
Encapsulated User-Level Device Drivers in the Mungi
Operating System

Author:
Leslie, Benjamin; Fitzroy-Dale, Nicholas; Heiser, Gernot

Publication details:
Proceedings of the First International Workshop on Object Systems and
Software Architectures
pp. 142-147

Event details:
First International Workshop on Object Systems and Software Architectures
Victor Harbour, Australia

Publication Date:
2004

DOI:
https://doi.org/10.26190/unsworks/525

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/39915 in https://
unsworks.unsw.edu.au on 2024-04-17

http://dx.doi.org/https://doi.org/10.26190/unsworks/525
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/39915
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Encapsulated User-Level Device Drivers in the Mungi Operating System

Ben Leslie, Nicholas FitzRoy-Dale and Gernot Heiser

School of Computer Science and Engineering &
National ICT Australia

University of NSW, Sydney 2052, Australia
{benjl,nfd,gernot}@cse.unsw.edu.au

Abstract

The reliability of device drivers is of critical impor-
tance to the overall stability of computer systems. This
paper presents the software architecture used for user-
level device drivers in the Mungi operating system.
We argue that this framework provides a safer envi-
ronment in which to run device drivers, while making
device driver implementation easier and more flexible,
thus improving overall reliability of the system.

1. Motivations

This paper presents a software framework for run-
ning device drivers as user-level components, rather
than inside the kernel. There are two main reasons this
is desirable: isolation and flexibility.

Recent studies [CYC+01, SBL03] have shown that
bugs in device drivers are the most common source of
failure in operating systems. One approach that can be
used to minimise the impact of these bugs is to isolate
device drivers from the rest of the system. The first
part of isolation is to define a set of interfaces through
which drivers communicate with the rest of the sys-
tem. This is not all that different from existing sys-
tems, which define an internal kernel API. However,
such drivers will have full access to all the kernel’s in-
ternal state, and therefore can (and often do) bypass
interfaces.

To enforce encapsulation we run drivers without
special privileges, i.e. in user mode rather than as part
of the kernel. They can then be encapsulated in ad-

dress spaces like any user processes, thereby protect-
ing the rest of the system from misbehaving drivers.
This forces drivers to use only the specified interfaces.

Our other motivation for the development of this
framework is to provide a safe and more flexible envi-
ronment in which device drivers can be developed and
used. Developing code for an operating system ker-
nel can be a time consuming and difficult process for a
number of reasons. Firstly, tools for debugging kernel
code are not as comprehensive as user-level debugging
tools. Secondly, the kernel programming environment
is usually restricted to a single language and limited
runtime libraries. Finally the program-test-debug cy-
cle can be quite long as restarting a device driver usu-
ally means rebooting the system.

2. Mungi device driver framework

The device driver framework [Les02] is designed
for the Mungi operating system [HEV+98]. Mungi is
based on the idea of a single address space [CLFL94]
and supports a component model with hardware-
enforced encapsulation for providing secure user-level
extensions to the kernel [EH01]. Mungi components
hide their instance data from external access (other
than via declared method interfaces). Otherwise, the
system places no restrictions on components and their
implementation. In particular, any language can be
used to implement a component.

Interfaces are specified in an interface definition
language. The systems enforces encapsulation so only
the interfaces explicitly exported by a component can
be accessed.

There are many different ways of structuring de-
vice drivers in a system. Usually they are simply
directly compiled into the OS kernel, or are mod-
ules that can be dynamically loaded into the ker-
nel. In other systems device drivers are simply li-
braries that are compiled directly into the client pro-
gram [vEBBV95, Dam98]. This approach is severely
limited because it restricts the device to only being
used by one program. It is also does not provide any
form of protection as the library is given full access to
the hardware.

In the Mungi driver framework each device driver
is written as a component class, with a component in-
stance being instantiated for each actual device present
in the system.

2.1 Fine-grained hardware access

Device drivers obviously need to access hardware
in order to correctly control a device. This usually
means being able to read and write to hardware reg-
isters, receive interrupts and perform direct memory
access (DMA). The Mungi operating system provides
primitives that allow each of these resources to be han-
dled in a fine-grained manner. This ensures that each
device driver can only access the hardware resources
that it actually requires.

In most modern hardware architectures device reg-
isters are mapped into physical memory. We use the
memory management unit (MMU) to control a device
driver’s access to hardware registers. The granularity
of protection in this case is limited to the page size,
however in practise each device’s hardware registers
are mapped into different pages of physical memory,
so this does not usually cause problems.1

Each device driver instance must be registered to
receive only specific interrupts. During interrupt han-
dling the Mungi kernel looks up the device driver it
should deliver the interrupt to, and then invokes the
driver’s interrupt interface. This arrangement allows
the operating system to regulate the rate at which in-
terrupts are delivered to device drivers, which supports
better resource management than traditional systems.

Although controlling access to device registers and
interrupts is fairly straightforward, restricting DMA is

1The unfortunate exception to this is the port-space registers in
IA-32 machines.

difficult. This is a problem because if a device driver
can perform unrestricted DMA it can circumvent nor-
mal memory protection and corrupt the operating sys-
tem. However, many modern systems feature an I/O
MMU, which maps (device-visible) PCI addresses to
(physical) RAM addresses. We use this hardware fea-
ture for restricting device access to physical memory
[LH03].

2.2 Replacing ioctl

Most hardware devices provide more functionality
than just I/O. This functionality is generally hard to
generalise across devices, which led UNIX-like sys-
tems to the unstructured ioctl system call. By bas-
ing the driver framework on an underlying component
system we allow device drivers to export this function-
ality as well-defined methods. Although this doesn’t
solve the underlying problem of many devices present-
ing different interfaces, it does allow this functionality
to exported in a controlled manner and for a client pro-
grammer to query a device and determine what func-
tionality it provides. This is a clear advantage over the
ioctl design.

2.3 Fine-grained device driver access

Our system not only support fine-grained access to
the underlying hardware, as discussed in Section 2.1,
but also supports fine-grained access to the drivers
themselves. The Mungi system uses password capabil-
ities [APW86] to control access to both memory and
component method invocation. This allows us to not
only control access to the device itself, but any partic-
ular method on the device. This, combined with the
ability to define each of the control methods on a de-
vice, provides a more flexible system than the tradi-
tional approach of ioctl and mapping device nodes
into the file system.

2.4 Naming of device drivers

One of the major advantages of a single address
space is that it provides a uniform way of naming en-
tities in the system: simply use their virtual memory
address. Device drivers can therefore be addressed
by the memory location of the device driver instance
data. This compares favourably to the approach used

in UNIX, for example, where devices are identified by
a pair, consisting of a major number identifying the
driver, and a minor number identifying the specific de-
vice. These numbers are then introduced in an ad-hoc
way into the file system. By contrast, Mungi provides
a user-level naming service, which can map arbitrary
strings to 64-bit addresses.

2.5 Remote devices

It is sometimes the case that access is desired to a
device that is physically connected to another com-
puter on a network. In existing systems this is of-
ten solved with different network servers and clients
for different devices; i.e. in an entirely ad-hoc man-
ner. The underlying Mungi system provides a transpar-
ent mechanism for accessing components on remote
nodes. This means that no special mechanisms need to
be created to access devices residing on remote nodes.

2.6 Dynamic loading of device drivers

The device driver framework provides an ideal way
of handling hot-pluggable hardware such as universal
serial bus (USB) devices. The underlying component
system allows driver instances to be created on de-
mand. This is something that is not possible when
drivers are compiled into a kernel. It is also prefer-
able to the loading modules into the kernel at runtime,
because it does not require a special linker; the driver
executes as a normal process.

A particularly attractive feature is the possibility of
replacing devices that other components are already
communicating with, e.g. changing a user’s window-
ing session to use different devices. It is possible to
change the input and output devices on the fly, which
would allow a user’s session to be transparently (for
the the applications, not the user) migrated to a differ-
ent node.

2.7 Register description language

A common source of bugs in device drivers is in-
correct bit manipulation during device register access.
To help alleviate this problem, a device driver register
description language was created [Les02]. This sim-
ple domain-specific language specifies device registers
and bit fields within them. The language is compiled

to produce C register-manipulation functions and bit
fields, or Python language bindings, as described be-
low. This is similar to the Devil [MRC+00] device
language.

2.8 Support for other languages

One of the key advantages of using a component
system for the device driver framework is that it opens
up the possibility of implementing device drivers in
languages other than C. As a proof of concept, compo-
nent bindings for the Python programming language
— a language far removed from C — were created. In
combination with the hardware register functions de-
scribed above, these bindings allowed the implemen-
tation of device drivers in Python.

3. Experience

To date, a number of drivers for a number of differ-
ent devices have been written using this framework, in-
cluding 100MB Ethernet cards, gigabit network cards,
IDE, serial, keyboard, VGA and USB. The frame-
works runs on a number of platforms including MIPS,
Alpha, Itanium and x86. Most of the platform has also
been ported to the Linux operating system which sup-
ports using our drivers in kernel or at user-level.

This section describes the design and implementa-
tion of an IDE disk driver.

3.1 Block device interface

The block device interface is exported by any stor-
age device driver. The main characteristics of a stor-
age device, compared to network or character devices,
is that data must be explicitly addressed and requested.

IBlock interface, shown in Figure 1, provides read
and write methods for requesting data to be trans-
ferred to/from the storage device. The data parameter
contains a list of blocks on the device to be accessed,
and a destination or source memory address.

Both the read and write methods are asyn-
chronous, which means that the method only queues
the request and returns to the client. When the transfer
is finished the driver must notify the client of the com-
pletion. The notify parameter provides a capability
to the component method which should be invoked on
completion.

interface IBlock {
int write (cap_t notify, block_seq data);
int read (cap_t notify, block_seq data);
int get_block_count ();
int get_block_size ();

};

Figure 1. Block device interface definition.

The get block count and get block size
methods allow other components to determine the
number and size of blocks respectively.

The Mungi operating system provides a transparent
persistence mechanism, which means that most com-
ponents do not need to access the disk (or file system)
directly. The IBlock interface provides a low level pro-
cedural interface which is designed to be used by other
low-level components such as the physical file system.

3.2 Performance

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 1 4 16 64 256 1024

T
hr

ou
gh

pu
t (

M
B

/s
)

Transfer size (kB)

Disk read throughput - I2

Linux
Mungi

Figure 2. Disk read throughput

The IDE device driver runs successfully on a vari-
ety of different platforms. The results presented here
show the performance on an HP rx2600 (Itanium 2)
machine.

Figure 2 shows the throughput achieved for differ-
ent request sizes. For large transfer size the throughput
is quite similar for both systems, however as the trans-
fer size decreases the context-switching overhead of
the user-level drivers starts to have an effect, reducing

 0

 10

 20

 30

 40

 50

 60

 70

 1 4 16 64 256 1024

C
P

U
 %

Transfer size (kB)

Disk read CPU Utilisation - I2

Linux
Mungi

Figure 3. Disk read CPU load

throughput by up to 22 % (at extremely small transfer
sizes).

Figure 3 shows CPU utilisation resulting from I/O
processing (measured by instrumenting the idle loop).
As is to be expected, Linux consumes less CPU for
small transfers, a result of the context switching over-
head of the user-level drivers. Mungi does however,
perform, slightly better for larger transfer sizes which
is probably the result of the cleaner drivers which
might result in a smaller overall cache footprint. This
indicates that a lean design might help to offset some
of the inherent context-switching costs.

3.3 A device driver in Python

To demonstrate the potential of the system, an IDE
driver was also implemented in the Python language,
using the language bindings described in Section 2.8.
While the implementation cannot get close to the effi-
ciency of the corresponding C device driver (a topic for
future work), it is identical in all other aspects: every
function call on all exported MCS interfaces eventu-
ally results in the execution of Python code. Indeed,
the resulting code is smaller and easier to comprehend
than C, and thus has the potential to be a useful educa-
tional or prototyping tool.

4. Related Work

A number of previous systems have moved the net-
work protocol stacks from kernel to user level while

leaving the device driver in the kernel [TNML93,
MB93, EM95]. Other approaches provided user code
direct access to network interfaces in order to min-
imise latency for fine-grained communication in high-
performance clusters [vEBBV95,Dam98].

Earlier work with real user-level drivers in Mach
[GSR93] and Fluke [VM99] experienced significant
performance problems, apparently resulting from the
IPC costs in those kernels.

The Palladium approach of running Linux kernel
extensions at an intermediate privilege level [CVP99]
could, in principle, be used for device drivers with-
out significant performance impact. While this ap-
proach could protect the kernel (to a degree) from
buggy drivers, it would not protect applications, which
still run at a lower privilege level. Pratt proposed an
I/O device architecture that would allow the Nemesis
system to run device drivers at user level [Pra97], but
in the absence of devices conforming with this archi-
tecture, drivers are still in the kernel.

Work at the University of Washington [SBL03] en-
capsulates device drivers by introducing protection do-
mains, called nooks, within the kernel’s address space.
This has the advantage of potentially fewer changes
required to existing drivers. In spite of nooks be-
ing somewhat half-way between normal in-kernel and
user-level drivers, the cost of nooks is significant —
CPU load for sending network packets is almost dou-
ble that of native Linux. This is almost certainly
due to the more than doubling the interrupt latency
[SMLE02]. The inherent overhead of nooks is essen-
tially the same as that of user-level drivers, and it is
therefore not clear what their advantage is over what
we consider the cleaner approach of running drivers as
proper user-level processes. In particular this approach
does not protect against errors involving DMA.

The Devil [MRC+00] project takes another ap-
proach to improving reliability by reducing complex-
ity. To reduce driver complexity they define a domain
specific language which can specify the layout of a de-
vice’s registers, and any constraints relating to the ac-
cess of the device registers. By specifying constraints
earlier the Devil compiler ensures that the program-
mer does not later violate these constraints. This is
definitely a valuable tool, and provided the basic idea
behind the register description language described in
section 2.7.

5. Conclusion

This paper has presented the design and implemen-
tation of the Mungi device driver framework. In partic-
ular, the paper has presented the advantages of using a
component model to implement device drivers at user-
level. The main advantages are as follows.

Clearly-defined interfaces: A component model
both provides clearly-defined interfaces for
device classes, and ensures that those interfaces
are adhered to, through the use of OS-level
protection.

Fine-grained device access: Device drivers are
treated exactly the same way as any other Mungi
component, with the result that fine-grained
access control can be achieved through the use of
capabilities.

Support for other languages: With an appropriate
component-system interface, it is possible to
write device drivers in any programming lan-
guage.

Protecting the OS: The operating system is com-
pletely protected from rogue drivers, because
they execute outside the operating system and
may only modify the state of the OS through well-
defined interfaces.

6 Future Work

Future work on this project will involve comprehen-
sive analysis of the performance results, in the disk
driver described in Section 3 and also network drivers
and network protocol stacks.

We will also be further investigating the use of high-
level languages for device driver development to see if
improvements can make such as approach feasible.

References

[APW86] Mark Anderson, Ronald Pose, and Chris S.
Wallace. A password-capability system. The
Comp. J., 29:1–8, 1986.

[CLFL94] Jeffrey S. Chase, Henry M. Levy, Michael J.
Feeley, and Edward D. Lazowska. Sharing

and protection in a single-address-space oper-
ating system. Trans. Comp. Syst., 12:271–307,
1994.

[CVP99] Tzi-cher Chiueh, Ganesh Venkitachalam, and
Prashant Pradhan. Integrating segmentation
and paging protection for safe, efficient and
transparent software extensions. In Proc. 17th
SOSP, pages 140–153, Kiawah Island, SC,
USA, Dec 1999.

[CYC+01] Andy Chou, Jun-Feng Yang, Benjamin Chelf,
Seth Hallem, and Dawson Engler. An empiri-
cal study of operating systems errors. In Proc.
18th SOSP, pages 73–88, Lake Louise, Alta,
Canada, Oct 2001.

[Dam98] Stefanos N. Damianakis. Efficient
Connection-Oriented Communication on
High-Performance Networks. Phd thesis,
Princeton University, 1998.

[EH01] Antony Edwards and Gernot Heiser. Compo-
nents + Security = OS Extensibility. In Proc.
6th ACSAC, pages 27–34, Gold Coast, Aus-
tralia, Jan 2001. IEEE CS Press.

[EM95] Aled Edwards and Steve Muir. Experiences
implementing a high performance TCP in
user-space. In Proc. SIGCOMM, 1995.

[GSR93] David B. Golub, Guy G. Sotomayor, Jr, and
Freeman L. Rawson III. An architecture for
device drivers executing as user-level tasks. In
Proc. USENIX Mach III Symp., pages 153–
171, 1993.

[HEV+98] Gernot Heiser, Kevin Elphinstone, Jerry
Vochteloo, Stephen Russell, and Jochen
Liedtke. The Mungi single-address-space
operating system. Softw.: Pract. & Exp.,
28(9):901–928, Jul 1998.

[Les02] Ben Leslie. Mungi device drivers. BE
thesis, School Comp. Sci. & Engin., Uni-
versity NSW, Sydney 2052, Australia, Nov
2002. Available from http://www.cse.unsw.
edu.au/∼disy/papers/.

[LH03] Ben Leslie and Gernot Heiser. Towards
untrusted device drivers. Technical Report
UNSW-CSE-TR-0303, School Comp. Sci. &
Engin., University NSW, Sydney 2052, Aus-
tralia, Mar 2003.

[MB93] Chris Maeda and Brian N. Bershad. Protocol-
service decomposition for high-performance
networking. In Proc. 14th SOSP, pages 244–
255, Asheville, NC, USA, Dec 1993.

[MRC+00] Fabrice Mérillon, Laurent Réveillère, Charles
Consel, Renaud Marlet, and Gilles Muller.
Devil: An IDL for hardware programming. In
Proc. 4th OSDI, 2000.

[Pra97] Ian A. Pratt. The User-Safe Device I/O Archi-
tecture. PhD thesis, King’s College, Univer-
sity of Cambridge, Aug 1997.

[SBL03] Michael M. Swift, Brian N. Bershad, and
Henry M. Levy. Improving the reliability of
commodity operating systems. In Proc. 19th
SOSP, The Sagamore, Bolton Landing (Lake
George), New York, USA, Oct 2003.

[SMLE02] Michael M. Swift, Steven Marting, Henry M.
Levy, and Susan G. Eggers. Nooks: An ar-
chitecture for reliable device drivers. In Proc.
10th SIGOPS European WS., pages 101–107,
St Emilion, France, Sep 2002.

[TNML93] Chandramohan A. Thekkath, Thu D. Nguyen,
Evelyn Moy, and Edward D. Lazowska. Im-
plementing network protocols at user level.
IEEE/ACM Trans. Networking, 1:554–565,
1993.

[vEBBV95] Thorsten von Eicken, Anindya Basu, Vineet
Buch, and Werner Vogels. U-Net: A user-
level network interface for parallel and dis-
tributed computing. In Proc. 15th SOSP,
pages 40–53, Copper Mountain, CO, USA,
Dec 1995.

[VM99] Kevin Thomas Van Maren. The Fluke device
driver framework. Msc thesis, University of
Utah, Dec 1999.

