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Abstract

The world is warming, with both extreme and mean temperatures getting warmer.
But how extremes are changing and will change relative to the mean remains less
clear. Disproportionate rates of change between extreme and mean temperatures
need to be better understood because this changes the shape of the distribution,
affecting the probability of extreme events and thus their impacts. Therefore, the
goal of this thesis is to understand if, when and where disproportionate rates of
change occur in the past and future and it does this by using observations,

reanalyses and climate models.

I find that for past decades, cold extremes have been warming faster than the mean
for much of the Northern Hemisphere extratropics, while warm extremes have been
warming faster than the mean in some subtropical regions. Future changes are
systematic and robust across a range of climate model simulations. The most
striking disproportionate changes are in the Northern Hemisphere mid- to high-
latitudes, where cold extremes are projected to warm substantially faster than mean

temperatures in all seasons except boreal summer.

Exploring conditions on or leading into the day of the projected cold extremes
reveals that the disproportionate warming is driven by different mechanisms in
different seasons. In boreal winter, reduced cold air advection is the dominant

driver, circulating anomalously warm temperatures from the Arctic to lower
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latitudes. But during spring and autumn, it is mostly due to feedbacks related to

decreases in snow cover.

Analyses of temperature extremes have inherent uncertainties. I evaluate several
commonly used reanalyses with a gridded in situ-based daily temperature dataset
to assess sensitivities related to dataset choice. Trends in extremes and statistical
moments, other than the mean, exhibit sensitivity. However, the conclusions drawn
in this thesis remain robust irrespective of dataset choice, and regardless of

methodological choice including choice of base period and how extremes are defined.

Ultimately, this thesis provides a comprehensive understanding of changes in daily
temperature extremes relative to the mean and their drivers. In turn, this provides
essential information for decision-makers who can act to reduce the negative

impacts stemming from extreme temperatures.
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CHAPTER 1

Introduction

1.1 Overview

While global mean temperature is a valuable indictor of global climate change,
statistical analysis shows changes in the variability of daily temperature have the
greatest impact on the probability of extreme events (Katz and Brown 1992). Many
studies point to global-scale changes in extremes being driven by a shift in the mean
alone (e.g. Simolo et al. 2010; Donat and Alexander 2012; Rhines and Huybers
2013; Tingley and Huybers 2013), however, there is some evidence for regional-scale
changes in variability (e.g. Schér et al. 2004; Huntingford et al. 2013; McKinnon et

al. 2016; Rhines et al. 2017).

To date, a number of studies have focused on observed and projected changes in
regional temperature variability and the disproportionate increases of hot extremes
in summer, mainly over Europe and North America (e.g. Schéar et al. 2004; Fischer
and Schér 2009; Simolo et al. 2011; Cattiaux et al. 2015; Holmes et al. 2016). Others
tend to focus on individual aspects of temperature change, such as global mean
temperature (e.g. Sutton et al. 2015; Hawkins and Sutton 2016; Rahmstorf et al.
2017), or global or regional changes in the annual hottest or coldest days (e.g.

Alexander et al. 2006; Coumou and Robinson 2013; Christidis et al. 2011). However,



addressing changes in means or extremes alone does not allow the extent of changes
in several other aspects of the temperature distribution to be fully understood.
Considering changes in extremes relative to mean changes is a simple approach to
better characterise distributional changes and to understand how the most impacts-
relevant parts of the distribution behave relative to average conditions. These
analyses rely on the accuracy of observational datasets which are then used to
evaluate climate model simulations. However, the quality and robustness of the
observational datasets used for analyses, that are often spatially or temporally
incomplete, remain a source of uncertainty, and therefore, these products are not

necessarily reliable for evaluating climate models.

Due to the uncertainties surrounding commonly used observations-based datasets,
the first aim of this thesis is to understand whether dataset choice has an impact
on analyses of changes in temperature variability and extremes. Differences in the
datasets when assessing trends in extremes relative to mean temperatures are also
explored. The same in situ-based observational product is then used to assess the
disproportionate rates of change in seasonal extremes relative to seasonal mean
temperatures alongside a suite of climate models from the Coupled Model
Intercomparison Project phase 5 (CMIP5) archive (Taylor et al. 2012), which are
then used to project future changes. This is systematically investigated for all
seasons and all global land areas, from the mid-20" century until the end of the
21 century. Where models agree on the most robust changes, I delve into the
physical mechanisms behind those changes by examining conditions on or prior to
the day the extreme occurs. Various sensitivities related to the analyses of
temperature extremes are also explored in order to reduce uncertainties related to

methodological choices. The methods used in this thesis will be shown to be robust,
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providing an easily reproducible approach for investigating the disproportionate

rates of change in extremes relative to mean temperatures.

While some of the findings presented here complement previous research, the
individual chapters within the thesis combine to provide a more holistic and
complete sense of how temperature extremes are changing and might change in the
future. This is explored specifically in relation to changes in the mean of the
distribution of daily temperatures, thereby providing information on several aspects
of changes in the temperature distribution. This chapter serves to summarise and
identify gaps in the relevant scientific literature and outline the individual aims

and structure of this thesis.

1.2 Review of the literature

Due to their potential for adverse impacts on society and ecosystems, temperature
extremes have been a prominent focus in the scientific literature in recent years.
The majority of studies tend to focus on changes in extremes and mean
temperatures separately, making it difficult to infer how the distribution of
temperature is changing and whether variability is changing on top of shifts in the
mean. Climate model simulations project consistent increases in annual mean
temperature for land regions across the globe into the 21*' century (e.g. Kirtman et
al. 2013; Seneviratne et al. 2016; Lewis and King 2017). This is coupled with
projected increases in the frequency and intensity of warm extremes and decreases
in the frequency of cold extremes (e.g. Coumou and Robinson 2013; Kharin et al.
2013; Kirtman et al. 2013; Sillmann et al. 2013a). Overall, this is consistent with a

shift in the distribution towards warmer temperatures.



Changes in the symmetry of the temperature distribution have also been shown
using observational data and climate model simulations (e.g. Kodra and Ganguly
2014; Matiu et al. 2016; Lewis and King 2017), with the distribution becoming
skewed towards hotter temperatures, especially for parts of Europe (e.g. Matiu et
al. 2016), but also for North America, Asia and Australia (Lewis and King 2017).
However, some have argued that the methods used to calculate temperature
anomalies in some of these studies are causing inflated changes in extremes (Rhines
and Huybers 2013; Sippel et al. 2015). Moreover, discrepancies with observations
as well as among the climate models themselves are apparent, particularly for cold
extremes (Kharin et al. 2007, 2013; Lewis and King 2017). Despite the
uncertainties, future simulated warming of both extreme and mean temperatures is
significant and robust for much of the globe (Kirtman et al. 2013; Collins et al.
2013; Sillmann et al. 2013a), and will likely exacerbate the impacts stemming from
extremes if strict measures to manage the risks are not implemented

(Intergovernmental Panel on Climate Change (IPCC) 2012).

Importantly, it is unlikely that the rates of change between different aspects of
temperature are uniform. In fact, observations and climate model simulations
indicate that cold extremes are warming faster than warm extremes for much of
the globe (e.g. Kharin and Zwiers 2000, 2005; Alexander et al. 2006; Donat and
Alexander 2012; Hartmann et al. 2013; Kharin et al. 2007, 2013, Donat et al. 2013a,
2016). This is significant because disproportionate rates of change between different
aspects of temperature affect the overall shape of the distribution, which affects the
probability and frequency of extreme events and thus their impacts (Mearns et al.

1984).
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Figure 1.1 The effect on temperature extremes from a changing climate, showing (a) a shift
in the distribution towards warmer temperatures, (b) an increase in temperature variability,
and (c) change in the shape of the distribution (source: Lavell et al. 2012, Figure 1.2, p. 41).

To demonstrate how temperature extremes might be affected in a changing climate,
the IPCC use a schematic to describe changes in the distribution of temperature
(Figure 1.1). An increase in the mean alone would shift the entire distribution to
warmer temperatures, with hot extremes getting hotter and more frequent, and
cold extremes becoming warmer and less frequent (Figure 1.1a). Changes in the
variance alone would lead to an increased probability of both cold and warm
extremes (Figure 1.1b), while a change in the shape of the distribution can skew

temperatures towards the hotter or cooler part of the distribution (Figure 1.1c).



Theoretically, such a schematic is useful to demonstrate the possible effects that
overall changes in temperature distributions can have on extremes, or vice versa,
emphasising the need to consider changes in the tails relative to the entire
distribution (Katz et al. 2013; Sardeshmukh et al. 2015). Quantifying past changes
and predicting future changes in extremes relative to mean temperatures would
provide crucial information that can be used by decision-makers and planners to

reduce the risks of negative impacts from extremes.

While some studies have looked at changes in temperature extremes relative to the
mean, there are key differences in the methodologies and measures used that make
it difficult to get a complete sense of how these rates of change differ across all land
regions for the globe. For instance, most of these studies compare changes in
extremes relative to global mean temperatures, with some focusing primarily on
globally averaged extremes (e.g. Kharin and Zwiers 2005; Kharin et al. 2007), and
others comparing global mean temperature with changes in local extremes (e.g.
Seneviratne et al. 2016; Vogel et al. 2017). Despite being more useful to identify
and explore the physical processes driving regional distributional changes, only
limited studies have looked at changes in local extremes relative to changes in local
mean or median temperatures (e.g. Brown et al. 2008; Orlowsky and Seneviratne

2012; Donat et al. 2017).

Figure 1.2, from Seneviratne et al. 2016, shows changes in extreme and mean
temperatures associated with a 2°C target of global mean temperature increase.
Both hot and cold extremes, and mean temperatures, are projected to warm across
the globe relative to 2°C of global warming. From the figure, it is clear that the
different variables warm at different magnitudes, and regional differences can be

substantial, especially for the coldest annual temperatures (Figure 1.2b). While
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assessing local changes in extremes relative to global mean temperature can be
useful for regional decision-making and setting emissions targets, global mean
temperature is a rather abstract measure that does not directly impact society
(Sutton et al. 2015; Seneviratne et al. 2016). Rather, it is changes in the local mean
temperature that people and the environment actually experience. Assessing
changes in local extremes relative to corresponding local mean temperatures is also
vital to understand the physical processes and relationships that contribute to

disproportionate rates of warming.
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Figure 1.2 Extreme and mean temperature changes associated with a 2°C global warming
target, for (a) the annual hottest daytime temperature, (b) annual coldest night-time
temperature and (c) annual mean temperature. Results are based on the RCP8.5 scenario
simulations from CMIP5 (source: Seneviratne et al. 2016, p. 479).



Studies comparing local extremes to local mean temperatures have predominantly
focused on annual statistics calculated from daily observational data or climate
model output (e.g. Kharin and Zwiers 2005; Brown et al. 2008; Donat et al. 2017).
Observations and climate model simulations indicate that in recent decades, annual
cold extremes have generally warmed in excess of annual mean daily minimum
temperatures in Northern Hemisphere regions that are affected by snow fall and
sea ice (Kharin and Zwiers 2005; Brown et al. 2008). Annual hot extremes have
been warming faster than the annual mean of daily maximum temperatures for
parts of Europe, the Mediterranean, southern Africa and Australia (Brown et al.

2008; Donat et al. 2017).

Climate model projections suggest that the annual hottest days are expected to
warm at an accelerated rate compared with the local annual mean for many of the
same regions, as well as parts of North America and Europe, which have primarily
been related to land-atmosphere feedbacks as driving processes (Donat et al. 2017).
However, the physical mechanisms driving the disproportionate rates of warming
between extremes and mean temperatures likely differ depending on the season,
and between warm and cold extremes. For example, during summer, changes in
soil-moisture feedbacks and surface heat fluxes are the more likely dominant driver
of accelerated warming of hot extremes (Donat et al. 2017; Vogel et al. 2017), while
changes in snow and ice cover, and larger-scale changes in atmospheric circulation,
are more likely to drive disproportionate rates of warming in cold extremes and
decreases in temperature variability during winter months (e.g. Gregory and
Mitchell 1995; Kjellstrom et al. 2007; Fischer et al. 2011; Kharin et al. 2007, 2013;
Screen 2014). The impacts from temperature extremes are often seasonally
dependent as well (Alexander et al. 2006). While Orlowsky and Seneviratne (2012)

explored the scaling of regional and seasonal extremes, this was addressed in
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relation to global mean temperature change and the annual regional median change
in temperature. Hence, it is still largely uncertain how seasonal changes in regional
extremes are changing with respect to changes in corresponding seasonal mean
temperatures, and further, understanding the physical drivers influencing any
disproportionate temperature changes, particularly in cold extremes, requires more

attention.

Robust conclusions regarding the disproportionate changes of extremes relative to
mean temperatures rely on the accuracy and reliability of the input datasets used
for analysis. Due to the lack of complete daily observed temperature datasets on a
global scale, the majority of studies addressing changes in temperature variability
and extremes have used monthly or seasonal data (e.g. Hansen et al. 2012; Coumou
and Robinson 2013; Huntingford et al. 2013; Rhines and Huybers 2013). However,
the temporal aggregation of these datasets smooths out the individual events that
occur on daily timescales, and it is these events that are most likely to cause the
greatest impacts (Alexander and Perkins 2013). For this reason, it is imperative to
use daily datasets that are both sufficiently long and continuous to detect and
project changes in extremes (Klein Tank et al. 2009). In situ-based daily
temperature datasets, such as the Hadley Centre Global Historical Climatology
Network-Daily (HadGHCND) dataset (Caesar et al. 2006), which represents one of
the most comprehensive global daily temperature datasets currently available, still
lacks data in some regions. For this reason, reanalysis products, which assimilate
in situ-based and satellite-based observational data into numerical weather
prediction models, are commonly used for global studies (e.g. Huntingford et al.
2013; Donat et al. 2014; Kodra and Ganguly 2014; Ylhéisi and Réisanen 2014;

Simmons et al. 2017). However, like climate models, reanalysis products need to be



evaluated to determine their robustness against observational products, and the

impact of dataset selection depends on application.

Without drastic measures to severely limit atmospheric greenhouse gas
concentrations, the IPCC has stated that “it is virtually certain that, in most places,
there will be more hot and fewer cold temperature extremes as global mean
temperature increases” (Collins et al. 2013, p. 1031). These anticipated increases
will likely exacerbate the impacts from extremes. Importantly, the impacts from
extremes are already unequally distributed, due to differences in socioeconomic
factors that reduce a region’s capability to respond to extreme events (IPCC 2012).
Disproportionate rates of warming in extreme and mean temperatures could further
intensify the impacts from extremes, especially for already vulnerable regions. For
example, heat-health related impacts might be exacerbated by temperature
extremes warming more than mean temperatures, as a result of not being able to
adequately acclimatise. Although humans are able to adapt to some changes to
temperature (Gasparrini et al. 2016), the limits of these adaptation mechanisms are
still an active area of research (Sherwood and Huber 2010). Natural ecosystems
might also be affected by different rates of change in temperature, for instance,
faster warming rates of mean temperatures compared with cold extremes during
winter months may increase the longevity of disease-carrying insects that can
survive through milder winters (e.g. Wolf et al. 2015; Ebi and Nealon 2016). This
also highlights the seasonal dependence of impacts that disproportionate rates of

warming in extremes can influence.

While many studies have investigated changes in temperature extremes, there are
important limitations and gaps in the research that need to be considered and

resolved. Addressing some of the sensitivities related to methodological choices by
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exploring alternative methods and testing the robustness of results would reduce
uncertainties and make it easier to compare studies. Then, systematically assessing
several aspects of temperature distribution changes using an easily reproducible and
understandable method could serve as a new standard tool for assessing changes in
temperature extremes relative to mean temperatures. The implications of this type

of study are far-reaching for numerous fields in climate change research.

1.3 Structure of the thesis

The overarching goal of this thesis is to provide an in-depth understanding of how
daily temperature extremes have changed and might change in the future across all
global land regions, specifically with regards to changes in mean temperatures. This
is explored across all seasons using daily maximum and daily minimum temperature
data from observations, reanalysis data and climate model output. By considering
several aspects of the temperature distribution in parallel with one another, the
disproportionate rates of change between different parts of the distribution become
evidently clear. Methodological sensitivities underpin and limit studies regarding
temperature extremes, so another key aim of this thesis is to evaluate some of these
sensitivities. Each chapter has specific objectives that contribute to the overall aims

of this thesis, as outlined below.

1. Investigate the impact of dataset choice for analysing statistics related

to the distribution of temperature and extremes.

In Chapter 2, several commonly used reanalysis datasets of daily maximum and
minimum temperature are compared against the HadGHCND dataset, a quasi-
global, gridded in situ-based dataset of daily maximum and minimum
temperatures. Differences and similarities between the datasets are identified using

various statistical properties that are important for understanding changes in
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temperature. Statistical moments, including the mean, standard deviation and
skewness, are compared across the different datasets, while the Extreme Value
Theory is used to compare statistics that are specific to the tails of the distribution.
Lastly, trends in the tails of the distribution relative to the mean are explored for

recent decades across all datasets, noting any sensitivities related to dataset choice.

2. Assess changes in seasonal temperature extremes relative to seasonal

mean temperatures in observations and CMIP5 models.

Chapter 3 systematically assesses changes in local seasonal temperature extremes
relative to corresponding local seasonal mean temperatures from the mid-20th
century until the end of the 21% century. This follows on from the annual trends in
extremes relative to the mean investigated in Chapter 2 and uses the same
observational dataset to evaluate a suite of CMIP5 models, which are then used to
project future changes in both warm and cold extremes relative to mean

temperatures for all seasons and all land regions across the globe.

3. Explore projected changes in seasonal cold extremes relative to

seasonal mean temperatures and investigate their physical mechanisms.

In Chapter 4, the most robust changes identified in Chapter 3 are assessed further
to identify the possible physical mechanisms that are driving the strongest changes
in temperature extremes relative to mean temperatures. Specifically, this chapter
uses several individual CMIP5 models to assess the accelerated warming rates of
cold extremes relative to mean temperatures in boreal winter and the shoulder
seasons for Northern Hemisphere mid- to high-latitude land regions. Then, the
environmental conditions on the day or just prior to the day of the extreme are
explored to determine the physical processes that are plausibly contributing to the

projected enhanced warming of cold extremes.
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4. Examine methodological sensitivities related to the analysis of changes

in temperature extremes relative to mean temperatures.

Chapter 5 explores some of the uncertainties and sensitivities related to the results
presented in the previous chapters, such as sensitivities related to the choice of
climatological reference period, and the methods used to define extreme
temperatures. It brings together the different methodological choices used in each
chapter to provide context on whether results are sensitive to the methods used to
analyse changes in temperature extremes relative to the mean and summarises the

robustness of conclusions in Chapters 2 — 4 of this thesis.

Finally, the main findings and conclusions of this thesis are summarised in Chapter

6, which also suggests opportunities for future work relating to this field of research.

Chapter 2 is based on a published peer-reviewed article in the Journal of Climate,
Chapter 3 has been revised and re-submitted to the International Journal of
Climatology, and Chapter 4 has been submitted to Climate Dynamics and is
currently under review. These chapters are presented as they are published or
submitted, with some minor changes in formatting. Overviews preceding each

chapter provide some context as to the contribution of the chapter to the thesis.
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CHAPTER 2

The sensitivity of daily temperature variability and extremes

to dataset choice

Chapter overview

This chapter is published as: Gross, M. H., M. G. Donat, L. V. Alexander and S.
A. Sisson, 2018: The sensitivity of daily temperature variability and extremes to

dataset choice. Journal of Climate, 31, 1337-1359, doi:10.1175/JCLI-D-17-0243.1.

Robust conclusions regarding changes in the temperature distribution rely on the
accuracy and reliability of the input datasets wused. Differences between
methodologies and datasets in previous studies add uncertainty when comparing
and quantifying findings. This chapter assesses whether dataset choice has an
impact on assessments regarding the distribution of temperature and how extremes
are changing relative to mean changes. Several commonly used reanalysis datasets
are compared against the gridded in situ-based daily temperature dataset,
HadGHCND, by assessing both the entire distribution and the tails of the
distribution. Empirical Probability Distribution Functions show sensitivity to the
input dataset when estimating aspects such as standard deviation and skewness,

with the mean showing robust results for most regions, irrespective of dataset
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choice. Standard deviation is especially sensitive, with larger disagreements between
datasets for some regions more than others, such as Africa and the Mediterranean
region, and with larger differences in minimum temperatures compared with
maximum temperatures. Estimates of extreme parameters also show sensitivity to
dataset choice, particularly in the lower tails and for daily minimum temperature
anomalies. Comparing changes in the means and the extremes of the temperature
distributions, cold extremes in the lower tails have been warming at a faster rate
than the mean of the entire distribution for much of the Northern Hemisphere
extratropics, with warm extremes warming at a faster rate than the mean in some
subtropical regions. Despite some sensitivity in the exact quantifications between
datasets, these findings of faster rates of change are qualitatively robust regardless
of the input dataset. The documented sensitivities call for caution when assessing
changes in temperature variability and extremes, as dataset choice can have

substantial effects on the exact quantification of results.

2.1 Introduction

Temperature extremes represent one of the most obvious impacts of climate change
on society. For example, the impacts from heatwaves can range from increases in
human mortality and morbidity to effects on agriculture and infrastructure (IPCC
2012). Variability within temperature can affect the probability and frequency of
extreme events (Mearns et al. 1984; Katz and Brown 1992; Rahmstorf and Coumou
2011; McKinnon et al. 2016), making it critical to understand how different aspects
of the temperature distribution are changing and how they might change in the
future. For this reason, many studies have investigated how extremes might be
affected by changes in the distribution of temperature due to climate change (e.g.

Rahmstorf and Coumou 2011; Donat and Alexander 2012; Hansen et al. 2012;
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Rhines and Huybers 2013; McKinnon et al. 2016). Despite the abundance of such
studies, there are still some contested issues regarding changes in temperature
variability. Mainly, while some studies have found increases in global temperature
variability (e.g. Hansen et al. 2012), others have concluded that extremes are
shifting towards hotter temperatures along with the mean, with little or no change
in global variability (e.g. Brown et al. 2008; Donat and Alexander 2012;
Huntingford et al. 2013; Rhines and Huybers 2013; Tingley and Huybers 2013).
This suggests that while there is consensus in terms of changes in the mean
temperature, there remains considerable uncertainty in changes of other aspects of

the distribution.

The issues and uncertainties surrounding previous studies are likely related to the
different methods and datasets used for investigating changes in the distribution of
temperature, which make these studies difficult to compare and quantify. Most
studies to date have used monthly or seasonal datasets (e.g. Hansen et al. 2012;
Coumou and Robinson 2013; Rhines and Huybers 2013). However, the temporal
aggregation of these datasets can smooth out the individual events that can occur
on daily timescales. This makes it critical to use daily data to detect changes in the
temperature distribution, as it is the characteristics of extremes (such as the
frequency, intensity and duration) that are most likely to impact society (Alexander
and Perkins 2013). This requires long-term, continuous and consistent high-quality

datasets (Klein Tank et al. 2009).

The limited studies that have used daily data to investigate changes in the
temperature distribution have predominantly used three main statistical methods.
This includes assessing statistical moments of the probability density function

(PDF), such as the mean, variance and skewness (e.g. Donat and Alexander 2012),
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using Extreme Value Theory (EVT) to explicitly characterize the tails of the
distribution (e.g. Kharin and Zwiers 2005; Brown et al. 2008; Christidis et al. 2011),
and examining changes in different percentiles (e.g. Robeson 2004; Simolo et al.
2010; McKinnon et al. 2016). Some of these studies (e.g. Brown et al. 2008; Donat
and Alexander 2012) have used HadGHCND, a quasi-global daily gridded
temperature dataset (Caesar et al. 2006). However, such an in situ-based daily
dataset still lacks data for certain regions, such as parts of South America and
Africa. Reanalysis products that use assimilated observational data for the globe
are therefore commonly used to investigate global changes in variability and
extremes (e.g. Huntingford et al. 2013; Donat et al. 2014). Additionally, because of
their global completeness and areal structure, reanalyses might be considered
advantageous when evaluating climate models against historical observation-based
data (e.g. Kharin et al. 2013; Sillmann et al. 2013b; Donat et al. 2016). However,
it is still not clear if assessments of changes in temperature variability and extremes
are sensitive to these different types of input data, a factor that might affect a

study’s conclusions.

A crucial first step in gaining a more comprehensive understanding of how
temperature variability and extremes are changing requires a sensitivity analysis of
some of the most commonly used datasets of daily temperatures. Further, a
systematic and holistic approach would require a combination of assessing both the
PDFs and the tails of the distribution using EVT (Katz et al. 2013; Sardeshmukh
et al. 2015). Using both methods in parallel can help address the uncertainties in
assessing the tail alone, as well as inferring changes in extremes relative to the mean
of the entire distribution (Sardeshmukh et al. 2015). Here, we aim to use these two
approaches to compare commonly used reanalysis products with the HadGHCND

daily dataset. Our aim is not to make any judgments about the quality of the
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observational data itself, but rather to determine if analyses are sensitive to the
input dataset. We use a mathematically consistent approach and consider both
global and regional temperature distributions, to provide critical information for
future studies that wish to use these types of datasets to investigate changes in

temperature variability and extremes.

2.2 Data and Methods

2.2.1 Observational data

We use HadGHCND as the base dataset to compare against reanalysis products.
Since it is quasi-global over land and is based only on in situ daily maximum and
minimum temperatures, this gives mostly independent information with which to
compare against other products. It is available from 1950, and at the time of
analysis, ended in 2014. HadGHCND uses approximately 2500 stations that are
interpolated onto a 2.5° latitude x 3.75° longitude grid using an angular distance

weighting technique (Shepard 1968; Caesar et al. 2006).

2.2.2 Reanalysis data

Four reanalysis products are selected for inter-comparison: ERA-Interim (Dee et
al. 2011), NCEP-DOE Reanalysis 2 (NCEP2) (Kanamitsu et al. 2002), the Japanese
b5-year Reanalysis (JRA-55) (Kobayashi et al. 2015) and the Modern-Era
Retrospective Analysis for Research and Applications, version 2 (MERRA-2)
(Bosilovich et al. 2015; Gelaro et al. 2017). These were chosen primarily based on
their prevalence in the literature for investigating temperature variability and
extremes, as well as their comparability in terms of dataset length. We purposely
did not include some commonly used first generation reanalyses, because for

NCEP1 (Kalnay et al. 1996; Kistler et al. 2001), inhomogeneities in the
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representation of warm extremes have been documented (e.g. Donat et al. 2014).
Other products, such as the 20" Century Reanalysis (Compo et al. 2011), and ERA-
40 (Uppala et al. 2005), were excluded as data for recent years covered by the

chosen reanalyses are not available.

To test the sensitivities of analyses to the different input datasets, we focus on the
common time period of 1980-2014. While this is a relatively short period of time to
investigate long-term climate changes, it is sufficient for the purpose of assessing
robustness between different datasets. All reanalysis products are regridded using
a bilinear remapping technique and masked to the grid cell size and spatial coverage
of HadGHCND. Other regridding techniques were tested, such as conservative
remapping techniques (Jones 1999), and results were not sensitive to the regridding
method used. We also only include grid cells that have at least 80% of temporal
completeness in HadGHCND, therefore excluding data sparse regions. In addition
to meeting this criterion, analysis is only performed when there are at least 50% of
data available for both the first and last ten years of HadGHCND data. This
ensures there are enough data points to robustly assess changes over a 35-year
period. While the regridding itself is likely to add some uncertainty to the
intercomparison of products, it has been shown that this effect is small compared
to the structural differences between datasets (e.g. Loikith et al. 2015). We use
daily maximum and minimum temperature anomalies that were calculated relative

to a mean annual cycle over the entire period of investigation, that is, 1980-2014.

2.2.3 Statistical methods

Two approaches are used to assess dataset sensitivity for investigating changes in
temperature variability and extremes. First, we examine PDFs for the entire

temperature distribution over the period of record chosen, and second, we use
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Extreme Value Theory (EVT) for direct analysis of the tails of the distribution and

to understand how extremes are changing relative to the mean of the distribution.

Figure 2.1 The 26 regions specified in the IPCC SREX, and the spatial distribution of
stations used in HadGHCND at the time of interpolation. * indicates regions that are used
for analysis of time series (i.e. Figure 2.4 — 2.13). Regions 7, 8, 9, 15 and 16 are excluded from
analyses based on not fulfilling the completeness criteria specified in Methods.

We analyse PDFs for the 26 regions specified in the IPCC Special Report on
Extremes (SREX) (IPCC 2012) (Figure 2.1). These were chosen for this study as
they indicate regions of common climates and enabled sufficient data points for
each region for reliable statistical analysis. Figure 2.1 shows the spatial distribution
of all included 2500 stations used in the interpolation of HadGHCND. Furthermore,
we show the number of stations per SREX region, and number of grid cells with
data in each region in Table 2.1. Empirical PDFs are calculated by pooling all time
steps and grid cells within a region to produce a distribution of temperature over
the period 1980-2014. We note that different ways of how grid cells are spatially
aggregated may affect estimates of distribution changes (Rhines and Huybers 2013;
Director and Bornn 2015). The focus of our study, however, is on dataset

agreement, and we treat all datasets the same. Therefore, such sensitivities
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regarding spatially averaged grid cells are less relevant here. We used 140 equally
spaced bins, ranging from -45°C to 45°C, to calculate the PDFs, as this choice most
clearly captured the features of the dataset. We repeated our analyses for other bin
width settings, but our conclusions were not sensitive to bin size choices for

calculating the PDFs.

SREX regions are only included in the analysis if at least three grid cells within
that region fulfill the completeness criteria specified in Section 2.2.2. While this
criterion doesn’t necessarily ensure spatial representativeness, it increases statistical
power in terms of sample size for estimating the regional PDFs. For the time series
analysis in the main text, we only show selected regions that represent different
levels of data coverage and different climatic zones, those being, regions 3 (West
North America), 10 (south-eastern South America), 13 (Mediterranean region), and
18 (North Asia/Russia). Figures for the remaining regions are included as
supplementary material. We also include a global analysis, calculated by

aggregating all grid cells that fulfill the completeness criteria.

The sample mean, standard deviation and skewness are calculated for each region
and dataset. To investigate temporal changes in these quantities, time series of
annual statistics are plotted over the investigation period (see Figure 2.4 — 2.8).
We calculated trends using both a linear regression and Sen’s trend estimator (Sen
1968), estimating trend significance using the Mann-Kendall test (Kendall 1975).
Autocorrelation in the time series was accounted for by adjusting the sample size
to the equivalent number of independent values, or equivalent sample size (Zwiers
and von Storch 1995). Results were found to be insensitive to the test used, and so
we only show linear regression trends, with significance calculated at the 5% level

using a t-test.
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Table 2.1 Number of HaddGHCND stations within each of the 26 SREX regions, and number
of grid cells with observational data per region for daily maximum and daily minimum
temperature anomalies. Counts of stations only consider the number of used stations available
at the time of interpolation, and so variations of stations over time are not considered. Counts
of grid cells with available data per region are calculated after a criterion is applied where
grid cells must have at least 80% temporal completeness, as well as at least 50% of data
available in the first and last ten years of HadGHCND data.

No. of grid No. of grid
No. of cells with data cells with data
stations per region per region
SREX region per region (Tmax) (Tmin)

1. Alaska/Northwest Canada 79 7 7
2. Canada/Greenland /Iceland 142 134 114
3. West North America 1795 68 68
4. Central North America 1976 39 39
5. East North America 1435 23 23
6. Central America/Mexico 182 4 4

7. Amazon 7 0 2

8. North-East Brazil 0 0 0

9. West coast South America 1 0 0

10. South-eastern South America 25 15 8

11. North Europe 489 37 37
12. Central Europe 219 46 46
13. Mediterranean 138 39 39
14. Sahara/North Africa 16 14 15
15. West Africa 1 0 0

16. East Africa 18 0 0

17. Southern Africa 40 10 9

18. North Asia/Russia 375 245 245
19. West Asia 61 41 43
20. Central Asia 22 33 33
21. Tibetan Plateau 41 47 47
22. East Asia 350 86 86
23. South Asia 5 13 14
24. Southeast Asia 61 25 14
25. North Australia 123 50 50
26. South Australia/New Zealand 276 22 22

We use EVT to determine if analyses of the extremes are sensitive to dataset choice
and assess changes in the extremes explicitly. In particular, a non-stationary point

process (PP) model is fitted to the data to describe annual exceedances above and
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below the upper and lower 1.5%, respectively, as in Brown et al. (2008). We
additionally tested different thresholds, such as the upper and lower 1% and 2% of
data, and found the results were not sensitive to the choice of threshold. This model
corresponds to a Poisson process for the inter-exceedance times, with a Generalised
Pareto distribution for the size of the exceedances (e.g. Coles 2001). Similar to the
methods of Brown et al. (2008), we model non-stationarity of the process through
a time-dependent threshold and location parameter (explicitly, a linear trend in the
location parameter) over the period of investigation, as implemented in the
‘extRemes’ package in R (Gilleland and Katz 2011). Non-linearity in scale and
shape parameters was also tested but found not to be present, and the fidelity of
the PP model to the data was assessed using standard goodness-of-fit procedures,
including qqg-plots. It is clear from the qqg-plots that the selected PP distribution is
supported by the empirical distribution of the extremes, as the values fit close to
the 1-1 line (see Figure S1.1). As in Brown et al. (2008), we calculate the difference
of this location trend with the trend in the mean for all available grid cells to
investigate how the magnitude of the extremes are changing relative to the mean,
hereafter referred to as ‘excess trends’. Local significance of the excess trends was

calculated for each grid cell using a Mann-Kendall test at the 5% level.

In addition, we plotted time series of the location, scale and shape parameters
estimated from a stationary PP model, as shown in Section 2.3.3. These are
calculated from decadal moving windows, starting in 1980 and ending in 2014.
Trends in the PP fit parameters are similarly calculated using the same methods

as those used for the moments of the entire PDF.
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2.3 Results

2.3.1 Global and regional PDF's

PDFs for SREX regions that adhere to our completeness criteria, as well as global
PDFs, are shown for maximum temperature anomalies (Tmax, Figure 2.2) and
minimum temperature anomalies (Tmin, Figure 2.3). Dashed vertical lines of
different colours represent the threshold of the top and bottom 1.5% of the data
(‘extremes’) for each dataset. Plots of the respective standard deviation and

skewness values are shown in supplementary material (Figure S1.1).

As expected, higher latitude regions generally have broader PDFs across all
datasets, compared with lower latitudes for both maximum and minimum
temperature anomalies, indicative of higher variability. For most regions, PDF's of
the reanalyses are wider compared to the HadGHCND-derived PDF's for both the
globe and most regions. This separation might be due to more spatial smoothing in
HadGHCND, where the correlation length scale (CLS) used for interpolation is
based on monthly mean temperatures (Caesar et al. 2006). This leads to search
radii of several hundred to thousand kilometres for stations to include when
calculating the grid box values. It is possible that this monthly CLS is larger than
the correlation of daily temperature values would be, potentially causing overly
strong smoothing in the HadGHCND dataset. Broader PDFs in the reanalyses are
especially apparent in the Mediterranean region (region 13) and some subtropical
regions, such as Northern Africa (region 14) and southern Africa (region 17). PDFs
for Northern Hemisphere extratropical regions are also wider in the reanalyses
compared with HadGHCND, although less so for parts of North America (e.g.
regions 3-5), and North Asia/Russia (region 18). For all regions and the globe, there
are fewer similarities between the PDF's of the different datasets for Tmin compared

to Tmax. Skewness differences are larger between datasets for Tmin, with NCEP2

25



showing a more negatively skewed PDF for most regions compared with the other

datasets.
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Figure 2.2 Empirical PDFs of daily maximum temperature anomalies for all SREX regions
that fulfill the completeness criteria, and for the globe. The PDF's are calculated from the data
that is pooled over the period 1980-2014, with different coloured PDFs representing the
different datasets. Vertical long-dashed lines indicate the upper and lower 1.5% threshold. *
indicates a different y-axis scale used for regions 13, 14, 23 and 24.
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Figure 2.3 As Figure 2.2, but for daily minimum temperature anomalies.

The PDFs also show notable differences in the extremes of the distribution. That
is, the 1.5% thresholds that define the tails of the distribution occur at varying
temperatures depending on the dataset used, with greater differences found between

datasets for Tmin compared to Tmax. For many regions, the thresholds in the

27



reanalysis products, occur at more extreme temperatures compared to HadGHCND.
For instance, in West North America (region 3), the cold extremes threshold for
Tmin is just above -18°C for NCEP2, while it is only just below -12°C for
HadGHCND. For most regions as well as the globe, NCEP2-derived PDFs
consistently show a bias towards more extreme thresholds, compared with the other
datasets. This is particularly apparent in the cold tails compared with the warm
tails of the distribution. Though less obvious, PDFs for ERA-Interim, JRA-55 and
MERRA-2 also show a bias towards more extreme temperatures thresholds

compared with those shown in HadGHCND.

In addition to the higher sensitivities found in Tmin compared to Tmax, the tails
of the PDFs show sensitivity to the input dataset, particularly in the cold tails.
Overall, the NCEP2-derived PDFs are the most different to HadGHCND), however,
the PDFs show sensitivity to all four reanalysis products, particularly for assessing

standard deviation and skewness.

2.3.2 Time series of the statistical moments

To explore temporal changes and trends in the datasets, Figure 2.4 — 2.8 show time
series of the annual mean, standard deviation and skewness for Tmax and Tmin
for the globe and for selected regions (3, 10, 13 and 18 — see Figure 2.1). The
remaining regions and their respective trends are included in supplementary
material (Figures S1.2 — S1.7, Tables S1.1 — S1.3). These time series describe
changes over 1980-2014. Decadal trends and their significance for each dataset are

shown for each plot.

Results for the global mean are relatively robust, irrespective of the dataset used

(Figure 2.4), with a significant increasing trend found in all datasets for both Tmax
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and Tmin. Aside from some small differences in NCEP2, the most notable
differences occur towards the end of the time series, particularly in MERRA-2 from
around 2007-2009. This discrepancy in MERRA-2 is a documented issue (Sanchez-

Lugo et al. 2016; Simmons et al. 2017).

Figure 2.4 Time series of global daily maximum and minimum temperature anomalies for the
first three statistical moments annually, that is, the mean, standard deviation and skewness.
Decadal trends are shown for each dataset in respective colours. * indicates significant trends
at the 5% level.

Unlike the mean, changes in global standard deviation and skewness (Figure 2.4)
appear sensitive to the input dataset for assessing trends over the past 35 years,
however, there is reasonable temporal correlation between the different time series.
There is a noticeably larger spread in standard deviation across the datasets,
compared with the mean or skewness. This is particularly apparent in Tmin and
NCEP2, where NCEP2 shows a more substantial decreasing trend in global

standard deviation in Tmin of -0.16°C per decade, compared with -0.03°C per
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decade in HadGHCND. This difference in trends is likely a result of a step change
in NCEP2 that occurs around 1998, that is not evident in the other datasets. This
inhomogeneity is likely a signature of a step change related to only specific regions,
as discussed in subsequent paragraphs. The time series for global skewness show
variation and display mostly non-significant trends that are close to zero. Again,
the largest differences are shown in NCEP2 for Tmin, with the discussed step

change in NCEP2 likely contributing to this.

While the global mean is similar across datasets, differences become apparent for
certain regions more than others. For instance, the mean for West North America
(region 3 — Figure 2.5) and North Asia/Russia (region 18 — Figure 2.8) is mostly
robust regardless of dataset choice, while in contrast, south-eastern South America
(region 10 — Figure 2.6) and the Mediterranean (region 13 — Figure 2.7) display
more sensitivity. This could be indicative of greater uncertainty within data sparse
regions compared to those that are more data rich. For example, regions 3 and 18
include 1795 and 375 station observations respectively, while regions 10 and 13 only
have 25 and 138 observations respectively (see Table 2.1). With regards to the
Mediterranean region, most available stations are located in southern Europe, with
few stations in North Africa (see Figure 2.1). Pooling the grid cells within each
SREX region allow us to include region 13 in our analysis, however, the sensitivity
of the Mediterranean discussed above might be a reflection of the unequal

distribution of observations with data in this region.
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Figure 2.5 As Figure 2.4, but for SREX region 3, located in western North America.

Figure 2.6 As Figure 2.4, but for SREX region 10, located in south-eastern South America.
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Figure 2.7 As Figure 2.4, but for SREX region 13, located in the Mediterranean region.

Figure 2.8 As Figure 2.4, but for SREX region 18, located in North Asia/Russia.
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The differences in the mean between datasets for regions 10 and 13 are most notable
in NCEP2. As for the globe, variance and skewness show a greater sensitivity to
dataset choice compared with the mean. Regions 3 and 18, both located in the
Northern Hemisphere extratropics, show a clear step change in NCEP2 in standard
deviation in Tmin occurring around 1998. After examination of all regions, the step
change is found in most regions in this latitude band, as well as in region 10. This
inhomogeneity in NCEP2 is dominant enough to have a signature in the global
standard deviation. We assume that this step change is artificial, but a metadata
search of NCEP2 around this time has not determined the cause. Further discussion
on this issue is provided in Section 2.4. While NCEP2 shows the largest differences
across the regions, disagreements with HadGHCND are also found in ERA-Interim,
JRA-55 and MERRA-2. For example, for Tmin, there is a decreasing trend of -
0.04°C in standard deviation for region 10 in HadGHCND, while the other datasets,
excluding NCEP2, indicate an increasing trend. In terms of changes in skewness,
trends are mostly non-significant and centred around zero. While in region 3
skewness values are similar between all datasets for Tmax, other regions show

distinctions, particularly in NCEP2 and for Tmin.

In summary, irrespective of dataset choice, changes in mean Tmax and Tmin are
robust for many regions, and a significant increasing trend is found for the globe.
For the other statistical moments, a higher sensitivity to dataset choice is clear.
The degree of sensitivity, however, is shown to be dependent on the region, with
regions of known high quality data being more similar between datasets, with the

exception of NCEP2.
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2.3.3 Time series of decadal extreme value fits

To investigate changes in the extremes, Figure 2.9 — 2.13 show time series of the
location, scale and shape parameters that have been estimated from stationary PP
fits over ten year moving windows. The extremal point process model is fitted to
the high and low tails of both daily maximum and minimum temperature anomalies
(Tmaxyign, Tmaxiew and Tminpe and Tmine, respectively). As before, extreme
values are defined as those data points that exceed a threshold of 1.5% (in the
upper or lower tail). We use running decadal windows to ensure sufficient data

points are available for a robust statistical analysis.

For the globe (Figure 2.9), significant increasing trends in the location parameter
are shown for the high tails of both Tmax and Tmin across all datasets. Here, a
trend of 0.21 per decade (Tmaxun) and 0.31 per decade (Tminyg) is calculated for
HadGHCND, with similar trends in most reanalyses. Mostly significant decreasing
trends are found for the low tails of Tmax and Tmin, excluding non-significant
trends in HadGHCND and MERRA-2 (Tmaxwy). The time series of NCEP2 for
Tmine, again shows a step change occurring around 1998, where the location
parameter decreases substantially more than for the other datasets. Though
smoother than the step change in NCEP2 shown for global variance (Figure 2.4),
because of the use of decadal windows compared with annual data, this suggests
the inhomogeneity in NCEP2 is related to the cold tail of the distribution of
minimum temperature anomalies. Section 2.4 discusses this in more detail. Overall,
the location parameter for the globe indicates increasing trends in the high tails,
along with decreasing trends in the low tails. This indicates a shifting distribution

towards warmer conditions, with both hot and cold extremes becoming warmer.
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Figure 2.9 Global time series using running decadal windows of the extreme value parameters,
including location, scale and shape, calculated for the high tails of maximum and minimum
temperature anomalies (Tmaxuign and Tminyg, respectively), and for the low tails of maximum
and minimum temperature anomalies (Tmaxiew and Tminiey, respectively). The x-axis shows
years, starting with the 1980-1989 window, and ending with 2005-2014, and parameter
estimates are indicated on the y-axis. Decadal trends are indicated in the respective dataset
colours for each parameter and temperature variables. * indicates significant trends at the 5%
level.
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Trends in the global scale parameter (Figure 2.9) are close to zero for all datasets
and temperature variables, although slightly decreasing significant decadal trends
in HadGHCND are shown for all variables except Tminy,n. There is some sensitivity
in scale to the input dataset, with Tminy, showing the most differences between
datasets compared with the other temperature variables. As for the location
parameter, NCEP2 shows a sudden decrease in scale for Tminy, starting with the
1994-2003 window, that is not apparent in the other datasets. This is also shown
to a lesser extent in Tmaxi... Other notable differences include a steeper decreasing
trend in JRA-55 and MERRA-2 compared with HaddGHCND in both low tails, and
a slightly increasing significant trend in ERA-Interim in Tminy,. Trends in global
shape are mostly non-significant and close to zero, excluding a significant increasing
trend in ERA-Interim and MERRA-2 (Tmaxu). For all temperature variables, the
reanalyses show different temporal patterns to HadGHCND. Again, this is

particularly evident in Tmin, and in the low tails.

As shown for the statistical moments in the previous subsection, the sensitivities in
the time series analyses differ between both region and temperature variable. For
the location parameter, NCEP2 consistently stands out as being the most different
across all regions (including those in the Supplementary Material - Figures S1.8 —
S1.19, Tables S1.4 — S1.9). The step change shown in global location for Tminy,, is
present for both West North America (region 3 — Figure 2.10) and North
Asia/Russia (region 18 — Figure 2.13), and most other Northern Hemisphere
extratropical regions, but is not a feature in the time series for south-eastern South
America (region 10 — Figure 2.11) and the Mediterranean (region 13 — Figure 2.12).
This suggests that the apparent inhomogeneity in the global time series of NCEP2

is likely related to the cold extremes for Northern Hemisphere extratropical regions.
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We note that we do not further discuss long-term trends in NCEP2 due to this

inhomogeneity.
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Figure 2.10 As Figure 2.9, but for SREX region 3 (west North America).
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Overall, the location parameter shows sensitivity to all reanalysis products for all
regions, with more data sparse regions showing the least consistency between
datasets. For example, for region 10, HadGHCND shows a steeper decrease in
location towards the end of the time series for Tmaxyw, compared to the other
datasets. Region 23, another data sparse region located in South Asia, shows a
substantial step change in NCEP2 in location for Tmaxi., that is not present in
the other datasets (see Supplementary Material Figure S1.10). Trends in scale and
shape also differ between datasets. For example, the reanalyses show clear deviances
from HadGHCND in scale and shape in the cold tails for region 10, and in more
data rich regions, such as region 3 and 18. JRA-55 shows a more substantial
decreasing trend in scale for Tminy., compared with the other datasets (excluding
NCEP2 which is affected by the discussed inhomogeneity). Other key differences
are found for region 18 for Tmaxiy. Here, Ha(dGHCND increases in scale from 1988-
1997, during which JRA-55 shows a decreasing trend in scale. ERA-Interim and
MERRA-2 capture the temporal pattern of HadGHCND here, though to a lesser
extent. However, differences between these products and HadGHCND are apparent
for other regions, for example, changes in shape for Tmin, in region 13. In general,

the reanalyses are distinct from HadGHCND in both scale and shape.

In summary, changes in the tails of the distribution are sensitive to dataset choice.
As for the analyses of the entire distribution, more overall differences in the datasets
are shown for minimum temperature anomalies, with differences particularly
evident in the scale and shape parameters. Analyses of changes in the extremes
correspond with these findings, and more specifically, show that the largest dataset

inconsistencies occur in the cold tails of the distribution of minimum temperatures.
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Figure 2.11 As Figure 2.9, but for SREX region 10 (south-eastern South America).
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Figure 2.12 As Figure 2.9, but for SREX region 13 (Mediterranean).
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2.13 As Figure 2.9, but for SREX region 18 (North Asia/Russia).
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2.3.4 Changes in extremes relative to changes in the mean

Using the above methods together, that is, jointly assessing both the entire
distribution as well as the tails, can provide insight into how extremes are changing
with respect to the mean. Figure 2.14 — 2.15 show the difference between the trend
in the non-stationary PP fit of the location parameter and the trend in the annual
mean temperature anomalies. NCEP2 is not included due to the inhomogeneity
present in the time series, making it inappropriate to assess trends over a 35-year
period. The trend differences (calculated per decade for the period 1980-2014)
represent ‘excess trends’ and are a useful way of describing regional differences in
the rates of warming between extremes and the mean (Brown et al. 2008). As in
the subsequent figures, when extremes are warming faster (slower) than the mean,
the excess trend is positive (negative). Stippling indicates grid boxes that are
significant at the 5% level. For additional robustness, we also calculated the
difference between the 98.5" quantile (1.5" quantile for the cold tails) and the mean
(see Supplementary Material Figure S1.20). These results are very similar to the

excess trends shown here.

For the warm extremes (Tmaxug - Figure 2.14), most Northern Hemisphere high
latitude regions indicate that the mean has been warming faster than the extremes,
irrespective of the product used. This is slightly underestimated by JRA-55. The
datasets agree that warm extremes have been warming significantly faster than the
mean in the Mediterranean region, south-western and East Asia, South America,
Africa and parts of Australia. For some of these regions, such as the Mediterranean,
the reanalyses show smaller magnitude excess trends in the extremes compared to
HadGHCND, with rates of around 0.1°C to 0.2°C (reanalyses) compared to 0.4°C
to 0.6°C (HadGHCND). Other regions, such as South America, show greater

magnitude positive excess trends in the reanalyses compared with HadGHCND.
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Differences are also found for parts of northern Canada, where a positive excess
trend is shown in HadGHCND. This same area is opposite in sign for ERA-Interim,

while smaller and non-significant in JRA-55 and MERRA-2.
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Figure 2.14 'Excess trends', that is, the difference between the trend in the location parameter
and the trend in the annual mean for HadGHCND and the reanalyses, for the high tails of
maximum and minimum temperature anomalies (Tmaxyign and Tmingg, respectively). Positive
excess trends represent regions where the extremes are warming faster than the mean, while
negative excess trends show regions where the mean is warming faster than the extremes.
Decadal trends (°C) are calculated over the period 1980-2014. Stippling indicates grid boxes
that are significant at the 5% level.
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Excess trends in Tmingg, (Figure 2.14) are similar to those of the warm extremes,
in terms of both spatial patterns and sign of trend, as well as dataset agreement,
though positive excess trends are generally of a smaller magnitude to those of the
warm extremes. Some differences in the datasets are shown for Australia, for
example, where ERA-Interim shows greater positive excess trends in parts of
eastern Australia compared with HadGHCND, while MERRA-2 and JRA-55 tend

to show smaller magnitude excess trends than HadGHCND for much of the country.

The datasets differ the most for excess trends in the low tails (Figure 2.15). Positive
excess trends in extremes are shown for much of the Northern Hemisphere
extratropics, particularly in North America. Negative excess trends are found for
parts of Europe and Asia, while small negative excess trends are shown for some
tropical and Southern Hemisphere regions. For Tmaxi., most regions with positive
excess trends show larger magnitude trends in the reanalyses than for HadGHCND.
Conversely, regions showing negative excess trends in HadGHCND show smaller
magnitude excess trends in the reanalyses, such as in parts of Europe and West
Asia. Broadly, JRA-55 shows the most differences to HadGHCND, with larger
significant positive excess trends for much of the Northern Hemisphere extratropics
and smaller negative trends in Europe. For example, positive excess trends greater
than 0.7°C per decade are shown for some parts of Russia in JRA-55, with the same
area showing negative excess trends between -0.2°C to -0.3°C in HadGHCND. ERA-
Interim and MERRA-2 also differ from HadGHCND in this area, showing mixed

excess trends.

For the cold extremes (Tminw - Figure 2.15), the largest disagreements occur over

Russia and the European continent. As for Tmaxi.w, JRA-55 shows greater positive
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excess trends over Russia, and smaller negative excess trends over West Asia and

Central Europe, compared to the other datasets.
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Figure 2.15 As Figure 2.14, but for the low tails of maximum and minimum temperature
anomalies (Tmaxiow and Tminiey, respectively).

Overall, for the warm extremes, some subtropical regions show that the extremes
have been warming at a faster rate than the mean over 1980-2014, while for the
cold extremes, positive excess trends are found for much of the Northern

Hemisphere extratropics. Spatially, all datasets tend to agree on this, however, the

45



magnitude of the excess trend differs. The warm tails of the distribution tend to be
similar between datasets across the globe compared with the cold tails, which show

greater sensitivity to dataset choice.

2.4 Discussion

The choice of dataset for investigating changes in temperature variability and
extremes can affect conclusions regarding changes in the temperature distribution.
The use of different datasets in previous work along with some differences in
conclusions provides motivation for a systematic approach to determining the
sensitivities of an analysis to the input datasets used. We acknowledge that non-
climatic artefacts can potentially affect a spatially averaged dataset such as
HadGHCND, including changes to the station network, data quality and
homogeneity issues, and gridding uncertainties in terms of spatial averaging of point
data, particularly for analysing extremes (Donat et al. 2014; Dunn et al. 2014;
Director and Bornn 2015). In addition, HadGHCND uses a large CLS and is gridded
using a relatively coarse resolution, so resultant values tend to be spatially
smoothed (Caesar et al. 2006), further adding to the inherent uncertainties of using
this type of dataset. However, given that it is interpolated using long-term in situ-
based data, we are more willing to assume that there are fewer inhomogeneities
than those introduced from assimilation using a highly variable network of data in

the reanalyses.

Irrespective of what product is used, trends in the mean temperature are mostly
robust. This suggests that changes in the mean are not particularly sensitive to
dataset choice. However, some datasets show more differences in the mean than
others, depending on the region, for example, in the Mediterranean region, and in
more data sparse regions such as parts of South America. Differences in the mean
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for these regions might be due to uncertainties in the observational data itself,
rather than the ability of reanalysis data to reproduce the observations. It is also
possible that the assimilation is poorly constrained by observations. Other
statistical parameters aside from the mean, including the standard deviation and
skewness, as well as those related explicitly to the extremes, show more sensitivity
to the input dataset. As in the mean, regions with higher data uncertainty due to
sparse observations, such as South America, show more disagreement between
datasets than regions that are known to have high quality data, as in North

America.

Much of the recent literature regarding changes in temperature variability has
highlighted the importance in understanding differences in regional changes in
temperature compared with the global mean. It is already clear that some regions
are warming at different rates compared to the global average (e.g. Sutton et al.
2015; Seneviratne et al. 2016). Here, we show that the globally-averaged (where
data are sufficiently complete) maximum temperature trend in HadGHCND is
0.36°C per decade over 1980-2014, while, for example, south-eastern South America
shows a trend of 0.67°C per decade (Figure 2.4 and Figure 2.6, respectively). In
addition to the mean, we also see regional differences in the trend of extremes
relative to the local mean. We show, for example, that cold extremes are warming
faster than the mean for much of the Northern Hemisphere, consistent with Arctic
amplification (Screen 2014; Rhines et al. 2017). For the warm extremes, some
subtropical regions show a faster trend in the extremes compared with the mean.
Additionally, excess trends in the cold extremes are generally greater in magnitude
over North America and parts of North Asia/Russia than they are for warm
extremes, consistent with studies that have found stronger increases cold extremes

compared with warm extremes (e.g. Donat et al. 2013b). This is robust for all
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datasets, however, the magnitude of excess trend differs substantially depending on
the wvariable and region. This is a significant finding, as regions are
disproportionately impacted by extremes due to differences in socioeconomic factors
that can increase a regions vulnerability to extreme events (IPCC 2012). The
consequences of higher magnitude extremes can potentially further exacerbate the

unequal distribution of impacts on regional scales.

Overall, ERA-Interim appears to most closely resemble HadGHCND. This is
consistent with other studies. For example, Donat et al. (2014) found that ERA-
Interim closely resembled trends and inter-annual variations in temperature
extremes shown in interpolated observational datasets for the period 1980 — 2010,
noting the higher dataset consistency in the most recent three decades, in contrast
with the large disagreements between datasets in the pre-satellite era. Excluding
an inhomogeneity in MERRA-2 in the global mean for the most recent years (see
Figure 2.4), MERRA-2 and JRA-55 resemble mean trends in the observations
reasonably well, even for more data sparse regions (see Figure 2.6). However, when
assessing aspects of temperature other than the mean, there are still distinct
differences between the observation-based product and the reanalyses, and so
caution should be exercised if using these products to investigate changes in

variability and extremes.

NCEP2 is clearly the most different to the other datasets, caused partly by the
inhomogeneity shown to occur around 1998-1999, but also shown in more short-
term variations, for example, in the mean for south-eastern South America (Figure
2.6). Previous studies have noted the differences in NCEP2 compared with other
reanalyses (e.g. Kharin et al. 2007; Kharin et al. 2013; Sillmann et al. 2013b). Being

a low-resolution, first-generation product (Kanamitsu et al. 2002; National Center
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for Atmospheric Research (NCAR) 2016), this might be expected, however, perhaps
not to the extent shown here. While many errors were rectified from the original
NCEP1 product, some suggest a poor representation of the Southern Hemisphere
in NCEP2 (NCAR 2016). Here, we show large differences in many regions around
the globe. For example, the step change around 1998-1999 shown for the globe is
particularly noteworthy in some Northern Hemisphere high latitude regions.
Potential explanations could be related to changes in the assimilated data affecting
snow cover, as these step changes are inconsistent with other datasets and are
particularly notable for the cold extremes. Although snow cover data was not
available in NCEP2 for the required years, we were able to investigate the water
equivalent of accumulated snow depth, which is a variable that can suggest snow
cover changes through the amount of snow depth (see Figure S1.22). A clear step
change in the mean and standard deviation is apparent at 1998-1999 for regions 3

and 18, where a substantial decrease occurs after 1998.

The similarities or differences between the reanalysis products themselves as well
as with HadGHCND are affected by their independence of in situ-based
measurements. For example, NCEP2 does not incorporate any screen-level data to
assimilate near-surface temperature (Simmons et al. 2004), unlike the other
reanalyses used here. ERA-Interim and JRA-55 both interpolate between in situ
data at the screen-level, and the atmospheric levels of the reanalysis model (Dee et
al. 2011; Kobayashi et al. 2015). As such, ERA-Interim and JRA-55 are not
independent of surface measurements, and so it may be expected that they are
more similar to one another than to NCEP2. As in NCEP2, MERRA-2 does not
assimilate using near-surface temperatures (Bosilovich et al. 2015). Despite
MERRA-2 being the latest product used in this study, ERA-Interim and JRA-55

show more overall consistency between themselves as well as HadGHCND in many
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instances, similarly found in other comparison studies (e.g. Simmons et al. 2017).
However, short-term variations, especially in the mean for MERRA-2, show close

similarities to both ERA-Interim and HadGHCND.

2.5 Conclusions

Global daily maximum and minimum temperatures are increasing. This conclusion
is robust regardless of the dataset used. Regional increases in the mean are mostly
robust to the dataset, however, there is a slightly greater sensitivity to the input
dataset than for global assessments. Other characteristics of the temperature
distribution show substantial sensitivity to the dataset used, highlighting some of
the uncertainties involved in addressing changes in temperature variability.
Assessing temperature extremes also displays sensitivity to the dataset choice, with

results showing sometimes substantially different magnitude changes in extremes.

Irrespective of the approach wused, differences between datasets regarding
distribution changes are the greatest in the cold tails of the distribution and for
daily minimum temperature anomalies. This suggests potentially greater
uncertainties for this part of the distribution that need to be considered for future
work investigating changes in the distribution of temperature. Further investigation
is required to understand why greater sensitivities are shown in the cold tails. For
all temperature variables, NCEP2 has the largest inconsistencies, compared with
the gridded in situ-based observational dataset, HadGHCND. However, the ‘higher
generation’ reanalysis products, that is, ERA-Interim, JRA-55 and MERRA-2, also
still show distinct differences in the higher-order moments. Dataset disagreement
is generally largest for regions that are more data sparse, such as south-eastern

South America and southern Africa, while better agreement between datasets is
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found for regions that are data rich and known to have higher quality data, for

example, North America.

Despite inconsistencies in the results depending on the dataset, all products show
that cold extremes have been warming at a faster rate than the mean for much of
the Northern Hemisphere extratropics, while warm extremes have been warming
faster for many subtropical regions. We must be able to make robust conclusions
regarding the regional differences in rates of warming of extremes and the local
mean, as future planning and local adaptation strategies rely on it. Future work in
this field would benefit from using datasets of longer time-scales to provide more

robust trend estimates.

This paper provides a first step in documenting the inconsistencies regarding
changes in temperature variability and extremes and, for example, will help in
making the best dataset choices for model evaluation moving forward. In addition,
by understanding these preliminary data issues, more confident and robust
conclusions can be made to understand changes in the characteristics of the
temperature distribution, and therefore provide critical information for future

planning for extremes.
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CHAPTER 3

Changes in daily temperature extremes relative to the mean

in CMIP5 models and observations

Chapter overview

This chapter has been accepted for publication as: Gross, M. H., M. G. Donat, and
L. V. Alexander, 2019: Changes in daily temperature extremes relative to the mean
in Coupled Model Intercomparison Project phase 5 models and observations.

International Journal of Climatology, accepted.

The rates of warming in extremes and average temperatures vary both spatially
and temporally, with strong geographic and seasonal differences in how local
extremes are changing relative to local mean temperatures. This chapter explores
the different rates of change in seasonal warm and cold extremes relative to
corresponding seasonal mean temperatures, based on daily data. It builds on the
final results of Chapter 2, where trends in annual extremes relative to the annual
mean were explored, and uses the same observational dataset, HadGHCND, to
evaluate a suite of CMIP5 models. The climate models are then used to assess
future excess changes in seasonal warm and cold extremes relative to seasonal mean
temperatures. The greatest differences in the rates of change between extremes and

the mean in recent decades occur in the cold tails of the distribution for some
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regions in the Northern Hemisphere extratropics during all seasons except boreal
summer. For recent changes, climate model simulations have relatively low spatial
correlations with each other, as well as with the observations. Future simulated
changes are shown to be systematic and robust, with a clear signal in the warming
of extremes relative to the mean. Boreal winter, spring and autumn months show
especially pronounced excess changes in the Northern Hemisphere mid- to high-
latitudes, where the models show robust agreement in cold extremes warming at
least 3°C more than mean temperatures in the late 21*' century compared to the
mid-20" century. By comprehensively assessing past and future rates of change in
seasonal extremes relative to the mean at the global scale, this chapter provides an
in-depth understanding of the disproportionate rates of change that can in turn
have important implications on the probability of extreme events and therefore

their impacts.

3.1 Introduction

The implications from changes in daily temperature extremes have the potential to
be far greater for society and the environment than increases in the mean
temperature alone. Extremes occur in the tails of the temperature distribution, and
changes in each of the tails, along with shifts in the mean, can affect the entire
shape of the distribution which is related to the probability of extreme events
(Mearns et al. 1984). Most global studies have found that changes in the tails of
the distribution are primarily related to changes in the mean, with little or no
change in variability and shape (e.g. Simolo et al. 2011; Huntingford et al. 2013;
Rhines and Huybers 2013; Tingley and Huybers 2013; Weaver et al. 2014,
McKinnon et al. 2016). However, regional-scale studies using observational data

have found that there are some changes in variance and shape, depending on the
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location. For example, there is evidence for changes in symmetry, or skewness, and
variability of daily temperature for some mid- to high-latitude regions in the
Northern Hemisphere (Kharin and Zwiers 2005; Donat and Alexander 2012;
Cavanaugh and Shen 2014; Screen 2014; Loikith and Neelin 2015; McKinnon et al.
2016; Rhines et al. 2017). This highlights that changes in temperature distributions
vary depending on geographic location, and importantly, policymakers and
adaptation planning rely on information that is region-specific. The temperature
distribution also has a strong seasonal component, as well as dependencies related
to daytime and night-time temperatures (Rhines et al. 2017). A comprehensive
global-scale study investigating seasonal changes in regional extremes in both daily
maximum and minimum temperature distributions, in relation to changes in
corresponding mean temperatures, is still lacking. This type of study would be
useful in connecting previous work that has focused only on specific regions or
specific aspects of the temperature distribution (e.g. Cavanaugh and Shen 2014;
McKinnon et al. 2016; Rhines et al. 2017), providing a complete description of both

recent and future changes in extremes and mean temperatures.

It is expected that future changes in temperature extremes by the end of the 21%
century will be much larger than observed past increases if no drastic measures to
limit atmospheric greenhouse gas concentrations can be implemented within the
next decades. This would be associated with increases in the frequency of warm
extremes, and decreases in the frequency of cold extremes (Coumou and Robinson
2013; Kharin et al. 2013; Kirtman et al. 2013), consistent with a shift in the
temperature distribution towards warmer temperatures. But it has also been
suggested that cold extremes are warming faster than warm extremes (e.g. Kharin
and Zwiers 2005; Donat and Alexander 2012; Donat et al. 2013b), which would

indeed change the shape and symmetry of the distribution along with a shift.
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Studies have shown evidence for asymmetry in observed and projected temperature
distributions, especially in Northern Hemisphere regions (e.g. Kodra and Ganguly
2014; Matiu et al. 2016). However, it is possible that these findings are an artefact
of the methodology used to calculate temperature anomalies, causing an
overestimation of the extremes and adding uncertainty to these results ( Rhines
and Huybers 2013; Sippel et al. 2015). Lewis and King (2017) also found changes
in skewness in daily temperatures towards hot extremes for regions including
Australia, Asia, Europe and North America, though climate models simulated a
wide range in both sign and magnitude. Considering how both the warm and cold
tails of the distribution are changing, in comparison to the mean, might help to
provide a more holistic and inclusive sense of if there is more than just a shift in

the distribution (Katz et al. 2013; Sardeshmukh et al. 2015; Gross et al. 2018).

Climate model simulations suggest that globally-averaged annual cold extremes
warm faster than the annual mean of daily minimum, while globally-averaged
annual warm extremes warm at a similar rate to the annual mean of daily maximum
temperatures (Kharin and Zwiers 2005). Of course, there are considerable
differences in the magnitude and rate of change of extremes and the mean
depending on region. Some studies address this by assessing the rates of change in
local extremes relative to average temperatures. One approach is to compare local
rates of changes in extremes with global mean temperature (e.g. Sutton et al. 2015;
Seneviratne et al. 2016; Vogel et al. 2017). While this is important for regional and
local-scale policy-makers and stakeholders, global average temperature is a highly
abstract measure (no one experiences a global average) and local average
temperatures, like extremes, are not globally heterogeneous. An alternative,
therefore, is to compare local extreme temperatures with the corresponding local

mean temperature changes (e.g. Kharin and Zwiers 2005; Brown et al. 2008; Donat
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et al. 2017; Gross et al. 2018), accounting for the reality that mean warming rates
differ considerably between regions. Using this approach, observational and
reanalysis data have shown that in recent decades, the cold tails of both daily
maximum and minimum temperatures have warmed faster than the corresponding
mean temperature for much of the Northern Hemisphere extratropics, while the
warm tail has been warming faster than the mean for parts of Europe, South
America, North America, southern Africa and Australia (Brown et al. 2008; Gross
et al. 2018). Climate model simulations of future changes in extremes show robust
signals of accelerated warming in the hottest annual day relative to the local annual

mean for the same regions (Donat et al. 2017).

It seems clear that the temperature distribution is indeed changing shape in some
regions, as a consequence of the varying rates of change in the warm tails, cold tails
and average temperatures. This effect might also differ by season, as different
driving mechanisms are at play in summer (e.g. changes in surface heat fluxes and
soil moisture feedbacks (Donat et al. 2017; Vogel et al. 2017)) compared to winter
(e.g. snow and ice cover change and temperature advection (Kharin et al. 2013;
Screen 2014)). While Orlowsky and Seneviratne (2012) investigated the scaling of
seasonal and regional extremes, this was explored relative to the annual regional
median change in temperature, and so assessments of changes in seasonal local

extremes relative to corresponding seasonal mean temperatures are still needed.

This chapter documents seasonal rates of change in local daily maximum and
minimum temperature extremes with the corresponding local mean temperatures
at the global scale using an observational dataset and climate models from the
Coupled Model Intercomparison Project phase 5 (CMIP5) archive (Taylor et al.

2012). Our analyses involved testing a range of statistical and methodological
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sensitivities to ensure results are robust, irrespective of methodological choice. The
intention here is to provide a more comprehensive and systematic approach than
has been done before, by considering and documenting the different aspects of the

temperature distribution for both observed and future changes.

3.2 Data and methods

3.2.1 Observational and CMIP5 datasets

We use the observational product Hadley Centre Global Historical Climatology
Network-Daily (HadGHCND) (Caesar et al. 2006), a quasi-global, land only dataset
of daily temperature observations that are interpolated onto a 3.75° longitude by
2.5° latitude grid. We use daily maximum (daytime) and daily minimum (night-
time) HadGHCND temperature data for a 65-year period that is 1950-2014. A strict
completeness criteria is applied to the HadGHCND data to exclude regions with
sparse data. Specifically, grid cells are only included that have at least 80% of data
available for the entire period of analysis, in addition to at least 50% of data

available for both the first and last ten years of data.

We also use a suite of 26 CMIP5 that have been selected based on their availability
of daily maximum and minimum temperature over the period of analysis (Table
3.1). A single simulation from each of the climate models is used, however, multiple
ensemble runs from some of the models (where available) were tested to check for
internal variability. Results were found to be similar irrespective of the specific
model run used (not shown). Historical model simulations (1950-2005) are merged
with Representative Concentration Pathway 8.5 (RCP8.5) model simulations (2006
onwards), where the years 1950-2014 are used for analysis of recent decades in
comparison to observations, and 1950-2099 for the analysis of future versus past

simulated changes. All models are regridded to a common 2.5° x 2.5° grid using a
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CHAPTER 3. CHANGES IN EXTREMES RELATIVE TO THE MEAN

bilinear remapping technique. We acknowledge that regridding may add some
uncertainty to the analysis, however, several regridding techniques, including first-
and second-order remapping techniques (Jones 1999) were previously tested and

shown to have little effect on the results (Loikith et al. 2015; Gross et al. 2018).

We show recent changes simulated by the CMIP5 models for all land areas, and so
comparisons between HadGHCND and the model output may be inconsistent for
global average time series as the observations do not have complete spatial
coverage. We perform an additional analysis of spatial correlations between the
models and HadGHCND, as well as between the models themselves (see Section
3.3.3). For this analysis, all CMIP5 models are regridded and masked to the grid
cells available in HadGHCND, so comparisons can be made for both the recent and

future analysis.

3.2.2 Methods

Daily anomalies of daily maximum and minimum temperature (Tmax and Tmin,
respectively) are calculated for each dataset relative to a mean annual cycle of daily
temperatures that is based on the full period of each analysis, that is, 1950-2014
for the recent period, and 1950-2099 for future changes. Because the calculation of
temperature anomalies can be sensitive to the choice of reference period, potentially
inflating variance in extremes (Tingley 2012; Sippel et al. 2015; Hawkins and Sutton
2016), several different climatological reference periods were tested, including the
commonly chosen period 1961-1990. All of the tested anomaly calculations showed
similar results (see examples in Supplementary Material Figures S2.1 — S2.4).
Following the calculation of anomalies, the data are split into seasons: December,
January, February (DJF), March, April, May (MAM), June, July, August (JJA)

and September, October, November (SON).
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Table 3.1 CMIP5 models used in this study and their modelling group.

Model Modelling group
ACCESS1.0 Commonwealth Scientific and Industrial Research Organisation
ACCESS1.3 (CSIRO) and Bureau of Meteorology (BoM), Australia (CSIRO-
BOM)
BCC-CSM1.1 Beijing Climate Center, China Meteorological Administration
(BCC)
BNU-ESM College of Global Change and Earth System Science, Beijing
Normal University (GCESS)
CanESM2 Canadian Centre for Climate Modelling and Analysis (CCCMA)
CCSM4 National Center for Atmospheric Research (NCAR)
CMCC-CESM Centro Euro-Mediterraneo per I Cambiamenti Climatici (CMCC)
CMCC-CM
CNRM-CM5 Centre National de Recherches Météorologiques / Centre

Européen de Recherche et Formation Avancée en Calcul
Scientifique (CNRM-CERFACS)

CSIRO-Mk3.6.0

CSIRO in collaboration with Queensland Climate Change Centre
of Excellence (CSIRO-QCCCE)

GFDL-CM3
GFDL-ESM2G
GFDL-ESM2M

NOAA Geophysical Fluid Dynamics Laboratory (NOAA GFDL)

HadGEM2-CC Met Office Hadley Centre (MOHC)
HadGEM2-ES
INM-CM4 Institute for Numerical Mathematics (INM)

IPSL-CM5A-LR
IPSL-CM5A-MR
IPSL-CM5B-LR

Institut Pierre-Simon Laplace (IPSL)

MIROC-ESM Japan Agency for Marine-Earth Science and Technology
MIROC-ESM- (JAMSTEC), Atmosphere and Ocean Research Institute (AORI),
CHEM and National Institute for Environmental Studies (NIES)
(MIROC)
MIROC5 AORI, NIES and JAMSTEC (MIROC)
MPI-ESM-MR Max Planck Institute for Meteorology (MPI-M)
MPI-ESM-LR
MRI-CGCM3 Meteorological Research Institute, Japan (MRI)

NorESM1-M

Norwegian Climate Centre (NCC)

Extreme temperatures in this study are defined as those data points which lie above
the 98.5" percentile and below the 1.5" percentile of the seasonally varying

distribution. This describes the warm tails (above the threshold) and cold tails
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CHAPTER 3. CHANGES IN EXTREMES RELATIVE TO THE MEAN

(below the threshold) of the anomaly distributions for both daily maximum and
minimum temperatures. The threshold varies with time within each season,
ensuring that the probability to exceed the threshold is 1.5% on any given day
within that season and in any given year throughout the time periods used to
calculate changes. Moreover, because exceedances are derived using anomalies
calculated from an annual cycle of daily temperatures, the climatology and
thresholds are specific for each calendar day. These methods broadly follow those
of Gross et al. (2018), which showed that fitting a nonstationary point process
model to the data yields similar results to calculating extremes using a percentile-

based approach, as done here.

Recent and future changes in daily temperature extremes relative to the seasonal
mean are calculated in three steps. The first step calculates changes in extremes for
each season, for daily maximum and daily minimum temperatures separately, by
taking the average of all ‘extreme’ data points for each grid cell for each of the two
periods used to calculate changes (i.e. period one for recent changes in 1950-1981
and period two is 1982-2014; period one for future changes is 1950-1979 and period
two is 2070-2099). Similarly, the seasonal mean of daily maximum and daily
minimum temperature anomalies is calculated for the two periods. The second step
calculates changes in the seasonally-averaged extremes between the two periods,
and similarly, changes in the seasonal means between the two periods. We then
take the difference between the changes in extremes and changes in the mean,
which we refer to as ‘excess changes’. For simplicity, we use the terms ‘recent excess
changes’ and ‘future excess changes’ to refer to excess changes between the two

periods used for the recent and future analyses, as outlined above.
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To test whether the distributions of excess changes between the two periods are
significantly different in HadGHCND, a two-sample Kolmogorov-Smirnov test (KS
test) was used to assess significance. Statistically different distributions for each
grid cell are determined at the 5% level. The pattern correlations shown in the
correlation matrices (see Figure 3.7 — 3.10) are calculated using the Pearson
product-moment coefficient of linear correlation. Pattern correlations of excess

changes are computed as weighted to account for zonal differences in grid cell size.

3.3 Results

3.3.1 Observed and simulated excess changes in recent decades

Figure 3.1 — 3.4 show recent observed seasonal excess changes for the warm and
cold tails of both Tmax and Tmin. Changes are calculated as the difference between
warming rates of the local seasonal mean and corresponding extreme temperature
(where ‘local’ refers to locally at the grid cell) in 1982-2014 compared to 1950-1981,
as described in Section 3.2. Positive excess changes indicate regions where the
extremes have been warming more than the mean, while negative excess changes

show areas where the mean has warmed more than the extremes.

3.3.1.1 Recent excess changes in the warm tails

For the warm tails in HadGHCND (Figure 3.1), all seasons show a relatively
heterogeneous pattern across the globe. Some of the most notable excess changes
are shown during wintertime in the Northern Hemisphere (Figure 3.1a,b), with
some high latitude regions in Canada, Greenland and Siberia showing excess
changes below -1°C. Many locations within these regions have statistically
significant changes between the two periods, indicated by stippling. The warm tail
in Tmax in DJF (Figure 3.1a) also shows a ‘hot spot’ region in Europe showing

excess changes of 1°C or greater, which is also apparent to a lesser magnitude in

62



CHAPTER 3. CHANGES IN EXTREMES RELATIVE TO THE MEAN

Tmin (Figure 3.1b). Other prominent features are shown in the shoulder seasons
(MAM, SON), which indicate significant positive excess changes in some areas in
the Northern Hemisphere. For MAM (Figure 3.1c,d), this includes parts of eastern
North America, west Asia and parts of Russia and Siberia, with the strongest of
these occurring in the warm tail of Tmin (Figure 3.1d), especially in west Asia and

Russia.

Figure 3.1 Recent observed excess changes in HadGHCND for the warm tails of both
Tmax and Tmin, shown for each season (December — February (a,b), March — May (c,d),
June — August (e,f), September — November (g,h)). Positive values indicate grid cells
where the warm extremes have warmed more than the mean temperature, while negative
values show grid cells where the mean temperature has warmed more than the extremes.
Grey areas represent grid points that are either missing in HadGHCND, or that did not
meet the completeness criteria outlined in Section 3.2.1. Stippling indicates grid cells that
are statistically significantly different at the 5% level as assessed by a KS test.
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For SON (Figure 3.1g,h), this includes parts of Siberia and North America, eastern
Europe and the Mediterranean. JJA (Figure 3.le,f) shows the weakest excess
changes overall, with the only areas showing relatively strong excess changes in
northern Russia and eastern Europe for Tmax (Figure 3.1e). For all seasons, spatial
patterns and magnitude of excess changes between Tmax and Tmin are relatively
similar, however, there are some instances with significant differences. For example,
in MAM, a negative excess change exceeding -1°C is shown for eastern Europe in
Tmax (Figure 3.1c), with the same region showing positive excess changes above
1°C in Tmin (Figure 3.1d). This difference suggests that on average, the mean
temperature has warmed more than hot extremes during the day, while the opposite

is apparent during night-time.

Figure 3.2 shows results of recent excess changes in the warm tails for the multi-
model mean, calculated from the selected 26 CMIP5 models. Stippling indicates
grid cells where 20 out of the 26 models agree on the sign of excess change. Results
for the individual CMIP5 models are included as Supplementary Material (Figures
S2.5 — S2.20 for warm tails and cold tails). As expected, the multi-model mean
shows a relatively smooth spatial pattern across the globe for all seasons, due to
smoothing variability across different simulations. The individual model
simulations are, like HadGHCND, more spatially heterogenous, though the models
vary considerably in terms of both sign and magnitude, partly reflected in the lack
of stippling in Figure 3.2. For the warm tails in Tmax, for example, some of the
largest regional differences between models are shown for DJF in northern Eurasia,
with some models showing negative excess changes over -1°C, while others show
positive excess changes between 0.6°C and 1°C (see Figure S2.5). For Tmin, DJF

also shows the largest regional differences between models (see Figure S2.10), with
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Figure 3.2 As Figure 3.1, but for the CMIP5 multi-model mean. Stippling indicates grid
cells where at least 20 out of the 26 models agree on the sign of excess change.

similar magnitude differences to that of Tmax. In the multi-model mean, excess
changes in the warm tails are relatively small for all seasons, with the strongest
being in DJF (Figure 3.2a,b) in the Northern Hemisphere extratropics. For most of
this area, excluding eastern Russia, at least 20 out of the 26 models agree that the
mean has warmed more than extremes, as in HadGHCND. In some of the individual
model simulations for DJF (see Figures S2.5, S2.9), the magnitude of excess change
is larger and covers a greater area than in HadGHCND, while other models show
a smaller or even opposite sign in magnitude of excess change. Model agreement is
low for MAM (Figure 3.2c,d), JJA (Figure 3.2¢,f) and SON (Figure 3.2g,h), though

this is likely a consequence of excess changes being relatively small overall. As in
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HadGHCND, changes in Tmax and Tmin are mostly similar both spatially and in
terms of sign, though some individual models show differences in similar regions to
HadGHCND, for example, around Central Europe during MAM (see Figures S2.6,

$2.10).

Overall, the most prominent features in the warm tails are the negative excess
changes in the Northern Hemisphere extratropics during boreal winter, shown for
both Tmax and Tmin. This is evident in HadGHCND and the CMIP5 models, with

high model agreement in the multi-model mean for much of this area.

3.3.1.2 Recent excess changes in the cold tails

Excess changes in the cold tails for recent decades based on the HadGHCND
gridded observations are shown in Figure 3.3. As in the warm tails, Tmax and
Tmin show many similarities in both spatial pattern and sign of excess change.
Similarly, JJA (Figure 3.3e,f) shows the smallest excess changes in most regions,
excluding around the Middle East area which shows excess changes up to 0.8°C for
Tmax (Figure 3.3¢). The most prominent excess changes in the cold tails are shown
for some Northern Hemisphere regions in wintertime and the shoulder seasons. In
DJF (Figure 3.3a,b), much of western and central Asia and the Mediterranean
region show positive excess changes over 1°C in the cold tails of both Tmax and
Tmin, though much of the United States, excluding parts of the west coast, shows
negative excess changes between -0.6°C and -1°C. In MAM (Figure 3.3c,d), much
of Eurasia and North America show significant positive excess changes, particularly
for Tmin (Figure 3.3d). SON (Figure 3.3g,h) also shows strong positive excesses
covering much of Eurasia, with these regions showing more significantly different

grid cells in Tmin (Figure 3.3h) compared with Tmax (Figure 3.3g).
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The multi-model mean again shows a relatively smooth spatial pattern in excess
changes in the cold tails in recent decades (Figure 3.4), with slightly more model
agreement overall compared to the warm tails. For DJF (Figure 3.4a,b), the multi-
model mean does not capture the strong positive excess changes shown in
HadGHCND for parts of Russia and Asia, nor the negative excess changes over
much of central and eastern North America (see Figure 3.3a,b), which are mostly
around 0.2°C to 0.4°C in the multi-model mean. Approximately half of the
individual models show strong positive excess changes for DJF in the Northern
Hemisphere, though the magnitude between the models ranges between 0.4°C and
over 1°C (see Figures S2.13, S2.17). Some of the models also capture the negative

excess changes shown for DJF in HadGHCND for much of the United States.

Figure 3.3 As Figure 3.1, but for the cold tails of Tmax and Tmin.
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Overall, the most prominent features across all seasons in the multi-model mean
are the positive excess changes in the Northern Hemisphere extratropics during
MAM (Figure 3.4b,c) and SON (Figure 3.4g,h). This is especially apparent in SON;,
which shows moderate model agreement on the sign of change in regions showing
the strongest excesses, that is, central and northern Europe and southern parts of
Russia for the cold tails of both Tmax (Figure 3.4g) and Tmin (Figure 3.4h). These
positive excess changes during the shoulder seasons are somewhat apparent in
HadGHCND depending on the region (see Figure 3.3g,h). For example, the
observations and multi-model mean agree on the sign of excess change in SON for
parts of northern Europe and south-central Russia. However, the multi-model mean
generally shows smaller magnitude excesses, such as an excess change of 0.6°C for
south-central Russia in Tmin (Figure 3.4h), compared to 1°C or more in
HadGHCND (see Figure 3.3h). In these regions during SON, many of the individual
models show strong positive excesses resembling the magnitudes shown in
HadGHCND, though some models show much more wide-spread changes covering
much of the Northern Hemisphere extratropics (see Figures S2.16, S2.20). Some
models also show strong negative excess changes between -0.2°C to -1°C in parts of
Australia. This sign in excess agrees with HadGHCND and is reflected in the multi-
model mean. For MAM (Figure 3.4c,d), the observations and multi-model mean
agree on positive excess changes for much of central Europe and North America,
particularly for Tmin (Figure 3.4d), though as in SON, excess changes in the multi-
model mean are smaller than those shown in HaddGHCND. As in HadGHCND, and
as shown for the warm tails, JJA (Figure 3.4e,f) shows the smallest excess changes
overall in the multi-model mean, with the individual models generally showing
excess changes between -0.4°C and 0.4°C (see Figures S2.15, S2.19). Though it is

not apparent in the multi-model mean, some individual models (see Figure S2.15)
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capture the positive excess changes in Tmax during JJA in the Middle East shown

in HadGHCND (see Figure 3.3e).
In recent decades, extremes in the cold tails of the distribution have warmed more
than mean temperatures for much of the Northern Hemisphere in the shoulder

seasons. This positive excess change is a common feature in HadGHCND, the

individual CMIP5 models and the multi-model mean.

Figure 3.4 As Figure 3.2, but for the cold tails of Tmax and Tmin.
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3.3.2 Projected excess changes between future and past decades

Figure 3.5 — 3.6 show future excess changes in the CMIP5 multi-model mean
between the end of the 21 century and the mid-20" century, with results from the
individual models shown in Figures S2.21 — S2.36. As for the recent excess changes
(see Figure 3.2, Figure 3.4), spatial pattern and sign of excess change between
Tmax and Tmin are similar. In particular, for the warm tails (Figure 3.5), the mid-
to high-latitudes in the Northern Hemisphere show negative excess changes between
-1°C and -7°C for all seasons except JJA in both Tmax and Tmin. For the same
regions, positive excess changes between 1°C and 7°C are shown for the cold tails
(Figure 3.6) in both Tmax and Tmin. In the Southern Hemisphere, low magnitude
changes for both the warm and cold tails are projected, however, some differences
are apparent such as over South America where the cold tail of Tmax mostly shows
projected excess changes around -0.5°C, while Tmin shows positive excess changes

around 0.5°C for the same regions.

3.3.2.1 Future excess changes in the warm tails

For the warm tails (Figure 3.5), DJF shows high model agreement in terms of sign
for much of the globe for both Tmax (Figure 3.5a) and Tmin (Figure 3.5b),
especially for those areas which show the largest excess changes. This includes much
of the Northern Hemisphere extratropics, which show negative excess changes
between -3°C and -7°C for much of Canada and eastern Russia. Though most of
the individual models capture this (see Figures S2.21, S2.25), some show smaller
negative excess changes closer to -1°C and -2°C shown across eastern Russia. Here,
the IPSL models especially stand out, showing positive excess changes over Siberia.
For DJF in the Southern Hemisphere, there is also high model agreement for many
regions, with hot extremes in the austral summertime projected to warm more than

the mean for much of South America and southern parts of Africa. The magnitudes
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of positive excess warming in the individual models range between 0.5°C and over
5°C for regions such as central to northern South America (see Figures S2.21,
S2.25). Both MAM (Figure 3.5¢,d) and SON (Figure 3.5g,h) show similarities to
DJF, with similar regions showing model agreement and the same sign in change,
although with a smaller magnitude. JJA (Figure 3.5b,c) shows the smallest
magnitude in excess changes overall, with good model agreement for regions
showing the largest excesses, including southern Australia and southern Asia, parts
of South America and Africa, and Europe, which all show positive excess changes

in the range of 0.5°C to 1.5°C.

Figure 3.5 Future excess changes in the warm tails of Tmax (left column) and Tmin
(right column) in the CMIP5 multi-model mean for each season (December — February
(a,b), March — May (c,d), June — August (e,f), September — November (g,h)). Stippling
indicates grid cells where at least 20 out of the 26 models agree on the sign of change.
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Projections of future excess changes indicate that mean temperatures will increase
more than warm extremes for much of the Northern Hemisphere, for all seasons
except JJA. This is a robust signal across the suite of 26 CMIP5 models. Southern
Hemisphere land regions generally show that extremes in the warm tails of both
Tmax and Tmin are predicted to warm more than the corresponding seasonal mean

temperatures.

3.3.2.2 Future excess changes in the cold tails

The cold tails generally show the opposite sign of excess changes in the multi-model
mean compared to the warm tails for all seasons across the globe (Figure 3.6).
Northern Hemisphere regions, particularly in the mid- to high-latitudes, show
strong positive excesses and high model agreement for DJF (Figure 3.6a,b), MAM
(Figure 3.6¢,d) and SON (Figure 3.6g,h). There is also high model agreement for
Southern Hemisphere regions, particularly for Tmax, which show mostly negative
excess changes. In both shoulder seasons, the Northern Hemisphere extratropics
show excesses in cold extremes of at least 1.5°C, with some locations in Canada,
Alaska, northern Europe, central-western Asia and Russia exceeding 5°C. This is
robust across most of the models, with few showing excess changes below 1.5°C,
especially for SON (see Figures S2.32, S2.36). These positive excess changes extend
further south for Tmin than Tmax, into parts of India. For JJA (Figure 3.6e,f),
there is strong model agreement for Tmax (Figure 3.6e) for much of the globe,
which shows relatively small negative excess changes, excluding Greenland and
southern South America. Though most of the models agree on this, some models
show larger negative excess changes around -2.5°C for northern Africa, while others
show positive excess changes between 0.5°C and 2.5°C over southern Russia and

central Asia (see Figure S2.31). For all seasons except JJA, Tmax and Tmin tend
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to agree on spatial pattern and sign of change for much of the globe, excluding
some Southern Hemisphere locations which show differences in sign for regions
showing small excess changes, such as parts of central South America and Africa.
All seasons show robust positive excess changes in Greenland for both Tmax and

Tmin.

Figure 3.6 As Figure 3.5, but for the cold tails of Tmax and Tmin.

In the cold tails of the distribution, future changes generally show the opposite
signal to those shown for the warm tails (Section 3.3.2.1), that is, a strong warming
of cold extremes compared with the mean in the Northern Hemisphere (excluding

JJA) in both Tmax and Tmin, and slightly more warming in the mean compared
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with cold extremes in some Southern Hemisphere regions. Notably, for both the
warm and cold tails, all seasons except boreal summer show strong inter-
hemispheric differences in excess changes. Previous work has noted the inter-
hemispheric differences in surface temperature after the pre-industrial era has
increased due to sea ice and snow melt in the Northern Hemisphere and will
continue to increase into the future due to the land-sea warming contrast and
unequal spatial impacts from greenhouse gas emissions (Friedman, 2013; Blunden

and Arndt 2014; Hutchinson et al. 2015).

3.3.3 Spatial correlations of recent and future excess changes

In order to better evaluate how excess changes are represented across the different
models, correlation matrices for global spatial patterns of excess changes in the
warm and cold tails of Tmax and Tmin are shown for all seasons in Figure 3.7 —
3.10 (DJF, MAM, JJA, and SON respectively). Here, the models are all regridded
and masked to HadGHCND, so that comparisons to observations can be made for
the patterns of past changes. Pattern correlations for excess changes in recent
decades are generally low for all seasons and temperature variables. Importantly,
the low correlations are apparent not only between the models and the observations,
but between the models themselves. This suggests a general spatial noise for the
globe, along with the relatively low signal of excess changes in the CMIP5 models

in the analysis of recent changes.
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Figure 3.8 As Figure 3.7, but for March — May.

Irrespective of the season and temperature variable,

excess changes in the future

projections are much more spatially correlated than recent excess changes. JJA

(Figure 3.9) shows comparatively lower spatial correlations for future changes

compared with other seasons, though the models are still more correlated with each

other than they are for the analysis of past changes. Across all temperature

variables, future excess changes in DJF (Figure 3.7) show the highest pattern

correlations, with the highest overall being in the warm tails. For MAM (Figure

3.8), spatial correlations are the highest for patterns of future changes in the cold
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tails of the distribution, as is the case for SON (Figure 3.10). In comparison to the
low correlations and noise shown for the recent excess changes, the high pattern
correlations for future excess changes indicate a systematic change in extremes

relative to the mean, especially for DJF and in the cold tails of the shoulder seasons
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Figure 3.9 As Figure 3.7, but for June — August.

under stronger greenhouse gas forcing. The magnitude of warming in future changes
compared with recent changes is reflected in the high correlations shown for future
changes, in all seasons except JJA. Moreover, models that show greater warming

7



also show greater sensitivity. For example, the IPSL-CM5B-LR model, which shows
lower correlation with other models compared with those that are more highly
correlated with each other, is generally cooler than other models and shows smaller
magnitude excess changes. Further, for the warm tail in Tmax in MAM (Figure
3.8a), relatively low correlations are shown for the future compared with Tmin and
with the cold tails. This is likely a function of relatively small magnitude future

excess changes across the majority of the models.
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Figure 3.10 As Figure 3.7, but for September — November.
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3.4 Discussion and conclusions

We have documented how seasonal extremes of daily temperatures in both tails of
the distribution are changing, and might change in the future, relative to seasonal
local mean temperatures for global land areas. Our findings indicate that warm
extremes in all seasons are projected to warm more than the corresponding mean
temperatures for much of the tropics and Southern Hemisphere regions. In these
areas, the CMIP5 multi-model mean shows strong agreement for accelerated
warming of warm extremes in much of South America, southern Africa and
southern Australia. This is especially true in DJF, MAM and JJA, which also show
excess warming in the warm tails in parts of the United States, the Mediterranean
and Eurasia. It should be noted that some of these regions, such as parts of South
America and southern Africa, do not have sufficiently complete data available in
the observational dataset used in this study, and so simulated magnitudes of
accelerated warming of warm extremes in these areas cannot be evaluated against
observations here and need to be interpreted with caution. Further, in our analysis
of recent decades, excess changes in the multi-model mean are sometimes opposite
in sign to those shown in the observations in regions where data are available, such
as in the United States during DJF for Tmax. This adds some uncertainty to
projections of warm extremes relative to the mean. Some individual model
simulations, however, do resemble the excess changes shown in the observations, in
both sign and magnitude, and projections for these models show strong positive
excess changes. The aforementioned ‘hot spot’ regions are also identified as areas
of accelerated warming of hot extremes by Donat et al. (2017) and seem robust
when comparing local hot extremes against both the local annual mean and local
seasonal mean. The opposite sign of excess change, where the rate of change in the
mean is greater than that of the warm extremes, is projected for high-latitude areas

in the Northern Hemisphere during all seasons except JJA. These regions have
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previously been shown to have the strongest mean warming signal during boreal
winter (Screen and Simmonds 2013). The increase of warm extremes relative to the
mean in summertime Northern Hemisphere regions is relatively small, compared

with other seasons.

Southern Hemisphere regions generally show smaller magnitude excess changes
overall compared with the Northern Hemisphere, especially for future changes.
Hutchinson et al. (2015) looked at simulations of equilibrated control runs and
2xCO, warming experiments to show the asymmetry is caused primarily by ocean
circulation being affected by greater melting of sea ice in the Arctic. Although
outside of the scope of the present study, it would be interesting to similarly explore
equilibrated simulations to understand whether the inter-hemispheric asymmetry
in excess changes is related to model simulations being further from equilibrium in
the Southern Hemisphere, or whether the asymmetry is due to the land-ocean

contrast and enhanced sea ice loss in the Northern Hemisphere.

There is strong evidence in both observations and climate models that cold
extremes are warming at a faster rate than warm extremes, changing the symmetry
of the distribution (e.g. Kharin and Zwiers 2005; Donat et al. 2013b). We show
that, for all seasons except JJA, the magnitude of excess change in regions where
the cold tail is projected to warm more than the mean, such as in the Northern
Hemisphere mid- to high-latitudes, is greater than that of the negative excess
changes in the warm tails in the same regions. This is consistent with the
distribution becoming narrower. Evidence for a decrease in wintertime variability
in these regions has previously been discussed (Screen 2014; Holmes et al. 2016;
Rhines et al. 2017). Our findings further suggest a decrease in variability in DJF

in these areas, but also during the shoulder seasons. Perhaps the most striking

80



CHAPTER 3. CHANGES IN EXTREMES RELATIVE TO THE MEAN

features of all are the strong excess changes in the cold tails in the shoulder seasons,
shown for many of these mid- to high-latitude Northern Hemisphere regions.
Regions that experience snow and ice-related feedbacks, such as these areas with
strong excess changes, are more associated with the disproportionate warming of
cold extremes to warm extremes (Kharin et al. 2013). This strengthens the
argument for an asymmetrical, or skewed distribution in the Northern Hemisphere
mid- to high-latitudes, with more warming in the cold tails relative to the mean,

and less warming of warm extremes relative to the mean.

The possible drivers of the warming in the cold tails are likely different to those
affecting the warm tails. The physical processes relating to the rates of warming in
extremes relative to the mean have been explored mostly for hot extremes (e.g.
Donat et al. 2017; Vogel et al. 2017). These changes have been largely explained
by changes in the land surface heat fluxes and soil moisture-temperature feedbacks
amplifying the intensity of hot extremes. Recent work has shown that the strength
of these land-atmosphere interactions differs between models, and those models
with moisture-temperature relationships more similar to observations over the past
decades tend to simulate smaller warming of future heat extremes compared with
models showing unrealistically strong land-atmosphere interactions (Donat et al.
2018; Vogel et al. 2018). The mechanisms behind the warming rates of cold
extremes have been less studied, though some have attributed the accelerated
warming of cold extremes relative to warm extremes in Northern Hemisphere
regions to Arctic amplification and the reduction of cold air advection (e.g. Screen

2014).

Future work should continue to investigate the possible physical processes that are

driving the excess warming of extremes relative to the mean. Based on this study,
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this process-driven work could focus on the regions and seasons that show the most
robust signals, that is, cold extremes in mid- to high-latitude Northern Hemisphere
regions during the shoulder seasons and DJF. One possibility, aside from reductions
in cold air temperature advection, is that changes in snow cover and albedo are
playing a role in the warming of cold extremes relative to average conditions in
these regions and seasons. Exploring regional differences and similarities between
individual models can also provide insight into the possible physical mechanisms
driving excess changes. Improving our understanding of why these differences occur,
by understanding differences in the physical parametrizations within the models
could lead to a more process-based evaluation such as linking changes in snow and
ice cover with the amplified warming of cold extremes simulated in the models used
in this study. Additionally, departures from normality may be linked with changes
in extremes that are proportional to mean changes. Previous work has found that
in the U.S., extreme and mean temperature changes in winter can be explained by
non-normal intra-seasonal variability which drives the enhanced warming of
wintertime extremes (Huybers et al. 2014). It would be useful to investigate excess
changes in temperature with regards to non-normality for other regions showing
the largest excess changes that are identified in this study, such as the Northern
Hemisphere extratropics. Explaining what is driving excess changes could then lead
to higher confidence in projected future changes and enable more effective planning

and adaptation tailored to each region’s needs.

Anticipated increases in temperature are coupled with greater potential impacts
from extremes. Much of the existing literature on the impacts from climate change
has focused on heat extremes, arguably because of the more perceivable effects from
events such as heatwaves, for example. However, there are also consequences

associated with the warming of cold extremes, and this is especially important if
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the cold tail is warming faster than the warm tail. While there may be some
advantages associated with the warming of cold extremes, such as lower human
mortality rates from cold spells (Smith et al. 2014; Wolf et al. 2015), there are also
detrimental consequences. For example, the warming of cold extremes can lead to
more disease-carrying insects that can survive through milder winters (Smith et al.
2014; Wolf et al. 2015; Ebi and Nealon 2016). Under a warming climate, mosquitoes
might expand and shift in geographical location (Ebi and Nealon 2016). Coupled
with the accelerated rates of warming of cold extremes relative to average
conditions during boreal winter, this puts more regions at risk, including North
America, much of Europe and central Asia. In addition, the warming of cold
extremes can lead to longer exposure to pollen from earlier flowering in the seasons
(Wolf et al. 2015), which can then trigger allergies in those that suffer from
respiratory illnesses. This could be a potential consequence of positive excess
changes in cold extremes during the shoulder seasons. So, as with warm extremes,
the need to understand how cold extremes are changing is crucially important to

society.

The existing literature has used a range of methods to explore changes in extremes
relative to the mean, making the uncertainties surrounding reported changes in
variability and shape of the distribution difficult to compare and quantify. While
some have defined extremes as the hottest or coldest day of the year (e.g.
Seneviratne et al. 2016; Donat et al. 2017; Vogel et al. 2017 ), others have used
globally or seasonally-averaged extremes (e.g. Kharin and Zwiers 2005) or annual
extremes defined by a percentile (e.g. Brown et al. 2008; Gross et al. 2018). Some
of these studies have then compared extremes to global annual average
temperatures. Because of the strong seasonal and regional differences also in mean

warming, in this study, we use seasonal averages of local mean temperatures, to
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compare with the corresponding seasonal local extreme temperature. Another
outstanding issue raised in the literature relates to the methods in which
temperature anomalies are calculated. Showing temperature anomalies is useful
because it more easily communicates how unusual the temperature is to ‘normal’,
based on a long enough reference period (Hawkins and Sutton 2016). Normalising
temperature relative to the local mean relative to a sufficiently long reference period
is the most commonly used approach, but this can lead to inflated results of
variability and extremes (Sippel et al. 2015). Here, daily temperature anomalies
were calculated by subtracting the mean annual cycle of daily values from the raw
daily data of each respective dataset, and this was tested across different reference
periods. Results were found to be similar regardless of whether a shorter or longer
period was used to derive the percentiles (see Figures S2.1 — S2.4). This ensured
that the results of excess changes shown here are robust to such methodological
choices. By testing and documenting possible sensitivities and finding no
outstanding issues, the methods and results presented here can stand as a
comprehensive framework for assessing a number of different aspects of the

temperature distribution.

Differences in the local rates of change in the warm and cold extremes relative to
the corresponding mean temperature can provide information on the changing
shape, or skewness, of the distribution. This is meaningful with regards to climate
change impacts because changes in the variability or shape of the distribution can
have greater implications than shifts in the mean alone (Katz and Brown 1992;
Schér et al. 2004). This study adds to the existing literature by systematically
assessing characteristics of the tails of the distribution in parallel with the mean.
Though the aim here is to provide a comprehensive documentation on several

different aspects of the temperature distribution, some limitations remain. Firstly,
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we have only presented projections made from the CMIP5 RCP scenario with the
strongest greenhouse gas forcing, and it would be useful to know the range of excess
changes across different RCP scenarios to determine uncertainties. In addition,
despite selecting CMIP5 models from different groups to enhance independence, we
did not assess model skill, aside from pattern correlations against HadGHCND, and
so all model results need to be interpreted with caution. Despite finding relatively
low agreement between the models and the observations for the recent analyses,
many of the individual models resemble the observations more closely than the
multi-model mean. The findings for future excess changes are systematic and
robust, and our discussion of the multi-model mean reflects those of the individual

models.

Changes in different characteristics of the temperature distribution, including
changes in the tails of the distribution relative to the mean, vary significantly
depending on the season and the geographic location. For many Northern
Hemisphere regions, particularly those in the mid- to high-latitudes and during
boreal winter, autumn and spring, average temperatures are projected to warm at
a faster rate than warm extremes, while the opposite is true for the Southern
Hemisphere. The greatest difference in warming rates between cold extremes and
the mean are again shown for mid- to high-latitudes in the Northern Hemisphere,
for all seasons except boreal summer. In these regions, cold extremes are projected
to warm at a substantially faster rate than the mean, especially in Alaska, Canada,
central Europe and western Russia. For these regions that show substantial
differences in the rates of warming between extremes and average temperatures,
the symmetry of the temperature distribution is changing. This can affect the
probability of extreme events, potentially leading to significant impacts from the

warming of cold extremes, as well as those from exacerbated warm extremes. By
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systematically and comprehensively documenting how these aspects of the
distribution are changing relative to each other, this study provides crucial
information for future work aiming to understand the underlying physical processes
that are driving the disproportionate rates of warming between extreme and mean

temperatures.
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CHAPTER 4

Enhanced warming of seasonal cold extremes relative to the

mean in the Northern Hemisphere extratropics

Chapter overview

This chapter is currently under review for publication as: Gross, M. H., M. G.
Donat, L. V. Alexander, and S. C. Sherwood, 2019: Enhanced warming of seasonal
cold extremes relative to the mean in the Northern Hemisphere extratropics.

Climate Dynamics, submitted.

In Chapter 3, we showed that seasonal cold extremes are projected to warm faster
than seasonal mean temperatures for much of the Northern Hemisphere mid- to
high-latitudes in all seasons except boreal summer. In this chapter, we use a novel
approach to examine the environmental conditions on or prior to the day in which
the cold extreme occurs to improve our understanding of the physical mechanisms
that might contribute to the accelerated warming of cold extremes relative to mean
temperatures. Using a selection of Global Climate Models, regions showing the
largest disproportionate rates of warming are identified and explored using several
different climate variables, including horizontal temperature advection, snow cover,
and surface albedo. During winter months, accelerated warming rates of cold

extremes relative to mean temperatures are projected for much of North America,
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Europe and Eurasia for the late 21% century, compared with the mid-20" century.
This is shown to be largely driven by reductions in cold air temperature advection,
suggested to be a likely consequence of Arctic amplification. In spring and autumn
months, cold extremes are expected to warm more than mean temperatures for
most of the Northern Hemisphere extratropics, particularly Alaska, northern
Canada and northern Eurasia. In the shoulder seasons, feedbacks related to
projected decreases in snow cover and associated reductions in surface albedo are
suggested as the main contributor influencing the enhanced warming of cold
extremes relative to the mean. In addition, we show that the anomalously coldest
day of the season in Northern Hemisphere high-latitude regions is projected to occur
later in spring and earlier in autumn months, suggesting a flattening of the seasonal
cycle in these regions. Overall, this chapter provides insight into the physical
processes that might be driving the enhanced warming of seasonal cold extremes
relative to the seasonal mean. This increases our overall confidence in the simulated
excess changes and could help to develop constraints in future research to decrease

the uncertainty in climate model projections.

4.1 Introduction

Daily temperature extremes are expected to continue to warm, along with increases
in the mean, as a consequence of increasing greenhouse gases in the atmosphere.
The rates of warming of extremes and average temperatures are, however, not
uniform, and differ depending on the season and region. Disproportionate rates of
warming for different parts of the temperature distribution imply a change in the
shape of the distribution. This is significant because it effects the probability of

extreme events (Mearns et al. 1984), which can cause widespread impacts on society
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and the environment, more so than changes in the mean temperature alone

(Intergovernmental Panel on Climate Change (IPCC) 2012).

Both observational data and climate model simulations suggest that cold extremes
are warming faster than warm extremes for much of the globe (e.g. Kharin and
Zwiers 2005; Donat and Alexander 2012; Donat et al. 2013b). Studies have also
shown that in recent decades, cold extremes have been warming at a faster rate
than local mean temperatures for some regions in the Northern Hemisphere (Brown
et al. 2008; Gross et al. 2018). The enhanced warming of cold extremes in these
regions, relative to both the mean temperature and warm extremes, is indicative of
decreasing variability in these regions during boreal winter (Screen 2014; Ylhéisi
and Raisdnen 2014; Schneider et al. 2015; Rhines et al. 2017). Climate model
projections suggest this decrease in variability due to the accelerated warming of
the coldest days will continue (Holmes et al. 2016), with some regions in the mid-
to high-latitudes projected to increase over 5°C more than mean temperatures by
the late 21* century (Gross et al. submitted). These disproportionate rates of
warming suggest that changes in cold extremes are driven by mechanisms other
than increases in local mean temperatures alone. A better understanding of the
physical drivers related to the projected rates of enhanced warming of cold extremes
is therefore crucial for assessing the probability and potential impacts of future

changes in cold extremes.

The physical mechanisms driving the accelerated warming rates of cold extremes
differ depending on the region and season. For land regions in the Northern
Hemisphere mid- to high-latitudes, the warming of cold extremes and the associated
decreases in temperature variability during winter months are consistent with

reductions in cold air temperature advection that are a consequence of Arctic
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amplification (Screen 2014; Schneider et al. 2015; Holmes et al. 2016; Rhines et al.
2017). Arctic amplification, a phenomenon describing the enhanced warming of the
Arctic relative to lower latitudes (Serreze and Francis 2006), has been suggested as
one of the dominant causes of the observed and projected reductions in the severity
of extremely cold days during winter in the Northern Hemisphere mid- to high-
latitudes (Screen 2014; Schneider et al. 2015; Holmes et al. 2016; Rhines et al.
2017). This effect on cold extremes from Arctic amplification is shown to be a
consequence of northerly winds from the Arctic bringing warmer than usual air to
more southerly regions on the coldest days, which are warming faster than the
warm days, therefore reducing the sub-seasonal temperature variability (Screen
2014; Holmes et al. 2016). Though it seems relatively clear that changes in
temperature advection are linked with decreases in temperature variability in many
mid- to high-latitude Northern Hemisphere regions, there is still uncertainty as to
its role in driving the enhanced warming of seasonal cold extremes relative to the
corresponding seasonal mean. It is more likely that multiple factors are influencing

the seasonal and regional differences in rates of warming.

Aside from changes in atmospheric circulation patterns and thermal advection that
may be altering cold extremes, variations in surface fluxes affecting the overall
surface energy budget have strong links with surface temperatures and extremes.
In particular, changes in snow cover play an important role in altering surface
temperature in Northern Hemisphere regions that experience snowfall (e.g. Cohen
and Rind 1991; Mote 2008; Diro et al. 2018). The high reflectivity and thermal
emissivity of snow, compared to other natural surfaces, increases the surface albedo,
lowers the absorbed shortwave radiation at the surface, and increases shortwave
radiation reflected at the surface (Cohen and Rind 1991). The surface albedo

feedback from snow cover is more likely to influence winter months and early spring
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in the Northern Hemisphere, where snow accumulation is at its highest (He et al.
2014; Thackeray et al. 2015; Diro et al. 2018). However, the effect of snow cover
on surface temperature is suggested to be strongest during spring when snow melt
is at its highest, leading to increases in latent heat at the surface (Cohen and Rind
1991; Dutra et al. 2011; Xu and Dirmeyer 2011; Diro et al. 2018). The snow-
temperature relationship is also effected by the snowpack, due to melting snow and
consequent increases in latent heat, and vegetation cover, which acts to limit the

role of snow cover and snow melt (Chapin III et al. 2005; Mote 2008).

Climate model simulations have shown differences in the regions with the strongest
snow-temperature relationship, with some studies looking at North America finding
the strongest links between temperature and snow cover over parts of eastern North
America (e.g. Xu and Dirmeyer 2011), and others suggesting northwestern U.S. and
southern Canada (e.g. Dutra et al. 2011). Many of the uncertainties related to
biases within climate model simulations are related to the land cover
parameterizations within the models, such as how the models capture the masking
effect of vegetation on snow cover (Loranty et al. 2014; Qu and Hall 2014).
Evaluating the differences between climate model simulations of snow cover, surface

albedo and their influences may help to improve future projections of warming.

This paper is structured by first evaluating a selection of climate models from the
Coupled Model Intercomparison Project phase 5 (CMIP5) archive (Taylor et al.
2012) against a gridded observational dataset in terms of their ability to capture
recent warming rates of seasonal cold extremes relative to the seasonal mean. This
is followed by discussing predicted future changes in the suite of climate models
used. Next, the possible physical mechanisms driving the enhanced warming of cold

extremes relative to seasonal means are explored. The investigated variables are
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chosen based on evidence that has been suggested by prior studies, as previously
discussed. We follow an approach similar to Donat et al. (2017), assessing
conditions on the day on which the cold extreme occurs, or the average of days

prior to day of the extreme.

4.2 Data and Methods

4.2.1 Observational and CMIP5 data

We wuse the Hadley Centre Global Historical Climatology Network-Daily
(HadGHCND) dataset (Caesar et al. 2006) to evaluate climate model simulations
for the period 1950-2014. HadGHCND is a land only, daily gridded dataset of daily
maximum and minimum temperatures from ground stations, for which daily mean
temperatures are calculated by taking the average of each daily maximum and

minimum temperature value for each grid cell.

The HadGHCND data are used to evaluate six individual CMIP5 models (see Table
4.1), which were selected based on their data availability for all of the daily climate
variables being investigated. While we only show a single simulation from each
model (rlilpl), multiple ensemble runs were analysed (where available) to
determine model robustness and assess internal climate variability within the
models. Results of multiple ensemble runs were found to be highly correlated in
both spatial pattern and magnitude of simulated changes (not shown), indicating
that sensitivity of the results to internal variability within the models is small.
Historical model simulations (1950-2005) are merged with Representative
Concentration Pathway 8.5 (RCP8.5) simulations (2006 onwards) to assess changes
between the mid-20™ century and early 21* century (1950-2014), as well as between
the mid-20" century and late 21*' century (1950-2099). For analysis of recent

decades, a bilinear remapping technique is used to re-grid all models to the grid cell
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size of HadGHCND, that is, 2.5° latitude x 3.75° longitude, and masked to only
cover land regions where sufficient observational data are available. We define
‘sufficient’ as being grid cells with at least 80% of daily data available over 1950-
2014, as well as at least 50% of data available for the first and last ten years of
observational data. For analysis of future projected changes, all models are
regridded to a common grid size of 2.5° latitude x 2.5° longitude to enable inter-

model comparison.

Table 4.1 List of CMIP5 models used in this study and their institution.

Model Modelling group
CanESM2 Canadian Centre for Climate Modelling and Analysis (CCCMA)
CNRM-CM5 Centre National de Recherches Météorologiques / Centre

Européen de Recherche et Formation Avancée en Calcul
Scientifique (CNRM-CERFACS)
CSIRO-Mk3-6-0 CSIRO in collaboration with Queensland Climate Change
Centre of Excellence (CSIRO-QCCCE)
INM-CM4 Institute for Numerical Mathematics (INM)
MPI-ESM-LR Max Planck Institute for Meteorology (MPI-M)
MPI-ESM-MR Max Planck Institute for Meteorology (MPI-M)

4.2.2 Methods

For each model simulation as well as HadGHCND, daily temperature anomalies
are calculated relative to a mean annual cycle of daily mean temperatures based on
the entire period of analysis (1950-2014 for analysis of recent changes, and 1950-
2099 for analysis of future changes). The data are then split into seasons, December
to February (DJF), March to May (MAM) and September to November (SON),
and all analyses are only applied to Northern Hemisphere land areas north of 30°N.
For this study, we do not include boreal summer in our analysis as it was previously
found to have only small changes in cold extremes relative to the mean that were

less robust across a suite of CMIP5 models (Gross et al. submitted).
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For each grid cell in each dataset, the seasonal minima of daily temperature
anomalies are calculated annually for 1950-2014 and 1950-2099 separately,
accounting for the differences in base period selection. The seasonal minima are
then averaged over two periods, 1950-1981 and 1982-2014 for analysis of recent
changes, and 1950-1979 and 2070-2099 for analysis of future changes, to calculate
changes in the anomalously coldest days. Changes in seasonal mean temperature is
similarly computed from daily mean temperature data. The difference between
changes in the seasonal minima and changes in the seasonal mean is then calculated,
hereafter referred to as ‘excess changes’. ‘Recent excess changes’ refer to excess
changes between the mid-20" century and early 21%' century, while ‘future excess
changes’ refer to excess changes between the mid-20" century and late 21% century.
Local significance of future excess changes is assessed by a Kolmogorov-Smirnov

test (KS-test) at the 5% level.

To investigate the possible drivers of the enhanced warming of seasonal cold
extremes relative to the mean in the mid- to high-latitude Northern Hemisphere
regions, we assess several variables available at the daily time-scale in the selected
CMIP5 models. This includes daily data for snow cover (CMIP5 variable name
snc), snow amount (snw) and upwelling and downwelling longwave and shortwave
radiation fluxes at the surface (rlus, rlds, rsus, rsds). We also assess surface albedo,
calculated as the ratio of upwelling shortwave radiation and downwelling shortwave
radiation, and horizontal temperature advection, which is derived for each model

using the equation:

Tadvzux(d—T)+vx(%)

dlon
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where u and v are the zonal and meridional wind components (uas and wvas,
respectively), and dT is the local absolute daily mean temperature gradient in the
zonal and meridional direction. For surface albedo, there are some instances in high-
latitude regions where values are unrealistically large, as a result of low incoming
shortwave radiation values that affect the calculation of surface albedo. In any
instance where surface albedo values are outside of the physically reasonable 0 to 1
range, values are set to missing. Several other daily variables were also assessed,
such as surface heat fluxes and cloud cover, but were found of low relevance as

potential drivers of cold extremes in the seasons and regions being examined.

The analysis of the physical mechanisms related to the enhanced warming of cold
extremes is limited to future changes, where the signal is stronger than for recent
changes, and therefore shows a more robust identification of relationships. For each
of the variables assessed, except temperature advection, data are evaluated on the
specific day when the seasonal minima occurs. For temperature advection, a three-
day average prior to the day the cold extreme occurs is used. This is because it is
likely that larger changes in circulation would have more of an influence on
temperature in the days leading up to the event, rather than the day of the event.
Days leading up to the cold event were also examined for the other variables, but
results showed no clear difference compared to using values on the exact day of the
event. Excess changes are also calculated for each variable in much the same way
as temperature, by taking the difference between the value of the variable on the
days of the temperature extreme (or three-day average prior for temperature
advection) and the seasonal mean of the variable. In essence, this removes the mean
from the analysis and shows regions that experience increases or decreases in

conditions related entirely to the days on which the cold extremes occur.
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Results of the physical relationships are presented in two ways: one by showing
maps of the variables as is shown for excess changes in temperature (to infer on the
similarity of spatial patterns), and the other by showing scatter plots of correlations
between each variable and future excess changes in cold extremes. The former is
included in supplementary material due to the number of figures while the latter
are included within the main body of the manuscript. For the scatter plots, annual
‘excess’ values for the two time periods used for the future analysis are calculated
as the difference between the variable value on the day the seasonal minima occurs
and the seasonal mean of the respective variable. Weighted area-averages of the
annual excess values are then calculated for all grid boxes within a selected region
that adhere to a specified condition that only includes grid cells that have a
statistically significant future excess change exceeding 1°C. Two regions are
assessed, one covering North America, and the other covering much of northern
Eurasia, and are common to all models (see Supplementary Material Figure S3.1).
Regressions are calculated using total least squares regression, with correlation

coefficients computed using Spearman’s rank correlation.

4.3 Results

4.3.1 Recent changes in cold extremes relative to the mean

Excess changes between recent decades in seasonal cold extremes relative to
corresponding mean temperatures are shown for HadGHCND and individual
CMIP5 models for DJF (Figure 4.1), MAM (Figure 4.2) and SON (Figure 4.3). In
all figures, and subsequent maps of excess changes, positive values indicate regions
where cold extremes have warmed more than the mean, while negative values
indicate regions where the mean has warmed more than the cold extremes. Global
pattern correlations are shown in the top right above each map, indicating the

spatial similarity between each model with HadGHCND.
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Pattern correlations between the observations and the individual CMIP5 models
are low, indicating differences in the spatial patterns, however, this may be due to
the relatively low magnitude of excess change and high spatial noise across the
observations and models over the past 60 years. During winter (Figure 4.1), the
observations and most of the individual models agree that cold extremes have
warmed more than the mean for parts of Canada and Alaska, as well as parts of
western Europe, and central Asia, although the exact locations of these excess
changes differ (as reflected in the low pattern correlations). Spring months (Figure
4.2) show slightly higher pattern correlations between observations and the models,
with all models, excluding INM-CM4, showing even higher correlations in autumn
(Figure 4.3). Compared with winter, MAM and SON generally show stronger and
more widespread positive excess changes over Europe and Eurasia. For most of the
models, the strongest excess changes overall are shown for parts of Russia/Eurasia,
especially during the shoulder seasons, except for CanESM2 which shows
particularly strong positive excess changes in DJF in central/eastern Europe. In
the observations, the strongest excess changes are shown for much of Eurasia in

SON and DJF, but mostly central Europe and North America during MAM.

The observations and the CMIP5 models suggest the same general pattern of excess
changes, with the most prominent positive excess changes in recent decades
occurring in the northern continental interiors for all seasons shown. This motivates
us to assess projections of enhanced warming of cold extremes in the selected six

climate models over the Northern Hemisphere.
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Figure 4.1 Recent excess changes (1982-2014 — 1950-1981) in cold extremes (seasonal minima —
seasonal mean) for December — February. The number in the top right above the maps for each
model represents the pattern correlation with that model and HadGHCND.
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HadGHCND

==

Figure 4.2 As Figure 4.1,but for March — May.
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Figure 4.3 As Figure 4.1,but for September — November.

4.3.2 Projected excess changes in cold extremes between future and past
decades

Projections of excess changes in cold extremes comparing the mid-20™ century with
the late 21% century are shown for each of the six individual CMIP5 models for

DJF (Figure 4.4), MAM (Figure 4.5) and SON (Figure 4.6). Stippling indicates
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grid cells where changes are statistically significant, as assessed by a KS-test. Much
of the Northern Hemisphere mid- to high-latitudes indicate that cold extremes are
projected to warm significantly more than mean temperatures. For winter (Figure
4.4), CanESM2 shows the most prominent excess changes, covering much of North
America, eastern and central Europe, and northern Eurasia. While not quite as
strong, all other models show mostly significant positive excess changes in cold
extremes for many of the same regions, particularly Alaska, eastern Canada, and
eastern and central Europe. There is some variation over northern Russia/Siberia,
with CNRM-CM5 showing significant negative excess changes around -1.5°C,
opposed to relatively strong positive excess changes around 3°C shown in
CanESM2, MPI-ESM-LR and MPI-ESM-MR. As in the recent excess changes,
spring and autumn generally show a more widespread and systematic pattern of
positive excess changes over Eurasia, Canada and Alaska. In MAM (Figure 4.5),
the models show some differences in the southern parts of the U.S. and Eurasia,
which mostly show non-statistically significant negative excess changes. There is
relatively good agreement between models for the strong excess changes over much
of the Eurasian and Russian region during MAM, except for INM-CM4 which shows
smaller and mostly non-significant positive excess changes for the northern half of
Russia. In terms of model agreement, SON (Figure 4.6) is similar to MAM, with
the greatest model agreement over Alaska, Canada and central/eastern Europe and
northern Eurasia, excluding non-significant small excess changes in northern Russia
for CSIRO-Mk3-6-0. For Alaska, northern Canada and northern Eurasia, positive
excess changes are generally largest for SON compared with the other seasons,

except CanESM2 which shows particularly large excess changes in DJF.
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Figure 4.4 Future excess changes (2070-2099 — 1950-1979) in cold extremes (seasonal minima —
seasonal mean) for December — February. Stippling indicates grid cells that are significant at the
5% level as assessed by a KS-test.
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CanESM2
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Figure 4.5 As Figure 4.4, but for March — May.
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Figure 4.6 As Figure 4.4, but for September — November.

Overall, future excess changes are robust and systematic across the models in
winter, spring and autumn, with many mid- to high-latitude regions projecting
enhanced warming in cold extremes relative to the mean. To explore the possible
physical mechanisms driving the enhanced warming of cold extremes, we focus on
the regions that show the most robust signals. The strongest excess changes across

all the shown seasons are over northern Furasia and northern North America. This
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is relatively consistent with the largest recent excess changes occurring in the
northern continental interiors in observations and CMIP5 models, though is much

more widespread and systematic in the predicted patterns.

4.3.3 Projected changes in cold air temperature advection prior to cold
extremes

Due to the evidence suggesting Arctic amplification, and consequent changes in
thermal advection, as a main driver of decreasing temperature variability in
Northern Hemisphere regions (e.g. Screen and Simmonds 2010; Screen 2014;
Schneider et al. 2015; Holmes et al. 2016; Rhines et al. 2017), we first consider
projections of changes in cold air temperature advection for the three days prior to
the cold event. Figure 4.7 shows future changes in actual and excess cold air
temperature advection in the CanESM2 model. Results for the remaining models
are included as Supplementary Material (Figures S3.2 — S3.3), with any key

differences between the models highlighted below.

The most notable features occur for DJF, which shows reductions in cold air
temperature advection for much of North America as well as Eurasia. This is
evident for changes in both actual and excess cold air temperature advection, which
suggests the changes are related to a change in the overall mean state of cold air
temperature advection, rather than changes associated with the days directly prior
to the day the cold extreme occurs. This is similarly true for the other models (see
Figures S3.2 — S3.3), however, the magnitude of reduction in cold air temperature
advection is generally larger in CanESM2 compared with the other models. This is
reflected in future excess changes in cold extremes, where CanESM?2 is generally
warmer than the other models for DJF. For much of the central and eastern U.S.,

reductions in cold air temperature advection of at least -2°C are projected for the
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late 21%" century, with the same areas showing the largest positive excess changes
in cold extremes. This is indicative of reductions in cold air temperature advection,
both related to the day of the extreme as well as changes in the mean-state, being
a dominant driver of the enhanced warming of cold extremes relative to the mean
during boreal winter (see Figure 4.4). Similarly, the greatest reductions in cold air
temperature advection over the European continent occur in Scandinavia and
Eurasia, which also show high magnitude excess warming in cold extremes during
DJF. This same pattern is evident across all of the selected climate models. Though
some reductions in cold air temperature advection are shown scattered over North
America and Eurasia for MAM and SON, the spatial pattern does not match with

the seasonal future excess changes in cold extremes like DJF does.

Figure 4.7 Future changes (2070-2099 — 1950-1979) in actual (left column) and excess (right
column) cold air temperature advection for December — February (top row), March — May (middle
row) and September — November (bottom row) in CanESM2. Values are calculated using the average
cold air temperature advection for the three days prior to the day the annual seasonal minimum
occurs, with negative values indicating reductions in cold air advection, and positive values
indicating increases. All six of the selected climate models used in this study are shown in Figures
S3.2 — S3.3.

Based on these results, it is evident that a reduction in cold air temperature
advection is driving the projected excess changes in cold extremes over much of

North America and Eurasia during winter. Both shoulder seasons, however, have a
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less clear signal with generally smaller, spatially scattered reductions in cold air
temperature advection, pointing to other mechanisms as a more dominant driver

of the enhanced warming of cold extremes in spring and autumn months.

4.3.4 Projected changes in snow cover and surface albedo associated with
cold extremes

Many of the grid cells showing significantly strong excess changes are located in
regions that experience high snow fall. Snow cover and associated surface albedo
feedbacks therefore play a major role in temperature variability in these regions,
but it is not clear if this relationship extends to the accelerated warming of cold
extremes relative to local mean temperatures, and the seasonal influence remains
uncertain. The subsequent results show scatter plots of excess changes in cold
extremes and snow cover (Figure 4.8) and surface albedo (Figure 4.9) for the North
American region and northern Eurasian region outlined in Figure S3.1. The
different coloured symbols and regression lines represent each of the six CMIP5H
models. As outlined in Section 4.2, these changes are calculated for the exact day
when the cold extreme occurs. Projections of changes in actual and excess snow
cover and surface albedo for the days of the cold extreme are included as
Supplementary Material (Figures S3.4 — S3.5 and S3.8 — S3.9, respectively). For
additional information on the snow-temperature relationship, future changes in

snow amount are also included in Supplementary Material (see Figures S3.6 — S3.7).

For both regions, mostly significant negative correlations between snow cover and
excess cold extremes are shown for all seasons, aside from excess snow cover in
DJF. For the North America region (Figure 4.8a-f), while all models show
significant negative correlations of at least -0.74 for actual snow cover in DJF

(Figure 4.8a), all models except CSIRO-Mk3-6-0 show significantly positive
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correlations for excess snow cover in DJF (Figure 4.8b). From Figures S3.4 — S3.5,
parts of North America, particularly southern Alaska, southern Canada and along
the north-western coast of the U.S., show projected decreases in actual snow cover,
but slight increases in excess snow cover. This suggests that the feedback between
snow cover and the projected enhanced warming of cold extremes is related to
overall reductions in the mean snow cover over winter, rather than decreases in
snow cover specifically on the day of the extreme only. For MAM and SON,
negative correlations are stronger for both actual snow cover (Figure 4.8c,e) and
excess snow cover (Figure 4.8d,f), compared to DJF, and are the strongest for SON.
Again, this is reflected in the maps, where actual snow cover is projected to decrease
around 40% for much of Alaska and northern Canada during autumn months, while
decreasing somewhat less and slightly further south during spring (Figure S3.4).
Smaller decreases are projected for excess snow cover for many of the same regions,
excluding Alaska which shows mostly small positive increases during spring (Figure

$3.5).

Northern Eurasia (Figure 4.8g-1) shows similar correlations to that of North
America. The overall largest correlations between snow cover and excess cold
extremes occur in SON (Figure 4.8k,l), with some models, for example CanESM2
and CNRM-CM5, showing correlations as high as -0.91 between actual snow cover
and excess cold extremes, and decreases over 45% for parts of western Russia and
Scandinavia (Figure S3.4). Correlations are slightly lower for actual snow cover in
MAM (Figure 4.8i), with the largest decreases in snow cover occurring in
Scandinavia and central/eastern Europe, and no substantial changes in northern
Russia (Figure S3.4). This is reflected in projected changes in snow amount (Figure
S3.6), with increases shown for regions showing no changes in snow cover.

Correlations with excess snow cover in MAM are substantially smaller for most
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models, with parts of northern Russia showing small increases in snow cover (Figure

S3.5) and snow amount (Figure S3.7).
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Figure 4.8 Scatter plots showing annual values of excess temperatures in cold extremes for each
season (seasonal minima — seasonal mean) on the y-axis, and annual values in each season of actual
snow cover, calculated on the day the cold extreme occurs, on the x-axis (1°* and 3" column). The
224 and 4™ column show values of excess snow cover on the x-axis (i.e. snow cover on the day of the
extreme — mean annual snow cover). Each row represents a different season: December — February
in the 1*' row, March — May in the 2" row, and September — November in the 3" row. Each value
is an area-average of two regions (see Figure S3.1): North America (a-f) and northern Eurasia (g-1).
The straight lines indicate the regression slope for each model calculated using total least squares
regression. Correlation coefficients are shown at the top of each panel, with the different colours
indicating the model. * indicates significance at the 5% level.

Decreases in snow cover imply that reductions in surface albedo are a likely factor
contributing to the enhanced warming of cold extremes relative to the mean.
Correlations between surface albedo and excess temperature (Figure 4.9) indeed

show strong similarities with those of snow cover, with the largest negative
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correlations shown for SON for both North America (Figure 4.9a-f) and northern

Eurasia (Figure 4.9g-1). As for snow cover, the strongest overall decreases are shown

for actual changes in surface albedo over Alaska, northern Canada and Eurasia

during autumn months (Figure S3.8). Differences in the magnitude and sign

between actual surface albedo and excess surface albedo are also clear. For example,

mostly positive correlations with excess surface albedo are shown for DJF for both

regions (Figure 4.9b,h). During boreal winter in high-latitude regions, solar

insolation is low, and so it is expected that surface albedo, which is calculated using

shortwave radiation fluxes, is less of a factor in driving excess changes in

temperature during these months.
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There is a clear relationship between decreases in snow cover, associated lower
albedo and the enhanced warming of cold extremes for many regions in the
Northern Hemisphere mid- to high-latitudes. While negative correlations are shown
for actual snow cover and excess cold extremes during winter for both North
America and Eurasia, projected decreases in actual snow cover, as shown in the
maps in Figure S3.4, are generally much smaller than they are for both shoulder
seasons, especially autumn months which show the overall largest decreases and
highest correlations with excess temperatures in cold extremes. Much of this
relationship between snow cover, surface albedo and excess temperatures in cold
extremes is a consequence of overall decreases in the mean-state of both snow cover
and surface albedo, rather than decreases in snow cover specifically on the day the
cold extreme occurs. This is a consistent across the selection of CMIP5 models used

in this study.

4.3.5 Projected changes in the timing of anomalously cold days

The projected enhanced warming of cold extremes relative to the mean found for
many mid- to high-latitude Northern Hemisphere regions, in all seasons except
boreal summer, is clearly related to excess heat at the surface that acts to decrease
the severity of the anomalously coldest days of the season. During spring and
autumn, much of this is likely a consequence of less snow and lower albedo, leading
to increases in absorbed shortwave radiation at the surface and consequently
amplifying the warming of cold extremes, creating a positive feedback. In addition
to these relationships presented above, we also analysed an increase in net radiation
on the days of the cold extremes in both shoulder seasons, with increases in
incoming shortwave radiation being the largest contributor (not shown). These
increases are, however, largely attributable to temporal shifts in the occurrence of

the largest negative temperature anomalies in the shoulder seasons.
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Figure 4.10 Changes in the timing of the anomalously coldest day in the season between 2070-
2099 and 1950-1979 for March — May (a) and September — November (b), as shown for the CanESM2
model. All models and seasons, excluding boreal summer, are shown in Figure S3.10.

Figure 4.10 shows the projected change in the timing of the seasonal minimum of
daily anomalies during MAM and SON, as simulated in CanESM2 (see Figure S3.10
for all models and seasons). For much of the Northern Hemisphere mid- to high
latitudes, excluding the most southerly parts, the Mediterranean region and parts
of Greenland, the anomalously coldest days are projected to occur later in the
season during MAM (Figure 4.10a). In some regions, such as central-western
Europe and eastern Canada, the anomalously coldest spring days are projected to
occur more than 30 days later in the late 21% century, compared to those simulated
in the mid-20" century. For SON (Figure 4.10b), the anomalously coldest days are
projected to shift to earlier in the season for most high latitude regions in the
Northern Hemisphere. For example, the anomalously coldest days are projected to
occur over 30 days earlier than they did in the mid-20™ century much some regions
in northern Canada and northern FEurasia. This change in the timing of cold
extremes suggests an overall flattening of the seasonal cycle in these extratropical

Northern Hemisphere regions. Coupled with the cold extremes warming at a faster
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rate than average temperatures, this suggests these regions will experience generally

a longer duration of warmer months and a shorter duration of colder months.

4.4 Discussion and conclusions

Cold extremes are projected to warm more than seasonal average temperatures for
much of the Northern Hemisphere mid- to high-latitude regions, for all seasons
except boreal summer. Though these projected changes differ slightly in magnitude
and spatial pattern depending on the CMIP5 model used, the most prominent
excess changes are robust across the selection of models. These changes are likely
related to projected changes in horizontal temperature advection, snow cover and
surface albedo feedbacks. The season in which the excess changes in cold extremes

occur largely dictates which physical mechanisms are at play.

Decreases in snow cover and lower surface albedo are more associated with excess
changes in cold extremes during spring and autumn months. Due to low solar
insolation in winter months, and subsequently only small effects from changes in
shortwave radiation and surface albedo, reductions in cold air temperature
advection in the days leading up to the extreme event is the dominant driver during
boreal winter. This latter finding is likely a consequence of Arctic amplification and
is in agreement with previous studies linking the warming of cold days in winter
months with warmer than usual air being brought from the Arctic to lower latitudes

(e.g. Screen 2014; Schneider et al. 2015; Holmes et al. 2016; Rhines et al. 2017).

In contrast, Arctic warming and associated sea ice loss has been argued to result in
more persistent severe cold air outbreaks over continental regions in the mid-
latitudes during boreal winter (e.g. Kodra et al. 2011; Cohen et al. 2014, 2018;

Francis and Vavrus 2015; Zhang et al. 2016). Recent cold snaps in the United
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States and Eurasia, such as those observed in the boreal winter of 2012/2013, can
largely be explained by a southward shift in the jet stream and a weakening of the
stratospheric polar vortex (Francis and Vavrus 2015; Zhang et al. 2016; Cohen et
al. 2018; Kretschmer et al. 2018). Though some argue these events are likely
transient and related to atmospheric decadal variability (e.g. Barnes and Screen
2015; Ayarzagiiena and Screen 2016; Sun et al. 2016), others suggest that severe
cold snaps in the Northern Hemisphere mid-latitudes might persist in response to
continued Arctic warming (e.g. Kodra et al. 2011; Francis and Vavrus 2012, 2015;
Cohen et al. 2014). While there is some disagreement between models and
observations in how they simulate the observed cold outbreaks (e.g. Cohen et al.
2013; Sun et al. 2016), there is robust model agreement that mid-latitude cold
extremes are projected to decrease in severity (Screen 2014; Barnes and Screen
2015; Screen et al. 2015a,b; Ayarzagiiena and Screen 2016). Some have also
suggested that cold air outbreaks will decrease in duration and frequency (e.g.
Screen et al. 2015a,b), however, this remains unclear and requires further work (e.g.
Ayarzagiiena and Screen 2016). Though the results in this study cannot infer
anything regarding the frequency and duration of cold spells, it is evident that cold
extremes are projected to warm in excess of increasing mean temperatures over

North America and Eurasia during boreal winter by the end of the 21*" century.

Arctic amplification and associated thermal advection is also suggested to be a
particularly strong driver of decreased cold extremes in autumn months (e.g. Screen
2014; Holmes et al. 2016). While significant negative correlations between cold air
temperature advection and excess cold extremes are shown for all models for both
North America and Eurasia during autumn (see Figure 4.7), reductions in cold air
temperature advection are substantially less coherent than they are for winter (see

Figures S3.2 — S3.3). This highlights that area-averaged correlations are sometimes
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misleading in terms of exploring the processes driving temperature extremes over a
large region. While Arctic amplification and associated reductions in cold air
temperature advection may be having somewhat of an impact on the warming of
cold extremes during the shoulder seasons, other physical mechanisms likely have

a greater influence on changes in spring and autumn cold extremes.

For both shoulder seasons, ‘hot spots’ of enhanced warming of cold extremes
relative to the mean are shown for much of Alaska, Canada and northern Eurasia
(Figures 4.5 — 4.6). During autumn, snow cover shows an exceptionally similar
spatial pattern to excess changes in cold extremes for all models (see Figure S3.4
and Figure 4.6, respectively), with the largest excess changes in cold extremes
matching regions showing the largest decreases in snow cover. Spatial similarities
between snow cover and excess changes in cold extremes during spring are less
obvious than they are for autumn, with slightly lower correlations, though the
largest decreases in snow cover are still associated with significant excess changes
in cold extremes (see Figure S3.4 and Figure 4.5). Previous work has suggested that
spring has the strongest snow-temperature relationship, largely due to increases in
latent heat from snowmelt (e.g. Dutra et al. 2011; Xu and Dirmeyer 2011; Diro et
al. 2018). Many of the regions showing the strongest relationship between projected
snow cover and the projected amplification of warming cold extremes, such as
northwestern U.S., southern and northeast Canada and the Rocky Mountains, are
in agreement with historical simulations of the snow-temperature association during
winter and spring months (Dutra et al. 2011; Diro et al. 2018). While some high-
latitude regions in northern Canada and northern Russia show projected increases
in snow amount during spring (see Figures S3.6 — 53.7), with the same regions and
seasons showing no substantial changes in snow cover (see Figures S3.4 — S3.5),

correlations between snow and excess temperature in autumn are generally larger.
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This infers that even if springtime is associated with a stronger snow-temperature
relationship, due to increases in snowmelt, decreases in snow cover have more of an

influence on warming anomalously cold days in autumn months.

A change in surface albedo feedback, as a result of a change in snow cover, is more
likely to influence cold days in winter and early spring due to peak snow
accumulation during this time. While results presented here show projections of
decreasing albedo for many regions in North America and Europe, autumn shows
the largest decreases in surface albedo (see Figure S3.8), which is closely related to
the projected decreases in snow cover. We note that our calculation of surface
albedo, as simply the ratio between absorbed and reflected shortwave radiation,
may not be capturing certain aspects that are important to snow affected areas.
For example, the boreal forest is a region with extensive snow fall and dense
vegetation cover, and the varying land parameterizations within the climate models
may not necessarily be capturing the snow that is intercepted by trees in the canopy
(Loranty et al. 2014; Thackeray et al. 2015). This then has important implications

on surface albedo and therefore surface temperature.

Biases in climate model simulations of snow-albedo feedbacks have been found over
the boreal forest region, with significant underestimations compared with
observations, especially during periods where snowmelt is high, such as in early
March (Fletcher et al. 2012; Loranty et al. 2014; Qu and Hall 2014; Thackeray et
al. 2014, 2015). However, biases in the models are reduced over larger study regions
(Thackeray et al. 2015), with area-averaging over large regions also likely to
suppress any biases. Biases may also simply be a consequence of temperature, with
cold biases having more snow, and warm biases leading to more snowmelt. The

ability of climate models to capture snow-albedo feedbacks is also complicated by

116



CHAPTER 4. ENHANCED WARMING OF COLD EXTREMES

factors relating to snow type and the ageing of snow, which can also influence
surface temperatures (Thackeray et al. 2015; Diro et al. 2018). Improving the ability
of climate models to capture realistic changes in snow cover and surface albedo
would enable more accurate projections of future cold extremes. Biases in the
representation of physical relationships may control the simulation of long-term
changes in cold extremes. Given the availability of suitable observations of relevant
land variables, an evaluation of the land-atmosphere relationships as outlined here
may serve to develop process-based constraints to reduce the uncertainty in future
projections, similar to previous approaches focussing on the processes driving hot

extremes in summer (Donat et al. 2018).

While our findings are consistent with the theory that less snow cover and
associated reductions in surface albedo lead to anomalously warmer temperatures
on cold days, it is unclear whether these variables are driving the enhanced warming
of cold extremes, or vice versa. It is true, however, that the positive feedback
between snow cover, surface albedo and surface temperature exacerbate the
warming of cold extremes. It would be useful for future studies to run climate model
simulations with and without snow cover prescribed to quantify the specific impact
on simulated cold extremes, enabling more confident conclusions regarding snow

cover and albedo as a driver of enhanced cold extremes.

Similar to albedo, radiative fluxes are strongly influenced by changes in the surface
which affects the overall surface energy budget. Decreases in snow cover which lead
to lower albedo will result in increased absorption of incoming shortwave radiation
for regions and seasons with enough solar insolation. While we did find some
increases in incoming shortwave radiation on the days when the coldest anomalies

occur, this is more an artefact of the timing in which the cold extreme occurs. For
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high-latitude regions, the seasonal minimum in spring time is projected to occur
later in the season, with the autumn minima projected to occur earlier in the season,
suggesting an overall flattening of the seasonal cycle. Changes in the annual cycle
of surface temperature have been detected before, with a shift to earlier seasons by
1.7 days shown for extratropical land regions in recent decades (Stine et al. 2009).
Further, changes in the seasonal cycle have been projected by CMIP3 models too,
with colder tempreatures occuring later and warmer temperatures occuring earlier,
reducing the amplitude of the seasonal cycle (Dwyer et al. 2012). These shifts are
argued to be a consequence of anthropogenic climate change driving sea ice loss
(Dwyer et al. 2012; Santer et al. 2018), but have also been linked with changes in

the Northern Annular Mode (Stine et al. 2009).

The day the cold extreme occurs is also associated with less snow, albeit largely
due to decreases in mean snow cover, so it can be inferred that the snow will likely
melt more as well, as it is occurring closer to summer months than normal. This
describes another positive feedback within the system, with snowmelt leading to
increases in latent heat which in turn heat the surface. This highlights the fact that
multiple factors within the surface energy budget are contributing to an overall
greater heating at the surface, thus influencing the decrease in the severity of cold
days relative to mean warming during spring and autumn months. The relationship
between excess changes in cold extremes and decreases in the mean state of snow
cover warrants further investigation, namely to explore how snow cover and
associated albedo changes can predict excess changes in cold extremes relative to
the mean. The first step towards this would require investigating mean trends in
observational snow cover data to determine if this can predict recent excess changes
using observational temperature data, and then similarly evaluating the ability of

climate models to represent this relationship.
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The enhanced warming of seasonal cold extremes relative to seasonal mean
temperature is projected for much of the Northern Hemisphere mid- to high-
latitudes. The main findings of this paper show that the possible drivers of this
enhanced warming depend on the season. Reductions in cold air temperature
advection, likely as a consequence of Arctic amplification, are the most probable
driver of enhanced cold extremes during winter months. For boreal autumn and
spring, snow cover and surface albedo feedbacks are the most likely contributors
affecting the accelerated warming rates of cold extremes. These findings are robust
across the selection of CMIP5 models used in this study. While observational data
were used to evaluate simulations of excess temperature in recent decades, the
climate variables are only explored as future changes, with model agreement
suggesting how robust changes are. Future work in understanding the physical
mechanisms driving cold extremes would benefit in evaluating observational data
of snow cover against model simulations. Further, regional climate models would

provide finer-scale information that would be more useful for future planning.
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CHAPTER 5

Methodological sensitivities related to the analysis of daily

temperature extremes

Chapter overview

The findings presented in Chapters 2 — 4 of this thesis are subject to specific
methodological choices which can result in parametric and structural
uncertainties that have the potential to impact conclusions. This chapter
discusses some of the uncertainties related to the different methodological choices
used for assessing changes in daily temperature extremes. Alternative
methodological choices are explored and compared to see whether these choices
impact the conclusions drawn from the findings of the previous chapters of the
thesis. Specifically, the sensitivities explored are related to the choice of
climatological reference period used for the calculation of temperature anomalies,
different methodologies used to define temperatures that are considered ‘extreme’,
the use of absolute temperatures as opposed to temperature anomalies, and
uncertainties related to different levels of radiative forcing used in climate models.
Generally, the conclusions drawn from this thesis remain robust regardless of
methodological choice. However, some differences are apparent when anomalies
are calculated relative to a moving window climatology, as opposed to a fixed

climatological reference period. Excess changes calculated using a moving window
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reflect changes in variability, because a moving climatology removes the effect of
mean changes. Using a moving window as the climatological reference period
therefore rephrases the initial research question to relate excess changes entirely
to changes in extremes and variability, emphasising the need to clearly
communicate what the results are actually showing. In addition, local excess
changes are shown to be proportional to the amount of global warming, as
reflected through comparisons of a high and mid-greenhouse gas emissions

scenario.

5.1 Introduction

Uncertainties stemming from methodological choices are inevitable in climate
change studies. The study of extremes, in particular, have inherent uncertainties
due to the fact that errors show up as ‘extreme’ and more complex statistical
methodologies are generally required for analysis. Further, the methods used in
previous studies vary widely, making results difficult to compare and quantify.
Evaluating the potential sensitivities to alternative methods not only adds to the
robustness of conclusions, but also allows for a better understanding of the more
appropriate methodological choices for specific research questions. While many
studies touch on the various uncertainties related to assessing changes in
temperature extremes (e.g. Klein Tank et al. 2009; Katz et al. 2013; Kirtman et
al. 2013; Sippel et al. 2015; Hawkins and Sutton 2016), including sensitivities
related to the choice of dataset (as discussed in Chapter 2), there is a distinct lack
of documentation providing systematic assessments of the different types of
sensitivities that might affect conclusions. In this chapter, some of the key
potential sensitivities relating to the results presented in Chapters 2 — j are

explored in more detail.
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So far in this thesis, changes in temperature extremes have been evaluated as
anomalies. Anomalies are the change in temperature relative to a baseline, or
climatological reference period, and are more commonly used in analyses of
changes in temperature extremes compared with actual, or absolute temperature
values. One reason for this is that anomalies are spatially coherent across large
areas, allowing the development of global timeseries which can then be used to
identify trends in temperature (Tingley 2012; Schmidt 2014). The varying number
of stations over time, and their location and elevation, can result in
inhomogeneities in absolute temperatures, with these factors being less important
for anomalies (Jones et al. 1999; Jones et al. 2009; World Meteorological
Organization (WMO) 2017). Anomalies are also an effective communication tool,
describing how unusual the temperature is relative to average conditions. In this
sense, it is immediately clear how ‘extreme’ a particular event is. Absolute
temperature values, particularly when used for assessing global temperature, do
not necessarily represent the risk to society (Schmidt 2014). Despite the
advantages of using temperature anomalies, it is still useful to understand how
absolute temperatures are changing for local-scale studies, where absolute
thresholds can indicate the temperature at which society and the environment is
at risk (Klein Tank et al. 2009). Further, some have argued that absolute
temperatures are more appropriate to use for assessing changes in temperature
extremes and variability because there is no need to calculate values relative to a
chosen climatological reference period (e.g. Huntingford et al. 2013). The
reference period used to calculate temperature anomalies is an important choice

that can potentially impact results.

The choice of climatological reference period first and foremost depends on the

research question being asked, and the reason for choosing a particular reference
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period should be communicated clearly to avoid misinterpretation of results.
Studies using anomalies relative to a reference period should explore the
robustness of findings to alternative choices of reference period (Hawkins and
Sutton 2016). The WMO outlines that a sufficiently long reference period is
necessary to capture the variability of temperature, suggesting that a fixed 30-
year period is generally suitable, with the most commonly used period being 1961-
1990 for long-term assessments of changes (WMO 2017). The reference period is
used to normalise the data relative to the mean and variability of the period, but
this method has been shown to cause overestimations of extremes (e.g. Tingley
2012; Huntingford et al. 2013; Rhines and Huybers 2013; Sippel et al. 2015;
Hawkins and Sutton 2016). For this reason, temperature anomalies in this thesis
are calculated relative to the entire period of analysis, therefore not excluding
variability and mean changes outside of the reference period and eliminating the
potential for inflating extremes. Another option is to calculate anomalies relative
to a moving window, which only describes changes other than the mean, such as
changes related to variability. In this chapter, the sensitivity of results of excess

changes to the choice of climatological reference period is explored further.

Another potential source of uncertainty relating to the analysis of temperature
extremes stems from the methods used to define extremes and calculate
exceedances. The methods used to define extremes vary widely between studies,
with some using specialised statistics based on the Extreme Value Theory (EVT)
(e.g. Kharin and Zwiers 2005; Brown et al. 2008; Christidis et al. 2011; Katz et al.
2013), and others using simpler methods such as using fixed values, quantiles or
percentiles to define an extreme threshold (e.g. Simolo et al. 2010; Orlowsky and
Seneviratne 2012; Donat et al. 2014; McKinnon et al. 2016). Different methods

have previously resulted in different conclusions (Katz et al. 2013), for example,
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some have suggested temperature is becoming more skewed in the warm tails (e.g.
Donat and Alexander 2012; Hansen et al. 2012; Lewis and King 2017), while
others using more complex techniques, such as those based on EVT (e.g. Brown
et al. 2008), have concluded that changes in temperature are mostly related to a
uniform shift in the tails of the distribution, with mostly no significant change in
the shape parameter. As with climatological reference periods, testing alternative

methods for calculating extremes is critical for robust conclusions.

Projections of climate change have extensive uncertainties, especially in terms of
future forcings of greenhouse gases, which are dependent on how climate change
is mitigated. Output from climate models from the Coupled Model
Intercomparison Project phase 5 (CMIP5) archive (Taylor et al. 2012) includes
several different scenarios with different levels of radiative forcings to project the
potential consequences from possible development pathways. These scenarios need
to be plausible in order to provide useful information for the end-user. While
alternative scenarios increase the spread of results, adding to the uncertainty of
projections, this provides a range of potential outcomes for policymakers and
planners who can then use this information to limit the risk of negative impacts
from climate change (Moss et al. 2010). Aside from model scenario, internal
variability within climate models is another possible source of uncertainty. In
Chapter 4 of this thesis, however, we show that long-term changes from several
climate models were not especially sensitive to internal variability for the type of

analysis being performed.

In this chapter, several sources of uncertainty are explored, comparing results
shown in previous chapters to alternative methodological choices. The chapter is

split into parametric uncertainties, namely, how parameter choice within a chosen
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methodological framework affects results (e.g. reference period used), and
structural uncertainties relating to methodological choices (e.g. interpolation
scheme used). It is expected that structural uncertainties will be larger than
parametric uncertainties (Dunn et al. 2014). By way of example, the comparisons
in this chapter are based on climate model simulations from one ensemble
member from the CanESM2 model, though it is noted that results remain
consistent across a wide range of CMIP5 models and ensemble members. Only
future changes in cold extremes are shown for September through November
(SON), though conclusions remain true for other seasons, or are otherwise noted

in the text.

5.2 Parametric uncertainties — choice of reference period

Due to the potential for overestimating extremes from defining anomalies based
on standardising temperature data using a fixed 30-year period (Huntingford et
al. 2013; Sippel et al. 2015), the results presented so far in the thesis are
calculated relative to the entire period of analysis. In this sense, a longer, fixed
reference period includes data that would otherwise be left out of the analysis if
using a fixed 30-year climatology, removing the chance of inflated variance and
extremes in the analysis of data outside the reference period. Because there is a
possibility that the analysis is sensitive to the choice of reference period, it is
important to explore alternative reference periods to gauge the robustness of

results of both temperature and other climate variables.

Figure 5.1 compares future excess changes in cold extremes based on the
climatological reference period, where results from an alternative reference period
are subtracted from excess changes calculated relative to a mean annual cycle

over the entire period of investigation, that is, 1950-2099 for future changes
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(actual magnitudes of future excess changes is shown in Figure 5.1a). Figure 5.1b
shows the difference in results between the longer, fixed reference period with
using a climatological reference period of 1961-1990, while Figure 5.1c shows the
difference when using a 30-year moving window, which for this particular
analysis, uses climatologies of 1950-1979 for past decades, and 2070-2099 for

future decades.

Differences in future excess changes depending on the climatological reference
period used are relatively small for both instances, with the largest changes being
in regions showing the largest excess changes, that is, in the high-latitudes in the
Northern Hemisphere. Differences between the two fixed climatologies (Figure
5.1b) are small, with generally only 0°C to 0.5°C difference for most of the globe.
Some high-latitude regions in Russia, Canada and Greenland show some larger
differences exceeding 5°C, corresponding with regions where excess changes
calculated from the 1950-2099 reference period are particularly large (Figure
5.1la). For the 30-year moving climatology, again, the largest differences are
shown for high-latitude regions in Canada and Russia, which are regions with the
largest excess changes in cold extremes in SON. Some regions show small negative
differences, on the order of -0.5°C, for example, over eastern/central-Europe and
southern Greenland, where excess changes calculated using the 30-year moving
window are slightly larger than they are for the fixed, long-term climatology,
though this is generally only the case for regions showing relatively small
magnitude excess changes that are less than 2°C. Though not shown, DJF shows
virtually the same excess changes, irrespective of choice of reference period, with
SON (shown here) showing the greatest differences from reference period choice

compared with all seasons. Similarly, results for recent excess changes are robust
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regardless of the reference period (see Supplementary Material Figures S2.1 — 52.2

for example from Chapter 3).

a) Excess changes (1950-2099 reference period)
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Figure 5.1 Differences in future excess changes in cold extremes depending on the climatological
reference period used to calculate daily temperature anomalies. (a) shows the actual future excess
changes calculated from the 1950-2099 fixed climatological reference period. The second and third
row shows the differences between (a) and results calculated using the 1961-1990 reference period
(b), and those relative to a 30-year moving window (c), which in this analysis, uses 1950-1979 for
past decades, and 2070-2099 for future decades. Results are only shown for SON using the
CanESM2 model.
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Chapter 4 of the thesis investigated several different climate variables that might
be driving the enhanced warming of cold extremes in the Northern Hemisphere
mid- to high-latitudes. For this reason, it is also important to understand whether
the choice of reference period has an impact on variables other than temperature.
Figure 5.2 shows changes in snow cover on the day the cold extreme occurs (a-c)
and changes in the timing of cold extreme days (d-f). As in Figure 5.1, actual
changes calculated relative to the long-term, fixed reference period for each
variable are shown in Figure 5.2a,d respectively, with differences calculated by
subtracting alternative reference period choices from the 1950-2099 climatological
reference period (Figure 5.2b,c for changes in snow cover and Figure 5.2e,f for
changes in timing). Because these results are directly related to those of Chapter
4, only the mid- to high-latitudes in the Northern Hemisphere are shown, where

the influence of reference period is greatest.

For changes in snow cover (Figure 5.2a-c), that is, using values on the day the
seasonal cold extreme occurs, any differences between reference period choice are
due to differences in the day the cold extreme occurs. For both instances of
alternative reference period choice, high-latitude regions in Russia, Alaska and
Canada show the largest differences, much like those shown in Figure 5.1b-c, with
no substantial differences for most mid-latitude regions. When using a shorter,
fixed climatology (Figure 5.2b), changes in snow cover in those regions showing
the most difference are between 10% and 20% greater than they are for the 1950-
2099 reference period. For the two fixed climatologies, the decreases in snow cover
on the day of the extreme mainly reflect a decrease in the overall seasonal mean
snow cover, as concluded in Chapter 4. Some negative differences are apparent
when using a specific climatological reference period that moves through time

(Figure 5.2c), which reflects changes in snow cover variability rather than
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changes in the seasonal mean snow cover. These differences, mainly over Siberia
and northern Canada, indicate smaller magnitude decreases in snow cover on the
day of the extreme when using a moving window climatology, compared to when
using a fixed reference period. Although not shown, only slight differences are
apparent for MAM, with no apparent differences between reference periods found
for DJF. Generally, the main conclusions drawn from Chapter 4 regarding
decreases in seasonal mean snow cover being a major contributor of the enhanced
warming of cold extremes in the shoulder seasons remain robust irrespective of

reference period choice.

In Chapter 4, a shift in the timing of cold extremes is shown, with anomalously
cold days occurring later in high-latitude regions in the Northern Hemisphere
spring months, and earlier in autumn months. If the day on which the extreme
occurs is affected by choice of reference period, as suggested by the slight
differences in snow cover depending on the reference period, then a shift in the
timing of cold extremes would be impacted. While the shifts using the 1961-1990
reference period are only slightly larger than they are for those calculated using
the 1950-2099 climatology (Figure 5.2¢), differences when using a 30-year moving
window climatology are substantial in some regions (Figure 5.2f). In the latter
instance, substantially smaller shifts in the timing of cold extremes are projected
in high-latitude regions, with cold extremes occurring only around 10 days earlier,
compared with over 30 days earlier when using the 1950-2099 reference period.
Central /southern Europe show much larger positive shifts (i.e. cold days are
occurring later) compared with results from the 30-year moving window, which
shows differences sometimes over 30 days in some areas. These large differences
are related to the change in mean being removed when using a 30-year moving

climatology, whereas a fixed climatology is affected by changes in the mean
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seasonal cycle. Rather than adding uncertainty to results, this in fact strengthens
the argument put forward in Chapter j that a flattening of the seasonal cycle is
projected for the late 21 century, because it is related to changes in the mean
seasonal cycle which is specific for the time of year, as reflected through using

fixed climatologies.

In general, conclusions are qualitatively robust when using a fixed climatological
reference period, whether short or long. High-latitude regions in the Northern
Hemisphere show the greatest sensitivity reference period choice, where the day in
which the extreme occurs differs depending on this choice. Importantly, these
results are specific to the particular methodology used here, where averages over
30-year periods are taken to calculate changes, removing the chance of a bias in
results due to inflated variance using a 30-year fixed climatology. When using a
30-year moving climatology, two different means are included, which effectively
removes influences related to changes in the mean temperature, and so all
changes shown for this choice of reference period are likely related to changes in
variability or higher-order moments. Any differences in the 30-year moving
climatology results compared with the fixed climatologies is not so much of a
sensitivity, but rather answering a different question entirely. That is, the
comparison of a fixed climatology, long or short-term, versus a 30-year moving
climatology, helps to separate changes that are due to changes in the mean from
changes that are outside of this. In this thesis, it seems most appropriate to use
the longer-term fixed climatology, as this highlights entire changes, which

includes changes in the mean.
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Figure 5.2 Similar to Figure 5.1, but showing differences in projected changes in snow cover on
the day the cold extreme occurs (a~c) and the projected changes in the timing of cold extremes (d-
f) depending on the reference period used. (a) shows actual changes in snow cover on the day the
cold extreme occurs, while (d) shows actual changes in the timing of cold extremes based on the
1950-2099 climatological reference period. (b) and (e) show the difference between results using
the 1950-2099 reference period and 1961-1990 reference period, and (c¢) and (f) show differences

with results calculated relative to a 30-year moving window.
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5.3 Structural uncertainties

5.3.1 Absolute temperatures

The robustness of results of changes in excess temperature can be further
evaluated by assessing excess changes in absolute temperatures (Figure 5.3).
Figure 5.3b shows the difference between future seasonal excess changes in cold
extremes calculated from anomalies and those calculated from absolute
temperatures. For reference, Figure 5.3a shows the actual magnitude future excess
changes calculated from anomalies (as also shown in Figure 5.1a). Because the
method for calculating excess changes takes temporal averages, it is unsurprising
that results from absolute temperatures match closely with those using anomalies,
with only small differences mostly between -1°C to 1°C shown for most of the
globe, aside from the northmost region in Greenland which shows some larger
differences. Excess changes in regions showing the greatest positive values, that is,
mid- to high-latitude Northern Hemisphere regions, are of a slightly higher
magnitude when using absolute temperatures, for example, over north-east
Canada and central-eastern Europe and Russia. Other regions showing relatively
low magnitude excess changes show small differences in sign between absolute
temperatures and anomalies, for example, negative excess changes are shown over
eastern U.S. in absolute temperatures in SON, compared with small positive
excess changes in the anomalies. Overall, the most prominent future excess
changes in cold extremes are robust, regardless of whether anomalies or absolute

temperatures are used in the calculation.
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a) Excess changes (1950-2099 reference period, annual minima method)
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Figure 5.3 Differences between future excess changes in SON in anomalies and other
methodological choices. (a) shows the actual magnitude of future excess changes using the 1950-
2099 reference period and annual minima method to calculate seasonal exceedances, (b) shows the
difference between this and using absolute temperatures to calculate excess changes, and (c¢) shows
the difference between (a) and calculating exceedances using the seasonally-varying threshold
approach to calculate cold extremes that fall below 1.5% of all data points within the time period.

5.3.2 Methods for defining temperature extremes
Throughout the thesis, three different methods are used to calculate temperature

extremes. In Chapter 2, we used the EVT to define extremes, where a non-
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stationary point-process model was fitted to the data to describe annual
exceedances above (below) the upper (lower) 1.5% of all data points. Within that
study, an alternative method was tested, which selects all data points that exceed
the 98.5™ quantile (1.5™ quantile for the cold tails) per year, and then subtracts
those values from the annual mean. These results yielded little difference
compared with results calculated using the EVT (see Figure S1.20). Because
results are mostly insensitive to this choice of method, excess changes in Chapter
3 were calculated using the simpler and less computationally-expensive threshold
approach, which defines exceedances as those data points which lie above the
98.5" percentile and below the 1.5" percentile of the seasonally varying
distribution throughout each time period. Assessing only cold extremes, results
shown in Chapter 4 are calculated using a block minima approach, selecting the
annual minimum temperature per season. Aside from further assessing
sensitivities related to the choice of method, this was a simpler approach for
investigating potential drivers of excess changes in temperature on the coldest
day of the season, per year, compared to the former approach where extremes can

occur in any given year throughout the season.

Figure 5.3c shows a comparison between the block minima approach and the
1.5% threshold approach. Overall, there is little sensitivity to the choice of
method used to define temperature extremes, with most differences being between
-1°C and 1°C. Slightly higher magnitude excess changes are shown for the
threshold approach, for example, the latitude band around the equator in Africa
which shows higher magnitude negative excess changes compared with the block
minima approach. This could reflect extremes that are part of the same event
within the same year, which are excluded when using an annual block minima. As

with the choice of reference period for assessing excess changes in temperature,
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the choice of method used to define extremes does not have a substantial impact
on results for much of the globe, adding further confidence to the overarching
findings of excess temperature changes especially for those areas showing the

greatest excess changes.

b) Patterns of excess changes per degree of global warming (RCP4.5) 0.96
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Figure 5.4 Comparison of RCP8.5 (a) and RCP4.5 (b) emissions scenarios, shown as future
excess changes in cold extremes per degree of global warming. The number on the right-hand side
of (b) represents the global pattern correlation with (a). As in previous figures, all results are from
one ensemble member from CanESM2 for SON.

5.4 Uncertainty due to different levels of radiative forcing

All results of future projections presented so far in the thesis are based on the

RCPS8.5, “business-as-usual” scenario, or highest emissions scenario. It would be
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useful to know the magnitude of excess changes for alternative scenarios with
weaker greenhouse gas forcings, especially in terms of attributing projections to
greenhouse gases and providing further information regarding, for instance, the
benefits from mitigation for policymakers, stakeholders and the public. Therefore,
by way of example, Figure 5.4 shows excess changes per degree of global warming
for RCP8.5 (a) and RCP4.5 (b) with the latter representing a mid-range
mitigation emissions scenario (Taylor et al. 2012). These results are calculated
using simple pattern scaling (e.g. Tebaldi and Arblaster 2014), dividing excess
changes for both emissions scenarios by the respective change in global mean
temperature. Comparing the two figures, it is clear that the local responses are
very similar between both scenarios, suggesting that future excess changes in cold
extremes are indeed a consequence of, and mostly proportional to the amount of
global warming. This is further emphasised in the high pattern correlation of 0.96
which describes how well the spatial patterns for the globe match between the

two scenarios.

5.5 Discussion and conclusions

This chapter serves to explore some of the potential sensitivities and uncertainties
of the results shown in Chapters 2 — 4 of this thesis. Firstly, it highlights that the
conclusions of the previous chapters generally remain robust, irrespective of
methodological choice in defining extremes, and for the most part, regardless of
choosing a long or short reference period. A moving window reference period does
show some differences compared with using a fixed climatological reference period,
however, this is less of an issue related to sensitivities, and rather points to a
different question altogether. This emphasises the importance of clearly

communicating the research question as well why the associated methods and
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parameters are appropriate for the particular study, for example, why a specific

reference period is chosen and what it explicitly means for the results.

When communicating how extreme temperatures are changing, anomalies are
particularly useful to emphasise how unusual a temperature is compared with
what is normal, especially if comparing between regions that experience different
climates. However, it is still useful to know how extreme temperatures are
changing in an absolute sense, in terms of exceeding absolute thresholds that pose
a risk to society. For example, in Melbourne, Australia, the health of people aged
65 years and over is at risk when daily temperatures exceed 30°C (Nicholls et al.
2008). This type of information is crucial for making informed decisions that aim
to reduce the risk of negative impacts from warming temperatures, however,
absolute temperature thresholds are locally specific and cannot be used in a
universal sense, as anomalies can. In the results presented here, it is shown that
excess changes in absolute temperatures are similar in magnitude to those of
anomalies, further adding to the robustness of the findings related to the rate of

warming of extreme temperatures relative to mean temperatures.

Chapters 3 and 4 only show projections from the highest emissions scenario
available in CMIP5, because in these chapters, we were interested in analysing
results with the strongest signals in order to identify common patterns of change
and relationships between different variables. By providing information of
projections of other possible future scenarios, the range of possible outcomes can
be used to understand how greenhouse gases might impact excess temperatures in
the future. As shown here, the excess changes in temperature are generally
proportional to the amount of global warming, with the mid-emissions scenario

still projecting cold extremes to warm at least 3°C more than the mean for many
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extratropical Northern Hemisphere regions, compared to greater than 5°C in the
‘business-as-usual’ scenario that is associated with a stronger global warming
signal. A newly updated set of emissions scenarios are included as part of the
newest model intercomparison in CMIP6, with a greater focus on societal
development (Eyring et al. 2016a; O'Neill et al. 2016). Future work would need to
explore these new emissions scenarios and how this affects projections of

temperature extremes.

There are still other uncertainties related to the analyses, for example, those
related to regridding datasets and spatially aggregating data. Chapter 2 touches
on these aspects, stating that different remapping techniques are unlikely to cause
any substantial differences, with previous studies showing only very small
uncertainties related to the choice of regridding method (e.g. Loikith et al. 2015).
However, this is likely to depend on the chosen metric, and extremes are usually
far more sensitive to interpolation choice than means (e.g. Avila et al. 2015).
There are also uncertainties related to the gridded observational product itself,
that is, HadGHCND, some of which are discussed briefly in Chapter 2, such as
the possible artefacts that can result from spatially aggregated datasets (e.g.

Rhines and Huybers 2013; Director and Bornn 2015).

Even though alternative methodological choices do not have a substantial impact
on results for the specific type of analyses used throughout this thesis, it is still
essential to test whether results are sensitive to these choices as this may depend
on the type of analysis being performed. A greater understanding of how
methodological choices affect results can reduce the uncertainties regarding future
changes in climate, thereby providing more accurate and reliable information for

the end-user.
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CHAPTER 6

Conclusions and future work

6.1 Summary of findings

The overarching goal of this thesis was to provide an in-depth understanding of
how different aspects of the temperature distribution are changing. In particular,
analyses focused on how temperature extremes are changing relative to mean
temperatures for all seasons and all global land areas, in both recent and future
decades. This is a simple measure to illustrate disproportionate warming rates for
different parts of the distribution, especially for the tails that are arguably most
relevant in terms of impacts, in comparison to mean temperatures, a frequently
used and therefore easily understood measure. Understanding the different rates
of change between extremes and average temperatures was achieved by
addressing several smaller aims which were presented in four chapters in this

thesis.

In Chapter 2, several reanalysis datasets were evaluated against a quasi-global
gridded observational dataset of daily maximum and minimum temperature, that
is then used in subsequent chapters to evaluate a selection of Global Climate
Models (GCMs). Chapters 3 and 4 then focused on changes in seasonal

temperature extremes relative to changes in seasonal mean temperatures in
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observations and climate models. Chapter 4 also included an investigation into
the physical mechanisms related to the most robust changes in extremes relative
to mean temperatures. Lastly, Chapter 5 provides insight into the various
sensitivities related to method choices that were not considered in earlier thesis
chapters. This chapter presents the four main outcomes of the aims presented in
Chapter 1 and summarises the key findings of each chapter and overarching
outcomes of this thesis, including opportunities for future research. The main

conclusions from this thesis are:

1. When assessing daily temperature variability and extremes, dataset
choice has an impact on analysing extremes and statistical moments
other than the mean, but general spatial and temporal patterns in

trends remain qualitatively robust.

In Chapter 2, several commonly used reanalysis datasets of daily maximum and
minimum temperature were compared to the Hadley Centre Global Historical
Climatology Network-Daily (HadGHCND) dataset (Caesar et al. 2006) to
evaluate whether assessments of daily temperature variability and extremes are
sensitive to the input dataset. This chapter also introduced a method for
investigating changes in daily temperature extremes relative to daily mean
temperatures. There are some limitations to this study, namely those related to
the spatial coverage of the HadGHCND dataset, which lacks data for parts of
South America, Africa, southern Asia and the Middle East. Some of the largest
disagreements between datasets are shown for regions that are more data sparse,
so information on these regions needs to be taken with caution. The key findings

from this chapter highlighted that:

142



CHAPTER 6. CONCLUSIONS

e General trends in daily mean maximum and minimum temperature
anomalies from 1980-2014 are similar irrespective of dataset choice.

e Other statistics, such as standard deviation and skewness, show differences
depending on the dataset, particularly for daily minimum temperature
anomalies.

e Using the Extreme Value Theory (EVT) to assess the tails of the
distribution specifically, where a point-process model was fitted to the data
to describe extremes that exceed the top and bottom 1.5%, the lower tails
in daily minimum temperature are most sensitive to dataset choice.

e In recent decades, annual cold extremes have been warming at a faster
rate than annual mean temperatures for much of the Northern Hemisphere
extratropics, while annual warm extremes have been warming faster than
the mean in some tropical and subtropical regions, including parts of
Australia, Asia, the Mediterranean and southern South America.

e While the uncertainties are sometimes large for the exact quantification of
changes in temperature variability and extremes, the qualitative
conclusions regarding general spatial patterns in the sign of change,
especially for regions showing the strongest trends, remain robust across

the range of datasets.

2. In recent decades, the greatest differences in the rates of change
between extreme and mean temperatures occur in parts of North
America and Eurasia, where cold extremes are warming faster than the
mean, particularly in autumn and spring. Based on the CMIP5 models,
this pattern becomes more pronounced in the future, with cold
extremes warming faster than the mean for much of the Northern

Hemisphere extratropics, in all seasons except boreal summer.
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Chapter 3 assessed recent and future projected changes in seasonal warm and cold
extremes relative to seasonal mean temperatures, referred to as ‘excess changes’.
This follows on from the annual excess trends investigated in Chapter 2. The
same observational dataset, HadGHCND, is assessed alongside a suite of climate
models from the Coupled Model Intercomparison Project phase 5 (CMIP5)
archive (Taylor et al. 2012), which were then used to analyse possible future
changes in seasonal extremes relative to the seasonal mean. The findings in this
study are important because they show that disproportionate rates of change are
evident for many regions across the globe, which have an impact on the
probability and frequency of extreme events. Further, the fact that some seasons
show larger disproportionate rates of warming compared to others could
potentially exacerbate the seasonal impacts from extremes. Other than the finding
that the most striking excess changes occur in the cold tails relative to the mean,
this chapter has a greater focus on cold extremes because previous work has
generally given more attention to the disproportionate changes in hot extremes
(e.g. Donat et al. 2017; Vogel et al. 2017). The main conclusions from this

chapter are:

e In recent decades, the cold tails show the largest difference in warming
relative to the mean, shown for some mid- to high-latitude Northern
Hemisphere regions in all seasons except boreal summer. However, pattern
correlations between CMIP5 models and the observational dataset are
generally low for assessing recent excess changes. Low pattern correlations
are also apparent between the CMIP5 models themselves, suggesting that
recent excess changes are relatively spatially incoherent for much of the

globe.
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e Future simulated excess changes in the CMIP5 models are systematic and
robust with high model agreement. The strongest excess changes are
shown for many mid- to high-latitude regions in the Northern Hemisphere,
where cold extremes are projected to warm faster than the mean.

e These projected disproportionate changes in the cold tails are apparent for
all seasons except boreal summer, with cold extremes warming at least
3°C, or 50% more than mean temperatures by the end of the 21st century,
and sometimes more than 5°C faster than the mean for some regions in

Alaska, Canada and northern Eurasia.

3. Different physical mechanisms dominate the enhanced warming of
cold extremes in the Northern Hemisphere extratropics for different
seasons: reductions in cold air temperature advection dominate the
accelerated warming of cold extremes during winter months, while
decreases in snow cover and related albedo changes are likely the

major contributors during autumn and spring.

Chapter 4 focused on the most robust findings of the previous chapter, that is,
future excess changes in seasonal cold extremes in the Northern Hemisphere mid-
to high-latitudes, and went further to investigate the physical mechanisms that
are plausibly contributing to these projected changes. This was done by focusing
on the environmental conditions on or prior to the anomalously coldest day of the

season. The main findings are:

e During boreal winter, reductions in cold air temperature advection prior to
the days when the cold extremes occur is the dominant driver of the
enhanced warming of cold extremes relative to mean temperatures in

North America, parts of Europe and Eurasia.
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e During the shoulder seasons, particularly boreal autumn, decreases in snow
cover and associated reductions in surface albedo on the anomalously
coldest day of the season play a major role in the enhanced warming of
cold extremes relative to daily mean temperature in the Northern
Hemisphere extratropics.

e The anomalously coldest days in the season are projected to shift in timing
by the late 21°" century, occurring earlier in autumn months, and later in
spring months in high-latitude Northern Hemisphere regions. This suggests
an overall flattening of the seasonal cycle in these regions and contributes
to providing more incoming shortwave radiation on the days with the

largest negative temperature anomalies.

4. Conclusions regarding changes in temperature extremes relative to

the mean remain robust irrespective of methodological choice.

Within each chapter, there are various sensitivities related to methodological
choices that are not examined in much detail, other than those related to dataset
choice which are discussed thoroughly in Chapter 2. For instance, Chapters 2, 3
and 4 all use slightly different methods to define extremes. Chapter 2
characterises extremes by fitting a point-process model to the data, which
describes exceedances above or below a non-stationary 1.5% threshold, while
Chapter 3 describes extremes as the average of data points exceeding a 1.5%
threshold that can occur in any given year throughout the season, and Chapter 4
identifies extremes as the seasonal block minimum. For this reason, Chapter 5
explored some of these sensitivities by comparing alternative methodological

choices. The major points from this chapter found:
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e Results of future simulated excess changes in cold extremes show little
sensitivity to the choice of fixed reference period used to calculate
temperature anomalies.

e When using a 30-year moving window to calculate anomalies, excess
changes are qualitatively similar to those calculated using a fixed reference
period, however, the day the cold extreme occurs is affected. Much smaller
shifts in the timing of cold extremes are projected for the Northern
Hemisphere extratropics, compared to more substantial shifts when using a
fixed reference period. When using a moving climatology as a reference
period, changes in the mean are removed, so any changes shown in this
instance reflect changes in variability and extremes.

e The methods used to define extremes, for example, using a threshold
approach versus taking the seasonal block minimum, are robust for looking
at future excess changes, with spatial patterns, sign of excess change, and
general magnitudes being similar irrespective of the method. Similarly,
using absolute temperatures instead of temperature anomalies result in
similar magnitude excess changes for the globe, with the overall
conclusions remaining the same.

e Two CMIP5 future emissions scenarios were compared: a high emissions
scenario and a mid-emissions scenario. Results suggest that future excess
changes in cold extremes are proportional to the magnitude of global

warming.

While each chapter addresses individual aims, the overarching findings provide
insight into the most robust disproportionate rates of change between extreme
and mean temperatures. In combination, these different studies highlight that

cold extremes in many mid- and high-latitude Northern Hemisphere regions are
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observed and expected to warm disproportionately faster than regional increases
in mean temperatures. This finding is robust across a range of different
observational datasets and climate models and is true irrespective of the methods
used to define extreme temperatures. While this is evident for annual cold
extremes, autumn and winter months contribute the most to this excess, with
spring months also showing widespread enhanced warming of cold extremes
relative to the mean. For these regions in the Northern Hemisphere mid- to high-
latitudes, the rates of warming of cold extremes are faster than both mean
temperatures and hot extremes, suggesting overall variability in these regions is

projected to decrease by the late 21 century compared with the mid-20" century.

6.2 Future work

This thesis creates several opportunities for future research. In Chapter 4, model
output for several different climate variables was assessed to explore the possible
drivers of the enhanced warming of cold extremes relative to mean temperatures.
This work could be expanded on in several ways. Firstly, only simulations of
future changes in snow cover, surface albedo and horizontal temperature
advection are assessed, so this work is limited in that there is no evaluation of the
climate models against observational data. Assessing observational snow cover
data, for example, against CMIP5 simulations could reduce uncertainties in future
projections of snow cover changes. Further, only existing simulations of climate
variables were analysed, where the relationships between the variables were
explored to make inferences about the physical processes driving the enhanced
warming of the anomalously coldest days. Running specific model simulations
with prescribed boundary conditions in variables such as snow cover and surface
albedo would more robustly attribute the excess changes in cold extremes to

specific drivers.
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Aside from assessing global pattern correlations between the CMIP5 models and
observations in Chapters 8 and /4, model skill, in terms of how well the models
resemble the observations, was not evaluated. The Perkins skill score (Perkins et
al. 2007) is one application used to measure the agreement, or overlap between
modelled and observed distributions, however, in more recent years, the scientific
community is moving towards more process-oriented diagnostics (Eyring et al.
2019). Future research could work towards developing a process-based constraint
for future projections based on the results of Chapter 4. Given the availability of
suitable observational data for the variables investigated, it would be useful to
identify models for which the identified relationships or physical processes
between different variables are more realistic. Further, new tools, such as the
Earth System Model Evaluation Tool (ESMValTool) (Eyring et al. 2016b), are
being developed for rapid climate model evaluation to address biases in the
models. Implementing these tools could greatly increase confidence in the model-
based results in this thesis. Additionally, the methods used in this thesis could be
applied to the new generation of CMIP6 models (Eyring et al. 2016a) and
associated Scenario Model Intercomparison Project (ScenarioMIP) future
emissions scenarios, which extend beyond the current Representative Pathway
Scenarios (RCPs) by updating trends in recent greenhouse gas emissions as well

as integrating socioeconomic factors into the scenarios (O’Neill et al. 2016).

Another avenue of future work would be to expand the study presented in
Chapter 2. For example, exploring the reasons behind the differences in the
datasets would be useful to improve reanalysis data, particularly to understand
why greater sensitivities are shown in the cold tails compared with the warm

tails, and in daily minimum temperatures compared with daily maximum
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temperatures. In addition, the methods used in Chapter 2 could be easily applied

to evaluate sensitivities in newly developed datasets of daily temperature.

6.3 Concluding remarks

The research presented in this thesis comprehensively assesses changes in several
aspects of the distribution of daily temperature, with a specific focus on how
extremes are changing in relation to average temperatures. Aside from assessing
changes in the warm tails of the distribution relative to mean temperatures, there
is a strong focus in this thesis on the accelerated warming of cold extremes and
the potential drivers influencing this. Cold extremes have generally been a less
prominent focus in existing literature, however, like hot extremes, the impacts
from warming cold extremes affect numerous sectors. These impacts will likely be
exacerbated with the anticipated disproportionate warming rates of cold extremes

relative to the rest of the temperature distribution.

The findings presented in this thesis contribute to the understanding of changes
in extreme temperatures by taking a more holistic approach than is generally
taken, by considering how they are changing in parallel with changes in the mean.
This is assessed systematically in both observations and climate model
simulations across all seasons and at the global scale. In addition, this thesis adds
to the current knowledge by exploring the environmental conditions on the day of
the extreme and the physical relationships that are contributing to the projected
disproportionate rates of warming in cold extremes. The methodologies and
statistical analyses applied in this thesis are simple, yet robust measures that
have been evaluated against alternative methods to add confidence to the
conclusions. This reduces the potential sensitivities surrounding methodological

choices in future studies of extremes, and the approach taken here can easily be
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reproduced to not only further analyse changes in temperature extremes but also
investigate other climate variables in a similar way. Addressing the
disproportionate rates of warming in extremes and mean temperatures is crucial
so that policymakers and future planners have the information necessary to
reduce the negative impacts that can arise from exacerbated temperature

extremes due to climate change.
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S.1 SUPPLEMENTARY MATERIAL FOR CHAPTER 2
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Figure S1.1 Example of a quantile-quantile plot using HadGHCND data showing the
goodness-of-fit for empirical and model distributions. If the data lie close to the 1-1
diagonal line, it indicates that the data are a good fit to the PP distribution used to

define extremes.
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Figure S1.2 Parameter estimates for standard deviation (°C) and skewness, for both daily
maximum and daily minimum temperature anomalies. Estimates are shown for SREX
regions that fulfill the completeness criteria, and for the globe, and are calculated by
pooling data for each region over the period 1980-2014.
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Figure S1.3 Time series plots of the annual mean for daily maximum temperature
anomalies (°C) for each region with sufficient data, as well as the globe.
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Figure S1.8 As Figure S1.3, but for the annual skewness of daily minimum temperature

anomalies (°C).

178



TTTTTTTIT T T T T T I T T I T oY
3 3 3 ) « -
© I 4 S S =
S ') =3 I} S @
@ < o ] S ]
TTTTTTTITT I T T T T T I T T I T oY
2 3 2 ) 3 <
o * 4 < 4 =
5 ) =3 Ity =3 *)
2 o i ] S ]

179

SUPPLEMENTARY MATERIAL FOR CHAPTER 2

S1.

T T T T T T T T T T T
© w o v o w o v W o w o w o © o © © o o o o © v o v o w o wu © o o o o o a
T ¢ ¢ d d ¢ ¢og r £ g g ° o g £ g8 3 ~ & s T egg e S ® & N T ¢ o 8 o~ ¢ S
=z = o
| v1-c0. N | v1-s0. | 150, | v1-g0. | v1.-50. (@] [} !
£ £ £ £ £ - <
E E E E E I © N v
E E E E E —= o T o
F s0-00. F 60-00. F 60-00. F 6000, Feoo. O ' i i o
E E E E E T < <
E E E E E c o O ¢
F so.-g6. F s0.-g6. F 506, F so.-g6. F s0.g6. T w zZ = >
F 6606, F 66.-06. F 66.-06. F 66.-06. F 66.-06.
F v6.-c8. F v6.-s8. F ve.-s8. F v6.-g8. F ve.-s8.
F o F < F <3 = < o
Fes-0os. |= Fos-0s. |= Feg-0s. | Fes-0s. | F 6808,
T T T T T T T T T T T
w o © o w o v o W o © o © o v o © o w 9 w o u e o o o o o s o o o o 9
3 8 & & ¢ 2 & 3 2 2 38 8 3 & = S 3 3 ® ® K R @ 3 & 2 3 & = s =2 3 3 3§ 3
| v1.-50. Q o150, | 7150, o150, | 7150, | v1.-50.
E S E E E E E
o > o o o o o
F 60.00, F 60.00. F 60-00. F 60.00. F 60-00. F s0.00.
F s0.-s6. F s0.-s6, F so.-6. F s0.-g6. F s0.-g6. F s0.-s6.
o o \ o o o o
F 6606, F 6606 F 66.-06. F 66.-06. N F 66.-06. F 6606
F v6.-s8. F v6.-s8. F v6.-s8. F v6.-g8. Frese |z F v6.-s8.
E E E E E 8 E
- - - - - o -
- - (2] - (2] - [+ - = -
2 Fes-0s. |© Fos-0s. |+~ Fes-os |~ Fos-0s. | Fes-0s. |O F 6808
T T T T T T T T T T T T
© @ o o o o o o e v o w o w o e o o o o o s e o o o o s 2 9 g g9 g 9 oS w o v o w o u
3 X 8 b 3 8 & <= S 3 & @ < & R 2 38 & & = 3 s & = 3 3 2 8 8 & B 8§ 8 5 ¥ ¥ 8 8 a & <%
@~ ¢ v ¥ ¢ o ¢ E - e & - 2 8 <& & ¢ 3 4 e ¥ ¥ e ¢ o o ¢
m 7150, 7150, [ vhoso. 7150, | 7150, / 7150,
..nld. F 60.-00. F 60.-00. - 60.-00. F 60.-00. F 60.-00. F 60.-00.
o F so.-g6. m F so-g6. F co.-g6. F so-g6. F so-g6. F so-g6.
o E S E E E E E
= F 66.-06. < F 66.-06. F 66.-06. F 66.-06. F 66.-06. F 66.-06.
° E E E E E E
VAh F ve.-c8. F v6.-s8. Fv6.-58. F v6.-g8. F ve.s8. F v6.-c8.
© E E ~ E © E o E @ E
- Fes-0s. [© Fos-0s. |~ Fes-os. [— Fes-0s. | Fos-0s. | F 6808,
T T T T T T T T T T T T T T
m 2 o o o 9 o o w2 @ o o N w o w o w o 2 2 o o o o s o o o o 9 2 o o 1w o w 9
_ ® = e e by bl & bl e o o & & =t pas pay 2 2 i @ = e 2 b bl o b o pas =4 @ s e & & pas pa = e
an[en Jojoweled

Figure S1.9 Time series plots of the location parameter of the high tail of maximum

temperature anomalies for each region and the globe, based on a PP model fit using

decadal windows from 1980 to 2014.
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Figure S1.9, but for the high tail of minimum temperature anomalies.
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Figure S1.11 As Figure S1.9, but for the low tail of maximum temperature anomalies.
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Figure S1.12 As Figure S1.9, but for the low tail of minimum temperature anomalies.
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Figure S1.13 Time series plots in the scale parameter of the high tail of maximum
temperature anomalies for each region and the globe, based on a PP model fit using
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Figure S1.14 As Figure S1.13, but for the high tail of minimum temperature anomalies.
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Figure S1.15 As Figure S1.13, but for the low tail of maximum temperature anomalies.
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Figure S1.16 As Figure S1.13, but for the low tail of minimum temperature anomalies.
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Figure S1.17 Time series plots in the shape parameter of the high tail of maximum
temperature anomalies for each region and the globe, based on a PP model fit using

running decadal windows from 1980 to 2014.
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Figure S1.18 As Figure S1.17, but for the high tail of minimum temperature anomalies.
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Figure S1.20 As Figure S1.17, but for the low tail of minimum temperature anomalies.

190



S1. SUPPLEMENTARY MATERIAL FOR CHAPTER 2

Figure S1.21 Comparison of two different methods used to calculate excess trends. The
left column shows results calculated using a non-stationary PP model fit to the data to
describe exceedances above (below for the cold tails) the upper (lower) 1.5% of all data
points, while the right column shows results calculated as the difference between the
98.5" quantile (1.5" quantile for the cold tails) and the mean.
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Figure S1.22 Time series of the mean, standard deviation and skewness for the water
equivalent of accumulated snow depth in NCEP2 over the period 1992-2002. The first
row shows time series for region 3 (western North America) and the bottom row are time
series for region 18 (North Asia/Russia). A step change in 1998-1999 is consistent with
the step change in NCEP2 Tmin,., apparent for these regions (see Figures 2.5 and 2.8).
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Table S1.1 Trends in the mean (°C) per decade for each region and the globe over 1980-

2014. Bold font indicates statistical significance at the 5% level.

HadGHCND | ERA-Interim NCEP2 JRA-55 MERRA-2
Region | Tmax Tmin | Tmax Tmin | Tmax Tmin | Tmax Tmin | Tmax Tmin
1 0.40 040 | 038 035 | 043 044 | 033 037 |0.16 0.20
2 0.57 0.63 | 0.62 063 | 058 074 | 0.61 0.65 | 0.32 0.39
3 0.13 0.14 | 0.23 0.10 |034 034 |0.39 026 | 0.19 0.21
4 0.04 0.08 |020 013 |006 013 |0.31 021 | 024 0.24
5 0.19 035 | 0.23 028 |0.16 029 | 0.28 030 | 0.31 0.41
6 0.27 0.16 | 040 0.27 | 024 0.06 | 0.37 019 | 029 0.21
10 0.67 0.26 | 0.22 0.08 |-0.54 -0.29 | 0.21 -0.04 | 0.03 -0.15
11 0.50 051 | 047 043 | 043 0.51 | 0.38 039 | 037 040
12 0.53 037 |056 039 |039 037 | 043 0.36 | 0.42 0.34
13 0.41 033 | 046 030 | o0.11 0.20 | 0.34 0.28 | 0.24 0.29
14 0.37 036 | 038 029 |037 042 | 042 041 | 029 033
17 0.72 -0.26 | 0.15 0.05 |-0.04 0.21 |-0.27 -0.11 | 0.05 0.08
18 0.30 0.26 | 0.32 032 | 036 046 | 0.29 030 | 0.13 0.17
19 0.51 035 |070 052 |028 020 | 045 034 | 037 035
20 0.38 024 | 041 0.22 | 0.42 040 | 0.21 0.15 | 0.10 0.14
21 0.39 036 | 025 025 |014 032 |0.06 012 | 017  0.19
22 0.36 029 | 037 031 |024 0.10 |0.29 019 | 015 0.17
23 0.45 042 | 024 023 |060 035 |0.20 0.09 | 0.13 0.23
24 0.21 025 | 024 011 |016 0.09 | 0.19 0.08 |-0.01 0.11
25 0.12 0.02 |0.16 -0.17 | 0.15 0.12 | 0.19 0.17 | -0.11 0.02
26 0.32 0.11 | 0.24  -0.19 | 0.32 0.29 | 0.27 0.22 | 0.18 0.24
Global | 0.36 033 1039 032 |034 038 |0.34 031 | 019 0.24

Table S1.2 As Table S1.1, but for standard deviation (°C per decade).

HadGHCND | ERA-Interim NCEP2 JRA-55 MERRA-2
Region | Tmax Tmin | Tmax Tmin | Tmax Tmin | Tmax Tmin | Tmax Tmin
1 -0.07 -0.07 | -0.16 -0.14 | -0.21 -0.29 | -0.12 -0.13 | -0.12 -0.13
2 -0.07 -0.08 | -0.08 -0.06 | -0.17 -0.17 | -0.07 -0.07 | -0.05 -0.03
3 -0.10 -0.11 | -0.07 -0.08 |-0.14 -0.27 | -0.04 -0.04 | -0.05 -0.09
4 -0.03  -0.10 | -0.05 -0.05 | -0.12 -0.17 | 0.01 -0.04 | -0.02 -0.06
5 -0.03 -0.17 | -0.03 -0.10 | -0.16 -0.20 | -0.02 -0.08 | -0.02 -0.11
6 0.08 016 |-001 -0.02 |-0.04 -0.03 |0.03 0.01 |-0.01 -0.04
10 0.04 -0.04 | 0.06 002 |0.02 0.00 |0.11 0.04 |0.10 0.02
11 -0.08 -0.09 | -0.09 -0.08 |-0.07 -0.24 |-0.05 -0.04 |-0.04 -0.05
12 0.07 002 |0.06 0.04 |004 -0.09 |0.04 0.04 |0.06 0.05
13 0.03 0.03 |0.02 000 |0.05 0.00 |0.03 0.03 |0.03 0.02
14 0.00 -0.02 | 0.00 -0.02 |0.06 0.07 | 004 002 |0.05 0.02
17 002 010 |0.02 -0.01 |005 0.01 |-0.03 0.00 |-001 0.01
18 0.02 -0.01 |-0.01 -0.04 |-0.06 -0.21 |-0.01 -0.04 |-0.02 -0.05
19 016 0.2 |0.09 005 |0.07 -0.03 |006 0.05 |0.08 0.06
20 0.11 0.08 (008 002 |-001 -0.18 |0.06 0.05 |0.06 0.05
21 009 006 |0.05 004 |-0.02 -0.08 |0.03 0.03 |0.05 0.02
22 009 004 |0.07 004 |008 001 |0.07 0.03 |0.05 0.03
23 -0.04 -0.03 | 0.02 -0.01 |-0.30 -0.17 | 0.05 0.04 | -0.01 0.04
24 0.01 -0.01 {002 001 |0.05 0.04 |007 0.04 |-001 0.01
25 0.03 0.04 | 0.01 0.03 1005 -003 {006 004 |002 0.00
26 0.01 004 (002 0.07 |003 -001 |004 003 |0.01 0.01
Global | 0.00  -0.03 | -0.03 -0.04 | -0.07 -0.16 | -0.01 -0.03 | -0.02 -0.04
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Table S1.3 As Table S1.1, but for skewness (trend per decade).

HadGHCND | ERA-Interim NCEP2 JRA-55 MERRA-2
Region | Tmax Tmin | Tmax Tmin | Tmax Tmin | Tmax Tmin | Tmax Tmin
1 0.00 -0.02 | -0.02 -0.04 | 0.02 0.03 | 0.01 0.00 |0.02 0.02
2 0.00 0.02 |-0.02 -0.02 |0.04 0.03 |0.01 0.03 |0.02 0.03
3 0.00 0.01 |0.00 0.03 |O0.01 0.08 | 0.00 0.02 | 0.01 0.03
4 0.03 0.07 | 0.03 0.08 | 0.07 0.12 | 0.05 0.05 |0.04 0.09
5 0.08 0.07 |0.08 006 |010 0.10 | 0.07 0.07 | 0.07 0.08
6 -0.01 004 | 002 0.00 |002 0.02 |0.04 0.05 |0.06 0.04
10 -0.03 -0.04 | 0.02 -0.03 | 0.07 0.04 |0.01 -0.03 | 0.03 0.02
11 0.03 0.08 | 0.03 0.05 |0.04 0.09 |0.01 0.03 | 0.00 0.01
12 -0.03 -0.03 | -0.03 -0.05 | -0.01 0.07 | 0.04 -0.03 | -0.03 -0.08
13 0.04 -0.03 | 0.03 0.00 | 0.03 0.06 | 0.02 0.01 | 0.03 -0.01
14 0.06 0.00 | 0.00 -0.08 | -0.02 -0.06 | 0.00 0.01 |-0.01 -0.02
17 0.01 -0.09 | 0.01 -0.01 | 0.20 -0.04 | 0.3 -0.04 | 0.00  -0.01
18 -0.04 -0.01 | -0.02 -0.02 | 0.00 0.05 | 0.02 0.03 |-0.02 -0.03
19 -0.05 -0.12 | -0.02 -0.11 |-0.09 -0.03 |-0.01 -0.02 |-0.01 -0.11
20 -0.02  -0.09 | 0.05 0.01 |-0.05 0.06 | 0.00 0.00 | 0.03 -0.06
21 -0.02 -0.06 | 0.00  -0.08 | 0.13 0.12 |-0.02 -0.02 | 0.00 -0.05
22 0.01 0.01 | 0.03 0.01 |0.04 0.09 | 0.05 0.04 | 0.03 0.00
23 0.13 0.07 |-0.04 0.09 |029 025 | 0.06 0.10 | 0.03 -0.02
24 -0.12 0.16 |-0.14 -0.06 | 0.05 -0.06 | 0.05 0.07 |-0.15 -0.01
25 0.02 0.02 |-0.03 0.02 |0.00 0.06 |0.00 0.04 | 0.03 0.01
26 -0.01 0.01 |-0.04 -0.03 |0.00 0.02 |0.00 0.02 |-0.01 0.02
Global | -0.02 0.01 |0.00 0.02 |0.04 0.09 |0.02 0.04 | 0.00 0.01

Table S1.4 Decadal trends in the location parameter for the high tails of maximum and

minimum temperature anomalies (Tmaxy and Tming, respectively) for each region and the

globe, based on a PP model fit using running decadal windows from 1980 to 2014. Bold

font indicates statistical significance at the 5% level.

HadGHCND | ERA-Interim NCEP2 JRA-55 MERRA-2
Region | Tmaxy Tming | Tmaxy Tming | Tmaxy Tming | Tmaxy Tming | Tmaxyg  Tming
1 0.43 0.44 -0.04 0.05 |0.36 0.14 | 0.31 031 | -0.01 0.10
2 0.59 0.84 0.71 0.84 |0.76 0.82 |0.91 094 | 0.62 0.79
3 -0.21 -0.16 |-0.11 -0.06 |-0.14 -0.12 | 0.24 0.15 | 0.06 0.13
4 0.02 0.10 0.11 0.23 |-0.07 0.03 |0.52 0.28 | 0.38 0.45
5 0.15 0.17 0.24 014 |-0.19 -0.15 | 0.44 0.25 | 0.46 0.32
6 0.44 0.41 0.50 0.12 | 0.18 -0.12 | 0.75 0.29 | 049 0.09
10 0.90 0.38 0.41 019 |-046 -0.10 | 0.47 0.08 | 0.36 0.15
11 0.20 0.10 0.18 0.08 |0.28 0.06 |0.19 0.26 | 0.36 0.10
12 0.44 0.24 0.46 0.22 | 0.18 -0.03 | 0.26 0.24 | 0.27 0.04
13 0.60 0.46 0.63 044 | 0.25 030 | 0.58 047 | 043 0.39
14 0.74 0.77 0.61 021 | 0.72 0.56 | 0.60 0.56 | 0.61 0.47
17 0.93 -0.19 | 0.17 0.03 |0.13 019 |-026 -0.07 |0.12 0.11
18 -0.06  0.12 -0.01 000 |-0.01 0.15 |0.12 0.16 |-0.18 -0.22
19 1.02 0.78 1.13 0.72 | 0.41 020 | 0.71 0.64 | 0.87 0.52
20 0.94 0.72 1.21 0.53 |0.30 035 |0.53 0.43 | 0.58 0.20
21 0.67 0.44 0.47 0.22 | 0.38 039 |0.28 022 | 0.60 0.21
22 0.63 0.55 0.76 047 | 0.55 031 | 0.76 034 | 0.51 0.32
23 0.86 0.73 0.24 030 | 0.40 0.15 | 0.36 0.31 0.25 0.40
24 0.17 0.46 0.16 0.12 | 0.68 0.33 | 0.64 039 |-0.22 0.19
25 0.26 0.30 0.27 012 | 0.35 038 | 0.50 047 | 0.11 0.22
26 0.43 0.43 0.23 0.01 0.47 0.54 | 0.62 0.55 |0.28 0.53
Global | 0.21 0.31 0.27 0.27 | 0.23 032 | 0.38 034 | 0.14 0.13
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Table S1.5 As Table S1.4, but for the low tails of maximum and minimum temperature

anomalies (Tmax;, and Tming, respectively) of the location parameter.

HadGHCND | ERA-Interim NCEP2 JRA-55 MERRA-2
Region | Tmaxy, Tming | Tmax, Tminy | Tmax, Tmin, | Tmax,, Tming | Tmax;, Tming
1 -0.60 -0.85 | -0.87 -0.66 |-146 -2.18 |-0.86 -0.81 |-1.01 -0.98
2 -1.03 -127 |-1.01 -0.80 |-159 -162 |-1.11 -1.14 |-1.07 -1.03
3 -0.85 -1.00 | -1.00 -0.93 |-1.20 -2.55 |-0.89 -0.84 |-0.84 -1.24
4 -092  -127 |-1.10 -1.26 |-1.64 -236 |-095 -0.92 |-1.05 -1.65
5 -0.78  -1.27 | -0.92 -0.93 |-144 -2.16 | -0.84 -0.89 | -0.98 -141
6 0.02 -0.19 | -043 -0.67 | -0.68 -0.37 |-0.56 -0.52 | -0.50 -0.65
10 -0.15  -0.23 | 0.05 -0.10 | 0.60 048 | 0.06 0.27 | 0.33 0.18
11 -0.75 -0.73 | -0.83 -0.71 | -0.75 -2.01 |-0.56 -0.54 |-0.40 -0.61
12 -0.56 -0.53 |-0.70 -0.41 |-0.79 -1.78 |-046 -0.55 |-0.25 -0.11
13 -0.24 003 |-047 -0.14 | -0.04 -0.19 |-0.27 -0.01 |-0.15 -0.10
14 -0.44 -047 | -0.38 -0.12 | -0.26 0.24 |-047 -0.41 |-023 -0.29
17 -0.58 0.67 |-0.13 -0.14 | 0.08 0.02 | 0.06 0.26 | -0.03 -0.05
18 -0.21  -039 | -0.52 -0.66 |-0.83 -156 |-0.54 -0.64 | -0.05 -0.38
19 -0.14 0.11 |-0.58 -0.32 | 0.11 -1.37 | -0.28 -0.30 | -0.19 -0.17
20 -0.15 0.13 |-0.53 -048 |-031 -185 |-0.15 -0.08 |-0.19 -0.06
21 -0.11  -0.13 | -0.21 0.10 |-0.54 -1.68 | 0.09 0.03 | 0.01 0.00
22 -0.10  -0.17 | -0.25 -0.14 | -0.08 -0.70 | -0.13 -0.10 | 0.01 -0.08
23 -0.76 -0.72 | -0.36 -0.68 | -2.15 -136 |-0.15 -0.24 |-0.25 -0.26
24 -0.01 -0.36 | -0.01 0.00 |-0.13 0.12 |-0.04 0.00 |026 -0.08
25 0.13 0.09 | 0.25 028 |-0.13 -0.26 | 0.11 -0.31 | 0.24 0.00
26 -0.32 004 |-0.10 051 |-0.68 -0.26 |-030 -0.26 |-0.26 -0.20
Global | -0.47 -0.66 | -0.78 -0.82 | -0.99 -1.80 | -0.58 -0.70 | -0.54 -0.75

Table S1.6 As Table S1.4, but for the high tails of maximum and minimum temperature

anomalies (Tmaxy and Tming, respectively) of the scale parameter.

HadGHCND | ERA-Interim NCEP2 JRA-55 MERRA-2
Region | Tmaxy Tming | Tmaxy Tming | Tmaxy Tming | Tmaxy Tming | Tmaxy  Tming
1 0.18 0.04 |-0.11 -0.11 |0.19 0.06 | 0.07 0.05 |0.02 0.08
2 -0.02  0.09 |0.07 0.09 |0.11 0.10 | 0.19 0.15 | 0.08 0.05
3 0.04 0.00 |[-0.05 -0.05 |-0.04 -0.05 |-0.04 -0.03 |0.02 -0.04
4 -0.09 0.06 |-013 003 |-011 -0.03 |-0.02 0.03 |-0.03 0.04
5 -0.05  0.06 | 0.00 0.04 |-0.10 -0.01 |0.05 0.04 | 0.06 0.06
6 -0.04 -0.06 | -0.06 -0.06 |-0.13 -0.08 |0.00 0.00 |-0.05 -0.03
10 0.14 0.01 0.07 0.08 | 0.14 0.16 | 0.05 0.03 | 0.06 0.04
11 -0.02  -0.05 | 0.00 -0.04 | 0.04 0.01 0.01 0.03 | 0.11 0.04
12 -0.01  -0.04 |-0.04 -0.02 |0.00 -0.02 | 0.00 0.01 0.02 -0.08
13 0.03 0.04 |0.10 0.12 | 0.07 0.10 |0.11 0.04 | 0.08 0.04
14 0.12 0.21 | 0.09 0.01 0.08 0.08 |[-0.02 0.01 0.06 0.02
17 0.05 -0.05 | -0.04 -0.08 |-0.02 -0.02 |0.01 0.00 |-0.03 -0.11
18 -0.03  -0.03 |-0.03 -0.02 |0.01 -0.01 |-0.04 0.00 |-0.05 -0.05
19 0.09 -0.03 | 0.20 -0.04 | 0.13 0.05 | 0.06 0.06 |0.17 -0.03
20 0.16 0.10 | 0.31 0.08 | 0.03 0.04 | 0.09 0.08 |0.20 -0.01
21 -0.08 -0.06 | -0.03 -0.07 |0.02 0.00 |-0.01 -0.03 | 0.06 -0.06
22 0.04 0.01 0.05 0.00 | 0.04 0.03 | 0.09 -0.02 | 0.07 0.05
23 0.24 0.09 | 0.04 0.02 | 0.03 0.00 | 0.06 0.06 | 0.03 0.02
24 -0.01  0.04 |-0.10 0.03 |0.02 0.02 | 0.08 0.11 -0.03  0.02
25 -0.01  0.07 | 0.02 0.08 | 0.01 0.07 | 0.01 0.05 | 0.04 0.07
26 0.00 0.05 |-0.06 -0.05 |0.00 0.01 0.01 0.01 -0.03  0.06
Global | -0.05 -0.02 | -0.04 0.01 0.05 0.05 | 0.02 0.03 |-0.03 -0.02
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Table S1.7 As Table S1.4, but for the low tails of maximum and minimum temperature

anomalies (Tmax;, and Tminy, respectively) of the scale parameter.

HadGHCND | ERA-Interim NCEP2 JRA-55 MERRA-2
ﬂion Tmax;, Tming | Tmaxy Tming | Tmaxy Tming | Tmax;, Tming | Tmax;, Tming
1 -0.08 -0.24 | 0.01 0.01 -0.21  -0.12 | -0.11 -0.04 |-0.25 -0.14
2 -0.05 -0.02 | 0.09 0.18 | -0.14 -0.09 | -0.04 -0.03 | -0.08 0.05
3 -0.35 -0.20 | -043 -0.15 | -0.58 -0.35 |-033 -0.25 |-0.44 -0.34
4 -049 -035 | -046 -043 | -0.82 -0.83 |-037 -040 |-045 -0.64
5 -0.21 -0.06 | -0.19 -0.08 | -039 -0.49 |-0.18 -0.16 |-0.19 -0.25
6 -0.16 -0.44 |-0.02 -0.20 |-0.22 -0.27 |-0.18 -0.25 |-0.14 -0.32
10 0.12 0.02 0.05 0.02 -0.06  0.00 0.05 0.18 0.11 0.08
11 0.08 0.01 -0.03 -0.07 | -0.19 -0.20 | -0.10 -0.05 | 0.04 -0.07
12 -0.04 -0.01 | -0.09 -0.01 |-0.24 -0.46 |-0.04 -0.09 |0.02 0.00
13 -0.01  0.13 -0.03 0.08 -0.06  -0.38 | 0.02 0.02 0.00 0.07
14 0.01 -0.03 | 0.01 0.05 -0.01  0.17 0.02 -0.02 | 0.07 0.00
17 0.08 -0.06 | 0.00 0.04 -0.01  0.12 -0.01  0.03 0.11 0.27
18 0.20 0.05 0.14 0.08 -0.05 0.07 |-0.09 -0.04 |O0.16 0.06
19 0.23 0.44 0.23 0.51 0.20 -0.35 | 0.14 0.15 0.19 0.25
20 0.09 0.39 0.12 0.16 0.04 -0.04 | -0.03 0.03 0.00 0.19
21 -0.03  0.06 -0.05 0.13 -0.32 -037 | -0.09 -0.06 | -0.05 0.07
22 0.01 0.00 0.02 0.06 -0.04 -0.50 | 0.03 -0.01 | 0.03 0.03
23 -0.07  0.00 -0.07 -0.31 | -0.27 -0.21 | -0.01 -0.09 | 0.04 0.09
24 0.12 -0.10 | 0.10 -0.01 | 0.08 0.05 0.00 -0.06 | 0.09 0.03
25 0.15 -0.02 | 0.15 -0.05 | 0.07 0.01 0.11 -0.01 | 0.05 0.02
26 0.04 0.03 0.09 0.02 -0.05 0.07 0.08 -0.02 | 0.03 0.05
Global | -0.05 -0.05 | -0.05 0.02 -0.22 -0.15 | -0.10 -0.11 | -0.10 -0.07

Table S1.8 As Table S1.4, but for the high tails of maximum and minimum temperature

anomalies (Tmaxy and Tming, respectively) of the shape parameter.

HadGHCND | ERA-Interim NCEP2 JRA-55 MERRA-2
Region | Tmaxy Tming | Tmaxy Tming | Tmaxy Tming | Tmaxy Tming | Tmaxy  Tming
1 0.04 0.00 | 0.02 0.02 |-0.02 -0.01 |0.02 -0.01 | 0.02 0.03
2 0.02 0.00 | 0.02 0.01 -0.04 002 |-0.02 0.01 0.02 -0.02
3 0.02 0.01 0.00 0.01 0.00 0.03 | 0.01 0.02 | 0.00 0.00
4 0.02 0.03 | 0.03 0.02 | 0.03 0.00 | 0.00 0.02 | 0.04 0.01
5 0.06 -0.05 | 0.04 0.01 0.03 0.01 -0.02  0.00 | 0.04 0.01
6 -0.15 005 |(-0.07 003 |-0.05 0.02 |0.03 -0.05 | -0.06 0.18
10 0.03 -0.03 | 0.03 0.03 | 0.01 0.00 | 0.04 0.07 | 0.02 -0.06
11 0.04 0.05 | 0.05 0.03 | 0.01 0.05 | 0.00 0.00 | 0.01 0.02
12 -0.04 0.04 | -0.03 0.05 |0.03 0.06 | 0.01 0.06 | 0.07 0.02
13 0.02 -0.02 | 0.03 0.02 | 0.00 -0.02 | 0.03 -0.01 | 0.03 0.03
14 0.11 -0.01 |-0.01 0.02 |-0.03 0.01 0.01 0.01 -0.04 0.01
17 0.01 0.01 0.00 -0.07 | 0.04 -0.02 | 0.00 -0.07 | -0.03 -0.10
18 0.06 0.01 0.03 0.01 0.03 0.01 0.03 0.00 | 0.04 0.01
19 0.02 0.00 | 0.03 0.00 | 0.01 -0.03 | 0.04 0.02 |0.01 -0.03
20 -0.03  -0.02 | 0.05 0.03 | 0.05 -0.02 | 0.03 0.05 | 0.02 0.01
21 -0.03 0.02 | 0.00 0.00 |[-0.02 0.01 -0.01  0.03 |-0.03 0.02
22 0.00 -0.03 | 0.00 -0.03 | 0.00 -0.04 |-0.01 -0.03 | -0.01 -0.04
23 0.05 0.04 | 0.01 0.01 0.03 -0.01 | 0.04 0.00 |-0.10 -0.02
24 0.11 -0.04 | 0.07 0.00 |[-0.02 0.01 0.02 0.01 0.02 -0.03
25 0.00 -0.03 |-0.03 -0.03 |-0.02 -0.03 |-0.02 -0.01 |-0.01 -0.01
26 0.03 -0.05 | 0.03 -0.02 | 0.04 -0.01 | 0.02 -0.06 | 0.01 -0.05
Global | 0.04 0.00 | 0.02 0.01 0.02 0.01 0.01 0.02 | 0.02 0.01
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Table S1.9 As Table S1.4, but for the low tails of maximum and minimum temperature

anomalies (Tmax;, and Tminy, respectively) of the shape parameter.

HadGHCND | ERA-Interim NCEP2 JRA-55 MERRA-2
Region | Tmaxy, Tming | Tmax, Tminy | Tmax, Tmin, | Tmax,, Tming | Tmax;, Tming
1 -0.04 -0.01 | -0.04 -0.05 | 0.02 0.05 |-0.05 -0.06 |-0.04 -0.03
2 -0.02  0.05 | 0.04 0.01 | 0.01 -0.02 | 0.00 -0.01 | 0.03 0.02
3 0.01 0.02 | 0.04 -0.01 | 0.02 0.01 |-0.01 -0.04 | 0.01 0.02
4 -0.01 0.01 |-0.01 0.03 |0.03 0.05 |-0.05 -0.08 | 0.00 0.11
5 -0.02 0.03 |-0.01 -0.01 |-0.02 0.05 |-0.01 -0.03 |0.02 0.06
6 -0.02  -0.06 | -0.07 -0.06 |0.02 -0.13 | 0.00 -0.08 | 0.01 -0.08
10 0.01 0.02 | 0.02 0.01 |-0.03 -0.03 | 0.02 0.06 | 0.01 0.05
11 -0.11  -0.05 | -0.06 -0.01 | -0.08 0.01 |-0.06 -0.07 |-0.08 -0.02
12 0.02  -0.03 | 0.01 -0.04 | 0.06 0.02 | 0.01 0.03 |-0.01 -0.01
13 -0.03 -0.04 | -0.02 -0.02 |-0.06 -0.07 |-0.02 -0.06 |-0.02 -0.01
14 -0.01  0.05 |-0.01 -0.05 |-0.03 -0.04 | 0.05 -0.02 | 0.08  -0.02
17 0.03 -0.12 | 0.02 -0.01 | 0.00 0.04 | 0.04 -0.01 | 0.05  -0.02
18 -0.05 -0.04 | -0.01 o0.01 |-0.01 -0.01 |-0.01 -0.01 |-0.04 -0.03
19 0.03 -0.02 | 0.06 0.00 | 0.00 0.05 | 0.03 0.02 | 0.03 0.00
20 -0.02  -0.07 | 0.01 -0.01 | 0.00 0.04 |-0.03 -0.08 | 0.02 -0.02
21 -0.06 -0.08 |-0.02 -0.07 |-0.01 0.04 |-0.06 -0.06 |-0.03 -0.02
22 -0.01  0.02 | 0.01 0.04 |-0.04 -0.02 |-0.01 0.02 |-0.01 0.02
23 0.04 0.07 | 0.03 0.00 | 0.17 0.00 |-0.03 0.01 |0.04 0.01
24 -0.02 -0.02 | -0.01 -0.02 |-0.03 -0.06 | 0.00 -0.04 | -0.04 -0.04
25 0.02 0.00 | 0.00 -0.04 | 0.01 -0.01 | -0.04 0.04 | -0.01 -0.03
26 0.05 0.00 | 0.03 -0.02 | 0.06 0.03 | 0.04 0.00 | 0.01 0.03
Global | -0.02  -0.01 | 0.02 0.01 | 0.00 0.01 |-0.03 -0.02 | 0.02 0.01
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S.2 SUPPLEMENTARY MATERIAL FOR CHAPTER 3

Figure S2.1 Comparison between choice of base period used for temperature anomaly
calculation for recent excess changes in hot extremes (1982-2014 — 1950-1981) in the CMIP5
multi-model mean for DJF (a,b), MAM (c,d), JJA (e,f) and SON (g,h). The panels on the
left show excess changes calculated from temperature anomalies relative to the entire period
of analysis (1950-2014). The panels on the right show excess changes calculated from
temperature anomalies relative to the 1961-1990 base period. Stippling indicates grid cells
where at least 20 out of 26 models agree on the sign of excess change.
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Figure S2.2 As Figure S2.1, but for extremes in the cold tails of the distribution

relative to daily minimum temperatures.
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S2. SUPPLEMENTARY MATERIAL FOR CHAPTER 3

Figure S2.3 As Figure S2.1, but for future excess changes.
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Figure S2.4 As Figure S2.3, but for extremes in the cold tails of the distribution
relative to daily minimum temperatures.
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S2. SUPPLEMENTARY MATERIAL FOR CHAPTER 3

Figure S2.5 Recent excess changes in the individual CMIP5 models used to calculate
the multi-model mean shown in Figures 3.2 and 3.4, for extremes in the warm tail using
daily maximum temperatures for December — February.
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Figure S2.6 As Figure S2.5, but for March — May.
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Figure S2.7 As Figure S2.5, but for June — August.
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Figure S2.8 As Figure S2.5, but for September — November.
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Figure S2.9 As Figure S2.5, but for the warm tails of daily minimum temperature.
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Figure S2.10 As Figure S2.9, but for March — May.

208



S2. SUPPLEMENTARY MATERIAL FOR CHAPTER 3

Figure S2.11 As Figure S2.9, but for June — August.
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Figure S2.12 As Figure S2.9, but for September — November.
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Figure S2.13 As Figure S2.5, but for the cold tails of daily maximum temperature.
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Figure S2.14 As Figure S2.13, but for March — May.
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Figure S2.15 As Figure S2.13, but for June — August.
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Figure S2.16 As Figure S2.13, but for September — November.
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Figure S2.17 As Figure S2.5, but for the cold tails of daily minimum temperature.
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Figure S2.18 As Figure S2.17, but for March — May.
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Figure S2.19 As Figure S2.17, but for June — August.
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Figure S2.20 As Figure S2.17, but for September — November.
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Figure S2.21 As Figure S2.5, but for future excess changes.
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Figure S2.22 As Figure S2.21, but for March — May.
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Figure S2.23 As Figure S2.21, but for June — August.
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Figure S2.24 As Figure S2.21, but for September — November.
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Figure S2.25 As Figure S2.21, but for the warm tails of daily minimum temperature.
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Figure 2.26 As Figure S2.25, but for March — May.
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Figure S2.27 As Figure S2.25, but for June — August.
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Figure S2.28 As Figure S2.25, but for September — November.
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Figure S2.29 As Figure S2.21, but for the cold tails of daily maximum temperature.
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Figure S2.30 As Figure S2.29, but for March — May.
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Figure S2.31 As Figure S2.29, but for June — August.
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Figure S2.32 As Figure S2.29, but for September — November.
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Figure S2.33 As Figure S2.21, but for the cold tails of daily minimum temperature.
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Figure S2.34 As Figure S2.33, but for March — May.
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Figure S2.35 As Figure S2.33, but for June — August.
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Figure S2.36 As Figure S2.33, but for September — November.
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