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Abstract 

Semiparametric regression is playing an increasingly large role in the analysis of datasets 
exhibiting various complications (Ruppert, Wand & Carroll, 2003). In particular semi-
parametric regression a plays prominent role in the area of data mining where such 
complications are numerous (Hastie, Tibshirani & Friedman, 2001). In this thesis we 
develop fast, interpretable methods addressing many of the difficulties associated with 
data mining applications including: model selection, missing value analysis, outliers and 
heteroscedastic noise. 

We focus on function estimation using penalised splines via mixed model method-
ology (Wahba 1990; Speed 1991; Ruppert et al 2003). In dealing with the difficulties 
associated with data mining applications many of the models we consider deviate from 
typical normality assumptions. These models lead to likelihoods involving analytically 
intractable integrals. Thus, in keeping with the aim of speed, we seek analytic approxi-
mations to such integrals which are typically faster than numeric alternatives. 

These analytic approximations not only include popular penalised quasi-likelihood 
(PQL) approximations (Breslow & Clayton, 1993) but variational approximations. Orig-
inating in physics, variational approximations are a relatively new class of approxima-
tions (to statistics) which are simple, fast, flexible and effective. They have recently been 
applied to statistical problems in machine learning where they are rapidly gaining pop-
ularity (Jordan, Ghahramani, Jaakkola & Saul 1999; Corduneanu & Bishop, 2001; Ueda & 
Ghahramani, 2002; Bishop & Winn, 2003; Winn «& Bishop 2005). 

We develop variational approximations to: generalized linear mixed models 
(GLMMs); Bayesian GLMMs; simple missing values models; and for outlier and het-
eroscedastic noise models, which are, to the best of our knowledge, new. These methods 
are quite effective and extremely fast, with fitting taking minutes if not seconds on a 
typical 2008 computer. 

We also make a contribution to variational methods themselves. Variational ap-
proximations often underestimate the variance of posterior densities in Bayesian models 
(Humphreys & Titterington, 2000; Consonni & Marin, 2004; Wang & Titterington, 2005). 
We develop grid-based variational posterior approximations. These approximations combine 
a sequence of variational posterior approximations, can be extremely accurate and are 
reasonably fast. 
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Notation and Symbols 

The following notation and symbols will be used unless otherwise stated. 
0.1 Matrix Algebra 
Vectors and matrices are in bold typeface. Vectors are denoted using lower case letters 
and matrices are denoted using upper case letters. 

TTDnxm 
R!̂  
T 

diag(a) 

dg(A) 

1 
0 

I 

The set of real vectors of dimension n. 
The set of real matrices with n rows and m columns. 
The set of n dimensional positive real vectors. 
Transpose. Vectors and matrices superscripted by T are transposed. All 
vectors are column vectors unless otherwise stated or transposed by T. 
Vertical concatenation. Lists of scalars, vectors and matrices within round 
brackets are concatenated vertically, e.g. a = (a i , . . . , a„) is a column 
vector. 
Horizontal concatenation. Lists of scalars, vectors and matrices within square 
brackets "[]" are concatenated horizontally, e.g. a = [ai , . . . , a^] is a row 
vector. Also ( a i , . . . , an) = [ a f , . . . , a j ]^ . 
Diagonal matrix. Let a G R^ then we denote the n x n matrix with diagonal 
entries a by 

ai 0 • • • 0 
diag(a) = 0 «2

0 

0 

0 • • • a, 
Diagonal vector. Let A e R"^^ then we denote the vector of length n with 
entries equal to the diagonal elements of A by 

An Ai2 Ain / 

dg ^21 ^22 A2n 

mn 

\

= (^11,^225 • • • 

An appropriately-sized vector or matrix of ones. 
An appropriately-sized vector or matrix of zeros. 
An appropriately-sized Identity matrix. A zero matrix with ones along the 
diagonal, i.e. I = diag(l). 



Gi An appropriately-sized vector of zeros, except the zth value which is 1. 

Ey An appropriately-sized matrix of zeros, except the (z, j)th entry which is 1. 

tr(A) The trace of the matrix A. 

AI The determinant of the matrix A. 

A (g) B Kronecker product. If A G and B G then A 0 B is the (np) x (mq) 

matrix defined by A (g B = [aijB]i<i<nA<j<m. 

a © b Element-wise multiplication of vectors. If a, b G M" then 

a / b Element-wise division of vectors. If a, b G M" then a / b = {a i /bi , . . . , an/bn)-

/ ( x ) Univariate function of a vector. Let / : R ^ R be a function and x G R" be 

a vector then we denote / ( x ) = i f i x i ) , . . . , For example, log(x) = 

( log(xi ) , . . . , log(x„ ) ) . 
a Vector 2-norm. If a G R"" then ||a|| = (J^Hi «? ) ' • 

a < b Vector inequalities. If a, b G R" then the inequality a > b (similarly for a > b, 

a < b and a < b) denotes â  > bi for all 1 < i < n. 

0.2 Calculus 

J f{x.)dx Integration. If integrals appear without integrals, i.e f f{x)dx then the 

domain of integration is over all appropriate values of x. For example, 

if X G R" then /(x)iix = f f{yi)dx and if x > 0 then fj^^ f{x)dx = 

/ / ( x ) d x . 
( df 

Dx/(x) Derivative vector. If x = ( x i , . . . , then Dx/(x) = 

Hx/(x) Hessian matrix. If x = ( x i , . . . , then 

Hx/(x) = Dx{Dx/(x)^} = 

\dxi X=x/ l<i<n 

d'f 
_ dxidxj x=x- l<2,ji<n 

0.3 Probability 

Let X G R"^, y G R'̂  be a random vectors, i.e. vectors whose components are random 

variables. 

x] The probability density function of x.

X, y] The joint density function of x and y. 

The conditional distribution of y given x, i.e. [y|x] = ^ ^ for all x such that 

x] > 0.

i{0) Log-likelihood of 6.

P Probability

E(x) Expectation of a random vector. The mean or expected value of x, denoted

E (x) contains the expected values of the components of x, i.e. E(x) =

( E ( x i ) , . . . , E(xn)). Furthermore, for some function / , let Ex ( / (x , y)) denote

the expecation of / with respect to x.



Cov(x) Covariance of a random vector. The covariance matrix is the n x n matrix, 

denoted Cov(x), whose (z, j)th entry is the covariance between xi and Xj and 

may be calculated via Cov(x) = E{[x - E(x)][x - E(x)]'^}. 

Mgfy(t) Moment Generating Function. Ey{exp(y^t)} 

Hy (Shannon's) Entropy. Negative expectation of the log probability density 

function, i.e. Hy = -Ey{log[y]}. 

l e Information matrix. Xe = -E{H0£{e)}. 

0.4 Miscellaneous 

II{a;} Indicator variable (with condition x). Takes the value 1 if the condition x is 

true and 0 otherwise. 

a i Truncated power. If x E M then x^ = xPIix>o}, i-e. = | ~ \ x^ if X > 0. 
0 if X < 0 

sign(x) Sign function. If x G R then sign(rr) = < _ 1 i if x = 0 
1 if X > 0. 

o( ) Little "oh''. We write r]k = o{i>k) if the sequence of ratios approaches 0, i.e. 

Mmk-^oolkl^k = 0. 

0( ) Big ''oh". We write % = 0{vk) if for sufficiently large k the exists a constant 

C such that \rjk\ < C\uk . 

a :=b Assignment. We denote the assignment of the value for a to the value b by 

a := b. 
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CHAPTER 1 

Introduction 

1.1 Introduction 

In all of human history we have never witnessed the abundance of information with 
which we are confronted today. More than ever before, computers are used to record 
almost every measurable facet of life; from medical records, business transactions and 
sport statistics to travel documentation, grocery bills and weather reports. Such vast and 
varied information boggles the human capacity to understand its own environment. Two 
disciplines have emerged which deal with such data, namely Statistics and Computer 
Science. Each of these endeavours make sense of this data in such a way that we improve 
our understanding of the world around us and hence the decisions that we make. 

Applications of such research touches on many facets of life. These are some exam-
ples: 

• Commerce including fraud detection (Phua, Lee, Gayler & Smith, 2006), credit risk 
(Madeira, Oliveira & Concei^ao, 2003), economics (Hoover & Perez, 1999), finance 
(Kovalerchuk & Vityaev, 2000) and marketing (Büchner & Mulvenna, 1998; Berry & 
Linoff, 2004). 

• Biology including ecology (Chau & Muttil, 2007), genetics (Perez-Iratxeta, Bork & 
Andrade, 2002) and bioinformatics (Frank, Hall, Trigg, Holmes & Witten, 2004). 

• Medicine including medical diagnosis (Mangasarian, Street & Wolberg, 1995) and 
treatment evaluation (Lee, Mangasarian & Wolberg, 2000). 

• Crime (Duffett & Vemik, 1997) and security (Lovell & Chen, 2005). 
• Physics including meteorology (Luengo, Cofiño, & Gutiérrez, 2004) and astronomy 

(Karimabadi, Sipes, White, Marinucci, Dmitriev, Chao, Driscoll & Balac, 2007). 
• Image recognition including handwriting (Vapnik, 1998, 2000), image and face 

recognition (Heisele, Ho & Poggio, 2003; Guo, Li & Chan, 2000). 

These and other applications have led to some tremendous improvements in our lives. 
Statistics and Computer Science have both played a role in the understanding of our 

world, albeit with different focuses. Statistics has traditionally concerned itself with de-
sign and analysis of experiments and the development of probabilistic models to describe 
collected data. Furthermore, the data used by statisticians has been relatively small in 
size with a focus on developing methods for accurate parameter estimation and accurate 
interpretation of these models. 



Motivated by the recent availability of large data sets, the discipline of Computer Sci-
ence has developed a huge array of algorithms to deal with large complex datasets inde-
pendently. Many of the models developed contain no apparent underlying probabiUstic 
structure and are focused on simple efficient algorithms with little regard to modeling 
statistical complexities exhibited in the data. Such algorithms usually have the advan-
tage of being fast and adaptable to the problem at hand (Breiman, 2001). On the other 
hand, without probabilistic structure it is difficult to provide measures of confidence in 
the predictions made or draw theoretical conclusions from them. 

Within these two disciplines there are a number of research areas with overlapping 
interests including, amongst others, semiparametric regression, statistical or machine 
learning theory, pattern recognition, computational learning theory and data mining. 
Sometimes the difference between calling one analysis, say "machine learning", and an-
other, say "data mining", depends on context, for example on how the data was collected, 
the type of data to analysed and purpose of the analysis. There are other times when even 
these distinctions are blurred. For example, interpretability plays a far more important 
role in data mining than it does in machine learning, while in machine learning the accu-
racy of the results are of utmost importance. 

In a recent book Hastie, Tibshirani &c Friedman (2001) list the following characteristics 
typical of data mining applications. They: 

• are large, both in number of observations and number of variables; 
• contain mixed data types, i.e. quantitative, binary and categorical variables; 
• contain many missing values; 
• in which quantitative variables are often long-tailed and highly skewed and contain 

a substantial fraction of outliers; 
• in which variables are measured on very different scales; 
• contain many irrelevant predictors (i.e. parsimonious models are desirable) 
• and for which accurate interpretation and prediction are important. 

In addition data is not usually collected via experimental means. This potentially leads 
to additional complications including, but not limited to, measurement error, collection 
bias, correlation and change points. 

The type of analysis required for such data also varies. This can be roughly cate-
gorised into supervised and unsupervised learning. Supervised learning is synonymous 
with predictive modeling in Statistics, while unsupervised learning is concerned with or-
ganising and summarising data. Each of these has a role to play within the data mining 
context. When used together, they can also lead to improved results. In this thesis we 
will be largely concerned with supervised learning, i.e. predictive modeling. 

In another recent book Ruppert, Wand & Carroll (2003) showed how many of the 
complications listed above may be handled using semiparametric regression methodol-
ogy. Indeed semiparametric regression models feature prominently in Hastie et al. (2001). 
As the name suggests, semiparametric regression combines parametric regression and 
nonparametric techniques to analyse data. It encompasses a large variety of regression 



techniques, but can be roughly categorised into function estimation and longitudinal 
analysis. Within the context of semiparametric regression, function estimation is typi-
cally performed via penalised spline methodology which includes scatterplot smoothing, 
kriging and geoadditive models (Ruppert et al, 2003). Longitudinal analysis, on the other 
hand, involves modeling of correlation in grouped data and leads to simple, hierarchical, 
crossed and nested random effect models (Verbeke & Molenberghs, 2000; McCulloch & 
Searle, 2001). Function estimation methodology is quite common within the context of 
data mining while longitudinal analysis is mostly ignored. Semiparametric regression 
techniques, as we will shortly see, are reasonably fast on large datasets, can naturally 
handle mixed data types, are highly interpretable and make good predictions. Further-
more, it can handle complications that arise in such analysis, for example missing value, 
variance function and measurement error models (Ruppert et al, 2003) but such matters 
are subjects of ongoing research. 

In the last few years we have seen the gap narrowing between statistical and Com-
puter Science based approaches to data mining. Many researchers have taken advantage 
of the tremendous opportunities for cross-disciplinary research. This thesis offers a semi-
parametric regression approach to data mining which constitutes cross-disciplinary re-
search of this type. Semiparametric regression methodology will be developed to handle 
the problems of missing data, robustness, model selection and interpretation associated 
with data mining. This research applies the variational methodology developed by com-
puter scientists to statistical models where parameter estimation is extremely difficult. It 
thus represents a further narrowing of the gap between these two fields. 

1.2 Semiparametric Regression 

As previously stated, both responses and covariates in data mining applications can take 
a variety of forms. Data types can be either numeric or categorical in nature. Numeric 
data types include continuous, positive continuous and count data as subtypes, and cat-
egorical data types include binary, ordinal and nominal as subtypes. It can be vital to 
model these forms of data for a model to be fitted, interpreted and to make inferences 
from effectively. Traditionally data mining has been primarily concerned with the prob-
lems of classification (where the responses take distinct values called categories) and re-
gression (where the responses are numeric). 

The data mining problem of regression is routinely handled by semiparametric re-
gression via penalised splines. Consider the following regression problem. Suppose we 
have been given the paired observations {yi,Xi), I < i < n where y is the response 
variable (or target using data mining terminology), and x is the predictor variable. A 
penalised spline model for this data 

K 

f{x) = + Ax + . . . + í3mX'^ + -



where fi = (/̂ o, A ) and u = (^¿l,..., u^) is chosen to minimise 

- f i x i ) ? + Au^fiu (1.2) 

with respect to ¡3 and u for a fixed smoothing parameter A, penalty matrix ft and power 

m. Here K = (ki , . . . , /^^) are called knots, {x - = {x - are called 

truncated power splines where I is an indicator variable which takes the value 1 when the 

condition in the subscript of I is true and 0 otherwise, and the set {(x - Kj)^}i<j<K form 

a truncated power basis. This basis is often a first choice due to its conceptual simplicity. 

For fixed A > 0, under certain light regularity conditions, /3 and u are uniquely defined 

and the quality of fit depends on the delicate matter of choosing A. 

There are a variety of alternatives for choosing the smoothing parameter A including: 

Mallow's Cp criterion (Mallows, 1973); AIC by Akaike (1974) and similar AlC-like criteria 

by Hurvich, Simonoff, and Tsai (1998), Vaida & Blanchard (2005) and Wager, Vaida and 

Kauermann (2007) and generahsed cross validation (GCV) by Craven and Wahba (1979). 

Alternatively, maximum likelihood via linear mixed models (LMM) or restricted maxi-

mum likelihood (Patterson & Thompson, 1971) can be used to fit nonparametric models 

(Wahba, 1990; Speed, 1991; Wand, 2003). The theory behind these linear smoothing pa-

rameter criteria are quite well understood. 

For classification problems, i.e. where the yiS take categorical, usually binary, values 

there are far fewer criteria to choose from. In some commercial applications, subtleties 

over different response subtypes are often ignored in exchange for speed. For example, 

in the data mining application MARS (Salford Systems, 2000), based on the multivariate 

adaptive regression spline paper of Friedman (1991), binary responses (represented as 

0 / 1 variables) are modelled using linear regression splines and classifications are made 

based on whether the regression function / exceeds A sounder, but slower, alterna-

tive is to use logistic linear mixed models which extend LMMs for smoothing parameter 

selection for binary responses. Finally, the generalisation bounds of Vapnik (1998, 2000) 

which can be used for hinge loss models for binary data are the basis for support vector 

machine (SVM) methods and their many variants (Scholkopf and Smola, 2002). 

1.2.1 Generalised Linear Mixed Models 

In contrast to typical data mining approaches, semiparametric regression via generalised 

linear mixed models (GLMM) offer a wider range of modelling alternatives to specifically 

take advantage of the structure of each different data type. For example, positive contin-

uous responses can be modelled via gamma and inverse-Gaussian LMMs, and Poisson 

LMMs can be used to model count data. Different links can be used to model binary 

data for Bernoulli LMMs. Furthermore, unlike models based on hinge loss, the criteria 

to be optimised are smooth and so model fitting is much more straightforward to im-

plement. In short, GLMMs are capable of handling a larger class of responses than are 

typically handled in data mining applications in a variety of different ways. The flexibil-

ity of GLMMs to handle both regression and classification problems, as well as a host of 



other problems is the reason we will focus on GLMMs for smoothing parameter selection 
in this thesis. 

Suppose we have been given the data 1 < i < n and wish to predict 
the yiS based on the covariates x̂  where each x̂  is a row vector of dimension d with 
Xz = (x j i , . . . , Xid). For the time being we will assume that none of the x^s or yis con-
tain missing values. Further suppose that the response vector y is modelled using the 
exponential family of distributions given by 

' (1.3) a ( 0 ) 

where r]i is the predictor vector which depends on the x^s, rj = • •, Vn), 0{r]i) is the 
canonical parameter, e{rj) = {0{r]i), • • •, 0{r]n)), KOi) is the cumulant function (which is 
convex), h{e{'q)) = (6(^(771)),6(6»(77^))), c{yi,(f)) is a normalising function, c{y,(t)) = 
(c(?/i, (/)),..., c{yn, (f))) and 0 is a nuisance parameter. The mean and covariance is related 
to 9(r}) via the equations 

E(y|77) = n = b\0{Ti)) 
and 

Cov(y|r;) = a{cj>)dmg{b"{e{rt))). 
The link function g{') determines the relationship between the mean fn and the predictor 
r]i via the equation 

m = gifJ'i) 
The canonical link is the link function ^(O for which 0(r]i) = rji. Table 1.2.1 contains values 
for g{fii), 9{r]i), a{(l)), b{0{r]i)) and c{yi, (j)) for most of the models we will consider in 
this thesis. Note for gamma and inverse-Gaussian LMMs we are not using the canonical 
link. Instead the log link is used to ensure E(y|r7) is positive, a constraint required by 
these distributions. 

We use the parameter 7)1 to model the dependence on the mean of y by the x^s via the 
equation 77̂  = ^(x^). We model //(x^) as a linear combination of basis functions, described 
in detail in Sections 1.2.2-1.2.4 and Chapter 2, which we can write as 

77(xO-77i = (X/3 + Zu), (1.4) 

where X and Z are n x p and n x g matrices. We model u as a vector of random effects 
with distribution 

u~iV(0,G^2) (1.5) 
where the q x q matrix G^2 can be modelled using a variety of covariance structures 
(Zhao, Staudenmayer, Coull & Wand, 2006) and cr̂  are called variance components which 
are used to parameterise G^r .̂ All of the examples considered in this thesis will use the 
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yf log(27r(/)) 
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yi ~ Poisson (ê )̂ 
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log(Mi) 
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1 

2t/i02 20 

Table 1.2.1: A summary of model parameters for [ylrj] in equation (1.3). Here 9i = 6(r]i). 



covariance structure 

= (1.6) 

i=l 

This mechanism effectively provides a quadratic penalty on the coefficient vector u. 
Many software applications expect to block diagonal multiples of the identity ma-
trix. We will call this standard or canonical mixed model form. We will also denote the 
matrix by 

The marginal likelihood is obtained by ''integrating out'' the random effects vector u. 
The marginal log-likelihood for this model can be written as 

i{P,CT^,(i>)=\og j[y\xi:(3,4>][n-CT'^]dn 

. f / + Zu) - + Zu)) 1 ^^^ \ . = l o g y e x p | (1.7) 

+l^c(y, 0) + i log |D 2̂ I - I log(27r) 

where Aj = are the smoothing parameters. In general there is no closed form 
expression for (1.7) except in the case where y|u is Gaussian where equations (1.3-1.5) 
describe a LMM. In this case statistical theory is extremely mature (Searle, Casella, & 
McCulloch, 1992; and Verbeke & Molenberghs, 2000) mainly due to the fact that in this 
special case the integral (1.7) is analytically tractable. 

Suppose that (/3, 0) is the maximum likelihood estimator of { / 3 , cr^.cf)). For a given 
( / 3 , cr^, (p) t h e best predictor o f u i s 

S = E(u|y;^, 0-2,0) (1.8) 

which suggests the predictor 

u = (1.9) 

Using these we make predictions using 

E(y|u) = b'(e{X^ + Zu)). (1.10) 

Alternatively, when logistic regression is used for the purposes of classification then the 
predicted class of i/new based on x̂ ew is given by 

sign{^(x,ew)}. (1.11) 

The quality of predictions can be measured in a number of ways. These include, 
amongst others: deviance, classification error and Akaike information criteria. Suppose 
we reparameterize (1.3) in terms of the mean value parameter vector /x instead of the 
canonical parameter vector 0 and denote the conditional log-likelihood log[y |u; /3,0] as 

0; y). Then the deviance for a given fi (and fixed (p) is defined by 

V{y, /x) - - 2 {^(/x, y) - ^(y, y)} . (1.12) 



The deviances for particular distributions are given in Table 1.2.2 (McCullagh & Nelder, 
1989). 

Model Deviance 

Normal 
n 

Y^ivi - îii? 

Logistic 
n 

2 ) ; yi log(2/z/Ä) + (1 - Vi) log((i - Vi)/{I - fli)) 
i^l 

Poisson 
n 

2 ' ^ y i \og{yi/i2i) - {yi - Ä) 

Gamma 
n 

2 ̂  - \og{yil^i) + {yi - îii)lîii 
i=l 

Inverse-Gaussian 
n 

i=l 
Table 1.2.2: A summary of deviances for each of the models in Table 1.2.1. 

The deviance discrepancy measure can be also useful in simulation settings where the 
true mean /x* is known. In this case we can measure the quality of the fit using /x). 

Bayesian GLMMs are also of considerable interest. Within this context we will only 
consider the simplest case of using inverse-gamma conjugate priors on the variance com-
ponents cr̂  = (cr^,..., cr̂ ) and on the nuisance parameter i.e. 

af 

where j, B^i j), 1 < i < v and S^) are chosen sufficiently small characterising 
little prior knowledge about the parameters <j| and (f). In this case the priors are called 
diffuse, vague or noninformative. We note that other priors, especially for af are also 
used (see for example, Gelman, 2006), however for simplicity we will focus on these 
priors. Furthermore, since the prior hyperparameters are fixed, x should be scaled to 
have zero mean and unit variance to improve scale invariance. This has the additional 
benefit of improving numerical stability when fitting this model. 

1.2.2 Additive Models 

The modelling of covariates of mixed types for the purposes of interpretability can be 
handled by imposing a particular structure on ry(xj). Interpretability of results depends 
highly on the user's ability to visualise the surface r]{xi). Several alternatives to aid with 
this exist. These include additive models (Hastie & Tibshirani, 1990), analysis of variance 
decomposition models (ANOVA, e.g. Gu, 2002) and tree structures (Breiman, Friedman, 
Olshen & Stone, 1984). For simplicity, throughout this thesis we will focus on additive 
models. Additive models estimate functions using a sum of lower dimensional functions. 
For example, 

77(x) = /?o + m(xi) + 772(0:2) -H m M (1.14) 



or 
7y(x) = + (1.15) 

where r]j is a function of Xj for all j and 772,3 and is a function of both X2 and X3. In general 
let J = { / i , . . . , /|j|} be a partition of a subset of the indices {1 , . . . , d}. For example if 
d = 3 then I = {1,2,3} corresponds to the case (1.14) while I = {1, {2,3}} corresponds 
to the case (1.15). We can now write 

12:1 

i=l 

We model each of the rjj. (x/J depending on the variables type(s) of x/., the dimension of 
li and other prior information specific to the problem at hand. 

Suppose that x/. is one dimensional. If x/. is binary where x/. is encoded as 0 or 1, i.e. 
x/. G {0,1} then 

and let X^ = 1 < J < ri, = 0, u¿ = 0 and = 0. 
If X/. is a nominal categorical variable where x/. G {1 , . . . , C} then 

c 

j=2 

and 

j=2 

With f3i = (A2, • . . , A c ) , X i = 1 < j < n, 2 < fc < C, Zi = 0, Ui = 

= 0. 
If X/. is an ordinal categorical variable where x/. G {1 , . . . , C} then we could use the 

same form for r]i{xi.) as for nominal categorical variables or alternatively we could use 

rni^ii) = x/iAi 

with f3i = (/?ii), Xi = 1 < j < n, Zi = 0, Ui = 0 and ili = 0. 
If X/. is a continuous variable then we normally construct r7z(x/J as a linear combina-

tion of spline functions 

Pi Qi 

j=l j=l 

where = ( f t i , . . . , Pip,), û  = {un,. . . , UiqJ and let 

Xi = [Xik{yijii)]ij f o r l < j < n , l < k < p i a n d 

Zi = [Zik{xjj.)]ij for 1 < j < n, 1 < /c < qi. 

Associated with the spline functions {^ifcix/Jj^Li is a penalty matrix The basis func-
tions and penalty matrix fi^ can be modelled in a variety of 
ways which will explore in Sections 1.2.3-1.2.4 and in Chapter 2. 



There are a number of ways to specify the ryiCx/J for multidimensional x/.. A simple 

approach is to construct r)i{xjJ via a tensor products of univariate functions of each l e L 

In this case we could use 

mi^h) = ^teiimix,). 

although it is not always clear how to define the fti matrix is such cases. In fact, bene-

fits can be obtained from using multiple penalties for tensor products of splines (Wood, 

2006). Unfortunately these cannot be put into canonical mixed model form. Alternatively, 

multidimensional splines can be used, the prime example of which is the class of splines 

which are called radial splines (Wahba, 1990; Ruppert et al, 2003; Fasshauer, 2007). These 

include thin plate splines (Wood, 2003) which are also very popular and are described in 

Section 1.2.4. 

Although these ideas generalise to high dimensions, due to interpretability and curse 

of dimensionality issues, it is rare to have more than 2 or 3 variables handled together. 

Finally, we can construct the X, Z and D^ matrices using 

X = [ l ,X i , . . . ,X|j| 

Z = [Zi,. . . , Z|j| 

Di = blockdiag 

and (3 = (/3o, /3i,..., (3\x\) and u = (ui, . . . , U|x|) with v = \1\ being the number of vari-

ance components. 

1.2.3 Univariate Splines 

There are numerous spline functions which are used for function approximation. Some 

common choices are truncated power splines, B-splines and thin plate splines. For univariate 

X each of these are bases for the set of polynomial splines on the interval [a, b] defined by 

= {f :[a,b] \ f eV^ onx e (/if, « i+i ) for 0 < i < /c 

and f{Ki) e iorl <i<k} 

where V^ is the set of polynomials of degree m or less, C^ denotes the set of ith times 

continuously differentiable functions, and k = {kq, . . . , kk+i) is a sequence of knots sat-

isfying a = Kq < Ki < K2 < . . . < Kk < I^K+1 = b. 
The truncated power basis is a less commonly used basis due to numerical instabil-

ity when using the basis in practice. On the other hand the truncated power basis is 

intuitively simple and has the advantage that each basis function only depends on one 

knot. The truncated power spline basis is written (for example, Ruppert et al 2003) as 

{1,. . . , (x - .. . , (x - kk ) ? } where the appropriate X and Z matrices are 

X = [1, Xj . . . , and Z = (xj — 
l<i<n,l<3<K 

and it is common to use Q = Ik for this basis. 



The B-spline basis is well known for its numerical robustness compared to other bases 
for Smi^) and its compact support (de Boor, 1972; Lyche & Schumaker, 1973). The basis 
is defined by {Bm^ix; K)}i<i<m where 

\m ' + 
= + K) 

where "[]" denotes the divided difference which has the following properties 

(1.16) 

= (gii^j) - - f^i) 
= • • • , K,n]9{-) - h i , • • • , K,n-l]9{-))/i'^n - «^l) 

and 

^ / N BmAx-.n) '^i+m ^ t^i T-> / \ Qm,i[x\K)= < Bq^X^K,) [ 0 otherwise. 
For B-splines n is the extended knot vector sequence 

1 xe[hii,Ki+i) 
0 otherwise. 

a = = K2 = = 1^5 < < f^K+4: < t^K+5 = /^K+6 = I^K+7 = I^K+8 = b. 

We will consider B-splines including computational aspects of an appropriate matrix ft in 
Chapter 2. Finally, thin plate splines generalise to higher dimensions and are considered 
in the next section. 
1.2.4 Multivariate Splines 
As previously stated, multidimensional splines can be constructed using a tensor product 
of univariate splines and a mesh of knots. The downside of such an approach is that the 
number of knots increases exponentially with the dimension of the data. Radial basis 
splines represent a class of meshfree splines which avoid this problem by allowing knots 
to be specified independently in x space and are described in Ruppert et al. (2003, Chapter 
13) and in much greater detail in Fasshauer (2007). 

Thin plate splines are perhaps the most popular type of radial basis spline (Ruppert et 
al, 2003; Wood, 2003). For thin plate splines the matrix X has columns spanning the space 
of all d = dim(x) dimensional polynomials in the components of x with degree less than 
some integer m satisfying 2m- d> 0 (except the intercept), 

Z=lC{\\Xk-Kk'\\)] 



where ft = [C{\\Kk - /Cfc'll)] ^̂ ^ has the singular value decomposition n = Udiag(d)V^ 
l<k,k'<K 

SO that ri-1/2 = Vdiag(d-1/2)U^, 

= ford odd, 
\ r2^-^log(r) for deven 

and K i , . . . , /î x are knots of dimension d (see Wood, 2003 or Ruppert et al, 2003, Chapter 
13 for details). 

These knots may be selected in a number of ways. The simplest of these is to use an 
equally spaced grid of points (of a specified size) but again the number of knots increase 
exponentially with the dimension of x. Computationally much better alternatives are to 
use quasi-random sequences, for example Halton sequences (see for example, Fasshauer, 
2007), or to use space filling designs via clustering (Nychka & Sultzman, 1998) and imple-
mented in the R package FUNFITS (Nychka et al, 1998). The appropriate penalty matrix 
is fi = One property that distinguishes these bases, which we will exploit in Chapter 
6, is that the number of columns in Z and íí, the number of penalised basis functions, are 
equal to the number knots. 

1.3 Semiparametric Regression for Data Mining 

It is clear from the above discussion that semiparametric regression can be used natu-
rally to handle mixed data types and can be constructed so as to produce interpretable 
models. The other complications associated with data mining listed in the introduction 
are matters of ongoing research. We will now discuss some of the progress made in these 
areas. 

1.3.1 Computational Scalability 

One of the key problems with semiparametric regression via GLMMs when applied to 
data mining problems is computational scalability. The key problem with GLMMs is the 
intractability of the marginal likelihood. This intractability has been the driving force 
behind much of the research into GLMMs for the past few decades. The aim of obtain-
ing accurate estimators computationally efficiently remains elusive. The computational 
scalability of finding estimators to GLMMs largely depends on the method of approx-
imation chosen. This in turn depends on the relative trade-off between accuracy and 
computational efficiency. These approximations can be roughly categorised as analytic 
or numerical in their approach. 

Analytic approximations for fitting GLMMs include Laplace's method (Wolfinger, 
1993); penalised quasi-likelihood (Breslow & Clayton, 1993) and Solomon-Cox approx-
imations (Solomon & Cox, 1992). These approximations have the advantage of being 
computationally fast but are comparatively crude approximations of the marginal likeli-
hood. Furthermore such estimators which can have significant bias (Breslow & Lin, 1995; 
Lin & Breslow, 1996; Sutradhara & Rao, 2001). Nevertheless analytic approximations can 
be useful in a number of contexts; they can be used 



• as a starting point for other more accurate approximations, 
• as the basis for a model selection procedure (for example in Chapter 3), and 
• when criteria other than accuracy of approximating the marginal likelihood or bi-

ases are of utmost importance, for example residual deviance or classification error 
(Kauermann, Ormerod & Wand, 2008). 

Analytic approximations are typically based on using information on the integrand's 
derivatives. For example Laplace's approximation of the integral / (assuming 
g is twice continuously differentiable) 

/ e - M x ) , , = / M ^ , - . . , . ) + o ( i - ) (1.17) 
J y Hxp(x) 

where x maximises g, i.e. 

Dx^(x) = 0. (1.18) 

The right hand side of (1.17) becomes more accurate as T —> CXD (e.g. Barndorff-Nielsen 
& Cox, 1989; Tierney, Kass & Kadane, 1989; Raudenbush, Yang & Yosef, 2000; Young &c 
Smith, 2005). Fortunately, even though for most models we consider t = 1, Laplace's 
method may be reasonably accurate, in particular when the integrand (1.17) is propor-
tionally similar to Gaussian in shape. Such is the case for GLMMs where the posterior 
distribution u|y is nearly Gaussian in shape. 

Some effort has been made to improve the accuracy of these methods using higher or-
der Laplace approximations (Raudenbush et al, 2000). Unfortunately the computational 
cost of such methods increases exponentially in the order of the Laplace approximation. 
In practice this means that, for large datasets or complicated models, only moderate im-
provements in accuracy are possible. Alternatively, higher order approximations can be 
obtained when considering ratios of integrals of the form (1.17), e.g. Tierney et al. (1989). 
These occur in cases when calculating iterates of an expectation maximisation (EM) algo-
rithm and its variants, or the best predictor for the random effects u in equation (1.9, see 
also Section 10.8 of Ruppert et al, 2003). 

Numeric approximations tend to be far more accurate than analytic approximations 
but are usually much slower. The practical use of some numeric approximations can be 
restricted when the dimension of the integrals to be evaluated is high or where the dataset 
is sufficiently large or complex. The two most commonly used approximations are Gauss-
Hermite quadrature (GHQ, see e.g. Naylor & Smith, 1982; Lesaffre & Spiessens, 2001) 
and Monte Carlo methods (McColloch, 1994,1997; Gelman, Carlin, Stern & Rubin, 1995; 
Clayton, 1996; Gilks, Richardson & Spiegelhalter, 1996; Robert & Casella, 1999). 

The Gauss-Hermite quadrature approach has proven to be very effective in analyses 
for generalised longitudinal models where the integrals to be evaluated are typically low 
dimensional. However the use of Gauss-Hermite quadrature for more general GLMMs 
is in practice restricted, since the number of quadrature points increases exponentially in 



the dimension of the integral to be calculated. In such cases Monte Carlo type n\ethods 
are often preferred. 

The most accurate method for fitting GLMMs is via Monte Carlo methods. One 
such variety, Markov chain Monte Carlo (MCMC) has been the driving algorithm be-
hind Bayesian Statistics for the last two decades. Several spin-offs of MCMC method-
ology include Monte Carlo Expectation Maximisation (ECEM) and Monte Carlo Expec-
tation Conditional Maximization (MCECM) methods (Wei & Tanner, 1990; Lui & Rubin, 
1995; McCulloch, 1997; Booth & Robert, 1998), Monte Carlo relative likelihood (Geyer, 
1992) and Monte Carlo Newton-Raphson (Kuk & Cheng, 1997). The basic intention of 
these algorithms is to develop methods for sampling from posterior densities. Different 
sampling strategies include the traditional Metropolis-Hastings algorithm (Metropolis, 
Rosenbluth, Rosenbluth, Teller & Teller, 1953; Hastings, 1970), adaptive rejection sam-
pling (Gilks & Wild, 1992; Robert & Casella, 1999) and importance sampling (Rubinstein, 
1981; Booth & Hobert, 1998). 

Monte Carlo methods suffer from at least two major drawbacks. Firstly, major dif-
ficulties are associated in assessing the convergence of MCMC methods. While some 
progress has been made in this respect (e.g. Rosenthal, 1995; Cowles & Carlin, 1996; 
Cowles & Rosenthal, 1998), the applications of this theory have remained limited to spe-
cial cases and therefore caution needs to be applied when taking such an approach. Sec-
ondly, although there has been extensive research in designing efficient MCMC samplers, 
such methods can still be painfully slow when the dataset to be analysed is suitably large 
or the model to be fitted is sufficiently complex. 

Some attempts to remedy this problem include sequential Monte Carlo (SMC) and 
quasi-Monte Carlo methods. SMC generalises importance sampling by producing a 
weighted sample from the stationary distribution while retaining some of the benefits of 
MCMC (Del Moral, Doucet & Jasra, 2006; Fan, Leslie & Wand, 2007). Quasi-Monte Carlo 
methods (Hickernell, Lemieux & Owen, 2005; Kuo, Dunsmuir, Sloan, Wand & Wom-
ersley, 2008) offer yet another alternative that by-passes the problems associated with 
random sampling by choosing points deterministically. Convergence for this approach is 
provably faster than Monte Carlo methods under certain circumstances. 

While numerical approximations have an assured place in statistical analysis, their 
application to data mining problems is highly questionable due to the problem of com-
putational scalability. Furthermore, along the philosophy of Tukey (1954, 1962) and Box 
(1979), all models are approximations. Thus, approximate solutions to ''more reaUstic'' 
models are better than fitting 'Tess realistic'' models exactly. Much of this thesis is dedi-
cated instead towards developing analytic approximations to models. 



1.3.2 Missing Values 

Missing data is a common complication in many statistical analyses. It occurs in many 
fields including the social sciences when dealing with surveys, clinical trials when pa-
tients are dropped from a study, in engineering because of equipment malfunction, in 
data mining for example when new data becomes available or data entry when a field in 
a form is overlooked. It can also occur by design, for example for confidentiality reasons. 
Dealing with missing values is often an ignored problem in many statistical analyses. 
Ignoring this problem can have disastrous consequences including underestimated vari-
ances, less efficient and biased estimators and ultimately incorrect inferences. 

There have been many approaches to missing value problems in general (Schäfer, 
1997; Little & Rubin, 2002). Some of the most successful of these methods are likelihood 
based models (Ibrahim, 1990; Ibrahim et al, 2001; Little & Rubin, 2002). In Chapter 4 
we will examine some simple missing value models, so it is necessary to introduce some 
nomenclature. 

Let X be an n X d matrix of observations (covariates) where some of the observations 
are missing. Rubin (1976) formalised nomenclature for the missing data mechanism by 
introducing the indicator matrix M, with entries M^ = 0 if Xij is observed and Mij = 1 
if Xij is missing. A parametric model then specifies the joint distribution of X and M. 
There are two main ways if specifying the joint distribution of X and M. Selection models 
specify 

;X,M|0,i9] = [X|6>][M|X,i9 (1.19) 

where [X|0] represents the complete model for X, [M|X, i?] represents the model for 
the missing data mechanism, and (0, 'd) are unknown parameters. The second main ap-
proach to specifying the joint distribution of X and M are called pattern mixture models 
which specify 

= [X|M,'0][M|(^], (1.20) 

where the distribution of X depends on the missing data pattern M and (t/j, ip) are un-
known parameters, possibly different from (0, 

Equations (1.19) and (1.20) represent two different ways of factoring [X, M|</), (p]. Ru-
bin calls the data, where missing, missing at completely at random (MCAR) if M is indepen-
dent of X and in this case the two model specifications (1.19) and (1.20) are equivalent if 
6 = (f) and = (p. 

Many maximum likelihood missing data models are based on ignorable selection mod-
els where 0 and are distinct and the data where missing at random which implies 

where Xobs denotes the set of observed components of X. Rubin (1976) showed that 
maximum likelihood inference for 6 under such models does not depend on, and hence 
ignore, [M|X, i?] and can be based solely on the likelihood obtained by integrating out 



the missing values of X from the density [X|0]. Note that the MAR condition is less 
restrictive than MCAR. 

Example 1.1 [Little, 1993]: Suppose that we have two covariates Xi and X2 where Xi 
is fully observed while X2 is sometimes missing. Thus there would be two cases for the 
rows of M, (Mi,1, Mi,2) = (0,0) and (M^ î, Mi,2) = (0,1). A selection model might use 

[Mi,2 = = gi^o + + ^^2X ,̂2) 

where'd = (i9o, and g(-) is some function which takes values on [0,1]. The data is 
MCAR if î i = i92 = 0 and is MAR if = 0 because the missingness of X2 depends only 
on the values of Xi which are always observed. Finally if 0 and are distinct and i92 = 0 
then the selection model is ignorable. 

When selection models are used to handle missing data either one of these types 
of missingness are typically assumed. In addition to these are a variety of additional 
assumptions about the nature of the missing data mechanism, some of which are out-
lined and treated in Little (1992, 1993), Horton & Laird (1999), Ibrahim et al (2001), Thijs, 
Molenberghs, Michiels, Verbeke & Curran (2002) and Horton & Kleinman, (2007). 

1.3.3 Robustness 

Data can contain many deficiencies which may hinder or otherwise ruin analysis. These 
deficiencies are particularly prevalent in data mining applications. In these applications, 
as previously stated, data may contain a substantial number of outliers and distributions 
of numeric predictor and response variables are often long-tailed and highly skewed 
(Hastie et al 2001). In additional, amongst other difficulties, covariates may be subject to 
measurement error (Carroll, Ruppert, Stefanski & Crainiceanu, 2006) for function estima-
tion, if the mean function contains jumps or cusps (i.e. change points), or if the function 
is spatially inhomogeneous (i.e. different levels are smoothing are required in different 
regions of the function). In these cases typical function estimation procedures can deliver 
poor results. 

The topic of robustness in Statistics has been subject to an enormous amount of re-
search over the past few decades (e.g, Hampel, Ronchetti, Rousseeuw & Stahel, 1986; 
Rousseeuw & Lerow, 1987; Staudte & Sheather, 1990; Wilcox, 1997). Roughly speaking 
when modelling our data we typically use a number of working assumptions, for exam-
ple about the distribution of the data and relationships between observations. The aim 
for robust models is to perform not much worse within a range of alternatives to these 
assumptions (Garthwaite, Jolliffe & Jones, 2002). 

2.3.4 Parsimony 

Finally, parsimonious modelling involves looking for models which are as simple as pos-
sible, but no simpler than necessary. Thus parsimony might relate to a number of facets 
of a particular model. For example, in semiparametric regression, linear models are sim-
pler than nonlinear models, models which incorporate less covariates are simpler than 



models with more covariates, models with homogeneous noise are simpler than models 
with heterogeneous noise. For tree-type models, smaller trees with fewer variables are 
simpler than larger trees which use more variables. 

The question of which covariates to include in a model is quite important. If there 
are many irrelevant covariates, as is common to data mining applications, using them 
can have several detrimental consequences including accuracy of fit, interpretability and 
additional computational costs. Penalization approaches (for example, Hastie et al 2001, 
Chapter 3), related to the idea of shrinkage, do to some extent elevate some of the prob-
lems of dealing with irrelevant predictors, but such an approach is not perfect. A parsi-
monious solution containing only relevant predictors is more desirable. 

The classical approach to model selection in Statistics is via hypothesis testing which 
dates back to the founding fathers of Statistics, Neyman & Pearson (1933) and Fisher 
[1935](1956). The classical hypothesis testing methods, the likelihood ratio test (the origin 
of which is discussed in Giri, 1964a, 1964b), the Rao score test (Rao, 1973) and the Wald 
test (Wald, 1943) are based on asymptotics. Recently, for models subject to constraints, 
more powerful versions of these tests have been developed (Self & Liang, 1987; Silvapulle 
& Sen, 2005). 

New approaches to model selection are continually being developed. Some of these 
include criteria based (Akaike, 1974), optimisation based and Bayesian (Yau, Kohn & 
Wood, 2003) approaches. In Computing Science the topics of variable selection and fea-
ture selection (e.g. Guyon & Elisseeff, 2003) have similar aims. Finally, within the context 
of semiparametric regression, hypothesis testing is a matter of ongoing research. Recent 
accounts can be found in Hastie et al. (2001) and Ruppert et al. (2003). 

1.4 Thesis Outline 

As we have discussed there has been, in some respects, substantial progress in many ar-
eas of semiparametric regression related to data mining. However, most of the research 
areas associated with the individual difficulties in data mining (as listed in the introduc-
tion) are far from a settled state. In this thesis we make a number of contributions to these 
areas. 

Firstly, while penalised spline methodology is in a highly mature state, at the prac-
tical, if not the theoretical level, we will examine computational aspects of a class of re-
duced knot smoothing splines we will call O'Sullivan splines (or O-splines for short) in 
Chapter 2. This work improves upon the related penalised spline methodology of Filers 
«& Marx (1996) which uses a finite difference approximations of the ''roughness" penalty 
matrix. We refer to the approach which specifically uses the basis/penalty of Filers & 
Marx (1996) as P-splines. We improve upon this work by deriving an exact method for 
calculating the roughness penalty matrix which is easy to implement, efficient to calcu-
late and allows greater flexibility in the selection of knots. We also show that O-splines 
have numerical advantages over P-splines and can be seamlessly integrated into Bayesian 
GLMM methodology. 



Secondly, in Chapter 3 we will examine the problem of model selection. We develop 
an algorithm which is similar in vain to the regression spline methodology of Stone, Han-
son, Kooperberg «& Truong (1997). This algorithm is based on PQL approximations of the 
GLMM (Breslow & Clayton, 1993) and approximate score Statistics (Rao, 1973, Lin 1997). 
In furtherance to this end we also develop an efficient method for fitting Logistic LMMs. 
We show that the algorithm is reasonably accurate and has better computational scalabil-
ity to similar methods. 

Laplace-like approximations are reasonably fast and may be used on medium scale 
data mining problems. When the integrand to be approximated is not Gaussian in shape 
their application is questionable. Such is the case where the GLMM in Section 1.2 is 
modified to handle the various complications arising in data mining applications. For 
this reason we have pursued variational approximations. 

Variational methods are simple, fast and flexible class of approximations with origins 
in machine learning literature (Jordan, Ghahramani, Jaakkola, & Saul 1999; Corduneanu 
& Bishop, 2001; Ueda & Ghahramani (2002), Bishop & Winn, 2003; MacKay, 2003; Tit-
terington, 2004; Winn & Bishop 2005). The aim of variational methods is to transform 
problems into optimisation problems Qaakkola, 2001). Within the context of Statistics 
these methods transform integral problems into optimisation problems, usually in an ap-
proximate way. This is done by constructing a lower bound on the marginal likelihood 
which is tightened using an iterative scheme related to the EM algorithm of Dempster, 
Laird & Rubin (1977). These approximations are based on the observation that for any 
distribution we have 

i{0) = log J[y, iP; e]dip > iUO; 4) = log[y, iP; 0] + Hs (1.21) 

where t/j is a vector of parameters which we want to integrate out, is a density 
which approximates the conditional distribution ip\y, E^ denotes expectation with re-
spect to S and Hs = -Eqlog((5(t/?;4)) is the entropy of S. Using similar terminology to 
that of Jaakkola & Jordan (2000) we call (1.21) the density transform of the likelihood. 

In Chapter 4 we will review variational approximations to integrals arising in both 
frequentist and Bayesian statistical models. We discuss methods for alternative optimi-
sation techniques fitting these approximations, and a new method for approximating 
posterior densities. We then apply these approximations to some simple missing value 
models, and compare their speed and accuracy to MCMC approximations. Variational 
approximations have been successfully applied to missing problems (Saul, Jaakkola & 
Jordan, 1996; Jaakkola & Jordan, 2000; Williams, Liao, Xue & Carin, 2005; and Consonni 
& Marin, 2007) and represent an exciting alternative in the area. 

As previously discussed, the key problem to using GLMMs in semiparametric re-
gression is the intractability of the high dimensional integral in the likelihood. Thus in 
Chapter 5 we develop variational approximations for GLMMs and Bayesian GLMMs. In 
particular, we will develop Gaussian approximations which are more accurate than the 



Laplace approximation in the Kullback-Leibler divergence sense. We discuss several al-
gorithms for fitting these approximations and compare them numerically with existing 
methods. 

Finally, in Chapter 6 we will consider some robust semiparametric models. We will 
consider several types of robustness, namely robustness to outlier models, variance func-
tion estimation and spatially adaptive variance components models. For continuous re-
sponses Student's t regression is often a good starting point for outlier models (Lange, 
Little & Taylor 1989). Instead of considering robust modelling for skewed noise, we con-
sider heterogeneous variance models (Davidian & Carroll 1987; Carroll & Ruppert, 1988; 
Ruppert et al. 2003; Crainiceanu et ah, 2006). This type of model does provide some ro-
bustness to the assumption of homogeneous noise. Highly adaptive smoothing might 
also be viewed as a type of robustness. There are hundreds of highly adaptive methods 
the most accurate being the Bayesian regression spline methods of DiMatteo, Genovese 
& Kass (2001) and Denison, Holmes, Mallick & Smith (2002) or the genetic algorithm for 
regression splines of Pittman (2002). While not quite as accurate as these methods, the 
adaptive variance component ideas of Baladandayuthapani, Mallick & Carroll (2005), 
Crainiceanu, Ruppert, Carroll, Adarsh & Goodner (2007) and Krivobokova, Crainiceanu 
& Kauermann (2007) are almost as accurate. However, in all of these methods, except 
Krivobokova et al (2007), models are fit via MCMC methods and would thus be inap-
propriate for data mining applications where speed is important. In Chapter 6 we will 
develop an extremely fast algorithm combining all of the above types of robustness which 
performs quite well in practice. 





CHAPTER 2 

On Semiparametric Regression with O'Sullivan Penalised Splines^ 

2.1 Introduction 

Splines continue to play a central role in semiparametric regression modelling. Recent 
synopses include Eubank (1999), Gu (2002), Ruppert, Wand «& Carroll (2003) and Deni-
son. Holmes, Mallick & Smith (2002). In all but the last reference, smooth functional 
relationships are fitted using a large basis of spline functions subject to penalization. Up 
until the mid-1990s most literature on spline-based nonparametric regression was con-
cerned with smoothing splines, and their multivariate extension thin plate splines, where 
the penalty takes a particular form and the number of basis functions roughly equals 
the sample size (e.g. Wahba, 1990; Green & Silverman, 1994). However, in recent years, 
there has been a great deal of research on more general spline/penalty strategies, most 
of which use considerably fewer basis functions. Driving forces include: 

• more complicated models, often with several smooth functions; 
• larger data sets, where smoothing and thin-plate splines become computationally 

intractable, 
• mixed model and Bayesian representations of smoothers that lend themselves to 

the use of established software, such as BUGS (Spiegelhalter, Thomas & Best, 2000), 
Ime 0 in R (R Development Core Team, 2007) and PROG MIXED in SAS (SAS Insti-
tute, Inc., 2007); provided the number of basis functions is relatively low. 

Ruppert, Wand & Carroll (2003) summarise and provide access to many of these devel-
opments. The term penalised splines has emerged as a descriptor for general spline fitting 
subject to penalties. Other descriptors used in the literature include P-splines (Eilers & 
Marx, 1996), pseudosplines (Hastie, 1996), reduced knot splines (White, Thompson & 
Brotherstone, 1999) and low-rank spline smoothers (Wood, 2003). 

O'Sullivan (1986, Section 3) introduced a class of penalised splines based on B-spline 
basis functions. O'Sullivan penalised splines are a direct generalisation of smoothing 
splines in that the latter arises when the maximal number of B-spline basis functions are 
included. Like smoothing splines, O'Sullivan penalised splines possess the attractive fea-
ture of natural boundary conditions (e.g. Green & Silverman, 1994, p. 12). They have also 
become the most widely used class of penalised splines in statistical analyses due to their ^Sections 2.1-4 and 2.7 correspond to: Wand, M.P. & Ormerod, J.T. (2008). On Semiparametric Regression 
with O'Sullivan Penalised Splines. Australian and New Zealand Journal of Statistics, (in press), representing 
joint research between M.P Wand and J.T. Ormerod. Sections 2.5 and 2.6 contain additional material repre-
senting solo research by J.T. Ormerod. 



implementation in the popular R and S - P L U S (Insightful Corporation, 2007) function 
smooth. s p l i n e ( ) and associated generalised additive model software (e.g. the gam li-
brary in R; Hastie, 2006). Despite the omnipresence of O'Sullivan penalised splines, their 
use in semiparametric regression contexts, particularly those involving mixed model and 
Bayesian representations, is not very common. Recently, Welham, Cullis, Kenward & 
Thompson (2007) showed how most of the commonly used penalised splines can be 
treated within a single mixed model framework, although they did not work explicitly 
with the form given in O'Sullivan (1986). 

Our contributions in this chapter are: 

1. Provide an exact matrix expression for the penalty of O'Sullivan splines that allows 
implementation in a few lines of a matrix-based computing language. 

2. Compare O'Sullivan splines with their closest penalised spline relative, P-splines 
(Eilers & Marx, 1996), which reveal some noticeable differences near the bound-
aries. 

3. Demonstrate explicitly, including with R code, how O'Sullivan splines can be sim-
ply added to the mixed model-based regression armoury. 

4. Investigate their efficacy in Bayesian semiparametric regression using Markov 
chain Monte Carlo (MCMC) software such as BUGS and its variants. 

5. Explore several extensions of O'Sullivan splines including: general degree 
O'Sullivan splines and their mixed model formulation, derivative estimation and 
bivariate tensor product O'Sullivan splines and their mixed model formulation. 

We conclude that the several attractive features of O'Sullivan penalised splines - smooth-
ness, numerical stability, natural boundary properties, direct generalisation of smoothing 
splines - makes them a very good choice of basis in semiparametric regression. 

2.2 O'Sullivan Penalised Splines 

O'Sullivan penalised splines have already been described several times in the literature. 
A recent reference is the Chapter 5 Appendix of Hastie, Tibshirani & Friedman (2001). A 
brief sketch is given here for convenience. 

Consider the simplest nonparametric regression setting 

yi = f{xi)-\-£ù l < i < n ( 2 . 1 ) 

where {xi,yi) e R xR. Suppose that the estimate of / is required over [a, b], an interval 
containing the x^s. For an integer < n let /^i,. . . , KK+S be a knot sequence such that 

a = Ki = K,2 = 1^3 = 1^4 < 1^5 < ' • • < f^K+A < I^K+5 = I^K+6 = I^K+7 = I^K+8 = b 

and let (•),..., Bk+4{-) be the cubic B-spline basis functions defined by these knots 
(see e.g. pp.160-161 of Hastie et al, 2001). Set up the n x (X + 4) design matrix B with 



(i, A:)th entry Bik = B k { x i ) and f2 the { K A ) x ( K 4 ) penalty matrix with (/c, A;')th entry 

^ k k ' = f B l { x ) B l , { x ) d x . 
J a 

Then an estimate of / at location x eR can be obtained as 

fo{x; A) = B^uo where Vq = (B^B + (2.2) 

where B ;̂ = [ B i { x ) , . . . , B k + 4 { x ) ] and A > 0 is a smoothing parameter. 
Note that the cubic smoothing spline arises in the special case K = n and = Xk 

for 1 < fc < n, provided the XjS are distinct (e.g. Green & Silverman, 1994, Section 
3.6). Apart from giving a smooth (twice continuously differentiable) scatterplot smooth, 
/o( ; A) has good numerical properties. The basis functions are bounded and so not prone 
to overflow problems. Moreover, B ^ B is 4-banded, which leads to 0{n) algorithms when 
K is close to n (e.g. Hastie, et al, 2001). In addition, /o(-; A) satisfies so-called natural 
boundary conditions, meaning that 

A ) = ^ ' ( a ; A ) = fS(b-, X) = A ) = 0 

and implying that /o( ; A) is approximately linear over [a, /̂ s] and [avx+4, b] (linearity is 
exact if = mm{xi) and kk+a = max(xi)). Figure 2.1 illustrates these natural boundary 
properties of /o( ; A) for data on ratios of strontium isotopes found in fossil shells and 
their age; see Chaudhuri & Marron (1999) for details. Also, /o( ;A) approximates the 
least squares line as A ^ oo. The implication for mixed model smoothing is that the 
induced fixed effects component corresponds to straight line basis functions. Details are 
given in Section 2.4. 

Computation of the design matrix B is usually quite easy. For example, B-splines are 
readily available in the Mat l a b (The Mathworks, Inc., 2007), R and S-PLUS computing 
environments. Otherwise recurrence formulae (e.g. de Boor, 1978; Filers & Marx, 1996) 
can be called upon. However, computation of ft requires some additional effort. In 
Section 2.6.1, while treating general degree O'Sullivan penalised splines, we derive an 
exact matrix algebraic expression for the corresponding penalty matrices. In the cubic 
case our theorem reduces to the expression: 

n = (B 'ydiag(w)B' ' (2.3) 

where B '̂ is the 3{K 7) x {K 4) matrix with (i, j )th entry B j { x i ) , xi is the ith entry of 

the vector 

_ / «1 + 1^2 + I^Z /̂ K+7 + \ 
X = /^l, 5 , « 3 , • • • , I^K+1, , • 
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Figure 2.1: Illustration of natural boundary properties of a 20-interior knot O'Sullivan penalised 
spline fit to the fossil data over the interval [85,130] millions of years. The interior knots are 
shown as solid diamonds (•). Inset: The 24 B-spline basis functions. 

and w is the 3(iir + 7) x 1 vector given by 

w = i (Ak)i, i(AK)i, . 
\ 1 4 1 

-(A/i)x+7, 

where (A ĉ)/. = Kk+i - Kkf ^ ^ k < K + 7. Result (2.3) is none other than Simpson's 
rule applied over each of the inter-knot intervals. This is because each B'^B'f function 
is piecewise quadratic. For commonly used values of K, (2.3) allows straightforward 
computation of ft in matrix-based languages such as M a t l a b , R and S - P L U S . In the 
Appendix of this chapter we demonstrate computation of fi in 4 lines of R code. 



2.2.2 Knot Selection 

Lastly, we mention knot choice. The R and S - PLUS function smooth. s p l i n e () uses 

/ k 

where 

th sample quantile of the x/s. 

K = 

n n < 50 

100 n = 200 

200 n = 800 

200 + (n -3200)5 n > 3200 

Other values of n between 50 and 3200 are handled via a logarithmic interpolation. For 
many functional relationships, fewer knots are sufficient. Figure 2.1 is one example, 
where only K = 20 interior knots are used without compromising the quality of the fit. 
A common default in the penalised spline literature is = min(n[//4,35), where nu is 
the number of unique x /s (e.g. Ruppert et al., 2003). Ruppert (2002) discusses a 'hi-tech' 
choice of K. The distribution of the knots, for a given K, may have some effect on the 
results. As mentioned above, smooth, s p l i n e () uses quantile-based knots while e.g. 
Filers & Marx (1996) recommend equally-spaced knots. In most situations this effect will 
be minor. However, for either strategy, it is possible to construct regression functions and 
predictor variable distributions for which problems arise. More sophisticated knot place-
ment strategies may help. For example, Luo & Wahba (1997) propose more sophisticated 
basis function reduction methods that could be adapted to the current context. 

2.3 Comparison with P-Splines 

The closest relatives of O'Sullivan penalised splines are the P-splines of Filers & Marx 
(1996). If the interior knots /^s,..., KR+A are taken to be equally-spaced then the family of 
cubic P-splines is given by (2.2) with the fl replaced by D^D/j, where D^ is the /cth-order 
differencing matrix. This differencing penalty corresponds to a discrete approximation 
to the integrated square of the kth derivative of the B-spline smoother. The choice k = 2 

leads to the cubic P-spline estimate 

/p(x; A) = B^Vp where up = ( B ^ B + AD^Dfc)-iBy (2.4) 

having the property that /p( ; A) approaches the least squares line as A —> oo. In this 
sense, (2.4) is the closest relative of /p( ; A). If the interior knots are equally-spaced then 
the bands in the interior rows are, up to multiplicative factors, as follows: 

O'Sullivan penalised splines (2.2): 3, 0, -27 , 48, -27 , 0, 3 

Cubic P-splines; 2nd order diff. (2.4): 0, 8, -32 , 48, -32 , 8, 0 

Figure 2.2 facilitates visual comparison of the two. It is seen that the differences are 

relatively small, although not negligible. 



What are the relative advantages of smoothers based on cubic P-splines and 

O'Sullivan penalised splines, or O-splines for short? A theoretical comparison between 

P-splines and O-splines in terms of estimation performance, perhaps in the spirit of Hall 

& Opsomer (2005), would be ideal - although this is beyond the scope of the current 

chapter. 

Eilers & Marx (1996) partially justify use of P-splines rather than O'Sullivan splines 

based on simplicity of the P-spline penalty matrix. However, as seen from (2.3), the 

penalty matrix needed for O-splines can be obtained straightforwardly. Furthermore the 

discrete approximation of P-splines requires equally-spaced knots which, depending on 

/ , may not be desirable. 
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Figure 2.2: Comparison of near-diagonal entries of the penalty matrices for O'Sullivan penalised 
splines and cubic P-splines with k = 2 and equally-spaced interior knots. 



A possible advantage of P-splines is the option of higher-order penalties, although 
the resulting smoothers can have erratic extrapolation behaviour, A possible advantage 
of O-splines is their direct relationship with time-honoured smoothing splines, and their 
attractive theoretical properties (e.g. Nussbaum, 1985). From the results described in Sec-
tion 2.2 is clear that O-splines approach smoothing splines as K ^ n. But how close are 
O-splines to smoothing splines for common (smaller) choices of K, and are they closer 
than P-splines with the same value of K and interior knots? To address these questions 
we conducted an empirical study based on the eighteen homoscedastic nonparametric re-
gression settings in Wand (2000). For O-splines we used i i = 100 equally spaced interior 
knots with 4 repeated knots at each boundary as described in Section 2.2. However, for 
P-splines we used the knot sequence described in the Appendix of Filers & Marx (1996) 
which involves extending the knots beyond the boundary rather than repeating them. 
For each setting 200 samples were generated and smoothing spline estimates /s( :A), 
with smoothing parameter chosen via generalised cross-validation, were obtained. We 
then computed /o( :A) and /p( :A) to have the same effective degrees of freedom as 
fs{-: A) and recorded closeness measures d{fo{-: A). fs{-: A): A) and d{fp(-: A). /s(-: A): 
where 

d(f.g:A)^ [ U-9?dx 
J A 

We took A corresponding to the intervals (a .Ko) (left boundary), (k^.kk+o) (interior), 
{kk+O- b) (right boundary) and (a. b) (total region) where the denote the knots used 
for the O-spline fits. The Wand (2000) settings all involve predictor data within the unit 
interval. We took (a. b) = (-0.1.1.1) to assess behaviour beyond the range of the data. 
Wilcoxon tests on the 200 differences d(fo(-- A). fs(-: A): A) - d(fp{-: A), fsi-: A): A) were 
carried out for each setting and choice of A. Apart from being distribution-free, Wilcoxon 
tests have the advantage of being invariant to normalisation and whether differences or 
ratios are used. In all 72 cases O-splines were closer to smoothing splines than P-splines 
in the sense that the Wilcoxon p-value < 0.01. 

To appreciate the practical significance of these results we plotted the data 
and estimates at the 90th percentiles of each of the d{fo(-: X). fs(--A) and 
d{fp{-: X). fsi-: X): A) samples, corresponding to relatively high discrepancies. Some ex-
amples are shown in Figure 2.3. 

In each panel of Figure 2.3 aU curve estimates in the interior are almost indistinguish-
able to the naked eye. However, big differences occur at the boundary. P-splines have a 
tendency to deviate from the natural boundary behaviour of smoothing splines. We also 
observed this phenomenon in the other 16 settings. Further study into this differing ex-
trapolation behaviour would be worthwhile. We speculate that it comes from differences 
between the exact integral penalty and its discrete approximation near the boundary. 
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Figure 2.3: O-spline and P-spline fits compared with smoothing spline fits corresponding to 
the 90th percentiles of the d{foJs;A) and d{fpJs;A) samples; for two of the homoscedastic 
settings of Wand (2000). 

2.4 Mixed Model Formulation 

There are several ways by which Vq in (2.2) can be expressed as a best linear unbiased 
predictor (BLUP) in a mixed model (e.g. Speed, 1990; Verbyla, 1994). However, from a 
software standpoint, the most convenient form is Vq = {(3, u) where (3 and û are (empir-
ical) BLUPs of (3 and u in the mixed model 

y = X/3 + Zu + £, 
u / " 0 " r 0 1 u 

- N u 
£ \ 0 0 

(2.5) 

for some design matrices X and Z. An explicit expression for the BLUP in (2.5) (e.g. 
Ruppert et al, 2003; Section 4.5.3) is 

(3 
Û 

= 9 o = C^C + A 
0 0 
0 I 

- 1 

c ' y , A = a2/cr2 (2.6) 

where C = [X, Z], I is the identity matrix with the same number of columns as Z. This 
"canonicar' or standard mixed model form can be achieved if a (K + 4) x (K-h 4) linear 



transformation matrix L can be found such that C = B L and 

(2.7) L' nL = 
0 0 

0 I 

The usual method for obtaining L is spectral decomposition (e.g. Nychka & Cummins, 

1996; Cantoni & Hastie, 2002; Welham et al, 2007). It follows from results in the smooth-

ing spline literature (e.g. Speed, 1991, Section 6) that 

rank(il) = K-\-2. 

Hence, the spectral decomposition of fl is of the form ft = Udiag(d)U^ where U ^ U = I 

and d is a ( i i + 4) X 1 vector with exactly 2 zero entries and K 2 positive entries. Let 

dz be the {K + 2) x 1 sub-vector of d containing these positive entries, and let Uz be the 

{K A) X {K 2) sub-matrix of U with columns corresponding to positive entries of d. 

Then an appropriate linear transformation is L = [Ux, This leads to the 

fixed and random effects design matrices: 

X = B V x and Z = BUzdiag(d~^/^). (2.8) 

However, following again from the aforementioned smoothing spline literature (e.g. 

Speed, 1991, Section 6), B U ^ is a basis for the space of straight lines so the simpler 

specification X = [l,Xi]i<i<n may be used instead without affecting the fit. Figure 2.4 

allows comparison of the original B-spline basis, corresponding to B , and the basis cor-

responding to Z. Notice the damping of the Z basis functions with increasing oscillation. 

This compensates for the fact that the penalty is a multiple of the identity matrix. In 

the Appendix it is shown how the R linear mixed model function Ime () can be used 

to obtain fo{-; A) based on (2.5), with Z given by (2.8). For simple scatterplot smooth-

ing there is little difference between this approach and direct use of smooth. s p l i n e ( ) , 

and the answers are equivalent if the knot sequence and A values are equal. The default 

choice of A differs: Ime () uses restricted maximum likelihood (REML) to choose A, while 

smooth. s p l i n e () uses generalised cross-validation (GCV). The main advantage of the 

mixed model formulation of penalised splines is the incorporation into more complex 

models. Several examples are given in, for example, Ruppert et al. (2003). We will briefly 

describe one of them here. 

2.4.1 Longitudinal Data 

Figure 2.5 displays a longitudinal data set on bone mineral acquisition in young females 

(source: Bachrach, Hastie, Wang, Narasimhan & Marcus, 1999). The data consists of 

spinal bone mineral density (SBMD) measurements on each of 230 female subjects aged 

between 8 and 27. Each subject is measured between one and four times. Let Ui denote 

the number of measurements for subject i. The subjects have been divided into four 

ethnic groups: Asian, Black, Hispanic and White. 
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Figure 2.4: Comparison ofB-spline basis and Z basis for the fossil data example of Figure 2.2. 
The interior knots are shown as solid diamonds (•). 

A useful additive mixed model for these data is: 

SBMDy = t/̂  + /(age^ .̂) + /?iBlacki + /32Hispanic^ + /53Whitei + £y, 1 < i < 230,1 < j < n̂  

where are Ui i.i.d. N(0,al ) random intercepts for each subject. Blacky, Hispanic^ and 
Whitej are ethnicity indicators and Sij i.i.d. are random errors. More sophis-

ticated models that account for, say, serial correlation could be entertained. O'Sullivan 
penalised splines can be used to fit (2.5) with the design matrices set up as follows. Based 
on the age^ values and appropriate knots, set up 
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Figure 2.5: The spinal bone mineral data. Lines connect measurements taken on the same subject. 

analogous to the Z matrix of (2.8) for simple scatterplot smoothing. In the Appendix of 
this chapter, when fitting data of this type, we use 15 interior knots corresponding to 
quantiles of the unique age values. Form 

1 age^ 1 Blacki^i Hispanic^ ^̂  Whiteij 

and 

X -

1 agei,,^ Blacki,^, Hispanici,,^ Whitei, m 

1 2Lge23o,i Black230,i Hispanic23o,i White230,i 

_ 1 age230,ni Black230,ni HispailiC230,„, White230,ni _ 

1 0 

Zsubj — 

1 0 

0 0 

0 0 •• 



Concatenate Zĝ bj and Ẑ piî e to form 

7 — \7 7 ^ — [̂ subji ŝplinej' 

The appropriate mixed model is then 

y - X ^ + Zu + 
e J \ 

/ 
u " 0 " 

- N 
£ 0 

all 0 0 

5 0 0 
0 0 

The Appendix of this chapter contains the R code for fitting this model. Note, in particu-
lar, that it circumvents explicit specification of Zsubj- This is important for large longitudi-
nal datasets. 

2.5 Bayesian Analysis and Markov Chain Monte Carlo 

A particularly attractive advantage of penalised splines, compared with smoothing 
splines, is the ease with which they can be fed into Markov Chain Monte Carlo (MCMC) 
schemes for fitting Bayesian semiparametric regression models - due to the reduction 
in the number of basis functions. For simple scatterplot smoothing this involves the 
Bayesian version of (2.5), namely 

y 1/3, u, al ~ Ar(X/3 + Zu, a^I), ul^^ ~ N{0, all) 

and suitable (usually diffuse) prior distributions for /3, a"̂  and a^. However, the big ad-
vantages of a Bayesian/MCMC approach are realised when handling complications such 
as measurement error (e.g. Carroll, Ruppert, Stefanski & Crainiceanu, 2006) and gener-
alised responses (e.g. Zhao, Staudenmayer, Coull & Wand, 2006), which are hindered by 
analytically intractable integrals in the likelihood. 

Crainiceanu, Ruppert Sz Wand (2005) focus on use of the MCMC package WinBUGS 
(Windows version of BUGS, Spiegelhalter et al, 2000) for Bayesian penalised spline mod-
els. They reported that the choice of basis functions can have a substantial impact on the 
convergence of the chain. We decided to conduct some convergence checks for MCMC 
fitting of the regression model 

logit {P (unioiii = l|wagej} = /(wagej (2.9) 

with / estimated via O'Sullivan penalised splines. Here (wage ,̂ unions), 1 < z < 534, are 
pairs of wage amounts (dollars per hour) and trade union membership indicators for a 
sample of U.S. workers (source: Berndt, 1991). We expressed (2.9) as the Bayesian logistic 
mixed model: 

logit{P(unioni = l|wagej} = (X/3 + Zu)i, 1 < z < 534 



where X = [1, wageji<i<534 and Z = using the notation of Section 
2.4. Given that there are 238 unique values for wage^ a thorough analysis would vary the 
number of knots used. However, for reasons of computational efficiency, we only used 
15 interior knots with quantile spacing. 
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Figure 2.6: Fit of (2.9) using O'Sullivan penalised splines. The values for each of the wagers have 
been jittered along the lines y = 1 and y = 0 corresponding to the value of yi. 

Following the advice of Zhao et al. (2006) we used WinBUGS to generate chains of 
length 5,000 after a burn-in of 5,000 and applied a thinning factor of 5, resulting in poste-
rior samples of size 1,000. Also in keeping with the recommendations of Zhao et al. (2006) 
we placed diffuse priors on the fixed effect parameters and variance component: /?o, 
independent 7V(0,10®) and the prior density of a l proportional to (aj)"^ 
the inverse-gamma distribution with shape and rate parameter both 0.01, after scaling 
the predictor to have unit variance. Zhao et al. (2006) found that the results can be sensi-
tive to the choice of the inverse-gamma hyperparameter. 

The pointwise posterior mean effect of wage on the probability of trade union mem-
bership, together with 95% pointwise credible sets, is shown in Figure 2.6. Figure 2.7 
allows assessment of convergence of the MCMC at each quartile of the wage sample and 
is seen to be excellent in each case. 

We also compared the quality of mixing using the following logistic additive models 
involving 6 predictors and 3 smooth functions 

logit {P (iinionj = l |wagej} = + /?if emalei + /32Racei + /^ssouthi 
+ / i (wage j + /2(ageJ + /3(educationi) (2.10) 
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Figure 2.7: Assessment of MCMC convergence for O'Sullivan penalised spline estimation of 
(2.9) at each quartile of wage. The columns are: quartile of wage, trace plot of sample of cor-
responding coefficient, plot of sample against 1-lagged sample, sample autocorrelation function, 
Gelman-Rubin \iR diagnostic, kernel estimates posterior density and basic numerical summaries. 

where / i , /2 and fs are modelled using truncated power splines, radial basis functions 
and O-splines respectively. The pointwise posterior mean effect of wage, age and educa-
tion on the probability of trade union membership, together with 95% pointwise credible 
sets using O-splines, is shown in Figure 2.8. Figure 2.9 allows assessment of convergence 
for the median of wage for each basis type. From Figure 2.9 we see that mixing was good 
for O-splines and for the radial power basis but was not as good for truncated power 
splines. 

Several examples of semiparametric regression with winBUGS, including code, are 
given in Crainiceanu et al. (2005) and Zhao et al. (2006). 

2.6 Extensions 

In Section 2.2 an efficient method was described for calculation of the roughness penalty. 
We will now extend these results in several ways including to general degree O'Sullivan 
splines, derivative estimation and bivariate roughness penalties. 

2.6.1 General Degree 

Cubic O'Sullivan penalised splines have a natural extension to general odd degree 
splines. Higher degree splines have a role to play when smoother curve estimates are 
required. This arises, for example, in feature significance methodology (e.g. Chaudhuri 
& Marron, 1999; Hannig & Marron, 2006) where first and second derivatives of the fit 
are required. Return to the simple nonparametric regression setting (2.1) and let m be a 
general positive integer. Form the knot sequence 

a — = . . . = K,2m < l^2m+l < l^2m+K < '^2m+K+l = . . . = = b 
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Figure 2.8: Fit of (2.10) using O'Sullivan penalised splines. 

and let B2m-i,i, • • •, B2m-i,K+2m be the degree (2m - 1) B-spline basis defined by these 
knots. Order m O'Sullivan penalised splines then take the general form 

fo{x; m, A) = B2m-l,x^O where Vq = (B'^rn-l,x^2m-l,x + Aiî "" )̂ ^im-l^xY-

Here B2m-i is the nx {K-\- 4m) design matrix with (z, A;)th entry B2m-i,k(^i), B2m-i,x = 
B2m-i,i{x), • • • 5 B2m-i,K+2m(x)] and il̂ ™^ is the {K + 2m) x {K + 2m) penalty matrix 

with {k,k')th entry 

J a 

In the special case where the interior knots coincide with the xis (assumed distinct), 
A) corresponds to the order m smoothing spline; i.e. the minimiser of 

i=i 

(e.g. Schoenberg, 1964). 
We are now ready to state our result for exact computation of O'Sullivan spline 

penalty matrices. 
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Theorem 2.1: The penalty matrix admits the exact explicit expression 

Qim) ^ 

where B^^) is the (2m - 1){K + 4m - 1) x {K 2m) matrix with {i,j)th entry 
and w is a {2m — 1) (K + 4m — 1) x 1 vector with ith entry wi. The xi and Wi values are obtained 
according to 

^{2m-l){e-l)+i' + l = + 
'^{2m-l)ie-l)+e' + l = 

fori <i< K -\-4:m-l,0<i' <2m-2. Here, for 1 < k < K 2m, hi^k = i^k+i - i^k and, 
for m>2, hm,k ~ {i^k+i — i^k)l{2m — 2), Lastly, for all m > 1, 

^m,k — 

( -1 ) '= 2 m - 1 

k\{2m-2-k)\ Jq 

Proof. The {k, k')th entry of íí^^^ is 

t{t-l)...{t-2m + 1) 
t-k 

dt, k = 0,...,2m-2. 

ro K + 4 m - l 

= / = E / (2.11) Ja J Ki 



Since fc'(^) ^^^ degree m - 1 polynomials on each interval x G («i, 
for 1 < i < K+Am-l the function a degree 2(m-1) polynomial 
on the same interval. The result follows by applying the Newton-Cotes integration (2m — 
l)-point rule (e.g. Whittaker & Robinson, 1967) to the right hand side of (2.11) which is 
exact for polynomials of degree 2(m — 1) or lower. 

• 
Table 2.6.1 provides values of uorn.k for O'Sullivan polynomials up to degree 7. This, to-
gether with Theorem 2.1, allows direct computation of penalty matrices of O'Sullivan 
splines for m < 4. Higher values of m require a one-off calculation of the ujm^k through, 
say, a symbolic computation package such as Maple (Waterloo Maple Inc., 2007) or 
Mathematica. 

m/k 0 1 2 3 4 5 6 
1 1 
2 1/3 4/3 1/3 
3 14/45 64/45 8/15 64/45 14/45 
4 41/140 54/35 27/140 68/35 27/140 54/35 41/140 

Table 2.6.1: Table ofujm,k values for m < 4. 

Recall from Section 2.2 that, in the case of cubic O'Sullivan splines, Newton-Cotes 
integration reduces to Simpson's rule and a simpler, more revealing, expression results 
in the shape of (2.3). 

A mixed model formulation for general degree penalties can be obtained using sim-
ilar methods at those in Section 2.4. We seek a mixed model of the form (2.6) and again 
wish to find a {K 2m) x {K 2m) linear transformation matrix L can be found such 
that C = BL. To this end we first note that 

The spectral decomposition of is of the form - Udiag(d)U^ where U^U = I 
and disa {K 2m) x 1 vector with exactly m zero entries and K 2m positive entries. 
Let d^ be the {K+2m) x 1 sub-vector of d containing these positive entries, and let U^ be 
the {K + 2m) x {K -\-m) sub-matrix of U with columns corresponding to positive entries 

— 1 / 2 
of d. Then an appropriate linear transformation is 

L = [Ux,Uzdiag(d^'/')]. This leads 
to the fixed and random effects design matrices with the same form as (2.8). However, 
we instead note that B U x is a basis for the space of degree m - 1 polynomials so the 
simpler specification uses 

which may be used instead without affecting the fit. 



2.6.2 Derivative Plots 

A simple but perhaps underutilized tool in semiparametric regression are derivative 
plots. These are simple to use and can aid in the understanding of the fitted model. 
Suppose for a fixed A the vector Vq was obtained from (2.2). Then an estimate of the 
derivatives of fo {x ; A) with respect to x are given by 

where B^ = [B[{x),..., ^^^ ^^^ derivatives of B-splines with respect to x can 

be calculated recursively (de Boor, 1972) 

Bpki^) = hCk+p - l^k f^k+p+l - f^k+1 

If Vo was obtained using the mixed model formulation of O'Sullivan splines as in Section 

2.4 or for general degree penalty using Section 2.6.1 then 

?o(x;A) = C'.Po 

where C^ = [X^, z y and 

This follows due to the fact that is independent of x. Figure 2.10 illustrates 

the derivatives for the fit in Figure 2.1. 

2.6.3 Alternative Mixed Model Formulation 

The mixed model formulation of O'Sullivan splines as in Section 2.4 is not unique. For 

simplicity we will restrict our analysis to the cubic B-spline (m = 2) case. Using the 

properties of B-spline formula (1.16) we can write Bi{x) and B2{x) as 

Bi{x) = Cii + Ci2X + + CuX^ + Ci5(k5 -

B2{X) = C21X + + C23X^ + €24(^5 - x )^ + Ci^i^Q - + 

for some constants Cij. If we remove these from the B-spline basis then the 

space of straight lines is not included in the span of {Bk {x) Thus we let k i , . . . , kk+6 
be a knot sequence such that 

a = Ki = K2 < 1^3 < • • • < f^K+2 < I^K+S = t^K+4 = f^K+5 = f^K+6 = h 

and let be the cubic B-spline basis functions defined by these knots. Adding 

the space of lines the basis 
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Figure 2.10: Illustration of derivatives of O'Sullivan penalised spline fit of fossil data over the 
interval [85,130] millions of years. 

spans the same space of functions as the B-spline basis We now set up the 
n X {K + 2) design matrix B with (¿, A:)th entry Bik = Bk{xi) and ft is given by 

n = 
0 0 
0 n 

where nis a {K -\-2) x {K + 2) penalty matrix for the reduced basis We can 
calculate ft using (2.3) with the reduced knot sequence. We now note that because the 
new basis {Bk{')}kJi does not span the space of straight lines the corresponding penalty 
matrix Q is full rank. Let 



be the Cholesky factorization of ft where R is an upper triangular matrix of the same 

dimensions as Î2. Then an alternative mixed model formulation uses 

X = and Z = 

2.6.4 Bivariate Tensor Product 0-Splines 

Thus far we have only considered at most additive models of univariate O-splines. Bi-

variate smoothing is also of considerable interest and can be performed by considering 

tensor products of univariate O-splines. We seek to fit a model of the form 

Vi = f{xii,Xi2)-\-Si, 1 <i<n 

where x̂  = {xii,xi2) and (yi^Xi) G M x R^, Suppose that the estimate of / is required 

over [ai, 61] x [02,62] region containing the XjS. For an integer Ki < n and K2 < n let 

= • • •, /^Ki+8,1) ^rid K2 = (ki,2, • • •, '̂ ^2+8,2) be knot sequences such that 

ai = 1^1,1 = «̂ 2,1 — 1^3,1 = 1^4,1 < < • • • 

< < I^Ki+5,1 = I^Ki+6,1 = I^Ki+7,1 = I^Ki+8,1 = 

Ci2 — 1^1,2 = 1^2,2 = 1^3,2 = 1^4,2 < 1^5,2 < • • • 

< f^K2+4,2 < I^K2+5,2 = I^K2+Q,2 = = I^K2+8,2 = h 

and let and t>e the cubic B-spline basis functions using and 

K2 respectively. Let 
Ki+A X2+4 

f{xux2)^ Y^ Y^ Bii{xi)Bj2ix2)iyij 
i=i j=i 

Consider the problem of seeking for fixed A the u = • • •, î Xi+4,̂ 2+4) which 

n 

Y{yi-f{Xil,Xi2)f + XJ2{f) 

minimises 

2 = 1 

where 

la2 lai ^'^^dxidx^ ^^^^^^ 

with 

Ki K2 Ki K2 rb2 rbi / f)'2f Ki K2 

and the pair may take the values (2,0), (1,1) or (0,2). Also note that J2(/) 

is the same penalty determining bivariate thin-plate splines (e.g. Wahba, 1990; Wood 

2003). We can use the following theorem to calculate and and hence O. 



Theorem 2.2: The penalty matrix admits the exact explicit expression 

(BÎ^ydiag (wi )Br ^ .it) (2.13) 

where B^^^ is the (6 - 2s){K + 7) x (if + 4) matrix with {i,j)th entry and ŵ  is 
a vector of length (6 - 2s){K + 7) with ith entry Wik- The xi^k and wi^k values are obtained 
according to 

hsAk = {K,e+I,k - I^£,k)/(6 - 2s) 
for 1 < i < K ^ 7, 0 <£'< 6 - 2s, k = 1,2 and 

( - i f t { t - l ) . . . { t + 2 s - 7) 
{i')l{6 - 2s - £')\ Jo t - i ' 

Proof. From equation (2.12) we can deduce 

, rb2 rbi 

dt, = 

a2 -J a\ 
/ /-èi 

Now 
bi K+7 

ai 
BlCix^Blfiix^dx, = 

¿=l 
Blt\xi)Blfl{xi)dxi. (2.14) 

Since Bii{xi) and Bi>i{xi) are cubic B-splines for all (i,i'), the Bii(xi)Bifi(xi) are de-

gree 6 polynomials on each interval x e for 1 < ^ < i i + 7 the function 

bII ' ' {xi)Blf^ (xi) is a degree 6 - 2s polynomial on the same interval. The result follows by 

applying the Newton-Cotes integration (7 - 2s)-point rule (e.g. Whittaker & Robinson, 

1967) to the right hand side of (2.14) which is exact for polynomials of degree 6 - 2s or 

lower. Similar arguments can be made for Bf^{x2)B^^l{x2). Using these we have 

-

which we can use to deduce the result. 

it) 
J,J 

The expression (2.13) bears a resemblance to the penalties used for the scale-invariant 

tensor product splines of Wood (2006) and could be adapted to this purpose with slight 

modifications. 
A mixed model formulation satisfying (2.5) and (2.6) can be obtained by first noticing 

{ f i x i , X 2 ) J : such that J2(/) = 0} = span {1, xi, X2} , (2.15) 



the space of bivariate planes. This impUes that 

rank(n) = {K + Af - 3. 

Hence, the spectral decomposition of ft is of the form ft = Udiag(d)U^ where U^U = I 
and d is a (K + 4)^ X 1 vector with exactly 3 zero entries and {K + 4 ) ^ - 3 positive entries. 
Let dz be the ((ii+4)^ - 3 ) X1 sub-vector of d containing these positive entries, and let \Jz 
be the (X + 4)2 X ((ii + 4)2 - 3) sub-matrix of U with columns corresponding to positive 

— 1/2 

entries of d. Then an appropriate linear transformation is L = [Ux|Uzdiag(d^^^^)]. This 
leads to the fixed and random effects design matrices: 

X = B U x and Z = BUzdiag(d^^/^). 

However, B J J x is a basis for the space of bivariate planes so the simpler specification 
X = [1, Xii,Xi2]i<i<n may be used instead without affecting the fit. 

Figures 2.11-2.12 illustrates a fit and error for using bivariate tensor product 
O'Sullivan spline for (yi^Xi), I < i < 400, where xn ~ Unif(0,l), Xi2 ~ Unif(0,l), 
yi ~ N{f{xii,xi2),0.1^) and 

, , , 0.75 f (x i -0 .2 )2 (^2-0 .2 ) 
f(xi,X2) = exp 

0.45 r (x -0 .7 )2 (^2-0.8)^ 
exp 

7^(^x1(^x2 L cr^i J 

which is used in Wood (2003). Here we use cTâi = 0.3 and ax2 = 0.4. We fit the model 
using the R function Ime () to fit the linear mixed model based on (2.5). 

2.7 Closing Remarks 

Smoothing splines have a special place in semiparametric regression. They are based on 
simple and intuitive principles, have an attractive theory (e.g. Nussbaum, 1985; Wahba, 
1990; Eubank, 1994; Solo, 2000) and possess good practical properties such as natural 
boundary behaviour. Penalised splines, including P-splines, have gained popularity for 
reasons stated in the introduction. However, proponents of penalised splines have been 
viewed by some, especially in the smoothing spline community, as ignoring the benefits 
that have been established for smoothing splines over the past few decades. O'Sullivan 
penalised splines, being a direct generalisation and closer approximation of smoothing 
splines, provide an attractive link between the two streams of semiparametric regression 
research and allow analysts to enjoy the best of both worlds. 
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Figure 2.11: Illustration of f{xi,x2) (left panel) used to fit bivariate tensor product O-splines 
(right panel) for 1 < i < 400 where xn ~ Unif(0,l), Xi2 ~ Unif(0,l) and yi ~ 
7V(/(xi,X2),0.12). 

Appendix: Code 

In this Appendix we provide R code for use of O'Sullivan penalised splines in the sim-
plest semiparametric regression setting: scatterplot smoothing. The extensions to more 
complex models, such as those described by Ngo & Wand (2004) and Crainiceanu, Rup-
pert & Wand (2005), is straightforward. We illustrate one of these extensions: additive 
mixed models. 

Direct scatterplot smoothing with user choice of smoothing parameter 

Obtain scatterplot data corresponding to environmental data from the R package 
l a t t i c e . Set up plotting grid, knots and smoothing parameter: 

l i b r a r y ( l a t t i c e ) ; a t t a c h ( e n v i r o n m e n t a l ) 

X < - r a d i a t i o n ; y < - o z o n e " ( 1 / 3 ) 

a < - 0 ; b < - 3 5 0 ; x g < - s e q ( a , b , l e n g t h = 1 0 1 ) 

n u m l n t K n o t s < - 2 0 ; l a m b d a < - 1 0 0 0 

Set up the design matrix and related quantities: 
l i b r a r y ( s p l i n e s ) 

i n t K n o t s < - q u a n t i l e ( u n i q u e ( x ) , s e q ( 0 , 1 , l e n g t h = 

( n u m I n t K n o t s + 2 ) ) [ - c ( 1 , ( n u m I n t K n o t s + 2 ) ) ] ) 

n a m e s ( i n t K n o t s ) < - N U L L 



Figure 2.12: Absolute error between / (x i , X2) and bivariate tensor product O-splines fit. 

B <- bs(x,knots=intKnots,degree=3 , 
Boundary.knots=c(a,b),intercept=TRUE) 

BTB <- crossprod(B) ; BTy <- crossprod(B,y) 
Create the ft matrix. 

formOmega <- function(a,b,intKnots) 
{ 

allKnots <- c(rep(a,4),intKnots,rep(b,4)) 
K <- length(intKnots) ; L <- 3*(K+8) 
xtilde <- (rep(allKnots,each=3)[-C(1,(L-1),L)]+ 

rep(allKnots,each=3) [-c (1,2,L)])/2 
wts <- rep(diff(allKnots),each=3)*rep(c(l,4,1)/6,K+7) 
Bdd <- spline.des(allKnots,xtilde,derivs=rep(2,length(xtilde)) , 

outer.ok=TRUE)$design 
Omega <- t(Bdd*wts)%*%Bdd 
return(Omega) 

} 
Omega <- formOmega(a,b,intKnots) 

Obtain the coefficients: 

nuHat <- solve(BTB+lambda*Omega,BTy) 
For large K the following alternative Cholesky-based approach can be considerably 
faster (0{K), because B ^ B + Ail is banded diagonal): 

cholFac <- chol(BTB+lambda*Omega) 
nuHat <- backsolve(cholFac,forwardsolve(t(cholFac),BTy)) 



Further improvements would be possible if the R functions chol ( ) , backso lve () and 
f orwardsolve () had a bandwidth argument which would exploit the banded diagonal 
structure of the various matrices above. 

Display the fit: 

Bg <- bs(xg,knots=intKnots,degree=3, 
Boundary.knots=c(a,b),intercept=TRUE) 

fhatg <- Bg%*%nuHat 
p lo t (x ,y ,x l im=range(xg) ,b ty=" l " , type="n" ,x lab="radia t ion" , 

ylab="cuberoot of ozone",main="(a) d i rec t f i t ; user 
choice of smooth, par . " ) 

l ines(xg,fhatg, lwd=2) 
points(x,y,lwd=2) 

Mixed model scatterplot smoothing with REML choice of smoothing parameter 

Obtain the spectral decomposition of 17: 
eigOmega <- eigen(Omega) 

Obtain the matrix for linear transformation of B to Z: 
indsZ <- 1:(numIntKnots+2) 
UZ <- eigOmega$vectors[,indsZ] 
LZ <- t(t(UZ)/sqrt(eigOmega$values[indsZ])) 

Perform stability check 
indsX <- (numIntKnots+3):(numIntKnots+4) 
UX <- eigOmega$vectors[,indsX] 
L <- cbind( UX, LZ ) 
stabCheck <- t(crossprod(L,t(crossprod(L,Omega)))) 
i f (sum(stabCheck"2) > 1.0001*(numIntKnots+2)) 

print("WARNING: NUMERICAL INSTABILITY ARISING FROM 
SPECTRAL DECOMPOSITION") 

Form the X and Z matrices: 
X <- cb ind(rep(1 , length(x) ) ,x ) 
Z <- B%*%LZ 

Fit using Ime () with REML choice of smoothing parameter: 
l ibrary(nlme) 
group <- rep(1 , length(x) ) 
gpData <- groupedData(y~x|group,data=data.frame(x,y)) 
f i t <- Ime(y~-l+X,random=pdIdent(~-l+Z),data=gpData) 

Extract coefficients and plot scatterplot smooth over a grid: 
betaHat <- f i t $ c o e f $ f i x e d 
uHat <- unlist(f i t$coef$random) 
Zg <- Bg%*%LZ 
fhatgREML <- betaHat[1] + betaHat[2]*xg + Zg%*%uHat 
p lo t (x ,y ,x l im=range(xg) ,b ty=" l " , type="n" ,x lab="radia t ion" , 

ylab="cuberoot of ozone",main="(b) mixed model f i t ; 
REML choice of smooth, par . " ) 

lines(xg,fhatgREML,lwd=2) 



points(x,y,lwd=2) 

Execution of the above code leads to Figure 2.13. 
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Figure 2.13: Plots obtained from execution of the first two chunks of code in this Appendix. 

Fitting an additive mixed model 

The spinal bone mineral density data of Bachrach et al (1999) are not publicly available. 
Therefore we will illustrate fitting of additive mixed models using simulated data. For 
simplicity we will use two ethnicity categories rather than four. 

Generate data and set up basic variables for the spline component: 
set .seed(3 94600) ; m <- 23 0 ; nVals <- sample(1:4,m,replace=TRUE) 
betaVal <- 0 .1 ; sigU <- 0.25 ; sigEps <- 0.05 
f <- function(x) { return(1 + pnorm((2*x-36)/5)/2) } 
U <- rnorm(m,0,sigU) 
age <- NULL ; e thnic i ty <- NULL 
Uvals <- NULL ; idNum <- NULL 
for (i in l:m) { 

idNum <- c(idNum,rep(i ,nVals[i])) 
s t t <- r u n i f ( 1 , 8 , 2 8 - ( n V a l s [ i ] - 1 ) ) 
age <- c (age , seq(s t t ,by= l , l ength=nVals [ i ] ) ) 
xCurr <- sample(c(0,1) ,1) 
e thnic i ty <- c(ethnici ty,rep(xCurr,nVals [ i ] ) ) 
Uvals <- c (Uvals , rep(U[ i ] ,nVals [ i ] ) ) 

} 
epsVals <- rnorm(sum(nVals),0,sigEps) 
SBMD <- f(age) + betaVal*ethnici ty + Uvals + epsVals 



Set up basic variables for the spline component. 

a <- 8 ; b <- 28; numlntKnots <- 15 
intKnots <- quantile(unique(age),seq(0,1,length= 

(numIntKnots+2))[-c(l,(numIntKnots+2))]) 
Obtain the spline component of the Z matrix. 

B <- bs(age,knots=intKnots,degree=3 , 
Boundary.knots=c(a,b),intercept=TRUE) 

Omega <- formOmega(a,b,intKnots) 
eigOmega <- eigen(Omega) 
indsZ <- 1:(numIntKnots+2) 
UZ <- eigOmega$vectors[,indsZ] 
LZ <- t(t(UZ)/sqrt(eigOmega$values[indsZ])) 
ZSpline <- B%*%LZ 

Obtain the X matrix: 
X <- cbind(rep(1,length(SBMD)),age,ethnicity) 

Set up variables required for fitting via Ime ( ) . Note that the random intercept is taken 
care of via the tree identification numbers variable idNum, and that explicit formation of 
the random effect contribution to the Z matrix is not required. 

groupVec <- factor(rep(1,length(SBMD))) 
ZBlock <- list(list(groupVec=pdIdent(~ZSpline-l)), 

list(idNum=pdIdent(~1))) 
ZBlock <- unlist(ZBlock,recursive=FALSE) 
dataFr <- groupedData (SBMD''ethnicity | groupVec, 

data=data.frame(SBMD,X,ZSpline,idNum)) 
fit <- Ime(SBMD~-1+X,data=dataFr,random=ZBlock) 
betaHat <- fit$coef$fixed 
uHat <- unlist(fit$coef$random) 
uSplineHat <- uHat[1:ncol(ZSpline)] 

Plot the data and fitted curve estimates together, 
ng <- 101 ; ageg <- seq(a,b,length=ng) 
Bg <- bs(ageg,knots=intKnots,degree=3, 

Boundary.knots=c(a,b),intercept=TRUE) 
ZgSpline <- Bg%*%LZ 
plotMatrixO <- cbind(rep(1,ng),ageg,rep(0,ng),ZgSpline) 
fhatgREML <- plotMatrixO %*% c(betaHat, uSplineHat) 
xLabs <- paste("ethnicity =",as.character(ethnicity)) 
pobj <- xyplot(SBMD~age IxLabs,groups = idNum,xlab="age (years)", 

ylab="spinal bone mineral density",subscripts=TRUE, 
panel=function(x,y,subscripts,groups) 
{ 

panel.grid 0 ; panel.superpose(x,y,subscripts,groups, 
type="b",col="grey60",pch=16) 

panelind <- any(ethnicity[subscripts]==1) 
panel.xyplot(ageg,fhatgREML+panelInd*betaHat[3] , 

lwd=3,type="l",col="black") 
}) 



print(pobj) 
Print approximate 95% confidence intervals for key parameters. 

print(intervals(fit) ) 
This leads to the following output: 

Approximate 95% confidence intervals 

Fixed effects: 
lower est. upper 

X 0.68637207 0.77011154 0.85385101 
Xage 0.02586448 0.02971670 0.03356891 
Xethnicity 0.01121194 0.07549794 0.13978393 
attr(,"label") 
[1] "Fixed effects: " 

Random Effects: 
Level: groupVec 

lower est. upper 
sd(ZSpline - 1) 0.01028272 0.01725978 0.02897093 

Level: idNum 
lower est. upper 

sd(l) 0.2221770 0.2440963 0.2681781 

Within-group standard error: 
lower est. upper 

0.04788011 0.05162773 0.05566867 

Execution of the above code should lead to Figure 2.14. 
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Figure 2.14: Plot obtained from execution of the last chunk of code in this Appendix. 



CHAPTER 3 

Parsimonious Classification via 
Generalised Linear Mixed Models 

3.1 Introduction 

Classification is a very old and common problem, where training data are used to guide 
the classification of future objects into two or more classes based on observed predictors. 
Examples include clinical diagnosis based on patient symptoms, handwriting recognition 
based on digitised images and financial credit approval based on applicant attributes. 
Classification has an enormous number of applications; arising in most areas of sci-
ence, but also in business as evidenced by the ongoing growth of industries such as data 
mining and fraud detection. The literature on classification methodology and theory is 
massive and mature. Contemporary statistical perspectives include Hastie, Tibshirani & 
Friedman (2001), Breiman (2001) and Hand (2006). A substantial portion of the classifi-
cation literature is within the field of Computing Science, where 'classification' is usually 
called 'supervised learning' and 'predictors' often called 'features' or 'variables'. 

There is a multitude of criteria that could be considered when tuning and assess-
ing the quality of a classification algorithm. Numerical criteria include test error. Brier 
score and area under the curve of the receiver operating characteristic. A non-numerical 
quality criterion which, depending on the application, can be of utmost importance is 
interpretahility. Hastie et al (2001, Section 10.7) state that 'data mining applications gen-
erally require interpretable models' and that 'black box' classifiers with good numerical 
performance are 'far less useful'. Nevertheless, a good deal of classification theory and 
methodology, within both Statistics and Computing Science, is oblivious to interpretahil-
ity. Some exceptions include tree-based approaches (e.g. Breiman, Friedman, Olshen & 
Stone, 1984; Hastie et al, 2001) and additive model-based approaches (e.g. Hastie et al, 
2001). Related to interpretability is parsimony, where superfluous predictors are sifted 
out. This corresponds to pruning of tree-type classifiers and variable selection in those 
based on additive models. In Computing Science the topics of variable selection and feature 
selection (e.g. Guyon & Elisseeff, 2003) have similar aims. 

Another often neglected quality measure is speed. Again, depending on the appli-
cation, speed can be crucial. Speed is invariably tied to the size of the training data but 

^This chapter corresponds to: Kauermann, G., Ormerod, J.T. & Wand, M.P. (2008), Parsimonious Classi-
fication via Generalised Linear Mixed Models, (submitted), representing joint research between G. Kauer-
mann, J.T. Ormerod and M.P Wand. 



there are huge differences, some involving several orders of magnitude, between existing 

classification algorithms in this respect. 

In this chapter we develop a classification algorithm that strives for very good per-

formance in terms of interpretation, parsimony and speed; while also achieving good 

classification performance. The algorithm, which we call KOW (after the authors of the 

corresponding paper), performs classification via a semiparametric logistic regression 

model after undergoing variable selection on the predictors. In this respect, KOW is sim-

ilar in spirit to variable selection algorithms for additive models such as BRUTO (Hastie 

& Tibshirani, 1990), those based on versions of the R function s t e p . gam () (Chambers 

& Hastie, 1992; Hastie, 2006; Wood, 2006), and Markov Chain Monte Carlo approaches 

such as that developed by Yau, Kohn & Wood (2002). The additive structure aids inter-

pretation, but can also lead to improved test errors; see e.g. Section 12.3.4 of Hastie et al 

(2001). 

The KOW algorithm performs fast fitting and variable selection by borrowing ideas 

from generalised linear mixed models (GLMM). This is a relatively young, but rapidly 

growing, area of research that has its roots in biostatistical topics such as longitudinal 

data analysis and disease mapping; see e.g. Breslow & Clayton (1993), Verbeke & Molen-

berghs (2000) and Wakefield, Best & Waller (2000). However GLMMs can handle a much 

wider range of problems including generalised additive models (e.g. Zhao, Stauden-

mayer, Coull & Wand, 2006). The essence of KOW is to equate inclusion of a predictor 

with the significance of parameters in a GLMM. Linear terms correspond to fixed ef-

fect parameters, while non-linear terms correspond to variance components. KOW uses 

efficient score-based statistics, also known as Rao statistics, to choose among candidate 

predictors. A version of the Akaike Information Criterion is used to choose between 

fixed effect parameters and variance components, and also acts as a stopping rule. Un-

like s t e p . gam ( ) , KOW has inbuilt automatic smoothing parameter selection for smooth 

function components. 

When fitting a GLMM, whether for classification or not, the main obstacle is the pres-

ence of analytically intractable integrals in the likelihood. Currently available methods 

for fitting a GLMM fall into three general categories: quadrature, Monte Carlo methods 

and analytic approximation (e.g. McCulloch & Searle, 2001). Quadrature is not viable 

for the size of integrals arising in GLMMs with additive model structure. Monte Carlo 

methods are generally ruled out by their slowness. KOW makes use of a much faster 

Laplace-like approximation PQL (Breslow & Clayton, 1993). PQL approximations are 

sometimes criticised in GLMM analysis due to the substantial biases inherent in esti-

mates of parameters of interest (e.g. McCulloch & Searle, 2000, p. 283). However, such 

issues are less crucial in the classification context. 

We have tested KOW on several real and simulated data sets and compared it with 

other additive model-based classifiers. Our implementation of KOW fits a classifier to 

data sets with 5-10 possible predictors in a few seconds on a typical 2008 computer. If 

the number of predictors is in the tens then computation is in the order of minutes. The 



penalised spline aspect of KOW means that training sample size only has a linear effect 
on computation times. KOW is generally much faster than s t e p . gam (), although not 
as fast as BRUTO. However KOW can yield much better classification performance than 
BRUTO and is on par with s t e p . gam (). Performances tend to be similar among algo-
rithms in terms of interpretability and parsimony On balance, we believe KOW has the 
potential for improved fast classification in contexts when interpretability and parsimony 
are important. 
3.2 Fast Logistic Mixed Model Classifiers 
Consider two-class classification with class labels denoted hy y € {0,1} and let x = 
(x i , . . . , Xd) be the set of possible predictors. Logistic regression-type classification is 
based on models of general form 

log i t{P(y - l | x )} = r7(x). (3.1) 

Classification of a new observation with predictor vector x̂ ew is performed according to 

Sign{^(Xnew)} 

where ^ is an estimate of rj based on training data (xi, ) , . . . , (x^, Here x̂  is a d-
variate vector representing the ith observation on x. 

A key element is appropriate modelling of 77 (x). Given our interpretability goals, we 
work with sums of smooth low-dimensional functions, i.e. additive models (Hastie «& 
Tibshirani, 1990) as described in Section 1.2.1. Models for 77 = (/^(xi),..., 77(x^)) can be 
written in the form 

r/ = X/3 + Zu (3.2) 
where ^ is a vector of fixed effects, u is a vector of random effects, X contains a column 
of ones, together with a subset of the columns of [xi , . . . , x„], and Z are design matrices 
corresponding to spline bases. The covariance matrix of u takes the form 

= blockdiag(ij|l) (3.3) 
i<j<v 

where cr̂  = (cti , . . . , crj) is the vector of variance components. 
For the model defined by (3.1), (3.2) and (3.3) the log-likelihood of (3 and cr^ is 

0-2) = log J exp {y^(X/3 + Zu) - l^ log( l + (3.4) 

where q is the dimension of u. The integral (3.4) cannot be calculated in analytic form. 
This is usually dealt with via Monte Carlo methods or analytic approximations. In the 



interest of speed we work with the Laplace approximation of (3.4): 

(3.5) 
+ ZÛ) - l^'log(l + e^^+Z") - ^u^'G .]u 2 

where 
r X / 9 + Z u 

. X / 3 + Z u y 2 j ' 

Û is the maximiser of the integrand in (3.5) (e.g. Breslow & Clayton, 1993) and cr̂  > 0, 

i.e. satisfies 

and a^ > 0. 

^ X / 3 + Z Û \ 

1 + eX/3+ZQ j - " - " (3 6) 

Maximising (3.5) with respect to the remaining variables /3 and cr̂  is difficult due to 
non-linear expressions involving both /3 and cr'̂  in the first and last terms of (3.5). We 
therefore pursue a backfitting idea by iteratively maximising (3.5) with respect to /3 and 
(T̂ , respectively. Note that u depends on /3 and a'̂ , so that the Laplace approximation has 
to be updated in each estimation iteration as well. We do this by updating the estimates 
of (5 and u simultaneously. Let B = blockdiag(0, G~j), = u), C = [X, Z] and 

df,{a]) ^ tr{E,(Z^W3 , Z + G^.^-^Z^W^ , Z } 

where E j is the diagonal matrix with ones in the diagonal positions corresponding to the 
spline basis functions for ctj and zeroes elsewhere. Note that dfj{a'j) has an 'effective de-
grees of freedom' (e.g. Buja, Hastie & Tibshirani, 1989) interpretation for the contribution 
from the spline terms attached to We propose fitting logistic mixed model classifiers 
using Algorithm 1. 

Algorithm 1 is similar to the algorithm developed by Breslow & Clayton (1993), com-
monly referred to as PQL (an acronym for Penalised Quasi-Likelihood) but differs in two 
respects. PQL uses Fisher scoring as the updating step for 9 while Algorithm 1 uses a 
repeated Hessian Newton's method (see Appendix C). Here the Hessian is updated every 
second iteration and can be viewed as a slight modification of Fisher scoring. However, 
unlike PQL, the updating step for uses a fixed point iteration in order to avoid cal-
culating the Hessian matrix of derivatives with respect to cr̂ . The fixed point updating 
formula arises from differentiation of iuphceiP, with respect to cr'j. The PQL approach 
to updating a is trickier to implement since more care is required to calculate the Hes-
sian and ensuring positive definiteness in calculating Newton search directions for cr̂ . 

Algorithm 1 is also quite fast compared to PQL. Solving for for a fixed is 

a concave programming problem. Assuming that the function to be maximised has a 
Lipschitz continuous Hessian and the current iterate is sufficiently close to the solution 
then it is possible to show that the rate of convergence over two-steps of the algorithm 
is cubic (see Appendix C). Every odd iteration takes 0(nP^ -H P^) while every even step 
only takes 0{nP + P^) where P is the length of the 9 vector. Solving for can be 



comprehended as a fixed-point iteration. Each update can be computed in 0{nP'^ + 

P^) operations. 

Algorithm 1 Fast Fitting of a Logistic Mixed Model Classifier 

1. Initialise: and Set L to be a small integer. 

2. Cycle: 

for s = 1,2,... do 

if s mod L = 1 then 

end if 

= + + {y-

fori = 1,2, . .. do 

for / E J do 
21 

,ci> 
- B P (s) 

end for 

end for 

end for 

until: max | ^ — I/" f.2(i+l)_3.2(t)| 
below some small tolerance value. 

3.3 Model Selection 

We now address the problem of choosing between the various models for the classifier 

?7(x). Even for moderate d the number of such models can be very large. Our approach 

is driven by our previously stated goals of speed, parsimony and interpretability. 

The fullest model has fixed effects component 

(3q + + ... + (idXd-

However, smooth function terms will not be appropriate for all predictors. For example, 

some of the xis may be binary. Let S be the subset of {1 , . . . , d} such that xi is to be 

modelled as smooth function for each i e I. Then let 5 be a partition of I that specifies 

the type of non-linear modelling in the fullest model. For example, ii d = 4 and X2 is 

binary then 5 = {1,3,4} corresponds to the fullest model being the additive model 

r]{xi,X2,Xs,X4) = Si{xi) + ¡32X2 + 53(2:3) + S4(X4), 

while S = { {1 ,3 } , 4} corresponds to the model 

77(xi,X2,X3,X4) = /?0 + «13(^1,^3) + + «4(2:4) 

where si, 53 and 54 are smooth univariate functions oi xi, X2 and X4 respectively and sis 

is a smooth bivariate function of xi and X3. We will assume, for now, that S and I are 



specified in advance. A recommended default choice is 

S = all singleton sets of elements of I 

corresponding to an additive model. Note that subscripting on the cr| corresponds to the 
elements of I rather than those of x. 

Description of our model selection strategy for the general set-up becomes notation-
ally unwieldy. Therefore we will describe the algorithm via an example. Suppose that 
the set of possible predictors {xi, 2:2, X3} where xi is binary and X2 and X3 continuous, 
and that only additive models are to be considered. Then S = {2,3} and J = {2,3}. The 
fullest model is 

92 93 
r]{xuX2,X3) = /3o + Axi + (32X2 PsXs -\-^U2kZ2k(x2) + 

k l̂ k=l 

where U2k i-i-d. and U2,k i-i-d. N{0,al). There are 2̂  = 32 possible sub-models 
that include the intercept term. We propose the following forward selection approach to 
choosing among them: 

1. Start with 7/(x 15X2,2:3) = Po-
2. (a) Determine the 'best' linear component to add to the model from 

{/?iXi,/?2X2,/?3X3}. Let denote the l3k corresponding to this 
choice. 

(b) Determine the 'best' non-linear (spline) component to add to the 
model from uskZski^s)}. Let a^ denote 
the al corresponding to this choice. 

3. Add the component corresponding to or crj that leads to the bigger 
decrease in the marginal Akaike Information Criterion (mAIC). If there 
is no decrease or if there are no remaining components then stop and 
use the current model for classification. Otherwise, add the new com-
ponent to the model and return to Step 2; modified to have one less 
component. 

We propose to choose the 'best' linear and non-linear components using approximate 
score-type test statistics that do not require fitting of the candidate models. This has an 
obvious speed advantage. The details are given in Sections 3.3.1 and 3.3.2. The mAIC 
criterion is described in Section 3.3.3. 

Before that we briefly remind the reader of some notation. For a general d x 1 pa-
rameter vector 9 = (9i,...,9d) with log-likelihood £{6) the derivative vector of i , DgiiO), 

is the 1 X c? with ith entry di{6)/d9i. The corresponding Hessian matrix is given by 
H0£{e) = D0{Do£{6)^}. The information matrix of the maximum likelihood estimator d 
is then -E{H0i{0)}. 



3.3.1 Choosing the 'best' linear component to add 

Let (/3, u, cr^) define the current model, with fitted values (3, u, a"^) as obtained via Al-
gorithm 1, and let p̂ Xk represent a generic linear component not already in the model. 
The log-likelihood corresponding to the new model with /Ŝ Xk added is a modification of 
(3.4) with X/3 replaced by Xf3 + pk^k and is denoted by tr ,̂ I3k). 

We propose to choose the 'best' (5kXk among all candidates according to the maxi-
mum absolute Rao statistic (also known as the score statistic) (e.g. Rao, 1973, Chapter 6). 
Exact Rao statistics in GLMM are computationally expensive, so we make a number of 
convenient approximations. The first of these is to assume orthogonality between (/3, /3k) 
and in the information matrix of the joint parameters. Strictly speaking, these param-
eters are not orthogonal (Wand, 2007), but such orthogonality arises in the approximate 
log-likelihoods with which we work. Under orthogonality, the Rao statistic for the hy-
potheses Hq : l3k = 0 versus Hi : I3k ^ 0 is 

p+i,p+i 

where p is the length of A practical approximation involves dropping the determinant 
term in (3.5) to obtain 

£((3, CT^, (3k) ~ y^(X/3 + Xk(3k + Zu) - log(l + e^^+ '̂̂ -^+Z") - iu^G^^u. (3.7) 

Vector calculus methods (e.g. Wand, 2002) applied to the right hand side of (3.7) lead to 

.2 ^ ^ e 
1 ^ gX3+Xfc/3fc+Zu J 

\ 

Therefore the approximate numerator of R̂ ^ is the last entry of this vector with (3k set to 
zero: 

/ gX3+zu \ 
y - 1 eX/3+Zu 

The negative Hessian is approximately 

/ gX/3+Xfc/3fc+Zu \ 

The approximate denominator of Rjŝ , is the square root of the bottom right entry of this 
matrix with (3k set to zero and ¡3 set to its estimate at the current model. Standard results 
on the inverse of partitioned matrices lead to 

x3+Zu / p ^ ^ - T i J U I / 

^ x N y - . , X3.2U / - X ( X ^ W g ( 3 . 8 ) 1 gX^+Zu 

An advantage of this Rao statistic approach is that the candidate models corresponding 
to addition of the (3k̂ k do not need to be fitted. This means that the Rf̂ ^ can be computed 



quickly even when there is a large number of candidate linear components. This strategy 
has been used successfully in fitting regression spline models; see for example Stone, 
Hanson, Kooperberg & Truong (1997). 
3.3.2 Choosing the 'best' non-linear component to add 
As in Section 3.3.1, let (/3, u, cr^) define the current model and let Z^Ufc, u^ ~ 
represent a generic non-linear component not already in the model. The log-likelihood 
corresponding to the new model with cr̂  added is a modification of (3.4) with Zu replaced 
by Zu + ZfcUfc and is denoted by cr^, cr|). 

The Rao statistic for HQ : al = 0 versus iJi : > 0 is 
- 1 

v+l,v+l (3.9) 
— D n u m / D d e n 
= Ki 

where and R^^ respectively denote the numerator and denominator in and r 
is the length of cr^. Test statistics of this type were studied by Cox & Koh (1989), Gray 
(1994), Lin (1997) and Zhang & Lin (2003), for example. We use the largest approximate 

to choose the 'best' non-linear component not already in the model. 
For practical reasons, we work with the Laplace approximation to i{l3, 

4ap.ace(/3, ÎT ,̂ a^) . . - 1 log |I + [Z, Z f c ] ^ ' [ Z , Zfc]blOCkdiag(G^2 , (7^1) | 
+y^(X/3 + Zu + ZkUk) - l ^ log( l + ^^^^^ 
-tu^G-lu-

where (u, û^) maximises 

y^(Zu + Z ,u , ) - log(l + - ^u^G^^u - Ufc (3.11) 

The dependence of W^^ u,ufc on (cr^, cr|) is ignored in the differentiation. Vector calculus 
methods (e.g. Wand, 2002) applied to the right hand side of (3.7) lead to 

- - ^ t r E, (3.12) 

Noting that (u, u^) maximise (3.11) we get the relationships 

G^2Z 
,x3+zû+zfcûfc \ 

y - 1 gX^+Zu+ZfcUfc = Û and alZk y - gX/3+ZÛ+ZfcÛfc \ 
1 + ex3+zu+zfcufc J = Ufc. 



The second of these gives 

u, •3\ _ 

- I 
z j 

gX3+ZQ \ 

l + gX^+Zu^ 

Substitution of this equation into (3.12) and setting (/3, cr^) = (3, a'^), cr̂  = 0, u^ = 0 and 
j = V 1 then leads to 

1 
+ 2 

I + Z^W^;jZblockdiag(G<,2,0) 
- 1 

1 + eX/3+Zu y 

Note that {I + Z^W^ - Z b l o c k d i a g ( G ^ 2 , g Z has the explicit expression 

I + Z r w 3 - Z G , 2 0 
- 1 

Z^W^-Z Z^W^gZ, 

Hence the expression 

-Itr 

1 
+ 2 

{ ,X/3+ZG 

1 

Zfc W 3 . { I - + jZfc 
(3.13) 

then follows from standard results on the inverse of a partitioned matrix and some 
straightforward matrix algebra. Expression (3.13) has the computational advantage that 
the matrix inversion pertains to the current model and only needs to be performed once 
for selecting the 'best' non-linear component. 

We now provide a computationally efficient expression for Let 

/C(or2, ^ ai)}. 

This can be approximated using the arguments in Section 2.4 of Breslow & Clayton (1993) 
leading to 

where Z = [Z, Z^], = blockdiag(G^2, a^I) and are the diagonal 
matrices, with zeroes and ones on the diagonal, defined by = + 
alEiy+i. The formula R̂ ^̂  can now be written as f^ O" I, 

2 



To calculate first partition /C(<t^ (t|) as 

= 
KniT^al) Kn(<T\al) 

2 

where JCu (cr ,̂ cr̂ ) is the v x v upper left-hand block correspondmg to the current model. 
Then 

Note that the matrix inversion needs only be done once for the current 
model for each candidate model. 

3.3.3 The mAIC criterion 

For the model defined by (/3, u, o-̂ ) the marginal Akaike Information Criterion (mAIC) is 

mAIC(/3, u, <7̂ ) = -2^(3, a'^) + 2{dim(/3) + dim{(T^)} 

where dim(v) denotes the dimension, or length, of the vector v. In practice we replace 
^ by 4apiace- The word 'marginal' is used to distinguish the criterion from conditional 
AIC (cAIC) introduced to mixed model analysis by Vaida & Blanchard (2005). In smooth 
function contexts, cAIC differs from mAIC in that the former used an 'effective degrees 
of freedom' measure (e.g. Buja et al, 1989) in the second term rather than the number of 
fixed effects and variance components. Recently, Wager, Vaida & Kauermann (2007) com-
pared mAIC and cAIC for model selection in Gaussian response models and concluded 
comparable performance in that context. While similar comparisons are yet to be made 
in the logistic context it is unlikely that one will significantly dominate the other. Our 
decision to use mAIC in the default KOW algorithm is driven by the high premium we 
are placing on computational speed. 

3.3.4 Variants and extensions 

The algorithm described near the start of this section, with details as laid out in Sec-
tions 3.1-3, is the 'default' version of the KOW algorithm for building a parsimonious 
classifier; optimised for speed and implementation simplicity. There are a number of 
variants and extensions that could be considered — albeit at the expense of speed and 
simplicity. Some of these are: 

• Replace the mAIC-based model selection strategy with one that uses hypothesis 
testing and p-values. This involves approximate distribution theory for the Rao 
statistics. 

• Replace the simple forward selection algorithm with a more elaborate scheme. One 
option is to have forward selection up to the fullest model, followed by a backward 
selection phase, using Wald statistics, back to the smallest model. Such a strategy is 
used by Stone et al (1997), for example. 



Figure 3.1: Test sample 1 of4900 data points from the Banana dataset. 

• Automate the choice between univariate and multivariate functions of the continu-
ous predictors corresponding to the set S. The default version requires the user to 
either specify S or use only univariate functions. 

• Decide whether a component should be added to the model based on criteria other 
than largest decrease in mAIC. Options include cAIC and versions of generalised 
cross-validation (e.g. Kooperberg, Bose & Stone, 1997). 

• Insist that all non-linear components have a corresponding linear term. So if the 
non-linear component for Xk is selected for addition to the model then also add 
Pk^kii it is not already present. 

3.4 Numerical Experience 

We used both real and simulated datasets to test the effectiveness of the KOW algorithm. 
Two simulated datasets. Orange and Banana, were used for comparison. In Orange ten 
predictors X i , . . . , Xio are simulated from a univariate standard normal distribution with 
one class having the first four predictors conditioned on 9 < Ylt^i ^ f < 16 (Hastie et al, 
2001). Thus Orange has 4 real predictors and 6 noise predictors. Banana is a 2 class 2-
dimensional dataset simulated such that the points from four overlapping clusters two 
of which are banana-shaped. A sub-sample of these points are displayed in Figure 3.1. 
For the Banana dataset we added 6 standard normal noise predictors to make a total of 8 
predictors for the dataset used for testing. Note that the data from the Banana dataset is 
not simulated from an additive model structure. 



The four real datasets used were the spam dataset, containing 4601 observations and 
57 predictors, the pima indians diabetes (PID) dataset, containing 768 observations and 8 
predictors, the contraceptive method choice (CMC) dataset, containing 1473 observations 
and 9 covariates of mixed type and the yeast dataset containing 1484 observations and 
8 predictors 2 of which we treat as ordinal variables because they have 2 and 3 unique 
values. 

All datasets were obtained from the following Internet locations in 2008: 

Name Location 
banana users.rsise.anu.edu.au/~raetsch/data/index.html 
CMC archive.ics.uci.edu/ml/datasets/Contraceptive+Method+Choice 
PID/spam cran.au.r-project.org/src/contrib/mlbench_l.1-0.tar.gz 
orange www-Stat.Stanford.edu/~tibs/ElemStatLearn/datasets/orange 
Yeast archive.ics.uci.edu/ml/datasets/Yeast 

Testing on the real datasets was conducted using 10-fold cross-validation. This in-
volves splitting the dataset into 10 different parts. For the ith part we fit the model using 
the other 9 parts of the data, and calculate the prediction error of the model when pre-
dicting the ¿th part of the data. We did this for all 10 parts and averaged the 10 estimates 
to obtain the test error. 

For each continuous variable we used a univariate O-spline basis as described in 
Wand & Ormerod (2008) (see also Chapter 2). We used 15 interior knots for each O-spline 
spaced equally with respect to the quantiles of each continuous variable. 

3.4.1 Illustrations 

We will first illustrate the KOW algorithm using the CMC dataset. This dataset is a subset 
of the 1987 national Indonesia contraceptive prevalence survey. The samples are married 
women who were either not pregnant or do not know if they were at the time of interview. 
The problem is to predict the current contraceptive method choice (no use or some use) of 
a woman based on her demographic and socio-economic characteristics. The covariates 
are of mixed data types and are listed below 

1. Wife's age (wife age, continuous). 
2. Wife's education (wife edu, ordinal: l=low, 2, 3,4=high). 
3. Husband's education (hus edu, ordinal:l=low, 2, 3,4=high). 
4. Number of children ever born (num chil, continuous). 
5. Wife's religion (wife rel , binary: 0=Non-Islam, l=Islam). 
6. Wife's now working? (wife wor, binary: 0=No, l=Yes). 
7. Husband's occupation (hus occu, nominal: 1, 2, 3,4). 
8. Standard-of-living index (SOL, ordinal: l=low, 2, 3,4=high). 
9. Media exposure (media ex, binary: 0=Not Good, l=Good). 

We note that num c h i l is strictly speaking discrete taking the values 0 to 16. However 
treating num c h i l as a continuous variable and using smoothing methodology simpli-
fies the analysis. 



Model Model Model Model Model Model Model Model 
Predictor 1 2 3 4 5 6 7 8 

/ ^ { w i f e age} 3 . 5 7 3 . 2 0 8.34 0 . 7 6 0 . 6 0 0 . 5 9 0 . 5 8 0 . 5 9 

/ ^ { w i f e e d u } - 9 . 3 9 
/ ^ { h u s e d u } - 6 . 0 2 - 0 . 2 7 - 0 . 8 8 - 0 . 9 0 - 0 . 6 0 0 . 2 2 0 . 3 9 0 . 4 4 

/ ^ { n u m c h i l } - 4 . 5 9 - 6 . 7 1 
/ ^ { w i f e r e l = l } 2 . 8 0 0 . 6 6 0 . 8 2 1 . 9 3 2 . 0 3 1 . 7 5 1.80 
/ ^ {wife w o r = Y } - 1 . 5 1 - 2 . 1 6 - 1 . 6 4 - 1 . 5 5 - 0 . 0 7 - 0 . 2 4 - 0 . 1 6 - 0 . 1 5 

/ ^ { h u s occu=2} 2 . 1 5 1 . 4 1 1 . 5 4 1 . 6 5 1 . 3 2 1 . 3 2 1 . 3 4 1.61 
/ ^ { h u s occu=3} 0 . 8 8 - 1 . 6 4 - 2 . 1 7 - 0 . 9 1 - 0 . 6 1 - 1 . 1 3 - 1 . 0 3 - 1 . 0 3 

/ ^ { h u s occu=4} 0 . 5 9 - 0 . 6 1 - 1 . 0 8 - 0 . 9 8 - 1 . 4 6 - 1 . 3 2 - 1 . 4 8 - 1 . 5 3 

P{SOL} - 6 . 1 1 - 2 . 9 8 - 2 . 5 4 - 3 . 9 2 - 3 . 8 4 
media e x = Y ) 5 . 5 2 2 . 5 6 3 . 1 7 2 . 7 8 2 . 8 1 2.10 

mAIC^ 1927.5 1882.9 1 8 1 3 . 0 1 7 9 2 . 0 1676.7 1674.2 1672.6 1 6 7 2 . 9 

^ { w i f e age} 2.50 1.88 3.88 
"^{num chil} 0 . 3 2 0 . 8 5 - 0 . 2 9 15.43 
mAICs 1 9 6 8 . 9 1 8 9 3 . 1 1806.2 1690.3 

Table 3.4.1: Illustration of the steps taken by the KOW algorithm on the contraceptive method 
choice (CMC) dataset. Rao scores for each predictor, mAICfor the 'best linear' predictor tnAICfs 
and mAICfor the 'best nonlinear' predictor mAICgfor each stage of the algorithm are listed in the 
columns. The best 'best linear' predictors, 'best nonlinear' predictors and lowest mAIC values are 
highlighted in bold. 

We wish to predict to response "Contraceptive used" which is modified to be binary 
by letting c o n t r a c e p t i v e use take the values 0 for "No-use" and 1 for "Long-term" 
or "Short-term" use. The largest possible model is 

logit{P(2/i = 1)} 
= Po-\- w i f e + hus edu¿/?{husedu} + ^vHe rel¿ = l}/̂ {wiferel=l} 

+ í { w i f e wor¿=Y}/̂ {wifewor=Y} + ^ { i n e d i a ex¿=Y}/?{mediaex=Y} + SOL¿/?|SOL} 

~l"í{hus OCCUi=2}/̂ {husoccu=2} ^{hus OCCUj=3}/̂ {husoccu=3} + 2{hus OCCUi=4}/̂ {husoccu=4} 

+ w i f e age¿/3{^ifeage} + S { w i f e a g e } ( w i f e age^) + num 

+S{numchii}(nuin c h i l ¿ ) 

which contains 11 possible predictors. The 8 steps of the KOW algorithm including Rao 
scores and mAIC values are illustrated in Table 3.4.1. 

Table 3.4.1 corresponds to a running of the KOW algorithm taking 1.2 seconds, using 
6 out of the 11 possible predictors and, as we will see, highly interpretable. In each of 
the four panels in Figure 3.2 cross-sections from the fitted additive function ^(x) for the 
CMC dataset are illustrated. The cross-section for each predictor corresponds to all other 
continuous predictors set to their medians. The effect of the values for wife's religion and 
media exposure are also illustrated by dropping or lifting ^(x) according to their values. 

Based on the fit obtained from the KOW algorithm on the CMC dataset the following 

interpretations might be made for women in the study 

• Increasing either wife's education or standard of living increases the chances con-

traceptives are used. 



Wife's Education 

- - - Rel YiMed Y 
Rel N/Med N 
Rel Y/Med N 

Number of Children 

— Rel N/Med Y 
- - - Rel Y/Med Y 

Rel N/Med N 
Rel Y/Med N 

12 14 

Wife Age 

- - - Rel Y/Med Y 
Rel N/Med N 
Rel Y/Med N 

Standard of Living 

Rel Y/Med Y 
Rel N/Med N 
Rel Y/Med N 

Figure 3.2: The final model produced by the KOW algorithm for the contraceptive method 
choice (CMC) dataset. The cross-section for each predictor corresponds to all other continuous 
predictors set to their medians. Note that we have used the abbreviations wife's religion (REL) 
and media exposure (MED) above. 

• The predictors wife's age and number of children both have a nonlinear effect on 
contraceptive use. 

• Islamic women are more likely to use contraceptives than non-Islamic women. 
• Women who have had media exposure are more likely to use contraceptives. 
• Contraceptive use peaks for women in their early 20's and decreases as they get 

older. 
• Women without children or those with only one child are less likely to use contra-

ceptives. Women with 3 to 12 children have similar chances of using contraceptives. 
Increasing the number of children above 12 proportionally increases the use of con-
traceptives. 

Figure 3.3 illustrates cross-sections from the fitted additive function ^(x) for the spam 
dataset. The cross-section for each predictor corresponds to all other predictors set to 
their medians. When the curve moves above the zero line e-mails are more likely to be 
spam and when the curve moves below the zero line e-mails are less likely to be spam 
e-mails. For example when the proportion of number of times business is used to the total 
number of words is less than 2 there is nearly no effect but after the proportion is above 2 
the probability that the e-mail is spam appears to increase (roughly) linearly. Curves that 
hover around the zero curve, for example the variable our, do not have a large effect on 
the predicted value. 
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Figure 3.3: A plot of fitted model for the spam dataset using the predictors as chosen by the KOW 
algorithm. The cross-section for each predictor corresponds to all other continuous predictors set 
to their medians. 

3.4.2 Comparative Performance 

We now compare KOW with algorithms similar in their aims including: BRUTO (Hastie 
& Tibshirani, 1990) and the versions of the R function s t e p . gam () (Chambers & Hastie, 
1992; Hastie, 2006; Wood, 2006). The comparisons are made with respect to test error, 
parsimony and speed. 

The mgcv package performs smoothing and model selection via optimisation of the 
generalised cross-validation (GCV) criteria. However mgcv does not perform variable 
selection as such but uses the related concept of shrinkage (see Hastie et al, 2001, Chapter 
3 for instance). For the purposes of testing we treat variables with an estimated effective 
degrees of freedom smaller than 0.01 as not included in the model. 

The s t e p . gam () function in the gam package requires the user to specify a list of 
possible degrees of freedom, or schemes, to use for each variable. In every dataset ex-
cept the spam dataset, for reasons we will later state, we experimented with a number 
of schemes for each variable. The s t e p . gam () method sequentially adds list elements 
from left to right for each variable and stops when the AIC fails to decrease. We specified 
these lists to allow for smoothing with 2, 4, 6 and 8 degrees of freedom, 8, 6, 4 and 2 



degrees of freedom, 3, 6, 9 and 12 degrees of freedom or 12,9, 6 and 3 degrees of freedom 
and also allowed for a linear fit or for the variable to be not included in the final fit. Thus, 
we specified schemes which started from larger degrees of freedom and tried to decrease 
the AIC by fitting models with smaller degrees of freedom and schemes which started 
from smaller degrees of freedom and tried to decrease the AIC by fitting models with 
larger degrees of freedom. The scheme with the smallest test error was recorded. 

Finally, the BRUTO procedure uses least squares loss with smoothing splines where 
back-fitting model selection is based on an approximate GCV criteria. 

For the Orange dataset each algorithm was run using 50 observations for each class 
(making a total of 100 observations), and the test error was attained by taking the average 
error from 50 simulations containing 500 observations for each class. For the Banana 
dataset each algorithm was run using 400 observations and the test error was attained by 
taking the average error from 100 simulations containing 4900 observations altogether. 

Without With 
Dataset Method Noise Noise Real Noise Mean 

Test Error (%) Test Error (%) Time (seconds) 
Banana mgcv 28.12 (0.15) 29.06 (0.16) 2.00 3.41 22.74(1.25) 

gam 30.25 (0.17) 30.69 (0.17) 2.00 0.71 5.64 (0.14) 
BRUTO 28.13 (0.12) 28.29 (0.13) 1.85 0.35 0.81 (0.00) 
KOW 28.11 (0.15) 28.76 (0.15) 1.87 1.07 1.08 (0.05) 

Orange mgcv 13.18 (0.86) 12.00 (0.85) 4.00 1.10 57.46 (2.69) 
gam 9.34 (0.29) 10.24 (0.35) 4.00 0.30 46.40 (3.35) 
BRUTO 8.58 (0.65) 9.10 (0.71) 4.00 0.30 0.14 (0.00) 
KOW 9.45 (0.39) 11.92 (0.87) 3.92 0.78 1.82 (0.06) 

Table 3.4.2: Averages (standard deviation) results for the Banana and Orange study described 
in Section 3.4. 

Examining Table 3.4.2 we see that all methods are fairly robust classifiers when noise 
variables are added. Furthermore all methods appear to be fairly good at discerning the 
real predictors from the noise predictors. KOW appears to select more noise predictors 
than all of the other methods accept mgcv. BRUTO appears to give slightly better classi-
fication rates on the Orange dataset. 

The gam and BRUTO procedures failed on the full spam dataset and BRUTO failed 
on the contraceptive method choice dataset. The s t e p . gam () procedure failed on the spam 
dataset because it creates an object indicating whether each of the possible candidate 
models had been fitted. For high d the size of this object becomes too large. We could not 
ascertain why the BRUTO procedure failed. 

To allow comparison of all 4 methods we also worked with a reduced version of the 
spam dataset based on the 29 variables most often selected by KOW. We also simplified 
the model selection scheme used by the s t e p . gam () method, for this case we allowed 
for either the variable to not be included or to be fit with approximately 4 degrees of 
freedom. 

Examining Table 3.4.3 we see that KOW seems to gives similar, possibly slightly bet-
ter, classification errors compared to mgcv and gam, with the aforementioned settings, 



Mean No. 
Dataset Method Test Predictors Mean 

Error (%) Included Time (seconds) 
Contraceptive mgcv 31.25 (1.30) 6.1 0.39 (0.03) 
Method gam 30.64(1.17) 6.7 9.05 (0.37) 
Choice BRUTO failed N/A N/A 

KOW 30.77 (0.84) 6.6 0.89 (0.09) 
Pima mgcv 23.43 (1.90) 6.9 14.27(1.08) 
Indians gam 22.92 (2.23) 5.7 13.13 (1.18) 
Diabetes BRUTO 50.64 (1.80) 5.3 0.12 (0.00) 

KOW 22.92 (1.62) 6.0 2.51 (0.11) 
Spam mgcv 5.89 (0.34) 50.7 21278.00 (4466.75) 

gam failed N/A N/A 
BRUTO failed N/A N/A 
KOW 5.38 (0.20) 37.6 1033.05 (98.93) 

Reduced Spam mgcv 6.15 (0.37) 28.4 4076.51 (694.35) 
gam 6.42 (0.22) 28.2 7521.10 (1467.74) 
BRUTO 16.86 (0.73) 25.7 1.01 (0.01) 
KOW 5.57 (0.25) 27.3 590.06 (62.13) 

Yeast mgcv 29.36 (4.00) 5.4 0.39 (0.03) 
gam 28.69 (3.42) 6.8 61.22 (3.62) 
BRUTO 53.50 (2.51) 5.6 0.03 (0.00) 
KOW 28.14 (3.48) 6.9 14.01 (0.64) 

Table 3.4.3: Means (standard deviations) for the test errors, number of predictors and running 
times using mgcv, gam, BRUTO and KOW methods on the contraceptive method choice, 
Pima Indians diabetes, spam and yeast datasets described in Section 3.4. 

and usually in less time. Based on the results for the spam dataset KOW seems to scale 
better to moderately sized datasets than all of the other methods considered. Further-
more, for the aforementioned reasons, the gam procedure becomes infeasible when a 
large number of predictors are used. Also when many predictors are used the computa-
tional time for mgcv may rule out its use on large data mining problems. BRUTO was 
faster than KOW, however the classification performance enjoyed by BRUTO on the sim-
ulated datasets did not seem to carry onto any of the real datasets where it failed miser-
ably. We speculate that this is due to the fact that BRUTO models responses as Gaussian. 

Finally, we should issue a note of caution on interpreting the test errors. For each 
method it is possible that lower test errors may be obtained by changing various settings, 
e.g. splines used, knot selection and model scheme (for gam) to name a few. For this 
reason all we can only conclude from Table 3.4.3 is that KOW, mgcv and gam have similar 
test errors for each given dataset. 

3.5 Discussion 

The KOW classification algorithm represents an appealing application of statistical infer-
ential techniques to data mining and related problems. Parsimony and interpretability 
are delivered using likelihood-based irvference ideas. Speed is obtained via Laplace-like 
approximations. Generalised linear mixed models, which have mainly been the provi-
dence of regression-type analyses of data from biostatistical studies, can be seen to have 
wider applicabiUty. 



While, in this chapter, we have concentrated on classification and logistic mixed mod-
els the methods presented are directly extendible to more general mixed models; e.g. 
those appropriate for count data, and non-classification problems such as variable selec-
tion in generalised additive model analyses. We envisage several useful by-products of 
the KOW algorithm for semiparametric analysis of multi-predictor data. 



CHAPTER 4 

Grid-Based Variational Posterior Approximations 

4.1 Introduction 

The problem of calculating integrals and summations is ubiquitous in the field of statis-
tics. In statistical analysis of real world problems we model the uncertainty of unob-
served or complex aspects of the system under observation. Taking expectations via inte-
gration or summation averages out this uncertainty, leaving us to deal with other aspects 
of the system. In frequentist statistics, amongst other situations, integrals occur when cal-
culating moments. Fisher information, averaging over random effects or unobserved val-
ues or calculating confidence intervals. Similarly, from a Bayesian perspective integrals 
occur when calculating virtually anything including marginal distributions, posteriors 
distributions and credible intervals. 

When these integrals or summations become analytically intractable we need to ap-
proximate them in some way. Traditionally these integrals were approximated using 
asymptotic methods typified by Edgeworth expansions, saddlepoint expansions and 
Laplace's method (Barndorff-Nielsen & Cox, 1989,1994), or numerical quadrature meth-
ods (for example, Abramowitz & Stegun 1964, Chapter 25). Unfortunately there are situ-
ations where these methods are either inaccurate or prohibitively slow. With computing 
power continually increasing, Monte Carlo methods (Clayton, 1996; Robert & Casella, 
1999; Gilks, Richardson & Spiegelhalter, 1996) can be used to increase accuracy. Unfortu-
nately Monte Carlo methods can also be prohibitively slow for example when the Markov 
chain does not mix quickly or in importance sampling where the sampling distribution 
is not close to the target distribution. 

Variational methods are a class of analytic approximations which have recently been 
applied to statistical problems in the machine learning literature. They are gaining popu-
larity due to their computational speed, flexibiUty and simplicity; see for instance Jordan, 
Ghahramani, Jaakkola, & Saul (1999), Corduneanu & Bishop (2001), Ueda & Ghahramani 
(2002), Bishop & Winn (2003), Winn & Bishop (2005) and McGrory & Titterington (2007). 

In the greater context of mathematics, the name variational methods corresponds to the 
classical set of methods known as the ''calculus of variations" which can be used to find 
the extremum of an integral depending on an unknown function and its derivatives. In 
modern contexts variational methods describe a class of techniques where a problem is 
either transformed into an optimisation problem or directly formulated as an optimisa-
tion problem (Jaakkola, 2001). In this chapter we consider the use of variational methods 



to transform integral problems that arise in Statistics into optimisation problems, but 
usually with some approximation. 

These approximations typically involve a parameterized lower bound on the integral, 
which is then maximised over the parameters in order to tighten the bound. These lower 
bounds are generally constructed either by directly exploiting convexity properties of 
the integrand Qordan et ah, 1999) or by the use of Jensen's inequality. In the latter case, 
Jensen's inequality can be used to develop a generalisation of the expectation maximi-
sation (EM) algorithm of Dempster, Laird & Rubin (1977). Indeed Neal & Hilton (1998) 
showed that EM and several variants can be interpreted as a variational method which 
minimises the free energy (or equivalently the Kullback-Leibler divergence between two 
distributions). Later Attias (2000), inspired by the work of MacKay (1995) and Neal 
& Hilton (1998), used the free energy principal to generalise the EM algorithm, which 
became known as the variational expectation maximisation (VEM) or variational Bayes 
algorithm (although the same technique can be used in non-Bayesian contexts). This 
generalisation approximates the marginal likelihood by minimising the Kullback-Leibler 
divergence between the true posterior distribution and a convenient approximate poste-
rior distribution. Ghahramani & Beal (2000) and Beal (2003) expanded upon this work to 
the class of conjugate-exponential models. 

In each of the papers referenced above, variational approximations perform fairly 
well at the practical level. Unfortunately, the theoretical properties of the methods have 
received comparatively little attention, although a number of important theoretical con-
tributions have been made by Humphreys & Titterington (2000), Hall, Humphreys & 
Titterington (2002) and Wang & Titterington (2003a, 2003b, 2004, 2005, 2006). These re-
sults include conditions for which variational methods are consistent, in various settings 
including missing value problems. As noted by Humphreys & Titterington (2000), Wang 
& Titterington (2005) and Consonni & Marin (2007) in various contexts, interval estimates 
corresponding to VEM approximations are typically ''too small" because posterior vari-
ances are underestimated. 

In this chapter we will make the following contributions: 

1. An alternative variational approach for approximating posterior distributions is 
developed. We call this approach grid-based variational posterior approximation (GB-
VPA). This method is more accurate, sometimes considerably, than the typical vari-
ational method for approximating posteriors. 

2. Discuss some alternative approaches to the optimisation approaches that arise in 
the implementation of the VEM algorithm. 

3. The GBVPA algorithm is illustrated in two main examples: Bayesian linear regres-
sion and a Bayesian missing binary covariate model. The variational approximation 
to the later model is novel, compares well to Markov Chain Monte Carlo (MCMC) 
methods and scales well to large datasets (> 10®) observations. 



4. We show that for a frequentist missing continuous covariate model the EM and 

VEM algorithms deliver the same results. However the VEM algorithm does so 

more simply. 

5. We demonstrate asymptotic consistency of a variational approximation of the 

Bayesian linear regression model. 

4.2 Variational Approximations in Statistics 

Suppose that we have observed y = (i/i, • • •, 2/n) which we have modelled via the joint 

density [y,'d;$]. In frequentist statistics is a vector of latent variables and 0 are model 

parameters. Integrating out'd we obtain the likelihood 

C{e) = [y-e] = (I'd. (4.1) 

In Bayesian analysis the joint density arises from the product [y, 0] = [y where 

y\'d] is the sampling distribution and [d;9] is the prior distribution. In this case'd is 

a vector of model parameters and 0 is a vector of fixed prior hyperparameters which 

characterise knowledge about'd. The calculation of the posterior of requires calculating 

(4.2) 

which is also possibly analytically intractable. 

Note that when the are discrete we replace the integrals in (4.1) and (4.2) by sum-

mations. Summing over all combinations of the values for is can be computationally 

challenging due to exponential growth in the number of terms to be calculated (see for 

example equation (4.39)). Henceforth we will write / for simplicity for continuous and 

discrete 

The variational approximations to (4.1) or (4.2) which we will consider will identify 

parameterized (typically lower) bounds to the integrals and then optimise over any free 

parameters in order to tighten this bound, i.e. 

where ^ are additional parameter and the subscript L denotes lower bound. 

We will consider two types of variational approximations which have been applied 

to statistical problems and can be used separately or in combination. We will call these 

tangent transforms and density transforms. 

4.2.1 Tangent Transforms 

The first of the general methods we will look at for finding lower bounds is a simple 

illustration of variational approximations. The idea is to take advantage of the fact that 

any tangent to a convex function is a lower bound of that function (Rockafeller, 1972). 

We then use this lower bound to simplify the integral in such a way that the integrand 

becomes tractable. 



Transform Function Variational Form Optimal Value 
exp exp(x) e x p ( 0 + e x p ( 0 ( x - 0 
log - log(x) iog(o + 1 -

— log(e~t -f ef ) i = ± x 

Table 4.2.1: Some univariate variational forms. Each function in the second column is greater 
than the variational form in the third column for all values of x and The function is restored by 
substituting the optimal value in the fourth column into the variational form. The first column 
contains specific names for each of the tangent transforms. 

Suppose that / (x) is a convex differentiable function in x G M'̂  for some integer n. 
Then 

Indeed 

/ (x) > / « ) + (x - for all x, ^ e R ^ 

/ (x) = max { / ( O + (x - i ) } . 

(4.3) 

(4.4) 

Similarly, if / (x) is a concave differentiable function we reverse the direction of the in-
equality in (4.3) and minimise rather than maximise in (4.4). 

Jordan et ah (1999) offers an insight into a more general approach to variational ap-
proximations based on the duality theory of convex analysis. Some examples of lower 
bounds we will encounter in the upcoming chapters are summarised in Table 4.2.1. 

Example 4.1: As an illustrative example of the simplicity of these techniques, consider 
the model 

y \ ~Poisson(A), A > 0, y = 0 ,1 ,2 , . . . 
A ~ Gamma(a,/3), Q!,/?>0, 

(4.5) 

where ^ is a single observation and 

and r ( ) is the gamma function (see Abramowitz & Stegun, 1964, Chapter 6). If we inte-
grate out the random parameter A we obtain the negative binomial distribution: 

2/; Qi, -r Jo U ? ^ )\ T W J r(2/ + i ) r (a ) 
(4.6) 

Suppose, for the purposes of illustration, that the expression for the marginal likeli-
hood (4.6) has no closed form. A tangent transform might "simplify'' the distribution [A 
and hence the integrand in (4.6) by using the tangent bound 

exp(-x) > e x p ( - 0 - exp{-^){x - 0 

to obtain 
_ A « - ( e - ^ - e - ^ ( - A / ? - 0 ) 

L = r(a) 



which holds for all A, a, ¡3 and Hence 

= i 
roc/^y \ I"xoc-i^a (e-g - Q) ^ r Jo J r{a) dX 

rfa + g) 
ny+ma) 

Maximising [y; a , w i t h respect to ^ decreases the gap between ly;a,/3] and 

y; a, It is easy to show that [y; a, is maximised when f = -(3{y + a). Substi-

tuting this value for ^ back into [y; a, we obtain 

r(2/ + i ) r ( a ) 
(4.7) 

This bound can be verified by the fact that (1 + > for a,x > 0. 

Figure 4.1 illustrates the likelihood and (4.7) as a function of a = P for 100 simulated 

points for true log(o;) = log(/?) 6 { - 4 , - 3 , - 2 , - 1 } . We can see from this figure that the 

variational approximation is more accurate for smaller values of a = 

4.2.2 Expectation Maximisation as a Variational method 

A major development of variational approximations is based on a modification of the EM 

algorithm. The EM algorithm developed by Dempster et al. (1977) is a simple algorithm 

for maximum likelihood estimation which pivots between an ''expectation step" and a 

''maximisation step". The EM algorithm is listed in Algorithm 2. 

Algorithm 2 Expectation Maximisation 

1. Initialise 0. 

2. Cycle 

2.1. Expectation Step (E-step) 

Calculate 

Q(O\0oid) = E^iy log [y, Ooid] (4-8) 

where 0oid = 0. 

2.2. Maximisation Step (M-step) 

Replace 0hy 6 where 

Until convergence. 

0 := ar^max Q(0\0old)-
e 
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Figure 4.1: Illustration of the likelihood and variational approximation for model (4.5) for different 
values of a = p. 

Dempster et al (1977) showed that if 6 is chosen by iteratively maximising Q{0\6oid) 
with respect to 6, the 0 will converge to a local maximum of the likelihood. The quantity 
Q arises as follows: 

m =\og[y;e 

- l o g 

= log 

> 
^ y; Ooid / 

'^¡y.Ooid] log 

d'd 

d'd 
(4.9) 

= E^ly (log [ y , 6>]) - (log[^|y; Ooid]) 
= Q{0\0old) + 
= iL{0) 



where ^l(^) is a lower bound for i{0) and the inequality follows from the use of Jensen's 
inequality (/?(E(X)) > E(v?(X)) which holds for all concave functions Lp(-) (with the in-
equality being reversed if (/?(•) is a convex function). Here X = [Jj'y^ ĵ̂ ] and expectations 
are taken with respect to Ooid\, denotes expectations with respect to 'd\y, and 
H^ly is the entropy of i?|y where the Shannon's entropy (henceforth simply entropy) of a 
density [d] is given by 

n^ = - J \og[d]d'd = -E^ [logl'd]). (4.10) 

where 

Note that is a constant function of 6 and can be ignored in the M-step of the EM 
algorithm. 

Neal & Hilton (1998) describe the EM algorithm and several variants in terms of free 
energy minimisation. In general the difference between the lower bound iiiO) and the 
likelihood £{9) is given by the Kullback-Leibler (KL) divergence, relative entropy or free 
energy between [i9|y] and [i9\y;9oid]f i e. 

£{0) - h{0) = log [y; 6] - (log [y, 6]) + (log[i?|y; 0oid]) 
= E ^ i y (log[i9|y; 0oid]) - E ^ | y (log 6>]) (4.11) 
= KLmy;0oid]\mT.O]) 

KLiMh) ^ - J = 
Q i h m J /i(^)log(/2(i?))c/i^, and 

for any two densities / i and f2W, the quantity Q{fi 11/2) is the cross-entropy between 
fi and /2 and Hf^ is the entropy of f\. It is possible to show that KL{fi\\f2) > 0 and 
KL{fi\\f2) = 0 if and only if / i = ¡2 (e.g. Shorack & Wellner, 1986; Csiszar & Shields, 
2004). Thus, i f 0 = 0oid then i{0) = £l{0). Intuitively we can think of KL{fi\\f2) being a 
measure of similarity between / i and /2. Note that KL is neither symmetric nor satisfies 
the triangle inequality and is therefore not a metric. Thus using (4.11) we can interpret 
the EM algorithm as a variational approximation because it replaces the integral in (4.9) 
with a sequence of maximisation problems. 
4.2,3 Variational Expectation Maximisation and Density Transforms 
Unfortunately for many problems of interest the calculation of (4.8) is no easier than 
calculating the log-likelihood (4.1). See for example Ruppert et al (2003, Section 10.8.5). 
This is because in order to calculate [i?|y] we need to be able to calculate (4.1). 

Variational expectation maximisation (VEM, see Algorithm 3) is a generalisation of 
the EM algorithm of Dempster et al, (1977) where the expectation step in the EM algo-
rithm, which in itself provides a lower bound for the marginal log-likelihood, is modified 
to obtain a more general class of lower bounds. Attais (2000), noted that the same logic 



in (4.9) applies if we replace [i^ly; Oou] with any density 4) i.e. 

m > (log[y, 0]) - E¿ (log((5(i9; 4))) = Q{e\Í) + = ÍL{e\Í) (4-12) 

where is a lower bound for i{e), ^ are variational parameters (which may include 
elements of 0 and/or Ooid) and 

Again, using the same logic we have 

= II (4.13) 

For simplicity we use the following notation 

• For compactness, unless there is room for confusion, is denoted as 5['d) or 
simply 5. 

• Jaakkola & Jordan (2000) refer to (4.12) as the g'-transform of the log-likelihood (us-
ing ^-densities instead of (5-densities above. We will instead refer to (4.12) as the 
more descriptive density transform). Furthermore, we name the density transform 
after the approximating distribution, e.g. if S('d; = - m) where 0s - /x) is 
the multivariate Gaussian density with mean /x and covariance E. In this case we 
will denote the approximating distribution of î |y as 

There are a number of points to be made: The ''closer" is to [i9|y; 6] (i.e the 
smaller the KL-divergence between S{'d; and [î |y; 6]), the "closer'' Íl{0] is to i{d); 
Maximising is equivalent to minimizing the KL-divergence between S{'d- Í ) and 
[i?|y;(9];If [i?|y; 6>] = ^ for some ^ then 0 - €((9). 

Also note that the EM algorithm essentially minimises the cross entropy term Q and 
ignores the entropy term H since it does not depend on parameters to be optimised. For 
the VEM algorithm we need both Q and H terms since the entropy term depends on the 
variational parameters 

In practice we choose 5{'d) from a convenient class of distributions so that we can 
easily calculate expectations of the joint log-likelihood with respect to the density trans-
form. Suppose that we partition -d into = Such partitions are usually nat-
ural within the context of particular models. For example, in generalised linear mixed 
models (see Chapter 5) it is natural to classify variables as random effects, variance com-
ponents or nuisance parameters; in graphical models it is natural to partition the model 
by nodes (see, for example, Jordan et al, 1999; Beal, 2003; Jaakkola & Jordan, 2001; Jor-
dan, 2004). Often within the variational literature to factorise the density 6 to correspond 
to this grouping, i.e. 6{'d) = Si{'di)82{'&2)- The extreme case where ú = (í^i,... 
and 6('d) = H S i is called the mean-field approximation (see Beal 2003, Chapter 2). 



Most variational approximations in this thesis use this idea (see Example 4.2 below and 
Sections 4.5 and 4.6 for examples). Factorisations such as these amounts to assuming 
independence between parameters for the approximating density S. Mean-field approx-
imations have been studied by, amongst others, (Saul, Jaakkola & Jordan, 1996; Jordan et 
al, 1999; Ghahramani & Beal, 2001; Humphreys & Titterington, 2001; Jaakkola, 2001; Hall 
et al, 2002; Wang & Titterington, 2003; Jordan, 2004; Consonni & Marin, 2007). In particu-
lar Jaakkola & Jordan (1998) considered mixtures of such densities to improve mean-field 
approximations. 

Finally some cases it may be difficult to calculate (4.12) because of the density trans-
form chosen. In such cases, Jensen's inequality may to find lower bounds to (4.12) 
and hence simplify calculations. In this case we minimise an upper bound on the KL-
divergence. 

Algorithm 3 Variational Expectation Maximisation 
1. Variational Step 

Select a density to approximate [d\y]. Initialise 9. 
2. Cycle 

2.1. Expectation Step 
Calculate 

C = argmax^L(6>IO (4.14) 

2.2. Maximisation Step 
Replace Ohy 0 where 

0 = argmaxiL{0\^). 
e 

Until convergence. 

Example 4.2: Suppose we have the triplets of observations 1 < i < n 
and hypothesise a linear relationship between the yiS and both the xî iS and the X2,zS. 
However some of the X2S are missing completely at random (MCAR) and we also suspect 
a linear relationship exists between the xis and the X2S. A likelihood based model for a 
this situation might be 

yi\x24 ~ N{(3o + pixi^i + (32X2,i, (TI) 
and X2,i ~ N{(3o + al). 

Suppose that X2 contains missing values. First let us partition X2 as X2 = (x2,o6s, mis) 
where X2,o6s = • • • ,^2,obs,nobs) ^^^ ^2,mis = i^2,mis,i, • • • ,^2,mis,nmis)- Similarly, 

let y = {yobs,ymis) and xi = (xi,o6s, xî ^^g) be partitions of y and xi coinciding with the 
"missingness'' of X2. 



We w^sh to fit the parameters of interest 0 = (/3, erg, a j ) where f3 = (^o, and 

P = {(3o,(3i).To this end the EM approach updates 0 via the equation 

argmax log[y,X2,o6s,x2,mis;^l} • 

We can calculate [x2,mzs|y, 0] using results from Appendix A.2 from Wand & Jones 

(1993,1995) to obtain 

00-21 (ymis — " '^misP) y 

/ 0i72l(ymis - " ^ 

«-2i(x2,mzs - Ẑ "̂ (ymis " -2i)^(Tlli?^2,mis " ^misP) 

(4.15) 

— /32 (ymis — Xmis,-2/5-2)) 

= 0E(x2,mis - M) 

where X^is = [1, xi^^is, X 2 , m i s l / = X^ îs = [1, xî irifs] and 

/X = 
mis — ^17113,-2^-2) + (^y^misP s = 

2 2 

(4.16) 

and I is the identity matrix. 

The ¡JL can be interpreted as a vector of "imputed'' values with associated covariance 

matrix S. From these two equations we can see how the current estimated variances Oy 

and crj affect the value ''imputed'' when performing the expectation step. If crj is large 

then the value "imputed" will be closer to ymis - ^mis-2(^-2^ i-e. the residual of the 

estimated error for ymis without the term /?2X2,mis- Similarly if ag is large then the value 

"imputed" will be closer to X^is/3. 

The variational approach we will consider simplifies some of the above steps. This 

is done by assuming a distributional form for [x2,mis ly, X2,o6s; and then fitting any free 

parameters by minimizing the KL-divergence with respect to them. Thus instead of cal-

culating (4.15), we use the density transform X2,mis N(/x, E) where ^ = (/x, S) are 

additional variational parameters so that 

= - 2 l o s K ) - 2 l o s K ) 

\ymis - - /?2m|P + /?|tr(S) _ Hp - xL,/3|P + tr(E) 
2<T| 

H--log|2e7rE 
Zi 

From (4.13) we note that maximising (4.17) is equivalent to minimizing the KL-

divergence between [x2,mzs|y, and ^(x2,mis). 



Differentiating with respect to ^ we have 

^ ^^ ^ P2{ymis - Xmis-2f3-2 {^J> XmisP) 

1 / / cr; \ \ 
y ^ T I xp 

(4.18) 
/ 

where Ei^ is a matrix of zeros, except for the (i, j)th entry which is one and has the same 
dimensions as S . Thus first order optimality conditions (see Appendix C) imply the same 
values for ¡jl and X) as (4.16). Thus, if we evaluate fi and S at the equation 
will be identical for EM and VEM algorithms. 

Completing the calculations, is given by 

y -X/3 | | ^ + /; |tr(S) ||x2 - x 3 | p + tr(S) 
2al 2al 

(4.19) 

where X2 = (x2,o6s, fi), X^is = [1, xi,™,, /i], and X = (Xo6s, X^«)-
Maximising with respect to 0 the update equations are 

/3 

where X == [1, xi] and 

X 2 - x 3 | | 2 + tr(S) 
f3 := (X^X)-4^X2 

n l ^ x : 1^X2 
1^X1 T Xi Xi Xi X2 
1^X2 Xi X2 xjx2 + tr(S) 

Comparing the practical ease of the EM and variational approaches, we note that 
the equations (4.15) for the EM algorithm were harder to calculate than (4.17) and (4.18) 
for the variational approach. This is because we assume that the posterior distribution 

is a multivariate Gaussian with mean fi and covariance S) and 
deduce their values by minimizing the KL-divergence between the true and unknown 
posterior distributions. On the other hand, for the EM approach we needed to calculate 
this conditional distribution in order to implement this algorithm. 

4.3 Some Comments on Optimisation 
One problem with the VEM algorithm as described in Algorithm 3 is that the parameters 
0 and ^ are optimised separately. This has the potential to slow down convergence. In 
optimisation circles the extreme case where each parameter is optimised separately in 
a cyclic manner is called the cyclic coordinate descent method. While cyclic coordinate 
descent are often easier to describe and implement they can converge even slower than 
steepest decent methods which converge only linearly (Nocedal & Wright, 1999, Section 



3.3). We therefore propose Algorithm 4 as a slight modification of the VEM algorithm 
where optimisation of parameters 0 and ^ is performed simultaneously. 

Algorithm 4 Variational Expectation Maximisation (Modification) 
1. Select Step: 

Select a density to approximate 
2. Expectation Step: 

Calculate 

= + Us 

3. Maximisation Step: 
Estimate Shy 6 where 

Furthermore, often in the literature on variational methods (as often in EM literature) 
4) is maximised via a series of fixed point updates. Let C = (0, and let us write 

as ^L(i^)- Suppose that C = (Ci, • • • ^ Cp) is some partition of C into p subvectors. 
As discussed at the end of Section 4.2.3 such partitions occur naturally within the context 
of various models. The first order optimality conditions require 

Dc/L = 0 
: (4.20) 

Dc/L = 0. 

Often it is possible to find an explicit solution to each individual equation D^i i = 0 of 
the form 

At+i) ._ ^ fAt)^ 

: (4.21) 

form some functions gi{'), 1 < i < p. Many of the optimisation problems in this thesis 
are treated in this manner. 

Borrowing terminology from difference equation theory, a fixed point x* of a function 
g{-) satisfies x* = ^(x*). Analogously we call (4.21) fixed point updates. Difference equa-
tion theory can then be used to analyse the convergence properties of (4.21). Based on the 
form of (4.21), most methods in optimisation, for example, the Newton-Raphson, quasi-
Newton and steepest descent methods can be viewed as fixed point updates. However, 
we will use fixed point updates to describe updates (4.21) which are direct solutions to 
(4.20). 

On the upside, fixed point equations: 

1. are simple to implement, 
2. require no additional matrix manipulation to perform updates (4.21) and 
3. can give an intuitive feel about the solution to max^ (̂C)-



The second point is particularly important when the length of C is 0{n) because it means 
we do not need to store Hessian matrices (or approximate Hessian matrices for quasi-
Newton methods) of dimensions 0{n) x 0{n) (see Appendix C). We will see this in an 
example in Section 4.6. 

On the downside, fixed point equations: 

1. may not exist or may be difficult to determine, 
2. may converge extremely slowly if is too far from the solution to the maximisa-

tion problem (or not at all), and 

3. may have difficulty enforcing implicit constraints on variables (e.g. positive vari-
ances). 

Thusifdim(C) < n then Newton-Raphson or quasi-Newton methods are preferred. Later 
in Chapter 5 we will consider a hybrid quasi-Newton/fixed-point method which outper-
forms either of these alone. 

4.4 Grid-Based Variational Posterior Approximations 

In Bayesian analysis it is common to approximate univariate marginal posterior densities. 
The posterior density for a single parameter idi is given by 

y 
y. 

(4.22) 

where 'd-i = (i^i, . . . , . . . , dm), i.e. the vector with the zth element removed. 
A common variational approach to approximating posteriors is to select a density 

to approximate where ^ are variational parameters. The density is 

used in turn to approximate the marginal likelihood, i.e. 

(4.23) log[y] = log J [y, 'd]d'd > E<5 log[y, 'd] + Hs-

Then the posterior for is best approximated, in the KL-divergence sense, by 

i9\y] ^ ô{'â; 0 where ^ = argmax[y; 
€ 

which tightens the bound [y] > [y;^]L, or equivalently minimises the KL-divergence 
between [i?|y] and (see Section 4.2.3). The posterior distribution for individual 

variables are approximated by the marginals of for di, i.e. 

(4.24) 

We call posteriors based on (4.24) variational posterior approximations (VPA). 
Humphreys & Titterington (2000), Wang & Titterington (2005) and Consonni & Marin 

(2007) noted (in various settings) that typically underestimates the true posterior 
CO variance [i^ly], sometimes dramatically. Thus interval estimates based on inad-
equate because they are too small. 



Instead of approximating (4.24) by (4.23) we will consider alternative approximations 
for individual posteriors based directly on (4.23). Let us suppose that is continuous. 
Using a density transform 4) a variational lower bound to log[y, î i] can be simply 
obtained by 

log[y,i^i] > log[y,i?i;4]L = ( l o g [ y , + 

In order to tighten this bound we maximise log[y, i^i; ^Jl with respect to Let 

(4.25) 

I = argmax {log[y, 
€ 

(4.26) 

so that [y, is also a tight lower bound for [y, 'di]. Note that in general the values for 
the optimal variational parameters ^ implicitly depends on the value of i9i through (4.26) 
so that we write ^(i^i). 

Given [y, ̂ ¿i we could approximate the marginal likelihood by 

(4.27) 

which is a lower bound for the marginal density [y]. Given [y, and [y]^ an 
approximation to [î ily] is given by 

y\L 
(4.28) 

The complicated dependency of ^ on î i means that it may be impossible to find a 
closed form expression for [y, 'df, Instead we evaluate 

for a grid of values 
(4.29) 

for some integer N. We then approximate log[y, by some curve log[y,i?i]G 
(where the subscript G denotes a grid based approximation) such that 

= for 1 < j < N, (4.30) 

i.e. log[y,i?ij]G interpolates the points (^¿j, log[y, i^jj;^^]/,) for 1 < j < N. Finally a grid 
based variational posterior approximation (GBVPA) for [i?j|y] is given by 

^i\y]G = 
y\G 

(4.31) 

where the one dimensional integral [y]^ = J[y,'di]Gd'di is evaluated numerically. This 
approximation is formalised in Algorithm 5. 



Algorithm 5 Grid Based Variational Posterior Approximation 
1. Select a grid of N points {Sn, . . . , Sin) for î i. 
2. Calculate log[y, = max^ log[y, Sij; for 1 < j < iV. 
3. Find a log[y, i^ijc which interpolates the points , log[y, Sij-,^]L)i<j<N-
4. Numerically approximate [y]^ where 

y]G = 
5. The posterior distribution of |y] is then approximated by 

y.G = y\G 

(4.32) 

(4.33) 

There are a number of details which are required for a practical implementation of 
Algorithm 5 including: the choice and number of grid values, type of interpolation used 
to approximate and quadrature method to approximate [y^'dijc- The 
choices we have made in the following examples are as follows: 

• The grid values are based on artificially widened intervals based on VPA. Suppose 
that is a 95% highest posterior density credible region for based on 
the density Then we let •. •, Sín) be equally spaced on the interval 
i^i e {i^iL - 'diR + S/2) where S = ^ír - ^íl which may be truncated to be within 
the allowable values for 'di. 

• We experimented with two types of interpolation to approximate [y, 'dijo- We used 
interpolation using a polynomial of degree Â  - 1 and natural splines. The later 
case was implemented using the function s p l i n e () in the standard R library. Both 
types of interpolation worked well in practice. 

• A 5,000 point composite trapezoid rule was used to approximate [y]^ on the inter-
val 'di G {'diL — S/2,diR + 6/2). Other quadrature methods could be used, for ex-
ample Gaussian quadrature, which could be both faster and more accurate, but the 
composite trapezoidal rule worked reasonably well and took a negligible amount of 
time. We note that higher point rules and/or adaptive quadrature methods might 
be needed for general problems. 

Assuming all marginal posterior densities need to be approximated, one possible 
downside of GBVPA is that N x dim(i9) optimisation problems of the form (4.26) need to 
be solved. Thus, in practice, we seek to choose the grid (4.29) with as few points as pos-
sible but enough points to ensure that we have a reasonable approximation for [í̂ í ly]^. 

We note that GBVPA could potentially be improved by: 
1. using derivatives of log[y, with respect to di-, 
2. choosing the grid (4.29) adaptively in some way; 



3. assuming the optimisation problems ^ = argmax^logfy,?^^ = are solved 
consecutively, the ^ based on previous grid points could be used as initial values 
for the next grid point 

However we propose GBVPA as a starting place for such improvements. 
Based on the application of GBVPA on the models considered in Sections 4.4-5 we 

have found that the marginal posterior approximations [t^zlylc appear to be better than 
marginal posteriors based on VPA when compared to densities estimated using posterior 
samples obtained via MCMC, even for N as small as about 20 and still reasonable for N as 
small as 12. But this suggests the question: for a particular dataset, when is one posterior 
density approximation "better'' than another? 

To answer this question, we compare posterior density approximations using VPA 
and GBVPA with posterior density approximations provided by using kernel density 
estimation techniques (Scott, 1992; Wand & Jones, 1995) for posterior samples obtained 
via MCMC. The kernel density estimates use the Gaussian kernel with the bandwidth 
chosen via a direct plug-in method (Wand and Jones, 1995, Section 3.6) using the R pack-
age KernSmooth. Alternatively the Sheather-Jones method (Sheather & Jones, 1991) can 
deliver excellent results. 

It has been well-established in kernel smoothing literature that the choice of kernel 
has little effect on density estimates (e.g. Marron & Nolan, 1988, Wand & Jones, Chapter 
2). However, how the bandwidth is chosen does matter. Extensive simulation stud-
ies (e.g. Park & Turlach, 1992; Cao, Cuevas & Gonzalez-Manteiga, 1994; Jones, Marron 
& Sheather, 1996) have shown that, for large sample sizes and densities that are Gaus-
sian in shape, automatic bandwidth methods such as the direct plug-in methods and the 
Sheather-Jones method lead to quite accurate density estimates. 

In the following sections we performed some initial tests based on generating data 
from shapes similar to the marginal posterior densities in Figures 4.2, 4.4 and 4.5 and 
found that sample sizes of 10,000 were sufficient to give reasonable accuracy, while 
100,000 were sufficient to give very good accuracy, with the main difference being the 
estimation of the densities near the peaks. Hence, in each of the examples in this chapter, 
we use chains of length 505,000 which includes a burn-in of 5,000 and applied a thinning 
factor of 5 for posterior samples of size 100,000. 

Let [̂ i\y]MCMC be the marginal posterior approximation for di based on kernel den-
sity estimates of posterior samples obtained from MCMC. Assuming that the Markov 
chain has converged and the number of posterior samples is sufficiently large, then 
':&i\y]MCMC should be close to the exact posterior [i?i|y]. Thus, for practical purposes, 
we could compare different marginal posterior density approximations f{'di) using the 
integrated square error (ISE) defined by 

ISE [di\y]MCMc) = J Um - myUcMC? d^i (4.34) 

where /(t^i) is either or [i?i|y]G-



The above method is a little abstract and makes more sense within the context of 
specific models. In the following sections VPA and GBVPA are compared for two simple 
models: Bayesian linear regression and a Bayesian missing binary covariate model. 
4.5 Bayesian Linear Regression 
Consider the following Bayesian linear regression model. Suppose we observe the pairs 
{yi,Xi), I <i <n and 

with /3 = A) where IG is the inverse-gamma distribution (see Appendix A). The 
prior hyperparameters are cr̂  = 10® and Ay = By = lO""̂  characterising vague priors on 
(13, ay). Note that even for this model, one of the simplest Bayesian models, the marginal 
likelihood does not have a closed form expression. 
4.5.1 Variational Posterior Approximation 
First, consider the task of approximating posteriors using VPA. The common variational 
approach to this would be to choose a density transform which mirrors the priors used, 
such that the approximate marginal posterior for each variable is independent, i.e. using 

= where 

/3|y 
a i 

s ) 
2 

where 4 = (m, S, are additional variational parameters. Using this, the approxi-
mate marginal distribution is given by 

y] >[y;^]L 
= E^ (log 
= Ei (log[y 1/3, a^]) + E^ (log[/3]) + E^ (logfa^]) + Hs, + Hŝ  
= (log[y|/3,i72][/3][i72])+H6 

where 

Ei (log[y|/3, a^]) = - ^ (a , ) ) - ^ • a, 

H 
y - X/^lp + tr(SX^X) 

Ei (logk^l) = Ay iog{By) - l o g - {Ay + l)(log(/3,) - - By^ Py 
Hs^ =:-log|2e7rE| 

and Hs 2 = % + + ^ogr{ay) - (ay + l)ip{ay). 

We have used the facts that E^((7-2) = ay/f3y,Es{\og{a^)) = \og{py)-^(ay),Es{l3' Af3) = 
fji^Afi + tr(AS) for any appropriately sized matrix A and ) is the digamma function 
(see Abramowitz & Stegun, 1964, Chapter 6). 



Differentiating [y; with respect to ^ we obtain 

D^[y;C]L = - XM) - - 2 0 
/ / Ds,, [y; = tr - ^ X ^ X - a / l j Ey j /2 

/ y - X / x | | 2 + tr(5]X^X)\ 
(4.35) 

Thus solving the first order optimaUty conditions for $ we obtain the following fixed 
point updates 

E / a - 1 

ay 

Py 

7 ^ 
y - X / x | | 2 + tr(X:X^X) 

These updates are applied sequentially until convergence is obtained. 
If I = (Ji^Yi.diy.^y) then the variational posterior approximations are 

y ^IG{ay,py) (4.36) 

and the posterior means are 

al = Es{al) = dy ^ 2By + ||y - X/x|p + t r (SX^X) 
~ 2Ay-\-n-2 ay-1 

ft = EsiPi) = Jli / ^ - 1 

X ^ X + ^ I X^y 
CT, 

The maximum likelihood estimators for /3 and a^ from frequentist linear regression are 

l l y - x / 2 f ^y,ML = n 
^ (X^X) ' X^y. 

(4.37) 

We see that as a'^ ^ oo, Ay, By 0 and n ^ oo that 0 ^ Pml ^^^ ^ 
3ML ^rid ^I^ml ^^^ asymptotically consistent estimators so are (3 and dy as ^ oo and 
Ay, By 0. 
4.5.2 Grid Based Variational Posterior Approximation for ft 
We now consider the task of approximating the marginal posterior density of ft using 
GBVPA. First, in order to approximate the ft posteriors we fix ft = ft and replace [l3] and 



S{l3) with (3-i ~ N{0, (j^) and P-i\y cr̂ ). The density transform of the joint 

likelihood for y and (3i = is 

Z Py 

—I,—I 

2. 

a, 
- logr(A, ) - (A, + l)(log(/?,) - V^K)) - B y ^ 

^ Py 
+ - log(2e7ra2) + + log(/?j,) + logr(ay) - [ay + l)V^(ay) 

where fii = Differentiating [y, A; with respect to ^ we obtain similar derivatives 

to (4.35) and using similar algebra we arrive at the following fixed point updates 

2 / ^ a : = X + cr - 2 

'13 

- 1 

a? 

X^y 
J 

y - X/x||2 + tr(SX^X) 
and By + 

Again, these updates are applied in order until convergence is obtained. 

Suppose that \ = [Jl-i, Qy, 3j/) are the values of the variational parameters at the 

convergence of these iterates. For a fixed [3i = % we can calculate [y, which is 

sufficient information to implement a GBVPA for |y . 

4.5.3 Grid Based Variational Posterior Approximation for 

We now consider the task of approximating the marginal posterior density of ay using 

GBVPA. First, in order to approximate the (j^ posteriors we fix a^ = a^ and remove the 

prior on a^ and 5^2 from 5. The density transform of the joint likelihood of y and = 

is 
n 

-log(27ra2)-

y-X/x||2 + tr(EX^X) 
2^2 

/ x f + tr(x;) , 1 
+ -log|2e7rS|. 

Differentiating [y, with respect to $ we arrive at the following update equations 

S i a-^X^X + a f l 
- 1 

and ¡Ji := a-^SX^y. 

Again, these updates are applied in order until convergence is obtained. 

Suppose that ^ = (/i, S ) are the values of the variational parameters at the conver-

gence of these iterates. For a fixed cr̂  = dy we can calculate [y, which is sufficient 

information to implement a GBVPA for [a^ |y . 



4.5.4 Numerical Comparisons 

In order to test the effectiveness of the variational approximations for the Bayesian miss-
ing covariate model, we consider datasets where points Xi), 1 < i < n are randomly 
generated from Xi - Unif(0,1) and yi ~ N{(3o + (3ix,a^) where the parameters (3o, 
and are fixed at ft = - 1 , A = 1 and ĉ l = 2 respectively for some n. The marginal 
posterior approximations using VPA and GBVPA for a particular dataset with n = 40 
points are illustrated in the first and second row of panels of Figure 4.2 respectively. The 
GBVPA used TV = 30 grid points. 
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Figure 4.2: Marginal posterior approximations for Bayesian linear regression model using VPA 
and GBVPA. The dashed vertical lines represent the "true" values used in the simulation. 

In Figure 4.2 the VPAs are very reasonable when compared to the MCIVLC posterior 
density approximations and do not significantly underestimate the posterior variances. 
Comparing VPA and GBVPA approximations we see that GBVPA has a slight advan-
tage over VPA in terms of accuracy. There are slight differences between the IVICIVIC and 
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Figure 4.3: Differences of VPA and GBVPA with kernel density approximations obtained from 
MCMC posterior samples for Bayesian linear regression model 

VPA approximations whereas the differences are slightly less noticeable than those GB-
VPA particularly for the a^ posterior approximation where the main differences can be 
put down to inaccuracies due to the use of kernel density estimation. The differences 
are more visible in Figure 4.3 where the differences between GBVPA and VPA with the 
MCMC posterior approximation are illustrated. 

To compare accuracy of GBVPA and VPA in terms of the ISE we compared the average 
ISE for 30 simulated datasets for eight combinations of parameters where Po e {-1 ,0}, 
(3i e {0,1} and a j g {1/2,4} and n = 100. These results are summarised in Table 4.2. We 
also note that for individual simulations using C = 5 x 10^ for posterior samples of size 
10^ the relative ISEs for each parameter were similar. 

Unfortunately, for this simple example, based on Figure 4.2, the gains made by using 
GBVPA instead of VPA are almost imperceptible to the eye. On the other hand looking 



at Table 4.2 we see that in terms of the ISE the GBVPA is between about 2.8 and 6.0 times 
more accurate than VPA for this example. The average time taken to approximate these 
posteriors using VPA is less than 0.005 seconds, GBVPA for all posteriors took on average 
about 0.15 seconds while MCMC fits took on average 21.55 seconds. We now consider a 
more complicated model which give more significant improvements in terms of ISE. 

4.6 Bayesian Missing Binary Covariate Model 

Consider the complication for a Bayesian linear regression model where a binary covari-
ate is missing completely at random (MCAR). Suppose we have one covariates x for a 
response y where some of the xs are MCAR and we suspect that x has a fixed probability 
p of being 0 or 1. Thus we might consider the likelihood approach based on 

yi\xi,ß,(7y 
Xi\p Bernoulli(p). 

(4.38) 

For convenience we make the partition x = (x̂ fts, ^mis) where ŷ obs = (xo6s, i, • •., ôbs,nobs) 
and x^is = (Xrnis,!'-- - such that n = nobs-\-nmis- Similarly lety = {yobs,ymis) 
be a partition of y coinciding with the "missingness'' of x. Now we place the following 
additional priors on the /3, a^ and p 

a ^IG{Ay,By) 
and p ~ Beta(l, 1) 

where ß — {ßQ.ßi) and the prior hyperparameters are = cr| = 10̂  and Ay — By = 
to characterise the priors for the parameters /3, cr̂  and p as vague. We wish to fit 

posteriors for the parameters of interest 'â = {ß, ay,p). 
In this model the missing values are discrete and so integrating out the missing xs are 

replaced by multiple summations. After integrating out a^ and p the joint likelihood for 
y, Xo6s and ß is proportional to 

1 1 

s ••• H r ( i ^ x + i ) r ( n - i ^ x + i ) 

2 
X exp ß\ 

H 
n / 
- log By + 

\ 

(4.39) 

The summation involves terms. Thus unless rimis is small then summation over 
all values of ŷ rnis is not computationally feasible. Similar models are fitted using 
MCMC by Ibrahim, Chen & Lipsitz (2001) and a combination of the EM algorithm and 
PQL approximations by French & Wand (2004). Instead we pursue variational approxi-
mations. 

Variational approximations have recently been applied to a number of missing value 
problems in several contexts (MacKay, 1997; Attias, 1999,2000; Ghahramani & Beal, 2000; 



00 vo 

Median Median Median Median Median Median Mean Mean Mean 

CASE lO^xISE lO^xISE Ratio 10^XISE lO^xISE Ratio lO^xISE lO^xISE Ratio Time Time Time 

for VPA GBVPA of i^o for VPA for GBVPA A for VPA for GBVPA (s) (s) (s) 

of/?o of/3o of A of A ofal oial VPA GBVPA MCMC 

(-1,0,1/2) 0.5174 0.1844 2.8059 0.2615 0.0760 3.4408 1.4913 0.4001 3.7273 <0.005 0.15 21.53 

(0,0,1/2) 0.1774 0.0632 2.8070 0.0896 0.0260 3.4462 0.1753 0.0288 6.0868 0.01 0.15 21.49 

(-1,1,1/2) 0.4953 0.1765 2.8062 0.2503 0.0727 3.4429 1.3666 0.2556 5.3466 <0.005 0.15 21.59 

(0,1,1/2) 0.1842 0.0656 2.8079 0.0931 0.0270 3.4481 0.1890 0.0311 6.0772 0.01 0.15 21.53 

( -1 ,0 ,2 ) 0.4976 0.1773 2.8065 0.2515 0.0730 3.4452 1.3794 0.2626 5.2529 0.01 0.14 21.63 

(0,0,2) 0.1774 0.0632 2.8070 0.0897 0.0261 3.4368 0.1754 0.0288 6.0903 <0.005 0.16 21.58 

( -1 ,1 ,2 ) 0.5202 0.1854 2.8058 0.2629 0.0764 3.4411 1.5077 0.4481 3.3647 <0.005 0.15 21.50 

(0,1,2) 0.1798 0.0641 2.8050 0.0908 0.0264 3.4394 0.1800 0.0296 6.0811 <0.005 0.16 21.58 

COMBINED 0.3172 0.1130 2.8071 0.1603 0.0466 3.4399 0.5968 0.0991 6.0222 >0.005 0.15 21.55 

Table 4.5.2: Integrated Square Errors (ISE, see equation (4.34)) and times for variational posterior approximations (VPA) and grid based variational posterior ap-

proximations for Bayesian linear regression model (see Section 4.5). One hundred trials of points (yi.Xi), 1 < i < n were simulated from xi ~ Unif{0,1) and 

Ui ~ N{(3o + 0-2) where n = 100 and the values for A, cTy) are in the first column. 



Penny & Roberts, 2000; Humphreys & Titterington, 2000, 2001; Beal & Ghahramani, 2002; 
Beal, 2003; Celeux, Forbes, Robert & Titterington, 2006; Consonni & Marin, 2007). The 
approximations in the above papers were shown to be practically efficient and effective. 
Few theoretical results are available although Hall et al (2002) and Wang & Titterington 
(2004) have been able to prove some important results. In particular Hall et al. (2002) 
were able to show for certain Markov models, the parameter estimator obtained by max-
imising the variational lower bound function is asymptotically consistent, provided the 
proportion of all values that are missing tends to zero. Wang & Titterington (2004) inves-
tigated the consistency properties of both mean field and variational Bayesian estimators 
in the context of linear state space models and proved that the mean-field approximations 
are asymptotically consistent when the variances of the noise variables in the system are 
sufficiently small. 

4.6.1 Variational Posterior Approximations 

Consider the task of approximating posteriors using VPA. Choosing the density trans-

form which mirrors the priors, i.e using 6{/3,p,a^,:sirnis) = 

where 

H (7y 

p\y,^obs ^Sp Beia{ap,l3p) 

i\y,̂ obs Bernoulli(pi) 

Furthermore note that the form of assumed independence of the vari-

ables /3, cr ,̂ p and x^nis which is not necessarily the case for the true posterior density 

/3, p, ay, x^is|y, Xo6s. The additional variational parameters are (/x, Ti,ay,(3y, a^, p) 

where (pi, • • •, 
The density transform of the marginal log-likelihood is given by 

y, Xo6s; = E<5(log[y |x, /3, al]) + E<5(log[/3l) + E5(log[a^]) + E5(log[x|p]) + Es{\og\p\) 
.2 

+ 2 + ^¿p + ^mis 



where the relevant expectations and entropies are given by 

^ - I {\og{Py) - ^{ay)) 

a y^y - 2y^X/x + m ^ X ^ M + tr ( s X ^ 

I/^IP+ tr(E) 
E5(log[/3]) = - log(27ra^) - ' 

a. E^aog^]) = Ay\og{By) - \ogr{Ay) - {Ay + l)(log(/3,) - - By^, 

E5(log[x|p]) = (l^x)V^(ap) + (n - - ml;(ap + 

^¿(logb]) = 0 , 

Hs^ = ilog|2e7rS|, 

= Q̂e + l0g(/3y) + log - {ay + l)V^(tty), 

^¿p = log - (ap - l)^{ap) - {pp - l)V^(^p) 

where B{ap, pp) = is the Beta function, x = (x f̂es, p), X = [1, x] and 

Py 

(4.40) 

X ^ X = 
n + l^P 

_ l^Xobs + l ^ P ^obs^obs + l ^ P 

n l^x 

l ^ x l ^ x 

which follows from Xobs being binary (implying x^^^xobs = l^Xo^g). Here have used the 

facts Ei(log(p)) = iP{ap) - ^(a^ + pp) and Ei(log(l - p)) = ^{(3p) - ii^{ap + (3p). These 

may be verified either by direct integration, integration by parts or by using a symbolic 

computing package. 

By taking derivatives with respect to all variational parameters and equating to zero, 

fixed point updates for each parameter can be derived. 

- 1 

A y n 
ay 

Py 

Oip 

Pp 

Pi 

— Ay _ , 

= By(y^y - 2y^X/x + fji^^^fi + tr ( s x ^ ) ) j 2 , 

= 1 + 1 ' x , 

= 1 + n - l ^ x , 
1 

(4.41) 

l + exp(-77i)' 

r]i : = il){ap) - il){(3p) + ^ [ymis,m - ^A^̂ A/Lt - ^tr ( S A ) 

and A = 
OX^X 

dpi 
0 1 

1 1 

These updates are applied until the variational parameters converge. 



This form of optimisation is computationally more efficient than using Newton-
Raphson or quasi-Newton updates since, if n-mis is large, then the Hessian (or approx-
imate Hessian matrix for quasi-Newton methods) is of size 0{nmis) x 0{nmis) whereas 
the space cost for the above iterations is Oijimis) and updates can be performed in 0(n) 
time. Unfortunately, these iterates can sometimes converge slowly. Using these equa-
tions, it is relatively easy to calculate the posterior distributions for (3, Uy and p. An 
alternative method which might used is the steepest descent approach. 

Suppose that ^ = (3y,ap, (3p,p) are the values of the variational parameters 
at convergence. Then the approximate marginal posterior densities are 

A|y,Xo6s ^Sp N{i2i,Eii) 
a (Ty 
p\y, ^obs ^ôp Beta(ap, Pp) 

(4.42) 

and the posterior means for the parameters (/3, can be approximated using the for-
mula for the means of the approximate posterior densities. In this case 

and Es{p) 

= 

A ^ 
I ~ a 

ay-I 
p 

^p + i^p 
We will now consider a number of simulated experiments based on data points 

{yi,Xi), 1 < i < n where Xi ~ Bern(p) and yi ~ N{(3o + (3iXi,ay) with a given percent-
age of XiS removed completely at random. The approximate marginal posterior densities 
(4.42) are illustrated in Figure 4.4 where we notice that the posterior variances are all 
underestimated. 
4.6.2 Grid Based Variational Posterior Approximation for (3i 
For a fixed (3i = we use (3-i ~ the density transform S{(3-i,p,ay,Kmis) = 

and Applying this density 
transform we obtain 

y, A; = Ei(log[y|x, al]) + E5(log[/9_i]) + Es{log[a'^]) + E5(log[x|p]) 
+ Us, + Hsp + 

where the relevant expectations and entropies are given in (4.40) except 
n n E^log[y|x,/3,a^] = - - log(27r) - - (log(/?,) - ^(a^)) 

-1,-1 
0y 

E^ log[/3_i] = - - log(27r<T )̂ -
and = l-hg{2eira^) 
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Figure 4.4: Fitted line (top panel) and variational posterior approximations (bottom panels) for the 
Bayesian missing binary covariate model Data points {yi,Xi),l < i < n were generated where 
Xi ~ Bern{p) and yi - N{(3o + ^iXi^al) where n = 100,p = 0.5,/?o = - 1 , A = 2,cr2 = 2 

and then 50% of the XiS were removed at random. The dashed vertical lines represent the "true" 
values used in the simulation. 
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a : = 
a. 

X^Xl-i-i + a - 2 

^ y 2 

Py := By + 

a n d r ] i : = ^ { a p ) - i p i f ^ p ) + 

- 1 

y ^ y - 2 y ^ X / x + / x ^ X ^ / x + ^ ^ [ X ^ -I-I 

ay / 1 T a 1 2 a a 
y m i s , m - A / X - - c r A - i - i 1 . 

S u p p o s e t h a t J = { j l - i , p ) a r e t h e v a l u e s o f t h e v a r i a t i o n a l p a r a m e t e r s 

a t c o n v e r g e n c e . F o r a f i x e d ( 3 i = A w e c a n c a l c u l a t e [ y , x ^ f t s , w h i c h i s s u f f i c i e n t 

i n f o r m a t i o n t o i m p l e m e n t a G B V P A f o r [ P i | y . 

4.6.3 Grid Based Variational Posterior Approximation for ay 

F o r a f i x e d a^ = a^ w e u s e t h e d e n s i t y t r a n s f o r m S{P,p, Xmis) = Sf3_. (xmis) 
t o o b t a i n a l o w e r b o u n d f o r t h e j o i n t l i k e l i h o o d f o r y , X o b s a n d a ^ = d ^ g i v e n b y 

l o g [ y , = ] E < 5 ( l o g [ y | x , (3, a ^ ] ) + Es{\og[f3]) + l o g ^ ^ ] + E 5 ( l o g [ x | p ] ) + Es{\og[p]) 

w h e r e t h e r e l e v a n t e x p e c t a t i o n s a n d e n t r o p i e s a r e g i v e n i n ( 4 . 4 0 ) e x c e p t 

y ^ y - 2 y ^ X / i + / x ^ X ^ / x + t r f S X ^ ' n 
E 5 ( l o g [ y | x , / 3 , a ^ ] ) = - - l o g ( 2 7 r a ^ ) -

2 ^ 2 

a n d \og[al] = Ay log{By) - l o g r ( A ^ ) - (Ay + 1 ) l o g ( a 2 ) - Bya'^ 
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e x c e p t 
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/ X a - ^ S X ^ y 
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Py \ ^ ^ J 

S u p p o s e t h a t ^ = U , S p , ^ p , p ) a r e t h e v a l u e s o f t h e v a r i a t i o n a l p a r a m e t e r s a t c o n v e r -

g e n c e . F o r a f i x e d c r ^ = d y c a n c a l c u l a t e l o g [ y , X o b s , ' ^ ^ ' , ^ J l w h i c h i s s u f f i c i e n t i n f o r m a t i o n 

t o i m p l e m e n t a G B V P A f o r [ c r ^ | y , X o b s ] • 

4.6.4 Grid Based Variational Posterior Approximation for p 

F o r a f i x e d p = pwe u s e t h e d e n s i t y t r a n s f o r m c r ^ , Xmis) = {xmis) 
t o o b t a i n a l o w e r b o u n d f o r t h e j o i n t l i k e l i h o o d f o r y , X o b s a n d p = p g i v e n b y 

y , X o 6 a , P ; S I l = E 5 ( l o g [ y | x , (5, al]) + E 5 ( l o g [ / 3 ] ) + Es{log[a^]) + E 5 ( l o g [ x | p ] ) 

+ + 



where the relevant expectations and entropies are given in (4.40) except 

E5(log[x|p]) = (l^x) log(p) + (n - l^x) log(l - p). 

The first order optimality conditions and hence fixed point iterates are the same as (4.41) 
except 

r]i := log(p) - log(l - p) + ^ (̂ ymis.ifJ'i - ^M^A/Lt - ^tr (SA)^ . 

Suppose that ^ = (/x, S , ay, (3y,p) are the values of the variational parameters at conver-
gence. For a fixed a^ = dy we can calculate log[y, which is sufficient informa-
tion to implement a GBVPA for [p|y, ŷ ohs. • 

Figure 4.5 illustrates the marginal posterior densities for the Bayesian binary missing 
value model for the same setting in Figure 4.4 using GBVPA. We notice from this figure 
that the GBVPAs are much closer to the kernel densities estimated from posterior samples 
via MCMC than for VPA. 

4.6.5 Numerical Comparisons 

In order to test the effectiveness of the variational approximations for the Bayesian miss-
ing covariate model we consider randomly generated datasets where n points {yi,Xi), 
1 < i < n are generated from (4.38) where p = p*, (3o = (3Q, (3i = f3l and cr̂  == ay* are fixed 
and a fixed percentage of the xs are removed completely at random. The three methods 
we will compare are: (a) the variational approximation to the Bayesian linear regression 
model developed in Section 4.5 using only complete cases (CC), (b) the Bayesian missing 
covariate model fitted using MCMC with WinBUGs, (c) the variational posterior approx-
imation to the Bayesian missing covariate model (VPA) developed in Section 4.6.1 and 
(d) the grid based variational posterior approximation developed in Sections 4.6.2-2.6.4. 
Note that when missingness is MCAR then the CC analysis is unbiased, although when 
there are a large number of missing values the loss of efficiency can be substantial (Little 
& Rubin, 2002). 

We compare approximated posterior means using the mean square error (MSB) for 
the CC, MCMC, VPA and GBVPA approaches over s randomly generated datasets, where 
for Po the MSE is given by 

E ((w - /3o*)') « - Po) 
i=l 

and JIQ^ is the ith approximation of posterior mean for PQ. We use a 5,000 point composite 
trapezoid rule to approximate posterior means for the GBVPA approach. 

Table 4.6.3 contains MSE for the approximated posterior means and average times for 
the CC, MCMC, VPA and GBVPA approaches for s = 50 randomly generated datasets 
with p* = 0.5, = 0, (31 = 1 and a^y* = 1. We used Â  = 30 grid points for GBVPA. 
We see from this table that the MSE for approximated posterior means for the VPA and 
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Figure 4.5: Grid based variational posterior estimates for the Bayesian missing binary covariate 
model. The dataset for this figure was the same used for Figure 4.4. The dashed vertical lines 
represent the "true" values used in the simulation. 

GBVPA methods are both comparable with those approximated by MCMC, but that those 
of GBVPA are closer. 

Furthermore we note that the VPA and GBVPA algorithms scale very well to large n. 
For n = 10® with 50% of xs randomly removed the VPA algorithm takes about 15 seconds 
of computing time while GBVPA algorithm takes about 10 minutes and an MCMC ap-
proach using winBUGS with using just 10,000 posterior samples took 43 and a half hours 
of computing time. While it is possible to do much better with custom Markov chain 
code it is unlikely to take less than 10 minutes for this example. 

To compare accuracy of GBVPA and VPA in terms of the ISE, we compared the av-
erage ISE for 30 simulated datasets for eight combinations of parameters where p* € 
{0.25,0.75}, e {0,1}, = {1/2,2}, n = 200 and 50% of the xs removed at random. 



lOOxMSE lOOxMSE lOOxMSE lOOxMSE Time 
n Method for/^o for A for cTy iorp (s) 
100 CC 2.4971 3.6197 2.9929 0.3600 <0.005 

MCMC 1.4549 1.8992 1.0256 0.3733 72.555 
VPA 1.4757 2.1979 2.7703 0.3843 0.03 
GBVPA 1.4317 1.8891 1.1648 0.3760 1.19 

200 CC 1.1490 3.4212 1.1509 0.1600 <0.005 
MCMC 0.9058 3.3295 0.4736 0.1230 141.155 
VPA 0.9240 3.3155 1.1560 0.1260 0.03 
GBVPA 0.9089 3.3441 0.4662 0.1240 1.255 

400 CC 0.8603 0.9033 0.8245 0.0900 <0.005 
MCMC 0.7909 0.8594 0.3595 0.1203 277.435 
VPA 0.8024 0.8532 0.8187 0.1222 0.03 
GBVPA 0.8011 0.8595 0.3589 0.1213 1.37 

800 CC 0.3791 0.2979 0.2125 0.0400 <0.005 
MCMC 0.2384 0.0976 0.1262 0.0427 555.37 
VPA 0.2257 0.1109 0.2139 0.0426 0.03 
GBVPA 0.2342 0.0942 0.1296 0.0428 1.61 

1600 CC 0.1192 0.3407 0.0948 0.0077 <0.005 
MCMC 0.0959 0.2728 0.0694 0.0106 1167.44 
VPA 0.0990 0.2834 0.0923 0.0108 0.04 
GBVPA 0.0967 0.2662 0.0694 0.0108 2.09 

3200 CC 0.0408 0.1593 0.1145 0.0049 <0.005 
MCMC 0.0295 0.0962 0.0479 0.0042 2932.035 
VPA 0.0296 0.0936 0.0476 0.0042 0.06 
GBVPA 0.0296 0.0946 0.0476 0.0042 3.105 

Table 4.6.3: A comparison of posterior mean square errors and times for the Bayesian binary 
missing value problem using complete cases (CO, MCMC, VPA and GBVPA. Data {yi^Xi), 
< i < n is simulated from where Xi ~ Bern(p) and yi ~ + (^Ixi.Gy*) where the true 
values are p* = 0.5,/3q = O.f^l = = 1 and 50% of the xs are removed completely at 
random. 

For GBVPA we used Â  = 30 grid points. These results are summarised in Table 4.6.4. 
From this table we see that in terms of ISE the GBVPA is on average 206.93 time, 363.38, 
4.66 and 2944.62 times more accurate for the parameters /9o, (^y and p respectively. 
This represents, for this case, GBVPA offers vast improvement over VPA. 

4.7 Conclusion 

Efficient and accurate methods for approximation of integrals or summations which are 

computationally or algebraically intractable are one of the most common problems in 

statistics. Variational methods are a promising class of new approximations which may 

be used on a variety of statistical integrals. One such method VEM is a generalisation 

of the EM algorithm which is typically fast, flexible and may be used to simplify EM 

calculations. 

An important application of these variational methods is the efficient approximation 
of posteriors in Bayesian analysis. As noted by Humphreys & Titterington (2001), Wang 
& Titterington (2005) and Consonni & Marin (2007) the covariance matrices correspond-
ing to the variational approximations are typically 'too small' compared with those for 



VO 
00 

Median Median Median Median Median Median Median Median Mean Mean Mean 

CASE lOxISE lOxISE Ratio lOxISE lOxISE Ratio lOxISE lOxISE Ratio lOxISE lOxISE Ratio Time Time Time 

{p,f3i,al) for VPA for GBVPA Po for VPA for GBVPA Pi for VPA for GBVPA - J for VPA for GBVPA P (s) (s) (s) {p,f3i,al) 
of/3o of/3o of/3i of Pi of al of al of p of p VPA GBVPA MCMC 

(0.25,0,1/2) 0.4814 0.0050 96.28 1.7342 0.0030 578.07 0.0676 0.0487 1.39 2.5088 0.0034 737.88 0.02 1.11 137.82 

(0.75,0,1/2) 0.2455 0.0022 111.59 0.8663 0.0014 618.79 0.0190 0.0128 1.48 6.8166 0.0031 2198.90 0.02 1.19 137.61 

(0.25,1,1/2) 0.5597 0.0068 82.31 0.7387 0.0028 263.82 1.0617 0.0175 60.67 3.7004 0.0019 1947.58 0.02 1.16 142.35 

(0.75,1,1/2) 0.2661 0.0026 102.35 0.6751 0.0020 337.55 0.0576 0.0023 25.04 6.8588 0.0031 2212.52 0.03 1.24 138.35 

(0.25,0,2) 1.3778 0.0025 551.12 1.7122 0.0025 684.88 0.0827 0.0525 1.58 10.3969 0.0028 3713.18 0.02 1.07 141.64 

(0.75,0,2) 0.6878 0.0012 573.17 0.8676 0.0014 619.71 0.0184 0.0123 1.50 8.3542 0.0029 2880.76 0.02 1.17 141.62 

(0.25,1,2) 0.8169 0.0093 87.84 0.7056 0.0030 235.20 1.0950 0.0210 52.14 9.2063 0.0018 5114.61 0.02 1.16 147.16 

(0.75,1,2) 0.5704 0.0014 407.43 0.6857 0.0027 253.96 0.0621 0.0023 27.01 8.5316 0.0024 3554.83 0.03 1.23 143.91 

COMBINED 0.6001 0.0029 206.93 0.8721 0.0024 363.38 0.0774 0.0166 4.66 7.6560 0.0026 2944.62 0.02 1.16 142.01 

Table 4.6.4: Integrated Square Errors (ISE, see equation (4.34)) and times for variational posterior approximations (VPA) and grid based variational posterior ap-

proximations for Bayesian binary missing value model (see Section 4.6). One hundred trials of points {yi.Xi), 1 < i < n were simulated from Xi ~ Bern{p*) and 

yi ~ + ^¡Xi, a f ) where = 0, n = 200 and the values for (p*, (31, al*) are fixed and given in the first column. Finally 50% of the xis were removed at 

random. The final row, COMBINED, contains column values averaged over all (p, o-^) settings. 



the MLE, so that resulting interval estimates for the parameters will be too narrow. We 
have shown in two examples that the GBVPA algorithm developed in this chapter can 
improve on the standard VPA algorithm, sometimes dramatically. While we have shown 
the GBVPA approach to be fast and scalable to large datasets the GBVPA algorithm re-
lies on multiple solutions of algorithms similar to VPA, and improvements may be found 
which reduce the number of times these algorithms are run. 





CHAPTER 5 

Variational Approximations for Generalized Linear Mixed Models 

5.1 Introduction 

The success of linear mixed models (LMMs) in handling complications due to messy 
data has led to its widespread use in many fields. In longitudinal studies LMMs can be 
used, for example, to handle the statistical complication of correlation in grouped data 
leading to simple, hierarchical, crossed and nested random effect models (Verbeke & 
Molenberghs, 2000; McCulloch & Sear le, 2001). Similarly LMMs can be used for function 
approximation including scatterplot smoothing, random coefficient and kriging models 
(Ruppert, Wand & Carroll, 2003). The extension of these models to generalised responses, 
called generalised linear mixed models (GLMMs), are also extremely useful (Zhao, Stau-
denmayer, Coull & Wand, 2006). Unfortunately, the expression for the marginal likeli-
hood for GLMMs involves an integral with no (known) closed form. The usefulness of 
GLMMs, along with the inherent difficulties involved, have driven an enormous volume 
of research in the area over the past several decades. 

The appearance of analytically intractable integrals in the marginal likelihood for 
GLMMs means we need to use approximations to proceed. Approximations include 
Laplace-like approximations such as penalised quasi-likelhood (PQL, Breslow & Clayton, 
1993), Gauss-Hermite quadrature (Naylor & Smith, 1982; Liu & Pierce, 1994) and Monte 
Carlo methods (Gelman, Carlin, Stern & Rubin, 1995; Clayton, 1996; Robert & Casella, 
1999; Gilks, Richardson & Spiegelhalter, 1996). Each of these methods of approximation 
have computational shortcomings associated with them. Laplace and related approxima-
tions do not scale well to higher orders of accuracy, Gauss-Hermite does not scale well 
to high dimensional integrals and Monte Carlo methods suffer from the problems of the 
slowness and difficulties accessing convergence (see Section 1.3.1 for a summary). Ex-
cellent overviews of existing approximations include McCulloch & Searle (2001, Chapter 
10) and Tuerlinckx, Rijmen, Verbeke & de Boeck (2006). 

Variational approximations are a class of analytic approximations which offer a fresh 
alternative for fitting GLMMs and as such, as previously argued, can be useful in a num-
ber of contexts. Since analytic approximations are typically faster than numerical approx-
imation alternatives they can be used (i) as a starting point for other more accurate algo-
rithms, (ii) as the basis for a model selection procedure and (iii) when criteria other than 
the accuracy of approximating the marginal likelihood is of utmost importance. Vari-
ational methods have been used to approximate models which give rise to analytically 



intractable integrals/summations (Saul, Jaakkola & Jordan, 1996; Jaakkola, 1997; Ghahra-
mani & Jordan, 1997; Ghahramani & Hinton, 2000), and more recently have been used 
to approximate complicated Bayesian learning models (Hinton & van Camp, 1993; Wa-
terhouse, MacKay & Robinson, 1996; MacKay, 1997; Bishop, 1999; Ghahramani & Beal, 
2000). 

Unfortunately, currently variational approximations are limited in scope. In all but 
a few cases the models considered come from the ''conjugate-exponentiar' family (At-
tias, 2000; Ghahramani & Beal, 2001; Winn & Bishop 2005). Conjugate exponential family 
distributions include Gaussian and discrete multinomial distributions and conjugacy re-
quires the posterior (up to the normalising constant) to have the same functional form 
as the prior. A variational approximation package VIBES fits models including directed 
acyclic graphs of multinomial discrete variables (with Dirichlet priors) together with ar-
bitrary subgraphs of linear functions of Gaussian nodes (with gamma/Wishart priors), 
with mixture nodes providing connections from discrete to the continuous subgraphs 
(Winn & Bishop, 2005). Special cases include hidden Markov models, Kalman filters, fac-
tor analysers, principal component analysers and independent component analysers and 
robust models stemming from scale mixture Gaussian distributions (Paul & Tipping 2001; 
Kuss, 2006) and LMMs and Bayesian LMMs (Friston, Glaser, Henson, Kiebel, Phillips 
& Ashburner, 2002). While this is a fairly general class of models few non ''conjugate-
exponentiaP' family models have been considered. An important exception is logistic 
regression, see Jaakkola & Jordan (1997, 2000). 

In this chapter we make the following contributions: 

1. We derive variational approximations as an alternative method for fitting both 
GLMMs and Bayesian GLMMs. These jump the ''conjugate-exponential'' family 
hurdle for the important case of non-Gaussian response models with Gaussian ran-
dom effects/prior. These variational approximations find a lower bound for the 
marginal distribution by approximating the posterior of the random effects by a 
Gaussian distribution. 

2. Derive a new approximation for logistic linear mixed models and compare it with 
the approximation developed by Jaakkola & Jordan (1997). 

3. Develop several algorithms to fitting variational approximations for GLMMs and 
Bayesian GLMMs. 

4. Show that for LMMs the variational approximations considered in this chapter are 
exact. 

5. Show that the variational approximations to Poisson, Gamma and inverse-
Gaussian LMMs are better Gaussian approximations in terms of Kullback-Leibler 
divergence than Laplace's method. They are also are more flexible and have similar 
form as the Laplace's method. 

6. Examine the effectiveness of these approximations via several numerical studies. 



5.2 Variational Approximations for Generalised Linear Mixed Models 

Suppose we have been given the data Xj), 1 < i < n and wish to predict the ys based 

on the covariates xs where each Xj is a row vector of dimension d with Xj = (x j i , . . . , Xi^). 

The response vector y is modelled using the exponential family of distributions given by 

log[y|ul = + ^ 
f^W) (5.1) 

u ~iV(0,G^2) 

where = G~l and for simplicity we will assume = ^^¡Lj where D^ = 

blockdiag^<^.<^ for some qi x qi matrices flj, I < j < v. Table 1.2.1 contains 

values for e{r]i), a(0), b{e{r]i)) and c{yi, 0) for the models we will consider in this chapter. 

We refer the reader to Section 1.2.1 for fuller details on the specification of GLMMs. 

The log-likelihood for this model is 

= log j[y|u;/3,(/)][u;a2]du 

. y I _ (5.2) 

+ l ^ c ( y , 0 ) + ilog|D^2|-§log(27r). 

In general there is no closed form expression for (5.2) except in the case where y|u is 

Gaussian in which case equation (5.1) describes a LMM. 

Using the terminology of Section 4.2 we will use tangent transforms and density trans-

forms to obtain variational lower bounds for i. Tangent transforms use the fact that for 

any convex differentiable function /(x) with x 6 M^ we have 

/ ( x ) > / ( 0 + ( D x / ( 4 ) r ( x - 0 f o r a l l x , 4 € M ^ (5.3) 

whereas density transforms use the fact that for any density 6{'d] we have 

m = log j [ y , e]d^ > C) = log[y, $] + Hs (5.4) 

where'd are variables we want to integrate out, S{'&•$,) is a density which approxi-

mates the posterior distribution t^ly with additional parameters E^ denotes expec-

tation with respect to ¿{'d), Hs = -Eslog{S( 'd;^)) is the entropy of 6 and the subscript 

L denotes a lower bound. Also, suppose = . . . , 'dp) is some partition of the 

vector, = 0?=! ^ii'^i) and we are approximating each by some known dis-

tribution Fi, for example a Gaussian or a gamma distribution. Then we denote this by 

The following result uses density transforms and failing that uses a combination of 

density and tangent transforms (namely the ^ and log transforms, see Table 4.2.1) to ob-

tain lower bounds to the likelihood £ corresponding to the GLMMs described Section 

1.2.1. 



Result 4.1: Consider the class ofGLMM models defined by (5.1) and Table 1.2.1. Let C = [X, Z 
and V — (/3, //). Using (5.4) with 

u|y N i n , E) 

a lower bound for the likelihood, denoted ii, is given by 

= E^ log[y |u] + Ei log[u] + Us 

(5.5) 

which holds for all variational parameters ^ = {¡jl, S ) parameters such that S is positive definite. 

The relevant expectations in (5.5) are 

Ei log[y 

and E^log 

u 

u = ilog|(27r)-iD^2 

with e = (§1,..., On), h = {bi,... X ) and both Oi = "^siOim)) and hi = ¥.5[h{e{r)i))) are 

listed in Table 5.2.1. 

Model Oi = Esieirji)) 
Normal ^ {(Cuyf + {Z^T^nu) 
Logistic 
(with ^ 
transform) 

^ t a n h t e / 2 ) 

Logistic 
(with log 
transform) 

< log + 
V / 

Poisson 

Gamma 
Inverse-
Gaussian 

Table 5.2.1: A summary of relevant expectations for the variational approximation (5.5) for 
the generalised linear mixed models defined by (5.1) and Table 1.2.1. Note that for the logistic 
model cases exact expressions for Es{b{6{r]i))) have not been obtained. Instead upper bounds for 
Es{b(9{r]i))) obtained via the ^ and log transforms are listed above. 

Proof: The result follows from applying (5.4) to (5.2) with = u and 6 = <7̂ ). The 

calculation of E^ log[u] follows from the fact that for any random vector v and constant, 

appropriately-sized matrix A 

E(v^Av) = E(v)^AE(v) + tr (ACov(v)) 

with Es{u) = fj, and Cov5(u) = S . 



For the Poisson, gamma and inverse-Gaussian cases Es{0{r]i)) and Es(b(9{r]i))) can be 

calculated using the fact 

= Mgf^(t) = ^^^^^ 

where Mgf^(t) is the moment generating function of S. 

For the logistic case there is no closed form expression for Es{b{6{r]i))). Instead, in 

keeping with variational methodology, we look for a upper bounds for Es(b{0{rii))) (and 

hence a lower bounds for -Es{b{e{rji))). Examining Table 4.2.1 there are two alternative 

tangent transforms which we may apply to this end, namely the ^-transform (as termed 

by Jaakkola & Jordan, 1997) and the log-transform. 

Applying the ^-transform to 6( ) we obtain 

b{x) < log(ei + e - l ) + x/2 + (^2 _ 

which holds for all (x, Hence using the ^-transform 

< ^ + + + ( ( C ) ? + (ZSZ^)« - i f ) (5.7) 

which holds for all 

Alternatively, applying the log-transform to 6( ) we obtain 

b{x) < « 1 + e-) - log(0 - 1 (5.8) 

which holds for all (x, Hence 

Mb[e{m))) < argmax + _ _ ^̂  
, X ^ (5.9) 

V / 

We note that the bound for (f),(T^)> cr^; in (5.5) is new, to the best of our 

knowledge, for the Poisson, gamma and inverse-Gaussian LMM cases. For the logistic 

LMM case we used a combination of density and tangent transforms to obtain a lower 

bounds for £. Using (5.9) we obtain new, to the best of our knowledge, bounds for i in 

the context of GLMMs, although the log-transform has been used within the context of 

graphical models by Saul, Jaakkola & Jordan (1995). The bound (5.7) was first developed 

in Jaakkola Jordan (1997) in the context of Bayesian logistic models and was later used 

for logistic LMMs by Rijmen & Vomlel (2007). Finally, as we will later show, for the 

Gaussian case i{(3, (j), ct^) = a r g m a x 0 , /x, E). 



5.2.1 Comparing ^ and log transforms for Logistic LMMs 
As a means of comparing the log and ^ tangent transforms we first note that for the 
transform we can use Table 4.2.1 to deduce the optimal value f j for (i to be 

= + (5.10) 

Substituting this back into (5.7) we obtain 

where g{x) = log(e^/^ + 
Hence the variational upper bounds used for Es{b{0{rji))) in the logistic case can be 

written as 

hu, = I + log ( e V ^ / 2 + and bu, {x) = log (l + (5.11) 

where x = {Cu)i and y = ( Z S Z ^ ) a n d bu^ (x) corresponds to the ^-transform and bu2 (3:) 
corresponds to the log-transform. Plotting over a grid of x and y values we can compare 
the relative sizes of bjji (x) and bu2 with smaller values of bui {x) and bu2 indicate 
tighter bounds and hence a better approximation of b{x). Typically —8 < x < 8 and 
- 8 < log(2/) < - 2 . 

Figure 5.1 illustrates the bound between the ^ and log transform approximations of 
b{x). Figure 5.1 also illustrates the regions of (x, log(^)) space where each of these approx-
imations are better. It roughly appears that if x = {Cu)i is greater than about —2 for most 
values of y = (ZSZ^)ji then the ^-transform is better. Further numerical comparisons 
will be made in Section 5.4. 
5.2.2 Optimisation 
There are a number of factors which make efficient maximisation of S) 
difficult. Consider the first derivatives of 

Dfsh 

/x^D,/x + t r (SD,) Qi 
^ (5.12) 

and = tr ((E-^ - Z^WZ - /2, 1 < i, j < q 

where D(f,a{(f)) and 0) are summarised in Table 1.1, e and W can be obtained from 
Table 5.2.2 and Eij are matrices of zeros, except for the (i, j ) th entry which is 1, with the 
same dimensions as S. Assuming v is much smaller than n, p and q, which describes all 
but some unusual cases, the cost of calculating the first derivatives is 0{n{p + q)'^ {p 
i n 



Upper bounds for b(x) 

b(x) 
^-transform 
log-transform 

Comparing ^ and log transforms 

Figure 5.1: A comparison of the ^ and log transforms. The top panel illustrates the upper bounds 
for b{x) using the ^-transform of Jaakkola & Jordan (1997) and the \og-transform. The lower 
panel compares where each approximation ofEs{b{9{r]i))). The darker grey region indicates | + 
log + j > log (1 + inhere x = {X/3 + Z/x)̂  and y = (ZSZ^)^^. 
In this region the indicates ^-transform is a closer than the log-transform to Es{b{9{r]i))). 



Model ^ii Su 
Normal iVi - Oi)/a{cl>) aW 
Bernoulli 
({-trans) 

tanh(ei/2) 
2 6 Bernoulli 

(log -trans) Vi - (e-^^ - 1) e-^' - 1 _ 1) 
Poisson Vi - bi bi h 
Gamma -{yiei + l)/a(cl>) -yiOi/a{(f)) -yiQila((fy 
Inverse-
Gaussian {bi - 2yA)/a{(i>) {bi - ^yiÔi)/a{(/>) {bi - 4yA)/a{cl>) 

Table 5.2.2: A summary of derivative parameters in (5.12) for (5.5). 

If we combine (5.12), with the values in Tables 1.2.1 and 5.2.1-5.2.2 we can calculate 
iL and all the derivatives of £l with respect to (/3,cr^; ¡jl, S) . Using this information 
we maximise using a quasi-Newton method (see Appendix C), for example using the 
op t im ( ) function in R. We could also find the second derivatives of with respect to 
( /3 , c r^ , /X, S) and define Newton-Raphson updates to optimise There are difficulties 
with both of these approaches. 

The first of these difficulties with efficient maximisation of is that S represents 
q{q + l) /2 parameters which contributed a large proportion of the total (p + g + f + 
q{q-{-!)/2) parameters. The storage costs for Newton-Raphson and quasi-Newton meth-
ods is 0((p + v + Furthermore the additional computational costs, excluding the 
costs of calculating first or second derivatives, is O(g^) for quasi-Newton methods and 
0{q^) for the Newton-Raphson method. Hence both storage and computation costs for 
Newton-Raphson and quasi-Newton methods are prohibitive for even moderate q. The 
cost of using Newton-Raphson and quasi-Newton methods directly becomes even more 
computationally demanding for the logistic LMM case if one considers the parameters 
when using the ^-transform using these methods. 

The second difficulty is the need to take into account the implicit constraints cr̂  > 0, 
(f) > 0 and in particular the constraint that S should be positive definite. If S is near 
singular or one or more of the af or 0 are near zero then Newton or quasi-Newton iter-
ations may make S non-positive definite or one of the cr? or (j) negative. Optimisation 
with semidefinite constraints on H may be performed by modifying semidefinite pro-
gramming algorithms, for example Vandenberghe & Boyd (1996) or Kruk, Muramatsu, 
Rendl, Vanderbei & Wolkowicz (2001). However, we anticipate that this approach would 
also be computationally expensive. 

To avoid these complications we propose to use Newton updates for the v variables 
and fixed point solutions for T, and af. These fixed point equations are given by 

u 
S 
a? 

= 1/ + (C^SC + -

-f- tr(EDi) (5.13) 
l<i<v Qi 



where B -̂q = blockdiag(Op, D0.2) and the expressions for W, e and S are case dependent 
and may be obtained from Tables 5.2.1-5.2.2. For the Gaussian and inverse-Gaussian we 
can find fixed point equations for the nuisance parameter as is given in Table 5.2.3. 
These updates guarantee that ( f ) remain positive for these cases. 

There are no straightforward fixed point equations for 4> for gamma LMMs. The first 
and second derivatives of with respect to 0 in this case are 

D / l = y^O - 1^6 + log(0)l^ log(y) + n -
and H^Ìl = n/cf) - nil̂ ^cj)) 

where ) is the digamma function and ) is the trigamma function (see Abramowitz 
& Stegun, 1964, Chapter 6). Unfortunately, Newton-Raphson steps may make 0 < 0. In-
stead we propose to first make the transformation (j) = e^, and then use Newton-Raphson 
updates on r. The first derivatives of ii with respect to r are 

DrÌL = = 
and HrÌL = + (D,^)^ (H^^l) = + ^ ' ( H / l ) . 

Using these, the fixed point updates for the nuisance parameters in the Gaussian, gamma 
and inverse-Gaussian cases are given in Table 5.2.3. 

Model Update 
Gaussian 0 := 

(j) := 0exp l ^ b + log(0)l^log(y) + n -
/ - l ^ b + log(0)l^ log(y) + 2n - nt/;((/)) - n(f)ip' 

Gamma 

Inverse-Gaussian n 
Table 5.2.3: A summary fixed point updates for the nuisance parameters in Gaussian, gamma 
and inverse-Gaussian models. 

The advantage of these updates is that they guarantee that S, cr̂  and (f) are positive-
definite or positive respectively. Each set of updates has computational cost 0{n{p + 

+ (p + which is smaller than those based on quasi-Newton or Newton-Raphson 
updates for all parameters. However, the rate of convergence of these updates is unclear. 
In practice we have found that these updates can sometimes converge quickly, although 
they usually converge very slowly. 

A second problem is revealed when examining the second derivatives of £ with re-
spect to af given by 

f j , T li y^iJi qi 1 / • ^ 



Since this is not negative for all /x, af and S the function i is not concave. In particular 

is negative if and only if 

2 2 [/x^Di/x + t r ( S D i ) 
< , l<i<v. 

qi 

Furthermore is negative for any af satisfying (5.13). 

In practice this means that the fixed point updates (5.13) may converge to different 

points depending on the initial values chosen. We have found that if /x does not start out 

'large enough" then the fixed points converge close to /x = 0. To side step this issue we 

first fix each af at some "large'' positive value, and S as a diagonal matrix with small 

positive entries. We update u until convergence and then update all parameters until 

convergence. We have found that applying the fixed point updates for u more often than 

for S and af improves stability. This approach is formalised in Algorithm 6. We use 

L = 2 for most of the numerical experiments in Section 5.4. 

Algorithm 6 Fixed Point Maximisation of Variational Approximation to GLMM 
1. Initialise (i/, cr^, S ) . 

2. Cycle 

Apply 

1/ 1/ + (C^SC + - B^2i/) 

and update 4> using Table 5.2.3. 

Until convergence. 

3. Cycle 

Apply updates for cr̂  and S using 

S + 
2 + tr(s:DO erf , 1 <% <v. 

Qi 

for iter = 1 , . . . , L do 

Apply 

+ (C^SC + - B^2I/) 

and update (j) using Table 5.2.3. 

end for. 

Until convergence. 

As an alternative to both these methods, we propose a hybrid between a quasi-

Newton and the fixed point approaches. Using quasi-Newton steps to update D slows 

down the quasi-Newton because of the 1)/2 of parameters to update. To remove this 

bottleneck we only use quasi-Newton steps to update {/S, (j), cr'^, /x) and use fixed point it-

erations to update S . This is described in Algorithm 7. The advantage of this algorithm 

is that the derivatives for each quasi-Newton update costs at most 0{n{p + ç)^) are lower 



and each update of E costs 0 {n {p+q)^+ Again, the rate of convergence of these 

updates is unclear, but in practice the algorithm usually fits faster than quasi-Newton op-
timisation or the fixed point updates alone. 

We compare each of these methods in Section 5.4. 

Algorithm 7 Quasi-Newton/FP Hybrid for Gaussian transform of the GLMM 
1. Initialise {f3, cr^, /i, S ) . 
2. Cycle 

2.1. Quasi-Newton Steps 
Using equations (5.12) with the values in Tables 1.1 and 5.2.1-5.2.2 to calculate 
the derivatives of with respect to {jy, cr̂ ĉf)). Use 5-10 quasi-Newton 
updates. 

2.2. Fixed Point Step for S 
Update S using 

+ (5.14) 

where W can be obtained from Table 5.2.1-5.2.2. 
Until convergence. 

5.2,3 Comparisons with the Laplace approximation 

Based on the fixed point equations (5.13) for we /x and S we may write 

(5.15) 
= - i log |I + + ^ ^^^^ ^ + l^c(y, 0) -

where the right hand side of (5.15) is subject to the constraints 

- D0.2/X = 0, 

E - ( Z ^ W Z + D^2)-^ = 0 (5.16) 

and cr ,̂ 0 > 0 . 

We see that (5.15) together with (5.16) has a similar functional form as the Laplace ap-

proximation given by (3.5) and (3.6) except 0, b, e and W are different and there is an 

additional matrix equality constraint for S . 

The variational approximation provides several advantages over the Laplace approx-

imation 

• In the case of LMMs we can simplify (5.15) and (5.16) to get the exact marginal 
likelihood (see Result 5.2 below) 

• In the cases of Poisson, gamma and inverse-Gaussian GLMMs, using the Gaussian 
density transform, i.e. using (5.4) with u|y S ) , can be calculated exactly. 
Hence, based on (4.12) for fixed /3, 0 and cr̂  the equation (5.15) subject to (5.16) is 



the optimal Gaussian approximation in terms of the KL-divergence criteria. Fur-
thermore, because these are optimal in the sense of their KL-divergence, they pro-
vide better Gaussian approximations than the Laplace approximation in this sense. 

• While not considered here, it is possible to impose structure onto the covariance 

matrix S by only considering S with a particular structure, e.g. diagonal S . This 

might be used to increase computational efficiency of fitting a suitably modified 

(5.15) subject to (5.16). Alternatively, this fact could be used to enforce a particular 

structure on D needed for a particular application. 

Although this result should be obvious, based on the discussion in Section 4.2.3, we show 

this explicitly for illustration. 

Result 5.2: For the Gaussian case maximising (5.5) over the variational parameters ^ = {^jl, S) 
we obtain the marginal likelihood, i.e. 

argmax^L(i3, </>, cr ;̂ /i, S ) - f l o g ( 2 7 r ) - i l o g | V 

where cj) = a^ and Y = a^l + ZD^^Z^. 

Proof: Using (5.15) leads to the constraints (5.16). Using (5.16) we may write, for the 
Gaussian case, E = (a'^Z^Z + and, via simple algebraic manipulations, /x = 

- X/3). Substituting these back into (5.15) we obtain 

argmax^L(^, ^ cr ;̂ /Lt, S ) 

2oi 
tr(Z^ ZS) 

2<t? 

+ i log - + 5tr(SD^2) + i log |S| 
= - § log(27r<T|) + i log Ka.-^ZÎ'Z + 

- i ( y - X/3)^ - + (y - X/3) 

(5.17) 

where the result follows from the fact that 

- i log 1̂ 211 + i log + 
= - i log - i log |I + 
= -\\og\V\. 

Comparing with, for example equation (4.12) from Ruppert et al, (2003) or equation (2.2) 
from Wand (2003) we see that (5.17) is exact. 



5.3 Bayesian Generalised Linear Mixed Models 

The Bayesian alternative model for GLMMs differs little from the frequentist formulation 

considered thus far. Here we will consider the Bayesian GLMM where we place the 

following additional priors on ¡3 and cr^ 

2 . ^ (5.18) 

with cr^ suitably large, for example 10^, and = ^ are suitably small, for example 

10"^, so that the priors are vague. For convenience we write 

a 
V 

2 n .2 

i=l 

and if nuisance parameters are present then we use the prior 

where = Bfp are again suitably small. 

5.3.1 Marginal Likelihood 

Firstly, we note that even for some of the simplest Bayesian models, some of the various 

quantities of interest are not known in closed form. For example, consider calculating the 

marginal distribution [y] for the Bayesian LMM. The marginal distribution can be used 

in the context of model selection when calculating the Bayes factor between two models 

(Gelman et al, 1995; Kass & Raftery, 1995). The marginal distribution for the Bayesian 

GLMM is given by 

where we have combined the parameters ß and u to be i/ = (/3, u) so that 

N{0, blockdiag {a^I , 0 ^ 2 } ) . 

The most common variational approach to this integral is to select the density transform 

that ''mirrors'' the distribution of the priors. Thus we would select 

i^ly NiiJ,, s ) 
af\y r^s^, l<i<v, (5.19) 

i 



and cr^, (p) = Sj,{u)S(f,{(l)) H L i Using this density 

u <P]} + ns 

= E¿ log[y (/)] + E¿ log[î |o-2] + E¿ log[0] + Hs, + + ^ E¿ log^^] + Hs^, 

where = . . . , /3^2 = . . . , and, ignoring additive constants. 

log[y u 

E¿log 1/ 

= ^ ^ + l M y , 0 ) , 
aW 

= ^ (V'K^z) -
i=l 

Eslogiaf] = + l)(log(/3,2,,) - - l < i < v , 

E¿ log[0] = - ( A ^ + l)(log(/?<^) - i^(a^)) - B ^ ^ , 

Hs^^ = + + logr(a^2,¿) - + 1 < i < 

and , = a^ + log(/?^) + log r (a^ ) - {a^ + 
(5.20) 

with Qi being the number of rows/columns in i l j and 

B = blockdiag jcr^^I, [>. 
i=i 

Table 5.2.1 contains the values for 6 and b with /3 = 0, u = ^j, and a((/)) = 1/Es{a{(f))-^) 

and c(y, 0) = E¿(c(y, (p)) can be obtained from Table 5.3.4. 

The only difficulty with calculating c(y, 0) is the term E^ log for the gamma LMM 

case. Obtaining lower bounds is difficult since - l o g r ( x ) is concave and so we must 

consider alternatives. Since this term is a one dimensional integral we can evaluate it 

numerically using Gaussian integration (Abramowitz & Stegun 1964, Chapter 25). Using 

a change of variables we can write the integral as 

(5.21) 

Since this integral is of the form J^ e~^g{t)dt we can accurately approximate (5.21) using 

Gauss-Laguerre integration. Using this technique (5.21) is approximated by 

N /R \ ^ 
Ei log m ~ Y 1 logr ( ^ ) = ^ 

^ rK) \tkj ^ 

where 

\ t J 



Model 
Gaussian 

Vi ~ N{rji,(f)) 

Gamma 
Ui ~ Gamma (—e^S 0) 

Inverse-Gaussian 

a{cj>) 
- 1 

A . - 1 A . 
- 1 

A K - 1)^ A . 
- 1 

A - 1 01 

ai 

c{yu4>) 
- log(27r) - log(/?0) _ y^a^ 

2 2/90 
K - 1 ) 

/t^ 1 

N 
ipia^) - \og{27Tyf) - log(/?0) 

2yi(3ct> 

'^'{oL^) y\ 
2^0 

« 0 - 1 
N 

+ 
K - 1 ) ' K - 1 ) ' 

/c=l 

log(^,) + Iog(/90) - + 1 ^ 1 

2/?0 
- E 

(«0 - 1 ) 

^ {k) 

K - «0 

^ l o g T K ) 
2/30 

Table 5.3.4: A summary expectations and derivatives of nuisance parameters. For the gamma LMM case g{t; «0, /?0) = ria^) ^ ' 



the tkS are zeros of the iVth Laguerre polynomial 
r]^ 

the coefficients c^ are 
1 r 

L'^it,) Jo t - t k 
-dt = 

m n2 

and has truncation error where ^ = max^ The values of c^ and t^ 
are available from Abramowitz & Stegun, (1964, Table 25.9) or can be easily calculated 
using the function g a u s s . quad () from the R package s t a t m o d (Smyth, 2008). The 
coefficients ĉ  decay extremely rapidly, for example when Â  = 10 the value for cio is 
approximately 

The first derivatives of log[y]L with respect to (/x, S, a , /3) are given by 

Dsi, log[y]L 
^oco. iog[y 

= C^e - B/x, 

L = 
= tr ((S-^ - C ^ W C - B)Ey) /2, I < i J < q, 

+ fjL^Bitx + tr (BiE) /2 ^ 5 1 < Ï < 'y, 

D/3 = 
i \ 

BaM + 
/x^Bi/x + tr (BiS) 

- ( I + ï < i < v , 
Da,log[y]L + 

(5.22) 

and D^^log[y 
Ij<I> 

= - l ^ b ) + ( D . ^ c l ^ ) ) - ^ + ^ 
P(p Ps 

where C = [X, Z], the values of e and W can be obtained from Tables 5.2.1-5.2.2, 

Bi = blockdiag {0 x D J 
- 1 the derivatives of and c(y, 0) with respect to a^ and are distribution dependent 

and can be obtained from Table 5.3.4. The calculation of log[y]L and its derivatives are 
sufficient to fit this model using a quasi-Newton method with the R function optim. 
Alternatively we can use 

fJ' 

S 

and := Bi + 

= /X + (C^SC + B ) - \ C £ - B/x), 
= (C^WC + B ) - \ 
= + l < i < v 

/x^Bi/x + t r (SBi) 
(5.23) 

l < i < v . 



Nuisance parameters need to be handled on a case by case basis. For the LMMs a 
fixed point updates for («0, p̂ p) are 

«0 := ^0 + f 
y - CmIP P-24) and /?0 B^ + 

2 

For the inverse-Gaussian LMM a fixed point updates for (q0, are 

»0 ^0 + I 
and/?0 B0 + i (21^b - 2y^g + E H i ^ (5.25) 

For gamma LMMs we could use Newton-Raphson iterates for («0, p^), but this would 
lead to even more complicated expressions than those in Table 5.3.4. 

We propose similar fixed point and hybrid fixed point/quasi-Newton approaches to 
maximising as used for GLMMs in Section 5.2 as Algorithms 8 and 9. Note that, 
analogous to Algorithms 6 and 7, we set the entries of ¡3̂ 2 to be a suitably large constants. 

Algorithm 8 Fixed Point Maximisation of Variational Approximation to Bayesian GLMM 
1. Initialise {v, D) and set ^ = ^ + 
2. Cycle 

Apply 
/X /I + (C^SC + B^2)-HC£ - Bfi) 

and update /30 using (5.24) and (5.25). 
Until convergence. 

3. Cycle 

Apply updates for ¡3̂ 2 and E using 

and := ^ 1 <t <v. 
Qi 

for iter = 1 , . . . , L do 

Apply 
(C^SC + - B/x) 

and update /?0 using (5.24) and (5.25). 
end for 

Until convergence. 



Algorithm 9 Quasi-Newton/Fixed Point Hybrid Maximization for Variational Approxi-
mation to the Bayesian GLMM 

1. Initialise (/x, S , , (3^2, a^, P4,). 
2. Cycle 

2.1. Quasi-Newton Steps 
Using (5.22) with the values in Tables 5.3.4 and 5.2.1-5.2.2 to calculate the 
derivatives of with respect to (/Lt, , ¡3^2, â ,̂ Use 5-10 quasi-Newton 
updates. 

2.2. Fixed Point Step for S 
Update E using 

S := (C^WC + B)-^ 

where W can be obtained from Tables 5.2.1-5.2.2. 

Until convergence. 

Suppose that (/x, S , 3^2, /î̂ ) are the values that maximise [y; then the varia-

tional posterior approximations are 

and (j)\y 

and the marginal variational posterior approximations for u are 

(5.26) 

(5.27) 

5.3.2 Grid-Based Variational Posterior Approximations 

We will now consider the method of approximating posteriors using the Grid-Based 
Variational Posterior Approximations (GBVPA) methodology described in Section 4.4 
for Bayesian GLMMs. The process for doing this is very similar to approximating the 
marginal likelihood described in Section 5.3.1. 

Grid-Based Variational Posterior Approximation for Vi 

To calculate log[y,z/i]L for fixed Vi — vi we select cr̂ , (/)|y) = 

{1 -̂1)8(f,{(j)) niLi (erf) where the (5-densities are as in (5.19) except that 

Then 

V 

= Ei log[y|I/, + E^ log[i/|iT2] + E^ \og[4>] + ^Hs^-^Yl + 
1=1 



where the equations (5.20) contain the relevant expectations except, ignoring additive 
constants. 

E^log l/\(T 
1—1 

and =^\og\J: 

v^here is B with the ith row and column removed, Ui = di, v^i = /x. Table 5.2.1 
contains the values for 0 and b except that we replace /3 with Vi, with and 
c(y, 0) with c(y, (/)) which can be obtained from Table 5.3.4. The derivatives with respect 
to all parameters are given by (5.22) except 

D/x log[y, Vi\L = -
De,, log[y, yi\L = tr ( ( S ' l - C ^ W C - B _ , ) /2 (5.28) 

where C is the matrix C with the ith column removed, B_i is the matrix B with the ith 
row removed the values for e and W can be obtained from Table 5.2.2 except is 
replaced with a(0). Updates are the same as in (5.23) except 

[I /Li + (C^SC + - ^ - i ^ ) 
s (C^WC -

and Algorithms 8 and 9 can be used with a little modification where the value for S can 
be obtained from Table 5.2.1-5.2.2. 
Grid-Based Variational Posterior Approximation for af 

To calculate log[y,cr?]L for fixed af = af we select cr?,0 |y) = 
Wj^i ^a^i^j) where Sî , Scf, and 6̂ 2 are as in (5.19). Then 

- E^ I o g [ y ( / ) ] + E^ \og[u\a^] + \og[af] + Ej log[0] + Hs^ + Hs^ 

where and ¡3̂ 2 are the vectors and (3̂ 2 with the ith elements removed, the 
equations (5.20) contain the relevant expectations with, ignoring additive constants. 

E^ log 

B = blockdiag j a - ^ I , a ' ^ B i + 1 

and log[iTi ] = + 1) log(ai) - î z • 

The derivatives with respect to all parameters are given by (5.22) and the values for e and 
W can be obtained from Table 5.2.2 except a(0) is replaced with a((/)). Updates are the 



same as in (5.23) using the value for B above and Algorithms 8 and 9 can be used with a 
little modification. 
Grid-Based Variational Posterior Approximation for 0 

To calculate log[y, for fixed cj) = $ we select a'^) = S^iiy) 11^=1 ^a] (^j) ^here 
and 6̂ 2 are as in (5.19). Then 

= E5 Iog[y (f)] + E^ \og[u\(T^] + log[0] + \og[a]] + Hs^^ 
j=i ' 

where, ignoring additive constants, 

log[0] = -{A^ + 1) log(^) -

The equations (5.20) contain the relevant expectations and the derivatives with respect to 
all parameters are given by (5.22) with the values for e and W obtained from Table 5.2.2, 
except that the values for a(0) and c(y, 0) are replaced by the values for a((f)) and c(y, 0) 
given in Table 1.2.1. 
5.4 Numerical Experience 
We will consider the accuracy of the above approximations via several studies. For sim-
plicity, in most examples, we will only consider the Poisson and logistic LMM cases. 
These cases are not only the most common types of GLMM but analysis is simplified by 
the fact that these cases have no nuisance parameters to deal with. The studies are con-
ducted primarily via simulated data, although one real example will be included. Sim-
ulated examples are useful because we can compare computed estimates with the true 
parameter values, which we cannot do with real examples where ''truth'' is unknowable. 
They also enable us to easily examine cases where the underlying means have different 
levels of roughness, different sample sizes and levels of noise. 

We compare various fitting methods for GLMMs including: 
• PQL using the R function glmmPQL () located in the MASS package (Venables & 

Ripley 2002a, 2002b). 
• The variational approximation for the GLMMs as described in Section 5.2, denoted 

VAR. For the logistic case the use of either ^ or log transforms will be denoted VAR-i 
and VAR-log. 

• The variational approximation for the Bayesian GLMMs as described in Section 
5.3.1, denoted VB. Again, for the logistic case the use of either ^ or log transforms 
will be denoted VB-<f and VB-log. 

• Gauss-Hermite Quadrature (GHQ) for one-dimension random effects models (see 
Section 5.4.2 for details). 



• MCMC via the BUGS package in R. We used BUGS to generate chains of length 5,000 
after a burn-in of 5,000 and applied a thinning factor of 5, resulting in posterior 
samples of size 1,000. 

In keeping with the recommendations of Crainiceanu, Ruppert & Wand (2005) and 
Zhao et al (2006) for Bayesian GLMMs we placed diffuse independent 10®) priors 
on the fixed effect parameters and diffuse independent inverse-gamma priors for vari-
ance components af with shape and rate parameters both 0.01. Finally, each continuous 
variable was standardised to improve numerical stability and scale invariance (since the 
priors are fixed). 

As noted in the introduction GLMMs have a number of applications including longi-
tudinal data analysis and function approximation. While it would be an enormous task 
to cover every application we endeavour to cover some of the more important cases. The 
situations which we will consider are: 

1. Additive smoothing. The trade union dataset (source: Berndt, 1991) will be fit using 
VAR-.^, VAR-log, VB-^ and VB-log. For the both types of model we will compare 
running times using the Newton-Raphson/fixed point hybrid (FP), quasi-Newton 
(QN) and hybrid quasi-Newton/fixed point hybrid (QN/FP). We will also compare 
the VPA and GBVPA approximations with kernel density estimates of posterior 
samples obtained via MCMC using the software package BUGS. 

2. Random intercept models. These are both useful in practice (Diggle, Liang & 
Zeger, 1994), and because the integrals involved in computing the marginal like-
lihood are one-dimensional. We can compute the marginal likelihood using rel-
atively simple means. We will compare Poisson and logistic LMMs using PQL, 
adaptive Gauss-Hermite quadrature and the variational approximation methods 
VAR-( ,̂ VAR-log for the logistic case and VAR for the Poisson case. 

3. Scatterplot smoothing. We compared PQL and the variational approximations pre-
sented in this chapter for a variety of scatterplot smoothing settings. 

5.4.2 Additive Model Example 

In Section 2.5 we considered a penalised spline analysis of the trade union dataset which 

contains trade union membership indicators for a sample of 534 U.S. workers (source: 

Berndt, 1991) where a subset of the covariates are 

Xi = [souths, female^, married^, years.eduq, wage ,̂ age^ . 

The variables y e a r s . educ, y e a r s . e x p e r i e n c e , wage and age are continuous and 
the variables south, female and marr ied are binary. We consider a model of the form 

logit {P (union.memberi = l|xi)} = / (x j ) 



where 
/ ( X j ) = P o + II{southi = l } A + I { f e m a l e i = l } /?2 + I { m a r r i e d i = l } A 

(years.educj + /„ageiwagej + /ageiagej 
= X/3 + Zu 

and use the mixed model formulation of cubic O'Sullivan splines, as described in Section 
2.5, to model / y e a r s . e d u c , /wage and / a g e . We used = 25 inner knots with quantile spacing 
for each variable. Let Zyears.educ, Z„age and Zage be the spline matrices for y e a r s . educ, 
wage and age respectively each matrix hasqi = K + 2 columns and the matrix X has 7 
columns 

Z = Zyears . educ 5 Z^age? Z a g e 

and 
= blockdiag {a^ 

l<i<3 

Comparing Running Times 
We compare running times of PQL and MCMC via BUGS with VAR-^ VAR-log, VB-,̂  
and VB-log. Each of the variational approximations were fitted using the FP, QP and 
FP/QN approaches. Each algorithm was run 20 times, except MCMC which was run 5 
times, to get an indication of running times of each algorithm. The mean running times 
are summarised in Table 5.4.5 and each of the fits for the continuous components are 
illustrated in Figure 5.2. 

Approximation Algorithm Time (s) 
PQL glmmPQL 26.49 
VAR-<e FP 33.82 

QN 43.38 
QN/FP 3.46 

VAR-log FP 34.89 
QN 46.35 

QN/FP 2.59 
FP 32.70 
QN 252.21 

QN/FP 14.04 
VB-log FP 68.07 

QN 161.74 
QN/FP 21.03 

MCMC WinBugs 3729.22 
Table 5.4.5: The mean running times for each method fitting the t r a d e u n i o n model as de-
scribed in Section 5.4.1. 

Comparing the running times from Table 5.4.5 we see that the FP and QN approaches 
tended to be slower than the QN/FP hybrid approach. While the cost of each iteration for 
FP was smaller than QN the FP approach took many hundreds of iterations to converge. 
This is consistent with the discussion in Section 4.3 and Section 5.2.2. 
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Figure 5.2: Smooth function fits for the Trade Union model using the MCMC, PQL, VAR-^, 
VAR-log, VB-^ and VB-log approximations. 

From Figure 5.2 we see that the VAR-^, VAR-log, VB-.̂  and VB-log approximations 
produce fits which are quite similar to PQL. The approximations for the Bayesian logistic 
LMM, i.e. VB-i and VB-log were, to the eye, slightly closer to the MCMC fit than the other 
approximations. While the analytic approximations are less accurate than MCMC meth-
ods they are extremely fast; taking from seconds to 6 minutes to fit each model depending 
on the fitting algorithm used. In contrast, for this example, the MCMC approximation us-
ing BUGS took a little over an hour. 

Posterior Density Approximations 

Finally, for Bayesian logistic LMMs we can compare posterior density approximations for 
south, female and married and variance components associated with /years.educ/ /wage 



and /age. For the MCMC fit we used BUGS to generate chains of length 50,000 after a burn-

in of 5,000 and applied a thinning factor of 5, resulting in posterior samples of size 10,000. 

and then used the R package KernSmooth to estimate the densities of these posterior 

samples. We also used VPA as described in Section 5.3.1 and GBVPA approximations as 

described in Section 5.3.2. These posterior approximations are illustrated in Figure 5.3. 
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Figure 5.3: Illustration of the kernel density estimates of MCMC posterior samples, variational 
posterior approximations (VPA) and grid-based variational posterior approximations (GBVPA) 
for south, female and married coefficients and 3 variance components for years . educ, 
wage and age . 

From Figure 5.3 we notice that each of the VPA approximations underestimate the 

amount of variance of the posteriors, particularly for the variance components. The GB-

VPA approximations, on the other hand, were significantly better particularly for the 

south, f emale and m a r r i e d coefficients, although the GBVPA approximations for the 

variance components where clearly not as accurate as for the models examined in Chap-

ter 4. We speculate that this may be because of the use of an additional approximation 

to obtain marginal posteriors, i.e. the ^-transform. Each GBVPA approximation took 

roughly 5 minutes to compute using the FP while the MCMC approach via BUGS took a 

little over 6 hours. 



5.4.2 Random Intercept Models 

We now consider random intercept models (see McCulloch & Searle, 2001, Section 8.4). 
Suppose that data are grouped into correlated clusters and are thought to come from 
either a Poisson or Bernoulli distribution. For example Diggle et al. (1994) considered 
the number of epileptic seizures in patients on a drug or placebo. Alternatively, for the 
Bernoulli case, we might consider whether an epileptic patients has any seizures while 
on a drug or placebo. 

Let i/ij denote the j th count (for the Poisson case) or indicator (for the Bernoulli case) 
taken on the zth cluster. In both cases we use the canonical link and use the normal 
distribution to model the random cluster (patient) effects. The random effects Ui are 
shared among observations within the same cluster and hence those observations are 
being modelled as correlated. Thus we might consider the model 

\og[yij\ui] = yijixfjP + Ui) - + Wi) + c(yij)] i = 1 ,2 , . . . ,m; j = 1,2, . . .,71^; 

Ui 

where b and c can be taken from Table 1.2.1. 
For the random intercept model data the log-likelihood can be simplified to 

m p m „ 
= / lyi\ui-,l3,(i)][ui\a'^]dui = X^log / exp {fi{l3,a^,Ui)} dui (5.29) 

where, ignoring additive constants, 

cj\ Ui) = y f (X,/3 + Zm) - l ^ K X i ^ + ZiUi) - \ \og{cj^) -

Since each integral in (5.29) is one dimensional we can use GHQ to accurately approxi-

mate cr^). Although there is an R package glmmML which claims to do just this, we 

have found this package to be unreliable. Instead we implement a similar procedure 

ourselves. 

It should be noted that there may be problems with GHQ if each integral is not shifted 

and scaled appropriately (Liu & Pierce, 1994; McCulloch & Searle, 2001). Instead we use 

an adaptive GHQ scheme developed by Liu & Pierce (1994) to perform the appropriate 

integration. 

Let 

Ui = argmax{/¿(^,cr^;w¿)} and af = ^^^ 
Ui L I 

Using these exp {/¿(/3, w¿)} is "most similar'' to a multivariate Gaussian distribution 

in Ui with mean Ui and variance af. Using the transformation cr̂  = e^ the log-likelihood 

dfi'-' 



can then be written as 

¿(/3,7) = g log 1 exp 7. n ) + } exp { - } 

= ^ log / exp |/i(/3,7, Wi + + log(v^ai) + j e-̂ '̂ 'ciwi 
¿=1 

using the change of variables ui = ui \/2diUi. We can now use standard GHQ to 
approximate 7) by 

¿=1 

where, ignoring additive constants. 

N 

/ i j 7 ) = y / ^¿ j - 1 Kriij) - 2 + l og + h 

and = Xi/3 + Zi{ui + \/2aitj). 

The first derivatives of £ with respect to (/3, cr̂ ) can be written as 
m N m N 

and D / 
¿=1 j = l i=l j=l 

where 
/ ̂  cjij = exp {fijif3,7)} / ^ exp 7)} , 

/ j=i 

with b'{x) = for logistic regression models and b'(x) = e^ for Poisson regression 
models. The UiS satisfy 

Dujiiui) = Zf (y - b'(Kif3 + ZiUi)) - UiC'^ = 0 

and 
a? = (zfdiag(6'XXi^ + ZiUi))Zi + e"^)" ' 

with h"{x) = + e )̂̂  for logistic regression models and h"{x) = e^ for Poisson 
regression models. 

At this point we deviate from Liu & Pierce (1994) due to problems in the practical 
implementation of the above method. While this modification was not stated explicitly 
in Liu & Pierce (1994) it had doubtless been used elsewhere in practical implementations. 
For Poisson random intercept models in particular if /3 and/or cr̂  are large then numer-
ical overflow can occur when evaluating £ or Uij if care is not taken. For this reason we 



instead evaluate i and ujij using the formula 

where 

m N 

i=i j=\ / ^ and Uij = Wj exp (/¿^ - i^*) / ^ wj exp ( f i j F*) 
/ j=i 

i^* = max {log(w^) + fij} . 

These equations provide sufficient information to maximise i using the quasi-Newton 
optimisation algorithm implemented in the op t im () function in the standard R library. 

We will compare this routine with the PQL algorithm implemented in the R function 
glmmPQL () in the package MASS, the variational approximations VAR-<̂  and VAR-Iog for 
the logistic case and VAR in the Poisson case. 

For the Poisson case each routine we fitted GLMMs for the true (3 taking 21 values 
from - 2 , . . . , 2 for e {1/10,1/2,1} with ni = 20 and m = 40 for 100 trails while for the 
logistic case the true p takes 21 values from - 5 , . . . , 5 and cr̂  e {1,3} with ni = 20 and 
m = 40. The median absolute bias for (3 and cr̂  is plotted as a function of (3 for each case 
and illustrated in Figures 5.4 and 5.5. 

Based on these figures for the Poisson case, the median absolute biases for both PQL 
and VAR approximations were quite close to those for GHQ. Furthermore, in the Poisson 
case using the above settings, none of the methods seemed to dominate any of the other 
methods in terms of median absolute bias. For the logistic case the VAR-^ and VAR-log 
approximations did not perform as well as the PQL and GHQ approximations, particu-
larly when the true value for the variance component cr̂  was small. On the other hand in 
the logistic case for these settings PQL performed reasonably well compared to GHQ. 
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Figure 5.4: Median absolute biases for Poisson random intercept data. The simulation used 
100 instances where the true (3 took values from - 2 , . . . , 2 and the true cr^ took values cr̂  g 
{1/10,1/2,1} with Tfii = 20 observations and m = 40 groups. 

It has been shown, based on small cr̂  asymptotics, that PQL can have significant 
biases (Breslow & Lin, 1995; Lin & Breslow, 1996; Sutradhara & Rao, 1998). Breslow & 
Lin (1995) demonstrated that PQL was particularly biased for analysis random intercept 
models of paired samples with binomial data. To test the effectiveness for these settings 
for the Poisson case each routine we fitted GLMMs for the true (3 taking 11 values from 
- 2 , . . . , 2 for cr̂  = 0.1 with n̂  = 2 and m = 200 for 200 trails while for the logistic case the 
true /? takes 11 values from - 4 , . . . , 4 and = 0.1 with rii = 2 and m = 400. The median 
absolute bias for (3 and is plotted as a function of for each case and illustrated in 
Figures 5.6 and 5.7. 

Based on Figure 5.6 VAR performed as well as GHQ for these settings. In particular 
the median absolute bias for PQL was particularly large for small true /? values. Further-
more the median absolute biases for GHQ and VAR were smaller than those for PQL for 
most values of ¡3. 

The results for summarised in Figure 5.7 is far less convincing. While the median 
absolute biases for GHQ, VAR-<̂  and VAR-log were smaller in comparison to PQL it ap-
pears that for on the edges of the tested true (3 values VAR-<̂  and VAR-log achieved this 
by estimating cr̂  close to 0. 
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Figure 5.5: Median absolute biases for logistic random intercept data. The simulation used 100 
instances where the true (3 took values from - 5 , . . . , 5 and the true a^ took values e {1,3} 
with rii = 20 observations and m = 40 groups. 

Rijmen & Vomlel (2007) performed more a more extensive comparison study between 
the Laplace approximation (achieved by setting Â^ = 1 for GHQ, see Lui & Pearce, 1994) 
and VAR-(̂ . They concluded that shrinkage of the a^ estimate was more pronounced for 
VAR-^ when the number of observations per group was small. The settings we consid-
ered for Figure 5.7 is an extreme cases of this and is consistent with these conclusions. 

5.4.3 Scatterplot Smoothing 

A number of scatterplot smoothing experiments were conducted to access the speed and 
accuracy of the variational approximations developed in this chapter. For these experi-
ments we will compare these approximations with the PQL approximation (Breslow & 
Clayton, 1993). This is the main competitor with these methods when speed is highly 
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Figure 5.6: Median absolute biases for Poisson random intercept data. The simulation used 200 
instances where the true [3 took values from —2,. . . , 2 and the true o^ took the value = 0.1 
with ni = 2 observations and m = 200 groups. 

desirable. Thus, we will compare are the VAR and VB with PQL for the Poisson case and 

VAR-i, VAR-log, VB-<̂  and VB-log with PQL for the logistic case. 

For the smoothing and additive model examples we will use the following four func-

tions as the true E{y\r]{x)) = /j.{9{r){x))) where //(•) can be obtained from Table 1.1 and: 

r}i{x) = \/x{l - x) si sin 

r}2{x) 

mix) 

and 774(0:) 

27r + 

v + / 

- sin(8(a: - 0.5)) + 2exp(-162(x - 0.5)^), 

2^ 
3 , i3x-7\ 

\ 
- (25x - 20). 
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Figure 5.7: Median absolute biases for logistic random intercept data. The simulation used 100 
instances where the true (3 took values from —4,. . . , 4 and the true cr^ took the value cr̂  = 0.1 
with rii = 2 observations and m = 400 groups. 

These represent a variety of spatially inhomogeneous functions and simpler nonlinear 
functions. The functions r / i , . . . , r?4 are illustrated in Figure 5.8. 

Although there are many aspects of these approximations which we could study we 
will focus on three: sample size, function complexity and number of knots. While vary-
ing these aspects we will compare the above approximations using the mean deviance 
measure of error 

n 

where Table 1.2.2 contains the deviances V for different generalised linear model families, 
/i* = iJi{9{arj{xi) + h)) is the true mean and Jl = /i((9(Ci/)) is the estimated mean, rji for 
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Figure 5.8: Test functions to he used in scatterplot smoothing simulations. 

1 < i < 4 are the functions r}i{-) scaled so that the minimum value is 0 and the maximum 
value is 1, and (a, b) are shift and scaling constants. 

We performed the following simulations: 

1. Sample Size. For a fixed number of knots K = 35, for functions 771,.. •, ry4 with 
J = 5 for Tji for 50 simulations we use for the Foisson case scaling (a = 3,6 = 
- 1 ) and n = {250,500,..., 3750,4000} while for the logistic case we use scaling 
(a = 10,6 = - 5 ) and n = {200,400,..., 3000,3200}. Using these 50 simulations the 
median times and median mean deviances over these simulations for these settings 
are illustrated for in Figure 5.9 for the Foisson case and Figure 5.11 for the logistic 
case. Differences in median mean deviances for VAR and VB with median mean 
deviances for PQL are illustrated for in Figure 5.10 for the Foisson case. Differences 



in median mean deviances for VAR-.^, VAR-log, VB-^ and VB-log with median mean 
deviances for PQL are illustrated for in Figure 5.12 for the logistic case. 

2. Number of knots and complexity. For function rji with J = { 1 , . . . , 6} for r/i we 
vary the number of knots K = { 5 , 10 , . . . , 45,50} using scaling {a = 3,b = -1) for 
the Poisson case and (a = 10, b = - 5 ) for the logistic case. Using these 50 simu-
lations the median times and median mean deviances over these simulations for 
these settings are illustrated for in Figure 5.13 for the Poisson case and Figure 5.15 
for the logistic case. Differences in median mean deviances for VAR and VB with 
median mean deviances for PQL are illustrated for in Figure 5.14 for the Poisson 
case. Differences in median mean deviances for VAR-< ,̂ VAR-log, VB-^ and VB-
log with median mean deviances for PQL are illustrated for in Figure 5.16 for the 
logistic case. 

Based on the Figures 5.9,5.11,5.13 and 5.15 we see that the variational approximations 
have similar accuracy to PQL for the scatterplot smoothing problems considered in this 
section. In each case optimisation was performed using the FP approach as described 
in Algorithm 6 and Algorithm 8. For most settings these approaches are faster or have 
similar running times to the glmmPQL function in R. 

Considering Figure 5.10 and Figure 5.14 we see that in the Poisson case VAR has 
similar accuracy to PQL but may have a slight advantage for mean functions with more 
roughness, however these differences are still minor. For Figure 5.12 and Figure 5.16 
the log transform might have a slight advantage over the the ^ transform and VB might 
have a slight advantage over VAR for these settings. However again these differences are 
relatively minor. 

One aspect not apparent in these plots is numerical stabihty. We found that Algorithm 
6 and Algorithm 8 often failed when using the ^-transform for the logistic case if the 
problem was not scaled well, i.e. the values for a and b were not chosen favourably. Even 
for the experiments above Algorithm 6 and Algorithm 8 failed about 5% of the time. The 
times and deviances were not included in the results. 

It is unclear from the above experiments that the variational method using the Gaus-
sian density transform performs better or worse, in terms of mean deviance, than PQL or 
vice versa, in a general sense. In each of the above experiments there are cases where the 
variational method performs better than PQL and there are cases where PQL performs 
better than the variational method. 

5.5 Conclusion 

We have shown in this chapter that variational approximations are a fresh alternative 

method for fitting GLMMs. Although, due to the sheer number of potential models 

we could consider, we have only performed limited empirical studies be believe that 

variational approximations offer an effective alternative for fitting GLMMs and Bayesian 

GLMMs. 
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Figure 5.9: Mean deviances (top six panels) and running times (bottom six panels) for the varying 
sample size simulations for the Poisson case (see text for details). 
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For one particular real dataset we have shown that grid-based variational posterior 
approximations to Bayesian logistic LMMs did not perform particularly well compared 
to kernel density estimates based on posterior samples obtained from a MCMC based 
approach. However, this approach did obtain marginal posterior approximations which 
were better than those obtained by VPA. Nevertheless, we believe that grid-based varia-
tional posterior approximations may still be viable approach for other types of GLMM. 

Again, although based only on limited empirical studies, for Poisson random inter-
cept models the variational approximations we considered here did seem to offer a po-
tential improvement over PQL approximations. On the other hand, the variational ap-
proximations we considered for logistic random intercept models, did not seem to offer 
an improvement over PQL, although they appear to be still viable alternatives when the 
number of observations per group is sufficiently large (Rijmen & Vomlel, 2007). We spec-
ulate that the diminished performance for the logistic case is due to the additional use of 
the ^ or log transforms used to obtain lower bounds on the likelihood. 

Finally, for the scatterplot smoothing the variational approximations we have consid-
ered have not shown to be clearly better than PQL neither have they been shown to be 
clearly worse in terms of the mean deviance measure of error. A potential advantage of 
this approach over PQL is that it is possible to combine it with additional model compo-
nents to deal with various model complexities. 

Variational approximations to GLMMs are yet to be fully explored. There are many 
alternative lines of research that may be pursued including: 

1. In this chapter we used the multivariate Gaussian distribution to approximate the 
posterior density of the spline coefficients. Similar approximations might be possi-
ble using generalisations of the multivariate Gaussian distribution. 

2. The logistic LMM case is a sticking point in terms of accuracy because of the need 
to use ^ and log transforms to obtain lower bounds for the marginal likelihood. 
A method of combining ^ and log transforms could be developed and still other 
approximations could be possible. 

3. The optimisation problem posed by the ''maximisation'' step is quite unusual be-
cause it can be interpreted as involving a nonlinear matrix equality constraint 
for the covariance matrix S . Alternative optimisation procedures could possibly 
greatly improve numerical stability and running times. 

4. In this chapter lower bounds were primarily examined. Upper bounds could also 
be developed. These could be used in combination in a number of interesting ways 
including conservative and liberal hypothesis testing via likelihood ratio test and 
model selection via under/overestimation of the Akaike information criterion. 

5. Theoretical properties such as bias and asymptotic consistency are yet to be ad-

dressed. 
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CHAPTER 6 

Robust Spatially Adaptive Penalised Splines with 
Heteroscedastic Errors 

6.1 Introduction 

The topic of robustness in statistics has been the subject of an enormous amount of re-
search over the past few decades (e.g, Huber, 1981; Hampel, Ronchetti, Rousseeuw & 
Stahel, 1986; Rousseeuw & Lerow, 1987; Staudte & Sheather, 1990; Wilcox, 1997). When 
we design a model or procedure for a particular dataset we use a number of working 
assumptions. In semiparametric regression we might, for example, assume a type of 
noise and constant variance. When these assumptions are violated the model may not 
fit the data well. We say a model is robust if the procedure used to fit the model does 
not perform much worse when the underlying assumptions of the model are violated 
(Garthwaite, Jolliffe & Jones, 2002). 

In practice robust statistics is used to deal with complications arising in the data to 
be analysed. As discussed in Chapter 1 in data mining applications the behavior of the 
underlying system might change abruptly and be highly oscillatory and jump, cusp and 
other change points may occur. The noise in the system under observation may be asym-
metric and heteroscedastic. Outliers can occur for a number of reasons including ques-
tionable experimental (or methodological) design, measurement error and human error. 
Furthermore, when designing a model we may make a poor choice on the type of noise 
which corrupts the data. Due to the high dimensional nature of many real world prob-
lems these complications may not be identified from a casual examination of the data. 
For example, while outliers are by their nature can be easy to spot with the eye in one 
dimensional scatterplots, outliers in higher dimensional data may not be obvious even 
from inspection of three dimensional scatterplots using two predictors. Not dealing with 
these problems can drastically alter the quality of predictions in many applications and 
so care must be taken to avoid false conclusions about the data. 

Huber (1981) in his seminal book on robust statistics developed a class of estimators 
called M-estimators, which are generaUsations of maximum Ukelihood estimators, via 
modification to the measure of error or loss used. The Student's i-distribution is an ex-
ample which deviates from typical normality assumptions in such a way that outliers 
have reduced influence on the fitted function. The thickness of the tails in the Student's 
^-distribution can be controlled by the degrees of freedom parameter. In terms of M-
estimators this amounts to smaller loss for unusually large deviations from the mean. In 



comparison, modelling for Gaussian distributed noise leads to quadratic loss. Thus Stu-
dent's ¿-distributed noise will penalise observations large distances from the mean less 
than the Gaussian distribution would. 

In Section 2.4 we considered smoothing via a linear mixed model (LMM) formula-
tion where the noise was assumed to be Gaussian with constant variance. In many real 
situations this assumption, called homoscedasticity, is unrealistic and may lead to false 
conclusions. Adverse effects of holding this assumption include incorrect confidence 
intervals, incorrect inferences on particular parameter values and calibration inference 
(predicting an x based on a y). The converse situation where the variance may change 
is called heteroscedasticity and is examined in, amongst others, Davidian & Carroll (1987), 
Carroll & Ruppert (1988), Ruppert, Wand & Carroll (2003) and Crainiceanu, Ruppert & 
Carroll (2007). A model that allows for heteroscedasticity may lead to more robust re-
sults we can exploit the heteroscedasticity to obtain better fits in regions where there is 
less noise corrupting the response. 

Finally, spatially adaptive smoothing for spatially inhomogeneous functions may be 
seen as a form of robustness. A vast number of papers and indeed books have been writ-
ten on spatially adaptive smoothing. These range from regression spline methods based 
using both local (Friedman, 1991; Lindstrom, 1999; Zhou & Shen, 2001; Miyata & Shen, 
2003; Mao & Zhao, 2003) and global optimisation approaches Qupp, 1978; Pittman, 2002; 
Beliakov, 2004), penalised splines (Wahba, 1990; Green & Silverman, 1994; Filers & Marx, 
1996; Fubank 1999; Ruppert & Carroll, 2000; Gu, 2002; Ruppert, 2002; Ruppert ef al. 2003; 
Wand & Ormerod, 2008), kernel smoothing (Wand & Jones, 1995; Fan & Gibels, 1996; 
Loader, 1999), wavelets (Donoho & Johnstone, 1994,1995; Donoho, Johnstone, Kerky-
acharian & Picard, 1995), Bayesian (Denison, Mallick & Smith, 1998; DiMatteo, Genovese 
& Kass, 2001; Denison, Holmes, Mallick & Smith, 2002) and hybrid approaches (Luo & 
Wahba, 1997). Each of these methods typically work reasonably well in practice but re-
quire varying degrees of complexity to implement. In most of the above methods, the 
quality of the fit typically depends heavily on the time the user is willing to wait for a 
result. In this chapter we examine the model proposed by Baladandayuthapani, Mallick 
& Carroll (2005) which, as we will show, bears some similarity to the variance function 
models of Davidian & Carroll (1987), Carroll & Ruppert (1988), Ruppert et al (2003) and 
Crainiceanu et al (2007). 

In the context of linear mixed model (LMM) smoothing, modifications of the model 
away from normality typically result in analytically intractable integrals when calculat-
ing the likelihood (for example, Staudenmayer, Lake & Wand, 2008). Dealing with these 
analytically intractable integrals has lead to a great deal of research which has been dom-
inated by Monte Carlo type approaches. These numerical approximations while very 
accurate are typically slower than analytic approximations such as the Laplace approx-
imation. Unfortunately, in applications where speed is important the Laplace approxi-
mation has its limitations. For example, in the context of the models we will consider 



the Laplace approximation may not work well because the integrand is not Gaussian in 
shape. Thus we seek alternative computationally efficient approximations. 

Recent developments in a new class of analytic approximations, variational approxi-
mations, have lead to computationally efficient estimators for models involving analyti-
cally intractable integrals. Several variational approximations have recently been applied 
to a variety of robustness models (Bishop & Tipping, 2000; Tipping 2001; Paul & Tipping 
2001; Tipping & Lawrence, 2003; Kuss, 2006, Chapter 5). We use a similar approach to 
Bishop & Tipping (2000), Tipping & Lawrence (2003) and Kuss (2006) which exploits the 
fact that the Student's ¿-distribution may be written as a Gaussian scale mixture (An-
drews & Mallows, 1974). 

The methods developed in this chapter show the potential power of variational ap-
proximations to fit complex models accurately, efficiently and relatively easily. In this 
chapter we: 

1. Develop variational approximations to Student's t mixed models. This uses a 
similar approach to the Student's t ideas of Bishop & Tipping (2000), Tipping & 
Lawrence (2003) and Kuss (2006) except we use a slightly different parameteri-
sation optimise over the degrees of freedom and variance parameters explicitly. 
We develop a variational approximation for a Student's t mixed model and show 
heuristically why this approximation provides robustness to outliers. 

2. Develop variational approximations for linear mixed models with heteroscedastic 
noise (robustness to heteroscedasticity). 

3. Develop variational approximations for linear mixed models with adaptive vari-
ance components (robustness to spatial variation). 

4. In a seamless manner we combine any combination of mixed models with Gaussian 
or Student's t noise, variance function estimation and spatially adaptive variance 
components. 

5. Develop optimisation routines which fits these models in minutes, if not seconds, 
on a typical 2008 computer. 

6.2 Student's t Mixed Models 
Let 

(2/i,Xi),l <i<n ( 6 . 1 ) 

be a set of n paired observations with yi e R and x^ G M"' where the response variable 
y = • •, ?/n) is a continuous variable. Consider modelling the yts using the univariate 
Student's i-distribution with mean /î  = (X/3 + Zu)u constant variance a^ and degrees 
of freedom parameter Uy where X and Z are n x p and nx q matrices respectively with 
associated basis functions and as described in Chapter 1 & 2, ^ is a 
vector of fixed effects and u is a vector of random effects. Thus we have 



where Go-2 is the covariance matrix for u parameterized by cr̂  as described in Chapter 1, 
the density for the univariate Student's i-distribution is given by 

Siyilf^ucrl^Uy) = 
2 ; 

TTiyyal)^ 
1 + iVi - l^i)' 

l^yCjl 

and r ( ) denotes the gamma function (see Abramowitz & Stegun, 1964, Chapter 6). We 
note that as ẑy ^ cxd the Student's ¿-distribution approaches that of the univariate Gaus-
sian distribution. 

The log-likelihood for the Student's t mixed model (STMM) model may be written as 

£{l3,cr'\ay,iyy) = log / [y|u;/3, cr^Ji/u 

iVi - (X/3 + Zu),) 2 \ - 2 

X 
(2n) 

2 u-* 
r-e 2 d\i 

which involves an integral with no (known) closed form. 

Bishop & Tipping (2000) and Tipping & Lawrence (2003) advocated a particularly 
elegant variational approximation to the integral. We adopt different approach to the 
variational approximation proposed by Tipping & Lawrence (2003) but use a parameteri-
sation explicitly in terms of and Vy. Noting from Chapter 4 that for any density 
we have 

m = log J[y, e]di^ > iUO; C) = E^ log[y, 6] + Us (6.2) 

where are variables we want to integrate out, is a density, parameterized by 
which approximates the posterior distribution E^ denotes expectation with respect 
to S, Hs = -E<5 4)) is the entropy of S and the subscript L denotes a lower bound. 
Using similar terminology to that of Jaakkola & Jordan (2000), who might call (6.2) a 
^-transform, we call a density transform. 

To apply this approximation first note that the Student's ¿-distribution can be derived 
as a Gaussian scale mixture of gamma random variables (for example, Andrews & Mal-
lows, 1974; Liu & Rubin 1995), i.e we can write 

where 

(f^^-^aliVi - fJ'i) 

g{r,iyy/2,Uy/2) 

72 
r^xp (2^C72)2 

^ ^ ^ -72 exp 

7 iVi - y^if \ and 

r ( ^ ) 2 J ' 



Thus we can also write the likelihood as 

=iogJ u; cr' yi\n; f3,-fy lal][yyx,iy]d'yy^i S du. 

It is easy to integrate out either u or = ('fy^i,.. .,'̂ y^n) but difficult to integrate out 
both. 

Tipping & Lawrence (2003) chose the density transform mirroring the priors on u and 

-iy, i.e. (5(u, 7^) = 5u(u) nr=i KA^y^) ^here 

with 4 = 
,n? • • ? Here u|y Ŝu denotes approxi-

mating u|y by the Gaussian distribution with mean /x and covariance S, and similarly 

for 7y j. Using this density a lower bound for £ is given by 
0-2, Vy-i) = Ê  log[u; o-̂ ] + H^^ 

n 

+ ^ E^ log[yi|u; 'y-jal] + E^ log[7y,i; î y] + Hj^^ 
i=l 

where, ignoring additive constants, 1 < i < n 

Esiog[u; ct'] =ilogD^2 

log by,z; l̂ y 

^{Ay^i) - \og{By^i) - log(^g) 

Ay^i (y-Ci/)2 + (ZSZ^),i 
B. 

+ - 1) ( ^ ( A . ) - - ^ 

and Hj^. = Ay^i - \og(By^i) + log + (1 - Ay^i)^{Ay^i) 

with C = [X, Z] and u = (/3, /x). Here we have used the facts that = Aŷ i/Bŷ i, 

E5(log7y,z) = ^{Ay.i) - ^¿(x^Ax) = E5(x)^AE5(x) + tr(ACov5(x)) for any 

random vector x and appropriately-sized matrix A and ?/;(•) is the digamma function 

(see Abramowitz & Stegun, 1964, Chapter 6). These may be verified by direct integration, 

integration by parts or by using a symbolic computing package, for example Maple or 

Mathematica. 



The first derivatives of ¿l with respect to u and Aŷ i, Bŷ i and 1 < i < n are 

DJl = C^diag(w) (y - Ci/) -
(y - + 1 / 1 + 

^By/L 

V ^ ^cr- y Bŷ i 

\ 
= - ( i f + " ) . ^ + ( _ Ay, ) ^ ' (A , , ) + 1 2 / 

{y - Cu)1 + Ay, l + uy 1 
2 ^ ; . - 2 • 

(6.3) 

where Wi = Ay^/By^a^ and B„2 = blockdiag(0p,D^2). 

Thus, the first order optimahty conditions imply that 

:= (C^diag(w)c + B^2)" ' c rdiag(w)y , 
_ Vy + l 

Ay,i •- (6.4) 

R - ''V Ay-cu)? + ( z s z ^ ) , . and - y + 

Note that the solution for i/ is a weighted least squares solution with weight vector w = 

From equation (6.5) we can see how the value of Vy and the size of the residuals (y — Ci/)? 

affect the fit. As z/y ^ oo we have wi which is the Wi value for linear mixed 

models (see Section 5.2 for example). For small i/y the size of Wi decreases as the size of the 

residuals decrease. Thus, for small Uy points with larger residuals there is a reduced effect 

on the fit, so we should expect that maximisation of with respect to 0 = cr̂ , cr̂ , i/y) 

and 4 should produce fits which have some resistance to outliers. 

In the following sections we will combine this model for STMMs with variance func-

tion and adaptive variance component ideas. Instead of describing how to optimise £l 

with respect to 0 and ^ now we defer discussion of this to Section 6.5.1. 

Suppose that 6 = (3, ^y, ̂ y) and 4 = {fi, S , Ay^i,..., Aŷ n, By^i,..., By^n) are the 

values of the likelihood parameters and variational parameters which maximise As 

usual predictions for the mean function use 

P Q 

/ ( x ) = ^ + ^ (6.6) 

The fitted yis are given by f = x 3 + Z/x = ( / i , . . . , where fi = f{xi) . 



6.2.2 Numerical Experience 

To test the effectiveness of the above variational approximation for fitting SIMMs we will 
use the following functions (and corresponding number of data points n) 

f i { x ) =4x-2 (n = 50) 

/2(x) = sin(8(x - 0.5)) + 2exp(-162(x - 0.5)^) (n = 400) 
h(x) = 1/(0.1 + x) + 8exp(-400(x - 0.5)^) {n = 800) 
/4(x) = 30 ((3x - 7)/3) /2 - 0 (25x - 20) {n = 200) 

(6.7) 

where the x values will be equally spaced between 0 and 1. These represent a linear 
function and a variety of nonlinear functions for the true mean. We will also consider a 
variety of noise types 

1. Gaussian noise, yi ~ N{f j{x) ,a^) 
2. Student's t noise, yi ~ t{fj{x), al^Vy) 

3. Gaussian mixture (GM) noise, yi ^ {I - Wi)N{fj{x),al^) + WiN{fj{x),al^) with 
Wi ~ Bern(u;). 

where î y, ^ crj 2 and uu are fixed constants. Here we will use the noise settings 

1. Gaussian noise (cr̂  == 0.25), 
2. Student's t noise with 1 degree of freedom (Cauchy noise, ay = 0.2b, Uy = 1), 

3. Student's t noise with 3 degrees of freedom {a^ = 0.25, Uy = 3), 
4. Student's t noise with 5 degrees of freedom (cr̂  = 0.25, Uy = 5) and 
5. Gaussian mixture noise {cu = 0.05, cr̂  ̂  = 0.25, cr̂  2 ^ 

We will use thin plate splines (see Section 1.2.4) for these experiments with m = 3, Ki = 

25 knots for the construction of the X , Z and D^ matrices. Note that we standardised 
the xs to have zero mean and unit variance which typically improves numerical stability. 
These knots are spaced using the quantities of the unique x^s, i.e. ki satisfies 

/ k 
i^k = 

\ 
th sample quantile of the unique XiS,l < k < Ki 

and the we will measure the error of each fit by the sample mean square error 

(6.8) 

MSE(fjJ) = n-' - f { x i ) ) \ (6.9) 
¿=1 

Each of these settings were fit using LMM smoothing (see for example Section 2.4) 
and the STMM approximation for 100 trials. The median MSE, standard error in brack-
ets and estimates for cr̂  and î y for each setting is summarised in Table 6.2.1. From this 
we see that the MSEs and the STMM estimates for cr̂  is better for just about every case. 
For the Gaussian noise cases the STMM approximation estimates for Vy are large, not-
ing that for i/y larger than 40 the univariate Student's ^-distribution is extremely close to 
the univariate Gaussian Student's ^-distribution. Also in particular MSEs for the STMM 



approximation are not obviously worse for the Gaussian noise cases. Also the SIMM 
approximation estimates for Uy are reasonable for the cases with Student's t noise. 

Finally, Figure 6.1 illustrates come exemplar plots and absolute residuals for each of 
the mean functions used with student noise with variance crj = 0.25 and degrees of 
freedom Vy = 3. Note each of the examples has a fair proportion of outliers and that 
STMM gives slightly better fits in each case. 
6.3 Variance Function Estimation 
Suppose that we model the relationship between the ys and the xs in (6.1) using the 
Gaussian distribution 

where /(•) is the mean function. It is often implicitly assumed that 

Var(y|x) = a l 

where cr̂  is a constant parameter to be estimated, i.e. homoscedasticity. Instead we will 
consider a variance function model 

log (a2(xi)) = 

where g{') is the function associated with the variance of i/i|xi. This model has been 
considered in, amongst others, Ruppert et al. (2003, Chapter 14). 

We model /(•) and g{') using the spline methodology developed in Chapters 1 & 2 so 
that 

g{xi) =(X/3 + ZG)i and G ~iV(0,G~2). 
Here X and Z are n x p and nxq basis matrices for the mean function with associated basis 
functions and {^¿(OlLi respectively, X and Z are n x p and n x basis ma-
trices for the variance function with associated basis functions {-^¿(Olf^i and {^¿(Oj^^i 
respectively and the associated penalty matrices are = and GI^ = 

Note that we allow for the possibility that X and Z can be possibly different from X 
and Z. The motivation for this is situations where the mean may depend on one set of 
variables while the noise many depend on another set of variables. For compactness we 
will write a^ixi) = . and erg = (cr̂  . . . , a ^ J . 



Ol 

Median Median 
Noise Noise MSE MSE V y 

f j 
Type Setting LMM STMM LMM STMM STMM 

j = l N l . { U y oc) 0.0096 (0.0008) 0.0095 (0.0009) 0.228 (0.0036) 0.208 (0.0041) 125.25 (13.06) 
S 2 . { U y = 1) 0.6659 (0.5388) 0.0202 (0.0017) 11.519 (6.5762) 0.217 (0.0098) 0.97 (0.02) 
S 3 . ( i y y = 3) 0.0310 (0.0027) 0.0186 (0.0017) 0.582 (0.0261) 0.220 (0.0086) 2.88 (0.60) 
s A . { i y y = 5) 0.0165 (0.0013) 0.0157 (0.0011) 0.366 (0.0087) 0.228 (0.0068) 4.79 (4.02) 

GM 5. 0.0120 (0.0009) 0.0113 (0.0008) 0.265 (0.0052) 0.235 (0.0056) 44.84 (11.71) 
J = 2 N l . { i y y o o ) 0.0112 (0.0003) 0.0113 (0.0003) 0.250 (0.0014) 0.243 (0.0014) 138.05 (5.86) 

S 2 . { U y = 1) 1.3315 (0.6833) 0.0335 (0.0022) 136.515 (71.5807) 0.285 (0.0044) 1.05 (0.01) 
S 3 - K - 3) 0.0347 (0.0015) 0.0199 (0.0005) 0.649 (0.0114) 0.270 (0.0033) 3.35 (0.05) 
s A . { U y = 5) 0.0204 (0.0006) 0.0170 (0.0005) 0.410 (0.0039) 0.262 (0.0028) 5.49 (0.15) 

GM 5. 0.0132 (0.0004) 0.0130 (0.0004) 0.283 (0.0021) 0.253 (0.0021) 17.44 (3.23) 
J = 3 N l . { U y - H • oo) 0.0083 (0.0002) 0.0082 (0.0002) 0.252 (0.0011) 0.245 (0.0012) 109.54 (4.59) 

S 2 . K = 1) 4.3262 (0.5962) 0.0159 (0.0004) 255.309 (107.9578) 0.265 (0.0027) 1.03 (0.01) 
S = 3) 0.0189 (0.0006) 0.0106 (0.0002) 0.661 (0.0128) 0.267 (0.0019) 3.20 (0.03) 
s 5) 0.0120 (0.0003) 0.0105 (0.0003) 0.406 (0.0030) 0.261 (0.0020) 5.65 (0.11) 

GM 5. 0.0086 (0.0002) 0.0083 (0.0002) 0.289 (0.0015) 0.254 (0.0016) 18.87 (1.52) 
N l . { i y y - oo) 0.0246 (0.0005) 0.0247 (0.0005) 0.264 (0.0020) 0.255 (0.0023) 114.62 (6.9738) 
S 2 . { U y = 1) 0.9885 (0.3775) 0.0372 (0.0009) 46.637 (31.3852) 0.277 (0.0048) 1.03 (0.0107) 
S 3 . K = 3) 0.0375 (0.0010) 0.0297 (0.0006) 0.662 (0.0121) 0.274 (0.0040) 3.20 (0.0810) 
s 4 . { i y y = 5) 0.0291 (0.0006) 0.0271 (0.0005) 0.405 (0.0054) 0.279 (0.0047) 6.29 (0.3730) 

GM 5. 0.0261 (0.0004) 0.0257 (0.0004) 0.297 (0.0031) 0.269 (0.0030) 28.64 (7.0489) 

Table 6.2.1: Mean square errors (MSE), standard errors (in brackets) and noise parameter estimates for linear mixed model (LMM) and Student's t mixed model 

(STMM). The noise types include Gaussian (N), Student's t (S) and Gaussian mixture (GM), see the text for details. 
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F i g u r e 6 . 1 : Exemplar plots using a linear mixed model (LMM) smoother and Student's t mixed 
model (STMM)for / i , . . . , / 4 zvith student t noise with variance ay = 0 . 2 5 and degrees of freedom 
Uy = 3. Left panels are limited to the range of the data and the right panels are limited to the range 
of the fitted functions. 
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Figure 6.2: Absolute errors for fits in Figure 6.1. 

The log-likelihood for this linear mixed model with non-constant variance function 

(LMMVF) can be written as 

= log 

- i ( y - X/3 - Zu)^diag (y - X/3 - Zu) 

Trexp 

X 
D . 2 
(27r)i 

exp 
/ 

2 J (27r)f 
^ e x p 

u^ D~2U 
(¿u du. 



The difficulty with calculating i comes with trying to integrate out the vector u. Using 
the density transform (6.2) with ^(u, u) = 5u(u)(52(u) where 

u|y Ar(/x,s) 

we obtain a lower bound for i is given by 

= E^ log[y|u, u] + Ei log[u] + E^ log[G] + Hs^ + Hs-,. 

Here ^ = E, jit, £ ) and, ignoring additive constants, 
1 l^rj. / 1 / 

E5log[y|u,u] = exp i - C i / + - d g 
E^ log[uJ = - Iog(D^2) , 

z s z 

E^logM = - l o g ( D ~ 2 ) -1. . /i^D~2/i + tr(SD~2) 

and Hs-, =-\og{^). 

Here C = [X, Z], i/ = m), C - [X, Z], = Jl), 

y = (^1,. . . , yn), dg(A) is the vector corresponding to the diagonal elements of A and 
4 = (/Lt, E, Ji, S) are additional variational parameters. Again we have used the fact 
E<5(x^Ax) = Ei(x)^AE5(x) + tr(ACov<5(x)) for any random vector x appropriately and 
sized matrix A but also that Eie*^"") = gt^/i+it^st ^̂ ^̂  Gaussian vector x ~ D) 
and appropriately-sized vector t. 

The first derivatives of with respect to V are 

(6.10) 

where B~2 = blockdiagjO, D~2}. 
The equation (6.10) correspond to fitting a gamma LMM for fixed y using the varia-

tional method described in Chapter 5 with 

y |S ~ Gamma 
\ 

whereas in Ruppert et ah (2003) it was noted that, for fixed (/3, u). 

(y - X/3 - Zu)2|u ~ Gamma ^ 



Again we will defer discussion of the maximisation of with respect to 0 = 
and 4 ^ow we defer discussion of this to Section 6.5.1. Let 0 = 

^ ~ 2 ^ ^ ^ 

dy, (3, a- ) and ^ = (/x, S , /x, S ) be the values which maximise ¿l- The predictions 
for the mean are made using (6.6) and the variance function is estimated by 

i=\ j=i 

6.3.1 Numerical Experience 

To test the effectiveness of the above algorithm for fitting variance functions we will use 

the same functions as (6.7). We will also consider a variety of variance functions (with 

corresponding n values): 

gi{x) -log(0.25) (71 = 200) 

^2(x) =log(0.5-0 .8x + 1.6(x-0.5)+) (n = 800) 

gsix) + (n = 400) 

g4(x) = -3.9 + 1.7exp(sin(57rx)) (n = 1600) 

The XiS will be equally spaced between 0 and 1. We will use thin plate splines (see Chap-
ter 1) to construct the X, Z and D^ matrices for these experiments with m = 3, Ki = 
knots for the mean function and i^i = 10 knots for the variance function. Note that 
we standardised the xs to have zero mean and unit variance which typically improves 
numerical stability. The knots are spaced using the quantities of the unique xs as per 
equation (6.8). 

We will measure the error for the estimated mean function by the sample mean square 
error (6.9) and we will measure the error for the variance functions by the mean deviance 
for gamma generalised linear models 

2 

noting that for the constant variance case, i.e. a LMM we use exp(g{xi)) = a^. 
Each of these settings will be fit using a linear mixed model smoothing and the Vari-

ance Function (LMMVF) variational approximation for 100 trials. The median MSE and 
V with standard error in brackets for each setting is summarised in Table 6.2.3. 

From Table 6.2.3 we see that for mean functions /i , /2 and fs the LMMVF have a rel-
atively minor impact on the accuracy of estimates for the mean function. Sometimes the 
MSEs for the means were a little better for LMMVF, sometimes a little worse. However 
the LMMVF approach reduced V for the variance function compared with the LMM fit. 
This is important because in some applications the variance function is itself of intrinsic 
interest. 



Finally Figure 6.3 illustrates some exemplar fits using a LMM and LMMVF for f^ 

using the non-constant variance functions, and fits of the variance functions using the 

mean residuals. Note that in each case the fitted variance function for LMMVF has some 

resemblance with the true variance function and is particularly accurate for g2- However, 

based on the absolute errors in Figure 6.3, the LMMVF fits in do not appear to improved 

the estimation of the mean function over the LMM fits. 
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Figure 6.3: Exemplar plots (left panels) and estimated variance, absolute errors (middle panels) 
and functions (right panels) for /4 and variance function g2, gs and 



Noise Median Median Median 

f j 9k MSE 
LMM 

MSE 
LMMVF 

V 
LMM 

V 
LMMVF 

3 = 1 k = 1 0.0026 (0.0003) 0.0032 (0.0002) 0.3693 (0.0046) 0.1699 (0.0131) 
k = 2 0.0010 (0.0001) 0.0009 (0.0001) 0.4703 (0.0027) 0.0347 (0.0016) 
k = 3 0.0014 (0.0002) 0.0014 (0.0002) 0.5801 (0.0030) 0.0568 (0.0043) 
k = 4 0.0009 (0.0001) 0.0003 (<0.00005) 1.8551 (0.0032) 0.0221 (0.0008) 

3 = 2 k = 1 0.0252 (0.0010) 0.0260 (0.0012) 0.4044 (0.0050) 0.0438 (0.0044) 
k = 2 0.0071 (0.0002) 0.0060 (0.0002) 0.4747 (0.0026) 0.0278 (0.0011) 
k = 3 0.0095 (0.0003) 0.0091 (0.0003) 0.7288 (0.0048) 0.0176 (0.0015) 
k = 4 0.0060 (0.0003) 0.0076 (0.0004) 1.8593 (0.0035) 0.0256 (0.0010) 

3 = 3 k = 1 0.0294 (0.0008) 0.0302 (0.0008) 0.3852 (0.0049) 0.0301 (0.0027) 
k = 2 0.0101 (0.0003) 0.0098 (0.0003) 0.4734 (0.0025) 0.0213 (0.0008) 
k = 3 0.0352 (0.0010) 0.0335 (0.0010) 0.2646 (0.0024) 0.0181 (0.0014) 
k^ 4 0.0080 (0.0003) 0.0086 (0.0003) 1.8530 (0.0030) 0.0256 (0.0008) 

3 = 4 k = 1 0.0247 (0.0005) 0.0245 (0.0005) 0.4138 (0.0041) 0.0305 (0.0030) 
k = 2 0.0143 (0.0005) 0.0169 (0.0005) 0.4904 (0.0028) 0.0330 (0.0011) 
k = 3 0.0092 (0.0004) 0.0158 (0.0004) 1.0163 (0.0062) 0.0231 (0.0018) 
k = 4 0.0089 (0.0004) 0.0038 (0.0002) 1.8594 (0.0036) 0.0259 (0.0009) 

Table 6.3.2: Mean square errors (MSB), variance function mean deviances V and standard errors (in brackets), for linear mixed model (LMM) and variational 
approximation of the variance function model (LMMVF). 



6.4 Spatially Adaptive Variance Components 

Similar to the variance function model described in the previous section is the spatially 

adaptive variance component scheme first proposed by Baladandayuthapani et al. (2005) 

which was based on earlier work by Ruppert & Carroll (2000). Suppose that now we 

model the relationship between the ys and the xs in (6.1) using the Gaussian distribution 

where ay is a constant parameter to be estimated and /(•) is the mean function. Consider 

the additive model for the mean 

V 

i^l 

Here I = { 7 i , . . . , form a partition of a subset of the indices { 1 , . . . , d}, (see Section 

1.2.1 for examples) and 

Pi Ki 

3=1 3=1 

where (3̂  = ( A i , . . . , ApJ are coefficients for and û  = { u n , . . . , UiXi) are the 

coefficients for the spline functions Z = {Z^ (•; Here, unlike Chapter 1, we ex-

plicitly assume that each of the spline functions Z depends depend on x/. locally around 

knots {i^ij}i<j<Ki (with dimension equal to the dimension of x / J and that the number 

of knots is equal to the number of basis functions. 

Unfortunately, the usual splines used in previous chapters, i.e. the mixed model 

O'Sullivan splines described in Chapter 2, do not work with this model. The problem 

that arises is that the number of splines in the B-spline basis is not equal to the num-

ber of knots. Example of such splines which do satisfy these assumptions are truncated 

power splines and thin plate splines (see Sections 1.2.3-1.2.4). These splines were used in 

Baladandayuthapani et al. (2005) and Krivobokova et al (2007). 

Thus far we have assumed constant variance components, i.e. 

where af are model parameters to be estimated. Since the spline functions depend on 

the xs locally around the knot locations we can make the penalty spatially adaptive by 

allowing variance components to depend 

on the KijS. Thus the idea behind adaptive 

variance components, similar to the various function model, is to have 

logK^W) = hi{K). 



Again, using the same penalised spline methodology used throughout this thesis, we 

model hi (k) using 
Kr 

where and {Zij{-\Tij)}^!^ are basis functions truncated power or thin plate 

spline basis matrices with knots (r^j,..., r-^^J and K i < Ki. 

Thus we consider the model 

y u,cr 
u, 

log 

y 

f lu. 

~7V(X/3 + Zu,i72l) 

~7V(0,diag(o-2)) 

= XiPi + ZiUi 

f o r i < z < where X = [1, X i , . . . , X,],/3 = ... Z 

(ui , . . . , u ;̂), 0-2 ̂  •.., with erf. = and 
Zl, . . . , Z ;̂], U = 

Zi 
X j/c 

= Xik{y.ji^) for l<3<n,l<k<pi 
= Zik{:>iji^]Kik) for 1 < j <n,l < k < Ki 
= Xik{K,ij) for l < j < K i , l < k < Pi 
= Zik{i^ij-,Tik) for l < j < K i , l < k < 'Ki 

so that Xi is a n X p matrix, ZiisanxKi matrix, X^ isaKiX p̂  matrix and % is a KiX 'Ki 
matrix. 

With some additional priors Baladandayuthapani et al. (2005) fitted this model using 

an MCMC approach. Krivobokova et al (2007) fit this model using the Laplace's method 

and Crainiceanu et al. (2007) combine this idea with variance component fitting with 

yet another MCMC scheme. The MCMC schemes, particularly in the last reference, are 

quite complicated and too slow for some contexts. Krivobokova et al. (2007) show that 

approximations can be developed for the above adaptive penalty model and, while not 

quite as accurate as the current best smoothing techniques, are much faster and easier to 

implement. 

The log-likelihood for this model is given by 

= log j[y\u, ay] u Ul , . . . n 
¿=1 

u, a? dudul... dui 

exp 
y - X/3 - Zu 

1 
X Y l ^ exp 

t i (27r)^ 11 

2a| 

, uf diag I e 
(Xi/3, + Ziu0 

-Xift-Z. " ' ) Ui 

/ 
X ^ e x p 

u, 2\ 

2a? 
dudui ... dUy. 



It is clear that the difficulty in fitting the above model stems from integrating out the 
vectors u, u i , . . . , u ;̂. We propose the following variational approximation based on the 
density transform (6.2) with ^(u, u i , . . . ,11 )̂ = Su{u) H^Li ^i(ui) where 

u|y Ar(/Li,E) 

to obtain a lower bound on i given by 

V 

= E^ log[y |u, gI] + E^ log[u|ui,..., u j + + ^ E^ log[ui|af] + H^^ 

Here i = (/x, Il,7Ii,...,/J^, Sli , . . . , S^;) and (ignoring additive constants) 

y - C i / | | 2 + tr(S:D) n 

E^log[u|ui,... ,u 

E^log 

= È - l l ^ C . u , - i y f exp ( - C . u , + I d g 
2=1 

Ui kj 2^2 

i and Hs^ = - l o g I Si 

where C = [X, Z], u = {(3, /x), C^ = [X ,̂ Z ]̂, Vi = for 1 < i < v. 

D = diag 

Note that we have used the same indexing for /x and S as u, i.e. 

M i = { m ^ - - -, ^J^iKi) 

jk — s { i , j ) , s { i , k ) 

i o r l < i < v , l < j < K u l < k < K i with s { i j ) + Y ^ U i ^k so that 

= + diag(Si), l < i < n . 

The first derivatives of with respect to Vi are 

_ ^ w f v , . (6.11) 1—T ^ 

This equation correspond to fitting a gamma GLMM for fixed y^ using the variational 
method described in Chapter 5 with 

Yilui ~ Gamma £ 



whereas for fixed u, we should have 

u?|ü¿ ~ Gamma -
V 

Again we will defer discussion of the maximization of £L with respect to 0 = 

. . . and ^ now we defer discussion of this to Section 6.5.1. 

6.4.1 Numerical Experience 

To test the effectiveness of the above algorithm for fitting our variational approximation 
of the adaptive variance component (AVC) model we will compare this method with 
some of the latest methods for spatially adaptive smoothing. It is difficult to make ex-
tensive comparisons given the fact that many papers use different functions to test the 
effectiveness of various methods. We will restrict our method with the methods: 

• Spatially-adaptive penalties for spline fitting method (RC) of Ruppert & Carroll 
(2000), 

• Bayesian Adaptive Regression Splines (BARS) of DiMatteo et al. (2001), 

• Bayesian P-splines (BPS) of Baladandayuthapani et al (2005), 
• Spatially adaptive Bayesian P-Splines with heteroscedastic errors (CRC) 

Crainiceanu et al. (2007) and 
• Adapt F i t of Krivobokova et al. (2007) 

which compare some of the same problems. We note that the methods Adapt F i t and 
AVC correspond to Laplace's and a variational approximation of the model proposed in 
BPS. Furthermore BPS is itself a similar to the local penalty method developed in RC. 
The CRC method is again a similar model to BPS but includes components for variance 
function estimation. Finally, BARS uses free-knots splines with the random number and 
location of knots, using reversible jump MCMC for estimation which is completely dif-
ferent from other methods considered here. 

We will use the following functions and settings for each method 

/ot tCI+ 
/5(x) == y ï ô ^ s i n Í M - - 4 0 0 , = = 0.04 

/6(x) = y i Ô ^ s i n l ^ ^ i L t ^ ^ n = 400, K = = 0.04 

f j { x ) = exp (-400(x - 0.6)2) ^ ^^^ _ 0.75)2) 

+2exp (-500(x - 0.9)2) ^ ^ 1000, a j = 0.25. 
(6.12) 

The xs were equally spaced between 0 and 1. We will use thin plate splines (see Chapter 
1) for these experiments with Ki = 80 knots for the mean function and Ki = 20 for the 
construction of the matrices X, Z and (X^, Z^), 1 < ¿ < v. These knots are spaced using 
the quantities of the unique xs as per equation (6.8). Note that we standardised the xs to 
have zero mean and unit variance which typically improves numerical stability. 



We will measure the error of each fit by the sample mean square error (6.9) which 
we will average over 100 repeated simulations of each dataset. The MSEs for the AVC 
method and the reported MSEs for each other method is summarised in Table 6.4.3. From 
this table we see that the MSEs for AVC is similar to the other methods. 

Method /5 /6 /7 
RC 0.0026 0.0007 0.0065 
BARS 0.0043 
BPS 0.0027 0.0006 0.0061 
CRC 0.0054 
AdaptFit 0.0034 0.0048 
AVC 0.0033 0.0008 0.0047 

Table 6.4.3: Mean square errors for functions /s, fe and fi using the methods: Spatially-adaptive 
penalties for spline fitting method (RC) of Ruppert & Carroll (2000), BARS (DiMatteo et al., 
2001), Bayesian P-splines (BPS, Baladandayuthapani et al.,2005), Spatially adaptive Bayesian 
P-Splines with heteroscedastic errors (CRC, Crainiceanu et al., 2007), Adapt F i t (Krivobokova 
et al., 2007) and the variational approximation of the adaptive variance component model (AVC). 

The reported times taken for each of the methods are remarkably different. The fits 
for AVC each took between on average 66 seconds for /s and /e and 132 seconds for 
/y. In comparison the reported time for the RC method was about 10 seconds, for the 
Adapt F i t method half a minute, the BARS method takes as long as 4 hours to fit one 
model and finally while no time reported by Crainiceanu et al. (2007) for CRC to fit a 
single model they did report the total time for all simulations being over 1000 hours. 

Finally, Figure 6.4 illustrates some exemplar fits along with coefficient "responses" y i 
and fits 

= exp ( X i ^ i + ZiHi) . (6.13) 

Note that for these cases all of the variance component functions using the variational 
approximation are linear. 

6.5 Optimisation, Alternatives and Extensions 

In this chapter we have thus far seen how to derive variational approximations for Stu-
dent's t noise, variance function and spatially adaptive variance components. If we 
wished we could also, with relative ease, combine each of these. 

Consider the model with student's response model with non-constant variance func-
tion and spatially adaptive variance components. 

Vi U, (Ty^y 
.2 

N 

"^yA = 
u ~ 

^ij = 
and u, ~ 

Gamma ^ 

exp + Zu)i) , 

exp {(Xil3i + ZiUi)j) 



u^+diag(2:) 

u^+diag(Z) 

u^+cliag(Z) 

Figure 6.4: Exemplar plots (left panels) for /s, /e and f j using a LMM an the variational approxi-
mation to the adaptive variance component model (AVC) and fitted variance component functions 
(right panels) for coefficient ''response" values. 

where we have used the same notation as specified in this chapter. Using 
a variational approach we use the density transform (6.2) with (5(u, u,u,7^) = 

r i L i where 

üdy 

7y,dy Gamma 



to obtain the following lower bound on the likelihood 

= E^ log[y |u, iT ,̂ 7^] + Ei log[u] + E^ log[7ĵ  
V 

+Ei log[u|(72] + Hs^^ + Hs^ + ^¿u + I ] Ei(log[ui]) + • 
¿=1 

(6.14) 

Here 0 = ( / 3 , 3 , • • • CT^) and ^ = (/i,S,¿t, ... ,7t„, E i , . . . , E^) are the 

likelihood and variational parameters respectively. The relevant expectations and en-

tropy function for the base model are given by, ignoring additive constants, 

E,log[y|u,^,,7,] = L 5 2 5 - ' 

E^log U Z ^ 9 9 i=l 3 = 1 
and Hs^ = -log|X; 

The relevant expectation and entropy function for having Student's ¿-distributed noise 

are given by, ignoring additive constants. 

E.log[7,] = ^ l o g ( f ) - n l o g r ( | 

+ (I - i) E i^(^y-i) - -
and HŜ ^ = ^ Aŷ i - \Og{By î) + log T{Ay^i) + (1 - Ay^i)llj{Ay^i). 

i=l 
The relevant expectations and entropy function for having a non-constant variance func-

tion are given by, ignoring additive constants. 

Cu, 
exp 

u E^log 

and H^ 

2 6 o-

2log|£| 

where C = [X, Z] and u = (3? m)- Finally, the relevant expectations and entropy function 

for having adaptive variance components are given by, ignoring additive constants, 

E5( log (4 ) ) = CiVi, 

Es log[ui 

and Hsji 

/ _ _ 1 T ^ 
exp i + - (ZiEiZi )jj 

Ki 
log(a?) -2 

I log 



where Ci = [Xj, Zj] and Ui = (/3j, /xj) for 1 < z < v. 

6.5.1 Optimisation 

Maximization of the function iiiO;^) with respect to 0 and ^ is difficult due to the large 
number of parameters and the complex interactions between them. Newton-Raphson 
and quasi-Newton methods on their own are also unsatisfactory because of the storage 
requirements for storing the Hessian or approximate Hessian (for quasi-Newton meth-
ods) are high due to the large number of parameters. 

Let us first consider the first derivatives of i i with respect to 6 and The first deriva-
tives oi ii with respect to and S are given by 

= C^diag(w)(y-Ci/)-Bi/ 

De,,. = t r ( ( S - i - Z ^ d i a g ( w ) Z - D ) E , , ) / 2 

(6.15) 

(6.16) 

where B = blockdiag {Op, D}, D = blockdiag(diag(di),..., diag(d^;)), [w]i = 
Ai¥.q[cF~J)/Bi, [di]j = and E^ is a matrix of zeros except the {ij)th entry which 
is 1 and has the same dimensions as S . 

The first derivatives of with respect to Ay Bŷ i and Vy are given by 

. ^ ^y + Vi^qi^yJ) 1 I /̂ l + î 
^ 2 ' Bŷ i V 2 

^ . ^ ^y + Vi^^^yh Ay^i 1 + ^y 1 
2 ' Bl^ 2 • By,, 

and D . / , = ^ (log ( i ^ ) + 1 - ^ + £ - ^^ 
/ ^ 2 2Byi 

(6.17) 

The first derivatives of with respect to u, E and (t̂  are given by 

D^iL = C ^ ( y © w - l ) / 2 - B ~ 2 i : i , 

and D52 = 

-1 
Dg ¿L = t r ( ( S ' - Z ^ d i a g ( y © w / 2 ) Z - D 5 2 ) E y ) / 2 

UiP. + tr(SDO Ki 
2(5?) 2\2 25? 

where D~2 = E L i ^ ' ^ I ^ / ® = blockdiag(Og, D~2), [w]i = Bŷ i and E^ is 
a matrix of zeros except the (i, j)th entry which is 1 and has the same dimensions as E. 

The first derivatives of with respect to Vi, % and a] are given by 

Di7, = C f ^ 
D .̂ = tr f f S r ' - Zf diag(y, 0 ^1/2)% - afl-j^^) E .̂-fc) /2 

-•i,jk 

and D̂ 2 = 2^2 

where [ŵ ]̂  = and Ey^ is a matrix of zeros except the j/cth entry which is 1 and 

has the same dimensions as Thus we could apply Newton-Raphson updates for Vy 



which are given by 

\= — 
dVy' 

Unfortunately Vy is subject to the implicit constraint z/y > 0 and Newton-Raphson up-

dates may make Vy < 0. Instead we propose to first make the transformation v = ê  and 

then use Newton-Raphson updates on r. The first derivatives of with respect to r are 

dr 

dr^ 

duy dii 
dr du 

l^r dh 

y 
d'^uydii [dvyVd^ii 

where 

dr'^ dv,. 

d'^L 

+ 
dr dvl 

'dUy 
diL^ 2 
du, V « dul 

The fixed point updates for the base model is 

- 1 
S := (Z^diag(w)Z + D) 

and 1/ (C^diag(w)C + B)"^C^diag(w)y. 

The fixed point updates for the Student's t response parameters are 

. . 1 + 

_ Vy + yi¥.q{(TyJ) 
B. 

and z/y :=i'yexp ^ dHLy'diA 
dvy ^ dv?. ) du, 

The fixed point updates for the variance function is 

S := (|z^diag(y © w/2)Z + D~2) \ 
\ -1 

V := (^C^diag(y © w/2)C + B̂  

and a? := 
.2 . /x̂ Di/x + tr(SDi) 

/ 
C^ ( y © w - l ) / 2 - B ~ 2 i : i ) 

Ki 

Finally, the fixed point update for the adaptive variance components are 

- 1 

— _ \ - i ' / _ 
Si ( z f diag(y, © Wi/2)Zi + a r ^ l ^ J , 

Vi := (cfdiag(y, © Wi/2)C, + B^) ( c f (ŷ  © w^ - 1) /2 - Bfii^ 

7lJ|2 + tr(S0 
and a? := 

Ki 

where Bj = blockdiag(0, â  Ij^,). 



A little care is needed when applying these updates. We use the following starting 
points 

/3 
u 
E 

À 

fti l o g « . ) for 1 < i 
Uy 2, 

1,000 for 1 < i < V 

and a] := 1,000 for 1 < i < V 

(6.18) 

where (/3*, u*, (Ty*,cr^*) are the parameter values obtained from the solution of a LMM. 
An update strategy that works is to first update the Student's t response parameters, 

variance function parameters (expect the afs) and the adaptive variance components pa-
rameters (expect the a^s) until these parameters converge. We then apply the updates for 
Student's t response, variance function and the adaptive variance components parame-
ters which are interleaved by updates for the base model parameters. This is the basis for 
Algorithm 10. 

6.5.2 Alternatives and Extensions 

It is now easy to remove "robustness" options by making some simple changes. 

• For Gaussian response and random effects one might be tempted to set z/y to a large 
constant, say 1000. We have found, however, that this strategy leads to incorrect 
results since, for example, if most yiS are larger than 1000 then this is not a suffi-
ciently large constant. Instead for Gaussian response models we set Aŷ i = Bŷ i = 1, 
1 < z < n. 

• For constant variance function we let ô^(u) = 1 and 

=log{a'y) and EWa^^ -2 
= a. - 2 

for some a^ Also let Ei(log[ii]) = 0 and Hs- = 0. We also replace (6.20), (6.21) and 

(6.25) with 
n 

(6.27) 
i=l 

For constant variance components we let 6n{u) = 1 and 

E5 log(4 ) =\og{af) and E^ a. - 2 
ij = CJ - 2 

for some af. Also let E^ log[u] = 0 and = 0. We also replace (6.22), (6.23) and 

(6.26) with 



Algorithm 10 Robust Spatially Adaptive Penalised Splines with Heteroscedastic Errors 
1. Set initial values using (6.18) 
2. Cycle 

Apply updates 

1 + 

B 

:= Vy exp fdiL . OHL ^Uy 
- 1 

\dVy dUn, 

(6.19) 

and 

5] 

Ui 

Z^diag(y©w/2)Z + D~2) 
- 1 

(6.20) 

C^ ( y 0 w - l ) / 2 - B ~ 2 i > ) (6.21) 
- 1 

(C^diag(y©w/2)C + B~2 

(zf diag(y, 0 w,/2)Z, + ar'^I^J (6.22) 

(cf diag(y, 0 w, /2 )Q + B , ) (cf (y, 0 w, - 1) /2 - BiU^ (6.23) 

Until convergence. 
3. Cycle 

Apply updates (6.19) and then 

- 1 E := (Z^diag(w)Z + D) 
V := (C^diag(w)C + B)"^C^diag(w)y 

Apply updates (6.20-6.25), (6.24) and then 

Jf-Djjl + tr(EDO 
Ki 

Apply updates (6.22-6.26), (6.24) and then 

(6.24) 

(6.25) 

a? 
K, 

(6.26) 

Until convergence. 



Finally we could model y as a non-normal response and then use 

1/ i/ + (C^SC + - B ) 

S (Z^WZ + D) - 1 

where the values for W, S and e are available from Table 5.2.2 and as noted in 
Chapter 4 the update equations for the nuisance parameter 4> are available from 
Table 5.2.3. We also envisage that we could, in theory, have non-constant and 
mimic variance function estimation for the Gaussian case but the need to do this is 
likely to be quite rare so we do not pursue this here. 

6.5.3 Numerical Experience 

To test the effectiveness of the above Algorithm 10 for fitting variance functions we will 
use the same functions and settings as (6.12). We will also use the following variance 
functions 

g^ix) =\og{al) 

2 
97{x) = ^ ( -3 .9 + 1.7exp(sin(57rx))) 

The xs will be equally distributed between 0 and 1. We will use thin plate splines (see 
Chapter 1) for these experiments with m = 3, Ki = SO knots for the mean function, 
Ki = 20 knots for the variance function and Ki = 20 knots for the adaptive variance 
components for the construction of the matrices X, Z, X, Z and (X^, Zi), 1 < i < v. These 
knots are spaced using the quantities of the unique xs as per equation (6.8). Note that 
we standardised the xs to have zero mean and unit variance which typically improves 
numerical stability. 

Finally we will use the following noise settings 
1. Gaussian noise (uy oo), 

2. Student's t noise with 2 degree of freedom {uy = 2) and 
3. Student's t noise with 4 degrees of freedom {uy = 4). 

Note that for some noise settings are significantly heteroscedastic and the Student's t 

noise settings contain a substantial fraction of outliers. 

We will compare the variational approximation of the Robust Spatially Adaptive Pe-
nahsed Splines with Heteroscedastic Errors (RSAPSHE) model with the most similar al-
ternative method Adapt F i t . Although is in terms of the actual model the model pro-
posed in Crainiceanu et al (2007) is closer in terms of statistical goals of RSAPSHE the 
fitting times are in the order of hours rather than minutes or seconds. This limits ex-
tensive comparisons between the method described here and the method described in 
Crainiceanu et al (2007). Note that we use the same knot locations for Adapt F i t as 
RSAPSHE but that Adapt F i t uses a cubic power spline basis for univariate splines. 

The mean MSE for each setting using the LMM, RSAPSHE and Adapt F i t methods 
for 30 trials is summarised in Table 6.5.4. From Table 6.5.4 we see that, although there 



does not seem to be a strong pattern about which method does best, RSAPSHE has the 
smallest MSE in most cases and often givens significantly better fits than Adapt F i t . Fi-
nally Figure 6.5 illustrates the case with /e, ĝ  and degrees of freedom Vy = 2. Note that 
even though there are a substantial number of outliers for this dataset and heteroscedas-
tic noise the RSAPSHE method does a remarkable job of approximating the true mean 
function. 

fi 9j Uy LMM RSAPSHE A d a p t F i t 
5 5 2 0.02546 0.00874 0.01379 
5 5 4 0.00960 0.00492 0.00396 
5 5 00 0.00586 0.00271 0.00218 
5 6 2 0.01176 0.00128 0.00535 
5 6 4 0.00368 0.00103 0.00124 
5 6 oo 0.00203 0.00077 0.00076 
5 7 2 0.05895 0.04810 0.04405 
5 7 4 0.03662 0.02278 0.01558 
5 7 oo 0.01904 0.00919 0.00974 
6 5 2 0.00407 0.00119 0.00323 
6 5 4 0.00124 0.00104 0.00107 
6 5 oo 0.00057 0.00057 0.00051 
6 6 2 0.00183 0.00033 0.00149 
6 6 4 0.00040 0.00027 0.00031 
6 6 oo 0.00023 0.00017 0.00016 
6 7 2 0.02954 0.00243 0.01600 
6 7 4 0.00800 0.00253 0.00711 
6 7 oo 0.00266 0.00146 0.00258 
7 5 2 0.01554 0.01065 0.00783 
7 5 4 0.00298 0.00195 0.00247 
7 5 oo 0.00150 0.00125 0.00127 
7 6 2 0.00603 0.00151 0.00569 
7 6 4 0.00167 0.00111 0.00185 
7 6 oo 0.00098 0.00085 0.00105 
7 7 2 0.07382 0.06556 0.03004 
7 7 4 0.02554 0.01516 0.01380 
7 7 oo 0.00707 0.00557 0.00585 

Table 6.5.4: Mean square errors (MSE) for linear mixed model (LMM), variational approximation 
of the robust spatially adaptive penalised splines with heteroscedastic errors (RSAPSHE) model 
and Adapt Fi t . Method with smallest MSE are highlighted in bold. 

6.6 Conclusion 

The assumption of homoscedastic Gaussian noise is often clearly false in many real world 
applications. Dealing with this problem in a fast and effective way has been, thus far, an 
unattained goal in semiparametric regression. Variational methods are a simple class of 
approximations which, as we have shown in this chapter, are able to seamlessly combine 
a number of types of robustness. Variational approximations allows fitting the RSAPSHE 
model in a matter of minutes whereas the model developed by Crainiceanu et al (2007), 
the closest model in terms of its statistical goals, fits in hours. 
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Figure 6.5: Exemplar plots for /e, ge i^ith Student's t noise with Vy = 2 for linear mixed model 
(LMM), variational approximation of the robust spatially adaptive penalised splines with het-
eroscedastic errors (RSAPSHE) model and A d a p t F i t . The top left panel shows original data 
with fits, the top right panel shows data in the range of the fits, the bottom left panel shows the 
estimated variance function for LMM and RSAPSHE and the bottom right panel shows the esti-
mated variance component function for RSAPSHE. 

Typical maximization routines using Newton-Raphson or quasi-Newton iterates are 

inappropriate to maximise the variational approximations of the RSAPSHE model. Al-

ternative methods to those described here could potentially decrease fitting times. 





APPENDIX A 

General Probability 

A.l General Probability 

Let X, y 6 R'̂  be a random vectors, i.e. vectors whose components are random variables 
with probability density functions [x] and [y], joint density function [x, y] and conditional 

densities and 
Bayes theorem is the following result, which expresses [x|y] in terms of [y 

y 
y X X 

X d x 

If A is a constant matrix, and b is a constant vector whose dimensions are such that 
the vector Ax + b is defined, then 

E(Ax + b) = AE(x) + b 

and 
Cov(Ax + b) = ACov(x)A^. 

Finally, the mean of a quadratic form x^ Ax, is given by 

E(x^Ax) - E(x)AE(x) + tr(ACov(x)). 

A.l Multivariate Gaussian Distribution 

The multivariate Gaussian distribution is covered by almost all textbooks on multivariate 

statistics and probability theory. 
Let x be an n-dimensional multivariate Gaussian random variable with mean /x and 

(positive definite symmetric) covariance matrix E, then we denote this by 

X~7V(/X, E) 

and its probability density function is given by 

x] = 0 e ( x - At) = — ^ r exp | - ^ ( x - - /x) I . 27rU|2 L ^ j 

The mean and covariance of x are E(x) = ¡jl and Cov(x) = S respectively 
Let X = (xi, X2) be a partitions of x such that 

(X1,X2) ~ N Ml " S n 



Then the marginal distributions of xi and X2 are 

xi ~ A^(/xi,i:ii) 

X2 ~ N{/J,2,^22) 

and the conditional distributions are 

X1|X2 - iV(/Xi + Ei2S^l(x2-/X2) ,Si i -Si2S22^5]2l) 

Finally, let A be a constant matrix, and b be a constant vector whose dimensions are 
such that the vector y = Ax + b is defined. Then 

A.2.1 Multivariate Gaussian Expectations 

There are many expectations results for the multivariate Gaussian distribution. Some of 
the most common of these are 

E{x^Ax} = /x̂ A/Lt + tr(i:A) (Quadratic Expectation) 

E{exp(x^t)} = exp (/x^t + t^St /2 ) (Moment Generating Function) 

-E{log[x]} =ilog|2e7rE| (Entopy) 

assuming all of the vectors and matrices are appropriately sized. We remind the reader 

that [x] denotes the probability density function for the vector x. 

A.2.2 Other Results 

This result, appearing in Wand & Jones (1993,1995), can be useful in simplifying multi-
variate Gaussian expectations: 

0s (x - - mO = - - M*) 

where /x* = S:'(X: + S ' ) " V + ^(S; + s ' ) " V assuming all of the vectors and matrices 
are appropriately sized. Hence 

J (/)s(x - - ^J'')dx = - fJi')-

A.3 Uniform Distribution 

Let X be a uniform random variable with upper and lower bounds a and b respectively. 
Then we denote this by 

X ~ Unif.(a, b) 

and its probability density function is given by 

1 
X , for X G [a,b 

b — a 

The mean and covariance of x are E(x) = ^ and Cov(x) = respectively. 



A.4 Gamma Distribution 

Let X be a Gamma random variable with shape a > 0 and rate (or inverse-scale) > 0. 
Then we denote this by 

X ~ Gamma(a, ¡3) 

and its probability density function is given by 
ROC 

X = g[x\Q, (5) = exp , 
i (q) 

for X > 0. The mean and covariance of x are E(x) = | and Cov(x) = ^ respectively. 

AA.l Gamma Expectations 

E(exp(xt)) = (1 - ¿7/5)"'', for i < ^ (Moment Generating Function) 

-E(log[xl) = a - log(/?) + log r (a ) - { a - l)ip(a) (Entopy) 

E(x- i ) 
a — I 

E(log(x)) = V (̂a) - log(/?) 

where r(-) is the gamma function, ip(x) = d\ogr{x)/dx is the digamma function (see 
Abramowitz & Stegun, 1964, Chapter 6). The last integral can be verified using integra-
tion by parts. The r ( ) function has the properties 

r(x + i) 
r(i/2) 

A.5 Inverse-Gamma Distribution 

Let X be a inverse-gamma random variable with shape a > 0 and scale ¡3 > 0, then we 

denote this by 

and its probability density function is given by 

X r(a) 

As implied by the name the inverse-gamma random variable arises by considering the 
reciprocal of the gamma random variable, i.e. if x ~ Gamma(a, (5) then 1/x ~ IG(o;, (3). 
The mean and covariance of x are E(x) = ^ and Cov(x) = '̂̂ spectively. 

A.5.1 Inverse-Gamma Expectations 

-E(log[x]) = a + log(/?) + log r(Q) - (a + l)^(a) (Entopy) 

E(log(x)) =log{p)-^{a) 

where r ( ) is the gamma function, is the digamma function (see Abramowitz & Ste-

gun, 1964, Chapter 6). The last integral can be verified using integration by parts. 



A.6 Beta Distribution 
Let X be a beta random variable with shape parameters a, (3 > 0, then we denote this by 

X ~ Beta(a, ¡3) 
and its probability density function is given by 

1 
X 

B{a,i3) 
0 < x < l 

where B{a, (3) = The mean and covariance of x are E(x) = and Cov(x) = 
rcspectively The special case x ~ Beta(l, 1) is equivalent to the uniform 

distribution. 
A.6.1 Beta Expectations 

-E(log[x]) = log B{a, ¡ 3 ) - { a - l)V^(a) - (/? -

+ {a-\-(3- 2)xl){a + (3) (Entopy) 
E(log(x)) = il:{a) - ilj{a + (3) 

where ^ i ) is the digamma function (see Abramowitz & Stegun, 1964, Chapter 6). The 
last two integrals can be verified using integration by parts. 
A.7 Student's t-Distribution 
Let X be a univariate Student's t random variable with degrees of freedom parameter v. 

X ~ t{v). 

The probability density function for the univariate Student's ¿-distribution is 

X = S{x\v) = r m 1 + 
X 2 -

V 

l+iy 

As 1/ ^ oo the univariate Student's ¿-distribution approaches the univariate standard 
Gaussian distribution, i.e. as i/ oo, «S(x; u) 0i(x). 

A possible scale-location extension for the univariate Student's ¿-distribution is 

X = S{x;n,a = 
r ( ^ ) 

1 + 
a'^v 

21 i+î  

and has mean E(x) = ¡i (for v > I) and covariance Cov(x) = ^ > 2). For the 
special case i/ = 1 the random variable x becomes a univariate Cauchy random variable. 

A possible, but not the only (see Kotz, Balakrishnan & Johnson, 2000, for example), 
multivariate scale-location extension for the Student's ¿-distribution is 

r (ii±]i) ( y - M f s - H y - M ) 1 + 
1/ 

_ n+v 

r (f ) k u s 
and has mean E(y) = /x (for ly > 1) and covariance Cov(y) = (for i/ > 2). 



The expression for the entropy H for this extension is not obvious but was first de-
rived by Guerrero-Cusumano (1996) and is given by 

H = \og 
r ( ^ ) + 

n-\- V f n-\- v\ (V 

for u > 2. 



A P P E N D I X B 

Matrix Algebra 

Matrix results play a dominant role in this thesis. This appendix contains reference for-
mula for matrix computations used throughout this thesis. Other references include Mag-
nus & Neudecker (1988) and Harville (1997). A standard reference for matrix analysis is 
Golub & van Loan (1996). 

B.l Some Matrix Algebra Rules 

tr(AB) = tr(BA) AG 
A B 
cA 
A" 

B A 

mxm 
jnxm 

, B e 

= C 
, B € l 

nxn 

^mxn 
-¡mxn 

log|I + A B =log|I + BA| AG 

B.2 Matrix Calculus 
B.2.1 Derivatives of Linear Operators 

A e 
C € M , A G R 

nxm T> ^ TOrnxn 

a(A + B) 
dx 

^diag(a) 
dx 

iitr(A) 

dA\ /aB + 
dx 

= diag idsi\ 
dx 

dx 
= tr 

ydxj 
dA\ 
dx 

B.2.2 Product and Quotient Rules 

d{A 0 B) 
dx 
aAB 

dB\ 

dx 
da/h 

dx 

— © B + A © 
ox / \dx 

T ) B - ( F ) 
/ , , Y da. © b - b 0 
V"" dx dx 

B.2.3 Rules for Determinants and Inverses 

dA 
dx 

dA-^ 
dx 

5 log IA 
dx 

= tr 

\dx 
.id A 

-A 
/ < 
\ dx 

( b © b ) 



B.3 Special Matrix Formulae 
B.3.1 Inverse Identities 

Let A and B be non-singular square m x m matrices. The inverse of the product of the 
two matrices can be written in terms of the individual inverses 

(AB)- i 

For the sum of two matrices the following identities are valid: 

A - i + B - i = A-^(A + B)B-^ 

= B(A + B ) - iA . 

B.3.2 Sherman-Morrison-Woodbury Inversion Formula 

-1 A -1 

(A + UDV^) ^ = ' V ^ A -U^T A-i (B.l) 

assuming the inverses matrices A ^ and (D ^ + V^A ^U) ^ above exist. This formula 

is more efficient than straight inversion when either A~Ms known or easy to calculate. 

B.3.3 Partitioned Matrix Inversion Formulae 

A 
C 

B 
D 

- 1 

where 

( A - B D - ^ C ) - ! - ( A - B D - i C ) - i B D - i 
D - i + D- iC(A - B D - i C ) - i B D - i 

I 
- D - ^ C 
A B 
C D 

0 
I 

( A - B D - i C ) - i 

0 

0 
D-1 

I - B D - i 

0 I 

(B.2) 

(B.3) 

A = ( A - B D - i C ) - \ 
B = - A B D - \ 
C = - D - ^ C A 

and D = D - i + D - i C A B D - \ 

assuming the inverse matrices D-^ and (A - B D - ^ C ) - ! above exist. This formula is 

more efficient than straight inversion when both (A - B B ' ^ C ) - ^ and are known or 

easy to calculate. 

B.3.4 Partitioned Matrix Determinant Formula 

A B 
C D 

A||D-CA-^B (B.4) 

This formula can be used to simplify determinants when A ^ is known or is easy to 

calculate. 



APPENDIX C 

Multivariate Optimisation 

Multivariate optimisation plays a dominant role in Statistics via the concept of maximum 
likelihood. This appendix is short primer for some of the optimisation concepts used 
in this thesis. We will first describe some of background material used in this thesis 
concerning optimisation. The stated results, or variants of these results, can be found 
in the optimisation texts by Dennis & Schnabel (1983), Nocedal & Wright (1999) and 
Ruszczynski (2006) amongst others. 

We also explore an inexact-Newton method in Section C.3.3. There we derive results 
concerning a not uncommon modification of the Newton-Raphson method which, to the 
best of our knowledge, are new. The modification involves only calculating Hessian ma-
trix only every r iterations. We show that the rate of convergence over r = 2 iterations, 
under appropriate conditions, is cubic and that these iterations have the same asymptotic 
computational cost as the Newton-Raphson method. Since, in many situations, the com-
putational cost of calculating the Hessian is high this can result in significant computa-
tional improvements over the Newton-Raphson method. We call this the repeated-Hessian 
Newton's method. 

C.l Definitions 

• In unconstrained optimisation we seek to minimise (or maximise) a function / : 
M̂  ^ R, the objective function, with respect to variables x € W^, called decision 
variables, with no restrictions on the values these decision variables take, i.e. 

mm/(x) . (C.l) 

• A point X* is a global minimiser if / (x*) < / ( x ) for all x e M .̂ 
• A point is a local minimiser if there is a neighbourhood Ai of x* such that /(x*) < 

/ ( x ) for X e Af. 
• A point is a strict local minimiser if there is a neighbourhood J\i of x* such that 

< / ( x ) for X 6 AA with x 
• A function / is convex if and only if for all xi, X2 e M̂  and for all 0 < a < 1 we have 

/ ( a x i + (1 - a)x2) < a / ( x i ) + (1 - a)/(x2). 

• Let {xfc} be a sequence in Ŵ  that converges to We say that the convergence is 
Q-linear if there is a constant re (0,1) such that 

Xfc+l — X* 
X/j Xj(c 

< r, for all k sufficiently large. 



We say that the Q-order of convergence is p (with p > 1) if there is a positive con-
stant M such that 

Xfc+l - X, < M, for all k sufficiently large. 
|Xfe - X, 

and the Q-order of convergence is super-p (with p > 1) if 

lim II = 0. 
k^oc 

In particular if the Q-order of convergence is super-1 we call this simply superliner 
convergence. 

• Let / : R"̂  M be a continuously differentiable function. A stationary point of / , x* 
satisfies Dx/(x*) = 0. 

C.2 Optimality Conditions 

At different points in this thesis we refer to first order or second order optimality condi-
tions. This terminology refers to the following theorems. For brevity we will now adopt 
the following notation. If x̂ t G M^ then 

fk = f M : gk = Dx/(xfc) and H/, = Hx/(xfc). 

and use similarly notation for x* e M". 

Theorem C.l [First-Order Necessary Conditions, e.g. Nocedal & Wright, 1999, Theorem 
2.2]: ^ x * is a local minimiser and f is continuously differentiable in an open neighbourhood of 
x*, then g* = 0. 

Theorem C.2 [Second-Order Necessary Conditions, e.g. Nocedal & Wright, 1999, The-
orem 2.3]: Ifx^ is a local minimiser and f and Hx/(x) is continuous in an open neighbourhood 
ofy.^, then g* = 0 and H* is positive semidefinite. 

Theorem C.3 [Second-Order Sufficient Conditions, e.g. Nocedal & Wright, 1999, The-
orem 2.4]: Suppose that Hx/(x) is continuous in an open neighbourhood ofy.^ and that g* and 
H* is positive definite. Then x* is a strict local minimiser o f f . 

Theorem C.4 [e.g. Nocedal & Wright, 1999, Theorem 2.5]: When f is convex, any local 

minimiser is a global minimiser o f f . If in addition, f is differentiable, then any stationary 

point X* is a global minimiser o f f . 



C.3 Optimisation Methods 

The above theorems concern the characterisation of minimisers of (C.l). There are two 
main classes of methods which may be used to find local minimisers of (C.l). These are 
called line search methods and trust region methods. 

Line search methods solve a sequence of one dimensional minimisation problems of 
the form 

ak = argmin {(f){a) = /(x^ + apk)} (C.2) 
a>0 

for some p^ G is a descent direction, i.e. 

Pfc gfc < 0. 

The vector pk may chosen using the Newton-Raphson method, quasi-Newton method, 
or a variety of other methods. In practice the step length a is restricted using some con-
ditions, for example Wolfe conditions or Goldstein conditions, to ensure convergence to 
a local minimise of / . The optimisation of (C.2) is typically performed using polyno-
mial interpolation methods. Once a suitable step length ak is found we apply the update 
Xfc + akPk' See Dennis & Schnabel (1983, Chapter 6) or Nocedal & Wright (1999, Chapter 
3) for details. 

The basis idea behind trust region methods is to approximate / with a simpler func-
tion, say / , which reasonably reflects the shape of the function / in a neighbourhood ÀÎ, 
called the trust region, around the current point A trial step x^+i is computed by 
approximately minimizing / over the region Ai. Let 

Sk = argmin/(s). (C.3) 
seM 

If /(xfc + Sfc) < /(xfc) we assign x^+i = Xk Sk, otherwise the trust region J\i is shrunk 
and (C.3) is recomputed. 

Almost all trust region methods use a second order Taylor series expansion of / 
around x^ for / and the neighbourhood AA is spherical or ellipsoidal in shape. The trust 
region subproblem (C.3) is then typically stated as 

Sk = argmin I is^HfcSfc + s^gk such that ||Dsfc|| < a | , (C.4) 

where D is a diagonal scaling matrix and A is a positive scalar. Many good algorithms ex-
ist for solving (C.4). See for example Moré & Sorensen (1983), Dennis & Schnabel (1983), 
Celis, Dennis & Tapia (1994), Byrd, Schnabel & Schultz (1994), Nocedal & Wright (1999, 
Chapters 4 and 6) and Ruszczynski (2006). Note that (C.4) may also be modified by us-
ing an approximate Hk to produce different search directions, for example quasi-Newton 
directions (see Nocedal & Wright, 1999, Chapters 4 and 6 for details). 



C.3.1 Newton-Raphson Method 

Consider the sequence {x^} defined by 

Xfc+i = Xfc + p/t (C.5) 

where p^ is the Newton-Raphson search direction is given by 

Pk = - H - i g , . (C.6) 

The sequence {xf.} generated by (C.5) and (C.6) are the Newton-Raphson iterates. Note 
that without using a line search or trust region method Newton-Raphson iterates are not 
guaranteed to converge (see Dennis «& Schnabel, 1983, Chapter 6 for examples). 

We will now prove that if x^ is sufficiently close to a strict local minimiser x* then the 
rate of convergence of the Newton-Raphson iterates is quadratic. The proof we present 
is identical to Theorem 3.7. of Nocedal & Wright, (1999) except that we break this theo-
rem into several lemmas which we will later use to prove convergence properties of the 
repeated-Hessian Newton's method. 

The quadratic convergence of Newton-Raphson iterates may be proved with the help 
of some additional assumptions and the use of Taylor's Theorem (stated below). 

Assumptions C.5: Let x* be a strict local minimiser of f , i.e. Hx/(x) is continuous in an open 
neighbourhood of ^^ and that g* = 0 and H* is positive definite. Assume 

1. that f is twice differentiable; 
2. the gradient Dx/(x) and the Hessian Hx/(x) are Lipschitz continuous with constants 

Li > 0 and L2 > 0 respectively in a neighbourhood of^^, i.e. 

||Dx/(x)-Dx/(y)|| <Li||x-y|| 
||Hx/(x)-Hx/(y)|| <L2\\^-y\\ 

for all X and y in a neighbourhood of^^. 

3. The sequence {x^} defined by (C.5) and (C.6) converges to x*. 

Theorem C.6 [Taylor's Theorem, e.g. Nocedal & Wright, 1999, Theorem 2.1]: Suppose 
that f -^R is continuously differentiable and that p G Then we have that 

fix + p) = / (x) + (Dx/(x + tp)fp, (C.8) 

for some t e (0,1). Moreover, if f is twice continuously differentiable, we have that 

Dx/(x + p) = Dx/(x) + [ Hx/(x + tp)p dt, (C.9) 
Jo 

and that 
fix + p) = fix) + (Dx/(x))^p -h ip^[Hx/(x + ip)]p, (CIO) 

for some t e (0,1). 



Lemma C.6 [Nocedal & Wright (1999), part of Theorem 3.7]: Suppose that Assumptions 
C.5 hold. Consider the sequence of iterates {x^} generated by (C.5) and (C.6). Then 

L2 
Ek+i < gfcl (C.ll) 

Proof: Using the relations x^+i = x^ + p^ and gk+i + HkPk = 0 we have 

gfc+i - gfc - Hfcpfcl 
1 

Hx/(xfc + tpk)Pk]dt - UkPk I 
Jo 

<L2\\pkf/2 

The second line follows from (C.9), the third follows from properties of vector norms and 
the forth line follows from the fact that the Hessian is Lipschitz continuous with constant 
L2. Finally the lemma follows by applying the properties of vector norms to (C.6). 

• 
Lemma C.7 [Nocedal & Wright (1999), part of Theorem 3.7]: Suppose that Assumptions 
C.5 hold. Consider the sequence of iterates {x^} generated by (C.5) and (C.6). Then 

L2 Xfc+i - X, < - 1 
Xfc - X, (C.12) 

Proof: Again, using the relations x^+i = x^ + p^ and gk + ^ k P k = 0 we have 

Xk+i - X* II = jjxfc - X* - H^ ĝfc I 

< IH - 1 

JO 

/ [Hfc - H(xfc + - xfc))](xfc -
Jo 

Again, the third line follows from (C.9) in Taylor's Theorem, the forth line follows from 
properties of vector norms and the lemma follows from the fact that the Hessian is Lips-
chitz continuous with constant L2. 

• 
Assumption C.8: Assume the sequence of iterates {x^} generated by (C.5) and (C.6) 
converges to a strict local minima x*. 

Theorem C.9: Suppose that Assumptions C.5 and C.8 hold. If 

1 
gk < and ||xfc —x*||< 1 

2L2IIH 

for some k > ko then 

1. the rate of convergence of {gk} is quadratic k > ko; 
2. the rate of convergence of {xk — x*} is quadratic for k > ko. 

2L2 H r - l (C.13) 



Proof: Using Assumption C.8, since {x/.} converges to x*, H* is nonsingular, and H^ 
H*, then for all sufficiently large k we have 

< 2||H (C.14) 

Applying this inequality and the inequalities in Lemma C.6 and Lemma C.7 we have 

I Xfc+1 - x*| < 2L2IIH 

Using the above inequalities recursively 

hk+k'W < (2L2||H,-i||2)-i(2L2||H;if||g,||)2 

gfc 
(x/c 

(C.15) 

(C.16) 

The right hand sides of (C.16) approach 0 if the conditions (C.13) stated in the theorem 
are satisfied. Furthermore, for a sufficiently large k > ko 

gfc+i 
g/cll̂  

Xfc+l - X, 

<2L2||H-1'2 

< 2L2IIH - 1 | | 2 * II 
(C.17) 

for all k> ko so that the rate of convergence of {g^} and {x^ - x*} is quadratic. 

Note that under different conditions for convex problems the Newton-Raphson method 
may converge linearly when the current point is far from a local minimiser x* (Boyd 
& Vandenberghe, 2004, Section 9.5). 

While Newton-Raphson iterates are often favoured in practice, due to their quadratic 
convergence properties, there are a number of drawbacks to Newton-Raphson iterates 
including: 

1. Newton-Raphson iterates are not globally convergent. 
2. The Hessian matrix H^ is often expensive to calculate or store. 
3. At each iteration the solution to a system of linear equations involving a matrix 

which may be singular or ill-conditioned is required. 

While 1. may be handled by using a line search or trust region approach and 3. may 
be handled using a variety of modifications (see Nocedal & Wright, 1999, Chapter 6 for 
examples), point 2. can mean that alternative methods can perform better in practice. 

C.3.2 Quasi-Newton Methods 

Quasi-Newton methods are a class of inexact Newton methods which, instead of cal-
culating the Hessian matrix H^ at each iteration, use an approximate Hessian H^ in its 
place. There are several ways of doing this which only require the derivatives g^ at each 
iteration. The most popular of these is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 
method. 



Let H/t be the current approximation of the Hessian at the current value of Xk- Then 
sequence of steps taken in the BFGS method are as follows 

1. Obtain pk by solving B^p^ = -g^. 
2. Perform a line search to find the optimal a^ in the direction found in 1., then per-

form the update Xĵ +i = x^ + akPk-
3. Letyfc = g^+i - gfc. 
4. Hfc+i = H/c + ^ -

Note that instead of performing the last step we can update the inverse approximate 
Hessian H^^ using the Shermann-Morrison-Woodbury formula 

H-I _ f T - i I (r, T̂NPfcYfc Hfc VfcP^ + PfcYfc H-^ 

Often the initial matrix Hg ^ is set to I which results in the first step being a steepest 
descent step. As the sequence of BFGS steps progress the approximate Hessian H^ (or 
approximate inverse approximate Hessian H^^) becomes increasingly close to the true 
Hessian H^. 

Under certain conditions the sequence of steps taken in the BFGS method can be 
shown to converge superlinearly. The development of the BGFS and similar quasi-
Newton methods have virtually replaced Newton-Raphson-like methods in practice (No-
cedal & Wright, 1999). 

Finally, we note that the quasi-Newton method BFGS is implemented in the R func-
tion optim and is used to fit several of the models in this thesis. 
C . 3 . 3 Repeat Hessian Newton's Method 

In many of the models considered in this thesis the cost of calculating the gradient g^ vec-
tor of the likelihood is 0{nm) and the cost of calculating the Hessian matrix H is 0{nw?) 
where n is the number of observations and m is O (the number of basis functions). When 
m becomes large the computational burden of calculating the Hessian dominates com-
pared to the cost of inverting the Hessian, i.e O(m^). This problem also occurs in other 
situations in statistics, for example generalised linear models with a large number of pre-
dictors. 

An alternative inexact Newton method to quasi-Newton methods for reducing the 
computational cost of Newton's method is not to calculate the Hessian at every iteration. 
Suppose that we want to use the Newton-Raphson method but only want recalculate the 
Hessian every r iterations. Consider the sequence {x¿ j} defined by 

{xo,l, . . . ,Xo,r,Xi,i, . . . . . . • . .} 

where 
x¿j+i = x¿j - H. ig í j for j = 1 , . . . , r - 1 

with 
f¿,j = /(x¿,j), gzj = Dx/(x¿j) and H¿ = Hx/(x¿,i). 

(C.18) 



Also for convenience of notation we will denote Pij = x^^j+i - xij if j = 1 , . . . , r - 1 
and pi^r = Xj+i 1 — Xî r. We also note that if r = 1 then the Newton-Raphson iterates are 
retained. 

Suppose the computational cost of calculating and inverting the Hessian is 0(nw? + 
m^) and the cost of calculating the gradient and multiplying it by the inverse Hessian is 
0{nm + m^). If r < m then the computational cost over the r iterations is no more than 
twice the cost of one Newton-Raphson iterate. For this reason we may also be interested 
in the convergence of the sequence {x^j} for different values of r. 

We will now consider the convergence properties of {xij}. But before we do so we 
note that Lemma C.6 and Lemma C.7 hold if we simply replace x^ with x^^, x^+i with 
Xz,2 or Xi+i 1 for the cases r > 1 and r = 1 respectively. 
Lemma C.IO: Suppose that Assumptions C.5 hold. Consider the sequence of iterates {xij} 
defined in (C.18). Then, for j = 1 , . . . , r - 1 

( I I , . , . . ) + L2 IH - 1 | | 2 ligi,J (C.19) 

and if j = r we replace the right hand side of (C.19) by ||gi+i,] 
Proof: Using Assumptions C.5, and the relation, g i j + liiPij = 0, for the cases j = 

•1 
Hx/(xij + tpij)pij]dt - HiPi j { 

Jo^ 
< / L2\\yiij - Xi^itpij\\\\pij\\dt Jo 1 

-^tpij \\Pij\\dt 
k=i 

= / L2 '0 
The second line follows from (C.9) in Taylor's Theorem; the third line follows from prop-
erties of vector norms; the forth line follows from the fact that Hx/(x) is Lipschitz contin-
uous with Lipschitz constant L2 and the last line follows from 

Xi -> ,j = Xi,i + ^ Pi^k 
k=l 

which we get from recursive application of (C.18). Finally, the lemma follows from the 
triangle inequality of vector norms and ||pi,j|| < ||H~^||||gij||. The case j = r follows 
from almost identical arguments. 



Lemma C. l l Suppose that Assumptions C.5 hold. Consider the sequence of iterates {xj^ } de-
fined in (C.18). Then, for j = 1 , . . . , r - 1 

-r-r-1 j-1 
< f | H + LiL2\\Hi ^ll^llxij - x*|| ^ - x^ 

k=i (C.20) 
and if j = r we replace the right hand side of (C.19) by - x*||. 

Proof: Using Assumptions C.5 and the relations in (C.18) we have 
Xij+i X* — I Xij X* H^ gî  

< IIH-^ 

< L2\\H: 

{Xij - X*) - [ Hx/(xij + - - X*) dt 
1 ^ 

/ Hx/(xij + - Xij)) - Hi dt Jo ^ 
I / ||Xij - + -. 

H, 
Xĵ ji X 

Xĵ j X 
< L2 H-1 

- 1 

Xji 
= L 2 H . | | | |Xi,j-X 

X9 i" 
1 *ll I 2 

< Lo 
<L2 H - 1 Xij X=| 

Xjj X* + 
+ 

\dt-\-

+ i E L i -
The third line follows from (C.9) in Taylor's Theorem and properties of vector norms; the 
forth line follows from properties of vector norms; the fifth line follows from the fact that 
Hx/(x) is Lipschitz continuous with Lipschitz constant L2; the sixth line follows from the 
relations defined by (C.18); the seventh line follows from, 

k^l 
so that J-1 

k=l 
since g* = 0. Finally the last line follows form the fact that Dx/(x) is Lipschitz continuous 
with Lipschitz constant Li. The case j = r follows from almost identical arguments. 

• 

Again, following Theorem 3.7 of Nocedal & Wright (1999), if we assume that the 
iterates (C.18) converge to x* then the inequality (C.14) holds. Using this inequality and 
Lemmas C.6, C.7, C.IO and C.ll we have the fixed point relations 

r - l 

< Ciuli, Uij+I < Ciulj + C2Uij Uî k, and Ui+Î i < + C2Uî r ^ Uî k 
k=l 

where ci, 02 are fixed positive constants and Uî j may be replaced by ||gj^ || or ||xj j — x 
We can see that if Xij is sufficiently close to x* then the first step, the Newton step will 



halve the number of decimal places between iterates. However it is unclear for general 
r under what conditions the rates of convergence the sequence {^¿i+l4} will have. Here 
we will only consider the simplest case r = 2. 

Theorem C.12: Suppose that Assumptions C.5 and C.8 holds. For the case where r = 2if 

- 1 + v ^ 

for sufficiently a large i > io then the rate of convergence o/{gi,i} is cubic. 

(C.21) 

Proof: Following Theorem 3.7 of Nocedal & Wright (1999) we have(C.14). Using this 
inequality and the inequalities in Lemmas C.6 and C.IO we have 

l|gi+l,l|l <c||gz,2|P + 2c||gi,2||||gi,l|| 

where c = 2L2||H~^ p > 0. Combining these two inequalities 

Treating (C.23) as a fixed point iteration 

(C.22) 

Ui^i = G{ui) = c^uj + 

(C.23) 

(C.24) 

where Ui = ||gi,i||. If ¿̂̂  > 0 then ui+k > 0 for all k > 0. Fixed points satisfy ui = G(̂ ¿ )̂. 
The fixed points of (C.24) are 

^ 1 - 1 + ^ 5 , 1 + V^ 

Since — and - ^ are not possible (since Ui > 0) we only need to consider the stability 
of the other two positive fixed points. The condition for stability of a fixed point ¿̂* is 

G'{u,)\ < 1. 
G'{0) = 0 

i - i + VE^ 
2c 

3.2361 > 1. 

Thus, 0 is a stable fixed point and is an unstable fixed point. So if 

- l + \/5 
|gz,ill < 2L2 IH r - l 

then {||gi,i 11} converges to 0. Finally, 

|gz + l , l lim 
i^oo iiKi 1 ligi,] 

< lim ĉ ||gi,i|| + 2c^ = 2c' 

so that the rate of convergence of {||gi,i ||} is cubic. 



Various constants in the above theorem rely on a providential algebraic form for the 
fixed points. An analogous theorem for the convergence of the {x^j - x*} would be 
possible if the constants Li, L2 and || where known. 

We note that since for Newton-Raphson iterates, for x̂ î sufficiently close to x*, 
2 Xi+2,1 — X* Xi+14 — X 

Xi+1,1 - X, Xi,l - X, Xî l X* 4 — < M' 

the rate of convergence of two consecutive Newton-Raphson iterates is quartic. This 
means that there is a loss of efficiency of the repeat Hessian Newton's method if we 
solely consider the rate of convergence. On the other hand, for expensive to compute 
Hessians, repeated Hessian steps are much faster to compute since only the gradient 
need be calculated for these steps. In Chapter 3, where this strategy was adopted for 
GLMMs, the cost of fitting such models was reduced by a factor of 2 or more. 
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