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Abstract

Lunar water resources are expected to be used for space exploration and development in
the future. These resources can be used for life support and rocket fuel to reduce the risks
and costs associated with lunar settlement. There is a notable gap in literature relating to
the planning and optimisation of lunar resource extraction. This thesis aims to address the
problem by developing tools for planning and optimisation of In-Situ Resource Utilisation
(ISRU) on the Moon, with a focus on H2O resources.

The multidisciplinary tools currently used in the terrestrial mining industry are examined
as possible solutions to fill the gap. However, several issues are identified with the direct
transfer of these methods to ISRU. Four foundational areas of mining engineering are
then expanded for off-Earth applications. These are geomechanics and modelling, mining
system selection, extraction sequence optimisation and project valuation.

For geomechanics, the Discrete Element Method (DEM) is used to determine the stability
of regolith excavations on the Moon. This method is also extended to the development
of ground engaging tools under lunar gravity. Conceptual proofs are shown for two novel
mining systems using DEM, the Impact Excavator and Drill and Pull method. With
further development, these new rock breakage systems can improve ISRU planning and
optimisation by enabling the access of harder, higher grade icy regolith. Within literature,
there are also numerous off-Earth mining systems described. A procedure is developed
to objectively select a mining system for a range of possible space resource deposit types.
The procedure utilises principles of Axiomatic Design to estimate the reliability of systems
in the absence of experimental data. These system reliabilities assist in making selections
that can be used as inputs for subsequent planning and optimisation activities.

Traditional optimisation algorithms, such the Lerchs-Grossman pit optimisation method
and other graph-based methods are next examined for their applicability to off-Earth min-
ing. They are found to be incompatible when directly applied to ISRU and a new paradigm
is developed based on Reinforcement Learning. This method has advantages over the tra-
ditional mine optimisation algorithms and solves many of the issues identified for ISRU.
For example, it does not require uncertain financial inputs such as cost estimations or price
forecasting. This particular weakness in financial inputs for off-Earth mine planning is also
addressed for project valuations. An opportunity cost measure, the Propellant Payback
Ratio, is shown to overcome many of the difficult input requirements of the traditional
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method for the purpose of ISRU project appraisal. It enables ISRU project appraisals to
be conducted completely independent of the uncertain financial inputs mentioned.

Overall, the thesis contributes to the expansion of the mining engineering discipline into
the ISRU domain. Four interconnected areas of mining engineering are developed includ-
ing: geomechanics, mining system selection, sequence optimisation and project appraisal.
These are all part of a multidisciplinary approach to ISRU planning and optimisation.
Although ISRU has so far not begun, the methods and tools developed here can be used
to improve the future prospect of resource utilisation on the Moon.
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Definition of Terms

The following abbreviations are used throughout the thesis.

∆V – Change in velocity or change in velocity requirement, usually of a spacecraft in orbit
of another body such as the Earth or Sun.

DEM – Discrete Element Method. A numerical modelling technique that involves nu-
merous individual particles that can move and interact to transfer physical forces and
motions.

GEO – Geosynchronous Earth Orbit. The orbital altitude above the Earth where a satellite
orbits at the same angular velocity as the Earth’s rotation, approximately 36 000 km above
the Earth’s surface [172].

ISRU – In-Situ Resource Utilisation. The generation of consumables from raw materials
found on the Moon or other planetary bodies [55] for use in autonomous or human activities
at or nearby the same location.

ISWS – In-Situ Water Sublimation. A mining system that involves directly heating icy
regolith or another volatile resource to sublimate and collect water vapour.

LEO – Low Earth Orbit. The orbital zone around the Earth that is closest to the atmo-
sphere with an altitude ranging from 200 km to 1600 km [257].

NEO – Near-Earth Object. Asteroids or comets in a solar orbit within 1.3 Astronomical
Units (AU) from the Sun, where the Earth orbits at 1.0 AU from the Sun [119].

NPV – Net Present Value. A project evaluation tool designed to guide investment deci-
sions by discounting the value of future revenues and costs by assigning a time-dependant
discount factor [305].

PSRs – Permanently Shadowed Regions. Areas on the lunar surface that are never lit by
the Sun. These are usually found in craters on the poles, where the angle of incidence of
sunlight causes the depths of the craters to be in permanent shadow. These areas exhibit
very low and stable temperatures compared to other areas on the lunar surface, and have
been shown to contain volatiles in mineral deposits [17,117,273].
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RL – Reinforcement Learning. An optimisation algorithm that makes use of an agent,
capable of taking actions and receiving rewards in an environment. The agent progressively
learns to maximise rewards and converges to an optimal solution.

SRU – Space Resource Utilisation. The use of natural resources from the Moon, Mars
and other bodies for use in-situ or elsewhere in the Solar System [114]. This is a broader
term to In-Situ Resource Utilisation, where resources are not necessarily used at the same
location.

TRL – Technology Readiness Level. A ranking that describes the state of a given tech-
nology and provides a baseline from which maturity is gauged and advancement pathways
can be defined [137].

UCS – Uniaxial Compressive Strength. An experimentally derived measure of material
strength. The maximum stress a standard rock sample withstands under compression
prior to failure when no confining pressure is applied.

The following technical terms are used for describing the novelty in this thesis.

Mine Planning – The engineering process required to extract a mineral resource. The
mine plan includes aspects of geomechanics, economics, scheduling and various types of
engineering such as mechanical, electrical and more.

Mine Optimisation – The process of improving a mine plan towards an optimal outcome.
Various methods and algorithms can be used for this process.

Mining System – A set of tools or equipment that can be used in combination to access
and extract mineral resources.

Mining Method – A specific technique used to apply a mining system. The difference
between a mining method and a mining system is based on how the equipment is applied
in different geology and geometry. For example, a truck and shovel is a mining system.
Strip mining and open pit mining are two mining methods used to apply a truck and
shovel. Strip mining is the act of removing long strips of waste material to progressively
uncover a continuous, shallow seam of ore. Open pit mining requires the removal of waste
and ore via benching and pushbacks for an ore body that extends downwards rather than
laterally.

Off-Earth Mining – An broad term referring to ISRU, SRU and any mineral extraction
not on the Earth. This also includes mining asteroids, for example, to sell commodities at
a profit into terrestrial markets and more.

The following technical terms used in the terrestrial mining industry are also employed in
this thesis.

In-situ stress – Stress in a rock in its original in-ground state, prior to any excavation.
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Mineral Resource/Resource – A geologically significant concentration of a mineral that
has potential to be considered as ore after further engineering studies [134].

Ore Reserve/Ore – The portion of a mineral resource that has a viable market and positive
economic value to extract with known systems [134]. In this thesis and the ISRU sense,
the term refers to a mineral resource that will be utilised off-Earth with known engineering
solutions. It should not be considered waste after applying a cut-off grade.

Grade – The concentration of a desired mineral inside the surrounding material. In this
thesis grade is measured in units of kg H2O per of kg lunar regolith or % by mass.

Cut-off Grade – The boundary grade between ore and waste. As shown in Chapter 6
it is defined by a method of iterative resource extraction modelling taking into account
the ISRU system capabilities, size and distribution of the mineral resource, extraction
sequence and equipment reliability.

Ultimate Pit Limit – The largest possible economically extractable open pit, using tradi-
tional mine planning methods [204].

Pushback – A temporal open pit expansion aimed at achieving access to covered ore while
minimising the waste movement requirements.

Some important terms used in the field of reinforcement learning are also defined below.

Agent – A series of computational functions, usually including a neural network that learn
to observe, take actions and maximise rewards from an environment.

Training – For Reinforcement Learning, the process in which an agent repeatedly acts
through and experiences environments (takes actions, makes observations and receives
rewards) in order to improve future actions.

Hyperparameter – A high-level parameter that controls the machine learning process.

Episode – A full trajectory of agent actions, observations and rewards between the initial
state and terminal state of an environment.

Generalisation – The ability of an agent to adapt to a range of problems wider than the
training experiences provided.

Architecture – A unique formulation of a Reinforcement Learning algorithm including any
optional pre-processing or post-processing steps as used by Sutton [286].
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Chapter 1

Introduction

1.1 Motivation and Research Gap

Space exploration is considered important to the future development of our civilisation [54,

211]. One of the main limitations to this is the significant cost of transporting terrestrial

resources to the desired location in space. Fortunately, it has been shown that finding and

extracting resources in space can significantly reduce the costs and risks associated with

space activities [54, 233]. Utilisation of off-Earth resources is therefore expected to act as

a catalyst to further advancement of the space economy [54,109,254]. The earliest form of

off-Earth mining is likely to be in the form of In-Situ Resource Utilisation (ISRU), where

resources are extracted and used at, or very near to a base of operations.

The ISRU paradigm poses some new challenges for traditional mine planning and optimi-

sation methods. The majority of terrestrial mining operations are planned and optimised

with a multidisciplinary set of tools [62,116], ranging from economics to geology to mechan-

ical engineering and more. Examples can be given such as the determination of excavation

stability using numerical modelling [79], selection of equipment based on proven mechan-

ical capabilities in the appropriate style of geological deposit [213], and optimisation of

extraction sequences using cut-off grades and system specific practical constraints [116].
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CHAPTER 1. INTRODUCTION

The problem for ISRU is that the traditional methods used for planning and optimisa-

tion are not directly transferable from terrestrial mining engineering. The transfer issues

include the very little geological, geotechnical and economic data or modelling available

for space resources. This deficiency means it is illegitimate to begin a resource optimi-

sation study of a particular deposit with traditional methods. Furthermore, there are

no proven examples of a working ISRU operation or equipment, making selection of an

optimal mining system difficult. Almost no literature has been written on the means to

plan and optimise such an operation either. As ISRU operations are most likely to be

autonomous or remotely operated, this unleashes various new technological possibilities

for the new planning and optimisation methods required. Possibly the most important

difference between ISRU and terrestrial mining engineering is that the optimisation goal

of ISRU is not necessarily to make a profit, but instead to reduce risks and costs for other

space activities such as lunar settlement.

Due to these broad issues, there is a significant gap between terrestrial mining engineering

tools and the requirements of ISRU planning and optimisation studies.

1.2 Aim and Objectives

The aim of this thesis is to develop methods and tools to enable the planning and op-

timisation of In-Situ Resource Utilisation (ISRU) operations on the Moon. In doing so,

the thesis will expand the mining engineering discipline to the domain of off-Earth In-situ

Resource Utilisation. This thesis focuses on volatile water resource extraction but the

methods and concepts developed can be applied to any type of resource. The problem

is complex and multidisciplinary, not all aspects can be completely addressed within this

thesis. The limitations of PhD research, and the effects of laboratory facility closures

during the pandemic have encouraged a multifaceted approach to the problem, similar

to terrestrial mining engineering. The broad approach will yield many recommendations

for future research on topics that are necessarily placed outside this work. Hence, the

following objectives are set to rationalise the scope of this thesis.
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1. Develop a rapid and low-cost technique to demonstrate ISRU equipment designs and

show proof-of-concept.

2. Collate and develop conceptual equipment designs that can be used for subsequent

planning and optimisation.

3. Identify areas of deficiency or improvement when applying traditional mine planning

methods to ISRU.

4. Resolve any deficiencies for ISRU planning and optimisation.

5. Demonstrate usage of the novel ISRU planning and optimisation methods.

1.3 Thesis Outline

This thesis has been arranged into the Introduction, Background, five technical chapters

and a final discussion and conclusion chapter. The research objectives are tabulated

against each relevant chapter in Table 1.1. A conceptual map of the thesis can be found in

Figure 1.1. Each chapter progressively builds on the interdisciplinary capabilities needed

in later chapters. The map shows how some Interdisciplinary Enablers are closely related

to traditional mine planning and optimisation, while others are further afield from the

discipline.

Table 1.1: Objectives by chapter.

Chapter Short Title Target Objectives
Chapter 2 Background #3
Chapter 3 Modelling Geomechanics and Excavation #1 & #5
Chapter 4 Off-Earth Mining System Concepts #5 & #2
Chapter 5 Off-Earth Mining System Selection #3, #4 & #5
Chapter 6 Extraction Sequence Optimisation #3, #4 & #5
Chapter 7 ISRU Project Appraisal #3, #4 & #5
Chapter 8 Conclusion and Future Work All

Chapter 2 – Background defines the domain of the thesis and the current state of knowl-

edge. This chapter will be used to identify areas of improvement or deficiency when apply-

ing traditional mine planning methods to ISRU. Each of the following technical chapters
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CHAPTER 1. INTRODUCTION

Figure 1.1: Thesis chapters and enablers map.

has its own specific literature reviews relevant to the contributions of that chapter. The

Background chapter aims to appropriately situate the thesis as an addition to the limited

off-Earth resource extraction planning and optimisation literature, and as an expansion of

the mining engineering discipline into the Space Resource Utilisation domain.

Chapter 3 – Modelling Geomechanics and the Excavation of Lunar Regolith introduces

the usage of the Discrete Element Method (DEM) in lunar regolith as a rapid and low-

cost technique to demonstrate equipment designs and show proof-of-concept. This chapter

is relevant to the following chapters and the thesis, as it demonstrates a method for

4



1.3. THESIS OUTLINE

assessing excavation in lunar gravity and ground conditions. This can be used to define

equipment capability constraints for system selection and extraction sequencing methods

proposed in later chapters.

Chapter 4 – Lunar Mining System Concepts describes some equipment designs that can

be used for subsequent planning and optimisation. The excavation modelling introduced

in Chapter 3 is applied to show proof-of-concept for these designs. Various other mining

systems have been collated from literature which will be used in the subsequent chapters.

Chapter 5 – Off-Earth Mining System Selection develops a procedure for categorising and

selecting the preferred mining system from Chapter 4 for an array of possible geological

deposit types. Mining systems will have differing capabilities and constraints and the

selection of a system is critical to any further analysis and optimisation. By selecting

an appropriate unique mining system, this procedure can also help to define extraction

sequencing constraints for the following two chapters.

The method in Chapter 6 – Extraction Sequence Optimisation with a Reinforcement Learn-

ing Agent is also one of the key theoretical contributions of this thesis. Traditional cut-off

grade theory, used in terrestrial mining, is advanced in this chapter. The techniques,

data and systems developed in the previous chapters can also be used in conjunction

with this method to achieve optimal efficiency in desired aspects of resource extraction.

The proposed method is specifically designed to resolve issues identified when transferring

traditional mine planning methods to ISRU.

Chapter 7 – ISRU Project Appraisal with Uncertain Inputs demonstrates how to assess an

ISRU project with significant financial uncertainties that are common for space activities.

The required inputs for this chapter are related to the works in previous chapters includ-

ing appropriate mining systems, the use of an extraction sequence and various physical

parameters such as excavation forces in regolith.

Finally, Chapter 8 – Conclusions and Future Work is framed as the thesis discussion and

conclusion. It consolidates the broad, multidisciplinary contributions in terms of existing
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ISRU literature and highlights the implications for the mining engineering discipline. It

also proposes further areas for research related to planning and optimisation of off-Earth

In-Situ Resource Utilisation.

1.4 Original Contributions

The main contributions within the thesis are the new methodologies proposed for off-

Earth mine planning and optimisation. Chapter 3 outlines the calibration and use of

the Discrete Element Method for lunar regolith excavation. This method can also be

used to demonstrate the effectiveness of new ground engaging tools under lunar gravity

as shown in Chapter 4. Chapter 5 develops an ISRU equipment selection procedure based

on system complexity, Axiomatic Design [282] and expected reliability. A collection of

lunar mining systems from literature are also assessed using this new procedure. Chapter

6 applies Reinforcement Learning (RL) techniques to the optimisation problem of resource

extraction sequencing. This resource extraction optimisation method can also be applied

in terrestrial mine planning scenarios. Finally, Chapter 7 demonstrates a process for

economic appraisal of off-Earth resource extraction projects without the need for making

assumptions on highly uncertain costs and market prices.

Empirical contributions are made in Chapters 3 and 4 in the form of results of calibration

and modelling of dry lunar regolith for different styles of excavation.

Some theoretical contributions are also made in this thesis. Chapter 4 develops some

novel excavation and rock breakage concepts in addition to supporting experiments and

modelling. Chapter 5 proposes mining strategies for when H2O extraction is limited by

the energy intensive water sublimation or vaporisation stage. This has implications for

Chapter 6 and 7 where optimal extraction sequences and cut-off grades are demonstrated

to greatly improve the economic competitiveness of an operation. Chapter 6 also develops

traditional resource cut-off grade theory by enabling rapid scenario testing with trained

RL agents. Finally, Chapter 7 proposes that the opportunity cost, in the form of various
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Propellant Payback Ratios can be used as a primary indicator of economic competitiveness

for ISRU operations when there are significant financial uncertainties.

This is the first substantial piece of work done in the field of ISRU planning and optimi-

sation. There are several original multidisciplinary contributions throughout this work.

When taken as a whole, the thesis is intended to expand the mining engineering discipline

into the space resource domain.
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Chapter 2

Background

2.1 Context

There has been a renewed interest in lunar exploration in recent times as the International

Space Station nears the end of its life [41]. The Artemis program is an example of NASA’s

latest plan for developing a sustainable presence on the Moon, with the goal to develop

space resource utilisation technologies for exploring Mars and beyond [13, 270]. This

chapter will provide background information and justification for the use of space resources.

It will also define the state of off-Earth mining related research and begin to identify areas

of improvement when applying traditional mine planning methods to ISRU according to

Objective 3 of the thesis.

Several international contributions to the Artemis program are planned from Japan, Korea,

Canada, Australia and the European Space Agency to name a few [56]. In-Situ Resource

Utilisation is a priority for the Artemis program, and the strategy explicitly includes the

demonstration of an ISRU system [246]. The Volatiles Investigating Polar Exploration

Rover (VIPER) is an example of an Artemis mission planned in 2024 to map potential

volatile resources sites on the lunar South Pole for future use [48,56].

The European Space Agency (ESA) itself has released a strategy on space resources to
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2030, with the specific goals to map out resource deposits on the Moon and demonstrate the

production of water or oxygen on the Moon from local resources [91]. China also has plans

to increase space-related research and exploration activities. The planned construction of

the International Lunar Research Station on the lunar South Pole in partnership with

Russia [131] and research into space based solar power satellites [100,223] are evidence of

this. In terms of space resource utilisation, China is planning to send experimental ISRU

equipment to the Moon prior to 2030 [167,313] and has also identified asteroids as a future

target for resource extraction [109].

There is an element of strategic competition between these nations which has echoes of

the space race from the 1960s [109]. During the previous space race, an extreme level of

government investment was made with the goal of being the first country to put people

on the Moon. Reportedly $25.8 billion USD was spent on Project Apollo, more than half

of NASA’s budget at the time. Adjusted for inflation, the Apollo program averaged $31

billion 2020 USD per year, greater than the entire NASA budget at any other point in

history [76]. It is believed that even more was spent on the Soviet space program [88].

The parallel between the 1960s space race and the present may not be any more than

strategic rhetoric [165]. But, there is clear evidence of another type of space race cur-

rently underway. Private enterprises such as Elon Musk’s SpaceX and Jeff Bezos’s Blue

Origin have their own plans for development of the Moon and Mars. This has been called

the billionaire’s space race by some [93], which is supported by space technology pri-

vatisation strategies at NASA, in Luxembourg and elsewhere [297]. Furthermore, these

two companies are not the only participants. Numerous other private companies have

also stated intentions to develop space access or space resource utilisation technology or

both. Notable mentions include United Launch Alliance [19], Boeing, Lockheed Martin,

iSpace [154] and Richard Branson’s Virgin Galactic [166].

Table 2.1 is a combined summary of the expected timeline of resource utilisation outlined in

strategies published by NASA [175,245,246], ESA [91] and the Luxembourg Space Agency

(LSA) [182]. It has been mentioned in presentations by NASA personnel [175, 245, 246]

that oxygen derived from regolith minerals will be the first example of ISRU in space. This
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is mainly due to the low comparative risk in locating and collecting appropriate regolith

resources on the Moon. The process is energy intensive however, and once polar volatile

deposits are unlocked and infrastructure is built nearby, they will become the favoured type

of mineralisation for resource utilisation. It is agreed by all of the reports that production

of both O2 and H2 will be initially valuable. This is to reduce the costs and risks of

providing rocket propellant and life support systems on the Moon. The second obvious

trend across all of the reports is that certain types of resource only become available after

the mining, processing and utilisation technologies mature sufficiently, hence the delay in

some of these applications and the importance of early government investment.

Table 2.1: Expected timeline of Space Resource Utilisation collated from NASA [175,245,
246], LSA [182] and ESA [91].

Time Horizon Resource Source Applications
5-10 years Oxygen bound Moon Rocket Fuel, Life Support

in Regolith
10 years Water Moon Rocket Fuel, Life Support

15-20 years Water Asteroids Rocket Fuel, Life Support
15-20 years Raw Regolith Moon, Mars Infrastructure
>20 years Metals Moon, Asteroids Infrastructure, Equipment

Mars
>20 years Precious Metals Asteroids Sale in terrestrial market

2.2 Geology

2.2.1 Solar System and Comet Formation

This thesis will intentionally omit much of the detail around off-Earth geological forma-

tions and modelling as there is currently not enough data to make certain conclusions.

The important geological inputs required for mine planning tasks in this thesis will be

replaced by assumptions. It is therefore important for readers to have a brief overview

and understanding of space and lunar geology which form the basis of these assumptions.

The prevailing theory on the origin of the solar system is based on the observation that all

the planets and main belt asteroids have low inclination orbits from 0° to 35° and orbit in
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the same direction around the Sun [157]. The theory proposes that during the formation of

the solar system a proto-planetary disk of dust particles and gas surrounded the Sun. These

particles accumulated in a process called nucleation [72] into progressively larger pieces

called planetesimals and eventually the asteroids, moons and planets themselves [3, 314].

Comets are formed from the accumulation of icy planetesimals, mostly consisting of small

fragments of amorphous water ice [3] in the outer solar system. An analysis of the comet

Hale-Bopp suggests the nucleus consists of around 35% water, with 7% CO2, 13% CO

and 45% dust [27]. This analysis was conducted from observing the tail spectrum versus

distance from the Sun. Other sources indicate the abundance of H2O to be around 80%

of the mass of a comet [89]. Figure 2.1 illustrates the structure of a comet nucleus which

has been developed from the planetesimal nucleation theory [27, 314]. It is supported by

observations of surface emissions and structures from spacecraft flybys, the Deep Impact

probe [224] and long range observations [271]. DeMeo and Binzel [67] survey the near-

Earth asteroid population and highlight potential candidates for dormant comets, covered

in an insulative dust layer which have made their way into the inner solar system through

gravitational perturbations.

Figure 2.1: Structure of a comet nucleus after Brandt and Chapman [30].
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2.2.2 Geology of The Moon

Currently the most plausible explanation for the formation of the Moon, is a giant collision

of two planetesimals early in the history of the solar system. The proto-Earth and another

Mars-sized object collided to form the present masses of the Earth and Moon system [16].

Modelling of this event has been carried out by several authors to match observations of

the mass, mineralogy, isotopic composition and orbital properties of the Moon in support

of the theory [8, 16, 37]. Over time, the Moon has undergone several stages of geological

change including volcanism [274] and asteroid bombardment [241], although without the

atmospheric weathering conditions important on Earth. This leads to the present-day

lunar surface characterised by the highland crust and mare basins of basaltic regolith [111]

marked by varying degrees of impact cratering and volcanic features. In some of these

darker craters at the poles, volatile ices have been detected [11].

The LCROSS mission utilised an impactor probe which strongly suggests the presence of

water ice in a southern polar crater named Cabeus. Analysis of the impact dust plume

suggests the concentration of water in the upper layers of this crater’s regolith to be 5.9%

± 2.9% by volume [17,117]. Independent evidence of lunar polar ice in Permanently Shad-

owed Regions (PSRs) has been detected by using combinations of the Diviner radiometer,

a Laser Altimeter (LOLA) [96] and the LAMP ultraviolet reflectance detector [120] on

the Lunar Reconnaissance Orbiter and the Moon Mineralogy Mapper (M3) near-infrared

spectroscopy instrument on the Chandrayaan-1 lunar orbiter [171].

Three main geological processes are postulated to have delivered ice to the surface of the

Moon. There is still some debate about the relative importance of each of these items [36],

These delivery mechanisms are:

• ongoing impacts from asteroids, comets and micro meteoroids [240,275];

• previous volcanic out-gassing during the Moons geological history [36]; and

• ongoing implantation of hydrogen from the solar wind [11].
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Evidence of similar polar crater ice deposits are found on both Mercury [240] and the

dwarf planet Ceres [159]. These are likely to have been deposited by the same geological

processes to those evident on the Moon.

Lunar regolith covers a large portion of the surface of the Moon. Seismic measurements

taken at the Apollo landing sites show that the soil there ranges in depth from 3.7 m to

12.2 m in depth [174]. This depth is expected to greatly increase within a crater basin due

to gardening and slumping effects [277], as shown in Figure 2.2. Lunar regolith is created

by impact gardening, when meteoroids break the crust of the Moon and redeposit it over

geological time [17].

Figure 2.2: Sedimentary effect in crater basins after Lindsay [174].

These geological paradigms will be used in subsequent chapters to postulate potential H2O

Mineral Resources on the Moon that could be available for utilisation.

2.3 Lunar Resources

Various material resources available on the Moon have been detailed in a broad review by

Crawford [54] and in other works [11, 233]. In the near term, ISRU operations supplying
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a nearby settlement are expected to dominate rather than mining operations aimed at

selling a product into another market. This is described in Table 2.1. ISRU operations

will aim to extract useful materials for life support and basic construction nearby such as:

• volatiles including water;

• ilmenite in regolith; and

• regolith itself.

These three resources can be used to provide oxygen for life-support and rocket propellant.

Ilmenite (FeTiO3) can be reduced by a hydrogen reduction process to produce water,

which in turn can be electrolysed to recover hydrogen and oxygen useful for both life

support and rocket fuel [54]. Regolith can also be used to produce oxygen from molten

electrolysis [260], although this is very energy intensive. If ilmenite and regolith are the

only available ISRU resources, a stock of hydrogen must be transported from Earth or

elsewhere to enable its use as propellant [11]. It will likely be more energy efficient to

recover the H2O directly from icy deposits, however these are thought to be only located

in cold traps such as the PSRs mentioned above. Raw lunar regolith can also be used

for radiation and micrometeoroid shielding [11] and construction of protection bunds for

launch pads.

Other resource types will become accessible after off-Earth mining technology is further

developed. These more advanced resources are in line with what is considered mining on

Earth today. These materials of potentially longer term economic interest on the Moon

according to Crawford [54] include:

• nanophase iron in regolith;

• meteoritic siderophile metals such as nickel, gold and Platinum Group Metals;

• industrial metals such as aluminium and titanium;
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• important technology manufacturing feedstocks such silicon and Rare Earth Ele-

ments;

• nuclear energy minerals such as uranium; or

• Helium-3 depending on nuclear fusion technology advancements; and

• other possibilities yet to be discovered.

These advanced manufacturing materials are found in varying concentrations in different

locations on the lunar surface due to geological process. For example, it is postulated

that previous and ongoing impacts of metallic asteroids on the lunar surface have created

localised areas of enriched metal concentration. These can be identified by magnetic

signatures from higher concentrations of iron in the regolith as shown by Wieczorek [307].

It is important to realise that all of the elements available naturally on Earth are also

available on the Moon due to their similar origins in the solar system. However, differing

geological processes occur on the Earth and Moon. Therefore, the quantity, concentration

and the type of mineral resources are different [54].

2.4 Mine Planning and Optimisation

2.4.1 Fundamentals of Mine Planning

Terrestrial mine planning and optimisation is founded on multidisciplinary technical tools

outlined in the SME Mining Engineering Handbook [62] and more. Some of the most

important are itemised below. A short discussion on each item with respect to this thesis

is included in this section. The order of these items has been arranged into a commonly

used flow for terrestrial mining feasibility studies shown below.

1. Commodity market price forecasting.

15



CHAPTER 2. BACKGROUND

2. Geological exploration and resource estimation.

3. Geomechanics and modelling.

4. Mining method selection.

5. Infrastructure and services design and construction.

6. Mineral processing.

7. Economic decision making including extraction sequencing.

8. Protection of the environment, societal issues, health and safety.

9. Project valuation and appraisal.

A feasibility study addresses each of these items as part of an iterative assessment of a

mining project prior to investment [62]. The same flow has been used as the blueprint

for structuring this thesis. These terrestrial mine planning tools can be developed for use

in space resources, although some are too broad or too uncertain to detail in subsequent

chapters here. This thesis’s objectives target items 3, 4, 7 and 9 as areas that can be

advanced specifically for off-Earth In-Situ Resource Utilisation, expanding the foundations

of mining engineering into the space resources domain.

2.4.2 Market Price Forecasting

Market price forecasting is risky and prone to error in the best of circumstances. The price-

time series of a globally significant commodity such as oil for example, is characterised

with high levels of periodic volatility [115]. Extensive efforts are made in industry and

academia to accurately forecast commodity prices, however the success of each individual

technique varies depending on the commodity and the selected input data [115]. Mining

feasibility studies proceed nonetheless, usually with some form of sensitivity or options

analysis at the end to demonstrate the risks of price forecasting [70]. One factor working

in the favour of terrestrial mining companies over the last few decades has been the general
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decline in production costs due to technology improvements. It is observed that due to

this and increasing commodity scarcity in terms of lower-grade deposits being mined,

even sub-economic resources should eventually become valuable [62]. The space economy

is different at this point in time. Without any previous examples or existing market

data, it is not currently possible to predict off-Earth commodity prices with any degree

of accuracy. Since price assumptions are key inputs into mine planning, these methods

will not work for ISRU. For this reason, this thesis offers alternative planning methods in

Chapters 6 and 7 that do not require market price forecasting.

2.4.3 Geological Resource Estimation

Geological exploration and resource estimation forms the base input into any physical

mine plan. A well informed resource model allows engineers to identify and prioritise

target areas for economic extraction. The methods used in resource modelling are well

developed for terrestrial mining, involving various data inputs, geostatistics, specialised

model parameters for each deposit, and a regular validation process [239]. All of these

methods are easily transferable to space resources. The main limitation is the current

availability of input data, although this has been recognised in the space resource strategies

outlined by NASA [175,245,246] and ESA [91]. Terrestrial mine versions of these models

typically require hundreds, if not thousands of data samples from the deposit and an

educated interpretation of the structure and size of the mineralisation.

Lunar resource modelling using modified terrestrial resource estimation techniques has

recently been shown by Cannon and Britt [36]. A novel Ice Favourability index was

implemented in this work to improve results, albeit with very limited geospatial data.

Geological modelling is a large area of study and will continue to be developed as long

as there are more deposits and data to model. As there is currently not enough data

available to produce any realistic and useful models for ISRU planning and optimisation,

this area will not be further developed in this thesis. Random or fictitious geological models

based on current understanding and assumptions will be used instead to demonstrate the
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planning and optimisation methods in the following chapters.

2.4.4 Geomechanics and Modelling

During the mining process it is necessary to understand and control the stability of excava-

tions, waste storage dumps and stockpiles. Ground control reduces unplanned operational

delays and damages to equipment from rockfalls or collapses. It is also crucial to under-

stand rock breakage and excavation properties of the mineral resource and surrounds to

plan a mining project. All this information can be used in mining method selections, and

hence place constraints on feasibility studies and optimisations.

There are mature modelling methods available for geomechanics studies in the mining

industry today, including variations of the Finite Element Method (FEM), the Discrete

Element Method (DEM) and hybrids of both. The Finite Element Method is a continuum-

based method, where a network interconnected nodes is used to represent a continuous rock

mass. Adjacent nodes are used to pass stress and displacement calculations throughout

the network and resolve a solution. This method is unable to model larger displacements,

for example when nodes may change their relative arrangements. It is also not ideal for

highly fractured materials, although there are more advanced variations of FEM which

enables this [79].

In the Discrete Element Method, the material is represented by numerous discrete shapes

that can move and change location under certain conditions. Interactions based on prox-

imity at each time-step are identified between discrete elements to pass forces and motions

throughout the simulation. The Discrete Element Method and its variations are used in

the terrestrial mining industry for complex dynamic problems, including block caving, pit

wall toppling and mechanical optimisations [79,101,279]. DEM has advantages for use in

modelling mechanics of space mining scenarios, as the excavation systems can be modelled

dynamically for proof-of-concept and optimisation. The use of DEM for modelling ISRU

excavation, rock breakage and stability will be shown in Chapter 3 and 4.
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2.4.5 Mining Method Selection

Terrestrial mining method selection is usually undertaken by engineers with experience in

several different mines and methods. Selections are made during the iterative feasibility

study process depending on deposit geometry, geomechanics, and economics. There are

also mining method selection procedures specified in literature [192,212,212] which can be

used to make a less subjective selection. These are rarely used in practice. Currently, there

is no such procedure or experience available for selection of mining systems for off-Earth

mineral resources. Instead, non-exhaustive, subjective selections based on an author’s

limited knowledge, preference or personal works are made as in Kornuta et al. [146].

The term mining method has not been used to describe the equivalent space resources

term in this thesis, instead opting for the term mining system selection. A mining method

can vary even when using the same equipment, for example an underground stoping mine

and block cave mine will utilise approximately the same equipment, but with different

geometry, geology and means to break and extract rock [62]. The different means of

managing these aspects results in a different mining method.

The current state of the art in space resources has not advanced far enough to describe

mining methods based on extraction geometry. Instead, a mining system selection pro-

cedure is proposed in Chapter 5 of this thesis. It is more useful to the current state of

the art where the focus is on different types of equipment rather than different types of

deposit geometry and geomechanics. These items are still considered in Chapter 5, but in

a more generalised manner. Eventually, similar to terrestrial mining, variations of mining

methods will develop based on geology and geometry. This is touched on in the novel con-

cepts shown in Chapter 4 but more operational demonstrations and analyses are required

before establishing mining method selection as the norm.
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2.4.6 Infrastructure and Services

Various types of infrastructure and services are specifically built for terrestrial mining

operations. In many, if not most examples, the remoteness of mine sites from population

centres means that everything from roads, railways and power stations to water bores,

medical facilities, airstrips and in some cases even ports may need to be constructed to

enable the extraction of the deposit. The costs of building or the availability of pre-existing

infrastructure can have a significant impact on the final valuation of a project, especially in

certain jurisdictions or geographies where difficulty building such infrastructure may turn

out to be a fatal flaw [62, 217]. Terrestrial mining infrastructure requirements are some-

what specific to the chosen mining method. For example, underground drilling equipment

usually requires provision of compressed air and water while many open pit style drills do

not require this support.

Off-Earth mining infrastructure requirements will also be specific depending on the min-

ing system selected. In particular for ISRU operations, a nearby settlement or base would

likely share much of the required infrastructure such as power, transport and communica-

tions equipment. Infrastructure requirements have been touched upon in Chapter 7 of this

thesis and literature [146]. Much more detailed designs would be developed when carrying

out the next iteration of a feasibility study or in future research.

2.4.7 Economic Decision Making in Mining

For terrestrial mining operations, medium to long-term (greater than one year) decision

making is usually based on an analysis of Discounted Cash Flows (DCF) and related

indicators such as the Net Present Value (NPV) and Internal Rate of Return (IRR).

Advanced methods are also available for managing the various uncertainties with longer

term decision making, such as geological risk and commodity price risk. These methods

involve stochastic simulations using a distribution of possible inputs to better understand

the risk and expected returns of particular decisions [70,116].
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Shorter term decisions on the time horizon of several days up to twelve months are usually

made with specific system optimisation objectives in mind. For these types of decisions,

the assumption is made that the mining system and capacity is set. Costs and market

prices will also be stable over that period. With these assumptions it is usually beneficial

to aim for maximising production within the available resources [62]. Care must be taken

when using this system simplification. Decisions should not be made that affect longer

term value without consideration [116]. Types of decisions that may be made to optimise

operations in the short term include extraction sequence changes and mine design changes

perhaps due to economic or geotechnical factors.

With the present low Technology Readiness Level of off-Earth mining systems and the

high-level of market price and geological uncertainty, none of the traditional or advanced

terrestrial mine decision making methods are applicable. This will be discussed further

in Chapter 6 where a new method is proposed for making short and long term economic

decisions for ISRU.

2.4.8 Mineral Processing

Mineral processing or beneficiation techniques can be generally divided into two cate-

gories: comminution and concentration. Comminution includes rock breakage, crushing

and grinding to liberate valuable minerals from waste material. Concentration aims to

accumulate the valuable minerals in an output stream by separating the waste particles

into another stream [113]. The mechanical and chemical methods used to achieve these

aims are specific to each mineral.

Many, or perhaps most of the terrestrial mineral processing techniques will not be appli-

cable to space resources. This is not only due to the different minerals targeted as shown

in Table 2.1, but also due to the ubiquity of liquid water in terrestrial processing systems.

Almost all terrestrial mineral beneficiation techniques require the use of water at some

stage, even if only to control dust [77]. This will likely be impossible for space missions

due to the scarcity of water and the difficulty using it in the low temperatures and vac-
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uum of space. It is therefore necessary to invent entirely new systems for off-Earth mineral

processing. The focus on volatile H2O resources in this thesis enables a significant simpli-

fication of this problem. To achieve the desired product from icy regolith, it is assumed

that thermodynamic equations can be used without equipment design. These equations

are used as input into the appraisal and demonstration models shown in Chapter 5 and 7.

The intricate details of mechanical handling and processing have been left to resolve with

future research and development. Here, mineral processing is assumed to simply involve

the handling and heating of regolith in order to liberate volatile H2O gas in near vacuum

conditions.

2.4.9 Environment, Society, Health and Safety

All modern terrestrial mining operations must manage environmental and societal issues.

Mining is now seen by many people as a dirty, damaging activity that benefits a few

people while many others suffer negative externalities [62]. There are numerous examples

of mining operations failing to obtain or maintain their social license to operate, leading

to disruptive conflict with surrounding communities [40,215,217].

Environmental and societal issues related to off-Earth mining have been partially covered

in Dallas’ thesis [59] and other works [84]. Some societal and environmental issues with

space resource utilisation are listed below including:

• terrestrial environmental damage due to chemical rocket launches and landings [60];

• terrestrial environmental or property damage due to re-entry of space junk;

• destruction of areas of potential scientific significance in space, for example geological

records;

• destruction of common human heritage in space, for example the visible face of the

Moon;

• unequal distribution of returns from space resource extraction ventures [61]; and
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• long-term sustainability of use for scarce off-Earth resources [84].

It has been proposed that a method of linking off-Earth mining operations to the UN’s

Sustainable Development Goals be employed [61]. This ensures the value extracted from

space resources is shared with all people, not just those who reach the location first. Other

societal and heritage concerns can be addressed in a similar way as done for advanced ter-

restrial mining operations on Earth, through study, discussion, negotiation and mitigation

with stakeholders [61].

Health and safety are also integral components to modern mining operations. Many of the

activities undertaken involve some form of physical hazards that require mitigation. The

quality and quantity of these hazards are specific to each mine and activity. The scope

and detail required to assess the broad range of ISRU hazards requires a depth of technical

analysis that must be placed outside the scope of this thesis. However, it is expected that

hazards will be risk assessed as per current standards as written in the NASA System

Engineering Handbook [137] or practiced at any advanced mining operation around the

world [112,294].

2.4.10 Project Valuation

Finally, the most important output of the terrestrial mine feasibility study is the project

valuation. Usually this is reported as discussed in Section 2.4.7 as NPV. A table of annual

Discounted Cash Flows and sensitivity analyses can also be used to show more detail.

It is critically important for a mining company to use the same methods and global

assumptions across all appraisals when undertaking multiple assessments for potential

investments [62]. The end goal is to compare the value of different investment options

on equal footing. It is therefore detrimental to have any variance in the methods or

assumptions used. This requirement is sometimes hard to achieve within large companies

as the individual studies must be divided between different people, with inherent bias.
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NPV and other traditional economic decision-making tools are not applicable to ISRU

at this stage, due to the uncertainty of financial inputs such as operational costs and

market prices. This thesis develops a new method to evaluate relative project values and

commence the feasibility study process.

2.5 Key Literature on ISRU Planning and Optimisation

In comparison to the advanced methods available for terrestrial mine planning discussed

in Section 2.4, there are not many equivalent methods or even relevant research papers

available for space resources or ISRU. A couple of early examples exist, which will be

discussed in this section to highlight the research gap.

The Commercial Lunar Propellant Architecture [147] is one of the most detailed papers

available describing off-Earth mining. It also follows a structure comparable to a terrestrial

mine feasibility study, including many of the points mentioned in Section 2.4.1. There are

a few points not detailed in this study, such as economic decision making, extraction

sequencing and geomechanics which will be discussed now.

With respect to geomechanics, it is implied that the proposed drilling systems have been

tested in appropriate conditions. This is not possible to be certain, as those ground

conditions are not yet known and there is still some debate about the level of consolidation

of different types of icy regolith on the Moon [36]. It should be noted that even with all

the knowledge of ground conditions we have of the Earth, geotechnical assessment is still

a critical part of every mine feasibility study. Sometimes poor ground conditions can be

the fatal flaw in a project. As it is such an important facet of mining engineering, the

modelling of lunar ground conditions will be a focus of Chapter 3 and 4 in this thesis.

The selection of mining systems in this paper is also somewhat subjective, with only three

systems considered and the authors referencing their own previous works, the Mobile In-

Situ Water Extractor (MISWE) [319], the Planetary Volatiles Extractor (PVEx) [320] and

the thermal tent [273]. A more objective mining system selection procedure is required to
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attain the best results for a project. This will be the focus of Chapter 5 in this thesis.

It is mentioned in the Kornuta paper [147] that the MISWE [319] and PVEx [320] drilling

mechanism are able to undertake a selective mining strategy. This means they have the

capability to identify higher concentrations of H2O using onboard sensors and prioritise

those areas. There is no more detail written about the results of those sequence optimisa-

tions or how that would be achieved subject to physical and time constraints. This should

be included in a terrestrial mining study in the form of scheduling scenarios. Chapter 6

in this thesis proposes a method to enable this type of real-time autonomous sequence

optimisation using Reinforcement Learning.

Several important cost and price assumptions are also made to enable the project valuation

or business case using the discounted cash flow (DCF) method in the Kornuta paper

[147]. The use of DCF weakens credibility of the paper because of the highly uncertain

input price and cost assumptions. An alternative method for project appraisal will be

shown in Chapter 7 of this thesis, to eliminate the errors that will come when using these

assumptions.

Blair et al. [26] propose a similar method for analysing lunar ISRU operations includ-

ing engineering design, market price forecasting, cost modelling and sensitivity analysis.

There is also a section describing scenario optimisation. However, like many other papers

available on ISRU [19,135,147,176], the focus of the optimisation is on system design and

orbital transfers. There is very little detail on the tasks that would be considered mining

engineering in the sense of terrestrial extractive industry. The introduction and transla-

tion of terrestrial mine planning and optimisation principles to be demonstrated in this

thesis will bring another dimension to ISRU research, enabling even further optimisations

and value extraction.

There have been few papers written on space resources by people with terrestrial mining

backgrounds. Gertsch and Gertsch [105] contributed a conference paper that describes

a lunar regolith mining operation using several terrestrial mining paradigms. Equipment

selection is briefly discussed, synonymous with mining system selection described in this
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thesis. Optimisation of the mine plan through production scheduling, mine design and

economic decision making is also shown in this paper, albeit with limited detail.

Cox [51] describes the geological data that should be collected prior to planning the mine,

then also goes on to discuss options for mining system selection, excavation design and

extraction sequencing. This is a short paper that touches lightly on some of the aspects

that will be detailed in this thesis.

These four pieces of literature [26,51,105,147] are examples taking similar perspectives to

a mining engineer. Many of the authors of the above referenced works have backgrounds

in mining, which are reflected in the specific angles they take on the ISRU problem. In

contrast, other researchers tend to focus on mission architectures and orbital mechanics

[19,135], mechanical systems design [144,200,263] and economic models [259] rather than

planning and optimisation of a lunar mine. All these areas of research are important and

valuable, but miss a significant opportunity to improve the feasibility of ISRU as done by

terrestrial mining engineers. To bridge this gap, much of the work in this thesis builds

upon traditional mine planning techniques as described in the SME Mining Engineering

Handbook [62] and yields some specialised methods for the particular problem of ISRU

planning and optimisation.
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Chapter 3

Modelling Geomechanics and the

Excavation of Lunar Regolith

3.1 Introduction

Along with geology and economics, geomechanics is one of the fundamental technical

components of mining operations. Modelling the stability of excavations is necessary to

ensure that resource extraction can be undertaken safely and without delays or losses due

to a collapse. Numerical modelling is used extensively in the terrestrial mining industry

to determine the stability of various excavations, dumps, dams and stockpiles [79].

One of the potential methods of extracting resources on the Moon is via tunnelling. The

basic principles of tunnel design require penetration and removal of a material while main-

taining tunnel stability throughout the entire required lifecycle from initial drilling through

to abandonment [248]. For off-Earth environments, tunnelling poses additional risks due

to the limited available information on regolith and rock formations. Developing an un-

derstanding of the potential challenges in lunar tunnelling is also important so that appro-

priate mining system selections can be made in the future. This will be discussed further

in Chapter 5.
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This chapter proposes the use of the Discrete Element Method (DEM) as a modelling

tool for excavation systems and geomechanical stability on the Moon. As tunnelling is a

potentially important part of future ISRU, a tunnel stability case study is used here to

demonstrate DEM for this purpose. The case study will demonstrate the utility of DEM

under static and dynamic (seismic) conditions and provide some quantitative results in

the form of a lunar regolith tunnel stability chart. Importantly, the model in this chapter

will be calibrated to various lunar regolith samples from the Apollo missions [39]. This

chapter builds towards Objective 1 of the thesis, to develop a rapid and low-cost method

to demonstrate ISRU equipment designs. The usage of this method is shown which also

complies with Objective 5. The calibrated model will be used in the following Chapter 4

to demonstrate novel excavator designs.

3.2 Literature Review

Tunnel stability is related to the forces acting on particles of rock inducing stresses and

movements. When a particle is removed from the rock strata, the mechanical properties

and stress state will determine the magnitude of the rock deformation surrounding the

void. In cases where the stress is evenly distributed or small compared to the strength of

the rock such as isotropic loading, the hole will deform evenly and retain its original shape.

However, if the magnitude of the major principal stress is significantly higher than the

minor stresses, anisotropic loading, the hole may become unstable and collapse [185,189].

The Discrete Element Method (DEM) has been developed for modelling granular ma-

terials where Newtonian calculations are carried out on discrete particles in each iter-

ative timestep [325]. This can be used as an alternative to continuum-based methods

such as Finite Element Method (FEM) [302]. Several programs and codes are available

for implementing the Discrete Element Method, including Itasca PFC [128], EDEM and

YADE [268]. The open source YADE code has been used in this research.

Aboul Hosn et al. [2] have implemented YADE software to model loose soil particles and
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validated this against laboratory triaxial compression tests. YADE has been applied to

many other material behaviour setups such as impacting cohesive, frictional geomaterials

[73] and triaxial tests of sand using various particle shapes and parameters [149].

The calibration and practical implementation of DEM models has been investigated ex-

tensively by numerous researchers [47, 63, 149, 295]. The research shows that accurate

predictions coming from DEM can only be made if the input parameters are calibrated

and validated. There is no standard process for calibration. A common approach, and

the method used in this chapter, is an iterative tuning of the particle parameters until a

target bulk sample response is met [47].

DEM has been favoured for off-Earth soil mechanics modelling due to the difficulty in

obtaining realistic samples and experimental setups on Earth. Lane, Metzger and Wilkin-

son [160] conducted a review of the appropriate DEM particle shapes and size distributions

for simulating lunar regolith. Jiang, Shen and Thornton [130] have further developed a

contact model used in DEM for lunar regolith which includes the van der Waals force

originating from a very thin layer of adsorbed gas on the particles in the vacuum of space.

It has been found that the van der Waals force is an important component of cohesion in

lunar conditions. More practical examples include the work done by Nakashima et al. [209]

who investigated the cutting resistance of lunar regolith using DEM. Cui et al. [57] con-

ducted a DEM analysis of regolith excavation cutting resistance in low gravity to determine

heat transfer from a rotary drill in the lunar environment. A lunar regolith excavation or

sampling tool has also been tested by Liu et al. [178] using DEM. They have calibrated

their regolith samples using triaxial tests with lunar regolith data similar to the method

applied in this chapter.

Tunnel stability has been investigated with YADE DEM in a terrestrial context by Boon,

Houlsby and Utili [28]. Their research focussed on terrestrial hardrock tunnelling and

ground support with failure caused by discontinuities in the rock, gravitational forces, and

in-situ stresses. Similar techniques can also be applied for analysing tunnel stability in

shallow regolith on the Moon with our current knowledge of lunar material parameters [39].

The following work in this chapter demonstrates this.
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3.3 Methodology

3.3.1 Physical Data and Model Inputs

3.3.1.1 Depth Stress and Porosity Model

The in-situ stress for lunar regolith has been measured and reported by Carrier, Olhoeft

and Mendell [39] as shown in Equation 3.1. The porosity for lunar regolith samples from

0 cm to 60 cm in depth has been shown to be in the range of 54%-42% [39]. For samples

at greater depth an empirical calculation can be used following Equation 3.1. Porosity,

bulk density, and particle density are physically defined by the following equation in dry

soil.

Bulk Density = Particle Density × (1− Porosity) (3.1)

The samples are created and checked to ensure that the simulated porosity is close to the

calculated porosity shown in Table 3.1. The modelled empirical equation for the density

of the lunar soil based on observations made by Carrier, Olhoeft and Mendell [39] is shown

in Equation 3.2.

Bulk Density = 1.92(z + 12.2)
(z + 18) (3.2)

Where z is the depth below surface on the Moon.

This is transcribed into Table 3.1 for each respective depth (m). The calculated porosity

is then derived from Equation 3.1. The Column Density is a weighted average of the

Modelled Bulk Density for each incremental depth in the column.

This is then translated to Applied Vertical Stress at the respective depth by applying

lunar gravity (1.62 m/s2) to a 1 m2 column of regolith. The Applied Vertical Stress will be

utilised as a parameter in the DEM model as the pressure applied to the top of the sample.
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The Expected Horizontal Stress is derived by multiplying vertical stress by the assumed

(K0 = 0.7) for lunar regolith as recommended by Carrier, Olhoeft and Mendell [39]. The

assumption has been made as it has not been measured previously in-situ [49]. This value

is an indicator only and will not be directly used in the experiments.

Table 3.1: In-situ stress and porosity model.

Depth Modelled Bulk Calculated Column Applied Expected
(m) Density Porosity Density Vertical Horizontal

[39, 266] (kg/m3) (%) (kg/m3) Stress
(Pa)

Stress
(Pa)

0.6 1777 43% 1777 1727 1209
1.2 1839 41% 1819 3535 2475
2 1869 40% 1845 5978 4185
3 1885 39% 1863 9053 6337
4 1893 39% 1874 12144 8501

3.3.1.2 Target Physical Parameters

Physical parameters for lunar regolith are found in the works done by Slyuta [266] and

Carrier, Olhoeft and Mendell [39]. The numerical values used in this research are shown

in Table 3.2. Young’s modulus has been chosen based on data from lunar simulant JSC-1

testing, the value recorded varies depending on experimental parameters such as Relative

Density of the sample and confinement pressure [145]. An upper bound value from these

experimental results has been chosen for Young’s Modulus for regolith particles in this

research. It is known that the friction angle and cohesion values increase with depth and

compaction as more closely packed particles have more frictional-cohesive contacts. It is

also shown that the van der Waals force from adsorbed volatiles on regolith particles will

increase cohesion with increased compaction [130]. For simplicity, however, the range of

cohesion and friction angles are taken as the mean recorded value between 30-60 cm for

the purpose of this experimental setup as shown in Table 3.3.
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Table 3.2: Physical parameters of lunar regolith used in DEM for this research.

Particle Density 3100 kg/m3 [266]
Cohesion 3000 Pa [39]
Friction Angle 54° [39]
Young’s Modulus 90 MPa [145]
Poisson’s Ratio 0.25 [266]
Lunar Gravity 1.62m2/s

Table 3.3: Typical values of the cohesion and internal friction angle for lunar regolith [39].

Depth Interval
(cm)

Cohesion (Pa) Friction angle (°)
mean interval mean interval

0-15 520 440-620 42 41-43
0-30 900 740-1100 46 44-47
30-60 3000 2400-3800 54 52-55
0-60 1600 1300-1900 49 48-51

3.3.2 Calibration Method

Experimental parameters have been investigated using a triaxial calibration test to deter-

mine their independent effect on the result and carry out fine-tuning of the parameter.

The parameters tested for calibration include, mean particle radius, damping factor, fric-

tion angle and cohesion. The procedure for selection of each of the material parameters is

outlined in this section.

3.3.2.1 Mean Particle Radius

The mean particle size influences output results and the time required to compute. An

efficient balance is desired between fidelity of results and computing time. The number

of regolith particles simulated by one sphere and hence computational time reduction

is approximately proportional to the cube of the particle radius as shown by Equation

3.3 [276].

Particles packed in sphere ≈
πr3

upscaled

3
√

2r03 (3.3)
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Where rupscaled is the mean radius of the simulated sphere and r0 is the true regolith

distribution mean radius. Scaling from a mean radius around 0.1 mm in true regolith [39]

to 12.5 mm reduces the number of particles and computations per timestep by a factor of

approximately 1.4 million.

Coetzee [46] has shown that the selection of a particle upscaling factor is dependent on

the application and should be chosen carefully as part of the calibration process. The

mean particle radius parameter for these experiments has been tested across a range

between 2.5 mm and 25 mm using triaxial calibration tests. Table 3.4 shows the macro

test results for triaxial test on samples with varying particle sizes in which most of the tests

correlate fairly closely to the input parameters. However, it can be seen as the particle

size increases the error in the macro cohesion increases. Larger particle sizes reduce the

number of stress paths available in the simulation and changes the bulk sample response in

the triaxial test, despite all other parameters being held the same [295]. It has been found

that 12.5 mm mean particle radius is the maximum that can be used without modifying

other experimental parameters for this setup. The particle size chosen for each trial is also

dependant on the diameter of the tunnel being tested, where the boundary of the tunnel

should have sufficient discrete particles to allow for failures to propagate. A minimum of

ten particles across the diameter of the tunnel has been used in this work and has been

further outlined in Section 3.3.2.4.

Table 3.4: Calibration sensitivity to particle radius.

Input (micro param.) Output (macro result)
Mean

Radius
(mm)

Damping
Coefficient

Cohesion
(Pa)

Friction
Angle

(°)

Cohesion
(Pa)

Friction
Angle

(°)

Cohesion
Error
(Pa)

2.5 0.25 3 000 54 3 000 54 0
5 0.2 3 000 50 3 000 54 0
10 0.2 3 000 54 5 000 58 2 000

12.5 0.2 3 000 54 8 000 56 5 000
25 0.3 3 000 54 20 000 56 17 000

Particle clouds were generated using random densely packed positions with a nominal

mean radius. The actual radius of each individual particle is taken from a uniform random
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distribution +/- 20% of the nominal mean radius. This random distribution ensures that

artificial patterns of particle packing are not developed that could affect the results.

3.3.2.2 Damping Coefficient

When simulating quasi-static samples, it is desirable to dissipate kinetic energy of particles

to counter the introduction of numerical errors and rapidly achieve a steady state [268,325].

The damping coefficient is used for this purpose. It is an artificial modelling tool without

any direct analogue in nature. In some cases, damping has been used to model certain

energy dissipation modes such as plastic deformation [31]. However, it is difficult to

calibrate to an observable phenomenon [325]. A calibration validation of the damping

factor has been conducted by Coetzee [46] showing the results are not sensitive to the

damping factor for static tests. A detailed study of the effect of the damping coefficient on

kinetic energy of the sample has also been conducted by Kozicki, Tejchman and Mühlhaus

[149].

The damping coefficient reduces force transfer between particles via a percentage factor

on each force according to the generalised Equation 3.4 [268]. This is an artificial method

of simulating losses of force transfer in the sample via means such as particle breakage,

friction heat loss and acoustic losses. The factor influences calibration results, effectively

increasing the strength of material as pressure waves are not transmitted as easily, reducing

the number of cohesive and frictional bond breakages.

(∆F )dw

Fw
= −λdsgn(Fwu̇⊖

w) (3.4)

Where Fw is the sum of forces that increase particle velocity, u̇⊖
w is the mid-step particle

velocity and λd is the damping coefficient for particle w and w ∈ [x, y, z].

The damping coefficient has been used in this research to achieve a steady state for sample

preparation. A damping factor close to zero does not allow the sample to achieve equi-

librium and instead, residual waves propagate throughout the sample and break the weak
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cohesive bonds prior to excavation tests taking place. An appropriate damping coefficient

has been iteratively determined through triaxial testing to avoid this problem. The lowest,

yet still effective damping coefficient for this experimental setup is 0.2.

Figure 3.1 shows the results of a comparative triaxial test damping coefficient of 0.1 on

Figure 3.1a, compared to 0.2 on Figure 3.1b. All other parameters are held constant.

The chosen damping coefficient is correlates with the 0.08-0.4 values used by other YADE

authors [28,63,110,250].

Figure 3.1: Comparison of triaxial test results with damping coefficient 0.1 (a) and 0.2
(b).

3.3.2.3 Physical Laws and Interactions

The YADE discrete element program runs an iterative loop carrying out interaction detec-

tion and physics integration along with other supplementary functions on each timestep.

The loop used for the simulations in this work is shown in Figure 3.2.

Further details on the working of each of the functions in this loop are available in the

YADE Documentation [268].
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Figure 3.2: YADE interaction and physics loop used in this research.

To ensure the physics and interaction loop is working as desired, some checks should

be conducted prior to beginning calibration and experimental trials. Confirmation of

successful interactions and cohesive laws can be made by counting the number of cohesive

interactions at the start of the simulation compared to the end of the simulation. The

experiment will only run until initial failure of the tunnel begins, or a steady state is

reached. At this time, there will not be enough kinetic energy developed in the sample to

break 100% of all cohesion bonds. Results showing otherwise indicate problems with the

interaction or cohesive laws.

The frictional laws are easily checked via triaxial test, applying zero confining pressure

to a test sample shows a weak sample and the same test conducted at a higher confining

pressure should show a stronger sample. This demonstrates the functioning of the frictional

bonds.
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3.3.2.4 Material Parameter Calibration

The Mohr-Coulomb Failure Criterion (Equation 3.5) is used to validate the model using

a triaxial test setup. Figure 3.3 shows the conceptual experimental setup for a triaxial

test and Figure 3.4 the corresponding Mohr-Coulomb Failure Envelope that is derived

from several tests. Triaxial tests have been performed at four different confining stresses

(σmin = 0 Pa, 100 Pa, 1 000 Pa, 10 000 Pa) to derive the macro-sample cohesion and

friction angles. DEM parameters (mean particle size and damping coefficient) have been

iteratively adjusted to reconcile the input friction angle and cohesion values derived from

the Mohr Coulomb Failure Envelope.

τf = c + σntanϕ (3.5)

Where τf and σn are the shear and normal stresses respectively. c is the cohesion value

and tanϕ is the friction angle.

Figure 3.3: Triaxial experimental setup for derivation of Mohr’s Circles and failure enve-
lope after Puzrin [232].
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Figure 3.4: Plotting the Mohr-Coulomb Failure Envelope for a triaxial test after Puzrin
[232].

Figure 3.5 shows the YADE setup for the triaxial test. A cylindrical sample surrounded by

facets that provide confining pressure (σmin). The green and the red spheres at each end

of the sample are constrained to move toward each other at a constant strain rate. The

stress-strain relationship for the sample is recorded and used to derive the Mohr-Coulomb

Failure Envelope. An example of the stress-strain curve for a range of confinement tests

is shown in Figure 3.6. These tests were carried out with a mean particle radius of 5

mm, internal friction angle of 50°, cohesion value of 3 kPa and confining pressures of 0

Pa, 100 Pa, 1 000 Pa and 10 kPa. The first 150 iterations with strain less than 0.01,

do not match what is expected from a physical triaxial test. All tests exhibit the exact

same exponential decrease in strength early in the simulation. The loss in strength is due

to many of the sample’s weak cohesive bonds breaking from a small strain-pressure wave

until an equilibrium is reached. The sample results are invalid until an equilibrium between

newly created cohesive bonds and broken bonds is reached around 0.01 strain. Once this

equilibrium has been reached, the test can be considered analogous to a physical triaxial

test. The maximum value for stress (σmax) after the cohesive equilibrium is reached (the

second peak) is therefore used in the derivation of the Mohr Coulomb failure envelope.

The overall results of DEM particle parameter calibration are shown in Table 3.5. A mean

particle radius of 5 mm has been chosen for tunnel diameters greater than 50 mm and

less than 250 mm. A mean radius of 12.5 mm for is used for tunnel diameters larger

than 250 mm and a mean radius of 2.5 mm for tunnel diameters less than 50 mm. These
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particle radii selections ensure at least 10 particles and corresponding contacts represent

the unsupported span of the tunnel and have been validated as per Section 3.3.2.1. Figure

3.7, 3.8 and 3.1(b) show the Mohr Coulomb Failure Envelopes for the trials with particles of

2.5 mm, 5 mm and 12.5 mm mean radii respectively. The Failure Envelope in these figures

does not exactly match the edge of the Mohr’s circles, as these are based on imperfect

experimental data, with measurement errors included. The Failure Envelope is a best fit

to the four experiments carried out for each figure.

Table 3.5: Final sample calibration results.

Mean Particle Radius Damping Input Target Output
Cohesion 2.5 mm 0.25 3 kPa 3 kPa 3 kPa

5 mm 0.2 3 kPa 3 kPa 3 kPa
12.5 mm 0.2 3 kPa 3 kPa 4 kPa

Friction
Angle

2.5 mm 0.25 54° 54° 54°
5 mm 0.2 50° 54° 54°

12.5 mm 0.2 50° 54° 56°

Figure 3.5: Triaxial test DEM setup.

Both 2D and 3D samples were tested for calibration, however, the 2D model did not

perform well. Parameter calibration for 2D samples required input cohesion values 50 to

80 times higher than the output macro sample target in order to calibrate. 3D model

calibration, on the other hand, has performed well, showing almost 1:1 calibration after

tuning the damping coefficient to 0.2. Hence, all subsequent experimentation has been
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Figure 3.6: Normal stress-strain chart for triaxial tests on sample with 5 mm mean particle
radius, 50° friction angle, 3 kPa cohesion.

conducted with 3D samples, contact laws and forces. Tunnel tests have been conducted

with the third depth dimension of 16x the mean particle radius.

Figure 3.7: Calibration triaxial tests for 2.5 mm radius lunar regolith particles.
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Figure 3.8: Calibration triaxial tests for 0.005m radius lunar regolith particles.

3.3.3 Experimental Method

3.3.3.1 Overview

The tunnel stability experimental procedure is summarised in Figure 3.9. The procedure

has been divided into three parts, where the end of each part results in a saved sample

and data outputs.

The first part, Sample Setup, is conducted for every parameter combination on the tunnel

stability chart. Once the samples are prepared, they are individually run through the

Excavation Test and observed for stability conditions such as visual collapse and the total

kinetic energy in the sample. A "stable" tunnel is defined in terms of the kinetic energy

(KE) [110,149] as the initial sample has been intentionally created with negligible kinetic

energy to represent a static equilibrium. A sample containing a stable tunnel will have a
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stable sum of kinetic energy in all particles. An "unstable" tunnel will show increasing KE

in the sample as particle velocities begin to increase. The simulation is run for a period

of 30 000 iterations after the excavation is complete and the kinetic energy of the sample

recorded. Any conspicuous results, or apparently stable results are run for an additional

100 000 iterations until stable kinetic energy levels are confirmed. No external forces are

applied to the sample during the Excavation Test other than constant lunar gravity and

the compaction pressure via a rigid frame.

The largest diameter stable tunnel is then passed into the Seismic Test and qualitative

results are observed.

Figure 3.9: Tunnel stability experimental procedure.
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3.3.3.2 Test Parameters

Excavation tests have been conducted with increasing tunnel diameters and compaction

pressures. The tunnel diameters tested are shown in Table 3.6. They have been chosen to

frame the study as an evenly spaced grid search, to produce a Stability Chart with various

trials in a grid demonstrating success or failure of a tunnel. The diameters are not an

exact evenly spaced grid as the available dimensions are limited by the size and number

of the discrete particles making up the tunnel. Therefore, diameters have been chosen in

a fashion that matches an integer number of particle diameters. For example, a test using

the 25 mm diameter particles will fit 16 particles across a 400 mm diameter tunnel. This

also minimises variance between experiments due to particle packing misalignment.

Table 3.6: Tunnel diameters for stability testing.

Excavation Model Particle Number of
Diameter (mm) Diameter (mm) in span

50 5 10
100 10 10
160 10 16
250 25 10
300 25 12
400 25 16

The apparent depth of the tunnel will be modified by applying compaction pressure to the

top layer of particles. The pressure applied follows the Depth Stress and Porosity Model

in Table 3.1. A set of tunnel diameter experiments has been carried out for each depth

and applied vertical stress in Table 3.1.

The experiments have been conducted using two different size samples as shown in Figure

3.10. The initial experiments were done with the 3R sample to save computational time

and identify the appropriate search space for the stable-unstable transition. The small

sample results were then confirmed with the same trials run on larger samples with a wall

thickness of 6R, where R is the radius of the tunnel excavation.

The stability results with respect to tunnel diameter and depth were then plotted on 2D

axis to create a tunnel stability chart.
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Figure 3.10: Sample and wall size comparison.

3.4 Results

The results from the tunnel stability trials are shown in Table 3.7. Representative samples

have been reported with visuals and kinetic energy charts in Table 3.8. These samples

have been labelled with an index that can be used to reference their location on Table

3.7 and the tunnel stability chart in Figure 3.11. Some of the trials did not reach an

appropriate terminal condition in a reasonable timeframe and were terminated manually,

yielding No Data as shown in Table 3.7. Some of the tests are not required as they

are known to be within the stable region of the grid-search. Sufficient data is available

around the transition zone between "stable" and "unstable" meaning this missing data

has not affected the analysis. The tunnel stability chart shows a pattern of stability,

where stability increases with depth or confinement pressure/compaction and decreases

significantly with an increase in tunnel diameter.

The shear stress pattern for the stable tunnel in index D is shown in Figure 3.12. The

predicted shear stress pattern around the excavation is typical of an unsupported tunnel

excavation [102]. This further supports the stable tunnel hypothesis as an unstable tunnel
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is expected to be de-stressed around the tunnel diameter.

The stable tunnel at 4 m depth and 160 mm diameter (Index D), shown in Table 3.8, has

been selected for an additional lunar seismic test in YADE. A vibration of amplitude 2

mm and frequency 10 Hz has been applied to the left side wall to observe the effects. The

seismic p-wave translates horizontally from left to right and reflects back from the right-

hand wall. All other conditions are the same as for the tunnelling tests. These seismicity

parameters have been selected based on the reported lunar seismicity by Lammlein [158].

The strength and frequency of moonquakes depends on location and other factors such as

diurnal cycle and tidal patterns. The data collected by Lammlein [158] show that multiple

moonquakes occur each year in the amplitude range between 1 mm and 8 mm. The level

of vibration tested in this study may not only originate from natural moonquakes, but

also vibrations from machinery and rockets being used nearby on the Moon.

Figure 3.11: Tunnel stability chart for lunar regolith.

The results of seismicity tests are shown in Figure 3.13. The tunnel becomes unstable

under the lower range of dynamic loading recorded on the lunar surface (under a 2 mm

amplitude quake). This indicates that this tunnel in lunar regolith is unlikely to be stable

over longer time periods and under non-static conditions. This finding raises issues for

tunnel stability during excavation or with nearby vibrating machinery and rockets.
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Table 3.7: Tunnel stability experiments qualitative results.

Index Tunnel
Diameter

(mm)

Confinement
(Pa)

6R
sample -
Failure?

3R
sample -
Failure?

E 50 1727 No No Data
50 3535 No Data No Data
50 5978 No No Data
50 9053 No No Data
50 12144 No Data No Data

F 100 1727 Partial Partial
100 3535 Yes No
100 5978 Yes No

B 100 9053 No Data No
C 100 12144 Partial No

160 1727 No Data Yes
160 3535 Partial No Data
160 5978 No Data Yes
160 9053 Yes Yes

D 160 12144 No No
250 1727 Yes No Data
250 3535 Yes Yes
250 5978 Yes Yes
250 9053 Yes Partial
250 12144 Yes No
300 1727 Yes Yes

A 300 3535 Yes Yes
300 5978 Yes Yes
300 9053 Yes Yes
300 12144 Yes Yes
400 1727 Yes Yes
400 3535 No Data Yes
400 5978 Yes Yes
400 9053 Yes Yes
400 12144 Yes No Data
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Table 3.8: Tunnel excavation test visual results.
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Figure 3.12: Stable excavation sample (Sample Index D) with shear stress legend.

Figure 3.13: Velocity coloured snapshots of seismic test 10 Hz/2 mm amplitude on Index
D tunnel.
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3.5 Discussion

The Discrete Element Method is limited by computational power. The number of simu-

lated particles is proportional to the amount of time required for a simulation to finish.

The simulations in this research are run with sufficient iterations to produce 1-2 seconds

of real time data. To achieve this, particles have been scaled and calibrated to achieve

computational reductions up to 1.4 million times according to Equation 3.3. The question

is raised whether there is sufficient time or sample fidelity to determine tunnel stability.

Certainty of the results in this chapter is provided by recording and inspecting the total

kinetic energy and shear stresses in samples along with visual proof of instability. The

bulk sample calibration procedure is chosen to allow particles to be scaled up and simpli-

fied, while still producing the same bulk sample response. Currently it is not possible to

simulate the exact shapes and dimensions of lunar regolith particles for tunnel stability

trials. However, the array of independent analysis techniques used in this chapter increases

certainty in the result and enables shorter simulations to be run.

This research was conducted using an Intel Core i3 CPU with 4 processors. Individual

simulations take between 2 and 13 hours once code prototyping was complete. Increas-

ing the available cores for computation and using parallelisation techniques will enable

more realistic simulations with more particles. Cluster CPU resources were investigated

for running the simulations. However, these were disregarded as the available operating

systems were not compatible with YADE software without modifications.

The effect of volatiles such as H2O in regolith is of great interest to the researchers in the

field of In-Situ Resource Utilization (ISRU) or off-Earth mining. A significant increase

in the cohesiveness of regolith is expected with increased H2O content. Unfortunately,

geotechnical data for real icy lunar regolith is not currently available. Only laboratory

tests on imperfect simulants and assumptions can be made such as the work done by

Pitcher et al. [225]. Further research defining the cohesion and friction values of cryogenic

icy regolith and applying those values to the DEM models outlined in this chapter would

likely lead to increased lunar tunnel stability in those materials and will also be useful for
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designing future lunar ISRU systems.

The stability of the tunnels under seismicity and dynamic conditions has been shown to

be low. This raises questions about the method of excavating the tunnel and if it would

be possible to do so without causing destructive vibrations. This is also a question for

further excavation systems research.

3.6 Conclusions

DEM can be applied to off-Earth mining scenarios which are difficult to simulate on Earth

due to different gravity and specific material properties. In this chapter, it has enabled

the production of a tunnel stability chart for shallow small diameter horizontal tunnels

and drillholes in lunar regolith and gravity.

The parameter study here has shown that the stable tunnel diameter is dependent on

the depth and compaction of the regolith, where higher compaction leads to larger stable

tunnel spans. The largest stable tunnel diameter found in this study was at a depth of ap-

proximately 4 m. The confining pressure and compaction levels at this depth are expected

around 12 kPa. This has yielded a maximum stable tunnel diameter of approximately 160

mm. The small diameter of stable tunnels in lunar regolith shows that they are unlikely to

be useful for practical purposes. Some form of ground support would be required to enable

greater diameters for uses such as habitation or access for machinery to extract resources.

There is potential to use icy regolith as a form of ground support as the cohesion values

are expected to be much higher, although more data is required for this modelling.

The stability of the tunnel is decreased significantly under seismic conditions which include

vibrations from machinery and nearby rockets. It is unlikely that the stable regolith

tunnels as described in static conditions in this chapter will survive the long term under

the surface of the Moon due to vibrations and seismicity. Ground support would be

required for most long-term tunnels in regolith for the purposes of exploration, scientific

analysis, habitation, infrastructure, or resource extraction. Examples may include fibrous
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or metallic bolting of the tunnel walls, freezing regolith with an in-situ application of water,

sintering the tunnel surface with microwave radiation or some form of chemical bonding

of the surface layer. These possibilities can be explored in future work to determine the

increase limits of tunnel stability with ground support, using the same DEM method

outlined in this chapter.

The DEM method developed and calibrated in this chapter has shown to be a useful

method for simulating lunar regolith and gravitational conditions. Future geomechanics

studies in relation to off-Earth mining can benefit from this method and be used to derive

excavation stability constraints for planning and optimising mining operations on the

Moon. The lunar regolith tunnel stability chart and any future iterations of it can also be

used to guide engineering decisions for future lunar ISRU equipment concepts. One of the

major advantages of the DEM technique shown in this chapter, is that the same model,

or new models with important variations in geomechanical or geological properties can

also be used to test new ground engaging tools for ISRU equipment. This will be shown

in the next chapter to reduce the costs and time of system development, and to rapidly

demonstrate proof-of-concepts in a low-cost DEM simulation.
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Chapter 4

Lunar Mining System Concepts

4.1 Introduction

Mining system design is currently one of the main focuses of ISRU research around the

world. The development of mining systems for space applications faces a major issue

though; testing prototypes in an appropriate environment that simulates all the required

environmental properties. There are currently no known methods to physically simulate

the temperatures, vacuum, radiation, gravity, dust and material hazards known on the

Moon simultaneously.

Furthermore, mining equipment must be specifically designed for each type of geological

deposit and environment. Important design decisions can be made depending on geome-

chanical and geological properties as well as environmental factors. For example, when

the material is very hard, an excavator alone will be insufficient to mine a resource. In-

stead, a multi-step process of rock breakage, excavation, transport and beneficiation may

be required.

According to Objective 2, this chapter investigates various mining systems in literature and

categorises them according to their capabilities. As part of the categorisation, an assess-

ment of the mining system’s Technology Readiness Level (TRL) [137] is also undertaken.
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Three novel off-Earth mining system concepts are proposed here that could be used to fill

capability gaps in certain aspects of lunar ISRU. Modelling of these proposed systems is

carried out with the Discrete Element Method (DEM) following from the calibrations and

demonstrations in the previous chapter. The use of the DEM for this purpose shows how

it can be applied to the design process for various resource utilisation systems as well as

determining the stability of excavations, these demonstrations also follow Objective 1.

A subset of the mining systems collated in this chapter will be used in all subsequent

chapters when mining system selection is required. These specific mining system selections

allow the novel planning and optimisation methods proposed later in this thesis to be

demonstrated.

4.2 Literature Review

Current state-of-the-art mining system designs for the Moon and Mars include diverse

examples. The Mobile In-Situ Water Extractor (MISWE) system [319] utilises an auger

and heating element to release volatiles from the regolith. The Regolith Advanced Sur-

face Systems Operations Robot (RASSOR) [202] uses counter rotating bucket-drums to

collect regolith with minimal mass required for reaction force. The PlanetVac pneumatic

system [317] uses compressed gasses to agitate and collect regolith. Other designs gen-

erally fall into the categories of a loader [52], bucketwheel excavator [265], bucket drum

excavator or in-situ water sublimation (ISWS) systems [32, 89]. Many of these systems,

similar to excavators on Earth are only able to manage already broken materials or loosely

consolidated soils such as regolith.

Mueller and Van Susante [200] completed a review of entrants into the annual Lunabotics

competition over several years. The review shows that many designs are applicable to the

specific problem of excavating lunar regolith and that system designs converge over suc-

cessive years of trial and error for a single deposit type. The designs have been condensed

into categories, and the convergence to a Bucket Ladder system is shown in Table 4.1.
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This suggests there is an optimal system for a given geological deposit type.

Table 4.1: Regolith excavation categories in the Lunabotics Competition [200].

Excavator Category Number of Entrants
Bucket Ladder 34

Bucket Belt 10
Bulldozer 10
Scraper 9
Auger 5

Backhoe 4
Bucket-wheel 4
Bucket drum 3
Claw scoop 2

Street Sweeper 2
Rotating tube 1

A collection of mining systems from literature are collated in Table 4.2. This table also

includes the three novel systems proposed later in this chapter.

Table 4.2: Off-Earth mining equipment pool.

Equipment Descrip-
tion Subclass Stage of Devel-

opment
Reference
Examples

Impact Excavator Excavation Proof of Concept Section 4.5
Drill and Pull Rock Breakage Proof of Concept Section 4.6

Truck Transport Prototypes and
Heritage Designs

[259, 264,
319]

Bucket Drum Excava-
tor Excavation, Transport Prototypes [201,269]

Hammer Drill Rock Breakage Prototypes [323]
Discrete Excavator Excavation Prototypes [263,264]
Continuous Excavator Excavation Prototypes [263,265]
LHD (Load-Haul-
Dump Excavator) Excavation, Transport Prototypes [264]

Oven Processing Prototypes [184,208]

Pneumatic Excavator Excavation, Transport Breadboard [284, 317,
321]

Crusher Oven Rock Breakage, Processing Terrestrial Her-
itage Designs [184,208]

Micro Tunnel Borer Rock Breakage, Excavation Terrestrial Her-
itage Designs

Section 4.7
[20,323]

Volatile Extraction
Drill

Rock Breakage, Excava-
tion, Transport, Processing Breadboard [319,323]
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4.3 Off-Earth Mining System Categorisation

The mining systems in literature and the additional three novel concepts proposed in this

chapter are divided into four subclasses as shown by the mining flow chart in Figure 4.1.

They are: Rock Breakage, Excavation, Transport and Processing. This categorisation en-

ables logical matching of equipment to form a resource extraction system. The equipment

list is shown in Table 4.2. The list has also been categorised by the level of development

of each system. The least amount of development being the "Proof of Concept", and the

most advanced stage in this table being when "Prototypes" have been built. "Terrestrial

Heritage Designs" are based on similar systems that already exist in the terrestrial mining

or other industries. "Breadboard" systems are where the unique components have been

demonstrated in isolation in a laboratory. To classify the stage of development for an

established system, the NASA Technology Readiness Level (TRL) classification can be

used [137]. The definitions of each Technology Readiness Level are described in Table 4.3.

All systems in Table 4.2 appear to be at TRL 4 except for the Impact Excavator and Drill

and Pull Systems. These are only at a TRL of 3 and 2 respectively as successful laboratory

tests have not been completed to a sufficient level. Although results are reported in this

chapter, the Impact Excavator did not complete all planned tests due to manufacturing

issues. The Drill and Pull mechanism also has not been physically tested. All equipment in

Table 4.2 at or above TRL 4 will be used as input for works in the Chapter 5. These items

have demonstrated a successful proof-of-concept and can be analysed at a functional level.

The deficit of "Rock Breakage" equipment in Table 4.2 will be the focus of the remainder

of this chapter. The new Drill and Pull, Impact Excavator and Regolith Tunneller designs

will better enable rock breakage for optimisation of ISRU in conjunction with selective

mining algorithms as demonstrated in Chapter 6.
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Table 4.3: NASA System Engineering Handbook definition of the Technology Readiness
Levels. [137]

TRL Criteria
9 Actual system “flight proven” through successful mission operations.
8 Actual system completed and “flight qualified" through test and

demonstration (ground or flight).
7 System prototype demonstration in a target/space environment.
6 System/subsystem model or prototype demonstration in a relevant

environment (ground or space).
5 Component and/or breadboard validation in relevant environment.
4 Component and/or breadboard validation in laboratory environment.
3 Analytical and experimental critical function and/or characteristic

proof-of-concept.
2 Technology concept and/or application formulated.
1 Basic principles observed and reported.

Figure 4.1: Flowchart through equipment subclasses of the mining system.

4.4 Rock Breakage Systems Gap

Lunar ISRU systems have mostly been designed on the premise that the target resource

will be a loosely consolidated material with a near uniform concentration of valuable

minerals [146]. Unfortunately, there is not yet enough data to describe lunar resources

in this detail for certain [36]. Numerous physical data samples are required to define a

mineral resource and then conduct subsequent engineering studies [134]. The current lack

of available data for this purpose limits how we can proceed with equipment design. The

equipment development done in this thesis is therefore limited to proof-of-concept works

for hypothetical geological deposit styles.
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Experiments by Atkinson and Zacny [9] show a 12% H2O concentration icy regolith simu-

lant (JSC-1a) has a UCS strength of around 35 MPa. Material of this hardness is similar to

concrete, and will require rock breakage prior to excavation. The majority of the off-Earth

mining equipment found in literature (see Table 4.2) are of the excavation class. Only the

drilling mechanisms, crushers and tunnel borers are available for rock breakage. None of

these items work in conjunction with an excavator. This result implies that many of the

harder, compacted, icy deposits will not be accessible for bulk mining methods without

developing new rock breakage methods. Inability to access higher grade minerals such

as this 12% H2O grade regolith is a significant limitation on ISRU planning and optimi-

sation. To converge to an optimal system for harder ISRU deposits, new rock breakage

mechanisms should be developed.

There are only some limited examples of research into rock breakage mechanisms for

off-Earth mining. Systems that receive significant attention such as MISWE [319] and

RASSOR [202] are designed for non-consolidated or loosely consolidated deposits. The use

of microwave energy to assist rock breakage for off-Earth mining has been demonstrated

by Satish et al. [247]. Percussive digging has also been demonstrated to reduce the reaction

force required to excavate compacted material in experiments by Craft et al. [52]. These

are however, energy intensive exercises.

For terrestrial mining, rock breakage is undertaken by several methods. Some are more

common than others. They are listed as follows:

• drill and blast [62];

• mechanical picks and discs (e.g. tunnel boring or road-heading) [62];

• rock cutting [310];

• surface scraping [298];

• hydraulic means (e.g. pressure fracturing [296] or hydro-mining [62]); and

• heating and quenching (fire-setting) rock in ancient times [62].
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Most of these methods require mechanical ground engaging tools for part or all of the

rock breakage process. The steps involving explosives, heating, quenching and hydraulic

fracturing differ in that they use chemical and mechanical means not derived from a

ground engaging tool. Currently, explosives are the most important rock breakage tool on

Earth. However, these chemical tools may need significant modifications to function in the

cryogenic temperatures and vacuum of the Moon. There are currently no details available

in literature on how explosives could be adapted. At the least, implementing an explosive

manufacturing process in the lunar environment would need significant further research

and development to become feasible. At worst it may not be feasible at all for ISRU,

technically or economically. Many of the necessary feedstocks for explosive manufacturing

such as hydrogen, oxygen and nitrogen are also the desired products of ISRU. Therefore,

any process that would implement explosives would need to ensure the mass yield of ISRU

product far exceeds the mass of explosive used.

The option of bulk excavation for hard minerals is an indispensable mine planning and

optimisation tool. The importance of being able to access high grade material will be

shown in Chapter 5, to reduce energy expenditure in heating regolith to extract volatiles.

The same theory applies to all mining projects constrained by the beneficiation stage of

operations [116, 161]. Chapter 6 will demonstrate the use of cut-off grades to optimise

space resource utilisation using an excavator system. It is implied that this concept will

require rock breakage for harder icy materials to be excavated. For the foreseeable future,

mechanical ground engaging methods are the most favourable type for ISRU rock breakage

due to the difficulties in implementing hydraulic or explosive methods in space. Three

potential mechanical rock breakage candidates have been developed in this chapter to

enable excavation systems to work with harder materials.

As will be shown in this chapter, some researchers are also combining and supporting their

physical experimentation with DEM models and other numerical modelling techniques.

Examples include Erarslan, Liang and Williams [86] and Kazerani, Yang and Zhao [140].
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4.5 Impact Excavator

4.5.1 System Design

The Impact Excavator uses the principle of centrifugal acceleration to reduce the required

reaction mass for excavation. Many traditional excavator designs involve pulling soil or

regolith towards the vehicle with the raw mass of the equipment acting as an anchor

or counterweight. This type of mass-dependent design can be undesirable for off-Earth

mining systems due to the high cost of transporting mass to the site.

Figure 4.2 (a) shows the Computer Aided Design (CAD) prototype of the Impact Ex-

cavator full bench-top assembly. The adjustable frame allows the angle of incidence of

the projectile to the target to be varied throughout experiments. Figure 4.2 (b) shows a

detailed view of the electric motor attachment, a small DC electric motor is designed to fit

into this slot and provide a rotational driver for the centrifugal wheel as seen in Figure 4.2

(c) and (d). Figure 4.2 (d) shows the intended trajectory of the projectile as it is acceler-

ated and released. The projectile is inserted through a small slot located near the centre

of the wheel, on the opposite side of the electric motor attachment. From this location,

momentum exchange is at a minimum between the wheel and the projectile. This min-

imises the instantaneous forces applied to the structure during operation. An advantage

of the central entry point and centrifugal acceleration design is that many projectiles can

be released and accelerated in a short period. This enables a rapid incremental increase

of the excavated volume as many projectiles can be released in a short period of time.

The experiments in this chapter are based on the early prototype to demonstrate a valid

concept. No mobile chassis or regolith collection equipment has been designed yet. It is

envisaged that the chassis would be a simple wheeled rover with an additional bucket to

collect ejecta material from the impact craters.

The first iteration of the Impact Excavator was designed and built with 3D printed Poly-

lactic Acid plastic and off-the-shelf electronic components, bearings and frame.
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Figure 4.2: Impact Excavator CAD design and details.

4.5.2 Proof-Of-Concept Experiments

4.5.2.1 Aim

The aim of the prototype Impact Excavator laboratory experiment is to provide a baseline

for calibration of the DEM model and also identify any reliability or design issues with

the equipment.

A second objective, to determine the effectiveness of the Impact Excavator in harder icy

conditions was planned. However, this was not completed due to several issues encountered

throughout the experiment. These issues will be further detailed in the discussion, Section

4.5.5.

The aim of DEM Modelling of the Impact Excavator is to gain an understanding of the

change in performance of the in lunar regolith and under lunar gravity conditions and

demonstrate a proof-of-concept of the system.
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4.5.2.2 Materials

The materials required for the laboratory testing are as follows:

• the Impact Excavator prototype;

• a protective sheath to cover the apparatus during testing;

• Personal Protective Equipment such as safety glasses, standard lab shoes and cloth-

ing;

• a target calibration material of dry beach sand from Sydney, NSW;

• a variable voltage power source to a maximum of 12 V;

• several 12 mm diameter 304 Stainless steel ball bearing impactors;

• a magnetic revolution counter (RPM meter) and magnet to be attached to the

Excavator; and

• a calliper and ruler for measuring impact crater length, width and depth.

The materials required for the DEM model are as follows:

• a computer with a Linux operating system and minimum Intel Core i3-6100U pro-

cessor;

• YADE software installed;

• at least 64GB of internal or external data storage for experiments; and

• Paraview data analysis software installed.

4.5.2.3 Laboratory Method

The laboratory experiments were conducted as follows:
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1. Set the alignment of the Impact Excavator to a predetermined angle of incidence by

sliding the foot along the bench.

2. Accelerate the wheel with a constant voltage until a stable angular velocity is reached.

3. Measure the angular velocity of the wheel using the magnetic RPM meter. This can

be used to calculate the velocity and kinetic energy of the impactor.

4. Insert a projectile.

5. Measure the impact crater length and width with a calliper and note any qualitative

effects. The length and width of the crater must be measured from peak to peak of

the crater rim to ensure standard results as per Figure 4.3.

6. Measure the impact crater depth with a ruler. The crater must be measured from

the highest part of the rim crest to the lowest part to ensure standard results as per

the generic crater dimensions in Figure 4.3.

7. Repeat all steps for each impact angle and voltage.

Figure 4.3: Impact Excavator experiment crater measurement standard for physical and
DEM trials.
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It was initially intended to repeat the impact and measure each setting at least three

times to reduce uncertainty due to measurement errors, however the Impact Excavator was

progressively damaged throughout the experiments due to weakness of the PLA plastic,

3D printing process and design. The prototype did not survive long enough to complete

all the repeated measurements.

The experimental setup is shown in Figure 4.4. The target sample is shown under the

protective sheath in Figure 4.5. The corresponding experimental setup for the DEM

modelling is shown in Figure 4.6.

Figure 4.4: Impact Excavator laboratory testing facility setup.

63



CHAPTER 4. LUNAR MINING SYSTEM CONCEPTS

Figure 4.5: Impact Excavator sand target zone setup.

Figure 4.6: Impact Excavator DEM setup.

4.5.2.4 DEM Modelling

The parameters used for calibrating and modelling beach sand and lunar regolith for this

experiment are the same as used for the model developed in Chapter 3. These model

parameters have also been shown to be valid in literature [46, 47, 267]. The material

properties targeted for calibration in this experiment are shown in Table 4.4 with relevant

references.
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Table 4.4: Material properties used for Impact Excavator DEM model with references.

Dry Sydney Sand Loose Lunar Regolith Stainless Steel
Friction Angle (°) 34 [68] 54 [39] 29 [164]

Cohesion (Pa) Not Used 1000 [39] Not Used
Particle Density (kg/m3) 2650 [68] 3100 [266] 7990 [164]

Poisson Ratio 0.2 [288] 0.25 [266] 0.3 [164]
Young’s Modulus (Pa) 50× 106 [68] 9× 107 [145] 193× 109 [164]
Particle Radius (mm) 0.86 +/- 0.17 0.86 +/- 0.17 6

The DEM experiments were conducted as follows:

1. Set up the DEM model using appropriate material properties as per Table 4.4.

2. Calibrate the DEM model by minimising the crater diameter error (DEM diameter

minus physical diameter) for a set of four possible DEM damping factors.

3. Use the calibrated model to produce impact simulations of regolith under the Earth’s

gravity (9.81 m/s2) and the Moon’s gravity (1.62 m/s2) for selected impact velocities

and angles.

4. Measure the impact crater length, width and depth with Paraview software and note

any qualitative effects. The length and width of the crater must be measured from

peak to peak of the crater rim to ensure standard results as per the generic crater

dimensions in Figure 4.3.

5. Quantitatively compare the crater volumes for tests in both the Earth’s and the

Moon’s gravity.

6. Visualise the difference in crater formation for each gravitational environment.

The volume of the crater is approximated using the dimensions D1
2 ,

D2
2 and D3 as the radii

of an ellipsoid. The equation for the volume of the half-ellipsoid is shown in Equation 4.1.

This is an approximation only. The crater walls in reality are not perfectly ellipsoidal and

the rim is not of equal height at all points. The crater volume is also not equal to the

useful excavation volume of the Impact Excavator as much of the crater volume is due
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to material excavated towards the rim of the crater. In reality much less material will

be recoverable by the excavator. More experimentation and optimisation are required to

determine the material recoverability, although lower lunar gravity is expected to allow

higher recovery rates. The half-ellipsoid method is the most practical to achieve standard

measurements and results across both physical and DEM experiments, hence its usage for

this purpose.

Approximate Crater Ellipsoid V olume (mm3) = 2πD1D2
3 D3 (4.1)

4.5.3 Discrete Element Model Calibration

The Discrete Element Model for the Impact Excavator has been calibrated by minimising

the measurement error of D1 and D2 between DEM and physical experiments. These

dimensions are measured from the DEM model and the physical experiment as shown in

Figure 4.3. The error is calculated according to Equation 4.2. It is an average of the

error between DEM and Physical diameters D1 and D2 at four different velocities. The

error is minimised by repeating the test with varying damping factors until a minimum is

identified.

Measurement Error for D (mm) =
∑n

t=1 (DEM t − physicalt)
4 (4.2)

Where t is the trial number, conducted at a specific velocity. n is the number of different

velocity experiments used in the calibration. In the case of this calibration, n=4. DEMt

represents D1 or D2 measured from each Discrete Element Method output t, and physicalt
represents the equivalent measurements taken from a physical experiment t.

The minimised Measurement Error for both D1 and D2 comparisons is achieved with a

damping factor of 0.07 for this model. The full results of the calibration process are shown

in Figure 4.7.
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The model is then compared against a broader set of physical experiments as shown

in Figure 4.8. It can be seen from these results that the DEM model is appropriately

estimating crater volumes depending on changes in impactor velocity and the angle of

incidence.

Figure 4.7: Calibration of Impact Excavator DEM model.

Figure 4.8: Calibration data for Impact Excavator DEM model compared to physical
experiments.
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4.5.4 Results

The lunar regolith DEM experiment has been used to demonstrate the functioning of the

Impact Excavator in regolith on the Moon. It was hypothesised that the low lunar gravity

would improve the efficiency of impact crater development and allow this novel excavation

method to function more effectively than on Earth. Figure 4.9 shows the results of a

comparative experiment conducted under both the Earth’s gravity and lunar gravity. The

increase in crater volume is shown for four separate impactor tests. There is a significant

increase (greater than 40% in some cases) in the volume excavated on the Moon using the

same equipment parameters.

Figure 4.10 visually shows the effects of the Impact Excavator under the Earth’s surface

gravity and lunar surface gravity in parallel. The visualisation shows many more particles

outside of the crater are also lifted from the surface during the lunar test. These particles

are not included in the crater volume calculation. This observation demonstrates how

dust hazards may be created more easily on the Moon and also how the Impact Excavator

may be able to take advantage with an optimised collection system.

Figure 4.9: Results of the calibrated Impact Excavator DEM model compared under
terrestrial and lunar gravity.
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Figure 4.10: Visualisation of Impact Excavator DEM model in terrestrial and lunar gravity.
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4.5.5 Discussion

The Impact Excavator worked as expected for unconsolidated material. Causing a crater

to be excavated, with the size of the crater depending on the angle of incidence, impact

velocity, material properties and gravitational field. More exotic effects such as the poten-

tial impacts of temperature variations, vacuum conditions, and static charges that may be

present on the lunar surface have not been included in this study. More data is required

to understand the effects of these conditions, if any.

There were issues encountered during the experiments with the toughness of the 3D printed

mechanism. The vanes of the centrifugal wheel slowly deteriorated over the life of the

experiment due to the high acceleration forces from the steel ball bearing impactor. This

can be seen in Figure 4.11 as small red particles of PLA plastic break off progressively

from the prototype. Future iterations of the design must aim to reduce these forces as

much as possible. A stronger material and manufacturing process should also be used.

It is noted that the final projectile velocity is reduced by aerodynamic drag due to the

presence of an air medium. This will not be the case in the vacuum of the Moon. It is

suggested that the use of a dirty vacuum chamber could assist this investigation in the

future to reduce the atmospheric effects experienced in this experiment.

The original experimental objectives included trialling the capabilities of the Impact Ex-

cavator on a harder icy regolith. These tests were initiated but unable to be completed

due to several reasons. Mainly, the deterioration of the 3D printed parts of the Impact Ex-

cavator but also due to difficulties in maintaining constant target material temperatures

during the experiment. A re-design of the experiment and a stronger prototype of the

excavator will be required to complete these icy regolith tests. Construction of a second

prototype was not feasible during this research due to pandemic related laboratory closures

and uncertainties. However, some observations of the Impact Excavator’s effectiveness on

harder icy material were made before failure of the system. The following qualitative and

anecdotal observations can be used for future system improvements.
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The ice content appeared to have a significant effect on the strength of the target material

and effectiveness of the Impact Excavator. Lower ice content and higher temperature

materials were weaker and more susceptible to impacts. Higher ice concentrations and

lower temperatures did not appear to be susceptible to the impact velocities trialled in

this experiment. The temperature of the target samples increased rapidly after starting

the experiment. This caused changes in the hardness of the material in the region directly

in front of the Impact Excavator. The change in temperature of the target sample is shown

in Figure 4.11. This was discovered to be caused by a constant flow of warm air exhausted

from the acceleration wheel mechanism. This is shown in Figure 4.12. The soft melted

region was far easier to excavate compared to the hard ice region. In future, and in order

to properly validate these experiments, this melting needs to be controlled. This may

be achieved by a thermal inertia sink (some larger mass of cold material) and operating

inside a dirty vacuum chamber. This also raises the potential for a future improvement of

the system; if lunar icy regolith can be warmed and its strength decreased in-situ on the

Moon, that may enable easier excavation. The effectiveness of using this technique will

depend on the availability of energy at the ISRU site on the Moon. A site with excess

thermal energy, perhaps powered by a nuclear reactor could apply a heating technique

to reduce the strength of icy regolith, enabling rock breakage with much less mechanical

force.

Figure 4.11: Temperature of target material before and after experimentation taken by
FLIR thermal imaging camera.
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Figure 4.12: Variation in ice hardness due to warm airflow.

4.6 Drill and Pull System

4.6.1 System Design

It is widely known amongst rock mechanics professionals that rock breakage occurs most

easily by propagating tensile fractures in rock [35]. The Griffith criterion [12] is used to

explain why imperfect materials such as rocks break at far lower stresses than would be

otherwise expected. It considers that flaws in the material allow stresses to be concentrated

in small areas where tensile cracks can occur and propagate [12]. Previous rock mechanics

studies look at different methods of measuring and quantifying the inherent flaws in rock as

they play an important role in rock breakage and overall mining productivity. The tensile

strength of rock is usually measured with an accepted standard called the Brazilian or

indirect tensile strength test [127,168]. This test involves the application of a compressive

force on a standard disc shaped sample to indirectly measure a tensile failure. In most cases

for rock, the sample will break in tension prior to any compressive failure, demonstrating

the lower tensile strength.

Currently there are only limited rock breakage mechanisms available in space resources

literature as identified in Section 4.3. The Drill and Pull rock breakage concept aims to
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improve that deficit. Figure 4.13 shows the concept visually. Firstly, the system requires a

free face to maximise efficiency of breakage. The free face can be the original surface of the

rock or a previously excavated face. It is expected, that as with terrestrial excavations the

breakage and excavation efficiency will be increased with the assistance of gravity. Hence

a vertical face is preferred to the original horizontal surface [62]. This system requires a

hole to be drilled in a hard rock material, similar in strength to moderate UCS concrete,

where the conical-ended Pull Rod is inserted. A hard crushing media, such as steel is used

to fill the remaining void in the hole. A steel plate is placed on top of the hole to ensure

the crushing media is confined and cannot escape when mechanical work is applied. The

final step is to pull the rod to compress the crushing media and exert outwards force onto

the free face causing tension cracks and eventual breakage.

The expected mode of failure is shown in Figure 4.13. It is expected to be a combination

of tensile crack failure and crushing, however this must be carefully observed during the

experiment and further work will be necessary to properly define the mechanism for opti-

misation. It is expected that the sample will fail slowly as increasing force is applied to the

anchor and top surface. A limit may be reached where the sample has failed sufficiently

to allow the anchor to be released yet the sample has not been completely broken for

excavation.

Figure 4.13: A conceptual drawing of the Drill and Pull rock breakage mechanism.
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A free-body diagram of the system and its components can be seen in Figure 4.14. Newto-

nian steady state resolution of forces has been chosen here to communicate the working of

this system, although in practice it is a dynamic system and better modelled with DEM.

It has been assumed that the crush media will be spherical, which is achievable if steel

bearings are used. However, it is also desired to utilise different media such as drill cuttings

and gravel which are easier to obtain on the surface of the Moon. The mechanism can

be scaled-up or down depending on a later iteration system-mass optimisation study for

lunar ISRU. An optimisation study such as this may use the Project Appraisal indicators

developed in Chapter 7 as a basis.

Figure 4.14: A rock mass free body diagram when applying the Drill and Pull rock break-
age mechanism.

The Drill and Pull mechanism will be demonstrated here using the Discrete Element

Method similar following the works in Chapter 3.

74



4.6.2 Proof-Of-Concept Experiments

4.6.2 Proof-Of-Concept Experiments

4.6.2.1 Aim

The aim of the DEM testing for the Drill and Pull system is to demonstrate a proof-of-

concept in lunar conditions. This will allow a recommendation to be made whether or not

to proceed with a physical prototype. The DEM testing may also provide some insights

into the ground engaging mechanism that can be used for early stage optimisation. A

qualitative simulation of the Drill and Pull system will be carried out with DEM to achieve

this objective.

For the purpose of Objective 1 of this thesis, these experiments also demonstrate the

utility of the Discrete Element Method for off-Earth mining system development and

optimisation.

4.6.2.2 Method

There are currently no available published DEM parameters for icy regolith. In fact, there

is an ongoing debate about the level of consolidation of icy regolith expected in Perma-

nently Shadowed Regions (PSRs) on the Moon. In some cases, it is believed that the

material will be in an unconsolidated state due to constant impact gardening. In other

cases, it may be in a harder consolidated form [36]. As there have been no geomechan-

ical observations of ice on the Moon to date, the discussion is still open. As mentioned,

experiments by Atkinson and Zacny [9] show a 12% H2O concentration icy regolith sim-

ulant (JSC-1a) has a strength of around 35 MPa, similar to concrete [299]. Given the

similar strength of concrete and icy regolith according to Atkinson and Zacny’s [9] results,

the Drill and Pull method will be trialled in a DEM model using concrete as the target

material.

The method for conducting this experiment is as follows:
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1. Setup the target material using the Concrete Particle Model (CPM) proposed and

calibrated by Šmilauer [267].

2. Set up the DEM model with appropriate sized Pull Rod and steel ball bearing

crushing media. Dimensions for the relevant particles are shown in Table 4.5.

3. Pull the rod through a stabilised sample while recording data.

4. Qualitatively analyse data with Paraview software to confirm the proof-of-concept.

Table 4.5: Setup dimensions in Drill and Pull experiment.

Dimension Value (mm)
Crushing Media Diameter 10

Pull Rod Diameter 12
Hole-Rod Clearance 4
Top Plate Thickness 9

Sample length 110
Sample width 110
Sample height 100

Particle Diameter 1.83 +/- X,
where X ∼ Uniform(0, 0.55)

4.6.3 Concrete Particle Model Calibration

The Concrete Particle Model proposed by Šmilauer [267] will be used for this experiment.

Šmilauer [267] outlines a calibration process for this model similar to the methods outlined

by Wang [303] and Tran [293]. Alternative novel calibration techniques could also be used,

such as the implementation of an optimisation algorithm based on genetic algorithms [71]

or kriging [18] to determine the correct micro properties that correspond with desired

macro properties. A detailed review of DEM calibration procedures has been completed

by Coetzee [47] for reference.

The CPM is similar to the Bonded Particle Model (BPM) [229] used in the PFC2D and

PFC3D software [128]. The CPM however, utilises an expanded interaction space for each

discrete element in the setup of the model, which allows particles to interact which are
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not in direct contact. This leads to more realistic ratio between compressive strength and

tensile strength for brittle rock breakage [252]. The CPM also includes two macroscopic

stress induced features of material breakage. Firstly, tensile cracking damage and secondly,

the hardening of plasticity in compression. Rate dependant damage (viscosity) has also

been investigated by Šmilauer [267]. However, it is not included in the baseline CPM

model used here as it has been found to have minimal effect.

Šmilauer [267] has provided some recommended values for a calibrated concrete model.

These values are used for the demonstration of the Drill and Pull method in concrete.

They are shown in Table 4.6.

Table 4.6: Material parameters and references used for the Drill and Pull DEM Model.

CPM Parameter Value
Particle Density 4 800 kg/m3

Friction Angle 38°
Young’s Modulus 24 GPa
Poisson’s Ratio 0.2
Initial Cohesion (σT ) 3.5 MPa
Relative Ductility ϵf/ϵ0 30
Strain Crack Onset ϵc 1× 10-4

A uniaxial compressive strength (UCS) test has been run with the parameter values shown

in Table 4.6 to confirm the validity of the calibration. The sample tested has a height

of 150 mm and a diameter of 75 mm, complying with standard concrete UCS testing

procedures [299]. The results of the UCS test are shown in Figure 4.15. It can be seen

that the UCS of this sample is approximately 34 MPa, marked with a red line. This

corresponds with weak to moderate strength concrete from a range of UCS test data

collated by Vu et al. [299]. This calibration also approximately matches the compressive

strength of icy regolith observed in experiments by Atkinson and Zacny [9].

4.6.4 Results

The Drill and Pull experimental results can be seen in Figure 4.16. This shows a 3D

projected view and cross-sectional view of the sample during the pulling process. Forces
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Figure 4.15: Calibrated Concrete Particle Model in a UCS test.

are redirected through the Pull Rod to the rock causing stress, damage, cracking and

eventual failure in tension. Cracking recorded in the Concrete Particle Model is shown

with the heat map in Figure 4.16. Cracked and weakened areas are indicated in red.

4.6.5 Discussion

The DEM experiment of the Drill and Pull method has shown that it is a physically

viable concept and is worthwhile moving to a physical testing stage. This is a very simple

conceptual design and there are many possible optimisations that may come about through

a physical research and development cycle. For example, the use of different shaped or

style pull rods could be trialled to increase efficiency of the system. As mentioned by

Šmilauer [267], some aspects of concrete breakage are rate dependant, as cracks can only

propagate at a certain speed. The use of a vibrating or percussive pull rod may be possible

to optimise rate dependant breakage. Physical experiments were not carried out during

the time of this research due to pandemic related laboratory closures and uncertainties.
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Figure 4.16: The results of the Drill and Pull DEM model showing accumulated crack
intensity until failure.

One issue that has been foreseen with the physical implementation of the Drill and Pull

system is the recovery of the crush media. Steel ball bearings have been suggested as they

can be easily recovered using electro-magnetism. However, over time it is expected that

the steel crush media will be progressively lost causing a long-term reliability issue. An

79



CHAPTER 4. LUNAR MINING SYSTEM CONCEPTS

in-situ resource could be used instead to supply the crush media. For example, basaltic

gravel or stones recovered from the target material. Modelling would need to be conducted

to see the effectiveness of potentially weaker crush media and the impact this would have

on productivity.

It has also been mentioned that the system requires a free face to enable rock breakage in

tension and hence to work effectively. Almost all excavations will need to start without

an available vertical free face. The ability of the Drill and Pull method to break rock via

a horizontal free face also needs to be tested. This could possibly be done by drilling an

inclined hole and breaking an initial "wedge" to achieve a more vertical free face.

There are many potential options to investigate with further modelling and physical ex-

periments. This concept is theoretically functional for rocks with at least as strong as a

moderate UCS concrete. It is expected to eventually be a useful addition to the off-Earth

mining system inventory to remove the need for blasting H2O regolith ore and the complex

supply chain required for that activity.

4.7 Lunar Regolith Tunneller

4.7.1 System Design

The Lunar Regolith Tunneller shown in Figure 4.17 is an evolution of the terrestrial

Continuous Miner [97]. It is also capable of pushing, bracing and anchoring against tunnel

walls, picking rock faces, breaking hard material and loading granular material into the

transport mechanism.

This rock cutting mechanism is a well-developed technology. Experimental data is avail-

able to assist with design optimisation and estimation of energy consumption. The power

input has been calculated using this data in Equation 4.3 [14,23].

80



4.7.1 System Design

Figure 4.17: Concept design of the Regolith Tunneller and material transfer bucket.

Cutting Rate (m3/s) = k
P

SE
(4.3)

Where k is a breakage efficiency constant. Similar terrestrial Road Headers usually have a

k value of 0.8 [324]. P is the input power in kW and SE is the Specific Energy (kWh/m3) for

10% H2O regolith. The expected SE for cutting 10% H2O regolith is based on an expected

UCS of icy regolith around 35 MPa [9], in line with concrete [299]. Data available from

Balci et al. [14] and Bilgin emphet al. [23] show that the expected SE for this material is

around 7.5 kWh/m3.

Tungsten Carbide or diamond tipped cutting picks will be required to minimise wear and

replacements of the cutter head.

One of the major strengths of the Regolith Tunneller is the ability to categorise material

with additional sensors and select it’s final destination. Undesirable material can be loaded
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onto haulage equipment, not described as part of the Tunneller, and be sent via haulage

equipment to a waste storage location. The waste disposal location is assumed to be a

nearby area where both mine waste and process system waste are taken for final deposition.

Conversely, the higher H2O grade materials be selected to be transported to the energy

intensive beneficiation process to heat and extract volatiles. Refer to Figure 4.1 for a

representation of the material flow from Rock Breakage, to Excavation, to Transport, etc.

In a balanced system with surplus energy supply, almost all excavated material should go

to the beneficiation process. Optimisation via a cut-off grade may be used to divert lower

grade materials to the waste storage location to save energy for example. It is also possible

that unplanned geological variances may lead to waste material being found in unexpected

areas that must be mined to access more desirable material. The excavation system should

be therefore intentionally sized larger than the capacity of any downstream process. This

not only enables a stable production rate if maintenance issues are encountered, but also if

geological issues are found. For example, if the mineral resource is found to be non-uniform

and higher volumes of waste must be excavated.

An initial site survey and geological data collection during the excavation process will

assist in selective mine optimisation. The application of cut-off grades, selective mining

and the extraction sequence will be explored in much further detail in Chapter 6.

4.7.2 Excavation Planning and Improved Mining Methods

The Regolith Tunneller is a versatile piece of equipment. Variations in the excavation

geometry and sequence are expected to yield higher productivity.

An example of increasing the excavation efficiency by utilising the bracing mechanism

to push down pillars between pre-excavated voids is shown in Figure 4.18. This method

ensures the rock will break in the weakest mode, tension, when pushing out the pillar.

The Tunneller completes the excavation in sequence from #1 to #4, firstly excavating a

central void (#1), then access tunnels (#2) to push the pillars for further extraction (#3).
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The amount of energy expended for this breakage mode is expected to be less than for

direct cutting. Optimising the thickness of pillars and maximising the volume extracted

via this efficient breakage method can be done with DEM modelling once more calibration

data is available for icy regolith.

Figure 4.18: Regolith Tunnellers extracting wall pillars by pushing into open void.

Even further increases in excavation efficiency can be achieved by creating sufficiently

wide spans without pillars and inducing collapse of the roof (#4) while the tunnellers

are in a safe location. This caving method is expected to be the most energy efficient as

gravitational energy is harnessed to do the majority of rock breakage. Further modelling

is required with specific deposit geotechnical parameters, such as the natural fracture

frequency and strength of the material to confirm the feasibility of this caving method.

This caving method can be compared to block caving or sub-level caving in terrestrial

underground mines [62].

The flexibility of the Regolith Tunneller gives rise to many contingent excavation plans.

This can be used as a way to manage geological risks as the exact nature of the deposit

will be unknown until excavation is complete. Modifications to excavation strategies can

be made after the commencement of operations to carry out selective mining and optimise
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production as more information is gathered.

4.7.3 Discussion

A significant risk for mining operations is that the mineral resource in reality is not

as expected. This is more likely to be the case with extremely limited data as for lunar

ISRU resources. The Regolith Tunneller manages this risk by having multiple contingency

excavation plans available as mentioned in Section 4.7.2. The recovery of the mineral

resource is therefore not entirely dependent on accuracy of the resource modelling or

material parameters. Regolith strength, porosity, volatile permeability and uniformity of

H2O grade are examples of material parameters which have varying importance for each

specific mining system. The Regolith Tunneller in comparison to others is flexible and

does not depend on a high accuracy of any of these parameters.

A summary of the advantages of the Regolith Tunneller concept includes the following

capabilities.

• Maximising the downstream processing output by selectively targeting higher H2O

grade areas.

• Minimising the dust creation by excavating consolidated regolith underground.

• Minimising the energy usage via gravity assisted excavation techniques such as cav-

ing.

• Providing the reaction forces by bracing against the tunnel walls.

• Including redundancy and flexibility with various excavation plan contingencies.

• Minimising the surface waste material movement and hence energy usage by directly

accessing ore from underground.

• Utilising the weak tensile strength property of rock to break harder icy H2O regolith.
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The expected weaknesses are:

• the cutting heads may experience wear and need to be replaced;

• the excavation rate is limited by the material transfer bucket; and

• the material transfer bucket and transfer line may experience wear over long term.

The improved mining methods shown in Section 4.7.2 are an example of how a single mining

system can be applied differently in various geological or geometric settings. This will be

touched upon again in the next chapter, which specifically focuses on selecting mining

systems. It is evident that with the current immature state of off-Earth mine planning

that a high level of detail is not possible when describing mining methods. Although in

practice and as is evident in terrestrial mining [62], improved mining methods will be an

important tool in optimising future ISRU operations.

4.8 Conclusions

The Discrete Element Method has been shown to be useful when developing ISRU systems

that physically interact with materials such as regolith or ice. It allows faster prototyping

to bypass some traditional physical testing of ground engaging tools, especially for when

it is difficult to simulate lunar conditions such as gravity.

The Impact Excavator aims to minimise reaction forces and equipment mass with a new

excavation technique. However, it also creates a dust hazard that may be problematic

for longer term reliability. The Impact Excavator works conceptually in low strength

material but may struggle with harder ice and rock. The limits of its use need to be

further explored within a better controlled environment. Increasing thermal inertia in

the test sample and less atmospheric effects are desirable properties of future physical

tests. The manufacturing process also needs to be improved to produce a more robust
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acceleration mechanism. The results of this experiment can however, be used to optimise

future iterations of the excavator.

Future research can be undertaken to investigate the effectiveness of the Impact Excavator

on harder materials using repeated strikes. DEM and physical experiments can be used

for this purpose.

The Drill and Pull system enables rock breakage via mechanical tension cracking with

minimal equipment mass. This equipment is not standalone. It must be used in conjunc-

tion with another drill and excavator-type piece of equipment. Further mechanical design

improvements can be made after some physical testing to identify reliability issues. As

there are currently not many concepts available for off-Earth rock breakage, this system

can be used to unlock harder, high grade deposits without the need for complex explosives

manufacturing and delivery systems. The benefits of mining higher grade deposits will be

further explored in Chapter 5 and 6.

The Lunar Regolith Tunneller enables targeting and selectively mining higher ore grades

without wasting energy moving large amounts of waste. It creates reaction forces by brac-

ing on tunnel walls, thereby minimising the gravity dependent reaction forces and equip-

ment mass requirements for that purpose. It also efficiently combines the rock breakage

and excavation tasks for harder icy resources. Tunnel stability modelling in Chapter 3

shows that tunnelling is unlikely to be feasible for equipment larger than around 10 cm

diameter. However, tunnel stability will increase significantly in icy regolith. Further

physical testing is required to determine reliability and operability of the Tunneller when

working underground in icy regolith.

There are many examples in literature of lunar mining systems that could be applied to the

ISRU task, which have been collated in Table 4.2. Three more concepts have been proposed

in this chapter. All these mining systems have been categorised based on their function in

the mining process and also their Technology Readiness Level. The criteria to achieve TRL

5 is "component/breadboard validation in a relevant environment". It can be implied from

the number of systems that are currently at TRL 4 that there are difficulties in developing
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these systems in environments relevant to the lunar surface. Discrete Element Method has

been used in this chapter as a rapid and low-cost technique to assist in the development

of the system without having access to relevant testing environments. Although, physical

experiments in a relevant environment will still be required to increase the TRL according

to the NASA criteria [137].

The next step of the mine planning and optimisation process is to select the best system

combination for extracting a foreseeable lunar H2O deposit type. The items collated in

Table 4.2 with appropriate Technology Readiness Levels will be used in the following

chapter for the task of mining system selection.
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Chapter 5

Off-Earth Mining System Selection

5.1 Introduction

Mining system selection is an important early phase in the design and planning of mineral

extraction. It is undertaken prior to a full economic feasibility study, which is used to

confirm or reject the selection. Once a system has been confirmed and operations have

begun, it is challenging and costly to change systems. The Nicholas Mining Method Selec-

tion procedure [213] is one of the more well-known frameworks for this task in terrestrial

mining. It uses empirical data from example mines around the world to rank mining

methods based on the characteristics of a given ore body.

The lack of operational data to represent off-Earth mines in this process is problematic.

Currently, off-Earth mining system selection is undertaken subjectively. This may lead

to authors favouring certain popular works or their own for ISRU project evaluations as

discussed in Chapter 2. This chapter aims to develop a framework that can be objectively

applied to off-Earth mining system selection by using the available knowledge detailed

in Chapter 4, with a focus on conceptual systems engineering. This is in line with the

thesis Objectives 3 and 4, related to identifying and resolving deficiencies in the currently

available planning and optimisation methods for ISRU.
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A logical selection framework is proposed and demonstrated in this chapter instead of the

empirical ranking methods used for terrestrial mining method selection. Ranking in this

chapter is based on the probability of success of the mining system, also known as the

equipment reliability. The framework will be progressively disclosed due to the depth and

complexity via partial demonstrations of the tools investigated throughout the chapter.

In the future, this new framework can assist selecting systems for the range of different

geological settings that could be found on the Moon or other bodies. The process in

this chapter primarily focuses on mining of H2O resources, but can be expanded to other

resources as well.

5.2 Literature Review

Mining method selection has been studied as an essential part of terrestrial mine design for

several decades. The majority of researchers have built upon the Nicholas Mining Method

Selection procedure [213]. The Nicholas procedure defines several key characteristics of an

ore deposit that affect the suitability of each mining method. The deposit characteristics

used for selecting mining methods are the ore body shape, thickness, dip angle, grade

distribution and the rock strength of the ore zone and surrounding rock. These charac-

teristics are assigned numerical scores (0-4) depending on how well each mining method

will be suited. A score of -49 is also possible to completely discount a method due to a

particular deposit characteristic. The method with the highest overall score should then

be used in the next stage of mine design in a feasibility study.

The popular UBC (University of British Columbia) Mining Method Selection procedure

[192] is a modified version of the Nicholas procedure. It applies new weightings to each of

the deposit characteristics depending on their importance when selecting a mining method.

The weightings are based on empirical data from the Canadian mining industry in 1994

with an intentional bias toward long hole stoping [192]. The bias is due to a large portion of

underground mining in Canada being conducted by mechanised long-hole stoping, where

89



CHAPTER 5. OFF-EARTH MINING SYSTEM SELECTION

ore is extracted vertically between tunnels utilising drilling, blasting and gravity.

Descriptive language is used to define the boundaries between different characteristics in

both the Nicholas procedure and the UBC procedure. For example, the Ore Thickness

can be defined as " Narrow", " Intermediate", " Thick" or " Very Thick". Saydam, Mitra

and Russell [249] improved the UBC method by defining this thickness variation and use

Virtual Reality technology to visualize the deposit. This new tool is called ViMINE.

However, ViMINE was developed only for teaching purposes.

More recently, other authors have built on these techniques by implementing fuzzy vari-

ables and pairwise decision-making techniques [24,244,311] to account for the uncertainty

in the linguistic categories used previously.

Just et al. [136] have completed a review of current off-Earth mining equipment research,

and have noted the difficulty in comparing various works on a common basis. The lack

of operational data and under-developed mining systems makes it difficult to carry out

pairwise comparisons based on the effectiveness of demonstrated systems as has been

done with UBC and Nicholas procedures. This limits the ability to compare and select

mining equipment. Hence, a framework for off-Earth mining system selection has not yet

been attempted. A new selection procedure as shown in this chapter may aid technology

developers and decision-makers in designing off-Earth mining missions with the highest

probability of success.

5.3 Methodology

Several tools will be investigated to determine their applicability to off-Earth mining

system selection. As this chapter is aimed at developing a new selection procedure, the

investigation has been divided into detailed sections to demonstrate each of the potential

tools. The following Sections 5.4 to 5.10 are designed to review available tools, develop

new tools and analyse their effectiveness to provide demonstrative results in Section 5.11.
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A review of literature has been completed to identify appropriate tools already available,

or closely related tools which may be modified or developed for the purpose of this chapter.

Where appropriate tools are available in previous literature, they have been detailed and

applied in worked examples. Where there are no appropriate tools available, they have

been evolved from closely related tools in other scientific works. Each of these tools is also

demonstrated by an example application.

Not all of the tools investigated have proven useful for the final framework. However, the

negative results and analysis are still important contributions and will be described in this

chapter.

5.4 Axiomatic Design

The theory of axiomatic design proposed by Suh [280] can be applied to many differ-

ent engineering design fields to enable a " top-down" functional approach to the design

process [152, 237, 281–283]. This is in contrast to a " bottom-up" development processes

based on experimental trial and error [219]. Terrestrial applications of this method are

most commonly found in manufacturing engineering, software engineering and mechanical

engineering domains [152,219,234] and can be extended to any engineering design process.

The axiomatic design process is based on fulfilling two primary axioms. Firstly, the Inde-

pendence Axiom, which states "An optimal design always maintains the independence of

Functional Requirements (FRs)" [219]. It means that when designing a system or product,

each functional requirement should be mapped to an independent parameter called the

design parameter (DP). The DP ideally will not affect any other FR. However, in many

cases it inevitably does.

Mapping is carried out through matrix multiplication, as shown in Equations 5.1 and 5.2

for an independent design with two FRs. Note that when the mapping matrix "A" is a

diagonal matrix, the design is considered uncoupled. FR1 and FR2 do not affect each

other. This is the ideal situation according to the Independence Axiom [219].
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F = AD (5.1)

Where F is a vector of Functional Requirements, D a vector of Design Parameters and A

is the mapping matrix. F and D contain respective lists of the system’s FRs and DPs.

The independent, uncoupled design parameter mapping is shown in Equation 5.2.

FR1

FR2

 =

x11 0

0 x22


DP1

DP2

 (5.2)

Where x11, x22, x21 in Equation 5.3 and x12 in Equation 5.4 are FR:DP mapping variables.

In the most common qualitative application of this process, they usually take the pseudo-

value of one. It is acceptable to have a design where the "A" mapping matrix is triangular

rather than diagonal as shown in Equation 5.3. This is called a decoupled design [219]

as the DPs do affect each other. However, since the functions (FRs) are designed in a

specific sequence allowing a triangular matrix, the dependent relationships between DPs

are manageable as long as parameters are manipulated in the correct order. The decoupled

design parameter mapping is shown in Equation 5.3.

FR1

FR2

 =

x11 0

x21 x22


DP1

DP2

 (5.3)

The third possibility is a coupled design, as shown in Equation 5.4. This design has both

FRs linked together in the design parameter space. An example of a coupled design is

a shower temperature and flow control system with a separate hot and cold tap. It is

impossible to change the temperature without a change in the flow rate [219]. This is a

poor design according to the Independence Axiom as the user will require a substantial

amount of information in order to achieve specific results for flow and temperature. The

success of satisfying an FR also depends on the tolerance of the user. The coupled design

parameter mapping is shown in Equation 5.4.
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FR1

FR2

 =

x11 x12

x21 x22


DP1

DP2

 (5.4)

The second Axiom, the Information Axiom, is used to determine the best design from

a set of designs that satisfy the Independence axiom. The Information axiom states

that; "the best design is a functionally uncoupled design that has the least Information

Content" [219]. Where Information Content is defined by an index of the probability

that the DP settings will satisfy the FRs. The information content is zero when there

is certainty of success (probability of success = 1). Conversely, the information content

approaches infinity as the probability of success approaches zero. The information content

index is represented numerically using Equation 5.6 [219] where ps is the probability of

success the DPs will satisfy the FRs. The probability of success can also be considered as

equal to the reliability (R) as shown in Equation 5.5. Reliability can be altered by changing

the acceptable operating tolerance (increasing or decreasing the threshold of success) for

the FRs.

ps = 1− pf = R (5.5)

I = log2( 1
ps

) (5.6)

The information index proposed by Suh [280] in Equation 5.5 requires the precise mea-

surement of all probabilities of success, or probability density functions of success for each

DP. This includes DPs which are influenced by others in decoupled designs [219] where

conditional probabilities must be applied. In practice, it may not be possible to obtain all

the required information to determine conditional probabilities. Certainly for this appli-

cation, it is not currently possible to determine the real probabilities of success for each

mining system as they have not been trialled operationally. An alternative method must

be employed.
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A new measure of the Information content has been proposed by Kulak and Kahraman

[153]. They utilise fuzzy numbers to deal with uncertainty around linguistic DPs. The

fuzzy approach requires a fundamentally strong understanding of the DP tolerances and

FRs for the design in order to convert the DPs into fuzzy linguistic variables. This is similar

to the Nicholas and UBC Mining Method Selection procedures, in that linguistic criteria

are used to categorise deposits but can be interpreted differently by various people. This

has been acceptable in the past for mining method selection as experienced engineers have

an excellent fundamental understanding of the different deposit types and the systems that

may be applicable. The tolerance for error for terrestrial mining method selection is also

large and the subsequent stages of optimisation allow confirmation of the initial selections

through proven processes. This is not yet true for nascent off-Earth mining systems and it

is necessary to rank systems with a more objective process to guide technology development

efforts, without requiring large amounts of operational data.

Section 5.8 and Section 5.9 of this chapter will detail the assessment of system complexity

measures for suitability to replace the Information Content. These measures include graph-

ical complexity, measures of design connectivity, design problem solvability [199,262,290]

and a novel Monte Carlo reliability method. Application of the novel method will allow

the Information axiom to be used to rank systems objectively and maintain the axiomatic

design principles. It will also be possible to directly substitute operational reliability data

as it becomes available in the future.

5.5 Off-Earth Mining Systems

Conceptual mining system designs drawn from a range of off-Earth mining and engineer-

ing publications [20, 184, 201, 208, 259, 263–265, 269, 284, 317, 319, 321, 323] and some novel

contributions are categorised in Chapter 4. Systems that have been identified with a

Technology Readiness Level [137] of 4 or greater will be used for works going forward in

this thesis. These items have been successfully demonstrated in a physical laboratory and

can be analysed at a functional level to create the required Design Parameter Maps. This
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filtered list of equipment is shown in Table 5.1 with a link to the Design Parameter Map

in text or the Appendix. These systems will be used for the demonstration of off-Earth

mining system selection procedure in this chapter. The Impact Excavator, Drill and Pull

mechanism and Regolith Tunneller introduced in Chapter 4 do not have appropriate lev-

els of development (TRLs) to create the necessary Design Parameter Maps at this stage.

These technologies are therefore omitted from Table 5.1.

Table 5.1: Off-Earth mining equipment pool.

Equipment Subclass Reference Design
Description Examples Parameter Map

Truck Transport [259, 264,
319] Table 5.2

Bucket Drum Excava-
tor Excavation, Transport [201,269] Table A.1.

Hammer Drill Rock Breakage [323] Table A.5.
Discrete Excavator Excavation [263,264] Table A.4.
Continuous Excavator Excavation [263,265] Table A.2.
Load-Haul-Dump Ex-
cavator Excavation, Transport [264] Table A.6.

Oven Processing [184,208] Table A.8.

Pneumatic Excavator Excavation, Transport [284, 317,
321] Table A.9.

Crusher Oven Rock Breakage, Processing [184,208] Table A.3.
Micro Tunnel Borer Rock Breakage, Excavation [20,323] Table A.7.
Volatile Extraction
Drill

Rock Breakage, Excava-
tion, Transport, Processing [319,323] Table 5.3

Each mining equipment listed in Table 5.1 has been broken down into their " core" Func-

tional Requirements, and each FR is mapped to a Design Parameter. For the purpose of

objectiveness in this study, a "core" Functional Requirement needs an explicit definition.

It is defined as follows; a Core Functional Requirement enables mining operations for the

defined ore body disregarding the presence of mitigable environmental hazards. Mitigable

environmental hazards include radiation, temperature, atmospheric conditions, etc. They

do not include gravity which is an intrinsic part of mining system design. Mitigable haz-

ards do not include geologic hazards such as rock strength or variability which are taken

into account during the mining system selection procedure or a later stage of feasibility.

The need for the explicit use of core and auxiliary Functional Requirements is discussed
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CHAPTER 5. OFF-EARTH MINING SYSTEM SELECTION

further in Section 5.10.

The process of breaking down a system into its Core FRs and mapping design parameters

is iterative. The process flowchart is shown in Figure 5.1.

Figure 5.1: Process of Functional Requirement decomposition and Design Parameter map-
ping.

The aim is to achieve a level of decomposition that demonstrates a decoupled system where

a triangular or diagonal mapping matrix is achieved. The level of FR decomposition carried

out is also somewhat arbitrary unless additional rules are applied to ensure repeatability

in the scientific method. This allows consistent comparisons of designs through axiomatic

design principles. Consequently, this procedure requires that the decomposition of FRs

be continued until all DPs can be measured with quantifiable SI units or derivatives. An

example of FR-DP mapping is shown in Table 5.2 for the most straightforward design

concept, the "Truck" [259,264,319].
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Table 5.2: Design Parameter mapping for Tip Truck.

One of the most intricate designs, the "Volatile Extraction Drill" [319, 323] is also shown

in Table 5.3. All other designs are mapped in successive tables in the Appendix. An ’x’

marked on the mapping matrix signifies a quantifiable relationship between the FR and

DP on that row and column as per Equation 5.1.

5.6 Mass and Specific Energy Criteria

Equipment mass and energy efficiency have been investigated as criteria for off-Earth

mining system selection. These factors are widely believed to be important to off-Earth

mining system selection as they are major constraints for planetary surface missions. This

section investigates the importance of mass and energy requirements through a parameter

study and literature review.
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Table 5.3: Design Parameter mapping for Volatile Extraction Drill.
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5.6.1 Specific Energy Model

5.6.1 Specific Energy Model

The Specific Energy of mine production (energy expenditure per unit mass of product) is

defined as in Equation 5.7.

Specific Energy ( J

kgH2O
) = SEbreakage +SEexcavation +SEtransport +SEprocessing (5.7)

A general model for calculating the components and total specific energy has been devel-

oped for mining of icy regolith resources on the Moon. Parameters utilized in this model

have been outlined in Table 5.4. The chosen parameters are similar to those used in pre-

viously published models [220, 221]. The excavation tool parameters and soil mechanics

components are derived from the Swick excavation model, previously used for estimating

excavation forces for space missions [289, 308]. Rock breakage parameters come from ex-

perimental data published by Gertsch, Gustafson and Gertsch [104]. There are several

other parameters in the model such as the concentration of ice in regolith (ore grade)

and site specific Mine Design parameters that lack, or do not require published data to

support them. These are considered as variable assumptions as shown in the reference

column of Table 5.4. Sensitivity analysis is carried out on all parameters to show the

effect of variations and inaccuracies in these assumptions.

Table 5.4: Mining model parameters and constants.

Description Symbol Default Unit Min Max
Parameter

Type
Reference

Ore grade GrH2O 0.1 kg/kg 0.01 1 Geological
Variable

assumption

Ore bulk den-

sity
γ

Eqn.

5.8
950 1900 Geological Eqn. 5.8

Lunar gravity g 1.6 m/s2 - -
Physical

Constant
[308]
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External fric-

tion angle
δ 10 ° - -

Physical

Constant
[289,308]

Tool cutting

angle
β 45 ° - -

Physical

Constant
[289,308]

Failure plane

angle
ρ 45 ° - -

Physical

Constant
[289,308]

Internal fric-

tion angle
φ 47.6 ° - -

Physical

Constant
[289,308]

Surcharge

load on

excavation

q 0 N - -
Physical

Constant
[289,308]

Regolith co-

hesion
c 860 Pa - -

Physical

Constant
[289,308]

Soil-tool ad-

hesion
Ca 200 Pa - -

Physical

Constant
[289,308]

Tool velocity v 0.01 m/s 0.005 0.05
Equipment

Design
[289,308]

Depth of cut d 0.2 m 0.05 0.4
Equipment

Design
[289]

Width of cut w 0.2 m 0.1 0.4
Equipment

Design
[289]

Length of cut l 0.2 m 0.1 0.5
Equipment

Design

Variable

assumption

Average exca-

vation height
∆he 0.6 m 0.1 1

Equipment

Design

Variable

assumption

Load ratio LR 0.6 Ratio 0.3 1.2
Equipment

Design
[306]

Transport ve-

hicle weight
Wrover 450 N 225 675

Equipment

Design
[306]
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Rolling resis-

tance (% of

weight)

RR 0.1 Ratio 0.05 0.3
Mine

Design
[38,306]

Haulage

∆height

(mine)

∆hh 8 m -30 30
Mine

Design

Variable

assumption

Haulage dis-

tance (mine)
xMineP lant 450 m 50 1000

Mine

Design

Variable

assumption

Haulage

∆height

(dump)

∆hh 0 m -2 2
Mine

Design

Variable

assumption

Haulage dis-

tance (dump)
xP lantDump 50 m 30 100

Mine

Design

Variable

assumption

Specific heat

capacity

regolith

cregolith 0.5 J/gK - -
Physical

Constant
[121]

Specific heat

capacity

water-ice

cwater 1.36 J/gK - -
Physical

Constant
[106]

∆Temperature

required to

sublimate

∆T 100 K - -
Physical

Constant
[108]

Enthalpy of

sublimation
H 2800 K - -

Physical

Constant
[92,106]

Breakage

experimental

precision

- 1 Ratio 0.8 1.2
Equipment

Design

Variable

assumption
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Breakage

heat loss to

processing

- 0.6 Ratio 0.4 0.8
Mine

Design

Variable

assumption

Efficiency

breakage
εbreakage 1 Ratio 0.7 1.3

Equipment

Design

Variable

assumption

Efficiency ex-

cavation
εexcavation 0.2 Ratio 0.01 0.3

Equipment

Design

Variable

assumption

Efficiency

transport
εtransport 0.2 Ratio 0.1 0.4

Equipment

Design

Variable

assumption

Efficiency

processing
εprocessing 0.6 Ratio 0.4 0.9

Equipment

Design

Variable

assumption

It is assumed that the density of regolith and ice are not the same, and consequently dif-

ferent concentrations of ice in regolith will lead to different bulk densities of the mixtures.

The exact relationship is not known, and will vary depending on compaction and mineral-

isation in the regolith. A simple assumption is to take the bulk density of regolith and the

density of ice and interpolate between the two based on the ratio of regolith to ice. This

assumption has been used in the specific energy mining model in this chapter. The rela-

tionship is described by Equation 5.8. The specific energy model components SEbreakage,

SE excavation, SEtransport and SEprocessing are calculated according to the Equations 5.9 to

5.19.

Bulk Density ( kg

m3 ) = γ = 1900× (1−GrH2O) + 950× (GrH2O) (5.8)

SEbreakage ( J

kgH2O
) = k × (27.075×GrH2O − 0.0957)× 106

ϵbreakage ×GrH2O × γ
(5.9)

For SEbreakage, k is a parameter used for sensitivity analysis on the precision of the ex-

periments conducted by Gertsch, Gustafson and Gertsch [104], the value for the base case
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is 1 for control purposes. The base case Breakage Efficiency parameter is also set to one,

as the indentation experiments internalise the inefficiencies in rock breakage and account

for that in the regression formula. It is known that rock breakage energy conversion effi-

ciency is always low due to system losses to friction and heat, usually less than 1% [126].

Interestingly, the goal of the processing equipment is to increase the temperature in order

to liberate water ice. With good engineering design, some of the wasted energy in rock

breakage can be used to reduce the energy requirement of the processing equipment. A

variable parameter has been introduced into the model in order to capture this potential

upside in the design (Breakage heat loss to processing).

FT otal excavation = (gγd

2 (cot(β) + cot(ρ)) sin(φ + ρ) + q(cot(β) + cot(ρ))sin(φ + ρ)+

c cos φ

sin(ρ) + −ca cos(β + φ + ρ)
sin(β) +

γυ2 sin(β) cos(φ)
sin(β + ρ) )× ( wd

sin(β + φ + ρ + δ
) (5.10)

The Swick excavation model [289, 308] is applied to calculate the total excavation forces

and subsequently, the work done by the excavator (Eqn. 5.10). The physical constants

are stated in Table 5.4. To determine the work done by the excavator, only the horizontal

forces will be considered to act on the motors (Eqn. 5.11).

Fh = FT otal excavation × sin(β + δ) (5.11)

∴ SEexcavation ( J

kgH2O
) = Fhl

γdwl ×GrH2O
(5.12)

The energy required for transport is calculated as in Equations 5.13-5.17. The model

includes energy expended due to drive resistance and gradient resistance for uphill and

downhill sections. The assumption is made that each haulage leg has a change in height

in only one direction, and the exact opposite change is experienced in the return cycle.
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However, the load carried by the transport equipment is significantly less on the return.

The haulage energy is calculated for the average haulage distance and change in height

from the mine to process plant and the process plant to waste dump, as there will not be

sufficient space available near the plant for the life of mine tailings dump.

Transport Payload Weight (N) = LR×Wrover (5.13)

Transport Payload Mass (kg) = Transport Payload Weight

g
(5.14)

Haulage Drive Resistance (N) = Rhaulage = ∆hh

x
×(Wrover+Transport Payload Weight)+

RR× (Wrover + Transport Payload Weight) (5.15)

Where x can be the haulage distance from mine to processing plant, or the distance from

plant to waste dump depending on which haulage resistance is being calculated.

Drive Resistance Return (N) = Rreturn = −∆hh

x
×Wrover + RR×Wrover (5.16)

SEtransport ( J

kgH2O
) =

xMineP lant × (RMineP lant + RP lantMine) + xP lantDump × (RP lantDump + RDumpP lant)
Transport Payload Mass

×

γ

ϵtransport
/(GrH2O × γ) (5.17)

RMineP lant, RP lantMine, RP lantDump and RDumpP lant are all calculated in Equations 5.15

and 5.16 with the parameters for each respective journey leg. For example, RMineP lant is

the haulage distance calculated by Equation 5.15 which will use parameters from Table 5.4
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for haulage from the mine to the processing plant and RP lantMine is the return distance

calculated by Equation 5.16.

The energy required for processing is calculated as in Equations 5.18-5.20. It is assumed

as in the work by Pelech, Roesler and Saydam [221] that the processing stage will involve

heating regolith and ice equally in an oven.

Energy to phase change ice ( J

kgH2O
) = 1000× (∆T × cwater + H) (5.18)

Energy to heat regolith ( J

kg regolith
) = 1000× (∆T × cregolith) (5.19)

SEprocessing ( J

kgH2O
) = ((GrH2O × Energy to phase change ice+

(1−GrH2O)× Energy to heat regolith)× γ

ϵprocessing
)× 1

GrH2O × γ

- (Breakage Heat loss to Processing×SEbreakage) (5.20)

5.6.2 Parameter Sensitivity and Importance

Calculating the specific energy with the model and base case parameters in Table 5.4

against ore grades between 1% and 100% produces the results in Figure 5.2. The results

show that there is a large advantage of mining higher grade material, although the advan-

tage becomes less important with ore grades higher than 30%. The single most important

component of the Total Specific Energy is the Processing Energy, which is several orders

of magnitude higher than the other components. It can be deduced that for the base case

it is optimal to expend more energy in rock breakage, excavation and transport in order to
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access higher grade ore and reduce the processing (and total) energy required to produce

water. This result also justifies the importance of the new rock breakage mechanisms

introduced in Chapter 4.

Figure 5.2: Specific energy consumption of system subclasses versus ore grade.

A sensitivity analysis was carried out in order to compare the relative importance of each

parameter.

Equation 5.21 shows the calculation of the Relative Sensitivity which is used here to high-

light the importance of various parameters. Features of statistical variance, approximation

of partial differentiation and relative magnitude ratios have been utilized in devising this

indicator.

Relative Sensitivity =

√√√√(δSE/SE2
base case)

(δP/P 2
base case)

=

√√√√(SEi−SEbase case
SEbase case

)2

(Pi−Pbase case
Pbase case

)2
(5.21)

Where SEi is the total specific energy as calculated by Equation 5.7 with a Pi independent

parameter value, with other parameters held constant to the default value. The SEbase case
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is calculated by Equation 5.7 with all parameters set to their default values from Table

5.4.

The relative sensitivity partial differential Equation 5.21 has been evaluated at five equally

spaced points between the maximum and minimum feasibly expected values of the param-

eter as outlined in Table 5.4. The average of these five evaluations is shown in Figure

5.3.

The parameters have also been categorised into four groups, depending on how much

control the mine operators will have over them. The categories have been assigned in Table

5.4. They are (i) physical constants over which engineers have no control; (ii) geological

parameters over which engineers have no control but when understood in sufficient detail

can be exploited to optimize the mine; (iii) equipment design parameters over which

engineers have control during the research and development phase, but not after the

equipment has been built; and (iv) mine design parameters which can be changed over

the mine life in order to optimize production.

This parameter categorisation allows us to see at which stage they can be optimized in

order to influence the specific energy. Some parameters may relate to more than one

category, however, for simplicity they have been allocated only to their most important

category. Figure 5.3 shows the parameters organized within the following categories:

geology, equipment design and mine design. Sensitivity analysis was not carried out on

physical constants as they cannot change.

The results of the Specific Energy Model sensitivity analysis show that the specific energy

required to produce one kg of H2O is strongly dependent on the ore grade between 1% and

10% and the efficiency of the processing stage. The processing stage here is assumed to

be an oven heater that causes sublimation of vapour, although a pressurised oven system

that causes melting of the ice is also possible with a different efficiency. The next most

important factors: transport efficiency, transport distance, transport rolling resistance and

the amount of breakage heat loss to processing are all around two orders of magnitude

less important than ore grade and processing efficiency.
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Figure 5.3: Relative Sensitivity to model parameters and parameter categories.

The equipment parameters related to excavation and rock breakage are mostly incon-

sequential to the total system SE. The processing stage requires by far the most energy,

and is currently limited to heating methods with comparable efficiencies. Since processing

is the last stage in the mining system flowchart as shown in Figure 4.1, outputs of the
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previous steps influence the amount of energy spent in this stage. It would be perilous to

attempt to reduce the specific energy of SEbreakage, SEexcavation, and SEtransport without

considering the system as a whole. SEbreakage, SEexcavation, and SEtransport are interest-

ing measures to classify mining equipment, however they should not be used as criteria

for mining system selection. The whole system including unknown geological parameters

must be considered to carry out a fair optimization. This requires much more information

around geology and system effectiveness which must be completed at a later stage of a

feasibility study, once more data has been collected.

If SE was included as a selection criterion in this early stage, a suboptimal system will

likely be chosen with a higher overall specific energy. For example, if the rock breakage

stage is removed to save energy, only a low grade deposit that doesn’t require breakage

(Deposit ID#1 in Table 5.6) would be mined. If rock breakage were utilized, a higher

grade ice deposit (Deposit ID#3 in Table 5.6) could be mined instead. The higher grade

deposit would require much less energy to mine due to processing savings even with the

energy intensive rock breakage stage.

It is important to note that the mining system selection procedure does not select a

geological deposit, a deposit must be available and the procedure helps engineers to apply

a mining system to that particular deposit prior to the economic assessment. The previous

example has been used to illustrate what could happen if Specific Energy were a selection

criterion. As a result, Specific Energy is not part of the mining system selection procedure

proposed in this chapter.

5.6.3 Equipment Mass

In order to determine a confident estimate of the equipment mass, a geological model,

mine plan, preliminary mining system selection and economic analysis are required. It is

therefore premature to use mass as a criterion for the preliminary mining system selection

as it pre-empts the outcome of the feasibility study. Note that these processes are iterative

and the initial mining system choice does not need to be the final choice. It is also observed
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that terrestrial mining method selection procedures [192, 213] do not use the capital and

operating costs as a selection criterion for this same reason. This is despite these two

parameters being of substantial interest to mine planners and investors.

A detailed off-Earth mining feasibility study focussing on equipment mass "opportunity

costs" will be detailed in Chapter 7. The economic indicator to be used is the Propellant

Payback Ratio (PPR). It links the economic return, equipment mass and the product

delivered to market together. However, as will be shown in Chapter 7, a selection of the

mining system should be made first, to enable the economic assessment to be carried out.

5.6.4 Terrestrial mining analogy and strategy

The revelations of the Specific Energy model for icy regolith show that ore grade is a most

important parameter. The best mining strategy would be to undertake exploration or

"grade control" activities during the mine life. Grade control is a mining industry term for

improving a mineral resource model with higher resolution data to minimize unplanned

waste mining, optimize extraction and de-risk the grade and tonnage production profile

[34, 50]. This is done on the Earth and allows mine planners to optimise the mine with

respect to operating cost. In that sense, the terrestrial mine operating cost and off-Earth

mining Specific Energy are analogous.

Grade control may also prove to be critical in off-Earth operations as reliability and

lifespans of equipment is likely to be low. This magnifies the value of undertaking grade

control activities compared to terrestrial operations. Grade control should occur over time

as the mine progresses, probably by sampling during the excavation stage or by conducting

additional exploration drilling. It is important that the mining system continues to operate

as expected so that sufficient time is given for new geological information to be applied and

enable reductions in SE cost. Hence, there is an important indirect link between mining

system reliability and the ability to minimise SE.

It will be more effective to have a reliable mining system that can survive until grade con-
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trol optimization can pay off. This is true, even at the cost of a higher initial SEbreakage,

SEexcavation, and SEtransport. This energy expenditure can be optimised effectively even

after all equipment is committed and a mine has commenced as it heavily depends on

geological and mine design parameters as described in Section 5.6.2 and shown in Figure

5.3. Prolonging equipment life is an effective strategy to optimise mass and specific en-

ergy costs. Therefore, system reliability is the key criterion for off-Earth mining method

selection and the rest can be taken into account at a later stage. The review of specific

energy and equipment mass criteria for mining system selection has shown that there is

little benefit to their usage at this stage of the process. These criteria must be assessed

later in a detailed economic study.

5.7 Logical Selection Framework

With reliability as the key selection criterion, mining system selection can be undertaken

using axiomatic design principles. A large database will be logically filtered down to a

small pool of applicable candidates for a given ore body. The logical filtering will depend

on each equipment’s FRs and capabilities in various geological settings. For example, it is

logical that a pneumatic suction device designed to collect loose regolith particles does not

have the function of mining ice deposits encased in consolidated soils at depth. Similarly,

a hammer drill designed for the rock breakage function will not be required to mine a

loose gypsum sand dune.

The deposit characteristics for the off-Earth mining system selection have been developed

from similar attributes used in the terrestrial Nicholas classification [212] and the UBC

Mining Method Selection Procedure [192]. The deposit characteristics are outlined in

Table 5.5. They have been carefully named to ensure a combination exists for all the

identified deposit examples in literature [45, 81, 138, 179, 193, 194, 226, 230, 277], and to

provide enough classifications for filtering the mining equipment database as well. A

comprehensive list of all combinations of characteristics is accompanied by a geological

description and relevant example references in Table 5.6. It is noted that there may be
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more geological examples that can fit each combination and therefore, the description

column is non-exhaustive. Current literature contains a far greater number of papers

describing the geology and physical characteristics of soils on Mars than papers providing

similar information for the Moon. This clearly indicates the near-term need for space

missions to a variety of lunar locations where ground assets will acquire sufficient usable

data for mining system selection on the Moon.

Table 5.5: Deposit characteristics for classification.

Volatile Ore Strength Deposit Geometry
Yes Unconsolidated Layered
No Partially Consolidated Evenly Distributed

Rock Variable

Each mining system is input into the framework with predefined Boolean attributes of

"Volatile, Unconsolidated, Partially Consolidated, Rock, Layered, Evenly Distributed, Un-

evenly Distributed", which encode whether or not (1/0) a particular system can work on

a deposit with the given characteristic. Conditional logic is then used to filter down the

original database of equipment from Table 5.1 to a small pool for a particular deposit.

The conditional logic is based on conceptual assessments of each system, and that each

system can either work or not work (1/0) on a particular deposit type. It is anticipated

that this framework will be evolved in the future once more operational data is collected

on different systems. For preliminary off-Earth mining system selection, a conceptual

assessment is currently the only means based on currently reported data and publications.

Once a deposit is defined, and the equipment list has been filtered down to the relevant

parts, they are divided into four subclasses as shown by the mining flow chart in Figure

4.1. They are: Rock Breakage, Excavation, Transport and Processing. These four sub-

classes enable the mixing of equipment to best suit the ore body or additional engineering

requirements (e.g. auxiliary FRs in Section 5.10) after ranking is complete. Boolean

attributes for each subclass are also encoded in the equipment database.

In some cases, the Rock Breakage subclass is not required. The deposit could already be

unconsolidated ready for the Excavation subclass. The Transport and Processing subclass

112



5.7. LOGICAL SELECTION FRAMEWORK

Table 5.6: Possible combinations for deposit characteristics and suggested descriptions.

Material Deposit
Geomechanics Geometry Description
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1 Yes Yes Yes Loose icy regolith sediment. [45,194,277]
2 Yes Yes Yes Compacted icy regolith. [45,194,277]
3 Yes Yes Yes Pure ice layers. [138]
4 Yes Yes Yes Icy/H2O adsorbed regolith. [45]

5 Yes Yes Yes Compacted Icy regolith/H2O adsorbed re-
golith. [45,277]

6 Yes Yes Yes Pure massive ice. [138]
7 Yes Yes Yes Glacial rill with pockets of ice. [138,226]

8 Yes Yes Yes Compacted lunar crater regolith with ice pock-
ets. [45]

9 Yes Yes Yes Compacted icy regolith. [45,194,277]
10 Yes Yes Eroded hydrated mineral sediment. [81,179]
11 Yes Yes Hydrated mineral sediment. [81,179]

12 Yes Yes Gypsum rocks with interbedded barren mate-
rial. [193,230]

13 Yes Yes Hydrated mineral regolith. [45,95]
14 Yes Yes Compacted hydrated mineral regolith. [45]
15 Yes Yes Massive gypsum or epsomite rocks. [81, 230]

16 Yes Yes Eroded hydrated mineral mixed with barren
material. [95, 193]

17 Yes Yes Eroded hydrated mineral mixed with barren
material. [95, 193]

18 Yes Yes Hydrated mineral veins. [207]

may or may not be required depending on the capabilities of the chosen excavator. If the

excavator is capable of extracting pure water and transporting it to a storage depot, then

it will be the only equipment required for that system.

The proposed mining system selection algorithm has been based on a highly constrained

brute force solution to the 0/1 Knapsack problem [124, 258]. The Knapsack problem can
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be summarised by the optimisation problem of filling a finite-sized knapsack with tools for

a hike. They must fit within the knapsack and provide the maximum utility to the user

for the conditions on that hike.

The algorithm iterates through all possible combinations of the filtered system equipment

and evaluates which combinations fit the deposit characteristics. Combinations are then

ranked based on axiomatic design principles. The algorithm is constrained to fill all

subclasses with an equipment, considering that some equipment fill more than one subclass.

This is achieved by reading the Boolean attributes for each equipment and identifying the

subclasses it can fill. The algorithm trials all combinations to check for the attributes

(Rock Breakage, Excavation, Transport, Processing) = (1, 1, 1, 1) or the binary value 15.

Since not all deposits will require a Rock Breakage subclass, a placeholder called "Breakage

Not Required" has been introduced into the mining equipment list. This will filter through

to enable the Rock Breakage attribute to attain a 1 value even for unconsolidated deposits.

The output from this part of the algorithm will yield all the potential combinations from

the equipment database that could be used to mine the specified deposit.

5.8 System Rankings

The majority of the terrestrial mining system selection techniques utilise a numerical

ranking methodology for planners to identify which method is likely to be most applicable.

As previously stated, employing a similar ranking methodology for off-Earth mining system

selection is difficult due to the lack of operational data to compare and rank. Hence, a

new comparison methodology is proposed based on the modelled Information Content

from equipment reliability.
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5.8.1 Series and Parallel System Reliability

The reliability of systems with components in series and parallel are important concepts

utilised in this analysis [85]. Reliability (R) is defined as the probability a component

completes its assigned task within a given period [205]. It can be calculated from the

probability of failure (pf ) as shown in Equation 5.5. Reliability of a system with compo-

nents in series (Rseries) can be calculated as the product of each component’s reliability as

shown in Equation 5.22 and generalised for multiple components in series as in Equation

5.23. A system with components in parallel will fail only if all components connected in

parallel fail, hence the reliability Rparallel is calculated as in Equation 5.24. It has been

shown by Myers [205] that redundant components in parallel improve system reliability

while components in series do not, as shown in Figure 5.4 and Figure 5.5. The assumption

is made with these equations that all components are probabilistically independent and

the simplified probability laws are applied. In practice component independence is likely

not the case and Bayes’ conditional probability formula should be applied. Unfortunately,

it is difficult and premature to define probabilistic relationships for system components

where no data is available. An alternative assumption is applied in this chapter where

components have known functional relationships from the axiomatic design assessment in

Section 5.5.

Rseries = R1R2 (5.22)

Rseries =
n∏

i=1
Ri (5.23)

Rparallel = 1−
n∏

i=1
(1−Ri) (5.24)

To demonstrate the assumption and thought process, an illustrative example is given. It is

known that a truck design requires a power supply component which itself has reliability.
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The power supply component is linked in series to the truck tub storage and the drive-

train. It is also known that the drivetrain is dependent on the power supply to function.

There exists a conditional probability relationship. Without operational data, the actual

relationship cannot be deterministically evaluated. The drivetrain physically depends on

the power supply, and so it can be assumed that the probability of success (reliability) of

the drivetrain cannot be greater than the reliability of the power supply. This assumption

is defined by Equation 5.25. Where known functional dependencies exist, the reliability

of functions in series must be less than that of the primary function.

R(FRseries) ≤ R(FRprimary) (5.25)

The serial dependency assumption in Equation 5.25 is utilised to increase the amount of

knowledge that is input into the complexity measure and allow for better differentiation

between mining equipment for the ranking process. Note that this is only applicable if

the functions are dependent in series, for example when the drivetrain is dependent on the

power supply.

Figure 5.4: Reliability of components in parallel after Myers [205].
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Figure 5.5: Reliability of components in series after Myers [205].

5.8.2 Complexity Measures and Information Content Ranking

Complexity in mechanical design is generally measured as a function of system size, com-

ponent connectivity or design problem solvability [150,199,262,290].

Graphical methods are sometimes used to determine the system size and connectivity,

through mapping out the functional blocks of a system and counting the number of nodes

and connections [143, 285]. Myers [205] describes the functional block diagram as pre-

senting the relationships between system components in the purest form without losing

information about the independent failure of components. The representation of a system

through a functional block diagram is depicted as a group of interconnected " black boxes"

each capable of a function and independent failure.

Efatmaneshnik and Ryan [80] observe that measurements of complexity have both a sub-

jective and objective component. They have presented a method for measuring complexity

through an objective size measure (number of parts) and also a subjective measure (num-

ber of additional functional blocks in comparison to a reference design). This methodology

requires the use of functional block diagrams and a reference system block diagram.

The use of complexity measures to indicate system reliability, such as the block diagram,

have been considered by Suh [283] and Stuart and Mattikalli [278]. The results show that

complexity and reliability are not correlated. This is due to the existence of redundancy
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in a system intended to increase reliability, while at the same time increasing system

complexity [278] according to the above definitions.

Axiomatic design principles as outlined in Section 5.4 allow an alternative method for as-

sessment and improvement of engineering designs by mapping how the Design Parameters

relate to more than one Functional Requirement. Frey, Jahangir and Engelhardt [99] show

that it is not correct to use independent probability laws when considering non-diagonal

(coupled/decoupled) design mapping, as DPs are interlinked. They have instead utilised

probability density functions and known tolerances on the DPs to accurately calculate

the information content of the decoupled design. Based on their findings, the Information

Axiom as described by Equations 5.5 and 5.6 has been chosen as the primary measure

to rank off-Earth mining systems in this work. It is applicable to conceptual designs and

has a correlative relationship with system reliability, a highly desirable trait for off-Earth

mining systems.

Unfortunately, the reliability of system components is a significant unknown at present

for off-Earth mining systems. They are also a critical input to the Information Content

Equation 5.6. A Monte Carlo approach to system reliability has been utilised to differen-

tiate and rank the systems and overcome this obstacle. The approach is outlined further

in Section 5.9.

5.9 Monte Carlo Reliability Trials

Deterministic evaluation of the Information Content of the off-Earth mining systems is

currently out of reach due to the lack of operational and manufacturing data. Instead,

mapping of the Functional Requirements to the Design Parameters using axiomatic design

principles has been applied to determine the level of complexity in each design. Each FR

has been assumed to have a randomly distributed probability of success between the Lower

Limit of 0.9700 and Upper Limit of 0.9999. It is assumed the highest level of reliability

will be engineered into these systems. Subsequently, 5000 Monte Carlo trials have been
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carried out for each FR to explore the total system reliability.

A uniform random distribution from MS Excel has been used for the trials, and a lower

probability limit 0.9700 has been chosen to reduce pull-up of the distribution when depen-

dencies are applied. Experimentation with probability limits revealed that elevated lower

limit assumptions (e.g. 0.9900) led to many minimum values occurring and destruction of

the random distribution.

The calculation of the overall reliability of the system assumes probabilistic independence

of each FR, resulting in the linkage in series of each FR by default. In cases where

dependencies exist according to the axiomatic design mapping matrix, the constraint in

Equation 5.25 is applied instead of the conditional probability formula.

Table 5.7 demonstrates a single Monte Carlo trial on the "Truck" equipment parameter

mapping in Table 5.2. Where ps is the probability of success of a functional requirement

(FR). Note where Equation 5.25 has been applied to calculate ps(F R3) and ps(F R4) as the

requirement to "transport with wheel torque" and "unload material with actuator" both

depend on the functioning of previous FRs "provide energy" and "store material". The

upper limit on the reliabilities of FR3 and FR4 are hence limited by the success of FR1

and FR2 and their minimum reliability in each Monte Carlo trial. Also note that only

a single minimum is used as an upper bound, and not the product of the ps(F R1) and

ps(F R2). This is because only one failure mode can occur at any one time, or in any single

Monte Carlo trial.

Table 5.7: Monte Carlo trial example for Tip Truck parameter mapping.

Evaluation Serial DP Calculation
Step Dependency
ps(F R1) DP1 = Randbetween(LowerLimit, UpperLimit)
ps(F R2) DP2 = Randbetween(LowerLimit, UpperLimit)
ps(F R3) DP1, DP2, DP3 = Randbetween(LowerLimit, min(ps(F R1), ps(F R2)))
ps(F R4) DP1, DP2, DP4 = Randbetween(LowerLimit, min(ps(F R1), ps(F R2)))
Equipment
Reliability (ps)

=
∏

(ps(F R1), ps(F R2), ps(F R3), ps(F R4))

Information
Content

= log2( 1
ps

)
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This trial is repeated 5000 times for each parameter map to obtain an average expected

value and standard deviation for the Reliability and Information Content as shown in

Figure 5.6 and Figure 5.7. Results show that the overall reliability of each system converges

to an expected value and standard deviation dependent on the initial assumptions.

Figure 5.6: Distributions of reliability using Axiomatic Design Monte Carlo model.

Figure 5.7: Distribution of Information Content using Axiomatic Design Monte Carlo
model.

Sensitivity analysis presented in Table 5.8 indicates that the actual ranking of each design

is not very responsive to changes in the assumptions, as long as the assumptions are

120



5.10. AUXILIARY FUNCTIONAL REQUIREMENTS

consistent across all designs. This is useful in the mining system selection process, as

designs are compared against each other and not ranked for absolute effectiveness.

Table 5.8: Sensitivity to sample range analysis.

Random Sample Assumption Range for Reliability
Ranking 0.99-0.9999 0.9-0.9999 0.85-0.95 0.8-0.95
1 Truck Truck Truck Truck

2 Bucket Drum
Excavator

Bucket Drum
Excavator

Bucket Drum
Excavator

Bucket Drum
Excavator

3 Hammer Drill Hammer Drill Hammer Drill Hammer Drill

4 Discrete Exca-
vator

Discrete Exca-
vator

Discrete Exca-
vator

Discrete Exca-
vator

5 Continuous
Excavator

Continuous
Excavator

LHD (Load-
Haul-Dump
Excavator)

LHD (Load-
Haul-Dump
Excavator)

6
LHD (Load-
Haul-Dump
Excavator)

LHD (Load-
Haul-Dump
Excavator)

Continuous
Excavator

Continuous
Excavator

7 Oven Oven Oven Oven

8 Pneumatic Ex-
cavator

Pneumatic Ex-
cavator

Pneumatic Ex-
cavator

Pneumatic Ex-
cavator

9 Crusher Oven Crusher Oven Micro Tunnel
Borer

Micro Tunnel
Borer

10 Micro Tunnel
Borer

Micro Tunnel
Borer Crusher Oven Crusher Oven

11 Volatile Extrac-
tion Drill

Volatile Extrac-
tion Drill

Volatile Extrac-
tion Drill

Volatile Extrac-
tion Drill

5.10 Auxiliary Functional Requirements

Auxiliary Functional Requirements can be added to the mining systems in order to mit-

igate the effects of environmental hazards common to all equipment such as radiation,

temperature, dust, other atmospheric conditions, etc. They are not a core part of the

mining system and do not affect the fundamental method of how the material will be

broken, excavated, transported and processed according to the definition of the mining

system in Figure 4.1. They have been left out of the design parameter maps in the analysis

to enable easy comparison between equipment. This is possible as the Auxiliary FRs are
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somewhat common to all designs. This leaves only the Core FRs used in the analysis.

In practice, Auxiliary FRs do affect the reliability of mining systems. Bayes’ Conditional

probability formula can be applied to the reliabilities of Auxiliary FRs and Core FRs as

described in Table 5.9 and Figure 5.8. It can be inferred that; if all Auxiliary FRs are

operating within their Design Parameters, the probability of success according to Equation

5.26 is maximised. In other words, engineering solutions to hazards should improve the

reliability of the mining system if working correctly. This is visually depicted by the

relatively large green area in the Venn diagram in Figure 5.8 where Pr(A|B)>Pr(B’) and

Pr(A|B)>Pr(A’). The probability of success is maximized given a working Auxiliary FR.

Pr(A|B) = Pr(A ∩B)
Pr(B) (5.26)

Where A is the success of the mining system and B is the success of Auxiliary FRs, A’

is probability of failure of the mining system and B’ is the probability of failure of the

auxiliary FR.

Table 5.9: Truck design mapping with auxiliary FRs to manage specific environmental
hazards.
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Figure 5.8: Reliability of mining systems with Core FRs and Auxiliary FRs.

It would be possible to extend the Monte Carlo approach that has been carried out for

Core FRs to the Auxiliary FRs. However, a much greater knowledge of off-Earth mining

environments is required to map Auxiliary FRs to mitigate the wide range of possible

hazards. The range of potential FR:DP solutions is very large. Despite the existence of

on-going testing of engineered solutions for dust mitigation and radiation in the literature

[139], no attempt to map these auxiliary FRs was made in this research due to the increased

complexity. This is also why it has been advantageous to separate the Core and Auxiliary

FRs, enabling the mining system selection method discussed in this chapter to focus on

Core FRs only.

The application of the Monte Carlo trials on Auxiliary FRs would be different than that

of Core FRs. The serial dependency assumption (Equation 5.25) cannot be applied for

Auxiliary FRs because the Core FRs are not dependent on them in series to be successful.

An example of a Core FR serial dependency is between the power system and the wheel

motors. The motor FR will not operate without the power system; it is serially dependent.

An example of an Auxiliary FR is a wheel bearing dust protection on a rover. The rover

will still function for some time without an FR to ensure they are protected from dust.
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There is no serial dependency in this case and the FR serial dependency assumption

(Equation 5.25) must be removed from the Monte Carlo trials on Auxiliary FRs.

The outcome where a Core FR is fulfilled despite the absence of the Auxiliary FR is

represented by the smaller blue area in the Venn Diagram in Figure 5.8, Pr(A|B’). The

probability of success of the system is smaller in this blue area, but it is not guaranteed

to fail as would occur if a serial dependency existed.

The removal of the serial dependency assumption (Equation 5.25) for Auxiliary FRs will

allow Monte Carlo reliability trials to occur above that limit and effectively increases the

average long term reliability. The expected relationship is described by Equation 5.26 and

reliability inference from Figure 5.8 is fulfilled. That is, if Auxiliary FRs are successfully

applied, then the reliability of the system should increase.

5.11 Results and Discussion

5.11.1 Off-Earth Mining System Selection Framework

The resulting off-Earth mining system selection framework is shown in Figure 5.9. The

main elements have been included as described in Section 5.5, 5.7, 5.8 and 5.9. The

elements outlined in Section 5.6 and 5.10 relating to Equipment Mass, Specific Energy

and Auxiliary Functional Requirements should be considered as extensions to the overall

assessment of an off-Earth mine. The final step in the process, the Economic Assessment

will include these factors and iteratively optimise the preliminary mining system selection

for those parameters. An example of the Economic Assessment stage is shown in Chapter

7.

It is important to note the difference between the traditional Mining Method Selection

done for terrestrial mining and the Mining System Selection procedure proposed in this

chapter. A mining system is a set of tools or equipment that can be used in combination to

access and extract mineral resources. Without more detail and operational examples for

124



5.11.2 Framework Application and Discussion

off-Earth ISRU, mining system selection by functional analysis, as proposed is the most

that can be reasonably be undertaken. A mining method is a specific approach to applying

a mining system. The difference between a mining method and a mining system is based

on how the equipment is applied in different geology and geometry. For a terrestrial mine

example, a truck and shovel is a mining system. Strip mining and open pit mining are

two mining methods used to apply a truck and shovel. Strip mining is the act of removing

long strips of waste material to progressively uncover a continuous, shallow seam of ore.

Open pit mining requires the removal of waste and ore via benching and pushbacks for

an ore body that extends downwards rather than laterally. As mentioned, there are not

currently enough baseline examples to formulate a mining method selection procedure for

ISRU that takes into account the specific geometry of excavations.

Figure 5.9: Mining system selection framework developed in this chapter.

5.11.2 Framework Application and Discussion

The preliminary Mining System Selection algorithm has been run on all of the 18 defined

deposit types as described in Table 5.6. Selected results of the top 5 proposed mining

systems are shown in Table 5.10 for loose icy regolith sediment, Table 5.11 for compacted
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icy regolith sediment, Table 5.12 for eroded hydrated mineral sediment and Table 5.13 for

hydrated mineral veins. The compacted icy regolith sediment has only yielded one option

for the mining system, the volatile extraction drill, as no other proposed breakage systems

are considered capable of this hard material [316].

Table 5.10: Deposit 1 loose icy regolith sediment top 5 mining systems.

Rank Breakage Excavation Transport Processing Information
Content

1 Breakage Not
Required

Bucket Drum
Excavator

Bucket Drum
Excavator Oven 0.4395

2 Breakage Not
Required LHD LHD Oven 0.4690

3 Breakage Not
Required

Pneumatic
Excavator

Pneumatic
Excavator Oven 0.5425

4 Breakage Not
Required

Bucket Drum
Excavator Truck Oven 0.5565

5 Breakage Not
Required

Continuous
Excavator Truck Oven 0.5830

Table 5.11: Deposit 9 compacted icy regolith sediment mining system.

Rank Breakage Excavation Transport Processing Information
Content

1 Volatile Ex-
traction Drill

Volatile Ex-
traction Drill

Volatile Ex-
traction Drill

Volatile
Extraction
Drill

0.5360

Table 5.12: Deposit 10 eroded hydrated mineral sediment top 5 mining systems.

Rank Breakage Excavation Transport Processing Information
Content

1 Breakage Not
Required

Bucket Drum
Excavator

Bucket Drum
Excavator Oven 0.4395

2 Breakage Not
Required LHD LHD Oven 0.4690

3 Breakage Not
Required

Pneumatic
Excavator

Pneumatic
Excavator Oven 0.5425

4 Breakage Not
Required

Bucket Drum
Excavator Truck Oven 0.5565

5 Breakage Not
Required

Continuous
Excavator Truck Oven 0.5830
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Table 5.13: Deposit 18 hydrated mineral veins top 5 mining systems.

Rank Breakage Excavation Transport Processing Information
Content

1 Hammer Drill Bucket Drum
Excavator

Bucket Drum
Excavator Oven 0.6830

2 Hammer Drill LHD LHD Oven 0.7125

3 Hammer Drill Bucket Drum
Excavator Truck Oven 0.8000

4 Hammer Drill Discrete Ex-
cavator Truck Oven 0.8215

5 Hammer Drill LHD Truck Oven 0.8295

Table 5.14 shows a summary of all top 5 results, with mining systems information content

averaged for comparison across deposits.

Table 5.14: Top 5 average results for all deposits.

Deposit Deposit Top 5 Average
ID Description Information Content
1 Loose icy regolith sediment. [45,194,277] 0.5181
2 Layered compacted icy regolith. [45,194,277] No solution
3 Layered pure ice layers. [138] No solution
4 Icy/H2O adsorbed regolith. [45] 0.5171
5 Compacted Icy regolith/H2O 0.7947

adsorbed regolith. [45,277]
6 Pure massive ice. [138] 0.7947
7 Glacial rill with pockets of ice. [138,226] 0.528
8 Compacted lunar crater regolith 0.5360

with ice pockets. [45]
9 Compacted icy regolith. [45,194,277] 0.5360
10 Eroded hydrated mineral sediment. 0.5181
11 Layered hydrated mineral sediment. [81,179] No solution
12 Layered gypsum rocks with interbedded No solution

barren material. [193,230]
13 Hydrated mineral regolith. [45,95] 0.5171
14 Compacted hydrated mineral regolith. [45] 0.7562
15 Massive gypsum or epsomite rocks. [81, 230] 0.7562
16 Eroded hydrated mineral mixed 0.5258

with barren material. [95, 193]
17 Eroded hydrated mineral mixed 0.7693

with barren material. [95, 193]
18 Hydrated mineral veins. [207] 0.7693
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No solution was found for the layered and consolidated/partially consolidated deposits

as mining equipment in the current database are not capable to effectively break hard

surface layers parallel to flat bedding planes and then allow selective excavation. Selective

excavation is a requirement to mine this type of material without significant ore dilution.

It is still possible to mine these deposits with components from the current database, but

a change in the selective mining unit is required and internal dilution must be accepted.

Hence, a reclassification of the ore body is needed. A selective mining unit is defined by

Bozorgebrahimi, Hall and Blackwell [29] as "the smallest block inside which ore and waste

cannot be separated".

In order to reclassify the ore, the ice layering is ignored and larger selective mining units

are considered. Figure 5.10 illustrates the change in selective mining unit and the effect

of re-classification. The deposits could instead be considered lower grade and "evenly

distributed". This change in selective mining unit enables the reclassification of deposits

as shown in Table 5.15. The ore bodies would then be massive enough to apply bulk

mining methods as the algorithm has suggested for the relevant re-classified deposits. The

top 5 mining system suggestions for these re-classified deposits are shown respectively in

Table 5.16, Table 5.17, Table 5.18 and Table 5.19. This type of mine planning process is

usually considered after the preliminary mining system selection and instead as part of

a feasibility study. It has been carried out simplistically here as a demonstration of the

application of the Mining System Selection procedure.

Table 5.15: Potential reclassification of deposits with internal dilution to allow efficient
mining.

Original Deposit Potential Consequence
Classification Reclassification

Deposit Type #2 → Deposit Type #5 Internal Ore Dilution
Deposit Type #3 → Deposit Type #6 Internal Ore Dilution
Deposit Type #11 → Deposit Type #14 Internal Ore Dilution
Deposit Type #12 → Deposit Type #15 Internal Ore Dilution
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Figure 5.10: Selective mining units for layered deposit and re-classification.

Table 5.16: Top 5 mining systems for Deposit 5 (layered compacted icy regolith).

Rank Breakage Excavation Transport Processing Information
Content

1 Volatile Ex-
traction Drill

Volatile Ex-
traction Drill

Volatile Ex-
traction Drill

Volatile
Extraction
Drill

0.5360

2 Micro Tunnel
Boring

Micro Tunnel
Boring Truck Oven 0.7995

3 Micro Tunnel
Boring

Micro Tunnel
Boring

Bucket Drum
Excavator Oven 0.8695

4 Micro Tunnel
Boring

Bucket Drum
Excavator

Bucket Drum
Excavator Oven 0.8695

5 Micro Tunnel
Boring LHD LHD Oven 0.8990
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Table 5.17: Top 5 mining systems for Deposit 6 (layered pure ice layers).

Rank Breakage Excavation Transport Processing Information
Content

1 Volatile Ex-
traction Drill

Volatile Ex-
traction Drill

Volatile Ex-
traction Drill

Volatile
Extraction
Drill

0.5360

2 Micro Tunnel
Boring

Micro Tunnel
Boring Truck Oven 0.7995

3 Micro Tunnel
Boring

Micro Tunnel
Boring

Bucket Drum
Excavator Oven 0.8695

4 Micro Tunnel
Boring

Bucket Drum
Excavator

Bucket Drum
Excavator Oven 0.8695

5 Micro Tunnel
Boring LHD LHD Oven 0.8990

Table 5.18: Top 5 mining systems for Deposit 14 (layered hydrated mineral sediment).

Rank Breakage Excavation Transport Processing Information
Content

1 Hammer Drill Bucket Drum
Excavator

Bucket Drum
Excavator Oven 0.6830

2 Hammer Drill LHD LHD Oven 0.7125

3 Hammer Drill Pneumatic
Excavator

Pneumatic
Excavator Oven 0.7860

4 Micro Tunnel
Boring

Micro Tunnel
Boring Truck Oven 0.7995

5 Hammer Drill Bucket Drum
Excavator Truck Oven 0.8000
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Table 5.19: Top 5 mining systems for Deposit 15 (layered gypsum rocks with interbedded
barren material).

Rank Breakage Excavation Transport Processing Information
Content

1 Hammer Drill Bucket Drum
Excavator

Bucket Drum
Excavator Oven 0.6830

2 Hammer Drill LHD LHD Oven 0.7125

3 Hammer Drill Pneumatic
Excavator

Pneumatic
Excavator Oven 0.7860

4 Micro Tunnel
Boring

Micro Tunnel
Boring Truck Oven 0.7995

5 Hammer Drill Bucket Drum
Excavator Truck Oven 0.8000

5.11.3 Limitations and Future Work

The preliminary Mining System Selection procedure for off-Earth mining proposed in this

chapter has some notable limitations. Primarily, the accuracy in evaluating the Reliability

and Information Content of potential designs is limited by the axiomatic design mapping

process. In the absence of any real data on operational reliability the FR:DP mapping

process can be inaccurate. However, the framework in this chapter has been deliberately

chosen with a view to input real data into the algorithm in the future to remedy sub-

jectiveness. The Monte Carlo reliability simulations can be directly substituted with real

data once it is available and the FR:DP mappings have an intricate link to reliability that

can be further developed in the future as described in Section 5.10. With these features,

continuous improvement is anticipated and this procedure will not be easily replaced over

time.

The issue of subjectivity was mentioned previously in Sections 5.2 and 5.4. It is noted that

traditional mining system selection techniques have included subjective components in the

past. The axiomatic design mapping process, as described in Section 5.4 is particularly

likely to suffer from subjectivity. In order to minimise this weakness, rules that guide the

level of decomposition of an equipment’s Functional Requirements have been implemented

to reduce disparity between users.
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There also exists an issue with the ranking methodology based on reliability and informa-

tion content. Productivity and effectiveness of the mining systems are not considered. For

example, experiments by Craft et al. [52] have shown that a percussive excavation mecha-

nism can reduce the amount of dig force required. This could potentially be a significant

improvement on other excavation systems. However, there is no provision to quantify

a productivity improvement within this mining selection procedure. Traditional mining

system selection procedures do not consider productivity or cost at all so this issue is not

new. Productivity and hazards management will be accounted for in later stages of the

mine planning process as more information is made available, including the completion of

preliminary mining system selection.

The results in this chapter should only be considered as a first step to deciding which

systems are best applicable to off-Earth deposits and do not take productivity and hazard

management into account. As with terrestrial mining, geological, environmental and op-

erational data will be needed for a feasibility study to confirm the technical and economic

viability of a particular mining system.

5.12 Conclusion

Mining method selection is a crucial part of the terrestrial mine planning process, and it has

been identified that there is not an equivalent objective process for off-Earth mining. This

chapter has outlined a novel mining system selection procedure for off-Earth resources.

The results have demonstrated that the method can be applied to preliminary mining

system selection, and provide useful, objective information to flow into follow up off-Earth

mine planning and optimisation studies.

Although the current lack of operational data is a limitation of this research, the conceptual

approach utilised here allows a process to be undertaken that was previously not possible.

Collection of real operational data in the future will be easily fused into this algorithmic

procedure to improve results.
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Chapter 6

Extraction Sequence Optimisation

with a Reinforcement Learning

Agent

6.1 Introduction

ISRU is fundamentally different to terrestrial mining, it is the extraction and utilisation of

materials, minerals or volatile chemicals in space, for space settlement and space mission-

specific purposes. There are also many parallels with terrestrial mining, but as mentioned

in Chapter 1 - Introduction it is incorrect to assume that the same objectives exist for

ISRU that do for mining. The most important difference is that modern terrestrial mining

operations are operated to make a profit. The planning processes and algorithms that

guide modern mineral extraction systems are designed to maximise profit. However, profit

is not the initial objective for ISRU. It has been identified as a requirement for future off-

Earth missions and settlements [242] regardless of profit. Instead, it is cost saving and

risk mitigation for the missions and settlements that creates value.

ISRU extraction planning has been shown in literature with some simple derivatives of
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terrestrial mine planning [44, 51, 105, 147], which as mentioned above does not have the

same objectives of ISRU. There has not been any focus on the extraction sequence or cut-off

grade optimisation for ISRU. According to the thesis Objective 3, this chapter will examine

the shortcomings of traditional mine planning algorithms when applied to ISRU. It firstly

examines the difference between ISRU and terrestrial mining, identifying some deficiencies

in established mine planning tools when applied to ISRU that must be resolved. A novel

ISRU planning method is then presented that harnesses the problem-solving capability

of Reinforcement Learning to optimise the extraction sequence and maximise the related

benefits. This method resolves several issues with traditional methods when applied to

ISRU, according to Objective 4 of the thesis. Reinforcement Learning algorithms are

detailed and trialled for this specific task. Following Objective 5, an architecture is finally

demonstrated which in some ways exceeds the capabilities of an expert human under test

conditions.

6.2 Literature Review

6.2.1 Terrestrial Mine Planning

The goal of terrestrial mining is to extract the portion of a mineral resource which has pos-

itive economic value, otherwise known as the ore reserve, to make a profit. The definition

of this ore described by Lane [161] depends on factors such as market prices and the costs

of production. Ore can be categorised by a cut-off grade policy using Lane’s formulae or

other similar methods [116]. The chosen cut-off grade policy condenses a complex financial

model into a single heuristic value for each discrete volume block of the mineral resource.

This cut-off heuristic streamlines decision making for design and scheduling engineers.

In the special case of an open pit mine, there is naturally a requirement to uncover material

prior to extracting it. An algorithm can be used in this case to determine the ultimate pit

limit. This overburden removal constraint simplifies the problem sufficiently so a graphical

algorithm such as Lerchs-Grossman or one of its descendants can be used to derive the
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ultimate pit limit based on input cost and revenue parameters [204]. Advances on the

speed of the Lerchs-Grossman algorithm have been made by implementing a pseudo flow

algorithm [10] although the underlying graph relations remain similar.

The resulting ultimate pit limit is a mathematically optimal pit, albeit impractical to mine.

It is used along with heuristic cut-off grades to assist engineers with further practical design

and scheduling to provide a Net Present Value (NPV) business case [58]. The cut-off grade

heuristic and the ultimate pit limit algorithms form the basis of modern terrestrial mine

planning.

Hall [116] has also proposed a new paradigm for the derivation of cut-off grades. Instead of

calculating the cut-off grade according to Lane’s formulae [161], it could be derived from

a numerical optimisation process. Hall [116] implements an iterative approach where a

multi-dimensional NPV response is calculated from a parametric set of cut-off grades and

other mine planning variables such as the extraction rate and processing rate. The most

optimal parameter values are then selected for mining operations [15, 116,300]. This new

approach has yet to be widely adopted in industry.

6.2.2 Off-Earth ISRU Planning

ISRU is an enabler for off-Earth research, development, industry and settlement [191].

Although there are many analogies to terrestrial mining, ISRU is a distinct activity with

distinct objectives. The value of ISRU can be measured by the cost savings in launch mass

for these activities rather than the terrestrial analogy of profit [191,221,272]. This will be

shown in more detail in Chapter 7. Another discrepancy is that mining requires an existing

market [134], while ISRU aims to create its own market. Due to these discrepancies and

more, a direct transfer of terrestrial mine planning tools to ISRU optimisation is ineffective.

For a detailed example, production cost and market price assumptions are not available

for ISRU operations as no market or proven extraction technology currently exists. These

inputs are required for terrestrial mine planning tools such as the Lerchs-Grossman algo-
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rithm [204], Lane’s formulae [161] and the parametric Hill of Value optimisation proposed

by Hall [116]. Even in the terrestrial context, feasibility studies have significant issues in

accurately determining production costs and market prices. Ongoing research is aimed at

addressing this problem specifically for terrestrial mining [21,66,118].

Terrestrial mining feasibility studies also include equipment availability factors and cost

items for maintenance and replacement in their assumptions. The longevity of equipment

is not considered critical to the continuity of terrestrial mining operations as any equip-

ment can be repaired or replaced while respecting the estimated parameters of cost and

availability. In contrast, off-Earth ISRU operations will pause if enough equipment com-

ponent failures occur, and the equipment could take months or years to replace. This is a

major risk as resource extraction scheduled in the future may not be feasible at that time

if the equipment has failed. In that case, the scheduled resource may not be considered

ore in the terrestrial mining sense [134]. Another problem is that the timing of the equip-

ment failure is unknown, adding significant uncertainty onto the classification of ore for

ISRU. Cut-off grade policies based on Lane’s theory [204] or other methods [116] contain

the underlying assumptions that the equipment rates and costs are predetermined and

equipment is perpetual or replaced without delay. The terrestrial mining algorithms and

heuristics are therefore incompatible with ISRU as they do not account for uncertainties

in those variables, or the finite and uncertain equipment lifespans.

The technology and engineering for ISRU operations are in the early stages. Capital costs

for a range of engineering solutions are not yet known. ISRU feasibility is also constrained

by the unknown capabilities of these engineering solutions. Examples include the infras-

tructure required to provide power to the site or the excavation equipment itself [222]. In

the case of terrestrial mining, capital cost is one of the most important variables when de-

termining physical constraints such as power and equipment capabilities. The capital cost

can usually be benchmarked against a reference example which has already been carried

out somewhere on Earth. This is not the case for off-Earth ISRU. The ISRU planning

and optimisation process must account for these constraints at a more fundamental level

compared to terrestrial mine optimisation. To enable this, ISRU financial costs need to
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be decoupled from the assessment process so that cost assumptions can be updated as the

engineering and technology are developed in the future. An example of de-coupling these

assumptions is shown in the non-financial ISRU project assessment in Chapter 7.

Uncertainty in the geological environment has been a focus of research efforts to improve

traditional mine planning methods [70]. The primary means to account for geological

uncertainty in literature has been to run the Lerchs-Grossman algorithm with a distribu-

tion of geological inputs [170, 197]. This can be described as a Monte-Carlo method or

stochastic simulation. Although the method allows better understanding of the effect of

changes in the geological environment or other parameters, the probabilistic output cre-

ates an issue for mine design engineers. With stochastic simulation, there is a requirement

to make subjective decisions based on a distribution of results and translate that into a

practical mine design and schedule. With poor input data and even greater uncertainties

for off-Earth ISRU, the input distributions and hence the Monte-Carlo Simulation results

distribution broadens. Increasingly stochastic geological inputs and hence Monte-Carlo

outputs make it difficult to select appropriate resource extraction plans that relate to

the real mineral resource. Hence for off-Earth ISRU, the final extraction design using a

Monte-Carlo approach is likely not much better than using a completely random design

approach.

Finally, ISRU will likely be carried out via autonomous or remote operations and deliver

a continuous stream of new sensor data. This data should be used to optimise extraction.

The traditional heuristic mine planning approach is laborious. A continually changing

dataset will cause process difficulties in maintaining an optimal mine design with limited

human engineering resources. By moving beyond the traditional heuristic planning ap-

proach and towards methods that enable rapid data driven iteration, optimality in the

design can be maintained with much less human effort.
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6.2.3 ISRU Planning Requirements and Gaps

The previous section establishes reason for the incompatibilities between terrestrial algo-

rithms and heuristics and off-Earth ISRU. Table 6.1 summarises the set of requirements

identified for off-Earth ISRU planning techniques and the current analogous capabilities of

terrestrial mine planning. There is a gap between the two that must be bridged to enable

mine planning for ISRU and ensure maximum value is returned. In this chapter, a novel

planning procedure for ISRU is developed to bridge these gaps.

Table 6.1: ISRU planning requirements and incompatibilities with traditional capabilities.

ISRU planning requirement Traditional mine planning capability

#1

Aim to maximise Resource Utilisa-
tion. Physical constraints such as
power and equipment capabilities
apply.

Aim to maximise Net Present Value. Cost,
market price and equipment availability as-
sumptions apply. These assumptions are in-
compatible with ISRU.

#2
Account for the risk of equipment
failure and the effect on opera-
tions.

Assume that equipment can be easily re-
placed. Risk of termination of operations
due to equipment failure not usually con-
sidered.

#3

A planning algorithm without in-
puts of production cost or market
prices due to uncertainty of these
assumptions.

Planning algorithms balance between input
production costs and market revenue as-
sumptions.

#4
Manage stochastic input assump-
tions for geology and equipment
reliability.

Typically, Monte Carlo Simulation scenario
analysis. This must be condensed to a final
design by a subjective decision maker.

#5 Rapid iteration of designs with
large volumes of new data.

Engineering design based on data. Rapid
updates not possible with limited human re-
sources.

6.2.4 Reinforcement Learning

Reinforcement Learning (RL) uses principles of dynamic programming to break complex

multidimensional optimisation problems into smaller recurrent problems [6, 98]. The RL

problem is framed as an interactive environment where an agent can take actions to

transition through the environment and collect rewards or penalties for each transition.

The environment is a Markov Decision Process (MDP) which can be deterministic and
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only affected by the agent’s actions or stochastic and include random elements. This

framing of the problem is ideal for the ISRU extraction optimisation as it allows for

random uncertainties in the environment to be considered, learning of optimum policies

which can generalise to various environments, non-explicit programming of complex mining

constraints and the continual update of the environment with new data. The capabilities

of RL promise to bridge all the requirement gaps for ISRU planning identified in Table

6.1.

The RL agent learns underlying value distributions of the MDP environment and selects

maximum value actions based on its neural network function approximation. The agent

improves its actions closer to the optimal trajectory through exploration of the MDP.

There have been many new algorithms developed for Reinforcement Learning recently

as function approximation via neural networks has become more practical. They can be

divided into several classes of algorithm: value based or policy based [98], model based or

model free [98], on-policy or off-policy [65], online or offline [253]. The details of all these

categories of RL algorithm are beyond the scope of this chapter, but further information

can be found in the reference books by Sutton and Barto [287] or François-Lavet et al. [98]

and Beysolow II [22].

Three model-free experience sampling RL architectures from literature and contained in

the Stable Baselines [122] python package are trialled for this research. The algorithms tri-

alled include Deep Q-Learning (DQN) [196], Advantage Actor-Critic (A2C) [195,301] [33,

34] and Actor-Critic with Experience Replay (ACER) [304]. Their respective categories

are outlined in Table 6.2.

Table 6.2: RL algorithm categorisation.

Algorithm Abbrev. Policy/Value On/Off Policy
Deep Q-Learning [196] DQN Value Based Off Policy (Experience Replay)

Advantage A2C Policy On Policy
Actor-Critic [195] Based (No Experience Replay)
Actor-Critic with ACER Policy Off Policy

Experience Replay [304] Based (Experience Replay)
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The first potential algorithm is Deep Q-Learning [196]. This is a value iteration algorithm

which attempts to estimate the value of any potential action, and maximise the rewards

based on the estimated values. An iterative update of the Bellman Equation is utilised

for this purpose, the one-step Q-learning update [287] is shown in Equation 6.1.

Q (st, at)← Q (st, at) + α[ri+1 + γ max
a

Q (si+1, a)−Q (st, at)] (6.1)

Where Q(st,at) is the total expected future reward from iteration step (t) when following

the optimal Q value function action maxa(Q(st,at)) for the current state s and action a.

The transition reward is r and the discount factor for future rewards is γ for a step size α.

Iteratively updating this equation with state-action-reward-state data will allow conver-

gence to the optimal value function Q* as i approaches infinity [287]. The Q* function or

a close approximation is then used to find the optimal trajectory.

The Deep Q-Learning algorithm will usually not perform well in environments with a

random element to the reward function or state transition (such as stochastic geological

environments) as the action selection depends on iterative update of previously received

deterministic rewards [301].

Instead of taking the maximum expected value action as with Q-learning, actions can be

chosen based on a parameterised policy (π(a|s; θ)) [195]. Where π is a policy to determine

action a given state s. The policy has parameters θ, usually approximated by a neural

network. This policy is iteratively updated by gradient ascent to maximise the expected

reward. This policy gradient method can also be improved by reducing the variance of

rewards in the update step. This is done by quantifying and proportionately learning from

more surprising actions. Prioritising surprising experiences in the learning update process

is done by applying the Advantage function in Equation 6.2.

Aπ(s, a) = Qπ(s, a)− V π(s) (6.2)
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Where Aπ is the advantage of taking action a in state s. Qπ is the expected reward for

policy π in state s and action a. Vπ is an estimate of the value of the state s.

Equation 6.2 is used in the Advantage Actor-Critic (A2C) algorithm [195,301]. It converges

to the optimal policy by iteratively taking actions, receiving rewards and updating the

parameters (θ) of policy (π(a|s; θ) as per Equation 6.3.

dθ ← dθ + Aπ(st,at)∇θ log πθ(at|st) (6.3)

Where the ∇θ log πθ(at|st) is the policy gradient approximation. The update parameters

for the state value function V (s; θv) are accumulated using Equation 6.4.

dθv ← dθv + ∂Aπ(at, st)2

∂θv
(6.4)

The values of the parameters θ and θv are then updated synchronously (for A2C) or

asynchronously (for A3C) using dθ and dθv.

The Advantage Actor-Critic methods are on-policy algorithms, meaning they only use

the current trajectory to update policy parameters. For sparse environments where many

actions are required to receive a single reward, the on-policy algorithms may take a long

time to converge and can exhibit high variance.

The high variance and poor sample efficiency of Advantage Actor-Critic is improved by the

Actor-Critic with Experience Replay (ACER) [304] algorithm. This algorithm implements

experience replay, where state-action-rewards are stored in memory and can be re-used

for learning multiple times and improve sample efficiency. Several innovations have been

implemented to enable Actor-Critic with Experience Replay. These include a truncated

importance sampling method called RETRACE proposed by Munos et al. [203]. The

importance sampling ratio gives extra weight to behavioural policies that have provided a

positive surprise in reward. These are more likely to be used for the policy update. The
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second main innovation used in ACER is the policy update trust region after Schulman et

al. [255]. This limits the magnitude of policy parameter updates to reduce variance.

Another innovation that could be applied to improve any of these reinforcement learning

algorithms is pre-processing with a 3D Convolutional Neural Network (CNN) [163, 177].

In the case of the 3D geological environment a 3D CNN uses optimised data filters to

identify larger features that span across several blocks. For large geological environments,

pre-processing data with a 3D CNN could improve the speed and effectiveness of agent

training. The 3D CNN is an additional step of a data processing pipeline prior to the

trained neural networks. It requires neural network back-propagation to optimise the

filters and hence can also decrease computational efficiency depending on the complexity

of the problem itself.

Extensive experimentation and parameter tuning is required to determine the best archi-

tectures and parameter combinations for specific reinforcement learning problems.

6.2.5 Reinforcement Learning in Mine Planning

There are limited examples of research where reinforcement learning has been applied to

terrestrial mine planning and none for ISRU. Elevli [83] has proposed a combination of

the scheduling and pit optimisation problems through a dynamic programming approach.

This approach also applies a version of the Bellman Equation 6.1. It varies from RL, as a

graph of the geological environment is generated and an exhaustive search for the highest

reward trajectory is conducted. It is model-based and not computationally practical for

larger geological environments as the possible number of trajectories becomes very large.

Askari-Nasab and Awuah-Offei [7] apply Q-learning to open pit pushback selection in or-

der to maximise the Net Present Value of the long-term schedule. This algorithm has

been developed to easily fit with contemporary terrestrial mine planning methods and

was demonstrated on a full-scale iron ore deposit. The algorithm utilises pushbacks gen-

erated by the Lerchs-Grossman revenue factor method. It selects options for scheduling
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the pushback to maximise NPV. However, since the Lerchs-Grossman algorithm requires

costs and market prices as inputs, it is not applicable to ISRU. It is also constrained by

the Lerchs-Grossman algorithm revenue factor step size and does not support short term

decision making as with the block-by-block approach. Furthermore, the Q-learning ap-

proach does not allow generalisation to other geological environments as the state-values

of each specific pushback are progressively learned.

Kumar and Dimitrakopoulos [156] have developed an algorithm that optimises the short

term mine schedule using Monte Carlo Tree Search and an RL agent. The environment

is regularly updated with incoming new data from blasthole drilling and equipment utili-

sation rates. This enables decisions to be made using the most up to date data, without

engaging in the traditionally slow human mine planning decision process. It is designed

specifically for terrestrial mine planning and utilises market prices and financial costs in

the optimisation objective function, therefore not applicable to ISRU. Furthermore, the

RL agent shown by Kumar and Dimitrakopoulos [156] uses a fixed extraction sequence

from the long-term mine plan. Only the material destinations are modified by the agent.

This is a form of short-term cut-off grade optimisation and not full scale mine planning.

RL has also been proposed for other terrestrial mining problems such as the optimisation of

truck dispatching [216] whereas neural networks and broader machine learning algorithms

can also be applied to problems such as geological modelling [129].

The key contribution of this chapter is a new method of extraction planning specifically

for off-Earth ISRU and testing of various RL algorithms for this purpose. The proposed

method includes a generalised mine sequencing agent. The generalisation allows the ex-

traction sequence for various orebodies to be generated by a single agent. The short-term

schedule becomes unnecessary due to the ease of re-generating a full long-term extraction

sequence with a trained agent. Optimized cut-off grades can also be quickly derived by the

agent and some post-processing of parameterised scenarios. The rapidly generated mining

sequences can also be used to quantify various risks related to ISRU operations, including

equipment failures and geological uncertainty. Although designed specifically for ISRU

optimisation, the proposed method could also be used as an alternative for terrestrial
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mine planning.

6.3 Methodology

6.3.1 ISRU Optimisation Objective and Constraints

This section will explore an optimisation objective for ISRU planning when traditional

maximisation of financial objectives, such as NPV, are not applicable.

The intent of off-Earth ISRU is generally to maximise the “value” of the operation. The

“value” can be measured by the amount of launch mass saved for other off-Earth activities

[191, 221, 272]. These savings can be more directly measured by the quantity of in-situ

resources utilised. This is a contrast to the financial objectives of terrestrial mining.

An example of one non-financial measure, the Propellant Payback Ratio for ISRU will

demonstrated in detail in Chapter 7. The Propellant Payback Ratio is a unitless indicator

of an operation’s long-term competitiveness compared to a terrestrial launch capability

which can be calculated at an early stage. It can also be used for short term decision-

making similar to Lane’s theory [161]. However, it does not solve all the incompatibilities

stated in Table 6.1. Much like traditional mine planning tools, it doesn’t efficiently accept

stochastic inputs and does not support rapid design iteration with continuous data streams.

Since “value” for an ISRU operation can be measured by the cost savings from launching

the same mass from Earth, a non-financial ISRU optimisation objective is naturally to

maximise the quantity of resource utilisation. This is subject to the following inputs and

constraints.

1. Geological inputs and uncertainty – described by probability distributions.

The quantity of product in each block of a resource is limited and uncertain. Each block

will be subject to a time and energy consuming process to extract the product before the
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product value is realised. This means that uncertainty in the amount of contained product

may lead to wasted time and energy (or a surprising gain).

2. Material precedence constraints – described by geometry.

The mining system is limited by its design parameters. It is unable to select any block

of material at any time. In the case where the deposit is non-uniform and undercover, an

open pit style system must move waste material to access the desired block. This is known

as a precedence constraint [10]. The precedence constraint can be programmed into the

reward function as a penalty to encourage the agent to take valid actions or explicitly

coded as a limitation on the available actions. If only a penalty is applied for an incorrect

action, the algorithm may find solutions by accepting a short-term penalty and breaking

this constraint. To avoid this, all actions are checked for validity. Invalid actions are not

allowed to make progress. During training, the agent will learn to avoid these invalid

actions, as they cause a penalty and do not make any progress.

3. Equipment reliability and lifespan constraint – described by stochastic distribution.

The equipment lifespan is an uncertain length. It has a measurable dependency on the

amount of work done by the equipment and the amount of preventative and corrective

maintenance done. Equipment lifespan determines the time limit for product delivery and

hence the value of the operation.

4. Equipment capability constraints – described by physical equations.

The number and type of equipment, including their power and any ancillary requirements

limits the work that can be done. In this chapter, only a simple single-trajectory system

is considered for demonstration of the planning algorithm. Systems with multiple units

may require more advanced co-operative ISRU planning algorithms.
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6.3.2 Resource Extraction Trajectory

RL can be applied to produce a near optimal trajectory for resource extraction subject to

the constraints for each system. This trajectory can be used as a sequence of extraction

that optimises resource utilisation subject to constraints. It serves a similar purpose to the

Lerchs-Grossman’s ultimate pit limit methodology but solves several of the issues created

by that algorithm and traditional mine planning in general.

Firstly, an RL agent does not need to balance costs with revenue to determine an ultimate

pit limit. An ultimate pit limit is no longer valid due to uncertainty in equipment lifespans.

The reward function can instead be based on the product quantity generation alone, or

with penalties included for undesirable actions. The agent trajectory can be used instead

of an ultimate pit limit for value analysis.

Secondly, a resulting trajectory can be accurately discounted at each timestep to estimate

risk adjusted returns and be used for short term decision making. The Lerchs-Grossman

algorithm alone is not appropriate for short term decision making due to the additional

engineering required to translate the results of a mathematical optimum to a practical

design and sequence. In this way, it does not work well to apply discount factors on a

block-by-block resolution and is generally only used for largescale slices or pushbacks with

an estimated extraction timeframe [190].

Thirdly, the resource extraction trajectory can be truncated at any timestep depending

on the random occurrence of equipment failure. Varying the trajectory length based on

equipment lifespan expectations yields an expected quantity of resource utilisation. Hence

the ISRU operation’s value can still be estimated if future blocks on the trajectory result

in being unviable.

Fourthly, a generalised RL agent can be used to provide ISRU trajectories and values for a

range of input geological environments and risk settings. This allows better understanding

of the mine design and sequence impacts of geological updates or chances in risk parameters

and reduces the need for subjective human decision making. The trajectory of a generalised
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agent can also be easily re-run for any updated environmental data that may become

available, allowing rapid design iteration.

6.3.3 Geological Environment

The geological environment used in this study is a voxelised estimation of the desired

product grades in a defined area of lunar regolith. The product is H2O to be used in

rocket fuel manufacturing [19,36] on the Moon. An array is generated in three geometric

dimensions representing the relative physical location of each block of material. Each block

is assigned two data channels. One for H2O concentration and one for physical status.

The physical status is a logical variable 1/0 representing the block being mined/unmined

respectively. This results in a 4-dimensional array. Additional channels can be added to

convey any desired information, although more concise environmental representations are

easier for the RL agent to learn.

The environment is populated with a geological structure of varying H2O concentrations.

To automatically generate geological structures, a number of randomised H2O seeds are

placed in a blank 3D block environment. Interpolation using the inverse distance squared

weighting method populates the remaining H2O concentrations as shown in Equation 6.5.

H2Oµ =

∑n
i

H2Oi

d2
i∑n

i
1
d2

i

(6.5)

Where H2Oµ is the concentration or grade in a given block, i is the seed at distance d and

n is the total number of seeds.

Figure 6.1 shows separate examples of the generated geological environment. The average

H2O concentration for each environment is taken as the visible cut-off value for improved

images. Any of the visible blocks are coloured based on their H2O grade relative to the

sample average as shown in the legend.

Geological environment generation is simplified in this chapter compared to a practical
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Figure 6.1: Geological environment examples.

method. The simplification enables research to proceed without data intensive geological

modelling techniques that add little value to the results presented here. In practice,

detailed lunar geological data should be collected, inferences made, and domains should

be identified to assist with environment modelling. The modelled environment should

then be tested against ground truth as mining progresses. Currently, geological model

validation is not possible for ISRU research. Cannon and Britt [36] have begun to examine

the modelling of geological environments for lunar H2O resources in more detail.

6.3.4 Mining System Constraints and Reward Shaping

The number of available extraction sequences will be limited by the precedence constraints

of the mining system. Mining system examples such as the Volatile Extraction Drill and

Discrete Excavator can be taken from a generic equipment pool summarised in Chapter 4.

For example, a Volatile Extraction Drill will move around the surface and drill downwards

to reach a volatile block of ore and then heat it to remove the desired gaseous H2O

product. This system will easily extract blocks aligned vertically but require additional
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time to move to a new site and establish the hole. In contrast, a Discrete Excavator will dig

regolith from the surface and then move outwards from that initial location. Downward

cuts rather than horizontally advancing cuts will require slightly more time and energy

due to gravitational force working against the excavator.

These mining system constraints can be implemented explicitly by limiting available ac-

tions for each step. Additionally, the system constraints can be included as penalties in

the environment’s reward function. A penalty can be applied to the transition (instead of

a reward) where predetermined inefficient or impractical actions are taken. The RL agent

will learn to avoid these actions where possible. In this chapter, to avoid learning from

undesirable actions and wasting training time, a penalty is assigned for an invalid action

and no progress will be allowed in the environment. This limits the number of invalid

action-states that an agent can learn from. Other similar studies explicitly limit actions

at each step based on precedence constraints [7, 83,156].

The mining system chosen for demonstration in this chapter is based on the Discrete

Excavator from Chapter 4. For simplicity, the assumption is made that no additional

equipment is required for rock breakage. The reward function is modified with mining

system penalties based on block precedence requirements such as overburden removal

shown in Figure 6.2. Nine overlying blocks must be removed prior to the target block

so that a penalty is not received. The RL agent learns the optimum policy of extraction

while avoiding unnecessary penalties.

Other constraints such as safe working proximity and geotechnical stability constraints

could also be included in the future.

The reward function in this chapter has also been used to encourage the agent to take

actions that are considered efficient for an excavator-type system. Figure 6.3 shows the

first block to be extracted from a level surface (red) will result in an inefficiency penalty

while the adjacent blocks will not. This penalty aims to account for the additional time

and energy required to take a downwards cut.
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Figure 6.2: Overburden removal precedence.

Figure 6.3: Discrete excavator inefficiency penalty.

The question remains to determine the appropriate amount of penalty for these actions.

The effect of these penalties will be explored parametrically as shown in results Section

6.4.1.3. The average H2O concentration of the environment is used as a base case penalty

in this chapter. Equation 6.6 shows the agent’s reward if the action is determined to be

inefficient or impractical. Note the negative sign causing a penalty. The concentration is

multiplied by 10 kg for each block to convert to a H2O product mass. This scaling also

helps to distinguish cumulative penalties and rewards more easily on learning curve charts

over several steps.

150



6.3.4 Mining System Constraints and Reward Shaping

Average Reward (kg) = −10 kg

∑n
1 H2Oµ

n
s (6.6)

Where n is the number of blocks and H2Oµ is the concentration in kg H2O per kg regolith

for each block and s is a scalar used for tuning. The value for s has been chosen as 1.0

after parametric analysis.

The agent will also be penalized for extracting any material lower than the average con-

centration. This part of the reward function encourages the agent to focus on high-grade

regions and takes advantage of geological domains where high concentrations are more

common in the same region. This penalty was introduced at a later stage after initial

trials demonstrated slow learning progress. The results of this modification are shown in

Section 6.4.1.3. The average block H2O concentration in the environment has been used

as a baseline for this penalty. The resulting reward or penalty is determined according to

Equation 6.7.

Reward (kg) = 10kg × H2Oµ −Average Reward (6.7)

It is important to realise that the reward function is used to train the agent to perform

desirable behaviours. It should not be used to directly demonstrate the value of an ISRU

operation. For example, the agent will collect rewards and penalties throughout the ex-

traction trajectory. The cumulative value of the reward does not equal the true “value”

of the operation or the quantity of resource utilisation. The penalties and baseline within

the reward function do not actually represent physical ore quantities. To find the true

quantities from the ISRU trajectory, a post-processing accumulation step should be carried

out, using the extraction trajectory H2O grades and any cut-off grade.
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6.3.5 Agent Action Mapping and Episode Termination

The Advantage Actor-Critic’s (A2C) actor neural network is configured with n2 action

output nodes. Where n is the side length of the geological environment. This represents

a 2D plane of n × n possible actions, with each node correlating to a surface location

in the block environment. For example, a geological environment with size 7 × 7 × 3

blocks will have a two-dimensional selection plane of 7 × 7 = 49 possible actions. A

visual example of the action mapping is shown for a 7× 7× 3 environment in Figure 6.4.

The uppermost available block will be extracted for each of the possible actions. The

dependency constraints in Section 6.3.4 will be checked for each action and cause either

a reward for extraction or a penalty for violating the constraints. The agent eventually

learns the expected state values for each action and choses the highest state-value blocks

to extract.

The 2D selection plane method works well for small environments. However, the number

of output nodes for the neural network increases with n2. This greatly increases training

time for larger environments due to the number of additional neural network parameters.

Alternatively, agent output node configuration could be simplified to only 5 actions for

all environments. The 5 actions: North, South, East, West and Extract would allow the

agent to traverse through the environment and select the current location for extraction.

The downside of this method is that rewards are less common, and more training steps

are required to offset the reward sparsity.

Only the 2D selection plane will be applied in this chapter, however further investigations

in the future should examine the effectiveness of different agent action mapping techniques.

The default terminal state is reached when the maximum allowable number of steps have

been taken. This terminal state serves to ensure large portions of the geological envi-

ronment are left intact and hence boundary conditions are not likely to be experienced.

The maximum number of steps is input as a percentage of the closest integer number of

blocks in the geological environment. The default trajectory length in this chapter is equal

to 10% of the number blocks in the geological environment. That is 90 valid timesteps
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Figure 6.4: Agent action mapping for n x n block environment.

per episode for an environment with dimensions of 15 × 15 × 4. Invalid actions that vi-

olate precedence constraints will still count as episode timesteps but no change to the

environment or remaining number of “valid” timesteps will occur.

6.3.6 Agent Training

6.3.6.1 Algorithms and Tuning

The RL pipeline proposed in this chapter has been developed iteratively by testing three

main learning algorithms. The algorithms, introduced in section 6.2.4, comprise of the

following options available in the Stable Baselines [122] package:

• Deep Q-Learning - (DQN);

• Synchronous Actor-Critic - (A2C); and

• Actor-Critic with Experience Replay - (ACER).

The results from these algorithms can be highly sensitive to variations in hyperparameters

such as the learning rate and discount factor. Tuning of the learning rate and gamma

discount factors has been carried out using a grid-search method [173]. Training has been

153



CHAPTER 6. EXTRACTION SEQUENCE OPTIMISATION WITH A
REINFORCEMENT LEARNING AGENT

run for 11.5 hours on the computational cluster Katana supported by Research Technology

Services at UNSW Sydney [236]. Grid search training has been conducted with 4 CPUs for

the A2C architecture and 1 CPU for the ACER architecture. The hyperparameter tuning

results can be seen in Section 6.4.1. The trained agents are evaluated on a set of 100

unseen environments throughout training to determine the generalisation effectiveness of

the algorithm. Tuning of the environmental penalty for this problem was also conducted

using grid-search.

Once final training parameters have been chosen, agent training was conducted using 16

parallel CPU cores. The results can be viewed in Section 6.4.2.

6.3.6.2 Supervised Learning and Evaluation

Comparing a stochastic agent’s capabilities while also removing the distorting effect of

varied reward concentrations in the evaluation environments is important. Evaluating

an agent with randomly generated environments does not efficiently achieve comparative

results as some environments will naturally contain more available rewards than others.

To remove this variance and help quantify the optimisation ability of agents, a supervised

learning approach will be taken.

A large set of randomly generated environments will be saved and divided into training

and test sets. Evaluation on the smaller test set can then be carried out to compare agents

during training. The test set is made up of 100 randomly generated environments which

will remain unchanged. The training set is periodically updated throughout the training

with new randomly generated environments and partially completed environments saved

from a training episode. This process of regenerating and recycling increases the diversity

of agent experiences rather than using a fixed training set.

Any evaluations of the agent outside of the training loop should also be done on specific

environments for comparison, not randomly generated ones. For example, specific environ-

ments are chosen and saved when comparing the human trajectory to the agent trajectory
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or running scenario tests for cut-off grade optimisation.

6.3.6.3 Agent Policy Generalisation

Agent policy generalisation is achieved by ensuring the agent receives a sufficiently di-

verse set of training experiences. The computational cost of generating a new random

environment for every episode is high. Hence, it is desirable to minimise the amount of

environment generations while still maintaining a sufficiently diverse training set. A type

of supervised or “curriculum” reinforcement learning [210] can be applied to update the

training set as required. In this research, diverse training experience is enabled by ran-

domly generating a set of 5000 environments, then slowly updating the set throughout

training. The training set is shared between several parallel agents and algorithms, hence

the work of re-generation of examples is also shared. The set is updated with partially

mined environments saved from previous episodes, along with new randomly generated

environments. These new and partially extracted environments are initially introduced

with a ratio of 1:1 to ensure a stable state is achieved over time. They are updated at a

random frequency with probability of 1 update per 50 000 timesteps per agent. During

the training process, environment files are randomly chosen and loaded from the training

set. The expected concentrations of new environments and partially extracted environ-

ments is shown in Figure 6.5. Over time, the concentration of new to partially extracted

environments can be modified as shown in Figure 6.5 at 5x108 timesteps. At this time

the concentration is changed to 2:1 partial environment per new random environment.

The fresh environment will only be updated every 1 in 100 000 timesteps per agent. The

higher concentration of partially mined environments allows the agent to experience ad-

vanced states more often rather than the common initial state. This manages one of the

expected issues of exploration, where the agent does not see sufficient samples of advanced

stage trajectories. There are a greater number of possible combinations for advanced stage

trajectories and hence a lower probability of experiencing a representative sample.

Figure 6.6 shows the learning pipeline for an A2C agent from environment generation
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Figure 6.5: Environment types available for training.

through to the policy update training loop. The initial 5000 environment generations are

done independently of the RL training algorithm to fill the storage folder. A further 100

environments are stored separately for evaluation of the agent’s generalisation capability.

These 100 environments will never be used for training, only evaluation.

Figure 6.6: Training pipeline for ISRU trajectory optimization with A2C Agents.

A demonstration of the generalisation ability is shown by the agent training evaluations
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in results Section 6.4.2.

6.3.7 ISRU Planning Tool Demonstration

6.3.7.1 Human Expert Comparison

It may seem a desirable goal to determine the absolute optimum extraction sequence.

However, the “optimum” can only be found for the given inputs. An “optimal” sequence

for an inaccurate geological environment is in reality sub-optimal. Hence there is not much

additional value to find the mathematical optimum extraction sequence for an ISRU sce-

nario compared to a “near” optimum. It is however important to quantify the performance

of the agent against a good baseline. For this purpose, a human expert will be used to

provide a trajectory for the agent’s performance to be compared. It is possible that the

human expert could spend several hours to determine an absolute optimum sequence via

educated trial and error. Again, there is not much additional value to find the absolute

optimum when inputs are likely to change. In this experiment, the human expert was only

allowed one trial at generating a near optimal sequence. The results of the comparison

between expert and agent are shown in Section 6.4.3.

6.3.7.2 Risk Adjusted Return

Following the findings of Pelech, Roesler and Saydam [221] and as will be detailed in

Chapter 7, the ISRU operation’s competitiveness is dependent on the amount of product

that can be delivered. It is shown in Chapter 5 that while the processing efficiency and

ore grade are important factors, the equipment reliability and longevity is key to optimis-

ing an ISRU operation. Long life and reliable equipment enables discovery, access and

exploitation of higher grade material and hence maximise the amount of product that can

be delivered. The equipment reliability is therefore an important consideration for the

ISRU planning algorithm presented in this chapter.
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The lifespan of the equipment is an uncertain quantity which can only be modelled by

a random variable. The agent’s discount factor γ already provides the desired effect

and causes imminent rewards to be valued higher than equivalent future rewards. A lower

discount factor encourages the agent to act more greedily and prioritise short-term rewards

over larger long-term rewards. The greedy extraction trajectory must then be truncated

early (terminated) to a sampled equipment lifespan in a post-processing step to determine

the expected return of that ISRU sequence.

A Monte-Carlo Simulation can be run to sample expected returns from the terminated

extraction trajectory. For example, a trajectory is randomly terminated over 10 000 trials

to determine the expected distribution of returns based on the equipment reliability. The

probability of termination on any timestep has been modelled by the equipment failure

random variable shown in Equation 6.8.

Pr (Terminal|t) = Pr(X < 0.001t) (6.8)

Where t is the timestep and X ∈ (0, 1) a uniform random variable. In this example, the

probability of failure increases linearly as time t goes on to simulate wearing of equip-

ment parts. Any probability function can be applied here in practice to yield the desired

equipment reliability response.

An example distribution of the expected return, or risk adjusted return from a specific

environment is shown in results Section 6.4.4.1.

6.3.7.3 Cut-off grade optimisation

Cut-off grade optimisation is traditionally a multidimensional problem solved to maximise

the value of a mining operation [116]. The cut-off grade determines the destination of

the excavated material. For example, a cut-off grade may be raised to 10% H2O meaning

that any material lower than that would be discarded to the waste stream, saving energy
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and resources for more productive material. Higher grades will still report to the product

stream and undertake further beneficiation to produce pure H2O.

The potential of a system to be optimised in this manner also depends on the capacities

and bottlenecks along the production line. It is therefore important to understand the

system capacity constraints. For the case studied in this chapter; the production system

has three stages: a moderate-capacity excavation stage, a high-capacity transport stage

that can undertake extra works and a low-capacity beneficiation stage which acts as the

overall limitation of the system. The production flowchart with capacity constraints is

shown as part of Figure 6.7 with material flows.

Figure 6.7: Simple lunar ISRU process including planning and information Updates.

The excavation step itself has surplus capacity to enable excavation and discarding of

waste material while sustaining a fully utilised beneficiation step. This is analogous to

a mill-constrained system in terrestrial mining [116, 161]. In this scenario, it is usually

advantageous to increase the cut-off grade, maximise throughput grades and hence H2O

output from the beneficiation bottleneck. Conversely with a mine-constrained system, the

cut-off grade should be reduced to maximise overall material throughput and hence H2O

output which is limited by the excavation step.
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6.3.7.4 Rapid Environment Updates

An optimal sequence of extraction is required to maximise ISRU value prior to equipment

failure. The optimal sequence will deliver the greatest amount of product with the least

amount of work by taking advantage of variances in the geology. It is known that esti-

mation errors will occur in generating the environment due to geological uncertainty. As

extraction progresses, more geological information will be obtained, and the geological un-

certainty will reduce. This may lead to necessary updates of the observable environment.

This issue, the changing understanding of geology has been intentionally decoupled from

the ISRU optimisation in this chapter. The solution applied here is to train a general

agent to optimise extraction for any foreseeable geological environment. Information will

be gained about the geology as ISRU progresses and the modelled environment can be

updated accordingly. The general agent will then be given a newly updated environment

to generate a new trajectory. The process for information updating is described in Figure

6.7 with the information flow from the extraction process to the planning process and back

again.

Updates can be managed by a generalised extraction policy so that the agent can run

on any foreseeable geological environment and determine a near-optimum sequence. The

ability of a general agent to produce near-optimal extraction trajectories for unseen envi-

ronments also enables rapid scenario testing and decision making. Scenarios can be carried

out based on varying input risk parameters such as geological value and equipment lifes-

pan. A demonstration of the generalisation capability of the agent is shown in Section

6.4.2. Evidence of variable scenario testing is also shown in the cut-off grade optimisation

results in Section 6.4.4.2.
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6.4 Results

6.4.1 Hyperparameter Tuning

6.4.1.1 Learning Rate

The results for the learning rate hyperparameter tuning are shown in Figure 6.8 and Figure

6.9. The optimum learning rate for the ACER architecture in this problem is 0.0001 and

0.001 for A2C.

Figure 6.8: A2C learning rate parameter tuning.

6.4.1.2 Gamma Discount Factor

The discount factor γ has also been parametrically tuned between the values of zero and

one. The results of this tuning are shown in Figure 6.10 and Figure 6.11 for A2C and

ACER, respectively. A gamma value of 0.8 has been selected for the final training of both
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Figure 6.9: ACER learning rate parameter tuning.

algorithms. An extended training session is also carried out for the A2C gamma value of

0.99 to determine if longer training times will affect the result in Figure 6.14.

6.4.1.3 Reward function shaping

The error penalty and reward baseline are shown in Equation 6.6 and 6.7, as the aver-

age H2O concentration of the environment. This is an arbitrary selection of baseline and

sensitivity analysis on the magnitude of this baseline is necessary to determine an appro-

priate value. A scaling factor applied to the average concentration baseline and training

was conducted with the scaling value of 0.0, 0.5, 1.0, 2.0, 3.0 and 5.0. The effect of the

scaling factor on training effectiveness is shown in Figure 6.12 and Figure 6.13 for A2C

and ACER, respectively. A penalty scalar of 1.0 has been chosen for the final training,

although a value of 2.0 may improve results with the ACER architecture in particular, the

penalty scalar affects the environment rewards, and a standardised value has been chosen

to allow better comparison of final generalisation results in Figure 6.14.
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Figure 6.10: A2C gamma parameter tuning.

6.4.2 Architectures and Policy Generalisation

The DQN architecture was trialled and found to be inappropriate for this problem setup.

The greedy-epsilon exploration method [196], which uses an occasionally random step

dependant on an annealed epsilon factor leads to many repeated steps in the early stages

of an episode and little advantageous exploration in the later stages of the training.

Policy gradients maintain a more consistent exploration rate and better targeting of ex-

ploration in later stages and hence are the preferred family of algorithms for this problem.

The A2C (Synchronous Actor-Critic) and the ACER (Actor Critic with Experience Re-
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Figure 6.11: ACER gamma parameter tuning.

play) architectures have been trained in parallel to determine the best option.

The agent is evaluated against 100 unseen environments over the course of the training

at intervals of 50 000 timesteps. A moving average of the results of these evaluations is

plotted in Figure 6.14. The A2C architecture was run with gamma 0.8 and 0.99 and the

ACER architecture with gamma 0.8. The ability of the agent to generalise across these

100 unseen environments improves over time and is used as the main indicator of the

training success.

It has been found that the ACER architecture does not perform well with the type of CPU

resources available. Long training times (in excess of 120 hours) are required to train
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Figure 6.12: A2C penalty scalar parameter tuning.

the architectures proposed in this chapter. Practically, only 12-hour compute sessions

are available, and the process must be saved and loaded every 12 hours to enable longer

training time. The experience replay buffer has not been saved and reloaded for ACER and

results in extended episodes, slow learning, and an unstable plateau on the learning curve.

Further training of the ACER agent is not practical without changes to the architecture

to limit episode lengths.

The A2C architecture with gamma parameter 0.8 has shown acceptable training perfor-

mance and will therefore be used exclusively for the results section in this chapter. Note

that there is no definitive end point to RL agent training. The A2C training has been

165



CHAPTER 6. EXTRACTION SEQUENCE OPTIMISATION WITH A
REINFORCEMENT LEARNING AGENT

Figure 6.13: ACER penalty scalar parameter tuning.

terminated as a lengthy plateau and slight decline in performance has been experienced.

6.4.3 Human Expert Results

The trained agent has been run against a human mine sequencing expert, the author of

this chapter. The comparison was undertaken on two unseen geological environments, the

single-seed and two-seed orebody shown in Figure 6.1. The comparison between the agent

and human’s proposed trajectories for the singe-seed environment can be seen in Figure

6.15.

Quantifying these results in terms of the ore grade distribution in the environment is shown
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Figure 6.14: General evaluation score of the agent over time.

in Figure 6.16, where it can be seen the agent initially provides a higher-grade sequence

from timesteps 0-20 (the mined grade result shown in green on the chart) where the human

has planned better for the long term. Figure 6.17 shows a comparison of the quantities

delivered over time. The agent performs much better over shorter timeframes. The agent

is potentially suffering from insufficient training experience with late-stage trajectories, or

Figure 6.15: Visualisation of agent extraction sequence for a single seed environment.

167



CHAPTER 6. EXTRACTION SEQUENCE OPTIMISATION WITH A
REINFORCEMENT LEARNING AGENT

the greedy nature of the algorithm is discounting future returns sufficiently to cause this

result. To minimise issues with training, Section 6.3.6.2 describes the method to provide

regular experience of advanced trajectories by re-using partially mined environments in

the training pipeline. The results shown in red on the chart represent the average mined

grade from the sequence during timestep 20-40. The result written in black represents the

average mined grade across the entire sequence.

Figure 6.16: Geological distribution and performance comparison for a single-seed envi-
ronment.

The two-seed environment has also been used for comparison. Figure 6.18 shows a visual-

isation of the sequences returned by the agent and human expert. The sequences deviate

in terms of strategy here, as the human has planned two separate pits to extract higher

grades over a longer timeframe while the agent has focussed on just the highest-grade

pit and eventually pushes across to the lower grade seed. As can be seen in Figure 6.19

and 6.20, the agent provides superior returns for the 0-20 timeframe and also the 20-40

timeframe. The human expert still manages to produce the most overall, although with

less of a margin in this scenario. It appears that the agent is exhibiting the same issue

with longer term rewards that was exhibited with the single-seed scenario.

It is also clear from both scenarios, that the human expert is not providing an optimal

sequence. The human is not considering the cumulative advantage of small incremental
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decisions over the course of the mine life, instead mainly focussing on the end goal. This is

an issue with ISRU as previously mentioned in Table 6.1. The time limit of the operation is

unknown due to uncertainties around equipment lifespan. Planning to extract the highest

amount of product over an arbitrary mine-life is not useful if the equipment does not

survive that period. A solution to this problem is shown with the trained agent in the

next section.

This problem can also be formulated as mathematical model to compare the true opti-

mality. This approach has not been pursued in this chapter for two main reasons. Firstly,

the mathematical optimum is unlikely to be a real optimum that can be practically imple-

mented. Exceedingly complex models and high computational requirements are required

to obtain a mathematical optimum that respects all practical rules and constraints in

the real world. Secondly, the geological model is unlikely to be 100% accurate, negating

any added value from achieving an optimum based upon it. A comparison of the trained

RL agent may be compared against a mathematical optimum in future work to further

demonstrate the advantages or RL for this task.

Figure 6.17: Cumulative performance comparison for a single-seed environment.
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Figure 6.18: Visualisation of agent extraction sequence for a two-seed environment.

Figure 6.19: Geological distribution and performance comparison for single-seed environ-
ment.
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Figure 6.20: Cumulative performance comparison for a two-seed environment.

6.4.4 Novel ISRU Planning Tools

6.4.4.1 Risk Adjusted Return

The Equation 6.8 reliability function has been used to determine the termination length of

each of 10 000 extraction scenarios. A probability density of the expected returns can be

generated with these results as shown in Figure 6.21a and 6.21b. The human performance

expectation is bimodal, as a significant low-grade extraction phase is undertaken in the

middle of the sequence. The agent performance is more regular with the highest probability

of extracting around 300 kg H2O for the operation lifetime.

Figure 6.21c shows the cumulative probability for expected product of the two sequences

over 10 000 Monte Carlo trials. The majority of equipment failures occur while the agent

is outperforming the human in this example. For example, reading from the cumulative

probability chart there is an 80% probability that the agent will produce less than ~375

kg of H2O while the human has the same confidence to produce less than ~305 kg H2O.

The human clearly has a longer-term goal in mind and manages to produce the overall

highest results with nearly 150 kg more product than the agent. However, according to
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Figure 6.21: Expected returns for human and agent on single-seed environment.

these reliability assumptions there is less than a 0.2% chance of achieving it. This analysis

shows that after taking equipment reliability assumptions into account, the agent’s greedy

sequence is a better choice for ISRU.

6.4.4.2 Cut-off grade optimisation

The ISRU sequencing tool has been run iteratively on a three-seed geological environment

subject to various product stream cut-off grades. The system is constrained by the bene-

ficiation step as outlined in Figure 6.7. The environment shown in Figure 6.22a and b are

the same environment subject to 0% and 10% respective cut-off grades.

The results of multiple extraction sequence trials (8 stochastic trials for each cut-off grade)

are shown in Figure 6.23. The optimal cut-off grade is 2% H2O in this case and will likely
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Figure 6.22: Three-seed complex environment subject to different cut-off grades.

Figure 6.23: Effect of applying a cut-off grade to extraction.

increase the overall production of H2O. Higher cut-off grades increase the rate of overall

production; however, the ore reserve is also exhausted much sooner and the total volume

produced is less.

Rapid scenario testing and its extension to cut-off grade optimisation demonstrates the

usefulness of a trained agent in planning ISRU extraction and maximising the value of the

operation. In modern terrestrial mining operations, this type of optimisation study is done

by teams of engineers using the much slower traditional methods outlined by Hall [116].
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6.5 Discussion

6.5.1 Hyperparameter Tuning

Only the major hyperparameters, the discount factor γ and the learning rate have been

parametrically tuned via a grid-search method. The penalty scalar is an environmental

modifier, not a learning hyperparameter. Each algorithm trialled has several other unique

parameters that have been left at their default values in the Stable Baselines package [122].

It is possible that tuning of all these parameters may also increase performance for this

specific task, however it becomes impractical to implement grid search as a solution with

so many sub-optimal parameters to tune.

One parameter that seems to affect the ACER algorithm is the experience replay buffer

size. Periodic spikes can be seen in the ACER learning curve in Figure 6.14. These

correspond to saving and re-loading the neural network and consequently flushing the

experience replay buffer as training is re-started. This effect seems to be neutral or even

positive in early stages as the improvement rate exceeds any negative effects of a refreshed

experience buffer. As the improvement rate plateaus, the lost experience buffer takes too

long to recover and the limited available training computing resources (12-hour limit) do

not allow any real gains to be made. It is thought that changing the size of the experience

buffer or extending the available time between saving, loading and buffer refreshing may

affect this result.

6.5.2 Agent Optimality

In this chapter, the generalised RL agent has been evaluated against a human expert to

determine its effectiveness. The human was deliberately time constrained when searching

for the optimum sequence, only one trial was allowed. The human expert’s sequence is

therefore likely to be sub-optimal.

It may be desirable to evaluate the agent against algorithms that are known to achieve
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optimal solutions. However, it has already been identified in this chapter that the tradi-

tional mine planning algorithms are not suited to the ISRU problem. They require cost

and revenue assumptions which are too uncertain for off-Earth markets and operations

among other incompatibilities outlined in Table 6.1. Currently there are no mathematical

optimal solutions for the ISRU extraction problem and similar to terrestrial mine sequenc-

ing there is limited added value in finding the absolute optimum, especially when practical

limitations must be considered.

Due to the inherent sub-optimality of the human expert, it is not possible to quantify how

much improvement an RL agent can attain or when to stop training. The advantage of an

RL agent over a human expert is specific to each different environment and distribution

of ore grades. It is not expected that the RL agent will be able to provide a constant

and predictable advantage over the human expert. The human expert can also find more

effective solutions if more time is allowed for scenario trials. The results of this chapter

simply demonstrate that an RL agent can be used to produce an effective ISRU extraction

sequence. The optimality of that solution is not known, and more work can be done to

improve the solution.

6.5.3 Stochastic Agent Policy

A stochastic actor-critic is required for training in this environment to ensure adequate

exploration. It has been necessary in this research to maintain a stochastic agent policy

even after training has been completed. It is known that a deterministic policy, taking the

maximum value action could yield a higher return [261]. However, in this implementation,

the agent selects an action, and a check is run in the environment to ensure the action

complies to the precedence constraints. If the action violates these constraints, it is con-

sidered invalid, and no change is made to the environment. With a deterministic policy,

the agent would enter an infinite loop in this case. The same environmental observation

is made repeatedly, and the same action selected. To avoid the infinite loop, a stochastic

policy where some random actions are taken is implemented in this chapter.
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The high-dimensional action map (225 action outputs) in this work means long train-

ing times are required to approach a deterministic policy limit as mentioned by Silver

et al. [261]. It may be advantageous in future work to investigate lower dimensional ac-

tion architectures to reduce neural network training requirements and potentially enable

deterministic policy evaluations.

Note the stochasticity of the result in Figure 6.23 appears to increase as the number of

timesteps increases. This indicates less appropriate training has been experienced for the

later timesteps, an issue that will be investigated in future works.

6.5.4 Reinforcement Learning Architectures

The DQN algorithm available in the Stable Baselines [122] package is inefficient for this

problem. The greedy-epsilon random exploration method tends to visit many invalid or

low-value states. This causes a significant amount of wasted compute time as progress

is made only when valid states are accepted. The guaranteed convergence of the value

function as iterations approach infinity is, however, a desirable trait of the DQN algorithm.

Future works may examine more advanced DQN implementations such as Information-

Directed Exploration [214] for the mine sequencing problem on a single environment. A

more efficient DQN agent could be trained to converge to the optimal sequence for a single

environment and then be used to compare and quantify the performance of a generalised

policy agent. Although, the training time required to optimise an environment individually

using DQN may not be worth the optimality trade-off for using a generalised agent.

The general ISRU sequencing problem appears to be better suited to policy gradient meth-

ods such as Actor-Critic [301, 304] due size and stochasticity of geological environments.

Off-policy learning techniques such as Prioritised Experience Replay [251] are also use-

ful for learning generalised policies. However, with the rapid progress of Reinforcement

Learning algorithms in recent years it is expected that new and improved RL algorithms

will become available for this problem in the future.
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6.5.5 Training Distributions

The RL agent learns underlying distributions and patterns of input data. Although the

geological environments in this study are generated using random seeds, some structure

and regular variance has been designed into these environments as would be expected in

a real geological environment.

It is possible that the agent is learning the broad underlying distribution that these en-

vironments are being generated with. It was hypothesised that running the agent on

completely different types of geology would lead to poor results, meaning that the agent

may need additional training for new deposit types. However, during the experiments

there has been no direct evidence of such an occurrence. The cut-off grade optimisation

performed unexpectedly well. These modified cut-off grade environments are very differ-

ent to the original seed generated environments and cannot be generated with the same

underlying distribution. Yet, the general agent still followed similar trajectories, with

sensible variations regardless of the cut-off grade applied to the input environment.

If any future issues are found with running the agent on environments outside the original

training possibilities, a prescribed curriculum learning method [228] can be applied to

update the agent with relevant new experiences and reduce training times.

6.5.6 Future Work

Simple geological environments have been used for training the algorithm in this work.

The long training times and difficulty in scaling-up this architecture mean that this par-

ticular method is only practical for small geological environments. Scaling-up the RL

architecture will likely require modifying the action output mapping to reduce dimen-

sionality and potentially implementing a Convolutional Neural Network for pre-processing

the environment. These tasks will require significant re-design of the environments and

algorithm. This chapter has not quantified the full potential of Reinforcement Learning

for ISRU planning, it has only been demonstrating that it can work. Future work should
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focus on scaling up the capabilities, increasing efficiency and demonstration on full scale

geological environments.

Extending this ISRU planning tool to different mining systems such as drilling or tunnelling

outlined in Chapter 4 is also possible. That will be required for a quantitative assessment of

the effectiveness of those systems when their respective reliability parameters are known.

Extending the RL tool can be achieved with modifications of the reward function and

environment precedence constraints.

The specific example shown in this chapter is aimed at bridging the gaps between tradi-

tional mine planning and off-Earth In-Situ Resource Utilisation. However, the technique

shown here can also be used for future terrestrial mine planning. This has already been

partly demonstrated by Kumar [155], although that agent was not generalised and did not

have the capacity to modify the long-term schedule as shown by the agent in this chapter.

6.6 Conclusions

Several problems have been detailed in this chapter for the transfer of traditional mine

planning algorithms to ISRU. These problems include the uncertainty of inputs, the dif-

ferent optimisation objectives of ISRU and terrestrial mining and the assumption that all

ore will be recovered within a specified mine life. The reality for early ISRU operations

is that when a piece of equipment fails, replacement parts may take a long time to re-

supply from Earth. This delays resource extraction and invalidates the already uncertain,

time-dependant inputs such as market pricing, costs and NPV discount factors.

A novel method for planning and optimising ISRU has been developed and demonstrated

in this chapter that doesn’t need cost, price or discount factor inputs. For this method,

the traditional process is evolved from manual design and schedule iteration to producing

and analysing RL agent trajectories based on variable input risk distributions. Using this

method, mine plans can be easily optimised within the unique constraints and uncertainties

that come with ISRU.

178



6.6. CONCLUSIONS

A generalised RL agent has been shown that can produce mine extraction sequences from

a range of geological block models for lunar H2O resources. When comparing the results

to an expert human engineer, it has been found that the agent is better at micro-managing

short term decisions and sometimes achieve higher results than the human. The generalised

agent also enables cut-off grade optimisation and risk adjusted return assessments to be

conducted and rapidly updated with continuous inflow of new environmental data. The

algorithm has been demonstrated using just one simple mining system example, but the

agent’s capabilities can be modified to optimise the application of any mining system

shown in Chapters 4 or 5.

There are still many opportunities for further development of this method, notably around

increasing the speed and effectiveness of agent training. The findings of this chapter could

also be used as an alternative to traditional mine planning algorithms. This may reduce

labour intensity of terrestrial mine planning processes in the future.

Uncertainties around cost and revenue inputs are a weakness of traditional mine plan-

ning algorithms when applied to ISRU. However, these inputs are critically important to

the traditional methods of understanding economic feasibility of mining projects. The

following chapter will investigate this weakness further and develop a new method for

determining the economic feasibility of an ISRU project without using these uncertain

inputs.
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Chapter 7

ISRU Project Appraisal with

Uncertain Inputs

7.1 Introduction

The Net Present Value (NPV) has been used to assess the value and economic feasibility

of terrestrial and off-Earth mining projects in the past [5, 26, 53, 135, 259, 272, 315]. As

per Objective 3, this chapter outlines a deficiency in this method when applied to ISRU.

Costs and revenue of an ISRU operation are difficult to estimate for NPV and add an

additional order of complexity into the ISRU planning and optimisation process. This

chapter demonstrates a novel ISRU project appraisal method that can provide valuable

indicators for planning and optimisation engineers even with highly uncertain inputs,

fulfilling Objective 4. In this study, the nearest terrestrial competitor is used to determine

the competitiveness of an off-Earth mine. The nearest terrestrial competitor can launch

water resources directly from Earth instead of in-situ extraction. These competitors can be

directly compared in terms of physical, not financial quantities. The physical comparison

removes the need for higher-order financial parameters such as the NPV discount factor

and is more accurate for engineering optimisation.

180



7.2. LITERATURE REVIEW

The consideration of the geology outlined in Chapter 2, mining systems from Chapters

4 and 5, mining sequences discussed in Chapter 6, space logistics and market demand

are all important factors in determining mine feasibility and are key inputs into the ap-

praisal method used in this study. There are still many uncertainties around equipment

specifications (e.g. mass, power, mining rate) and geology (e.g. ore grade, hardness).

Assumptions and simplifications are made in this chapter to allow the demonstration of

the appraisal method. Due to the uncertainty of assumptions, a sensitivity analysis has

also been undertaken to show the impact of variance in some of these assumed factors.

These insights, along with the new ISRU appraisal method, can also be used to identify

areas of improvement for future off-Earth mining projects.

A comparative appraisal is also undertaken in parallel for H2O resource extraction from

a dormant comet part of the Near-Earth Object population, demonstrating the flexible

usage of this new technique according to Objective 5.

7.2 Literature Review

Net Present Value (NPV) analysis has been employed by various researchers including

Sonter [272], Andrews et al. [5], Blair et al. [26], Craig et al. [53], Zacharias et al. [315],

Jones et al. [135], and Shishko et al. [259] to determine economic viability of mining projects

on asteroids, the Moon or Mars. NPV is a well-known project evaluation tool used in

mining and other industries. It is designed to guide investment decisions by accounting for

the value of future revenues and costs by assigning a discount factor. The discount factor

causes earlier revenues to be valued higher and later costs to be less demanding [305]. It is

limited by these same features when used to assess projects with high uncertainty around

cost, revenue and timing of investment [1,142,292]. Keller, Collopy and Componation [141]

have shown that the predicted cost of research, development and capital for space systems

has proven to be highly inaccurate in the past. Off-Earth mining projects are expected to

have similar inaccuracies as there are no reference operations for costs or any established

market price for revenue estimation. This limits the applicability of NPV analysis to
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off-Earth mining. Furthermore, the NPV is designed only for project investment decision

making. Terrestrial mine planners use additional measures for production planning and

scheduling such as the Net Smelter Return (NSR) in the base metals industry. The NSR is

calculated as the undiscounted value of the metal-in-concentrate minus all refining charges

and transport costs with metal recovery factors applied [305]. Erdem, Güyagüler and

Demirel [87] and Morley, Snowden and Day [198] have previously identified some of the

issues around uncertainty with NPV for terrestrial mining projects. They have made use

of Monte Carlo simulations to produce probability distributions of the NPV and improve

analysis, however this tool is still only an indicator of project viability and not as useful

as the NSR for mine planning purposes.

The “mass payback ratio” concept utilized by Sonter [272] illustrates the need to expend

mass in the form of propellants, rocket bodies and mining consumables in order to return

product mass to the market. This method builds on the NPV evaluation and is not affected

by cost, revenue and time uncertainty. However, as pointed out by Blair et al. [26], the

mass payback ratio does not guarantee economic benefit in the way NPV is designed to

do.

The previous off-Earth mining studies mentioned above [135,259,272,315] generally focus

on input variables based on orbital mechanics, rocket fuel requirements, product mass

returned and time of the return trip. Terrestrial mining feasibility studies also require

confident geological resource characterization and extraction methods to be considered.

Andrews et al. [5] takes the first steps at incorporating a design for the mining and pro-

cessing system on an M-Type asteroid which is included in the NPV analysis. Blair et

al. [26] build on this and suggest potential mining systems for the lunar surface which

affect the NPV calculation as does Craig et al. [53].

Asteroid mining logistics have been examined through NPV and project feasibility by

other authors such as Probst et al. [231] and Dorrington, Kinkaid, and Olsen [74]. It is

evident in these papers that the NPV method of assessing asteroid mining missions has a

significant effect on the decision outcome, due to the time dependent discount factor.
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7.3 Mining Systems

7.3.1 Lunar Strip Mining

Mining systems proposed for the Moon include traditional excavator and haulage systems

shown by Amah et al. [4] and in-situ ice sublimation methods shown by Zacny et al.

[320]. For terrestrial operations, conventional strip mining utilizes equipment such as the

dragline and bucket-wheel excavators. It is a common method for mining shallow and

flat sedimentary style ore deposits, e.g. coal deposits. The concept of strip mining might

also be theoretically applied to the sedimentary ice deposits inside shadowed lunar craters.

A procedure for selecting these systems for a given mineral resource has been discussed

in Chapter 5, the systems described in more detail in this chapter are used to define

constraints for the appraisal model.

The lunar bucket wheel excavators in this scenario are based on a small terrestrial model

with mass of 4 300 kg as shown in Section 7.3.2 and an excavation rate of 15.5 m3 per

hour. The strip mining system has been modelled as shown in Figure 7.1. The bucket

wheel excavator will advance into the page and return along the next strip. All waste

will be augured across to the dump. This may create an electrostatic dust hazard as

has been experienced on the lunar surface during the Apollo missions [227]. However,

Poppe et al. [227] have modelled the solar wind at low incidence angles across crater

rims and demonstrated a reduced electrostatic potential inside the crater. The hazard

of electrostatic dust is therefore expected to be reduced in the chosen shadowed crater

mining region. Nevertheless, Kawamoto [139] has also proposed electrostatic shielding as

a control to manage the hazard if present. Each bucket wheel excavator will contain a

volatile extraction oven powered by concentrated sunlight [146] or microwave beam [326]

to reduce the built-in power and mass requirements. A storage tank is included which will

be periodically deposited.
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Figure 7.1: Lunar crater strip mining system.

7.3.2 Bucket-Wheel Excavator Parametric Design

The bucket-wheel excavator has been designed using various mechanical assumptions and

the empirical off-Earth soil excavation model proposed by Luth and Wismer [181] and

utilized by other researchers for off-Earth applications [133] [69] [308]. The parameters for

the bucket-wheel design are shown in Table 7.1.

The calculated horizontal friction (Hfriction) and cohesion (Hcohesion) forces are used to

determine the drive torque needed for the bucket wheel, with the assumption that the

circular cut made by the excavator will require the same force as the same length of

horizontal cut using the empirical model developed by Luth and Wismer in Equations 7.1,

7.2, 7.3 and 7.4 [181,308]. A vertical force (Vfriction + Vcohesion) holds the cutting tools in

place, provided by the counterweight, the bucket-wheel and boom. The free body diagram

in Figure 7.2 has been used to resolve the reaction forces with Equations 7.5 to 7.7 and

assumptions from Table 7.1.

Hfriction = γgwl1.5β1.73d0.5
(

d

l sin β

)0.77(
1.05

(
d

w

)1.1
+ 1.26v2

gl + 3.91
)

(7.1)
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Table 7.1: Parameter table for Bucket-Wheel Excavator design

Parameter Value
Factor of Safety for counter weight (FOS) 3.0
Length of blade (l) 0.2 m
Depth of cut (d) 0.2 m
Width of blade (w) 0.2 m
Lunar gravity (gmoon) 1.62m/s2 [308]
Counterweight length 2m
Number of buckets in contact with soil 3
Cutting Arc of bucket wheel 1

3 of circumference
Power Efficiency 50%
Wcounterweight/Wboom 3.0
Number of buckets 8
Boom length 3 m
Compacted Regolith Specific mass (γ) 1900 kg/m3 [308]
Loose Regolith Specific mass 1600 kg/m3

Rake angle (β) 0.785 rad (45°)
Tool Speed (v) 0.15 m/s
Soil cohesion (c) 170 N/m2 [308]
Bucket-wheel diameter 2.0 m

Vfriction = γgwl1.5d0.5
(
0.193− (β − 0.714)2

)( d

l sin β

)0.777

(
1.31

(
d

w

)0.966
+ 1.43v2

gl + 5.60
)

(7.2)

HCohesion = γgwl1.5β1.15d0.5
(

d

l sin β

)1.21

((
11.5c

γgd

1.21
)( 2v

3w

)0.121
(

0.055
(

d

w

)0.78
+ 0.065

)
+ 0.64v2

gl

)
(7.3)

VCohesion = γgwl1.5d0.5
(
0.48− (β − 0.70)3

)( d

l sin β

)
((

11.5c

γgd

0.41
)( 2v

3w

)0.041
(

9.2
(

d

w

)0.225
− 5.0

)
+ 0.24v2

gl

)
(7.4)

185



CHAPTER 7. ISRU PROJECT APPRAISAL WITH UNCERTAIN INPUTS

For ease of calculation, the excavation forces are taken as the average of two buckets. The

weight of the wheel itself is assumed to be equal to the expected vertical excavation force

and the counterweight will be three times the weight of the boom (Eq. 7.7). The total

bucket-wheel excavator mass has been assumed as 4 300 kg when operating, in line with

smaller terrestrial excavation equipment.

The bucket wheel Miner Rate (Rbw) has been calculated as 15.5 m3/h regolith and power

requirement of 2.4 kW for excavation and material movement with the speed and tool size

assumptions in Table 7.1. Power for heating and extracting the volatiles will be provided

by concentrated sunlight directed from the crater rims, this will reduce the battery mass

required and improve economics and reliability of the system. The assumptions for this

simple design are made to fulfill the input requirements of the mining model in this chapter.

No engineering optimisation has been undertaken. Results of such a study would affect

the modelled results here.

Figure 7.2: Free body diagram of excavator for mass estimation.
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Wbucketwheel + Wcounter + Wboom

gMoon
= 4300 kg (7.5)

Wbucketwheel = (Hfriction + Hcohesion) sin(45◦) + (V friction + Vcohesion) cos(45◦) (7.6)

Wcounter = 3×W boom (7.7)

7.3.3 Lunar In-Situ Sublimation

The In-Situ Water Sublimation (ISWS) system relies on technology currently untested

in operational conditions. It is based on experiments by Ethridge and Kaukler [90] that

demonstrate microwave extraction of ice from lunar regolith simulants. The aim of this

method is to drill holes into the regolith and apply microwave radiation to sublimate water

from the sediment. This process has been illustrated in Figure 7.3. Water recovery in lab

conditions has been measured around 85% [89], however, for the purpose of the model a

conservative operational recovery has been assumed at 30% of in-situ material. Zacny et al.

[319] suggests an alternative system (MISWE) which utilizes conductive heating in order

to reduce design complexity and increase efficiency and volatiles recovery. However, the

low thermal conductivity of lunar regolith [90] indicates conductive heating systems will be

ineffective. Volatile extraction experiments with thermal conductive heating in a vacuum

oven style apparatus have also been carried out by Reiß [235] with chemically adsorbed

H2O samples, providing support to heating methodologies for the lunar environment. The

microwave sublimation system is described throughout this chapter to demonstrate the

model, although conductive heating can also be substituted with the same modelled results

until further research is undertaken to prove otherwise.

The water product will also need to be hauled to the depot location where it should be

loaded onto the chosen transportation system. This process solves some of the technical
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issues with conventional strip mining. For example, the machinery specifications are far

less demanding as the bulk regolith will not be moved. Dust can be reduced compared

to strip mining and the ore strength is less of a problem as drilling mechanisms have a

greater ability to penetrate harder material.

Figure 7.3: Lunar in-situ sublimation method.

7.3.4 In-Situ Sublimation Miners Parametric Design

The In-Situ Sublimation miner has been designed based on the energy requirements to

sublimate ice in a lunar shadowed crater environment where temperatures during the

daytime have been observed around 120-150 K [218]. Vaporization of ice under low pressure

occurs around at around 220 K [108]. Table 7.1 and Table 7.2 show the physical and

assumed parameters for the design of the In-Situ Sublimation system in Equations 7.8-

7.12.

Specific Energy to sublimate Ice

(
J

kg H2O

)
= EH2O = 1000× (∆T × CH2O + Hs )

(7.8)

The surrounding regolith will also be heated to the same temperature as the ice, and the

energy required will depend on the concentration of ice in regolith.
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Table 7.2: In-Situ Sublimation mining parameters.

Parameter Value
Atmospheric Pressure Below 100 Pa
Initial Temperature (Solid) 120 K [108,218]
Final Temperature (Vapor) 220 K [108]
Average Specific heat capacity of H2O 1.36 J/gK [106]
between 120K-220K (CH2O)
Approximate H2O Enthalpy of Sublimation (Hs) 2 800 J/g [92,106]
Average Specific heat capacity of Regolith 0.5 J/gK [121]
between 120K-220K (CR)
Average Ore Grade (see Section 2.2.2) 50 kg H2O/m3regolith
Battery Mass % of total 50%
Mining Recovery of resource 30%
Mining Rate required (Rsublimation) 3 kg/h H2O
Heating efficiency (assumed) 30%
Time between recharges (Trecharge) 4 hours
Specific Energy density of Battery 190 Wh/kg [243]
Factor of Safety (FOS) on Power supply 1.2

Specific Energy to heat regolith

(
J

kg H2O

)
= ER = γ × 1000× (∆T × CR )

Average Ore Grade
(7.9)

∆T is the change in temperature required to achieve sublimation and C is the average

specific heat capacity (J/gK) across the temperature range. Hs is the approximate heat

required to transition phases from solid to gas and the bulk density of compacted regolith

is γ.

Energy for mining (J/s) = Emining =
(EH2O + E

R
) ×Mining Rate

3600 × Efficiency
(7.10)

Battery Storage (Watt hours) = Emining × Trecharge × FOS (7.11)

Miner Mass (kg) = Battery Storage
Specific Energy of Battery ×Battery Mass % of Total

(7.12)
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Using these assumptions and Equations 7.8, 7.9, 7.10 and 7.12, the sublimation miner mass

has been calculated as 1210 kg with a 24 kW (Emining) heating element or microwave. A

significant unknown in these assumptions is the efficiency of heating for icy lunar regolith.

It is hypothesized that the water heating efficiency is related to the thermal conductivity

and percentage ice of the regolith. Reiß [235] has investigated the effects of many variables.

However, there is not currently sufficient geological data from ice deposits on the Moon

to support the efficiency assumption made here. Brisset, Miletich and Metzger [32] have

completed modelling on a similar ISWS method and show that extraction efficiency is

likely to be well below 50%. The assumptions here only suffice to demonstrate the model

and indicate at results only under the circumstances outlined in this chapter. Mass and

power could be significantly reduced if new technology could utilize concentrated sunlight

more effectively, heating efficiency could be increased or the heating could be targeted at

the water more effectively. The unknown properties of regolith in lunar cold traps may

also affect these assumptions. Further research must be undertaken on the factors that

affect efficiency of heating on the Moon.

The drill design is based on a prototype that has demonstrated drilling 1m depth in icy

regolith conditions, using 100 N downforce, 100 W of power in 1 hour [322]. The amount

of power required for the drilling function is 70% of the total power of the unit [322].

For the requirements of the In-Situ Sublimation mine in this chapter, three holes will be

drilled per hour at maximum depth of 3 m each. Work time before recharging is assumed

as four hours and a 500 N (Wdriller) downforce is required. It has been determined that

the battery mass is not the limiting factor, rather it is the requirement for downforce.

Acceleration due to gravity (gmoon) on the Moon is 1.62 m/s2, and with a Factor of Safety

of 2.5 to ensure stability the driller mass has been calculated as 780 kg with Equation

7.13. No engineering optimisation work has been conducted here and the results of such

work would affect the end result of the model used in this chapter.

Driller mass (kg) = Wdriller × FOS

gmoon
(7.13)
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7.3.5 Comet Single Craft Mining

Asteroid mining research is being conducted by several groups around the world, and many

concept designs share similar features to those shown by Zacny et al. [318] and Kuck [151].

Dorrington and Olsen [75] have also shown a method for parametric calculation of the

energy and time requirements for an asteroid mining mission. Dreyer et al. [78] have

proposed an optical heating method for mining asteroids for volatiles by surface heating

through concentrated solar light. However, this method is not thought to be applicable

to dormant comet mining due to the necessity to penetrate the barren regolith crust layer

that has been theorized by Brandt and Chapman [30].

A major difficulty with mining a dormant comet is transporting the equipment and en-

suring it is operational and independent for long periods. Any complex mechanical parts

may need repair before the mining phase has finished. Therefore, mechanical reliability

is a key consideration for engineers designing an asteroid mining system. The chosen sys-

tem depicted in Figure 7.4 after the work of Ethridge and Kaukler [90] is another ISWS

method. The only mechanical parts of this system are the anchors, drill and storage tank.

The base case design has been assumed to have a mass of 70 000 kg, similar to the empty

mass of NASA’s Space Shuttle Orbiter [188]. This has not been parametrically designed

as early results of this investigation have shown that a lunar mine will be more viable due

to its closer proximity and the more time-dependent accessibility of asteroids or dormant

comets.

This method requires a mining craft to anchor and then drill through the barren surface

layers into a dormant comet. Sublimation and extraction are achieved by irradiation of the

holes with microwaves produced by a magnetron device. A similar effect can theoretically

be achieved by a conductive heating system [319] [235] [32] or channelling solar energy

into the borehole [78]. The inputs into this model do not require exact specification

of a heating method. More detail can be added in a future run of the model. Water

ice trapped in the mining zone will sublime and exhaust from the boreholes similar to

previous experiments [319]. The water vapor is then channelled into a storage tank to
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await transportation and processing.

7.3.6 Comet Multi-Craft Mining

The multi-craft miner-hauler system allows for increased flexibility and productivity by

improving logistical efficiency and separating the tasks of mining and processing from the

task of haulage, similar to most mining systems on Earth. It will also use the In-Situ

Sublimation system as shown in Figure 7.4. The mining and processing tasks will be

completed by a dedicated robot miner that will transfer to a dormant comet ore body and

remain there for its entire operational life.

Figure 7.4: In-Situ Water Sublimation on a dormant comet.

The product transport task will then be completed by another class of equipment, the

hauler. This will periodically transfer between Low Earth Orbit (LEO) and an optimally

selected ore body for a product pickup and return mission. This means that several ore

bodies can be mined at once, reducing the waiting time for a craft en-route to pick up. It

will also reduce each mission propellant cost, as there will be no need to transport all the

mining equipment on every payload trip.

Figure 7.5 shows a mining mission architecture with two dormant comet ore bodies over

the period defined between 2020 and 2060. Each level on the y-axis shows a different
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location: LEO, and two dormant comet mining targets. The x-axis is a timeline of the

mission plan, and the locations of each craft have been plotted to demonstrate the mining

and hauling activities and constraints on the missions. Two miner crafts are sent to the

orebodies and one hauler moves between them and the LEO market over the operational

life. Transits to and from the comet or asteroid targets must optimize ∆V cost (which

is related to fuel consumption cost (see Equation 7.21) and journey time to produce the

greatest returns on investment for the mining system. This optimisation is included in the

following model and greatly affects mission return times and competitiveness.

The equipment in this model has been assumed to produce its own fuel on-site for the

payload return mission. That means an ore handling, beneficiation and electrolysis system

will be required on board. It also increases the risk that unknown complexities in the ore,

such as grain size or breakage could make processing impossible and the mission would be

unable to return.

Figure 7.5: Miner-hauler mission schematic.
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7.4 Methodology

7.4.1 Infrastructure Assumptions

7.4.1.1 Lunar Mining

The power requirements of each piece of lunar mining equipment are stated in Section

7.3.2 and 7.3.4. It is assumed that solar power installations located on the rims of craters

in the southern polar region of the Moon can provide energy continuously [33]. A specific

energy per unit mass of solar cell has been referenced at 60 W/kg [107]. Additionally,

a 10% mass surcharge has been included in the equipment mass to cover spare parts,

equipment and facilities for maintenance and operation. The product transport shuttle

will be entirely replaced after every ten years, incurring a 50 000 kg opportunity cost at

this interval. It is also expected that a large amount of processed materials sent to the

Moon can be re-cycled and repurposed.

One potential piece of infrastructure that would decrease the usage of propellant on the

Moon, and hence improve the PPR is the Lunar Resources Launcher (LRL) [238]. The LRL

is an electromagnetic rail gun, that would launch the product to an orbital location without

needing a rocket. If the LRL is to be employed, it has been calculated by Roesler [238] to

require a mass of 40 550 kg to be delivered and constructed on the Moon over a period of 5

years, similar work by other authors support the concept [82,187]. All relevant opportunity

costs for the infrastructure are included in the model. High detail has not been included

on the infrastructure design and requirements as it is outside the scope of this project.

7.4.1.2 Comet Mining

Minimal in-space infrastructure is required for the comet mining scenario as mining equip-

ment will be designed as self-sufficient. A storage depot at the market location will be

advantageous to service the market, although it is not inherently required as the haulers
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will spend long times waiting in Earth orbit. A depot has not been included in the current

model.

7.4.2 Non-Financial Appraisal Indicators

7.4.2.1 Propellant Payback Ratio

A significant challenge in determining mine feasibility is the assumption of operation and

capital expenditure. It has been shown that assumptions of costs in terms of dollars are

non-credible for future space operations [141]. For economic appraisal of ISRU in this

thesis, alternative indicators have been devised.

Opportunity cost has been defined by Black, Hashimzade and Myles [25] as equal to “the

benefits that could have been obtained by choosing the best alternative”.

Given that most infrastructure and equipment will be launched from the Earth, this

launch cost is used as the opportunity cost. For every kilogram of mining equipment and

infrastructure launched into LEO, the opportunity to launch a kilogram of propellant has

been forgone.

Equation 7.14 shows the assumption that the cost of supplying water from the Earth

to LEO is equal to its launch costs. The water launch cost is also equal to the cost of

supplying mining equipment to LEO. It is assumed that equipment and water are relatively

cheap to acquire once research and development is complete and the large majority of real

costs are attributed to launch costs. To extrapolate this concept and use for Near-Earth

Objects (NEO’s), their specific ∆V (change in velocity) requirements and the Rocket

Equation are used as shown in Equation 7.21. For the lunar surface case the ratio shown

in Equation 7.15 is used. This equation is based on referenced capabilities of the Falcon

Heavy rocket [326] as described in Section 7.4.6.2. It means that for every kilogram of

mining equipment put on the Moon, the opportunity cost (Qop) of 7.6 kg of propellant

could be sent from Earth to LEO.
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CostH2O to LEO ≈ CostMineEquip to LEO (7.14)

Qop = 62000 kg

8300 kg
Qmass delivered to Lunar Surface (7.15)

The Propellant Payback Ratio (PPR) is shown in Equation 7.16. It shows the quantity

(Qs) in kilograms yielded from off-Earth mining on the forgone opportunity to launch the

propellant directly from Earth (Qop). A value greater than 1 signifies a mining project

can yield more than direct launch of water from Earth. The PPR can therefore be used

to determine if an off-Earth water mining project will be viable and competitive.

PPR = Qs/Qop (7.16)

When examining the PPR on an annual or biannual scale, an issue arises where it is

possible that no propellant costs are sunk in accessing the mine during that period. This

yields an impossible calculation divided by 0. In reality, there are costs associated with

supplying product from the mine but they have been sunk in previous years. It is therefore

prudent to depreciate those costs over a number of years so that no product is supplied

at zero cost. Linear depreciation of capital is a common economic tool [206] used for this

purpose and is applied to the PPR equation for inspection on smaller timescales according

to the pseudocode in Algorithm 1. The periods for linear depreciation in this model are:

5 years for the lunar scenarios and 7 years for the comet mining scenarios. This has a

smoothing effect on the cumulative PPR graph over time. In effect, parts of the PPR

are spread over several years but not changed in absolute value over the whole mine life.

Therefore, the final cumulative depreciated PPR and final non-depreciated PPR should

be equal when numerical rounding effects are ignored. Qd is the depreciated Opportunity

Cost (Qop) of accessing the mine in kg. It is a vector of length equal to the number of

biannual periods in the mine life. Elementwise multiplication is used (Hadamard product

◦) to apply linear depreciation factors.
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Algorithm 1 Linear Opportunity Depreciation
1: for a ∈ [1 : final year − 4] do

2: Qd [a : a + 4] = Qd [a : a + 4] + [0.36 0.28 0.2 0.12 0.04] ◦ Qop(a)

3: end for

4: Then

Qd [a + 1 : a + 4] = Qd [a + 1 : a + 4] + [0.36 0.28 0.2 0.12 ] ◦ Qop(a+1)

Qd [a + 2 : a + 4] = Qd [a + 2 : a + 4] + [0.43 0.33 0.24 ] ◦ Qop(a+2)

Qd [a + 3 : a + 4] = Qd [a + 3 : a + 4] + [0.56 0.44 ] ◦ Qop(a+3)

Qd [a + 4 : a + 4] = Qd [a + 4 : a + 4] + Qop(a+4)

After these depreciation factors have been applied, Equation 7.17 should hold true and

the cumulative depreciated PPR over the entire mine life can be used as a metric for mine

feasibility.

final year∑
a=1

Qop(a) =
final year∑

a=1
Qd(a) (7.17)

7.4.2.2 Substituted Mass Payback Ratio

The PPR appraisal indicator is based on the assumption that the nearest competitor to

a lunar ISRU mine is one that launches a product from the Earth’s surface. The PPR is

only applicable off-Earth for propellant mining operations. It is also possible to compare

other resource utilisation operations against any material competitor from Earth using a

modified version of the PPR.

The product sent from Earth can be the same material that would be mined off-Earth,

or a more efficient substitute. The competitor on Earth is handicapped by the transport

costs in comparison to the miner based at the market location on the Moon. There is

also an opportunity cost (transport cost of equipment and infrastructure) for a lunar mine

to supply a commodity. The opportunity cost is foregone to simply send the commodity

instead.
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The Substituted Mass Payback ratio (SMP ratio) is shown in Equation 7.19. It is similar

to the Mass Payback Ratio used by Sonter [272] and the Propellant Payback Ratio used

in Equation 7.16. However, the SMP ratio accounts for substitution of commodities and

can be used in mining feasibility studies for a range of ISRU projects.

The SMP ratio enables calculation of the relative competitiveness of a mining project

compared with an Earth based competitor sending the preferred substitute. For example,

instead of using iron sourced from the lunar regolith for manufacturing, a lighter substitute

(aluminium) might be sent from Earth instead. Qs represents the quantity (kg) of a

commodity supplied by the lunar mine adjusted to the density of the most preferred Earth

substitute, as shown in Equation 7.18. Qop represents the opportunity cost quantity (kg) of

mining a commodity on the lunar surface. It is equivalent to the sum of mining equipment

and infrastructure mass (kg) required on the Moon to produce the equivalent of the desired

commodity.

Qs = V olume of Mined Commodity × Density of Substitute

Density of Commodity
(7.18)

SMP Ratio = Qs

Qop
(7.19)

Using this formula in place of the Net Present Value, a mining project assessment demon-

stration can be carried out in the same way as shown in this chapter for the PPR indicator.

Similarly, an SMP value below 1 indicates a non-viable project. Values above one are in-

creasingly more competitive than an Earth based supplier.

7.4.3 Orbital Mechanics Input

Planning a simple spacecraft mission for minimal use of fuel usually means the use of a

Hohmann transfer [43]. This method is applied to the dormant comet mining missions to

determine the ∆V requirements.
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The Hohmann transfer is completed in two stages shown in Figure 7.6, as ∆Va and ∆Vb:

∆Va - Initial rocket burn and ∆V to begin transfer ellipse.

∆Vb - Final rocket burn to circularize final orbit.

Figure 7.6: A simple Hohmann transfer after Chobotov [43].

To determine the fuel requirements of a transfer, the propellant velocity (Vp) is required.

Vp can be determined from the specific impulse (Isp) of a propellant and rocket combina-

tion [123]. The Isp for a H2/LOx chemical rocket is around 420 seconds in a vacuum [42].

Equation 7.20 shows the calculation of Vp in meters per second.

Vp = Isp × g (7.20)

Where g is the acceleration due to gravity on Earth’s surface, 9.81 m/s2.

The mass of propellant (kg) required for a specific change in velocity (∆V) in m/s can be

calculated using the rearranged Rocket Equation as shown in Equation 7.21 [43].

Propellant Mass = me/e−∆V/Vp −me (7.21)
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Where me is the empty mass of the rocket in kilograms and the propellant exhaust velocity

is Vp. The Rocket Equation (7.21) forms an important part of calculating the PPR in the

mining system appraisal shown in this chapter.

7.4.4 Market Input

A demand profile prediction for the period from 2020 to 2060 has been developed as

shown in Figure 7.7. It allows the modelling of appropriate mine production rates for this

particular profile. Huang, Chang and Chou [125] show a method for forecasting demand

in uncertain markets that makes use of historical data and Monte Carlo simulations.

However, no historical demand data is available for off-Earth markets and it is accepted

that prediction of demand quantities in a high growth market will be unreliable [183].

The demand prediction in this model will only be used to determine mine production

rates and the alternative supply that could be brought from Earth. The primary results

of this chapter are only applicable in the future market outlined by this demand profile,

however they still allow insight into whether a project will be economically competitive.

Sensitivity analysis is conducted on the demand profile as shown in Figure 7.17 to test

potential changes in the demand profile.

Figure 7.7: H2O market demand assumptions in LEO.

The approach to develop the market prediction is based on occurrence of events that could
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make use of a water supply in orbit. The events include Mars missions [256], circum-lunar

tourism [103], satellite service missions [64,180] and refuelling space stations or hotels for

station keeping requirements [132]. Each of these event types has been assigned a quantity

of water as shown in Table 7.3. The Dragon Capsule, Falcon 9 and Falcon Heavy rockets

have been used as rocket mass benchmarks [291]. The Mars missions are assumed to have

rocket and payload mass of 15 000 kg [291], with the circum-lunar mission not requiring

a full payload with an assumed mass of 6 000 kg. Demand for large single events such as

Mars missions has been smoothed over several years as water can be stockpiled.

Table 7.3: Propellant market events.

Event Type ∆V Assumption Single Event
Quantity

Space Station Atmospheric drag dependent on 800 kg
Servicing several re-boosts per year. [312]

Circum-lunar Tourism 4̃000 m/s [103,312] 10 000 kg
Satellite Servicing 4̃5 m/s [78] 360 kg

Mars Missions 4̃000 m/s with aero-braking [132,291,309] 25 000 kg

Satellite servicing works on a different model; to transit to and refuel other satellites. A

direct calculation of propellant is not easily applicable. Instead, an analysis by Long,

Richards and Hastings [180] of satellite operations from 1957 to 2000 in Geosynchronous

Earth Orbit (GEO) shows the average annual number of servicing opportunities in the

past in Table 7.4. This has been used to estimate the future servicing event occurrence.

The refuelling of space stations has also been based on a similar paradigm to satellite

servicing with additional consideration of atmospheric drag in LEO [64].

Table 7.4: Orbital servicing market after Long, Richards and Hastings [180].

Service type Average Annual Average GEO
opportunities opportunities

Refuel 20 8.9
Repair 8.2 3.7

Relocation in GEO 13 13
Deployment assistance 0.3 0.1

The date of initial occurrence for each event type is based on assumed timeframes from the

literature [64,103,132,180,256,291]. An increase in instances of each event type over time
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has been assumed to correspond with a reduction in the price of water as per economic

theory [186]. The apparent demand insensitivity to price changes in the early stages of

the forecast period (2020-2030) is an emergent feature of the forecasting method. The

technology to utilize water resources in space is not expected to proliferate until later

years and hence quantity demand will not immediately increase due to lower prices. In

economic theory this phenomenon is referred to as demand inelasticity [186]. The presence

of this feature shows the predicted demand profile follows known economic conventions.

7.4.5 Geological Input

7.4.5.1 Dormant Comet Model

Dormant comets have been chosen as a target ore body due to the higher concentration

of water present relative to asteroids. See Chapter 2 for more details about the geological

evolution of comets, asteroids and other bodies in the solar system. Alternative mining

systems will be required for asteroids due to the geological differences. Only dormant

comet mining is considered in this chapter.

The chosen comet ore body 2003 WY25 (D/1891 Blanpain W1) is used as an example in

the Near-Earth Object population [67] containing the desired geological characteristics.

Fernández, Jewitt and Sheppard [94] imply that 4% of the Near-Earth Objects could be

extinct comets. Another candidate Near-Earth dormant comet 2002 CX58 [94] has also

been used for analysis. The asteroid Apophis and a fictitious Earth-Trojan asteroid located

at Earth Lagrange point L4 (along the Earth’s orbital path around the sun) were chosen

for analysis due to their low ∆V rendezvous requirements to explore the effects of that

parameter.

Assumptions from literature [3, 27, 67, 72, 148, 157, 224, 271, 314] has been used to develop

a geological block model of a dormant comet for economic mining analysis. Block models

are used in the terrestrial mining industry to plan the economic extraction of resources.

They can also be applied to off-Earth Mining scenarios. A 2-D representation of the comet
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block model is shown in Figure 7.8. This model is used in the mining system simulation

code for this chapter.

Figure 7.8: Block model representation of dormant comet.

7.4.5.2 Lunar Crater Model

The lunar cratering and impact gardening theory has been employed to create a resource

block model for the shadowed lunar polar crater mine analysis. A 2-D representation of

the block model is shown in Figure 7.9. Blocks are scaled in this model to represent 1 m3

of material. The average ore grade in each block is assumed to be 50 kg/m3 for the base

case scenario, in line with the LCROSS mission results [17,117].

7.4.6 Transport Time and Cost

7.4.6.1 Comet and Asteroid Transport

The ∆V governs how much fuel will be required for a mission, which is an important

cost driver in a rocket transport scenario. The launch windows and trip times are also

very important from an economic point of view, because they determine how long will be

required for a payload to be delivered.
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Figure 7.9: Lunar crater block model diagram.

In order to analyse the ∆V, launch windows and transport times for various near Earth

mining targets, the Trajectory Planner software was used. A processed example of the

output of the Trajectory Planner is shown in Figure 7.10. This grid has been used to

determine optimum launch windows and mission times in the analysis model within a

maximum tolerance of 300 days idle in LEO, the minimum ∆V within this window is

chosen. It is important to note that the Hohmann Transfer (Figure 7.6) requires two

rocket burns or changes of velocity (∆V). The data shown in Figure 7.10 represents the

sum of the launch and arrival ∆V for the trajectory towards the dormant comet 2003

WY25. Minimum ∆V launch opportunities are shown in blue and increasing cost is

shown in yellow then red. The x-axis launch date will correspond to the respective arrival

date on the y-axis where a ∆V is chosen on the plot.

7.4.6.2 Lunar Transport

The Moon is a prospective candidate for an off-Earth mining operation and colony. It is

much closer than most of the Near-Earth Asteroids (NEAs), allowing quick re-supply to

a permanent human base and reducing the overall risk to a mining operation.

Minimum ∆V launch windows from Earth to the Moon will occur approximately once
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Figure 7.10: Earth to 2003 WY25 travel time and ∆V.

per month, where rockets can be launched from Earth at the lowest cost. Travel time to

the Moon is generally just over 3 days [169]. This gives a lot of flexibility compared to

NEO missions where the travel time is greater and launch windows are far less common.

The ∆V requirement to reach the Moon’s surface from LEO have been referenced as

approximately 5.9 km/s including inefficiencies in landing and changing orbits [43] [312].

The Falcon Heavy rocket has been referenced as capable of lifting payloads of 62 000 kg

to LEO, 26 000 kg to GTO or 8 300 kg to the surface of the Moon [326].

7.4.7 Mining Model Fundamental Equations

7.4.7.1 Lunar Strip Mine

The market demand profile is used in Algorithm 2 to determine the Optimum Biannual

Supply (kg) from the mine in order to maximize revenue from the market profile shown in

Figure 7.7. Alternative strategies can be considered separately if the model is re-run. The
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timescale of the mining model is on the basis of 24 month periods, or biannual periods.

This period has been chosen due to the uncertain nature of the market demand input

(see Section 7.4.4). Inspection on a smaller timescale such as years would inappropriately

increase the resolution of the results.

Algorithm 2 Determining Optimum Biannual Product Supply Quantity
1: H2O = Biannual Supply in kg H2O

2: Return(H2O) = H2O × Unit Price(H2O)

3: for H2O > 0 do

4: procedure Maximise(Return(H2O))

5: ▷ Supply is optimised by maximising the Return(H2O) function

6: Optimal Biannual Supply = H2O @ max(Return(H2O))

7: end procedure

The number of biannual product shipments is then calculated with Equation 7.22.

Nshipments = Optimum Biannual Supply

DPmass
(7.22)

Where the Delivery Payload (DPmass) is assumed to be 10 000 kg with a re-usable shuttle

craft of 50 000 kg mass, slightly less than the Space Shuttle Orbiter [188].

The Rocket Equation 7.21 is used to determine the Transport Propellant Mass (kg) of

delivering a product shipment from the mine to the market location in LEO. Note that

the propellant required to supply equipment to the mine is not included in the LEO market

profile or the opportunity cost. This is because the equipment launches will originate from

Earth’s surface, and does not directly affect the LEO market demand.

The total quantity to be mined is therefore according to Equation 7.23.

Biannual Mine Production (kg H2O) =

( Transport Propellant Mass + DPmass )×Nshipments (7.23)

206



7.4.7 Mining Model Fundamental Equations

The required mining rates can be calculated as in Equations 7.24 and 7.25. Equipment

and infrastructure mass follows according to the assumptions in Section 7.4.1. A 24-hour

operation has been assumed, as power can be supplied from eternally lit peaks on the

crater rims in the southern polar region of the Moon. If this were not the case, production

and infrastructure mass requirements would be much higher. The importance of certain

real estate locations on the Moon is evident here.

Production Rate (kg H2O/h) = Biannual Mine Production

2× 365× 24 (7.24)

Process Throughput (m3 regolith/h) = Production Rate

Average Ore Grade
(7.25)

The Average Ore Grade for the base case model is 50 kg H2O/m3 regolith as in Section

2.2.2.

The amount of minable resource in the block model is tracked as it is depleted according

to the Process Throughput. The resource block model is copied into identical strips to

numerically represent a 3D version of Figure 7.9. As mining production is carried out,

the resource model is depleted by the same amount. This ensures that production does

not exceed the limits of the existing resource. If the resource is exhausted, the modelled

mine production will terminate. The ore blocks are of uniform grade in this model and

are not covered in a waste layer. This is the simplest form of geology possible, and is not

likely to benefit greatly from the Extraction Sequencing Algorithm shown in Chapter 6.

The extraction sequence has also been kept geometrically minimal for easier computation

as the purpose of this chapter is only to demonstrate the appraisal method. Optimal

extraction sequences on true geological deposits will likely be more complicated.

The equipment availability is assumed according to Table 7.5. Availability is expected to

increase as mining techniques improve over time. A maintenance mass surcharge of 10%

in spare parts and support equipment is included in the equipment mass cost for each

mining vehicle. Equipment Utilization is planned to be 80%, as some production delays
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Table 7.5: Equipment availability.

Year Availability Factor
2020-30 0.6
2030-60 0.7

will occur. The algorithm is constrained to produce at a constant rate. More miners are

required to fill the production gap that exists due to poor availability. This is one of

the largest opportunity cost drivers in the model. The mining fleet will be periodically

replaced three times over the forty-year mine life. The number of miners required for a

particular Process Throughput in any given period is calculated according to Equation

7.26.

Nbucket miners = Process Throughput

Availability × Utilization×Rbw
(7.26)

The Miner Rate (Rbw) and mass of each miner has been calculated in Section 7.3.2.

Once all equipment requirements are known and the infrastructure assumptions are added

according to Section 7.4.1, the Propellant Payback Ratio can be calculated as per Equa-

tions 7.15 and 7.16.

7.4.7.2 Lunar In-Situ Sublimation Mine

The equations that constitute the lunar sublimation mine model are similar to the strip

mining model. Different factors and constants are applied to reflect the equipment speci-

fications. There are two critical mining activities in this model, drilling and sublimation.

The number of sublimation miners based on the parametric equations in Section 7.3.4 can

be calculated from the required mine Production Rate (Equation 7.24) and the Number of

sublimation miners as shown in Equation 7.27. The sublimation rate (Rsublimation) is from

the assumptions Table 7.2. The Sublimation Throughput is then quantified in Equation

7.28.

208



7.4.7 Mining Model Fundamental Equations

Nsublimation miners = Production Rate

Rsublimation ×Availability × Utilisation
(7.27)

Sublimation Throughput (m3 regolith/h) = Production Rate

Average Ore Grade × Mining Recovery
(7.28)

The Average Ore Grade base case is 50 kg H2O/m3 regolith from Section 2.2.2 and the

Mining Recovery is from the assumptions Table 7.2.

It has been assumed that the drillers can drill three holes per hour at a maximum depth

of 3 m. The Average Depth (m) of the ore body is measured from the block model. An

iterative loop is run to determine the extents of each 1 m2 vertical column in the block

model by counting down 1 m3 blocks until either bedrock or large breccia is encountered,

or the maximum depth of 3 m is reached. This loop simulates the drilling process over

the entire ore body and averages the results. The average depth of regolith for the lunar

block model in this chapter is 2.4 m when limited to the top 3 m. The Area Drilled per

Hour (m2/h) parameter assumes one borehole is required per m2 surface area of regolith,

and three holes are drilled per hour as per Section 7.3.4. These assumptions should be

a focus of further research efforts to determine the optimum settings. The number of

drillers (Ndrillers) necessary to maintain the mine Production Rate with all assumptions is

therefore calculated as in Equation 7.29.

Ndrillers = Round up( Sublimation Throughput

Area Drilled per Hour × Average Depth
) (7.29)

All equipment mass is then multiplied out for each equipment and the associated infras-

tructure is added as described in Section 7.4.1.
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7.4.7.3 Comet Single Miner

The comet mining systems require optimisation of the ∆V (m/s) trips to and from the

ore body. Time and propellant cost are taken into consideration. This is a multi-objective

optimisation problem and a hierarchical approach has been employed. The first parameter

to optimize is the mission return ∆V. A tolerance of acceptable return journeys has been

set as no greater than +50% ∆V of the minimum possible journey within the forty-year

period using Equations 7.30 and 7.31. The Near-Earth Object’s orbit relative to Earth

is usually periodic on a timescale of less than a few years and hence many acceptable

return journeys can be found with the +50% tolerance. Furthermore, the return journey

propellant is mined and processed in-situ, and a greater return ∆V will increase that

mining requirement exponentially according to the Rocket Equation 7.21 and hence length

of mission and risk will be greater. A potential mission list is created which can be used to

optimize the final mining plan according to the requirements of the next steps. Departure

dates and arrival dates are indexed to the Mission ∆V in an array and extracted when

needed.

A = min ([∆V ]) (7.30)

Mission ∆V = [∆V < 1.5A] (7.31)

The second step in the mission optimisation hierarchy is to allow sufficient time for the

miner to complete collection of the resource before the departure window passes. A mining

season has been calculated according to Equation 7.32. It has been assumed that setup

will take 14 days to land and attach to the comet, drilling the access holes to the orebody

will take 28 days. The sublimation time is planned to take 100 days and pack-up will add

a further 7 days. Time must also be allowed for the miner to arrive to the ore body. This

is calculated from the optimisation of minimum ∆V and the reading the corresponding

arrival and departure dates.
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Extraction rate is calculated according to Equation 7.33, where the sublimation time is at

least 100 days. The overall time of the mission is calculated according to Equation 7.34.

The model has been parameterized in this way to allow for sensitivity analysis on each

variable as the actual lengths of mining season are currently unknown.

Mining Season (days) = Setup T ime+Drilling T ime+Sublimation time+Packup time

(7.32)

Extraction Rate (kg
h

) = Qs(i) + Transport Propellant Mass

Sublimation time× 24 (7.33)

Each payload or supply Quantity for each mission i (Qs(i)) is assumed to be 50 000 kg

H2O. The Transport Propellant Mass is calculated from the Rocket Equation 7.21. It

is important to note that the comet mining systems are inherently unable to maintain

constant production according to market demand like the lunar mine due to the long and

varying transit and delay times.

Mission T ime (days) = Earth Arrival − Earth Departure (7.34)

It is undesirable to have mining equipment waiting in orbit for extended periods without

returning value. Hence a limit on the waiting time for departure from Earth on a new

mission has been set at 300 days.

The Rocket Equation 7.21 is used to determine the transport opportunity cost to reach the

ore body and once all mission parameters are known for the single craft, the Propellant

Payback ratio can be calculated according to Equation 7.15. The propellant Qop required

to access the mine includes initial opportunity costs of sending equipment to the dormant

comets from Earth and subsequent propellant costs for missions once equipment is already

in LEO.
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7.4.7.4 Comet Multi-Craft

The multi craft scenario model operates similar to the single craft model, however, the

potential mission list is passed to a secondary optimisation algorithm that maximizes

the PPR under the constraints of two additional hauler crafts. The pseudocode for this

optimisation is shown in Algorithm 3. Where 44 000 and 57 000 is the serial value for: 18

Jun 2020 and 21 Jan 2056 respectively. In a future evolution of this model, more advanced

optimisation algorithms may increase the PPR.

Algorithm 3 Mission Selection Optimisation
1: for Hauler ∈ [1 : 5] do

2: Start Date = 44000

3: while Start Date < 57000 do

4: Start Date = Return Date

5: Max Start Date = Return Date + 300

6: i = i + 1

7: procedure Maximize(Mission PPR(i)) between [Start Date, Max Start Date]

8: Return Date(i) = Start Date(i) + Mission Time(i)

9: [Mission List (i)]=

10: [Hauler, Destination, Mission PPR(i), Start Date(i), Return Date(i)]

11: end procedure

12: end while

7.5 Results

7.5.1 Lunar Conventional Strip Mine Scenario

Figure 7.11 shows the strip mining scenario has a low Cumulative PPR of 0.08 over a

forty-year mine life.

As the mine progresses it will require less equipment and infrastructure deliveries and
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Figure 7.11: Lunar strip mine feasibility.

will be able to supply higher production. However, during the initial production ramp up

phase, a large amount of new equipment will be transported to the Moon. This requires

fuel usage in Low Earth Orbit, which could be more easily supplied from Earth. The

opportunity cost is high for this project and the Cumulative PPR is low.

The effect of changing market location for the strip mine scenario to GEO and introducing

new transport technologies is shown in Figure 7.12. For example, the construction of on-

site infrastructure to reduce launch costs from the Moon can improve the economics of a

lunar strip mine. The Lunar Resources Launcher (LRL) is an electromagnetic rail launcher

as described in Section 7.4.1 which reduces the propellant requirement from the Moon’s

surface to LEO. The amount of mining equipment required to deliver the same amount of

propellant to LEO is also reduced and the competitiveness increased, although an increased

opportunity cost (~40 550 kg [238]) will be incurred during the five-year construction phase

of the LRL. Solar thermal and nuclear thermal rockets are space propulsion technologies

in the research and development phase which promise to increase the efficiency of rocket

propulsion. The effect of introducing a thermal rocket by increasing the specific impulse

to 825s [162] in Equation 7.20 is also shown in Figure 7.12.
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Figure 7.12: Effect of market location and transport technology on lunar strip mine PPR.

7.5.2 Lunar In-Situ Sublimation Mining Scenario

Figure 7.13 shows the base case PPR, equipment mass delivery and product mass for the

Lunar Crater In-Situ Sublimation project.

Figure 7.13: Lunar water sublimation base case feasibility.

The ramp up phase of mining operation can be seen in the earlier years with equipment

and infrastructure being transported from Earth and little product return. The cumulative

mine life PPR is more than four times that of the base case strip mine model, although it

only reaches 0.33 over 22 years. Far below parity with the Earth based competitor. Equip-
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ment requirements are also less than in the lunar strip mine scenario, as expected. Mine

production terminates 18 years earlier in this scenario as the mineral reserve as defined by

the block model in Figure 7.9 has been exhausted due to mining system constrains such

as drill length and recovery. Note that recovery of the resource is assumed to be lower for

the sublimation mining method (30%) compared to the strip mining method (100%).

7.5.3 Comet Single Craft Mining Scenario

This model uses a single craft with In-Situ Sublimation capability. The robot will transit

to the object, mine it and return with a payload. This system exhibits a low Propellant

Payback Ratio, as the opportunity cost in launching equipment is far greater than the

return. This example project will involve two separate missions to two different near

Earth comet ore bodies. The result is shown in Figure 7.14.

Figure 7.14: Dormant comet single-miner system base case.

Using the four target orebodies and only a single mining craft, four payloads could be

delivered in the time between 2020 and 2060, yielding a miserable cumulative Propellant

Payback of 0.04. There is a large propellant costs compared to payload with this system.

Transport efficiency is very low as the whole equipment and payload are transported with

each transfer.
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7.5.4 Comet Multi-Craft Mining Scenario

The multi-target miner-hauler system is similar to the single miner system, in that it uses

the same In-Situ Sublimation technology. However, it separates haulage from the mining

process. This allows an increase in transport efficiency and operational flexibility when

selecting missions. The base case for this model is shown in Figure 7.15. Once again, this

mining system does not appear to yield enough product to make it a viable operation.

The cumulative PPR of this project reaches 0.2. This result is superior to that of the

lunar strip mine. However, it is unable to meet market demand changes as easily as the

lunar mine. Expansion plans would require capital commitment at least 10 years prior to

product return. This is due to the long waiting times for optimal launch windows coupled

with long transit times. The miner transport ∆V cost is shown in the early development

stage of this system, which can also be seen in Figure 7.15.

Figure 7.15: Miner-hauler system base case.
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7.5.5 Sensitivity Analysis

Sensitivity analysis has been conducted on several aspects of the model. Figure 7.16 shows

the effect of improved ore grade in a shadowed lunar crater. It has been indicated from

the LCROSS Impactor mission that more than 5% H2O per m3 regolith is available [17].

This has been used as the base case assumption for ore grade. Ore grade greatly affects

the PPR mostly due to the reduced equipment requirements to produce H2O at higher

grade.

Figure 7.16: Lunar strip mine sensitivity to ore grade.

The analysis of the ore grade parameter was only conducted on the strip mine method in

the lunar crater because the physical relationship between ice sublimation and ore recovery

is not known. However, the In-Situ Sublimation method PPR is also expected to exhibit

a positive correlation to ore grade. The results of the sensitivity analysis on Ore Grade

suggest that deposits with below 5% H2O will have much larger mining costs compared

to above 5% grade for this particular mining system.

Market demand has been used to determine the mining rate of this deposit, and hence

equipment numbers. The base case market demand is generally increasing each year as

shown in Section 7.4.4. The mine production will expand to match this demand.

Figure 7.17 shows the effect of increasing the market demand assumption and using the
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same strip mining method. A linear factor was applied to the input demand profile to

conduct the analysis. It appears that an increase in market demand will increase the PPR

of the project mostly due to the extra capacity in product shuttle infrastructure that will

be used more efficiently. The advantage of production on large scale [186] is an emergent

feature of this model. However, incremental gains will become smaller as the operation is

scaled up.

Figure 7.17: Lunar strip mine sensitivity to market demand.

7.6 Discussion

The market profile and geological block model are uncertain inputs in terrestrial and off-

Earth mining operations. The market profile in this section is based on predictions of

future advancements in technology and space economy as shown in Section 7.4.4. It is a

collation of educated assumptions on the path of development that might be followed in

the future. The prediction is uncertain, although it uses the best available information

and suits the purpose of demonstrating this model.

The geological block models are based on limited scientific data from various space probe

missions as outlined in Chapter 2 and Section 7.4.5. They have been constructed by visu-

alizing the relevant formation theory in the same basic way geological models are created
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for terrestrial mining. Although this technique is commonly used in the mining industry, it

usually suffers from imperfect or insufficient data input. In order to improve the chances of

success of an off-Earth mining project, reliable data on the ore body composition, structure

and geomechanics is required.

The results are only intended to provide an indication of viability for each of the modelled

scenarios and to demonstrate the novel assessment approach using the Propellant Payback

Ratio. The inputs are not considered perfect. Similar to terrestrial mining project assess-

ments, assumptions must be made to fill in the gaps where data or knowledge is missing

or too expensive to acquire. In particular, the mining systems based on sublimation of

in-situ ice require more experimental work, optimisation and proving before deployment.

Optimisation of the mass requirements for equipment and infrastructure will also have a

positive effect on the PPR as the equipment assumptions made for this appraisal model

should be considered conservative.

The dormant comet mining model utilized only four dormant comet ore bodies for the

transport optimisation stage. It was discovered that a single Near-Earth Object may

only have three or four optimum missions available in a forty-year period. This is an

unacceptably small number of mission opportunities as it reduces operational flexibility

and ability to respond to market changes. Analysing hundreds of NEOs will give more

options for missions, and enable the miner to reduce waiting time for a launch opportunity.

It is noted that the majority of NEOs are geologically different to dormant comets, instead

they are thought to be hard rock asteroids. Mining methods will need to be completely

re-examined for further analysis with a wider selection of NEO ore bodies.

7.7 Conclusions

The use of the Propellant Payback Ratio as a comparison tool has enabled potential off-

Earth mining projects to be viewed in a fresh manner, in this case without uncertain

financial inputs. It has removed some uncertainty around costs and revenue, and has
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allowed comparison of yet-to-be developed technologies. Sensitivity analysis has also been

possible for extreme ranges of physical factors, where NPV would have added another layer

of potential error with an estimated discount factor. The removal of the NPV discount

factor has also enabled comparison of these projects into the more distant future.

From the assumptions and analysis used in this study, the most likely candidate for an off-

Earth water mine in the near future is the lunar In-Situ Sublimation mine. However, with

the current technology, knowledge and market it is not yet economically viable. Research

and development is required to better understand the efficiency of using a sublimation sys-

tem. The lunar strip mining operation requires an excessive amount of mining equipment.

The bucket wheel excavators are also required to move large amounts of regolith, which

is likely to lead to unachievable equipment specifications and continuous maintenance in

the harsh lunar environment.

An alternative ore source was also considered on some Near-Earth Objects. However, due

to transit times, the single craft comet mining system is inefficient and unable to respond

to increasing market demand in Low Earth Orbit. The PPR results from this scenario

show it is inferior to the miner-hauler system and unlikely to be utilized in the future

for mining dormant comets. The comet miner-hauler system is a noteworthy option. It

may be the perfect supplier to a deep space market such as another mining operation or a

colony. However, it cannot compete at this stage with a lunar mine for Low Earth Orbit

market.

The ISRU project appraisal method demonstrated in this chapter can be used in con-

junction with the equipment designs, mining method selection procedure and extraction

sequence optimisation methods proposed in the previous chapters. Together, these ele-

ments form a useful toolkit for undertaking ISRU planning and optimisation studies in

the future.
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Chapter 8

Conclusions and Future Work

8.1 Thesis Outcomes and Contributions

The objectives of this thesis were set out to rationalise the development of broad and mul-

tidisciplinary ISRU planning and optimisation methods. The outcomes of each objective

are addressed in the following subsections.

8.1.1 Objective 1 - Develop a rapid and low-cost technique to demon-

strate equipment designs and show proof-of-concept.

As mentioned in Chapter 4, many of the equipment designs in literature have seemingly

reached a development roadblock around Technology Readiness Level 4. To advance past

this level, a demonstration in a relevant environment is required. It is difficult to accurately

simulate the lunar environment in a laboratory, and the cost and practicality of testing

on the lunar surface is prohibitive. Chapters 3 and 4 show how the Discrete Element

Method can be calibrated and used for development of prototype systems in a simulated

lunar environment. This technique allows for further optimisations to be undertaken in

computer simulation prior to increasing the TRL, saving overall development time and
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costs.

8.1.2 Objective 2 - Collate and develop conceptual equipment designs

that can be used for subsequent planning and optimisation.

The outcome of this objective has provided a foundation upon which to build other sections

of this thesis. The objective is mainly addressed in Chapter 4, where a review of the

literature and a categorisation of mining systems is completed so they can be used in the

following chapters. Along with this, the mining system design process is demonstrated

through the development of three novel mining system concepts. These are also compared

with system designs collated from literature.

A collection of conceptual mining equipment on its own is not very useful for mine planning

purposes, especially when there is insufficient data to make a quantitative comparison of

the effectiveness of each system. For this list to be used for subsequent planning and

optimisation, a mining system selection procedure is developed in Chapter 5. The systems

at TRL 4 or above in Chapter 4 are analysed for their functional requirements and ranked

based on their expected capability and reliability in a range of geological deposit types.

8.1.3 Objective 3 - Identify areas of deficiency or improvement when

applying traditional mine planning methods to ISRU.

Throughout the thesis, numerous weaknesses or incompatibilities are identified when trans-

ferring traditional mining techniques to off-Earth ISRU scenarios. For example Chapter

5 identifies that the mining method selection procedures used on Earth [192,212] are not

suitable for off-Earth mining. They are based on terrestrial operational conditions and

equipment and therefore irrelevant.

Chapter 4 identified that most published off-Earth mining equipment designs are not ca-

pable of rock breakage. This is an indispensable process in most terrestrial operations,
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and usually carried out with explosives [62]. There has been little research and develop-

ment into rock breakage methods for ISRU, meaning that high grade ice deposits are not

currently accessible for bulk excavation. This lack of rock breakage capability limits the

ability to achieve optimal resource utilisation by applying cut-off grade optimisation as

shown in Chapter 6.

Chapter 6 delves deeper into the weaknesses of traditional cut-off grade theory and pit

optimisation for ISRU. It has been identified that traditional pit optimisation and cut-off

grade methods are based on the inherent assumption that equipment is almost perpetual

and can be replaced without delay, subject to the equipment availability assumptions.

Based on this, traditional cut-off grade theory and pit optimisation assumes that all ore,

by definition, will be recovered within a specified mine life. The reality for early ISRU

operations is that when a system component or piece of equipment fails, replacement

parts may take months or years to deliver from Earth. This delays resource extraction for

that unspecified timeframe, invalidating many other time dependant inputs such as market

pricing, costs and NPV discount factors. Consequently, ISRU mine planning and appraisal

results become invalid. The delays in maintenance and parts replacements delivered from

Earth mean that a pre-determined equipment lifespan, and the assumption of a specific,

pre-determined mine-life does not work.

There are also several other technical inconsistencies of the traditional planning methods

when applied to ISRU, such as uncertainty of costs and other inputs and the move toward

data-driven rapid extraction plan iteration [146]. Furthermore, the optimisation objec-

tive is different for ISRU. ISRU aims to maximise resource utilisation, while traditional

planning methods aim to maximise the Net Present Value or profits. This difference in

objective means the traditional processes are not necessarily targeting or even capable of

yielding the desired results.

Costs and market price estimations are too uncertain at this stage for use in planning

ISRU. These inputs are also critical to traditional appraisal methods such as Net Present

Value. This deficiency of traditional economic indicators has been detailed further in

Chapter 7.
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8.1.4 Objective 4 - Resolve any deficiencies for ISRU planning and op-

timisation.

The outcome of Objective 3 identified issues when transferring terrestrial mine planning

and optimisation techniques to ISRU. Objective 4 yielded solutions to resolve these issues.

The novel mining systems presented in Chapter 4 are capable of mining icy regolith with

strength comparable to concrete without using explosives. Two new conceptual examples

are shown that can feasibly manage UCS 35 MPa material; the Drill and Pull system

and the Regolith Tunneller. These contributions improve the availability of ISRU rock

breakage systems in literature and improve the ability of future ISRU planners to optimise

their harder resources. The Impact Excavator was intended to improve rock breakage

capabilities as well. However, as mentioned in Chapter 4 the experiments were not able to

be completed and early indications are that it will not be productive with harder materials.

More work is required to define those capabilities.

The mining system selection procedure presented in Chapter 5 resolves the gap in lit-

erature found for objective ISRU mining system selection. Instead of using operational

examples from terrestrial mines [192,213], the new procedure uses functional analysis, log-

ical assessment, Axiomatic Design [282] and expected reliability to determine the preferred

system for each geological deposit type. This procedure has been intentionally designed

to allow for future improvement and expansion when new systems are demonstrated and

empirical reliability data is acquired.

The numerous issues identified for the transfer of terrestrial mine cut-off grade theory

and pit optimisation have been resolved by changing the mine planning paradigm for

ISRU. Instead of using the traditional algorithms, with uncertain financial and equipment

lifespan inputs, a Reinforcement Learning agent can be trained to optimise an extraction

sequence rapidly to help engineers make decisions based on parametric scenarios. The

RL agent does not maximise profits as for terrestrial mine planning, instead it maximises

the product quantity subject to time and resource constraints as required for ISRU. The

uncertain financial inputs are not needed for this objective. The resulting sequence can be
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truncated at any length to simulate random equipment failures. The RL agent also removes

the labour intensive design and scheduling step required for traditional mine planning.

This opens more possibilities for future autonomous off-Earth mining operations, where

large amounts of sensory data could be used to update the mine plan in near real-time.

Finally, all these newly proposed systems and methods can be used in conjunction with

the Cumulative Propellant Payback Ratio or Substituted Mass Payback Ratio assessment.

This has been applied in Chapter 7 to determine the competitiveness of ISRU compared

to an Earth based competitor. This method is important as it does not need to employ

uncertain inputs identified as the greatest weakness of much of the available literature. For

example, financial costs, prices and discount factors as for traditional NPV or Discounted

Cash Flow assessments.

8.1.5 Objective 5 - Demonstrate usage of the novel ISRU planning and

optimisation methods.

As part of the results section of each chapter, the newly proposed methods, systems and

procedures are demonstrated with examples and experiments. The tools developed in each

chapter have been or may be used directly as inputs into the methods of the following

chapters. The lack of high-resolution geological data and valid resource estimations means

that the examples shown are somewhat theoretical. They do require many assumptions to

be made that would not be acceptable for terrestrial mine feasibility studies and investment

decisions. When sufficient data is eventually collected to replace these assumptions as is

intended by NASA [48, 56] and ESA [91] at least, these procedures can be implemented

realistically to help plan and optimise ISRU projects.

8.2 Implications for Mining Engineering

The planning and optimisation tools presented in this thesis can be used as elements of

an ISRU feasibility study or justification for an operational strategy. Terrestrial mining
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engineers use a similarly broad range of tools to plan and optimise their mines on Earth.

These elements have equivalent categories in general mine planning and terrestrial fea-

sibility studies as outlined in the Background chapter and the SME Mining Engineering

Handbook [62]. These new contributions can be categorised within the mining engineering

discipline as:

• geomechanics and modelling;

• mining system selection;

• economic decision-making including extraction sequencing; and

• project valuation and appraisal.

There are other traditional elements of mining engineering which have been overlooked

in the thesis. This is intentional, due to the lack of relevant data in the case of price

forecasting and resource estimation. Complexity and time limitations were the constraint

in all other cases. Minor mentions throughout the thesis relating to these additional

elements can be categorised as:

• commodity market price forecasting;

• geological exploration and resource estimation;

• infrastructure and services design and construction;

• mineral processing; and

• protection of the environment, societal issues, health and safety.

There is an important implication of the analogy to terrestrial mining engineering. The

contribution of this thesis is greater than the individual methods and concepts discussed in

each chapter. The thesis identifies and resolves various issues with the transfer of terrestrial

mine planning tools to ISRU. The combination of these advancements can be used as an

example of the mining engineering discipline being applied to the space resources domain.
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8.3 Thesis Placement within Key Literature

The contributions made in this thesis complement the existing literature discussed in Chap-

ter 2. The Commercial Lunar Propellant Architecture [146,147] is one of the most detailed

studies to date on lunar ISRU feasibility. It was undertaken as a collaborative multidis-

ciplinary study with 30 authors from industry, government and academia, including some

with mining related expertise. The Commercial Lunar Propellant Architecture [146, 147]

has many hallmarks of a terrestrial mine feasibility study and has the same stated aims.

It is however, missing some of the important mining engineering aspects that would be the

focus of a terrestrial mine feasibility study as discussed in Chapter 2. This thesis develops

methods and procedures to address many of these missing elements. Lunar geomechanics

have been modelled with the DEM method in Chapters 3 and 4, mining systems can now

be objectively selected using the mining system selection procedure in Chapter 5, extrac-

tion can be scheduled and optimised using the RL algorithm in Chapter 6 and the project

can be appraised without uncertain financial inputs as shown in Chapter 7.

The papers by Gertsch and Gerstch [105] and Cox [51] touch upon these important ele-

ments of a mining engineering study and state some assumptions to cover them. Minimal

detail is provided on how these methods can be implemented for ISRU. Consequently, they

do not identify the relevant issues that have been found when directly transferring mining

engineering tools to ISRU. The proposed resolutions to these newly identified issues can en-

hance the method used in the Commercial Lunar Propellant Architecture paper [146,147]

and the work by Blair et al. [26]. This can be done by including the elements of optimi-

sation that are specific to the mining engineering discipline in a way that overcomes the

important differences relevant to off-Earth In-Situ Resource Utilisation.

8.4 Limitations and Future Work

Future space resource utilisation research can continue from the platform established here.

From each of the chapters in this thesis, various potential future research projects have
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been identified. The following lists are separated based on the relevant chapters for ease

of reference.

Chapter 2 - Background has specifically stated further areas of the mining engineering

discipline that were not covered in this thesis, hence opportunities for further research.

One area is in hazard identification and mitigation for off-Earth mining systems, and a

future research topic could relate to the following objective:

• identify and quantify lunar environmental hazards and mitigate those hazards for

ISRU. Examples include micrometeoroids, rocket launch debris, solar radiation, tem-

perature variations, and rockfalls.

The applications of DEM presented in Chapters 3 and 4 can be used to develop and

optimise more off-Earth mining equipment in simulation, without necessarily prototyping

every component. This should speed up the development process for new equipment.

The Discrete Element Method itself is data dependent, Chapter 4 necessarily replaces a

model of icy lunar regolith with a concrete particle model as there is little confidence in

the geomechanical properties of icy regolith at this time. Future work mapping out the

properties of icy regolith at relevant cryogenic temperatures will enable these DEM models

to be calibrated more appropriately for equipment optimisation. Two research topics in

this area are suggested below:

• determine the geomechanical behaviour of icy lunar regolith in PSR conditions and

implement a DEM calibration; and

• develop more ground engaging tools in simulated icy regolith in PSR conditions.

There are three novel equipment designs presented at a Technology Readiness Level of

3 or less in Chapter 4. To improve these TRLs, a physical prototype should be demon-

strated in the lab. Although a lab prototype was demonstrated for the Impact Excavator,

there were issues with manufacturing that require remediation and re-trial before TRL

228



8.4. LIMITATIONS AND FUTURE WORK

4 is attained. The Regolith Tunneller is at TRL 2 as no modelling or prototyping was

undertaken. However, this equipment is based on a heritage terrestrial mining equipment

and progress should be rapid once started. The Drill and Pull system also requires a lab-

oratory demonstration as the technology has only been modelled in DEM software. The

difficulty with demonstration of this system is selecting an appropriate target material

and environment for breakage experiments. A simple concrete target material in standard

lab conditions should be used initially, as in the simulation, to avoid the difficulties in

setting up cryogenic temperature icy regolith experiments. Although, these more difficult

environmental settings will be required to eventually reach TRL 5.

The process of designing three novel mining systems has helped to identify many gaps

related to equipment components and requirements that are in need of research and de-

velopment for these systems to be successful. The following suggestions are listed:

• develop autonomous control systems and infrastructure for robotic mining fleets on

the Moon addressing issues such as location tracking without GPS, energy transfers

and usage, computation and communications systems design;

• design waste dump construction methods for specific mining systems;

• develop systems for re-purposing ISRU waste by-product materials such as using

barren regolith for construction and protection;

• optimise lunar mining equipment movements with respect to environmental hazards,

road construction, equipment interaction and energy consumption using the available

lunar resource site data and assumptions; and

• demonstrate new and more efficient mining methods by suggesting creative appli-

cations of a particular mining system, increasing redundant options and reducing

mission risk for that system. Refer to the definitions of a mining method and a

mining system and Section 4.7.2 of this thesis for an example of this research topic.

The mining system selection procedure proposed in Chapter 5 can be further improved

when empirical reliability data becomes available. The procedure has been designed to
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easily replace the Axiomatic Design principles and functional mapping with empirical

reliability data once available. The procedure is currently used to select from a limited

pool of off-Earth mining equipment, this pool of input designs can also be expanded as

new equipment designs reach the appropriate TRL for functional analysis and making

reliability assumptions. Further research in the following area is required to provide this

data:

• test lunar mining system prototypes to gather reliability data for input to the off-

Earth mining system selection procedure.

The extraction sequencing algorithm described in Chapter 6 is a proof-of-concept. Its

capabilities are limited to small geological environments. Changes can be made to the

action mapping function to enable much larger model inputs without excessively slowing

down training. Although, increased training time is expected for larger, more realistic

geological environments. It is also possible that future developments in Reinforcement

Learning may significantly increase the training efficiency of this method, allowing more

rapid training for more realistic size environments. The following future research topic

encompasses this area:

• improve the extraction sequencing Reinforcement Learning algorithm to enable larger

geological environments to be sequenced.

• compare the Reinforcement Learning agent against a mathematically optimal solu-

tion and further highlight the advantages of using RL for this task.

The results shown by the project appraisal method in Chapter 7 will become out-dated

as time passes due to changes in the technological input assumptions. As with terrestrial

mining appraisals, the results here must be updated and optimised as new technology

and data becomes available. The specific results of this chapter were also not subjected

to a rigorous optimisation process using all the methods now available from the works in

other chapters. Once sufficient new geological data becomes available, possibly after the
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Artemis’ VIPER mission [48], a more realistic mineral resource estimate can be made.

Then, a new project appraisal can be completed using all the tools demonstrated in this

thesis. In addition to this, more work can be done in relation to defining, comparing

and improving In-Situ Water Sublimation and bulk mining systems. Suggested follow-up

projects for this chapter are stated below:

• explore the effects or advantages of using surplus thermal energy, solar or nuclear,

for mining icy regolith or extracting volatiles via softening or sublimating targeted

areas;

• develop and test centralised beneficiation and volatile extraction systems for icy

regolith in lunar PSR conditions.

• determine the level of scale-up, if any, required for mining activity to change the

optimal extraction method from In-Situ Water Sublimation to bulk mining methods

such as load and haul with a centralised volatile extraction oven.

• theorise future market prices of various off-Earth commodities at specific locations

such as GEO or the south pole of the Moon, based on supply and demand scenarios.

• investigate options for infrastructure that can improve the economics or risk pro-

file of ISRU, taking into account site data such as topography, temperature, solar

availability, and any assumptions for potential lunar South Pole resource sites; and

• continue updating technical evaluations of off-Earth mining scenarios, considering

various market locations and types, new technology and resource locations, types,

sizes and ore grades.

8.5 Final Remarks

The methods demonstrated in the previous chapters can be used to plan and optimise lunar

In-Situ Resource Utilisation projects in a similar fashion to the mining engineering done
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for terrestrial mine projects. There have been some necessary improvements and novelties

proposed in this thesis to enable these methods to overcome the differences identified

between terrestrial mining operations and ISRU.

The Discrete Element Method has been shown to be useful in determining stability of

regolith excavations in the lunar environment as well as enabling computational modelling

of excavation and other ground engaging equipment. These models have been used to show

proof-of-concept and enhance the development of lunar mining systems without physical

prototyping.

Three new mining system concepts have been proposed to increase rock breakage capabili-

ties. These can be developed for future ISRU projects to extract harder, higher grade ores

and achieve a higher level of optimality. Two of these systems have been demonstrated in

laboratory or DEM experiments.

Mining system selection is a pre-requisite of ISRU planning and optimisation studies and

must be undertaken objectively to produce optimal results. A mining system selection

procedure has been proposed in this thesis, to guide the task for ISRU. This is analogous

to mining method selection on Earth.

Terrestrial mining projects are significantly enhanced by optimising schedules and extrac-

tion sequences, taking into account ore grades, ground stability and practical constraints.

The traditional methods used for this task do not easily transfer to ISRU due to several

key differences mentioned in Chapter 6. Instead, a Reinforcement Learning agent with

the goal of maximising product quantity in a limited time frame has been demonstrated.

Finally, the issue of credibility for cost and market price input assumptions has been

circumnavigated with a new off-Earth mining project appraisal method.

The broad components of this thesis are part of a multidisciplinary approach to resource

extraction planning and optimisation, as is necessarily the case for terrestrial mining. In a

sense, the thesis can be considered an expansion of the mining engineering discipline into

the space resources domain. It can be used as a foundation for future mining engineers to
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further develop ISRU planning and optimisation techniques in ways that have so far not

been thoroughly discussed in space related literature.
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Appendix A

Supplementary Materials

Figure A.1: Design Parameter Mapping for the Bucket Drum Excavator.
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Figure A.2: Design Parameter Mapping for the Continuous Excavator.
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Figure A.3: Design Parameter Mapping for the Crusher Oven.
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Figure A.4: Design Parameter Mapping for the Discrete Excavator.
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Figure A.5: Design Parameter Mapping for the Hammer Drill.
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Figure A.6: Design Parameter Mapping for the Load-Haul-Dump Rover.
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Figure A.7: Design Parameter Mapping for the Micro Tunnel Borer.
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Figure A.8: Design Parameter Mapping for the Oven.
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Figure A.9: Design Parameter Mapping for the Pneumatic Excavator.
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Figure A.10: Design Parameter Mapping for the Tip Truck.
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