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Abstract

Currently, experimental and theoretical studies of solitons have been conducted in

the context of several areas of science, from applied mathematics and physics to

chemistry and biology. A significant amount of soliton research is concentrated

on nonlinear optics (light waves) and Bose-Einstein condensates (matter waves) in

optical lattices, which are often described by the Gross-Pitaevskii equation or the

nonlinear Schrödinger equation with a periodic potential.

We studied soliton dynamics in both time-independent and time-dependent po-

tentials. We used a variational approach to simplify the problem by reducing it

to the study of the dynamics of a particle in an effective potential. We saw good

agreement between the numerical and approximate variational solutions, indicat-

ing the variational method is a simple yet powerful method for the study of soliton

dynamics in a frequency-modulated potential. We studied several scenarios, includ-

ing soliton trapping by a periodic potential, ‘jumping’ between adjacent wells and

parametric resonance. We also investigated the soliton dynamics by using Poincaré

sections and histograms to examine the velocity distribution of the driven solitons

for different initial conditions.
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Chapter 1

Introduction

A characteristic of solitons is that they can travel long distances in space and (or)

time with very little loss of energy and structure. Precisely because of this quality,

soliton theory can be widely applied in numerous branches of science and tech-

nology, such as optical communication, electronic devices, biology etc. However,

though systems with external potentials make difficult the development of solitons

applications, potentials open up more possibilities for the control of solitons . Thus,

the study of solitons in potentials is valuable.

This introductory chapter is intended to provide a general overview of our research.

The research presented in this thesis is the study of soliton dynamics in a time-

dependent potential.

1.1 Our research

We use a spatially periodic potential which is periodically modulated in time. This

modulation involves changing the spatial period (or frequency). We use a variational

approach to obtain a simpler ordinary diferential equation model of the soliton dy-

namics and verify that the predicted dynamics agrees with the full model. We use

both models to study the system and reveal the possibility of soliton trapping and

chaotic soliton tunnelling.

In the next section, we present background information concerning the history and

characteristics of solitons and potentials.

1.2 Background

1.2.1 What is a soliton?

The term ‘soliton’ was introduced by Zabusky and Kruskal to name waves which

maintain their shape and velocities after collision in numerical calculations they

performed [3]. The name soliton is meant to suggest the idea of a particle like

the terms ‘proton’, ‘electron’, etc. However, they were not the first to discover the

soliton. An observation was made in a canal near Edinburgh by John Scott Russell

in the 1830s which he called a ‘Wave of Translation’. He described the properties

1



of the wave in his report [4]:

I believe I shall best introduce the phaenomenon by describing the cir-

cumstances of my own first acquaintance with it. I was observing the

motion of a boat which was rapidly drawn along a narrow channel by

a pair of horses, when the boat suddenly stopped-not so the mass of

water in the channel which it had put in motion; it accumulated round

the prow of the vessel in a state of violent agitation, then suddenly leav-

ing it behind, rolled forward with great velocity, assuming the form of

a large solitary elevation, a rounded, smooth and well-defined heap of

water, which continued its course along the channel apparently without

change of form or diminution of speed. I followed it on horseback, and

overtook it still rolling on at a rate of some eight or nine miles an hour,

preserving its original figure some thirty feet long and a foot to a foot

and a half in height. Its height gradually diminished, and after a chase

of one or two miles I lost it in the windings of the channel.

A soliton is a nonlinear wave which travels with permanent form and speed during

propagation, even on interaction with other solitons [5]. In this work we focus on

a particular type of soliton known as the bright soliton, which appears as a nonlin-

early localized wave with a local maximum and asymptotically zero tails.

Mathematical solitons

Mathematically speaking, a soliton is a localised solution of a nonlinear, integrable,

partial differential equation (PDE) with nonlinear stability properties. Solitons

pass through each other without suffering any permanent change in form. An inte-

grable PDE is solvable by the inverse scattering transform method [6]. The inverse

scattering method is essentially an extension of Fourier transformation applied to

nonlinear problems. Drazin and Johnson ascribe three properties to solitons [7]:

• They are of permanent form;

• They are localised within a region;

• They can interact with other solitons, and emerge from the collision un-

changed, except for a phase shift.

Recently, more than one hundred different nonlinear partial differential equations

exhibit soliton-like solutions [8]. Three famous integrable nonlinear equations that

allow soliton solutions are shown in Fig 1.1:

2



• Two Dutch physicists, Korteweg and de Vries presented their now famous

equation (KdV) in 1895 [9], which describes the propagation of waves on the

surface of a shallow channel.

∂ψ

∂t
− 6ψ

∂ψ

∂x
+
∂3ψ

∂x3
= 0.

• The Sine-Gordon equation (SG) originates from differential geometry, in which

it describes a certain kind of surface [5].

∂2ψ

∂t2
− ∂2ψ

∂x2
+ sinψ = 0.

• The Nonlinear Schrödinger equation (NLSE)

i
∂ψ

∂t
+

1

2

∂2ψ

∂x2
ψ + |ψ|2ψ = 0,

For which the solution is the envelope (i.e. like the KdV solution), in Fig.

1.1 (c). The NLSE description of the combined effects of dispersion and the

non-linearity self-phase modulation, gave rise to envelope solitons. The first

papers devoted to the NLSE in nonlinear optics appeared as early as 1964 [10].

Throughout our research we use the NLSE and variants of it to study soliton

dynamics. The research model discussion is provided in the next chapter.

Physical solitons

In the physical world, there are always losses. Solitary waves are localised within

a region. However, two initially separated solitary waves approach each other de-

forming their shapes as they collide and have different properties after collision,

such as shapes, sizes or even producing radiation. If a train of physical solitons

was transmitted in an optical fibre for a great distance, they must be amplified to

compensate for the energy dissipation.

Some physical situations can be described by mathematical equations. Integrable

models are still used to explain and solve the problem of physical soliton dynamics.

Pulse solitons such as solitons in shallow water are described by the KdV [9] and

the NLSE and the Gross-Pitaevskii Equation (GPE) have been applied in a wide

variety of physical contexts, for instance, deep water [11], optics [12], and matter

waves [13]. The Sine-Gordon equation has been used to model the propagation of

crystal dislocations [14].

3



Figure 1.1: Schematic plots of the soliton solutions of three famous nonlinear wave
equations [1].

1.2.2 Potentials

In physics, potential energy is the energy of position or the energy of formation [15].

An object with potential energy has the capability to do work even when it is static.

Therefore, solitons in a potential possess potential energy. Two physical types of

potentials are nonlinear optical media and the trapping mechanism of BEC experi-

ments. BECs are a state of matter of a dilute gas of bosons cooled to temperatures

very near absolute zero. Einstein predicted that cooling bosonic atoms to a very

low temperature would cause them to fall (or “condense”) into the lowest accessible

quantum state, resulting in a new form of matter. This phenomenon was demon-

strated for the first time in 1995 in ultracold vapors of alkali metals, [16–18].

The NLSE with a potential take the general form [19]:

i
∂ψ

∂t
+

1

2

∂2ψ

∂x2
ψ −W (x, t)ψ + |ψ|2ψ = 0 (1.1)

The term W is the external potential. The external potential may have many forms,

such as the optical lattice potential (a periodic potential), and harmonic oscillator

4



potential. Assuming W = x2, the equation (1.1) describes a soliton in a harmonic

potential. In this case, the soliton is trapped by the potential. Further discussion

of dynamics in time-independent potentials is presented in section 2.3.

1.3 Solitons in potentials

The bright soliton is well-known in nonlinear fiber optics [20], where it can appear

in a material with a self-focusing nonlinearity, and in Bose-Einstein condensates

(BECs) [21], where it can appear in the presence of attractive atom-atom interac-

tions. Our interest centres on the particle-like nature of the soliton. We explore the

possibility of manipulating the soliton position through an external potential which

varies during propagation. Our study is of most physical relevance to the BEC

context, where the properties of an external potential may be flexibly controlled

through the interference of lasers [2].

In BECs, the spatially periodic external potentials induce a corresponding modula-

tion pattern of the local nonlinearity through the Feshbach-resonance mechanism,

which produce the nonlinearity in the BECs [22]. In optics, periodic optical lattices

generated by the interference of intersecting laser beams, which forms an optical

standing wave with period trapping the solitons [23]. Such a time-varying potential

is inspired by the optical lattices used in BEC experiments [2] in Fig.1.2. Such

lattices (in one dimension) are typically constructed through the overlap of two

coherent light fields, with the angle between the phase fronts of these fields deter-

mining the period of the lattice [2]. Thus if this angle is varied, the period of the

lattice will vary. This variation could be easily achieved by changing the angle of a

reflecting mirror (typically used so that only one laser source is needed). Introduc-

ing a time-periodic drive to this angle would then translate into a time-dependent

(periodically modulated) lattice period. In many ways this is much simpler than

previously considered time-periodic lattices (such as the modulations considered

in [24]). Our work is thus on the one hand a first exploration of what this simple

experimental arrangement brings, and on the other an investigation into a funda-

mentally new potential in which the variation is highly spatially dependent. Near

the crossing point of the light fields only the period changes, however moving away

from this crossing the minima of the potential also move spatially with time, with

this shift becoming more pronounced the further away from the crossing we move.

There is thus a natural ‘centre’ to the potential, breaking the symmetry of the

time-independent problem.
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Figure 1.2: (a) A one-dimensional optical lattice created from counterpropagating
laser beams; (b) with beams enclosing an angle θ. The parameters V0 and d are the
lattice depth and lattice spacing respectively [2].

The dynamics of BECs in time-dependent potentials has received an increasing

amount of interest in recent years due to the possibility of precise experimental

control. BECs have been successfully applied in a optical periodic potential based

on the solution of the mean-field NLSE [25]. Researchers also investigated the dy-

namics of a bright soliton of BECs with time-varying atomic scattering length in a

time-varying external parabolic potential [26]. The results show that it is control-

lable of the soliton’s parameters (amplitude, width, and period). Double parametric

resonance for matter-wave solitons in a time-periodic modulation trap, was also dis-

cussed in 2005 [27]. A variational approach was applied to study the center-of-mass

coordinate of the soliton. In previous work, the longitudinally modulated potentials

was studied in terms of phase space analysis for an effective particle approach and

direct numerical simulations [24]. Further, a time-dependent confining harmonic

oscillator potential was investigated by using two complementary methods: the

adiabatic perturbation theory and direct numerical experiments [28]. Periodically

changing the depth of the potential about zero was shown to lead to a ratchet-type

effect for bright solitons [19] and even soliton control in two-dimensions [29]. More

recently, more complicated types of periodic potential modulation have been pro-

posed, including amplitude and wavenumber modulations [24]. However, very little

is known about the soliton dynamics in frequency-modulated time-varying poten-

tial. Thus, we consider a new type of time-dependent modulation in this work: a

periodic potential with a periodically varying frequency.
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1.4 Our research structure

The aim of our research is to study the dynamics of a soliton in a time-dependent

potential. Generally, we organized our research in two parts: (i) solitons in a time-

independent potential; (ii) solitons in a time-dependent potential.

Chapter 2 introduces our research model and methods including the numerical

method and the variational approach . We start to investigate soliton dynamics nu-

merically in section 2.2.3. Furthermore, an effective particle approach [30] is applied

in section 2.2.4, so that we obtain an ordinary differential equation (ODE) system

describing soliton ‘centre of mass’ dynamics. This provides a significant reduction

in the numerical load of approaching the PDE problem. In section 2.3, we verify

our methods in a simpler time-independent potential case.

Chapter 3 discusses a more complex scenario: soliton in a time-dependent poten-

tial. We analyse the system by parameter modulated. In section 3.2, we present the

non-resonance dynamics results depending on initial condition regulation. Then, we

modulated the frequency to obtain a parametric resonance in section 3.3. In the

following two sections 3.4 and 3.5, we study the soliton dynamics in an asymmetric

potential and a damping situation.

Chapter 4 summarizes the remarkable results drawn from this research and rec-

ommends the future work.
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Chapter 2

Methods and simple case results

This chapter is to introduce our research model and methods. We examine the

suitable conditions for the numerical method and the variational approach, and

then present and compare these two methods in details in section 2.2. After that,

we apply the two methods to simple time-independent potentials in section 2.3.

2.1 Our research model

The NLSE is very important in mathematics, as well as in physics and engineering.

The equation can be applied to hydrodynamics, nonlinear optics, nonlinear acous-

tics, BECs, heat pulses in solids and various other nonlinear instability phenomena.

The (1 + 1) dimensional NLSE that describes the propagation of a wave through

an inhomogeneous nonlinear medium is given by [19]

i
∂ψ

∂t
+

1

2

∂2ψ

∂x2
−W (x, t)ψ + |ψ|2ψ = 0. (2.1)

Here W (x, t) is the potential and ψ is the complex wave function. The second-order

derivative represents diffraction, while |ψ|2ψ captures the nonlinear self-focusing of

the wave. Our goal is to study the soliton dynamics in the presence of a time

dependent periodic potential W (x, t), specifically a frequency modulated potential

of the form

W (x, t) = − cos [k(t)x] , k(t) = k0 + kmod sin(ηt) , (2.2)

where k0 gives the base ‘frequency’ of the potential (the spatial period of the periodic

potential is given by T = 2π/k0), kmod is the maximum change in this base frequency

and η gives the frequency at which the base frequency is modulated. This potential

is inspired by the optical lattices used in BEC experiments. Such lattices (in one

dimension) are typically constructed through the overlap of two coherent light fields,

with the angle between the phase fronts of these fields determining the period of

the lattice [2]. Thus, if this angle is varied the period of the lattice will vary. Such a

setup could be easily achieved by changing the angle of a reflecting mirror as stated

in chapter 1.
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2.2 Methods

This work aims to study soliton dynamics in a potential. In this chapter, we intro-

duce two methods, ‘numerical propagation’ and ‘variational approach’, for studying

the soliton dynamics. We begin by developing our methods in the simpler case of

a time-independent potential in section 2.3. We will consider the time-dependent

case separately in the chapter 3.

2.2.1 Exact solution discussion

In this section, we check the approximation to determine if the exact solution of

the NLSE (2.4) can be used as the stationary solution of the NLSE with a variety

of potentials. We studied our model with no potential, then with two simple time-

independent potentials. The main idea is to study if the M = Max|ψ| is varying

with time propagation, which is a measurement of the approximation. If it is not a

constant, the assumption does not apply to the model.

For instance, in figure 2.1(a), 2.2(a), 2.3(a) and 2.1(c), 2.2(c), 2.3(c) we see the

variations in amplitude with time indicate some deviation of the initial conditions

from the Eq.(2.3) stationary solution. We made a further investigation by calculat-

ing the difference δ, defined as:

δ = Max(M)−Min(M). (2.3)

There must be a maximum and a minimum value when the M is changing. So

this δ is the difference between the maximum and minimum value. As the “δ” is

close to zero, or even equals to zero, which is suggesting our assumption can be

served well to our model. In figure 2.1(b), it is clear that most of “δ” are close

to zero, except the width range (w = 0.125 ∼ 0.5). After decreasing the space

grid size ∆x = 2L/N , we find that δ becomes smaller, as figure 2.1(d). Therefore,

we can decrease this numerical error by improving the resolution of our calculations.

There are two parameter regions with large δ values when solitons propagated in the

two simple time-independent potentials, as shown in figure 2.2(b) and 2.3(b). One

is when the soliton has small width. The δ is increasing as the width is decreasing.

But this numerical error can be diminished by improving calculation accuracy, as

demonstrated in figure 2.2(d) and 2.3(d). The δ increases again when the soliton

becomes wider than a certain value (Fig.2.2(e) and Fig.2.3(e)). This error cannot be

avoided even with improved resolution of calculations, see figure 2.2(f) and 2.3(f).

Therefore, we use the NLSE soliton with large width in time-dependent potentials

we cannot treat it as a stationary solution. This suggests that the soliton width

should be smaller than the external potential scale. By the data shows in Appendix
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(a) Max |ψ| propagation with time. The soli-
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(c) Improved accuarcy of Max |ψ| propagation
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range (δ) vs the width of soliton.

Figure 2.1: No potential applied, W (x, t) = 0.

B, it suggests our assumptions are valid within soliton width less than 0.5 in time-

independent potentials.

2.2.2 Stationary solution

The system (2.1) is nonintegrable and thus does not possess soliton solutions in

the mathematical sense, however, we expect to find a family of localized soliton-

like stationary solutions located at each minimum of the periodic potential. Such

solutions must typically be found either numerically or through variational methods.

However, if we consider only highly localized solutions then we may approximate
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Figure 2.2: Time-independent parabolic potential, W (x, t) =
1

2
ω2

0x
2, ω0 =

√
0.2.
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(a) Max |ψ| propagation with time. The soli-
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N = 210.
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Figure 2.4: Exact lowest order stationary soliton solution of the nonlinear
Schrödinger equation. A = 1/w =

√
2α = 4

the stationary solution with the exact soliton solution found for W (x, t) = 0:

uans =
√

2α sech
[√

2α (x− x0)
]

= Asech

(
x− x0

w

)
(2.4)

where α is a real parameter, corresponding to the chemical potential in a BECs

context. A, x0 and w represent the amplitude, centre of mass and width respec-

tively. So we have A = 1/w =
√

2α.

2.2.3 Numerical propagation

We use that the NLSE soliton as an initial condition for the evolution method. For

W (x , t) 6= 0 it is generally not possible to find exact solutions to the NLSE (2.1).

Exact solutions of the NLSE have been investigated extensively by many scientists.

Numerical methods are typically needed to find solutions when the potential is

present.

A numerical method commonly used is the split-step Fourier method introduced

by Hasegawa and Tappert. [31]. This numerical method separates the linear and

nonlinear, then solve them sequentially. The outline of the split-step Fourier method

algorithm follow:
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1. Solve the linear operator equation

i
∂ψ

∂t
+

1

2

∂2ψ

∂x2
= 0 (2.5)

Taking a Fourier transformation, we have

i
dF
dt
− 1

2
k2F = 0 (2.6)

Where F =
∫∞
−∞ ψe

−jx∆tdt, solve equation (2.6), we have

Fl = F0e
−ik2∆t/2 (2.7)

When we take an inverse Fourier transformation, we should obtain

ψ0 =
1

2π

∫ ∞
−∞
Fejx∆tdx

and F0 is a constant.

2. Solve the nonlinear operator equation

i
dψ

dt
−W (x, t)ψ + |ψ|2ψ = 0 (2.8)

|ψ|2 is a constant N , thus:

i
dψ

dt
−W (x, t)ψ +Nψ = 0 (2.9)

The solution of Equation(2.9) is ψ = ψ0e
i[N−W (x,t)]∆t, where ψ0 is the solution

of the linear part, ψ0 = 1
2π

∫∞
−∞Fe

jx∆tdx.

These two steps are iterated to propagate the field ψ forward in time. To ensure a

numerically stable propagation we require the condition [32]

∆t 6 (∆x)2 , (2.10)

to hold. Here ∆t is the time step and ∆x is spatial step size.

2.2.4 Variational approach

In the variational approach, we focus on the centre of mass of the soliton. In doing

so we treat the soliton as if it were a particle. It is necessary to assume that both
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the amplitude and the width of soliton are constants. Numerically, the variational

approach is a simpler method to solve our problem. The approximate solutions are

obtained for the evolution during propagation of the centre of mass. This allows the

reduction of the complexity of the PDE problem to one of solving an ODE for the

center of mass of the soliton. The solutions show very good agreement with results

from solving the full PDE system numerically. It is often desirable to obtain some

physical insight into the problem that numerical schemes cannot provide, and thus

approximate solutions deduced by such methods as a variational approach become

important.

The problem of the nonlinear Schrödinger equation is reformulated as a variational

problem (see Ref. [33] for a similar derivation) via

δ

∫∫
L dx dt = 0 ,

with the Lagrangian density:

L =
i

2
(ψψ∗t − ψ∗ψt) +

1

2
|ψx|2 −W (x, t)|ψ|2 +

1

2
|ψ|4. (2.11)

A general variational ansatz is [33]:

ψans = A(t) sech

(
x− x0(t)

w(t)

)
eiv(t)(x−x0(t))+iβ(t)(x−x0(t))2 , (2.12)

however we significantly simplify the analysis by assuming time-independence of the

amplitude, A(t) = A, and width w(t) = w, and a zero chirp, β(t) = 0, i.e. that the

soliton is “particle-like”. This assumption is reasonable when the external driving

frequency is far from any internal modes of the soliton [33]. Our variational param-

eters are thus reduced to only the position of the soliton’s centre-of-mass x0(t) and

the soliton centre-of-mass velocity v(t) = ẋ0.

Substituting this ansatz into the Lagrangian density(2.11), there is an effective

Lagrangian density, Leff = L[ψans]:

Leff = |A|2[−vd(x0(t))

dt
+ (x− x0(t))

dv

dt
]sech2

(
x− x0(t)

w

)
+

1

2
|A|2[

1

w2
tanh2

(
x− x0(t)

w

)
+ v2]sech2

(
x− x0(t)

w

)
+ |A|2W (x, t)sech2

(
x− x0(t)

w

)
+

1

2
|A|4sech4

(
x− x0(t)

w

)
.

(2.13)
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Next we integrate the effective Lagrangian density Leff (2.13)to obtain an effective

Lagrangian:

Leff =

∫ ∞
−∞
Leff dx

= −2|A|2wvd(x0(t))

dt
+
|A|2(1 + 3v2w2)

3w
+

2

3
|A|4w

+

∫ ∞
−∞
|A|2W (x, t)sech2

(
x− x0(t)

w

)
dx

(2.14)

Applying the Euler-Lagrange equations:

d

dt

∂Leff

∂q̇j
=
∂Leff

∂qj
(2.15)

where qj are the parameters x0 and v, we derive the following equations:

ẋ0(t) = v, (2.16)

ẍ0(t) = − 1

2w

∂

∂x0

∫ ∞
−∞

W (x, t) sech2

(
x− x0

w

)
dx. (2.17)

We use this result in all our following investigations of the system dynamics.

2.3 Results

We discuss soliton dynamics in both time-independent and time-dependent poten-

tials. We start with the simpler time-independent parabolic and periodic potentials

before analysing the frequency modulated potential (2.2). The variational approach

is used in each case and compared with the solution obtained by solving (2.1).

2.3.1 Time-independent parabolic potential.

We start with the simple case of a time-independent parabolic potential

W (x, t) =
1

2
ω2

0x
2 . (2.18)

Substituting equation (2.18) into equation (2.17), we have:

ẍ0 + ω2
0x0 = 0 . (2.19)

Equation (2.18) shows that the soliton is moving in a harmonic potential. The

initial condition is the NLSE soliton (2.4). There are small changes of Max|ψ| in

Fig 2.5. Figure 2.6(a) shows a plot of the potential. As the energy is conserved

the particle-like soliton is trapped in the potential and exhibits oscillatory motion.
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Figure 2.5: Max |ψ| propagation with time in the parabolic potential. The varying
of Max |ψ| is small. The soliton width (w = 0.25).

The centre-of-mass of a soliton with initial position x0(0) = 2 released from rest is

described by

x0(t) = 2 cos (ω0 t) . (2.20)

Figure 2.6(b) shows the time evolution of the centre-of-mass of the soliton described

by the variational solution (2.20) with (w = 0.25). We compared PDE and ODE

results in figure 2.6 (b) and (d). Figure 2.6(c) is a contour plot of the intensity of

the soliton overlayed with the variational solution (white). It is clear to see these

two methods results are in a good agreement from solving the equation (2.21)

Error =

∫ ∞
−∞

x|ψ|2dx∫ ∞
−∞
|ψ|2dx

− x0(t). (2.21)

This simple case suggests that the approximation in ODE system is a useful tool

for analysing dynamics. In particular, we see that the maximum error is 7× 10−4,

remarkably almost two orders of magnitude less than the spatial resolution of the

soliton in the PDE model (4× 10−2).

2.3.2 Time-independent periodic potential.

At this stage, we introduced a time-independent periodic potential in equation

(2.22), which only causes a spatial displacement of potential,

W (x, t) = − cos(k0x) (2.22)
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Figure 2.6: Dynamics in a parabolic potential with ω0 =
√

0.2, x0 = 2 and ẋ0(0) =
0 . Parameters: L = 5, N = 28, ∆x = 2L/N , ∆t = 0.0015,the actual value of the
maximum error: 6.7699× 10−4. The soliton in a parabolic potential in (a), (c) and
the comparison results from ODE (the central white line in figure (b) and (c)) and
PDE methods in (b),(d). We can see the differences in position between PDE and
ODE results in figure (d).

A plot of the potential is shown in Figure 2.8(a). Substituting equation (2.22) into

equation (2.17), we have:

ẍ0 +
π

2
wk2

0 sin (k0x0(t)) csch

(
wπk0

2

)
= 0 (2.23)

The initial condition is the NLSE soliton (Fig. 2.7). There are small variations of

Max|ψ|. Figure 2.8(b) shows a contour plot of the effective potential and the time

evolution of the centre-of-mass with initial displacement x0(0) = 2 and velocity

ẋ0(0) = 0 . Since energy is conserved, a soliton initially at rest and with initial

position x0(0) = 2 will at first roll down the potential and then up the potential

until reaching x0 = −2. At this point the soliton slides back down then up the

potential until reaching x0 = 2. The particle-like soliton is trapped in the potential

and executes a periodic trajectory as it evolves in time.

Figure 2.8(c) displays a contour plot of the intensity of the soliton obtained by

solving (2.1). The difference between this and the variational solution is illustrated

in Figure 2.8(d). Once again, there is good agreement between the two methods
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Figure 2.7: Max |ψ| propagation with time in a periodic potential. The soliton width
(w = 0.25). The varying of Max |ψ| is small. W (x, t) = − cos [k0 + kmod sin(ηt)]x,
k0 = 0.5, kmod = 0, and x0 = 2.

with the largest differences being at the turning points. Again we see very good

agreement between the position of the soliton predicted by the ODE model, com-

pared with the PDE results. The maximum discrepancy is again 7 × 10−4, much

less than our PDE spatial resolution of 8× 10−2.

For soliton dynamics in the vicinity of the minimum of the potential, where x0(t)

is small, by linearising (2.23) we obtain ẍ0 + Ω2x0 = 0 where

Ω2 =
π

2
wk3

0 csch

(
wπk0

2

)
, (2.24)

which represents simple harmonic motion with natural frequency Ω . Note that

Ω does not depend on x0, whereas in general the eigenfrequency of a nonlinear

oscillator does depend on the amplitude of the oscillations.

2.4 Conclusion

Our research model and methods have been presented in this chapter. By study

soliton in time-independent potentials, we find the variational approach is a simpler

and more effective method than numerical propagation. Therefore, we will study

soliton in time-dependent potentials by using variational approach in the following

chapter.
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Figure 2.8: Dynamics in a time-independent periodic potential with k0 = 0.5, x0 = 2
and ẋ0(0) = 0 . Parameters: L = 10, N = 28, ∆x = 2L/N , ∆t = 0.0015, the actual
value of the maximum error: 6.8701 × 10−4. Comparison between the variational
solution (b) and that of the numerical solution (c) is shown in (d).
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Chapter 3

Time-dependent frequency-modulated potential.

In the previous chapter, we introduced our research model and methods. From the

simple time-independent cases results, we demonstrated our variational approach is

an effective tool. Thus, we continue our study in the full time-dependent potential

by using the variational method model, which simplifies the complicated problem.

We also use tools from the study of dynamical systems: the Poincaré section.

3.1 Time-dependent potential.

We analyse the soliton dynamics in a time-dependent frequency-modulated periodic

potential given by equation (2.2)

W (x, t) = − cos [k(t)x] , k(t) = k0 + kmod sin(ηt) .

In this case, we consider the periodic potential with a time dependent spatial fre-

quency k(t). Substituting equation (2.2) into the general variational equation (2.17),

we have:

ẍ0 +
π

2
wk(t)2 sin [k(t)x0(t)] csch

(
wπk(t)

2

)
= 0. (3.1)

As the potential W (x, t) now is changing with time, energy is not conserved in the

system and the soliton may undergo particle-like driving. The resultant dynamics

depend on the initial position of the soliton relative to the time-varying potential,

and on the parameters of the potential itself. First we consider the influence of

the initial conditions in the case of a weak non-resonant potential i.e. a small

amplitude potential with an oscillation frequency far from any internal modes of

the soliton, or characteristic frequencies of the time-independent potential. To this

end we take k0 = 0.5, kmod = 0.05 and η = 0.1, and we study this case in section

3.2. We find different classes of motions depending on initial conditions. In section

3.3, we consider the resonant case with parameters: k0 = 0.5, kmod = 0.05 and

η = 1, and we find parametric driving when driving frequency is twice the potential

frequency. In section 3.4 and 3.5, briefly we discuss results of soliton dynamics in

an asymmetric potential and a damped time dependent potential.
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3.2 Non-resonance dynamics

There are two types of motion occurring when we study non-resonant dynamics,

which are depended on initial conditions.

3.2.1 Oscillation in the minima of the potential.

The soliton obtains the energy from the squeezing of the potential, to move a higher

position in the potential well. It slides back to the minima when the potential

expands. Because the squeezing produces a force and the direction of this force is

perpendicular to the contact surface of soliton and potential, the soliton is moved

by this force. However, there is no contact when the potential expends, so ‘gravity’

pulls the soliton back down to the minima. Then it is trapped periodically in

Fig.3.1 (a). Figure 3.1 (b) shows the differences in position between the results

from numerically solving PDE and variational approach by solving equation (2.21).

These differences are below the spatial resolution of the PDE so within the accuracy

of our simulations we see perfect agreement. Fig.3.2 shows the comparison of the

results from the numerical method and the variational approach (the centre white

line). The results are in a good agreement.

Figure 3.1: (a) shows the comparison of results from numerical method and vari-
ational approach (the central white line in figure (a)), the potential W (x, t) =
− cos [k0 + kmod sin(ηt)]x. The initial condition are: x0 = 3.5, k0 = 0.5, kmod = 0.05,
η = 0.1. The particle-like soliton is trapped in the blue area which presents the
lower density of the potential. (red and blue correspond to the maxima and minima
of the potential respectively) In figure 3.1 (b), we can see the differences in position
between PDE and ODE results.

3.2.2 Motion between potential wells.

The soliton moves between potential wells depending on its initial conditions. We

set an initial position x0(t) = 6, because this position is almost the highest posi-

tion of the potential well. In this circumstance, the soliton has enough energy to

jump to the adjacent potential well and is trapped for a while. In section 3.1, we

considered a soliton in a time-dependent frequency-modulated periodic potential.
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Figure 3.2: Comparison the results of numerical method and variational approach
(the central white line) in the potential W (x, t) = − cos [k0 + kmod sin(ηt)]x. The
initial condition are: x0 = 3.5, k0 = 0.5, kmod = 0.05, η = 0.1.

Figure 3.3: Jumping case with potential and the initial conditions are: x0 = 6,
k0 = 0.5, kmod = 0.05, η = 0.1. In figure (a), the central white line presents the
result from variational approach. In figure (b), we can see the differences in position
between PDE and ODE results.

The squeezing of the potential well provides the energy to the soliton which moves

back to its original well. Thus, we could conclude a certain frequency of squeezing

providing enough energy to allow the soliton to move between potential wells.

It is clear that the potential is varying more intensely far from the centre in figure

3.3 (a). Figure 3.3 (b) provides the results of differences in position between PDE

and ODE and the trend of these differences is increasing with time. Fig.3.4 shows

the comparison of the results from the numerical method and the variational ap-

proach (the centre white line). The results are in a good agreement over the time

domain 0 6 t 6 200 .
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Figure 3.4: Comparison the results of numerically solving PDE and variational ap-
proach (the central white line) in the potential W (x, t) = − cos [k0 + kmod sin(ηt)]x.
The initial condition are: x0 = 6, k0 = 0.5, kmod = 0.05, η = 0.1.

3.2.3 Initial condition

We focus on a small range of initial conditions, for instance, −6 6 x0 6 6 between

two maxima of the potential in a short time period, and study the finial position x

and velocity v. The results in Fig. 3.5 show that the corresponding finial coordinate

(x, v) for each initial condition (Fig.3.5 left shows the finial positions and Fig. 3.5

right represents the corresponding finial velocities ). For instance, when the initial

condition is x = −5, v = −3, the finial position (from the left figure) and final

velocity (from the right figure) are −2393.9 and −2.0162, respectively. There is a

symmetry about the coordinate centre (0, 0) both for final x and final v. Also, it

is demonstrated that the soliton is trapped with initial conditions x and v centred

(0, 0). However, initially high speed or a starting position near the maximum of the

potential results in high final speed and large displacement from the origin.

Figure 3.5: A couple of value figures which shows the final positions in (a) and final
velocities in (b) for different initial conditions at a time equal to 10 times the force
period. Parameters: −6 6 x0 6 6,−3 6 v0 6 3, k0 = 0.5, kmod = 0.05, η = 0.1, 0 6
t 6 20π/η.
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Figure 3.6: Poincare map created by sampling 1000 ODE solutions from t = 0
to t = 2000 every t = 2π/η. Quasi-periodic trapped solutions are evident as
circles, chaotic motion appears as disconnected dots. Parameters of time-dependent
potential: −40 6 x0 6 40, −4 6 v0 6 4, k0 = 0.5, kmod = 0.05 and η = 0.1.

Poincaré section

To better understand the influence of the initial conditions we can represent the

dynamics on a Poincaré map, sampled at the frequency of the potential. We see in

Fig. 3.6 the existence of quasi-periodic motion about the minima near the centre,

and also a chaotic layer connecting the maxima of the potential. Moving further

from the centre the regions of quasi-periodic motion grow smaller, to be replaced

ultimately by an extended chaotic layer. We notice some interesting properties of

the trajectories in this layer, in particular the appearance of quasi-ballistic motion

far from the centre. Also, several elliptical orbits appear in Fig. 3.6, which means

that the soliton is trapped by the potential wells. We thus see that in general the

soliton experiences chaotic jumps and oscillations close to the centre but ultimately

escapes, propagating away at a velocity determined by the characteristics of the

potential.

Histogram

In statistics, a histogram is a series of rectangles of equal base and whose heights

represent the probability distribution of data [34]. By using this method, we can

estimate the probability density function of the time series. However, it should be

aware that this histogram method ignores the temporal ordering information.

In our research, there are two aspects considered distinguished by the initial con-

ditions. One of these is that a certain initial condition is fixed for both x0 and

v0. We collected statistics of the velocities for t from 0 to 10000. Also, figure 3.7

suggests that a large number of velocities are high (around v = 9). We obtained

more results for different initial positions and velocities (Fig. 3.8-3.10). We find
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Figure 3.7: A histogram of velocities. (a) shows the velocity frequencies in 100
intervals within velocity range. The vertical axis of (b) is logarithmic (base 10)
scale of the vertical axis in figure (a) Parameters: x0 = 6, v0 = 3, k0 = 0.5, kmod =
0.05, η = 0.1, 0 6 t 6 10000.

that soliton dynamics is depending on the initial condition. The soliton was mov-

ing from approximately the maximum of the potential with zero speed. Thus, the

soliton gained enough energy, which is provided by the squeezing potential well, to

reach high velocity.

Another set of initial conditions for both x0 and v0 is shown in Fig 3.11 and

3.12. In figure 3.11, we use −40 6 x0 6 −40,−4 6 v0 6 −4 as initial con-

ditions. The histogram plot is a representation of frequencies of velocities under

different initial conditions (the number of velocities is 22599), shown as adjacent

rectangles in equal interval. Also, we focus on a smaller range of initial conditions

−20 6 x0 6 −20,−2 6 v0 6 −2, but for a longer time period t = 10000 in Fig

3.12. We find that the large frequencies of velocities locate around low speed and

it is a symmetrical histogram plot.

3.3 Parametric resonance

The energy of oscillations is provided by periodically changing the spatial period

with time, i.e. varying a parameter of the system (the spatial period). Parametric

resonance occurs when the spatial period is varied at a frequency which is twice the

frequency of the trapping potential. To remain within our particle-like approxima-

tion for the soliton we restrict our attention to resonances between the oscillation

frequency and spatial frequency of the potential (rather than a resonance with the

soliton internal modes [33]). In particular, guided by the results of [27] we consider

the possibility of parametric driving of the soliton centre-of-mass. Here too, the
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Figure 3.8: A histogram of velocities. The velocity frequencies in 100 intervals
within velocity range. Parameters: k0 = 0.5, kmod = 0.05, η = 0.1, x0 = 2, v0 =
4, 0 6 t 6 50000.

Figure 3.9: A histogram of velocities. The velocity frequencies in 100 intervals
within velocity range. Parameters: k0 = 0.5, kmod = 0.05, η = 0.1, x0 = 2, v0 =
10, 0 6 t 6 80000.
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Figure 3.10: A histogram of velocities. The velocity frequencies in 100 intervals
within velocity range. Parameters: k0 = 0.5, kmod = 0.05, η = 0.1, x0 = 4, v0 =
2, 0 6 t 6 50000.

Figure 3.11: A histogram of velocities. Parameters: k0 = 0.5, kmod = 0.05, η =
0.1,−40 6 x0 6 40,−4 6 v0 6 4.

30



Figure 3.12: A histogram of velocities. Parameters: k0 = 0.5, kmod = 0.05, η =
0.1,−10 6 x0 6 10,−2 6 v0 6 2, 0 6 t 6 10000.

effect of a frequency-modulated potential can be modelled by ODE (3.1). For small

x0, linearising (3.1), and noting that kmod � k0, leads to

ẍ0 + Ω2

(
1 +

(
3kmod
k0

− wπ

2
coth(wπk0/2)

)
sin(ηt)

)
x0 = 0 . (3.2)

where Ω2 = πwk3
0csch(wπk0/2)/2. Equation (3.2) is the well-known Mathieu equa-

tion which exhibits parametric resonance when η = 2Ω [35]. This condition is

approximately satisfied for the parameters used in generating Figure 3.13. At res-

onance, starting with a small displacement from the centre, according to (3.2) the

amplitude of the oscillations about the centre will increase without bound. Clearly

Figure 3.13 does not sustain this. The reason is that when x0 becomes large, the dy-

namics are governed by (3.1) rather than (3.2). The effect of nonlinearity is to limit

the amplitude of oscillations by shifting the eigenfrequency out of resonance [36].

This leads to the decay of the amplitude of the position of the soliton. When x0 is

sufficiently small, the eigenfrequency is back in resonance and the amplitude begins

to grow again.

3.3.1 Poincaré section and histogram

We explore the dependence of the parametric resonance on the initial conditions.

We represent the different resulting dynamics on a Poincaré map. Figure 3.14 shows

that the soliton dynamics is a quasi-periodic motion within the minima near the

centre, and also a chaotic layer connecting the maxima of the potential. This quasi-

periodic motion is similar to the regular motion (in section 3.2.1). Furthermore,
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Figure 3.13: The upper figure shows that the comparison of numerical method
and variational approach (the central white line). The lower figure illustrates the
trajectory of the particle. The initial condition is x0 = 0.5, k0 = 0.5, kmod = 0.05,
η = 1 and Ω = 0.498398.

there is a symmetry about the coordinate centre (0, 0) both for position x and ve-

locity v. Also, this symmetry character is shown in Fig.3.15.

3.4 Asymmetric potential

Another interesting case we studied, is the soliton in an asymmetric potential:

W (x, t) = − cos (k(t)x) , k(t) = k0 + kmod (sin(ηt)± 0.3 sin(2ηt)) , (3.3)

In Fig.3.16 (a), we present the regular motion potential, which is symmetric. But fig-

ure (b) and figure (c) are asymmetric, which are due to kmod (sin(ηt)± 0.3 sin(2ηt))

respectively. Fig. 3.17 and 3.18 exhibit that the soliton dynamics is quasi-periodic

motion near the centre and there is a chaotic layer as well. For the purpose of

better understanding the asymmetric potentials, we provide a comparison of posi-

tion x and velocity v via Poincaré sections and histograms in Fig. 3.19-3.21. The

remarkable similarity, for instance, is that the quasi-periodic motion exists in both
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Figure 3.14: Poincare map created from t = 0 to t = 600 every t = 2π/η. Quasi-
periodic trapped solutions are evident as circles, chaotic motion appears as discon-
nected dots. Parameters of time-dependent potential: −20 6 x0 6 20, −2 6 v0 6 2,
k0 = 0.5, kmod = 0.05 and η = 1.

Figure 3.15: A histogram of a set of initial conditions for velocities. Parameters:
k0 = 0.5, kmod = 0.05, η = 1,−20 6 x0 6 20,−2 6 v0 6 2, 0 6 t 6 600.
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symmetry and asymmetric potentials. However, the soliton dynamics is changed by

the shape of potential. The higher frequency results in a steep curve of potential in

Fig. 3.20. On the contrary, the position and velocity change gently in Fig. 3.21.

Figure 3.16: The regular symmetry potential (a) and the asymmetric potential (b)
and (c).

Figure 3.17: Poincare section of a soliton in an asymmetric potential. The potential
is W (x, t) = − cos (k(t)x), k(t) = k0 + kmod (sin(ηt)− 0.3 sin(2ηt)). The initial
condition ranges are −20 6 x0 6 20, −2 6 v0 6 2, sampling by every t = 2π/η
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Figure 3.18: The trajectories of a soliton in an asymmetric potential. The potential
is W (x, t) = − cos (k(t)x) , k(t) = k0 + kmod (sin(ηt)− 0.3 sin(2ηt)). The initial
condition ranges are −20 6 x0 6 20, −2 6 v0 6 2 sampling by every t = 2π/100η,
η = 0.1.
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Figure 3.19: Soliton in the regular symmetry potential 3.16(a). The initial condi-
tion: x0 = 2, v0 = 1, (a) and (b) are trajectories of x and v respectively, (c) displays
the Poincaré section sampling by every t = 2π/η, η = 0.1 during t = 12000. (d)
shows the histogram of velocities.

Figure 3.20: Soliton in the asymmetric potential 3.16(b). The initial condition:
x0 = 2, v0 = 1, (a) and (b) are trajectories of x and v respectively, (c) displays the
Poincaré section sampling by every t = 2π/η, η = 0.1 during t = 12000. (d) shows
the histogram of velocities.

3.5 Damping

By adding a damping factor, equation (3.1) becomes:

ẍ0 + αẋ0 +
π

2
wk(t)2 sin (k(t)x0(t)) csch

(
wπk(t)

2

)
= 0, (3.4)
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Figure 3.21: Soliton in the asymmetric potential 3.16(c). The initial condition:
x0 = 2, v0 = 1, (a) and (b) are trajectories of x and v respectively, (c) displays the
Poincaré section sampling by every t = 2π/η, η = 0.1 during t = 12000. (d) shows
the histogram of velocities.

where α is the damping coefficient.

We studied this damping potential with three initial conditions: a small veloc-

ity near the centre (Fig.3.22-3.23); approaching the maximum potential with low

speed (Fig.3.24); and a relatively higher velocity close to the potential minimum

(Fig. 3.25). The results show that the soliton is oscillating in a potential well with

a low speed.

Figure 3.22: The damping case which initial condition: x0 = 2, v0 = 1 and t = 500,
(a) and (b) are trajectories of x and v respectively, (c) displays the Poincaré section
sampling by every t = 2π/η, η = 0.1. (d) shows the histogram of velocities.
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Figure 3.23: The damping case which initial condition: x0 = 2, v0 = 1 and t = 500
(a) and (b) are trajectories of x and v respectively, (c) displays the trajectories
sampling by every t = 2π/100η, η = 0.1. (d) shows the histogram of velocities.

Figure 3.24: The damping case which initial condition: x0 = 6, v0 = 1 and t = 500
(a) and (b) are trajectories of x and v respectively, (c) displays the Poincaré section
sampling by every t = 2π/η, η = 0.1. (d) shows the histogram of velocities.
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Figure 3.25: The damping case which initial condition: x0 = 1, v0 = 4 and t = 500
(a) and (b) are trajectories of x and v respectively, (c) displays the Poincaré section
sampling by every t = 2π/η, η = 0.1. (d) shows the histogram of velocities.

3.6 Conclusion

We extend our research on soliton in time dependent potentials in this chapter. In

the first place, the parameters of initial conditions are modulated. Thus, there are

two situations: (i) soliton oscillations in the minimum of the potential, (ii) soliton

jumping between potential wells. More details of position x and velocity v are

provided by the Poincaré section and the histogram. Secondly, the parameter η

in equation (2.2) is changed to η = 1, so that the driving frequency is double the

potential frequency. Hence, we obtain a parametric resonance case. After that, by

adding a new factor in the potential equation (2.2), we have another two scenarios:

solitons in an asymmetric potential given by the inclusion of the term ±0.3 sin(2ηt),

and a damping term αẋ0. In the damping case, we find that the soliton is oscillating

with a tiny velocity in a potential well, no matter where the initial position is and

how fast the initial speed is.
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Chapter 4

Conclusion and future work

We have studied soliton dynamics in both time-independent and time-dependent

potentials. We took advantage of the variational approach which helped to lessen

the complexity of the problem by reducing it to the study of the dynamics of a parti-

cle in an effective potential. Generally, good agreement between the numerical and

approximate variational solution was achieved, indicating the variational method

is a simple yet powerful method for the study of soliton dynamics in a frequency-

modulated potential. Several cases were discussed, including soliton trapping by

a periodic potential, ‘jumping’ between adjacent wells and parametric resonance.

Finally, we investigated the soliton dynamics by using Poincaré sections and his-

tograms in several interesting potentials, including asymmetry and damping.

4.1 Concluding remarks

Chapter 1 provided the general background of a soliton in a potential. A review of

previous studies was presented, for instance, the history of solitons, soliton in time-

independent and time-dependent potentials, especially, the construction of periodic

time-dependent potentials in experiment. We focused our discussion on the soliton

dynamics in time-varying potentials.

Chapter 2 introduced our research model the nonlinear Schrödinger equation. Be-

fore the numerical methods and variational approach, a series of assumptions is

discussed. These assumptions allow us to use an exact solution as initial condition

for ‘numerical propagation.’ Also, we can treat the soliton as a particle in a vari-

ational method. Two simple cases are tested in the final section in this chapter.

Thus, our variational approach provides a simple and useful tool.

Chapter 3 extended the research into the time-dependent dynamics. After finding

and discussing two particular cases, ‘jumping’ between adjacent wells and para-

metric resonance, a further study is presented by four interesting dynamical cases:

regular motion, parametric resonance, asymmetric potential and damping. Mean-

while, we introduced an important dynamic analysis tool: the Poincaré section.
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Therefore, we create a better understanding of soliton dynamics in time-varying

potential using different approaches.

4.2 Future work

In the following subsections, we will list a few aspects that could be interesting

directions for future study.

4.2.1 Characterisation of velocity probability distribution

The aim of this research is to understand the soliton dynamics. In the future, we

can also build a model for the velocity probability distribution and then predict

the motion priorities of solitons. In particular, we should be capable to explain the

behavoir of observed phenomena, such as the velocity distribution, and summarise

them with a model or mathematical expression and expand the model to more sce-

narios of soliton dynamics. After the first step of collecting numbers of Poincaré

sections, we should move forward a step to forecast with the built system and finally

control it. Therefore, it is necessary to continue our research on modelling, fore-

casting and characterization the velocity probability distribution. Furthermore, we

can restrain soliton’s inherent instability-prone dynamics to guarantee oscillation

stability, by using active structural control techniques [37].

4.2.2 Exploration of dynamics for different values of the parameters

We have studied several parameters in the modulated potential scenarios in the

previous chapter and derived from (2.2)

W (x, t) = − cos (k(t)x) , k(t) = k0 + kmod sin(ηt) ,

In this equation, we can obtain different potentials by changing values of the param-

eters. For instance, when we set η = 1, we have a parametric resonance as presented

in section 3.3. Also, we can break the shape symmetry of the potential by adding a

factor studied in section 3.4. Similarly, we can explore diverse potentials in future

work by changing the value of k0, kmod and η individually, or, for instance, setting

η as a function to gain a time period symmetric potential.

4.2.3 Emergence of directed transport for particle

We examined the soliton dynamics in an asymmetric potential or damping in sec-

tion 3.4 and 3.5 respectively. In a future study, it would be an interesting approach

to study dynamics in the presence of both asymmetric potential and damping. For
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instance, whether or not these two resultant potentials are capable to ‘collect’ soli-

tons or particles at the minimum of the potential. One possible application of this

approach into practice is that particles, rather than solitons, can be trapped by op-

tical tweezers, just in the same way as the solitons being trapped by light potentials.

We did not include these three aspects in our research. Nevertheless, it is worth to

continue studying these.

4.2.4 Stochastic variations in the period of the lattice

In a physical system there is always some noise. If we extend our analysis to stochas-

tic variations in the period of the lattice, it would be helpful to know how small the

perturbations have to be for the effects to be negligible. The noise may have some

effect on the stability on transitions between the different scenarios.
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Appendix A

Matlab code

A.1 Numerical method (PDE)

1 c l e a r ;

2 L=5;

3 N=2ˆ12;

4

5 %n=8; % mass o f s o l i t o n

6 %n=5;

7 x0=2;

8 %x0=0; % i n i t i a l p o s i t i o n

9 V=0; % speed o f s o l i t o n

10

11 w0=s q r t ( 0 . 2 ) ;

12 % k0 =0.5;

13 % kmod=0;

14 %

15 % l a t t f r e q = 0 . 1 ;

16 %t =0;

17 %lattamp =1;

18 % data1 = [ ] ;

19 % data2 = [ ] ;

20 %f o r A= 0 . 4 : 0 . 2 : 1 ;

21 A=8;

22 W=1/A;

23 t f i n = 2 0 . 0 ; %5 0 0 . 0 ;

24

25 dx=2∗L/N;

26 dt=dx ˆ2 ; %0 . 00001 ;

27 tout = 10∗dt ;

28 itmax = t f i n /dt ;

29 tcheck = tout /dt ;
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30 Nt = f l o o r ( t f i n / tout ) +1;

31 tp =0: tout : t f i n ;

32

33 % a=4;

34 x=−L : dx : L−dx ;

35 %[X,T]= meshgrid (x , tp ) ;

36

37 %y=(n . / 2 ) .∗ sech ( ( n . / 2 ) ∗(x−x0 ) ) .∗ exp ( i ∗V.∗ x0 ) ; %s o l u t i o n o f

Schrod inger equat ion

38 %y=s q r t (2∗ a ) .∗ sech ( ( x−x1 ) .∗ s q r t ( a ) ) ;

39 y=A∗ sech ( ( x−x0 ) /W) .∗ exp (1 i ∗V.∗ x0 ) ; %Stat ionary s o l u t i o n

40

41 f i g u r e (1 ) ;

42 p lo t (x , abs ( y ) )

43 x l a b e l ( ’ x ’ ) ;

44 y l a b e l ( ’ | \ p s i | ’ ) ;

45 t i t l e ( ’ S o l i t o n ’ )

46 a x i s ([−L L 0 1 ] )

47 p lo t (x , abs ( y ) )

48 x l a b e l ( ’ x ’ ) ;

49 y l a b e l ( ’ | \ p s i | ’ ) ;

50 g r id on

51

52

53 k =[0:N/2−1 0 −N/2+1:−1];

54 K=2∗k∗ pi /(2∗L) ;

55 u=ze ro s (N, Nt) ;

56 tpos = 1 ;

57 u ( : , tpos ) = y ;

58 tpos = tpos +1;

59

60 r e s = [ ] ; % r e s u l t vec to r f o r s t o r i n g maximums

61

62 f o r j =1: itmax ,

63 t=j ∗dt ;

64 %v=−cos ( ( k0+kmod .∗ s i n ( l a t t f r e q .∗ t ) ) .∗ x ) ;

65 z=f f t ( y ) ;

66 g=exp (−(1/2)∗1 i ∗K.∗K.∗ dt ) ;

67 G=z .∗ g ;
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68 F=i f f t (G) ;

69 H=(abs (F) ) . ˆ 2 ;

70 y=F.∗ exp (1 i ∗(H−v )∗dt ) ;

71 %y=F.∗ exp (1 i ∗H∗dt ) ;

72 %y=F.∗ exp ( i ∗H∗dt−i ∗vv ) ;

73 [ va l pos ]=max( abs ( y ) ) ; % va l = peak , pos= element

number o f peak

74 r e s =[ r e s ; t x ( pos ) ] ; % save time and x p o s i t i o n o f peak

75 i f mod( j , tcheck ) == 0

76 u ( : , tpos ) = y ;

77 tpos = tpos +1;

78 end

79 end

80

81

82

83 % f i g u r e (3 ) ;

84 % imagesc (x , tp , abs (u ’ ) ) ;

85 % shading i n t e r p

86 % colormap ( j e t )

87 % x l a b e l ( ’ | \ p s i | ’ ) ;

88 % y l a b e l ( ’ t ’ ) ;

89 % s e t ( gca , ’ XAxisLocation ’ , ’ top ’ ) ;

90 % s e t ( gca , ’ YDir ’ , ’ r eve r s e ’ ) ;

91 %pr in t −dpng qwe1

92 %f i g u r e

93 %plo t ( r e s ( : , 1 ) , r e s ( : , 2 ) ) % p lo t peak p o s i t i o n

94

95

96 M=max( abs (u) ) ;

97

98 xx=l i n s p a c e (min ( x ) ,max( x ) ,N∗5) ;

99 U=int e rp2 (x , tp , abs (u ’ ) , xx , tp ’ ) ;

100

101 %res1 =[ r e s ; M] ;

102 % f i g u r e (2 ) ;

103 % subplot ( 1 , 2 , 1 )

104 % plo t (x , abs ( y ) )

105 % x l a b e l ( ’ x ’ ) ;
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106 % y l a b e l ( ’ | \ p s i | ’ ) ;

107 % t i t l e ( ’ So l i ton ’ )

108

109 %subplot ( 1 , 2 , 1 )

110 f i g u r e ( ) ;

111 imagesc ( xx , tp ’ ,U) ;

112 shading i n t e r p

113 colormap ( j e t )

114 x l a b e l ( ’ | \ p s i | ’ ) ;

115 y l a b e l ( ’ t ’ ) ;

116 t i t l e ( ’ S o l i t o n propagat ion ’ )

117 s e t ( gca , ’ XAxisLocation ’ , ’ top ’ ) ;

118 s e t ( gca , ’ YDir ’ , ’ r e v e r s e ’ ) ;

119

120 co l o rba r% f i g u r e ( )

121 subplot ( 1 , 2 , 2 )

122 contour (x , tp , abs (u ’ ) , [ 0 . 5 1 A] )

123 x l a b e l ( ’ | \ p s i | ’ ) ;

124 y l a b e l ( ’ t ’ ) ;

125 t i t l e ( ’ Contour o f S o l i t o n propagat ion ’ )

126 s e t ( gca , ’ XAxisLocation ’ , ’ top ’ ) ;

127 s e t ( gca , ’ YDir ’ , ’ r e v e r s e ’ ) ;

128

129 pr in t −dpng qwe2

130

131 data1 =[ data1 ;M] ;

132 data2 =[ data2 ;W max(M) min (M) max(M)−min(M) ] ;

133 % f i g u r e (3 )

134 % subplot ( 1 , 2 , 2 )

135 % plo t ( tp ’ ,M) ;

136 % x l a b e l ( ’ t ’ ) ;

137 % y l a b e l ( ’Max | \ p s i | ’ ) ;

138 % a x i s ( [ 0 10 0 8 . 5 ] )

139 % t i t l e ( ’Max | \ p s i | vs t ’ )

140 % hold on

141 %

142 % f i g u r e (4 )

143 % plo t (W, max(M)−min(M) , ’−ob ’ ) ;

144 % x l a b e l ( ’ Width ’ ) ;
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145 % y l a b e l ( ’D−value ’ )

146 % t i t l e ( ’D−value vs t ’ )

147 % hold on

148 %end

A.2 Variational approach (ODE)

Function

1 f unc t i on dy = nl func2 ( t , y )

2

3 % Control parameters ( de f ined in the s c r i p t s ” b i f p l o t .m” , ”

t r a j p l o t .m” and

4 % ” po incare .m”

5 g l o b a l omega ;

6 g l o b a l lattamp ;

7 g l o b a l k0 ;

8 g l o b a l l a t t f r e q ;

9 g l o b a l kmod ;

10 %g l o b a l num;

11 g l o b a l W;

12 g l o b a l alpha ;

13

14 dy = ze ro s (2 , 1 ) ; % a column vecto r

15 %l a t t a r g = ( k0+kmod∗( s i n ( l a t t f r e q ∗ t ) +0.3∗ s i n (2∗ l a t t f r e q ∗ t ) ) )

; % asymmetry ;

16 l a t t a r g = ( k0+kmod∗ s i n ( l a t t f r e q ∗ t ) ) ;

17 % The non l inea r equat ions in f i r s t −order ODE form .

18 dy (1) = y (2) ;

19 dy (2) = −omegaˆ2∗y (1 )−lattamp ∗( p i /2)∗ l a t t a r g ˆ2∗W∗( s i n (

l a t t a r g ∗y (1 ) ) )∗ csch ( p i ∗ l a t t a r g ∗W/2) ;

20 %dy (2) = −omegaˆ2∗y (1 )−alpha∗dy (1)−lattamp ∗( p i /2)∗ l a t t a r g ˆ2∗
W∗( s i n ( l a t t a r g ∗y (1 ) ) )∗ csch ( p i ∗ l a t t a r g ∗W/2) ; %damping

Trajectory

1 % S c r i p t to p l o t the t r a j e c t o r y from t=t s t a r t u n t i l t=t f i n ,

us ing the i n i t i a l

2 % c o n d i t i o n s x=x i n i t and y=y i n i t and i n t e g r a t i n g the system

o f non l i nea r

3 % f i r s t −order ODEs de f ined in n l func . The Matlab rou t in e ”

comet” i s used to
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4 % make v i s u a l i z a t i o n o f the t r a j e c t o r y e a s i e r .

5

6

7 % Options f o r ODE in t eg ra to r , i n c l u d i n g the numerica l e r r o r

t o l e r a n c e s ( s ee

8 % the Matlab help manual f o r d e t a i l s )

9 opt ions = odeset ( ’ RelTol ’ ,1 e−6, ’ AbsTol ’ , [ 1 e−11 1e−11]) ;

10

11 % The c o n t r o l parameters used by the s p e c i f i c f unc t i on

de f ined in n l func

12 g l o b a l omega ;

13 g l o b a l lattamp ;

14 g l o b a l k0 ;

15 g l o b a l l a t t f r e q ;

16 g l o b a l kmod ;

17 %g l o b a l num;

18 g l o b a l W

19

20 % The va lue s o f the c o n t r o l parameters

21 omega = 0 ;%s q r t ( 0 . 2 ) ;

22 lattamp = 1 ;

23 %num = 5 . 0 ;

24 k0 = 0 . 5 ;

25 kmod = 0 . 0 5 ;

26 l a t t f r e q = 1 ;

27 W=0.25;

28 % The i n i t i a l c o n d i t i o n s

29 x i n i t = 0 . 5 ;

30 v i n i t = 0 . 0 ;

31

32 % The s t a r t and f i n i s h t imes f o r the i n t e g r a t i o n

33 t s t a r t = 0 . 0 ;

34 t f i n = 3 0 0 . 0 ;

35 t imestep = 0 . 0 1 ;

36 tsamp=[ t s t a r t : t imestep : t f i n ] ;

37

38

39 % The Matlab i n t e g r a t o r (Runge−Kutta )
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40 %[T,Y] = ode45 ( @nlfunc2 , [ t s t a r t t f i n ] , [ x i n i t v i n i t ] , opt i ons )

;

41 [T,Y] = ode45 ( @nlfunc2 , tsamp , [ x i n i t v i n i t ] , opt i ons ) ;

42

43 % Plot o f the evo lu t i on

44 f i g u r e ( )

45 %plo t (Y( : , 1 ) ,T, ’− ’ ,Y( : , 2 ) ,T, ’ − . ’ )

46 p lo t (Y( : , 1 ) ,T, ’− ’ )

47 %x l a b e l ( ’ x , dx/dt ’ ) ;

48 x l a b e l ( ’ x ’ )

49 y l a b e l ( ’ t ’ ) ;

50 s e t ( gca , ’ XAxisLocation ’ , ’ top ’ ) ;

51 s e t ( gca , ’ YDir ’ , ’ r e v e r s e ’ ) ;

52 %a x i s ([−25 25 0 t f i n ] )

53

54 % f i g u r e ( )

55 % plo t (Y( : , 1 ) ,T, ’− ’ ,Y( : , 2 ) ,T, ’ − . ’ )

56 % plo t (T,Y( : , 2 ) , ’− ’)

57 % x l a b e l ( ’ x , dx/dt ’ ) ;

58 % x l a b e l ( ’ t ’ )

59 % y l a b e l ( ’ v ’ ) ;

60 % s e t ( gca , ’ XAxisLocation ’ , ’ top ’ ) ;

61 % s e t ( gca , ’ YDir ’ , ’ r eve r s e ’ ) ;

62 % Plot o f the t r a j e c t o r y in the 2D phase space

63 % f i g u r e (2 )

64 % plo t ( abs (Y( : , 1 ) ) . ˆ 2 , abs (Y( : , 2 ) ) . ˆ 2 )

65 % x l a b e l ( ’ x ’ ) ;

66 % y l a b e l ( ’ y ’ ) ;

67 %

68 % P r e t t i e r d i sp l ay o f the t r a j e c t o r y in the phase space

69 % f i g u r e (3 )

70 % comet ( abs (Y( : , 1 ) ) . ˆ 2 , abs (Y( : , 2 ) ) . ˆ 2 )

Poincaré section

1 % S c r i p t to p l o t the Poincare map o f the system de f ined in

n l func .

2 % I n t e g r a t i o n o f the system beg ins at t = t s t a r t , however

data f o r the map
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3 % i s not taken u n t i l t = t t r a n s to t ry and avoid i n i t i a l

t r a n s i e n t

4 % behaviour . The evo lu t i on o f the system vs . time i s a l s o

p l o t t ed .

5

6 % Options f o r ODE in t eg ra to r , i n c l u d i n g the numerica l e r r o r

t o l e r a n c e s ( s ee

7 % the Matlab help manual f o r d e t a i l s )

8 opt ions = odeset ( ’ RelTol ’ ,1 e−10, ’ AbsTol ’ , [ 1 e−11 1e−11]) ;

9

10 % The c o n t r o l parameters used by the s p e c i f i c f unc t i on

de f ined in n l func

11 g l o b a l omega ;

12 g l o b a l lattamp ;

13 g l o b a l k0 ;

14 g l o b a l l a t t f r e q ;

15 g l o b a l kmod ;

16 %g l o b a l num;

17 g l o b a l M; %mass

18 g l o b a l W

19

20 % The va lue s o f the c o n t r o l parameters

21 omega = 0 ;

22 lattamp = 1 ;

23 %num = 5 . 0 ;

24 k0 = 0 . 5 ;

25 kmod = 0 . 0 5 ;

26 l a t t f r e q = 0 . 1 ;

27 W=0.25;

28 M=8;

29 % The i n i t i a l c o n d i t i o n s

30 % x i n i t = 0 . 2 ;

31 % v i n i t = 0 . 0 ;

32

33 % The s t a r t and f i n i s h t imes f o r the i n t e g r a t i o n and time

i n t e g r a t e d be f o r e

34 % reco rd ing the map ( to avoid t r a n s i e n t s )

35 t s t a r t = 0 . 0 ;

36 t f i n = 2 0 0 0 . 0 ;
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37 t t r a n s = 0 . 0 ;

38 xmin = −20;

39 xmax = 20 ;

40 dx = 4 ;

41 vmin = −2.0;

42 vmax = 2 . 0 ;

43 dv = 2 ;

44 x i n i t t o t = [ xmin : dx : xmax ] ;

45 imax = length ( x i n i t t o t ) ;

46 v i n i t t o t = [ vmin : dv : vmax ] ;

47 jmax = length ( v i n i t t o t ) ;

48 n = imax∗jmax ;

49 t f o r c e = 2.0∗ pi / l a t t f r e q ;

50 % The sample per iod f o r the Poincare map ( determined by the

d r i v i n g f requency )

51 %f o r T0=1:2

52 t imestep = t f o r c e ;

53 %timestep = T0+2.0∗ pi /k0 ;

54 %timestep = 2.0∗ pi / l a t t f r e q ;

55

56 % The time po in t s o f the Poincare map

57 tsamp=[ t s t a r t : t imestep : t f i n ] ;

58

59 % Total number o f sample po in t s

60 ntot = length ( tsamp ) ;

61 i i = 99 ;

62 % Number o f po in t s d i s ca rded to avoid t r a n s i e n t s ( ca s t i n to

i n t e g e r form )

63 ntrans = cas t ( ( t t rans−t s t a r t ) / t imestep , ’ i n t32 ’ ) +1;

64 R= [ ] ;

65 %R=ze ro s ( ntot , 3 , n ) ;

66 % The Matlab i n t e g r a t o r (Runge−Kutta )

67 x i n i t = x i n i t t o t (1 ) ;

68 v i n i t = v i n i t t o t (1 ) ;

69 [T,Y] = ode45 ( @nlfunc2 , tsamp , [ x i n i t v i n i t ] , opt i ons ) ;

70

71 % Plot o f the evo lu t i on

72 % f i g u r e (1 )

73 % plo t (T,Y( : , 1 ) , ’− ’ ,T,Y( : , 2 ) , ’− . ’ )
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74 % x l a b e l ( ’ t ’ ) ;

75 % y l a b e l ( ’ x , y ’ ) ;

76

77 % Plot o f the Poincare map, s t a r t i n g the map a f t e r some time

t t r a n s to

78 % avoid the t r a n s i e n t s

79 f i g u r e (2 )

80 hold on

81 s c a t t e r (Y( ntrans : ntot , 1 ) ,Y( ntrans : ntot , 2 ) ,5 , ’ f i l l e d ’ )

82 %plot3 (Y( ntrans : ntot , 1 ) ,Y( ntrans : ntot , 2 ) ,T) ;

83 g r id on

84 x l a b e l ( ’ x ’ ) ;

85 y l a b e l ( ’ y ’ ) ;

86 %z l a b e l ( ’ t ’ ) ;

87

88 Rdata1 = [ ] ;

89

90 f o r i =1: imax

91 f o r j = 1 : jmax

92 x i n i t = x i n i t t o t ( i ) ;

93 v i n i t = v i n i t t o t ( j ) ;

94 [T,Y] = ode45 ( @nlfunc2 , tsamp , [ x i n i t v i n i t ] , opt i ons ) ;

95 s c a t t e r (Y( ntrans : ntot , 1 ) ,Y( ntrans : ntot , 2 ) ,5 , ’ f i l l e d ’ ) ;

96 R = [R;Y( ntrans : ntot , 1 ) ,Y( ntrans : ntot , 2 ) ,T ] ;%x , v , t

97

98 end

99 end

100 R1=reshape (R( : , 1 ) , ntot , n ) ; %x

101 R2=reshape (R( : , 2 ) , ntot , n ) ;%v

102 MR1 = mean(R1) ; % tot mean x

103 MR2 = mean(R2) ; % tot mean v

104 sdv = std (R2) ;% standard d e v i a t i o n s o f v

105 Rdata1=[Rdata1 ; MR1 MR2 sdv ] ;

106 %end

Damping

1 % S c r i p t to p l o t the Poincare map o f the system de f ined in

n l func .
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2 % I n t e g r a t i o n o f the system beg ins at t = t s t a r t , however

data f o r the map

3 % i s not taken u n t i l t = t t r a n s to t ry and avoid i n i t i a l

t r a n s i e n t

4 % behaviour . The evo lu t i on o f the system vs . time i s a l s o

p l o t t ed .

5

6 % Options f o r ODE in t eg ra to r , i n c l u d i n g the numerica l e r r o r

t o l e r a n c e s ( s ee

7 % the Matlab help manual f o r d e t a i l s )

8 opt ions = odeset ( ’ RelTol ’ ,1 e−10, ’ AbsTol ’ , [ 1 e−11 1e−11]) ;

9

10 % The c o n t r o l parameters used by the s p e c i f i c f unc t i on

de f ined in n l func

11 g l o b a l omega ;

12 g l o b a l lattamp ;

13 g l o b a l k0 ;

14 g l o b a l l a t t f r e q ;

15 g l o b a l kmod ;

16 g l o b a l M; %mass

17 g l o b a l W

18 g l o b a l alpha ;

19

20 % The va lue s o f the c o n t r o l parameters

21 omega = 0 ;

22 lattamp = 1 ;

23 alpha =0.1 ;

24 %num = 5 . 0 ;

25 k0 = 0 . 5 ;

26 kmod = 0 . 0 5 ;

27 l a t t f r e q = 0 . 1 ;

28 W=0.25;

29 M=8;

30 % The i n i t i a l c o n d i t i o n s

31 % x i n i t = 0 . 2 ;

32 % v i n i t = 0 . 0 ;

33

34 % The s t a r t and f i n i s h t imes f o r the i n t e g r a t i o n and time

i n t e g r a t e d be f o r e
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35 % reco rd ing the map ( to avoid t r a n s i e n t s )

36 t s t a r t = 0 . 0 ;

37 t f i n = 3 0 0 0 . 0 ;

38 t t r a n s = 0 . 0 ;

39 xmin = −10;

40 xmax = 10 ;

41 dx = 4 ;

42 vmin = −2.0;

43 vmax = 2 . 0 ;

44 dv = 1 ;

45 x i n i t t o t = [ xmin : dx : xmax ] ;

46 imax = length ( x i n i t t o t ) ;

47 v i n i t t o t = [ vmin : dv : vmax ] ;

48 jmax = length ( v i n i t t o t ) ;

49 n = imax∗jmax ;

50 t f o r c e = 2.0∗ pi / l a t t f r e q ;

51 % The sample per iod f o r the Poincare map ( determined by the

d r i v i n g f requency )

52 %f o r T0=1:2

53 t imestep = t f o r c e ;

54 %timestep = T0+2.0∗ pi /k0 ;

55 %timestep = 2.0∗ pi / l a t t f r e q ;

56

57 % The time po in t s o f the Poincare map

58 tsamp=[ t s t a r t : t imestep : t f i n ] ;

59

60 % Total number o f sample po in t s

61 ntot = length ( tsamp ) ;

62 %i i = 99 ;

63 % Number o f po in t s d i s ca rded to avoid t r a n s i e n t s ( ca s t i n to

i n t e g e r form )

64 ntrans = cas t ( ( t t rans−t s t a r t ) / t imestep , ’ i n t32 ’ ) +1;

65 R= [ ] ;

66 %R=ze ro s ( ntot , 3 , n ) ;

67 % The Matlab i n t e g r a t o r (Runge−Kutta )

68 x i n i t = x i n i t t o t (1 ) ;

69 v i n i t = v i n i t t o t (1 ) ;

70 [T,Y] = ode45 ( @nlfunc2 , tsamp , [ x i n i t v i n i t ] , opt i ons ) ;

71
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72 % Plot o f the evo lu t i on

73 % f i g u r e (1 )

74 % plo t (T,Y( : , 1 ) , ’− ’ ,T,Y( : , 2 ) , ’− . ’ )

75 % x l a b e l ( ’ t ’ ) ;

76 % y l a b e l ( ’ x , y ’ ) ;

77

78 % Plot o f the Poincare map, s t a r t i n g the map a f t e r some time

t t r a n s to

79 % avoid the t r a n s i e n t s

80 f i g u r e ( )

81 hold on

82 s c a t t e r (Y( ntrans : ntot , 1 ) ,Y( ntrans : ntot , 2 ) ,5 , ’ f i l l e d ’ )

83 %plot3 (Y( ntrans : ntot , 1 ) ,Y( ntrans : ntot , 2 ) ,T) ;

84 g r id on

85 x l a b e l ( ’ x ’ ) ;

86 y l a b e l ( ’ y ’ ) ;

87 a x i s ([−100 100 −5 5 ] )

88 %z l a b e l ( ’ t ’ ) ;

89

90 Rdata1 = [ ] ;

91

92 f o r i =1: imax

93 f o r j = 1 : jmax

94 x i n i t = x i n i t t o t ( i ) ;

95 v i n i t = v i n i t t o t ( j ) ;

96 [T,Y] = ode45 ( @nlfunc22 , tsamp , [ x i n i t v i n i t ] , opt ions ) ;

97 s c a t t e r (Y( ntrans : ntot , 1 ) ,Y( ntrans : ntot , 2 ) ,5 , ’ f i l l e d ’ ) ;

98 R = [R;Y( ntrans : ntot , 1 ) ,Y( ntrans : ntot , 2 ) ,T ] ;%x , v , t

99

100 end

101 end

102 R1=reshape (R( : , 1 ) , ntot , n ) ; %x

103 R2=reshape (R( : , 2 ) , ntot , n ) ;%v

104 MR1 = mean(R1) ; % tot mean x

105 MR2 = mean(R2) ; % tot mean v

106 sdv = std (R2) ;% standard d e v i a t i o n s o f v

107 Rdata1=[Rdata1 ; MR1 MR2 sdv ] ;

61





Appendix B

Numerics
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Width Max|ψ| Min|ψ| D-value
2.5 0.400009 0.399983 2.63E-05

1.666667 0.6 0.599989 1.08E-05
1.25 0.800009 0.799974 3.48E-05

1 1.000022 0.99995 7.19E-05
0.833333 1.200037 1.199914 0.000123
0.714286 1.400059 1.399863 0.000196

0.625 1.600087 1.599795 0.000292
0.555556 1.800124 1.799709 0.000415

0.5 2.00017 1.9996 0.00057
0.454545 2.200226 2.199468 0.000758
0.416667 2.400293 2.399309 0.000985
0.384615 2.600372 2.599124 0.001248
0.357143 2.800463 2.798901 0.001562
0.333333 3.000569 2.998654 0.001915

0.3125 3.200689 3.198365 0.002323
0.294118 3.400823 3.39803 0.002794
0.277778 3.600972 3.597664 0.003307
0.263158 3.801149 3.797272 0.003877

0.25 4.001325 3.996855 0.00447
0.238095 4.201529 4.196346 0.005183
0.227273 4.401751 4.395754 0.005997
0.217391 4.601977 4.595115 0.006862
0.208333 4.80227 4.794431 0.007839

0.2 5.002575 4.993703 0.008872
0.192308 5.202808 5.192934 0.009874
0.185185 5.403219 5.392126 0.011093
0.178571 5.603461 5.591283 0.012179
0.172414 5.803967 5.790407 0.01356
0.166667 6.004205 5.989506 0.014699
0.16129 6.204728 6.188582 0.016145
0.15625 6.40526 6.387644 0.017615

0.151515 6.605475 6.586698 0.018776
0.147059 6.805918 6.785753 0.020164
0.142857 7.006763 6.984818 0.021945
0.138889 7.207331 7.183903 0.023428
0.135135 7.407524 7.38302 0.024503
0.131579 7.607248 7.582181 0.025067
0.128205 7.808523 7.7814 0.027124

0.125 8.009714 7.98069 0.029023

Figure B.1: No potential. The soliton width range (0.125− 2.5)
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0.5 2.000026 1.999944 8.18E-05
0.333333 3.000081 2.999811 0.00027

0.25 4.000192 3.999551 0.000641
0.2 5.000367 4.999156 0.001211

0.166667 6.000645 5.998716 0.001929
0.142857 7.001015 6.998398 0.002617

0.125 8.001394 7.998477 0.002917

Figure B.2: No potential. The soliton width range (0.125− 0.5)
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Width Max|ψ| Min|ψ| D-value
2.5 0.903566 0.4 5.04E-01

1.666667 0.980556 0.6 3.81E-01
1.25 1.082849 0.798281 2.85E-01

1 1.207485 0.972256 2.35E-01
0.833333 1.351114 1.188076 0.163038
0.714286 1.512108 1.398238 0.11387

0.625 1.681198 1.6 0.081198
0.555556 1.860304 1.8 0.060304

0.5 2.048304 1.999943 0.048361
0.454545 2.23603 2.199852 0.036178
0.416667 2.42944 2.399726 0.029714
0.384615 2.622564 2.599563 0.023001
0.357143 2.818985 2.799359 0.019626
0.333333 3.015501 2.99911 0.01639

0.3125 3.212576 3.198817 0.013759
0.294118 3.410941 3.398476 0.012465
0.277778 3.610521 3.598088 0.012433
0.263158 3.809301 3.797651 0.01165

0.25 4.007005 3.997166 0.00984
0.238095 4.206562 4.196632 0.00993
0.227273 4.406315 4.395923 0.010392
0.217391 4.606512 4.595082 0.01143
0.208333 4.806591 4.794319 0.012273

0.2 5.006406 4.99403 0.012377
0.192308 5.207466 5.193269 0.014197
0.185185 5.409621 5.392469 0.017151
0.178571 5.610964 5.591633 0.01933
0.172414 5.809636 5.790765 0.018871
0.166667 6.008809 5.98987 0.018939
0.16129 6.213336 6.188952 0.024384
0.15625 6.41139 6.388019 0.023371

0.151515 6.613298 6.587071 0.026227
0.147059 6.814893 6.786136 0.028758
0.142857 7.015221 6.984615 0.030606
0.138889 7.215327 7.183449 0.031877
0.135135 7.417081 7.383409 0.033672
0.131579 7.614037 7.578667 0.03537
0.128205 7.818707 7.779153 0.039554

0.125 8.024533 7.980921 0.043612

Figure B.3: Time-independent parabolic potential. The soliton width range (0.125−
2.5).
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0.5 2.048301 2 4.83E-02
0.333333 3.014583 3 0.014583

0.25 4.006326 4 0.006326
0.2 5.003354 4.999765 0.003589

0.166667 6.002447 5.999364 0.003083
0.142857 7.002324 6.999029 0.003294

0.125 8.002767 7.998012 0.004755

Figure B.4: Time-independent parabolic potential. The soliton width range (0.125−
0.5).

2.5 0.902267 0.4 5.02E-01
1.666667 0.980525 0.6 0.380525

1.25 1.082848 0.798297 0.284551
1 1.207492 0.972599 0.234893

Figure B.5: Time-independent parabolic potential. The soliton width range (1 −
2.5).
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Width Max|ψ| Min|ψ| D-value
2.5 0.75582 0.380727 3.75E-01

1.666667 0.929401 0.555634 3.74E-01
1.25 1.072388 0.773932 2.98E-01

1 1.213571 0.983066 2.31E-01
0.833333 1.362918 1.194439 0.168479
0.714286 1.523389 1.4 0.123389

0.625 1.693577 1.6 0.093577
0.555556 1.872392 1.8 0.072392

0.5 2.055522 1.999979 0.055543
0.454545 2.242862 2.199891 0.042971
0.416667 2.434013 2.399769 0.034244
0.384615 2.626886 2.599609 0.027277
0.357143 2.821616 2.799408 0.022208
0.333333 3.017744 2.999163 0.01858

0.3125 3.214825 3.198873 0.015952
0.294118 3.412495 3.398536 0.01396
0.277778 3.610709 3.59815 0.012558
0.263158 3.809279 3.797717 0.011563

0.25 4.008195 3.997234 0.010961
0.238095 4.207365 4.196704 0.010661
0.227273 4.406658 4.396125 0.010534
0.217391 4.606256 4.595499 0.010757
0.208333 4.805854 4.794827 0.011027

0.2 5.005738 4.994111 0.011627
0.192308 5.205609 5.193353 0.012256
0.185185 5.405583 5.392555 0.013028
0.178571 5.605889 5.591721 0.014168
0.172414 5.805761 5.790854 0.014906
0.166667 6.005969 5.98996 0.016009
0.16129 6.206354 6.189044 0.01731
0.15625 6.406558 6.388112 0.018446

0.151515 6.60654 6.587172 0.019368
0.147059 6.807237 6.786231 0.021006
0.142857 7.007859 6.985299 0.02256
0.138889 7.208222 7.184387 0.023835
0.135135 7.408228 7.383506 0.024723
0.131579 7.608181 7.582667 0.025514
0.128205 7.809421 7.781886 0.027535

0.125 8.010483 7.981175 0.029307

Figure B.6: Time-independent periodic potential. The soliton width range (0.125−
2.5).
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0.5 2.055524 2 5.55E-02
0.333333 3.017638 3 0.017638

0.25 4.007623 4 0.007623
0.2 5.00404 4.999916 0.004124

0.166667 6.002597 5.999525 0.003072
0.142857 7.001992 6.999202 0.00279

0.125 8.002226 7.999101 0.003125

Figure B.7: Time-independent periodic potential. The soliton width range (0.125−
0.5).

2.5 0.755798 0.381625 3.74E-01
1.666667 0.929395 0.5556 0.373795

1.25 1.072332 0.773917 0.298415
1 1.213571 0.983032 0.230539

Figure B.8: Time-independent periodic potential. The soliton width range (1−2.5).

Width Max|ψ| Min|ψ| D-value
0.25 4.006727 3.997763 8.96E-03

Figure B.9: Time-independent periodic potential. The soliton width (w = 0.25).
W (x, t) = − cos [k0 + kmod sin(ηt)]x, k0 = 0.5, kmod = 0, and x0 = 2.

Width Max|ψ| Min|ψ| D-value
0.25 4.004859 3.998048 6.81E-03

Figure B.10: Time-independent periodic potential. The soliton width range (w =

0.25). W (x, t) =
1

2
ω2

0x
2, ω0 =

√
0.2 and x0 = 2
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