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Abstract

The simple loop method is applied to the analysis of steady water
flow in networks of pipes, pumps and reservoirs, Improved head-
discharge relations are presented for pipe and pump lines. The effects
of loop set selection, convergence criteria, node head calculation, and
convergence acceleration techniques are investigated. A computer

program, based on the conclusions reached, and suitable for use on a
small time-sharing computer, is presented.
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A,B,C

Notation

Coefficients in friction factor approximation for a pipe

Empirical coefficients in head-discharge relation for a
pipe or pump

Pipe diameter

Nikuradse pipe roughness

Relative roughness of a pipe

Darcy friction factor for a pipe

Head loss-discharge function for a pipe

Slope of tangent to above at a particular discharge
Head rise-discharge function for a pump

SIOpe‘ of tangent to above at a particular discharge
Gravitational acceleration

Head loss in a pipe

Head loss contribution to a loop by pipe j

Head rise through a pump

Head rise contribution to a loop by pump j

Pipe length

Iteration number

Exponent in exponential head loss expression for a pipe
Number of pipes in loop 1

Number of pumps in loop i

Number of loops in network

Number of nodes in network

Number of lines in network

Number of reservoir nodes in network

Flow correction for a loop

Flow correction for loop 1

Flow in a line

Flow in line j

Flow in line j after iteration m



A Qa

AQr

Notation (cont'd.)

Resistance coefficient in exponential head loss expression
for a pipe

Reynolds number

Direction of loop through line j

Mean velocity in a pipe

Maximum absolute value of q for any loop for convergence

Maximum absolute value of out of balance head for any
loop for convergernce

Head at node at beginning of loop i
Head at node at end of loop I

Maximum absolute value of change in any node head for
convergence

Maximum absolute value of change in any line flow for
convergence

Maximum absolute value of relative variation in any line
flow for convergence

Kinematic viscosity
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1. Introduction

1.1 Contents

This report describes an investigation of some aspects of the simple
loop method for analysing steady flow in water supply networks., The
factors looked at are head- discharge relations for pipe and pump lines;
loop set selection; convergence criteria; node head calculations; and im-
proving the speed of convergence,

Most of the investigation has been carried out by applying a computer
program to analyse a small test network. The final version of the program

is included as an appendix to the report.

1.2 Network Definition

The network consists of a series of lines which join at the nodes.
For any line one end node is arbitrarily defined as the upstream node and
the flow as positive when from the upstream to the downstream node.
Three empirical constants are sufficient to define the head-discharge re-
lation for any line.

Nodes are either reservoirs, junctions with no external flow, or
junctions with outflow or inflow.

A closed loop is a non-intersecting path through the network which
returns to its starting point. An open loop is a non-intersecting path

joining two reservoirs.

1.3 Methods of Steady Flow Analysis of Networks

The common methods of mathematical analysis of pipe networks are
based on either satisfaction of continuity at the nodes, or conservation of
energy around any closed loop in the network. Both methods were stated
by Hardy Cross (Ref.1). Satisfying continuity at the nodes gives rise to
the "method of balancing heads'", also called the ''node method''.  Con-
sidering head losses around closed loops gives rise to the ''loop method",
also called the "mesh' or "grid" method. In either case there results a
set of simultaneous equations which are non-linear in the pertinent
variables (node heads for the node method, line discharges for the loop
method).

The conventional method of solution of the simultaneous equations
is to solve them one at a time. For example, in the simple loop method
of Hardy Cross (Ref. 1) the same correction q is applied to all line dis-
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charges in a loop to correct any head loss imbalance. The process is
repeated for the next loop, and so on. A more recent method, described
by Epp and Fowler (Ref,2), involves simultaneous solution of the equations
with the flow corrections 41,99 for loops 1 and 2 etc. as the unknowns.
Similarly in the simple node method the head at each node is corrected in
turn to restore continuity, for example see McCormick and Bellamy (Ref. 3).
The modern counterpart, using simultaneous solution of the non-linear
equations, was originally used by Martin and Peters (Ref.4).

The simple loop method has been used for the present investigation,
for two main reasons., Firstly because of the small storage of the small
time-sharing computer used for the investigation - the modern method re-
quires a much larger computer. Secondly so that the progress of the sol-
ution could be readily interpreted physically - one of the attractions of the
simple loop or node methods. Many of the conclusions reached by using
the simple loop method can be applied directly to the modern method.

2. The Simple Loop Method

2.1 Basis of the Method

The solution is by iteration or successive correction to an initial
guess for the line discharges. The procedure is repeated until some
specified convergence criterion is satisfied, or until the specified max-
imum number of iterations is reached.

The initial values for line flows must obey continuity at the nodes.
For each node a linear equation relating the flows in lines at the node is
thus obtained. There will be more unknown line flows than equations
available, however, and the additional equations are obtained from
closed or open loops. For a closed loop the sum of the head changes
around the loop is zero for a balanced network. For an open loop the sum
of the head changes should equal the known head difference between the
two reservoirs at the ends of the loop. Care must be taken to use the
correct number N, of independent loops, given by Barlow and Markland
(Ref.5) as:-

Nl-Np+Nr—Nr1 (1)

where N_ is the number of lines, Ny is the number of reservoirs, and
Nn is th® total number of nodes, including reservoirs,
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2.2 Finding the Flow Correction q for a Loop

We require the flow correction g to apply to the line flows in loop i
so that:-

P My
(Xi - Yy) - Z he, + 2 hpj = 0 (2)
j=1

j=1

that is, to balance the loop. Here X, and Y, are the heads at the beginning
and the end of loop i respectively. -Y %s zero for a closed loop. n
and nu_ are the number of pipe lines and pulmp lines in loop i respectlve{)y,

and hf and hp. are the head changes through a pipe line and a pump line
respeétwely

The flow correction g may be estimated by using a Taylor's series
expansion about the existing flow Qj in any line j:-

(X, - Yy - ani (@) + 1, (@) a
j=1
nui '
+ € @ +t'@a = 0 (3)
j=1

where second and higher order terms are neglected. Here fy is the head
loss- d1scharge function for a pipe; f 1is the head rise - discharge function
for a pump; ff and f  are the slopes of tangents to the functions ff and fy
respectively, where Bhe slopes are determined for the existing flow Qj’

Rearranging equation (3) gives the first order estimate for the flow
correction q:-

n,. Iy, v
Jpi Tup
> oL@ - 2 5@
j=1 j=1

In the numerator of equation (4) due account must be taken of the sign
of a head change term relative to the direction of the loop through the line
concerned. The numerator is the out of balance head resulting from using
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the current estimate of line flows.

The denominator of equation (4) is made up of the sums of the
slopes of tangents to the head- discharge curves for the pipe and pump
lines in the loop. A divergent solution may result if the denominator
becomes small relative to the numerator.

2.3 Line Characteristics

2.3.1 Long Pipes

An exponential form of the head loss expression for a pipe is
commonly used for the loop method:-

he = rQ" (5)

where r is the resistance coefficient and n the exponent. The values of
r and n for a pipe may be found for a specified range of discharge (see
Streeter, Ref.6). Alternatively the flow may be assumed to be wholly
rough wall turbulent so that n = 2, and differentiation of equation (5) to
obtain the f. function is simplified. The Hazen-Williams and Manning
formulae, rearranged into the exponential form of equation (5), are also
used, for example by Epp and Fowler (Ref.2). The inaccuracies of
using these formulae have been discussed by Vallentine (Ref. 7).

The preferred head loss expression for a pipe is the universal

Darcy-Weisbach formula:-

2
1 \Y%
= - 5 6
hf =1 T 3 z (6)
where f is the friction factor; 1 is the pipe length; d is the pipe diameter;

and V the mean velocity. The friction factor is given by the Colebrook-
White equation:-

2,91

1L 4, (__e__ ) ‘» (1)
/—f~ ©€10 (73,74 Re[T.

where e is the Nikuradse wall roughness, and R is the Reynolds number.
Equation (7) is implicit in f and cannot be combified directly with equation
(6). As an eXp].lClt relation between hy and Q is required for differentiation
(to give an f function) we use the explicit form of equation (7) derived by

Wood (Ref. g)

f=a+b Ry (8a)
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where a, b and c are functions of the relative roughness e/d:-
225

a = .094 —Z—) + .53 (Z_> (8b)
o 44
b = 88 (—a> (8c)
.134
c = 1.62(—3—) (8d)

Equation (8) gives f values within four per cent or less of those from
equation (7) and is far more convenient to use. Combining equations (6)
and (8) gives

h, = AQZ + BQ2'C (9a)
8 al
where A = —21-5— (9b)
g~ d
-c
8bl 4
B = ( ) (9¢)
5
gn’d TdV
C = c¢ (9d)

A, B and C are the three empirical head loss coefficients necessary to
relate head loss to discharge for a pipe.  Also equation 9(a) may be readily
differentiated with respect to Q. Note that the head loss coefficient A for

a pipe is identical with the resistance coefficient r of equation (5) when the
flow is wholly rough wall turbulent.

Equation 9(a) is shown plotted in Figure 1(A).

For a pipe j in a loop the term ff(Qj) in equation (4) becomes:-
2 2—Cj
f£(Qj) = Sign (Qj) Tj {Aj (‘QJD + By ( 1Qil ) } (10)

where T. indicates the direction of the loop through the pipe j, being set
equal to 11 when passing from the upstream to the downstream node, and

-1 for the converse.

The slope of the tangent to the head-discharge curve for a pipe is
always positive so that the term fp' (Qj) for a pipe j in equation (4) is given

by:- .
! 1-C.
o (@) = 285 (1Qyl ) + (2-Cy By (1G41) ] (11)
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2.3.2 Pumps

The head rise-discharge curve for a rotodynamic pump is normally
presented by a graph or tabular data. Although computer algorithms are
available for interpolating head rise for a given discharge from tabular
data, and for finding the slope of the tangent to the empirical curve, it is
much more convenient to use an explicit relation between head rise and
discharge. The explicit relation normally used is a polynomial in Q.
Epp and Fowler (Ref. 2) and Daniel (Ref.9) have used a fourth order poly-
nomial,while McCormick and Bellamy (Ref.3) used a second order poly-
nomial. The latter has been adopted here as it is convenient to have the

same number (3) of empirical coefficients applying to a pump line as to a
pipe line.

The pump head rise-discharge relations used are shown in Figure
1(B). For Casel, A< 0, B>» 0andC > 0; for Case I, A< 0, B<O0,
and C > 0; and for Case III, A>0, B<0, C> 0, and (C - 3;2_><o,
2A

For normal operation in the first quadrant for all three cases:-

2
hp= AQ +BQ +C (12a)
This equation is also assumed to apply to the zone of energy dissip-
ation in the fourth quadrant.

For operation in the zone of energy dissipation in the second quadrant
(where the flow is reversed but the pump is still being driven in the forward
direction), some allowance is made for the head being greater than the shut-
off head C by using:-

hp = [AQ2|+ |BQ| + C | (12Db)
For a pump j in a loop the term fp (Qj) in equation (4) then becomes:-
2
f Q) =T (AQ°~ +BQ.+C) forQ 20 (132)
p (QJ) J JQJ J ] J J
2
f )= T. (|A. Q. 1+|B.Q.| + C.) for Q. <0 (13b)
p (@)= Tj (1A Qu1+1BQ1 + C) j

The slope f ' (Qj) of the tangent to the head-discharge curve is always
negative for casds II and 1II. For Case I the slope is negative except for
the discharge range 0 < Qj<(_2%:> in the first quadrant, where the small

positive slope may cause the denominator of 'equation (4) to become small
relative to the numerator. To avoid this fp (Qj) is taken as negative
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(that is as the slope of the dotted curve in Figure 1(B))so that q will be
undere stlma,ted if the Case I pump is operating in this region during the
course of the solution. The term fpI (Qj) in equation (4) is then given by:-

fp' (Qj) = - ]2Aij + Bj\ for Qj 2 0 for Cases I, II and III (14a)
£, (@) = 245 |Qjl - Bjfor j< 0, Case (14b)
fp‘ (Q)) = 245 | @)+ Bj for Q< 0, CaseII (14c)
fp' (Q)) = 2Aj Qj + By for Qj <0, Case III (14d)

2.4 Loop Definition

For any network several alternative sets of independent loops are
possible. A desirable set is one which produces a well conditioned set of
simultaneous equations so that convergence will be rapid and without long
term drift.

For the modern method of solving all loop flow corrections simultan-
eously a desirable loop set is one consisting of loops of small extent, that
is containing as few lines as possible. These "'natural' loops are required
for minimising the computer storage requirement (Epp and Fowler, Ref.?2).

For the simple loop method the computer storage requirement is al-
ready small and the objective is to minimise the amount of computation re-
quired to converge on a solution. The amount of computation depends on
the number of iterations required to converge on a solution, and, to a
lesser extent, on the number of lines appearing in the individual loops.
Voyles and Wilke (Ref.10) have shown that the number of iterations required
is minimised when loops are selected to minimise the resistance of lines
common to two or more loops. The resistance of a pipe line may be
taken as the coefficient A of equation 9(b). For a pump line it is suggested
that the resistance be taken as the absolute value of the tangent slope at the
design point on the head-discharge curve for the pump. Minimising the re-
sistance of common lines is equivalent to selecting loops so that the sum of
the loop resistances is minimised. Computer algorithms for finding min-
imum resistance loops have been described by Travers (Ref. 11)., and

Hyman and Jones (Ref. 12).

Barlow and Markland (Ref. 5) argue that loop selection by computer
algorithm may lead to zones of loop concentration and that the computer
time required may be excessive. They have used manual loop selection
with principal loops of large extent and comprising low resistance lines,
and subsidiary loops of small extent and comprising high resistance lines.



2.5 Convergence Criteria

2.5.1 Absolute Criteria

Criteria based on changes in line flows or node heads from one it-
eration to the next are:-

(i) the absolute value of the flow change in any line is less than A Qg;
(ii) the absolute value of the head change at any node is less than A Hg.
Criteria using loop flow correction properties are:-

(iii) the absolute value of the loop flow correction |q| for any loop is
less than Wqs

(iv) the absolute value of the numerator of equation (4) is less than Wy
for any loop.

Criterion (i) has been used by Epp and Fowler (Ref. 2); (iii) by
Travers (Ref.11); and (iv) by Hoag and Weinberg (Ref. 13). The main
disadvantage of criteria (i) and (ii) is that additional computer storage is
required to save values from the previous iteration. Criteria (iii) or (iv)
have a much smaller storage requirement.

2.5.2 Relative Criteria

A relative criterion corresponding to criterion (i) above is:-
m m-1
Qi - Qj
m
Q

(v) Any

< Qr (15)

where the superscript refers to the iteration number,

There is no point in defining a relative criterion for node heads as
these are measured relative to an arbitrary datum.

2.6 Calculation of Node Heads

When the solution has converged sufficiently the line flows are used for
calculating the node heads. Starting with a line with one of its nodes a res-
ervoir, the head at the second node is found by applying a head-discharge
relation, such as equation 9(a). A line connected to the second node is
then used, and so on through the network. The way in which the lines are
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selected may be either arbitrary, for example by following the initially
assigned line numbers, or by following a minimum resistance tree, as
suggested by Travers (Ref.11). The line flows from the converged sol-
ution are all of about the same accuracy, that is about W, if convergence
criterion (iii) is used. The percentage error in line flow, and hence in
head change, is therefore minimised in high flow, low resistance lines.
When there is a choice in selecting the next line then the lowest resistance
line should be used. Prim (Ref. 14) has described a simple procedure for
constructing a network tree built up of the low resistance lines.

2.7 Improving the Speed of Convergence

Assuming that a good set of loops has been selected for the network,
then further ways of improving convergence have been suggested.

Barlow and Markland (Ref. 5) suggeSt u‘sing an over-relaxation factor
applied to the loop flow correction q of equation (4). They have used
values up to 1. 4.

Hoag and Weinberg (Ref. 13) have suggested a selective loop tech-
nique as a method of accelerating convergence. They propose doing only

the large out of balance loops on alternate (say even-numbered) iterations.

2.8 Difficulties with Pumps and Non-Return Valves

During the course of the solution a pump may be required to operate
outside the zone of normal operation, i.e. outside the first quadrant of
Figure 1(B). This is allowed for by the approximate head-discharge re-
lations for the second and fourth quadrants which are given in section
2.3.2 above. In this way continuity of flow may be maintained in the net-
work., If the converged solution indicates pump operation outside the
first quadrant (or even away from the optimum operating point) then the
network components and demands are mismatched and design changes are
indicated.

Similarly the presence of a non-return valve in a line may complicate
the solution. If a non-return valve is assumed to shut when the line flow
is reversed during the course of the solution then continuity is affected.

To preserve continuity a redistribution of line flows is required along the
shortest path connecting the end nodes of the line, An easier alternative
is to ignore the presence of non-return valves (except that they may add an
equivalent length to a pipe line) during the course of the solution. If the
final soluiion indicates a reverse flow in a line containing a non-return
valve then either the system components and the demands are mismatched,
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or that line should be removed from the network.

3. The Computer Program

A computer program, incorporating the conclusions of this investigation,
is shown in flow chart form in Appendix A. The program is split into three
sub-programs which communicate via common variables.

The first sub-program inputs line and node data and computes head
loss coefficients for pipe lines. The coefficient A for a pipe line is equal
to the exponential resistance coefficient r so that the output from this pro-
gram is useful for loop selection. The second sub-program inputs the
loop data.

The third sub-program performs the loop method analysis. Any con-
sistent unit system may be used e.g. English Engineering units or S.I. units.
Flow rates of imperial gallons per minute may be substituted for cusecs
when the former system is used.

4, Use of Program on a Test Network

4,1 The Test Network

The test network, taken from McCormick and Bellamy (Ref. 3) is
shown in Figure 2. There are 22 lines, one of which is a pump, and 18
nodes, including three reservoirs,

The results of using various loop sets etc. have been compared with
those from a node method analysis of the same network. The node method
analysis was a simple node by node technique, similar to that of McCormick
and Bellamy (Ref. 3), but incorporating the pipe line head loss-discharge
relation given by equation (9), as well as some other improvements.

The conclusions reached are strictly only applicable to the test net-
work, but probably apply to similar small town water supply networks.

4,2 Effect of Pipe Line Head-Discharge Relation

Using loop set M (see Table 2), the network was analysed using an
exponential head loss expression (corresponding to equation §5))for t}:le
pipe lines. This expression was obtained by putting Bj = 0 in equations
(10) and (11). The results shown in Table 1 indicate a significant differ-
ence in both line flows and node heads compared to the node method results.
The most important difference is the over-estimation of node heads when
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the exponential head loss expression is used. This could be important

when minimum heads are required, for example for fire insurance
purposes.

4.3 Effect of Loop Set Selection

From equation (1), 7 loops are required for the test network. The
various loop sets tried and the number of iterations to converge are shown

in Table 1. The results using these loop sets are compared with the node
method results in Table 1.

From Tables 1 and 2, loop set M, with minimum resistance loops
arranged in ascending order, appears to be the most efficient in both
speed and accuracy. Loop set A, selected according to Barlow and
Markland (Ref.5), converges slightly more rapidly than loop set M, but
the results show considerable discr;\%ancies from the node method results.

4.4 Tests Using Various Convergence Criteria

Criterion (i) of Section 2.5.1 stopped the procedure after the same
number of iterations as criterion (iii) when the respective limiting values
were equal, that is when AQg = Wq, As the latter criterion (iii) re-
quires far less computer storage, and less program steps, it has been
used in the program in the Appendix. As the loop method converges very
rapidly when minimum resistance loops are used, then the value of Wq for
criterion (iii) may be made quite small with little additional computation.
For example, using loop set M, putting Wq = 100 gpm required 5 iterations,
while putting Wgq = 2.5 gpm required 9 iterations,

Criterion (iv) has been tried but appeared to be insensitive compared
to criterion (iii). Changing Wy for criterion (iv) from 1.0 to 0.1 ft. re-
quired 2 additional iterations while changing Wq for criterion (iii) from
100 gpm to 10 gpm required 3 additional iterations.

4.5 Effect of Node Head Calculation Method

If the node heads are found arbitrarily from the converged line : flows
then serious error may result. In Table 1 node heads for loop set A are
compared with the node method results for the case where the node heads
were calculated by using the arbitrarily assigned line numbers shown in
Figure 2. Serious under-estimation of some node heads results, for ex-
ample node 9 where the head is found relative to node %By}l’smg the high
resistance line 7. PR ety

e g
Y
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Table 1:

Results from Loop Method Compared with Node Method

Line | Node e
No. | Method %o Variation in Flow for Loop Set
Flow, M H M with hr
gpm = AQ?
1 16500 +2.4
2 8027 -0.1 +1.3
3 2254 +0,1 +0.8
4 | -1606 +0. -1, 9
5 8473 +3.6
6 773 -1.0 +11.0
7 -1140 -0. -0.2 + 1.0
8 | -4106 -0.7
9 2690 +0.3 +0. 9
10 463 +0. +0.2 . +23.3
11 937 - 0. -2.0 0.6 +28.5
12 -3603 +0. 2 7.4 - 3.9
13- | -11029 +0.1 1.5 - 3.6
14 3283 -0.2 1.2 + 8.7
15 -2574 -0. -0.5 2.1 + 1.7
16 3320 - 2.0 - 6.8
17 783 +0. -1.0 + 5.1 +36.4
18 -2715 +0.4 - 1.4 -10.4
19 4180 + 1.6 + 5.4
20 1680 +0. -0.1 + 4.0 +13. 4
21 9467 0.2 - 0.1
0467 0.2 - 0.1




Table 1 (cont'd.) Results from Loop Method Compared with Node Method

Node Node Head Change in Feet for Loop Set
No. Method
Head, ft. M N H A M with 5 A with
hy = AQ asc. line
nos.
1 500
2 494.5 -0.1 +0.1 -0.1
3 485.6 -1.6 +2.5 -1.6
4 454.1 -0.1 -4.1 +10.4 -4.1
5 474.1 +0.2 +4.1 +0.2
6 482, 2 +1.2 +3.0 +1,2
7 480.5 -0.1 | +1.8 +3.6 -11.5
8 477.8 +1.2 +3.9 -12.2
9 475.2 -0.1 -0.1 +1.1 +3.9 -12.2
10 479.1 +0.1 | +0.6 +2.3 +0. 6
11 500
12 478.9 +1.1 +3.8 +1.1
13 478.17 +1.1 +3.8 +1.1
14 480.5 -0.1 | -0.1 +1.0 +2.9 -12.2
15 477.8 +0.1 | +1.0 +3.7 -12.3
16 474.9 +0.7 +4.,2 + 0.7
17 487 -0.1 | +1.0 +0.6 + 1.0
18 350
Notes: (1)

(2)
(3)

Over-relaxation factor = 1.4 for all runs
Convergence criterion (iii),
% Flow variation in a line =|Flow this set) - |[Flow node method}l{ 100

Wq = 5 gpm

|Flow node 1nethodl

% flow variation taken to nearest 0.1%
= Head this set - Head node method
Head change < 0.1 ft. not shown

(4)

Head change at node

1



Table 2: ILoop Set Details and Number of Iterations to Converge
Loop Selection Lines in Loop Number No. Itns. to
Set Method 1 2 3 4 5 6 7 converge
M Minimum re- 21, 22, 21,22, 12,6,9,| 11,12,( 9,10, 11,2,3, |4,8,12, 8
sistance loops 18, 17, 19,20, {5 16,20,] 15,18, (4,8,13 | 7
in ascending 14,5,1 16, 13 19,15 | 17, 14
order
N Natural 2,6, 9, 3,7,1114,8, 9,10, 11,12, 121,22, |21, 22, 9
' loops 5 10, 6 12,7 15,18, | 16,20, |18, 17, |19, 20,
17,14 19,15 |[14,5,1 {16,13
H | Maximum 1,2,6, | 3,7, 11,7, |4,8, 9,10, |2,6,10,| 21, 22, 25
resistance 10,11, 11, 4,8, 12,7 11,12, | 15,18, | 15,10,
loops in de- 7,4,8, 10, 6 16, 20 16,20, | 17,14, | 6,2,1
scending 13 19,15 19,18, | 5
order 17,14
A Using Barlow 21,22, 21,22, 11,2,3 {2,3,4 3,7,11} 9, 10, 11,12,
and Markland 19, 20, 18,17, {4,8,13] 8, 16, 10,6 15, 18, |16, 20, 7
(Ref.5)rules 16,13 14,5, 1 20,19, 17, 14 19, 15
18,17,
14,5
Notes (i) Over-relaxation ‘factor 1.4

(ii) Convergence criterion(iii),Wq = 5 gpm
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The error in node heads for loop set A is reduced to tolerable values
for most nodes by selecting the lines to form a minimum resistance tree.
In the case of ""good" loop sets (M and N) this procedure gives results
which are practically identical with those from the node method. The
same shape of tree will result irrespective of the starting point in the

network, The order of adding lines to the tree is the important feature
for node head calculations.

4.6 Attempts to Improve the Speed of Convergence

The effect of applying an over-relaxation factor to the loop flow
correction is shown in Table 3. For the test network a value of 1.4 was
optimal, and this about halved the number of iterations required to reach
convergence.

The selective loop technique of Hoag and Weinberg (Ref. 13) was
tried on the test network without any net saving in execution time. Unless
the criterion for accepting a loop for processing is set close to the final
convergence criterion then all loops are processed after a few iterations.
The saving in execution time by rejecting a few loops for the first few it-
erations would appear to be more than outweighed by the time spent ex-
amining loop out of balance and switching on alternative iterations.

5. Conclusions

1. By using an explicit approximation, the Colebrook-White equation for
friction factor may be applied to the loop method of pipe network analysis.

2. The operation of a pump, both within and outside the range of normal
operation, may be approximated by a second order polynomial in discharge.

3. A loop set with minimum resistance loops arranged in ascending order
is the most satisfactory for speed of convergence and accuracy of the sol-
ution.

4, A convergence criterion based on examination of the value of the loop
flow corrections after each iteration is an efficient and sufficiently sens-
itive way of terminating the iterative procedure.

5. When the line flows have converged the node heads should be calculated
by using lines in the order in which they are added to a minimum resistance
tree, starting with a line connected to a reservoir,

6. Over-relaxation factors up to about 1.4 can improve the speed of con-
vergence of the procedure,



Table 3: Effect of Over-Relaxation Factors

Over-relaxation No. Iterations to
Factor Converge
1.0 17
1.1 15
1.2 13
1.3 11
1.4 8
1.6 13
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7. When factors 1 to 6 above are used in the simple loop method then the
results obtained are virtually identical with those from a node method an-

alysis of the same network,
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APPENDIX A:

1.

COMPUTER PROGRAM

Notation
Variable | Variable Appears in s
in text in program sub-program Definition
A,B,C A(J), B, Com. 1,2,3 Empirical coefficients in head-
c(D discharge relation for a pipe or
, pump.
D(J) Com.1,2,3 Node at upstream end of line j
d D1 1 Pipe diameter
e E1l 1 Nikuradse pipe roughness
e/d E2 1 Relative roughness of a pipe
g G1 1 Gravitational acceleration
G9 1 Unit weight of water
H(1) 3 Current head at node i
1 3 Maximum number of iterations
1(1) Com. 2, 3 Number of lines in loop i
1 L1 1 Pipe length
m M 3 Iteration number
M4 3 Number of iterations to converge
Np N1 Com.1,2,3 Number of lines
Nn N2 Com.1,2,3 Number of nodes
N N3 Com. 2,3 Number of loops
N4 Com. 2,3 Number of lines in minimum
resistance tree
01 3 Over-relaxation factor
P, K) Com. 2,3 Identification number of k'th line
in loop 1
P2 3 Results print trigger, = 0
print only converged iteration,
= 1 print all iterations
P3 3 Loop print trigger, = 0 print
none, = 1 print all loop
variables for each iteration




APPENDIX A (cont'd, )e

COMPUTER PROGRAM

Notation

Variable
in text

Variable
in program

Appears in

sub-program

Definition

Q;
q
Wq

fo(Qj)
2fp(Qj)
2 (Qj)
-2, (@)

Xi-Yj

P8
QJ)
Q5
Q38

QY
R()

S(J)
S1

S2
S3
o4
S5

T(I, K)

U(J)
V9

X1y
Y(I)
Z(1)

VAY)

1
3
3
3

Com.1,2,3
Com.1,2,3

Com.1,2,3
3

Com. 2, 3

Com.1, 2,3

Com:. 2, 3
Com.2,3
Com.2,3

g

Current flow in line j
Flow correction for a loop

Maximum absolute value of @5

for any loop for convergence

Flow unit, = 1 for gpm
Initial head at node 1, = 0 for a
junction

Initial guess of flow in line j

Sum of head loss contributions
to a loop by pipe lines

Sum of head rise contributions to
a loop by pump lines

Sum of tangent slopes for pipe
lines in a loop

-1 x Sum of tangent slopes for
pump lines in a loop

Known head difference between
ends of a loop

Direction of loop 1 through k'th
line in loop, = +1 from up-
stream to downstream node, -1
for converse

Node at downstream end of line j
Kinematic viscosity of water
Node at start of loop i

Node at end of loop 1

Identification number of 1'th line
in minimum resistance tree

Convergence indicator, = 0
converged, = 1 not converged




9,G9,vV9

!

COM u,D,A,B,C,S,R, N1, N2,
N1, N2, Q9 Q

(4),B0),C0)

E2=E1/D1, W =4 /P8/D1/V9

Yi=8 L1/ (DI 45 % P8* P8+Gl)

Al= "$94 x E24 *225 + "53 % E2

Bi= 88 #E24 -44, C2=1-624 E2} 134

A

1

A(J)=A*Y1, B(J)=B1*Y1/(WAC2),C(J)=C2 v
SUB PROGRAM1:LINE AND NODE DATA INPUT

g'R» —=—— N3, X, Y,

o6 | ;L,;,T/

P, T

SUB-PROGRAM 2: LOOP DATA INPUT

X




“START

ITERATIONS”
/—

=1 T4 “ITERQTION': .

(3

CONVERSION

com U,D, A,B,C,S,R, _om Q,H
X,Y,L,P, T,2Z
N1, N2 ,N3,N4, Q9 v
/
1,08,01, | «1Q=S,H=R
P2 ., P3

49

Il
S

i LOOP

“NOT )
CONVERGEL 4

i=1 TO M3

‘LooP DELQ
CONVERGED”

HEADS

A

PRINT
RESULTS

\{J

M4=M

ALL
HEADS

V

PRINT
RESULTS

C2=1728%60/277-42

A())=A(J)/C2/C2

( END } \é’j

G$
\‘_/

B(J)=BU)/C2

SUB-PROGRAM 3:LOOP METHOD ANALYSIS



START NS=L(1), @ ‘
$1,52,53,54 =@
o
Ki=P(i,K), K2 =T°(i,K),

FTet/>2 Al = A(K1),B1=B(Kk1),Cl = C(KI)
Q2=Q(K1),Q3=ABS(Q3),04=SIGN(Q2)

A
S1= 51+ Q4% K2 %(A1 % Q3% Q3 + Bl ¥ (Q34(2-C1))) Q< D=l
S3=53+2% A% Q3+ (2-C1) * BI*Q34 (1 - C1)

F

$2=5S2+K2 % (A% Q2%Q2 + B1 *Q2 + C1)
S4 =S4 + ABS (2%A1x Q2 + B1)

$2-52+K2 # (ABS (A1+Q3# Q3)+ ABS (B1%Q3)+C1)

F

S4=54+ABS (2%A1%Q2+B1) |

PP

S4=S4+ABS (2% AM*Q3+B1 ) =

S4=54 + ABS (2%AI%Q3 - B1 )

P

$5=H(X (i) -H(Y (i)

-\\ (N
LOOPNO." |

H5 = S5 - S1 + S2 S1 52 S3 'S4 Qo<>1 >t
Q5=01%H5/(53+54) T
Q5, H5
K=1TONS Q5¢1728%6% | |
/277- 42,
e
Ki=P(iK), ‘
Q(k1)=Q(K1)+ T(iK)*Q5
Z9 s 1

SUBROUTINE ' LOOP”




J=2(1)U4=U(J) D4=
US=H(U4), D5=H (D4)

D(),

SUBROUTINE ‘ALL HEADS’

Q2=Q(J),Q3 =ABS(Q2),

Q4=Sign(Q2) A1=A()), B1= B(J),C1=C(J)

( START >—>—

H(U4)=H(D4)+Q4*H1

END

H(D4=H(U4)-Q4xH1 | —

HI=A1%Q2% Q2+ B1¥Q2+C1

H1=ABS (A1#Q3%Q3) + ABS (B1¥Q3)+C1

]

@

H(U4) =H(D4)-H1

H(D4)=H (U4)+H1

" SUBROUTINE 'ONE HEAD”




START

C2=277.42/1728/6 D ﬂ—‘
E C2=1728%60/277-42 !
_|au)=apy/c2/cal Q=C2%Q(J), | m |
BUJ) = B)/C2 C1=c()
; ‘

Y
v '
2 Q8=C2xQ8

SUBROUTINE 'Q CONVERSION’

“RESULTS, _ o
ik NO.ITNS = C9=2 | CONVERSION
M4 ;

\_/—

| \ Q
CONVERSION -

H
_ : /
SUBROUTINE ' PRINT RESULTS'






