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CHAPTER 1

Introduction

Ergodic theory is the study of ergodic measures or systems. Walters [1982]

gives a broad de�nition of ergodic theory as the study of the qualitative prop-

erties of actions of groups on spaces. The space has some structure which

we suppose in this thesis to be that of a measure space (other alternatives

in the literature are a topological space or smooth manifold). Ergodic the-

ory originated from the study of statistical mechanics by Boltzmann, Maxwell

and others in the 19th century. Boltzmann was trying to understand the gas

problem, that is, to understand the state of the particles in a gas after a long

time. To solve this problem, Boltzmann introduced the `ergodic hypothesis',

which was the assumption that in the long run, the system would pass through

every dynamical state which was consistent with the equations of energy. As

Lebowitz and Penrose [1973] note, like good physicists, �they assumed that

everything was or could be made all right mathematically and went on with

the physics.� The word ergodic comes from the Greek word ergon, meaning

work, and odos, meaning path.

As stated, the ergodic hypothesis is not true. Fixing this required the de-

velopment of measure theory in the early 20th century. The measure theoretic

study of ergodic theory began with the ergodic theorems of von Neumann

[1932a], von Neumann [1932b] and Birkho� [1931]. For a discussion of the

history of ergodic theory see Walters [1982] and Halmos [1956].

i
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To illustrate some of the concepts in ergodic theory we introduce a couple of

standard dynamical systems. Two important transformations in ergodic theory

are the one-sided and two-sided Bernoulli shift transformations. A one-sided

Bernoulli shift transformation is the map T : Z → Z where (x1, x2, . . .) ∈ Z

de�ned by (T (x)n) = xn+1. Note that this map simply shifts each element of

Z to the left. A one-sided Bernoulli shift is a measure-preserving transforma-

tion, that is the measure of the inverse image is equal to the measure on the

set. A two-sided Bernoulli shift is de�ned similarly to the one-sided shift, the

di�erence is that for the two-sided shift Z = RZ instead of Z = RZ+

.

Ergodicity is the concept of irreducibility of non-singular transformations.

A non-singular transformation is a transformation such that the measure of

the inverse image is zero if and only if the measure on the set is zero. The

two-sided Bernoulli shift transformation is ergodic but the one-sided shift is

not. This clearly holds since the one-sided shift is not invertible as it is not

one-to-one, therefore it cannot be non-singular. For a proof that the two-sided

Bernoulli shift is ergodic see [Walters, 1982, pp. 32-33].

Ergodic theory overlaps several other branches of mathematics (to name

a few, these include probability theory, harmonic analysis, number theory,

topological groups and Hilbert spaces).

There are two main types of problems in ergodic theory. The �rst in-

volves understanding measure-preserving transformations and when they are

isomorphic. The second gives applications of measure-theoretic ergodic theory.

These consider how the theory can be applied to problems in other branches

of mathematics and physics.

`Entropy is a measure of randomness or disorder.' [Petersen, 1983, p. 227]

In this thesis we will not be looking at the concept of entropy. However, we
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think that it is an important area of ergodic theory which requires some discus-

sion to complete a general discussion of ergodic theory. Entropy is a categorical

concept, therefore variations of this concept exist in other areas of mathemat-

ics. The concept of entropy was introduced to ergodic theory by Kolmogorov

[1958]. There are two important theorems about entropy in ergodic theory.

One of these, introduced by Kolmogorov [1958, 1959] and reformulated by

Sina�i [1959], is called the Kolmogorov-Sina�i Theorem on entropy. This states

that the entropy of a transformation can be calculated by �nding its entropy

with respect to a generator. Consequently, the entropy can sometimes be

calculated and it can be concluded that the Bernoulli shifts with di�erent en-

tropies are not isomorphic. For example, [Walters, 1982, p. 102] show that the

2-sided
(

1
2
, 1

2

)
-shift has entropy log 2 and the 2-sided

(
1
3
, 1

3
, 1

3

)
-shift has entropy

log 3, therefore these transformations are not isomorphic.

Another important theorem by Ornstein [1974] states that two Bernoulli

shifts are isomorphic if and only if they have the same entropy. Thus, for

example, any two measure-preserving transformations of a �nite space have

zero entropy and are therefore isomorphic (see Walters [1982]). Note that it

is not always possible to calculate the mean entropy of a transformation, for

example the limit used to calculate the mean entropy of a non-singular system

which is not measure-preserving does not, in general, exist.

Michael Keane [1972]), studied Gibbs measures in statistical mechanics and

introduced the notion of a g-function, where g is a C1 [0, 1] function which is the

normed space of continuously di�erentiable functions on [0, 1] (see [Kreyszig,

1989, p. 110]. G-measure formalism was �rst introduced by Brown and Dooley

[1991], where the notion of G-measures was used to generalise certain Riesz

product measures. The discussion here is based on Dooley [2007].
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Every quasi-invariant probability measure is a G-measure for the group of

�nite coordinate changes. We begin our discussion of G-measures with a simple

example of a measure, a Markov measure. A Markov measure is a special case

of a G-measure. In standard statistical theory a stochastic process is called a

Markov process if the conditional distribution of any future state on the past

and current states depends only on the conditional distribution of the current

state.

Another important example of a G-measure is a Riesz product measure.

This is not a product measure nor a Markov measure.

Riesz [1927] introduced a construction of a measure on the circle (that is it

is on T or equivalently on the in�nite product space ZZ+

l where l is an integer

such that l ≥ 2), which has since become known as a Riesz product. This

measure is originally from classical Harmonic Analysis. Riesz products in their

modern form were introduced by Sidon in his study of lacunary trigonometric

series in his theorems of 1927 and 1937 (for a more detailed discussion of this

see Kahane [2006]). These are in general singular with respect to Lebesgue

measure and are weak-∗ limits of measures of the form

dµ = lim
n→∞

n∏
i=1

(
1 + ai cos 2π

(
3ix+ φi

))
dx.

Note that x ∈ [0, 1), {ai} is a sequence of real numbers with −1 ≤ ai ≤ 1

and {φi} is a sequence of phases in [0, 1). Riesz showed that for any choice of

x, {ai}, and {φi} there exists a unique weak-∗ limit measure µ, which is often

singular with respect to Haar measure. Note that Haar [1933] introduced the

notion of a Haar measure. A Haar measure is as a translation invariant measure

on any locally compact topological group. In this thesis, we let {µn}n∈Z+ be

a sequence of probability measures on (X,B, µ). Recall that the sequence µn
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converges weakly to a measure µ, written µn
w→ µ if

lim
n→∞

ˆ
X

f dµn →
ˆ
X

f dµ,

for all C (X), the space of all bounded continuous functions on X.

Work on Riesz products by Brown and Moran [1974] showed that they

were absolutely continuous with respect to Lebesgue measure if and only if∑
a2
i <∞, and otherwise they were singular.

Brown [1978] showed that if we consider the action of the triadic rationals

on the circle, that is γ : x 7→ x+ p
3n

for values of n and p (which are relatively

prime to 3), then µ ◦ γ ∼ µ and the measure µ is ergodic for the action of the

group of triadic rationals.

G-measure formalism originated from generalising the description of the

Riesz product measure. Here, the functions gi are a given family of functions

on the circle. We can think of the terms in the Riesz product as

gi
(
3ix
)

=
(
1 + ai cos

(
2π · 3ix

))
for i ≥ 1, x ∈ [0, 1) and

Gn (x) =
n∏
i=1

gi
(
3ix
)
.

The functions Gn are related to the Radon-Nikodým derivative of the mea-

sure with respect to its translation by triadic rationals. We can see from this

de�nition that Brown and Dooley [1991] generalise Keane [1972] and Riesz

[1927]. Brown and Dooley [1991] generalised both Keane's construction and

that of the classical Riesz products in the notion of G-measures. The term

g-function is used for the case when all the gn's are the same function.
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This thesis extends the method and formalism of G-measures to the set-

ting of the in�nite permutation group. A measure associated to a normalised

compatible family, {GF}, is called a G-measure. In this thesis we will consider

G-measures for the symmetric group. A family of functions GF is compatible

if for �nite subsets F1 ⊆ F2 ∈ Z+

GF1 (x)GF2 (σx) = GF1 (σx)GF2 (x) ,

for all σ in the symmetric group, ΣF1 . It is normalised if for any �nite set

F ⊆ Z+

1

|ΣF |
∑
σ∈ΣF

GF (σx) = 1.

We will give conditions under which G-measures exist.

The general contents of each chapter are described below.

We begin Chapter two by outlining some simple concepts in ergodic and

measure theory. These include de�nitions of di�erent types of maps, ergod-

icity and invariant and quasi-invariant measures. In the section on measure

theory we discuss in�nite product measure spaces and whether two measures

are mutually singular, absolutely continuous or equivalent. We then discuss the

important concepts of the Radon-Nikodým Theorem and the Radon-Nikodým

derivative. We also outline Kakutani's Theorem which gives conditions for

when two measures are mutually singular or absolutely continuous.

The main topic in Chapter two is exchangeability and de Finetti's Theo-

rem. A sequence is exchangeable if its distribution is unchanged after being

permuted. That is, an in�nite sequence x = (x1, x2, . . .), is exchangeable if

(1.0.1) (x1, x2, . . .)
d
=
(
xσ(1), xσ(2), . . .

)
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for σ an element of the symmetric group, where
d
= denotes equality in distri-

bution. Note that if x1, x2, . . . are independently and identically distributed

i.i.d. , then they are exchangeable, but the converse is not true. A sequence

or other collection of random variables is i.i.d. if each random variable has the

same probability distribution as the others and all are mutually independent.

De Finetti's Theorem says that every in�nite, exchangeable sequence of

random variables is mixed i.i.d. , that is, the distribution can be written as a

weighted average of i.i.d. sequences. A more re�ned version of this theorem is

that if an in�nite sequence is exchangeable then it is conditionally i.i.d. . Using

the results that have been developed in the literature since the �rst proof of

de Finetti's Theorem allows this more succinct version of this theorem. The

conditions above are for an in�nite sequence. It is possible to derive a similar

condition for �nite exchangeable distributions.

We then discuss Aldous and Pitman's Theorem of exchangeability. Let

(X,B, µ) be a probability space, then the exchangeable σ-algebra is the collec-

tion of events B ∈ B where B is a measurable subset of sequence space which is

invariant under the permutations of �nitely many coordinates. This theorem

states a necessary condition for the exchangeable σ-algebra to be ergodic. We

then give examples to illustrate this theorem.

We de�ne permutations and the symmetric group since this is the main

group of interest in this thesis.

We give two di�erent proofs of de Finetti's Theorem. The �rst proof is

by Glasner [2003]. The other proof uses the notion of G-measures which we

discuss in more detail in Chapter four.

Chapter two draws on the literature and we begin to introduce our own

work in Chapter three. The major topic we discuss in Chapter three, is the
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concept of G-measures. Firstly, as already discussed above both G-measures

and g-functions are weak-∗ limits of measures which are often singular (with

respect to Haar measure). Secondly, the functions, Gn, are products of the gi

functions such that Gn = g1 · · · gn. For the special case of G-measures all the

gi are the same function (equal to g). Original content in this thesis includes

the discussion in Chapter three of G-measures for the symmetric group.

The construction of G-measures from a G-family of functions uses a certain

family of averaging operators. Note that for the group of �nite coordinate

changes this bounded linear operator converges uniformly to a constant if and

only if there is a unique G-measure (which is therefore ergodic). This is not

the case for the bounded linear operator for the symmetric group. This may

not converge to constant and there may not be a unique G-measure. This

part of the thesis is original work. In Chapter four we look more closely at

these operators and show that they are conditional expectation operators with

respect to suitable measures. This leads to a consideration of martingales.

We give another proof in Chapter four of de Finetti's Theorem using the

theory of martingales. This version of de Finetti's Theorem states that if an

in�nite sequence is exchangeable then it is conditionally i.i.d. . We show how

normalised compatible families are naturally associated to martingales. This

link between the proof of de Finetti's Theorem using the theory of martingales

and G-measures is our own work.

Note that the Radon-Nikodým derivative of any probability measure which

is quasi-invariant for the �nite coordinate changes form a normalised compat-

ible family. We adapt this approach to the in�nite permutation group acting

on an in�nite product space.



CHAPTER 2

Ergodic Theory and de Finetti's Theorem

Ergodic theory is the study of ergodic measures or ergodic systems. Note

that it is not just the study of dynamics on a measure space since non-ergodic

systems are included in dynamical systems. In this chapter we begin by out-

lining some basic concepts in ergodic and measure theory. We then go on to

discuss ergodicity and invariant and quasi-invariant measures. This is followed

by the Hewitt-Savage zero-one law which gives conditions under which a mea-

sure is ergodic (for a transformation). We also de�ne permutations and the

symmetric group for both the �nite and in�nite case.

In the section on measure theory we begin by discussing in�nite product

measure spaces. We then go on to discuss the important concept of the Radon-

Nikodým Theorem and the Radon-Nikodým derivative. This is followed by a

discussion of Kakutani's Dichotomy Theorem which gives the criteria under

which two measures are mutually singular or absolutely continuous.

The starting point for the theory on exchangeability is the following exam-

ple. Suppose that we have n balls labelled 1, . . . n in a bag which are drawn

out randomly from the bag, without replacement. Let xi denote the random

variable giving the label of the ith ball. The sequence x = (xi) just gives

the ordered list of labels of the balls, and since the balls are equally likely to

have been pulled out in any order, the distribution here is just the uniform

distribution supported on the permutations of [n] = {1, . . . n}. The sequence

1
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of random variables xi, although identically distributed, is clearly not inde-

pendent.

Note in particular, that if σ : [n]→ [n] is any permutation, and xσ =
(
xσ(i)

)
is the corresponding permutation of the sequence of random variables, then the

distribution of xσ is identical to that of x. In cases such as this we say that x

is an exchangeable sequence of random variables.

In general, if x = (xi) is an i.i.d. sequence of random variables, then x

is clearly exchangeable. As the above example shows, independence is not

necessary for exchangeability.

For a second example, suppose that we have n bags, and that the ith

bag contains one blue ball and i red balls. Choose one ball from each bag,

and let yi be the random variable which is one if the ith ball is blue and

zero otherwise. The sequence y = (yi) consists of random variables which are

independent, but which are not identically distributed. They are certainly not

exchangeable. Certain events however, do not depend on the ordering of the

bags. Consider for example

E1 = {(ai) ∈ {0, 1}n : a1 = 1}

E2 =

{
(ai) ∈ {0, 1}n :

n∑
i=1

ai = 3

}
.

Suppose σ : [n] → [n] is a permutation. Unless σ (1) = 1, it is clear that

Prob (y ∈ E1) 6= Prob (yσ ∈ E1). However, Prob (y ∈ E2) = Prob (yσ ∈ E2).

Events such as E2 whose probabilities are invariant under permutations of the

sequence are called exchangeable events.
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De Finetti's theorem characterises in�nite exchangeable sequences of ran-

dom variables. It says that an in�nite sequence of random variables is ex-

changeable if and only if it is a �mixture� of i.i.d. sequences of random vari-

ables.

If x = (xi) is a sequence of i.i.d. (and hence exchangeable) real-valued

random variables each with distribution m and A is a suitable subset of R∞

then

Prob (x ∈ A) = m∞ (A) ,

is given by the in�nite product measure determined by m. This will be de�ned

more formally in Section 2.2.

We say that a sequence x = (xi) of random variables is a mixture of

i.i.d. random variables if there exists a set T of parameters equipped with a

measure ν such that for each t ∈ T , mt is a probability measure on R and so

that

Prob (x ∈ A) =

ˆ
T

m∞t (A) dν (t) ,

for suitable A ⊆ R∞. That is, x = (x1, x2, . . .) is a type of average of i.i.d. se-

quences with distributions mt, t ∈ T . This will be made more precise in

Sections 2.6 and 2.7.

As shown by the example above, de Finetti's Theorem may fail for �nite ex-

changeable sequences, x = (x1, . . . , xn). In Section 2.8 we will state conditions

for �nite sequences to be exchangeable.

We will give two proofs of de Finetti's Theorem. Let P (Z) be the set of

probability measures on Z. The �rst proof, shows that m∞t ∈ P (Z) if and

only if m∞t is Σ∞-ergodic. The second proof uses martingales and is given in

Chapter four.



2.1. INTRODUCTION TO ERGODIC THEORY 4

2.1. Introduction to Ergodic Theory

This section introduces some basic concepts in ergodic theory. We sum-

marise some of the background material which will be used in this thesis. Most

of this can be found in Aaronson [1997] (or even wikipedia).

Ergodic theory is the study of ergodic measures or systems. We de�ne

here what it means for a transformation to be measurable, non-singular and

measure-preserving.

Throughout this section we shall let (X,B, µ) denote a measure space. That

is X is a nonempty set, B is a σ-algebra of subsets of X and µ is a non-negative

measure on B. We shall say that (X,B, µ) is a probability space, and that µ

is a probability measure if µ (X) = 1.

Definition 2.1.1. Royden [1969, p.238]. Let (X,B) be a �xed measurable

space and µ and ν be two measures on (X,B).

(i) We say that µ and ν are mutually singular if there are disjoint sets

A and B in B such that X = A ∪ B and µ (A) = ν (B) = 0. We write this as

µ⊥ν.

(ii) We say that µ is absolutely continuous with respect to ν if ν (E) = 0

implies µ (E) = 0 for all E ∈ B. This is written as µ� ν.

(iii) If both µ� ν and µ� ν then µ and ν are called equivalent, this is

written as µ ∼ ν. It is easy to see that ∼ is an equivalence relation.

Definition 2.1.2. We let P(X) be the set of probability measures on X

and ν is a probability measure on the Borel sets of X.
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Definition 2.1.3. Suppose that P is a property that elements of X may

satisfy. This may be encoded by a True/False valued function π de�ned on X,

where of course π (x) is true if x satis�es P . We shall say that P holds almost

everywhere (a.e.) or π (x) is true almost everywhere if

µ ({x ∈ X : π (x) is false}) = 0.

Here we give de�nitions used to classify transformations.

Definition 2.1.4. [Walters, 1982] Let (X1,B1, µ1) and (X2,B2, µ2) be

probability spaces. A transformation T : X1 → X2 is

(1) Measurable if T−1B2 ∈ B1 for all B2 ∈ B2.

(2) Measure-preserving if T is a measurable map and µ1 (T−1 (B2)) =

µ2 (B2) for all B2 ∈ B2.

(3) An invertible measure-preserving transformation if T is a measure-

preserving, bijective, and T−1 is also measure-preserving.

(4) Non-singular if it is a measurable transformation, such that µ1 (T−1 (B2)) =

0 if and only if µ2 (B2) = 0 for all B2 ∈ B2.

If T : X → X is a non-singular transformation, then we shall call the

quadruple (X,B, µ, T ) an abstract dynamical system.

Definition 2.1.5. Suppose that (X,B, µ, T ) is an abstract dynamical sys-

tem.

(1) We say that µ is invariant under T if for every measurable set B ∈ B,

µ (T−1 (B)) = µ (B). That is, µ is an invariant measure under T , if T is

measure-preserving, or equivalently, that µ ◦ T−1 = µ.
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(2) We say that µ is a quasi-invariant under T if µ is equivalent to the

measure µ ◦ T−1. This is equivalent to requiring that µ (B) = 0 if and only if

µ (T−1 (B)) = 0 for B ∈ B.

We have now given enough de�nitions to explain the concept of ergodicity.

We can think of ergodicity as the concept of irreducibility of non-singular

transformations. The following de�nition is from Aaronson [1997, p. 51]. This

uses the set symmetric di�erence, denoted by 4.

Definition 2.1.6. Suppose that (X,B, µ) is a probability space, and that

G is a locally compact, second countable topological group. A non-singular

action of G on (X,B, µ) is a map

G ×X → X

de�ned by

(g, x) 7→ Tgx,

where each Tg : X → X is a non-singular transformation and

Tg ◦ Th = Tgh

for all g, h ∈ G. We say that this action is ergodic if A ∈ B, µ (A4 TgA) = 0

for all g ∈ G , implies that µ (A) = 0 or µ (Ac) = 0.

Note that µ (A4 TgA) = 0 if and only if µ
(
A4 T−1

g A
)

= 0. The set S is

a.e. invariant if µ (S 4 TgS) = 0 for all g ∈ G. It is ergodic if every invariant

set has measure zero or its complement has measure zero.
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Definition 2.1.7. Let (X,B, µ, T ) be an abstract dynamical system. We

shall say that µ is an ergodic measure for T if µ is a T -invariant probability

measure and the only T -invariant sets have measure 0 or 1. That is, for A ∈ B,

T (A) = A implies µ (A) = 0 or µ (A) = 1.

2.2. Measure Theory and Ergodicity

This section outlines some de�nitions from measure theory. We begin by

discussing in�nite product measure spaces, see Bogachev [2007, pp. 187-

188]. This is followed by the Radon-Nikodým theorem and the concept of the

Radon-Nikodým derivative, drawing heavily on Halmos [1950] and Capi«ski

and Kopp [2004].

Definition 2.2.1. Let (Xi,Bi, µi) denote a family of probability measure

spaces indexed by elements of i ∈ Z+. Let X denote the Cartesian product of

these spaces

X =
∏
i∈Z+

Xi = {(xi)∞i=1 : xi ∈ Xi} .

A (measurable) cylinder set in X is a set of the form

A = A1 × A2 × · · · × An ×Xn+1 ×Xn+2 × · · ·

where n ∈ Z+ and Ai ∈ Bi for i = 1, 2, . . . , n.

One can de�ne a map µ on a cylinder set by

µ (A) =
n∏
i=1

µi (Ai) .

The cylinder sets do not form a σ-algebra. If one denotes by B the smallest

σ-algebra containing the cylinder sets, then it can be shown in [Walters, 1982,
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p. 5] that µ can be extended to a measure on (X,B). In particular, if the

spaces (Xi,Bi, µi) are all probability spaces, then so is (X,B, µ). We shall

write B = ⊗∞i=1Bi and µ = ⊗∞i=1µi.

The same construction applies (with fewer technical di�culties) for �nite

Cartesian products, X =
∏n

i=1 Xi, B = ⊗ni=1Bi and µ = ⊗ni=1µi.

The most standard example of this (which we shall return to often) is as

follows.

Example 2.2.2. Let Xi = {0, 1, . . . , l − 1} where l is an integer such that

l ≥ 2 and µi is a normalised counting measure for each i = 1, 2, . . .. Then

X =
∏

i∈Z+ Xi can be identi�ed (up to sets of measure zero) with [0, 1) via

the map (x1, x2, . . .) 7→
∑∞

i=1 xil
−i. In this case µ = ⊗∞i=1µi is just Lebesgue

measure on B = ⊗∞i=1Bi which comprises the Borel subsets of [0, 1].

We shall say that two sequences x = (xi) and y = (yi) are eventually equal

if there exists n such that xi = yi for all i ≥ n.

Theorem 2.2.3. (Hewitt-Savage 0-1 Law) Let (X,B, µ) be the in�nite

product space generated by the sequence of spaces (Xi,Bi, µi)∞i=1. Suppose that

Y ∈ B has the property that x = (xi) is in Y if and only if every sequence

y = (yi) which is eventually equal to x is also in Y . Then µ (Y ) is either 0 or

1.

Suppose that σ : Z+ → Z+ is a �nite permutation of Z+, that is, σ �xes

all but �nitely many of the elements of Z+. Let X =
∏∞

i=1Xi where all the

Xi are the same. De�ne Tσ : X → X by Tσ ((xi)) = (xσ (i)). If A ∈ B is

invariant under all Tσ then the Hewitt-Savage 0-1 Law implies that µ (A) is

either 0 or 1. This means that µ is ergodic for (Tσ)σ∈Σ∞
. The set of such �nite
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permutations forms a group Σ∞ which we will formally introduce in Section

2.4. The measure µ is therefore ergodic for the action of the group Σ∞.

Let (X,B, µ, T ) be a probability space. For every non-negative integrable

real function f : X → R, it is straightforward to show that the set function

E 7→ ν (E) =

ˆ
E

f dµ

de�nes a measure ν on (X,B), for example, see Capi«ski and Kopp [2004,

�7.2]. In this section we discuss how the Radon-Nikodým Theorem answers

the question of which measures ν can be constructed using this method.

Definition 2.2.4. We say that a measure space (X,B, µ) is σ-�nite if

there exist sets {Ai}∞i=1 ⊆ B with X =
⋃∞
i=1Ai and µ (Ai) <∞ for each i.

Theorem 2.2.5. Royden [1969, pp.238-40]. Radon-Nikodým Theorem.

Let (X,B, µ) be a σ-�nite measure space. Let ν be a measure on B which is

absolutely continuous with respect to µ, that is ν � µ. Then there exists a

non-negative measurable function f such that for each set E ∈ B we have

ν (E) =

ˆ

E

f dµ.

The function f is unique up to sets of µ-measure zero. The function f

is called the Radon-Nikodým derivative of ν with respect to µ and can be

denoted by dν
dµ
.
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Theorem 2.2.6. [Glasner, 2003, p. 80]. A dynamical measure-preserving

system, (X,B, µ, T ), is ergodic if and only if for every f, g ∈ L2 (µ) (or L1 (µ)),

lim
n→∞

1

n

n−1∑
i=0

ˆ
f ◦ T i · ḡ dµ =

ˆ
f dµ

ˆ
ḡ dµ.

2.3. Kakutani's Dichotomy Theorem

Kakutani's Dichotomy Theorem gives criteria for when two in�nite product

measures are mutually singular or absolutely continuous. Note that Brown and

Dooley [1994] extend Kakutani's Dichotomy Theorem to G-measures for the

group of �nite coordinate changes. The following section is based on Hewitt

and Stromberg [1965].

Theorem 2.3.1. Kakutani's Dichotomy Theorem. Let X =
∏∞

i=1 Xi

be an in�nite product space and for i = 1, 2, 3, . . ., let µi and ηi be probability

measures on Xi. Let µ = ⊗∞i=1µi and let η = ⊗∞i=1ηi. Then either

(i) η � µ or

(ii) η⊥µ.

Let fi be the Radon-Nikodým derivative dηi
dµi

as de�ned in Theorem 2.2.5.

Then (i) holds if and only if

(iii)
∏∞

i=1

(´
Xi
f

1
2
i dµi

)
> 0,

and (ii) holds if and only if

(iv)
∏∞

i=1

(´
Xi
f

1
2
i dµi

)
= 0.

Example 2.3.2. Hewitt and Stromberg [1965]. Let Xi = {0, 1} for all

i ∈ Z+, and let α be a sequence {αi}∞i=1 such that 0 < αi < 1. Let µα be

the measure on (X,B) , that is the product of measures µi on {0, 1} such that

µi ({0}) = αi, µi ({1}) = 1 − αi. Suppose that α and β are any two such

sequences. Then exactly one of the following assertions holds:
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(i) µα � µβ and µβ � µα, or

(ii) µα⊥µβ.

This follows directly from Kakutani's Theorem, Theorem 2.3.1. Property

(i) holds if and only if

(iii)
∑∞

i=1

(
1− α

1
2
i β

1
2
i − (1− αi)

1
2 (1− βi)

1
2

)
<∞,

and property (ii) holds if and only if this series in (iii) diverges.

2.4. Symmetric Groups

In this section we give de�nitions of the �nite and in�nite symmetric groups.

The following de�nition can be found in Dooley and Fan [1997, pp. 113-114],

Dummit and Foote [2004, pp. 28, 82] and Olshanski [2008].

Definition 2.4.1. Let A be any non-empty set. The set of the permu-

tations of A, is a bijection from A to A, denoted by σ : A → A. We denote

the set of all such maps by ΣA.

The set ΣA is a group under function composition: ◦. This group is called

the symmetric group on the set A. In the special case of permutations of

the index set [n] = {1, 2, . . . , n} the symmetric group on A is denoted Σn, the

symmetric group of degree n. The cardinality of this group is |Σn| = n!.

We can generalise this as follows. Suppose that Z is a set with symbols

{x1, . . . xn}, σ ∈ Σn acts on Z via

σ : Z → Z

such that

σ (xi) = xσ(i).

If σ ∈ Σn, we let σ act on the positive integers by permuting {1, 2, . . . , n}

and �xing integers greater than n. In this way we can consider Σn to be a
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subgroup of the in�nite group ΣZ+ . We de�ne the in�nite symmetric group to

be

Σ∞ =
∞⋃
n=1

Σn.

Note that this is sometimes called the �nitary symmetric group.

Obviously, Σ∞ is a countable, locally �nite group. Note that the symmetric

group, Σn, is not commutative for n > 2.

We can compare the symmetric group to the group of �nite coordinate

changes.

Definition 2.4.2. (The group of �nite coordinate changes, see Brown

and Dooley [1991]) Let l (i) ≥ 2 be a sequence of integers. Let Γ = ⊕∞i=1Zl(i)

be the direct sum of the groups Zl(i), consisting of all sequences γ = (γi)

with γi ∈ Zl(i) and γi = 0 except for �nitely many coordinates. The set Γ

forms a group under elementwise addition mod l (i) and this group acts on

Z =
∏∞

i=1 Zl(i) by

γx = (x1 + γ1, x2 + γ2, . . .) ,

where each addition is done mod l (i). The group Γ is called the group of �nite

coordinate changes. For each n ∈ Z+ and for all i > n, let

Γn = {γ ∈ Γ : γi = 0,∀ i /∈ n} .

Clearly, Γ =
⋃∞
n=1 Γn.

2.5. Exchangeable Random Variables and Events

Aldous [1985] provides a survey of articles on exchangeability from a sta-

tistical view. The study of exchangeability began with the publications of
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de Finetti [1972b, 2011]. Lauritzen [2007] provides a summary of exchange-

ability and de Finetti's Theorem. This section draws heavily on [Olav, 2005].

Suppose that (Xi,Bi, µi), i ∈ Z+ is a sequence of probability spaces. Let

X =
∏∞

i=1 Xi be the in�nite product of these spaces equipped with the product

measure µ = ⊗∞i=1µi on B, the smallest σ-algebra containing all the cylinder

sets.

Definition 2.5.1. Suppose that x = (xi) is a sequence of random variables,

with each xi taking values in (Xi,Bi, µi) where all Xi are equal. We say that

x is exchangeable if for every �nite permutation σ ∈ Σ∞, the distribution of

σ (x)i =
(
xσ(i)

)
is the same as that of x. That is, given an in�nite sequence of

random elements x = (x1, x2, . . .), we say that x is exchangeable if

(2.5.1) (xk1 , xk2 , . . . , xkm)
d
= (x1, x2, . . . , xm)

for any distinct elements k1, k2, . . . , km of the index set, where
d
= denotes equal-

ity in distribution. For this to be the case, it is clearly enough to require that

Equation 2.5.1 be satis�ed for any �nite permutation. Note that x is exchange-

able if its distribution is invariant under �nite permutations.

Example 2.5.2. If the random variables xi ∈ Xi are i.i.d. then they are

certainly exchangeable.

Definition 2.5.3. Let X =
∏∞

i=1 Y for a �xed Y . The σ-algebra of sym-

metric events B is de�ned by Hewitt and Savage [1955, p. 474] to be the set of

events A ⊆ X which are invariant under �nite permutations of the indices in

the sequence (xi). That is, if x = (xi)
∞
i=1 ∈ A then σ (x) ∈ A for all σ ∈ Σ∞.

This is referred to as the exchangeable σ-algebra.
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[Ho�mann-Jorgensen et al., 2012] show that µ ∈ Prob (X,B) is an ex-

changeable probability measure on (X,B) if

µ

(
∞∏
i=1

Bi

)
= µ

(
Bσ(1) ⊗ . . .⊗Bσ(n) ⊗Bn+1 ⊗ . . .

)
for all σ ∈ Σn and Bi ∈ B with i ≥ 1 and n ≥ 1.

Example 2.5.4. In addition to the example of symmetric and non-symmetric

events discussed in the introduction to this chapter, we give a simple example

here of an exchangeable sequence. We can consider the example of Polya's

Urn as discussed in Lauritzen [2007]. Consider an urn with b black balls and

w white balls. Choose a ball at random. Add a balls of the same colour to the

urn together with the withdrawn ball. Repeat the process. Let xi = 1 if the

ith ball is black and xi = 0 otherwise. Let Xi = {0, 1} and µ = ⊗ni=1µi. Here

the xi are not independent and they are not a Markov process. However,

Prob (1, 1, 0, 1) =
b

b+ w
· b+ a

b+ w + a
· w

b+ w + 2a
· b+ 2a

b+ w + 3a

=
w

b+ w
· b

b+ w + a
· b+ a

b+ w + 2a
· b+ 2a

b+ w + 3a

= Prob (0, 1, 1, 1) .

It is relatively straightforward to generalise this special case to show that

x = (xi) is exchangeable.

Let (xi) be a sequence of random variables taking values in Y and let µi

be the probability measures de�ned on (X,B) by µi (B) = Prob (xi ∈ B) for

B ∈ Bi. The following theorem gives a condition for B to be an exchangeable

σ-algebra.
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Theorem 2.5.5. [Aldous and Pitman, 1979, Theorem 1.6] A necessary

condition for a σ-algebra B to be exchangeable is that for all A ∈ B,

∞∑
i=1

min (µi (A) , µi (A
c)) ,

is either 0 or ∞.

2.6. Examples of Exchangeabiliy

We give an example here of an application of de Finetti's Theorem as a

mixture of i.i.d. sequences.

Example 2.6.1. Suppose t ∈ [0, 1]. Let xt denote the sequence of outcomes

from the toss of a coin Ct which satis�es Prob (Ct = 1) = t. Then xt is an

example of an i.i.d. sequence. As we have already discussed, a sequence of

random variables is an i.i.d. sequence if each random variable has the same

probability distribution as the others and all are mutually independent. This

is clearly the case here. As discussed in the introduction to Chapter two, while

independence is not necessary for exchangeability, if xt is an i.i.d. sequence it is

clearly exchangeable. This explains the exchangeability of the outcomes from

this coin toss.

Let ν be a probability measure on [0, 1]. We can now de�ne a random

sequence x = (x1, x2, . . .) by choosing t at random (according to ν) and then

letting xi be the result of the ith toss of the coin Ct.

Letmt denote the (Bernoulli) probability distribution of such a coin toss, so

mt ({1}) = t and mt ({0}) = 1− t. Then for measurable A ⊆ X =
∏∞

i=1 {0, 1}

Prob (x ∈ A) =

ˆ 1

0

m∞t (A) dν (t) ,
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where m∞ = m×m× · · · denotes the product distribution.

Therefore, x is exchangeable since it is a mixture of i.i.d. sequences.

In fact, any average of i.i.d. sequences will have the same property. De

Finetti's Theorem states that all exchangeable sequences are of this form.

Note that this does not depend on the measure ν.

2.7. De Finetti's Theorem

We consider several di�erent versions of de Finetti's Theorem in this sec-

tion.

Theorem 2.7.1. De Finetti's Theorem. Every in�nite, exchangeable

sequence of random variables x = (x1, x2, . . .) is mixed independently identi-

cally distributed (i.i.d. ).

Remark 2.7.2. While everyone agrees with de Finetti's Theorem as stated

in Theorem 2.7.1. There are several alternatives to the theorem in the liter-

ature. This is because the concept of �a mixture of i.i.d. sequences� can be

de�ned di�erently. The de�nitions and lemmas stated here are from Aldous

[1985].

In Bayesian statistics, de Finetti's Theorem derives a general in�nite ex-

changeable sequence (xi) by choosing a distribution m at random from some

prior. Equivalently, we let the (xi) be i.i.d. variables with distribution m. De

Finetti's Theorem says that we can associate to (xi) a random distribution

µ (ω, ·) conditional on µ = m.

We can de�ne a sequence (xi) by
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(i) Select m at random from a probability distribution on R given by

{m1, . . . ,mk} such that

Prob (m = mi) = pi,

where p1, . . . , pk > 0 and
∑k

i=1 pi = 1;

(ii) Let (xi) be i.i.d. with distribution m.

As an alternative to (i) we have

(i') Select m at random from the distribution ν.

Here we give the idea from Bayesian statistics that (xi) are i.i.d. variables

with distribution m, where m has the prior distribution ν. Similar to our

discussion in the introduction to this chapter, we can write this as

(2.7.1) Prob (x ∈ A) =

ˆ
m∈P(Z)

m∞ (A) ν (dm) ,

whereA ⊂ R∞ and that is the x = (x1, x2, . . .) are random variables with values

in R∞. Let m∞ = m ×m × · · · denote the distribution of an i.i.d. sequence

on R∞, based on the measure m. Therefore, we have de�ned the distribution

of a sequence which is a mixture of i.i.d. sequences.

The following discussion of de Finetti's Theorem is from Aldous [1985].

Definition 2.7.3. Suppose that (Ω,S) and (Y,A) are measurable spaces.

A probability kernel with source (Ω,S) and target (Y,A) is a map µ :

Ω×A → [0, 1] such that

1. A 7→ µ (ω,A) is a probablity measure on A, for each ω ∈ Ω.

2. ω 7→ µ (ω,A) is a random variable, for each A ⊂ A.

Some authors use the terms random measure, Markov kernel or stochastic

kernel rather than probability kernel.
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A very simple example would be with Ω = Y = [0, 1] and S = A being the

Borel subsets of [0, 1]. The map

µ (ω,A) =


1, ω ∈ A,

0, ω /∈ A,

is a probability kernel. For each ω ∈ [0, 1], the measure A 7→ µ (ω,A) is just

the Dirac measure at ω. For each A ∈ A, the function ω 7→ µ (ω,A) is just

the characteristic function χA of A.

Suppose now that (Ω,S, ν) is a probability space and that F is a sub-σ-

algebra of S. For each f ∈ L1 (Ω,S, ν) the Radon-Nikodým theorem ensures

that there exists an F -measurable function g on Ω such that

ˆ
S

f dν =

ˆ
S

g dν

for all S ∈ S. The function g is unique up to sets of ν-measure zero and is called

the conditional expectation of f with repect to F , written E (f |F). The

operator E (·|F) is in fact a norm 1 projection of L1 (Ω,S, ν) onto L1 (Ω,F , ν) .

Suppose now that x : (Ω,S, ν)→ (Y,A) is a random variable. Each A ∈ A

determines a function xA : Ω→ {0, 1} by

xA (ω) =


1, x (ω) ∈ A,

0, x (ω) /∈ A.

Given a sub-σ-algebra F of S there exists a probability kernel µ with source

(Ω,F) and target (Y,A) such that for every A ∈ A

(2.7.2) µ (ω,A) = E (xA|F) (ω)
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for almost all ω ∈ Ω. This probability kernel is called a regular conditional

distribution (r.c.d.) of x given F .

Remark 2.7.4. [Sun, 2014] Let x : (Ω,S, ν) → (Y,A) be as de�ned in

De�nition 2.7.3. If Y is a complete separable metric space with Borel σ-�eld

A, then there exists a r.c.d. (µ (ω, ·))ω∈Ω for x given F .

Example 2.7.5. Let Ω = [0, 1], S be the Borel subsets of [0, 1] and let ν be

the Lebesgue measure on [0, 1]. Let Y =
∏∞

i=1 Z2 with A the natural product

σ-algebra. Let x : Ω→ Y be

x (t) = (t1, t2, . . .) , where t =
∞∑
k=1

tk
2k
.

Let F = B×B×Z2×Z2× . . . where B is the σ-algebra for the power set,

P (Z2), on Z2, so F is generated by 4 `atoms'. (If we identify Y with [0, 1)

these atoms are just
[
0, 1

4

)
,
[

1
4
, 1

2

)
,
[

1
2
, 3

4

)
and

[
3
4
, 1
)
.) Given ω ∈ Ω, let Dω be

the atom containing x (ω). A small calculation then shows that for any ω ∈ Ω

and A ∈ A.

E (xA|F) (ω) =
ν (A ∩Dω)

ν (Dω)
.

One can check that setting µ (ω,A) = E (xA|F) (ω) does de�ne a probabil-

ity kernel and so is a regular conditional distribution of x given F .

Note that in general, `the' regular conditional distribution of x given F is

not uniquely determined.

Remark 2.7.6. An alternative version of de Finetti's Theorem can be given

without directly referring to a random measure. Here we give the de�nition of

a conditionally i.i.d. sequence.
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Definition 2.7.7. Let (xi) be random variables and F a σ-algebra. The

standard de�nition of a conditionally i.i.d. sequence (xi) given F is given

by the properties below. We say that (xi) is a mixture of i.i.d.'s directed by µ

if µ (ω)∞i=1 is a r.c.d. for (xi) given F . This condition is equivalent to

(i) the (xi) are conditionally i.i.d. given F . We can write this as

Prob (xi ∈ A|F) = Prob (xj ∈ A|F) a.e., for each A ⊆ R, i 6= j.

and,

Prob (xi ∈ A, 1 ≤ i ≤ n|F) =
n∏
i=1

Prob (xi ∈ A|F) .

(ii) the conditional distribution of (xi) given F is µ. Using our notation

here gives Equation 2.7.2, that is

µ (ω,A) = E (xA|F) (ω) .

The following lemma allows us to de�ne a mixture of i.i.d. sequences if we

have a conditionally i.i.d. sequence.

Lemma 2.7.8. [Aldous, 1985, Lemma 2.12]. Let (xi) be conditionally i.i.d. given

F and µ be a r.c.d. for (xi) given F . Then

(i) A mixture of i.i.d. 's directed by µ is given by (xi).

(ii) Given µ, (xi) and F are conditionally independent.

We give an example of conditionally i.i.d. sequences here.

Example 2.7.9. This example is based on Lauritzen [2007]. The sequence

of outcomes from the toss of a coin are as described in Example 2.6.1 where
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we let (X,F) be a measure space. A binary sequence xi is {0, 1}-valued and

exchangeable if and only if there exists a distribution function ν such that for

all n,

Prob (x1 = c1, . . . , xn = cn) =

ˆ 1

0

ptn (1− p)n−tn dν (p) ,

where tn =
∑n

i=1 ci. Note that as de�ned here, ν is the distribution of the

limiting frequency

(2.7.3) y = lim sup
n→∞

n∑
i=1

xi
n

= p,

where

(2.7.4) Prob (y ≤ z) = ν (z)

That is, the sample average converges to the expected value, p, where p is

the probability of tossing a head. This can be de�ned by the conditional

probability

Prob (x1 = c1, . . . , xn = cn|y = p) = ptn (1− p)n−tn .

That is, for a single toss,

Prob (xi = t|y = p) =


p if t = 1

(1− p) if t = 0

Conditionally on y = p, x = (x1, . . . , xn, . . .) are independent and Binomial

with parameter p.

This example gives a conditionally i.i.d. sequence which by Lemma 2.7.8

above is a mixture of i.i.d. sequences. We can say that (xi) is a mixture
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of i.i.d. sequences if and only if the (xi) are conditionally i.i.d. given the σ-

algebra F generated by the random variable y. The (xi) in this example

are a mixture of i.i.d. sequences which are conditionally independent given

y = p. Hence by de Finetti's Theorem (Theorem 2.7.1) and Lemma 2.7.8,

exchangeable sequences are of this form.

2.8. Finite case of de Finetti's Theorem

De Finetti's Theorem may fail for �nite sequences x = (x1, . . . , xn). There

are many examples of this in the literature. See, for example, Diaconis [1977]

which uses a geometric interpretation of independence and exchangeability

resulting in an understanding of the failure of de Finetti's Theorem for a �-

nite exchangeable sequence. [Olav, 2005, p. 30] notes that while de Finetti's

Theorem may fail for �nite sequences we may derive a general representation

formula for exchangeable distributions that resembles that for the in�nite case.

Example 2.8.1. Let X = {0, 1} × {0, 1}. De�ne x = (x1, x2) as a pair of

random variables with xi ∈ {0, 1} with distribution

X1

0 1

X2 0 0 1
2

1 1
2

0

Let x̂ = (x2, x1) be the non-trivial permutation of x. Then clearly the dis-

tribution of x amd x̂ are the same so x is exchangeable (but not an i.i.d. pair).
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An i.i.d. pair y = (y1, y2) would have distribution

Prob (y1 = t1, y2 = t2) = pt (1− p)2−t ,

where t = t1 + t2. If x is a mixture of i.i.d. sequences then

(2.8.1) Prob (x1 = t1, x2 = t2) =

ˆ 1

0

pt (1− p)2−t dµ (p) ,

for some measure µ on [0, 1] .

Diaconis and Freedman, 1980a show that for �nite exchangeable sequences

(x1, x2, . . . , xn), Equation 2.8.1 need not hold. This is illustrated by the fol-

lowing example. Consider the following �nite exchangeable sequence where we

let

Prob (x1 = 0, x2 = 0) = Prob (x1 = 1, x2 = 1) = 0.

Here x1 and x2 are exchangeable, but if a representation like Equation 2.8.1

holds then we get the following for

Prob (x1 = 0, x2 = 0) = 0

we have t1 = t2 = 0 gives
´ 1

0
p0 (1− p)2−0 µ (dp) =

´ 1

0
(1− p)2 µ (dp) = 0.

Similar working gives for

Prob (x1 = 1, x2 = 1) = 0

we have t1 = t2 = 1 hence
´ 1

0
p2 (1− p)0 µ (dp) =

´ 1

0
p2µ (dp) = 0. Therefore, if

the �nite representation applies we have

ˆ 1

0

p2µ (dp) =

ˆ 1

0

(1− p)2 µ (dp) = 0.
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This implies that µ puts the probability of one at both 0 and 1, which is

impossible.

Therefore, this shows that de Finetti's Theorem may not apply for �nite

sequences.

Remark 2.8.2. Although, de Finetti's Theorem potentially fails for �-

nite sequences we may be able to derive a general representation formula

for exchangeable distributions that is similar to that for the in�nite case.

We are still able to derive a similar property for exchangeable distributions

to that of the conditional i.i.d. property in the in�nite case. Suppose that

X1 = X2 = · · · = Xn = X, Z =
∏n

i=1 Xi and x = (x1, . . . , xn) ∈
∏n

i=1Xi. We

can de�ne the Dirac measure1 by µx =
∑n

k=1 δxk , this is a measure on X. The

associated factorial measure µ
(n)
x on Z is de�ned by

µ(n)
x =

∑
σ∈Σn

δσ◦x.

The measures µx and µ
(n)
x are clearly unchanged if the order of the elements

x1, . . . , xn is permuted. An urn sequence, z = (z1, . . . , zn), is obtained by

successive drawing without replacement from a �nite set. The measure µ
(n)
x /n!

arises as the distribution of the urn sequence x = (x1, . . . , xn). Every �nite

exchangeable sequence is a mixture of urn sequences. For a proof see Olav

[2005, pp. 31-32]. Note that µ
(n)
x has the one-dimensional marginals µ.

Example 2.8.3. We can give a simple example of a Dirac and a factorial

measure as follows. Let n = 2, Xi = {0, 1, 2}, x = (0, 2) and y = (y1, y2) ⊆ Z.

1Note that this is not a Dirac measure but a sum of Dirac measures.
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The factorial measure µ
(n)

x on Z is given by

Z 0 1 2

0 0 0 1

1 0 0 0

2 1 0 0

µx 1 0 1

which has µx as its marginal distribution.

Remark 2.8.4. This section builds up to an important theorem by Diaconis

and Freedman [1980a, p. 746] for �nite exchangeable sequences by providing

the de�nitions used in the theorem.

Let x1, x2, . . . , xk, xk+1, . . . xn be exchangeable random variables taking val-

ues in a set S = {s1, . . . sl}. Let S be a �nite set of cardinality l and Sk be

the set of k-tuples of elements of S. That is, x = (xi)
n
i=1 takes values xi ∈ S

where x ∈ X =
∏n

i=1 Si and ν ∈ P (S), the set of probabilities on S.

De Finetti's Theorem shows that each exchangeable sequence of random

variables x = (xi)
∞
i=1 on an in�nite product space occurs as a mixture of

i.i.d. random variables. This is not true in general for �nite exchangeable se-

quences, [Diaconis and Freedman, 1980a] however showed that for a �nite ex-

changeable sequence x1, . . . , xn, the distribution of each subsequence x1, . . . , xk

is, if k ≤ n, close in a certain sense to a mixture of i.i.d. random variables.

More precisely, if each xi, takes values in the �nite set S = {s1, . . . sl} then the
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variation distance between the distribution of x1, . . . , xk and the closest mix-

ture of i.i.d. random variables is at most 2kl
n
. The variation distance between

two measures µ and ν on a measure space (X,B) is (following [Diaconis and

Freedman, 1980a]2)

‖µ− ν‖ = 2 sup |µ (A)− ν (A)|

where the supremum is taken over all A ∈ B.

It is more convenient here to work directly with the probability distribu-

tions rather than the random variables. Suppose then that P is a probability

distribution on Sn =
∏n

i=1 S where S has l elements. For each k ≤ n, this

determines a probability distribution Pk on Sk by taking the corresponding

marginal distributions. That is

Pk (A) = P
(
A⊗ Sn−k

)
, A ⊆ Sk.

As in Section 2.6, each mixture of i.i.d. distributions on Sk is of the form

(2.8.2) Pνk (A) =

ˆ
m∈P(S)

mk (A) ν (dm) , A ⊆ Sk

whereP (S) is the set of probability distributions on S,mk is the k-fold product

measure on Sk generated bym ∈ P (S) and ν is a measure on the Borel subsets

of P (S).

Theorem 2.8.5. Diaconis and Freedman [1980a, p. 746]. Let S be a �nite

set with l elements and suppose that P is an exchangeable probability on Sn

and Sk is the set of k-tuples of elements of S . Then there exists a probability

2Many authors omit the factor 2.
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ν on the Borel subsets of P (S) such that for all k ≤ n,

(2.8.3) ‖Pk − Pνk‖ ≤
2kl

n
.

In other words, if P is an exchangeable probability distribution on Sn,

then there is a probability distribution Q = Qν on Sn which is a mixture

of i.i.d. distributions and for which all of the projections satisfy the bounds

‖Pk −Qk‖ ≤ 2kl
n
. [Diaconis and Freedman, 1980a] give examples to show that

the upper bound here is close to optimal.

The proof of Theorem 2.8.5 uses the idea of an `urn sequence'. Consider an

urn U which contains n balls, each of which is labelled with one of the l elements

of S. (Of course, for a given n and l, the set U (n, l) of urns of this type is always

�nite.) Given k ≤ n, the urn generates two random variables x = (x1, . . . xk)

and y = (y1, . . . yk) taking values in Sk, resulting from recording the sequence

of labels of k balls drawn at random from the urn either without, or with

replacement. The distribution of x will be a hypergeometric distribution HU,k

and that of y will be a multinomial distribution MU,k. Both random variables

are clearly exchangeable, but x1, . . . xn are not independent. The important

point is that every exchangeable distribution P on Sn is a weighted average of

�nitely many hypergeometric distributions

P =
J∑
j=1

cjHUj ,n

with 0 ≤ cj ≤ 1 and
∑J

j cj = 1 and each Uj ∈ U (n, l). The distribution

Q =
∑J

j=1 cjMUj ,n is then a mixture of i.i.d. random variables giving

‖Pk −Qk‖ =

∥∥∥∥∥
J∑
j=1

cjHUj ,k −
J∑
j=1

cjMUj ,k

∥∥∥∥∥ ≤
J∑
j=1

cj
∥∥HUj ,k −MUj ,k

∥∥ .
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The bound in Theorem 2.8.5 then reduces to �nding a bound on
∥∥HUj ,k −MUj ,k

∥∥
for U ∈ U (n, l) .

[Diaconis and Freedman, 1980a] also use these ideas to determine when

an exchangeable distribution on Sk is the projection of one on Sn. That

is, suppose that P is an exchangeable distribution on Sk. If there exists an

exchangeable distribution P̂ on Sn so that P = P̂k we shall say that P can be

extended from k-tuples to n-tuples. The distribution in Example 2.8.1 is one

which cannot be extended. What is noted by [Diaconis and Freedman, 1980a]

is that an exchangeable distribution on Sk can be extended precisely when it

is of the form P =
∑J

j=1 cjHUj ,k.

Example 2.8.6. The above discussion explains what �nite exchangeable

sequences taking values in a �nite set need to look like, and allows one to

construct illustrative examples.

Fix a large n and let S = {red, blue}. Take two urns

• Urn U1 with one red ball and n− 1 blue balls

• Urn U2 with n− 1 red balls and one blue ball.

For j = 1, 2 and k ≤ n, let HUj ,k and MUj ,k be the distributions from tak-

ing k random draws from the urns, without and with replacement. Then, for

0 ≤ c ≤ 1, Pk = cHU1,k + (1− c)HU2,k is an exchangeable probability distri-

bution on Sk and Qk = cMU1,k + (1− c)MU2,k is the corresponding mixture of

i.i.d. distributions.

For small values of k one can easily explicitly calculate the various proba-

bilities. For c = 1
2
and k = 3 these are given in the table below.



2.8. FINITE CASE OF DE FINETTI'S THEOREM 29

x HU1,3 (x) MU1,3 (x) HU2,3 (x) MU2,3 (x) P3 Q3

RRR 0 1
n3

n−3
n

(n−1)3

n3
n−3
2n

1+(n−1)3

2n3

RRB 0 n−1
n3

1
n

(n−1)2

n3
1

2n
n−1
2n2

RBR 0 n−1
n3

1
n

(n−1)2

n3
1

2n
n−1
2n2

RBB 1
n

(n−1)2

n3 0 n−1
n3

1
2n

n−1
2n2

BRR 0 n−1
n3

1
n

(n−1)2

n3
1

2n
n−1
2n2

BRB 1
n

(n−1)2

n3 0 n−1
n3

1
2n

n−1
2n2

BBR 1
n

(n−1)2

n3 0 n−1
n3

1
2n

n−1
2n2

BBB n−3
n

(n−1)3

n3 0 1
n3

n−3
2n

1+(n−1)3

2n3

The variation distance between P3 and Q3 in this case is 3
n2 which is rather

better than the general bound 12
n

provided by Theorem 2.8.5. More compli-

cated examples could be constructed by increasing the number of colours (the

size of S), increasing the number of di�erent urns, or by combining the urn

distributions less symmetrically.

Theorem 2.8.7. Diaconis and Freedman [1980a, p. 746] and [Freedman,

1977]. Let S be a set of in�nite cardinality and suppose that P is an exchange-

able probability on Sn and Sk is the set of k-tuples of elements of S. Then

there exists a probability ν on the Borel subsets of P (S) for all k ≤ n, such

that
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‖Pk − Pνk‖ ≤
k (k − 1)

n
.

2.9. Choquet Theory and Other Background to de Finetti's

Theorem

There are many di�erent proofs of de Finetti's Theorem in the literature.

For a discussion of �nite forms of de Finetti's Theorem on exchangeability,

see, for example, de Finetti [1972a, p. 213], Ericson [1973], Diaconis [1977],

Diaconis and Freedman [1980a] and Kerns and Székely [2006]. For the in�nite

case, some proofs include Diaconis and Freedman [1980a] and Olav [2005].

We give two proofs of de Finetti's Theorem in this thesis. The �rst is by

Glasner [2003]. The second proof which uses martingales is given in Chapter

four. The following de�nitions are used in the �rst proof.

Definition 2.9.1. [Makarenkov, p. 22]. Let (X,B) and (Y,F) be two

measure spaces, suppose that π : X → Y is a measurable map and µ is a

measure on X. We de�ne the push-forward measure π∗µ on (Y,F) by the

formula π∗µ (A) := µ (π−1 (A)) for every A ∈ F .

Definition 2.9.2. Suppose that V is a vector space. Then {v1, . . . , vk} ⊆

V are a�nely independent if and only if for each collection of m distinct

points {w1, . . . , wm} ∈ {v1, . . . , vk} there is no m-dimensional a�ne subspace

containing {w1, . . . , wm}. Equivalently, {v1, . . . , vk} are a�nely independent if

the vectors v2 − v1, v3 − v1 . . . , vk − v1 are linearly independent in Rn.
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[Basener, 2006] and [Taylor, 2009] de�ne the convex hull of

{v1, . . . , vk} ⊆ V to be the smallest convex set containing {v1, . . . , vk}. It

is denoted CH {v1, . . . , vk}. Thus

CH {v1, . . . , vk} = {w ∈ Rn : there exists c1, . . . ck ∈ [0, 1] such that

w =
∑

civi and c1 + c2 + · · ·+ ck = 1
}
.

Since all k-dimensional simplices are homeomorphic we shall talk about

the standard k-dimensional simplex and denote this by ∆k. The vertices

{v1, . . . , vk} give the set

∆k = {c1v1 + c2v2 + · · ·+ ckvk ∈ Rn : c1 + c2 + · · ·+ ck = 1 and c1, . . . ck ∈ [0, 1]} .

The standard k-dimensional simplex or unit k-simplex is the convex hull

of k a�nely independent points. That is, a simplex is the smallest convex set

which contains the given vertices.

Definition 2.9.3. Rudin [1966, p. 251] A point, x ∈ K, in a convex set K

is called an extreme point if x does not lie in the interior of any line segment

joining two points of K.

Theorem 2.9.4. [Elliott et al., 1999, p. 194] and [Phelps, 2001]. Let X

be a compact convex subset of a locally convex topological space E. Then X is

the closed convex hull, denoted CH, of its extreme points.

Definition 2.9.5. A Choquet simplex is a compact convex subset of a

locally convex topological space which is also a simplex.
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Haydon [1975, p. 97]. The extreme boundary of a compact convex set

is the set of all extreme points of that set. [Elliott et al., 1999, p. 195] A

Choquet simplex with closed extreme boundary is called a Bauer simplex.

The following discussion of Prokhorov's theorem is based on Capi«ski and

Kopp [2004], Tao [2009] and Laurini�cikas [2012].

We use Prokhorov's Theorem to prove that there is a measure. We begin

by de�ning when a sequence of Borel probability measures is tight.

Definition 2.9.6. A topological space is σ-compact if it is the union of

countably many compact subspaces.

Let X be a locally compact metric space which is σ-compact and let µn be

a sequence of Borel probability measures on X. We call a sequence µn tight

if for every ε > 0 there exists a compact set K such that µn (X \K) ≤ ε for

all n.

Definition 2.9.7. A family, P, of probability measures on X, is rela-

tively compact if every sequence of elements contains a weakly convergent

subsequence.

Theorem 2.9.8. Prokhorov's Theorem. If a family of probability mea-

sures on (X,B) is tight then it is relatively compact.

That is, if µn is a tight sequence in P (X) then there exists a subsequence

µnk and a probability measure µ ∈ P (X) such that

µnk
w→ µ.
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2.10. Proof of de Finetti's Theorem

In this section we shall give a proof of a special case of de Finetti's theorem

which characterises exchangeable random variables taking values in an in�nite

product of �nite spaces.

Suppose then that X = {x1, . . . xn} is a �nite set, equipped with the power

set σ-algebra, and let Z =
∏∞

k=1X, with the usual product σ-algebra B. Note

that in this case P(X) is just an n-simplex. Let J denote the set of all ex-

changeable probability measures on (Z,B).

J = {P ∈ P (Z) : P (σA) = P (A) for all A ∈ B and σ ∈ Σ∞} .

Our aim is to show that each P ∈ J has a unique representation

(2.10.1) P (A) =

ˆ
m∈P(X)

m∞ (A) ν (dm) , A ∈ B

for some measure ν ∈ P (P(X)) .

Theorem 2.10.1. De Finetti's Theorem: Every exchangeable measure

on Z is an average of product measures. That is, if P ∈ J, then there exists

ν ∈ P (P(X)) such that

P = φ (ν) =

ˆ
m∈P(X)

m∞ dν (m) .

Note �rst that given any m ∈ P (X) and A ∈ B, m∞ (A) = m∞ (A)2,

so for any ν ∈ P (P(X)), the integral φ (ν) =
´
m∈P(X)

m∞ν (dm) does de�ne

an exchangeable measure (Z,B). Our aim then is to show that the map φ :

P (P(X))→ J is onto.

The proof of this depends on the simplicial structure of the sets P (P(X))

and J. Since P(X) is a complete metric space, it follows (from Prokhorov's
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Theorem, for example) that the set P (P(X)) is compact (in the usual weak

topology on the space of signed Borel measures on P(X)). It is easy to see

that P (P(X)) is convex and hence that it is a Choquet simplex. Indeed the

extreme points of P (P(X)) are precisely the Dirac measure δm for m ∈ P(X)

(see for example, [Simon, 2011, Example 8.16 in Chapter 8]). This set of

extreme points is closed and so P (P(X)) forms a Bauer simplex.

The space J also shares this structure. Again it is easy to check that J is

a closed subset of the weakly compact set of probability measures on Z and

hence is compact, and that J is convex.

Fact 2.10.2. [Glasner, 2003, p. 167] Two Bauer simplices are a�nely

homeomorphic if and only if their closed sets of extreme points are homeomor-

phic compact spaces.

Recall that A ∈ B is µ-a.e. Σ∞-invariant if µ (σA4A) = 0 for all σ ∈ Σ∞,

and that the measure µ is Σ∞-ergodic if every µ-a.e. Σ∞-invariant set A has

µ (A) either zero or one.

In light of Fact 2.10.2, it is su�cient that we check that φ maps the extreme

points of P (P(X)) bi-continuously onto the extreme points of J. In particular,

J is a simplex, the simplex of Σ∞-invariant Borel probability measures on the

compact space Z. Therefore, as we prove below a measure P ∈ J is an extreme

point if and only if it is a Σ∞-ergodic measure in J.

Let J = {µ ∈ P (Z) : µ is Σ∞-invariant} .

Lemma 2.10.3. A measure µ on (Z,B) is Σ∞-ergodic if and only if it is an

extreme point of J .

Proof. Suppose �rst that µ ∈ J is not ergodic. Then there exists σ ∈ Σ∞

and a µ-a.e.invariant set A ∈ B with 0 < µ (A) < 1. Let B = Z \ A. De�ne
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the disjoint probability measures µA and µB by

µA (F ) =
µ (A ∩ F )

µ (A)
, µB (F ) =

µ (B ∩ F )

µ (B)
.

Now, if F ∈ B and σ ∈ Σ∞ , then

µA
(
σ−1F

)
=

µ (A ∩ σ−1F )

µ (A)

=
µ (σ−1A ∩ σ−1F )

µ (A)
(as A is µ-invariant)

=
µ (σ−1 (A ∩ F ))

µ (A)

=
µ (A ∩ F )

µ (A)
(as µ ∈ J)

= µA (F ) .

Thus µA (and obviously also µB) is in J. Now it is easy to check that

µ = µ (A)µA + µ (B)µB = µ (A)µA + (1− µ (A))µB

and hence that µ /∈ Ext (J) .

Suppose conversely that µ ∈ J is not an extreme point of J. That is

µ = αµ1 + (1− α)µ2

for some α ∈ (0, 1) and distinct µ1, µ2 ∈ J. The following theorem is similar

to Theorem 2.2.6. Since µ ∈ J, the ergodic theorem says that if σ ∈ Σ∞ and

f ∈ L1 (Z,B, µ), then

lim
n→∞

1

n

n∑
i=1

f
(
σix
)

=

ˆ
Z

f dµ
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for µ-almost all x. Of course µ1, µ2 ∈ J, so for each j,

lim
n→∞

1

n

n∑
i=1

f
(
σix
)

=

ˆ
Z

f dµj

for µj-almost all x. Elementary measure theory says that we must therefore

have ˆ
Z

f dµ =

ˆ
Z

f dµ1 =

ˆ
Z

f dµ2.

The continuous functions on Z already separate the elements of P (Z), and so

this is more than enough to deduce that µ = µ1 = µ2 which contradicts that

µ is not an extreme point. �

Lemma 2.10.4. For any m ∈ P (X), m∞ is Σ∞-ergodic. Thus, φ maps the

set of extreme points of P (P(X)) into the set of extreme points of J.

Proof. This proof is based on [Walters, 1982, pp. 32-33]. Suppose that

A ∈ B is m∞-a.e. Σ∞-invariant set. For n = 1, 2, 3, . . . , let

An = {x = (xi) ∈ Z : there exists y = (yi) ∈ A such that xi = yi for 1 ≤ i ≤ n}

denote the set of sequences whose �rst n coordinates match the �rst n co-

ordinates of some element of A. Thus A =
⋂∞
n=1An and so m∞ (A) =

limn→∞m
∞ (An).

Fix ε > 0. Choose n so that m∞ (An \ A) < ε. Let σ ∈ Σ∞ be the

permutation which swaps the �rst n coordinates with the next n, and let

B = σAn. Since m
∞ is a product measure,

m∞ (An ∩B) = m∞ (An)2 .
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Now (using the general set/measure theoretic inequalities |m∞ (F )−m∞ (G)| ≤

m∞ (F∆G) ≤ m∞ (F∆H) +m∞ (H∆G) for any suitable sets F, G, H),

|m∞ (A)−m∞ (An ∩B)| ≤ m∞ (A∆ (An ∩B))

≤ m∞ (A∆An) +m∞ (A∆B)

≤ m∞ (A∆An) +m∞ (A∆σA) +m∞ (σA∆B)

≤ ε+ 0 +m∞ (A∆An)

≤ 2ε.

Also

∣∣m∞ (An ∩B)−m∞ (A)2
∣∣ =

∣∣m∞ (An)2 −m∞ (A)2
∣∣

= |m∞ (An)−m∞ (A)| · |m∞ (An) +m∞ (A)|

≤ 2ε.

Thus

∣∣m∞ (A)−m∞ (A)2
∣∣ ≤ |m∞ (A)−m∞ (An ∩B)|+

∣∣m∞ (An ∩B)−m∞ (A)2
∣∣ ≤ 4ε.

Since this is true for all ε > 0, we have that m∞ (A) = m∞ (A)2 and hence

that m∞ (A) is either zero or one. �

Lemma 2.10.5. If P ∈ J is Σ∞-ergodic, then P = m∞ = φ (δm) for some

m ∈ P (X).

Proof. Suppose that P ∈ J is Σ∞-ergodic. For n = 1, 2, 3, . . . let πn :

Z → X be the coordinate map πn (x) = πn (x1, x2, x3, . . .) = xn. De�ne the
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measure mn = mn,P on X by the push-forward measure,

mn (A) = P
(
π−1
n (A)

)
.

Since P ∈ J, it is clear that these measures each have an identical dis-

tribution which we will denote m. If we can show that these measures are

independent then (by [Williams, 1991, Section 8.7] for example), P = m∞.

It su�ces to show that for all n, k ≥ 1 and a, b ∈ X

P (πn (x) = a and πk (x) = b) = P (πn (x) = a)P (πk (x) = b) .

Let 1n,a denote the indicator function which takes the values 1 if πn (x) = a and

0 otherwise. Thus P (πn (x) = a) =
´
Z
1n,a (x) dP (x). By the Mean Ergodic

Theorem (similar to Theorem 2.2.6) it follows that

P (πn (x) = a)P (πk (x) = b) =

ˆ
Z

1n,a (x) dP (x)

ˆ
Z

1k,b (y) dP (y)

= lim
N→∞

1

N !

∑
σ∈ΣN

ˆ
Z

1n,a (σx)1k,b (x) dP (x) .

Now, let HN = {σ ∈ ΣN : σ (n) = k}. If σ ∈ ΣN \ HN , then there exists

σ′ ∈ ΣN such that σ′ (k) = k and (σ′ ◦ σ) (n) = n. In this case, since P ∈ J

ˆ
Z

1n,a (σx)1k,b (x) dP (x) . =

ˆ
Z

1n,a ((σ′ ◦ σ) (x))1k,b (σ′ (x)) dP (x)

=

ˆ
Z

1n,a (x)1k,b (x) dP (x)

= P (πn (x) = a and πk (x) = b) .
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Clearly |HN | = (N − 1)! and so

P (πn (x) = a)P (πk (x) = b)

= lim
N→∞

1

N !

∑
σ∈HN

ˆ
Z

1n,a (σx)1k,b (x) dP (x) +
∑
σ/∈HN

ˆ
Z

1n,a (σx)1k,b (x) dP (x)

≤ lim
N→∞

(N − 1)!

N !
+
N !− (N − 1)!

N !
P (πn (x) = a and πk (x) = b)

= P (πn (x) = a and πk (x) = b)

as required. �

Remark 2.10.6. This proof of de Finetti's Theorem is for the case where

m∞ in Equation 2.10.1 is an invariant measure under Σ∞. We can see this

because the proof that for any m ∈ P (X), m∞ is Σ∞-ergodic assumes that

we have a Σ∞-invariant set. In the other direction suppose that we have a

measure which is Σ∞-ergodic then this measure is m∞. Note that this also

does not apply for the quasi-invariant case. This is because the pushforward

measure used in this proof mn (A) depends on n in the quasi-invariant case

and we need it to not depend on n .

2.11. Extensions of de Finetti's Theorem

There are many applications of exchangeability in the literature. Diaconis

and Freedman [1980b] discuss a generalisation of exchangeability called partial

exchangeability. Similarly, Aldous [1981] discuss arrays of random variables

such that the rows or columns are exchangeable and show that these arrays

may be represented as functions of underlying i.i.d. random variables. Some

of the uses of de Finetti's Theorem are discussed in Aldous [2010].



CHAPTER 3

G-measures And Quasi-Invariant Measures

The space Z =
∏∞

n=1 Z2 forms a compact space which can be identi�ed,

via binary expansions, with the interval [0, 1] or the circle T. In this chapter

we shall look at the actions of various groups of transformations that act on Z.

Our starting point is the work of Brown and Dooley [1991] which addressed

the problem of characterising the probability measures on Z which are quasi-

invariant and ergodic under the action of the group Γ = ⊕∞n=1Z2 of �nite

coordinate changes.

The central concept in Brown and Dooley's work is that of a `G-measure'.

The �rst step in this direction is to give a correspondence between probability

measures on Z and certain families of functions G = {GF}F on Z. A measure

which corresponds to a family G is called a G-measure. Their main result

gives conditions on the family G under which the corresponding G-measure is

unique and hence ergodic for the action of Γ.

In this chapter we extend this analysis to the case where the group Γ is

replaced by the group Σ∞ of permutations of �nitely many components of

Z. To this end we shall de�ne `G-measures' for this permutation group. In

addition to the discussion of G-measures for the general case of a �nite group.

This is original content.

40
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3.1. Brown and Dooley's G-functions

We show how to use a probability measure µ on Z to construct a family

{GF,µ}F of functions on Z. The aim here is to investigate appropriate condi-

tions on {GF,µ} so that µ is quasi-invariant for the action of the group of �nite

coordinate changes Γ. These conditions will then be adapted to provide an

analogous theory for measures which are quasi-invariant for the action of Σ∞.

Suppose then that µ is a probability measure on Z. Let F denote the set

of �nite subsets F of Z+. For a �nite subset F ∈ F we can de�ne the group of

changes in �nitely many coordinates by

ΓF = {γ ∈ Γ : γi = 0,∀ i /∈ F} .

Corresponding to ΓF is a tail measure on Z,

(3.1.1) µF = µFΓ =
1

|ΓF |
∑
γ∈ΓF

µ ◦ γ,

The tail measure de�nes a family of functions G = {GF,µ} via the Radon-

Nikodým derivative GF,µ = dµ
dµFΓ

. We shall write GF rather than GF,µ if the

measure µ is understood.

If µ ∈ P (Z), where P (Z) is the set of probability measures on Z, then

these functions {GF,µ} satisfy certain natural conditions. To motivate these

we shall examine the special case when µ (acting on [0, 1]) is of the form

f dx where f is a positive continuous function and dx is Lebesgue measure on

[0, 1]. (Looking at this special case avoids having to deal with making sense of

indeterminate forms in the calculations below.) We de�ne

fF (x) =
1

|ΓF |
∑
γ∈ΓF

f
(
γ−1 (x)

)
,
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so that the Radon-Nikodým derivative dµ
dµF

is the function

GF (x) =
dµ

dµF
(x)

=
dµ

dx
· dx
dµF

=
f (x)

fF (x)

=
|ΓF | f (x)∑

γ∈ΓF
f (γ−1 (x))

.

Note that we are using the fact that dx is invariant under γ ∈ ΓF .

For x ∈ [0, 1],

1

|ΓF |
∑
η∈ΓF

GF (η (x)) =
∑
η∈ΓF

f (η (x))∑
γ∈ΓF

f (γ−1 (ηx))
=
∑
η∈ΓF

f (η (x))∑
γ∈ΓF

f (γ−1 (x))
= 1.

Also, if η ∈ ΓF then

GF (η (x)) =
|ΓF | f (ηx)∑

γ∈ΓF
f (γ−1 (ηx))

=
|ΓF | f (ηx)∑

γ∈ΓF
f (γ−1 (x))

.

Thus, if F1 ⊆ F2 ∈ F , η ∈ ΓF1 and x ∈ [0, 1] then

GF1 (x)GF2 (η (x)) =
|ΓF1| f (x)∑

γ∈ΓF1
f (γ−1 (x))

· |ΓF2| f (η (x))∑
γ∈ΓF2

f (γ−1 (x))

=
|ΓF1| f (η (x))∑
γ∈ΓF1

f (γ−1 (x))
· |ΓF2| f (x)∑

γ∈ΓF2
f (γ−1 (x))

= GF1 (ηx)GF2 (x) .

These calculations motivate the following de�nition.

Definition 3.1.1. Suppose that G = {GF} is a family of Borel functions

on Z indexed by �nite subsets F ⊆ Z. Then the family G is
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• compatible if for F1 ⊆ F2

GF1 (x)GF2 (γx) = GF1 (γx)GF2 (x) (γ ∈ ΓF1 , x ∈ Z)

• normalised if for all F ∈ F

1

|ΓF |
∑
γ∈ΓF

GF (γx) = 1.

Definition 3.1.2. Suppose that G = {GF}F∈F is a normalised compatible

family of Borel functions on Z. If µ ∈ P (Z) has Radon-Nikodým derivatives

which satisfy GF = dµ
dµFΓ

(a.e.) for each F ∈ F , then we shall say that µ is a

G-measure.

This de�nition raises several obvious questions:

(1) Which probability measures are G-measures for some family G?

(2) Which families G admit a G-measure?

(3) If G admits a G-measure, is it unique?

For the group Γ, these questions were addressed by Brown and Dooley [1991].

Theorem 3.1.3. Brown and Dooley [1991, p. 280]. If µ ∈ P (Z) then

{GF,µ} is a normalised compatible family.

Theorem 3.1.4. Brown and Dooley [1991, Proposition 2]. If G is a nor-

malised compatible family then there exists µ ∈ P (Z) such that µ is a G-

measure.

Remark 3.1.5. The more delicate question is question 3 above. The main

point of Brown and Dooley [1991] is to state conditions on a normalised com-

patible family G which guarantees the uniqueness, and hence the unique er-

godicity of the corresponding G-measure.
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3.2. g-functions and cocycles

Brown and Dooley [1991] introduce a number of important concepts asso-

ciated to G-measures, such as g-functions and h-cocycles.

Let Gn = G{1,...,n}. This sequence determines another sequence of functions

{gn} satisfying

Gn = g1 · · · gn for n = 1, 2, . . . .

Let µn = µ{1,...,n}. Then

gn =
dµn−1

dµn
.

The normalisation condition on the G-functions implies one for the little

g-functions. This gives the normalisation condition for the little g-functions in

Brown and Dooley [1991]

(3.2.1)
1∣∣Γ{i}∣∣ ∑η∈Γ{i}

gi (η (x)) = 1.

Example 3.2.1. In the context of a measure µ = f dx considered earlier.

Let

g1 (x) = G1 (x) =
f (x)

f{1} (x)

g2 (x) =
G2 (x)

G1 (x)
=

∣∣Γ{1,2}∣∣ f (x)∑
γ∈Γ{1,2}

f (γ−1 (x))
·
∑

γ∈Γ{1} f (γ−1 (x))∣∣∣Γ{1}∣∣∣
g3 (x) =

G3 (x)

G2 (x)
=

∣∣Γ{1,2,3}∣∣ f (x)∑
γ∈Γ{1,2,3}

f (γ−1 (x))
·
∑

γ∈Γ{1,2}
f (γ−1 (x))∣∣Γ{1,2}∣∣

etc.

Note that the functions gi satisfy the normalisation constraint in Equation

3.2.1
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Now if we �x i ∈ N then

∑
η∈Γ{i}

gi (η (x)) =

∣∣Γ{1,...,i}∣∣∣∣Γ{1,...,i−1}
∣∣ ∑
η∈Γ{i}

∑
γ∈Γ{1,...,i−1}

f (γ−1 (ηx))∑
γ∈Γ{1,...,i}

f (γ−1 (ηx))
(3.2.2)

=
∣∣Γ{i}∣∣ ∑η∈Γ{i}

∑
γ∈Γ{1,...,i−1}

f (γ−1 (ηx))∑
γ∈Γ{1,...,i}

f (γ−1 (ηx))

=
∣∣Γ{i}∣∣ .

In the case when µ is a quasi-invariant measure for the action of ΓF on

Z =
∏∞

i=1 Zl. We may associate to µ the map h : Z × ΓF → R

h (x, γ) =

(
d (µ ◦ γ)

dµ

)
(x) .

We can then derive the family (GF ) from h by

(3.2.3) GF (x) =

(
1

|ΓF |
∑
γ∈ΓF

h (x, γ)

)−1

(x ∈ Z) .

Note that h may be constructed from GF as follows

(3.2.4) h (x, γ) =
GF (γx)

GF (x)
(γ ∈ ΓF , x ∈ Z) .

In the case of µ = f dx considered earlier we have

h (x, γ) =

(
d (µ ◦ γ)

dµ

)
(x) =

f (γ−1 (x))

f (x)
.

Therefore

1

|ΓF |
∑
γ∈ΓF

h (x, γ) =
1

|ΓF |
∑
γ∈ΓF

f (γ−1 (x))

f (x)

=

(
|ΓF | f (x)∑

γ∈ΓF
f (γ−1 (x))

)−1

= GF (x)−1.
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An important property of the map h is that it is a cocycle on Z × ΓF .

Definition 3.2.2. Cocycle formalism. Let Z be a set and G a group

acting on Z. A map h : Z ×G→ R is a cocycle if

h (x, g1g2) = h (x, g2)h (g2x, g1) (x ∈ Z, g1, g2 ∈ G) .

Remark 3.2.3. It is clear that h (x, γ) is a cocycle. We can see this as

follows

h (x, γ1γ2) =

(
d (µ ◦ γ1 ◦ γ2)

dµ

)
(x)

=

(
d (µ ◦ γ2)

dµ

)
(x) ·

(
d (µ ◦ γ1)

dµ

)
(γ2x)(3.2.5)

= h (x, γ2)h (γ2x, γ1)

Note that

h (x, γ1γ2) =
GF (γ1γ2x)

GF (x)
, h (x, γ2) =

GF (γ2x)

GF (x)
, and h (γ2x, γ1) =

GF (γ1γ2x)

GF (γ2x)
,

We can see that Equation 3.2.5 holds using the relationship between cocy-

cles and G-measures, since clearly the following equation holds.

GF (γ1γ2x)

GF (x)
=
GF (γ2x)

GF (x)
· GF (γ1γ2x)

GF (γ2x)
.

Remark 3.2.4. Note that in this chapter we consider Z =
∏∞

n=1 Z2 = [0, 1]

acted on by the group Γ = ⊕∞n=1Z2 of changes in �nitely many coordinates. In

the discussion in this chapter we could easily swap Z2 for Zl, where l ≥ 2 is an

integer. It is not written in a way that depends on the base of the expansions.
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We could also consider
∏∞

k=1 Zl(k) acted on by the group Γ = ⊕∞k=1Zl(k), that

is the possible values of the coordinates can vary depending on k.

3.3. The General Case of a Finite Group

Much of the construction of Brown and Dooley [1991] does not depend on

the group Γ of transformations that they consider. In this section we shall

reproduce some of the ideas from that construction in the setting of a general

group of measurable transformations on a measure space. In particular we

shall show that �nite groups of transformations always provide an averaging

operator which is a conditional expectation operator with respect to the σ-

algebra of sets which are invariant under the group.

Suppose that G is a �nite group of measurable transformations on1 Z =∏∞
n=1 Z2 , and that µ is a probability measure on (Z,B) which is quasi-invariant

for the action of G. This implies that for all τ ∈ G the measures µ ◦ τ and µ

are equivalent, and that, at least for bounded measurable f ,

ˆ
Z

f (x) d (µ ◦ τ) (x) =

ˆ
Z

f
(
τ−1x

)
dµ (x) .

More generally, if A is a measurable set, then this implies that

ˆ
A

f (x) d (µ ◦ τ) (x) =

ˆ
τA

f
(
τ−1x

)
dµ (x) .

Since µ◦τ and µ are equivalent, we can form the Radon-Nikodým derivative

d(µ◦τ)
dµ

.

Consider the map h : Z ×G→ R de�ned by

h (x, τ) =
d (µ ◦ τ)

dµ
(x)

1The proof here does not depend on Z being an in�nite product. Any measurable space

would do!
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so that µ (τA) =
´
A
h (x, τ) dµ. Suppose that x ∈ Z and τ1, τ2 ∈ G. For a

measurable set A

ˆ
A

h (x, τ2)h (τ2x, τ1) dµ =

ˆ
A

h (τ2x, τ1) d (µ ◦ τ2)

=

ˆ
τ2A

h
(
τ−1

2 τ2x, τ1

)
dµ

=

ˆ
τ2A

h (x, τ1) dµ

= µ (τ1τ2A)

=

ˆ
A

h (x, τ1τ2) dµ.

It follows that h (x, τ1τ2) = h (x, τ2)h (τ2x, τ1) (µ-a.e.) and hence that h is a

cocycle.

De�ne

µG =
1

|G|
∑
τ∈G

µ ◦ τ =
1

|G|
∑
τ∈G

µ ◦ τ−1

which is again equivalent to µ and so we can �nd the Radon-Nikodým deriva-

tive GG : Z → R,

GG =
dµ

dµG

which is certainly non-negative.

Note that
dµG

dµ
(x) =

1

|G|
∑
τ∈G

h (x, τ) , x ∈ Z

and so

GG (x) =
|G|∑

τ∈G h (x, τ)
.
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It follows that if we �x x ∈ Z and τ ∈ G then, using the cocycle property,

1

|G|
∑
τ∈G

GG (τx) =
∑
τ∈G

1∑
τ ′∈G h (τx, τ ′)

=
∑
τ∈G

1∑
τ ′∈G h (x, ττ ′) /h (x, τ)

=
∑
τ∈G

h (x, τ)∑
τ ′∈G h (x, ττ ′)

=
∑
τ∈G

h (x, τ)∑
τ ′∈G h (x, τ ′)

= 1.

This will of course correspond to Brown and Dooley's normalisation condition.

A very similar calculation to the one for the normalisation constraint shows

that

GG (τx)

GG (x)
=

∑
τ ′∈G h (x, τ ′)∑
τ ′∈G h (τx, τ ′)

=
h (x, τ)

∑
τ ′∈G h (x, τ ′)∑

τ ′∈G h (x, τ ′)
= h (x, τ) .

Suppose that f ∈ L1 (Z,B, µ). Then

ˆ
Z

f (x) dµ (x) =

ˆ
Z

GG (x) f (x) dµG (x)

=
1

|G|
∑
τ∈G

ˆ
Z

GG (x) f (x) d
(
µ ◦ τ−1

)
(x)

=
1

|G|
∑
τ∈G

ˆ
Z

GG (τx) f (τx) dµ (x) .(3.3.1)

De�ne T : L1 (Z,B, µ)→ L1 (Z,B, µ) by

Tf (x) =
1

|G|
∑
τ∈G

GG (τx) f (τx) .

The map is clearly linear and
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ˆ
Z

|Tf (x)| dµ (x) =

ˆ
Z

∣∣∣∣∣ 1

|G|
∑
τ∈G

GG (τx) f (τx)

∣∣∣∣∣ dµ (x)

≤
ˆ
Z

1

|G|
∑
τ∈G

GG (τx) |f (τx)| dµ (x)

=

ˆ
Z

|f (τx)| dµ (x)

by Equation 3.3.1.

Then

T 2f (x) =
1

|G|
∑
τ∈G

GG (τx)Tf (τx)

=
1

|G|2
∑
τ∈G

GG (τx)
∑
τ ′∈G

GG (τ ′τx) f (τ ′τx)

=
1

|G|2
∑
τ∈G

GG (τx)
∑
γ′∈G

GG (τ ′x) f (τ ′x)

=
1

|G|
∑
τ∈G

GG (τx)Tf (x)

= Tf (x)(3.3.2)

using the normalisation property derived above.

Also T1 (x) = 1
|G|
∑

τ∈GGG (τx) = 1 µ-a.e. By a theorem of Douglas [1965]

then, T is a conditional expectation operator.

Let CG be the σ-algebra of all Borel subsets of Z which are invariant under

G. Then every CG measurable L1 function is invariant under T and hence

is in the range of T , and Tf is always CG-measurable. This implies that

T = E (·|CG) .

Suppose now that G1 is a subgroup of G. The subgroup G1 has a corre-

sponding cocycle h1 and function GG1 .
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Suppose that x ∈ Z and τ ∈ G1. From the de�nition we see that h1 (x, τ) =

h (x, τ) .

Thus, using the cocycle property as above,

GG1 (x)GG (τx) =
|G1|∑

τ1∈G1
h1 (x, τ1)

.
|G|∑

τ2∈G h (τx, τ2)

=
|G1|∑

τ1∈G1
h1 (x, τ1)

.
|G|h (x, τ)∑
τ2∈G h (x, τ2τ)

=
|G1|h1 (x, τ)∑
τ1∈G1

h1 (x, τ1τ)
.

|G|∑
τ2∈G h (x, τ2)

=
|G1|∑

τ1∈G1
h1 (τx, τ1)

.
|G|∑

τ2∈G h (x, τ2)

= GG1 (τx)GG (x) .

This property then corresponds to the compatibility property from Brown and

Dooley [1991].

The results of this section of course allow us to deal with families {GF}F of

�nite groups of transformations. In the case of Brown and Dooley [1991], the

index set ranges over �nite subsets F of Z+, and the group GF is the group ΓF

acting on Z =
∏∞

n=1 Z2 considered earlier. The case that we will be interested

in here is where GF is ΣF , the set of permutations of F .

In either case, given a family {GF}F of �nite groups of transformations

and a measure µ which is quasi-invariant under all the groups, we obtain

a `compatible, normalised' family of functions {GF}F . The next step is to

examine to what extent one can reverse the procedure and construct a quasi-

invariant measure from a suitable family of given functions.

In this section we are going to extend the G-measure formalism in Brown

and Dooley, 1991 to actions of the symmetric group, Σ∞. Then almost all

of the calculations in the last section go through unchanged. The one big
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di�erence is in writing a normalisation constraint for the little g-functions. In

Equation 3.2.2 above, that depends on the fact that Γ{1,...,i} = Γ{1,...,i−1}⊕Γ{i}

so that ∑
η∈Γ{i}

∑
γ∈Γ{1,...,i−1}

f
(
γ−1 (ηx)

)
=

∑
γ∈Γ{1,...,i}

f
(
γ−1 (ηx)

)
.

For i ∈ N and 1 ≤ k ≤ i, de�ne ηi,k ∈ Σ{1,...,i} to be the permutations which

swap the kth and ith elements. Every element σ ∈ Σ{1,...,i} factors uniquely as

σ = σ′ ◦ ηi,k for some k and some σ′ ∈ Σ{1,...,i−1}.Thus

i∑
k=1

∑
σ∈Σ{1,...,i−1}

f
(
σ−1 (ηi,k (x))

)
=

∑
σ∈Σ{1,...,i}

f
(
σ−1 (ηi,k (x))

)
.

It follows then that

i∑
k=1

gi (ηi,k (x)) =

∣∣∣∑{1,...i}∣∣∣∣∣∣∑{1,...i−1}

∣∣∣
i∑

k=1

∑
σ∈Σ{1,...,i−1}

f (σ−1 (ηi,k (x)))∑
σ∈Σ{1,...,i}

f (σ−1 (ηi,k (x)))

= i

∑
η∈Σ{i}

∑
σ∈Σ{1,...,i−1}

f (σ−1 (ηi,k (x)))∑
σ∈Σ{1,...,i}

f (σ−1 (ηi,k (x)))

= i

or

(3.3.3)
1

i

i∑
k=1

gi (ηi,k (x)) = 1.

For g-functions the following equation for Σ-normalisation is satis�ed.

1

n

∑
σ∈Σn/Σn−1

gn (σx) = 1.

3.4. Formal de�nitions of Σ-G-measures

In this section we give a formal de�nition of Σ-G-measures.
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Definition 3.4.1. Suppose that G = {GF}F∈F is a family of non-negative

Borel functions on Z. We say that G is

• Σ-compatible if

(3.4.1) GF1 (x)GF2 (σx) = GF1 (σx)GF2 (x) (σ ∈ ΣF1 , x ∈ Z, F1 ⊆ F2) .

• Σ-normalised if

(3.4.2)
1

|ΣF |
∑
σ∈ΣF

GF (σx) = 1. x ∈ Z, F ∈ F .

Definition 3.4.2. Suppose thatG = {GF} is a Σ-normalised, Σ-compatible

family of Borel functions on Z. A probability measure µ on Z is called a Σ-

G-measure if GF = dµ
dµF

(with respect to µ a.e.) for all �nite F ⊆ Z+.

The challenge now is to construct G-measures from such a family of func-

tions, and to determine the conditions under which such a function is deter-

mined by the family. It turns out to be not too di�cult to construct Σ-G-

measures.

Theorem 3.4.3. Suppose that G = {GF}F∈F is a Σ-normalised, Σ-compatible

family of functions on Z = Π∞n=1Z2. Then there exists a G-measure ν on Z.

Proof. Fix x0 ∈ Z. For F ∈ F , de�ne the measure νF by

ˆ
Z

f dνF =
1

|ΣF |
∑
σ∈ΣF

GF (σx0) f (σx0) .

This forms a net of probability measures on Z (where the index set F is ordered

by inclusion).
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By the compactness of P (Z), this net must have at least one cluster point,

say ν which is the weak-∗ limit of a subnet {νFα}α. By de�nition,

νF =
1

|ΣF |
∑
σ∈ΣF

ν ◦ σ−1.

We want to show that ν is a G-measure, that is, for all F

GF =
dν

dνF
(ν-a.e.) .

or equivalently, that for all f ∈ C (Z) ,

ˆ
Z

f GF dν
F =

ˆ
Z

f dν.

Now

ˆ
Z

f (x)GF (x) dνF =
1

|ΣF |
∑
σ∈ΣF

ˆ
Z

f (x)GF (x) d
(
ν ◦ σ−1

)
=

1

|ΣF |
∑
σ∈ΣF

ˆ
Z

f (σx)GF (σx) dν

=
1

|ΣF |
∑
σ∈ΣF

lim
α

1

|ΣFα|
∑
τ∈ΣFα

GFα (τx0)GF (τσx0) f (τσx0)

= lim
α

1

|ΣFα|
∑
τ∈ΣFα

1

|ΣF |
∑
σ∈ΣF

GFα (τx0)GF (τσx0) f (τσx0)

=
1

|ΣF |
∑
σ∈ΣF

lim
α

1

|ΣFα|
∑
τ∈ΣFα

GFα

(
τσ−1x0

)
GF (τx0) f (τx0)

= lim
α

1

|ΣFα|
∑
τ∈ΣFα

1

|ΣF |
∑
σ∈ΣF

GFα

(
τσ−1x0

)
GF (τx0) f (τx0)

Suppose now that F ⊆ Fα. For each τ ∈ ΣFα , let xτ = τx0, and so τσ−1x0 =

τσ−1τ−1xτ . Thus

GFα

(
τσ−1x0

)
GF (τx0) f (τx0) = GFα

(
τσ−1τ−1xτ

)
GF (xτ ) f (xτ )
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The set {τσ−1τ−1}σ∈F is just ΣτF . Thus

1

|ΣF |
∑
σ∈ΣF

GFα

(
τσ−1x0

)
GF (τx0) f (τx0) =

1

|ΣτF |
∑
σ∈ΣτF

GFα (σxτ )GF (xτ ) f (xτ )

=
1

|ΣτF |
∑
σ∈ΣτF

GFα (xτ )GF (σxτ ) f (xτ )

= GFα (xτ ) f (xτ )
1

|ΣτF |
∑
σ∈ΣτF

GF (σxτ )

= GFα (τx0) f (τx0)

using the Σ-normalisation and Σ-compatibility conditions. Thus

ˆ
Z

f (x)GF (x) dνF = lim
α

1

|ΣFα |
∑
τ∈ΣFα

GFα (τx0) f (τx0)

= lim
α

ˆ
Z

f dνF

=

ˆ
Z

f dν

as required. �

Our next aim is to prove a converse of Theorem 3.4.3. Suppose that µ ∈

P (Z). Then for any �nite set F , µ � µF and so we can form the Radon-

Nikodým derivative GF = dµ
dµF

. The issue here is that GF is only de�ned µ-a.e.

and so if µ is supported on a small set, we may have GF unde�ned on a large

set. Since this function is only determined µ-a.e., and so to produce a function

which is actually de�ned on all of Z we need to �nd a way of de�ning the

function on the µ-null part of Z.

Recall that the support of a measure µ, denoted supp (µ), is de�ned to

be the set of all points x ∈ Z for which every open neighbourhood of x has
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positive measure. We therefore adapt our de�nition of GF as follows

GF (x) =


dµ

dµF
(x), if x ∈ supp(µ)

1, if x ∈ Z \ supp(µ)

Note that this is still only de�ned µ-a.e..

Theorem 3.4.4. Given µ ∈ P (Z), the family G = {GF} with GF de�ned

above, is Σ-normalised and Σ-compatible, so µ is a Σ-G-measure.

Proof. We want to show thatGF = dµ
dµF

is Σ-normalised and Σ-compatible.

The following discussion uses cocycle formalism for G-measures which we have

discussed in more detail in Section 3.2. Then we have

1

|ΣF |
∑
σ∈ΣF

GF (σx) =
1

|ΣF |
∑
σ∈ΣF

(
1

|ΣF |
∑
τ∈ΣF

h (σx, τ)

)−1

=
∑
σ∈ΣF

(∑
τ∈ΣF

h (x, τσ)

h (x, σ)

)−1

=
∑
σ∈ΣF

h (x, σ)

(∑
τ∈ΣF

h (x, τσ)

)−1

=
∑
σ∈ΣF

h (x, σ)

(∑
τ∈ΣF

h (x, τ)

)−1

=

∑
σ∈ΣF

h (x, σ)∑
τ∈ΣF

h (x, τ)
= 1.

Therefore, the normalisation constraint is satis�ed.
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We now show that the Σ-compatibility condition holds. Let ω ∈ ΣF1 , x ∈

Z, F1 ⊆ F2, then

GF1 (x)GF2 (ωx) =

 1

|ΣF1|
∑

σ1∈ΣF1

h (x, σ1)

−1 1

|ΣF2|
∑

σ2∈ΣF2

h (ωx, σ2)

−1

=

 1

|ΣF1|
∑

σ1∈ΣF1

h (ωx, σ1)

−1 1

|ΣF2|
∑

σ2∈ΣF2

h (x, σ2)

−1

= GF1 (ωx)GF2 (x) .

where the second line holds since by Equation 3.2.4, for ω ∈ ΣF1 and F1 ⊆ F2,

GF1 (σ1x)

GF1 (x)
· GF2 (σ2x)

GF2 (ωx)
=

GF1 (σ1x)

GF1 (x)
· GF2 (σ2x)

GF1 (ωx)GF2 (xF1+1, . . . , xF2)

=
GF1 (σ1x)

GF1 (ωx)
· GF2 (σ2x)

GF1 (x1, . . . , xF1)GF2 (xF1+1, . . . , xF2)

=
GF1 (σ1x)

GF1 (ωx)
· GF2 (σ2x)

GF2 (x)
.

Therefore, a probability measure µ is a Σ-G-measure. �

In this section we shall look at ways in which the relationship between

normalised compatible families G of functions on Z and measures on Z varies

between the two groups of transformations we have been examining.

Starting with a Γ-normalised Γ-compatible family G of functions on Z,

Brown and Dooley [1991] showed that one always has a G-measure µ. They

did this by considering the net of linear functionals φx,F ∈ C (Z)∗ de�ned by

φx,F (f) =
1

|ΓF |
∑
γ∈ΓF

GF (γx) f (γx) .
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Brown and Dooley [1991, p. 287-6] showed that this net always converges to

a constant whose value is independent of x. (Indeed, one can even let the

value of x depend on the �nite set F and this remains true.) This in turn

allowed them to investigate the uniqueness of the G-measure associated with

a Γ-normalised Γ-compatible family of functions.

The situation for the permutation group is di�erent. The main reason for

this is that for the group of �nite coordinate changes, the orbits of points x, that

is, the sets {γx}γ∈Γn
, are spread evenly across Z. The corresponding orbits

for the permutation group certainly need not have this property. This will

typically result therefore in a lack of uniqueness in the G-measures associated

to a Σ-normalised Σ-compatible family of functions.

Example 3.4.5. The simplest Σ-normalised Σ-compatible family of func-

tions is one for which GF ≡ 1 for all F . As usual, we de�ne

ψx,F (f) =
1

|ΣF |
∑
σ∈ΣF

GF (σx) f (σx) , x ∈ Z.

Since the family {ψx,F}F is sitting in the unit ball of C (Z)∗ it must certainly

have a nonempty set of weak-∗ limit points. We showed in Theorem 3.4.3 that

these are G-measures.

It is not too di�cult to see that even in this case, one can get a variety of

di�erent G-measures from this construction, depending on the choice of point

x.

Case 1. Take x = 0 = (0, 0, 0, . . .). Then σx = x for any σ ∈ Σ. This means

that ψx,F (f) = f (0) for all F , and so there is only one limit point.

As a measure, this is just the Dirac measure at x = 0. That is,

µ = δ0. In this case µF = µ so the the Radon-Nikodým derivative
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dµ
dµF

is certainly equal to GF = 1 on the support of µ. The issue here

is that the support of µ is only a single point in Z.

Case 2. Take x = 1 = (1, 1, 1, . . .). In this case we get ψx,F (f) = f (1) for

all F , and the corresponding G-measure is δ1.

Case 3. Take x = 1
2

= (1, 0, 0, 0, . . .). If we �x n in this case, then the

permutations σ ∈ Σn move the entry 1 in this list to each of the

�rst n positions with equal frequency. Hence

ψ 1
2
,F (f) =

1

n

n∑
k=1

f

(
1

2k

)
.

(The formula for a general �nite set F is analogous, but slightly

messier to express.) It is clear then that if f ∈ C (Z), then ψ 1
2
,F (f)→

f (0) and so as in Case 1, we get that the corresponding measure is

µ = δ0.

Case 4. Take x = 2
3

= (1, 0, 1, 0, . . .) = xn + tn, where xn is the n-tuple of

the �rst n entries of x and tn is the remaining tail.

Abusing notation slightly, we can write σx = σxn+tn for σ ∈ Σn.

To keep things simpler we will take n = 2m even in what follows.

This means that xn has m zeros and m ones. Fix k ≤ n and let

y = (y1, . . . , yk) be any of the 2k possible elements on
∏k

i=1 Z2. Let

l =
∑k

i=1 yi denote the number of ones in y, and so there are k − l

zeros. The orbit of x under Σn, O (n, x) = {σxn + tn : σ ∈ Σn}

contains (2m)!

(m!)2 elements each occuring (m!)2 times. Of the elements

of O (n, x),
(2m− k)!

(m− l)! (m− (k − l))!

have the �rst k digits equal to y. (This is because once you have

�xed the �rst k elements you have 2m − k elements left you may
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permute, divided by the indistinguishable permutations of the ones

and of the zeros you have left.)

Let Dy = y ⊕
∏∞

i=k+1 Z2 be the dyadic interval of Z determined

by y. Then

# {σ ∈ Σn : σxn = y} = # {σ ∈ Σn : σx ∈ Dy}

= (m!)2 · (2m− k)!

(m− l)! (m− (k − l))!
.

Suppose now that h : Z → R and consider

An (h) =
1

|Σn|
∑
σ∈Σn

h (σx) .

If h is the charateristic function of Dy, then

An (h) =
1

(2m)!
(m!)2 · (2m− k)!

(m− l)! (m− (k − l))!
→ 1

2k

as n = 2m→∞ (for any l).

Let Ak denote the σ-algebra on Z generated by the dyadic in-

tervals of level k. It follows from above that if h is Ak-measurable,

then

An (h)→
ˆ
Z

h dλ as even n→∞

where λ denotes Lebesgue measure on Z. Note that this holds for

all k.

Since every continuous function h on Z can be uniformly ap-

proximated by a sequence hk where hk is Ak-measurable, this shows

that if h ∈ C (Z) then

An (h)→
ˆ
Z

h dλ as even n→∞
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too. This proves that λ is a weak-∗ limit point of {ψx,Fn}F∈F .

Note however that this is not the only weak-∗ limit point for this

value of x. If one takes Fn to be the subset of {1, 2, 3, . . .} which in-

cludes the �rst n odd numbers and the �rst 10n even numbers, then

σx is almost always near zero for σ ∈ ΣF , much like the situation

in Case 3. Here, as n→∞, the linear functional ψx,Fn converges to

the Dirac measure at zero. A similar construction would produce a

sequence which converges to δ1.

3.5. Examples of G-measures for the permutation group

We now give some examples of G-measures for the permutation group. We

begin with the example of a Bernoulli Scheme for which we show here that

{Gn} = 1. We then discuss the example of a Markov measure, which is of

particular importance in ergodic theory. If we have a Markov measure then

the dynamical system (X,B, T, µ) is said to be a Markov odometer if µ satis�es

certain conditions given in Dooley and Hamachi [2003, p. 102]. Dooley and

Hamachi [2003, p. 94] show that when considered as a G-measure, the Markov

odometer may be taken to be uniquely ergodic for the group of �nite coordinate

changes.

Example 3.5.1. The example of a Bernoulli Scheme illustrates that

some measures are invariant under Σ∞, for Z =
∏∞

n=1 Z2 and

µ {{b1} × · · · × {bk} × Z2 × Z2 × · · · } =
k∏
j=1

pbj ,

is clearly invariant under Σ∞ since µn = µ hence dµ
dµn

= Gn = 1. Note that the

cocycle, h (x, σ) = 1.



3.5. EXAMPLES OF G-MEASURES FOR THE PERMUTATION GROUP 62

Example 3.5.2. Another simple measure is a Markov measure. Note

that in some cases this reduces to the traditional in�nite product measure (see

Dooley and Hamachi [2003] for more details). A Markov chain is described

here from Dooley and Hamachi [2003] and Walters [1982, p. 22].

A Markov chain is a pair (P, π) consisting of a stochastic matrix P and

a stationary probability vector π. In general a stochastic matrix is an n × n

matrix P = (pi,j)
n−1
i,j=0 such that pi,j ≥ 0 for each i, j and such that each row

sums to one and a probability vector π = (π0, . . . πn−1) is one for which πi ≥ 0

for each i,
∑
πi = 1 and πP = π. In the present setting, we shall take n = 2

and assume that pi,j > 0 for each i, j.

An example of such a pair is given by

P =


1
4

3
4

1
3

2
3

 , π =

(
4

13
,

9

13

)
.

Given (z1, . . . , zm) ∈
∏m

j=1 Z2 let

Az1,...,zm = {z1} × · · · × {zm} × Z2 × Z2 × . . .

denote the cylinder set consisting of sequences that begin with the speci�ed

m+ 1 binary digits. We de�ne the (P, π) Markov measure of such a set by

(3.5.1) µ (Az1,...,zm) = πz1pz1,z2 · · · pzm−1,zm .

Thus, in the concrete example above

µ (A0,1,1,0) = π0p0,1p1,1p1,0 =
4

13
· 3

4
· 2

3
· 1

3
=

2

39
.
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This procedure de�nes a measure on all cylinder sets of Z =
∏∞

i=1 Z2 and hence

a measure (also denoted by µ) on (Z,B). The above assumptions on P ensure

that every cylinder set has nonzero measure.

The measure µ here is quasi-invariant under the action of Γ, but it is (in

general) not invariant. The corresponding normalised compatible family GF =

dµ
dµF

is rather more complicated to write down explicitly here, but certainly

gives an example where the functions GF are not identically 1.

The importance of this example is that it provides the basis for an impor-

tant theorem of Dooley and Hamachi [2003]. This theorem concerns systems

called Markov odometers.

In the setting above, one can de�ne a partial order on Z by setting x =

(xi) < y = (yi) if there exists n such that xn < yn and xi = yi for all i > n.

For almost all x ∈ Z there is a smallest sequence TO (x) ∈ Z which is larger

than x. For example

TO (011011011) = 111011011 . . .

TO (111011011) = 000111011 . . .

(More speci�cally, to apply TO one changes the �rst 0 in x to a 1 and all

the 1's up to that point to 0's.)

The dynamical system (Z,B, TO , µ) is an example of a system called a

Markov odometer. In general TO is not measure-preserving, but it is non-

singular. Dooley and Hamachi [2003] de�ne Markov odometers uisng the same

ideas, but in somewhat greater gernerality, and prove the following theorem.

We refer the reader to Dooley and Hamachi [2003] for the details.
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Theorem 3.5.3. Every ergodic non-singular dynamical system (X,B, T, ν)

on a standard measure space is orbit equivalent to a Markov odometer. Fur-

thermore, when considered as a G-measure, the Markov odometer may be taken

to be uniquely ergodic.

From now on we will mainly consider Σ-G-measures and so we will usually

drop the Σ and just refer to G-measures.

3.6. An Example

In this section we shall construct some concrete examples of a measure

and a corresponding Σ-normalised, Σ-compatible family of functions on Z =∏∞
i=1 Z2.

Example 3.6.1. Let µ1 be the measure on Z2, where µ1 (1) = 3
4
and for

i ≥ 2, let µi be the measure on Z2 with µi (1) = 1
2
. Let µ = ⊗∞i=1µi be the

corresponding product measure on Z. This of course corresponds to tossing

one biased coin, followed by an in�nite sequence of fair coins. Thinking of Z as

being modelled by [0, 1], the measure µ equals half Lebesgue measure on
[
0, 1

2

)
and 3

2
times Lebesgue measure on

[
1
2
, 1
)
. Clearly, µ is not invariant under Σ,

but it is quasi-invariant.

For n = 1, 2, 3, let

µn =
1

|Σn|
∑
σ∈Σn

µ ◦ σ.

The measure µn could be thought of as a symmetrization of µ with respect to

the action of Σn. Given any binary string b of length n, the µn measure of

the set of binary sequence which begin with b depends only on the number of

zeros and ones in b and not on the order in which they appear.
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For n = 2, it is easy to see that the measures of the four dyadic intervals

of length 1
4
are given in Table 3.6.1.

Table 3.6.1

b 00 01 10 11 sum

µ 1
8

1
8

3
8

3
8

1

µ2 1
8

1
4

1
4

3
8

1

Interpreted another way, restricted to each of these dyadic intervals, these

measures are just constant multiples of Lebesgue measure with the scaling

constants given in the table. We can �nd the Radon-Nikodým derivative G2 =

dµ
dµ2 , which is therefore also constant on these intervals.

Figure 3.6.1. The function G2

We can calculate the functions Gn for larger n in a similar fashion. First

we calculate the probability tree for a biased toss followed by two fair ones.

Averaging the probabilities over the permutations gives the value of the µ and

µ3 measures of the dyadic intervals, now of length 1
8
.
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Table 3.6.2

b 000 001 010 011 100 101 110 111 sum

µ 1
16

1
16

1
16

1
16

3
16

3
16

3
16

3
16

1

µ3 1
16

5
48

5
48

7
48

5
48

7
48

7
48

3
16

1

G3 = dµ
dµ3 1 3

5
3
5

3
7

9
5

9
7

9
7

1

This is relatively easily automated by computer. Below are the graphs of

G3, . . . G8.

As we showed in Section 3.3, the full family {GF} that come from this

measure are Σ-normalised and Σ-compatible. For small values of n one can

con�rm this directly from the graphs in Figure 3.6.2.

Figure 3.6.2. Gn for n = 3, 4 . . . 8
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Example 3.6.2. An example of G-measures which are not quasi-invariant

is given as follows. Let µ1 be the measure on Z2, where µ1 (0) = 0 and for

i ≥ 2, let µi be the measure on Z2 with µi (1) = 1
2
. Let µ = ⊗∞i=1µi be the

corresponding product measure on Z. The same calculations as in the example

above can be applied here. The G-measures here are not quasi-invariant since

there is an outcome with probability zero, that is the probability of tossing a

zero �rst.

Table 3.6.3

b 00 01 10 11 sum

µ 0 0 1
2

1
2

1

µ2 0 1
4

1
4

1
2

1

G2 = dµ
dµ2 0 0 2 1

We can calculate the Radon-Nikodým derivatives which are given in the

following graphs.

Figure 3.6.3. The functions Gn for n = 2, 3, 4 . . . 8
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For this measure the support of µ is
[

1
2
, 1
)

= {1} ×
∏∞

i=2 Z2. To de�ne a

G-family on all of Z we need to set Gn (x) = 1 for x not in this support.

3.7. An example of a G-measures which is not ergodic

Since we are looking at measures which are unique here. It is interesting

to show that there are examples of G-measures which are not unique. We

discuss an example here of a G-measure which is not unique, this is given by

the rotation of the unit circle. Some of the discussion here of this measure and

the proof that the rotation is ergodic under certain conditions is given here

from Walters [1982].

Let T = {z ∈ C : |z| = 1}, let B be the σ-algebra of Borel subsets of T

and let µ be a normalised Haar measure. Let a ∈ T and de�ne the rotation

T : T → T by T (z) = az. Then T is measure-preserving since µ is Haar
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measure. Note that T is a compact topological group. The normalised circular

Lebesgue measure µ on T is a Haar measure. That is, µ (az) = µ (z) for all

a ∈ T and all Borel sets z. Note that T is a transformation since it is a

map from a measure space to itself. Therefore, this map is invariant since

it is a measure-preserving transformation. We show here that it satis�es the

conditions for a G-measure.

The transformation T is called a rotation of T. The rotation T (z) = az of

the unit circle is ergodic if and only if a is not a root of unity.

We �rst need to show that the rotation of the unit circle gives a G-measure.

Note that T = G of transformations where Gn is an increasing family of sub-

groups and

ωn =
{
e2πik/n : k = 0, . . . , n− 1

}
⊆ G.

Hence Gn = 〈ω1, . . . , ωn〉. Therefore, |Gn| = n.

By the de�nition of a Haar measure there exists a probability measure µ

de�ned on the σ-algebra of Borel subsets of T, B, such that

µ (az) = µ (z)

for all a ∈ G and z ∈ B. The tail measure is de�ned by

µn (z) =
1

|Gn|
∑
a∈G

µ (az)

=
1

n

∑
a∈G

µ (az)

=
nµ (z)

n

= µ (z) .
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Therefore, µ ∈ P (Z) has Radon-Nikodým derivatives which satisfy Gn =

dµ
dµn

= 1 (a.e.) since µn = µ. We can show that Gn = 1 by the Radon-Nikodým

Theorem since

µ (z) =

ˆ
z

dµ

dµn
dµn

=

ˆ
z

1 dµn

= µn (z) ,

this implies that Gn = 1.

To show that µ is a G-measure we need to show that G = {Gn}n is a

normalised compatible family of Borel functions on T. The normalisation

constraint is satis�ed since

1

|Gn|
∑
a∈G

Gn (az) =
1

n
nGn (z)

= Gn (z)

= 1.

Since Gn (z) = 1, the family {Gn} is Σ-compatible.

We can now prove that the rotation of the unit circle gives an example of

a G-measure which is ergodic if and only if a is not a root of unity.

Suppose that a is a root of unity, then ap = 1 for some integer p > 0. Let

f (z) = zp. Then f ◦ T = f and f is not constant a.e.. Therefore T is not

ergodic.

Conversely, suppose that a is not a root of unity and f ◦T = f , f ∈ L2 (µ).

Let f (z) =
∑∞

n=−∞ bnz
n be its Fourier series. Then f ◦T (z) =

∑∞
n=−∞ bna

nzn
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and therefore, bn (an − 1) = 0 for each n. If n 6= 0 then bn = 0, and so f is a

constant a.e. hence T is ergodic.

3.8. Quasi-invariant Measures on Z =
∏∞

i=1 Z2.

In this section we look at the quasi-invariant measures for permutations on

the in�nite product space. We show that every G-measure is quasi-invariant.

Proposition 3.8.1. Every measure associated to a family of Gn's is quasi-

invariant.

Proof. Suppose that G = {Gn} is a Σ-normalised, Σ-compatible family.

We want to show here that if µ is a G-measure such that Gn = dµ
dµn

is a Σ-

normalised, Σ-compatible family then µ is quasi-invariant for Σ∞. Note that

for any τ ∈ Σ∞, µ ◦ τ ∼ µ ◦ τ−1.

Let A ⊆ Z where A is measurable. Suppose that Gn = dµ
dµn

. Then µ� µn.

Hence by the de�nition of equivalent measures (De�nition 2.1)

(3.8.1) If µn (A) = 0 then µ (A) = 0.

We say that µn is quasi-invariant for the action of Σ∞ (by De�nition 2.1.5)

if for σ ∈ Σ∞,

µn (A) = 0 if and only if µ (σA) = 0.

We �rst show that µ ◦ σ ∼ µn.

The tail measure de�nes a family of functions G = {Gn} via the Radon-

Nikodým derivatives Gn = dµ
dµn

is de�ned as

(3.8.2) µn (A) =
1

|Σn|
∑
σ∈Σn

µ (σA) .
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Therefore, if µn (A) = 0 then µ (σA) = 0 since none of the terms in the sum

are negative. Suppose that µ (σA) = 0 then µn (A) = 0. Hence µ ◦ σ ∼ µn.

We want to show that µ ◦ σ ∼ µ. To do this we show that µ ∼ µn. As

given in Equation 3.8.1, if µn (A) = 0 then µ (A) = 0. For the other direction,

suppose that µ (A) = 0 for all A ⊆ Z then µ (σA) = 0 for all {σA} ⊆ Z, hence

µn (A) = 0 for all σ ∈ Σn.

Therefore, µ ◦ σ ∼ µn and µ ∼ µn, hence µ ◦ σ ∼ µ. That is, µ is quasi-

invariant for Σ∞. �



CHAPTER 4

A Proof of de Finetti's Theorem using Martingales

In this chapter we de�ne a bounded linear operator An as follows

An (f) (x) =
1

|Σn|
∑
σ∈Σn

Gn (σx) f (σx) , x ∈ Z.

In the last chapter we used this operator to de�ne G-measures. With respect

to a suitable measure, this operator turns out to be a conditional expectation

operator.

In this chapter, we give some background material on martingales. Then

we give another proof of de Finetti's Theorem where we use the theory of

martingales. This version of de Finetti's Theorem states that if an in�nite

sequence is exchangeable then it is conditionally i.i.d. . The link between the

theory of martingales and G-measures is original.

We also show that the analogue of the Brown and Dooley (1991) Theorem,

that is the unique ergodicity of the �nite coordinate changes on the circle, does

not occur for the bounded linear operator for the symmetric group. Since this

may not converge to a constant and there may not be a unique G-measure.

This part of the thesis is original work.

4.1. Background to the Theory of Martingales

The de�nitions and theorem given here are from Ash and Doléans-Dade

[2000], Sousi [2013] and Lalley [2014, p. 19].
75
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Definition 4.1.1. Let (Z,B, µ) be a measurable space. A reverse or

backward �ltration is a sequence {Cn}n≤0 = . . . ⊆ C−2 ⊆ C−1 ⊆ C0 of σ-

algebras on (Z,B, µ) . That is, it is a decreasing sequence of sub σ-algebras

of C, indexed by n = {0,−1,−2, . . .} such that Cn−1 ⊆ Cn for each n ≤ 0. A

sequence of random variables {Xn}n≤0 is said to be adapted to the �ltration

{Cn}n≤−1 if Xn is Cn-measurable for every n. An adapted sequence Xn is such

that for every n ≤ −1,

E (Xn+1|Cn) = Xn a.e..

We say that {Xn, Cn} is a reverse martingale.

The Reverse Martingale Convergence Theorem is as follows. For the

Theorem below see for example Sousi [2013, pp. 23-24].

Theorem 4.1.2. Let {Xn}n≤0 be a reverse martingale relative to the reverse

�ltration {Cn}n≤0. Then

lim
n→−∞

Xn = E

(
X0|

⋂
n≤0

Cn

)

almost everywhere and in L1.

This discussion is based on Miermont [2006]. Sometimes backward martin-

gales are de�ned as a forward process {Yn}n≥0 with respect to a backwards

�ltration C0 ⊇ C1 ⊇ C2 ⊇ · · · such that Yn is adapted in L1 and

E (Yn|Cn+1) = Yn+1.

This is equivalant to our de�nition of a reverse martingale if we let Yn =

X−n and Cn = C−n for all n ≥ 0. For example, E (Yn|Cn+1) = Yn+1 gives

E
(
X−n|C−(n+1)

)
= X−(n+1), therefore for n = 0, E (X0|C−1) = X−1.
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Definition 4.1.3. Let f ∈ L1 (Z,B, µ) and B0 ⊆ B, there is a (up to sets

of µ measure zero) function h ∈ L1 (Z,B0, µ) such that

ˆ
A

h dµ =

ˆ
A

f dµ for all A ∈ B0.

We denote h by E (f |B0). We call this the conditional expectation

operator.

Remark 4.1.4. As an aside we consider the case of a unique G-measure

for the group of �nite coordinate changes as discussed in Brown and Dooley

[1991]. Let G be a Γ-normalised Γ-compatible family and Z =
∏∞

n=1 Z2.

As discussed in Brown and Dooley [1991] for the group of �nite coordinate

changes we let the conditional expectation operator, E (f |Cn), be a reverse

martingale. We discuss the conditional expectation operator in more detail in

De�nition 4.1.3. For the group of �nite coordinate changes, it is easy to identify

E (f |Cn) in terms of the linear functionals in Section 3.4. For n = 1, 2, 3, . . .

and x ∈ Z let

(4.1.1) φx,n (f) =
1

|Γn|
∑
γ∈Γn

Gn (γx) f (γx) .

Then

E (f |Cn) = φx,n (f) .

Then there exists a uniqueG-measure, µ, if and only if for all f ∈ L1 (Z,B, µ)

and x ∈ Z, Equation 4.1.1 holds. Since the unit ball of M (Z) is weak-∗ com-

pact, there exists a weak-∗ convergent sequence, φx,n, whose limit we shall
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denote as µ. That is, φx,n
w→ µ ∈M (Z) . This means that for all f ∈ C (Z) ,

lim
n→∞

φx,n (f) = lim
n→∞

1

|Γn|
∑
γ∈Γn

Gn (γx) f (γx) =

ˆ
f dµ.

We intend to de�ne φx,n (f) = E (f |Cn) (x).

4.2. Linear Operators for the Symmetric Group

Following on from the examples of An (f) (x) discussed in Section 3.4, in

this section we discuss the properties of a bounded linear operator An for the

symmetric group. Suppose that G = {Gn} is a Σ-normalised, Σ-compatible

family of functions on Z. For each n ∈ Z+, we de�ne the averaging map

An : C (Z)→ Borel (Z) where Borel (Z) is the set of bounded Borel measurable

functions by

(4.2.1) An (f) (x) =
1

|Σn|
∑
σ∈Σn

Gn (σx) f (σx) , x ∈ Z.

This map is clearly linear and bounded. We show that the operator norm

is one (as G is a Σ-normalised family).

Proposition 4.2.1. If m ≥ n and An (f) (x) is given by Equation 4.2.1

then AnAm = AmAn = Amax(m,n) and A
2
n = An.
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Proof. We now show that for m ≥ n, AnAm = Am.

An (Am (f)) (x) =
1

|Σn|
∑
σ∈Σn

Gn (σx)Am (f) (σx)

=
1

|Σn|
∑
σ∈Σn

Gn (σx)
1

|Σm|
∑
σ′∈Σm

Gm (σ′σx) f (σ′σx)

=
1

|Σn|
∑
σ∈Σn

Gn (σx)
1

|Σm|
∑
σ′∈Σm

Gm (σ′x) f (σ′x)

=
1

|Σn|
∑
σ∈Σn

Gn (σx) (Am (f) (x))

= Am (f) (x) as {Gn} is Σ-normalised.

Note that similar working shows that AmAn = Am. Therefore, A2
n =

An. �

Proposition 4.2.2. Suppose that An is given by Equation 4.2.1. Then

‖An‖ = 1.

Proof. If f ∈ C (Z) and x ∈ Z then

|An (f) (x)| =

∣∣∣∣∣ 1

|Σn|
∑
σ∈Σn

Gn (σx) f (σx)

∣∣∣∣∣
≤ 1

|Σn|
∑
σ∈Σn

|Gn (σx) f (σx)|

≤ 1

|Σn|
∑
σ∈Σn

Gn (σx) ‖f‖∞

= ‖f‖∞ as {Gn} is Σ-normalised.

So ‖An (f)‖∞ = sup
x
|An (f) (x)| ≤ ‖f‖∞ so ‖An‖ ≤ 1. Taking f ≡ 1 shows

that ‖An‖ = 1. �
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The properties shown in the previous two propositions are exactly those

that one gets with a conditional expectation operator. Note that for any Borel

measurable function f on Z, the function An(f) is Σn-invariant. That is, if we

let Cn denote the σ-algebra of Σn-invariant Borel subsets of Z, then An(f) is

necessarily Cn-measurable.

For each n, let νn by the measure Gn dλ, where λ is the Lebesgue measure.

Then, for f ∈ L1(Z,B, νn) and A ∈ Cn

ˆ
A

An(f)(x) dνn(x) =

ˆ
A

1

|Σn|
∑
σ∈Σn

Gn(σx)f(σx)Gn(x) dλ

=

ˆ
A

1

|Σn|
∑
σ∈Σn

Gn(x)f(x)Gn(σ−1x) dλ

(as A is Σn-invariant)

=

ˆ
A

Gn(x)f(x)
1

|Σn|
∑
σ∈Σn

Gn(σ−1x) dλ

=

ˆ
A

Gn(x)f(x) dλ (as {Gn} is normalised)

=

ˆ
A

f(x) dνn(x).

Thus An = E(·|Cn) on this measure space. A similar calculation in fact

shows that {Anf} forms a reverse martingale with respect to the nest of σ-

algebras . . . C3 ⊆ C2 ⊆ C1.

This martingale will converge almost everywhere and in L1. In the case

of the group of �nite coordinate changes, the limit σ-algebra is trivial, just

{∅, Z}, and so the martingale converges to
´
Z
f dλ. This is not the case here

since the exchangeable σ-algebra C =
⋂
n Cn is more complicated. However it

seems likely that An(f)(x) does converge to
´
Z
f dλ for almost all x ∈ Z.
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Brown and Dooley [1991] prove that the following proposition holds for the

group of �nite coordinate changes. Note that this proposition does not hold

for the symmetric group.

Proposition 4.2.3. Let (Z,B, µ) be a measurable space and G = {GF} be

a Γ-normalised Γ-compatible family. The following are equivalent:

(1) There is a unique G-measure µ - which is therefore ergodic.

(2) The n-net

An (f) (x) =
1

|Γn|
∑
γ∈Γn

Gn (γx) f (γx)

converges uniformly to a constant for every f ∈ C (X).

(3) The n-net

An (f) (x) =
1

|Γn|
∑
γ∈Γn

Gn (γx) f (γx)

converges pointwise (for all x ∈ Z) to a constant for every f ∈ C (X).

4.3. A Proof of de Finetti's Theorem using Martingales

We now give a proof of de Finetti's Theorem using martingales. We begin

this section by de�ning the conditional expectations operator which we show

is given by An (f) (x). We then prove de Finetti's Theorem using the theory

of martingales. The following de�nition is similar to that of an exchangeable

σ-algebra in De�nition 2.5.3.

Definition 4.3.1. Let Z =
∏∞

i=1 Z2, suppose n ≥ 1. Let Cn be the set of σ-

algebra of all Borel subsets of Z which are invariant under Σn and C = ∩∞n=0Cn.
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Lemma 4.3.2. Let Z =
∏∞

i=1 Z2 and Cn be given in De�nition 4.3.1 then

for f ∈ L1 (Z,B, Gn),

E (f |Cn) = An (f) ,

where the measure is Gn times Lebesgue measure.

Proof. By a theorem of Douglas [1965], An is a conditional expectation

operator. Every Cn measurable L1 function is invariant under An and hence

in the range of An. In additon, An (f) is always Cn-measurable. This implies

that An = E (·|Cn) . �

We de�ne a conditionally i.i.d. sequence which we use in de Finetti's The-

orem. This is also discussed in Section 2.7.

Definition 4.3.3. Let X = (X1, X2, . . .) be an in�nite exchangeable se-

quence and C be a σ-algebra as de�ned in De�nition 4.3.1. The conditions for

a sequence X to be conditionally i.i.d. given C are

P (Xi ∈ A|C) = P (Xj ∈ A|C) a.e. for each Borel A ⊆ R, i 6= j.

and

P (X1 ∈ A1, . . . Xk ∈ Ak|C) = P (X1 ∈ A1|C) · · ·P (Xk ∈ Ak|C) .

We now give a version of de Finetti's Theorem.

Theorem 4.3.4. If an in�nite sequence is exchangeable then it is condi-

tionally i.i.d. .
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That is, if we let {Xn}n∈Z+ be an exchangeable sequence and C is the cor-

responding exchangeable σ-algebra. Then, conditionally on C, {Xn}n∈Z+ are

i.i.d. .

We can use the theory of martingales to prove de Finetti's Theorem. We

give a general outline here of how to prove de Finetti's Theorem. Let f be any

bounded Borel function fi : R→ R, i = 1, . . . , k.

We show that if X = (X1, X2, . . .) is exchangeable then

(4.3.1) E (f1 (X1) f2 (X2) · · · fk (Xk) |C) = E (f1 (X1) |C) · · ·E (fk (Xk) |C) ,

for all C = ∩∞n=0Cn and if we let, fi = χAi for Ai ∈ B (R) then Equation 4.3.1

becomes

(4.3.2) P (X1 ∈ A1, . . . Xk ∈ Ak|C) = P (X1 ∈ A1|C) · · ·P (Xk ∈ Ak|C) .

Therefore, we have a conditionally i.i.d. sequence (Xi). Showing that Equa-

tion 4.3.1 holds will require us to use the Martingale Convergence Theorem

(Theorem 4.1.2).

Remark 4.3.5. The converse of Theorem 4.3.4, that is that a conditionally

i.i.d. sequence is exchangeable, is false. In the other direction to Theorem 4.3.4,

suppose that the random variables X1, . . . , Xn, . . . are conditionally i.i.d. then

we can give a counterexample to show that this is not necessarily exchangeable.

This is given by the Polya's Urn model, which is discussed in Example 2.5.4 .

This gives an example of exchangeable random variables that are statistically

dependent. Therefore, by the contrapositive, a conditionally i.i.d. sequence is

not necessarily exchangeable.
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We now consider de Finetti's Theorem for the symmetric group. Some of

these details here are from OpenCourseWare [2013] and �Zitkovi¢ [2010].

Definition 4.3.6. For the symmetric group, let Cn denote the tail σ-

algebra generated by all cylinder sets ΠnAn. Then Cn is a reverse or back-

ward �ltration. Let the forward process {f}n≥0 be de�ned with respect

to the backward �ltration C0 ⊇ C1 ⊇ C2 ⊇ · · · such that {fn} is adapted on L1

and

E (fn|Cn+1) = fn+1.

Definition 4.3.7. For k ≤ n ∈ N, let Σk
n denote the set of injections

σ : {1, 2, . . . , k} → {1, 2, . . . , n}. Then Σk
n has k!

(
n

k

)
=

n!

(n− k)!
elements.

The set of all permutations of the set {1, 2, . . . , n} is given by Σn
n . Given a

function f : Rk → R, for n ≥ k, we let the function f simn : Rn → R be de�ned

as

f simn (x1, . . . , xn) =
(n− k)!

n!

∑
σ∈

∑k
n

f
(
xσ(1), . . . , xσ(k)

)
.

This is called the n-symmetrization of f .

The proof of de Finetti's Theorem requires the following result due to

�Zitkovi¢ [2010, Lemma 11.29].

Proposition 4.3.8. Let {Xn}n∈Z+ be an i.i.d. sequence, let f : Rk → R,

k ∈ Z+ be a bounded Borel function and X˜ n = (X1, . . . , Xn).

f simn
(
X˜ n) = E

(
f simn

(
X˜ k) |Cn) , a.e.

=
1

n (n− 1) · · · (n− k + 1)

∑
σ∈

∑k
n

E
(
f
(
Xσ(1), . . . , Xσ(k)

)
|Cn
)
.(4.3.3)



4.3. A PROOF OF DE FINETTI'S THEOREM USING MARTINGALES 85

and

(4.3.4) f simn
(
X˜ n)→ E

(
f
(
X˜ k) |C) , a.e. and in L1 as n→∞.

Proof. The �rst step in the proof is to show that for all σ ∈ Σk
n

E(f(Xσ(1), . . . , Xσ(k)|Cn) = E (f(X1, . . . , Xk)|Cn) .

�Zitkovi¢ [2010, Lemma 11.29] does this by showing that for any symmetric

function g : Rn → R,

E(g(X1, . . . , Xn)(f(Xσ(1), . . . , Xσ(k))− f(X1, . . . , Xk)) = 0.

The identity in Equation 4.3.3 follows easily from this by the linearity of the

conditional expectation operator. From Equation 4.3.4 we can deduce that

{f simn
(
X˜ n))}∞n=k is a reverse martingale with respect to the nest of σ-algebras

{Cn}∞n=k.

To prove Equation 4.3.4 holds we then combine

f simn
(
X˜ n) = E

(
f
(
X˜ k) |Cn) ,

the de�nition of C = ∩∞n=0Cn of the exchangeable σ-algebra and the backward

martingale convergence theorem, Theorem 4.1.2. �

We now give the details of a proof of de Finetii's Theorem (Theorem 4.3.4)

which uses the theory of martingales.

Proof. Let f be of the form f = gh, where g : Rk−1 → R and h : R→ R

are bounded Borel functions and n ≥ k for all x ∈ R. We now consider the

following term from �Zitkovi¢ [2010], which we use to derive the results that we

want about the relationship between the terms f simn , gsimn and hsimn .
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n!

(n− k + 1)!
gsimn

(
X˜ n)nhsimn (

X˜ n)
=

∑
σ∈

∑k−1
n

g
(
Xσ(1), . . . , Xσ(k−1)

) ∑
i∈{1,...,n}

h (Xi)

=
∑
σ∈

∑k
n

g
(
Xσ(1), . . . , Xσ(k−1)

)
h
(
Xσ(k)

)

+
∑

σ∈
∑k−1
n

g
(
Xσ(1), . . . , Xσ(k−1)

) k−1∑
j=1

h
(
Xσ(j)

)
.(4.3.5)

It is easy to show that if we set f j
(
X˜ k−1

)
= g

(
X˜ k−1

)
h (Xj), 1 ≤ j ≤ k − 1,

then

n!

(n− k + 1)!
gsimn

(
X˜ n)nhsimn (

X˜ n) =
n!

(n− k)!
f simn

(
X˜ n)+ n!

(n− k + 1)!

k−1∑
j=1

f j,simn

(
X˜ n)

Dividing by n!
(n−k)!

gives

n

n− k + 1
gsimn

(
X˜ n)hsimn (

X˜ n) = f simn
(
X˜ n)+

1

n− k + 1

k−1∑
j=1

f j,simn

(
X˜ n)

Therefore,

f simn
(
X˜ n) =

n

n− k + 1
gsimn

(
X˜ n)hsimn (

X˜ n)− 1

n− k + 1

k−1∑
j=1

f j,simn

(
X˜ n)

The sum
∑k−1

j=1 f
j,sim
n is bounded so letting n→∞ gives

lim
n

∣∣f simn (
X˜ n)− gsimn (

X˜ n)hsimn (
X˜ n)∣∣ = 0.

Therefore, by Equation 4.3.4 applied to f simn , gsimn and hsimn gives

E (f (X1, . . . , Xk) |C) = E (g (X1, . . . , Xk−1) |C)E (h (Xk) |C) .
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Repeating this procedure with g = g′h′, for bounded Borel function g′ :

Rk−1 → R and h′ : R → R we can split the conditional expectation into the

product E (g′ (X1, . . . , Xk−2) |C)E (h′ (Xk−1) |C). After (k − 1) such steps, we

get

E (h1 (X1)h2 (X2) · · ·hk (Xk) |C) = E (h1 (X1) |C) · · ·E (hk (Xk) |C) .

This holds for any bounded Borel function hi : R→ R, i = 1, . . . , k. If we

let, hi = χAi for Ai ∈ B (R) then

P (X1 ∈ A1, . . . Xk ∈ Ak|C) = P (X1 ∈ A1|C) · · ·P (Xk ∈ Ak|C) .

Therefore, we have a conditionally i.i.d. sequence (Xi).

We have shown here that any in�nite sequence is exchangeable then it is

conditionally i.i.d. . Therefore, we have shown that a version of de Finetti's

Theorem applies here (see Theorem 4.3.4). �
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