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Abstract 350 words maximum:

The emergence of the Internet of Things (IoT), has heralded a new attack surface, where
attackers exploit the security weaknesses inherent in smart things. Comprised of heterogeneous
technologies and protocols, the IoT is a source of high-speed and volume data, rendering
pre-existing forensic solutions ineffective. As a result, developing new network forensic
solutions for the IoT is imperative. Some of the challenges involved in designing network
forensic solutions for the IoT are 1) obtaining realistic data that represent contemporary
network behaviour, 2) selecting and optimizing a machine learning model, best suited to deal
with such data and 3) identifying and tracing attacks. This thesis provides considerable
contribution to the research focusing on building a network forensic framework tasked with
investigating botnet activities in IoT networks.

The first contribution is the design of a new virtual testbed and the generation of a new
network dataset, called Bot-IoT. This new dataset incorporates normal IoT traffic and
represents a range of realistic network attacks. The second contribution is the selection of
optimal features for the dataset. The process combined two measures, namely Pearson
Correlation and Joint Entropy to create a score for the features, allowing for the selection of
the 10 least-similar, which helped in removing any redundant information from the dataset.

The third contribution is the analysis performed on the Bot-IoT dataset. For this analysis, two
other widely used dataset, the UNSW-NB15 and NSL-KDD datasets were selected and seven
machine learning models were trained. The fourth contribution is the development of the
Particle Deep Framework (PDF) which covers the stages of the digital forensic investigation
process. The PDF utilizes Particle Swarm Optimization for the selection of the optimal
hyperparameters of a deep learning model, which lies at its core and is trained to detect attack
network flows.
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Abstract

The emergence of the Internet of Things (IoT), has heralded new attack surfaces,
where attackers exploit the security weaknesses inherent in smart things. The IoT
is comprised of heterogeneous devices and protocols which is a source of high-speed
and volume data, rendering pre-existing forensic solutions ineffective. As a result,
developing new network forensic solutions for the IoT is imperative. The key
challenges involved in designing network forensic solutions for the IoT include:
1) obtaining realistic data that represent contemporary network behaviour, 2)
selecting and optimizing a machine learning model, best suited to deal with such
data and 3) identifying and tracing attacks. This thesis provides a considerable
contribution to the research focusing on building a network forensic framework
tasked with investigating botnet activities in IoT networks.

The first contribution is the design of a new virtual IoT network testbed and

the generation of a new network dataset, called Bot-IoT. This new dataset in-

corporates normal IoT traffic and represents a range of realistic network attacks.

This dataset has new IoT features that do not exist in the literature, along with

new security events of botnets, for evaluating new network forensics and intrusion

detection systems. The second contribution is the selection of optimal features

that can be used to build effective network forensics techniques based on machine

learning. The process combined two measures, namely Pearson Correlation and

Joint Entropy to create a score for the features, allowing for selecting the most

important features and improving the techniques’ performances. This helped in

removing any redundant information from the dataset.

The third contribution is the analysis performed on the Bot-IoT dataset. For

this analysis, two other widely used dataset, the UNSW-NB15 and NSL-KDD

datasets were selected and seven machine learning models were trained and val-

idated to demonstrate how forensics techniques can be developed using machine

learning rather than traditional forensics tools that can not trace new attack fami-

lies. The fourth contribution is the development of novel Particle Deep Framework

(PDF) which covers the stages of the digital forensic investigation process. The
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Abstract

PDF utilizes Particle Swarm Optimization for the selection of the optimal hy-

perparameters of a deep learning model, which automates its potential process

of learning botnet events, and correctly trace their anomalous behaviours in IoT

networks.
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Chapter 1

Introduction

1.1. Overview of Cyber Security in the Internet of Things

In recent times, the world has come to rely greatly on the Internet and the ser-
vices that it provides. As such, it should come as no surprise that innovations that
harness the interconnectivity that the Internet offers, would themselves become
integral parts of everyday life. Heterogeneous technologies and devices the era of
“ubiquitous computing” lead to the emergence of the Internet of Things (IoT).
IoT is one such innovation that has exhibited a dramatic growth over the years
[5]. IoT systems that combine sensors, computation capabilities, networking, and
actuators are also called cyber-physical systems. It enables various services, pro-
viding automation, cost-efficiency, and precision with implementations spanning
multiple industrial sectors, including healthcare, water, power and agriculture [6].
As such, it is evident that both academic and industry institutions rely greatly on
the IoT.

The number of deployed IoT devices has exploded in recent years. In 2018, ap-
proximately 7 billion IoT devices were connected to the Internet, while projections
suggest that by 2020 they will reach 20.4 billion [7]. The most popular types of
IoT installations in 2017 were smart home devices, like smart fridge, smart garage
door, smart lighting, and air-conditioning at about 663 million units. IoT devices
are designed to be constantly active and utilize a wireless network to exchange
data and commands. Communication in an IoT network can either be in the
form of thing-to-thing, where things communicate locally or thing-to-cloud, where
devices collectively transmit sensor data to the backend cloud infrastructure and
receive instructions [8]. While these devices provide important benefits such as
optimization of business processes and centralized control of actuators distributed
in diverse geographical locations, they are often targeted by cyber attacks due
to their availability and vulnerable designs. According to a report by Symantec
2018 [9], the total number of attacks targeting IoT devices for that year exceeded
57,000, with more than 5,000 attacks being recorded each month.

Commonly, IoT devices are built with limited computing capabilities and con-
strained power supply. This is because they are often designed to be mobile,
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set-up in places where they can not be plugged into a power outlet or they are
programmed to function in short periods of the day. Furthermore, it has been
shown [10, 11] that a good portion of the online IoT devices exhibits a severe lack
of security measures. Thus, the lack of security, coupled with the “always-active”
design, has given an increase to several types of cyber attacks that either target
or utilize IoT for further exploitation. These attacks vary from massive DDoS
attacks that reach several hundred Gbps or even Tbps and can paralyze entire
sectors of the Internet [12, 13], to the exploitation of cyber-physical systems which
allows criminals to gain access to restricted areas [14], to utilizing compromised
IoT devices to gain access to secured subnetworks. Therefore, as the risks and inse-
curities of the IoT persist, developing digital forensic methods becomes of utmost
importance.

Since there exist no standards for designing and implementing the IoT is het-
erogenous, with multiple protocols and technologies often coexisting in a single
system. As such, it is challenging to design digital forensic solutions that can be
applied to multiple IoT systems. Digital forensics is the use of scientifically proven
methods for the extraction, preservation, examination, analysis, and presentation
of digital evidence obtained from cyberspace [15]. Along with the constant evolu-
tion of technology, so digital forensics should be evolved into several subdomains,
such as network, cloud, mobile and IoT forensics [16]. In order to circumvent the
complexity and heterogeneity, network forensics can be chosen to investigate IoT
security incidents, as most implementations utilize the TCP/IP protocol suite for
communications with the backend cloud platform. Many network forensic frame-
works have been proposed, but for IoT, most of them focus on the acquisition
phase [17, 18, 19, 20]. Thus, there is a need for a more complete network forensic
framework that also incorporates the analysis and examination phases in their
process.

The rest of this chapter is organised as follows. Forms of Cybercrime are
discussed in Section 1.2; Section 1.3 describes the problem formulation and the
research questions; Section 1.4 outlines the various types of cybercrime and a
basic introduction to digital forensics. Finally, the thesis contributions are given
in Section 1.5 and the thesis structure is given in Section 1.6.

1.2. Types of Cyber crime

A system is deemed secure if the key principles of the Confidentiality, Integrity and
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Availability (CIA) triad are preserved [21]. Each principle of the CIA focuses on
a different aspect of a system. Confidentiality dictates that information needs to
be protected from unauthorized access, Integrity purports that data should not be
either deleted or modified by unauthorized entities while Availability means that
access to a user’s data should not be hinder. Through careful planning, cyber-
criminals are capable of bypassing an IoT system’s security and its network, and
in the process breach the CIA triad. The motive behind an attack can vary from
simply compromising an IoT device and stealing information it has in its memory,
to escalating and using the compromised IoT device as an attack vector to target
other devices in the network.

Among the many threats that exist on the Internet, the ones best known for
their diverse actions and destructive capabilities are botnets. Botnets are net-
works of infected devices, which are under the control of malicious individuals
named botmasters and can be used to perform a number of different attacks, such
as DDoS/DoS, identity theft, data exfiltration, e-mail spamming, keylogging and
malware propagation [22]. Although originally targeting PCs, laptops, and servers,
the always-online design of IoT devices coupled with their weak security measures
have made them the main targets for botmasters, giving rise to a new genera-
tion of IoT-based botnets [12, 13]. IoT-based botnets have further expanded the
repertoire of their actions, by including attacks that IoT devices are particularly
susceptible towards, such as bricking and Sybil attacks [23]. Many botnets from
this new generation made an appearance in the period 2017-2018, causing wide-
spread damage to IoT devices and even disabling entire sectors of the Internet
[12, 24, 25].

A prime example of IoT-based botnets was Mirai which made its appear-
ance in 2016 and spawned many variants [12]. At its peak, Mirai was the cause
of record-breaking DDoS attacks, peaking at 1.1 Tbps which was used to tar-
get On Vous Héberge (OVH) that is a French cloud service provider. Although
Mirai was quite effective in infecting bots and attacking, its infrastructure was
relatively simplistic. Thus, more sophisticated botnets appeared, like Malware-
MustDie which was equipped with encryption modules for Command & Control
(C&C) communication [12]. Persirai, a variant of Mirai which was discovered in
April 2017 infected as many as 120,000 devices by using a zero-day exploit [12].
Hajime used a distributed C&C infrastructure, with communications encrypted
using a public-private key scheme. BrickerBot was a particularly destructive bot-
net which leveraged default ssh credentials and attempted to permanently disable
any infected IoT devices [24].
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In addition to the common botnet attacks, IoT-based botnets are capable of
performing a range of new attacks with an impact on cyber-physical systems.
Bricking is one such attack, known as permanent-denial-of-service attack, which
disables an IoT device by manipulating its firmware [24]. Malware propagation
through proximity infection is another attack which was established by Ronen
et al. [26]. In this scenario, adjacent IoT devices infect each other, spreading
the malware binary from a single IoT device to an entire building or even a city.
Finally, cyber-attacks can have effects in the physical world, with attackers being
able to unlock doors, cause false alarms, enable/disable electronic devices, modify
sensor data or even track the user, where all of which can be used to enable physical
crimes like breaking into a smarthome and burglaring [14, 23, 27, 28].

The threat caused by cyber-attacks is constantly on the rise. According to
a 2019 report by Akamai [29], more than 18 million malicious logins originated
from the US, 5 million from Russia and just over 3 million from Brazil between
2017-2019. In a report by McAfee [30], for the first three quarters of 2018, over
100,000 new IoT-based malware were discovered. Therefore, there is indeed a
serious motivation to build effective network forensic solutions for investigating
botnets in IoT settings.

1.3. Problem formulation and research Questions

In this PhD, we tackle the research problem of identifying and tracing new bot-
net attack families from large-scale IoT networks. Network flows, which are a
statistical representation of the flows in a network, were chosen as the underline
data-source used by the framework. The expected framework that should ad-
dress this problem, needs to be able to distinguish effectively between normal and
abnormal flows, in a timely fashion.

The problem is separated into the following three major sub-problems.

• Sub-problem 1: detecting sophisticated attack scenarios that target IoT
systems is the first major challenge [12]. The emergence of IoT-based Botnets
which often perform intricate attacks against other network-enabled devices
is a major threat. Thus there is a need for digital forensics for investigating
Botnets in IoT.
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• Sub-problem 2: collecting a realistic IoT network dataset which will be
used to train and evaluate machine learning models is a major challenge [31].
The dataset needs to capture the normal behaviour of devices, both PCs and
IoT devices connected to current networks. Furthermore, it needs to include
representative botnet activities, so that the trained model can capture the
patterns generated by bots in the real world.

• Sub-problem 3: investigating and analysing network attacks by leveraging
Machine Learning [32, 33]. Each machine learning model is best suited to
dealing with certain classification problems and data. The selected model
needs to be able to process large quantities of data as fast as possible, without
sacrificing its accuracy. Additionally, the hyperparameters of the model have
to be selected carefully in order to maximize its accuracy, while avoiding
overfitting.

• Sub-problem 4: defining attack vectors and tracing origins of hacking [34,
35]. The framework needs to cover multiple stages of the digital forensic
process, including collection, preservation, examination, and analysis.

Based on the above sub-problems and the technical background, which is given in
Chapter 2, the following research questions are formulated.

1. How could Botnet activities in an IoT environment be investigated effec-
tively?

2. How could a network forensic framework for IoT networks be designed?

3. How could we handle larger volumes of data/make the classification process
more efficient?

4. How could a network dataset be generated, in order to develop an investiga-
tion framework?

5. Which ML classifier type is best suited for the task of creating an investiga-
tion framework?
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1.4. Digital Forensics and Machine Learning methods

The attacks that were discussed in Section 1.2, are often difficult to detect,
due to obfuscating measures that botnets are often equipped with. Although the
field of digital forensics has been in the focus of the research community, with
many solutions developed to detect and analyze attacks in the past, a lot of them
are not suited for application in an IoT setting. As such, due to the volume, the
variety and velocity of network data that the IoT produces, it is evident that new
solutions are needed as discussed in Chapter 2.

When investigating cybercrimes, a forensic expert needs to identify the correct
tools and methods, that best suit their circumstances. As a result, digital forensic
investigation frameworks were created, to provide guidelines for an investigation
and ensure that identified evidence and produced deductions hold ground in a court
of law. Many investigation frameworks have been proposed for IoT scenarios like
the FIF-IoT, Probe-IoT and the Block4Forensic [17, 18, 19, 20]. However, they all
emphasize the acquisition phase of an investigation, focusing on the distributed
blockchain for preservation, and neglect to cover the examination and analysis
phases, through which evidence is identified. It is thus evident that a new forensic
framework is needed, in order to cover this gap.

With cybercrime increasing in frequency and sophistication over the years, dig-
ital forensics evolved by spawning several sub-fields, each specializing in locating
evidence in different subsystems or file types of a device [16]. Among the various
digital forensic subcategories, memory forensics deals with locating traces in the
RAM, disk forensics focuses on the hard drive, malware forensics specializes in
analyzing the behaviour of captured malware binaries. In the IoT era, three cate-
gories of digital forensics have been considered the most, Cloud, IoT and Network
Forensics [36, 37, 38]. Cloud forensics is applied to the backend infrastructure of
a cloud provider, facing many challenges including mixed jurisdiction and lack of
borders between the virtual machines. IoT forensics is relatively new and deals
with the extraction of data from the hardware of IoT systems, facing challenges
due to heterogeneity. Network forensics investigates logs and traffic generated by
network-connected devices, making it ideal for identifying a variety of network-
based attacks that otherwise leave no trace. In this PhD thesis, we focus on
network forensics, as it can be used to identify botnet activities without consider-
ing the hardware of the device, as most IoT systems utilize the TCP/IP protocol
suite to exchange information with the cloud backend.
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1.4.1. Network Forensics

Network forensics by design deals with volatile data, which is rapidly generated
and transmitted, sometimes being stored in the form of logs or fleetingly existing
in the RAM [38]. It can be separated into two categories with regards to its
intended purpose, that of security or criminal investigation. Network forensics
for security involves methods for monitoring proactively a network for anomalous
behaviour. One such method often used is Network-based Intrusion Detection
Systems (NIDS) [39], which function by monitoring traffic in strategic areas of the
network and either matching traffic to known attack patterns or using a normal
user profile and detecting any abnormalities. The NIDS can then raise alarms that
warn administrators of an existing threat in their network.

Network forensics for law enforcement needs to adhere to certain rules regard-
ing its methods and data collection. First, its methods need to be transparent and
their results easily reproducible. Additionally, data collection must be conducted
with care and a chain of custody needs to be established in order to ensure that the
data is not contaminated [40, 41]. By doing so, the results of a network forensic
investigation are deemed admissible in court. Unlike network forensics’ methods
for security [42], its methods for law enforcement focus on attack identification
and attribution, which involves activities such as file reconstruction from captured
traffic or attack detection and identification of its origins, methods used, motive
and goal of the attacker. The work presented in this thesis is intended to be used
for law enforcement investigations, with more details given in Chapter 5.

Different types of network forensic techniques that can be applied in different
scenarios have been developed, each with their own merits and demerits. Although
further discussed in Chapter 2, some of these techniques include honeypots, deep
packet inspection, and network flows [43, 44, 45]. Honeypots function by imitating
a legitimate device, often with limited security, in order for an attacker to target
it, instead of other legitimate devices, gathering information about the attacker’s
activities at the same time. To design network forensics techniques, deep packet
inspection (DPI) is a technique that processes both a packet’s header and its body,
in order to identify malicious patterns in the packet. Network flow, similarly to
DPI, relies on collected traffic for its activities, although where DPI scans the
entire packet, network flow relies on metadata and statistical information created
by grouping packets into flows based on the source/destination IP/port, the com-
munication protocol in use and the time [46]. In this thesis we utilize network
flow because it disregards the payload information which is often encrypted, it
circumvents privacy concerns and produces quicker results.
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1.4.2. Machine Learning

Machine Learning (ML) is a collection of algorithms that learn to automat-
ically identify patterns by learning from data through the use of mathematical
processes [47]. Based on the method of training, ML algorithms can be grouped
into unsupervised and supervised. Unsupervised algorithms are used on unlabeled
data, which means the output of the algorithm is not known [47, 48]. There are
many types of unsupervised learning, with one prominent example being cluster-
ing. Often, a clustering algorithm will select a number of arbitrary starting points
in the data, called centres, and by using a distance metric group all the data
into clusters, repeating the process until the centres and clusters do not change
[49]. Other unsupervised algorithms like the Autoencoder, attempt to reproduce
the input data, in order to produce a feature-reduced representation of the initial
data. Many unsupervised techniques have been proposed, with some examples
being K-Means, Autoencoders and Generative Adversarial Learning [48].

Unlike their unsupervised counterparts, supervised algorithms are trained on
labelled data which means the expected output for the provided examples are al-
ready known [47, 50]. A supervised algorithm will then process the data multiple
times, producing a value that is compared with the known output, their relative
distance is measured and the resulting error is then used to alter the algorithms
internal state until the predictions are similar to or identical to the known labels.
Supervised algorithms themselves are further categorised in classification and re-
gression algorithms, with the former producing an output from a limited set of
values, while the latter used to predict numerical values from a continuous set.
Many supervised algorithms have been developed, with some prominent examples
being Naïve Bayes, Support Vector Machines, K-Nearest Neighbor, Decision Trees
and Artificial Neural Networks (ANN) [50]. In this thesis we utilize Deep Learning
[51], a subgroup of Neural Networks, to create a discriminative model that detects
attacks.

Deep Learning (DL) is a subcategory of ANN that is separated from so-called
“shallow” ANNs, by having multiple hidden units and layers [52]. Because it
displayed better performance than other ML techniques when processing large
volumes of data, DL has been in the ceontre of research for the last few decades.
Thus, multiple versions of Deep Neural Network (DNN) have been developed,
such as Recurrent Neural Network (RNN), Convolutional Neural Network (CNN),
Multilayer Perceptron (MLP). An RNN is a type of ANN, where its hidden layer
in time t is connected to its hidden layer in time t+1. RNNs are best suited
for data that maintain some temporal relationship between records, such as text
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or music [53]. CNNs are ANNs that are fully-connected and are often used to
process images. Initial layers of the network capture low-level features of an image,
with every layer, added increasing the complexity of the detected features [54].
MLPs are feed-forward ANNs the simplest version of deep neural networks with
its units using a non-linear activation function, such as ReLU [52]. In this thesis,
we chose MLP as the type of DL model to use for the creation of the Particle Deep
Framework.

In order to train and test the deep model of the proposed Particle Deep Frame-
work, a dataset with representative network traffic of a contemporary IoT network
was needed. Several network traffic datasets are available for use such as KDD99,
UNIBS, UNSW-NB15 [55, 56, 57]. Existing network traffic datasets had issues.
The KDD99 dataset was generated to evaluate IDS and was derived from MIT
Lincoln Lab’s DARPA 98 dataset. The UNIBS dataset was produced through 20
workstations and incorporates normal and DoS traffic. The UNSW-NB15 dataset
was developed at the UNSW Canberra, by using IXIA perfect storm which gener-
ated both normal and attack traffic, with the attack traffic covering a diverse range
of attack activities. More datasets have been generated and are further described
in Chapter 3. However, existing datasets displayed one or more drawbacks. Unlike
the previous datasets, we developed Bot-IoT which is made up of up-to-date net-
work traffic both normal and attacks, incorporates IoT network flows and includes
new features [57, 58, 59, 60].

1.5. Thesis contributions

This PhD contributes to the field of Network Forensics, provides solutions to
the above sub-problems through the following points which are key to the creation
of the Particle Deep Framework.

• Creating a new virtual testbed for the development of new IoT
network dataset Bot-IoT (Chapters 3 and 4) - Several virtual machines
were interconnected in a LAN to represent a realistic real-world network. The
Node-red tool [61] is used to simulate IoT devices and generate traffic, while
normal traffic is produced through VM interaction and the Ostinato tool
[62]. Attacks are generated through the use of Metasploit [63], Hping3 [64]
and other tools that are further discussed in Chapter 3. The Tshark tool [65]
was used to capture approximately 69 GB of raw network traffic, grouped
in 1 GB files for portability and ease of use. The Bot-IoT dataset includes
16.7 GB and contains 72,000,000 records, while a training/testing pare was
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extracted, having a size of 0.78 GB (approximately 5% of the original and
3,000,000 records), to facilitate its portability and use.

• Analysing the Bot-IoT dataset (Chapter 3,4) - For the analysis of Bot-
IoT, two high-quality datasets were chosen, the UNSW-NB15 and KDD99.
Seven machine learning models are selected for the analysis against the two
selected datasets, while additionally three deep learning models (SVM, RNN,
LSTM) were utilized to evaluate the quality of the dataset separately. The
complete machine learning analysis is provided in Chapter 4.

• Determining the optimal features for use in defining the machine
learning model of the Particle Deep Framework (Chapter 3) - Both
the Pearson Correlation Coefficient (PCC) [66] and Shannon Joint Entropy
(SJE) [67] are used for the statistical analysis and determining the optimal
features of the Bot-IoT dataset to be used for training machine learning
models. Initially, both PCC and SJE average scores are calculated for each
of the pre-existing features. These averages are then compared, and the 10
least-similar features are selected. Next, the process is repeated, with both
the previously selected 10 features and the 14 new features (Chapter 3),
finally acquiring the final 10 best features.

• Developing the Particle Deep Framework, an effective Network
Forensic Framework based on deep learning for Botnet related In-
cidence in an IoT environment (Chapter 5) - The PDF incorporates
activities that cover the stages of a digital forensic investigation process.
Acquisition is handled by established software like Tcpdump or Wireshark,
while Preservation is ensured through cryptographic hashing. For the Exam-
ination and analysis PDF combined Particle Swarm Optimization with Deep
Learning, in order to determine hyperparameters and train a Multi-Layer
Perceptron that displays significant Accuracy, Precision and Recall within a
reasonable time.

1.6. Thesis structure

The thesis is organised as described in Figure 1.1.

40



Chapter 1 Introduction

Fig. 1.1: Graphical outline of this Thesis

Chapter 2 provides background and related studies about the IoT, botnets and
network forensics accompanied by literature related to the research of this thesis.
Initially, we establish the need for our work by comparing its content with other
review papers, indicating their gaps. Next, after the background information on
the three aforementioned areas, the research focuses on the major network forensic
methods used to investigate botnets, in both IoT and non-IoT networks. Finally,
challenges are identified with regards to building network forensic solutions for
investigating IoT-based botnets, brought about due to the architecture of IoT
systems.

Chapter 3 explains the creation process of the novel dataset which includes
IoT-generated traffic, the Bot-IoT dataset. At first, by reviewing publicly available
network attack datasets, it was established that there was a lack of datasets that
incorporated IoT-related traffic. That was the motivation behind creating the Bot-
IoT dataset. Next, the process of creating the virtual testbed is explained, followed
by network flow extraction. The rest of the chapter provides the methodology that
was used for pre-processing of the data, followed by the creation of new features
and the statistical process for feature reduction. The botnet scenarios are fully
described and the statistics of the attacks are provided. Finally, a primary analysis
of the dataset is provided, by training three different machine learning models.

Chapter 4 presents the machine learning evaluation of the Bot-IoT dataset.
First, seven commonly used machine learning models are selected for the evalua-
tion. The two datasets UNSW-NB15 and KDD99 are used to obtain initial metrics.
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Next, the same types of models were trained on the Bot-IoT dataset. Obtained
metrics are then analysed to evaluate the Bot-IoT dataset, and the results and
their discussion are provided at the end of the chapter.

Chapter 5 details the creation of Particle Deep Framework (PDF), a new
network forensic framework for IoT networks based on machine learning. At first,
existing digital forensic frameworks for IoT scenarios are analyzed, proving that
most focus on the acquisition stage rather than the analysis. Thus, with this gap
as the main motivation, next the structure of PDF is given. The use of Particle
Swarm Optimization (PSO) as a method for determining the hyperparameters of
a machine learning model is explained and the deployment of the PDF in an IoT
network is discussed. Finally, experimental results, depicting the performance of
the PDF is provided.

The concluding remarks are given in Chapter 6, followed by Appendix A which
dictates the protocols present in the Bot-IoT dataset. Descriptions of the features
in UNSW-NB15, the dataset used to evaluate the PDF are given in Appendix B.
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Chapter 2

Literature Review (Background
and Related Work)

2.1. Introduction

The Internet of Things (IoT) has exhibited a dramatic growth over the years. With
Gartner reporting that the number of deployed IoT devices around the world are
expected to reach about 20.4 billion in 2020 [7], displaying an increase of 145%
from 2017, it is becoming evident that this new diverse domain will continue to
grow as companies discover the benefits of IoT services.1

As these numbers are on the rise, a growing concern for IoT systems is their
security and privacy. In a study by Hewlett Packard in 2015 [10], it was shown
that out of a number of IoT devices that were investigated, 80% raised privacy
concerns, with 60% lacking any mechanisms that verify the authenticity of security
updates or even their integrity, allowing an adversary to modify the firmware
without being noticed. Another example of IoT vulnerability is the study by Ling
et al. [11] with its focus being a smart plug, a device that provides automation
to mundane electronic equipment (fans, heaters). They were able to compromise
the device and perform a number of attacks, one of which was a firmware attack,
where an attacker can modify the device’s firmware, gaining the ability to install
malicious code to the device.

Seeing as IoT devices are manufactured with various pre-existing inherent
limitations and vulnerabilities, it should come as no surprise that they have been
targeted and recruited by botnets. Having the advantage of being designed to
function 24/7, botmasters lately have shown their preference for using these de-
vices instead of the better protected, not so reliable PCs and Laptops [68]. In
their quarterly report on the state on the Internet security for the 4th quarter of
2016, Akamai highlighted that we experienced the third wave of botnets, with the

1The work presented in this chapter has been published in:
N. Koroniotis, N. Moustafa and E. Sitnikova, "Forensics and Deep Learning Mechanisms for Botnets

in Internet of Things: A Survey of Challenges and Solutions," in IEEE Access, vol. 7, pp. 61764-61785,
2019. doi: 10.1109/ACCESS.2019.2916717
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emergence of IoT-based botnets, with the first two harnessing PCs and servers re-
spectively as bots [69]. One such prominent example of this new wave of botnets is
the Mirai botnet. It was first observed performing DDoS attacks against journal-
ist Brian Krebs’ blog, with the first DDoS peaking at 623 Gbps (77.9 GBps) and
latter attacks targeting French web-host and cloud service provider OVH reaching
1.1 Tbps [68, 69].

Such attacks, apart from a discrediting factor that can affect the ability of a
company to be perceived as trustworthy and reliable, can also have more imme-
diate monetary repercussions, as most companies targeted by DDoS attacks rely
greatly on their Internet connection to provide their services. Alternatively, some
botnets have been designed to launch several types of diverse cyber-attacks such
as identity/data theft (data exfiltration), where the Bot-code infecting a machine
gathers sensitive user information and sends it to the botmaster, e-mail spamming,
where infected machines are used to produce and send fake e-mail, keylogging,
where the user’s input is logged and transferred to the botmaster and malware
propagation, through which a bot is used to further propagate a malware to its
network neighbours and/or other Internet nodes [22, 70]. With such destructive
attacks on the rise, it is clear that security and forensics in the IoT should become
a priority for research.

The main contributions of this chapter are as follows:

• We provide a comprehensive background for the IoT, botnets and forensics.

• We provide a taxonomy of recent methods for botnet identification and track-
ing.

• We provide a new definition for the IoT, which focuses more on the “Things”.

• We investigate the applicability of deep learning in network forensics and
the inherent challenges that appear when network forensics techniques are
applied to the IoT.

• We determine future directions for research related to performing forensic
investigations of IoT powered botnets.

Chapter 2 is structured as follows. Background information for IoT, Botnets and
Digital forensics is provided in Sections 2, 3 and 4 respectively. Furthermore, in
Section 4 a number of forensic solutions are listed and grouped into categories
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based on the technique. Section 5 presents background information about deep
learning followed by network forensic applications based on deep learning. Finally,
challenges and future trends are presented.

2.2. Internet of Things (IoT)

This section explains IoT concepts, growth of the IoT and its areas of application,
as well as IoT models and systems.

2.2.1. IoT concepts and definitions

Over the years, the IoT has evolved in complexity and functionality, maturing and
becoming an integral part of society, spanning multiple fields of application. The
concept of IoT has existed for quite a while, sometimes under a different name,
like ’ubiquitous computing’, ’embedded intelligence’, ’web of things’, ’Internet of
objects’ and ’ambient intelligence’ [3]. The term ’Internet of Things’ was intro-
duced by Kevin Ashton during a presentation in 1999 [71], where he explained
the value of having computers that gather and utilize data in an automated and
contextual fashion. In literature, IoT has various definitions, which we summarize
in Table 2.1, along with their individual advantages and disadvantages.

Interestingly, the first time the “essence” of IoT was embodied, was around
the beginning of the 1980s at the Carnegie Mellon University where a soft drink
dispenser was coded to allow users to remotely view the availability of certain
drinks [3], followed by Cambridge’s Trojan coffee room, where a similar logic was
applied to a camera which was used to check the amount of coffee remaining in a
pot [75]. In 2000, Ashton et al. [76] produced a white paper depicting their views
of the new MIT Auto-ID Center, where they described a world filled with objects
connected to one another and tagged with relevant information, a vision similar
to the RFID technology. From then onward, a number of events occurred which
shaped the IoT into its current form. The first major adoption of this new idea
was in 2000 when LG announced their plans to launch the first ’smart’ refrigerator
which could determine if the stored supplies were running low [75, 76], while a more
formal introduction to the IoT was given by the International Telecommunication
Union in 2005, through a report titled ’the Internet of Things’ [76, 77].
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Table 2.1: Overview of IoT definitions

Definition Merits Demerits
Ashton et al.[71]: A set of

systems in which the Internet
is connected to the physical
devices using several sensors

and actuators.

This definition shows that
IoT links the physical and

virtual world. It is a
direction of executing tasks

quickly.

The definition does not
consider the scalability and

compatibility of IoT’s
appliances.

Haller et al. [72]: The
seamless interconnection of
the information network and

physical objects, called
’smart objects’, with these

object being active
participants in business
processes, being accessed
through network services,

with security and privacy in
mind.

This definition shows the
important role of the IoT for
businesses, as a source of
services to be provided. It
also suggests that security
and privacy need to be
considered when these
devices are accessed.

This definition provides a
business point of view,
excluding home IoT
systems. It does not

consider the security of
individual IoT device or the

system as a whole.
Scalability issues also not

mentioned.

CERP-IoT report [73]: A
dynamic global network,

capable of self-configuration,
based on interoperable
standards and protocols,
with ’things’ having both

physical and virtual aspects,
built in a way to be

seamlessly interoperable.
Things are able to interact
with themselves and their
surroundings and can be
manipulated securely by

users.

This definition acknowledges
the duality of IoT devices

(physical and virtual
’things’), mentioning also

the concepts of
interoperability and
self-organization.

The definition does not
explain how the IoT will be
a self-sustainable system.

Gubbi et al. [74]: A
cross-platform

interconnection of sensors
and actuators, capable of
sharing information, and

achieved through a
combination of ubiquitous
sensing, data analytics,

visualization techniques and
Cloud as a unifying

framework.

This definition describes the
interoperability and

interconnection, which make
up the IoT, emphasizing
more on the technologies

that can be used for
implementation.

Asserts that the unifying
framework, should be Cloud

computing, other
technologies are not

considered. Scalability and
security are not considered.
IoT enabled services, not in
the scope of the definition.

Madakam et al. [3]: A
network of intelligent,
self-organizing objects,

capable of sharing
information and resources,
sensing the environment and

reacting to changes.

This definition shows that
the IoT should be scalable
and that IoT devices should
be able to react to sensory

input.

The definition does not
describe any user interaction

with the devices, also
security is not considered.
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In 2008, IPSO alliance was formed to promote the adoption of the Internet
Protocol (IP) for the communication of “things”, in what appeared to be the first
step to start setting up common practices among the many vendors. Although
work had been underway to develop the IoT, in one way, it was the creation of IPv6
that truly enabled its rapid development, as it allowed for a virtually unlimited
number of devices to be connected [75, 76]. Finally, in 2014 the Open Interconnec-
tion Consortium was promoted as an open framework for the Internet of Things
by Intel and other firms [75]. Even so, there is still no standard framework for the
IoT commonly adopted in industry, which forces vendors to decide on their own
how to implement their devices, hindering somewhat the interoperability between
differing IoT implementation.

The current diverse technologies involved, the fact that multiple communica-
tion protocols could be in use in a single infrastructure, and the mobility that
characterizes the IoT, make it polymorphic in nature and contribute to the dif-
ficulties of pinpointing a single definition that best describes it in its entirety.
Consequently, we provide the following comprehensive definition for the IoT:

Definition. “The IoT is a network of networks comprised of devices, small and
large named ’things’, that have been imbued with finite amounts of processing power
and communication capabilities providing services, including software, platforms
and infrastructures to a remote user/organization on-demand, with lower cost than
purchasing physical systems ”.

In other words, IoT is the creation of networks where machine-to-machine
communication is used between geographical locations, industry/business sectors
and other entities, whereby there is no direct communication. This can either
enable software applications through the sharing of data or allow for the direct
intervention of the environment where these IoT devices have been deployed. Such
devices could be as complex as smartphones, which have multiple sensors and
significant processing power or as simple as smart lightbulbs, that enable control
of lighting conditions in a large environment such as universities [26].

2.2.2. Growth of IoT and its areas of application

Promising innovation, automation and optimization of industrial and commercial
systems, no one should be surprised by the worldwide growth that the IoT market
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has experienced, with multiple studies and predictions made for it. A study by
Gartner for instance calculated that in 2017 IoT deployed devices will reach 8.3
billion and project that the numbers will skyrocket to 20,4 billion in 2020 [7]. The
predictions made for the economic growth of the IoT are better understood if one
considers the fact that the IoT does not cater to only a single portion of the world
market, but instead slowly becomes an integral part for most fields in today’s
society.

In a white paper by the Internet of Things Alliance Australia (IoTAA), a
segmentation of the IoT field into domains each of which describes a specific market
was provided, with the domains being: Consumer, Industrial, Healthcare, Smart
City, Automation, Agriculture, Critical Infrastructure [6]. Applications of the IoT
for these domains appear constantly and in inventive ways. In the Agriculture
domain, sensors for monitoring environmental data, such as levels of moisture in
crops, airspeed and temperature, placed the underpinnings for a future system
[78]. In the Automotive domain, a monitoring system transmits and displays
location and diagnostic data through a Cloud provider, improving the driving
experience and assisting in determining the optimal time for mechanical services
[79]. Finally, in the Healthcare domain, the incorporation of IoT devices has been
shown to benefit patients, as vital information can be gathered from the comfort
of their home, contributing thus to detecting quickly any deterioration in their
condition [80].

A. IoT models

As previously mentioned, the IoT has no single commonly accepted standard
framework or set of standards. Instead, vendors are free to implement their
systems by using the technologies they prefer, resulting in a heterogeneous IoT
environment. The IoT is by design vast, spanning multiple technologies, which
need to coexist in perfect harmony for the whole system to be functional. There
are multiple IoT designs and models.

First of all, from a communications point of view, the Internet Architec-
ture Board (IAB) in a guiding architectural document released in 2015 described
four communication IoT models [8]. First, the Device-to-Device Communication
model, where devices communicate directly with one another. Such type of com-
munication is primarily present in home automation IoT and usually relies upon
Bluetooth, Z-wave or ZigBee as the communication protocol, as they are ideal
for the exchange of small amounts of information in relatively small areas. A
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drawback of this model is that it requires its devices to collectively use the same
communication protocol, limiting the devices that can be employed in this config-
uration.

In contrast, a more versatile model is the Device-to-Cloud model, where de-
vices connect directly to a Cloud service provider to store collected data or receive
instructions. This type of model allows the end-user to access their device through
a Web interface or a smartphone app and view reports from a data collection, or
change the state of the device. This model’s drawback is that in most cases, the
Cloud provider and the Vendor who produced the device are one and the same,
denying users from using a Cloud service provider of their choosing, a situation
that is called ’vendor lock-in’.

Thirdly, an evolution of the Device-to-Cloud model is the Back-end Data-
Sharing model, which is an exact duplicate of the Device-to-Cloud model, with
the added bonus that the user can extract data from the original Cloud provider
and transmit it to other Cloud providers. This allows for data aggregation and has
the benefit of giving the user the freedom of moving his/her data between Cloud
providers.

Finally, in the Device-to-Gateway model, a device connects to the Cloud ser-
vice provider through an Application Layer Gateway service, running on a local
machine which functions as a proxy. The gateway in this model, apart from pro-
viding secure connectivity to the Cloud, allows for devices which use different
communication protocols to interact, enhancing interoperability. In real-world
scenarios, in some situations, smartphones play the role of the gateway, with ex-
amples such as fitness tracking devices. In other scenarios, a ’hub’ is used, which
is a dedicated device that plays the role of the gateway and is most commonly
found in the home automation scene.

An alternate way to view the IoT is given by the four-typed model, which
splits the IoT into four layers [81]. The sensing layer, consisting of sensors and
actuators, which enable perception of the world and the ability to act through
the IoT. The networking layer, which handles communications between various
network systems including heterogeneous devices of the IoT. The service layer,
which allows applications to connect smoothly to the services provided by the IoT
through the use of middleware. And the interface layer, which provides a means
of interaction between various services in a system with the front end application.

The IoT ecosystem, which included its various components and the way with
which they interact, can be viewed as follows, and as shown in Figure 2.1 [1].
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Fig. 2.1: IoT Ecosystem adapted from [1]

First, the IoT devices, sensors and actuators collect information and perform ac-
tions. The devices then, through Coordinators, connect to the local Sensor Bridge
which functions as a gateway, enabling at the same time interoperability between
different protocols and technologies. Coordinators are tasked with health mon-
itoring, data forwarding between devices and service provider and the creation
of reports about all actions taken, while the Sensor Bridge connects the various
heterogeneous IoT sub-networks with the service provider in the Cloud. The IoT
Service handles many tasks, some of which are data storage, data processing and
device management. Finally, through a Controller, the end-user is able to connect
the IoT Service and through that manage their devices.

2.2.3. IoT technologies

As previously mentioned, the IoT is an amalgamation of several technologies and
protocols employed on different levels of its ecosystem, enabling its functionality
[3]. Different IoT technologies have emerged in the industry, for example, Radio
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Frequency Identification (RFID), is used broadly as a cheap identification method
for devices. For global communication between gateways and cloud service, the
Internet Protocol (IP) is preferred, where both IPv4 and IPv6 are in use, with the
latter allowing for close to 85,000 trillion IP addresses. For local communication
between IoT devices and their coordinators, the most prominent technologies em-
ployed are Wi-Fi, Bluetooth, ZigBee, Z-Wave. Finally, regarding the actuators,
they are generally split into three categories: Electrical, Pneumatic and Hydraulic,
based on the medium they use for power. These technologies are vulnerable to
cyber-attacks due to the IoT open-loop of communication, and heterogeneity of
their protocols and services. We mainly focus on botnets, as they constitute con-
siderable harm for IoT appliances and applications, as explained in the following
section.

2.3. Botnets

This section provides information related to Botnets, their origin, architecture and
activities.

2.3.1. Botnet background

Botnets have had a rich history and development over the years, corrupting and
disrupting computer and network systems [82]. Originally, botnets were crafted
for benevolent purposes, with their main function being to provide administrative
assistance to Internet Relay Chats (IRC), a form of communication quite popular
in the ’90s. The first IRC bot appeared in 1993, was named Eggdrop and provided
assistance to IRC channel communication. Following Eggdrop, the first malicious
bots made their appearance, with GTbot in 1998 being the first of its kind, which
was able to execute scripts when prompted through its Command and Control
(C&C) IRC channel.

In 2003, new more sophisticated bots appeared like the Agobot, which was
more robust and flexible than previews types, as-well-as it incorporated a per-
sistent C&C channel. In 2007, Storm made its appearance, a botnet that was
characterized as one of the most powerful botnets of its time. It employed a P2P
C&C infrastructure, with its main functionality being spam messages, DDoS at-
tacks and had the capability to disrupt the Internet communication flow of entire
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countries. In the same year, appeared probably one of the most infamous bot-
nets, the Zbot or Zeus. Having at the time close to 3.6 million bots under its
control, other variants were later spawned, including a P2P version in 2011 named
Gameover Zeus, which was capable of performing a wide range of malicious activ-
ities, including bank account theft, DDoS and spam [83]. It was eventually taken
down by a collaboration of the FBI, the UK NCA, Shadowserver Foundation and
Dell’s CTU IN in June 2014 [84].

In 2008, some notable botnets that appeared were Asprox, Kraken, Torpig and
Conficker. Asprox, like the original Zeus, used a centralized HTTP based C&C
infrastructure and apart from its main purpose, which was the creation of spam,
it was also capable of performing SQL Injection attacks to websites. Kraken was
part of the spammer botnet family and was reported that in April 2008 included
400,000 bots in its army of zombies [85]. Torpig was a data exfiltration botnet,
which performed man-in-the-browser attacks and used a centralized HTTP-based
C&C infrastructure [86]. Conficker moved periodically from Centralized HTTP-
based C&C to P2P [87].

The successor of the Storm botnet, Waldec was discovered in 2009, having a
P2P C&C infrastructure, its primary function was to send spam messages reaching
close to 7000 messages per day, though it also performed credential theft and
DDoS attacks [87]. Eventually, it was taken down in 2010. Also in 2009, Mariposa
was discovered. Mariposa used a custom communication protocol which was a
variation of UDP, was capable of launching DDoS attacks and even download and
run executables, such as other bots. It was taken down in December 2009 [88].
Another notable milestone for botnets in 2009 was the appearance of the precursor
of mobile botnets, where botnets use mobile phones as their bots (zombies), named
SymbOS\Yxes which targeted Symbian devices and utilized SMS messages to self-
propagate [89, 90].

Following the surfacing of SymbOS, the first botnet targeting Android devices
named Geinimi was observed, during the end of 2010. Primarily found in China,
it employed a simple HTTP-based C&C infrastructure and was capable of sending
SMS, e-mails, fetch the location of the infected device and also made possible
the further propagation of malware [89, 91]. Lately, botnet creators have taken
advantage of the wide adoption and constant increase of the IoT, and we have
already seen examples of IoT botnets and what they are capable of.

Botnets comprised of IoT devices were the next evolutionary step of botnets.
The most well known first appeared in September 2016, under was aliased as
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Mirai [68]. Mirai performed some of the most powerful DDoS attacks in Internet
History, namely: 620 Gbps against Brian Kreb’s website, 1.1 Tbps against French
Cloud service provider OVH and in October 2016 attacked Dyn service provider
and took down portions of the internet like Twitter, Netflix and GitHub. After
the release of Mirai’s source code, various variants appeared like Persirai which
is active since April 2017, a more refined version of Mirai which targets specific
devices of select vendors. Other IoT botnets include Hajime, which appeared in
October 2016 and utilized a decentralized C&C infrastructure which appeared to
’shield’ devices from Mirai infections. Finally, BrickerBot was observed in April
2017, and as the name suggests attempted to ’brick’ IoT devices in what can be
considered a permanent DoS attack.

2.3.2. Botnet architectures and characteristics

Botnet architectures include several elements. To start with, a bot is a program
which, after reaching a vulnerable host, infects it and makes it a part of the
Botnet [82, 92]. Bots differ from other malware, in that they include a channel
of communication with their creators, allowing them to issue commands to their
network of bots (i.e., zombies) and thus making botnets versatile when it comes to
their functionality [82, 92]. A botnet’s malware gets delivered to vulnerable targets
through what is known as a propagation mechanism. Most commonly there exist
two types of propagation, passive and active.

Passive propagation techniques require users to access sites, emails or other
compromised network elements and through user interaction download the mal-
ware (bot), infecting it and making it part of the botnet [70, 92]. Active or self-
propagation techniques employ sub-portions of their network to actively scan the
Internet for vulnerable devices, attempting to exploit the identified vulnerabilities,
turning the compromised hosts into bots themselves [70, 92].

The characteristic that makes botnets unique is the fact that they allow their
controller, commonly referred to as a botmaster (a.k.a bot-herder) to issue instruc-
tions to their network of infected devices and receive feedback, as shown in Figure
2.2. This is made possible through a Command and Control (C&C) infrastruc-
ture. There exist multiple different types of C&C infrastructures based on their
topology and those types are: centralized, P2P, hierarchical and hybrid [70, 93]. In
a centralized topology, bots connect, receive instructions and report/deliver their
work in a central infrastructure, with most common technologies employed here
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being IRC and HTTP protocols [82, 93]. The main drawback of the centralized
topology is that the C&C is a single point of failure.

Fig. 2.2: Centralized Botnet and activities [2]

A decentralized or P2P architecture is the natural successor of the Centralized,
where the bots can assume either the responsibilities of a C&C server or a worker
bot that performs tasks on behalf of the botmaster. Such architectures generally
face higher latencies than preferred regarding command distribution, though they
are quite resilient to takedown attempts, as the compromise of a single host would
only affect a small portion of the botnet [92, 93].

Hybrid architecture is, in a way, a combination of the P2P architecture with
the Centralized, reaping the benefits of both [92, 93]. Here, the C&C is imple-
mented in P2P form, with the bots that make up the C&C (called servant bots)
forwarding commands to each other and to the bots that perform the actions
(client bots). Finally, in this architecture, a botmaster adds proxy bots between
their machine and the botnet, with each bot forwarding commands to the bots
that they compromised, creating a hierarchical topology and making takedown at-
tempts difficult, as-well-as allowing the botmaster to rent portions of their botnet.

2.3.3. Botnet activities

Botnets are some of the most versatile pieces of code to traverse the Internet.
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The main reason why they get so much attention is not because of the masterful
ways that botmasters employ to obfuscate their bots from law enforcement, but
rather the practical capabilities that botnets possess and the services they provide
to the botmasters and their clients. There are various hacking techniques used
by botnets, including Distributed Denial of Service attacks (DDoS), Keylogging,
Phishing, Spamming, Click fraud, Identity theft and even the proliferation of other
Bot malware [22].

Botnets tend to be specialized into performing a small subset of the aforemen-
tioned hacking techniques, though there have been cases where variants of botnets
were capable of multiple types of malicious activities, an example being Gameover
Zeus which could perform DDoS attacks, send spam e-mails and steal bank ac-
count information. There are many ways a botnet can perform a DDoS attack,
and based on the technique and protocols employed, there are multiple examples
of such attacks, some of which are: Denial of Sleep attack, UDP flood attack, TCP
SYN flood, ICMP ping flood, Ping of Death, Smurf attack, DNS amplification,
HTTP flood [94, 95]. In a Denial of Sleep attack, the attacker targets functionality
provided by the Medium Access Control (MAC) layer, where devices are set into a
’low power mode’, to decrease battery consumption, which is of vital importance
for network sensors [94].

A UDP flood attack exploits the connectionless nature of the UDP protocol
and sends a large number of forged packets to random ports of the target machine,
forcing it to expend resources to detect any applications which could be waiting
to receive the incoming information and then issuing ICMP responses when that
check fails [95]. On the other hand, TCP SYN flood attacks utilize the structure
of the ’three-way handshakes’ that is performed in order to set up the parameters
for any TCP connection. In this case, the attacker floods the target with SYN
packets, which are used to initiate a TCP session, receives the response from the
target but does not send the final packet that establishes the connection, forcing
the target to maintain the connection open and thus eventually cause the target
to become unresponsive [94, 95].

An ICMP ping attack is similar in nature to the UDP attack, in the sense that
a large number of packets are sent to a target which forces the target to respond,
taking up network and processing resources [94]. A Ping of Death, though it
utilizes ICMP is somewhat more interesting, as it exploits the fact that the IP is
designed with an upper limit of 65,535 Bytes, and when a larger packet is received,
it causes memory overflow issues and eventually crashes the machine [94, 95].
Finally, a Smurf attack consists of a large number of ICMP packets which have
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the intended target’s IP address spoofed in place of the packets’ source address,
causing the replies received from such packets to be sent to the target [95]. When
a botnet performs keylogging, it silently records the keystrokes of a user and after
a certain amount of time, it sends its gathered information to the botmaster.
Phishing is the process through which the adversary attempts to trick a user in
revealing sensitive information, such as login credentials or even bank account
information, through carefully crafted messages, websites, and emails. Finally,
botnets are sometimes used to proliferate other malware, with spam email being
one way to do so.

There are different security controls, for example, threat detection and intel-
ligence, as well as intrusion detection techniques, have been used for recognizing
and preventing botnets from network and IoT systems. These techniques are ben-
eficial to some extent, because they can only detect knows cyber-attacks, but they
cannot identify zero-day attacks (i.e., new/future attacks), as there are no signa-
tures of those attacks stored in blacklists. This is the motivation of focusing on
digital forensics mechanisms in order to track and define cyber-attack origins, and
assist in examining how botnet structures occur in IoT systems; hence improving
security controls in discovering known and new botnets.

2.4. Digital Forensics

This section provides information related to digital forensics, its origin, investi-
gation models, sub-domains and developed methods for investigating botnets in
multiple fields including the IoT.

2.4.1. Origins and evolution of digital forensics

As criminal activities moved to cyberspace, with cybercriminals exploiting systems
to their own ends, it was only natural that law enforcement would also adapt their
operations accordingly, as such, digital forensics was coined. Its roots can be
traced back to 1984, when law enforcement entities, among which was the FBI
laboratory, started developing programs in order to examine computer-related
crimes [96, 97]. Over the years, many organizations have proposed their own
definitions and standards for performing forensic investigations in the digital world,
with multiple investigation models appearing, most of which share some common
phases but are designed to be applied in different circumstances [96].
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One such definition that describes the essence of digital forensics, is the one given
by Rodney McKemmish, where he states that digital forensics is “the process of
identifying, preserving, analyzing and presenting digital evidence in a manner that
is legally acceptable” [15]. An investigation model proposed by the first Digital
Forensics Research Workshop in 2001 named the DFRWS Investigation Model,
which functioned as an inspiration for other such models, comprised of six phases:
Identification, Preservation, Collection, Examination, Analysis and Presentation
[97], as shown in Figure 2.3.

Fig. 2.3: Phases of digital forensics mechanisms (DFRWS Investigaiton Model)

In the Identification phase, sources of possible evidence are identified. This phase
takes under consideration that the amount of data an investigator can collect is
constrained [96]. In the Preservation phase, proper chain of custody is established,
and further actions are taken to ensure the integrity of data to be collected [96].
During the Collection phase, the investigators make use of appropriate techniques
and tools to safely collect the data which has been identified as important for the
case.

The Examination and Analysis phases are considered to be of utmost importance,
as here the collected data is scanned, filtered and processed in order to identify
crucial evidence and establish timelines which are then provided in reports during
the Presentation phase [97]. During the Investigation phase, a range of devices
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could be investigated for potential evidence, from mobile phones and laptops to
routers and lately even fridges and light-bulbs. Some well-known digital forensics
investigation models are listed in Table 2.2.

Over the years, digital forensics has been further partitioned into subfields, each of
which provides specialized techniques for investigating security incidents in differ-
ent domains of the IT sector. Popular forensics sub-fields are Network forensics,
Cloud forensics, and IoT forensics [16], as described in the following points.

• Network forensics - emerged as a way to identify, understand and ulti-
mately amass evidence to pursue legal action for malicious activities that
used the Internet and other networks as a bridge for attacks with some ex-
amples being DDoS attacks and data theft [38]. In a network, evidence is
usually short-lived, as packets are produced from one device and sent through
intermediary nodes to their destination. As such, various Network forensics
techniques have been developed over the years [38, 98, 99]. Famous tools
in network security are Intrusion Detection Systems (IDS) and Honeypots
[100, 101, 102]. IDSs are trained and validated to recognize patterns of
malicious traffic in the network [98], while Honeypots mimic vulnerable le-
gitimate devices, luring hackers and botnets into attacking them, with the
added bonus of allowing investigators to observe what actions are performed
by the attacker [38].

• Cloud forensics - is a branch of digital forensics tasked with the investi-
gation of security incidents in the Cloud [36]. It is a cross-disciplinary field
combining disciplines like computer device forensics and network forensics,
which poses some unique challenges, like difficulty in defining jurisdiction, as
a Cloud provider could be based in Europe and be providing services in the
U.S., breach of privacy, as a machine that could be investigated could host
services for multiple users, including suspects and an increase in generated
data quantity, as an ever-increasing number of devices utilize the Cloud [36].

• Malware forensics - is a discipline of forensics, which focuses on reverse
engineering, and analyzing the source code of malware [103, 104] acquired
from captured binaries. Analysis of malware samples can be categorized as
static, dynamic or code, depending on the methodology used. In addition
to these methods, virtual machines have also been used, as they provide a
resilient environment where malware behaviour can be observed in relative
safety. Over the years, attackers have started to incorporate anti-forensics
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logic in their code, to elude detection [104]. With anti-forensics techniques,
malware infections become more resilient, for example, allowing it to alter
its behaviour if it identifies that it is running in a virtual environment.

• IoT forensics - is an emerging new field of forensics for investigating cyber-
crimes by analyzing IoT devices, protocols, in terms of software-, platforms-,
and infrastructure- as services. IoT forensics is slowly being developed as in
[37]. Major challenges that are hindering the adoption of conventional digital
forensics techniques for investigating incidents in the IoT are the heterogene-
ity of systems and data, the high quantity of data produced as the number
of IoT devices rises constantly and the speed with which data is generated.

A. Network Forensic methods for investigating Botnets

Investigating botnets is a multifaceted problem. It requires interdisciplinary ac-
tions to be taken, to ensure effective analysis and a more spherical understanding
of an infected network’s actions, enabling the design of better countermeasures,
or at the very least attribution. As mentioned above, Network Forensics is the
branch of Digital Forensics, where the evidence is network-related, and thus exist
in the form of logs, packets and network flows. In this section, we focus on Network
Forensic techniques, which have been developed to analyze Botnet activities, their
general characteristics (lifespan, size) between the years 2011 and 2019. These
techniques have been organized into distinct methodologies as follows:

• Honeypots

• Network Flow Analysis

• Deep Packet Analysis

• Attack Recognition

• Visualization of Network Traffic

• Intrusion Detection Systems (IDS)
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Table 2.2: Well-known digital forensics investigation models
Author Model Description

Pollitt M.
[15]

Computer
Forensic

Investigation
Process 1984.

An investigation model general enough to be
applicable in a wide range of computer-related
crimes. It was proposed, as a parallelism to the

conventional evidence handling process.
Comprised of four steps, it does not include
steps for preparation, investigation and
subsequent returning of evidence to their

rightful owner.
Palmer G.

[105]
DFRWS

Investigative
Model 2001.

A general-purpose investigation model
proposed during the Digital Forensics Research
Workshop (DFRWS) in 2001. It somewhat

expanded the Computer Forensic Investigation
Process, by trading the Acquisition step for
three new steps, Identification, Preservation

and Collection, thus emphasizing the necessary
steps to identify potential sources of evidence,
secure them in a way that proveably prevents
any alterations to their state and then proceeds
with collection and the subsequent steps of the

investigation.
Baryamureeba

V. et al.
[106]

Enhanced
Digital

Investigation
Process Model
(EDIP) 2004.

An extension of the previously proposed
Integrated Digital Investigation Process model,

the EDIP has the advantage of not only
considering the digital crime scene but also the
physical. The EDIP model includes: Readiness
phase, Deployment phase, Traceback phase,
Dynamite phase and Review phase, and each
phase is comprised of multiple sub-phases. By

partitioning the possible actions that an
investigator needs to take, and including a

traceback phase, this operational model is one
that can be easily applied to real-world

scenarios.

These methodologies are further discussed in the following segment.

• Honeypots-[43, 107, 108, 109, 110, 110, 111]- are devices, many times
simulated ones which run in a controllable virtual environment, that have
been designed to appear as an appealing target to attackers and malware
infections. Honeypots are generally separated into high interaction and low
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interaction honeypots, with the former imitating entire systems (e.g., Win-
dows, Linux) and allowing for extended interactions and information gath-
ering, while the latter simulates certain services available through the net,
which are often targeted by attackers. The benefit of this method is that the
attacks, malware binaries and access attempts, are monitored and logged by
the Honeypot operators, allowing for the generation of rules to predict simi-
lar future attacks. Additionally, it enables the extraction of malware binaries
and communication patterns between C&C and bot, while it does not take
part in any of the attacks issued by the botmaster.

A low-interaction honeypot system was proposed by Pham et al. (2011) [108],
who focused on developing an automated and systematic way of identifying
Botnet attacks in vast datasets. By employing the services of Leurré.com,
which includes multiple machines in more than 25 countries, running low-
interaction honeypots and collecting network traffic, they were able to show
that by grouping together closely correlated traces of attacks, they were able
to identify attack events. Kumar et al. (2012) [109] proposed a distributed
virtual and fully automated Honeynet architecture, capable of dynamically
reconfiguring itself. Their proposed system is partitioned into three com-
ponents. In this system, a distributed honeynet client, which is comprised
of a combination of low interaction and high interaction honeypots, would
run in a VirtualBox with the incoming and outgoing traffic moderated by a
Honeywall.

A method for extracting Intrusion Detection System (IDS) rules from data
collected from Honeypots, was developed by Mittal et al. (2016) [107]. The
researchers employed a Support Vector Machine, which they trained by us-
ing data collected from a Honeypot to produce the necessary rules for the
IDS. Not much information is given regarding the source of the Honeypot-
produced dataset or the parameters of the SVM that was used. Although
Honeypots can produce extensive information regarding Botnet activities,
they require huge amounts of storage space to maintain all the traces, ex-
tracted payloads and malware binaries. Low and High interaction honeypots
have their tradeoffs, with the former needing a lot of effort to pass as a legit-
imate device, and the latter running the risk of being taken over completely,
thus requiring data control measures to be taken, so that the honeypot does
not take part in any malicious activities itself.

Attackers have been known to target social networks, where they are capable
of gaining sensitive information from unsuspecting users, proliferating mal-
ware infections and more. As such, Paradise et al. (2018) [110] presented
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ProfileGen, a tool that produces realistic and compelling social profiles, which
function as honeypots, in that they attract the attention of attackers. The
proposed system makes use of an automated process that relies on the gen-
eration of a Markov model from collected data. Emphasis was given in gen-
erating realistic education records for the crafted profiles.

It is not uncommon for cyber-attacks to span large segments of the Internet,
with a prominent example being DDoS attacks. To that effect, Jeong et
al. (2018) [111] worked on tracking large-scale events. Apart from improving
accuracy, emphasis was given on reducing the communication toll due to sen-
sors reporting an observed event in a distributed monitoring system, akin to
the honeynet. In the proposed detection protocol Bitmap-Based Widespread
Event Detection, bitmaps are exchanged between the agents and the coordi-
nator and are used by the latter to identify events monitored by all agents,
which are then categorized as widespread events. This approach improves on
previous schemes, as it does not produce any false positives.

Naik et al. (2018) [43] proposed a fuzzy-based technique that identifies fin-
gerprinting attacks in a low-interaction honeypot. This technique identifies
abnormal TCP, UDP and ICMP traffic, and uses fuzzy logic to produce a
probability of a fingerprinting attack targeting the honeypot. One shortcom-
ing of this technique is that new fingerprinting attacks that rely on different
patterns might not be identified effectively.

• Network Flow Analysis- [44, 112, 113, 114, 115, 116]- uses metadata gath-
ered from network communication, to make inferences regarding the legiti-
macy of the traffic under scrutiny. Traffic is aggregated, and metrics are
collected to create Network Flow Records. Records are identified by the
source and destination IP addresses, port numbers and the protocol used for
the communication. The benefit of this approach is that privacy is no con-
cern, as the actual data being communicated isn’t investigated and it doesn’t
require extensive storage capacities, as traffic is aggregated, with only cer-
tain metrics maintained. At the same time, it is not affected by encrypted
communications, a problem faced by Deep Packet Inspection (DPI) while at
the same time it does not make use of signatures to identify network attacks,
as it relies on statistics and the application of machine learning.

In their work, Francois et al. [116] created a system which focused on iden-
tifying members of P2P botnets. In their implementation, they employed
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Hadoop, the open-source implementation of MapReduce, to run the PageR-
ank algorithm on trace data collected by honeypots. Hosts with high connec-
tivity to each other were categorized as potential P2P bots, as this character-
istic was deemed a good indication that a host is part of a P2P botnet. Their
approach, performed adequately on certain types of P2P botnet topologies,
where the linkage between bots is high, although some legitimate P2P clients
could be misrepresented as bots if no prior knowledge is used to fine-tune
the PageRank process. Bijalwan et al. [115], focused on the investigation
of UDP flooding attacks. In their experiments, they worked on identifying
randomized UDP flooding attacks, which can be designed to pass undetected
by IDS systems and other security mechanisms. They simulated an attack
environment, by developing scripts which would extract the source IP ad-
dress of the user that would be targeted, and then generated the randomized
attack payload (forged packets).

Detecting suspicious patterns in network traffic by utilizing a Linear Regres-
sion model was the focus of Divakaran et al. [113]. Their solution relies on
the combination of network flows into sessions, and the detection of illegit-
imate TCP states by using Finite State Machines to determine whether an
attack is taking place, gathering evidence in the process. Oujezsky et al. [44]
focused on time behavioural analysis, by extracting information from Net-
work Flow data aggregations. The researchers employed survival analysis,
a technique based on probability theory, developed to study the duration of
virtually any process and focused on the identification of C&C communica-
tion, which tends to be periodic in nature. The merits of such a technique,
as mentioned by the researchers, is that deep packet inspection is not nec-
essary, as they focus on analyzing timing data from Network Flows, thus
bypassing Law restrictions, concerns of privacy and the time-consuming pro-
cess of inspecting all collected packets. Additionally, this method does not
require knowledge of when a Network Flow occurred, but how long it lasted,
rendering the process of trying to convert from a one-time system to another
obsolete.

Bou-Harb et al. (2017) [114] focused on distributed malicious events that
take place in vast areas of the internet, dubbing them campaigns, with their
goal being the development of efficient techniques to analyze vast quantities
of network traffic and produce network forensic evidence. However, this
approach focused on the identification of probing botnets alone, which means
that other botnets that do not employ such mechanics will not be detected.
Additionally, as mentioned by the researchers, this approach suffers from
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poor scalability, that is, when the number of infected machines probing the
system exceeded 1000, both false positive and false negative rates started
to increase. A drawback of using network flow analysis, compared to other
methods such as Deep Packet Inspection, is that it bypasses the payload of
packets which means that certain information is ignored. Thus, it can’t be
used for malware and command extraction from traffic and some attacks that
rely on the payload such as SQL injections can pass undetected.

Sivaprasad et al. (2018) [112] proposed a monitoring system which relied on
machine learning techniques applied to network flow-summarized data. The
researchers used a combination of data from the CTU-13 dataset and packets
that were collected from a DDoS attack they performed. Their task was to
create a user-friendly interface, where data was uploaded to the system, pre-
processed with Weka and after the feature-extraction process, Naïve Bayes
and SVM classifiers were built. On a similar note, Mathur et al. (2018)
[117] proposed a model for botnet traffic discrimination. The researchers
investigated the predictive capabilities of five different classifiers, randomized
filtered classifier, logistic regression, random committee, random subspace,
multi class classifier. After features were extracted from a combination of
data from CTU-13, ISOT and live captures, the five classifiers were trained
and compared. It was then shown that the logistic regression and multi-class
classification algorithms had the best performance in both accuracy and false-
positive rates. This work is a good indication of the relative performance of
various classifiers when tasked with botnet identification, even though neural
networks were not included.

Kozik et al. (2018) [118] used a distributed Apache spark environment to
train an Extreme Learning Machine (ELM) classifier. ELMs differ from other
neural networks, as they often include a single hidden layer, and have dif-
ferent activation functions. The key contribution of this work was that the
distributed environment was incorporated in the training of the ELM clas-
sifier, by splitting calculations performed at the hidden layer into chunks
of computation which could be performed by the distributed environment’s
elements. Results showed that the proposed method is promising.

Pektas et al. [119] proposed a deep learning system to process network flow
patterns and identify botnets. In a botnet, communication between C&C
and bots is frequent, as such their approach was to target these channels.
Their choice of deep learning was justified, as their method relies on process-
ing large quantities of data, in which deep learning thrives. During feature
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extraction, collected flows were turned into graphs, grouped by communi-
cation endpoints, which allowed them to produce new statistical features.
A number of different configurations were tested, with varying numbers for
layers and neurons. The researchers concluded that deep learning presents
acceptable accuracy for botnet identification in flow data, with the added
bonus that feature selection is not necessary, as deep networks identify the
best features.

Amini et al. [35] proposed a combination of X-mean clustering and rule-based
classification for the netflow-based recognition of centralized HTTP botnets.
In the proposed system, routers collected netwflow data which was stored
in a central database. Next hierarchical clustering on protocol, source and
destination IP followed by x-means clustering produced highly similar groups
of flows. Finally, rules-based classification based on entropy was performed
to identify flows that occurred at regular intervals and were not produced by
legitimate protocols. Results reported by the researchers indicate an accuracy
of detection of over 95%.

Le et al. [120] investigate the applicability of Self Organizing Map (SOM)
unsupervised learning, towards the identification of botnet activities in the
wild. By using three publicly available datasets CTU13, ISOT and HTTP-
CSIC the researchers employed SOM, an unsupervised neural network which
uses competitive learning and results in dimensionality reduction. Three
strategies were used: mix of normal and attack, only normal and only attack
traffic, to evaluate SOM’s performance. Classification in the first scenario
is done through a majority vote of the nodes, while for scenarios 2 and 3 is
outlier threshold-based. Results indicate high accuracy of distinction between
botnet and normal traffic, over 99.5%.

• Deep Packet Analysis (also known as Deep Packet Inspection or
DPI)- [45, 121, 122]- is a form of packet filtering, that relies on the inspec-
tion of both headers and the data segment of a packet, for the purpose of
identifying malicious traffic based on known patterns. Although it raises
privacy concerns, faces problems when trying to parse encrypted traffic and
relies on a signature database to perform its identification, thus being unable
to identify Zero-day malware, DPI is still used to this day. By scanning the
content of packets, more information can be gathered, and the behaviour of
the packet’s origin can be better understood.

65



Chapter 2 Literature Review (Background and Related Work)

Chen et al. [121] proposed and implemented a cloud-based collaborative
network security management system, which takes advantage of Cloud stor-
age and processing, to perform offline forensic operations on captured raw
network traffic with emphasis given on SPAM incidents. The research team
utilized the Collaborative Network Security Management System (CNSMS),
which managed the security of four different sites (networks), by making
use of NetSecu nodes and Probers to gather, monitor and manage network
traffic. The NetSecu nodes have the advantage of interacting with locally
deployed security mechanisms (such as firewalls and IDS), dynamically re-
sponding to security incidents threatening the network. Additionally, they
can be integrated with self-protection solutions, in the event they become the
target of an attack. Furthermore, NetSecu nodes communicate with similar
devices deployed in other networks, thus creating an overlay network. It was
observed that this cloud-based scheme could be applied to the investigation
of other network-related security incidents.

Cheng et al. [45] developed D2PI, a system that identified malware in net-
work traffic, by using a Deep Neural Network. The proposed system was a
Convolutional Neural Network (CNN) which classified collected traffic, into
either “malicious” or “benign”, based solely on the payload. After extracting
the payload, their length was regulated to a predefined length and incorpo-
rated in a matrix, in order to be processed by the CNN. Results indicated
that, although more work is needed to improve this method, it is a promising
first step towards incorporating CNNs in DPI systems.

Another mechanism that has been leveraged in DPI systems, is finite state
automata. Finding ways to improve these mechanisms, in order to be able to
handle the ever-increasing variety and volume of traffic was the focus of Yin
et al. [122]. As regular expressions, which can be used to identify complex
patterns in packet bodies, are often implemented in finite state machines,
improving their efficiency is of vital importance. Initially, the researchers dis-
cussed deterministic and non-deterministic finite-state automata, comparing
the memory requirements for each category. They concluded that a non-
deterministic approach is needed for a DPI implementation, and provided
improvements that help reduce processing time and memory consumption.
Experiments s that were made, between two automata, based on regular ex-
pressions from Snort, showed that a non-deterministic finite-state automaton
machine with the proposed improvements used less memory, as the number
of conversion edges was reduced.
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Holkovič et al. [123] developed a rule-based method for automatically de-
tecting incident-patterns in network traffic. The system takes as input event
descriptions, written by a network administrator in a human-readable lan-
guage and pcap files that have been converted to an easier-to-parse format.
It then loads the event descriptions and scans the converted pcap files to
identify events which are displayed in a final report. This tool is designed
to enable network administrators to investigate network incidents, without
requiring the experience or the time of a manual investigation.

• Attack recognition- [124, 125, 126, 127, 128]- is a collection of machine
learning techniques applied to any number of sources (e.g., network traffic
and logs). It is utilized in investigating the identification of known patterns
exhibited by malicious software. Although pattern identification is generally
used in some form or another in different techniques, in this section, such
patterns are identified not only in packets, but from other sources as well,
like network logs, and are used to better understand the sequence of events
which lead to an attack. This forensics method, in some situations, requires
access to the physical device, from which logs and files are extracted and
then examined offsite.

In their approach, Zhu et al. [127] developed an algorithm, that identified a
sequence of attack events, by scanning network logs. Their algorithm iden-
tified what the research team dubbed “attack bubbles”, with high suspicion
values. An “attack bubble” was defined as a tuple containing: a collection
of network events found in the logs, a suspected type of attack which these
events might constitute, a probability that the identified events constitute
the suspected attack, and an identification of the source of these events (IP
address). Han et al. [125] proposed a technique that examined the com-
munication behaviour of network nodes. In their process, they focused their
efforts on identifying Command and Control communication which exhibit a
pattern of synchronicity, for instance, the C&C server sends instructions to
all botnets simultaneously, and all bot respond at the same time.

Karthika et al. [126] proposed a highly scalable system for detecting stealthy
peer to peer botnets, akin to an Intrusion Detection System. Their system
identified all P2P (Peer-to-Peer) traffic in a network, relying on DNS look-
ups which the system collected, and reasoned that most P2P applications
do not rely on DNS to establish the destination IP address in legitimate
P2P communication. A system for investigating the existence of botnets,
composed of several modules was proposed by Bansal et al. [124]. This
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system gathered all network data that are sent or received by the internal
network, creating a repository of stored packets, which were later filtered,
flagged as legitimate or illegitimate traffic and then used to identify the
presence of any unknown botnets. The process would then scan any involved
systems, to gather traces that were not identified by previous steps. In
the final step, a report was generated, with all identified evidence being
visualized.

Kim et al. [128] proposed a system that detects hacking attacks by construct-
ing a tree structure and can be utilized in real-time. The system is separated
into a pre-phase and a post-phase. In pre-phase, data is collected, normalized
and an attack tree is constructed. In post-phase, collected logs are analysed,
and either the user is notified or the system is shut down. Experiments in-
dicated quick real-time response to attacks, detecting a backdoor attack in
687 ms.

• Visualization of Network traffic- [129, 130, 131]- a number of diverse
visualization techniques have been employed, to improve Botnet investiga-
tions. One use of such techniques is as a support tool for investigators, which
can assist security experts to track the route taken by a malware infection
carried out at large workstation areas.

Such a visualization method was developed by Joslin et al. [130], who studied
the representation of Network Flows (or IPFlows) as a directed graph, com-
bined with relational information, making the argument that the proposed
combination motivates the creation of new hybrid graph-relational systems.
Concentrating more on the visual representation of network traffic and secu-
rity incidents, Gugelmann et al. [129] produced Hviz, a traffic visualization
program that processes HTTP/S traffic in order to reduce the number of
events that an investigator would have to work on. They employed various
mining techniques (FIM) to aggregate the sites visited by workstations dur-
ing an investigation. Also, by comparing traffic between workstations, they
attempted to figure out if the traffic in question is malicious or not. On the
other hand, an investigation of UDP flooding attacks, by using the UDP flow
graph was performed by Anchit et al. [131]. The researchers made use of a
testing environment, set up in their lab, choosing Wireshark for the collection
of network traffic. As stated by the researchers, this approach could assist
investigators in identifying network attack incidents, as patterns of network
communication become easier to spot with the naked eye.
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• Intrusion Detection Systems- [99, 100, 101, 102, 132]- are generally a
defensive mechanism deployed either in the network (Network IDS) or in a
device (Host IDS), which can either employ pre-made signatures (signature-
based IDS) or machine learning (anomaly-based IDS). In the context of Net-
work Forensics, IDS systems can function as alarm triggering mechanisms
which, after identifying malicious activities (for example Botnet traffic), can
raise further forensic mechanisms, allowing for an automated solution.

AlRoum et al. (2017) [132] developed a Botnet Detection System that fo-
cused on DNS records, as some botnets harness DNS communication in order
to make their Command and Control infrastructure more resilient and avoid
detection. Their solution relied on seven factors, domain reputation, geo lo-
cation, destination port, known C&C, domain owner, frequent DNS changes
and behavior.Weights were assigned to each factor, the sum of which would
produce a DNS flag, based on which an alarm would be raised. Furthermore,
the seven factors were further partitioned into two groups, the must-stop fac-
tors and the partial-stop factors. If one must-stop factor or three partial-stop
factors were detected, then a flag would be raised, indicating a suspicious do-
main record. The research team reported an accuracy of close to 63% when
they tested their solution against similar results derived from the cybersecu-
rity company FireEye.

In the field of anomaly network IDS, Aldwairi et al. [133] investigated the
applicability of Restricted Boltzman Machines (RBM), in order to distinguish
between normal and abnormal flow traffic. An RBM is a special kind of neural
network, where layers are either visible or hidden and two layers of the same
type can not be connected. In their experiments, a balanced subset of the
ISCX dataset was used to train the model. The algorithms that were used
to train the RBM, were constructive and persistent constructive divergence.
Results showed that RBMs are a valid choice for an anomalous network IDS
with the capability to identify novel abnormal traffic. On the other hand, the
performance of several supervised classification models for network IDS was
investigated by Ugochukwu et al. [134]. Four classifiers were tested, Naive
Bayes, C4.5, Random Forest and Random Tree. Out of the four classifiers,
Random Forest and Random Tree outperformed the rest. In a different
study that focused on clustering algorithms, Qi et al. [135] investigated the
utilization of an improved K-means for real-time intrusion detection systems.
The researchers enhanced the algorithm by adding new steps that were used
during the process of determining the centres of a cluster, like cross-entropy
between data points. The improved K-means was then tested on the KDD99
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dataset, with results indicating that it outperformed the traditional K-means
implementation, with an accuracy of 97%.

B. Network Forensic methods for investigating Botnets in the IoT

In this section, we focus on network forensics methods, that were designed to be
applied in an IoT environment. One might consider, that pre-existing network
forensics mechanisms could be employed in the IoT, with the same accuracy and
efficiency as when applied to conventional computing systems. The fact is that
the quantity and speed with which data is produced in the IoT, as-well-as its
diversity, require the development of new methods which take under account these
characteristics of the IoT. Popular methods and recent studies are explained as
follows.

• Honeypots- [136, 137, 138, 139, 140, 141]- which would be an ideal decoy
for malware that target IoT devices was developed by Yin Minn Pa Pa et
al. [136], named IoTPOT. Their proposed system was a combination of a
low-interaction front-end interaction program, and a high-interaction back
end system, named IoTBOX which is a collection of virtual IoT machines
(Linux OS), that help make the Honeypot appear as a legitimate, more dy-
namic device. In this design, they also incorporated a Profiler, which stored
incoming “malicious” commands and the responses produced by IoTBOX.
This would allow the system to produce the appropriate response in future
interactions without invoking IoTBOX. Another module that was used was a
Downloader, which managed all downloads prompted by the attackers and a
Manager which handled the configuration of the system. It is mentioned that
the virtual environment required manual OS image resets from time to time,
a process which could possibly be automated. It should be mentioned that
some malware include anti-forensics capabilities which can thwart attempts
to scan them in a virtual environment, which was not discussed in this work.

With the intent to produce an initial framework for a high-interaction, seem-
ingly geographically-distributed and vendor/type-of-device diverse Honey-
pot, Guarnizo et al. [137] proposed SIPHON. Their implementation allowed
for the deployment of more than 80 high-interaction virtual IoT devices,
with their IP addresses being distributed around the globe, and having only
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7 physical devices exposed. The projected scalability of this system was re-
ported to be i*w, with ’i’ being the number of physical IoT devices and ’w’
being the wormholes in use. Collected data from a two-month period, showed
a significant amount of incoming attack traffic which targeted SSH services
that were exposed by the experimental system. Additionally, the team noted
that the proposed honeypot was not identified as such by Shodan, making
this framework a viable solution.

An IoT-based honeypot, which focused on the emulation of an entire IoT
platform was developed by Wang et al. [138], named ThingPot. Their de-
sign was an open-source project, that could be characterized as a “Middle
Interaction Honeypot” which made use of both high and low interaction mod-
ules. The proposed framework of ThingPot included three groups of entities,
Extensible Messaging and Presence Protocol nodes (client, server) used for
communication between “user” and Controller, REST API which represented
the IoT device that ThingPot was mimicking, Controller which was repre-
sented as a PC that gathered log files from the other nodes in the setup.
To test the applicability of ThingPot, an arrangement of devices which ran
on Raspberry Pi, connected to a PC, and simulated Philips Hue lightbulbs
was setup. This implementation was, as reported by the research team, a
proof of concept that focused solely on the Philips Hue lightbulb IoT plat-
form, with support for other such devices pending. Also, the research team’s
experiments ran for 1.5 months, a possible extension of this time could have
yielded different results.

In the field of military network security and operations, Hanson et al. [139] in-
troduced the concept of “Honeyman”, an IoT honeynet architecture that, in-
stead of functioning as a mitigation and attack analysis platform, its primary
function would be to provide indication and warning as-well-as distributed
deception capabilities. The proposed system’s function would primarily be
to deceive attackers about the location and status of military IoT devices,
whose goal was to corrupt their intelligence about either geospatial or sys-
tem data. A multi-tier architecture was proposed, where a combination of
light-weight devices would be used in tandem with virtualized machines and
a software-defined network, gathering data from the attacks. All collected in-
formation would then be forwarded to an RNN-based analysis module, where
inferences could be made about the motivation of an adversary. Several diffi-
culties hinder the development of such a system, with two being discussed in
this research being: securely emulate embedded os communications, avoiding
detection of emulated environments.
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A server-based IoT honeypot system was proposed by Gandhi et al. [140]
and named HIoTPOT. The proposed system relied on a Raspberry Pi to act
as the “middle-man”, and divert users with unknown credentials, with such
attempts being recorded in a database, to a virtualized image of the real
IoT devices. From there, alerts would be sent to legitimate users and logs
would be created, that record the attacker’s interaction with the environment.
The proposed system was shown to provide more interactions as-well-as new
mechanisms than an existing one, further comparing their performance and
showing that HIoTPOT outperformed the existing solution in packet loss,
consumption of bandwidth and added delays.

The problem of developing realistic IoT honeypots was addressed by Luo et
al. [141]. The researchers proposed an automated method for crafting low
but intelligent-interaction honeypots. To build such a honeypot, attack re-
quests were collected by an initial honeypot, which were then forwarded to a
specialized module that probed live IoT devices to get legitimate responses.
In this way, the honeypot would be able to gather relevant responses from real
devices. Machine learning would then be applied to the collected responses,
in order to craft a “profile” that best represents the IoT device that the hon-
eypot would mimic. The evaluation of the proposed method indicated an
improvement in the functionality of the honeypot, extending its interaction
time with attackers. Shrivastava et al. [142] worked on capturing attacks
targeting IoT devices by using Cowrie, a medium interaction honeypot. The
Cowrie honeypot monitored the attacker’s behaviour, storing their actions
into logs, from where the attacks were separated. Feature selection is carried
out through wrapper methods in Weka. The problem of distinguishing be-
tween the attack types was formulated as a multi-class classification problem
and an SVM classifier displayed the highest accuracy at 97.4%.

• Network Flow Analysis- [33, 143, 144, 145]- the research team of Galluscio
et al. [145], having the intent to clarify the severity and magnitude of IoT
infected devices worldwide, worked from an empirical point of view. They
utilized unsolicited darknet-generated data, which by definition, imply a po-
tential malicious scan. As such, and to be able to identify scanning (otherwise
known as probing) activities, they developed an algorithm which utilized net-
work flow features. The proposed algorithm compared the observed packet
count and rate of a flow within a set time window, to pre-determined packet
count and rate values. If observed values exceeded the pre-determined thresh-
olds, then the flow was flagged as a malicious scan. As the research team
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was interested in IoT infected devices, they then made use Shodan, to infer
whether the identified malicious probe originated from an IoT device, which
would imply that that IoT device was compromised. Their findings showed
that IP cameras and routers were the top two most heavily exploited house-
hold IoT devices, while sectors like Manufacturing and Building automation
had the largest portions of exploited devices. The proposed algorithm, al-
though fast is simplistic in its nature, with the assumption behind it being
that benign Darknet IP devices don’t perform Internet-wide scans.

Being able to identify consumer IoT devices that are part of network attacks
is an important task. Towards that goal, Doshi et al. [33] worked on the
identification of IoT devices which took part in launching DDoS attacks.
Their approach was to utilize several characteristics of IoT-generated traffic
that distinguishes it from other non-IoT traffic, such as the frequency of
communication. As such, through an initial feature engineering process, the
researchers trained five machine learning models, including a neural network,
and concluded that real-time detection of DDoS originating from IoT devices
is possible.

Akin to the previous study, Meidan et al. [144] developed a method that
identified botnet membership in commercial IoT devices. Their proposed
method was based on deep autoencoders, one for each of the nine IoT devices
used in their experiments, with the life-cycle of their method being:

data collection, feature extraction, training of autoencoder model, continuous
monitoring. The principle behind their work was that IoT devices have a
finite set of states, and as such, their autoencoder was trained to model
normal traffic, flagging its errors as abnormal/bot activities. By testing their
approach against real IoT botnets Mirai and Bashlite, they demonstrated an
FPR of close to 0 for the majority of IoT devices under scrutiny. On a similar
note, Nguyen et al. [143] developed DΙoT. In this system, data was first
gathered from on-line IoT devices, and fingerprints of device communication
were derived from them. This system, utilized an unsupervised technique to
create clusters of fingerprints of IoT devices, and distinguish between different
device types and models. An anomaly detection module, that implemented
a k-Nearest Neighbors classifier, identified abnormal traffic, which worked as
an indication of a compromised IoT device.

Monge et al. [146] presented FlowSentinel, an approach for DDoS attack
membership identification in IoT networks. Originally designed for android
environments, it was adjusted to handle heterogeneous data so that it could
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be applied to IoT networks. Its functionality is based on Self Organizing Net-
works (SON). The focus was on detecting flooding DDoS attacks from the
source-side. The FlowSentinel process involves the use of a Random Forest
Classifier for the identification of the best method to detect the attacks. Re-
sults indicate that FlowSentinel is a promising solution to the aforementioned
problem

• Intrusion Detection Systems- [147, 148, 149, 150, 151]- Roux et al. [148],
• created an intrusion detection system for IoT, which focused on identi-
fying potential attacks, based on their relative position in the environment
which was monitored by this IDS. Their design made use of wireless sensors,
strategically positioned around the premises (house), which were tasked with
gathering information regarding signal strength and direction. The gathered
information would then be forwarded to a central device, where it would be
processed by a neural network that has been trained to identify legitimate
transmissions from legitimate positions inside the network. Any transmission
that originated from outside the network, would then be flagged as illegit-
imate, causing alarms to be triggered. Such a technique can be used to
counteract war-driving and war flying, which can be employed to infect IoT
devices with bot malware. A possible extension of its functionality would be
to use the flagging mechanism to automatically trigger forensic solutions for
the IoT when such illegitimate transmissions are identified.

Although not explicitly stated, Al-Dabbagh et al. [147] proposed a framework
for designing distributed IDSs of an IoT-like wireless control network. The
proposed distributed IDS consisted of individual IDSs in each node/actuator
in the control network, with the network itself modelled as a linear time-
invariant system. This allowed for the identification of cyber attacks in a
neighbouring group of nodes of the network.

Abhishek et al. [149] introduced a centralized IDS for IoT clusters. The
researchers identified the gateway of an IoT cluster as a weak point, and
thus they focused their efforts on monitoring the gateway. The novelty of
the proposed IDS is that focus was placed on the downlink channel of the
gateway. The proposed IDS identified malicious gateway attacks that sought
to corrupt packet integrity, thus forcing retransmissions and taxing battery
life. These attacks were identified by investigating the packet drop probabil-
ity of the downlink between each IoT device and its gateway. In the future,
the researchers intend to extend their work by studying the uplink packets,
as-well-as different types of attacks.
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The process of active learning for the development of IDS in wireless IoT net-
works was investigated by Yang et al. [150]. The concept of active learning
relies on training a model on a small group of unlabeled data and periodi-
cal re-training, by requesting the missing labels of a record from a human
operator. The proposed method relied on an initial detection of outliers
by using an unsupervised outlier detector followed by the application of the
active-learning-based scheme. During the active-learning-base learning pro-
cess, first supervised learning was employed, followed by label selection and
finally labelling by the expert operator, with the process being repeated un-
til precision and recall reach appropriate values. Still, challenges exist in
this field which affect active-learning, such as the constrained power of such
devices.

An ensemble NIDS was proposed by Moustafa et al. [151]. The researchers
focused on identifying botnet attacks targeting the DNS, HTTP and MQTT
protocols. Statistical methods were used on data, to produce additional
features that improved the classification process. Feature selection was per-
formed through the calculation of the Correlation Coefficient value between
features. The AdaBoost ensemble method was implemented, using Decision
Tree, Naive Bayes and Artificial Neural Network classifiers. Results showed
that the proposed method outperformed equivalent existing ones in process-
ing DNS and HTTP flows.

2.5. Deep Learning and its role in Network Forensics

Artificial Neural Networks (ANNs) which were inspired by the inner mechanics of
the human brain, specifically the underline interconnected networks of neurons,
are a type of machine learning technique which convert input data into output by
employing non-linear transformations. ANNs can be roughly grouped by the num-
ber of layers that make up their architecture (excluding input layer), into shallow
and deep [152]. Although there exist no strict definitions for them, a shallow ANN
typically has one to two layers, while deep ANNs can have hundreds [52]. With the
wide adoption of deep ANN architectures in various fields (e.g. computer vision,
pattern recognition, . . . ), new specialized architectures have emerged.

Deep NNs can be further classified based on the way that they view the data
and the classification problem, as given by Hodo et al. [153]. These two groups
are discriminative and generative models. Discriminative models are supervised
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methods tasked with separating the data into classes by focusing on the decision
boundary of the classes and calculating the conditional probability of the class
feature, with respect to the data features (P(Y/X)). Prominent examples include:

• Recurrent Neural Network (RNN)- as a discriminative model, an RNN
can be useful when the information maintains some temporal relation to its
previous states.

• Convolutional Neural Networks (CNN)- is a type of space-invariant
Multilayer Perceptron, inspired by the interconnections present in the vi-
sual cortex of the brain. It is comprised of multiple hidden layers such as
convolutional layers, pooling layers, fully connected layers and normalization
layers.

On the other hand, generative models are considered to be unsupervised, as they
do not require labelled data, and instead calculate the joint probability of data and
class features (P(X,Y)) and build models that best describe each class separately.
Some prominent examples of such models are described below.

• Deep Auto Encoder (DAE)- is a type of NN that is used to learn efficient
data coding in an unsupervised manner. Typically, it includes an input layer,
multiple hidden layers and an output layer of the same size as the input layer,
where the input data is reconstructed.

• Deep Boltzmann Machine (DBM)- produces binary results by relying on
stochastic units and energy states. A restricted Boltzmann machine (RBM)
is comprised of a visible input layer and a single hidden layer. By stacking
multiple RBMs, so that the hidden layer of one produces the input for the
next, one can build a DBM.

• Deep Belief Network (DBN)- are networks of interconnected layers com-
prised of multiple stacked RBMs. Again, connections between nodes of the
same layer are not allowed, similar to DBMs. Training a DBN in an unsu-
pervised manner requires for each layer to be greedily trained.

• Recurrent Neural Network (RNN)- is a type of deep NN that can be
trained either as a supervised or unsupervised model. The main difference
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between RNN and a deep Multi-Layer Perceptron would be that the RNN
maintains an internal memory of previous calculations performed inside the
network. Hidden layers of RNN “feed” information that is used for the next
iteration of the algorithm.

Multiple deep learning solutions have been proposed for application in the field
of Network Forensics in recent years [34, 154, 155, 156, 157, 158, 159]. Yin et
al. [157], proposed a Recurrent Neural Network-based IDS which outperformed
other classifiers used for the same purpose. Similarly, Kang et al. [154], proposed
an IDS for a vehicle network capable of performing in real-time, with an average
accuracy of 98%. In work by Zhao et al. [158], a Deep Belief Network was first
applied, to reduce data dimensionality, followed by the training of a probabilistic
neural network. Shone et al. [159] combined non-symmetrical auto-encoders with
a random forest classifier to classify network traffic from the KDD99 and NSL-
KDD dataset, with results indicating an increase in accuracy when compared to
DBNs.

Niyaz et al. [155] used stacked auto-encoders in their implementation of a
DDoS detection system for software-defined networks. The multiple auto-encoders
were greedily trained layer-by-layer, with the output of one layer being the input
of the next. Then the entire network was fine-tuned as a classifier. Reported
accuracy for distinguishing between normal and attack traffic was 99.82%, outper-
forming other classification methods such as shallow NN, while individual types
of DDoS attacks were identified with an accuracy of 95.65%. Lotfollahi et al.
[156] used a combination of a one-dimensional CNN and stacked auto-encoders
for automatic feature extraction and classification of network traffic, achieving
both application identification and traffic characterization in either encrypted or
unencrypted traffic.

2.6. Inherent challenges in Network Forensic
Investigations of IoT Botnets

The process of designing IoT protocols and sensors and the lack of standards are
the main reasons why the IoT is an easy target for botnets. This gives rise to many
challenges for experts who intend to investigate such security incidents[160, 161,
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Table 2.3: Most vulnerable communication Layers in IoT systems
Communication layers Description

Link layer. It is for device discovery and local communications, at
the link layer, the most widely used protocols include
RFID, Wi-Fi, Bluetooth, ZigBee and Z-Wave [3, 4].
However, having in mind the global and, sometimes
distributed nature of the IoT, the most significant
protocols to mention, from the scope of a Network

forensics investigator, would be the ones located at the
network layer.

Network/Transport layer. The most commonly used protocols are IP (v4, v6)
[3, 4], which are widely used by most devices in the
Internet, UDP, a Transport Layer protocol ideal for

real-time communications, with light-weight alternatives
also in use, such as NanoIP [4], a TCP/IP -like stack of

protocols, appropriate for embedded devices.
Application layer. It is one of the most widely used protocols, include

HTTPv2, REST and SOAP, which handle
communications between applications (Client-Server

systems).

162, 163, 164]. We discuss the main challenges that could inhibit network forensic
investigations of botnets in IoT systems, as explained in the following section.

• Interoperability- there are constraints in the interoperability of the IoT.
As no single set of standards and specifications have been widely accepted
[6, 163], every vendor implements their IoT products differently, choosing
technologies, operating systems and protocols to serve the needs of their
products, which often require a Sensor Bridge to co-exist, as shown in Figure
2.4. Moreover, we describe in Table 2.3 the most vulnerable communication
layers and protocols in this architecture. It is obvious that the lack of spec-
ifications causes problems to the development of a single forensics solution
that is capable of handling a family of IoT systems and devices.

• Forensic soundness- with the IoT designed to work in an autonomous and
ubiquitous form, following a forensically sound process becomes a challenge
[164]. Preserving the scene of a crime where IoT devices are involved is
challenging, as data is in constant motion and the scope of the investigation
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Fig. 2.4: Architecture of IoT [3, 4]

is not clear. There is a lack of documented methods and reliable tools for
collecting evidence in a forensically sound manner. As most IoT devices
don’t retain metadata that can indicate alterations or manipulations of files,
and the time when these changes occurred, correlation of evidence between
IoT devices is challenging. Finally, without a forensically sound monitoring
system, attribution becomes difficult.

• Big Data characteristics generated from IoT systems- some of the
challenges present in investigating the IoT, coincide with the main charac-
teristics of Big Data, indicating that the latter technology could be a possible
approach to handling these challenges [163]. Two of these Big Data charac-
teristics are Velocity, Volume as discussed below.

– Velocity- the increases in Internet speed over the years, ensures that
communications are nigh-instantaneous, which functions as one of the
enabling factors of the IoT. This translates to a large number of con-
stantly functioning, small sensors and actuators (“smart things”) send-
ing collected data and feedback, at high speeds, to the service providers

79



Chapter 2 Literature Review (Background and Related Work)

(usually located in the Cloud), which in the context of IoT botnets
means that such botnets will possess an army of high-speed and always
available bots. With data and evidence produced fast, and having a rel-
atively short life in the network, a need to analyze data in real-time (or
as near as possible) is essential, if the results produced by investigations
are to be of any real value.

– Volume- with more than 8 billion IoT devices deployed in 2017 and
projections for the near future rising even higher, it is evident that data
produced by the IoT will also skyrocket. As such, having many small
embedded devices in constant use produces huge quantities of data that,
in the context of forensics (regardless of the type of investigation), will
inhibit the effectiveness of investigations, burying useful traces and evi-
dence under a sea of noise (in the form of collected data). On top of that,
an increasing number of deployed devices equates to an enhancement of
numbers for potential hijacked Bots, allowing adversaries to take ad-
vantage of the sheer volume of data that the IoT can produce and thus
launch massive and reliable Cyber-attacks (example Mirai [68]).

In the work presented in this thesis, we provide solutions to the aforementioned
challenges. The Particle Deep Framework (PDF) presented in Chapter 5 addresses
the interoperability challenge, as it utilizes the TCP/IP protocol suite to scan traf-
fic and most IoT solutions transmit their collected data or receive and the forensic
soundness challenge through the use of cryptographic hashes and a fingerprinting
process. The Big Data challenges of velocity and volume are represented through
the creation of the Bot-IoT dataset in Chapter 3 and addressed by the PDF in
Chapter 5 through the use of deep learning, a machine learning method specifically
designed to work well with large quantities of data and in short periods of time.

2.7. Conclusion

In this chapter, we explored the effects that the expanding IoT domain has had in
Network Forensic Investigations of IoT botnets. We initially provided background
for the Internet of Things, botnets and Digital Forensics, as a foundation. We give
a new definition for the IoT, which places the interconnection of “Things” and
their service-like functionality at the forefront. We argue that Deep Learning is a
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viable solution to handling the types of data produced in the IoT, and thus discuss
its applicability in Network Forensics. Furthermore, we provided a taxonomy of
Network Forensic mechanisms which could be applied to botnets in both non-IoT
and IoT environments, including their strengths and weaknesses. The Network
Forensic mechanisms that were discussed, were Honeypots, Network Flow Anal-
ysis, Deep Packet Analysis, Attack Recognition, Visualization of Network Traffic
and Intrusion Detection Systems. Several challenges were presented and their so-
lutions discussed and further expanded upon in the rest of this thesis. In Chapter
3 we present the Bot-IoT dataset, its creation process and feature generation. The
machine learning analysis of the Bot-IoT dataset is provided in Chapter 4 and in
Chapter 5 we introduce the novel network forensic framework called Particle Deep
Framework. Finally, the concluding remarks are given in Chapter 6.
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Chapter 3

Development of the Bot-IoT
dataset and its statistical analysis

3.1. Overview

The rapid development of the Internet and the emergence of the Internet of Things
(IoT) have attracted the interest of cyber attackers for exploitation through various
complex hacking techniques such as Botnets. This has been compounded by the
lack of standardization in IoT systems, as well as in the cheap, lightweight and
low-powered devices that comprise many of these systems as described in Chapter
2. One way that IoT networks have been exploited for criminal purposes is in the
propagation of Botnet malware, which has been shown to launch DDoS of up to
1.1 TBps [12, 165].1

With new and unique threats capable of compromising IoT networks, and as
existing techniques are inadequate to address them, it is important to develop ad-
vanced forensics methods for identifying and investigating adversarial behaviours.
Network Forensic techniques are widely used for analyzing network traffic and to
identify infected devices taking part in major cyber-attacks [166]. Additionally,
due to the number and nature of IoT devices, the workload of processing collected
data would be an ideal application of Big Data analytics [167]. Big Data analytics
is a collection of sophisticated analytical processes, which were designed to handle
three main problems, variety, velocity and volume [168]. Since IoT networks gen-
erate enormous volumes of data, it is imperative to employ analytical techniques
capable of handling them, in a near-real-time fashion. As such, the term forensic
analytics is defined to demonstrate the role of forensics techniques and big data
analytics.

Forensic analytics demand big data sources for validating their credibility in
IoT networks. In order to develop forensics and intrusion detection solutions that

1The work presented in this chapter has been published in:
Nickolaos Koroniotis, Nour Moustafa, Elena Sitnikova, Benjamin Turnbull, Towards the develop-

ment of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT
dataset, Future Generation Computer Systems, Volume 100, 2019, Pages 779-796, ISSN 0167-739X,
https://doi.org/10.1016/j.future.2019.05.041.
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identify and investigate cyber-attacks, the development of a realistic dataset is still
an important topic of research [31]. Over the years, a number of datasets were
developed, each of them having its own advantages and disadvantages. Existing
datasets, although applicable in some scenarios, introduce various challenges, for
example, a lack of reliably labelled data, poor attack diversity such as botnet sce-
narios, redundancy of traffic, and missing ground truth [57, 58, 59, 60]. However,
a realistic Botnet traffic dataset in IoT networks has not been effectively designed.
The new Bot-IoT dataset addresses the above challenges, by having a realistic
testbed with multiple tools being used to carry out several botnet scenarios, and
by organizing packet capture files in directories, based on attack types.

The main contributions of this chapter are as follows:

• We design a new realistic Bot-IoT dataset and give a detailed description of
designing the testbed configuration and simulated IoT sensors.

• We then statically analyze the proposed features of the dataset using Corre-
lation Coefficient and Joint Entropy techniques.

• We also evaluate the performance of network forensic methods, based on
machine and deep learning algorithms using the Bot-IoT dataset compared
with popular datasets.

Chapter 3 is structured as follows. The literature review of the study is discussed
in Section 2. In section 3, the testbed that was used to develop the Bot-IoT dataset
is presented. Sections 4, 5 and 6 discuss the feature extraction process, the benign
and malicious scenarios and the statistical and Machine Learning methods used
to analyze the dataset respectively. Finally, in section 7, experimental results are
presented and discussed, followed by the conclusion of this chapter.

3.2. Justification for the need of the new Bot-IoT Dataset

This section explains the IoT and forensic techniques-based machine learning that
are used in this work. Additionally, information is given about popular network
datasets and their limitations for designing forensic techniques in the IoT.
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3.2.1. IoT and forensic analytics-based machine learning

IoT networks consist of both typical network elements (including workstation,
laptops and routers) and IoT devices. Machine-to-machine technologies used in
conjunction with cloud paradigms, provide the resulting IoT services to users and
organizations, in geographically distributed locations [74]. Popular applications
of IoT systems, such as smart cities, smart healthcare and industrial IoT, are
complex because they have multiple sensors that need significant processing power
and computation to allow individuals to control the IoT elements in large-scale
networks [74].

The vulnerabilities of IoT networks significantly increases with complex cyber-
attacks, such as Botnets. Botnets are synchronized networks of compromised
machines, called bots [82, 92]. In a Botnet, the attacker, called botmaster, main-
tains a bi-directional channel of communication towards the compromised net-
work, through a Command and Control (C&C) infrastructure. By using the C&C
a botmaster issues commands to the rest of the botnet and is capable of receiv-
ing feedback regarding attacks in progress or even stolen data [82, 92]. A botnet
can launch a number of activities, such as Distributed Denial of Service attacks
(DDoS), Keylogging, Phishing, Spamming, Click fraud, Identity theft and even
the proliferation of other Bot malware [22]. The compromised bots are under the
complete control of the botmaster.

Digital Forensics is defined as “the identification, preservation, collection, ex-
amination, analysis and presentation of digital evidence” [105, 169]. During this
process, forensic methods are applied to data (or in this case, big data), in order
to draw conclusions about the occurrence of a crime, including who did it, their
motives, what methods they used and what, if any, information or machines they
affected. Since the forensic process is linked with analyzing big data to design
effective techniques in law enforcement, such techniques can be utilized using Ma-
chine Learning (ML) algorithms for designing reliable models that can efficiently
determine cybercrime. Therefore, we entitle forensic techniques that use Machine
Learning and big data as “forensic analytics”. Forensic analytics could be used in
the examination phase, where the Forensic analyst seeks to identify patterns that
would answer the aforementioned questions, related to the occurrence of a crime.

Network Forensics analytics is tasked with processing network data, such as
logs, e-mails and network packets, the latter usually stored in the form of packet
capture files. In literature, the common cyber applications of network forensics
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-based ML are Intrusion detection, Honeypots, network flow analysis, deep packet
inspection, and email authorship, as discussed in the following points:

Intrusion Detection Systems (IDS) - [170, 171, 172, 173] are classified into
network and host intrusion detection systems. Network IDS (NIDS) are placed in
a strategic point of the network, usually, a node connecting the internal network to
the Internet and are tasked with scanning inbound and outbound traffic for known
patterns of attacks. As known malicious patterns are identified, notifications are
set off and subsequent forensic mechanisms can be deployed, thus lowering re-
sponse time and potentially increasing the accuracy of investigation. Such IDS
can incorporate ML, in their anomaly detection process [171], with classification,
clustering and other methods used to detect unusual non-normal traffic. Examples
of such systems have already been proposed [174].

Honeypots- are entities (software and/or hardware) that are designed to ap-
pear as an appealing, exploitable target to an attacker [174, 175]. Honeypots have
several uses, to identify attackers that are able to bypass other control mechanisms,
to mitigate ongoing attacks and distract attackers from real systems and collect
attack binaries [175]. They are classified in three main categories, (i) Low Inter-
action Honeypots, where software simulates responses to certain stimuli, (ii) High
Interaction Honeypots, where real Operating Systems are used as the honeypot,
and (iii) Hybrid Honeypots a combination of (i) and (ii). In the context of hon-
eypots, Machine Learning techniques are applied either to identify network traffic
patterns that can be used to identify similar attacks in the future (by recording
pcaps, collecting logs,. . . ), or to analyse Malware samples [175] obtained during
an infection.

Network Flow Analysis and Deep Packet Inspection - can be catego-
rized into two broad groups: (i) Deep Packet Inspection and (ii) Network Flow
Analysis [33, 166, 176, 177]. Both categories use captured traffic to draw con-
clusions regarding cyber-attacks. Their main difference is that (i) investigates the
content of each packet, which yields more complete results but adds a considerable
overhead whereas (ii) aggregates packets into flows, which are groups of packets
that share Source IP, Source Port, Destination IP, Destination Port, Protocol. In
both categories, Clustering, Classification and Association Rule Mining techniques
have been applied in the literature.

Email Authorship- is an example of ML application in the context of Cyber
Forensics, not directly related to Network Forensics. In such cases, Support Vector
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Machines have been used to identify the author of an e-mail based on the text itself
[178].

3.2.2. Comparison of proposed testbed with others

In this sub-section, we discuss the comparison between known testbeds found in
literature, to the one we used to produce IoT-Bot dataset. A testbed is as an
environment designed for the generation of network traffic [57]. A number of
datasets have been introduced in the literature, to assist researchers in simulating
Botnet activities and generating attack traffic datasets [32, 33, 57, 59, 179, 180,
181], as compared in Table 3.1.

Table 3.1: Comparison of testbeds, where (T=true, F=false),Types of traffic: ’A’ for
Attacks and ’CC’ for Command and Control, and Large Botnet (’T’ is greater than 10)

Testbeds Virtual Physical Type
of

traffic

Attack
variety

Large
Botnet

Normal
traffic

IoT
traffic

Alomari et
al. [179]

T F A F T F F

Carl et al.
[32]

F T CC F T F F

Bhatia et al.
[180]

F T A F T T F

Behal et al.
[181]

T T A F T T F

Sharafaldin
et al. [59]

F T A T F T F

Moustafa et
al. [57]

T F A T F T F

Doshi et al.
[33]

F T A F F T T

Proposed
Testbed

T F A T F T T

To explain the benchmark datasets, various testbeds were used. To start
with, similar to our approach, Alomari et al. [179] relied on a high-tier server,
outfitted with Virtual Machines to implement their HTTP DDoS Botnet traffic
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testbed. Although their testbed employed a larger quantity of Bots (40) than
ours, they limited their generated Botnet activities to only HTTP DDoS attacks,
whereas we did not (description of activities in Section 5). The stated goal of this
network testbed and the associated dataset was to produce traces of malicious
traffic. Whilst this is important, the lack of full network packet capture makes it
impossible to provide verification of any outcomes. Network traces also limits the
data that can be extracted and processed.

Choosing to focus on the C2 (Command and Control) activities of a Botnet,
Carl et al. [32], implemented their own IRC-centric testbed, in order to produce an
ML approach to effectively identify malicious IRC traffic. In their work, they made
use of a re-implementation of a real-world Botnet named “Kaiten”, which used
IRC traffic as its C&C communication medium, and launched UDP DDoS from
13 “zombies” targeting a victim host. Contrary to their approach, in our testbed,
we mixed normal and attack traffic by activating Ostinato [62] (for normal traffic)
and the attack software at the same time, whereas their testbed was not tasked
with generating normal traffic, with it being collected from a public network (later
anonymised) and Botnet traffic being generated by their testbed. A good dataset
should include both attack and normal traffic.

Taking a different approach to building their testbed, Bhatia et al. [180] em-
ployed physical machines arranged appropriately in a local network. Their testbed
was tasked with simulating flash events and various types of DDoS attacks, the
latter through the use of specialized software called Botloader and IP-Aliasing.
Compared to our virtualized approach, their choice of using physical machines in-
curs added costs (for the physical machines), is not easily deployable as mentioned
by the research team itself [180] and does not include the added resiliency that vir-
tualized environments offer. Additionally, our approach included a greater variety
of Botnet activities, including but not limited to DDoS, DoS and Port Scanning.

Similarly to [180], Behal et al. [181], developed their testbed, DDoSTB to
generate DDoS attacks and flash events. Their approach was to use a combination
of real computers arranged locally into subnetworks, and emulation software that
created multiple virtual nodes per physical. As mentioned for [180], the use of
physical machines in such a testbed lacks the resiliency, ease and speed with which
Virtual Machines can be deployed. Also, again the focus of the testbed was DDoS
attacks, which, although a significant and particularly destructive capability of
Botnets is far from the only kind of action that they can perform, as has been
observed, that Botnets in the wild exhibit a number of diverse malicious actions,
such as Keylogging, Phishing, Data theft, DDoS, DoS and Malware proliferation.
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Comparable to [180, 181] but more elaborate in their implementation, Sharafaldin
et al. [59] crafted a testbed relying on physical machines, which were separated
into two networks, the Victim-network and the Attack-network. Their approach
made use of several popular Operating Systems, such as Windows (7Pro, 8.1,
Vista), Ubuntu (16.4,14.4, Server) and Kali Linux, a choice that mirrors our own.
Moustafa et al. [57] relied on the IXIA Perfect Storm in their testbed imple-
mentation to generate both normal and malicious network traffic for the purpose
of generating the UNSW-NB15 dataset. Through IXIA, the researchers installed
three virtual servers, two of which were tasked with generating normal traffic with
the third performing attacks on them.

Doshi et al. [33] work focused on generating an ML model that would identify
IoT-produced DDoS attacks. In their approach, they made use of physical IoT
consumer appliances, which were deployed in a local network. Normal traffic was
collected by interacting with the IoT devices, while DoS attacks were simulated.
The main differences between their proposed testbed and the one we implemented,
is scale and attack variety. For our testbed, we chose to use four Kali Linux
machines to simulate both DoS and DDoS attacks, along with other Botnet actions.

The main novelty of the proposed dataset, is the introduction of the IoT ele-
ment in the environment. Namely, we employed popular middleware (Node-red),
to simulate the existence of IoT devices in our Virtual Network. This IoT simu-
lated traffic is in the form of MQTT, a publish-subscribe communication protocol
implemented over TCP/IP, often used for lightweight network communication,
such as IoT [182]. In contrast, IoT devices were not represented in the testbeds
that were presented in the previous section [32, 57, 59, 179, 180, 181] with the
exception of [33].

Choosing this virtualized setup carries a number of pros and cons. To start
with the pros, using a virtualized environment means that the setup is portable
and easy to set up with a relatively low cost. Additionally, using simulations to
represent the servers, PCs and IoT devices made the launching of malicious attacks
easier and safer, with the extra bonus that the machines could be recovered easily
if necessary. From a security perspective, not using actual Botnet malware to
infect our machines made the process a lot safer, as by doing so we ran the risk of
either unwillingly taking part in real attacks (our machines become part of a real
botnet).

Furthermore, many newer versions of Bot malware can detect a virtualized
environment, producing fake data as subterfuge. With regards to the generation
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of realistic normal network traffic, the Ostinato [62] software was used, to make
the dataset appear as if it were collected from a real-world network. Lastly, we
executed a set of standard Botnet attacks, which makes this dataset useful for the
development of realistic Botnet traffic detection.

On the other hand, using a virtualized environment prevents us from launching
in-depth attacks against an IoT’s firmware and hardware, thus somewhat limiting
the depicted ways through which an attack against such machines can be launched.
Nevertheless, the collected dataset is adequate for our purposes. In addition, as
an expansion, an even more diverse group of attacks could be performed, such as
application layer DoS/DDoS, Layer 1,2 attacks on physical IoT devices, something
which requires the use of real IoT devices, access to which we did not have at the
time of the experiments.

3.2.3. Existing network datasets and their forensics analytics
limitations

Since the applications of forensics discussed in the IoT and Forensic analytics
subsection employ machine learning techniques, they require big datasets for an-
alyzing network flows, differentiating between normal and abnormal traffic, and
producing forensic reports, which could be useful to forensic specialists in law en-
forcement. The development of a realistic network dataset is a very important task
for designing network forensics, intrusion detection and privacy-preserving models
[183]. Over the years, several datasets have been produced [59] and although a
good number of them remain private, due to primarily privacy concerns, some
have become publicly available. The most commonly used datasets are briefly
explained below, with a comparison between them and Bot-IoT given in Table
3.2.
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Table 3.2: Comparison of datasets (T=true, F=false)

Dataset Realistic
testbed

configura-
tion

Realistic
traffic

Labeled
data

IoT
traces

Diverse
attack
scenar-
ios

Full
packet
capture

New
gener-
ated

features

Darpa98 T F T F T T F
KDD99 T F T F T T T

DEFCON-8 F F F F T T F
UNIBS T T T F F T F
CAIDA T T F F F F F
LBNL F T F F T F F

UNSW-NB15 T T T F T T T
ISCX T T T F T T T

CICIDS 2017 T T T F T T T
TUIDS T T T F T T T
Bot-IoT T T T T T T T

• The DARPA 98 dataset was generated by MIT’S Lincoln Lab for assessing
intrusion detection systems. The resulting dataset was produced in a period
of 7 weeks, was made up of 4GB of binary data and simulated a small Air
Force network connected to the Internet [184][185], which was later enhanced
in 1999 to generate the features in the KDD99 dataset.

• The KDD99 dataset was generated from the DARPA 98 dataset for evalu-
ating intrusion detection systems that distinguish between inbound attacks
and normal connections [58][55][185]. Even though it is still used to this
day, it has several problems, for example, non-normal distributions of attack
and normal data named the imbalanced learning problem. The NSL-KDD
dataset was proposed to address the limitations of the KDD99, but the two
versions are outdated and do not reflect current normal and attack events
[55][59].

• The DEFCON-8 dataset consists of port scanning and buffer overflow attacks,
which were recorded during a “Capture the Flag” competition [59]. As it
lacks a significant quantity of normal background traffic, its applicability for
evaluating Network Forensics and IDS systems is limited.

• The UNIBS [56][186] dataset was developed by the University of Brescia,
Italy. In their configuration, the researchers installed 20 workstations running
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the Ground Truth daemon and traffic was collected through tcpdump at the
router to which they were collected. Although the researchers used a realistic
configuration, there are some drawbacks to this dataset. First, the attack
scenarios are limited to DoS attacks. Secondly, the dataset exists in packet
form with no extra features generated on it. Additionally, no information is
given about the labels.

• The CAIDA datasets [186][187] are collections of varied data types. They
are comprised of anonymized header traffic, excluding the payload. The
datasets are made up of very specific attacks, such as DDoS. One popular
dataset from the CAID collection is the CAIDA DDoS 2007, which includes
one hour of anonymized attack traces from DDoS attacks that took place
in August 2007. One drawback of the CAIDA datasets is that they did not
have a ground truth about the attack instances. Additionally, the gathered
data was not processed to generate new, features which could improve the
differentiation between attack and normal traffic.

• The LBNL [188][186] dataset consists of anonymized traffic, which consists
of only header data. It was developed at the Lawrence Berkley National
Laboratory, by collecting real inbound, outbound and routing traffic from
two edge routers. Similarly to the UNIBS, the labelling process is lacking
and no extra features were generated, with the data existing as a collection
of .pcap files.

• The UNSW-NB15 is a dataset developed at UNSW Canberra by Mustafa
et al. [57]. The researchers employed IXIA perfect storm to generate a
mixture of benign and attack traffic, resulting in a 100GB dataset in the
form of PCAP files with a significant number of novel features generated.
The purpose of the produced dataset was to be used for the generation and
validation of intrusion detection. However, the dataset was designed based
on a synthetic environment for generating attack activities.

• The ISCX dataset [189][190] was produced at the Canadian Institute for Cy-
bersecurity. The concept of profiles was used to define attack and distribution
techniques in a network environment. Several real traces were analyzed to
generate accurate profiles of attacks and other activities to evaluate intru-
sion detection systems. Recently, a new dataset was generated at the same
institution, the CICDS2017.

• The CICIDS2017 [59] is comprised of a variety of attack scenarios, with real-
istic user-related background traffic generated by using the B-Profile system.

91



Chapter 3 Development of the Bot-IoT dataset and its statistical analysis

Nevertheless, the ground truth of the datasets, which would enhance the re-
liability of the labelling process, was not published. Furthermore, applying
the concept of profiling, which was used to generate these datasets, in real
networks could be problematic due to their innate complexity.

• The TUIDS [46][186] dataset was generated by the Tezpur University, India.
This dataset features DDoS, DoS and Scan/Probing attack scenarios, carried
out in a physical testbed. However, the flow level data do not include any
new features other than the ones generated by the flow-capturing process.

Although various research studies have been conducted [46, 56, 57, 58, 59, 187, 188,
189] to generate network datasets, the development of realistic IoT and network
traffic dataset that includes recent Botnet scenarios still is an unexplored topic.
More importantly, some datasets lack the inclusion of IoT-generated traffic, while
others neglected to generate any new features. In some cases, the testbed used
was not realistic while in other cases, the attack scenarios were not diverse. This
chapter seeks to address the shortcomings by designing the new Bot-IoT dataset
and evaluate it using multiple forensics mechanisms, based on machine and deep
learning algorithms.

3.3. The proposed Bot-IoT dataset

3.3.1. Overview of proposed testbed

The proposed testbed consists of three components, namely: network platforms,
simulated IoT services, and extracting features and Forensics analytics. First,
the network platforms include normal and attacking virtual machines (VMs) with
additional network devices such as a firewall and tap. Second, the simulated IoT
services, which contain some IoT services such as a weather station. These are
simulated through the Node-red tool [61]. Third, extracting features and forensics
analytics, where the Argus tool [191] was used in order to extract data features,
and afterwards statistical models and machine learning techniques were employed
in order to assess the feature vectors for discriminating normal and abnormal
instances. More details of the components are discussed below.
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Fig. 3.1: Testbed environment of the new Bot-IoT dataset

3.4. Network platforms

We designed the testbed environment at the Research Cyber Range lab of UNSW
Canberra. Virtual Machines that were prepared for this task, were ported into
an ESXi [192] configured cluster and managed through a vSphere platform [193].
In Figure 3.1, we depict the testbed of the Bot-IoT dataset, where several VMs
are connected to LAN and WAN interfaces in the cluster and are linked to the
Internet through the PFSense machine. On the Ubuntu VM platforms, the Node-
red tool was used for simulating various IoT sensors which were connected with
the public IoT hub, AWS [194]. We developed Java scripts on the Node-red tool
for subscribing and publishing IoT services to the IoT gateway of the AWS via
the Message Queuing Telemetry Transport (MQTT) protocol [182], as detailed in
the following sub-section.

There were also a packet filtering firewall and two Network Interface Cards
(NICs) configured in the environment. One of the NIC was configured for LAN
and the other one for WAN. The main reason for using this firewall is to ensure the
validity of the dataset labelling process, as it enables to manage network access by
monitoring incoming and outgoing network packets, based on specific source and
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destination internet protocol (IP) addresses of the attack and normal platforms.
VMs which needed to communicate with the Internet sent their traffic through
the PFSense machine which in turn, forwarded the traffic through a switch and a
second firewall before it could be routed further into the Internet.

Our network of VMs consists of four Kali machines, Bot Kali_1, Bot Kali_2,
Bot Kali_3, and Bot Kali_4, an Ubuntu Server, Ubuntu mobile, Windows 7,
Metasploitable and an Ubuntu Tap machine. The Kali VMs, which belong to
the attacking machines, performed port scanning, DDoS and other Botnet-related
attacks by targeting the Ubuntu Server, Ubuntu mobile, Windows 7 and Metas-
ploitable VMs. In the Ubuntu Server, a number of services had been deployed,
such as DNS, email, FTP, HTTP, and SSH servers, along with simulated IoT
services, in order to mimic real network systems.

To generate a massive amount of normal traffic, we used the Ostinato tool
[62], due to its flexibility of generating realistic benign traffic with given IPs and
ports. We also maintained periodically normal connections between the VMs by
executing normal functions of the services installed on the Ubuntu server, such
examples include the DNS server, which resolved the names of the VMS to their
IPs and the FTP server, used to transfer particular files between the VMs. To
collect the entire normal and attack raw packet volume exchanged within the
configured network, the T-shark tool was used on the Ubuntu Tap machine, by
setting its NIC in a promiscuous mode that ensured the scalability of the testbed.

3.4.1. Simulated IoT services

In order to simulate the network behaviour of IoT devices, we employed the Node-
red tool [61]. Node-red is a popular middleware used to connect IoT physical
devices with their backend cloud server and applications, improving and speeding
up communications between the various parts of an IoT deployment. On the
Node-Red tool, we developed JavaScript code that mimicked IoT sensors such as
temperature, pressure and humidity sensors.
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Fig. 3.2: Flowchart of weather IoT simulation of the node-red tool used in the dataset

The various pieces of code were triggered for publishing and subscribing to
the topics, as shown in the example of Figure 3.2. The MQTT protocol [182]
was used as a lightweight communication protocol that links machine-to-machine
(M2M) communications, making it a viable choice for IoT solutions. It works
in a publish/subscribe model, where a device publishes data to an MQTT broker
(server-side) under a topic, which is used to organize the published data and allows
clients to connect to the broker and fetch information from the topic of the device
they wish to interact with.

We applied the following IoT scenarios in the testbed of the dataset:

1. A weather station (Topic:/smarthome/weatherStation), which generates in-
formation on air pressure, humidity and temperature.

2. A smart fridge (Topic:/smarthome/fridge), which measures the fridge’s tem-
perature and when necessary adjusts it below a threshold.
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Algorithm 3.1 Weather Station
var temp, hum,pres,id;
var timestamp=(new Date().toGMTString());
const maxTemp=40;//Celcius
const minTemp=-5;
const initPres=1.013;//Bars
temp=msg.payload["temperature"]||Math.ceil(Math.random()*(maxTemp-
minTemp))+minTemp;
pres=msg.payload["pressure"]||initPres;
hum=msg.payload["humidity"]||Math.random()*100;
if(Math.random()>=0.05){//Has 0.05 probability to change temperature OR if temperature is
above 6.
temp=temp+(0.5*Math.random()*(temp-1<minTemp?(1):(temp+1>maxTemp?(-
1):(Math.random()>0.5?(1):(-1)))));}
if(!isNaN(msg.payload)){
id=msg.payload;}
else{
id=msg.payload["id"];
pres=pres+((((Math.random()*8)%8)<1)?(Math.random()*(0.5+0.5)-0.5):(0));//0.125 chance
to change pressure value by an increment in [-0.5,0.5]
hum=hum+((((Math.random()*6)%6)<1)?(hum-5<0?(Math.random()*(-
5)+5):(hum+5>100?(Math.random()*(5)-5):(Math.random()*(5+5)-5))):(0));}
msg.payload={"id":id,"timestamp":timestamp,"temperature":temp,"pressure":pres,"humidity":hum}
return msg;

Algorithm 3.2 Fridge
var FridgeTemp,id;
var timestamp=(new Date().toGMTString());
var tempMsg="Temperature low";
FridgeTemp=msg.payload["Fridge Temperature"] || Math.ceil(Math.random()*(14));
if(Math.random()>=0.05||FridgeTemp>=6){//Has 0.05 probability to change temper-
ature OR if temperature is above 6.
FridgeTemp=FridgeTemp+(Math.random().toFixed(1)*(1.5)*(FridgeTemp>=6?(-
1):(1)));}
if(FridgeTemp>=6){
tempMsg="Temperature high";}
if(!isNaN(msg.payload)){
id=msg.payload;}
else{ id=msg.payload["id"];}
msg.payload={"id":id,"Timestamp":timestamp,"Fridge Tempera-
ture":FridgeTemp,"Condition":tempMsg}
return msg;
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3. Motion-activated lights (Topic:/smarthome/motionLights), which turn on or
off based on a pseudo-random generated signal.

Algorithm 3.3 Motion activated light
var id, MotionDetected, lightsOn;
var timestamp=(new Date().toGMTString());
var message="Lights off.";
const initLightCondition=false;
const initMotionSensor=false;
var chance=Math.random()*5%5;
if(!msg.payload["Motion Detected"]){//if previously motion wasn’t detected
MotionDetected=(chance>2)?(MotionDetected=true):(MotionDetected=false);//0.2
(20%) chance motion will be detected.
if(MotionDetected){
lightsOn=true;}
else{
lightsOn=false;}
else{
MotionDetected=lightsOn=false;}
if(!isNaN(msg.payload)){
id=msg.payload;}
else{
id=msg.payload["id"];}
message=(lightsOn?("Lights on."):("Lights off."));
msg.payload={"id":id,"timestamp":timestamp,"Motion De-
tected":MotionDetected,"Lights Condition":lightsOn,"message":message}
return msg;

4. A remotely activated garage door (Topic:/smarthome/garageDoor), which
opens or closes, based on a probabilistic input.

5. A smart thermostat (Topic:/smarthome/thermostat), which regulates the
house’s temperature by starting the Air-conditioning system.

The five IoT scenarios were connected to both the Ubuntu server, where the
Mosquitto MQTT broker [195] was installed, as-well-as the AWS IoT hub. While
running the testbed environment, MQTT messages were published periodically
from all clients to both brokers. The connections allowed us to simulate regular
IoT traffic since the MQTT brokers were used as intermediaries that connected
smart devices with web/smartphone applications.
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Algorithm 3.4 Garage Door
var id, smartphoneSignal, doorState;
var timestamp=(new Date().toGMTString());
const initSmartphoneSignal=false;
const deviceTag="Garage Door";
const DoorOff=false;
const DoorOpen=true;
doorState=msg.payload["door state"]||DoorOff;
smartphoneSignal=msg.payload["sphone signal"]||initSmartphoneSignal;
if(!isNaN(msg.payload)){
id=msg.payload;}
else{
id=msg.payload["id"];
smartphoneSignal=(Math.random()*10)<1?(true):(false);
doorState=(smartphoneSignal?true:false);}
msg.payload={"id":id,"device title":deviceTag ,"door state":doorState, "door
state text": (doorState?"Garage door open":"Garage door closed"),"sphone sig-
nal":smartphoneSignal}
return msg;

3.5. Extracting features and forensics analytics

After collecting the pcap files from the virtualized setup, with normal and attack
traffic in the same files, we extracted the flow data, by using the Argus tools
and produced .argus files. Following the flow extraction process, the produced
flow data was imported into a MySQL database for further processing. We then
employed statistical measures using Correlation Coefficient [66] and Entropy [67]
techniques to assess the original dataset and select important feature, as described
in Section 6. New features were generated based on the transactional flows of
network connections in order to discover normal and intrusive events. Finally,
three Machine Learning models, which could be applied for forensic purposes,
were trained and validated on several versions of the dataset to assess the value of
the dataset compared with other datasets, as discussed in Section 7.

3.5.1. Network Flow extraction process

Capturing network traffic while ensuring the labelling process is not an easy task,
as the synchronization of sending and receiving packets and later tagging these
packets either normal or attack should be timely and automatically developed.
In order to accomplish this task, we developed some scripts on the Cron Linux
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Algorithm 3.5 Thermostat
var id, currentTemperature, AC_State;
var timestamp=(new Date().toGMTString());
const deviceTag="Smart Thermostat";
const defaultTemperature=25;
const AC_Default=false;
const DoorOpen=true;
currentTemperature=msg.payload["current temperature"]||defaultTemperature;
AC_State=msg.payload["AC_state"]||AC_Default;
if(!isNaN(msg.payload)){
id=msg.payload;}
else{
id=msg.payload["id"];
if(currentTemperature!=25){
AC_State=true;}
else{
AC_State=false;}
if(AC_State){
if(currentTemperature-25<1&&currentTemperature-25>0){
currentTemperature=currentTemperature-(currentTemperature-25);
AC_State=false;}
else if(currentTemperature-25>-1&&currentTemperature-25<0){
currentTemperature=currentTemperature-(currentTemperature-25);
AC_State=false;}
else{
currentTemperature=currentTemperature+((currentTemperature>25)?(-
1):(+1))*(Math.random())*0.5;}
}
else{
currentTemperature=currentTemperature+(((Math.random*10>8)?(-
1):(+1))*(Math.random()*10));}
}
msg.payload={"id":id,"device title":deviceTag ,"current tempera-
ture":currentTemperature,"AC_state":AC_State, "state of thermostat": "House
temperature "+(currentTemperature)+ (AC_State?" AC on.":" AC off.")};
return msg;

functions [196] over the Ubuntu Tap VM. When the scripts ran on a given time,
a particular normal or attack scenario had to be executed. For example, during
the generation of DDoS, we scheduled the execution of custom bash scripts which
invoked hping3 and golden-eye to run the DDoS attacks, while simultaneously
normal traffic was generated in the background. At the same time, the T-shark
tool [65] was running, to capture raw packets and store them in 1 GByte pcap files
to ease extracting network features.

We scheduled different types of attacks to run at different times, with normal
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background traffic being constantly generated. By doing so, we ensured that
different types of attacks would be performed at different times allowing us to
organize the produced pcap files, based on attack category and subcategory. For
this purpose, the attacking Kali Bots 1-4 and the recording Ubuntu Tap, had to be
synchronized, so that Ubuntu Tap could halt the recording of a particular attack’s
pcap files and start the next one scheduled. The normal traffic, which was mixed
with the attack traffic was generated by the Ostinato [62] program that ran in
the Ubuntu_Server VM. Knowing the IP addresses of both attacker and victim
machines, enabled us to differentiate between normal and attack traffic, as we
ensured that between the two groups, only attacking traffic would be transferred.

After collecting the pcap files, the Argus tool [191] was used to generate the
relevant network flows. The pcap files were converted into Argus format by us-
ing the Argus client program. Then, the rasqlinsert command was applied to
extract network flow information, and simultaneously log the extracted features
into MySQL tables. The final features produced by Argus during the Network
flow extraction process are listed in Table 3.3.

Additionally, the group “saddr”, “sport”, “daddr”, “dport”, “proto” are con-
sidered network flow identifiers, as this information is capable of uniquely identi-
fying a flow at any given time and assisting in the labelling process. To label the
data for use with machine learning processes, we employed “alter table” queries
to introduce the new columns and “update” queries to modify the values based
on saddr and daddr values. In the dataset, attack instances are labelled with “1”
and normal ones are labelled with “0” for training and validating machine learn-
ing models through a binary classification. In addition to that, we have further
introduced attack category and subcategory attributes, which could be used for
training and validating multiclass classification models.

3.5.2. New feature generation

We developed new features that were generated based on the features listed in
Table 3.3. The main purpose of this process is to improve the predictive capabilities
of classifiers. The new features demonstrated in Table 3.4 were designed over a
sliding window of 100 connections. The number 100 although chosen arbitrarily,
pays a significant role in the generation of these new features, as it captures the
statistics of groups of flows, in a relatively small time-window, inside of which,
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Table 3.3: Features and descriptions

Feature Description
pkSeqID Row Identifier
Stime Record start time
flgs Flow state flags seen in transactions

flgs_number Numerical representation of feature flags
Proto Textual representation of transaction protocols present in network flow

proto_number Numerical representation of feature proto
saddr Source IP address
sport Source port number
daddr Destination IP address
dport Destination port number
pkts Total count of packets in transaction
bytes Totan number of bytes in transaction
state Transaction state

state_number Numerical representation of feature state
ltime Record last time
seq Argus sequence number
dur Record total duration
mean Average duration of aggregated records
stddev Standard deviation of aggregated records
sum Total duration of aggregated records
min Minimum duration of aggregated records
max Maximum duration of aggregated records
spkts Source-to-destination packet count
dpkts Destination-to-source packet count
sbytes Source-to-destination byte count
dbytes Destination-to-source byte count
rate Total packets per second in transaction
srate Source-to-destination packets per second
drate Destination-to-source packets per second
attack Class label: 0 for Normal traffic, 1 for Attack Traffic
category Traffic category

subcategory Traffic subcategory

patterns of several attacks can be discovered. In order to generate these features
in MySQL DB, we made use of stored procedures.
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Table 3.4: Generated flow features

Feature Description
1 TnBPSrcIP Total Number of bytes per source IP.
2 TnBPDstIP Total Number of bytes per Destination IP.
3 TnP_PSrcIP Total Number of packets per source IP.
4 TnP_PDstIP Total Number of packets per Destination

IP.
5 TnP_PerProto Total Number of packets per protocol.
6 TnP_Per_Dport Total Number of packets per dport.
7 AR_P_Proto_P_SrcIP Average rate per protocol per Source IP.

(calculated by pkts/dur)
8 AR_P_Proto_P_DstIP Average rate per protocol per Destination

IP.
9 N_IN_Conn_P_SrcIP Number of inbound connections per source

IP.
10 N_IN_Conn_P_DstIP Number of inbound connections per

destination IP.
11 AR_P_Proto_P_Sport Average rate per protocol per sport.
12 AR_P_Proto_P_Dport Average rate per protocol per dport.
13 Pkts_P_State_P

_Protocol_P_DestIP
Number of packets grouped by state of
flows and protocols per destination IP.

14 Pkts_P_State_P
_Protocol_P_SrcIP

Number of packets grouped by state of
flows and protocols per source IP.

3.6. Benign and Botnet scenarios

3.6.1. Benign Scenarios

In the testbed environment, we design a typical smart-home configuration. Ini-
tially, five smart devices were simulated and operated locally. We employed the
Node-Red toot to connect smart devices and the corresponding Cloud infrastruc-
ture for generating normal/benign network traffic. Moreover, the Ostinato tool
was also utilized to generate a huge amount of normal traffic between the VMs,
like network production systems.

The configuration of the VMs and utilized platforms represents a realistic
smart-home network, as the five IoT devices: 1) Smart Refrigerator, 2) Smart
Garage door, 3) Weather Monitoring System, 4) Smart Lights, and 5) Smart
thermostat, could be deployed in smart homes. Also, the generated messages were
transferred to a Cloud Service provider (AWS) using the MQTT protocol. The
statistics of normal traffic included in the dataset are shown in Table 3.5.
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Table 3.5: Statistics of normal instances included in Bot-IoT dataset

Protocol Number
UDP 7225
TCP 1750
ARP 468

IPV6-ICMP 88
ICMP 9
IGMP 2
RARP 1
Total 9543

3.6.2. Botnet scenarios

As previously mentioned, we used four Kali Linux VMs to launch cyber-attacks
in parallel for implementing different botnet scenarios, as depicted in Figure 3.1.
The cyber-attacks and their tools considered in the Bot-IoT dataset are described
as follows:

• Probing attacks [197][198][199][200]- are malicious activities that gather
information about victims through scanning remote systems, also so-called,
fingerprinting [197][199]. The probing types included in the dataset are fur-
ther discussed below.

Probing can be split into subcategories, first based on actions performed
during probing and second based on the information gathering target. First,
according to the actions performed, probing can be split into passive and ac-
tive probing [198][199]. During passive probing, an attacker simply captures
any and all available packets in the network, thus operating in a stealthy
manner [198][199]. On the other hand, during an active probe, an attacker
generates network traffic, targeting the system, and records the responses,
comparing them with known responses which allow them to make inferences
about services and OS [198][199]. With regards to the goal of the probe,
there are two major subcategories, OS and service fingerprinting. In OS
fingerprinting, a scanner gathers information about the remote system’s OS
by comparing its responses to pre-existing ones or based on differences in
TCP/IP stack implementations. In service fingerprinting (scanning), a scan-
ner identifies the services which run behind the system’s ports (0-65535), by
sending request packets [199]. Here, we will be using active scans, as passive
scans produce close to zero amount of generated traffic.
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– Port scanning: we used the Nmap and Hping3 tools in order to perform
a number of different types of port scans. The Nmap [200] was launched
to scan open services and protocols of the VMs, for example, nmap
-sT 192.168.100.3, where sT issues a complete TCP connection and
192.168.100.3 is the IP of the Ubuntu server. Likewise, Hping3 [64] was
employed to perform similar port scans with an example being, hping3
-S -scan 1-1000 192.168.100.3, where S issues a SYN scan and scan
dictates the port numbers to be scanned.

– OS fingerprinting: we used the Nmap and Xprobe2 tools to launch dif-
ferent types of OS fingerprint scans. The Nmap [200] tool was used to
identify the OS of our target VMs with different options, for example,
nmap -sV -T5 -PO -O 192.168.100.3, where sV specifies a SYN scan,
T5 that the scan is as overt as possible, PO to include IP protocol ping
packets and O to enable OS scanning. The Xprobe2 [201] tool was used
in conjunction with Nmap. While performing our scans, we used the
default operations of Xprobe2, with no options specified.

• Denial of Service [181][33][12][202]- are malicious activities that attempt
to disrupt a service, thus making it unavailable to legitimate users. The
DDoS and DoS attack types included in the dataset are described as follows:
Distributed Denial of Service (DDoS) and Denial of Service (DoS) attacks
are performed by a group of compromised machines called Bots and target a
remote machine, usually a server [181][33][12]. The purpose of such attacks
is the disruption of services accessible by legitimate users. These attacks
can be classified, based on their attack methodology. Two such groups are
volumetric and protocol-based DDoS/DoS attacks [202]. Volumetric attacks
generate a great number of network traffic, which either forces the victim
to process through these attack-generated requests or cause the machine to
crash, thus making the provided service unavailable. Protocol-based attacks
abuse the mechanics of Internet protocols, which cause CPU and memory
resources to be depleted, thus render the targeted machine unable to respond
to requests. In our attack scenarios, we performed both DDoS and DoS and
used the following protocols: TCP, UDP and HTTP.

– DDoS, DoS: We used the tool Hping3 [64] for both DDoS, DoS for TCP
and UDP, for example, hping3 –syn –flood -d 100 -p 80 192.168.100.3
where syn indicates a SYN TCP attack, flood indicates packets are sent
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as fast as possible, d specifies packet body size, p sets the targeted port.
For HTTP DDoS and DoS attacks, we used the Golden-eye tool, one
example being goldeneye.py http://192.168.100.3:80 -m post -s 75 -w
1, with http://192.168.100.3:80 indicating the IP address of Ubuntu
Server and the targeting Port number, m setting the method as post, s
setting number of sockets, w specifying number of concurrent workers.

• Information Theft [203][204]- is a group of attacks where an adversary
seeks to compromise the security of a machine in order to obtain sensitive
data. The information theft attack types included in the dataset are de-
scribed as follows:

Information theft attacks can be split into subcategories, based on the tar-
get of the attack. The first subcategory is data theft. During data theft
attacks, an adversary targets a remote machine and attempts to compromise
it, thus gaining unauthorized access to data, which can be downloaded to the
remote attacking machine. The second subcategory is keylogging. In keylog-
ging activities, an adversary compromises a remote host in order to record
a user’s keystrokes, potentially stealing sensitive credentials. Attackers usu-
ally employ Advanced Persistent Threat (APT) methodology in conjunction
with information Theft attacks, in order to maximize their attack’s efficiency
[203].

– Data theft: we used the Metasploit framework [63] to exploit weaknesses
in the target machines. For Windows 7 we exploited the SMB eternal
blue vulnerability, while for Ubuntu Server we took advantage of weak
administrator credentials. Post exploitation, we set-up a reverse meter-
peter TCP connection through which exfiltration of entire directories
became possible.

– Keylogging: we used the Metasploit framework [63] to exploit the same
weaknesses we used during Data theft. For Windows 7, meterpeter
provided adequate software to perform keylogging, although the unpre-
dictable shutdowns of the exploit itself rendered a collection of keystrokes
impossible. For Ubuntu Server, we used the logkeys [205] software to
record keystrokes. Initially, a dictionary attack was launched through
Hydra [206] on the SSH service. Then, through Metasploit, an ssh con-
nection was established which was later upgraded to a sudo meterpeter

105



Chapter 3 Development of the Bot-IoT dataset and its statistical analysis

Table 3.6: Statistics of attacks in IoT-Bot dataset

Information gathering Service scanning nmap, hping3 1463364
OS Fingerprinting nmap, xprobe2 358275

Denial of Service

DDoS
TCP hping3 19547603
UDP hping3 18965106
HTTP golden-eye 19771

DoS
TCP hping3 12315997
UDP hping3 20659491
HTTP golden-eye 29706

Information theft Keylogging Metasploit 1469
Data theft Metasploit 118

Total 73360900

connection, allowing us to access the logkeys software, record keystrokes
in the compromised host and then download the recordings.

The statistics of attacks involved in the dataset are described in Table 3.6.

3.7. Statistics and machine learning methods

This section describes the theoretical background of statistical measures for eval-
uating optimal features and machine learning for forensically identifying cyber-
attacks.

3.7.1. Statistical analysis techniques

• Pearson Correlation Coefficient: is used for measuring the linear relationship
between the feature set of the Bot-IoT dataset. Its output ranges between
[-1,1], and its magnitude indicates the strength of correlation between two
feature vectors, and its sign indicates the type of correlation either positive
or negative [66].

• Entropy: depicts the uncertainty or disorder between features [207] of the
Bot-IoT dataset. By definition, high values of entropy equate to high uncer-
tainty.

−
∑
x

∑
y

(P (x, y) ∗ logP (x, y)) (3.7.1)
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Based on Equation 3.7.1, the produced entropy values would be greater than
or equal to zero H(X,Y)≥0, as such the minimum value of entropy is 0. We
calculated the pairwise Shannon Joint Entropy [67] of all rows, excluding
class features, resulting in an n,n table., where n is the number of features.

3.7.2. Machine and Deep Learning analysis techniques

Machine and Deep Learning models were used to evaluate the quality of Bot-IoT
when used to train a classifier. The models that were trained were: Support Vector
Machine (SVM), Recurrent Neural Network (RNN) and Long-Short Term Memory
Recurrent Neural Network (LSTM-RNN).

• SVM: is based on the idea that data instances can be viewed as coordinates
in an N-dimensional space, with N being the number of features. During
training, a hyperplane is sought, that best separates the data into distinct
groups (classes) and that maximizes the margin. In our work, we made use
of an SVM classifier with a linear kernel [208].

• RNN: incorporates a form of memory in its structure [209]. The output of
an RNN during an iteration depends both on the input at any given time,
and the output of the hidden state of the previous iteration. What makes
RNN stand out, is that contrary to other NNs, its output depends on both
the current input as-well-as previous outputs, making it ideal for processing
temporal data, such as the ones present in our dataset. Usual applications
of RNNs include machine translation, speech recognition, generating Image
descriptions.

• LSTM: is a special kind of Recurring Neural Network, where a collection
of internal cells are tasked with maintaining a sort of memory which makes
LSTMs ideal for finding temporally distant associations [210]. LSTM improve
on RNN’s “ vanishing gradient” and “exploding gradient” problems, by in-
corporating a “memory cell” which handles updates in the model’s memory.
This improvement renders LSTMs ideal for learning long-term dependencies
in data.
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3.8. Experimental Results and Discussion

3.8.1. Pre-processing steps of Bot-IoT dataset

In order to extract the dataset from its MySQL tabular form, which contains
the combined records from all the subsequent tables, where the labelling process
took place, we introduced an auto-incrementing feature named “pkSeqID”, and
then employed "select * from IoT_Dataset_UNSW_2018 into outfile ’/path/to/-
file.csv’" Fields terminated by ’,’ Lines terminated by ’ \n’;, to extract the dataset
into CSV form. Doing so enabled us to easily process the data with various Python
modules and also makes distributing the dataset easier, as CSV format is widely
used for such purposes.

Furthermore, considering that the generated dataset is very large (more than
72.000.000 records and at 16.7 GB for CSV, with 69.3 GB pcap), it made handling
the data very cumbersome. As such, we extracted 5% of the original dataset via
the use of select MySQL queries similar to the ones mentioned previously. The
extracted 5%, which we will refer to as the training and testing sets for the rest of
the chapter, is comprised of 4 files of approximately 0.78 GB total size, and about
3 million records.

Additionally, it became necessary at some point of the evaluation process, to
introduce discrete copies of numerical features. To do so, we grouped the numeric
values into 5 bins of equal size, and later used the mathematical representation
of the produced sets “(min, max)” of each bin as the new discrete value for each
corresponding numeric in the dataset.

Moreover, due to the existence of certain protocols (ARP), source and destina-
tion port number values were missing (not applicable), as such, these values were
set to -1, which is an invalid port number, again for the purpose of evaluation of
the dataset.

We converted the categorical feature values in the dataset into consecutive
numeric values for easily applying statistical methods. For example, the state
attribute has some categorical values such as “RST”, “CON”, and “REQ” that
were mapped into “1”, “2” and “3”.

Moreover, normalization was applied in order to scale the data into a specific
range, such as [0,1], without changing the normality of data behaviours. This step
helps statistical models and deep learning methods to converge and achieve their
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Table 3.7: Machine Learning evaluation metrics

Accuracy ACC = TP
TP+FP

Precision PPV = TP
TP+FP

Recall TPR = TP
TP+FN

Fall-out FPR = FP
FP+TN

objectives by addressing local optimum challenges. We performed a Min-Max
transformation on our data, according to the following formula:

x́i = (xi − xmin) ∗ (b− a)
(xmax − xmin) + a (3.8.1)

Where xmax and xmin are the initial max an min values from the original set,
b and a are the new max and min set values and x

′
i ∈ [a, b]. For our purposes,

a=0 and b=1, making the new set [0,1]. In order to measure the performance of
the trained models, corresponding confusion matrices were generated, along with
a collection of metrics, as given in Table 3.7.

3.8.2. Unsupervised Attribute evaluations

Initially, we followed a filter method feature selection. Such methods rely on statis-
tical techniques to evaluate the quality of features rather than the optimization of
ML models. The idea behind these evaluations is to identify any features that are
highly correlated and reduce the dimensionality for improving the performances
of machine learning models.

A. Correlation Coefficient

In order to calculate the correlation coefficient between the dataset’s features, we
developed a code in Python to rank the attribute strengths into a range of [-1,
1]. After calculating the Correlation Coefficient Matrix, we computed the average
Correlation for each feature under scrutiny, thus gaining the “average correlation”.
The idea is that the features with the lowest Correlation Coefficient Average would
introduce less ambiguity in our dataset. In Table 3.8, the features are represented
in order from the lowest produced average correlation to the highest.
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Table 3.8: Average Correlation Coefficient scores

Features srate drate seq rate dur
Average CC -0.00061 -0.00502 0.019941 -0.03508 0.051058
Features (1) min stddev stime ltime flgs_number

Average CC (1) 0.070493 0.077707 0.102708 0.102716 -0.10681
Features (2) state_number mean max dpkts dbytes

Average CC (2) 0.106846 0.170598 0.176318 0.237771 0.23879
Features (3) sbytes spkts bytes pkts Sum

Average CC (3) 0.261992 0.265161 0.277309 0.284521 0.288727

Table 3.9: Average Joint Entropy scores for BoT-IoT features

Features seq mean stddev max Min
Average CC 2.833223 2.465698 2.423786 2.088409 2.015226
Features (1) state_number flgs_number stime ltime dur

Average CC (1) 1.963397 1.68267 0.798997 0.798997 0.665417
Features (2) rate sum spkts pkts sbytes

Average CC (2) 0.664154 0.661829 0.661812 0.661783 0.661772
Features (3) bytes srate drate dbytes dpkts

Average CC (3) 0.661768 0.661734 0.66172 0.661718 0.661718

B. Entropy

In order to calculate the joint entropy between our features, we generated Python
code which traversed the loaded CSV files and calculated the subsequent sums
of joint probability times the base 2 logarithm for that probability, as given in
Equation 3.7.1. It was due to this measure that we performed the discretization
that we mentioned at the beginning of this section.

Contrary to the Correlation Coefficient, Entropy depicts disorder in data, and
as such, higher values indicate higher disorder (or randomness), which means that
our features do not share much information and thus introduce less ambiguity in
our dataset. Thus, we again produce a score value per feature, through calculating
the average Joint Entropy, as depicted in the following table from higher to lower
average Entropy.

C. Extraction of the 10 Best features

A direct comparison of both Entropy and Correlation scores is given in Figure
3.3. A feature will be considered ideal for our dataset if its Entropy score is large
enough and its Correlation Score low enough. That would mean that that feature
does not carry any redundant information that is shared with other features and
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that they are as unrelated to each other as possible. In order to compare the
averages of these different statistical measures, score values were normalized in
the range [0,1].

Considering that higher Correlation Coefficient values indicate highly corre-
lated features, which is something we wanted to remove from our dataset, after
performing the Min-Max transformation, we inverted the results (1− yi), so as to
bring the CC average scores in the same format as the Joint Entropy score (where
higher values translate to higher randomness between features).

Fig. 3.3: Graph representation of features

We compared the new mapped values of Correlation Coefficient and Joint En-
tropy in order to extract a subset of 10 features which, overall, had the best scores
in both statistical measures. As such, we identified toe following best 10 features:
srate, drate, rate, max, state_number, mean, min, stddev, flgs_number, seq. Hav-
ing completed the unsupervised evaluation process, we will further evaluate the
worthiness of the final 10 features in the section “supervised evaluation”.
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Table 3.10: Joint Entropy and Correlation Coefficnent average scores

Features Average CC Average JE
AR_P_Proto_P_Dport 0.071521 0.637848
AR_P_Proto_P_DstIP 0.034548 0.636399
AR_P_Proto_P_Sport 0.070876 0.636738
AR_P_Proto_P_SrcIP 0.034062 0.636084

drate 0.004333 0.635576
flgs_number -0.13459 1.680341

max 0.18572 2.104321
mean 0.192966 2.490935
min 0.093812 2.022061

N_IN_Conn_P_DstIP 0.07164 1.430813
N_IN_Conn_P_SrcIP 0.077322 2.067795

Pkts_P_State_P_Protocol_P_SrcIP 0.263217 0.635667
Pkts_P_State_P_Protocol_P_DestIP 0.266336 0.635636

rate 0.074073 0.638024
seq -0.02858 2.835564
srate 0.005537 0.63559

state_number 0.122872 1.973091
stddev 0.072967 2.440526

TnBPDstIP 0.168677 0.635674
TnBPSrcIP 0.161545 0.635689
TnP_PDstIP 0.271537 0.635701

TnP_Per_Dport 0.242596 0.63563
TnP_PerProto 0.130232 0.636924
TnP_PSrcIP 0.268818 0.635686

D. Secondary evaluation of features

In this section, we further evaluated the relationship between the independent
features. For this stage, we employed similar tactics to the previous section of this
chapter, that is, we calculated average scores based on the Pearson Correlation
Matrix (Triangle) and Shannon Joint Entropy, for the 10 best features that were
identified previously, combined with the 14 generated features, and then extracted
the 10 best features from that group. Following are the Joined Entropy and
Correlation Coefficient matrices and plots of their average scores.

We then mapped the average scores in the set [0,1] and plotted the values, in
order to identify the 10 best features.
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Fig. 3.4: Graph representation of features’ scores

By observing Figure 3.4, we can determine that the 10 best features, that
is, the 10 features with the highest combined average Correlation Coefficient
and Joint Entropy are: seq, stddev, N_IN_Conn_P_SrcIP, min, state_number,
mean, N_IN_Conn_P_DstIP, drate, srate, max .

3.8.3. Supervised evaluation

After the 10-best features were extracted, we employed supervised learning tech-
niques to evaluate the quality of the dataset. Such methods rely on a model which
is trained on the labelled data and then is capable of classifying new unlabeled
instances.

A. Three classifiers for evaluations

Following the selection of the 10 best features, we applied three predictors on our
data, and assessed their accuracy, in order to further eliminate any superfluous
features. Specifically, the predictors we chose were a Support Vector Machine
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(SVM), a Recurring Neural Network (RNN)and a Long Short-Term Memory RNN
(LSTM-RNN).

A.1 SVM

The SVM model that was trained, was a linear Support Vector Classifier. The
parameters of this classifier were penalty parameter (C=1), 4-fold cross-validation
and a number of max iterations equal to 100000 on the final 10-best features.
Similar settings were selected for the dataset version comprised of all available
features, with the only difference being that max iterations were set to 1000.

The aforementioned setting was practically adjusted to measure the best per-
formance of the SVM model. Initially, the SVM classifier was trained with default
parameters, but it was later observed that by increasing the max iteration number,
particularly for the second (all features included) model caused a longer training
time. With regards to the number of folds, we observed a loss of accuracy when a
higher number of folds was chosen.
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Table 3.11: Confusion matrices of SVM models. (10-best feature model on the left,
full-feature model on the right).

True\Predict Normal (0) Attack (1) True\Predict Normal (0) Attack (1)
Normal (0) 477 0 Normal (0) 64 413
Attack (1) 426550 3241495 Attack (1) 0 3668045

Fig. 3.5: ROC curve for SVM models.(10-best feature model on the left,full-feature
model on the right).

A.2 LSTM

The LSTM models were defined to have 1 input layer with the number of neurons
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equal to the number of input features, two hidden layers and an output layer. For
the 10-best features dataset, the Model was trained in 4 epochs with batch size
100. The neural network was comprised of 10 input neurons (in the first layer,
the same number as the features), intermediate (hidden) layers with 20, 60,80, 90
neurons and 1 output neuron for the binary classification.

For our full-feature dataset, the model was trained in 4 epochs with a batch
size of 100 records. The network had a 35-neuron input layer (again, the same
number as features of the dataset), with similar hidden layers to the model we
used to train the 10-best feature version of our dataset (20,60,80,90 neurons) and
1 output neuron for the binary classification.

We initially tested the model with a batch size of 1000, but due to poor
performance, we sought a different value. It was observed, that choosing a batch
size of 100 records, the specificity of the model was improved.

In both cases, for the input and hidden layers, the activation function that was
used was “tanh”, while the output layer activation function was “sigmoid”. Both
tanh and sigmoid activation functions are often used for building Neural Networks,
with sigmoid being an ideal choice for binary classification, as its output is within
the [0,1] set. Bellow the structure of the LSTM model can be viewed in Figure
3.6.
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Table 3.12: Confusion matrices of LSTM models. (10-best feature model on the left,
full-feature model on the right).

True\Predict Normal (0) Attack (1) True\Predict Normal (0) Attack (1)
Normal (0) 149 328 Normal (0) 430 47
Attack (1) 9139 3658906 Attack (1) 71221 3596824

Fig. 3.6: Structure of LSTM model (in layers). (10-best feature model on the left,
full-feature model on the right)

Next, we present the training times for both LSTM models, the confusion
matrices followed by four metrics.
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Fig. 3.7: ROC curve for LSTM models. (10-best feature model top, full-feature model
bottom)

A.3 RNN

The RNN models were defined to have 1 input layer with the number of neurons
equal to the number of input features, two hidden layers and an output layer. For
the 10-best features dataset, the Model was trained in 4 epochs (batch size 100),
had 10 input neurons (in the first layer, the same number as the features), with
hidden layers similar to the ones in the LSTM models, and 1 output neuron for the
binary classification. As with LSTM-RNN, the parameters were chosen through
experimentation. Higher values of batch size affected the model’s specificity, as
such, we experimented with lower values.
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Table 3.13: Confusion matrices of RNN models. (10-best feature model on the left,
full-feature model on the right).

True\Predict Normal (0) Attack (1) True\Predict Normal (0) Attack (1)
Normal (0) 127 350 Normal (0) 379 98
Attack (1) 9171 3658874 Attack (1) 76718 3591327

For our full-feature dataset, the model was trained in 4 epochs (batch size 100)
and had a 35-neuron input layer, same number and consistency of hidden layers as
with the 10-best feature model and 1 output neuron for the binary classification.
In both cases, for the input and hidden layers, the activation function that was
used was “tanh”, while the output layer activation function was “sigmoid”. As
mentioned previously, the sigmoid function is ideal for output layers for a binary
classification problem, as its output is within the [0,1] set. Bellow the structure of
the RNN model can be viewed in Figure 3.8.

Fig. 3.8: Structure of RNN model (in layers). (10-best feature model on the left,
full-feature model on the right)

Next, we present the training times for both RNN models, the confusion ma-
trices followed by four metrics.
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Fig. 3.9: ROC curve for RNN models. (10-best feature model on top, full-feature model
on bottom)

Finally, we evaluated a simple Deep RNN network’s capabilities of distinguish-
ing between normal traffic and each of the attacks that are described in the dataset
separately. The network had 10 input neurons, and 8 hidden layers comprised of
30, 40, 40, 60, 80, 80, 100 neurons each. Finally, the output layer had 1 neuron
for binary classification. The resulting confusion matrices can be viewed in Table
3.15. In the following table (3.14), we present the four metrics Accuracy, Precision,
Recall, Fall-out along with Training Time of all the models that were trained.
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Table 3.15: Confusion matrices of RNN models for subcategory evaluation.

True\Predict Normal (0) DDoS
TCP (1)

Normal (0) 472 5
DDoS TCP
(1)

74 977306

True\Predict Normal (0) DDoS
HTTP
(1)

Normal (0) 470 7
DDoS HTTP
(1)

3 986

True\Predict Normal (0) DDoS
UDP (1)

Normal (0) 474 3
DDoS UDP
(1)

2 948253

True\Predict Normal (0) DoS
TCP (1)

Normal (0) 443 34
DoS TCP (1) 5 615795

True\Predict Normal (0) DoS HTTP
(1)

Normal (0) 462 15
DoS HTTP
(1)

23 1462

True\Predict Normal (0) DoS
UDP (1)

Normal (0) 471 6
DoS UDP
(1)

8 1032967

True\Predict Normal (0) OS Fin-
gr/t (1)

Normal (0) 449 28
OS Fingr/t
(1)

124 17790

True\Predict Normal (0) Service
Scan (1)

Normal (0) 374 103
Service Scan
(1)

215 72953

True\Predict Normal (0) Data ex-
filtration
(1)

Normal (0) 477 0
Data exfilt.
(1)

6 0

True\Predict Normal (0) Key-
logging
(1)

Normal (0) 476 1
Keylogging
(1)

6 67

3.8.4. Overview of three classifiers and discussion of results

Overall, results indicate high accuracy both in Binary and Multiclass classification.
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Data exfiltration had the worst metrics of all (in multiclass classification). Training
time is somewhat proportional to the records used to train the model, more records,
more time for training, the one that took longest to train was DoS UDP-Normal
traffic.

Table 3.16: Summarization of models’ parameters

Max
Itera-
tions

Epochs Layers Neurons Activation
function

Batch
size

SVM
10-Best
Features

3000 - - - - -

Full
Features

1000 - - - - -

RNN

10-Best
Features

- 4 6

10 Input
hidden layers
20 1st
60 2nd
80 3rd
90 4th
1 Output

Hidden layers:
’tanh’

Output layer:
’sigmoid’

100

Full
Features

- 4 6

35 Input
hidden layers
20 1st
60 2nd
80 3rd
90 4th
1 Output

Hidden layers:
’tanh’

Output layer:
’sigmoid’

100

Attacks
Binary
Classifications

- 4 9

10 Input
hidden layers
30 1st
40 2nd
40 3rd
60 4th
80 5th
80 6th
90 7th
1 Output

Hidden layers:
’relu’

Output layer:
’sigmoid’

∼100
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LSTM
10-Best
Features

- 4 6

10 Input
hidden layers
20 1st
60 2nd
80 3rd
90 4th
1 Output

Hidden layers:
’tanh’

Output layer:
’sigmoid’

100

Full
Features

- 4 6

35 Input
hidden layers
20 1st
60 2nd
80 3rd
90 4th
1 Output

Hidden layers:
’tanh’

Output layer:
’sigmoid’

100

Additionally, in the binary classification, Fall-out values were rather high,
with the exception of RNN and LSTM models for the fully-featured version of the
dataset. This could be explained by a number of factors, such as poor optimization
of models in use and the relatively low number of epochs that we chose, in order to
speed up the process. In table 3.16, the parameters that were chosen for the three
models are presented. The obtained results indicate that the proposed dataset
can be used to train accurate classifiers, with Recurrent Neural Networks and
their permutation (LSTM) outperforming the SVM implementation. Additionally,
models trained on the chosen 10-best feature version of the dataset displayed higher
accuracy than the full version.

3.9. Conclusion

This chapter presents a new dataset, Bot-IoT, which incorporates both normal
IoT-related and other network traffic, along with various types of attack traffic
commonly used by botnets. This dataset was developed on a realistic testbed,
and has been labelled, with the label features indicated an attack flow, the attacks
category and subcategory for possible multiclass classification purposes. Addi-
tional features were generated to enhance the predictive capabilities of classifiers
trained on this model. Through statistical analysis, a subset of the original dataset
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was produced, comprised of the 10-best features. Finally, four metrics were used
in order to compare the validity of the dataset, specifically Accuracy, Precision,
Recall, Fall-out. We observed the highest accuracy and recall from the SVM
model that was trained on the full-featured dataset, while the highest precision
and lowest fall-out from the SVM model of the 10-best feature dataset version.
With further optimization of these models, we argue that better results could be
achieved. In Chapter 5, we present the development of a network forensic model
using deep learning and evaluate its reliability using the BoT-IoT dataset. In the
next chapter, we provide the machine learning evaluation of the Bot-IoT dataset.
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Chapter 4

Role of Network Forensic
techniques using machine learning

in IoT environments

4.1. Overview

Since technological advances allow for the miniaturization of hardware, the In-
ternet of Things (IoT) applications have significantly increased over the years.
With reports indicating that by 2020, the number of active IoT devices around
the globe will reach 20.4 billion [7], showing an increase of 145% from 2017, it is
evident that the impact of IoT devices in the market will only increase, as indus-
tries discover the benefits of automation that IoT services can offer. However, as
the IoT’s popularity increases, its security is brought into question. A 2015 study
by Hewlett Packard [10] concluded that several IoT devices that were investigated
were deemed insecure, with 80% raising privacy concerns, while 60% lacked mech-
anisms for verifying and authenticating security updates. These weaknesses can
be exploited, enabling an attacker to stealthily modify a device’s firmware. Fur-
thermore, real-world examples of attacking the IoT have already been observed.
Possibly the most famous such example was the Mirai botnet. Mirai belongs in a
family of new botnets that primarily target smart things (IoT devices) due to their
weak security measures and always on-line design [68]. The first time the Mirai
Botnet was observed, it was launching DDoS attacks that were targeting Brian
Kreb’s blog, with the first wave of DDoS attack peaking at 623 Gbps (77.9 GBps)
and latter escalating against the French web-host and cloud service provider OVH
reaching 1.1 Tbps [68].1

It is widely accepted that the Internet is filled with security risks, where con-
sequences may range from a simple inconvenience to serious cyber threats. One
famous security threat that utilizes the Internet in its architecture, and is consid-
ered to be quite destructive is the botnet [211]. Botnets are collections of infected

1Part of the work presented in this chapter has been published in:
Koroniotis, N., Moustafa, N., Sitnikova, E. and Slay, J., 2017, December. Towards developing network

forensic mechanism for botnet activities in the iot based on machine learning techniques. In International
Conference on Mobile Networks and Management (pp. 30-44). Springer, Cham.
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devices that are organized by a botmaster and can be used to launch various di-
verse and destructive cyber attacks. Recently, a number of well-known incidences,
where botnets used the aggregated processing capabilities of the IoT appeared,
revealing a number of new infection routs. For instance, attackers task-specific
bots with actively scanning the Internet to discover vulnerable devices, gain ac-
cess by breaching their security and then allow other specialized bots to infect
them with the botnet’s malware [136]. IoT-specific rout of exploitation, attack-
ers take advantage of close proximity networks, thus gaining access to and direct
communication to an IoT network, infecting a vulnerable device, and enabling the
propagation of the malware to other IoT devices in the immediate vicinity [26].
Thus, investigating network-based attacks that target IoT systems is essential.

The Botnet scenarios mainly include three stages: the botmaster, the Com-
mand and Control (C&C) infrastructure and the bots (infected machines), to
launch sophisticated advanced persistent threats [212, 213]. A botmaster com-
mands a network of bots, receiving reports and transmitting commands through
the C&C infrastructure. As such, botnet investigations may focus on either iden-
tifying the communication channels used by the C&C, or the attacks launched by
the botnet. Detecting attacks launched by a botnet is often difficult, as botnets
are often designed to launch a number of diverse malicious events, such as DDoS,
Keylogging, Phishing and Spamming, Identity theft and even proliferate the mal-
ware of other botnets [22], with some attacks appearing to be similar to normal
user traffic (some DDoS for example). Furthermore, botnet attacks can be very
destructive, causing entire sections of the Internet to collapse for hours (Mirai bot-
net) or even steal credentials for online accounts and banking (Zeus botnet) [214].
Thus, multiple diverse methods are used to investigate botnets, such as Network
Intrusion Detection Systems (NIDS) which could employ anomaly-based detec-
tion. However, those systems can not trace the origins of botnets and demand a
large number of legitimate observations to build a reliable detection engine.

Network forensics systems would be the appropriate solution to discover and
trace botnet events from IoT networks [215]. Network forensics is a sub-discipline
of the digital forensics which specializes in monitoring and inspecting network-
related sources of data (e.g., logs, network data flows, payloads) for detecting the
origins of security incidents and policy violations [38]. During investigations, mul-
tiple networks and IoT devices need to be scanned, with considerable volumes of
captured traffic often processed in order to identify traces of an attack. This pro-
cess is quite difficult and time-consuming for humans to do by hand, which leads
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forensic experts to employ automated solutions such as machine learning mod-
els. Multiple studies have produced network forensic solutions based on machine
learning models, harnessing their automated processes to rapidly process data to
detect botnet activities even in real-time [213].

Most of existing network forensics tools use expert systems instead of machine
learning, with prime examples being NIDS [216]. Expert systems use if-then-
else rules to represent knowledge, which is rather limiting and is greatly reliant
on human experts to encode their knowledge in rule form for the system to use
[217]. Machine Learning (ML), on the other hand, analyses behaviour dynamically,
identifies patterns in the data through statistical methods. which does not require
the actions of an expert to train and evaluate its performance. ML only demands
to adopt feature engineering, and training and validating appropriate classifiers to
data collections and can be re-trained easily on new data.

In this chapter, we focus on evaluating the performances of supervised and
unsupervised machine/deep learning models as network forensics models. The
aim of this evaluation is to identify and trace botnet events from IoT networks.
We utilize five supervised ML algorithms: decision tree, artificial neural network,
naive Bayes, association rule mining, deep belief network, and two unsupervised
ML algorithms: k-means and expectation-maximization, for examining their per-
formances as the first stage of network forensics. The network forensics techniques
are assessed on three benchmark network datasets, NSL-KDD, UNSW-NB15, and
Bot-IoT.

The main points of this chapter are as follows:

• Analysis of big data collections, such as NSL-KDD, UNSW-NB15 and Bot-
IoT, for investigating attack events and their traces for developing reliable
network forensics models in IoT networks.

• The application of several machine learning/deep learning techniques using
network data sources as network forensics models, in order to determine their
credibility of developing network forensics.

• Assessment and comparison of network forensics, using machine learning for
discovering botnet activities from IoT networks.
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Chapter 4 is structured as follows. The literature review of the study is discussed
in section 2. In section 3, network forensic architecture of the process depicted in
this chapter is presented. Sections 4 depicts the three datasets used in this chapter,
the feature selection process, a brief description of the machine learning algorithms
followed by a discussion regarding their performance in section 5. Concluding
remarks are given in section 6.

4.2. Background

4.2.1. Internet of Things

Although the IoT is selected as the preferred technology by organizations around
the world, seeking to take advantage of its remote management features and in-
crease productivity while lowering costs of operation, it is unmistakable that sev-
eral issues related to security and privacy persist. For instance, Ronen et al. [26]
sought to investigate possible attack vectors for the Philips Hue smart lamp. These
smart lamps primarily utilize ZigBee as the local communication protocol which
enables the communication between lamps and their controller. The researchers
implemented an attack vector for a particular brand of a smart lamp, which took
advantage of security weaknesses present in the devices, allowing for their ex-
ploitation. Furthermore, they proposed that if a large enough number of smart
lamps were distributed around a city and their relative distances did not hinder
their communication, a malware could propagate throughout the city, “jumping”
between devices and allowing for further infection of otherwise secure networks.

Similarly but choosing a broader point of view, Hossain et al. [1], provided an
analysis of existing security issues in the IoT. By reviewing the literature, the re-
searchers were able to assert that smart things were vulnerable, as many examples
existed where researchers were able to compromise a device’s security with ease.
Next, and by considering the IoT ecosystem which consists of IoT devices, Sensor
Bridge Device, Coordinator, IoT Service and Controller, they indicated the inap-
plicability of conventional cybersecurity principles and forensic mechanics. The
reasons behind the need for new forensic and security mechanisms were the in-
herent constraints of smart devices such as limited battery life, processing power,
mobility and the diversity of technologies used for similar IoT implementations.
Thus, the researchers concluded that, as there exists a gap in these areas, both
cybersecurity and forensics for IoT should become a priority.
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On a different note, Pa et al. [136], investigated the types of IoT devices that
are receiving active scans from the Internet, using their observations in order to
construct IoTPOT, an IoT-specific honeypot. The proposed honeypot incorpo-
rated a module that grouped several virtualized IoT devices which were called
IoTBOX. The main purpose behind IoTBOX was to render the proposed IoTPOT
and thus the virtual devices it utilized as realistic as possible. By deploying the
IoTPOT, the researchers were able to observe several strains of malware in action.
One noteworthy repeating pattern was that in some malware infections, initially,
a host would perform information gathering and the intrusion, after which the
detected credentials would be forwarded to a second host, which took care of the
actual infection. Similar to Hossain et al. [1], a literature review revealed that the
field of IoT, its forensics and its security are under constant development, with
new vulnerabilities discovered on a daily basis.

4.2.2. Botnets in IoT Networks

In order to detect and investigate botnets and their activities, researchers have
proposed a number of diverse techniques over the years. A study of the Citadel
Botnet, which however is not an IoT Botnet, was conducted by Rahimian et al.
[218]. In their analysis, the researchers applied several code analysis methods, in
order to gauge the similarities between the Zeus and Citadel botnets, as the Citadel
was spawned from Zeus. The similarities were then utilized in order to speed
up the reverse engineering process, through a process they proposed and named
clone-based analysis. Through the clone-based analysis, parts of the malware code
that were originally discovered in different malware are identified and as such, the
portion of code that needs to be reviewed is reduced. A tool named BotMosaic was
introduced by Houmansadr et al. [219], with its main functionality focusing on
Botnet traffic detection and type identification. BotMosaic detects IRC Botnets
by utilizes a watermarking technique for NetFlow traffic, which is non-distorting
thus marking traffic without altering it for later identification. Even though many
researchers have developed various techniques for the identification, investigation
and fingerprinting of Botnets, malware programmers constantly adapt their code,
making their Bots more resilient against identification and takedowns. This and
along with the nature of IoT devices, cause issues for security experts, that need
to be addressed.

Malware authors equip their Botnets with a number of diverse attacking ac-
tivities, such as DoS, DDoS, Phishing, Spamming, Identity theft and malware
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proliferation [22]. Since Botnets have existed for some time, considerable research
has been done in the creation of techniques focusing on detecting and identifying
the presence of botnet activities in a network. For example, several techniques
that have been proposed rely on machine learning for the analysis of captured
packets, either in packet form or grouped in network flows, and are utilized for
discrimination of normal and botnet network traffic [220]. The delivery of botnet
malware to a remote target is carried out through a collection of mechanisms called
propagation mechanisms. Typically, propagation techniques can be grouped into
two types, active and passive. Active techniques, also known as self-propagation,
rely on the botnet to scan the Internet for devices that display vulnerabilities and
exploit them, adding the infected host to the botnet [70]. On the other hand,
passive techniques rely on user interaction, specifically, a user has to access com-
promised social media, storage or websites, which causes the bot malware to be
downloaded and installed on the victim’s machine, thus causing the machine to
become a part of the botnet [70].

A number of studies [148, 221, 222] have taken advantage of machine learning
techniques for the design of intrusion detection models, which can differentiate
between normal traffic and Botnet activities. To that effect, Roux et al. [148]
designed an Intrusion Detection System (IDS) comprised of several probes that
record wireless transmissions in an IoT network. The proposed IDS collects rele-
vant features such as signal direction and strength, which are used to determine
whether a detected signal originated from outside the monitored network, in which
case, the signal is determined to be suspicious. The classification of signals into
legitimate and attacks is performed by a neural network. A different implementa-
tion that relied on a Support Vector Machine (SVM) to detect botnet traffic was
developed by Lin et al. [223]. The proposed method made use of Artificial Fish
Swarms to determine a set of optimal features for the SVM. The researchers noted
a significant improvement time-wise, although the SVM’s accuracy was slightly
better than when the Genetic Algorithm was used. On a similar note, Green-
smith et al. [224], investigated the usage of Artificial Immune Systems (AIS) in
an attempt to secure smart things. The researchers proposed that a viable way to
handle the heterogeneous nature of IoT was through the use of multiple AIS.

4.2.3. Existing Network Forensic Tools

The development in the area of network forensics has produced various specialized
commercial and open-source tools that are being used by forensic professionals
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and network security practitioners alike [225, 226, 227, 228]. The most common
network forensics tools are discussed in the following:

• NetworkMiner [225] is a tool designed primarily for the Windows Operat-
ing System (OS), but can also function in some versions of Linux/Unix OS.
The main function of this tool is as a passive packet sniffer for the detection
of, among other things, OS, sessions and open ports. It can also be used as an
off-line pcap parser, providing file and certificate extraction services. One key
characteristic of NetworkMiner is that its service detection is independent of
the port number, which is achieved through statistical models.

• Xplico [229] is an analysis tool designed for the Ubuntu OS, similar to
NetworkMiner in that it can be used to extract files from pcap files. Its
main function is to identify the protocol of network flows through a process
similar to NetworkMiner, and extract files like e-mails, conversations from
VoIP, web pages and more. Some protocols that Xplico can detect include
VoIP, HTTP, IMAP, POP, SMTP, FTP. A very helpful mechanism of this
tool is that it associates the re-constructed files with the network flows from
which it was extracted.

• PcapXray [230] is an offline network traffic analysis tool, that extracts
information from pcap files. Primarily a visualization tool for Linux OS,
PcapXray highlights Tor and malicious traffic, providing a diagram of the
identified connections. In the produced diagram, network devices are repre-
sented as nodes, connected with each other through the identified network
connections. To identify any potential malicious traffic, PcapXray relies on
rule-based mechanics.

• Zeek Security Monitoring (previously named Bro) [226] is an open-
source traffic analysis tool which originally functioned as an IDS but has had
its functionality extended. It is versatile, by using Bro’s scripting language,
users are able to define custom filters to detect various malicious scenarios,
although its default behaviour is to rely on prepared patterns of well-known
attacks. Additionally, Bro can be connected to other network security en-
tities, like firewalls through its NetControl framework, allowing it to block
attacks when they are detected.

• Prads [231] is a passive real-time system used for detection of devices in
a network. It is used to map a network by passively collecting information

132



Chapter 4 Role of Network Forensic techniques using machine learning in IoT
environments

about its devices through the network traffic it processes. Prads collects
information about host machines and services that are ’live’, along with some
limited traffic statistics. Protocols that are used for both OS and service
fingerprinting, include TCP, UDP, ICMP, while ARP can also be used for
host detection.

• Tcpstat [232] is a command-line network analysis tool primarily tested on
Linux machines. It receives as input either a network interface, performing
analysis on live traffic, or by parsing pre-recorded pcap files. Furthermore,
it can display various statistics for TCP and UDP connections, including
bandwidth, number of packets and packets per second. Snort [227] is another
open-source IDS that can function in three modes, sniffer mode, packet log-
ging mode and NIDS mode. It utilizes rule-based detection for identifying
compromises, like Bro and PcapXray.

Many of the aforementioned tools utilize signature-based detection, relying on pre-
defined knowledge rules to identify attacks in traffic. Signature-based tools often
display a high detection rate for known attacks but are incapable of generaliza-
tion in order to detect new attacks [233]. Furthermore, they and can be fooled
by attacks, the patterns of which have been altered by the attackers. Although
most available tools base their functionality on knowledge rules, machine learning
methods are more versatile [234]. Through machine learning, mathematical mod-
els are built on known data through automated means. Thus, instead of relying
on an expert to craft rules to describe events that a system will flag as malicious,
machine learning models rely on the patterns in the data to determine when an
attack is present. Furthermore, machine learning approaches can more easily be
updated by re-training a model in new data, while for knowledge-based systems,
the position of new rules needs to be carefully considered.

4.2.4. Previous Studies of Network Forensics in IoT

A significant issue faced by Network Forensics is the constrained obtainability
of network-related evidence. Initially, as IoT devices often are characterized by
constrains to their resources, any recorded data is stored locally for a short period
of time, before it is transmitted to the cloud backend [235]. Furthermore, the
high speeds achieved by today’s Internet, means that network traffic is in constant
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motion which may cause problems during collection [236]. A number of studies
have tackled the various challenges of network forensics in the IoT.

To begin with, Khattak et al. [237] handled the storage space issue that arises
when working with ever-expanding network log files, by using the implementation
of MapReduce in Hadoop. Focusing on network traffic analysis, Bansal et al. [124]
proposed a generic Network forensics framework for Botnet detection. Although
the proposed framework incorporates established techniques for packet capture
and inspection, it remains on a theoretical level. On the other hand, Saied et al.
[213] produced a detection method that relied on inspectors distributed among dif-
ferent networks that focused on identifying DDoS attacks. The proposed method
relied on an Artificial Neural Network that processed timing and packet header
data, collected from the distributed inspectors. Another system that focused on
DDoS detection was proposed by Divakaran et al. [113]. Initially, the packets
were organized into a session, with each session containing multiple network flows,
grouped by packet arrival time. Then, by using a regression model, irregular pat-
terns in the recorded network traffic were identified, indicating a DDoS attack,
with the researchers providing additional information on real-world Botnets that
were detected during their experiments.

Focusing on malware and the threats that they pose, Wang et al. [174] de-
veloped detection and forensic system comprised of multiple cooperating modules.
In the proposed system, initially, an attack is detected by a specialized incident
detection module, which then starts gathering information by invoking a honey-
pot. The collected information is then forwarded to a forensic module, which
initiates a pre-determined forensic procedure. By utilizing a forensic model after
an attack has been detected, the forensic process takes a more active role than
usual. Gandhi et al. [140] developed an IoT honeypot named HIoTPOT. In this
system, a raspberry pi would identify login attempts with unknown credentials to
a virtualized IoT device. In such an event, the login attempt would be recorded
and an alert issued to the owner of the device. Meidan et al. [144] worked on dis-
covering IoT devices that are part of a botnet. Their method involved the creation
of an autoencoder for each of the IoT devices that they used. These autoencoders
were trained on the normal behaviour of the devices, flagging any anomalies as
bot activity.

Doshi et al. [33] investigated methods for discovering IoT devices engaging
in DDoS attacks. This research identified features and traffic statistics that dis-
tinguish IoT from non-IoT generated traffic. It was shown by training machine
learning models that real-time identification of IoT devices in a DDoS attack
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can be achieved. Luo et al. [141] proposed an automated method for crafting
intelligent-interaction honeypots. The process involved a module probing legiti-
mate IoT devices with attack requests that had been previously collected. The
acquired responses were then used in constructing a realistic profile, which was
generated by training a machine learning model.

Shone et al. [159] developed an IDS based on a stacked non-symmetric deep
autoencoder and a random forest. The encoder segments of two trained autoen-
coders were stacked, with the second one connected to the random forest classifier.
Results indicated an accuracy of 89%. Van et al. [238] incorporated a DBN in
a NIDS. In order to identify the best architecture, both a Stacked Autoencoder
(SA) and a Stacked Restricted Boltzman Machine (SRBM) were trained, and their
classification performances were compared. The SA outperformed SRBM, though
it required more training time. Brun et al. [239] investigated attacks against IoT
gateways. Specifically, they trained a random neural network to detect Denial of
Service and Sleep attacks. The accuracy of the trained model was characterised
as similar to that of a threshold detector.

The work we present in this chapter differs from what has already been pro-
duced and depicted in this section. Initially, most of the research focuses on either
DoS or DDoS attack detection, whereas in our work, various attack scenarios were
represented in the datasets, including DoS and DDoS. Furthermore, we evalu-
ated both supervised and unsupervised ML models, to identify the best family of
models to use for network forensics, whereas other research focused on supervised
classification. We employ a novel optimization method that incorporates Particle
Swarm Optimisation to identify an optimal set of hyperparameters for our deep
learning model. Finally, it should be noted that our work is intended to be used
as a network forensic framework tool, used for the analysis of network traffic by
both forensic and security experts alike.

4.3. Proposed Network Forensic Methodology

The proposed network forensics methodology includes four components: network
traffic collection, network feature selection, machine learning techniques, and eval-
uation metrics, as depicted in Figure 4.1 and explained below. The proposed
methodology differs from conventional NIDS as contrary to a NIDS’ function which
is tasked with detecting attacks, it not only discovers attacks but also identifies
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their origins by using the source and destination IP addresses, which are present
in the scanned traffic.

Some attackers employ techniques that mask the identity of their machines,
to avoid being identified. One such technique is IP spoofing. IP spoofing is
primarily an obfuscation technique, where an attacker forges parts of the header
of IP datagrams [240]. Specifically, the source IP address is altered to either
a dummy IP or another legitimate address. Apart from hiding their identity,
IP spoofing enables some network attacks, like reflection or amplification DDoS
attacks [241].

The proposed methodology utilizes network flow-based analysis, where net-
work traffic is grouped into flows of communication, each flow representing com-
munication between two hosts, using a known protocol at a given time. As this
approach relies on flow features and statistics, instead of the packets’ payload, it
is not affected by whether the payload is encrypted or not. As such, our approach
is reliable in identifying network attacks. Furthermore, network flow metadata
information could be used to identify attack origin [242].
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Fig. 4.1: Proposed Network Forensic Methodology

4.3.1. Network Traffic collection

Due to contemporary networks having a tendency to generate considerable vol-
umes of traffic, it becomes a necessity to identify efficient ways to aggregate the
packets that are captured, thus improving storage capacity and subsequent use in
the construction of network forensic mechanisms. In order to capture and store
network packets, the network interface card is accessed by the tcpdump tool [57].
Next, feature generation is performed by forwarding the collected raw network
traffic to the Bro and Argus tools. This methodology was employed in order to
generate the features of the UNSW-NB15 dataset [57]. For the Bot-IoT dataset, a
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similar process was followed, where the T-shark tool [65] collected raw pcap files
which were then processed by Argus, loaded in a MySQL database and combined
into a single relational table, where new features were also generated.

The network collection process needs to be conducted at strategic locations of
a network, such as ingress routers so that relevant network flows can be recorded.
The key features that identify a network flow include source and destination IP
addresses and ports, the type of protocol used and temporal data. By carefully
selecting the location where the traffic collection process will be carried out, the
investigation of cyber incidents is sped up. The traffic collection process for the
Bot-IoT is given in Figure 4.2.

Fig. 4.2: Bot-IoT Network Feature Collection

4.3.2. Network Feature Selection

Datasets are usually comprised of numerous features, each providing some infor-
mation about the data that is represented. However, not all features contribute
equally to the classification process. As such, methods such as feature selection
are employed, in order to identify important attributes to improve the classifica-
tion accuracy. Feature selection techniques are separated into filter, wrappers and
combinations of the two named hybrids. Filter methods utilize statistical tech-
niques to measure the relation between features and the class feature while, on
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the other hand, wrapper methods rely on underline Machine Learning technique
[243].

Multiple filtering methods have been proposed in the literature, with two ex-
amples being Information Gain (IG) and Chi-Square x2. In contrast, wrapper
methods focus on the performance of the Machine Learning model that is to be
trained on the data in question, as a way of determining the optimal feature subset.
Specifically, wrapper methods create sub-groups of the available features and train
the intended model, recording the error rate and thus measuring the effectiveness
of the features sets. A combination of the wrapper and filter methods results in
hybrid methods

In this chapter, the IG filter method is utilized due to its simplicity and ability
to identify useful features in large volumes of data, as is often the case with
network datasets. A key concept in IG, and thus in Information theory, is entropy.
Entropy is a mathematical expression of the “unpredictability” or dissimilarity of
the probability distribution of a collection of observations [244]. Simply stated,
in the context of machine learning and feature selection, entropy measures the
amount of “information” that a feature displays about the class function.

Higher values of entropy equate to larger dissimilarity in the sample space.
The entropy H(Z) of a feature “Z” is given in Equation 4.3.1, where P(z) is the
probability of class “z” in the group “Z”. It should be noted that when p(z) is equal
to 1, which means there is no uncertainty, H(Z) is 0, while when all classes are likely
(p(z1) = p(z2) = p(zn)) then H(Z) is maximized, thus the values of H(Z)>=0. The
second important calculation necessary to define IG is conditional entropy [245].
Conditional entropy is defined as the uncertainty of a feature “K” given another
feature “Z”. Equation 4.3.2 gives the conditional entropy of “K” given feature “Z”
takes value “z”. To get the conditional entropy of the two features for all their
values, the entropy equation becomes as shown in Equation 4.3.3.

H(Z) = −
∑
z

(p(z) ∗ log p(z)), z ∈ Z (4.3.1)

H(K/Z = z) = −
∑
k

(p(K = k/Z = z) ∗ log(p(K = k/Z = z))), z ∈ Z, k ∈ K

(4.3.2)
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H(K/Z) =
∑
z

(p(z) ∗H(K/Z = z)) = −
∑
k,z

(p(k, z) ∗ log(p(k, z)/p(z))), z ∈ Z

(4.3.3)

IG(Z) = H(K)−H(K/Z) (4.3.4)

From the previous two entropy calculations, Information Gain is produced.
Information Gain for a feature “Z” is defined as the reduction of entropy of a
dataset when feature “Z” is used to split the data [244]. The value of IG is
calculated for individual features, is produced by using equations 4.3.1 and 4.3.3
and is given in Equation 4.3.4 where IG(Z) is the Information Gain for feature “Z”,
H(K) is the initial entropy of the data and H(K/Z) is the conditional entropy of
the data for feature “Z”. One important application of IG is for the construction of
decision trees [246]. Specifically, a decision tree uses IG to select the best feature
to use in the splitting/branching process. In the case of feature selection through
ranking, the IG for each feature is calculated, in order to measure how well the
class feature is separated. Higher values of IG indicate a greater reduction in
entropy and thus a contribution to classification for the feature in question, while
values close to or equal to zero denote a minimal to no change in entropy. We
used IG on all three datasets, maintaining the 10 best features, in other words,
the features with the highest IG rank.

4.4. Machine learning techniques

In order to investigate five well-known supervised and two unsupervised Machine
Learning (ML) algorithms, the Weka [247] and Python programming are used.
The supervised ML algorithms learn patterns by processing data for which the
class feature, in other words, the target of the classification, has been provided.
The five supervised ML algorithms used in this work are discussed as follows:

4.4.1. Association Rule Mining (ARM)

ARM is defined as a machine learning technique that is used for the identification
of associations between features in data. The rules discovered by ARM are called
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association rule and are in the form of if-then. They can be interpreted as “if A
is present, then B is present”, where A and B are values in the data [248, 249].
Association rules are defined as having two “itemsets”, the left-hand-side (LHS)
and the right-hand-side (RHS) set, with an example given in Equation 4.4.1.

X ⇒ Y,X, Y ⊆ D (4.4.1)

Where “X” is the LHS, “Y” the RHS of the rule and “D” represents the data.
Two very important metrics that are used by ARM algorithms in the rule creation
process are support and confidence. Support indicates the fraction of instances in
D where an itemset X appears, where X ⊆ d and “d” being a full record of D,
given in Equation 4.4.2. While confidence is used to indicate the occurrence of the
rule that is being investigated, compared to the occurrence of the LHS, given in
Equation 4.4.3.

support(X) = |d,X ⊆ d|/|D|, d ⊆ D (4.4.2)

confidence(X ⇒ Y ) = support(X ∩ Y )/support(X), X, Y ⊆ D (4.4.3)

During the training phase of an ARM, frequent itemsets with a support value
that exceeds a user-defined minimum threshold are sought. These itemsets are
used to form rules, the confidence of which needs to exceed a user-defined minimum
threshold. The process continues until all frequent itemsets and association rules
are found. Various algorithms have been proposed over the years, with the most
famous example being Apriori.

The Apriori algorithm works by iteratively finding frequent itemsets, increas-
ing their size by one item for each iteration, until a point is reached where no
further frequent itemsets can be found. It should be noted that Apriori works un-
der the assumption that infrequent itemsets can not be combined to have frequent
sets, as such they are removed. In this chapter, we used OneR [250], a very sim-
ple ARM algorithm that makes predictions using a single feature. The algorithm
functions by producing a single rule for each feature in the dataset, based on the
frequency of appearance, and keeping the rule which displayed the smallest error.

4.4.2. Artificial Neural Networks (ANN)

Artificial Neural Networks are a category of ML models, inspired by the processes
of the human brain [209]. They are part of the family of parametric classifiers,
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having parameters such as: number of neurons/layers, weights and biases, and
a collection of hyperparameters like: number of epochs, learning rate and batch
size. A typical Neural Network (NN), can be depicted as a directed, usually acyclic
graph, whose nodes are called neurons and edges synapsis, with neurons organized
into layers. Typically, a NN is comprised of an input layer, some hidden layers
and an output layer, with an example given in Figure 4.3.

Fig. 4.3: Artificial Neural Network example

A neuron of a layer has multiple inputs from previous layers, which are summed
up and passed through an activation function. The resulting value determines
whether the neuron “fired” or not. Training is usually performed through a pro-
cess known as backpropagation [251]. During backpropagation, after the NN has
estimated the class feature’s value for a given input, a cost function is utilized in
order to estimate the error of the NN. After the error has been estimated, the
weights and biases (starting from the output layer backwards) are then corrected
(updated), by adding or subtracting the partial derivative of the cost function,
with respect to weights and biases, times the learning rate. Over the years, a
number of different types of NNs have emerged, which slightly alter the networks
processes or structure, improving performance when applied to certain problems.
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• Multi-Layer Perception [252]: A Multi-Layer Perceptron is an example of a
simple feed forward neural network, distinguished from a linear perceptron
by the choice of activation function and number of layers. It is comprised
of an input layer, a collection of hidden layers and an output layer. Its
neurons employ non-linear activation functions, and it is trained through
backpropagation.

• Recurrent Neural Networks [210]: These types of Neural Networks incorpo-
rate a form of memory in their structure. In their simplest form, an RNNs
output is influenced by not only its input during its current iteration but
also the hidden state of the previous iteration. As such, RNNs, in contrast
to other NNs, are suited to processing data that may exhibit temporal rela-
tions, such as the data in the Bot-IoT dataset. Some popular applications
for RNNs include automatic image generation, object identification, speech
recognition and automatic translation. An improved version of RNN has been
in used in recent years, named LSTM (Long-Short Term Memory), where in-
side the RNN Neuron, an extra mechanism is employed, that maintains a
sporadically updated memory of previous outputs[210].

• Voted Perceptron [253]: This version of ANN is a variation of the vanilla
perceptron algorithm, where classification is performed through voting of all
the trained perceptrons. During training, the number of data points that
elapsed before a perception’s weight was updated, is maintained and used
as a weight. The produced weights function as a number of votes for each
perceptron, with all existing perceptrons used during classification time [254].
In this chapter, we employed Voted Perceptron, for its reported performance
over the vanilla perceptron [253].

4.4.3. Naïve Bayes (NB)

Naïve Bayes is a family of supervised statistical classifiers, which make use of
probability theory. These models rely on the calculation of the a posterior proba-
bility of each class, given a sample, in order to perform classification [255]. During
training, estimates of these probabilities are calculated from the training data,
which are then used during the classification process. This probability is given by
applying the Bayes’ Theorem which is given in Equation 4.4.4.

P (Y/X) = P (X/Y ) ∗ P (Y )/P (X) (4.4.4)
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The above equation can be interpreted as “given a sample X, the probability
of that sample’s class value being Y, is equal to the conditional probability of
X given Y times the probability of class Y occurring, divided by the occurrence
of sample X” . Classification is performed for a record R1 comprised of some
features, into a specific class C2, if the conditional probability of record R1 to
belong to class C2 exceeds the conditional probability of that record to belong to
another class. This can be expressed with the following inequality of probabilities,
P (C2/R1) > P (Cn/R1), with Cn being a class other than C2.

The term “naïve” indicated the assumption, unrealistic though it might be,
that the features are independent of each other and each contributes to the class
prediction separately [251]. Although this assumption may be erroneous, in prac-
tice it has been shown that Naïve Bayes achieves relatively good results for large
enough datasets. After calculating the posterior probabilities for each class, the
model assigns the class with the highest probability to the new sample.

Although Naïve Bayes classifiers are generally simpler to built and train than
others, they can process data fast, which makes them applicable to large datasets,
and their results can be easily interpreted, they too have some disadvantages.
In practice, the assumption of independence between features may hinder the
classification process if not enough data is given, leading Naïve Bayes to display
less accuracy compared to other classifiers [251]. Furthermore, their performance
tends to be worse than that of other classifiers.

4.4.4. Decision Tree C4.5 (DT)

Decision trees are supervised classification methods, which function by creating
directed trees through which the data is partitioned into subgroups [251]. The
resulting tree structure is comprised of nodes, starting with the root node, that is
connected to several internal nodes where splits in the data are made and reaching
the leaf nodes.

Internal nodes represent a decision point, where a feature is selected and used
to split the data space into subspaces, in the case of binary trees the split produces
two subspaces [256]. Specifically, subgroups are created, by identifying feature
values that best split the data, by using a mathematical method to gauge the
wellness of the split, with respect to the class value. Several methods can be used
to assess the split of data from a feature, such as chi-squared, information gain
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and cross-entropy. Leaf nodes represent class values, which are assigned to them
during training.

An important technique that is sometimes employed in the creation of decision
trees is ’pruning’ [246]. Through pruning, the size of the tree is regulated, as large
trees tend to overfit while small trees underfit. The process involves removing
sections of an overfitted decision tree that have been identified to contribute little
to the classification process. By doing so, the generalization performance of the
tree is improved. At the same time, pruning helps reduce the complexity of the
model. Some examples of pruning methods include Error-Based Pruning and
Reduced Error Pruning [246].

Being a supervised classification model, decision trees require labelled data,
which are recursively separated into subgroups. During classification, a new sam-
ple is assessed at each node, creating a path on the decision tree, until reaching the
leaf node that depicts the assigned class. Some popular decision tree algorithms
include ID3 which uses IG as a splitting factor and C4.5 which is an upgrade
form ID3 and uses gain ratio in the splitting nodes. An example of the tree-like
structure of a decision tree is given in Figure 4.4.

Fig. 4.4: Decision Tree example

Although decision trees are simple and fast models, provide relatively good
accuracy and the process of classification is easy to comprehend, they carry some
disadvantage. Disadvantages include long training time, bad memory scaling when
dealing with large data and increased complexity, in some cases, compared with
other models [251].
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4.4.5. Deep Belief Network (DBN)

Deep Belief Networks are a class of generative deep learning and neural network
models. They are comprised of a visible and a hidden segment, with the visible
segment being the initial input layer of the model, and the hidden segment com-
prised of stacked networks like autoencoders [257]. In some implementations, the
hidden layers are comprised of stacked Restricted Boltzman Machines (RBMs),
with the hidden layer of one RBM being the visible layer of the next.

Fig. 4.5: DBN example

Training is conducted greedily, in a layer-by-layer method, with each RBM
in the network trained at a time. Although primarily an unsupervised method,
DBNs can be used in supervised classification. First, the DBN is trained in an
unsupervised manner, with its output being a reduced representation of the orig-
inal feature space and then, by stacking a classifier at the end of the DBN, the
combined network is trained for classification [258].

In this sense, DBNs are used to extract features from the original feature space,
which are fewer in number than the original and carry more information, a process
called feature extraction. In this chapter, we used python code [259] to train the
model for classification through DBNs and compare it with other classifiers. This
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implementation stacks a softmax linear classifier at the end of DBN to train the
model for classification.

Unsupervised ML algorithms can learn from unlabeled data, utilizing similar-
ity and distance metrics to create groups of similar data. The two unsupervised
clustering algorithms used in this chapter are discussed as follows:

4.4.6. K-Means

Clustering algorithms are a family of techniques used to separate data into groups.
The process is called unsupervised learning, as there is no need for the data to
be tagged (class values are absent). Instead, unsupervised algorithms seek pat-
terns and similarities in data, in order to define groups called clusters [49]. The
idea behind defining clusters is to maximise the similarity of data points inside a
cluster while at the same time also maximise the dissimilar between data points
of different clusters. Such algorithms usually require a user-provided “K” number
which indicates the number of clusters that need to be created.

There are two main types of clustering techniques based on the clusters that
are produced, partitional and hierarchical. Partitional separates the data into
subgroups which do not overlap, which means each data point belongs to exactly
one cluster. Hierarchical clustering, on the other hand, groups the data into nested
clusters, which form a kind of hierarchy, that can be represented by a tree structure.

K-Means is a partitional clustering algorithm that uses centroids to define
clusters [260]. Membership to a cluster is determined by the relative distance of a
data point to the centroids of the clusters. Specifically, the data point is assigned
to the cluster, the centroid of which is closest to that data point compared to the
other clusters’ centroids. An example of assigning a new data point to a cluster,
where the number of clusters is three in Figure 4.6.
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Fig. 4.6: K-Means example

At the beginning of the algorithm, the centroids are often chosen randomly.
Distances are calculated and the first clusters are created. The process repeats,
with the centroid of each class, recalculated at the beginning of the algorithm’s
iteration [260]. Membership of a data point “X” is given in Equation 4.4.6, where
ci is the centroid of class Ci and the assigned class being the class for which its
centroid has the minimum distance from the data point “X”. The centroids, as
the name suggests, are produced by the mean of the data points in each cluster.
For calculating the distance, a number of methods can be used, one of which is
Euclidean distance, given in Equation 4.4.5.

D(X, Y ) =
√

(x1 − y1)2 + (x2 − y2)2 + ...+ (xi − yi)2 (4.4.5)

Memb(X) = Ci : min(D(X, ci)), ci ∈ Ci (4.4.6)

The algorithm will execute until a user-provided number of iterations has
passed or until the change in centroids is very small. In this chapter, we utilized a
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Weka implementation of K-Means, which ran on all three datasets and we evalu-
ated the resulting clusters by using the class feature to produce confusion matrices.
Because we have performed binary classification with the other models, we set the
“K” value to two, indicating that two clusters should be constructed.

4.4.7. Expectation-Maximization (EM)

EM is a clustering algorithm used to find maximum-likelihood estimates in unla-
beled data. It is primarily used to determine several parameters of the data, like
mean and standard deviation, that best describes the distributions in the mixed
data, separating it into clusters. In other words, during the clustering process,
the EM algorithm seeks to estimate characteristics such as mean and standard
deviation for each cluster, so that the likelihood of a data point’s membership to
a cluster is maximized [261].

Both EM and K-Means are similar, in that their process repeatedly alters their
clusters in an iterative fashion, although their underline techniques differ. Instead
of calculating distances of data points and cluster centroids, seeking to maximize
them, EM computes probability estimates of a data point belonging to a cluster,
based on estimates of the clusters’ distributions. The algorithm works on two
repeating steps, first, it estimates the possibility of membership of a data point to
a cluster, based on some parameters, then it re-computes these parameters based
on the previous step’s possibilities results [262]. Datapoints are then assigned to
clusters, based on their membership possibility. Initial parameters are randomized,
similar to K-Means. Equations 4.4.7 and 4.4.8 give the Gaussian probability for
data point xi given class Cj where ’j’ is either ’0’ or ’1’ if there are only two clusters
and the Bayes-derived membership probability for that data point.

P (xi/Cj) = (1/
√

2πσ2
Cj

)e−(xi−µCj
)2/(2σCj

) (4.4.7)

P (C1/xi) = P (xi/C1)P (C1)/(P (xi/C1)P (C1) + P (xi/C0)P (C0)) (4.4.8)

We used Weka’s EM implementation, which allows for the number of clusters
to be either user-defined or automatically generated by the algorithm. The process
of automatically determining the number of clusters involves cross-validation and
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starts by assigning 1 cluster. The EM algorithm is executed in a 10-fold cross-
validation scheme. After averaging the likelihood over the 10 folds, if there is
an increase, then the number of clusters is increased by one, and the process is
repeated.

During our experiments, we used the default parameters for the classification
and clustering algorithms. These options can be seen in Table 4.1. It should be
noted here that for the Artificial Neural Network we chose the VotedPerceptron
algorithm, for the Association Rule Mining the OneR and for the Decision Tree
the C4.5 (J48) algorithms.

4.4.8. Evaluation metrics

In order to compare the displayed performance of the models that were selected,
and discussed in the previous subsection, multiple confusion matrices [263] were
constructed. Table 4.2 introduces the general structure of a confusion matrix.
In short, a confusion matrix depicts all possible results of a binary classification.
Thus, a confusion matrix can depict four results, a True Positive (TP), where an
attack was detected, a True Negative (TN), where a normal flow was detected,
a False Positive (FP), where a normal flow was misclassified as an attack, and a
False Negative (FN), where an attack was misclassified as normal traffic.

A combination of the four values TP, TN, FP, FN results in the creation of four
metrics, namely Accuracy, True Positive Rate, False Positive Rate and False Alarm
Rate, which are used in this chapter for evaluation purposes. These four metrics
are defined as follows:

• Accuracy - represents the fraction of correctly classified records, in rela-
tion to the total number of records that were processed. The calculation of
Accuracy (Overall Success Rate) is OSR= (TN+TP)/(TP+FP+TN+FN).

• True Positive Rate (TPR) - represents the rate of correctly classified as
positive records from all positive records in the dataset. The calculation of
the True Positive Rate is TPR=TP/(TP+FN).

• False Positive Rate (FPR) - represents the rate of incorrectly classified
as negative records from all negative records in the dataset. The calculation
of the False Positive Rate is FPR=FP/(FP+TN).
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Table 4.1: Default parameters for the clustering and classificaiton algorithms

Artificial Neural Network

Batch size 100
Exponent 1
Max K 10000

Decilam Places 2
Iterations 1

Random seed 1

Naive Bayes

Batch size 100
Decimal Places 2
Kernel Estimator False

Supervised Discretization False

Association Rule Mining
Batch size 100

Minimum Bucket Size 6
Decimal Places 2

Decision Tree

Batch Size 100
Binary Splits False
Collapse Tree True

Confidence Factor 0.25
Minimum Instances per Leaf 2

Decimal Places 2
Folds 3

Random seed 1
Subtree Raising True

Unpruned False

Deep Belief Network

hidden_layers_structure [256,256]
learning_rate_rbm 0.05

learning_rate 0.1
n_epochs_rbm 1
n_iter_backprop 1

batch_size 1024
activation_function ReLu

K-Means

Iterations 500
Clusters 2

Random seed 10
Initialization Method Random
Distance Function Euclidean

Expectation Maximization

Iterations 100
Maximum Number of Clusters 2

Minumum Log Likelihood Improvement of Cross Validation 1.0E-6
Minumum Log Likelihood Improvement Iterating 1.0E-6

Minimum standard deviation 1.0E-6
Number of Clusters 2

Number of Execution Slots (Threads) 6
Number of Folds 10

Number of K-Means Runs 10
Random seed 100
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Table 4.2: Confusion matrix structure

Actual Negative Actual Positive
Predicted Negative TN FN
Predicted Positive FP TP

• False Alarm Rate (FAR) - represents the fraction of incorrectly classified
records, in relation to the total number of records that were processed. The
calculation of the False Alarm Rate is FAR = (FP+FN) /(FP+FN+TP+TN).

4.5. Experimental Results

4.5.1. Selected datasets and feature selection

For the purpose of comparing the seven Machine Learning algorithms That were
discussed in previous sections, three datasets were selected, specifically, the UNSW-
NB 15 [57], the NSL-KDD [264] and the Bot-IoT [265]. The UNSW-NB 15 was
selected, due to its contemporary nature, as it incorporates realistic normal traffic
in addition to Botnet-related attacks, and has seen wide use in current research.
The generation process of UNSW-NB 15 involved the utilisation of the IXIA Per-
fectStorm tool, which was tasked with producing both legitimate normal traffic,
as-well-as attack traffic. The attacks represented in the dataset are grouped into
9 categories, namely Fuzzers, Analysis, Backdoor, DoS, Exploits, Generic, Recon-
naissance, Shellcode and Worms. In its default form, the UNSW-NB 15 dataset is
made up of 47 independent features, 2 class features, and a total of 257,673 records
acquired by combining the training and testing sets. For the purpose of training
the models, the features of the UNSW-NB15 dataset were ranked based on In-
formation Gain Ranking Filter (IG) and the 10-best were selected, as depicted in
table 4.3.

The attacks present in the UNSW-NB 15 were briefly described by Moustafa et
al. [266] and include several categories, namely Fuzzers, Analysis, Backdoor, DoS,
Exploit, Generic, Reconnaissance, Shellcode and Worm. Attackers use Fuzzers
in order to discover weaknesses in a system’s security through large volumes of
randomly generated data. A Backdoor is utilised after a system’s security has
been compromised, giving an attacker persistent access to an already compromised
machine. Techniques that attempt to disrupt the normal operation of a system
and render its services unreachable are called Denial of Service (DoS) attacks.
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Exploits are attacks that take advantage of (possibly) previously unknown bugs
in code, rendering a system vulnerable. Attacks that are classified as Generic,
target cryptographic block-cyphers and attempt to produce collisions. Prior to any
attack, Reconnaissance is performed, during which information about a potential
future target is gathered through probes. Shellcode attacks make use of specialised
code that is injected to a live application and can lead to a remote machine being
taken over by the attacker. Finally, Worms are a group of malware that spread
between hosts of a network and replicate themselves.

Table 4.3: UNSW-NB15 Features selected with Information Gain

Ranking Feature name Feature description
0.654 sbytes Source to destination transaction bytes
0.491 dbytes Destination to source transaction bytes
0.477 smean Mean packet size transmitted by

source
0.464 sload Source bits per second
0.454 ct_state_ttl Number for each connection state

according to specific range of values for
source/destination time to live

0.444 sttl Source to destination time to live value
0.439 dttl Destination to source time to live value
0.429 rate Connection rate
0.409 dur Record total duration
0.406 dmean Mean packet size transmitted by

destination

The same machine learning models were used by [266] for a similar evaluation
of performance on the NSL-KDD [264], a dataset derived from KDD99 and remains
one of the most widely used datasets for security research to this day. The NSL-
KDD dataset, although outdated, has been used to validate security solutions by
many experts [267]. We chose NSL-KDD instead of KDD99, as the original dataset
had duplicate entries, and required some processing before it was ready to be used
for training and testing purposes. It is comprised of seven weeks of simulated
network traffic that represents a military network, with several attacks organized
in four categories: DoS where an attacker attempts to prevent legitimate users
from accessing services, Remote to Local where a remote attacker attempts to
gain access to the internal network, User to Root where an attacker has limited
access to a machine in the internal network and attempts to gain root access
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and Probe where an attacker gathers information about a target in the network.
Similarly to the process for UNSW-NB15, we extracted 10 features through IG
Ranking Filter from the NSL-KDD dataset as depicted in Table 4.4.

Finally, the Bot-IoT dataset, which we generated in our previous work [265],
is also utilized in this chapter. In short, we generated both normal and attack
traffic, incorporating normal traffic IoT simulations, with a number of attacks
organized in attack types and attack subtypes. Some of the attack types that
were generated, include DoS, DDoS, Information theft, Probing. For the work
depicted in this paper, we extracted 10 features through IG Ranking Filter from
the 5% full-feature version of the Bot-IoT dataset as depicted in Table 4.5, similar
to the process used for the UNSW-NB15 and KDD99 datasets.
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Table 4.4: NSL-KDD Features selected with Information Gain

Ranking Feature name Feature description
0.701 src_bytes Number of bytes transferred from

source to destination in a single
connection

0.571 dst_bytes Number of bytes transferred from
destination to source in a single

connection
0.428 service Network service
0.324 flag Flag of the connection
0.288 diff_srv_rate Percentage of connections to different

services, among the connections
aggregated in count

0.275 dst_host_srv_count Number of connections having the
same port number

0.268 same_srv_rate Percentage of connections to the same
service, among the connections

aggregated in count
0.244 dst_host_same_srv_rate Percentage of connections to same

services, among the connections
aggregated in dst_host_count

0.241 dst_host_diff_srv_rate Percentage of connections to different
services, among the connections
aggregated in dst_host_count

0.216 serror_rate Percentage of connections that have
flag s0, s1, s2 or s3, from the

connections aggregated in count
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Table 4.5: Bot-IoT Features selected with Information Gain

Ranking Feature name Feature description
0.00172 TnBPSrcIP Total Number of bytes per source IP
0.0017 TnP_PerProto Total Number of packets per protocol
0.00161 TnBPDstIP Total Number of packets per

Destination IP
0.00147 AR_P_Proto_P_SrcIP Average rate per protocol per Source

IP.(calculated by pkts/dur)
0.00146 sbytes Source-to-destination byte count
0.00141 AR_P_Proto_P_Dport Average rate per protocol per dport
0.00134 TnP_Per_Dport Total Number of packets per dport
0.0013 TnP_PDstIP Total Number of packets per

Destination IP
0.0012 TnP_PSrcIP Total Number of packets per source IP
0.00116 bytes Totan number of bytes in transaction

4.5.2. Experimental results

The confusion matrices of the seven classification and clustering algorithms are
listed in Tables 4.6 - 4.11 on the three datasets: UNSW-NB15, NSL-KDD and Bot-
IoT. Weka was used to train and test the seven algorithms, with the parameters
set to Weka’s default values, which are given in Table 4.1. To better evaluate the
performance of the tested models, 10-fold cross-validation was used.

Table 4.6: Combined confusion matrix for Naive Bayes

Naive Bayes Predicted\Actual Normal Attack

UNSW-NB15
Normal 84101 61380
Attack 8899 103293

NSL-KDD
Normal 14214 7453
Attack 1387 13988

Bot-IoT
Normal 365 961
Attack 112 3667084
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Table 4.7: Combined confusion matrix for Association Rule Mining

ARM Predicted\Actual Normal Attack

UNSW-NB15
Normal 31785 12675
Attack 10894 108654

NSL-KDD
Normal 14039 783
Attack 1562 20658

Bot-IoT
Normal 399 20
Attack 78 3668025

Table 4.8: Combined confusion matrix for Artificial Neural Network

ANN Predicted\Actual Normal Attack

UNSW-NB15
Normal 2719 2562
Attack 90281 162111

NSL-KDD
Normal 8819 16531
Attack 6782 4910

Bot-IoT
Normal 206 9634
Attack 271 3658411

Table 4.9: Combined confusion matrix for Decision Tree

DT Predicted\Actual Normal Attack

UNSW-NB15
Normal 84607 9058
Attack 8393 155615

NSL-KDD
Normal 15341 315
Attack 260 21126

Bot-IoT
Normal 461 10
Attack 16 3668035

Table 4.10: Combined confusion matrix for Deep Belief Network

DT Predicted\Actual Normal Attack

UNSW-NB15
Normal 0 0
Attack 93000 164673

NSL-KDD
Normal 0 0
Attack 15601 21441

Bot-IoT
Normal 0 0
Attack 477 3668045
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Table 4.11: Combined confusion matrix for K-Means

K-Means Predicted\Actual Normal Attack

UNSW-NB15
Normal 90422 162004
Attack 2578 2669

NSL-KDD
Normal 658 13138
Attack 14943 8303

Bot-IoT
Normal 113 2833653
Attack 364 834392

Table 4.12: Combined confusion matrix for Estimation Maximization

K-Means Predicted\Actual Normal Attack

UNSW-NB15
Normal 23718 56205
Attack 69282 108468

NSL-KDD
Normal 13729 7534
Attack 1872 13907

Bot-IoT
Normal 366 1842
Attack 111 3666203

In Table 4.13 the accuracy and false alarm rate for the classification and clus-
tering algorithms trained on all three datasets are given.
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Table 4.13: Combined metrics for seven machine learning algorithms

Accuracy TPR FPR FAR
Naïve Bayes

UNSW-NB15 72.73% 62.73% 9.57% 27.27%
NSL-KDD 76.14% 65.24% 8.89% 23.86%
Bot-IoT 99.97% 99.97% 23.48% 2.925e-2 %

ARM
UNSW-NB15 85.63% 89.55% 25.53% 14.37%
NSL-KDD 93.67% 96.35% 10.01% 6.33%
Bot-IoT 99.99% 99.99% 16.35% 2.671e-3 %

ANN
UNSW-NB15 63.97% 98.44% 97.07% 36.03%
NSL-KDD 37.06% 22.9% 43.47% 62.94%
Bot-IoT 99.73% 99.74% 56.81% 0.27%

DT
UNSW-NB15 93.23% 94.5% 9.025% 6.77%
NSL-KDD 98.45% 98.53% 1.67% 1.55%
Bot-IoT 99.99% 99.99% 3.35% 7.087e-4 %

DBN
UNSW-NB15 63.9% 100% 100% 36.09%
NSL-KDD 57.88% 100% 100% 42.11%
Bot-IoT 99.98% 100% 100% 0.013%

K-Means
UNSW-NB15 36.13% 1.62% 2.77% 63.87%
NSL-KDD 24.19% 38.72% 95.78% 75.81%
Bot-IoT 22.75% 22.74% 76.31% 77.25%

EM
UNSW-NB15 51.29% 65.86% 74.49% 48.70%
NSL-KDD 74.60% 64.86% 11.99% 25.39%
Bot-IoT 99.94% 99.94% 23.27% 0.05%

4.6. Discussion of results

Our experiments with the UNSW-NB15 demonstrated that the best model for
identifying Botnet activities in captured network traffic was the Decision Tree
(DT) classifier, and more precisely, the C4.5 algorithm. The C4.5 implementation
utilizes Information Gain during the tree construction, in order to identify the
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feature subset that produces the best splits in the data according to the classi-
fication feature. The obtained results indicated that the DT displayed the best
overall performance from the tested algorithms, with an accuracy of 93.23% and
FAR at 6.7% which was the lowest value for that metric. The next best classifier
was ARM, with its accuracy being at 86% and FAR more than twice the value
displayed by the DT. The probability-reliant Naïve Bayes classifier displayed the
next best performance, with its accuracy being 20% lower and its false alarm 21%
higher than the DT’s. The least accurate model from the five supervised algo-
rithms that were tested, was the Deep Belief Network. Although it displayed the
highest TPR at 100% it also had the highest FPR at 100%, with the ANN hav-
ing the second-worst performance, as its accuracy was 30% lower and it is FAR
was 30% higher than the DT’s respectively. The K-Mean algorithm, one of the
two unsupervised algorithms that we tested was the least overall accurate model,
nearly 60% less accurate than DT while also having the smallest TPR and highest
FAR.

Results for the NSL-KDD dataset indicate that the Decision Tree model again
displayed the highest accuracy at 98.45% in addition to having the highest TPR
value out of the seven models. The ARM classifier was the second-best classifier,
similar to the order for UNSW-NB15, although its FPR was nearly three times
that of the DT. The Naïve Bayes classifier was third, with 22% less accuracy than
the DT and approximately five times more FPR. Both the ANN and the K-means
algorithms were the least accurate, with 37% and 24% accuracies respectively. The
ANN and DBN displayed the most errors out of the five supervised algorithms,
with the former having the highest FAR and the latter the highest FPR. K-Means
and DBN both produced the largest errors out of the seven models that were
tested, with FPR at 100% for the latter and FAR at 76% for the former.

Similar to the results of the other two datasets, results for the Bot-IoT indicate
that the DT and the ARM outperformed the other three algorithms, displaying
the highest accuracy and TPR at 99.99%. For the supervised algorithms, the
highest FPR was produced by the ANN at more than 56%, although this error for
the K-Means algorithm was 20% higher. The smallest FPR was given by the DT
at 3%, with the next best value being that of ARM at just under five times that
of the DT. The K-Means algorithm again performed poorly, having the smallest
accuracy and TPR at just under 23% while also having the largest FAR out of all
five algorithms at 77%.
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Fig. 4.7: Comparison of metrics for the three datasets

Overall, as can be seen in Table 4.7, models trained on the Bot-IoT displayed
the highest accuracy and TPR. Out of the seven algorithms that were tested,
K-Means displayed the worst performance, with the lowest accuracy, while out
of the five supervised algorithms, the DBN was outperformed. Regarding the
DBN performance, although it displayed the highest TPR for all the dataset,
it achieved it by misclassifying all the negative results, thus having the highest
FPR out of all the tested models as well. This can be explained by the choice
of default/unoptimized hyperparameters, as deep models often perform well with
large quantities of data. Regarding the two unsupervised algorithms, as can be
seen in the diagram and the generated metrics, K-Means was outperformed by the
EM clustering algorithm, with the latter displaying a higher accuracy in all three
datasets, higher TPR and lower FAR. The DT consistently was the most accurate
at detecting botnet activities from the datasets, with the lowest error given by the
FAR. It can be observed that machine learning can be applied as network forensics
models and they are capable to discover botnet events.

4.7. Conclusion

In this chapter, we have used various machine learning models to examine how
they would be used for developing network forensics that can identify botnet events
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from IoT networks. Five supervised machine learning algorithms: ARM, ANN,
Naive Bayes, Decision Tree, Deep Belief Network and two unsupervised machine
learning algorithms K-Means, Expectation-Maximization were trained in a 10-fold
cross-validation scheme on the datasets of Bot-IoT, UNSW-NB15 and NSL-KDD.
By comparing their results, the quality of the Bot-IoT is better than others, as
it has a variety of botnet events with significant data features. Although the
classifiers displayed high accuracy, it was noted that their false positive rate was
significant, with Decision Trees displaying the smallest value at 3.35% and the
highest by DBN at 100%. The experimental results revealed that they can be used
as a better alternative than existing rule-based network forensics tools as they do
not need updating rules regularly. In the future, this work will apply network
forensics models in a real-world IoT network and determine their scalability for
handling heterogeneous data sources.
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Chapter 5

Development of a Novel Network
Forensic Framework based on

Deep Learning for the Internet of
Things: The Particle Deep

Framework

5.1. Overview

With the proliferation of the Internet of Things (IoT) systems, IoT device-related
IP addresses are widely linked to the Internet to offer daily services and tasks
to end-users and organisations. The IoT industry has experienced accelerated
growth over the last few years, with projections supporting the continuation of
this increase [5]. In 2018, approximately 7 billion IoT devices were connected to
the Internet, while in 2019 that number is expected to double to 14 billion devices.
One of the most popular applications for IoT in terms of deployed devices is the
smart home sector which had 663 million devices in effect in 2017. Applications
for smart homes include among others, smart lights, fridges, ovens, thermostats
and locks. Another application of IoT, on a larger scale, has been planned for
several European countries, and it is called the “smart city” [268, 269]. Industrial,
agricultural and health applications are also on the rise with automation, cost
efficiency and precision being the most integral contributors to this trend. Some
examples of devices from the healthcare sector include patient monitors, energy
meters and imaging-related devices (X-ray machines) [5].1

Even though IoT devices are preferred over conventional devices and systems,
such deployments remain quite vulnerable to several attacking techniques taking
advantage of both well-known and new attack vectors [270][28][9]. In the 2018

1The work presented in this chapter has been submitted in:
Nickolaos Koroniotis, Nour Moustafa, Elena Sitnikova, A New Network Forensic Framework based

on Deep Learning for Internet of Things Networks: A Particle Deep Framework, Future Generation
Computer Systems

163



Chapter 5 Development of a Novel Network Forensic Framework based on Deep
Learning for the Internet of Things: The Particle Deep Framework

Symantec report of Internet security threats [9], the total number of attacks tar-
geting IoT devices for 2018 exceeded 57,000, with more than 5,000 attacks being
recorded each month. Attackers perform various hacking techniques, for example,
Denial of Service (DoS), Distributed DoS (DDoS), ransomware and other botnets
attacks, for exposing IoT systems and their networks. Hackers execute several
hacking scenarios to compromise vulnerable, un-patched, un-updated and/or un-
encrypted IoT devices to achieve their motives, such as corrupting IoT resources,
stealing sensitive information that IoT devices often store or even use the com-
promised devices as infection vectors. Hackers sometimes seek to compromise the
physical security of smart homes by hacking smart locks and garage doors [14].

Defending against such cyber-attacks is difficult, as there exist no commonly
accepted standards for designing IoT devices [270]. This means that in an IoT
deployment multiple protocols, such as MQTT, Zigbee and LoRa, could interact
increasing complexity and heterogeneity [17, 26, 271]. Furthermore, new attacks
which rely on zero-day exploits are often preferred by attackers, as they are not
easily detected by most security countermeasures. Due to the heterogeneous norm
of IoT deployments, developing an efficient network forensic solution demands
depth-analysis for tracing and detecting attack vectors [164] [270]. Typically,
the network forensic process is segmented into several distinct phases, whereby
each phase defines the necessary preparation, analysis and actions of investigation
[97]. These phases are identification, collection, preservation, examination, analy-
sis and presentation. The first three stages, define the forensic analyst’s access to
the crime scene and their activities. Initially, sources of potential evidence have
to be identified, after which data has to be collected in a way that enables the
preservation of the data and the chain of custody. In the next two stages, the
collected data is processed, so that relevant evidence can be located, after which
the evidence is analysed to make inferences about the cybercrime. Finally, the
results are organised and further elaborated upon, so that they can be used in a
court of law.

Various forensic frameworks have been proposed to provide solutions to the
acquisition problem but they do not consider the entire phases of an investigation
[17] [18] [20] [19]. Most of them rely on a public ledger scheme, where diagnostic
and communication data are shared between multiple entities, such as the police
and insurance companies. The benefit of such a scheme would be that during an
investigation, all relevant information could be readily available to the forensic ex-
perts, while its integrity would be guaranteed via digital signatures. However, most
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of the network forensic frameworks focus on data acquisition rather than consid-
ering the entire forensic process. These frameworks introduce some disadvantages
such as the violation of privacy, as a user’s information is distributed between
the stakeholders, and the added complexity that these frameworks require. Fur-
thermore, the frameworks focus on the preservation and collection phases of the
investigation.

To investigate network-related incidents, several types of files are studied for
tracing attack vectors that expose IoT systems. The easiest source of traces to
access, which is often preferred, is traffic collection where network packets are
recorded and stored in full packet capture files. By examining the files, an investi-
gator can determine if an attack occurred and find all metadata related to attack
traces such as timestamp and source of attack. There are two approaches: deep
packet inspection and network flow analysis, to process and examine the files and
discover attack behaviours [270]. Deep packet inspection focuses on the payload of
the packet, allowing for an in-depth analysis of the traffic that is captured, which
may be more accurate at detecting certain attacks although it may face challenges,
like the payload being encrypted, a common occurrence in current networks, it re-
quires extensive storage and accessing the payload may violate privacy laws. On
the other hand, network flow analysis utilises a summarisation of the network
traffic, where mainly statistical features are extracted such as connection speed,
exchanged bits and timing data, in order to produce results. For the requirements
of the research presented in this paper, network flow is preferred, as we suggest in
this work [270].

A key characteristic of IoT devices is that they are constantly active. As
such, performing network flow collection from an IoT’s network results in excessive
amounts of data. In order to perform analysis on the collected data, automated
mechanisms are often employed to eliminate human error, with one such popular
automated method being the utilization of deep learning. Through deep learning
models, an investigator is capable of rapidly detecting patterns in the network
data (packets, network flows) which indicate the occurrence of an attack [158,
159, 272, 273]. However, for such a deep learning model to be used, it first needs
to be trained. Training a model requires the utilization of data and the selection of
values for the model’s hyperparameters. Although both data and hyperparameters
are important for the training phase, hyperparameter optimisation, referring to
the selection of optimal hyperparameter values, is crucial as it defines the abstract
structure and training conditions of the model [274, 275]. Considerable work has
appeared over the years in the field of hyperparameter optimisation [274, 276, 277,

165



Chapter 5 Development of a Novel Network Forensic Framework based on Deep
Learning for the Internet of Things: The Particle Deep Framework

278], with the trend being a shift from the time consuming manual selection that
may not yield optimal results, to more automated processes. Regardless, no single
optimisation method has been accepted as the preferred method by the research
community, and as such, work is ongoing. It is necessary to develop network
forensic mechanisms based optimisation to timely investigate security incidents in
IoT networks [270, 279, 280].

The main contributions of this chapter are as follows:

• We propose a new network forensic framework, named Particle Deep Frame-
work (PDF), based on optimisation and deep learning.

• We use an optimisation method based on Particle Swarm Optimisation(PSO)
to select the hyperparameters of the Deep Neural Network (DNN).

• We compare the performance of the produced DNN with other deep learning
models. For the evaluations and comparisons, we used the Bot-IoT [265] and
the UNSW-NB15 [57].

Chapter 5 is structured as follows. Section 2 includes related research in the
application of deep neural networks to network forensics. Section 3 presents an
overview of our proposed framework. In Section 4 we discuss the PSO algorithm
and its use for hyperparameter tuning. In Section 5 we discuss the proposed PDF
in detail, followed by its architectural design in Section 6. In Section 7 the results of
training the PDF is given and Section 8 presents a discussion of produced results.
Section 9 presents a comparison of the experimental results of the PDF with other
machine learning-based models. Section 10 gives the attack identification statistics
for the two datasets. Finally, Section 11 includes a comparison of the PDF with
traditional IDS, followed by the concluding remarks of this chapter in Section 12.

5.2. Background and Related Work

5.2.1. Digital Forensic Frameworks for IoT and smart systems

Digital forensics is a collection of methodologies that have been produced and re-
fined through the scientific community, tasked with the secure collection of traces
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from a crime scene, their examination, analysis and presentation of identified ev-
idence which can help identify the malicious actors, their methods and motives,
during an investigation of a security incident, often leading to legal action [105].
Over the years, and due to technological development, digital forensics has been
refined into several subcategories, each specializing with incidents in different envi-
ronments, namely: cloud forensics, network forensics, IoT forensics, mobile foren-
sics, memory forensics, data forensics [281].

For the purposes of this chapter, we focus on network forensics. Network foren-
sics mechanisms focus on security incidents that occur in networks, commonly
using logs and captured packets to detect intruders and malicious acts. Experts
who perform network forensic actions, make use of various tools for the correct
collection and storage of evidence before analysis takes place. However, there is
no single best process to follow during an investigation, giving rise to numerous
digital forensic frameworks. In essence, a digital forensic framework dictates the
appropriate steps to be taken by a professional during an investigation. It seg-
ments the investigation into distinct and autonomous phases that propose specific
techniques and technologies for that phase. As previously mentioned in Section I,
most forensic frameworks proposed for a smart home crime scene focus primarily
on the acquisition phase of the investigation. Multiple frameworks have been pro-
posed [18, 20, 282]. However, no framework has been singled out as the preferred
choice by professionals, since standardization is lacking, and varying circumstances
require different approaches and tools [270, 283, 284].

Many researchers have developed forensic frameworks for the IoT [17] [18] [20]
[19]. For instance, Hossain et al. [20] and Hossain et al. [18], proposed Probe-IoT
and FIF-IoT, respectively, two models which handle the acquisition of evidence
from IoT devices in a forensically sound way for maintaining integrity and chain
of custody, without violating the user’s privacy. Meffret et al. [17] proposed an
FSAIoT framework for the collection of state data from IoT devices. Follow-
ing that, Cebe et al [19] developed a Block4Forensic acquisition model designed
for vehicular data collection. Both Probe-IoT, FIF-IoT and Block4Forensic base
their implementations on the blockchain scheme. For Probe-IoT and FIF-IoT, a
distributed public ledger was established, with multiple stakeholders maintaining
copies of the produced ledger, while Block4Forensic used a fragmented ledger to
reduce storage requirements. In all of the aforementioned cases, the information
that is stored in the blockchain includes diagnostics about IoT devices and in-
teraction between devices and other network entities. In contrast, FSAIoT uses
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centralised controllers in a local network to monitor and collect states and data
transactions from the devices.

A significant portion of the literature regarding the development of new foren-
sic frameworks for IoT and smart systems was based on the concept of distributed
digital blockchains [20, 20, 282]. Hossain et al. [20] proposed Probe-IoT, Le et
al. [282] BIFF and Hossain et al. [18] the FIF-IoT. These frameworks have a
lot of similarities. To begin with, they are all designed around the concept of a
distributed digital blockchain system being maintained by several relevant stake-
holders, including but not limited to: Law enforcement, insurance companies and
the manufacturer of IoT devices. Pre-defined roles dictate access rights for the
stakeholders, while digital signatures ensure non-repudiation of events. To enable
the use of digital signatures, some trusted entity plays the role of the Certification
Authority, maintaining the public-keys that might be hacked by man-in-the-middle
attacks [285].

Although the framework sometimes speeds up the investigation process, as the
investigator would not need to physically attend the crime scene and collect data,
it comes with some drawbacks. To begin with, they require either the introduction
of dedicated devices that collect transaction data or the smart devices themselves
to periodically transmit such data to on-line services that collect the transactions
and incorporate them to the blockchain. This may cause increased charges either
for new devices, or extra power consumption for the smart devices, with possible
degradation of services due to constrained resources. Furthermore, these frame-
works rely on the harmonious cooperation of multiple entities, while at the same
time require (i) extra resources by Law enforcement to store the collected data,
and (ii) trust by the IoT device owners that register their devices [18, 20, 282].

Babun et al. [286] developed a different acquisition model named IoTDots.
Its functionality relies on first modifying the applications which control the smart
devices so that logs and data can be re-directed to a remote database at runtime.
A secondary module pre-processes and analyzes the gathered data to identify se-
curity incidents. The analysis is done by converting all collected data into bitmaps
and through training a Markov Chain model on legitimate interactions. Although
IoTDots considers collection, preservation and analysis phases of an investigation,
it has some drawbacks. The framework requires modified applications to be used
in order for IoTDots to function. Thus, users will be under constant surveillance
with their activities being recorded, which may raise privacy concerns. Addition-
ally, during the collection and transmission of the collected data, preserving the
integrity of data is not considered. The data integrity and authenticity stage is
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vital and needs to be applied at the early stages of the digital investigation process
as the data might be modified by malicious entities during either the collection,
transmission or storage.

5.2.2. Deep Learning for tracing and discovering threat behaviours

Traditional methods of network forensics include the use of fuzzy logic [287, 288],
Naïve Bayes classifiers [289], neural networks [288, 289], support vector machines
[290]. Deep Learning tends to be the preferred method of choice for the task
of network forensics as, although training such models is time-consuming, their
execution time is low and they identify more complex patterns, outperforming
other choices, especially when working with large volumes of data [34, 158, 159,
270, 291].

Deep Learning is a subsection of artificial neural networks, where the neu-
ral networks have a deep architecture that span multiple hidden layers [51, 159].
Parsing logs, network traffic and documents demand a reverse-engineered code
to identify indications of an attack, which is an iterative process that humans
cannot easily perform. To that effect, multiple types of machine learning models
have been used to harness their discriminative capabilities [270]. Recently though,
deep learning has received more attention from the research community because it
learns data and its variations in-depth through multiple generative or discrimina-
tive models. In deep learning, stacking tens/thousands of hidden layers together
has been shown to increase the predictive capabilities of a neural network, allowing
it to identify complex patterns in the data [159, 274].

A common application of deep learning in the forensic and security research
areas is attack identification in network traffic. One such example by Shone et al.
[159] is the development of an intrusion detection system based on a combination of
a stacked non-symmetric deep autoencoder and a random forest classifier. Initially,
two autoencoders are pre-trained, and their “encoder” parts are stacked, with the
last one feeding its output to the random forest classifier. Evaluation of the KDD
dataset depicted an accuracy of 89.22%. Azmoodeh et al. [291] proposed a deep
learning approach, based on a convolutional neural network to detect “Internet of
Battlefield” malware attacks. The network was trained on eigenvectors generated
from the operation code sequence graph of the disassembled code of a mobile
application. It was shown that this new method outperformed previous work in
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the field of malware detection, with results indicating accuracy and precision of
about 98%.

Yuan et al. [292] proposed DeepDefence, a DDoS detection method based
on deep learning. Their approach tested a combination of a convolutional neural
network with three different types of temporal-aware neural networks, namely the
recurrent neural network (RNN), gated recurrent unit neural network (GRU) and
long-short term memory neural network (LSTM) using the ISCX2012 dataset.
Results indicated that both LSTM and GRU achieved the best performance at
around 98%. Brun et al. [239] developed a dense random neural network method
for the identification of attacks against IoT gateways. Two attack scenarios were
considered, Denial-of-Service and Denial-of-Sleep which were represented in a cus-
tom dataset. However, the accuracy of this method was reported to be comparable
to a threshold detector.

Van et al. [238] built a NIDS based on Deep Belief Networks (DBN). To de-
termine the best approach, the researchers compared the performance of a stacked
Autoencoder (SA) with a stacked Restricted Boltzman Machine (SRBM) on the
KDD99 dataset. Results indicate that the SA displayed a smaller error in clas-
sification compared to the SRBM, although it required more time for training.
Pektas et al. [119] proposed a deep MLP system to process network flow patterns
and identify botnets, specifically the communications between C&C and bots.
During pre-processing, graphs were generated from collected flows and grouped
by communication endpoints which allowed them to generate new statistical fea-
tures. The researchers concluded that deep learning presents acceptable accuracy
for botnet identification in flow data, with the added bonus that feature selection
is not necessary, as deep networks identify the best features.

Cheng et al. [45] developed D2PI, a system based on a Convolutional Neural
Network (CNN) which classified collected traffic into either “malicious” or “benign
“, based solely on the payload. In order to train the CNN, the payloads of packets
were extracted, their lengths adjusted to a predefined length and incorporated in a
matrix. Results indicated that D2PI is a promising first step towards incorporating
CNNs in deep packet inspection systems. Le et al. [293] produced a deep learning
classification approach for the identification of different malware samples without
the need for expert knowledge. The malware samples were converted to one-
dimensional image representation and then used to train several different neural
network models that combined convolutional layers which processed the input,
with RNN and LSTM layers. Best accuracy was achieved through the CNN bi-
directional LSTM, at 98.2% with a class re-balancing step.
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Alrashdi et al. [294] developed an anomaly-based NIDS, called AD-IoT, that
detects compromised IoT nodes, and based their design on Random Forest and
Extra tree classifiers. An evaluation was performed on the UNSW-NB15, after
reducing the feature size from the original 49 to 15. Results showed that the AD-
IoT displayed a promising performance, although precision for detecting attacks
was the lowest metric at 79%. Homayoun et al. [295] proposed BoTShark, a
botnet detection and traffic analyzer based on Autoencoders and Convolutional
Neural Networks (CNN). The researchers based their work on the ISCX dataset,
utilizing netflow data for training and testing their method. Two versions of the
BotShark were implemented, one based on stacked Autoencoders, where feature
extraction is performed prior to classification and one based on a CNN, where each
record was fed to the network individually. Results indicated an accuracy above
90%, with the autoencoder performing slightly better than the CNN, due to the
reduced feature-set that it used.

Deep learning has been developed to detect and trace attacks from industrial
IoT systems and their networks. De La Torre et al. [296] proposed a conceptual
monitoring framework. They first surveyed the existing research on forensics, with
emphasis on the many types of deep packet inspection (DPI). Reaching the con-
clusion that, relying on purely DPI solutions would be ineffective due to encrypted
network traffic and the mutability of attack patterns, the researchers proposed a
software-defined network-based (SDN) monitoring system. This conceptual sys-
tem dictates the use of a forensic black-box, where monitoring traffic from smart
grid networks and control stations would be gathered, eliminating difficulties with
the acquisition phase. This black-box can then be accessed, and deep learning
models applied for the identification of attack patterns, for both forensic and fu-
ture prevention purposes.

As previously discussed, most of the existing studies have focused on acqui-
sition approaches [18, 20, 282], or modifications to controller applications [286].
The new proposed framework, PDF is a viable alternative, as it harnesses network
flow data which produce results without raising privacy concerns. Furthermore,
it considers the analysis and examination phases which were overlooked by many
frameworks that were presented, while not requiring the introduction of new enti-
ties or alterations to existing IoT and smart systems.
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5.2.3. The Particle Swarm Optimisation algorithm

Particle Swarm Optimisation (PSO) is an optimisation swarm-based algorithm
originally proposed in 1995 by Eberhart and Kennedy [297]. The algorithm iden-
tifies a solution by iteratively traversing the search space, and gauging its quality
through the use of an objective function. The PSO algorithm is considered to be
metaheuristic, since it does not rely on any assumptions about the underline prob-
lem, and is utilised in order to detect if not optimal, then "good enough" solutions
in a reasonable time [298].

PSO is often utilized to determine the value of a variable, as such, the search
space that the PSO algorithm traverses, is defined as all the possible values that
the variable can take. The PSO algorithm functions by spawning a population of
particles, with each particle defined by their current position in the search space,
the best position that the particle has observed so far, a global best position
achieved by some particle in the swarm and a relative velocity[298, 299]. The
particles are initialized and set to traverse the search space randomly, with an
objective function used to gauge the wellness of the new position of the particle,
and possibly update the local best and/or the swarm’s best solution.

Since the introduction of the original PSO by Eberhart and Kennedy [297],
the equation of which is given in equations 3-6, researchers have proposed variants
of the algorithm, that improve its performance for certain problems or extend
its usability. To begin with, altering the values of the learning factors θ1 and θ2

of equation 5, has a direct impact on the search pattern that the swarm focuses
on as reported by Kennedy et al. [297]. For instance, by diminishing the global
search (setting θ2 very close to or equal to ’0’), forces the swarm to emphasize the
individual local search of each particle while having θ1 = θ2 causes the swarm to
gravitate towards the average of the global and local best solutions.

The standard PSO (SPSO) introduced by Shi and Eberheart [300] introduced
an inertial coefficient (ω), which was multiplied to the particle’s previous velocity
in equation 5. By having relatively large values of inertia, the particles prioritize
exploration of the search space, as their previous velocity has a greater impact
on their new velocity in each step. The inertial weight can be initialized in any
number of ways, such as randomly [301], it can be set as a positive non-zero value
[300], or be a function of time either non-linear or linear [302, 303] as given by the
following gradually declining Equation:
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ωt = ωmax −
i

imax
∗ ωmax − ωmin (5.2.1)

Where ωmax and ωmin are pre-defined max and min weight values and i and
imax denote the current and maximum iterations of the swarm respectively. The
reason for having a time-decaying inertia weight is that it causes particles to
explore the search space during early iterations, and then gravitate towards local
search as inertia decays.

By reviewing the OPSO and SPSO, researchers observed that some particles’
velocity tended to explode. In order to counter these issues, improvements were
devised, such as introducing velocity clamping and constriction factors [304, 305,
306]. In order to manage the exploration-exploitation tradeoff, the velocity of each
particle is calculated and limited to a pre-defined maximum value. By selecting
large velocity maximums, particles explore greater areas of the search space, while
smaller values focus the search to a limited area. The constriction factor was intro-
duced as an alternative to the inertial coefficient. To apply the constriction factor,
the OPSO equation for velocity (5) is adjusted, by multiplying the constriction
factor K to the new velocity, with the factor given by the Equation:

K = 2/|4− φ−
√
φ2 − 4φ|, whereφ = θ1 + θ2andφ > 4. (5.2.2)

Next, several PSO variants were developed in order to adjust the algorithm
and enable its application in diverse problems [307]. The binary PSO [307] was
developed, in order to enable the application of PSO to binary problems. Its
novelty was to use the calculated velocity, produced by equation 5 with velocity
constriction or clamping, as the input for a sigmoid function, and using the pro-
duced value (in the [0,1] range), to set the new position of the particle as either ’0’
or ’1’. The fully informed PSO [308] is a variant of the SPSO, where a particle’s
movement is mostly affected by its neighbours. Specifically, instead of using the
best position that the swarm has identified in order to update a particle’s velocity,
its neighbour’s position is used. An altogether separate approach was taken with
the cooperative PSO [309], where the problem was split, based on the dimension
of the underline problem. In this variant, each swarm traverses a search space
corresponding to a single dimension of the solution vector. As each swarm func-
tions separately, special attention is given as to how the acquired partial solutions
should be combined.
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5.3. Overview of proposed Particle Deep Framework

We present the stages of the new network forensic framework, so-called Particle
Deep Framework (PDF), based on particle swarm optimisation and deep learning
for tracing attack origins and detect them from IoT networks, as depicted in Figure
5.1.

Fig. 5.1: Proposed network forensic framework using particle swarm optimisation and
Multi-layer Perceptron (MLP) deep learning algorithms.

The stages of the proposed framework are separately discussed as follows.

• Stage 1: Network capturing Tools:

IoT devices have been placed into a network that is under investigation. The
devices have been configured in a promiscuous mode, thus enabling them to
see all traffic in a local network. Network packet captures are then carried
out by utilizing network capturing tools such as Wireshark [310], Tcpdump
[311] and Ettercap [312]. For example, during the collection of raw pcap files
for the creation of Bot-IoT, we used T-shark [65]. T-shark is a terminal-
based tool, which lacks a Graphical User Interface (GUI) but otherwise has
the same functionality as Wireshark. By setting the Network Interfaces Card
(NIC) in promiscuous mode, we were able to use t-shark to capture packets
that were generated by the machines connected to the virtual local network.
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When running t-shark the command that we employed specified the network
interface to use thorough the “-i” option, the filesystem path to output the
collected traffic “-w” and the maximum size for each .pcap file “-b”. The
collected pcap files are then forwarded to the data collection stage.

• Stage 2: Data Collection and Management Tools:

This is the first stage in the network investigation process, where data are
gathered in a form that can be further analyzed and examined, such as
the datasets of BoT-IoT and UNSW-NB15. Initially, for the purposes of
preservation, an SHA-256 hashing function [313] is employed to maintain the
integrity of the collected data. Through this hashing function, the produced
digests of the collected files can be used post-investigation to assert that
the initial data have not been compromised. The collected pcaps are then
processed by data flow extraction tools like Bro [226] or Argus [191], that
extract and summarize extract the network flows from the pcap files. An
additional step during this stage is preprocessing, by handling missing and
unuseful feature values, re-scaling and producing new features which can
assist a model’s training process. After filtering and cleaning datasets, the
particle swarm optimisation and deep learning models are applied to discover
cyber-attacks and trace their origins.

• Stage 3: Particle Swarm optimisation (PSO) for adapting hyper-
parameters of Deep Learning model:

The PSO algorithm [298] is chosen in order to adapt the hyperparameters
of the deep model as it can easily address the local-optimum problem and
quickly converges to obtain best fitness values compared with other evolution-
ary algorithms [299, 314]. The PSO has been used to minimize/ maximize
an objective function, specifically in this study, it is used to maximize the
Area Under Curve (AUC) values of a deep Multi-Layer Perceptron (MLP)
algorithm to obtain the best hyperparameters that will be used to train and
validate the algorithm for discovering cyber attacks and identifying their
origins. To be more precise, this stage uses PSO to identify the optimal
hyperparameters that maximize the AUC of the deep model.

• Stage 4: MLP deep learning for attack identification:

The hyperparameters that have been estimated by the PSO algorithm and
the collecting data from Stage 2 are used to train and test the MLP deep
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learning algorithm. The MLP was adopted by seven layers (excluding the
input layer), with the number of neurons being: 20, 40, 60, 80, 40, 10,
1, as the best outputs were produced in terms of detection accuracy and
false alarm rate. The three hyperparameters epochs, learning rate and batch
size obtained from Stage 3 are used for training and validating the MLP
algorithm. Data collection of stage 2 has been split into two groups: Training,
and Testing split by 80%, 20% for measuring the performance of the MLP
algorithm.

• Stage 5: Performance measure:

Finally, performance metrics are obtained by running the trained deep MLP
model on the Testing and validating data. Common performance metrics,
including accuracy, precision, recall, false-positive rate, False-negative fate
and f-measure, are estimated to measure discriminative capabilities of the
proposed model. The details of Stages 3-5 are explained in the following two
sections.

5.4. Particle Swarm Optimisation (PSO) Algorithm for
deep learning parameter estimations

Particle Swarm Optimisation is an evolutionary algorithm which was derived by
observing swarms of fish and birds in nature [298]. A particle swarm is comprised of
a pre-selected number of particles (P ). During runtime, each particle is randomly
initialized and starts propagating through the search space (v).

When a particle reaches a new position in the search space (vt+1), an objec-
tive function is used to determine the quality of that position, with the function
changing, depending on the problem that is optimised. Each particle is defined by
a group of four vectors, its current position in the search space (xt), its velocity
(vt), the best position identified by it (xlbest) and the global best position (xgbest),
as declared in the following equations.

P = p1, p2, . . . , pn, n ∈ N (5.4.1)

∀pn ∈ P, pn = (xt, vt, xlbest, xgbest) (5.4.2)

vt+1 = vt + θ1 ∗ rand ∗ (xlbest − xt) + θ2 ∗ rand ∗ (xgbest − xt), rand ∈ [0, 1] (5.4.3)
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xt+1 = xt + vt+1 (5.4.4)

In the above equations, vt+1 is the updated velocity of a particle. Thus the
velocity of the particle at time t+1, depends on its previous velocity vt, the learning
factors θ1 and θ2 which are multiplied by a random number (rand) within the [0, 1]
set and the distance between the local and global best solutions from the current
position of the particle. The updated position xt+1 of the particle is calculated
by adding the new velocity (vt+1) to the previous position (xt). In the following
algorithm, a typical iteration of a maximizing PSO is given [298].

Algorithm 5.1 Particle Swarm Optimisation maximization algorithm

P ← construct_particles(n_particles) ∀ p ∈ P, p.Xlbest = p.x0, p.Xgbest = −∞ epochs
← load_epochs() e←0 while e <epochs do

foreach p ∈ P do
vt+1 = vt + θ1 ∗ rand ∗ (xlbest− xt) + θ2 ∗ rand ∗ (xgbest− xt), rand ∈ [0, 1] xt+1 =
xt + vt+1 if xt+1 >xlbest then

xlbest=xt+1
end
if xt+1 >xgbest then

xgbest=xt+1
end

end
end
return P.global_best()

Algorithm 5.1 is used to get the optimal hyperparameters of the MLP deep
learning model to ensure the highest detection accuracy of detecting and tracing
attack vectors. The particle swarm algorithm is initialized and tasked with max-
imizing the AUC values of the deep learning model, by seeking the best values
of the hyperparameters: batch size, epochs, and learning rate, in their respective
search spaces.

There are multiple reasons for using the PSO algorithm instead of another
metaheuristic for the purpose of hyperparameter selection. To begin with, PSO is
a simple algorithm to implement and its inner workings can be understood easily
[315]. PSO does not guarantee an optimal solution however, it has been shown
that it can produce satisfactory results in reasonable time [316]. Furthermore,
although PSO tends to converge faster than other metaheuristic algorithms [317],
it can be further sped up through parallelization of some of its parts, such as
calculating the objective function’s value. Finally, since our research has indicated
that PSO has not been used for hyperparameter optimisation, this work provides
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Fig. 5.2: Stages of investigation in network forensics including the proposed framework

an indication as to how well it performs when applied for this task. In other words,
this research provides empirical data about PSO performance, when tasked with
optimising deep MLP for application in the network forensic discipline.

5.5. Proposed Particle Deep Model for Network Forensics

The proposed particle deep model is an important addition to the field of network
forensics to describe the stages of network forensics, namely collection, preserva-
tion, examination/analysis and presentation, as shown in Figure 5.2. The pro-
posed model can be integrated to the investigation process of network forensics,
by utilizing Deep Learning in the form of a neural network whose architecture is
multi-layered, which in turn greatly improves its performance while maintaining
a reasonable execution time.

Algorithm 5.2 presents the proposed particle deep model that integrates the
PSO and MLP algorithms for improving the accuracy of attack detection and
investigation and enhancing the computational process of the deep learning al-
gorithm. The proposed model combines generative deep neural networks for the
correct identification of malicious traffic, in a mixed environment comprised of
both IoT and non-IoT traffic.

In order to determine the type of deep neural network to use in the PDF,
the average performance of a vanilla deep MLP model [252] and Recurrent Neural
Networks (RNN) with a different number of steps [52] were compared. The goal
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of these tasks is to build a model that is as accurate as possible while maintaining
a low false alarm rate.

Algorithm 5.2 Particle deep model for hyperparameter estimation of deep learning

Data:
nn ← load_neural_network_structure() [b,e,lr] ← initial-
ize_random_hyperparameters() hyperparameters ← [b,e,lr] PS ← con-
struct_particle_swarm(n_particles,swarm_epochs) i ← 0 foreach
h1 ∈ hyperparameters do
while PS.swarm_epochs 6= 0 do

h1 ← PS.maximize(nn.AUC, h1)usingalgorithm1
end
nn.save_opt_hyperparam((h1))

end
nn.train_NN(training_set())

In Algorithm 5.2 we depict a Particle Deep Model (PDM) iteration. First,
the neural network is loaded with its pre-selected layers and number of neurons.
Initially, the three hyperparameters batch size, number of epochs and learning rate
[b,e,lr] are randomly initialized. Next, a particle swarm comprised of a pre-selected
number of particles (n_particles) and number of iterations (swarm_epochs) is
generated. Then algorithm 5.1 is utilized to identify the value of the hyperparam-
eter that is being optimised, that maximizes the AUC value of the neural network
(h1 ← PS.maximize(nn.AUC, h1)). The process is repeated for every hyperpa-
rameter that is being optimised, the identified values of which are utilized to train
the final neural network.

The Bot-IoT dataset [265] was utilized for training and testing of the deep
models, with 80% of the dataset used for training while the remaining 20% for
testing. On both the training and testing set, we performed min-max normal-
ization, which resulted in the values being scaled data within the range of [0,1]
to assert the neural networks models will not bias towards a particular class and
ensure regularization of learning. We selected the type of deep learning model for
our framework, and then we initially trained and validated it manually, through
a trial-and-error process. After that, we employed the particle deep model, as
explained in Algorithm ~5.2, to optimise the hyperparameters of the deep neural
network. The reasoning behind this action is that there is no standard process for
selecting the best values for hyperparameters, such as the number of layers, the
number of nodes for each layer, a learning rate, during the pre-training phase of
a neural network.
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In the proposed particle deep model, the particles propagate through the search
space of each of the three hyperparameters being optimised, one at a time. The
logic behind individualizing the hyperparameter search was to make the search
space smaller, since if the swarm was applied to all three hyperparameters at
the same time, the search space would have been equal to Batch_size_Size *
Epochs_Size * Learning_rate_Size, where _Size indicates all the possible values
of the hyperparameter that can be estimated in their search space.

Hyperparameters values affect the training process of a neural network, and
although there are many, we will focus on three, namely epochs, batch size and
learning rate. The batch size determines the number of records (rows, if the data is
in a structured form), which is parsed by the model before its weights are updated.
The number of epochs indicates the times that the network will take the entire
training dataset. The learning rate is a decimal, usually between (0,1), that is used
to determine how much the weights are updated, with values close to 1 causing
large updates that may be erratic and overshoot optima, while values close to 0
translates to very slow updates.

The logistic cost function was chosen, as it is suited for separating between
attack and normal traffic, which is considered a binary classification problem [318].
Furthermore, due to class imbalance imposed by the nature of the attacks which
have more records than normal traffic, weights were used to compensate for the
imbalance. The logistic cost function is given in the following equation:

C = − 1
m

m∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) (5.5.1)

Where m is the number of instances that have been fed to the model, yi is the
expected class feature value, and ŷi is the calculated class feature value of the ith

example.

The weights that were introduced for the two classes would be incorporated in
the logistic loss equation like so: w1yilog(ŷi) +w0(1− yi)log(1− ŷi), with w0 being
the weight for the normal traffic and w1 for the attack vector. Each particle trains
a version of the deep MLP, with a different value for the trained hyperparameters,
retaining their global best hyperparameters. The steps of training and validating
data collection using the proposed particle deep model is discussed in Algorithm
5.3.

Because each particle needs to train an MLP to produce the AUC value, which
is used in the search space to calculate speed and position for the particle, the PDF
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Algorithm 5.3 Steps for training and testing the proposed particle deep model

Data:
S = 0 :′ batch′, 1 :′ epochs′, 2 :′ learningrate′ Results =
′batch′ : −1,′ epochs′ : −1,′ learningrate′ : −1 NN =
loadNNstructure()#Hyperparameters that aren′t trained n_p =
6#number of particles n_e = 4#number of epochs Results =
randomInitialState() task = ‘maximize_AUC ′ for k = 0; k <= 2; k + +
do

#Runs once for each hyperparameter to optimise particles =
generateParticles(n_p, n_e) bestHyper = runPSO(particles, task, S[k], NN)
Results[S[k]] = bestHyper

end
#trains a model with the identified hyperparameters trainedNN =
trainNN(NN,Results) testNN(trainedNN)

runtime is excessive. For each hyperparameter, the PSO execution time was as
follows: for batch optimisation 4 hours, for the number of epoch optimisation
3 hours and for learning rate optimisation 4 hours, in total requiring 11 hours
for optimisation. Additionally, training of the final deep MLP model required 7
minutes, while the prediction speed was 14,762 records/second. Regarding the
time complexity of the proposed PDF, it is equal to O(ne ∗ np ∗ nh) + O(mlp),
where ne is the number of epochs, np the number of particles that the PSO will
use and nh the number of hyperparameters to be optimised.

5.6. Architectural Design of Deploying proposed PDF in
IoT Networks

In this section, we discuss an architectural design that illustrates the deployment
of the proposed particle deep framework in IoT networks of smart homes, as an
example of current smart systems, as shown in Figure 5.3. A typical IoT system
architecture can be organized into three groups, the IoT layer, network layer and
the cloud layer [270].

Our proposed framework could be easily deployed at the network layer, as its
actions focus on tracing and discriminating between normal and attack vectors.
Network traffic is usually encrypted on the Internet and real-world production
networks, which hinders the analysis of payload data, while privacy laws may
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Fig. 5.3: Architectural design of deploying the proposed network forensic framework in
IoT networks

also cause problems. As such, network flow analysis is used in this research to
train and validate the proposed framework to avoid Law enforcement and privacy
restrictions.

In the IoT layer, smart devices operate and interact with one another, via a
local communication protocol such as ZigBee, Bluetooth or WiFi. Collected data
is transmitted and commands that are issued through the network layer, which
typically involves a coordinator and a sensor bridge device on the IoT layer side. A
protocol that is often used by IoT systems is Message Queue Telemetry Transport
(MQTT). MQTT is an application layer protocol that sits on top of the TCP/IP
stack and enables high-speed and low bandwidth network communication thus
lowering power requirements for the devices involved [319]. It is worth mentioning
here that MQTT is stacked under TCP, so attacks such as DoS, DDoS, scanning
could be types of MQTT attacks.

The MQTT protocol is utilized, in order to publish and subscribe to network
data that reach the Cloud layer, where users can access the collected data, or man-
age their IoT services. The Cloud layer is organized into four categories depend-
ing on the type of service they provide, which are Platform-as-a-Service (PaaS),
Infrastructure-as-a-Service (IaaS), Software-as-a-Service (SaaS) and Thing-as-a-
Service (TaaS) [320].

SaaS provides ready cloud-based software over the Internet, that is maintained
by a third party and can be readily accessed by users. PaaS provides a platform,
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which comes with the tools necessary, including storage and cloud resources, for
software development and maintenance. IaaS provides direct access to remote
resources, either in virtual or in physical form, that the users operate and manage.
TaaS is a newer concept, where network and data storage and analysis services
are provided, in a way that makes them easy to integrate with deployed IoT
systems. In this, TaaS resembles PaaS, as both provide configured platforms for
development and analysis.

Essentially, a smart home is designed to offer comfort and efficiency through
automation. As with IoT devices themselves, smart home deployments come in
many shapes and forms. As such, they may be comprised of smart locks and
music systems, which can be remotely activated and managed. For example, a
realistic smart home deployment that was employed by Koroniotis et a. [265] to
develop the Bot-IoT dataset, which has been used for this research, consisted of
five IoT devices. Specifically, the IoT devices include a smart fridge, smart air-
conditioning system, smart thermostat, smart lights and smart garage door. The
proposed framework could be used to investigate security events involving Botnet
activity and their origin in smart homes and other smart systems.

5.7. Experimental results and discussions

5.7.1. Datasets used and evaluation criteria

The Bot-IoT dataset [265] incorporates normal and attack traffic, including IoT
traffic that was generated from Node-Red with 72.000.000 records and at 16.7 GB
for the finalized dataset and combined pcap files at 69.3 GB. The UNSW-NB15
dataset [57] was generated by using the IXIA PerfectStorm tool, generating a
number of diverse attacks, with the pcap files totalling at 100GB. We used these
two datasets in this research, as they are both relatively new and both represent
realistic normal traffic and attack scenarios. For training and testing, the Bot-IoT
dataset was split in 80% and 20% respectively, resulting in 2.934.817 training and
733.705 testing records.

To evaluate and compare the trained models’ performance, the following met-
rics are used:
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• Accuracy: The fraction of correctly classified records from the total number
of records.

(TP + TN)/(TP + TN + FP + FN) (5.7.1)

• Precision: The fraction of records correctly classified as “Positive” from the
records predicted as “Positive”.

TP/(TP + FP ) (5.7.2)

• Recall: The fraction of records correctly classified as “Positive” from the
total number of records that were “Positive”.

TP/(TP + FN) (5.7.3)

• FPR: The fraction of records falsely classified as “Positive” from the number
of records that were “Negative”.

FP/(FP + TN) (5.7.4)

FNR: The fraction of records falsely classified as “Negative” from the number
of records that were “Positive”.

FN/(FN + TP ) (5.7.5)

• F-measure: The harmonic mean of Precision and Recall.

2TP/(2TP + FP + FN) (5.7.6)

The proposed particle deep framework was developed on a laptop outfitted with
16GB RAM, Intel Core i7-6700HQ CPU @2.6GHz and an NVIDIA GeForce GTX
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970M. Python code was used to build and train the DNN model, as-well-as identify
the hyperparameters through PSO. Specifically, the following python packages
were used: Numpy and Pandas for matrix manipulation and data pre-processing,
Keras which provided a high-level interface with the TensorFlow backend package
and Optunity for the PSO process [321].

5.7.2. Results and Discussions

The experimentation results of evaluating the proposed Deep Particle Framework
(DPF) using the evaluation metrics are explained in this subsection. In order
to determine the neural network to use, a number of different architectures were
tested, with their results presented in Table 5.1. The hyperparameters utilised are
“epochs”: “2”, “batch_size”: “512”, “learning_rate”: “0.001”, with the activation
function of hidden layers being “relu” and for the output layer “sigmoid”. These
hyper-parameters are by no means ideal for training but were arbitrarily chosen to
help while comparing the effectiveness of the models. As such, we fed the output
of the model to a single layer, single neuron Perceptron, with activation function
“sigmoid”, to obtain meaningful results.

Neural networks have been used to great success in a number of diverse fields,
including cybersecurity and network forensics, proving their robustness and flex-
ibility [322, 323]. Among the various neural network versions, the Multi-Layer
Perceptron (MLP) is considered to be simple but powerful as it is capable of mod-
elling data that is non-linearly separable. Similarly, two neural networks that in-
corporate the concept of memory in their inner workings are the Recurrent Neural
Network (RNN) and the Long-Short Term Memory RNN (LSTM-RNN), which
have been applied in a significant portion of the work related to cybersecurity
[324, 325].

Recurrent Neural Networks, for instance, have been employed in various Intru-
sion Detection System deployments [157, 323]. Long-Short Term Memory RNNs
improve on the RNNs by having the added ability to regulate when the network’s
memory should be updated, thus displaying better performance when classifying
data in sequence. As this work seeks to identify the best neural network to use for
the task of detecting Botnet activities in network captures where IoT devices were
active, an empirical method was employed, where unoptimised neural networks
were trained and tested on the same data. Then, by comparing their performance,
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the neural network best suited for the task of identifying botnet traces and dif-
ferentiating them from normal traffic was identified. As such, the results of this
empirical study are presented in Table 5.3.

An attempt was made to train an RNN with timesteps equal to Records,
grouped by attack category, but handling this models output proved to be difficult.
Additionally, the third, and deepest model could not be trained for timesteps=#records,
as the memory requirements exceeded the existing RAM. As such, we grouped the
Records in a window of 10 and trained the models ( timesteps=10_Records).

Choosing timesteps=10 for the Bot-IoT dataset yielded the worst results. Even
though it mostly displayed high values of accuracy (approximately 99.9% for most
models), that value was misleading, as after considering the other metrics (speci-
ficity, recall, precision and NPV) and viewing the confusion matrices, it became
evident that the model could not identify the negative class (normal traffic).

It should be noted here, that in our experiments the models that were trained
appear to achieve good performance, with high accuracy, precision and recall,
with small values of FNR, but also indicate high values of FPR. This can be
explained by the fact that the models that were tested were not optimised, and
that the Bot-IoT dataset has an imbalance, with more records representing attack
scenarios that normal network traffic. Thus, by misclassifying normal records as
attack instances, the classifiers minimised the error value used during training.
To avoid this issue while training the final three deep MLP models, which are
compared in Table ~5.4, weights were introduced to the logistic cost function.

In order to identify the best model to be used for the Network Forensic frame-
work, Table ~ 5.3was constructed, which arranges the tested models in order, based
on their average values, for the aforementioned five metrics (Accuracy, Precision,
Recall, Specificity and Negative Predictive Value), as given in Table ~ 5.2.
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Table 5.1: Produced Metrics, organized by model structure and type.
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Table 5.2: Average metrics.

Models
\Metrics

Avg.
Acc

Avg.
Preci-
sion

Avg. Re-
call

Avg.
FPR

Avg. FNR Avg. F-
measure

MLP 0.999 0.999 0.999 0.417 1.065*10−5 0.999
RNN_Timestep=
1

0.999 0.999 0.999 0.401 1.734*10−5 0.999

RNN_Timestep=
Features

0.999 0.999 0.999 0.615 8.674*10−6 0.999

RNN_Timestep=
10

0.999 0.999 0.999 0.903 3.395*10−6 0.999

Table 5.3: Relative Position of models, with regards to the metrics and their
performance.

1st 2nd 3rd 4th

Avg. Acc MLP,
RNN_Timestep=
1

RNN_Timestep=
Features

RNN_Timestep=
10

-

Avg. Precision MLP,
RNN_Timestep=
1

RNN_Timestep=
Features

RNN_Timestep=
10

-

Avg. Recall RNN_Timestep=
10,
RNN_Timestep=
Features

MLP,
RNN_Timestep=
1

- -

Avg. FPR RNN_Timestep=
1

MLP RNN_Timestep=
Features

RNN_Timestep=
10

Avg. FNR RNN_Timestep=
Features

RNN_Timestep=
10

RNN_Timestep=
1

MLP

Avg. F-
measure

MLP RNN_Timestep=
1

RNN_Timestep=
Features

RNN_Timestep=
10

As can be seen, the best performance on average was achieved by the RNN with
1 timestep model. Second, best was MLP and RNN with timeteps= features, while
the worst performance was displayed when an RNN was trained with timesteps=10
(data appropriately re-shaped). It can be argued that an RNN with timestep=1
is equivalent to an MLP, with some added weight. As such, and based on the
performances displayed here, the model best suited for the task of creating a
network forensics framework appears to be the MLP model type.
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Table 5.4: Neural Networks that were trained.

(i) Unoptimised
NN

(ii) Optimised
NN with com-
pressed input

(iii) Optimised
NN with 13-
features input

Neurons per
layer

13, 20, 40, 60, 80,
40, 10, 1

1, 20, 40, 60, 80,
40, 10, 1

13, 20, 40, 60, 80,
40, 10, 1

Epochs 2 12 12
Batch size 350 3064 732
Learning
rate

0.2 0.0015 0.0015

Accuracy 0.999 0.947 0.999
Precision 0.999 0.999 1
Recall 0.999 0.947 0.999
FPR 0.884 0.081 0
FNR 9.269*10−5 0.052 9.541*10−5

F-measure 0.999 0.973 0.999

A method for compressing the data was employed to investigate its effects on
the performance metrics of the models. The process involves first passing each
feature value through the Probability Density Function of the Normal Distribu-
tion, then multiplying the records (row-wise) with weights which were obtained
by averaging the correlation coefficient matrix of the features and then adding the
values, combining them into a single min-maxed normalized feature.

In order to tackle the class imbalance present in the Bot-IoT dataset between
normal and attack traffic, we applied weights. Namely, the weights used were
“1” for attack instances and “4500” for the normal instances. Following that, by
employing the PDF, we obtained the following results for a deep neural network
with the layers and neurons depicted in Table 5.4. Additionally, we explicitly set
random seed values for both the PSO process and the neural network model, to
ensure reproducibility. For the initialization of weights, we used glorot uniform.

In table 5.4, we present three trained neural networks. Starting with (i), this
is an initial, unoptimised neural network, for which hyperparameters were arbi-
trarily chosen. Although it achieved high accuracy, the model performed poorly,
as it achieved an FPR of 0.8846 (88.46%). The model’s accuracy is high, due
to an imbalance between normal and attack traffic in the Bot-IoT dataset. To
compensate for this, during training, we applied weights as discussed above.

Next, (ii) is an MLP where the initial 13 features were combined into one. We
pursued this option, to reduce the already considerable training time. The com-
pression process was previously described. It should be noted, that the accuracy
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Fig. 5.4: (i) Unoptimised NN Fig. 5.5: (ii) Optimised NN with
compressed input

Fig. 5.6: (iii) Optimised NN with 13-features input

of close to 95% was achieved, although FPR and FNR were not decreased further
than 8% and 5% respectively. Finally, (iii) represents the optimised MLP with the
original 13 features. Compared to compressed input NN (ii), the only difference
in the trained hyperparameter values was the batch size, which for the 13-feature
input NN (iii) was a smaller 732. This network displayed the best performance
out of all the networks we trained, while also reducing the FPR and FNR to close
to 0.
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Fig. 5.7: 13-Feature Model structure.

There are a few reasons why the 13-feature NN (iii) outperformed the com-
pressed input NN(ii). To begin with, the single input model compressed the avail-
able information from 13 features, quite possibly causing significant information
loss. Additionally, the 13-feature MLP had more connections, and thus weights
between the input layer and the first hidden layer. Specifically, (iii) had 260 train-
able weights, while the compressed input NN (ii) had 20, which can lead the former
to learn more complex patterns in the data. Figure 5.7 depicts the 13-feature deep
MLP (iii) model that was obtained by using the PDF.

From a network forensics point of view, the PDF is a useful tool. It can
be used to detect attack traffic present in a packet capture file collected from a
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crime scene or a monitored network. By doing so, the origins of the attack can
be established, assisting analysts with establishing a timeline of events, leading
to the identification of the attack’s target and sometimes the attacker’s motive.
Additionally, as it uses network flow information instead of performing deep packet
inspection, privacy concerns are nullified. All of these concerns are important when
introducing digital evidence in a court of law.

The PDM has some advantages, for example, it automates the process of defin-
ing hyperparameters, arguably a difficult process as there exists no explicit way of
defining a “good” set of hyperparameters. Furthermore, the used deep architec-
ture makes the model capable of capturing complex patterns in data, improving
its expressiveness. On the other hand, one disadvantage of the PDM is that it
is time-consuming. Each particle needs to train a new version of the network on
the newly discovered hyperparameter as it traverses the search-space. One way to
combat this and reduce time is by parallelizing each generation, so as to make all
the particles run at the same time.

5.8. Attack scenarios that validate the PDF

The dataset that was used to train the deep MLP model through the proposed
PDF, was the Bot-IoT dataset [265]. As such, the attack scenarios that can be
detected by the finalized deep classification model are presented here.

• Probing attacks [199] - are malicious information-gathering activities, utilized
by hackers in order to scan remote systems. Probing can be classified as either
passive, where an attacker simply records traffic that is being exchanged
by legitimate users and active, where an attacker exchanges traffic with the
victim, gathering information about the latter’s system through its responses.
Depending on the purpose of the probe, these attacks are further split into
Operating System and Service fingerprinting.

• Denial of Service [181] - are attacks that attempt to disrupt legitimate ser-
vices, that are being accessed by users remotely. These attacks are split into
two main subcategories, Distributed Denial of Service (DDoS) and Denial of
Service (DoS) attacks, which are carried out by organized and compromised
machines named Bots. As a secondary classification, DDoS and DoS attacks
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can be volumetric and protocol-based [202]. Volumetric attacks focus on
flooding their target with network traffic, while protocol-based attacks abuse
weaknesses found in Internet protocols. The attack scenarios present in the
Bot-IoT dataset include both DDoS and DoS with the following protocols
used: TCP, UDP and HTTP.

• Information Theft [204] - is a category of attacks where the goal of the at-
tacker is to extract sensitive data from the victim’s machine. Based on the
type of data that is targeted, these attacks can be split into two groups,
data theft and keylogging. In the case of data theft, the attacker seeks to
compromise the security of a remote machine and establish a reverse con-
nection, through which data may be exfiltrated. On the other hand, in the
case of keylogging, the attacker installs custom software on the remote ma-
chine, that records the keystrokes of the machine’s user, effectively stealing
any passwords that may be typed. The attacks in the dataset include both
keylogging and data theft (exfiltration) scenarios.

5.9. Comparisons with other network forensics
models-based Machine Learning

In this section, we compare the results obtained by the deep MLP that was trained
by using the PDF, with results previously reported in other research studies, pre-
sented in Chapters 3 and 4. In order to evaluate the effectiveness of various
machine learning models, [100] used the UNSW-NB15 dataset. The obtained re-
sults are compared to the new, optimised model. In addition, [265] trained some
machine learning models to evaluate the Bot-IoT dataset, which was used in this
research as well. These models include SVM, RNN and LSTM. As can be seen, the
new optimised model improves on the performance of previous implementations.

As can be seen in tables 5.5, 5.6, the proposed deep optimised neural network
(deep MLP), outperforms the other implementations that were trained both in the
Bot-IoT and the UNSW-NB15 datasets respectively. The deep model achieved the
highest accuracy and F-measure, while also the smallest FPR, FNR values, as the
PSO can precisely identify the best hyper-parameters of the MLP and then the
MLP can accurately discover cyber attack vectors and their attack families, as
explained below.
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Table 5.5: Comparison of DNN with previous classifiers.

13-Feature
DNN model

SVM RNN LSTM

Accuracy 0.999 0.883 0.997 0.997
Precision 1 1 0.999 0.999
Recall 0.999 0.883 0.997 0.997
FPR 0 0 0.733 0.687
FNR 9.541*10−5 0.116 2.5*10−3 2.492*10−3

F-measure 0.999 0.938 0.998 0.998

Table 5.6: Comparison of Bot-IoT generated DNN, with classifiers built on the
UNSW-NB15 dataset.

13-Feature
DNN model

ARM Decision tree Naïve Bayes Perceptron

Accuracy 0.999 0.856 0.932 0.727 0.639
Precision 1 0.908 0.948 0.92 0.642
Recall 0.999 0.895 0.944 0.627 0.984
FPR 0 0.255 0.09 0.095 0.97
FNR 9.541*10−5 0.104 0.055 0.372 0.015
F-measure 0.999 0.902 0.946 0.746 0.777

One of the main reasons behind the high FPR and FNR displayed by the other
ML models that were compared to the optimised deep MLP is that the realistic
cyber-attacks that are represented in the data are very close to the normal traffic.
In other words, the DoS and DDoS volumetric attacks display characteristics sim-
ilar to high-volume normal traffic, thus making discrimination between the two
difficult. Furthermore, deep architectures such as the one used in this paper (deep
MLP), that are comprised of multiple layers and neurons in each layer, render
neural network capable of recognizing more complex patterns in the data.

The unoptimised Perceptron, Association Rule Mining (ARM) and Naïve
Bayes classifiers produced highly erroneous results for various reasons. To be-
gin with, the Perceptron lacked the necessary complexity, which is introduced
through more layers and neurons, to model the patterns in the data. The ARM
seeks to identify strong rules in the data, which may lead to some subtle patterns
to be overlooked.

The Naïve Bayes, a probabilistic classifier, relies on the assumption of mutual
independence of the features given the class, which often hinders classification. The
Decision Tree’s (DT) performance was the closest to the optimised deep MLP.
One possibility for its performance could be that DTs classify data by creating
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perpendicular lines to the axis/dimensions (features), and the data was mostly
linearly separable.

Hyperparameter selection has tremendous impact on a neural network’s per-
formance. As selecting hyperparameters is not strictly defined by rigid rules that
can guarantee best results, the process was automated in the PDF, with each hy-
perparameter tuned separately one after another. By tuning each hyperparameter
separately, the dimensions of the search space that the swarm needs to traverse
are reduced. As such, the swarm can run for fewer iterations and gradually build
on previous results.

5.10. Identification of Attack families and their statistics

In the Bot-IoT dataset, a number of botnet-related attacks are represented in the
flows. These attacks form three groups, information gathering, information theft
and Denial of Service (DoS) and Distributed DoS (DDoS). Information gathering
attacks are activities which allow an attacker to identify the number, type and
version of services of a remote machine such as service scanning and OS finger-
printing. Information theft attacks make use of previously exploited machines to
steal sensitive information. From there, a bot can download documents present
on the computer, or it can start recording keystrokes, thus stealing credentials, for
example, keylogging and data theft attacks.

DoS attacks seek to render the remote services of a server unusable, and DDoS
are multiple instances of DDoS to disrupt resources through protocols such as TCP
and HTTP. Figure 5.8 shows the detection rate of the attack types included in the
Bot-IoT datasets. The proposed particle deep framework is capable of distinguish-
ing between normal and attack traffic with an accuracy of about 99.9%. Prediction
time for 733,705 records was 49.7 seconds, thus having a speed of prediction at
14,762 records/second. As such the model would be capable of identifying the
attacks present in the dataset.

In the UNSW-NB15 dataset, the network traffic that is represented includes
both normal and a number of attack types. In total, nine attack types are repre-
sented in the dataset, which can be grouped into the following groups: Information
gathering, Service disruption and Remote access. Analysis and Reconnaissance
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Fig. 5.8: Detection rate of attack types involved in the Bot-IoT dataset

traffic belongs to the Information gathering group, as they seek to extract infor-
mation from the remote target, ranging from open ports to identifying programs
and their version that has run in the target.

The Service disruption group included Fuzzers and DoS attacks. Fuzzers are
tasked with causing a program to suspend its normal operation by feeding it
randomly generated traffic. DoS attacks rely on flooding the remote host with
legitimate traffic, either depleting resources through sheer volume of information,
or by exploiting known protocol bugs. The rest of the attack traffic types (ex-
cluding Generic and Worm) are categorized under Remote access. These attacks
include Backdoors where, after using an Exploit, a Shellcode is delivered as a pay-
load to the remote target and a channel is established that allows stealthy access
to the remote target. Finally, Generic is a cryptographic-based attack that tack-
les block-cyphers with a given block and key size and Worms, which are viruses
that replicate itself and propagates to other computes in a network. The proposed
framework can identify and trace all the attack types included in the UNSW-NB15
datasets with an approximate 99.2% as depicted in Figure 5.9.

5.11. Advantages and limitations of the PDF

The advantages of the proposed framework are the automation of hyperparameter
selection, making manual optimisation obsolete. Additionally, the collection stage
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Fig. 5.9: Detection rate of attack types involved in the UNSW-NB15 dataset

utilizes software that is user-friendly and has been widely used in industry, thus
it has credibility. Furthermore, the integrity of data is considered and maintained
through functions, something that is very important, as forensic investigations
can be nullified if it can not be ensured that the data has not been tampered.
One disadvantage of the PDF would be the time of execution, as each move of a
particle in each iteration requires time equal to the training time of the model we
are optimising. As such, the PDF’s execution time is dependant to the volume
of training data. A possible remedy to this issue is the use of GPU and parallel
computing for the training of different particles.

More relating to the underline data used to train the deep MLP, the simulated
environment depicted several popular attacks, although it neglected to include any
IoT-specific attacks, as the IoT devices were simulated through the use of Node-
Red. The second limitation is related to the amount of time necessary to tune and
train a NN through PDF. As each particle propagates through the search space, it
effectively trains a version of the NN, with a different value for the hyperparameter
that is being tuned. Thus, depending on the size of the data, and the architecture
of the NN, time may be excessive. Finally, the PDF in its current form utilizes
network flow data. Although flow data bypass some of the restrictions brought
about by DPI, it relies on traffic statistics, ignoring information such as the payload
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which could help in the identification of attack traffic. Furthermore, overcoming
spoofing attacks, where the source IP has been altered, is a challenge.

Nevertheless, the proposed framework displayed a very high accuracy of de-
tection. One reason behind the PDF’s performance is the choice of a deep neural
network, which is suited to handling large quantities of data by default. Another
reason is the utilization of PSO to identify the optimal hyperparameters that
maximize the AUC of the model. Furthermore, compared to other frameworks
[291, 293] that focused on malware detection, the PDF bases its functionality on
processing network flow data, the statistics of which can be easily adapted for use
by a neural network.

5.12. Differences of the Network Forensic PDF and
traditional IDS

Network forensics encompasses a wide range of activities and tools that utilize
network traces. Included in these tools are Network Intrusion Detection Systems
(NIDS). NIDS are a type of construct, either hardware or software, that are de-
signed to detect unauthorised access to a system [57]. Based on the mechanism
used to distinguish between normal and attack traffic, NIDS are separated into sig-
nature and anomaly-based [57, 326]. The main differences between the two NIDS
types are that signature-based rely on known attack patterns, while anomaly-based
model normal behaviour and flag any deviations as attacks.

Although NIDSs and the PDF may share some similar underline mechanics,
their functionality and use-cases differ significantly. To begin with, the PDF is
a forensic tool that covers the major phases of a network forensic investigation,
while a NIDS is primarily utilized as a security tool. The PDF can be used by
an expert to collect, preserve and analyse network packets in accordance with the
forensic principles. On the other hand, NIDS only monitor network traffic, raising
alarms when they detect an abnormality, without collecting traffic or ensuring its
integrity [327].

Furthermore, NIDS tend to have high false alarm rates (FAR) [326]. This
phenomenon is explained by the way NIDS detect intrusions. Signature-based
NIDS, maintain a database of signatures of known attacks, thus they are unable
to detect unknown attacks. Anomaly-based NIDS model the legitimate traffic of
an average user, flagging any deviations even if they are produced by a legitimate
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user. Additionally, some attacks that resemble legitimate traffic, such as dos at-
tacks [328], may be confused as being legitimate by an anomaly-based NIDS. In
contrast, the PDF employs an optimised deep learning model as its classification
engine, capable of detecting attacks in network flows with very low FAR, and high
accuracy.

Finally, it should be noted, that network forensic frameworks, like the PDF,
are used to produce inferences on collected traffic. Through the analysis phase,
connections between the identified attacks are discovered [270]. These connections
may lead to the discovery of important information about the attacker, such as
their capabilities, their target and their methods. In comparison, NIDS can not
produce such results, although they can be combined with an Intrusion Preven-
tion System, to better protect a network of devices from attacks [327]. Finally,
the PDF incorporates in its procedure a feature extraction process along with a
hyperparameter optimisation process based on PSO, which caused its very high
accuracy and its near negligible error rates.

5.13. Conclusion

This chapter has introduced a new network forensics framework that is named
Particle Deep Framework (PDF) for discovering cyber-attacks and tracing them
in IoT networks. This is because Security incidents that target IoT networks
have been on the rise, as industry and the public adopt this new technology.
The stages of the network investigation process were detailed and the proposed
PDF was described. A Particle Swarm Optimisation (PSO) has been used to
adapt the best hyperparameters of Deep Learning. Then, a Multi-layer Perceptron
(MLP) neural network algorithm has been trained and validated using the Bot-IoT
and network datasets for evaluating the performance of the proposed PDF. The
proposed framework achieves high performances in terms of detection accuracy
and timely processing compared with other machine learning models. Specifically,
a deep MLP model was trained and tested on the Bot-IoT dataset, achieving an
accuracy of 0.999, FPR of 0 and FNR of 9.5*10−5 at a speed of 14,762 records
per second. An architectural design that demonstrated the way of deploying the
proposed framework in a network layer of IoT was described, using a smart home
as an example of smart systems. The next chapter provides a summary of the work
presented in this thesis, followed by future directions of research and concluding
remarks.
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Conclusion

6.1. Introduction

This thesis makes a significant contribution in the fields of Network Forensics and
Deep Learning, focusing specifically on Network Forensics for IoT environments.
Most existing network forensic solutions for the IoT focused on the acquisition
stage of an investigation, solving a significant problem, but ignoring the exam-
ination and analysis stages. However, differentiating between normal and attack
traffic is an important step of the forensic procedure, as attack traffic is identi-
fied and is used to understand the target, means and motives of a cyber attacker.
To that effect, training machine learning models is a viable solution for automat-
ing significant parts of the examination and analysis. As a result, in the work
presented in this thesis, machine learning techniques have been investigated and
incorporated into the presented network forensic framework.

However, developing forensic methods for IoT environments carry several im-
plementation challenges which may hinder their effectiveness. First, the lack of
standardization in the IoT means that each developer may implement IoT ap-
plications differently. As such, not only does this cause interoperability problems
between products from different vendors, it also hinders the creation of a unified
forensic solution that can be applied to any IoT device, regardless of the under-
line technologies. Second, the high speed with which the IoT generates network
traffic, along with its capability to produce huge volumes of data, hinders network
forensic investigations, as useful traffic is often either short-lived on the Internet,
or buried in non-useful data. Furthermore, in order to evaluate the effectiveness of
network forensic frameworks, especially for the examination and analysis stages,
the use of a high-quality dataset is of utmost importance. Unfortunately, research-
ers face low availability of datasets to work with, with available datasets either
being outdated, missing ground truth or not including IoT traffic.

The research study presented in this thesis provides significant contributions
to the body of research, addressing the aforementioned challenges to a consider-
able degree, with some of the limitations providing future directions for research,
as discussed in Sections 6.3 and 6.4 respectively. The main components of the
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proposed Particle Deep Framework, are a data source, pre-processing, hyperpara-
meter optimization and a deep learning model.

Initially, in Chapter 3 existing network datasets, and their potential applicabil-
ity to this research, were investigated. A review of the identified available network
datasets revealed that they were not suitable for the needs of this research, as some
were outdated, others lacked labels and yet others lacked IoT network traffic. As a
result, the need to develop a new dataset which would then be used in this research
became apparent. Initially, a suitable testbed was designed and constructed, com-
prised of virtual machines, which were chosen for their portability, inexpensiveness
and deployment speed. The testbed was then utilized to generate a new dataset,
called Bot-IoT, which combined current Botnet attack scenarios with IoT traffic.
During the generation of this new dataset, new features were generated, and fea-
ture selection was performed through a combination of statistical methods, namely
Correlation Coefficient and Joint Entropy. Analysis indicated high performance
for machine learning and deep learning models trained on this new dataset, al-
though, improvements could be made, something which was addressed in Chapter
5.

Secondly, in Chapter 4 the performance of both supervised and unsupervised
machine learning models tasked with distinguishing between normal and attack
traffic was investigated. For the purposes of this, three big data collections were
investigated, namely NSL-KDD, UNSW-NB15 and the new Bot-IoT. The two
other datasets were selected, due to their popularity, with NSL-KDD being one
of the most broadly used datasets for evaluating network forensic solutions to
date, while UNSW_NB15 is one of the newest network datasets available for
use by the research community. Experimental results, obtained by training 5
supervised models, including a deep learning model, and 2 unsupervised models,
support the applicability of machine learning for network forensics. Furthermore,
by comparing the performance of the trained models, the quality of the new Bot-
IoT dataset is established. Although the acquired results support the claim that
machine learning is a viable solution for network forensic applications, further
improvement is required, as it is of vital importance to minimize the false positive
and false negative rates.

Finally, in Chapter 5, a novel Network Forensic Framework for investigating
Botnet activities in the IoT was designed. The new framework, called Particle
Deep Framework (PSO), is based on a Deep Neural Network (DNN). The frame-
work covers various stages of the network forensic investigation process, including
traffic collection, examination and analysis. To improve its performance, and
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because there exists no standard method for selecting optimal hyperparameters,
which affect greatly the performance of machine learning models, a new method,
based on Particle Swarm Optimisation (PSO) was applied. This optimization
method automates the selection of hyperparameters, using performance metrics
to guide the movement of particles in the search space. Evaluating the perform-
ance of non-optimised and optimised DNNs, indicate a significant improvement in
performance, minimizing the false positive and negative rates, while maximizing
the accuracy.

The rest of this chapter is organized as follows. In Section 6.2 the key contri-
butions of this research are provided, while the limitations are presented in Section
6.3. Future directions for research are given in Section 6.4, with concluding re-
marks in Sections 6.5.

6.2. Contributions to Research

The key contributions of the work presented in this thesis are as follows.

• Design and construction of a new virtual testbed for the generation
of a new IoT network dataset, named Bot-IoT. Several virtual ma-
chines were connected in the testbed, representing a realistic, real-world net-
work and generating normal traffic along with Ostinato [62]. IoT devices were
represented in the network through Node-Red [61]. Attacks were launched
by using multiple tools found in the four Kali VMs, which played the role
of the attackers, such as Metasploit [63] and Hping3 [64]. By using T-shark
[65], pcap files of approximately 69 GB were captured, separated in 1 GB
files to make them easier to process.

Through Argus [191], and the use of scripts in the MySQL database, net-
work flow information was extracted from the original pcaps, made up of
72,000,000 records and 43 features 1 binary class feature and 2 category/sub-
category features which can be used for multiclass classification. From the
original records, approximately 5% was extracted into csv files, separated in
training and testing files. In total, there are 11 class values, a normal, and 10
attack types (OS scanning, service scanning, DDoS/DoS TCP/UDP/HTTP,
Keylogging, Data theft). The dataset was evaluated through the use of ma-
chine learning, establishing its usability for network forensic applications.
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• Performing analysis on the new Bot-IoT dataset. For the analysis of
Bot-IoT, two high-quality datasets are chosen, the UNSW-NB15 and NSL-
KDD. An initial analysis, to gauge the quality of the Bot-IoT, was performed
on three models, SVM, RNN and LSTM. The models that were then chosen
for the machine learning analysis, were five supervised models Association
Rule Mining, Artificial Neural Network, Naïve Bayes, Decision Tree, Deep
Belief Network and two unsupervised, namely K-Means and Expectation
Maximization.

Results from the initial analysis support the quality of the new Bot-IoT
network dataset and its applicability to network forensic solutions through
machine learning. Through the secondary machine learning analysis, it was
shown that machine learning models can distinguish between attacks and
normal traffic with high accuracy. These results support the use of machine
learning for network forensic frameworks and work to expand the perform-
ance of these models, through deep learning, as done in contributions 3 and
4.

• Identifying the optimal features for the deep learning model of the
new Particle Deep Framework. After generating the Bot-IoT dataset,
comprised of the full 43 features, feature selection needed to be performed, in
order to reduce its dimensionality and identify features that contribute the
most to the classification process and thus improve the performance of ma-
chine learning models. This was achieved by employing statistical analysis
and combining both the Pearson Correlation Coefficient (PCC), a measure
of linear similarity and the Shannon Joint Entropy (SJE), a measure of dis-
similarity/uncertainty between features.

Initially, a pare-wise matrix for both PCC and SJE was calculated. Then,
their average scores were calculated for each feature. These averages were
then compared, and the 10 least-similar features, that is, features with high
average entropy and low average correlation scores were selected. This pro-
cess was applied twice on the data, initially on the auto-generated network
flow features, which were produced by Ostinato [62] and then on a combin-
ation of the previous 10-best features and the 14 new features, thus arriving
at the final 10-best feature version of the dataset.
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• Development of a new network forensic framework for investigat-
ing Botnet incidents in IoT environments, based on deep learn-
ing, called Particle Deep Framework (PDF). The multiple stages of a
network forensic investigation process were considered for the design of the
PDF. Initially, acquisition is carried out through well-established software
like Tcpdump [311] or Wireshark [310]. Then, through the use of crypto-
graphic hashes, the collected information is preserved. Finally, for the stages
of examination and analysis, the PDF utilizes deep learning, in the form of
a Multi-Layer Perceptron (MLP).

The many layers of the MLP, ensure that the neural network can better
identify the underline patterns in the data, thus having improved perform-
ance, compared to shallower networks. An important part of training a neural
network is determining its hyperparameters, like the number of epochs, batch
size and learning rate. As there exists no standard methodology for selecting
optimal hyperparameters that improve the networks performance, a method
based on Particle Swarm Optimization (PSO) was employed. In this process,
the particles iteratively traverse the search space for each hyperparameter,
seeking to maximize the Area Under Curve (AUC) obtained from the Re-
ceiver Operating Characteristic (ROC) curve. Validating the process, yielded
significant accuracy, precision and recall, while maintaining low false positive
and false negative rates, with prediction speed at 14,762 records/second, thus
producing results in a reasonable time.

6.3. Limitations

In this section, the limitations of the main components of the PDF are explained.

To begin with, the first limitation has to do with attack representation in
the Bot-IoT dataset, specifically hacking IoT. In the virtual environment used to
generate the Bot-IoT, a smart home IoT system was simulated, through Node-
Red [61], with the smart IoT devices generating traffic to and from two MQTT
brokers. However, because of the simulated environment set-up, attacks involving
hacking and overcoming an IoT device’s security were impossible to generate. To
overcome this limitation, the testbed could be extended to include either virtual
copies of IoT devices or physical devices.
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The second limitation is the hyperparameter tuning time. Depending on the
input data (training data), training a deep model can be time-consuming. This
training time affects the optimization time, as presented in this thesis. The process
of identifying optimal hyperparameters, involves particles training an MLP model,
using their current position in the search space, thus obtaining the AUC value
which the swarm attempts to maximize. Thus, in each epoch, each particle trains
a version of the deep model, which is very time-consuming. One possible solution
to this issue would be to employ parallelization techniques through threads and
process for the particles in each epoch.

Finally, the PDF utilized network flow data to identify Botnet activities. Using
flows, the PDF is capable of analysing traffic even if it is encrypted, by relying on
the underline statistics of the communication. However, for the identification of
source and destination of attacks, the PDF relies on the corresponding source IP
and destination IP found in network flow records. In some cases, attackers may
mask their IP addresses, altering it to a fake one through a process known as IP
spoofing. In addition, some attacks utilize the IP spoofing technique as the basis
for their attacks, for example in amplification attacks [329, 330]. A solution to this
issue has been sought on a cybersecurity level through various schemes such as
monitoring the temporal characteristics of traffic [331]. Nevertheless, this remains
an open problem for research.

6.4. Future directions

In this section, we discuss research directions for future work based on exist-
ing challenges (of investigating botnets using forensics mechanism) that were not
covered by this research. Having reviewed some of the work conducted in the
discipline of network forensics, as described in Chapter 2, future directions of re-
search, both generally in forensics for IoT and specifically related to the research
presented in this thesis are explained in the following subsection, followed by open
questions.

6.4.1. Issues to be resolved

• Cloud storage of information- Locating the evidence in an IoT Botnet-
related security incident can also be challenging. In most implementations of
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the IoT, low-power physical devices are used as actuators, with local hubs and
network nodes employed to gather and transport the collected information
to a central Cloud Service provider. Through these Cloud Service providers,
IoT services become available to users [1]. With this scheme in mind and
knowing that actuators (the intelligent “things”) are equipped with a limited
amount of memory and power, data is quickly gathered and transferred to the
Cloud, freeing up space in the actuators for further tasks to take place. As
such, evidence will most probably be found in the Cloud, which introduces a
new family of challenges to forensic investigations, among which jurisdiction
limitations and conflicting laws are two prominent examples.

• Honeypot development- With some work already done in the field of
building convincing Honeypots specifically targeting IoT-related adversaries
[136, 137, 138], it is expected that further advances will be made. Some
ways of enhancing Honeypot implementations might include, making them
more resilient against anti-forensics mechanisms, increasing the number of
supported protocols thus increasing the range of mimicked IoT devices and
handling the massive quantities of incoming traffic which could be generated
by an IoT Botnet.

• Dealing with Variety, Veracity and Value of IoT data- Although
the field of network forensics as applied to the Internet of Things is still
in development, by reviewing research done on this conjunction of fields
(network forensics of IoT-botnets) it was observed that not much emphasis
was given on dealing with the following problematic issues:

– Variety- Data produced by the IoT may exist in either structured
(database tables), semi-structured (XML, JSON) or unstructured (audi-
ovisual files) form, depending on the type of device in question [163, 164].
At the same time, data produced by a single IoT system may be themat-
ically heterogeneous. For example, in an automated home, a thermostat
and some motion sensors can be connected to each other, so that when
the motion sensors detect motion, the thermostat sets the room tem-
perature to a preset value. Thus, with the possibility that in a single
IoT system there can exist any combination of heterogeneous devices
(Web cameras, digital locks, routers, thermostats), produced data, and
thus also evidence will vary in format, making it necessary for a process
capable of scanning diverse data and locating traces a necessity.
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– Value- With IoT introduced in several sectors of everyday life, such as
home automation, the health domain and more, concerns about privacy
arise [163, 164], as sensitive information is recorded, exchanged, main-
tained and stored by the IoT devices and their service providers. As
such, forensic investigations need to be conducted with a level of trans-
parency and steps must be taken to ensure that private data are not
exploited.

– Veracity- deployed in a dynamic world, it is easy for environmental
conditions to change inexplicably, causing the validity of recordings from
finely calibrated IoT sensors to be faulty and producing inaccurate, low
quality or noisy data [163]. As such, identifying such problems with the
collected data is a challenge, as “contaminated” data could lead to false
results in an investigation.

These characteristics of the IoT make applying network forensic techniques
established in conventional IT systems inapplicable, thus directing future
research towards dealing with these challenges [163]. Future directions of
research specifically related to the work presented in this thesis are as follows.

• In this research, PSO was utilised to select hyperparameters for a deep MLP
model that is a part of the PDF. In the future, this work could be expanded,
by applying the PSO hyperparameters selection method to other generative
deep neural networks. By doing so, the capabilities of multiple deep models
can be optimised in a similar fashion, allowing for their performance to be
compared and the best model selected for network forensic applications

• The network forensic framework PDF was designed and deployed by using
data simulating a smart home environment. As such, research can be per-
formed to provide more insights for deploying the PDF in other real-world
IoT networks. For example, the research could focus on applying the PDF
in smart health networks, where cyber-attacks can have dire consequences.

• In the Bot-IoT, various up-to-date cyber-attacks are represented in the net-
work traces. However, due to the virtualized nature of the testbed, some
attacks could not be simulated. As such, future research may focus on either
altering or re-designing the testbed, to incorporate physical IoT devices. By
doing so, attacks that focus on exploiting hardware limitations, or software
bugs present in the firmware could be generated, leading to an expanded
dataset.
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6.4.2. Open questions

In this subsection, open questions that may be used for future research are presen-
ted, based on the issues discussed in the previous subsection.

• How can the optimization process presented in the PDF be improved?

– Are there better choices for the objective function, than using the AUC?
– How can the optimization process be sped up?

• How can the PDF be utilised in other smart deployments?

• Can the Bot-IoT dataset be expanded to incorporate a more diverse range
of cyber-attacks?

– How can the proposed testbed be modified or updated, to incorporate
physical IoT devices?

– What are the attacks that specifically target IoT devices that can be
generated?

• Can the PDF’s functionality be extended to detect and combat IP spoofing?

6.5. Final Remarks

With the ever-increasing number of IoT devices connected to the Internet, and
considering their inherent security limitations and vulnerabilities, as-well-as their
always-on mode of operation, it is evident that they will continue to be targeted
for attackers and botnets. As such, using forensics to investigate security incid-
ents, where the IoT has been targeted or has taken part in the attack itself, is
of utmost importance. However, due to the lack of standardization and common
specifications, designing a unified forensic solution is very difficult. Thus, one vi-
able strategy is to utilize network forensics, as most IoT deployments make use of
the Internet to transfer data from the sensors/actuators to the Cloud backend.
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This thesis makes significant contributions to the field of Network Forensics
for investigating Botnets activities in IoT settings, by analysing captured network
traffic through 1) generating the Bot-IoT dataset, a new dataset with up-to-date
network attack traces and normal instances that incorporates IoT generated traffic;
2) analysing the Bot-IoT dataset, against two well known and widely used dataset,
to establish its quality and test the applicability of machine learning models for
the identification of network security events; 3) proposing a new network forensic
framework, called PDF, that incorporates deep learning for the detection of bot-
net activities and Particle Swarm Optimization for the identification of optimal
hyperparameters, in order to enhance the performance of the deep model.

In short, the proposed framework can be used to effectively detect botnet activ-
ities in network traces obtained from a network with IoT deployments. Through
the PSO method, optimal hyperparameters were chosen, improving the perform-
ance of the DNN (MLP) network, effectively reaching an accuracy of close to 1,
and false-positive/negative rates very close to 0. Furthermore, due to the use of
the deep model, the PDF is capable of rapidly producing results, at a speed of
over 14,000 predictions/second. Thus, the steps described by the proposed forensic
framework, along with the empirical results obtained during testing, support the
claim that the PDF can be used in real-world scenarios.
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[123] Martin Holkovič, Ondřej Ryšavỳ, and Jindřich Dudek. Automating network secu-

rity analysis at packet-level by using rule-based engine. In Proceedings of the 6th

Conference on the Engineering of Computer Based Systems, page 14. ACM, 2019.

[124] Sakshi Bansal, Mir Qaiser, Shefali Khatri, and Anchit Bijalwan. Botnet forensics

framework: Is your system a bot. In Advances in Computing and Communication

Engineering (ICACCE), 2015 Second International Conference on, pages 535–540.

IEEE, 2015.

[125] Fuye Han, Zhen Chen, HongFeng Xu, Haopei Wang, and Yong Liang. A collabora-

tive botnets suppression system based on overlay network. International Journal

of Security and Networks, 7(4):211–219, 2012.

[126] KS Karthika. Peer to peer botnet detection system. International Conference on

Information and Image Processing (ICIIP), 2014.

[127] Ying Zhu. Attack pattern discovery in forensic investigation of network attacks.

IEEE journal on selected areas in communications, 29(7):1349–1357, 2011.

221



Bibliography

[128] Duhoe Kim, Yong-Hyun Kim, Dongil Shin, and Dongkyoo Shin. Fast attack

detection system using log analysis and attack tree generation. Cluster Computing,

22(1):1827–1835, 2019.

[129] David Gugelmann, Fabian Gasser, Bernhard Ager, and Vincent Lenders. Hviz:

Http (s) traffic aggregation and visualization for network forensics. Digital Inves-

tigation, 12:S1–S11, 2015.

[130] Cliff Joslyn, Sutanay Choudhury, David Haglin, Bill Howe, Bill Nickless, and

Bryan Olsen. Massive scale cyber traffic analysis: a driver for graph database re-

search. In First International Workshop on Graph Data Management Experiences

and Systems, page 3. ACM, 2013.

[131] Bijalwan Anchit and Singh Harvinder. Investigation of udp bot flooding attack.

Indian Journal of Science and Technology, 9(21), 2016.

[132] Khalifa AlRoum, Abdulhakim Alolama, Rami Kamel, May El Barachi, and Mon-

ther Aldwairi. Detecting malware domains: A cyber-threat alarm system. In In-

ternational Conference on Emerging Technologies for Developing Countries, pages

181–191. Springer, 2017.

[133] Tamer Aldwairi, Dilina Perera, and Mark A Novotny. An evaluation of the perfor-

mance of restricted boltzmann machines as a model for anomaly network intrusion

detection. Computer Networks, 144:111–119, 2018.

[134] Chibuzor John Ugochukwu and EO Bennett. An intrusion detection system us-

ing machine learning algorithm. International Journal of Computer Science and

Mathematical Theory, 4(1):2545–5699, 2018.

[135] Yingsu Qi. Computer real-time location forensics method for network intrusion

crimes. IJ Network Security, 21(3):530–535, 2019.

[136] Yin Minn Pa Pa, Shogo Suzuki, Katsunari Yoshioka, Tsutomu Matsumoto,

Takahiro Kasama, and Christian Rossow. Iotpot: analysing the rise of iot com-

promises. In 9th {USENIX} Workshop on Offensive Technologies ({WOOT} 15),

2015.

222



Bibliography

[137] Juan David Guarnizo, Amit Tambe, Suman Sankar Bhunia, Martín Ochoa,

Nils Ole Tippenhauer, Asaf Shabtai, and Yuval Elovici. Siphon: Towards scalable

high-interaction physical honeypots. In Proceedings of the 3rd ACM Workshop on

Cyber-Physical System Security, pages 57–68. ACM, 2017.

[138] Meng Wang, Javier Santillan, and Fernando Kuipers. Thingpot: an interactive

internet-of-things honeypot. Joint, 2017.

[139] Peter J Hanson, Lucas Truax, and David D Saranchak. Iot honeynet for mili-

tary deception and indications and warnings. In Autonomous Systems: Sensors,

Vehicles, Security, and the Internet of Everything, volume 10643, page 106431A.

International Society for Optics and Photonics, 2018.

[140] Usha Devi Gandhi, Priyan Malarvizhi Kumar, R Varatharajan, Gunasekaran

Manogaran, Revathi Sundarasekar, and Shreyas Kadu. Hiotpot: surveillance on

iot devices against recent threats. Wireless personal communications, pages 1–16,

2018.

[141] Tongbo Luo, Zhaoyan Xu, Xing Jin, Yanhui Jia, and Xin Ouyang. Iotcandyjar:

Towards an intelligent-interaction honeypot for iot devices. Black Hat, 2017.

[142] Rajesh Kumar Shrivastava, Bazila Bashir, and Chittaranjan Hota. Attack detec-

tion and forensics using honeypot in iot environment. In International Conference

on Distributed Computing and Internet Technology, pages 402–409. Springer, 2019.

[143] Thien Duc Nguyen, Samuel Marchal, Markus Miettinen, Minh Hoang Dang,

N Asokan, and Ahmad-Reza Sadeghi. D\" iot: A crowdsourced self-learning ap-

proach for detecting compromised iot devices. arXiv preprint arXiv:1804.07474,

2018.

[144] Yair Meidan, Michael Bohadana, Yael Mathov, Yisroel Mirsky, Asaf Shabtai, Do-

minik Breitenbacher, and Yuval Elovici. N-baiot-network-based detection of iot

botnet attacks using deep autoencoders. IEEE Pervasive Computing, 17(3):12–22,

2018.

223



Bibliography

[145] Mario Galluscio, Nataliia Neshenko, Elias Bou-Hard, Yongliang Huang, Nasir

Ghani, Jorge Crichigno, and Georges Kaddoum. A first empirical look on internet-

scale exploitations of iot devices. In Personal, Indoor, and Mobile Radio Commu-

nications (PIMRC), 2017 IEEE 28th Annual International Symposium on, pages

1–7. IEEE, 2017.

[146] Marco Antonio Sotelo Monge, Andrés Herranz González, Borja Lorenzo Fernández,

Diego Maestre Vidal, Guillermo Rius García, and Jorge Maestre Vidal. Traffic-flow

analysis for source-side ddos recognition on 5g environments. Journal of Network

and Computer Applications, 136:114–131, 2019.

[147] Ahmad W Al-Dabbagh, Yuzhe Li, and Tongwen Chen. An intrusion detection

system for cyber attacks in wireless networked control systems. IEEE Transactions

on Circuits and Systems II: Express Briefs, 65(8):1049–1053, 2018.

[148] Jonathan Roux, Eric Alata, Guillaume Auriol, Vincent Nicomette, and Mohamed

Kaâniche. Toward an intrusion detection approach for iot based on radio commu-

nications profiling. In 13th European Dependable Computing Conference, page 4p,

2017.

[149] Nalam Venkata Abhishek, Teng Joon Lim, Biplab Sikdar, and Anshoo Tandon.

An intrusion detection system for detecting compromised gateways in clustered iot

networks. In 2018 IEEE International Workshop Technical Committee on Com-

munications Quality and Reliability (CQR), pages 1–6. IEEE, 2018.

[150] Kai Yang, Jie Ren, Yanqiao Zhu, and Weiyi Zhang. Active learning for wireless

iot intrusion detection. arXiv preprint arXiv:1808.01412, 2018.

[151] Nour Moustafa, Benjamin Turnbull, and Kim-Kwang Raymond Choo. An ensem-

ble intrusion detection technique based on proposed statistical flow features for

protecting network traffic of internet of things. IEEE Internet of Things Journal,

2018.

224



Bibliography

[152] Mohammed Saber, Ilhame El Farissi, Sara Chadli, Mohamed Emharraf, and Mo-

hammed Ghaouth Belkasmi. Performance analysis of an intrusion detection sys-

tems based of artificial neural network. In Europe and MENA Cooperation Ad-

vances in Information and Communication Technologies, pages 511–521. Springer,

2017.

[153] Elike Hodo, Xavier Bellekens, Andrew Hamilton, Christos Tachtatzis, and Robert

Atkinson. Shallow and deep networks intrusion detection system: A taxonomy

and survey. arXiv preprint arXiv:1701.02145, 2017.

[154] Min-Joo Kang and Je-Won Kang. Intrusion detection system using deep neural

network for in-vehicle network security. PloS one, 11(6):e0155781, 2016.

[155] Quamar Niyaz, Weiqing Sun, and Ahmad Y Javaid. A deep learning based

ddos detection system in software-defined networking (sdn). arXiv preprint

arXiv:1611.07400, 2016.

[156] Mohammad Lotfollahi, Ramin Shirali Hossein Zade, Mahdi Jafari Siavoshani, and

Mohammdsadegh Saberian. Deep packet: A novel approach for encrypted traffic

classification using deep learning. arXiv preprint arXiv:1709.02656, 2017.

[157] Chuanlong Yin, Yuefei Zhu, Jinlong Fei, and Xinzheng He. A deep learning ap-

proach for intrusion detection using recurrent neural networks. IEEE Access,

5:21954–21961, 2017.

[158] Guangzhen Zhao, Cuixiao Zhang, and Lijuan Zheng. Intrusion detection using

deep belief network and probabilistic neural network. In Computational Science

and Engineering (CSE) and Embedded and Ubiquitous Computing (EUC), 2017

IEEE International Conference on, volume 1, pages 639–642. IEEE, 2017.

[159] Nathan Shone, Tran Nguyen Ngoc, Vu Dinh Phai, and Qi Shi. A deep learning

approach to network intrusion detection. IEEE Transactions on Emerging Topics

in Computational Intelligence, 2(1):41–50, 2018.

[160] Mohammad Wazid, Ashok Kumar Das, Neeraj Kumar, and Athanasios V Vasi-

lakos. Design of secure key management and user authentication scheme for fog

computing services. Future Generation Computer Systems, 91:475–492, 2019.

225



Bibliography

[161] Srinivas Jangirala, Ashok Kumar Das, and Athanasios V Vasilakos. Designing

secure lightweight blockchain-enabled rfid-based authentication protocol for supply

chains in 5g mobile edge computing environment. IEEE Transactions on Industrial

Informatics, 2019.

[162] Harsha Vasudev, Debasis Das, and Athanasios V Vasilakos. Secure message prop-

agation protocols for iovs communication components. Computers & Electrical

Engineering, 82:106555, 2020.

[163] Feng Chen, Pan Deng, Jiafu Wan, Daqiang Zhang, Athanasios V Vasilakos, and

Xiaohui Rong. Data mining for the internet of things: literature review and

challenges. International Journal of Distributed Sensor Networks, 11(8):431047,

2015.

[164] Mauro Conti, Ali Dehghantanha, Katrin Franke, and Steve Watson. Internet of

things security and forensics: Challenges and opportunities. Future Generation

Computer Systems, 78:544–546, 2018.

[165] Nour Moustafa, Benjamin Turnbull, and Kim-Kwang Raymond Choo. Towards

automation of vulnerability and exploitation identification in iiot networks. In

2018 IEEE International Conference on Industrial Internet (ICII), pages 139–145.

IEEE, 2018.

[166] Gabriel Arquelau Pimenta Rodrigues, Robson de Oliveira Albuquerque,

Flávio Elias Gomes de Deus, et al. Cybersecurity and network forensics: Analy-

sis of malicious traffic towards a honeynet with deep packet inspection. Applied

Sciences, 7(10):1082, 2017.

[167] Nour Moustafa. A systemic iot-fog-cloud architecture for big-data analytics and cy-

ber security systems: A review of fog computing. arXiv preprint arXiv:1906.01055,

2019.

[168] Chang Liu, Chi Yang, Xuyun Zhang, and Jinjun Chen. External integrity verifi-

cation for outsourced big data in cloud and iot: A big picture. Future generation

computer systems, 49:58–67, 2015.

226



Bibliography

[169] Nour Moustafa and Jill Slay. A network forensic scheme using correntropy-

variation for attack detection. In IFIP International Conference on Digital Foren-

sics, pages 225–239. Springer, 2018.

[170] Elike Hodo, Xavier Bellekens, Andrew Hamilton, Pierre-Louis Dubouilh, Ephraim

Iorkyase, Christos Tachtatzis, and Robert Atkinson. Threat analysis of iot net-

works using artificial neural network intrusion detection system. In Networks,

Computers and Communications (ISNCC), 2016 International Symposium on,

pages 1–6. IEEE, 2016.

[171] Pedro Garcia-Teodoro, J Diaz-Verdejo, Gabriel Maciá-Fernández, and Enrique

Vázquez. Anomaly-based network intrusion detection: Techniques, systems and

challenges. computers & security, 28(1-2):18–28, 2009.

[172] Nour Moustafa, Gideon Creech, Elena Sitnikova, and Marwa Keshk. Collaborative

anomaly detection framework for handling big data of cloud computing. In 2017

Military Communications and Information Systems Conference (MilCIS), pages

1–6. IEEE, 2017.

[173] Nour Moustafa, Kim-Kwang Raymond Choo, Ibrahim Radwan, and Seyit

Camtepe. Outlier dirichlet mixture mechanism: Adversarial statistical learning

for anomaly detection in the fog. IEEE Transactions on Information Forensics

and Security, 2019.

[174] Kun Wang, Miao Du, Yanfei Sun, Alexey Vinel, and Yan Zhang. Attack detec-

tion and distributed forensics in machine-to-machine networks. IEEE Network,

30(6):49–55, 2016.

[175] Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Düssel, and Pavel Laskov.

Learning and classification of malware behavior. In International Conference on

Detection of Intrusions and Malware, and Vulnerability Assessment, pages 108–

125. Springer, 2008.

[176] Thuy TT Nguyen and Grenville Armitage. A survey of techniques for internet

traffic classification using machine learning. IEEE Communications Surveys &

Tutorials, 10(4):56–76, 2008.

227



Bibliography

[177] Nour Moustafa, Gideon Creech, and Jill Slay. Flow aggregator module for

analysing network traffic. In Progress in Computing, Analytics and Networking,

pages 19–29. Springer, 2018.

[178] Olivier De Vel, Alison Anderson, Malcolm Corney, and George Mohay. Mining e-

mail content for author identification forensics. ACM Sigmod Record, 30(4):55–64,

2001.

[179] Esraa Alomari, Selvakumar Manickam, BB Gupta, Parminder Singh, and Mo-

hammed Anbar. Design, deployment and use of http-based botnet (hbb) testbed.

In Advanced Communication Technology (ICACT), 2014 16th International Con-

ference on, pages 1265–1269. IEEE, 2014.

[180] Sajal Bhatia, Desmond Schmidt, George Mohay, and Alan Tickle. A framework

for generating realistic traffic for distributed denial-of-service attacks and flash

events. Computers & Security, 40:95–107, 2014.

[181] Sunny Behal and Krishan Kumar. Detection of ddos attacks and flash events

using information theory metrics–an empirical investigation. Computer Commu-

nications, 103:18–28, 2017.

[182] Dipa Soni and Ashwin Makwana. A survey on mqtt: a protocol of internet of

things (iot). In Proceeding of the International Conference on Telecommunication,

Power Analysis and Computing Techniques, Chennai: IN, 2017.

[183] Nour Moustafa. New generations of internet of things datasets for cybersecurity

applications based machine learning: Ton_iot datasets.

[184] S Terry Brugger and Jedidiah Chow. An assessment of the darpa ids evaluation

dataset using snort. UCDAVIS department of Computer Science, 1(2007):22, 2007.

[185] Gabriel Maciá Fernández, José Camacho, Roberto Magán-Carrión, Pedro Garcıa-

Teodoro, and Roberto Theron. Ugr’16: A new dataset for the evaluation of

cyclostationarity-based network idss.

[186] Monowar H Bhuyan, Dhruba K Bhattacharyya, and Jugal K Kalita. Towards

generating real-life datasets for network intrusion detection. IJ Network Security,

17(6):683–701, 2015.

228



Bibliography

[187] Center of applied internet data analysis.

[188] Lawrence berkley national laboratory (lbnl), icsi, lbnl/icsi enterprise tracing

project, 2005.

[189] University of new Brunswick Canadian Institute of Cybersecurity. Iscx dataset.

[190] Adel Ammar. A decision tree classifier for intrusion detection priority tagging.

Journal of Computer and Communications, 3(04):52, 2015.

[191] Argus (audit record generation and utilization system).

[192] Esxi hypervisor.

[193] vsphere client.

[194] Iot hub aws.

[195] Mosquitto mqtt broker.

[196] Cron scheduling package.

[197] Swati Paliwal and Ravindra Gupta. Denial-of-service, probing & remote to user

(r2l) attack detection using genetic algorithm. International Journal of Computer

Applications, 60(19):57–62, 2012.

[198] Genevieve Bartlett, John Heidemann, and Christos Papadopoulos. Understanding

passive and active service discovery (extended). Technical report, Technical Report

ISI-TR-2007-642, USC/Information Sciences Institute, 2007.

[199] Nazrul Hoque, Monowar H Bhuyan, Ram Charan Baishya, Dhruba K Bhat-

tacharyya, and Jugal K Kalita. Network attacks: Taxonomy, tools and systems.

Journal of Network and Computer Applications, 40:307–324, 2014.

[200] Gordon Fyodor Lyon. Nmap network scanning: The official Nmap project guide

to network discovery and security scanning. Insecure, 2009.

[201] Xprobe2.

[202] Saman Taghavi Zargar, James Joshi, and David Tipper. A survey of defense

mechanisms against distributed denial of service (ddos) flooding attacks. IEEE

communications surveys & tutorials, 15(4):2046–2069, 2013.

229



Bibliography

[203] Colin Tankard. Advanced persistent threats and how to monitor and deter them.

Network security, 2011(8):16–19, 2011.

[204] A Jesudoss and N Subramaniam. A survey on authentication attacks and counter-

measures in a distributed environment. Indian J Comput Sci Eng IJCSE, 5:71–77,

2014.

[205] Logkeys software.

[206] Hydra software.

[207] Yun Zheng and Chee Keong Kwoh. A feature subset selection method based on

high-dimensional mutual information. Entropy, 13(4):860–901, 2011.

[208] David Meyer and FH Technikum Wien. Support vector machines. R News,

1(3):23–26, 2001.

[209] Stephen Grossberg. Recurrent neural networks. Scholarpedia, 8(2):1888, 2013.

[210] Klaus Greff, Rupesh K Srivastava, Jan Koutník, Bas R Steunebrink, and Jür-

gen Schmidhuber. Lstm: A search space odyssey. IEEE transactions on neural

networks and learning systems, 28(10):2222–2232, 2017.

[211] Jeroen Pijpker and Harald Vranken. The role of internet service providers in botnet

mitigation. In 2016 European Intelligence and Security Informatics Conference

(EISIC), pages 24–31. IEEE, 2016.

[212] Sebastián García, Vojtěch Uhlíř, and Martin Rehak. Identifying and modeling

botnet c&c behaviors. In Proceedings of the 1st International Workshop on Agents

and CyberSecurity, page 1. ACM, 2014.

[213] Nour Moustafa and Jill Slay. A hybrid feature selection for network intrusion

detection systems: Central points. arXiv preprint arXiv:1707.05505, 2017.

[214] James Wyke. What is zeus? Sophos, May, 2011.

[215] Nickolaos Koroniotis, Nour Moustafa, and Elena Sitnikova. A new network forensic

framework based on deep learning for internet of things networks: A particle deep

framework. Future Generation Computer Systems, 2020.

230



Bibliography

[216] Kanubhai Patel and Bharat Buddhadev. Predictive rule discovery for network

intrusion detection. In Intelligent Distributed Computing, pages 287–298. Springer,

2015.

[217] Crina Grosan and Ajith Abraham. Rule-based expert systems. In Intelligent

Systems, pages 149–185. Springer, 2011.

[218] Ashkan Rahimian, Raha Ziarati, Stere Preda, and Mourad Debbabi. On the

reverse engineering of the citadel botnet. In International Symposium on Founda-

tions and Practice of Security, pages 408–425. Springer, 2013.

[219] Amir Houmansadr and Nikita Borisov. Botmosaic: Collaborative network water-

mark for the detection of irc-based botnets. Journal of Systems and Software,

86(3):707–715, 2013.

[220] Nathan Goodman. A survey of advances in botnet technologies. arXiv preprint

arXiv:1702.01132, 2017.

[221] Xiao-Jing Wang and Xiao-yin Wang. Topology-assisted deterministic packet mark-

ing for ip traceback. The Journal of China Universities of Posts and Telecommu-

nications, 17(2):116–121, 2010.

[222] P Banu Prakash and ES Phalguna Krishna. Achieving high accuracy in an attack-

path reconstruction in marking on demand scheme. i-Manager’s Journal on In-

formation Technology, 5(3):24, 2016.

[223] Kuan-Cheng Lin, Sih-Yang Chen, and Jason C Hung. Botnet detection using

support vector machines with artificial fish swarm algorithm. Journal of Applied

Mathematics, 2014, 2014.

[224] Julie Greensmith. Securing the internet of things with responsive artificial im-

mune systems. In Proceedings of the 2015 Annual Conference on Genetic and

Evolutionary Computation, pages 113–120. ACM, 2015.

[225] Networkminer tool.

[226] Bro tool.

[227] Snort tool.

231



Bibliography

[228] Nmap tool.

[229] Xplico tool.

[230] Pcapxray tool.

[231] Prads tool.

[232] Tcpstat tool.

[233] Anshul Tayal, Nishchol Mishra, and Sanjeev Sharma. Active monitoring & post-

mortem forensic analysis of network threats: A survey. International Journal of

Electronics and Information Engineering, 6(1):49–59, 2017.

[234] K Nandha Kumar and S Sukumaran. A survey on network intrusion detection

system techniques. International Journal of Advanced Technology and Engineering

Exploration, 5(47):385–393, 2018.

[235] Saad Alabdulsalam, Kevin Schaefer, Tahar Kechadi, and Nhien-An Le-Khac. In-

ternet of things forensics–challenges and a case study. In IFIP International Con-

ference on Digital Forensics, pages 35–48. Springer, 2018.

[236] R. C. Joshi and Emmanuel S. Pilli. Network Forensics, pages 3–16. Springer

London, London, 2016.

[237] Nour Moustafa, Gideon Creech, and Jill Slay. Big data analytics for intrusion

detection system: Statistical decision-making using finite dirichlet mixture models.

In Data analytics and decision support for cybersecurity, pages 127–156. Springer,

2017.

[238] Nguyen Thanh Van, Tran Ngoc Thinh, and Le Thanh Sach. An anomaly-based

network intrusion detection system using deep learning. In 2017 International

Conference on System Science and Engineering (ICSSE), pages 210–214. IEEE,

2017.

[239] Olivier Brun, Yonghua Yin, and Erol Gelenbe. Deep learning with dense random

neural network for detecting attacks against iot-connected home environments.

Procedia computer science, 134:458–463, 2018.

232



Bibliography

[240] Farha Ali. Ip spoofing. The Internet Protocol Journal, 10(4):1–9, 2007.

[241] Marios Anagnostopoulos, Georgios Kambourakis, Panagiotis Kopanos, Georgios

Louloudakis, and Stefanos Gritzalis. Dns amplification attack revisited. Computers

& Security, 39:475–485, 2013.

[242] Michal Kováčik, Michal Kajan, and Martin Žádník. Detecting ip spoofing by

modelling history of ip address entry points. In IFIP International Conference

on Autonomous Infrastructure, Management and Security, pages 73–83. Springer,

2013.

[243] Girish Chandrashekar and Ferat Sahin. A survey on feature selection methods.

Computers & Electrical Engineering, 40(1):16–28, 2014.

[244] Danny Roobaert, Grigoris Karakoulas, and Nitesh V Chawla. Information gain,

correlation and support vector machines. In Feature extraction, pages 463–470.

Springer, 2006.

[245] Nathaniel FG Martin and James W England. Mathematical theory of entropy,

volume 12. Cambridge university press, 2011.

[246] Lior Rokach and Oded Maimon. Decision trees. In Data mining and knowledge

discovery handbook, pages 165–192. Springer, 2005.

[247] Weka tool, August 2017.

[248] Fabrice Guillet and Howard J Hamilton. Quality measures in data mining, vol-

ume 43. Springer, 2007.

[249] Nour Moustafa and Jill Slay. The significant features of the unsw-nb15 and the

kdd99 data sets for network intrusion detection systems. In 2015 4th interna-

tional workshop on building analysis datasets and gathering experience returns for

security (BADGERS), pages 25–31. IEEE, 2015.

[250] Michael A Berry and Gordon S Linoff. Mastering data mining: The art and science

of customer relationship management. Industrial Management & Data Systems,

2000.

233



Bibliography

[251] Hetal Bhavsar and Amit Ganatra. A comparative study of training algorithms

for supervised machine learning. International Journal of Soft Computing and

Engineering (IJSCE), 2(4):2231–2307, 2012.

[252] Leonardo Noriega. Multilayer perceptron tutorial. School of Computing. Stafford-

shire University, 2005.

[253] Kudakwashe Zvarevashe, Innocent Mapanga, and Prudence Kadebu. A technical

evaluation of the performance of classical artificial intelligence (ai) and methods

based on computational intelligence (ci) ie supervised learning, unsupervised learn-

ing and ensemble algorithms in intrusion detection systems. 2016.

[254] Yoav Freund and Robert E Schapire. Large margin classification using the per-

ceptron algorithm. Machine learning, 37(3):277–296, 1999.

[255] Liyuan Xiao, Yetian Chen, and Carl K Chang. Bayesian model averaging of

bayesian network classifiers for intrusion detection. In 2014 IEEE 38th Interna-

tional Computer Software and Applications Conference Workshops, pages 128–133.

IEEE, 2014.

[256] Sonepat Area and Ranchi Mesra. Analysis of bayes, neural network and tree

classifier of classification technique in data mining using weka. 2012.

[257] Yuming Hua, Junhai Guo, and Hua Zhao. Deep belief networks and deep learning.

In Proceedings of 2015 International Conference on Intelligent Computing and

Internet of Things, pages 1–4, Jan 2015.

[258] Jaehoon Koo and Diego Klabjan. Improved classification based on deep belief

networks. arXiv preprint arXiv:1804.09812, 2018.

[259] albertbup. A python implementation of deep belief networks built upon numpy

and tensorflow with scikit-learn compatibility, 2017.

[260] Junjie Wu. Cluster analysis and k-means clustering: an introduction. In Advances

in K-means Clustering, pages 1–16. Springer, 2012.

[261] Xin Jin and Jiawei Han. Expectation Maximization Clustering, pages 382–383.

Springer US, Boston, MA, 2010.

234



Bibliography

[262] Frank Dellaert. The expectation maximization algorithm. Technical report, Geor-

gia Institute of Technology, 2002.

[263] N Moustaf and Jill Slay. Creating novel features to anomaly network detection

using darpa-2009 data set. In Proceedings of the 14th European Conference on

Cyber Warfare and Security. Academic Conferences Limited, pages 204–212, 2015.

[264] Frans Botes, Louise Leenen, and Retha De La Harpe. Ant colony induced decision

trees for intrusion detection. In 16th European Conference on Cyber Warfare and

Security, pages 53–62. ACPI, 2017.

[265] Nickolaos Koroniotis, Nour Moustafa, Elena Sitnikova, and Benjamin Turnbull.

Towards the development of realistic botnet dataset in the internet of things for

network forensic analytics: Bot-iot dataset. Future Generation Computer Systems,

2019.

[266] Nour Moustafa and Jill Slay. The evaluation of network anomaly detection systems:

Statistical analysis of the unsw-nb15 data set and the comparison with the kdd99

data set. Information Security Journal: A Global Perspective, 25(1-3):18–31, 2016.

[267] Adetunmbi A Olusola, Adeola S Oladele, and Daramola O Abosede. Analysis of

kdd’99 intrusion detection dataset for selection of relevance features. In Proceedings

of the World Congress on Engineering and Computer Science, volume 1, pages 20–

22. Citeseer, 2010.

[268] Rong Du, Paolo Santi, Ming Xiao, Athanasios V Vasilakos, and Carlo Fischione.

The sensable city: A survey on the deployment and management for smart city

monitoring. IEEE Communications Surveys & Tutorials, 21(2):1533–1560, 2018.

[269] Mohammad Wazid, Ashok Kumar Das, Neeraj Kumar, Athanasios V Vasilakos,

and Joel JPC Rodrigues. Design and analysis of secure lightweight remote user

authentication and key agreement scheme in internet of drones deployment. IEEE

Internet of Things Journal, 6(2):3572–3584, 2018.

[270] Nickolaos Koroniotis, Nour Moustafa, and Elena Sitnikova. Forensics and deep

learning mechanisms for botnets in internet of things: A survey of challenges and

solutions. IEEE Access, 7:61764–61785, 2019.

235



Bibliography

[271] Shadi Al-Sarawi, Mohammed Anbar, Kamal Alieyan, and Mahmood Alzubaidi.

Internet of things (iot) communication protocols. In 2017 8th International con-

ference on information technology (ICIT), pages 685–690. IEEE, 2017.

[272] S Prabakaran and Shilpa Mitra. Survey of analysis of crime detection techniques

using data mining and machine learning. In Journal of Physics: Conference Series,

volume 1000, page 012046. IOP Publishing, 2018.

[273] Zhanyi Wang. The applications of deep learning on traffic identification. BlackHat

USA, 24, 2015.

[274] Arber Zela, Aaron Klein, Stefan Falkner, and Frank Hutter. Towards automated

deep learning: Efficient joint neural architecture and hyperparameter search. In

ICML 2018 AutoML Workshop, July 2018.

[275] Binghui Wang and Neil Zhenqiang Gong. Stealing hyperparameters in machine

learning. In 2018 IEEE Symposium on Security and Privacy (SP), pages 36–52.

IEEE, 2018.

[276] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis

Ceze, Carlos Guestrin, and Arvind Krishnamurthy. Learning to optimize tensor

programs. In Advances in Neural Information Processing Systems, pages 3389–

3400, 2018.

[277] Jiazhuo Wang, Jason Xu, and Xuejun Wang. Combination of hyperband and

bayesian optimization for hyperparameter optimization in deep learning. arXiv

preprint arXiv:1801.01596, 2018.

[278] Dimitrios Stamoulis, Ermao Cai, Da-Cheng Juan, and Diana Marculescu. Hyper-

power: Power-and memory-constrained hyper-parameter optimization for neural

networks. In 2018 Design, Automation & Test in Europe Conference & Exhibition

(DATE), pages 19–24. IEEE, 2018.

[279] Steve Watson and Ali Dehghantanha. Digital forensics: the missing piece of the

internet of things promise. Computer Fraud & Security, 2016(6):5–8, 2016.

236



Bibliography

[280] Maxim Chernyshev, Sherali Zeadally, Zubair Baig, and Andrew Woodward. Inter-

net of things forensics: The need, process models, and open issues. IT Professional,

20(3):40–49, 2018.

[281] D Paul Joseph and Jasmine Norman. An analysis of digital forensics in cyber

security. In First International Conference on Artificial Intelligence and Cognitive

Computing, pages 701–708. Springer, 2019.

[282] Duc-Phong Le, Huasong Meng, Le Su, Sze Ling Yeo, and Vrizlynn Thing. Biff:

A blockchain-based iot forensics framework with identity privacy. In TENCON

2018-2018 IEEE Region 10 Conference, pages 2372–2377. IEEE, 2018.

[283] Aleksandar Valjarevic and Hein S Venter. A comprehensive and harmonized digital

forensic investigation process model. Journal of forensic sciences, 60(6):1467–1483,

2015.

[284] Luca Caviglione, Steffen Wendzel, and Wojciech Mazurczyk. The future of digital

forensics: Challenges and the road ahead. IEEE Security & Privacy, 15(6):12–17,

2017.

[285] Seung-Woo Han, Hyunsoo Kwon, Changhee Hahn, Dongyoug Koo, and Junbeom

Hur. A survey on mitm and its countermeasures in the tls handshake proto-

col. In 2016 Eighth International Conference on Ubiquitous and Future Networks

(ICUFN), pages 724–729. IEEE, 2016.

[286] Leonardo Babun, Amit Kumar Sikder, Abbas Acar, and A Selcuk Uluagac. Iot-

dots: A digital forensics framework for smart environments. arXiv preprint

arXiv:1809.00745, 2018.

[287] Niandong Liao, Shengfeng Tian, and Tinghua Wang. Network forensics based

on fuzzy logic and expert system. Computer Communications, 32(17):1881–1892,

2009.

[288] Abdulghani Ali Ahmed and Mohammed Falah Mohammed. Sairf: A similarity

approach for attack intention recognition using fuzzy min-max neural network.

Journal of Computational Science, 25:467–473, 2018.

237



Bibliography

[289] Anton Yudhana, Imam Riadi, and Faizin Ridho. Ddos classification using neu-

ral network and naïve bayes methods for network forensics. INTERNATIONAL

JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS,

9(11):177–183, 2018.

[290] Khoa Nguyen, Dat Tran, Wanli Ma, and Dharmendra Sharma. An approach to

detect network attacks applied for network forensics. In 2014 11th International

Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pages 655–660.

IEEE, 2014.

[291] Amin Azmoodeh, Ali Dehghantanha, and Kim-Kwang Raymond Choo. Robust

malware detection for internet of (battlefield) things devices using deep eigenspace

learning. IEEE Transactions on Sustainable Computing, 4(1):88–95, 2018.

[292] Xiaoyong Yuan, Chuanhuang Li, and Xiaolin Li. Deepdefense: identifying ddos

attack via deep learning. In 2017 IEEE International Conference on Smart Com-

puting (SMARTCOMP), pages 1–8. IEEE, 2017.

[293] Quan Le, Oisín Boydell, Brian Mac Namee, and Mark Scanlon. Deep learning at

the shallow end: Malware classification for non-domain experts. Digital Investiga-

tion, 26:S118–S126, 2018.

[294] Ibrahim Alrashdi, Ali Alqazzaz, Esam Aloufi, Raed Alharthi, Mohamed Zohdy,

and Hua Ming. Ad-iot: anomaly detection of iot cyberattacks in smart city us-

ing machine learning. In 2019 IEEE 9th Annual Computing and Communication

Workshop and Conference (CCWC), pages 0305–0310. IEEE, 2019.

[295] Sajad Homayoun, Marzieh Ahmadzadeh, Sattar Hashemi, Ali Dehghantanha, and

Raouf Khayami. Botshark: A deep learning approach for botnet traffic detection.

In Cyber Threat Intelligence, pages 137–153. Springer, 2018.

[296] Gonzalo De La Torre, Paul Rad, and Kim-Kwang Raymond Choo. Implemen-

tation of deep packet inspection in smart grids and industrial internet of things:

Challenges and opportunities. Journal of Network and Computer Applications,

2019.

238



Bibliography

[297] James Kennedy and Russell Eberhart. Particle swarm optimization (pso). In

Proc. IEEE International Conference on Neural Networks, Perth, Australia, pages

1942–1948, 1995.

[298] Dongshu Wang, Dapei Tan, and Lei Liu. Particle swarm optimization algorithm:

an overview. Soft Computing, 22(2):387–408, 2018.

[299] Federico Marini and Beata Walczak. Particle swarm optimization (pso). a tutorial.

Chemometrics and Intelligent Laboratory Systems, 149:153–165, 2015.

[300] Yuhui Shi and Russell Eberhart. A modified particle swarm optimizer. In 1998

IEEE international conference on evolutionary computation proceedings. IEEE

world congress on computational intelligence (Cat. No. 98TH8360), pages 69–73.

IEEE, 1998.

[301] Russell C Eberhart and Yuhui Shi. Tracking and optimizing dynamic systems with

particle swarms. In Proceedings of the 2001 Congress on Evolutionary Computation

(IEEE Cat. No. 01TH8546), volume 1, pages 94–100. IEEE, 2001.

[302] A Nikabadi and M Ebadzadeh. Particle swarm optimization algorithms with adap-

tive inertia weight: A survey of the state of the art and a novel method. IEEE

journal of evolutionary computation, 2008.

[303] Konstantinos E Parsopoulos. Particle swarm methods. Handbook of Heuristics,

pages 1–47, 2016.

[304] Russ Eberhart, Pat Simpson, and Roy Dobbins. Computational intelligence PC

tools. Academic Press Professional, Inc., 1996.

[305] Maurice Clerc. The swarm and the queen: towards a deterministic and adaptive

particle swarm optimization. In Proceedings of the 1999 congress on evolutionary

computation-CEC99 (Cat. No. 99TH8406), volume 3, pages 1951–1957. IEEE,

1999.

[306] Russ C Eberhart and Yuhui Shi. Comparing inertia weights and constriction

factors in particle swarm optimization. In Proceedings of the 2000 congress on

evolutionary computation. CEC00 (Cat. No. 00TH8512), volume 1, pages 84–88.

IEEE, 2000.

239



Bibliography

[307] James Kennedy and Russell C Eberhart. A discrete binary version of the particle

swarm algorithm. In 1997 IEEE International conference on systems, man, and

cybernetics. Computational cybernetics and simulation, volume 5, pages 4104–

4108. IEEE, 1997.

[308] Rui Mendes, James Kennedy, and José Neves. The fully informed particle swarm:

simpler, maybe better. IEEE transactions on evolutionary computation, 8(3):204–

210, 2004.

[309] Frans Van den Bergh and Andries Petrus Engelbrecht. A cooperative approach

to particle swarm optimization. IEEE transactions on evolutionary computation,

8(3):225–239, 2004.

[310] Wireshark tool.

[311] Tcpdump tool.

[312] Ettercap tool.

[313] Frederik Armknecht and Andreas Dewald. Privacy-preserving email forensics. Dig-

ital Investigation, 14:S127–S136, 2015.

[314] Xingguo Lu and Ming Liu. A fuzzy logic controller tuned with pso for delta robot

trajectory control. In IECON 2015-41st Annual Conference of the IEEE Industrial

Electronics Society, pages 004345–004351. IEEE, 2015.

[315] Mohd Nadhir Ab Wahab, Samia Nefti-Meziani, and Adham Atyabi. A compre-

hensive review of swarm optimization algorithms. PloS one, 10(5):e0122827, 2015.

[316] Mohammad Reza Bonyadi and Zbigniew Michalewicz. Particle swarm optimization

for single objective continuous space problems: a review, 2017.

[317] Micael Couceiro and Pedram Ghamisi. Particle Swarm Optimization, pages 1–10.

Springer International Publishing, Cham, 2016.

[318] Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep

neural networks with noisy labels. In Advances in neural information processing

systems, pages 8778–8788, 2018.

240



Bibliography

[319] Manel Houimli, Laid Kahloul, and Sihem Benaoun. Formal specification, veri-

fication and evaluation of the mqtt protocol in the internet of things. In 2017

International Conference on Mathematics and Information Technology (ICMIT),

pages 214–221. IEEE, 2017.

[320] Antonio Celesti, Davide Mulfari, Maria Fazio, Massimo Villari, and Antonio Puli-

afito. Exploring container virtualization in iot clouds. In 2016 IEEE International

Conference on Smart Computing (SMARTCOMP), pages 1–6. IEEE, 2016.

[321] Marc Claesen, Jaak Simm, Dusan Popovic, and BD Moor. Hyperparameter tuning

in python using optunity. In Proceedings of the International Workshop on Tech-

nical Computing for Machine Learning and Mathematical Engineering, volume 1,

page 3, 2014.

[322] Oludare Isaac Abiodun, Aman Jantan, Abiodun Esther Omolara, Kemi Victoria

Dada, Nachaat AbdElatif Mohamed, and Humaira Arshad. State-of-the-art in

artificial neural network applications: A survey. Heliyon, 4(11):e00938, 2018.

[323] Mohammad Saeid Mahdavinejad, Mohammadreza Rezvan, Mohammadamin

Barekatain, Peyman Adibi, Payam Barnaghi, and Amit P Sheth. Machine learn-

ing for internet of things data analysis: A survey. Digital Communications and

Networks, 4(3):161–175, 2018.

[324] Hamed HaddadPajouh, Ali Dehghantanha, Raouf Khayami, and Kim-Kwang Ray-

mond Choo. A deep recurrent neural network based approach for internet of things

malware threat hunting. Future Generation Computer Systems, 85:88–96, 2018.

[325] Raghavendra Chalapathy and Sanjay Chawla. Deep learning for anomaly detec-

tion: A survey. arXiv preprint arXiv:1901.03407, 2019.

[326] Andysah Putera Utama Siahaan. Intrusion detection system in network forensic

analysis and investigation. 2017.

[327] Eric Conrad, Seth Misenar, and Joshua Feldman. Chapter 7 - domain 7: Security

operations. In Eric Conrad, Seth Misenar, and Joshua Feldman, editors, Eleventh

Hour CISSPÂ® (Third Edition), pages 145 – 183. Syngress, third edition edition,

2017.

241



Bibliography

[328] B. B. Gupta and Omkar P. Badve. Taxonomy of dos and ddos attacks and desirable

defense mechanism in a cloud computing environment. Neural Computing and

Applications, 28(12):3655–3682, Dec 2017.

[329] Thijs Rozekrans, Matthijs Mekking, and Javy de Koning. Defending against dns

reflection amplification attacks. University of Amsterdam System & Network En-

gineering RP1, 2013.

[330] Douglas C MacFarland, Craig A Shue, and Andrew J Kalafut. The best bang

for the byte: Characterizing the potential of dns amplification attacks. Computer

Networks, 116:12–21, 2017.

[331] Opeyemi A Osanaiye. Short paper: Ip spoofing detection for preventing ddos

attack in cloud computing. In 2015 18th International Conference on Intelligence

in Next Generation Networks, pages 139–141. IEEE, 2015.

242


	Title Page : Designing an effective network forensic framework for the investigation of botnets in the Internet of Things
	Acknowledgments
	Abstract
	Keywords
	List of Terms
	List of publications
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Overview of Cyber Security in the Internet of Things
	1.2 Types of Cyber crime
	1.3 Problem formulation and research Questions
	1.4 Digital Forensics and Machine Learning methods
	1.4.1 Network Forensics
	1.4.2 Machine Learning

	1.5 Thesis contributions
	1.6 Thesis structure

	2 Literature Review (Background and Related Work)
	2.1 Introduction
	2.2 Internet of Things (IoT)
	2.2.1 IoT concepts and definitions
	2.2.2 Growth of IoT and its areas of application
	A IoT models

	2.2.3 IoT technologies

	2.3 Botnets
	2.3.1 Botnet background
	2.3.2 Botnet architectures and characteristics
	2.3.3 Botnet activities

	2.4 Digital Forensics
	2.4.1 Origins and evolution of digital forensics
	A Network Forensic methods for investigating Botnets
	B Network Forensic methods for investigating Botnets in the IoT


	2.5 Deep Learning and its role in Network Forensics
	2.6 Inherent challenges in Network Forensic Investigations of IoT Botnets
	2.7 Conclusion

	3 Development of the Bot-IoT dataset and its statistical analysis
	3.1 Overview
	3.2 Justification for the need of the new Bot-IoT Dataset
	3.2.1 IoT and forensic analytics-based machine learning
	3.2.2 Comparison of proposed testbed with others
	3.2.3 Existing network datasets and their forensics analytics limitations

	3.3 The proposed Bot-IoT dataset
	3.3.1 Overview of proposed testbed

	3.4 Network platforms
	3.4.1 Simulated IoT services

	3.5 Extracting features and forensics analytics
	3.5.1 Network Flow extraction process
	3.5.2 New feature generation

	3.6 Benign and Botnet scenarios
	3.6.1 Benign Scenarios
	3.6.2 Botnet scenarios

	3.7 Statistics and machine learning methods
	3.7.1 Statistical analysis techniques
	3.7.2 Machine and Deep Learning analysis techniques

	3.8 Experimental Results and Discussion
	3.8.1 Pre-processing steps of Bot-IoT dataset
	3.8.2 Unsupervised Attribute evaluations
	A Correlation Coefficient
	B Entropy
	C Extraction of the 10 Best features
	D Secondary evaluation of features

	3.8.3 Supervised evaluation
	A Three classifiers for evaluations

	3.8.4 Overview of three classifiers and discussion of results

	3.9 Conclusion

	4 Role of Network Forensic techniques using machine learning in IoT environments
	4.1 Overview
	4.2 Background
	4.2.1 Internet of Things
	4.2.2 Botnets in IoT Networks
	4.2.3 Existing Network Forensic Tools
	4.2.4 Previous Studies of Network Forensics in IoT

	4.3 Proposed Network Forensic Methodology
	4.3.1 Network Traffic collection
	4.3.2 Network Feature Selection

	4.4 Machine learning techniques
	4.4.1 Association Rule Mining (ARM)
	4.4.2 Artificial Neural Networks (ANN)
	4.4.3 Naïve Bayes (NB)
	4.4.4 Decision Tree C4.5 (DT)
	4.4.5 Deep Belief Network (DBN)
	4.4.6 K-Means
	4.4.7 Expectation-Maximization (EM)
	4.4.8 Evaluation metrics

	4.5 Experimental Results
	4.5.1 Selected datasets and feature selection
	4.5.2 Experimental results

	4.6 Discussion of results
	4.7 Conclusion

	5 Development of a Novel Network Forensic Framework based on Deep Learning for the Internet of Things: The Particle Deep Framework
	5.1 Overview
	5.2 Background and Related Work
	5.2.1 Digital Forensic Frameworks for IoT and smart systems
	5.2.2 Deep Learning for tracing and discovering threat behaviours
	5.2.3 The Particle Swarm Optimisation algorithm

	5.3 Overview of proposed Particle Deep Framework
	5.4 Particle Swarm Optimisation (PSO) Algorithm for deep learning parameter estimations
	5.5 Proposed Particle Deep Model for Network Forensics
	5.6 Architectural Design of Deploying proposed PDF in IoT Networks
	5.7 Experimental results and discussions
	5.7.1 Datasets used and evaluation criteria
	5.7.2 Results and Discussions

	5.8 Attack scenarios that validate the PDF
	5.9 Comparisons with other network forensics models-based Machine Learning
	5.10 Identification of Attack families and their statistics
	5.11 Advantages and limitations of the PDF
	5.12 Differences of the Network Forensic PDF and traditional IDS
	5.13 Conclusion

	6 Conclusion
	6.1 Introduction
	6.2 Contributions to Research
	6.3 Limitations
	6.4 Future directions
	6.4.1 Issues to be resolved
	6.4.2 Open questions

	6.5 Final Remarks




