation.” Computational Statistics
and Data Analysis, 103, 229-241.
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decades. The Dirichlet process (DP) (Ferguson, 1973) has played a central role in this de-

velopment. Methods based on Dirichlet process mixture (DPM) models, where a mixing

distribution is given a Dirichlet process prior, are a standard approach to flexible Bayesian

density estimation (Lo, 1984; West et al., 1994; Escobar and West, 1995). These meth-

ods also have extensions to grouped data and the estimation of a set of related density

functions, the problem considered here. Important methods for grouped data include the

analysis of densities model of Tomlinson and Escobar (1999) which uses a DPM model

for each density in which the base measure for the mixing densities is the same and given

a DPM prior; the hierarchical Dirichlet process (Teh et al., 2006) where mixing distri-

butions are given DP priors with a common base measure which is given a DP prior;

Dirichlet process mixture of ANOVA models (De Iorio et al., 2004) where the atoms in

a Dirichlet process are modelled as dependent on a covariate following an ANOVA type

dependence structure; and the hierarchical model of Muller et al. (2004) in which distri-

butions are modelled as a mixture of a common and group specific component, with these

components being given DP mixture priors.

One alternative to DP based methods in Bayesian nonparametrics is the use of Gaus-

sian processes (Leonard, 1978; Thorburn, 1986; Lenk, 1988, 1991; Tokdar, 2007; Tokdar

and Ghosh, 2007). However, to the best of our knowledge hierarchical versions of Gaussian

process priors for grouped data situations have not been developed in the literature (for

the case of non-grouped data, see Flaxman et al., 2016). Gaussian process methods can

be attractive because the parameters in the resulting priors allow very easy expression of

relevant prior information, such as smoothness of the densities and, in the hierarchical

setting, the extent of sharing information between groups. For the DP mixture based

methods, on the other hand, generally prior information must be expressed through a

prior on a mixing distribution, through which it is difficult to adequately express similar

prior beliefs. One reason that Gaussian process density estimation methods are not more

popular is perhaps the computational difficulty. Such difficulties are even more acute in

the hierarchical setting involving grouped data.

Here we introduce a hierarchical Gaussian process (HGP) prior, formulated as a uni-

variate hierarchical extension of the multivariate prior proposed by Adams et al. (2009),

and discuss tractable methods for computation with this prior. Our construction, besides

being able to handle an arbitrary number of hierarchy levels, provides a convenient way
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of expressing prior beliefs regarding both the degree of similarity between the densities

and the nature of their characterising features, such as smoothness and support. We

also establish a remarkably different approach for making inference. Instead of relying

on Markov chain Monte Carlo (MCMC) methods to draw samples from the posterior dis-

tribution, as is commonly implemented in other approaches to Gaussian process density

estimation (Adams et al., 2009) which can suffer from poor performance, we alternatively

introduce an approximate Bayesian computation (ABC) (Beaumont et al., 2002) func-

tional regression-adjustment to draw approximate samples from the posterior. The use of

ABC to estimate functional objects in itself represents an important contribution to the

ABC literature. Moreover, this approach provides a great practical advantage in terms of

flexibility, as, for most cases, changes to the prior specification are operationally straight-

forward to accommodate and do not require the derivation and coding of a new MCMC

sampler.

In Section 3.2, we introduce the hierarchical Gaussian process prior and present an

algorithm for sampling data from this prior. Section 3.3 describes the inferential strategy

for estimating the functional parameters. Performance of the proposed density estimator

is investigated in the simulation studies in Sections 3.4 and 3.5. Finally, in Section 3.6, we

use the proposed estimator to compare rural high school exam performance across states

in Brazil.

3.2 The hierarchical Gaussian process prior

We specify a hierarchical Gaussian process prior on the set of densities fi(x), i = 1, . . . , g,

as follows:

fi(x) = L(Zi(x))b(x|φ)
ci(φ,Zi)

(3.1a)

Zi(x) ∼ GP(µ(x), k(x, x′|θZ)) (3.1b)

µ(x) ∼ GP(m(x), k(x, x′|θµ)) (3.1c)

(θZ , θµ) ∼ π(·). (3.1d)

Here L(z) = 1/(1 + exp(−z)) denotes the logistic function and GP(µ(x), k(x, x′|θ)) rep-

resents a Gaussian process with mean function µ(x) and covariance function k(x, x′|θ)
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with parameters θ. b(x|φ) is an arbitrarily chosen parametric base density with hyper-

parameters φ. It can be regarded as the modeller’s ‘best guess’ of the densities fi(x)

and the ‘center’ of the prior distribution – the term L(Zi(x)) acts by ‘deforming’ b(x)

to create new densities. The function m(x) is a conveniently chosen function discussed

further below, π(·) is a hyperprior for the parameters of each covariance function, and

ci(φ,Zi) =
∫
L(Zi(x))b(x|φ)dx is the normalising constant of fi(x).

Gaussian processes are a common tool for modelling functional data and can be un-

derstood as an infinite-dimensional generalization of the Gaussian distribution. A detailed

review of Gaussian processes is found in Rasmussen and Williams (2006). See also Shi

and Choi (2011) for a comprehensive treatment of Gaussian processes in functional data

analysis.

Equation (3.1a) defines a deterministic map from auxiliary functions Zi(x) to the nor-

malised densities fi(x). Operating on the transformed space avoids difficulties otherwise

implied by the intrinsic properties of density functions – namely, that they be non-negative

and integrate to one. Under this prior, all marginal densities are considered potentially

related, and bound by a common Gaussian process mean function µ(x) (Equation 3.1b),

which is itself unknown. The above formulation, though simple, will be shown to be highly

adaptable, and capable of adequately describing a wide range of possible prior beliefs. For

ease of presentation only two levels of hierarchy are described above, but it is straightfor-

ward to incorporate multiple hierarchical levels, as is illustrated in the analysis of Brazilian

school exam performance in Section 3.6.

For this article, we adopt as covariance function the squared exponential kernel k(x, x′) =

σ2 exp
(
−(x− x′)2/(2`2)

)
, although other options are easily accommodated. The hyperpa-

rameters (θZ , θµ) = (σZ , `Z , σµ, `µ) play a crucial role in the behaviour of fi(x). Figure 1

shows g = 5 densities drawn from the proposed prior under various parameter settings for

(σZ , `Z , σµ, `µ). The standard uniform distribution was chosen as the base density b(x|φ)

and we set m(x) = −10 (the motivation for this choice will be made clear in Section 3.3).

While the `’s are length-scale parameters that determine the speed with which the

covariance decays as a function of the distance |x − x′|, the σ parameters dictate how

similar the densities are to b(x|φ), with larger σ indicating less similarity. The ratio

σZ/σµ defines how closely related the different densities are: if the ratio is large, the

densities are nearly independent (Figures 3.1a and 3.1c). On the other hand, if the ratio
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(c) σZ = 1, `Z = 1, σµ = 0.1, `µ = 1
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Figure 3.1: Samples from the prior distribution based on the squared exponential function with
g = 5, under varying prior conditions. The above panels show: (a) independence and dissimilarity
to the base density (σZ = 1, `Z = 0.1, σµ = 0.1, `µ = 0.1); (b) dependence and dissimilarity to the
base density (σZ = 0.1, `Z = 0.1, σµ = 1, `µ = 0.1); (c) independence and similarity to the base
density (σZ = 1, `Z = 1, σµ = 0.1, `µ = 1), and (d) dependence and similarity to the base density
(σZ = 0.1, `Z = 1, σµ = 1, `µ = 1).

is small, most of the variability is due to the variation of the common mean, which results

in very similar marginal densities (Figures 3.1b and 3.1d).

3.2.1 Sampling from the prior

Approximate draws from this prior may be naturally obtained by sequentially sampling the

unknown parameters from the top (Equation (3.1d)) to the bottom (Equation (3.1a)) of

the hierarchy. It is possible to derive an exact sampler using an extension of Algorithm 3.1

in Adams et al. (2009). However, for a faster simulator, we favor a finite-dimensional ap-
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proximation as in Tokdar (2007), which results in the so-called surrogate prior. Therefore,

while the prior introduced in Equation (3.1) is defined over infinite-dimensional param-

eters, our inference scheme is based on a finite approximation, which differs from the

implementation in Adams et al. (2009) and Muller et al. (2004).

In particular, we first sample the hyperparameters (θZ , θµ) ∼ π(·) from (3.1d). Next,

define xlow and xhigh to be the lower and upper β-quantiles of b(x|φ), where β is chosen

to be small, and construct a regular grid of k points on the range [xlow, xhigh], i.e., ψ1 <

. . . < ψk, with ψj = xlow + (xhigh − xlow)(j − 1)/(k − 1), for j = 1, . . . , k.

It follows from the Gaussian process definition that µψ = (µ(ψ1), . . . , µ(ψk))> follows

a k-variate normal distribution with mean mψ = (m(ψ1), . . . ,m(ψk))> and covariance ma-

trix Σ, with typical element Σij = k(ψi, ψj |θµ). Sampling µψ is therefore trivial. Similarly,

we obtain Zψi = (Zi(ψ1), . . . , Zi(ψk))>, i = 1, . . . , g, as draws from the multivariate normal

distribution N(µψ,Λ), with covariance matrix defined as Λij = k(ψi, ψj |θZ). The normal-

ising constants ci(φ,Zi) may then be estimated using numerical integration. Through

(3.1a), this uniquely determines the corresponding densities fψ1 , . . . , fψg .

Each vector Zψi and fψi represents a discretized observation of the corresponding un-

derlying function. Continuous approximations for Zi(x) and fi(x) can then be obtained by

fitting B-splines to each of these vectors via least squares, resulting in Z̃i(x) and f̃i(x), re-

spectively. The quality of this approximation, including the degree to which
∫
f̃i(x)dx ≈ 1,

is controlled by the number of points in the grid, k, and the number of basis functions

used. In general, the approximation errors introduced by the B-spline approximation

tend to be dominated by the ABC approximation error, however it is good practice as

part of the inference procedure to investigate the quality of the B-spline approximation

to the synthetic KDEs, and increase the number of grid points if required. Finally, data

Xij may be generated from f̃i(x) using a rejection sampling algorithm with b(x|φ) as

the proposal distribution. A candidate x∗ is accepted with probability f̃i(x∗)/[Mb(x∗|φ)],

where M = max{f̃i(x)/b(x|φ)}. The value of M is unknown, but may be determined by

numerical search.

In practice, choosing an appropriate base density is important to promote a reasonable

algorithmic efficiency. In this regard, perhaps more important than the actual shape of this

density, making sure that the support of b(x|φ) is similar to the support of the posterior

predictive distribution is particularly critical.
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3.3 An approximate Bayesian inferential procedure

The resulting posterior distribution is given as

p(Z, θ|D) = p(Z, θ)p(D|Z)∫ ∫
p(Z′, θ′)p(D|Z′)dZ′dθ′

∝ π(θZ , θµ)p(µ(x)|θµ)
g∏
i=1

p(Zi(x)|µ(x), θZ)
ni∏
j=1

L(Zi(xij))b(xij |φ)
ci(φ,Zi)

,

where p denotes a joint or conditional distribution, θ = (θZ , θµ), Z compactly denotes the

set of functions Z1(x), . . . , Zg(x) and D represents the observed data. The above posterior

distribution is computationally difficult to work with directly. As an alternative we develop

an approximate Bayesian computation procedure. ABC methods have been extensively

developed to draw samples from an approximation to the posterior distribution, based only

on the ability to sample data from the model, without the need to evaluate the posterior

directly. See e.g. Beaumont et al. (2002); Blum et al. (2013); Nott et al. (2014) for more

details on ABC methods. As part of this inference, we extend the ideas behind the ABC

regression-adjustment (Beaumont et al., 2002) to the functional setting.

Samples from the posterior distribution can be used to estimate any quantity of inter-

est, such as the mean or quantiles of fi(x). Here, the posterior mean E[fi(x)|D], which is

a function itself, is a Bayes estimator for fi(x). Note that while any given sample from

p(Zi(x)|D) corresponds to a unique sample from p(fi(x)|D), the reverse does not hold.

3.3.1 ABC for Gaussian process density estimation

Approximate Bayesian computation methods implement an approximate Bayesian infer-

ence based on the matching of simulated and observed summary statistics. A typical

rejection-sampling ABC algorithm applied to this particular context would be as follows:

1. Draw a sample (a set of density functions) from the hierarchical Gaussian process

prior using the method described in Section 3.2.1, and generate synthetic data from

these densities of the same size as the observed data.

2. Summarise the synthetic data using a set of summary statistics. We adopt the well

known kernel density estimator, computed for each group, i = 1, . . . , g.

3. If the resulting summary statistic is, by an appropriate metric, similar to the sum-
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mary statistic computed over the observed data, accept the densities generated in

step 1. Otherwise these are rejected.

4. Repeat steps 1–3 to produce m accepted samples.

The popularity and computational simplicity of the kernel density estimator makes it a

suitable candidate to play the role of the summary statistic in the ABC procedure. In

particular, we employ a Gaussian kernel and set the bandwidth as h = σ̂(4/3n)−1/5 where

σ̂ denotes the sample standard deviation (Scott, 1992). We denote byKil(ψj) the resulting

kernel density estimate obtained from the data in group i in synthetic dataset l evaluated

at ψj , for i = 1, . . . , g, l = 1, . . . ,m. Alternative density estimators can be adopted,

providing they are computationally fast.

Step 3 above requires the specification of a measure of similarity between the synthetic

and observed data. Here, a natural and convenient option is to define the divergence of

synthetic dataset l from the observed data as

Dl =
g∑
i=1

k∑
j=1

(
log(Kobs

i (ψj))− log(Kil(ψj))
)
Kobs
i (ψj), (3.2)

where Kobs
i (ψj) denotes the kernel density estimator described above applied to the ob-

served data in group i, evaluated at ψj . Therefore, the contribution of group i is pro-

portional to a quadrature estimate of the Kullback-Leibler divergence of Kil from its

(observed) counterpart Kobs
i . The Kullback-Leibler measure imposes heavier penalties

for differences occurring in regions of higher estimated likelihood, which positively con-

tributes to its performance. Other valid divergence measures could be formulated based,

for example, on integrated squared errors or on the Kolmogorov-Smirnoff statistic.

In order to produce more accurate posterior samples, we follow Beaumont et al. (2002)

and weight the samples according to how well the synthetic data reproduces the observed

data through (3.2) using the Epanechnikov kernel w(D) = 1 − (D/δ)2 for D ≤ δ and 0

otherwise. Here δ is a threshold which determines how close the synthetic and observed

summary statistics must be before the sample densities are accepted as an approximate

draw from the posterior distribution in step 3. Its value is often determined in terms of a

quantile of the obtained divergences of a large number of samples {Dl} (Beaumont et al.,

2002; Blum et al., 2013).

Notice that the Kullback-Leibler divergence between synthetic and observed (func-
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tional) summary statistics is not affected by the choice of k. Therefore, increasing the

number of grid points does not lead to the well-known curse of dimensionality problem,

even though it does add to the method’s computational burden, given that the functions

then need to be evaluated at more locations.

3.3.2 A functional regression-adjustment

As with all ABC algorithms, the approximation error associated with the ABC method

described in Section 3.3.1 can be substantial, unless the threshold δ is small. However,

if δ is too small, then the acceptance rate of the algorithm will be prohibitively low.

Beaumont et al. (2002) proposed the regression-adjustment as a simple approach to adjust

the posterior samples obtained with δ > 0, so that δ ≈ 0. In the simple parametric

regression model considered, a (local) linear relationship

ϑ = α+ β>(s− sobs) + ε

is assumed to hold between the model parameters ϑ and the vector of simulated and

observed summary statistics, s and sobs, where ε denotes a zero mean error. In the present

setting, s and sobs respectively represent the kernel density estimator summaries Ki and

Kobs
i for each group i. If this regression model approximately holds, then

ϑ∗ = ϑ− β̂>(s− sobs),

where β̂ is the least-squares estimate of β, is an approximate draw from the posterior

with s = sobs (i.e. δ = 0.) This expression for ϑ∗ is obtained as the fitted regression

mean at sobs, which is α̂, plus the empirical residual ϑ− α̂− β̂>(s− sobs). See Beaumont

et al. (2002); Blum and François (2010); Blum et al. (2013) for further discussion of

standard regression-adjustment methods. In the present setting, we may similarly perform

a regression-adjustment, but using a functional regression model (Ramsay and Silverman,

2005) due to the functional nature of the parameters and summary statistics (Ki and

Kobs
i ).

From the definition of the logistic function, log(L(z)) = − log(1 + exp(−z)) ≈ z, for

negative values of z. As a specific example, log(L(−5)) = −5.0067. Therefore, Equation
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(3.1a) can be rewritten as

Zi(x) ≈ log
(
fi(x)ci(φ,Zi)

b(x|φ)

)
. (3.3)

This approximation is accurate up to the fourth decimal place for Zi(x) ≤ −10,∀x, which

can be easily achieved through appropriate choice of m(x). In this article we set m(x) =

−10. In this operating region, Equation (3.3) implies that changes to the choice of m(x)

(provided it remains a constant function) only affect the normalising constants ci(φ,Zi),

with no impact on the densities fi(x). A useful, additional advantage of using a negative

mean function for µ(x) is that this prior does not give strong support to unrealistic, flat-

peaked densities, which can happen if one setsm(x) = 0. Equation (3.3) forms the basis to

appropriately specify a functional regression model. For group i = 1, . . . , g and synthetic

dataset l, we write

Z̃il(x) = offset + γi0(x) + γi1(x) log(K̃il(x)) + γi2(x) log(K̃p
l (x)) + εl(x), (3.4)

where Z̃il(x) denotes a B-spline fitted to Zil(ψ1), . . . , Zil(ψk), γi0(x), γi1(x) and γi2(x) are

functional regression parameters to be estimated, and εl(x) is a realisation of a zero-

mean functional error term ε(x). Recall that Z̃il(x) is the l-th synthetic realisation of the

random function Z̃i(x), which in turn represents the B-spline approximation of Zi(x) (the

Gaussian process associated to group i). The offset term is given by log
(

b(x|φ)
ci(φ,Z̃il)

)
and

is computed through (3.1a), K̃il(x) denotes a B-spline fitted to Kil(ψ1), . . . ,Kil(ψk), and

log(K̃p
l (x)) is the KDE computed over the pooled data. With this construction, while

log(K̃il(x)) conveys information from the i-th group itself, log(K̃p
l (x)) explores what has

been observed in the combined data, irrespective of the group classification. Accordingly,

the functional term γi2(x) defines how much strength should be borrowed, and from where

on the density as a function of x.

From (3.3) and (3.4) it can be seen that the data relates to Z̃i(x) through the function

log
(

[K̃i(x)]γ1(x)[K̃p(x)]γ2(x)
)
.

This means we are ultimately using the logarithm of a weighted geometric mean between

the group-specific and pooled kernel densities to model the dependent functional object.
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By no means we are suggesting that our final estimate is simply a weighted geometric

average – there are other terms in the model.

Based on (3.4), approximate samples from the marginal posterior distribution p(Zi(x)|D)

can then be obtained by performing the functional regression adjustment

Z̃∗il(x) = Z̃il(x)− γ̂i1(x)[log(K̃il(x))− log(K̃obs
i (x))] − (3.5)

γ̂i2(x)[log(K̃p
l (x))− log(K̃p, obs(x))],

where γ̂i1(x) and γ̂i2(x) are least-squares estimates of γi1(x) and γi2(x) (obtained using the

R package fda, Ramsay et al. (2013)), and where K̃obs
i (x) and K̃p, obs(x) are the equivalent

summary statistics obtained from the observed data.

Note that the right-hand side of the proposed functional regression model (3.4) is only

defined for strictly positive kernel estimates. If necessary, this can be artificially satisfied

by adding an arbitrary tiny constant to the kernel estimates. This modified summary

statistic ensures the model is well-defined and may provide extra stability.

Finally, while the above regression models are intuitive and seem sensible, as with the

parametric regression-adjustment (Beaumont et al., 2002) they remain only a model for the

perhaps complex relationships that exist between the density estimates and the summary

statistics. Given that the regression model is fitted to those samples for which Dl < δ, this

means that the local-linearity assumption of (3.4) may be adequate for many situations

providing that δ is sufficiently small. As for the parametric regression-adjustment, more

complex models can be developed if required (Blum and François, 2010).

3.4 A simulated example

In this section we present a simulated analysis to illustrate some important features of the

ABC density estimator. We construct g = 10 groups, with sample sizes 5, 20, 35, . . . , 140.

The base density is taken to be the standard uniform distribution and the prior for the pa-

rameters of the squared exponential covariance functions is σZ , σµ, `Z , `µ ∼ Gamma(3, 5),

which is fairly uninformative. The gamma distribution provides good a priori control over

the densities’ features, as compared to e.g. the single-parameter half-Cauchy distribution,

and can be easily specified to avoid placing too much mass in unrealistic regions of the pa-

rameter space. In particular, very low values of the length-scale parameters ` (see Figure
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3.1) induce remarkably erratic densities (with many modes) that would be unreasonable

in many applications. Further, the inclusion of such erratic densities in the functional re-

gression adjustment can affect the quality of the resulting ABC posterior approximation.

While this effect can be minimized by increasing the number of samples generated from

the prior in order to produce more samples closer to the observed density, the gamma

prior provides a good balance of modelling flexibility and computational efficiency.

In this example, the ‘true’ densities are a random realization from the prior, with the

exception that a moderate degree of similarity between the densities was specified by fixing

σZ = 0.5 and σµ = 1. The ‘observed’ data were then sampled from the true densities using

the procedure described in Subsection 3.2.1. We generate 50, 000 samples from the prior

distribution and accept the m = 5, 000 samples closest to the observed data. We use

k = 100 grid points and fit the B-spline functions using 50 basis terms.
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Figure 3.2: (a) True densities and (b) kernel density estimates of the simulated data from g = 10
groups. Group 1 (5 datapoints) and group 10 (140 datapoints) are highlighted.

We focus our attention on groups 1 and 10, as they have the smallest and largest sample

sizes, respectively. Figure 3.2 shows the true densities (left panel) and the corresponding

kernel density estimates (right panel) of each of the groups, with the latter also representing

a first crude estimation of the respective densities. Although the density estimate for

group 10 looks reasonable, the estimation for group 1 is clearly unsatisfactory due to the

low sample size. The well known boundary-bias of this kernel density estimator (Wand

et al., 1991; Chen, 1999; Jones, 1993; Jones and Henderson, 2007; Dai and Sperlich, 2010;

Geenens, 2014) is clearly visible as a downward dip in the density estimates near the
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Figure 3.3: (a) Least-squares estimates of the functional regression coefficients γ0(x), γ1(x) and
γ2(x) for groups 1 (solid lines) and 10 (dashed lines); (b) Least-squares functional residuals for
groups 1 (black lines) and 10 (grey lines).

borders of the support.

Figure 3.3 (left panel) shows the estimated functional regression coefficients for groups

1 (solid lines) and 10 (dashed lines). The intercepts γ1
0 and γ10

0 (black lines) are effectively

zero except for upward ticks near the boundaries. In effect, the regression model is both

identifying and attempting to correct for the boundary-bias in the density estimates. The

other regression parameters describe the contribution of log(K̃obs
i (x)) and log(K̃p, obs(x))

in estimating Z̃i(x). For Group 1, virtually all relevant information comes from the kernel

estimates of the pooled data, as γ̂1
1 (solid grey line) is near zero over the entire range.

For Group 10, the situation is reversed – most of the information comes from its own

kernel density (γ̂10
1 (x) is large), although it still borrows strength from other groups as

γ̂10
2 (x) (light grey dashed line) is far from zero everywhere. All parameter estimates are

not constant, indicating that the relationship varies in different regions of the data-space.

For groups 2 to 9 (plots not shown), a steady transition is observed between the results of

groups 1 and 10.

The right panel of Figure 3.3 shows the plot of the estimated functional residuals given

by ε̂il = Z̃il(x)− Ẑil(x), for i = 1, 10, where Ẑil(x) denotes the fitted regression model. For

both groups, the residuals are centred on zero everywhere, with greater variability near

the boundary as expected. In addition, the residuals are more variable for group 1 than

for group 10 due to the differences in the sample sizes.
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Figure 3.4: Left panels: Samples from the posterior distribution for groups 1 and 10 (grey lines),
with a darker line indicating greater sample weight. True density is indicated by the coloured line.
Right panels: Comparison of the true densities, the initial kernel density estimate and the ABC
posterior mean E[fi(x)|D] with pointwise 95% central credible intervals, for groups 1 and 10.

The left panels in Figure 3.4 illustrate 100 randomly chosen approximate samples from

the posterior. The darker lines indicate larger sample weights. It is clear that the samples

cluster around the true densities, with the variability for group 1 (small sample size)

being greater than that of group 10. The right panels in Figure 3.4 depict pointwise 95%

central credibility intervals of the posterior distribution, the posterior mean E[fi(x)|D], the

initial group kernel density estimate and the true density function. As expected, the ABC

posterior mean strongly outperforms the initial kernel density estimate. For group 1, the

hierarchical sharing of information between density estimates has produced a substantially

improved and more accurate estimate. Even for group 10, which has the most data, the
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posterior mean is more accurate, and less biased at the boundaries than the initial kernel

density estimate.

3.5 Model comparison

We now investigate the performance of the proposed estimation procedure via a simula-

tion study. Because the posterior distribution is inaccessible when using the hierarchical

Gaussian process prior, it is not possible to directly compare the ABC estimates with

their exact counterparts. To overcome this hurdle, we perform an indirect comparison

with the aid of an alternative prior distribution for which exact results are available. Here

we choose to compare our HGP prior with the DPM prior introduced by Muller et al.

(2004), as the latter is also suitable for hierarchical modelling and a version of its MCMC

sampler is fully implemented in the R package DPpackage (Jara et al., 2011). Precisely,

we consider the following prior specifications:

Dirichlet process mixture prior

Xij ∼ fi(x)

fi(x) = ε hg+1(x) + (1− ε)hi(x)

hi(x) =
∫

N(µ, 1/3) dGi(µ)

Gi ∼ DP(M = 5, b(x))

b(x) = N(0, 1)

ε = U(0, 1)

Hierarchical Gaussian process prior

Xij ∼ fi(x)

fi(x) ∝ L(Zi(x)) b(x)

Zi(x) ∼ GP(µ(x), k(x, x′|1− ε, 1/
√

2))

µ(x) ∼ GP(−10, k(x, x′|ε, 1/
√

2))

b(x) = N(0, 1.1)

ε ∼ U(0, 1),

where DP(M, b(x)) denotes a Dirichlet process with base probability distribution b(x) and

concentration parameter M . This exact specification produces structurally distinct but

visually equivalent priors.

Notice that while the DPM prior writes the densities fi(x) as a mixture of infinite

mixtures of normal distributions, the HGP prior builds them by bending the base density

using a Gaussian processes-based transformation. In either case, the ε parameter dic-

tates the degree of similarity between the groups, with ε = 0 implying conditional (on

the hyperparameters) independence and ε = 1 forcing identical distributions. Therefore,

letting ε ∼ U(0, 1) works as an intermediate assumption in-between independence and
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equal populations.

For a range of values of ε in 0, 0.1, . . . , 1, we simulated 500 realisations for each of those

two generative processes. Every realisation constitutes a set of related group densities,

treated hereafter as the ‘true’ densities, and a corresponding observed dataset, based on

which we would like to make inference. As in Section 3.4, we consider 10 groups within

each replicate, with sample sizes 5, 20, 35, . . . , 140.

Six methods are compared with respect to their ability to recover the true densities:

1. KDE The Kernel density estimator fitted to each group independently. No strength

is borrowed across the groups.

2. Pooled-KDE All groups are assumed identical and a single KDE is fitted to the

pooled data. This is the second covariate of the functional regression model in

Equation 3.4.

3. ABC-REJ The rejection ABC algorithm introduced in Subsection 3.3.1. No ad-

justment is performed.

4. ABC-REG The functional regression adjustment ABC method described in Sub-

section 3.3.2 and illustrated in Section 3.4.

5. ABC-REG2 Functional regression adjustment ABC based on an alternative model

structure, detailed below.

6. DPM The Dirichlet Process Mixture estimator. Assuming the DPM prior shown

above, MCMC samples from the posterior distribution are generated using the R

function HDPMdensity.

With the functional regression model defined in Equation (3.4), the relative importance

of each covariate, expressed by the estimated regression coefficients, only depends on the

observed data through its sample size and the weights assigned to synthetic samples (see

the last paragraph of Subsection 3.3.1). However, intuitively, we would like the amount

of borrowing to increase, for example, if the observed data suggested that the groups

are alike, according to some measure. With this in mind, one possible way to formally

incorporate this feature into the adjustment is by the inclusion of interaction terms. In
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particular, we additionally consider the alternative model (ABC-REG2):

Z̃il(x) = offset + γi0(x) + γi1(x) log(K̃il(x)) + γi2(x) log(K̃p
l (x)) +

γi3(x) log(K̃il(x))Sl + γi4(x) log(K̃p
l (x))Sl + εl(x),

where Sl is a measure of divergence between the groups, defined as

Sl =
g∑
i=1

k∑
j=1

(
log(K̃p

l (ψj))− log(K̃il(ψj))
)
K̃p
l (ψj).

Under this construction, the effect of log(K̃p
l (x)) on Z̃il(x) is given by γi2(x) + γi4(x)Sl,

which enables the model to further exploit the available data.

Figure 3.5 summarizes the resulting performance of the six methods. For each fixed ε

(horizontal axis), the performance of method m (vertical axis) is measured by the mean

divergence Dm, defined as

Dm = 1
500

500∑
r=1

g∑
i=1

k∑
j=1

(
log(fir(ψj))− log(f̂mir (ψj))

)
fir(ψj),

where fir(ψj) and f̂mir (ψj) denote the true and the estimated (by method m) density of

group i, for the r-th replicated dataset, calculated at ψj .

The mean divergence curve for the KDE method is nearly flat, which is in accordance

with the fact that the method is not sensitive to possible association between groups. The

slight concave shape reflects the greater smoothness of the true densities around ε = 0.5.

As expected, the performance of the pooled-KDE estimator improves as the distance

between groups is reduced (ε→ 1).

For the ABC approaches (based on sampling 50,000 synthetic datasets, and retaining

the best 5,000), it is clear that the simple rejection algorithm is worse than the others,

even the KDE estimators. For moderate to high levels of association (ε > 0.5) the two

regression adjustment ABC methods are nearly indistinguishable. This is arguably the

region where the hierarchical methods are more appealing. That said, when we move

towards the left border of the horizontal axis, we observe an improvement arising from

the inclusion of the interaction terms – the enhanced model is slightly more capable of

determining the amount of shrinkage.

The DPM approach is an exact sampler that is specifically derived to estimate Gaussian
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(b) Data generated from the DPM prior

Figure 3.5: Mean divergence over 500 replicates between the true and the estimated densities
for each method, as a function of increasing (from left to right) levels of similarity among groups.
Results are based on data simulated from (a) the HGP prior, and (b) the DPM prior. Blue and red
lines denote the KDE estimators and ABC-based estimators respectively. The black line illustrates
the DPM estimator.

mixture-based densities with no error. So from this perspective, it can be considered the

gold standard for this analysis. The ABC estimator was narrowly better than the DPM

estimator when the observed data was generated from the HGP prior, with the opposite

result when the observed data was sampled from the DPM prior. This suggests that the

slightly different performances resulted from the distinct prior structures of each model,

and not from approximation errors. Viewed from this perspective, the ABC approach has

performed remarkably well.

A major operational advantage of the ABC approach is that it is both generic, and

highly flexible. Specifically, that the methodology remains the same regardless of modi-

fications to the prior structure. For example, in the analysis of Section 3.4 if we wanted

to use an infinite mixture of beta distributions as the model in the DPM prior but code

was only available to fit an infinite mixture of normals model then the effort required to

modify the sampling scheme would be considerable. In contrast, the ABC-based approach

can easily vary the base density with only very minor modifications.

3.6 An analysis of high school exam performance in Brazil

Appropriate assessment of school performance is paramount to efficiently manage large

educational systems. In 1998 the Brazilian government introduced the high school national
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exam, Enem (Exame Nacional do Ensino Medio), which annually evaluates high school

students in all states of the country. Enem is used by the Department of Education to set

the education agenda and strategically define public policies, and by Federal universities

and other educational institutes as part of their student selection criteria. According to the

Organisation for Economic Co-operation and Development, students who attend schools

in urban areas tend to perform at higher levels than other students (OECD, 2013). They

conclude that beyond socio-economic reasons, schools in urban areas are generally larger

and benefit from better resources and greater autonomy.

300 400 500 600 700

(a)

300 400 500 600 700

(b)

300 400 500 600 700

(c)

300 400 500 600 700

(d)

Figure 3.6: Samples from the two-level prior distribution based on the squared exponential
covariance function with g1 = 27 state groups and g2 = 5 regional groups under varying
parameter conditions. The above panels show: (a) moderate state and regional dissimilar-
ity; (b) moderate state dissimilarity and regional similarity; (c) strong state and regional
dissimilarity, and (d) strong state similarity and regional dissimilarity. Density colours
indicate regional membership.
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We analyse data extracted from the 2012 Enem dataset to evaluate rural school per-

formance. The observational units are the rural schools themselves, each of which is

measured by the mean grade of its students. Interest is in estimating and comparing the

grade densities of each of the 27 states. Only schools with more than 10 student attending

the exam are considered. The number of recorded rural schools in each state varies from

3 in Roraima, to 101 in Sao Paulo. The data are available from

http://portal.inep.gov.br/basica-levantamentos-acessar.

The 27 states are divided into 5 regions – North, Northeast, West Central, Southeast

and South. We expect that there may be some degree of similarity between states in the

same region, and so a reasonable prior should allow us to express this formally. For this

purpose, we can extend the prior described in (3.1a)–(3.1d) to include an additional level.

More precisely,

fi(x) = L(Z1
i (x))b(x|φ)
ci(φ,Z1

i )
Z1
i (x) ∼ GP(Z2

δ(i)(x), k(x, x′|σ1, `1))

Z2
j (x) ∼ GP(Z3(x), k(x, x′|σ2, `2))

Z3(x) ∼ GP(m(x), k(x, x′|σ3, `3)),

for i = 1, . . . , g1 = 27 and j = 1, . . . , g2 = 5, and where δ(i) indicates the region to which

state i belongs. Figure 3.6 illustrates samples from this prior under varying parameter

conditions, where the different colours indicate regional membership. Panels (a) and (d)

represent the case where there are differences between regions, but where the states within

each regions are fairly similar. This flexibility would be effectively impossible without an

extra level of prior hierarchy.

To handle this extended prior, we modify the functional regression model (3.4) ap-

propriately by including a regional level predictor. Specifically, the functional regression

model for state i, located in region j, is given by

Z̃il(x) = offset + γi0(x) + γi1(x) log(K̃il(x)) +

γi2(x) log(K̃Rj
l (x)) + γi3(x) log(K̃p

l (x)) + εl(x),

for l = 1, . . . ,m, where log(K̃Rj
l (x)) and log(K̃p

l (x)) denote the KDE for region j and the
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KDE for the entire country, respectively. The functional regressors γi1(x), γi2(x) and γi3(x)

correspond to the Gaussian processes in the three levels of the hierarchy: state, region

and country. The functional regression-adjustment is then performed by modifying (3.5)

in the obvious way.
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Figure 3.7: (a) Independent kernel density estimates for each of the g1 = 27 states in the Brazil-
ian Enem analysis. Line colour indicates region membership. (b) ABC posterior mean density
estimates for each state. (c) Sample means versus posterior means for each state. Circle area is
proportional to the number of observations in each state. (d) Posterior rank of each state according
to the mean of the posterior density estimates. Crosses indicate the rank of each state according
to the sample mean (x-axis in panel (c)).

In the following, we take the base density b(x|φ) to be N(500, 5000), roughly repre-

senting our prior knowledge about the location and variability of the ungrouped data, and

set the prior for the parameters of the covariance functions of the Gaussian processes to be

σh ∼ Gamma(3, 5) and `h ∼ Gamma(5, 0.05), for h = 1, 2, 3. We use k = 200 grid points
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and 150 B-spline basis functions. We generate 10, 000 samples from the prior distribution,

and accept the m = 1, 000 samples closest to the observed data.

Figure 3.7(a) illustrates independent kernel density estimates of the school’s mean

grades for each of the 27 states, with line colour indicating membership in the 5 regions.

While there is some inter-state variability, there appear to be some visible similarities of

density estimates for states in the same region. These similarities become clearer in Figure

3.7(b), which shows the regression-adjusted posterior mean density estimates (notice the

different plot scale). These densities indicate a strong regional clustering, and some obvious

sharing of information between states within each region.

Similarly to the example in Section 3.4, an analysis of the fitted regression coefficients

(not shown) indicates that the regressors have contrasting effects on each state. For

example, for the heavily populated state of Sao Paulo (SP), the posterior samples are

mostly determined by the kernel density estimate for this state. Alternatively, for small

states in the Northeast region, such as Alagoas (AL) and Paraiba (PB), the posterior

samples are predominantly affected by the average of the kernel estimates of the states

within this region. Finally, for the Federal District (DF) and Acre (AC), although not

the dominant regression term, the overall country kernel estimate plays a substantial role.

It is clear that the model is capable of borrowing strength with the appropriate intensity

from each source for each group.

Figure 3.7(c) plots the sample mean for each state against the mean of the mean

posterior density estimate, E[fi(x)|D]. Here the area of each point is proportional to the

sample size within each state. An obvious shrinkage effect can be observed, particularly in

states with fewer schools. In addition, the evident regional clusters (indicated by colouring)

suggest that geographical forces critically affect the system.

While not making full use of the posterior density estimates, a simple way to construct

a state ranking system could be via the means of these posterior densities. Figure 3.7(d)

illustrates the posterior distribution of the rank of each state, according to the mean of

the posterior density estimate, with a darker shade indicating greater posterior mass. The

crosses mark each state’s rank according to the independent sample means (x-coordinate

values in Figure 3.7(c)). From the plot, we see that Sao Paulo (SP) is most likely in the

top 4 states (probability > 0.99), and that the Federal District (DF) is likely ranked too

high according to the independent sample means, and Mato Grosso do Sul (MS) too low.
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The posterior rank uncertainty is large for states in the lower part of the ranking. For

example, while Amapa (AP) and Roraima (RR) have substantially different sample means

(421.27 and 463.76) the posterior probability of the mean of Amapa being greater than

the mean of Roraima is still considerable at 0.20.
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Figure 3.8: Geographical maps for comparing (a) the sample and (b) posterior density means.

Finally, Figure 3.8 illustrates the spatial distribution of the sample means (panel (a))

and the posterior means (panel (b)). The effect of the hierarchical model is apparent

in panel (b), as there is clear evidence of smoothing both within and between regions.

There is an obvious north-south effect in the mean performance of schools in the Enem

examination. Note that while comparison are made here in terms of means, any other

feature could equally be considered, including the densities variability and shape.

3.7 Discussion

The hierarchical Gaussian process prior introduced in this paper permits, in a very simple

way, the characterisation of prior beliefs about a set of univariate densities. The use of

ABC methods allows the sampling of approximate draws from the posterior distribution

at a moderate computational cost. This cost is almost certainly smaller than could be

realistically obtained by developing a direct MCMC sampler along the lines of, say, Adams

et al. (2009). In their implementation, the samples are generated sequentially, following an

algorithm that realises the Gaussian process at certain random places where the function

needs to be known in order to run their rejection sampler. The drawback of this approach is
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that as the number of proposed samples increases, so does the dimension of the associated

covariance matrix. Repeatedly inverting this matrix throughout the MCMC iterations is

computationally demanding, not only due to its magnitude but also because of the high

correlation induced by the squared exponential kernel k(x, x′). Therefore, while it is not

strictly necessary to use ABC for fitting the models under consideration, our approximate

strategy naturally avoids some of the technical hurdles observed in such an exact algorithm.

Nevertheless, ABC is a computationally expensive simulation method – the simula-

tions in Section 3.5 took ≈ 1 second per accepted sample (39% for generating the syn-

thetic densities through the Gaussian processes, 53% for sampling the synthetic data, 8%

for computing summary statistics), with the functional regression adjustment for 5,000

accepted samples taking ≈ 80 seconds. In comparison, the DPpackage, which is internally

written in Fortran, takes ≈100 seconds to draw 5,000 samples from the posterior distribu-

tion (without burn-in or thinning). However, when multiple datasets are to be analysed

(as in Section 3.5), we only need to sample from the prior once and the ABC constructions

become much faster.

One advantage of the approach presented here over hierarchical Dirichlet process mod-

els is that the parameters in our hierarchical prior are easily interpretable, and allow

very direct control over the features of the prior. With Dirichlet process based methods,

which build elaborate hierarchies involving mixing distributions, it can be challenging to

be expressive of prior information. In addition, in our framework changes to the prior

specification require minimal code updating. Except for generating data from the prior

(first step of the ABC rejection algorithm), the same code is suitable for different base

densities (betas, Normals, Gammas, etc.) and hyperparameter distributions – we are not

restricted to probabilistically convenient (e.g. conjugate) priors.

While we only consider univariate densities in this paper, in principle our ABC method

can be extended to the multivariate case by developing a multivariate functional regression

adjustment. However, the computational cost would rapidly grow with the number of

model dimensions (and grid points), likely making the procedure impractical for more than

low dimensional models. A further extension could involve the use of variational Bayes

methods, which are a collection of fast approximate inference approaches. Variational

Bayes methods have had great success in fitting Gaussian process models, and have recently

been considered as a way of implementing ABC techniques themselves (Tran et al., 2017).
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In the present context they could additionally be used as a way of approximating the

intractable normalising constants ci(φ,Zi).

In this work, regular grids were employed to discretise functional objects, with the

number of grid points and B-splines basis functions being determined somewhat informally,

based on graphical assessments – the error prompted by the use of B-splines to approximate

known functions can be easily spotted with a simple comparative plot. More sophisticated

approaches could also be considered. One popular strategy, for example, is to place a knot

at every fixed number of observations. Even better would be to extend (in future work) the

inferential process to allow the method to automatically learn the optimal configuration

from the observed data, as in Tokdar and Ghosh (2007) and Fan et al. (2010).

The construction of a nonparametric extension to the standard ABC regression-adjustment

is a novel contribution to the ABC literature. However, ABC is an approximate inferential

procedure which heavily relies on the information content of its summary statistics and in

the accuracy of the regression-adjustment model. Fortunately, there is a range of credible

candidates for summarizing the data – kernel density estimation methods have been exten-

sively developed and investigated by numerous authors. Further, regression-adjustment

models are well understood in the ABC literature as a method to improve the conditional

density estimation of the posterior distribution (Blum and François, 2010).

Both the simulation study and the analysis of high school exam performance in Brazil

highlights the capability of the ABC procedure to borrow strength across multiple groups,

to appropriately produce shrinkage where needed (with small sample sizes), and to suitably

handle the boundary-bias problem of the kernel density estimator summary statistic. Ul-

timately, the hierarchical Gaussian process density model presents an enhanced approach

over existing methodologies, and provides a valuable tool in the practitioners toolbox.





Chapter 4

Recalibration: A post-processing

method for approximate Bayesian

computation 1

4.1 Introduction

Approximate Bayesian Computation (ABC) refers to a class of algorithms designed to

sample from an approximation to the posterior distribution without directly evaluating

the likelihood function. These techniques have expanded the reach of statistical inference

to a range of problems where the likelihood function is computationally intractable, in

that it is prohibitively expensive or even impossible to evaluate. Instead, inference is

based on the ability to simulate data from the model of interest (e.g. Beaumont et al.,

2002; Fearnhead and Prangle, 2012; Sisson et al., 2017b).

Consider the usual Bayesian setting with a parameter vector θ = (θ1, θ2, . . . , θd)>, a

prior π(θ), and a model for data y, p(y|θ). Let yobs denote the observed data. In its

simplest implementation, ABC repeatedly executes two steps: sampling (θ,y) from the

(prior predictive) generative process π(θ)p(y|θ), and accepting θ if y ≈ yobs according

to some distance measure. This second step is commonly implemented in an importance

sampling framework whereby a weight w(θ) is attached to θ of the form w(θ) ∝ Kh(‖s−

sobs‖), where s = S(y) maps y to a low dimensional vector of summary statistics, sobs =

1Submitted for publication as: Rodrigues, G. S., Prangle, D., Sisson, S. A. (2017), “Recalibration: A
post-processing method for approximate Bayesian computation.”
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S(yobs), andKh is a smoothing kernel with scale parameter h ≥ 0. The idealised algorithm

where only exact matches y = yobs are accepted (h = 0) would produce samples from

the exact posterior π(θ|y) (or more generally the partial posterior π(θ|sobs), if matching

s = sobs). In practice, approximate matches based on weights w(θ) are retained to side-

step the impossibility of exactly matching simulated and observed data in all but the

simplest settings. However this necessity accordingly introduces an approximation error

to the ABC posterior approximation. In general, the ABC posterior approximation can

be expressed as

πABC(θ|sobs) =
∫
Kh(‖S(y)− sobs‖)p(y|θ)π(θ)dy. (4.1)

See e.g. Sisson et al. (2017b) for further details.

A number of post-processing techniques have been proposed to correct this approx-

imation error once samples from the ABC posterior approximation have been obtained,

resulting in an estimate π̂ABC(θ|sobs) which better approximates the true (partial) pos-

terior π(θ|sobs) than (4.1). Beaumont et al. (2002) introduced a regression-adjustment

approach, in which the ABC samples are corrected with the aid of a local linear regres-

sion model for θ|s − sobs, fitted to the (θ, s) samples from (4.1). Various extensions to

this technique include non-linear, heteroscedastic regression (Blum and François, 2010),

and ridge regression adjustments (Blum et al., 2013). However, there is some evidence

emerging to suggest that regression-adjustments tend to overcorrect and produce approx-

imate posteriors that are too precise, leading to nominal credible intervals with coverage

much higher than should occur under π(θ|sobs) (Marin et al., 2016; Frazier et al., 2017).

From the perspective of marginal density estimation, Nott et al. (2014) (see also Li et al.,

2017) developed a marginal-adjustment which replaces low-dimensional marginal distri-

butions of (4.1) by more accurate marginal distributions estimated using smaller numbers

of summary statistics than in s. This exploits the fact that ABC methods are known

to perform poorly for larger numbers of summary statistics due to the curse of dimen-

sionality in the comparison ‖s − sobs‖, however this approach requires the identification

of subsets of summary statistics that are informative for each margin, which may not be

easily available.

In this paper we introduce a novel recalibration post-processing method for improving
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the accuracy of the ABC posterior approximation that avoids the problems of existing

post-processing techniques. It is based on the ideas in Prangle et al. (2014), who derive

a diagnostic tool for ABC based on the so-called coverage property (Cook et al., 2006;

Fearnhead and Prangle, 2012; Prangle et al., 2014), which tests whether for a given h > 0

the estimated marginals of πABC(θ|sobs) (or π̂ABC(θ|sobs)) are well “calibrated”. Calibra-

tion requires that estimated credible intervals have the correct probabilities of containing

the true parameter values. If calibration does not hold, Prangle et al. (2014) suggest re-

ducing h until it does hold. However, this is not always feasible, particularly as reducing

h increases the Monte Carlo error of the Monte Carlo sample approximation of (4.1) for a

fixed computational budget.

Our approach extends the ideas in Prangle et al. (2014) to develop a post-processing

recalibration adjustment that aims to produce an approximation π̂ABC(θ|sobs) that is

well calibrated. Our method achieves this approximately and, as a result, the coverage

problems associated with the regression adjustment (Marin et al., 2016) can be mitigated

by construction. Recalibration can be applied directly to samples from πABC(θ|sobs), or

to improve the output from other post-processing adjustments. Recalibration is related to

indirect inference – a technique in which inference is performed with the aid of an auxiliary

misspecified model (Gourieroux et al., 1993). The use of indirect inference in the ABC

framework has been previously explored by Drovandi et al. (2015, 2017).

Our strategy also relates to several procedures that attempt to correct the bias in an

initial interval estimate based on Monte Carlo simulation. Menéndez et al. (2014), for

instance, propose drawing pseudo-samples y(1), . . . ,y(N) ∼ p(y|θ̃), from which synthetic

credibility (or confidence) intervals are obtained. These are then used to adjust the original

interval, calculated over the observed dataset. In their procedure, it is assumed that a

consistent estimator of θ, θ̃, is available, which is not often the case, especially when the

likelihood is intractable. Moreover, the correction is carried out for an interval defined

by a single, pre-specified confidence level α. In our approach, in contrast, the whole

multivariate posterior density function is simultaneously corrected. Taking into account

the correlation structure of the parameter of interest is another important advantage of

our recalibration technique, considering that, in Menéndez et al. (2014), the correction is

performed independently for each margin of θ.

In the frequentist framework, several bootstrap-based methods have been proposed
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to improve the coverage accuracy. In an influential paper, Hall (1986) introduced the

general class of iterative bootstrap techniques, which, according to the author, involves

‘simulations of simulations’. Further theoretical justifications for its use were given in

Hall and Martin (1988) and Martin (1990), although in its original formulation these

methods were highly computationally intensive. Several solutions were given to address

this overwhelming computational burden, including the works of Lee and Young (1995);

Davidson and MacKinnon (2002, 2007).

Efron (1987), in turn, introduced parametric and non-parametric bootstrap methods

for automatically lessening the coverage error, providing a convenient way of dealing with

potentially misleadingly maximum likelihood-based confidence intervals. Beran (1987)

contributed to the growing toolbox of resempling methods with the introduction of the

useful ‘prepivoting’ procedure, which was later shown to be become even more efficient

when using weighted bootstrap iterations (Lee and Young, 2003). All of these frequentist

algorithms were not designed to improve the accuracy of an approximate posterior distri-

bution, and therefore do not offer genuine alternatives to the solution proposed hereafter.

We introduce our recalibration approach in Section 4.2. We demonstrate its per-

formance in two simulation studies in Section 4.3, using a Gaussian auxiliary posterior

estimator for inference on a sum of lognormals distribution, and a standard ABC analysis

of a “twisted normal” model. Section 4.4 revisits the analysis of Erhardt and Sisson (2016)

in a real stereological extremes problem and shows that the recalibration adjustment can

correct the bias of their regression-adjustment ABC implementation. We conclude with

a discussion of the merits and limitations of recalibration in Section 4.5, including the

possibility of correcting approximate Bayesian inference methods beyond ABC.

4.2 Recalibration

4.2.1 Motivation

Our recalibration post-processing procedure is based on the coverage property. An α%

credible region for a parameter θ is a region R with the property that Pr(θ ∈ R|yobs) =

α/100. Loosely, the coverage property asserts that for data y0 generated under the model

for a known parameter value θ0 = (θ0,1, . . . , θ0,d)>, so that y0 ∼ p(y|θ0), credible intervals

constructed from the posterior π(θ|y0) will have the claimed probability of containing θ0.
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Coverage has been previously examined in the ABC literature. Most commonly it

has been used to validate analyses (e.g. Wegmann et al., 2009, 2010; Aeschbacher et al.,

2012), with Prangle et al. (2014) extending coverage ideas to develop testable diagnostics

to determine whether the marginals of πABC(θ|sobs) are different to those of π(θ|sobs),

and similarly whether estimated model probabilities under ABC are different to the true

posterior model probabilities given sobs in a multi-model analysis. Coverage is identified

as a desirable property of ABC posterior distributions by Fearnhead and Prangle (2012),

who also introduce ‘noisy ABC’ which automatically satisfies the coverage property, and

Menéndez et al. (2014) use related ideas to correct bias in ABC credible intervals. Finally,

the failure of regression adjustment techniques to produce ABC approximations π̂(θ|sobs)

that satisfy the coverage property, is being used as evidence that they are producing poor

approximations (Marin et al., 2016; Frazier et al., 2017).

Our recalibration adjustment is closely linked to the diagnostic techniques of Prangle

et al. (2014). Let Fs(θ) be the distribution function of π(θ|s), the partial posterior for θ

given some summary dataset s, and Fj,s(θj) be the j-th associated marginal distribution

function, for j = 1, . . . , d. Our interest is sampling from Fsobs(θ), the partial posterior

distribution given the observed data summary sobs.

For some choice of parameter θ0, and generated dataset s0 = S(y0) with y0 ∼ p(y|θ0),

Prangle et al. (2014) demonstrated that the location of the j-th marginal parameter θ0,j

in the j-th marginal posterior distribution of π(θ|s0), as measured by pj = Fj,s0(θ0,j) :=

Pr(θj < θ0,j |s0) will give pj ∼ U(0, 1) for j = 1, . . . , d. This then allows for the basis of a

test for whether F̃j,sobs(θj), the j-th marginal distribution function of the ABC posterior

approximation πABC(θ|sobs), is the same as the true marginal distribution function, i.e.

whether F̃j,sobs(θj) = Fj,sobs(θj).

This test proceeds by generating (θ(i), s(i)) pairs, i = 1, . . . , N , from θ(i) ∼ π(θ) (or

other suitable distribution) and s(i) = S(y(i)), y(i) ∼ p(y|θ(i)), and constructing the ABC

posterior approximation πABC(θ|s(i)) for each s(i) ∈ A(sobs), where A(sobs) is some set

centred around sobs. Then, for each s(i) ∈ A(sobs), the statistics p(1)
j , . . . , p

(N)
j , where

p
(i)
j = F̃j,s(i)(θ(i)

j ), will only be distributed as U(0, 1) if F̃j,s(i)(θj) = Fj,s(i)(θj), which

can be determined via standard tests of uniformity for each margin j = 1, . . . , d. If

this test is satisfied, then it can be inferred that the marginal distributions of F̃sobs(θ)

are approximately those of Fsobs(θ) and that, marginally at least, the ABC posterior
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approximation πABC(θ|sobs) is a good approximation of π(θ|sobs). (Note that in practice,

πABC(θ|s) and F̃j,s are constructed from weighted samples.)

We now extend this idea. However, rather than merely testing whether there are signif-

icant marginal deviations between F̃sobs(θ) and Fsobs(θ), we use the measured differences

to adjust those samples θ from πABC(θ|sobs) so that ˆ̃Fj,sobs(θ) ≈ Fj,sobs(θ) is a good ap-

proximation (where ˆ̃Fj,sobs(θ) is the j-th marginal distribution function of the adjusted

samples). That is, that the resulting post-processed approximation π̂(θ|sobs), approxi-

mately satisfies the coverage property, and is accordingly approximately well calibrated.

4.2.2 Method

So far we have assumed that F̃j,s(θj), the j-th marginal distribution of F̃s(θ), is the j-th

marginal distribution function of the ABC posterior approximation πABC(θ|s). However,

all that is required to implement the recalibration adjustment is that some approximate

method for inferring the posterior marginal distribution functions is available. Such ap-

proximate methods arise from adopting auxiliary models which approximate π(θ|s) with

different posterior forms, such as those obtained under the Bayesian indirect inference

framework (Drovandi et al., 2017, 2015), variational Bayes (Tran et al., 2017), regression

density estimation (Fan et al., 2013) and expectation-propagation (exponential family)

based approximations (Barthelmé and Chopin, 2014). We now suppose that F̃s(θ) and

the associated marginal distribution functions F̃j,s(θj), j = 1, . . . , d, are available as ap-

proximations to Fs(θ) and Fj,s(θj), based on some auxiliary model, which may include

the standard ABC posterior approximation πABC(θ|s). Note that the recalibration adjust-

ment will only make use of the marginal distribution functions F̃j,s(θj), and not the joint

distribution function F̃s(θ), and that these approximate marginal distribution functions

are assumed to have a well defined inverse, F̃−1
j,s (·).

In order to state the recalibration adjustment, first define

Gs(p) = Fs[(F̃−1
1,s (p1), . . . , F̃−1

d,s (pd))>]

where p = (p1, p2, . . . , pd)> ∈ [0, 1]d (where d is the number of parameters). The function

Gs(p) incorporates the posterior dependence structure of π(θ|s), through Fs(·), but it

also provides a connection between the true (through Fs(θ)) and the estimated marginal
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posterior quantile functions F̃−1
j,s (pj). We now provide several simple results on Gs(p)

which will be useful to establish the recalibration adjustment.

Result 1 Suppose a random variable P = (P1, . . . , Pd)> has distribution Gs(p). Then

Pj |s ∼ U(0, 1) for j = 1, . . . , d, if and only if the estimated marginal posteriors F̃j,s(·)

equal the true marginal posteriors Fj,s(·).

Proof. First suppose that F̃j,s(·) = Fj,s(·). Then the j-th marginal distribution function

of Gs(p) is Fj,s[F̃−1
j,s (pj)] = pj , which is a U(0, 1) distribution. Next suppose that the j-th

marginal distribution of Gs(p) is a U(0, 1) distribution. Then Fj,s[F̃−1
j,s (pj)] = pj . Let

qj = F̃−1
j,s (pj). Then we have Fj,s(qj) = F̃j,s(qj) as required.

Result 1 states that P ∼ Gs(p) is marginally uniform if and only if F̃j,s(·) = Fj,s(·),

for j = 1, . . . , d, but does not comment on its dependence structure. Prangle et al. (2014)

exploited a variant of this result to test whether the marginal distributions of πABC(θ|sobs)

were equal to those of π(θ|sobs) by testing for uniformity of realised Pi values, as described

in Section 4.2.1.

Result 2 Suppose that the random variable P = (P1, . . . , Pd)> has distribution function

Gs(p). Then conditional on s, (F̃−1
1,s (P1), . . . , F̃−1

d,s (Pd))> has distribution Fs(θ).

Proof.

Pr(P1 ≤ p1, . . . , Pd ≤ pd|s) = Fs[(F̃−1
1,s (p1), . . . , F̃−1

d,s (pd))>]

⇒ Pr(P1 ≤ F̃1,s(θ1), . . . , Pd ≤ F̃d,s(θd)|s) = Fs((θ1, . . . , θd)>)

⇒ Pr(F̃−1
1,s (P1) ≤ θ1, . . . , F̃

−1
d,s (Pd) ≤ θd|s) = Fs(θ)

as required.

Result 2 provides a straightforward way to use an observation from Gs(p) to generate

a sample from Fs(θ). Result 3 below provides the converse – a way to use an observation

from Fs(θ) to generate a sample from Gs(p).

Result 3 Suppose that the random variable θ = (θ1, . . . , θd)> has distribution function

Fs(θ). Then conditional on s, (F̃1,s(θ1), . . . , F̃d,s(θd))> has distribution Gs(p).
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Proof.

Pr(F̃1,s(θ1) ≤ p1, . . . , F̃d,s(θd) ≤ pd|s) = Pr(θ1 ≤ F̃−1
1,s (p1), . . . , θd ≤ F̃−1

d,s (pd)|s)

= Fs[(F̃−1
1,s (p1), . . . , F̃−1

d,s (pd))>]

as required.

These results may be combined in a procedure to recalibrate the ABC posterior ap-

proximation. For simplicity of presentation, we first focus on the recalibration of samples

drawn from πABC(θ|sobs) (or π̂ABC(θ|sobs)) under the standard ABC implementation.

Following this, in Section 4.2.3 we describe how recalibration can also be implemented

using an auxiliary estimator.

A standard ABC posterior simulation algorithm, complete with the recalibration pro-

cedure, is outlined in Algorithm 3. More sophisticated versions of ABC algorithms could

be used. In Algorithm 3, simulation from πABC(θ|sobs) begins by drawing N parame-

ter and summary statistic pairs {(θ(i), s(i))}Ni=1 from θ(i) ∼ π(θ) and s(i) = S(y(i)) where

y(i) ∼ p(y|θ(i)). These samples are then used to approximate π(θ|sobs) by weighting them

by w(i) ∝ Kh(‖s(i)−sobs‖). From this posterior approximation, the marginal distribution

functions F̃j,sobs(θj) based on sobs can be constructed by e.g. the empirical cdf or by

smoothed versions of such.

For each of these samples θ(i)|w(i) > 0 used, an individual recalibration adjustment is

performed. Firstly, samples are first drawn from the ABC posterior πABC(θ|s(i)) in the

same manner as for those drawn from πABC(θ|sobs). It is possible to avoid the cost of

performing a full ABC analysis by reusing the simulations from steps 1.1–1.3 of Algorithm

3, as is relatively common for ABC algorithms (Blum et al., 2013; Prangle et al., 2014).

From the samples from πABC(θ|s(i)), the marginal distribution functions F̃j,s(i)(·) can be

constructed, for j = 1, . . . , d, and the corresponding vector p(i) = (p(i)
1 , . . . , p

(i)
d )> obtained

via p(i)
j = F̃j,s(i)(θ(i)

j ). Since θ(i) is an exact draw from the posterior distribution π(θ|s(i)),

then Result 3 states that p(i) is an exact draw from Gs(i)(p).

If the ABC method produces the exact posterior so that πABC(θ|s(i)) = π(θ|s(i)), then

Result 1 (see also Prangle et al., 2014) states that the resulting marginal distributions

of p(i)
j would be U(0, 1). Of course, this is unlikely to be the case in practice, and so

the marginal distributions F̃j,s(i) characterise the deviations away from uniformity, such
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Algorithm 3 Recalibration of ABC output
Inputs:

• An observed dataset yobs.
• A prior π(θ) and intractable generative model p(y|θ), with θ = (θ1, . . . , θd)>.
• An observed vector of summary statistics sobs = S(yobs).
• A smoothing kernel Kh(u) with scale parameter h > 0.
• A positive integer N defining the number of ABC samples.

Data simulation and weighting:
For i = 1, . . . , N :

1.1 Generate θ(i) ∼ π(θ) from the prior.
1.2 Generate y(i) ∼ p(y|θ(i)) from the likelihood.
1.3 Compute the summary statistics s(i) = S(y(i)).
1.4 Compute the sample weight w(i) ∝ Kh(||s(i) − sobs||).

Recalibration:

2.1 For j = 1, . . . , d, construct F̃j,sobs(·) based on the samples {(θ(i), w(i))}Ni=1.

For each i such that w(i) > 0, and for j = 1, . . . , d:

2.2 Construct F̃j,s(i)(·) based on the samples {(θ(k), s(k))}Nk=1,k 6=i using the same proce-
dure as in steps 1.4 and 2.1.

2.3 Set p(i)
j = F̃j,s(i)(θ(i)

j ).
2.4 [Optional] Correct p(i)

j using a regression-adjustment (see Section 4.2.4).
2.5 Set θ̂(i)

j = F̃−1
j,sobs

(p(i)
j ).

Outputs:

• Standard ABC output: a set of weighted samples {(θ(i), w(i))}Ni=1 from πABC(θ|sobs).

• A set of recalibrated weighted samples {(θ̂(i), w(i))}Ni=1 from the recalibrated approx-
imate posterior π̂ABC(θ|sobs).

as bias, or over-/under-estimation of variance. These deviations, contained within the

marginal p(i)
j , are then mapped onto the quantiles of the original ABC approximation of

π(θ|sobs), producing the adjusted sample θ̂(i) = (θ̂(i)
1 , . . . , θ̂

(i)
d )> where θ̂(i)

j = F̃−1
j,sobs

(p(i)
j )

for j = 1, . . . , d.

If Gs(i)(p) = Gsobs(p), then Result 2 states that the resulting θ̂(i) would be a draw

from Fsobs(θ). In practice, however, it must be assumed that Gs(i)(p) ≈ Gsobs(p), and so

the recalibrated draws θ̂(i) will be draws from an approximation to Fsobs(θ). However, if

similar biases and deviations away from the true posterior based on the approximation of

π(θ|s(i)) are similar to those present in the approximation of π(θ|sobs), then the recali-

bration of an exact sample θ(i) from π(θ|s(i)) to θ̂(i) approximately from π(θ|sobs) can be

expected to be beneficial. We explore how well this works in practice in Section 4.3.
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4.2.3 Recalibration with an auxiliary estimator

Algorithm 3 recalibrates the weighted samples {(θ(i), w(i))}Ni=1 from steps 1.1–1.4 by con-

structing a model to approximate the posterior distribution π(θ|s) – namely πABC(θ|s) –

and construct the univariate marginals F̃j,s(·) required for the recalibration. However the

ABC posterior πABC(θ|s) is not the only model that can be used for this task.

Suppose that, more generally, we have an auxiliary model g(y|θ) with an easily com-

putable maximum likelihood estimator s = S(y), so that g(y|θ) = g(s|θ). Motivated

by arguments in indirect inference (Gourieroux et al., 1993; Gleim and Pigorsch, 2013)

and Bayesian indirect inference (Drovandi et al., 2017, 2015) the auxiliary model is com-

monly a close, but tractable surrogate of the intractable model p(y|θ). Suppose also that

given the prior distribution π(θ) it is computationally convenient to fit the associated

posterior distribution g(θ|s) ∝ g(s|θ)π(θ) to s. In this setting, the univariate marginal

distributions of g(θ|s(i)) can be constructed as F̃j,s(i)(·), and subsequently used for the

recalibration of the weighted sample (θ(i), w(i)) as before. With good choice of g(θ|s) this

procedure can be considerably faster and more efficient than using the ABC approximate

posterior πABC(θ|s) as the auxiliary estimator.

This use of the auxiliary model is different to some previous usages where the MAP or

MLE of the auxiliary model defined summary statistics that were then used for a standard

ABC analysis (e.g. Gleim and Pigorsch, 2013; Drovandi et al., 2015; Martin et al., 2017).

Here, the whole auxiliary model is used to approximate the intractable posterior and

produce univariate marginal distributions, rather than merely define a point estimate of

the parameters.

Algorithm 4 lists the modifications to Algorithm 3 when using a more general auxiliary

model. We explore the use of non-ABC auxiliary models in the simulation study in Section

4.3.1, and directly contrast ABC with non-ABC auxiliary models in the recalibration of

an analysis of stereological extremes in Section 4.4.

Figure 4.1 provides a simple graphical illustration of the recalibration procedure. In

this toy example, the assumption Gs(i)(p) ≈ Gsobs(p) is numerically satisfied for all i in

the acceptance region, so the recalibrated samples are exact. In general situations, it is

difficult to anticipate whether this assumption will hold for a given choice of auxiliary

model. Nevertheless, it is straightforward to retrospectively assess if Gs(i)(p) ≈ Gsobs(p)
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Algorithm 4 Recalibration of an auxiliary estimator (Modifications to Algorithm 3)
Inputs:

• A tractable auxiliary model for the posterior π(θ|y) with accessible maximum like-
lihood estimate (MLE) s = S(y) that admits auxiliary univariate marginal distri-
bution functions F̃j,s(θj), j = 1, . . . , d.

Data simulation and weighting:
For i = 1, . . . , N :

1.3 Compute the MLE of the auxiliary model s(i) = S(y(i)).

Recalibration:

2.1 For j = 1, . . . , d, construct F̃j,sobs(·) based on the auxiliary MLE sobs.

For each i such that w(i) > 0, and for j = 1, . . . , d:

2.2 Construct F̃j,s(i)(·) based on the auxiliary MLE s(i).

Outputs:

• A set of recalibrated weighted samples {(θ̂(i), w(i))}Ni=1 approximately from the pos-
terior π(θ|sobs).

by checking if the pvalues histogram remains the same in different regions of the summary

statistics space. In particular, one could test, formally or informally, if plot (b) in Figure

4.1 changes its pattern for different acceptance rates (that are less than the adopted value

of 25%).

4.2.4 Regression-adjusted recalibration

There are two natural ways in which regression-adjustment methods can be combined

with recalibration in an ABC analysis. The most straightforward is where recalibration

is employed to approximately correct for any biases incurred in a standard regression-

adjustment ABC analysis (c.f. Marin et al., 2016; Frazier et al., 2017).

An alternative use of regression adjustment methods stems from the fact that the

quality of a recalibrated posterior approximation rests on how well Gs(i)(p) approximates

Gsobs(p). In the case where there are reasonable differences between Gs(i)(p) and Gsobs(p),

one approach is to adjust the values of p(i) given the predictors s(i). In the case of a

weighted local-linear regression (e.g. Beaumont et al., 2002) the model would be

η(p(i)) = α+ β(s(i) − sobs) + ε(i)
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(f) Projection interpretation.

Figure 4.1: Let (s|θ) ∼ θ + exp(50), θ ∼ U(0, 1), f̃s(i)(θ) = N(s(i), σ = 0.025) and sobs = 0.5.
Panel (a) shows the best 25% of 5000 synthetic samples, with points i = 1, 2 highlighted in blue.
The gray intensity reflects the sample weight. Figure (b) presents the auxiliary posterior density
estimates and the pvalues associated to the first two samples – see Step 2.3 in Algorithm 3. (c)
and (d) show, respectively, the histogram of the observed pvalues and the recalibrated sample for
i = 2 (Step 2.5 in Algorithm 3). Panel (e) illustrates the recalibration effect, while (f) provides
a geometrical interpretation of the recalibration process as a projection technique that does not
require the specification of a regression model.
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for i = 1, . . . , N , where α ∈ Rd, β is a d × dim(s(i)) matrix, ε(i) ∼ Nd(0,Σ), η(·) is the

logistic link function, and where the pair (p(i), s(i)) is given the weight Kh(‖s(i) − sobs‖).

In this manner, the aim is to transform p(i) so that it behaves as an approximate sample

from Gsobs(p) rather than an exact sample from Gs(i)(p). Of course for this adjustment to

be beneficial it requires that the fitted regression model be highly accurate. If the model is

poorly specified, as with standard regression-adjusted analyses, the final estimation error

could easily increase compared to if it is not used. Both alternative uses of regression-

adjustment with recalibration are examined in Section 4.3.2.

4.3 Simulation studies

We now examine the performance of the recalibration procedure of the previous Section

on two simulated examples. The first makes use of a tractable Gaussian auxiliary model

estimator for inference on a sum of lognormals distribution. The second examines the effect

of recalibration on a “twisted normal” model under varied ABC inference configurations.

4.3.1 A sum of log-normals model

Consider a univariate random variable Y = ∑L
`=1X`, where X` ∼ LogNormal(µ, σ)

are independent and identically distributed log-normal random variables with parame-

ter θ = (µ, σ)>. Log-normal distributions are commonly used to model heavy-tailed

quantities, including stock prices and insurance claims. In these settings, Y can represent

the complete value of a stock portfolio, or the total liability of claims for an insurance

company (particularly if L is also random). Despite its structural simplicity, the associ-

ated likelihood function p(y|θ) cannot be computed exactly, even numerically, for L > 3

(For L = 2 and possibly L = 3, the likelihood may viably be computed numerically

through convolution integrals.) Several methods have been proposed to approximate this

function (Fenton, 1960; Schwartz and Yeh, 1982; Jingxian et al., 2005), with the Fenton-

Wilkinson approximation perhaps the most widely known (Fenton, 1960; Asmussen and

Rojas-Nandayapa, 2008). Here, the intractable likelihood is approximated by another log-

normal distribution with matching first and second moments. More precisely, it is assumed
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that pY (y|θ) ≈ pZ(y|θ), where Z ∼ LogNormal(α, β2), with

α = µ+ logL+ 0.5(σ2 − β2),

β2 = log[(exp(σ2)− 1)/L+ 1].

Suppose that we have n observations of Y , yobs = (yobs,1, . . . , yobs,n)>, and π(θ) is

defined through the independent marginal prior distributions µ ∼ N(0, 1) and σ2 ∼

Gamma(1, 1), where θ = (µ, σ)>. While the target posterior π(θ|y) = πY (θ|y) ∝

pY (y|θ)π(θ) is intractable, the approximation πZ(θ|y) ∝ pZ(y|θ)π(θ) is amenable to

posterior simulation algorithms such as MCMC. In principle then, this lognormal approx-

imation πZ(θ|y) could be used as the auxiliary posterior model g(θ|s), where s is the

MLE of pZ(y|θ). However, to do this would then require that a posterior simulation al-

gorithm be implemented to draw samples from πZ(θ|y(i)) = g(θ|s(i)), for each i for which

w(i) = Kh(‖s(i) − sobs‖) > 0, in order to construct the F̃j,s(i)(·) marginal distributions.

This would impose a large computational burden.

Instead we approximate πZ(θ|y) by a bivariate normal density N2(θ∗y,Σy), where θ∗y =

arg maxθ pZ(y|θ)π(θ) and Σy is the inverse of the Hessian matrix of − log(pZ(y|θ)π(θ))

(i.e. of the negative log of the tractable auxiliary posterior) evaluated at θ∗y. In this manner,

the auxiliary model g(θ|s) is specified by this N2(θ∗y,Σy) distribution, with s = (θ∗y,Σy)>,

and the marginal distribution functions F̃j,s(·) are immediately available as univariate

normal distribution functions. Calculation of θ∗y and Σy is very quick.

We simulate n = 10 observations from the true model Y = ∑10
`=1X`, where X` ∼

LogNormal(0, 1), to produce the observed dataset yobs. Algorithm 4 was then used to

generate N = 10, 000 approximate posterior samples. For simplicity, we specified h = ∞

so that the weights w(i) = 1/N were all equal. This provides a challenging scenario as

we are then attempting to recalibrate all samples drawn from the prior to behave as

approximate samples from π(θ|sobs).

Figure 4.2a compares the Fenton-Wilkinson lognormal density, pZ(y|θ), with the true

density pY (y|θ) at the true parameter values of θ = (0, 1)>. The lognormal density is

clearly a reasonable match for the true density in this case, although it is slightly more

diffuse. However the resulting posterior estimate (shading) is inaccurate, as illustrated

in Figure 4.2b, compared to that obtained under a highly computation intensive ABC
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rejection sampler (dashed lines) with the vector s = S(y) = θ∗y as summary statistics and

with the kernel scale parameter h reduced to a very low level. (The use of the MLE of a

tractable approximation as summary statistics is a common approach.) In contrast, the

resulting recalibrated posterior approximation (solid lines) appears visually very close to

the low-h posterior.

y

D
e
n
s
it
y
 f
u
n
c
ti
o
n

0 10 20 30 40 500
.0

0
0
.0

5
0
.1

0

Histogram from exact samples
Auxiliary model

(a) Densities for y|θ = (0, 1)>.

−0.5 0.0 0.5 1.00.
0

0.
5

1.
0

1.
5

µ

σ

Auxiliary model
Recalibrated density
Low h posterior

(b) Posterior density estimates.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

p1

p
2

(c) Realised samples from Gy(p).
pvalue

0.0 0.2 0.4 0.6 0.8 1.0

p1

p2

(d) Marginal distributions of p1 and p2.

Figure 4.2: Panel (a) compares the true density (histogram), pY (y|θ = (0, 1)>), with the cor-
responding Fenton-Wilkinson approximation pZ(y|θ = (0, 1)>) (solid line). Panel (b) compares
kernel density estimates (KDE) of the approximate posterior resulting from: a low-h ABC sampler
(dashed line), the Fenton-Wilkinson auxiliary model (shading) and the recalibrated posterior (solid
lines). Panels (c) and (d) respectively present the joint and marginal p = (p1, p2)> values obtained
during recalibration.

A bivariate scatterplot and univariate marginal histograms of the p = (p1, p2)> values

produced in the recalibration are shown in Figures 4.2c and 4.2d. The non-uniformity of

the marginal histograms suggests that the Fenton-Wilkinson method overestimates µ and
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underestimates σ for this analysis, which is supported by the posterior density estimates

in 4.2b. In this case the recalibration procedure corrects these errors successfully. In this

analysis, the entire inference process took only a few seconds to complete on a desktop PC,

with the computational cost dominated by the optimization process involved in computing

θ∗y. In comparison, the cost of recalibration was negligible, as it only involved calculating

p and quantiles from univariate normal distributions.

4.3.2 A “twisted normal” model

In this analysis, we investigate and quantify the effect of recalibration of standard ABC

sampler output under various conditions. We consider the simple, deterministic data-

generating model Y = θ1 + θ2
2, with θ = (θ1, θ2)>, and suppose that θ1 and θ2 have

independent N(0, 1) priors. For a single observed data point yobs = y, the resulting

posterior mass is then concentrated on the set of points satisfying θ1 = y − θ2
2. For the

below analysis we adopt yobs = 1.

We follow Algorithm 3, and draw N = 10, 000 samples from the prior distribution,

use the full dataset y (a single data point) as the summary statistic, and adopt the

Epanechnikov kernel Kh, with h determined by giving the 3,000 samples θ(i) for which

s(i) is closest to sobs non-zero weights w(i) (e.g. Biau et al., 2015). The 30% acceptance

rate of the algorithm is approximately optimal for regression adjustment ABC in this

analysis, in terms of producing the minimum mean square error (MSE) of a particular

posterior functional (see below and Figure 4.4a).

Figure 4.3a illustrates the regression-adjusted ABC samples in comparison to the sup-

port of the true posterior, shown by the solid line. Figure 4.3b shows the same samples

following recalibration, which includes the p value regression adjustment of Section 4.2.4.

Standard regression-adjustment ABC is easily able to recover the twisted normal shape of

the true posterior distribution, however the ABC approximation error is reflected by the

extent of the samples lying far from the true posterior support (the solid line). The recal-

ibrated samples, while still having some deviation away from the true posterior support,

visibly produce an improved posterior approximation. This is particularly evident in the

lower tail of the θ2 margin.

Figure 4.3c shows the bivariate distribution of the realised p = (p1, p2)> values. Here,

the univariate marginal distributions are almost uniform, indicating that the marginal



4.3. Simulation studies 91

posterior distributions of the regression-adjusted ABC posterior approximation are close

to the true posterior marginal distributions (c.f. Result 1 and Prangle et al., 2014), while

the striking dependence structure is a direct result of the form of π(θ|sobs).
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Figure 4.3: Panel (a) illustrates 3,000 samples from posterior distribution estimates using regres-
sion adjusted ABC and panel (b) the same samples following recalibration. The grey line indicates
the support of the true posterior. Panel (c) presents the corresponding realised p = (p1, p2)>
values.

More qualitatively, we consider estimation of the posterior expectation E(θ1 − θ2|θ1 +

θ2
2 = 1) under each of four ABC posterior approximation procedures: standard rejection

sampling ABC both with and without regression adjustment, and each of these with a

subsequent recalibration adjustment (including a regression adjustment on the p values).

This computation was repeated 1,000 times and for a range of Epanechnikov kernel scale

parameter values h, resulting in between 100 and all 10,000 samples with non-zero weight

w(i) > 0 being used for the computation. The log (base 10) mean squared error (MSE) over

these 1,000 replicates was recorded. The conclusions of the below analysis were unchanged

when other quantities of potential interest such as P (θ1 > θ2|θ1 +θ2
2 = 1) were considered.

Figure 4.4a displays the log of the MSE for each method as a function of the number

of posterior samples (out of 10,000). The same quantity based on samples drawn from the

exact posterior is illustrated by the dashed line. Each of the ABC based log MSE curves

behave in a similar way as the number of posterior samples increases (i.e. as the kernel

scale parameter h increases). For small scale parameter values, the log MSE initially

decreases as long as the quality of the posterior approximation for each method is high,

with the decrease in log MSE achieved through an increase in the number of samples.

That is, the high log MSE for low h is primarily driven by Monte Carlo error. At some
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point, however, with increasing h the quality of the posterior approximation deteriorates

too much, and the log MSE increases due to bias in the posterior approximation.

However, the relative performance of each ABC method differs in its performance for

low h, and the point at which the bias in the posterior approximation begins to domi-

nate the MSE. For low h values standard rejection ABC (light red line) performs as well

as the exact posterior distribution until around 1,500 samples. For low h, implementing

any post-processing method only increases the Monte Carlo error, as these require the

estimation of regression parameters and/or marginal distribution functions F̃j,s(·), with

more overheads required for recalibration than for regression adjustment. For larger h,

however, there is a clear benefit to post-processing, with the quality of the regression ad-

justed posterior approximation (dark red line) meaning that it can reach a lower log MSE

for an h equivalent to around 3,000 samples. The recalibrated posterior approximations

perform even more efficiently, with the recalibrated regression-adjusted ABC posterior the

most efficient of all, achieving their optimum log MSE values at around 5,000 and 8,000

samples. In fact, the minimum MSE obtained by recalibration (recalibrated regression-

adjusted ABC) was 0.0002, which is a sizeable reduction from its uncalibrated counterpart

of 0.0005 (regression-adjusted ABC) – especially taking into account the theoretical min-

imum, 0.0001, obtained by exact calculations.
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(a) Effect of recalibration.
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Figure 4.4: Log mean squared error of different ABC methods when estimating E(θ1 − θ2|θ1 +
θ2

2 = 1), as a function of the number of posterior samples (out of N = 10, 000). Panel (a)
compares rejection (red lines) and recalibrated (blue lines) ABC estimators. Darker and lighter
lines respectively denote rejection and regression adjustment ABC. The dashed black line depicts
the case when the samples were drawn from the exact posterior. Panel (b) contrasts log MSE for
recalibrated ABC methods both with and without regression adjusted p values.
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Figure 4.4b presents the same information as Figure 4.4a but comparing the recalibra-

tion adjusted methods both with and without regression adjusted p values (Section 4.2.4).

In this case, adjusting the p values clearly improves recalibrated rejection ABC, but re-

calibrated regression-adjustment ABC is only improved to a small extent. This primarily

occurs as the linear regression model assumptions are not reasonable in this region.

In the above analysis, for ease of presentation, the same acceptance rate adopted in

steps 1.4 and 2.1 of Algorithm 3 was used when computing the marginal estimates F̃j,s(·) in

step 2.2. However, it could be computationally more efficient to use different rates for each

step, such as using 30% of the synthetic samples to recalibrate a regression-adjustment

ABC based on an acceptance rate of 10%.

4.4 Application: Estimation in Stereological extremes

During the production of a steel block, endogenous or exogenous chemical compounds are

unavoidably embedded into the final product. Known as inclusions, these foreign sub-

stances affect the toughness, corrosion resistance and other features of the steel. The size

of the largest inclusions, which cannot be directly observed, are particularly influential to

the overall quality. Therefore, interest lies in an extreme value problem in which inference

is required on the distribution of the largest inclusion sizes based on the inclusions observed

in a two-dimensional planar slice through the block. Each observed cross-sectional inclu-

sion size in yobs = (yobs,1, . . . , yobs,n)> is related to an unknown inclusion size Vi > yobs,i

in 3-dimensional space. The number of inclusions in the sample is random, and, for any

given i, the probability of observing yobs,i depends on Vi – larger inclusions are more likely

to intersect the planar slice.

To make inference in this stereological context, it is commonly assumed that the in-

clusion centres follow a homogeneous Poisson process with rate λ, and that inclusion sizes

are mutually independent and independent of inclusion location. These assumptions are

widely regarded as reasonable. When it comes to the shape of the inclusions, however,

different formulations have been studied. Anderson and Coles (2002) assumed that in-

clusions were spherical, with “size” being characterized by the inclusion’s diameter V .

Subsequently Bortot et al. (2007) considered randomly oriented ellipsoidal shapes, where

yobs,i then refers to the largest principal diameter of the ith observed ellipse and Vi the
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largest diameter of the corresponding ellipsoid. In both spherical and ellipsoidal construc-

tions, a generalized Pareto distribution (GPD) is assigned to V |V > v0, where v0 is an

appropriate threshold. The distribution function is given by

P (V ≤ v|V > v0) = 1−
[
1 + ξ(v − v0)

σ

]−1/ξ

+
,

where [a]+ = max{0, a}, v > v0, and σ > 0 and −∞ < ξ < ∞ are scale and shape

parameters. To fully specify the model, Bortot et al. (2007) also assumed that the two

non-leading principal diameters of a given ellipsoid are defined as V1 = U1V and V2 = U2V ,

where U1 and U2 are independent standard uniform variables.

Anderson and Coles (2002) derived an exact MCMC sampler for the posterior distri-

bution of their spherical model. However, the likelihood induced by the more plausible

ellipsoidal model is computationally intractable, which motivated Bortot et al. (2007) to

use ABC methods for inference on θ = (λ, σ, ξ)>. Erhardt and Sisson (2016) conducted a

simulation study to investigate the performance of different ABC implementations in this

context, demonstrating that regression-adjustment substantially improved the accuracy

of rejection ABC. They adopted a uniform prior distribution for θ, restricted to a region

that comfortably enveloped the effective support of the posterior distribution. In addition,

they adopted the summary statistics

S(y) = (n′, q0.5(y), q0.7(y), q0.9(y), q0.95(y), q0.99(y), q1(y))>, (4.2)

where qa(y) denotes the a-th quantile of y, and n′ is the (random) number of observations

in y. Their ABC analyses were performed using the best 2,000 out of N = 2 million

generated samples {(θ(i), s(i))}Ni=1.

With these same settings, we revisit the analysis in Erhardt and Sisson (2016), using

Algorithm 3 to generate recalibrated samples from the regression-adjustment ABC poste-

rior approximation. We focus our attention on the shape parameter ξ as it determines the

tail behaviour of extreme value models. We also investigate recalibrating a computation-

ally cheaper auxiliary method using Algorithm 4, similar to that implemented in Section

4.3.1. In the stereological context, intractability arises from the impossibility to measure

the diameters Vi. We therefore use a tractable, but misspecified, auxiliary model which

assumes that the observable diameters, y|y > v0, follow a GPD with parameters σ′ and
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Figure 4.5: Panels (a) and (b) show for the spherical and elliptical cases, respectively, the realised
p values, pξ, associated with the recalibration of regression-adjustment ABC using the summary
statistics (4.2). Panels (c) and (d) compare the marginal posterior densities for ξ estimated by
different methods and summary statistics.

ξ′. A new set of summary statistics may then be defined as

S′(y) = (n′, σ̃(y), ξ̃(y))>,

where σ̃(y) and ξ̃(y) are the MLEs of this auxiliary model. Although highly informative,

S′(y) is not itself an estimator for θ. So for each simulated dataset s′(i), we follow Fearn-

head and Prangle (2012) and estimate θ(i) by θ+(i), where θ+(i)
j = E(θ(i)

j |s
′(i)
j ), using

univariate (splines) smoothers fitted to {(θ(i)
j , s

′(i)
j )}Ni=1 for j = 1, . . . , d, using the de-

fault settings of the smooth.spline function in R. Finally, we define a Gaussian auxiliary

marginal estimator as F̃j,s′(i)(θj) = Φ(θj ;θ+(i)
j , σ̂j), where σ̂j is the standard deviation of
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the spline residuals for parameter j.

Figures 4.5a and 4.5b show the distribution of the marginal p values for ξ, pξ, obtained

when recalibrating the best ABC estimator considered in Erhardt and Sisson (2016) –

namely, regression-adjustment ABC with summary statistics given by (4.2). The left-

skew of both plots indicates that this regression-adjustment ABC tends to underestimate

ξ. A Kolmogorov-Smirnov test rejects the hypothesis that the pξ samples are from a

U(0, 1) distribution (with p-values of 7 × 10−11 and 0.02 for the spherical and ellipsoidal

cases respectively).

Figures 4.5c and 4.5d compare the marginal posterior density estimates for ξ using

regression adjusted ABC (red line) and its recalibration (light blue line), with the posterior

estimates using regression adjusted ABC using the summary statistics S′(y) (pink line),

and the recalibration of the Gaussian auxiliary estimator (dark blue line). Also shown

for the spherical model (dashed line) is the exact posterior obtained from the MCMC

sampler of Anderson and Coles (2002), although this is based on a partially-conjugate prior

specification defined on a reparameterised space, and so this targets a different posterior to

the ABC algorithms. Accordingly, a perfect correspondence between the exact posterior

and the ABC methods should not be expected.

For the spherical model (Figure 4.5c) the underestimation of ξ reflected in the pξ values

using the summary statistics (4.2) is visibly evident, and this is corrected under recali-

bration. For the ellipsoidal case, the initial bias in ξ was so mild that recalibration has

barely affected the posterior estimate. For both spherical and ellipsoidal models, standard

regression-adjusted ABC with the new summary statistics S′(y) has performed as well as

the recalibration of the Gaussian auxiliary estimator, with both densities appearing indis-

tinguishable from the recalibrated standard ABC analysis. That these density estimates

all lie in the same place strongly suggests that these are all good approximations to the

true posterior in this case (with the uniform prior specification). It also suggests that the

indirect inference-based summary statistics S′(y) are highly informative for these models.

Overall, either adoption of S′(y) or any method of recalibration produces a more accurate

posterior approximation than the analysis performed in Erhardt and Sisson (2016).
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4.5 Discussion

This article introduces a recalibration procedure to post-process output from approximate

Bayesian methods, in particular ABC techniques, based on the ideas in Prangle et al.

(2014). Recalibration can improve the quality of an approximation of the posterior distri-

bution by ensuring that the adjusted posterior estimate approximately satisfies the cov-

erage property. This means that errors and biases induced by adopting various posterior

approximations, such as the standard ABC posterior approximation or auxiliary model

approximations, can be (approximately) corrected. Indeed, this may then be exploited so

that the most computationally efficient approximate posterior can be adopted, which is

not necessarily standard ABC, in the knowledge that a good adjustment is available to

correct model mis-specification.

Accordingly, in Section 4.3.1 the error induced by the incorrect assumption that a

sum of log-normal distributions follows a log-normal distribution was substantially re-

duced by recalibration. Section 4.3.2 illustrated that recalibration can serve as a non-

parametric alternative to regression-adjustment ABC (when an appropriate regression

model is not available), or as an additional layer of post-processing to correct the biases of

the regression-adjustment itself. In the stereological extremes analysis in Section 4.4, using

recalibration to correct a small bias in the results obtained by Erhardt and Sisson (2016),

along with a more detailed investigation, provided a reassurance that more substantial

errors have not been incurred in this analysis.

Recalibration does come with some computational cost, which may or may not be

worthwhile, depending on a number of factors. An obvious practical requirement is that

the auxiliary method used to construct the univariate marginal distributions F̃j,s(·) needs

to be fast, or the computational overheads involved in recalibration will dominate those

of the original analysis. Recalibration is also particularly appealing when simulation of

datasets y ∼ p(y|θ) under the model is computationally expensive. For instance, in

the stereological extremes analysis of Section 4.4, the recalibration stage of Algorithm 4

required no more than 10% of the total computational time – a modest computational

cost for this analysis.

As with standard ABC methods, the best choice of kernel scale parameter h is generally

a non-trivial task. In principle, this choice is based on a balancing of Monte Carlo variation
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and the intrinsic error arising from assuming that Gs(p) is nearly independent from s in

the neighborhood of sobs, as visualised in Figure 4.4. Further, as observed by Prangle

et al. (2014), marginal uniform distributions for the realised p values are possible from

distributions other than the true posterior distribution. In particular, if ABC or the

auxiliary method returns the prior distribution π(θ) as the approximate posterior (see

also the noisy ABC of Fearnhead and Prangle (2012)), then as the prior automatically

satisfies coverage (Prangle et al., 2014), recalibration post-processing will have no power

to make a correction.

We have presented recalibration as a post-processing method for ABC and indirect

inference based procedures. However, it may conceivably also be used for other methods

for approximating posterior distributions, including variational methods and expectation

propagation techniques. The R code used to perform the computations in this chapter is

available online as supporting information to this article. In addition, an implementation

of Algorithm 3 is available in the abctools R package.



Chapter 5

Likelihood-free approximate Gibbs

sampling 1

5.1 Introduction

Likelihood-free methods refer to a family of procedures that aim to perform likelihood-

based statistical inference, but without direct evaluation of the likelihood function. This

is attractive when the likelihood function is computationally prohibitive to evaluate due to

dataset size or model complexity, or when the likelihood function is only known through a

data generation process. Some classes of likelihood-free methods include pseudo-marginal

methods (Beaumont, 2003; Andrieu and Roberts, 2009), indirect inference (Gourieroux

et al., 1993) and approximate Bayesian computation (Beaumont, 2003; Sisson et al.,

2017a).

In particular, approximate Bayesian computation (ABC) methods form an approxima-

tion to the computationally intractable posterior distribution by firstly sampling parameter

vectors from the prior, and conditional on these, generating synthetic datasets under the

model. The parameter vectors are then weighted by how well a vector of summary statis-

tics of the synthetic datasets matches the same summary statistics of the observed data.

ABC methods have seen extensive application and development over the past 15 years.

See e.g. Sisson et al. (2017a) for an up to date overview of this area.

However, ABC methods have mostly been limited to analyses with moderate numbers

of parameters (< 50) due to the inherent curse-of-dimensionality of matching larger num-
1In preparation for publication as: Rodrigues, G. S., Nott, D. J., Sisson, S. A., “Likelihood-free

approximate Gibbs sampling.”
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bers of summary statistics, in what may be viewed as a high-dimensional kernel density

estimation problem (Blum and François, 2010). For a fixed computational budget, the

quality of the ABC posterior approximation deteriorates rapidly as the number of sum-

mary statistics (which is driven by the number of model parameters) increases (Nott et al.,

2017).

A number of techniques for extending ABC methods to higher dimensional models

have been developed. Post-processing techniques aim to reduce the approximation error

by adjusting samples drawn from the ABC posterior approximation in a beneficial man-

ner. These include regression-adjustments (Beaumont et al., 2002; Blum and François,

2010; Blum et al., 2013), marginal adjustment (Nott et al., 2014), and recalibration (Ro-

drigues et al., 2017b; Prangle et al., 2014). However, by their very nature post-processing

techniques are a means to improve an existing analysis rather than an approach to extend

ABC methods to higher dimensions. In addition, evidence is emerging that some of these

procedures, in particular the regression-adjustments, perform less well than is generally

believed (Marin et al., 2016; Frazier et al., 2017).

Alternative model-based approximations to the intractable posterior have been de-

veloped, including Gaussian copula models (Li et al., 2017), Gaussian mixture models

(Bonassi et al., 2011), regression density estimation (Fan et al., 2013), Gaussian processes

(Gutmann and Corander, 2016), Bayesian indirect inference (Drovandi et al., 2015, 2017),

variational Bayes (Tran et al., 2017) and synthetic likelihoods (Wood, 2010; Ong et al.,

2016). Each of these alternative models have appealing properties, although none of them

fully address the high-dimensional ABC problem.

One technique that has some promise in helping extend ABC methods to higher di-

mensions is likelihood (or posterior) factorisation. When the likelihood can be factorised

into lower dimensional components, lower dimensional comparisons of summary statistics

can be made, thereby side-stepping the curse of dimensionality to some extend. This has

been explored within hierarchical models by Bazin et al. (2010), within an expectation-

propagation scheme by Barthelmé and Chopin (2014), for discretely observed Markov

models by White et al. (2015), and within the copula-ABC approach of Li et al. (2017).

However, such a factorisation is only available for particularly structured models (although

see Li et al. (2017)). Other approaches include rephrasing the matching of summary statis-

tics as a rare event problem (Prangle et al., 2016), and developing local Bayesian opti-
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misation techniques for high-dimensional intractable models (Meeds and Welling, 2015;

Gutmann and Corander, 2016).

In one particular take on posterior factorisation, Kousathanas et al. (2016) developed

an ABC Markov chain Monte Carlo (MCMC) algorithm which only updates one parameter

per iteration, so that the new candidate can be accepted or rejected based on a small subset

of summary statistics. This approach can increase MCMC acceptance rates, although can

be limited by the need to generate a synthetic dataset at each algorithm iteration, which

may be computationally prohibitive if used for expensive simulators. It also requires the

identification of conditionally sufficient statistics for each parameter.

In this article we introduce a likelihood-free approximate Gibbs sampler that targets

the high-dimensional posterior indirectly by approximating its full conditional distribu-

tions. Low-dimensional regression-based models are constructed for each of these condi-

tional distributions using standard ABC parameter and summary statistic samples, which

then permit approximate Gibbs update steps. In contrast to Kousathanas et al. (2016),

synthetic datasets are not generated during each sampler iteration, thereby providing ef-

ficiencies for expensive simulator models, and only require sufficient synthetic datasets to

adequately construct the full conditional models (e.g. Fan et al. (2013)). Construction

of the approximate conditional distributions can exploit known structures of the high-

dimensional posterior, where available, to considerably reduce computational overheads.

The models themselves can also be constructed in localised or global forms.

This manuscript is structured as follows. In Section 5.2 we introduce the method for

constructing regression-based conditional distributions and for implementing the likelihood-

free approximate Gibbs sampler, and discuss possible sampler variants. In Section 5.3, we

explore the performance of the algorithm under various sampler and model settings, and

provide a real data analysis of an Airbnb dataset using an intractable state space model

with 13,140 parameters in Section 5.4. Section 5.5 concludes with a discussion.

5.2 Likelihood-free approximate Gibbs sampler

Suppose that θ = (θ1, . . . , θD)> is aD-dimensional parameter vector, with associated prior

distribution π(θ), and a computationally intractable model for data p(X|θ). Given the

observed data, Xobs, interest lies in the posterior distribution π(θ|Xobs) ∝ p(Xobs|θ)π(θ).
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Algorithm 5 A simple importance sampling ABC algorithm
Inputs:

• An observed dataset Xobs.
• A prior π(θ) and intractable generative model p(X|θ).
• An observed vector of summary statistics sobs = S(Xobs).
• A smoothing kernel Kh(u) with scale parameter h > 0.
• A positive integer N defining the number of ABC samples.

Data simulation and weighting:
For i = 1, . . . , N :

1.1 Generate θ(i) ∼ π(θ) from the prior.
1.2 Generate X(i) ∼ p(X|θ(i)) from the model.
1.3 Compute the summary statistics s(i) = S(X(i)).
1.4 Compute the sample weight w(i) ∝ Kh(||s(i) − sobs||).

Output:

• A set of weighted samples {(θ(i), w(i))}Ni=1 from πABC(θ|sobs).

The ABC approximation is given by

πABC(θ|sobs) ∝ π(θ)
∫
Kh(‖S(X)− sobs‖)p(X|θ)dX, (5.1)

where s = S(X) is a vector of summary statistics, sobs = S(Xobs) and Kh(u) = K(u/h)/h

is a smoothing kernel with bandwidth parameter h > 0. If the summary statistics s are

sufficient then the approximation error can be made arbitrarily small by taking h→ 0 as in

this case πABC(θ|sobs) will converge to the posterior distribution π(θ|Xobs). Otherwise,

for non-sufficient s and h > 0 the approximation is given as (5.1). See e.g. Sisson

et al. (2017b) for further discussion on the construction of this approximation. A simple

procedure to draw samples from πABC(θ|sobs) is given in Algorithm 5. More sophisticated

algorithms are available.

Regression-adjustment post-processing methods (Beaumont et al., 2002; Blum and

François, 2010; Blum et al., 2013) are commonly used to mitigate the effect of h > 0 in (5.1)

by fitting regression models of the form θd|S ∼ f(θd|β+
d ,S), for d = 1, . . . , D, based on the

weighted samples {(θ(i), s(i), w(i))}Ni=1, that are as close as possible to the corresponding

intractable marginal distributions π(θd|S) in the region of sobs. For example, in the local

linear approach of Beaumont et al. (2002) the fitted models are of the form

θ
(i)
d = αd + β>d (s(i) − sobs) + ε

(i)
d ,
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for i = 1, . . . , N and d = 1, . . . , D, where αd ∈ R, βd ∈ Rq, q is the length of the vector

of summary statistics s, and ε(i)d ∼ N(0, σ2
d). Here β

+
d = (αd,βd, σ2

d)> is the full vector of

unknown regression parameters for model d. Regression-adjustment would then modify

each θ(i)
d to reduce the discrepancy between s(i) and sobs via θ∗(i)d = β̂>d sobs+(θ(i)

d −β̂>d s(i))

where β̂d denotes the least squares estimate of βd.

To construct the likelihood-free approximate Gibbs sampler we similarly build regres-

sion models, but in this case we construct regression models of the form θd|(S,θ−d) ∼

f(θd|β+
d , gd(S,θ−d)), where θ−d is the vector θ but excluding θd, so that f(θd|β+

d , gd(sobs,θ−d))

is as close as possible to the true conditional distribution π(θd|sobs,θ−d) of π(θ|sobs). The

functions gd(S,θ−d) indicate the combination of S and θ−d used in the regression model to

determine the conditional distribution of θd, both as main effects, or interactions. Clearly

the appropriate dependent variables will vary with d, but will typically be relatively low

dimensional (see the analyses in Section 5.3 for a guide on how these may be selected). The

approximate Gibbs sampler will then cycle through each of these conditional distributions

in turn, drawing θd ∼ f(θd|β̂+
d , sobs,θ−d) for d = 1, . . . , D, conditioning on s = sobs. If

f(θd|β̂+
d , sobs,θ−d) = π(θd|sobs,θ−d) then the resulting Gibbs sampler will exactly target

π(θ|sobs). Otherwise, the resulting sampler will be an approximation (discussed further

below). This procedure is outlined in Algorithm 6.

The algorithm begins similarly to many ABC algorithms, by drawing samples {(θ(i), s(i))}Ni=1

from the predictive distribution (θ(i),X(i)) ∼ p(X|θ)b(θ) and computing s(i) = S(X(i)).

In most standard ABC algorithms b(θ) is the prior distribution π(θ) or an importance

sampling distribution. Then, a standard Gibbs sampler procedure is implemented by

sampling each parameter in turn from an approximation to its full conditional distribu-

tion θ(m)
d |(sobs,θ−d) ∼ f(θd|β̂+

d , gd(sobs,θ−d)). These approximations are fitted using the

pool of weighted samples {(θ(i), s(i), w
(i)
d )}Ni=1, where the weights w(i)

d ∝ Kh(‖(s(i),θ
(i)
−d)−

(sobs,θ
?
−d)‖)π(θ)/b(θ) ensure that higher importance is given to those samples which more

closely match both the observed data sobs and the conditioned values of the parameters

θ−d = θ?−d.

Clearly it is important that consideration be given to appropriate scaling of summary

statistics and parameter values within the distance measure ‖ · ‖ to avoid one or other

dominating the comparison. Note also that it is only required that the full conditionals

are estimated well in regions of high posterior density, rather than over the entirety of
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the support of θ. In this manner, the importance density b(θ) can be chosen to place θ(i)

samples in regions where the conditional distributions need to be well approximated, which

may be a much smaller region than specified by the prior π(θ). One such strategy was

successfully adopted by Fearnhead and Prangle (2012) who specified b(θ) as proportional

to the prior π(θ) but restricted to a region of high posterior density as identified by a pilot

simulation.

Any appropriate regression technique can be used to construct the models f(θd|β+
d , gd(sobs,θ−d))

such as non-parametric models, GLMs, neural networks, semi-parametric models, lasso etc.

There are two possible ways to draw samples from each conditional regression model, as

in step 2.2.4 in Algorithm 6. The first is when a parametric error distribution has been

assumed, in which case a new sample may be drawn directly from the fitted distribution.

For example, if the regression model is specified such that θd ∼ N(µ̂, σ̂2) for specified

µ̂ and σ̂2, then a new value of θd may be drawn directly from N(µ̂, σ̂2). Alternatively,

when a parametric error distribution is not assumed, the (weighted) distribution of em-

pirical residuals r(i)
d = θ

(i)
d − µ̂ can be constructed as RNd (r) = ∑N

i=1w
∗(i)
d δ

r
(i)
d

(r) where

w
∗(i)
d = w

(i)
d /

∑N
j=1w

(j)
d , and δZ(z) is the Dirac measure, defined as δZ(z) = 1 if z ∈ Z and

δZ(z) = 0 otherwise. A new value of θd is then given by θd = µ̂+ r where r ∼ RNd (r).

The computational overheads in Algorithm 6 are in the initial data simulation stage

(steps 1.1–1.3) which is standard in many ABC algorithms, and in the fitting of a separate

regression model for each parameter θd in each stage of the Gibbs sampler (steps 2.2.2–

2.2.3). In the case of the latter, while it can be computationally cheap to fit any one

regression model, repeating this ND times during sampler implementation can clearly

raise the computational burden. There are two approaches that can reduce these costs,

which can be implemented either separately or simultaneously.

In certain cases, the model p(θ|sobs) will have a structure such that several of the model

parameters will have exactly the same form of full conditional distribution π(θd|sobs,θ−d).

One such example is a hierarchical model (see section 5.3.2) where xdj ∼ p(x|θd) for

j = 1, . . . , nd, and θ1, . . . , θD−1 ∼ N(θD, σ2). Here the form of π(θd|sobs,θ−d) is identical

for d = 1, . . . , D − 1. Accordingly the regression model f(θd|β+
d , gd(S,θ−d)) can be fitted

by pooling the weighted samples {(θ(i), s(i), w
(i)
d )}Ni=1 for d = 1, . . . , D − 1 (each using

different sub-elements of the vectors), thereby allowing computational savings in allowing

the value of N to be reduced. Further, in the case where the conditional independence



5.2. Likelihood-free approximate Gibbs sampler 105

graph structure of the posterior is known (again, consider the hierarchical model), then

the choice of which elements of θ−d should be included within the regression function

gd(S,θ−d) is immediately specified as the neighbours of θd on the conditional independence

graph, and this does not then require independent elicitation.

A second approach is to choose the regression model f(θd|β+
d , gd(S,θ−d)) sufficiently

flexibly so that not only is it a good approximation of π(θd|sobs,θ−d) when θ−d is fixed

at a particular value, θ?−d, within the Gibbs sampler, but that the regression model holds

globally for any θ−d. Within Algorithm 6, the approximation of π(θd|sobs,θ
?
−d) with

θ−d = θ?−d is achieved by weighting the {(θ(i), s(i))}Ni=1 samples in the region of θ?−d
according to step 2.2.2. If the regression model f(θd|β+

d , gd(S,θ−d)) was a good approx-

imation of π(θd|sobs,θ−d) for any value of θ−d (in the region of high posterior density),

then the θ?−d specific weighting of step 2.2.2 can be removed, all samples weighted as

w(i) ∝ Kh(|s(i) − sobs‖)π(θ)/b(θ), thereby localising on summary statistics only, and the

regression models fitted prior to implementing the Gibbs sampler. This global model

likelihood-free approximate Gibbs sampler is described in Algorithm 7. Clearly the com-

putational overheads of Algorithm 7 are substantially lower than for the localised model

version. However, the localised version can be expected to be more accurate in practice,

precisely due to the localised approximation of the full conditional distributions, and the

difficulty in deriving sufficiently accurate global regression models.

In certain circumstances it can be seen that the likelihood-free approximate Gibbs

sampler will exactly target the true partial posterior π(θ|sobs). In the case where the

true conditional distributions π(θd|sobs,θ−d) are nested within the family of distributions

described by f(θd|β+
d , gd(S,θ−d)), then as N →∞, which in turn allows h→ 0, then

f(θd|β̂+
d , gd(S,θ−d))→ π(θd|sobs,θ−d)

due to the law of large numbers (N → ∞) and h → 0 eliminating the usual local

ABC approximation error. In this case, then Algorithms 6 and 7 will be exact. In

any other cases, f(θd|β̂+
d , gd(S,θ−d)) will be an approximation of π(θd|sobs,θ−d). This

can be either a strong approximation, whereby f(θd|β+
d , gd(S,θ−d)) can exactly describe

π(θd|sobs,θ−d) but where β̂+
d has not converged to β+

d (i.e. finite N), or a weak approxi-

mation, whereby π(θd|sobs,θ−d) is not nested within the family f(θd|β+
d , gd(S,θ−d)), and
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so f(θd|β̂+
d , gd(S,θ−d)) represents the closest approximation to π(θd|sobs,θ−d) available

within the regression model’s functional constraints. This latter (weak) approximation

can be arbitrarily good or poor.

When the fitted regression models only approximate the true posterior conditionals,

then these may be incompatible in the sense that the set of approximate conditional distri-

butions may not imply a joint distribution that is unique or even exists. This is equally a

criticism of the ABC-MCMC sampler of Kousathanas et al. (2016) as it is of the likelihood-

free approximate Gibbs sampler, unless for the former it can be guaranteed that the subset

of summary statistics used to update θd in an ABC Metropolis-Hastings update step is

sufficient for the full conditional distribution. See e.g. Arnold et al. (1999) for a compre-

hensive treatment of conditional specification of statistical models.

Incompatible conditional distributions are commonly encountered in the area of multi-

variate imputation by chained equations (MICE) also known as fully conditional specifica-

tion (FCS), which is specifically designed for incomplete data problems (van Buuren and

Groothuis-Oudshoorn, 2011). In the simplified case of multivariate conditional distribu-

tions within exponential families, Arnold et al. (1999) found that determining appropriate

constraints on the model parameters to ensure a valid joint density was “daunting” and

often “unattainable.” Other authors have expressed uncertainty on the effects of incom-

patibility, although simulation studies have suggested that the problem may not be serious

in practice (van Buuren and Groothuis-Oudshoorn, 2011; van Buuren et al., 2006; Drech-

sler and Rassler, 2008). Chen and Ip (2015) have investigated the behaviour of the Gibbs

sampler when the conditional distributions are potentially incompatible.

However, in a more general study of parameterisation within Bayesian modelling, Gel-

man (2004) proposes the use of “inconsistent conditional distributions” as a new class of

models, motivated by computational and analytical convenience in order to bypass the

limitations of joint models.

5.3 Simulation studies

We examine the performance of the likelihood-free approximate Gibbs sampler in two

simulation studies: a Gaussian mixture model using global regression models, and in a

simple hierarchical model with both local and global regression models.
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5.3.1 A Gaussian mixture model

We consider the D-dimensional Gaussian mixture model of Nott et al. (2014) where

p(s|θ) =
1∑

b1=0
. . .

1∑
bD=0

[
D∏
i=1

ω1−bi(1− ω)1−bi

]
φD(s|µ(b,θ),Σ),

where φD(x|a,B) denotes the multivariate Gaussian density with mean a and covariance

B evaluated at x, ω ∈ [0, 1] is a mixture weight, µ(b,θ) = ((1−2b1)θ1, . . . , (1−2bD)θD)>,

b = (b1, . . . , bD)> with bi ∈ {0, 1}, and Σ = [Σij ] is such that Σii = 1 and Σij = ρ for

i 6= j. For illustration we consider the D = 2 dimensional case, with sobs = (5/2, 5/2)>,

fix ω = 0.3 and ρ = 0.7 as known constants and specify π(θd) as U(−20, 40) for d = 1, 2.

In this setting, the full conditional distributions for θ1 and b1 are given by

θ1|(θ2, b, s) ∼ N(µθ1 ,
√

1− ρ2)I(−20 < θ1 < 40),

µθ1 = s1 − ρs2 + ρθ2 − 2s1b1 + 2ρs2b1 − 2ρb1θ2 − 2ρθ2b2 + 4ρb1b2θ2 (5.2)

b1|(θ, b2, s) ∼ Bernoulli(L(pb1)),

pb1 = ln
(1− ω

ω

)
+ −2

1− ρ2 s1θ1 + 2ρ
1− ρ2 s2θ1 + −2ρ

1− ρ2 θ1θ2 + 4ρ
1− ρ2 b2θ1θ2,

where L(x) = 1/(1 + exp(−x)) denotes the logistic function, with the full conditional

distributions for θ2 and b2 obtained by switching the indices in the above. For this simple

model we construct global regression models (Algorithm 7). We generate N = 1, 000, 000

samples from the prior predictive distribution (i.e. with b(θ) = π(θ)) and specify Kh(u)

as the uniform kernel (h =∞).

As an illustration, we first naively attempt to approximate the full conditional distri-

bution of θ1 by a main-effects only (excluding b) Gaussian regression model θ1|(θ2, b, s) ∼

N(β0 + β1s1 + β2s2 + β3θ2, σ
2). The resulting MLEs were β̂ = (8.76,−0.31, 0, 0)> (s.e.

= (0.019, 0.001, 0.001, 0.001)) and σ̂ = 16.16, which suggests that θ1 is conditionally inde-

pendent of s2 and θ2. This can clearly be seen to be incorrect based on a simple graphical

exploration of the synthetic samples. This is a clear warning of the need to consider

sufficiently flexible regression models, with interaction effects (as discussed in Nott et al.

(2014) and as is evident in the form of µθ1). Instead, we specify the regression mean

with all main effects and interactions and, because the number of samples N is large, the

resulting MLEs of β (and σ2) matched the true values in (5.2) up to at least one decimal
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place.

Figure 5.1a shows a kernel density estimate (KDE) of the differences between the fitted

and true conditional mean values (µ̂(i)
θ1
− µ(i)

θ1
) for each of the N data points used in the

regression. In most cases, the absolute difference was less than 0.05. Figure 5.1b shows a

KDE of the empirical residuals and the true N(0,
√

1− ρ2) error density. The similarity

suggests that in sampling from the regression model, randomly choosing a residual is

essentially equivalent to sampling from the true Gaussian error distribution. Given that

we are fitting a regression model in the same family as the true conditional distribution,

we have a strong approximation of θ1|(θ2, b, s) (as defined in section 5.2) in this case.

In a similar manner, we naturally model the conditional distribution of b1|(θ, b2, s) as

a Bernoulli GLM with logistic link function, and all possible conditional main effects and

interactions. Figure 5.1c examines the quality of this approximation by presenting the cdf’s

of the fitted and the true probabilities of p(b1 = 1|θ1, s1 = s2 = 2.5, b2 = 0, θ2 = −2.5).

The distributions are very similar, though still distinguishable. An explanation for this is

that for most of the N samples, the conditional probability of b1 is either (numerically) 0

or 1. In other words, only the samples such that θ is close to the origin are informative

for the regression parameters. This regression model is again a strong approximation to

the true conditional distribution.

Figure 5.2 illustrates the output of M = 20, 000 iterations of the resulting likelihood-

free approximate Gibbs sampler, when initialised at (θ1, θ2, b1, b2) = (0,−10, 1, 0). The

sampler moves around the parameter space well, and visually appears to target the true

posterior distribution. During sampler implementation the true and estimated probabil-

ities of switching the value of b1 were recorded, and are illustrated in Figure 5.1d. Only

a small proportion of the M probabilities are larger than 0.2 (due to the form of the

posterior), but on the whole the estimated probabilities are generally accurate, with a

few exceptions. For this example, the estimated conditional distributions (and associated

switching probabilities of b1) will approximate their true counterparts arbitrarily well as N

gets large, essentially due to the simple form of the true posterior distribution. A better

mixing approximate Gibbs sampler could also have been constructed for this posterior

distribution, using a 4-level multinomial regression for the full conditional of b|(θ, s) and

a bivariate Gaussian regression model for θ|(b, s).
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Figure 5.1: Assessing the quality of the regression approximation. (a) A kernel density estimate
(KDE) of the differences between the fitted and true conditional mean values µ̂(i)

θ1
− µ(i)

θ1
. (b) The

true N(0,
√

1− ρ2) error density and the KDE of the fitted regression residuals. (c) The fitted and
the true conditional distribution p(b1 = 1|θ1, s1 = s2 = 2.5, b2 = 0, θ2 = −2.5). (d) True versus
estimated probability of changing the the state of the cluster indicator variable b1.
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Figure 5.2: Likelihood-free approximate Gibbs sampler output. (a) Sample path of the first 250
iterations of (θ1, θ2), with the values of (b1, b2) indicated by coloured points. (b) Posterior density
estimates (shading) based on 20,000 sampler iterations, and true posterior density contours.

5.3.2 A simple hierarchical model

We now contrast the performance of the approximate Gibbs sampler when using local and

global regression models for a simple Gaussian hierarchical model. Hierarchical methods

have been previously considered in the likelihood-free framework by Bazin et al. (2010)

and Rodrigues et al. (2016). The simple hierarchical model is defined as

µ

µu τµ

Xu` τx

` = 1, . . . , L

u = 1, . . . , U

Xu` ∼ N(µu, τ−1
x ) (5.3)

µu ∼ N(µ, τ−1
µ )

τx ∼ Gamma(αx, νx)

τµ ∼ Gamma(αµ, νµ)

µ ∼ N(0, 1),

where Xu` denotes the `-th observation in group u, for ` = 1, . . . , L and u = 1, . . . , U , and

νµ and νy are rate parameters. This model is fully tractable and allows a direct comparison

between the exact and approximate posterior distributions.

To estimate the U + 3 parameters θ = (µ, µ1, . . . , µU , τµ, τx)> of this model, we adopt

the summary statistics S = (X1, . . . , XU , σ̂
−1
1 , . . . , σ̂−1

U , X, σ̄−1)>, whereXu and σ̂u are the

sample mean and variance of the data in group u, respectively,X is the overall sample mean
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and σ̄ denotes the mean of the sample variances σ̂1, . . . , σ̂U . To implement the approximate

Gibbs sampler we specify simple and non-exact regression model approximations of the

full conditional distributions.

The true full conditional distribution for µ is given by

π(µ| . . .) ∼ N
(

Uτµµ

1 + Uτµ
, (1 + Uτµ)−1

)
,

and so the conditional mean E(µ| . . .) is a nonlinear function of τµ and µ = (1/U)∑U
u=1 µu,

and the conditional variance is not constant throughout the covariate space. From the

models’ DAG, it is immediate that given (µ1, . . . , µU , τµ), µ is independent of all other

nodes in the graph, including the observed data. This permits the immediate discarding

of several uninformative nodes within gµ(·). Where available, exploring the model struc-

ture to reduce the complexity of the regression models can be very valuable. Note that

it is only necessary to approximate the full conditional distribution of parameters that

are conditionally dependent on intractable quantities. Here we approximate π(µ| . . .) by

assuming a simple linear and homoscedastic regression model of the form

µ|(S,θ−µ) ∼ N
(
(1, τµ, µ)>βµ, Vµ

)
.

The distribution of each unit mean µ1, . . . , µU depends on the data exclusively through

the corresponding unit-specific summary statistics. For u = 1, . . . , U ,

π(µu| . . .) ∼ N
(
µτµ + LτxXu

τµ + Lτx
, (τµ + Lτx)−1

)

is the conditional distribution of µu, which we approximate by the single regression model

µu|(S,θ−µu) ∼ N
(
(1, µ, τµ, τx, Xu, σ̂

−1
u )>βµu , Vµu

)
.

As the units are exchangeable one can use all synthetic observations (irrespective the unit

label) when fitting this single regression model for all groups u. This is because a synthetic

sample (µ, τµ, τx, Xu, σ̂
−1
u ) is as informative for β̂µu as it is to the regression parameters of

any other group u′. This strategy takes advantage of this symmetric nature of the DAG

to increase the accuracy of the regression parameter estimates.
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The true conditional distribution of τµ is given by

π(τµ| . . .) ∼ Gamma
(
αµ + U

2 , νµ +
∑U
u=1(µu − µ)2

2

)
.

To maintain the support of τµ on R, we specify the regression model approximation as

log(τµ)|(S,θ−τµ) ∼ N
(
(1, µ, µ, σ̂−1

µ )>βτµ , Vτµ
)
,

where σ̂µ = 1
U−1

∑U
u=1(µu−µ)2. This distribution is again conditionally independent of the

observed data. We deliberately chose to work with the normal model as opposed to a more

appropriate gamma GLM, to further compromise the validity of the model assumptions

and better assess the approximate Gibbs sampler’s robustness to misspecification.

Finally, we similarly model the true distribution of the precision parameter τx,

π(τx| . . .) ∼ Gamma
(
αx + UL

2 , νx +
∑U
u=1

∑L
`=1(Xu` − µu)2

2

)
,

by the approximation

log(τx)|(S,θ−τx) ∼ N
(
(1, X, σ̄−1)>βτx , Vτx

)
.

For simulated data generated with U = L = 10 and αµ = νµ = αx = νx = 1,

we draw N = 100, 000 samples from the prior predictive distribution and a subsequent

M = 5, 000 samples from the approximate Gibbs sampler, with the chain initialised at

the sample estimate of each parameter (i.e., the corresponding entries of the observed

summary statistics). We implement both Algorithm 6 in which the regression models are

localised to best approximate the true conditional distributions at each stage of the Gibbs

sampler, and Algorithm 7 in which the models are localised on s = sobs only at the start

of the algorithm, and then are assumed to hold globally. Kh was chosen to be uniform,

with h determined to select the best 1, 000 samples for each localisation.

Figure 5.3 presents the marginal posterior densities for µ, µ1, τµ and τx obtained for

the exact and approximate Gibbs samplers, with both global and local models. In each

case, while the global regression model sampler (red lines) can broadly estimate the right

location, it is clearly a poor approximation of the true marginal posterior density (black
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lines). This is hardly surprising in light of the large differences between the exact condi-

tional distributions and the chosen regression models. However, localising the regression

models (blue lines) at each stage of the Gibbs sampler produces a major improvement in

the quality of the approximation.
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Figure 5.3: Exact and approximate posteriors for (a) the overall mean µ; (b) the mean of group 1:
µ1; (c) the precision of the means τµ; (d) the precision of the observations within groups τx. Black
line depicts the exact Gibbs posterior. Red and blue lines represent the approximate posterior
densities obtained using global and local regression models, respectively.

Note that unlike the mixture example (section 5.3.1), the true conditional distributions

are not contained within the family of the chosen regression models. Accordingly, the ap-

proximation errors will not decrease as the number of synthetic samples N gets large (and

h gets small). However, the regression models could be improved by including interaction

terms and transforming parameters to better suit the regression model assumptions.
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In terms of computation, on a HP device with an Intel Core i7-4790 CPU (3.6GHz) with

16 GB of RAM, sampling the N = 100, 000 synthetic samples took roughly 51 seconds

to run in R. The approximate Gibbs sampling stage took 40 seconds and 22 minutes,

respectively, when using the global and local regression models. This is a substantial

computational increase when considering that the exact Gibbs sampler takes less than 0.5

seconds to execute.

5.4 A state space model of Airbnb data

We analyze a time series dataset containing Airbnb rental prices in the city of Seattle,

WA, USA. The dataset, compiled on 4 January 2016, was made available at kaggle.com,

and can also be accessed through insideairbnb.com. It consists of 928151 entries, each

of which corresponding to an available listed space (property, room, etc) at a given date

(spanning the year of 2016). A fundamental feature of this dataset is its non-adherence

to the normal distribution – even after taking the logarithm, the prices fails to be well

approximated by any symmetric distribution.

The so-called g-and-k distribution (Haynes, 1998) appears as an attractive, more suit-

able alternative. The g-and-k is characterized by its cumulative distribution function

(CDF), defined by

Q(q|A,B, g, k) = A+B

[
1 + c

1− exp{−gz(q)}
1 + exp{−gz(q)}

]
(1 + z(q)2)kz(q),

for B > 0 and k > −0.5, where z(q) denotes the q-th quantile of the standard Gaussian

distribution. We follow Rayner and MacGillivray (2002) and set c = 0.8. Due to its ability

to accommodate different combinations of location, scale, skewness and kurtosis, this 4-

parameters distribution has recently gained popularity, particularly in the ABC literature

(Drovandi and Pettitt, 2011; Fearnhead and Prangle, 2012). Nevertheless, the g-and-k

has no closed form density, and evaluating the likelihood is an expensive computational

exercise. Peters et al. (2016) introduced a fast L-moments estimator for the parameters of

the g-and-k, enabling these authors to study an insurance dataset similar in structure to

the one considered here. Their approach, however, involved fitting an independent g-and-k

for each time step, ignoring potential longitudinal correlations.

We illustrate how to apply our approximate Gibbs method to fit an intractable non-
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linear state space model that, for each time step, the observations are assumed to follow

a g-and-k distribution. The general form of such model is defined as follows.

Observation distribution: yt ∼ gk(βt), t = 1, . . . , T (5.4a)

Link function: g(βt) = λt = F ′tθt (5.4b)

System equation: (θt|θt−1) = Gtθt−1 +wt, wt ∼ N(0,Wt) (5.4c)

Prior distribution: θ0 ∼ N(m0,C0), (5.4d)

where yt denotes the vector of (log) prices observed at time t, Ft is a known p× 4 design

matrix that maps the state vector θt to the linear predictor λt,Gt is a known p×p evolution

matrix that dictates the system’s dynamics,Wt is a possibly unknown covariance matrix,

and βt = (λ1,t, exp(λ2,t), λ3,t, exp(λ4,t) − 0.5) = (A,B, g, k)t represents the parameters of

the g-and-k. The link function g(·) ensures that βt respects the constraints imposed by the

observation distribution. We assume that given θt, the observations yt are independent

and identically distributed. The sequence of errors wt are also assumed to be independent.

State space models provide a flexible and well-structured framework to probabilisti-

cally describe an extensive array of applied problems. For a comprehensive treatment

of Bayesian state space models, also known as Dynamic models(see West and Harrison,

1997). Petris (2010) developed the useful dlm R package that makes available several

functions that facilitate the practical use of Gaussian linear state space models, otherwise

known as Dynamic linear models. West et al. (1985), in turn, introduced the so-called

Dynamic generalized linear models, which relaxes the linearity and Gaussian assumptions,

allowing the observations to follow other members of the exponential family. Other works

have focused on specific observation distributions, such as the Beta Da-Silva et al. (2011)

and the Dirichlet Da-Silva and Rodrigues (2013).

Computational hurdles have limited the use of intractable dynamic models such as

the one considered here, but an increasing effort to tackle this issue has been recently

observed (Jasra et al., 2012; Dean et al., 2014; Martin et al., 2014; Calvet and Czellar,

2012; Yildirim et al., 2013; Picchini and Samson, 2016; Martin et al., 2016).

In this study, the prior distribution for θ0 is set as m0 = 0 and C0 = 107I, where

0 is a vector of zeros and I denotes the identity matrix. It is further assumed that

Wt = W = diag(1/τ1, . . . , 1/τp), with τi ∼ gamma(α = 10−10, ν = 10−10), for i = 1, . . . , p.
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That is, Wt is a static covariance matrix with the inverse of the diagonal elements (the

precisions) following independent and identical gamma priors.

5.4.1 Inferential procedure

The joint distribution factorizes as

p(Θ,W ,y1, . . . ,yT ) = p(θ0)p(W )
T∏
t=1

[p(θt|θt−1,W )p(yt|λt)] , (5.5)

where Θ = (θ0, . . . ,θT ). The data only depends on the system state through λt, so the

full conditional distribution for θt can be conveniently factorized as

p(θt|·) = p(θt|λt, ·)p(λt|·)

= p(θt|θt−1,θt+1,W ,λt)p(λt|θt−1,θt+1,W ,yt).

Therefore, one can sample from this distribution in two stages – first λ∗t ∼ p(λt|·) and

then θ∗t ∼ p(θt|λ∗t , ·). By design, the intractability only occurs on the rightmost term

of Eq. 5.5, and with the exception of p(λt|·), all FCDs allow efficient, exact sampling.

While often a tedious task, deriving those distributions only requires basic matrix algebra

operations. The FCDs are fully identified hereafter.

System’s initial state θ0

p(θ0|·) ∼ N(a0,Σ0),

where Σ0 = (G′1W−1G1 +C−1
0 )−1 and a0 = Σ0(C−1

0 m0 +G′1W−1θ1).

System’s future state θT+1

To facilitate sampling θT , we augmented the parameter space to keep track of the param-

eter θT+1, with FCD given by

p(θT+1|·) ∼ N(GT+1θT ,W ).

Evolution error’s precisions τi
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p(τi|·) ∼ Gamma
(
α+ T + 1

2 , ν +
∑T+1
t=1 w

2
ti

2

)
,

where wt = θt −Gtθt−1 represents the system innovation at time t.

System state θt
The model equations imply that

 θt

λt

∣∣∣∣∣∣ θt−1,θt+1,W

 ∼ N

at
ft

 ,

 Rt RtFt

F ′tRt qt

 ,
where

ft = F ′ta,

qt = F ′tRtFt,

at = Rt(W−1Gtθt−1 +G′t+1W
−1θt+1),

Rt = (G′t+1W
−1Gt+1 +W−1)−1.

Therefore, it follows from the conditional properties of the multivariate normal distri-

bution that

p(θt|θt−1,θt+1,W ,λt) = N(µt,Σt),

where

µt = at +RtFtq
−1
t (λt − ft),

Σt = Rt −RtFtq
−1
t F

′
tRt.

Linear predictor λt

The linear predictor’s conditional distribution, p(λt|θt−1,θt+1,W ,yt), is intractable and

needs to be approximated. To do so, the dimension of the conditioning set is drastically

reduced by replacing the observed data yt by the summary statistic st = g(β̂t), where β̂t

represents the L-moments estimator of βt given yt and g(·) is the link function previously

defined. Although we cannot guarantee the summary statistics are sufficient, we believe

it retain nearly all the relevant information available in the full dataset. In addition, as
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stated in Peters et al. (2016), the L-moment estimators are nearly unbiased for all sample

sizes and all distributions.

It is useful to recognize that p(λt|θt−1,θt+1,W , st) = p(λt|φt, st), where φt = (ft, qt, nt)

and nt is the sample size at time t. Because this structure is valid throughout the evo-

lution period, the time label can be effectively dropped, which reduces the problem to

approximating the distribution of a 4-dimensional vector conditional on 13 variables (qt

is a diagonal matrix).

Without loss of generality, we write

(λ|φ, s) = µλ + Σ1/2
λ ελ, (5.6)

where µλ and Σ1/2
λ , which are functions of φ and s, denote the mean and the (Cholesky)

squared root of the covariance matrix of (λ|φ, s), respectively. ελ follows an unknown

standardized distribution (that may also depend on the conditioning list). Even without

knowledge of the distribution of ελ, given the moments of the joint vector,

 λ

s

∣∣∣∣∣∣ φ
 ∼

f
f

 , Ωφ =

Ω11 Ω12

Ω21 Ω22

 ,
Linear Bayes (Hartigan, 1969; Goldstein, 1976) can be employed to define the following

estimators:

µ̂λ = f + Ω12Ω−1
22 (s− f) (5.7a)

Σ̂λ = Ω11 −Ω12Ω−1
22 Ω21 (5.7b)

For each time step in each Gibbs iteration, the ABC machinery allows the execution

of a sequence of tasks that ultimately generate an approximate sample from p(λ|φ,y).

These are: estimate the covariance matrix Ωφ; compute the conditional moments in Eq.

5.7; draw an approximate sample from ελ; and plug-in the obtained values into Eq. 5.6.

We proceed as follows. Only once, before running the Gibbs sampler, we generated

M = 5000 synthetic samples of φ uniformly on a hypercube that roughly covers the region

that might be visited during the Gibbs run. Precisely, the synthetic means f have the

same range as observed in sobs, n spans the spectrum of actual sample sizes and the
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diagonal elements of q are in the interval (0, 1−5). Next, for each φm = (fm, qm, nm),

m = 1, . . . ,M , we sampled (λ, s)m ∼ (λ, s|φm) = p(s|λ, nm)N(λ|fm, qm). Notice that,

in contrast to the previous sections, we do not generate synthetic samples from the full

generative process. Instead, these are drawn exclusively in a small portion of the model.

Throughout the approximate Gibbs sampler, the unknown matrix

Ωφ∗ = V

 λ

s

∣∣∣∣∣∣ φ∗
 ≈ ∫ V

 λ− f

s− f

∣∣∣∣∣∣ q, n
Kh(‖φ− φ∗‖)p(φ)dφ

is estimated for different states of φ∗. To do so, we suggest computing the weighted

covariance matrix calculated over the centered synthetic samples (λm − fm, sm − fm),

m = 1, . . . ,M . Weighting and centering the samples reduce the estimation error and

allow us to have a unique set of synthetic samples (as opposed to generating a new set for

each φ∗, what would be computationally prohibitive). For setting the weights, which are

refreshed for each φ∗, we adopted the Epanechnikov kernel, with bandwidth chosen such

that the best 2000 samples were accepted.

For m = 1, . . . ,M , we calculate Ωφm and compute µ̂mλ and Σ̂m
λ from Eq. 5.7. The

empirical residual are then given by εmλ = (Σ̂m
λ )−1/2(λm − µ̂mλ ). Finally, an approximate

sample from the full conditional distribution for λt, p(λt|φt, st), is obtained by

λ∗t = µ̂∗λ + (Σ̂∗λ)1/2εkλ ∼
∫
p(λt|φ, st)Kh(‖φ− φt‖)p(φ)dφ,

where the index k is sampled from (1, . . . ,M) with probability proportional to Kh(‖φm−

φt‖), and µ̂∗λ and (Σ̂∗λ)1/2 are implicitly defined by φt.

5.4.2 Complete model specification and results

Figure 5.4 shows the L-moments estimates β̂t. Each individual series seems to be dom-

inated by 4 components – a dynamic level; a sudden shift induced by the start and end

of the extended summer season (from 1 April to 31 September); a weekly seasonal effect;

an error term that accounts for other minor non-considered factors. Also, the series are

clearly interdependent. In particular, a strong negative correlation between the parame-

ters of variability (Figure 5.4d) and kurtosis (Figure 5.4b) is present, as one would expect

in advance.

To accommodate the referred factors, each individual time series i = 1, . . . , 4, is asso-
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Figure 5.4: L-moments estimates, β̂t = g−1(sobs), of the g-and-k parameters – obtained
by fitting the distributions independently, one for each day.
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ciated to its own system parameters, θ(i)
t , and the following matrices:

F
(i)
t = (E2,E6, δ(t))

and

G
(i)
t = G(i) =


J2 02×6 02×1

06×2 P6 06×1

01×2 01×6 1

 , where J2 =

1 1

0 1

 , P6 =

−11×5 −1

I5 05×1

 ,

En = (1, 0, . . . , 0) is an n-dimensional vector, δ(t) is an indicator function that takes value

1 if t is in the summer season and 0 otherwise, 1 denotes a matrix of ones. J2, which is

a Jordan block, implies a local-linear trend for the latent level θ(i)
1,t. P6 is a permutation

matrix that relates to the weekly seasonal effect, which impact the series though θ(i)
3,t. The

summer-effect, in turn, is encapsulated by θ(i)
9,t.

The multivariate model in Eq. 5.4 becomes fully specified by setting

Ft = F
(i)
t ⊗ I4, G = G(i) ⊗ I4 and θt = (θ(1)

t , . . . ,θ
(4)
t ),

where ⊗ represents the Kronecker product defined as follows. Consider an a × b matrix

M and a c× d matrix N , then the Kronecker product ofM and N is the ac× bd matrix

M ⊗N =


m11N . . . m1bN

... . . . ...

ma1N . . . mabN

 .

The chosen specification superimpose the features driving this data, but could be easily

adapted to other settings. For more details on how to specify the matrix of a dynamic

model (see Petris et al., 2009).

Figure 5.5 shows some of the estimated model parameters associated to β1,t. In Figure

5.5a, the deseasonalized posterior estimates are plot over the raw series. For easier inter-

pretation, the original scale of rental prices is adopted. The estimated series level changed

substantially throughout the year, going from exp(θ̂(1)
1,1) = 100.5 to exp(θ̂(1)

1,T ) = 109.4, a

8.8% increase. Caution must be exercised when interpreting this result. As the data was

compiled when the series started, we are not comparing the prices actually paid for spaces
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at given day, but the listing prices at the date of compilation. Another interesting feature

is the sharp increase observed in the high season. The parameter θ(i)
9,t is estimated to be

nearly-static along the year, with θ̂(1)
9,t ≈ 0.024 for all t. Therefore, prices are expected

to increase by about exp(0.024) − 1 = 2.4% when the high season starts (and reduce by

the same amount when it finished). If more years of data were available, it would be

straightforward to include in the model an yearly seasonal effect.
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Figure 5.5: All plots refer to the g-and-k location parameters At. (a) Light-gray lines
are the observed L-moments estimates. The red line depicts the posterior mean of the
deseasonalized parameter exp(θ(1)

1,t + θ
(1)
3,t δ(t)), while the gray shade shows the 95% HPD

credibility intervals; (b) the posterior estimates of exp(At) are given in blue; (c) The
estimated seasonal effect on the linear predictor λ1,t, given by the posterior mean of θ(1)

3,t ;
(d) The residual plot for At, showing the differences (sobs1,t − λ̂1,t).

The blue points in Figure 5.5b are the estimated exp(β1,t), obtained by adding the
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seasonality effect to the red line in the previous plot. The seasonality effect is summarized

in Figure 5.5c. The density location is estimated to increase by 5.6% from Thursdays to

Fridays, for example. The residual plot in Figure 5.5d exhibits a slight lack-of-fit around

the middle of the year. The highest residual was observed on the Valentine’s weekend.

Surprising at the first sight, this phenomenal might be related to an increase in demand

driven by local couples, rather than visitors from other cities. This however would have

to be confirmed by further analysis. The lowest residual was on the first day of the High

season – Friday, 1 April.
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Figure 5.6: Trace plots for a selection of model parameters. The vertical red lines delimit
the burn-in period. (a) Location parameter A at time t = 1; (b) Average (over the time
period) of the nearly-static summer-effect parameter; (c) Bivariate trace of the seasonality
parameters θ(1)

3,1 and θ(1)
4,1; (d) Univariate trace of θ(1)

3,1.

In this study, we generated 1 million approximate Gibbs samples, from which we keep
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only 1 every 20 (the chain thinning), and then discarded the first 25000 as burn-in. Some of

the MCMC trace plots are displayed in Figure 5.6. There are 13140 unknown parameters

in the model, and assessing the convergence of the chain is not a trivial task. However, our

exploration indicates that chains are seemingly stable (except, perhaps, if precise estimates

of the posterior quantiles are required). The bivariate plot in Figure 5.6c shows a curious

spiral trajectory towards the region of high probability density (this behavior might be

explained by the rotation of the seasonality parameters induced by the permutation matrix

P6). The MCMC was started from estimates provided by fitting, via Kalman smoothing,

an auxiliary, simple state space model (that assumes that each series in Figure 5.4 follows

an independent DLM, with pre-specified matrices W (i)).

The above example highlights the capacity of our technique to handle complex model

structures. The inferential procedure applied here slightly differs from the steps described

in Algorithm 1, even though they share the same underling principles. The use of the

Linear Bayes allowed us to model the vector λ at once, instead of fitting one regression for

each of its elements. An advantage of this approach is to account for the full correlation

structure and to naturally handle heteroscedasticity. With univariate regressions, one

would have to accommodate possible interaction terms and explicitly model the variance.

In regards to the computational cost, this was an expensive endeavor – although most

of it was accounted for by the steps that would be executed in a hypothetical exact Gibbs

sampler. It took nearly 10 days to generate the 1 million MCMC samples, running R on

a personal computer. In addition, the chain mixes rather slowly.

The overall ABC error is successfully reduced by splitting the problem into small pieces.

Unfortunately, this prompts the parameters to be highly correlated. In resume, there is

a fundamental trade-off between the ABC and the Monte Carlo errors. But even so, for

some problems, combining these tools are potentially the only feasible option.

5.5 Discussion

Modeling the posterior indirectly, through the full conditional distributions, may be ap-

pealing for a number of reasons. The proposed method naturally captures the covariance

structure of the posterior distribution (at least when appropriate regressions models are

employed), which represents a useful advantage over most ABC algorithms, as discussed
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in the introduction section.

When compared to the regression-adjustment ABC, the approximate Gibbs sampler

can massively simplify the regression models structures. Handling a set of low-dimensional

models is frequently easier than deriving an appropriate multivariate regression that de-

scribes f(θ|S) at once. That becomes particularly beneficial when generating synthetic

samples is computationally expensive (e.g. in genetic and epidemiological studies).

The strategies described in Subsection 5.3.2 explore the model’s architecture to fur-

ther reduce the regressions’ complexity, leading ultimately to lower approximation errors.

These solutions make our approach suitable for inference in some well-structured prob-

lems, such as the one considered in Section 5.4. However, for complex and non-structured

models where little information about the form of the (exact) full conditional distributions

is available, the regressions may not provide fully reasonable conditional model represen-

tations for all parameters, and accordingly should be elicited with care. In this regard, a

single poorly-approximated conditional distribution could in principle severely impact the

estimation of the remaining parameters, as it would also happen with the standard Gibbs

sampler if one of the full conditional distributions was wrongly derived.

As discussed in Section 5.2, under certain theoretical conditions, the likelihood-free ap-

proximate Gibbs sampler will exactly target the true partial posterior π(θ|sobs). In more

realistic cases, where the computational resources are limited, the results are approximate,

and might be sensitive to the tuning parameters and the validity of the regression assump-

tions. We therefore recommend the practitioner to conduct a detailed diagnostic analysis

to ensure that the algorithm’s inputs have been properly specified.

Localizing the regressions is also beneficial in terms of making the method more robust,

even though that is not always the case. While it is generally adequate to overcome lack

of normality, linearity or homoscedasticity, it is not as effective against missing variables

and/or interactions terms.

Inheriting some of the limitations of the Gibbs sampler is another considerable draw-

back of this approach. Potentially poor mixing, convergence issues and the impact of the

approximations in the behavior of the chain may impose important practical constraints.

On that note, other decompositions of the posterior can be derived to avoid those concerns.
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Specifically, considering the following decomposition:

f(θ|S) = f(θ1|S)f(θ2|θ1,S) . . . f(θD|θ1, . . . , θD−1,S),

one can still resort on synthetic samples to model each term in the right-hand side. It is

then possible to draw an approximate posterior sample θ∗ by sequentially sampling from

θ∗1 ∼ f̂(θ1|S) to θ∗D ∼ f̂(θD|θ∗−D,S).
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Algorithm 6 Likelihood-free approximate Gibbs sampling (localised models)
Inputs:

• An observed dataset Xobs.
• A prior π(θ) and intractable generative model p(X|θ).
• A sampling distribution b(θ) describing a region of high posterior density.
• An observed vector of summary statistics sobs = S(Xobs).
• A smoothing kernel Kh(u) with scale parameter h > 0.
• A positive integer N defining the number of ABC samples.
• A positive integer M defining the number of Gibbs sampler iterations.
• A collection of regression models f(θd|β+

d , gd(S,θ−d)) to approximate each full con-
ditional distribution π(θd|sobs,θ−d) for d = 1, . . . , D.

Data simulation:
For i = 1, . . . , N :

1.1 Generate θ(i) ∼ b(θ) from some suitable distribution b(θ).
1.2 Generate X(i) ∼ p(X|θ(i)) from the model.
1.3 Compute the summary statistics s(i) = S(X(i)).

Approximate Gibbs sampling:

2.1 Initialise θ̃(0) = (θ̃(0)
1 , . . . , θ̃

(0)
D )>.

2.2 For m = 1, . . . ,M :
For d = 1, . . . , D:

2.2.1 Denote by θ?−d = (θ̃(m)
1 , . . . , θ̃

(m)
d−1, θ̃

(m−1)
d+1 , . . . , θ̃

(m−1)
D )> the vector containing the

most recently updated values of θ̃(·)
j , j 6= d.

2.2.2 Set the regression weights w(i)
d = Kh(‖(s(i),θ

(i)
−d) − (sobs,θ

?
−d)‖)π(θ)/b(θ) for

i = 1, . . . , N .
2.2.3 Fit a suitable regression model θd|(S,θ−d) ∼ f(θd|β+

d , gd(S,θ−d)) using the
weighted samples {(θ(i), s(i), w

(i)
d )}Ni=1, so that f(θd|β̂+

d , gd(sobs,θ
?
−d)) locally

approximates the full conditional distribution π(θd|sobs,θ
?
−d).

2.2.4 Gibbs update: sample θ̃(m)
d |(sobs,θ

?
−d) ∼ f(θd|β̂+

d , gd(sobs,θ
?
−d)).

Output:

• Realised Gibbs sampler output θ̃(0), . . . , θ̃(M) with target distribution ≈ π(θ|sobs).
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Algorithm 7 Likelihood-free approximate Gibbs sampling (global models)
[Changes from Algorithm 6.]
Approximate Gibbs sampling:

2.1 Initialise θ̃(0) = (θ̃(0)
1 , . . . , θ̃

(0)
D )>.

2.2 Compute the sample weights w(i) ∝ Kh(‖s(i) − sobs‖)π(θ)/b(θ), for i = 1, . . . N .

2.3 For d = 1, . . . , D:
Fit a suitable regression model θd|(S,θ−d) ∼ f(θd|β+

d , gd(S,θ−d)) using the weighted
samples {(θ(i), s(i), w(i))}Ni=1, so that f(θd|β̂+

d , gd(sobs,θ−d)) locally approximates the
full conditional distribution π(θd|sobs,θ−d).

2.4 For m = 1, . . . ,M :
For d = 1, . . . , D:

2.4.1 Denote by θ∗−d = (θ̃(m)
1 , . . . , θ̃

(m)
d−1, θ̃

(m−1)
d+1 , . . . , θ̃

(m−1)
D )> the vector containing the

most recently updated values of θ̃(·)
j , j 6= d.

2.4.2 Gibbs update: sample θ̃(m)
d |(sobs,θ

?
−d) ∼ f(θd|β̂+

d , gd(sobs,θ
?
−d)).



Discussion

Throughout this thesis, we have introduced new methods and algorithms that have mean-

ingfully contributed to the advancement of the Approximate Bayesian Computation liter-

ature. Together, the proposals foster the capacity of ABC to handle very high dimensional

models, alleviate the intrinsic ABC approximation error and enhance the estimation of

posterior dependences. We have also extended ABC into the non-parametric framework,

demonstrating its potential to estimate infinite-dimensional parameters.

In Chapter 2, we combined some of the state-of-the-art ABC techniques to make infer-

ence possible in a challenging epidemiological setting. The fitted parameters lead to the

biologically important conclusion that the vast majority of cases of multidrug resistant

tuberculosis come from transmission of strains that are already multidrug resistant. This

suggests that, although it is imperative to support treatment adherence (to avoid treat-

ment failures that could lead to multidrug resistance), public health policies that reduce

the incidence of new cases may be effective in controlling drug resistance. In addition,

the study concludes that there is a positive probability of conversion directly from doubly

drug sensitive to doubly resistant infections. Lastly, resistance to isoniazid occurs much

more frequently than resistance against rifampicin, which is consistent with previously

documented estimates based on in vitro experiments (David, 1970; Ford et al., 2013).

Computationally, estimating this model was a highly demanding endeavor. If the

fitting process was faster, we could have increased the model’s complexity in a number

of ways, including assigning prior distributions to some of the parameters assumed to

be known (based on values previously reported in the epidemiological literature). In

hindsight, the lazy ABC approach introduced by Prangle (2016) could potentially have

accelerated the computations, given the high cost of generating each synthetic dataset

(≈ 40 sec). Other extensions to this Chapter could involve accounting for the incubation

period of the pathogen or performing model selection in a more formal way – instead of
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basing this on the posterior predictive distribution.

Chapter 3 was devoted to the problem of non-parametrically estimating a set of as-

sociated density functions. We proposed specifying the prior distribution using Gaussian

processes in a hierarchical architecture. Exact inference using MCMC would have been

infeasible. However, we showed that by extending the principles of regression adjustment

to the case of functional objects, one could achieve accurate posterior inference with prac-

tically viable computational costs. The method proved to be competitive against other

well-established non-parametric approaches. An important advantage of the ABC con-

struction is that the inferential procedure is somewhat detached from the actual model

specification, in the sense that changes to the base density, for example, do not require

the tedious exercise of re-deriving the sampling equations. It also liberates us from the

need to adopt conjugate distributions. In this work, the “closeness” of two samples was

defined in terms of the KL-divergence between the respective Kernel Density Estimators.

This sort of summarization may be useful in other ABC constructions, not necessarily

involving functional parameters.

Despite our encouraging results, there is still room for improvement. Specifically, we

adopted an arbitrarily chosen regular grid to discretize the continuous function. A better

alternative would be to, as in Tokdar (2007), infer an appropriate irregular grid from the

observed data. However, while it is obvious that regions where the densities vary more

rapidly should be allocated more grid points, it is not so obvious how to actually implement

this concept in practice.

Deriving an appropriate functional regression model that reasonably mirrors the un-

derlying probabilistic relationship was anything but trivial. That is hardly surprising,

and provides yet another illustrative example of the nature of regression adjustment tech-

niques: the gain (or loss) obtained from performing the adjustment is determined by the

modeler’s ability (or resources) to derive a good regression model.

As an alternative to regression adjustment, we introduced in Chapter 4 an algorithm

that allows one to recalibrate (in the coverage property sense) a posterior estimate. It

would be fair to state that the core idea is to use ABC to improve an ABC estimator –

or, equivalently, it is about generating synthetic ABC estimates, from which we can learn

how the ABC estimator behaves in a neighborhood of the observed data. It is important

to clarify that the diagnostic part of this approach was previously proposed by Prangle
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et al. (2014). Our contribution is on how to enhance the initial estimator in response to

what was learned from the diagnostic analysis.

We showed through a simulation study that this approach serves both as an alternative

and as a supplement to regression-adjustment – our approach outperformed regression-

adjustment alone by a comfortable margin. The method may also be used to correct other

cheaper, non-ABC estimators, such as the one presented in Subsection 4.3.1. This indirect

inference approach mitigates the computational burden, which is often substantial, given

that one needs to estimate the posterior distribution numerous times. Operationally, the

method only requires the tuning of the acceptance fraction. Still, we were unable to

establish a reliable recommendation in regards to how this parameter should be chosen in

a general setting – future contributions along these lines would certainly strengthen the

results available at this stage.

Finally, in Chapter 5, we introduced a likelihood-free approximate Gibbs sampler. The

leading motivation for creating this algorithm is the realization that approximating univari-

ate conditional distributions is considerably easier than approximating a high-dimensional

posterior distribution. The Gibbs sampler mechanics provided a straightforward way to

implement this idea. We therefore proposed the use of ABC to draw approximate samples

from these full conditional distributions that are intractable, within the Gibbs sampler.

As with the recalibration algorithm, the covariance structure of the posterior distribution

is properly captured here.

The algorithm successfully handled the remarkably difficult problem of estimating

an intractable multivariate high-dimension state-space model (where more than 13000

interrelated parameters were present). This demonstrates the methods aptitude to address

well-structured models for time series, spatial or hierarchical data. Although we didn’t

focused on these sorts of applications, we anticipate that the method will also be attractive

in problems where it is costly to generate synthetic samples.

In terms of limitations, the sampler inherits the extensively-researched limitations of

the exact Gibbs sampler (e.g. poor mixing). Developing a stronger theoretical founda-

tion would also be useful to identify situations where the algorithm may perform poorly.

Similarly to the work by van Buuren and Groothuis-Oudshoorn (2011) our approach is

also sensitive to problems encountered where the conditional distributions (or their ap-

proximations) are not compatible with the existence of a unique joint distribution. Issues
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involving potential incompatibility, and its consequences, therefore need further investi-

gation. Exploiting ABC to approximate other decompositions of the posterior is one also

possibility, which could eliminate some of the raised concerns.
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