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Abstract 

 

The world is warming, with both extreme and mean temperatures getting warmer. 

But how extremes are changing and will change relative to the mean remains less 

clear. Disproportionate rates of change between extreme and mean temperatures 

need to be better understood because this changes the shape of the distribution, 

affecting the probability of extreme events and thus their impacts. Therefore, the 

goal of this thesis is to understand if, when and where disproportionate rates of 

change occur in the past and future and it does this by using observations, 

reanalyses and climate models. 

 

I find that for past decades, cold extremes have been warming faster than the mean 

for much of the Northern Hemisphere extratropics, while warm extremes have been 

warming faster than the mean in some subtropical regions. Future changes are 

systematic and robust across a range of climate model simulations. The most 

striking disproportionate changes are in the Northern Hemisphere mid- to high-

latitudes, where cold extremes are projected to warm substantially faster than mean 

temperatures in all seasons except boreal summer. 

 

Exploring conditions on or leading into the day of the projected cold extremes 

reveals that the disproportionate warming is driven by different mechanisms in 

different seasons. In boreal winter, reduced cold air advection is the dominant 

driver, circulating anomalously warm temperatures from the Arctic to lower 
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latitudes. But during spring and autumn, it is mostly due to feedbacks related to 

decreases in snow cover. 

 

Analyses of temperature extremes have inherent uncertainties. I evaluate several 

commonly used reanalyses with a gridded in situ-based daily temperature dataset 

to assess sensitivities related to dataset choice. Trends in extremes and statistical 

moments, other than the mean, exhibit sensitivity. However, the conclusions drawn 

in this thesis remain robust irrespective of dataset choice, and regardless of 

methodological choice including choice of base period and how extremes are defined. 

 

Ultimately, this thesis provides a comprehensive understanding of changes in daily 

temperature extremes relative to the mean and their drivers. In turn, this provides 

essential information for decision-makers who can act to reduce the negative 

impacts stemming from extreme temperatures. 
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Chapter 1  

  

Introduction 

 

 

1.1 Overview 

While global mean temperature is a valuable indictor of global climate change, 

statistical analysis shows changes in the variability of daily temperature have the 

greatest impact on the probability of extreme events (Katz and Brown 1992). Many 

studies point to global-scale changes in extremes being driven by a shift in the mean 

alone (e.g. Simolo et al. 2010; Donat and Alexander 2012; Rhines and Huybers 

2013; Tingley and Huybers 2013), however, there is some evidence for regional-scale 

changes in variability (e.g. Schär et al. 2004; Huntingford et al. 2013; McKinnon et 

al. 2016; Rhines et al. 2017). 

 

To date, a number of studies have focused on observed and projected changes in 

regional temperature variability and the disproportionate increases of hot extremes 

in summer, mainly over Europe and North America (e.g. Schär et al. 2004; Fischer 

and Schär 2009; Simolo et al. 2011; Cattiaux et al. 2015; Holmes et al. 2016). Others 

tend to focus on individual aspects of temperature change, such as global mean 

temperature (e.g. Sutton et al. 2015; Hawkins and Sutton 2016; Rahmstorf et al. 

2017), or global or regional changes in the annual hottest or coldest days (e.g. 

Alexander et al. 2006; Coumou and Robinson 2013; Christidis et al. 2011). However, 
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addressing changes in means or extremes alone does not allow the extent of changes 

in several other aspects of the temperature distribution to be fully understood. 

Considering changes in extremes relative to mean changes is a simple approach to 

better characterise distributional changes and to understand how the most impacts-

relevant parts of the distribution behave relative to average conditions. These 

analyses rely on the accuracy of observational datasets which are then used to 

evaluate climate model simulations. However, the quality and robustness of the 

observational datasets used for analyses, that are often spatially or temporally 

incomplete, remain a source of uncertainty, and therefore, these products are not 

necessarily reliable for evaluating climate models. 

  

Due to the uncertainties surrounding commonly used observations-based datasets, 

the first aim of this thesis is to understand whether dataset choice has an impact 

on analyses of changes in temperature variability and extremes. Differences in the 

datasets when assessing trends in extremes relative to mean temperatures are also 

explored. The same in situ-based observational product is then used to assess the 

disproportionate rates of change in seasonal extremes relative to seasonal mean 

temperatures alongside a suite of climate models from the Coupled Model 

Intercomparison Project phase 5 (CMIP5) archive (Taylor et al. 2012), which are 

then used to project future changes. This is systematically investigated for all 

seasons and all global land areas, from the mid-20th century until the end of the 

21st century. Where models agree on the most robust changes, I delve into the 

physical mechanisms behind those changes by examining conditions on or prior to 

the day the extreme occurs. Various sensitivities related to the analyses of 

temperature extremes are also explored in order to reduce uncertainties related to 

methodological choices. The methods used in this thesis will be shown to be robust, 
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providing an easily reproducible approach for investigating the disproportionate 

rates of change in extremes relative to mean temperatures. 

 

While some of the findings presented here complement previous research, the 

individual chapters within the thesis combine to provide a more holistic and 

complete sense of how temperature extremes are changing and might change in the 

future. This is explored specifically in relation to changes in the mean of the 

distribution of daily temperatures, thereby providing information on several aspects 

of changes in the temperature distribution. This chapter serves to summarise and 

identify gaps in the relevant scientific literature and outline the individual aims 

and structure of this thesis. 

 

1.2 Review of the literature 

Due to their potential for adverse impacts on society and ecosystems, temperature 

extremes have been a prominent focus in the scientific literature in recent years. 

The majority of studies tend to focus on changes in extremes and mean 

temperatures separately, making it difficult to infer how the distribution of 

temperature is changing and whether variability is changing on top of shifts in the 

mean. Climate model simulations project consistent increases in annual mean 

temperature for land regions across the globe into the 21st century (e.g. Kirtman et 

al. 2013; Seneviratne et al. 2016; Lewis and King 2017). This is coupled with 

projected increases in the frequency and intensity of warm extremes and decreases 

in the frequency of cold extremes (e.g. Coumou and Robinson 2013; Kharin et al. 

2013; Kirtman et al. 2013; Sillmann et al. 2013a). Overall, this is consistent with a 

shift in the distribution towards warmer temperatures.  
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Changes in the symmetry of the temperature distribution have also been shown 

using observational data and climate model simulations (e.g. Kodra and Ganguly 

2014; Matiu et al. 2016; Lewis and King 2017), with the distribution becoming 

skewed towards hotter temperatures, especially for parts of Europe (e.g. Matiu et 

al. 2016), but also for North America, Asia and Australia (Lewis and King 2017). 

However, some have argued that the methods used to calculate temperature 

anomalies in some of these studies are causing inflated changes in extremes (Rhines 

and Huybers 2013; Sippel et al. 2015). Moreover, discrepancies with observations 

as well as among the climate models themselves are apparent, particularly for cold 

extremes (Kharin et al. 2007, 2013; Lewis and King 2017). Despite the 

uncertainties, future simulated warming of both extreme and mean temperatures is 

significant and robust for much of the globe (Kirtman et al. 2013; Collins et al. 

2013; Sillmann et al. 2013a), and will likely exacerbate the impacts stemming from 

extremes if strict measures to manage the risks are not implemented 

(Intergovernmental Panel on Climate Change (IPCC) 2012). 

 

Importantly, it is unlikely that the rates of change between different aspects of 

temperature are uniform. In fact, observations and climate model simulations 

indicate that cold extremes are warming faster than warm extremes for much of 

the globe (e.g. Kharin and Zwiers 2000, 2005; Alexander et al. 2006; Donat and 

Alexander 2012; Hartmann et al. 2013; Kharin et al. 2007, 2013, Donat et al. 2013a, 

2016). This is significant because disproportionate rates of change between different 

aspects of temperature affect the overall shape of the distribution, which affects the 

probability and frequency of extreme events and thus their impacts (Mearns et al. 

1984). 
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Figure 1.1 The effect on temperature extremes from a changing climate, showing (a) a shift 
in the distribution towards warmer temperatures, (b) an increase in temperature variability, 
and (c) change in the shape of the distribution (source: Lavell et al. 2012, Figure 1.2, p. 41). 

 

To demonstrate how temperature extremes might be affected in a changing climate, 

the IPCC use a schematic to describe changes in the distribution of temperature 

(Figure 1.1). An increase in the mean alone would shift the entire distribution to 

warmer temperatures, with hot extremes getting hotter and more frequent, and 

cold extremes becoming warmer and less frequent (Figure 1.1a). Changes in the 

variance alone would lead to an increased probability of both cold and warm 

extremes (Figure 1.1b), while a change in the shape of the distribution can skew 

temperatures towards the hotter or cooler part of the distribution (Figure 1.1c). 

41

as rain, freezing rain (rain falling through a surface layer below freezing),
snow, or hail, extreme precipitation can cause significant damage
(Peters et al., 2001). The absence of precipitation (McKee et al., 1993) as
well as excess evapotranspiration from the soil (see Box 3-3) can be
climate extremes, and lead to drought. Extreme surface winds are
chiefly associated with structured storm circulations (Emanuel, 2003;
Zipser et al., 2006; Leckebusch et al., 2008). Each storm type, including
the most damaging tropical cyclones and mid-latitude extratropical
cyclones, as well as intense convective thunderstorms, presents a
spectrum of size, forward speed, and intensity. A single intense storm
can combine extreme wind and extreme rainfall. 

The prolonged absence of winds is a climate extreme that can also be a
hazard, leading to the accumulation of urban pollution and disruptive
fog (McBean, 2006).

The behavior of the atmosphere is also highly interlinked with that of
the hydrosphere, cryosphere, and terrestrial environment so that extreme
(or sometimes non-extreme) atmospheric events may cause (or contribute
to) other rare physical events. Among the more widely documented
hydroclimatic extremes are:

• Large cyclonic storms that generate wind and pressure anomalies
causing coastal flooding and severe wave action (Xie et al., 2004). 

• Floods, reflecting river flows in excess of the capacity of the normal
channel, often influenced by human intervention and water
management, resulting from intense precipitation; rapid thaw of
accumulated winter snowfall; rain falling on previous snowfall (Sui
and Koehler, 2001); or an outburst from an ice, landslide, moraine,
or artificially dammed lake (de Jong et al., 2005). According to the
scale of the catchment, river systems have characteristic response
times with steep short mountain streams, desert wadis, and urban
drainage systems responding to rainfall totals over a few hours, while
peak flows in major continental rivers reflect regional precipitation
extremes lasting weeks (Wheater, 2002).

• Long-term reductions in precipitation, or dwindling of residual
summer snow and ice melt (Rees and Collins, 2006), or increased
evapotranspiration from higher temperatures, often exacerbated
by human groundwater extraction, reducing ground water levels
and causing spring-fed rivers to disappear (Konikow and Kendy,
2005), and contributing to drought.

• Landslides (Dhakal and Sidle, 2004) when triggered by raised
groundwater levels after excess rainfall or active layer detachments
in thawing slopes of permafrost (Lewcowicz and Harris, 2005). 

1.2.3. Extreme Impacts

1.2.3.1. Three Classes of Impacts

In this subsection we consider three classes of ‘impacts’: 1) changes in
the natural physical environment, like beach erosion from storms and
mudslides; 2) changes in ecosystems, such as the blow-down of forests
in hurricanes, and 3) adverse effects (according to a variety of metrics)
on human or societal conditions and assets. However, impacts are not
always negative: flood-inducing rains can have beneficial effects on the
following season’s crops (Khan, 2011), while an intense freeze may
reduce insect pests at the subsequent year’s harvest (Butts et al., 1997).

An extreme impact reflects highly significant and typically long-lasting
consequences to society, the natural physical environment, or ecosystems.
Extreme impacts can be the result of a single extreme event, successive
extreme or non-extreme events, including non-climatic events (e.g.,
wildfire, followed by heavy rain leading to landslides and soil erosion),
or simply the persistence of conditions, such as those that lead to
drought (see Sections 3.5.1 and 9.2.3 for discussion and examples).

Chapter 1 Climate Change: New Dimensions in Disaster Risk, Exposure, Vulnerability, and Resilience
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Figure 1-2 | The effect of changes in temperature distribution on extremes. Different
changes in temperature distributions between present and future climate and their
effects on extreme values of the distributions: a) effects of a simple shift of the entire
distribution toward a warmer climate; b) effects of an increased temperature variability
with no shift of the mean; and c) effects of an altered shape of the distribution, in this
example an increased asymmetry toward the hotter part of the distribution.
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Theoretically, such a schematic is useful to demonstrate the possible effects that 

overall changes in temperature distributions can have on extremes, or vice versa, 

emphasising the need to consider changes in the tails relative to the entire 

distribution (Katz et al. 2013; Sardeshmukh et al. 2015). Quantifying past changes 

and predicting future changes in extremes relative to mean temperatures would 

provide crucial information that can be used by decision-makers and planners to 

reduce the risks of negative impacts from extremes. 

 

While some studies have looked at changes in temperature extremes relative to the 

mean, there are key differences in the methodologies and measures used that make 

it difficult to get a complete sense of how these rates of change differ across all land 

regions for the globe. For instance, most of these studies compare changes in 

extremes relative to global mean temperatures, with some focusing primarily on 

globally averaged extremes (e.g. Kharin and Zwiers 2005; Kharin et al. 2007), and 

others comparing global mean temperature with changes in local extremes (e.g. 

Seneviratne et al. 2016; Vogel et al. 2017). Despite being more useful to identify 

and explore the physical processes driving regional distributional changes, only 

limited studies have looked at changes in local extremes relative to changes in local 

mean or median temperatures (e.g. Brown et al. 2008; Orlowsky and Seneviratne 

2012; Donat et al. 2017). 

 

Figure 1.2, from Seneviratne et al. 2016, shows changes in extreme and mean 

temperatures associated with a 2°C target of global mean temperature increase. 

Both hot and cold extremes, and mean temperatures, are projected to warm across 

the globe relative to 2°C of global warming. From the figure, it is clear that the 

different variables warm at different magnitudes, and regional differences can be 

substantial, especially for the coldest annual temperatures (Figure 1.2b). While 
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assessing local changes in extremes relative to global mean temperature can be 

useful for regional decision-making and setting emissions targets, global mean 

temperature is a rather abstract measure that does not directly impact society 

(Sutton et al. 2015; Seneviratne et al. 2016). Rather, it is changes in the local mean 

temperature that people and the environment actually experience. Assessing 

changes in local extremes relative to corresponding local mean temperatures is also 

vital to understand the physical processes and relationships that contribute to 

disproportionate rates of warming.    

 
Figure 1.2 Extreme and mean temperature changes associated with a 2°C global warming 
target, for (a) the annual hottest daytime temperature, (b) annual coldest night-time 
temperature and (c) annual mean temperature. Results are based on the RCP8.5 scenario 
simulations from CMIP5 (source: Seneviratne et al. 2016, p. 479). 
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PERSPECTIVE RESEARCH

the coldest extremes than for the global mean temperature change, with an 
increase of about 5.5 °C for the 2 °C global warming target. In addition, it is 
evident that a regional 2 °C threshold was passed in the simulations around 
the year 2000 for TNn in the Arctic, while it is projected to be reached by 
about 2030 for TXx in the Mediterranean, central Brazil and the contiguous 

USA, and only by the mid-2040s for the global mean temperature, under 
the business-as-usual (unchecked) emissions scenario (RCP8.5, which leads 
to a radiative forcing of 8.5 W m−2 by 2100 relative to pre-industrial values). 
For a 1.5 °C global warming target, we also note that substantial regional 
changes in temperature extremes would still occur, with (for example) a 

Figure 2 | Extreme (and mean) temperature changes associated with a 
2 °C target. Local changes associated with a global warming of 2 °C  
are shown for hottest daytime temperature (TXx) (a), annual coldest  
night-time temperature (TNn) (b), and mean temperature (Tmean) (c).  
The analysis is based on RCP8.5 scenario simulations (ensemble average 
year 2044; based on 25 model simulations, see Supplementary Table 1).  

The respective scaling expressed as ratio of global mean temperature 
increase is provided in Supplementary Fig. 1. Note that very similar 
results are obtained with the RCP4.5 scenario simulations (Fig. 3 and 
Supplementary Figs 2 and 3, based on 22 model simulations). Panels a  
and b also display the outlines of the regions analysed in Fig. 3.
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Studies comparing local extremes to local mean temperatures have predominantly 

focused on annual statistics calculated from daily observational data or climate 

model output (e.g. Kharin and Zwiers 2005; Brown et al. 2008; Donat et al. 2017). 

Observations and climate model simulations indicate that in recent decades, annual 

cold extremes have generally warmed in excess of annual mean daily minimum 

temperatures in Northern Hemisphere regions that are affected by snow fall and 

sea ice (Kharin and Zwiers 2005; Brown et al. 2008). Annual hot extremes have 

been warming faster than the annual mean of daily maximum temperatures for 

parts of Europe, the Mediterranean, southern Africa and Australia (Brown et al. 

2008; Donat et al. 2017).  

 

Climate model projections suggest that the annual hottest days are expected to 

warm at an accelerated rate compared with the local annual mean for many of the 

same regions, as well as parts of North America and Europe, which have primarily 

been related to land-atmosphere feedbacks as driving processes (Donat et al. 2017). 

However, the physical mechanisms driving the disproportionate rates of warming 

between extremes and mean temperatures likely differ depending on the season, 

and between warm and cold extremes. For example, during summer, changes in 

soil-moisture feedbacks and surface heat fluxes are the more likely dominant driver 

of accelerated warming of hot extremes (Donat et al. 2017; Vogel et al. 2017), while 

changes in snow and ice cover, and larger-scale changes in atmospheric circulation, 

are more likely to drive disproportionate rates of warming in cold extremes and 

decreases in temperature variability during winter months (e.g. Gregory and 

Mitchell 1995; Kjellström et al. 2007; Fischer et al. 2011; Kharin et al. 2007, 2013; 

Screen 2014). The impacts from temperature extremes are often seasonally 

dependent as well (Alexander et al. 2006). While Orlowsky and Seneviratne (2012) 

explored the scaling of regional and seasonal extremes, this was addressed in 
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relation to global mean temperature change and the annual regional median change 

in temperature. Hence, it is still largely uncertain how seasonal changes in regional 

extremes are changing with respect to changes in corresponding seasonal mean 

temperatures, and further, understanding the physical drivers influencing any 

disproportionate temperature changes, particularly in cold extremes, requires more 

attention. 

 

Robust conclusions regarding the disproportionate changes of extremes relative to 

mean temperatures rely on the accuracy and reliability of the input datasets used 

for analysis. Due to the lack of complete daily observed temperature datasets on a 

global scale, the majority of studies addressing changes in temperature variability 

and extremes have used monthly or seasonal data (e.g. Hansen et al. 2012; Coumou 

and Robinson 2013; Huntingford et al. 2013; Rhines and Huybers 2013). However, 

the temporal aggregation of these datasets smooths out the individual events that 

occur on daily timescales, and it is these events that are most likely to cause the 

greatest impacts (Alexander and Perkins 2013). For this reason, it is imperative to 

use daily datasets that are both sufficiently long and continuous to detect and 

project changes in extremes (Klein Tank et al. 2009). In situ-based daily 

temperature datasets, such as the Hadley Centre Global Historical Climatology 

Network-Daily (HadGHCND) dataset (Caesar et al. 2006), which represents one of 

the most comprehensive global daily temperature datasets currently available, still 

lacks data in some regions. For this reason, reanalysis products, which assimilate 

in situ-based and satellite-based observational data into numerical weather 

prediction models, are commonly used for global studies (e.g. Huntingford et al. 

2013; Donat et al. 2014; Kodra and Ganguly 2014; Ylhäisi and Räisänen 2014; 

Simmons et al. 2017). However, like climate models, reanalysis products need to be 
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evaluated to determine their robustness against observational products, and the 

impact of dataset selection depends on application. 

 

Without drastic measures to severely limit atmospheric greenhouse gas 

concentrations, the IPCC has stated that “it is virtually certain that, in most places, 

there will be more hot and fewer cold temperature extremes as global mean 

temperature increases” (Collins et al. 2013, p. 1031). These anticipated increases 

will likely exacerbate the impacts from extremes. Importantly, the impacts from 

extremes are already unequally distributed, due to differences in socioeconomic 

factors that reduce a region’s capability to respond to extreme events (IPCC 2012). 

Disproportionate rates of warming in extreme and mean temperatures could further 

intensify the impacts from extremes, especially for already vulnerable regions. For 

example, heat-health related impacts might be exacerbated by temperature 

extremes warming more than mean temperatures, as a result of not being able to 

adequately acclimatise. Although humans are able to adapt to some changes to 

temperature (Gasparrini et al. 2016), the limits of these adaptation mechanisms are 

still an active area of research (Sherwood and Huber 2010). Natural ecosystems 

might also be affected by different rates of change in temperature, for instance, 

faster warming rates of mean temperatures compared with cold extremes during 

winter months may increase the longevity of disease-carrying insects that can 

survive through milder winters (e.g. Wolf et al. 2015; Ebi and Nealon 2016). This 

also highlights the seasonal dependence of impacts that disproportionate rates of 

warming in extremes can influence.  

 

While many studies have investigated changes in temperature extremes, there are 

important limitations and gaps in the research that need to be considered and 

resolved. Addressing some of the sensitivities related to methodological choices by 
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exploring alternative methods and testing the robustness of results would reduce 

uncertainties and make it easier to compare studies. Then, systematically assessing 

several aspects of temperature distribution changes using an easily reproducible and 

understandable method could serve as a new standard tool for assessing changes in 

temperature extremes relative to mean temperatures. The implications of this type 

of study are far-reaching for numerous fields in climate change research. 

 

1.3 Structure of the thesis 

The overarching goal of this thesis is to provide an in-depth understanding of how 

daily temperature extremes have changed and might change in the future across all 

global land regions, specifically with regards to changes in mean temperatures. This 

is explored across all seasons using daily maximum and daily minimum temperature 

data from observations, reanalysis data and climate model output. By considering 

several aspects of the temperature distribution in parallel with one another, the 

disproportionate rates of change between different parts of the distribution become 

evidently clear. Methodological sensitivities underpin and limit studies regarding 

temperature extremes, so another key aim of this thesis is to evaluate some of these 

sensitivities. Each chapter has specific objectives that contribute to the overall aims 

of this thesis, as outlined below. 

 

1. Investigate the impact of dataset choice for analysing statistics related 

to the distribution of temperature and extremes. 
 

In Chapter 2, several commonly used reanalysis datasets of daily maximum and 

minimum temperature are compared against the HadGHCND dataset, a quasi-

global, gridded in situ-based dataset of daily maximum and minimum 

temperatures. Differences and similarities between the datasets are identified using 

various statistical properties that are important for understanding changes in 
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temperature. Statistical moments, including the mean, standard deviation and 

skewness, are compared across the different datasets, while the Extreme Value 

Theory is used to compare statistics that are specific to the tails of the distribution. 

Lastly, trends in the tails of the distribution relative to the mean are explored for 

recent decades across all datasets, noting any sensitivities related to dataset choice. 

 

2. Assess changes in seasonal temperature extremes relative to seasonal 

mean temperatures in observations and CMIP5 models. 
 

Chapter 3 systematically assesses changes in local seasonal temperature extremes 

relative to corresponding local seasonal mean temperatures from the mid-20th 

century until the end of the 21st century. This follows on from the annual trends in 

extremes relative to the mean investigated in Chapter 2 and uses the same 

observational dataset to evaluate a suite of CMIP5 models, which are then used to 

project future changes in both warm and cold extremes relative to mean 

temperatures for all seasons and all land regions across the globe. 

 

3. Explore projected changes in seasonal cold extremes relative to 

seasonal mean temperatures and investigate their physical mechanisms. 
 

In Chapter 4, the most robust changes identified in Chapter 3 are assessed further 

to identify the possible physical mechanisms that are driving the strongest changes 

in temperature extremes relative to mean temperatures. Specifically, this chapter 

uses several individual CMIP5 models to assess the accelerated warming rates of 

cold extremes relative to mean temperatures in boreal winter and the shoulder 

seasons for Northern Hemisphere mid- to high-latitude land regions. Then, the 

environmental conditions on the day or just prior to the day of the extreme are 

explored to determine the physical processes that are plausibly contributing to the 

projected enhanced warming of cold extremes. 
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4. Examine methodological sensitivities related to the analysis of changes 

in temperature extremes relative to mean temperatures. 
 

Chapter 5 explores some of the uncertainties and sensitivities related to the results 

presented in the previous chapters, such as sensitivities related to the choice of 

climatological reference period, and the methods used to define extreme 

temperatures. It brings together the different methodological choices used in each 

chapter to provide context on whether results are sensitive to the methods used to 

analyse changes in temperature extremes relative to the mean and summarises the 

robustness of conclusions in Chapters 2 – 4 of this thesis.  

 

Finally, the main findings and conclusions of this thesis are summarised in Chapter 

6, which also suggests opportunities for future work relating to this field of research. 

 

Chapter 2 is based on a published peer-reviewed article in the Journal of Climate, 

Chapter 3 has been revised and re-submitted to the International Journal of 

Climatology, and Chapter 4 has been submitted to Climate Dynamics and is 

currently under review. These chapters are presented as they are published or 

submitted, with some minor changes in formatting. Overviews preceding each 

chapter provide some context as to the contribution of the chapter to the thesis. 
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Chapter 2  

 

The sensitivity of daily temperature variability and extremes 

to dataset choice 

 

Chapter overview 

This chapter is published as: Gross, M. H., M. G. Donat, L. V. Alexander and S. 

A. Sisson, 2018: The sensitivity of daily temperature variability and extremes to 

dataset choice. Journal of Climate, 31, 1337-1359, doi:10.1175/JCLI-D-17-0243.1. 

 

Robust conclusions regarding changes in the temperature distribution rely on the 

accuracy and reliability of the input datasets used. Differences between 

methodologies and datasets in previous studies add uncertainty when comparing 

and quantifying findings. This chapter assesses whether dataset choice has an 

impact on assessments regarding the distribution of temperature and how extremes 

are changing relative to mean changes. Several commonly used reanalysis datasets 

are compared against the gridded in situ-based daily temperature dataset, 

HadGHCND, by assessing both the entire distribution and the tails of the 

distribution. Empirical Probability Distribution Functions show sensitivity to the 

input dataset when estimating aspects such as standard deviation and skewness, 

with the mean showing robust results for most regions, irrespective of dataset 
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choice. Standard deviation is especially sensitive, with larger disagreements between 

datasets for some regions more than others, such as Africa and the Mediterranean 

region, and with larger differences in minimum temperatures compared with 

maximum temperatures. Estimates of extreme parameters also show sensitivity to 

dataset choice, particularly in the lower tails and for daily minimum temperature 

anomalies. Comparing changes in the means and the extremes of the temperature 

distributions, cold extremes in the lower tails have been warming at a faster rate 

than the mean of the entire distribution for much of the Northern Hemisphere 

extratropics, with warm extremes warming at a faster rate than the mean in some 

subtropical regions. Despite some sensitivity in the exact quantifications between 

datasets, these findings of faster rates of change are qualitatively robust regardless 

of the input dataset. The documented sensitivities call for caution when assessing 

changes in temperature variability and extremes, as dataset choice can have 

substantial effects on the exact quantification of results. 

 

 

2.1 Introduction 

Temperature extremes represent one of the most obvious impacts of climate change 

on society. For example, the impacts from heatwaves can range from increases in 

human mortality and morbidity to effects on agriculture and infrastructure (IPCC 

2012). Variability within temperature can affect the probability and frequency of 

extreme events (Mearns et al. 1984; Katz and Brown 1992; Rahmstorf and Coumou 

2011; McKinnon et al. 2016), making it critical to understand how different aspects 

of the temperature distribution are changing and how they might change in the 

future. For this reason, many studies have investigated how extremes might be 

affected by changes in the distribution of temperature due to climate change (e.g. 

Rahmstorf and Coumou 2011; Donat and Alexander 2012; Hansen et al. 2012; 
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Rhines and Huybers 2013; McKinnon et al. 2016). Despite the abundance of such 

studies, there are still some contested issues regarding changes in temperature 

variability. Mainly, while some studies have found increases in global temperature 

variability (e.g. Hansen et al. 2012), others have concluded that extremes are 

shifting towards hotter temperatures along with the mean, with little or no change 

in global variability (e.g. Brown et al. 2008; Donat and Alexander 2012; 

Huntingford et al. 2013; Rhines and Huybers 2013; Tingley and Huybers 2013). 

This suggests that while there is consensus in terms of changes in the mean 

temperature, there remains considerable uncertainty in changes of other aspects of 

the distribution. 

 

The issues and uncertainties surrounding previous studies are likely related to the 

different methods and datasets used for investigating changes in the distribution of 

temperature, which make these studies difficult to compare and quantify. Most 

studies to date have used monthly or seasonal datasets (e.g. Hansen et al. 2012; 

Coumou and Robinson 2013; Rhines and Huybers 2013). However, the temporal 

aggregation of these datasets can smooth out the individual events that can occur 

on daily timescales. This makes it critical to use daily data to detect changes in the 

temperature distribution, as it is the characteristics of extremes (such as the 

frequency, intensity and duration) that are most likely to impact society (Alexander 

and Perkins 2013). This requires long-term, continuous and consistent high-quality 

datasets (Klein Tank et al. 2009).  

 

The limited studies that have used daily data to investigate changes in the 

temperature distribution have predominantly used three main statistical methods. 

This includes assessing statistical moments of the probability density function 

(PDF), such as the mean, variance and skewness (e.g. Donat and Alexander 2012), 
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using Extreme Value Theory (EVT) to explicitly characterize the tails of the 

distribution (e.g. Kharin and Zwiers 2005; Brown et al. 2008; Christidis et al. 2011), 

and examining changes in different percentiles (e.g. Robeson 2004; Simolo et al. 

2010; McKinnon et al. 2016). Some of these studies (e.g. Brown et al. 2008; Donat 

and Alexander 2012) have used HadGHCND, a quasi-global daily gridded 

temperature dataset (Caesar et al. 2006). However, such an in situ-based daily 

dataset still lacks data for certain regions, such as parts of South America and 

Africa. Reanalysis products that use assimilated observational data for the globe 

are therefore commonly used to investigate global changes in variability and 

extremes (e.g. Huntingford et al. 2013; Donat et al. 2014). Additionally, because of 

their global completeness and areal structure, reanalyses might be considered 

advantageous when evaluating climate models against historical observation-based 

data (e.g. Kharin et al. 2013; Sillmann et al. 2013b; Donat et al. 2016). However, 

it is still not clear if assessments of changes in temperature variability and extremes 

are sensitive to these different types of input data, a factor that might affect a 

study’s conclusions. 

 

A crucial first step in gaining a more comprehensive understanding of how 

temperature variability and extremes are changing requires a sensitivity analysis of 

some of the most commonly used datasets of daily temperatures. Further, a 

systematic and holistic approach would require a combination of assessing both the 

PDFs and the tails of the distribution using EVT (Katz et al. 2013; Sardeshmukh 

et al. 2015). Using both methods in parallel can help address the uncertainties in 

assessing the tail alone, as well as inferring changes in extremes relative to the mean 

of the entire distribution (Sardeshmukh et al. 2015). Here, we aim to use these two 

approaches to compare commonly used reanalysis products with the HadGHCND 

daily dataset. Our aim is not to make any judgments about the quality of the 
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observational data itself, but rather to determine if analyses are sensitive to the 

input dataset. We use a mathematically consistent approach and consider both 

global and regional temperature distributions, to provide critical information for 

future studies that wish to use these types of datasets to investigate changes in 

temperature variability and extremes. 

 

2.2 Data and Methods 

2.2.1 Observational data 

We use HadGHCND as the base dataset to compare against reanalysis products. 

Since it is quasi-global over land and is based only on in situ daily maximum and 

minimum temperatures, this gives mostly independent information with which to 

compare against other products. It is available from 1950, and at the time of 

analysis, ended in 2014. HadGHCND uses approximately 2500 stations that are 

interpolated onto a 2.5° latitude x 3.75° longitude grid using an angular distance 

weighting technique (Shepard 1968; Caesar et al. 2006). 

 

2.2.2 Reanalysis data 

Four reanalysis products are selected for inter-comparison: ERA-Interim (Dee et 

al. 2011), NCEP-DOE Reanalysis 2 (NCEP2) (Kanamitsu et al. 2002), the Japanese 

55-year Reanalysis (JRA-55) (Kobayashi et al. 2015) and the Modern-Era 

Retrospective Analysis for Research and Applications, version 2 (MERRA-2) 

(Bosilovich et al. 2015; Gelaro et al. 2017). These were chosen primarily based on 

their prevalence in the literature for investigating temperature variability and 

extremes, as well as their comparability in terms of dataset length. We purposely 

did not include some commonly used first generation reanalyses, because for 

NCEP1 (Kalnay et al. 1996; Kistler et al. 2001), inhomogeneities in the 



 
 

 20 

representation of warm extremes have been documented (e.g. Donat et al. 2014). 

Other products, such as the 20th Century Reanalysis (Compo et al. 2011), and ERA-

40 (Uppala et al. 2005), were excluded as data for recent years covered by the 

chosen reanalyses are not available.  

 

To test the sensitivities of analyses to the different input datasets, we focus on the 

common time period of 1980-2014. While this is a relatively short period of time to 

investigate long-term climate changes, it is sufficient for the purpose of assessing 

robustness between different datasets. All reanalysis products are regridded using 

a bilinear remapping technique and masked to the grid cell size and spatial coverage 

of HadGHCND. Other regridding techniques were tested, such as conservative 

remapping techniques (Jones 1999), and results were not sensitive to the regridding 

method used. We also only include grid cells that have at least 80% of temporal 

completeness in HadGHCND, therefore excluding data sparse regions. In addition 

to meeting this criterion, analysis is only performed when there are at least 50% of 

data available for both the first and last ten years of HadGHCND data. This 

ensures there are enough data points to robustly assess changes over a 35-year 

period. While the regridding itself is likely to add some uncertainty to the 

intercomparison of products, it has been shown that this effect is small compared 

to the structural differences between datasets (e.g. Loikith et al. 2015). We use 

daily maximum and minimum temperature anomalies that were calculated relative 

to a mean annual cycle over the entire period of investigation, that is, 1980-2014. 

 

2.2.3 Statistical methods 

Two approaches are used to assess dataset sensitivity for investigating changes in 

temperature variability and extremes. First, we examine PDFs for the entire 

temperature distribution over the period of record chosen, and second, we use 
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Extreme Value Theory (EVT) for direct analysis of the tails of the distribution and 

to understand how extremes are changing relative to the mean of the distribution.  

 

 
Figure 2.1 The 26 regions specified in the IPCC SREX, and the spatial distribution of 
stations used in HadGHCND at the time of interpolation. * indicates regions that are used 
for analysis of time series (i.e. Figure 2.4 – 2.13). Regions 7, 8, 9, 15 and 16 are excluded from 
analyses based on not fulfilling the completeness criteria specified in Methods. 

 

We analyse PDFs for the 26 regions specified in the IPCC Special Report on 

Extremes (SREX) (IPCC 2012) (Figure 2.1). These were chosen for this study as 

they indicate regions of common climates and enabled sufficient data points for 

each region for reliable statistical analysis. Figure 2.1 shows the spatial distribution 

of all included 2500 stations used in the interpolation of HadGHCND. Furthermore, 

we show the number of stations per SREX region, and number of grid cells with 

data in each region in Table 2.1. Empirical PDFs are calculated by pooling all time 

steps and grid cells within a region to produce a distribution of temperature over 

the period 1980-2014. We note that different ways of how grid cells are spatially 

aggregated may affect estimates of distribution changes (Rhines and Huybers 2013; 

Director and Bornn 2015). The focus of our study, however, is on dataset 

agreement, and we treat all datasets the same. Therefore, such sensitivities 
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regarding spatially averaged grid cells are less relevant here. We used 140 equally 

spaced bins, ranging from -45°C to 45°C, to calculate the PDFs, as this choice most 

clearly captured the features of the dataset. We repeated our analyses for other bin 

width settings, but our conclusions were not sensitive to bin size choices for 

calculating the PDFs. 

 

SREX regions are only included in the analysis if at least three grid cells within 

that region fulfill the completeness criteria specified in Section 2.2.2. While this 

criterion doesn’t necessarily ensure spatial representativeness, it increases statistical 

power in terms of sample size for estimating the regional PDFs. For the time series 

analysis in the main text, we only show selected regions that represent different 

levels of data coverage and different climatic zones, those being, regions 3 (West 

North America), 10 (south-eastern South America), 13 (Mediterranean region), and 

18 (North Asia/Russia). Figures for the remaining regions are included as 

supplementary material. We also include a global analysis, calculated by 

aggregating all grid cells that fulfill the completeness criteria. 

 

The sample mean, standard deviation and skewness are calculated for each region 

and dataset. To investigate temporal changes in these quantities, time series of 

annual statistics are plotted over the investigation period (see Figure 2.4 – 2.8). 

We calculated trends using both a linear regression and Sen’s trend estimator (Sen 

1968), estimating trend significance using the Mann-Kendall test (Kendall 1975). 

Autocorrelation in the time series was accounted for by adjusting the sample size 

to the equivalent number of independent values, or equivalent sample size (Zwiers 

and von Storch 1995). Results were found to be insensitive to the test used, and so 

we only show linear regression trends, with significance calculated at the 5% level 

using a t-test. 
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Table 2.1 Number of HadGHCND stations within each of the 26 SREX regions, and number 
of grid cells with observational data per region for daily maximum and daily minimum 
temperature anomalies. Counts of stations only consider the number of used stations available 
at the time of interpolation, and so variations of stations over time are not considered. Counts 
of grid cells with available data per region are calculated after a criterion is applied where 
grid cells must have at least 80% temporal completeness, as well as at least 50% of data 
available in the first and last ten years of HadGHCND data. 

SREX region 

No. of 
stations 

per region 

No. of grid 
cells with data 

per region 
(Tmax) 

No. of grid 
cells with data 

per region 
(Tmin) 

1. Alaska/Northwest Canada 79 77 77 
2. Canada/Greenland/Iceland 142 134 114 
3. West North America 1795 68 68 
4. Central North America 1976 39 39 
5. East North America 1435 23 23 
6. Central America/Mexico 182 4 4 
7. Amazon 7 0 2 
8. North-East Brazil 0 0 0 
9. West coast South America 1 0 0 
10. South-eastern South America 25 15 8 
11. North Europe 489 37 37 
12. Central Europe 219 46 46 
13. Mediterranean 138 39 39 
14. Sahara/North Africa 16 14 15 
15. West Africa 1 0 0 
16. East Africa 18 0 0 
17. Southern Africa 40 10 9 
18. North Asia/Russia 375 245 245 
19. West Asia 61 41 43 
20. Central Asia 22 33 33 
21. Tibetan Plateau 41 47 47 
22. East Asia 350 86 86 
23. South Asia 5 13 14 
24. Southeast Asia 61 25 14 
25. North Australia 123 50 50 
26. South Australia/New Zealand 276 22 22 

 

We use EVT to determine if analyses of the extremes are sensitive to dataset choice 

and assess changes in the extremes explicitly. In particular, a non-stationary point 

process (PP) model is fitted to the data to describe annual exceedances above and 
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below the upper and lower 1.5%, respectively, as in Brown et al. (2008). We 

additionally tested different thresholds, such as the upper and lower 1% and 2% of 

data, and found the results were not sensitive to the choice of threshold. This model 

corresponds to a Poisson process for the inter-exceedance times, with a Generalised 

Pareto distribution for the size of the exceedances (e.g. Coles 2001). Similar to the 

methods of Brown et al. (2008), we model non-stationarity of the process through 

a time-dependent threshold and location parameter (explicitly, a linear trend in the 

location parameter) over the period of investigation, as implemented in the 

‘extRemes’ package in R (Gilleland and Katz 2011). Non-linearity in scale and 

shape parameters was also tested but found not to be present, and the fidelity of 

the PP model to the data was assessed using standard goodness-of-fit procedures, 

including qq-plots. It is clear from the qq-plots that the selected PP distribution is 

supported by the empirical distribution of the extremes, as the values fit close to 

the 1-1 line (see Figure S1.1). As in Brown et al. (2008), we calculate the difference 

of this location trend with the trend in the mean for all available grid cells to 

investigate how the magnitude of the extremes are changing relative to the mean, 

hereafter referred to as ‘excess trends’. Local significance of the excess trends was 

calculated for each grid cell using a Mann-Kendall test at the 5% level. 

 

In addition, we plotted time series of the location, scale and shape parameters 

estimated from a stationary PP model, as shown in Section 2.3.3. These are 

calculated from decadal moving windows, starting in 1980 and ending in 2014. 

Trends in the PP fit parameters are similarly calculated using the same methods 

as those used for the moments of the entire PDF. 
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2.3 Results 

2.3.1 Global and regional PDFs 

PDFs for SREX regions that adhere to our completeness criteria, as well as global 

PDFs, are shown for maximum temperature anomalies (Tmax, Figure 2.2) and 

minimum temperature anomalies (Tmin, Figure 2.3). Dashed vertical lines of 

different colours represent the threshold of the top and bottom 1.5% of the data 

(‘extremes’) for each dataset. Plots of the respective standard deviation and 

skewness values are shown in supplementary material (Figure S1.1). 

 

As expected, higher latitude regions generally have broader PDFs across all 

datasets, compared with lower latitudes for both maximum and minimum 

temperature anomalies, indicative of higher variability. For most regions, PDFs of 

the reanalyses are wider compared to the HadGHCND-derived PDFs for both the 

globe and most regions. This separation might be due to more spatial smoothing in 

HadGHCND, where the correlation length scale (CLS) used for interpolation is 

based on monthly mean temperatures (Caesar et al. 2006). This leads to search 

radii of several hundred to thousand kilometres for stations to include when 

calculating the grid box values. It is possible that this monthly CLS is larger than 

the correlation of daily temperature values would be, potentially causing overly 

strong smoothing in the HadGHCND dataset. Broader PDFs in the reanalyses are 

especially apparent in the Mediterranean region (region 13) and some subtropical 

regions, such as Northern Africa (region 14) and southern Africa (region 17). PDFs 

for Northern Hemisphere extratropical regions are also wider in the reanalyses 

compared with HadGHCND, although less so for parts of North America (e.g. 

regions 3-5), and North Asia/Russia (region 18). For all regions and the globe, there 

are fewer similarities between the PDFs of the different datasets for Tmin compared 

to Tmax. Skewness differences are larger between datasets for Tmin, with NCEP2 
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showing a more negatively skewed PDF for most regions compared with the other 

datasets. 

 

 
Figure 2.2 Empirical PDFs of daily maximum temperature anomalies for all SREX regions 
that fulfill the completeness criteria, and for the globe. The PDFs are calculated from the data 
that is pooled over the period 1980-2014, with different coloured PDFs representing the 
different datasets. Vertical long-dashed lines indicate the upper and lower 1.5% threshold. * 
indicates a different y-axis scale used for regions 13, 14, 23 and 24. 
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Figure 2.3 As Figure 2.2, but for daily minimum temperature anomalies. 

 

The PDFs also show notable differences in the extremes of the distribution. That 

is, the 1.5% thresholds that define the tails of the distribution occur at varying 

temperatures depending on the dataset used, with greater differences found between 

datasets for Tmin compared to Tmax. For many regions, the thresholds in the 
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reanalysis products, occur at more extreme temperatures compared to HadGHCND. 

For instance, in West North America (region 3), the cold extremes threshold for 

Tmin is just above -18°C for NCEP2, while it is only just below -12°C for 

HadGHCND. For most regions as well as the globe, NCEP2-derived PDFs 

consistently show a bias towards more extreme thresholds, compared with the other 

datasets. This is particularly apparent in the cold tails compared with the warm 

tails of the distribution. Though less obvious, PDFs for ERA-Interim, JRA-55 and 

MERRA-2 also show a bias towards more extreme temperatures thresholds 

compared with those shown in HadGHCND.  

 

In addition to the higher sensitivities found in Tmin compared to Tmax, the tails 

of the PDFs show sensitivity to the input dataset, particularly in the cold tails. 

Overall, the NCEP2-derived PDFs are the most different to HadGHCND, however, 

the PDFs show sensitivity to all four reanalysis products, particularly for assessing 

standard deviation and skewness. 

 

2.3.2 Time series of the statistical moments 

To explore temporal changes and trends in the datasets, Figure 2.4 – 2.8 show time 

series of the annual mean, standard deviation and skewness for Tmax and Tmin 

for the globe and for selected regions (3, 10, 13 and 18 – see Figure 2.1). The 

remaining regions and their respective trends are included in supplementary 

material (Figures S1.2 – S1.7, Tables S1.1 – S1.3). These time series describe 

changes over 1980-2014. Decadal trends and their significance for each dataset are 

shown for each plot.  

 

Results for the global mean are relatively robust, irrespective of the dataset used 

(Figure 2.4), with a significant increasing trend found in all datasets for both Tmax 
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and Tmin. Aside from some small differences in NCEP2, the most notable 

differences occur towards the end of the time series, particularly in MERRA-2 from 

around 2007-2009. This discrepancy in MERRA-2 is a documented issue (Sánchez-

Lugo et al. 2016; Simmons et al. 2017). 

 

 
Figure 2.4 Time series of global daily maximum and minimum temperature anomalies for the 
first three statistical moments annually, that is, the mean, standard deviation and skewness. 
Decadal trends are shown for each dataset in respective colours. * indicates significant trends 
at the 5% level. 

 

Unlike the mean, changes in global standard deviation and skewness (Figure 2.4) 

appear sensitive to the input dataset for assessing trends over the past 35 years, 

however, there is reasonable temporal correlation between the different time series. 

There is a noticeably larger spread in standard deviation across the datasets, 

compared with the mean or skewness. This is particularly apparent in Tmin and 

NCEP2, where NCEP2 shows a more substantial decreasing trend in global 

standard deviation in Tmin of -0.16°C per decade, compared with -0.03°C per 
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decade in HadGHCND. This difference in trends is likely a result of a step change 

in NCEP2 that occurs around 1998, that is not evident in the other datasets. This 

inhomogeneity is likely a signature of a step change related to only specific regions, 

as discussed in subsequent paragraphs. The time series for global skewness show 

variation and display mostly non-significant trends that are close to zero. Again, 

the largest differences are shown in NCEP2 for Tmin, with the discussed step 

change in NCEP2 likely contributing to this. 

 

While the global mean is similar across datasets, differences become apparent for 

certain regions more than others. For instance, the mean for West North America 

(region 3 – Figure 2.5) and North Asia/Russia (region 18 – Figure 2.8) is mostly 

robust regardless of dataset choice, while in contrast, south-eastern South America 

(region 10 – Figure 2.6) and the Mediterranean (region 13 – Figure 2.7) display 

more sensitivity. This could be indicative of greater uncertainty within data sparse 

regions compared to those that are more data rich. For example, regions 3 and 18 

include 1795 and 375 station observations respectively, while regions 10 and 13 only 

have 25 and 138 observations respectively (see Table 2.1). With regards to the 

Mediterranean region, most available stations are located in southern Europe, with 

few stations in North Africa (see Figure 2.1). Pooling the grid cells within each 

SREX region allow us to include region 13 in our analysis, however, the sensitivity 

of the Mediterranean discussed above might be a reflection of the unequal 

distribution of observations with data in this region. 
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Figure 2.5 As Figure 2.4, but for SREX region 3, located in western North America. 

 

 
Figure 2.6 As Figure 2.4, but for SREX region 10, located in south-eastern South America. 

 



 
 

 32 

 
Figure 2.7 As Figure 2.4, but for SREX region 13, located in the Mediterranean region. 

 

 
Figure 2.8 As Figure 2.4, but for SREX region 18, located in North Asia/Russia. 
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The differences in the mean between datasets for regions 10 and 13 are most notable 

in NCEP2. As for the globe, variance and skewness show a greater sensitivity to 

dataset choice compared with the mean. Regions 3 and 18, both located in the 

Northern Hemisphere extratropics, show a clear step change in NCEP2 in standard 

deviation in Tmin occurring around 1998. After examination of all regions, the step 

change is found in most regions in this latitude band, as well as in region 10. This 

inhomogeneity in NCEP2 is dominant enough to have a signature in the global 

standard deviation. We assume that this step change is artificial, but a metadata 

search of NCEP2 around this time has not determined the cause. Further discussion 

on this issue is provided in Section 2.4. While NCEP2 shows the largest differences 

across the regions, disagreements with HadGHCND are also found in ERA-Interim, 

JRA-55 and MERRA-2. For example, for Tmin, there is a decreasing trend of -

0.04°C in standard deviation for region 10 in HadGHCND, while the other datasets, 

excluding NCEP2, indicate an increasing trend. In terms of changes in skewness, 

trends are mostly non-significant and centred around zero. While in region 3 

skewness values are similar between all datasets for Tmax, other regions show 

distinctions, particularly in NCEP2 and for Tmin. 

 

In summary, irrespective of dataset choice, changes in mean Tmax and Tmin are 

robust for many regions, and a significant increasing trend is found for the globe. 

For the other statistical moments, a higher sensitivity to dataset choice is clear. 

The degree of sensitivity, however, is shown to be dependent on the region, with 

regions of known high quality data being more similar between datasets, with the 

exception of NCEP2. 
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2.3.3 Time series of decadal extreme value fits 

To investigate changes in the extremes, Figure 2.9 – 2.13 show time series of the 

location, scale and shape parameters that have been estimated from stationary PP 

fits over ten year moving windows. The extremal point process model is fitted to 

the high and low tails of both daily maximum and minimum temperature anomalies 

(Tmaxhigh, Tmaxlow and Tminhigh and Tminlow respectively). As before, extreme 

values are defined as those data points that exceed a threshold of 1.5% (in the 

upper or lower tail). We use running decadal windows to ensure sufficient data 

points are available for a robust statistical analysis. 

 

For the globe (Figure 2.9), significant increasing trends in the location parameter 

are shown for the high tails of both Tmax and Tmin across all datasets. Here, a 

trend of 0.21 per decade (Tmaxhigh) and 0.31 per decade (Tminhigh) is calculated for 

HadGHCND, with similar trends in most reanalyses. Mostly significant decreasing 

trends are found for the low tails of Tmax and Tmin, excluding non-significant 

trends in HadGHCND and MERRA-2 (Tmaxlow). The time series of NCEP2 for 

Tminlow again shows a step change occurring around 1998, where the location 

parameter decreases substantially more than for the other datasets. Though 

smoother than the step change in NCEP2 shown for global variance (Figure 2.4), 

because of the use of decadal windows compared with annual data, this suggests 

the inhomogeneity in NCEP2 is related to the cold tail of the distribution of 

minimum temperature anomalies. Section 2.4 discusses this in more detail. Overall, 

the location parameter for the globe indicates increasing trends in the high tails, 

along with decreasing trends in the low tails. This indicates a shifting distribution 

towards warmer conditions, with both hot and cold extremes becoming warmer.  
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Figure 2.9 Global time series using running decadal windows of the extreme value parameters, 
including location, scale and shape, calculated for the high tails of maximum and minimum 
temperature anomalies (Tmaxhigh and Tminhigh, respectively), and for the low tails of maximum 
and minimum temperature anomalies (Tmaxlow and Tminlow, respectively). The x-axis shows 
years, starting with the 1980-1989 window, and ending with 2005-2014, and parameter 
estimates are indicated on the y-axis. Decadal trends are indicated in the respective dataset 
colours for each parameter and temperature variables. * indicates significant trends at the 5% 
level. 
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Trends in the global scale parameter (Figure 2.9) are close to zero for all datasets 

and temperature variables, although slightly decreasing significant decadal trends 

in HadGHCND are shown for all variables except Tminhigh. There is some sensitivity 

in scale to the input dataset, with Tminlow showing the most differences between 

datasets compared with the other temperature variables. As for the location 

parameter, NCEP2 shows a sudden decrease in scale for Tminlow starting with the 

1994-2003 window, that is not apparent in the other datasets. This is also shown 

to a lesser extent in Tmaxlow. Other notable differences include a steeper decreasing 

trend in JRA-55 and MERRA-2 compared with HadGHCND in both low tails, and 

a slightly increasing significant trend in ERA-Interim in Tminlow. Trends in global 

shape are mostly non-significant and close to zero, excluding a significant increasing 

trend in ERA-Interim and MERRA-2 (Tmaxhigh). For all temperature variables, the 

reanalyses show different temporal patterns to HadGHCND. Again, this is 

particularly evident in Tmin, and in the low tails.  

 

As shown for the statistical moments in the previous subsection, the sensitivities in 

the time series analyses differ between both region and temperature variable. For 

the location parameter, NCEP2 consistently stands out as being the most different 

across all regions (including those in the Supplementary Material - Figures S1.8 – 

S1.19, Tables S1.4 – S1.9). The step change shown in global location for Tminlow is 

present for both West North America (region 3 – Figure 2.10) and North 

Asia/Russia (region 18 – Figure 2.13), and most other Northern Hemisphere 

extratropical regions, but is not a feature in the time series for south-eastern South 

America (region 10 – Figure 2.11) and the Mediterranean (region 13 – Figure 2.12). 

This suggests that the apparent inhomogeneity in the global time series of NCEP2 

is likely related to the cold extremes for Northern Hemisphere extratropical regions. 
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We note that we do not further discuss long-term trends in NCEP2 due to this 

inhomogeneity.  

 
Figure 2.10 As Figure 2.9, but for SREX region 3 (west North America). 
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Overall, the location parameter shows sensitivity to all reanalysis products for all 

regions, with more data sparse regions showing the least consistency between 

datasets. For example, for region 10, HadGHCND shows a steeper decrease in 

location towards the end of the time series for Tmaxlow, compared to the other 

datasets. Region 23, another data sparse region located in South Asia, shows a 

substantial step change in NCEP2 in location for Tmaxlow, that is not present in 

the other datasets (see Supplementary Material Figure S1.10). Trends in scale and 

shape also differ between datasets. For example, the reanalyses show clear deviances 

from HadGHCND in scale and shape in the cold tails for region 10, and in more 

data rich regions, such as region 3 and 18. JRA-55 shows a more substantial 

decreasing trend in scale for Tminlow, compared with the other datasets (excluding 

NCEP2 which is affected by the discussed inhomogeneity). Other key differences 

are found for region 18 for Tmaxlow. Here, HadGHCND increases in scale from 1988-

1997, during which JRA-55 shows a decreasing trend in scale. ERA-Interim and 

MERRA-2 capture the temporal pattern of HadGHCND here, though to a lesser 

extent. However, differences between these products and HadGHCND are apparent 

for other regions, for example, changes in shape for Tminlow in region 13. In general, 

the reanalyses are distinct from HadGHCND in both scale and shape. 

 

In summary, changes in the tails of the distribution are sensitive to dataset choice. 

As for the analyses of the entire distribution, more overall differences in the datasets 

are shown for minimum temperature anomalies, with differences particularly 

evident in the scale and shape parameters. Analyses of changes in the extremes 

correspond with these findings, and more specifically, show that the largest dataset 

inconsistencies occur in the cold tails of the distribution of minimum temperatures. 
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Figure 2.11 As Figure 2.9, but for SREX region 10 (south-eastern South America). 
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Figure 2.12 As Figure 2.9, but for SREX region 13 (Mediterranean). 

 



CHAPTER 2.  SENSITIVITY TO DATASET CHOICE 
 

 41 

 
Figure 2.13 As Figure 2.9, but for SREX region 18 (North Asia/Russia). 
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2.3.4 Changes in extremes relative to changes in the mean 

Using the above methods together, that is, jointly assessing both the entire 

distribution as well as the tails, can provide insight into how extremes are changing 

with respect to the mean. Figure 2.14 – 2.15 show the difference between the trend 

in the non-stationary PP fit of the location parameter and the trend in the annual 

mean temperature anomalies. NCEP2 is not included due to the inhomogeneity 

present in the time series, making it inappropriate to assess trends over a 35-year 

period. The trend differences (calculated per decade for the period 1980-2014) 

represent ‘excess trends’ and are a useful way of describing regional differences in 

the rates of warming between extremes and the mean (Brown et al. 2008). As in 

the subsequent figures, when extremes are warming faster (slower) than the mean, 

the excess trend is positive (negative). Stippling indicates grid boxes that are 

significant at the 5% level. For additional robustness, we also calculated the 

difference between the 98.5th quantile (1.5th quantile for the cold tails) and the mean 

(see Supplementary Material Figure S1.20). These results are very similar to the 

excess trends shown here. 

 

For the warm extremes (Tmaxhigh - Figure 2.14), most Northern Hemisphere high 

latitude regions indicate that the mean has been warming faster than the extremes, 

irrespective of the product used. This is slightly underestimated by JRA-55. The 

datasets agree that warm extremes have been warming significantly faster than the 

mean in the Mediterranean region, south-western and East Asia, South America, 

Africa and parts of Australia. For some of these regions, such as the Mediterranean, 

the reanalyses show smaller magnitude excess trends in the extremes compared to 

HadGHCND, with rates of around 0.1°C to 0.2°C (reanalyses) compared to 0.4°C 

to 0.6°C (HadGHCND). Other regions, such as South America, show greater 

magnitude positive excess trends in the reanalyses compared with HadGHCND. 
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Differences are also found for parts of northern Canada, where a positive excess 

trend is shown in HadGHCND. This same area is opposite in sign for ERA-Interim, 

while smaller and non-significant in JRA-55 and MERRA-2. 

 

 
Figure 2.14 'Excess trends', that is, the difference between the trend in the location parameter 
and the trend in the annual mean for HadGHCND and the reanalyses, for the high tails of 
maximum and minimum temperature anomalies (Tmaxhigh and Tminhigh, respectively). Positive 
excess trends represent regions where the extremes are warming faster than the mean, while 
negative excess trends show regions where the mean is warming faster than the extremes. 
Decadal trends (°C) are calculated over the period 1980-2014. Stippling indicates grid boxes 
that are significant at the 5% level. 
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Excess trends in Tminhigh (Figure 2.14) are similar to those of the warm extremes, 

in terms of both spatial patterns and sign of trend, as well as dataset agreement, 

though positive excess trends are generally of a smaller magnitude to those of the 

warm extremes. Some differences in the datasets are shown for Australia, for 

example, where ERA-Interim shows greater positive excess trends in parts of 

eastern Australia compared with HadGHCND, while MERRA-2 and JRA-55 tend 

to show smaller magnitude excess trends than HadGHCND for much of the country. 

 

The datasets differ the most for excess trends in the low tails (Figure 2.15). Positive 

excess trends in extremes are shown for much of the Northern Hemisphere 

extratropics, particularly in North America. Negative excess trends are found for 

parts of Europe and Asia, while small negative excess trends are shown for some 

tropical and Southern Hemisphere regions. For Tmaxlow, most regions with positive 

excess trends show larger magnitude trends in the reanalyses than for HadGHCND. 

Conversely, regions showing negative excess trends in HadGHCND show smaller 

magnitude excess trends in the reanalyses, such as in parts of Europe and West 

Asia. Broadly, JRA-55 shows the most differences to HadGHCND, with larger 

significant positive excess trends for much of the Northern Hemisphere extratropics 

and smaller negative trends in Europe. For example, positive excess trends greater 

than 0.7°C per decade are shown for some parts of Russia in JRA-55, with the same 

area showing negative excess trends between -0.2°C to -0.3°C in HadGHCND. ERA-

Interim and MERRA-2 also differ from HadGHCND in this area, showing mixed 

excess trends. 

 

For the cold extremes (Tminlow - Figure 2.15), the largest disagreements occur over 

Russia and the European continent. As for Tmaxlow, JRA-55 shows greater positive 
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excess trends over Russia, and smaller negative excess trends over West Asia and 

Central Europe, compared to the other datasets.  

 

 
Figure 2.15 As Figure 2.14, but for the low tails of maximum and minimum temperature 
anomalies (Tmaxlow and Tminlow, respectively). 

 

Overall, for the warm extremes, some subtropical regions show that the extremes 

have been warming at a faster rate than the mean over 1980-2014, while for the 

cold extremes, positive excess trends are found for much of the Northern 

Hemisphere extratropics. Spatially, all datasets tend to agree on this, however, the 
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magnitude of the excess trend differs. The warm tails of the distribution tend to be 

similar between datasets across the globe compared with the cold tails, which show 

greater sensitivity to dataset choice. 

 

2.4 Discussion 

The choice of dataset for investigating changes in temperature variability and 

extremes can affect conclusions regarding changes in the temperature distribution. 

The use of different datasets in previous work along with some differences in 

conclusions provides motivation for a systematic approach to determining the 

sensitivities of an analysis to the input datasets used. We acknowledge that non-

climatic artefacts can potentially affect a spatially averaged dataset such as 

HadGHCND, including changes to the station network, data quality and 

homogeneity issues, and gridding uncertainties in terms of spatial averaging of point 

data, particularly for analysing extremes (Donat et al. 2014; Dunn et al. 2014; 

Director and Bornn 2015). In addition, HadGHCND uses a large CLS and is gridded 

using a relatively coarse resolution, so resultant values tend to be spatially 

smoothed (Caesar et al. 2006), further adding to the inherent uncertainties of using 

this type of dataset. However, given that it is interpolated using long-term in situ-

based data, we are more willing to assume that there are fewer inhomogeneities 

than those introduced from assimilation using a highly variable network of data in 

the reanalyses.  

 

Irrespective of what product is used, trends in the mean temperature are mostly 

robust. This suggests that changes in the mean are not particularly sensitive to 

dataset choice. However, some datasets show more differences in the mean than 

others, depending on the region, for example, in the Mediterranean region, and in 

more data sparse regions such as parts of South America. Differences in the mean 
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for these regions might be due to uncertainties in the observational data itself, 

rather than the ability of reanalysis data to reproduce the observations. It is also 

possible that the assimilation is poorly constrained by observations. Other 

statistical parameters aside from the mean, including the standard deviation and 

skewness, as well as those related explicitly to the extremes, show more sensitivity 

to the input dataset. As in the mean, regions with higher data uncertainty due to 

sparse observations, such as South America, show more disagreement between 

datasets than regions that are known to have high quality data, as in North 

America.  

 

Much of the recent literature regarding changes in temperature variability has 

highlighted the importance in understanding differences in regional changes in 

temperature compared with the global mean. It is already clear that some regions 

are warming at different rates compared to the global average (e.g. Sutton et al. 

2015; Seneviratne et al. 2016). Here, we show that the globally-averaged (where 

data are sufficiently complete) maximum temperature trend in HadGHCND is 

0.36°C per decade over 1980-2014, while, for example, south-eastern South America 

shows a trend of 0.67°C per decade (Figure 2.4 and Figure 2.6, respectively). In 

addition to the mean, we also see regional differences in the trend of extremes 

relative to the local mean. We show, for example, that cold extremes are warming 

faster than the mean for much of the Northern Hemisphere, consistent with Arctic 

amplification (Screen 2014; Rhines et al. 2017). For the warm extremes, some 

subtropical regions show a faster trend in the extremes compared with the mean. 

Additionally, excess trends in the cold extremes are generally greater in magnitude 

over North America and parts of North Asia/Russia than they are for warm 

extremes, consistent with studies that have found stronger increases cold extremes 

compared with warm extremes (e.g. Donat et al. 2013b). This is robust for all 
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datasets, however, the magnitude of excess trend differs substantially depending on 

the variable and region. This is a significant finding, as regions are 

disproportionately impacted by extremes due to differences in socioeconomic factors 

that can increase a regions vulnerability to extreme events (IPCC 2012). The 

consequences of higher magnitude extremes can potentially further exacerbate the 

unequal distribution of impacts on regional scales. 

 

Overall, ERA-Interim appears to most closely resemble HadGHCND. This is 

consistent with other studies. For example, Donat et al. (2014) found that ERA-

Interim closely resembled trends and inter-annual variations in temperature 

extremes shown in interpolated observational datasets for the period 1980 – 2010, 

noting the higher dataset consistency in the most recent three decades, in contrast 

with the large disagreements between datasets in the pre-satellite era. Excluding 

an inhomogeneity in MERRA-2 in the global mean for the most recent years (see 

Figure 2.4), MERRA-2 and JRA-55 resemble mean trends in the observations 

reasonably well, even for more data sparse regions (see Figure 2.6). However, when 

assessing aspects of temperature other than the mean, there are still distinct 

differences between the observation-based product and the reanalyses, and so 

caution should be exercised if using these products to investigate changes in 

variability and extremes.  

 

NCEP2 is clearly the most different to the other datasets, caused partly by the 

inhomogeneity shown to occur around 1998-1999, but also shown in more short-

term variations, for example, in the mean for south-eastern South America (Figure 

2.6). Previous studies have noted the differences in NCEP2 compared with other 

reanalyses (e.g. Kharin et al. 2007; Kharin et al. 2013; Sillmann et al. 2013b). Being 

a low-resolution, first-generation product (Kanamitsu et al. 2002; National Center 
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for Atmospheric Research (NCAR) 2016), this might be expected, however, perhaps 

not to the extent shown here. While many errors were rectified from the original 

NCEP1 product, some suggest a poor representation of the Southern Hemisphere 

in NCEP2 (NCAR 2016). Here, we show large differences in many regions around 

the globe. For example, the step change around 1998-1999 shown for the globe is 

particularly noteworthy in some Northern Hemisphere high latitude regions. 

Potential explanations could be related to changes in the assimilated data affecting 

snow cover, as these step changes are inconsistent with other datasets and are 

particularly notable for the cold extremes. Although snow cover data was not 

available in NCEP2 for the required years, we were able to investigate the water 

equivalent of accumulated snow depth, which is a variable that can suggest snow 

cover changes through the amount of snow depth (see Figure S1.22). A clear step 

change in the mean and standard deviation is apparent at 1998-1999 for regions 3 

and 18, where a substantial decrease occurs after 1998. 

 

The similarities or differences between the reanalysis products themselves as well 

as with HadGHCND are affected by their independence of in situ-based 

measurements. For example, NCEP2 does not incorporate any screen-level data to 

assimilate near-surface temperature (Simmons et al. 2004), unlike the other 

reanalyses used here. ERA-Interim and JRA-55 both interpolate between in situ 

data at the screen-level, and the atmospheric levels of the reanalysis model (Dee et 

al. 2011; Kobayashi et al. 2015). As such, ERA-Interim and JRA-55 are not 

independent of surface measurements, and so it may be expected that they are 

more similar to one another than to NCEP2. As in NCEP2, MERRA-2 does not 

assimilate using near-surface temperatures (Bosilovich et al. 2015). Despite 

MERRA-2 being the latest product used in this study, ERA-Interim and JRA-55 

show more overall consistency between themselves as well as HadGHCND in many 
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instances, similarly found in other comparison studies (e.g. Simmons et al. 2017). 

However, short-term variations, especially in the mean for MERRA-2, show close 

similarities to both ERA-Interim and HadGHCND. 

 

2.5 Conclusions 

Global daily maximum and minimum temperatures are increasing. This conclusion 

is robust regardless of the dataset used. Regional increases in the mean are mostly 

robust to the dataset, however, there is a slightly greater sensitivity to the input 

dataset than for global assessments. Other characteristics of the temperature 

distribution show substantial sensitivity to the dataset used, highlighting some of 

the uncertainties involved in addressing changes in temperature variability. 

Assessing temperature extremes also displays sensitivity to the dataset choice, with 

results showing sometimes substantially different magnitude changes in extremes.  

 

Irrespective of the approach used, differences between datasets regarding 

distribution changes are the greatest in the cold tails of the distribution and for 

daily minimum temperature anomalies. This suggests potentially greater 

uncertainties for this part of the distribution that need to be considered for future 

work investigating changes in the distribution of temperature. Further investigation 

is required to understand why greater sensitivities are shown in the cold tails. For 

all temperature variables, NCEP2 has the largest inconsistencies, compared with 

the gridded in situ-based observational dataset, HadGHCND. However, the ‘higher 

generation’ reanalysis products, that is, ERA-Interim, JRA-55 and MERRA-2, also 

still show distinct differences in the higher-order moments. Dataset disagreement 

is generally largest for regions that are more data sparse, such as south-eastern 

South America and southern Africa, while better agreement between datasets is 
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found for regions that are data rich and known to have higher quality data, for 

example, North America. 

 

Despite inconsistencies in the results depending on the dataset, all products show 

that cold extremes have been warming at a faster rate than the mean for much of 

the Northern Hemisphere extratropics, while warm extremes have been warming 

faster for many subtropical regions. We must be able to make robust conclusions 

regarding the regional differences in rates of warming of extremes and the local 

mean, as future planning and local adaptation strategies rely on it. Future work in 

this field would benefit from using datasets of longer time-scales to provide more 

robust trend estimates. 

 

This paper provides a first step in documenting the inconsistencies regarding 

changes in temperature variability and extremes and, for example, will help in 

making the best dataset choices for model evaluation moving forward. In addition, 

by understanding these preliminary data issues, more confident and robust 

conclusions can be made to understand changes in the characteristics of the 

temperature distribution, and therefore provide critical information for future 

planning for extremes. 
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Chapter 3  

 

Changes in daily temperature extremes relative to the mean 

in CMIP5 models and observations 

 

Chapter overview 

This chapter has been accepted for publication as: Gross, M. H., M. G. Donat, and 

L. V. Alexander, 2019: Changes in daily temperature extremes relative to the mean 

in Coupled Model Intercomparison Project phase 5 models and observations. 

International Journal of Climatology, accepted. 

 

The rates of warming in extremes and average temperatures vary both spatially 

and temporally, with strong geographic and seasonal differences in how local 

extremes are changing relative to local mean temperatures. This chapter explores 

the different rates of change in seasonal warm and cold extremes relative to 

corresponding seasonal mean temperatures, based on daily data. It builds on the 

final results of Chapter 2, where trends in annual extremes relative to the annual 

mean were explored, and uses the same observational dataset, HadGHCND, to 

evaluate a suite of CMIP5 models. The climate models are then used to assess 

future excess changes in seasonal warm and cold extremes relative to seasonal mean 

temperatures. The greatest differences in the rates of change between extremes and 

the mean in recent decades occur in the cold tails of the distribution for some 



 
 

 54 

regions in the Northern Hemisphere extratropics during all seasons except boreal 

summer. For recent changes, climate model simulations have relatively low spatial 

correlations with each other, as well as with the observations. Future simulated 

changes are shown to be systematic and robust, with a clear signal in the warming 

of extremes relative to the mean. Boreal winter, spring and autumn months show 

especially pronounced excess changes in the Northern Hemisphere mid- to high-

latitudes, where the models show robust agreement in cold extremes warming at 

least 3°C more than mean temperatures in the late 21st century compared to the 

mid-20th century. By comprehensively assessing past and future rates of change in 

seasonal extremes relative to the mean at the global scale, this chapter provides an 

in-depth understanding of the disproportionate rates of change that can in turn 

have important implications on the probability of extreme events and therefore 

their impacts. 

 

 

3.1 Introduction 

The implications from changes in daily temperature extremes have the potential to 

be far greater for society and the environment than increases in the mean 

temperature alone. Extremes occur in the tails of the temperature distribution, and 

changes in each of the tails, along with shifts in the mean, can affect the entire 

shape of the distribution which is related to the probability of extreme events 

(Mearns et al. 1984). Most global studies have found that changes in the tails of 

the distribution are primarily related to changes in the mean, with little or no 

change in variability and shape (e.g. Simolo et al. 2011; Huntingford et al. 2013; 

Rhines and Huybers 2013; Tingley and Huybers 2013; Weaver et al. 2014; 

McKinnon et al. 2016). However, regional-scale studies using observational data 

have found that there are some changes in variance and shape, depending on the 
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location. For example, there is evidence for changes in symmetry, or skewness, and 

variability of daily temperature for some mid- to high-latitude regions in the 

Northern Hemisphere (Kharin and Zwiers 2005; Donat and Alexander 2012; 

Cavanaugh and Shen 2014; Screen 2014; Loikith and Neelin 2015; McKinnon et al. 

2016; Rhines et al. 2017). This highlights that changes in temperature distributions 

vary depending on geographic location, and importantly, policymakers and 

adaptation planning rely on information that is region-specific. The temperature 

distribution also has a strong seasonal component, as well as dependencies related 

to daytime and night-time temperatures (Rhines et al. 2017). A comprehensive 

global-scale study investigating seasonal changes in regional extremes in both daily 

maximum and minimum temperature distributions, in relation to changes in 

corresponding mean temperatures, is still lacking. This type of study would be 

useful in connecting previous work that has focused only on specific regions or 

specific aspects of the temperature distribution (e.g. Cavanaugh and Shen 2014; 

McKinnon et al. 2016; Rhines et al. 2017), providing a complete description of both 

recent and future changes in extremes and mean temperatures.  

 

It is expected that future changes in temperature extremes by the end of the 21st 

century will be much larger than observed past increases if no drastic measures to 

limit atmospheric greenhouse gas concentrations can be implemented within the 

next decades. This would be associated with increases in the frequency of warm 

extremes, and decreases in the frequency of cold extremes (Coumou and Robinson 

2013; Kharin et al. 2013; Kirtman et al. 2013), consistent with a shift in the 

temperature distribution towards warmer temperatures. But it has also been 

suggested that cold extremes are warming faster than warm extremes (e.g. Kharin 

and Zwiers 2005; Donat and Alexander 2012; Donat et al. 2013b), which would 

indeed change the shape and symmetry of the distribution along with a shift. 
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Studies have shown evidence for asymmetry in observed and projected temperature 

distributions, especially in Northern Hemisphere regions (e.g. Kodra and Ganguly 

2014; Matiu et al. 2016). However, it is possible that these findings are an artefact 

of the methodology used to calculate temperature anomalies, causing an 

overestimation of the extremes and adding uncertainty to these results ( Rhines 

and Huybers 2013; Sippel et al. 2015). Lewis and King (2017) also found changes 

in skewness in daily temperatures towards hot extremes for regions including 

Australia, Asia, Europe and North America, though climate models simulated a 

wide range in both sign and magnitude. Considering how both the warm and cold 

tails of the distribution are changing, in comparison to the mean, might help to 

provide a more holistic and inclusive sense of if there is more than just a shift in 

the distribution (Katz et al. 2013; Sardeshmukh et al. 2015; Gross et al. 2018).  

 

Climate model simulations suggest that globally-averaged annual cold extremes 

warm faster than the annual mean of daily minimum, while globally-averaged 

annual warm extremes warm at a similar rate to the annual mean of daily maximum 

temperatures (Kharin and Zwiers 2005). Of course, there are considerable 

differences in the magnitude and rate of change of extremes and the mean 

depending on region. Some studies address this by assessing the rates of change in 

local extremes relative to average temperatures. One approach is to compare local 

rates of changes in extremes with global mean temperature (e.g. Sutton et al. 2015; 

Seneviratne et al. 2016; Vogel et al. 2017). While this is important for regional and 

local-scale policy-makers and stakeholders, global average temperature is a highly 

abstract measure (no one experiences a global average) and local average 

temperatures, like extremes, are not globally heterogeneous. An alternative, 

therefore, is to compare local extreme temperatures with the corresponding local 

mean temperature changes (e.g. Kharin and Zwiers 2005; Brown et al. 2008; Donat 
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et al. 2017; Gross et al. 2018), accounting for the reality that mean warming rates 

differ considerably between regions. Using this approach, observational and 

reanalysis data have shown that in recent decades, the cold tails of both daily 

maximum and minimum temperatures have warmed faster than the corresponding 

mean temperature for much of the Northern Hemisphere extratropics, while the 

warm tail has been warming faster than the mean for parts of Europe, South 

America, North America, southern Africa and Australia (Brown et al. 2008; Gross 

et al. 2018). Climate model simulations of future changes in extremes show robust 

signals of accelerated warming in the hottest annual day relative to the local annual 

mean for the same regions (Donat et al. 2017).  

 

It seems clear that the temperature distribution is indeed changing shape in some 

regions, as a consequence of the varying rates of change in the warm tails, cold tails 

and average temperatures. This effect might also differ by season, as different 

driving mechanisms are at play in summer (e.g. changes in surface heat fluxes and 

soil moisture feedbacks (Donat et al. 2017; Vogel et al. 2017)) compared to winter 

(e.g. snow and ice cover change and temperature advection (Kharin et al. 2013; 

Screen 2014)). While Orlowsky and Seneviratne (2012) investigated the scaling of 

seasonal and regional extremes, this was explored relative to the annual regional 

median change in temperature, and so assessments of changes in seasonal local 

extremes relative to corresponding seasonal mean temperatures are still needed. 

 

This chapter documents seasonal rates of change in local daily maximum and 

minimum temperature extremes with the corresponding local mean temperatures 

at the global scale using an observational dataset and climate models from the 

Coupled Model Intercomparison Project phase 5 (CMIP5) archive (Taylor et al. 

2012). Our analyses involved testing a range of statistical and methodological 
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sensitivities to ensure results are robust, irrespective of methodological choice. The 

intention here is to provide a more comprehensive and systematic approach than 

has been done before, by considering and documenting the different aspects of the 

temperature distribution for both observed and future changes. 

 

3.2 Data and methods 

3.2.1 Observational and CMIP5 datasets 

We use the observational product Hadley Centre Global Historical Climatology 

Network-Daily (HadGHCND) (Caesar et al. 2006), a quasi-global, land only dataset 

of daily temperature observations that are interpolated onto a 3.75° longitude by 

2.5° latitude grid. We use daily maximum (daytime) and daily minimum (night-

time) HadGHCND temperature data for a 65-year period that is 1950-2014. A strict 

completeness criteria is applied to the HadGHCND data to exclude regions with 

sparse data. Specifically, grid cells are only included that have at least 80% of data 

available for the entire period of analysis, in addition to at least 50% of data 

available for both the first and last ten years of data. 

 

We also use a suite of 26 CMIP5 that have been selected based on their availability 

of daily maximum and minimum temperature over the period of analysis (Table 

3.1). A single simulation from each of the climate models is used, however, multiple 

ensemble runs from some of the models (where available) were tested to check for 

internal variability. Results were found to be similar irrespective of the specific 

model run used (not shown). Historical model simulations (1950-2005) are merged 

with Representative Concentration Pathway 8.5 (RCP8.5) model simulations (2006 

onwards), where the years 1950-2014 are used for analysis of recent decades in 

comparison to observations, and 1950-2099 for the analysis of future versus past 

simulated changes. All models are regridded to a common 2.5° x 2.5° grid using a 
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bilinear remapping technique. We acknowledge that regridding may add some 

uncertainty to the analysis, however, several regridding techniques, including first- 

and second-order remapping techniques (Jones 1999) were previously tested and 

shown to have little effect on the results (Loikith et al. 2015; Gross et al. 2018). 

 

We show recent changes simulated by the CMIP5 models for all land areas, and so 

comparisons between HadGHCND and the model output may be inconsistent for 

global average time series as the observations do not have complete spatial 

coverage. We perform an additional analysis of spatial correlations between the 

models and HadGHCND, as well as between the models themselves (see Section 

3.3.3). For this analysis, all CMIP5 models are regridded and masked to the grid 

cells available in HadGHCND, so comparisons can be made for both the recent and 

future analysis.  

 

3.2.2 Methods 

Daily anomalies of daily maximum and minimum temperature (Tmax and Tmin, 

respectively) are calculated for each dataset relative to a mean annual cycle of daily 

temperatures that is based on the full period of each analysis, that is, 1950-2014 

for the recent period, and 1950-2099 for future changes. Because the calculation of 

temperature anomalies can be sensitive to the choice of reference period, potentially 

inflating variance in extremes (Tingley 2012; Sippel et al. 2015; Hawkins and Sutton 

2016), several different climatological reference periods were tested, including the 

commonly chosen period 1961-1990. All of the tested anomaly calculations showed 

similar results (see examples in Supplementary Material Figures S2.1 – S2.4). 

Following the calculation of anomalies, the data are split into seasons: December, 

January, February (DJF), March, April, May (MAM), June, July, August (JJA) 

and September, October, November (SON). 
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Table 3.1 CMIP5 models used in this study and their modelling group. 

Model Modelling group 

ACCESS1.0 
ACCESS1.3 

Commonwealth Scientific and Industrial Research Organisation 
(CSIRO) and Bureau of Meteorology (BoM), Australia (CSIRO-
BOM) 

BCC-CSM1.1 Beijing Climate Center, China Meteorological Administration 
(BCC) 

BNU-ESM College of Global Change and Earth System Science, Beijing 
Normal University (GCESS) 

CanESM2 Canadian Centre for Climate Modelling and Analysis (CCCMA) 
CCSM4 National Center for Atmospheric Research (NCAR) 

CMCC-CESM 
CMCC-CM 

Centro Euro-Mediterraneo per I Cambiamenti Climatici (CMCC) 

CNRM-CM5 Centre National de Recherches Météorologiques / Centre 
Européen de Recherche et Formation Avancée en Calcul 
Scientifique (CNRM-CERFACS) 

CSIRO-Mk3.6.0 CSIRO in collaboration with Queensland Climate Change Centre 
of Excellence (CSIRO-QCCCE) 

GFDL-CM3 
GFDL-ESM2G 
GFDL-ESM2M 

NOAA Geophysical Fluid Dynamics Laboratory (NOAA GFDL) 

HadGEM2-CC 
HadGEM2-ES 

Met Office Hadley Centre (MOHC) 

INM-CM4 Institute for Numerical Mathematics (INM) 
IPSL-CM5A-LR 
IPSL-CM5A-MR 
IPSL-CM5B-LR 

Institut Pierre-Simon Laplace (IPSL) 

MIROC-ESM 
MIROC-ESM-

CHEM 

Japan Agency for Marine-Earth Science and Technology 
(JAMSTEC), Atmosphere and Ocean Research Institute (AORI), 
and National Institute for Environmental Studies (NIES) 
(MIROC) 

MIROC5 AORI, NIES and JAMSTEC (MIROC) 
MPI-ESM-MR 
MPI-ESM-LR 

Max Planck Institute for Meteorology (MPI-M) 

MRI-CGCM3 Meteorological Research Institute, Japan (MRI) 
NorESM1-M Norwegian Climate Centre (NCC) 

 

Extreme temperatures in this study are defined as those data points which lie above 

the 98.5th percentile and below the 1.5th percentile of the seasonally varying 

distribution. This describes the warm tails (above the threshold) and cold tails 
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(below the threshold) of the anomaly distributions for both daily maximum and 

minimum temperatures. The threshold varies with time within each season, 

ensuring that the probability to exceed the threshold is 1.5% on any given day 

within that season and in any given year throughout the time periods used to 

calculate changes. Moreover, because exceedances are derived using anomalies 

calculated from an annual cycle of daily temperatures, the climatology and 

thresholds are specific for each calendar day. These methods broadly follow those 

of Gross et al. (2018), which showed that fitting a nonstationary point process 

model to the data yields similar results to calculating extremes using a percentile-

based approach, as done here.  

 

Recent and future changes in daily temperature extremes relative to the seasonal 

mean are calculated in three steps. The first step calculates changes in extremes for 

each season, for daily maximum and daily minimum temperatures separately, by 

taking the average of all ‘extreme’ data points for each grid cell for each of the two 

periods used to calculate changes (i.e. period one for recent changes in 1950-1981 

and period two is 1982-2014; period one for future changes is 1950-1979 and period 

two is 2070-2099). Similarly, the seasonal mean of daily maximum and daily 

minimum temperature anomalies is calculated for the two periods. The second step 

calculates changes in the seasonally-averaged extremes between the two periods, 

and similarly, changes in the seasonal means between the two periods. We then 

take the difference between the changes in extremes and changes in the mean, 

which we refer to as ‘excess changes’. For simplicity, we use the terms ‘recent excess 

changes’ and ‘future excess changes’ to refer to excess changes between the two 

periods used for the recent and future analyses, as outlined above. 
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To test whether the distributions of excess changes between the two periods are 

significantly different in HadGHCND, a two-sample Kolmogorov-Smirnov test (KS 

test) was used to assess significance. Statistically different distributions for each 

grid cell are determined at the 5% level. The pattern correlations shown in the 

correlation matrices (see Figure 3.7 – 3.10) are calculated using the Pearson 

product-moment coefficient of linear correlation. Pattern correlations of excess 

changes are computed as weighted to account for zonal differences in grid cell size. 

 

3.3 Results 

3.3.1 Observed and simulated excess changes in recent decades 

Figure 3.1 – 3.4 show recent observed seasonal excess changes for the warm and 

cold tails of both Tmax and Tmin. Changes are calculated as the difference between 

warming rates of the local seasonal mean and corresponding extreme temperature 

(where ‘local’ refers to locally at the grid cell) in 1982-2014 compared to 1950-1981, 

as described in Section 3.2. Positive excess changes indicate regions where the 

extremes have been warming more than the mean, while negative excess changes 

show areas where the mean has warmed more than the extremes. 

 

3.3.1.1 Recent excess changes in the warm tails 

For the warm tails in HadGHCND (Figure 3.1), all seasons show a relatively 

heterogeneous pattern across the globe. Some of the most notable excess changes 

are shown during wintertime in the Northern Hemisphere (Figure 3.1a,b), with 

some high latitude regions in Canada, Greenland and Siberia showing excess 

changes below -1°C. Many locations within these regions have statistically 

significant changes between the two periods, indicated by stippling. The warm tail 

in Tmax in DJF (Figure 3.1a) also shows a ‘hot spot’ region in Europe showing 

excess changes of 1°C or greater, which is also apparent to a lesser magnitude in 



CHAPTER 3.  CHANGES IN EXTREMES RELATIVE TO THE MEAN 
 

 63 

Tmin (Figure 3.1b). Other prominent features are shown in the shoulder seasons 

(MAM, SON), which indicate significant positive excess changes in some areas in 

the Northern Hemisphere. For MAM (Figure 3.1c,d), this includes parts of eastern 

North America, west Asia and parts of Russia and Siberia, with the strongest of 

these occurring in the warm tail of Tmin (Figure 3.1d), especially in west Asia and 

Russia.  

 

 

Figure 3.1 Recent observed excess changes in HadGHCND for the warm tails of both 
Tmax and Tmin, shown for each season (December – February (a,b), March – May (c,d), 
June – August  (e,f), September – November (g,h)). Positive values indicate grid cells 
where the warm extremes have warmed more than the mean temperature, while negative 
values show grid cells where the mean temperature has warmed more than the extremes. 
Grey areas represent grid points that are either missing in HadGHCND, or that did not 
meet the completeness criteria outlined in Section 3.2.1. Stippling indicates grid cells that 
are statistically significantly different at the 5% level as assessed by a KS test. 
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For SON (Figure 3.1g,h), this includes parts of Siberia and North America, eastern 

Europe and the Mediterranean. JJA (Figure 3.1e,f) shows the weakest excess 

changes overall, with the only areas showing relatively strong excess changes in 

northern Russia and eastern Europe for Tmax (Figure 3.1e). For all seasons, spatial 

patterns and magnitude of excess changes between Tmax and Tmin are relatively 

similar, however, there are some instances with significant differences. For example, 

in MAM, a negative excess change exceeding -1°C is shown for eastern Europe in 

Tmax (Figure 3.1c), with the same region showing positive excess changes above 

1°C in Tmin (Figure 3.1d). This difference suggests that on average, the mean 

temperature has warmed more than hot extremes during the day, while the opposite 

is apparent during night-time.  

 

Figure 3.2 shows results of recent excess changes in the warm tails for the multi-

model mean, calculated from the selected 26 CMIP5 models. Stippling indicates 

grid cells where 20 out of the 26 models agree on the sign of excess change. Results 

for the individual CMIP5 models are included as Supplementary Material (Figures 

S2.5 – S2.20 for warm tails and cold tails). As expected, the multi-model mean 

shows a relatively smooth spatial pattern across the globe for all seasons, due to 

smoothing variability across different simulations. The individual model 

simulations are, like HadGHCND, more spatially heterogenous, though the models 

vary considerably in terms of both sign and magnitude, partly reflected in the lack 

of stippling in Figure 3.2. For the warm tails in Tmax, for example, some of the 

largest regional differences between models are shown for DJF in northern Eurasia, 

with some models showing negative excess changes over -1°C, while others show 

positive excess changes between 0.6°C and 1°C (see Figure S2.5). For Tmin, DJF 

also shows the largest regional differences between models (see Figure S2.10), with  
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Figure 3.2 As Figure 3.1, but for the CMIP5 multi-model mean. Stippling indicates grid 
cells where at least 20 out of the 26 models agree on the sign of excess change. 

 

similar magnitude differences to that of Tmax. In the multi-model mean, excess 

changes in the warm tails are relatively small for all seasons, with the strongest 

being in DJF (Figure 3.2a,b) in the Northern Hemisphere extratropics. For most of 

this area, excluding eastern Russia, at least 20 out of the 26 models agree that the 

mean has warmed more than extremes, as in HadGHCND. In some of the individual 

model simulations for DJF (see Figures S2.5, S2.9), the magnitude of excess change 

is larger and covers a greater area than in HadGHCND, while other models show 

a smaller or even opposite sign in magnitude of excess change. Model agreement is 

low for MAM (Figure 3.2c,d), JJA (Figure 3.2e,f) and SON (Figure 3.2g,h), though 

this is likely a consequence of excess changes being relatively small overall. As in 
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HadGHCND, changes in Tmax and Tmin are mostly similar both spatially and in 

terms of sign, though some individual models show differences in similar regions to 

HadGHCND, for example, around Central Europe during MAM (see Figures S2.6, 

S2.10). 

 

Overall, the most prominent features in the warm tails are the negative excess 

changes in the Northern Hemisphere extratropics during boreal winter, shown for 

both Tmax and Tmin. This is evident in HadGHCND and the CMIP5 models, with 

high model agreement in the multi-model mean for much of this area. 

 

3.3.1.2 Recent excess changes in the cold tails 

Excess changes in the cold tails for recent decades based on the HadGHCND 

gridded observations are shown in Figure 3.3. As in the warm tails, Tmax and 

Tmin show many similarities in both spatial pattern and sign of excess change. 

Similarly, JJA (Figure 3.3e,f) shows the smallest excess changes in most regions, 

excluding around the Middle East area which shows excess changes up to 0.8°C for 

Tmax (Figure 3.3e). The most prominent excess changes in the cold tails are shown 

for some Northern Hemisphere regions in wintertime and the shoulder seasons. In 

DJF (Figure 3.3a,b), much of western and central Asia and the Mediterranean 

region show positive excess changes over 1°C in the cold tails of both Tmax and 

Tmin, though much of the United States, excluding parts of the west coast, shows 

negative excess changes between -0.6°C and -1°C. In MAM (Figure 3.3c,d), much 

of Eurasia and North America show significant positive excess changes, particularly 

for Tmin (Figure 3.3d). SON (Figure 3.3g,h) also shows strong positive excesses 

covering much of Eurasia, with these regions showing more significantly different 

grid cells in Tmin (Figure 3.3h) compared with Tmax (Figure 3.3g). 
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The multi-model mean again shows a relatively smooth spatial pattern in excess 

changes in the cold tails in recent decades (Figure 3.4), with slightly more model 

agreement overall compared to the warm tails. For DJF (Figure 3.4a,b), the multi-

model mean does not capture the strong positive excess changes shown in 

HadGHCND for parts of Russia and Asia, nor the negative excess changes over 

much of central and eastern North America (see Figure 3.3a,b), which are mostly 

around 0.2°C to 0.4°C in the multi-model mean. Approximately half of the 

individual models show strong positive excess changes for DJF in the Northern 

Hemisphere, though the magnitude between the models ranges between 0.4°C and 

over 1°C (see Figures S2.13, S2.17). Some of the models also capture the negative 

excess changes shown for DJF in HadGHCND for much of the United States. 

 

 
Figure 3.3 As Figure 3.1, but for the cold tails of Tmax and Tmin. 
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Overall, the most prominent features across all seasons in the multi-model mean 

are the positive excess changes in the Northern Hemisphere extratropics during 

MAM (Figure 3.4b,c) and SON (Figure 3.4g,h). This is especially apparent in SON, 

which shows moderate model agreement on the sign of change in regions showing 

the strongest excesses, that is, central and northern Europe and southern parts of 

Russia for the cold tails of both Tmax (Figure 3.4g) and Tmin (Figure 3.4h). These 

positive excess changes during the shoulder seasons are somewhat apparent in 

HadGHCND depending on the region (see Figure 3.3g,h). For example, the 

observations and multi-model mean agree on the sign of excess change in SON for 

parts of northern Europe and south-central Russia. However, the multi-model mean 

generally shows smaller magnitude excesses, such as an excess change of 0.6°C for 

south-central Russia in Tmin (Figure 3.4h), compared to 1°C or more in 

HadGHCND (see Figure 3.3h). In these regions during SON, many of the individual 

models show strong positive excesses resembling the magnitudes shown in 

HadGHCND, though some models show much more wide-spread changes covering 

much of the Northern Hemisphere extratropics (see Figures S2.16, S2.20). Some 

models also show strong negative excess changes between -0.2°C to -1°C in parts of 

Australia. This sign in excess agrees with HadGHCND and is reflected in the multi-

model mean. For MAM (Figure 3.4c,d), the observations and multi-model mean 

agree on positive excess changes for much of central Europe and North America, 

particularly for Tmin (Figure 3.4d), though as in SON, excess changes in the multi-

model mean are smaller than those shown in HadGHCND. As in HadGHCND, and 

as shown for the warm tails, JJA (Figure 3.4e,f) shows the smallest excess changes 

overall in the multi-model mean, with the individual models generally showing 

excess changes between -0.4°C and 0.4°C (see Figures S2.15, S2.19). Though it is 

not apparent in the multi-model mean, some individual models (see Figure S2.15) 
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capture the positive excess changes in Tmax during JJA in the Middle East shown 

in HadGHCND (see Figure 3.3e).  

 

In recent decades, extremes in the cold tails of the distribution have warmed more 

than mean temperatures for much of the Northern Hemisphere in the shoulder 

seasons. This positive excess change is a common feature in HadGHCND, the 

individual CMIP5 models and the multi-model mean. 

 

 
Figure 3.4 As Figure 3.2, but for the cold tails of Tmax and Tmin. 
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3.3.2 Projected excess changes between future and past decades 

Figure 3.5 – 3.6 show future excess changes in the CMIP5 multi-model mean 

between the end of the 21st century and the mid-20th century, with results from the 

individual models shown in Figures S2.21 – S2.36. As for the recent excess changes 

(see Figure 3.2, Figure 3.4), spatial pattern and sign of excess change between 

Tmax and Tmin are similar. In particular, for the warm tails (Figure 3.5), the mid- 

to high-latitudes in the Northern Hemisphere show negative excess changes between 

-1°C and -7°C for all seasons except JJA in both Tmax and Tmin. For the same 

regions, positive excess changes between 1°C and 7°C are shown for the cold tails 

(Figure 3.6) in both Tmax and Tmin. In the Southern Hemisphere, low magnitude 

changes for both the warm and cold tails are projected, however, some differences 

are apparent such as over South America where the cold tail of Tmax mostly shows 

projected excess changes around -0.5°C, while Tmin shows positive excess changes 

around 0.5°C for the same regions. 

 

3.3.2.1 Future excess changes in the warm tails 

For the warm tails (Figure 3.5), DJF shows high model agreement in terms of sign 

for much of the globe for both Tmax (Figure 3.5a) and Tmin (Figure 3.5b), 

especially for those areas which show the largest excess changes. This includes much 

of the Northern Hemisphere extratropics, which show negative excess changes 

between -3°C and -7°C for much of Canada and eastern Russia. Though most of 

the individual models capture this (see Figures S2.21, S2.25), some show smaller 

negative excess changes closer to -1°C and -2°C shown across eastern Russia. Here, 

the IPSL models especially stand out, showing positive excess changes over Siberia. 

For DJF in the Southern Hemisphere, there is also high model agreement for many 

regions, with hot extremes in the austral summertime projected to warm more than 

the mean for much of South America and southern parts of Africa. The magnitudes 



CHAPTER 3.  CHANGES IN EXTREMES RELATIVE TO THE MEAN 
 

 71 

of positive excess warming in the individual models range between 0.5°C and over 

5°C for regions such as central to northern South America (see Figures S2.21, 

S2.25). Both MAM (Figure 3.5c,d) and SON (Figure 3.5g,h) show similarities to 

DJF, with similar regions showing model agreement and the same sign in change, 

although with a smaller magnitude. JJA (Figure 3.5b,c) shows the smallest 

magnitude in excess changes overall, with good model agreement for regions 

showing the largest excesses, including southern Australia and southern Asia, parts 

of South America and Africa, and Europe, which all show positive excess changes 

in the range of 0.5°C to 1.5°C. 

 

 
Figure 3.5 Future excess changes in the warm tails of Tmax (left column) and Tmin  
(right column) in the CMIP5 multi-model mean for each season (December – February 
(a,b), March – May (c,d), June – August  (e,f), September – November (g,h)). Stippling 
indicates grid cells where at least 20 out of the 26 models agree on the sign of change. 
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Projections of future excess changes indicate that mean temperatures will increase 

more than warm extremes for much of the Northern Hemisphere, for all seasons 

except JJA. This is a robust signal across the suite of 26 CMIP5 models. Southern 

Hemisphere land regions generally show that extremes in the warm tails of both 

Tmax and Tmin are predicted to warm more than the corresponding seasonal mean 

temperatures.  

 

3.3.2.2 Future excess changes in the cold tails 

The cold tails generally show the opposite sign of excess changes in the multi-model 

mean compared to the warm tails for all seasons across the globe (Figure 3.6). 

Northern Hemisphere regions, particularly in the mid- to high-latitudes, show 

strong positive excesses and high model agreement for DJF (Figure 3.6a,b), MAM 

(Figure 3.6c,d) and SON (Figure 3.6g,h). There is also high model agreement for 

Southern Hemisphere regions, particularly for Tmax, which show mostly negative 

excess changes. In both shoulder seasons, the Northern Hemisphere extratropics 

show excesses in cold extremes of at least 1.5°C, with some locations in Canada, 

Alaska, northern Europe, central-western Asia and Russia exceeding 5°C. This is 

robust across most of the models, with few showing excess changes below 1.5°C, 

especially for SON (see Figures S2.32, S2.36). These positive excess changes extend 

further south for Tmin than Tmax, into parts of India. For JJA (Figure 3.6e,f), 

there is strong model agreement for Tmax (Figure 3.6e) for much of the globe, 

which shows relatively small negative excess changes, excluding Greenland and 

southern South America. Though most of the models agree on this, some models 

show larger negative excess changes around -2.5°C for northern Africa, while others 

show positive excess changes between 0.5°C and 2.5°C over southern Russia and 

central Asia (see Figure S2.31). For all seasons except JJA, Tmax and Tmin tend 
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to agree on spatial pattern and sign of change for much of the globe, excluding 

some Southern Hemisphere locations which show differences in sign for regions 

showing small excess changes, such as parts of central South America and Africa. 

All seasons show robust positive excess changes in Greenland for both Tmax and 

Tmin. 

 

 
Figure 3.6 As Figure 3.5, but for the cold tails of Tmax and Tmin. 

 

In the cold tails of the distribution, future changes generally show the opposite 

signal to those shown for the warm tails (Section 3.3.2.1), that is, a strong warming 

of cold extremes compared with the mean in the Northern Hemisphere (excluding 

JJA) in both Tmax and Tmin, and slightly more warming in the mean compared 
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with cold extremes in some Southern Hemisphere regions. Notably, for both the 

warm and cold tails, all seasons except boreal summer show strong inter-

hemispheric differences in excess changes. Previous work has noted the inter-

hemispheric differences in surface temperature after the pre-industrial era has 

increased due to sea ice and snow melt in the Northern Hemisphere and will 

continue to increase into the future due to the land-sea warming contrast and 

unequal spatial impacts from greenhouse gas emissions (Friedman, 2013; Blunden 

and Arndt 2014; Hutchinson et al. 2015). 

 

3.3.3 Spatial correlations of recent and future excess changes 

In order to better evaluate how excess changes are represented across the different 

models, correlation matrices for global spatial patterns of excess changes in the 

warm and cold tails of Tmax and Tmin are shown for all seasons in Figure 3.7 – 

3.10 (DJF, MAM, JJA, and SON respectively). Here, the models are all regridded 

and masked to HadGHCND, so that comparisons to observations can be made for 

the patterns of past changes. Pattern correlations for excess changes in recent 

decades are generally low for all seasons and temperature variables. Importantly, 

the low correlations are apparent not only between the models and the observations, 

but between the models themselves. This suggests a general spatial noise for the 

globe, along with the relatively low signal of excess changes in the CMIP5 models 

in the analysis of recent changes.  
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Figure 3.7 Globally-averaged pattern correlations for December – February, for each 
temperature variable: Tmax (warm tail) (a), Tmin (warm tail) (b), Tmax (cold tail) (c), 
and Tmin (cold tail) (d). Correlations for recent excess changes are shown above the 
diagonal, and future excess changes are shown below the diagonal. 
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Figure 3.8 As Figure 3.7, but for March – May. 

 

Irrespective of the season and temperature variable, excess changes in the future 

projections are much more spatially correlated than recent excess changes. JJA 

(Figure 3.9) shows comparatively lower spatial correlations for future changes 

compared with other seasons, though the models are still more correlated with each 

other than they are for the analysis of past changes. Across all temperature 

variables, future excess changes in DJF (Figure 3.7) show the highest pattern 

correlations, with the highest overall being in the warm tails. For MAM (Figure 

3.8), spatial correlations are the highest for patterns of future changes in the cold 
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tails of the distribution, as is the case for SON (Figure 3.10). In comparison to the 

low correlations and noise shown for the recent excess changes, the high pattern 

correlations for future excess changes indicate a systematic change in extremes 

relative to the mean, especially for DJF and in the cold tails of the shoulder seasons 

 

 
Figure 3.9 As Figure 3.7, but for June – August. 

 

under stronger greenhouse gas forcing. The magnitude of warming in future changes 

compared with recent changes is reflected in the high correlations shown for future 

changes, in all seasons except JJA. Moreover, models that show greater warming 
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also show greater sensitivity. For example, the IPSL-CM5B-LR model, which shows 

lower correlation with other models compared with those that are more highly 

correlated with each other, is generally cooler than other models and shows smaller 

magnitude excess changes. Further, for the warm tail in Tmax in MAM (Figure 

3.8a), relatively low correlations are shown for the future compared with Tmin and 

with the cold tails. This is likely a function of relatively small magnitude future 

excess changes across the majority of the models. 

 

 
Figure 3.10 As Figure 3.7, but for September – November. 
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3.4 Discussion and conclusions 

We have documented how seasonal extremes of daily temperatures in both tails of 

the distribution are changing, and might change in the future, relative to seasonal 

local mean temperatures for global land areas. Our findings indicate that warm 

extremes in all seasons are projected to warm more than the corresponding mean 

temperatures for much of the tropics and Southern Hemisphere regions. In these 

areas, the CMIP5 multi-model mean shows strong agreement for accelerated 

warming of warm extremes in much of South America, southern Africa and 

southern Australia. This is especially true in DJF, MAM and JJA, which also show 

excess warming in the warm tails in parts of the United States, the Mediterranean 

and Eurasia. It should be noted that some of these regions, such as parts of South 

America and southern Africa, do not have sufficiently complete data available in 

the observational dataset used in this study, and so simulated magnitudes of 

accelerated warming of warm extremes in these areas cannot be evaluated against 

observations here and need to be interpreted with caution. Further, in our analysis 

of recent decades, excess changes in the multi-model mean are sometimes opposite 

in sign to those shown in the observations in regions where data are available, such 

as in the United States during DJF for Tmax. This adds some uncertainty to 

projections of warm extremes relative to the mean. Some individual model 

simulations, however, do resemble the excess changes shown in the observations, in 

both sign and magnitude, and projections for these models show strong positive 

excess changes. The aforementioned ‘hot spot’ regions are also identified as areas 

of accelerated warming of hot extremes by Donat et al. (2017) and seem robust 

when comparing local hot extremes against both the local annual mean and local 

seasonal mean. The opposite sign of excess change, where the rate of change in the 

mean is greater than that of the warm extremes, is projected for high-latitude areas 

in the Northern Hemisphere during all seasons except JJA. These regions have 
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previously been shown to have the strongest mean warming signal during boreal 

winter (Screen and Simmonds 2013). The increase of warm extremes relative to the 

mean in summertime Northern Hemisphere regions is relatively small, compared 

with other seasons.  

 

Southern Hemisphere regions generally show smaller magnitude excess changes 

overall compared with the Northern Hemisphere, especially for future changes. 

Hutchinson et al. (2015) looked at simulations of equilibrated control runs and 

2xCO2 warming experiments to show the asymmetry is caused primarily by ocean 

circulation being affected by greater melting of sea ice in the Arctic. Although 

outside of the scope of the present study, it would be interesting to similarly explore 

equilibrated simulations to understand whether the inter-hemispheric asymmetry 

in excess changes is related to model simulations being further from equilibrium in 

the Southern Hemisphere, or whether the asymmetry is due to the land-ocean 

contrast and enhanced sea ice loss in the Northern Hemisphere.  

 

There is strong evidence in both observations and climate models that cold 

extremes are warming at a faster rate than warm extremes, changing the symmetry 

of the distribution (e.g. Kharin and Zwiers 2005; Donat et al. 2013b). We show 

that, for all seasons except JJA, the magnitude of excess change in regions where 

the cold tail is projected to warm more than the mean, such as in the Northern 

Hemisphere mid- to high-latitudes, is greater than that of the negative excess 

changes in the warm tails in the same regions. This is consistent with the 

distribution becoming narrower. Evidence for a decrease in wintertime variability 

in these regions has previously been discussed (Screen 2014; Holmes et al. 2016; 

Rhines et al. 2017). Our findings further suggest a decrease in variability in DJF 

in these areas, but also during the shoulder seasons. Perhaps the most striking 
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features of all are the strong excess changes in the cold tails in the shoulder seasons, 

shown for many of these mid- to high-latitude Northern Hemisphere regions. 

Regions that experience snow and ice-related feedbacks, such as these areas with 

strong excess changes, are more associated with the disproportionate warming of 

cold extremes to warm extremes (Kharin et al. 2013). This strengthens the 

argument for an asymmetrical, or skewed distribution in the Northern Hemisphere 

mid- to high-latitudes, with more warming in the cold tails relative to the mean, 

and less warming of warm extremes relative to the mean.  

 

The possible drivers of the warming in the cold tails are likely different to those 

affecting the warm tails. The physical processes relating to the rates of warming in 

extremes relative to the mean have been explored mostly for hot extremes (e.g. 

Donat et al. 2017; Vogel et al. 2017). These changes have been largely explained 

by changes in the land surface heat fluxes and soil moisture-temperature feedbacks 

amplifying the intensity of hot extremes. Recent work has shown that the strength 

of these land-atmosphere interactions differs between models, and those models 

with moisture-temperature relationships more similar to observations over the past 

decades tend to simulate smaller warming of future heat extremes compared with 

models showing unrealistically strong land-atmosphere interactions (Donat et al. 

2018; Vogel et al. 2018). The mechanisms behind the warming rates of cold 

extremes have been less studied, though some have attributed the accelerated 

warming of cold extremes relative to warm extremes in Northern Hemisphere 

regions to Arctic amplification and the reduction of cold air advection (e.g. Screen 

2014).  

 

Future work should continue to investigate the possible physical processes that are 

driving the excess warming of extremes relative to the mean. Based on this study, 
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this process-driven work could focus on the regions and seasons that show the most 

robust signals, that is, cold extremes in mid- to high-latitude Northern Hemisphere 

regions during the shoulder seasons and DJF. One possibility, aside from reductions 

in cold air temperature advection, is that changes in snow cover and albedo are 

playing a role in the warming of cold extremes relative to average conditions in 

these regions and seasons. Exploring regional differences and similarities between 

individual models can also provide insight into the possible physical mechanisms 

driving excess changes. Improving our understanding of why these differences occur, 

by understanding differences in the physical parametrizations within the models 

could lead to a more process-based evaluation such as linking changes in snow and 

ice cover with the amplified warming of cold extremes simulated in the models used 

in this study. Additionally, departures from normality may be linked with changes 

in extremes that are proportional to mean changes. Previous work has found that 

in the U.S., extreme and mean temperature changes in winter can be explained by 

non-normal intra-seasonal variability which drives the enhanced warming of 

wintertime extremes (Huybers et al. 2014). It would be useful to investigate excess 

changes in temperature with regards to non-normality for other regions showing 

the largest excess changes that are identified in this study, such as the Northern 

Hemisphere extratropics. Explaining what is driving excess changes could then lead 

to higher confidence in projected future changes and enable more effective planning 

and adaptation tailored to each region’s needs.  

 

Anticipated increases in temperature are coupled with greater potential impacts 

from extremes. Much of the existing literature on the impacts from climate change 

has focused on heat extremes, arguably because of the more perceivable effects from 

events such as heatwaves, for example. However, there are also consequences 

associated with the warming of cold extremes, and this is especially important if 
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the cold tail is warming faster than the warm tail. While there may be some 

advantages associated with the warming of cold extremes, such as lower human 

mortality rates from cold spells (Smith et al. 2014; Wolf et al. 2015), there are also 

detrimental consequences. For example, the warming of cold extremes can lead to 

more disease-carrying insects that can survive through milder winters (Smith et al. 

2014; Wolf et al. 2015; Ebi and Nealon 2016). Under a warming climate, mosquitoes 

might expand and shift in geographical location (Ebi and Nealon 2016). Coupled 

with the accelerated rates of warming of cold extremes relative to average 

conditions during boreal winter, this puts more regions at risk, including North 

America, much of Europe and central Asia. In addition, the warming of cold 

extremes can lead to longer exposure to pollen from earlier flowering in the seasons 

(Wolf et al. 2015), which can then trigger allergies in those that suffer from 

respiratory illnesses. This could be a potential consequence of positive excess 

changes in cold extremes during the shoulder seasons. So, as with warm extremes, 

the need to understand how cold extremes are changing is crucially important to 

society. 

 

The existing literature has used a range of methods to explore changes in extremes 

relative to the mean, making the uncertainties surrounding reported changes in 

variability and shape of the distribution difficult to compare and quantify. While 

some have defined extremes as the hottest or coldest day of the year (e.g. 

Seneviratne et al. 2016; Donat et al. 2017; Vogel et al. 2017 ), others have used 

globally or seasonally-averaged extremes (e.g. Kharin and Zwiers 2005) or annual 

extremes defined by a percentile (e.g. Brown et al. 2008; Gross et al. 2018). Some 

of these studies have then compared extremes to global annual average 

temperatures. Because of the strong seasonal and regional differences also in mean 

warming, in this study, we use seasonal averages of local mean temperatures, to 
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compare with the corresponding seasonal local extreme temperature. Another 

outstanding issue raised in the literature relates to the methods in which 

temperature anomalies are calculated. Showing temperature anomalies is useful 

because it more easily communicates how unusual the temperature is to ‘normal’, 

based on a long enough reference period (Hawkins and Sutton 2016). Normalising 

temperature relative to the local mean relative to a sufficiently long reference period 

is the most commonly used approach, but this can lead to inflated results of 

variability and extremes (Sippel et al. 2015). Here, daily temperature anomalies 

were calculated by subtracting the mean annual cycle of daily values from the raw 

daily data of each respective dataset, and this was tested across different reference 

periods. Results were found to be similar regardless of whether a shorter or longer 

period was used to derive the percentiles (see Figures S2.1 – S2.4). This ensured 

that the results of excess changes shown here are robust to such methodological 

choices. By testing and documenting possible sensitivities and finding no 

outstanding issues, the methods and results presented here can stand as a 

comprehensive framework for assessing a number of different aspects of the 

temperature distribution. 

 

Differences in the local rates of change in the warm and cold extremes relative to 

the corresponding mean temperature can provide information on the changing 

shape, or skewness, of the distribution. This is meaningful with regards to climate 

change impacts because changes in the variability or shape of the distribution can 

have greater implications than shifts in the mean alone (Katz and Brown 1992; 

Schär et al. 2004). This study adds to the existing literature by systematically 

assessing characteristics of the tails of the distribution in parallel with the mean. 

Though the aim here is to provide a comprehensive documentation on several 

different aspects of the temperature distribution, some limitations remain. Firstly, 
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we have only presented projections made from the CMIP5 RCP scenario with the 

strongest greenhouse gas forcing, and it would be useful to know the range of excess 

changes across different RCP scenarios to determine uncertainties. In addition, 

despite selecting CMIP5 models from different groups to enhance independence, we 

did not assess model skill, aside from pattern correlations against HadGHCND, and 

so all model results need to be interpreted with caution. Despite finding relatively 

low agreement between the models and the observations for the recent analyses, 

many of the individual models resemble the observations more closely than the 

multi-model mean. The findings for future excess changes are systematic and 

robust, and our discussion of the multi-model mean reflects those of the individual 

models. 

 

Changes in different characteristics of the temperature distribution, including 

changes in the tails of the distribution relative to the mean, vary significantly 

depending on the season and the geographic location. For many Northern 

Hemisphere regions, particularly those in the mid- to high-latitudes and during 

boreal winter, autumn and spring, average temperatures are projected to warm at 

a faster rate than warm extremes, while the opposite is true for the Southern 

Hemisphere. The greatest difference in warming rates between cold extremes and 

the mean are again shown for mid- to high-latitudes in the Northern Hemisphere, 

for all seasons except boreal summer. In these regions, cold extremes are projected 

to warm at a substantially faster rate than the mean, especially in Alaska, Canada, 

central Europe and western Russia. For these regions that show substantial 

differences in the rates of warming between extremes and average temperatures, 

the symmetry of the temperature distribution is changing. This can affect the 

probability of extreme events, potentially leading to significant impacts from the 

warming of cold extremes, as well as those from exacerbated warm extremes. By 
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systematically and comprehensively documenting how these aspects of the 

distribution are changing relative to each other, this study provides crucial 

information for future work aiming to understand the underlying physical processes 

that are driving the disproportionate rates of warming between extreme and mean 

temperatures. 
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Chapter 4  

 

Enhanced warming of seasonal cold extremes relative to the 

mean in the Northern Hemisphere extratropics 

 

Chapter overview 

This chapter is currently under review for publication as: Gross, M. H., M. G. 

Donat, L. V. Alexander, and S. C. Sherwood, 2019: Enhanced warming of seasonal 

cold extremes relative to the mean in the Northern Hemisphere extratropics. 

Climate Dynamics, submitted. 

 

In Chapter 3, we showed that seasonal cold extremes are projected to warm faster 

than seasonal mean temperatures for much of the Northern Hemisphere mid- to 

high-latitudes in all seasons except boreal summer. In this chapter, we use a novel 

approach to examine the environmental conditions on or prior to the day in which 

the cold extreme occurs to improve our understanding of the physical mechanisms 

that might contribute to the accelerated warming of cold extremes relative to mean 

temperatures. Using a selection of Global Climate Models, regions showing the 

largest disproportionate rates of warming are identified and explored using several 

different climate variables, including horizontal temperature advection, snow cover, 

and surface albedo. During winter months, accelerated warming rates of cold 

extremes relative to mean temperatures are projected for much of North America, 
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Europe and Eurasia for the late 21st century, compared with the mid-20th century. 

This is shown to be largely driven by reductions in cold air temperature advection, 

suggested to be a likely consequence of Arctic amplification. In spring and autumn 

months, cold extremes are expected to warm more than mean temperatures for 

most of the Northern Hemisphere extratropics, particularly Alaska, northern 

Canada and northern Eurasia. In the shoulder seasons, feedbacks related to 

projected decreases in snow cover and associated reductions in surface albedo are 

suggested as the main contributor influencing the enhanced warming of cold 

extremes relative to the mean. In addition, we show that the anomalously coldest 

day of the season in Northern Hemisphere high-latitude regions is projected to occur 

later in spring and earlier in autumn months, suggesting a flattening of the seasonal 

cycle in these regions. Overall, this chapter provides insight into the physical 

processes that might be driving the enhanced warming of seasonal cold extremes 

relative to the seasonal mean. This increases our overall confidence in the simulated 

excess changes and could help to develop constraints in future research to decrease 

the uncertainty in climate model projections. 

 

 

4.1 Introduction 

Daily temperature extremes are expected to continue to warm, along with increases 

in the mean, as a consequence of increasing greenhouse gases in the atmosphere. 

The rates of warming of extremes and average temperatures are, however, not 

uniform, and differ depending on the season and region. Disproportionate rates of 

warming for different parts of the temperature distribution imply a change in the 

shape of the distribution. This is significant because it effects the probability of 

extreme events (Mearns et al. 1984), which can cause widespread impacts on society 
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and the environment, more so than changes in the mean temperature alone 

(Intergovernmental Panel on Climate Change (IPCC) 2012).  

 

Both observational data and climate model simulations suggest that cold extremes 

are warming faster than warm extremes for much of the globe (e.g. Kharin and 

Zwiers 2005; Donat and Alexander 2012; Donat et al. 2013b). Studies have also 

shown that in recent decades, cold extremes have been warming at a faster rate 

than local mean temperatures for some regions in the Northern Hemisphere (Brown 

et al. 2008; Gross et al. 2018). The enhanced warming of cold extremes in these 

regions, relative to both the mean temperature and warm extremes, is indicative of 

decreasing variability in these regions during boreal winter (Screen 2014; Ylhäisi 

and Räisänen 2014; Schneider et al. 2015; Rhines et al. 2017). Climate model 

projections suggest this decrease in variability due to the accelerated warming of 

the coldest days will continue (Holmes et al. 2016), with some regions in the mid- 

to high-latitudes projected to increase over 5°C more than mean temperatures by 

the late 21st century (Gross et al. submitted). These disproportionate rates of 

warming suggest that changes in cold extremes are driven by mechanisms other 

than increases in local mean temperatures alone. A better understanding of the 

physical drivers related to the projected rates of enhanced warming of cold extremes 

is therefore crucial for assessing the probability and potential impacts of future 

changes in cold extremes. 

 

The physical mechanisms driving the accelerated warming rates of cold extremes 

differ depending on the region and season. For land regions in the Northern 

Hemisphere mid- to high-latitudes, the warming of cold extremes and the associated 

decreases in temperature variability during winter months are consistent with 

reductions in cold air temperature advection that are a consequence of Arctic 
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amplification (Screen 2014; Schneider et al. 2015; Holmes et al. 2016; Rhines et al. 

2017). Arctic amplification, a phenomenon describing the enhanced warming of the 

Arctic relative to lower latitudes (Serreze and Francis 2006), has been suggested as 

one of the dominant causes of the observed and projected reductions in the severity 

of extremely cold days during winter in the Northern Hemisphere mid- to high-

latitudes (Screen 2014; Schneider et al. 2015; Holmes et al. 2016; Rhines et al. 

2017). This effect on cold extremes from Arctic amplification is shown to be a 

consequence of northerly winds from the Arctic bringing warmer than usual air to 

more southerly regions on the coldest days, which are warming faster than the 

warm days, therefore reducing the sub-seasonal temperature variability (Screen 

2014; Holmes et al. 2016). Though it seems relatively clear that changes in 

temperature advection are linked with decreases in temperature variability in many 

mid- to high-latitude Northern Hemisphere regions, there is still uncertainty as to 

its role in driving the enhanced warming of seasonal cold extremes relative to the 

corresponding seasonal mean. It is more likely that multiple factors are influencing 

the seasonal and regional differences in rates of warming. 

 

Aside from changes in atmospheric circulation patterns and thermal advection that 

may be altering cold extremes, variations in surface fluxes affecting the overall 

surface energy budget have strong links with surface temperatures and extremes. 

In particular, changes in snow cover play an important role in altering surface 

temperature in Northern Hemisphere regions that experience snowfall (e.g. Cohen 

and Rind 1991; Mote 2008; Diro et al. 2018). The high reflectivity and thermal 

emissivity of snow, compared to other natural surfaces, increases the surface albedo, 

lowers the absorbed shortwave radiation at the surface, and increases shortwave 

radiation reflected at the surface (Cohen and Rind 1991). The surface albedo 

feedback from snow cover is more likely to influence winter months and early spring 
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in the Northern Hemisphere, where snow accumulation is at its highest (He et al. 

2014; Thackeray et al. 2015; Diro et al. 2018). However, the effect of snow cover 

on surface temperature is suggested to be strongest during spring when snow melt 

is at its highest, leading to increases in latent heat at the surface (Cohen and Rind 

1991; Dutra et al. 2011; Xu and Dirmeyer 2011; Diro et al. 2018). The snow-

temperature relationship is also effected by the snowpack, due to melting snow and 

consequent increases in latent heat, and vegetation cover, which acts to limit the 

role of snow cover and snow melt (Chapin III et al. 2005; Mote 2008). 

 

Climate model simulations have shown differences in the regions with the strongest 

snow-temperature relationship, with some studies looking at North America finding 

the strongest links between temperature and snow cover over parts of eastern North 

America (e.g. Xu and Dirmeyer 2011), and others suggesting northwestern U.S. and 

southern Canada (e.g. Dutra et al. 2011). Many of the uncertainties related to 

biases within climate model simulations are related to the land cover 

parameterizations within the models, such as how the models capture the masking 

effect of vegetation on snow cover (Loranty et al. 2014; Qu and Hall 2014). 

Evaluating the differences between climate model simulations of snow cover, surface 

albedo and their influences may help to improve future projections of warming. 

 

This paper is structured by first evaluating a selection of climate models from the 

Coupled Model Intercomparison Project phase 5 (CMIP5) archive (Taylor et al. 

2012) against a gridded observational dataset in terms of their ability to capture 

recent warming rates of seasonal cold extremes relative to the seasonal mean. This 

is followed by discussing predicted future changes in the suite of climate models 

used. Next, the possible physical mechanisms driving the enhanced warming of cold 

extremes relative to seasonal means are explored. The investigated variables are 
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chosen based on evidence that has been suggested by prior studies, as previously 

discussed. We follow an approach similar to Donat et al. (2017), assessing 

conditions on the day on which the cold extreme occurs, or the average of days 

prior to day of the extreme. 

 

4.2 Data and Methods 

4.2.1 Observational and CMIP5 data 

We use the Hadley Centre Global Historical Climatology Network-Daily 

(HadGHCND) dataset (Caesar et al. 2006) to evaluate climate model simulations 

for the period 1950-2014. HadGHCND is a land only, daily gridded dataset of daily 

maximum and minimum temperatures from ground stations, for which daily mean 

temperatures are calculated by taking the average of each daily maximum and 

minimum temperature value for each grid cell.  

 

The HadGHCND data are used to evaluate six individual CMIP5 models (see Table 

4.1), which were selected based on their data availability for all of the daily climate 

variables being investigated. While we only show a single simulation from each 

model (r1i1p1), multiple ensemble runs were analysed (where available) to 

determine model robustness and assess internal climate variability within the 

models. Results of multiple ensemble runs were found to be highly correlated in 

both spatial pattern and magnitude of simulated changes (not shown), indicating 

that sensitivity of the results to internal variability within the models is small. 

Historical model simulations (1950-2005) are merged with Representative 

Concentration Pathway 8.5 (RCP8.5) simulations (2006 onwards) to assess changes 

between the mid-20th century and early 21st century (1950-2014), as well as between 

the mid-20th century and late 21st century (1950-2099). For analysis of recent 

decades, a bilinear remapping technique is used to re-grid all models to the grid cell 
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size of HadGHCND, that is, 2.5° latitude x 3.75° longitude, and masked to only 

cover land regions where sufficient observational data are available. We define 

‘sufficient’ as being grid cells with at least 80% of daily data available over 1950-

2014, as well as at least 50% of data available for the first and last ten years of 

observational data. For analysis of future projected changes, all models are 

regridded to a common grid size of 2.5° latitude x 2.5° longitude to enable inter-

model comparison. 

 

Table 4.1 List of CMIP5 models used in this study and their institution. 

Model Modelling group 

CanESM2 Canadian Centre for Climate Modelling and Analysis (CCCMA) 
CNRM-CM5 Centre National de Recherches Météorologiques / Centre 

Européen de Recherche et Formation Avancée en Calcul 
Scientifique (CNRM-CERFACS) 

CSIRO-Mk3-6-0 CSIRO in collaboration with Queensland Climate Change 
Centre of Excellence (CSIRO-QCCCE) 

INM-CM4 Institute for Numerical Mathematics (INM) 
MPI-ESM-LR Max Planck Institute for Meteorology (MPI-M) 
MPI-ESM-MR Max Planck Institute for Meteorology (MPI-M) 

 

4.2.2 Methods 

For each model simulation as well as HadGHCND, daily temperature anomalies 

are calculated relative to a mean annual cycle of daily mean temperatures based on 

the entire period of analysis (1950-2014 for analysis of recent changes, and 1950-

2099 for analysis of future changes). The data are then split into seasons, December 

to February (DJF), March to May (MAM) and September to November (SON), 

and all analyses are only applied to Northern Hemisphere land areas north of 30°N. 

For this study, we do not include boreal summer in our analysis as it was previously 

found to have only small changes in cold extremes relative to the mean that were 

less robust across a suite of CMIP5 models (Gross et al. submitted). 
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For each grid cell in each dataset, the seasonal minima of daily temperature 

anomalies are calculated annually for 1950-2014 and 1950-2099 separately, 

accounting for the differences in base period selection. The seasonal minima are 

then averaged over two periods, 1950-1981 and 1982-2014 for analysis of recent 

changes, and 1950-1979 and 2070-2099 for analysis of future changes, to calculate 

changes in the anomalously coldest days. Changes in seasonal mean temperature is 

similarly computed from daily mean temperature data. The difference between 

changes in the seasonal minima and changes in the seasonal mean is then calculated, 

hereafter referred to as ‘excess changes’. ‘Recent excess changes’ refer to excess 

changes between the mid-20th century and early 21st century, while ‘future excess 

changes’ refer to excess changes between the mid-20th century and late 21st century. 

Local significance of future excess changes is assessed by a Kolmogorov-Smirnov 

test (KS-test) at the 5% level. 

 

To investigate the possible drivers of the enhanced warming of seasonal cold 

extremes relative to the mean in the mid- to high-latitude Northern Hemisphere 

regions, we assess several variables available at the daily time-scale in the selected 

CMIP5 models. This includes daily data for snow cover (CMIP5 variable name 

snc), snow amount (snw) and upwelling and downwelling longwave and shortwave 

radiation fluxes at the surface (rlus, rlds, rsus, rsds). We also assess surface albedo, 

calculated as the ratio of upwelling shortwave radiation and downwelling shortwave 

radiation, and horizontal temperature advection, which is derived for each model 

using the equation:  

  

  𝑇𝑎𝑑𝑣 = 𝑢 × ( )*
)+,-

. + 𝑣 × ( )*
)+12

) 
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where u and v are the zonal and meridional wind components (uas and vas, 

respectively), and dT is the local absolute daily mean temperature gradient in the 

zonal and meridional direction. For surface albedo, there are some instances in high-

latitude regions where values are unrealistically large, as a result of low incoming 

shortwave radiation values that affect the calculation of surface albedo. In any 

instance where surface albedo values are outside of the physically reasonable 0 to 1 

range, values are set to missing. Several other daily variables were also assessed, 

such as surface heat fluxes and cloud cover, but were found of low relevance as 

potential drivers of cold extremes in the seasons and regions being examined. 

 

The analysis of the physical mechanisms related to the enhanced warming of cold 

extremes is limited to future changes, where the signal is stronger than for recent 

changes, and therefore shows a more robust identification of relationships. For each 

of the variables assessed, except temperature advection, data are evaluated on the 

specific day when the seasonal minima occurs. For temperature advection, a three-

day average prior to the day the cold extreme occurs is used. This is because it is 

likely that larger changes in circulation would have more of an influence on 

temperature in the days leading up to the event, rather than the day of the event. 

Days leading up to the cold event were also examined for the other variables, but 

results showed no clear difference compared to using values on the exact day of the 

event. Excess changes are also calculated for each variable in much the same way 

as temperature, by taking the difference between the value of the variable on the 

days of the temperature extreme (or three-day average prior for temperature 

advection) and the seasonal mean of the variable. In essence, this removes the mean 

from the analysis and shows regions that experience increases or decreases in 

conditions related entirely to the days on which the cold extremes occur.  
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Results of the physical relationships are presented in two ways: one by showing 

maps of the variables as is shown for excess changes in temperature (to infer on the 

similarity of spatial patterns), and the other by showing scatter plots of correlations 

between each variable and future excess changes in cold extremes. The former is 

included in supplementary material due to the number of figures while the latter 

are included within the main body of the manuscript. For the scatter plots, annual 

‘excess’ values for the two time periods used for the future analysis are calculated 

as the difference between the variable value on the day the seasonal minima occurs 

and the seasonal mean of the respective variable. Weighted area-averages of the 

annual excess values are then calculated for all grid boxes within a selected region 

that adhere to a specified condition that only includes grid cells that have a 

statistically significant future excess change exceeding 1°C. Two regions are 

assessed, one covering North America, and the other covering much of northern 

Eurasia, and are common to all models (see Supplementary Material Figure S3.1). 

Regressions are calculated using total least squares regression, with correlation 

coefficients computed using Spearman’s rank correlation. 

 

4.3 Results 

4.3.1 Recent changes in cold extremes relative to the mean 

Excess changes between recent decades in seasonal cold extremes relative to 

corresponding mean temperatures are shown for HadGHCND and individual 

CMIP5 models for DJF (Figure 4.1), MAM (Figure 4.2) and SON (Figure 4.3). In 

all figures, and subsequent maps of excess changes, positive values indicate regions 

where cold extremes have warmed more than the mean, while negative values 

indicate regions where the mean has warmed more than the cold extremes. Global 

pattern correlations are shown in the top right above each map, indicating the 

spatial similarity between each model with HadGHCND.  
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Pattern correlations between the observations and the individual CMIP5 models 

are low, indicating differences in the spatial patterns, however, this may be due to 

the relatively low magnitude of excess change and high spatial noise across the 

observations and models over the past 60 years. During winter (Figure 4.1), the 

observations and most of the individual models agree that cold extremes have 

warmed more than the mean for parts of Canada and Alaska, as well as parts of 

western Europe, and central Asia, although the exact locations of these excess 

changes differ (as reflected in the low pattern correlations). Spring months (Figure 

4.2) show slightly higher pattern correlations between observations and the models, 

with all models, excluding INM-CM4, showing even higher correlations in autumn 

(Figure 4.3). Compared with winter, MAM and SON generally show stronger and 

more widespread positive excess changes over Europe and Eurasia. For most of the 

models, the strongest excess changes overall are shown for parts of Russia/Eurasia, 

especially during the shoulder seasons, except for CanESM2 which shows 

particularly strong positive excess changes in DJF in central/eastern Europe. In 

the observations, the strongest excess changes are shown for much of Eurasia in 

SON and DJF, but mostly central Europe and North America during MAM. 

 

The observations and the CMIP5 models suggest the same general pattern of excess 

changes, with the most prominent positive excess changes in recent decades 

occurring in the northern continental interiors for all seasons shown. This motivates 

us to assess projections of enhanced warming of cold extremes in the selected six 

climate models over the Northern Hemisphere. 
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Figure 4.1 Recent excess changes (1982-2014 – 1950-1981) in cold extremes (seasonal minima – 
seasonal mean) for December – February. The number in the top right above the maps for each 
model represents the pattern correlation with that model and HadGHCND. 
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Figure 4.2 As Figure 4.1,but for March – May. 
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Figure 4.3 As Figure 4.1,but for September – November. 

 

4.3.2 Projected excess changes in cold extremes between future and past 

decades 

Projections of excess changes in cold extremes comparing the mid-20th century with 

the late 21st century are shown for each of the six individual CMIP5 models for 

DJF (Figure 4.4), MAM (Figure 4.5) and SON (Figure 4.6). Stippling indicates 



CHAPTER 4.  ENHANCED WARMING OF COLD EXTREMES 
 

 101 

grid cells where changes are statistically significant, as assessed by a KS-test. Much 

of the Northern Hemisphere mid- to high-latitudes indicate that cold extremes are 

projected to warm significantly more than mean temperatures. For winter (Figure 

4.4), CanESM2 shows the most prominent excess changes, covering much of North 

America, eastern and central Europe, and northern Eurasia. While not quite as 

strong, all other models show mostly significant positive excess changes in cold 

extremes for many of the same regions, particularly Alaska, eastern Canada, and 

eastern and central Europe. There is some variation over northern Russia/Siberia, 

with CNRM-CM5 showing significant negative excess changes around -1.5°C, 

opposed to relatively strong positive excess changes around 3°C shown in 

CanESM2, MPI-ESM-LR and MPI-ESM-MR. As in the recent excess changes, 

spring and autumn generally show a more widespread and systematic pattern of 

positive excess changes over Eurasia, Canada and Alaska. In MAM (Figure 4.5), 

the models show some differences in the southern parts of the U.S. and Eurasia, 

which mostly show non-statistically significant negative excess changes. There is 

relatively good agreement between models for the strong excess changes over much 

of the Eurasian and Russian region during MAM, except for INM-CM4 which shows 

smaller and mostly non-significant positive excess changes for the northern half of 

Russia. In terms of model agreement, SON (Figure 4.6) is similar to MAM, with 

the greatest model agreement over Alaska, Canada and central/eastern Europe and 

northern Eurasia, excluding non-significant small excess changes in northern Russia 

for CSIRO-Mk3-6-0. For Alaska, northern Canada and northern Eurasia, positive 

excess changes are generally largest for SON compared with the other seasons, 

except CanESM2 which shows particularly large excess changes in DJF. 
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Figure 4.4 Future excess changes (2070-2099 – 1950-1979) in cold extremes (seasonal minima – 
seasonal mean) for December – February. Stippling indicates grid cells that are significant at the 
5% level as assessed by a KS-test. 
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Figure 4.5 As Figure 4.4, but for March – May. 
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Figure 4.6 As Figure 4.4, but for September – November. 

 

Overall, future excess changes are robust and systematic across the models in 

winter, spring and autumn, with many mid- to high-latitude regions projecting 

enhanced warming in cold extremes relative to the mean. To explore the possible 

physical mechanisms driving the enhanced warming of cold extremes, we focus on 

the regions that show the most robust signals. The strongest excess changes across 

all the shown seasons are over northern Eurasia and northern North America. This 
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is relatively consistent with the largest recent excess changes occurring in the 

northern continental interiors in observations and CMIP5 models, though is much 

more widespread and systematic in the predicted patterns. 

 

4.3.3 Projected changes in cold air temperature advection prior to cold 

extremes 

Due to the evidence suggesting Arctic amplification, and consequent changes in 

thermal advection, as a main driver of decreasing temperature variability in 

Northern Hemisphere regions (e.g. Screen and Simmonds 2010; Screen 2014; 

Schneider et al. 2015; Holmes et al. 2016; Rhines et al. 2017), we first consider 

projections of changes in cold air temperature advection for the three days prior to 

the cold event. Figure 4.7 shows future changes in actual and excess cold air 

temperature advection in the CanESM2 model. Results for the remaining models 

are included as Supplementary Material (Figures S3.2 – S3.3), with any key 

differences between the models highlighted below.  

 

The most notable features occur for DJF, which shows reductions in cold air 

temperature advection for much of North America as well as Eurasia. This is 

evident for changes in both actual and excess cold air temperature advection, which 

suggests the changes are related to a change in the overall mean state of cold air 

temperature advection, rather than changes associated with the days directly prior 

to the day the cold extreme occurs. This is similarly true for the other models (see 

Figures S3.2 – S3.3), however, the magnitude of reduction in cold air temperature 

advection is generally larger in CanESM2 compared with the other models. This is 

reflected in future excess changes in cold extremes, where CanESM2 is generally 

warmer than the other models for DJF. For much of the central and eastern U.S., 

reductions in cold air temperature advection of at least -2°C are projected for the 
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late 21st century, with the same areas showing the largest positive excess changes 

in cold extremes. This is indicative of reductions in cold air temperature advection, 

both related to the day of the extreme as well as changes in the mean-state, being 

a dominant driver of the enhanced warming of cold extremes relative to the mean 

during boreal winter (see Figure 4.4). Similarly, the greatest reductions in cold air 

temperature advection over the European continent occur in Scandinavia and 

Eurasia, which also show high magnitude excess warming in cold extremes during 

DJF. This same pattern is evident across all of the selected climate models. Though 

some reductions in cold air temperature advection are shown scattered over North 

America and Eurasia for MAM and SON, the spatial pattern does not match with 

the seasonal future excess changes in cold extremes like DJF does.  

 

 
Figure 4.7 Future changes (2070-2099 – 1950-1979) in actual (left column) and excess (right 
column) cold air temperature advection for December – February (top row), March – May (middle 
row) and September – November (bottom row) in CanESM2. Values are calculated using the average 
cold air temperature advection for the three days prior to the day the annual seasonal minimum 
occurs, with negative values indicating reductions in cold air advection, and positive values 
indicating increases. All six of the selected climate models used in this study are shown in Figures 
S3.2 – S3.3. 

 

Based on these results, it is evident that a reduction in cold air temperature 

advection is driving the projected excess changes in cold extremes over much of 

North America and Eurasia during winter. Both shoulder seasons, however, have a 
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less clear signal with generally smaller, spatially scattered reductions in cold air 

temperature advection, pointing to other mechanisms as a more dominant driver 

of the enhanced warming of cold extremes in spring and autumn months. 

 

4.3.4 Projected changes in snow cover and surface albedo associated with 

cold extremes 

Many of the grid cells showing significantly strong excess changes are located in 

regions that experience high snow fall. Snow cover and associated surface albedo 

feedbacks therefore play a major role in temperature variability in these regions, 

but it is not clear if this relationship extends to the accelerated warming of cold 

extremes relative to local mean temperatures, and the seasonal influence remains 

uncertain. The subsequent results show scatter plots of excess changes in cold 

extremes and snow cover (Figure 4.8) and surface albedo (Figure 4.9) for the North 

American region and northern Eurasian region outlined in Figure S3.1. The 

different coloured symbols and regression lines represent each of the six CMIP5 

models. As outlined in Section 4.2, these changes are calculated for the exact day 

when the cold extreme occurs. Projections of changes in actual and excess snow 

cover and surface albedo for the days of the cold extreme are included as 

Supplementary Material (Figures S3.4 – S3.5 and S3.8 – S3.9, respectively). For 

additional information on the snow-temperature relationship, future changes in 

snow amount are also included in Supplementary Material (see Figures S3.6 – S3.7). 

 

For both regions, mostly significant negative correlations between snow cover and 

excess cold extremes are shown for all seasons, aside from excess snow cover in 

DJF. For the North America region (Figure 4.8a-f), while all models show 

significant negative correlations of at least -0.74 for actual snow cover in DJF 

(Figure 4.8a), all models except CSIRO-Mk3-6-0 show significantly positive 
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correlations for excess snow cover in DJF (Figure 4.8b). From Figures S3.4 – S3.5, 

parts of North America, particularly southern Alaska, southern Canada and along 

the north-western coast of the U.S., show projected decreases in actual snow cover, 

but slight increases in excess snow cover. This suggests that the feedback between 

snow cover and the projected enhanced warming of cold extremes is related to 

overall reductions in the mean snow cover over winter, rather than decreases in 

snow cover specifically on the day of the extreme only. For MAM and SON, 

negative correlations are stronger for both actual snow cover (Figure 4.8c,e) and 

excess snow cover (Figure 4.8d,f), compared to DJF, and are the strongest for SON. 

Again, this is reflected in the maps, where actual snow cover is projected to decrease 

around 40% for much of Alaska and northern Canada during autumn months, while 

decreasing somewhat less and slightly further south during spring (Figure S3.4). 

Smaller decreases are projected for excess snow cover for many of the same regions, 

excluding Alaska which shows mostly small positive increases during spring (Figure 

S3.5).  

 

Northern Eurasia (Figure 4.8g-l) shows similar correlations to that of North 

America. The overall largest correlations between snow cover and excess cold 

extremes occur in SON (Figure 4.8k,l), with some models, for example CanESM2 

and CNRM-CM5, showing correlations as high as -0.91 between actual snow cover 

and excess cold extremes, and decreases over 45% for parts of western Russia and 

Scandinavia (Figure S3.4). Correlations are slightly lower for actual snow cover in 

MAM (Figure 4.8i), with the largest decreases in snow cover occurring in 

Scandinavia and central/eastern Europe, and no substantial changes in northern 

Russia (Figure S3.4). This is reflected in projected changes in snow amount (Figure 

S3.6), with increases shown for regions showing no changes in snow cover. 

Correlations with excess snow cover in MAM are substantially smaller for most 
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models, with parts of northern Russia showing small increases in snow cover (Figure 

S3.5) and snow amount (Figure S3.7). 

 

 
Figure 4.8 Scatter plots showing annual values of excess temperatures in cold extremes for each 
season (seasonal minima – seasonal mean) on the y-axis, and annual values in each season of actual 
snow cover, calculated on the day the cold extreme occurs, on the x-axis (1st and 3rd column). The 
2nd and 4th column show values of excess snow cover on the x-axis (i.e. snow cover on the day of the 
extreme – mean annual snow cover). Each row represents a different season: December – February 
in the 1st row, March – May in the 2nd row, and September – November in the 3rd row. Each value 
is an area-average of two regions (see Figure S3.1): North America (a-f) and northern Eurasia (g-l). 
The straight lines indicate the regression slope for each model calculated using total least squares 
regression. Correlation coefficients are shown at the top of each panel, with the different colours 
indicating the model. * indicates significance at the 5% level. 

 

Decreases in snow cover imply that reductions in surface albedo are a likely factor 

contributing to the enhanced warming of cold extremes relative to the mean. 

Correlations between surface albedo and excess temperature (Figure 4.9) indeed 

show strong similarities with those of snow cover, with the largest negative 

Northern Eurasia regionNorth America region

DJF

MAM

SON
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correlations shown for SON for both North America (Figure 4.9a-f) and northern 

Eurasia (Figure 4.9g-l). As for snow cover, the strongest overall decreases are shown 

for actual changes in surface albedo over Alaska, northern Canada and Eurasia 

during autumn months (Figure S3.8). Differences in the magnitude and sign 

between actual surface albedo and excess surface albedo are also clear. For example, 

mostly positive correlations with excess surface albedo are shown for DJF for both 

regions (Figure 4.9b,h). During boreal winter in high-latitude regions, solar 

insolation is low, and so it is expected that surface albedo, which is calculated using 

shortwave radiation fluxes, is less of a factor in driving excess changes in 

temperature during these months.  

 

 
Figure 4.9 As Figure 4.8, but for surface albedo. 
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There is a clear relationship between decreases in snow cover, associated lower 

albedo and the enhanced warming of cold extremes for many regions in the 

Northern Hemisphere mid- to high-latitudes. While negative correlations are shown 

for actual snow cover and excess cold extremes during winter for both North 

America and Eurasia, projected decreases in actual snow cover, as shown in the 

maps in Figure S3.4, are generally much smaller than they are for both shoulder 

seasons, especially autumn months which show the overall largest decreases and 

highest correlations with excess temperatures in cold extremes. Much of this 

relationship between snow cover, surface albedo and excess temperatures in cold 

extremes is a consequence of overall decreases in the mean-state of both snow cover 

and surface albedo, rather than decreases in snow cover specifically on the day the 

cold extreme occurs. This is a consistent across the selection of CMIP5 models used 

in this study.  

 

4.3.5 Projected changes in the timing of anomalously cold days 

The projected enhanced warming of cold extremes relative to the mean found for 

many mid- to high-latitude Northern Hemisphere regions, in all seasons except 

boreal summer, is clearly related to excess heat at the surface that acts to decrease 

the severity of the anomalously coldest days of the season. During spring and 

autumn, much of this is likely a consequence of less snow and lower albedo, leading 

to increases in absorbed shortwave radiation at the surface and consequently 

amplifying the warming of cold extremes, creating a positive feedback. In addition 

to these relationships presented above, we also analysed an increase in net radiation 

on the days of the cold extremes in both shoulder seasons, with increases in 

incoming shortwave radiation being the largest contributor (not shown). These 

increases are, however, largely attributable to temporal shifts in the occurrence of 

the largest negative temperature anomalies in the shoulder seasons. 
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Figure 4.10 Changes in the timing of the anomalously coldest day in the season between 2070-
2099 and 1950-1979 for March – May (a) and September – November (b), as shown for the CanESM2 
model. All models and seasons, excluding boreal summer, are shown in Figure S3.10. 

 

Figure 4.10 shows the projected change in the timing of the seasonal minimum of 

daily anomalies during MAM and SON, as simulated in CanESM2 (see Figure S3.10 

for all models and seasons). For much of the Northern Hemisphere mid- to high 

latitudes, excluding the most southerly parts, the Mediterranean region and parts 

of Greenland, the anomalously coldest days are projected to occur later in the 

season during MAM (Figure 4.10a). In some regions, such as central-western 

Europe and eastern Canada, the anomalously coldest spring days are projected to 

occur more than 30 days later in the late 21st century, compared to those simulated 

in the mid-20th century. For SON (Figure 4.10b), the anomalously coldest days are 

projected to shift to earlier in the season for most high latitude regions in the 

Northern Hemisphere. For example, the anomalously coldest days are projected to 

occur over 30 days earlier than they did in the mid-20th century much some regions 

in northern Canada and northern Eurasia. This change in the timing of cold 

extremes suggests an overall flattening of the seasonal cycle in these extratropical 

Northern Hemisphere regions. Coupled with the cold extremes warming at a faster 



CHAPTER 4.  ENHANCED WARMING OF COLD EXTREMES 
 

 113 

rate than average temperatures, this suggests these regions will experience generally 

a longer duration of warmer months and a shorter duration of colder months. 

 

4.4 Discussion and conclusions 

Cold extremes are projected to warm more than seasonal average temperatures for 

much of the Northern Hemisphere mid- to high-latitude regions, for all seasons 

except boreal summer. Though these projected changes differ slightly in magnitude 

and spatial pattern depending on the CMIP5 model used, the most prominent 

excess changes are robust across the selection of models. These changes are likely 

related to projected changes in horizontal temperature advection, snow cover and 

surface albedo feedbacks. The season in which the excess changes in cold extremes 

occur largely dictates which physical mechanisms are at play.  

 

Decreases in snow cover and lower surface albedo are more associated with excess 

changes in cold extremes during spring and autumn months. Due to low solar 

insolation in winter months, and subsequently only small effects from changes in 

shortwave radiation and surface albedo, reductions in cold air temperature 

advection in the days leading up to the extreme event is the dominant driver during 

boreal winter. This latter finding is likely a consequence of Arctic amplification and 

is in agreement with previous studies linking the warming of cold days in winter 

months with warmer than usual air being brought from the Arctic to lower latitudes 

(e.g. Screen 2014; Schneider et al. 2015; Holmes et al. 2016; Rhines et al. 2017).  

 

In contrast, Arctic warming and associated sea ice loss has been argued to result in 

more persistent severe cold air outbreaks over continental regions in the mid-

latitudes during boreal winter (e.g. Kodra et al. 2011; Cohen et al. 2014, 2018; 

Francis and Vavrus 2015; Zhang et al. 2016). Recent cold snaps in the United 
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States and Eurasia, such as those observed in the boreal winter of 2012/2013, can 

largely be explained by a southward shift in the jet stream and a weakening of the 

stratospheric polar vortex (Francis and Vavrus 2015; Zhang et al. 2016; Cohen et 

al. 2018; Kretschmer et al. 2018). Though some argue these events are likely 

transient and related to atmospheric decadal variability (e.g. Barnes and Screen 

2015; Ayarzagüena and Screen 2016; Sun et al. 2016), others suggest that severe 

cold snaps in the Northern Hemisphere mid-latitudes might persist in response to 

continued Arctic warming (e.g. Kodra et al. 2011; Francis and Vavrus 2012, 2015; 

Cohen et al. 2014). While there is some disagreement between models and 

observations in how they simulate the observed cold outbreaks (e.g. Cohen et al. 

2013; Sun et al. 2016), there is robust model agreement that mid-latitude cold 

extremes are projected to decrease in severity (Screen 2014; Barnes and Screen 

2015; Screen et al. 2015a,b; Ayarzagüena and Screen 2016). Some have also 

suggested that cold air outbreaks will decrease in duration and frequency (e.g. 

Screen et al. 2015a,b), however, this remains unclear and requires further work (e.g. 

Ayarzagüena and Screen 2016). Though the results in this study cannot infer 

anything regarding the frequency and duration of cold spells, it is evident that cold 

extremes are projected to warm in excess of increasing mean temperatures over 

North America and Eurasia during boreal winter by the end of the 21st century. 

 

Arctic amplification and associated thermal advection is also suggested to be a 

particularly strong driver of decreased cold extremes in autumn months (e.g. Screen 

2014; Holmes et al. 2016). While significant negative correlations between cold air 

temperature advection and excess cold extremes are shown for all models for both 

North America and Eurasia during autumn (see Figure 4.7), reductions in cold air 

temperature advection are substantially less coherent than they are for winter (see 

Figures S3.2 – S3.3). This highlights that area-averaged correlations are sometimes 
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misleading in terms of exploring the processes driving temperature extremes over a 

large region. While Arctic amplification and associated reductions in cold air 

temperature advection may be having somewhat of an impact on the warming of 

cold extremes during the shoulder seasons, other physical mechanisms likely have 

a greater influence on changes in spring and autumn cold extremes. 

 

For both shoulder seasons, ‘hot spots’ of enhanced warming of cold extremes 

relative to the mean are shown for much of Alaska, Canada and northern Eurasia 

(Figures 4.5 – 4.6). During autumn, snow cover shows an exceptionally similar 

spatial pattern to excess changes in cold extremes for all models (see Figure S3.4 

and Figure 4.6, respectively), with the largest excess changes in cold extremes 

matching regions showing the largest decreases in snow cover. Spatial similarities 

between snow cover and excess changes in cold extremes during spring are less 

obvious than they are for autumn, with slightly lower correlations, though the 

largest decreases in snow cover are still associated with significant excess changes 

in cold extremes (see Figure S3.4 and Figure 4.5). Previous work has suggested that 

spring has the strongest snow-temperature relationship, largely due to increases in 

latent heat from snowmelt (e.g. Dutra et al. 2011; Xu and Dirmeyer 2011; Diro et 

al. 2018). Many of the regions showing the strongest relationship between projected 

snow cover and the projected amplification of warming cold extremes, such as 

northwestern U.S., southern and northeast Canada and the Rocky Mountains, are 

in agreement with historical simulations of the snow-temperature association during 

winter and spring months (Dutra et al. 2011; Diro et al. 2018). While some high-

latitude regions in northern Canada and northern Russia show projected increases 

in snow amount during spring (see Figures S3.6 – S3.7), with the same regions and 

seasons showing no substantial changes in snow cover (see Figures S3.4 – S3.5), 

correlations between snow and excess temperature in autumn are generally larger. 
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This infers that even if springtime is associated with a stronger snow-temperature 

relationship, due to increases in snowmelt, decreases in snow cover have more of an 

influence on warming anomalously cold days in autumn months. 

 

A change in surface albedo feedback, as a result of a change in snow cover, is more 

likely to influence cold days in winter and early spring due to peak snow 

accumulation during this time. While results presented here show projections of 

decreasing albedo for many regions in North America and Europe, autumn shows 

the largest decreases in surface albedo (see Figure S3.8), which is closely related to 

the projected decreases in snow cover. We note that our calculation of surface 

albedo, as simply the ratio between absorbed and reflected shortwave radiation, 

may not be capturing certain aspects that are important to snow affected areas. 

For example, the boreal forest is a region with extensive snow fall and dense 

vegetation cover, and the varying land parameterizations within the climate models 

may not necessarily be capturing the snow that is intercepted by trees in the canopy 

(Loranty et al. 2014; Thackeray et al. 2015). This then has important implications 

on surface albedo and therefore surface temperature.  

 

Biases in climate model simulations of snow-albedo feedbacks have been found over 

the boreal forest region, with significant underestimations compared with 

observations, especially during periods where snowmelt is high, such as in early 

March (Fletcher et al. 2012; Loranty et al. 2014; Qu and Hall 2014; Thackeray et 

al. 2014, 2015). However, biases in the models are reduced over larger study regions 

(Thackeray et al. 2015), with area-averaging over large regions also likely to 

suppress any biases. Biases may also simply be a consequence of temperature, with 

cold biases having more snow, and warm biases leading to more snowmelt. The 

ability of climate models to capture snow-albedo feedbacks is also complicated by 
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factors relating to snow type and the ageing of snow, which can also influence 

surface temperatures (Thackeray et al. 2015; Diro et al. 2018). Improving the ability 

of climate models to capture realistic changes in snow cover and surface albedo 

would enable more accurate projections of future cold extremes. Biases in the 

representation of physical relationships may control the simulation of long-term 

changes in cold extremes. Given the availability of suitable observations of relevant 

land variables, an evaluation of the land-atmosphere relationships as outlined here 

may serve to develop process-based constraints to reduce the uncertainty in future 

projections, similar to previous approaches focussing on the processes driving hot 

extremes in summer (Donat et al. 2018). 

 

While our findings are consistent with the theory that less snow cover and 

associated reductions in surface albedo lead to anomalously warmer temperatures 

on cold days, it is unclear whether these variables are driving the enhanced warming 

of cold extremes, or vice versa. It is true, however, that the positive feedback 

between snow cover, surface albedo and surface temperature exacerbate the 

warming of cold extremes. It would be useful for future studies to run climate model 

simulations with and without snow cover prescribed to quantify the specific impact 

on simulated cold extremes, enabling more confident conclusions regarding snow 

cover and albedo as a driver of enhanced cold extremes. 

 

Similar to albedo, radiative fluxes are strongly influenced by changes in the surface 

which affects the overall surface energy budget. Decreases in snow cover which lead 

to lower albedo will result in increased absorption of incoming shortwave radiation 

for regions and seasons with enough solar insolation. While we did find some 

increases in incoming shortwave radiation on the days when the coldest anomalies 

occur, this is more an artefact of the timing in which the cold extreme occurs. For 
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high-latitude regions, the seasonal minimum in spring time is projected to occur 

later in the season, with the autumn minima projected to occur earlier in the season, 

suggesting an overall flattening of the seasonal cycle. Changes in the annual cycle 

of surface temperature have been detected before, with a shift to earlier seasons by 

1.7 days shown for extratropical land regions in recent decades (Stine et al. 2009). 

Further, changes in the seasonal cycle have been projected by CMIP3 models too, 

with colder tempreatures occuring later and warmer temperatures occuring earlier, 

reducing the amplitude of the seasonal cycle (Dwyer et al. 2012). These shifts are 

argued to be a consequence of anthropogenic climate change driving sea ice loss 

(Dwyer et al. 2012; Santer et al. 2018), but have also been linked with changes in 

the Northern Annular Mode (Stine et al. 2009).  

 

The day the cold extreme occurs is also associated with less snow, albeit largely 

due to decreases in mean snow cover, so it can be inferred that the snow will likely 

melt more as well, as it is occurring closer to summer months than normal. This 

describes another positive feedback within the system, with snowmelt leading to 

increases in latent heat which in turn heat the surface. This highlights the fact that 

multiple factors within the surface energy budget are contributing to an overall 

greater heating at the surface, thus influencing the decrease in the severity of cold 

days relative to mean warming during spring and autumn months. The relationship 

between excess changes in cold extremes and decreases in the mean state of snow 

cover warrants further investigation, namely to explore how snow cover and 

associated albedo changes can predict excess changes in cold extremes relative to 

the mean. The first step towards this would require investigating mean trends in 

observational snow cover data to determine if this can predict recent excess changes 

using observational temperature data, and then similarly evaluating the ability of 

climate models to represent this relationship.  
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The enhanced warming of seasonal cold extremes relative to seasonal mean 

temperature is projected for much of the Northern Hemisphere mid- to high-

latitudes. The main findings of this paper show that the possible drivers of this 

enhanced warming depend on the season. Reductions in cold air temperature 

advection, likely as a consequence of Arctic amplification, are the most probable 

driver of enhanced cold extremes during winter months. For boreal autumn and 

spring, snow cover and surface albedo feedbacks are the most likely contributors 

affecting the accelerated warming rates of cold extremes. These findings are robust 

across the selection of CMIP5 models used in this study. While observational data 

were used to evaluate simulations of excess temperature in recent decades, the 

climate variables are only explored as future changes, with model agreement 

suggesting how robust changes are. Future work in understanding the physical 

mechanisms driving cold extremes would benefit in evaluating observational data 

of snow cover against model simulations. Further, regional climate models would 

provide finer-scale information that would be more useful for future planning. 
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Chapter 5  

 

Methodological sensitivities related to the analysis of daily 

temperature extremes 

 

Chapter overview 

The findings presented in Chapters 2 – 4 of this thesis are subject to specific 

methodological choices which can result in parametric and structural 

uncertainties that have the potential to impact conclusions. This chapter 

discusses some of the uncertainties related to the different methodological choices 

used for assessing changes in daily temperature extremes. Alternative 

methodological choices are explored and compared to see whether these choices 

impact the conclusions drawn from the findings of the previous chapters of the 

thesis. Specifically, the sensitivities explored are related to the choice of 

climatological reference period used for the calculation of temperature anomalies, 

different methodologies used to define temperatures that are considered ‘extreme’, 

the use of absolute temperatures as opposed to temperature anomalies, and 

uncertainties related to different levels of radiative forcing used in climate models. 

Generally, the conclusions drawn from this thesis remain robust regardless of 

methodological choice. However, some differences are apparent when anomalies 

are calculated relative to a moving window climatology, as opposed to a fixed 

climatological reference period. Excess changes calculated using a moving window 
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reflect changes in variability, because a moving climatology removes the effect of 

mean changes. Using a moving window as the climatological reference period 

therefore rephrases the initial research question to relate excess changes entirely 

to changes in extremes and variability, emphasising the need to clearly 

communicate what the results are actually showing. In addition, local excess 

changes are shown to be proportional to the amount of global warming, as 

reflected through comparisons of a high and mid-greenhouse gas emissions 

scenario.  

 

 

5.1 Introduction 

Uncertainties stemming from methodological choices are inevitable in climate 

change studies. The study of extremes, in particular, have inherent uncertainties 

due to the fact that errors show up as ‘extreme’ and more complex statistical 

methodologies are generally required for analysis. Further, the methods used in 

previous studies vary widely, making results difficult to compare and quantify. 

Evaluating the potential sensitivities to alternative methods not only adds to the 

robustness of conclusions, but also allows for a better understanding of the more 

appropriate methodological choices for specific research questions. While many 

studies touch on the various uncertainties related to assessing changes in 

temperature extremes (e.g. Klein Tank et al. 2009; Katz et al. 2013; Kirtman et 

al. 2013; Sippel et al. 2015; Hawkins and Sutton 2016), including sensitivities 

related to the choice of dataset (as discussed in Chapter 2), there is a distinct lack 

of documentation providing systematic assessments of the different types of 

sensitivities that might affect conclusions. In this chapter, some of the key 

potential sensitivities relating to the results presented in Chapters 2 – 4 are 

explored in more detail. 
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So far in this thesis, changes in temperature extremes have been evaluated as 

anomalies. Anomalies are the change in temperature relative to a baseline, or 

climatological reference period, and are more commonly used in analyses of 

changes in temperature extremes compared with actual, or absolute temperature 

values. One reason for this is that anomalies are spatially coherent across large 

areas, allowing the development of global timeseries which can then be used to 

identify trends in temperature (Tingley 2012; Schmidt 2014). The varying number 

of stations over time, and their location and elevation, can result in 

inhomogeneities in absolute temperatures, with these factors being less important 

for anomalies (Jones et al. 1999; Jones et al. 2009; World Meteorological 

Organization (WMO) 2017). Anomalies are also an effective communication tool, 

describing how unusual the temperature is relative to average conditions. In this 

sense, it is immediately clear how ‘extreme’ a particular event is. Absolute 

temperature values, particularly when used for assessing global temperature, do 

not necessarily represent the risk to society (Schmidt 2014). Despite the 

advantages of using temperature anomalies, it is still useful to understand how 

absolute temperatures are changing for local-scale studies, where absolute 

thresholds can indicate the temperature at which society and the environment is 

at risk (Klein Tank et al. 2009). Further, some have argued that absolute 

temperatures are more appropriate to use for assessing changes in temperature 

extremes and variability because there is no need to calculate values relative to a 

chosen climatological reference period (e.g. Huntingford et al. 2013). The 

reference period used to calculate temperature anomalies is an important choice 

that can potentially impact results.  

 

The choice of climatological reference period first and foremost depends on the 

research question being asked, and the reason for choosing a particular reference 
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period should be communicated clearly to avoid misinterpretation of results. 

Studies using anomalies relative to a reference period should explore the 

robustness of findings to alternative choices of reference period (Hawkins and 

Sutton 2016). The WMO outlines that a sufficiently long reference period is 

necessary to capture the variability of temperature, suggesting that a fixed 30-

year period is generally suitable, with the most commonly used period being 1961-

1990 for long-term assessments of changes (WMO 2017). The reference period is 

used to normalise the data relative to the mean and variability of the period, but 

this method has been shown to cause overestimations of extremes (e.g. Tingley 

2012; Huntingford et al. 2013; Rhines and Huybers 2013; Sippel et al. 2015; 

Hawkins and Sutton 2016). For this reason, temperature anomalies in this thesis 

are calculated relative to the entire period of analysis, therefore not excluding 

variability and mean changes outside of the reference period and eliminating the 

potential for inflating extremes. Another option is to calculate anomalies relative 

to a moving window, which only describes changes other than the mean, such as 

changes related to variability. In this chapter, the sensitivity of results of excess 

changes to the choice of climatological reference period is explored further. 

 

Another potential source of uncertainty relating to the analysis of temperature 

extremes stems from the methods used to define extremes and calculate 

exceedances. The methods used to define extremes vary widely between studies, 

with some using specialised statistics based on the Extreme Value Theory (EVT) 

(e.g. Kharin and Zwiers 2005; Brown et al. 2008; Christidis et al. 2011; Katz et al. 

2013), and others using simpler methods such as using fixed values, quantiles or 

percentiles to define an extreme threshold (e.g. Simolo et al. 2010; Orlowsky and 

Seneviratne 2012; Donat et al. 2014; McKinnon et al. 2016). Different methods 

have previously resulted in different conclusions (Katz et al. 2013), for example, 
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some have suggested temperature is becoming more skewed in the warm tails (e.g. 

Donat and Alexander 2012; Hansen et al. 2012; Lewis and King 2017), while 

others using more complex techniques, such as those based on EVT (e.g. Brown 

et al. 2008), have concluded that changes in temperature are mostly related to a 

uniform shift in the tails of the distribution, with mostly no significant change in 

the shape parameter. As with climatological reference periods, testing alternative 

methods for calculating extremes is critical for robust conclusions. 

 

Projections of climate change have extensive uncertainties, especially in terms of 

future forcings of greenhouse gases, which are dependent on how climate change 

is mitigated. Output from climate models from the Coupled Model 

Intercomparison Project phase 5 (CMIP5) archive (Taylor et al. 2012) includes 

several different scenarios with different levels of radiative forcings to project the 

potential consequences from possible development pathways. These scenarios need 

to be plausible in order to provide useful information for the end-user. While 

alternative scenarios increase the spread of results, adding to the uncertainty of 

projections, this provides a range of potential outcomes for policymakers and 

planners who can then use this information to limit the risk of negative impacts 

from climate change (Moss et al. 2010). Aside from model scenario, internal 

variability within climate models is another possible source of uncertainty. In 

Chapter 4 of this thesis, however, we show that long-term changes from several 

climate models were not especially sensitive to internal variability for the type of 

analysis being performed. 

 

In this chapter, several sources of uncertainty are explored, comparing results 

shown in previous chapters to alternative methodological choices. The chapter is 

split into parametric uncertainties, namely, how parameter choice within a chosen 
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methodological framework affects results (e.g. reference period used), and 

structural uncertainties relating to methodological choices (e.g. interpolation 

scheme used). It is expected that structural uncertainties will be larger than 

parametric uncertainties (Dunn et al. 2014). By way of example, the comparisons 

in this chapter are based on climate model simulations from one ensemble 

member from the CanESM2 model, though it is noted that results remain 

consistent across a wide range of CMIP5 models and ensemble members. Only 

future changes in cold extremes are shown for September through November 

(SON), though conclusions remain true for other seasons, or are otherwise noted 

in the text. 

 

5.2 Parametric uncertainties – choice of reference period 

Due to the potential for overestimating extremes from defining anomalies based 

on standardising temperature data using a fixed 30-year period (Huntingford et 

al. 2013; Sippel et al. 2015), the results presented so far in the thesis are 

calculated relative to the entire period of analysis. In this sense, a longer, fixed 

reference period includes data that would otherwise be left out of the analysis if 

using a fixed 30-year climatology, removing the chance of inflated variance and 

extremes in the analysis of data outside the reference period. Because there is a 

possibility that the analysis is sensitive to the choice of reference period, it is 

important to explore alternative reference periods to gauge the robustness of 

results of both temperature and other climate variables.  

 

Figure 5.1 compares future excess changes in cold extremes based on the 

climatological reference period, where results from an alternative reference period 

are subtracted from excess changes calculated relative to a mean annual cycle 

over the entire period of investigation, that is, 1950-2099 for future changes 
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(actual magnitudes of future excess changes is shown in Figure 5.1a). Figure 5.1b 

shows the difference in results between the longer, fixed reference period with 

using a climatological reference period of 1961-1990, while Figure 5.1c shows the 

difference when using a 30-year moving window, which for this particular 

analysis, uses climatologies of 1950-1979 for past decades, and 2070-2099 for 

future decades.  

 

Differences in future excess changes depending on the climatological reference 

period used are relatively small for both instances, with the largest changes being 

in regions showing the largest excess changes, that is, in the high-latitudes in the 

Northern Hemisphere. Differences between the two fixed climatologies (Figure 

5.1b) are small, with generally only 0°C to 0.5°C difference for most of the globe. 

Some high-latitude regions in Russia, Canada and Greenland show some larger 

differences exceeding 5°C, corresponding with regions where excess changes 

calculated from the 1950-2099 reference period are particularly large (Figure 

5.1a). For the 30-year moving climatology, again, the largest differences are 

shown for high-latitude regions in Canada and Russia, which are regions with the 

largest excess changes in cold extremes in SON. Some regions show small negative 

differences, on the order of -0.5°C, for example, over eastern/central-Europe and 

southern Greenland, where excess changes calculated using the 30-year moving 

window are slightly larger than they are for the fixed, long-term climatology, 

though this is generally only the case for regions showing relatively small 

magnitude excess changes that are less than 2°C. Though not shown, DJF shows 

virtually the same excess changes, irrespective of choice of reference period, with 

SON (shown here) showing the greatest differences from reference period choice 

compared with all seasons. Similarly, results for recent excess changes are robust 



 
 

 128 

regardless of the reference period (see Supplementary Material Figures S2.1 – S2.2 

for example from Chapter 3). 

 

 
Figure 5.1 Differences in future excess changes in cold extremes depending on the climatological 
reference period used to calculate daily temperature anomalies. (a) shows the actual future excess 
changes calculated from the 1950-2099 fixed climatological reference period. The second and third 
row shows the differences between (a) and results calculated using the 1961-1990 reference period 
(b), and those relative to a 30-year moving window (c), which in this analysis, uses 1950-1979 for 
past decades, and 2070-2099 for future decades. Results are only shown for SON using the 
CanESM2 model. 
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Chapter 4 of the thesis investigated several different climate variables that might 

be driving the enhanced warming of cold extremes in the Northern Hemisphere 

mid- to high-latitudes. For this reason, it is also important to understand whether 

the choice of reference period has an impact on variables other than temperature. 

Figure 5.2 shows changes in snow cover on the day the cold extreme occurs (a-c) 

and changes in the timing of cold extreme days (d-f). As in Figure 5.1, actual 

changes calculated relative to the long-term, fixed reference period for each 

variable are shown in Figure 5.2a,d respectively, with differences calculated by 

subtracting alternative reference period choices from the 1950-2099 climatological 

reference period (Figure 5.2b,c for changes in snow cover and Figure 5.2e,f for 

changes in timing). Because these results are directly related to those of Chapter 

4, only the mid- to high-latitudes in the Northern Hemisphere are shown, where 

the influence of reference period is greatest.  

 

For changes in snow cover (Figure 5.2a-c), that is, using values on the day the 

seasonal cold extreme occurs, any differences between reference period choice are 

due to differences in the day the cold extreme occurs. For both instances of 

alternative reference period choice, high-latitude regions in Russia, Alaska and 

Canada show the largest differences, much like those shown in Figure 5.1b-c, with 

no substantial differences for most mid-latitude regions. When using a shorter, 

fixed climatology (Figure 5.2b), changes in snow cover in those regions showing 

the most difference are between 10% and 20% greater than they are for the 1950-

2099 reference period. For the two fixed climatologies, the decreases in snow cover 

on the day of the extreme mainly reflect a decrease in the overall seasonal mean 

snow cover, as concluded in Chapter 4. Some negative differences are apparent 

when using a specific climatological reference period that moves through time 

(Figure 5.2c), which reflects changes in snow cover variability rather than 
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changes in the seasonal mean snow cover. These differences, mainly over Siberia 

and northern Canada, indicate smaller magnitude decreases in snow cover on the 

day of the extreme when using a moving window climatology, compared to when 

using a fixed reference period. Although not shown, only slight differences are 

apparent for MAM, with no apparent differences between reference periods found 

for DJF. Generally, the main conclusions drawn from Chapter 4 regarding 

decreases in seasonal mean snow cover being a major contributor of the enhanced 

warming of cold extremes in the shoulder seasons remain robust irrespective of 

reference period choice. 

 

In Chapter 4, a shift in the timing of cold extremes is shown, with anomalously 

cold days occurring later in high-latitude regions in the Northern Hemisphere 

spring months, and earlier in autumn months. If the day on which the extreme 

occurs is affected by choice of reference period, as suggested by the slight 

differences in snow cover depending on the reference period, then a shift in the 

timing of cold extremes would be impacted. While the shifts using the 1961-1990 

reference period are only slightly larger than they are for those calculated using 

the 1950-2099 climatology (Figure 5.2e), differences when using a 30-year moving 

window climatology are substantial in some regions (Figure 5.2f). In the latter 

instance, substantially smaller shifts in the timing of cold extremes are projected 

in high-latitude regions, with cold extremes occurring only around 10 days earlier, 

compared with over 30 days earlier when using the 1950-2099 reference period. 

Central/southern Europe show much larger positive shifts (i.e. cold days are 

occurring later) compared with results from the 30-year moving window, which 

shows differences sometimes over 30 days in some areas. These large differences 

are related to the change in mean being removed when using a 30-year moving 

climatology, whereas a fixed climatology is affected by changes in the mean 
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seasonal cycle. Rather than adding uncertainty to results, this in fact strengthens 

the argument put forward in Chapter 4 that a flattening of the seasonal cycle is 

projected for the late 21st century, because it is related to changes in the mean 

seasonal cycle which is specific for the time of year, as reflected through using 

fixed climatologies. 

 

In general, conclusions are qualitatively robust when using a fixed climatological 

reference period, whether short or long. High-latitude regions in the Northern 

Hemisphere show the greatest sensitivity reference period choice, where the day in 

which the extreme occurs differs depending on this choice. Importantly, these 

results are specific to the particular methodology used here, where averages over 

30-year periods are taken to calculate changes, removing the chance of a bias in 

results due to inflated variance using a 30-year fixed climatology. When using a 

30-year moving climatology, two different means are included, which effectively 

removes influences related to changes in the mean temperature, and so all 

changes shown for this choice of reference period are likely related to changes in 

variability or higher-order moments. Any differences in the 30-year moving 

climatology results compared with the fixed climatologies is not so much of a 

sensitivity, but rather answering a different question entirely. That is, the 

comparison of a fixed climatology, long or short-term, versus a 30-year moving 

climatology, helps to separate changes that are due to changes in the mean from 

changes that are outside of this. In this thesis, it seems most appropriate to use 

the longer-term fixed climatology, as this highlights entire changes, which 

includes changes in the mean. 
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Figure 5.2 Similar to Figure 5.1, but showing differences in projected changes in snow cover on 
the day the cold extreme occurs (a-c) and the projected changes in the timing of cold extremes (d-
f) depending on the reference period used. (a) shows actual changes in snow cover on the day the 
cold extreme occurs, while (d) shows actual changes in the timing of cold extremes based on the 
1950-2099 climatological reference period. (b) and (e) show the difference between results using 
the 1950-2099 reference period and 1961-1990 reference period, and (c) and (f) show differences 
with results calculated relative to a 30-year moving window. 
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5.3 Structural uncertainties 

5.3.1 Absolute temperatures 

The robustness of results of changes in excess temperature can be further 

evaluated by assessing excess changes in absolute temperatures (Figure 5.3). 

Figure 5.3b shows the difference between future seasonal excess changes in cold 

extremes calculated from anomalies and those calculated from absolute 

temperatures. For reference, Figure 5.3a shows the actual magnitude future excess 

changes calculated from anomalies (as also shown in Figure 5.1a). Because the 

method for calculating excess changes takes temporal averages, it is unsurprising 

that results from absolute temperatures match closely with those using anomalies, 

with only small differences mostly between -1°C to 1°C shown for most of the 

globe, aside from the northmost region in Greenland which shows some larger 

differences. Excess changes in regions showing the greatest positive values, that is, 

mid- to high-latitude Northern Hemisphere regions, are of a slightly higher 

magnitude when using absolute temperatures, for example, over north-east 

Canada and central-eastern Europe and Russia. Other regions showing relatively 

low magnitude excess changes show small differences in sign between absolute 

temperatures and anomalies, for example, negative excess changes are shown over 

eastern U.S. in absolute temperatures in SON, compared with small positive 

excess changes in the anomalies. Overall, the most prominent future excess 

changes in cold extremes are robust, regardless of whether anomalies or absolute 

temperatures are used in the calculation. 
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Figure 5.3 Differences between future excess changes in SON in anomalies and other 
methodological choices. (a) shows the actual magnitude of future excess changes using the 1950-
2099 reference period and annual minima method to calculate seasonal exceedances, (b) shows the 
difference between this and using absolute temperatures to calculate excess changes, and (c) shows 
the difference between (a) and calculating exceedances using the seasonally-varying threshold 
approach to calculate cold extremes that fall below 1.5% of all data points within the time period. 

 

5.3.2 Methods for defining temperature extremes 

Throughout the thesis, three different methods are used to calculate temperature 

extremes. In Chapter 2, we used the EVT to define extremes, where a non-
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stationary point-process model was fitted to the data to describe annual 

exceedances above (below) the upper (lower) 1.5% of all data points. Within that 

study, an alternative method was tested, which selects all data points that exceed 

the 98.5th quantile (1.5th quantile for the cold tails) per year, and then subtracts 

those values from the annual mean. These results yielded little difference 

compared with results calculated using the EVT (see Figure S1.20). Because 

results are mostly insensitive to this choice of method, excess changes in Chapter 

3 were calculated using the simpler and less computationally-expensive threshold 

approach, which defines exceedances as those data points which lie above the 

98.5th percentile and below the 1.5th percentile of the seasonally varying 

distribution throughout each time period. Assessing only cold extremes, results 

shown in Chapter 4 are calculated using a block minima approach, selecting the 

annual minimum temperature per season. Aside from further assessing 

sensitivities related to the choice of method, this was a simpler approach for 

investigating potential drivers of excess changes in temperature on the coldest 

day of the season, per year, compared to the former approach where extremes can 

occur in any given year throughout the season. 

 

Figure 5.3c shows a comparison between the block minima approach and the 

1.5% threshold approach. Overall, there is little sensitivity to the choice of 

method used to define temperature extremes, with most differences being between 

-1°C and 1°C. Slightly higher magnitude excess changes are shown for the 

threshold approach, for example, the latitude band around the equator in Africa 

which shows higher magnitude negative excess changes compared with the block 

minima approach. This could reflect extremes that are part of the same event 

within the same year, which are excluded when using an annual block minima. As 

with the choice of reference period for assessing excess changes in temperature, 
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the choice of method used to define extremes does not have a substantial impact 

on results for much of the globe, adding further confidence to the overarching 

findings of excess temperature changes especially for those areas showing the 

greatest excess changes. 

 

 
Figure 5.4 Comparison of RCP8.5 (a) and RCP4.5 (b) emissions scenarios, shown as future 
excess changes in cold extremes per degree of global warming. The number on the right-hand side 
of (b) represents the global pattern correlation with (a). As in previous figures, all results are from 
one ensemble member from CanESM2 for SON. 

 

5.4 Uncertainty due to different levels of radiative forcing  

All results of future projections presented so far in the thesis are based on the 

RCP8.5, “business-as-usual” scenario, or highest emissions scenario. It would be 
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useful to know the magnitude of excess changes for alternative scenarios with 

weaker greenhouse gas forcings, especially in terms of attributing projections to 

greenhouse gases and providing further information regarding, for instance, the 

benefits from mitigation for policymakers, stakeholders and the public. Therefore, 

by way of example, Figure 5.4 shows excess changes per degree of global warming 

for RCP8.5 (a) and RCP4.5 (b) with the latter representing a mid-range 

mitigation emissions scenario (Taylor et al. 2012). These results are calculated 

using simple pattern scaling (e.g. Tebaldi and Arblaster 2014), dividing excess 

changes for both emissions scenarios by the respective change in global mean 

temperature. Comparing the two figures, it is clear that the local responses are 

very similar between both scenarios, suggesting that future excess changes in cold 

extremes are indeed a consequence of, and mostly proportional to the amount of 

global warming. This is further emphasised in the high pattern correlation of 0.96 

which describes how well the spatial patterns for the globe match between the 

two scenarios. 

 

5.5 Discussion and conclusions 

This chapter serves to explore some of the potential sensitivities and uncertainties 

of the results shown in Chapters 2 – 4 of this thesis. Firstly, it highlights that the 

conclusions of the previous chapters generally remain robust, irrespective of 

methodological choice in defining extremes, and for the most part, regardless of 

choosing a long or short reference period. A moving window reference period does 

show some differences compared with using a fixed climatological reference period, 

however, this is less of an issue related to sensitivities, and rather points to a 

different question altogether. This emphasises the importance of clearly 

communicating the research question as well why the associated methods and 
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parameters are appropriate for the particular study, for example, why a specific 

reference period is chosen and what it explicitly means for the results. 

 

When communicating how extreme temperatures are changing, anomalies are 

particularly useful to emphasise how unusual a temperature is compared with 

what is normal, especially if comparing between regions that experience different 

climates. However, it is still useful to know how extreme temperatures are 

changing in an absolute sense, in terms of exceeding absolute thresholds that pose 

a risk to society. For example, in Melbourne, Australia, the health of people aged 

65 years and over is at risk when daily temperatures exceed 30°C (Nicholls et al. 

2008). This type of information is crucial for making informed decisions that aim 

to reduce the risk of negative impacts from warming temperatures, however, 

absolute temperature thresholds are locally specific and cannot be used in a 

universal sense, as anomalies can. In the results presented here, it is shown that 

excess changes in absolute temperatures are similar in magnitude to those of 

anomalies, further adding to the robustness of the findings related to the rate of 

warming of extreme temperatures relative to mean temperatures. 

 

Chapters 3 and 4 only show projections from the highest emissions scenario 

available in CMIP5, because in these chapters, we were interested in analysing 

results with the strongest signals in order to identify common patterns of change 

and relationships between different variables. By providing information of 

projections of other possible future scenarios, the range of possible outcomes can 

be used to understand how greenhouse gases might impact excess temperatures in 

the future. As shown here, the excess changes in temperature are generally 

proportional to the amount of global warming, with the mid-emissions scenario 

still projecting cold extremes to warm at least 3°C more than the mean for many 
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extratropical Northern Hemisphere regions, compared to greater than 5°C in the 

‘business-as-usual’ scenario that is associated with a stronger global warming 

signal. A newly updated set of emissions scenarios are included as part of the 

newest model intercomparison in CMIP6, with a greater focus on societal 

development (Eyring et al. 2016a; O’Neill et al. 2016). Future work would need to 

explore these new emissions scenarios and how this affects projections of 

temperature extremes. 

 

There are still other uncertainties related to the analyses, for example, those 

related to regridding datasets and spatially aggregating data. Chapter 2 touches 

on these aspects, stating that different remapping techniques are unlikely to cause 

any substantial differences, with previous studies showing only very small 

uncertainties related to the choice of regridding method (e.g. Loikith et al. 2015). 

However, this is likely to depend on the chosen metric, and extremes are usually 

far more sensitive to interpolation choice than means (e.g. Avila et al. 2015). 

There are also uncertainties related to the gridded observational product itself, 

that is, HadGHCND, some of which are discussed briefly in Chapter 2, such as 

the possible artefacts that can result from spatially aggregated datasets (e.g. 

Rhines and Huybers 2013; Director and Bornn 2015).  

 

Even though alternative methodological choices do not have a substantial impact 

on results for the specific type of analyses used throughout this thesis, it is still 

essential to test whether results are sensitive to these choices as this may depend 

on the type of analysis being performed. A greater understanding of how 

methodological choices affect results can reduce the uncertainties regarding future 

changes in climate, thereby providing more accurate and reliable information for 

the end-user. 
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Chapter 6  

 

Conclusions and future work 

 

 

6.1 Summary of findings 

The overarching goal of this thesis was to provide an in-depth understanding of 

how different aspects of the temperature distribution are changing. In particular, 

analyses focused on how temperature extremes are changing relative to mean 

temperatures for all seasons and all global land areas, in both recent and future 

decades. This is a simple measure to illustrate disproportionate warming rates for 

different parts of the distribution, especially for the tails that are arguably most 

relevant in terms of impacts, in comparison to mean temperatures, a frequently 

used and therefore easily understood measure. Understanding the different rates 

of change between extremes and average temperatures was achieved by 

addressing several smaller aims which were presented in four chapters in this 

thesis.  

 

In Chapter 2, several reanalysis datasets were evaluated against a quasi-global 

gridded observational dataset of daily maximum and minimum temperature, that 

is then used in subsequent chapters to evaluate a selection of Global Climate 

Models (GCMs). Chapters 3 and 4 then focused on changes in seasonal 

temperature extremes relative to changes in seasonal mean temperatures in 
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observations and climate models. Chapter 4 also included an investigation into 

the physical mechanisms related to the most robust changes in extremes relative 

to mean temperatures. Lastly, Chapter 5 provides insight into the various 

sensitivities related to method choices that were not considered in earlier thesis 

chapters. This chapter presents the four main outcomes of the aims presented in 

Chapter 1 and summarises the key findings of each chapter and overarching 

outcomes of this thesis, including opportunities for future research. The main 

conclusions from this thesis are: 

 

1. When assessing daily temperature variability and extremes, dataset 

choice has an impact on analysing extremes and statistical moments 

other than the mean, but general spatial and temporal patterns in 

trends remain qualitatively robust. 
 

In Chapter 2, several commonly used reanalysis datasets of daily maximum and 

minimum temperature were compared to the Hadley Centre Global Historical 

Climatology Network-Daily (HadGHCND) dataset (Caesar et al. 2006) to 

evaluate whether assessments of daily temperature variability and extremes are 

sensitive to the input dataset. This chapter also introduced a method for 

investigating changes in daily temperature extremes relative to daily mean 

temperatures. There are some limitations to this study, namely those related to 

the spatial coverage of the HadGHCND dataset, which lacks data for parts of 

South America, Africa, southern Asia and the Middle East. Some of the largest 

disagreements between datasets are shown for regions that are more data sparse, 

so information on these regions needs to be taken with caution. The key findings 

from this chapter highlighted that: 
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• General trends in daily mean maximum and minimum temperature 

anomalies from 1980-2014 are similar irrespective of dataset choice. 

• Other statistics, such as standard deviation and skewness, show differences 

depending on the dataset, particularly for daily minimum temperature 

anomalies. 

• Using the Extreme Value Theory (EVT) to assess the tails of the 

distribution specifically, where a point-process model was fitted to the data 

to describe extremes that exceed the top and bottom 1.5%, the lower tails 

in daily minimum temperature are most sensitive to dataset choice. 

• In recent decades, annual cold extremes have been warming at a faster 

rate than annual mean temperatures for much of the Northern Hemisphere 

extratropics, while annual warm extremes have been warming faster than 

the mean in some tropical and subtropical regions, including parts of 

Australia, Asia, the Mediterranean and southern South America. 

• While the uncertainties are sometimes large for the exact quantification of 

changes in temperature variability and extremes, the qualitative 

conclusions regarding general spatial patterns in the sign of change, 

especially for regions showing the strongest trends, remain robust across 

the range of datasets. 

 

2. In recent decades, the greatest differences in the rates of change 

between extreme and mean temperatures occur in parts of North 

America and Eurasia, where cold extremes are warming faster than the 

mean, particularly in autumn and spring. Based on the CMIP5 models, 

this pattern becomes more pronounced in the future, with cold 

extremes warming faster than the mean for much of the Northern 

Hemisphere extratropics, in all seasons except boreal summer. 
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Chapter 3 assessed recent and future projected changes in seasonal warm and cold 

extremes relative to seasonal mean temperatures, referred to as ‘excess changes’. 

This follows on from the annual excess trends investigated in Chapter 2. The 

same observational dataset, HadGHCND, is assessed alongside a suite of climate 

models from the Coupled Model Intercomparison Project phase 5 (CMIP5) 

archive (Taylor et al. 2012), which were then used to analyse possible future 

changes in seasonal extremes relative to the seasonal mean. The findings in this 

study are important because they show that disproportionate rates of change are 

evident for many regions across the globe, which have an impact on the 

probability and frequency of extreme events. Further, the fact that some seasons 

show larger disproportionate rates of warming compared to others could 

potentially exacerbate the seasonal impacts from extremes. Other than the finding 

that the most striking excess changes occur in the cold tails relative to the mean, 

this chapter has a greater focus on cold extremes because previous work has 

generally given more attention to the disproportionate changes in hot extremes 

(e.g. Donat et al. 2017; Vogel et al. 2017). The main conclusions from this 

chapter are: 

 

• In recent decades, the cold tails show the largest difference in warming 

relative to the mean, shown for some mid- to high-latitude Northern 

Hemisphere regions in all seasons except boreal summer. However, pattern 

correlations between CMIP5 models and the observational dataset are 

generally low for assessing recent excess changes. Low pattern correlations 

are also apparent between the CMIP5 models themselves, suggesting that 

recent excess changes are relatively spatially incoherent for much of the 

globe. 
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• Future simulated excess changes in the CMIP5 models are systematic and 

robust with high model agreement. The strongest excess changes are 

shown for many mid- to high-latitude regions in the Northern Hemisphere, 

where cold extremes are projected to warm faster than the mean. 

• These projected disproportionate changes in the cold tails are apparent for 

all seasons except boreal summer, with cold extremes warming at least 

3°C, or 50% more than mean temperatures by the end of the 21st century, 

and sometimes more than 5°C faster than the mean for some regions in 

Alaska, Canada and northern Eurasia. 

 

3. Different physical mechanisms dominate the enhanced warming of 

cold extremes in the Northern Hemisphere extratropics for different 

seasons: reductions in cold air temperature advection dominate the 

accelerated warming of cold extremes during winter months, while 

decreases in snow cover and related albedo changes are likely the 

major contributors during autumn and spring. 
 

Chapter 4 focused on the most robust findings of the previous chapter, that is, 

future excess changes in seasonal cold extremes in the Northern Hemisphere mid- 

to high-latitudes, and went further to investigate the physical mechanisms that 

are plausibly contributing to these projected changes. This was done by focusing 

on the environmental conditions on or prior to the anomalously coldest day of the 

season. The main findings are: 

 

• During boreal winter, reductions in cold air temperature advection prior to 

the days when the cold extremes occur is the dominant driver of the 

enhanced warming of cold extremes relative to mean temperatures in 

North America, parts of Europe and Eurasia. 
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• During the shoulder seasons, particularly boreal autumn, decreases in snow 

cover and associated reductions in surface albedo on the anomalously 

coldest day of the season play a major role in the enhanced warming of 

cold extremes relative to daily mean temperature in the Northern 

Hemisphere extratropics. 

• The anomalously coldest days in the season are projected to shift in timing 

by the late 21st century, occurring earlier in autumn months, and later in 

spring months in high-latitude Northern Hemisphere regions. This suggests 

an overall flattening of the seasonal cycle in these regions and contributes 

to providing more incoming shortwave radiation on the days with the 

largest negative temperature anomalies. 

 

4. Conclusions regarding changes in temperature extremes relative to 

the mean remain robust irrespective of methodological choice.  
 

Within each chapter, there are various sensitivities related to methodological 

choices that are not examined in much detail, other than those related to dataset 

choice which are discussed thoroughly in Chapter 2. For instance, Chapters 2, 3 

and 4 all use slightly different methods to define extremes. Chapter 2 

characterises extremes by fitting a point-process model to the data, which 

describes exceedances above or below a non-stationary 1.5% threshold, while 

Chapter 3 describes extremes as the average of data points exceeding a 1.5% 

threshold that can occur in any given year throughout the season, and Chapter 4 

identifies extremes as the seasonal block minimum. For this reason, Chapter 5 

explored some of these sensitivities by comparing alternative methodological 

choices. The major points from this chapter found: 
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• Results of future simulated excess changes in cold extremes show little 

sensitivity to the choice of fixed reference period used to calculate 

temperature anomalies. 

• When using a 30-year moving window to calculate anomalies, excess 

changes are qualitatively similar to those calculated using a fixed reference 

period, however, the day the cold extreme occurs is affected. Much smaller 

shifts in the timing of cold extremes are projected for the Northern 

Hemisphere extratropics, compared to more substantial shifts when using a 

fixed reference period. When using a moving climatology as a reference 

period, changes in the mean are removed, so any changes shown in this 

instance reflect changes in variability and extremes. 

• The methods used to define extremes, for example, using a threshold 

approach versus taking the seasonal block minimum, are robust for looking 

at future excess changes, with spatial patterns, sign of excess change, and 

general magnitudes being similar irrespective of the method. Similarly, 

using absolute temperatures instead of temperature anomalies result in 

similar magnitude excess changes for the globe, with the overall 

conclusions remaining the same.  

• Two CMIP5 future emissions scenarios were compared: a high emissions 

scenario and a mid-emissions scenario. Results suggest that future excess 

changes in cold extremes are proportional to the magnitude of global 

warming.  

 

While each chapter addresses individual aims, the overarching findings provide 

insight into the most robust disproportionate rates of change between extreme 

and mean temperatures. In combination, these different studies highlight that 

cold extremes in many mid- and high-latitude Northern Hemisphere regions are 
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observed and expected to warm disproportionately faster than regional increases 

in mean temperatures. This finding is robust across a range of different 

observational datasets and climate models and is true irrespective of the methods 

used to define extreme temperatures. While this is evident for annual cold 

extremes, autumn and winter months contribute the most to this excess, with 

spring months also showing widespread enhanced warming of cold extremes 

relative to the mean. For these regions in the Northern Hemisphere mid- to high-

latitudes, the rates of warming of cold extremes are faster than both mean 

temperatures and hot extremes, suggesting overall variability in these regions is 

projected to decrease by the late 21st century compared with the mid-20th century. 

 

6.2 Future work 

This thesis creates several opportunities for future research. In Chapter 4, model 

output for several different climate variables was assessed to explore the possible 

drivers of the enhanced warming of cold extremes relative to mean temperatures. 

This work could be expanded on in several ways. Firstly, only simulations of 

future changes in snow cover, surface albedo and horizontal temperature 

advection are assessed, so this work is limited in that there is no evaluation of the 

climate models against observational data. Assessing observational snow cover 

data, for example, against CMIP5 simulations could reduce uncertainties in future 

projections of snow cover changes. Further, only existing simulations of climate 

variables were analysed, where the relationships between the variables were 

explored to make inferences about the physical processes driving the enhanced 

warming of the anomalously coldest days. Running specific model simulations 

with prescribed boundary conditions in variables such as snow cover and surface 

albedo would more robustly attribute the excess changes in cold extremes to 

specific drivers. 
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Aside from assessing global pattern correlations between the CMIP5 models and 

observations in Chapters 3 and 4, model skill, in terms of how well the models 

resemble the observations, was not evaluated. The Perkins skill score (Perkins et 

al. 2007) is one application used to measure the agreement, or overlap between 

modelled and observed distributions, however, in more recent years, the scientific 

community is moving towards more process-oriented diagnostics (Eyring et al. 

2019). Future research could work towards developing a process-based constraint 

for future projections based on the results of Chapter 4. Given the availability of 

suitable observational data for the variables investigated, it would be useful to 

identify models for which the identified relationships or physical processes 

between different variables are more realistic. Further, new tools, such as the 

Earth System Model Evaluation Tool (ESMValTool) (Eyring et al. 2016b), are 

being developed for rapid climate model evaluation to address biases in the 

models. Implementing these tools could greatly increase confidence in the model-

based results in this thesis. Additionally, the methods used in this thesis could be 

applied to the new generation of CMIP6 models (Eyring et al. 2016a) and 

associated Scenario Model Intercomparison Project (ScenarioMIP) future 

emissions scenarios, which extend beyond the current Representative Pathway 

Scenarios (RCPs) by updating trends in recent greenhouse gas emissions as well 

as integrating socioeconomic factors into the scenarios (O’Neill et al. 2016). 

 

Another avenue of future work would be to expand the study presented in 

Chapter 2. For example, exploring the reasons behind the differences in the 

datasets would be useful to improve reanalysis data, particularly to understand 

why greater sensitivities are shown in the cold tails compared with the warm 

tails, and in daily minimum temperatures compared with daily maximum 
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temperatures. In addition, the methods used in Chapter 2 could be easily applied 

to evaluate sensitivities in newly developed datasets of daily temperature. 

 

6.3 Concluding remarks 

The research presented in this thesis comprehensively assesses changes in several 

aspects of the distribution of daily temperature, with a specific focus on how 

extremes are changing in relation to average temperatures. Aside from assessing 

changes in the warm tails of the distribution relative to mean temperatures, there 

is a strong focus in this thesis on the accelerated warming of cold extremes and 

the potential drivers influencing this. Cold extremes have generally been a less 

prominent focus in existing literature, however, like hot extremes, the impacts 

from warming cold extremes affect numerous sectors. These impacts will likely be 

exacerbated with the anticipated disproportionate warming rates of cold extremes 

relative to the rest of the temperature distribution. 

 

The findings presented in this thesis contribute to the understanding of changes 

in extreme temperatures by taking a more holistic approach than is generally 

taken, by considering how they are changing in parallel with changes in the mean. 

This is assessed systematically in both observations and climate model 

simulations across all seasons and at the global scale. In addition, this thesis adds 

to the current knowledge by exploring the environmental conditions on the day of 

the extreme and the physical relationships that are contributing to the projected 

disproportionate rates of warming in cold extremes. The methodologies and 

statistical analyses applied in this thesis are simple, yet robust measures that 

have been evaluated against alternative methods to add confidence to the 

conclusions. This reduces the potential sensitivities surrounding methodological 

choices in future studies of extremes, and the approach taken here can easily be 
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reproduced to not only further analyse changes in temperature extremes but also 

investigate other climate variables in a similar way. Addressing the 

disproportionate rates of warming in extremes and mean temperatures is crucial 

so that policymakers and future planners have the information necessary to 

reduce the negative impacts that can arise from exacerbated temperature 

extremes due to climate change. 
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S.1 Supplementary material for Chapter 2 

 

 

 
Figure S1.1 Example of a quantile-quantile plot using HadGHCND data showing the 
goodness-of-fit for empirical and model distributions. If the data lie close to the 1-1 
diagonal line, it indicates that the data are a good fit to the PP distribution used to 
define extremes. 
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Figure S1.2 Parameter estimates for standard deviation (°C) and skewness, for both daily 
maximum and daily minimum temperature anomalies. Estimates are shown for SREX 
regions that fulfill the completeness criteria, and for the globe, and are calculated by 
pooling data for each region over the period 1980-2014. 
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Figure S1.3 Time series plots of the annual mean for daily maximum temperature 
anomalies (°C) for each region with sufficient data, as well as the globe. 
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Figure S1.4 As Figure S1.3, but for the annual mean of daily minimum temperature 
anomalies (°C). 
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Figure S1.5 As Figure S1.3, but for the annual standard deviation of daily maximum 
temperature anomalies (°C). 
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Figure S1.6 As Figure S1.3, but for the annual standard deviation of daily minimum 
temperature anomalies (°C). 
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Figure S1.7 As Figure S1.3, but for the annual skewness of daily maximum temperature 
anomalies (°C). 
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Figure S1.8 As Figure S1.3, but for the annual skewness of daily minimum temperature 
anomalies (°C). 
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Figure S1.9 Time series plots of the location parameter of the high tail of maximum 
temperature anomalies for each region and the globe, based on a PP model fit using 
running decadal windows from 1980 to 2014. 
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Figure S1.10 As Figure S1.9, but for the high tail of minimum temperature anomalies. 
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Figure S1.11 As Figure S1.9, but for the low tail of maximum temperature anomalies. 
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Figure S1.12 As Figure S1.9, but for the low tail of minimum temperature anomalies. 
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Figure S1.13 Time series plots in the scale parameter of the high tail of maximum 
temperature anomalies for each region and the globe, based on a PP model fit using 
running decadal windows from 1980 to 2014. 
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Figure S1.14 As Figure S1.13, but for the high tail of minimum temperature anomalies. 
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Figure S1.15 As Figure S1.13, but for the low tail of maximum temperature anomalies. 
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Figure S1.16 As Figure S1.13, but for the low tail of minimum temperature anomalies. 
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Figure S1.17 Time series plots in the shape parameter of the high tail of maximum 
temperature anomalies for each region and the globe, based on a PP model fit using 
running decadal windows from 1980 to 2014. 
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Figure S1.18 As Figure S1.17, but for the high tail of minimum temperature anomalies. 
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Figure S1.19 As Figure S1.17, but for the low tail of maximum temperature anomalies. 
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Figure S1.20 As Figure S1.17, but for the low tail of minimum temperature anomalies. 
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Figure S1.21 Comparison of two different methods used to calculate excess trends. The 
left column shows results calculated using a non-stationary PP model fit to the data to 
describe exceedances above (below for the cold tails) the upper (lower) 1.5% of all data 
points, while the right column shows results calculated as the difference between the 
98.5th quantile (1.5th quantile for the cold tails) and the mean. 
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Figure S1.22 Time series of the mean, standard deviation and skewness for the water 
equivalent of accumulated snow depth in NCEP2 over the period 1992-2002. The first 
row shows time series for region 3 (western North America) and the bottom row are time 
series for region 18 (North Asia/Russia). A step change in 1998-1999 is consistent with 
the step change in NCEP2 Tminlow apparent for these regions (see Figures 2.5 and 2.8). 
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Table S1.1 Trends in the mean (°C) per decade for each region and the globe over 1980-
2014. Bold font indicates statistical significance at the 5% level. 

 HadGHCND ERA-Interim NCEP2 JRA-55 MERRA-2 
Region Tmax Tmin Tmax Tmin Tmax Tmin Tmax Tmin Tmax Tmin 

1 0.40 0.40 0.38 0.35 0.43 0.44 0.33 0.37 0.16 0.20 
2 0.57 0.63 0.62 0.63 0.58 0.74 0.61 0.65 0.32 0.39 
3 0.13 0.14 0.23 0.10 0.34 0.34 0.39 0.26 0.19 0.21 
4 0.04 0.08 0.20 0.13 0.06 0.13 0.31 0.21 0.24 0.24 
5 0.19 0.35 0.23 0.28 0.16 0.29 0.28 0.30 0.31 0.41 
6 0.27 0.16 0.40 0.27 0.24 0.06 0.37 0.19 0.29 0.21 
10 0.67 0.26 0.22 0.08 -0.54 -0.29 0.21 -0.04 0.03 -0.15 
11 0.50 0.51 0.47 0.43 0.43 0.51 0.38 0.39 0.37 0.40 
12 0.53 0.37 0.56 0.39 0.39 0.37 0.43 0.36 0.42 0.34 
13 0.41 0.33 0.46 0.30 0.11 0.20 0.34 0.28 0.24 0.29 
14 0.37 0.36 0.38 0.29 0.37 0.42 0.42 0.41 0.29 0.33 
17 0.72 -0.26 0.15 0.05 -0.04 0.21 -0.27 -0.11 0.05 0.08 
18 0.30 0.26 0.32 0.32 0.36 0.46 0.29 0.30 0.13 0.17 
19 0.51 0.35 0.70 0.52 0.28 0.20 0.45 0.34 0.37 0.35 
20 0.38 0.24 0.41 0.22 0.42 0.40 0.21 0.15 0.10 0.14 
21 0.39 0.36 0.25 0.25 0.14 0.32 0.06 0.12 0.17 0.19 
22 0.36 0.29 0.37 0.31 0.24 0.10 0.29 0.19 0.15 0.17 
23 0.45 0.42 0.24 0.23 0.60 0.35 0.20 0.09 0.13 0.23 
24 0.21 0.25 0.24 0.11 0.16 0.09 0.19 0.08 -0.01 0.11 
25 0.12 0.02 0.16 -0.17 0.15 0.12 0.19 0.17 -0.11 0.02 
26 0.32 0.11 0.24 -0.19 0.32 0.29 0.27 0.22 0.18 0.24 

Global 0.36 0.33 0.39 0.32 0.34 0.38 0.34 0.31 0.19 0.24 
 
 
Table S1.2 As Table S1.1, but for standard deviation (°C per decade). 

 HadGHCND ERA-Interim NCEP2 JRA-55 MERRA-2 
Region Tmax Tmin Tmax Tmin Tmax Tmin Tmax Tmin Tmax Tmin 

1 -0.07 -0.07 -0.16 -0.14 -0.21 -0.29 -0.12 -0.13 -0.12 -0.13 
2 -0.07 -0.08 -0.08 -0.06 -0.17 -0.17 -0.07 -0.07 -0.05 -0.03 
3 -0.10 -0.11 -0.07 -0.08 -0.14 -0.27 -0.04 -0.04 -0.05 -0.09 
4 -0.03 -0.10 -0.05 -0.05 -0.12 -0.17 0.01 -0.04 -0.02 -0.06 
5 -0.03 -0.17 -0.03 -0.10 -0.16 -0.20 -0.02 -0.08 -0.02 -0.11 
6 0.08 0.16 -0.01 -0.02 -0.04 -0.03 0.03 0.01 -0.01 -0.04 
10 0.04 -0.04 0.06 0.02 0.02 0.00 0.11 0.04 0.10 0.02 
11 -0.08 -0.09 -0.09 -0.08 -0.07 -0.24 -0.05 -0.04 -0.04 -0.05 
12 0.07 0.02 0.06 0.04 0.04 -0.09 0.04 0.04 0.06 0.05 
13 0.03 0.03 0.02 0.00 0.05 0.00 0.03 0.03 0.03 0.02 
14 0.00 -0.02 0.00 -0.02 0.06 0.07 0.04 0.02 0.05 0.02 
17 0.02 0.10 0.02 -0.01 0.05 0.01 -0.03 0.00 -0.01 0.01 
18 0.02 -0.01 -0.01 -0.04 -0.06 -0.21 -0.01 -0.04 -0.02 -0.05 
19 0.16 0.12 0.09 0.05 0.07 -0.03 0.06 0.05 0.08 0.06 
20 0.11 0.08 0.08 0.02 -0.01 -0.18 0.06 0.05 0.06 0.05 
21 0.09 0.06 0.05 0.04 -0.02 -0.08 0.03 0.03 0.05 0.02 
22 0.09 0.04 0.07 0.04 0.08 0.01 0.07 0.03 0.05 0.03 
23 -0.04 -0.03 0.02 -0.01 -0.30 -0.17 0.05 0.04 -0.01 0.04 
24 0.01 -0.01 0.02 0.01 0.05 0.04 0.07 0.04 -0.01 0.01 
25 0.03 0.04 0.01 0.03 0.05 -0.03 0.06 0.04 0.02 0.00 
26 0.01 0.04 0.02 0.07 0.03 -0.01 0.04 0.03 0.01 0.01 

Global 0.00 -0.03 -0.03 -0.04 -0.07 -0.16 -0.01 -0.03 -0.02 -0.04 
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Table S1.3 As Table S1.1, but for skewness (trend per decade). 

 HadGHCND ERA-Interim NCEP2 JRA-55 MERRA-2 
Region Tmax Tmin Tmax Tmin Tmax Tmin Tmax Tmin Tmax Tmin 

1 0.00 -0.02 -0.02 -0.04 0.02 0.03 0.01 0.00 0.02 0.02 
2 0.00 0.02 -0.02 -0.02 0.04 0.03 0.01 0.03 0.02 0.03 
3 0.00 0.01 0.00 0.03 0.01 0.08 0.00 0.02 0.01 0.03 
4 0.03 0.07 0.03 0.08 0.07 0.12 0.05 0.05 0.04 0.09 
5 0.08 0.07 0.08 0.06 0.10 0.10 0.07 0.07 0.07 0.08 
6 -0.01 0.04 0.02 0.00 0.02 0.02 0.04 0.05 0.06 0.04 
10 -0.03 -0.04 0.02 -0.03 0.07 0.04 0.01 -0.03 0.03 0.02 
11 0.03 0.08 0.03 0.05 0.04 0.09 0.01 0.03 0.00 0.01 
12 -0.03 -0.03 -0.03 -0.05 -0.01 0.07 0.04 -0.03 -0.03 -0.08 
13 0.04 -0.03 0.03 0.00 0.03 0.06 0.02 0.01 0.03 -0.01 
14 0.06 0.00 0.00 -0.08 -0.02 -0.06 0.00 0.01 -0.01 -0.02 
17 0.01 -0.09 0.01 -0.01 0.20 -0.04 0.3 -0.04 0.00 -0.01 
18 -0.04 -0.01 -0.02 -0.02 0.00 0.05 0.02 0.03 -0.02 -0.03 
19 -0.05 -0.12 -0.02 -0.11 -0.09 -0.03 -0.01 -0.02 -0.01 -0.11 
20 -0.02 -0.09 0.05 0.01 -0.05 0.06 0.00 0.00 0.03 -0.06 
21 -0.02 -0.06 0.00 -0.08 0.13 0.12 -0.02 -0.02 0.00 -0.05 
22 0.01 0.01 0.03 0.01 0.04 0.09 0.05 0.04 0.03 0.00 
23 0.13 0.07 -0.04 0.09 0.29 0.25 0.06 0.10 0.03 -0.02 
24 -0.12 0.16 -0.14 -0.06 0.05 -0.06 0.05 0.07 -0.15 -0.01 
25 0.02 0.02 -0.03 0.02 0.00 0.06 0.00 0.04 0.03 0.01 
26 -0.01 0.01 -0.04 -0.03 0.00 0.02 0.00 0.02 -0.01 0.02 

Global -0.02 0.01 0.00 0.02 0.04 0.09 0.02 0.04 0.00 0.01 
 
 
 

Table S1.4 Decadal trends in the location parameter for the high tails of maximum and 
minimum temperature anomalies (TmaxH and TminH, respectively) for each region and the 
globe, based on a PP model fit using running decadal windows from 1980 to 2014. Bold 
font indicates statistical significance at the 5% level. 

 HadGHCND ERA-Interim NCEP2 JRA-55 MERRA-2 
Region TmaxH TminH TmaxH TminH TmaxH TminH TmaxH TminH TmaxH TminH 

1 0.43 0.44 -0.04 0.05 0.36 0.14 0.31 0.31 -0.01 0.10 
2 0.59 0.84 0.71 0.84 0.76 0.82 0.91 0.94 0.62 0.79 
3 -0.21 -0.16 -0.11 -0.06 -0.14 -0.12 0.24 0.15 0.06 0.13 
4 0.02 0.10 0.11 0.23 -0.07 0.03 0.52 0.28 0.38 0.45 
5 0.15 0.17 0.24 0.14 -0.19 -0.15 0.44 0.25 0.46 0.32 
6 0.44 0.41 0.50 0.12 0.18 -0.12 0.75 0.29 0.49 0.09 
10 0.90 0.38 0.41 0.19 -0.46 -0.10 0.47 0.08 0.36 0.15 
11 0.20 0.10 0.18 0.08 0.28 0.06 0.19 0.26 0.36 0.10 
12 0.44 0.24 0.46 0.22 0.18 -0.03 0.26 0.24 0.27 0.04 
13 0.60 0.46 0.63 0.44 0.25 0.30 0.58 0.47 0.43 0.39 
14 0.74 0.77 0.61 0.21 0.72 0.56 0.60 0.56 0.61 0.47 
17 0.93 -0.19 0.17 0.03 0.13 0.19 -0.26 -0.07 0.12 0.11 
18 -0.06 0.12 -0.01 0.00 -0.01 0.15 0.12 0.16 -0.18 -0.22 
19 1.02 0.78 1.13 0.72 0.41 0.20 0.71 0.64 0.87 0.52 
20 0.94 0.72 1.21 0.53 0.30 0.35 0.53 0.43 0.58 0.20 
21 0.67 0.44 0.47 0.22 0.38 0.39 0.28 0.22 0.60 0.21 
22 0.63 0.55 0.76 0.47 0.55 0.31 0.76 0.34 0.51 0.32 
23 0.86 0.73 0.24 0.30 0.40 0.15 0.36 0.31 0.25 0.40 
24 0.17 0.46 0.16 0.12 0.68 0.33 0.64 0.39 -0.22 0.19 
25 0.26 0.30 0.27 0.12 0.35 0.38 0.50 0.47 0.11 0.22 
26 0.43 0.43 0.23 0.01 0.47 0.54 0.62 0.55 0.28 0.53 

Global 0.21 0.31 0.27 0.27 0.23 0.32 0.38 0.34 0.14 0.13 
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Table S1.5 As Table S1.4, but for the low tails of maximum and minimum temperature 
anomalies (TmaxL and TminL, respectively) of the location parameter. 

 HadGHCND ERA-Interim NCEP2 JRA-55 MERRA-2 
Region TmaxL TminL TmaxL TminL TmaxL TminL TmaxL TminL TmaxL TminL 

1 -0.60 -0.85 -0.87 -0.66 -1.46 -2.18 -0.86 -0.81 -1.01 -0.98 
2 -1.03 -1.27 -1.01 -0.80 -1.59 -1.62 -1.11 -1.14 -1.07 -1.03 
3 -0.85 -1.00 -1.00 -0.93 -1.20 -2.55 -0.89 -0.84 -0.84 -1.24 
4 -0.92 -1.27 -1.10 -1.26 -1.64 -2.36 -0.95 -0.92 -1.05 -1.65 
5 -0.78 -1.27 -0.92 -0.93 -1.44 -2.16 -0.84 -0.89 -0.98 -1.41 
6 0.02 -0.19 -0.43 -0.67 -0.68 -0.37 -0.56 -0.52 -0.50 -0.65 
10 -0.15 -0.23 0.05 -0.10 0.60 0.48 0.06 0.27 0.33 0.18 
11 -0.75 -0.73 -0.83 -0.71 -0.75 -2.01 -0.56 -0.54 -0.40 -0.61 
12 -0.56 -0.53 -0.70 -0.41 -0.79 -1.78 -0.46 -0.55 -0.25 -0.11 
13 -0.24 0.03 -0.47 -0.14 -0.04 -0.19 -0.27 -0.01 -0.15 -0.10 
14 -0.44 -0.47 -0.38 -0.12 -0.26 0.24 -0.47 -0.41 -0.23 -0.29 
17 -0.58 0.67 -0.13 -0.14 0.08 0.02 0.06 0.26 -0.03 -0.05 
18 -0.21 -0.39 -0.52 -0.66 -0.83 -1.56 -0.54 -0.64 -0.05 -0.38 
19 -0.14 0.11 -0.58 -0.32 0.11 -1.37 -0.28 -0.30 -0.19 -0.17 
20 -0.15 0.13 -0.53 -0.48 -0.31 -1.85 -0.15 -0.08 -0.19 -0.06 
21 -0.11 -0.13 -0.21 0.10 -0.54 -1.68 0.09 0.03 0.01 0.00 
22 -0.10 -0.17 -0.25 -0.14 -0.08 -0.70 -0.13 -0.10 0.01 -0.08 
23 -0.76 -0.72 -0.36 -0.68 -2.15 -1.36 -0.15 -0.24 -0.25 -0.26 
24 -0.01 -0.36 -0.01 0.00 -0.13 0.12 -0.04 0.00 0.26 -0.08 
25 0.13 0.09 0.25 0.28 -0.13 -0.26 0.11 -0.31 0.24 0.00 
26 -0.32 0.04 -0.10 0.51 -0.68 -0.26 -0.30 -0.26 -0.26 -0.20 

Global -0.47 -0.66 -0.78 -0.82 -0.99 -1.80 -0.58 -0.70 -0.54 -0.75 
 
 
Table S1.6 As Table S1.4, but for the high tails of maximum and minimum temperature 
anomalies (TmaxH and TminH, respectively) of the scale parameter. 

 HadGHCND ERA-Interim NCEP2 JRA-55 MERRA-2 
Region TmaxH TminH TmaxH TminH TmaxH TminH TmaxH TminH TmaxH TminH 

1 0.18 0.04 -0.11 -0.11 0.19 0.06 0.07 0.05 0.02 0.08 
2 -0.02 0.09 0.07 0.09 0.11 0.10 0.19 0.15 0.08 0.05 
3 0.04 0.00 -0.05 -0.05 -0.04 -0.05 -0.04 -0.03 0.02 -0.04 
4 -0.09 0.06 -0.13 0.03 -0.11 -0.03 -0.02 0.03 -0.03 0.04 
5 -0.05 0.06 0.00 0.04 -0.10 -0.01 0.05 0.04 0.06 0.06 
6 -0.04 -0.06 -0.06 -0.06 -0.13 -0.08 0.00 0.00 -0.05 -0.03 
10 0.14 0.01 0.07 0.08 0.14 0.16 0.05 0.03 0.06 0.04 
11 -0.02 -0.05 0.00 -0.04 0.04 0.01 0.01 0.03 0.11 0.04 
12 -0.01 -0.04 -0.04 -0.02 0.00 -0.02 0.00 0.01 0.02 -0.08 
13 0.03 0.04 0.10 0.12 0.07 0.10 0.11 0.04 0.08 0.04 
14 0.12 0.21 0.09 0.01 0.08 0.08 -0.02 0.01 0.06 0.02 
17 0.05 -0.05 -0.04 -0.08 -0.02 -0.02 0.01 0.00 -0.03 -0.11 
18 -0.03 -0.03 -0.03 -0.02 0.01 -0.01 -0.04 0.00 -0.05 -0.05 
19 0.09 -0.03 0.20 -0.04 0.13 0.05 0.06 0.06 0.17 -0.03 
20 0.16 0.10 0.31 0.08 0.03 0.04 0.09 0.08 0.20 -0.01 
21 -0.08 -0.06 -0.03 -0.07 0.02 0.00 -0.01 -0.03 0.06 -0.06 
22 0.04 0.01 0.05 0.00 0.04 0.03 0.09 -0.02 0.07 0.05 
23 0.24 0.09 0.04 0.02 0.03 0.00 0.06 0.06 0.03 0.02 
24 -0.01 0.04 -0.10 0.03 0.02 0.02 0.08 0.11 -0.03 0.02 
25 -0.01 0.07 0.02 0.08 0.01 0.07 0.01 0.05 0.04 0.07 
26 0.00 0.05 -0.06 -0.05 0.00 0.01 0.01 0.01 -0.03 0.06 

Global -0.05 -0.02 -0.04 0.01 0.05 0.05 0.02 0.03 -0.03 -0.02 
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Table S1.7 As Table S1.4, but for the low tails of maximum and minimum temperature 
anomalies (TmaxL and TminL, respectively) of the scale parameter. 

 HadGHCND ERA-Interim NCEP2 JRA-55 MERRA-2 
Region TmaxL TminL TmaxL TminL TmaxL TminL TmaxL TminL TmaxL TminL 

1 -0.08 -0.24 0.01 0.01 -0.21 -0.12 -0.11 -0.04 -0.25 -0.14 
2 -0.05 -0.02 0.09 0.18 -0.14 -0.09 -0.04 -0.03 -0.08 0.05 
3 -0.35 -0.20 -0.43 -0.15 -0.58 -0.35 -0.33 -0.25 -0.44 -0.34 
4 -0.49 -0.35 -0.46 -0.43 -0.82 -0.83 -0.37 -0.40 -0.45 -0.64 
5 -0.21 -0.06 -0.19 -0.08 -0.39 -0.49 -0.18 -0.16 -0.19 -0.25 
6 -0.16 -0.44 -0.02 -0.20 -0.22 -0.27 -0.18 -0.25 -0.14 -0.32 
10 0.12 0.02 0.05 0.02 -0.06 0.00 0.05 0.18 0.11 0.08 
11 0.08 0.01 -0.03 -0.07 -0.19 -0.20 -0.10 -0.05 0.04 -0.07 
12 -0.04 -0.01 -0.09 -0.01 -0.24 -0.46 -0.04 -0.09 0.02 0.00 
13 -0.01 0.13 -0.03 0.08 -0.06 -0.38 0.02 0.02 0.00 0.07 
14 0.01 -0.03 0.01 0.05 -0.01 0.17 0.02 -0.02 0.07 0.00 
17 0.08 -0.06 0.00 0.04 -0.01 0.12 -0.01 0.03 0.11 0.27 
18 0.20 0.05 0.14 0.08 -0.05 0.07 -0.09 -0.04 0.16 0.06 
19 0.23 0.44 0.23 0.51 0.20 -0.35 0.14 0.15 0.19 0.25 
20 0.09 0.39 0.12 0.16 0.04 -0.04 -0.03 0.03 0.00 0.19 
21 -0.03 0.06 -0.05 0.13 -0.32 -0.37 -0.09 -0.06 -0.05 0.07 
22 0.01 0.00 0.02 0.06 -0.04 -0.50 0.03 -0.01 0.03 0.03 
23 -0.07 0.00 -0.07 -0.31 -0.27 -0.21 -0.01 -0.09 0.04 0.09 
24 0.12 -0.10 0.10 -0.01 0.08 0.05 0.00 -0.06 0.09 0.03 
25 0.15 -0.02 0.15 -0.05 0.07 0.01 0.11 -0.01 0.05 0.02 
26 0.04 0.03 0.09 0.02 -0.05 0.07 0.08 -0.02 0.03 0.05 

Global -0.05 -0.05 -0.05 0.02 -0.22 -0.15 -0.10 -0.11 -0.10 -0.07 
 
 
Table S1.8 As Table S1.4, but for the high tails of maximum and minimum temperature 
anomalies (TmaxH and TminH, respectively) of the shape parameter. 

 HadGHCND ERA-Interim NCEP2 JRA-55 MERRA-2 
Region TmaxH TminH TmaxH TminH TmaxH TminH TmaxH TminH TmaxH TminH 

1 0.04 0.00 0.02 0.02 -0.02 -0.01 0.02 -0.01 0.02 0.03 
2 0.02 0.00 0.02 0.01 -0.04 0.02 -0.02 0.01 0.02 -0.02 
3 0.02 0.01 0.00 0.01 0.00 0.03 0.01 0.02 0.00 0.00 
4 0.02 0.03 0.03 0.02 0.03 0.00 0.00 0.02 0.04 0.01 
5 0.06 -0.05 0.04 0.01 0.03 0.01 -0.02 0.00 0.04 0.01 
6 -0.15 0.05 -0.07 0.03 -0.05 0.02 0.03 -0.05 -0.06 0.18 
10 0.03 -0.03 0.03 0.03 0.01 0.00 0.04 0.07 0.02 -0.06 
11 0.04 0.05 0.05 0.03 0.01 0.05 0.00 0.00 0.01 0.02 
12 -0.04 0.04 -0.03 0.05 0.03 0.06 0.01 0.06 0.07 0.02 
13 0.02 -0.02 0.03 0.02 0.00 -0.02 0.03 -0.01 0.03 0.03 
14 0.11 -0.01 -0.01 0.02 -0.03 0.01 0.01 0.01 -0.04 0.01 
17 0.01 0.01 0.00 -0.07 0.04 -0.02 0.00 -0.07 -0.03 -0.10 
18 0.06 0.01 0.03 0.01 0.03 0.01 0.03 0.00 0.04 0.01 
19 0.02 0.00 0.03 0.00 0.01 -0.03 0.04 0.02 0.01 -0.03 
20 -0.03 -0.02 0.05 0.03 0.05 -0.02 0.03 0.05 0.02 0.01 
21 -0.03 0.02 0.00 0.00 -0.02 0.01 -0.01 0.03 -0.03 0.02 
22 0.00 -0.03 0.00 -0.03 0.00 -0.04 -0.01 -0.03 -0.01 -0.04 
23 0.05 0.04 0.01 0.01 0.03 -0.01 0.04 0.00 -0.10 -0.02 
24 0.11 -0.04 0.07 0.00 -0.02 0.01 0.02 0.01 0.02 -0.03 
25 0.00 -0.03 -0.03 -0.03 -0.02 -0.03 -0.02 -0.01 -0.01 -0.01 
26 0.03 -0.05 0.03 -0.02 0.04 -0.01 0.02 -0.06 0.01 -0.05 

Global 0.04 0.00 0.02 0.01 0.02 0.01 0.01 0.02 0.02 0.01 
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Table S1.9 As Table S1.4, but for the low tails of maximum and minimum temperature 
anomalies (TmaxL and TminL, respectively) of the shape parameter. 

 HadGHCND ERA-Interim NCEP2 JRA-55 MERRA-2 
Region TmaxL TminL TmaxL TminL TmaxL TminL TmaxL TminL TmaxL TminL 

1 -0.04 -0.01 -0.04 -0.05 0.02 0.05 -0.05 -0.06 -0.04 -0.03 
2 -0.02 0.05 0.04 0.01 0.01 -0.02 0.00 -0.01 0.03 0.02 
3 0.01 0.02 0.04 -0.01 0.02 0.01 -0.01 -0.04 0.01 0.02 
4 -0.01 0.01 -0.01 0.03 0.03 0.05 -0.05 -0.08 0.00 0.11 
5 -0.02 0.03 -0.01 -0.01 -0.02 0.05 -0.01 -0.03 0.02 0.06 
6 -0.02 -0.06 -0.07 -0.06 0.02 -0.13 0.00 -0.08 0.01 -0.08 
10 0.01 0.02 0.02 0.01 -0.03 -0.03 0.02 0.06 0.01 0.05 
11 -0.11 -0.05 -0.06 -0.01 -0.08 0.01 -0.06 -0.07 -0.08 -0.02 
12 0.02 -0.03 0.01 -0.04 0.06 0.02 0.01 0.03 -0.01 -0.01 
13 -0.03 -0.04 -0.02 -0.02 -0.06 -0.07 -0.02 -0.06 -0.02 -0.01 
14 -0.01 0.05 -0.01 -0.05 -0.03 -0.04 0.05 -0.02 0.08 -0.02 
17 0.03 -0.12 0.02 -0.01 0.00 0.04 0.04 -0.01 0.05 -0.02 
18 -0.05 -0.04 -0.01 0.01 -0.01 -0.01 -0.01 -0.01 -0.04 -0.03 
19 0.03 -0.02 0.06 0.00 0.00 0.05 0.03 0.02 0.03 0.00 
20 -0.02 -0.07 0.01 -0.01 0.00 0.04 -0.03 -0.08 0.02 -0.02 
21 -0.06 -0.08 -0.02 -0.07 -0.01 0.04 -0.06 -0.06 -0.03 -0.02 
22 -0.01 0.02 0.01 0.04 -0.04 -0.02 -0.01 0.02 -0.01 0.02 
23 0.04 0.07 0.03 0.00 0.17 0.00 -0.03 0.01 0.04 0.01 
24 -0.02 -0.02 -0.01 -0.02 -0.03 -0.06 0.00 -0.04 -0.04 -0.04 
25 0.02 0.00 0.00 -0.04 0.01 -0.01 -0.04 0.04 -0.01 -0.03 
26 0.05 0.00 0.03 -0.02 0.06 0.03 0.04 0.00 0.01 0.03 

Global -0.02 -0.01 0.02 0.01 0.00 0.01 -0.03 -0.02 0.02 0.01 
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S.2 Supplementary material for Chapter 3 

 

 
Figure S2.1 Comparison between choice of base period used for temperature anomaly 
calculation for recent excess changes in hot extremes (1982-2014 – 1950-1981) in the CMIP5 
multi-model mean for DJF (a,b), MAM (c,d), JJA (e,f) and SON (g,h). The panels on the 
left show excess changes calculated from temperature anomalies relative to the entire period 
of analysis (1950-2014). The panels on the right show excess changes calculated from 
temperature anomalies relative to the 1961-1990 base period. Stippling indicates grid cells 
where at least 20 out of 26 models agree on the sign of excess change. 
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Figure S2.2 As Figure S2.1, but for extremes in the cold tails of the distribution 
relative to daily minimum temperatures. 
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Figure S2.3 As Figure S2.1, but for future excess changes. 
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Figure S2.4 As Figure S2.3, but for extremes in the cold tails of the distribution 
relative to daily minimum temperatures. 
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Figure S2.5 Recent excess changes in the individual CMIP5 models used to calculate 
the multi-model mean shown in Figures 3.2 and 3.4, for extremes in the warm tail using 
daily maximum temperatures for December – February. 
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Figure S2.6 As Figure S2.5, but for March – May. 
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Figure S2.7 As Figure S2.5, but for June – August. 
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Figure S2.8 As Figure S2.5, but for September – November. 
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Figure S2.9 As Figure S2.5, but for the warm tails of daily minimum temperature. 

 

 



 
 

 208 

 

Figure S2.10 As Figure S2.9, but for March – May. 
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Figure S2.11 As Figure S2.9, but for June – August. 

 



 
 

 210 

 
Figure S2.12 As Figure S2.9, but for September – November. 
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Figure S2.13 As Figure S2.5, but for the cold tails of daily maximum temperature. 
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Figure S2.14 As Figure S2.13, but for March – May. 
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Figure S2.15 As Figure S2.13, but for June – August. 
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Figure S2.16 As Figure S2.13, but for September – November. 
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Figure S2.17 As Figure S2.5, but for the cold tails of daily minimum temperature. 
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Figure S2.18 As Figure S2.17, but for March – May. 
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Figure S2.19 As Figure S2.17, but for June – August. 
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Figure S2.20 As Figure S2.17, but for September – November. 
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Figure S2.21 As Figure S2.5, but for future excess changes. 
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Figure S2.22 As Figure S2.21, but for March – May. 
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Figure S2.23 As Figure S2.21, but for June – August. 
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Figure S2.24 As Figure S2.21, but for September – November. 
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Figure S2.25 As Figure S2.21, but for the warm tails of daily minimum temperature. 

 

 



 
 

 224 

 
Figure 2.26 As Figure S2.25, but for March – May. 
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Figure S2.27 As Figure S2.25, but for June – August. 
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Figure S2.28 As Figure S2.25, but for September – November. 
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Figure S2.29 As Figure S2.21, but for the cold tails of daily maximum temperature. 
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Figure S2.30 As Figure S2.29, but for March – May. 
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Figure S2.31 As Figure S2.29, but for June – August. 
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Figure S2.32 As Figure S2.29, but for September – November. 
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Figure S2.33 As Figure S2.21, but for the cold tails of daily minimum temperature. 
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Figure S2.34 As Figure S2.33, but for March – May. 
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Figure S2.35 As Figure S2.33, but for June – August. 
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Figure S2.36 As Figure S2.33, but for September – November. 
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