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Abstract

Considerable research has been performed exploring Activity Recognition (AR) us-

ing wearable sensor nodes such as smart phones that incorporate accelerometers,

gyroscopes and magnetometers.

This thesis presents an empirical evaluation of AR using on-body sensors. It

studies the recognition of 22 Activities of Daily Living using either wearable sensors

that have fixed locations on the subject’s body or smart phones carried by the

subject. The differences between the two sensor configurations are explored as well

as parameters for computationally efficient and accurate AR.

Initially, fundamental classifier settings that impact AR accuracy are explored.

These include evaluating the performance of acceleration, rotational velocity and

orientation derived features (the three are referred to as sources). In addition,

minimum sampling frequencies, window size, window overlap and sensor locations

on the body are also explored.

Next, two factors that differentiate AR using wearable sensors from using a

mobile phone are studied: the possibility of a mobile phone being carried (1) in an

unknown and previously untrained location on the subject’s body, and (2) with any

orientation.

Key findings presented within the thesis include: (1) Acceleration derived fea-

tures perform better than features of the other two sources. (2) Using acceleration

features alone performs only marginally worse than using features derived from all
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three sources. (3) Orientation derived features have the second highest success-rate

but require the lowest sampling frequency of features derived from the three sources.

(4) Accuracy is affected by location and number of sensors. The wrists yield the

highest overall performance for the activities studied. A depreciating returns re-

lationship exists between accuracy and number of sensors used. (5) Of the body

locations and activities studied, it is possible to identify the location on which the

sensor is carried without knowing the subject’s activity. (6) Reorienting the data

from local to global coordinates ameliorates the decrease in success-rate when the

sensor’s orientation is transient. However, it incurs a marginal decrease when the

orientation is fixed. (7) Reorienting the data using orientations obtained from an

IMU results in higher success-rates than using accelerations. (8) Highly confusable

activities are found to have similar gross motor movements.
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Glossary

The following are definitions of terms used within this thesis. Please note that the
definitions of some of the terms used within this thesis might differ from the common
definition of the terms.
Activity classification : The process of identifying an activity from a given closed

set of activities by using a feature-vector that summarises a window of data
captured during that activity.

Activity classification accuracy : The accuracy of the results of the activity
classification process, measured as a percentage of the correctly classified
feature-vectors out of the total number of feature-vectors.

Activity-location : The conjunction of data from a particular activity and data
from a particular body-location. For example, all acceleration data captured
from body-location L of all subjects doing an activity A is said to be acceler-
ation data of activity-location (A,L).

Activity recognition : The overall process of identifying the subject’s activity
and the delivery of the activity information to the user, including signal pro-
cessing performed before classification, the activity classification task itself,
and any processes that might be applied to the activity information so to
present consistent and coherent information captured about and of the user’s
activities. Within this thesis, a distinction is drawn between activity recog-
nition and activity classification. Activity recognition refers to the overall
process by which a system identifies and presents activity information while
activity classification refers to the specific task of using a classifier to identify
the activity that was occurring when the data that resulted in a feature-vector
was gathered.

Activity recognition accuracy : The accuracy of the final activity information
presented to the user. No section of this thesis attempts to measure activity
recognition accuracy.

Body-location : A location on a subject’s body.
Carry location : The location on the subject, that the subject carries his or her

smart-phone.
Feature-extraction : The process of applying a feature-set to a window of sensor

data to produce feature-vectors.
Feature-set : A set of functions that take a single window of accelerations, rota-

tional velocities or orientations, and produce a single feature-vector. Within
this thesis, a feature-set only consists of the functions described in section 3.5

xxiii



for either Bao and Intille’s feature-set or Kwapisz et al.’s feature-set. It does
not include any processing that is/can be performed prior to the applications
of the functions described in section 3.5. Such processing performed prior
to the application of the functions to the signal, such as signal filtering and
downsampling, is refered to as preprocessing. This distinction is important
within this thesis because it allows for the analysis of the impact of each task
(preprocessing or feature-selection) individually.

Feature-vector : A sequence of numbers, of a fixed length and order, that sum-
marise characteristics of a window of accelerations, rotational velocities or
orientations (i.e. a source), and that are used to train or test a classifier.
Feature-vectors of accelerations, rotational velocities or orientations can be
combined to form larger feature-vectors.

Monitor : A single module, containing an accelerometer, gyroscope and magne-
tometer that can be mounted on any location of the subject’s body to record
the accelerations, rotational velocities and orientations of the subject at that
given location.

Preprocessing : Any processing that is carried out on sensor data before feature-
extraction.

Source 1: Either one of accelerations, rotational velocities or orientations. The
three form the base source of sensory information on which activity recognition
is studied in this thesis.

Window : The data gathered within a specified time period.

1The word is italicised because orientations are not so much a new source of sensory information
as a result of combining accelerometer, gyroscope and magnetometer values. This is done in the
IMUs used. While the algorithms used in IMUs are well known, the parameters of the algorithm can
vary from one IMU implementation to another. However, orientations are real physical properties
of objects and can be measured using other techniques other than IMUs (e.g. using motion capture
cameras)
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1Introduction

1.1 Overview

Activity recognition (determining what activity a user is undertaking at the current

moment) is an interesting research area for a variety of reasons including:

1. Ambient-assisted living where activity recognition is used to assist independent

living and aging in place.

2. Pervasive mobile computing where activity recognition is used to infer the

activities of the user using a mobile device and either have the device respond

to the context (e.g. by adjusting the ring volume or changing the phone to

vibration) or providing suggestions of similar activities and locations the user

might enjoy.

3. Context-aware computing where systems installed in particular environments

(such in a hospital or factory) aim to identify contexts and proactively provide

services relevant to the context or assist in the current activity.

4. Surveillance-security where activity recognition is used to address threats to

safety and security.

Advances in sensor technology and computation have allowed for better and

smarter systems that can deduce user(s) activities. Activity recognition can be

classified based on where the sensors are mounted (on-body sensors or dense sensing

1
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in intelligent environments), approach to understanding the problem (data-driven

or knowledge-driven) and algorithms used (e.g. computer vision-based, statistical

modelling etc.) (Chen et al., 2012).

The research work in this thesis can be termed as:

On-body sensor-based: The sensors the research work has made use of are worn

on the subject’s body. In particular, the sensors are inertial measurement

units (IMUs) that measure the subject’s inertial movement.

Data-driven and knowledge-driven approach: The approach used to under-

stand the problem is both data-driven and knowledge-driven. Data of the

activities of interest was gathered and used to model and recognise when the

activities are occurring. In addition, frequent references and validations are

made using extant knowledge about the kinematics of body movements and

observations made during data gathering.

Statistical modelling: This research applies statistical methods to study body

movements and develop statistical models that represent those movements.

This research work analyses the impact of several parameters on the classification

of Activities of Daily Living. The impact of the parameters on activity classification

success-rates is studied and conclusions are drawn about the relationships between

the parameters and success-rates and the roles the parameters play or should play

in activity recognition. The impact of the following parameters on activity classifi-

cation success-rates are analysed:

1. The sampling frequency.

2. Using either accelerations, rotational velocities, orientations or a combination

of all three as the source on which to extract feature-vectors.

3. The window length and window overlap to use while using the sliding window

approach to segment data.

4. The locations on the user to mount sensors on and the number of sensors to

mount on the user.
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5. Models of training and testing models (as given by Lockhart and Weiss (2014))

and the role of inter-subject variation within the models.

6. Sensor orientation transiency relative to the body-location mounted on and

the impact on activity recognition accuracy.

7. Application of data reorientation to convert data from local sensor coordinates

to world coordinates.

8. Inter-location variation and the consequential ability to distinguish where the

sensor is mounted on due to the variation.

In addition, several analyses are performed so as to obtain higher activity classi-

fication success-rates and more efficient activity recognition systems. The analyses

are:

1. An analysis on the impact of sampling frequency on activity classification

success-rates using a particular feature-set to sample more efficiently.

2. An analysis of how much mutual confusion exists between different activities,

which activities are most highly mutually confused using a particular classifi-

cation algorithm, and a way to visualise the mutual confusion existing within

the classification results.

1.2 Motivation

While considerable work has been carried out towards application of on-body in-

ertial sensors in activity recognition, much of the work has been constrained to

accelerometers. Recent work has started to include gyroscopes and magnetometers.

The narrow focus that has existed till recently is possibly because of the unavail-

ability of these sensors to the activity recognition research community, but this is

changing as sensors become less expensive and (mobile) computation power is more

readily available and less power consumptive.

Another recent area of activity recognition research is the use of smart phones
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to recognise and record users’ physical activities. This involves making use of the

sensors available on smart phones (which currently include accelerometers, magne-

tometers, gyroscopes, light sensors and GPS) to identify the user’s activities.

High accuracies have already been attained in activity recognition using on-

body inertial sensors. However, this has mostly been focused toward identifying

simple activities. While many simple activities exist in people’s day-to-day lives,

there are many more complex activities than there are simple activities. This work

studies several parameters that influence the classification success-rate of activities

that people perform in their day-to-day lives in the hopes that if the behaviours of

these parameters are better understood, it would result in more accurate and more

efficient activity recognition systems.

1.3 Scope of research

This research limits itself to the set of just over twenty activities gathered that

include food preparation, household cleaning and office work. In addition, the re-

search is limited to the use of statistical features extracted using a sliding window

technique. In the thesis, two feature-sets are selected and each analysis is repeated

for the two feature-sets in order to strengthen the conclusions made from the results.

In terms of classifiers, the analysis is performed using decision trees because, via a

pilot study, they were found to be the best classifier for the feature-sets. No analysis

is presented in the thesis itself on the performance of different classifiers.

Due to the data gathering process, two distinct sets of data are available: one for

walking and running that was gathered with a set of three monitors only; and one

dataset containing a further 20 (more sophisticated) Activities of Daily Living that

was gathered using a set of six monitors. Where possible the analysis is repeated

for both the three monitor set and all 22 activities, and six monitor set with 20

activities.
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1.4 Original contributions

The original contributions made in this thesis are:

1. Feature-vectors extracted from accelerations result in higher activity classifi-

cation success-rates than feature-vectors extracted from either rotational ve-

locities or orientations.

2. Feature-vectors extracted from accelerations alone result in marginally worse

activity classification success-rates than using feature-vectors extracted from

the three sources combined.

3. Feature-vectors extracted from orientations have the second highest success-

rate of feature-vectors derived from any of the three sources, but require the

lowest sampling frequency.

4. Accuracy is affected by the body-location on which sensors are mounted and

the number of different body-locations on which the sensors are mounted.

The wrists yield the highest overall performance for the activities studied. A

depreciating returns relationship is observed between the accuracy obtained

and number of sensors used.

5. Of the body-locations and activities studied, it is possible to identify the lo-

cation on which the sensor is carried without knowing the subject’s activity.

6. Reorienting the data from local to global coordinates ameliorates the decrease

in success-rate when the sensor’s orientation is transient. However, it incurs a

marginal decrease when the orientation is fixed.

7. Reorienting the data using orientations obtained from an IMU results in higher

success-rates than Reorienting the data using the current best acceleration-

based reorientation method in literature.

8. Highly confusable activities are found to have similar gross motor movements.
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1.5 Thesis organisation

The thesis is organised as follows: first a review of literature is given; an overview of

the methodologies used in the analysis; after which four analysis chapters are then

given. Each analysis chapter is divided into sections that represent one experiment.

In each experiment, the methodology used in analysing the data is given followed by

the results obtained and a discussion of the possible reasons behind any observations

made in the results and implications of the results.

The four analysis chapters are as follows. The first chapter analyses the impact of

data capturing and feature-extraction approaches upon activity classification. The

second chapter analyses the differences in the activity classification success-rates

obtained using the two feature-sets studied, the impact of the number of monitors

used per subject and location of monitors on the subject’s body on the activity

classification accuracy. The third chapter studies inter-subject and inter-activity

variability and their impact on activity classification accuracy. In addition, the

mutual confusion rates between activities is also studied in order to identify which

activities are highly confused with each other. The forth chapter studies smart-

phone based activity recognition and in particular analyses the impact of random

monitor rotations (relative to the body-location on which phone is carried) and the

identification of the body-location on which the phone is carried.

Each analysis chapter is concluded with a summary of the chapter. In addition,

an additional summary of the whole thesis is found in the conclusion chapter.



2Background and literature review

This chapter will present a break-down of literature on activity recognition using on-

body inertial sensors. In addition, literature is presented on recent interesting and

relevant time-series data-mining techniques, human kinematics, and an overview of

the current state of commercial on-body activity trackers.

2.1 Definitions and overview

Context is any information that can be used to characterise the situation of an

entity, where an entity can be a person, place or physical object (Dey, 1999). The

ability of a system to sense various states of it’s environment and itself is termed as

context-awareness (Pascoe, 1998). Pascoe (1998) presents four context-awareness

capabilities a system can support:

1. Detecting context and presenting it to the user so as to enhance the user’s

sensory system.

2. Adapting the system’s behaviour to suit the current context.

3. Allocating and using resources that are accessable from or relevant to a given

context.

4. Augmenting the environment with contextual information.

Dey (1999) opines that certain types of context are in practice more impor-

tant than other types. These are: location, identity, activity and time. Activity-

7
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awareness is a subcategory of the context-awareness research area. The goal of it is

to identify the userâĂŹs actions and activities from sensor observations.

Kim, Helal, and Cook (2010) explains the the goal of activity recognition is the

accurate detection of activities based on predefined activity models. To perform this,

models of the activities need to be built. Activity pattern discovery is the process by

which low-level sensor data is analysed to find previously unknown activity patterns.

Bannach, Amft, and Lukowicz (2008) explain that activity recognition systems are

developed in 2 main phases. The first phase involves the design of the recognition

method such as sensor setup, selecting features and classifier. The second phase

involves implementing the selected algorithms in the appropriate devices.

Gu, Wu, Wang, Tao, and Lu (2009) categorise instances of Activities of Daily

Living (ADLs) with relation to other subject’s activities into:

1. Activities that a person does individually and with no connection to others,

2. Activities two or more people do individually but simultaneously (e.g. having

dinner together, watching TV together, etc.),

3. activities in which two or more people cooperate to achieve a shared goal (e.g.

preparing a meal together), and

4. Activities in which two or more people perform individually but whose goals

conflict (e.g. one person wants to shower while another wants to use the toilet,

one person wants to play computer games while another wants to check mail).

In addition, activities can also be grouped into simple or atomic and complex

activities. Dernbach, Das, Krishnan, Thomas, and Cook (2012) define atomic ac-

tivities as those that consist of a single repeated action whereas complex activities

are composed of a series of multiple actions.

Activity recognition systems either use sensors placed on the user’s body (on-

body sensors) which are mostly worn as part of the subject’s clothing (wearable

sensors) or make use of sensors installed in the subject’s environment (intelligent

environment) possibly making use of sensors attached to items that the subject
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manipulates (dense-sensing). Dernbach et al. (2012) explains that one disadvantage

of using sensors installed in the environment is the initial cost of installation.

On the other hand, wearable sensors require a daily effort by the subject to put

the sensors on. One possible option is to use the user’s smart phone instead of

wearable sensors. Using the smart phone as the sensing node avoids these issues

but introduces other challenges and limitations such as limited processing power,

limited battery life, variable and expensive communication bandwidth and a require-

ment to still operate as a phone (Taylor, Abdulla, Helmer, Lee, & Blanchonette,

2011). Dernbach et al. (2012) explains that current smart phones are equiped with

many sensors including GPS sensors, microphones, cameras, light sensors, proxim-

ity sensors, inertial sensors (accelerometers and gyroscopes) and direction sensors

(magnetometers). However, while smart phones are equipped with many sensors,

the majority of users only carry one smart phone at a time. Hence, an activity

recognition system that only depends on sensors on a smart phone would at most

only monitor motions of one location on the subject’s body.

In order to infer the userâĂŹs current activity, activity recognition systems in-

volve three main components: a sensing component that reads raw environment

data from sensors; a feature extraction component that processes the raw data to

extract a set of features from the data; and a classification component which uses

the extracted features to determine the userâĂŹs activity (Choudhury et al., 2008).

The next sections cover research concerning different applications of on-body ac-

tivity recognition, research performed in each of the three mentioned components of

activity recognition systems, an overview of the current state of commercial activity

trackers and finally other related research.
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2.2 Applications of on-body activity recognition

Activity-recognition has initially been applied to detecting specific activities in nar-

row contexts and only more recently to detecting more general daily activities.

Specific applications of activity-recognition include:

Recommending leisure activities

Bellotti et al. (2008) present a system called Magitti that infers the user’s current

activity based on his or her location, current time, weather, user input, viewed

apps, user’s calendar and emails sent or received. Their system recognises the user’s

current and future leisure activities and recommends suitable leisure locations.

Personal emergency systems

Mathie, Coster, Lovell, and Celler (2004) survey work performed using accelerom-

eters to monitor gait, sit-to-stand transfers, postural sway, falls, energy levels and

identifying subject’s movements. Mathie, Coster, et al. (2004) then propose a sys-

tem that integrates these components for monitoring subjects in order to access

functional status in an unsupervised free-living environment.

Healthcare

Tentori and Favela (2008) performed a nine month survey in a hospital where they

shadowed a number of hospital staff noting their actions as they were executed.

They proposed a system that assists nurses in a hospital to care for patients using

sensors connected to hospital devices (e.g. on urine bags), a bracelet that acts as

an indicator of particular user-selected states, and an application on the nurse’s

smart phone that provides further details on the patient’s state and also allows
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some control of the system (e.g. selecting what state(s) the bracelet should alert

the nurse of).

Assembly-line workers

Stiefmeier, Roggen, Ogris, Lukowicz, and Tr (2008) describe a system developed to

monitor assembly-line workers in car manufacturing as they perform quality assur-

ance checks. Sensors (which include several IMUs and force resistive resistor straps)

are incorporated onto a jacket worn by workers to serve as sensing nodes. Other

sensors are fixed onto tools and the work area. Together these sensors recognise the

activity the worker is performing and detect when a step in the checking procedure

is missing and allow the worker to enter detected faults directly into the database

instead of noting it down on paper.

Within Specific sports

The following are examples of the application of activity recognition to specific

sports by using on-body inertial sensors found in activity recognition literature.

1. Professional skiing

Michahelles and Schiele (2005) use force sensors, triaxial accelerometers and

gyroscopes, radar units and an infra-red distance sensor to improve the rela-

tionship between trainers and athletes by allowing them to share their obser-

vations and impressions.

2. Golf

Ghasemzadeh, Barnes, Guenterberg, and Jafari (2008) describe a golf training

system which incorporates wearable motion sensors to obtain inertial infor-

mation. The system analyses four major segments of a golf swing: takeaway,

backswing, downswing and follow-through. It then provides feedback to the

athlete on the quality of the movements.
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3. Rowing

King et al. (2009) present a prototype system that monitors the kinematic

of the femur and the lower back during rowing. The data is collected from

inertial sensors attached to the rower. The data is then used to determine the

rotation of the lower back and femur, which is in turn used to identify some

common poor rowing techniques.

2.3 The sensing component

This section addresses research conducted in areas related to the sensing component

of an activity recognition system (Choudhury et al., 2008).

Sensors analysed

Accelerometers are by far the most common on-body sensors used in activity recog-

nition (Chen et al., 2012), although other sensors have been used in some studies.

Such sensors include gyroscopes (Ghasemzadeh et al., 2008), signal strength (RSSI)

(Quwaider & Biswas, 2008), and GPS, ECG, respiratory effort sensor and oximeter

(Ermes & Juha, 2008). Wang et al. (2009) present a system which uses the current

user’s state and selects the appropriate sensor from the sensors available on smart

phones to update the user’s current location, activity and environment while min-

imising the impact on the battery life of the phone. The sensors employed include

accelerometers, light sensors, microphones, GPS, Wi-Fi scans and Bluetooth scans.

Performance of a combination of inertial sensors

Kunze and Lukowicz (2008) present a system that makes use of both accelerometer

and gyroscope to provide accurate activity classification that is tolerant to sensor

displacement within a single body part (e.g lower arm). They decompose accel-
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eration readings at a particular body-location into three: gravity component with

respect to orientation of the sensor, sensor translation and sensor rotation. Only

the last is sensitive to sensor displacement on the same body part. They propose

that if a system had both accelerometer and gyroscope sensors, then to make use of

the gyroscope when the rotational component is dominant, otherwise to make use

of the accelerometer.

Amft and Tröster (2008) use a number of IMUs mounted on the upper and

lower arms to recognise arm movements while eating. In addition to IMUs they also

use microphones and electromyograms to detect chewing and swallowing. The goal

of the research was automatic diet monitoring. Good success rates were achieved

for recognising food intake arm movements and two food groups based on chewing

sounds.

Yuwono, Su, Moulton, and Nguyen (2012) use a chest-mounted IMU to detect

walking and measure cadence. Their method involves obtaining the orientation

of the sensor by using a complimentary filter that combines gyroscope data and

accelerometer data. The pitch angle is then extracted from the sensor’s orientation.

The pitch data is used in further signal processing to extract cadence and determine

whether the activity is walking or not.

Dernbach et al. (2012) analysed the use of accelerations and orientations gathered

from smart phones carried by subjects in recognising simple and complex activities

performed by the subjects. Their results found that between using accelerations

alone and accelerations combined with orientations, combining both accelerations

and orientations lead to better results than when accelerations alone. Using ori-

entation data in addition to accelerations resulted in 10-12% increase in activity

classification success-rates than was obtained by using accelerations only.

The closest analysis performed with relation to the impact of different types of

inertial sensors on activity classification accuracy is Shoaib, Bosch, Incel, Scholten,

and Havinga (2014). Shoaib et al. analyse the application of various motion sensors
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available on smart phones for recognising stationary (sitting and standing), ambu-

latory activities (walking on a flat surface, walking up stairs, walking down stairs,

jogging, running) and biking. They conclude that, with the exception of the mag-

netometer, the other sensors (accelerometers and gyroscopes) have the potential to

deliver positive classification performance on an individual sensor basis, depending

on the activity and body-location. They also conclude that the sensors need only be

combined in the case when both sensors are not performing well. It is important to

note that even though Shoaib et al. express the impact of orientation changes on the

data, other than adding an additional set of features based on the magnitude of the

accelerometer vectors, they do not perform any other preprocessing to mitigate the

impact of orientation changes or even deal with the possibility that the system users

might carry their phones in different orientations from the orientations featured in

the training data. Among the observations they made include:

1. The gyroscope performs better than the accelerometer for walking upstairs

and downstairs, when the phone sensor is carried in the thigh pocket and belt

positions. This could possibly be due to rotations occurring while walking up

stairs and down stairs that affect the accelerometer data but are measured by

the gyroscope data.

2. The accelerometer performs better than the gyroscope for identifying sitting

and standing (stationary activities or postures). This is because identifying

these postures is really about identifying the orientation of the sensor, and

since gyroscopes measure angular velocity, a gyroscope would read the same

values despite the orientation the sensor is in.

3. Both the gyroscope and the accelerometer recognised biking, jogging and walk-

ing well, although the accelerometer performs better.

4. The linear acceleration sensor performs as well as the accelerometer, however

it is better than the accelerometer for the upper arm position and poorer at the

belt and thigh pocket locations. This could possibly be an effect of the gravity
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component in defining the orientation of the sensor in various activities. It

is worth mentioning that the linear acceleration sensor is a pseudo-sensor on

Android smart phones that provides gravity subtracted accelerometer values.

It is important to note that while Shoaib et al. analysed accelerations and

rotational velocities, and Dernbach et al. studied accelerations and accelerations

combined with orientations. Shoaib et al.’s analysis did not include orientations

and Dernbach et al.’s analysis did not include rotational velocities or independent

orientations (without accelerations). No studies were found that studied activity

classification rates achievable by orientations only, or compared activity classifica-

tion success-rates achievable by accelerations, rotational velocities and orientations.

In addition, it is worth noting that Dernbach et al.’s research is focussed on

activity recognition using a smart phone. In Dernbach et al.’s data collection, each

subject was allowed to carry the phone in the location and orientation that the

subject prefered. As a result, it is likely that the phone’s orientation was different

from one subject to the next, or even at different times for the same subject. While

this is important for activity recognition systems that use smart phones as sensing

nodes, it is highly likely that the changes in phone orientations could be negatively

impacting activity classification success-rates. This would differentiate the results

obtained using a smart phone as a sensing node, to those obtained using inertial

sensors which are worn in a fixed orientation relative to the body-location the sensor

is mounted on.

In addition, Shoaib et al.’s research is also focussed on activity recognition using

a smart phone. While Shoaib’s data gathering, the locations and orientations of

the phones used as sensing nodes are fixed relative to the body-location, the data

obtained from each body-location is processed and classified independent of the

other body-locations. However, it is unclear how accelerations, rotational velocities

and orientations would perform in an activity recognition systems that combines

information from multiple body-locations to recognise the user’s current activity.
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Hence, it would be valuable to understand which of three (accelerations, rota-

tional velocities and orientations) results in higher activity recognition success-rates

and compare the individual success-rates of the each of the three sources to those

of the three sources combined in an activity recognition system that utilises multi-

ple inertial sensors mounted on different body-locations and whose orientation and

location is fixed relative to the body-locations the sensors are mounted on. This

setup is likely to result in higher activity classification success-rates than when ei-

ther: only data from a single body-location is used; or when the orientation of the

sensor relative to the body-location it is mounted on is transient.

Sampling frequency

Several sampling frequencies have been used in the literature. These include 10

Hz (Khan, Lee, & Kim, 2008; Sun, Zhang, Li, Guo, & Li, 2010), 15 Hz (Baek,

Lee, Park, & Yun, 2004), 20 Hz (Bieber, Voskamp, & Urban, 2009; Ermes & Juha,

2008; Kwapisz et al., 2011; Quwaider & Biswas, 2008), 22 Hz (Ghasemzadeh et

al., 2008), 32 Hz (Lee, Park, Hong, Lee, & Kim, 2003), 36 Hz (Yang, 2009), 45

Hz (Mathie, Celler, Lovell, & Coster, 2004), 50 Hz (Henpraserttae, Thiemjarus,

& Marukatat, 2011; Keally, Xing, & Pyles, 2011), 200 Hz (Hanai, Nishimura, &

Kuroda, 2009). However, little work has been performed in analysing sampling

frequency requirements for activity recognition.

Bieber et al. (2009) explain that human muscle movements are controlled by

information transferred by nerves and the response time of humans depends on the

kind of signal (acoustic vs optical), muscle temperature, psychological and physio-

logical constitution, as well as external influences such as drugs, alcohol and nicotine.

Further, they explain that the average approximate response time to optical stim-

uli is 220 ms (approximately 4.5 Hz), while acoustic stimuli ranges from 10 to 13

Hz. A reflex action however occurs without brain processing and occurs at approxi-
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mately 16 Hz. Therefore a sampling frequency of 32 Hz is sufficient to sample body

movements.

Maurer, Smailagic, Siewiorek, and Deisher (2006) experienced increase in success

rates as they increased sampling frequency to about 15 - 20 Hz where the success

rates stabilised and after which only marginal improvements were obtained. Maurer

et al.’s analysis looked at sampling frequencies in the range [0Hz,50Hz] for six sta-

tionary or ambulatory activities (sitting, standing, walking on a flat surface, walking

up stairs, walking down stairs and running) using data captured from six subjects

using six 2D accelerometers mounted on the left wrist, belt, necklace, right trouser

pocket, shirt pocket and bag.

Maurer et al.’s study only analysed activity classification success-rates obtained

from feature-vectors extracted from accelerations. However, it in unclear whether

Maurer et al.’s findings about the relationship between sampling frequencies and

activity classification success-rates also apply to feature-vectors extracted from ro-

tational velocities and orientations. In addition, Maurer et al.’s study only included

stationary and ambulatory activities. It is unclear whether the findings would ap-

ply to other types of Activities of Daily Living, for example, household cleaning

activities, laundry activities and desktop activities.

Mobile phone carrying locations

Bieber et al. (2009) explain that a fixed location on which the users would have to

place their smart phones for the application to work would not fit users’ everyday

life behaviour. They refer to a survey taken by Nokia (Cui, Chipchase, Ichikawa,

& Tokyo, 2007) of 1,549 participants from 11 cities in 4 continents. The survey

characterises the location in which users usually carried their mobile phones. Table

2.1 gives locations where people carry their phones and the percentage of people

that carry their phones in those locations for men and women according to Cui et
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Table 2.1: Percentage of men, women and combination of men and women that carry
their mobile phones at particular locations on the body.

Location Men (%) Women (%) Men & Women
Combined (%)

Trousers/Skirt 60.10 16.42 38.26

Bags 10.10 61.06 35.58

Belt case/clip 13.79 0.81 7.30

Hands 3.45 9.09 6.27

Upper-body 8.25 2.17 5.21

Other 1.97 6.11 4.04

Not with me 2.09 1.90 2.00

Neck 0.25 2.44 1.35

al. (2007). An additional column has been added showing combined percentages

(assuming equal numbers of men and women).

With reference to table 2.1 the highest combined percentage of users place their

phones in the trouser or skirt location followed by bags. Another interesting fact is

that a majority of men (60.10%) place their phones in their trouser pockets while a

majority of women (61.06%) place their phones in bags.

Best body-location to monitor Activities of Daily Living

The closest research found that analysed the impact of the location on which a

sensor was mounted on, upon the activity classification success-rate, is that of Hen-

praserttae et al. (2011); Keally et al. (2011); Maurer et al. (2006) and Shoaib et al.

(2014).

Maurer et al. noted that features derived from a 2D accelerometer mounted on

the subjects’ bag resulted in higher success-rates than those derived from accelerom-

eters mounted on the left wrist, belt, necklace, right trouser pocket and shirt trouser

pocket. The research included walking, running, sitting, standing, and ascending

and descending stairs for six subjects. It is interesting to discover which body-
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location, results in the best success-rates in a few more thorough contest–greater

range of activities, larger pool of participants, larger range of sensor sources.

Keally et al. analysed the success-rates achieved by accelerometers mounted

on different locations on the body in recognising postures (sitting and standing),

ambulatory activities (walking on a flat surface, walking up stairs and walking down

stairs), writing on a whiteboard, typing on a keyboard and shaking hands. They

mounted accelerometers on both sides of the body on the following locations: above

the ankle, above the knee, the hip, the wrist, above the elbow and on the shoulder.

They noted that the activity classification success-rates obtained from data captured

from accelerometers mounted on the legs was significantly lower than success-rates

obtained from data captured from accelerometers mounted on the upper body. This

is because some of the activities (writing on a whiteboard, typing on a keyboard and

shaking hands) were not recognised well using data captured from sensors mounted

on the subject’s leg. Between the left and right side of the body, they noted that

shaking hands was more accurately identified using data from sensors mounted on

the right arm, and typing on a keyboard and writing on a whiteboard was more

accurately identified using data from sensors mounted on the left arm due to the

more discriminative posture of the left arm in these activities. For sensors mounted

on the leg, they noted that the accuracy at which data captured from the sensors

could identify sitting, standing, walking on a flat surface, walking up stairs and

walking down stairs, was similar enough that they recommended the use of only one

sensor instead. However, it should be noted that Keally et al.’s data was gathered

from one subject only.

Although the research presented by Henpraserttae et al. is primarily about

analysing the impact of accelerometer signal transformations from local to global

coordinates on smart-phone-based activity classification, part of their work anal-

ysed the performance obtained from data captured at different body-locations. The

locations tested only included locations on which a phone could be carried: shirt-
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pocket, trouser-pocket and waist. They found that the waist results in the highest

success-rate, followed by the shirt-pocket and trouser-pocket.

Although the research presented by Shoaib et al. is primarily about compar-

ing success-rates obtained by sensor-types available on smart-phones (accelerome-

ters, gyroscopes and magnetometers), their work also analysed activity classification

success-rates of several locations on the body where phones are carried. The loca-

tions analysed are: left trouser pocket, right trouser pocket, belt position towards

the right leg, upper right arm, lower wrist. Shoaib et al. conclude that the location

that results in the best activity classification success-rates varies from activity to

activity.

Number of body-locations monitored

Zappi et al. (2007) compared the number of monitors used to recognise activities of

automotive assembly line workers and found that a monitor mounted on one body-

location could at best yield a success rate of 50% rising to 80% for 3 body-locations

and 98% for 57 body-locations. This indicates that success rate increases with the

number of body-locations being monitored but the relationship is not linear.

It is interesting to note that this research covers a specialised situation: that

of an automotive assembly line. There has, to date, been no communication in

the research literature, concerning the relationship between the number of inertial

sensors mounted on a subject and the success-rates of recognising Activities of Daily

Living. It is interesting to find out whether this same relationship would be observed

for Activities of Daily Living. Since the characteristics of motions performed in

Activities of Daily Living are likely to be different from the motions performed on

an automotive assembly line, it is likely that this analysis would result in insights on

the number and locations of the body-locations that need to be monitored in order

to achieve high activity classification success-rates for Activities of Daily Living.
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2.4 Feature-extraction component

This section covers research performed in areas related to the feature-extraction

component of an activity recognition system (Choudhury et al., 2008).

Windowing techniques

Before features are extracted, the time-series in on-body activity recognition are

commonly divided into windows. Features are then extracted from each window

and used for classification (Preece, Goulermas, Kenney, & Howard, 2009).

Preece, Goulermas, Kenney, Howard, Meijer, and Crompton (2009) explains

that the three windowing techniques observed in activity recognition literature are:

sliding windows, event-based windows and activity-based windows. Event-based

windowing uses specific events in the time-series (such as the detection of a heel strike

in accelerometer data) to segment the data. Activity-based windowing depends on

identifying transitions between activities before identifying the activity itself. Sliding

windows use windows of equal sizes, and that are uniformly distributed in time. Of

the three, sliding windows is the most commonly used windowing technique due to

its simplicity (Preece, Goulermas, Kenney, Howard, Meijer, & Crompton, 2009).

Windowing Lengths

Several different sliding window lengths have been used in the literature ranging

from 1 second (Henpraserttae et al., 2011; Sun et al., 2010), 2 seconds (Baek et al.,

2004) to 10 seconds (Keally et al., 2011; Kwapisz et al., 2011; Yang, 2009).

In their analysis of the performance of different sliding window lengths, Huynh

and Schiele (2005) analysed window lengths of 0.25, 0.5, 1, 2 and 4 seconds and

found that no one window length performs best for all activities. The one second

window performed best when the activity being tested was walking or jogging, the
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2 and 4 second windows performed best for skipping and hopping, while the 0.25

and 0.5 second windows performed best for standing. No deeper reasoning was

provided as to why these differences occurred. Huynh et al. used a single monitor

mounted on the shoulder strap of the subjects’ backpacks. The monitor included a

3D accelerometer, an audio sensor (no further details given), a temperature sensor,

a light sensor, a humidity sensor, a barometric sensor and a magnetometer.

It is important to note that the analysis conducted by Huynh et al. included

various ambulatory activities and riding the bus. It is likely that different window

lengths are necessary for other activities. A valuable contribution could be made by

gaining a better understanding of the relationship between window lengths and ac-

tivity classification success-rates obtained for Activities of Daily Living like cleaning

activities, cooking activities and desktop work (using a PC, writing, etc.).

In their analysis of the impact of window lengths on activity classification success-

rates, Dernbach et al. (2012) found that shorter window lengths performed signifi-

cantly better than longer window lengths. However, Dernbach et al. used a single

sensor per subject which was carried in the body-location and orientation that the

subject prefered (as is the case in smart-phone-based activity recognition). It is

possible that the variation in sensor orientation and body-location have an impact

in the classification results obtained. In which case, relationship might not hold

in a case where multiple sensors are used per subject, and the location and ori-

entation of the sensors relative to the body-location are fixed (as is the case with

wearable-sensor-based activity recognition).

Contrary to Dernbach et al.’s finding, Patel, Mancinelli, Healey, Moy, and Bonato

(2009) found that smaller window lengths resulted in lower activity classification

success-rates. Patel et al. analysed the activity classification of gym activities

(walking on a treadmill, riding a stationary bike and using an arm ergometer) and

Activities of Daily Living (walking on a flat surface, walking up and down an inclined

ramp, walking up and down stairs, folding laundry, sweeping the floor, using the
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bathroom, using the cafeteria and riding an elevator) from 15 subjects that were

suffering from Chronic Obstructive Pulmonary Disease (OCPD). Their data was

captured from 10 monitors (each monitor has a 3D accelerometer and 3D gyroscope)

mounted on both arms (upper arm and lower arm), both legs (upper leg and lower

leg), trouser pocket and on the sternum. They observed that increasing the window

length beyond 6 seconds only resulted in marginal gains in activity classification

accuracy.

Windowing Overlaps

The window overlap is the percentage or duration of a window that overlaps with

adjacent windows. There has, to date, been no communication in the research

literature, concerning the impact of window overlaps upon an activity classification

algorithm’s accuracy.

The most common window overlap found in activity recognition literature is 50%

of the selected window length. A 50% window overlap was used by Bao and Intille

(2004); Figo, Diniz, Ferreira, and Cardoso (2010); He, Liu, Jin, Zhen, and Huang

(2008); Krishnan and Panchanathan (2008); Kunze, Lukowicz, Junker, and Tröster

(2005); Preece, Goulermas, Kenney, and Howard (2009); Ravi, Dandekar, Mysore,

and Littman (2005); Shoaib et al. (2014) and Sun et al. (2010). However, other

window overlaps also exist in the literature review including: no overlap ((Kwapisz

et al., 2011)), 20% ((Reiss, 2014)), 25% overlap ((Henpraserttae et al., 2011)), 33%

overlap ((Lester, Choudhury, Kern, Borriello, & Hannaford, 2005)).

Larger window overlaps result in more windows hence more feature-vectors to

train and test the classifier with. However, while this results in more data process-

ing, it is unclear whether this results in higher success-rates or not. In an activity

recognition system, the additional windows resulting from larger window overlaps

result in additional feature-extract and classification. Hence, large window overlaps

in activity recognition systems impact the computational resources of the system
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Table 2.2: Frequency-domain features used in various publications
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Song and Wang (2005) �

Huynh and Schiele (2005) � � �

Ermes and Juha (2008) � � � �

Ghasemzadeh et al. (2008) � �

Hanai et al. (2009) � �

Yang (2009) � �

and the power consumption of the system. It would be valuable to understand the

relationship between the size of the window overlap and the activity classification

success-rates obtained. This understanding could assist future researchers and ac-

tivity recognition system developers to select the appropriate window overlap to

use.

Features analysed

Among the activity recognition features analysed include time domain features and

frequency domain features. Table 2.2 and table 2.3 show an overview of frequency-

domain and time-domain features used in various activity recognition publications.

Carós et al. (2005) proposed a set of low complexity features for classifying

ambulatory activities. Their proposed features rely on the computed energy of the
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signal to distinguish between static and dynamic activities and between walking

and running, the repetitiveness of steps (refered to as harmonicity) to distinguish

between ambulatory and other activities, and a feature computed from the double

integration of the vertical acceleration to differentiate between walking on a flat

surface from walking up or down stairs. The 3D accelerometer was assumed to be

on a fixed location and orientation.

Dealing with possibilities of different sensor placements

In activity recognition systems that make use of a phone as a sensing node, the phone

is likely to be placed on different body-locations at different times. Unlike wearable

sensors that are worn on particular body-locations and fixed orientations relative

to the body-location, there are many combinations of possible body-locations and

orientations that a mobile device can be carried.

Kunze et al. (2005) decomposed sensor placement into three:

1. The body part on which the sensor is placed. This can be specific for some

devices or can vary for mobile devices (e.g. smart phones).

2. The orientation in which the sensor is at any given time. Again this can be

specific for some devices but can vary for others. Proposed methods that can

be used to estimate the orientation of the sensor will be explained further in

this section.

3. The exact position of the sensor on the body part. This is not solely an issue

for mobile devices but any sensor which the user or subject puts on. The

exact location on the body part is not guaranteed and Kunze et al. (2005)

explain that simple calibration gestures are not sufficient to determine the

exact location of the sensor on the body part. Kunze et al. (2005) propose a

way of dealing with this issue by ignoring rotation dominated accelerometer

readings and compensating with gyroscope data.
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It should be noted that while 1 only happens when mobile devices are used as

sensing nodes, 2 and 3 also happen for other wearable on-body sensors. As long as

the subject puts the sensors on, the position might be inexact or inconsistent with

previous wearings, and hence an algorithm that is not robust enough to deal with

slight changes in orientation and positioning might suffer a decrease in performance.

Kunze and Lukowicz (2008) explain that it is even possible for sensors embedded into

tight clothing to be mispositioned by subjects not wearing the clothing as originally

intended (e.g. subject might fold sleeves).

Particular to context-recognition systems that use a mobile sensing device, Kunze

and Lukowicz (2008) explain that it is necessary to address the following location

and orientation issues:

1. Body-location coverage: there should be enough body-locations covered by

sensors to provide information for the activity recognition. The question that

needs to be answered is, “Do the location(s) of the sensor(s) provide enough

information to differentiate between activities?"

2. The sensor could be in any orientation: either the activity recognition al-

gorithm should be orientation invariant or the system needs to be able to

determine the sensor’s orientation.

3. The sensor could be at any one of many body-locations: either the activity

recognition algorithm should be body-location invariant, be able to deal with

multiple locations or the system needs to be able to recognise where on the

body the sensor is placed. Kunze and Lukowicz (2008) propose a way to deal

with this issue by using a location invariant algorithm to determine when the

subject is walking, then uses another algorithm to match the observed signal

to the most likely body-location.

Based on the observation that there are only a limited number of locations that

phones are carried and that in those locations there are some orientations that are

more common, Sun et al. (2010) propose a meta-classifier that uses one classifier for
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each orientation-location. Even though they obtained good results with this method,

running 32 classifiers (8 possible locations each with 4 possible orientation) as they

did, would present a significant load on the constrained processing environment

present on current smart phones. Furthermore, it is not clear what proportion of

the phone-carrying population their algorithms would work with since their results

are mostly tested on data gathered in a controlled lab environment. It is possible

that there could be more orientations of a phone in a pocket than what is estimated

by Sun et al. (2010) and it is not clear what results their algorithm would have with

unaccounted for orientations.

Yang (2009) explains that even when these possible location-orientations are

grouped, it is impractical to develop a separate inference model for each group of

location-orientation. A solution was earlier proposed by Mizell (2003). He explains

that the orientation of the device can be converted to a more general world orienta-

tion with one axis aligned to gravity (up-down or vertical axis), and two horizontal

components, by making use of the fact that the accelerations measured by the de-

vice’s accelerometer include both a static and a dynamic component. The static

component is a result of the pull of gravity, while the dynamic component is a result

of the subject’s motions. Taking the average of the samples allocated over a period

of time results in the gravity component. This can then be subtracted from the

original samples to find the dynamic portion of the accelerations.

Extracting the gravity component this way assumes that no rotations occurred

during the sampling window, which would work well for location-activity combina-

tions without significant rotations (like chest locations while walking and running),

but not for others (like hand locations while walking and running). Assuming a

well calibrated accelerometer that is not free-falling we expect the magnitude of the

gravity component to be 9.8m/s2. It can be shown that an effect of rotation is to

lower this value (Kunze & Lukowicz, 2008). This would allow one to check whether

the magnitude of the gravity vector is below the expected by a given threshold and
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throw away the segment if it were. Kunze and Lukowicz (2008) expand on this idea

by proposing a method that determines which samples are dominated by rotation

by making use of an accelerometer and a gyroscope. Samples dominated by rotation

would have high rotational velocities and low acceleration. The opposite would hold

for samples that are not dominated by rotation.

Rotating the accelerations based on the gravity vector gives a vertical and two

horizontal components. Yang (2009) used the vertical vector and magnitude of

the horizontal vector to extract features and perform classification. By taking this

approach, Yang avoided dealing with each orientation independently and made the

computation orientation-independent. Henpraserttae et al. (2011) extended this

work by deriving the forward and sideways vectors from the horizontal vector by

applying Principal Component Analysis (PCA).

However, this approach does not deal with the issue of multiple possible sensor

locations. Henpraserttae et al. (2011) found that they achieved as little as 36%

overall success rate (across all activities) when they trained their system with data

obtained from the chest pocket and tested it against data obtained from the trouser

pocket. Kunze and Lukowicz (2008) made a similar observation.

Kunze et al. (2005) propose an alternative approach to dealing with multiple

possible sensor locations: deducing the location of the sensor. Since the patterns

observed by the sensor are specific to both location and activity, Kunze et al. (2005)

first decouple location from activity by using a location-invariant algorithm to ascer-

tain that the activity is walking, then find the best matching location from several

trained locations while walking. Kunze et al. (2005) assume that the sensor’s loca-

tion discovered while the subject was walking would carry onto the next activity.

One challenge of having a sensor at an unknown orientation is that deducing the

subject’s posture is difficult if not impossible since deducing a particular posture

depends on knowing the orientation of a particular body-location. Because of that

Quwaider and Biswas (2008) propose using the RSSI of the communication between
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sensing nodes placed on various parts of the body to detect posture. Variations in

clothing and subject behavioural differences cause them to use a HMM instead of a

simpler threshold-based method.

As an alternative Bieber et al. (2009) grouped their standing, sitting and ly-

ing down activities as "resting" thereby avoiding classifying each of the postures

separately. Such "resting" postures can be easily differentiated from more active

activities by analysing the frequency distribution. Quwaider and Biswas (2008)

noted a lack of frequency components below 2 Hz. Perhaps a more accurate cut off

frequency would be 1.35 Hz, which is the lowest step frequency found by Oberg,

Karsznia, and Oberg (1993). The frequency was the 95% confidence level lower

bound for a slow gait of females within the age groups 10-14 and 60-69.

To summarise, there are several ways of dealing with the variety of phone orien-

tations in the literature:

1. Use orientation-invariant data (such as the magnitude of the acceleration vec-

tor) to compute features.

2. Change the orientation of the data to world coordinates before computing

features. To do this, one can use the gravity component from the accelerometer

to compute where down is relative to the phone, then extract features from

the sensors values relative to where down is. This approach has been shown

to perform better than the approach given in item 1 (Yang, 2009).

This approach can further be broken down into:

a) After changing data to world coordinates, two sets of features to be ex-

tracted: those in the direction of the gravity vector, and those in the

plane perpendicular to the gravity vector (the horizontal plane). Only

the magnitude of values in the horizontal plane is taken because of lack

of direction.

b) From data extracted from the horizontal plane as obtained in 2a, a general

direction of the accelerations is taken to be one of the two orthogonal



2.5. Classification component 31

axi in the horizontal plane. This is performed by using PCA. By so

doing, 3 axi are obtained: up-down axis parallel to gravity, the forward-

backward axis parallel to the main direction of motion which lies on the

horizontal plane, and the sideways axis which lies on the horizontal plane

but is perpendicular to the forward-backward axis. This method has been

shown to achieve slightly better results than 2a, but faces the same issue

of rotation explained in 2a.

2.5 Classification component

This section will give research conducted in areas related to the classification com-

ponent of an activity recognition system (Choudhury et al., 2008).

Comparison of classifiers

Korel and Koo (2007) compared Artificial Neural Networks (ANNs), Kohonen Self-

Organising Maps (KSOMs), Bayesian Networks (BNs) and Hidden Markov Models

(HMMs) and concluded that none is the ’best’ for deducing the context but each ad-

dresses different issues that arise from recognising context in Body Sensor Networks

(BSNs).

Some of the challenges facing context recognition in BSNs outlined by Korel and

Koo include: the presence of noise; the continuity of human movement compared to

the instantaneous classification of context; new contexts may be continuously added

to the system of the life-time of the system; dealing with high data dimensionality

due to obtaining input from multiple sensors mounted in multiple body-locations

on the user’s body; and recognising which inputs (from all the sensors available to

the system) are relevant to the identification of the user’s context.

Korel and Koo explain some of the key advantages of using ANNs is their ability

to deal well with noise from sensors and the possibility of unsupervised training.
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This allows the system to undergo training while in use. They also explain that

KSOMs are advantageous in that they require no prior information on the contexts

that the system would encounter while in use. Hence they are able to deal well with

data that is not labelled or data from contexts that are not previously defined or

those that are unpredictable. However, Korel and Koo explain that KSOMs suffer

from the curse of dimensionality. As more inputs become available the KSOM tends

to grow slow and less fault tolerant since it uses more resources to map the high

dimension input space to a large output space.

For BN, Korel and Koo explain that the graphical probabilistic models result

in high accuracy. However, confusion in the activity labelling or insufficient sample

sizes in the training data results in lower activity classification accuracy. Korel and

Koo further explain that previous work that used BNs showed high accuracy rates in

controlled environments but suffered in uncontrolled environments. This is possibly

due to the assumption that all attributes that influence a classification decision are

observable. They add that BNs are limited by their inability to exhaustively model

all relationships in an uncontrolled environment.

For HMMs, Korel and Koo explain that due to the probabilistic foundations

allow HMMs to deal well with sensor noise. In addition, HMMs are able to deal

with time variations, repetitions and variable length sequences. However, HMMs

require a training phase that optimally should occur without user intervention. They

note that some instances of HMMs have been proposed in literature that can deal

with online training.

Supervised vs unsupervised training & testing data

Ermes and Juha (2008) analysed the use of data gathered in a supervised and

unsupervised environment to train and test activity recognition systems. They

found that although training and testing with unsupervised data achieved a high
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success rate of 89%, this success rate falls dramatically to 72% when supervised data

is used for training and unsupervised data for testing.

Need of specific user training

Saponas, Lester, Froehlich, Fogarty, and Landay (2008) analysed whether it is neces-

sary for a user to train an activity recognition system using his or her own motions.

For the 8 subjects studied and 4 activities (walking, running, cycling and sitting),

they found high success rates for both models trained and tested from the same

subject (mean 99.48%, s.d. 0.91%) and models trained by one subject and tested

with another (mean 97.4%, s.d. 4.05%). They concluded that it was not necessary

for a user to train an activity classification system with his or her own personal

data.

Continuous activity classification

Based on the lessons learnt in their project, Choudhury et al. (2008) explain that

activity classification from features extracted from a single point of time fails to

take into account the temporal continuity of activities and leads to “choppy classi-

fication” where a single activity may be broken down into several segments. This

problem particularly affects applications that take actions depending on the activity

recognised.

User perception of inference errors

Consolvo et al. (2008) explain that while traditional classification results are grouped

into four (true positive, false positive, true negative, false negative), the error metrics

fail to “capture subtleties of how users perceive inference errors”. He further outlines

seven types of errors perceived by users of their fitness device:

1. Activity start time error.
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2. Activity duration error.

3. Confuse an activity the system was trained to infer with another activity it

was trained to infer.

4. Confuse an activity the system was not trained to infer with an activity it

was trained to infer.

5. Fail to detect an activity the system was trained to infer.

6. Fail to detect an activity the system was not trained to infer.

7. Detect an activity when none occurred.

Consolvo et al. (2008) explain that within these errors, some errors were found

to be intolerable while others were tolerable by system users. Among the errors,

5 caused the users to became frustrated because they had gone to the trouble of

wearing or using the system while performing the physical activity and 7 decreased

the credibility of the system. 6 was not considered an error by the users but some

users were disappointed because they had hoped that the system would at least

register some physical activity. Users did not mind 3 since they could easily change

it to the correct activity as long as the start time and duration were correct, some

users appreciated 4 when they did an activity the device was not trained for and

the device registered a physical activity, while 2 only mattered to the users when

the registered duration meant them not achieving their desired goals.

Simple vs complex activities

Kim et al. (2010) explain that there are currently challenges that are faced with

recognising complex activities. Some of these challenges pertaining to activity recog-

nition using wearable sensors are:

1. Concurrent activities

People can undertake multiple activities simultaneously. An example is watch-

ing TV while talking. Current activity recognition has focussed on recognising
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sequential activities. Recognising such concurrent activities requires a differ-

ent approach than what is currently taken in activity recognition research.

2. Interleaved activities

Certain activities can be interleaved. An example is a person could be cooking

while doing other activities. From time to time, the person checks on the status

of the cooking, perhaps does something related to the cooking, then returns

to the other activity.

3. Interpretation ambiguity

Depending on the context, certain actions could be interpreted as different

activities. An example being a person opening the fridge. This could be

interpreted as cooking in one circumstance or cleaning the fridge in another.

Dernbach et al. (2012) attempted complex activity recognition using a smart

phone. Using a single carried smart phone, they achieved a high success rate clas-

sifying simple activities but did not achieve a good success rate classifying complex

activities. The simple activities include: biking, climbing stairs, driving, lying,

running, sitting, standing and walking. The complex activities include: cleaning

(wiping down a kitchen counter top and sink), cooking (heated a bowl of water

in a microwave and poured a glass of water from a pitcher), medication (subject

retrieved pills from a cupboard and sorted out a week’s worth of doses), sweeping

(sweeping the kitchen area), washing hands (the subject washed hands using soap

at the kitchen sink), watering plants (the subject filled a watering can and watered

three plants in two rooms).

It should be noted that Dernbach et al. (2012) applied similar methods for classi-

fying both simple and complex activities. Their method involves gathering samples

from the accelerometer and magnetometer on the phone, grouping the samples into

windows, extracting statistical features (mean, minimum, maximum, standard devi-

ation, zero-crossing counts and correlation) from the windows, and classifying using

various classifiers. The issues outlined as challenges of complex activity recognition
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(concurrent and interleaved activities and interpretation ambiguity) are not dealt

within their algorithms. Dernbach et al. (2012) explain that some of the challenges

of complex activity recognition can be solved by having more sensors placed in the

right locations (in the environment) to recognise the activity.

2.6 Comparison of cross-validation techniques

Two primary cross-validation techniques exist in the activity recognition literature:

N -fold and remove-one-subject. For N -fold cross-validation the data is divided into

N equal folds. In each test iteration, one randomly selected fold is used for testing

and the rest are used for training. Hence, all subjects contribute to the training

phase. For remove-one-subject cross-validation the data is divided into groups, each

group representing one subject. In each test iteration, one randomly selected subject

is then used for testing while the rest are used for training.

Lockhart and Weiss (2014) categorise the models used in activity recognition

into three:

1. Impersonal models: the system is trained by a number of subject but then

used by a new subject.

2. Personal models: the system is only trained by the user who will utilise it.

3. Hybrid models: the user who ends up utilising it is part of the set of users

who trained the system.

It should be noted that it is possible for a system to make use of different models

at different times. For example, a system could come preloaded with an impersonal

model, then by incorporating the data of it’s current user into it’s dataset, shift to

a hybrid model and perhaps eventually end up with a personal model of that user.

Recent literature (Lockhart & Weiss, 2014; Patel et al., 2009; Reiss, 2014) has

shown that impersonal models have lower success rates and higher variance in their

testing results while the results of personal or hybrid models tend to be "optimistic".
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The lower success rates achieved by impersonal models is due to inter-subject vari-

ability. For example, walking patterns of a young person could be different from

those of an elderly person. This suggests that the best success-rates of an end system

are achieved by having the end system adapt to the end user. In addition, it also

suggests that validation results from personal models and hybrid models represent

the best-case-scenario achievable by activity recognition systems.

2.7 Other research

Battery consumption

Battery consumption is an important issue for wearable systems including activity

recognition systems that use wearable sensors. The battery time limits the length of

time that the system can be used before a recharge. Larger batteries make systems

less portable and more cumbersome. However, accurate activity recognition at many

times involves heavy data processing which consumes more battery power. Hence,

in many cases, a balance has to be maintained between data processing (hence more

accurate activity recognition) and battery life. Better algorithms that allow more

accurate activity recognition with less data processing are necessary.

In their work, Wang et al. (2009) show that they could increase the phone’s

battery life by more than 75% while at the same time maintaining high accuracy

and low latency in identifying user states by selecting the most appropriate sensor to

use from a large set of sensors and when to use the sensors. The user state included

the activity, location, amount of motion and type or amount of background sounds.

Classifying atomic body movements rather than activities

Physical activities can be thought of as being composed of smaller motions. These

smaller motions (atomic motions), when combined form simple activities (when
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only a few atomic motions are present) and complex activities (when many atomic

motions are present) (Dernbach et al., 2012).

Ghasemzadeh et al. (2008) propose a linguistic framework for encoding activities.

The framework involves encoding the activities under classification as primitives

which represent atomic body movements. These primitives form the building blocks

of activities. This approach mirrors a similar approach taken in speech recognition

where a word is broken down to phonemes. Classification occurs first at the phoneme

level, the results of which are combined to the most likely word.

In their paper, Ghasemzadeh et al. (2008) used 18 sensors (each with a 3D ac-

celerometer and a 2D gyroscope) spread across the body to record inertial readings

of a selection of atomic body movements. The recordings were then manually seg-

mented and a number of features extracted from them. The features were then used

to formulate the representations of the atomic activities observed from each sensor

location. During testing each sensor location classifies its readings to the most likely

primitive. The aggregate of the primitives from all the sensor locations can then be

aggregated to determine the current activity.

A general weakness with the approach used by Ghasemzadeh et al. (2008) is

that while it is relatively simple to manually deduce, record and segment the atomic

activities of repetitive activities like walking and running, it is much more difficult

(and potentially impossible) to do so for more complex activities like exercise rou-

tines and household chores. This is especially so if the data gathering is performed

in an uncontrolled environment where labelling of atomic activities within a larger

activity presents both an inconvenience to the subject and introduces errors into

the data whenever the subject stops to mark the end of an atomic segment.

In such cases it is necessary to automate the identification of atomic activities.

Additional advantages of automated identification of atomic activities as noted by

Minnen, Starner, Essa, and Isbell (2006) includes:

1. Reducing the cost of data gathering by reducing the amount of labelling re-
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quired.

2. As an exploratory tool to ease the burden while analysing large amounts of

activity data.

3. Validation or alternatives to atomic activities for activities we believe we un-

derstand.

4. Possibility of systems that automatically adapt to new body sensor locations

and activities.

2.8 Current state of commercial on-body activity

trackers

At the time of writing, systems that are wearable, not specific to particular activities

and monitor the user’s activity are in the form of activity trackers. These are devices

that monitor an individual’s fitness level by monitoring his/her level of activity

during the day and include popular devices like FitBit 1, Nike+ FuelBand SE 2,

Garmin Forerunner 910XT 3, Garmin Vivofit 4, etc. Devices exist that monitor

measurements of a specific activity (e.g. running, cycling, swimming, etc.) but

those are not considered here.

Beckham (2012) explain that these devices are aimed towards combatting obesity

and the main reason why they are effective is psychological: by measuring activity

levels, they provide data that can be used to set goals that when achieved provide

a sense of accomplishment which encourages the user to set more goals. Activity

trackers provide a way to objectively measure a person’s activity levels, something

that people are not good at doing. In addition, not only have these systems gamified

1http://www.fitbit.com/au
2http://www.nike.com/us/en_us/c/nikeplus-fuelband
3http://sites.garmin.com/en-AU/forerunner910xt/
4http://sites.garmin.com/en-US/vivo/vivofit/

http://www.fitbit.com/au
http://www.nike.com/us/en_us/c/nikeplus-fuelband
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exercise making it fun, but the ability to post results on social media allows the users

to boast about their achievements, possibly be encouraged by his/her peers to keep

up his/her achievements and form a community of enthusiasts that help keep each

other fit.

According to Reviews (2014), some of the features common to activity monitors

include:

1. Step counting: almost all devices count steps.

2. Calories burnt estimation: almost all devices offer an estimation of calories

burnt.

3. Capability to synchronise captured data: currently many activity trackers offer

wireless synchronisation while a few offer wired synchronisation.

4. Data visualisation: many devices offer visualisation either on the device, on a

mobile device, on the web or a combination of these.

5. Differentiating stairs from steps on flat ground: only a handful of devices are

able to differentiate steps performed on stairs from flat ground.

6. Form: many forms exist ranging from: adhesive patch, ankle band, arm band,

wrist band, watch, clip, key chain, pendant, headband, headphones, lower-

back strap, mounted pod, ring, A few devices can be used in a number of

forms.

7. Heart rate monitoring: some systems offer heart rate monitoring in addition

to other activity level measurements. Some systems do this on the same device

while some require additional devices.

8. Sleep monitoring: some systems monitor the subject’s sleep in addition to

activity levels while awake.

9. Food logging: some systems offer a way, either through a mobile device or on

the web, for the user to log his or her food intake.

As noted above, almost all commercial activity trackers count steps but few

differentiate between different kinds of steps (e.g. walking on flat ground versus
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walking up stairs). This agrees with Consolvo et al. (2008) when they note that

most of the pedometers of the day have a simple "inference model" that interprets

a step as a sequence of ascending and descending accelerations. This makes these

devices inaccurate for measuring the daily energy levels that they set out to measure.

Better recognition of the user’s activity would improve this measure.

2.9 Conclusion

To conclude the literature review, the following are the research questions that

appear in the thesis and their links back to the activity recognition using on-body

inertial sensors literature.

Given the data available from current IMUs - accelerations,

velocities, and orientations - which individually and in

combination will provide the best activity classification

performance in terms of success rate and other settings?

The data that is readily available from an IMU (without integrating or differentiat-

ing) are: accelerations (sensor readings from an accelerometer), rotational velocities

(sensor readings from a gyroscope) and orientations (the combination of accelera-

tions, rotational velocities and readings from a magnetometer normally performed

within the IMU resulting in the orientation of the device relative to gravity and the

magnetic north).

From these three sources, the next sections will propose research questions aimed

to select the source that is best used for activity recognition based on the success-

rate that can be achieved and the sampling requirements of the source.
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Which of the three sources requires the lowest sampling frequencies to

achieve the highest activity classification success-rates? Which one

requires the highest?

As explained in section 2.3, several sampling frequencies have been used in literature.

However, little analysis has been performed on the impact of sampling frequencies on

activity classification success-rates using on-body inertial sensors. The two analyses

found are: Bieber et al. (2009) who explain that a sampling frequency of 32Hz is

sufficient to sample body movements based on the response time of human reflexes,

and Maurer et al. (2006) who analysed the obtained activity classification success-

rates for sampling frequencies in the range [0Hz,50Hz]. Maurer et al. only analysed

success-rates obtained from feature-vectors extracted from accelerations. There has

to date, been no communication in the research literature, concerning the impact of

sampling frequency upon activity classification accuracy while using feature-vectors

extracted from rotational velocities or orientations.

In addition, their study only included stationary activities (like sitting and stand-

ing) and ambulatory activities (walking on a flat surface, walking up stairs, walking

down stairs and running). However, it is likely that other Activities of Daily Living

have different sampling requirements to those observed by Maurer et al.

Hence, section 4.2 analyses the differences in the sampling requirements of the

three sources with relation to the accuracy of recognising Activities of Daily Living,

using multiple on-body inertial sensors that have fixed orientations relative to the

body-locations mounted on and fixed locations on the subject’s body. This is per-

formed in order to determine which source requires the highest sampling frequency

and which source lowest sampling frequency in order to achieve the highest activity

classification success-rates.
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How do the success-rates obtained from data of each source

compare those from other sources and to the three sources

combined?

As explained in section 2.3, activity classification systems have been proposed in the

literature that make use of multiple types of inertial sensors. These include systems

proposed by Amft and Tröster (2008); Kunze and Lukowicz (2008); Yuwono et al.

(2012) and Dernbach et al. (2012). However, little analysis has been performed to

ascertain the capabilities of different on-body inertial sensor types in recognising

Activities of Daily Living. The closest work found that performed this is Dernbach

et al. (2012) and Shoaib et al. (2014).

Dernbach et al. compared the success-rates achieved from feature-vectors ex-

tracted from accelerations and those achieved from feature-vectors extracted from

accelerations and orientations for a smart-phone-based activity recognition system.

They concluded that using orientations in addition to accelerations resulted in 10-

12% increase in activity classification success-rates than was obtained by using ac-

celerations only. Dernbach et al.’s data was gathered using a smart-phone that was

carried in different orientations and body-locations from one subject to the next.

It is likely that different results would be observed in a case where multiple sen-

sors are used per subject, and the location and orientation of the sensors relative

to the body-location are fixed (as is the case with wearable-sensor-based activity

recognition).

Shoaib et al. compared the success-rates achieved by feature-vectors extracted

from accelerations, rotational velocities and compass direction, in recognising sta-

tionary (sitting and standing), ambulatory activities (walking on a flat surface,

walking up stairs, walking down stairs, jogging, running) and biking. Although data

of multiple body-locations was gathered, the data was not combined to take into
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account readings observed at different body-locations within each window. Hence,

like Dernbach et al.’s analysis, Shoaib et al.’s analysis is focussed toward smart-

hone-based activity recognition. They concluded that, with the exception of the

magnetometer, that accelerations and rotational velocities have the potential to

individually result in high activity classification success-rates, depending on the ac-

tivity and body-location. They also conclude that the sensors need only be combined

in the case when both sensors are not performing well.

Hence, section 5.4 compares the activity classification success-rates obtained

from feature-vectors extracted from each individual source. In addition, a compari-

son is performed between activity classification success-rates obtained from feature-

vectors extracted from each individual source to those obtained from feature-vectors

extracted from all three sources combined. The analysis is performed within the

context of wearable-sensors and hence makes use of data captured from multiple

on-body inertial sensors that have fixed orientations relative to the body-locations

mounted on and fixed locations on the subject’s body.

What is the relationship between activity classification

success-rates and the length of the windows used to extract

features for classification?

As explained in section 2.4, several window lengths have been used in the activity

classification literature. However, little analysis has been performed on the impact of

window lengths on activity classification success-rates using on-body inertial sensors.

The analyses found are: Huynh and Schiele (2005); Patel et al. (2009) and Dernbach

et al. (2012).

Huynh et al. analysed window lengths in the range [0.25s,4s] on ambulatory

activities and riding the bus and concluded that no single window length is best for

all activities. The one second window performed best when the activity being tested
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was walking or jogging, the 2 and 4 second windows performed best for skipping

and hopping, while the 0.25 and 0.5 second windows performed best for standing.

Dernbach et al. analysed the impact of window lengths in smart-phone-based

activity classification success-rates for both simple and complex activities. Dernbach

et al. found that shorter window lengths performed significantly better than longer

window lengths. However, Dernbach et al. used a single sensor per subject which

was carried in the body-location and orientation that the subject prefered. It is

possible that the variation in sensor orientation and body-location have an impact

in the classification results obtained. In which case, the relationship might not

hold in a case where multiple sensors are used per subject, and the location and

orientation of the sensors relative to the body-location are fixed (as is the case with

wearable-sensor-based activity recognition).

Contrary to Dernbach et al.’s finding, Patel et al. found that smaller window

lengths resulted in lower activity classification success-rates and increasing the win-

dow length past 6 seconds only results in marginal increases in activity classification

accuracy. However, Patel et al.’s research is primarily focussed on recognising phys-

ical activities of subjects suffering from Chronic Obstructive Pulmonary Disease

(OCPD). Hence, all their subjects that were suffering from OCPD.

Hence, section 4.3 analyses the relationship between the length of the windows

used to extract features and the accuracy of recognising Activities of Daily Living

in able-bodied subjects, using multiple on-body inertial sensors that have fixed

orientations relative to the body-locations mounted on and fixed locations on the

subject’s body.
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What is the relationship between activity classification

success-rates and overlap size of the windows used to extract

features for classification?

As explained in section 2.4, several window overlaps have been used in literature.

However, there has, to date, been no communication in the research literature,

concerning the impact of window overlaps upon an activity classification algorithm’s

accuracy.

Hence, section 4.4 analyses the relationship between the amount of overlap in the

windows used to extract features and the accuracy of recognising Activities of Daily

Living, using multiple on-body inertial sensors that have fixed orientations relative

to the body-locations mounted on and fixed locations on the subject’s body.

Is there a significant difference in activity classification rates

when a monitor is mounted on different body-locations? If

so, which body-location yields the highest activity

classification accuracy?

Several body-locations on subjects’ bodies have had monitors mounted on them in

the literature. However, little analysis has been performed to ascertain the relative

merits of different body-locations in recognising Activities of Daily Living. As ex-

plained in section 2.3, the closest work found that performed this is Henpraserttae

et al. (2011); Keally et al. (2011); Maurer et al. (2006) and Shoaib et al. (2014).

Keally et al. analysed the success-rates achieved by accelerometers mounted

on different locations on the body in recognising postures (sitting and standing),

ambulatory activities (walking on a flat surface, walking up stairs and walking down

stairs), writing on a whiteboard, typing on a keyboard and shaking hands. They
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concluded that the postures and ambulatory activities could be identified equally

well with any sensors on the leg. Data gathered from accelerometers mounted on

the upper body resulted in higher success-rates for writing on a whiteboard, typing

on a keyboard and shaking hands. Within these three activities, data gathered from

sensors mounted on the right side of the upper body resulted in higher success-rates

for shaking hands while data gathered from sensors mounted on the right side of the

upper body resulted in higher success-rates for writing on a whiteboard and typing

on a keyboard. However, Keally et al.’s data was gathered from one subject only.

Maurer et al.’s research included stationary activities (sitting and standing) and

ambulatory activities (walking on a flat surface, walking up stairs, walking down

stairs and running) for six subjects. The body-locations on which monitors were

mounted are: left wrist, belt, necklace, right trouser pocket, shirt pocket and bag.

Maurer et al. noted that features derived from a 2D accelerometer mounted on the

subjects’ bag resulted in higher success-rates than those derived from accelerometers

mounted on the left wrist, belt, necklace, right trouser pocket and shirt trouser

pocket.

Henpraserttae et al’s research primarily analysed the impact of accelerometer

signal transformations from local to global coordinates on smart-phone-based activ-

ity classification. However, part of their work analysed the performance obtained

from data captured at different body-locations. The locations tested only included

locations on which a phone could be carried: shirt-pocket, trouser-pocket and waist.

They found that the waist results in the highest success-rate, followed by the shirt-

pocket and trouser-pocket.

Although Shoaib et al.’s research primarily analysed the activity classification

success-rates obtained by sensors available in smart-phones (accelerometers, gyro-

scopes and magnetometers), their work also included an analysis of activity clas-

sification success-rates of several locations on the body where phones are carried.

The locations analysed are: left trouser pocket, right trouser pocket, belt position
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towards the right leg, upper right arm, lower wrist. Shoaib et al. conclude that

the location that results in the best activity classification success-rates varies from

activity to activity.

Hence, section 5.4 compares the success-rates of recognising Activities of Daily

Living obtained from six body-locations using data gathered from 20 subjects. The

body-locations include: the dominant upper arm, dominant wrist and non-dominant

wrist on the arms; the chest; and the thigh and ankle on the right leg. The monitors

have a fixed orientations relative to the body-locations mounted on and features

extracted from accelerations, rotational velocities and orientations are combined for

each extracted window.

What is the functional relationship between activity

classification success-rates and the number of monitors

mounted at different locations on the body?

As explained in section 2.3, the closest research in the literature that analysed the

relationship between the number of sensors mounted on the subject’s body and the

activity classification success-rates obtained is that of Zappi et al. (2007).

Zappi et al. compared the number of monitors used to recognise activities of

automotive assembly line workers and found that a monitor mounted on one body-

location could at best yield a success rate of 50% rising to 80% for 3 body-locations

and 98% for 57 body-locations. This indicates that there is a depreciating returns

relationship between the number of body-locations monitored and the accuracy of

recognising activities in automotive assembly line work. Similar work for Activities

of Daily Living was not found.

Hence, section 5.6 analyses the relationship between the number of body-locations

monitored and the success-rates of recognising Activities of Daily Living obtained.

Up to six body-locations are analysed that include: the dominant upper arm, dom-
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inant wrist and non-dominant wrist on the arms; the chest; and the thigh and

ankle on the right leg. The monitors have a fixed orientations relative to the body-

locations mounted on and features extracted from accelerations, rotational velocities

and orientations are combined for each extracted window.

Are some activities more easily identifiable than others?

Which activities are confused with one another?

As explained in section 2.5, Dernbach et al. (2012) noted that activities like biking,

climbing stairs, driving, lying, running, sitting, standing and walking, can be iden-

tified more accurately than activities like cleaning (wiping down a kitchen counter

top and sink), cooking (heated a bowl of water in a microwave and poured a glass

of water from a pitcher), medication (subject retrieved pills from a cupboard and

sorted out a week’s worth of doses), sweeping (sweeping the kitchen area), washing

hands (the subject washed hands using soap at the kitchen sink), watering plants

(the subject filled a watering can and watered three plants in two rooms). Other

publications (such as Bao and Intille (2004); Ermes and Juha (2008)) also noted

differences in success-rates between activities but did not notice any grouping of

activities that perform better than others.

Based on the user perception of activity classification errors explained in sec-

tion 2.5, Taylor et al. (2011) explain that activity classification systems that recog-

nise Activities of Daily Living should select more specific activities (e.g. dicing,

grating or peeling) only if the certainty of the more specific activities is very high,

otherwise the activity classification systems should favour more generic activities

(e.g. cooking). Hence, an analysis comparing the mutual confusion rates of specific

activities needs to be performed. This analysis could assist in selecting when a more

specific activity should be picked instead of a more generic activity. There has, to

date, been no communication in the research literature, concerning the analysis of
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mutual confusion between Activities of Daily Living.

Hence, section 6.2 compares the accuracy at which different activities within

Activities of Daily Living are identified while section 6.3 analyses the mutual con-

fusion between different activities. The analysis is performed with accelerations,

rotational velocities and orientations from six body-locations are combined for each

extracted window. The activities studied include ambulatory activities (walking on

a flat surface, running, walking up and down stairs), desktop activities (writing and

using a PC), communication activities (texting and talking on the phone), laundry

activities (ironing and folding clothes), household cleaning (sweeping, vacuuming

and dusting), food preparation activities (dicing, grating, peeling, stiring, washing

dishes and washing hands) and other activities (watching TV and brushing teeth).

How different are activity classification success-rates

obtained from 10-fold cross-validation from those of

remove-one-subject cross-validation?

As explained in section 2.6, recent literature by Lockhart and Weiss (2014); Patel et

al. (2009) and (Reiss, 2014) has shown that impersonal models (i.e. those where the

training set and testing set contain different subjects) achieve lower success rates

and higher variance in their testing results than the results of personal (i.e. the

testing set and training set contain data from the same subject) or hybrid models

(i.e. some of the subjects whose data is in the training set are also in the testing

set).

However, it is still unclear how different results of 10-fold cross-validation would

be from those of remove-one-subject cross-validation or whether any relationship

between the two result sets exist. Are relationships observed using 10-fold cross-

validation valid for remove-one-subject cross-validation? Hence, section 6.4 com-

pares the activity classification success-rates obtained using 10-fold cross-validation
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to those obtained using remove-one-subject cross-validation. An important re-

search question answered is whether a correlation exists between result sets ob-

tained from 10-fold cross-validation and those obtained using remove-one-subject

cross-validation. The existence of a correlation implies that certain relationships ob-

served in 10-fold cross-validation results might also be valid for remove-one-subject

cross-validation.

Can the body-locations at which a sensor is mounted on a

user be identified without knowing the activity that the user

is undertaking?

As explained in section 2.3, phones are carried on several different locations on the

body. In addition, the carry location varies from person to person and from occasion

to occasion. In addition, as noted by Henpraserttae et al. (2011), motion patterns

captured at different body-locations are significantly different from each other, such

that training a classifier with data from one body-location results in low activity

classification success-rates when tested with data from another body-location.

As explained in section 2.4, among the proposed solutions in literature include

training a meta-classifiers with one classifier per body-location (Sun et al., 2010)

and deducing the body-location by classifying patterns observed at different body-

locations in a particular activity like walking (Kunze et al., 2005). The first approach

implies multiple classifiers need to run on the activity classification system hence

taking up more resources. The second approach does not take into consideration any

changes in the location on which the monitor is mounted that might occur between

occurences of the selected activity. Even though the walking activity, as selected by

Kunze et al., occurs frequently in the day-to-day life of users, it is likely that the

user could change the location of the monitor in between walking periods.

Hence, section 7.1 analyses the ability to identify the body-location on which a
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monitor is mounted on while the user is performing an Activities of Daily Living

using a single classifier (without using a meta-classifier) but without the knowl-

edge of which activity the user is currently carrying out. The analysis is performed

with smart-phone-based activity recognition in mind. The ability to identify the

body-location on which a phone is carried, could allow smart-phone-based activ-

ity classification to take advantage of that information to allow for more accurate

activity classification.

What is the impact of random monitor rotations on activity

classification success rates?

One of the biggest challenges facing smart-phone-based activity classification is that

the phone can be carried in any orientation relative to the body-location it is mon-

itoring. Three possible solutions have been proposed in literature: using features

that are independent of the orientation of the phone (such as the magnitude of

the acceleration vector); using a meta-classifier that has one classifier per possible

device orientations (Sun et al., 2010); and reorienting the sensor signal from the

sensor’s local coordinates to global coordinates (such that the resultant coordinate

axes are aligned to gravity and either the magnetic north or the subject’s direction

of motion).

The first method has been shown to result in lower success-rates than the third

method (Yang, 2009). The second method has been noted to be impractical since

many device orientations are possible (Henpraserttae et al., 2011; Yang, 2009). The

third method has been shown to result in high activity classification success-rates

(Henpraserttae et al., 2011; Yang, 2009).

The method of reorienting the sensor data from local to global coordinates was

initially proposed by Mizell (2003). Mizell proposed computing the mean of the

accelerations within a window (i.e. the gravity component) and using it to reorient
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the sensor data. This serves as a low pass filter that removes any accelerations due to

body motions. The gravity component can then be used to extract the sensor values

that are in the vertical world axis. The method was later used by Yang together

with the magnitude of the horizontal components. Henpraserttae et al. later refined

the method further by extracting the anteroposterior (forward-backward) axis from

the horizontal components by using the PCA of the horizontal components of the

accelerations.

However, the method of extracting the gravity component proposed by Mizell

(and later used by Yang and Henpraserttae et al.) suffers when the accelerometer

changes orientations relative to gravity. This is bound to happen whenever the

subject moves his or her limbs and results in a gravity vector that lies between the

initial sensor orientation and the final sensor orientation. This then results in errors

in the reoriented signal values.

IMUs, however, compute the orientation of the sensor by integrating the ro-

tational velocities obtained from the gyroscope then including the gravity vector

computed from the accelerations to correct the eventual drift. Hence, the orienta-

tion of the monitor relative to world coordinates at each sample is accurately known

even when the orientation is changing.

Hence, section 7.1 analyses the impact random sensor rotations have on activity

classification success-rates and how well the two reorientation methods solve the

problem. First, the activity classification success-rates obtained from data with and

without random rotations are compared. Next, the success-rates obtained from data

reoriented using the accelerometer-based method (as proposed by (Henpraserttae

et al., 2011)) are compared to when reorientation is not performed and to when

the orientation-based method (using the orientation data provided by an IMU) is

performed.
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3.1 Sensor description

An Opal System from APDM (APDM, 2012) was used in wireless buffering mode

to capture data. Each sensor module (monitor) contains a triaxial accelerometer,

magnetometer and gyroscope. The properties of the sensors are shown in table 3.1.

Sampling was performed at 128Hz and all the modules were synchronised (≤ 10μs

synchronised sample timing difference).

Simoes (2011) make a comparison of gait parameters (cadence, torso rate of ro-

tation, head rate of rotation and stride length) extracted using these sensors against

a camera-based Vicon system (referred to as the ’gold standard’ in kinematic mo-

tion tracking by Simoes (2011)). High correlations were found between the gait

Table 3.1: Properties of the sensors

Property Accelerometer Magnetometer Gyroscope

Axes 3 3 3

Range ±6g ±6 Gauss 2000deg/s

Noise Density 0.0012 m/s2/
√
Hz 0.5mGauss/

√
Hz 0.05deg/s/

√
Hz

Sampling Rate 1280Hz 1280Hz 1280Hz

Output Rate 128Hz 128Hz 128Hz

Bandwidth 50Hz 50Hz 50Hz

Resolution 14bits 14bits 14bits

55
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Table 3.2: Sensor placement locations.

Location Description

Ankle Just above the ankle joint facing outward.

Thigh In the thigh pocket, facing forward.

Chest On the chest, above the sternum, facing forward.

Dominant upper hand Between the shoulder and the elbow, facing outward.

Dominant wrist Approx. 3cm from the wrist-joint, lying flat against
the back of the dominant arm, facing outward.

Non-dominant wrist Approx. 3cm from the wrist-joint, lying flat against
the back of the dominant arm, facing outward.

parameters extracted by the two systems.

Although part of the potential application of this research is the use of orientation

data from mobile devices, we did not use an actual phone for data capture to avoid

inconsistent sampling rates. Sampling rates vary from phone to phone and depend

on the load on the phone at the time of sampling (Dernbach et al., 2012; Taylor et

al., 2011).

An image of one of the monitors is given in figure 3.1(a). Figure 3.1(a) shows a

monitor attached to wrist/ankle straps. The monitors can be attached to a variety

of straps. Small straps that can be used to strap the monitor onto the wrists and

ankle are shown in figure 3.1(c). Medium sized straps that can be used to strap

the monitors onto the upper arm are shown in figure 3.1(b). Larger staps that can

be worn around the chest to secure the monitor onto the sternum are shown in

figure 3.1(d).

3.2 Sensor placement

The monitors were placed in six body-locations on each subject. The body-locations

are described in table 3.2 and illustrated in figure 3.2(a). An example of a subject

wearing the monitors is shown in figure 3.2(b).
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(a) Monitor attached to wrist/ankle
strap (b) Upper arm Strap

(c) Wrist/Ankle Strap

(d) Monitor attached to sternum Strap

Figure 3.1: Monitor and straps
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(a) Sensor placement model (b) Sensor placement on a subject

Figure 3.2: Sensor placement model and placement on a subject



3.2. Sensor placement 59

(a) Length (b) Width

(c) Thickness

Figure 3.3: Thigh monitor case

For walking and running, the monitors were placed in three of these six body-

locations. These were: the dominant wrist, the chest and the thigh location. More

details on why this was done are given in section 3.3.

For each body-location, the monitor was placed such that x-axis faced downward

for all body-locations while the subject stood upright with arms in a downward

rested position. The y-axis and z-axis of the monitor were both in the horizontal

plane, with the z-axis facing perpendicular to the surface of the body-location the

monitor was strapped on. Where possible the monitor was placed such that the z-

axis faced forward (e.g. chest and thigh). In other body-locations the z-axis either
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Figure 3.4: Inside the thigh monitor case

faced sideways (ankle) or 45◦between sideways and forward (wrists).

Strapping a monitor around the thigh was noted to be uncomfortable for the

subject while gathering walking and running data. To avoid this, the monitor was

placed in a larger case (resembling the size of a mobile phone) and placed upright

in the subject’s pocket so as to be in the orientation shown in figure 3.2(a) for all

other activities. The subjects were asked to empty the pocket so as to avoid any

interference between the sensor and any other objects that might be in the pocket

(e.g. keys, phones). None of the subjects had thigh pockets that were large enough

for the thigh monitor (while in the case) to move around freely within the pocket.

The case is shown in figure 3.3. The dimensions of the case were 12cm by 6cm

by 2cm and are shown in figure 3.3(a), figure 3.3(b) and figure 3.3(c) respectively.
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Figure 3.5: Distribution of subject ages for the first data gathering session (walking
and running).

Figure 3.4 shows the inside of the phone case. The monitor was placed on the upper

part of the case, and secured in place using velcro.

All other monitors, except for the thigh monitor, were secured so as not to move

freely relative to the body-location they were placed on. However, the straps of the

monitors were loose enough to be comfortable for the subject.

3.3 Data gathering

The data gathering was divided into two sessions. The two sessions are separated

in time by two years and hence include different subjects.

In the first session only walking and running data was gathered. The data was

gathered outdoors upon a flat soccer field. Only three monitors were available to

gather the data with during the first session. The data of 21 subjects was gathered.

The subjects included 14 males and 7 females, with ages ranging from 14 to 51.

In the second session, an additional 20 activities of daily living were gathered

from 18 subjects. Some of the activities can be categorised together to constitute

some day-to-day routines. For instance, vacuuming, cleaning and dusting together

constitute the routine of household cleaning. The activities are as follows (more
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Figure 3.6: Distribution of subject ages for the second activity session (20 "indoor"
activities).

details of each activity can be found later in this section):

1. Household cleaning – Vacuuming, sweeping, dusting.

2. Laundry – Folding clothes, ironing clothes.

3. Kitchen work – Peeling, slicing and dicing, grating, stirring, washing dishes,

washing hands, washing vegetables.

4. Leisure activities – Watching TV.

5. Office-work – Talking on the phone, texting on the phone, using PC, writing

with a pen.

6. Additional ambulatory activities – Walking upstairs, walking downstairs.

7. Other activities – Brushing teeth.

The data was all gathered indoors. Six monitors were available to gather the

data with during the second session. The subjects included 17 males and 3 females,

and ages ranging from 27 to 52. All subjects except for one were right-handed.

For both sessions, the data was gathered in a semi-controlled environment. The

subjects were asked to perform a given activity and provided with equipment nec-

essary to perform the activity. However, the subjects were not instructed on how

exactly to perform the activity. Parameters such as how fast or what sequence of
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tasks they carried out while performing the activity was left for the subject to decide

on. For some activities (e.g. watching TV) a time-limit was set.

Approval from the Human Research Ethics Advisory Panel (HREA) of the Uni-

versity of New South Wales Canberra was obtained for both data gathering sessions.

The reference number of the HREA approval of the walking and running data gath-

ering is A-11-62 while that of the other 20 activities is A-13-24.

All the subjects were able-bodied volunteers. Signed consent was taken from

each subject. For subjects who were minors at the time of the data gathering (the

age of majority under Australian law at the time of data gathering is 18 years),

signed consent of the subject’s guardian was taken.

More details on the data gathering of each activity is given in the next subsec-

tions.

Walking

Subjects were asked to walk 20 meters on flat ground, turn and walk back. The

subjects performed this activity three times, making a total distance of 120 meters

recorded per subject-activity session. The subjects were asked to walk as fast as

they felt was "normal", without specifying any time-limits or speed criteria.

Running

Similar to walking, subjects were asked to run 20 meters on flat ground, turn and

run back. The subjects performed this activity three times, making a total distance

of 120 meters recorded per subject-activity session. The subjects were asked for a

"light run", without specifying any time-limits or speed criteria.

At the turn, some subjects took a large turn (hence did not slow down much),

while some subjects took a sharp turn and hence slowed down for then turn then

accelerated after the turn. These sections of the data were processed (included)
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with the data so as to include the inherent variations that exist when people take

turns while running.

Brushing teeth

All the data was gathered in the same washroom, in front of a mirror and a wash-

basin. The subject was provided a (new) toothbrush and a tube of toothpaste.

Following which, the subject then applied some toothpaste onto the toothbrush.

The subject then brushed his or her teeth. After brushing teeth, all subjects rinsed

their mouths and the toothbrush (although not asked to do so). Data recording was

stopped when the subject said that he/she was done brushing his/her teeth.

Dicing

All the data was gathered in the same kitchen area. The subject was provided a

knife, a chopping board and a medium sized potato. This activity was recorded

after the peeling activity in which the subject peels the potato, hence the potato

was peeled. The subject was asked to dice the potato into pieces not more than

1cm by 1cm by 1cm in size. The subjects were not instructed on how to dice the

potato. Different subjects used different methods to dice the potato. Most sliced

it first, then sliced the slices into cuboid potato rods, then sliced the cuboid potato

rods into small cubes. Two subjects cut a grid into the potato, then sliced out

potato cubes from the grided potato. Data recording was stopped when the subject

finished dicing.

Dusting

All the data was gathered in the same room. The subject was provided a feather

duster and asked to dust an area of approximately five meters by seven meters. The

dusting area contained six workstations with desktop computers, shelves with books
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and other lab equipment, a white board, a table with four chairs, a three-seater sofa

and a filling cabinet. The subjects were asked to move around the room and were

reminded to clean both high areas (e.g. shelves) and low areas (e.g. under the

table). The subjects were not instructed on the order or the specific areas to clean.

Data recording was stopped after 5 minutes of dusting.

Folding clothes

All the data was gathered in the same area. The subject was provided a pile of

(clean) clothes. The clothes included shirts, T-shirts, trousers, dresses and several

pairs of socks. The subject was then asked to fold the clothes. The subject was

not instructed on how to fold the clothes. All subjects confirmed that they were

familiar with how to fold the clothes. Data recording was stopped after 5 minutes

of folding. In case, the subject folded all the clothes before the five minutes ran out,

the researcher crumpled the clothes and asked the subject to repeat the process.

Subjects were not required to finish the whole pile of clothes.

Grating

All the data was gathered in the same kitchen area. The subject was provided

with a four-sided hand grater, a chopping board and a medium sized carrot. This

activity was recorded after the peeling activity in which the subject peels the carrot,

hence the carrot was peeled. The subject was asked to grate the carrot using any

one of the grating widths available on the hand grater provided. The subjects were

not instructed on how to grate the carrot. All the subjects placed the grater on the

chopping board, holding the grater with their non-dominant hand while grating with

their dominant hands. Data recording was stopped immediately after the subjects

were finished grating the carrot.
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Ironing clothes

All the data was gathered in the same area. The subject was provided a pile of

(clean) clothes, an iron and an ironing board. The clothes included two shirts and

two pairs of trousers. The subject was then asked to cold-iron the clothes. This is

because due to the HREA specifications, the iron was not to be turned on during

the data gathering. The subject was not instructed on how to iron the clothes. All

subjects confirmed that they were familiar with how to iron clothes. Data recording

was stopped either after 5 minutes of ironing or after ironing all the clothes. The

subject was asked to iron one of the shirts first, then one of the trousers, then the

other shirt and the other trouser. This was to ensure that were the 5 minutes to

run out before the subject was finished ironing, at least data of ironing one shirt

and one trouser was captured. All subjects managed to iron at least one shirt and

one trouser within the 5 minutes.

Peeling vegetables

All the data was gathered in the same kitchen area. The subject was provided with

a vegetable peeler, a medium sized carrot and a medium sized potato. The subject

was asked to peel the potato first then the carrot. The subjects were not instructed

on how to peel either the carrot or the potato. All the subjects peeled the carrot in

seemingly the same way, however some subjects peeled the potato using long strokes

from one end to another (like the carrot) while others made a continuous spiral peel

(like while peeling an orange). Data recording was started immediately after the

subjects started peeling the potato and stopped immediately after the subjects were

finished peeling the carrot.
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Stiring

All the data was gathered in the same kitchen area. The subject was provided with

a wooden spoon and a saucepan. The subject was asked to pretend-stir the pan for

2 minutes. This is because due to the HREA specifications, the stove was not to

be turned on during the data gathering. No further instructions were given to the

subject. Data recording was stopped after 2 minutes of stiring.

Sweeping

All the data was gathered in the same room. The subject was provided a long

handled broom and asked to sweep an area of approximately four meters by four

meters. The area also contained a work desk and four chairs. The subject had to

move the chairs around to sweep underneath them. The subjects were not instructed

on how to sweep the area. Data recording was stopped after 2 minutes of sweeping.

Talking on the phone

The subject was asked to use the thigh monitor (mounted in the phone-like casing

shown in figure 3.3) to make a pretend phone call. The subject was allowed to stand

and walk around as he or she would if it were an actual call. In addition, the subject

was instructed that sometime during the call, the person on the other side of the

line would say a phone number to the subject, which the subject was to write down

on a paper provided. Data recording was stopped immediately after the subject

"hung up".

Texting on the phone

The subject was asked to type a pretend text message using his or her phone. In

order to capture the sensors signals as observed from the phone, the thigh monitor
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(mounted in the phone-like casing shown in figure 3.3) was attached to the subject’s

phone. The subject was allowed to stand and walk around as he or she would if he

or she found convenient. Data recording was stopped immediately after the subject

was finished.

Using a PC

All the data was gathered at the same workstation and using the same PC. The

subject was asked to find two advertised positions (employment)that fits him/her

and email them to the author together with a brief (at least a paragraph) description

of each role. This sequence of tasks was selected because it includes both the use

of a mouse and keyboard, and involves both searching/browsing and synthesising

typed information. Data recording was stopped immediately after the subject was

finished.

Vacuuming

All the data was gathered in the same room. The subject was provided a vacuum

and asked to vacuum an area of approximately four meters by four meters. The

area also contained a sofa, a table and four chairs. The subject had to move the

chairs around to vacuum underneath them. In addition, some random small items

were dropped on the floor for the subject to pick up either before or during the

vacuuming. The subjects were not instructed on how to vacuum the area. The

subjects extended the power cable of the vacuum, plugged it into a wall socket and

vacuumed the area. The subjects were asked to stop vacuuming after 5 minutes.

Finally, the subjects unplugged the vacuum and place the vacuum back into it’s

original location. Data recording was stopped immediately after the subject was

finished placing the vacuum back into it’s original location.
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Walking down stairs

Subjects were asked to walk down the stairs from the third floor of a building to the

ground floor. The staircase went straight from one floor to a landing area, followed

by an 180◦turn on the landing area then more stairs to the next floor. The subjects

were asked to walk as fast as they felt was "normal", without specifying any time-

limits or speed criteria. Some subjects walked down slowly, some fast and some ran

down the stairs two steps at a time. In addition, some subjects used the staircase

handrail while some did not. Data recording was started immediately after taking

the first step on the staircase, and stopped immediately after the last step of the

staircase.

Walking up stairs

Subjects were asked to walk up the stairs from the ground floor of a building to the

third floor. The staircase went straight from one floor to a landing area, followed

by an 180◦turn on the landing area then more stairs to the next floor. The subjects

were asked to walk as fast as they felt was "normal", without specifying any time-

limits or speed criteria. Some subjects walked up slowly, some fast and some ran up

the stairs two steps at a time. In addition, some subjects used the staircase handrail

while some did not. Data recording was started immediately after taking the first

step on the staircase, and stopped immediately after the last step of the staircase.

Washing dishes

All the data was gathered at the same kitchen sink. The subject was provided a

pair of cleaning rubber gloves (to prevent any water damage to the wrist monitors),

a dish washing sponge and some liquid dish washing soap. In addition, the subject

was also provided two plates, two cups, two spoons, two forks and two eating knives.
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These were selected to represent the dishes resulting from a basic meal between two

individuals. The subject was not instructed on how to wash the items or in which

order to wash the items. All the subjects started by applying soap on the dishes and

finished with rinsing the dishes and placing them on a dish rack next to the kitchen

basin. Data recording was stopped immediately after the last item was placed on

the kitchen drying rack.

Washing hands

All the data was gathered at the same kitchen sink. The subject was provided a bar

of soap and asked to wash his or her hands. The subject was not instructed on how

to wash his or her hands but was reminded to be thorough. Each subject turned on

the tap, washed his/her hands and finally turned off the tap. Data recording was

stopped immediately after turning off the tap.

Washing vegetables

All the data was gathered at the same kitchen sink. The subject was provided a

medium-sized carrot and an unbrushed medium-sized potato. The subject was not

instructed on how to wash the vegetables or in what order to wash them. Each

subject turned on the tap, washed one vegetable, then washed the other vegetable

and finally turned off the tap. Data recording was stopped immediately after turning

off the tap.

Watching TV

All the data was gathered in the same location. The subject was asked to sit on a

sofa and watch a TV mounted on the wall. A video was then selected with the help

of the subject based on their preferences. This was performed to ensure that the

subject was interested in the video watched on the TV. The videos were limited to
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videos of more than 5 minutes but less than 10 minutes. In addition, the subject

was provided a remote to turn the TV on and off and some snacks to eat during

the TV watching session. The subject turned the TV on, watched the video, and

possibly snacked during the period. Data recording was stopped immediately after

the video finished.

Writing

All the data was gathered at the same workstation. The subject was asked to

hand write two paragraphs. The subject copied the first paragraph from another

document, and was asked to write about his or her experiences on campus in the

second paragraph. These tasks were selected because the first involves only writing

while the second involves synthesis of information. It is possible that the two tasks

produce different writing postures. No time-limits were set. Data recording was

stopped immediately after the subject was finished.

3.4 Activity recognition data processing overview

Figure 3.7 gives an overview of the data processing performed to obtain activity

classification results. Within different sections of the thesis, slight variations of this

process are used to obtain classification results. The classification results are then

used to analyse the impact of the varied factors upon success-rates.

Sampling of data was performed at 128Hz to obtain accelerations, rotational

velocities and orientation values from six monitors mounted on different locations

on the subject’s body. More details about the data gathering process are given in

section 3.3. Once the data has been sampled, an optional task of preprocessing data

at a record level (i.e. preprocessing performed to all data gathered in one subject’s

activity session) might be performed depending on the analysis being performed.

An example of record-level preprocessing is the application of random rotations to



72 Chapter 3. Methodology

Sampling

Record preprocessinga

e.g. record-level random rotations

Segmentation
using sliding windows

Window preprocessingb

Feature Extraction
using either Bao and Intille’s

feature-set (Bao & Intille, 2004)
or Kwapisz et al.’s feature-set

(Kwapisz et al., 2011)

Divide feature-vectors into
folds

either 10 random folds or
subject-based folds depending on
cross-validation technique used

Classification
using the C4.5 decision tree

Result Analysis

Accelerations,
rotational velocities or
orientations

windows

Feature-vectors

For each fold f available,
use fold f for testing and
the rest for training the classifier.

Confusion matrix of
each test fold f

Figure 3.7: An overview of the activity recognition data processing performed.

aOptional step
bIncludes downsampling
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the whole record. This is followed by segmentation, where sliding windows are used

to divide the record into smaller sequences (windows). The parameters of the sliding

window differ depending on the analysis being performed. The windows can then be

further preprocessed. This includes downsampling the window. Next, features are

extracted using either Bao and Intille’s feature-set (Bao & Intille, 2004) or Kwapisz

et al.’s feature-set (Kwapisz et al., 2011) (refer to section 3.5 for more details).

All the feature-vectors generated are then divided into folds. Either 10-fold or

remove-one-subject cross-validation is used depending on the analysis performed

(refer to section 3.6 for more details). If 10-fold cross-validation is used, the feature-

vectors are divided into 10 random folds. If remove-one-subject cross-validation

is used, the feature-vectors are divided into folds based on the subject the data

was gathered from. Next, the folds are used to train and test a C4.5 decision tree

classifier (Quinlan, 1993). For each of the folds obtained, the classifier is tested

with that fold after being trained with the other folds. This results in one confusion

matrix for each fold. The confusion matrixes are then used for analysis to answer

the relevant research questions.

It should be noted that the definition of feature extraction and feature-set within

the context of this thesis might be different from the norm. Refer to the glossary

for the definitions.

3.5 Feature-sets used

The research questions possed in the thesis require feature-extraction and classifi-

cation. For feature-extraction, two different feature-sets were selected and used to

answer the research questions so as to give more weight on the conclusions made.

The feature-sets used are based on those proposed by Bao (2003) and Kwapisz

et al. (2011). The feature-sets from these publications were selected because:

1. The feature-sets do not require input from non-inertial sensors. For example,
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the algorithm proposed by Saponas et al. (2008) requires a footpod, Ermes

and Juha (2008) requires a respiratory effort sensor, and Quwaider and Biswas

(2008) requires the signal RSSI from the communications with the wearable

sensors.

2. The feature-sets proposed in the publications are explained well enough to be

implementable.

3. The algorithms precisely describe the terms used. This contrasts with some

proposed feature-sets which require the implementer to search for the optimum

parameters in order to achieve the published success rate of the algorithm.

4. The feature-sets performed well in our initial testing.

Bao and Intille proposed their algorithm for activity recognition systems that

make use of a body-sensor network such that data is processed from accelerometers

mounted on different locations on the subject. The feature-set derived from Bao

and Intille’s algorithm is given in table 3.3.

All of the features from Bao and Intille’s feature-set, except for the Pearson

product-moment correlation coefficient, can be computed from the frequency com-

ponents of the signal. Hence the feature-set can be described as primarily based on

frequency-domain features.

Kwapisz et al. proposed their algorithm for activity recognition systems that

make use of the smart phone as a sensing node such that the only data comes

from the phone’s accelerometer, which might be carried in one of many phone carry

locations on the subject’s body and in any orientation. The feature-set derived from

Kwapisz et al.’s algorithm is given in table 3.4.

All the features of Kwapsiz et al.’s feature-set are computed in the time-domain.

Although Kwapisz et al.’s feature-set is designed for use in smart phone-based activ-

ity recognition, with the exception of the average magnitude of the sample vectors,

the values of other features change with the orientation of the phone because they

are specific to the accelerometer’s axis to which they are measured.
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Table 3.3: Feature-set derived from Bao (2003). x,y and z represent x-axis, y-axis
and z-axis signal in the time-domain while X,Y and Z represent the same in the

frequency-domain.

Feature Definition

Mean of each axis
of the signal

X1

Y1

Z1

Information entropy
of each axis of the
signal (excluding
first bin)

−∑N
i=2(pi log2 pi), pi =

|Xi|2∑N
j=2 |Xj |2

−∑N
i=2(pi log2 pi), pi =

|Yi|2∑N
j=2 |Yj |2

−∑N
i=2(pi log2 pi), pi =

|Zi|2∑N
j=2 |Zj |2

Signal energy of
each axis of the
signal (excluding
first bin)

1
N−1

∑N
i=2(|Xi|2)

1
N−1

∑N
i=2(|Yi|2)

1
N−1

∑N
i=2(|Zi|2)

Pearson
product-moment
correlation
coefficient of each
pair of sensor axes

1
N

∑N
i=1

(x− x̄)(y − ȳ)

σxσy

1
N

∑N
i=1

(x− x̄)(z − z̄)

σxσz

1
N

∑N
i=1

(y − ȳ)(z − z̄)

σyσz

3.6 Cross-validation techniques

A review and comparison of various cross-validation techniques performed in the

literature can be found in section 2.6.

If we are to compare the impact of various parameters in the activity recognition

system, we wish to evaluate the best-case-scenario. Error rates due to inter-subject

variability can impact the analysis leading to either unclear results or results that

don’t reflect the potential of the parameter. For this reason, many sections in the

chapter use 10-fold cross-validation (which reflects results achievable by a hybrid

model) instead of remove-one-subject cross-validation (which reflects results achiev-

able by an impersonal model).

Both cross-validation techniques were used in the analysis, but with the exception
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Table 3.4: Feature-set derived from Kwapisz et al. (2011). x,y and z represent x-axis,
y-axis and z-axis signal in the time-domain.

Feature Definition

Mean of each axis
of the signal

x̄ = 1
N

∑N
i=1 xi

ȳ = 1
N

∑N
i=1 yi

z̄ = 1
N

∑N
i=1 zi

S.D. of each axis of
the signal

σx =
√

1
N

∑N
i=1(xi − x̄)2

σy =
√

1
N

∑N
i=1(yi − ȳ)2

σz =
√

1
N

∑N
i=1(zi − z̄)2

Average absolute
difference from
mean of each axis

1
N

∑N
i=1 |xi − x̄|

1
N

∑N
i=1 |yi − ȳ|

1
N

∑N
i=1 |zi − z̄|

Average time in
milliseconds
between peaks of
each axis

1
M

∑M
i=1 pi, p = {i | (xi > xi−1), (xi > xi+1)}, M = length(p)

1
M

∑M
i=1 pi, p = {i | (yi > yi−1), (yi > yi+1)}, M = length(p)

1
M

∑M
i=1 pi, p = {i | (zi > zi−1), (zi > zi+1)}, M = length(p)

Average of the mag-
nitudes of sample
vectors

1
N

∑N
i=1

√
x2
i + y2i + z2i

The distribution of
the signal values into
10 bins

The range of values of each axis is divided into 10 equal sized bins.
The fraction of samples within the window that falls within each bin

is then used as a feature

of section 4.4 which deals with the impact of window overlaps, results of other sec-

tions using 10-fold were found to have less variability, higher statistical significance

and therefore clearer and easier to derive conclusions from than those of remove-

one-subject cross-validation. Further analysis on the comparison of success-rates

obtained using 10-fold cross-validation and those obtained from remove-one-subject

cross-validation is found in section 6.4.
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3.7 Methodology for determining impact on

success-rates

In order to compare the impact of various data processing techniques on the activity

classification success-rates obtained, the same data is processed twice: once without

the data processing technique in question, and once with the data processing tech-

nique. The resulting success-rates obtained from each data set are then subtracted

from each other. A (Gaussian) model is then fitted onto the differences obtained

and the fitted model is used to ascertain whether or not the technique in question

impacts success-rates.

This methodology was selected because:

1. Due to cross-validation, a slightly different activity classification success-rate

is obtained from each test fold. The success-rates were observed to fit a Gaus-

sian model. However, the success-rates obtained are only a small sample.

Hence, to obtain more accurate results, a Gaussian model is fitted using Max-

imum Likelihood Estimation. The estimated population mean and standard

deviation are then extracted from the fitted model.

2. Using the fitted model, additional information can be extracted. In particular,

we are interested in the probability that application of the data processing

technique results in a higher success-rate in a sample than when the data

processing technique is not applied. Figure 3.8 illustrates why it is important

to compute the mentioned probability.

Figure 3.8 shows a hypothetical example of the differences in success-rates ob-

tained from process a, b and c applied to the same samples. The mean difference in

the success-rates obtained by process a and b is 0.5 and standard deviation 0.5. The

mean difference in the success-rates obtained by process a and c is 1.0 and standard

deviation 2.0.
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P (a > b) = 84.13%

Difference of success-rates (%)

P
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F

x̄ = 1.0, σ = 2.0
x̄ = 0.5, σ = 0.5

a < b, a < c a > b, a > c

Figure 3.8: A hypothetical example of differences in success-rates obtained from
process a, b and c applied to the same samples. One set of results (blue) is the

difference between a and b (mean=0.5, standard deviation=0.5) and the other set
(red) is the difference between a and c (mean=1.0, standard deviation=2.0). The

percentage of the area above a− b = 0 is higher than that above a− c = 0.

When comparing between a, b and c, it can be observed that a results in higher

success-rates than both b and c. In addition, the mean difference between a and c

is higher than the difference between a and b. However, the differences between a

and c also have a higher variance than the differences between a and b.

From the mean differences we can observe which process results in higher success-

rates. However, we can not observe how consistently the process is in resulting in

higher success-rates. In the example in figure 3.8, it can be observed that process a

results in higher success-rates than process b more consistently than process a results

in higher success-rates than process c. This can be observed from the variance of

the distribution of the differences in success-rates.

By combining the mean and the variance of each distribution of the differences in

success-rate, it is possible to assign a value to how consistent one process results in

higher success-rates than the other process: by computing the likelihood of obtaining

higher results using the former process than the latter process. The likelihood has

an additional advantage in that it can be compared across processes. It should be

noted that the likelihood is still highly linked to the mean: a likelihood > 50%

of process a resulting in higher success-rates than process b means that the mean

success-rates of a are higher than the mean success-rates of b.



4
Analysis of the impact of data capture

and data processing parameters upon

activity classification accuracy

4.1 Introduction

In this chapter, fundamental settings that impact activity classification accuracy

are explored. The settings explored are: minimum sampling frequencies, window

length and window overlap. The chapter is organised as follows:

First, the lowest sampling frequencies, sampling above which result in no further

increase in activity classification success-rates, are explored. Using these frequencies,

the sampling requirements of accelerations, rotational velocities and orientations are

analysed.

Next, the relationship between the length of windows used to extract feature-

vectors and the resultant activity classification success-rates is explored. The rela-

tionship is modelled and the model is extended to find the longest window length,

above which, no further increase impacts activity classification success-rates. In

the discussion section, an explanation of the observed relationship between window

lengths and resultant success-rates is offered.

Finally, the impact of window overlaps on the resultant activity classification

success-rates is ascertained for two cross-validation methods. Where an impact is

found, the relationship between window overlaps on both mean and variance of the

79
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resultant activity classification success-rates is modelled. In the discussion section,

an explanation of the observed relationship between window overlaps and the means

and variances of the resultant activity classification success-rates is offered.

4.2 Impact of sampling frequency on activity

recognition accuracy

The lower the sampling frequency used in an activity recognition system, the lower

the amount of data that has to be processed for feature extraction. This reduces

the computational resources (like memory, computation time and battery power)

required for activity recognition. In wearable activity recognition systems and smart

phones, such resources are likely to remain limited for the foreseeable future.

In this section, the impact of the sampling frequency on the classification success-

rate of the gathered activities is studied.

Oversampling results in no improvement in classification success-rates. Hence,

it is important to define the frequency at which a further increase in sampling

frequency results in no further improvement in success-rates.

To that end, we define the Minimum Efficient Sampling (MES) frequency. MES

frequency is the lowest sampling frequency to achieve an activity classification

success-rate that has a 95% chance of being independent of the sampling frequency

from the data of a sensor mounted on a particular location on the body.

In other words, given a location on the body, data sampled at the MES frequency

on the location, results in success-rates that have a 95% chance of being in the

same distribution as success-rates obtained from the same location using frequencies

higher than the MES frequency.

We then use the MES frequencies to answer the following research questions:

1. Which source derived features have the lowest MES frequency on



4.2. Impact of sampling frequency on activity recognition accuracy 81

average?

2. In addition, which source derived features have the highest MES

frequency on average?

By analysing the differences in MES frequencies extracted from acceleration, ro-

tation velocity and orientation derived features of all the activities and the monitors

used, we can learn which source derived features result in the lowest and highest

MES average frequency.

The order of the sources in terms of increasing MES average frequency can

indicate the order of the sampling frequency requirements of the source in terms

of increasing sampling frequency. Knowing this could aid an activity recognition

system developer in selecting which source to utilise depending on the constraints

placed on the system (like power consumption and system accuracy).

The next section presents the methodology used to compute the MES frequencies

and to answer the research questions.

Methodology

The original data was downsampled to frequencies ranging from 1Hz to 128Hz in

steps of 1Hz. The frequency downsampled-to is referred to as the downsampling

frequency henceforth. Appropriate low pass filtering was performed prior to each

downsampling. Algorithm 1 further elaborates on this process.

A sliding window of 10 seconds with 50% overlap was used.

Window lengths of 10 seconds were used because 10 seconds was observed to

be the maximum window length used in activity recognition literature, having only

been used by Kwapisz et al. (2011) and Patel et al. (2009). In the analysis of activity

recognition literature performed by Lockhart and Weiss (Lockhart & Weiss, 2014),

window lengths reported to have been used in activity recognition literature were

observed to have a median of 3 seconds and the maximum window length they
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Algorithm 1 Process the time-series D resulting into a set of time-series, that
contains one time-series for each downsampling frequency.

procedure DownsampleTimeSeries(D)
Results ← [] � List to hold resulting downsampled

time-series
n ← |D| � Get number of samples in D

freq ← CompBinFreqs(128, n) � Compute FFT bin frequencies for n
bins and to the original sampling fre-
quency of 128Hz

fft ← FFT (D) � Convert D to frequency domain

for all f ∈ [128, 127, ..., 1] do
for all i ∈ [0, n) do � Clear all frequencies equal or above

if freqi ≥ f
2

then �
f

2
in the FFT results

ffti ← 0
end if

end for

filtered ← IFFT (fft) � Convert filtered data back to time do-
main

m ←
⌊
fn

128

⌋
� Compute resulting number of samples

� Average contiguous groups of
128

f
samples.

for all i ∈ [0,m) do

s ←
⌊ in
m

⌋
� First sample of D to average

e ←
⌊(i+ 1)n

m

⌋
� Last sample of D to average

ri ← Mean(filtered[s...e)) � Compute downsampled sample.
end for

Results.add(r) � Add to result list
end for

return Results
end procedure
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observed was 10 seconds.

A 50% window overlap was used because it was observed that 50% window

overlaps are common within the literature review having been used by Bao and

Intille (2004); Figo et al. (2010); He et al. (2008); Krishnan and Panchanathan

(2008); Kunze et al. (2005); Preece, Goulermas, Kenney, and Howard (2009); Ravi

et al. (2005); Shoaib et al. (2014) and Sun et al. (2010). However, other window

overlaps also exist in the literature review including: no overlap ((Kwapisz et al.,

2011)), 20% ((Reiss, 2014)), 25% overlap ((Henpraserttae et al., 2011)), 33% overlap

((Lester et al., 2005)).

Features were then extracted as explained in the respective feature-set’s paper

(Bao and Intille (2004) and Kwapisz et al. (2011), refer to section 3.5 for more

details). In addition, a Hamming window was applied to each window before ex-

tracting the frequency-domain features in Bao and Intille’s feature set.

Finally, classification was performed using the J48 decision tree from the WEKA

toolkit. The J48 decision tree is an implementation of the C4.5 algorithm (Hall et

al., 2009). The C4.5 decision tree was found to perform best by Bao and Intille

(Bao & Intille, 2004), and second best by Kwapisz et al. (Kwapisz et al., 2011).

Experiments reported in this section were performed using 10-fold cross-validation.

The resulting success rates as a function of the downsampling frequency were ob-

served to be noisy. Ideally, success-rates as a function of downsampling frequencies

are expected to monotonically increase with increase in downsampling frequency.

However, while this was the overall trend observed in the obtained success-rates,

local seemingly-random fluctuations were also observed (see figure 4.1 for an exam-

ple).

To extract the MES frequency from the obtained success-rates as a function of

downsampling frequency, a two step process is followed:

1. An equation that represents the expected model of results was fitted on to the

observed results.



84 Chapter 4. Data capture and data processing parameters

The expected model is based on the assumption that the success-rate obtained

for classifying an activity would be lowest when sampling at 0Hz (i.e. sampling

the mean of the signal only), increasing as the sampling frequency increases

until a sampling frequency which is higher than twice the highest frequency

component that can identify the activity (at frequency F ), then stop changing

and maintain that success-rate independent of any further increases of the

sampling frequency.

Fitting an equation that represents this model and using the estimated values

of the model instead of the observed values reduces the impact of the local

success-rate fluctuations on the analysis. The equation that summarises this

behaviour expected of success-rates y as a function of downsampling frequen-

cies x is given as equation 4.1. See figure 4.1 for an example of equation 4.1

fitted onto data.

y′ =

⎧⎪⎪⎨
⎪⎪⎩
B − C

F
x+ C, if x < F

C, otherwise
(4.1)

where x = downsampling frequency in the range [1,128],

y′ = estimated success-rate of data downsampled to frequency x,

C = estimated success-rate of data dowsampled to 0Hz,

F = lowest frequency at which the success-rate of data

is unaffected by the downsampling frequency.

B =
1

(128− F + 1)

128∑
i=F

yi

The equation divides the [1Hz,128Hz] frequency range into two: a lower range

that is estimated to impact success-rates, and a higher range that is estimated
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not to impact success-rates. The frequency that separates these two ranges

is denoted as F . The lower range that is estimated to impact success-rates

is modelled as a linear function of positive slope. The upper range that is

estimated not to impact success-rates is modelled as a constant success-rate.

2. The MES frequency was extracted as being less than the F frequency, and

whose estimated success-rate (according to the fitted equation) is within two

standard deviations of the mean of the success-rates of the frequency range

above F (see figure 4.1 for an example).

Extracting the MES frequency based on the likelihood of its estimated success-

rate originating from the distribution of success-rates from downsampling fre-

quencies above F , allows for the selection of an MES frequency such that

the characteristics of success-rates from frequencies below it are distinct from

those above it.

This is especially important for cases where the slope of success-rates below

frequency F is small (see figure 4.2 for an example). In such cases, even though

equation 4.1 is fitted correctly by definition, the characteristics of success-rates

below F and above F are largely similar.

Figure 4.1 elaborates on the fitting of equation 4.1 to some examplar data. The

example shows a general increase in success-rate with increase in downsampling

frequency to approximately 33Hz. Thereafter, the success-rates remain generally

constant with increase in frequency. The frequency F was computed as 33Hz and

MES frequency as 29Hz.

To fit the equation, values of F in the range of [1Hz,128Hz] in steps of 1Hz are

tested to find the value of F that results in the fitted equation with the highest R2.

A non-linear least squares method was used to fit the equation.

Cases exist where the slope of success-rate to downsampling frequency is so low

that the range of frequencies immediately below F also forms part of the distribution

of success-rates that are estimated not to effect the sampling frequency. The extreme
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Figure 4.1: Success-rate as a function of downsampling frequency exemplifying results
obtained from classification of data downsampled to frequencies in the range

[1Hz,128Hz] in steps of 1Hz. This particular example shows a general increase in
success-rate with increase in downsampling frequency to approximately 33Hz.

Thereafter, the success-rates remain generally constant with increase in frequency. The
chart also presents the fitted equation 4.1, the computed F frequency of 33Hz and

MES frequency of 29Hz. The lower graph is a semilog plot of R2 values obtained for
each frequency value while fitting equation 4.1.
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case of this is when an activity is recognised with the highest success-rate ≤ 1Hz.

In that case, the success-rates would not experience the linear growth in frequencies

below F assumed in the model. Figure 4.2 gives an example of one such case

where the highest success-rate is at 1Hz and there is no apparent general increase

in success-rate with increase in downsampling frequency.

Hence, we define the MES frequency to be the lowest frequency with an estimated

success-rate that has a 95% chance of belonging to the same distribution as y[F..128]

(the success-rates found to be independent of the downsampling frequency). This

would include any frequencies immediately below F that have a 95% chance of

resulting in a success-rate that belongs to the distribution of y[F..128].

After fitting equation 4.1 to the data we can use the mean (y[F..128]) and standard

deviation (σ[F..128]) of y[F..128] to find the lowest estimated success-rate that is ≥
y[F..128] − 2σ[F..128]

The process of extracting the MES frequency from activity classification success-

rates is elaborated on in algorithm 2.

The process was repeated for accelerations, rotational velocities and orientations.

To compare the MES frequencies extracted from accelerations, rotational veloci-

ties and orientations, the MES frequency of each source is extracted for each activity

and monitor.

The MES frequencies of any two sources can then be compared in a method

based on a paired two-sample T-Test. A paired two-sample T-Test tests the null

hypothesis that the two collections of samples come from normal distributions of

equal means but unknown variances. It does this by subtracting samples of one

collection from the other and checking whether the resultant distribution has a

mean of zero at the given significance level. However, in this case, we are interested

in which source has greater MES frequencies than the other.

Therefore, after running a paired two-sample T-Test (α = 0.05) on the MES

frequencies of two sources to check that the MES frequencies of the two sources are
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Figure 4.2: Mean success rate as a function of downsampling frequency exemplifying
results obtained from classification of data downsampled to frequencies in the range

[1Hz,128Hz] in steps of 1Hz. This particular example shows no apparent general
increase in success-rate with increase in downsampling frequency. The chart also
presents the fitted equation 4.1, the computed F frequency of 99Hz and MES

frequency of 1Hz. The lower graph is a semilog plot of R2 values obtained for each
frequency value while fitting equation 4.1.
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Algorithm 2 Compute the MES frequency given the success-rates obtained from
classifying data downsampled to frequencies in the range [1Hz,128Hz] in steps of
1Hz.

procedure ComputeMesF(test_results)
� test_results are classification results of a particular ac-

tivity, monitor and source and include results of clas-
sifying data downsampled to frequencies in the range
[1Hz,128Hz] in steps of 1Hz for either Bao and Intille’s
feature-set or Kwapisz et al’s feature-set.

bsf_R2 ← 0 � Best so far R2 from curve fitting.
F ← 0
A ← 0
M ← 0
for all f ← 1Hz to 128Hz in steps of 1Hz do

c ← Mean(y[f..128]) � Compute mean of success-rates obtained from frequencies
f to 128Hz

Fit equation 4.1 to data.
if R2 > bsf_R2 then � Find f that results to the highest R2 value.

bsf_R2 ← R2

F ← f
A ← a
M ← m

end if
end for

σ[F..128] ← StandardDeviation(y[F..128])
y[F..128] ← Mean(y[F..128]) � Obtain the mean and standard deviation success-rates

that are independent of the data downsampling frequency.

for all i ← 1Hz to F in steps of 1Hz do
if y′i ≥ y[F..128] − 2 ∗ σ[F..128] then

� Check if the estimated success-rate is within two standard
deviations of the mean of success-rates that are indepen-
dent of the data downsampling frequency.

return i � Return frequency i if y′i does not belong to the distribu-
tion.

end if
end for
return 0Hz � Return 0Hz if no MES frequency was found in the range

[1Hz,128Hz].

end procedure
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not equal, the mean signed difference between the two sources is used to find out

which source is larger than the other.

A Gaussian model is then fitted onto the histogram of the difference of the two

sources so as to extract a mean and standard deviation that is more representative

of the population mean and standard deviation of the difference of the two sources.

Algorithm 3 was used to compute the differences in MES frequencies of one

source to another source.

Algorithm 3 Compute the difference in MES frequencies of one source to another
source for all activities and monitors given.

procedure MesfDiff(C A, M , S1, S2)
� C are classification results and include results of clas-

sifying data downsampled to frequencies in the range
[1Hz,128Hz] in steps of 1Hz for either Bao and Intille’s
feature-set or Kwapisz et al’s feature-set.

� A is a list of activities
� M is a list of monitors
� S1 is the first source
� S2 is the second source

Results ← [] � List to hold resulting values

for all test_results ∈ C do
for all a ∈ A do

for all m ∈ M do
d1 ← test_resultsactivity=a,monitor=m,source=s1

� Extract results of activity a, monitor m and source s1
from the test results

d2 ← test_resultsactivity=a,monitor=m,source=s2

� Extract results of activity a, monitor m and source s2
from the test results

f1 ← ComputeMesF (d1)
f2 ← ComputeMesF (d2)
Results.add(f1− f2)

end for
end for

end for
Perform One-Sample T-Test to check whether Results distribution is centered

at zero.
Fit a Gaussian model onto Results using Nonlinear Least Squares method.
Extract mean and standard deviation from fitted model.

end procedure
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The next section presents results obtained from this analysis.

Results

The complete set of plots showing success-rates in classifying each activity plotted

against the frequency the data was downsampled to are presented in appendix A.

In addition, the fitted equation 4.1 is also shown on each of the figures. Results

from accelerations, rotational velocities and orientations, from each of the monitors

available, and from the two feature-sets used (Bao and Intille’s and Kwapisz et al.)

are given.

The extracted MES frequencies obtained using data derived from activities, mon-

itors, sources and from the two feature-sets used (Bao and Intille’s and Kwapisz et

al.), can be found in appendix B.

Histograms of the MES frequencies obtained using data derived from all activi-

ties, all monitors and from the two feature-sets used (Bao and Intille’s and Kwapisz

et al.) are shown in figure 4.3, figure 4.4 and figure 4.5 for accelerations, rotational

velocities and orientations respectively.

The histograms show that a large percentage of the data for all three sources

is concentrated at 0Hz. This is because many combinations of body-locations and

activities result in MES frequencies of 0Hz. This indicates that higher frequencies

have no impact on the classification success-rates on those combinations of body-

locations and activities.

However, higher MES frequencies are also seen for each of the sources. Of the

three sources, it can be observed that the area under the graph above 0Hz is larger

for the rotational velocities derived histogram than for either the accelerations or

orientations derived histograms. This indicates that generally rotational velocities

resulted in higher MES frequencies than either accelerations or orientations. In

addition, it can also be observed that the area under the graph above 0Hz is smaller
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Figure 4.3: Distribution of MES frequencies extracted from classification results of
accelerations for each activity and monitor. Results from both Bao and Intille’s

feature-set as well as Kwapisz et al.’s feature-set are shown.

for the orientations derived histogram than for either the accelerations or rotational

velocities derived histograms. This indicates that generally orientations resulted in

lower MES frequencies than either accelerations or rotational velocities. A better

analysis will be conducted next where for each activity and body-location, the MES

frequency obtained for each source is compared against each other source. This

results in more accurate conclusions of how different the MES frequencies of the

three sources are.

In the following sections, the results of comparing MES frequencies extracted

from each source to each of the other sources are presented and then a conclusion

is made about the following research question.

Do acceleration features require higher MES frequencies than

orientation features?

The distribution of the results of applying algorithm 3 on accelerations and orien-

tations using both Bao and Intille’s feature-set and Kwapisz et al.’s feature-set are

shown in figure 4.6.
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Figure 4.4: Distribution of MES frequencies extracted from classification results of
rotational velocities for each activity and monitor. Results from both Bao and Intille’s

feature-set as well as Kwapisz et al.’s feature-set are shown.
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Figure 4.5: Distribution of MES frequencies extracted from classification results of
orientations for each activity and monitor. Results from both Bao and Intille’s

feature-set as well as Kwapisz et al.’s feature-set are shown.
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Figure 4.6: Distribution of differences in MES frequencies extracted from classification
results of orientations subtracted from those extracted from accelerations for each

activity and monitor. Results from using Bao and Intille’s feature-set are shown on the
upper graph while those of Kwapisz et al.’s feature-set are shown on the lower graph.
A Gaussian curve has been fitted and the mean, standard deviation, R2 and root mean

squared error given.
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MES frequencies extracted from success-rates of accelerations are on average

higher than those extracted from success-rates of orientations for both Bao and

Intille’s feature-set (t=11.62, df=551, p > 0.05) and Kwapisz et al.’s feature-set

(t=7.45, df=501, p > 0.05).

The Gaussian model fitted onto the results is found to have a R2 values of 0.966

and 0.9687 for results obtained from Bao and Intille’s feature-set and Kwapisz et

al.’s feature-set respectively.

For Bao and Intille’s feature-set, the average difference is 0.82Hz. While that of

Kwapisz et al.’s feature-set is 1.05Hz .

Do rotational velocity features require higher MES frequencies than

orientation features?

The results of applying algorithm 3 on rotational velocities and orientations using

both Bao and Intille’s feature-set and Kwapisz et al.’s feature-set are shown in

figure 4.7.

MES frequencies extracted from success-rates of rotational velocities are on av-

erage higher than those extracted from success-rates of orientations for both Bao

and Intille’s feature-set (t=11.52, df=643, p > 0.05) and Kwapisz et al.’s feature-set

(t=19.99, df=734, p > 0.05).

The Gaussian model fitted onto the results is found to have a R2 values of 0.992

and 0.9858 for results obtained from Bao and Intille’s feature-set and Kwapisz et

al.’s feature-set respectively.

For Bao and Intille’s feature-set, the average difference is 1.04Hz. While that of

Kwapisz et al.’s feature-set is 1.43Hz.
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Figure 4.7: Distribution of differences in MES frequencies extracted from classification
results of orientations subtracted from those extracted from rotational velocities for
each activity and monitor. Results from using Bao and Intille’s feature-set are shown
on the upper graph while those of Kwapisz et al.’s feature-set are shown on the lower
graph. A Gaussian curve has been fitted and the mean, standard deviation, R2 and

root mean squared error given.
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Figure 4.8: Distribution of differences in MES frequencies extracted from classification
results of rotational velocities subtracted from those extracted from accelerations for
each activity and monitor. Results from using Bao and Intille’s feature-set are shown
on the upper graph while those of Kwapisz et al.’s feature-set are shown on the lower
graph. A Gaussian curve has been fitted and the mean, standard deviation, R2 and

root mean squared error given.
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Do accelerometer features require higher MES frequencies than

rotational velocity features?

The results of applying algorithm 3 on rotational velocities and orientations using

both Bao and Intille’s feature-set and Kwapisz et al.’s feature-set are shown in

figure 4.8.

MES frequencies extracted from success-rates of accelerations are on average

lower than those extracted from success-rates of rotational velocities for Bao and

Intille’s feature-set (t=-4.86, df=753, p > 0.05) and for Kwapisz et al.’s feature-set

(t=-6.28, df=806, p > 0.05).

The Gaussian model fitted onto the results is found to have a R2 values of 0.9885

and 0.9727 for results obtained from Bao and Intille’s feature-set and Kwapisz et

al.’s feature-set respectively.

For Bao and Intille’s feature-set, the average difference is 0.17Hz. While that of

Kwapisz et al.’s feature-set is 1.12Hz.

Discussion

The research question asked in this section was which sources require the highest

and the lowest sampling frequencies. To answer this question, the MES frequencies

of each activity and monitor were extracted as described by algorithm 2. The

differences of MES frequencies from data obtained from different sources was then

computed using algorithm 3.

The results showed that MES frequencies extracted from classification results

of feature vectors extracted from orientations were lower than both those extracted

from classification results of feature vectors extracted from accelerations and those

extracted from classification results of feature vectors extracted from rotational ve-

locities for the two feature-sets used.
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Since MES frequencies represent the lowest frequency that is independent of

the sampling frequency, lower MES frequencies extracted from classification results

of features extracted from orientations imply that orientations require the lowest

sampling frequency of the three sources studied and for the two feature-sets studied.

Additionally, the results showed that MES frequencies extracted from classi-

fication results of feature vectors extracted from rotational velocities were higher

than both those extracted from classification results of feature vectors extracted

from accelerations and those extracted from classification results of feature vectors

extracted from orientations for the two feature-sets used.

Similarly, this implies that rotational velocities require the highest sampling

frequency of the three sources studied and for the two feature-sets studied.

Even though the results obtained are statistically significant, the average differ-

ences between the three sources can be considered low. The largest average differ-

ence of 1.43Hz is between MES frequencies extracted from classification results of

feature vectors extracted from rotational velocities and from classification results

of feature vectors extracted from orientations using Kwapisz et al.’s feature-set. It

is highly unlikely that a difference of 1.43Hz could impact battery consumption or

computing resources.

4.3 Impact of sampling window length on activity

classification accuracy

In this section, the impact of the length of the sampling window on classification

success rates is studied. The length of the sampling window impacts the power

consumption of the system since the longer the sampling window is the longer the

sensor needs to operate and the more data is collected that requires processing.

In addition, long windows impact the response time of real-time activity recog-
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nition systems since sampling for a longer time means a longer duration between the

time the first sample is taken and the time the activity classification is produced.

This is clearly observed as a lag in the system recognising changes in activity when

the user changes his/her activity.

However, a small window is likely to lead to a lower activity classification ac-

curacy since the window is sampling characteristics of the activity motions and

sampling error increases with decrease in sample size.

It is also possible that a window that is too long (in addition to impacting the

power consumption) could impact activity classification accuracy by aggregating

periods of the sensor signals that have different trends (perhaps due to the subject

changing activities or changing how he/she is performing the activity).

In this section, we are interested in answering the following research questions:

1. What is the relationship between activity classification success-rates

and the length of the windows used to extract features for classifi-

cation?

In this question, we are interested to learn what relationship exists between

activity classification success-rates and window length. Intuitively the success-

rates should increase with increasing window length, however, it is unclear

whether this increase is linear or asymptotic.

A better understanding of this relationship could provide activity recognition

system developers a better understanding in the selection of an appropriate

window length that takes account of factors like required system accuracy,

response time and power consumption.

2. Is there a window length above which activity classification success-

rates are not affected by the length of the windows used to extract

features for classification?

It is interesting to learn whether or not a limit exists in the relationship be-

tween activity classification success-rates and window length.
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Combined Feature Vector

merge

Locations monitors
were mounted on:

Raw data from
source at time t
and of length l:

Either Bao and
Intille (2004)’s
or Kwapisz et al.
(2011)’s feature-
sets extracted from
each monitor and
each source:

Resultant feature
vector:

Figure 4.9: Overview of process taken to extract feature vector from time t and length
l.

If a system could sample indefinitely, is there a period after which further

sampling has no impact on the success-rate of the system?

Methodology

Features were extracted from accelerations, rotational-velocities and orientations.

The monitors mounted on the thigh, chest and dominant wrist were used. This

allows all data from all activities (including running and walking) to be included.

The features of all the three sources from all three monitors were then combined

such that the feature-vectors extracted from accelerations, rotational-velocities and

orientations at time t and length l were merged together to form one feature-vector.

Figure 4.9 illustrates the feature extraction process.

As observed in section 4.2, changes in downsampling frequency can cause fluctu-
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ations in the success-rate. Hence, the procedure was repeated for sampling frequen-

cies in the range [121Hz,128Hz] in steps of 1Hz. The confusion matrixes were then

averaged resulting in a mean confusion matrix. The range [121Hz,128Hz] was se-

lected because an analysis of the results obtained in section 4.2 showed that success-

rates obtained from downsampled frequencies in this range are generally constant

although they showed minor fluctuations for all activities.

The procedure was repeated for window sizes of 1 second to 20 seconds in steps

of one second. The windows were shifted by a 1 second period between one window

and the next.

Algorithm 4 further elaborates this procedure.

Features were then extracted as explained in the respective feature-set’s paper

(Bao and Intille (2004) and Kwapisz et al. (2011), refer to section 3.5 for more

details). In addition, a Hamming window was applied to each window before ex-

tracting the frequency-domain features in Bao and Intille’s feature set.

Results

The results obtained in algorithm 4 are divided into sets. Each result set is obtained

from classifying one fold, using 10-fold cross-validation, of feature-vectors extracted

using either one of the studied feature-sets and using a single window length in the

range of [1,20] seconds.

A one-sample two-tailed t-test of the activity classification result sets found

each of the classification result sets to be significantly higher than chance (df=79,

p > .05).

The result sets as a function of window length are presented in figure 4.10 for

the two feature-sets studied.
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Algorithm 4 Procedure of testing the impact of window lengths on success-rates.
procedure ImpactOfWindowLength

for all L ∈ [1s, 20s] in steps of 1s do
ResultSet ← [] � Initialise empty list to hold obtained

confusion matrixes.
for all Fs ∈ [121Hz, 128Hz] in steps of 1Hz do

D ← [] � Initialise feature vector data set.

for all A ∈ Activities do
for all S ∈ Subjects who did activity do

N ← duration of subject S doing activity A
for all t ∈ [0, N) in steps of 1s do

Extract feature vector V from data
of length L starting from time t
from source S of monitor M
on subject S doing activity A
downsampled to frequency Fs

Add V to D
end for

end for
end for

F ← Split D into 10 folds
for all f ∈ F do

TrainingSet ← all folds except for f
Train J48 classifier with TrainingSet
Test with f
Add success-rate to ResultSet

end for
end for

Store ResultSet for further analysis.
end for

end procedure



104 Chapter 4. Data capture and data processing parameters

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

70

75

80

85

90

95

100

Window Length (seconds)

A
ct

iv
it
y

cl
as

si
fic

at
io

n
su

cc
es

s
ra

te
(%

)

Bao and Intille (2004)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

70

75

80

85

90

95

100

Window Length (seconds)

A
ct

iv
it
y

cl
as

si
fic

at
io

n
su

cc
es

s
ra

te
(%

)

Kwapisz et al. (2011)

Figure 4.10: Activity classification success-rates obtained, presented as a function of
window length for the two studied feature-sets: Bao and Intille (up) and Kwapisz et al.

(down).
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Figure 4.11: Mean success rates as obtained from algorithm 4 as a function of window
length for the two studied feature-sets: Bao and Intille (up) and Kwapisz et al. (down).
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Figure 4.12: Derivative of mean success rates as obtained from algorithm 4 as a
function of window length for the two studied feature-sets: Bao and Intille and Kwapisz
et al. Sum of exponential equations have been fitted to show trends in the derivative
of mean success-rates as functions of window length for the two studied feature-sets.
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What is the relationship between success-rates and window length?

To answer this research question, the mean activity classification success-rates ob-

tained from each result set as a function of window lengths were computed. The

mean classification success-rates are presented in figure 4.11. Mean success-rates

obtained from activity classification using feature-vectors extracted using Bao and

Intille’s feature-set as well as results from activity classification using feature vectors

extracted using Kwapisz et al.’s feature-set are given.

From figure 4.11 we can observe that for both feature-sets studied, the mean

classification success rates increase with increase in window length across the entire

range of window lengths tested. However, the derivative of mean success rates

decreases with increasing window-length for both feature-sets studied within the

range of window lengths tested.

Figure 4.12 shows the derivative of mean success-rates as a function of window

length for both feature-sets studied. From the figure, we can notice that the dif-

ferential of the mean success rates is not linear with reference to window lengths.

The change in success-rate is larger for smaller window lengths and smaller for

larger window lengths. The trends observed in figure 4.12 suggest that the rela-

tionships between classification success-rates and window length are logarithmic for

both feature-sets.

Figure 4.13 shows the mean success-rates plotted as a function of the natural

logarithm of window length. From the figure, we can observe that the relationship

between the success-rate and the logarithm of the window length is close to linear

within the range of window lengths tested.

Fitting a linear model to the observed mean success-rates as a function loga-

rithmic window lengths results in the linear models are given as equation 4.2 and

equation 4.3 for Bao and Intille’s feature-set and Kwapisz et al.’s feature-set respec-

tively. The goodness of fit values of the two models are given in table 4.1.
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Figure 4.13: Mean success-rates of each result set obtained from algorithm 4 as a
function of the natural logarithm of window lengths for the two studied feature-sets:
Bao and Intille (up) and Kwapisz et al (down). Fitted linear models of the data are

also shown in the charts. Any logarithmic base results in a similar trend, however, the
scale of the x-axis changes accordingly.
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Table 4.1: Goodness of fit values for linear model fitted on the mean success-rates as
a function of logarithmic window length for the two feature-sets studied.

Goodness of fit value Bao and Intille (2004) Kwapisz et al. (2011)

Sum of Square Error 10.63 7.945

R2 0.9869 0.9918

Adjusted R2 0.9861 0.9914

Root Mean Square Error 0.7683 0.6644
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Figure 4.14: Residuals of fitting a linear model onto the mean success-rates as a
function of the natural logarithm of window lengths as shown in figure 4.13 for the two

studied feature-sets: Bao and Intille (up) and Kwapisz et al (down).

Success-ratebao ≈ 73.78 + 7.975ln(Window Length), (4.2)

Success-ratekwapisz ≈ 71.06 + 8.765ln(Window Length), (4.3)

where, Window Length ∈ [1, 20]

The residuals of fitting linear models onto the data are shown in figure 4.14.

From the residuals scatter plot, we can observe that the residual obtained af-

ter fitting the linear model on mean success-rate results obtained from Kwapisz et

al.’s feature-set have a sinusoidal pattern. This suggests we can further improve
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the model fitted on Kwapisz et al.’s feature-set result sets to reduce the difference

between the model and the observed data by including sine curves into the model.

However, the sinusoidal pattern is not observed in residuals obtained after fitting

the linear model on mean success-rate results obtained from Bao and Intille’s feature-

set. This indicates that the sinusoidal pattern observed might not be generalisable

to the results obtained from other feature-sets.

Hence, within the range of window lengths tested, the activity classification

success-rates obtained can be estimated as a linear function of logarithmic length of

windows used to extract feature-vectors for classification. In other words, a classic

asymptotic or diminishing-returns function.

Is there a window length above which success-rates are not affected by

window length?

To address this research question, the relationships estimated in the previous re-

search question need to be extrapolated past the range of window lengths tested.

To do this, it is important that we analyse the change in mean success-rate with

change in logarithmic window length (i.e. the derivative of mean success-rate with

respect to logarithmic window length).

The analysis presented in this only theoretical and purely based on the relation-

ships observed so far. In practice, other factors that have not been considered in this

analysis might impact the activity classification success-rates obtained for window

lengths outside the tested range.

The plots of the derivative of mean success-rate with respect to logarithmic

window length are given in 4.15 for both Bao and Intille’s feature-set and Kwapisz

et al.’s feature-set.

In the figures, we can observe the decay of the derivative of mean success-rate

with respect to logarithmic window length for both feature-sets. We can fit equa-
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Figure 4.15: Derivative of mean success-rates of each result set obtained from
algorithm 4 as a function of window length for the two studied feature-sets: Bao and
Intille (up) and Kwapisz et al (down). Two equations have been fitted so as to show
the trend in the obtained mean success-rates as a function of the natural logarithm of

window lengths.
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tions composed of a constant term and a term that is inversely proportional to the

logarithm of the window length to the data. The equation is given as 4.4.

ΔSuccessRate

Δln(WindowLength)
≈ A

ln(Window Length)
+B, (4.4)

where A and B are constants

and Window Length ∈ (1, 20]

After finding the best values for A and B using Non-linear Least Squares method,

equation 4.5 is found to approximate the derivative of success-rates with respect to

logarithmic window length for Bao and Intille’s feature-set, while equation 4.6 is

found to approximate the derivative of success-rates with respect to logarithmic

window length for Kwapisz et al.’s feature-set. Equation 4.5 and equation 4.6 are

plotted in figure 4.15.

ΔSuccessRatebao
Δln(WindowLength)

≈ 73.63

ln(Window Length)
+ 8.03, (4.5)

ΔSuccessRatekwapisz

Δln(WindowLength)
≈ 70.43

ln(Window Length)
+ 9.083, (4.6)

By extrapolating the two equations past the tested range of window lengths, we

can observe that the limit of equation 4.5 is the constant term 8.03 as the window

length approaches infinity. Similarly, the limit of equation 4.6 is the constant 9.083

as the the window length approaches infinity.

Hence, the two equations are always greater than zero. This indicates that the

derivative of the mean success-rate as a function of logarithmic window will always

be greater than zero but will continue to decrease as the window length increases.

However, due to the constant term, the mean success-rate is likely to increase

till 100%, at which point, no further increase in window length would result to any

further increase in success-rate. This is based on the model observed. The model
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Table 4.2: Goodness of fit values for the refined model of the mean success-rates as a
function of logarithmic window length for the two feature-sets studied.

Goodness of fit value Bao and Intille (2004) Kwapisz et al. (2011)

Sum of Square Error 8.771 2.836

R2 0.9834 0.9954

Adjusted R2 0.9813 0.9948

Root Mean Square Error 0.7404 0.421

observed is not 100% accurate and hence the window length obtained is highly

theoretical.

To estimate the window length at which the mean success-rates intersect with

100%, the models estimated in the previous section need to be refined to include the

model observed to fit the derivative. The models estimated in the previous section

were linear and hence only reflected the constant term observed in the derivative.

The integral of equation 4.4 takes the form:

A ln(x) +Bx+ C, x = ln(Window Length) (4.7)

Non-linear Least Squares method was used again to find the values of A, B and

C for the two feature-sets studied. The final models of success-rates as a function of

window lengths are presented as equation 4.8 for Bao and Intille’s feature-set and

equation 4.9 for Kwapisz et al.’s feature-set. Goodness of fit values are shown in

table 4.2.

Success-ratebao ≈ 3.461 ln(x) + 6.161x+ 75.22 (4.8)

Success-ratekwapisz ≈ 6.696 ln(x) + 4.969x+ 74.54 (4.9)

where, x = ln(Window Length)

Window Length ∈ [2, 20]

Using the refined models and extrapolating them past the range of window

lengths tested, a success-rate of 100% is estimated to be achievable using window
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Figure 4.16: Residuals of fitting the refined models given in equation 4.8 and
equation 4.9 onto the mean success-rates as a function of the natural logarithm of

window lengths for the two studied feature-sets: Bao and Intille (up) and Kwapisz et al
(down).

lengths of 28.33 seconds or higher using Bao and Intille’s feature-set, and 31.61

seconds or higher using Kwapisz et al.’s feature-set. Figure 4.17 illustrates the esti-

mated relationships between success-rate and window length when extrapolated to

intersect with 100% success.

Discussion

In this section, the impact of window length on activity classification success-rates

has been studied. Activity classification has been performed on all gathered activi-

ties using two different feature-sets using window lengths of 1 second to 20 seconds

in increments of 1 second.

A linear relationship was found to exist between the mean success-rates obtained

and the logarithm of the window length used to extract features, for both feature-

sets, within the range of window lengths tested.

This relationship between success-rates obtained and the window length used to

extract the features can be explained in terms of information captured within each
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Figure 4.17: The estimated models between classification success-rate and window
length for success-rates obtained using feature-vectors extracted using Bao and Intille’s

feature-set and Kwapisz et al.’s feature-set, extrapolated to intersect with 100%
success-rate. The intersecting points are estimated to be 28.33 seconds for Bao and
Intille’s feature-set’s relationship, and 31.61 seconds for Kwapisz et al.’s feature-set’s

relationship.

window.

Body motions display randomness that results in differences in similar short

repeated motions (e.g. between one step and the next while walking). These ran-

dom motions add variation to the motion signatures and hence add variation to

the distributions of the feature-sets used to characterise the motions. This source

of variability in the data can be termed as inter-repetition variability. Statistics

calculated from each window incur sampling error which decreases with increase in

the length of the window.

However, as the window length increases, the likelihood of encountering new

information that is not already encompassed within the window grows lesser with

increase in window length. Hence, larger increments of window length are required

to achieve similar increments in success-rates at higher success-rates than at lower

success-rates. This is a diminishing returns relationship between success-rates and
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window length.

The diminishing returns relationship is also evidenced by the model observed to

fit the derivative of mean success-rates with respect to the logarithm of the window

length. The model of the derivative is observed to contain a constant term and a

term that is inversely proportional to the window length.

Given a long enough duration, the sampling error would reduce to zero. When

the model of success-rates to logarithmic window lengths was refined to include

observations made about its derivative, and extrapolated past the range of window

lengths tested, it was estimated to intersect with 100% success-rate at 28.33 seconds

Bao and Intille’s feature-set, and 31.61 seconds for Kwapisz et al.’s feature-set.

These intersections are, of course, only theoretical.

While the research has shown that, within the range of tested window lengths,

increasing window lengths results in an increase in activity classification success-

rate, other factors also have to be considered while selecting an appropriate window

length. These factors include, but are not limited to:

1. The response rate required by the activity classification system. Increasing the

window length increases the success-rate, but also means a longer duration is

taken between starting sampling and producing the activity classification as

well as in determining when one activity transitions to another.

2. Power consumption and processing requirements increase with increase in win-

dow length. Sampling longer windows means the sensor operates for a longer

duration. It also means more data needs processing. The additional data

processing consumes more power, CPU time and memory. All of which might

be critical in a wearable system.
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4.4 Impact of sampling window overlap on activity

classification accuracy

In this section, the impact of the window overlap, or the window shift, on the success

rate is studied. A larger overlap between sampling windows impacts the power

consumption of the system since this leads to more windows for feature-extraction.

However, a larger overlap between windows also leads to more data to train and

test the classifier with. It is unclear whether the extra data improves classification

or not.

We are interested in answering the following research questions:

1. Does the overlap size of the windows used to extract features for

classification impact activity classification success-rates?

In this question, we are interested to learn whether or not window overlaps

have any impact on activity classification success-rates. It is unclear whether

changes in window overlap impact activity classification success-rates or not.

2. If window overlap size does impact activity classification success-

rates, what is the relationship between activity classification success-

rates and overlap size of the windows used to extract features for

classification?

If window overlaps are found to impact success-rates, a better understanding

of the relationship could provide activity classification researchers a better un-

derstanding while selecting the window overlap to use while developing models

and training activity classifiers.

3. Is there a relationship between variance in activity classification

success-rates and window overlap size?

In this question, we are interested in learning whether window overlaps impact

the variance in activity classification success-rates. If they do, we are inter-
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ested in characterising the relationship between window overlap and resultant

activity classification success-rates variance.

Methodology

Features were extracted from accelerations, rotational-velocities and orientations.

The monitors mounted on the thigh, chest and dominant wrist were used. This

allows all data from all activities (including running and walking) to be included.

The features of all the three sources from all three monitors were then combined

such that the feature-vectors extracted from accelerations, rotational-velocities and

orientations at time t and length l were merged together to form one feature-vector.

The feature-vectors were merged as was shown in section 4.3 which was illustrated

using figure 4.9.

As observed in section 4.2, changes in downsampling frequency impact the

success-rate. Hence, the procedure was repeated for sampling frequencies in the

range [121Hz,128Hz] in steps of 1Hz. The confusion matrixes were then averaged

resulting in a mean confusion matrix. The range [121Hz,128Hz] was selected because

an analysis of the results obtained in section 4.2 showed that success-rates obtained

from downsampled frequencies in this range are generally constant although they

fluctuated for all activities.

A window size of 10 seconds was used. The procedure was repeated for window

shifts of 1 second to 10 seconds (i.e. 90% overlap down to 0% overlap) in intervals

of 1 second.

Window lengths of 10 seconds were used because 10 seconds was observed to

be the maximum window length used in activity recognition literature, having only

been used by Kwapisz et al. (2011) and Patel et al. (2009). In the analysis of activity

recognition literature performed by Lockhart and Weiss (Lockhart & Weiss, 2014),

window lengths reported to have been used in activity recognition literature were
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observed to have a median of 3 seconds and the maximum window length they

observed was 10 seconds.

In addition, in the analysis conducted in section 4.3, in the analysis of change of

success-rate as a function of change of window length, it was observed that window

lengths of 10 seconds are in the ’plateau region’ of the relationship.

Features were then extracted as explained in the respective feature-set’s paper

(Bao and Intille (2004) and Kwapisz et al. (2011), refer to section 3.5 for more

details). In addition, a Hamming window was applied to each window before ex-

tracting the frequency-domain features in Bao and Intille’s feature set.

Both 10-fold cross-validation and remove-one-subject cross-validation were used.

Algorithm 5 further elaborates on this procedure.

Results

The results obtained using algorithm 5 are divided into sets. Each result set is

obtained from classifying one fold, either using 10-fold cross-validation or remove-

one-subject cross-validation, of feature-vectors extracted using either one of the

studied feature-sets and using a single window overlap in the range [0%,90%].

A one-sample two-tailed t-test of the activity classification result sets found

each of the classification result sets to be significantly higher than chance for 10-fold

cross-validation (df=79, p > .05) as well as for remove-one-subject cross-validation

(df=143, p > .05).

The result sets of 10-fold cross-validation as a function of window overlap are

presented in figure 4.18 for the two feature-sets studied.

Similarly, the result sets of remove-one-subject cross-validation as a function of

window overlap are presented in figure 4.19 for the two feature-sets studied.
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Algorithm 5 Procedure of testing the impact of window overlaps on success-rates.
procedure ImpactOfWindowOverlaps

for all Overlap ∈ [0%,90%] in steps of 10% do
TenFoldResultSet ← [] � Initialise empty list to hold obtained confusion

matrixes from 10-fold cross-validation.
Rem1SubResultSet ← [] � Initialise empty list to hold obtained confu-

sion matrixes from remove-one-subject cross-
validation.

for all Fs ∈ [121Hz, 128Hz] in steps of 1Hz do
D ← [] � Initialise feature vector data set.

for all A ∈ Activities do
for all S ∈ Subjects who did activity do

N ← duration of subject S doing activity A
for all t ∈ [0, N) in steps of (1− Overlap

100
)× 10 seconds do

Extract feature vector V from data
of length 10 seconds starting from time t
from source S of monitor M
on subject S doing activity A
downsampled to frequency Fs

Add V to D
end for

end for
end for

� Perform 10-fold cross-validation on feature-
vectors in D.

F ← Split D into 10 folds
for all f ∈ F do

TrainingSet ← all folds except for f
Train J48 classifier with TrainingSet
Test with f
Add success-rate to TenFoldResultSet

end for
� Perform remove-one-subject cross-validation on

feature-vectors in D.
F ← Split D into subject-based folds
for all f ∈ F do

TrainingSet ← all folds except for f
Train J48 classifier with TrainingSet
Test with f
Add success-rate to Rem1SubResultSet

end for
end for

Store TenFoldResultSet for further analysis.
Store Rem1SubResultSet for further analysis.

end for
end procedure
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Figure 4.18: 10-fold cross-validation activity classification success-rates obtained,
presented as a function of window overlap for the two studied feature-sets: Bao and

Intille (upper) and Kwapisz et al. (lower).
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Figure 4.19: Remove-one-subject cross-validation activity classification success-rates
obtained, presented as a function of window overlap for the two studied feature-sets:

Bao and Intille (upper) and Kwapisz et al. (lower).
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Does the window overlap size used to extract features for classification

impact activity classification success-rates?

A two-tailed two-sample T-Test with α = 0.05 between 10-fold cross-validation

success-rates obtained using a window overlap of 0% and those obtained using a

window overlap of 90% rejected the null hypothesis that the two groups of success-

rates were sampled from normal distributions of equal means but unknown variances

(t=-86.04, df=158, p > 0.05).

Similar tests were run between all possible pairs of 10-fold cross-validation result

sets obtained using Bao and Intille’s feature-set and between all possible pairs of 10-

fold cross-validation result sets obtained using Kwapisz et al.’s feature-set. All the

tests except for one rejected the null hypothesis that the result sets were random

samples drawn from normal distributions of equal means and unknown variance.

The test that rejected the null hypothesis was between success-rates obtained using

a window overlap of 20% and those obtained using a window overlap of 30% using

Bao and Intille’s feature-set.

This means that all except one of the result sets obtained using 10-fold cross-

validation from the same feature-set but different window overlaps are not statis-

tically similar, and hence shows that window overlaps have an impact on activity

classification success-rates in almost all of the cases.

Two-tailed two-sample T-Tests with α = 0.05 were also run between all pos-

sible pairs of remove-one-subject cross-validation result sets obtained using Bao

and Intille’s feature-set and between all possible pairs of remove-one-subject cross-

validation result sets obtained using Kwapisz et al.’s feature-set. All the tests except

for one failed to reject the null hypothesis that the result sets were random samples

drawn from normal distributions of equal means and unknown variance. The test

that failed to reject the null hypothesis was between success-rates obtained using

a window overlap of 30% and those obtained using a window overlap of 90% using
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Figure 4.20: Box plot of p-values obtained from two-tailed two-sample t-Tests
between all possible pairs of result sets obtained using algorithm 5 for the two studied
feature-sets (Bao and Intille’s and Kwapisz et al.’s feature-sets) and for 10-fold and
remove-one-subject cross-validation. The two-tailed two-sample t-Tests test the null

hypothesis that pairs of result sets obtained from the same feature-set and tested using
the same cross-validation method but differing in window overlap come from

independent random samples from normal distributions with equal means and equal
but unknown variances. At the preselected significance level of 0.05, a p-value of 0.05

or below results in the rejection of the null hypothesis, while a p-value above 0.05
results in the failure to reject the null hypothesis.

Bao and Intille’s feature-set.

This means that, while there is a chance that window overlaps do impact success-

rates while using remove-one-subject cross-validation, the likelihood is low in almost

all cases.

The two-tailed two-sample T-Test results are summarised in figure 4.20.



124 Chapter 4. Data capture and data processing parameters

If window overlap size does impact activity classification success-rates,

what is the relationship between activity classification success-rates and

overlap size of the windows used to extract features for classification?

To answer this question, the analysis will focus on results of 10-fold cross-validation,

since the chance of window overlaps impacting results of remove-one-subject cross-

validation were found to be extremely low in the previous research question.

Figure 4.21 shows the mean success-rate as a function of window overlap using

10-fold and remove-one-subject cross-validation for the two studied feature-sets: Bao

and Intille and Kwapisz et al.

For 10-fold cross-validation a clear pattern can be observed while no apparent

pattern is observable in the remove-one-subject cross-validation mean success-rates.

The pattern observed in the 10-fold cross-validation results can be modelled as

a power function with a constant offset in the form:

mean success-rate ≈ A+B (window overlap)C (4.10)

where A, B and C are constants.

Fitting the equation using Non-linear Least Squares method resulted in equa-

tion 4.11 and equation 4.12 for results obtained from Bao and Intille’s feature-set

and results obtained from Kwapisz et al.’s feature-set respectively. The goodness of

fit values of the two equations to the observed success-rates are given in table 4.3

while the residuals are given in figure 4.22.

Fractional window overlaps are used instead of percentages in equation 4.11 and

equation 4.12 because using percentages results in small B values.

mean success-ratebao ≈ 69.53 + 28.74 (fractional window overlap)2.309 (4.11)

mean success-ratekwapisz ≈ 67.07 + 29.98 (fractional window overlap)2.258 (4.12)

The residuals shown in figure 4.22 can be observed to be highly correlated.

The computed correlation coefficient of the residuals obtained from the two studied
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Figure 4.21: 10-fold (upper) and remove-one-subject (lower) cross-validation mean
success-rates as computed using algorithm 5 as a function of percentage window

overlap.
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Table 4.3: Goodness of fit values for fitting equation 4.11 and equation 4.12 on mean
success-rates as a function of window overlap for the two feature-sets studied.

Goodness of fit value Bao and Intille (2004) Kwapisz et al. (2011)

Sum of Square Error 4.321 2.412

R2 0.9923 0.9961

Adjusted R2 0.9901 0.995

Root Mean Square Error 0.7856 0.587
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Figure 4.22: Residuals of fitting equation 4.11 and equation 4.12 on mean
success-rates as a function of distance between windows for the two feature-sets

studied.

feature-sets is 0.8912. This indicates that it is possible to further refine the models

so as to cater for the observed common pattern between the residuals of the two

feature-sets. However, from the data, it is unclear what equation can be used to

model the residuals. In addition, the residuals are small (with a range of less than

2%), hence the error introduced to the model is also low.

From equation 4.11 and equation 4.12, we can say that the mean activity clas-

sification success-rates obtained using 10-fold cross-validation are proportional to

window overlap raised to a constant power.

Alternatively, we can model the observed mean success-rate as a function of
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Figure 4.23: 10-fold cross-validation mean success-rates as computed using
algorithm 5 as a function of logarithmic distance between windows for the two studied

feature-sets Bao and Intille and Kwapisz et al.

logarithmic distance between windows. This approach worked well for section 4.3.

10-fold cross-validation mean success-rates as a function logarithmic distance be-

tween windows are shown in figure 4.23.

From figure 4.23, the mean success-rates as a function of logarithmic distance

between windows are observed to approximate a linear relationship for both studied

feature-sets. Equation 4.13 and equation 4.14 were found to be the best fitting

linear equations with respect to the mean success-rates as a function of logarithmic

distance between windows.

mean success-ratebao ≈ 93.06− 10.74 ln(window shift) (4.13)

mean success-ratekwapisz ≈ 91.83− 11.26 ln(window shift) (4.14)

Goodness of fit values of the two equations on the data are shown in table 4.4.

Residuals of fitting the two equations on the data are shown in figure 4.24.

Similar to the residuals of equation 4.11 and equation 4.11 shown in figure 4.22,

the residuals equation 4.13 and equation 4.14 shown in figure 4.24 are observed to
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Figure 4.24: Residuals of fitting equation 4.13 and equation 4.14 on mean
success-rates as a function of logarithmic distance between windows for the two

feature-sets studied.

be correlated. The computed correlation coefficient of the residuals obtained from

the two studied feature-sets is 0.7569.

Table 4.4: Goodness of fit values for fitting equation 4.13 and equation 4.14 on mean
success-rates as a function of logarithmic distance between windows for the two

feature-sets studied.

Goodness of fit value Bao and Intille (2004) Kwapisz et al. (2011)

Sum of Square Error 1.697 1.613

R2 0.997 0.9974

Adjusted R2 0.9966 0.997

Root Mean Square Error 0.4606 0.4491

Using the second set of equations (equation 4.13 and equation 4.14), we can

say that a linear relationship with a negative slope exists between the mean activity

classification success-rates obtained using 10-fold cross-validation and the logarithm

of the distance between windows within the tested range. Hence, an increase in

logarithmic window shift leads to a decrease in mean activity classification success-

rates within the tested range.



4.4. Impact of sampling window overlap on activity classification accuracy 129

From the goodness of fit values of the two sets of equations (compare table 4.3

to table 4.4) we can observe that the second set of equations fit the data slightly

better. In addition, the second set requires one less parameter than the first set.

Is there a relationship between variance in activity classification

success-rates and window overlap size?

Figure 4.25 shows the standard deviation of result set success-rates as a function of

window overlap using 10-fold and remove-one-subject cross-validation for the two

studied feature-sets: Bao and Intille and Kwapisz et al.

For 10-fold cross-validation a clear pattern can be observed while no apparent

pattern is observable in the remove-one-subject cross-validation standard deviation

of result set success-rates.

Two-tailed two-sample F-Tests with α = 0.05 were run between all possible pairs

of 10-fold cross-validation result sets obtained using Bao and Intille’s feature-set

and between all possible pairs of 10-fold cross-validation result sets obtained using

Kwapisz et al.’s feature-set for both 10-fold and remove-one-subject cross-validation

result sets. The results are summarised at figure 4.26.

In figure 4.26, we can observe that, for most of the result sets obtained using

remove-one-subject cross-validation, the two-tailed two-sample F-Tests failed to re-

ject the null hypothesis that result sets came from normal distributions of the same

variance. However, for most of the result sets obtained using 10-fold cross-validation

using Kwapisz et. al.’s feature-set and some of the result sets obtained using 10-fold

cross-validation using Bao and Intille’s feature-set, it rejected the null hypothesis.

Moreover, the medians of the distributions of p-values are seen to be below 0.05

for the 10-fold cross-validation result sets, and above 0.05 for the remove-one-subject

cross-validation result sets.

Hence, we can say that the likelihood that window overlaps have an impact

on the variance in remove-one-subject cross-validation activity classification results
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Figure 4.25: 10-fold (upper) and remove-one-subject (lower) cross-validation standard
deviations of result-set success-rates as computed using algorithm 5 as a function of

percentage window overlap.
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Figure 4.26: Box plot of p-values obtained from two-tailed two-sample f -Tests
between all possible pairs of result sets obtained using algorithm 5 for the two studied
feature-sets (Bao and Intille’s and Kwapisz et al.’s feature-sets) and for 10-fold and
remove-one-subject cross-validation. The two-tailed two-sample f -Tests test the null

hypothesis that pairs of result sets obtained from the same feature-set and tested using
the same cross-validation method but differing in window overlap come from normal
distributions with the same variance. At the preselected significance level of 0.05, a
p-value of 0.05 or below results in the rejection of the null hypothesis, while a p-value

above 0.05 results in the failure to reject the null hypothesis.

is negligeable, while the likelihood that window overlaps have an impact on the

variance in 10-fold cross-validation activity classification results is high.

As was observed in the previous research question, the mean success-rates could

be modelled as a function of logarithmic window shift (the distance between windows

in seconds). 10-fold cross-validation standard deviations of result set success-rates

as a function logarithmic distance between windows are shown in figure 4.23.

From figure 4.23, the standard deviations of result set success-rates as a function

of logarithmic distance between windows are observed to approximate a linear rela-

tionship for both studied feature-sets. Equation 4.15 and equation 4.16 were found
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Figure 4.27: 10-fold cross-validation standard deviations of result set success-rates as
computed using algorithm 5 as a function of logarithmic distance between windows for

the two studied feature-sets Bao and Intille and Kwapisz et al.

to be the best fitting linear equations with respect to the mean success-rates as a

function of logarithmic distance between windows.

S.D. success-ratebao ≈ 0.5766 + 0.7864 ln(window shift) (4.15)

S.D. success-ratekwapisz ≈ 0.4415 + 0.9372 ln(window shift) (4.16)

Goodness of fit values of the two equations on the data are shown in table 4.5.

Residuals of fitting the two equations on the data are shown in figure 4.28.

Table 4.5: Goodness of fit values for equation 4.13 and equation 4.14 on the standard
deviations of result set success-rates as a function of logarithmic distance between

windows for the two feature-sets studied.

Goodness of fit value Bao and Intille (2004) Kwapisz et al. (2011)

Sum of Square Error 0.1076 0.2653

R2 0.9653 0.9412

Adjusted R2 0.9609 0.9339

Root Mean Square Error 0.116 0.1821
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Figure 4.28: Residuals of fitting equation 4.15 and equation 4.16 on the standard
deviations of result set success-rates as a function of logarithmic distance between

windows for the two feature-sets studied.

From equation 4.15 and equation 4.16, we can say that a linear relationship exists

between the standard deviation of activity classification success-rates obtained using

10-fold cross-validation and the logarithm of the distance between windows within

the tested range. Hence, an increase in logarithmic window shift leads to an increase

in the standard deviation of activity classification success-rates within the tested

range.

Discussion

In this section, the impact of window overlaps on activity classification success-

rates has been studied. Activity classification has been performed on all gathered

activities using two different feature-sets using window overlaps of 0% to 90% in

increments of 10% and using a window length of 10 seconds.

The likelihood of window overlaps impacting results from remove-one-subject

cross-validation were found to be low. However, the likelihood of impacting results

from 10-fold cross-validation was found to be high.
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For 10-fold cross-validation, the relationships between mean and standard de-

viations of success-rates were found to be linear with reference to the logarithm of

the distance between windows. However, increases in logarithmic distance between

windows lead to a decrease in mean success-rates and an increase in the standard

deviation of success-rates.

In other words, increasing window overlap leads to both a higher activity classi-

fication success rate, and lower variability in the success rates.

One possible explanation of this observed behaviour is similarities in the statis-

tical properties of signals captured by windows are highest when windows are close

and decrease as windows get further apart.

Given a set of windows W from activity A from which feature-vectors in the

testing set have been extracted, feature-vectors in the training set that have been

extracted from windows that originate from near the W windows, result in an in-

creased similarity between the statistical properties of the training set model of A

and the statistical properties of the testing set model of A.

The increased similarity not only results in higher success-rates, but also lower

variance in the results. The lower variability is caused by the likelihood of selecting

the correct activity when the testing model of the activity and the training model

of the activity are similar. The variability increases as the similarity between the

training model and the testing model decreases. Since similarity decreases with

increase in the distance between windows used to extract feature-vectors in the

training model and the testing model.

As an extreme example if the same feature-vectors are used in both the training

set and testing testing set we would expect a very high success-rate.

While not extreme, another notable example is when no feature-vectors in the

training set come from the same subject as feature-vectors in the testing set. In

which case, window overlaps are observed to have little to no impact on success-

rates.
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It should be noted that the mean success-rate obtained while performing 10-fold

cross-validation with no window overlap is higher than the success-rate obtained

while performing remove-one-subject cross-validation. In addition, the standard

deviation of success-rates obtained while performing 10-fold cross-validation with no

window overlap is lower than the standard deviation of success-rates obtained while

performing remove-one-subject cross-validation. This implies that while window

overlaps result in an increase in success-rates, the presence of the subject’s data in

both the training set and the testing set also results in increased success-rates.

4.5 Conclusion

In this chapter minimum sampling frequencies, window length and window overlap

were studied as to their impact upon activity classification.

First, the MES frequency was defined then extracted based upon success-rates

obtained by classifying data downsampled to frequencies in the range of [1Hz,128Hz]

in intervals of 1Hz. The minimum sampling requirements of accelerations, rotational

velocities and orientations were then compared by comparing the MES frequencies

extracted based upon success-rates obtained from each of the three sources.

It was found that orientations have the least sampling requirements and rota-

tional velocities have the highest sampling requirements of the three sources. How-

ever, the differences in sampling requirements, although statistically significant, were

found to be small. The largest average difference was observed to be 1.43Hz which

was between MES frequencies extracted from classification results of feature vectors

extracted from rotational velocities and from classification results of feature vectors

extracted from orientations using Kwapisz et al.’s feature-set.

Next, the relationship of length of windows used to extract feature-vectors and

the resultant activity classification success-rates was studied. A linear relationship

is found between the logarithmic window lengths and the mean resultant activity
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classification success-rates within the range of window lengths tested. An increase in

logarithmic window length results in an increase in the mean activity classification

success-rate.

The derivative of the mean success-rates was then studied. The derivative was

found to be inversely proportional to the logarithmic window length. The model

between mean success-rates and window length was then refined to include this

component, and the refined model extrapolated to find the window length at which

the models’ theoretical prediction would intersect with 100% success-rate. These

window lengths were found to be 28.33 seconds for Bao and Intille’s feature-set and

31.61 seconds for Kwapisz et al.’s feature-set.

In the discussion section, an explanation for the observed relationship between

window lengths and the resultant success-rates was offered. The explanation offered

is based on sampling error. Smaller windows have lesser samples hence are impacted

with higher sampling errors leading to greater deviations from the population cen-

troid of the captured statistical properties.

Finally, the impact of window overlaps on the resultant mean activity classifi-

cation success-rates was ascertained. The research found that it is unlikely that

window overlaps impact success-rates when remove-one-subject cross-validation is

performed. However, it is likely that window overlaps impact mean success-rates

when 10-fold cross-validation is performed. The relationship between window over-

laps and activity classification success-rates was modelled. The research found that

the data fitted a linear relationship between mean success-rates obtained and the

logarithmic distance between windows (window shift) for the window shifts studied.

An increase in logarithmic window shift results in a decrease in mean success-rates.

The impact of window overlaps on the resultant variance in activity classifica-

tion success-rates was also studied. Similar to the impact on mean success-rates,

the research found that it is unlikely that window overlaps impact the variance in

success-rates when remove-one-subject cross-validation is performed. However, it
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is likely that window overlaps impact the variance in success-rates when 10-fold

cross-validation is performed. The relationship between window overlaps and the

standard deviation of activity classification success-rates was then modelled. The

research found that the data fitted a linear relationship between the standard de-

viations of success-rates obtained and the logarithmic distance between windows

(window shift) for the window shifts studied. An increase in logarithmic window

shift results in an increase in the standard deviation of success-rates.

In the discussion section, an explanation for the observed relationship between

window overlaps and the mean and standard deviation of the resultant success-rates

is offered. The explanation offered is based on the similarity of the training model

and the testing model. The closer the sliding windows are to each other, the more

similar the data is that goes to creating the training model and the testing model,

and hence the more similar the training model is to the testing model. The extreme

example of this behaviour are when the same data is used to create both the training

and testing models. A notable example is when data from any subject used in the

testing set is excluded from the training set. In that case, it is found that window

overlaps are unlikely to impact success-rates.

Hence the findings in this chapter can be summarised as follows:

1. Orientations require the lowest sampling frequencies out of the three studied

sources while rotational velocities require the highest sampling frequencies –

the difference however, is small such that it is unlikely to impact data process-

ing or power consumption.

2. There is a depreciating-returns relationship between the length of the win-

dows and activity classification success-rates. This means that longer window

lengths always result in higher activity classification success-rates. However,

longer window length result in smaller increments in activity classification

success-rates.

3. Larger window overlaps result in higher activity classification success-rates
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that have lower variance when performing 10-fold cross-validation. However,

no impact was observed when performing remove-one-subject cross-validation.

The impact observed while using 10-fold cross-validation is likely to be due

to similar data existing in both the training set and the testing set (due to

the overlaps) and hence increasing the resulting activity classification success-

rates.



5
Analysis of the impact of feature-sets,

type, number and location of sensors on

activity classification accuracy

5.1 Introduction

In this chapter, the relationship between activity classification performance and

the different possible choices for feature-sets, monitor configurations used in data

gathering, sources, and body-locations are studied.

Further analysis of the activity classification performance at a per-activity level

including which activities are most easily identifiable and which activities are most

confusable with one another, and a comparison of success-rates obtained using

10-fold cross-validation to success-rates obtained using remove-one-subject cross-

validation, can be found in chapter 6.

In section 5.3, the activity classification success-rates of the two feature-sets

studied, and of the two monitor setups used in data gathering, are studied. This

analysis puts into context results obtained in other sections in this chapter and in

the rest of the thesis.

In section 5.4, the success-rates obtained when performing activity recognition

using accelerations only, rotational velocities only, and orientations only are com-

pared to each other, and to the success-rates obtained when using all three together.

In section 5.5, the success-rates obtained when performing activity recognition

139
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using data captured from each body-location are compared. From the analysis,

the body-locations are ranked from the body-location that results in the highest

success-rates to the body-location that results in the lowest success-rates.

Finally, in section 5.6, success-rates obtained from data captured from different

sets of body-locations are compared to each other. The particular combination of

body-locations that results in the best performance for a given number of different

body-locations are computed. From the success-rates obtained, the relationship of

success-rates as a function of number of body-locations monitored is hypothesised.

The chapter is divided into sections. Each section contains research questions

dealing with a specific area of interest. Each section begins with a discussion on

the importance of studies on the area of interest; research questions in the area of

interest are then posed together with reasons why we wish to attempt to answer

these particular questions; a methodology of answering the research questions is

given; the results of the analysis are then provided and illustrated; and finally, the

conclusions and implications of the result findings are discussed. At the end of the

chapter, the analysis, findings and implications within findings of the chapter are

summarised.

5.2 Overall Methodology

Although the methodology used to answer each question differs slightly, algorithm 6

is a common component used by all methodologies. Algorithm 6 summarises the

preprocessing, feature-extraction and classification performed to obtain activity clas-

sification results using the feature-set FeatureSet, all activities in the set Activities,

all sources in the set Sources and all monitors in the set Monitors.

Window lengths of 10 seconds were used because 10 seconds was observed to

be the maximum window length used in the current activity recognition literature,

having only been used by Kwapisz et al. (2011) and Patel et al. (2009). In the anal-
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ysis of activity recognition literature performed by Lockhart and Weiss (Lockhart

& Weiss, 2014), window lengths reported to have been used in activity recognition

literature were observed to have a median of 3 seconds and the maximum window

length they observed was 10 seconds.

A 50% window overlap was used because it was observed that 50% window

overlaps are common within the literature review having been used by Bao and

Intille (2004); Figo et al. (2010); He et al. (2008); Krishnan and Panchanathan

(2008); Kunze et al. (2005); Preece, Goulermas, Kenney, and Howard (2009); Ravi

et al. (2005); Shoaib et al. (2014) and Sun et al. (2010). However, other window

overlaps also exist in the literature review including: no overlap ((Kwapisz et al.,

2011)), 20% ((Reiss, 2014)), 25% overlap ((Henpraserttae et al., 2011)), 33% overlap

((Lester et al., 2005)).

The next sections provide different parameters and use the results obtained from

algorithm 6 to answer the research questions in this chapter.
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Algorithm 6 Perform activity classification using the feature-set FeatureSet, all
activities in the set Activities, all sources in the set Sources and all monitors in the
set Monitors and return result sets obtained from 10-fold cross-validation.

procedure TestConfig(FeatureSet,Activities,Sources,Monitors)
ResultSet ← [] � Initialise empty list to hold obtained

confusion matrixes.
for all Fs ∈ [121Hz, 128Hz] in steps of 1Hz do

D ← [] � Initialise feature-vector data set.

for all A ∈ Activities do
for all Sub ∈ Subjects who did activity A do

N ← duration of subject S doing activity A
for all t ∈ [0, N) in steps of 5s do

W ← [] � Initialise empty feature-vector.
for all M ∈ Monitors do

for all Src ∈ Sources do
Extract feature vector V from data

of length L starting from time t
from source Src of monitor M
on subject Sub doing activity A
downsampled to frequency Fs
using feature-set FeatureSet

end for
Append V to W

end for
Add W to D

end for
end for

end for

F ← Split D into 10 folds
for all f ∈ F do

TrainingSet ← all folds except for f
Train J48 classifier with TrainingSet
Test with f
Add success-rate to ResultSet

end for
end for

return ResultSet
end procedure
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5.3 Performance comparison of feature-sets and

the 3 monitor vs the 6 monitor setup

In this section, we are interested in comparing the activity classification success-

rates obtained from feature-vectors computed using the two feature-sets, so as to

learn how the two feature-sets compare with each other.

The research question posed in this section is: how do activity classification

success-rates obtained using Bao and Intille’s feature-set compare to those obtained

using Kwapisz et al.’s feature-set?

Comparing the performance of the two feature-sets is important because it puts

into context results obtained in the rest of the chapter when comparing the perfor-

mance of different subsets of the gathered data using the two feature-sets.

In addition, because of how the data was gathered, two setups are possible:

1. Using all activities but including only 3 monitors: thigh (or phone), chest and

dominant wrist (referred to as "the 3 monitor setup").

2. Using all monitors but excluding walking and running activities (referred to

as "the 6 monitor setup").

Therefore, an additional dimension studied in this section is the 3 monitor setup

compared to the 6 monitor setup. Hence, an additional research question posed in

this section is: how do success-rates obtained using the 3 monitor setup compare to

those obtained using the 6 monitor setup?

Methodology

The data gathered includes activities with six monitors mounted on each subject

and also activities with 3 monitors mounted on each subject (see section 3.3 for

more details on the activities gathered using six monitors and activities gathered

using three monitors). The activities with only 3 monitors mounted are walking
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and running only. The remaining 19 (nineteen) activities were gathered using six

monitors. The three monitors were mounted on the thigh, chest and dominant

wrist while gathering data for the activities walking and running. These three

locations are a subset of the six monitors mounted on all other activities. Table 5.1

summarises the data available for each activity with reference to where the monitors

were mounted on the subjects.

Table 5.1: Body-locations on which monitors were mounted for each activity gathered.

Body-location data available
Activity

A C DUA DW NDW T

Walking (Flat Surface) � � � � � �
Running � � � � � �
Brushing Teeth � � � � � �
Dicing � � � � � �
Dusting � � � � � �
Folding Clothes � � � � � �
Grating � � � � � �
Ironing � � � � � �
Peeling Veg. � � � � � �
Stiring � � � � � �
Sweeping � � � � � �
Talking (Phone) � � � � � �
Texting (Phone) � � � � � �
Using PC � � � � � �
Vacuuming � � � � � �
Walking D. Stairs � � � � � �
Walking U. Stairs � � � � � �
Washing Dishes � � � � � �
Washing Hands � � � � � �
Washing Veg. � � � � � �
Watching TV � � � � � �
Writing � � � � � �

Hence, comparison is performed for the two feature-sets using six monitors but
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not including walking and running (6 monitor setup), and for three monitors and

including walking and running (3 monitor setup).

To that end, four sets of results were computed using algorithm 6. The param-

eters provided to algorithm 6 for the result-sets are given in table 5.2.

Results

The result sets obtained using algorithm 6 and the parameters given in table 5.2 are

summarised as figure 5.1.

Figure 5.1 shows normalised histograms of the success-rates obtained when activ-

ity classification is performed using algorithm 6 using parameters given in table 5.2.

The success-rates obtained from algorithm 6 include success-rates of each fold and

of sampling frequencies in the range [121Hz,128Hz].

The result sets are observed to fit a Gaussian model with mean success-rates

76.4%, 75.1%, 79.0% and 78.7% and standard deviation 1.59%, 1.62%, 1.68% and

1.62% for the result sets Bao-3, Kwapisz-3, Bao-6 and Kwapisz-6 respectively. The

Gaussian models were fitted using maximum-likelihood estimation .

Table 5.3 gives results obtained by comparing the result sets. The values (in the

column order) are:

1. The t-statistic from a paired two-sample two-tailed t-test with α = 0.05 be-

tween the two result sets being compared testing the null hypothesis that the

two result sets came from independent random samples from normal distribu-

tions with equal means and unknown variances. The test did not assume that

the two result sets had equal variance by using Satterthwaite’s approximation

of the effective degrees of freedom. All the tests rejected the null hypothesis.

Therefore, the result sets compared had a statistically significant difference in

mean.

2. The F -statistic from a two-sample two-tailed F -test with α = 0.05 between
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Figure 5.1: Normalised histograms of activity classification success-rates obtained
using all three sources (accelerations, rotational velocities and orientations).
Histograms 1 and 2 are of success-rates obtained using the 3 monitor setup.
Histograms 3 and 4 are of success-rates obtained using the 6 monitor setup.

Success-rates plotted in histogram 1 and 3 are obtained using Bao and Intille’s
feature-set while those in histogram 2 and 4 are obtained using Kwapisz et al.’s

feature-set.
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the two result sets being compared testing the null hypothesis that the two

result sets came from independent random samples from normal distributions

with equal variances. All the tests rejected the null hypothesis. Therefore, the

result sets compared have a statistically significant difference in variance.

3. The difference in the standard deviations of the result sets tested. Although

the F -test found that the differences in the variances of the result sets tested

are statistically significant, the differences in standard deviation are seen to

be low, in all cases being less than 1%.

4. The population mean of differences of the two result sets, obtained by comput-

ing the difference of the two result sets compared for each sample then fitting

a Gaussian model and extracting the mean of the model. The differences of

success-rates and fitted Gaussian models are shown as figure 5.2, figure 5.3,

figure 5.4 and figure 5.5.

5. The population standard deviation of differences of the two result sets, ob-

tained by computing the difference of the two result sets compared for each

sample then fitting a Gaussian model and extracting the standard deviation

of the model.

6. The probability of a sample from the first result set having a higher success-rate

than the equivalent sample in the second result when when using a paired test.

The probability is computed as the integral of the PDF of the fitted Gaussian

model that is below zero.

Differences in mean

The mean differences are found to be less than 4% for all result sets compared.

In addition, the mean differences are found to be lower when comparing result

sets obtained from different feature-sets but similar monitor setup (i.e. Bao-3 vs

Kwapisz-3 and Bao-6 vs Kwapisz-6 ), and particularly low when comparing with

the 6 monitor setup (i.e. Bao-6 vs Kwapisz-6 ). For both monitor setups, Bao
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Figure 5.2: Normalised histogram of the differences in activity classification
success-rates in result set Bao-3 from those of Kwapisz-3.
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Figure 5.3: Normalised histogram of the differences in activity classification
success-rates in result set Bao-6 from those of Kwapisz-6.
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Figure 5.4: Normalised histogram of the differences in activity classification
success-rates in result set Bao-6 from those of Bao-3.

and Intille’s feature-set resulted in slightly higher success-rates. From the fitted

Gaussian models, the probability of having a higher success-rate using Bao and

Intille’s feature-set than than using Kwapisz et al.’s feature-set is 0.72 and 0.56

using the 3 monitor setup and 6 monitor setup respectively. Notice that 0.56 is
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Figure 5.5: Normalised histogram of the differences in activity classification
success-rates in result set Kwapisz-6 from those of Kwapisz-3.

closer to chance (0.5).

The mean differences where the feature-set is similar but the monitor setup is

different are found to be higher (i.e. Bao-3 vs Bao-6 and Kwapisz-3 vs Kwapisz-

6 ), with Kwapisz et al.’s feature-set resulting in a higher mean difference than Bao

and Intille’s feature-set. For both feature-sets, the 6 monitor setup resulted in

higher success-rates than the 3 monitor setup. From the fitted Gaussian models,

the probability of having a higher success-rate using the 6 monitor setup than using

the 3 monitor setup is 0.9316 and 0.9699 while using Bao and Intille’s feature-set

and Kwapisz et al.’s feature-set respectively.

Differences in standard deviation

The differences in standard deviation between the feature-sets were found to be

small but statistically significant. The difference in standard deviation between 3

and 6 monitor setup result sets obtained using Bao and Intille’s feature-set are found

to be larger than those obtained using Kwapisz et al.’s feature-set. The difference in

standard deviations between the two feature-sets was found to be lower while using

the 3 monitor setup than while using the 6 monitor setup.
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Discussion

In this section, the success-rates obtained by using Bao and Intille’s feature-set have

been compared to those obtained by using Kwapisz et al.’s feature-set.

Unfortunately, the walking (on a flat surface) and running activities in the data

gathered includes only three monitors mounted on the subjects while the rest of the

activities include six monitors mounted on the subjects.

Due to this difference, an additional comparison dimension was added. An addi-

tional comparison was performed between the two setups: one that excludes walking

and running but includes all six monitors available, and other that includes all activ-

ities but excludes other monitors except for the three monitors available for walking

and running (thigh or phone, chest and dominant wrist).

Success-rates obtained using Bao and Intille’s feature-set were found to be higher

than those obtained using Kwapisz et al.’s feature-set. However, the differences are

observed to average 1.15% and 0.30% only for the 3 monitor setup and 6 monitor

setup respectively.

Based on the fitted Gaussian models, the probability of attaining a higher

success-rate while using Bao and Intille’s feature-set than while using Kwapisz et

al.’s feature-set is 0.7279 while using the 3 monitor setup. The equivalent probability

while using the 6 monitor setup is 0.5633 and is closer to 0.50 (chance).

Success-rates of Bao and Intille’s feature-set were found to vary more than those

of Kwapisz et al.’s feature-set while using the 6 monitor setup, but were found to

vary less than those of Kwapisz et al’s feature-set while using the 3 monitor setup.

The difference in standard deviations, however, was observed to be less than 1% for

both feature-sets and hence considered low.

Comparing the 3 monitor setup to the 6 monitor setup, it was found that success-

rates obtained from the 6 monitor setup are higher and vary more than those ob-

tained from the 3 monitor setup when both Bao and Intille’s feature-set and Kwapisz
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et al.’s feature-set were used. The difference in standard deviation between the two

sets are less than 1% for both feature-sets studied and hence considered low. The

differences in the means of the result sets was found to be 2.72% and 3.43% while

using Bao and Intille’s and Kwapisz et al.’s feature-set respectively.

Based on the fitted Gaussian models, the probability of attaining a higher

success-rate using the 6 monitor setup than while using the 3 monitor setup is

0.9316 and 0.9699 for Bao and Intille’s and Kwapisz et al.’s feature-set respectively.

Hence, from the results, we can summarise that the examined differences in

monitor setup had a higher impact on obtained results with the 6 monitor setup

resulting into higher success-rates than those obtained by the 3 monitor setup. The

difference is less than 4% for either feature-set used but is more prevalent, with a

much higher chance of obtaining a higher success-rate while using the 6 monitor

setup than while using the 3 monitor setup.

The impact of the feature-sets on the obtained results is observed to be less

resulting in smaller differences and in smaller probabilities of there being a difference.

Bao and Intille’s feature-set results in slightly better success-rates than Kwapisz et

al.’s feature-set. The difference is lesser when the 6 monitor setup is used than when

the 3 monitor setup is used.

A possible explanation of why the 6 monitor setup results in higher success-

rates is that when 6 monitors are used, more information is available to distinguish

activities from each other. However, since the two setups have different activities,

the difference could also be due to walking and running activities, which are included

in the 3 monitor setup but not in the 6 monitor setup. It could also be a combination

of both factors contributing to the difference between the two monitor setups. In

this section, we can not deduce the contribution of each of the two factors since the

comparison included both different numbers of activities in the two monitor setups

and different numbers of monitors in the two monitor setups.

A deeper analysis of the impact of number os monitors on activity classification



152 Chapter 5. Feature-sets, type, number and location of sensors

success-rates is performed in section 5.6. The analysis performed in section 5.6 will

analyse the obtained success-rates as the number of monitors mounted on differ-

ent locations on the subject increases and hence provide a better understanding of

the impact of the number of different body-locations used on activity classification

success-rates.

A deeper analysis of the activity classification accuracy of each activity is per-

formed in section 6.2. The analysis performed in section 6.2 will compare the accu-

racies of different activities in order to understand which activities are more easily

identified than other activities.
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5.4 Performance comparison of accelerations,

rotational velocities and orientations

In this section we are interested in comparing the performance of each source to

each other source, and to the performance of the three sources when combined.

The research questions asked are:

1. How do the success-rates obtained from feature-vectors extracted from each

source compare to success-rates obtained from feature-vectors extracted from

other sources?

2. How do the success-rates obtained from feature-vectors extracted from each

source compare to success-rates obtained from feature-vectors extracted from

all three sources combined?

Knowing the relative performance of each source in comparison to other sources

and combination of sources would allow activity recognition researchers a better

understanding while selecting which source to use for activity recognition.

Each source requires the use of a different sensor or a set of sensors: accelerations

require an accelerometer; rotational velocities require a gyroscope; and orientations

require an accelerometer, gyroscope and magnetometer (compass). Hence, the se-

lection of the source to use for activity classification has implications on the sensing

node’s hardware requirements.

Methodology

The data gathered includes activities with 6 monitors mounted on each subject

and also activities with 3 monitors mounted on each subject. The activities with

only 3 monitors mounted are walking and running only. The rest of the activities

were gathered using 6 monitors. Section 5.3 found that the monitor setups have a

significant impact on results obtained.
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Therefore, to answer the research questions, result sets were computed for both

setups: all 6 monitors but excluding walking and running (6 monitor setup) and all

activities but including only the monitors mounted on the thigh (or phone), chest

and dominant wrist (3 monitor setup). Refer to section 5.3 for a comparison of the

impact of the 6 monitor setup and the 3 monitor setup on activity classification

success-rates.

12 sets of results were computed using algorithm 6. The parameters provided to

algorithm 6 for the result sets are given in table 5.4.

In addition, the result sets from section 5.3, where all the sources were combined

were used to compare the results obtained from each source to the results obtained

with the combined sources. As in section 5.3, the result sets are refered to as Bao-3,

Bao-6, Kwapisz-3 and Kwapisz-6. Refer to section 5.3 for further details about these

result sets.

Results

The result sets obtained using algorithm 6 and the parameters given in table 5.4 are

summarised as figure 5.6 for the 6 monitor setup result sets and figure 5.7 for the 3

monitor setup result sets.

Figure 5.6 and figure 5.7 show normalised histograms of the success-rates ob-

tained when activity classification is performed using algorithm 6 using parameters

given in table 5.4.

The result sets are observed to fit Gaussian models. The means and standard

deviations of the best fitting Gaussian models are given in table 5.5.

From the data given in table 5.5, we can notice that the mean success-rates of

result sets obtained from accelerations are higher than those obtained from either

rotational velocities or orientations for the same monitor setup and feature-set. In

addition, mean success-rates of result sets obtained from orientations are higher than
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2. Rotational Velocities
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σ 1.9183 1.7112
R2 0.9847 0.9939
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3. Orientations

Bao and Intille (2004) Kwapisz et al. (2011)

Bao-
Orient-6

Kwapisz-
Orient-6

x̄ 76.66 69.71
σ 1.7236 1.7565
R2 0.9891 0.9951
SSE 6.7534 3.0780

Figure 5.6: Normalised histograms of activity classification success-rates obtained
using each individual source: accelerations (upper), rotational velocities (middle) and
orientations (lower). Each histogram displays results obtained using both Bao and

Intille’s feature-set and Kwapisz et al.’s feature-set for the 6-monitor setup.
Classification was performed using all monitors but excluded walking and running

activities.
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3. Orientations

Bao and Intille (2004) Kwapisz et al. (2011)

Bao-
Orient-3

Kwapisz-
Orient-3

x̄ 72.70 65.58
σ 1.7203 1.7515
R2 0.9743 0.9982
SSE 18.84 1.22

Figure 5.7: Normalised histograms of activity classification success-rates obtained
using each individual source: accelerations (upper), rotational velocities (middle) and
orientations (lower). Each histogram displays results obtained using both Bao and

Intille’s feature-set and Kwapisz et al.’s feature-set for the 3-monitor setup.
Classification was performed using all activities but using only 3 monitors: thigh (or

phone), chest and dominant wrist.
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Table 5.5: Mean and standard deviations of Gaussian models fitted onto the result
sets obtained from parameters given in table 5.4

Result Set x̄ σ

Bao-Accel-6 77.7 1.63

Bao-Orient-6 76.6 1.72

Kwapisz-Accel-6 76.6 1.61

Bao-Accel-3 75.7 1.59

Kwapisz-Accel-3 73.7 1.60

Bao-Orient-3 72.7 1.72

Kwapisz-Orient-6 69.7 1.75

Kwapisz-Orient-3 65.5 1.75

Kwapisz-Gyro-6 64.6 1.71

Bao-Gyro-6 63.4 1.91

Bao-Gyro-3 61.8 1.85

Kwapisz-Gyro-3 61.5 1.69

those obtained from rotational velocities for the same monitor setup and feature-set.

As observable in figure 5.6 and figure 5.7, overlaps exist between result sets obtained

from different sources but of the same monitor setup and feature-set.

A paired two-sample two-tailed t-test with α = 0.05 between all possible pairings

of the result sets was run to test the null hypothesis that the pairs of result sets came

from independent random samples from normal distributions with equal means and

unknown variances. The test did not assume that the two result sets had equal

variance by using Satterthwaite’s approximation of the effective degrees of freedom.

The null hypothesis was rejected for all but one pair of result sets: Kwapisz-Accel-

6 and Bao-3 (results obtained using Bao and Intille’s feature-set from feature-sets

derived from accelerations, rotational velocities and orientations). The results of

the p-values obtained from the tests are summarised in the box-plot figure 5.8.

The failure to reject the null hypothesis between the result sets Kwapisz-Accel-6

and Bao-3 means that there is not enough evidence to support the claim that the
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Figure 5.8: Box plot of p-values obtained from paired two-tailed two-sample t-tests
between all possible pairs of result sets obtained by calling algorithm 6 using the

parameters given in table 5.4. The paired two-tailed two-sample t-tests tested the null
hypothesis that pairs of result sets came from independent random samples from
normal distributions with equal means and unknown variances. At the preselected

significance level of 0.05, a p-value of 0.05 or below results in the rejection of the null
hypothesis, while a p-value above 0.05 results in the failure to reject the null

hypothesis. Most of the p-values are very close to zero, hence the line at the bottom
of the figure represents most of the p values obtained. Outliers are shown as asterisks.
Bao-3 refers to results obtained using Bao and Intille’s feature-set from feature-sets

derived from accelerations, rotational velocities and orientations

two samples differ.

Accelerations vs Rotational Velocities vs Orientations for the 3 monitor

setup

The differences of the success-rates obtained from each source from those obtained

from each other source for the 3 monitor setup are summarised in figure 5.9.

Figure 5.9 shows the distribution of the differences between the success-rates

obtained from feature-vectors extracted from rotational velocities from those of

feature-vectors extracted from accelerations, success-rates obtained from feature-

vectors extracted from orientations from those of feature-vectors extracted from

accelerations, and success-rates obtained from feature-vectors extracted from orien-

tations from those of feature-vectors extracted from rotational velocities, for the 3
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SSE 5.32 2.59

P (a < b) ∼ 1.0 0.9851

Figure 5.9: Histograms of differences in success-rates of each source from each those
of each other source of the 3 monitor setup. Differences in accelerometer success-rates

and rotational velocities (upper), accelerometer success-rates and orientation
success-rates (middle) and rotational velocities and orientations (lower) are shown.
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monitor setup and for both feature-sets studied.

The average differences between success-rates obtained from accelerations and

those obtained from rotational velocities are 14.05% and 12.56% for Bao and Intille’s

feature-set and Kwapisz et al.’s feature-set respectively. Those between success-

rates obtained from accelerations and those obtained from orientations are 3.01%

and 8.26%, and between success-rates obtained from rotational velocities and those

obtained from orientations are 11.07% and 4.44%.

From the fitted Gaussian models, the probability of accelerations resulting in

lower success-rates than rotational velocities is observed to be very low for both

feature-sets studied. The probability of accelerations resulting in lower success-

rates than orientations is also low, although it is 5.59% for Bao and Intille’s feature-

set. The probability of rotational velocities resulting in lower success-rates than

orientations is observed to be high and almost certain for Bao and Intille’s feature-

set.

Implications of the results of this analysis will be discussed in the discussion

section (section 5.4).

Accelerations vs Rotational Velocities vs Orientations for the 6 monitor

setup

The differences of the success-rates obtained from each source from those obtained

from each other source for the 6 monitor setup are summarised in figure 5.10.

Figure 5.10 shows the distribution of the differences between the success-rates

obtained from feature-vectors extracted from rotational velocities from those of

feature-vectors extracted from accelerations, success-rates obtained from feature-

vectors extracted from orientations from those of feature-vectors extracted from ac-

celerations, and success-rates obtained from feature-vectors extracted orientations

from those of feature-vectors extracted from rotational velocities, for the 6 monitor

setup and for both feature-sets studied.



164 Chapter 5. Feature-sets, type, number and location of sensors

−20 −10 0 10 20

0

5

10

15

Accel. Success rates (a) – Rot. Vel. Success rates (b) (%)

N
or

m
al

iz
ed

C
ou

nt
(%

) Bao Kwapisz

a− b 14.44 12.01
σ 2.0565 1.9030
R2 0.9888 0.9978
SSE 5.24 1.38

P (a < b) ∼ 0.0 ∼ 0.0

−20 −10 0 10 20

0

5

10

15

Accel. Success rates (a) – Orient. Success rates (b) (%)

N
or

m
al

iz
ed

C
ou

nt
(%

) Bao Kwapisz

a− b 1.13 6.72
σ 1.9199 1.9738
R2 0.9952 0.9953
SSE 2.48 2.15

P (a < b) 0.2781 ∼ 0.0

−20 −10 0 10 20

0

5

10

15

Rot. Vel. Success rates (a) – Orient. Success rates (b) (%)

N
or

m
al

iz
ed

C
ou

nt
(%

)

Bao and Intille (2004) Kwapisz et al. (2011)

Bao Kwapisz

a− b -13.32 -5.18
σ 2.0460 2.0253
R2 0.9884 0.9942
SSE 5.78 3.03

P (a < b) ∼ 1.0 0.9947

Figure 5.10: Histograms of differences in success-rates of each source from each those
of each other source of the 6 monitor setup. Differences in accelerometer success-rates

and rotational velocities (upper), accelerometer success-rates and orientation
success-rates (middle) and rotational velocities and orientations (lower) are shown.
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The average differences between success-rates obtained from accelerations and

those obtained from rotational velocities are 14.44% and 12.01% for Bao and Intille’s

feature-set and Kwapisz et al.’s feature-set respectively. Those between success-

rates obtained from accelerations and those obtained from orientations are 1.13%

and 6.72%, and between success-rates obtained from rotational velocities and those

obtained from orientations are 13.32% and 5.18%. It should be noted that these

average differences are similar to those obtained for the 3 monitor setup.

From the fitted Gaussian models, the probability of accelerations resulting in

lower success-rates than rotational velocities is observed to be very low for both

feature-sets studied. The probability of accelerations resulting in lower success-

rates than orientations is also low for Kwapisz et al.’s feature-set but is observed to

be 0.2781 for Bao and Intille’s feature-set. The probability of rotational velocities

resulting in lower success-rates than orientations is observed to be high and almost

certain for Bao and Intille’s feature-set. It should be noted that with the exception of

the increased probability of acceleration success-rates being lower than orientations,

the rest of the probabilities are very similar to those obtained for the 3 monitor

setup.

Implications of the results of this analysis will be discussed in the discussion

section (section 5.4).

Each source vs the combination of the three sources for the 3 monitor

setup

Success-rates obtained using feature-vectors extracted the combination of the three

sources for the 3 monitor setup are shown in figure 5.1. Success-rates obtained using

feature-vectors extracted from each of the three sources for the 3 monitor setup are

shown in figure 5.7.

The differences of the success-rates obtained from each source from those ob-

tained from the combination of the sources source (Bao-3 and Kwapisz-3 ) for the
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Figure 5.11: Histograms of differences in success-rates obtained from feature-vectors
extracted from each source from those obtained from feature-vectors extracted from
all three sources of the 3 monitor setup. Differences in accelerometer success-rates

(upper), rotational velocities (middle) and orientations (lower) are shown.

3 monitor setup are summarised in figure 5.11.

Figure 5.11 shows the distribution of the differences between the success-rates

obtained from feature-vectors extracted from a combination of all three sources from

those of feature-vectors extracted from accelerations only, rotational velocities only

and orientations only for the 3 monitor setup and for both feature-sets studied.

On average for the 3 monitor setup, feature-vectors from accelerations only result

in success-rates that are 0.81% and 1.55% lower than feature-vectors from all three
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sources combined for Bao and Intille’s feature-set and Kwapisz et al.’s feature-sets.

Feature-vectors from rotational velocities result in success-rates that are 14.68%

and 14.13% lower than feature-vectors from all three sources combined. Feature-

vectors from orientations result in success-rates that are 3.99% and 9.65% lower

than feature-vectors from all three sources combined.

From the fitted Gaussian models, the probability of feature-vectors extracted

from rotational velocities and those from orientations resulting in lower success-rates

than feature-vectors extracted from the three sources combined, is observed to be

high to almost certain for both feature-sets. However, the probability of feature-

vectors extracted from accelerations resulting in lower success-rates than feature-

vectors extracted from the three sources combined is lower than any of the other

sources but above chance with Bao and Intille’s feature-set having a probability of

0.6725 and Kwapisz et al.’s feature-set 0.7943.

Implications of the results of this analysis will be discussed in the discussion

section (section 5.4).

Each source vs the combination of the three sources for the 6 monitor

setup

Success-rates obtained using feature-vectors extracted the combination of the three

sources for the 6 monitor setup are shown in figure 5.1. Success-rates obtained using

feature-vectors extracted from each of the three sources for the 6 monitor setup are

shown in figure 5.6.

The differences of the success-rates obtained from each source from those ob-

tained from the combination of the sources (Bao-6 and Kwapisz-6 ) for the 6 monitor

setup are summarised in figure 5.12.

Figure 5.11 shows the distribution of the differences between the success-rates

obtained from feature-vectors extracted from a combination of all three sources from
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Figure 5.12: Histograms of differences in success-rates obtained from feature-vectors
extracted from each source from those obtained from feature-vectors extracted from
all three sources of the 6 monitor setup. Differences in accelerometer success-rates

(upper), rotational velocities (middle) and orientations (lower) are shown.
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those of feature-vectors extracted from accelerations only, rotational velocities only

and orientations only for the 6 monitor setup and for both feature-sets studied.

On average for the 6 monitor setup, feature-vectors from accelerations only result

in success-rates that are 1.29% and 2.20% lower than feature-vectors from all three

sources combined for Bao and Intille’s feature-set and Kwapisz et al.’s feature-sets.

Feature-vectors from rotational velocities result in success-rates that are 15.67%

and 14.23% lower than feature-vectors from all three sources combined. Feature-

vectors from orientations result in success-rates that are 2.33% and 8.90% lower

than feature-vectors from all three sources combined. It should be noted that the

mean differences in success-rates obtained for the 6 monitor setup are similar to

those of the 3 monitor setup.

From the fitted Gaussian models, the probability of feature-vectors extracted

from rotational velocities resulting in lower success-rates than feature-vectors ex-

tracted from the three sources combined, is observed to be almost certain for both

feature-sets.

The probability of feature-vectors extracted from orientations resulting in lower

success-rates than feature-vectors extracted from the three sources combined is al-

most certain for Kwapisz et al.’s feature-set but is 0.8899 for Bao and Intille’s

feature-set.

The probability of feature-vectors extracted from accelerations resulting in lower

success-rates than feature-vectors extracted from the three sources combined is lower

than any of the other sources is 0.7487 for Bao and Intille’s feature-set and 0.8789

for Kwapisz et al.’s feature-set.

Discussion

In this section, the success-rates obtained by using each source was compared to the

success-rates obtained by each other source and to the success-rates obtained while
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using the combination of the three sources, for both studied feature-sets.

Due to the results of the analysis performed in section 5.3 that found that the

difference between the 3 monitor setup and the 6 monitor setup have a significant

impact on the results obtained, the analysis is repeated for both the 3 monitor setup

and the 6 monitor setup.

The difference in the result sets obtained were found to be statistically significant.

Using the distributions of success-rates from different sources, accelerations were

found to have the highest mean success-rates of the three sources for both feature-

sets studied and for both monitor setups. Orientations were found to be second

highest and rotational velocities found to have the lowest mean success-rates of the

three sources for both feature-sets studied and for both monitor setups. However,

overlaps in result sets from different sources but from the same feature-sets and

monitors were observed.

Hence, the differences in success-rates between each of the three sources and

those of each other source were studied. The differences between success-rates ob-

tained from accelerations and those obtained from rotational velocities were 14.05%,

14.44%, 12.56% and 12.01% for Bao and Intille’s feature-set using the 3 monitor

setup and 6 monitor setup, and Kwapisz et al.’s feature-set using the 3 monitor

setup and 6 monitor setup, respectively. In the same order, the differences between

success-rates obtained from accelerations and those obtained from orientations were

3.01%, 1.13%, 8.26% and 6.72%, and those betweeen success-rates obtained from ro-

tational velocities and those obtained from orientations were 11.07%, 13.32%, 4.44%

and 5.18%.

The probability of success-rates obtained from accelerations being lower than

those obtained from rotational velocities was found to be very low for both feature-

sets and for both monitor setups. Similarly, the probability of success-rates obtained

from orientations being lower than those obtained from rotational velocities was

found to be very low for both feature-sets and for both monitor setups. The proba-
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bility of success-rates obtained from accelerations being lower than those obtained

from orientation was found to be very low for Kwapisz et al.’s feature-set for both

monitor setups. Those of Bao and Intille’s feature-set were slightly higher at 5.49%

and 27.81% for the 3 monitor setup and 6 monitor setup respectively, but still show

that the probability of accelerations having a higher success-rate than orientations

is high.

Hence, we can conclude that of the three sources, accelerations result in highest

activity recognition success-rates, while rotational velocities result in the lowest

activity recognition success-rates.

Next, the differences in success-rates between each of the three sources and the

combination of the three sources was studied. The differences were earlier in the

section found to be statistically significant.

The differences between success-rates obtained from feature-vectors extracted

from accelerations alone were found to have the lowest probability of being lower

than those obtained from feature-vectors extracted from all three sources combined.

In addition, the mean differences between success-rates obtained from feature-vectors

extracted from accelerations and those obtained from feature-vectors extracted from

all three sources were found to be the highest of the three sources. This was ob-

served for both feature-sets and for both the 3 monitor setup and the 6 monitor

setup.

The differences between success-rates obtained from feature-vectors extracted

from rotational velocities alone were found to almost certainly be lower than those

obtained from feature-vectors extracted from all three sources combined. In addi-

tion, the mean differences between success-rates obtained from feature-vectors ex-

tracted from rotational velocities and those obtained from feature-vectors extracted

from all three sources were found to be the highest of the three sources. This was

observed for both feature-sets and for both the 3 monitor setup and the 6 monitor

setup.
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The differences between success-rates obtained from feature-vectors extracted

from orientations alone were found to almost certainly be lower than those obtained

from feature-vectors extracted from all three sources combined for Kwapisz et al.’s

feature-set for both the 3 monitor setup and the 6 monitor setup. The probability

of success-rates in Bao-Orient-3 being lower than those in Bao-3 is 0.9804, which is

higher than the probability of success-rates in Bao-Orient-6 being lower than those

in Bao-6.

The mean differences between success-rates obtained from feature-vectors ex-

tracted from orientations and those obtained from feature-vectors extracted from

all three sources were found to be higher for Kwapisz et al.’s feature-set than for

Bao and Intille’s feature-set for both the 3 monitor setup and the 6 monitor setup.

However, the average difference between success-rates obtained from acceleration

and those obtained from the combination of the three sources was found to be small

(1%-2% depending on the feature-set). The average difference between success-rates

obtained from orientations and those obtained from the combination of the three

sources was found to be 2% while using Bao and Intille’s feature-set but 9% while

using Kwapisz et al.’s feature-set.

Hence for the two feature-sets studied and the activities gathered within this

thesis, we can conclude that of the three sources studied, feature-vectors extracted

from accelerations have success-rates that have the smallest average difference from

those of feature-vectors extracted from all three sources and they have the lowest

chance of being lower. Feature-vectors extracted from rotational velocities have

success-rates that have the greatest mean difference from those of feature-vectors

extracted from all three sources and they are almost certainly lower. Feature-vectors

extracted from orientations have success-rates that are either highly likely or almost

certainly lower than success-rates obtained from feature-vectors extracted from all

three sources depending on the feature-set used. Kwapisz et al’s feature-set results

in success-rates that are almost certainly lower than those obtained from feature-
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vectors extracted from all three sources and having a higher mean difference, while

Bao and Intille’s feature-set results in success-rates that are sometimes higher than

those obtained from feature-vectors extracted from all three sources and have a

lower mean difference.

As it has been observed in this section, both accelerations and orientations result

in higher success-rates than rotational velocities for the activities and feature-sets

studied. One common attribute between accelerations and orientations that rota-

tional velocities do not share is that both accelerations and orientations include the

global pitch of the monitor. Accelerations do so by encoding within the signal the

direction of gravity (in the form of the gravity vector) and hence encode the pitch

of the monitor. Orientations encode within the signal the pitch, bearing and roll of

the monitor by definition.

Rotational velocities, however, are the changes in orientation. Hence, when a

subject is performing an activity that results in some of the monitors mounted on

him being stationary, the gyroscopes from the monitors would read values close to

zero. Accelerations and orientations, however, would read values that include in

them the pitch of the monitor within that stationary period.

A possible explanation for the higher performance of accelerations and orienta-

tions compared to rotational velocities is that this additional information may be

helping to distinguish activities where some monitors mounted on the subject’s body

are stationary but in different orientations than other activities. This would result

in higher success-rates than when that information is not available. An example is

standing compared to sitting using a thigh mounted monitor, or sitting up while

working on a PC or writing on a desk compared to sitting back while watching TV

by using a chest mounted monitor.

The implications of the results obtained in this section on wearable activity

recognition systems are that, in a situations where attaining the highest success-

rates is important, if all three sources can be obtained and processed, then combining
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all three is likely to result in a higher success-rate than any one individual source.

However, if this is not possible, then accelerations should be prefered to orientations,

which in turn should be preferred to rotational velocities.

5.5 Performance comparison of body-locations

In this section we are interested in comparing the performance of the body-locations

based on the activity classification success-rate of the data captured by the monitors

mounted on those body-locations.

The research question asked is in this section is: is there a significant difference in

activity classification rates when a monitor is mounted on different body-locations?

If so, which location yields the highest activity classification accuracy?

Knowing which body-locations perform better than others allows activity recog-

nition researchers to select locations for monitoring activities that would recognise

activities most accurately.

Section 5.6 will compare the activity classification performance of combinations

of body-locations in order to determine which combinations of body-locations re-

sult in better performance than others. This section focusses on individual body-

locations only.

Methodology

In order to answer the research question, success-rates computed from data captured

by each monitor were compared to success-rates obtained from data captured by

other monitors.

The data gathered includes activities with 6 monitors mounted on each subject

and also activities with 3 monitors mounted on each subject. The activities with

only 3 monitors mounted are walking and running only. The rest of the activities

were gathered using 6 monitors. To be able to determine which body-locations
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results in the higher success-rates than other body-locations, all 6 monitors were

used and hence only activities recorded with all 6 monitors were used.

Analysis performed in section 5.3 found that the difference between the 3 mon-

itor setup and the 6 monitor setup in terms of the success-rates was statistically

significant but at most a mean difference of 4% was observed. Analysis performed

in section 5.4 found the same trends in success-rates obtained from accelerations,

rotational velocities and orientations between the 3 monitor setup and the 6 monitor

setup.

The exclusion of the walking and running activities is not expected to signif-

icantly impact the the trends observed in the analysis and hence not impact the

final conclusions. This is because, walking and running are whole body activities,

and hence should be detected well on any of the arms, legs or torso. This was ob-

served for walking by Kern, Schiele, and Schmidt (2003), and walking and running

by Henpraserttae et al. (2011).

Hence, the analysis in this section was performed for the two feature-sets using

six monitors but not including walking and running.

12 sets of results were computed using algorithm 6. The parameters provided to

algorithm 6 for the result sets are given in table 5.6.

To find which body-locations result in higher success-rates than other body-

locations, the differences in every pair of the result sets of each feature-set was

computed. For each pair, a Gaussian model was then fitted over the differences

using maximum-likelihood estimation and the mean and standard deviation of the

model extracted. The mean and standard deviation of the fitted model are then

used to estimate the likelihood of data captured from one body-location having a

higher success-rate than data captured from another body-location.
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Figure 5.13: Distribution of success-rates obtained from classifying feature-vectors
extracted from the monitor mounted on the Ankle.

55 60 65 70

0

10

20

Chest activity classification success-rates (x) (%)

N
or

m
al

iz
ed

C
ou

nt
(%

)

Bao and Intille (2004) Kwapisz et al. (2011)

Bao Kwapisz

x 59.04 56.31
σ 1.6134 1.5469
R2 0.9546 0.9854
SSE 28.1 10.5

Figure 5.14: Distribution of success-rates obtained from classifying feature-vectors
extracted from the monitor mounted on the Chest.
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Figure 5.15: Distribution of success-rates obtained from classifying feature-vectors
extracted from the monitor mounted on the D. U. Arm.

Results

The result sets obtained using algorithm 6 and the parameters given in table 5.6

are summarised in figure 5.13 (Ankle), figure 5.14 (Chest), figure 5.15 (Dominant

Upper Arm), figure 5.16 (Dominant Wrist), figure 5.17 (Non-dominant Wrist) and

figure 5.18 (Thigh/Phone). The mean success-rates of the result sets obtained are

given in table 5.7.
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Figure 5.16: Distribution of success-rates obtained from classifying feature-vectors
extracted from the monitor mounted on the D. Wrist.
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Figure 5.17: Distribution of success-rates obtained from classifying feature-vectors
extracted from the monitor mounted on the ND. Wrist.
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Figure 5.18: Distribution of success-rates obtained from classifying feature-vectors
extracted from the monitor mounted on the Thigh.
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Table 5.7: Mean success-rates of result sets computed from data gathered from each
body-location.

Result Set Bao and Intille
(2004)

Kwapisz et al.
(2011)

Ankle 59.5% 57.9%

Chest 59.0% 56.3%

Dominant upper arm 60.8% 55.9%

Dominant wrist 65.4% 65.0%

Non-dominant wrist 65.2% 64.1%

Thigh 65.4% 61.2%

From the figures, we can observe that the mean success-rates fit Gaussian dis-

tributions and are close to each other, with their means ranging from 55% to 65%.

A paired two-sample two-tailed t-test with α = 0.05 between each pair of result

sets was run to test the null hypothesis that the pairs of result sets came from inde-

pendent random samples from normal distributions with equal means and unknown

variances. The test did not assume that the two result sets had equal variance by

using Satterthwaite’s approximation of the effective degrees of freedom.

The tests rejected the null hypothesis for all pairs of result sets except: Bao-

Ankle and Bao-Chest, Bao-DWrist and Bao-NDWrist, Bao-DWrist and Bao-Thigh,

and Bao-NDWrist and Bao-Thigh. Hence, for the pairs of result sets named, there

is insufficient evidence to support the hypothesis that the result sets in the pairs

differ. The named result set pairs can be summarised into two groups of result sets

that are similar to each other: result sets computed from data captured from the

ankle and chest, and those computed from data captured from the dominant wrist,

non-dominant wrist and thigh (or phone). Both groups of result sets were computed

using Bao and Intille’s feature-set.

The differences in all result sets computed using Kwapisz et al.’s feature-set were

found to be statistically significant.
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Thigh (or Phone)
(t)

Dominant Wrist
(dw)

Non-dominant Wrist
(ndw)

Dominant Upper Arm
(dua)

Ankle
(a)

Chest
(c)

Differences between the result sets obtained from these monitors
were found to be statistically insignificant

Differences between the result sets obtained from these monitors
were found to be statistically insignificant

dw − thigh = 4.66%
P (dw > thigh) = 0.9883

thigh− ndw = 4.92%
P (thigh > ndw) = 0.9943

ndw − dua = 4.66%
P (ndw > dua) = 0.9891

dua− ankle = 1.29%
P (dua > ankle) = 0.7554

dua− chest = 0.05%
P (dua > chest) = 0.5118

Figure 5.19: Illustration showing the ranking of body-locations on which monitors
were mounted, from highest performing to lowest performing, based on the probability
of obtaining higher activity classification success-rates from data of one body-locations
than that of the other body-locations. The results are generated from data extracted

using Bao and Intille’s feature-set.

Illustrations of the distributions of differences in the result sets are given in

appendix C. A summary of the distributions of the differences of result sets computed

from data captured from different body-locations for the two feature-sets studied is

given in table 5.8.

After sorting the result sets, such that result sets that are more likely to have

success-rates that are higher than the equivalent success-rates in other result sets,

the resulting relationships between the result sets are given in figure 5.19 for Bao

and Intille’s feature-set and figure 5.20 for Kwapisz et al.’s feature-set.

As illustrated in figure 5.19, three groups of body-locations were found based

on the comparison of the performance of their captured data using Bao and In-
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Table 5.8: Summary of distributions of differences in result sets computed from data
captured from the six monitors for the two feature-sets studied. The columns represent
the result sets compared, the mean of the signed differences in the two result sets, and
the probability of the first result set having a higher success-rate than the second result

set. Illustrations of the distributions of differences in the result sets are given in
appendix C.

Result Set a Result Set b a − b p(a > b)

Bao-Ankle Bao-Chest 0.05 0.5118

Bao-Ankle Bao-DUArm −1.29 0.2446

Bao-Ankle Bao-DWrist −5.71 0.0027

Bao-Ankle Bao-NDWrist −5.95 0.0015

Bao-Ankle Bao-Thigh −5.93 0.0010

Bao-Chest Bao-DUArm −1.70 0.1936

Bao-Chest Bao-DWrist −6.35 0.0009

Bao-Chest Bao-NDWrist −6.17 0.0004

Bao-Chest Bao-Thigh −6.56 0.0005

Bao-DUArm Bao-DWrist −4.66 0.0117

Bao-DUArm Bao-NDWrist −4.66 0.0109

Bao-DUArm Bao-Thigh −4.92 0.0057

Bao-DWrist Bao-NDWrist 0.30 0.5536

Bao-DWrist Bao-Thigh 0.23 0.5447

Bao-NDWrist Bao-Thigh −0.21 0.4591

Kwa-Ankle Kwa-Chest 1.26 0.7477

Kwa-Ankle Kwa-DUArm 2.22 0.8907

Kwa-Ankle Kwa-DWrist −7.35 0.0001

Kwa-Ankle Kwa-NDWrist −6.33 0.0009

Kwa-Ankle Kwa-Thigh −3.22 0.0544

Kwa-Chest Kwa-DUArm 0.44 0.5904

Kwa-Chest Kwa-DWrist −8.72 0.0000

Kwa-Chest Kwa-NDWrist −7.67 0.0001

Kwa-Chest Kwa-Thigh −4.70 0.0113

Kwa-DUArm Kwa-DWrist −9.42 0.0000

Kwa-DUArm Kwa-NDWrist −8.22 0.0000

Kwa-DUArm Kwa-Thigh −5.50 0.0043

Kwa-DWrist Kwa-NDWrist 0.84 0.6647

Kwa-DWrist Kwa-Thigh 3.78 0.9683

Kwa-NDWrist Kwa-Thigh 2.84 0.9311
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Dominant Wrist
(dw)

Non-dominant Wrist
(ndw)

Thigh
(t)

Ankle
(a)

Chest
(c)

Dominant Upper Arm
(dua)

dw − ndw = 0.84% P (dw > ndw) = 0.6647

ndw − t = 2.84% P (ndw > t) = 0.9311

t− a = 3.22% P (t > a) = 0.9456

a− c = 1.26% P (a > c) = 0.7477

c− dua = 0.44% P (c > dua) = 0.5904

Figure 5.20: Illustration showing the ranking of body-locations on which monitors
were mounted, from highest performing to lowest performing, based on the probability
of obtaining higher activity classification success-rates from data of one body-locations
than that of the other body-locations. The results are generated from data extracted

using Kwapisz et al.’s feature-set.
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tille’s feature-set: the dominant wrist, thigh (phone) and non-dominant wrist; the

dominant upper arm; and the ankle and chest. Data captured from each of the

body-locations in the first group was found to be more likely to result in higher

success-rates than the data captured from the dominant upper arm. Similarly, data

captured from the dominant upper arm was found to be likely to result in higher

success-rates than the data captured from the ankle or chest.

While using Kwapisz et al.’s feature-set, data captured from the dominant wrist,

non-dominant wrist, and thigh was still found to be more likely to result in higher

success-rates than the data captured from the dominant upper arm. However, unlike

what was observed with Bao and Intille’s feature-set, data captured from the ankle

and chest was also found to be more likely to result in higher success-rates than the

data captured from the dominant upper arm.

Discussion

In this section, the success-rates obtained from data captured from each moni-

tor(body location) was compared to success-rates obtained from data captured from

each other monitor(alternate body location) for both feature-sets studied.

Data from all six monitors was used, but data from walking and running activ-

ities was excluded because these activities were gathered with three monitors only.

Excluding walking and running means that the results in this section do not include

any impact of walking and running on the activity classification. For example, if the

data captured from some of the body-locations could recognise walking and running

well while data captured from other body-locations would not, then the inclusion

of walking and running would skew the results against some of the monitors and in

favour of the other monitors. However, this is unlikely since walking and running are

whole body activities and have been recognised with high success-rates in different

body-locations (Henpraserttae et al., 2011). In addition, section 5.4 observed similar
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trends in activity classification of data with and without walking and running.

The difference in the results sets were found to be statistically significant for

all result sets computed using Kwapisz et al.’s feature-sets, but found differences

in some of result sets computed from Bao and Intille’s feature-set not statistically

significant. The result sets whose differences were found not statistically significant

were those computed from: the dominant wrist, thigh and non-dominant wrist; and

the ankle and chest.

Gaussian models were then fitted on the signed differences between the result

sets, and the mean and standard deviation of the models was obtained. Using

the fitted models, the likelihood of data captured from one body-location having a

higher success-rate than data captured from another body-location was estimated.

The probabilities were then used to sort the result sets.

From the analysis, it was observed that success-rates computed from data cap-

tured from the dominant wrist, thigh (or phone) and non-dominant wrist are more

likely to be higher than success-rates computed from data captured from the chest,

dominant upper arm and ankle, for both feature-sets studied. While differences

between result sets computed from data captured by the dominant wrist, thigh

and non-dominant wrist were found to be statistically insignificant using Bao and

Intille’s feature-set, using Kwapisz et al.’s feature-set found that success-rates com-

puted from data captured from the dominant wrist were more likely to be higher

than those computed from data captured from the non-dominant wrist, which in

turn were more likely to be higher than success-rates computed from data captured

from the thigh (or phone).

However, success-rates computed from data captured from the dominant upper

arm are likely to be higher than those computed from data captured from the chest

or ankle using Bao and Intille’s feature-set, but are likely to be lower while using

Kwapisz et al.’s feature-set. Between the ankle and chest, it was found that success-

rates computed from data captured from the ankle are likely to be higher than those
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computed from data captured from the chest using Kwapisz et al.’s feature-set.

It is possible that success-rates from data captured from the wrists are higher

than those of other locations because many of the activities require the use of

the hands to manipulate objects (knifes, dusters, brooms, vacuum cleaners, irons,

clothes, pens, keyboards, mouses, etc.). Data from the motions used to manipulate

the different objects while doing different activities possibly distinguishes the activ-

ities, or types of activities, that the subjects are doing and results in better activity

classification success-rates.

Surprisingly, success-rates from data captured from the thigh were found be

higher than those from data captured from the dominant upper arm, ankle and

chest for both feature-sets. It is possible that this is a result of the thigh being able

to distinguish sitting activities from standing/upright activities using the orientation

of the sensor on the thigh.

The implications of the results obtained in this sections are that if any one

location on the subject’s body should be selected to mount sensors to recognise

Activities of Daily Living, then the wrists should be preferred to the thigh, which

in turn should be preferred to the dominant upper arm, ankle or chest.

5.6 Performance change with increase in number

of body-locations monitored

In this section we are interested in analysing the change in success-rates with increase

in number of monitors at different body-locations.

Hence, the research question in this section is: what is the relationship between

activity classification success-rates as a function of the number of monitors mounted

on different locations of the body?

Results of this section might differ from those obtained from section 5.5 since
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using data obtained from multiple body-locations can result in redundancy in the

information that can distinguish activities from each other. Hence, for example, two

body-locations that were individually highly ranked in section 5.5, do not necessarily

result in higher success-rates when the data of the two body-locations is combined.

Methodology

The data gathered includes activities with 6 monitors mounted on each subject

and also activities with 3 monitors mounted on each subject. The activities with

only 3 monitors mounted are walking and running. The rest of the activities were

gathered using 6 monitors. To be able to determine the success-rate obtained using

data captured from different sets of body-locations, all 6 monitors were used and

hence only activities recorded with all 6 monitors were used.

Analysis performed in section 5.3 found that the difference between the 3 mon-

itor setup and the 6 monitor setup in terms of the success-rates was statistically

significant but at most a mean difference of 4% was observed. Analysis performed

in section 5.4 found the same trends in success-rates obtained from accelerations,

rotational velocities and orientations between the 3 monitor setup and the 6 monitor

setup.

As explained in section 5.5, the exclusion of the walking and running activities

is not expected to significantly impact the trends observed in the analysis and hence

not impact the final conclusions. This is because, walking and running are whole

body activities, and hence should be detected well on arms, legs or the torso.

Hence, analysis in this section was performed for the two feature-sets using six

monitors but not including walking and running.

To answer the research question, the highest average success-rates obtained from

data captured from sets of one to six body-locations was computed. That is, algo-

rithm 7 was called for values of N in the range 1 to 6 with increments of 1, and for
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both Bao and Intille’s and Kwapisz et al.’s feature-sets. N represents the number

of body-locations used for activity classification.

Algorithm 7 Find the highest success-rate obtained using data captured from N
body-locations, using all activities except for walking and running, and all three
sources : accelerations, rotational velocities and orientations.

procedure TestActivityRecognition(FeatureSet,N)
HighestSuccessRate ← 0 � Highest success-rate obtained so far.
HighestMonitorGroup ← NULL � Monitor group with the highest success-rate.
BestResultSet ← NULL � Result set with the highest success-rate.
BestMonitorGroups ← { } � Set of monitor groups that have statistically in-

significant differences with the group with the
highest success-rate.

AllMonitors ← get all six monitors
for all monitor_group ∈ all sets of N monitors from AllMonitors do

Call algorithm 6 with parameters:
1. Feature set: FeatureSet
2. Activities: All activities excluding walking and running.
3. Sources : Accelerations, rotational velocities and orientations.
4. Monitors: monitor_group

Obtain result set res.
Fit Gaussian model onto result set and obtain fitted mean m.
if m > HighestSuccessRate then

HighestSuccessRate ← m
BestResultSet ← res
HighestMonitorGroup ← monitor_group
BestMonitorGroups ← { } � Clear set of best monitor groups.

else
if TTest(BestResultSet, res) > 0.05 then

� Check whether differences between res and
BestResultSet are statistically significant.

BestMonitorGroups.add(monitor_group)
end if

end if
end for
return HighestSuccessRate, HighestMonitorGroup, BestMonitorGroups

end procedure

Results

Results obtained from executing algorithm 7 with N = [1, 6] in intervals of 1 are

shown in table 5.9 for Bao and Intille’s feature-set, and table 5.10 for Kwapisz et
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Table 5.9: The sets of body-locations resulting in the highest success-rate for every set
of N body-locations along with the mean and standard deviation of the success-rates

obtained. The data was processed using Bao and Intille’s feature-set.

Body-locations
N

A C DUA DW NDW T
Mean Standard

Deviation

1 � 65.37 1.7051

1 � 65.29 1.7349

1 � 65.36 1.6845

2 � � 75.61 1.5995

3 � � � 79.08 1.6142

4 � � � � 79.10 1.7238

5 � � � � � 79.21 1.6640

5 � � � � � 79.35 1.5331

6 � � � � � � 79.00 1.5153

Legend

A: Ankle, C: Chest, DUA: Dominant Upper Arm

T:Thigh DW: Dominant Wrist, NDW:Non-dominant Wrist

al.’s feature-set.

From table 5.9, it can be observed that for N = 1 three different body-locations

result in the success-rates that are statistically similar. The highest success-rate for

N = 2 is observed to result from the non-dominant wrist and thigh. The highest

success-rate for N = 3 is observed to result from sets that include the wrists and

the thigh. Next, for N = 4 the chest is included into the best set of N = 3, and for

N = 5 either the ankle or the dominant upper arm is included into the best set of

N = 4. These observations from the results are illustrated in figure 5.21.

The two wrists and the thigh form the three body-locations that result in the

highest success-rates, either individually or when combined. This is similar to what

was observed in section 5.5 for the Bao and Intille’s feature-set.

Section 5.5 found that data captured from the dominant upper arm results in

higher success-rates than either the data from the chest or the ankle while using
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Thigh (or Phone)

Dominant Wrist

Non-dominant Wrist

Chest

Ankle

Dominant Upper Arm

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6

Legend:

Body-location set merger

Figure 5.21: Illustration sets of body-locations, whose captured data result in the
highest success-rates for the given value of N . At each value of N , the body-location

set mergers in the column represent the sets of body-locations that result in the
highest success-rate. Every body-location set merger merges two sets of

body-locations, or a set of body-locations and a body-location, or is a set of one
body-location. The illustration is based on results obtained from Bao and Intille’s

feature-set and shown in table 5.9.
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Thigh (or Phone)

Dominant Wrist

Non-dominant Wrist

Ankle

Dominant Upper Arm

Chest

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6

Legend:

Body-location set merger

Figure 5.22: Illustration sets of body-locations, whose captured data result in the
highest success-rates for the given value of N . At each value of N , the body-location

set mergers in the column represent the sets of body-locations that result in the
highest success-rate. Every body-location set merger merges two sets of

body-locations, or a set of body-locations and a body-location, or is a set of one
body-location. The illustration is based on results obtained from Kwapisz et al.’s

feature-set and shown in table 5.10.
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Table 5.10: The sets of body-locations resulting in the highest success-rate for every
set of N body-locations along with the mean and standard deviation of the

success-rates obtained. The data was processed using Kwapisz et al.’s feature-set.

Body-locations
N

A C DUA DW NDW T
Mean Standard

Deviation

1 � 64.95 1.6402

2 � � 74.15 1.7056

2 � � 73.86 1.6280

3 � � � 77.61 1.6831

4 � � � � 77.95 1.7267

5 � � � � � 78.01 1.5764

6 � � � � � � 77.23 1.6552

Legend

A: Ankle, C: Chest, DUA: Dominant Upper Arm

T:Thigh DW: Dominant Wrist, NDW:Non-dominant Wrist

Bao and Intille’s feature-set. However, the results given in table 5.9 show that, for

N = 4, the set of monitors mounted on the chest, wrists and thigh result in higher

success-rates than either the sets of monitors mounted on ankle, wrists and thigh

or dominant upper arm, wrists and thigh. For N = 5, both the set that includes

the dominant upper arm and the set that includes the ankle are found to result in

statistically similar success-rates.

Kwapisz et al.’s results, as shown in table 5.10, show that data captured from

the dominant wrist results in the highest success-rates for N = 1. Either wrist and

the thigh result in the highest success-rates when N = 2 and both wrists and the

thigh when N = 3. Next, the ankle location is included for N = 4, dominant upper

arm for N = 5 and finally the chest is included for N = 6. These observations from

the results are illustrated in figure 5.22.

Data captured from the dominant wrist, followed by that captured from the

non-dominant wrist, thigh (or phone), and ankle result in the highest success-rates
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in that order. This is similar to observations made in section 5.5 for Kwapisz et al.’s

feature-set.

Data from the dominant upper arm was prefered over data from the chest for

N = 5. However, in section 5.5, it was observed that data captured from the chest

was found to result in higher success-rates than data captured from dominant upper

arm while using Kwapisz et al.’s feature-set.
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Figure 5.23: Success-rate as a function of the number of body-locations used for data
capture for the two feature-sets studied.

Figure 5.23 shows a plot of the maximum success-rates obtained as a function

of N . For both feature-sets studied, a rapid increase in success-rates is observed

within the range N = [1, 3]. The success-rates then remain relatively constant in

the range N = [4, 6].

Although only six points exist per feature-set, the maximum success-rates as

a function of N appear to fit the sum of a diminishing returns relationship and a

constant. We can model this relationship using equation 5.1.

y′ = C − A e−Sx (5.1)

where, y′ ∈ [0, 100]: estimated y value,

C ∈ [0, 100]: maximum estimated y value,
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A ∈ [0, 100]: y scaling factor,

S ∈ [1,∞): x scaling factor

After fitting equation 5.1 on the data presented in figure 5.23 using the Trust-

Region-Reflective Least-Squares regression algorithm, equation 5.2 and equation 5.3

are obtained for results obtained using Bao and Intille’s and Kwapisz et al.’s feature-

set respectively.

Success rate bao ≈ 79.35− 56.73 e−1.398N (5.2)

Success rate kwapisz ≈ 77.93− 49.54 e−1.336N (5.3)

where, N ∈ [1, inf)
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Figure 5.24: Success-rate as a function of the number of body-locations used for data
capture for the two feature-sets studied with fitted equation 5.2 and equation 5.3.

Goodness of fit values are shown in table 5.11 and residuals are shown in fig-

ure 5.25. The goodness of fit values show that the equations fit the data well.

However, the residuals of the two result sets are observed to be correlated. The

correlation coefficient of the residuals is 0.9020. From that, we can infer that the

model does not fully represent the pattern observed in the data and hence can be

refined further. However, the residuals are small (< 1% relative error) hence the
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Table 5.11: Goodness of fit values for the modelled success-rates as a function of
number of body-locations for the two feature-sets studied. The equations fitted are

equation 5.2 and equation 5.3, the observations are presented in figure 5.23.

Goodness of fit value Bao and Intille (2004) Kwapisz et al. (2011)

Sum of Square Error 0.5344 1.015

R2 0.9965 0.9923

Adjusted R2 0.9941 0.9871

Root Mean Square Error 0.4221 0.5817
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Figure 5.25: Residuals of fitted equation 5.2 and equation 5.3 on the observed
success-rates shown in figure 5.23.

error introduced to the model is negligeable. The percentage relative error between

the observed and estimated values is in the range [∼ 0.0%, 0.7%] for Bao and Intille’s

feature-set, and [∼ 0.0%, 0.8%] for Kwapisz et al.’s feature-set. The error-rates were

computed using equation 5.4.

Error =

∣∣∣∣observed− estimated

observed

∣∣∣∣ 100 (5.4)

From the fitted equations, it can be observed that the diminishing returns rela-

tionship at most attains a maximum success-rate of 79.35% and 77.93%, and covers

a range of 56.73% and 49.54%, for Bao and Intille’s and Kwapisz et al.’s feature-set

respectively.
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5.7 Discussion

In this section, success-rates obtained from a set of N body-locations have been

studied for N = [1, 6].

Similar to section 5.5, data from all six monitors was used, but data from walking

and running activities was excluded because these activities were gathered with three

monitors only.

For each value of N , the set of body-locations, whose captured data resulted in

the highest success-rate was computed. In addition, other sets of body-locations,

whose captured data resulted in success-rates that are statistically similar to those

of the set with the highest success-rate, were also computed.

From the results, it was observed that the top three body-locations, whose cap-

tured data resulted in the highest success-rates in section 5.5 were also the body-

locations in the sets that resulted in the highest success-rates. These three body-

locations are: the dominant wrist, the non-dominant wrist and the thigh.

Using Bao and Intille’s feature-set, differences in the result sets computed from

data captured from the three body-locations individually (i.e. with N = 1), were

statistically insignificant, but the set of non-dominant wrist and thigh was selected

for N = 2.

Using Kwapisz et al.’s feature-set, the dominant wrist was prefered for N = 1,

but data captured from either wrist and thigh, was found to result in the highest

success-rates for N = 2.

Patterns in results of N = 4 and N = 5 differ with those observed in section 5.5.

Section 5.5 found that data gathered from the dominant upper arm resulted in

higher success-rates than data gathered from either ankle or chest while using Bao

and Intille’s feature-set. However, in the results obtained from this section, data

gathered from the chest was found to result in higher success-rates when combined
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with data captured from the wrists and thigh, than either data captured from the

ankle or dominant upper arm. For N = 5, data captured from the dominant upper

arm and the ankle was found to result in similar success-rates when combined with

data from the chest, wrists and thigh.

Using Kwapisz et al.’s features, section 5.5 found that data captured from the

chest resulted in higher success-rates than data captured from the dominant upper

arm. For N = 5, results in this section found that, data captured from the dominant

upper arm results in better success-rates than data captured from the chest when

combined with data captured from the ankle, wrists and thigh.

When maximum success-rates were plotted as a function of N , it was observed

that the data resembled a diminishing returns relationship. Equation 5.1 was then

fitted onto the data, and the goodness of fit values given in table 5.11 showed that

the equations fit the data well. From the plot of the residuals, it was observed that

the residuals were highly correlated. This implies that the model does not fully

represent the pattern observed in the data. However, the magnitude of the residuals

was observed to be small and hence the relative error introduced is negligeable.

From the fitted models, it was observed that the maximum estimated success-

rate is 79.35% and 77.93% using Bao and Intille’s and Kwapisz et al.’s feature-set

respectively. It was also observed that the diminishing returns relationship covers an

estimated 56.73% and 49.54% using Bao and Intille’s and Kwapisz et al.’s feature-set

respectively. However, these success-rates could change if other activity classification

parameters were changed, for example, window length, window overlap, the set of

activities classified.

The observation that the relationship between success-rates and number of mon-

itors used from different body-locations is that of a diminishing returns relationship

is not surprising. As monitors are mounted on more body-locations, less and less

additional unique information is made available for activity classification to make

use of to identify the activity. The extreme case is where the monitors are overlap-
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ping each other, in which case we would expect no additional information from the

additional sensor.

The results obtained in this section imply that, with the right placement, the

first few monitors mounted on the subject’s body contribute the most to the activity

classification success-rate. Each additional monitor contributes lesser information

than the preceeding monitor. The best locations for Activities of Daily Living are

on the wrists, followed by the thigh, then either ankle, dominant upper arm or chest,

depending on the feature-set used.

5.8 Conclusion

In this chapter, the activity classification performance stemming from the different

feature-sets, sources, and body-locations were studied.

All the performance comparisons carried out in this chapter make use of result

sets computed using algorithm 6. Among the parameter choices made while im-

plementing algorithm 6 are the use of 10-second windows, 50% window overlaps

and the use of 10-fold cross-validation. The reason why 10-fold cross-validation was

used is explained in 3.6. However, analysis performed in section 4.3 found that a

diminishing-returns relationship exists between success-rates and the length of the

windows used. Similarly, analysis performed in section 4.4 found that a decreasing

linear relationship exists between success-rates and logarithmic window shift while

using 10-fold cross-validation. Hence, for 10-fold cross-validation, the longer the

windows and the higher the window overlap; the higher the success-rates.

However, the analysis performed in this section was conducted independently of

the analysis in other sections and the window lengths and window overlaps were

selected independently.

No attempt is made in this chapter of finding the highest success-rate achiev-

able by any set of parameters. Instead, the research questions answered in this
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chapter are strictly about the differences in the success-rates obtained by different

configurations (i.e. which configuration resulted in higher success-rates than the

other).

Based on the findings of section 4.3 and section 4.4, changing the window length

and the window shift will almost certainly impact the success-rates obtained for

any set of parameters passed to algorithm 6. However, it is hypothesised that this

impact is going to be consistent across different sets of parameters and hence still

lead to the same conclusions as those made in this chapter. Further research is

required to verify whether this hypothesis is true or not.

In the first section of the chapter, the performance differences of the two selected

feature-sets were studied. Due to the way the data was gathered, two sets of monitor

setups are possible: using 3 monitors and all activities, or using 6 monitors but

excluding walking and running activities. The performance of the feature-sets was

studied for both setups.

The differences between success-rates obtained using the two feature-sets were

found to be small but statistically significant, and larger for the 3 monitor setup

than for the 6 monitor setup. The differences between success-rates obtained using

the 3 monitor setup and the 6 monitor setup were found to be larger than those

obtained when studying difference between the two feature-sets. The success-rates

obtained using the 6 monitor setup were found to be higher than those of the 3

monitor setup.

Next, a performance comparison of success-rates obtained from accelerations,

rotational velocities and orientations was performed. Again, the analysis was per-

formed for both the 3 monitor setup and the 6 monitor setup. It was found that, of

the three sources, accelerations are the most likely to result in the highest success-

rates, and are almost certain to result in higher success-rates than rotational veloci-

ties, for either feature-set and either monitor setup. Rotational velocities, however,

are most likely to result in the lowest success-rates of the three sources for either
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feature-set and either monitor setup.

A performance comparison between success-rates obtained from accelerations,

rotational velocities and orientations, and those obtained from the three sources

combined, was performed. The analysis found that, of the three sources, accelera-

tions had the smallest mean difference and the lowest probability of resulting in a

success-rate that was lesser than that of the combined sources. Orientations were

had the next smallest mean difference but were either very likely to have a success-

rate that is lesser than that of the combined sources (while using Bao and Intille’s

feature-set) or almost certain (while using Kwapisz et al.’s feature-set). Rotational

velocities resulted in success-rates that had the greatest mean difference from that

of the combined sources and were almost certain to have a success-rate. In addi-

tion, it was noted that the mean difference between success-rates computed from

accelerations, and those computed from all three sources, was low, being at most

2.2%.

The implication are that, in a situations where attaining the highest success-rates

is important, if all three sources can be obtained and processed, then combining

all three is likely to result in a higher success-rate than any one individual source.

However, if this is not possible, then accelerations should be prefered to orientations,

which in turn should be preferred to rotational velocities.

Next, a comparison was performed of success-rates computed from data captured

from different single body-locations. The analysis found that the wrists and the

thigh are the three individual locations that result in the highest performance out

of the six locations available. The differences in success-rates computed from data

captured from the wrists and the thigh were found to be statistically insignificant

while using Bao and Intille’s feature-set. While using Kwapisz et al.’s feature-set,

it was found that the dominant wrist resulted in better success-rates than the non-

dominant wrist, which in turn resulted in better success-rates than the thigh.

The ranking of the ankle, chest and dominant upper arm differed depending
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on the feature-set used. Using Bao and Intille’s feature-set, it was found that the

dominant upper arm resulted in higher success-rates than both the ankle and the

chest, while the ankle and the chest were similar. However, the opposite was found

while using Kwapisz et al.’s feature-set: result from both the ankle and the chest

were found to be higher than those of the dominant upper arm. Of the two, the

ankle resulted in higher success-rates than the chest while using Kwapisz et al.’s

feature-set.

This impies that if any one location on the subject’s body should be selected

to mount sensors to recognise Activities of Daily Living, then the wrists should be

prefered to the thigh, which in turn should be preferred to the dominant upper arm,

ankle or chest.

In the next section, an analysis of success-rates as a function of number of dif-

ferent body-locations monitored was performed. It was found that, for Bao and

Intille’s feature-set, while monitoring one body-location the highest success-rate

was obtained if that body-location was either one of the wrists or the thigh. Using

Kwapisz et al.’s feature-set, this was found to be the dominant wrist. Both feature-

sets found that while monitoring two body-locations, the highest success-rate is

obtained when monitoring either wrist and the thigh, and for three both wrists and

the thigh.

The body-locations to be monitored for highest success-rate while monitoring

four, five and six body-locations differed depending on the feature-set. For Bao

and Intille’s feature-set, the chest in conjunction with the wrists and thigh result

in the highest success-rate for four body-locations. However, for Kwapisz et al.’s

feature-set this body-location is the ankle.

It is worth noting that individually, the dominant upper arm resulted in higher

success-rates than the chest while using Bao and Intille’s feature-set. However, when

combined with the wrists and thigh, the chest body-location resulted in slightly

better (but still statistically significant) success-rates than the the dominant upper
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arm.

A similar observation is made with Kwapisz et al.’s feature-set where individually,

the chest results in slightly higher success-rates than the dominant upper arm, but

when combined with the ankle, wrists and thigh, the dominant upper arm results

in slightly higher success-rates.

For five body-locations, while using Bao and Intille’s feature-set it was found

that there is no difference in including either the ankle or dominant upper arm to

the chest, wrists and thigh. While using Kwapisz et al.’s feature-set, the dominant

upper arm results in a higher success-rate when combined with the ankle, wrists

and thigh for five body-locations.

The better performance of the wrists can be explained to be due to hand motions

being more prevalent in Activities of Daily Living than any other body-location.

The thigh performs well because of the ability to distinguish sitting from standing

activities using the orientation of the monitor mounted on the thigh location.

The maximum success-rates as a function of number of body-locations were then

studied. It was then hypothesised that the maximum success-rate as a function of

number of body-locations forms a diminishing returns relationship. An equation

was then fitted onto the data and it was observed to fit the data well. In the

discussion section, this hypothesised relationship was explained to be due to less

new information being made available to distinguish activities with the addition of

each new monitored body-location.

The results obtained imply that, with the right placement, the first few moni-

tors mounted on the subject’s body contribute the most to the activity classification

success-rate. Each additional monitor contributes lesser information than the pre-

ceeding monitor. The best locations for Activities of Daily Living are on the wrists,

followed by the thigh, then either ankle, dominant upper arm or chest, depending

on the feature-set used.





6
Analysis of the impact of inter-subject

and inter-activity variability on activity

classification accuracy

6.1 Introduction

In this chapter, analysis is performed: on the activity classification success-rates

obtained by each activity to identify activities that are more easily identifiable than

other activities; on the mutual confusion existing between each possible pair of ac-

tivities to identify which activities are highly confusable to each other; and the

success-rates obtained using 10-fold cross-validation and remove-one-subject cross-

validation are analysed to understand the impact of inter-subject variation on activ-

ity classification success-rates. This chapter serves as a continuation of the analysis

performed in chapter 5.

In section 6.2, success-rates of individual activities are compared to find out

which activities are more easily identifiable than other activities. In addition, an

analysis of mean activity success-rates with relation to standard deviations of ac-

tivity success-rates is performed.

In section 6.3, mutual confusion of activities is studied to find out which activities

are confused with each other. The confusability of activities is computed by using

the mutual type 1 and type 2 errors between activities obtained from confusion

matrices. How confusable one activity is to another is illustrated using dendrograms

203
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of activities computed from confusion matrixes.

In section 6.4, success-rates obtained using 10-fold cross-validation are compared

to those of remove-one-subject cross-validation. Differences in the distributions of

success-rates obtained from the two cross-validation techniques are compared. In

addition, the relationship of success-rates of activities obtained from the two cross-

validation techniques is evaluated.

The chapter is divided into sections. Each section contains research questions

dealing with a specific area of interest. Each section begins with a discussion on

the importance of studies on the area of interest; research questions in the area of

interest are then possed together with reasons why we wish to attempt to answer

these particular questions; a methodology of answering the research questions is

given; the results of the analysis are then provided and illustrated; and finally, the

conclusions and implications of the result findings are discussed. At the end of

the chapter, the analysis, findings and implications of findings of the chapter are

summarised.

6.2 Are some activities more easily identifiable

than others?

Earlier sections in this thesis have focussed chiefly on overall activity classification

success-rates. However, overall activity classification success-rates are aggregated

from individual activity success-rates. This section aims to explore the relationships

between success-rates obtained by individual activities in comparison to those of

other activities.

To that end, the following research questions are possed:

1. Are some activities more easily identifiable than others?

Knowing which activities are more easily identifiable than others can allow
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activity recognition researchers to focus more research on trying to distinguish

the activities that are not easily identifiable.

2. Is there a relationship between mean activity success-rates and stan-

dard deviation of activity success-rates?

If some activities are more easily identifiable than others, then it is likely that

the activities that are easily identifiable would consistently be identified with

higher success-rates, while other activities would vary hence result in a larger

standard deviation in the activity success-rates.

Methodology

To answer the research questions, confusion matrices of result sets obtained in chap-

ter 5 were analysed to extract the individual success-rates when identifying each ac-

tivity. The success-rate of identifying an activity is computed based on equation 6.1.

Success-rateA =
count(matched samples of activity A)

count(samples of activity A)
100 (6.1)

Four sets of results were computed and used to answer the research questions

posed in this section. The result sets are described in table 6.1 and are similar to the

result sets with similar names used in chapter 5 (refer to table 5.2 for more details).

The success-rates of activities were compared as follows: for each result-set, the

success-rates of all activities were extracted. The differences between success-rates

of each pair of activities was then computed. A histogram of the differences with

bin size 1 was computed and a normal distribution was fitted onto the histogram

using maximum likelihood estimation.

Then, using the fitted normal distribution as a probability density function, the

probability of a success-rate in the first activity’s result set being less than a success-

rate in the second result set was computed as the cumulative distribution below zero

(i.e. the integration of the fitted model for the range (−∞, 0]). This probability is

then used as the likelihood of the first activity having a higher activity classification
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Table 6.1: Descriptions of the result sets used from chapter 5.

Result Set Description

Bao-3 Result set obtained from feature-vectors of accelerations, rotational ve-
locities and orientations, extracted using Bao and Intille’s feature-set,
and using data captured from the chest, dominant wrist, thigh.

Bao-6 Result set obtained from feature-vectors of accelerations, rotational ve-
locities and orientations, extracted using Bao and Intille’s feature-set,
and using data captured from all six body-locations available, but ex-
cluding walking and running.

Kwapisz-3 Result set obtained from feature-vectors of accelerations, rotational ve-
locities and orientations, extracted using Kwapisz et al.’s feature-set, and
using data captured from the chest, dominant wrist, thigh.

Kwapisz-6 Result set obtained from feature-vectors of accelerations, rotational ve-
locities and orientations, extracted using Kwapisz et al.’s feature-set, and
using data captured from all six body-locations available, but excluding
walking and running.

success-rate than the second activity given the activity classification parameters

used.

Finally, the activities were ranked based on their likelihood of having a higher

success-rate than other activities, given the activity classification parameters used.

This process is elaborated as algorithm 8.

Results

Activity success-rates obtained

Activity success-rates from the 3 monitor setup result sets Bao-3 and Kwapisz-3 are

summarised in the boxplot in figure 6.1. Similarly, activity success-rates from the

6 monitor setup result sets Bao-6 and Kwapisz-6 are summarised in the boxplot in

figure 6.2.

From figure 6.1 and figure 6.2, it can be observed that activities like walking,

running, walking up stairs, walking down stairs, texting on the phone, using the

PC, walking (on a flat surface), watching TV and writing have high success-rates

and low variance in their success-rates.
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Figure 6.1: Boxplots of success-rates of each activity from Bao-3 result set (left) and
Kwapisz-3 result set (right). The two boxplots share the y-axis on the left. Outliers

are shown using asterisks.
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Figure 6.2: Boxplots of success-rates of each activity from Bao-6 result set (left) and
Kwapisz-6 result set (right). The two boxplots share the y-axis on the left. Outliers

are shown using asterisks.
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Figure 6.3: Mean activity classification success-rates (and standard deviations shown
using error bars) of each activity from the Bao-3 and Kwapisz-3 result sets.



210 Chapter 6. Inter-subject and inter-activity variability

0 20 40 60 80 100

Writing

Watching TV

Washing Veg.

Washing Hands

Washing Dishes

Walking U. Stairs

Walking D. Stairs

Vacuuming

Using PC

Texting (Phone)

Talking (Phone)

Sweeping

Stiring

Peeling Veg.

Ironing

Grating

Folding Clothes

Dusting

Dicing

Brushing Teeth

Activity classification success-rate (%)

A
ct

iv
it

ie
s

Bao and Intille (2004) Kwapisz et al. (2011)

Figure 6.4: Mean activity classification success-rates (and standard deviations shown
using error bars) of each activity from the Bao-6 and Kwapisz-6 result sets.
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Algorithm 8 Rank the activities in result set ResultSet based on the likelihood of
one activity obtaining higher success-rates than another activity given the activity
classification parameters used.

procedure RankActivities(ResultSet)
Create results table T
A ← all activities in ResultSet
for all A1 ∈ A do

for all A2 ∈ A, A1 �= A2 do
S1 ← all success-rates of activity A1 from ResultSet
S2 ← all success-rates of activity A2 from ResultSet
D ← S1 − S2 � Compute difference in success-rates
H ← Histogram of D with bin size 1
Fit normal distribution M onto H using maximum likelihood estimate.
Extract mean x̄ of M
Compute the cumulative probability p at (S1 − S2) = 0 from pdf M .
Set P (A1 > A2) ← 1− p in table T
Set A1 − A2 ← x̄ in table T

end for
end for

Sort activities A using probabilities stored in T such that P (Ai > Ai+1) >= 0.5
end procedure

This is easier to observe in figure 6.3 and figure 6.4, which illustrate the mean

success-rates and standard deviations of the two feature-sets studied for the 3 mon-

itor setup result sets and the 6 monitor setup result sets respectively.

From figure 6.3 and figure 6.4, it can be observed that the activities with the

lowest success-rates are washing hands and washing dishes. Not only do they have

the lowest success-rates, but also appear to have the highest standard deviation of

success-rates.

From the result-sets, it can be observed that the success-rates of the activities

obtained from different feature-sets but similar monitor setups appear very similar

to each other. The correlation between success-rates of activities obtained using

Bao and Intille’s feature-set and Kwapisz et al.’s feature-set are 0.8201 and 0.8083

using the 3 monitor setup and the 6 monitor setup respectively.

A paired two-sample two-tailed t-test with α = 0.05 between each pair of activity
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result sets of the same activity and same monitor setup but computed using different

feature-sets was run to test the null hypothesis that the pairs of result sets came

from independent random samples from normal distributions with equal means and

equal but unknown variances.

The test rejected the null hypothesis for all activities of both the 3 and the

6 monitor setups implying that the differences in the result sets are statistically

significant. These results are similar to those obtained in section 5.3 that showed

that the differences in the overall success-rates obtained from the two feature-sets

were small but statistically significant.

Ranking activities based on likelihood of achieving higher success-rates

than other activities

A paired two-sample two-tailed t-test with α = 0.05 between each pair of activity

result sets computed from the same feature-sets and the same monitor setup but

of different activities was run to test the null hypothesis that the pairs of result

sets came from independent random samples from normal distributions with equal

means and equal but unknown variances.

The test rejected the null hypothesis for all pairs of activities implying that the

differences between the success-rates obtained from the activities are statistically

significant.

Hence, we can compute the differences between pairs of activities and rank them

based on which activity results in higher success-rates than other activities. The

rankings computed from success-rates obtained using Bao and Intille’s feature-set

and Kwapisz et al.’s feature-set using the 3 monitor setup are given in figure D.1 and

figure D.2 in appendix D. Similarly, figure D.3 and figure D.4 in appendix D give

the ranking computed from success-rates obtained using Bao and Intille’s feature-set

and Kwapisz et al.’s feature-set using the 6 monitor setup.
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From figure D.1 and figure D.2 we can observe that for both feature-sets, running

was the most likely to result in the highest success-rates while washing hands is the

most likely to result in the lowest success-rates while using the 3 monitor setup.

The activities with the lowest success-rates are observed to be in the same order

for both feature-sets: washing hands, washing vegetables, dusting, sweeping, folding

clothes, washing dishes, ironing, peeling vegetables, vacuuming and brushing teeth.

Other activities’ ranking vary depending on the feature-set used, however, some

common patterns can be observed. For example, watching TV, writing, using the

PC, walking on a flat surface and texting on the phone are ranked higher than all

other activities except for running for both feature-sets. However, the order of the

ranking within the set changes depending on the feature-set used.

Figure D.3 and figure D.4 are observed to be similar to each other. A large

number of the top ranking activities have the same order for both feature-sets while

using the 6 monitor setup. This order of activities is: walking up stairs, walking

down stairs, watching TV, writing, using a PC, texting on the phone, grating, dicing,

stiring, talking on the phone, peeling vegetables and brushing teeth. Other activities

vary depending on the feature-set used. Washing vegetables and washing hands are

observed to result in the lowest success-rates of all activities for both feature-sets.

The next lowest are sweeping and dusting, in that order.

When the activity rankings obtained from all four result sets computed are aggre-

gated, and activities that are likely to have higher success-rates than other activities

for all result sets are obtained, the results are illustrated in figure 6.5. Figure 6.5

illustrates the rankings of all activities based on the likelihood of obtaining higher

success-rates for one activity more than other activities. The rankings generated

from all four result sets (those generated from Bao and Intille’s feature-set, Kwapisz

et al.’s feature-set as well as 3 and 6 monitor setups) were combined. Where the

rankings from one result set conflicted with those of any of the other result sets, the

conflicting activities were positioned horizontally (implying that either possibility is
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likely).

From figure 6.5 we can observe that using the PC, watching TV and writing are

likely to achieve higher success-rates than any other activity using either of the two

studied feature-sets and either the 3 monitor setup or 6 monitor setup. Running

is likely to perform better than using a PC, watching TV and writing using either

feature-set studied, however, this was only observed from the 3 monitor setup result

sets. Similarly, walking (on a flat surface) performs at the same level as using a

PC, watching TV and writing, however, this was only observed from the 3 monitor

setup result sets.

The activities likely to have the next highest success-rates, using either of the

two feature-sets or monitor setups, are observed to be texting on the phone, walking

down stairs and walking up stairs.

Washing vegetables and washing hands are observed to likely have the least

success-rates of all the activities for all the result sets. Dusting and sweeping are

observed to have the next highest success-rates in all the result sets followed by

vacuuming, ironing, washing dishes and folding clothes.

Relationship between mean and standard deviation of activity

success-rates

The mean and standard deviation of activity success-rates are observed to correlate.

The correlation is higher for the 6 monitor setup than for the 3 monitor setup, having

values of -0.75 and -0.70 for Bao and Intille’s and Kwapisz et al.’s feature-set for the

3 monitor setup, and -0.81 for both Bao and Intille’s and Kwapisz et al.’s feature-set

for the 6 monitor setup.

When the mean and standard deviations of activities are plotted, the correlation

is observed to result from three groups of activities for both feature-sets and for both

the 3 monitor setup and the 6 monitor setup. The groups are shown in figure 6.6
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Figure 6.5: Illustration showing the ranking of activities based on the likelihood of
obtaining higher success-rates for one activity more than other activities. Arrows in

activity connections point from activities that are likely to have higher success-rates to
those that are likely to have lower success-rates. This illustration is an aggregation of

result sets from both 3 and 6 monitor setups and both feature-sets. Only activity
rankings that are valid for all result sets are shown. However, running and walking on a
flat surface are also shown, even though their ranking is only based on the 3 monitor

setup result sets.
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and figure 6.7 for the 3 monitor setup and the 6 monitor setup respectively and can

be summarised as:

1. A group with high success-rates and low variance: This group includes walking

up stairs, walking down stairs, watching TV, writing, using the PC and texting

on the phone. It also includes walking on a flat surface and running for the 3

monitor setup.

2. A group that has low success-rates and high variance: This group includes

washing hands and washing vegetables.

3. A group that has medium success-rates and medium variance: This group in-

cludes all the other activities: brushing teeth, dicing, dusting, folding clothes,

grating, ironing, peeling vegetables, stiring, sweeping, talking on the phone,

vacuuming and washing dishes.

Discussion

In this section, success-rates of activities were compared to success-rates of other

activities.

First, success-rates of activities were computed using both Bao and Intille’s

feature-set and Kwapisz et al’s feature-set, and for the 3 monitor setup and the 6

monitor setup.

A t-test was then performed between activity success-rates obtained from the

two feature-sets for both the 3 monitor setup and the 6 monitor setup. The test

rejected the null hypothesis that the activity success-rates obtained from the two

feature-sets came from independent random samples from normal distributions of

equal mean and equal but unknown variances. Hence, the differences in the success-

rates obtained from the two feature-sets are statistically significant, although they

are observed to be small. These results reflect the results obtained in section 5.3

that showed that the differences in the overall success-rates obtained from the two
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Figure 6.6: Scatter plot of mean and standard deviations of success-rates obtained by
activities using Bao and Intille’s feature-set and Kwapisz et al’s feature-set for the 3
monitor setup. The correlation coefficient between x and y success-rates obtained

using Bao and Intille’s feature-set is -0.7482, while the correlation coefficient between
x and y success-rates obtained using Kwapisz et al.’s feature-set is -0.6992.

feature-sets were small but statistically significant.

Similar t-tests were then performed between result sets of each possible pair

of activities of the same feature-set and same monitor setup. The t-tests rejected

the null hypothesis that the activity success-rates came from independent random

samples of normal distributions of equal mean and equal but unknown variance.

Hence, the differences in the success-rates between each possible pair of activities

of the same feature-set and the same monitor setup, were found to be statistically

significant.
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Figure 6.7: Scatter plot of mean and standard deviations of success-rates obtained by
activities using Bao and Intille’s feature-set and Kwapisz et al’s feature-set for the 6
monitor setup. The correlation coefficient between x and y success-rates obtained

using Bao and Intille’s feature-set is -0.8130, while the correlation coefficient between
x and y success-rates obtained using Kwapisz et al.’s feature-set is -0.8065.

The differences between the activity success-rates were then computed. A his-

togram of the differences was then computed and a normal distribution fitted onto

the histogram using maximum likelihood estimation. The fitted normal distribu-

tion was then used as a probability density function and the probability of the first

activity’s result set being less than the second result set was computed as the cumu-

lative distribution below zero (i.e. the integration of the fitted model for the range

(−∞, 0]). Using the probabilities, the activities were ranked such that activities

that were more likely of obtaining higher success-rates than other activities were

ranked higher than the other activities. This was performed for both feature-sets
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and for both the 3 and 6 monitor setup.

From the 3 monitor setup rankings, it was noted that running was most likely

to have the highest success-rate while washing hands was most likely to have the

lowest success-rate. It was also noted that the lowest performing activities while

using the 3 monitor setup had the same order for both feature-sets. The order

(from the lowest) is: washing hands, washing vegetables, dusting, sweeping, folding

clothes, washing dishes, ironing, peeling vegetables, vacuuming and brushing teeth.

The ranking of other activities changed depending on the feature-set used.

From the 6 monitor setup rankings, it was noted that the order of the activities

with the highest success-rates were similar between the two feature-sets studied.

The order (from the highest) was: walking up stairs, walking down stairs, watching

TV, writing, using the PC, texting on the phone, grating, dicing, stirring, talking on

the phone, peeling vegetables, and brushing teeth. The rankings of other activities

changed depending on the feature-set used.

When the rankings obtained from the four result sets were combined, it was

observed that using the PC, watching TV and writing were likely to have higher

success-rates than any other activity. Running is likely to be higher than the three,

but this observation was only made for the 3 monitor setup. Similarly, walking on a

flat surface is likely to have as high success-rates as the three, but this observation

was only made for the 3 monitor setup. The activities likely to have the next

highest success-rates are observed to be texting on the phone, walking down stairs

and walking up stairs.

Washing vegetables and washing hands are likely to have the lowest success-

rates; followed by dusting and sweeping; and vacuuming, ironing, washing dishes

and folding clothes. The full ranking is illustrated as figure 6.5.

Next, it was observed that a correlation existed between the mean and stan-

dard deviation of success-rates obtained from activities. The correlation coefficient

of success-rates obtained using Bao and Intille’s feature-set was -0.7482 and that
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of Kwapisz et al.’s feature-set was -0.6992 while using the 3 monitor setup. The

correlation coefficient of success-rates obtained using Bao and Intille’s feature-set

was -0.8130 and that of Kwapisz et al.’s feature-set was -0.8065 while using the 6

monitor setup. Hence, the correlation was observed to be stronger for the 6 monitor

setup than for the 3 monitor setup.

When the activity mean success-rates were plotted against the standard de-

viations of the success-rates, it was observed that the correlation is a result of the

existence of three distinct groups of activities: those with high success-rates and low

variance, those with low success-rates and high variance, and those with medium

success-rates and medium variance. The three groups were observed while using

both feature-sets and while using both monitor setups.

The group of activities with the low success-rates and high variance is observed

to consist of washing hands and washing vegetables. The success-rates of these

activities largely vary from one testing fold to another, resulting in higher success-

rates in some folds and lower success-rates in other folds. This is possibly because

some sections of these activities are much easier to identify than other sections

using the feature-sets studied. Hence, if the testing fold contains windows from the

easier-to-identify sections, the testing fold results in higher success-rates, while if

the testing fold has no windows of the easier-to-identify sections, the testing fold

results in lower success-rates.

The group of activities with the high success-rates and low variance are observed

to consist of walking up stairs, walking down stairs, watching TV, writing, using

the PC and texting on the phone. This group also includes walking on a flat surface

and running for the 3 monitor setup. These activities are consistently identified

accurately. Hence, all or most windows of these activities can be identified accu-

rately. This is possibly because these activities have particular characteristics that

the feature-sets are consistently capturing to identify the activities.

For example, running is known to have high accelerations due to high impact
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with the ground. This distinguishing characteristic results in much higher ampli-

tudes in some of the acceleration FFT bins than others and is captured as a higher

information entropy in the frequency domain while using Bao and Intille’s feature-

set. This distinguishing characteristic of running also results in a higher standard

deviation of the acceleration signal which is captured by the standard deviation of

the signal or the standard deviation of the magnitude of the signal by Kwapisz et

al.’s feature-set. Similarly distinct characteristics could exist for the other activities

too.

The results of this section imply that activities like walking on a flat surface,

walking up stairs, walking down stairs, running, watching TV, writing, using a PC

and texting on the phone are easier to identify and hence activity recognition systems

that only identify these activities are likely to have high success-rates. However,

activities like washing hands, washing dishes, dusting and sweeping are more difficult

to identify.

6.3 Activity classification specificity

The motions that define some activities are more alike than others. For example,

we expect the hand movements involved in washing vegetables and washing dishes

to be more similar than those between washing vegetables and walking up stairs.

However, when algorithms are compared (as they usually are in papers) the

comparison is based on the average of the success rate of recognising each activity.

However, this does not take into account, as explained in Consolvo et al. (2008)

and Taylor et al. (2011), that this approach is different from the users’ perception

of accuracy. To achieve a high level of user acceptance, only activities that can be

determined by both a high level of sensitivity and a high level of specificity should

be reported (Taylor et al., 2011).

A balance needs to be struck on how specific an activity recognition system is
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when it is reporting activities identified. An activity recognition system that is very

specific in reporting activities identified, at the risk of being inaccurate, results in a

poor user perception of the system. On the other hand, a system that is vague in

it’s reporting of the user’s activities is unlikely to be useful to the user.

Hence, if a system can not determine accurately enough whether a user is wash-

ing vegetables or washing dishes, it can instead report a combined class (perhaps

washing at the sink). This combined class is more likely to be correct than either of

the two more specific options. However, at the most extreme, it might not be useful

to the user. For example, physical exercise is not useful for a user who expects to

keep track of which exercise he or she performed and hence how many calories were

burnt over the exercise duration.

The ideal activity recognition system would be able to perfectly recognise any

number of activities, however, the reality is that this is a difficult task to accomplish

given the variety of activities undertaken by end-users. This makes the criteria used

to pick an activity recognition algorithm important.

Hence when selecting an activity recognition algorithm based on it’s success rate,

an activity recognition algorithm that confuses washing vegetables with washing

dishes is better than one that confuses washing vegetables with walking up stairs.

This is because washing vegetables and washing dishes can naturally be grouped

into a higher level activity that the user can accept while washing vegetables and

walking up stairs can not.

To that end, the research question posed in this section is: which activities are

confused with one another using the feature-sets studied? Hence, in this section,

the results from the two selected feature-sets are analysed to find out how much

confusion exists between different activities.

To aid in the analysis, the data is presented in the form of an activity dendrogram.

A dendrogram is a tree diagram that is often used to illustrate hierarchical clustering.

We propose an activity dendrogram as a dendrogram that illustrates confusability
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between activities with relation to a particular activity-classification algorithm. We

base the confusability of activities on the notion that highly confusable activities

result in higher mutual type 1 and type 2 errors in classification.

Methodology

Confusion matrixes computed using algorithm 6 were obtained so as to compare

mutual confusability of activities while using result sets obtained using both Bao

and Intille’s feature-set and Kwapisz et al.’ feature-set for:

1. The 3 monitor setup compared to the 6 monitor setup.

2. Acceleration, rotational velocities and orientations.

Hence, 16 sets of results were computed using algorithm 6. The result sets are

similar to those used in section 5.4. Refer to table 5.4 for details of the parameters

passed to algorithm 6 to compute the result sets.

To create activity dendrograms using the confusion matrices obtained from the

result sets, agglomerative hierarchical clustering was used. Agglomerative hierar-

chical clustering is a form of bottom-up clustering where at each step, the two

subgroups with the shortest distance are merged (or linked) to form a higher-level

group resulting into a hierarchy of clusters. In our case, we wish to merge the two

groups of activities with the highest mutual type 1 and type 2 error rates. By doing

so, we create a hierarchy that at the bottom has each activity in its own group. At

each step, the most similar activity groups (i.e. those with the highest mutual error

rates) are merged upwards hence reducing the overall error rates and increasing the

overall classification success-rates.

Algorithm 9 elaborates on how the activity dendrograms were created.
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Algorithm 9 Algorithm that creates an activity dendrogram from a confusion
matrix.

procedure CreateActivityDendrogram(M)
node_map ← new Map � Map to store dendrogram nodes in.
for all a ∈ activities(M) do � Add all activities to map.

node_map.add(a, new Node(a))
end for

while node_map.size > 1 do � Loop till only one activity is left.
activity1 ← NULL � Data types to store the pair of
activity2 ← NULL � activities with the largest error.
largest_error ← −∞

for all a ∈ activities(M) do � Find the pair of activities with
for all b ∈ activities(M), a �= b do � the largest error.

e ← error(a, b) + error(b, a) � Add type 1 and type 2 errors.
if e > largest_error then

largest_error ← e
activity1 ← a
activity2 ← b

end if
end for

end for

� Merge activities to create parent activity.
parent_activity ← activity1 + activity2

� Update activities in matrix.
M ← merge(M,activity1, activity2, parent_activity)

� Compute success rate from new matrix.
success_rate ← calc_success_rate(M)

� Create new dendrogram node for parent.
parent_node ← new Node(parent_activity)
node_map.add(a, parent_node) � Add parent node to node map.

� Set parent of activity nodes.
node_map[activity1].parent ← parent_node
node_map[activity2].parent ← parent_node

node_map.remove(activity1) � Remove child activities
node_map.remove(activity2) � from the node map.

end while

return node_map.first � Return the root of the dendrogram.
end procedure
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Results

The activity dendrograms computed from result sets in this section are given in

appendix E.

Figure 6.8 and figure 6.9 the generated dendrograms based on mutual error

rates between each possible pair of activities obtained from results obtained from

Bao and Intille’s feature-set and Kwapisz et al.’s feature-set using the 3 monitor

setup (figure 6.8) and 6 monitor setup (figure 6.9) and all three sources.

It should be noted that the y-axis of the dendrograms present the success-rate

obtained when the data of subclusters are merged and the resulting data reclassified.

Figure 6.8 and figure 6.9 show activity dendrograms constructed from confusion

matrixes obtained from classifying feature-vectors extracted from all three sources.

Figure 6.8 was constructed from result sets Bao-3 and Kwapisz-3 while figure 6.9

was constructed from result sets Bao-6 and Kwapisz-6.

Figure 6.8 and figure 6.9 are very similar. Many of the clusters visible in figure 6.8

can also be seen in figure 6.9. The most visible difference between the two figures

is that success-rates in figure 6.8 are lower than those of figure 6.9.

From the two figures, it can be observed that the greatest mutual confusion exists

between sweeping and vacuuming for both feature-sets and both the 3 and 6 monitor

setups. The pair of activities with the next highest mutual confusion depends on

the feature-set used. The pair is folding clothes and ironing clothes for Bao and

Intille’s feature-set for both monitor setups and washing hands and washing dishes

for Kwapisz et al.’s feature-set for both monitor setups.

The common three groups that result in the highest mutual confusion for both

feature-sets and both 3 monitor setups and 6 monitor setups are: sweeping, vacu-

uming and dusting; folding clothes and ironing clothes; and washing dishes, washing

hands and washing vegetables.

Figure E.4, figure E.5 and figure E.6 show activities clustered based on mu-
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Figure 6.8: Activity dendrogram showing clustering of activities by mutual error rates
constructed using result sets Bao-3 (upper) and Kwapisz-3 (lower). Details of the
result sets are given in table 5.4. y-axis shows the success-rates obtained at each

activity set merger.
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Bao and Intille (2004)
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Figure 6.9: Activity dendrogram showing clustering of activities by mutual error rates
constructed using result sets Bao-6 (upper) and Kwapisz-6 (lower). Details of the
result sets are given in table 5.4. y-axis shows the success-rates obtained at each

activity set merger.
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tual confusability computed from result sets obtained from accelerations, rotational

velocities and orientations, respectively, using the 6 monitor setup. Similarly, fig-

ure E.1, figure E.2 and figure E.3 show activities clustered based on mutual confus-

ability computed from result sets obtained from accelerations, rotational velocities

and orientations, respectively, using the 3 monitor setup.

With a few exceptions, the figures are mostly similar to each other and to the

combined accelerations, rotation-velocities and orientation figure 6.9. Similar to

figure 6.8 and figure 6.9, the greatest mutual confusion exists between sweeping

and vacuuming for all result sets obtained from individual sources. Similarly, the

next pair of activities is either observed to be folding and ironing or washing dishes

and washing hands depending on the result set. All result sets from individual

sources except for the result set computed from Kwapisz et al.’s feature-set using

orientations, have folding and ironing as the pair of activities with the next highest

mutual confusion.

Another commonality between activity dendrograms of results sets computed

from individual sources to those of all three sources combined, is the presence of the

three groups of activities that result in high confusion: sweeping, vacuuming and

dusting; folding clothes and ironing clothes; and washing dishes, washing hands and

washing vegetables.

One of the notable differences between the figures computed from rotational

velocities from those computed from accelerations and orientations is the decreased

capability to distinguish between using a PC, watching TV and writing while using

rotational velocities. Additionally, the capability to distinguish between talking on

the phone and texting on the phone is observed to be lesser while using Kwapisz et

al.’s feature-set than while using Bao and Intille’s feature-set for rotational velocities.
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Discussion

In this section, the research question posed was which activities are confused with

one another using the feature-sets studied. To answer the research question, activity

classification confusion matrixes were used to find which activities had the highest

mutual error rates. The activities with the highest mutual error rates were then

merged and the process was repeated for the next pair of activities with the highest

mutual error rates. The result of this process were expressed as dendrograms show-

ing activities that result in the highest mutual confusion using the feature-set being

getting paired lower(on the figure) than other activities. This process was repeated

for both the 3 and 6 monitor setups using all three sources combined and for each

individual source using the 6 monitor setup.

From the activity dendrograms generated, it was observed that, for result sets

from both the 3 and the 6 monitor setups, both the feature-sets, and using either

all three sources combined or individually, the greatest mutual confusion is found

between sweeping and vacuuming.

This is because sweeping and vacuuming have similar motions. It is likely that

of all the activities, sweeping and vacuuming have the most similar motions to each

other. To improve their identification, it is possible that additional sensors that

identify the presence of the vacuum cleaner would assist in discriminating vacuum-

ing from sweeping. Such sensors could be RFID readers, or the use of a microphone

to sense ambient noise levels. While both approaches require the additional hard-

ware, the second approach is far easier to deploy because all mobile phones have

microphones and many people carry mobile phones. Hence it would simply require

the system developer to make use of the microphone on the user’s phone to sense

the ambient noise levels to determine whether the user is sweeping or vacuuming.

However, this method would not work if the user was sweeping in the same room as

someone else who is vacuuming and would likely not work well in a noisy environ-
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ment.

The next pair of activities with the highest mutual confusion is observed to be

either folding clothes and ironing or washing hands and washing dishes depending

on the result set. Between ironing and folding clothes, ironing includes in it folding

motions and clothes flipping motions. These motions are prevalent in folding but

are also part of ironing and it is not possible to have ironing without them. Hence,

to improve the identification of ironing from folding clothes, it is necessary to focus

on the identification of the motions that are found in ironing but not in folding.

Such motions include gliding the iron over the clothes. If the activity is found to

be either ironing or folding by using feature-sets as those used in the analysis in

this section, an additional step could be to detect the presence of these motions.

Their detection implies the likelihood of the activity being ironing and not folding,

while the absence implies the likelihood of the activity being folding and not ironing.

Similarly, between washing hands and washing dishes, it possible that some differ-

ences in the motions of the two activities exist. For example, the scrubbing action

would only be found when the user is washing dishes but not while washing hands.

The isolation of these motions that distinguish one activity from another is an ideal

application of time-series shapelets (Ye & Keogh, 2009). Time-series shapelets refer

to sections of time-series that are more likely to be found in one class of time-series

than in another and hence can be used to distinguish such similar activities.

Common groups of activities that result in high confusion were also observed

in all result sets studied. These groups are: sweeping, vacuuming and dusting;

folding clothes and ironing clothes; and washing dishes, washing hands and washing

vegetables. Interestingly, these groups of activities can be grouped into less specific

groups: house-hold cleaning; post-laundry activities; and washing at the sink. Using

these groups instead of the more specific activities would increase the overall success-

rates of the activity recognition system. From figure 6.8 and figure 6.9, we can

observe that merging folding, ironing clothes, washing dishes, washing hands and
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washing vegetables results in success-rates in excess of 80% for the 3 monitor setup

and close to 90% for the 6 monitor setup for both feature-sets studied.

Within results sets computed from individual sources, a decreased capability to

distinguish between using PC, writing and watching TV is observed in result sets

computed from rotational velocities with either feature-sets. This is likely because

these activities are mostly stationary (in terms of moving limbs) and hence highly de-

pend on the feature-set’s ability to distinguish the orientation of the body-locations.

While orientations by definition are the orientations of the monitor mounted on the

body-locations, and accelerations encode in them the orientation of the monitor

mounted on the body-location through the gravity vector (see Mizell (2003)), ro-

tational velocities don’t encode that information. Hence while the accelerations

and orientations captured during these activities are likely to differ from activity to

activity, the rotational velocities would have mean values close to zero.

6.4 Remove-one-subject cross-validation compared

to 10-Fold cross-validation?

As explained in section 3.6, many cross-validation techniques exist in activity recog-

nition literature: N -fold and remove-one-subject. In the analyses performed in

this thesis, 10-fold cross-validation was prefered due to remove-one-subject cross-

validation because it was observed that results obtained from 10-fold cross-validation

had less variability, higher statistical significance and therefore clearer and easier to

derive conclusions from than those of remove-one-subject cross-validation.

In this section, result sets from the two cross-validation strategies are compared

to evaluate the differences in overall activity classification success-rates and individ-

ual activity success-rates.

The research questions posed in this section are:
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1. How different are activity classification success-rates obtained from

10-fold cross-validation from those of remove-one-subject cross-validation?

Understanding the differences in activity classification success-rates to be

expected between 10-fold cross-validation from those of remove-one-subject

cross-validation is important because it allows activity recognition researchers

a deeper understanding when comparing results generated from the two cross-

validation methods.

2. Are activity classification success-rates obtained from 10-fold cross-

validation correlated to those obtained from remove-one-subject

cross-validation?

Understanding whether or not activity classification success-rates obtained

from 10-fold cross-validation correlate with those obtained from remove-one-

subject cross-validation is important because, if the two sets of results correlate

it could imply a relationship between the results sets. More specificly, it could

imply a linear relationship which would allow activity recognition researchers a

better understanding of how results obtained from 10-fold cross-validation map

to those obtained from remove-one-subject cross-validation and vice versa.

Methodology

In other sections, analysis was conducted focussing on factors that impact activ-

ity classification success-rates by comparing sets of data that were produced from

identical raw data and in a method that was identical except for that factor.

For example, while analysing the impact of window lengths, result sets were

obtained that had been computed via methods that were identical in all aspects

except for having different window lengths. Hence, success-rates from fold 1 of

window length 5 seconds could be compared to those of fold 1 of window length

10 seconds. This paired analysis or testing is made possible because the same raw
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data that went into computing fold 1 of window length 5 seconds also went into

computing fold 1 of window length 10 seconds.

However, in the case of comparing the results of remove-one-subject cross-validation

to 10-fold cross-validation, not only do different sets of raw data go into computing

the different testing folds, but also the cross-validation strategies result in a different

number of folds. Therefore, care is taken not to perform any paired analysis on the

success-rates obtained from each fold. However, comparison is made using the dis-

tributions of the overall success-rates and the success-rates of activities to compare

the success-rates obtained for the activities tested using the two cross-validation

strategies.

Hence, the analysis of the success-rates obtained using the two cross-validation

strategies is limited to the characteristics of the distributions of the success-rates

obtained, and the correlation of activity success-rates, obtained from the two cross-

validation strategies.

To answer the research questions posed, algorithm 6 was altered so as to allow

either 10-fold cross-validation or remove-one-subject cross-validation. Four result

sets were then computed using parameters described in table 6.2.

Results

Figure 6.10 shows a boxplot of the result sets Bao-NFold, Bao-Rem1Sub, Kwapisz-

NFold and Kwapisz-Rem1Sub. From the boxplot, it can be observed that the success-

rates obtained using 10-fold cross-validation have a higher median and have a smaller

interquartile range than those obtained using remove-one-subject for both Bao and

Intille’s feature-set and Kwapisz et al.’s feature-set.

Figure 6.11 elaborates further. Figure 6.11 shows the mean, median, mode,

range, inter-quartile range and standard deviation. All the measures of central

tendency (mean, median and mode) computed from success-rates obtained using
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Table 6.2: Result sets computed using algorithm 6 so as to analyse the differences in
success-rates between those obtained using 10-fold cross-validation and those obtained

using remove-one-subject cross-validation.

Result Set
Parameters Cross

Validation
FeatureSet Activities Sources Monitors

Bao-NFold Bao and
Intille (2004)

All except
walking and

running

All 3
sources

All 6
available
monitors

10-fold

Kwapisz-NFold Kwapisz et
al. (2011)

All except
walking and

running

All 3
sources

All 6
available
monitors

10-fold

Bao-Rem1Sub Bao and
Intille (2004)

All except
walking and

running

All 3
sources

All 6
available
monitors

Remove-One-
Subject

Kwapisz-Rem1Sub Kwapisz et
al. (2011)

All except
walking and

running

All 3
sources

All 6
available
monitors

Remove-One-
Subject

the 10-fold cross-validation are higher than those computed from success-rates ob-

tained using the remove-one-subject cross-validation for both feature-sets studied.

However, all the measures of dispersion (range, interquartile-range and standard

deviations) computed from success-rates obtained using the 10-fold cross-validation

are lower than those computed from success-rates obtained using the remove-one-

subject cross-validation for both feature-sets studied.

Figure 6.10 shows a boxplot of the result sets Bao-NFold, Bao-Rem1Sub, Kwapisz-

NFold and Kwapisz-Rem1Sub. From the boxplot, it can be observed that the success-

rates obtained using 10-fold cross-validation have a higher median and have a smaller

interquartile range than those obtained using remove-one-subject for both Bao and

Intille’s feature-set and Kwapisz et al.’s feature-set.

Chi-square goodness of fit tests with α = 0.05 testing the null hypothesis

that the success-rates in the result sets Bao-NFold, Kwapisz-NFold, Bao-Rem1Sub

and Kwapisz-Rem1Sub fit normal distributions with a means and variances es-

timated from the result sets found that the result sets Bao-NFold (df=5, Chi
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Figure 6.10: Boxplot of overall success-rates obtained from Bao and Intille’s
feature-set and Kwapisz et al.’s feature-set using 10-fold cross-validation (Bao-NFold

and Kwapisz-NFold respectively) and remove-one-subject cross-validation
(Bao-Rem1Sub and Kwapisz-Rem1Sub respectively).

Square=5.0545) and Kwapisz-NFold (df=5, Chi Square=9.5112) fit normal distribu-

tions but Bao-Rem1Sub (df=7, Chi Square=33.4837) and Kwapisz-Rem1Sub (df=7,

Chi Square=52.2770) do not.

Figure 6.12 shows a boxplot of individual activity success-rates obtained from

result sets Bao-NFold and Bao-Rem1Sub. Similarly, figure 6.13 shows a boxplot

of the activity success-rates obtained from result sets Kwapisz-NFold and Kwapisz-

Rem1Sub. From the figures, it can be observed that the same trend observed in

figure 6.10 occurs at the individual activity level. From the boxplots, it can be

observed that the success-rates obtained using 10-fold cross-validation have a higher

median and have a smaller interquartile range than those obtained using remove-

one-subject for both Bao and Intille’s feature-set and Kwapisz et al.’s feature-set.

Figure 6.14 shows a scatter plot of the medians of individual activity success-

rates obtained using remove-one-subject cross-validation plotted against the medi-

ans of individual activity success-rates obtained using 10-fold cross-validation. The

two sets of median activity success-rates are observed to have a strong correla-
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Figure 6.11: Mean, median, mode, range, inter-quartile range (IQR) and standard
deviation (S.D.) of overall success-rates obtained using Bao and Intille’s feature-set and
Kwapisz et al.’s feature-set and using 10-fold cross-validation and remove-one-subject
cross-validation (upper). Below is the differences between the statistics obtained from
remove-one-subject cross-validation from those obtained from 10-fold cross-validation

using Bao and Intille’s feature-set and Kwapisz et al.’s feature-set.
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Figure 6.12: Boxplots of individual activity success-rates obtained from by using Bao
and Intille’s feature-set and performing 10-fold cross-validation (left) and

remove-one-subject cross-validation (right). The two boxplots share the y-axis on the
left.
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Figure 6.13: Boxplots of individual activity success-rates obtained from by using
Kwapisz et al.’s feature-set and performing 10-fold cross-validation (left) and

remove-one-subject cross-validation (right). The two boxplots share the y-axis on the
left.
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Figure 6.14: The medians of individual activity success-rates obtained using
remove-one-subject cross-validation (y) plotted against the medians of individual
activity success-rates obtained using 10-fold (x) cross-validation showing strong

correlation between the two sets of success-rates. The correlation coefficient between
x and y success-rates obtained using Bao and Intille’s feature-set is 0.9342, while the
correlation coefficient between x and y success-rates obtained using Kwapisz et al.’s

feature-set is 0.9473.
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tion. The correlation coefficient between the medians of 10-fold cross-validation

activity success-rates and the medians of remove-one-subject cross-validation activ-

ity success-rates are 0.9342 and 0.9473 for success-rates obtained using Bao and

Intille’s feature-set and success-rates obtained using Kwapisz et al.’s feature-set re-

spectively. The lines of best fit are observed to be equation 6.2 and equation 6.3,

for results from Bao and Intille’s feature-set and from Kwapisz et al.’s feature-set

respectively.

y ≈ 1.466x− 57.31 (6.2)

y ≈ 1.505x− 54.5 (6.3)

where, x = Median of 10-fold activity success-rates

y = Median of remove-one-subject activity success-rates

From equation 6.2 and equation 6.3, we can gather that the minimum activ-

ity success-rates obtained using 10-fold cross-validation are higher than those ob-

tained for remove-one-subject cross-validation, however activity success-rates ob-

tained from remove-one-subject cross-validation have a larger spread (about 1.5

times) than those of 10-fold cross-validation.

Discussion

In this section, success-rates obtained using 10-fold cross-validation were compared

to those obtained using remove-one-subject cross-validation for both feature-sets

studied.

The first research question posed in this section is on how different success-rates

obtained from 10-fold cross-validation are from those obtained from remove-one-

subject cross-validation. Since it is not possible to directly compare differences in

success-rates obtained in each fold, differences in the distributions of the success-



6.4. Remove-one-subject vs 10-fold cross-validation 241

rates were used. Three main differences where highlighted: differences in centroids,

differences in dispersion, and how well the data fit a normal distribution.

The centroids of success-rates obtained from 10-fold cross-validation were found

to be higher than those obtained from remove-one-subject cross-validation. This

was observed for both overall success-rates and individual activity success-rates.

The dispersion of success-rates obtained from 10-fold cross-validation were found

to be lower than those obtained from remove-one-subject cross-validation. Again,

this was observed for both overall success-rates and individual activity success-rates.

When the activity success-rates were plotted against each other, it was observed

that median activity success-rates obtained from 10-fold cross-validation strongly

correlated with median activity success-rates obtained from remove-one-subject

cross-validation.

The results obtained in this section imply that the relative activity classification

performance of individual activities using 10-fold cross-validation and remove-one-

subject cross-validation are similar. However, the activity classification success-rates

obtained from 10-fold cross-validation are higher, less dispersed and require fewer

samples to fit a normal distribution.

The drop in success-rates from the success-rates obtained using 10-fold cross-

validation to those obtained while using remove-one-subject cross-validation can be

explained in terms of inter-subject variability. Differences in motion patterns be-

tween subjects result in sensor signal patterns captured from one subject being (to

some extent) different from those captured from another subject. Sensor signal pat-

terns of the same subject but different points in time would also exhibit differences,

however, the differences are smaller than those between subjects.

When the recorded sensor data is used to train a classifier, the training model

matches the testing model more closely data if the data of the same subjects was

present in the training set as well as the testing set (as is the case in 10-fold cross-

validation). Hence, resulting in better success-rates.
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However, the data was used to train the classifier and the data that was used

to test the classifier came from different subjects (as is the case in remove-one-

subject cross-validation). In this case, the similarity between the training set and

the testing set is primarily due to similarities in motions between different subjects

(inter-subject similarity).

This has two main implications: more subjects are required to resolve differ-

ences between subjects; and the use of the end-user’s data results in the activity

recognition system having a better activity recognition success-rate.

This analysis used 20 subjects. This is high compared to some of the other

studies performed in activity recognition and covered in the activity recognition lit-

erature. The difference between success-rates obtained using 10-fold cross-validation

and those obtain using remove-one-subject cross-validation suggest that 20 subjects

is insufficient to capture the inter-subject variability that exists between subjects

performing Activities of Daily Living. Future work should aim to use data from

more than 20 subjects.

The results from the analysis also implies that better success-rates can be achieved

by activity recognition systems by allowing the activity recognition system the abil-

ity to include the data of the end user into it’s models. The benefits of this are likely

to be higher for systems trained with fewer subjects and lower for systems trained

with more subjects.

6.5 Conclusion

In this chapter, the activity success-rates, mutual confusion between activities and

success-rates obtained using 10-fold cross-validation and remove-one-subject cross-

validation were analysed.

First, the activity success-rates were computed for a number of result sets. The

result sets included results from both feature-sets and from both the 3 monitor
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setup and the 6 monitor setup. The activity success-rates were then compared

between each pair of activities within a result set. The comparison was used to

create rankings of activities based on the result sets. Finally, similarities in the

rankings obtained from all result sets were obtained.

It was observed that using the PC, watching TV, writing and walking(on flat

surfaces) are likely to have higher success-rates than any other activity for all result

sets analysed. Running was observed to have higher success-rates than these four

activities, but this observation was made from the 3 monitor setup result sets only.

Walking on a flat surface was observed to have similar success-rates to using the PC,

watching TV and writing, but again this observation was made from the 3 monitor

setup result sets only. The activities likely to have the next highest success-rates

are observed to be texting on the phone, walking down stairs and walking up stairs.

The activities likely to have the lowest success-rates of all activities were observed

to be washing vegetables and washing hands. The activities likely to have the

next lowest success-rates were observed to be dusting and sweeping, followed by

vacuuming, ironing, washing dishes and folding clothes.

A weak correlation was observed between mean success-rates and standard devia-

tion of activities for all result sets. On deeper analysis, it was observed that the weak

correlation was a result of there being three distinct groups of activities in all result

sets analysed: those with low mean and high standard deviation in success-rates;

those with high mean success-rates and low standard deviation in success-rates; and

those with a medium mean and standard deviation of success-rates.

The group with the low mean and high standard deviation was observed to

consist of washing hands and washing vegetables. The group with high mean success-

rates and standard deviations was observed to include walking up stairs, walking

down stairs, watching TV, writing, using a PC, texting on the phone and running

(using the 3 monitor setup). Other activities fit in the group with medium mean

success-rates and medium standard deviation of success-rates.
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The results imply that activities like running, using a PC, watching TV, writing

and walking on a flat surface are easier to identify and hence activity recognition

systems are likely to have higher success-rates while recognising these activities.

Activities like washing vegetables and washing hands are more difficult to identify,

hence better features are required to more accurately identify these activities.

Next, the mutual confusion between activities was studied so as to identify which

activities are highly confusable within the activities and feature-sets studied. It

was observed that, for both feature-sets using either the 3 monitor setup or the 6

monitor setup and using any of the sources individually or all three combined, the

highest mutual confusion errors were between sweeping and vacuuming. The next

highest were either between folding clothes and ironing clothes, or washing dishes

and washing hands.

In addition, three groups of activities were observed to be highly confusable, for

both feature-sets either using 3 monitor setup or 6 monitor setup and using any of

the sources individually or all three combined: sweeping, vacuuming and dusting;

folding clothes and ironing clothes; and washing dishes, washing hands and washing

vegetables.

Between result sets computed from individual sources, a decreased capability to

distinguish between using PC, writing and watching TV is observed in result sets

computed from rotational velocities with either feature-sets. It is hypothesised that

this is due to these activities being highly stationary and the inability of rotational

velocities to be used to distinguish between subject postures.

Finally, success-rates obtained from 10-fold cross-validation were compared to

those obtained from remove-one-subject cross-validation. It was observed that dis-

tributions of success-rates obtained from 10-fold cross-validation have higher cen-

troids and smaller dispersions than those obtained from remove-one-subject cross-

validation. In addition, it was also observed that success-rates obtained from 10-fold

cross-validation required fewer samples to fit a normal distribution than success-
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rates obtained from remove-one-subject cross-validation.

Comparing the medians of activity success-rates obtained from 10-fold cross-

validation to medians of activity success-rates obtained from remove-one-subject

cross-validation, it was observed that a strong correlation existed. A linear relation-

ship was observed to exist between medians of activity success-rates obtained from

10-fold cross-validation to medians of activity success-rates obtained from remove-

one-subject cross-validation, implying that although differences exist in the dis-

tribution of overall success-rates between the two cross-validation strategies, the

relative performance of individual activities obtained using 10-fold cross-validation

was similar to obtained using remove-one-subject cross-validation.

The drop of activity classification success-rates between those obtained from

using 10-fold cross-validation to those obtained using remove-one-subject cross-

validation is explained to be due to inter-subject variability. While some similarity

exists between data captured from one subject to another, a closer similarity ex-

ists between data captured from the same subject at two different points in time.

Hence, including a subjects data in both the training set and the testing set results

in higher similarity between the two sets and hence a higher success-rate. When the

training set is created from data captured from different subjects from those used

to create the testing set, the success-rates obtained are due to similarities in the

motions of different subjects.

This implies that more subjects are needed to catter for these differences due to

inter-subject variability. The analysis performed used data captured from 20 sub-

jects. The difference between success-rates obtained using 10-fold cross-validation

and those obtain using remove-one-subject cross-validation suggest that 20 subjects

is insufficient to capture the inter-subject variability that exists between subjects

performing Activities of Daily Living. Hence, future work should aim to use data

from more than 20 subjects.

In addition, the results imply that better success-rates can be achieved by ac-
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tivity recognition systems by allowing the activity recognition system the ability to

include the data of the end user into it’s models. The benefits of this are likely to be

higher for systems trained with fewer subjects and lower for systems trained with

more subjects.
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Location and orientation independence

in smart-phone-based activity

recognition

One of the recent directions of activity recognition research is smart-phone-based

activity recognition. The idea is to use sensors available on most current commodity

smart phones as sensing nodes in an activity-aware system. The concept clearly has

merit since smart phones provide a platform that is:

1. Familiar to the end-user since the end-users are already in possession of

the device and routinely use the device not only to make calls but also to

perform other tasks that have come to form part of smart mobile usage.

2. Convenient since the end-users are already in possession of smart phones and

make use of them in their daily lives. Hence there is no need for the end-user

to purchase, configure and wear extra hardware for the purpose of activity

monitoring.

3. Easily configurable to a sensing node since smart phones come with a

variety of sensors and an internet connection. Data gathered can easily be

uploaded to a remote server for further analysis, storage or presentation on

a website. In addition, the researchers can work on the algorithms with a

user-base and updates and bug fixes can easily be pushed to the end-users.

In terms of activity recognition data-processing, two challenges of smart-phone-

based activity recognition set it apart from general on-body activity recognition:

247
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1. Location independence: For a smart-phone to be used as a sensing node

for activity recognition, the system needs to be able to recognise activities

when provided data from any one of multiple body-locations at which phones

are carried without requiring the user to carry the phone in a particular body-

location or provide input as to which body-location the phone is currently

carried in. Since activities have different motions in different locations, this

requires that the system be trained using activity data from multiple body-

locations.

2. Orientation independence: Similarly, the algorithms need to be able to

robustly work with data that has been captured in any orientation of the

phone. While a wearable sensor can be designed to specificly be worn in a

particular orientation relative to a particular body-location, a mobile phone

can be carried in any orientation. The orientation of the sensor can impact

the data, such that data of the same motion gathered in different orientations

can be very different.

An ideal smart-phone-based activity classifier needs to deal with both challenges.

But to gain a better understanding, each challenge is studied individually within this

chapter. This is achieved by assuming the orientation of the monitor relative to the

body-location is fixed while studying location-independence. Similarly, the body-

location on which the monitor is mounted is assumed to be known while studying

orientation-independence.

In section 7.1, location independence is studied. A fundamental research ques-

tion is asked: whether the body-location on which a monitor is mounted can be

identified without knowing which activity the subject is performing. Next, the

success-rates of identifying the body-location are evaluated and compared with ref-

erence to the subject’s activity. In addition, an evaluation is performed to find out

whether the success-rates of identifying the body-location the monitor is mounted

on are dependent on the orientation of the monitor.
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In section 7.2, orientation independence is studied. The impact of random ro-

tations of the monitor on the activity classification success-rates is studied. In

addition, the impact of methods that reorient the data gathered by the monitor to

world coordinates on activity classification success-rates is analysed.

The chapter is divided into sections. Each section contains research questions

dealing with a specific area of interest. Each section begins with a discussion on

the importance of studies on the area of interest; research questions in the area of

interest are then posed together with reasons why we wish to attempt to answer

these particular questions; a methodology of answering the research questions is

given; the results of the analysis are then provided and illustrated; and finally, the

conclusions and implications of the result findings are discussed. At the end of

the chapter, the analysis, findings and implications of findings of the chapter are

summarised.

7.1 Location independence

In general, methods proposed to cater for location-independence, found in the lit-

erature, fall into three categories: recognising the location then applying a location

specific activity classifier; using one classifier trained with all locations; and using

a bag of classifiers, each classifier trained with one location, then using a meta-

classifier to pick out the best classification.

In this section, studies in location independence for smart-phone-based activity

recognition are performed. In particular, we are interested in answering the following

research questions:

1. Can the body-locations at which a sensor is mounted on a user be

identified without knowing the activity that the user is undertaking?

It is interesting to discover whether it is possible to identify the body-location

on which the monitor was mounted without knowing the activity. By identify-
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ing the body-location, a system can apply location-specific models of activities

and possibly achieve better activity classification success-rates.

Smart-phone-based activity recognition systems need to cater for various carry

locations. Cui at al. (Cui et al., 2007) gives a detailed analysis of where

people prefer to carry their phones. The pants pocket (thigh location) was

the most preferred by the male survey participants while the hand bag was

the most prefered for female participants. The ability to distinguish which

body-location the phone is currently carried on can help to improve activity

classification not only by allowing for the use of a specific activity model but

also allowing the system to determine when the phone is not in one of the

trained carry locations.

For a wearable sensor based activity recognition system, the ability to recog-

nise the location of the monitor could help the system identify cases when the

monitor has not been worn on the appropriate body-location. In addition,

this ability can allow for monitors that can be worn in any one of many body-

locations. Hence allowing for a more convenient system where users do not

have to worry about where a monitor needs to be worn and possibly lowering

the manufacturing cost of the system since all monitors can be identical to

each other.

A previous method proposed by Kunze et al. ((Kunze et al., 2005)) relied on

first identifying when a specific activity A is occurring (the activity was walk-

ing for Kunze et al.); then identifying the carry location based on location-

specific models of the identified activity; then using activity models of the

identified carry location to identify all activities till the next identified oc-

curence of activity A. While Kunze et al. have shown that this method works

well, it is a complex approach and errors in identifying the carry location

persist until the next identification of the carry location.

There has, to date, been no communication in the research literature, concern-
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ing the identification of the body-location on which the monitor is mounted

on, that is independent of the subject’s activity.

2. Is there an interplay between user activity and body-location that

a monitor is mounted at, such that body-locations identified during

some activities are more accurate than other activities?

Kunze et al.’s algorithm (explained in the previous research question), speci-

ficly targets the occurence of walking. One reason given by Kunze et al. is

that this is because walking is a common activity in the lives of end users.

The other reason is that the motion signature of walking is distinct enough

that it can be recognised without any assumption about the location of the

monitor location.

It is likely that the difference of motions between body-locations for some ac-

tivities is higher than in other activities. The information of which activities

result in lower success-rates in identifying the body-location on which the mon-

itor is mounted at could be useful in assigning a likelihood of the body-location

classification being true based on the activity the subject is performing.

3. Are the success-rates of identifying the body-location (at which the

monitor is mounted on) dependent on the orientation of the monitor

relative to the body-location being fixed?

The dependency of identifying the body-location on which the monitor is

mounted on, on the fixed orientation of the monitor relative to the body-

location, is unclear.

In order to independently study location independence from orientation inde-

pendence, an assumption was made that the orientation of the monitor would

be fixed relative to the body-location the monitor is mounted on. However,

the orientation of a smart-phone may change from time to time. Hence, it

is necessary to analyse what impact of this assumption has on the results

obtained.
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Methodology

In order to analyse how well the body-location on which a monitor was mounted can

be identified, a classifier is trained with feature-vectors extracted from all monitors

then tested to determine whether the source body-locations of feature-vectors in the

testing fold can be identified. Specifically, to answer the third research question in

this section, a random rotation was applied within each window so as to eliminate

any impact of the orientation of the monitor being fixed. The random rotations

were not applied for result sets obtained to answer the other research questions.

The process of computing result sets to answer the research questions is hence as

follows:

For each monitor, all three sources were used. A sliding window of 10 seconds

with 50% overlap was used.

Window lengths of 10 seconds were used because 10 seconds was observed to

be the maximum window length used in activity recognition literature, having only

been used by Kwapisz et al. (2011) and Patel et al. (2009). In the analysis of activity

recognition literature performed by Lockhart and Weiss (Lockhart & Weiss, 2014),

window lengths reported to have been used in activity recognition literature were

observed to have a median of 3 seconds and the maximum window length they

observed was 10 seconds.

A 50% window overlap was used because it was observed that 50% window

overlaps are common within the literature review having been used by Bao and

Intille (2004); Figo et al. (2010); He et al. (2008); Krishnan and Panchanathan

(2008); Kunze et al. (2005); Preece, Goulermas, Kenney, and Howard (2009); Ravi

et al. (2005); Shoaib et al. (2014) and Sun et al. (2010). However, other window

overlaps also exist in the literature review including: no overlap ((Kwapisz et al.,

2011)), 20% ((Reiss, 2014)), 25% overlap ((Henpraserttae et al., 2011)), 33% overlap

((Lester et al., 2005)).
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Optionally, random rotations were introduced into each window to eliminate any

impact of the monitor orientation being fixed. The random rotations are uniformly

distributed over all possible rotation axes with rotation magnitudes in the range

[0◦, 360◦). This represents a more extreme situation than could be expected with a

loose and floating sensor

The data was downsampled to frequencies ranging from 112Hz to 128Hz in in-

tervals of 1Hz. This is because, as observed in section 4.2, changes in downsampling

frequency impact the success-rate. Low pass filtering was performed prior to down-

sampling.

Features were then extracted as explained in the respective feature-set’s paper

(Bao and Intille (2004) and Kwapisz et al. (2011), refer to section 3.5 for more

details). In addition, a Hamming window was applied to each window before ex-

tracting the frequency-domain features in Bao and Intille’s feature set.

Finally, classification was performed using the J48 decision tree from the WEKA

toolkit. The J48 decision tree is an implementation of the C4.5 algorithm (Hall et

al., 2009). The C4.5 decision tree was found to perform best by Bao and Intille

(Bao & Intille, 2004), and second best by Kwapisz et al. (Kwapisz et al., 2011).

Experiments were performed using 10-fold cross-validation. The classifier was

trained with data from all monitors, then tested to find whether it could identify

the body-locations of the feature-vectors in the testing fold.

Figure 7.1 shows an overview of this process.
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Sampling

Segment data using 10 second
sliding windows with 50% overlap

Apply random rotations to each
window (optional)

Downsample to frequencies in the
range [112Hz,128Hz] in intervals

of 1Hz.

Extract features using Bao and
Intille’s feature-set

Extract features using Kwapisz et
al.’s feature-set

Divide feature-vectors into 10
random folds

Classification using the C45
decision tree

Result Analysis

Feature-vectors

For each fold f , use
fold f for testing and
use the rest for
training the classifier.

Confusion matrix of
each test fold f

Divide feature-vectors into 10
random folds

Classification using the C45
decision tree

Result Analysis

Feature-vectors

For each fold f , use
fold f for testing and
use the rest for
training the classifier.

Confusion matrix of
each test fold f

Accelerations, rotational velocities
and orientations from all six
monitors.

Figure 7.1: Overview of the methodology used to compute result sets used to answer
the research question in this section.
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Results

Can body-locations be identified without knowing the activity?
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Figure 7.2: Normalised histograms of body-location classification success-rates
obtained using Bao and Intille’s feature-set and Kwapisz et al.’s feature-set.

Classification was performed using all monitors but excluded walking and running
activities.

Figure 7.2 shows normalised histograms of body-location classification success-

rates obtained using Bao and Intille’s feature-set and Kwapisz et al.’s feature-set.

From the figure, we can observe that high success-rates are obtained using both

feature-sets. The mean body-location classification success-rate is observed to be

86.42% for Bao and Intille’s feature-set and 87.58% for Kwapisz et al.’s feature-

set. Moreover, the standard deviation of the body-location classification success-

rates are observed to be low which implies that the high success-rates are obtained

consistently from all testing folds.

One-tailed one sample t-tests with α = 0.05 were run on the result sets shown

in figure 7.2 to test the null hypothesis that the result sets came from normal dis-

tributions with mean of chance (i.e. 16.67%) and unknown variance. Tests rejected

the null hypothesis for each of the result sets implying that the results obtained are

statistically significantly above chance.

Figure 7.3 shows a box-plot of the body-location classification success-rates ob-

tained in identifying each body-location using each feature-set.
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Figure 7.3: Boxplot of the body-location classification success-rates obtained in
identifying each body-location using each feature-set.

Two-tailed two sample t-tests with α = 0.05 were run on the success-rates of

identifying each pair of body-locations using the same feature-set, to test the null

hypothesis that the success-rates of identifying the pair of body-locations came from

independent random samples of normal distributions with equal means and unknown

variance. The tests rejected the null hypothesis for each of the pairs of body-

locations and feature-sets except between thigh/phone and chest body-locations

using Bao and Intille’s feature-set. This implies that there is insufficient evidence

to support the hypothesis that the success-rates of identifying the thigh/phone and

those of identifying the chest while using Bao and Intille’s feature-set are different.

However, there is sufficient evidence to support the hypothesis that the success-rates

of identifying other pairs of body-locations using Bao and Intille’s feature-set, and

all body-locations using Kwapisz et al.’s feature-set, are different.

From the box-plot, it can be observed that the body-location identified with the
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highest success-rate is the ankle for both feature-sets. The next highest success-rates

are observed to be the thigh/phone while using Kwapisz et al.’s feature-set; or either

thigh/phone or chest while using Bao and Intille’s feature-set. These are followed

by the non-dominant wrist, dominant wrist and finally dominant upper arm. The

medians of all the result sets are observed to be above 80%.

Is there an interplay between user activity and body-location that a

monitor is mounted at, such that body-locations identified during some

activities are more accurate than other activities?

Figure 7.4 shows a box-plot of the body-location classification success-rates obtained

during each activity using Bao and Intille’s feature-set and Kwapisz et al.’s feature-

set. From the boxplot, it can be observed that the success-rates are generally high for

all activities. The median success-rates range from 97% for writing using Kwapisz et

al.’s feature-set to 69% for talking on the phone using Bao and Intille’s feature-set.

The medians of success-rates between the two feature-sets are noted to be highly

similar, having a correlation coefficient of 0.9255.

One-tailed one sample t-tests with α = 0.05 were run on each of the individual

activity’s success-rates obtained from each of the result sets to test the null hy-

pothesis that the result sets came from normal distributions with mean 16.67% (i.e.

chance) and unknown variance. Tests rejected the null hypothesis for each individ-

ual activity’s success-rates obtained from each of the result sets implying that the

success-rates of identifying locations obtained for each individual activity from each

result set are significantly above chance.

Figure 7.5 shows a bar graph of the mean success-rates (and standard deviations

shown using error bars) of the body-location classification success-rates obtained

for each activity using Bao and Intille’s feature-set and Kwapisz et al.’s feature-set.

From the bar graph, it can be observed that the highest success-rates in identifying

body-locations are obtained during the activity writing. Similar high success-rates
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Figure 7.4: Boxplots of the body-location classification success-rates obtained for each
activity using Bao and Intille’s feature-set (left) and Kwapisz et al.’s feature-set

(right). The two boxplots share the y-axis on the left.
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Figure 7.5: Mean success-rates (and standard deviations shown using error bars) of
the body-location classification success-rates obtained for each activity using Bao and

Intille’s feature-set and Kwapisz et al.’s feature-set.
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can be obtained while using the PC, texting on the phone and watching TV. The

lowest success-rates are obtained while talking on the phone.

The ranking of activities based on the likelihood of identifying body-locations

at a higher success-rate during one activity than during other activities is presented

in figure 7.6 for Bao and Intille’s feature-set and figure 7.7 for Kwapisz et al.’s

feature-set. From the two figures, it can be observed that the highest success-rates

of identifying body-locations are likely to be obtained while (in decreasing order)

writing, using a PC, texting on the phone and watching TV, for both feature-sets.

Alternatively, the lowest success-rates of identifying body-locations are likely to be

obtained while (in increasing order) talking on the phone, dusting and vacuum-

ing, for both feature-sets. The rankings of other activities differ depending on the

feature-set used.

Are the success-rates of identifying the body-location (on which the

monitor is mounted on) dependent on the orientation of the monitor

relative to the body-location being fixed?

Figure 7.8 shows normalised histograms of body-location classification success-rates

obtained from using Bao and Intille’s feature-set and Kwapisz et al.’s feature-set

that had random rotations added to each window of data. From the figure, we

can observe that the success-rates obtained by both feature-sets are significantly

lower than those obtained without random rotations (shown in figure 7.2). The

mean body-location classification success-rate is observed to be 45.66% for Bao and

Intille’s feature-set and 54.85% for Kwapisz et al.’s feature-set as opposed to 86.42%

and 87.58% without rotations.

One-tailed one sample t-tests with α = 0.05 were run on each of the result sets

that were computed with randomised rotations to test the null hypothesis that the

result sets came from normal distributions with a mean of chance (i.e. 16.67%)

and unknown variance. Tests rejected the null hypothesis for each of the result sets
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fc− di = 0.55% P (fc > di) = 0.5986

di− st = 0.77% P (di > st) = 0.6190

st− wv = 1.98% P (st > wv) = 0.7006

wv − wh = 0.91% P (wv > wh) = 0.5849

wh− sw = 0.77% P (wh > sw) = 0.6082

sw − b = 2.88% P (sw > b) = 0.8763

b− v = 1.18% P (b > v) = 0.7074

v − du = 3.02% P (v > du) = 0.9212

du− ta = 6.56% P (du > ta) = 0.9857

Figure 7.6: Illustration showing the ranking of activities based on the likelihood of
obtaining higher success-rates at identifying body-locations while performing one

activity more than other activities. Arrows in activity connections point from activities
that are likely to have higher success-rates to those that are likely to have lower

success-rates. Activities without a statistically significant difference in success-rates are
separated by dashed lines. The results are generated from data extracted using Bao

and Intille’s feature-set.
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fc− wv = 1.90% P (fc > wv) = 0.7067

wv − wds = 1.51% P (wv > wds) = 0.6482

wds− wh = 1.41% P (wds > wh) = 0.6440

wh− b = 0.37% P (wh > b) = 0.5479

b− wus = 0.78% P (b > wus) = 0.5909

wus− sw = 0.25% P (wus > sw) = 0.5271

sw − v = 2.12% P (sw > v) = 0.8340

v − du = 2.94% P (v > du) = 0.9232

du− ta = 1.90% P (du > ta) = 0.7457

Figure 7.7: Illustration showing the ranking of activities based on the likelihood of
obtaining higher success-rates at identifying body-locations while performing one

activity more than other activities. Arrows in activity connections point from activities
that are likely to have higher success-rates to those that are likely to have lower

success-rates. Activities without a statistically significant difference in success-rates are
separated by dashed lines. The results are generated from data extracted using

Kwapisz et al.’s feature-set.
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Figure 7.8: Normalised histograms of body-location classification success-rates
obtained using Bao and Intille’s feature-set and Kwapisz et al.’s feature-set with

random rotations introduced into each window so as to remove the impact of monitor
orientation. Classification was performed using all monitors but excluded walking and

running activities.

implying that the results obtained are significantly above chance.

A two-tailed two sample t-tests with α = 0.05 between the result sets obtained

from data with random rotations and result sets obtained from data without random

rotations of each feature-set rejected the null hypothesis that the result sets came

from independent random samples from normal distributions with equal means.

Hence, the results set obtained from data with random rotations were found to be

statistically different from those obtained from data without random rotations.

Figure 7.9 shows a box-plot of the relative decrease in body-location classification

success-rates due to the introduction of random rotations into windows. The relative

decrease was computed using equation 7.1. From figure 7.9, it can be observed that

the average relative decrease is between 40% and 50%.

Relative decrease =
S − SwRot

S
100 (7.1)

where, S = Test-fold success-rate without random rotations ,

SwRot = Test-fold success-rate with random rotations

In fact, the mean relative decreases are 47.32% and 37.85% and the standard
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Figure 7.9: Boxplot of the relative decrease in body-location classification
success-rates due to the introduction of random rotations into windows. Decrease in
body-location classification success-rates observed for both feature-sets and for all six

body-locations studied are displayed.

deviations are 7.28% and 11.13%, for the two feature-sets respectively. Hence, it

can be said that the addition of random rotations to each window resulted in a

significant drop in success-rates.

The result set that was impacted the least is observed to be that of identifying

the ankle body-location using Kwapisz et al.’s feature-set. This result set is also

the result set that had the highest success-rate in identifying body-locations (see

figure 7.3). The result set that was impacted the most is observed to be that of

identifying the non-dominant wrist using Kwapisz et al.’s feature-set and either the

dominant upper arm or non-dominant wrist using Bao and Intille’s feature-set.

Figure 7.11 shows the mean and standard deviations of body-location classifica-

tion success-rates obtained for each activity using Bao and Intille’s feature-set and
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Figure 7.10: Boxplots of the relative decrease in body-location classification
success-rates due to the introduction of random rotations into windows. Relative

decreases in body-location classification success-rates obtained by using both Bao and
Intille.’s feature-set (left) and Kwapisz et al.’s feature-set (right) are shown. The two

boxplots share the y-axis on the left.
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Figure 7.11: Mean success-rates (and standard deviations shown using error bars) of
body-location classification success-rates obtained for each activity using Bao and

Intille’s feature-set and Kwapisz et al.’s feature-set when applied to data with random
rotations.
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Kwapisz et al.’s feature-set when applied to windows that have random rotations.

From the figure, it can be observed that Bao and Intille’s feature-set results in lower

success-rates of identifying body-locations for all activities. Compared to the perfor-

mances of activities without random rotations (see figure 7.5), activities like talking

on the phone are still observed to perform poorly compared to other activities, while

activities like writing and watching TV are still observed to perform well.

The ranking of activities based on the likelihood of identifying body-locations

at a higher success-rate during one activity than during other activities and using

data that has random rotations applied to it, is presented in figure 7.12 for Bao

and Intille’s feature-set and figure 7.13 for Kwapisz et al.’s feature-set. From the

two figures, it can be observed that, for both feature-sets, the lowest success-rates of

identifying body-locations are likely to be obtained while talking on the phone if the

data has random rotations applied. The ranking of other activities varies depending

on the feature-set used.

Discussion

First, feature-vectors were extracted using Bao and Intille’s feature-set and us-

ing Kwapisz et al.’s feature-set from data captured from each body-location. The

feature-vectors were then classified to as to identify the body-location on which the

monitor was mounted on.

The results obtained showed high success-rates in identifying the body-locations

for both feature-sets. One-tailed one sample t-tests with α = 0.05 confirmed that

the success-rates were significantly above chance.

A deeper analysis of the obtained results showed that the most easily identified

body-location using either feature-set was the ankle; followed by either the chest or

thigh/phone depending on the feature-set; the non-dominant wrist; dominant wrist;

and finally the dominant upper arm.
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wv − di = 1.19% P (wv > di) = 0.6179

di− g = 0.03% P (di > g) = 0.5035

g − wus = 0.85% P (g > wus) = 0.5811

wus− v = 0.17% P (wus > v) = 0.5177

v − b = 1.38% P (v > b) = 0.7000

b− st = 0.07% P (b > st) = 0.5085

st− sw = 0.28% P (st > sw) = 0.5356

sw − du = 0.45% P (sw > du) = 0.5661

du− ta = 8.58% P (du > ta) = 0.9980

Figure 7.12: Illustration showing the ranking of activities based on the likelihood of
obtaining higher success-rates at identifying body-locations while performing one

activity more than other activities. Arrows in activity connections point from activities
that are likely to have higher success-rates to those that are likely to have lower

success-rates. Activities without a statistically significant difference in success-rates are
separated by dashed lines. The results are generated from data with random rotations

extracted using Bao and Intille’s feature-set.
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Figure 7.13: Illustration showing the ranking of activities based on the likelihood of
obtaining higher success-rates at identifying body-locations while performing one

activity more than other activities. Arrows in activity connections point from activities
that are likely to have higher success-rates to those that are likely to have lower

success-rates. Activities without a statistically significant difference in success-rates are
separated by dashed lines. The results are generated from data with random rotations

extracted using Kwapisz et al.’s feature-set.
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Next, the success-rate of identifying each body-location as a function of the

subject’s activity was studied. It was observed that while success-rates of identifying

body-locations are generally significantly higher than chance for all activities, the

success-rates obtained for some activities were less than those obtained by other

activities. It was observed that among the activities that result in higher success-

rates in identifying the body-location on which the monitor was mounted for both

feature-sets are: writing, using a PC, texting on the phone and watching TV. Among

the activities that result in the lowest success-rates in identifying the body-location

on which the monitor was mounted for both feature-sets are: talking on the phone,

dusting and vacuuming.

The activities that result in higher success-rates are highly stationary. It is pos-

sible that the high success-rates obtained are partially due to the highly constant

orientation of the monitors. A seemingly counterexample to this preposition is that

the activity with the worst success-rate, talking on the phone, is also a highly sta-

tionary activity. However, since the subjects were asked to write down a number

spoken to them over the phone while recording the talking on the phone conversa-

tion, it is possible that the shifting of the phone from the dominant wrist to the

non-dominant wrist so that the dominant wrist can be used to write the number

down adds confusion to the body-location identification during talking on the phone.

This was tested in the next research question, where random rotations were

introduced into each window before extracting feature-vectors using both feature-

sets. This eliminates any impact of the monitor orientation being fixed.

The results showed a significant reduction in success-rates in all body-locations

and for all activities. However, the success-rates were still observed to be signifi-

cantly higher than chance. This implies that the success-rates observed in identifying

the body-locations the monitors were mounted on, are only partially due to the fixed

orientation of the monitors relative to the body-location mounted on.

Hence, the results obtained in this section show that it is possible to identify
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the body-location a monitor is mounted on without knowing the subject’s activity.

The success-rates obtained vary depending on the subject’s activity, but are higher

than chance for all activities. In addition, a significant difference is observed between

result sets where the orientation of the monitor relative to the body-location is fixed

and result sets where the orientation of the monitor relative to the body-location

is transient. However, even when the orientation of the monitor relative to the

body-location is transient, the success-rates obtained are still above chance.

This implies that both wearable activity recognition systems and smart-phone-

based activity recognition systems can identify the body-location the monitor is

mounted on, or the carry location of the phone. This would allow activity recognition

systems to apply body-location specific models of activities so as to achieve higher

success-rates. In addition, wearable activity recognition systems could be made more

convenient for the user by recognising which body-location the monitor is mounted

on and hence users do not have to worry about where a monitor needs to be worn

and possibly lowering the manufacturing cost of the system since all monitors can

be identical to each other.

It is important to note that the results obtained reflect success-rates achieved

when only one window is classified. The success-rates are likely to improve signifi-

cantly by using a model of the system that takes into consideration the impact of

time on the state of the system. This can be performed by using Hidden Markov

Models or Markov Chains, but would require that the likelihood of the monitor be-

ing in different body-locations within the system usage and the likelihood of changes

in body-locations on which the monitor is mounted on, be modelled.

7.2 Orientation independence

Methods of dealing with sensor orientation changes, found in the literature, fall into

three categories (Henpraserttae et al., 2011): using features that are orientation-
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independent (e.g. vector magnitudes); applying various data preprocessing methods

to reorient the data to world coordinates before extracting features; and training

the classifier(s) with data of as many orientations as possible.

Of the three methods of dealing with changes in sensor orientation, it has been

shown (Yang, 2009) that reorienting the data to world coordinates results in higher

success-rates than using orientation-independent features. The explanation pro-

posed in the literature is that using orientation-independent features (like vector

magnitudes instead of the vector itself) discard information (like the vector direc-

tion) which could be useful for differentiating between some activities.

In addition, it has also been shown (Henpraserttae et al., 2011) that reorient-

ing the data to world coordinates results in higher success-rates than training the

classifier(s) with data of multiple orientations. Training the classifier with differ-

ent models, each of which includes the same motions but with a different monitor

orientation requires more effort in data collection.

Two methods of reorienting data to world coordinates are possible:

Accelerometer-based method : This is the method proposed by Henpraserttae

et al. and explained in detail in their paper Henpraserttae et al. (2011). It

is based on the method proposed by Yang (2009) which in turn is based on

Mizell (2003).

It involves computing the gravity vector as the mean of the accelerations

gathered in the window. This gravity vector provides the vertical (up-down)

axis. Next, the anteroposterior (forward-backward) axis is obtained as the

first principal component of the accelerations projected onto the horizontal

plane. The mediolateral (left-right) axis is obtained as the cross-product of

the anteroposterior axis and the vertical axis.

Since the gravity vector is computed from the average of the accelerations of

the window, the orientation obtained for the window is computed as the mean

orientation of the different orientations the monitor was in during the window.
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Orientation-based method : This method makes use of the orientation of the

monitor provided by the IMU. The IMU computes the orientation by integrat-

ing the rotational velocities obtained from the gyroscope then including the

gravity vector computed from the accelerations to correct the eventual drift.

Hence, the orientation of the monitor relative to world coordinates at each

sample is known.

To reorient the data using the orientations obtained from the IMU, simply the

inverse orientation is obtained then applied to each sample of the data.

There has, to date, been no communication in the research literature concern-

ing the impact of using this method of reorientation on activity classification

success-rates.

The following research questions are posed in this section:

1. What is the impact of random monitor rotations on activity classi-

fication success rates?

In this question, we are interested in evaluating the impact transient monitor

orientations relative to the body-location on which the monitors are mounted

on, on the activity classification success-rates obtained.

To study this impact, activity classification success-rates obtained from data

that has had random rotations applied to each window are compared to those

obtained from data that has had no random rotations applied to each window.

Random rotations applied to each window represent an extreme case of the

monitor having a different orientation relative to the body-location it is mounted

on at different periods of the subject’s data gathering session.

2. What is the difference in success-rates obtained from non-reoriented

data from those obtained from reoriented data?

In this question, we are interested in evaluating the impact of accelerometer-

based reorientation of data that has had random rotations applied to each

window on activity classification success-rates.
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To study the impact, the success-rates obtained from data that has been re-

oriented are compared to success-rates obtained from data that has not been

reoriented. Both sets of data had random rotations applied to each data win-

dow. Only impact of the accelerometer-based method is evaluated since this

is the published and commonly referenced method.

3. What is the difference in the success-rates obtained from data reori-

entated using the accelerations-based method versus success-rates

obtained from data reorientated using the orientation-based method

In this question, we are interested in evaluating the difference in the impact of

reorientation using the accelerometer-based method compared to the impact

of reorientation using the orientation-based method on activity classification

success-rates.

To study the impact, the success-rates obtained from data that has been reori-

ented using the accelerometer based method are compared to success-rates ob-

tained from data that has been reoriented using the orientation based method.

In addition, the impact of the two methods on both data that has had ran-

dom rotations applied, and data that has not had random rotations applied,

is studied.

Methodology

In order to analyse the impact of random rotations and data reorientation on the

activity classification success-rates; random rotations were conditionally applied to

each window after segmenting the data using sliding windows; this was followed by

feature-extraction using either Bao and Intille’s feature-set, Kwapisz et al.’s feature-

set or Henpraserttae et al.’s feature-set; finally feature-vectors were extracted and

classified. For Henpraserttae’s feature-set, either the original acceleration-based

method proposed by Henpraserttae et al. was used to reorient the data to world
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coordinates, or the orientation-based method proposed in this section was used. The

process of computing result sets to answer the research questions is hence as follows:

For each monitor, all three sources were used. A sliding window of 10 seconds

with 50% overlap was used.

Window lengths of 10 seconds were used because 10 seconds was observed to

be the maximum window length used in activity recognition literature, having only

been used by Kwapisz et al. (2011) and Patel et al. (2009). In the analysis of activity

recognition literature performed by Lockhart and Weiss (Lockhart & Weiss, 2014),

window lengths reported to have been used in activity recognition literature were

observed to have a median of 3 seconds and the maximum window length they

observed was 10 seconds.

A 50% window overlap was used because it was observed that 50% window

overlaps are common within the literature review having been used by Bao and

Intille (2004); Figo et al. (2010); He et al. (2008); Krishnan and Panchanathan

(2008); Kunze et al. (2005); Preece, Goulermas, Kenney, and Howard (2009); Ravi

et al. (2005); Shoaib et al. (2014) and Sun et al. (2010). However, other window

overlaps also exist in the literature review including: no overlap (Kwapisz et al.,

2011), 20% (Reiss, 2014), 25% overlap (Henpraserttae et al., 2011), 33% overlap

(Lester et al., 2005).

Optionally, random rotations were applied into each window. The random rota-

tions are uniformly distributed over all possible rotation axes and rotation magni-

tudes in the range [0◦, 360◦). The random rotations were added to the data used to

answer all the research questions except for one of the data sets used to answer the

first research question (the dataset without random rotations).

In addition, the data was optionally reoriented using either the accelerometer-

based method explained by Henpraserttae et al. or by applying the inverse of the

orientation data to reorient the data to global coordinates. The accelerometer-based

method was applied on one of the data sets to answer the second research question
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(the reoriented data), and in the third research question (the data reoriented using

the accelerometer-based method). The orientation-based method was used in the

second dataset used in the third research question (the data reoriented using the

orientation-based method).

The data was downsampled to frequencies ranging from 112Hz to 128Hz in in-

tervals of 1Hz. This is because, as observed in section 4.2, changes in downsampling

frequency impact the success-rate. Low pass filtering was performed prior to down-

sampling.

Features were then extracted as explained in the respective feature-set’s paper

(Bao and Intille (2004) and Kwapisz et al. (2011), refer to section 3.5 for more

details). A Hamming window was applied to each window before extracting the

frequency-domain features in Bao and Intille’s feature set. Bao and Intille’s feature-

set and Kwapisz et al.’s feature-set were used to answer the first question because

these feature-sets were not proposed with orientation independence in mind, hence

are ideal for studying the impact of transient monitor orientations relative to the

body-location mounted on.

The algorithm proposed by Henpraserttae et al.’s paper was used to answer the

second and third research question. This is because Henpraserttae et al.’s algorithm

is designed with orientation independence in mind and hence is ideal for studying the

impact of data reorientation on activity classification success-rates. Henpraserttae

et al.’s algorithm was altered so as to use either the original published acceleration-

based data reorientation method, the orientation-based data reorientation method

proposed in this section, or no reorientation.

The reorientation method as explained by Henpraserttae et al. is elaborated as

algorithm 10.

The orientation-based method proposed in this section makes use of the orienta-

tions obtained from the IMU and hence is simple because these orientations already

represent the orientation of the monitor relative to global coordinates (down from
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Algorithm 10 Reorient the window W to global coordinates using accelerations
A.

procedure AccelReorient(W ,A)
G ← mean(A) � Compute the gravity vector from the accelera-

tions
for all t ← [1, 2, ..., |A|] do

A′
t = At − At ·G � Obtain horizontal components of the accelera-

tions
end for
P1, P2 ← PCA(A′) � Obtain the first principal component (antero-

posterior axis) and second principal component
(mediolateral axis) of the horizontal accelera-
tions.

if A1 · P1 < 0 then
P1 ← −P1 � Make sure the anteroposterior axis always re-

sults in the first acceleration being positive.
end if
for all t ← [1, 2, ..., |W |] do � Compute the projection of W onto axes P1,P2

and G

Rt = (Wt · P1)

⎡
⎣10
0

⎤
⎦+ (Wt · P2)

⎡
⎣01
0

⎤
⎦+ (Wt ·G)

⎡
⎣00
1

⎤
⎦

end for
return R

end procedure

gravity, magnetic north from the compass and east from the cross-product of down

and magnetic north). For example, the orientation of a monitor that is placed on

a level flat surface facing directly north would read an orientation that is 0◦ pitch

from down, 0◦ bearing (from north) and 0◦ roll. To reorient the data gathered

back to global coordinates, it is necessary to obtain the inverse of the orientation

(i.e. similar orientation in magnitude but in the opposite direction), then apply this

to the data gathered. The orientation-based reorientation method is elaborated as

algorithm 11.

Finally, classification was performed using the J48 decision tree from the WEKA

toolkit. The J48 decision tree is an implementation of the C4.5 algorithm (Hall et

al., 2009). The C4.5 decision tree was found to perform best by Bao and Intille

(Bao & Intille, 2004), and second best by Kwapisz et al. (Kwapisz et al., 2011).

Henpraserttae et al. did not mention about any testing performed with multiple
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Algorithm 11 Reorient the window W to global coordinates using orientations O.
procedure AccelReorient(W ,O)

for all t ← [1, 2, ..., |W |] do
Q ← quaternion representing the monitor orientation at time t
Q ← inverse of Q � Obtain inverse of the moni-

tor’s orientation
P ← conjugate of Q
Rt ← QWtP � Rotate vector Wt

end for
return R

end procedure

classifiers, but our own testing found the J48 decision tree to perform better than

KNN (with K=3) that was used by Henpraserttae et al.

Experiments were performed using 10-fold cross-validation. For each monitor,

the classifier was trained with a subset of the data obtained from that monitor and

tested with the rest of the data obtained from that monitor. This is in line with the

model of a phone where only one sensor is available, hence only one body-location

can be monitored at any time.

Results

What is the impact of random monitor rotations on activity

classification success rates?

Figure 7.14 shows histograms of activity classification success-rates obtained from

feature-vectors extracted from data with random rotations applied to each window

and data with activity classification success-rates obtained from feature-vectors ex-

tracted from data with no random rotations applied to each window. Both results

obtained using Bao and Intille’s feature-set and Kwapisz et al.’s feature-set are

shown in the figure.

Figure 7.15 shows histograms of differences in activity classification success-rates

obtained from feature-vectors extracted from data with random rotations applied
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Figure 7.14: Histograms of activity classification success-rates obtained from
feature-vectors extracted from data with random rotations applied to each window and
data with no random rotations applied to each window. Both results obtained using

Bao and Intille’s feature-set (upper) and Kwapisz et al.’s feature-set (lower) are shown.
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Figure 7.15: Histograms of differences in activity classification success-rates obtained
from feature-vectors extracted from data with random rotations applied to each

window (b), from those obtained from feature-vectors extracted from data with no
random rotations applied to each window (a). Differences obtained using both Bao

and Intille’s feature-set and Kwapisz et al.’s feature-set are shown.
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to each window, from feature-vectors extracted from data with no random rotations

applied to windows. Differences obtained using both Bao and Intille’s feature-set

and Kwapisz et al.’s feature-set are shown on the histograms.

From figure 7.15, it can be observed that random rotations applied to windows

reduce success-rates obtained by Bao and Intille’s feature-set and Kwapisz et al.’s

feature-set by an average of 36.41% and 26.31% respectively. In addition, it should

be noted that, based on the fitted distributions, the likelihood of a fold of data

not being impacted by random rotations (i.e. a testing fold with random rotations

applied resulting a higher or similar success-rate as a similar fold without random

rotations applied) is almost zero.

Paired two-sample two-tailed t-tests with α = 0.05 between success-rates ob-

tained from feature-vectors extracted from data with no random rotations applied

to windows, and success-rates obtained from feature-vectors extracted from data

with random rotations applied to each window, confirmed that the two sets of

success-rates came from independent random samples of normal distributions of

unequal means for both success-rates obtained using Bao and Intille’s feature-set

and Kwapisz et al.’s feature-set.

The results show that the random rotations applied to windows had a statistically

significant impact on the success-rates obtained. In addition, an average 26.31% and

36.41% decrease in success-rates can be considered large. Hence, the results show

not only a statistically significant but also a considerably large impact on success-

rate.

In addition, a paired two-sample two-tailed t-test with α = 0.05 between the

differences in success-rates obtained with and without random rotations, obtained

using Bao and Intille’s feature-set, and those obtained using Kwapisz et al.’s feature-

set, confirmed the hypothesis that the two sets of differences came from independent

random samples of normal distributions with unequal means.

Hence, it can be concluded that the impact of random rotations applied to
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windows varies depending on the feature-set used. For the two feature-sets studied,

the impact was observed to be higher on success-rates obtained using Bao and

Intille’s feature-set than on success-rates obtained using Kwapisz et al.’s feature-

set.

What is the difference in success-rates obtained from non-reoriented

data from those obtained from reoriented data?

Figure 7.16 shows histograms of activity classification success-rates obtained from

feature-vectors extracted using Henpraserttae et al.’s feature-set from data with

random rotations applied to each window. Three sets of activity classification

success-rates are shown: one set was obtained from data any reorientation per-

formed, another from data with acceleration-based reorientation performed, and

with orientation-based reorientation performed.

Figure 7.17 shows a histogram of differences in activity classification success-

rates obtained from feature-vectors extracted from reoriented data, from feature-

vectors extracted from data with no reorientation performed. Feature-vectors of

both data sets were extracted using Henpraserttae et al.’s feature-set from data

that had random rotations applied to each window.

Similarly, figure 7.18 shows a histogram of relative differences of the activity clas-

sification success-rates obtained from feature-vectors extracted from reoriented data,

from the activity classification success-rates obtained from feature-vectors extracted

from data with no reorientation performed. The same result sets as in figure 7.17

were used.

From figure 7.15, it can be observed that reorientation of data that had random

rotations applied to each window results in an average of 18.39% increase in success-

rates. From figure 7.18, it can be observed that this is equivalent to an average

relative increase of 39.93%.
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Figure 7.16: Histograms of activity classification success-rates obtained from
feature-vectors extracted using Henpraserttae et al.’s feature-set from data with
random rotations applied to each window. Three sets of results are shown: one

obtained without any reorientation performed, with acceleration-based reorientation
performed, and with orientation-based reorientation performed.
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Figure 7.17: Histogram of differences in activity classification success-rates obtained
from feature-vectors extracted from reoriented data (b), from those obtained from

feature-vectors extracted from data with no reorientation performed (a).
Feature-vectors of both data sets were extracted using Henpraserttae et al.’s

feature-set from data that had random rotations applied to each window.
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Figure 7.18: Histogram of relative differences of activity classification success-rates
obtained from feature-vectors extracted from reoriented data (b), from those obtained

from feature-vectors extracted from data with no reorientation performed (a).
Feature-vectors of both data sets were extracted using Henpraserttae et al.’s

feature-set from data that had random rotations applied to each window.

In addition, it should be noted that, based on the fitted distributions in both

figure 7.15 and figure 7.18, the likelihood of a fold of data that has had random

rotations applied to each window, not getting impacted by performing reorientation

on it (i.e. a testing fold with random rotations applied but not reoriented, resulting

a higher or similar success-rate as a similar fold with random rotations applied and

reoriented) is almost zero.

Paired two-sample two-tailed t-tests with α = 0.05 between the success-rates

obtained from feature-vectors extracted from reoriented data that had had random

rotations applied to each window, and the success-rates obtained from data that

that had had random rotations applied to each window but had not been reoriented,

confirmed that the two sets of success-rates came from independent random samples

of normal distributions of unequal means.

Hence, from the results obtained, it can be concluded that reorientation ap-

plied on data that had had random rotations applied to each window resulted in a

significant increase in success-rates.
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Figure 7.19: Histogram of differences in activity classification success-rates obtained
from feature-vectors extracted from data reoriented using the original proposed

accelerometer-based method (b), from those obtained from feature-vectors extracted
from data reoriented using orientations (a). Feature-vectors of both data sets were

extracted using Henpraserttae et al.’s feature-set from data that had random rotations
applied to each window.
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Figure 7.20: Histogram of relative differences of activity classification success-rates
obtained from feature-vectors extracted from data reoriented using the original

proposed accelerometer-based method (b), from those obtained from feature-vectors
extracted from data reoriented using orientations (a). Feature-vectors of both data

sets were extracted using Henpraserttae et al.’s feature-set from data that had random
rotations applied to each window.

What is the difference in the success-rates obtained from data

reorientated using the accelerations-based method from success-rates

obtained from data reorientated using the orientation-based method?

Figure 7.19 shows a histogram of differences in activity classification success-rates

obtained from feature-vectors extracted from data reoriented using the original pro-

posed accelerometer-based method, from feature-vectors extracted from data reori-

ented using orientations. Feature-vectors of both data sets were extracted using

Henpraserttae et al.’s feature-set from data that had random rotations applied to
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Figure 7.21: Histogram of activity classification success-rates obtained from
feature-vectors extracted using Henpraserttae et al’s feature-set from data with no

random rotations applied to each window and no reorientation performed.

each window.

Similarly, figure 7.20 shows a histogram of relative differences of activity classi-

fication success-rates obtained from feature-vectors extracted from data reoriented

using the original proposed accelerometer-based method, from feature-vectors ex-

tracted from data reoriented using orientations. The same result sets as in figure 7.19

were used.

From figure 7.19, it can be observed that data reorientation using orientations

result in higher success-rates than data reorientation using accelerations for the

majority of the test folds. The mean difference between success-rates obtained

from feature-vectors extracted from data reoriented using the original proposed

accelerometer-based method, from success-rates obtained from feature-vectors ex-

tracted from data reoriented using orientations, is 6.33%. This is equivalent to an

average 12.11% relative increase in success-rates.

From both figure 7.19 and figure 7.20, it can be observed that a small proportion

of the test folds are likely to result in a higher success-rate by using accelerations

to reorient the data than by using orientations to reorient the data. However, this

proportion is very small compared to the proportion of test folds that result in higher

success-rates by using orientations to reorient the data instead of accelerations.

Figure 7.21 shows a histogram of activity classification success-rates obtained

from feature-vectors extracted using Henpraserttae et al’s feature-set. The data
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Figure 7.22: Histogram of the differences in activity classification success-rates
obtained from feature-vectors extracted from data that had random rotations applied

to each window then reoriented using accelerations or orientations (b), from those
obtained from feature-vectors extracted from data that did not have any random

rotations applied (a). Feature-vectors of both data sets were extracted using
Henpraserttae et al.’s feature-set.

used to compute figure 7.21 had no random rotations applied to each window. In

addition, no data reorientation was performed.

Figure 7.22 shows a histogram of the difference between success-rates obtained

from feature-vectors extracted from data without any random rotations applied to

windows, to those obtained from feature-vectors extracted from data that has had

random rotations applied each window then reorientated using the orientation-based

method and the acceleration-based method.

From the figure, it can be observed that data that has had no random rotations

applied results in higher success-rates than either result set that has had random

rotations applied to each window then reoriented using either the orientation-based

reorientation or acceleration-based reorientation.

Similarly, figure 7.23 shows a histogram of the differences in activity classifica-

tion success-rates obtained from feature-vectors extracted from data that has been

reoriented using accelerations or orientations, from feature-vectors extracted from
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Figure 7.23: Histogram of the differences in activity classification success-rates
obtained from feature-vectors extracted from data that has been reoriented using

accelerations or orientations (b), from those obtained from feature-vectors extracted
from data that has not been reoriented (a). Feature-vectors of both data sets were
extracted using Henpraserttae et al.’s feature-set from data that did not have any

random rotations applied.

data that has not been reoriented. Feature-vectors of both data sets were extracted

using Henpraserttae et al.’s feature-set from data that did not have any random

rotations applied.

Similar to figure 7.22, it can be observed that data that has had no random

rotations applied and no reorientation performed, results in higher success-rates than

data that has had no random rotations applied but has had reorientation performed

by either the orientation-based reorientation or acceleration-based reorientation.

From the fitted distributions showed in figure 7.22 and figure 7.23, it can be

observed that it is unlikely that a test fold that has had either acceleration-based re-

orientation or orientation-based reorientation performed, results in a higher success-

rate than a test fold that has had no random rotations and no reorientation per-

formed.

Hence, it can be concluded that the highest success-rates are likely to be obtained

when neither random rotations are applied to data nor reorientation performed on
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the data. Reorienting the data using either the accelerations-based method or the

orientation-based method results in lower success-rates. However, as it has been

shown, the success-rates obtained from data that has been reoriented are higher than

those obtained from data that has had random rotations but not been reoriented.

Discussion

First, the impact of random rotations on activity classification success-rates was

studied. Success-rates were obtained using the two feature-sets studied throughout

the thesis (Bao and Intille (2004) and Kwapisz et al. (2011)). In addition, success-

rates were also obtained using the same feature-sets using data that had random

rotations applied to each window. The differences in the two sets of success-rates

were then obtained.

Application of random rotations onto the data resulted in a decrease from 63.2%

to 27.1% activity classification success-rates for feature-vectors extracted using Bao

and Intille’s feature-set and 60.3% to 35.5% activity classification success-rates for

feature-vectors extracted using Kwapisz et al’s feature-set. Activity classification

success-rates obtained using Henpraserttae et al.’s feature-set decreased from 64.2%

to 27.8%. When accelerometer-based reorientation was applied to the data before

extracting feature-vectors using Henpraserttae et al.’s feature-set, the activity clas-

sification success-rate increased to 45.9%. Orientation-based reorientation resulted

in an activity classification success-rate increased of 51.7%.

In addition, it was also noted that the likelihood of a test fold, computed from

data with random rotations applied to each window, having a higher success-rate

than a similar test fold, but computed from data without random rotations applied

to the windows, is almost zero.

It is hypothesised that the cause of the large decrease in success-rates observed

when random rotations are applied to each window, is that the random rotation
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cancel out any similarities within data of activities where the differences in the data

captured by the sensor is largely due to the orientation of the sensor.

However, if random rotations are applied to each window, each window is trans-

formed using a random rotation hence resulting in data that has different statistical

features to the original data. Hence, the 10 windows result in 10 feature-vector

clusters. The classifier then requires characteristics of 10 clusters to identify the

walking up stairs activity.

Next, the impact of reorienting data that has had random rotations applied to

each window was studied. To do this, the activity classification algorithm proposed

by Henpraserttae et al., that reorients data using the gravity vector extracted from

the accelerations and the PCA of the horizontal accelerations, was altered to allow

both reorienting and non-reorienting of the data. The success-rates obtained while

reorienting were then compared to those obtained without reorienting the data.

While the application of random rotations has the consequence that any classifier

cannot exploit orientation information in the data to determine the current activity,

data reorientation attempts to undo these effects by transforming the data captured

from the local sensor coordinates to global coordinates. For example, vectors that

were originally directed upwards would be encoded relative to the x, y and z-axes

of the sensor. Since the orientation of the sensor changes from window to window,

this would result in different recorded x, y and z values of the vector depending on

the orientation of the sensor. By making use of the gravity vector to compute the

rotation necessary to reorient the data captured by the sensor to global coordinates,

then applying this rotation to reorient the data, all the vectors that were originally

directed upwards get mapped to similar coordinates independent of the orientation

of the sensor.

Next, the difference in success-rates obtained using accelerometer-based reorien-

tation from those obtained using orientation-based reorientation is studied. This was

performed by altering Henpraserttae et al. algorithm such that the same feature-set
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is used but reorientation is performed using orientations instead of accelerations.

The success-rates obtained were then compared to those obtained by using the orig-

inal algorithm that uses accelerations to reorient the data.

The results showed that a mean increase in success-rate of 6.33% is obtained

while using orientations to reorient than by using accelerations to reorient the data.

This is equivalent to an average relative increase in success-rates of 12.11%. A small

proportion of the testing folds were observed to have a larger success-rate while

using acceleration-based reorientation than by using orientation-based success-rates.

However, the proportion was observed to be very small compared to the proportion

of the data that results in higher success-rates while using orientations to perform

data reorientation.

It is hypothesised that the better success-rates obtained using orientations to

perform data reorientation than by using accelerations to perform data reorien-

tation are due to the orientation-based reorientation resulting in a more accurate

reorientation than when accelerations are used. The acceleration-based method of

reorientation proposed by Henpraserttae et al. makes use of the gravity vector that

is encoded in accelerations to reorient the data to global coordinates. However, this

method estimates the gravity vector using the mean of the accelerations recorded

in the whole window. Hence, if the orientation of the sensor relative to gravity in

one part of the window is different from that of another part of the window, the

resulting gravity vector is the mean obtained from those different sensor orienta-

tions. Which actually does not match with any of the original orientations but

would lie somewhere between them depending on the proportion of the time the

sensor was in one orientation compared to the other. Orientations, however, are

derived from integrating the rotational velocities obtained from the gyroscope then

including the gravity vector computed from the accelerations to correct the eventual

drift. This results in an orientation estimation for each sample in the window that

is not impacted by the window computation.
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When the success-rates obtained from feature-vectors extracted from data that

had been reoriented were compared to success-rates obtained from feature-vectors

where no random rotations were applied and no reorientation was applied, it was

observed that the reorientation of data that either had had random rotations applied

or not, resulted in lower success-rates than when the data had no random rotations

and no reorientation performed.

Hence, it can then be concluded that the highest success-rates are likely to be

obtained when the orientation of the monitor is fixed relative to the body-location

(as is the case when wearable sensors are used). Changing the orientation of the

monitor relative to the body-location it is mounted on results in a decrease in

success-rate, even when either acceleration-based reorientation or orientation-based

reorientation is performed.

However, if the orientation of the monitor relative to the body-location is tran-

sient (such may be the case when a mobile phone is used), then reorientation is likely

to result in higher success-rates than would otherwise have been obtained. Hence,

reorientation ameliorates the decrease in success-rates due to the transient nature

of the orientation of the monitor relative to the body-location it is monitoring.

In addition, using orientation-based reorientation results in higher success-rates

than using acceleration-based reorientation. It is hypothesised that this is due to

the higher accuracy of the monitor orientations obtained using the orientation-based

method compared to the monitor orientation obtained using the acceleration-based

method.

The random rotations applied to the data in this section are an extreme case.

This is because it is unlikely that the number of orientations possible for a phone in

a pocket would surpass the uniformly distributed random rotations over the whole

range of possible orientations used. The orientation of the phone is likely to be

constrained by the size and shape of the pocket. Even when the size of the pocket

is large, the phone is likely to settle at the bottom of the pocket and hence result in
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a smaller number of orientations. In addition, it is unlikely that the phone would

change orientations on each window (every 5 seconds) in the day-to-day life of the

phone user.

7.3 Conclusion

In this chapter, studies are performed on location independence and orientation in-

dependence in smart-phone-based activity recognition. Within smart-phone-based

activity recognition, two main challenges exist: the location of the phone on the

subject’s body is transient (hence any solution needs to incorporate location inde-

pendence) and the orientation of the phone relative to the body-location it is also

transient (hence any solution needs to incorporate orientation-independence).

For location independence, a fundamental research question was asked: whether

the body-location on which a monitor is mounted can be identified without knowing

which activity the subject is performing. Next, the success-rates of identifying the

body-location were evaluated and compared with reference to the subject’s activity.

In addition, an evaluation was performed to find out whether the success-rates of

identifying the body-location the monitor are mounted on are dependent on the

orientation of the monitor.

The results obtained showed that the body-location on which a monitor is

mounted can be identified with high success-rates (86.42% and 87.58% for Bao and

Intille’s feature-set and Kwapisz et al.’s feature-set respectively). A break-down of

the success-rates obtained showed that each body-location could be identified with

high success-rates (above 80% for all body-locations and both feature-sets studied).

Next, the accuracy of identifying the body-location on which a monitor is mounted

during each activity was studied. It was observed that the success-rates varied from

one activity to the next, but were high for all activities (above 60% for all activities

and both feature-sets used). The activities were ranked based on the likelihood
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of achieving a higher success-rate of identifying body-locations during one activ-

ity more than during another activity. Among the top ranked activities for both

feature-sets were writing, using the PC, texting on the phone and watching TV.

Among the lowest ranked activities for both feature-sets were talking on the phone,

dusting and vacuuming.

Next, a study was performed on how the accuracy of identifying the body-

location a monitor was mounted on, depends on the orientation of the monitor.

To do this, random rotations were introduced into each data window. This simu-

lates the monitor being in a different orientation relative to the body-location it was

mounted on, in each window.

It was observed that the success-rates of identifying the body-location dropped

significantly (to 45.66% and 54.85% for Bao and Intille’s feature-set and Kwapisz

et al.’s feature-set respectively) when random rotations were introduced into each

data window processed. However, the success-rates were still significantly above

chance (16.67%). Hence, it was concluded that the orientations are only partially

responsible for the ability to differentiate the body-location a monitor was mounted.

For orientation independence, the impact of random monitor rotations on activ-

ity classification success-rates was first studied. This was performed by comparing

the activity classification success-rates obtained with and without random rotations

applied to the data.

Application of random rotations onto the data resulted in a decrease from 63.2%

to 27.1% activity classification success-rates for feature-vectors extracted using Bao

and Intille’s feature-set and 60.3% to 35.5% activity classification success-rates for

feature-vectors extracted using Kwapisz et al’s feature-set. Activity classification

success-rates obtained using Henpraserttae et al.’s feature-set decreased from 64.2%

to 27.8%. When accelerometer-based reorientation was applied to the data before

extracting feature-vectors using Henpraserttae et al.’s feature-set, the activity clas-

sification success-rate increased to 45.9%. Orientation-based reorientation resulted
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in an activity classification success-rate increased of 51.7%.

Hence, it was concluded that when the monitor orientation was fixed relative

to the body-location is it mounted (as is the case with wearable sensors), then

reorientation results in decreased success-rates. However, if the monitor’s orienta-

tion relative to the body-location is it mounted is transient (as is the case with

phones), reorientation results in increased success-rates. In addition, between the

two reorientation methods, the orientation-based method results in slightly higher

success-rates than the accelerometer-based method.



8Conclusion

In this thesis, an analysis of activity recognition on Activities of Daily Living using

on-body inertial sensors was performed. Accelerations, rotational velocities and

orientations captured from monitors mounted on subjects while they performed

the activities in semi-controlled environments were studied. Two feature-sets were

used to evaluate several fundamental classification settings that impact activity

classification accuracy using on-body inertial sensors. These include:

1. The impact of sampling frequency on the activity classification accuracy and

the sampling requirements of each source.

2. The impact of sliding window length on the activity classification accuracy.

3. The impact of sliding window overlap on the activity classification accuracy.

4. The difference in activity classification success-rates obtained by the two se-

lected feature-sets.

5. The difference in activity classification success-rates obtained by each individ-

ual source (accelerations,rotational-velocities and orientations) and the best

source to use.

6. The difference in activity classification success-rates obtained by each individ-

ual body-location and the best body-location to use.

7. The impact of the number of body-locations monitored on the activity classi-

fication accuracy.

8. The differences in accuracy of identifying different activities and the hierarchy

295
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of activities from the most easily identified to the most difficult to identify.

9. The most easily confusable activities and the hierarchy of confusability of

activities.

10. A comparison of remove-one-subject cross-validation results to 10-fold cross-

validation results that indicates the the impact of inter-subject variation.

11. Identification of the body-location on which a monitor is mounted independent

of the user’s activity.

12. The impact of sensor orientation on the identification of the body-location on

which a monitor is mounted.

13. The impact of random monitor rotations on activity classification success-

rates.

14. The impact of data reorientation from local coordinates to global coordinates

on activity classification success-rates.

15. The difference in impact of different data reorientation methods on activity

classification success-rates.

In order to answer the research questions connected to the classification settings

mentioned, data was gathered of 22 Activities of Daily Living in a semi-controlled

environments. The data included accelerations, rotational velocities and orientations

sampled at 128Hz. In addition, data from a six body-locations (three for two of

the activities) was captured for each subject. The sensors were synchronised to

≤ 10μs sample timing difference. For 20 of the 22 activities, six body-locations were

gathered while for 2 of the activities only three body-locations were gathered. Where

necessary, analysis was performed using six body-locations for the 20 activities, and

using three body-locations for 22 activities. Each activity had a minimum of 18

subjects. Walking and running had the highest number of subjects: 21.

Two feature-sets were selected so as to strengthen the findings. Data processing

and classification was performed independently using each feature-set and patterns

in the resulting activity classification or location classification success-rates were
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analysed to deduce the impact of various parameters. The C45 decision tree classi-

fier was used for both feature-set because it was observed to perform well for both

feature-sets. The analysis of the resulting success-rates not only takes into consider-

ation which parameter results in higher average success-rates but how consistently

the parameter results in higher average success-rates.

In the following sections, the findings from each major analysis will be sum-

marised. In addition, the implications of the findings and future research work will

be discussed.

8.1 Analyses performed and findings

Characteristics of sliding windows in data segmentation

The analysis results show that the longer the sliding window length the higher

the activity classification success-rates obtained. Hence, a sliding window length

should be picked as the longest length that is practical for the activity recognition

system. For the window overlap, the larger the window overlap the higher the

activity classification success-rates obtained using 10-fold cross-validation. However,

window overlaps were found not to impact success-rates obtained using remove-one-

subject cross-validation.

The sliding window length

It was observed that there is a linear relationship between the success-rate obtained

and the logarithmic window length used to extract the feature-vectors for both

feature-sets studied. This is a diminishing returns relationship between the success-

rate obtained and the window length used to extract the feature-vectors.

This implies that a larger window length always results in either similar or larger

success-rates. However, it also implies that larger increases in window lengths are
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required to obtain the same increments in success-rates as found at at lower window

lengths.

This relationship is explained as a result of sampling error. As the window

length increases the sampling error in the statistical model obtained from the sample

decreases. However, as the window length increases, the likelihood of encountering

new information that is not already contained in the window grows lower with

increase of window length.

However, practical constraints also have to be considered while picking a window

length. A larger window length not only results in more data to be processed (and

hence more computational resources used and more battery power consumed), but

also results in a lag between the time when the action was performed and the time

it is recognised. The absence of lag might be critical for real-time systems.

In addition, longer window lengths are more likely to include data from multiple

activities during transitions from one activity to another. This can decrease the

system’s accuracy during transitions and possibly make detecting transitions from

one activity to another more difficult.

The sliding window overlap

It was observed that there is a decreasing linear relationship between the success-

rate obtained and the logarithmic shift (or lag) between windows when 10-fold

cross-validation is performed. In addition, the variance is observed to decrease with

increasing window overlap. However, this relationship does not exist when remove-

one-subject cross-validation is performed.

This relationship is explained as the result of information shared by windows.

When the windows highly overlap, a significant portion of the information contained

in one window is also contained in the adjacent windows. When, these adjacent

windows are used to train the classifier while the current window is used to test
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the classifier (as is the case with 10-fold cross-validation), higher success-rates are

obtained.

Any increase in success-rate obtained specificly due to shared information in

adjacent windows being in both the testing set and the training set can be thought

of as increments due to over fitting the data and hence false increments in success-

rates. This is because, this exact common information shared between training set

and testing set is unlikely to occur naturally due to the usage of the system by an

end user.

However, as noticed in section 4.4, the mean success-rate obtained while per-

forming 10-fold cross-validation with no window overlap is higher than the success-

rate obtained while performing remove-one-subject cross-validation. In addition,

the standard deviation of success-rates obtained while performing 10-fold cross-

validation with no window overlap is lower than the standard deviation of success-

rates obtained while performing remove-one-subject cross-validation. This implies

that while window overlaps result in an increase in success-rates, the presence of the

subject’s data in both the training set and the testing set also results in increased

success-rates. The presence of the subject’s data in both the training set and the

testing set (as well as data from other subjects) is the hybrid model as discussed in

section 2.6 that is trained using both the current system user’s data and additional

data from other subjects.

Whether to use accelerations, rotational velocities,

orientations or all three

The average MES frequencies (see section 4.2 for definition) over all studied activ-

ities of accelerations, rotational velocities and orientations are 6Hz, 10Hz and 2Hz

respectively for Bao and Intille’s feature-set and 8Hz, 9Hz and 3Hz respectively for

Kwapiz et al.’s feature-set.
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Although MES frequencies as high as 63Hz were observed, the differences be-

tween the minimum sampling requirements of accelerations, rotational velocities

and orientations in order to achieve the highest success-rates were found to be sta-

tistically significant but too small to impact any activity recognition system (the

largest difference in sampling frequency was 1.43Hz). However, of the three sources,

orientations were noted to require the lowest sampling frequencies. In terms of

success-rates achievable by any of the three sources, the analysis shows that all

three sources should be used if possible. If not possible, then accelerations should

be used since success-rates obtained by accelerations are only marginally lower than

those of the three sources combined.

It was observed that the highest success-rates obtained from feature-vectors ex-

tracted from rotational velocities are obtained at marginally but significantly higher

sampling frequency than either feature-vectors extracted from accelerations or orien-

tations for both feature-sets studied. It was also observed that highest success-rates

obtained from feature-vectors extracted from orientations are obtained at marginally

but significantly lower sampling frequency than either feature-vectors extracted from

accelerations or rotational velocities for both feature-sets studied. Hence, of the

three sources studied, rotational velocities require the highest sampling frequency

while orientations require the least sampling frequency.

The impact of a higher sampling frequency is in terms of larger power con-

sumption and larger use of computational resources. Higher sampling frequencies

result in more data captured which in turn result in more data processed. However,

the differences in the sampling frequency requirements of the three sources is only

marginal (averaging 1.43Hz at most between any two sources). It is unlikely that

such a marginal difference would impact battery consumption, even for the current

resource-constrained wearable sensor systems.

Hence, the selection of which source to use need not depend on the sampling

frequency requirements but should depend on the ability of the features derived
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from the sources to discriminate between activities.

Feature-vectors extracted from accelerations were observed to result in higher

activity classification success-rates than feature-vectors extracted from either rota-

tional velocities or orientations. Feature-vectors extracted from orientations were

found to result in higher success-rates than feature-vectors extracted from rotational

velocities.

When success-rates obtained from feature-vectors extracted from each individual

source were compared to success-rates obtained from feature-vectors extracted from

the three sources combined, it was observed that feature-vectors extracted from

accelerations resulted in success-rates that were only marginally lower than those

from the three sources combined.

A possible explanation as to why accelerations and orientations perform much

better than rotational velocities is the presence of orientational information in both

accelerations and orientations that is absent from rotational velocities. This addi-

tional orientational information can be used to distinguish between activities where

some of the motions captured by the monitors are similar but performed in differ-

ent sensor orientations. For example, the thigh monitor while sitting and standing

captures the same stationary motion, but differs in orientation.

The results obtained imply that in situations where attaining the highest success-

rates is important, if all three sources can be obtained and processed, then combining

all three is likely to result in a higher success-rate than any one individual source.

However, if this is not possible, then accelerations should be prefered to orientations,

which in turn should be preferred to rotational velocities.
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The number of monitors to mount and the best

body-locations to mount them on

For a single monitor

The analysis shows that, for a single monitor, either one of the wrists or the thigh

should be used.

Feature-vectors extracted from data captured from the wrists and thigh result

in higher success-rates than data captured from the chest, dominant upper arm or

ankle. This is likely due to a large number of the activities studied having arm

motions and the ability of the thigh sensor to distinguish sitting activities from

standing activities.

This implies that if one location was to be selected to recognise Activities of Daily

Living, then this body-location should be either the thigh or one of the wrists. The

best body-location can vary depending on the feature-set. For Bao and Intille’s

feature-set, the differences in the success-rates obtained from data captured from

the three body-locations were statistically insignificant. However, for Kwapisz et

al.’s feature-set, data captured from the dominant wrist resulted in higher success-

rates than data captured from the non-dominant wrist, which in turn resulted in

higher success-rates than data captured from the thigh monitor.

For multiple monitors

The analysis shows that, activity classification success-rates obtained from more

than three monitors are only marginally higher than those obtained by three moni-

tors. The three monitors should be mounted on the wrists and thigh to achieve the

highest activity recognition success-rates.

It was observed that there is a diminishing returns relationship between the

number of monitors used and the activity classification success-rates. This implies
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that with the right sensor placement, the first few monitors contribute the most

to the activity classification success-rate. Each additional monitor contributes less

information than the preceeding monitor.

The best body-location to place the first three monitors is observed to be either

one of the wrists or the thigh, depending on the feature-set used. The increments

in success-rates past the third monitor are observed to be marginal.

Hence, to accurately identify Activities of Daily Living, it is advisable to mount

three monitors on the subject: one on each wrist, and one on the thigh.

The most easily recognised activities and the most difficult

to recognise

The analysis shows that running, using the PC, watching TV, writing and walking

on a flat surface are the most easily recognised activities (i.e. have the highest

success-rates). The activities with the lowest success-rates are washing hands and

washing vegetables.

When the activity classification success-rates of identifying each activity were

analysed, it was observed that activity classified with the highest success-rate is

running, followed by using the PC, watching TV, writing and walking on a flat

surface. The activities recognised with the lowest success-rate are washing vegetables

and washing hands; followed by dusting and sweeping; then vacuuming, ironing,

washing dishes and folding clothes.

In addition, it was observed that three distinct groups of activities existed:

a group with high success-rates and low variance in success-rates; a group with

medium success-rates and medium levels of variance in success-rates; and a group

with low success-rates and high variance in the success-rates.

The first group was observed to include running, walking, walking up stairs,

walking down stairs, watching TV, writing, using a PC and texting on the phone.
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The second group was observed to include grating, dicing, stiring, talking on the

phone, brushing teeth, peeling vegetables, vacuuming, ironing, washing dishes, fold-

ing clothes, dusting and sweeping. The third group was observed to include washing

hands and washing vegetables only.

The differences in mean success-rates and standard deviation of success-rates

likely result in the ability of the feature-sets to discriminate between the activi-

ties. The most highly recognised activities are also the activities most consistently

recognised. This implies that there are particular characteristics of the data of

these activities that is captured by the feature-sets resulting in being accurately

and consistently recognised. The lowest recognised activities are observed to be

very similar to each other: washing hands and washing vegetables. It is possible

that these activities can not be differentiated by data captured from the sensors

used and additional information like whether or not the person is washing in the

bathroom or the kitchen, could be used to better distinguish between them.

Highly and mutually confusable activities

The greatest mutual confusion exists between sweeping and vacuuming; followed by

folding clothes and ironing; then washing hands and washing dishes.

When the mutual confusion rates between activities were analysed, it was ob-

served that the greatest mutual confusion existed between sweeping and vacuuming.

It is likely that of all the activities studied, sweeping and vacuuming have the most

similar gross motor motions to each other. Additional sensor data, either via the use

of RFID tags and readers or the use of a microphone, could be used to recognise the

presence of the vacuum cleaner and hence distinguish between the two activities. Of

the two approaches, the microphone is a more prevalent technology than RFID tags

and readers since each smart phone contains one. However, this approach would

possibly not be effective in a noisy environment.
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The next highest mutual confusion is observed to be between folding clothes and

ironing, and between washing hands and washing dishes, depending on the result

set.

Between ironing and folding clothes, it was observed that ironing has motions like

folding and flipping motions that are prevalent in folding clothes. In order to reduce

the mutual confusion between ironing and folding, it is proposed that classification

could focus on identifying motion patterns in ironing that are not present in folding

(e.g. moving the iron back and forth).

Similarly, between washing hands and washing dishes, it is likely that some

motions exist in one activity but not the other. For example, scrubbing motions

might only exist in washing dishes but not in washing hands. Hence, it is necessary

to explore the motions of the two activities and isolate motion patterns present in

one activity but not present in the other.

The presence of these patterns implies that the activity currently being per-

formed is likely one activity and not the other. For example, identification of forward

and backward wrist motions could favour ironing instead of folding, while the identi-

fication of scrubbing motions could favour washing dishes instead of washing hands.

One possible method of performing this is by using time-series shapelets. Time-

series shapelets refer to sections in one class of time-series that are only present in

the time-series of one class but not in the time-series of another class. The shapelets

algorithm proposed by Ye and Keogh (2009) offers a way to identify the shapelets,

and the logical shapelets proposed by Mueen, Keogh, and Young (2011) offers a way

to construct a decision-tree-like binary classifier based on time-series shapelets.

The impact of inter-subject variation

10-fold cross-validation results are higher and vary less than remove-one-subject

cross-validation results due to inter-subject variation. However, the relative perfor-
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mance of activities (to other activities) is similar between the two cross-validation

methods.

When activity classification success-rates obtained from remove-one-subject cross-

validation were compared to activity classification success-rates obtained from 10-

fold cross-validation, it was observed that: centroids of success-rates obtained from

10-fold cross-validation were higher than those of success-rates obtained from remove-

one-subject cross-validation; and dispersion of success-rates obtained from 10-fold

cross-validation was lower than that of success-rates obtained from remove-one-

subject cross-validation.

However, the median success-rates of individual activities obtained from 10-fold

cross-validation were observed to be highly correlated to those of individual activities

obtained from remove-one-subject cross-validation.

If we combine these findings and those observed in section 4.4 (the analysis of the

impact of window overlap), we can observe that the presence of the subject’s data in

both the training set and the testing set results in success-rates that are higher and

less dispersed than when the subject’s data is only present in the testing set but not

in the training set. This represents the hybrid model discussed in section 2.6 that

is trained using both the current system user’s data and additional data from other

subjects. Results obtained from remove-one-subject cross-validation are representa-

tive of results obtained by the impersonal model discussed in section 2.6. The results

show that the hybrid system results in higher and more consistent success-rates than

the impersonal model (for the number of subjects studied) but the relative accuracy

of identifying activities using the two models is similar.

The difference in success-rates between remove-one-subject cross-validation and

10-fold cross-validation (with no window overlaps) is due to inter-subject variability.

The motion patterns of each subject are slightly different from the motion patterns

of other subjects. The differences are smaller with simple activities but grow larger

when complex activities (activities with many different motions) are considered.
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This is because complex activities not only include differences in motion patterns

but also the order and sequence of motions taken. It is possible that with a higher

number of subject, higher and more consistent success-rates would also be obtained

by using the impersonal model (remove-one-subject cross-validation).

Identifying where a monitor is mounted on the subject’s

body

The location on the subject’s body on which a monitor is mounted on can be identi-

fied independent from the subject’s activity. This is in part due to differences in the

orientation of the monitors mounted in different body-locations while performing

activities, and in part due to differences in the motions of different body-locations

while performing activities.

By combining the data obtained from each of the six monitors and testing to

identify the body-location on which the monitor that captured a test feature-vector

was on, it was observed that the body-location of the monitor that captured the

test sample can be identified with high success-rates.

It is possible to explain this behaviour as the result of motion (or orientation)

differences between different body-locations during an activity. Within the studied

Activities of Daily Living, it was observed that the body-location could be iden-

tified accurately for each of the activities. The success-rates does vary depending

on the activity, but for all activities location classification was significantly above

chance. This implies that there are enough differences in the motions (or orien-

tations) captured at different body-locations during each activity, to identify the

body-location.

The most easily identified body-location was observed to be the ankle, followed

by the chest or thigh; then the non-dominant wrist; dominant wrist and finally the

dominant upper arm.
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It was also observed that the activities that resulted in higher success-rates

in identifying the body-location of the monitor were activities that were highly

stationary. This indicated the likelihood of to the success-rates being due to the

orientation of the monitor rather than the motions captured during that activity.

To test this, random rotations were introduced into each window before extract-

ing feature-vectors. By introducing random rotations into each window, the data

captured in each window is made to appear as if the monitor changed orientations

at each window. Hence, undoing any impact of the sensor orientation being fixed

during data capture. The results showed a significant decrease in success-rate, but

the success-rates were still significantly above chance. Hence, it was concluded that

high success-rates of identifying the body-location on which the monitor is mounted

are partially due to differences in sensor orientations from one monitor to another

during the activity, and partially due to characteristics of the motions present at

different body-location during the activity.

As future work, it would be interesting to analyse the impact of reorienting the

data from local coordinates to global coordinates on the body-location identifica-

tion success-rate. It is likely that reorientation would result in success-rates that are

higher than those observed when random rotations were introduced into each win-

dow, but lower than those observed when the orientation of the sensor was fixed (no

random rotations introduced). However, the results would more closely resemble the

achievable body-location identification success-rates when smart phones are used as

sensing nodes. This is because, the orientation of phones in the carry location is not

fixed and phones can be carried in one of many different locations on the subject.

The impact of random monitor rotations

Random monitor rotations result in decreased activity classification success-rates.

Data reorientation (from sensor coordinates to global coordinates) can alleviate this
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decrease. However, success-rates obtained without any random rotations results are

higher than those obtained when data reorientation is performed.

The data captured from monitors that were constantly changing orientations was

simulated by applying random rotations to each window before feature-extraction.

The activity classification success-rates obtained showed a significant decrease from

those obtained without random rotations applied to each window.

The significant decrease in success-rates is explained as resulting from the re-

moval of orientation information that can be used to differentiate some of the ac-

tivities (e.g. sitting from standing using the orientation of a monitor mounted on

the thigh). In addition, the random rotations also diversify the number of models

to be learned by the classifier since effectively, rotating the captured data results

in the statistical characteristics of the data captured in different axes of the sensor

changing.

By using reorientation methods, the data can be reoriented from local coordi-

nates to global coordinates. This effectively results in similar data captured while

the sensor was in different orientations having similar statistical characteristics to

each other. Hence, results in the data not having any information about the ori-

entation of the sensor relative to the body-location it was mounted on, but having

unified models of the motions carried out during the activity. The application of

reorientation methods to the data with random rotations applied to each window

resulted in a significant increase in success-rates obtained.

Two methods of data reorientation were tested: an accelerometer-based method

proposed by Henpraserttae et al. (2011); Mizell (2003); Yang (2009), and a proposed

IMU-based method. The accelerometer-based method uses the gravity component

obtained from accelerations and the PCA of the horizontal accelerations to obtain

vectors of the world orientation. The vectors are then used to rotate the data cap-

tured to world coordinates. This has the disadvantage that the world coordinate

vectors are computed for the whole window, which could possibly include rotations.
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The IMU-based method uses orientations obtained from the IMU to reorient each

sample in the window. By continuously integrating rotational velocities obtained

from the gyroscope and then incorporating the gravity vector obtained from the

accelerations from the accelerometer and the direction to the magnetic north ob-

tained from the magnetometer to offset the eventual drift due to integration, the

IMU is able to maintain an accurate global orientation for each sample captured.

Reorienting the data using the IMU-based method resulted in significantly higher

success-rates than those obtained when the acceleration-based method is used.

However, success-rates obtained from data that had neither random rotations

applied nor data reorientation performed resulted in higher success-rates than when

either method of data reorientation was applied. This implies that the best activity-

recognition success-rates are obtained when the monitors have a fixed orientation

relative to the body-location they are mounted on and changes in orientation results

in decreased success-rates.

In some situations, such as when a smart phone is used as a sensing node, the

orientation of the sensor is guaranteed to change. In those cases, the use of data

reorientation methods results in higher success-rates than when not used. If the

monitor has an accelerometer, gyroscope and magnetometer, then combining the

outputs of the three sensors to obtain an orientation results in better success-rates

than when the accelerometer alone is used to reorient the data.

8.2 Final words

This thesis has looked at the impact of various configuration settings on activity

classification success-rates. Clearly it is not possible to examine the interaction of all

combinations of these parameter settings. For example, how do the window overlap

and window lengths impact the success-rates obtained after using the acceleration-

based reorientation method. Future work would include analysis of the interaction
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of the parameters.

In addition, the analysis of this thesis assumed that the monitors did not move

freely relative to the body-location mounted on. However, in reality smart phones

carried in pockets are free to move around in the pocket, and sensors worn by the

subject can be loose and hence move independent to the body-location they are

worn on. The additional motion increases the noise in the signal and it is unclear

how tolerant the data processing methods used are to noise. An analysis with both

monitors firmly attached and loosely attached (so as to allow varying degrees of

free movement) to the body-locations being monitored should to be conducted to

characterise the impact of the sensor’s free motion relative to the body-location on

activity classification success-rates.

Analysis performed in section 6.4 observed significant differences between the

success-rates obtained using 10-fold cross-validation from remove-one-subject cross-

validation. The difference is caused by inter-subject variability and implies that the

number of subjects used in this analysis is smaller than it needs to be to fully capture

the inter-subject variability that exists in on-body inertial data while performing

Activities of Daily Living. Further research in the area should include more subjects

so as to capture the inter-subject variability.

Analysis performed in section 4.3 has shown that longer window lengths during

data segmentation results in higher activity classification success-rates. However,

the analysis did not take into account the occurrence of transitions from one activity

to another. Longer window lengths are more likely to encounter transitions than

shorter window lengths. In addition, longer window lengths result in more data get-

ting processed by the system and introduce lag between the occurrence of an activity

and when the system recognises it. Further research should take into account these

practical factors when performing segmentation and possibly use window lengths

that are dynamic.

Other avenues of research in the area include the use of time-series shapelets
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(Ye & Keogh, 2009) to discover segments of the data that discriminate between

highly confusable activities (like washing hands, dishes and vegetables). Shapelets

can be used as a data exploratory tool to identify the motions within the activity,

and the body-locations at which the motions occur, that differentiate one activity

from another. This is especially important for complex activities that involve many

different motions.

Similar to time-series shapelet, time-series motifs (Mueen, Keogh, Cash, & West-

over, 2002) are subsequences of a time-series that frequently occur within the time-

series. Time-series motifs can assist in the discovery and building of an alphabet

that can later be used to encode more complex activities by their building block

motions. The idea of using an alphabet of motions to encode and recognise activ-

ities was proposed by Ghasemzadeh et al. (2008). However, no research has been

performed in the area.

To summarise the results of the analysis performed in this thesis, the following

selection of parameters are suggested for system developers interested in develop-

ing on-body activity recognition systems that use inertial sensors for recognising

Activities of Daily Living:

1. Mount monitors on at least three body-locations. These should include the

wrists and thigh.

2. Using accelerations only can result in success-rates that are almost as high as

using accelerations, rotational velocities and orientations.

3. The highest window length that is practical should be used.

4. The hybrid model should be used. This implies that the system should have

the capability to incorporate the system user’s data into it’s trained models.

However, it means that the system does not need to be trained before usage,

unlike a system that uses a personal model.

5. If Bao and Intille’s feature-set is used with accelerations, the highest sampling

rate necessary for the dominant wrist is 16Hz (due to grating), thigh is 13Hz
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(due to grating), and non-dominant wrist is 34Hz (due to washing vegetables).

If Kwapisz et al.’s feature-set is used, the highest sampling rate necessary for

the dominant wrist is 63Hz (due to sweeping), thigh is 27Hz (due to vacuum-

ing), and non-dominant wrist is 34Hz (due to grating). However, if a different

feature-set is used, analysis should be performed to find the performance of

the feature-set with increase in sampling frequency and the sampling frequency

picked appropriately.

6. Washing hands, dishes and vegetables should either be combined, or an addi-

tional classifier (e.g. by using time-series shapelets) should be used to differ-

entiate between the activities. In addition, the same should be performed for

vacuuming, sweeping and dusting.

7. The monitors should have a fixed orientation relative to the body-locations

mounted on (i.e. should be strapped to the body-location) to achieve the best

success-rate.

8. In case the monitors are likely to change orientation freely, data reorientation

methods should be applied to ameliorate the impact of sensor rotations on the

activity classification success-rate.

9. In addition, in case the monitors are likely to change orientation freely, using

an IMU to track the orientation of the sensor, results in higher success-rates

than when an accelerometer only is used.

10. In case the monitors are likely to change location (e.g. when a smart phone

is used as sensing node), the location of the monitor on the body can be

accurately identified, even when the orientation of the monitor is not fixed

relative to the body-location.
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Walking Down Stairs

0 16 32 48 64 80 96 112 128

0

10

20

30

40

50

60

70

80

90

100

Downsampled Frequency (Hz)

Su
cc

es
s-

ra
te

(%
)

Ankle
ND. Wrist
D. U. Arm
Thigh
D. Wrist
Chest

Walking Up Stairs

0 16 32 48 64 80 96 112 128

0

10

20

30

40

50

60

70

80

90

100

Downsampled Frequency (Hz)

Su
cc

es
s-

ra
te

(%
)

Ankle
ND. Wrist
D. U. Arm
Thigh
D. Wrist
Chest



335

Washing Dishes

0 16 32 48 64 80 96 112 128

0

10

20

30

40

50

60

70

80

90

100

Downsampled Frequency (Hz)

Su
cc

es
s-

ra
te

(%
)

Ankle
ND. Wrist
D. U. Arm
Thigh
D. Wrist
Chest

Washing Hands

0 16 32 48 64 80 96 112 128

0

10

20

30

40

50

60

70

80

90

100

Downsampled Frequency (Hz)

Su
cc

es
s-

ra
te

(%
)

Ankle
ND. Wrist
D. U. Arm
Thigh
D. Wrist
Chest



336 Appendix A. Downsampled activity success-rate charts

Washing Vegetables

0 16 32 48 64 80 96 112 128

0

10

20

30

40

50

60

70

80

90

100

Downsampled Frequency (Hz)

Su
cc

es
s-

ra
te

(%
)

Ankle
ND. Wrist
D. U. Arm
Thigh
D. Wrist
Chest

Watching TV

0 16 32 48 64 80 96 112 128

0

10

20

30

40

50

60

70

80

90

100

Downsampled Frequency (Hz)

Su
cc

es
s-

ra
te

(%
)

Ankle
ND. Wrist
D. U. Arm
Thigh
D. Wrist
Chest



337

Writing

0 16 32 48 64 80 96 112 128

0

10

20

30

40

50

60

70

80

90

100

Downsampled Frequency (Hz)

Su
cc

es
s-

ra
te

(%
)

Ankle
ND. Wrist
D. U. Arm
Thigh
D. Wrist
Chest

Bao and Intille (2004) - Gyroscope

Brushing Teeth

0 16 32 48 64 80 96 112 128

0

10

20

30

40

50

60

70

80

90

100

Downsampled Frequency (Hz)

Su
cc

es
s-

ra
te

(%
)

Ankle
ND. Wrist
D. U. Arm
Thigh
D. Wrist
Chest



338 Appendix A. Downsampled activity success-rate charts

Dicing

0 16 32 48 64 80 96 112 128

0

10

20

30

40

50

60

70

80

90

100

Downsampled Frequency (Hz)

Su
cc

es
s-

ra
te

(%
)

Ankle
ND. Wrist
D. U. Arm
Thigh
D. Wrist
Chest

Dusting

0 16 32 48 64 80 96 112 128

0

10

20

30

40

50

60

70

80

90

100

Downsampled Frequency (Hz)

Su
cc

es
s-

ra
te

(%
)

Ankle
ND. Wrist
D. U. Arm
Thigh
D. Wrist
Chest



339

Folding Clothes

0 16 32 48 64 80 96 112 128

0

10

20

30

40

50

60

70

80

90

100

Downsampled Frequency (Hz)

Su
cc

es
s-

ra
te

(%
)

Ankle
ND. Wrist
D. U. Arm
Thigh
D. Wrist
Chest

Grating

0 16 32 48 64 80 96 112 128

0

10

20

30

40

50

60

70

80

90

100

Downsampled Frequency (Hz)

Su
cc

es
s-

ra
te

(%
)

Ankle
ND. Wrist
D. U. Arm
Thigh
D. Wrist
Chest



340 Appendix A. Downsampled activity success-rate charts

Ironing

0 16 32 48 64 80 96 112 128

0

10

20

30

40

50

60

70

80

90

100

Downsampled Frequency (Hz)

Su
cc

es
s-

ra
te

(%
)

Ankle
ND. Wrist
D. U. Arm
Thigh
D. Wrist
Chest

Peeling Vegetables

0 16 32 48 64 80 96 112 128

0

10

20

30

40

50

60

70

80

90

100

Downsampled Frequency (Hz)

Su
cc

es
s-

ra
te

(%
)

Ankle
ND. Wrist
D. U. Arm
Thigh
D. Wrist
Chest



341

Running

0 16 32 48 64 80 96 112 128

0

10

20

30

40

50

60

70

80

90

100

Downsampled Frequency (Hz)

Su
cc

es
s-

ra
te

(%
)

Thigh
D. Wrist
Chest

Stiring

0 16 32 48 64 80 96 112 128

0

10

20

30

40

50

60

70

80

90

100

Downsampled Frequency (Hz)

Su
cc

es
s-

ra
te

(%
)

Ankle
ND. Wrist
D. U. Arm
Thigh
D. Wrist
Chest



342 Appendix A. Downsampled activity success-rate charts

Sweeping
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Texting on a Phone
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Vacuuming
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Walking Down Stairs
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Washing Dishes
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Washing Vegetables
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Writing
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Kwapisz et al. (2011) - Gyroscope
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Dicing
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Folding Clothes
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Ironing
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Running
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Sweeping
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Texting on a Phone
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Vacuuming
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Walking Down Stairs
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Washing Dishes
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Washing Vegetables

0 16 32 48 64 80 96 112 128

0

10

20

30

40

50

60

70

80

90

100

Downsampled Frequency (Hz)

Su
cc

es
s-

ra
te

(%
)

Ankle
ND. Wrist
D. U. Arm
Thigh
D. Wrist
Chest

Watching TV

0 16 32 48 64 80 96 112 128

0

10

20

30

40

50

60

70

80

90

100

Downsampled Frequency (Hz)

Su
cc

es
s-

ra
te

(%
)

Ankle
ND. Wrist
D. U. Arm
Thigh
D. Wrist
Chest



359

Writing
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Bao and Intille (2004) - Orientation
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Dicing
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Folding Clothes
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Ironing
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Running
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Sweeping
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Texting on a Phone
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Vacuuming
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Walking Down Stairs
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Washing Dishes
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Washing Vegetables

0 16 32 48 64 80 96 112 128

0

10

20

30

40

50

60

70

80

90

100

Downsampled Frequency (Hz)

Su
cc

es
s-

ra
te

(%
)

Ankle
ND. Wrist
D. U. Arm
Thigh
D. Wrist
Chest

Watching TV

0 16 32 48 64 80 96 112 128

0

10

20

30

40

50

60

70

80

90

100

Downsampled Frequency (Hz)

Su
cc

es
s-

ra
te

(%
)

Ankle
ND. Wrist
D. U. Arm
Thigh
D. Wrist
Chest



370 Appendix A. Downsampled activity success-rate charts

Writing
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Kwapisz et al. (2011) - Orientation
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Dicing
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Folding Clothes
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Ironing

0 16 32 48 64 80 96 112 128

0

10

20

30

40

50

60

70

80

90

100

Downsampled Frequency (Hz)

Su
cc

es
s-

ra
te

(%
)

Ankle
ND. Wrist
D. U. Arm
Thigh
D. Wrist
Chest

Peeling Vegetables

0 16 32 48 64 80 96 112 128

0

10

20

30

40

50

60

70

80

90

100

Downsampled Frequency (Hz)

Su
cc

es
s-

ra
te

(%
)

Ankle
ND. Wrist
D. U. Arm
Thigh
D. Wrist
Chest



374 Appendix A. Downsampled activity success-rate charts

Running
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Sweeping

0 16 32 48 64 80 96 112 128

0

10

20

30

40

50

60

70

80

90

100

Downsampled Frequency (Hz)

Su
cc

es
s-

ra
te

(%
)

Ankle
ND. Wrist
D. U. Arm
Thigh
D. Wrist
Chest

Talking on a Phone

0 16 32 48 64 80 96 112 128

0

10

20

30

40

50

60

70

80

90

100

Downsampled Frequency (Hz)

Su
cc

es
s-

ra
te

(%
)

Ankle
ND. Wrist
D. U. Arm
Thigh
D. Wrist
Chest



376 Appendix A. Downsampled activity success-rate charts

Texting on a Phone

0 16 32 48 64 80 96 112 128

0

10

20

30

40

50

60

70

80

90

100

Downsampled Frequency (Hz)

Su
cc

es
s-

ra
te

(%
)

Ankle
ND. Wrist
D. U. Arm
Thigh
D. Wrist
Chest

Using a PC

0 16 32 48 64 80 96 112 128

0

10

20

30

40

50

60

70

80

90

100

Downsampled Frequency (Hz)

Su
cc

es
s-

ra
te

(%
)

Ankle
ND. Wrist
D. U. Arm
Thigh
D. Wrist
Chest



377

Vacuuming
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Walking Down Stairs
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Washing Dishes
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Washing Vegetables
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Writing
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BMinimum Efficient Sampling Frequency

on a per location and per activity basis

The MES frequency is defined in section 4.2 as the lowest frequency at which an

activity can be sampled from a particular body-location to achieve an activity clas-

sification success-rate that is independent of the sampling frequency to a 95% con-

fidence interval. This appendix presents the computed MES frequencies.

First, the MES frequency obtained of each activity, source and of the two studied

feature-sets is presented.

Then, more details are presented as the MES frequencies of each activity, source,

monitor and of the two studied feature-sets.
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Appendix B. Minimum Efficient Sampling Frequency on a per location and per

activity basis

Overall

Activity Accel. Rot. Vel. Orient. Mean

B K B K B K

Brushing Teeth 16 16 11 21 < 1 3 11

Dicing 11 10 9 10 < 1 1 7

Dusting < 1 26 6 5 2 < 1 7

Folding Clothes 5 < 1 6 5 2 8 4

Grating 14 14 52 13 < 1 1 16

Ironing 6 4 6 5 < 1 5 4

Peeling Vegetables < 1 6 5 4 1 2 3

Running 7 8 8 7 8 8 8

Stiring 3 4 11 6 4 2 5

Sweeping 2 9 6 4 1 5 5

Talking on a Phone < 1 10 10 12 < 1 < 1 5

Texting on a Phone 12 < 1 29 23 < 1 < 1 11

Using a PC < 1 < 1 3 4 < 1 < 1 1

Vacuuming 4 27 17 36 2 7 16

Walking (Flat Ground) 4 4 5 10 3 4 5

Walking Down Stairs 3 5 < 1 4 9 7 5

Walking Up Stairs 3 3 < 1 < 1 10 9 4

Washing Dishes 4 < 1 2 3 3 < 1 2

Washing Hands 4 14 2 2 < 1 1 4

Washing Vegetables 34 5 10 9 < 1 1 10

Watching TV < 1 < 1 13 4 < 1 < 1 3

Writing 8 7 14 11 < 1 < 1 7

Mean 6 8 10 9 2 3 6

Legend: B:Bao and Intille (2004) K:Kwapisz et al. (2011)
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Ankle

Activity Accel. Rot. Vel. Orient. Mean

B K B K B K

Brushing Teeth 1 3 < 1 10 < 1 < 1 2

Dicing < 1 2 < 1 18 < 1 < 1 3

Dusting 2 6 < 1 3 4 5 3

Folding Clothes < 1 10 2 7 2 5 4

Grating 15 5 6 8 < 1 5 7

Ironing 2 5 3 4 1 3 3

Peeling Vegetables 1 < 1 3 10 < 1 < 1 2

Stiring < 1 24 2 11 < 1 < 1 6

Sweeping 3 4 2 3 3 4 3

Talking on a Phone < 1 < 1 2 8 < 1 < 1 2

Texting on a Phone < 1 < 1 4 8 < 1 < 1 2

Using a PC < 1 12 < 1 14 < 1 < 1 4

Vacuuming 6 21 3 5 3 7 8

Walking Down Stairs 3 5 < 1 4 9 7 5

Walking Up Stairs 3 3 < 1 < 1 10 9 4

Washing Dishes 6 8 3 14 < 1 3 6

Washing Hands < 1 < 1 1 4 < 1 < 1 < 1

Washing Vegetables 3 < 1 < 1 < 1 < 1 < 1 < 1

Watching TV < 1 < 1 2 7 < 1 < 1 2

Writing < 1 27 8 10 < 1 4 8

Mean 2 7 2 7 2 3 4

Legend: B:Bao and Intille (2004) K:Kwapisz et al. (2011)
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Appendix B. Minimum Efficient Sampling Frequency on a per location and per

activity basis

Non-dominant Wrist

Activity Accel. Rot. Vel. Orient. Mean

B K B K B K

Brushing Teeth 5 4 16 13 < 1 3 7

Dicing < 1 3 3 3 < 1 1 2

Dusting < 1 26 6 5 2 < 1 7

Folding Clothes 5 < 1 6 5 2 8 4

Grating 5 34 23 14 < 1 1 13

Ironing < 1 7 4 6 < 1 5 4

Peeling Vegetables < 1 6 5 4 1 2 3

Stiring < 1 6 6 12 < 1 2 4

Sweeping 3 9 6 4 2 5 5

Talking on a Phone < 1 < 1 3 8 < 1 < 1 2

Texting on a Phone 6 < 1 12 12 < 1 3 6

Using a PC 8 < 1 8 11 < 1 1 5

Vacuuming < 1 16 4 5 2 < 1 5

Walking Down Stairs 8 8 3 5 < 1 < 1 4

Walking Up Stairs 6 4 3 3 < 1 < 1 3

Washing Dishes < 1 < 1 5 7 3 < 1 3

Washing Hands 4 14 2 2 < 1 1 4

Washing Vegetables 34 5 10 9 < 1 2 10

Watching TV < 1 4 6 5 < 1 < 1 3

Writing < 1 < 1 9 7 < 1 < 1 3

Mean 4 7 7 7 < 1 2 5

Legend: B:Bao and Intille (2004) K:Kwapisz et al. (2011)
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Dominant Upper Arm

Activity Accel. Rot. Vel. Orient. Mean

B K B K B K

Brushing Teeth 13 17 9 11 < 1 < 1 8

Dicing 10 16 6 5 1 1 7

Dusting 2 5 5 3 < 1 < 1 3

Folding Clothes 3 7 3 4 < 1 < 1 3

Grating 14 15 11 13 < 1 11 11

Ironing 5 6 5 4 2 3 4

Peeling Vegetables 8 < 1 12 11 1 2 6

Stiring 9 17 11 11 < 1 2 8

Sweeping 2 < 1 4 3 < 1 3 2

Talking on a Phone < 1 8 10 11 < 1 < 1 5

Texting on a Phone 11 10 6 11 < 1 < 1 6

Using a PC 15 14 14 5 2 2 9

Vacuuming 4 10 4 5 2 7 5

Walking Down Stairs 8 8 5 < 1 < 1 < 1 4

Walking Up Stairs 6 7 < 1 < 1 < 1 < 1 2

Washing Dishes 3 4 1 2 3 4 3

Washing Hands < 1 < 1 6 < 1 < 1 1 1

Washing Vegetables < 1 < 1 1 1 < 1 5 1

Watching TV 1 8 8 10 1 3 5

Writing 14 17 13 5 < 1 < 1 8

Mean 6 8 7 6 < 1 2 5

Legend: B:Bao and Intille (2004) K:Kwapisz et al. (2011)
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Appendix B. Minimum Efficient Sampling Frequency on a per location and per

activity basis

Thigh

Activity Accel. Rot. Vel. Orient. Mean

B K B K B K

Brushing Teeth 2 < 1 9 7 < 1 < 1 3

Dicing < 1 < 1 8 11 < 1 < 1 3

Dusting 3 19 3 4 3 5 6

Folding Clothes 5 6 4 6 < 1 < 1 4

Grating 13 14 9 9 < 1 < 1 8

Ironing 6 4 6 5 < 1 < 1 4

Peeling Vegetables < 1 < 1 11 7 < 1 2 3

Running 9 11 8 7 8 8 9

Stiring < 1 6 11 7 < 1 5 5

Sweeping 2 24 6 14 1 5 9

Talking on a Phone < 1 10 10 12 < 1 < 1 5

Texting on a Phone 12 < 1 29 23 < 1 < 1 11

Using a PC < 1 < 1 4 4 < 1 < 1 1

Vacuuming 11 27 17 36 4 6 17

Walking (Flat Ground) 4 4 5 10 3 4 5

Walking Down Stairs 6 4 14 4 6 6 7

Walking Up Stairs 5 3 4 2 7 9 5

Washing Dishes 4 5 5 6 2 < 1 4

Washing Hands < 1 < 1 2 1 1 < 1 < 1

Washing Vegetables < 1 1 < 1 < 1 < 1 < 1 < 1

Watching TV < 1 < 1 13 4 < 1 < 1 3

Writing < 1 < 1 10 5 < 1 < 1 3

Mean 4 6 9 8 2 2 5

Legend: B:Bao and Intille (2004) K:Kwapisz et al. (2011)
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Dominant Wrist

Activity Accel. Rot. Vel. Orient. Mean

B K B K B K

Brushing Teeth 16 16 11 21 5 7 13

Dicing 11 10 9 10 14 6 10

Dusting 2 6 5 7 < 1 6 4

Folding Clothes 2 < 1 6 4 5 16 6

Grating 16 14 52 6 < 1 < 1 15

Ironing 6 9 4 4 8 8 7

Peeling Vegetables 6 12 8 5 8 5 7

Running 8 7 6 5 5 7 6

Stiring 3 4 11 6 4 3 5

Sweeping 3 63 5 5 1 3 13

Talking on a Phone 5 8 13 18 2 < 1 8

Texting on a Phone 7 4 19 3 10 14 10

Using a PC 5 < 1 3 4 11 10 6

Vacuuming < 1 38 4 5 8 11 11

Walking (Flat Ground) 3 36 2 < 1 < 1 < 1 7

Walking Down Stairs 9 10 3 4 < 1 6 5

Walking Up Stairs 4 6 < 1 3 29 3 8

Washing Dishes 2 < 1 2 3 6 12 4

Washing Hands 4 3 < 1 < 1 1 < 1 1

Washing Vegetables < 1 < 1 < 1 < 1 < 1 1 < 1

Watching TV 14 11 16 5 4 9 10

Writing 8 7 14 11 7 6 9

Mean 6 12 9 6 6 6 7

Legend: B:Bao and Intille (2004) K:Kwapisz et al. (2011)
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Appendix B. Minimum Efficient Sampling Frequency on a per location and per

activity basis

Chest

Activity Accel. Rot. Vel. Orient. Mean

B K B K B K

Brushing Teeth 15 18 12 19 2 < 1 11

Dicing 9 25 10 12 < 1 < 1 9

Dusting 4 8 < 1 13 1 < 1 4

Folding Clothes 3 3 < 1 3 < 1 < 1 2

Grating 16 23 22 11 < 1 3 13

Ironing 6 8 < 1 4 < 1 2 3

Peeling Vegetables < 1 22 11 8 < 1 < 1 7

Running 7 8 6 6 5 12 7

Stiring < 1 17 16 7 < 1 < 1 7

Sweeping 2 3 < 1 4 1 3 2

Talking on a Phone 1 < 1 8 < 1 < 1 < 1 2

Texting on a Phone < 1 < 1 13 10 2 < 1 4

Using a PC 16 13 20 15 < 1 < 1 11

Vacuuming 4 7 3 7 < 1 4 4

Walking (Flat Ground) 6 6 3 15 < 1 11 7

Walking Down Stairs 7 7 < 1 2 < 1 < 1 3

Walking Up Stairs 5 6 < 1 < 1 < 1 3 2

Washing Dishes 4 5 3 3 < 1 < 1 3

Washing Hands < 1 < 1 3 3 < 1 < 1 1

Washing Vegetables < 1 < 1 < 1 < 1 < 1 < 1 < 1

Watching TV < 1 < 1 8 10 1 < 1 3

Writing 2 18 16 7 2 < 1 8

Mean 5 9 7 7 < 1 2 5

Legend: B:Bao and Intille (2004) K:Kwapisz et al. (2011)



CComparison of feature sets on a per

location basis
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Figure C.1: Distribution of the differences between success-rates obtained from
classifying feature-vectors extracted from the monitor mounted on the Ankle and

classifying feature-vectors extracted from the monitor mounted on the Chest.
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Figure C.2: Distribution of the differences between success-rates obtained from
classifying feature-vectors extracted from the monitor mounted on the Ankle and
classifying feature-vectors extracted from the monitor mounted on the D. U. Arm.
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Figure C.3: Distribution of the differences between success-rates obtained from
classifying feature-vectors extracted from the monitor mounted on the Ankle and
classifying feature-vectors extracted from the monitor mounted on the D. Wrist.
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Figure C.4: Distribution of the differences between success-rates obtained from
classifying feature-vectors extracted from the monitor mounted on the Ankle and
classifying feature-vectors extracted from the monitor mounted on the ND. Wrist.
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Figure C.5: Distribution of the differences between success-rates obtained from
classifying feature-vectors extracted from the monitor mounted on the Ankle and

classifying feature-vectors extracted from the monitor mounted on the Thigh.
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Figure C.6: Distribution of the differences between success-rates obtained from
classifying feature-vectors extracted from the monitor mounted on the Chest and
classifying feature-vectors extracted from the monitor mounted on the D. U. Arm.

−14 −12 −10 −8 −6 −4 −2 0

0

5

10

15

Chest success-rates (a) – D. Wrist success-rates (b) (%)

N
or

m
al

iz
ed

C
ou

nt
(%

)

Bao Kwapisz

a− b -6.35 -8.72
σ 2.0240 2.0491
R2 0.8823 0.8564
SSE 45.0 51.5

P (a < b) 0.9991 1.0000

Figure C.7: Distribution of the differences between success-rates obtained from
classifying feature-vectors extracted from the monitor mounted on the Chest and
classifying feature-vectors extracted from the monitor mounted on the D. Wrist.
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Figure C.8: Distribution of the differences between success-rates obtained from
classifying feature-vectors extracted from the monitor mounted on the Chest and
classifying feature-vectors extracted from the monitor mounted on the ND. Wrist.
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Figure C.9: Distribution of the differences between success-rates obtained from
classifying feature-vectors extracted from the monitor mounted on the Chest and

classifying feature-vectors extracted from the monitor mounted on the Thigh.
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Figure C.10: Distribution of the differences between success-rates obtained from
classifying feature-vectors extracted from the monitor mounted on the D. U. Arm and

classifying feature-vectors extracted from the monitor mounted on the D. Wrist.
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Figure C.11: Distribution of the differences between success-rates obtained from
classifying feature-vectors extracted from the monitor mounted on the D. U. Arm and

classifying feature-vectors extracted from the monitor mounted on the ND. Wrist.
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Figure C.12: Distribution of the differences between success-rates obtained from
classifying feature-vectors extracted from the monitor mounted on the D. U. Arm and

classifying feature-vectors extracted from the monitor mounted on the Thigh.
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Figure C.13: Distribution of the differences between success-rates obtained from
classifying feature-vectors extracted from the monitor mounted on the D. Wrist and
classifying feature-vectors extracted from the monitor mounted on the ND. Wrist.
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Figure C.14: Distribution of the differences between success-rates obtained from
classifying feature-vectors extracted from the monitor mounted on the D. Wrist and

classifying feature-vectors extracted from the monitor mounted on the Thigh.
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Figure C.15: Distribution of the differences between success-rates obtained from
classifying feature-vectors extracted from the monitor mounted on the ND. Wrist and

classifying feature-vectors extracted from the monitor mounted on the Thigh.
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Running (r)

Watching TV (tv)

Writing (wr)

Using PC (pc)

Walking (Flat Surface) (wk)

Texting (Phone) (tx)

Walking D. Stairs (wds)

Walking U. Stairs (wus)

Dicing (di)

Stiring (st)

Talking (Phone) (ta)

Grating (g)

Brushing Teeth (b)

Vacuuming (v)

Peeling Veg. (p)

Ironing (i)

Washing Dishes (wd)

Folding Clothes (fc)

Sweeping (sw)

Dusting (du)

Washing Veg. (wv)

Washing Hands (wh)

r − tv = 1.77% p(r > tv) = 0.8789

tv − wr = 0.35% p(tv > wr) = 0.5788

wr − pc = 0.01% p(wr > pc) = 0.5014

pc− wk = 0.11% p(pc > wk) = 0.5206

wk − tx = 1.92% p(wk > tx) = 0.7741

tx− wds = 3.79% p(tx > wds) = 0.8394

wds− wus = 6.15% p(wds > wus) = 0.9012

wus− di = 11.01% p(wus > di) = 0.9948

di− st = 0.33% p(di > st) = 0.5320

st− ta = 2.54% p(st > ta) = 0.7337

ta
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g − b = 0.92% p(g > b) = 0.5856

b− v = 1.49% p(b > v) = 0.6607

v − p = 0.65% p(v > p) = 0.5694

p− i = 2.03% p(p > i) = 0.7093

i− wd = 1.77% p(i > wd) = 0.7028

wd− fc = 3.88% p(wd > fc) = 0.8704

fc− sw = 6.30% p(fc > sw) = 0.9552

sw − du = 6.18% p(sw > du) = 0.9424

du− wv = 12.78% p(du > wv) = 0.9947

wv − wh = 0.89% p(wv > wh) = 0.5635

Figure D.1: Illustration showing the ranking of activities based on the likelihood of
obtaining higher success-rates for one activity more than other activities. Arrows in

activity connections point from activities that are likely to have higher success-rates to
those that are likely to have lower success-rates. The results are generated from data

extracted using Bao and Intille’s feature-set using the 3 monitor setup.
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Running (r)

Walking (Flat Surface) (wk)

Writing (wr)

Using PC (pc)

Watching TV (tv)

Texting (Phone) (tx)

Walking U. Stairs (wus)

Walking D. Stairs (wds)

Grating (g)

Dicing (di)

Stiring (st)

Talking (Phone) (ta)

Brushing Teeth (b)

Vacuuming (v)

Peeling Veg. (p)

Ironing (i)

Washing Dishes (wd)

Folding Clothes (fc)

Sweeping (sw)

Dusting (du)

Washing Veg. (wv)

Washing Hands (wh)

r − wk = 1.79% p(r > wk) = 0.8151

wk − wr = 0.98% p(wk > wr) = 0.6828

wr − pc = 0.05% p(wr > pc) = 0.5099

pc− tv = 0.60% p(pc > tv) = 0.6257

tv − tx = 0.92% p(tv > tx) = 0.6485

tx− wus = 7.77% p(tx > wus) = 0.9737

wus− wds = 1.36% p(wus > wds) = 0.6071

wds− g = 4.50% p(wds > g) = 0.8318

g − di = 4.79% p(g > di) = 0.8711

di− st = 0.23% p(di > st) = 0.5210
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ta− b = 4.09% p(ta > b) = 0.8475

b− v = 2.18% p(b > v) = 0.7308

v − p = 0.61% p(v > p) = 0.5652

p− i = 2.75% p(p > i) = 0.7677

i− wd = 4.24% p(i > wd) = 0.8978

wd− fc = 0.87% p(wd > fc) = 0.6026

fc− sw = 8.98% p(fc > sw) = 0.9942

sw − du = 1.13% p(sw > du) = 0.6120

du− wv = 17.35% p(du > wv) = 0.9998

wv − wh = 1.17% p(wv > wh) = 0.5833

Figure D.2: Illustration showing the ranking of activities based on the likelihood of
obtaining higher success-rates for one activity more than other activities. Arrows in

activity connections point from activities that are likely to have higher success-rates to
those that are likely to have lower success-rates. The results are generated from data

extracted using Kwapisz et al.’s feature-set using the 3 monitor setup.
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Walking U. Stairs (wus)

Walking D. Stairs (wds)

Watching TV (tv)

Using PC (pc)

Writing (wr)

Texting (Phone) (tx)

Grating (g)

Dicing (di)

Stiring (st)

Talking (Phone) (ta)

Peeling Veg. (p)

Brushing Teeth (b)

Washing Dishes (wd)

Vacuuming (v)

Ironing (i)

Folding Clothes (fc)

Dusting (du)

Sweeping (sw)

Washing Hands (wh)

Washing Veg. (wv)

wus− wds = 0.05% p(wus > wds) = 0.5302

wds− tv = 1.72% p(wds > tv) = 0.9165

tv − pc = 0.09% p(tv > pc) = 0.5211

pc− wr = 0.17% p(pc > wr) = 0.5392

wr − tx = 0.97% p(wr > tx) = 0.6738

tx− g = 13.07% p(tx > g) = 0.9998

g − di = 0.47% p(g > di) = 0.5489

di− st = 2.01% p(di > st) = 0.6944

st− ta = 0.35% p(st > ta) = 0.5330

ta
−
p
=

0
.8
4%

,p
(t
a
>

p
)
=

0
.5
83

9

p− b = 3.90% p(p > b) = 0.8392

b− wd = 1.15% p(b > wd) = 0.6208

wd− v = 1.29% p(wd > v) = 0.6519

v − i = 0.87% p(v > i) = 0.6131

i− fc = 2.36% p(i > fc) = 0.7867

fc− du = 3.84% p(fc > du) = 0.8589

du− sw = 7.89% p(du > sw) = 0.9808

sw − wh = 8.57% p(sw > wh) = 0.9544

wh− wv = 3.16% p(wh > wv) = 0.7126

Figure D.3: Illustration showing the ranking of activities based on the likelihood of
obtaining higher success-rates for one activity more than other activities. Arrows in

activity connections point from activities that are likely to have higher success-rates to
those that are likely to have lower success-rates. The results are generated from data

extracted using Bao and Intille’s feature-set using the 6 monitor setup.
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Walking U. Stairs (wus)

Walking D. Stairs (wds)

Watching TV (tv)

Writing (wr)

Using PC (pc)

Texting (Phone) (tx)

Grating (g)

Dicing (di)

Stiring (st)

Talking (Phone) (ta)

Peeling Veg. (p)

Brushing Teeth (b)

Folding Clothes (fc)

Ironing (i)

Vacuuming (v)

Washing Dishes (wd)

Dusting (du)

Sweeping (sw)

Washing Veg. (wv)

Washing Hands (wh)

wus− wds = 0.03% p(wus > wds) = 0.5185

wds− tv = 1.20% p(wds > tv) = 0.7898

tv − wr = 1.32% p(tv > wr) = 0.7822

wr − pc = 0.04% p(wr > pc) = 0.5097

pc− tx = 0.22% p(pc > tx) = 0.5411

tx− g = 8.54% p(tx > g) = 0.9941

g − di = 0.73% p(g > di) = 0.5769

di− st = 3.46% p(di > st) = 0.8206

st− ta = 2.41% p(st > ta) = 0.7301

ta
−
p
=

0
.0
7%

,p
(t
a
>

p
)
=

0
.5
07

0

p− b = 5.85% p(p > b) = 0.9442

b− fc = 4.08% p(b > fc) = 0.8809

fc− i = 0.26% p(fc > i) = 0.5358

i− v = 0.85% p(i > v) = 0.6114

v − wd = 0.65% p(v > wd) = 0.5780

wd− du = 6.46% p(wd > du) = 0.9608

du− sw = 6.52% p(du > sw) = 0.9541

sw − wv = 11.78% p(sw > wv) = 0.9889

wv − wh = 4.28% p(wv > wh) = 0.7687

Figure D.4: Illustration showing the ranking of activities based on the likelihood of
obtaining higher success-rates for one activity more than other activities. Arrows in

activity connections point from activities that are likely to have higher success-rates to
those that are likely to have lower success-rates. The results are generated from data

extracted using Kwapisz et al.’s feature-set using the 6 monitor setup.





EActivity clustering by mutual error rates

The following are activity dendrograms generated as per the method given in sec-

tion 6.3. The activity dendrograms present the clustering of activities based on

the mutual confusion between activities. Hence, activities with the highest mutual

confusion error rates are grouped together first (lowest mergers in the graph). The

activities with the least mutual confusion error rates are grouped together last (high-

est mergers in the graph). The axis on the left presents the activity classification

success-rates obtained after combining the data of the activities clustered at that

height.
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Figure E.1: Activity dendrogram showing clustering of activities by mutual error rates
constructed using result sets Bao-Accel-3 (upper) and Kwapisz-Accel-3 (lower).

Details of the result sets are given in table 5.4. y-axis shows the success-rates obtained
at each activity set merger.
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Figure E.2: Activity dendrogram showing clustering of activities by mutual error rates
constructed using result sets Bao-Gyro-3 (upper) and Kwapisz-Gyro-3 (lower). Details

of the result sets are given in table 5.4. y-axis shows the success-rates obtained at
each activity set merger.
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Figure E.3: Activity dendrogram showing clustering of activities by mutual error rates
constructed using result sets Bao-Orients-3 (up) and Kwapisz-Orients-3 (down).

Details of the result sets are given in table 5.4. y-axis shows the success-rates obtained
at each activity set merger.
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Figure E.4: Activity dendrogram showing clustering of activities by mutual error rates
constructed using result sets Bao-Accel-6 (upper) and Kwapisz-Accel-6 (lower).

Details of the result sets are given in table 5.4. y-axis shows the success-rates obtained
at each activity set merger.
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Figure E.5: Activity dendrogram showing clustering of activities by mutual error rates
constructed using result sets Bao-Gyro-6 (upper) and Kwapisz-Gyro-6 (lower). Details

of the result sets are given in table 5.4. y-axis shows the success-rates obtained at
each activity set merger.
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Figure E.6: Activity dendrogram showing clustering of activities by mutual error rates
constructed using result sets Bao-Orients-6 (up) and Kwapisz-Orients-6 (down).

Details of the result sets are given in table 5.4. y-axis shows the success-rates obtained
at each activity set merger.
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