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Abstract 

 

Operating temperature is one of the most critical factors affecting performance 

and life expectancy of a device. Hence, temperature monitoring and management 

has been an important area widely researched in various applications, including 

electrochemical energy storage devices such as batteries and supercapacitors 

(SCs). In an energy storage string or module consisting of a number of cells, a 

significant variation in temperature distribution could exist. However, monitoring 

the whole module temperature is often hindered by hardware and cost 

limitations, and typically, only a limited number of temperature sensors are 

employed.  

This thesis proposes a model-based temperature monitoring and diagnostic 

system for a forced-cooled electrochemical energy storage string using a limited 

number of sensors. While the lumped thermal model for a single cylindrical 

battery or SC cell has been covered in literature, the multicell model has not been 

investigated in detail or experimentally validated. Hence, the lumped multicell 

thermal model of an energy storage string was developed and experimentally 

validated. The multicell model was subsequently used to study, compare, and 

assess different observability criteria based on observability Gramian in order to 

find optimal placement of a limited number of sensors for temperature 

monitoring. 

A multiple model estimator (MME) is also proposed as a viable solution to 

monitor temperature of all cells as well as to detect and localise an abnormally 

overheating cell, with the limited number of temperature sensors. Performance of 

the proposed MME is analysed and experimentally evaluated using an SC string 

setup.  

Lastly, the disturbance detectability criteria based on cross-Gramian matrix 

were used to analyse optimal placement of a limited number of sensors for the 

MME-based abnormal overheating diagnostic system. Performance evaluation of 
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the estimation and detection deduced the suitability of particular observability 

and abnormal overheating detectability criteria for sensor placement in the string.  
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 Introduction Chapter 1.

1.1. Background and motivation 

The reliability of any electrical energy system depends on each of its part, and 

the reliability of each part correspondingly depends on each of its component. 

Understanding the lifetime issues of a particular component or device of energy 

system could lead to efforts and solutions to improve system reliability. 

For any electrical / electronic components and devices, the operating 

temperature is one of the most critical factors which affect their performance as 

well as their life expectancy. Consequently, the performance and the reliability of 

any bigger system which is comprised of these smaller parts are also contingent to 

temperature. For that reason, temperature monitoring and management has been 

an important area which is widely researched, covering various components and 

applications such as processors or integrated circuits (ICs) [1, 2], power 

MOSFETs in power electronics converters [3, 4], electric machines and 

transformers [5, 6], as well as energy storage systems utilising fuel cells [7], 

batteries, and/or supercapacitors (SCs) [8, 9]. 

Among different energy storage system, the one with the most varying 

applications is the electrochemical energy storage type, which includes batteries, 

capacitors, fuel cells, and their combinations. Battery-based storage uses range 

from small-scale portable electronic devices, to large-scale systems such as 

transportation and grid applications [8, 10]. Recently, its counterpart in the 

electrochemical storage families, SCs, have also gained much attention as the sole 

energy source [9, 11-13] or as hybrid storage by combinations with battery of fuel 

cells [14-16].  

With this bigger and more important role of the electrochemical storage 

devices, it is understandable that many researches have been addressing the 
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lifetime issues of these electrochemical storage systems, more particularly the 

thermal aspects. Temperature monitoring and management system has been one 

vital feature which is most likely to be included in any storage management 

system [17, 18]. 

While electrochemical storage cells –henceforth will be referred to as simply 

“cells”–  have various voltage and power ratings, it is common that particular 

applications with high operating voltage require a number of cells to be connected 

in series. A number of high-voltage battery or SC modules, strings, or stacks are 

commercially available with an operating voltage up to few hundreds volts for 

applications in transportation and (uninterruptible power supply) UPS [19-21]. 

With their relatively high value of current, heat generated from these modules 

cannot be neglected. Cooling fans are commonly installed with the modules to 

keep the operating temperature within safe limits. However, air flowing from one 

side of the module will create temperature non-uniformity across the module 

during operation. This temperature variation can be significant as it is caused not 

only by the cooling fan, but also by other factors such as module geometry and 

cells configuration [18, 22, 23]. 

Typically, only one or a limited number of temperature sensors are included in 

a module, located at the spot expected to be of the highest temperature. 

Although this temperature reading can be considered as representation for the 

whole module, in fact it is desirable to have the information of each cell’s 

temperature. The temperature non-uniformity relates to aging non-uniformity; 

hence, the information of actual temperature distribution is useful for the module 

health diagnostic system. For a module with temperature management system, 

the temperature variation needs to be known to adjust the cooling system for 

keeping the variation within the limit [22]. Furthermore, in the case of abnormal 

or localised overheating in a particular cell, the individual cell temperature 

information can also be useful for the abnormality detection . 

On the other hand, placing temperature sensor in each cell is at present still 

impractical and uneconomical, as it involves considerable hardware necessities. 
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One way to solve this challenge is to estimate the module temperature variation 

based on a thermal model. 

This thesis specifically focuses on a temperature monitoring system for a string 

of cylindrical electrochemical storage cells, with specific additional features such 

as limited number of temperature sensors and abnormal overheating detection 

capability.  

1.2. Literature review: Temperature monitoring and diagnostics of 

electrochemical energy storage string 

1.2.1. Thermal model of cylindrical electrochemical energy storage string 

Prediction and analysis of thermal behaviour of a particular device or element 

is essential from the point of view of monitoring and diagnostics. There are 

various techniques for analysing thermal behaviour, such as using lumped-

parameter thermal model (or lumped thermal model), finite element analysis 

(FEA), or numerical techniques such as computational fluid dynamics (CFD). 

The lumped thermal model uses a thermal network circuit which is analogous to 

an electrical circuit, with parts such as thermal resistance and thermal 

capacitance. While FEA and CFD provide solution for the analysis of more 

complex geometry and heat transfer problem, the high computational cost and 

time become their disadvantage [8]. On the other hand, lumped thermal model is 

often used for application requiring simple and fast computation, such as real-

time thermal monitoring and management. It also has comparable result to other 

complex model such as CFD-based model [24]. Hence, the work in this thesis 

focuses on the lumped thermal model, which will often be referred to as simply 

“thermal model” in the remainder of this thesis. 

Unlike single SC thermal model, SC string / module thermal model has only 

been covered in few references. Al Sakka et al. [9] proposed an inline arranged SC 

module thermal model with air cooling in axial direction but without 

experimental results, while in [25] a thermal model for a staggered arranged SC 
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stack with transversal direction cooling was proposed and validated. In [24], both 

the lumped thermal model and CFD-based model of forced-cooled battery string 

with cylindrical cells model were built. The results were compared and were 

found to be in good agreement. In [18], this lumped thermal model was improved 

and the state-space form was built. However, the experimental validation of the 

proposed model was not presented in either of the papers [18, 24]. 

In [25], as the paper focused on sizing and ageing purpose, only the steady-

state temperature was of interest and used for the comparison of the model with 

the experimental results. For the real-time monitoring and diagnostic purposes, 

the temperature has to be available at all times.  

1.2.2. Sensor placement for electrochemical energy storage string temperature 

estimation 

Optimal sensor placement for estimation purpose has been presented in 

references either as a brief part or a detailed discussion related to different 

applications ranging from chemical processes [26-29], architecture and structural 

engineering [30, 31], as well as for temperature estimation of processors or 

integrated circuits [1, 32, 33], power plants [34], fuel cell [35], and electrochemical 

storage systems [8, 18, 36, 37].  

Wolf et al. [37] classified the placement optimisation criteria into two 

categories: “open-loop” and “closed-loop”. Open-loop criteria are typically based 

on metrics related to the observation or observability of the system. Closed-loop 

methods are usually based on metrics related to the performance of the system, 

such as estimation error or disturbance rejection. Falling into the first category 

are battery string sensor placement based on the observability matrix in [18], 

battery cell sensor placement based on observability Gramian-based measure and 

eigenmode projection method  in [36], and battery pack sensor placement based 

on the modal observability in [37]. While sensor placement based on estimation 

error for stacked battery pouched cells in [8] falls into the second category.  
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Very limited references on sensor placement for electrochemical storage string 

denote further research opportunities in various directions. For example, sensor 

placement strategy for storage systems with different dimensions and 

configurations, or evaluating suitability of various observability criteria as the 

basis for sensor placement. 

It is also interesting to note that very few references evaluate the correlation 

between the aforementioned two optimisation bases. Among the few references is 

[26], in which the validity of the sensor placement optimised by the observability 

Gramian criteria are evaluated using the estimator performance, and [38], which 

analytically established the relationship between the observability Gramian and 

the error covariance matrix. 

1.2.3. Diagnostics in electrochemical energy storage string 

Although this thesis specifically focuses on the internal-short-circuit-induced 

temperature abnormality diagnostics for an electrochemical storage string, a 

summary on relevant references covering general topic of diagnostics in 

electrochemical storage is presented to give a broader view. 

Generally, two kinds of diagnostic feature are covered by the references 

researching batteries and/or SCs: state of health (SoH) or simply called health 

diagnosis, and fault or failure diagnosis. Some events typically considered as fault 

or failure are overcharge, overdischarge, short circuit, and overtemperature [39-

44]. Other conditions which are actually related to the health or age of the 

device, such as capacity decay or internal resistance increase, are often also 

referred to as fault or failure modes [45, 46].  

The most common method found in the literature for the aforementioned 

diagnostics is to set a threshold for certain parameter(s) and detect a particular 

event when the parameter value is exceeding the threshold. For example, in [13, 

45], parameters extracted from the SC equivalent circuit such as the internal 

resistance and capacitance are used as the health (or failure) indicator. Another 

example is [40] which detects an overcharge or overdischarge condition based on 
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voltage thresholds. The threshold–detection (or decision) scheme could also be 

implemented in fuzzy membership functions, such as presented in [47]. For a 

system represented in state-space model, the threshold of the residual (the 

difference between the model output and the real system output) could be used 

as well. A technique called “multiple model” (MM) scheme [42, 48], commonly 

applied for fault detection and identification (FDI), define a number of modes 

(models) associated with particular fault modes and associate the system 

condition to one of the mode by comparing residuals of each mode.  

Overcharge, overdischarge, and overtemperature could be detected in a quite 

straightforward way based on measurement of voltage, current, and/or 

temperature. However, a short circuit event, especially internal short circuit or 

“soft-short” fault, could be more challenging to detect directly based on those 

three basic parameters [39, 41, 43, 49, 50]. There could be situations such as very 

small short circuit which does not occur continuously [41, 43, 50, 51] or high 

current situation which might not easily be discriminated from the high operating 

current [40, 49, 52].  

The aforementioned threshold-based detection method is still employed for 

addressing such soft-short fault. One example is reference [39], where the 

electrical parameters threshold is set based on the coupled electro-thermal 

simulation of internal short circuit at different locations and severities in a 

prismatic large-format Li-ion battery. In [41], the internal short circuit event is 

approached using external short circuit experiment employing a shorting 

resistance valued from 1 to 100  to obtain short-circuit-associated parameters 

from the electrical equivalent circuit, while reference [40] reported the internal 

short circuit experiment using press drill penetration for setting the electrical and 

thermal parameters threshold for short circuit detection.   

Despite few references have reported short circuit experiments, challenges still 

exist in this research area. An isolated mechanical short circuit that could 

emulate internal short circuit leading to a particular incident is difficult to create 
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[53] and the short circuit event is hardly reproducible for each trial [54]. The 

experiment itself also poses fire and explosion risk.  

Another thing worth to note is that SCs thermal-related failure modes have 

not been analysed in details in many references, especially compared to batteries. 

Generally, they are considered less prone to thermal hazard due to their lower 

energy density, lower internal resistance, and less chemical involved. However, 

some references mentioned that the batteries and SCs still share some 

commonality in construction and susceptibility to failure modes including short 

circuits [55]. Some references also cited few factors of SCs which could be 

hazardous in a temperature increase and could lead to thermal runaway, such as 

the use of organic solvents [56] and/or the use of particular electrolyte [57, 58]. 

Furthermore, with the recent research reporting higher energy density SCs (up to 

85 Wh kg-1 [59, 60]), it is expected that the related higher thermal risk will 

become an issue too for SCs application. 

From the viewpoint of limited number of sensors for the string parameter 

monitoring, so far no references have linked the string diagnostic feature with the 

optimal number and placements of sensor, which is in fact one of the focuses of 

this thesis. 

1.3. Scope and contributions 

The types of electrochemical energy storage considered in this thesis are 

batteries and SCs, while the shape of the cell considered in this thesis is a 

cylindrical cell. The string is forced-cooled and consists of serially connected cells.  

The diagnostic feature considered in this thesis is related only to the detection 

of cell temperature abnormality in the string. 

Hence, the contributions of this thesis are: 

1. Proposal and experimental validation of a lumped thermal model of 

forced-cooled electrochemical storage string consisting of cylindrical cells.  

2. Analysis of the observability Gramian as the basis for optimal placement 

of temperature sensors in a string for temperature monitoring. 
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3. Proposal to apply multiple model (MM)-based detection method for 

detecting cell abnormal overheating in a string with a limited number of 

temperature sensors.  

4. Analysis of cross-Gramian as the basis for optimal placement of 

temperature sensors in the string regarding the cell abnormal 

overheating detectability. 

1.4. List of publications 

The material in this thesis has been published in the following publications: 

Journal papers: 

1. V. Lystianingrum, B. Hredzak, and V. G. Agelidis, "Multiple model 

estimator based detection of abnormal cell overheating in a Li-ion battery 

string with minimum number of temperature sensors," Journal of Power 

Sources, Elsevier, vol. 273, pp. 1171-1181, 1/1/ 2015 [61]. 

2. V. Lystianingrum, B. Hredzak, V. G. Agelidis, and V. S. Djanali, "On 

Estimating Instantaneous Temperature of a Supercapacitor String Using 

an Observer Based on Experimentally Validated Lumped Thermal 

Model," IEEE Transactions on Energy Conversion, vol. PP, pp. 1-11, 2015 

[62]. 

3. V. Lystianingrum, B. Hredzak, and V. G. Agelidis, "Multiple-Model-Based 

Overheating Detection in a Supercapacitors String," IEEE Transactions 

on Energy Conversion, vol. PP, pp. 1-1, 2016 [63].    

 

Conference papers: 

1. V. Lystianingrum, V. G. Agelidis, and B. Hredzak, "State of health and 

life estimation methods for supercapacitors," in Power Engineering 

Conference (AUPEC), 2013 Australasian Universities, 2013, pp. 1-7 [64]. 

2. V. Lystianingrum, B. Hredzak, V. G. Agelidis, and V. S. Djanali, 

"Observability degree criteria evaluation for temperature observability in 

a battery string towards optimal thermal sensors placement," in 
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Intelligent Sensors, Sensor Networks, and Information Processing 

(ISSNIP), 2014 IEEE Ninth International Conf., 2014, pp. 1-6 [65]. 

3. V. Lystianingrum, B. Hredzak, and V. G. Agelidis, "Abnormal 

Overheating Detectability Analysis Based on Cross-Gramian for a 

Superacapacitors String," in Power & Energy Society General Meeting, 

2016 IEEE, 2016 [66]. 

 

The publications are associated with the part or whole of the chapters of this 

thesis as follows: 

 

Chapters Publications 

Chapter 1. Introduction [64] 

Chapter 2. Thermal Model of Electrochemical 

Energy Storage String Consisting of Cylindrical Cells 

[62] 

 

Chapter 3. Observability-Analysis-Based Optimal 

Sensor Placement for String Temperature Estimation 

[62, 65]  

 

Chapter 4. Multiple-Model-Estimator-Based 

Detection of Cell Abnormal Overheating 

[61] 

 

Chapter 5. Experimentation and Further Exploration 

of MME-Based Overheating Detection 

[63] 

 

Chapter 6. Abnormal Overheating Detectability 

Analysis Based on Cross-Gramian 

[66] 

 

 

1.5. Thesis outline 

This thesis is organised as follows: 

 Chapter 1: This chapter explains the background and motivation of this 

thesis. A concise review covering previous researches relevant to the 

electrochemical storage temperature monitoring and diagnostics is 
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given. A list of the scope and contributions of this thesis, as well as 

published materials from this thesis, are also presented. 

 Chapter 2: This chapter discusses the thermal model of both single cell 

and forced-cooled multicell (string) of electrochemical storage as well as 

the model experimental validation using a forced-cooled SC string. 

 Chapter 3: In this chapter, observability analysis for the purpose of 

optimal sensor numbers and placement for the string temperature 

monitoring is discussed. The observability Gramian-based measures  

(criteria) applicability as the basis for optimal placement of 

temperature sensors in the string is also evaluated via simulation of 

battery string and experiment using the SC string.  

 Chapter 4: This chapter expands the functionality of string temperature 

monitoring with limited number of temperature sensors to the ability 

of abnormal overheating detection. Multiple model estimation (MME) 

method as well as abnormal overheating modelling as unknown 

disturbance is proposed. 

 Chapter 5: In this chapter, the proposed MME method is evaluated 

experimentally and further details related to the MME parameters 

influence to the detection are explored. 

 Chapter 6: This chapter links the Gramian matrix-based sensor 

placement in chapter 3 and the abnormal overheating detection 

functionality in chapter 4. Instead of observability Gramian matrix, the 

cross-Gramian matrix is used for analysing disturbance (abnormal 

overheating) detectability in both battery string and SC string. 

 Chapter 7: This chapter summarises and concludes this thesis as well as 

discusses possible future research directions from this thesis work. 
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 Thermal Model of Electrochemical Chapter 2.

Energy Storage String Consisting of Cylindrical Cells 

2.1. Introduction 

In this chapter, the thermal model of single electrochemical storage cell and its 

multicell development are presented, specifically for cylindrical battery and SC 

cells. As can be seen in Figure 2.1 and Figure 2.2, cylindrical battery and SC cells 

have similar structures.  The general assumption for heat generation in both 

structures is also identical, with which for the high current application the 

reversible entropic heating is negligible compared to the far more dominant 

irreversible Joule heating [24, 67]. Thus, from the thermal modelling point of view 

they could be modelled in a similar way and therefore, in this chapter as well as 

in the remainder of this thesis, the references related to both cylindrical battery 

and SC cells are considered. 

 

 

Figure 2.1. Structure of cylindrical battery cell [68]1.  

                                                

1 Reprinted with permission for reuse in thesis – print and electronic formats, worldwide 

distribution. © 2001 Elsevier. 
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Figure 2.2. Structure of cylindrical SC cell [69]2. 

The battery and SC cell considered in this thesis are the 8-Ah A123 32157 

LiFePO4/graphite battery and the 650-F Maxwell BCAP0650, respectively. How 

the two cells compare in terms of dimensions is illustrated in Figure 2.3. 

 

(a) (b)

157 mm

51.5 mm

60.7 mm
32

mm

 

Figure 2.3. (a) Dimensions of A123 32157 battery cell. (b) Dimensions of Maxwell BCAP0650 

SC cell. 

                                                

2 Reprinted with permission for reuse in thesis – print and electronic formats, worldwide 

distribution. © 2013 Taylor & Francis, LLC. 
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The remainder of this chapter is organised as follows. First, the theory of 

lumped thermal model and its development for string thermal modelling are 

presented in Section 2.2. The parameters for the string thermal model are then 

derived in Section 2.3 based on a built setup of a forced-cooled string consisting 

of eight Maxwell BCAP0650 SC cells, and the model is further validated in 

Section 2.4. The summary of this chapter is given in Section 2.5. 

2.2. Lumped thermal model 

In a lumped thermal model, the components of the modelled element are 

lumped into a number of nodes, in which the thermal properties are supposed to 

be uniform. More detailed models (high fidelity models) represent an element 

with high number of nodes and therefore are able to predict detailed temperature 

distribution throughout an element. However, this understandably comes with 

the disadvantages of higher computational cost.  

In [25], a single SC cell is represented by two thermal nodes: the internal or 

core temperature node (and represented in the paper as the terminal node) and 

the surface (case) temperature node. This is similar to the single Li-ion battery 

cell model in [18, 70], whose elements were lumped into core temperature node 

and surface temperature node. This two thermal-node lumped model sees that a 

cylindrical cell consists of two isothermal volumes, i.e., the internal part 

represented by core temperature node cT , and the outer part represented by 

surface temperature node sT , as shown in Figure 2.4. It has less computational 

cost compared to the high fidelity model while still provides the ability to capture 

the critical core temperature [71] This work particularly discusses the two 

lumped-node cell thermal model, and it will be used to represent both cells shown 

in Figure 2.3.  

Tc is the core temperature node that corresponds to the internal elements of 

the cell with a heat capacity (thermal capacitance) Cc. Ts is the surface 

temperature node that corresponds to the casing elements of the cell with a 

thermal capacitance Cs. 
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vacuum
surface

core

Ts

Tf

Tc

Rc

Ru

Q

(a) (b)
 

Figure 2.4. (a) A cylindrical cell lumped construction. (b) Corresponding thermal nodes and 

thermal resistances. 

The heat transfer is considered as conduction from the Tc node to the Ts node 

with a conduction thermal resistance Rc, and by convection from Tc node to the 

Tf node (ambient temperature node) with a convection thermal resistance Ru. Q 

is the heat generated by the cell. As heat capacity is proportional to the size of 

an element, different cell size (such as shown in Figure 2.3) would have different 

values of the thermal model parameters. 

Although the heat generated in the internal part of the cell can be divided into 

irreversible heating –which is related to Joule (ohmic) losses and reaction heat– 

and reversible heating –related to entropic–, it is common to approximate the 

heat generation as exclusively Joule heating, as this is the most dominant heat 

generated, especially for high current applications such as electric vehicle. This 

consideration is also taken in this work, in which the heat Q generated by each 

cell is approximated as the Joule loss I2R where I is the current and R is the cell 

internal resistance. 

We consider a string consisting of cylindrical cells in an inline (aligned) 

arrangement. The thermal model is derived from the heat balance equation 

considering single row of cells in the module shown in Figure 2.5 and two 

adjacent cells shown in Figure 2.6 [18, 24]. As each cell is connected by a tab, the 

thermal resistance for cell-to-cell heat conduction via the tab as well as other 

possible connections is lumped as Rcc. In our work, it is assumed that the heat 
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transfer via the connecting tab dominates this cell-to-cell conduction term. 

Therefore, in this work, Rcc is only related to the connecting tab.  

Based on [25] and experimental data given in [72], the Tc node measurement 

can be represented by the terminal temperature measurement, also considering 

the fact that the axial thermal resistance is very low [24, 72]3. Hence, Rcc could be 

modelled either connecting two cells at their two Tc nodes (assuming heat 

conduction from terminal to terminal); or at their two Ts nodes (assuming heat 

conduction from surface to surface). We choose the first assumption which better 

reflects the built experimental setup. Other assumptions for our model are that 

no balancing circuit is installed and the cooling air flow is constant. 

 

Top View

12345678

air flow

direction

(a) 

 

Side view

123N

air flow

direction

 

(b) 

Figure 2.5: Single row of forced-cooled series connected cylindrical storage cells. (a) Top view, 

showing 8 cells. (b) Side view, showing N cells. 

                                                

3 For example, an SC cell with 33-mm outside diameter and 61.5-mm length in [72] has 

calculated radial and axial thermal conductivity of 0.5 W m-1K-1 and 210 W m-1K-1, 

respectively. 
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Figure 2.6. Thermal nodes and thermal resistances of two adjacent cells.  

The jth cell heat balance equation between heat generated in the internal part 

and heat transferred to the surface is shown in (2.1), while the heat balance 

equation between the surface and the ambience is shown in (2.2) [18, 71]: 
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j j j j j

j j

s c s s f
s

c u

dT T T T T
C
dt R R

 
    (2.2) 

As for the heat balance equation related to coolant (fluid) stream flowing over 

a cell, we consider 
jkuQ , the heat taken from the jth cell via convection (i.e., the 

  /j j js f uT T R part in (2.2)) and 
juQ , the heat transferred by the flow from an 

ambient temperature node 
jfT , also shown in Figure 2.6. The heat balance 

equation can be given as [24, 73]: 

 
1j j jku u uQ Q Q


    (2.3) 

where  
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        1 1 1j j j j j ju u p f f p f fQ Q cV T T M c T T
  
    

  (2.4) 

 is the air density, cp is the air specific heat capacity, V  is the air volumetric 

flow rate, and M  is the air mass flow rate, all related to the cooling air.  

Combining (2.3) and (2.4) yields 

 

1

1
j j j

j j

j

j

f f ku

p

s f
f

u p

T T Q
M c

T T
T

R M c


  


 

  (2.5) 

To analyse the string thermal behaviour, the thermal model in the 

mathematical equations form could be solved. Alternatively, a corresponding 

thermal network could be built and simulated in an electric circuit simulator such 

as SPICE or Simulink, as the network is based on the electric circuit analogy. 

The analogy of thermal and electrical parameters is listed in Table 2.1, while the 

corresponding thermal network of the N-cell string is shown in in Figure 2.7.  

To the author’s knowledge so far, thermal network representation of the heat 

transfer by coolant flow, particularly transversal flow considered in this thesis, 

has not been explicitly shown or discussed in the references related to lumped 

thermal model of the electrochemical storage string [18, 24, 25, 71]. In Figure 2.7, 

this heat transfer is modelled as a current-controlled voltage source with the 

value of 
1

jku

p

Q
M c
 . This is based on the fact that the coolant flow is causing 

temperature difference between 
jfT  and  

1jfT 
 nodes, and this temperature 

difference is caused by 
jkuQ (i.e. heat-flow-controlled temperature difference). The 

same representation approach was proposed and used in thermal modelling of 

other devices [74-77], and it is concluded here that this representation is also 

suitable for the electrochemical storage string thermal modelling. The thermal 

network in Figure 2.7 has been built and tested in Simulink using the same 

validation date as in Section 2.4 and gave the same validation result. 
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Table 2.1. Analogy of thermal and electrical parameters.  

Thermal parameters Electrical parameters 

Heat flux [W] Current [A] 

Temperature difference [K or ºC] Potential difference [V] 

Heat capacity (thermal capacitance) [JK-1 or J °C-1] Electrical capacitance [C] 

Thermal resistance [KW-1 or °CW-1] Electrical resistance [] 
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Figure 2.7.  Lumped-parameter thermal model of a string consisting of N cells in thermal 

network form (referring to Figure 2.5, cell 1 is at the right side and cell N is at the left side). 

 

Alternatively, the thermal model can be built in the state-space model form, 

which is the model used in the remainder of the thesis. The state-space model  

(as also presented in [18, 71]) is as follows4: 

 ,c c  x A x B u y Cx   (2.6) 

                                                

4In this thesis, subscript “c” in the notation of matrices A
c
 and B

c
 denotes “continuous time” 

and is used to distinguish them to their discrete-time counterparts (matrices A and B). 
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The output vector y corresponds to state vector x via the output matrix C. 

The C matrix relates to the measurement of particular states (e.g. temperature 

sensor measuring particular temperature nodes). Whether a temperature node is 

measured or not is indicated in the C matrix as “1” or “0”, respectively. The C 

matrix of an N-cell string will have 2N columns and the number of rows as many 

as the number of measurements. For example, the C matrix of a 2-cell string with 

measurement of the surface temperature of cell 1 and cell 2 is 

 
0 1 0 0

0 0 0 1

 
 
 
 

C   (2.11) 

Hence, for the analysis of optimal sensor placement in the subsequent 

chapters, the thermal model in state-space form would be useful and thus would 

be used throughout the thesis. 

2.3. Thermal model parameters 

2.3.1. Supercapacitor string setup 

The experimental setup for validating the thermal model consists of eight 

serially connected 650-F Maxwell BCAP0650 SC cells. Three thermocouples are 

placed in each cell measuring nodes Tc, Ts, and Tf. The core temperature node Tc 

measurement is represented by the terminal temperature measurement, 

considering the fact that the axial thermal resistance is very low [24, 25, 72]. The 

string is enclosed and a fan is installed at one side of the enclosure. The SC 

testing system Arbin BT-ML is controlled by a personal computer. The picture of 

the built setup and the dimensions are shown in Figure 2.8 and Figure 2.9, 

respectively. The general specifications of the SC can be found in Table 2.2. For a 

complete specification and explanation list, please refer to the SC datasheet 

([78]).  
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(a) 

 

 

(b) 

Figure 2.8.  (a) Laboratory setup. (b)  Supercapacitor string (N = 8). 

 

 

Figure 2.9.  Experimental setup dimension. 
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Table 2.2. Maxwell BCAP0650 general specifications [78] 

Parameters Value 

Rated capacitance 650 F 

Maximum ESRDC,
 initial 0.8 m 

Rated voltage 2.7 V 

Maximum continuous current  

(T = 40 ºC) 

88 ARMS 

Minimum operating temperature range 

(cell case temperature) 

-40 ºC 

Maximum operating temperature range 

(cell case temperature) 

65 ºC 

 

2.3.2. Determination of thermal model parameters 

The information of each cell’s temperature is given by the three temperature 

nodes of each cell in the string (Tc, Ts, and Tf). Despite the fact that the thermal 

parameters can be derived analytically from the material properties, it is more 

preferrable to identify the parameters empirically as for some specific geometries 

it is simpler and more accurate, as was done in [8, 9, 25, 70, 72]. Furthermore, 

some thermal parameters such as Ru and Rc for each individual cell are identified 

since the value of the temperature nodes are highly dependent on these 

parameters.  

As our purpose is to simulate common commercially available string with a 

single speed cooling fan such as in [19, 20], the measurements for thermal 

parameters determination was done for an enclosed SC string cooled by a fan 

with a speed corresponding to approximately 34.1 cubic feet per minute (CFM). 

This value is selected based on a comparison with Maxwell’s commercial 125-V 

SC module (consisting of six by eight 3000-F SC cells with the same cell diameter 

and twice the cell length as the Maxwell BCAP0650; cooled by two DC fans, 277 

CFM each) [19, 79]. 
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For parameterisation, a constant current charge-discharge cycle of 85 A was 

applied, cycling the SC string from the lower voltage limit (half the rated 

voltage) to the upper voltage limit (the rated voltage). The string was cycled 

until a thermal steady-state was achieved (see Figure 2.10).  

2.3.2.1. Cell convection thermal resistance (Ru) and conduction thermal resistance 

(Rc) 

Ru is related to the heat transfer via convection. As its value relates to the 

convection heat transfer coefficient that depends on the characteristics of the 

local air flow, it is highly dependent on the position of the cell in the module. 

Some literature on heat and mass transfer as well as heat exchanger such as [80, 

81] provide correlations and expressions based on experimental results. However, 

instead of the mean or overall heat transfer, in this work, the point of interest is 

the local or individual heat transfer coefficient at particular spot, because we are 

interested in each cell’s temperature nodes. Moreover, the common correlations 

and available expressions typically refer to typical tube banks configuration for 

heat exchanger, whose dimension and space are not similar to the tube dimension 

and space of our SC string. The local heat transfer coefficient could be found 

mathematically, as proposed recently by [23] for a forced-cooled staggered SC 

stack, provided that the local properties of the related parameters such as air 

velocity or air temperature are known, which could be difficult. 

Sensitivity analysis performed by [25] and [82] also showed that Ru and the 

directly related parameters to Ru such as air speed and convection coefficient had 

the greatest sensitivity index value. This means that these parameters have the 

largest influence on the output of the thermal model, which is the temperature. 

Hence, individual Ru of each cell was derived based on experimental results. On 

the other hand, the variation of Rc for each cell should not be as large as Ru since 

it is more related to the cell materials. However, for better model accuracy, both 

Ru and Rc of individual cell are identified here.  
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Figure 2.10.  SC string temperature measurement for each cell: steady-state cT  (upper graph), 

sT  (middle graph), and fT  (lower graph). 
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Considering the steady state Tc, Ts, and Tf from the constant current cycling 

shown in Figure 2.10 and Figure 2.11, Ru and Rc can be calculated from (2.1) and 

(2.2). The R value of 0.8 m is taken from the ESR value in the datasheet. 

 

 

Figure 2.11.  Steady-state temperature of each cell in the string. 

 

The value of Rc and Ru for each cell in the string is plotted in Figure 2.12. It 

can be seen that Ru increases with distance of the cell to the cooling fan, and then 

it stays relatively constant. This is related to the steady-state surface 

temperature Ts, shown in Figure 2.11, showing increasing temperature which then 

turns relatively constant, similar to the presented data in [25], single-row cells 

data in [83], as well as CFD-simulated data in [24] and [84]. The reason for this 

similar “pattern” is that the heat transfer coefficient that defines Ru depends on 

the air flow characteristics such as velocity, turbulence, and flow pattern (e.g., if 

there exists wake or vortex behind the cells (tubes)). As the total number of the 

cells increases, the turbulent kinetic energy will gradually reach a steady state 

after a particular cell; which is the fourth cell in this case.  
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Figure 2.12.  uR and cR value of each cell in the string. 

 

2.3.2.2. Cell heat capacity (Cc and Cs) 

Cc and Cs are related to the thermal properties of the cell material and are not 

as highly dependent on the air flow properties of the cell material as Ru is. They 

are also considered relatively constant over lifetime [71].  

In this work, the value Cc and Cs are determined based on the transient part 

of the temperature graph (as in Figure 2.10), optimised by curve fit based on 

equations (2.1) and (2.2), as has also been done in [25, 85].  

These values of Cc and Cs are then assigned to other cell as their values are 

expected to be similar for each cell. The assigned values for Cc and Cs are 258 and 

17 JK-1, respectively. 

2.3.2.3. Cooling air capacity ( pc V  or pM c ) 

The cooling air capacity was discussed in Section 2.2 through equations (2.3) 

to (2.5). It is related to a certain volume of air flowing, “taking” and transferring 

the heat released by the cell. It is given by  pc V  or  pM c , in which  is the 

air density, cp is the air specific heat capacity, V  is the air volumetric flow rate, 

and M  is the air mass flow rate. 
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Both  and cp are dependent on temperature, although within the interval of 0 

to 70 °C, the  and cp of air are relatively constant. At 1 atm pressure,  of air is 

1.292 kg m-3 at 0 °C to 1.028 kg m-3 at 70 °C, while the cp is 1006 J(kg·K)-1 at 0 

°C and 1007 (kg·K)-1 at 70 °C [86]. Typically, the temperature at which the air 

properties are determined is approximated as the arithmetic mean of the surface 

of the solid boundary wall (Ts in this work) and the free stream temperature (Tf 

in this work). Hence, the cooling air capacity can be seen as a function of 

temperature and its varying value can be accommodated in a time-varying state-

space thermal model. However, as the scope of this work is a time-invariant 

model, a constant value is calculated based on  and cp at 35 °C, which is 

expected to represent the film temperature in the string during operation. With 

fan airflow rate of 34.1 CFM, the value of calculated pc V  is 18.45 J(K·s)-1. 

2.3.2.4. Cell-to-cell heat conduction (Rcc) 

Apart from the assumption that the heat released from the cell via convection 

is immediately removed by the air flow, another cell-to-cell heat transfer event 

via conduction is also considered. Rcc is the lumped thermal resistance related to 

the cell-to-cell heat conduction as well as other possible connections. In our setup, 

the SC cells are connected via aluminium connection tab. With the approximate 

tab dimension of 62.55-mm length and 1-mm by 12-mm cross section, and 

thermal conductivity of 237 W(mK)-1 [86], the calculated Rcc is 21.99 KW-1.  

All parameters of the thermal model obtained as discussed previously are 

presented in Table 2.3. 

Table 2.3. Thermal model parameters. 

Parameters Value 

cC   258 JK-1 

sC  17 JK-1 

pcV or pM c  18.45 J(Ks)-1 

ccR  21.99 KW-1 
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2.4. Validation of string lumped thermal model 

With the string current and air inlet temperature as the inputs as in (2.8), the 

output of the thermal model with the determined parameters as discussed 

previously is evaluated and compared with the experimental data. While constant 

current cycling in Section 2.3.2 was used for identification, a customised load 

pattern consisting of different charge-discharge as well as short and long rest 

periods, depicted in Figure 2.13, was used for validation. The particular load 

pattern is customised as such to yield fluctuating temperature.  

 

 

Figure 2.13.  Load pattern consisting of charge-discharge and short and long rest periods for 

generating fluctuating temperature for thermal model validation. 

 

The validation results for the customised load pattern is shown in Figure 2.14, 

in which the temperatures measured from the SC string are overlaid together 

with the temperatures simulated based on the thermal model.  

The dynamics of both the simulated and measured temperatures are in good 

agreement. The root-mean-squared error (RMSE; see (2.12)) of identification 

phase and validation phase are calculated for the time interval of t = 1 to 2000 s, 

assuming that it is the time interval before the steady-state period. The RMSE is 

presented in Table 2.4, with the overall values less than 1 °C.  
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Table 2.4. RMSE of identification phase and validation phase (before steady-state period) 

 RMSE Tc (°C) RMSE Ts 
(°C) RMSE Tf (°C) 

 Id. Val. Id. Val. Id. Val. 

Cell 1 0.18 0.22 0.14 0.16  0   0 

Cell 2 0.21 0.21 0.17 0.16 0.18 0.19 

Cell 3 0.21 0.18 0.24 0.22 0.17 0.16 

Cell 4 0.57 0.33 0.64 0.48 0.15 0.11 

Cell 5 0.41 0.22 0.53 0.35 0.09 0.14 

Cell 6 0.43 0.30 0.25 0.19 0.22 0.31 

Cell 7 0.29 0.26 0.26 0.30 0.31 0.41 

Cell 8 0.77 0.75 0.72 0.65 0.35 0.48 

Id. : Identification Phase 

Val. : Validation Phase 

2.5. Summary 

In this chapter, the details of cylindrical battery and SC cell considered in the 

thesis are given and the commonality is discussed. The lumped thermal model for 

the string consisting of serially connected cells is developed and the model 

parameters are determined using an SC string setup.  

It is shown that the convection resistance Ru can be considered a critical 

parameter as it is highly dependent on the air flow and the position of the cell in 

the string. 

The validated thermal model yields temperature which is in good agreement 

with the measured temperature. The model is applicable for other type of forced-

cooled electrochemical storage string with cylindrical cells, provided that the 

thermal parameters value is determined accordingly.  

For the remainder of this thesis, the thermal model with parameters value 

from the validation in this chapter is used for work related to SC string, unless 

stated otherwise. As for the work related to battery string, the parameters value 

is obtained from the relevant references, and details will be provided in the 

related chapters. 
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 Observability-Analysis-Based Optimal Chapter 3.

Sensor Placement for String Temperature Estimation 

3.1. Introduction 

In Chapter 2 [62] a thermal model for an electrochemical storage string was 

discussed. The thermal model is useful for temperature estimation in order to 

monitor temperature distribution of a device with a limited number of sensors.  

The model-based temperature estimation, also commonly named “virtual sensor” 

or “soft sensor” method, is applied for different applications from ICs [1], power 

electronics converters [3], electric machines and transformers [5, 6], as well as 

batteries [8]. The estimation procedure could be open-loop (estimates the states 

solely based on the model and inputs) or closed-loop (a number of measured 

outputs is used as feedback to improve the estimation). For a closed-loop 

estimation, the sensor placement measuring these outputs can influence the 

estimation performance.  

As summarised in Section 1.2.2, few references had examined sensor placement 

for temperature estimation in storages [8, 18, 36, 37], in which system 

observability is a common basis for sensor placement. “Observability” itself could 

be defined according to different criteria; for instance, one related to the system 

eigenmode [36, 37], or the more common criterion such as the rank of 

observability matrix [18] as well as the property of observability Gramian, which 

is investigated in this thesis. 

References [18, 71] analysed temperature sensor placement in a string of 

cylindrical battery cells by evaluating the rank of observability matrix. However, 

only the number of observable sensor combinations was considered, whereas the 

information whether particular combinations might be better than the others (or 

vice versa) was neither analysed nor quantified. It was noted though, that for a 
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string with more than a particular number of cells, sensor location would also 

affect observability. Whilst it was not discussed in the aforementioned references, 

this information could be obtained by quantifying the system observability, in 

which a system’s observability is seen not only as a binary measure (as in the 

conventional definition based on the rank of observability matrix), but also 

having different measurable degree, which is feasible by utilising the properties of 

observability Gramian. 

On the other hand, there are several different observability measures or 

criteria derived from the observability Gramian, such as the one related to the 

maximum or minimum singular value, the sum of singular values, or the 

determinant. With some references [26, 27, 29] deducing that the suitability of 

any specific criteria for a particular system cannot be generalised, one 

contribution of this thesis is to assess of the suitability of different observability-

Gramian-based criteria for string temperature estimation with a limited number 

of sensors. The performance of the estimation with particular sensor placement or 

combinations is also evaluated in this chapter.  

The remainder of this chapter is organised as follows. A brief summary of the 

system observability as well as a general instance of string temperature 

estimation is presented in Section 3.2. The observability Gramian and the 

observability criteria derived from it are explained in Section 3.3, followed by 

case studies in Section 3.4 and a summary in Section 3.5. 

3.2. System observability and state estimation for string temperature 

monitoring 

3.2.1. System observability 

For systems represented in state-space model, observability deals with whether 

or not the initial state can be observed from the output, or generally, whether the 

states can be estimated (observed) from knowledge of the input and the output.  
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There are several equivalent criteria to determine system observability, such as 

the ones discussed in [87, 88]. One simple and well-known criterion is the 

observability matrix. For an nth order system with the state-space model as in (2.6), 

the observability matrix is 

 

1
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 
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 
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C

CA
O

CA

  (3.1) 

and the system states are observable if the matrix Om is of rank n.  

Referring to the state-space thermal model in Section 2.2, the string observability 

for state estimation could be associated with the selection of the measured state. An 

example using the built 8-cell SC string is given as follows.  

It is considered that the surface temperature nodes (Ts) of all eight cells are 

measured. Therefore, there are feedbacks from eight states out of the total sixteen 

states (i.e. a total of 24 temperature nodes consisting of sixteen Tc and Ts nodes plus 

eight Tf nodes not included as states in the state space). Thus, the corresponding C 

matrix is an eight-by-sixteen matrix as follows: 

 

0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1

 
 
 
 
 
 
 
 

C   (3.2) 

With this configuration, the system is observable. An observer or estimator could 

be designed to estimate the states based on the measurement. While there are various 

approaches and considerations in designing the estimator, it is beyond the scope of 

this thesis. Thus, a basic closed-loop observer and/or a steady-state Kalman filter are 

used to support the discussion in the thesis.  
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3.2.2. String temperature estimation 

In this subsection, a basic closed loop observer is designed to demonstrate the 

applicability of the string temperature estimation based on the validated thermal 

model. It should be noted that a more specific case such as parameter changes due to 

aging would require a more advanced estimator such as adaptive observer which is 

beyond the scope of this work, and thus will not be discussed.  

The observer has the following form: 

  ˆ ˆ ˆ

ˆ ˆ
c c   



x A x B u L y y

y Cx
  (3.3) 

in which x̂  and ŷ are the estimated states and outputs, respectively, and L is the 

observer gain. The thermal parameters in the matrices are based on the validated 

model in Section 2.3 and Section 2.4, while the measurement matrix C is given in 

(3.2).  

The information of the cells’ surface temperature is used as an initial estimate 

of the states. 

As seen in (3.3), the observer gain L drives the dynamics of the difference 

(error) between the actual and estimated states. In the pole placement method, 

the gain L is determined using the poles (eigenvalues) of the closed loop observer 

which are selected to yield stability and a desired transient response of this error 

[89].  

In a continuous system, the observer poles are placed further to the left side of 

the complex plane (or in a discrete system, closer to the origin in the complex 

plane) as this results in faster observer dynamics. However, there is a trade-off as 

faster dynamics usually yield higher overshoot. For the discretised system in this 

work, the poles of the closed loop observer are located closer to the z-plane origin 

by an absolute value of 0.05 from the original system poles, to yield fast observer 

dynamics. 

The algorithm for the estimation by the observer is implemented in MATLAB 

and is tested using the experimental data collected from the setup, in the same 
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way as in [70], [90], and [91]. We use the aforementioned customised pattern in 

Figure 2.13 for testing the observer performance as the pattern represents the 

typical SC load pattern for electric vehicle applications, such as in [9], [83], and 

[92], which incorporates various charges and discharges as well as different rest 

intervals. The selected pattern can also yield temperature fluctuation, from which 

the observer performance of capturing temperature dynamics can be evaluated 

better.   

The SC string was initially operated with one cycle of the customised load 

pattern and subsequently turned off for ten minutes with the fan also turned off, 

referred to as ‘Stage 1’ and ‘Stage 2’, respectively (Figure 3.1). The string was 

then turned on again with two cycles of the customised load pattern (‘Stage 3’).  

 

 

Figure 3.1. Load pattern including 10-minute rest for testing temperature estimation with 

observer. 

 

This choice of pattern of stages is designed to simulate short shutdown of an 

electric vehicle (e.g. car) which occurs occasionally. During the shutdown, the 

cells in the string will  cool  down  under  natural  convection  as  the  fan  is  
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off. However, for a short shutdown, it is most unlikely that all the cells can cool 

down completely to the ambient temperature. Hence, when the string is being 

operated again (e.g. the vehicle is being operated again), as simulated by ‘Stage 

3’, the cells initial states are most likely to be different. Therefore, by using the 

selected pattern shown in Figure 3.1, the estimation convergence time of the 

observer under unknown initial condition can be evaluated as well. 

The real states as well as the estimates are presented in Figure 3.2. It can be 

observed that the real and estimated temperatures are in good agreement. The 

temperature fluctuation can also be captured relatively well by the observer. A 

few small overpredictions noticeable at the beginning of ‘Stage 3’ can be 

explained as follows.  

As the whole string is being operated again, the fan also turns on and the cells 

are quickly cooled down by forced convection, creating drastic temperature 

decrease. Nevertheless, the estimated temperature quickly converged to the real 

temperature. 

For evaluation purpose, in ‘Stage 3’ we define tconv as the first time the 

absolute difference between the true and the estimated states converges and stays 

within the error bound, which is chosen to be 2.5 % in this case.  

Table 3.1 lists this convergence time as well as the root-mean-squared error 

(RMSE). With the selected observer gain, the estimation error of all states 

converges to the 2.5 % bound in less than two minutes, while the RMSE is less 

than 0.4 °C. Overall, during Stage 3 in which the cells initial temperatures were 

different, the observer delivers satisfactory performance in estimating the cells 

string temperature.   
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Figure 3.2. Real and estimated states of Tc and Ts of the cells in the string.  
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Table 3.1. RMSE and convergence time of estimation error for Stage 3 (8-cell SC string with 8 

sensors) 

 RMSE Tc (°C) RMSE Ts 
(°C) tconv Tc (s) tconv Ts (s) 

Cell 1 0.24 0.11 9 3 

Cell 2 0.24 0.18 34 39 

Cell 3 0.20 0.12 –* –* 

Cell 4 0.16 0.14 14 11 

Cell 5 0.26 0.09 16 –* 

Cell 6 0.21 0.11 –* –* 

Cell 7 0.30 0.12 74 14 

Cell 8 0.23 0.10 –* –* 

*Estimation error for this state is already within the 2.5% bound since 

measurement of ‘Stage 3’ begins. 

 

Using the rank of observability, it is found that the minimum number of 

sensors ensuring full observability for the SC string is three, and there is more 

than one combination of three sensors yielding full observability. For example, 

sensor placement at Ts node of cells 1, 3, 6 (henceforth it will be referred to as 

(1,3,6) and so on accordingly) will give the same observable system as placement 

(3,6,8). To analyse whether a combination might have better observability degree 

than the other, a quantification of the observability is required.  

This topic of observability quantification has been discussed in many 

references, including [26-28, 30, 93, 94] to name a few related to the sensor 

placement. Observability degree criteria based on observability Gramian matrix 

are used most often.  
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3.3. Observability Gramian and observability degree criteria 

3.3.1. Observability Gramian 

Observability Gramian is an alternative to the conventional observability 

matrix for analysing system observability. Observability Gramian matrix WO, of 

the state-space system (2.6) can be expressed as (3.4). 

 
0

T
c ct T t

O e e dt


 
A AW C C   (3.4) 

The observability Gramian is positive definite if and only if the n-dimensional 

pair (Ac, C) is observable, provided that all eigenvalues of Ac have negative real 

parts [87]. The statement is thus equivalent with the expression stating that the 

observability matrix has a full rank.  

The observability Gramian solves the Lyapunov equation: 

 0T T
c O O c  A W W A C C   (3.5) 

Gramian-based observability criteria are mostly derived from the physical 

interpretation of the observability Gramian, which is often referred to as the 

“observation energy”. Assuming that the input u(t) = 0 and the initial state 

x(0)=x0, the system (2.6) produces the output 

 0( ) , 0ctt e t Ay C x   (3.6) 

The “energy” E of this output is, based on its Euclidean norm, equal to 
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  (3.7) 

From equation (3.7) it can be deduced that a small value of observation 

energy indicates small effect of the initial state on the output (with zero input to 

the system), and vice versa. Another point can also be inferred from equation 

(3.7). If OW  is factorised into singular value decomposition as follows: 
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  1 2, diag , ,...,
x

T
O n     W U U   (3.8) 

where U is a unitary matrix and Σ is a rectangular diagonal matrix with the 

diagonal entries σi being the singular values of the observability Gramian, then, 

the energy can be considered to be proportional to the singular values of the 

observability Gramian. A system with larger observation energy, which comes 

from larger singular values, implies that it is more observable or more easily 

observed. “More observable” can be understood as giving more signal response to 

the sensor from the perturbations in the initial states [26, 27].    

3.3.2. Observability degree criteria based on observability Gramian 

Different observability scalar quantifications for both linear and non-linear 

systems have been proposed in many references and a short overview can be 

found in [28] and [95]. Table 3.2 summarises some of the different observability 

criteria which are used in references, either individually or combined. The first 

column shows the criterion based on which the observability is quantified and the 

second column shows the mathematical expression of the criterion. The third 

column shows whether the “best” configurations would be the maximum or the 

minimum of the criterion in the first column, if one is to rank different system 

configurations based on their observability degree. 

 

Table 3.2. Some observability criteria based on observability Gramian 

Criterion Equation  
“Best” 

configuration 

Spectral radius (SR) [27, 28]    maxSR O OW W  (3.9)  {max}SR OW  

Trace [26-28, 36]    
1

trace
n

O i O

i




W W  (3.10)  {max}trace OW  

Near singularity (NS) [26-28]    minNS O OW W  (3.11)  {max}NS OW  

Condition number (CN) [26, 28]  
 
 

max

min

CN
O

O

O






W
W

W
 (3.12)  {min}CN OW  

Determinant (Det) [29, 95]  det OW  (3.13)  {max}det OW  
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Different observability criteria may result in different “best” configurations, 

and a certain criterion may be more suitable for a particular application. SR and 

trace criteria are strongly influenced by the largest singular value (i.e. the largest 

“energy”), which can be interpreted as a large response from certain state(s) 

which can then be observed in the sensor readings. On the other hand, NS 

criterion is based on the smallest singular value (i.e. the smallest “energy”), 

which indicates how close a system is to being unobservable (i.e. a singular 

matrix; hence the name “near singularity”), while CN is affected by both the 

smallest and the largest singular value. As for criterion based on determinant, 

some references such as [29, 95, 96] identifies that the determinant criterion is 

better in capturing information redundancy when dealing with placement of 

multiple sensors, compared to other criteria. We shall see in the following sections 

how these criteria suit the application of electrochemical storage string 

temperature estimation. 

3.4. Case study: Eight-cell SC string and twelve-cell battery string 

A 12-cell battery string with reference to [18, 71] is also considered in addition 

to the 8-cell SC string. With more number of cells (and hence more sensor 

combinations probability), it is expected that the case study could better 

demonstrate better the sensor placement based on observability Gramian. As 

only the SC string setup was built in the laboratory, the work related to the 

battery cell will be based on simulations.    

Two cases will be discussed: Observability degree for different total number of 

sensors in Subsection 3.4.1, and observability degree for a given number of 

sensors in 3.4.2. 

The specification of the battery string is as follows. The cell is the A123 32157 

LiFePO4/graphite battery (shown in Figure 2.3.(a)). The cell parameters (in 

regards to the thermal model in Chapter 2) were taken from [18], while those not 

explicitly listed were assumed implicitly from the cell’s physical dimensions and 

materials. The parameters values are shown in Table 3.3. As in [18], forced 
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convection was considered and the value of Ru corresponds to an air flow rate of 

9.5 · 10-3 m3 s-1, with fixed air flow temperature of 25 °C.  

 

Table 3.3. Battery cell parameters values 

Parameters from [18] Implicit parameters 

Parameter Value Parameter Value 

cC   268 JK-1 ccR  1.125 JK-1 

sC  18.8 JK-1 pM c  11.327 J(K·s)-1 

cR  1.266 KW-1   

uR  0.79 KW-1   

R  3.5 mΩ   

 

3.4.1. Observability degree for different total number of sensors 

The purpose of this subsection is to analyse and compare two sensor 

combinations which are both observable based on the rank of observability 

matrix. For the 8-cell SC string, the minimum number of sensors yielding full 

observability is three, while for the 12-cell battery string it is four. The 

observability degree and the estimation performance between each observable 

combinations will be compared.  

The observability degree comparison of 8-sensor and 3-sensor case for 8-cell SC 

string is shown in Table 3.4, while the comparison of 12-sensor and 4-sensor case 

for 12-cell battery string is shown in Table 3.5. It can be observed that while all 

the cases are observable, they have different degree of observability. 

The estimation performances of each case are evaluated using different load 

patterns as listed in Table 3.6. For brevity, both the temperature RMSE and tconv 

are averaged according to the number of the states, and the comparison of these 

two measures for the 8-sensor and the 3-sensor estimation are depicted in Figure 

3.3. For both load patterns, the metrics indicate better estimation performance 

for the 8-sensor case, confirming a higher degree of observability. The comparison 

graph of battery string is depicted in Figure 3.4, which shows the same trend as 
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Figure 3.3, thus confirming the different observability degree as well as its 

influence on the estimation performance. 

 

Table 3.4. Observability degree comparison of 8-cell SC string: 8 sensors vs 3 sensors (3,5,8). 

Criterion 8 sensors 3 sensors 

SR   237.54 184.60 

Trace 1275.21 527.20 

NS      0.61    7.58·10-8 

CN   387.40    2.44·109 

Determinant       6.33·1018    6.88·10-28 

 

Table 3.5. Observability degree comparison of 12-cell battery string: 12 sensors vs 4 sensors 

(2,5,9,10). 

Criterion 12 sensors 4 sensors 

SR   89.83 36.75 

Trace 275.26 86.97 

NS    1.64   4.53·10-6 

CN  54.76   8.11·106 

Determinant    1.36·1018   1.71·10-36 

 

Table 3.6. List of the load patterns used for evaluation 

 Name Remarks 

SC string 

Load Pattern 1 Customised pattern including 10-minute rest 

(Figure 3.1) 

Load Pattern 2 Constant-current charge-discharge of 85 A. 

Battery string 

Load Pattern 3a Customised pattern of charge-discharge and 

rests (Figure 2.13), normalised to battery 

current capacity. 

Load Pattern 3b Same as Load Pattern 3a but with 

unmatching model parameters of 10 %. 

Load Pattern 4 Constant-current charge-discharge of 50 A, 

unmatching model parameters of 10 %. 
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Figure 3.3. Eight-cell SC string estimation performance comparison of 8 sensors and 3 sensors: 

average RMSE (left figure) and tconv (right figure). 
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Figure 3.4. Twelve-cell battery string estimation performance comparison of 12 sensors and 4 

sensors: average RMSE (left figure) and tconv (right figure). 

 

One notable observation is that there were cases for the system with fewer 

sensors in which the specified poles could not be assigned; while for the system 

with more sensors the same particular poles could. Related to this, a number of 

references [97-99] demonstrated the relationship between the system’s distance to 

uncontrollability (and in related manners, unobservability) to the robustness and 

sensitivity of the pole-placement problem. The pole placement for a system with 

small distance to uncontrollability / unobservability was expected to be sensitive 

to perturbations and face numerical computation difficulties. Hence, this can be a 

possible reason why, in this work, for a lower observable system, a particular set 

of poles could not be assigned, although theoretically the system’s observability 

ensures the ability to assign arbitrary sets of poles. 
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3.4.2. Observability degree for a given number of sensors 

We already see how the same observable systems actually have different 

observability degree yielding in different estimation performance. In this 

subsection, the similar evaluation will be conducted for different combinations of 

the same given number of sensors. First, the two of highest rank combinations 

from each criterion described in Subsection 3.3.2 are selected.  The combinations 

for the SC string and the battery string are illustrated in Figure 3.5 and Figure 

3.6, respectively. These combinations will be evaluated with the same manner as 

in  Subsection 3.4.1. One additional criterion, namely “Naïve”, is also included. 

This criterion placed the sensors not based on any observability-based criteria, 

but intuitively place the sensors in a distributed manner along the string.  

It can be observed in Figure 3.5 that there are few combinations which are in 

the “top two” based on more than one criterion. For example, (3,6,8) which is in 

the “top two” combinations based on determinant and NS criteria; and (3,5,8) 

which is in the top two combinations based on NS and CN criteria. As for the 

battery string, as seen in Figure 3.6, the high-ranked combinations proposed by 

NS, CN, and determinant criteria are similar as well.  

Why these different criteria suggest similar combinations can be explained as 

follows. Referring to (3.11) and (3.12), NS is directly related to the smallest 

singular value ( min ), while CN are related to both the largest ( max ) and the 

smallest singular value. The data of max  from each observable combination do 

not show large interval between different combinations (variation is less than one 

order of magnitude). On the other hand, there is a big range or interval (several 

orders of magnitude) seen in the data of min  from each observable combination. 

That means, the combinations suggested by CN criterion will depend much more 

on min than on max . Hence, the suggested combinations will most likely be very 

similar to the ones based on NS criterion. Nevertheless, this case could be 

different for other applications with different singular values characteristics. 
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Figure 3.5. Top two sensor combinations proposed by each observability criteria for 8-cell, 3-

sensor SC string (cells with sensor are marked). 
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Figure 3.6. Top two sensor combinations proposed by each observability criteria for 12-cell, 4-

sensor battery string (cells with sensor are marked). 
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The determinant criterion (as in (3.13)) is related to one of the properties of a 

determinant of a matrix [100]: the determinant of a matrix is the product of its 

eigenvalues. As observability Gramian is a symmetric matrix, its singular values 

are the same as the absolute value of its eigenvalues. Hence, similar to the CN 

criterion, the large range of min  of different combinations will influence the 

determinant criterion considerably. 

On the other hand, the SR (as in (3.9)) and trace (as in (3.10)) criteria are 

closely related, because the sum of the singular values (which become the basis 

for trace criterion) are influenced more significantly by the largest singular values 

than by the smallest ones.  

It can be observed from Figure 3.5 and Figure 3.6 that the combinations 

suggested by SR and trace often include closely placed sensors. In some references 

[26, 29], this is associated with information redundancy and the nature of the 

placement based on max  itself. Nevertheless, the result of the estimation will be 

analysed to evaluate this matter. 

The comparison of average RMSE for different sensor combination in the 8-cell 

3-sensor SC string is shown in Figure 3.7, while the comparison of average tconv is 

shown in Figure 3.8. There are some data not shown in the graph because the 

estimation of the associated combinations did not perform well (e.g. large 

overshoots and fluctuations), yielding large value of the metrics RMSE and tconv. 

The data not shown are combination based on SR and “Naïve” combinations. 

Meanwhile, for the 12-cell 4-sensor battery string, the comparisons of the 

average RMSE and tconv are shown in Figure 3.9 and Figure 3.10, respectively. 

Overall, based on the metrics, the naïve-criterion-based combinations delivers 

the least satisfactory performance, followed by the SR-criterion-based 

combinations which also yielded high average RMSE and tconv. The combinations 

with the lowest average RMSE and tconv are those based on CN, NS, and 

determinant criteria, with values which are slightly lower than those yielded by 

trace-based combinations.   
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Figure 3.7. Comparison of average RMSE for different sensor combinations in the 8-cell 3-

sensor SC string.  
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Figure 3.8. Comparison of average tconv for different sensor combinations in the 8-cell 3-sensor 

SC string.  
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Figure 3.9. Comparison of average RMSE for different sensor combinations in the 12-cell 4-

sensor battery string.  
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Figure 3.10. Comparison of average tconv for different sensor combinations in the 12-cell 4-

sensor battery string.  

 

These results support the notion that observability criteria which depends only 

on largest singular values (which are related to strong observable states or 

directions) appear to be unsuitable if the purpose is to monitor the temperature 

of the whole string. For this purpose, every state has the same importance and 
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each needs to be observed. Thus, the observability criteria which are more 

suitable for this purpose are the ones which also consider small singular values, 

which means they consider all state contribution. Of course, different priority 

could also yield different purpose, such as in [36] where it proposed the idea of 

maximising observability of particularly selected states which were considered 

more important than the other states.  

 The results also explain sensor placement redundancy which is often included 

in combinations based on SR and trace criteria. With the fact that the 

observability Gramian matrix for multiple sensors could be built by adding the 

observability Gramian matrices for single sensor [29], the SR and trace will most 

likely suggest similar sensor placement for increasing given number of sensors.  

For example, when these criteria are analysed for single sensor placement in 

the 12-cell battery string, the best single sensor position is at Ts node of cell 12. 

The next best single sensor position is at cell 1, and the next one is at cell 11. 

When the criteria are used to propose placement for more sensors, the best 

placement is most likely to include these three sensor positions (see the four-

sensor placement in Figure 3.6). The point that some observability criteria work 

well for single sensor placement but fail to capture information redundancy in 

multiple sensor placement was also identified in few references such as [26, 29].  

On the other hand, placing sensors in a distributed manner does not 

necessarily yield better estimation performance. In this work, the combinations 

based on the naïve criterion, despite of dispersing the placement, actually have 

lower observability degree based on other criteria. The estimation performance 

metrics of naïve-criterion-based combinations which are less satisfactory than 

those of other combinations, also justify the importance of observability degree to 

estimation performance. 

3.5. Summary 

In this chapter, different observability degree criteria were applied to finding 

optimal temperature sensor placement in an electrochemical storage string. 
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Observability degree of different total number of sensors as well as that of 

different combinations of a given number of sensors were investigated, and its 

relation to estimation performance is evaluated. Although all of the tested 

combinations were observable, employing more sensors was demonstrated to 

make the system more observable. It was also demonstrated that among all 

possible observable combinations for the same number of sensors, different 

observability degree existed.  

Based on two estimation performance metrics, namely average estimation 

RMSE and average convergence time, the data showed a positive correlation 

between observability degree and estimation performance. Moreover, it can be 

concluded that for a string temperature monitoring system, where all states need 

to be observed, the most suitable observability criteria are the ones which also 

consider smaller singular values (less observable states), such as the CN, NS, and 

determinant criteria. This is because these criteria ensure that all states, even the 

less observable ones, can be observed instead of being neglected.  

An additional criterion called “Naïve” which intuitively place the sensor in a 

distributed manner is also evaluated. For the same number of sensors, it is found 

to have lower observability degree compared to other criteria. Its less satisfactory 

estimation performance metrics further supports the importance of observability 

analysis for optimal sensor placement. 
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 Multiple-Model-Estimator-Based Chapter 4.

Detection of Cell Abnormal Overheating 

4.1.  Introduction 

As discussed in the previous chapters, one common method for monitoring 

temperature distribution of a device using a limited number of sensors is by 

estimating the remaining of the unmeasured temperature nodes based on thermal 

models. In this chapter, an additional feature will be proposed for the 

temperature monitoring system with a limited number of sensors: multiple-model-

estimator-based detection of cell abnormal overheating.  

Among the family of electrochemical storage devices, lithium-ion (Li-ion) 

batteries are one main type with more various and widespread applications. 

However, they have safety issues which have been a challenge for their further 

deployment so far. The increasing requirement for larger size and more aggressive 

charge-discharge cycles are hindered by Li-ion batteries vulnerability to abusive 

conditions, such as external heating, overcharge or overdischarge, high current 

charging as well as mechanical abuse like crush or impurities penetration leading 

to internal/external short circuit. During the past five years, a lot of Li-ion 

related fires and explosions were reported [101], including two events of Boeing 

787 Dreamliner’s battery fires [102], all of which are believed to be caused by 

thermal runaway, caused by a condition in which the heat produced is higher 

than the heat removed. In such condition, it is likely that an abnormal chemical 

reaction will occur due to the increasing temperature. This reaction is most likely 

exothermic which is a positive feedback and thus the temperature will increase 

even further. As the external abusive conditions triggering such initial 

overheating are electrical, thermal, or even mechanical, it is common that a 

battery management system (BMS) has incorporated sensors related to the three 
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types of abuse. Temperature monitoring through the temperature sensors is one 

of the main features in the BMS, as temperature highly affects the battery 

module operation and lifetime as well as safety.  

This work, as well as references [18, 70, 103], used the string current for the 

temperature estimation. Consider a battery string in an abusive condition where 

the amount of current changes significantly (e.g. high current charging or 

external short circuit). Under this condition, it is expected that the estimator can 

still estimate the temperature correctly. However, certain classes of internal short 

circuit in a cell may lead to high current situation which probably could not be 

discriminated from the high operating current [49, 52], or very small short circuit 

which does not occur continuously [41, 50, 51], or a situation where the battery 

may appear normal immediately after a charge [104]. This means that a 

particular cell having internal short circuit may experience localised heating 

which is likely missed out by the estimation method based on the string current. 

On the other hand, this localised heating may trigger abnormal exothermic 

chemical reaction and abusive overheating [53, 101].  

While this abnormal localised overheating –henceforth will be referred to as 

“abnormal overheating”– can be considered as an additional abnormal part in the 

heat balance equation [53, 54, 101], to the author’s knowledge, so far no reference 

has proposed modelling the additional heat generation as unknown disturbance to 

the normal condition thermal model. With the possibility that the localised 

heating occurs at any cell, it is essential to detect not only the disturbance but 

also the locally overheating cell, hence making it the problem of fault detection 

and identification (FDI). 

Multiple model estimator (MME) is one technique applied for FDI, in which a 

bank of estimators runs in parallel. The MME method has been demonstrated to 

be capable of diagnosing various faulty conditions and/or fault location in a 

satellite [105], aircraft [106-108], as well as microelectromechanical systems 

(MEMS) [109]. Despite these wide range applications, no references have 

proposed the MME applicability for detecting localised overheating in an 
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electrochemical storage string with a limited number of sensors. The use of MME 

for detecting such localised overheating is proposed in this chapter. The 

additional abnormal overheating in an internally shorted Li-ion battery cell is 

modelled as an unknown input disturbance. By augmenting the cell state-space 

model with the disturbance, the unknown additional overheating caused by the 

internally shorted cell can be discriminated from the overheating caused by high 

current operating point. Furthermore, assuming a limited number of cell surface 

temperature sensors, an MME is proposed to be used to quickly detect that an 

abnormal overheating event occurred in the battery string as well as to detect the 

abnormally overheating cell. 

It is to be noted that this chapter’s main idea originates mainly from abnormal 

overheating event in Li-ion cell caused by internal short circuit. The extension to 

the SC cell will be covered in a brief in the subsequent chapters.  Thus, “cell” in 

this chapter is referring to Li-ion cell, unless stated otherwise. 

The rest of the chapter is organised as follows. The thermal model used for 

both the normal and abnormal condition is briefly discussed in Section 4.2, along 

with an overview of disturbance modelling. Then, an MME method is explained 

in Section 4.3, with simulation results and discussion presented in Section 4.4. 

This chapter ends with a summary in Section 4.3.  

4.2. Cell abnormal overheating in a string 

4.2.1. Modelling of abnormal overheating as unknown disturbance 

The heat balance equation such as in (2.1) or (2.2) shows that the generated 

heat and the released heat determine the energy balance in a cell. When the cell 

is heated above a certain temperature limit, exothermic chemical reactions can 

raise its internal temperature. If the cell can dissipate this heat, its temperature 

will not rise abnormally. Otherwise, the exothermic processes would proceed 

under adiabatic-like conditions and the cell’s temperature will increase rapidly 

[101]. The rising temperature will further accelerate the chemical reactions, 
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causing even more heat to be produced, eventually resulting in thermal runaway. 

As discussed in section 4.1, various conditions can lead to overheating and the 

particular condition considered in this work is the internal short circuit in a cell.  

The energy balance for thermal runaway process or internal short circuit event 

has been proposed in some technical papers [39, 53, 54, 101]. Although the 

notation used in the references is slightly different from each other, they basically 

consider three types of heat source: the Joule heating, the electrochemical 

reactions during the normal operating conditions and the abusive chemical 

reaction during a thermal runaway process. 

Considering only the dominant heat sources, i.e. the abusive chemical reaction 

and Joule heating effect, and assuming that the abusive chemical reaction is most 

likely to occur in the internal part of the cell, the energy balance inside the cell 

during the thermal runaway caused by internal short circuit is as follows: 

 ab_chem joule_sc release
c

c
dT

C Q Q Q
dt

     (4.1) 

in which Qab_chem is the heat representing abusive chemical reaction in the cell, 

Qjoule_sc is the Joule heating in the cell during the internal short circuit condition, 

while Qrelease is the heat released to the outer part of the cell. 

For an internally shorted cell, the Joule heating term represents the energy 

released due to the internal short circuit. As now there is a short circuit 

resistance placed in parallel to the cell, the value of the I2R term in equation (2.1) 

changes. Since the original thermal model does not consider this larger value of 

Qjoule_sc, this “additional” term can be considered as an additive unmeasured or 

unknown disturbance to the normal system.  

Similarly, Qab_chem is an additive term to the heat balance under the normal 

condition and hence it can also be modelled as an unknown disturbance to the 

normal system. The occurring chemical reaction is related to the characteristics of 

the internal short circuit, such as location and area of the short. Therefore, the 

onset temperature at which the chemical reactions are triggered is unpredictable 
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and highly dependent on the short circuit nature [54]. In this work it is assumed 

that the onset temperature is relatively high (> 150 ºC [101]), i.e. no Qab_chem is 

assumed to be generated up to this temperature.  

4.2.2. Disturbance modelling 

In control systems, the unmeasured disturbances –which can lead to steady-

state offset– are often handled by augmenting the system with integrators driven 

by white noise [110-113]. 

The disturbances can be modelled to enter the system either through the plant 

inputs or the plant outputs or partially through both [111, 113]. Consider a 

linear, time-invariant, discrete-time system (4.2) augmented as in (4.3). 
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  (4.3) 

In equations (4.2) and (4.3), x(k)  n
  is the state vector of the system at 

time k with the input vector u(k)  nu and the measurement vector y(k)  ny 

while d(k)  nd is the disturbance vector which affects the states through the 

matrix Bd  n  nd and the measurements through the matrix Cd  ny  nd. A 

pure input disturbance model is achieved by setting Cd to zero while setting Bd to 

zero yields a pure output disturbance model. 

Next, the detectability of the augmented system has to be verified. This step is 

essential as the augmented system should be detectable. Referring to [111, 112], 

in which detailed guidelines for the design of a general state-space disturbance 

model are provided, the detectability of the augmented system can be checked 

using the following condition:  
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As the additional abnormal overheating is assumed occurring inside the cell 

[53, 54, 101], in this work, the system model is augmented with the input 

disturbance. Hence, for the discretised and augmented form of state-space model 

in (2.6), for N cells and ny measurements, the matrices Cd will be a ny-by-nd zero 

matrix, while Bd  will be a 2N-by-nd matrix whose elements are zero except for 

the one associated to the state affected by disturbance. For example, a 2-sensor 6-

cell string assuming disturbance affecting 
6cT will have the following Cd and Bd : 
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 (4.5) 

4.2.3. State and Disturbance Estimation 

After the additional unknown disturbance vector is added to the original 

system, an estimator is designed to estimate the states as well as the 

disturbances. For this purpose, an optimal observer, i.e. a steady-state Kalman 

filter, is used. It is assumed that the model in (4.3) is augmented with zero-mean 

white process noise w(k) and zero-mean white measurement noise v(k) as: 
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 (4.6) 

Let the covariances of w(k) and v(k) be Qw and R, respectively, and w(k) and 

v(k) are not cross correlated. G is the noise gain matrix relating the process noise 

to the state variables and is chosen as G = I. The disturbance is driven by white 

noise (k) with covariance Q.  

The states and disturbances are first predicted and then updated by the 

Kalman filter using the measured output y(k): 
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Provided that the augmented system is detectable, the steady-state Kalman 

gain can be calculated using standard methods [110-113]. For convenience of gain 

calculation, the following notations are used: 
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and the steady-state gain  is calculated as follows: 

  
1

T TM= PC CPC +R   (4.9) 

where matrix P  –the error covariance matrix– is the solution to the Riccati 

equation 
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4.3. Multiple Model Estimator 

In Section 4.2 it was shown how the assumed affecting disturbance was 

modelled via pure input disturbance model Bd matrix. When there are N cells in a 

string, there are N assumptions of a cell affected by input disturbance. This is 

where the MM method is employed.  

For FDI application, typically a bank of estimators runs in parallel, in which 

each estimator is designed for each possible or selected fault/failure mode [105-

108]. Figure 4.1 shown N parallel estimators, each designed for the same system 

model but augmented with disturbance affecting one of the cells at a time. Each 

of the estimator model is represented by a parameter ai where i = 1, 2, …, N. 
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Based on the input u and the measured output y, the estimators (Kalman filters) 

produce the state estimates  as in (4.7). 
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Figure 4.1. Multiple model estimator.  

4.3.1. Probability calculation 

In order to determine which of the states is affected by the disturbance, a 

conditional probability pi(k) is defined as the probability that a assumes the value 

ai (i.e., the ith model is the true model), conditioned on the observed 

measurement history to time step k: 

    Pr |i i kp k a a k   
 

Y Y   (4.11) 

where Y(k-1) = [yT(1) … yT(k-1)]T. 

It can be shown that pi(k) can be evaluated recursively for all i via the 

iteration [107, 114, 115]: 
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where       1| , 1 | ,k i kk a kf ay Y y Y  is the conditional density function of the 

measurement y at time step k, given a certain Kalman filter model  and the 

measurement history Y(k-1). 
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The conditional density function is given by the Gaussian form [107, 115] 
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in which ri(k) is the estimator residual given as    i i ik k r y C x , Si is the 

residual covariance, and ny is the measurement dimension. 

In [115] it was shown that the  term in (4.13) can be removed while still 

leaving the algorithm to function properly, even reducing certain performance 

problems. Removing  term means removing inappropriate weighting based on 

|Si| value. Thus, in this work the  term in (4.13) was removed when calculating 

the probability. 

Since the instantaneous probability pi(k) is dependent on its previous value 

pi(k-1), once pi(k) reaches zero, it will cause the future time step probability to 

remain zero. To account for this case and allow every mode to remain active, an 

artificial lower bound is considered, as proposed by [106, 115, 116]. 

4.3.2. Estimation fusion/decision 

From probability calculation in equations (4.11) to (4.13), it is clear that if a 

disturbance enters certain state (i.e. one of the cells), a certain mode ai will 

generate smaller residuals compared to the other modes, and thus will have 

higher probability of being the mode that matches the real system. At each time 

step k, the estimated states  in Figure 4.1 are set equal to the states estimated for 

the model with the highest probability. Similar to [106, 109], the decision logic in 

the estimation fusion/decision block determines the highest probability model 

index ih(k) at each time step k as:  

      arg maxh ii k p k   (4.14) 
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The final determination of the true mode index it(k) is made using a 

probability threshold pthresh as: 

      thresh argt ii k p k p   (4.15) 

Hence, the true mode index it(k) determines the cell with abnormal 

overheating. 

Based on the simulation results, the probability threshold value was selected 

as pthresh = 0.6 as it can be expected that once a model’s probability reaches this 

value, the tendency of that being the final true model is high.  

4.4. Simulation results 

4.4.1. Abnormal overheating simulation base case 

The state-space model discussed in Chapter 2 and battery string thermal 

parameters from Section 3.4 were used for simulating a 6-cell battery cell in 

MATLAB. As discussed in section 4.2, to account for the heat generation in the 

real system, an unknown input p is considered in the continuous-time state-space 

model which yields: 

 
c c pc  



x A x B u B p

y Cx
  (4.16) 

 In (4.16) the matrices Bpc and p related the additional unknown heat 

generation Qadd_sc = Qjoule_sc + Qab_chem  to one of the states. For example, if the 

cell 6 is the shorted cell (i.e. there is an additional Qadd_sc term added to the 

state), the matrices Bpc and p would be5: 

                                                

5Alternatively, the additional heat generation can also be realised using 2N-by-1 B
pc
 matrix and 

1-by-1 p matrix. 
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where it can be seen that there is Qadd_sc in matrix p which is associated to 

state 6cT .  

Based on the observability analysis, for the 6-cell battery string, the minimum 

number of temperature sensors which would give an observable system is two. In 

the simulation the measured nodes are 3sT  and 6sT , represented by value of 1 in 

the C matrix in (4.19). The simulated configuration is depicted in Figure 4.2. 
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123456
air flow

direction

cells with surface temperature sensors
 

Figure 4.2. Configuration selected for simulation: 6-cell battery string with temperature 

sensors on cells 3 and 6. 
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For simulation, it is assumed that loading of the battery starts after a long 

rest so its initial temperature is the same as the ambient (coolant) temperature 

(25 ºC). Then, the following load pattern is applied: 15-second charge, 5-second 

rest, 15-second discharge, and another 5-second rest, with the current equal to ±4 

C or ±32 A for the 8-Ah battery [117]. After the load pattern is applied for about 

2000 seconds, the battery reaches a steady-state operating temperature. Then, it 

is assumed that at time t = 2000 s a disturbance (the abnormal overheating) 

Qadd_sc caused by an internal short circuit initiates inside one of the cells of the 

battery string.  

The Qadd_sc is modelled as a ramp signal with a rate of 5 Ws-1 and applied for 

350 seconds from the time the disturbance initiates, with the assumption that 

this heat increment constitutes Joule heating followed by self-generated heating 

from the abusive chemical reactions. The ramp signal is selected based on the 

simulation of internal short circuit heat generation in [54, 118] which showed that 

the generated heat increases almost linearly at a certain rate. Experimentally 

verified simulation results from the model in [118] also showed a 1-Ah battery 

could have internal short circuit heat generation at a rate of approximately 0.04 

Ws-1 to 5.77 Ws-1. Hence, assuming fully charged battery cell in our work, a value 

of 5 Ws-1 is selected which is closer to the simulated maximum rate of possible 

heat generation.  

For Kalman gain calculation, the following covariance matrices are considered: 
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0 0.1
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Q Q R   (4.20) 

and the steady-state Kalman gain for the augmented state-space model is 

calculated using (4.9) and (4.10). 

The MME consists of six Kalman filters each designed for the same system 

model but augmented with disturbance affecting one of the cells at a time. 
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Similarly as in [116], the same matrix Si is used for each augmented model, and is 

chosen as identity matrix I with the same dimension as the measured output. 

The initial probability of each augmented model is set to the same value of 1/6. 

The probability lower bound is set to 0.001. The covariance matrices for all 

estimators are the same as in (4.20) and the initial state values of the estimators 

are set to be the same as those of the real system.  

4.4.2. Abnormal overheating detection: cell location 

As a 6-cell battery string with only two temperature sensors was considered, 

the following two cases have been analysed. In the first case (Subsection 4.4.2.1) 

the shorted cell is a cell with the temperature sensor and in the second case 

(Subsection 4.4.2.2) the shorted cell is a cell without the temperature sensor. The 

results show how the probability of each augmented model evolves over time as 

well as the resulting states estimation for the dominant (highest) probability 

model. 

4.4.2.1. Shorted cell is the cell with the temperature sensor 

Figure 4.3 shows the probabilities pi(k) of each of the six augmented models 

which are used by the estimation decision block to identify the dominant 

probability as in (4.14). It can be seen that once the disturbance in cell 6 is 

introduced at time t = 2000 s, p6 (the probability value of the augmented mode 6 

being the true mode) increases over time to 1, while the probabilities of the 

others tend to 0. The probability p6(k) reaches the threshold value of 0.6 at t = 

2044 s (after 44 seconds).  

During the normal condition (before the disturbance enters), theoretically, 

each augmented model will have the same probability. In reality, because the 

residual error of each augmented model is not identical, there is a slight difference 

in the probability and hence the detector (see (4.14)) identifies the augmented 

mode 1 as having a slightly dominant probability over the others. The 

temperatures are estimated based on the dominant (highest) probability model 
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and are shown in Figure 4.4. It can be seen that before the estimation decision 

block yields the true model a6, the system assumes that the true model is a1; thus 

the temperature of each node of cell 1 is slightly overestimated. The probability 

of the true mode evolves into dominance quickly as the shorted cell 6 is the cell 

with the temperature sensor and hence any temperature abnormality in this cell 

is sensed immediately.  
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Figure 4.3. Probabilities of all six augmented models when abnormal overheating (disturbance) 

occurs in cell 6 at t = 2000 s (temperature sensors are placed on cells 3 and 6). 

 

For the case when cell 3 is the shorted cell, the MME identifies the location of 

the abnormal overheating, i.e. p3(k) is greater than pthresh, at t = 2049 s (after 49 

s), as shown in Figure 4.5. 
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Figure 4.4. Comparison of real temperatures and temperature estimated by the MME when 

abnormal overheating occurs in cell 6 (temperature sensors are placed on cells 3 and 6). 
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Figure 4.5. Probabilities of all six augmented models when abnormal overheating (disturbance) 

occurs in cell 3 at t = 2000 s (temperature sensors are placed on cells 3 and 6). 

 

4.4.2.2. Shorted cell is the cell without the temperature sensors 

From the previous discussion, it can be expected that if the abnormal 

overheating occurs in any cell at which temperature is not measured, it may take 

longer time until the sensor on the other cell senses the temperature abnormality. 

First, the results for the case when cell 4 is overheating are shown. The 

probabilities of all six augmented models in Figure 4.6 show that the model a4 

takes a longer duration until its probability dominates over the other models (72 

s after disturbance enters cell 4). When cell 4 experiences localised overheating, 

the speed of heat propagation to the nearest cell(s) with sensors depends on the 

heat rate and the heat transfer rate. With the selected value of the additional 

overheating in this simulation, p4 value exceeds the probability threshold 0.6 at t 

= 2144 s (144 seconds after the disturbance affects the cell 4). The real and 

estimated temperatures for this case are shown in Figure 4.7. 
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Figure 4.6. Probabilities of all six augmented models when abnormal overheating (disturbance) 

occurs in cell 4 at t = 2000 s (temperature sensors are placed on cells 3 and 6). 

 

The probability evolutions for other cases are shown in Figure 4.8 (abnormal 

overheating in cell 2), Figure 4.9 (abnormal overheating in cell 5), and Figure 

4.10 (abnormal overheating in cell 1). It can be noted that the MME takes 

considerably long time to determine that the abnormal overheating originated in 

cell 1. Summary of all overheating cell detection times based on the selected 

probability value threshold is given in the third column of the summary table 

(Table 4.1) in Subsection 4.4.3.  

 



72 Chapter 4: Multiple-Model-Estimator-Based Detection of Cell Abnormal Overheating   

 

Time (s)

T
e

m
p

e
ra

tu
re

 (
°C

)

20

40

60

80
Real and estimated temperature (°C) versus time (s)

 

 

20

40

60

80

 

 

20

40

60

80

100

 

 

50

100

150

 

 

20

40

60

80

100

 

 

1000 1500 2000 2500 3000 3500
20

40

60

80

 

 

Tc1

Tc1 est

Ts1

Ts1 est

Tc2

Tc2 est

Ts2

Ts2 est

Tc3

Tc3 est

Ts3

Ts3 est

Tc4

Tc4 est

Ts4

Ts4 est

Tc5

Tc5 est

Ts5

Ts5 est

Tc6

Tc6 est

Ts6

Ts6 est

 

Figure 4.7. Comparison of real temperatures and temperature estimated by the MME when 

abnormal overheating occurs in cell 4 (temperature sensors are placed on cells 3 and 6). 
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Figure 4.8. Probabilities of all six augmented models when abnormal overheating (disturbance) 

occurs in cell 2 at t = 2000 s (temperature sensors are placed on cells 3 and 6). 
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Figure 4.9. Probabilities of all six augmented models when abnormal overheating (disturbance) 

occurs in cell 5 at t = 2000 s (temperature sensors are placed on cells 3 and 6). 
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Figure 4.10. Probabilities of all six augmented models when abnormal overheating 

(disturbance) occurs in cell 1 at t = 2000 s (temperature sensors are placed on cells 3 and 6). 

4.4.3. Abnormal overheating detection: the event 

Despite the delay in detecting at which cell the abnormal overheating occurs, 

based on the estimation, the MME can immediately recognise that the 

temperature is increasing at different rate for different cells. A threshold can then 

be set as a basis for overheating alert for the BMS that an abnormal temperature 

rise is occurring in the battery string. This threshold can be battery cell 

temperature and/or the temperature difference between cells [24], and/or the 

temperature difference between the battery and the ambience. Here, the threshold 

is chosen to be the estimated core temperature difference between the cells. The 

maximum core temperature difference between adjacent cells during normal 

operation is assumed to be 1 ºC (assumption based on simulation of the 

particular model) and hence for the 6-cell string, the threshold of core 

temperature difference is set to be 6 ºC. Based on this threshold, the MME can 

alert that the highest core temperature of one cell is beyond the normal 

temperature difference. For example, Figure 4.11 shows a detail of the estimated 

core temperatures for the case when abnormal overheating occurs in cell 4. Even 
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before the MME has not decided yet which cell is overheating (as the probability 

threshold has not been reached yet), it can be seen that the estimated cT  of each 

cells exceeds the difference threshold. In this case, the abnormal temperature 

difference is detected at t = 2037 s (after 37 s). 

Hence, using this method, the abnormal overheating event can be detected 

earlier before the MME identifies the particular overheating cell. Summary of all 

abnormal overheating detection times based on the estimated core temperature 

difference threshold is given in the second column of Table 4.1. 
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Figure 4.11. Detail of estimated core temperatures for the case when abnormal overheating 

(disturbance) occurs in cell 4 at t = 2000 s (temperature sensors are placed on cells 3 and 6). 

 

For comparison, consider a conventional battery string in which each cell has a 

dedicated surface temperature sensor. Setting the threshold of surface 

temperature difference to 6 ºC, the abnormal overheating detection time is shown 

in the fourth column of Table 4.1. It can be seen that relying on the surface 

temperature measurement takes longer time to detect abnormal overheating, as 

the measured surface temperature abnormal rise is in fact triggered by the core 

temperature abnormal rise. Considering the recently developed approach of 

embedding micro temperature sensors within the battery cell [119, 120], the 
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temperature estimation method is expected to perform better in the future, as the 

directly measured core temperature can be a better feedback for the estimator.  

 

Table 4.1. Abnormal overheating detection simulation results 

Abnormally 

overheating 

cell 

MME-based detection  
Non-MME-based (assuming 

surface temperature sensors on 

each cell) detection time (s) 

Overheating 

event detection 

time (s) 

Ovserheating cell 

location detection 

time (s) 

Cell 1 47 345 64 

Cell 2 34 151 70 

Cell 3* 20 49 70 

Cell 4 37 144 70 

Cell 5 48 144 71 

Cell 6* 27 44 60 

*cell with surface temperature sensors for MME-based detection 

4.4.4. MME performance for other cases 

In the previous subsection, the case of one cell undergoing abnormal 

overheating was examined. If the possibility of more than one cell undergoing 

abnormal overheating is also considered, from the point of view of MME, 

additional modes (models) need to be added to the existing MME modes. 

However, assuming that the probability of more than one cell undergoing 

abnormal overheating caused by internal short circuit is small, it should be 

adequate to consider only the modes representing one cell undergoing abnormal 

overheating at a time.  

Nevertheless, two adjacent cells undergoing abnormal overheating is simulated, 

employing the same MME (with only six modes) as discussed previously. Result 

in Table 4.2 show that even though the existing MME is used it can still detect 

both the abnormal overheating event and location of the overheating for the case 

of two adjacent cells having abnormal overheating.  
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Table 4.2. Detection time of abnormal overheating occurring in two adjacent cells 

Abnormally 

overheating 

cell 

MME-based detection  

Overheating event 

detection time (s) 

Ovserheating 

location detected 

Ovserheating cell location 

detection time (s) 

Cell 1 and 2 31 Cell 2 121 

Cell 2 and 3* 20 Cell 3 44 

Cell 3* and 4 46 Cell 3 46 

Cell 4 and 5 32 Cell 5 90 

Cell 5 and 6* 26 Cell 6 40 

*cell with surface temperature sensors for MME-based detection 

4.5. Summary 

In this chapter, we propose to model the abnormal overheating caused by 

internally shorted cell in a battery string as an unknown input disturbance to the 

normal system model. For estimation purpose, the system state-space model is 

further augmented by an input disturbance model. An MME with several modes 

(augmented models) was built to detect an overheating cell using a limited 

number of temperature sensors. Including in the design parameters are thresholds 

of mode probability and temperature. 

From simulations, it was shown that the MME can be used to detect which of 

the cells is overheating as well as to detect the abnormal overheating event in the 

battery string. Further exploration of the MME-based abnormal overheating 

detector as well as the experimentation will be presented in the subsequent 

chapters.  
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 Experimentation and Further Exploration Chapter 5.

of MME-Based Overheating Detection 

5.1. Introduction 

In Chapter 4 [61], abnormal overheating of a cell in a battery string (i.e. 

localised overheating) was modelled as an unknown disturbance, and with a 

limited number of temperature sensors, an MME was built to identify the 

overheating event as well as its location in the string. The idea of detecting an 

abnormal local hot spot in a string using the limited number of sensors is 

applicable to any other forced-cooled electrochemical storage string or stack 

consisting of a number of cells. In this chapter, the MME will be applied and 

tested experimentally for the SC string setup that has been introduced in 

Chapter 2 [62].  

SCs failure modes, in particular thermal-related ones, have not been analysed 

in detail in many references, especially compared to batteries. As has also been 

explained in Subsection 1.2.3, although in general SCs are considered having less 

thermal risk, there are still some factors that could lead to SCs thermal hazard 

[55-58]. Moreover, the energy density of SCs –including its battery-hybrid type 

Li-ion capacitor– is reportedly getting higher, even as high as 85 Wh kg-1 [59, 60], 

and this signifies increasing thermal risk as well. 

As shown in Chapter 2, from thermal dynamics point of view, as the Li-ion 

batteries string and the SCs string share the similar configuration (a string or 

stack of cylindrical cells, enclosed and forced-cooled), the thermal model and 

hence the thermal dynamics are similar. While the temperature distribution 

resulting from SCs failure modes has not been covered in references, it is assumed 

that it would be similar to Li-ion batteries, with few differences, e.g. in duration 

and magnitude, due to different thermal parameters value.  
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In addition, the experimentation of the MME-based overheating detection was 

purposely performed on an SCs string for safety reason, as, compared to batteries 

string, it has less risk of fire or thermal catastrophe.  

Another main focus of this chapter is to further explore different design 

parameters, such as the Kalman filter covariance matrices of the noise model, the 

so-called “convergence factor”, and the detection threshold. How the selection of 

these values affects the detection performance will also be investigated. As the 

application of MME in this work is quite specific, overview of the relevant 

literature will be presented directly in the section discussing further exploration 

of the MME design.  

Hence, the organisation of the remainder of this chapter is as follows. Further 

exploration of the MME-based detection including performance evaluation and 

improvement is discussed in Section 5.2. The performance of the 

estimator/detector system is tested on the experimental setup using heaters for 

emulating cell overheating, which is explained in Section 5.3. Finally, the 

summary of this chapter is presented in Section 5.4. 

5.2. Further exploration of the MME-based overheating detection design 

In this section, further details not covered in Chapter 4 are investigated. This 

includes addition of the normal mode and the influence of noise assumption as 

well as convergence factor on the detection performance. Understandably, the 

proper choice of these parameters is very much dependent on the specific system 

[121, 122]. 

5.2.1. Additional mode representing normal condition 

Many references made use of the MM method for sensor / actuator failure 

detection which is usually represented by making the value of a particular 

parameter related to that sensor or actuator to be zero (i.e. it represents the loss 

of a sensor or actuator). A fully functional system is represented by a nominal 

mode with the nominal parameter, and is usually referred to as the normal mode. 
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In this work, the failure (fault), instead of being represented by “zeroed” or lost 

parameter, is more suitable to be represented by additional parameter as 

previously discussed in Section 4.2 (i.e. the augmented models). This is similar to 

the application of MM strategy for disturbance rejection in [116]. Therefore, 

during the normal condition (no fault) each representing mode supposedly has 

very similar probability, given that the initial probability for each mode is the 

same. However, as the residual error of each mode at each time step is not 

identical, there would be a slight difference in the probability (as also shown in 

the simulations in Section 4.4 and also in [116]). A slight dominant probability of 

a mode, depending on the parameter selection, might keep increasing towards 

bigger value during a very long time interval and pass the probability threshold 

which might trigger false fault alarm. 

Therefore, to improve the proposed method in Chapter 4, one mode 

representing the normal condition based on the original state-space model 

without augmented disturbance is added. Considering that the normal condition 

should be the default condition of the system, the initial probability of this 

normal mode is set to be quite high or even set to unity. An example to 

demonstrate this functionality will be given altogether in Subsection 5.2.2. 

5.2.2. Multiplying probability with estimated disturbance for decision algorithm 

improvement 

As shown in Figure 4.1, after probability pi  is calculated, it is fed into the so-

called “Estimation Fusion/Decision” block which gives the decision of the system 

condition. Previously, pi was solely used for decision algorithm in which the 

dominant pi was taken into account and compared to a probability threshold (cf. 

equations (4.14) and (4.15)). Despite the successful overheating detection 

performance based on this, there are some possible cases in which the abnormal 

overheating extent is relatively small and causes the mode probability to evolve 

very slowly. 
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This can be demonstrated by simulation of an example with the following 

details. The base case for the simulation is the forced-cooled, enclosed 8-cell SC 

string with layout shown in Figure 5.1, with parameters as described in Chapter 

2. 

 

air flow
direction1245678 3

cells with surface temperature sensors
 

Figure 5.1. Base case for simulation and experiment: Eight-cell SC string with each grey-

coloured cell having surface temperature sensor.  

 

The load pattern is a constant current charge discharge pattern of 88 A. The 

simulated overheating cell is cell 1, as this can be considered the worst case for 

the detection, because it is the cell nearest to the cooling fan which makes the 

abnormally increasing temperature more difficult to sense (see Chapter 4). The 

additional heat source is set at t = 2100 s, yielding a temperature increment at 

cell 1 of approximately 30 ºC in 300 seconds, which can be considered as a small 

extent of overheating.  

To simulate the noises, the measurement noise with diagonal covariance 

matrix R with diagonal elements of 0.01 and the process noise with diagonal 

covariance matrix Qw with diagonal elements of 0.0001 are added to the system. 

The process noise value is selected by manual tuning and comparing the 

simulation and experiment data. 

As for the Kalman filter, the values of the covariance matrices will greatly 

affect the estimator gain and hence the estimation. For a base case simulation, 

the Kalman filter noise covariance matrix is set to be the same as the 

aforementioned simulated additional noise. Qξ,  is set to be 0.00001 while the 

convergence factor K is chosen to be 5.  
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With the aforementioned parameters value, the probability evolution 

calculated by the MME is shown in Figure 5.2. 

 

 

Figure 5.2. Evolution ip  (upper graph), estimated disturbance îd  (middle graph), and mode 

probability multiplied by estimated disturbance im  (lower graph) for the case of overheating 

at cell 1 at t = 2100 s. 

 

It can be seen that p0 (normal mode probability) increases to 1 from its initial 

value of 0.8. When the cell 1 overheating occurs at t = 2100 s, p0 starts 

decreasing and p1 (cell 1 overheating mode probability) starts increasing. It might 

take some time before p1 reaches the probability threshold although the 

overheating event can already be detected. Hence, the estimated disturbance  is 

also utilised here for decision making.  

p0 

p1 

p1 x d̂1 

d̂1 
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When abnormal overheating occurs, the estimated disturbance is most likely 

to increase, in addition to the increment of particular disturbance-related pi. On 

the other hand, during the normal condition, the disturbance-related pi (i.e. all pi 

other than p0) is expected to evolve to a small value, which is also how the d̂I is 

expected to be. Therefore, a multiplication of pi with d̂i (notated here as mi) could 

“amplify” the small value of both pi with d̂i  during normal condition as well as 

their increasing values when abnormal overheating takes place. Based on 

simulations and/or experiments, the threshold value of mi, mthresh, for abnormal 

overheating and location detection can be set. If all mi are smaller than mthresh 

then the true mode is most likely to be mode 0 (normal condition). Otherwise if 

any of mi is larger than mthresh, it indicates that abnormal overheating is occurring.  

It can be noted that the selection of mthresh also poses a trade-off between a 

false alarm (if the mthresh value is small) and a long detection time (if the mthresh 

value is big). One alternative for this issue is to set a “duration threshold” tthresh, 

such that an abnormal overheating is confirmed once the mthresh is passed for a 

particular duration of time, for example 5 seconds. 

Moreover, the possible overheating location can be determined based on the 

mode being closest to the “true mode” (real system), which is the mode with the 

dominant mi. The final determination of the index of the mode being closest to 

the true system, it(k), can be given as 

  
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  (5.1) 

This determined mode can be used for the temperature estimation 

functionality, for which the state-space model of the corresponding determined 

mode is used. 
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5.2.3. Influence of Qw, Q, R, and K to the detection 

In this subsection, the influence of different parameters of the MME to pi, d̂i, 

and mi is investigated. The base case is the same as explained in the Subsection 

5.2.2. and the graph is shown in Figure 5.2.  

Setting large R value implies that the noise in the measurement is considered 

to be large as well, resulting in small estimator gain as the estimator does not 

rely much on the measurement. On the other hand, setting large Qw value implies 

that the uncertainty and/or noise in the process are considered to be large, 

resulting in large estimator gain as the estimator “relies” more on the measured 

output than on the states. While setting R value can be based on the 

measurement devices’ accuracy, setting Qw value can be more complicated due to 

limited knowledge of model inaccuracy and noises. 

One notable observation is that simulation results show that when the Q/R 

ratio for the Kalman filter is the same, the corresponding pi, d̂i, and mi are also 

the same.  The Q/R ratio gives insight on how the noise or uncertainty in the 

process compared to the noise or uncertainty on the measurement. In fact, in 

many cases, it is the Q/R ratio, instead of actual values of Q and R, which 

determines the estimator response and hence is more of concern [116, 123-125]. In 

this study, for example, setting the R = diag (0.1, 0.1, 0.1); the Qw = diag (0.001, 

0.001, ..., 0.001); and Qξ = 0.0001 gives comparatively the same graph as in 

Figure 5.2. For comparison purpose, these values are used as the base case.  

Figure 5.3(a) shows  pi,  d̂i,  and  mi  if  the elements of R are increased. This 

means larger measurement noise is assumed and hence larger residual covariance 

is expected, which consequently causes the residual-based probability to be more 

fluctuating. This in turn also causes mi to have large fluctuation. 
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(a) (b) 

Figure 5.3. Evolution of  ip  (upper graph),  îd  (middle graph), and im  (lower graph) for the 

case of overheating at cell 1 at t = 2100 s. (a) R = diag (1, 1, 1). (b) wQ  = diag (0.01, 0.01, 

..., 0.01). 

 

The influence of assuming larger Qw elements is shown in Figure 5.3(b). Larger 

Qw elements imply larger process noise or parameter uncertainty and this yields 

in smaller estimated disturbance, as the estimator would expect that there is 

quite large variation in the real state variable and the difference between y and  

is mainly due to this large process noise. This yields smoother but smaller mi as 

opposed to Figure 5.4(a). 

 

p0 
p0 



Chapter 5: Experimentation and Further Exploration of MME-Based Overheating Detection   87   

 

   

(a) (b) 

Figure 5.4. Evolution of  ip  (upper graph),  îd  (middle graph), and im  (lower graph)  for the 

case of overheating at cell 1 at t = 2100 s. . (a) Q  = 0.001. (b) K = 20. 

 

In Figure 5.4(a), the effect of larger disturbance covariance Qξ is shown in the 

graphs, which is obviously seen in the large variation of the estimated 

disturbance. In Figure 5.4(b), the effect of the higher value of the convergence 

factor is depicted, and shows faster probability convergence but also larger 

fluctuation, as expected. 

These figures can give a straightforward comparison to assist parameters value 

selection. Obviously, different priority (such as preference of fast detection or 

sensitivity) as well as different assumed system noise will yield different value 

selection. 

p0 p0 
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5.3. Experimental studies 

To evaluate the MME-based overheating detection scheme experimentally, an 

overheating experiment was carried out on the SC string setup. The setup, shown 

in Figure 5.5, with a zoomed view of a cell shown in Figure 5.6, consists of eight 

650-F Maxwell BCAP0650 supercapacitors with three thermocouples each, 

enclosure with a fan installed at one side, and Arbin SC tester (type BT-ML) 

controlled with a computer. 

 

 

Figure 5.5. The experimental setup. 

 

 

Figure 5.6. Heaters placed on the SC cell. 
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For the real-time application purpose, the previously discussed algorithm is 

rebuilt in LabVIEW 2014 Real-Time Module using cDAQ-9132 type real time 

controller, two NI 9214 thermocouple modules, and one NI 9205 analogue input 

module. In an ideal case, the experimental setup should emulate the described 

abnormal overheating by using a heating source installed internally inside the 

cell. However, this is practically very difficult to implement without physically 

damaging the cell and hence affecting the model parameters. 

For this reason, instead, a strip polyimide heater is installed on the 

core/terminal thermal node Tc and the surface thermal node Ts (see Figure 5.6) 

and the heater power is controlled to emulate the temperature increment based 

on the overheating modelling. The heaters are placed in cell 1. The load pattern 

used for the experiment is a constant current charge discharge of 88 A. 

A small temperature increase of around 30 to 50 °C with a long duration 

(around 300 s) is selected for the experiment. To achieve this, the heater input 

voltage is changed in a ramp-like increment profile consisting of three levels of 

value at t = 2100 s, t = 2200 s and 2300 s. With this input, the resulted d̂i, pi, 

and mi up to t = 2400 s are shown in Figure 5.7 and Figure 5.8. 

One notable highlight from the experimental result is regarding the initial 

condition. At the very beginning of the operation (i.e. when the SC string as well 

as the temperature estimator is turned on), it might take some time before the 

estimated states converge from the assumed initial values to the estimated values. 

This is most likely to happen when the system is turned on not having the 

condition of thermal equilibrium; for example in electric vehicle application, it 

gets turned on after it is off for a short period. In this case the assumed initial 

values of the states (cells temperature) might not be a good approximation of the 

real temperature of each cell which have already increased and differed. This 

relatively big difference at the initial time can manifest in the estimated 

disturbance as well as the calculated probability, as can also be seen in Figure 5.7 

(t = 0 to around t = 400 s). It can be noted that if the system is started from a  
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Figure 5.7. Evolution of îd  and ip (overheating at cell 1 occurs at t = 2100 s). 

 

 

Figure 5.8. Evolution of im  (overheating at cell 1 occurs at t = 2100 s). 

mthresh 

m1 
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thermal equilibrium (e.g. started after a long shutdown), this issue is most likely 

not to happen. 

To address this issue, a kind of “initial time threshold” tthresh can be set to 

disregard the mi value bigger than mthresh most likely caused by the presumed 

initial state value instead of real disturbance. This setting of tthresh and mthresh, 

however, poses a trade-off between the initial disturbance being undetected and a 

false alarm. 

For this experiment, with the selected mthresh = 0.005 and tthresh = 5 seconds, 

the overheating in cell 1 is detected after 90 s. For clarity, the following graphs 

are redrawn and shown from t = 1400 s to 2400 s: the evolution of mi in Figure 

5.8, real and estimated temperature of cells 1 and 2 in Figure 5.9, and real and 

estimated temperature of cells 3 to 8 in Figure 5.10. 

 

Figure 5.9. Real and estimated temperatures of cells 1 and 2 (overheating at cell 1 occurs at t 

= 2100 s). 
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Figure 5.10. Real and estimated temperatures of cells 3 to 8 (overheating at cell 1 occurs at t 

= 2100 s). 

As for the temperature estimation, since now the true mode decision is based 

on the mi instead of solely on the pi, as given in (5.1), the gain and the model 

used for estimation are based on the determined “true mode”. In Figure 5.9 it can 

be seen that the estimator is still trying to estimate the temperature using the 

normal mode model up to 2190 seconds, and then it switches to mode 1.  

It can be noted here that abnormal overheating indication by the estimator 

can be used as an early warning and initiate appropriate protection mechanism. 

Hence, the temperature estimation after this point is shown in Figure 5.9 and 

Figure 5.10 for illustrative purpose only; when the abnormal overheating event is 

not accommodated. 
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5.4. Summary 

This chapter explored performance of MME-based abnormal overheating 

detection in an SC string with a limited number of sensors based on simulation 

and experimental results. Various parameters of the MME, such as the assumed 

noise model for the Kalman filter and the MME convergence factor, were tested 

to illustrate how this choice posed a trade-off between false alarm and missed 

detections. The presented overheating experiment results are intended to analyse 

how the MME method performs in an overheating event in a real setup and show 

that it can be a workable solution for abnormal overheating detection in a string.  
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 Abnormal Overheating Detectability Chapter 6.

Analysis Based on Cross-Gramian 

6.1. Introduction 

In Chapter 4 [61], a multiple-model-based method has been proposed for cell 

abnormal overheating detection in a string, and further explored and evaluated in 

Chapter 5 [63]. Meanwhile in Chapter 3 [65], different observability Gramian-

based criteria have been evaluated and implemented to determine optimal sensor 

placement for temperature estimation in a string. Accordingly, it is interesting to 

study sensor placement not only for the string temperature estimation, but also 

for the abnormal overheating detection. As the abnormal overheating is 

represented as additional disturbances in the B matrix, the different location 

possibilities are represented by different B matrices of the system state-space 

model. Hence, the observability Gramian only is not enough to measure or 

interpret how much the disturbance will affect or be visible in the outputs, as it 

is dependent on the A and C matrices only.  

The cross-Gramian, on the other hand, having the information from the A, B, 

and C matrices, is often used to analyse the association between a particular 

input to a particular output in the field of decentralised control [126, 127]. This 

concept can be used to quantify how much a particular additional disturbance 

will be visible in particular outputs. 

Hence, in this work, the cross-Gramian matrix is used as the basis to analyse 

the association between the possible disturbance with specific sensor location. 

Several criteria based on the matrix are tested to assess the suitability for this 

particular application, with consideration of the conclusion obtained in Chapter 3 

as well.  The disturbance – output association is further evaluated by the 

detection performance of some disturbance scenarios.  
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The chapter’s remainder is organised as follows. The disturbance detectability 

analysis based on cross-Gramian is explained in Section 6.2, and further 

implemented and evaluated for sensor placement in Section 6.3. Finally, this 

chapter is summarised in Section 6.4.  

6.2. Disturbance detectability analysis based on cross-Gramian 

Referring to section 4.4, the matrices Bpc and p are related to the additional 

abnormal heat sources in the simulation and thus added to the original state- 

space model as shown in (4.16). The “assignment” of the overheating cell is done 

through both matrices as in (4.17) and (4.18). Alternatively, a 2N-by-1 Bpc matrix 

and a 1-by-1 p matrix can also be constructed to assign the cell being modelled as 

having abnormal overheating.  

For example, modelling an overheating in cell 2 yields Bpc to have all zero 

elements except for the element related to the 2cT  state (i.e. the 3rd element in 

reference to (2.7)). Matrix p would have a value representing the Qadd_sc 

magnitude. 

 
1

0 0 0 0 ... 0

T

pc

cC

 
  
 

B   (6.1) 

With N cells, there are  N possible disturbance locations which are represented 

by N different Bpc matrixes. For convenience, the notations in equation (4.16) are 

rewritten as 

  ,c c  x A x B u y Cx  (6.2) 

where  

  ,
T

c c pc    
   

B B B u u p  (6.3) 
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6.2.1. Cross-Gramian 

For the system in (6.2), given that Ac matrix is stable, the observability 

Gramian WO is defined by (3.4), while the controllability Gramian WC is defined 

by  

 
0

T
c ct T t

c c ce e dt


 
A AW B B   (6.4) 

WO quantifies how a system’s states influence the outputs, thus it depends on 

the matrices Ac and C. On the other hand, how a system’s states can be brought 

or controlled to particular values via the inputs is quantified by WC, thus it 

depends on the matrices Ac and cB . The “combination” of the two matrices can 

be seen as combining both the controllability and observability information into a 

single matrix called the cross-Gramian matrix WCO [126-129]. Given that the 

system (6.2) has the same number of inputs and outputs (i.e. a square system), 

WCO is defined as6: 

  
0

c ct t
co ce e dt



 
A AW B C  (6.5) 

Involving the output matrix C and the input matrix cB , the cross-Gramian 

has been used for the input-output mapping / pairing in the field of decentralised 

control. For disturbance detectability study in this work, WCO matrix is useful 

because the analysis of different sensors placement (represented by different C 

matrices) needs to be performed for the N different possibilities (represented by 

different cB  matrices). 

                                                

6To compute cross-Gramian of a non-square system, one interesting approach proposed by 

some references such as [125-127] is to use the concept from input-output pairing in 

decentralised control, where a MIMO system is decomposed into a set of SISO subsystems, 

from which the cross-Gramian can be computed. 
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6.2.2. Different criteria of disturbance detectability based on the cross-Gramian 

Subsection 3.3.2 discussed several observability criteria based on observability 

Gramian. Similarly, the valuable information of the Gramian matrix can be 

extracted from its properties as well such as rank, determinant, eigenvalues, or 

singular values. In addition to the literature overview related to observability 

criteria (see Section 3.3), the following references quantifies controllability (as 

well as both controllability and observability via cross-Gramian) using criterion 

related to the maximum or minimum eigenvalues or singular values [65, 130, 131], 

the sum of eigenvalues or singular values [65, 126, 131], or determinant of the 

matrix [65, 95, 131].  

In Chapter 3 it was concluded that suitable observability criteria for string 

temperature estimation are those which also considers smallest singular values, 

which are CN, NS, and determinant criteria. Nevertheless, criterion which 

depends considerably on the largest singular values will also be included for 

evaluation in this chapter to confirm its suitability for sensor placement 

considering disturbance detectability.  

Three criteria based on the cross-Gramian matrix are selected for comparison: 

CN and determinant (depends considerably on the smallest singular values; see 

(3.12) and (3.13)); and trace (depends considerably on the largest singular values; 

see (3.10)).  

6.3. Implementation for sensors placement 

This section discusses sensor placement suggested by the three criteria and the 

corresponding overheating detection performance. For this purpose, an SC string 

of eight cells with three sensors is considered.  

6.3.1. Suggested combinations based on different criteria 

First, WCO matrix of each different sensors placement combinations and 

different abnormal overheating possibilities is generated. The three different 
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criteria are then derived from these matrices. Sensor placement combinations are 

then ranked. With N overheating location possibilities, there are N sets of ranked 

combinations based on particular criterion. Next, for each criterion, five highest 

ranked combinations are selected and listed on a matrix to analyse the 

“dispersion” of the high-ranked combinations for particular overheating location 

case. The most suggested combinations based on the criteria of determinant, CN, 

and trace, are shown in Table 6.1, Table 6.2, and Table 6.3, respectively.  

 

Table 6.1. List of five highest-ranked sensors placement combinations based on determinant 

criterion 

Overheating 

Location 

Sensors Placement Combinations 

1 

4 

8 

2 

3 

8 

2 

4 

7 

2 

4 

8 

2 

5 

7 

2 

5 

8 

2 

6 

8 

3 

5 

8 

3 

6 

7 

3 

6 

8 

3 

7 

8 

4 

5 

8 

4 

6 

8 

Cell 1   ✔ ✔ ✔  ✔ ✔      

Cell 2     ✔ ✔ ✔ ✔     ✔ 

Cell 3     ✔ ✔  ✔ ✔ ✔    

Cell 4    ✔  ✔ ✔ ✔  ✔    

Cell 5       ✔ ✔ ✔ ✔  ✔  

Cell 6    ✔  ✔ ✔ ✔  ✔    

Cell 7     ✔ ✔  ✔  ✔   ✔ 

Cell 8 ✔ ✔  ✔  ✔     ✔   

No 

Overheating 
   ✔   ✔ ✔    ✔ ✔ 

Red colour: Combinations selected for performance 

evaluation.  

 

The sensors combinations are listed in the columns and each different 

overheating location is listed in different rows. In each row there are five highest-

ranked combinations marked by a tick mark (✔), from which we can see the 

combinations marked the most (i.e. being suggested as the best sensors 

combinations for most of the overheating cases). For example, in Table 6.1, for 

the case of overheating at cell 2, the five highest-ranked combinations are (2,5,7), 

(2,5,8), (2,6,8), (3,5,8), and (4,6,8). 
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It can be seen in Table 6.1, that there are a few combinations suggested by 

most of the overheating cases, such as (2,5,8) and (3,5,8). These combinations are 

marked with red colour. The same procedure is carried out for Table 6.2 and 

Table 6.3, where the combinations suggested the most in various cases are 

marked with green and blue colour in Table 6.2 and Table 6.3, respectively. 

These combinations are then listed in Table 6.4, and in the next subsection, the 

detection performance is compared. Note the difference of suggested combinations 

by the three criteria. A more detailed discussion on this is presented in 

Subsection 6.3.3. Two combinations not based on any criteria, but selected 

“naïvely” or intuitively are also added to the Table 6.4. In this naïve placement, 

sensors are “evenly distributed”. These combinations are (1,5,8) and (2,4,7). 

  

 

Table 6.2. List of five highest-ranked sensors placement combinations based on CN criterion 

Overheating 

Location 

Sensors Placement Combinations 

1 

3 

6 

1 

4 

6 

2 

4 

6 

2 

4 

8 

2 

5 

8 

2 

6 

8 

3 

4 

8 

3 

5 

8 

3 

6 

7 

3 

6 

8 

3 

7 

8 

4 

5 

6 

4 

5 

7 

4 

5 

8 

4 

6 

7 

4 

6 

8 

4 

7 

8 

5 

6 

7 

5 

6 

8 

5 

7 

8 

6 

7 

8 

Cell 1          ✔   ✔  ✔    ✔ ✔  

Cell 2          ✔    ✔   ✔  ✔ ✔  

Cell 3      ✔    ✔      ✔ ✔  ✔   

Cell 4          ✔ ✔       ✔ ✔  ✔ 

Cell 5      ✔    ✔ ✔     ✔ ✔     

Cell 6    ✔ ✔  ✔ ✔      ✔        

Cell 7     ✔   ✔  ✔    ✔  ✔      

Cell 8 ✔ ✔ ✔      ✔   ✔          

No 

Overheating 
        ✔       ✔ ✔  ✔ ✔  

Green colour: Combinations selected for performance evaluation. 
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Table 6.3. List of five highest-ranked sensors placement combinations based on trace criterion 

Overheating 

Location 

Sensors Placement Combinations 

1 

2 

6 

1 

2 

7 

1 

2 

8 

1 

3 

7 

1 

3 

8 

1 

7 

8 

2 

3 

6 

2 

3 

7 

2 

3 

8 

2 

4 

7 

2 

4 

8 

2 

5 

6 

2 

6 

7 

2 

7 

8 

3 

4 

6 

3 

4 

7 

3 

4 

8 

3 

5 

6 

3 

6 

7 

4 

5 

6 

4 

5 

7 

4 

5 

8 

4 

6 

7 

4 

7 

8 

5 

6 

7 

5 

6 

8 

5 

7 

8 

6 

7 

8 

Cell 1 ✔ ✔ ✔ ✔ ✔                        

Cell 2       ✔ ✔ ✔ ✔ ✔                  

Cell 3        ✔ ✔      ✔ ✔ ✔            

Cell 4               ✔ ✔    ✔ ✔ ✔       

Cell 5            ✔      ✔  ✔     ✔ ✔   

Cell 6             ✔      ✔    ✔  ✔   ✔ 

Cell 7      ✔        ✔          ✔   ✔ ✔ 

Cell 8      ✔        ✔          ✔   ✔ ✔ 

No 

Overheating 
     ✔     ✔   ✔          ✔    ✔ 

Blue colour: Combinations selected for performance evaluation. 

 

6.3.2. Detection Performance Comparison 

In Table 6.4, each row corresponds to a particular combination most suggested 

by a particular criterion. Then, the detection performance is compared using the 

following scenario. The abnormal overheating is modelled and simulated as 

presented in Chapter 4. Each combination is tested for all possible overheating 

locations. The additional heat source Qab_chem emulating abnormal overheating is 

set to initiate at t = 2100 s. A value of 50 W which yields relatively small heat 

increment (approximately 40 ºC in 300 seconds at the expected hottest cell) is 

selected, in order to also confirm the detection sensitivity. The detection 

algorithm is based on MME and the decision is made from multiplication of the 

mode probability pi and the estimated disturbance îd (the multiplication is 

notated as mi) as explained in Section 5.2. The threshold of this multiplication 

mthresh as well as the time threshold tthresh are selected to be 0.005 and 5 seconds, 

respectively.  
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Table 6.4. Detection Performance Comparison 

Sensors Combinations 

based on criterion: 

Overheating Location 

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8 

Determinant 

2,5,8 ✚✚   ✚✚   ✚✚  

3,5,8 ✚✚ ✚✚  ✚   ✚✚  

3,6,8 ✚✚ ✚✚   ✚✚  ✚✚  

CN 4,6,8 ✚  ✚✚  ✚  ✚✚  

5,6,8 ✚ ✚  ✚✚   ✚✚  

Trace 
6,7,8 ✚    ✚✚    

1,7,8      ✚✚   

“Naïve” (Not based on 

any criterion) 

1,5,8    ✚✚   ✚✚  

2,4,7 ✚✚  ✚   ✚   

          

 

The mark “✚” is defined as a performance indicator, in which the first  “✚” 

means that the overheating is detected in less than the specified time (here, it is 

selected to be 180 seconds). The second “✚” means that the overheating location 

detected is correct. The table column in black colour indicates an SC cell having 

a sensor, for which case any overheating in those cells is detected almost 

immediately. (Note: Using the aforementioned simulation scenario, the 

overheating in a cell with sensor is detected in less than 20 s). For example, the 

(3,5,8) combination for the case of overheating at cell 2 gives  “✚✚ ”: the 

estimator/detector can detect an overheating in less than 180 s and the detected 

overheating location is correct. While for the case of overheating at cell 4, “✚” 

means that an overheating is detected in less than 180 s, but the location cannot 

be correctly determined. 

6.3.3. Discussion 

Analysing Table 6.1, Table 6.2, and Table 6.3, it can be seen that generally, 

the determinant measure suggested a more “evenly distributed” placement 

compared to the other two criteria. The trace criterion suggested sensors 

placement close to each other and it always includes a cell location corresponding 

to the simulated overheating cell (e.g. for overheating location at cell 1, the 

suggested combinations always include locating the sensor at cell 1). This can be 

understood as the trace criterion is based on the sum of the singular values, 
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which is highly affected by the largest singular value. For each overheating 

scenario, the largest singular value corresponds to the possible sensor placement 

on the overheating cell. This explains the suggested sensor locations in Table 6.3. 

Similarly, the CN criterion is also based on the largest singular value, but with 

taking into account the smallest singular values as well, which results in 

suggested locations in Table 6.2. 

As for Table 6.4, based on the detection performance indicator discussed in 

Subsection 6.3.2, it can be seen that (3,6,8) give the best performance among 

other listed combinations, for which there is one overheating scenario (i.e. 

overheating in cell 4) which is detected in a longer time than the specified 

detection time. These combinations are most suggested by both the determinant 

and CN criteria. Next, it can be seen that the rest of the combinations suggested 

by both criteria deliver relatively similar performance, for which there is one 

overheating scenario detected at longer time than the specified detection time, 

and one or two overheating locations are misdetected.  

The combinations that are most suggested by the trace criterion deliver less 

satisfying performance. It can be understood that the selection of sensors 

locations next or close to each other (e.g. in (6,7,8) or (1,7,8)) result in such 

redundant information which in turn makes it difficult to distinguish information 

from the other cells. On the other hand, although the “naïve” combinations 

placed the sensors in a distributed manners, they give less satisfying performance. 

The non-linearity of the temperature distribution of the cells in the string 

becomes the main reason for this, which confirms the usefulness of using the 

Gramian matrix for analysing the input-to-state-to-output relationship as the 

basis for the optimal sensors placement. 

6.4. Summary 

In this chapter, sensors placement for temperature estimation was studied for 

the purpose of abnormal overheating detection. The abnormal overheating was 
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modelled as an unknown additional disturbance. How the disturbance can be 

observed at the outputs was quantified via the cross-Gramian matrix, which then 

became the basis for placing the sensors. Three selected criteria based on the 

cross-Gramian were used and the suggested sensors placement was evaluated with 

different overheating simulation scenarios. Based on the specified detection 

performance indicator, the determinant and CN criteria delivered the most 

satisfying results compared to the combinations suggested by the trace criterion. 

These criteria consider both the most and the least observable states, which were 

also concluded in Chapter 3 to be the most suitable criteria for the purpose of 

string temperature monitoring.  

A “naïve” sensor placement which intuitively placed the sensors in an evenly 

distributed manner along the string was also included in the evaluation matrix. 

This placement gave less satisfying result, as did the placement suggested by the 

trace criterion. These observations have confirmed the usefulness of analysing the 

input-to-state-to-output relationship using the cross-Gramian matrix and 

evaluating suitable criteria for sensors placement. 
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 Conclusions and Future Directions Chapter 7.

7.1. Conclusions 

This thesis specifically focuses on a temperature monitoring and diagnostic 

system for a string of electrochemical energy storage cells with a limited number 

of temperature sensors.  

First, in Chapter 2 a thermal model of the forced-cooled string consisting of 

cylindrical electrochemical cells has been discussed and validated using a built SC 

setup. The validated model is also applicable for other types of electrochemical 

storage string with cylindrical cells, provided that the thermal parameters are 

determined accordingly. A model-based temperature monitoring system that 

estimates the whole string temperature based on the validated model was then 

utilised in the subsequent chapters.  

The string observability has been analysed in Chapter 3 for the purpose of 

optimal sensor placement for the string temperature estimation. Different criteria 

based on the observability Gramian have been evaluated and it has been 

concluded that the suitable observability criteria for electrochemical string 

temperature estimation is the one which also considers the smallest singular 

values of the observability Gramian matrix.  

  In Chapter 4, method for detecting cell abnormal overheating in the forced-

cooled string has been proposed. It is based on modelling of the abnormal 

overheating as an input disturbance and using a bank of parallel estimators called 

multiple model estimator (MME). The overheating simulation results have shown 

that the MME could detect both the overheating event and location in the string. 

However, the proposed MME-based overheating detection method has longer 

detection time for smaller extent of overheating, or dissimilar mode probability 

(of abnormal overheating) during normal condition. Hence, in Chapter 5, two 

approaches have been proposed to shorten the detection time. One is by including 
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additional mode associated with normal condition; and the other one is by 

multiplying probability with estimated disturbance. Effect of variation of the 

MME parameters on the detection performance has also been explored. In the 

same chapter, the proposed MME has been experimentally verified using the built 

SC setup. The experimental results showed that the MME could be a workable 

solution to detect an abnormally overheating cell. 

Finally, in Chapter 6, the previously discussed observability-analysis-based 

optimal sensor placement is adapted for the abnormal overheating detectability in 

the string. Instead of analysing the relationship and energy from the state to the 

output as discussed in Chapter 3, this chapter analysed the input-to-state-to-

output relationship using the cross-Gramian matrix. Performance evaluation of 

the estimation and detection showed that disturbance detectability criteria which 

also considers the smallest singular value of the cross-Gramian matrix delivered 

the most satisfactory detection performance compared to other criteria. Along 

with Chapter 3, this chapter have also demonstrated the use of Gramian matrices 

as the basis for sensor placement. 

7.2. Future directions 

This thesis has developed and verified a lumped thermal model for a string of 

cylindrical electrochemical storage cells, as well as proposing the use of Gramian 

matrices as the basis of sensor placement for the string temperature monitoring 

and diagnostics. MME has also been proposed and experimentally evaluated to 

detect cell abnormal overheating. From the results presented in this thesis, some 

future works can be devised in the following directions: 

 

1. Extending the work to a 2-dimensional (2-D) and/or 3-dimensional (3-D) 

stack: This thesis considered a 1-dimensional (1-D) storage string. The 

described research work is also applicable to a 2-D stack in which the 

temperature distribution in the spanwise direction (perpendicular to the air 

flow) is relatively small. A model considering detailed temperature 
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distribution in the spanwise direction would further enhance the 2-D model 

accuracy. Furthermore, sensor placement and overheating detection 

methods proposed in this thesis would have to be verified for their 

applicability to the 2-D and/or 3-D stack.  

 

2. Considering thermal parameters variation over time and/or space: The 

parameters of thermal model in this thesis are assumed to be constant. 

However, some of the parameters such as the cell internal resistance can 

change over time. Hence, an adaptive thermal model or a time-varying 

model would be able to track the model’s parameters over time.   

 

3. Improving the temperature estimation and overheating detection by 

modelling the shutdown period: In this thesis, one challenge related to 

string temperature monitoring and diagnostics is the initial estimate, 

especially when there is already an unknown temperature distribution in 

the string (e.g. after a short shutdown). An advanced thermal model 

taking into account different cooling stages (including the off stage during 

the shutdown period), combined with a timer-like feature, could model the 

thermal dynamics during the shutdown period. Hence, it can enhance the 

accuracy of the initial estimate when the string is started up and therefore 

improve the overheating detection during initial operation. 

 

4. Evaluation and strategies for the MME with a high number of cells: For 

an N-cell string, the MME for detecting abnormal overheating proposed in 

this thesis have N number of modes (plus 1 normal mode). Thus, for a 

string having a high number of cells, strategies for designing an effective 

MME need to be considered. Performance and possible issues related to a 

high number of modes also needs to be evaluated further. 

 



108 Chapter 7: Conclusions and Future Directions   

 

5. More detailed evaluation of the abnormal overheating modelling: In this 

thesis, the abnormal overheating considered is the localised overheating 

caused by an internal short circuit and modelled as an input disturbance in 

the internal temperature node. With the growing –albeit slowly– numbers 

of references reporting data from short-circuit experiments, the modelling 

proposed in this thesis could be further improved; for example by adjusting 

the Qadd_chem value over time. 

 

6. Improved abnormal overheating experimentation: Due to practical 

challenges and for safety reasons, heater strips have been used in this 

thesis to emulate the temperature increment caused by internal short 

circuit. While researches on the methods for performing experimental 

simulation of short-circuit are still growing, an improved experimental 

method with higher repeatability would contribute more to evaluation of 

the proposed method. 

 

7. Incorporating the temperature monitoring and diagnostics with electrical 

parameters measurement: The works in this thesis are specifically based on 

thermal parameters. The advantage is that they can also be applied to 

thermal-related monitoring systems of other devices or equipment. On the 

other hand, electrical parameters measurement/monitoring is a typical 

feature included for batteries and SCs systems. As most of the string 

failure modes are related to the electrical parameters, incorporating these 

parameters for the string abnormality diagnostics could improve the 

detection performance. 
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