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Abstract

The development of coastal areas often results in the introduction of a suite of
contaminants to these highly productive systems. Contaminants accumulate
in soft sedimentary environments where they may affect resident microor-
ganisms responsible for driving major biogeochemical cycles and providing a
range of ecosystem services. The cumulative effects of multiple contaminants
can impact both the structure and function of microbial communities. These
cumulative effects are not yet well understood, however they have potential
repercussions at local, regional and global scales. Microbes are inherently dif-
ficult to study as the majority cannot be cultured in the laboratory. Modern
molecular techniques enable the study of microbes at a genetic level. Targeted
gene sequencing and meta-omics provide snapshots of community structure
and function. However, their application as biomonitoring tools is still in its
infancy. In this thesis, I investigate targeted sequencing for ecosystem health
assessment and assess metatranscriptomics as a new biomonitoring tool. I use
experiments and surveys to test the value of molecular techniques in informing
ecosystem-wide consequences of structural and functional changes. Targeted
sequencing revealed that bacterial communities are more sensitive to multi-
ple disturbances than eukaryotes (traditionally used for biomonitoring) and
are potentially better indicators of ecosystem change. Metatranscriptomics
proved to be a sensitive, reliable and replicable tool, which provided rapid,
ecologically relevant, information. Sediment communities exposed to met-
als and organic enrichment had significantly altered gene expression profiles
that may reflect accumulation of toxic compounds and increased production
of greenhouse gases. Surveys revealed that sediment communities impacted
by legacy contaminants had reduced primary productivity and greater po-
tential for community fracturing, which itself may lead to lower productivity
and lower remediation capacity. Molecular approaches generated information
that could revolutionise biomonitoring approaches. However, the lack of ex-
tensive genetic reference libraries and complex data processing requirements
continue to pose challenges to the routine adoption of these techniques. My
research highlights the power of molecular approaches for assessing ecosystem
health and the consequences of urban contaminants on community structure
and function.
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1 Introduction

Unprecedented rates of urbanisation (Cohen, 2003) are exposing numer-
ous ecosystems to increasing anthropogenic pressure (Vitousek et al., 1997).
Coastal regions in particular, have been subject to disproportionately increas-
ing human populations (Small and Nicholls, 2003). In addition to biological
and physical disturbances, coastal ecosystems are confronted with complex
chemical contaminants, which rarely occur individually. Contaminants bind
to particles and settle into the sediments, where they are stored and accumu-
late (Burton and Johnston, 2010). The combined effects of multiple stressors
on affected ecosystems is not yet well understood (Griffen et al., 2016). Mul-
tiple contaminants have the potential to affect community structure due to
different tolerance levels of organisms (Vinebrooke et al., 2004), and struc-
tural changes often result in functional dissimilarities within the community
(Strickland et al., 2009). However, direct functional effects from contami-
nants may outweigh indirect effects through structure (Srivastava and Vellend,
2005). Community functioning, especially on a microbial level, is critical on
local, regional and global scales (Falkowski et al., 2008). A comprehensive as-
sessment of community functioning in combination with community structure
would therefore significantly advance our understanding of the consequences
from contaminant exposure and may substantially improve coastal ecosystem
management.

Modern molecular techniques involving next-generation sequencing have
enabled rapid structural and functional assessments through the investigation
of genetic material. Molecular approaches have been shown to perform equally
well as morphological approaches to detect environmental impacts (Lejzerow-
icz et al., 2015), and because they enable taxonomic information with higher
certainty and higher resolution, molecular techniques can provide clearer re-
sponses to environmental stressors (Hajibabaei et al., 2011; Dafforn et al.,
2014). Molecular approaches could thus revolutionise modern biomonitoring
and the depth of information gained from genetic resources may allow for
molecular biomonitoring tools to be used for diagnostic purposes (Baird and
Hajibabaei, 2012). The rapid production of ’big data’ from sequencing ensures
that these modern techniques provide up-to-date data and may therefore be
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highly relevant to inform timely management decisions. However, the appli-
cation of many molecular techniques as biomonitoring tools is yet to be inves-
tigated. In order to address the use of molecular tools for biomonitoring, this
thesis contributes experimental and survey studies using amplicon sequencing
and metatranscriptomics to assess the impact of common multiple stressors
on the structure and function of estuarine soft sediment communities.

Multiple stressors affect community structure and func-
tions

Human activities have modified almost all of Earth’s ecosystems (Vitousek
et al., 1997). We have changed most of the terrestrial systems, are using
the majority of surface freshwaters and have an impact on even the most
remote marine ecosystems (Vitousek et al., 1997; Halpern et al., 2008). Fur-
thermore, humans have introduced complex physical, chemical and biological
stressors to all ecosystems (Vitousek et al., 1997). Anthropogenic stressors
rarely occur individually and their interactive effects are not always additive,
but can also be synergistic (more than expected based on individual effects)
or antagonistic (less than expected based on individual effects) (Folt et al.,
1999). Hence, single-stressor studies cannot be easily extrapolated to pre-
dict the impact of multiple stressors. Multiple stressor studies often result in
’ecological surprises’ (Christensen et al., 2006), which lead to less predictable
consequences for affected communities (Vye et al., 2015). Therefore, we need
a better understanding of direct and indirect effects of multiple stressors on
affected ecosystems.

Individual species within a community can exhibit different levels of tol-
erance towards different stressors (Vinebrooke et al., 2004). Through these
variations in sensitivity, stressors can affect the biodiversity of a community,
where co-tolerant species are more likely to survive (Vinebrooke et al., 2004).
When exposed to stressors, structural changes are likely to lead to functionally
dissimilar communities (Strickland et al., 2009) because the surviving organ-
isms protect themselves through the activation of stress-related responses and
shift their energetic resources from growth to survival mechanisms (Schimel
et al., 2007). The diversity of a community is tightly linked to primary pro-
ductivity, energy flow and a wide variety of ecological processes. Therefore,
this shift of resources can significantly affect the energy and nutrient flows in
an ecosystem (Schimel et al., 2007). More diverse systems exhibit improved
tolerance to stressors, as more diversity provides a higher assembly of func-
tions and emerging niches can be filled quickly from the pool of species already
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existing in the community (Finlay et al. 1997). However, the direct impact of
stressors on community function is likely to be more substantial than the in-
direct effects through structural changes (Srivastava and Vellend, 2005). Only
if a community is not resistant, resilient or functionally redundant, we find a
community with altered structure and function (Allison and Martiny, 2008).
We need to include the measurement of impact of multiple stressors on com-
munity process rates in order to assess the functional consequences of such
stressors.

Ecosystem functions, and therefore process rates, are driven mainly by mi-
croorganisms (Falkowski et al., 2008), which play a crucial role in the primary
productivity of our ecosystems (Azam, 1998). Microbes are highly sensitive
to environmental changes (Sun et al., 2012); their community compositions
and functions are affected by contamination (Louati et al., 2013; Ager et al.,
2010; Scott et al., 2014; Kandeler et al., 1996). Moreover, the connectivity of
the community is important for the functional performance, as it can have an
impact on the cohesiveness (Horvath and Dong, 2008) and stability of commu-
nities (Proulx et al., 2005). Microorganisms adjust their functional activities
based on their responses to the environment (Westerhoff et al., 2014) and other
organisms in the same community (Ross-Gillespie and Kümmerli, 2014). A
fracturing of communities exposed to contaminants (e.g. Lawes et al., 2016b)
could potentially lead to the disruption of functional processes and lower the
potential for functional redundancy. These changes in microbial communities
are likely to have knock-on effects on associated macrofauna (e.g. Lawes et al.,
2016a) and can therefore change entire ecosystems, as well as globally rele-
vant processes (Nogales et al., 2011; Johnson et al., 2015; Wang et al., 2015;
Halstead et al., 2014). Due to microbial contributions to ecosystem processes,
the assessment of microbial communities can provide an accurate snapshot of
the health of ecosystems (Graham et al., 2016).

Molecular biomonitoring

Microbial process rates are commonly assessed using biogeochemical flux mea-
surements from water, sediment and soil (Poissant and Casimir, 1998; David-
son et al., 2002; Eyre and Ferguson, 2005; Kelaher et al., 2013). These mea-
surements rely on the incubation of the substrate of interest in light and dark
conditions to analyse primary productivity, and nutrient and gas production
during day and night scenarios. Such incubations are time-consuming and
sampling is very sensitive and error-prone. Using next-generation sequencing
of communities, we can now detect potential changes to biogeochemical fluxes
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at the gene level and uncover the mechanisms behind such changes. This
has been made possible by metatranscriptomics, which facilitates the mea-
surement of all functional genes of an entire community (Urich et al., 2008;
Moran, 2009). These approaches can identify the nature of the response of
specific communities to specific stressors (Allison and Martiny, 2008) and may
therefore be highly valuable tools for biomonitoring.

Biomonitoring tools have been a critical component of ecosystem health
assessments when trying to understand the impacts of anthropogenic contam-
inants on the environment (Rainbow, 2002). Results from such assessments
are used to inform ecosystem managers on the best strategies for mitigation
and remediation (Barbour and Paul, 2010; Hering et al., 2010). To date,
biomonitoring has mainly focused on taxonomic information provided by the
sampling of macroinvertebrates, such as insects, fish and worms (Bonada et al.,
2006; Magurran et al., 2010), and algal abundances (Reavie et al., 2010). The
accumulation of toxic compounds, such as metals, in the tissues of macroin-
vertebrates has also been widely used to indicate contaminant loads within
the ecosystems of interest (Rainbow, 2002). In recent years, the importance
of community function for ecosystem health assessments has been recognised
and the use of functional traits for biomonitoring is gaining momentum (Baird
et al., 2011; Van den Brink et al., 2013; de Juan et al., 2014; van der Linden
et al., 2016). However, most structural or trait-based techniques are time-
consuming and require a high degree of expert knowledge on species-traits
relationships and taxonomic identification. Moreover, the relevance of the
data to ecological processes is unclear due to the limited variety of organism
groups assessed (Bourlat et al., 2013).

Metatransctiptomics provides holistic information on the gene expression
of an entire community, which yields ecologically relevant data through the in-
clusion of all organisms. Gene activity at the community level has been shown
to directly impact ecosystem process rates (Morales et al., 2010; Philippot
et al., 2011; Harter et al., 2014), however, the prediction of biogeochemical flux
rates from gene expression measures remains problematic (Bowen et al., 2014).
Systems approaches that include temporal and spatial parameters are required
to better link community structure to function, and function to process rates
(Bissett et al., 2013). Nevertheless, these extremely powerful molecular ap-
proaches permit a new depth of insight into microbial processes and have the
potential to revolutionise ecosystem health assessments. Metatranscriptomics
is yet to be validated as a biomonitoring tool and the sheer amount of data
that it produces is intimidating. Nevertheless, metatranscriptomics may play
a crucial role in the advancement of microbial ecotoxicology and the improve-
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ment of ecosystem management, through the provision of rapid information on
immediate community responses to stressors that leads to faster, up-to-date
and ecologically relevant management decisions.

Contaminants in coastal soft sedimentary environments

Coastal areas in particular, have been subject to rapidly increasing urbanisa-
tion (Small and Nicholls, 2003). This urbanisation introduced extensive areas
of impervious surface, which lead to large amounts of urban run-off after rain-
fall events (Arnold and Gibbons, 1996). On its way to the drainage systems,
this run-off collects a complex mix of contaminants (Göbel et al., 2007; Laetz
et al., 2015), from metals and polycyclic aromatic hydrocarbons (PAHs), to
pesticides and nutrients (Göbel et al., 2007). In addition, industry and agri-
cultural practices have long been major sources of metals and metalloids (e.g.
Birch and Taylor, 1999; Nicholson et al., 2003), petroleum based toxicants
(Santschi et al 2001), organic compounds (Birch et al., 1999), fertilisers, pes-
ticides and herbicides (Arias-Estévez et al., 2008; Puckett, 1995). Industrial
waste was historically directly discharged into adjacent waterways (Birch and
Taylor, 1999; Birch et al., 2016), and nowadays often simple, non-effective
run-off treatment techniques are applied (Davis and Birch, 2009). Urbanised
waterways are therefore exposed to an array of stressors from a variety of
sources (Kennish, 2002).

The sources of this cocktail of contaminants determine the timing and rate
of exposure (Bender et al., 1984). Press exposures occur when contaminants
are continuously introduced into the system and/or are trapped in legacy
environments such as sediments. Pulse contaminant exposures occur from
point source emissions; they are temporally variable, and often involve very
high concentrations. The most common contaminants in coastal waterways
are metals and organic enrichment (Jiang et al., 2001). While metals act as
toxicants (Babich and Stotzky, 1985), organic enrichment can promote activity
and growth (del Giorgio and Scarborough, 1995) at low levels. However, at
high levels, organic enrichment can have toxic effects on aquatic organisms,
due to the creation of anaerobic conditions and the increased production of
toxic compounds (Meyer-Reil and Köster, 2000; Gray et al., 2002).

In waterways, contaminants tend to bind to particles in the water column
and settle into the soft sediments (Burton and Johnston, 2010). In these sed-
iments, the often anoxic conditions favour adsorption of contaminants onto
sediment particles (Calmano et al., 1993). Hence, contaminants are accu-
mulated in sediments, which act as contaminant sinks. However, through
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changes in chemical properties of the sediment, contaminants can lose their
binding affinity and be released into the water column (Eggleton and Thomas,
2004; Zoumis et al., 2001; Van Ryssen et al., 1999; Gibson et al., 2015; La-
timer et al., 1999). Physical disturbances that lead to these chemical changes
can be of biological nature, e.g. bioturbation (Davis, 1993), tidal movement
and storms (e.g. Bogdan et al., 2002), or due to anthropogenic activities, such
as dredging (Hedge et al 2009), boating, and fishing (Eggleton and Thomas,
2004). Sediment can therefore also act as a contaminant source and resus-
pension has been shown to have extensive ecological effects in marine systems
(Roberts, 2012). The management of contaminants in sediments is not only
critical for sediment organisms, but also for the overlying water column and
thus the entire urbanised ecosystem.

Thesis outline

In this thesis, I use experiments and surveys to measure the impact of multiple
anthropogenic stressors on estuarine sediment community structure and func-
tion. I simultaneously investigate the potential for next-generation sequenc-
ing approaches to become the next generation of ecosystem health monitoring
tools.

Chapter 2 - Bacterial and eukaryotic community shifts upon experi-
mental press and pulse exposure to common contaminants

In this chapter, I address targeted gene sequencing and its use for large biomon-
itoring projects involving multiple stressors applied at different rates (press and
pulse disturbances). Nowadays, most biomonitoring approaches that utilise
targeted gene sequencing use DNA as template and analyse eukaryotic genes.
In this chapter I ask the following questions:

• Which genetic template (DNA or RNA) provides more detailed infor-
mation on multiple stressors?

• Which community (eukaryotes or bacteria) is a better indicator for an-
thropogenic contamination?

• And is targeted gene sequencing applicable in scenarios with multiple
stressors applied at different rates?

6



Chapter 3 - Functional biomonitoring: Using metatranscriptomics
for ecosystem health assessment

In this chapter, I investigate the applicability of metatranscriptomics for
biomonitoring and explore the different depths of analysis that are enabled by
this modern sequencing technique. I assess metatranscriptomics as a biomon-
itoring tool based on the following criteria: Biomonitoring tools need to

1. Be sensitive to the stressor of interest and provide ecologically relevant
results;

2. Show reliability of measures and repeatability across systems and con-
taminants;

3. Be cost- and time-effective and easy to use across disciplines.

Experimentally in situ manipulated sediments are used for this assessment of
metatranscriptomics.

Chapter 4 - Transcriptional changes in greenhouse gas production
pathways in experimentally contaminated coastal sediments

This chapter provides an example of a very detailed analysis that can be
done using metatranscriptomics. Here, I investigate the responses of micro-
bial sediment communities to metals and organic enrichment with a focus on
climate-relevant pathways using metatatranscriptomics. This chapter reveals
that common contaminants can affect the microbial mechanisms behind the
production of greenhouse gases and therefore have potential global implica-
tions.

Chapter 5 - Altered microbial communication, productivity and nu-
trient cycling in contaminated sediments of an urbanised estuary

After establishing that metatranscriptomics can be used to assess the func-
tional health of sediment microbes in an experimental set-up (Chapters 3 and
4), in this chapter, I apply metatranscriptomics to a real-world scenario in a
survey. I measure the impact of legacy contaminants from industry and ur-
ban run-off on sediment communities in poorly flushed embayments of Sydney
Harbour, Australia. Specifically, I analyse the pathways related to energy pro-
duction, nutrient cycling and signalling activities. I discuss the consequences
of altered gene expression for the affected ecosystem and the potential reper-
cussions on a global scale.
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Chapter 6 - Summary

In this last chapter, I discuss the collective results from this thesis and provide
suggestions for future research. Will big data be the future of ecosystem
health assessments? Here, I emphasise the contribution of this thesis towards
solving ecological problems of urbanisation and assisting the improvement of
biomonitoring.

This thesis is structured as a series of stand-alone manuscripts. There-
fore, some repetition between the chapters, especially in the methods sections,
is unavoidable.
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2 Bacterial and eukaryotic community
shifts upon experimental press and

pulse exposure to common
contaminants

Abstract

Coastal waterways are increasingly exposed to press and pulse disturbances
from a range of contaminants. The ability to differentiate ecological im-
pacts associated with multiple stressors that vary spatio-temporally is critical
to guide the efficient and targeted reduction of ecosystem threats. Modern
molecular techniques are tools that can be used to increase the relevance and
sensitivity of biomonitoring by providing greater taxonomic resolution and
a more holistic characterisation of biological communities. We investigated
microbial community development in sediments as they responded to both
press and pulse exposures to ’metals’ (sediment contaminated with multiple
metal(loid)s) and organic matter (organic enrichment). Our press exposures
were represented by in situ mesocosm sediments containing four exposure lev-
els for metals and three for organic enrichment, while the pulse exposure was
simulated by a once-off increase in organic enrichment. All treatments and
exposure concentrations were crossed in a factorial field experiment. We used
amplicon sequencing of the 16S and 18S rRNA genes to compare the sensitivity
of 1) different microbial communities and 2) total (DNA) and active (RNA)
communities to contaminant exposures. Microbial communities of bacteria
(16S) and eukaryotes (18S) shifted significantly with exposure to press and
pulse disturbances, with the bacterial community showing higher response.
Pulse exposures caused less change while press exposures created substan-
tially altered communities. The metal and enrichment effects interacted such
that the influence of metals were less obvious when the sediment also had
organic enrichment. Taxa-level analyses revealed that press enrichment re-
sulted in a lower relative abundance of active macromolecule degrading, as
well as nitrite-oxidising and nitrous oxide reducing bacteria. Furthermore,
enrichment generally reduced the abundance of active eukaryotes in the sed-
iment. As well as demonstrating interactive impacts of metals and organic
enrichment, this study highlights the valueof next-generation sequencing to
ecosystem biomonitoring of a wide range of interacting stressors.
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and pulse exposure to common contaminants

Introduction

Stressors in urban ecosystems are manifold. In addition to varying by mech-
anism of impact, stressors have different sources, determining the timing and
rate of exposure (press and pulse, Bender et al., 1984). Press disturbances,
for example, include legacy contaminants from historical contamination or
stressors to which the system is continuously exposed (Knott et al., 2009).
In contrast, pulse disturbances may originate from point sources, are tempo-
rally variable and can results in exposure to high contaminant concentrations
(Johnston and Keough, 2002). Press disturbances are known to select for
more tolerant communities (Piotrowska-Seget et al., 2005) and can thus lead
to permanent structural and functional changes, while pulse disturbances can
have deleterious effects on the resident communities in the short term, but
may allow for full recovery to the pre-stressed state (Bender et al., 1984). The
ability to differentiate ecological impacts associated with both the type and
timing of multiple disturbances is therefore of crucial importance for the de-
velopment of appropriate monitoring tools that can guide the management of
highly stressed systems.

Coasts support some of the most diverse and productive ecosystems in
the world (Nixon et al., 1986). However, the number and types of stressors in
coastal ecosystems has increased with the concentration of industry, trade and
urban activity in this region (Kennish, 2002; Johnston et al., 2015a). Chemical
stress results from contaminants introduced by industrial and urban run-off,
as well as shipping and leisure activities (Kennish, 2002). Contaminants enter
waterways, bind to particles in the water column and eventually settle into the
sediment (Burton and Johnston, 2010), where a substantial part of globally
relevant biogeochemical pathways are performed (Devol, 2015). Contaminants
have the ability to change the structure and function of communities in affected
ecosystems (Kandeler et al., 1996; Ager et al., 2010; Louati et al., 2013; Scott
et al., 2014), which can have repercussions for entire ecosystems (Nogales et al.,
2011; Halstead et al., 2014; Johnson et al., 2015; Wang et al., 2015). Sediment
microbial communities are thus ideal models to study the impact of press and
pulse disturbances from multiple stressors.

Urbanised estuarine sediment communities are exposed to multiple stres-
sors, most commonly metal(loid)s and organic chemical contaminants, and
enrichment of organic matter and nutrients (Jiang et al., 2001). Both metals
(hereon including metalloids) and organic enrichment (hereon including nu-
trient enrichment) have been shown to separately affect benthic communities
(Meyer-Reil and Köster, 2000; Sun et al., 2012; Azarbad et al., 2013; Lawes
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et al., 2016a). Many metals are known to have toxic effects on marine or-
ganisms (Babich and Stotzky, 1985; Dong et al., 2016). Organic enrichment
can facilitate additional productivity (del Giorgio and Scarborough, 1995),
however high levels of organic matter breakdown lead to increased hypoxia
and a build-up of potentially toxic compounds such as dissolved ammonia and
sulphide (Meyer-Reil and Köster, 2000; Gray et al., 2002). As two classes
of common contaminants, elevated concentrations of metals and organic en-
richment administered simultaneously, may act synergistically, additively or
antagonistically (Crain et al., 2008). However, the combined effects of metals
and organic enrichment on estuarine sediment communities have yet to be
investigated.

Biomonitoring is an important tool to assess the impact of human activities
on ecosystems in order to inform management actions. Although eukaryotes
have previously dominated the attention of biomonitoring, community-wide
monitoring has opened up the possibility of using microbial assemblages (Zim-
merman et al., 2014; Ininbergs et al., 2015). Bacteria are highly sensitive to
sediment stressors (Sun et al., 2012) and have very short generation times. In
addition, they have the ability to break down a variety of chemical substances
(Wiatrowski and Barkay, 2005; Antizar-Ladislao, 2010; Das and Chandran,
2011; Mason et al., 2014). This makes them ideal for biomonitoring as their
response to chemical stressors should be rapid and stressor-specific. As such,
the inclusion of bacterial analyses in biomonitoring could increase the poten-
tial for early detection of community change. This would provide ecosystem
managers with necessary information for an early intervention and potentially
decrease the costs of remediation.

Modern sequencing techniques have the potential to revolutionise conven-
tional biomonitoring and extend our capacity for ecosystem health diagnoses
(Baird and Hajibabaei, 2012). For these techniques, an entire community can
be analysed based on its total DNA or RNA. DNA is most commonly used
in monitoring and represents the total community, including dormant and
recently dead organisms. Next-generation sequencing of DNA has already
been widely applied to investigate microbial communities; in surveys, it was
used to describe bacterial diversity associated with mangroves (Basak et al.,
2016) and changes in soil microbial compositions due to urban stress (Reese
et al., 2016); It was also used to experimentally determine the impact of en-
vironmental change on freshwater bacterioplankton communities (Ren et al.,
2016). DNA provides information on the structure and potential function in
a system (e.g. Dı́ez et al., 2016), but does not clarify changes in activity of
organisms upon exposure to a stressor. RNA, on the other hand, represents
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the active organisms/genes in the community and could thus potentially bet-
ter outline the impact of different stressors. For instance, in a study of forest
soils, RNA data showed substantial differences of microbial activity between
seasons, whereas changes in DNA suggested only moderate seasonal variation
(Žifčáková et al., 2016). As RNA analyses are usually more labour-intensive
and costly, a comparison of these different genetic materials and their ap-
plicability to biomonitoring would be invaluable to designing cost-effective
monitoring programs.

Here, we manipulated press and pulse stressors in situ using field meso-
cosms and explored the associated structural and potential functional changes
through next-generation sequencing. Specifically, we manipulated metal con-
centrations and organic enrichment of sediments and simulated an enrichment
pulse. We sequenced the 16S and 18S genes from DNA and RNA to mea-
sure changes in community structure and simultaneously compare bacterial
and eukaryotic, as well as total and active community changes. We highlight
the general shifts in bacteria and eukaryotes, and discuss specific changes
in the most highly affected taxa. We hypothesised that bacterial communi-
ties are more sensitive to metal contamination and organic enrichment than
eukaryotes, potentially providing a better tool for future biomonitoring. Fur-
thermore, we predicted that organic enrichment would counteract, or dampen,
the impact of metal contamination and that highly organically enriched sedi-
ments support a more tolerant community to a pulsed stress through selection
of tolerant organisms. Based on our results, we discuss the potential impli-
cations of metal contaminants, press organic enrichment and pulsed organic
enrichment on ecosystem health, i.e. the condition of an area in relation to its
productivity, resilience and biodiversity. Our work can inform future ecosys-
tem management and highlights relevant indicator communities and molecular
tools for estuarine health monitoring.

Methods

Press disturbance

Sediment was collected using a Van Veen grab from 5 m depth at unvegetated
sites. Relatively clean sediment was collected in Botany Bay (BB) and metal
contaminated sediment was collected in Port Kembla (PK) (Dafforn et al.,
2012; Edge et al., 2015). The two sites were similar with respect to sediment
characteristics, including grain size and total organic carbon (TOC, Dafforn
et al., 2012). The sediment from both locations was mixed to create a gradient
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of metal contamination: Control (100% BB), Moderate (75% BB, 25% PK),
High (50% BB, 50% PK) and Very High (25% BB, 75% PK). In addition,
the sediment was spiked with Yates Dynamic Lifter Turf Lifter (MOP) to
obtain a range of organic enrichment treatments: Control (no added fertiliser),
Moderate (10% Dry weight fertiliser) and High (20% Dry weight fertiliser) in
a fully crossed design.

These prepared sediment mixtures were distributed into benthic recruit-
ment containers (BRCs) consisting of transparent acrylic cylinders (15 cm
diameter, 40 cm height) within PVC piping (15 cm diameter, 15 cm height)
(Dafforn et al., 2013). The bottom of each container was lined with 1 kg of
sand for drainage and contained 2 kg of sediment above the sand. Three repli-
cates of every sediment mixture were prepared. They were frozen at -20◦C
for at least three months in order to defaunate the sediment. BRCs were de-
ployed in Chowder Bay, Sydney, Australia (33◦50’22”S, 151◦15’17”E), while
frozen and attached to aluminium frames (Dafforn et al., 2013) in a random
manner where they thawed in situ. BRCs in the field were situated deep in
the euphotic zone. Chowder Bay is close to the mouth of Sydney Harbour and
is a well-flushed site.

Pulse disturbance

After three months we simulated a nutrient pulse on half of the samples from
every treatment. For this we created an ’organic enrichment slurry’ by mix-
ing 10% dry weight fertiliser (Yates Dynamic Lifter Turf Lifter, MOP) with
seawater from the site. While diving, we slowly emptied a syringe of 50 ml of
this ’organic enrichment slurry’ into the top of the BRCs and attached a 63
µm mesh net over the BRCs for 24 h to ensure settlement of the ’organic en-
richment slurry’ onto the sediments. The other half of the samples (controls)
were dosed with a 50 ml syringe of local sea water and also covered with a
63 µm mesh net for 24 h to control for procedural effects. The metals, and
press and pulse organic enrichment treatments were applied in a fully crossed
design, resulting in the following treatments shown in Table 2.1.

Sampling

BRCs were capped and collected after another 5 weeks. Sediment samples from
the surface (top 2 cm) were collected and homogenised for microbial analy-
ses. The remaining sediment in the BRCs (depth ∼5 cm) was homogenised
and samples were taken for analyses of metals (Cd, Co, Cr, Cu, Fe, Mn, Ni,
Pb, Zn; Table 2.3) and nutrients (TOC, TN, TP; Table 2.2). Bulk sediments

13



Chapter 2. Bacterial and eukaryotic community shifts upon experimental press
and pulse exposure to common contaminants

Table 2.1: Treatment names. Treatments were applied in a fully crossed design resulting
in 24 different treatments with three replicates each. Treatment names consist of the
first letters for metal, press enrichment and pulse enrichment treatments, separated by
a ’/’. For metals, C stands for control, M for moderate, H for high, and VH for very
high. For press enrichment, C stands for control, M for moderate and H for high. For the
enrichment pulse, C stands for control and D stands for dosed.

Metals Press enrichment Pulse enrichment Treatment name
Control Control Control C/C/C

Moderate Control Control M/C/C
High Control Control H/C/C

Very high Control Control VH/C/C
Control Moderate Control C/M/C

Moderate Moderate Control M/M/C
High Moderate Control H/M/C

Very high Moderate Control VH/M/C
Control High Control C/H/C

Moderate High Control M/H/C
High High Control H/H/C

Very high High Control VH/H/C
Control Control Dosed C/C/D

Moderate Control Dosed M/C/D
High Control Dosed H/C/D

Very high Control Dosed VH/C/D
Control Moderate Dosed C/M/D

Moderate Moderate Dosed M/M/D
High Moderate Dosed H/M/D

Very high Moderate Dosed VH/M/D
Control High Dosed C/H/D

Moderate High Dosed M/H/D
High High Dosed H/H/D

Very high High Dosed VH/H/D

were used to include total concentrations of metals and nutrients that the
surface sediments were potentially exposed to through leaching. Metals and
nutrients were also analysed from sediment samples at the beginning of the
experiment. Dilute-acid extractable metals analyses (1 M HCl, 60 min) were
made according to Simpson and Spadaro (2011). Nutrients were measured
according to standard methods (APHA 5310B, APHA 4500-Norg B and 4500-
NH3C distillation/titration and USEPA 6010C/6020A ICP). Cu, Pb and Zn
concentrations exceeded sediment quality guideline values (SQGVs, Simpson
and Batley, 2016) in several treatments (Table 2.3). Copper concentrations
were below SQGV in Control metal treatment, however exceeded the SQGV in
Moderate and High metal treatments, and the SQG-High value in Very High
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metal treatment. Pb and Zn exceeded the SQGV in Control and Moderate
metal treatments, and exceeded the SQG-High value in High and Very High
metal treatments. TOC increased by a factor of 1.3 and 1.6 in Moderate and
High organic enrichment, respectively. TN and TP values were approximately
doubled in Moderate enrichment and tripled in High organic enrichment treat-
ments. At the time of sampling, TOC had decreased by about 20%, TN by
50% and TP by 30% over the 17 weeks of the experiment. Samples that had
received an organic enrichment pulse had slightly decreased TN values (by
10%) and slightly increased TOC values (by 10%) at the time of sampling,
while TP values remained the same as in the non-dosed samples. Average
nutrient concentrations per treatment can be found in Table 2.2.

Amplicon sequencing

RNA and DNA were extracted from 1 g of sediment for microbial analyses on
the same day using the PowerSoilTM Total RNA Isolation and PowerSoilTM

DNA Elution Accessory Kit (Mo Bio Laboratories, Carlsbad, CA, USA). RNA
was further processed and cleaned with TURBO DNA-freeTM Kit (Lifetech-
nologies, Carlsbad, CA, USA) and Agencourt R© RNAClean R© XP (Beckman
Coulter Inc.) according to manufacturer’s instructions. DNA was cleaned
with Agencourt R© AMPure R© XP (Beckman Coulter Inc.). RNA samples were
stored at -80◦C until reverse transcription with SuperScript R© VILOTM cDNA
Synthesis Kit (Invitrogen). DNA and cDNA samples were stored at -20◦C
until sequencing. Overall (DNA) and active (cDNA) bacterial community
composition was determined using Illumina MiSeq 2x300 bp paired-end v2
sequencing runs at the Ramaciotti Centre (UNSW, Sydney, Australia) with
the 27f/519r primer set for the V1-V3 region of the 16S rRNA gene. Eukary-
otic composition was determined using Illumina MiSeq 2x150 bp paired-end
v3 sequencing runs and the 1391f/EukBr primer set for the V9 region of the
18S rRNA gene. Primers were chosen based on the Biomes of Australian
Soil Environments project, which has successfully tested the above primers
for soil ecosystems. Furthermore, the chosen 16S primers are a good indi-
cator for general bacterial communities (which are the focus of this thesis),
whereas the chosen 18S primers are known to be good general indicators for
eukaryotes (however not fungi). Amplification regimes, which were followed
throughout this project can be found on the Earth Microbiome Project website
(http://www.earthmicrobiome.org/emp-standard-protocols/18s). For details
on primer sequences, see Table 2.4, and for sequence and OTU numbers per
sample see Tables A.1 and A.2.
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Table 2.2: Nutrient values in the different treatments at the beginning (T0) and end (T1)
of the experiment. Nutrients were measured in mg/kg. The first letter of the treatment
shows the metal treatment, the second (between the ’/’s) shows the press enrichment
treatment, and the last one shows the enrichment pulse. For metals, C stands for control,
M for moderate, H for high, and VH for very high. For press enrichment, C stands for
control, M for moderate and H for high. For the enrichment pulse, C stands for control
and D stands for dosed.

T0 T1
Treatment TP TN TOC TP TN TOC

C/C/C 385 1100 14000 290 1005 14000
C/C/D 275 650 13000
C/M/C 995 2000 16500 590 1055 15000
C/M/D 660 875 16500
C/H/C 1365 3000 21000 920 1450 16500
C/H/D 840 1300 18500
M/C/C 455 1150 15000 315 870 15000
M/C/D 365 835 18500
M/M/C 1090 2150 20500 720 1085 16000
M/M/D 635 1050 18500
M/H/C 2115 4100 31500 765 1450 18500
M/H/D 775 965 22500
H/C/C 560 1150 18500 445 1250 17000
H/C/D 425 1400 23500
H/M/C 1180 2550 26000 740 1050 21500
H/M/D 815 1300 23000
H/H/C 1690 3350 31500 925 1700 26500
H/H/D 810 1550 20000

VH/C/C 620 1150 28500 610 890 22500
VH/C/D 735 845 27000
VH/M/C 1210 2550 35500 720 1000 20500
VH/M/D 995 995 28500
VH/H/C 1475 3650 38500 1065 1400 24500
VH/H/D 635 1400 27000

Data analysis

DNA and RNA sequences of bacterial and eukaryotic communities, respec-
tively, were combined and processed together following the MiSeq SOP (ac-
cessed on the 16th of March 2016, Kozich et al., 2013) for Mothur (Schloss
et al., 2009). In the 18S dataset, many of the forward sequences had se-
quenced into the reverse primer and vice versa. Therefore, the sequences were
cut down to 90 bp length to enable merging of R1 and R2. Sequences were
merged using the make.contigs command. Then, sequences with ambiguous
contigs (maxambig=0) and a length exceeding 625 bp (maxlength=625) for

16



Table 2.3: Metal values in the different treatments at the beginning (T0) and end (T1) of the experiment. Acid-extractable metals were measured in
mg/kg. Only sediment without an enrichment pulse were analysed for metals at the end of the experiment. Letters before ’/’ show the metal treatment
and after show the press enrichment treatment. For metals, C stands for control, M for moderate, H for high and VH for very high. For enrichment, C
stands for control, M for moderate and H for high.

Treatment Al As Ba Cd Co Cr Cu Fe Mn Ni Pb S Sn V Zn

T0 C/C 2650 5.9 2.5 < 1 4.2 10.5 14.3 10000 140.0 4.4 58.9 2150 < 2 19.3 183.1
C/M 2700 7.7 6.5 < 1 5.0 11.6 21.9 10000 174.1 4.8 60.5 3050 < 2 19.6 208.8
C/H 2550 5.9 7.2 < 1 4.3 11.2 21.3 10250 184.2 4.8 56.8 3100 < 2 19.5 212.5
M/C 3700 9.8 7.0 < 1 5.4 19.7 101.8 13000 177.4 5.7 169.3 2700 23.1 27.8 345.7
M/M 2900 9.5 8.2 < 1 3.7 15.9 90.5 9950 165.8 5.0 134.2 3050 13.9 22.1 298.4
M/H 2900 9.5 12.8 < 1 3.9 17.0 95.9 9666.7 195.5 5.0 142.1 3133.3 13.8 21.6 333.7
H/C 4225 14.6 10.8 < 1 5.0 28.1 270.2 13500 175.7 6.4 349.3 2375 53.3 34.0 559.9
H/M 3700 11.8 13.2 < 1 5.2 24.1 209.2 11333.3 171.4 5.4 264.6 2566.7 41.3 27.9 479.3
H/H 3125 12.4 12.5 < 1 4.1 22.3 188.1 11000 175.8 5.6 270.4 1375 37.1 26.9 491.7

VH/C 4900 16.5 15.2 0.6 3.9 39.2 418.5 13500 179.3 7.1 507.6 1150 93.7 40.8 779.2
VH/M 4900 17.4 19.3 < 1 4.6 39.6 399.3 13666.7 210.6 7.2 483.4 1366.7 89.3 40.3 808.9
VH/H 4500 17.4 19.2 0.6 3.8 36.8 375.7 12500 210.1 6.7 458.3 1450 78.6 36.8 764.7

T1 C/C 2000 5.4 6.7 0.1 3.6 10.0 30.6 7750 94.6 4.1 71.7 1350 2.6 17.5 159.4
C/M 2750 5.3 7.3 0.4 3.1 14.3 40.4 13000 90.3 5.6 93.7 1900 2.8 27.9 231.6
C/H 3700 6.6 11.8 0.3 5.5 19.6 62.2 19150 124.4 8.1 122.9 3050 3.9 40.3 355.1

continued on next page17
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Treatment Al As Ba Cd Co Cr Cu Fe Mn Ni Pb S Sn V Zn

M/C 2700 7.0 8.1 0.4 3.8 16.6 86.3 9400 108.3 5.3 135.4 1500 15.3 23.3 264.9
M/M 2750 7.7 9.1 0.6 2.7 17.7 95.1 11800 89.1 5.4 156.2 1850 21.6 29.6 319.3
M/H 3000 4.7 9.7 0.3 5.2 18.6 74.9 15050 106.0 5.9 146.7 2050 19.0 33.5 331.8
H/C 3300 10.9 11.4 0.5 3.7 23.2 211.8 11050 130.6 6.2 289.0 1450 43.0 30.4 460.8
H/M 3600 11.4 12.8 0.5 5.3 25.4 176.6 13600 134.2 6.4 266.7 1600 53.4 35.0 477.3
H/H 3400 9.1 13.7 0.4 3.9 25.9 148.5 17050 125.4 6.7 288.3 2250 49.3 40.8 511.4

VH/C 3150 14.5 19.2 0.4 4.4 33.9 344.8 12100 166.2 6.6 414.7 1450 81.3 37.7 648.0
VH/M 4250 13.5 17.5 0.4 4.1 35.9 255.0 14850 139.8 6.7 391.5 1800 94.0 44.0 672.8
VH/H 4200 12.4 17.9 0.5 3.8 37.0 222.5 17800 153.3 7 383.9 2150 91.9 48 699.2
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Table 2.4: Primer sequences used for 16S and 18S sequencing.

Primer Sequence (5’-3’) Target region Target group Reference
27f AGAGTTTGATCMTGGCTCAG Lane (1991)

519r GWATTACCGCGGCKGCTG V1-V3 Bacteria Turner et al. (1999)
1391f GTACACACCGCCCGTC

EukBr TGATCCTTCTGCAGGTTCACCTAC V9 Eukarya Amaral-Zettler et al. (2009)
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16S and 151 bp (maxlength=151) for 18S, respectively, were removed from
the dataset (screen.seqs). Sequences that were not unique were removed from
the dataset using unique.seqs. Subsequently, sequences were aligned to the
SILVA (version 123) database (align.seqs). For both 16S and 18S, a maximum
of 8 consecutive identical bases (maxhomop=8) was allowed (screen.seqs of
the aligned datasets), and overhangs of sequences, as well as gap characters
(i.e. ’-’) were removed using the filter.seqs command. To make the datasets
smaller and, therefore, shorten the necessary run time for Mothur, all se-
quences that only occurred once were removed from both 16S and 18S datasets
prior to pre.cluster. This was done using split.abund with a cut-off value of
1. Sequences were then clustered into operational taxonomic units (OTUs)
using a similarity level of 99% for both bacteria and eukaryotes and the
pre.cluster command. After removal of chimeric sequences (chimera.uchime
and remove.seqs), taxonomies of OTUs were determined using the classify.seqs
command with a Mothur formatted version of the RDP training set (version 9)
and the SILVA database (version 123) for 16S and 18S sequences, respectively.
Irrelevant classifications (16S: all except bacteria, 18S: all except eukaryotes)
were removed with remove.lineage before clustering of the sequences using
cluster.split. In the cluster.split command a cutoff value of 0.15 was used for
both datasets, and a taxlevel of 4 and 12 for 16S and 18S, respectively. Data
outputs with counts per sample for each OTU and taxonomic information
were achieved using the make.shared and classify.otu commands. The Mothur
output was analysed using R version 3.2.3 (R Core Team, 2015) and packages
vegan (Oksanen et al., 2016) and DESeq (Anders and Huber, 2010). Plots
were generated using the ggplot2 (Wickham, 2009) package. For information
on sequence and OTU numbers per sample, see Tables A.1 and A.2.

Operational taxonomic unit level analyses

Raw Operational Taxonomic Unit (OTU) counts were variance stabilised us-
ing the getVarianceStabilizedData function of the DESeq package. Commu-
nity changes between treatments were calculated at OTU (operational taxo-
nomic unit) level using the adonis function (package vegan), which performs a
permutational multivariate analysis of variance (PERMANOVA). Community
composition was visualised with non-metric multidimensional scaling (NMDS)
plots. Taxa driving the changes in composition (class level for 16S and class/-
phylum level for 18S datasets) were identified using the envfit function (pack-
age vegan) at a significance level of α ≤0.001. Planned comparisons were
performed using the adonis function to detect differences between metal treat-
ments within organic enrichment treatments, as we expect the potentially toxic
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effects of metals to be masked in the presence of organic enrichment.
A comparison of the degree of community shifts between bacterial (16S)

and eukaryotic (18S), and total (DNA) and active (RNA) communities, respec-
tively, was performed using the mantel function (package vegan) for a Mantel’s
test. Furthermore, OTUs were classified as abundant if they contributed at
least 1% to the total counts of a specific sample. All OTUs with <1% con-
tribution were classified as rare. The contribution of all abundant OTUs per
sample (sum of counts of all abundant OTUs divided by total counts) were
determined and the number of abundant OTUs was noted. Using an analysis
of variance (ANOVA), we determined if the contribution of abundant OTUs
changed between treatments.

Taxonomic analyses

Taxonomic data was analysed on the class level for bacteria and on the class
or phylum level for eukaryotes. This taxonomic level was chosen based on
the number of classified OTUs per level, in order to maximise diversity and
taxonomic information at the same time. In addition, the focus here is on
substantial shifts in community composition, which should be represented at
higher taxonomic levels. Unclassified taxa, 36% and 69% of OTUs in the
16S and 18S datasets, respectively, were excluded from the analyses. Also,
only taxa comprised of at least 5 OTUs across all samples were included, in
order to create a smaller and more manageable dataset for analysis. In the
eukaryotic dataset many classes would have been excluded due to low read
levels, therefore we grouped these highly diverse classes together on the phylum
level. Class/phylum data were overlaid onto the NMDS plot using the envfit
function (package vegan) in R. Taxa with a significance value of p≤0.0001 and
a correlation of r>0.5 for the environmental fit were determined as those with
the highest contribution to the structural changes of the community and used
for further univariate analyses (ANOVAs) for the specific dataset (16S or 18S,
DNA or RNA). Tukey’s honest significant difference tests (TukeyHSD) were
used to determine what treatment levels were significantly different from each
other on the taxa level.

Results and Discussion

Organic enrichment vs metal contamination

The organic enrichment resulted in a significant shift in structure of both
bacterial and eukaryotic communities identified from DNA and RNA, here-
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after referred to as ’total’ and ’active’ community, respectively (all communi-
ties: p<0.001, Table A.3). The shift in community structure was especially
pronounced between Control and Moderate organic enrichment treatments,
whereas only a relatively minor shift occurred between the Moderate and High
organic enrichment treatments (Figures 2.1 to 2.4, Table 2.5). This suggests
that organic enrichment affects the sediment communities at relatively mod-
est levels, a result also observed in marine biofilms by Lawes et al. (2016b).
This altering of eutrophied communities can affect primary productivity and
influence the production of greenhouse gases (Smith et al., 1999).

Press metal contamination affected both active and total bacterial, and
total eukaryotic communities (Table A.3). The active part of the eukaryotic
community was not affected by metal contamination (Table A.3), suggesting
some resilience of eukaryotic fauna to metal stress. The clustering of metal
affected communities is not well represented in the NMDS plots because within
our study, enrichment effects were stronger and dominated the clustering of
samples along both axes.

To test our hypothesis that organic enrichment interacts and potentially
ameliorates the toxicity of metals, planned comparisons of metal effects within
organic enrichment levels were conducted (Table 2.6). Within the samples
with no organic enrichment (i.e. press or pulse organic enrichment Controls,
Table 2.1), metals affected the community composition of total and active
bacterial communities in High and Very High metal treatments, but not in
the Moderate metal treatment. The total eukaryotic community was only
affected at Very High metal treatments within Control organic enrichment.
Within Moderate organic enrichment treatments, the active bacterial and to-
tal eukaryotic communities were both affected by High and Very High metal
treatments, while the total bacterial community was only affected by Very
High metal treatment. For the High organic enrichment, only the Very High
metal treatment had an effect on any community, in this case the total bac-
terial community. The effect of metal contaminants on both bacterial and
eukaryotic communities decreased with the increasing organic enrichment re-
sulting in masking of metal toxicity. This may be partly explained by the fact
that dissolved and particulate organic matter lower the bioavailability and
toxicity of metals such as copper in sediments due to formation of non-labile
complexes (Strom et al., 2011; Hook et al., 2014; Campana et al., 2015).

Bacteria vs eukaryotes

The comparison of bacteria and eukaryotes has to be treated with caution, as
the efficiency of DNA and RNA extractions and the gene amplification could
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Table 2.5: Euclidean distances between the centroids of all levels of significant treatments
(according to adonis results) in all four datasets. Larger distances of centroids represent
less similarity between the two tested groups.

dataset treatment levels distance of centroids
16S DNA nutrients control – moderate 0.1299

control – high 0.1493
moderate – high 0.0194

metals control – moderate 0.0154
control – high 0.0250

control – very high 0.0586
moderate – high 0.0134

moderate – very high 0.0481
high – very high 0.0348

16S RNA nutrients control – moderate 0.2712
control – high 0.3014

moderate – high 0.0410
metals control – moderate 0.0190

control – high 0.0183
control – very high 0.0651

moderate – high 0.n0246
moderate – very high 0.0706

high – very high 0.0478

18S DNA nutrients control – moderate 0.1482
control – high 0.1675

moderate – high 0.0296
metals control – moderate 0.0403

control – high 0.0452
control – very high 0.0041

moderate – high 0.0257
moderate – very high 0.0196

high – very high 0.0435

18S RNA nutrients control – moderate 0.1795
control – high 0.2213

moderate – high 0.0439

be different for bacteria and eukaryotes. DNA/RNA of different molecular
weights have different optimal extraction procedures, e.g. homogenisation
time and speed (Miller et al., 1999). Furthermore, the concept of diversity
is very different between bacteria and eukaryotes (Grattepanche et al., 2014).
Methods developed for bacterial diversity analysis cannot necessarily be used
for eukaryotic diversity analysis. For example, bacterial OTUs are usually
determined based on a 97% similarity, whereas for eukaryotes it has been
shown that different species can share more than 98% of their genes (Caron,

23



Chapter 2. Bacterial and eukaryotic community shifts upon experimental press
and pulse exposure to common contaminants

Table 2.6: Planned comparison ANOVA results. For every dataset, each metal level was
compared to the control metal level within the different enrichment levels. Significant
p-values (at a level of α=0.05) are highlighted in bold.

16S DNA 16S RNA 18S DNA 18S RNA
enrichment metals p-value p-value p-value p-value

control moderate 0.28 0.27 0.3 0.5
high 0.002 0.011 0.07 0.57

very high 0.001 0.001 0.04 0.21
moderate moderate 0.82 0.49 0.92 0.87

high 0.08 0.003 0.03 0.4
very high 0.002 0.006 0.04 0.57

high moderate 0.31 0.31 0.6 0.61
high 0.07 0.16 0.47 0.42

very high 0.036 0.09 0.14 0.39

2009), while still being separate. The fact that we used a 99% similarity for our
OTUs minimises the loss of eukaryotic diversity in our dataset. However, we
cannot control for the potential imbalances at the extraction and amplification
steps. Imbalances in efficiency of DNA extraction and amplification between
bacterial and eukaryotic can lead to an underestimation of diversity of the
group with lower efficiency.

From our study it becomes apparent that bacterial communities are more
sensitive indicators of historical metal contamination than eukaryotes. The
active eukaryotic community was not affected by metal contamination. The
active component of the bacterial community, however, was significantly im-
pacted by metals, indicating that bacteria are more sensitive (Table A.3). In
addition, bacterial communities were affected at lower metal concentrations
than eukaryotes under non-enriched conditions, and only bacterial communi-
ties responded to metal contamination at high enrichment levels. This result
may be predicted by ecotoxicological research that showed extensive detoxifi-
cation mechanisms in more complex organisms, such as benthic invertebrates
(Rainbow, 2002; Campana et al., 2015), while other studies found an under-
representation of detoxification systems in marine bacteria (Bengtsson-Palme
et al., 2014). The higher susceptibility of smaller and simpler organisms to
metal toxicants makes them a good basis for the use as indicators of harmful
levels of pollutants (Sun et al., 2012).

While the bacterial communities were more sensitive and produced more
statistically significant effects, the responses of total and active bacterial and
eukaryotic communities were highly correlated and similar in degree and di-
rection (Table 2.7). The ability of bacterial communities to simultaneously
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Figure 2.1: Non-metric multidimensional scaling (NMDS) plots for the 16S DNA dataset
and all treatments that significantly impacted the community compositions according to
the adonis results. The colours of the samples in the plots represent the treatment levels.
The bottom plot shows the taxa (class level) which were found to most significantly drive
the community changes (i.e. significance level of p≤0.0001 and a correlation of r>0.5).
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Figure 2.2: Non-metric multidimensional scaling (NMDS) plots for the 16S RNA dataset
and all treatments that significantly impacted the community compositions according to
the adonis results. The colours of the samples in the plots represent the treatment levels.
The bottom plot shows the taxa (class level) which were found to most significantly drive
the community changes (i.e. significance level of p≤0.0001 and a correlation of r>0.5).
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Figure 2.3: Non-metric multidimensional scaling (NMDS) plots 18S DNA dataset and
all treatments that significantly impacted the community compositions according to the
adonis results. The colours of the samples in the plots represent the treatment levels. The
bottom plot shows the taxa (class/phylum level) which were found to most significantly
drive the community changes (i.e. significance level of p≤0.0001 and a correlation of
r>0.5).

present bacterial responses and represent the shift in the eukaryotic commu-
nity makes them a useful focus for biomonitoring. Organic enrichment induced
changes in marine biofilm communities have recently been shown to affect the
associated macrofauna (Lawes et al., 2016a). Therefore, this similarity in shift
is likely due to direct effects between organisms from different domains in the
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Figure 2.4: Non-metric multidimensional scaling (NMDS) plots for the 18S RNA dataset
and all treatments that significantly impacted the community compositions according to
the adonis results. The colours of the samples in the plots represent the treatment
levels. The bottom plot shows the taxa (class/phylum level) which were found to most
significantly drive the community changes (i.e. significance level of p≤0.0001 and a
correlation of r>0.5).
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Table 2.7: R output from the Mantel’s tests. Community shifts are compared within communities (16S and 18S) and within genetic material (DNA and
RNA). Significant p-values (at a level of α=0.05) are highlighted in bold.

Upper quantiles of permutations
comparison Mantel statistic r p-value # permutations 90% 95% 97.5% 99%

16S – DNA vs RNA 0.923 0.001 999 0.0613 0.077 0.0913 0.1086
18S – DNA vs RNA 0.7735 0.001 999 0.0628 0.0835 0.1026 0.1299
DNA – 16S vs 18S 0.8269 0.001 999 0.0671 0.0851 0.1111 0.1279
RNA – 16S vs 18S 0.7955 0.001 999 0.0548 0.0718 0.0889 0.108
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same habitat.
The press organic enrichment in our experiment led to bacterial and eu-

karyotic community structures with higher dominance. Operational Taxo-
nomic Units (OTUs) that account for >1% of the total counts are commonly
regarded as the abundant OTUs in a community (Logares et al., 2014). In bac-
terial and eukaryotic communities, the contribution of abundant OTUs to the
total community increased with increasing levels of organic enrichment (Fig-
ure 2.5), shifting communities to a state of higher dominance and lower com-
munity evenness. Bacterial community evenness already decreased in Moder-
ate organic enrichment treatments, while the eukaryotic community evenness
was only altered in High organic enrichment treatments. Contaminants have
commonly been shown to reduce diversity by increasing the dominance of cer-
tain eukaryotic species (Johnston and Roberts, 2009) and by shifting microbial
resources to survival mode, e.g. dormancy (Schimel et al., 2007). Lower com-
munity evenness can affect the resistance and resilience of a community (Lyons
and Schwartz, 2001; Allison, 2004), as well as alter species interactions and
ecosystem processes (Schimel et al., 2007; Hillebrand et al., 2008). Thus, com-
munities exposed to repeated and multiple stressors may reach a tipping point,
at which the community and ecosystem functions are permanently altered or
completely collapse (Dai et al., 2012).

Community response to a pulse disturbance

The organic enrichment pulse did not significantly affect the structure of any
of the communities in the long term. A potential initial effect on the structure
of either bacterial or eukaryotic communities, would have been detectable in
the DNA dataset, as extracellular DNA (from dead organisms) can persist
for several weeks (i.e. longer than time from dosing to sampling) in sediment
(Nielsen et al., 2007). Therefore, we conclude that bacterial and eukaryotic
sediment communities are generally resistant to organic enrichment pulses,
as the one simulated in this experiment. This does not, however, exclude
effects on specific taxa and abundant OTUs (discussed further down). Also,
it does not exclude the possibility of functional changes straight after the
dosing occurred. Most likely, the microbial sediment community would be
able to cycle the excess organic matter and nutrients out of the sediment
and thus prevent a lasting effect of the pulse on the sediment community in
general. This would have required an initial functional shift of the sediment
community, which would not be reflected in our structural data largely showing
resistance to the organic enrichment pulse. However, in the abundant OTUs of
the total bacterial communities, we detected a significant interaction between
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press organic enrichment and pulse organic enrichment (Figure 2.5), where
the evenness-enhancing effect of the pulse organic enrichment increases with
increasing press organic enrichment, and thus with increasing dominance. This
suggests that abundant organisms might be more sensitive to pulse stressors,
leading to a decrease in their counts. Alternatively, the organic enrichment
pulse could negatively affect all species/OTUs in the community and thus push
the abundant OTU numbers below 1% of the total counts, thus increasing the
evenness of the community.

DNA vs RNA

Metal contamination affected the active part of the bacterial community,
whereas it affected both the total bacterial and total eukaryotic communi-
ties. The total part of the communities include what is living, dead, eaten and
recently moved through the sediments, because DNA can persist in sediments
for up to two months before degrading (Nielsen et al., 2007). DNA is therefore
a more time-integrated measure (Figure 2.6) and suggests that metal contam-
ination was toxic to both bacteria and eukaryotes at the beginning of the
experiment. Using RNA, this early effect of metals on the community would
not be detectable. Furthermore, the Mantel’s test showed that the DNA and
RNA communities were highly correlated in both datasets and the general
community structures (Figures 2.1 to 2.4) were significantly similar in degree
and direction (Table 2.7). In general, this suggests that either DNA or RNA
can be used to measure community shifts in contaminated sediments. The
handling of DNA and the extraction kits are significantly cheaper to RNA
kits (personal observation) and we thus suggest that DNA is the more cost-
effective option for large biomonitoring studies. Furthermore, for the bacterial
community, the shifts of the total and active communities were more similar
than the ones in the eukaryotic community (Table 2.7). This means that when
using DNA as the genetic material of choice for ecosystem assessments, the
bacterial community would be the preferable option, as the total community
shifts also closely represent the shifts of the active community.

Bacterial taxa analysis

We used the envfit function (R package vegan) to determine which taxa were
the ones significantly driving the community shifts upon disturbance. Using
envfit results we chose (p≥0.0001 and r>0.5) the following bacterial taxa for
further analysis of the total community: Acidobacteria Gp10, Acidobacteria
Gp21, Cytophagia, and Bacteroidia. For the active community, these were:
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(a) 16S DNA

(b) 16S RNA

(c) 18S DNA (d) 18S RNA

Figure 2.5: Contribution of abundant OTUs in each dataset: (a) 16S DNA, (b) 16S
RNA, (c) 18S DNA, (d) 18S RNA. Blue numbers indicate the mean number of OTUs
that were abundant (>1% of total counts). Only treatments with significant differences
of contribution of abundant OTUs are shown. The letters (a-d) above the boxplots show
the significance groups. For example, a and b are significantly different, while a and ab
are not.
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Figure 2.6: Time represented by DNA and RNA datasets in sediments. DNA can persist
in marine sediments for weeks and is therefore a more time-integrated measure, while
RNA is rapidly degraded within minutes and therefore represents the momentary status
of a community. Therefore, the DNA informs on structural changes that happened due
to the organic enrichment pulse (five weeks before sampling), and potentially even since
the beginning of the experiment (17 weeks). RNA, on the other hand, reflects only very
recent (within hours) structural changes.

Acidobacteria Gp10, Acidobacteria Gp21, Alphaproteobacteria, Nitrospinia,
Nitrospira, Sphingobacteriia, and Verrucomicrobiae. Total and active counts
of Acidobacteria (Gp10 and Gp21, respectively) were impacted by metal con-
tamination. Acidobacteria are a very diverse acidophilic phylum, which is
abundant in soil ecosystems world-wide (Jones et al., 2009). While total Gp10
counts were significantly lower in very high metal treatments than in high
metal treatments, active Gp21 counts decreased significantly from moderate
to high metal levels (Figure 2.7). Furthermore, both total and active Gp10
and Gp21 decreased significantly with organic enrichment. This suggests that
Acidobacteria down-regulate their proliferation (low DNA combined with low
RNA) when exposed to organic enrichment.

The organic enrichment further led to a decrease in total levels of Cytopha-
gia. Cytophagia have the ability to degrade macromolecules, such as proteins,
starch and cellulose (Reichenbach, 2006) and thus a decrease might lead to a
lower potential of degradation of organic matter at the sediment-water inter-
face. Bacteroidia, on the other hand, increased in the total community when
press organic enrichment was present. The class Bacteroidia is abundant in
the gastrointestinal system of animals, in soils, sediments and sea water and in-
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Figure 2.7: Summary of boxplots for taxa specific analyses of 16S dataset. Taxa were
analysed on the class level and selected based on a p-value of p<0.0001 and a correlation
of r>0.5 in the envfit analysis. This means that the taxa analysed in detail here are the
ones that most significantly drove the community changes (see NMDS plots, Figures 2.1
to 2.4) between the treatments. Only significant treatments and taxa are shown. The
left y axis indicates total counts of sequences assigned to the different taxa, the right y
axis shows the significance group. For example, a and b are significantly different, while
a and ab are not.

cludes many opportunistic pathogens (Thomas et al., 2011). Bacteroidia have
been shown to be involved in the degradation of organic matter in marine
ecosystems (Fernández-Gómez et al., 2013). The increase in DNA, without an
increase or decrease in activity (RNA), suggests that Bacteroidia must have
increased temporarily with organic enrichment. Nonetheless, the Bacteroidia
DNA was most likely introduced through the fertiliser used to simulate en-
richment, as its main component is chicken faecal matter.

Active levels of Alphaproteobacteria, Nitrospinia, Sphingobacteriia and Ver-
rucomicrobiae all significantly decreased with organic enrichment (Figure 2.7).
In addition, active levels of Nitrospira were impacted by an interaction of press
and pulse organic enrichment, where the impact of a pulse seems to be damp-
ened by pre-existing organic enrichment. While the organic enrichment pulse
significantly decreased the active counts of Nitrospira if the sediment was not
exposed to previous press organic enrichment, it did not have an effect in
Moderate or High press organic enrichment treatments. Nitrospinia and Ni-
trospira are important players in the nitrogen metabolism as they are both
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Figure 2.8: Summary of boxplots for taxa specific analyses of 18S dataset. Taxa were
analysed on the class/phylum level (mostly classes, but phyla were used where more
appropriate) and selected based on a p-value of p<0.0001 and a correlation of r>0.5 in
the envfit analysis. This means that the taxa analysed in detail here are the ones that
most significantly drove the community changes (see NMDS plots, Figures 2.1 to 2.4)
between the treatments. Only significant treatments and taxa are shown. The left y axis
indicates total counts of taxa, the right y axis shows the significance group. For example,
a and b are significantly different, while a and ab are not.

nitrite (NO−
2 ) oxidisers (Altmann et al., 2003; Lücker et al., 2013). These

bacteria convert NO−
2 into nitrate (NO−

3 ), which is an important step in ni-
trification, and are therefore crucial for the cycling of N through the system.
A lack of NO−

2 oxidation can result in an accumulation of toxic ammonia and
NO−

2 in the system (Ruiz et al., 2003). Hence, Nitrospinia and Nitrospira are
crucial for detoxification of the sediments and the cycling of N through the
system. Metatranscriptomics data on a part of the samples from the same
experiment showed that increased organic enrichment led to higher ammoni-
fication levels in the sediments (see Chapter 3 of this thesis). In such sedi-
ments, the role of nitrification-related organisms becomes even more crucial.
Furthermore, the class Alphaproteobacteria, which was negatively affected by
enrichment, includes important denitrifying bacteria, which express the gene
(nosZ ) involved in nitrous oxide (N2O) reduction to nitrogen gas (N2). This
reduction of N2O is essential, due to its involvement in ozone depletion and
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therefore climate change (Ravishankara et al., 2009). Alphaproteobacteria in
general and the gene expression of nosZ are both known to decrease in enriched
sediments (e.g. Kearns et al., 2015, Chapter 3 of this thesis). The downreg-
ulation of Nitrospinia and Nitrospira activities, and possibly some bacteria
from the class Alphaproteobacteria, in organically enriched sediments can lead
to an incomplete removal of nitrogen from the system, increasing the toxicity
of the sediments, and a potential increase in production of a greenhouse gas.
However, the class Alphaproteobacteria is very diverse and it is therefore not
possible to know the consequences of a decrease without further information.

Sphingobacteriia are ubiquitous in sediments and have been shown to de-
grade complex organic macromolecules (Luo et al., 2008; Qu et al., 2015);
thus, their decreasing activity with increasing enrichment suggests, as for Cy-
tophagia, a loss of organic matter degradation capacity of the sediment com-
munity. Verrucomicrobiae are often associated with eukaryotic hosts (Wagner
and Horn, 2006) and are also frequently found in sediments, but they have not
been well studied and their ecological relevance is not clear (Bergmann et al.,
2011).

Eukaryotic taxa analysis

As for the bacterial community, we used the envfit function to determine the
taxa most strongly driving the eukaryotic community shift upon disturbance.
From the envfit results, classes and in some cases phyla that were chosen
(p≥0.0001 and r>0.5) for univariate analyses for the total eukaryotic com-
munity were: Centrohelida, Cercozoa, Chromadorea, Ciliophora, Diatomea,
Discosea, Euglenozoa, Foraminifera, Freshwater Opisthokonta, Laburynthu-
lomycetes, Peronosporomycetes, and RT5iin25. And for the active commu-
nity, these were: Cercozoa, Chromadorea, Chrysophyceae, Ciliophora, Crypto-
phyceae, Diatomea, Dinoflagellata, Discosea, Euglenozoa, Foraminifera, Max-
illopoda, and RT5iin25. Many of these eukaryotes have previously been shown
to be impacted in highly modified estuaries (Dafforn et al., 2014).

Total levels of all classes/phyla, except Diatomea, significantly decreased
with organic enrichment (Figure 2.8), corroborating that organic enrichment
can be toxic to many eukaryotic organisms (Pearson and Rosenberg, 1978).
Furthermore, organic enrichment decreased activity of Cercozoa, Chryso-
phyceae, Ciliophora, Cryptophyceae, Discosea, Foraminifera, Maxillopoda, and
RT5iin25 in the sediments (Figure 2.8). Chrysophyceae were also negatively
impacted by High metal treatments. In combination with the DNA results
this shows that organic enrichment is toxic to Cercozoa, Ciliophora, Discosea,
Foraminifera and RT5iin25, whereas Cryptophyceae, Chrysophyceae and Max-
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illopoda downregulate their activity with increasing press contamination.
We further found a significant interaction of metal contamination, press

and pulse organic enrichment for Chromadorea, Diatomea, Dinoflagellata and
Euglenozoa. In all four taxa, the biggest impact was that of High organic en-
richment at Moderate metal treatments without an organic enrichment pulse,
which decreased the activity of these taxa. Our results suggest that moderate
metal contamination levels together with high enrichment might have pushed
these organisms over the edge. Diatomea and Dinoflagellata are well known
for their blooms (Smayda, 1997) and are thus important for the carbon cycling
of coastal ecosystems by providing large amounts of biological material to fuel
ecosystem processes after algal blooms.

Our taxa specific results show that press organic enrichment is the main
factor affecting the eukaryotic community. All responses to elevated organic
enrichment involved lower numbers and activity of the affected taxa, which
suggests a toxicity of press organic enrichments towards eukaryotic organisms.

Conclusions

Rapid urbanisation of the coasts is driving increased exposure of local ecosys-
tems to multiple press and pulse stressors. Legacy metal contamination in
sediments is a common press stressor to resident communities, while organic
enrichment can be delivered as a press (e.g. continuous inputs of sewage efflu-
ent) or as a pulse stressor (e.g. after large rainfall events). Although metals
and organic enrichment co-occur on estuarine sediments throughout the world,
their interactive effects on ecological communities are not yet well understood
(Lawes et al., 2016a). Using a field manipulative experiment in situ, we re-
vealed that both bacteria and eukaryotes are impacted by metals and organic
enrichment. In addition, we found that organic enrichment had the ability
to mask the toxic effects of metal contamination. This supports the idea of
using organic enrichment to counteract metal contamination in urbanised sys-
tems, as suggested by Taylor et al. (2016) in copper contaminated freshwater
systems.

The ability to test hypotheses about entire communities using molecular
tools is invaluable for the advancement of biomonitoring tools. However, a few
questions prevail:

• What kind of communities should be targeted (bacteria vs eukaryotes)?

• What kind of genetic material provides the most detailed information
(DNA vs RNA)?
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• Are these techniques applicable to different types of disturbances?

We have addressed these questions in an experiment that simulated common
press (metals and organic enrichment) and pulse (organic enrichment pulse)
disturbances in coastal sediments. Our experiment allowed us to rigorously
differentiate the effects of metals and organic enrichment as press stressors,
and a pulse of organic enrichment as pulse stressor on the structure and ac-
tivity of estuarine sediment communities, accounting for organisms across all
domains through next-generation sequencing. In general, we found that mi-
crobial communities respond more strongly to organic enrichment, regardless
of toxic metal concentrations, and that press organic enrichment can dampen
the impact of elevated metal concentrations in sediment communities. We
further showed that bacterial and eukaryotic communities shift to a similar
degree upon contamination. However, we found that bacteria are more sen-
sitive to moderate levels of press and pulse contaminants, with longer lasting
structural changes. Furthermore, total bacterial communities showed more
evidence of contamination than the active part of the community. In addi-
tion to DNA extractions being more economical than RNA extractions, the
handling of DNA samples is much easier due to higher stability. We there-
fore suggest that total bacterial community analysis is ideal for future studies
with the aim to investigate structural changes of entire sediment communi-
ties. Also, we found that communities are largely structurally resistant to
pulse stressors. As molecular techniques are becoming more available and are
increasingly being used for biomonitoring, our results are crucial to improve
the balance between information yield and costs for extensive biomonitoring
studies.
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3 Functional biomonitoring: Using
metatranscriptomics for ecosystem

health assessment

Abstract

Human activities are increasingly exposing natural ecosystems to a variety of
biological, chemical and physical stressors, and have the potential to impact
the structure and function of the affected ecosystems. However, monitoring
and management approaches have primarily focused on structural changes.
The relevance of structural data to ecosystem function is largely unclear and
therefore our understanding of functional change in response to stressors re-
mains limited. Metatranscriptomics is a modern molecular technique that has
enabled the holistic measurement of the structure and function of an entire
community. This approach has the potential to revolutionise biomonitoring.
We manipulated metal concentrations and organic enrichment of marine sed-
iments in field-based mesocosms to assess metatranscriptomics as a tool for
ecosystem health assessment. We discuss the applicability of this technique
based on three criteria: 1) sensitivity to stressor and ecological relevance of
data; 2) repeatability of measures and reproducibility across systems; and 3)
ease of use for managers. We found that measures of functional change were
more sensitive to multiple stressors (metals and organic enrichment) than mea-
sures of structural change, which only responded to enrichment. Furthermore,
most affected genes were down-regulated in metals or enriched sediments,
which could potentially lead to lower primary productivity, lower nutrient cy-
cling and also potentially lower remediation potential of the microbial commu-
nity. We demonstrate that this next-generation sequencing technique not only
measures the sensitivity of a community to a stressor, but also provides infor-
mation on the mechanisms behind observable changes. Metatranscriptomics
generates repeatable data with high ecological relevance. This will further
improve as metatranscriptomics becomes more standardised and streamlined,
and reference databases improve.
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Introduction

Natural and human-induced stressors can affect both the structure and func-
tion of a natural community. Although the changes to structure can have a
direct impact on important ecosystem functions (Strickland et al., 2009; Reed
and Martiny, 2012; Allison et al., 2013), this is not always the case (Van Der
Zaan et al., 2010; Johnston et al., 2015b). Structurally dissimilar communi-
ties have been found to perform the same functions at similar rates if their
constituent species occupy similar niches (Burke et al., 2011). Moreover, fol-
lowing stressor-induced structural changes, some communities have exhibited
stable functioning due to functional redundancy (Bissett et al., 2007; Alli-
son and Martiny, 2008). Community function is affected by both biotic and
abiotic factors, as well as interactions and feedbacks within the community,
which makes predicting function from structural information very challenging
(Bissett et al., 2013). However, functions ultimately underpin ecosystem pro-
cesses (Falkowski et al., 2008), and so a number of recent studies have called
for more integration of functional measurements into monitoring (Baird et al.,
2011; Van den Brink et al., 2013; de Juan et al., 2014; Johnston et al., 2015b;
van der Linden et al., 2016) in order to fully understand the ecological impacts
of stressors on an ecosystem.

Meta-omics provides the opportunity to measure the entirety of both struc-
tural and functional genes at a certain point in time (Urich et al., 2008; Moran,
2009). Metagenomics approaches use DNA as a template, which includes in-
active genes and genes from deceased, extinct and dormant organisms (e.g.
Thomsen and Willerslev, 2015; Bengtsson-Palme et al., 2014; Hemme et al.,
2015; Eloe-Fadrosh et al., 2016) (for a review, see Thomsen and Willerslev,
2015). Thus, metagenomics offers a measure of the functional potential of an
entire community, but may misrepresent the present state of the community
and their response to the immediate stressor of interest. Metatranscriptomics
uses RNA as a template and provides a comprehensive snapshot of the active
structure and functions of the community at the point of sampling (Helbling
et al., 2012). Metatranscriptomic responses are considered highly sensitive to
environmental conditions (Moran et al., 2013) and have the potential to illu-
minate the underlying gene expressions that drive functional change. While
metatranscriptomics has been used as a tool for biodiversity discovery and
the assessment of ecological processes (e.g. Stewart et al., 2012; Turner et al.,
2013; Thureborn et al., 2016)(for a methods paper, see Creer et al., 2016), its
enormous potential for biomonitoring and ecosystem management is yet to be
investigated.
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The development of more sensitive biomonitoring tools has been increas-
ingly linked to the development of molecular sampling and sequencing tech-
niques (Baird and Hajibabaei, 2012; Bourlat et al., 2013; Aylagas et al., 2014).
Such techniques not only illuminate individual organism activity through gene
expression (e.g. Hill et al., 2005), they enable the inclusion of bacterial com-
munities in ecosystem health assessment (e.g. Sims et al., 2013). They do
this by removing the restrictions of previous methods that could only observe
culturable organisms (Hall, 2007). They also produce reliable information
on macroinvertebrates (Aylagas et al., 2016) and sampling that reflects the
presence of larger organisms, from arthropods to birds (Ji et al., 2013). The
incorporation of microbes into modern-day biomonitoring is particularly im-
portant, because microbes are some of the most productive organisms in the
world and drive the Earth’s major biogeochemical cycles (Falkowski et al.,
2008). They are so abundant and ubiquitous (Finlay and Clarke, 1999) that
their response to stressors is relevant at every scale, from the micro- to the
ecosystem and indeed the globe (Nogales et al., 2011; Halstead et al., 2014;
Johnson et al., 2015; Wang et al., 2015).

New molecular biomonitoring tools have, to date, been constrained by the
requirement for a priori predictions of stressor mechanism and consequence.
Quantitative PCR (qPCR), microarray and amplicon sequencing (16S/18S)
approaches (Tan et al., 2015) enable the investigation of the structure and
activity of specific genes of a microbial community. However, they require a
pre-selection of genes of interest through the selection of primers. As such,
the importance of particular genes needs to be anticipated (Moran, 2009);
this is a technical challenge when working with novel microbial communities
and novel environmental stressors (e.g. emerging contaminants and climate
related stressors). Hence, even though the techniques have proved sensitive to
a variety of investigated stressors, and are repeatable and relatively easy to
use, they may be missing ecologically relevant information.

To date, biomonitoring tools consist mainly of taxonomic identification of
macroinvertebrate communities (Bonada et al., 2006; Magurran et al., 2010;
Reavie et al., 2010), in addition to fish (Shedd et al., 2001; Hitt and Anger-
meier, 2006) and diatoms (Winter and Duthie, 2000; Stevenson et al., 2008).
In water, soils and sediments, invertebrates such as insects and worms are sen-
sitive indicators of anthropogenic stressors and are thus most commonly used
for the detection of contamination (Rainbow, 2002; Bonada et al., 2006). Tax-
onomic identification, however, requires detailed expertise and can be time-
consuming (Rainbow, 1995; Pik et al., 1999; Hopkins and Freckleton, 2002;
Terlizzi et al., 2003), and due to different types of indicators in each system
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is not easily reproducible across systems. Moreover, as these tools focus on
a small group of organisms and do not incorporate functional measures, the
relevance of the generated data to other groups of organisms and ecological
processes is often unclear (Bourlat et al., 2013).

In order to adequately inform ecosystem management and improve our
understanding of the need for mitigation and remediation practices, biomon-
itoring tools need to fulfil a number of objectives (Rainbow, 1995). Firstly,
biomonitoring tools need to be sensitive to the stressor of interest and need to
provide ecologically relevant information. This requires detailed knowledge on
traits associated with the investigated stressors (van der Linden et al., 2016).
In order to be ecologically relevant, information from such studies should en-
able predictions of the consequences on an ecosystem scale and the ’potential
to assess ecological functions’ (Bonada et al., 2006). For example, reduc-
tions in community diversity and evenness are likely to impact the resilience
of communities to additional stressors (Tobor-Kaplon et al., 2005; Johnston
and Roberts, 2009), and sediment ecotoxicity bioassays have been shown to
accurately predict the ecological status of surface waters (Roig et al., 2015).
Secondly, biomonitoring tools need to produce repeatable information (i.e. low
variability in the results from different replicates of the same treatment) and
be reproducible in other systems with different contaminant concentrations.
For instance, the choice of indicator organism might rely on the rate of con-
taminant accumulation (Rainbow and Phillips, 1993; Fialkowski and Rainbow,
2006). Thus, biomonitoring tools that include a variety of measures might be
more reliable across contaminant types (Borja et al., 2009). Finally, biomoni-
toring tools should be easy to use to facilitate the application across disciplines
and professions. In order to provide ecosystem managers with information for
up-to-date implementation of necessary actions, biomonitoring tools ideally
result in real-time information (Borja and Elliott, 2013) and such tools should
be transferable from the scientific sector to monitoring programs for easy and
cost-effective application (Bourlat et al., 2013).

The urbanisation of coastal regions is exposing these ecosystems to in-
creasing numbers of stressors (Kennish, 2002; Johnston et al., 2015a). These
stressors have significant impacts on a suite of organisms and have the po-
tential to affect general ecosystem functioning (Barbier et al., 2011). Since
coastal areas are highly productive (Nixon et al., 1986) and provide an ar-
ray of ecosystem services (Barbier et al., 2011), mitigation of these impacts
is crucial for both nature and society. In order to develop appropriate miti-
gation or remediation strategies, we need to understand the various responses
of affected ecosystems to anthropogenic stressors. New biomonitoring tools
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that simultaneously provide information on altered ecosystem structure and
function are therefore essential to improved ecosystem health assessment.

Here, we investigate metatranscriptomics as a tool to measure ecosystem
health. We use experimentally manipulated coastal sediments to mimic com-
mon metal contamination and organic enrichment in urbanised systems. We
compare several analyses that are possible using this technique and assess the
application of this approach as a biomonitoring tool based on the following
criteria:

1. Sensitivity to stressor of interest and ecological relevance;

2. Repeatability of measures and reproducibility across systems;

3. Ease of use across disciplines and professions.

We highlight the advantages and disadvantages of this new technique and the
potential consequences for our understanding of anthropogenic impacts on
microbial communities.

Methods

Sediment collection and experimental set-up

’Clean’ sediments (with background metal concentrations) were collected from
Botany Bay (Geroges River, NSW, Australia) and combined with ’contami-
nated’ sediments (metal concentrations above upper sediment quality guideline
values (SQGVs, Simpson and Batley, 2016)) from Port Kembla (Wollongong,
NSW, Australia) to produce Control (100% Botany Bay) and Metal (50%
Botany Bay, 50% Port Kembla) sediment mixtures. Half of each sediment
metal mixture was then enriched by spiking with slow-release organic fertiliser
(Yates Dynamic Lifter) at 10% dry weight. Metal and enrichment treatments
were applied in a fully crossed design: background metals/no enrichment (sub-
sequently called control), metals (no enrichment), enriched (background met-
als), and metals/enriched. Sediment mixtures were distributed into benthic
recruitment containers (BRCs, for details see Chapter 2) and frozen to defau-
nate the sediment. BRCs were then deployed in Chowder Bay in the outer
part of Sydney Harbour, Australia.

Sample processing and analysis

BRCs were capped and collected after 17 weeks. Sediment samples from the
surface (top 1 cm) were collected and homogenised for microbial analyses.
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The remaining sediment in the BRCs was homogenised and analysed for met-
als (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn) and nutrients (TOC, TN, TP). RNA
was extracted from 1 g of sediment on the collection day using PowerSoilTM

Total RNA Isolation Kit (MoBio Laboratories, Carlsbad, CA, USA). For de-
tails on cleaning steps and RNA storage until sequencing, see Chapter 2. The
quality of extracted RNA was determined using a Bioanalyzer (Agilent Tech-
nologies, Santa Clara, CA, USA). The mean RNA integrity number (RIN)
for all samples was 7.9, where a RIN of 10 represents no RNA degradation.
RNA libraries (n=12) with fragment lengths of ∼200 nt were prepared using
the Illumina standard protocols. Prior to library preparation, the quality of
the total RNA samples was assessed on a Bioanalyzer 2100, using an RNA
6000 Nano Chip (Agilent). Sample quantitation was carried out using Invitro-
gen’s Ribogreen assay. Library preparation was then performed according to
Illumina’s TruSeq Stranded mRNA protocol with the following modifications:
The oligo-dT mRNA purification step was omitted and instead, 200 ng of total
RNA were directly added to the Elution2-Frag-Prime step. The PCR amplifi-
cation step, which selectively enriches for library fragments that have adapters
ligated on both ends, was performed according to the manufacturer’s recom-
mendations but the number of amplification cycles was reduced to 12. Each
library was uniquely tagged with one of Illumina’s TruSeq LT RNA barcodes
to allow libraries to be pooled for sequencing. The finished libraries were
quantitated using Invitrogen’s Picogreen assay and the average library size
was determined on a Bioanalyzer 2100, using a DNA 7500 chip (Agilent). Li-
brary concentrations were then normalised to 2 nM and validated by qPCR on
a ViiA-7 real-time thermocycler (Applied Biosystems), using qPCR primers
recommended in Illumina’s qPCR protocol, and Illumina’s PhiX control li-
brary as standard. The libraries were then pooled at equimolar concentrations
and sequenced across two lanes on an Illumina HiSeq2500 sequencer in rapid
mode at a read-length of 100 bp paired-end. Sequencing was performed at the
Singapore Centre for Environmental Life Sciences Engineering (SCELSE).

Metal concentrations and organic enrichment measures in sediment
treatments

The metal concentrations and organic enrichment measures in the four treat-
ments were characterized at the beginning and end of the experiment as de-
scribed in Chapter 2, and full details are provided in Table 3.1. In control
treatments, the metal concentrations were below all of the recommended sed-
iment quality guideline values for Australian Estuaries (SQGVs, Simpson and
Batley, 2016) and in the high metals treatments the concentrations of toxic
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metals (e.g. Cu, Pb and Zn) exceeded the upper SQGVs. These values repre-
sent concentrations that may be expected to have an ecological effect (Simpson
et al., 2013). At the beginning of the experiment, total phosphorous (TP) and
total nitrogen (TN) values were approximately doubled in enriched sediments,
while total organic carbon (TOC) was increased by about 30%. At the end
of the experiment, TP, TN and TOC had dropped by approximately 40%,
50% and 20% in enriched sediments, respectively, while the values in control
samples remained similar.

General sequencing numbers

Total RNA sequencing generated a mean of 40.4 million bases (reads) per
sample (for more details see Table B.1). Standard QC was performed using
Cutadapt (Martin, 2011) with a quality cut-off value of 20. After rRNA read
removal through classification using SortMeRNA (Kopylova et al., 2012) and
the SILVA database, an average of two million mRNA reads (5% of total
reads) remained. rRNA reads were analysed and assigned to ribotags and
taxonomies using RiboTagger as described in Jeffries et al. (2015). With the
remaining mRNA reads we performed a homology search using RapSearch2
(Zhao et al., 2012) against the NCBI NR (non-redundant protein) database
(Pruitt, 2004). The reads were then assigned to a known KEGG (Kyoto
Encyclopedia of Genes and Genomes) orthologous gene (KO) using the lowest
common ancestor (LCA) algorithm in MEGAN4 (Huson et al., 2011). Total
read counts of each KO per sample were calculated and normalized using
the variance stabilization function (getVarianceStabilizedData) in the DESeq
package (Anders and Huber, 2010) in R. A total number of 7,861 unique KOs
were detected in our samples. One of the metals/enriched replicates (sample
ME2) was identified as an outlier based on generally higher read counts (the
mean value of normalised reads of ME2 was 80% above the mean value of
normalised reads across all samples) than any other sample (Figure B.1). This
was possibly due to degradation of the RNA (RIN of 5.9) and the sample was
excluded from analyses. Furthermore, we only used the unique KOs which
were detected in all samples of at least one treatment (3,687 unique KOs,
47% of all detected). This was to ensure that we analysed genes that were
consistently detected, and at the same time included genes which might be
turned off in some of the treatments or expressed at levels below the detection
limit implied by sequencing depth. The read counts for every KO were used
as a proxy for gene transcription rates, and therefore used as a measure for
the activity of the gene.

45



Chapter3.Functionalbiom
onitoring:Using

m
etatranscriptom

icsforecosystem
health

assessm
ent

Table 3.1: Average of total measured metals and nutrients per treatment at the beginning (T0) and end (T1) of the field experiment. Metals and nutrients
were measured in mg/kg sediment dry weight. TP stands for Total Phosphorous, TN for Total Nitrogen and TOC for Total Organic Carbon. C stands for
control treatment, E stands for organically enriched, M for high metal contamination and ME for high metal contamination with organic enrichment.

T0 T1
C E M ME C E M ME

Metals Al 2650 2600 4200 3700 2000 2750 3300 3600
As 5.9 7.1 14.8 11.8 5.4 5.3 10.9 11.4
Ba 2.5 6.6 10.4 13.2 6.7 7.3 11.4 12.8
Cd <1 <1 <1 <1 0.1 0.4 0.5 0.5
Co 4.2 4.8 4.9 5.2 3.6 3.1 3.7 5.3
Cr 10.5 11.3 28.0 24.1 10.0 14.3 23.2 25.4
Cu 14.3 22.2 273.3 209.2 30.6 40.4 211.8 176.6
Fe 10 000 9750 13 666.7 11 333.3 7750 13 000 11 050 13 600
Mn 140.0 177.1 177.6 171.4 94.6 90.3 130.6 134.1
Ni 4.4 4.7 6.5 5.4 4.1 5.6 6.2 6.4
Pb 58.9 58.7 355.8 264.6 71.7 93.7 289.0 266.7
S 2150 3100 2366.7 2566.7 1350 1900 1450 1600
Sn <2 <2 52.0 41.3 2.6 2.8 43.0 53.4
V 19.3 19.2 34.1 27.9 17.5 27.9 30.4 35.0
Zn 183.1 209.6 565.3 479.3 159.4 231.6 460.8 477.3

Nutrients TP 385 995 560 1180 290 590 445 740
TN 1100 2000 1150 2550 1005 1055 1250 1050

TOC 14 000 16 500 18 500 26 000 14 000 15 000 17 000 21 500
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Analysis of metatranscriptome data – structure

Using the ribotag counts in the rRNA dataset, we performed a permutational
multivariate analysis of variance (function adonis of package vegan in R). To
visualise the community shifts in our treatments, we used non-metric multi-
dimensional scaling (NMDS) plots and the envfit function (package vegan) to
determine which taxa (on order level) were mostly driving the observed struc-
tural changes (p≥0.001). Furthermore, we calculated the Shannon diversity
index and Pielou’s measure of species evenness for all our samples.

Analysis of metatranscriptome data – function

First, we conducted a permutational multivariate analysis of variance (ado-
nis) on the entire mRNA dataset and visualised the data using NMDS plots.
Then, we performed univariate analyses on the gene level. To test for differ-
ential expression of the functional genes, we performed gene-wise ANOVAs
on the mRNA dataset and subsequently applied False Discovery Rate (FDR)
corrections using the Benjamini-Hochberg method to all p-values in our final
dataset to correct for multiple testing. In order to determine if metatranscrip-
tomics results are repeatable, we calculated the maximum fold change between
biological replicates for every gene in each treatment, excluding the genes that
were not detected at all in that treatment. We then calculated the percentiles
of these maximum fold changes for easy visualisation of the variability of gene
expression within biological replicates. In addition, we calculated the correla-
tions between each replicate pair.

Subsequently, we analysed the data on a pathway level, according to the
assignment of genes into pathways by KEGG (as of January 2014). We de-
termined which pathways were most strongly affected by the experimental
treatments through a Fisher’s exact test with subsequent Benjamini-Hochberg
correction for multiple testing. That is, we identified the pathways with a sig-
nificantly higher proportion of differentially expressed genes than expected by
chance given the proportion of differential expression in the gene level analy-
sis. We were also interested in the most highly expressed pathways, therefore
we identified the pathways that contained the 50 genes with overall highest
expression across all samples. In order to narrow down the pathways that
we could confidently interpret, given the sequencing depth of our samples, we
examined pathways that were well represented in our dataset, i.e. of which
we had detected ≥80% of the associated genes. We then extracted the differ-
entially expressed genes that were found to only occur in one pathway. This
was done to enable a more transparent interpretation of what the differential
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expression of a gene entails and why this differential expression may have been
brought about by our experimental treatments.

A significance level of α=0.05 was applied for all statistical tests and mul-
tiple test corrections. All data were analysed in R (version 3.0.2, R Core Team
2015) with packages DESeq (Anders and Huber, 2010) and vegan (Oksanen
et al., 2016). All plots were generated using the ggplot2 package (Wickham,
2009).

Results

Structure and function of the sediment microbial community shifted signif-
icantly in response to organic enrichment and community function was also
altered by metal contamination. The most highly expressed genes across all
samples were genes involved in energy production, signalling and biodegrada-
tion. These three pathways were also the most impacted by our treatments.
Differentially expressed genes with known annotation were generally expressed
in lower numbers in contaminated (metals and/or organic enrichment) sedi-
ments compared to control samples.

Gene level analysis

Functional gene expression of the sediment microbial community responded
to metals and organic enrichment, while the community structure shifted
in response to organic enrichment but not to metals (Table 3.2 and Fig-
ure 3.1). Analysis of structural changes classified at the order level identified
Methanosarcinales, Desulfitobacterales, Spirochaetales, Syntrophobacterales
and B10 (order of Creanarchaeota) as bacterial taxa that were relatively more
abundant in enriched treatments. These taxa explained most of the variation
between control and enriched sediment communities. Furthermore, organic
enrichment significantly decreased the overall diversity and evenness of the
microbial community (Table 3.3 and Figure 3.2).

In regards to the repeatability of gene counts across replicates, we found
that 55% of the maximum fold change within biological replicates were equal to
or below two (Figure 3.3), which reveals that the majority of gene counts were
relatively stable within treatments. Furthermore, the variability of replicates
seems to have decreased within metal contaminated and enriched sediments.
In enriched sediments, both with and without metals, 75% of all genes ex-
hibited a fold change of around two or below within replicates. In addition,
the gene expressions of all replicate pairs were highly correlated (r2 >0.89,
Figures B.2 to B.5).
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(a) NMDS based on mRNA

(b) NMDS based on rRNA

(c) rRNA envfit on order level

Figure 3.1: Non-metric multidimensional scaling (NMDS) plots of both (a) mRNA and
(b) rRNA datasets. The shape of the points symbolise the metal treatments (circles for
control and triangles for high metal treatment), and the colour stands for the enrichment
treatment (black for control and pink for enriched). An envfit plot (c) of the taxa driving
the community shift in the rRNA data is also shown.
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Figure 3.2: Shannon diversity index (black) and Pielou’s measure of species evenness
(pink) for control and enriched sediments. The letters above the boxplots show the
significance groups. a and b are significantly different from each other.
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Table 3.2: R output of the permutational multivariate analysis of variance (adonis function of the vegan package) for the gene counts within the rRNA
and mRNA datasets. Significant p-values (at a level of α=0.05) are highlighted in bold.

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)
rRNA metals 1 0.0135 0.0135 0.9890 0.0220 0.3494

nutrients 1 0.4909 0.4909 35.8650 0.7971 0.0011
metals*nutrients 1 0.0156 0.0156 1.1410 0.0254 0.3072

Residuals 7 0.0958 0.0137 0.1556
Total 10 0.6159 1

mRNA metals 1 0.0135 0.0135 1.6242 0.1341 0.0163
nutrients 1 0.0179 0.0179 2.1501 0.1775 0.0001

metals*nutrients 1 0.0111 0.0111 1.3379 0.1105 0.0699
Residuals 7 0.0582 0.0083 0.5779

Total 10 0.1006 1
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Table 3.3: R output of the ANOVAs for the Shannon index and Pielou’s evenness for the rRNA structural data. Significant p-values (at a level of α=0.05)
are highlighted in bold.

Df Sum Sq Mean Sq F value Pr(>F)
Shannon Index metals 1 0.0878 0.0878 1.6550 0.2392

nutrients 1 2.3016 2.3016 43.3930 0.0003
metals:nutrients 1 0.0118 0.0118 0.2230 0.6514

Residuals 7 0.3713 0.0530

Pielou’s evenness metals 1 0.0005 0.0005 1.0280 0.3443
nutrients 1 0.0155 0.0155 35.3100 0.0006

metals:nutrients 1 0.0001 0.0001 0.1450 0.7143
Residuals 7 0.0031 0.0004
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Figure 3.3: Maximum fold changes between replicates within the four different treatments. The quantiles of max fold changes are shown on the x-axis to
give an idea of what percentage of genes were how variable. The colours of the dots and lines stand for the different treatments (black = control, yellow =
metals, blue = enriched, pink = metals/enriched). The dotted grey line highlights a fold change of one, and the solid grey line is a reference for a two-fold
change.53
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Gene-wise ANOVAs yielded 271 genes that were differentially expressed
in response to metals (7.35% of total number of detected genes, Figure 3.4),
447 genes that were differentially expressed in response to organic enrichment
(12.12% of total detected, Figure 3.5), and 229 genes that were differentially
expressed when metals and organic enrichment were present in the sediments
(6.21% of total detected, Figures 3.6). A subsequent conservative false discov-
ery rate (FDR) correction yielded 13 differentially expressed genes for metals,
31 for enrichment and twelve that were significantly affected by metals in
combination with enrichment. Looking at the expression levels for these dif-
ferentially expressed genes we found that ten out of the 13 significant genes for
metals (77%) were down-regulated in response to metals, and 21 out of 31 sig-
nificant genes for organic enrichment (68%) were down-regulated in enriched
systems. Of the significant interactions, five were only measured in control
sediments (42%), whereas another six were only measured in metals/enriched
sediments (50%). One gene was only measured in control and metals/enriched
treatments, whereas the expression in metals/enriched was up-regulated.

Pathway level analysis

The detected genes belonged to 205 different biogeochemical pathways in to-
tal. Pathways here are defined as cycles in which substances are turned over or
transformed into other substances, which are subsequently transformed again
in other pathways. Each pathway consists of multiple genes involved in the
different steps of substance turnover/transformation. To determine the most
highly expressed pathways in our sediments, we examined pathways including
the 50 genes with the overall highest expression rates. The largest number
of highly expressed genes belonged to the following categories of pathways:
energy metabolism (20 genes), carbohydrate metabolism (nine genes), amino
acid metabolism (six genes), nucleotide metabolism (six genes), signal trans-
duction (four genes), xenobiotics biodegradation and metabolism (four genes),
and folding, sorting and degradation (three genes). For gene names and a com-
prehensive list of pathways and pathway categories, see Table B.2.

Of all the detected pathways, 63% (129 pathways) had at least one gene
affected by metal treatment, 65% (134 pathways) were affected by organic
enrichment and 52% (107 pathways) included genes that were affected by
combined metals and enrichment (prior to conservative false discovery rate
correction). The Fisher’s exact test (Table B.3) revealed that eight pathways
included more differentially expressed genes than expected by chance (given
the number of differentially expressed genes in the entire dataset) and were
thus most affected by our treatments: Citrate cycle, C5-branched dibasic acid
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(a)

(b)

Figure 3.4: The up- and down-regulation of all differentially expressed genes ((a) pre and
(b) post false discovery rate correction (FDR)) for metal treatments. The colour of the
dots stands for the different pathways that these genes belong to. For some genes there
are multiple dots because they are part of several pathways. All genes above the 1:1 line
are up-regulated in metals/enriched, whereas the genes below the line are down-regulated
in the treatments in comparison to the control. C stands for control, E for enriched, M
for metals, and ME for metals/enriched.

metabolism, Carbon fixation pathways in prokaryotes, Methane metabolism,
Phenylpropanoid biosynthesis, Nitrotoluene degradation, MAPK signalling
pathway and Endocytosis (Figure 3.7). After conservative correction for multi-
ple testing using Benjamini-Hochberg correction, only the Nitrotoluene degra-
dation pathway remained significantly different from the expected differential
expression values. In this pathway, two genes were differentially expressed
in elevated metals (both were down-regulated) and twelve genes were dif-
ferentially expressed in organically enriched sediments (75% up-regulated in
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(a)

(b)

Figure 3.5: The up- and down-regulation of all differentially expressed genes ((a) pre
and (b) post false discovery rate correction (FDR)) for enriched treatments. The colour
of the dots stands for the different pathways that these genes belong to. For some genes
there are multiple dots because they are part of several pathways. All genes above the
1:1 line are up-regulated in metals/enriched, whereas the genes below the line are down-
regulated in the treatments in comparison to the control.
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Figure 3.6: The up- and down-regulation of all differentially expressed genes pre false discovery rate (FDR) correction for the interaction of metals and
enriched treatments (metals*enriched). The colour of the lines stands for the different pathways that these genes belong to. For some genes there are
multiple lines because they are part of several pathways. All the lines above zero are up-regulated and all below zero are down-regulated in the respective
treatments (x-axis) in comparison to control samples. Differences in expression of ≤2 are shown as up- or down-regulated. Treatment abbreviations are as
follows: C for control, E for enriched, M for metals and ME for metals/enriched.
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enriched). For proportions of up-regulated differentially expressed genes in all
pathways with a significant Fisher’s test, see Table 3.4.

We identified 50 pathways in which there was detectable expression of at
least 80% of the associated genes. Of these, 17 pathways included at least
one gene that was differentially expressed in at least one treatment (metals,
enriched, or metals/enriched) after FDR correction. Eleven of these differen-
tially expressed genes were found to only be part of one pathway (Tables 3.5
and 3.6). These genes were from the following 8 pathways: Cysteine and me-
thionine metabolism, Geraniol degradation, Glutathione metabolism, Glycine,
Serine and Threonine metabolism, Glyoxylate and dicarboxylate metabolism,
Nitrogen metabolism, Sulfur metabolism and Proteasome. Ten out of these
eleven genes were found to be differentially expressed due to organic enrich-
ment, one of these ten was also differentially expressed due to metal treatment
and the remaining gene displayed a significant response to exposure to both
metals and organic enrichment.

Discussion

We identified structural (rRNA gene expression) and functional (mRNA gene
expression) changes in sediment microbial communities using total RNA se-
quencing of experimentally contaminated sediments. We assessed data gen-
erated from metatranscriptomics at the functional pathway and pathway cat-
egory level. Functional changes revealed contaminant effects on critical eco-
logical processes such as carbon fixation (pathway) and energy production
(pathway category). Sediment microbial community functions were sensitive
to both metal contamination and organic enrichment, while community struc-
ture only responded to enrichment. Metatranscriptomics provided sensitive
information on the immediate whole-community functional responses to stres-
sors. By exposing the genetic mechanisms underpinning functional changes,
metatranscriptomics can enhance our understanding of the ecological conse-
quences of anthropogenic stressors.

Sensitivity to stressors and ecological relevance

Functional gene expression was sensitive to both organic enrichment and metal
contamination, while structural responses were only detected under enrich-
ment conditions (Table 3.2 and Figure 3.1). Ren et al. (2016) also recently
found that functional measures were more sensitive to environmental changes,
while structural measures were dominated by stochastic processes. Our gene-
level analysis revealed that >7% of detected functional genes were altered by
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(a)

(b)

Figure 3.7: The up- and down-regulation in (a) metal and (b) enriched treatments of
all genes involved in the eight pathways that had a significant result from the Fisher’s
exact test. These pathways contain more differentially expressed genes than expected by
chance, given the total number of differentially expressed genes in the entire dataset. The
colour of the dots/lines stand for the different pathways that these genes belong to. All
genes above the 1:1 line are up-regulated in metals/enriched, whereas the genes below
the line are down-regulated in the treatments in comparison to the control.

experimental treatments. Both metal contamination and organic enrichment
led to a general down-regulation of affected genes. Many geochemical cycles
have been shown to be disrupted or minimised in contaminated microbial com-
munities (Hemme et al., 2015). This could potentially lead to lower primary
productivity, lower nutrient cycling, and also lower remediation potential of the
microbial community. Moreover, contaminated communities can show higher
susceptibility to additional stressors (Hemme et al., 2015). Our use of gene
expression responses to reveal stressor sensitivity builds on the understanding
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Table 3.4: Number of differentially expressed genes for the different treatments (p≤0.05) and the number of genes that were up-regulated within those
significant genes for all pathways that included more differential expression than expected by chance, given the number of differentially expressed genes in
the total dataset (Fisher’s test). Treatment abbreviations are as follows: E for enriched, M for metals and ME for metals/enriched.

p≥0.05 # up-regulated
pathway KO ID pathway name E M ME E M

path:ko00020 Citrate cycle (TCA cycle) 18 2 0 10 2
path:ko00633 Nitrotoluene degradation 12 2 0 9 0
path:ko00660 C5-Branched dibasic acid metabolism 4 1 0 1 1
path:ko00680 Methane metabolism 22 16 4 11 6
path:ko00720 Carbon fixation pathways in prokaryotes 22 4 1 13 3
path:ko00940 Phenylpropanoid biosynthesis 2 3 0 0 0
path:ko04011 MAPK signalling pathway – yeast 3 1 3 0 1
path:ko04144 Endocytosis 7 3 3 0 0
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Table 3.5: The table shows the eleven differentially expressed genes that are part of one of the pathways of which we detected at least 80% of all associated
genes, and at the same time only belong to one pathway. Gene and pathway information are shown.

gene KO ID gene name pathway KO ID pathway name pathway category
K03030 PSMD14 path:ko03050 Proteasome Folding, Sorting and Degradation
K04014 nrfC path:ko00910 Nitrogen metabolism Energy Metabolism
K01251 ahcY path:ko00270 Cysteine and methionine metabolism Amino Acid Metabolism
K01637 aceA path:ko00630 Glyoxylate and dicarboxylate metabolism Carbohydrate Metabolism
K00376 nosZ path:ko00910 Nitrogen metabolism Energy Metabolism
K11180 dsrA path:ko00633 Nitrotoluene degradation Xenobiotics Biodegradation and Metabolism
K00302 soxA path:ko00260 Glycine, serine and threonine metabolism Amino Acid Metabolism
K10946 amoC path:ko00910 Nitrogen metabolism Energy Metabolism
K13778 atuC path:ko00281 Geraniol degradation Metabolism of Terpenoids and Polyketides
K01917 E6.3.1.8 path:ko00480 Glutathione metabolism Metabolism of Other Amino Acids
K00872 thrB1 path:ko00260 Glycine, serine and threonine metabolism Amino Acid Metabolism
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genes, and at the same time only belong to one pathway. Raw read counts in the different samples (except for the outlier ME2) are shown. Sample names
are as follows: C for control, E for enriched, M for metals, and ME for metals/enriched.

gene KO ID C1 C2 C3 E1 E2 E3 M1 M2 M3 ME1 ME3
K03030 4 3 5 2 5 3 4 2 2 NA NA
K04014 7 5 9 9 7 11 7 2 5 13 12
K01251 213 183 303 136 125 116 275 171 258 148 155
K01637 135 81 186 38 60 47 281 115 145 65 67
K00376 184 114 125 30 26 37 245 83 106 45 48
K11180 135 144 195 208 155 134 118 56 168 287 244
K00302 7 5 12 3 4 4 12 8 7 1 1
K10946 21 5 13 NA NA NA 10 20 4 1 2
K13778 1 2 2 NA NA NA 1 3 1 NA NA
K01917 1 NA 1 3 2 2 1 NA NA 4 3
K00872 1 1 3 NA NA NA NA NA NA 3 3
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that changes in gene expression is the most immediate response to stressors
(Moran, 2009). Our evidence, provided by the metatranscriptomic sequenc-
ing of metal and organically enriched sediments, suggests that functional gene
responses might be more sensitive to stressors than taxonomically conserved
gene responses. Thus, our results corroborate the findings of studies that
used more conventional approaches and found that while microbial biomass
and structure did not change upon contamination with heavy metals, enzy-
matic activity was highly impacted in both soils (Kandeler et al., 1996) and
marine sediments (Dell’Anno et al., 2003). Further, Srivastava and Vellend
(2005) have suggested that functional responses of communities to stressors
are possibly more relevant to ecosystem conservation than structural changes.
Community function is therefore a critical measure for both the early detection
and broad understanding of community change upon contamination.

Providing a link between differential gene expression and altered ecosystem
processes (e.g. fluxes of matter from a system) is important to ensure that
metatranscriptomics can be recognised as an ecologically relevant tool. While
proteins are the cellular components ultimately responsible for the rate of bio-
geochemical processes, the abundance of mRNA molecules accurately predicts
the number of proteins in a population (Taniguchi et al., 2010). This means
that gene expression can provide an accurate reflection of the biogeochemical
process rates of a microbial community. Studies that measured greenhouse gas
production in soil microbial communities and compared them to the activity
of the associated genes, proved this relationship between gene activity and
biogeochemical process rates to be accurate (Morales et al., 2010; Philippot
et al., 2011; Harter et al., 2014). In a relatively recent article on metatran-
scriptomics, Moran et al. (2013) also conclude that mRNA reads are better
indicators of instant change to stressors than proteins, due to slower response
of the latter. The activity level of a gene can also be accurately predicted
based on its transcript abundance, even for functions of organisms with low
abundance in the community (Helbling et al., 2012). Hence, metatranscrip-
tomics generates information that is of high ecological relevance and can be
useful for biomonitoring.

For effective and targeted management, we need biomonitoring tools that
are adaptable for general and specific questions about ecosystem change. We
have demonstrated that metatranscriptomics provides required information
for ecosystem managers. The analysis can be adjusted to the depth of infor-
mation necessary to inform new mitigation or remediation strategies. mRNA
reads can be analysed on a genetic level to provide information on all genes that
change following a stressor (Moran, 2009). These gene expression datasets can
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be filtered for specific genes of interest, but also provide information on addi-
tional, potentially unanticipated, community responses (Moran, 2009). This
is a crucial difference compared to the molecular techniques already in use
in biomonitoring, such as qPCR and amplicon sequencing (Tan et al., 2015),
which require a pre-selection of genes of interest. Hence, metatranscriptomics
provides important information, which would not be attainable using conven-
tional techniques.

In addition to a gene-level analysis, the metatranscriptomics dataset can
be divided up into pathways, using the gene to pathway information from
KEGG. The microbial pathways with the highest overall expressions or those
that are most highly affected by the stressor can thus be determined. Com-
monly, the most frequently expressed genes in marine ecosystems are related to
transcription/translation, protein folding/export and DNA replication/repair
(Moran, 2009). In our metal contaminated and enriched sediments, energy
production, signalling and biodegradation seemed to become more important
(Table B.2). Also, both metal contamination and organic enrichment led to a
significant decrease in the activity of genes involved in cell motility, cell com-
munication and signal transduction (Figures 3.4 and 3.5). Lower cell motility
of diatoms has been suggested as a fast screening method of toxic sediments
(Cohn and McGuire, 2000). Moreover, lower cell motility can affect micro-
bial population growth potential (Lauffenburger et al., 1982) and can thus be
detrimental to the affected community. Furthermore, cell communication is
vital for the modulation of gene expression on a population level (Mitchell
et al., 2011). Signal transduction enables communication not only between
organisms of the same species, but also across kingdoms and may directly
increase bacterial survival (Williams, 2007). Contaminants have been shown
to act as ’information disruptors’ at even very low levels (Lürling and Schef-
fer, 2007). Because signalling systems serve as detectors for subtle chemical
cues from the environment, they are naturally built to be sensitive and are
thus highly susceptible to contamination (Lürling and Scheffer, 2007). Sur-
prisingly, we have an overall down-regulation of signalling genes, but at the
same time some signalling genes that were among the most highly expressed
in the entire dataset. The highly expressed genes, however, are all part of the
two-component system. The two-component system enables cells to detect
changes in their environment and to produce a cellular response, most often
through differential expression of target genes (Mascher et al., 2006). Thus
the expression of these two-component system genes reveals that the microbes
were sensitive to the stressor.

In addition, the pathways which were mostly affected by our experimental
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treatments are mainly involved in energy production, signalling and biodegra-
dation (Figure 3.7). The differentially expressed genes in these eight pathways
were mainly down-regulated in metal contaminated sediments treatments. In
enriched sediments, especially the signalling genes were down-regulated. The
numerous down-regulated signalling and cell communication genes from dif-
ferent pathways are likely to impede the delivery of information within the
microbial community (Lürling and Scheffer, 2007). Like larger organisms, mi-
crobes adapt their behaviour and functions to the environment, in response
to biological and chemical information (Westerhoff et al., 2014). Responses
are made in dependence of the responses of other organisms in the same com-
munity (Ross-Gillespie and Kümmerli, 2014). Therefore, a down-regulation
of signalling genes can impede the capacity to regulate gene expression on
a population level (Mitchell et al., 2011) and even affect the bacterial sur-
vival capacity (Williams, 2007). As such, a disruption in cell communication
could potentially lead to community fracturing, as has recently been shown in
microbial biofilms (Lawes et al., 2016b). This could result in a decreased pri-
mary productivity and lower effectiveness of remediation and biogeochemical
cycling.

We were also interested in the potential to investigate entire pathways in
relation to a stressor and to make predictions on consequences for the entire
ecosystem. We found that eight pathways were well-represented in our dataset
and could be interpreted in regards to the differentially expressed genes within.
Two of these eight pathways are the nitrogen and sulphur metabolisms, which
are both commonly impacted by organic enrichment (Asami et al., 2005; Niz-
zoli et al., 2006). Both pathways include the production of highly potent green-
house gases – nitrous oxide and hydrogen sulphide, respectively (Schreiber
et al., 2012; Kump et al., 2005). Therefore, changes in gene expression in
these pathways could not only lead to consequences for the ecosystem, but
could have a global impact. Chapter 4 of this thesis investigates these two
metabolisms from the same dataset in detail and discusses the consequences
of altered gene expression on a local and global scale.

Repeatability of measures and reproducibility across systems

Apart from sensitivity and ecological relevance, metatranscriptomics needs to
exhibit low variability of measures across biological replicates, in order to be
a reliable tool for biomonitoring. The gene expression measures of our repli-
cates proved to be highly correlated within treatments (Figures B.2 to B.5).
When looking at the maximum fold-changes across replicates, we found that
the majority of genes (70%) had a maximum fold-change of around two or
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less within the same treatment (Figure 3.3). Although there are some stud-
ies that consider a two-fold change of a gene to be up-regulated (e.g. Zhang
et al., 2013), many only consider genes with at least three- or four-fold change
to be differentially expressed (e.g. Kohlmann et al., 2014; Nakamura et al.,
2016). Ishii et al. (2013) even define a fold change of five or above to be
’moderately’ up-regulated, and only consider a ten-fold change or higher to
be ’highly’ up-regulated. In our data, some genes have a very high variabil-
ity between replicates. The genes with highest variability between replicates
belong to pathways from all different categories; there are no pathways that
are substantially more variable than others. Therefore, this variability is likely
not due to treatments (which could lead to higher variability in certain genes),
but to random variability in the environment or to differences in amplifica-
tion and sequencing efficiencies across samples. However, high variability of
genes has previously been found in sediments (Bulow et al., 2008), which shows
that the inclusion of variability across samples is extremely important, despite
potential biases in sample processing. It enables the detection of differen-
tially expressed genes between treatments despite intra-treatment variability
and enables meaningful interpretation of the data and accurate comparison of
samples from different conditions (Prosser, 2010; Zhou et al., 2015).

A further issue that needs to be considered before applying metatranscrip-
tomic techniques is the trade-off between sequencing depth and replication.
With limited funds, replication usually comes at the cost of lower sequencing
depth. Lower sequencing depth can impact the technical precision of sequenc-
ing on a gene level (Sims et al., 2014) and also impact the detection of differ-
entially expressed genes (Tarazona et al., 2011). However, mRNA reads across
samples were reproducible and highly correlated in various systems and across
several molecular techniques (Frias-Lopez et al., 2008; Caporaso et al., 2012;
Turner et al., 2013; Tsementzi et al., 2014). The high correlations (Figures B.2
to B.5) and predominantly low fold changes between our biological replicates
reveal that, in general, the variability of gene expression within our treatments
is modest and thus validate metatranscriptomics as a highly reliable tool.

Metatranscriptomics has been successfully applied across highly diverse
systems. Studies have used this technique to look at the functional activity of
specific organisms or genes in freshwater (Penn et al., 2014), oceans (Gifford
et al., 2011; Hilton et al., 2015) and permafrost (Hultman et al., 2015), and
to describe functions of previously unexplored habitats (Urich et al., 2014;
Thureborn et al., 2016). Microbiomes of plants (Turner et al., 2013; Franzosa
et al., 2014) have also been characterised using the rRNA component of a
metatranscriptomics dataset and using RNA/DNA ratios to explore under- or
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over-expressed functional genes. However, to the best of our knowledge, thus
far metatranscriptomics has not been used to holistically investigate differ-
entially expressed functions between impacted and unimpacted samples on a
gene and/or pathway level. In this study, we have demonstrated the breadth
of its potential to characterise community function and identify functional
changes.

Ease of use across disciplines

Metatranscriptomics poses a suite of challenges from sampling to data anal-
ysis. Firstly, the sampling of RNA must be done in a very cautious manner,
due to its instability. RNA has a half-life of seconds to minutes (Carvalhais
et al., 2012; Moran et al., 2013), and samples must therefore be instantly pre-
served or extracted. In addition, rRNA typically comprises about 95% of the
total RNA extracted in a single cell, thus heavily dominating the presence of
mRNA (McGrath et al., 2008). If only the functional part of the community
is of interest, the rRNA needs to be removed to improve sequencing depth
of the mRNA. In eukaryotes, mRNA can be isolated with a simple poly-dT
pull-down; however, bacterial and archaeal mRNA does not have the neces-
sary poly-A tail for this method (Moran, 2009). Some prokaryotic mRNA
isolation kits exist (Carvalhais et al., 2012), however many sequencing facili-
ties do not yet use these techniques (personal observation). Moreover, there
is a substantial advantage to including rRNA in the analysis and thus using
total RNA as input for sequencing. rRNA and mRNA sequences can be sep-
arated post-sequencing and the rRNA component can be used to gain insight
into community structure changes occurring alongside the functional changes
(mRNA) from the same sample (Urich et al., 2008).

A further very significant challenge is the lack of annotation of environ-
mental genes in reference libraries. This results in most of the sequences
without annotation to any known gene and thus these genes are usually ex-
cluded from the analysis (except for simple community shift analyses). Genes
without annotation can also function as a marker for environmental status,
however, without annotation its function is unknown and interpretations are
therefore challenging. Even if the gene has been annotated, a 100% confi-
dence of the assignment to a function is still not possible (Moran, 2009). Most
genetic databases are biased towards annotation of medically relevant genes,
which can lead to confusion with the interpretation of environmental samples
(personal observation). However, as more and more research is being done
using these modern molecular techniques, the reference libraries are growing
and enabling the annotation of more and more environmentally relevant genes.
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This is crucial for the viability of molecular techniques (Aylagas et al., 2014).
Once the samples have been extracted, sequenced and taxonomies (rRNA) or
gene names (mRNA) assigned to the reads, the investigator is faced with the
challenge of making sense out of a tremendous amount of data. Therefore, it
is important to know the depth of information that is needed beforehand, so
that the analysis can be scaled to those needs. Also, the increasing amount of
data generated poses serious challenges for efficient computation (Muir et al.,
2016). As we are still in the advent of metatranscriptomics as a widely used
tool, we are confident that computation technologies will advance and anal-
yses will get more streamlined, making the technique more accessible across
disciplines and professions.

Conclusions

Modern molecular techniques have created the opportunity to ’eavesdrop on
microbial communities’ (Moran, 2009). By doing so, we not only identify the
changes that altered conditions provoke in microbial communities, but also
explore the mechanisms behind these changes. With the ever-increasing an-
thropogenic pressure on ecosystems, the necessity for immediate, reproducible
biomonitoring tools is increasing. We have assessed the use of metatranscrip-
tomics as a biomonitoring tool, using experimentally manipulated sediment
microbial communities in the field. Metatranscriptomics is a highly sensitive
tool for detecting community response to common stressors and provides a vast
amount of ecologically relevant information. This technique can be used to si-
multaneously report structural and functional changes of an entire community.
In this study, gene expression measures exhibited low variability across biolog-
ical replicates, suggesting a high utility for biomonitoring purposes. Metatran-
scriptomics generates rapid information about the living community and thus
allows for an immediate and highly relevant investigation of stressor response.
There are still a number of challenges associated with the stream-lined use of
this modern molecular technique; however, we are confident that a significantly
growing application of meta-omics to environmental studies will contribute to
higher accessibility of this approach across disciplines. In conclusion, meta-
transcriptomics is a very powerful modern technique and highly scalable to
the needs of the investigator. The large amount of data generated can be used
for multiple assessments targeting different aspects of a community simulta-
neously and has immense potential to inform the integrative management of
urbanised ecosystems.
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4 Transcriptional changes in greenhouse
gas production pathways in

experimentally contaminated coastal
sediments

Abstract

Microbially mediated biogeochemical processes are crucial for climate regula-
tion and may be disrupted by anthropogenic contaminants. To better manage
contaminants we need tools that identify causal links between stressors and
altered microbial functions and can predict the consequences for ecosystem
services such as climate regulation. In a field experiment, we used for the
first time metatranscriptomics coupled with common biogeochemical measure-
ments to investigate the impact of metal contamination and excess organic
enrichment on the gene expression of nitrogen and sulphur metabolisms in
coastal sediments. We show that excess organic enrichment could result in
1) accumulation of toxic products, and 2) increased greenhouse gas produc-
tion. Furthermore, metal contamination altered nitrogen metabolism when
in combination with organic enrichment. Our findings suggest that the pres-
ence of metal contamination may compound the toxic effects of excess organic
matter. We reveal the genetic mechanisms that may lead to altered productiv-
ity and greenhouse gas production in coastal sediments due to anthropogenic
contaminants.

Introduction

Biogeochemical cycles encompass the production and degradation of organic
nutrients, and are therefore essential to the regulation of the Earth’s climate
(Ducklow, 2008). Specialised microorganisms mediate these cycles and control
the production of associated end-products, including greenhouse gases. Micro-
bial communities are widely distributed across all biomes and their functioning
is essential for maintaining balanced biogeochemical cycling and ecosystem ser-
vices. However, stress from human activities can modify the structure and/or
function of microbial communities (Johnston and Roberts, 2009; Berga et al.,
2012). These modifications can result in incomplete biogeochemical cycles and,
subsequently, an accumulation of intermediate metabolic products or altered
rates of gas production (Schimel and Gulledge, 1998). Such biogeochemical
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changes are likely to have direct repercussions for entire ecosystems (Chapin
et al., 2000). In order to build accurate climate models (Singh et al., 2010)
and improve ecosystem management, we need to understand the impacts of
anthropogenic perturbations on microbial function. Despite the significant
contribution of microbial communities to biogeochemical cycles, we have lit-
tle understanding of the link between microbial communities, anthropogenic
activities, and greenhouse gases.

Human activities are increasingly impacting the composition and health
of our aquatic ecosystems. Coastal marine ecosystems are some of the most
productive in the world (Nixon et al., 1986). The microbial communities that
inhabit the coastal soft sediments regulate numerous biogeochemical cycles
and impact biogeochemical cycling on a global scale. However, the intensifi-
cation of human activities in and around coastal areas exposes these systems
to multiple environmental stressors (Kennish, 2002). Contaminants, such as
metals and excess organic matter, enter coastal waterways and bind to par-
ticles in the water column, eventually settling and accumulating in the soft
sediments (Burton and Johnston, 2010). This accumulation may alter general
microbial function in the sediments over large scales (Nogales et al., 2011) and
result in modifications to ecosystem processes and functions (Barbier et al.,
2011).

Two of the most prevalent types of contaminants in coastal waterways are
elevated metals and excess organic matter (Jiang et al., 2001). Metals are
known to have toxic effects on sediment communities (Babich and Stotzky,
1985) and excess organic matter causes high respiration rates, low oxygen con-
centrations and a build-up of sulphides and ammonia (Meyer-Reil and Köster,
2000; Gray et al., 2002). The provision of excess substrate can thus change the
rate of community functions, and activate positive feedback loops (Howarth
et al., 2011) which may lead to accumulation of toxic end-products. Individ-
ually, these two common contaminant types are known to alter the overall
microbial activity of soft sedimentary environments, however the combined
effect of metals and organic enrichment is yet to be understood.

Until recently, we lacked the ability to directly link single and multiple
stressor effects to the specific activities of microbes. The link between con-
taminants and altered microbial functions are yet largely unknown. Modern
molecular tools enable us to measure the structure and function of entire com-
munities at the gene level (Urich et al., 2008; Moran, 2009). Such ’omics’
approaches provide an economical and powerful means to rapidly gather sub-
stantial and specific information on microbial communities and their func-
tions. These methods enable the quantification of gene expressions, which
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represent potential rates of microbially driven processes. They represent a
promising technique that allows a unique perspective on whole community
analysis. Therefore, molecular tools, can be very effective for understanding
the genetic mechanisms of impact on biogeochemical processes; the endpoint
of such impacts being commonly measured as functional rates (e.g. gas or
nutrient fluxes) (Kelaher et al., 2013).

Here, we investigate the biogeochemical response of a coastal sediment
microbial community to different concentrations of metals and organic enrich-
ment in a field experiment. Specifically, we measure altered gene expression of
metabolic pathways that involve the production and consumption of two green-
house gases: nitrous oxide (N2O) and hydrogen sulphide (H2S). We show that
anthropogenic contaminants can lead to an accumulation of toxic compounds
and an increased production of N2O and H2S in affected sediments. We discuss
the potential implications for ecosystem productivity and the global climate.
To our knowledge, this is the first study of its kind to employ metatranscrip-
tomics to investigate the indirect impact of anthropogenic contaminants on
the climate.

Methods

Sediment collection and experimental set-up

Sediments (grain size: >95% fines (<63 µm), total organic carbon content: 4-
5%) were collected using a Van Veen grab from 5 m depth at unvegetated sites
in NSW, Australia (Dafforn et al., 2012). Metal concentrations in collected
sediments were either at background concentrations and below Australian Sed-
iment Quality Guideline Values (SQGVs, Simpson and Batley, 2016) (Botany
Bay, Georges River, NSW, Australia), or above high SQGVs (Port Kembla,
Wollongong, NSW, Australia). Port Kembla has a legacy of metal contami-
nation from industrial practices (He and Morrison, 2001). Metal treatments
comprised volume-based mixtures of these two sediments and had two levels -
Control (100% Botany Bay), which had Cu, Pb and Zn concentrations below
SQGVs, and High (50% Botany Bay, 50% Port Kembla), which had Cu, Pb
and Zn concentrations approximately representing high SQGVs (±25%, Ta-
ble C.3). Half of each sediment mixture was then spiked with a commonly
used organic fertiliser (10% dry weight, Yates Dynamic Lifter). Treatments
were applied in a fully crossed and replicated experimental design representing
background metals/no enrichment (subsequently called control), high metals
(no enrichment), enriched (background metals plus enrichment), and high met-
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als/enriched.
The prepared sediment mixtures were distributed into benthic recruitment

containers consisting of transparent acrylic cylinders (15 cm diameter, 40 cm
height) fixed within grey PVC piping (15 cm diameter, 15 cm height). The
base of each container was lined with 1 kg of sand for drainage, aeration
and to minimise compaction and contained 2 kg of sediment mixture above
the sand. Triplicates of every sediment mixture were prepared and frozen at
-20◦C for three months to kill the fauna in the sediment. Benthic recruit-
ment containers were deployed on the sediment surface at 3 to 4 m depth
while frozen and attached to aluminium frames (Dafforn et al., 2013) where
they thawed in situ. The experiment was carried out in the euphotic zone of
the well flushed Chowder Bay near the mouth of Sydney Harbour, Australia
(33◦50’22”S, 151◦15’17”E).

Metal and nutrient concentrations in sediment treatments

The metals and nutrient concentrations in the four treatments were charac-
terised at the beginning and end of the experiment by analyses of dilute-acid
extractable metals, total organic carbon (TOC), total Kjehldahl nitrogen (TN)
and total phosphorous (TP). Dilute-acid extractable metals analyses (1 M
HCl, 60 min) were made, with appropriate QA/QC, as described previously
(Simpson and Spadaro, 2011). Organic contents (TOC, TN and TP) were
measured according to the following standard methods for the examination of
water and wastewater: APHA 5310B, APHA 4500-Norg B and 4500-NH3C
distillation/titration and USEPA 6010C/6020A ICP. Metal and nutrient con-
centrations in the four treatments are provided in Table C.3. In high metals
treatments the concentrations of commonly monitored metals (e.g. Cu, Pb and
Zn) were elevated substantially from the concentrations in the control samples
both at the beginning and at the end of the experiment. At the same time, the
exceedance of SQGVs and high SQGVs in every sample was maintained over
the duration of the experiment. At the start of the experiment, C:N ratios of
samples with no enrichment were around 14:1 (by atoms), while C:N ratios
for enriched samples were around 9:1. At the end of the experiment, samples
without enrichment and samples with background metals and enrichment had
C:N ratios of around 14:1 and sediments with metal contamination and en-
richment had a C:N ratio of 20:1. The added fertiliser led to medium-range
organic enrichment, however the added nutrients and organics are very labile,
which can be utilised quickly. Thus this medium-range enrichment leads to
high metabolism and would mainly have an intense short term effect.
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Sample processing

Benthic recruitment containers were retrieved and destructively sampled 17
weeks after deployment. The time point was chosen to allow the sediments to
equilibrate and capture recruitment responses to the different treatments. Fur-
thermore, treatment effects were assessed after multiple weeks in the field to
investigate if the impact of contaminants on community function is sustained
over longer time periods relative to natural temporal change in RNA, which is
known to happen within minutes (Carvalhais et al., 2012; Moran et al., 2013).
Sediment samples from the surface (top 2 cm) were collected, homogenised
and carried to the laboratory adjacent to the experimental site for immediate
RNA and DNA extraction for microbial function analysis. Total RNA and
DNA were extracted from the same 1 g of sediment using a PowerSoilTM To-
tal RNA Isolation Kit and a PowerSoilTM DNA Elution Accessory Kit (MoBio
Laboratories, Carlsbad, CA, USA), respectively. RNA samples were cleaned
with TURBO DNA-freeTM Kit (Lifetechnologies, Carlsbad, CA, USA) and
Agencourt R© RNAClean R© XP (Beckman Coulter Inc.), and DNA samples were
cleaned with Agencourt R© AMPure R© XP (Beckman Coulter Inc.) according to
manufacturer’s instructions. Cleaned RNA and DNA were stored at -80◦C un-
til sequencing. The quality of extracted RNA was determined using a Bioana-
lyzer (Agilent Technologies, Santa Clara, CA, USA). The mean RNA integrity
number (RIN) for all samples was 7.9 ± 1.196, where a RIN of 10 represents
no RNA degradation. RNA libraries (n=12) with fragment lengths of approx.
200 nt were prepared using the Illumina standard protocols. Prior to library
preparation, the quality of the total RNA samples was assessed on a Bioana-
lyzer 2100, using an RNA 6000 Nano Chip (Agilent). Sample quantitation was
carried out using Invitrogen’s Ribogreen assay. Library preparation was then
performed according to Illumina’s TruSeq Stranded mRNA protocol with the
following modifications: The oligo-dT mRNA purification step was omitted
and instead, 200 ng of total RNA were directly added to the Elution2-Frag-
Prime step. The PCR amplification step, which selectively enriches for library
fragments that have adapters ligated on both ends, was performed accord-
ing to the manufacturer’s recommendations but the number of amplification
cycles was reduced to 12. Each library was uniquely tagged with one of Illu-
mina’s TruSeq LT RNA barcodes to allow libraries to be pooled for sequencing.
The finished libraries were quantitated using Invitrogen’s Picogreen assay and
the average library size was determined on a Bioanalyzer 2100, using a DNA
7500 chip (Agilent). Library concentrations were then normalised to 2 nM
and validated by qPCR on a ViiA-7 real-time thermocycler (Applied Biosys-
tems), using qPCR primers recommended in Illumina’s qPCR protocol, and
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Illumina’s PhiX control library as standard. The libraries were then pooled
at equimolar concentrations and sequenced across two lanes on an Illumina
HiSeq2500 sequencer in rapid mode at a read-length of 100 bp paired-end.
Sequencing was performed at the Singapore Centre for Environmental Life
Sciences Engineering (SCELSE).

Mass balance measurements

To do mass balance calculations to estimate the potential amount of N gas
produced in the different treatments, sub-cores were taken from all benthic
recruitment containers for measurements of dissolved oxygen and dissolved
inorganic nitrogen (NO−

3 , NO−
2 and NH3/NH+

4 ) fluxes, as seen in Sutherland
et al. (2016). These fluxes were measured from water sampled after cores were
incubated in dark and light conditions and analysed according to (Kelaher
et al., 2013). All fluxes were determined as µmol/m2/hr. O2 fluxes in light
conditions represent net primary productivity (NPP) while O2 fluxes in the
dark represent the benthic community respiration (BCR) rate. Gross primary
productivity (GPP) of the sediment community was calculated as NPP - BCR.
Net ecosystem metabolism (NEM) and net N sediment-water fluxes, which
represent average net productivity of the sediment over a daily period, were
calculated by averaging light and dark fluxes. Mass balance calculations can
be found in Table C.2.

General sequencing numbers

Total RNA and DNA sequencing generated a mean of 40.4 million bases (reads)
and 29.7 million bases per sample, respectively (for more details see Table B.1).
Standard QC was performed using Cutadapt (Martin, 2011) with a quality
cut-off value of 20. After rRNA read removal through classification using
SortMeRNA 2.0 (Kopylova et al., 2012) and the SILVA database, an average
of two million mRNA reads (5% of total reads) remained. With the remaining
mRNA and the DNA reads we performed a homology search using RapSearch2
(Zhao et al., 2012) against the NCBI NR (non-redundant protein) database
(Pruitt, 2004) and only sequences with homology to annotated genes were
used downstream. The reads were then assigned to a known KEGG (Kyoto
Encyclopedia of Genes and Genomes) orthologous gene (KO) using the lowest
common ancestor (LCA) algorithm in MEGAN4 (Huson et al., 2011). Total
read counts of each KO per sample were calculated and normalised using the
variance stabilization function (getVarianceStabilizedData) in the DESeq pack-
age (Anders and Huber, 2010) in R. The following steps were only performed
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for the RNA dataset. A total number of 7,861 unique KOs were detected in at
least one of the samples. One of the high metals/enriched replicates (sample
ME2) was identified as an outlier based on generally higher read counts than
in the other two samples of the same treatment (Figure B.1). This was possi-
bly due to degradation of the RNA (RIN of 5.9) and the sample was excluded
from analyses. Furthermore, we only used the unique KOs which were de-
tected in all samples of at least one treatment (3,687 unique KOs, 46.9% of all
detected). This was to ensure that we analysed genes that were consistently
detected and at the same time included genes, which might be turned off in
some of the treatments or expressed at levels below the detection limit implied
by sequencing depth. The read counts for every KO were used as a proxy for
gene transcription rates and therefore used as a measure for the activity of the
gene.

Analysis of metatranscriptome data

Firstly, all analysis was conducted using the RNA dataset. Based on
RNA results, a subset of genes in the DNA dataset were analysed. We
identified genes of metabolic pathways involved in greenhouse gas pro-
duction: nitrogen (KEGG pathway map00910), sulphur (KEGG pathway
map00920), methane (KEGG pathway map00680) and carbon (KEGG path-
way map01200) metabolisms. Of these metabolisms only the core parts which
are directly involved with the production of gases were investigated for sim-
plification. In addition, non-core parts of the pathways were only detected in
low read counts. Genes from the methane and carbon metabolisms did not
show clear patterns of up- or down-regulation. Therefore, the results of these
two metabolisms are not included here, but can be found in Figures C.1 and
C.2, and Table C.1. To test for differential expression, we performed gene-wise
ANOVAs and subsequently applied False Discovery Rate (FDR) corrections
using the Benjamini-Hochberg method to all p-values in our final dataset to
correct for multiple testing. All differentially expressed genes according to the
ANOVAs are discussed to make sure that no important patterns are missed due
to conservative treatment of p-values. FDR significances of discussed genes are
shown in brackets throughout this manuscript. Differentially expressed genes
from the RNA dataset were subsequently analysed in the DNA dataset to de-
termine if a functional change was a direct consequence of altered structure
(abundance of gene in community) or if it was due to transcriptional changes.
All data analysis was conducted using R (version 3.0.2; R Core Team, 2013)
with packages DESeq (Anders and Huber, 2010) and vegan (Oksanen et al.,
2016). Plots were generated using the R package ggplot2 (Wickham, 2009).
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Results

Figures 4.1 and 4.2 show the gene expression profiles of the nitrogen and
sulphur metabolisms in our treatments. Detailed gene expression can be found
in Figures 4.3 and 4.4. Changes in gene abundance (DNA) can be found in
Figure 4.5.

Nitrogen metabolism

Enrichment significantly altered the expression of nitrogen metabolism genes,
whereas metals had a weaker effect, i.e. not significant post false discovery rate
(FDR) correction. The potential for increased nitrogen fixation rates (trans-
formation of dinitrogen gas (N2) to ammonia/ammonium (NH3/NH+

4 )) was
detected in enriched samples (nifD: p = 0.02, padj = 0.069, DNA: increase).
Nitrification (oxidation of NH+

4 to nitrite (NO−
2 ) and then nitrate (NO−

3 )) was
affected differentially by enrichment and metals at multiple steps in the path-
way. Firstly, genes involved in the conversion of NH3/NH+

4 to hydroxylamine,
decreased significantly with enrichment (pmoB-amoB: p = 0.034, padj = 0.1,
DNA: no change; pmoC-amoC : p < 0.001, padj = 0.006, DNA: no change; hcp:
p = 0.007, padj = 0.041, DNA: decrease), whereas one gene increased and one
slightly decreased in metal contaminated sediments (pmoB-amoB: p = 0.02,
padj = 0.334, DNA: no change; pmoC-amoC : p = 0.04, padj = 0.334, DNA: no
change). The gene involved in conversion of NH3/NH+

4 to carbamoyl-P also
decreased with metal contamination (CPS1 : p = 0.02, padj = 0.334, DNA: in-
crease). Secondly, increased transformation of NO−

2 to NH3/NH+
4 was detected

in enriched treatments (nrfC : p < 0.001, padj = 0.004, DNA: not detected)
and transformation of nitroalkanes into NO−

2 was increased in all treatments
(ncd2 : metals, p = 0.03, padj = 0.334, DNA: no change; enrichment, p = 0.03,
padj = 0.084, DNA: no change). Additionally, narG (transformation of NO−

2
to NO−

3 and vice versa) decreased in all enriched samples (p = 0.018, padj =
0.069, DNA: decrease). The remaining nitrification genes did not significantly
differ between treatments (see Figure 4.3). Denitrification (transformation of
NO−

3 to ultimately N2) was affected in two different genes: nitrite reductase
(nirK ) and nitrous oxide reductase (nosZ ). nirK was only detected at low lev-
els in the high metals/enriched treatment, whereas metal contamination alone
had an increasing effect and purely enrichment significantly decreased expres-
sion of this gene (enrichment: p = 0.003, padj = 0.02, DNA: decrease; met-
als*enrichment: p = 0.025, padj = 0.879, DNA: significant interaction). nosZ,
which is responsible for the last step of denitrification and therefore for reduc-
tion of nitrous oxide (N2O) to N2, was significantly decreased in all enriched
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Figure 4.1: This diagram shows a summary of the results for the nitrogen metabolism.
All genes that were measured in our samples are depicted in the figure next to the arrows
representing the process that these genes facilitate. The heatmaps depict gene expression
fold changes in different treatments compared to control (C). M stands for high metal
treatments, E for organically enriched treatments and ME for treatments with high metals
and organic enrichment. For M and E, fold changes were calculated as expression of
M+ME in relation to C+E and expression of E+ME in relation to C+M, respectively.
For ME, fold changes were calculated in relation to control samples. A fold change of
1 means there was no change at all (green boxes). Genes that were up-regulated in
different treatments are shown in shades of yellow, while down-regulated genes are shown
in shades of blue. Genes that were not detected in treatment samples, but were present
in control samples, are shown as not detected. Also, statistical significances are shown
within the heatmaps. * represents statistical significance before false discovery rate (FDR)
correction for multiple testing and *** represents significance even after FDR correction.
A significance level of α=0.05 was applied to all tests. White numbers in black boxes at
the beginning of arrows show the specific process that these reactions belong to. Genes
involved in anaerobic ammonia oxidation (anammox) are not shown here, because they
were not detected in our dataset.

samples (p < 0.001, padj = 0.009, DNA: decrease). The nitrogen metabolism
genes which were significantly different between enrichment treatments after
FDR correction are pmoC-amoC, hcp, nrfC, nirK and nosZ. Overall, enrich-
ment has the potential to increase NH3/NH+

4 and N2O production. Detailed
ANOVA results can be found in Table C.1.

Sulphur metabolism

Numerous sulphur metabolism genes were strongly affected by organic en-
richment; two genes were affected by metal contamination. Sulphate (SO2−

4 )
reduction to sulphite (SO2−

3 ) was increased in enriched samples (sat: p =
0.014, padj = 0.064, DNA: increase; aprA: p = 0.016, padj = 0.065, DNA:
increase; aprB: p = 0.026, padj = 0.082, DNA: increase). Sulphite dehydro-
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Figure 4.2: This diagram shows a summary of the results for the sulphur metabolism.
All genes that were measured in our samples are depicted in the figure next to the arrows
representing the process that these genes facilitate. The heatmaps depict gene expression
fold changes in different treatments. M stands for high metal treatments, E for organically
enriched treatments and ME for treatments with high metals and organic enrichment.
For M and E, fold changes were calculated as expression of M+ME in relation to C+E
and expression of E+ME in relation to C+M, respectively. For ME, fold changes were
calculated in relation to control samples. A fold change of 1 means there was no change
at all (green boxes). Genes that were up-regulated in different treatments are shown in
shades of yellow, while down-regulated genes are shown in shades of blue. Genes that
were not detected in treatment samples, but were present in control samples, are shown as
not detected. Also, statistical significances are shown within the heatmaps. * represents
statistical significance before false discovery rate (FDR) correction for multiple testing
and *** represents significance even after FDR correction. A significance level of α=0.05
was applied to all tests. White numbers in black boxes at the beginning of arrows show
the specific process that these reactions belong to.

genase (E1.8.2.1 ), which is responsible for the transformation of SO2−
3 back

to SO2−
4 , was only expressed in purely enriched and in one control sample

(metals*enrichment: p = 0.018, padj = 0.879, DNA: significant interaction).
The detection limit for the sulphite reductase gene (sir) from the assimila-
tory sulphate reduction (ASR) pathway was generally low; however, sir was
completely switched off in enriched samples (p < 0.001, padj = 0.002, DNA:
decrease). In contrast, sulphite reductase genes, which are part of the dissim-
ilatory sulphate reduction (DSR) and oxidation, were significantly increased
with enrichment (dsrA: p = 0.001, padj = 0.009, DNA: increase; dsrB: p =
0.003, padj = 0.02, DNA: increase). The genes responsible for H2S produc-
tion from thiosulphates were found in significantly higher numbers in enriched
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Figure 4.3: Gene expression levels of all nitrogen metabolism genes that were detected
in our dataset. The letters next to the gene name indicate the treatment (M = High met-
als, E = Enrichment) that has significantly affected the expression of that gene, whereas
M+E means that both metal contaminants and organic enrichment had a significant ef-
fect, and MxE indicates that there was a significant interaction between the treatments.
An asterisk (*) next to the treatment letter indicates that the p-value was still significant
(at an α level of 0.05) after false discovery rate (FDR) correction. The horizontal bars
range from the lowest to the highest measured expression value and the dot symbolises
the mean.

samples (phsA: p = 0.019, padj = 0.069, DNA: not detected; phsC : p = 0.001,
padj = 0.009, DNA: not detected). In all but the control samples, SO2−

3 pro-
duction from alkane-sulphonates (ssuD) was decreased, whereas the gene was
not detected at all in purely enriched samples (metals*enrichment: p = 0.039,
padj = 0.879, DNA: not detected). The sulphur metabolism genes significantly
different between enrichment treatments after FDR correction are sir, dsrA,
dsrB and phsC. Genes for only one reaction involved in the production of
dimethylsulphoniopropionate (DMSP), which is a gas that is often discussed
for its effect on climate change (Gabric et al., 2013), were detected in our
dataset and were not found to be significantly affected by metal contamina-
tion or organic enrichment. Therefore, we excluded that part of the sulphur
cycle from our analyses.
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Figure 4.4: Gene expression levels of all sulphur metabolism genes that were detected in
our dataset. The letters next to the gene name indicate the treatment (M = High metals,
E = Enrichment) that has significantly affected the expression of that gene, whereas M+E
means that both metal contaminants and organic enrichment had a significant effect, and
MxE indicates that there was a significant interaction between the treatments. An asterisk
(*) next to the treatment letter indicates that the p-value was still significant (at an α
level of 0.05) after false discovery rate (FDR) correction. The horizontal bars range from
the lowest to the highest measured expression value and the dot symbolises the mean.

Benthic metabolism and sediment-water N fluxes

There were no significant differences across treatments for benthic community
respiration (BCR) with mean treatment rates ranging from -3250 to -1800
O2 µmol/m2/h. In contrast, significant differences between metal treatments
were found for net primary productivity (NPP) (Figure 4.6(a)). Net daily
sediment NH3/NH+

4 fluxes were directed out of the sediment to the water
column (Table C.4) and did not significantly differ among treatments. In
contrast, NOx was mostly taken up by the sediments and this uptake increased
significantly in enriched treatments with and without metals (Figure 4.6(b)).
Exact fluxes and according p-values can be found in Tables C.4 and C.5.

Discussion

Human activity along coastal areas exposes these ecosystems to increasing
numbers and concentrations of contaminants. How these contaminants affect
crucial biogeochemical processes and the genetic regulators of these processes
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(a) Changes in gene abundance and expression due to enrichment and high
metals

(b) Gene abundance and expression with significant interaction

Figure 4.5: (a) Gene abundance changes (DNA - circles) and gene expression changes
(RNA - squares) compared to control due to enrichment or high metals of all the differ-
entially expressed genes from the nitrogen and sulphur metabolisms. (b) The gene abun-
dance and expression levels of differentially expressed nitrogen and sulphur metabolism
genes with a significant interaction of enrichment and high metals. The vertical bars in
(b) range from the lowest to the highest measured gene abundance value and the dot
symbolises the mean. C stands for control, M for high metal treatments, E for organically
enriched treatments, and ME for treatments with high metals and organic enrichment.
Symbols are coloured according to treatment.

in coastal sediments is poorly understood (Nogales et al., 2011). Our study
measures the metatranscriptomic response of an entire sediment microbial
community to common multiple stressors - a combination of metal contam-
ination and organic enrichment - in a robust field experiment. Specifically,
we used metatranscriptomics to investigate the impact of these contaminants
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(a)

(b)

Figure 4.6: Fluxes from the sediment into the overlying water as measured through
sediment core incubations. (a) shows net primary productivity (NPP, dissolved oxygen
flux in light). All values are negative, showing that all sediments were heterotrophic by
taking up oxygen from the overlying water. (b) shows net nitric oxide (NOx – nitrite
and nitrate) fluxes. Net fluxes were calculated as the average of dark and light fluxes.
Negative values represent NOx being taken up into the sediment from the overlying water.

on the activity of functional genes relevant to climate change - genes from the
nitrogen and sulphur metabolisms. These metabolisms include the production
and degradation of some of the most potent greenhouse gases - nitrous oxide
(N2O) and hydrogen sulphide (H2S) - and can therefore directly affect climate
change. The abundance of the genes associated with gas production have been
directly linked to the measured production of gases in soil systems (Morales
et al., 2010; Philippot et al., 2011; Harter et al., 2014), the activity of such
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genes may be even more tightly linked. Consequently, investigating the genetic
activity involved in greenhouse gas production is of major importance. Our
findings highlight the potential impact of single and multiple anthropogenic
contaminants on the global climate and elucidate the underlying genetic mech-
anisms of altered gas production.

Nitrogen metabolism

Nitrogen fixation genes were more active in enriched samples (with and with-
out metals, padj >0.05). Nitrogen fixation is energetically costly and is there-
fore usually limited. However, in enriched samples the breakdown of organic
matter produces a high amount of energy and can thereby facilitate higher
rates of nitrogen fixation. An increase in nitrogen fixation activity is often
termed ’internal eutrophication’ (Smolders et al., 2006), and directly leads
to increased concentrations of ammonia/ammonium (NH3/NH+

4 ) in the sed-
iments (Gardner and McCarthy, 2009). In estuarine and marine sediments,
NH+

4 typically comprises >95% of the total ammonia-N (NH3 + NH+
4 ). NH3

is far more toxic than NH+
4 , as the latter contributes less than 1% of the to-

tal toxicity of ammonia-N (Batley and Simpson, 2009). The effects of both
NH3 and NH+

4 are being considered here. Accumulated NH3/NH+
4 is most

commonly removed from the system through coupled nitrification/denitrifi-
cation, diffusion into the overlying water column or uptake by algae at the
sediment-water interface (benthic microalgae, BMA). However, our data sug-
gest a disruption in these processes. Activity of genes associated with the
degradation of NH3/NH+

4 to nitrite (NO−
2 ), was decreased in enriched sed-

iments (padj ≤0.05), which suggests ineffective nitrification. As nitrification
requires oxygen to occur, the likely anoxic conditions of our sediments could be
the reason for this down-regulation of nitrification and eventually a decoupling
of the nitrification and denitrification processes. Also, our flux measurements
(Table C.4) show that the accumulated NH3/NH+

4 did not diffuse into the
water column, nor was it taken up by BMA, as the photosynthetic activity
was low in all treatments.

Apart from NH3/NH+
4 + removal through BMA or plants and coupled nitri-

fication/denitrification, NH3/NH+
4 can be directly transformed into dinitrogen

gas (N2) through anaerobic ammonium oxidation (anammox). This process
simultaneously removes NO−

2 from the system (Dalsgaard et al., 2005; En-
gström et al., 2005). Anammox can only occur in anoxic sediments and is
performed by very specialised bacteria (Dalsgaard et al., 2005), however, it
can constitute up to 50% of the fixed N turnover from marine systems (De-
vol, 2003). The anoxic nature of our sediments suggests a high potential for
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this process, but high H2S concentrations are known to inhibit the anammox
process (Thamdrup and Dalsgaard, 2002). Unfortunately, we were not able
to detect anammox genes in enough samples and in high enough read counts
to determine if this process was up-regulated in any of our treatments. Mass
balance calculations (Table C.2) suggest that in all treatments 25% of nitro-
gen (N) must be escaping the sediment system as a gas. Gene expression
data show that in enriched samples regardless of metal content this N is most
likely accumulated in the system as NH3/NH+

4 or lost through incomplete
denitrification.

We also found evidence that NO−
2 concentrations increase in enriched sed-

iments through transformation of nitroalkanes (padj >0.05), and nitric oxide
(NOx, nitrite and nitrate) uptake from the overlying water. NOx can be used
as a source of N by BMA living at the sediment-water interface. However, an
overall efflux of NH3/NH+

4 , which is BMA’s preferred form of N (Sundbäck
and Granéli, 1988), suggests that there is an excess of N available in all our
samples and therefore BMA is unlikely to take up any NOx. The influx of
NOx could suggest an increased rate of denitrification in the sediment. How-
ever, organic enrichment instead led to an up-regulation of the dissimilatory
nitrate reduction to ammonium (DNRA, padj ≤0.05). DNRA is an alterna-
tive pathway to denitrification (Burgin and Hamilton, 2007) that produces
highly bioavailable NH3/NH+

4 , and can thereby lead to a further increase in
NH3/NH+

4 concentrations in the sediment. DNRA is equally significant as
denitrification for NO−

3 reduction in marine (Bernard et al., 2015) and fresh-
water (Burgin and Hamilton, 2008) sediments, and in soils (Yang et al., 2015).
High concentrations of NH+

4 favour toxic cyanobacteria and can lead to an
overall suppression of growth (Glibert et al., 2016), while NH3 is highly toxic,
both resulting in a decrease of ecosystem productivity.

We also found decreased activity of the respiratory nitrate reduction in
enriched sediments (padj >0.05). This is potentially due to the system being
NOx limited, as suggested by the influx of NOx from the overlying water col-
umn. Influx of NOx in combination with this low activity of nitrate reduction
can lead to an accumulation of NO−

3 in the system, which is a highly potent
fertiliser. However, NO−

3 is unlikely to remain in the sediment, as it is used as
one of the preferred electron acceptors for the high concentrations of sulphate
reduction (sulphide production) in our enriched treatments.

Metal contamination led to increased rates of nitrification (padj >0.05)
and NO−

2 production from nitroalkanes (padj >0.05). In contrast, it led to
a decrease in production of carbamoyl phosphate from NH+

4 (padj >0.05),
which is a precursor of arginine and pyrimidine (Lacroute et al., 1965), two

84



essential amino acids. This suggests that general metabolic activity involving
these two amino acids decreased, while the production of toxic NO−

2 increased.
Therefore, increased metal concentrations in the sediment have the potential
to lead to internal eutrophication through accumulation of NO−

2 .

Organically enriched sediments with (padj >0.05) and without (padj ≤0.05)
metals also showed a significant decrease in NO−

2 reduction to nitric oxide
(NO). This nirK gene was only detected once in each sample with a combina-
tion of metal contamination and organic enrichment while it was still some-
what active in purely enriched samples. This suggests that while eutrophi-
cation can shut down denitrification, as has previously been shown (Gardner
and McCarthy, 2009), contaminants such as metals can exacerbate the impact
of organic enrichment, potentially by binding nutrients (Reuter and Perdue,
1977) and increasing their residence time in the sediment.

The activity of genes involved in N2O reduction to N2 was also significantly
decreased in all enriched samples (padj >0.05), while the activity of the gene
involved in N2O production from NO remained unchanged. NO reduction is
closely linked to NO−

2 reduction because of the highly toxic nature of NO rad-
icals, while N2O reduction can function as an autonomous respiratory process
(Zumft, 1997). In addition, N2O reduction yields the least amount of energy
of all nitrogen metabolism steps (Zumft, 1997). Therefore, it is commonly one
of the first genes to be down-regulated when there is enough substrate present
for the microbes to perform more energetically beneficial reactions. Also, a
high fraction of known denitrifiers are not able to reduce N further than to
N2O. Very few bacteria possess the necessary gene (nosZ, Jones et al., 2008).
Therefore, some N2O is always produced in denitrifying conditions (Philippot
et al., 2011), even when N2O reduction is not affected by environmental fac-
tors. In addition, a significant proportion of the produced N2O results from
nitrification under oxic conditions (Murray et al., 2015). Our enriched sedi-
ments were, however, likely mostly anoxic and we found nitrification genes to
be down-regulated in these enriched sediments. The accumulation of N2O does
not induce any reaction in the benthic community because N2O is non-toxic,
and, being a gas, is fluxed out into the water column due to a concentration
gradient. From there it is then potentially released to the atmosphere. Com-
plex processes in the water column dictate how much gas ultimately reaches
the atmosphere (Leifer and Patro, 2002), however, the activity of the nosZ
gene directly affects the amount of N2O gas released, e.g. from soil systems
(Morales et al., 2010; Philippot et al., 2011; Harter et al., 2014). Oceans are
also known to represent a source of atmospheric N2O (Law and Owens, 1990).
We have shown here that the potential for accumulation of N2O in organically
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enriched sediments increases, whereas the extent of N2O production might
well be exponential with increasing organic enrichment, as has been shown
for agricultural soils (Shcherbak et al., 2014). N2O is a highly potent green-
house gas with a global warming potential of approximately 300 times that of
a carbon dioxide (CO2) molecule (Schreiber et al., 2012). Estuarine systems
contribute at least 11% of the total N2O emissions on a global scale (Seitzinger
and Kroeze, 1998). Additionally, atmospheric N2O concentrations have been
increasing at a rate of 0.3% per year, which is thought to be related to an-
thropogenic N release (Forster et al., 2007). In line with this, our data suggest
that eutrophication of waterways can indirectly exacerbate climate change via
increased production of N2O.

The majority of differentially expressed nitrogen metabolism genes due
to enrichment or an interaction of enrichment and high metals, showed the
same direction of significant change in gene abundance (Figure 4.5). For these
genes, the functional change seems to be a direct consequence of an altered
community structure. However, three differentially expressed genes, nirK,
pmoB-amoB, and pmoC-amoC, did not show any changes in gene abundance.
Thus the transformation of nitroalkanes into nitrite and the first step of nitrifi-
cation seem to be transcriptionally regulated in a stressed community, instead
of the activity being dictated by gene abundance. Furthermore, differentially
expressed genes due to the presence of high metals in the sediment seem to
all be transcriptionally regulated. Although high metals can lead to changes
in gene abundance, as seen for gene CPS1, the expression of genes impacted
by metal concentrations is regulated independently of community structure.

Sulphur metabolism

Breakdown of organic matter depletes the O2 molecules in the sediment and
produces an anoxic environment, which is known to favour sulphate (SO2−

4 )
reduction. Interestingly, the end product of the sulphate reduction can vary
at different levels of enrichment, and have distinct effects on the overall sed-
iment microbial community. In our enriched treatments (with and without
metals), SO2−

4 reduction to sulphide was significantly increased (padj ≤0.05).
In addition, we saw a shift from combined assimilatory and dissimilatory sul-
phate reduction (ASR and DSR) to purely DSR. This means that the SO2−

4
is no longer transformed into organic sulphide but rather into inorganic sul-
phide, i.e. H2S. Measurements of acid volatile sulphides in a parallel run
experiment with the same enrichment treatments (Sun, 2016) confirmed the
production of sulphides, as did the strong smell of the sediment at the time
of sampling. The inactivity of ASR (padj ≤0.05) implies a lower rate of gen-
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eral metabolic activity and growth that involves the production of sulphide-
containing amino acids (Khan et al., 2010). H2S produced through DSR is
highly toxic and known to inhibit nitrifying bacteria (Joye and Hollibaugh,
1995). Also, H2S promotes the activity of DNRA by favouring NO−

3 over
NO−

2 production (Kraft et al., 2014), and by serving as an electron donor for
DNRA organisms. Moreover, H2S inhibits NO and N2O reductases (Brunet
and Garcia-Gil, 1996), and therefore denitrification in general (Aelion and
Warttinger, 2010), and negatively affects anammox processes (Thamdrup and
Dalsgaard, 2002). The increased concentrations of H2S may, therefore, explain
the increased NOx influx and transformation of this NOx to NH+

4 in enriched
sediments. Increased concentrations of H2S are also likely the driving force be-
hind the down-regulation of the nosZ gene. The production of H2S is therefore
likely to be the driver behind the observed changes in nitrogen metabolism,
some of which further facilitate H2S production, and the factor that increases
the potential for greenhouse gas production in eutrophied sediments.

In addition to the toxicity of H2S and its effects on the nitrogen
metabolism, H2S is considered a greenhouse gas due to its rapid reaction
with singlet O atoms (Kump et al., 2005). Photosynthetic organisms effi-
ciently oxidise H2S during the day (Hansen et al., 1978) and can thus decrease
the likelihood of the gas being released into the atmosphere. However, the
heterotrophic nature of our samples suggests that photosynthetic organisms
(such as BMA) were not highly active and we therefore hypothesise that this
detoxifying effect is negligible with most of the produced H2S being released
into the water column, potentially reaching the atmosphere (Watts, 2000).
Furthermore, H2S is released into the atmosphere at night regardless of the
level of photosynthetic activity during the day (Hansen et al., 1978).

Similarly to the nitrogen metabolism, differentially expressed sulphur
metabolism genes due to enrichment seem to be regulated by changes in gene
abundance rather than through transcriptional alterations (Figure 4.5(a)).
However, gene E1.8.2.1, which is responsible for the transformation of sul-
phites to sulphates, showed different directions of change in gene abundance
and expression. While the combination of enrichment with metals led to the
elimination of the effects of enrichment in both datasets (Figure 4.5(b)), the
direction of change due to enrichment was reversed, suggesting that this gene
is transcriptionally regulated in a stressed community.
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Conclusions

This study is the first to experimentally determine the effects of metals and
organic matter on estuarine sediment community functioning using metatran-
scriptomics. To date, most ecosystem monitoring techniques are based on
macroinvertebrates (Magurran et al., 2010), algae (Reavie et al., 2010) and
total microbial biomass (Dequiedt et al., 2011). Microbial functions have
largely been disregarded in such biomonitoring approaches, probably due to
high diversity of microbial communities complicating the detection of patterns
(Nogales et al., 2011), even though they have been shown to shift upon envi-
ronmental change (Schimel et al., 2007; Dafforn et al., 2014; Chariton et al.,
2016). With metatranscriptomics we were able to explore the genetic mech-
anisms driving functional change in contaminated sediments and therefore
progress this tool for environmental monitoring.

Metal treatments affected few genes in the investigated metabolisms,
without major consequences for the biogeochemical output of the system.
Only in combination with organic enrichment did metals affect the nitrogen
metabolism by exacerbating the effects of enrichment on the decoupling of ni-
trification and denitrification. In contrast, organic enrichment had extensive
effects on both nitrogen and sulphur metabolisms. Organic matter can change
the sediment profile of O2 and thus favour the use of alternative electron ac-
ceptors such as NO−

3 , SO2−
4 and CO2 (Middelburg and Levin, 2009). The

loss of an upper oxic zone in the sediment decreases rates of nitrification and
favours the activity of SO2−

4 reducers. The increased production of H2S then
significantly affects the nitrogen metabolism resulting in increased NH3/NH+

4 ,
NO−

3 and N2O concentrations. Higher NO−
3 concentrations in turn facilitate

SO2−
4 reduction, which leads to higher concentrations of H2S. These dynamic

processes ultimately activate a positive feedback loop, in which the accumula-
tion of toxic intermediate products (NH3) and highly potent greenhouse gases
(N2O and H2S) are significantly increased, while ecosystem productivity is
likely decreased. We have therefore experimentally demonstrated that while
organic enrichment can indirectly contribute to climate change, contaminants
such as metals may exacerbate the impact of enrichment, potentially by bind-
ing nutrients and increasing their residence time in the sediment. Furthermore,
our data revealed that the majority of functional changes were a result of al-
tered community structure. This supports the idea of bioaugmentation, where
specific microbes are added to a stressed system (Vidali, 2011), and suggests
that this technique of bioremediation could be used to directly manipulate the
production of toxic compounds and greenhouse gases in contaminated ecosys-
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5 Altered microbial communication,
productivity and nutrient cycling in

contaminated sediments of an
urbanised estuary

Abstract

Industry and agriculture have been major sources of toxic contaminants and
organic matter for adjacent waterways. Due to increasing urbanisation of
coastal areas, additional pollution of water bodies is occurring as stormwa-
ter transports a complex mixture of contaminants from gardens, grooves and
roads. When contaminants reach estuarine waters, they generally bind to par-
ticles and concentrate on the sea floor thereby exposing sediment communities
to high concentrations of toxicants. Sediment microbes are important for ur-
ban ecosystems through their provision of a variety of ecosystem functions.
Exposure to legacy contaminants from industry, agriculture and stormwater
run-off has the potential to affect the function of these critical communities. To
prioritise ecosystem management actions, we need to understand the nature
and extent of the impact of multiple legacy contaminants on sediment micro-
bial communities. We investigated the differences in functioning of sediment
communities adjacent to stormwater drains in poorly flushed embayments and
at better flushed reference sites within the same embayment. We found that
proximity to stormwater drains was associated with significantly lower activity
of signalling genes, suggesting that communication within the contaminated
communities might be fractured. Furthermore, we found lower metabolic rates
and disrupted nutrient cycling close to stormwater drains, potentially leading
to overall lower productivity but higher production of greenhouse gases. Our
results suggest that contaminants can lead to lower productivity, higher im-
pact on climate change, and potentially lower remediation capacity of sediment
communities. This study emphasises the need for improved industrial waste
and stormwater management in our increasingly urbanised coastal waterways.

Introduction

Ecological communities are increasingly exposed to a complex mix of multi-
ple stressors from the industrialisation and urbanisation of natural systems.
Chemical stressors include toxic contaminants such as metals and metalloids
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(e.g. Nicholson et al., 2003) that have been linked to community shifts from
the loss of sensitive species (Johnston and Roberts, 2009; Dong et al., 2016).
Furthermore, application of enriching contaminants such as fertilisers has over-
loaded many systems with nutrients. While these are essential for growth and
productivity, excess organic enrichment can cause mortality through hypoxia
and a build-up of toxic compounds (Meyer-Reil and Köster, 2000; Gray et al.,
2002). Much of our understanding of the impacts of multiple stressors has been
restricted to what can be observed and quantified; that is, primarily changes to
abundance and identity within communities (Dafforn et al., 2016). Advances
in molecular techniques have created opportunities to study community func-
tions by linking gene expression to biogeochemical pathways. To better predict
and manage urban stressors requires an approach that can identify functional
responses and improve our understanding of ecosystem consequences (John-
ston et al., 2015b).

The maintenance of ecosystem functioning is reliant on interactions tak-
ing place within communities (Stachowicz, 2001; Falkowski et al., 2008), as
organisms respond to environmental cues (Westerhoff et al., 2014) and signals
from other organisms in the same community (Ross-Gillespie and Kümmerli,
2014). Pathways involved in signalling, energy, and nutrient cycling are par-
ticularly important for the maintenance of ecosystem services by microbial
organisms. When communities are exposed to stress, the signalling pathways
involved in the reception and production of chemical signals from the environ-
ment and to/from other cells in the community may be disrupted. This can
potentially result in the loss of ecosystem services that require multiple steps,
such as remediation. Further, primary production of marine ecosystems is
one of the functions most affected by contamination (Johnston et al., 2015b),
and as contaminants can change the chemical conditions of a system, they
also impact nutrient cycles. For example, Scott et al. (2014) have shown that
the degradation of polyaromatic hydrocarbons produces anoxic conditions in
marine sediments, which favours denitrification over nitrification, and organic
pollution affects the release rates of highly potent nutrients from sediments
(Sanz-Lázaro et al., 2015). In order to fully understand the repercussions of
contamination in the affected ecosystem, it is therefore crucial to understand
the impacts of contaminants on these important functional pathways.

Contaminant inputs to coastal waterways have increased as physical mod-
ifications associated with urbanisation increased the amount of impervious
surface within catchments. High proportions of impervious surface results
in large and rapid surface flows during rainfall events (Arnold and Gibbons,
1996). To mitigate property damage and life threats in urban areas, these
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large amounts of water are collected in drainage systems and transported into
adjacent waterways via stormwater drains. Through this process, more than
half of the rainwater may end up in adjacent waterways (Arnold and Gibbons,
1996). Moreover, stormwater picks up a complex mix of contaminants on its
way to the drainage system (Göbel et al., 2007; Laetz et al., 2015). Metals leak
into the water from the roofs of houses, and pesticides and organic matter are
washed out from partly sealed surfaces such as urban gardens and animal rear-
ing facilities (Göbel et al., 2007). Stormwater has therefore been considered a
major source of contaminants to urbanised waterways, and the accumulation
of stormwater contaminants over time represents a significant ecological risk
(e.g. Birch and McCready, 2009; Birch et al., 2015; Lintern et al., 2015).

Upon entering a waterway, many contaminants such as dissolved met-
als and polycyclic aromatic hydrocarbons (PAHs) readily bind to sediments
(Chapman et al., 1998), and organic matter. Such particulates settle in low
flow environments, where they accumulate in bedded sediments (Burton and
Johnston, 2010). Hence, even though point source waste management has
generally improved in developed economies over the last century, high con-
centrations of legacy contaminants can still be measured, especially in the
sediment of shallow, low flow environments of urbanised waterways that are
poorly flushed (e.g. embayments, Irvine and Birch, 1998; Johnston et al.,
2015a). Organisms living in these sediments are thus exposed to extraordi-
narily high concentrations of multiple contaminants, where changes to benthic
infaunal assemblages (Birch et al., 2008; Dafforn et al., 2012), as well as al-
tered bacterial community structures (Sun et al., 2012), have been observed.
Microbes are some of the most productive organisms in the world and are
responsible for crucial biogeochemical cycles (Falkowski et al., 2008). Their
role in nutrient cycling (Arrigo, 2005) and ability to remediate contaminants
(Wiatrowski and Barkay, 2005; Antizar-Ladislao, 2010; Das and Chandran,
2011; Mason et al., 2014) makes them indispensable constituents of coastal
ecosystems.

Here, we investigate the impact of legacy contaminants from stormwater
inputs on a sediment community in the highly urbanised estuary of Sydney
Harbour (Mayer-Pinto et al., 2015). We measured gene expression in sediment
communities at the ends of poorly flushed embayments with adjacent stormwa-
ter drains and at better flushed sites within the same embayment. We used
modern metatranscriptomics techniques to elucidate the range of mechanisms
of contaminant impact on sediment functioning and focused our analysis on
genes involved in signalling, energy and nutrient pathways. Our findings show
that sediments in very poorly flushed areas have a lower rate of productivity
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and higher production of toxic compounds and greenhouse gases. Further-
more, heavily contaminated communities show signs of community fracturing,
which can lead to poor remediation capacity and disrupted ecosystem ser-
vices. This study highlights the importance of improved waste management
and contaminant remediation in urbanised waterways.

Methods

Sampling design and collection

The two sampling locations were Hen and Chicken Bay (-33◦86’08”S,
151◦11’59”E) and Iron Cove (-33◦87’18”S, 151◦15’05”E) within Sydney Har-
bour, Australia. Both embayments have been shown to contain high concen-
trations of contaminants (Irvine and Birch, 1998). Two replicates of sediments
were sampled in February and March 2014 (Austral summer) from contami-
nated sites adjacent to stormwater drains, and at reference sites 1 km away
from the stormwater drains towards the embayment entrance. The ends of
embayments were considered highly exposed to legacy contaminants (metals
and organic enrichment) due to poor flushing and the proximity to stormwa-
ter input. The latter sites were considered reference sites as they had lower
contamination in the sediments and less direct exposure to stormwater due
to flushing. Sampling was done during dry conditions (<5 mm rainfall/day,
Bureau of Meteorology) and therefore ongoing stormwater inputs into the es-
tuary were minimal (<0.1 m3/s) (Birch and Rochford, 2010) and unlikely to
have influenced ecological or environmental patterns. Salinity and tempera-
ture of the two sites (adjacent to stormwater drain and reference) were similar
(Table D.3). Sediments metals, isotopes and water quality variables were mea-
sured in order to confirm the appropriateness of sites. For details on water
quality variables see (Sutherland et al., 2016). A replicate number of two was
used for this survey, because the high costs of metatranscriptomic analyses
significantly constrain the number of samples that can be analysed. Using
two replicates we were able to assess variation between replicates, and observe
statistically significant temporal and spatial differences (two time points and
two embayments).

Sediment was collected using a Van Veen grab and 2 g of surficial sediment
was transferred into a collection tube, immediately frozen in liquid nitrogen
on the boat and stored at -80◦C until total RNA extraction. The remaining
sediment from the grab was then homogenised, transferred into 50 ml collection
tubes and stored on ice for chemical analyses. Two replicates were sampled
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for each site and time point.

Chemical analyses

In short, metal analyses followed (Dafforn et al., 2012) with sediments oven-
dried (50◦C) and homogenised to a fine powder with mortar and pestle before
microwave digestion according to method 3051A (USEPA 2007). Following
digestion metal concentrations were analysed using ICP-AES (Perkin Elmer,
OptimaOptima7300DV, USA). Individual sediment contaminants were highly
correlated with one another, so we derived a single measure of toxicity by
calculating a mean sediment quality guideline quotient (mSQGQ). This quo-
tient was obtained by scaling contaminant concentrations against their guide-
line values and upper guidelines (Simpson et al., 2013), then summing scaled
concentrations at each site (Long et al., 2006). Ecological impairment of ben-
thic communities has been observed with increasing mSQGVs (Long et al.,
2006). Total organic carbon and total nitrogen were analysed at Isoenviron-
mental (South Africa) using 5-20 mg of dried, homogenised sample in a 20-20
IRMS linked to an ANCA SL element analyser (Europa Scientific). Details on
mSQGQ, and carbon and nitrogen stable isotopes are shown in Table 5.1.

RNA extractions and sequencing

RNA was extracted from 1 g of sediment within one week of sampling using
a PowerSoilTM Total RNA Isolation Kit (MoBio Laboratories, Carlsbad, CA,
USA). RNA samples were further cleaned using the TURBO DNA-freeTM

Kit (Lifetechnologies, Carlsbad, CA, USA) and Agencourt R© RNAClean R© XP
(Beckman Coulter Inc.) according to manufacturer’s instructions. RNA was
then stored at -80◦C until sequencing. RNA integrity number (RIN) was mea-
sured for every sample to check for RNA degradation. The mean RIN for all
samples was 7.72, where a RIN of 10 represents no degradation. RNA libraries
(n=16) with fragment lengths of ∼200 nt were prepared. Prior to library
preparation, the quality of the total RNA samples was assessed on a Bioana-
lyzer 2100, using an RNA 6000 Nano Chip (Agilent). Sample quantitation was
carried out using Invitrogen’s Ribogreen assay. Library preparation was then
performed according to Illumina’s TruSeq Stranded mRNA protocol with the
following modifications: The oligo-dT mRNA purification step was omitted
and instead, 200 ng of total RNA were directly added to the Elution2-Frag-
Prime step. The PCR amplification step, which selectively enriches for library
fragments that have adapters ligated on both ends, was performed accord-
ing to the manufacturer’s recommendations but the number of amplification
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Table 5.1: Mean sediment quality guideline quotients (mSQGQ) of metals and stable isotopes per sampling site and time point.

Site Location Sampling time mSQGQ (metals) corrδ15N corrδ13C
stormwater drain Hen and Chicken Bay Feb-14 12.6 4.9 -26.2
stormwater drain Hen and Chicken Bay Mar-14 4.1 5.4 -26.6
stormwater drain Iron Cove Feb-14 9.3 5.4 -25.6
stormwater drain Iron Cove Mar-14 18.0 6.1 -22.2

reference site Hen and Chicken Bay Feb-14 3.8 5.8 -21.3
reference site Hen and Chicken Bay Mar-14 1.9 6.9 -22.4
reference site Iron Cove Feb-14 2.3 5.8 -24.5
reference site Iron Cove Mar-14 2.3 7.9 -18.7
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cycles was reduced to 12. Each library was uniquely tagged with one of Illu-
mina’s TruSeq LT RNA barcodes to allow libraries to be pooled for sequencing.
The finished libraries were quantitated using Invitrogen’s Picogreen assay and
the average library size was determined on a Bioanalyzer 2100, using a DNA
7500 chip (Agilent). Library concentrations were then normalised to 2 nM
and validated by qPCR on a ViiA-7 real-time thermocycler (Applied Biosys-
tems), using qPCR primers recommended in Illumina’s qPCR protocol, and
Illumina’s PhiX control library as standard. The libraries were then pooled
at equimolar concentrations and sequenced across two lanes on an Illumina
HiSeq2500 sequencer in rapid mode at a read-length of 100 bp paired-end.
Sequencing was performed at the Singapore Centre for Environmental Life
Sciences Engineering (SCELSE).

General sequencing numbers and data processing

Total RNA sequencing yielded a mean of 67.5 million bases (reads) per sam-
ple. Standard QC was conducted using Cutadapt 1.8.1 (Martin, 2011) with
an overlap of 10, minimum read length of 30, and quality cut-off value of 20.
Subsequently, rRNA reads were removed from the dataset using SortMeRNA
2.0 (Kopylova et al., 2012) and the SILVA database version 119. The remain-
ing sequences were classified as mRNA reads (on average 2.5 million reads
per sample, 3.7%) and used to perform a homology search using DIAMOND
version 0.7.9.58 (Buchfink et al., 2015) against the NCBI NR (non-redundant
protein) database (May 2015 version) (Pruitt, 2004). All mRNA reads were
assigned to a KEGG (Kyoto Encyclopedia of Genes and Genomes) orthologous
gene (KO) using the lowest common ancestor (LCA) algorithm in MEGAN5
(Huson et al., 2011). The total number of reads per KO ID was calculated,
and the dataset was normalised using the variance stabilisation function (get-
VarianceStabilizedData) from the DESEq package (Anders and Huber, 2010)
in R. Sample HC.R.TP1.2 was identified as an outlier due to the generally
higher read numbers compared to the other samples (Figure D.1), probably
due to degradation of RNA (RIN=5.9). Only genes that were present in at
least all replicates of one location at one site and time point were included in
the dataset used for statistical analyses.

Metatranscriptome data analysis

Differences in microbial community function (annotated mRNA genes) be-
tween contaminated sites (adjacent to stormwater drains) and reference sites
(1 km away) was explored with permutational multivariate analyses of vari-
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ance (adonis function in R package vegan), and shifts were visualised with
non-metric multidimensional scaling (NMDS) plot. Linear models were per-
formed for every functional gene using site (two levels: stormwater drain and
reference), location (two levels: Hen and Chicken Bay and Iron Cove), and
sampling time (two levels: February 2014 and March 2014) as fixed factors.
Although we had no specific hypotheses about location or sampling time, these
factors had only two levels and were therefore treated as fixed factors. To
account for this in our analyses, we took the conservative approach of exclud-
ing all genes with a significant interaction from further pathway exploration.
Genes which were differentially expressed between stormwater drain and ref-
erence (1 km away) sites were filtered out for pathway analysis. Pathways
with at least five differentially expressed genes were identified and assigned
to one of the following pathway groups: signalling, energy and nutrient path-
ways. Signalling pathways are all involved in the reception and production
of chemical signals from the environment and to/from other cells in the com-
munity. Energy pathways include carbon fixation which is responsible for
net primary production (Field et al., 1998), pathways providing the building
blocks for proteins through the production of nucleotides and amino acids,
and pathways involved in the production of energy. Pathways involved in nu-
trient cycling drive Earth’s major biogeochemical cycles and remove excess
nutrients from the system (Falkowski et al., 2008). Furthermore, nutrient cy-
cles involve the production of greenhouse gases and are thus important on a
global scale. From Chapter 4 we know that the nutrient pathways are highly
impacted by organic enrichment and that the changes have potential effects on
a global level. Therefore, the core parts of the nutrient cycles were analysed
in more detail (as in Chapter 4). All data were analysed in R (version 3.2.3, R
Core Team 2015) with packages DESeq (Anders and Huber, 2010) and vegan
(Oksanen et al., 2016). All plots were generated using the ggplot2 package
(Wickham, 2009).

Results

Chemical analyses

Metal concentrations were consistently elevated at stormwater drains com-
pared to reference sites 1 km away. Stable isotopes showed a larger input
of terrestrial organic material adjacent to stormwater drains. For details see
Table 5.1.
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Figure 5.1: Non-metric multidimensional scaling plot for community function (mRNA).
Unimpacted and impacted sites are represented in black and pink, respectively. Triangles
represent samples from Hen and Chicken Bay, while circles represent samples from Iron
Cove. The first and second sampling time points are represented as open and closed
symbols, respectively.

Metatranscriptome data analysis

Microbial community function (mRNA) differed significantly between contam-
inated sites (adjacent to stormwater drains) and reference sites (1 km away).
This pattern was spatially (between embayments) and temporally (between
sampling times) variable (Table 5.2). The pattern of functional shift was vi-
sualised with non-metric multidimensional scaling (NMDS) (Figure 5.1). The
first axis (NMDS1), which explains the largest amount of variation in the data,
separates the samples along sites (adjacent to stormwater drain and reference
1 km away).

Genes which were differentially expressed between stormwater drain sites
and reference sites were identified with gene-wise linear models. Over 6% of
all measured genes (523 out of 8305) were significantly affected by proxim-
ity to stormwater drain (Table D.1). Plotting the estimates from all linear
models (Figure 5.2) revealed that 75% of affected genes were down-regulated
at stormwater drain sites (382 out of 523). Moreover, genes that were down-
regulated (with an estimate <-1) or up-regulated (estimate >1) were iden-
tified (Table D.2). The four genes which were up-regulated at stormwater
drains and had an estimate >1 belonged to the following pathways: Glyc-
erolipid metabolism, glycerophospholipid metabolism, sulphur relay system,
and ABC transporters. Genes that were down-regulated at stormwater drains
and had an estimate <-1, belonged to 34 different pathways. Pathways with
two or more genes with an estimate <-1 were: glycolysis/gluconeogenesis,
chloroalkane and chloroalkene degradation, methane metabolism, nitrogen
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Table 5.2: Adonis (permutational multivariate ANOVA) results for mRNA (function) dataset. Significant p-values are highlighted in bold.

Df Sums Of Sqs Mean Sqs F Model R2 Pr(>F)
mRNA location 1 0.0062 0.0062 1.5366 0.0756 0.0325

time point 1 0.0089 0.0089 2.1983 0.1081 0.0011
distance 1 0.0128 0.0128 3.1668 0.1558 0.0001

location:time point 1 0.0059 0.0059 1.4528 0.0715 0.0512
location:distance 1 0.0069 0.0069 1.7229 0.0848 0.0114

time point:distance 1 0.0068 0.0068 1.6976 0.0835 0.0147
location:time point:distance 1 0.0063 0.0063 1.5527 0.0764 0.0314

Residuals 7 0.0282 0.0040 0.3444
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Figure 5.2: All estimates from the linear models of genes that were significantly affected
by distance only (after exclusion of all interactions). This plot shows that the majority of
genes were down-regulated adjacent to stormwater drains in contrast to reference sites.
The estimate is the estimated slope in the linear models. Positive and negative estimates
symbolise up- and down-regulation adjacent to stormwater drains, respectively.

metabolism, ribosome, mRNA surveillance pathway, calcium signalling path-
way, focal adhesion and tight junction.

All pathways with five or more differentially expressed genes at stormwater
drain sites, were sorted into three pathway categories: signalling (Figure 5.3),
energy (Figure 5.4), and nutrient pathways (Figure 5.5). In all three pathway
categories, the majority of genes were significantly down-regulated at stormwa-
ter drains compared to reference sites, with the exception of ribosome genes
(Figure 5.4 part 1).

The genes from the nutrient pathways that belong to the core part of the
metabolisms (see Figure 5.6) were analysed in more detail, because we knew
from our earlier experimental study (Chapter 4) that these genes are signifi-
cantly affected by organic enrichment. Expression patterns of the methyl genes
(mtaC and mcrB) revealed that the transformation of methanol (CH3OH) into
methane was being down-regulated in sediments close to stormwater drains.
For the sulphur metabolism, the genes involved in hydrogen sulphide (H2S)
production (dsrA, dsrB and phsA) were up-regulated, while genes involved in
amino acid production from sulphides were down-regulated (cysK and metB)
in these areas. Furthermore, genes involved in sulphate degradation (PAPSS
and cysD) were also down-regulated close to stormwater drains. Proximity to
stormwater drains affected three aspects of the nitrogen metabolism, down-
regulating napA (associated with the transformation of nitrate (NO−

3 ) to ni-
trite (NO−

2 )), as well as the first step of denitrification performed by the gene
nirS (NO−

2 to nitric oxide (NO)) and the expression of nosZ (the degradation
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Figure 5.3: Gene expression of all signalling pathway genes that were significantly
impacted by proximity to stormwater drains. All genes above and below the dotted line
are up- and down-regulated adjacent to stormwater drains, respectively. Genes from the
same pathway have the same colour, whereas every dot represents one gene.

Figure 5.4: Gene expression of all energy pathway genes that were significantly impacted
by proximity to stormwater drains. All genes above and below the dotted line are up-
and down-regulated adjacent to stormwater drains, respectively. Genes from the same
pathway have the same colour, whereas every dot represents one gene. Energy pathways
were divided into two plots for clarity.
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Figure 5.5: Gene expression of all nutrient pathwaygenes that were significantly im-
pacted by proximity to stormwater drains. All genes above and below the dotted line are
up- and down-regulated adjacent to stormwater drains, respectively. Genes from the same
pathway have the same colour, whereas every dot represents one gene.

of nitrous oxide (N2O) to dinitrogen gas (N2)).

Discussion

Urbanised waterways have been historically exposed to multiple stressors. It
has been estimated that between 79-87% of priority contaminants in aquatic
systems originate from stormwater due to impervious surfaces (Davis and
Birch, 2009). Our study is the first to investigate the impact of contaminants
associated with stormwater drains on estuarine sediment communities using
metatranscriptomics. Sediments adjacent to stormwater drains were more
contaminated with metals, and there was some evidence of organic matter in-
put from terrestrial sources (Table 5.1). We discovered that functional genes
in sediment communities at stormwater drains had generally down-regulated
genes in comparison to reference sites. The exceptions were genes related to
hydrogen sulphide (H2S) gas production that were significantly up-regulated.
Moreover, the degradation of nitrous oxide (N2O) was down-regulated, which
could influence the global climate. Also, changes in pathways suggest that
more toxic compounds are accumulating in the sediments adjacent to stormwa-
ter drains, such as methanol (CH3OH), nitrate (NO−

3 ) and nitrite (NO−
2 ).

These functional changes could be related to the significantly higher metal con-
centrations found at stormwater drain sites compared to reference sites and/or
the organic enrichment evidence by isotope signals. Our findings highlight sig-
nificant impacts from legacy stormwater associated contaminants including a
decrease in signalling, which would likely result in a loss of community connec-
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(a)

(b)

(c)

Figure 5.6: The core part of the three nutrient pathways (of which the gene expression
is shown in Figure 5.5): (a) Methane metabolism, (b) Sulphur metabolism, and (c)
Nitrogen metabolism. The effects of stormwater on the gene expression of these parts of
the pathways are shown and the gene names of the significantly altered genes are shown
in pink. Thicker and dotted arrows symbolise a up- and down-regulation of the gene
adjacent to stormwater drains, respectively.
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tivity which may decrease the remediation capacity and efficiency of ecosystem
functions. In addition, lower energetic activity and nutrient metabolism may
lead to a decrease in ecosystem productivity and nutrient cycling. This study
emphasises the need to include functional responses in assessments of ecosys-
tem change if we are to better understand and predict the consequences of
multiple stressors.

Sediment communities adjacent to stormwater drains displayed a gen-
eral down-regulation of genes involved in signalling pathways, possibly due
to highly toxic metal concentrations. Microbes respond to biological and
chemical information (Westerhoff et al., 2014), and the responses of other
organisms in the same community (Ross-Gillespie and Kümmerli, 2014). We
suggest that lower expression rates in signalling pathways is a signal of commu-
nity fracturing, which has previously been observed in contaminant exposed
biofilm communities (Lawes et al., 2016b). The fracturing of a community and
the impairment of communication may lead to poor functioning for processes
that include multiple sequential steps such as toxicant remediation. Microbial
communities are well known for their potential to break down contaminants
and remediate contaminated systems (Wiatrowski and Barkay, 2005; Antizar-
Ladislao, 2010; Das and Chandran, 2011; Mason et al., 2014). However, it
seems that sediment communities subject to high concentrations of contami-
nation might suffer a reduced capacity for contaminant breakdown. This could
potentially result in a further build-up of contaminants from stormwater drains
over time. This has potentially serious consequences for the ecosystem itself
and for the public health of those exposed to such sediments and waters (e.g.
Zhang et al., 2010; Glibert et al., 2014). In addition, a breakdown in sig-
nalling and communication within this community can potentially result in
lower metabolic rates and lower rates of biogeochemical cycling.

Energy pathways, such as primary production, are known to be negatively
affected by contamination (Johnston et al., 2015b); whether this is through
a breakdown in signalling or a direct effect of contamination is yet unknown.
In our study, energy pathways were predominantly expressed at lower rates
in heavily contaminated sediments than at the reference sites. The toxicity
of the metals may explain the lower energy pathway rates. Spliceosomes are
responsible for transforming the pre-mRNA into mRNA for protein transcrip-
tion (Wahl et al., 2009). Spliceosome genes were invariably down-regulated
at stormwater drains, which suggests a lower rate of protein synthesis and
energetic activity. Furthermore, RNA degradation genes were mainly up-
regulated at poorly flushed sites. RNA degradation does not only play a
role in the recycling of nucleases from mRNA molecules no longer needed,
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but is also known to play an important role in controlling gene expression
(Condon, 2007). That is, up-regulated RNA degradation can prevent protein
synthesis coded by mRNA molecules. These results suggest that in addition
to a directly decreased general energetic activity of the sediment microbial
community, the increased RNA degradation may further lead to an indirect
decrease in general activity in proximity to stormwater drains. From the en-
ergy pathways, only the ribosome proteins were partially up-regulated. All
but one up-regulated ribosomal protein are bacterial/archaeal, while all but
one down-regulated ribosomal protein belong to eukaryotes. The activity of
ribosomal proteins has been proposed as a measure of cellular growth rates
(Gifford et al., 2013); hence, the up-regulation of ribosomal proteins suggests
enhanced bacterial/archaeal growth rates.

Carbon fixation rates by both photosynthetic and prokaryotic organisms
in heavily contaminated sediments were significantly decreased in comparison
to reference sites. Stable isotope studies have revealed that some microbes,
such as diatoms, decrease their carbon fixation rates when exposed to toxins
(Torres et al., 2000). This was contrary to the hypothesis that algae increase
their photosynthesis rate upon contamination in order to increase the energy
for detoxification (Rachlin et al., 1982). More recently, aquifer microbial com-
munities have shown low carbon fixation rates, despite a high prevalence of
genes involved in carbon fixation (Kellermann et al., 2012). Lower carbon fix-
ation rates result in lower uptake of inorganic carbon in the form of CO2. This
fixed carbon would then be transformed into organic carbon, which in turn
is available to heterotrophic organisms (Hügler and Sievert, 2011). Reduced
carbon fixation rates can therefore result in lower biomass and productivity,
which can affect higher trophic levels and potentially lead to lower ecosystem
service rates. Furthermore, microbial carbon fixation provides a biological sink
of anthropogenic CO2 (Zhao and Su, 2014). Hence lower carbon fixation due
to contamination may have serious implications for the global climate.

Analyses of the core parts of the affected nutrient metabolisms revealed
that the degradation of methanol (CH3OH) to methane (CH4) was reduced in
poorly flushed sediments, along with a decrease in sulphate (SO2−

4 ) reduction.
Sediments with high organic matter input are often anoxic, which means that
the sediment community will use an alternative electron acceptor to O2. NO−

3
is highly prevalent in stormwater (Collins et al., 2010) and is the preferred
electron acceptor to SO2−

4 and CH4 under anoxic conditions (Capone and
Kiene, 1988). Therefore, a down-regulation of SO2−

4 and CH4 transformation
genes could be due to the saturation of the system with NO−

3 . Moreover, in
the sulphur metabolism the production of H2S was enhanced in areas close to
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stormwater drains, while the use of sulphides for amino acid production was
decreased. This suggests a shift from assimilatory sulphate reduction (ASR)
to dissimilatory sulphate reduction (DSR), which results in lower production
of amino acids and the accumulation of H2S in the sediments, as we have
observed in experimentally enriched sediments (Chapter 3). H2S is not only
highly toxic, but also a potent greenhouse gas (Kump et al., 2005). Thus, our
sulphur metabolism findings show that sediments with high concentrations
of legacy contaminants have possibly lowered metabolic rates due to lower
production of amino acids, and have the potential to contribute to climate
change. Further, nitrogen metabolism was significantly affected in sediments
adjacent to stormwater drains. Lower transformation of NO−

3 to NO−
2 sug-

gests an accumulation of the highly toxic NO−
3 in the system. The first step

of denitrification was down-regulated, potentially leading to an accumulation
of NO−

2 in the system, which is also highly toxic and can in turn result in de-
creased community productivity. N2O transformation to dinitrogen gas (N2)
was performed at lower rates in poorly flushed sites compared to reference
sites. This last step of the nitrogen cycle is the one that yields the least
amount of energy (Zumft, 1997), and has been shown to be down-regulated
in organically enriched systems (see Chapter 3). Furthermore, H2S inhibits
this last step of the nitrogen cycle (Brunet and Garcia-Gil, 1996). This likely
results in an accumulation of N2O in the system, which is a gas and therefore
may eventually escape into the water column and possibly to the atmosphere.
N2O is a highly potent greenhouse gas – about 300 times as potent as a CO2

molecule (Schreiber et al., 2012).

Conclusions

Microbial community functioning was markedly different in close proximity to
stormwater drains, where sediments were contaminated with metals and or-
ganically enriched. Sediment communities at stormwater drains had generally
down-regulated genes in comparison to reference sites. This phenomenon has
recently been observed in contaminated groundwater microbe communities,
where biogeochemical cycling was minimised (Hemme et al., 2015). The lower
energetic activity in contaminated sediments can potentially lead to lower pro-
ductivity of the ecosystem as a whole. Furthermore, a lower signalling activity
of the microbial cells suggests a fracturing of the sediment community that may
result in lower remediation capacities. Changed expression patterns implied
an increased production of toxic compounds and greenhouse gases htat would
not only impact estuarine ecosystems, but also climate regulating processes.
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We successfully applied metatranscriptomics, to provide a holistic under-
standing of all genes and all cycles in a community exposed to chemical stress.
Direct measures of functional responses (e.g. chemical flux rates) would not
have provided this amount of detail, as the mechanisms behind altered fluxes
remain unknown. Here, we measured functional changes in dry conditions;
the crucial next step will be to investigate the impact of a heavy rainfall event
in these poorly flushed areas. In addition, analysing the rRNA data (which
was removed for the functional analysis described here) could provide insight
into the community structure changes due to stormwater impact. Information
on structural changes would provide further understanding of the functional
changes; e.g. are altered functions a direct consequence of structural shifts or
do they result from shifts in gene transcription? Such an analysis was beyond
the remit of this chapter but will be undertaken as an additional study. This
study highlights the need to remediate heavily contaminated sediments and
prevent additional contaminant inputs from stormwater in order to counteract
negative ecological consequences. Ecosystems particularly at risk are those in
shallow, low flow areas of urbanised estuaries where there is the potential for
high retention of contaminants. Such locations should therefore be a priority
for management and remediation activity.
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6 Summary

In this thesis, I measured altered ecosystem process rates in an estuarine sed-
iment community following exposure to multiple anthropogenic stressors, and
simultaneously evaluated the application of next-generation sequencing meth-
ods for biomonitoring. Specifically, I investigated the structural and functional
responses of microbial communities to two of the most common contaminants
classes in urbanised systems: Metals and organic matter (Jiang et al., 2001).
Sediment microbial communities responded to excess organic enrichment by
altering gene expression rates in a number of key biogeochemical pathways.
The impact of metals was more subtle, changing the expression of a smaller
number of genes and community changes could be masked by the shifts driven
by organic enrichment. The observed changes in gene expression might results
in the increased production of toxic compounds and greenhouse gases in con-
taminated sediments. My results reveal that bacterial communities are more
sensitive to anthropogenic stressors than eukaryotes and may therefore be a
better indicator of impacted communities in biomonitoring approaches. Func-
tional responses to stressors as measured by changes in mRNA gene expression
were also more obvious than structural shifts as measured by rRNA gene ex-
pression. Metatranscriptomics, as a tool that can measure both structure and
function, opens up opportunities for more holistic ecosystem biomonitoring.
Metatranscriptomics measures were reliable across replicates, and this tech-
nique was successfully applied to experimental and survey settings. The use
of ’big data’ from modern molecular techniques relies on information from an
increased number of receptors and is predictably more sensitive to changes
following stressor exposures. However, to make the most of this information
source, genetic reference libraries should be expanded to include more ecolog-
ically relevant gene annotations.

Sediment microbial community responses to multiple
contaminants

One of the main foci of this thesis was to measure the impact of multiple
contaminants on estuarine sediment microbial communities. In Chapter 2, I
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manipulated the metal content and organic enrichment of sediments in field-
based mesocosms to mimic common press stressors in urbanised estuaries.
Using these field-based mesocosms, I tested the applicability of amplicon se-
quencing (16S and 18S) to investigate community shifts in response to multi-
ple stressors. And I compared the responsiveness of bacterial and eukaryotic
communities, as well as the active (RNA) and total (DNA) component of each
community. Bacteria were generally more sensitive to the applied stressors
than eukaryotes. The active part of the eukaryotic community did not shift in
response to press metal contamination. However, the shift in the total commu-
nity shows that the eukaryotes also responded to initial metal contamination,
but were able to recover within the time frame of the experiment (17 weeks). I
also found that press organic enrichment masked the impact of metals on the
sediment communities. The potential for excess organic enrichment to mask
the toxic effects of metals may be related to the binding capacity of metal ions
to organic matter (e.g. Benedetti et al., 1996; McIntyre and Guéguen, 2013).
The binding of metals to organic matter can increase the metal uptake in
some species that are known to collect organic matter (Bundschuh and Mckie,
2015), however, this binding generally decreases the bioavailability of metals
to most organisms (Aiken et al., 2011). From this phenomenon, suggestions
have arisen to combat metal contamination with the addition of organic mat-
ter to the affected system (e.g. Taylor et al., 2016). My results will add to our
ability to predict the impact of cumulative stressors (Halpern et al., 2008),
however, I would hesitate to recommend remedial organic enrichment given
the substantial direct impacts of organics that I observed.

In addition to press contamination (added at the beginning of the experi-
ment), I exposed sediment communities to a pulse of organic matter to mimic
what might be delivered through run-off after a major precipitation event
(Göbel et al., 2007). Sediment communities were generally able to quickly
recover from the pulsed enrichment. However, I found some evidence for a
response of specific taxa and a decrease in abundant operational taxonomic
units (OTUs). The five week interval between exposure and sampling appears
to have allowed for sufficient recovery of the general community. A full recov-
ery within a few weeks has been observed in river biofilm communities exposed
to a toxic pulse (Proia et al., 2011), and marine serpulids were able to recover
from copper pulses within a only few weeks (Johnston et al., 2002). In the
real world, however, recovery will depend on the frequency of contaminant or
enrichment pulses, and the frequency of intense rainfall events is predicted to
increase with climate change (Trenberth, 1998). Occurring at high frequencies,
pulse events may result in the same effect as press stressors resulting in a sig-
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nificant impact on sediment communities (Johnston and Keough, 2002). The
impact of regular pulse events can be seen in Chapter 5, which includes the
sediment microbial responses to legacy contaminants from urban stormwater
inputs. The regular input of stormwater is most likely one of the pulse stres-
sors that occurs at high frequencies, thus resulting in the accumulation of
stressors in the sediments, and therefore having a lasting effect on community
structure and function.

In order to investigate the functional responses of sediment communities to
metal contamination and press organic enrichment, I used a subsample of the
sediments from the field-based experiment, and applied metatranscriptomic
sequencing to these samples (Chapter 3). Again, the effect of organic enrich-
ment was more pronounced than the effect of metal contamination. Generally,
genes that were affected by combined metal contamination and enrichment
were down-regulated, i.e. expressed in lower numbers, compared to the con-
trols. Most of the affected genes were associated with signalling and energy
pathways. Signalling is crucial for the communication between microbes which
enables them to live as a community (Watnick and Kolter, 2000; Shank and
Kolter, 2009) and respond to cues from their environment and other organ-
isms living within it (Westerhoff et al., 2014; Ross-Gillespie and Kümmerli,
2014). Down-regulation in signalling genes is likely to disrupt communica-
tion and thus the connectivity within the sediment community. This could
lead to community fracturing, as recently observed in marine biofilms (Lawes
et al., 2016b), and could potentially decrease the remediation capacity of the
affected community. Decreased remediation would result in accumulation of
contaminants, which would increase the contaminant concentrations and thus
exacerbate impacts on communities associated with the sediment. Chapter 3
also revealed that community functions are more sensitive to multiple stressors
than community structure. Functional genes responded significantly to metals
and enrichment, while community structure was only affected by enrichment.
This provides another line of evidence that supports the integration of func-
tional parameters in impact assessments (Baird et al., 2011; Van den Brink
et al., 2013; de Juan et al., 2014; Johnston et al., 2015b; van der Linden et al.,
2016).

To show the potential of metatranscriptomics as a means of providing
detailed information on specific genes/pathways, I analysed the gene expres-
sion of climate relevant pathways (using the data from Chapter 3) in detail.
Specifically, Chapter 4 was focused on the following pathways: nitrogen, sul-
phur, methane, and carbon metabolisms. The nitrogen and sulphur pathways
were significantly impacted by organic enrichment. Metal contamination only
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affected the gene expression when applied in combination with organic en-
richment, where it exacerbated the enrichment effects. This suggests that the
addition of organic matter to metal contaminated communities for mitigation
purposes of toxic metal effects (Taylor et al., 2016) or stimulation of bioreme-
diation of persistent organic pollutants (Xu et al., 2014), would have serious
unforeseeable side-effects. This highlights the need for better understanding
of the dynamics of multiple stressors to inform proper management decisions.

Changes in sulphur-associated gene expression resulted in a shift from
the assimilatory sulphate reduction (ASR) to dissimilatory sulphate reduc-
tion (DSR), which results in the production of hydrogen sulphide (H2S). H2S
is a highly toxic gas and also acts as a greenhouse gas through its capac-
ity to deplete ozone (Kump et al., 2005). Further, changes in the nitrogen
metabolism led to an accumulation of highly toxic ammonia/ammonium and
of nitrous oxide (N2O), one of the most potent greenhouse gases (Schreiber
et al., 2012). This chapter highlights the importance of sediment functions on
a global level, and the global consequences of localised contamination.

After having established the applicability of metatranscriptomics under
controlled experimental conditions, I used this technique in a survey in Chapter
5 to investigate the impact of legacy contaminants on sediment communities at
poorly flushed sites in Sydney Harbour, NSW, Australia. The contaminated
sediments were located at the end of embayments adjacent to major stormwa-
ter drains and reference sediments were located 1km away, within the same
embayment. Distance from the stormwater drain mainly drove the observable
community changes, and was detectable over and above natural spatial and
temporal variability. This shows that pulse stressors, such as stormwater in-
put, can lead to an accumulation of contaminants when applied frequently and
in poorly flushed systems. As in contaminated sediments explored in Chapter
3, the majority of differentially expressed genes were down-regulated in sed-
iments adjacent to stormwater drains in comparison to reference sites. The
affected pathways in the survey were similar to the affected pathways in the
experiment. This result validates the relevance of my experimental manipula-
tion to the real world, and also suggests the relevant contaminants impacting
the sediment community in embayments are metals and organic matter. I ob-
served similar changes to the nitrogen and sulphur metabolisms as in Chapter
4; I found the potential for accumulation of toxic compounds and greenhouse
gases. Based on the experiment in Chapters 3 and 4 and the similarity of
results, it is very likely that organic enrichment is the major driver of changes
to energy metabolisms within contaminated sediments.
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Molecular biomonitoring tools

In Chapter 2, I investigated the best application of amplicon sequencing (16S
and 18S) as a biomonitoring tool. Contaminant effects were more distinct
in the total communities (DNA) as opposed to the active component (RNA).
This is likely due to the extremely short half-life of RNA of seconds to minutes
(Carvalhais et al., 2012; Moran et al., 2013) and the persistence of DNA from
dead organisms in sediments for up to two months (Nielsen et al., 2007). Due
to the robustness of DNA, the handling of the samples is much easier. In ad-
dition, DNA extractions are less costly and much faster than RNA extractions
(personal observation). Therefore, I recommend using bacterial (16S) DNA
for large biomonitoring studies. However, the viability of extracellular DNA
in sediments demands careful interpretation of the data. While extracellular
DNA can be used to detect recent impacts of a contaminant on a sediment
community, it can also originate from external sources, such as the contami-
nant itself or rainwater. In the experiment, I was able to exclude the possibility
of the DNA coming from the sediment itself or from the added fertiliser, be-
cause I ran the experiment over 17 weeks, by which time the extracellular
DNA from external sources would have degraded.

Amplicon sequencing, however, does not include any functional measures,
which I showed to be more sensitive to multiple stressors (Chapters 3 and
5). To my knowledge, the study I presented in Chapter 3 is the first study
to validate metatranscriptomics as a tool for ecosystem health assessment.
I showed that metatranscriptomics is a sensitive tool for impact assessment
and generates ecologically relevant data. I also demonstrated that metatran-
scriptomics is repeatable, with low variability across replicates, and generates
reproducible results from experimental and survey studies. Although meta-
transcriptomics has not previously been discussed or validated as a tool for
biomonitoring, it has been successfully used in a variety of systems (Penn
et al., 2014; Gifford et al., 2011; Hilton et al., 2015; Hultman et al., 2015;
Urich et al., 2014; Thureborn et al., 2016) and organisms (Turner et al., 2013;
Franzosa et al., 2014), thus validating the applicability of this technique across
ecosystems. Although this remains an expensive technique (∼AUD 1,000.- per
sample), metatranscriptomics is likely to be more economic than common ap-
proaches if the amount of data and sensitivity are considered. With regards to
time-effectiveness, the extractions and preparation for sequencing are a mat-
ter of days, and the sequencing itself usually takes less than a day (personal
observations). Therefore, with good access to a sequencing facility, metatran-
scriptomics is likely orders of magnitude faster than conventional taxonomic
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identification in generating data. As mechanisms for the rapid interpretation of
data and access to bioinformatics support and high computing power increase,
this is likely to become an increasingly desirable approach to biomonitoring.

Metatranscriptomics provides detailed information on gene expression,
which is directly related to ecosystem process rates (Morales et al., 2010;
Philippot et al., 2011; Harter et al., 2014). However, the translation of gene
expression into actual gas fluxes is problematic (Bowen et al., 2014). In Chap-
ter 4, I not only measured gene expression but also used incubation chambers
to measure direct gas and nutrient fluxes out of the sediment. This flux data
was very useful for the interpretation of the changes in gene expression. For
example, the significantly increased NOx influx into enriched sediments con-
firmed the source of all the nitrite/nitrate that is transformed into ammoni-
a/ammonium through dissimilatory nitrate reduction to ammonium (DNRA).
Together, these techniques simultaneously revealed the functional output of a
system and the mechanisms behind these measurable changes.

Future directions

The analysis and interpretation of ’big data’ poses a great many challenges.
New multivariate statistics and statistical programs that can handle very large
datasets will be crucial in the advancement of molecular techniques and the
application of these to biomonitoring. Moreover, the improvement of reference
libraries is critical to the correct annotation of sequences. Although there are
numerous reference libraries available, they are far from complete. Many eco-
logically relevant genes are yet to be annotated. Environmental studies have
found that over two thirds of the sequences did not have matches to annotated
reference libraries (Moran, 2009). In addition, many genetic databases are bi-
ased towards results from medical research (personal observation). Hence it
is not uncommon to find an annotation of a cancer-related gene in sediment
samples, so the annotation of genes today has to be treated with caution. The
improvement of the confidence of gene annotations will enable easier interpre-
tation of large environmental datasets. Microbial culture-dependent research
will likely be indispensable to the advancement of such reference libraries (Zim-
merman et al., 2014). However, the growing body of culture-independent omics
research will also contribute to the improvement of gene annotations.

In order to use next-generation sequencing approaches for biomonitoring
purposes, our understanding of the relationships between community struc-
ture and function, and between gene expression and biogeochemical flux rates
must improve. In both my experimental and survey approaches, I observed
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that most differentially expressed genes were down-regulated in response to
contaminants, and the majority of these genes were associated with signalling
pathways. In addition, I observed sign of community fracturing which has re-
cently been noted as a consequence of contamination in marine biofilms (Lawes
et al., 2016b). Metatranscriptomic analyses may provide the mechanism be-
hind this loss of connectivity in the form of reduced signalling activity. It may
therefore be useful to combine the metatranscriptomics results in Chapter 5
with a community network analysis, as has been done in Lawes et al. (2016b)
and Sun (2016, Chapter 2). I predict that within the next few years of meta-
omics research, we will witness the application of many new combinations
of analyses and statistical tests to environmental datasets and this will help
embed modern molecular techniques as a standard tool in ecological research.

Final remarks

This thesis advances our understanding of the impacts of multiple contami-
nants on sediment microbial communities using modern molecular techniques.
The concurrence of results from a manipulative experiment and a field survey
demonstrated that altered gene expression in contaminated sediments gener-
ally results in lower activity of the affected genes. Most of the down-regulated
genes were associated with energy and signalling metabolisms. The impact on
the signalling metabolism may lead to a loss of community connectivity and
potentially lower remediation capacity, and the changes in energy metabolisms
may lead to significant impacts on the climate through increased production of
greenhouse gases. I was able to show that the functions of estuarine sediment
communities are critical to the entire ecosystem and can have repercussions
on a global level, as they involve ecosystem processes relevant to the climate.
Furthermore, this thesis revealed that bacteria and functional measures are
more sensitive to multiple stressors than eukaryotes and community composi-
tion, respectively. Bacterial functions may therefore be the more appropriate
indicator of anthropogenic contamination. Using field experiment and sur-
vey data, I demonstrated the applicability of metatranscriptomics as a tool
for biomonitoring. Despite many challenges posed by this modern technique,
metatranscriptomics has the potential to revolutionise ecosystem health assess-
ment by providing ecologically relevant data and unmasking the mechanisms
behind changes to community function.
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A Appendix - Chapter 2

Table A.1: Sequencing information per sample. Sample names are according to Table 2.1. The numbers in the sample name stand for the replicate
number. Where there are NAs, the samples could not be amplified and therefore were not sequenced. ’# post QC’ represents the number of sequences that
passed all quality filtering steps (up to removing of chimeric sequences). These are the number of sequences that were clustered into operational taxonomic
units (OTUs) and classified.

16S DNA 16S RNA 18S DNA 18S RNA
Sample #raw reads # post QC #raw reads # post QC #raw reads # post QC #raw reads # post QC

C/C/C-1 248518 90509 222101 16028 97653 14276 133940 23342
C/C/C-2 191756 13399 270165 23798 149043 20503 152807 27591
C/C/C-3 189894 13015 446062 29906 119383 15811 145249 25187
C/C/D-1 520693 30847 165622 11454 145012 20875 119994 24149
C/C/D-2 245401 17822 156498 10669 122341 16210 131773 23922
C/C/D-3 218072 16476 141912 10948 112876 19721 107141 22528
C/H/C-1 210697 17011 204257 14430 131341 17739 133217 20414

continued on next page
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Table A.1 – continued from previous page

16S DNA 16S RNA 18S DNA 18S RNA
Sample #raw reads # post QC #raw reads # post QC #raw reads # post QC #raw reads # post QC

C/H/C-2 163515 14267 212801 14211 119073 16210 152351 24630
C/H/C-3 79248 7592 260295 20087 106760 15223 150640 24338
C/H/D-1 175426 14198 241674 16731 103261 16139 101972 16591
C/H/D-2 413066 28876 190448 13965 121614 17796 132483 22580
C/H/D-3 172605 13009 160087 10762 60449 5149 85001 9255
C/L/C-1 241096 16673 176618 12789 153023 20106 165366 25855
C/L/C-2 185943 15835 209573 15568 121708 16786 156369 23322
C/L/C-3 183097 14284 237362 17479 146655 21868 114581 27385
C/L/D-1 202500 15827 164691 11520 138192 17495 149954 22593
C/L/D-2 NA NA 219998 15309 122680 19250 114581 22411
C/L/D-3 182580 14945 211172 14857 115407 19722 185710 32448
H/C/C-1 313786 21169 307016 20008 128894 22625 152199 29027
H/C/C-2 NA NA 199268 14001 107441 14149 86397 17428
H/C/C-3 199099 14383 168712 11846 70001 10671 155164 30220
H/C/D-1 207944 16301 208583 14518 69085 9225 122721 24312
H/C/D-2 258960 17129 704946 37406 128598 20146 130910 27222
H/C/D-3 237541 15991 211458 14998 83812 13817 99348 19463

continued on next page
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Table A.1 – continued from previous page

16S DNA 16S RNA 18S DNA 18S RNA
Sample #raw reads # post QC #raw reads # post QC #raw reads # post QC #raw reads # post QC

H/H/C-1 425437 29863 484397 30167 71982 9272 88843 15286
H/H/C-2 192541 15780 241812 17737 77503 9033 66773 11439
H/H/C-3 230175 18646 886514 46463 100444 16571 121506 24234
H/H/D-1 224483 16453 443784 25773 90822 11821 123197 17122
H/H/D-2 246396 19048 164841 12174 44594 6250 51798 7365
H/H/D-3 304469 21807 231730 16064 113373 16842 116339 19239
H/L/C-1 233686 20767 197940 14139 117693 18649 192869 32073
H/L/C-2 231462 20439 196295 15120 58661 6626 59296 6997
H/L/C-3 150501 12490 144955 11760 101103 14931 131782 22961
H/L/D-1 224537 25339 167889 12237 81471 11551 153959 25522
H/L/D-2 169493 15634 192195 14299 91970 14195 115644 21087
H/L/D-3 186020 14397 294763 21194 124176 17617 NA NA
M/C/C-1 213881 15696 261099 17203 115758 17711 131567 24636
M/C/C-2 227949 15830 173847 12726 133855 19529 144215 26741
M/C/C-3 185394 17060 314541 22557 103935 15882 178025 33587
M/C/D-1 143934 10945 213668 16030 159092 21800 77392 15868
M/C/D-2 473256 29482 203891 14725 76146 11651 74700 12575
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Table A.1 – continued from previous page

16S DNA 16S RNA 18S DNA 18S RNA
Sample #raw reads # post QC #raw reads # post QC #raw reads # post QC #raw reads # post QC

M/C/D-3 195945 14885 200166 14547 137522 21570 133341 24899
M/H/C-1 399899 28177 204606 14610 83627 9614 17932 2634
M/H/C-2 664100 40958 197574 15251 111468 16052 103893 17706
M/H/C-3 129125 11288 323486 24140 101823 14470 140748 22990
M/H/D-1 217877 16510 187736 13226 100222 14116 139279 21285
M/H/D-2 248521 18618 336665 21779 100874 15726 132991 23865
M/H/D-3 210598 16290 183129 13013 114549 18730 123434 23152
M/L/C-1 320408 19221 145159 10659 141181 17981 125475 20209
M/L/C-2 217017 17279 215927 15718 115449 16573 135878 19841
M/L/C-3 225871 16351 282096 20993 122694 15747 213133 33286
M/L/D-1 190136 14870 168531 12001 168446 22598 126866 21114
M/L/D-2 206942 15745 164872 11638 119895 15831 91710 15924
M/L/D-3 238990 19276 208120 15081 128443 18590 109639 20513

VH/C/C-1 307884 19987 332825 21102 90596 15246 75926 16694
VH/C/C-2 271417 20092 168520 12206 93050 15500 84722 15189
VH/C/C-3 152726 11229 263420 14819 150863 21418 125920 24487
VH/C/D-1 216497 15953 251871 17372 82976 12163 148829 23541

continued on next page
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16S DNA 16S RNA 18S DNA 18S RNA
Sample #raw reads # post QC #raw reads # post QC #raw reads # post QC #raw reads # post QC

VH/C/D-2 278549 19090 233787 16516 113027 19495 144777 28460
VH/C/D-3 269779 18563 269329 18879 28642 4820 60186 13347
VH/H/C-1 205897 16382 232525 16852 117862 16789 NA NA
VH/H/C-2 195902 14817 206740 12713 97325 13061 124468 18104
VH/H/C-3 175794 14202 153416 11024 89769 13210 128664 20025
VH/H/D-1 234788 18993 209989 14538 101632 12511 75518 9967
VH/H/D-2 210693 16563 147960 10011 108487 16340 117397 21666
VH/H/D-3 311165 20478 285219 18914 108812 18570 86212 17104
VH/L/C-1 354049 25203 282177 23070 86073 14368 158045 26277
VH/L/C-2 207872 15260 254687 16862 126950 17781 110043 19835
VH/L/C-3 162250 13081 213030 15851 120048 18220 155275 27324
VH/L/D-1 244930 19130 295777 19985 96872 15884 114570 18560
VH/L/D-2 281485 22133 245387 16934 130251 17269 114313 21275
VH/L/D-3 220448 16424 257095 18226 115976 18649 73472 14453
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Table A.2: Operational taxonomic unit (OTU) information per sample. Sample names
are according to Table 2.1. The numbers in the sample name stand for the replicate
number. Where there are NAs, the samples could not be amplified and therefore were
not sequenced.

16S DNA 16S RNA 18S DNA 18S RNA
Sample #OTUs #OTUs #OTUs #OTUs

C/C/C-1 5043 5344 3373 5105
C/C/C-2 4448 7884 4751 5845
C/C/C-3 3852 7430 3397 4297
C/C/D-1 7274 4296 4677 5640
C/C/D-2 5072 3733 3488 4329
C/C/D-3 4702 4301 4219 5047
C/H/C-1 3960 3800 3705 3973
C/H/C-2 3339 4068 3475 4690
C/H/C-3 2279 4431 3175 4236
C/H/D-1 4239 5259 3408 3824
C/H/D-2 5677 3765 3464 3861
C/H/D-3 3804 3252 988 1776
C/L/C-1 4096 3312 3831 4738
C/L/C-2 3993 4289 3344 3695
C/L/C-3 4162 4644 4633 4886
C/L/D-1 4137 3335 3400 4371
C/L/D-2 NA 4292 3982 4240
C/L/D-3 4672 5059 4363 6324
H/C/C-1 5727 6288 4977 5653
H/C/C-2 NA 4361 3399 4111
H/C/C-3 4373 4245 2635 5988
H/C/D-1 5022 4907 2383 5256
H/C/D-2 5324 10145 4802 5151
H/C/D-3 4339 4657 3165 4460
H/H/C-1 5878 6162 1988 2938
H/H/C-2 3791 4489 1891 2590
H/H/C-3 5030 9522 3918 4620
H/H/D-1 4332 5407 2568 3409
H/H/D-2 5003 3195 1359 1544
H/H/D-3 5240 4289 3512 3817
H/L/C-1 4829 3731 3912 5531

continued on next page
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16S DNA 16S RNA 18S DNA 18S RNA
Sample #OTUs #OTUs #OTUs #OTUs

H/L/C-2 5355 4407 1474 1638
H/L/C-3 3405 3212 3142 4070
H/L/D-1 5913 3425 2538 4687
H/L/D-2 4206 4033 3086 3588
H/L/D-3 4153 5398 3498 NA
M/C/C-1 4366 5826 3983 5262
M/C/C-2 4274 4409 4260 5659
M/C/C-3 5281 6966 3115 6758
M/C/D-1 3625 5203 4589 3884
M/C/D-2 7112 5155 2864 2738
M/C/D-3 4499 4953 4604 5377
M/H/C-1 5515 3793 2001 651
M/H/C-2 6541 3663 3233 3577
M/H/C-3 3046 4926 2829 3572
M/H/D-1 4092 3428 3078 3800
M/H/D-2 4943 5398 3481 4139
M/H/D-3 4561 4101 4228 4749
M/L/C-1 4893 3159 3735 3880
M/L/C-2 4475 4425 3550 4038
M/L/C-3 4086 4595 3278 5603
M/L/D-1 4012 3867 4950 4640
M/L/D-2 4283 3464 3216 3170
M/L/D-3 3983 3687 3822 4145

VH/C/C-1 5670 7022 3865 4286
VH/C/C-2 5064 4167 3597 3665
VH/C/C-3 3691 4984 4822 4809
VH/C/D-1 4196 5060 2569 4419
VH/C/D-2 5619 5837 4664 5623
VH/C/D-3 5240 6155 1241 3683
VH/H/C-1 3921 4502 3587 NA
VH/H/C-2 3371 3198 2809 3111
VH/H/C-3 3789 3442 2979 3325
VH/H/D-1 4615 4135 2693 1971
VH/H/D-2 4099 2959 3614 4099

continued on next page
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Table A.2 – continued from previous page

16S DNA 16S RNA 18S DNA 18S RNA
Sample #OTUs #OTUs #OTUs #OTUs

VH/H/D-3 5719 5893 4166 3878
VH/L/C-1 5480 5767 3399 4725
VH/L/C-2 4205 4991 4087 4574
VH/L/C-3 3878 4901 4162 4904
VH/L/D-1 4630 5004 3430 3709
VH/L/D-2 5886 4845 3804 3972
VH/L/D-3 4968 5967 4151 3378
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Table A.3: R output of the adonis (permutational multivariate analysis of variance) results for all four datasets (16S DNA, 16S RNA, 18S DNA, and 18S
RNA). Significant p-values are highlighted in bold. A significance level of α=0.05 was applied.

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

16S DNA metals 3 0.1160 0.0387 1.7758 0.0621 0.0004
nutrients 2 0.3418 0.1709 7.8483 0.1830 0.0001

dosing 1 0.0253 0.0253 1.1623 0.0136 0.1770
metals:nutrients 6 0.1472 0.0245 1.1265 0.0788 0.1185

metals:dosing 3 0.0633 0.0211 0.9683 0.0339 0.5092
nutrients:dosing 2 0.0425 0.0212 0.9755 0.0228 0.4647

metals:nutrients:dosing 6 0.1297 0.0216 0.9929 0.0695 0.4712
Residuals 46 1.0016 0.0218 0.5364

Total 69 1.8673 1

16S RNA metals 3 0.2734 0.0911 1.5048 0.0514 0.0098
nutrients 2 1.0056 0.5028 8.3021 0.1890 0.0001

dosing 1 0.0722 0.0722 1.1928 0.0136 0.1563
metals:nutrients 6 0.4076 0.0679 1.1217 0.0766 0.1315

metals:dosing 3 0.1692 0.0564 0.9313 0.0318 0.6233
nutrients:dosing 2 0.1207 0.0603 0.9963 0.0227 0.3959

metals:nutrients:dosing 6 0.3647 0.0608 1.0035 0.0685 0.4286
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Table A.3 – continued from previous page

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

Residuals 48 2.9072 0.0606 0.5464
Total 71 5.3207 1

18S DNA metals 3 0.1685 0.0562 1.2588 0.0472 0.0252
nutrients 2 0.4705 0.2353 5.2708 0.1317 0.0001

dosing 1 0.0536 0.0536 1.2001 0.0150 0.1210
metals:nutrients 6 0.2712 0.0452 1.0127 0.0759 0.3880

metals:dosing 3 0.1273 0.0424 0.9509 0.0356 0.6194
nutrients:dosing 2 0.0826 0.0413 0.9256 0.0231 0.6767

metals:nutrients:dosing 6 0.2560 0.0427 0.9561 0.0717 0.6761
Residuals 48 2.1424 0.0446 0.5997

Total 71 3.5722 1

18S RNA metals 3 0.1615 0.0538 1.0344 0.0396 0.3254
nutrients 2 0.6252 0.3126 6.0076 0.1535 0.0001

dosing 1 0.0661 0.0661 1.2710 0.0162 0.1018
metals:nutrients 6 0.2892 0.0482 0.9262 0.0710 0.7728

metals:dosing 3 0.1368 0.0456 0.8767 0.0336 0.8474
nutrients:dosing 2 0.0909 0.0455 0.8735 0.0223 0.7980

continued on next page
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Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

metals:nutrients:dosing 6 0.3108 0.0518 0.9954 0.0763 0.4692
Residuals 46 2.3935 0.0520 0.5875

Total 69 4.0740 1
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Figure B.1: Gene expression values for all genes included in the final dataset used for
statistical analyses (detected in all samples of at least one treatment). Sample names
are according to treatments: C for control, E for enriched, M for metals, and ME for
metals/enriched. This plot identifies sample ME2 as an outlier and justifies its exclusion
from further analyses.
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Figure B.2: Correlation plots between all replicates within the control treatment. Linear regression is plotted as a blue line. Correlation and linear
regression formula are shown in blue.
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Figure B.3: Correlation plots between all replicates within the enriched treatment. Linear regression is plotted as a blue line. Correlation and linear
regression formula are shown in blue.131
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Figure B.4: Correlation plots between all replicates within the metal treatment. Linear regression is plotted as a blue line. Correlation and linear regression
formula are shown in blue.
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Figure B.5: Correlation plots between all replicates within the metals/enriched treat-
ment. Linear regression is plotted as a blue line. Correlation and linear regression formula
are shown in blue.

Table B.1: Sequencing information per sample. * highlights the sample which was
identified as an outlier and removed from further analyses. C stands for control samples,
E for organically enriched, M for high metal contaminated and ME for high metals and
enriched samples. The numbers in the sample name stand for the replicate number.

Sample #raw reads #reads after trimming #mRNA reads
C1 40,147,416 39,955,014 2,637,549
C2 38,317,630 38,127,864 2,181,852
C3 50,025,594 49,751,382 2,716,359
E1 39,002,492 38,821,548 1,513,501
E2 40,499,178 40,310,115 1,706,735
E3 34,668,978 34,499,412 1,536,940
M1 39,975,956 39,752,361 2,343,434
M2 36,962,844 36,773,304 1,997,633
M3 40,564,048 40,350,583 2,006,609

ME1 42,151,632 41,965,846 1,712,440
ME2* 41,253,546 41,047,248 2,569,894
ME3 40,773,954 40,598,662 1,482,383
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Table B.2: Top 50 genes with highest gene expression across all samples. The gene KO, gene name, pathway KO, and pathway group are shown. Genes
that belong to multiple pathways are listed once for every associated pathway.

gene KO ID gene name pathway name pathway category

K02703 psbA Photosynthesis Energy Metabolism
K00394 aprA Sulfur metabolism Energy Metabolism
K04077 groEL RNA degradation Folding, Sorting and Degradation
K04043 dnaK RNA degradation Folding, Sorting and Degradation
K03046 rpoC Purine metabolism Nucleotide Metabolism
K03046 rpoC Pyrimidine metabolism Nucleotide Metabolism
K03046 rpoC RNA polymerase Transcription
K01130 aslA Steroid hormone biosynthesis Lipid Metabolism
K01130 aslA Sphingolipid metabolism Lipid Metabolism
K02406 fliC Two-component system Signal Transduction
K02406 fliC Flagellar assembly Cell Motility
K03043 rpoB Purine metabolism Nucleotide Metabolism
K03043 rpoB Pyrimidine metabolism Nucleotide Metabolism
K03043 rpoB RNA polymerase Transcription
K02945 RP-S1 Ribosome Translation
K00088 guaB Purine metabolism Nucleotide Metabolism

continued on next page
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gene KO gene name pathway name pathway category

K00088 guaB Drug metabolism - other enzymes Xenobiotics Biodegradation and Metabolism
K02112 ATPF1B Oxidative phosphorylation Energy Metabolism
K02112 ATPF1B Photosynthesis Energy Metabolism
K02111 ATPF1A Oxidative phosphorylation Energy Metabolism
K02111 ATPF1A Photosynthesis Energy Metabolism
K01895 ACSS Glycolysis / Gluconeogenesis Carbohydrate Metabolism
K01895 ACSS Pyruvate metabolism Carbohydrate Metabolism
K01895 ACSS Propanoate metabolism Carbohydrate Metabolism
K01895 ACSS Methane metabolism Energy Metabolism
K01895 ACSS Carbon fixation pathways in prokaryotes Energy Metabolism
K03388 hdrA Methane metabolism Energy Metabolism
K03737 nifJ Carbon fixation pathways in prokaryotes Energy Metabolism
K03737 nifJ Nitrogen metabolism Energy Metabolism
K00286 proC Arginine and proline metabolism Amino Acid Metabolism
K01338 lon Cell cycle - Caulobacter Cell Growth and Death
K00958 met3 Purine metabolism Nucleotide Metabolism
K00958 met3 Selenocompound metabolism Metabolism of Other Amino Acids
K00958 met3 Sulfur metabolism Energy Metabolism
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Table B.2 – continued from previous page

gene KO gene name pathway name pathway category

K01507 ppa Oxidative phosphorylation Energy Metabolism
K03738 aor Glycolysis / Gluconeogenesis Carbohydrate Metabolism
K03738 aor Pentose phosphate pathway Carbohydrate Metabolism
K01647 CS Citrate cycle (TCA cycle) Carbohydrate Metabolism
K01647 CS Glyoxylate and dicarboxylate metabolism Carbohydrate Metabolism
K00134 GAPDH Glycolysis / Gluconeogenesis Carbohydrate Metabolism
K00395 aprB Sulfur metabolism Energy Metabolism
K03782 katG Phenylalanine metabolism Amino Acid Metabolism
K03782 katG Tryptophan metabolism Amino Acid Metabolism
K03782 katG Methane metabolism Energy Metabolism
K03782 katG Phenylpropanoid biosynthesis Biosynthesis of Other Secondary Metabolites
K00962 pnp Purine metabolism Nucleotide Metabolism
K00962 pnp Pyrimidine metabolism Nucleotide Metabolism
K00962 pnp RNA degradation Folding, Sorting and Degradation
K05692 ACTB G1 Phagosome Transport and Catabolism
K05692 ACTB G1 Focal adhesion Cell Communication
K05692 ACTB G1 Adherens junction Cell Communication
K05692 ACTB G1 Tight junction Cell Communication

continued on next page
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gene KO gene name pathway name pathway category

K05692 ACTB G1 Regulation of actin cytoskeleton Cell Motility
K01999 livK ABC transporters Membrane Transport
K01006 ppdK Pyruvate metabolism Carbohydrate Metabolism
K01006 ppdK Carbon fixation in photosynthetic organisms Energy Metabolism
K01915 glnA Alanine, aspartate and glutamate metabolism Amino Acid Metabolism
K01915 glnA Arginine and proline metabolism Amino Acid Metabolism
K01915 glnA Glyoxylate and dicarboxylate metabolism Carbohydrate Metabolism
K01915 glnA Nitrogen metabolism Energy Metabolism
K01915 glnA Two-component system Signal Transduction
K01938 fhs One carbon pool by folate Metabolism of Cofactors and Vitamins
K01938 fhs Carbon fixation pathways in prokaryotes Energy Metabolism
K00123 E1.2.1.2A Glyoxylate and dicarboxylate metabolism Carbohydrate Metabolism
K00123 E1.2.1.2A Methane metabolism Energy Metabolism
K11181 dsrB Nitrotoluene degradation Xenobiotics Biodegradation and Metabolism
K00525 nrdE Purine metabolism Nucleotide Metabolism
K00525 nrdE Pyrimidine metabolism Nucleotide Metabolism
K01624 FBA Glycolysis / Gluconeogenesis Carbohydrate Metabolism
K01624 FBA Pentose phosphate pathway Carbohydrate Metabolism
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gene KO gene name pathway name pathway category

K01624 FBA Fructose and mannose metabolism Carbohydrate Metabolism
K01624 FBA Methane metabolism Energy Metabolism
K01624 FBA Carbon fixation in photosynthetic organisms Energy Metabolism
K02886 RP-L2 Ribosome Translation
K00198 cooS Nitrotoluene degradation Xenobiotics Biodegradation and Metabolism
K00198 cooS Methane metabolism Energy Metabolism
K00058 serA Glycine, serine and threonine metabolism Amino Acid Metabolism
K00058 serA Methane metabolism Energy Metabolism
K00626 atoB Fatty acid metabolism Lipid Metabolism
K00626 atoB Synthesis and degradation of ketone bodies Lipid Metabolism
K00626 atoB Valine, leucine and isoleucine degradation Amino Acid Metabolism
K00626 atoB Lysine degradation Amino Acid Metabolism
K00626 atoB Benzoate degradation Xenobiotics Biodegradation and Metabolism
K00626 atoB Tryptophan metabolism Amino Acid Metabolism
K00626 atoB Pyruvate metabolism Carbohydrate Metabolism
K00626 atoB Glyoxylate and dicarboxylate metabolism Carbohydrate Metabolism
K00626 atoB Propanoate metabolism Carbohydrate Metabolism
K00626 atoB Butanoate metabolism Carbohydrate Metabolism
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gene KO gene name pathway name pathway category

K00626 atoB Carbon fixation pathways in prokaryotes Energy Metabolism
K00626 atoB Terpenoid backbone biosynthesis Metabolism of Terpenoids and Polyketides
K00626 atoB Two-component system Signal Transduction
K00404 ccoN Oxidative phosphorylation Energy Metabolism
K00404 ccoN Two-component system Signal Transduction
K01251 ahcY Cysteine and methionine metabolism Amino Acid Metabolism
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Table B.3: Results from the Fisher’s exact test and the subsequent Benjamini-Hochberg correction for multiple testing. This test reveals which pathways
contain more differentially expressed (DE) genes than expected by chance, given the number of DE genes in the entire dataset. Significant p-values (at a
level of α=0.05) are highlighted in bold.

pathway KO ID pathway name Fisher’s p-value pcorr

path:ko00010 Glycolysis / Gluconeogenesis 0.1370 0.9959
path:ko00020 Citrate cycle (TCA cycle) 0.0109 0.5924
path:ko00030 Pentose phosphate pathway 0.7519 0.9959
path:ko00040 Pentose and glucuronate interconversions 0.8610 0.9959
path:ko00051 Fructose and mannose metabolism 0.8917 0.9959
path:ko00052 Galactose metabolism 0.9198 0.9959
path:ko00053 Ascorbate and aldarate metabolism 0.9620 0.9959
path:ko00061 Fatty acid biosynthesis 0.9937 0.9959
path:ko00062 Fatty acid elongation 0.9311 0.9959
path:ko00071 Fatty acid metabolism 0.9165 0.9959
path:ko00072 Synthesis and degradation of ketone bodies 0.0769 0.9003
path:ko00100 Steroid biosynthesis 0.8318 0.9959
path:ko00120 Primary bile acid biosynthesis 0.2733 0.9959
path:ko00121 Secondary bile acid biosynthesis 0.2568 0.9959
path:ko00130 Ubiquinone and other terpenoid-quinone biosynthesis 0.4524 0.9959
path:ko00140 Steroid hormone biosynthesis 0.0659 0.8572
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path:ko00190 Oxidative phosphorylation 0.5051 0.9959
path:ko00195 Photosynthesis 0.4333 0.9959
path:ko00196 Photosynthesis - antenna proteins 0.5721 0.9959
path:ko00230 Purine metabolism 0.3255 0.9959
path:ko00240 Pyrimidine metabolism 0.7863 0.9959
path:ko00250 Alanine, aspartate and glutamate metabolism 0.9760 0.9959
path:ko00260 Glycine, serine and threonine metabolism 0.1370 0.9959
path:ko00270 Cysteine and methionine metabolism 0.5994 0.9959
path:ko00280 Valine, leucine and isoleucine degradation 0.5988 0.9959
path:ko00281 Geraniol degradation 0.6881 0.9959
path:ko00290 Valine, leucine and isoleucine biosynthesis 0.6712 0.9959
path:ko00300 Lysine biosynthesis 0.9664 0.9959
path:ko00310 Lysine degradation 0.8787 0.9959
path:ko00311 Penicillin and cephalosporin biosynthesis 0.4478 0.9959
path:ko00330 Arginine and proline metabolism 0.7010 0.9959
path:ko00340 Histidine metabolism 0.9830 0.9959
path:ko00350 Tyrosine metabolism 0.4001 0.9959
path:ko00351 DDT degradation 0.2568 0.9959
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path:ko00360 Phenylalanine metabolism 0.3315 0.9959
path:ko00361 Chlorocyclohexane and chlorobenzene degradation 0.5721 0.9959
path:ko00362 Benzoate degradation 0.8331 0.9959
path:ko00363 Bisphenol degradation 0.2578 0.9959
path:ko00364 Fluorobenzoate degradation 0.7735 0.9959
path:ko00380 Tryptophan metabolism 0.8089 0.9959
path:ko00400 Phenylalanine, tyrosine and tryptophan biosynthesis 0.9034 0.9959
path:ko00401 Novobiocin biosynthesis 0.9072 0.9959
path:ko00410 beta-Alanine metabolism 0.5621 0.9959
path:ko00430 Taurine and hypotaurine metabolism 0.5660 0.9959
path:ko00440 Phosphonate and phosphinate metabolism 0.4823 0.9959
path:ko00450 Selenocompound metabolism 0.6129 0.9959
path:ko00460 Cyanoamino acid metabolism 0.7714 0.9959
path:ko00472 D-Arginine and D-ornithine metabolism 0.2568 0.9959
path:ko00473 D-Alanine metabolism 0.5897 0.9959
path:ko00480 Glutathione metabolism 0.8276 0.9959
path:ko00500 Starch and sucrose metabolism 0.6721 0.9959
path:ko00510 N-Glycan biosynthesis 0.5897 0.9959
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path:ko00511 Other glycan degradation 0.9311 0.9959
path:ko00520 Amino sugar and nucleotide sugar metabolism 0.7847 0.9959
path:ko00521 Streptomycin biosynthesis 0.7161 0.9959
path:ko00523 Polyketide sugar unit biosynthesis 0.6952 0.9959
path:ko00531 Glycosaminoglycan degradation 0.5721 0.9959
path:ko00540 Lipopolysaccharide biosynthesis 0.9840 0.9959
path:ko00550 Peptidoglycan biosynthesis 0.7591 0.9959
path:ko00561 Glycerolipid metabolism 0.9167 0.9959
path:ko00562 Inositol phosphate metabolism 0.8846 0.9959
path:ko00564 Glycerophospholipid metabolism 0.6923 0.9959
path:ko00565 Ether lipid metabolism 0.1639 0.9959
path:ko00591 Linoleic acid metabolism 0.4478 0.9959
path:ko00600 Sphingolipid metabolism 0.8544 0.9959
path:ko00620 Pyruvate metabolism 0.6546 0.9959
path:ko00621 Dioxin degradation 0.4823 0.9959
path:ko00622 Xylene degradation 0.3385 0.9959
path:ko00623 Toluene degradation 0.3055 0.9959
path:ko00624 Polycyclic aromatic hydrocarbon degradation 0.2578 0.9959

continued on next page143



ChapterB.Appendix
-Chapter3

Table B.3 – continued from previous page

pathway KO ID pathway name Fisher’s p-value pcorr

path:ko00625 Chloroalkane and chloroalkene degradation 0.3945 0.9959
path:ko00626 Naphthalene degradation 0.7714 0.9959
path:ko00627 Aminobenzoate degradation 0.4626 0.9959
path:ko00630 Glyoxylate and dicarboxylate metabolism 0.6612 0.9959
path:ko00633 Nitrotoluene degradation 0 0.0027
path:ko00640 Propanoate metabolism 0.0679 0.8572
path:ko00642 Ethylbenzene degradation 0.5897 0.9959
path:ko00643 Styrene degradation 0.7714 0.9959
path:ko00650 Butanoate metabolism 0.0608 0.8572
path:ko00660 C5-Branched dibasic acid metabolism 0.0304 0.8445
path:ko00670 One carbon pool by folate 0.3273 0.9959
path:ko00680 Methane metabolism 0.0385 0.8445
path:ko00710 Carbon fixation in photosynthetic organisms 0.9167 0.9959
path:ko00720 Carbon fixation pathways in prokaryotes 0.0008 0.0668
path:ko00730 Thiamine metabolism 0.8171 0.9959
path:ko00740 Riboflavin metabolism 0.4950 0.9959
path:ko00750 Vitamin B6 metabolism 0.7161 0.9959
path:ko00760 Nicotinate and nicotinamide metabolism 0.6599 0.9959
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path:ko00770 Pantothenate and CoA biosynthesis 0.8519 0.9959
path:ko00780 Biotin metabolism 0.3816 0.9959
path:ko00785 Lipoic acid metabolism 0.5897 0.9959
path:ko00790 Folate biosynthesis 0.9439 0.9959
path:ko00830 Retinol metabolism 0.2733 0.9959
path:ko00860 Porphyrin and chlorophyll metabolism 0.5649 0.9959
path:ko00900 Terpenoid backbone biosynthesis 0.8553 0.9959
path:ko00903 Limonene and pinene degradation 0.3724 0.9959
path:ko00910 Nitrogen metabolism 0.5185 0.9959
path:ko00920 Sulfur metabolism 0.7031 0.9959
path:ko00940 Phenylpropanoid biosynthesis 0.0144 0.5924
path:ko00945 Stilbenoid, diarylheptanoid and gingerol biosynthesis 0.2568 0.9959
path:ko00950 Isoquinoline alkaloid biosynthesis 0.9072 0.9959
path:ko00960 Tropane, piperidine and pyridine alkaloid biosynthesis 0.9620 0.9959
path:ko00970 Aminoacyl-tRNA biosynthesis 0.9959 0.9959
path:ko00980 Metabolism of xenobiotics by cytochrome P450 0.3816 0.9959
path:ko00982 Drug metabolism - cytochrome P450 0.1803 0.9959
path:ko00983 Drug metabolism - other enzymes 0.9885 0.9959
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path:ko01040 Biosynthesis of unsaturated fatty acids 0.9885 0.9959
path:ko01053 Biosynthesis of siderophore group nonribosomal peptides 0.5897 0.9959
path:ko02010 ABC transporters 0.9946 0.9959
path:ko02020 Two-component system 0.7192 0.9959
path:ko02030 Bacterial chemotaxis 0.9477 0.9959
path:ko02040 Flagellar assembly 0.9435 0.9959
path:ko02060 Phosphotransferase system (PTS) 0.8519 0.9959
path:ko03008 Ribosome biogenesis in eukaryotes 0.9284 0.9959
path:ko03010 Ribosome 0.8266 0.9959
path:ko03013 RNA transport 0.4231 0.9959
path:ko03015 mRNA surveillance pathway 0.5660 0.9959
path:ko03018 RNA degradation 0.4001 0.9959
path:ko03020 RNA polymerase 0.4524 0.9959
path:ko03022 Basal transcription factors 0.7735 0.9959
path:ko03030 DNA replication 0.0648 0.8572
path:ko03040 Spliceosome 0.8331 0.9959
path:ko03050 Proteasome 0.8089 0.9959
path:ko03060 Protein export 0.8276 0.9959
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path:ko03070 Bacterial secretion system 0.8610 0.9959
path:ko03410 Base excision repair 0.5624 0.9959
path:ko03420 Nucleotide excision repair 0.4524 0.9959
path:ko03430 Mismatch repair 0.6084 0.9959
path:ko03440 Homologous recombination 0.3273 0.9959
path:ko03450 Non-homologous end-joining 0.5897 0.9959
path:ko03460 Fanconi anemia pathway 0.0659 0.8572
path:ko04010 MAPK signalling pathway 0.1805 0.9959
path:ko04011 MAPK signalling pathway - yeast 0.0412 0.8445
path:ko04012 ErbB signalling pathway 0.1237 0.9959
path:ko04020 Calcium signalling pathway 0.5086 0.9959
path:ko04060 Cytokine-cytokine receptor interaction 0.1639 0.9959
path:ko04070 Phosphatidylinositol signalling system 0.4185 0.9959
path:ko04080 Neuroactive ligand-receptor interaction 0.5897 0.9959
path:ko04110 Cell cycle 0.6881 0.9959
path:ko04111 Cell cycle - yeast 0.9089 0.9959
path:ko04112 Cell cycle - Caulobacter 0.9658 0.9959
path:ko04113 Meiosis - yeast 0.6306 0.9959
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path:ko04114 Oocyte meiosis 0.9734 0.9959
path:ko04120 Ubiquitin mediated proteolysis 0.7825 0.9959
path:ko04122 Sulfur relay system 0.2786 0.9959
path:ko04130 SNARE interactions in vesicular transport 0.5897 0.9959
path:ko04140 Regulation of autophagy 0.2733 0.9959
path:ko04141 Protein processing in endoplasmic reticulum 0.9301 0.9959
path:ko04142 Lysosome 0.5633 0.9959
path:ko04144 Endocytosis 0.0336 0.8445
path:ko04145 Phagosome 0.7591 0.9959
path:ko04146 Peroxisome 0.3887 0.9959
path:ko04150 mTOR signalling pathway 0.9311 0.9959
path:ko04210 Apoptosis 0.6500 0.9959
path:ko04310 Wnt signalling pathway 0.7775 0.9959
path:ko04330 Notch signalling pathway 0.7735 0.9959
path:ko04370 VEGF signalling pathway 0.8171 0.9959
path:ko04510 Focal adhesion 0.6052 0.9959
path:ko04512 ECM-receptor interaction 0.7735 0.9959
path:ko04520 Adherens junction 0.9718 0.9959

continued on next page

148



Table B.3 – continued from previous page

pathway KO ID pathway name Fisher’s p-value pcorr

path:ko04530 Tight junction 0.9914 0.9959
path:ko04540 Gap junction 0.8171 0.9959
path:ko04630 Jak-STAT signalling pathway 0.5897 0.9959
path:ko04810 Regulation of actin cytoskeleton 0.5086 0.9959
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Figure C.1: Gene expression levels of all methane metabolism genes that were detected in
our dataset. The letters next to the gene name indicate the treatment (M = High metals,
E = Enrichment) that has significantly affected the expression of that gene, whereas M+E
means that both metal contaminants and organic enrichment had a significant effect and
MxE indicates that there was a significant interaction between the treatments. An asterisk
(*) next to the treatment letter indicates that the p-value was still significant (at an α
level of 0.1) after false discovery rate (FDR) correction.
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Figure C.2: Gene expression levels of all genes involved with CO and CO2 production that
were detected in our dataset. The letters next to the gene name indicate the treatment
(M = High metals, E = Enrichment) that has significantly affected the expression of that
gene, whereas M+E means that both metal contaminants and organic enrichment had a
significant effect and MxE indicates that there was a significant interaction between the
treatments. An asterisk (*) next to the treatment letter indicates that the p-value was
still significant (at an α level of 0.1) after false discovery rate (FDR) correction.
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Table C.1: ANOVA results and false discovery rate (FDR) corrected p-values (padj) for all treatments and genes from the (a) nitrogen, (b) sulphur, (c)
methane and (d) carbon metabolisms. Significant values are highlighted in bold. Significance values are based on an α value of 0.05.

Gene Treatment Df Sum Sq Mean Sq F value Pr(>F) padj

(a) nifD metals 1 0.3670 0.3670 0.0930 0.7692 0.8876
enriched 1 35.5090 35.5090 8.9939 0.0200 0.0691

metals*enriched 1 0.2230 0.2230 0.0564 0.8191 0.9535
nifH metals 1 3.2484 3.2484 1.1254 0.3240 0.6234

enriched 1 13.6609 13.6609 4.7326 0.0661 0.1699
metals*enriched 1 0.3227 0.3227 0.1118 0.7479 0.9535

nifK metals 1 0.2460 0.2460 0.0395 0.8481 0.9250
enriched 1 14.8770 14.8770 2.3890 0.1661 0.3398

metals*enriched 1 0.3720 0.3717 0.0597 0.8140 0.9535
CPS1 metals 1 9.8467 9.8467 9.0612 0.0197 0.3339

enriched 1 1.5607 1.5607 1.4362 0.2698 0.4390
metals*enriched 1 0.2322 0.2322 0.2137 0.6580 0.9535

pmoB-amoB metals 1 10.5681 10.5681 8.9496 0.0202 0.3339
enriched 1 8.1213 8.1213 6.8776 0.0343 0.0995

metals*enriched 1 0.0099 0.0099 0.0084 0.9296 0.9956
pmoC-amoC metals 1 4.4703 4.4703 6.3741 0.0395 0.3339
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enriched 1 28.3140 28.3140 40.3719 0.0004 0.0058
metals*enriched 1 3.2278 3.2278 4.6025 0.0691 0.9147

hcp metals 1 0.4338 0.4338 1.7739 0.2246 0.5708
enriched 1 3.4288 3.4288 14.0228 0.0072 0.0406

metals*enriched 1 0.1436 0.1436 0.5872 0.4685 0.9159
hao metals 1 2.0892 2.0892 3.4307 0.1064 0.5132

enriched 1 1.2827 1.2827 2.1063 0.1900 0.3565
metals*enriched 1 0.5026 0.5026 0.8252 0.3939 0.9159

narG metals 1 0.4434 0.4434 0.6563 0.4445 0.7019
enriched 1 6.3127 6.3127 9.3444 0.0184 0.0691

metals*enriched 1 0.0440 0.0440 0.0652 0.8058 0.9535
narH metals 1 0.8108 0.8108 2.6252 0.1492 0.5708

enriched 1 0.0476 0.0476 0.1540 0.7064 0.7754
metals*enriched 1 0.0000 0.0000 0.0001 0.9940 0.9956

narI metals 1 0.4590 0.4590 2.0455 0.1957 0.5708
enriched 1 0.4865 0.4865 2.1681 0.1844 0.3565

metals*enriched 1 0.6772 0.6772 3.0178 0.1259 0.9147
napA metals 1 0.3542 0.3542 3.2582 0.1140 0.5132
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enriched 1 0.0301 0.0301 0.2765 0.6153 0.7286
metals*enriched 1 0.0060 0.0060 0.0556 0.8204 0.9535

napB metals 1 0.4743 0.4743 1.4393 0.2693 0.6059
enriched 1 0.1693 0.1693 0.5137 0.4968 0.6463

metals*enriched 1 0.5590 0.5590 1.6963 0.2340 0.9159
nasA metals 1 1.9308 1.9308 1.1175 0.3256 0.6234

enriched 1 2.6812 2.6812 1.5518 0.2529 0.4295
metals*enriched 1 0.5814 0.5814 0.3365 0.5800 0.9159

ncd2 metals 1 1.2445 1.2445 7.5894 0.0283 0.3339
enriched 1 1.2544 1.2544 7.6497 0.0279 0.0836

metals*enriched 1 0.0001 0.0001 0.0003 0.9857 0.9956
nirA metals 1 0.0314 0.0314 0.0198 0.8919 0.9250

enriched 1 0.0216 0.0216 0.0136 0.9104 0.9311
metals*enriched 1 1.0547 1.0547 0.6658 0.4414 0.9159

nirB metals 1 0.0443 0.0443 0.0266 0.8751 0.9250
enriched 1 1.6736 1.6736 1.0060 0.3493 0.5239

metals*enriched 1 0.1367 0.1367 0.0822 0.7827 0.9535
nrfA metals 1 0.6702 0.6702 4.1047 0.0824 0.4944
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enriched 1 0.4707 0.4707 2.8827 0.1333 0.3000
metals*enriched 1 0.5622 0.5622 3.4436 0.1059 0.9147

nrfC metals 1 0.2546 0.2546 3.2928 0.1125 0.5132
enriched 1 4.0713 4.0713 52.6479 0.0002 0.0038

metals*enriched 1 0.1947 0.1947 2.5179 0.1566 0.9147
nirK metals 1 0.0106 0.0106 0.0321 0.8628 0.9250

enriched 1 6.4459 6.4459 19.5288 0.0031 0.0199
metals*enriched 1 2.6731 2.6731 8.0984 0.0249 0.8793

norB metals 1 0.0646 0.0646 0.1619 0.6994 0.8487
enriched 1 0.0443 0.0443 0.1110 0.7488 0.8119

metals*enriched 1 0.5429 0.5429 1.3600 0.2817 0.9159
norC metals 1 0.0199 0.0199 0.0123 0.9149 0.9250

enriched 1 1.1432 1.1432 0.7041 0.4291 0.5942
metals*enriched 1 4.2577 4.2577 2.6224 0.1494 0.9147

nosZ metals 1 0.2364 0.2364 1.4419 0.2689 0.6059
enriched 1 4.9792 4.9792 30.3692 0.0009 0.0091

metals*enriched 1 0.0098 0.0098 0.0599 0.8136 0.9535

(b) CYC metals 1 0.0197 0.0197 0.0095 0.9250 0.9250
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enriched 1 0.4410 0.4410 0.2135 0.6581 0.7497
metals*enriched 1 3.1828 3.1828 1.5406 0.2545 0.9159

cysD metals 1 0.0230 0.0230 0.0586 0.8156 0.9250
enriched 1 0.0863 0.0863 0.2197 0.6535 0.7497

metals*enriched 1 0.6303 0.6303 1.6049 0.2457 0.9159
cysN metals 1 0.4427 0.4427 1.3169 0.2889 0.6190

enriched 1 0.3700 0.3700 1.1007 0.3290 0.5018
metals*enriched 1 0.2326 0.2326 0.6919 0.4330 0.9159

sat metals 1 0.1860 0.1860 1.0015 0.3503 0.6386
enriched 1 1.9518 1.9518 10.5112 0.0142 0.0640

metals*enriched 1 0.1011 0.1011 0.5443 0.4847 0.9159
PAPSS metals 1 2.8246 2.8246 1.9570 0.2045 0.5708

enriched 1 1.9959 1.9959 1.3828 0.2781 0.4390
metals*enriched 1 1.0745 1.0745 0.7445 0.4168 0.9159

cysC metals 1 0.5554 0.5554 2.3975 0.1655 0.5708
enriched 1 0.2011 0.2011 0.8682 0.3825 0.5464

metals*enriched 1 0.0230 0.0230 0.0992 0.7620 0.9535
cysNC metals 1 2.0216 2.0216 5.1515 0.0575 0.3981

continued on next page157



ChapterC.Appendix
-Chapter4

Table C.1 – continued from previous page

Gene Treatment Df Sum Sq Mean Sq F value Pr(>F) padj

enriched 1 0.3528 0.3528 0.8990 0.3746 0.5438
metals*enriched 1 0.0017 0.0017 0.0044 0.9488 0.9956

BPNT1 metals 1 0.7920 0.7920 0.4274 0.5341 0.7396
enriched 1 0.0143 0.0143 0.0077 0.9324 0.9429

metals*enriched 1 0.0741 0.0741 0.0400 0.8472 0.9535
aprA metals 1 0.5227 0.5227 1.6535 0.2394 0.5818

enriched 1 3.1713 3.1713 10.0313 0.0158 0.0645
metals*enriched 1 0.0309 0.0309 0.0978 0.7636 0.9535

aprB metals 1 0.4526 0.4526 1.9197 0.2084 0.5708
enriched 1 1.8721 1.8721 7.9406 0.0259 0.0824

metals*enriched 1 0.0472 0.0472 0.2000 0.6683 0.9535
cysH metals 1 1.3401 1.3401 1.1946 0.3106 0.6212

enriched 1 0.4735 0.4735 0.4220 0.5367 0.6557
metals*enriched 1 0.8194 0.8194 0.7304 0.4210 0.9159

ssuD metals 1 0.4320 0.4320 0.6039 0.4626 0.7099
enriched 1 4.0626 4.0626 5.6786 0.0487 0.1288

metals*enriched 1 4.5892 4.5892 6.4146 0.0391 0.8793
E1.8.2.1 metals 1 7.8298 7.8298 21.2873 0.0024 0.2200
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enriched 1 4.3106 4.3106 11.7194 0.0111 0.0540
metals*enriched 1 3.4485 3.4485 9.3755 0.0183 0.8793

SUOX metals 1 0.5898 0.5898 0.4645 0.5175 0.7396
enriched 1 4.9303 4.9303 3.8822 0.0895 0.2118

metals*enriched 1 0.7132 0.7132 0.5616 0.4780 0.9159
TST metals 1 0.5475 0.5475 0.4100 0.5424 0.7396

enriched 1 0.2420 0.2420 0.1813 0.6831 0.7685
metals*enriched 1 2.0097 2.0097 1.5050 0.2596 0.9159

dsrA metals 1 0.0866 0.0866 0.7420 0.4176 0.6746
enriched 1 3.3245 3.3245 28.4777 0.0011 0.0091

metals*enriched 1 0.3433 0.3433 2.9406 0.1301 0.9147
dsrB metals 1 0.0282 0.0282 0.1672 0.6949 0.8487

enriched 1 3.2883 3.2883 19.4908 0.0031 0.0199
metals*enriched 1 0.0810 0.0810 0.4804 0.5106 0.9159

cysI metals 1 9.2576 9.2576 3.8576 0.0903 0.5078
enriched 1 1.0374 1.0374 0.4323 0.5319 0.6557

metals*enriched 1 0.0068 0.0068 0.0029 0.9589 0.9956
sir metals 1 0.5915 0.5915 2.4968 0.1581 0.5708

continued on next page159



ChapterC.Appendix
-Chapter4

Table C.1 – continued from previous page

Gene Treatment Df Sum Sq Mean Sq F value Pr(>F) padj

enriched 1 16.0989 16.0989 67.9569 7.5200 · 10−5 0.0023
metals*enriched 1 0.1060 0.1060 0.4474 0.5250 0.9159

asrC metals 1 0.8372 0.8372 1.8026 0.2213 0.5708
enriched 1 0.0159 0.0159 0.0342 0.8585 0.8985

metals*enriched 1 0.0592 0.0592 0.1275 0.7315 0.9535
phsA metals 1 0.0497 0.0497 0.1429 0.7167 0.8487

enriched 1 3.2273 3.2273 9.2707 0.0187 0.0691
metals*enriched 1 0.0241 0.0241 0.0691 0.8002 0.9535

phsC metals 1 0.0811 0.0811 0.4167 0.5392 0.7396
enriched 1 5.5397 5.5397 28.4678 0.0011 0.0091

metals*enriched 1 0.2502 0.2502 1.2860 0.2941 0.9159

(c) pmoB-amoB metals 1 10.5681 10.5680 8.9496 0.0202 0.3339
enriched 1 8.1213 8.1213 6.8776 0.0343 0.0995

metals*enriched 1 0.0099 0.0099 0.0084 0.9300 0.9956
pmoC-amoC metals 1 4.4703 4.4703 6.3741 0.0395 0.3339

enriched 1 28.3140 28.3140 40.3719 0.0004 0.0058
metals*enriched 1 3.2278 3.2278 4.6025 0.0691 0.9147

mdh1 metals 1 0.2101 0.2101 0.1705 0.6920 0.8487
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enriched 1 0.0065 0.0065 0.0053 0.9440 0.9440
metals*enriched 1 1.5164 1.5164 1.2307 0.3039 0.9159

mtaB metals 1 0.4145 0.4145 1.7427 0.2283 0.5708
enriched 1 1.0281 1.0281 4.3225 0.0762 0.1903

metals*enriched 1 0.2925 0.2925 1.2297 0.3041 0.9159
mtaC metals 1 3.5048 3.5048 9.9168 0.0162 0.3339

enriched 1 0.0991 0.0991 0.2803 0.6129 0.7286
metals*enriched 1 0.8197 0.8197 2.3193 0.1716 0.9147

mcrB metals 1 6.0844 6.0844 7.8687 0.0263 0.3339
enriched 1 2.8683 2.8683 3.7095 0.0955 0.2203

metals*enriched 1 0.3822 0.3822 0.4943 0.5047 0.9159
hdrA metals 1 0.5227 0.5227 6.2259 0.0413 0.3339

enriched 1 2.6791 2.6791 31.9113 0.0008 0.0091
metals*enriched 1 0.0506 0.0506 0.6026 0.4630 0.9159

hdrB metals 1 0.2516 0.2516 1.2250 0.3050 0.6212
enriched 1 0.5710 0.5710 2.7800 0.1394 0.3060

metals*enriched 1 0.0238 0.0238 0.1158 0.7436 0.9535
hdrC metals 1 0.0282 0.0282 0.1231 0.7360 0.8603
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Gene Treatment Df Sum Sq Mean Sq F value Pr(>F) padj

enriched 1 0.0502 0.0502 0.2194 0.6537 0.7497
metals*enriched 1 0.1582 0.1582 0.6908 0.4333 0.9159

(d) GLDC metals 1 0.0550 0.0550 0.8279 0.3931 0.6746
enriched 1 0.8065 0.8065 12.1313 0.0102 0.0540

metals*enriched 1 0.0959 0.0959 1.4425 0.2688 0.9159
gcvPA metals 1 0.0768 0.0768 0.5665 0.4762 0.7143

enriched 1 0.0659 0.0659 0.4860 0.5082 0.6463
metals*enriched 1 0.1431 0.1431 1.0551 0.3385 0.9159

gcvPB metals 1 0.3236 0.3236 15.0614 0.0060 0.2721
enriched 1 0.0007 0.0007 0.0338 0.8593 0.8985

metals*enriched 1 0.0666 0.0666 3.0973 0.1218 0.9147
gcvT metals 1 0.1003 0.1003 1.3265 0.2872 0.6190

enriched 1 0.1065 0.1065 1.4080 0.2741 0.4390
metals*enriched 1 0.0071 0.0071 0.0940 0.7681 0.9535

CPS1 metals 1 9.8467 9.8467 9.0612 0.0197 0.3339
enriched 1 1.5607 1.5607 1.4362 0.2698 0.4390

metals*enriched 1 0.2322 0.2322 0.2137 0.6579 0.9535
arcC metals 1 0.0703 0.0703 0.2552 0.6289 0.8204
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Gene Treatment Df Sum Sq Mean Sq F value Pr(>F) padj

enriched 1 0.5362 0.5362 1.9456 0.2057 0.3630
metals*enriched 1 0.0141 0.0141 0.0511 0.8276 0.9535

pckA metals 1 0.1499 0.1499 1.8999 0.2105 0.5708
enriched 1 0.2098 0.2098 2.6590 0.1470 0.3150

metals*enriched 1 0.0075 0.0075 0.0949 0.7670 0.9535
ppc metals 1 0.4942 0.4941 0.7662 0.4104 0.6746

enriched 1 0.0190 0.0190 0.0295 0.8685 0.8985
metals*enriched 1 0.0505 0.0505 0.0783 0.7877 0.9535

maeA metals 1 0.1073 0.1073 1.6056 0.2456 0.5818
enriched 1 0.2839 0.2839 4.2486 0.0782 0.1903

metals*enriched 1 0.4633 0.4633 6.9341 0.0338 0.8793
E1.1.1.39 metals 1 3.1870 3.1870 2.1482 0.1862 0.5708

enriched 1 0.6184 0.6184 0.4168 0.5391 0.6557
metals*enriched 1 0.5089 0.5089 0.3430 0.5765 0.9159

maeB metals 1 0.0899 0.0899 2.3890 0.1661 0.5708
enriched 1 0.0211 0.0211 0.5599 0.4787 0.6360

metals*enriched 1 0.0387 0.0387 1.0287 0.3442 0.9159
porA metals 1 0.1153 0.1153 0.9016 0.3740 0.6599
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Gene Treatment Df Sum Sq Mean Sq F value Pr(>F) padj

enriched 1 9.3539 9.3539 73.1306 5.9400 · 10−5 0.0023
metals*enriched 1 0.3927 0.3927 3.0700 0.1232 0.9147

porB metals 1 0.0173 0.0173 0.1499 0.7101 0.8487
enriched 1 8.2245 8.2245 71.3823 6.4200 · 10−5 0.0023

metals*enriched 1 0.0426 0.0426 0.3697 0.5624 0.9159
porD metals 1 0.0056 0.0056 0.0102 0.9223 0.9250

enriched 1 8.2712 8.2712 15.0641 0.0060 0.0363
metals*enriched 1 0.1126 0.1126 0.2051 0.6644 0.9535

porG metals 1 0.0947 0.0947 0.3523 0.5715 0.7677
enriched 1 13.0294 13.0290 48.4916 0.0002 0.0039

metals*enriched 1 0.4145 0.4145 1.5426 0.2542 0.9159
nifJ metals 1 0.2031 0.2031 2.4300 0.1630 0.5708

enriched 1 0.7655 0.7655 9.1565 0.0192 0.0691
metals*enriched 1 0.2416 0.2416 2.8897 0.1330 0.9147

IDH1 metals 1 0.0027 0.0027 0.0463 0.8358 0.9250
enriched 1 1.2955 1.2955 22.6660 0.0021 0.0154

metals*enriched 1 0.0020 0.0020 0.0353 0.8563 0.9535
IDH3 metals 1 0.1229 0.1229 0.2771 0.6149 0.8138
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enriched 1 0.2462 0.2462 0.5550 0.4806 0.6360
metals*enriched 1 0.4523 0.4523 1.0196 0.3462 0.9159

PGD metals 1 0.0325 0.0325 0.1543 0.7062 0.8487
enriched 1 0.1016 0.1016 0.4820 0.5099 0.6463

metals*enriched 1 0.1602 0.1602 0.7601 0.4122 0.9159
rbcS metals 1 0.1304 0.1304 0.5959 0.4654 0.7099

enriched 1 0.0342 0.0342 0.1564 0.7042 0.7754
metals*enriched 1 0.1186 0.1186 0.5421 0.4855 0.9159

rbcL metals 1 0.4624 0.4624 1.0834 0.3325 0.6235
enriched 1 0.8634 0.8634 2.0232 0.1979 0.3565

metals*enriched 1 0.0055 0.0055 0.0130 0.9125 0.9956
fmdA metals 1 0.4533 0.4533 0.4438 0.5266 0.7396

enriched 1 0.8622 0.8622 0.8440 0.3888 0.5468
metals*enriched 1 3.8825 3.8825 3.8009 0.0922 0.9147

fmdB metals 1 4.4829 4.4829 2.2754 0.1752 0.5708
enriched 1 0.1027 0.1027 0.0521 0.8259 0.8849

metals*enriched 1 0.7924 0.7924 0.4022 0.5461 0.9159
fmdC metals 1 0.0535 0.0535 0.0265 0.8752 0.9250
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Gene Treatment Df Sum Sq Mean Sq F value Pr(>F) padj

enriched 1 1.1598 1.1598 0.5752 0.4730 0.6360
metals*enriched 1 0.0001 0.0001 0 0.9956 0.9956

fmdF metals 1 2.5808 2.5808 5.9713 0.0445 0.3339
enriched 1 5.0031 5.0031 11.5757 0.0114 0.0540

metals*enriched 1 0.0738 0.0738 0.1707 0.6919 0.9535
fmdE metals 1 1.2410 1.2410 0.7438 0.4170 0.6746

enriched 1 3.4018 3.4018 2.0390 0.1964 0.3565
metals*enriched 1 0.7274 0.7274 0.4360 0.5302 0.9159

FDH metals 1 0.4992 0.4992 1.7658 0.2256 0.5708
enriched 1 0.2714 0.2714 0.9599 0.3598 0.5309

metals*enriched 1 0.2278 0.2278 0.8058 0.3992 0.9159
fdoG metals 1 0.0204 0.0204 0.9817 0.3548 0.6386

enriched 1 0.0310 0.0310 1.4940 0.2611 0.4352
metals*enriched 1 0.0007 0.0007 0.0344 0.8582 0.9535

fdoH metals 1 0.2605 0.2605 0.7346 0.4198 0.6746
enriched 1 0.6616 0.6616 1.8662 0.2142 0.3707

metals*enriched 1 0.0001 0.0001 0.0003 0.9856 0.9956
fdoI metals 1 0.0048 0.0048 0.0116 0.9173 0.9250
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enriched 1 1.0706 1.0706 2.5755 0.1526 0.3193
metals*enriched 1 0.1760 0.1760 0.4234 0.5360 0.9159

cooS metals 1 0.1689 0.1689 1.2051 0.3086 0.6212
enriched 1 0.8104 0.8104 5.7806 0.0472 0.1286

metals*enriched 1 0.2737 0.2737 1.9525 0.2050 0.9159
coxS metals 1 0.0575 0.0575 0.4432 0.5269 0.7396

enriched 1 1.0163 1.0163 7.8354 0.0266 0.0824
metals*enriched 1 0.6235 0.6235 4.8073 0.0644 0.9147

coxM metals 1 0.0386 0.0386 0.0171 0.8998 0.9250
enriched 1 14.7739 14.7739 6.5219 0.0379 0.1066

metals*enriched 1 1.9686 1.9686 0.8691 0.3822 0.9159
coxL metals 1 4.7503 4.7503 3.4552 0.1054 0.5132

enriched 1 12.0840 12.0840 8.7896 0.0210 0.0699
metals*enriched 1 0.5787 0.5787 0.4209 0.5371 0.9159

cdhA metals 1 0.4341 0.4341 0.2071 0.6629 0.8487
enriched 1 4.5260 4.5260 2.1590 0.1852 0.3565

metals*enriched 1 0.0192 0.0192 0.0092 0.9264 0.9956
acsB metals 1 0.4727 0.4727 1.8331 0.2178 0.5708
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enriched 1 0.2967 0.2967 1.1504 0.3190 0.4951
metals*enriched 1 0.0224 0.0224 0.0867 0.7769 0.9535

cdhD metals 1 0.5199 0.5199 6.5056 0.0381 0.3339
enriched 1 2.2518 2.2518 28.1800 0.0011 0.0091

metals*enriched 1 0.1842 0.1842 2.3046 0.1728 0.9147
cdhE metals 1 0.8269 0.8269 4.1577 0.0808 0.4944

enriched 1 1.9964 1.9964 10.0383 0.0157 0.0645
metals*enriched 1 0.1358 0.1358 0.6831 0.4358 0.9159

cdhC metals 1 4.7241 4.7241 6.1730 0.0419 0.3339
enriched 1 1.5471 1.5471 2.0217 0.1981 0.3565

metals*enriched 1 0.2603 0.2603 0.3402 0.5780 0.9159
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Table C.2: Mass balance calculations. Benthic Community Respiration (BCR) represents the dissolved oxygen (DO) fluxes out of the sediment under dark
conditions. C:N ratios are calculated as the mean total organic carbon (TOC) to total nitrogen (TN) ratio in non-enriched (C, M) and enriched (E, ME)
treatments, respectively. Pot(N) represents the potential number of N molecules produced in a certain sample and is calculated as BCR/C:N, assuming a
1:1 conversion ratio of C and N. NH3/NH+

4 stands for ammonia/ammonium and NOx stands for nitrogen oxides (nitrite (NO−
2 ) and nitrate (NO−

3 )). DIN
(Dissolved Inorganic Nitrogen) fluxes are defined as dark NH3/NH+

4 + dark NOx. pot(N gas) represents the potential number of N gas molecules produced
and is calculated as pot(N) – dark DIN. The proportion of total N molecules theoretically produced in gaseous form, prop(N gas), is calculated as mean
pot(N gas) / mean pot(N). † highlights the control sample which was excluded from the mass balance calculations due to greatly different flux values than
other samples. These different values suggest that an error was committed during sampling or measurement of the gas content in the water sample. *
highlights the sample which was identified as an outlier in the genetic data and therefore excluded from further analyses. C stands for control treatment, E
stands for high organically enriched, M for high metal contamination and ME for high metal contamination with high organic enrichment.

sample C:N BCR pot(N) dark NH3/NH4+ dark NOx dark DIN pot(N gas) mean pot(N) mean pot(N gas) prop(N gas)
C1 13.6 -3180 240 190 -20 170 70
C2 13.6 -1840 140 100 -10 90 50
C3† 13.6 -2620 190 130 70 200 -10
M1 13.6 -3230 240 120 -10 110 130 180 45 0.25

M2 13.6 -2040 150 90 20 110 40
M3 13.6 -1860 140 170 -20 150 -10
E1 15.5 -2040 130 210 -30 180 -50
E2 15.5 -2440 160 100 -30 70 90
E3 15.5 -3170 200 100 -30 70 130

ME1 15.5 -2240 140 140 -30 110 30 160 40 0.25

ME2* 15.5 -1920 120 150 -30 120 0
ME3 15.5 -3030 200 180 -10 170 30
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Table C.3: Average of total measured metals and nutrients per treatment at the beginning (T0) and end (T1) of the field experiment. Metals and nutrients
were measured in mg/kg sediment dry weight. TP stands for Total Phosphorous, TN for Total Nitrogen and TOC for Total Organic Carbon. C stands for
control treatment, E stands for organically enriched, M for high metal contamination and ME for high metal contamination with organic enrichment.

T0 T1
C E M ME C E M ME

Metals Al 2650 2600 4200 3700 2000 2750 3300 3600
As 5.9 7.1 14.8 11.8 5.4 5.3 10.9 11.4
Ba 2.5 6.6 10.4 13.2 6.7 7.3 11.4 12.8
Cd <1 <1 <1 <1 0.1 0.4 0.5 0.5
Co 4.2 4.8 4.9 5.2 3.6 3.1 3.7 5.3
Cr 10.5 11.3 28.0 24.1 10.0 14.3 23.2 25.4
Cu 14.3 22.2 273.3 209.2 30.6 40.4 211.8 176.6
Fe 10 000 9750 13 666.7 11 333.3 7750 13 000 11 050 13 600
Mn 140.0 177.1 177.6 171.4 94.6 90.3 130.6 134.1
Ni 4.4 4.7 6.5 5.4 4.1 5.6 6.2 6.4
Pb 58.9 58.7 355.8 264.6 71.7 93.7 289.0 266.7
S 2150 3100 2366.7 2566.7 1350 1900 1450 1600
Sn <2 <2 52.0 41.3 2.6 2.8 43.0 53.4
V 19.3 19.2 34.1 27.9 17.5 27.9 30.4 35.0
Zn 183.1 209.6 565.3 479.3 159.4 231.6 460.8 477.3

Nutrients TP 385 995 560 1180 290 590 445 740
TN 1100 2000 1150 2550 1005 1055 1250 1050

TOC 14 000 16 500 18 500 26 000 14 000 15 000 17 000 21 500
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Table C.4: Dissolved Oxygen (DO) and nutrient fluxes out of the sediment into the overlying water column. Benthic Community Respiration (BCR)
represents the DO fluxes under dark conditions, while Net Primary Productivity (NPP) represents the DO fluxes under light conditions. Gross Primary
Productivity (GPP) is calculated as NPP-BCR. Net nutrient fluxes are calculated as the mean of light and dark fluxes. NH3/NH+

4 stands for ammonia/am-
monium, NOx stands for nitrate (NO−

3 ) and nitrite (NO−
2 ), DON stands for Dissolved Organic Nitrogen and TDN for Total Dissolved Nitrogen (includes

organic and inorganic N fluxes). * highlights the sample which was identified as an outlier in the genetic data and therefore excluded from further analyses.
C stands for control samples, E for organically enriched, M for high metal contaminated and ME for high metals and enriched samples. The numbers stand
for the replicate number.

DO FLUXES DARK FLUXES LIGHT FLUXES NET FLUXES
Sample NPP BCR GPP NH3/NH+

4 NOx DON TDN NH3/NH+
4 NOx DON TDN NH3/NH+

4 NOx DON TDN
C1 -3230 -3180 -50 190 -20 120 280 180 -10 90 270 180 -10 110 280
C2 -1860 -1840 -20 100 -10 60 150 100 -10 90 250 100 -10 70 200
C3 -2420 -2616 196 130 70 -40 160 130 10 60 200 130 40 10 180
E1 -2560 -2030 -530 210 -30 90 270 160 -20 40 170 180 -30 70 220
E2 -2620 -2440 -180 100 -30 60 120 70 -30 50 130 80 -30 50 130
E3 -2490 -3170 680 100 -30 40 110 50 -80 80 60 70 -50 60 80
M1 -2220 -3230 1010 120 -10 40 160 80 0 40 110 100 0 40 140
M2 -1660 -2040 380 90 20 80 180 60 20 60 190 70 20 70 190
M3 -1580 -1850 270 170 -20 130 280 120 -10 100 210 150 -20 110 240

ME1 -2240 -2230 -10 140 -30 80 200 150 -30 60 190 150 -30 70 190
ME2* -1780 -1920 140 150 -30 40 160 60 -10 110 160 100 -20 70 160
ME3 -2210 -3030 820 180 -10 80 250 150 -20 170 410 160 -10 120 330
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Table C.5: ANOVA results for flux data. DO stands for dissolved oxygen, NOx for nitrogen oxides (nitrite and nitrate), NH3/NH+
4 for ammonia/ammonium,

TDN for total dissolved nitrogen and DON for dissolved organic nitrogen. BCR stands for benthic community respiration (DO fluxes in the dark), NPP for
net primary productivity (DO fluxes in light), NEM for net ecosystem metabolism (average of BCR and NPP) and GPP for gross primary productivity (NPP
- BCR). Net flux for nutrients was calculated as the average of light and dark fluxes. Significant p-values are highlighted in bold.

Flux type Treatment Df Sum Sq Mean Sq F value Pr(>F)

DO BCR metals 1 79197 79197 0.1898 0.6746
enriched 1 530 530 0.0013 0.9724

metals*enriched 1 236 236 0.0006 0.9816
NPP metals 1 1018016 1018016 6.1261 0.0384

enriched 1 70059 70059 0.4216 0.5343
metals*enriched 1 32146 32146 0.1934 0.6717

NEM metals 1 416274 416274 1.7021 0.2283
enriched 1 20695 20695 0.0846 0.7785

metals*enriched 1 9474 9474 0.0387 0.8489
GPP metals 1 529327 529327 2.804 0.1326

enriched 1 58398 58398 0.3093 0.5933
metals*enriched 1 26870 26870 0.1423 0.7158

NOx dark metals 1 75.3 75.32 0.1027 0.7568
enriched 1 2801.9 2801.86 3.8211 0.0864

metals*enriched 1 372.7 372.66 0.5082 0.4962
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Flux type Treatment Df Sum Sq Mean Sq F value Pr(>F)

light metals 1 639.57 639.57 2.0773 0.1875
enriched 1 2544.49 2544.49 8.2645 0.0207

metals*enriched 1 223.05 223.05 0.7245 0.41942
net metals 1 68.98 68.98 0.1999 0.66664

enriched 1 2671.64 2671.64 7.7425 0.0238
metals*enriched 1 293.1 293.1 0.8494 0.3837

NH3/NH+
4 dark metals 1 112.6 112.58 0.0553 0.82

enriched 1 435 434.95 0.2137 0.6562
metals*enriched 1 1021.3 1021.27 0.5019 0.4988

light metals 1 572.3 572.3 0.267 0.6193
enriched 1 92.8 92.8 0.0433 0.8403

metals*enriched 1 4829.3 4829.3 2.2534 0.1717
net metals 1 44.3 44.3 0.0229 0.8835

enriched 1 31.5 31.47 0.0163 0.9017
metals*enriched 1 2573 2573.04 1.33 0.2821

TDN dark metals 1 1438 1438.1 0.2878 0.6062
enriched 1 1040 1040.2 0.2082 0.6603
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Flux type Treatment Df Sum Sq Mean Sq F value Pr(>F)

metals*enriched 1 378 378.3 0.0757 0.7902
light metals 1 3141 3141.2 0.4772 0.5092

enriched 1 701 700.8 0.1065 0.7526
metals*enriched 1 30336 30335.6 4.6087 0.0641

net metals 1 2208 2207.5 0.4699 0.5124
enriched 1 862 862.2 0.1835 0.6797

metals*enriched 1 9372 9372.2 1.9951 0.1955

DON dark metals 1 1295.3 1295.32 0.5386 0.484
enriched 1 0 0.03 0 0.9972

metals*enriched 1 1012 1012.02 0.4208 0.5347
light metals 1 1322.5 1322.5 1.1791 0.3092

enriched 1 597.2 597.2 0.5325 0.4864
metals*enriched 1 3766.1 3766.1 3.3576 0.1043

net metals 1 1308.9 1308.9 1.1618 0.3125
enriched 1 147.2 147.19 0.1306 0.7271

metals*enriched 1 218.4 218.37 0.1938 0.6714
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Table D.1: Linear model results for all genes significant for distance only (after exclusion
of all interactions). The estimate is the estimated slope in the linear models. Positive
and negative estimates symbolise up- and down-regulation adjacent to stormwater drains,
respectively.

gene KO gene name p-value estimate SE

K00005 gldA 0.0348 −0.61 0.26
K00025 MDH1 0.0171 −0.92 0.34
K00027 maeA 0.0189 −0.47 0.18
K00029 maeB 0.0361 −0.34 0.15
K00100 E1.1.1.- 0.0404 0.38 0.17
K00108 CHDH 0.0208 −0.62 0.23
K00114 E1.1.2.8 0.0052 −1.02 0.31
K00117 gcd 0.0178 −0.69 0.25
K00119 E1.1.99.- 0.0490 −0.55 0.25
K00121 frmA 0.0003 −1.06 0.22
K00122 FDH 0.0212 −0.71 0.27
K00125 E1.2.1.2B2 0.0201 0.97 0.37
K00128 E1.2.1.3 0.0011 −0.55 0.13
K00140 mmsA 0.0002 −0.65 0.13
K00155 E1.2.1.- 0.0001 0.87 0.16
K00161 PDHA 0.0007 −0.50 0.12
K00162 PDHB 0.0146 −0.55 0.19
K00194 cdhD 0.0301 0.43 0.18
K00196 cooF 0.0295 −0.59 0.24
K00226 pyrD 0.0040 −0.31 0.08
K00234 SDHA 0.0157 −0.88 0.31
K00259 ald 0.0001 −0.62 0.12
K00260 gudB 0.0108 −0.73 0.25
K00265 gltB 0.0242 0.63 0.25
K00290 LYS1 0.0157 0.79 0.28
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gene KO gene name p-value estimate SE

K00303 soxB 0.0091 −0.89 0.29
K00315 DMGDH 0.0248 −0.62 0.24
K00319 mtd 0.0328 −0.58 0.24
K00323 NNT 0.0005 −0.76 0.17
K00326 E1.6.2.2 0.0440 −0.51 0.23
K00327 E1.6.2.4 0.0007 −0.79 0.18
K00359 E1.6.-.- 0.0213 0.55 0.21
K00364 guaC 0.0253 −0.56 0.22
K00376 nosZ 0.0005 −1.25 0.27
K00401 mcrB 0.0110 −0.71 0.24
K00425 cydA 0.0129 0.70 0.24
K00434 E1.11.1.11 0.0259 −0.77 0.31
K00457 HPD 0.0419 −0.65 0.29
K00477 PHYH 0.0420 −0.39 0.17
K00496 E1.14.15.3 0.0092 −0.52 0.17
K00500 phhA 0.0096 −0.71 0.23
K00507 SCD 0.0278 −0.56 0.23
K00574 cfa 0.0289 0.54 0.22
K00602 purH 0.0364 0.37 0.16
K00606 panB 0.0468 0.35 0.16
K00611 OTC 0.0060 −0.64 0.20
K00665 FASN 0.0016 −1.07 0.27
K00666 K00666 0.0008 −0.54 0.12
K00671 NMT 0.0296 −0.57 0.23
K00677 lpxA 0.0431 0.41 0.18
K00691 mapA 0.0063 0.84 0.25
K00710 GALNT 0.0380 −0.71 0.31
K00794 ribH 0.0028 0.43 0.12
K00827 AGXT2 0.0149 −0.63 0.22
K00859 coaE 0.0430 0.53 0.23
K00864 glpK 0.0237 −0.70 0.27
K00889 PIP5K 0.0440 −0.54 0.24
K00910 ADRBK 0.0426 −0.46 0.20
K00926 arcC 0.0450 −0.42 0.19
K00928 lysC 0.0121 0.50 0.17
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gene KO gene name p-value estimate SE

K00937 ppk 0.0304 −0.43 0.18
K00939 adk 0.0270 0.45 0.18
K00944 E2.7.4.10 0.0238 −0.81 0.32
K00946 thiL 0.0066 0.72 0.22
K00957 cysD 0.0227 −0.58 0.22
K01083 E3.1.3.8 0.0161 −0.95 0.34
K01092 suhB 0.0319 0.63 0.26
K01110 PTEN 0.0031 −0.86 0.24
K01115 PLD 0.0017 −0.68 0.17
K01130 aslA 0.0005 −0.60 0.13
K01183 E3.2.1.14 0.0001 −0.64 0.11
K01191 E3.2.1.24 0.0098 −0.86 0.28
K01193 sacA 0.0178 −0.79 0.29
K01236 E3.2.1.141 0.0295 0.61 0.25
K01273 DPEP1 0.0146 −0.69 0.25
K01277 DPP3 0.0011 0.90 0.21
K01279 TPP1 0 −1.03 0.17
K01280 TPP2 0.0453 −0.50 0.23
K01286 E3.4.16.4 0.0327 0.48 0.20
K01295 E3.4.17.11 0.0043 −0.81 0.24
K01379 CTSD 0.0367 −0.57 0.24
K01381 E3.4.23.25 0.0225 −0.55 0.21
K01419 clpQ 0.0364 0.48 0.20
K01426 amiE 0.0266 −0.36 0.14
K01434 E3.5.1.11 0.0320 −0.68 0.28
K01464 DPYS 0.0043 −0.71 0.21
K01537 E3.6.3.8 0.0079 −0.46 0.15
K01539 ATP1A 0.0017 −1.29 0.32
K01577 oxc 0.0361 −0.47 0.20
K01579 panD 0.0340 0.54 0.23
K01610 pckA 0.0056 −0.56 0.17
K01623 ALDO 0.0122 −0.90 0.31
K01627 kdsA 0.0096 0.50 0.17
K01630 garL 0.0150 −0.57 0.20
K01637 aceA 0.0343 −0.58 0.24
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K01647 CS 0.0026 −0.63 0.17
K01649 leuA 0.0121 0.30 0.10
K01693 hisB 0.0212 0.47 0.18
K01696 trpB 0.0334 0.35 0.15
K01698 hemB 0.0150 0.55 0.19
K01699 pduC 0.0036 −0.76 0.21
K01736 aroC 0.0266 0.32 0.13
K01738 cysK 0.0451 −0.47 0.21
K01739 metB 0.0081 −0.42 0.13
K01749 hemC 0.0084 0.60 0.19
K01778 dapF 0.0069 0.74 0.23
K01779 E5.1.1.13 0.0374 −0.61 0.26
K01805 xylA 0.0457 −0.47 0.21
K01838 pgmB 0.0107 −0.56 0.19
K01847 MUT 0.0481 −0.40 0.18
K01868 TARS 0.0397 0.40 0.17
K01876 DARS 0.0249 0.34 0.13
K01879 glyS 0.0011 0.72 0.17
K01881 PARS 0.0348 0.42 0.18
K01895 ACSS 0.0201 −0.20 0.08
K01933 purM 0.0332 0.38 0.16
K01934 E6.3.3.2 0.0051 0.64 0.19
K01935 bioD 0.0302 0.41 0.17
K01940 argG 0.0085 0.39 0.13
K01941 E6.3.4.6 0.0326 −0.55 0.23
K01945 purD 0.0008 0.49 0.11
K01952 purL 0.0262 0.26 0.10
K01953 asnB 0.0053 0.48 0.14
K01955 carB 0.0027 0.27 0.07
K01969 E6.4.1.4B 0.0482 −0.50 0.23
K01993 ABC-2.TX 0.0224 0.61 0.24
K01995 livG 0.0042 −0.52 0.15
K01997 livH 0.0417 −0.38 0.17
K01999 livK 0.0124 −0.40 0.14
K02009 cbiN 0.0238 1.20 0.47
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K02012 afuA 0.0129 −0.51 0.18
K02025 ABC.MS.P 0.0429 −0.68 0.30
K02026 ABC.MS.P1 0.0074 −0.72 0.22
K02027 ABC.MS.S 0.0242 −0.65 0.25
K02030 ABC.PA.S 0.0082 −0.44 0.14
K02031 ABC.PE.A 0.0063 −0.52 0.16
K02033 ABC.PE.P 0.0378 −0.43 0.18
K02034 ABC.PE.P1 0.0137 −0.61 0.21
K02054 ABC.SP.P1 0.0017 −0.79 0.20
K02055 ABC.SP.S 0.0057 −0.56 0.17
K02056 ABC.SS.A 0.0139 −0.63 0.22
K02057 ABC.SS.P 0.0209 −0.53 0.20
K02105 CTNNB1 0.0032 −1.01 0.28
K02210 MCM7 0.0057 −0.81 0.24
K02216 CHK1 0.0095 −0.48 0.16
K02274 coxA 0.0191 −0.80 0.29
K02401 flhB 0.0407 −0.53 0.23
K02426 sufE 0.0102 −0.58 0.19
K02428 rdgB 0.0010 0.72 0.17
K02440 GLPF 0.0175 −1.10 0.40
K02472 wecC 0.0109 0.85 0.29
K02510 hpaI 0.0065 −0.72 0.22
K02567 napA 0.0019 −0.97 0.25
K02573 napG 0.0285 −0.68 0.28
K02667 pilR 0.0082 0.49 0.16
K02775 PTS-Gat-EIIC 0.0032 −0.98 0.27
K02823 pyrDII 0.0359 0.57 0.25
K02868 RP-L11e 0.0153 −0.72 0.25
K02871 RP-L13 0.0278 0.43 0.17
K02873 RP-L13e 0.0127 −0.56 0.19
K02875 RP-L14e 0.0419 −0.62 0.28
K02878 RP-L16 0.0006 0.59 0.12
K02880 RP-L17e 0.0018 −1.04 0.26
K02881 RP-L18 0.0098 0.64 0.21
K02884 RP-L19 0.0111 0.54 0.18
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K02888 RP-L21 0.0099 0.81 0.27
K02891 RP-L22e 0.0415 −0.43 0.19
K02893 RP-L23Ae 0.0106 −1.01 0.34
K02898 RP-L26e 0.0491 −0.39 0.18
K02907 RP-L30 0.0010 0.69 0.16
K02918 RP-L35e 0.0092 −0.96 0.31
K02920 RP-L36e 0.0147 −0.69 0.24
K02923 RP-L38e 0.0036 −0.73 0.20
K02927 RP-L40e 0.0072 −0.90 0.28
K02930 RP-L4e 0.0007 −0.97 0.22
K02935 RP-L7 0.0427 0.39 0.18
K02937 RP-L7e 0.0396 −0.69 0.30
K02941 RP-LP0 0.0295 −0.82 0.33
K02945 RP-S1 0.0099 0.35 0.12
K02950 RP-S12 0.0249 0.35 0.14
K02953 RP-S13e 0.0034 −0.82 0.23
K02954 RP-S14 0.0386 0.54 0.23
K02958 RP-S15e 0.0003 −1.28 0.25
K02959 RP-S16 0.0341 0.30 0.13
K02960 RP-S16e 0.0174 −0.97 0.36
K02961 RP-S17 0.0209 0.51 0.19
K02971 RP-S21e 0.0469 −0.63 0.28
K02974 RP-S24e 0.0261 −0.46 0.18
K02986 RP-S4 0.0018 0.49 0.12
K02987 RP-S4e 0.0035 −1.22 0.34
K02990 RP-S6 0.0375 0.62 0.27
K02992 RP-S7 0.0011 0.61 0.15
K02997 RP-S9e 0.0094 −0.88 0.28
K03002 RPA2 0.0009 −0.74 0.16
K03006 RPB1 0.0326 −0.64 0.27
K03007 RPB10 0.0432 −0.41 0.18
K03010 RPB2 0.0201 −0.57 0.21
K03028 PSMD2 0.0173 −0.73 0.26
K03032 PSMD1 0.0024 −0.74 0.19
K03033 PSMD3 0.0142 −0.71 0.25
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K03047 rpoD 0.0095 0.66 0.22
K03086 rpoD 0.0244 0.30 0.12
K03106 SRP54 0.0320 0.30 0.12
K03110 ftsY 0.0271 0.36 0.15
K03118 tatC 0.0145 0.80 0.28
K03125 TAF1 0.0206 −0.53 0.20
K03178 UBE1 0.0243 −0.85 0.33
K03183 ubiE 0.0256 0.79 0.31
K03255 CLU1 0.0381 −0.62 0.27
K03267 ERF3 0.0160 −0.40 0.14
K03301 TC.AAA 0.0496 0.57 0.26
K03310 TC.AGCS 0.0033 −0.60 0.17
K03312 TC.ESS 0.0105 0.66 0.22
K03315 nhaC 0.0016 −0.69 0.17
K03319 TC.DASS 0.0456 −0.48 0.22
K03327 dinF 0.0091 0.65 0.21
K03379 E1.14.13.22 0.0098 −0.66 0.22
K03386 ahpC 0.0001 1.29 0.22
K03442 mscS 0.0104 0.55 0.18
K03520 coxL 0 −1.46 0.22
K03561 exbB 0.0098 0.41 0.14
K03564 DOT5 0.0028 0.47 0.13
K03583 recC 0.0301 0.54 0.22
K03608 minE 0.0312 0.45 0.19
K03609 minD 0.0218 0.56 0.21
K03621 plsX 0.0030 1.01 0.28
K03628 rho 0.0073 0.31 0.10
K03637 moaC 0.0078 0.33 0.11
K03641 tolB 0.0006 0.48 0.11
K03650 MSS1 0.0116 0.97 0.33
K03667 hslU 0.0061 0.48 0.15
K03684 rnd 0.0312 0.54 0.23
K03702 uvrB 0.0128 0.36 0.12
K03721 tyrR 0.0383 0.44 0.19
K03762 proP 0.0101 −0.52 0.17
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K03781 katE 0.0005 0.86 0.18
K03799 htpX 0.0142 0.60 0.21
K03806 ampD 0.0440 −0.54 0.24
K03821 phbC 0.0003 −0.97 0.20
K03885 ndh 0.0392 −0.58 0.25
K03929 pnbA 0.0085 0.99 0.32
K03941 NDUFS8 0.0040 −0.71 0.20
K03955 NDUFAB1 0.0453 −0.44 0.20
K03969 pspA 0.0354 −0.44 0.18
K03979 obg 0.0376 0.49 0.21
K04047 dps 0.0239 0.51 0.20
K04078 HSPE1 0.0137 0.59 0.21
K04080 ibpA 0.0008 0.68 0.16
K04102 E4.1.1.55 0.0337 −0.57 0.24
K04112 badD 0.0007 −0.93 0.21
K04114 badF 0.0141 0.71 0.25
K04345 PKA 0.0418 −0.69 0.30
K04348 PPP3C 0.0260 −0.64 0.25
K04353 RAP1A 0.0249 −0.57 0.22
K04361 EGFR 0.0381 −0.66 0.28
K04392 RAC1 0.0095 −0.93 0.30
K04412 STK3 0.0326 −0.53 0.22
K04413 MINK 0.0141 −0.60 0.21
K04437 FLNA 0.0013 −1.38 0.34
K04445 MSK 0.0175 −0.61 0.22
K04468 NLK 0 −0.85 0.12
K04498 EP300 0.0110 −0.83 0.28
K04523 UBQLN 0.0229 −0.45 0.17
K04536 GNB1 0.0063 −0.84 0.25
K04550 LRP1 0.0024 −0.72 0.19
K04630 GNAI 0.0290 −0.62 0.25
K04632 GNAS 0.0137 −0.60 0.21
K04646 CLTC 0.0065 −0.98 0.30
K04651 hybF 0.0289 −0.79 0.32
K04656 hypF 0.0073 −0.58 0.18
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K04688 RPS6KB 0.0284 −0.64 0.26
K04772 hhoA 0.0423 0.73 0.33
K04958 ITPR1 0.0064 −0.88 0.27
K04962 RYR2 0.0005 −1.60 0.34
K05290 PIGK 0.0181 −0.47 0.17
K05305 FUK 0.0096 −0.47 0.15
K05312 CHRNN 0 −1.16 0.10
K05351 E1.1.1.9 0.0197 −0.63 0.24
K05643 ABCA3 0.0327 −0.61 0.25
K05756 ARPC3 0.0082 −0.68 0.22
K05762 RDX 0.0424 −0.60 0.27
K05813 ugpB 0.0081 −0.81 0.26
K05849 SLC8A 0.0001 −1.17 0.20
K05850 ATP2B 0.0002 −1.48 0.29
K05853 ATP2A 0.0045 −1.37 0.40
K05857 PLCD 0.0023 −0.72 0.19
K05858 PLCB 0.0180 −0.53 0.20
K05879 dhaL 0.0304 −0.70 0.29
K05919 E1.15.1.2 0.0223 0.74 0.28
K06068 NPKC 0.0450 −0.40 0.18
K06071 PKN 0.0182 −0.57 0.21
K06114 SPTA 0.0067 −1.41 0.44
K06115 SPTB 0.0021 −1.55 0.40
K06178 rluB 0.0332 0.43 0.18
K06185 ABCF2 0.0244 −0.62 0.24
K06207 bipA 0.0500 0.59 0.27
K06215 pdxS 0.0384 0.28 0.12
K06233 LRP2 0.0061 −0.94 0.29
K06236 COL1AS 0.0178 −1.17 0.43
K06240 LAMA3 5 0.0178 −0.81 0.30
K06252 TN 0.0004 −0.99 0.21
K06269 PPP1C 0.0082 −1.09 0.35
K06271 TLN 0.0057 −0.85 0.25
K06282 E1.12.99.6S 0.0005 −0.69 0.15
K06445 fadE 0.0005 −0.65 0.14
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K06525 ITGB4 0.0001 −0.97 0.17
K06639 CDC14 0.0479 −0.52 0.24
K06674 SMC2 0.0028 −0.83 0.23
K06839 SLIT2 0.0245 −0.55 0.22
K06902 UMF1 0.0278 0.68 0.27
K06910 K06910 0.0246 −0.92 0.36
K06943 NOG1 0.0114 −0.86 0.29
K07033 K07033 0.0002 1.07 0.21
K07043 K07043 0.0193 −0.65 0.24
K07080 K07080 0.0158 −0.35 0.13
K07090 K07090 0.0487 0.59 0.27
K07100 K07100 0.0434 −0.49 0.22
K07138 K07138 0.0491 −0.67 0.31
K07164 K07164 0.0449 0.56 0.25
K07203 FRAP 0.0231 −0.67 0.26
K07235 tusD 0.0127 1.22 0.42
K07278 ytfM 0.0015 0.66 0.17
K07299 SLC2A1 0.0112 −0.57 0.19
K07335 tmpC 0.0096 −0.76 0.25
K07341 doc 0.0209 −0.44 0.16
K07376 PRKG 0.0061 −0.73 0.22
K07402 xdhC 0.0452 −0.44 0.20
K07403 nfeD 0.0148 −0.64 0.23
K07445 K07445 0.0003 −0.79 0.16
K07507 mgtC 0.0075 0.51 0.16
K07516 fadN 0.0273 −0.27 0.11
K07538 had 0.0447 0.62 0.28
K07560 dtd 0.0421 −0.36 0.16
K07742 K07742 0.0401 −0.52 0.23
K07793 tctA 0.0168 −0.58 0.21
K07795 tctC 0.0274 −0.55 0.22
K08100 E1.3.3.5 0.0002 −1.06 0.21
K08253 E2.7.10.2 0.0307 0.50 0.21
K08352 phsA 0.0129 1.15 0.39
K08356 E1.20.9.1L 0.0012 −0.89 0.22
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K08384 spoVD 0.0096 −0.46 0.15
K08585 CAPNN 0.0210 −0.61 0.23
K08653 MBTPS1 0.0197 −0.45 0.17
K08678 UXS1 0.0117 −0.51 0.17
K08746 SLC27A2 0.0432 −0.41 0.18
K08789 MAST 0.0490 −0.45 0.21
K08796 BRSK 0.0442 −0.40 0.18
K08826 HIPK 0.0019 −0.86 0.22
K08867 PRKWNK 0.0110 −0.69 0.23
K08958 CSNK1G 0.0016 −0.70 0.18
K09013 sufC 0.0260 0.53 0.21
K09125 K09125 0.0163 0.53 0.19
K09160 K09160 0.0482 0.44 0.20
K09267 SOX1S 0.0437 −0.41 0.18
K09457 queF 0.0105 0.61 0.20
K09478 ACADSB 0.0435 −0.52 0.23
K09490 HSPA5 0.0098 −0.82 0.27
K09495 TRIC5 0.0483 −0.52 0.24
K09496 CCT4 0.0150 −0.92 0.33
K09497 CCT5 0.0085 −0.86 0.27
K09498 CCT6 0.0032 −0.84 0.23
K09516 RETSAT 0.0420 −0.46 0.20
K09540 SEC63 0.0117 −0.69 0.24
K09580 PDIA1 0.0465 −0.81 0.37
K09582 PDIA4 0.0062 −0.65 0.20
K09702 K09702 0.0120 −0.52 0.18
K09767 K09767 0.0174 0.63 0.23
K09816 znuB 0.0127 0.67 0.23
K09888 zapA 0.0016 0.73 0.18
K09949 K09949 0.0471 0.59 0.27
K10024 aotQ 0.0139 −0.62 0.22
K10025 aotP 0.0465 −0.49 0.22
K10112 msmX 0.0222 −0.55 0.21
K10117 msmE 0.0049 −1.02 0.30
K10352 MYH 0.0067 −1.45 0.45
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K10354 ACTA1 0.0235 −0.78 0.31
K10357 MYO5 0.0008 −1.00 0.22
K10359 MYO7 0.0038 −0.98 0.28
K10361 MYO15 0.0489 −0.53 0.24
K10389 TUBG 0.0018 −0.76 0.20
K10395 KIF4S 0.0240 −0.53 0.21
K10440 rbsC 0.0051 −0.64 0.19
K10441 rbsA 0.0099 −0.51 0.17
K10593 EDD1 0.0089 −0.68 0.22
K10601 SYVN1 0.0397 −0.56 0.24
K10691 ZUBR1 0.0027 −0.82 0.22
K10693 PAM 0.0113 −0.70 0.24
K10705 GAPDHS 0.0006 −1.10 0.25
K10747 LIG1 0.0483 −0.68 0.31
K10823 oppF 0.0428 −0.46 0.20
K10843 ERCC3 0.0181 0.34 0.13
K11070 potC 0.0391 −0.53 0.23
K11076 potG 0.0179 −0.57 0.21
K11088 SNRPD3 0 −1.03 0.14
K11098 SNRPF 0.0146 −0.68 0.24
K11173 ADHFE1 0.0381 −0.65 0.28
K11179 tusE 0.0018 0.60 0.15
K11180 dsrA 0.0088 0.89 0.29
K11181 dsrB 0.0175 0.72 0.26
K11188 PRDX6 0.0194 −1.12 0.42
K11212 cofD 0.0177 −0.61 0.22
K11253 H3 0.0052 −1.09 0.33
K11254 H4 0.0048 −1.08 0.32
K11263 bccA 0.0136 −0.69 0.24
K11290 I2PP2A 0.0001 −0.90 0.16
K11422 SETD1 0.0432 −0.41 0.18
K11481 AURKA 0.0458 −0.48 0.22
K11584 PPP2R5 0.0105 −0.79 0.26
K11593 ELF2C 0.0142 −0.83 0.29
K11600 RRP41 0.0485 0.58 0.27
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K11645 K11645 0.0372 −0.45 0.19
K11647 SMARCA2 4 0.0182 −0.72 0.27
K11824 AP2A 0.0269 −0.56 0.23
K11895 vasB 0.0085 0.70 0.23
K11912 ppkA 0.0004 −1.02 0.22
K11997 TRIM2 3 0.0033 −0.90 0.25
K12184 VPS28 0.0015 −0.63 0.16
K12194 CHMP4 0.0138 −0.46 0.16
K12323 ANPRA 0.0406 −0.49 0.22
K12340 tolC 0.0104 −0.78 0.26
K12355 REF1 0.0097 −0.47 0.16
K12368 dppA 0.0049 −0.38 0.11
K12375 ARSI J 0.0150 −0.50 0.18
K12483 EHD1 0.0307 −0.51 0.21
K12511 tadC 0.0344 −0.46 0.19
K12574 rnj 0.0102 0.35 0.12
K12604 CNOT1 0.0095 −0.84 0.28
K12619 XRN2 0.0202 −0.69 0.26
K12818 DHX8 0.0339 −0.67 0.28
K12820 DHX15 0.0427 −0.63 0.28
K12829 SF3B2 0.0179 −0.74 0.27
K12830 SF3B3 0.0394 −0.59 0.26
K12837 U2AF2 0.0197 −0.59 0.22
K12838 PUF60 0.0097 −0.47 0.16
K12845 SNU13 0.0466 −0.46 0.21
K12854 SNRNP200 0.0270 −0.70 0.28
K12856 PRPF8 0.0085 −0.87 0.28
K12858 DDX23 0.0441 −0.49 0.22
K12867 SYF1 0.0470 −0.74 0.34
K12868 SYF2 0.0437 −0.41 0.18
K12869 CRN 0.0445 −0.59 0.26
K12879 THOC2 0.0450 −0.40 0.18
K13044 HNRNPABD 0.0434 −0.46 0.21
K13182 DDX39 0.0472 −0.47 0.22
K13207 CELF 0.0016 −0.83 0.21
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K13279 PRDX1 0.0371 −0.62 0.27
K13529 ada-alkA 0.0426 −0.46 0.20
K13652 K13652 0.0400 0.50 0.22
K13693 K13693 0.0492 −0.54 0.25
K13811 PAPSS 0.0105 −0.83 0.28
K13831 hps-phi 0.0099 0.56 0.18
K13922 pduP 0.0142 −0.67 0.24
K13988 NUDT9 0.0195 −0.45 0.17
K14006 SEC23 0.0191 −0.64 0.24
K14081 mtaC 0.0224 −0.66 0.25
K14084 mttC 0.0028 −0.71 0.19
K14152 HIS4 0.0095 −0.48 0.16
K14326 UPF1 0.0009 −1.04 0.24
K14327 UPF2 0.0443 −0.56 0.25
K14402 CPSF2 0.0176 −0.58 0.21
K14469 K14469 0.0114 −0.52 0.18
K14563 NOP1 0.0399 −0.81 0.35
K14640 PIT 0.0417 0.48 0.21
K14652 ribBA 0.0126 0.50 0.17
K14802 ATP8A 0.0098 −0.57 0.19
K14820 BRIX1 0.0124 −0.54 0.19
K14986 fixL 0.0011 −0.78 0.19
K15012 regA 0.0114 −0.52 0.18
K15022 fdhB 0.0081 0.95 0.30
K15029 EIF3L 0.0491 −0.57 0.26
K15030 EIF3M 0.0454 −0.39 0.18
K15034 yaeJ 0.0390 0.60 0.26
K15172 SPT5 0.0192 −0.60 0.23
K15223 SPP27 0.0014 −0.68 0.17
K15283 SLC35E1 0.0491 −0.53 0.24
K15292 STXBP1 0.0103 −0.69 0.23
K15423 PPP4C 0.0034 −0.76 0.21
K15498 PPP6C 0.0496 −0.61 0.28
K15509 hpsN 0.0200 −0.70 0.26
K15512 boxB 0.0048 −0.80 0.24
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K15598 thiY 0.0490 −0.47 0.22
K15601 KDM3 0.0204 −0.53 0.20
K15620 GOLPH3 0.0121 −0.60 0.21
K15698 RNF121 0.0095 −0.49 0.16
K15778 pmm-pgm 0.0304 0.68 0.28
K15836 fhlA 0.0004 0.72 0.15
K15864 nirS 0 −1.34 0.20
K15893 HPR1 0.0075 −0.76 0.24
K15916 pgi-pmi 0.0327 0.48 0.20
K16178 NA 0.0097 −0.76 0.25
K16185 NA 0.0251 −0.59 0.23
K16213 NA 0.0110 −0.65 0.22
K16307 NA 0.0013 −0.76 0.19
K16681 NA 0.0048 −0.90 0.27
K16846 NA 0.0216 −0.61 0.23
K16850 NA 0.0038 0.72 0.20
K17081 NA 0.0038 −0.70 0.19
K17086 NA 0.0027 −0.77 0.21
K17204 NA 0.0168 −0.71 0.26
K17225 NA 0.0014 1.03 0.25
K17229 NA 0.0068 −1.22 0.38
K17230 NA 0 −0.80 0.13
K17263 NA 0.0263 −0.51 0.20
K17307 NA 0.0254 −0.56 0.22
K17320 NA 0.0441 −0.70 0.31
K17540 NA 0.0126 −1.44 0.50
K17732 NA 0 −0.99 0.14
K17734 NA 0.0299 −0.89 0.36
K17751 NA 0.0011 −1.83 0.44
K17760 NA 0.0394 −0.50 0.22
K17865 NA 0.0006 1.02 0.22
K17871 NA 0.0455 −0.40 0.18
K17898 NA 0.0351 −0.49 0.21
K17923 NA 0.0097 −0.47 0.16
K17943 NA 0.0029 −0.77 0.21
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Table D.1 – continued from previous page

gene KO gene name p-value estimate SE

K18029 NA 0.0012 −0.72 0.17
K18139 NA 0.0301 0.46 0.19
K18277 NA 0.0496 −0.53 0.25
K18441 NA 0.0234 −0.48 0.19
K18585 NA 0.0183 −1.20 0.44
K18622 NA 0.0096 −0.47 0.16
K18669 NA 0.0246 −0.45 0.17
K18749 NA 0.0435 −0.46 0.20

Table D.2: All genes that were significant for distance only (after exclusion of all inter-
actions) and had an estimate of >1 or <-1. The estimate is the estimated slope in the
linear models. Estimates of >1 and <-1 symbolise an up- and down-regulation of the
gene at the stormwater drain, respectively. Gene KEGG orthologous ID (KO), pathway
KO and pathway name are shown for every gene.

gene KO pathway KO pathway name

estimate<-1
K10352 path:ko04530 Tight junction
K02987 path:ko03010 Ribosome
K03520 path:ko00633 Nitrotoluene degradation
K03520 path:ko00680 Methane metabolism
K06269 path:ko03015 mRNA surveillance pathway
K06269 path:ko04113 Meiosis - yeast
K06269 path:ko04114 Oocyte meiosis
K06269 path:ko04510 Focal adhesion
K06269 path:ko04810 Regulation of actin cytoskeleton
K00376 path:ko00910 Nitrogen metabolism
K08100 path:ko00860 Porphyrin and chlorophyll metabolism
K02958 path:ko03010 Ribosome
K00121 path:ko00010 Glycolysis / Gluconeogenesis
K00121 path:ko00071 Fatty acid metabolism
K00121 path:ko00350 Tyrosine metabolism
K00121 path:ko00625 Chloroalkane and chloroalkene degradation
K00121 path:ko00626 Naphthalene degradation
K00121 path:ko00680 Methane metabolism

continued on next page
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gene KO pathway KO pathway name

K00121 path:ko00830 Retinol metabolism
K00121 path:ko00980 Metabolism of xenobiotics by cytochrome P450
K00121 path:ko00982 Drug metabolism - cytochrome P450
K06236 path:ko04510 Focal adhesion
K06236 path:ko04512 ECM-receptor interaction
K10117 path:ko02010 ABC transporters
K05853 path:ko04020 Calcium signaling pathway
K14326 path:ko03013 RNA transport
K14326 path:ko03015 mRNA surveillance pathway
K05850 path:ko04020 Calcium signaling pathway
K00114 path:ko00010 Glycolysis / Gluconeogenesis
K00114 path:ko00625 Chloroalkane and chloroalkene degradation
K00114 path:ko00640 Propanoate metabolism
K15864 path:ko00910 Nitrogen metabolism
K02880 path:ko03010 Ribosome
K04962 path:ko04020 Calcium signaling pathway
K02893 path:ko03010 Ribosome
K01279 path:ko04142 Lysosome
K04437 path:ko04010 MAPK signaling pathway
K04437 path:ko04510 Focal adhesion
K00665 path:ko00061 Fatty acid biosynthesis
K11188 path:ko00360 Phenylalanine metabolism
K11188 path:ko00680 Methane metabolism
K11188 path:ko00940 Phenylpropanoid biosynthesis
K11912 path:ko03070 Bacterial secretion system
K02105 path:ko04310 Wnt signaling pathway
K02105 path:ko04510 Focal adhesion
K02105 path:ko04520 Adherens junction
K02105 path:ko04530 Tight junction
K05849 path:ko04020 Calcium signaling pathway
K11088 path:ko03040 Spliceosome
K10705 path:ko00010 Glycolysis / Gluconeogenesis

estimate>1
K03621 path:ko00561 Glycerolipid metabolism

continued on next page
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Table D.2 – continued from previous page

gene KO pathway KO pathway name

K03621 path:ko00564 Glycerophospholipid metabolism
K07235 path:ko04122 Sulfur relay system
K02009 path:ko02010 ABC transporters
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Figure D.1: Gene expression values for all genes included in the final dataset used for
statistical analyses (detected in all samples of at least one treatment). This plot identifies
sample HC.R.TP1.2 as an outlier based on generally higher reads (probably due to RNA
degradation; RIN=5.9) and justifies its exclusion from further analyses. Samples are
named according to their location (HC: Hen and Chicken Bay; IC: Iron Cove), distance
from stormwater drains (S: adjacent to stormwater drain; R: reference site 1 km away),
time point of sampling (TP1: February 2014; TP2: March 2014) and replicate number
(1 and 2).
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Table D.3: Temperature and salinity of the water at sampling sites. Samples are named
according to their location (HC: Hen and Chicken Bay; IC: Iron Cove), distance from
stormwater drains (S: adjacent to stormwater drain; R: reference site 1km away), time
point of sampling (TP1: February 2014; TP2: March 2014) and replicate number (1 and
2).

Sample Temperature Salinity
HC.R.TP1.1 25.44 35.73
HC.R.TP1.2
HC.R.TP2.1 24.3 32.36
HC.R.TP2.2
IC.R.TP1.1 24.74 36.04
IC.R.TP1.2
IC.R.TP2.1 25.59 34.96
IC.R.TP2.2

HC.S.TP1.1 25.03 35.98
HC.S.TP1.2
HC.S.TP2.1 25.26 33.22
HC.S.TP2.2
IC.S.TP1.1 25.13 36.08
IC.S.TP1.2
IC.S.TP2.1 25.89 34.68
IC.S.TP2.2
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Lücker, S., Nowka, B., Rattei, T., Spieck, E., and Daims, H. (2013). The
genome of Nitrospina gracilis illuminates the metabolism and evolution of
the major marine nitrite oxidizer. Frontiers in Microbiology, 4:Article 27.

Luo, W., D’Angelo, E. M., and Coyne, M. S. (2008). Organic carbon ef-
fects on aerobic polychlorinated biphenyl removal and bacterial community
composition in soils and sediments. Chemosphere, 70:364–373.

Lürling, M. and Scheffer, M. (2007). Info-disruption: Pollution and the trans-
fer of chemical information between organisms. Trends in Ecology and Evo-
lution, 22(7):374–379.

Lyons, K. G. and Schwartz, M. W. (2001). Rare species loss alters ecosystem
function - invasion resistance. Ecology Letters, 4:358–365.

Magurran, A. E., Baillie, S. R., Buckland, S. T., Dick, J. M., Elston, D. A.,
Scott, E. M., Smith, R. I., Somerfield, P. J., and Watt, A. D. (2010). Long-
term datasets in biodiversity research and monitoring: Assessing change
in ecological communities through time. Trends in Ecology and Evolution,
25(10):574–582.

Martin, M. (2011). Cutadapt removes adapter sequences from high-
throughput sequencing reads. EMBnet Journal, 17(1):10–12.

Mascher, T., Helmann, J. D., and Unden, G. (2006). Stimulus perception in
bacterial signal-transducing histidine kinases. Microbiology and Molecular
Biology Reviews, 70(4):910–938.

Mason, O. U., Scott, N. M., Gonzalez, A., Robbins-Pianka, A., Bælum, J.,
Kimbrel, J., Bouskill, N. J., Prestat, E., Borglin, S., Joyner, D. C., Fortney,
J. L., Jurelevicius, D., Stringfellow, W. T., Alvarez-Cohen, L., Hazen, T. C.,
Knight, R., Gilbert, J. A., and Jansson, J. K. (2014). Metagenomics reveals
sediment microbial community response to Deepwater Horizon oil spill. The
ISME Journal, 8:1464–1475.

Mayer-Pinto, M., Johnston, E. L., Hutchings, P. A., Marzinelli, E. M., Ahyong,
S. T., Birch, G. F., Booth, D. J., Creese, R. G., Doblin, M. A., Figueira, W.,
Gribben, P. E., Pritchard, T., Roughan, M., Steinberg, P. D., and Hedge,
L. H. (2015). Sydney Harbour: A review of anthropogenic impacts on the
biodiversity and ecosystem function of one of the world’s largest natural
harbours. Marine and Freshwater Research, 66:1088–1105.

213



McGrath, K. C., Thomas-Hall, S. R., Cheng, C. T., Leo, L., Alexa, A.,
Schmidt, S., and Schenk, P. M. (2008). Isolation and analysis of mRNA from
environmental microbial communities. Journal of Microbiological Methods,
75:172–176.
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