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Abstract 

The simple loop method is applied to the analysis of steady water 
flow in networks of pipes, pumps and reservoirs. Improved head-
discharge relations are presented for pipe and pump lines. The effects 
of loop set selection, convergence criteria, node head calculation, and 
convergence acceleration techniques are investigated. A computer 
program, based on the conclusions reached, and suitable for use on a 
small time- sharing computer, is presented. 



Notation 

Coefficients in friction factor approximation for a pipe 
A, B, C Empirical coefficients in head-discharge relation for a 

pipe or pump 

d Pipe diameter 
e Nikuradse pipe roughness 
e /d Relative roughness of a pipe 
f Darcy friction factor for a pipe 

ff Head loss-discharge function for a pipe 
ff' Slope of tangent to above at a particular discharge 
fp Head rise-discharge function for a pump 
fp' Slope of tangent to above at a particular discharge 
g Gravitational acceleration 
hf Head loss in a pipe 
hf. Head loss contribution to a loop by pipe j 

J 

hp Head rise through a pump 
hp̂  Head rise contribution to a loop by pump j 
1 Pipe length 
m Iteration number 
n Exponent in exponential head loss expression for a pipe 
np^ Number of pipes in loop i 
n^^ Number of pumps in loop i 
Ni Number of loops in network 
Nn Number of nodes in network 
Np Number of lines in network 
Nr Number of reservoir nodes in network 
q Flow correction for a loop 
qi Flow correction for loop 1 
Q Flow in a line 
Qj Flow in line j 
Qji^ Flow in line j after iteration m 



Notation (cont'd.) 

r Res istance coefficient in exponential head loss expression 
for a pipe 

Re Reynolds number 

Tj Direction of loop through line 3 

V Mean velocity in a pipe 

Wq Maximum absolute value of q for any loop for convergence 

Wh Maximum absolute value of out of balance head for any 
loop for convergence 

Xi Head at node at beginning of loop i 

Yi Head at node at end of loop I 

A Ha Maximum absolute value of change in any node head for 
convergence 

A Qa Maximum absolute value of change in any line flow for 
convergence 

A Q r Maximum absolute value of relative variation in any line 
flow for convergence 
Kinematic v iscosity 
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1, 
1. In t roduct ion 

1» 1 Conten ts 
T h i s r e p o r t d e s c r i b e s an inves t igat ion of some a s p e c t s of the s imp le 

loop me thod f o r ana lys ing s teady flow in w a t e r supply ne tworks . The 
f a c t o r s looked at a r e h e a d - d i s c h a r g e r e l a t i o n s f o r pipe and pump l ines ; 
loop se t se l ec t ion ; convergence c r i t e r i a ; node head ca lcu la t ions ; and i m -
prov ing the speed of conve rgence . 

Mos t of the inves t iga t ion has been c a r r i e d out by applying a compute r 
p r o g r a m to ana lyse a s m a l l t e s t network» The f ina l v e r s i o n of the p r o g r a m 
i s inc luded a s an appendix to the r e p o r t . 

1, 2 Network Defini t ion 
The ne twork c o n s i s t s of a s e r i e s of l ines which join at the nodes . 

F o r any l ine one end node i s a r b i t r a r i l y defined a s the u p s t r e a m node and 
the f low a s pos i t ive when f r o m the u p s t r e a m to the downs t r eam node . 
T h r e e e m p i r i c a l cons tan t s a r e suf f ic ien t to define the h e a d - d i s c h a r g e r e -
la t ion f o r any l i n e . 

Nodes a r e e i t h e r r e s e r v o i r s , junct ions with no ex te rna l f low, o r 
junct ions wi th outflow or inf low. 

A c losed loop i s a n o n - i n t e r s e c t i n g path through the ne twork which 
r e t u r n s to i t s s t a r t i n g point . An open loop i s a n o n - i n t e r s e c t i n g path 
joining two r e s e r v o i r s , 

1. 3 Methods of Steady Flow Ana lys i s of Networks 
The c o m m o n me thods of m a t h e m a t i c a l ana lys i s of pipe ne tworks a r e 

b a s e d on e i t h e r s a t i s f ac t i on of continuity at the nodes , or conse rva t ion of 
ene rgy a r o u n d any c losed loop in the ne twork . Both methods w e r e s t a t ed 
by Hardy C r o s s (Ref, 1), Sat isfying continuity at the nodes gives r i s e to 
the "me thod of ba lanc ing h e a d s " , a l so cal led the "node me thod" . Con-
s i d e r i n g head l o s s e s a round c losed loops gives r i s e to the "loop me thod" , 
a l s o ca l l ed the " m e s h " o r " g r i d " method3 In e i the r c a s e t h e r e r e s u l t s a 
set of s i m u l t a n e o u s equa t ions which a r e n o n - l i n e a r in the pe r t i nen t 
v a r i a b l e s (node heads f o r the node method , l ine d i s c h a r g e s fo r the loop 
method),, 

The convent ional me thod of solut ion of the s imul t aneous equat ions 
i s to so lve t h e m one at a t i m e . F o r example , in the s imple loop method 
of Ha rdy C r o s s (Ref. 1) the s a m e c o r r e c t i o n q is applied to all l ine dis-
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charges in a loop to correct any head loss imbalance. The process is 
repeated for the next loop, and so on, A more recent method, described 
by Epp and Fowler (Ref, 2), involves simultaneous solution of the equations 
with the flow corrections q ^ q g for loops 1 and 2 etc. as the unknowns. 
Similarly in the simple node method the head at each node is corrected in 
turn to restore continuity, for example see McCormick and Bellamy (Ref. 3) 
The modern counterpart, using simultaneous solution of the non-linear 
equations, was originally used by Martin and Peters (Ref. 4). 

The simple loop method has been used for the present investigation, 
for two main reasons. Firstly because of the small storage of the small 
time-sharing computer used for the investigation - the modern method re-
quires a much larger computer. Secondly so that the progress of the sol-
ution could be readily interpreted physically - one of the attractions of the 
simple loop or node methods. Many of the conclusions reached by using 
the simple loop method can be applied directly to the modern method. 

2. The Simple Loop Method 

2, 1 Basis of the Method 

The solution is by iteration or successive correction to an initial 
guess for the line discharges. The procedure is repeated until some 
specified convergence criterion is satisfied, or until the specified max-
imum number of iterations is reached. 

The initial values for line flows must obey continuity at the nodes. 
For each node a linear equation relating the flows in lines at the node is 
thus obtained. There will be more unknown line flows than equations 
available, however, and the additional equations are obtained from 
closed or open loops. For a closed loop the sum of the head changes 
around the loop is zero for a balanced network. For an open loop the sum 
of the head changes should equal the known head difference between the 
two reservoirs at the ends of the loop. Care must be taken to use the 
correct number N̂^ of independent loops, given by Barlow and Markland 
(Ref, 5) as°" 

N = N + N - N (1) 1 p r n 
where N is the number of lines, Nj. is the number of reservoirs, and 
N is th§ total number of nodes, including reservoirs. 



3. 

2. 2 Finding the Flow Correction q for a Loop 

We require the flow correction q to apply to the line flows in loop i 
so that:-

( ^ i - ^ i ) - - 2 
3 - 1 j - 1 

h^. = 0 (2) 

that is, to balance the loop. Here X. and Y. are the heads at the beginning 
and the end of loop i respectivelyo - Y, is zero for a closed loop. np. 
and are the number of pipe lines and pump lines in loop i respectively, 
and hf|and hp. are the head changes through a pipe line and a pump line 
respectively« ^ 

The flow correction q may be estimated by using a Taylor's series 
expansion about the existing flow Qj in any line j:-

q) (X. - Y.) - ^ff^Qj) + ff (Qj) 

3-1 

^u. 1 

3-1 

(3) 

where second and higher order terms are neglected. Here f̂  is the head 
loss-discharge function for a pipe; f is the head rise - discharge function 
for a pump; ff and f ' are the slopeS of tangents to the functions ff and fp 
respectively, where iihe slopes are determined for the existing flow Qj. 

Rearranging equation (3) gives the first order estimate for the flow 
correction q:-

q = ( X i - Y . V ^Pi ff (Qj) + V ' fp (Qj) 

.1=1 J f l (4) 

3=1 3-1 

In the numerator of equation (4) due account must be taken of the sign 
of a head change term relative to the direction of the loop through the line 
concerned. The numerator is the out of balance head resulting from using 
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the current estimate of line flows. 

The denominator of equation (4) is made up of the sums of the 
slopes of tangents to the head-discharge curves for the pipe and pump 
lines in the loop, A divergent solution may result if the denominator 
becomes small relative to the numerator. 

2. 3 Line Characteristics 

2,3. 1 Long Pipes 

An exponential for m of the head loss expression for a pipe is 
commonly used for the loop method:-

hf = rQ^ (5) 

where r is the resistance coefficient and n the exponent. The values of 
r and n for a pipe may be found for a specified range of discharge (see 
Streeter, Ref. 6). Alternatively the flow may be assumed to be wholly 
rough wall turbulent so that n = 2, and differentiation of equation (5) to 
obtain the f^ function is simplified. The Hazen-Williams and Manning 
formulae, rearranged into the exponential form of equation (5), are also 
used, for example by Epp and Fowler (Ref. 2). The inaccuracies of 
using these formulae have been discussed by Vallentine (Ref. 7). 

The preferred head loss expression for a pipe is the universal 
Darcy-Weisbach formula:-

1 v ' hf = f - — (6) 

where f is the friction factor; 1 is the pipe length; d is the pipe diameter; 
and V the mean velocity. The friction factor is given by the Colebrook-
White equation:-

2 i o g i o r ^ . + / T " V 3 . 7 d Re/ 

where e is the Nikuradse wall roughness, and R is the Reynolds number. 
Equation (7) is implicit in f and cannot be combined directly with equation 
(6). As an explicit relation between hf and Q is required for differentiation 
(to give an f ' function) we use the explicit form of equation (7) derived by 
Wood (Ref. I ) . 

f = a + b Rg'^ (8a) 
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where a, b and c are functions of the relative roughness e /d : -
. 225 

a = .094 r e 
\ 

+ .53 ( t ) 

b = 88 

c = 1,62 

/ e 
d 

.44 

. 134 

(8b) 

(8c) 

(8d) 

Equation (8) gives f values within four per cent or less of those from 
equation (7) and is far more convenient to use. Combining equations (6) 
and (8) gives 

where A 

2 '?-C ĥ  = AQ + BQ ^ 
8 al 

2 5 
gí^ d 

(9a) 

(9b) 

B = 

C 

8bl 
2 5 g r rd 

- c 
( it-d-V 

(9c) 

(9d) 

A, B and C are the three empirical head loss coefficients necessary to 
relate head loss to discharge for a pipe. Also equation 9(a) may be readily 
differentiated with respect to Q. Note that the head loss coefficient A for 
a pipe is identical with the resistance coefficient r of equation (5) when the 
flow is wholly rough wall turbulent. 

Equation 9(a) is shown plotted in Figure 1(A). 

For a pipe j in a loop the term ff(Qj) in equation (4) becomes:-
r / X 2 - 2-Ci . 

ff(Qj) - Sign(Qj) T j | A j (lQj|) + Bj ( | Qj j ) (10) 

where T. indicates the direction of the loop through the pipe j, being set 
equal to^+1 when passing from the upstream to the downstream node, and 
-1 for the converse. 

The slope of the tangent to the head-discharge curve for a pipe is 
always positive so that the term ff ' (Qj) for a pipe j in equation (4) is given 
by:-

' 1 C 
f^' (Qj) = 2Aj ( I Qj I ) + (2-C3) Bj ( iQjl ) " 3 (11) 
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2 , 3 . 2 Pumps 

The head rise-discharge curve for a rotodynamic pump is normally 
presented by a graph or tabular data. Although computer algorithms are 
available for interpolating head rise for a given discharge from tabular 
data, and for finding the slope of the tangent to the empirical curve, it is 
much more convenient to use an explicit relation between head rise and 
discharge. The explicit relation normally used is a polynomial in Q. 
Epp and Fowler (Ref^ 2) and Daniel (Ref, 9) have used a fourth order poly-
nomial,while McCormick and Bellamy (Ref. 3) used a second order poly-
nomial. The latter has been adopted here as it is convenient to have the 
same number (3) of empirical coefficients applying to a pump line as to a 
pipe line. 

The pump head rise-discharge relations used are shown in Figure 
KB), For Case I, A < 0, B > 0 and C > 0; for Case II, A < 0, B C O , 
and C > 0; and for Case III, A > 0 , B < 0 , C > 0, and fr - J^X<0 

V 2A ) ' 
For normal operation in the first quadrant for all three cases: -

hp = AQ^ + BQ + C (12a) 

This equation is also assumed to apply to the zone of energy dissip-
ation in the fourth quadrant. 

For operation in the zone of energy dissipation in the second quadrant 
(where the flow is reversed but the pump is still being driven in the forward 
direction), some allowance is made for the head being greater than the shut-
off head C by using:-

hp = |AQ^| + |BQ| + C (12b) 

For a pump j in a loop the term f^ (Q J in equation (4) then becomes: -

f (QJ = T. (A.Q.^ + B.Q. + CJ for Q. > 0 (13a) 
P J 3 1 3 3 3 3 3 

f (Qi) = T. ( A„ Q . V I B . Q . I + C.) for Q . < 0 (13b) 
P J 3 3 3 3 3 3 3 

The slope f ' (Qj) of the tangent to the head-discharge curve is always 
negative for c a s ^ II and III. For Case I the slope is negative except for 
the discharge range 0 < in the first quadrant, where the small 
positive slope may cause the denominator of equation (4) to become small 
relative to the numerator. To avoid this f ' (Q-i) is taken as negative P 



(that i s a s the s lope of the dotted curve in F i g u r e 1(B)) so that q will be 
u n d e r e s t i m a t e d if the Case I pump i s opera t ing in this reg ion dur ing the 
cour se of the solut ion. The t e r m f ' (Qj) in equation (4) is then given byr 

= - 2A Q + B 1 f o r Q. > 0 fo r C a s e s I, 11 and III 
J J J 3 (14a) 

fp' <Q3> = ^Aj IQj! - Bj f o r Q j < 0, Case 1 (14b) 

fp' 'Qj) = 2Aj i Qj + Bj f o r Q j < 0 , Case II (14c) 

= 2Aj Qj + Bj f o r Qj < 0 , Case III (14d) 

2 ,4 Loop Definit ion 

F o r any ne twork s e v e r a l a l t e rna t ive se t s of independent loops a r e 
poss ib le . A d e s i r a b l e set i s one which p roduces a well conditioned set of 
s imul taneous equat ions so that convergence will be rapid and without long 
t e r m d r i f t . 

F o r the m o d e r n method of solving al l loop flow c o r r e c t i o n s s imultan-
eously a d e s i r a b l e loop set i s one consis t ing of loops of sma l l extent , that 
is containing a s few l ines a s poss ib le . These "na tu ra l " loops a r e r e q u i r e d 
for m i n i m i s i n g the compute r s to rage r e q u i r e m e n t (Epp and Fowle r , Ref. 2), 

F o r the s imple loop method the computer s to rage r e q u i r e m e n t is al-
ready sma l l and the object ive i s to m i n i m i s e the amount of computation r e -
quired to converge on a solution. The amount of computation depends on 
the n u m b e r of i t e r a t i ons r e q u i r e d to converge on a solution, and, to a 
l e s s e r extent , on the number of l ines appear ing in the individual loops , 
Voyles and Wilke (Ref. 10) have shown that the number of i t e ra t ions r e q u i r e d 
is m i n i m i s e d when loops a r e se lec ted to min imise the r e s i s t a n c e of l ines 
common to two or m o r e loopso The r e s i s t a n c e of a pipe l ine may be 
taken a s the coeff ic ient A of equation 9(b), F o r a pump line it i s sugges ted 
that the r e s i s t a n c e be taken a s the absolute value of the tangent slope at the 
design point on the h e a d - d i s c h a r g e curve for the pump. Minimis ing the r e -
s i s t ance of common l i nes i s equivalent to se lect ing loops so that the sum of 
the loop r e s i s t a n c e s is m i n i m i s e d . Computer a lgor i thms f o r f inding min-
imum r e s i s t a n c e loops have been desc r ibed by T r a v e r s (Ref, 11), and 
Hyman and J o n e s (Ref, 12)« 

Ba r low and Mark land (Ref, 5) a rgue that loop select ion by computer 
a lgor i thm m a y lead to zones of loop concentra t ion and that the computer 
t ime r e q u i r e d m a y be e x c e s s i v e . They have used manual loop se lec t ion 
with p r i n c i p a l loops of l a r g e extent and compr i s ing low r e s i s t a n c e l ines , 
and s u b s i d i a r y loops of sma l l extent and compr i s ing high r e s i s t a n c e l ines . 



2. 5 Convergence Criter ia 

-2=5. 1 Absolute Criter ia 

Cr i ter ia based on changes in line flows or node heads from one it-
eration to the next are : -

(i) the absolute value of the flow change in any line is l ess than Q^; 

(ii) the absolute value of the head change at any node is l ess than A.Ha» 

Cri ter ia using loop flow correction properties are : -

(iii) the absolute value of the loop flow correction | qj for any loop is 
l e s s than Wq; 

(iv) the absolute value of the numerator of equation (4) is l ess than W^ 
for any loop. 

Criterion (i) has been used by Epp and Fowler (Ref, 2); (iii) by 
Travers (Ref. 11); and (iv) by Hoag and Weinberg (Ref. 13). The main 
disadvantage of cr i ter ia (i) and (ii) is that additional computer storage is 
required to save values from the previous iteration. Criteria (iii) or (iv) 
have a much smal ler storage requirement. 

2 . 5 . 2 Relative Criteria 

A relat ive criterion corresponding to criterion (i) above is:-

(v) Any o ® - Q j ^ 

«3 
m 

£ Qr (15) 

where the superscript re fe r s to the iteration number^ 

There is no point in defining a relative criterion for node heads as 
these are measured relat ive to an arbitrary datum, 

2. 6 Calculation of Node Head& 

When the solution has converged sufficiently the line flows are used for 
calculating the node heads. Starting with a line with one of its nodes a res -
ervoir, the head at the second node is found by applying a head-discharge 
relation, such as equation 9(a), A line connected to the second node is 
then used, and so on through the network. The way in which the l ines are 



selected may be either arbitrary, for example by following the initially 
assigned line numbers, or by following a minimum resistance tree, as 
suggested by Travers (Ref, 11). The line flows from the converged sol-
ution are all of about the same accuracy, that is about W^ if convergence 
criterion (ii i ) is used. The percentage error in line flow, and hence in 
head change, is therefore minimised in high flow, low resistance lines. 
When there is a choice in selecting the next line then the lowest resistance 
line should be used. Pr im (Ref. 14) has described a simple procedure for 
constructing a network tree built up of the low resistance lines. 

2. 7 Improving the Speed of Convergence 

Assuming that a good set of loops has been selected for the network, 
then further ways of improving convergence have been suggested. 

Barlow and Markland (Ref. 5) suggest using an over-relaxation factor 
applied to the loop flow correction q of equation (4). They have used 
values up to 1. 4. 

Hoag and Weinberg (Ref, 13) have suggested a selective loop tech-
nique as a method of accelerating convergence. They propose doing only 
the large out of balance loops on alternate (say even-numbered) iterations. 

2. 8 Difficulties with Pumps and Non-Return Valves 

During the course of the solution a pump may be required to operate 
outside the zone of normal operation, i^e^ outside the f irst quadrant of 
Figure 1(B). This is allowed for by the approximate head-discharge re-
lations for the second and fourth quadrants which are given in section 
2.3.2 above. In this way continuity of flow may be maintained in the net-
work. If the converged solution indicates pump operation outside the 
f irst quadrant (or even away f rom the optimum operating point) then the 
network components and demands are mismatched and design changes are 
indicated. 

Similarly the presence of a non-return valve in a line may complicate 
the solution. If a non-return valve is assumed to shut when the line f low 
is reversed during the course of the solution then continuity is affected. 
To preserve continuity a redistribution of line flows is required along the 
shortest path connecting the end nodes of the line. An easier alternative 
is to ignore the presence of non-return valves (except that they may add an 
equivalent length to a pipe line) during the course of the solution. If the 
final solution indicates a reverse flow in a line containing a non-return 
valve then either the system components and the demands are mismatched. 
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or that line should be removed from the network. 

3. The Computer Program 

A computer program, incorporating the conclusions of this investigation, 
is shown in flow chart form in Appendix A. The program is split into three 
sub-programs which communicate via common variables. 

The first sub-program inputs line and node data and computes head 
loss coefficients for pipe lines. The coefficient A for a pipe line is equal 
to the exponential resistance coefficient r so that the output from this pro-
gram is useful for loop selection. The second sub-program inputs the 
loop data. 

The third sub-program performs the loop method analysis. Any con-
sistent unit system may be used e .g . English Engineering units or S.I. units. 
Flow rates of imperial gallons per minute may be substituted for cusecs 
when the former system is used» 

4, Use of Program on a Test Network 

4. 1 The Test Network 

The test network, taken from McCormick and Bellamy (Ref. 3) is 
shown in Figure 2. There are 22 lines, one of which is a pump, and 18 
nodes, including three reservoirs. 

The results of using various loop sets etc. have been compared with 
those from a node method analysis of the same network. The node method 
analysis was a simple node by node technique, similar to that of McCormick 
and Bellamy (Ref. 3), but incorporating the pipe line head loss-discharge 
relation given by equation (9), as well as some other improvements. 

The conclusions reached are strictly only applicable to the test net-
work, but probably apply to similar small town water supply networks, 

4. 2 Effect of Pipe Line Head-Discharge Relation 

Using loop set M (see Table 2), the network was analysed using an 
exponential head loss expression (corresponding to equation (5)}for the 
pipe lines. This expression was obtained by putting Bj = 0 in equations 
(10) and (11). The results shown in Table 1 indicate a significant differ-
ence in both line flows and node heads compared to the node method results. 
The most important difference is the over-estimation of node heads when 
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the exponential head l o s s exp re s s ion i s used . This could be impor tan t 
when m i n i m u m heads a r e r equ i r ed , fo r example f o r f i r e i n su rance 
p u r p o s e s . 

4 . 3 E f f e c t of Loop Set Selection 
F r o m equation (1), 7 loops a r e r e q u i r e d f o r the t e s t ne twork . The 

va r ious loop s e t s t r i ed and the number of i t e r a t ions to converge a r e shown 
in Tab le 1. The r e s u l t s us ing these loop s e t s a r e compared with the node 
method r e s u l t s in Table 1. 

F r o m Tables 1 and 2* loop set M, with min imum r e s i s t a n c e loops 
a r r a n g e d in ascending o r d e r , appea r s to be the mos t eff icient in both 
speed and a c c u r a c y . Loop set A, se lec ted according to Barlow and 
Markland (Ref, 5), converges slightly m o r e rapidly than loop set M, but 
the r e s u l t s show cons ide rab le d i sc rpanc ie s f r o m the node method r e s u l t s . 

A 

4 . 4 T e s t s Using Var ious Convergence C r i t e r i a 
C r i t e r i o n (i) of Section 2 . 5 . 1 stopped the p rocedure a f t e r the s a m e 

number of i t e r a t i o n s a s c r i t e r i on (iii) when the r e spec t ive l imi t ing va lues 
we re equal , that i s when ^Qa = W^, As the l a t t e r c r i t e r ion (iii) r e -
qu i r e s f a r l e s s compute r s to rage , and l e s s p r o g r a m s teps , it has been 
used in the p r o g r a m in the Appendix, As the loop method converges very 
rap id ly when m i n i m u m r e s i s t a n c e loops a r e used , then the value of Wq fo r 
c r i t e r i o n (iii) may be made quite smal l with l i t t le additional computat ion. 
For example , u s ing loop set M, putting Wq = 100 gpm requ i r ed 5 i t e r a t ions , 
while putt ing Wq = 2» 5 gpm r e q u i r e d 9 i t e ra t ions . 

C r i t e r i o n (iv) has been t r i e d but appeared to be insens i t ive compared 
to c r i t e r i o n (iii). Changing Wh for c r i t e r i on (iv) f r o m 1<,0 to 0 , 1 f t . r e -
quired 2 addi t ional i t e r a t i ons while changing Wq f o r c r i t e r i on (iii) f r o m 
100 gpm to 10 gpm r e q u i r e d 3 additional i t e r a t i ons . 

4, 5 E f fec t of Node Head Calculation Method 
If the node heads a r e found a r b i t r a r i l y f r o m the converged l ine f lows 

then s e r i o u s e r r o r m a y r e s u l t . In Table 1 node heads f o r loop set A a r e 
c o m p a r e d with the node method r e s u l t s f o r the ca se where the node heads 
w e r e ca lcu la ted by us ing the a r b i t r a r i l y ass igned l ine n u m b e r s shown in 
F i g u r e 2o Ser ious u n d e r - e s t i m a t i o n of some node heads r e s u l t s , f o r ex-
ample node 9 w h e r e the head i s found re l a t ive to node 4 by u s jng the high 
r e s i s t a n c e l ine 7. ^ '' 



Table 1: Resul ts f rom 
Line Node 
No. Method % Variation in Flow for L O O D Set No. 

Flow, M N H A M with hf 
gpm = AQ2 

1 16500 +1. 1 + 2 . 4 
2 8027 - 0 . 1 +8. 6 + 1. 3 
3 2254 +0. 1 +3, 9 +0. 8 
4 - 1 6 0 6 +0 . 1 +0 . 1 + 10. 8 - 1 , 9 
5 8473 - 6 . 0 +3, 6 
6 773 - 1 . 0 +78. 1 + 11. 0 
7 -1140 - 0 . 1 - 0 . 1 - 0 . 2 - 2 3 , 0 + 1 . 0 
8 -4106 +4. 2 - 0 . 7 
9 2690 + 0 . 3 - 2 0 . 3 +0. 9 

10 463 +0 . 2 + 0 . 2 + 0 . 2 + 12 .6 +23. 3 
11 537 - 0 . 4 - 0 . 4 - 2 . 0 + 0 . 6 +28. 5 
12 -3603 + 0 . 2 - 7 . 4 - 3 . 9 
13 -11029 +0. 1 - 1 .5 - 3 . 6 
14 3283 - 0 . 2 + 1 .2 + 8 . 7 
15 - 2 5 7 4 - 0 . 1 - 0 . 1 - 0 . 5 - 2. 1 + 1 .7 
16 3320 - 2 , 0 - 6 . 8 
17 783 +0 . 1 +0. 1 - 1 . 0 + 5. 1 + 3 6 . 4 
18 -2715 + 0 . 4 - 1 .4 - 1 0 . 4 
19 4180 + 1 .6 + 5 . 4 
20 1680 +0 . 1 +0 . 1 - 0 . 1 + 4. 0 + 13 .4 
21 9467 - 0 . 2 - 0. 1 
22 0467 - 0 . 2 - 0. 1 



Table 1 (cont'd. 

Node 
No. 

Node 
Method 
Head, f t . 

Head Change in Feet f o r Loop Set Node 
No. 

Node 
Method 
Head, f t . M N H A M with 

hf = A q 2 
A with 
asc . line 

nos. 
1 500 
2 494.5 - 0 . 1 +0. 1 - 0 . 1 
3 485.6 - 1 . 6 +2.5 - 1 . 6 
4 454. 1 - 0 . 1 - 4 . 1 +10.4 - 4 . 1 
5 474. 1 +0.2 +4. 1 +0.2 
6 482.2 + 1.2 +3.0 +1.2 
7 480.5 - 0 . 1 + 1.8 +3o6 - 1 1 . 5 
8 477.8 + 1.2 +3.9 - 1 2 . 2 
9 475.2 - 0 . 1 - 0 . 1 + 1. 1 +3.9 - 12 . 2 

10 479. 1 +0. 1 +0.6 +2.3 +0. 6 
11 500 
12 478.9 + 1. 1 +3.8 +1. 1 
13 478.7 + 1. 1 +3.8 +1. 1 
14 480.5 - 0 . 1 - 0 . 1 + 1.0 +2.9 - 1 2 . 2 
15 477.8 +0. 1 + 1.0 +3.7 - 1 2 . 3 
16 474.9 +0.7 +4.2 + 0. 7 
17 487 - 0 . 1 + 1.0 +0.6 + 1.0 
18 350 

Notes: (1 ) 
(2) 

(3) 

(4) 

Over-relaxation factor = 1.4 f or all runs 
Convergence cr iterion (iii), Wq = 5 gpm 
% Flow variation in a line =|F1OW this set j - [Flow node method 

iFlow node method! 
% f low variation taken to nearest 0.1% 
Head change at node = Head this set - Head node method 
Head change < 0. 1 ft. not shown 

X-
100 



Tab le 2: Loop Set D e t a i l s and N u m b e r of I t e r a t i o n s to C o n v e r g e 
Loop S e l e c t i o n L i n e s in Loop N u m b e r No. I t n s . to 
Set Me t hod 1 2 3 4 5 6 7 c o n v e r g e 
M M i n i m u m r e -

s i s t a n c e l o o p s 
in a s c e n d i n g 
o r d e r 

21, 22, 
18, 17, 
1 4 , 5 , 1 

21, 22, 
19, 20, 
16, 13 

2 , 6 , 9 , 
5 

1 1 , 1 2 , 
16, 20, 
19, 15 

9, 10, 
15, 18, 
17, 14 

1 , 2 , 3 , 
4, 8 , 1 3 

4 , 8 , 12, 
7 

8 

N N a t u r a l 
l o o p s 

2 , 6 , 9, 
5 

3 , 7 , 11 
10, 6 

4 , 8 , 
12, 7 

9 , 1 0 , 
15, 18, 
17, 14 

1 1 , 1 2 , 
1 6 , 2 0 , 
19, 15 

21, 22, 
18, 17, 
14 ,5 , 1 

21, 22, 
19, 20, 
16, 13 

9 

H M a x i m u m 
r e s i s t a n c e 
l o o p s in de-
s c e n d i n g 
o r d e r 

1 , 2 , 6 , 
10, 11, 
7 , 4 , 8 , 
13 

3 , 7 , 
11, 
10, 6 

1 1 , 7 , 
4 , 8 , 
16 ,20 
19, 15 

4 , 8 , 
12 ,7 

9, 10, 
11, 12, 
16 ,20 , 
19 ,18 , 
17, 14 

2, 6, 10, 
15, 18, 
17, 14, 
5 

2 1 , 2 2 , 
15, 10, 
6 , 2 , 1 

25 

A U s i n g B a r l o w 
and M a r k l a n d 
(Ref . 5 ) r u l e s 

21, 22, 
19, 20, 
16, 13 

21, 22, 
18, 17, 
1 4 , 5 , 1 

1 , 2 , 3 
4, 8 , 1 3 

2 , 3 , 4 
8, 16, 
2 0 , 1 9 , 
18 ,17 , 
14 ,5 

3 , 7 , 1 1 
10, 6 

9, 10, 
15, 18, 
17, 14 

11, 12, 
16, 20, 
19, 15 

7 

No te s (i) O v e r - r e l a x a t i o n f a c t o r = 1 . 4 
(ii) C o n v e r g e n c e c r i t e r i o n ( i i i ) , Wq = 5 gpm 
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The error in node heads for loop set A is reduced to tolerable values 
for most nodes by selecting the lines to forra a minimum resistance tree. 
In the case of "good" loop sets (M and N) this procedure gives results 
which are practically identical with those from the node method. The 
same shape of tree will result irrespective of the starting point in the 
network. The order of adding lines to the tree is the important feature 
for node head calculations o 

4,6 Attempts to Improve the Speed of Convergence 

The effect of applying an over- relaxation factor to the loop flow 
correction is shown in Table 3. For the test network a value of 1.4 was 
optimal, and this about halved the number of iterations required to reach 
convergence. 

The selective loop technique of Hoag and Weinberg (Ref. 13) was 
tried on the test network without any net saving in execution time. Unless 
the criterion for accepting a loop for processing is set close to the final 
convergence criterion then all loops are processed after a few iterations. 
The saving in execution time by rejecting a few loops for the first few it-
erations would appear to be more than outweighed by the time spent ex-
amining loop out of balance and switching on alternative iterations. 

5, Conclusions 

1. By using an explicit approximation, the Colebrook-White equation for 
friction factor may be applied to the loop method of pipe network analysis, 

2. The operation of a pump, both within and outside the range of normal 
operation, may be approximated by a second order polynomial in discharge. 

3. A loop set with minimum resistance loops arranged in ascending order 
is the most satisfactory for speed of convergence and accuracy of the sol-
ution. 

4o A convergence criterion based on examination of the value of the loop 
flow corrections after each iteration is an efficient and sufficiently sens-
itive way of terminating the iterative procedure^, 

5, When the line flows have converged the node heads should be calculated 
by using lines in the order in which they are added to a minimum resistance 
tree, starting with a line connected to a reservoir, 

6. Over-relaxation factors up to about 1,4 can improve the speed of con-
vergence of the procedure. 



Table 3: E f fec t o: f Over -Re laxa t ion F a c t o r s 
O v e r - r e l a x a t i o n No, I t e ra t ions to 

F a c t o r Converge 
1.0 17 
1. 1 15 
1. 2 13 
1 .3 11 
1 .4 8 
1.6 13 
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7, When factors 1 to 6 above are used in the simple loop method then the 
results obtained are virtually identical with those from a node method an-
alysis of the same network. 

References 

1, Cross, Hardy, "Analysis of Flow in Networks of Conduits or Con-
ductors". Bulletin 286, Univ. Illinois, Eng, Expto Stn., Nov, 1936, 
32 pp. 

2. Epp Rand Fowler A . G . "Efficient Code for Steady-State Flows in 
Networks". Proc . A . S . C . E . , J. Hydraulics Div. , V. 96, N.HYl , Jan. 
1970, pp. 43-56. 

3. McCormick M. and Bellamy C.J. "A Computer Program for the Analysis 
of Networks of Pipes and Pumps", J . I .E .Aust . , Vo40, N.3, Mar, 
1968, pp. 51-58. 

4. Martin D.W. and Peters G. "The Application of Newton's Method to 
Network Analysis by Digital Computer", J .I . Water E . , V. 17, 1963, 
pp.115-129, 

5. Barlow J . F . and Markland E. "Computer Analysis of Pipe Networks". 
Proc . I . C . E . , V.43, June 1969, pp. 249-259. 

6. S t r e e t e r V . L . 'Fluid Mechanics". McGraw-Hill, N . Y . , Edn.4, 1966, 
705 pp. 

7. Vallentine H. R. "Friction Losses in Water Supply Calculations", 
Commonwealth Engineer, V,44, May 1, 1957, pp. 77-80. 

8. Wood D.J . "An Explicit Friction Factor Relationship". Civil Engineering-
A . S . C . E . , V«36, Nol2, Dec. 1966, pp, 60-61. 

9. Daniel P . T . "The Analysis of Compressible and Incompressible Fluid 
Networks". Trans. I. Chem.E. , V,44, 1966, pp. T77-T84. 

10. Voyles C . F . and Wilke H.R. "Selection of Circuit Arrangements for 
Distribution Network Analysis by the Hardy Cross Method", 
J . A . W . W . A . , V«54, N.3, Mar, 1962, pp, 285-290. 

11, Travers K. "The Mesh Method in Gas Network Analysis", Gas Journal, 
Nov, 1, 1967, pp. 167- 174. 



14. 

12. Hyman S . I . and Jones R . I . "Loop Defining Techniques for Gas 
Distr ibut ion Network Analys is" . A m e r . Gas Assn. Month. , Feb, 
1967, pp. 344-354 . 

13. Hoag L . N . and Weinberg G. "Pipeline Network Analysis by 
E lec t ron ic Digital Computer" . J . A . W . W . A . , V.49, No. 5, 
May 1957, pp. 517-524. 

14. P r i m R . C . "Shortest Connection Networks and Some General izat ions" 
The Bell System Technical Journal , V. 36, N. 6, Nov. 1957, pp. 1389-
1401. 



1 . 

APPENDIX A: COMPUTER PROGRAM 
Notation 

Variable 
in text 

Variable 
in program 

Appears in 
sub-program Definition 

A , B , C A(J) ,B(J^ 
C(J) 

Com. 1 ,2 ,3 Empirical coefficients in head-
discharge relation for a pipe or 
pump. 

D(J) Com. 1, 2, 3 Node at upstream end of line j 
d D1 1 Pipe diameter 
e El 1 Nikuradse pipe roughness 

e /d E2 1 Relative roughness of a pipe 

g G1 
G9 

1 
1 

Gravitational acceleration 
Unit weight of water 

Hd) 3 Current head at node i 
11 3 Maximum number of iterations 
L(l) Com. 2, 3 Number of lines in loop i 

1 LI 1 Pipe length 
m M 3 Iteration number 

M4 3 Number of itérât ions to converge 

Np NI Com. 1, 2, 3 Number of lines 

Nn N2 Com. 1, 2, 3 Number of nodes 

Nl N3 Com. 2, 3 Number of loops 

N4 Com. 2, 3 Number of lines in minimum 
resistance tree 

01 3 Over-relaxation factor 

P(1,K) Com. 2, 3 Identification number of k'th line 
in loop i 

P2 3 Results print trigger, = 0 
print only converged iteration, 
= 1 print all iterations 

P3 3 Loop print trigger, = 0 print 
none, = 1 print all loop 
variables for each iteration 



2. 

a p p e n d i x a (cont'd,); COMPUTER PROGRAM 

Notation 

Variable 
in text 

Variable 
in program 

Appears in 
sub-program Definition 

P8 1 1> 
Qj Q(J) 3 Current flow in line j 

q Q5 3 Flow correction for a loop 

Wq Q8 3 Maximum absolute value of Q5 
for any loop for convergence 

Q9 Com. 1, 2, 3 Flow unit, = 1 for gpm 

R(I) Com. 1, 2, 3 Initial head at node i, = 0 for a 
junction 

S(J) Com. 1, 2, 3 Initial guess of flow in line j 

Iff(Qj) SI 3 Sum of head loss contributions 
to a loop by pipe lines 

Ifp(Qi) S2 3 Sum of head rise contributions to 
a loop by pump lines 

I f f ' (Qj ) S3 3 Sum of tangent slopes for pipe 
lines in a loop 

-Ifp'iQj) S4 3 -1 X Sum of tangent slopes for 
pump lines in a loop 

Xi-Yi S5 3 Known head difference between 1 
ends of a loop 

Tj T(I, K) Com. 2, 3 Direction of loop i through k'th 
line in loop, = +1 from up-
stream to downstream node, - 1 
for converse 

U(J) Com. 1, 2, 3 Node at downstream end of line j 

V V9 1 Kinematic viscosity of water 

X{I) Coma 2, 3 Node at start of loop i 

Y(I) Com. 2, 3 Node at end of loop i 

Z(I) Com. 2, 3 Identification number of I'th line 
in minimum resistance tree 

Z9 3 Convergence indicator, = 0 j 
converged, = 1 not converged | 



START COM U,D,A,B,C,S,R, 
N1 ; N2 ; Q 9 

N1 , N 2 , 

E2 = E1 /D1 , W = 4 / P 8 / D 1 / V 9 

Y1 = 8 * LI / ( D1 • 5 * P8 * P8 +C1) 
A1= -5694 E 2 I -225 + -53 * E2 
B1= 88 • E2 I - 4 4 , C 2 = 1-62 * E 2 I -134 
A ( J ) - A1 • Y1 ^ B ( J ) = B1 * Y l / ( W I C 2 ) , C ( J ) = : C 2 

R R j - ^ 

P8= i i ^G1=g 

A,B,C U,D,S A,B,C U,D,S 
^ ^ 

END ) 
SUB PROGRAM 1:LINE AND NODE DATA INPUT 

START C O M U, D, A, B,C , S , R , 
X,Y,L,P,T,Z 
N1 , N2 , N3 , N4 , Q 9 

N3, X , Y, 
L,P,T 

END N 4 , Z X,Y,L. 

SUB-PROGRAM 2 : LOOP DATA INPUT 



^ START ^ COM U, D, A , B , C , S ,R . 
X, Y , L , P , T , Z 
N1, N 2 , N 3 , N 4 , Q9 

DIM Q,H 

\ f 

Q=S,H = R 

SUB-PROGRAM 3- LOOP METHOD ANALYSIS 



START > $1,S2,S3 , $4 ^ 
K= 1 TO N5 

T 
/ 

K1 = P(i,K), K2 = T ' ( i ,K), 
A1 = A(K1),B1 = B(K1)^C1 = C(K I ) 

Q2 = 0(K1),03=ABS\;03),04=$IGN(02) 

SI = SI + Q 4 * K2*(A1 * Q3*Q3 + 81 * (Q3t(2"-a))j 
S 3=S3+2 *A1 *03 t ( 2 -C l ) * B1*Q3^ (1 - C1) 

S2 = S2+ K 2 * ( A 1 * Q 2 * Q 2 + B1 * Q2 + C1) 
S4 = S4 + ABS ( 2 * A 1 * Q 2 + B1) 

S2=S2 + K2* (ABS (AUQ3*Q3)+ ABS (B1 *Q3}+C1 ) 

= + (2»A1*Q2+ B1 ) 

S4 = S4+ABS (2*A1*Q3+B1 ) 

( j ^ S 4 = S 4 + ABS (2*A I *Q3 - B1 ) 

S5=H(X(i))-H(Y ([)) 
H5 = S5 - S1 + S2 
Q5 = 01*H5/(S3 + S4) 

K1= P(i,K), 
Q(K1)=Q(Kl)+T(i,K)*Q5 

SUBROUTINE YOOP' ' 



= 1 TO N4 J=2(i),U4 = U(J)_D4 = D(J), 
U5 = H(U4), D5= H(D4) 

SUBROUTINE ALL HEADS // 

SUBROUTINE'ONE HEAD" 



SUBROUTINE ''Q CONVERSION" 

C START 
RESULTS, 

NO. 1TNS= 
M4 

O 
CONVERSION 

O 
CONVERSION 

H END ) 
SUBROUTINE VRINT RESULTS* 




