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Preface

In 2005, Wildberger introduced the field of rational trigonometry in [59]. In it, he presents
a purely algebraic approach to the subject of trigonometry, which is currently reliant on
the classical notion of circular functions and square roots, whose precise definitions involve
infinite processes which are computationally approximate in nature. By framing the study
of trigonometry in the realm of rational numbers, calculations with regards to the triangle
are computationally exact and we obtain a much more general form of geometry that
extends to arbitrary fields not of characteristic 2 (to avoid zero denominators) and to
other types of geometries, which are parameterised by an arbitrary symmetric bilinear
form.

We will extend the rational or algebraic study of geometry and trigonometry in two
dimensions introduced by Wildberger in [55] and [59] to three dimensions. We will use the
tools of linear algebra to formulate two complementary approaches by which to study gen-
eral tetrahedra. One approach involves a generalised vector product, so that we can define
the trigonometric quantities of the tetrahedron and formulate some results pertaining to
it. The other approach involves an affine map from a general tetrahedron to a specific
tetrahedron, so that we may study a specific tetrahedron over a general symmetric bilinear

form as opposed to a general tetrahedron over a specific bilinear form.
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Introduction

To provide motivation for this thesis, we summarise briefly the standard approach to
trigonometry, which involves considering a general triangle in the Euclidean 2-space E?
typically over the "real number field", denoted by R. The points Ag, A1 and A of this
triangle, as well as the corresponding distances and angles, are denoted and illustrated in

Figure 1.

Figure 1: Triangle with distances and angles displayed

In what follows, we may suppose that the angles 6, 61 and 02 are measured in radians.

Given these quantities, the following results are standard:

1. The sum of the angles is equal to two right angles (Proposition 13, Book I of Elements
[26]), i.e.
0o+ 01+ 02 = .

™

2. Pythagoras’ theorem (Proposition 48, Book I of Elements) - We have that 6y = 7

precisely when
d3 = d? + ds.

3. Cosine law - We have that

d3 = d? + d3 — 2dydy cos O,
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d? = d% 4 d3 — 2dydsy cos 01,

and
d3 = d? + d2 — 2dyd; cos 0.

4. Sine law - We have that
sin 90 B sin 91 sin 02

do dq do

In co-ordinate geometry, the distances dy, d1 and dy are obtained by taking the square
root of the sum of squares of the co-ordinate differences; here, we assume the Cartesian
plane and all its associated properties. As for the angles 0y, 61 and 02, we draw an arc of
radius 1 centred at the intersection of the two sides and thus compute the arclength, which
typically requires methods from calculus. This methodology presents various difficulties,
so working classically in trigonometry has its limitations. Over arbitrary fields not of
characteristic 2, especially in finite fields, not all numbers have square roots. As an
example, in the field of 11 elements (denoted by Fi; and typically consisting of integers
from —5 to 5) we have that the only squares in Fq; are —2, 0, 1, 3, 4 and 5; the other
five elements of F1; do not have square roots. Thus, the current framework of classical
trigonometry is generally restricted to the "real number field" and the formulas do not

generalise easily to other fields. Additional difficulties include:

e the reliance of approximations in the calculations of square roots and arclengths;
e the reliance of extensive tables to calculate only some of the trigonometric values;

e the implicit reliance on differential calculus for the definition of angles and circular

functions, as well as their inverses;
e the complexity associated with teaching this content to students; and

e inherent difficulties with angles, with particular emphasis on moving to three dimen-

sions and possibly higher.

The story does not improve by much with the use of vectors. We introduce the Euclid-
ean scalar product [48, p. 16] and take its square root to obtain the distance. As for

angles, if ||v]| = /v - v then we can use

0w = [|o]l w]| cos 8
to introduce angles. Setting
v-w
r= —-
o] flw]]’

the Maclaurin series [52] of arcsinz, for |z| <1, is

2n)! 3 345
arcsinmzz (2n) S W AT
o4 (n)*(2n+1) 6 40

vi
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and then
™ .
0 = arccosz = 5~ arcsin x
T " x3 + 3x® +
2 6 40

We note the unending/non-terminating aspect of the Maclaurin series, with relation to

our desire to obtain exact computations.

In the framework of spherical geometry, as laid out classically in Moritz [42], we have
analogous formulas with similar computational limitations. Given a spherical triangle with
spherical distances a, b and ¢, and respective opposite spherical angles A, B and C, the

Spherical sine law is
sinA  sinB  sinC

sina sin b sin ¢

and the Spherical cosine law is given by the set of relations
cosa = cosbcosc+ sinbsinccos A,

cosb = cosacosc+ sinasinccos B

and

cosc = cosacosb+ sinasinbcos C.

We also have a second family of Spherical cosine laws, given by
cos A = cos B cos C — sin B sin C cos a,

cos B =cosAcosC —sin Asin C cosb

and

cos C' = cos Acos B — sin A sin B cos c.

As a replacement for distances and angles, the notions of quadrance and spread are
introduced in [55] and [59, Chap. 5 and 6], for the two-dimensional Euclidean space [E?
over the rational number field, equipped with the usual definition of Euclidean scalar
product. Given two points Ay = [z1,y1] and As = [z2,y2], the quadrance between them

is the number

Q (A1, A2) = (z2—21)" + (12— m1)

= (z2a—21,92— Y1) (2 — 21,92 — Y1) -
Furthermore, if we have two lines [; and lo with respective direction vectors v; = (z1,y1)

vii



INTRODUCTION

and vy = (x2,y2), then the spread between them is the number

2 _ 2
s(l,l) =1— (122 + Y1Y2) _ (x1Yy2 — T2y1)

(z7 +23) (vi+w3) (o +23) (7 +v3)

The last equality goes back to a result of Diophantus, as well as Brahmagupta and Fi-
bonacci; the history of this is highlighted in Stillwell [50, pp. 72-76].

We can interpret the notions of quadrance and spread classically as the squared distance
and the square of the sine of an angle, respectively. Working rationally does not limit us to
the trigonometric identities, which inputs angles, and will allow us to expand our current

framework beyond Euclidean geometry naturally.

Motivated by the study of a triangle in two-dimensional Euclidean (affine) geometry
from Elements and its rational reformulations in [59], this thesis extends the framework
of the latter to the three-dimensional affine space, which we will denote by A3, over an
arbitrary field IF not of characteristic 2. We will associate to A3 the vector space V3, which
will be equipped with a general symmetric bilinear form, so that the current framework is
extended beyond Euclidean geometry. Here, the usual notions of points and vectors are
given to us. The focus of this thesis is to understand the fundamental object in three-
dimensional geometry: a general tetrahedron. We do this in a way that will prepare us for
higher-dimensional generalisations. We build on Altshiller-Court [1] and Richardson [45]
on the classical trigonometry of a tetrahedron to provide an introductory framework for
the rational trigonometry of a general tetrahedron in the generalised affine and vector

spaces.

We first introduce some elementary concepts in A? before defining a symmetric bilinear
form on V3, which generalises the Euclidean scalar product. This gives us a generalised
metrical framework by which the matrix representing the symmetric bilinear form becomes
an important factor in our calculations. In addition to this, we generalise the Euclidean
vector product based on this symmetric bilinear form and link it with matrix adjugation.
With the generalised scalar and vector products, we define the scalar and vector triple
and quadruple products, and draw inspiration from Spiegel’s manual [48, p. 16] to present

easier, indirect methods of calculating them.

In addition to points, we also have lines and planes in A3, as well as triangles and
tetrahedra in A and various other objects associated to them. From here, we are able
to build on the notions of quadrance and spread to define the quadrea and quadrume, as
well as the dihedral spread, solid spread and dual solid spread. As an example, we can
start with a tetrahedron with points Ag, A1, A and A3 and define the quadrances of the
tetrahedron to be Qo1, Qo2, Qos, @12, Q13 and Qa23, where for 0 <i < j <3

Qij = Q (A, 4j) .
Based on this, the quadreas and quadrume of this tetrahedron can be expressed in terms

viii
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of the quadrances as
Aotz = (Qo1 + Qo2 + Q12)” — 2 (Q31 + Q25 + Q3,)

Aotz = (Qo1 + Qoz + Q13)* — 2 (Q3 + Qs + Q1)
Ao2s = (Qoz + Qoz + Qa3)” — 2 (Q3s + Q25 + Q35)
Aizs = (Q2 + Q13 + Qa3)° — 2 (Q3, + Q15 + Q%)

and
) 2Qmn Qo1 + Qo2 — Q12 Qo1 + Qo3 — Q13
V= 5 |Qo1 + Qo2 — Q2 2Qo2 Qo2 + Qoz — Q23] -
Qo1 + Qo3 — Q13 Qo2 + Qo3 — Q23 2Qos

For 0 < j < k < 3 with j and k distinct from 4, let s;.;x be the spread between the lines
through the pairs of points (A;, A;) and (A;, A;). Then, the spread can be expressed in

terms of the quadrances and quadreas as

Sy = ik
SR 4Q4Qur
Based on the results of a seminar by Wildberger [63], the dihedral spreads and solid spreads

of this tetrahedron can be expressed in terms of the quadrances, quadreas and quadrume

as

Fo — 4Qo1V By 4Q02V By — 4Qo3V 7
Ao12A013 Ao12A023 Ao13Ao23
b3 = «4%)?32;11}23’ b = Aiijiii’ b2 = «4%)?23&2237
)% %
S0 = 4Q01Q02Q03’ 1= 4Q01Q12Q13
&= 4@02512@23 and 85 = 4@03513@23‘

Based on this, we can define C;; = 1 — E;; to be the dihedral crosses of this tetrahedron,
for 0 <4 < 7 < 3. On a similar note, we can express the dual solid spread in terms of the

quadrances and quadrume as

D 4y? _— 4y?
07 Aoz Aoz Aozs’ ' AgraAgisAres’
> Aoz Aoz Aras 37 Aoz Aoz Aizs

These will be important quantities that we associate to a general tetrahedron in A3, and a
significant part of our discussion will involve justifying the expressions for the latter three
quantities. We will also link them to various quantities from projective geometry and
trigonometry, which Wildberger has framed in the rational sense in [55], [60], [61], [64], [65]

ix
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and [66]; the general framework will be reviewed in the thesis.

Throughout the latter parts of the thesis, we refer to a specific tetrahedron and use it
as a running example for these results. This tetrahedron is based on the second of three
pyramids in Giza, Egypt, which houses the tomb of Khafre and is located in front of the

famous Great Sphinx.

Of independent but special interest, we make the observation that a pair of lines of a
tetrahedron passing through a distinct pair of two points are skew, i.e. they are non-parallel
and non-intersecting lines. This motivates us to compute the quadrance between such pairs
of lines and uncover a connection with a rational version of a result of Bretschneider [6],
which is also illustrated in Coolidge [15]. In the classical framework, Bretschneider’s
result computes the area of a general quadrangle (a collection of four coplanar points)
based on the distance between any two points of it. We also present two results which
express the equality of ratios of certain trigonometric quantities, based on the results from
Richardson [45].

As an additional technology that can be used to simplify some calculations, we can
consider an affine map which sends a general tetrahedron in A3 to a unique tetrahedron
BoBlBng, where

By =[0,0,0], B;=][1,0,0], By=][0,1,0] and B3 =]10,0,1].

Inspired by the contents of Nguyen Le’s doctoral thesis [35] and her joint paper with
Wildberger [36], we will name this tetrahedron the Standard tetrahedron and this will
form the content of Chapter 3. We will use the trigonometric quantities of the Standard
tetrahedron to prove more complex results at the cost of a brute force approach. Motivated
by Richardson [45] and Lee [37], we introduce rational analogs to two substantial results,
which we will call the Tetrahedron cross law and the Dihedral cross relation. In the former
result, we involve the dihedral crosses to find a relationship between the quadreas of the
four faces of a tetrahedron; in the latter result, we see that the six dihedral crosses will

satisfy a relation involving a very large polynomial.

Based on the expressions for the trigonometric quantities above, the Tetrahedron cross

law takes the form

2

[ [(Aom + Ap1z + Agaz — A123)” — 4 (Ao124013C01 + Ao12.A23C02 + A013A023C03)2] ]
—64.A012. 40134023 (A012C01Co2 + A013C01Co3 + A023C02C03)

= 4096435435425 (Ao12 + Ao1s + Aoz — A123)” Co1Co2Cos.

Furthermore, define
X =Cp1Co3, Y =CpCr13, Z = Cp3Cia,

x=Co1 + Co3, y=Co2+Ci3, z=Cp3+ Cha,
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W = Co1Cp2C03 + Co1C12C13 + Co2C12C23 + Co3C13Cx3,
PE%(l—CE—y—Z—l—X-ﬁ-Y-ﬁ-Z),
R=P+2z2—-2Z, S=P+y-Y, T=P+z-X,
UE%(PZ—W+XY+XZ+YZ)

and )
V=g (U= XYR* - X28* Y ZT?).

Then, the Dihedral cross relation takes the form
V?=XYZ(XR*S*+YR*T? + ZS*T? + 2RSTU) .

To end the thesis, we apply the results of the previous chapters to some examples of

special tetrahedra in the final chapter. We start with three particular tetrahedra:

e reqular tetrahedron - here, the quadrances between any two points of the tetrahedron

are all equal.

e isosceles tetrahedron or disphenoid - this is a tetrahedron where opposite edges (pairs

of edges of a tetrahedron with no common points) have equal quadrances.

e trirectangular tetrahedron - a tetrahedron where the edges/vectors emanating from
a point are mutually perpendicular with respect to the arbitrary symmetric bilinear

form.

In addition to these three special tetrahedra, we will consider two further tetrahedra.
In one case, we will examine an example tetrahedron in A3 over the rational number field
where we equip a relativistic bilinear form based on a two-dimensional analog mentioned
by Wildberger in [56], [57] and [58], which is related to the Minkowski scalar product [40].
In the other case, we will examine another tetrahedron in A3, but over the finite field Fq;
with 11 elements, which will be expressed as integers between —5 and 5.

It is a measure of the generality of the rational trigonometric formulation that we are
able to extend our study even to such non-standard situations. We will end the thesis

with some remarks on further directions.

X1
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Chapter 1

Rational trigonometry in three

dimensions

We start by considering three-dimensional affine space, denoted by A3, over a general
(number) field F not of characteristic 2. Points are algebraically expressed as a triple
enclosed in square brackets, e.g. A = [z,y,z]. Two points A1 = [z1,y1,21] and Az =

[x2, Y2, 22] are equal precisely when
r1 =122, y1=y2 and 2z = 2.

If A; and As are not equal, then they are distinct. We can also talk about multiple points

being distinct if any two are distinct.

Noting that points may represent (absolute) positions in space if co-ordinate axes have
been specified, we will also want to consider relative displacements between points. If
A1 = [z1,11,21] and Ay = [z2,y2, 22|, then we define the associated (displacement)
vector

—
A1As = (22 — 1, Y2 — Y1, 22 — 21) -

Two vectors v; = (21,1, 21) and vy = (z2, Y2, 22) are equal precisely when
r1 =22, Yy1=y2 and 2z = 2.

The (displacement) vector v = Aj Ay is the zero vector 0 = (0,0, 0) precisely when A; and

Ay are equal.

We also follow some non-standard conventions introduced by Wildberger in his YouTube

playlist [68]. Namely, we will write the following operation on two points:
——
A2 — Al = A1A2.

Note that we are not introducing a general linear algebraic structure on points here; only

the difference of points is defined, not their sum. In conjunction with this, if A = [z, y, 2]

1
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is a point and v = (a, b, ¢) is a vector, then we define the sum A + v to be the point
A+v=[z,y,2]+ (a,b,c) =[x +a,y+bz+d.

Thus A + v = B is equivalent to v = AB. Note that we will require that the point A be
written on the left, and the vector v be written on the right, so that v+ A has no meaning

for us.

It now makes sense to consider expressions of the form (A + v1) 4+ v2 and to define

addition on two vectors v; and v by the requirement that
(A+wv1)+ve=A4 (v1 +v2).
Clearly this is equivalent to the rule that
(a1,b1,c1) + (a2, b2, c2) = (a1 + ag, by + be,c1 + ¢2) .

Consistent with this, we define for any non-zero A € F the scalar multiple of a vector
v = (a,b,c) by
v = \(a,b,c) = (Aa, Ab, Xc) .

This allows us to obtain and define our usual three-dimensional vector (or linear) space
associated with A3 over F, which we will denote by V3. We will identify vectors with 1 x n
matrices so that the usual apparatus of matrices and linear maps present in linear algebra

may be applied to vectors.

Throughout the thesis, we will also apply the Zero denominator convention from [59, p.
28], which states that a statement involving fractions and rational functions is assumed

to be empty if its denominator is zero.

We define the signed volume of three ordered vectors v1 = (z1, y1, 21), v2 = (22, Y2, 22)

and vs = (x3,y3, 23) to be the number

1 Y1 2
T1Y223 — T1Y322 — TaY123 + T2y321 + T3Y122 — T3Y221

v(v1,v2,v3) = —det [zo o = | =

[N

6
T3 Y3 =3

Note that this quantity is an element of IF'; as 2 and 3 are factors of 6, fields of characteristics

3 will also be excluded from the discussion of signed volumes.

If w = wy + wy, for wy, ws € V3, then we have that
v (w, v2,v3) = v (Wi, v2,v3) + v (w2, v2,v3)
and for some non-zero A € F we also have that

v ()\'Ul, V2, U3) = v (Ub V2, U3) .

2
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These properties will hold with the other inputs, as the signed volume is a trilinear oper-

ation. Moreover,
v (v1,v2,v3) = v (v2,v3,v1) = v (v3,v1,V2)

= v (U17U37U2) = v (UQ,Ul,”Ug) = v (1)1,1)3,’02) .

1.1 Symmetric bilinear form on V3

Suppose that we are given a 3 X 3 symmetric matrix

al b3 bg
B=|b3 ax by
b2 bl as

This matrix determines a symmetric bilinear form [39, p. 1-2] on V? defined by
VpwW = vBw?’.

We will also say that the matrix B represents the symmetric bilinear form defined above.
We will call such an operation the B-scalar product. This is a concept used extensively
in [55] and also by Le [35] to extend the framework of rational trigonometry to more
general metrical situations. When B is the 3 x 3 identity matrix, the B-scalar product
corresponds to the usual notion of the Euclidean scalar product, which we simply write
as v - w.

The symmetric bilinear form also gives us a B-quadratic form
Qp(v)=v-pu.
For vectors v and w in V? and a non-zero A in I, we have the property
Qp () = X*Qp (v),

as well as
QB(v—i-w) :QB(U)—l-QB(w)-i-Q(U-Bw)
and

Qpv—w)=Qp W)+ Qp(w)—2(v-pw).

Hence, we can express the B-scalar product between two vectors v, w € V3 in terms of the

B-quadratic form as

Qp(vt+w)—Qp) -Qp(w) _Qp)+Qs(w) - Qp(v-w)
2 2 .

V-BW =
Consistent with the terminology of Havlicek and Weif [25], the B-scalar product is then

3
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the polar form of the B-quadratic form, and the above relation will thus be called the
polarisation formula.

The symmetric bilinear form on V3 represented by the matrix B is non-degenerate
if, for any vector v € V3, v -p w = 0 implies that w = 0. This will be true precisely when
B is invertible. We will assume this throughout the thesis unless otherwise stated.

Two vectors v and w in V3 are perpendicular with respect to the B-scalar product
precisely when

v-gw =0,

in which case we say that the vectors v and w are B-perpendicular and use the notation
"o 1gw".
Extending the concept of Euclidean vector projection in Anton and Rorres [2, p. 206],

as well as Strang [51, p. 174], the B-projection of a vector w in the direction of v is

deﬁned as
( 1”0' ’LU) = v'Bw v
proj, B Vep v

This has the following unique property, which is well-known in Euclidean geometry.

Lemma 1 For vectors v and w in V3, let u = (proj, w) . Then, v is B-perpendicular to

w—1u.

Proof. Using the properties of the symmetric bilinear form and the definition of the

B-projection, calculate the B-scalar product of v and w — u to get

vplw—u) = vpw—v-pu

V-gw
= v'BW—V"'R v
V-gU

= ’U‘Bw—(v'Bw)(U‘Bv)

VBV
= 0.

So v is B-perpendicular to w — u, as required. m

1.2 The vector product in V3

Given two vectors v; = (w1,y1,21) and vy = (z2,¥2,22) in V3, the usual notion of the
Euclidean vector product, introduced by Lagrange [34] and formalised by Gibbs [22, p.
65], is defined and denoted as follows:

vy Xvy = (x1,91,21) X (2,2, 22)

(Y122 — Y221, 221 — T122, T1Y2 — T2Y1) -
Recall that the adjugate matrix of a 3 x 3 invertible matrix M, as defined separately

4
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in Gantmacher [21, pp. 76-89] and Strang [51, p. 248], is
adj M = (det M) M.
This satisfies the property that for 3 x 3 invertible matrices M and N
adj (MN) = (adj N) (adj M)
and if [ is the 3 x 3 identity matrix then
M (adjM) = (adj M) M = (det M) I.

This notion extends also to n X n invertible matrices, but we will not need that.

For the matrix

ar bz by
B = b3 as b1
by b1 as

representing an arbitrary symmetric bilinear form on V3, we will use the notation

azaz — b3 biby —aszbs  bibs — azbe ar B3 B
adj B = | biby —azbs aiaz —b3 bobs —aihy | = | B3 a2 S
bibs — asbe babs —aiby  ajaz — b3 By B1 a3

We now define a generalised version of the Euclidean vector product, called the B-vector

product, between two vectors v; and vy to be
v1 Xp vy = (v X v2)adj B.

The motivation for this definition is given in the following theorem. A similar result has
been explored by Collomb [14], where a 3 x 3 matrix is inverted and the determinant of it

is calculated using the FEuclidean vector product.

Theorem 2 (Adjugate vector product theorem) Let vy, vy and vs be three linearly

independent vectors in V3, and let M be the matriz with rows vy, va and vs, i.e.

If the adjugate of the matrix M B is written as

adj (MB) = | wl wl wl
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then

W] = Vg XpU3, Wy =v3Xpvy and wz=v] Xp V2.

Proof. Suppose v; = (x1,y1,21), v2 = (z2,y2, 22) and vs = (3,3, 23), so that

1 Y1 2

M =z Y2 22

T3 Y3 23
Then

Y223 —Y3Z2  Y3z1 — Y123 Y122 — Y221

adjM = T3Z0 — XLoz3 X123 — T3Z1 Lozl — T129

T2Y3 — X3Y2 T3Y1 — T1Y3 T1Y2 — T2Y1
T T T

= (Ug X U3) (U3 X ’Ul) (Ul X 7.12)

Since adj (M B) = adj Badj M and B is symmetric,

(adj (MB))" = (adjM)" adjB

— Vg X V3 —

= — wvy3xvy — |adjB
— V1 XUy —

— (vaxw3z)adjB —
= |- (yxuv)adjB —

— (nnxwv)adjB —

— V2 XBU3 —

= — V3 XBv1 —

— V1 XBUVy —
Take the transpose of this matrix to obtain
Wy, =vg XBv3, wo=wv3Xpgv; and wz=wvi Xpg Vs,

as required. m

The B-vector product is a bilinear operation, i.e. for vectors vq, vo and vz in V3 and

a scalar A in IF, we have that
V1 XB (1)2+1)3) = V1 XB VU2 + VU1 XB V3,

('U1—|—?12) XpBU3 =v1 XBU3+ Uy XpB U3

6
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and

()\’Ul) XB U2 =V1 XB ()\’UQ)Z)\(Ul XB'UQ).

The alternating property is also satisfied, i.e. for v € V3,
vXxgv=0.
The B-vector product is anti-symmetric, i.e.
V1 XB V2 = —V2 XB U1,
as the bilinear and alternating properties gives

(v1 +v2) Xp (V1 +v2) =v1 X vy + v Xp v =0.

1.3 Results from generalised vector geometry

We now present some more complicated results regarding B-vector products. In what
follows, the proofs will be based on modifications of standard Euclidean arguments, as in
Spiegel’s manual on vector analysis [48, pp. 16-34].

We start with the Euclidean scalar triple product of three vectors vi, vy and vs
in V3, which, defined in Gibbs [22, pp. 68-71], can be expressed as

[v1,v2,v3] = w1 - (v2 X wg) =det [ — vy — | = 6v(v1,v2,03).

This links the Euclidean scalar triple product to the signed volume of three vectors.
We can generalise this definition for an arbitrary symmetric bilinear form with matrix

representation B; we will call this the B-scalar triple product and define it by

[v1,v2, 03] g = v1 B (V2 XB V3).

The following result allows for the evaluation of the B-scalar triple product, which extends
a result of Gibbs [22, pp. 68-71]; this is a generalised version of the Euclidean scalar triple
product defined above.

Theorem 3 (Scalar triple product theorem) Suppose vi, vy and v3 are vectors in V3

and let M be the matrix with rows v1, v and vs, t.e.
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Then,

['1)1,'1)2,'1)3]3 = ['1)2,'1)3,’1)1]3 == ['1)37'1)1,'1)2]3
== - [’1)17’1)3,’1)2]3 - — ['1)2,'1)1,'1)3]3 = - [U37U27U1]B

= (det B) [v1,va,v3] = det (M B).

Proof. By the definition of the B-scalar triple product, the B-scalar product and the

B-vector product,

[v1,v2,v3]p = v1-B (V2 XBV3)
= v B((va x v3)adj B)"
= v (BadjB) (vg x v3)T

Since Badj B = (det B) I3 and vy - (v2 X v3) = det M,

[v1,v2,v3] g = (det B) (vl (v X ’U3)T>
= (det B) (v1 - (vg X v3)),
= det Bdet M
= det(MB).

The other results follow by symmetry. =
From the Scalar triple product theorem, we can make an important implication regard-
ing vector products, which is framed in the literatures as a property of vector products,

for example in Anton and Rorres [2, p. 215].

Corollary 4 For vectors v and w in V3, v and w are both B-perpendicular to v X g w,
i.€.

vip(vxpw) and wlp(vXxXpw).

Proof. If one row or column of a matrix is a non-zero multiple of another then its

determinant is zero. Therefore, by the Scalar triple product theorem,

J— 'l) J—
v-p(vxpw)=[v,v,wy=det | — v —|detB=0.

- w -

Similarly [w,v,w]z; =0 and thus v Lp (v xpw) and w Lp (v Xpw). =

The B-vector triple product of three vectors vy, vs, v3 € V? will be defined by
(v1,v2,v3) g = v1 X (V2 XpB V3).

We can evaluate this by generalising the following result of Lagrange [34] for B-vector

products. A detailed proof in English is given for the Euclidean case by Chapman and

8
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Milne [9], while [48, pp. 28-29] provides a brute-force approach for the Euclidean case
which involves expressing the vectors in three-dimensional co-ordinate form and expressing

the Euclidean scalar and vector products in terms of them.

Theorem 5 (Lagrange’s formula) For vectors vy, vy and vz in V3, the B-vector triple

product (vi,v2,v3) 5 can be expressed as
(v1,v2,v3) g = (det B) [(v1 -B v3) v2 — (v1 -B V2) V3]
Proof. Let w = (v1,v2,v3) 5. We have that (vo Xp v3) Lp w, as well as
vy Lp (va xpw3) and w3 Lp (va Xpuws3).
Therefore, w is parallel to a linear combination of v and wvg, i.e. for some o, 5 € F,
w = ave + PBus.
Furthermore, since v1 1 g w, the definition of B-perpendicularity shows that
w-pv1 =a(vy-pv2)+ B (v1-puvg) =0.

This equality is true precisely when o = A (v1-pwv3) and B = —A(v1 -p va), for some

non-zero A € F. Hence,
w =\ [(’Ul ‘B ’U3)’U2 — (’1)1 ‘B 1}2)1}3] .

To proceed, we first want to prove that A\ is independent of the choices v1, vo and vs3,
so that we can compute w for arbitrary vy, ve,vs. First, suppose that A is dependent on

v1,v2,v3; in other words, let A = A (v1, v2,v3). Given another vector d € V3, we have
w-pd=\(v1,v2,v3) [(v1 B v3) (v2 B d) — (v1-Bv2) (v3-Bd).

Directly substituting the definition of w, we use the Scalar triple product theorem to

obtain
w-pd=(v1 Xp (va Xxpw3)) -pd=wv1-p((v2 xpv3) Xpd) =—v1 - (d,v2,v3) 5.
Thus,
—v1 g (d,v2,v3)g = —v1-B(A(d,v2,v3)[(d B v3)v2 — (d B V2)V3])

= )\(d,vg,vg) [(1)1 ‘B U3) (UQ ‘B d) — (Ul ‘B 1)2) (Ug ‘B d)] .

Since this expression is equal to w -p d, we deduce that A (vi,v2,v3) = A(d,ve,v3) and

hence A must be independent of the choice of v1. Given this observation, suppose instead

9
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that A = A (v2,v3), so that
w-gd=M\(ve,v3) [(v1 B v3) (V2 B d) — (v -Bv2) (v3-Bd).
By direct substitution of w, we use the Scalar triple product theorem to obtain
w-pd=(v1 XB (va Xpw3)) -Bd=(va Xxpuv3) g (dxXpv1)="1v2p(v3,d,v1)p.

Similarly,

v2 - A(d2,v3) ((v1-Bv3)d— (v3-Bd)vr)
= A(d,v1)[(v1-Bv3)(v2-Bd)— (v1-Bv2)(v3-Bd).

vo -B (v3,d,v1) 5

Since this expression is also equal to w -p d, we deduce that A (ve,v3) = A(d,v1) and
conclude that A is indeed independent of v9 and v3, in addition to v1. At this point, we
can find A by substitution of arbitrary vectors for vy, vo and vs. In that case, suppose
that va = (1,0,0) = e; and v; = v3 = (0,1,0) = eg; then, noting the definition of adj B,

we have

ar By By
vg xpv3=(0,0,1) | B3 a2 By | = (82,61, a3)
By b1 as
and hence
ar B3 B
(vi,v2,v3) g = [(0,1,0) X (Bg, By, 3)] | B3 2 By
By B1 a3
ar B3 B
= (a3,0,—B3) | B3 a2 Py
By B1 a3

= (aaz — B3, a3B3 — §152,0)
- (det B) (a27 _b37 O) .

Since v1 g v = elBeg =bz and v ‘g U3 = egBeg = ao, it follows that

(det B) (ag, —b3,0) = (detB)[(v1-Bvs)er — (vi-Bv2)es]
= (det B) [(v1 ‘B v3)va — (v1 B v2) V3]

= <U17U27U3>B'

From this, we deduce that A = det B and hence

<U1,U2,U3>B = (det B) [(Ul ‘B Ug) Vg — (Ul ‘B 222) Ug] ,

10
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as required. m

The B-vector product is generally not an associative operation, i.e. the six variants
of (v1,v2,v3) 5 generally yield different results. The following result, dating back to 1829
and attributed to Jacobi [31] in the Euclidean case, illustrates the link between three of

them.

Theorem 6 (Jacobi identity) For vectors vy, vo and vz in V3,

<v1,v2,v3>3 + (02,?)371)1)3 + <U37v17v2>B =0.

Proof. Apply Lagrange’s formula on each of the three summands to get
<’U1, V2, ’U3>B = (det B) [(’Ul ‘B ’1}3) Vo — (’1}1 ‘B 1}2) 1}3] y

(v2,v3,v1) p = (det B) [(v1 B v2) v3 — (v2 "B v3) V1],
and
(v3,v1,v2) g = (det B) [(v2 -B v3) v1 — (v1 B v3) V2] .

So,

(v1,v2,v3) g + (v2,v3,v1) g + (V3,V1,02) 5

(det B) [(v1 - v3) va — (v1 g v2) v3] + (det B) [(v1 - v2) v3 — (v2 - v3) V1]
+ (det B) [(1}2 ‘B Ug) V1 — (Ul ‘B Ug) 1}2}

= 0,

as required. m

Combining this result with the alternating and bilinear properties of the cross product,
we deduce that V3 forms a Lie algebra with respect to vector addition and the B-vector
product. This concept is defined in Belifante and Kolman [4, pp. 12-13], as well as
Humphreys [30, p. 1], for a general vector space over an arbitrary field that is endowed
with a general Lie bracket, for which the Fuclidean vector product is provided as the
simplest example of a Lie algebra over the "real number field". This provides motivation
for a study of three-dimensional Lie algebras founded purely on generalised vector products
over general fields, which we will not pursue here.

The following result allows us to compute the vector (v1 X g v2) X g(vs X g v4), based on
the properties of Euclidean vector products. We will call such an operation a B-quadruple

vector product, which extends the result in the Euclidean case by Gibbs [22, pp. 76-77].
Theorem 7 (Quadruple vector product theorem) For vectors vy, ve, vs and vyq in
VS

(v1 xpv2) xp (v3 xpvy) = (det B)([v1,v2,v4]gv3 — [v1,v2,v3] 5 va)

= (det B) ([v1,v3,v4] g va — [v2,v3,v4] g 1) .

11
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Proof. If u = v; Xp v, then use Lagrange’s formula to get

(vi Xxpv2) Xp (3 Xpva) = (u,v3,04)p

= (det B)[(u-pv4)vs — (u-pv3)vy].
From the Scalar triple product theorem,
u-pvg = [v1,v2,v3]p and u-puvs=[v1,V2,04]p5.
Therefore,
(v1 XxBv2) xp (v3 xp va) = (det B) [[v1, v2, V4] g v3 — [v1, V2, V3] g va] .

Also, if w = v3 X g v4, then use Lagrange’s formula to get

(vi XBw2) X (v3 xpva) = (Vi Xpv2) Xxpw = —(w,vi,v2)5 = (W,v2,01)p

= (detB)[(w-gv1)vy — (w-pv2)v1].
From the Scalar triple product theorem,
w-p v = [v1,03,0)p and w-pvy = [v2,V3,04] 5.
Therefore,
(vi xBv2) XB (v3 Xpva) = (det B) [[v1, v3,v4] g v2 — [v2,v3,v4] g 1] .

Thus, the desired result is obtained. m

The following corollary will come in handy as we progress through the thesis.

Corollary 8 For vectors v, vy and v3 in V3, and

we have
(01 X5 v2) X5 (V1 X5 v3) = [(det B)? (det M)} v

Proof. By the Quadruple vector product theorem,
(1)1 XB 1)2) XB (1)1 XB 1)3) = (det B) ([1)1, V2, ’U3]B vl — [Ul, V2, UﬂB 1)3) .
Since [v1,v2,v1]g =0,

(v1 XBv2) xp (v1 X v3) = (det B) [v1, v2, V3] 5 V1.

12
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We then use the Scalar triple product theorem to obtain
(vl X B 1}2) X B (’Ul X B 1)3) = (det B)2 (det M) U1,

as required. ®m

In addition to the B-quadruple vector product, we can also talk about a B-quadruple
scalar product, which is the operation given by (v; Xp v2) B (v3 X v4). The following
result allows us to compute B-quadruple scalar products purely in terms of B-scalar
products; this is a generalisation of a result of independent works by Binet [5] and Cauchy
[8], as highlighted by Brualdi and Schneider [7], and is thus called the Binet-Cauchy
identity. The Euclidean version of the following result is also explained and proven in
English in [48, p. 29].

Theorem 9 (Binet-Cauchy identity) For vectors vi, va, vz and vy in V3,
(v1 Xp v2) B (v3 XB va) = (det B) [(v1 -5 v3) (v2 B va) — (V1 B v4) (V2B v3)].

Proof. Let w = v1 X g v, so that by the Scalar triple product theorem,

w-p (V3 Xpvs) = [va,w, V3] 5.
By Lagrange’s formula,
wXxpvy = (v Xpvg) Xpvs=—(v3,01,V2)p

= —(det B) [(v2 B v3)v1 — (v1 -B v3) V2]

= (det B) [(1}1 ‘B 1}3) Vg — (Ug ‘B 213) Ul] .
Hence,
(’1)1 XB 112) ‘B (1)3 XB 1)4) = ((det B) [(1}1 ‘B 113) Vg — (’Ug ‘B ’03) 1)1]) * Vg
= (det B) [(v1 ‘B 1)3) (112 ‘B 1)4) — (1)1 ‘B U4) (1)2 ‘B 1)3)] .

Thus, the desired result is obtained. m
The following result is a special case of the Binet-Cauchy identity, which will be im-
portant for calculations in later parts of the thesis. This is a generalisation of another

result of Lagrange [34], which is also shown in English by Steele [49, pp. 37-39].

Theorem 10 (Lagrange’s identity) Given vectors vy and ve in V3,
Qp (v1 xpv2) = (det B) [QB (v1) Qp (v2) — (v1 g v2)?
Proof. We start with the Binet-Cauchy identity

(v1 XBv2) B (v3 xBvyg) = (det B) [(v1 -p v3) (v2 -B v4) — (v1 B v4) (V2 -B V3)].

13
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If v3 = v1 and v4 = vs, then we substitute these quantities into our equation to obtain the

desired result. m

1.4 Geometric objects in A3

Besides points, the fundamental objects in the affine geometry of A2 include lines and

planes which we now introduce.

Figure 1.1: Line A;As

A line in A3 is an expression involving two distinct points, say A; and As, which can
be denoted by Aj Ay (see Figure 1.1); it has the condition that two lines A; A and By Bs
are equal precisely when the points B and By can be expressed in the form A; + Am ,
for some A € F. In such a case, we say that the vector /TAQ) (or any non-zero multiple of
it) is called a direction vector of the line A;Ay. The line A; Ay can be represented by

an affine combination, i.e. any point X on the line A;As can be written as

—
X = A1+)\A1A2:A1+)\(A2—A1)
— (1= ) As + M,

for some )\ € F.

A plane in A3 is an expression involving three non-collinear points, say A;, Ay and
As, which is denoted by A;A3As (see Figure 1.2); it has the condition that two planes
A1A2A3 and By By B3 are equal precisely when the points By, Bo and B3 can be expressed
in the form A; + )\fTA; + um, for some A, € F. In such a case, we say that the

vectors A1 Ay and Aj As (or any two non-zero linearly independent vectors which are linear

combinations of them) are spanning vectors of the plane A;AsAs. The plane A;A3A3

can be similarly expressed as an affine combination, i.e. for any point X lying on A; A5 As,

14
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3e

° M:L

A

Figure 1.2: Plane AgAjAs

we have for A, u € F that

— —_—
X = A;+XA1A5+ ,uA1A3
= A1+)\(A2—A1)+M(A3—A1)
= (I=X—p) A + Ny + pAs.

Figure 1.3: Triangle AgA;1As

A triangle in A3 will be defined as an unordered collection of three points in A3.
Given three points Ag, A; and Ay in A3, we denote a triangle by AgAj Ay (see Figure 1.3).
In addition to the points Ay, A1 and As, such a triangle also has lines

lo1 = AgA1, lo2 = AgAz and [12 = A1 As.

We define a side of a triangle to be a pair of points which determine a line, and a vertex

of a triangle to be a pair of lines which determine a point. The triangle AyA; Ao has sides
A()Al, AOA2 and AlAQ,

15
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as well as vertices

loilo2, loili2 and  lgolia.

Similarly, a tetrahedron in A? will be defined as an unordered collection of four points
in A3. Given four points Ag, A;, A and Az in A3, we denote a tetrahedron with these
points by AgA1AsAs (see Figure 1.4). In addition to points, such a tetrahedron also has
lines

lo1 = AgA1, lo2 = AgAz, loz = ApAs,
112 = A1A2, l13 = A1A3 and l23 = A2A3,

as well as planes

AOA1A2, AOA1A3, AOA2A3 and A1A2A3‘

Figure 1.4: Tetrahedron AgA;AsAsg

The edge of a tetrahedron is a collection of two points of it which defines a line, and
the triangle of a tetrahedron is a collection of three points of it which defines a plane.
The six sides of the tetrahedron AgA;AsAs are

AgAr, AgAa, AgAs, A1Ar, A1As and AxAs,

and the four triangles of the tetrahedron AgA;AsAg are

A()AlAQ, AOA1A3, AOA2A3 and A1A2A3.

A vertex of a tetrahedron is a collection of two concurrent lines of it. The twelve
vertices of the tetrahedron AygA;AsAg are

lotlo2, loili2, lo2l12, loilos, loili3, loslis,

lo2loz, lo2l23, lozlaz, li2l13, li2lo3 and  [13la3.

16
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A corner of a tetrahedron is a collection of three concurrent lines of it. The four corners
of the tetrahedron AgA;AsAs are

loilo2los, lorli2li3, lo2li2lez  and  loglislas.

1.5 Projective geometry

By extending our understanding of geometry from the affine setting to the projective
setting, we will introduce some new ideas and notions that will aid us in our study of pro-
jective geometry. We specifically use the methods in [55] and [60], emphasising projective
geometry from the view of spherical/elliptic geometry.

We will steer away from the usual formulations involving "infinite sets", and rather

frame the main definitions in terms of types of objects.

1.5.1 Projective points, lines and triangles

We will associate to V3, the associated vector space of A3, the two-dimensional projective
space denoted by P2, where the objects of interest are projective points and projective
lines.

A projective point p in P? is a single vector enclosed in square brackets, with the
condition that two projective points p; and po are equal precisely when one of the vectors
is a (non-zero) scalar multiple of the other. For a non-zero vector v = (z,y, z) € V3 and

a non-zero scalar A € F, we can denote a projective point p by

p=[v] = [(2,9,2)] = [A].

A projective line L in P? is a list of two linearly independent vectors enclosed in double
square brackets, with the condition that two projective lines L; and Lo are equal precisely
when the vectors in Lo can be written as a linear combination of the vectors in Lj.
By elementary linear algebra, this is a symmetric condition. For v; = (z1,y1,21) and

vy = (2, Y2, 22) in V3, we may denote such a projective line by

]

where a, 3,7, 6 € F satisfy the condition

a v\ _ o
det(ﬂ 6)—@5 By # 0.

We note the use of double brackets when defining projective lines. This is to indicate the
invariance of the choice of two linearly independent vectors for the projective line under a

linear map. Such notation is unnecessary for projective points, as invariance under a 1 x 1

17



CHAPTER 1. RATIONAL TRIGONOMETRY IN THREE DIMENSIONS

matrix and invariance under non-zero scalar multiplication are equivalent notions. Hence,
we will use single brackets to denote projective points.

We will make an important association between projective points and lines in P? with
one-dimensional and two-dimensional subspaces (respectively) of V3, which is central to
calculations in projective geometry and trigonometry. We also note that lower-case let-
tering in projective geometry is reserved for projective points and upper-case lettering in
projective geometry is reserved for projective lines. In the case of affine geometry, this
notation is reversed; while subtle, this allows us to highlight the natural connection, and
distinction, between affine space and projective space.

For v1 = (x1,91,21), v2 = (z2, Y2, 22) and v3 = (x3,ys, 23), we say that the projective

point p = [vg] is incident with the projective line L = [[v1, v2]] precisely when

1 Y1 2

det T2 Y2 22 = 0.

r3 Ys =3

This is well-defined and equivalent to saying that p lies on L, or that L passes through

p.
Given two distinct projective points p; = [v1] and pa = [v2], we can define the projective

line in P? passing through p; and ps to be the join of p; and ps, and denote this by

p1p2 = [[v1, v2]] -

We will also define the meet of two distinct projective lines Ly and Ls to be the projective
point p that lies on both L and Lo. If

Ly =[[v1,w1]] and Lo = [[va, w2

then we denote their meet by
LiLy = [u],

where the vector u satisfies the equations

det | — wp — =det | — wy — =0

Given three linearly independent vectors vy, ve and vz in V2 and
p1=[v1], p2=[va] and p3=[v3],

we define a projective triangle in P? to be an unordered collection of these three pro-
jective points and denote this by pipaps (see Figure 1.5). A construction of [64], we will

also refer to a projective triangle as a tripod.

18
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Figure 1.5: Tripod pi1p2p3

With p1, p2 and ps as the projective points of the tripod pip2ps, we also have the

joins of any two points of it as the projective lines and denote them by

Lis = p1p2, Li3 =pip3 and Lz = pap3.

In addition to the points and lines, we take the projective sides of the tripod to be the
set of any two points of it which defines a line and the projective vertices of the tripod
to be the set of any two lines of it which defines a point. We will denote the projective

sides of the tripod by
pip2, pips and  paps,

and the projective vertices by

LlLQ, L1L3 and L2L3.

1.5.2 Symmetric bilinear form, perpendicularity and duality

Since our objects in P? can be viewed as familiar one-dimensional and two-dimensional

subspaces of V3, we will perform further calculations on P? in terms of V3.

Recall that a 3 x 3 symmetric matrix B determines a symmetric bilinear form, or B-
scalar product, on V3 defined by u -z v = uBvT; in addition to this, we also defined the

B-vector product to be u xp v = (u X v) adj B.

We can then express a projective line L = [[v1, v2]] as
L= <’U1 ><Bv2> = ()\(Ul XBU2)>

for any non-zero A € F. For projective points p; = [v1] and pas = [v9], we can define the

B-normal of the projective line L = pips to be the projective point

P1 XBp2 = [Ul XB 112]-
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We now define the B-dual of the tripod pipaps3 to be the tripod 717373, where

rL=p2Xpp3, T2=p1 Xpp3 and 713 =p; Xpp.

Such a tripod, which is another construction of [64], will be called the B-dual projective

Figure 1.6: B-dual tripod q1¢2¢3 of tripod pip2ps3

triangle of the tripod pipaps (see Figure 1.6 for a Euclidean example); we will also call

this a B-dual tripod of pipsp3. There is a notion of B-duality for tripods.

Proposition 11 If the B-dual of the tripod p1pap3 is T17a7r3, then the B-dual of the tripod

T1T2T3 iS D1P2P3-

Proof. Let p1 = [v1], p2 = [v2] and p3 = [vs], so that

T1T =Pp2 XBP3 = [U2 XB 03], o =p1 XBP3 = [Ul XB US}

and

r3 =p1 XBpp2 = [711 XB 112]-

Suppose that the B-dual tripod of 77373 is given by ttots, where
tlET2X3T3, to =71 XB T3 and t3 =171 XBTo.
By the definition of the B-normal, we use Corollary 8 to get

ti = [(v1 xpwv3) xB (v1 XBv2)]

= [(det B) [v1, v3,v2] g v1] .

Since B is non-degenerate and the vectors vy, vy and vs are linearly independent, (det B) [v1, v3, v2] 5 #

0 and thus by the definition of a projective point

t1 = [v1] = p1.
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By symmetry, we must have that to = ps and t3 = ps3, and hence t1t9t3 = p1paps. Thus,

the B-dual tripod of 77373 is pip2p3. W

1.6 Rational trigonometric quantities

We now proceed from the geometry of A3 and P? to the affine and projective rational
trigonometry in the respective spaces. We assume that the associated vector space V2 of

A3 is equipped with a symmetric bilinear form with matrix representation

aq b3 b2
B= bg ag bl
b2 b1 as

1.6.1 Affine rational trigonometry

We first extend Wildberger’s definition of the quadrance to an arbitrary symmetric bilinear

form. The B-quadrance between two points A; and Ag in A? is

Qp (A1, 42) =Qp <A1A2> = A1 4y g A1As.
In what follows, define Archimedes’ function [59, p. 64] as
Aa,bc)=(a+b+c)* —2(a®+ 2 +2).
Simple algebraic rewriting gives us also the asymmetric forms
A(a,bc) =4ab— (a+b—c)* =4ac— (a +c—b)? =4be — (b+ ¢ —a)*.

Wildberger introduced Archimedes’ function to give a rational analog to the well-known
Heron’s formula, as shown in English by Heath [27, pp. 321-323]. The name comes from
the fact that Arab sources have attributed this formula to Archimedes, as highlighted
in [58]. For a triangle AgA;As in the planar Euclidean setting with B-quadrances

Qo1 = QB (Ao, A1), Qo2=Qp(Ag,A2) and Q12 = Qg (A1, A2),

[59, p. 68] showed that the quantity A (Qo1,Qo2, Q12) is equal to 16 times the squared
area of AgAiAs; note that in the Euclidean setting, the matrix B is the 2 x 2 identity
matrix. Motivated by this, we can use Archimedes’ function and our vector formulation

to obtain a new result for rational trigonometry in three dimensions.

Theorem 12 (Three-dimensional quadrea theorem) Given a triangle AgAi1As in
—_— R —_—
A3, suppose that vgr = AgA1, voa = AgAs and vis = A1 As, and let

Qo1 = QB (Ao, A1), Qu2=0Qp(Ap,A2) and Q12 =Qp(A1,A42).
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Then,

det B
4

A(Qo1, Qoz, Q12) -

@B (001 XB U02) =Q@nB (1101 XB U12) =QB (1102 XB U12) =

_— —_—
Proof. If vg; = AgA; and vge = AgAs, Lagrange’s identity gives

@B (vo1 X p vo2) = (det B) [QB (vo1) @5 (vo2) — (vor -5 vo2)*

Since
. Qo1 + Qo2 — Q12
Vo1 "B V02 = > ,
we have
- 2
Qp (vo1 Xpve2) = (det B) [Qo1Qo2 — <Q01 + Q202 Q12> ]
= dele [4Q01Q02 — (Qo1 + Qo2 — QIQ)Q}
= deleA (Qo1, Qo2, Q12) -

By symmetry, we will obtain the same result when computing Qg (vo1 X g v12) and Qg (vo2 X g v12)-

This result motivates us to define the B-quadrea of a triangle AgA;As with B-

quadrances

Qo1 = QB (Ao, A1), Qu2=0Qp(As,A2) and Q12 =Qp (A1, As)

to be the quantity
Ap (ApgA142) = A(Qo1, Qoz, Q12) ,

so that
S 4 _— _
Ap (AgA1Ay) = mQB (AOAI Xp AoAz
4 —_— —_—

= detBQB (Ale XB A1A2)

4 _ _

= detBQB (AQAO XB A2A1 .

This is an extension of the usual definition of quadrea as given in [59, p. 68].
If we have a tetrahedron AgA;AsAs in A% with v1 = AgAq, va = AgAs and v3 = AgAs,

then we define its B-quadrume as

Vi (Ao A1 A2 A3) = 144 (det B) (v (v1,v2,v3))°.

We can express the B-quadrume of the tetrahedron AgA; As As in terms of its B-quadrances;

this result will explain the choice of the factor 144 in the definition.
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Theorem 13 (Quadrume theorem) For a tetrahedron AgA;AyAs in A3, define Qij =
QB (Ai, Aj), for 0 < i < j < 3. The B-quadrume of the tetrahedron AgAi1AsAsz can be

expressed as

) 2Q01 Qo1 + Qo2 — Q12 Qo1 + Qo3 — Q13
Vi (AgA1A243) = 5 |@o1 + Qo2 — Q12 2Qoz2 Qo2 + Qo3 — Q23] -
Qo1 + Qoz — Q13 Qo2 + Qo3 — Q23 2Qo3

—_— —_— —_—
Proof. Let v1 = AgAq, vo = AgAs and v3 = AgAs, and let

Using the Scalar triple product theorem, we have from the definition of the B-quadrume
that

det (M) 12
e
= 4det (MBMT)

VB (AOA1A2A3) = 144detB[

U1°BV1 V1°-BvV2 7V1°B7U3
= 4|vy-pvy V2-BU2 V2 -BU3|.

V1'BVU3 V2°-BU3 U3°'BU3

The diagonal entries evaluate to
v1-pv1 = Qp(v1) = Qo1, v2-pv2=Qp(v2) = Qo2

and
v3-p U3 = QB (v3) = Qo3.

By the polarisation formula, we also have

Qo1 + Qo2 — Q12 Qo1+ Qo3 — Q13
2 , U1°'BU3 = 9

V1 'BV2 =

and

Qo2 + Qoz — Q23
> .

Substitute the above six quantities into the expression for Vg (A0A1A2A3) and simplify

V2 B U3 =

to get
) 2Qo1 Qo1 + Qo2 — Q12 Qo1 + Qo3 — Q13
Vi (AoA1A243) = 5 |@o1 + Qo2 — Q12 2Qoz2 Qo2 + Qo3 — Q23] -
Qo1 + Qoz — Q13 Qo2 + Qoz — Q23 2Q03
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Remark 14 The B-quadrume Vg (A(]AlAQAg) can be written as the polynomial

4Q01Q02Q03 + (Qo1 + Qo2 — Q12) (Qo1 + Qo3 — Q13) (Qoz2 + Qo3 — Q23)
Qo1 (Qoz2 + Qos — Q23)* — Qo2 (Qo1 + Qos — Q13)* — Qo3 (Qo1 + Qo2 — Q12)*,

which is a symmetric expression in the B-quadrances. This means that the choice of
vectors in the definition of the B-quadrume is arbitrary, as long as they emanate from a
single point of the tetrahedron AgAi1AsAs.

The following result is of use to us as we progress throughout the thesis.

Theorem 15 (Quadrume matrix product theorem) For a tetrahedron AygA;AzAs
in A3, let v; = AgA; fori=1,2,3 and let

Then,
Vp (AgA1A243) = 4det (MBM™).

Proof. This is a direct result from the proof of the Quadrume theorem. m

The determinant present in the definition is called the Cayley-Menger determinant.
Appearing in Audet [3], Dérrie [19, pp. 285-289] and Sommerville [47, pp. 124-126], this
determinant forms the basis for calculating higher-dimensional trigonometric quantities.
While named after Cayley and Menger, this formula was known to FEuler and dates back
to works of Tartaglia.

Given two lines {1 and Iy in A3 with respective direction vectors v; and vs, we define

the B-spread between them to be

(v1 - va)?

© Qp (1) Qp (v)’

SB (ll,lg) =1

which by Lagrange’s identity can be rewritten as

Qp (11 XB v2)
det B) @B (v1) @B (v2)

sp(li,l2) = (

While the former expression is an extension of Wildberger’s definition of the spread [59, p.
73], the latter expression is a reformulation in terms of the B-vector product. Comple-
mentary to the spread, we will also define the B-cross between the same two lines {; and

l5 to be

- 2
— V1 "BV
cg(li,la) =1 —sp(l1,l2) = (v1 B v2)

"~ Qp(v1) QB (v2)
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This has been defined in the Euclidean case in [59, p. 74].

In what follows, we can represent a plane II in A3 with spanning vectors v and w in
terms of a B-normal vector n = v X g w, so that any point X on II which passes through

a given point A satisfies the equation
—
AX ‘BN = 0.

So, given two planes II; and II, in A3 with B-normal vectors nq,ns, we define the B-

dihedral spread, or just the dihedral spread, between them to be

(n1 -5 n2)?

Qp (nm) QB (n2)

EB (Hl,Hg) =1-—

This can be rewritten using Lagrange’s identity as

@B (n1 XB TLQ)

(det B) QB (711) QB (’Im) ’

Ep (II1,1I5) =

The B-dihedral spread was introduced for the Euclidean setting in [63] as a rational analog
to dihedral angles between planes in three dimensions. We will also define the B-dihedral

cross between the same two planes II; and Il to be

2
Cp (I, 1) =1 - Ep (I, 1) = QB(?;l.;BC;;)(W)'

Note that the definitions of B-spread, B-cross, B-dihedral spread and B-dihedral cross are

well-defined, i.e. the quantities do not vary when the vectors are varied under non-zero

scalar multiplication.

Suppose now we have three concurrent lines l1, I and I3 in A2 with respective direction

vectors v, ve and vs. We define the B-solid spread between [, ls and [3 to be

([vh V2, 1)3]3)2

(det B) Qp (v1) @p (v2) @B (v3)

With the inclusion of the factor det B in the denominator, we have that the B-solid spread

Sp (l1,12,13) =

is a well-defined quantity, i.e. for a non-zero scalar A € F,

([Ulv v2, 1)3])\3)2
(det AB) Qxp (v1) Qs (v2) QB (v3)
([v1, va, v3] (A det B))?
A3 (N det B) Qp (v1) Qp (v2) Qp (v3)
A0 ([Ulv V2, U3]B)2
A (det B) Qp (v1) @ (v2) Qp (v3)
= Sp(l1,l2,13),

Sag (i, l2,13) =
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and if we multiply any of the direction vectors of [y, I3 or I3 by a non-zero scalar then the
quantity remains invariant.

B-solid spreads are rational analogs of the solid angle, or the spherical excess, of a
spherical triangle; a definition of Girard’s but explained in English by Todhunter [53, pp.
72-73], the notion of a solid spread was introduced in [63] for the Euclidean setting. In
the next chapter we will link the definition of solid spread to certain results in projective
geometry.

We can also consider a rational analog of the solid angle of a dual spherical triangle [24].
Given the same lines l1, l2 and [3 as before, we construct concurrent lines k19, k13 and ko3

with respective direction vectors
Nig = V1 XB U2, N3 =v1 Xgvy and mnogz = vy Xp V3.
We define the B-dual solid spread between [1, [o and I3 to be

Dp (l1,12,13) = Sp (ki2, k13, k23) -

Note again that this quantity is well-defined, since the solid spread is well-defined. So,
the B-dual solid spread associated to a tripod is the B-solid spread associated to its dual
tripod. This is a novel quantity in the affine case, for which its significance and its relevance

to projective geometry will be highlighted later on.

1.6.2 Elementary results from affine rational trigonometry

We present some results with regards to the trigonometric quantities we have just defined.
Here, we will restrict our presentation to the two-dimensional aspects of trigonometry, and
create a separate chapter for a discussion on the trigonometry of the tetrahedron.

In what follows, we will consider a triangle AgA; Ay in A® with B-quadrances

Qo1 = Qp (Ao, A1), Qo2 =Qp (Ao, A2) and Q12 = Qp (A1, A2),
B-spreads
so = sp (ApA1, ApAz), s1=sp(ApA1,A1A2) and s9 =sp(Agda, A1A),
and B-quadrea
A= Ap (AgA1Ay) .

We illustrate the trigonometric quantities associated to AgA; Ay in Figure 1.7. Note that
throughout the thesis we will follow Wildberger’s notation of using small rectangles to
denote B-quadrances in our diagrams, and straight line segments at vertices to denote
B-spreads.

We draw on already-proven results from [59], but offer alternative proofs using the

26



1.6. RATIONAL TRIGONOMETRIC QUANTITIES

Figure 1.7: A triangle AgA1As with B-quadrances Qo1, Qo2 and 12, and B-spreads sg,
s1 and so displayed

three-dimensional framework we have set up in this chapter. [59] dealt with the two-
dimensional situation, and [55] discussed the same treatment in higher dimensions. In our
three-dimensional framework, the B-vector product allows for a special treatment and we
aim to prove the results now for an arbitrary symmetric bilinear form.

The first result is an analog of the cosine law in classical trigonometry.

Theorem 16 (Cross law) For a triangle AgA1 Ay in A3 with B-quadrances Qo1, Qo2

and Q12, and B-spreads sg, s1 and sa, the relations
(Qo1 + Qo2 — Q12)* = 4Q01Q02 (1 — 50) ,

(Qo1 + Q12 — Qo2)* = 4Q1Q12 (1 — 51)

and

(Qoz + Q12 — Qo1)* = 4Qp2Q12 (1 — 59)

are satisfied.

—_— —_— . .
Proof. Let v; = AgA; and vy = AgAs, so that by the polarisation formula,

Qo1 + Qo2 — Q12
5 .

V1B U2 =
Rearrange this result to get
Qo1 + Qo2 — Q12 = 2 (v1 'B V2)
and then square both sides to get
(Qor + Qo2 — Q12)” = 4 (v1 g v2)”.
Since v1 and vy are the respective direction vectors of the lines AgA; and AgAs, the
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definition of the B-spread gives

(v1 - v2)?

QRp (1) QB (v2)

S0 = 1-—
Rearrange this to get

(v1 -5 v2)* = Qp (v1) Q5 (v2) (1 — 50) = Qo1Qo2 (1 — 50)

and so

(Qo1 + Qo2 — Q12)* = 4Q01Qo2 (1 — sp) .

The other relations follow by symmetry. m

Note that we can rewrite the Cross law in terms of the crosses
co=1—59, c1=1—51 and co=1— s9.

We can use the Cross law as a fundamental building block for a number of other results.
For instance, we can express the B-quadrea of a triangle in terms of its B-quadrances and

B-spreads.

Theorem 17 (Quadrea spread theorem) For a triangle AgA; Ay in A3 with B-quadrances
Qo1, Qo2 and Q12, B-spreads sg, s1 and s2, and B-quadrea A, we have

A =4Q01Q0250 = 4Q01Q1251 = 4Q02Q1252.
Proof. From one of the Cross law relations

(Qo1 + Qo2 — Q12)* = 4Q01Qo2 (1 — s0) ,

rearrange to get

4Q01Qo2 — (Qo1 + Qo2 — Q12)? = 4Q01Qo250-

Rewrite the left hand side to obtain

A (Qo1, Qoz, Q12) = A = 4Q01Q0250-

The other results follow by symmetry. =

We can use the Quadrea spread theorem to determine whether three points in A3 lie

on the same line.

Theorem 18 (Triple quad formula) Let Ag, Ay and Ay be three points in A3 and

Qo1 = QB (Ao, A1), Qu2=QpB (Ao, A2) and Q12 =Qp(A1,A42).
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If Ay, A1 and As are collinear, then

(Qo1 + Qo2 + Q12)* = 2 (Q3, + Q% + QL) .

Proof. Consider the triangle AgA1As with B-quadrances Qo1, Qo2 and @12, B-spreads
80, 81 and s9, and B-quadrea A. If Ag, Ay and Ay are collinear, then sy = s;1 = s5 = 0
and thus A = 0 by the Quadrea spread theorem. By the definition of the B-quadrea,

A(Qo1, Qo2, Q12) = (Qo1 + Qo2 + Q12)” — 2 (Q3, + Q% + Q%) = 0.

Rearrange the equation to obtain

(Qo1 + Qo2 + le)2 =2 (Q(Qn + Qb + Q%2) .

Thus, the desired result is obtained. m
The Cross law also gives the most important result in geometry and trigonometry:

Pythagoras’ theorem.

Theorem 19 (Pythagoras’ theorem) For a triangle AgA1As in A3 with B-quadrances

Qo1, Qo2 and Q12, and B-spreads sy, s1 and sa, sg = 1 precisely when

Qo1 + Qo2 = Q12.

Proof. Start with the Cross law relation

(Qo1 + Qo2 — Q12)* = 4Q01Qo2 (1 — sp) .

If sp = 1, then

4Q01Q02 (1 — s0) = 0.
This gives

Qo1 + Qo2 — Q12 =0
and hence

Qo1 + Qo2 = Q12.

Conversely, if Qo1 + Qo2 = Q12 then, Qo1 + Qo2 — Q12 = 0 and we thus have that

Ap (AgA14s) = (Qo1+ Qo2 + Q12)* — 2 (Q% + Q3 + Q%)
= 4Q01Q02 — (Qo1 + Qo2 — Q12)*
= 4Q01Qo2-

Comparing this result with the Quadrea spread theorem, we must conclude that sg = 1
as required. =

One other use of the Quadrea spread theorem is in determining ratios between B-

29



CHAPTER 1. RATIONAL TRIGONOMETRY IN THREE DIMENSIONS

spreads and B-quadrances, which is a rational analog of the sine law in classical trigonom-

etry.

Theorem 20 (Spread law) For a triangle AgAi1 Ay with B-quadrances Qo1, Qo2 and

Q12, B-spreads sg, s1 and sa, and B-quadrea A, the following relation is satisfied:

80_81_82 ./4

Q2 Qo2 Qo1 4Q1Qu2Q12’

Proof. We start with the Quadrea spread theorem, which is

A =4Q01Q0250 = 4Q01Q1251 = 4Q02Q1252.

Compute sg, s1 and so in terms of this result to get

A A A

s)=———, S1=-——7+— and Ssp=———.
0 4Q01Q02 ' 100101 2 4Q02Q12

Divide sg, s1 and sg by 12, Qo2 and (o1 respectively to get

S0 S1 S92 A

Qi Qo Qo 4Q0QuQis’

as required. m
We will end this section by presenting a result that gives a relationship between the
three B-spreads of a triangle, following the proof in [59, pp. 89-90] which was presented

in the Euclidean setting.

Theorem 21 (Triple spread formula) For a triangle AgA1 Ay in A3 with B-spreads

So, S1 and so, we have the relation
(so+s1+ 52)2 =2 (5(2) + s% + s%) + 4505153.

Proof. From the result of the Spread law, let

1Q01Q0Q12
.A Y

D

so that
Qo1 = Dsa, Qo2 =Ds; and Q12 = Dso.

Given the Cross law

(Qo1 + Qo2 — Q12)” = 4Q01Q02 (1 — s0) ,
we substitute our initial calculations and rearrange to get

D? (59 + 51 — s2)% = 4D%sps1 (1 — s3)..
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Divide by D? and rearrange this formula to obtain
4s0s1 — (so + s1 — 32)2 = 45351 59.
We use Archimedes’ function to express this result as
(s0+ 514 s2)° — 2 (s§ + 57+ s3) = 4sps152
and rearrange to get
(so+ s1+ 32)2 =2 (5(2) + s% + s%) + 45057159.

By symmetry, we will obtain the same result when using the other two results from the
Cross law. =

In classical Euclidean trigonometry, the Triple spread formula corresponds to the fact
that angles in a triangle sum up to two right angles, as propositioned and proven in
Elements. Here, we are generalising such a result to arbitrary geometries, where this

simple fact does not hold.

1.6.3 Projective rational trigonometry

Rational trigonometry has an affine and projective version. The projective version is
typically more algebraically involved. The distinction was first laid out in [64] by framing
hyperbolic geometry in a projective setting. So, the projective results are the essential
formulas for the rational trigonometry approach to both hyperbolic and spherical/elliptic
trigonometry. For us, the spherical/elliptic interpretation, as seen in Moritz [42] and
Todhunter [53], is key.

An important consequence of projective geometry is that any statement made about
projective points will also hold with regard to projective lines; this is the principle of
duality explained by Coxeter [16, pp. 15-16], which is the idea that there is a symmetry
in the roles of projective points and projective lines in the projective plane.

In what follows, we already have a symmetric bilinear form equipped on V3 with matrix

representation
al b3 bg
B=1b; ay b
b2 bl as

We define the B-projective quadrance between two projective points p; = [v1] and
p2 = [v2] in P2 to be
(v1-B 112)2 QB (v1 X B v2)

4 (Pr,p2) =1 Qp (1) Qp (v2) — (det B) Qp (v1) Qp (v2)°

Dually, we will define the B-projective spread, between two projective lines L; = (n1)
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and Lo = (ns) in P? to be

_ (n1-pn2)® QB (n1 X na)
S (L Le) =1 = ) Q@ ()~ (@t B) Qs (m1) Qi (m2)”

It is important for us to observe the similarities in the definition of B-spread in affine ratio-
nal trigonometry and the definition of B-projective quadrance above, as well as the similar-
ities in the definition of B-dihedral spread and the definition of B-projective spread above.
This is natural since projective points and lines can be associated with one-dimensional
and two-dimensional subspaces of V3 respectively, and thus will also be associated with

lines and planes in A3 respectively.

1.6.4 Elementary results from projective rational trigonometry

We now proceed to present results in projective rational trigonometry, which draw on the
results from [55] and [60], but will be framed in the three-dimensional framework using

B-vector products and a general symmetric bilinear form.

Figure 1.8: Tripod p1p2p3 with B-projective quadrances qi2, 13 and ¢23, and B-projective
spreads S1, S2 and S3 displayed

In what follows, we have three linearly independent vectors vy, vs,v3 € V3 and take

the tripod p1p2ps with projective points
p1 = [v1], p2=[ve] and p3=|vs].
The B-projective quadrances of the tripod pipaps are
q12 = qp (P1,p2), @13 =qp (p1,p3) and go3 = qp (P2, p3)
and the B-projective spreads are

S1 = Sp(pip2,p1p3), Sz = Sp (pip2,peps) and Ss = Sp (pips3, p2ps).
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We will also consider the B-dual tripod 717373 of pipap3, where

T1=p2XBpP3, T2=p1 Xpp3 and 713 =Dp| Xpp2.

As a result of Proposition 11, the B-projective quadrances of 717273 will be S1, So and
S3, and the B-projective spreads of mrars will be q12, g13 and go3. We illustrate the
trigonometric quantities of pypaps in Figure 1.8.

We now present a result regarding the ratio between B-projective spreads and B-

projective quadrances.

Theorem 22 (Projective spread law) Given a tripod pipaps with B-projective quad-

rances qi2, q13 and qo3, and B-projective spreads S1, Sy and S3, we have the relation

Si_%_ %
q23 q13 q12 '

Proof. If the points of the tripod pipaps are given by

p1=[v1], p2=]va] and ps=vs],

we express the lines of it by

p1p2 = <n12>, pi1p3 = <n13> and pop3 = <n23> )

where

N2 = V1 XBpV2, MNi13 =V1 XB U3 and Nn923 = V2 XB V3.

Let Q; = Qp (v;), for i = 1,2, 3, and
Ni2 =@ (n12), Niz3=Qp(n13) and Noz=Qp(no3).

From the definition of the B-projective quadrance,

QB (v1 XB v2) Nig

2= (4et B) Qp (1) Qp (v2)  (det B) Q1Qs

and similarly,
N 13 N 23

N3 (det B) Qng an 123 (det B) QQQg
From Corollary 8 and the definition of the B-projective spread,

QB (n12 x n13)

(det B) @B (n12) @B (n13)
Qs ((det B)? (det M) vy
(det B) N12N13
(det B)? (det M)? Q,
Ni2Ni3

S1
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and similarly,

g, — (det B)? (det M)? Q, and S5 — (det B)? (det M)2Q3'

N12N23 N13N23

Hence, we deduce that

S1 (det B)' (det M)* Q1@Q2Q3 Sz Ss

q23 N12N13No3 @3 Q2

If we balance each side of the result of the Projective spread law to its lowest common

denominator, multiplying through by the denominator motivates us to define the quantity

¢12¢1351 = q12¢2352 = q13¢2353 = ap (P1P2p3) = aB.

The quantity ap will be called the B-projective quadrea, of the tripod pipzps.

There is a relationship between the B-projective quadrea and the B-projective quad-
rances of a tripod pipap3 discovered in [55], which is central to our study of projective
rational trigonometry. We extend this result to an arbitrary symmetric bilinear form,

using quite a different argument.

Theorem 23 (Projective cross law) Given a tripod pipaps with B-projective quad-
rances qi2, q13 and o3, B-projective spreads Si, So and Ss, and B-projective quadrea

ap, the relation
(ap—qr2— @13 — @23 +2)> =4 (1 — q12) (1 — q13) (1 — go3)

1s satisfied.
Proof. Let Q; = Qp (v;), for i = 1,2,3. Use the Binet-Cauchy identity to get

(v1 Xxp v3) B (va X v3) = (det B) [(v1 - v2) (v3 B v3) — (v1 B v3) (V2B V3)].

Square both sides to obtain

[(111 XB 03) ‘B (712 XB 03)]2

= (det B)? |(v1 -5 v2)* Q3 + (v1 -5 v3)* (v2 B v3)* — 2 (v1 - va) (v1 - v3) (v2 B v3) Q3] -

As
[(v1 xB v3) B (v2 X v3)]?
QB (v1 Xpv3)Qp (v2 Xpv3)’

we rearrange this equation to obtain

Sy=1-

[(v1 x5 v3) B (v2 xpv3)]> = Qp (1 XxBvs)Qp (v2 xpv3) (1 — S3).
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Using Lagrange’s identity, this becomes

[(v1 xBv3) - (v2 xpu3)]> = (det B)? (Q1Q3 —(vi-B 7)3)2> <Q2Q3 —(v2 B 03)2> (1-2Ss)
= (det B)’ Q1Q2Q3 (1 — (1 — q13)) (1 — (1 — g23)) (1 — S3)
= (det B)* Q1Q2Q3q13q23 (1 — S3) .

Equate this result with our initial result and rearrange to get

2 (det B)2 Q3 (Ul ‘B 1)2) (1)1 ‘B Ug) (1}2 ‘B 1}3)
det B)? [Q1Q2Q3 (1 — q12) + Q1Q2Q3 (1 — q13) (1 — g23) — Q1Q2Q3¢13923 (1 — S3)]

(
(det B)? Q1Q2Q2 (S3q13¢23 — q12 — q13 — qa3 + 2) .

Divide both sides by (det B)2 ()3 and then square each side to obtain

Q?Q3Q% (S3qu3q2s — Q12 — 13 — qo3 + 2)°
= 4(v1-gva)* (v -5 u3)? (vg-pu3)?

= 4Q1Q3Q3 (1 — q12) (1 — qu3) (1 — go3) -
Divide both sides by (Q1Q2Q3)2 to get
(Ssq13qas — q12 — q13 — gas + 2)* =4 (1 — q12) (1 — qu3) (1 — qu3) .
Since ap = 5313923, we end up with
(aB—q12— @13 — 23 +2)° =4(1— qu2) (1 — q13) (1 — qo3) ,

as required. If we started with the B-quadruple scalar product (v; Xp v2) - (v1 X v3) or
(v1 Xp v2) - (v2 X v3), we would arrive at the same result by symmetry. m

The Projective cross law can also be expressed in various asymmetric forms.

Corollary 24 Given a tripod pipaps with B-projective quadrances qi2, qiz and qa3, and

B-projective spreads S1, Sa and Ss, the Projective cross law can be rewritten as either
(1201351 — q12 — @13 + ¢23)° = 4qu2q13 (1 — q23) (1 — 1),

(q1242352 — q12 + @13 — q23)% = 4qr2ga3 (1 — q13) (1 — Sa)

or

(13¢2355 + @12 — @13 — @23)” = 4q13¢23 (1 — qr2) (1 — S3).
Proof. Substitute ap = S1q12¢13 = (1 — C1) ¢12¢13 into the Projective cross law to get

(1= C1) qraqus — qi2 — q13 — qa3 + 2)* — 4 (1 — qu2) (1 — qu3) (1 — g23) = 0.
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Expand the left-hand side and simplify the result as a polynomial in C; to obtain

(6%20%5) CF + 2q12q13 (q12 + @13 + @23 — qu2q13 — 2) C1 + (q12413 — q12 — @13 + q23)° = 0.

Add both sides by 4g12q13 (1 — ga23) C1 to get

(Q%2Q%3) 012 + 2q12q13 (q12 + @13 — @23 — q12q13) C1 + (q12q13 — q12 — Q13 + (123)2
= 4q12q13 (1 — qo3) C1.

As the left-hand side is a perfect square, factorise this to get

(q12 + 13 — q23 — Q2013 + @12613C1)* = 4qr2q13 (1 — qo3) Ch.

Replace C7 with 1 — S and simplify to obtain
(q12 + q13 — q23 — qu2q13 + (1 — S1) q12q13)°

2
= (qi2+ @13 — @23 — q12q1351)" = 4q12q13 (1 — q23) (1 = S1) .

The other results follow by symmetry. m

Note that the B-projective quadrea ap also features in these asymmetric reformulation,

and thus can replace the quantity gi2¢1351 (as well as its symmetrical reformulations).

In addition to the B-projective quadrea, we can also discuss the B-dual concept. This

quantity is called the B-quadreal [64] and is defined by

I =l (P1p2p3) = 125152 = q135153 = ¢23.5253.

We can also say from Corollary 8 that Iz is the B-projective quadrea of the B-dual tripod

717913 of pipaps and ap is the B-quadreal of 71727r3. The following extends the result

in [64] for B-quadratic forms.

Corollary 25 For a tripod pipaps with B-projective quadrances qi2, qiz and qs3, B-

projective spreads S1, Se and S3, B-projective quadrea ap and B-quadreal I,

aBlB = q12913923515253.

Proof. Given

aB = q12q1351 = 1292352 = 1342353

and

I = 125152 = 135153 = 235253,
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we get

aplp = (q12¢1351) (¢235253) = (q12¢2352) (q1351.53)
= (q1392353) (q125152) = ¢12413923515253,

as required. m
The Projective cross law leads us to two more important results, which extends the

results from [55] to general symmetric bilinear forms.

Theorem 26 (Projective triple quad formula) Consider three projective points p1,

po and p3 in P2 with B-quadrances

@12 =qp (p1,p2), @13 =gqp(p1,p3) and g3 = qp (P2,D3) -
If p1, p2 and p3 are collinear, then
(q12 + 13 + q23)* = 2 (02 + ais + @33) + 4q12q13423-
Proof. We start with the following result of the Projective cross law on the tripod p1p2ps:
(@a—qi2—qi3— g3 +2)° =4(1 — q12) (1 — qu3) (1 — go3) -
If p1, p2 and p3 are collinear, then
S1=52=255=0.

By the definition of the B-projective quadrea, ap = 0 and thus substitute this result into

our initial relation to get

(2—qi2—q13 — q23)° = 4(1 — q12) (1 — qu3) (1 — qo3) -

By moving all the terms on the right-hand side over to the other side, we simplify the

expression to obtain

0 = i+ iy + 33 — 2012013 — 2012423 — 2¢13G23 + 491291323

2 (qfy + ais + @53) — (@12 + @13 + 423)° + 4q1213423-

Now, rearrange to get the required result. m

The Projective triple quad formula is analogous and parallel to the Triple spread
formula in affine rational trigonometry. This is no coincidence, since the B-projective
quadrance between two projective points is associated with the B-spread between two
lines in affine rational trigonometry.

We now present the second result, which is a projective version of Pythagoras’ theorem.

This is an extension of the result in [55], [60] and [64] to arbitrary symmetric bilinear forms.
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Theorem 27 (Projective Pythagoras’ theorem) Take a tripod p1pap3 with B-projective
quadrances qi12, q13 and qa3, and B-projective spreads S1, So and Ss. If S1 =1, then

923 = q12 + q13 — q12q13-

Proof. Start with the Projective cross law

(q121351 — @12 — @13 — q23 +2)> =4 (1 — q12) (1 — qu3) (1 — q23) -
Substitute S; = 1 and rearrange the result to get

(12013 — Q12 — @13 — qo3 +2)° — 4 (1 — q12) (1 — q13) (1 — qa3) = 0.
The left-hand side can be factored as

(q12 + @13 — 423 — qu2q13)” = 0.

Solving for go3, we get

q23 = q12 + 913 — q12q13-

Note the cross term —gqi2q13 involved in the Projective Pythagoras’ theorem; this is
not present in Pythagoras’ theorem in affine rational trigonometry. As observed in [64],

the Projective Pythagoras’ theorem can be restated as

1—q3 = 1—-qi2—q3+ q2q13
= (1-q2)(1—q3)-

As for the converse of the Projective Pythagoras’ theorem, start with the asymmetric form

of the Projective cross law
(01201351 — @12 — @13 + q23)° = dq12q13 (1 — q23) (1 — S1).
If go3 = q12 + 13 — q12q13 then we have that
(q12q13 (1 — $1))* = dgri2q13 (1 — q12) (1 — q13) (1 — S1)
which can also be rearranged and factorised as
q12q13 (1 = 51) (4q12 + 4q13 — 3q12q13 — S1q12q13 — 4) = 0.

Here, we see that S7 =1 is not the only solution; we can also have the solution

4(qi2 +q13 — 1)
412913

S1 = - 3.
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So, the converse of the Projective Pythagoras’ theorem may not necessarily hold.
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Chapter 2
Trigonometry of the tetrahedron

In this chapter, we begin to analyse our main object of interest: a general tetrahedron.
Here, we consider the tetrahedron AgA;AsAs in A3, where

Ap = [z, Y0, 20], A1 = [z1,y1,21], A2 =[r2,92,22] and As = [z3,y3, 23]

are its points. The lines, planes, sides, triangles, vertices and corners of AgA;A2A3 have
already been defined in the last chapter and are available to us.

We equip V3 with a non-degenerate symmetric bilinear form and represent this with

the matrix
al b3 b2
B = b3 a9 bl
by b1 as
as before.

2.1 The Khafre Tetrahedron

We start with a historical example of a tetrahedron. The Khafre Pyramid at Giza, Egypt
[44], pictured in Figure 2.1, is the second and central of the three pyramids and the one
with the Sphinx in front of it. It has a base width of 411 cubits (approx. 216 metres) and
a height of 274 cubits (approx. 143 metres) [20].

Noted by Gillings [23, p. 212] and Claggett [13, p. 90], the steepness of such a pyramid
was described by the ancient Egyptians using the important ratio of run over rise, or seged

as the Egyptians called it, which in this case is

205.5 525 3

214 7T 4
This is indeed exactly 5 palms and 1 finger per cubit, as the Egyptians divided a cubit
into 7 palms, and a palm into 4 fingers. The seqed was used by the Egyptians rather
than slope or angle to measure steepness of a pyramid, and would have aided construction

workers to ensure that the sides of the pyramid were inclined equally as it was being built.
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Figure 2.1: The Khafre pyramid at Giza [32]

|OR|
|OP]

to make the crucial 3-4-5 triangle more visible.

The quantity computed is the ratio in Figure 2.2, which has been suitably rescaled

Figure 2.2: Geometry of the Khafre pyramid and tetrahedron with rescaled lengths

There is some remarkable geometry in this structure, some of which can be captured
by the tetrahedron ORAP formed from the base triangle ORA, where O is the center of
the base, R the midpoint of the side AD of the base, and P the apex of the pyramid. We
will call this tetrahedron the Khafre tetrahedron. This tetrahedron is nowhere near
a general one; for example, it has all four of its faces as right triangles in the Fuclidean
sense, one of which (the base triangle) being also isosceles. Nevertheless we will see that
we can use it to illustrate many of the relations that hold for a general tetrahedron as we
progress through the thesis. When we discuss it, we will be using the standard Euclidean
bilinear form, i.e. we set B to be the 3 x 3 identity matrix. By doing this, we are thus
allowed to omit the B which is prefixed to any trigonometric quantity pertaining to the

Khafre tetrahedron.

We use the diagram to establish coordinates. If we take O to be the origin of a
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coordinate system, with OR forming the z-axis, OP forming the z-axis, and the y-axis

otherwise perpendicular to both, then we can define the points to be
0=10,0,0], R=][3,0,0], A=13,3,00 and P =]0,0,4].

The signed volume of ORAP is

— —
’l)(

3
. 1
R, A,OP) = cdet |3
0
The quadrume of ORAP is then

V = 144 x 6% = 5184.

We can convert the length readings of the Khafre tetrahedron in Figure 2.2 to obtain its

quadrances, which are
Qor =19, Qoa=18, Qop =16,

Qap =34, Qrp=25 and Qpra=9.

We see that Pythagoras’ theorem allows us to easily determine all six quadrances (as seen
in Figure 2.3), since all the triangles of the Khafre tetrahedron are right triangles in the

Euclidean sense.

P |

Figure 2.3: Quadrances of the Khafre tetrahedron

Denoting the triangles/faces of the Khafre tetrahedron by ORA, ORP, OAP and
ARP, the quadreas associated to them them will be denoted by and are evaluated as

Aora =324, Aorp =576, Aoap =1152 and Asrp = 900.

Since all the triangles are right-angled, we know that one of the spreads on each triangle
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is 1. If we define sp.ar = s (OA,OR), so.ap = s (OA,OP), etc, then the spreads of the
triangles ORA, ORP, OAP and ARP can be evaluated by the Quadrea spread theorem

as

1 1
SORA =5, SmoA =1, saor=7,
16 9
so;rp =1, SROP = 55, SPOR = op,
8 9
so;ap =1, saop = 17’ SP,0A = 17
25 9
SA;RPZQ, SR;APZI and SP;AR:?,Z'

In the next section, we will compute the other quantities associated to the Khafre
tetrahedron, with a view of using it as a particularly simple test example to verify the

results we will obtain.

2.2 The dihedral, solid and dual solid spreads

Figure 2.4: B-quadrances of the tetrahedron AgA;A2A3

In what follows, we consider the general tetrahedron AgAjAsAs defined earlier, as in
Figure 2.4. In this tetrahedron, the B-quadrances will be denoted by Q;; = Qp (A4;, 4;),
for 0 <1i < j < 3. The B-quadreas of the triangles of AyA1A3As will be denoted by

Aoz = Ap (AgA1As), Aoz = Ap (ApA14s),  Aozs = Ap (AgA2As)

and
A1az = Ap (A1 A243) .

The B-quadrume of AgA;AsA3 is denoted by V = Vp (m) Furthermore, we
will denote s;;; to be the B-spread between the lines A;A; and A; Ay, of AgA1 Ay Az, for
0 <i<3and 0 < j < k < 3 not equal to i. In this section, we present methods
for calculating the B-dihedral spreads, B-solid spreads and B-dual solid spreads of a

tetrahedron.
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2.2.1 Dihedral spreads

Given the tetrahedron AgAiAsAs, we will denote the B-dihedral spreads by
Eo1 = Ep (AgA142, AgA1A3),  Eaz = Ep(AgA243, A1A2A3),

Ey = Ep (AgA1 Az, AgA2A3), FEi3= Ep(AgA1A3, A1A2A3),
E03 = EB (AoAlAQ, AOA2A3) and E12 = EB (AoAlAg, A1A2A3) .

We show a visual representation of the B-dihedral spreads in Figure 2.5. We can associate

Figure 2.5: B-dihedral spreads of tetrahedron AgA;AsAs

the B-dihedral spreads of AgA;AsA3 to its edges, since any two planes of the tetrahedron
will meet at one of its lines. The B-dihedral crosses will be denoted similarly, i.e. Cj; =
1—FE;; for 0 <14 < j < 3. With that in mind, we present a simpler method for calculating
the B-dihedral spreads of a tetrahedron by extending a result of [63].

Theorem 28 (Dihedral spread theorem) For a tetrahedron AyAiAsAs with B-quadrances
Qij, for 0 < i < 5 < 3, B-quadreas Agi2, Ao13, Ao2z and Ai23, and B-quadrume V, the
B-dihedral spreads of AgA1A2As are expressed as

4Qo1V 4Q23V
Eo1 —, FByy3=—"—,
Ap12A013 Agaz A2z
4 4
Eoo M, E3 = M’
Api2Ao23 AoizAias
4Qo3V 4Q12V
E = ————— and Fip=—"".
03 Aop12.A023 27 AnsAras

—_— —_— —_—
Proof. Let v1 = AgA1, vo = ApgAs and v3 = AgAs, so that the B-normal vectors to the

respective planes AgA;As and AgA1As are v1 X g v and v1 X g vs3. By Lagrange’s identity
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and the definition of the B-dihedral spread,

_ (v XBv2) B (v1 XB 03))2
QB (v1 xBv2) QB (v1 XB 3)
QB ((Ul XB v2) XB (vl XB 03))
(det B) QB (v1 xpv2) QB (v1 XBv3)

Eyy = 1

By the Quadrea theorem,

4Qp (v1 X v2) and  Agps — 4Qp (v1 X v3)

Aoz = det B det B

Hence,

(det B) @B (v1 xBv2) @p (v1 xpv3) = (detB) <<det B) A012> <(det B) AOB)

4 4
_ (det B)? Ao12Ao13
16 '
Now, consider the matrix
— v -
M = — Vy —
— vy —

From Corollary 8,

@B ((v1 xpv2) Xp (v1 Xpv3)) = @p <[(det B)” (det M)] Ul)
= (det B)4 (det ]\/[)2 Qp(v1)
— (det B)* (det M)? Qo1.

By the Quadrume matrix product theorem,

(det B)® Qo1 V

QB((Ul ><BU2) XB(U1 XB 03))2 4
and thus
det B)’ QuV _ (det B)’ Apip Aotz 4QuiV

4 16 Ao Aoz’
The other results follow by symmetry. =

E01=(

The B-dihedral spread, a metrical affine quantity, can be viewed projectively as the B-
projective spread between two projective lines. We now proceed to computing the dihedral

spreads and crosses of the Khafre tetrahedron.

Example 29 (Dihedral spreads of the Khafre tetrahedron) For the Khafre tetra-
hedron ORAP defined earlier, the dihedral spreads are denoted and evaluated by the Di-
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hedral spread theorem as

4QoRV _4><9><5184_1

For = =
OR AoarAORP 324 x 576
4QoaV 4% 18 x 5184
EOA = = = 17
AoarAoap 324 x 1152
4QopV 4 x 16 x 5184 1
EOP = = = -,
AoapAorp 1152 x 576 2
4Q ARV 4 x9x 5Hl&4 16
ERA e e = —,
AoarAArp 900 x 324 25
4QrpV 4 x 25 x 5184
AorpAarp 900 x 576
and
B AQapY _ 4x34x5184 17
AP = oapAarp  1152x 900 25

We illustrate this in Figure 2.6, where the right angles on the edges denote that the dihedral

spread is equal to 1.

A

Figure 2.6: Dihedral spreads of the Khafre tetrahedron

Example 30 (Dihedral crosses of the Khafre tetrahedron) Since the dihedral crosses
are given by C;j = 1 — E;;, for distinct points ¢ and j of the Khafre tetrahedron ORAP,

we have that )
Coa=0, Cor=0, Cop= 3

8
Crp =0, CAP—% and CAR—%-

2.2.2 Solid spreads
The B-solid spreads of the tetrahedron AgA;A2A3 are denoted by

SO = SB (A()Al, A()Ag, AgAg) s 81 = SB (A()Al, AlAQ, A1A3) s
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Sy = Sp (AgAa, A1 A, AsAz) and Sz = Sp(ApAsz, A1As, AxA3) ,

and are displayed in Figure 2.7. So we associate a B-solid spread to each corner of

Figure 2.7: B-solid spreads of the tetrahedron AgAjAsAs

ApgA1A2A3, and we can compute the B-solid spread for a tetrahedron using only our
trigonometric quantities, as seen in the following two results, based on [63].
In our first result, we express the B-solid spreads of AgA;AsAs explicitly in terms of

its B-quadrances and B-quadrume.

Theorem 31 (Solid spread theorem) For a tetrahedron AgA; Ay As with B-quadrances
Qij, for 0 <i < j <3, and B-quadrume V, the B-solid spreads of AgA1 A2 A3 are expressed

as

oV o _ .V
07 4Q01Q02Q0s T 4QuQ12Q1s’
% %
Sg=———— and S3=—-—-—.
2 4Q02Q12Q23 s 4Q03Q13(Q23

Proof. Let v, vo and v3 be the respective direction vectors of AgA;, AgAs and AgAs,
and define

Using the Quadrume matrix product theorem, the definition of B-solid spread and the

Scalar triple product theorem to obtain

S ([v1,v2,v3] 5)°
(det B) Qp (v1) QB (v2) @B (v3)
(det (M B))?
(det B) Qo1Qo2Q03
det (MBMT)
Qo1Q02Q03
V

4Q01Q02Q03
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The other results follow by symmetry. =

Alternatively, we can express the B-solid spreads of AgA;AsA3 in terms of its B-
spreads and B-dihedral spreads. We will call this theorem the Solid spread projective
theorem, because of the similarities of the result with other results in projective geometry

(which we will explain later).

Theorem 32 (Solid spread projective theorem) For a tetrahedron AgAyAsAs with
B-spreads s; i, fori=0,1,2,3 and 0 < j < k < 3 with j,k # i, and B-dihedral spreads
E;j, for 0 <i < j <3, the B-solid spreads are expressed as

So = Fo150;1250:13 = F0250;1250;23 = F0350,1350;23,

S1 = Ep151,0251;03 = E1251,0251,23 = E1351,0351;23,

So = F252,0152:03 = F1252,0152;13 = F2352.0352,13
and

83 = F353,0153:02 = £1353,0152;12 = £2353.0252;12.

Proof. Given the B-quadrances, B-quadreas and B-quadrume of AgAj;AsAs, use the

Quadrea spread theorem and the Dihedral spread theorem to obtain

Ao12 Ao13 4Qo1V

5012 = ———, S0;13=-——~—~— and Ey =-——.
4Q01Q02 4Q01Q03 Ao12A4013

So,

Aopi2 Aoz 4Q01V

4Q01Q02 4Q01Q03 Ao12.A013
%

46201 Q02 QOS ’

which by the Solid spread theorem is equal to Sy, as required. The other results follow by

Eo150,1250;13

symmetry. |
From the Solid spread projective theorem, the B-solid spread can be viewed projec-
tively as the B-projective quadrea of a tripod given by three projective points. We now

proceed to calculating the solid spreads of the Khafre tetrahedron.

Example 33 (Solid spreads of the Khafre tetrahedron) By the Solid spread theo-
rem, the solid spreads of the Khafre tetrahedron ORAP are

5 _ Y B 5184 1
O 400400rQ0p 4x18x9x16 2’
o v B 5184 16
B 4QorQArQpr  4x9x9x25 25
5184 4

Sa 4

T 400404r0ps  Ax18x9x34 17
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and
o % B 5184 sl
P 100pQpaQrn  4x16x34x25 850

The Solid spread projective theorem can also be used to obtain the same values for the solid

spreads, given the spreads and dihedral spreads of ORAP. We illustrate the solid spreads
of ORAP in Figure 2.8.

P

Figure 2.8: Solid spreads of the Khafre tetrahedron

2.2.3 Dual solid spreads

The B-dual solid spreads of the tetrahedron AgA;A2As will be denoted by
Dg = DB (A()Al, AOAQ, A()Ag) s Dl = DB (A()Al, A1A2, A1A3) s

Dy = Dp (ApAz, A1 Az, A2A3) and D3 = Dp(AgAs, A1As, AxA3).

They are displayed in Figure 2.9. As is the case with B-solid spreads, we associate the

Figure 2.9: B-dual solid spreads of the tetrahedron AgA;AsAs

B-dual solid spread to each corner of AgA;A2As, which can be calculated simply by the
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following two results. In the first one, we express the B-dual solid spread of AgA;AsAs

explicitly in terms of its B-quadreas and B-quadrume.

Theorem 34 (Dual solid spread theorem) For a tetrahedron AyA;AsAs with B-quadreas
Ao12, Aois, Ages and Ais3, and B-quadrume V, the B-dual solid spreads of AgAj1AsAs

are expressed as

2 2
T R
Ao12A013.A023 Ao12A013.A123
4)? 4)?
Dy=——— and D3=—--————.
> 7 Ao AgzsAras 7 Aoz AgzsAras

Proof. Suppose the direction vectors of [, lo and I3 are v1, vo and v3 respectively; also

define three concurrent lines k19, k13 and kog with direction vectors
N2 = V1 XBU2, N3 =v1 Xgv3y and ngg3 = vy XpB v3.
Use the definition of the B-dual solid spread to get

Dp (li,l2,13) = Sp(ki2, k13, ka3)
([n12,n13, 23] 5 )

(det B) Qg (n12) @p (n13) @B (n23)

Given the definitions of n12, n13 and na3, use the definition of the B-quadrea to deduce
that

Qp (m12) = (deti)Ama @B (m3) = (deti)fl()lg and  Qp(n23) = <deu1)"4023.
Hence, )
(det B) @p (m2) @ (113) Qp (n23) = MAOIQ-AOBAOQS-

64
By the definition of the scalar triple product, expand [n12, 713, n23] 5 using the definitions

of ni12, N13 and N93 as

[n12, 113, 23] 5 = (V1 XB v2) B [(v1 XB U3) XB (V2 X v3)].

Define

so that by the Quadruple vector product theorem and the Scalar triple product theorem

[n12,m13, 23] 5 = (v1 X v2) g (det B) ([v1,v3,v3] g v2 — [v1,v3,v2] g v3)
= (det B) [(v1 X B v2) B [v1, V2, V3] g V3]

= (det M) (det B)? [v1, v2, v3] 5 = (det M)? (det B)>.
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By the Quadrume matrix product theorem,

([n12,m13,m23] g)* = (det M)* (det B)® = (det B)* | (det M)* (det B)?

2 4
= (det B)* <Z> :(delt(),B)v?

So,
(det B)4 V2 (det B)4 Ao12Ao13 A2z 4?2

Dg (lo1,lo2, log) = - - '
B (lo1, lo2; lo3) 16 64 Ao12A013A023

The other results follow by symmetry. =

Next we use the B-spreads and B-dihedral spreads of AgA;AsAs to alternatively ex-
press its B-dual solid spreads. We will call this the Dual solid spread projective theorem

for the same reasons as in the case of the Solid spread projective theorem.

Theorem 35 (Dual solid spread projective theorem) For a tetrahedron AgA1AzAs
with B-spreads s;.ji,, for 0 <i <3 and 0 < j < k < 3 with j,k # i, and B-dihedral spreads
E;j, for 0 <i < j <3, the B-dual solid spreads of AgA1A2A3 are expressed as

Dy = s0;12F01E02 = so0;13E01E03 = 50,2302 F03,
Dy = s1,00F01 Fh12 = s1;03E01E13 = s1;23F12F13,

Dy = 59,01 E02E12 = 52,03 L0223 = s2;13F12F23

and

D3 = s3.01 Fo3E13 = 53,0203 F23 = 53.12F1393.

Proof. By the Dihedral spread theorem and the Quadrea spread theorem, we have that

s 12E01E02:< Aopi2 >< 4Q01V >< 4Q02V ): 41?2
’ 4Q01Q02 ) \Ao12Ao013 /) \ Aoi2.A023 Ao12A4013Ao23’

which, by the Dual solid spread theorem, is Dy, as required. By symmetry, all the other
results hold. m

The Dual solid spread projective theorem tells us that the B-dual solid spread, a
metrical affine quantity, is analogous to the B-quadreal of a tripod. We now proceed to

compute the dual solid spreads of the Khafre tetrahedron.

Example 36 (Dual solid spreads of the Khafre tetrahedron) By the Dual solid spread
theorem, the dual solid spreads of the Khafre tetrahedron ORAP are

S 4)? o 4x (51847 1
0~ AoarAoapAorp 324 x 1152 x 576 2’
4?2 4 x (5184)? 16

Dr —

" AoarAorpAinp 324 x 576 x 900 257
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_— 42 o 4x (5184 8
AT AoarAoapAirp 324 x 1152 x 900 25
and
412 4 x (5184)* 9
Dp

= AoapAorpAarp 1152 x 576 x 900 50

We can also use the Dual solid spread projective theorem to arrive at the same answer,

given we know the spreads and dihedral spreads of ORAP. We display the dual solid

spreads of ORAP in Figure 2.10.

Figure 2.10: Dual solid spreads of the Khafre tetrahedron

2.3 Ratio theorems of a general tetrahedron

Here, we present some results with regards to ratios present in a tetrahedron. We consider

the general tetrahedron AgA;AsAs along with all the trigonometric quantities defined in

this chapter and in the previous chapter.

Firstly, we have a ratio theorem that gives a correspondence between products of

opposing B-dihedral spreads and opposing B-quadrances, based on a result of Richardson

[45] in the classical case.

Theorem 37 (Dihedral spread ratio theorem) For a tetrahedron AyA1AsAs with B-
quadrances Q;;, B-quadreas Aopi2, Ao13, Ao2s and Ai23, B-quadrume V and B-dihedral

spreads F;j, for 0 <1 < j <3, the relation

Eo1Fas _ Eoplis _ EosBrz 1
Qo123 Qo2Q13  Qo3Q12 K
1s satisfied, where
5 = AozAoisAoasArzg
o 1612
Proof. By the Dihedral spread theorem,
162
FEo1FEos =
o A012A013A023A123Q01Q23’
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1612
FEgpoFi3 =
0213 A012A013A023A123Q02Q13
and )
16V
Eo3FEq19 = .
03712 «4012«4013«4023«41236203@12
Letting
K- Ap12A013A023A123
1612 ’

we then have
EoiFas  EopFiz  EosEro 1

Qo1Q23 Qu2Q13  Qu3Q12 K’

as required. m

The quantity
Ao12.A013.A023.A123

1612

is of importance in Richardson’s paper [45] and has some significance for the study of

K =

the trigonometry of a general tetrahedron. We will call the constant K the Richardson
number, which is named after the author of the cited paper. An immediate application
of this is seen in the following result, which is an extension of another result of Richardson
[45].

Theorem 38 (Dual solid spread ratio theorem) For a tetrahedron AgA;AsAs with
B-quadreas Agi2, Aopis, Ao2s and Ai23, B-quadrume V, B-dual solid spreads Dy, D1, Do

and D3, and Richardson number K, the relation

Do Dy Dy Ds 1

Az Ags  Aops Aoz 4K

18 satisfied.

Proof. By the Dual solid spread theorem,

4 2
Do=—
Ao12.A013.Ao23
Divide through by 4123 to get
Do 4)? 1

-/4123 B A012A013A023A123 B E7

as required. The other results follow by symmetry. m

A key consequence of this result is that a statement involving B-quadreas can also be
equally applied to B-dual solid spreads, after taking into account the factor of 4K. We
will apply this in the next chapter.

Example 39 (Ratio theorems for Khafre tetrahedron) For the Khafre tetrahedron

ORAP, we have
EorEap 17 1

QorQar 25 x9x34 450’

54



2.4. SKEW QUADRANCES OF A TETRAHEDRON

EoaBrp _ 1 1
QoaQrp 25 x18 450
and
EopEar 16 b
QorQar H0x9x16 450
Since

FEo1Ea3  EoaEi3  FosErz 1

QuiQ2 Qu2Qiz  Qo3Qi2 450

the Dihedral spread ratio theorem holds. Furthermore, we compute Richardson’s number

from the result of the Dihedral spread ratio theorem to be
K = 450.

Given the quadreas of the Khafre tetrahedron are known, we use the Dual solid spread ratio

theorem to deduce that

Do = Aarp _ 900 _ }
4K 4x450 2’

Dy = Aoap _ 1152 _ 16
4K 4 x 450 257

Dy = Aorp _ 576 _ 8
4K 4 x450 25

and
Dp = Aoar 324 9

1K ~ 4x450 50
Since these are the same quantities obtained by the Dual solid spread theorem, the Dual

solid spread ratio theorem holds.

2.4 Skew quadrances of a tetrahedron

In this section, we aim to calculate the B-quadrances between opposite edges of a general
tetrahedron AgA; Ay Az in A3, This is a secondary trigonometric invariant, but can prove
quite useful at times. Again, we assume that all the quantities of the tetrahedron have
been previously defined for us to use without recall.

Two non-parallel lines in A3 are skew if they do not intersect. Two lines AB and CD,
each with linearly independent direction vectors, are skew precisely when the points A,
B, C and D are not coplanar, as seen in Hilbert and Cohn-Vossen [28, pp. 13-17]. Ideally
this happens when ABCD is a non-null tetrahedron, i.e. when the quadrances of ABCD
are all non-zero.

We will define the B-skew quadrance between two lines | and m with respective

direction vectors u and v to be

. —
Qs (L;m) = Qp ((Projus, L) ),
for arbitrary points L on [ and M on m. If [ and m are skew, then these two lines lie
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on parallel planes, both with common B-normal vectors u Xp v. This quantity is thus

invariant under selection of L and M. Note that we have previously defined

iz (222).

uU-pu

The following result, proven synthetically in the classical case by Richardson [45] and
in more detail by Smith and Henderson [46] in the classical case as well, gives us the

B-skew quadrances of the tetrahedron.

Theorem 40 (Skew quadrance theorem) For a tetrahedron AygAAsAs with B-quadrances
Q;j and B-quadrume V, suppose

Ro123 = QB (AoA1, A2A3), Roza3 = Qp (Ao, A1 As)

and
Ro3.12 = Qp (Ao A3z, A1 Ag)

are the three B-skew quadrances of AgA1AsAs. Then,

%
Ro1;03 = 79
4Q01Q23 — (Qo2 + Q13 — Qoz — Q12)
v
Roz;13 = 5
4Q02Q13 — (Qo1 + Q23 — Qoz — Q12)
and .
Ros;12 =

4Q02Q13 — (Qo1 + Q23 — Qo3 — Q12)*

—_
Proof. Let v; = AgA;, for i = 1,2, 3, and define
n=wv; xXp (v3 —va).

By definition, Rp1,23 is given by the projection of a vector from one point on AgA; to
another point on AsAg in the direction of n. It is convenient for us to choose the points

By and Bs, so that we can set Roi;03 = Qp (w), where

w = (proj, v2) 5 -

So,

. V2:'B1N
Roip3 = @B <QB ) n)

(v2 -5 [v1 X (v3 — 12)])?
Qp (v1 xB (v3 —wv2))
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We define

so that by the Scalar triple product theorem,

(v2 -5 [v1 x5 (v3 — va)])°
= (v2-p[(v1 xBvs) — (1 xp va)])°
= ([v2,v1,v3]  — [v2, 01, 02] p)°
= [ug, vg,vg]

= (det B)? (det M)?.

By the Quadrume matrix product theorem,

(det B)V

(v2 5 [o1 % (v3 —v2)))* = —

We now use Lagrange’s identity to get

QB (v1 Xp (v3 — v2))
— (det B) [@ (1) Qz (v3 — v2) = (v1 5 (v3 — v2))’

= (det B) [Q01Q23 — (v1p (v3 — v))?

Given that
v (vs—v2) = (v1-Bu3)— (v1-BV2)
_ Qo+ Q203 — Qi3 Qo+ Q202 — Q1
= Qo Qs Qus— Qua),
we obtain
Qp (vi xp (v3 — v2))
— (Aot B) | Qurug — (G2 Q1= Qo cmf]
= det b {46201@23 — (Qo2 + Q13 — Qo3 — Q12) } :
So,
Rotos = (detf) V detB [4Q01Q23 Qs+ Q13 — Qo — O12) }

N
4Q01Q23 — (Qoz2 + Q13 — Qo3 — Q12)*
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The other results follow by symmetry. =

Figure 2.11: B-skew quadrances of the tetrahedron AgA;AsAs

Figure 2.11 shows the B-skew quadrances present in a general tetrahedron AgA; Ay As.
It is also interesting for us to note that the denominator of our result is a rational form of
Bretschneider’s formula as seen in Bretschneider [6] and Coolidge [15], for the quadrea of
a general quadrangle (a collection of four coplanar points) in terms of the six quadrances

between any two of its points [68].

Example 41 (Skew quadrances of Khafre tetrahedron) For the Khafre tetrahedron
ORAP, the skew quadrances between pairs of opposite lines of them are, by the Skew quad-

rance theorem,

Roarp = o181 5 = 1;44,
’ 4x18x25—(9+34—-16—-9) 41
Ropr.ap = o184 5 = i
’ 4x9x34—(18+25—16—9)% 25
and
Rop,ar = o181

=9
4x16x9— (18425 -9 — 34)
We display these skew quadrances in Figure 2.12 for the Khafre tetrahedron.
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° A

Figure 2.12: Skew quadrances of Khafre tetrahedron
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Chapter 3

The Standard tetrahedron and its

applications

This idea of using standard coordinates and a variable quadratic form to study general
triangle geometry and trigonometry was developed in the hyperbolic case by Alkhaldi and
Wildberger [67]. In Nguyen Le’s doctoral thesis [35], she sets up a framework of affine
triangle geometry by considering what is called a Standard triangle; the idea is to replace
the study of a general triangle over a specific quadratic form with the study of a specific
triangle over a general quadratic form. We draw motivation from the aforementioned ideas
to create a similar framework with regards to a general tetrahedron.

Consider an affine map which sends a general tetrahedron AgA;A3As to the tetrahe-
dron XX X>X3, where

Xo=1[0,0,0], X;=][1,0,0], X2=10,1,0] and X3=10,0,1].

Such a tetrahedron will be called the Standard tetrahedron (see Figure 3.1). This affine

X

Figure 3.1: An affine map from ApA1A2A3 to XgX1X2X3

map can be defined by translating the point Ag of the general tetrahedron AgA;A2As to

Xp and then applying a linear map with matrix representation L to send the other three
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vertices to X1, Xo and X3. If we equip V3 with a symmetric bilinear form with matrix

representation C' then this affine mapping induces a new symmetric bilinear form, defined
by

uwev = uCvl =u (LLfl) C (LLfl)TvT
= @[ en”.

For M = L', we set the matrix MCM7" to be the matrix

al b3 b2
B = b3 a9 b1
b2 bl as

that has been previously defined, so that
u-cv=(ulL) g (vL).

We use the matrix B to represent the induced symmetric bilinear form so that the adjugate

matrix
ar B3 B
adjB= |83 a2 p
By B1 a3

will be available to us when we perform our calculations in this chapter. This matrix
plays an important role in this method of studying the rational trigonometry of a general

tetrahedron over a general metrical framework.

Example 42 (Induced symmetric bilinear form for the Khafre tetrahedron) Consider
the Khafre tetrahedron ORAP in A3, where

0 =10,0,0], R=]3,0,0], A=]3,3,0] and P =10,0,4],

and equip its associated vector space V> with the Euclidean bilinear form, where its matrix
representation is given by I, the 3 X 3 identity matriz. We consider an affine map which
sends the points O, R, A and P respectively to the points Xg, X1, Xo and X3, which
ultimately degenerates to a linear map. Representing such a linear map by L, if M = L™1
then

300
M=13 30
0 0 4
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This linear map induces a new symmetric bilinear form with matrix representation

T

300\ /3 00 9 9 0
MMT=1|(3 3 0|3 3 0| =]9 18 0
00 4/ \0 0 4 0 0 16

So if we are to recalculate our trigonometric quantities for the Khafre tetrahedron with
respect to the Standard tetrahedron XoX1X2Xs, we simply need to calculate the trigono-

metric quantities of XoX1X2X3 over this new symmetric bilinear form.

Oftentimes a vector proof is an easy, time-saving process. When such a proof becomes
too complicated we can use the above trigonometric quantities for the Standard tetra-
hedron to prove a result using brute force. This gives a powerful general technology for
establishing results on this subject. Note that a proof involving substitution of the trigono-
metric quantities of the Standard tetrahedron is general in nature, since it can be obtained
from a general tetrahedron by an affine map which preserves the geometric structure of
the objects of interest. Because of this, we will see that such a technique will be applied
when proving the subsequent results in this chapter. For the rest of this chapter, we will
assume the Standard tetrahedron to be available to us with all the quantities defined and

evaluated as below.

3.1 Trigonometric quantities of the Standard tetrahedron

In what follows, we define useful quantities associated to the matrices B and adj B as

rr=as+az3—2b1, T9=ay+az—2bs, r3=a;+ ay— 2b;

and
A = det B = ajasag + 2b1bobs — alb% — azb% — agb%.

Suppose Qi; = Qp (X;, X;) for 0 <1i < j < 3. Then,

Qor = QB (Xo,X1)=QB (M)

aj b3 b2 1
— (1 00) |t a0 ba||0|=an
b2 bl as 0

Similarly, we will have

Qo2 =a2 and Qo3 = as.
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We also have

Qs = Qp(X2,X3)=0sB <)TX3>

ap by by 0
= (O —1 1) b3 as b1 —1
bg b1 as 1

= az+az—2by =11,

and similarly,

Qiz=r2 and Q2 =13.

Define the B-quadreas associated to each triangle of the Standard tetrahedron to be
Aoz = Ap (XoX1X3), Aoz =Ap (XoX1X3), Az = Ap (XoX2X3)
and
Az = Ap (X1 X2X3) .
By the definition of the B-quadrea,

Aoz = A(Qo1,Qo2, Q12) = (a1 + as +13)” — 2 (a? + a3 +13)

= 4 (a1a2 — b%) = 40&3.

Similarly,

A1z = 4o and  Agos = 4.

Finally, we have

Aoz = A(ry,re,r3) = (7“1—&—7’2—1—7“3)2—2(7’%—1—7’%—1—7“%)
= 4(a1+az+ag—by —by—b3)’
-2 <(a2 + a3 — 2b1)2 + (a1 + a3 — 2172)2 + (a1 + ag — 21)3)2>
= 4 [(agag - b%) + (a1a3 — b%) + (alag - b%)]
+8[(b1ba — asbs) + (b1bs — azba) + (babs — a1by)]
= 4(oq +az+a3+28, +208,+285)
= 4D.

By the Quadrume theorem, the B-quadrume of the Standard tetrahedron XyX; X5 X3
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is

V = VB (X0X1X2X3)

) 2a1 ap+azx—17r3 ap+az—re
= §det a1+ as — 13 2a9 as +ag —n
a1 +as—7r2 as+as—rg 2a3
ap by by
= 4ddet | b3 ag b | =4A.
by b1 as

If 551 = sB (X3 X, X3 Xy,) for 0 <i <3 and 0 < j <k <3 with j and k not equal to
1, then by the Quadrea spread theorem,

Ao12 as

50,12 = = -
4Q01Qo2  aras

Similarly,
ag
51,02 = —— and  Sg01 = ;
airs asrs

a3z

and the remaining B-spreads of the Standard tetrahedron are

a9 a9 (65)]
50;13 = y  S1;,02 = y 52,01 = ,
a1as a1ra asr
Qi Qi a1
50;23 = y  52:03 = , 83,02 = ,
a2a3 azr1 asri
D
51,283 =——, 82;13=—— and S312=——.
TorT r1rs3 T179
Using the Dihedral spread theorem,
4Qo1V
Eyn = Ep(XoX1X, XoX1X3) = ——1—
Ao12A013

day (44) amA
(4042) (4053) (e D)0 %} )

By defining and calculating the other B-dihedral spreads of the Standard tetrahedron
similarly, they will evaluate to

CLQA CL3A
Eop = ; Eoz = ;
a1a3 o102
TlA TQA d E T’3A
23 = 13 = an 12 = .
OtlD’ OQD O¢3D
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If C;; = 1 — E;; are the respective B-dihedral crosses of the Standard tetrahedron, then

alA
(e D)0 %}

Cop = 1-—

(a1a3 — b%) (a1a2 — b%) — a1 (a1a2a3 + 2b1b2b3 - alb% — a2b§ — a3b§)

[6 D)0 %}
_ (b — babs)? _ A
o3 0420437
and similarly
2 2

Coz2 = & , Coz = P ;

103 109
2 2 2
Oy — (a1 + B3 + B3) . Oy = (a2 + 51 + £3) and Oy — (a3 + By + Fs) .

arD oD as3D

Using the Solid spread theorem, the B-solid spread Sy = Sp (XoX1, XoX2, X0X3)

evaluates to
% A

 4Q01Qu2Qo3  aiagaz’
We define the remaining B-solid spreads of the Standard tetrahedron similarly and obtain

So

A A A
S = and S3=

S = .
airors’ agrirs asrire

We can also use the Dual solid spread theorem to compute the B-dual solid spreads of the
Standard tetrahedron. We will define and evaluate them as
A? A? A? A?

DOZ Dlzi DQI and D3: .
041042043’ OégOégD’ 041043D ozlong

Example 43 (Trigonometric quantities of the Khafre tetrahedron) Recall from Ex-
ample 42 that for the Khafre tetrahedron ORAP, the induced symmetric bilinear form after
a linear map from ORAP to the Standard tetrahedron XoX1 X2 X3 has matriz representa-

tion
9 9 0
B=19 18 0
0 0 16
We take note of the fact that
288 —144 0
adjB=|—-144 144 0 |,
0 0 81

as well as
D =288 + 144 4+ 81 4+ 2 x (—144) = 225,

r1=184+16=34, 1r0=94+16=25, r3=94+18—-18=9
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and

A = det B = 1296.

By substitution of the relevant quantities into the above formulas, the Khafre tetrahedron
ORAP has quadrances

Qor=19, Qoa=18, Qop =16,

Qap =34, Qrp =25 and Qra =9,

quadreas
Aora =4 x 81 =324, Aopgrp =4 x 144 = 576,
Aoap =4 x 288 = 1152 and Aurp = 4 x 225 = 900,
quadrume
V =4 x 1296 = 5184,
spreads
o8 1 _ 81 o811
SORAT g Ig T g0 SROAT g9 T b SAORT GUAR T
44 144 16 144 9
SO: = = Sp. = —_— = Sp. - =
ORP =916 0 THOP T gxo5 T 95 THORT 15 o5 T 95
_ 28 288 8 288 9
SOAP = 9816 0 AP T g w3 17 PPOAT 16x3a 17
225 25 _2s 2259
SARP =59 T 34 SEAP T o5 g T 1 AN SPAR T 5 o8 T g7
dihedral spreads
b 9x1296  34x1206 17
OR= 144 <81 7 477 288 x 225 25’
18 x 1296 25 x 1296
Eog = 22220 g, = 2200
OA= 81 %288 = TRPT Taax995
16 x 1296 1 9% 1296 16
E = ——— " == — E —_— =
OP = Tarxoss 3 Y PRA= g 505 T on
dihedral crosses )
Cor=0, Coa=0, Cor=g,
Cap= > Cop=0 and Cps= -
AP — 257 RP — an RA — 257
solid spreads
o _ 1206 1 o 1296 16
O79x18x16 20 BT 9x25x9 25
1296 4 1296 81

Sa

~3ixisx9 17 @ Sp=

34 %25 %16 850
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and dual solid spreads

D — 12962 R 12962 16
O 7 R1x144x288 27 BT 81 x144%x225 25
12962 8 12962 9
Dp=—— = _— qgnd Dp=

T 81 x 288 %225 25 144 % 288 x 225 50"

These are the exact same quantities that we have obtained previously for ORAP in Chapter
2.

3.2 Tetrahedron cross law

The relationship between the B-quadreas associated to the faces of a general tetrahedron
has been a study of interest for a long while, dating back to Richardson’s paper [45] on the
trigonometry of the tetrahedron in the classical framework. The Dual solid spread ratio
theorem gave us the fact that the ratio of the B-quadreas to the B-dual solid spreads
is constant; inspired by this, we aim to derive an algebraic relationship between the B-
quadreas of a tetrahedron. While no direct relationship exists, we may derive a relationship
by involving the three B-dihedral crosses of a tetrahedron which emanate from one of its
points. Proven in the classical case by Lee [37], it is sufficient for us to prove this result
in the rational case for the Standard tetrahedron XoX;X»X3, as an affine map acting on

this tetrahedron will leave the final result invariant.

Theorem 44 (Tetrahedron cross law) For the tetrahedron AgAyAs Az with B-quadreas
Aoz = Ap (AgA1As), Aoz = Ap (AgA143)
Aozs = Ap (AgA2A43)  and  Aiaz = Ap (A1 Az43),
and B-dihedral crosses
Co1 = Cp (AgA1 A2, AgA143), Coz2 = Cp (AgA1A2, AgA243)

and
Coz = Cp (AgAi1 A3, AgArAs3),

we have the relation

2

[ [(Aom + Ap1z + Agaz — A123)? — 4 (Ao124013C01 + Ao12.A023Co2 + A013«4023003)2] ]
—64A012A013A023 (A012C01Co2 + A013C01C03 + Ap23C02C03)

= 409643, A315A2,3C01C02C03 (Aoi2 + Aoiz + Aoz — A123)°.
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Proof. Define the Tetrahedron cross function to be

((a+b+c—d)* — 4(abz + acy + bcz))2

2
—4096a%b*Pxyz(a+btc—d)?,
—64abc(ary + brz + cyz)

T (a,b,c,d,x,y,z) = (
so that we are required to prove the following:

T (Ao12, Ao13s, Ao2s, A123, Co1, Coz, Coz) = 0.
Substituting the quantities associated to the Standard tetrahedron, we obtain

T (Aoi2, Ao13, Ao23, Ai23, Cot, Co2, Co3)
2
= 2”3{Ral4-a24-@3-IU2—-4(5%4—554-5§ﬂ — 64 (5185 + 5153 + B33)

—22832532532 (0 + g + a3 — D)?

2

We use the definition of D involved in the calculation of the trigonometric quantities of
the Standard tetrahedron to obtain

T (Ao12, Ao13, Ao23, A123, Cot, Coz, Co3)

16 [[4 (81 + B+ Bo) — 4 (83 + B3+ 3)] — 64 (8363 + 5363 + 6%6%)] 2
—2MB38563 (81 + By + Bs)°

2'° 2638363 (81 + By + Bs)” — 2818353 (B1 + B + By)°] = 0.

= 2

as required. ®m

Note that three similar relations can be obtained by permuting the indices. We now
present a novel result (as a corollary) which can give us a reformulation of the Tetrahedron
cross law in terms of the dual solid spreads instead of the quadreas. Recall that K is the

Richardson number we defined in the previous chapter.

Corollary 45 For a general tetrahedron AgAi1AsAs with B-quadreas A1z, Aoiz, Ao2s
and Aq93, B-dihedral crosses Co1, Coo and Coz, Richardson number K and B-dual solid
spreads Dy, D1, Dy and D3, the following relation is satisfied:

T (Ao12, Aot3, Ao2s, Ai23, Cot, Coz, Coz) = (4K)® x T (D3, D2, D1, Do, Cot, Coz, Cos) -

Proof. We take the reciprocal of each equality of the Dual solid spread theorem to obtain

Aj23 _ Ao2s _ Ao _ Aoz AK
Do D1 Dy  Ds '
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From this, we find that

T (Ao12, Ao13, Ao23, Ai23, Cot, Coz, Co3)

2 2
[(Dl + Dy + D3 — Dy)? — 4(DyD3C01 + D1D3Co2 + D1D2Co3)
8
= (4K) —64D1 Dy D3 (D3Cp1Co2 + D2Co1 Cos + D1Coh2Cops)
—4096D1 Do D3Co1Co2Cos (Dl + Dy + D3 — D0)2

— (4K)® x T (D3, Da, D1, Dy, Co1, Coa, Cos) ,

as required. =

As a result of this corollary, we can replace the B-quadreas in the Tetrahedron cross
law with the ppposing B-dual solid spreads, so that the Tetrahedron cross law holds for
B-dual solid spreads also. We also note that by permuting the indices we obtain three
similar relations to the above result. We now verify the Tetrahedron cross law for the

Khafre tetrahedron given in Chapter 2.

Example 46 (Tetrahedron cross law on Khafre tetrahedron) For the Khafre tetra-
hedron ORAP, we note the important observation that Cor = Coa = Crp = 0. This

helps us greatly reduce our equations to

T (Aora, Aorp,Aoar, Arapr,Cor,Coa, Cop)

4
= ((AORA + Aorp + Aoap — Arap)® — 4~AORP~AOAPCOP> ,

T (Aora, Aorp, Arap, Aoapr,Cor, Cra, Crp)
4
= <<~AORA + Aorp + Arap — Aoap)® — 4A0RAARAPCRA> ,

T (Aora, Aoapr, Arapr, Aorpr,Coa,Cra,Cap)

2
((AORA + Aoap + Arap — Aorp)® — 4 (AoraArapCra + -AOAP-ARAPCAP))

—64A0raA0 AP A% 4 pCrACAP

and

T (Aorp,Aoapr, Arapr, Aora, Copr,Crp,Cap)

2
((AORP + Aoap + Apap — Aora)® — 4 (AorpAoaprCop + AOAPARAPCAP))
—64A0rPAY 4 pArRAPCOPCAP
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We substitute our required quantities to obtain

T (Aora, Aorp, Aoap, Arapr,Cor,Coa,Cop)

= ((324 + 576 + 1152 — 900)* — 4 (576) (1152) (;))4 =0,

T (Aora, Aorp, Arap, Aoapr,Cor, Cra, Crp)

= <(324 + 576 4 900 — 1152)? — 4 (324) (900) (;5»4 =0,

T (Aora, Aoapr, Arapr, Aorpr,Coa,Cra,Cap)

((324+ 1152+ 900 — 576)? — 4 ((324) (900) () + (1152) (900) (%)))2
—64(324) (1152) (900)* (££) (&)

(1492 992% — 2229025 112064)” = 0

and

T (Aorp,Aoar, Arapr, Aora,Cop,Crp,Cap)

((576 + 1152 4900 — 324)* — 4 ((576) (1152) (%) + (1152) (900) (2%)))2
—64 (576) (1152)* (900) (1) (2)
— (26542082 — 7044820 107 264)> = 0.

This completes the verification of all possible cases of the Tetrahedron cross law for the
Khafre tetrahedron.

3.3 Dihedral cross relation

In this section we investigate the relation between the six B-dihedral crosses of a gen-
eral tetrahedron. While introduced classically by Richardson [45], a rational version was

proposed without proof in [63]. We now present this result with proof.

Theorem 47 (Dihedral cross relation) For the tetrahedron AgA; Ay As with B-dihedral
crosses
Co1 = Cp (ApA1 Az, AgA1A3), (a3 = Cp (AgA2A43, A1 ArA3),

Co2 = Cp (AgA1Az, AgA2A3), C13 =Cp(AgA14s3, A1A243),
003 = CB (AOAlAg, AOA2A3) and 012 = CB (AoAlAQ, A1A2A3) s
define the variables
X =Cp1C, Y =CnpC13, Z = Cp3C2,
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x=Cp1+Co3, y=Co2+Ci3, z=Cp3+ Cia,
W = Cp1C02C03 + Co1C12C13 + Cp2C12C23 + Co3C13C 43,
E%(l—x—y—z—FX%—Y—FZ),
R=P+2z2—-4, S=P+y-Y, T=P+z—-X,

UE%(PQ—W+XY+XZ+YZ)

and

V=-(UP-XYR - XZS*-YZT?).

Then, we have that
V?=XYZ(XR?S* +YR*T? + ZS*T? + 2RSTU) .

Proof. Given the B-dihedral crosses of the Standard tetrahedron XyX;X5X3 that we
have computed earlier, we can use a computer to obtain

838353

V2
8,808 DB
ajasasD

(det (adj B))? (a1 + By + B3)" (2 + By + B3)” (az + 81 + B2)?
2818283 (8182 + B183 + Bafs) (1az + aras + azas)
+281 885 (183 + By + azB3) — (o263 + o35 + aB3)
—daranaszfBBaBs (B1 + B2 + B3) —aa (04%53 + 33 — B (ﬁg + 5%))

—az (o361 + a3fs — B2 (B1 + B3)) — as (a1B1 + o363 — B3 (5% + 53))
—aa0 (a1a2 (B1+ B2)* + aras (By + B3)° + azas (By + 53)2>
—2a1aza3 (6163 + 5163 + 5353) — aify (a3a + o33 + a363)

—a3f; (afe} + it + a3f5) — a3fs (afes + oipT + a3fs)

—B18283 (5152 (5% + 85 — Qﬁg) + 183 (B% — 263+ 5%) + B985 (_25% + B3 + 5%))

= XYZ(XR*S*+YRT? + ZS?T? + 2RSTU) .

as required. m

Note that if we are given five of the six B-dihedral crosses, solving for the other B-
dihedral cross requires solving a degree 8 polynomial. We now proceed to verify the

Dihedral cross relation for the Khafre tetrahedron.

Example 48 (Dihedral cross relation on Khafre tetrahedron) For the Khafre tetra-
hedron ORAP, the variables that we defined in the theorem become

X=Y=2x=W=P=T=U=V =0,

as well as 9 < 3 17 9
and S = —.

50 25 50 735 25
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3.3. DIHEDRAL CROSS RELATION

Since X =Y =V =0, we have that
XYZ (XR*S* + YR*T? + ZS°T? + 2RSTU) =0 = V.

Thus the Dihedral cross relation is verified rather trivially for the Khafre tetrahedron.
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Chapter 4

Special tetrahedra and their

properties

We will now apply the framework from the previous chapters to verify our results with
a variety of special tetrahedra. In particular, we will consider three specific examples
of tetrahedra: the regular tetrahedron, the isosceles tetrahedron (or disphenoid) and the
trirectangular tetrahedron. Furthermore, we will consider two further examples of a gen-
eral tetrahedron, whereby in one case we consider a relativistic bilinear form equipped to
the associated vector space and in the other case we consider an example over a finite field

of 11 elements.

First, we will review some basic notation: a general tetrahedron AgA;AsAs has B-
quadrances Q;; = Qg (Ai, A;) (for 0 <14 < j < 3), B-quadreas

Aoz = Ap (AgA14z), Aoz = Ap (AoA143)

Aoz = Ap (AoAzAs) and  Ajpz = Ap (A1A243),

B-quadrume V = Vp (AoAlAQAg), B-spreads s;.j;, = sp(A;jAj, AjAy) (for i = 0,1,2,3
and 0 < j < k < 3 with j, k # i), B-dihedral spreads

Eo1 = Ep (AgA1A2, AgA143),  Eaz = Ep (AgA2A3, A1 Az A3),
Eo2 = Ep (AgA1A2, AgA243),  Ei13 = Ep (AgA1A3, A1 AgAs),
Eo3s = Ep (AgA1A3, AgA2A3) and Ejo = Ep (AgA1Az, A1AxA3),
B-dihedral crosses Cjj = 1 — E;; (for 0 <14 < j < 3), B-solid spreads
So = Sp (AoA1, AoAz, ApAs), S1 = Sp (AoAr, A1 Az, A1A43),
So = Sp (ApAg, A1 Ay, AgAs) and S3 = Sp(AgAs, A1As, AxAs),
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and B-dual solid spreads
Dy = Dp (AoA1, AgAz, AgAz), Dy =Dp (A1, A1A, A1A3),

D2 = DB (AOAQ, A1A2, A2A3) and Dg = DB (AOA3, A1A3, A2A3) .

4.1 Regular tetrahedron

The regular tetrahedron is one of the five Platonic solids in Book XIII of Elements [26].
In our framework, we would like to generalise this by prescribing an arbitrary symmetric
bilinear form so that we can take a regular tetrahedron in A3 to have the unique property
that the B-quadrances between any two points of it are all equal. The solid is thus
symmetrical and, as a result, it suffices for us to compute one of each trigonometric
quantity (as the rest would be equal). Note that there is a subtle question of existence
and uniqueness of regular tetrahedra (up to order of scale), but it will not be explored in
this thesis.

Figure 4.1: Regular tetrahedron

Suppose a regular tetrahedron AgA; A2 A3 has B-quadrances Q;; = @ for 0 <17 < j < 3,
as in Figure 4.1. The B-quadrume of AgA1AsAs3 is evaluated by the Quadrume theorem

as
e e ¢
v=3lQ 20 Q=20
Q Q 2

and the B-quadrea of each of the four triangles of AgA;A2As3 is

A=A4(Q,Q,Q) = (3Q)* —2(3Q% = 3Q~.

Suppose the B-spreads associated to a vertex of AgA;AsAs are equal to s. Then we

use the Triple spread formula to obtain the equation
352 — 45% = 5% (3 — 4s) = 0.
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Eliminating the trivial solution (which corresponds to a degenerate triangle of three

collinear points) gives us the B-spreads of AgA;AsAs, which are all equal to

The B-spreads can also be obtained by use of the Quadrea spread theorem, and are
precisely the B-spreads of an equilateral triangle.

By the Dihedral spread theorem we have that the B-dihedral spreads of AgA;AsAs,
denoted by FE, are all equal to

3
E:4QV_4Q(2Q) 8

AP et Y

As a consequence the B-dihedral crosses of AgA1A2As, denoted by C, are all equal to

C=1-F=_.
9

By the Solid spread theorem we have that the B-solid spreads of AgA;AsAs, denoted

by S, are all equal to

1% 1

We confirm this result by using the Solid spread projective theorem to arrive at the same

8 /3\%2 1
—Fs2=2(Z2) ==,
§=Es 9<4> 2

If we denote the B-skew quadrances of AgA; A2 A3 (which are all equal) by R, then we

answer:

can use the Skew quadrance theorem to obtain

The ratio theorems in Chapter 3 will trivially hold due to the symmetry of the regular
tetrahedron. The B-dual solid spreads of AgA;A3As, which are evaluated by the Dual

solid spread theorem, will be denoted by D and are all equal to

4(2Q%)° 16

CCE T

Confirming this result by using the Dual solid spread projective theorem,

P (3)'3_16
N - \9) 4 21

To verify all of the results of the Tetrahedron cross law for the regular tetrahedron

AgA1 A2 A3, we note that its symmetry implies that the four equations reduce to one single
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equation, namely
956.4° ((1 _30)2 - 12(J2>2 = 409645C3 (24)% = 16 384 A5C3,
We simplify this result to obtain an equation independent of A, as follows:
(3C2 +6C —1)% = 64C°.

We can now examine the possible solutions of this equation for C without any dependence

on A.

Given we know that C' = % for a regular tetrahedron, we can then deduce that

1 2 2 64 1\?3
(3C*+6C —1) 5713 -9 = 64{ 5 64C

So, C' = é is indeed a solution to this reduced equation and hence the Tetrahedron cross
law is verified for a regular tetrahedron. Furthermore, we can factorise the difference

between the two sides to get

(3C% +6C — 1) —64C3 = (9C — 1) (C —1)°.

This is zero precisely when C' = é or when C' = 1; while the former case has been discussed
above, the latter case implies that £ = 0 and hence corresponds to the case to when the

four points of the regular tetrahedron are coplanar.

In the case of the regular tetrahedron, where C;; = C' = % for 0 <i < j <3, we set

1 1 1
X = =—, Y= = — Z = = —
Co1C23 TR Co2C13 TR Co3C12 TR
2 2 2
r=Cn+Cu=5, y=Cntli=g 2=Cu+ln=yg,
4
W = Co1Cp2C03 + Cp1C12C13 + Cp2C12C23 + Cp3C13C23 = 729"
P=1n FXAY +7) =
R ~ o7
32 32 32
— P42 7= S=Piy-Y="" T=Ptaz-X=>
R=P+z s 0= 81’ e 81’
U=1(P2—W+XY+XZ+YZ) - 52
2 - 2187
and
1024 210

V=- (U XYR - XZS* - Y ZT?)

1
2 14348907 ~ 315°
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Then,
XYZ (XR*S* + YR*T? + ZS°T* + 2RSTU)
1\* (1 /32\* 32 ) /32)\°
= (= — (=) +2(== )=
81) \27\81 2187 ) \ 81
1048 576
205891 132 094 649

920 910 2 )

and we have the Dihedral cross relation for a regular tetrahedron.

4.2 TIsosceles tetrahedron (Disphenoid)

As defined by Leech [38], a tetrahedron AygA;AsAs is an isosceles tetrahedron or a

disphenoid precisely when

Qo1 = Q23, Qo2 = Q13 and Qo3 = Q12
We can parameterise a disphenoid by defining
D1 =Qo1 =Q23, D2=0Qp2=CQ13 and D3 = Qo3 = Q12,

and illustrate this in Figure 4.2. If D1 = Dy = Dg3, then a disphenoid degenerates to a

regular tetrahedron.

Figure 4.2: Isosceles tetrahedron (disphenoid)

As each triangle of the disphenoid has quadrances Dy, Dy and Dg3, the B-quadreas are

all equal and evaluate to
A= A(D1,D2,D3) = (D1 + Dy + D3)* — 2 (D? + D} + D3) .
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By the Quadrume theorem, the B-quadrume of the disphenoid is

V =2(—=D1+ Dy + D3) (D1 — Dy + Ds3) (D1 + Dy — Ds)
=16 (0 — D1) (0 — D2) (0 — D3),

where
o D1+ Dy + D3

2
Observe the similarity between the result for the B-quadrume of a disphenoid and Heron’s
formula for the area of a triangle in the classical Euclidean framework, which is highlighted
by Klain [33].

By the Spread law, we will have three unique B-spreads corresponding to each vertex

of the disphenoid. By the Quadrea spread theorem, these are evaluated to be

A
S50;12 = S1;03 = S2;03 = S3;12 = ma
A
50;13 = S1;02 = S$2;13 = $3;02 = 1D D
13
and A
S0:23 = $1:23 = $2,01 = 83,01 = ;5
2473

By the Dihedral spread theorem, the B-dihedral spreads of the disphenoid are

4DV 4D5V 4D3YV
Eogr = By = T;a Ey2 = E13 = TQQ and Ep3 = B2 = Tz
Hence, the B-dihedral crosses Cj; = 1 — Ej;, for 0 <17 < j < 3, are
L? L? L?
Co1 = Cy3 = /T;’ Co2 =Ci13= ﬁ and Cp3 = Ci2 = A*:;
where
Ly = —3D?+ D2+ D2+ 2D1Dy+ 2D D3 — 2D3D3
= (D1 + Dy + D3)* — 4 (D3 + D2D3),
Ly = D?—3D3+ D3+2D1Dy —2D; D3 +2DsD3
= (D1+Dy+ D3)2 —4 (D% + D1D3)
and

h
w
Il

D? + D3 —3D2% — 2Dy Dy + 2D D3 + 2D D3
= (Dy+ Dy + D3)* — 4 (D3 + D1D,) .
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We make the following observation with regards to the disphenoid.

Lemma 49 If

Ly = (D1 + D3 + D3)* — 4 (D} + D2D3),

Ly = (D1 + Doy + D3)* — 4 (D3 + D1 D3)
and

L3 = (D1 + Dy + D3)* — 4 (D3 + D Ds),
then

L1+ Lo+ Ly = A
Proof. Directly calculate the sum of Li, Lo and L3 to obtain
Li+ Lo+ Ly = 3(Di+ Dy+ D3)* —4(D? + D2+ D3 + D1Dy + D1 D3 + DyD3)

= (D1 + Dy + Dy)* —2(Di + Dj + D)
= A7

as required. ®m

By the Solid spread theorem, the B-solid spreads of a disphenoid are

S =51=5=5 4DJ)ZD3
Given that
4D V\? 4D,V 2 4DsV\ 2
Eo1 Eo3 = <AQ> ,  EoF13 = <A?> and EysEa = <A?> ,
we have

Eo1Eo3 _ Eoy 13 _ EozEr2 _ 162
Qo1Q23 Qo2Q13 Qo3Q12 At

Hence, the Dihedral spread ratio theorem is verified for AgA;AsAs. Since the B-quadreas

of the triangles of the disphenoid are equal, by the Dual solid spread theorem,

4V°
D0:D1:D2:D3:ﬁ.

The Dual solid spread ratio theorem must hold by inspection, and the ratio of the B-dual

solid spread to the quadrea is

AT A T\ ar

D 42 1(161/2)

By the Skew quadrance theorem, the B-skew quadrances of a disphenoid are

% B —D1+ Dy + Dsg
4D} = (Dy - Dy)’] 2

Ro1;23 = =o0— Dy,
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% D1~ Dy+D
Ro2,13 = o7 — ! 22 3 =0— Dy
4[D§—(D1—D3)}
and % Di+Dy—D
Ro3;12 = = ! 22 3 — 6 - Dj.
1[D§ = (D1 - D,)’]

As an aside, we observe that

Ro1.23 + Ro2:13 + Roszji2 = 30 — (D1 + Da + D3) = 30 — 20 = 0.

With the B-dihedral crosses and B-quadreas evaluated above, the four relations given

in the Tetrahedron cross law reduce to the single result
256 ((A2 — (L34 13+ 13) —4 (L33 + L33 + L3L§)>2 = 1638442121312,
which simplifies to
((A2 — (L2 4+ 13+ 13) —4 (L33 + L33 + L%L§))2 = 64 A% L2313
We can factor this result as

2
(A2 = (23 + L3+ £3))" — 4 (L33 + L33 + L3L3)) — GAAPLRLZL3

= (A—Ll+L2—|—L3)(A—|—L1—|—L2—L3)(.A+L1—LQ—I—Lg)(.A—Ll—LQ—Lg)
X(A+Li+ Lo+ Ls)(A—Li+Ly—L3)(A—Ly — Lo+ L3) (A+ Ly — Ly — L3).

The result of Lemma 49 implies that A — L1 — Lo — L3 = 0. So,
2
(42— (13 + 13+ 13))* — 4 (1303 + L33 + T3L3)) — G4APL3T3I3 = 0.

This gives us the desired result and hence the Tetrahedron cross law is verified for the

disphenoid.

The variables in the Dihedral cross relation are

Li\* Lo\ 4 Lo\ 4
X =CoC = <1) » Y =C2Chs = <2> , 7 =Cy3C10 = <3> ,

A A A
- A - (Ln\? B A
$=CO1+C'23—2(A> ; y:CO2+C13—2<A> , 2=Co3+Cia =2 )
LiL>L3\”
W = Cp1C02C03 + C1C12C13 + Cp2C12023 + Co3C13C33 = 4 < 1A§ 3) ;
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P = %(1—:U—y—z—|—X—|-Y—|-Z)
1
= 2—A4[A472(Lf+L§+L§)A2+(L%+L§+L§)],
1
REP%—z—Z:Q—ALL[A4—2(L%+L§—L§)A2+(L‘{+L‘2‘—L§)],

5;P+y—Y:21W[A4—2(L§—L§+L§)A2+(L%—L§+L§)]

and

1
TEP+:U—X:2—A4[A4—2(—L§+L§+L§)A2+(—L‘{+L§+L§)].

Furthermore defining
(PP-W+XY+XZ+YZ)

N =

U=

and

V= % (U - XYR? - XZS*-YZT?),

we can substitute the above variables and use a computer to obtain the remarkable fac-

torisation

V- XYZ(XR*S® + YR*T? + ZS*T? + 2RSTU)

1
Togaaae A~ L1+ Lot L) (A= Li+ Ly — Ls) (A — Ly — Lo + La)

X(A+Li+ Ly + L3)(A— Ly — Ly — L3) (A+ Ly + Ly — L3)
X (A+ Ly — Lo+ L3) (A+ L1 — Ly — L3)
2 2
X (A2 — (L1 + Ly)? - L§) (A2 Ly + L3 - Lg)
2 2
X (A2 — (Ly+ L3)® — L%) (A2 (L — Ly)* — L§>
2 2
X (A2 (L~ L3)? - Lg) (A2 Ly — L3)* - L%) .
As Lemma 49 implies that A — L1 — Ly — L3 = 0 and thus
V?— XYZ(XR*S* + YR*T? + ZS*T* + 2RSTU) = 0.

Thus we have the Dihedral cross relation for the disphenoid.

4.3 'Trirectangular tetrahedron

For a general tetrahedron AygA;AsAs, let v; = AgA; (for i = 1,2,3) and suppose that vy,

ve and v3 are mutually B-perpendicular, i.e.

V1 -BU2 =1 -BVU3 =12 -gv3 =0.

83



CHAPTER 4. SPECIAL TETRAHEDRA AND THEIR PROPERTIES

Then we say that AgAi;AsAs is a trirectangular tetrahedron. This tetrahedron is
mentioned in Altshiller-Court [1, pp. 91-94]. With such a property, we use the definition
of the B-spread to obtain

(v1 - v2)?

S012 = 1= 5 (00 O ()

=1,

and similarly

50;13 = So;23 = L.

Furthermore, we use the Binet-Cauchy identity to obtain

((v1 X5 v2) B (v1 Xp v3))?

Por = 1= QB (v1 Xpv2) QB (v1 Xp v3)
- 1_ ((v1-Bv1) (v2-BY3) — (V1 -BV2) (V1B v3))2
QB (111 XB 112) QB (111 XB 713)
= 1,

and similarly
Ep2 = Ep3 = 1.

Hence Sg = 1 by the Solid spread projective theorem.
We can parameterise the trirectangular tetrahedron AgA;AsAs by defining

Qo1 =G1, Qo2=G2 and Qo3 = Gs.

Because the edges emanating from Ay are mutually B-perpendicular, we use Pythagoras’

theorem to evaluate the other B-quadrances as
Qu2=G1+G2, Qu3=G1+G3 and Q23 =G+ Gs.

We illustrate a trirectangular tetrahedron with these B-quadrances in Figure 4.3.

Figure 4.3: Trirectangular tetrahedron B-perpendicular at Ag
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Using Pythagoras’ theorem, we can simplify the calculations of the B-quadrume of
AOA1A2A3 to get

. 2G4 0 0
VY = 3 0 2G2 0 |=4G1G2Gs.
0 2G3

We use the property that sg.12 = so;13 = s0:23 = 1 and the Quadrea spread theorem to
obtain
Aoz = 4G1G2, Agi3 = 4G1G3  and  Agaz = 4G2Gs.

To compute Ajo3, we make a key observation regarding trirectangular tetrahedra, which
extends a known result of de Gua de Malves (1783) [17] to arbitrary symmetric bilinear

forms.

Theorem 50 (de Gua’s theorem) For a trirectangular tetrahedron AgA;AsAs which
is B-perpendicular at Ag with B-quadreas Agi2, Apiz, Ag2s and Ajog, the relation

Ajas = Aoi2 + Ao1s + Ao2s

s satisfied.

Proof. We start with the Tetrahedron cross law

2
(Ao1z + Ao13 + Agaz — A123)?
—4 (A012A4013C01 + Ao12A4023Co2 + Ao13A023C03)
—64Ap12A013A023 (A012C01Co2 + A013C01Co3 + Ao23C02C03)

= 4096.A%;5A2%13A42%55C01Co2C03 (Ao + Ao1s + Aoz — A123)”.
Since we have that Fy; = Eys = Eyg3 = 1, we can deduce that the B-dihedral crosses are
Co1 = Cp2 = Co3 =0
and hence our result degenerates to
(Ao12 + Ao1z + Aoz — Ar23)° = 0.

Solve for Ajs3 to get
Ai23 = Ao12 + Aois + Aozs-

This result is also alluded to by Cho in [10] and [11]. Defining
H = G1G2 + G1G3 + GaG3,

we then have that
Ai23 = 4H.
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We use the Quadrea spread theorem to obtain the B-spreads for AgAjAsAs, which are

G2 Gl

50;12 = 1, 51,02 = m, 52;01 = ma
G3 Gl

so3 =1,  s1,03 = Gt Gy $3,01 = Gt Gy
G G

5023 = 1, $208 = 4, 8302 = Ao

’ ’ ’ Go + Gg’ ’ Gy + Gg’
S S

81,23 = ( 82:13 = (

G1+ G2) (G1 + Gs)’ G1 + G2) (G2 + Gs)

and

S
P2 TG+ Gs) (Ga + Ga)

By the Dihedral spread theorem, the B-dihedral spreads of AgA;AsAs are

Bu = 1, Ey= @6
Ep = 1, Ej3= (Gl_{_S(’;:S)G?7
E03 = 1 and E12 = W

By the Solid spread theorem, the B-solid spreads of AygA;AsAs are

G>G3
S = 1, S = )
0 7 (G1 + Ga) (G1 + Gsy)
G1G3 G1G3
Sy = and S3 = .
27 (G1 + G2) (G2 + G3) 7 (G1+ Gy) (Gy + G3)
Given that
Go+G3)G Gi1+G3)G Gi1+ GG
Ep1Ea3 = (624 Gs) Gy L EpEp;s= (G1+C) Gy and FEp3E12 = (611 G2)Gs i3
S S S
we have

FEo1Ea3  EoaFi3  EosEra 1

Q01Q23  Qu2Q13  Qu3Qi2 S

As a result, we use the Dual solid spread ratio theorem to obtain the B-dual solid spread

of the trirectangular tetrahedron, which are

Go2G GG GG
253, Dy = 173 and D3 = gz

Dy=1, D=

Observe that
Do =D1+ Dy + Ds.

This is a direct consequence of de Gua’s theorem and the Dual solid spread ratio theorem.

By the Skew quadrance theorem, we can compute the B-skew quadrances of a trirec-
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4.3. TRIRECTANGULAR TETRAHEDRON

tangular tetrahedron to be

4G1G2G3 G2G3

R01;23 - 4G4 (GQ + Gg) N Gs + Gg’

4G1GoG3 _ G1G3
4G5 (G1 + G3) N G1+ Gs

Ro2.13 =

and
4G1G2G3 G1Go

Ros.19 = = .
0312 = 4G5 (G1 + Ga) G+ G

We saw that one of the results of the Tetrahedron cross law implied de Gua’s theorem.

As an exercise, let us verify one of the other results of the Tetrahedron cross law, say

2

2
(Aozz + Aoz + A1z — Agas)?
—4 (Ap12A4013C01 + Aop12A123C12 + Api3Ai23C13)
—64Ap12A013A123 (A012C01C12 + A013C01C13 + A123C12C13)

= 409643, A313A3,3C01C12C13 (Aor2 + Aoiz + A12z — Ag23)”.

Note if this result is true, the other two results follow by symmetry and hence the Tetra-
hedron cross law is verified for a trirectangular tetrahedron. We start with the B-dihedral
crosses

G1G2 and 013 = Glng

Co1 =0, Ci2=

We deduce that
Aoi2 + Aoiz + Ai2z — Apzz = 8 (G1G2 + G1G3) ,

Ao12A013C01 + Aor2A123C12 + AoisA123C13 = 16 (G1G3 + G1G3)

and
Ao12.4013A123 (Ap12C01C12 + A013C01C13 + A123C12C13) = 256GTGEG3.

Since Cp1 = 0,

—4 (Ap12A4013C01 + Ap12A123C12 + Api3Ai23C13
—64Ap12A013A123 (A012C01C12 + A013C01C13 + A123C12C13)

2
( (Ao12 + Aoz + A1as — Agas)?
)

2 2
— o <((G1G2 +G1Ga)? — (G262 + G%G%)) - 4G‘{G§G§> ~0

= 4096.A42,,A2342,:C01C12C13 (Ao12 + Ao1z + Araz — Agaz)? .

So, the result holds and by symmetry the Tetrahedron cross law is verified for a trirectan-
gular tetrahedron.

Define the variables
X =Cp1C3 =0, Y =CpCi3=0, Z=Cp3C12=0,
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G1G G1G GyG
1527 y=Cp+Ciz = 1337 z=Cp3+ Ci2 = 2537

W = Cp1Co2C03 + Cp1C12C13 + Cp2C12C23 + Cp3C13C23 = 0,

z = Co1 + Cy3 =

1
=§(l—x—y—z—|—X+Y—|—Z):O,
REP+Z_Z:G1G2) SEP+y_Y:G1G37 TEP+$—X:G2G37
S S S
1
UEQ(PQ—W+XY+XZ+YZ):O
and .
V=g (U = XYR?* - XZS5*-YZT?) =0.
Thus

V?=XYZ(XR*S* +YR*T? + ZS*T? + 2RSTU) = 0.

So, the Dihedral cross relation trivially holds for a trirectangular tetrahedron.

4.4 A relativistic example

Consider A3 over the rational number field, and equip a symmetric bilinear form on its

associated vector space V?® (over the rational number field) defined by

(!L’layl, 21) ‘B (3727y2, 22) = X122 + Y1Y2 — 2122.

This scalar product is called the relativistic scalar product or the Minkowski scalar

product [40], and we can represent this symmetric bilinear form by the matrix

0
0
-1

Sy
Il
S O =
O = O

Suppose we have a tetrahedron AgA; A Az in A% with points
Ap=[0,0,0], A;=1[1,2,3], Ay=[-2,1,—1] and A3=][0,-2,1].

The B-quadrance Qo1 is

0 2 | =—4
-1

S = O

1
Q01:(1 2 3) 0
0

Similarly, the remaining B-quadrances of AgA;A3As are

Qo2=4, Qoz3=3, Q23=9, Q3=13 and Q2= —6.
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The B-quadreas of AgA;1AsAs are then

Aotz = (—4+4—6)? —2(16 + 16 + 36) = —100
and similarly

A1z = —244, Agoz =44 and Ajp3 = —316.
The B-quadrume of AgAiAsA;z is

) -8 0+6 —1-—13
V:§ 0+6 8 7—9 | =-900.
—-1-13 7-9 6

By the Quadrea spread theorem,

—100 25

R T N (4 x4 16

The remaining B-spreads of AgA1AsA;3 are

25 25
51,02 = YR 52;01 = 2’
61 61 61
50513 = 790 51,03 = 52’ 83,01 = T390
11 11 11
50,23 = E’ 52,03 = %, 53,02 = 2*77
79 79 d 79
81.93 = — S9.13 = — an 83.12 = ———.
1;23 7]’ 2;13 54 3;12 117

By the Dihedral spread theorem, we have that

B — 4 x (—4) x (—900) 36
007 T (Z100) (—244) 61

and similarly the remaining B-dihedral spreads of AgAj;AsAs are

36 675
E = — = —
02 117 03 6717

2025 2925 54

BT g9 T1BT Tugrg MC 12T g

The B-dihedral crosses C;j = 1 — E;j of AgA1A2A3, for 0 <4 < j <3, are

25 25 4
Co1 = 6L’ 002——ﬁ, COS__ﬁ’
1156 7744 25
1YY _ d _
Cas 60’ O3~ g M Ce=og
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By the Solid spread theorem, the B-solid spread Sy is

—900 75

So = =,
T Ax(—4)x4x3 16

Similarly, the remaining B-solid spreads of AgAjAs A3 are

75 25 25
m7 82 — and 83 = —

Sr=- P2

@.

Note the non-standard outputs obtained in our calculations above; in the relativistic bi-
linear form, we have B-quadrance outputs that end up being less than 0 and B-spread
outputs outside the usual range of 0 to 1, which is normally the case in Euclidean geometry.

This is an important possibility of working with arbitrary symmetric bilinear forms.

We compute

72900 105300 36 450
ForEay = 20 — d EpErp = 2
01523 = 53009 02713 T Ta3009 MY PO3EIZ T 5a0g-
as well as
Qo01Q23 = —36, Qp2Q13 =52 and Qp3Q12 = —18,
so that

Eo1Ea3  EooE13  FEosErz 2025

QQ23 Q@13  QosQi2 53009
We have thus verified the Dihedral spread ratio theorem for AgA;A3As, and from this we

can deduce the Richardson number to be

53009
2025 °

We use the Dual solid spread ratio theorem to obtain

2025 2025
I)0“<“53009> < (=19) =G

2025 2025
Dl = < > x 11 =

53009 4819’

2025 2025

Dy= [~ ) x (=61) = ==
2 < 53009) X (=61) = 5

and

202 2
Dy (205 | (Lyg 30625
53009 53009

We use the Skew quadrance theorem to obtain

—900 225
4% (=36) — (17 +3)* 136

Ro123 =
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Ro2;13 = —900 5 = _5
’ 4 x 52— (5+3) 4
and
Rosz;12 = —0 2

4% (—18)— (517 6
We proceed to verify one of the results of the Tetrahedron cross law, say
2
< (Ao1z + Aors + Aoz — Ar23)°
)

—4 (A012A4013C01 + Ao12A023Co2 + Ap13A023Co3
—64.A012.A013A023 (A012C01Co2 + A013C01Co3 + Ap23C02C03)

= 409643, A313A2,5C01C02C03 (Aoi2 + Ao1z + Aoz — A123)°.
With the quantities we evaluated above, we have that
Ao12 + Aoz + Aozs — A123 = 16,

Ap12A4013C01 + Ao12A4023C02 + Ap13.A4023C03 = 20 064,

Ao12A4013Ao23 (Ao12C01Co2 + Ao13C01Co3 + Ap23C02C03) = 101 280 000

and

A2 5 A2 5 A2,02C01Co2Clos3 (Aot + Aoiz + Agas — A1az)? = 1638 400 000 000.
So

( (Ao12 + Aoz + Aoz — A123)’ )2

—4 (Ao12A013C01 + Ao12.4023Co2 + A013A023Co03)
—64.A012.4013A023 (A012C01Co2 + A013C01C03 + A023C02C03)

- ((256——4(20064))2——64(101280000))2

= 6710886 400000000 = 4096 x 1638 400 000 000

= 409642 A2A2C)1Co2C03 (A1 + Az + Az — Ag)?.

We perform similar calculations for the remaining results of the Tetrahedron cross law,

which then enables us to verify the Tetrahedron cross law for the tetrahedron AgA; AsAs.

The variables required for the Dihedral cross relation are

28900 17600 100
X= - 07y = = = = 3009
CorCs = ~23009° Co2C13 4819 ' CosCh2 = = 53509°
48791 35291 16459
:c:001+023——ma ?/:CO2+013__M’ Z:CO3+C12_M’
3325473256

W = Cp1Cp2C03 + Cp1C12C13 + CpaC12C23 4+ Cp3C13C23 = 2809954 031"
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1 50984 34425
Pe=c(log—y—24X+Y+2)=_—2"01% =Ptr_g=_2020
gl -e-y— 2+ X4V +2)=—cphg R=Pz 53009’
107325 70875
S=P4y_Y = T=Ptg—X=_—2°0
Ty 53009 ° Tt 53009’
1 9445 592 500
=_(P? - XY+ XZ+YZ)="T—"T"—"+
U=3 (P -W+XY+XZ+YZ) = gonromitat
and 1 35463 189 150 000 000
_ 2 2 2 2
= (U2 XYR - XZS2—YZT?) = — .
V=3 R s ) = 717803812 484 414 051
Thus,

p2 _ 1257637784688677722500000000000000
515242313217 159 849 022 981 796 806 230 601
= XYZ(XR*S*+YR’T*+ ZS?T* + 2RSTU).

Hence, the Dihedral cross relation holds for the tetrahedron AyA;AsAs.

4.5 An example over [F;

Consider the affine 3-space (A3) over the finite field F11, whose elements will be represented
by integers between —5 and 5 and whose operations will be represented by the main integer
operations modulo 11. Equip its associated vector space with the symmetric bilinear form

defined by the Euclidean scalar product

(w1,y1,21) - (22,2, 22) = T1T2 + Y1Y2 + 2122.

Here, we will consider the same tetrahedron AgA;AsAs with the same points as in the

previous example, where
Ap=[0,0,0], A;=1[1,2,3], Ay=[-2,1,—-1] and A3=][0,-2,1].

As is the case with the rational trigonometry of the Khafre tetrahedron, we are allowed
to omit the B prefix from the trigonometric quantities because we are dealing with the

Euclidean scalar product, where B is the 3 x 3 identity matrix.

The quadrance Qg; is given by

1
Qm:(12 @ ol =14+4-2-3
3

Similarly, the remaining quadrances of the tetrahedron AgA; A2 A3 are

Qo2 = -5, Qoz3=5, @3=-5 Q3=-1 and Q2=4.
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Furthermore, we have that

Aoiz = A(3,-5,4) =22 -2(-2+3+05)
= 4-2(-5)=14=3,

and similarly the remaining quadreas of AgAj;AsAs are
./4013 = 1, .,4023 =—4 and .A123 = —-3.
The quadrume of AgA;AxAsz is

-5 3—5—4 345+1

y=1tls_5_4 1 | P e S
T2 T B R T R
3+5+1 —-5+5+5 -1
By the Quadrea spread theorem,
B 3 1 5
2T 8 (-5) 2
The remaining spreads of AgAj;AsAs are
3
S102 = £ = =2, S9,01 = 3= -1,
1 1 1
S0:13 = ¢ , 51,03 1 ;8301 =5 9,
1 1 1
50;23 3 ;52,03 3 ;53,02 3 )
3 3 3
51,23 = g = 5, 5$2:13 = g =1 and $3;12 = 5 = —4.
By the Dihedral spread theorem, we have that
4x3x%x(-2)
E = = —0 =
01 3% 1 8 37
as well as
1 10
Eop =5 =4, Ep3=10=—-1, FEy3=— =—4,
3 3
8 32
E13—:—§:1 and E12:§:—5.

From the above results, the dihedral crosses C;; = 1 — E;; of AgA1A2A3, for 0 <7 < j <3,

are

Cor = —2, Copo=-3, Coz=2,
623 = 5, 01320 and 012:—5.
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By the Solid spread theorem,

-2 1

5024><3><(—5)><5:—74:_3
and thus the remaining solid spreads of AgAjAsAs are
1 1 1
Si=—=-4, S=-=4 d &3=-=-2
1= 3 » 92T 3 an 37 5

Given that
Eo1E23 = -1, FEpFEi3=4 and EgpE;2 =5,

we observe that

Eokas 1 _,

Qoi1Q2s 4 7

Eoxfns _ 4 _ 4

Qo2Q13 5
and

Eosbhy _ 1 _ o

Qo3Q12 4

As all ratios are equal, the Dihedral spread ratio theorem is verified for AgA;AsAs. Given
that

1
K=>-=14
3
and
I
AK  4x4 7

we have by the Dual solid spread ratio theorem

-3
DO:ZZ

—4
and similarly the remaining dual solid spreads of AgA;A2A3 are

D1:2, D2:5 and D3:4
We will now verify one of the results of the Tetrahedron cross law, say

2
(Ao1z + Ao1z + Agaz — Ai123)°
—4 (A0124013C01 + Ao12A4023Co2 + Ao13A023C03)
—64Ap12A013A023 (A012C01Co2 + A013C01C03 + Ao23C02C03)

= 4096A%;5A2%13A42355C01Co2C03 (Ao + Aotz + Aoz — A123)°,
With the quantities we defined in this section, we deduce that

Aoi2 + Aoiz + Aoz — Ai2z = 3,
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Ao12A4013C01 + Ao12A023C02 + Ap13.A023Co3 = 0,
Aoi2.A013A023 (A012C01Co2 + A013C01Co3 + A23C02C03) = —5,

and

40964743 43C01Co2Cos (A1 + Az + Az — Ag)* = 3.

So,

4096425 A%1 5 A%5C01C02C03 (Aora + Aoz + Aoz — Araz)® = (4 +2x (=5))> = 36 = 3

2
((«4012 + Ap1z + Agaz — A123)? — 4 (Ao124013C01 + Ao12.A023Co2 + A013A023CO3))
—64A012A013A023 (A012C01Co2 + A013C01C03 + Ao23C02C03)

We can perform similar calculation for the other results, which would enable us to verify
the Tetrahedron cross law for AgA;AsAs.

Define the variables
XEC()1023=(—2)X5=1, x=Cpop1+Co3=—-2+5=3,

Y =CoaCiz3=0x (=3) =0, y=Co+Ci3=0—3= -3,
Z=Cp3Cra=2x(-5)=1, 2z=Cp3+C12=2-5= -3,
W = Co1C02C03 + Co1C12C13 + Cp2C12C23 + Cp3C13C3 =1 — 2 = —1,
E;(l—x—y—z+X+Y—|—Z):1_<_23)+2:
R=P+2-Z=3-3-1=-1, S=P+y—-Y=3-34+0=0,

3,

T=P+2—-X=3+3-1=5,

~2+1+1

(PP-W+XY+XZ+YZ)= 5

0

and
(U - XYR? - XZS*-YZT?) =0,

AsY =0,
V?=XYZ(XR*S* +YR*T? + ZS*T* + 2RSTU) = 0.

So, the Dihedral cross relation holds for the tetrahedron AgA;AsAsz over Fyy.
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Afterword

We are able to extend the framework in this thesis to set up a framework for trigonometry
over higher-dimensional spaces. Most naturally, we can start with the four-dimensional
affine space A* over a field F with characteristic not equal to 2. While the definitions of
quadrance, quadrea and quadrume naturally extend from the contents of this thesis, we
are also able to talk about a hyperquadrume associated to a 4-simplex in A*. The Cayley-
Menger determinant, as discussed earlier, provides a natural framework by which we can
define metrical quantities not only in A% but also for higher-dimensional affine spaces A%
over arbitrary fields not of characteristic 2. As for the spreads and their higher-dimensional
counterparts, the recent paper by Wildberger in 2017 [62] gives an insight as to how to
calculate spreads between planes in four-dimensional space; we may naturally extend such
a concept to calculating spreads between objects of k£ dimensions in n-dimensional space,
for k <n.

Furthermore, we can extend the framework in this thesis to understand the trigonom-
etry of a projective or hyperbolic tetrahedron. Here, we can build on from the framework
of projective planar trigonometry in this thesis to discuss the projective tetrahedron in the
three-dimensional projective space P3. One aspect of setting up this framework involves
calculation of the various types of spreads for this tetrahedron. Of more interest to current
literature, however, is the calculation of the projective quadrume, or in the classical case
the volume, of the projective/hyperbolic tetrahedron. This concept has been explored
in independent works by Cho and Kim [12], Derevnin and Mednykh [18], Horvéath [29],
Molnér [41], Murakami and Yano [43], and Ushijima [54]. Whether there is a rational
analog to this quantity has yet to be explored.

An interesting problem that one may come up with from reading this thesis is to find a
possible relationship between the solid spreads of a tetrahedron in three-dimensional affine
space, in a similar flavour to that of the Dihedral cross relation. With the framework set
up in this thesis, one is poised to apply the techniques and tools here to various modern
three-dimensional problems in robotics, animation, video games, physics, engineering and

surveying.
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