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Abstract

The rapid development of technology has made the design, monitoring and data

storage of large-scale, complex interconnected systems possible. These efficient

and economical interconnected systems come with a price: the complex dynamics

due to convoluted interconnections make the effective control of such a system

incredibly difficult. The behaviour of the subsystems in a network is vastly different

than that when it is not, and the inherent uncertainties due to modelling errors

may be amplified as a result of the strong interactions. Furthermore, the ability to

collect and process large amount of data leads to the paradigm shift from model-

centric description to data-centric description or hybrid model/data description of

a system. These challenges necessitate the need for a unified foundation for the

control of complex systems that is able to admit descriptions of systems not only

limited to the conventional differential/difference models.

Motivated by these challenges, this thesis aims to develop such a framework for

the distributed control of an interconnected system using the behavioural systems

theory. As a theory that focuses on analysing the dynamics of the external vari-

ables and places the trajectories admissible within the system as the central role of

describing a dynamical system, it is perfect for the construction of a platform that

unifies various classes of systems and is effective in the analysis of interconnections.

The framework is eventually set up as a completely representation-free structure,

allowing for free choice of representations for the systems according to the specific

v
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needs. Algorithms for several representation structures are also provided.

For the case where the subsystems are represented as linear time-invariant

differential systems while the global requirements are specified as H∞ type con-

ditions, the control design follows a two-step algorithm. Firstly, the behaviours

of the subsystems, the (to-be-designed) controllers as well as the global require-

ments are all represented as dissipative dynamical systems with quadratic supply

rates, from which the (to-be-determined) controller supply rates can be found.

Secondly, parametrisations of the supply rates are carried out to search for linear

time-invariant representations for the controllers. Algorithms for subsystems with

various types of parametric uncertainties are given to add robustness to the con-

trollers. The resulting framework deals with interconnections, uncertainties in the

subsystems and disturbance attenuation simultaneously.

For the general framework, neither the subsystems nor the controllers have pre-

scribed representations. The behaviours of the subsystems are denoted by their

respective sets of trajectories and interconnections are interpreted entirely as vari-

able sharing instead of signal flows. Furthermore, the network of an interconnected

system is also defined as a dynamical system with its own behaviour, leading to

a generic, scalable and flexible representation of the interconnected behaviour.

From this structure, necessary and sufficient conditions for the existence of the

controller behaviours can be given and all distributed controller behaviours can be

constructed explicitly. This framework unites various representations and descrip-

tions of the features of dynamical systems as behaviours, thereby allowing for the

formation of a hybrid platform for the analysis and distributed control generically

and systematically.
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Chapter 1

Introduction

1.1 Background

The advancement of technology in recent years has profound impact on the di-

rection of control strategy and algorithm development. On the one hand, it has

made possible the effective monitoring and efficient control of large-scale, complex

interconnected systems. This type of system typically contains a large number

of subsystems with complex, convoluted and even reconfigurable interconnections

among them. For example, in the chemical industry, this type of system, more

commonly known as a plantwide process [1], often consists of many process units

(reactors, heat exchangers distillation columns, etc.) interconnected through ma-

terial recycle (where unreacted reactants are separated from the products and

reused) and energy integration loops (where excessive heat generated in process

units is utilised in another process unit) [2–4]. Interconnected systems have be-

come increasingly popular among different fields of manufacturing because they

generally yield higher production rates and better energy efficiency. On the other

hand, the advancements have also made rapid collection and huge storage of data

of interconnected systems possible. These data sets contain rich information of the

1
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dynamics of these systems and they are the most accurate way of describing the

systems dynamics. In fact, the accuracy of an empirically constructed model can

at most describe the system as good as the original data set. If there exist meth-

ods to extract the dynamical features directly from the data set then they should

unequivocally be implemented. As a result, a new paradigm of data-enhanced

operations and data-driven control is emerging [5].

As efficient and economical as interconnected systems are, the complex dynam-

ics caused by the incredibly convoluted interconnections among subsystems poses

grand challenges. Due to the complex interconnections, the dynamics of each sub-

system are vastly different from that when it is a stand-alone system. For example,

material recycles and heat integration among process units can be understood as

positive feedback loops within the process network, which have the potential to

amplify the exogenous disturbances, leading to deteriorating effects on control per-

formance [6, 7]. The structural evaluation and operability analysis of such a system

have been carried out in [8–14]. To control such a large-scale system, centralised

control, in which the entire system is treated as a single complex multivariable

system, is obviously not an optimal choice because the computation becomes pro-

hibitively complex and the lack of flexibility may even make the control problem

infeasible [15]. Decentralised control [16–19], in which each subsystem is controlled

by a local controller without the knowledge of the rest of the system, are much

simpler to implement, but these approaches are very conservative and often lead

to poor global control performance because the known interactions are treated as

unknown uncertainties. To perform control design on such a system, one must look

for a balance between flexibility and performance, and distributed control is the

best strategy for this situation. In the past decade, distributed control strategies

[20–23], which coordinate an array of controllers through a communication net-

work to achieve the global objectives, started to attract much attention in both
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industry and academia. As a balance between the aforementioned approaches,

distributed control structure can provide good global performance like centralised

control while preserving the flexibility and fault tolerance of decentralised control.

Another issue of such a system is brought by the uncertainties in the sub-

systems, or robustness issue. Models are typically obtained either from physics

with assumptions or empirical regressions, hence they are inherently erroneous

[18, 24]. Within an interconnected system, the convoluted interconnections may

well magnify such errors. Robust stability of uncertain systems has been exten-

sively studied in literature [25–29], in which the uncertainty was described in the

sense of a norm bound. However, this could lead to conservative control design due

to the coarse description of model uncertainties. A less conservative uncertainty

description is polytopic uncertainty, in which the “true” process model is within a

convex polytopic region [30–32]. To some extent, all of the aforementioned works

design controllers based on the worst case scenario, but compensating for the ex-

treme cases can make the control design very conservative as such descriptions

inevitably include regions that do not belong to the system. The reasons for this

unavoidable sacrifice of control performance are (1) that convexity is imposed for

easier computation and (2) that models are placed as the central role in defining

a dynamical system while they are actually not. Relaxation of convexity will defi-

nitely yield much less conservative design, but more importantly, this calls for new

way of thinking: a model is perhaps only to summarise some of the characteristics

of a dynamical system rather than to define it. The trajectories in a data set are

actually what define a dynamical system.

This thesis discusses the distributed control problems in the framework of the

behavioural systems theory [33], which views a dynamical system as a set of func-

tions mapped from a time axis to a signal space, or more commonly known as

trajectories. This set, called the behaviour, is the centre of a dynamical system.
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Analogous to the very nature of set theory that a set is defined by its elements,

trajectories admissible through a dynamical system define the system. This means

that dynamical systems in this theory are entirely representation-free. As a result,

dynamical systems can choose preferred representations of their behaviours ac-

cording to the perspectives needed, and systems with different representations can

be united under the same framework. Furthermore, the theory excels in dealing

with interconnections, in that it does not distinguish between input and output but

views them as a single set of variables for the system. Interconnection of two dy-

namical systems is the sharing of trajectories between the two systems, hence the

interconnected behaviour is simply the common trajectories in the two systems.

With this rationale, control can be viewed as interconnection and controllers are

essentially restricting the set of behaviour that can happen in the to-be-controlled

systems. This gives a flexible and scalable representation of an interconnected

system because an additional subsystem integrated is essentially an additional set

of constraints on the existing behaviour [34].

1.2 Aim and Objectives

The aim of of this thesis is to develop a unified platform for the distributed control

of interconnected systems with no prescribed representations. To achieve this

ultimate goal, objectives include

1. the development of a single distributed control framework that deals with

interconnection and robustness issues at the same time;

2. the development of algorithms to realise the above objective with polytopic

and generic parametric uncertainty regions;

3. the formulation of a completely representation-free structure for the analysis
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and distributed control of interconnected systems.

1.3 Thesis Structure

The rest of the chapters are organised as follows.

In Chapter 2, brief reviews on the general theories of the behavioural frame-

work, its most well studied representations, the rationale of behavioural intercon-

nections, notable structures of distributed control schemes as well as the theories

concerning necessary aspects of robust control are provided.

Chapter 3 formulates the framework that simultaneously addresses the issues of

interconnections and robustness for the case where subsystems are with polytopic

uncertainties (i.e., the polytopic part of objectives 1 and 2). The framework is from

the dissipativity point of view with parameter-dependant dissipativity. The control

design is carried out in two steps: (1) from the dissipativity point of view, search

for valid representations for the controllers that satisfies the global requirements

also represented from the same point of view, and (2) obtain a linear time-invariant

representation of the controllers through behaviour parametrisation.

Chapter 4 generalises the results in Chapter 3 to the case where the uncertain

subsystems are with generic parametric uncertainties (i.e., the generic part of

objectives 1 and 2). The two-step formulation is still adopted, but parameter-

dependant dissipativity is generalised into parametric dissipativity. Due to the

non-convexity of the problem, two algorithms are proposed. The first one leads to

a deterministic solution but with stricter assumptions while the second one leads

to a probabilistic solution with much more relaxed assumptions.

In Chapter 5, a complete set-theoretic framework for the analysis and dis-

tributed control is formulated (objective 3). The entire chapter assumes no repre-

sentation of the behaviour and all results are given in terms of behavioural sets.
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A unified platform is formulated for the construction of interconnected behaviour.

Necessary and sufficient conditions for the existence of the controller behaviours

as well as explicit constructions of the behavioural sets are provided.

Chapter 6 concludes the thesis with the summary of important results and

some recommendations of the possible future work.

As a relatively new theory, the language and representations may not be user

friendly. Therefore, comparisons with the conventional notations and representa-

tion are also carried out when necessary in Chapter 2. The graphical representa-

tion of the system still adopts the conventional input/output setting with signal

flows. In Chapter 3 and Chapter 4, the behavioural language is used much more

frequently, but comparisons to the conventional representations are still made

when necessary. The interconnected system layout still adopts the input/output

representation, but the notion of signal flow is abandoned. In Chapter 5, the in-

put/output thinking is completely abandoned as well. All illustrations and graph-

ical representations are presented in behavioural framework. The gradual shift

from the conventional structure into the behavioural framework is carried out in

the hope that the effectiveness and elegance of this theory can be recognised and

appreciated.



Chapter 2

Preliminaries and

Literature Review

In this chapter, a brief review of the background knowledge relative to this thesis

is carried out. Section 2.1 introduces the governing theory for this thesis - the

behavioural systems theory, including its key components, rationale and current

developments. Section 2.2 reviews the state-of-the-art methods for distributed

control of interconnected systems. Section 2.3 provides a brief review on the

concepts of robust control and its key representations. Finally, the research gaps

are highlighted in Section 2.4.

2.1 Behavioural Systems Theory

2.1.1 General Theory

Behavioural systems theory was proposed by Jan C. Willems in 1979 [33]. It was

initially considered as another point of view of modelling a dynamical system and

the relevant modelling techniques were discussed in details in [35–37]. It was then

gradually developed as a theory of dynamical systems on its own [38, 39]. It views

7
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a dynamical system from set-theoretic point of view and can therefore be defined

without any presumption on its structure.

Definition 2.1 (Dynamical Systems [33]). A dynamical system is a triple

Σ = (T,W,B), (2.1)

where T is the time axis, W is the signal space and B ⊂WT is the behaviour.

Usually, the time axis is a subset of R (in the case of continuous-time systems)

or Z (in the case of discrete-time systems). Central to this definition is the notion

of behaviour, which is a subset of all mappings, or more commonly known as

trajectories, from the time axis to the signal space. This definition reveals the

very basic nature of a dynamical system: a dynamical system is essentially a set

of trajectories and it is this set of trajectories B that defines the system. This is

a set-theoretic point of view and the dynamical system is defined in a completely

representation-free manner. In such a dynamical system, the generic variable is

commonly denoted as w : T → W and it is called the manifest variable, within

which contains all variables of interest such as exogenous inputs and outputs.

This naming of variable shows another feature of this framework: the idea of

input/output is blurred and they are not distinguished from each other in w. This

equal treatment of input and output variables represents the reality of a complex

system more accurately because it is often impossible to tell the directions of the

system flow, let alone the input or output of a particular subsystem.

While the behaviour of manifest variables are the main interest within a dy-

namical system, it may be insufficient to define a system with manifest variables

only. To fully define a system, auxiliary variables can be introduced to aid the

description. This type of variables are called latent variables.

Definition 2.2 (Latent Variable Dynamical System [38]). A dynamical system

with latent variable is a quadruple Σfull = (T,W,L,Bfull) where Bfull ⊂ (W×L)T
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is the full behaviour. The manifest behaviour of this system is

B =
{
w|∃` ∈ LT, (w, `) ∈ Bfull

}
.

The behavioural set defined in Definition 2.2 is a stricter version of that defined

in Definition 2.1 because the latter can be viewed as a system with unspecified

latent variable. One of the most well-know latent variable is the state variable. It

is a special type of latent variable that has the property of state [39]. Among the

elements of a manifest variable, there is a set of variables called free variables.

Definition 2.3 (Free Variables [39]). For a dynamical system Σ = (T,W1 ×W2,B)

with manifest variable w = col(w1, w2), w1 is said to be free if for all w1 ∈ WT
1 ,

there exists a w2 ∈WT
2 such that (w1, w2) ∈ B, i.e. the set of possible trajectories

for it is WT
1 .

Free variables include all exogenous inputs such reference and disturbance. If

all variables in w1 are free variables while none of the variables in w2 are, then

(w1, w2) is called an input/output partition of B. This definition is addressing the

indistinguishability among the manifest variables as input/output variables from

another point of view: it is because w1 is free that it is called an input variable

rather than because w1 being an input variable that it is free.

An important class of dynamical systems that occurs frequently in nature is

time-invariant systems.

Definition 2.4 (Time-invariance [39]). A dynamical system (2.1) is time-invariant

if σtB = B when T = R or σB = B when T = Z, where (σtf)(t0) := f(t0 + t). If

T = R+ (respectively, Z+), then (2.1) is time-invariant if σtB ⊂ B (respectively,

σB ⊂ B).

If a system is time-invariant, then it is possible for the system to have finite

memory span. That is, after a certain amount of time, the outcome is independent

of the trajectory’s history.
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Definition 2.5 (Memory Span [38]). A dynamical system (2.1) is said to have

memory span M if the concatenation of two trajectories in B having a segment of

identical trajectory of at least length M at the point when the identical segment

starts is also in B, i.e.,

w1, w2 ∈ B

w1(t) = w2(t),∀t ∈ [0,M)

⇒ w1 ∧0 w2 ∈ B (2.2)

where ∧0 means the concatenation at t = 0.

Controllability and observability are crucial properties of a dynamical system

because they provide information on whether the system can be controlled effec-

tively. In the behavioural framework, they are defined, respectively, as the ability

to switch from one trajectory to another and the ability to deduce the trajectories

of a part of its variables from the observations of that of the rest.

Definition 2.6 (Controllability [39]). A time-invariant dynamical system with

behaviour B is controllable if for any w1, w2 ∈ B, there exists a trajectory w ∈ B

and t′ ≥ 0 such that w(t) = w1(t) when t ≤ 0 and w(t) = w2(t− t′) when t ≥ t′.

Definition 2.7 (Observability [38]). Given a dynamical system Σ = (T,W1 ×

W2,B) with manifest variable w = col(w1, w2), w1 is observable from w2 in Σ if

(w1, w2) ∈ B and (w′1, w2) ∈ B imply w1 = w′1 for all w2.

While a behaviour is essentially a set of trajectories, it can be represented

in various ways and each description reveals the insights of a dynamical system

from a different perspective. In the next two sections, two most well-studied

representations, namely, linear time-invariant systems and dissipative dynamical

systems, will be reviewed.
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2.1.2 Linear Time-Invariant (LTI) Systems

This class of systems is the most widely studied among literature due to its nice

structure and the fact that a wide range of nonlinear systems can be locally ap-

proximated by LTI systems, thereby facilitating the development of nonlinear con-

troller design. Before introducing the representations of LTI systems, the concept

of linearity needs to be defined in the behavioural framework.

Definition 2.8 (Linearity [38]). A dynamical system (2.1) is linear if W is a vector

space and B is a linear subspace of WT.

An LTI system can therefore be defined as one whose behaviour satisfies the

properties in both Definition 2.4 and Definition 2.8. The set of all LTI systems

with dimension w is denoted by Lw. If a dynamical system is an LTI system

with manifest variable w, then it is denoted as Σ = (R,Rw,B) ∈ Lw. However,

since Σ is in essence determined by B, LTI behaviours are also denoted as, with

slight abuse of notation, B ∈ Lw. A direct result from Definition 2.8 is that the

trajectories in an LTI system obey superposition principle, i.e., w1, w2 ∈ B ⇒

aw1 + bw2 ∈ B,∀a, b ∈ R.

2.1.2.1 Systems Described by Linear Differential Equations

This section introduces the description of LTI behaviour as solutions to linear

differential equations. Note that while the review is carried out in continuous time,

the discrete version have analogous results. The trajectories contained within an

LTI system Σ = (R,Rw,B) can be described by the solutions to a set of differential

equations

R

(
d

dt

)
w :=

L∑
k=0

R̃k
dk

dtk
w = 0, (2.3)
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with R̃k ∈ R•×w. By defining the differential operator ξ := d
dt

, the kernel repre-

sentation of B can be obtained as

R(ξ)w = 0, (2.4)

where R(ξ) =
∑L

k=0 R̃kξ
k ∈ R•×w[ξ]. A behaviour described by a kernel repre-

sentation (2.4) is denoted as B = ker(R). This representation is the fundamental

representation of an LTI system, in that all LTI systems admit a kernel represen-

tation. Two kernel representations are said to be equivalent if one of them is the

other one multiplied by a unimodular matrix, i.e.,

ker(R) = ker(UR) (2.5)

if U(ξ) is unimodular. It can be shown that B is controllable if and only if its

kernel representation satisfies rank(R(λ)) = rank(R) for all λ ∈ C. A kernel

representation is minimal if and only if R has full row rank.

If a system Σ is defined with the aid of the latent variable `, then Σfull =

(R,Rw,Rl,Bfull) admits a latent variable representation

R(ξ)w = M(ξ)`, (2.6)

where M ∈ R•×l[ξ] is defined in a similar way as R(ξ). If the system is controllable,

then it admits a special latent variable representation called image representations,

in which R(ξ) = Iw, i.e.,

w = M(ξ)`. (2.7)

In such a case, the corresponding manifest variable is denoted as B = im(M). If

w admits an input/output partition w = (y, u) and ` has the property of state,

then (2.6) can be written as the well-known state-space representation

ξx = Ax+Bu

y = Cx+Du
(2.8)
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There are two other ways of representing an LTI behaviour, namely the in-

put/output representation D(ξ)y = N(ξ)u, in which the manifest variable ad-

mits an input/output partition and the transfer function can be obtained as

G(s) = D−1(s)N(s) should D(ξ) be invertible, and the generic state-space rep-

resentation (Eξ + F )x = Gw [39]. The details of these two representations are

omitted due to the similarity compared with the ones introduced above. A thor-

ough discussion of the LTI systems have been carried out in [39] and a more

accessible introduction can be found in [40]. The theory of LTI systems has been

generalised into linear parameter-varying (LPV) systems [41], in which a space for

the scheduling variable is added into the description of the system, switched linear

systems [42, 43], in which a system is defined as a bank of linear behaviours with

gluing conditions to ensure smooth transitions, and high-dimensional systems [44],

in which T ⊂ R• is a high-dimensional space.

Due to the similarity of the structures of continuous-time and discrete-time

systems, almost all concepts introduced above can be similarly defined for the

case when T ⊂ Z by replacing the differential operator ξ with the shift operator σ.

One difference though is that the memory span is the number of steps for which

the future is independent of the past, which can be defined as the order of the

minimum kernel representation. This is normally called the lag of B and denoted

as L(B) [45].

2.1.2.2 Systems Described by Data

Since the behaviour is viewing a dynamical system from a set-theoretic point of

view, it is logical to seek for a way to describe the behaviour of a system using

existing data sets. However, it is also obvious that a data set can only represent

the behaviour up to a finite length. It is therefore necessary to define the truncated

behaviour. Since the interest is on the data set, all subsequent discussions in this
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particular section are in discrete time.

Definition 2.9 ([45]). Given a behavioural set B, the truncated behaviour re-

stricted to the time period Z ∩ [1, T ] is defined as

B|[1,T ] :=
{
w : Z+

T → Rw|∃w′ ∈ B,∀k ∈ Z+
T , wk = w′k

}
. (2.9)

Although an incomplete and finite approximation, the description of B using

data sets become more accurate with larger amount of data. In the case of an LTI

system, however, one measured trajectory can theoretically parametrise the entire

behavioural space. Consider an LTI dynamical system Σ = (Z,Rw,B) where

B ∈ Lw and suppose a measured trajectory w̃|[1,T ] = col (w1, w2, . . . , wT ) ∈ B|[1,T ]

is available. Then it is possible to construct a Hankel matrix of order L as

HL(w̃) =



w1 w2 · · · wT−L+1

w2 w3 · · · wT−L+2

...
...

. . .
...

wL wL+1 · · · wT


. (2.10)

If w admits an input/output partition w = (y, u), then the Hankel matrix (2.10)

can be permuted accordingly and partitioned as col (HL(ỹ),HL(ũ)). A crucial

element in the description of a behaviour using data set is the excitation of the free

variables, in that no useful dynamics could be observed if the measured trajectory

were at steady state. A signal is said to be persistently exciting of order L if

rank(HL(w̃)) = Lw [45].

Denoting the state cardinality of a behaviour (the number of state variables in

a minimal state space representation of B) as n(B), the behaviour up to L steps

is then able to be constructed using the following theorem.
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Theorem 2.1 (Behaviour Parametrisation [45]). Suppose B is controllable. Given

a trajectory w̃ ∈ B|[1,T ], if the free variable part is persistently exciting of order

L + n(B), i.e., if rank
(
HL+n(B) (w̃f )

)
= [L + n(B)]wf , then colspan(HL(w̃)) =

B|[1,L].

This theorem suggests that if the system is controllable and that the free

variables are persistently exciting of order L+ n(B), then any trajectory in B|[1,L]

can be represented as a linear combination of the columns of HL(w̃). In other

words, for all w̃′ ∈ B|[1,L], there exists a g ∈ RT−L+1 such that w̃′ = HL(w̃)g [46].

Notice that the structure of this representation is similar to that of the image

representation. Furthermore, a longer trajectory from B can be formulated from

two shorter trajectories provided that the final segment of one trajectory is the

same as the beginning segment of the other and that the length of this segment is

at least L(B). This result is summarised by the following lemma.

Lemma 2.2 ([47]). Given B ∈ Lw with lag L(B), if w1 ∈ B|[1,L1], w2 ∈ B|[1,L2]

and w̃1|[L1−l+1,L1] = w̃2|[1,l] with l ≥ L(B), then

w̃|[1,L1+L2−l] = w̃1|[1,L1−l] ∧L1−l+1 w̃2|[1,L2] ∈ B|[1,L1+L2−l]. (2.11)

2.1.3 Dissipative Dynamical Systems

2.1.3.1 Representations

Dissipative systems are those for which the change in stored energy is bounded

by the amount of energy supplied by the environment. This concept was initially

extended into a property of a dynamical system setting by Willems in 1972 [48].

Definition 2.10 (Dissipativity [48]). A continuous-time system

ẋ = f(x, u)

y = h(x, u)
(2.12)
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is said to be dissipative if there exist a function defined on input and output, called

the supply rate s(y, u) and a positive semidefinite function defined on the state,

called the storage function V (x) such that

V (x(T ))− V (x(t0)) ≤
∫ T

t0

s(y(t), u(t)) dt, ∀t0 ∈ R, T ≥ t0. (2.13)

This property has been used widely in the analysis and control design of a

system, in that it is a generalisation and unification of many important results in

control theory. To name but a few examples, Lyapunov stability criterion can be

recovered by setting s(y, u) = 0, passivity can be recovered by setting s(y, u) =

yTu and L2 gain condition can be recovered by choosing s(y, u) = γ2uTu − yTy.

Other important results such as the positive-real lemma, bounded-real lemma

and Kalman–Yakubovich–Popov (KYP) lemma are all specific results by choosing

appropriate supply rates [49–52]. In all cases mentioned above, the supply rate

can be written as a general form

s(y, u) =


y

u


T 

Q S

ST R



y

u

 (2.14)

where Q ∈ Sy, S ∈ Ry×u and R ∈ Su. The matrix


Q S

ST R

 is called the supply

rate matrix. The dissiaptivity property with respect to this type of supply rate

is called QSR-dissipativity, or dissipativity with respect to a quadratic supply

rate. QSR-dissipativity for LTI systems have been well studied in [53], and the

conditions for QSR-dissipativity for nonlinear systems have been given in [54].

With the development of the behavioural systems theory, dissipative dynamical

systems have been integrated into the framework, resulting in it being a represen-

tation of a distinct class of dynamical systems with its own manifest variables that
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depends only on time.

Definition 2.11 (Dissipative Dynamical Systems [55]). A dynamical system Σ =

(R,R,B) with manifest variable s : R → R representing the rate of supply ab-

sorbed by Σ is a dissipative dynamical system if for all s ∈ B, t0 ∈ R, T ≥ t0,

there exists M ∈ R such that

−
∫ T

t0

s(t) dt ≤M. (2.15)

This suggests that in a dissipative system, the supply rate s(t) is considered

as the manifest variable, which is natural and reasonable considering it containing

the description of the dynamical features of a system. The latent variable in this

class of system is the classical storage function, and a dissipative dynamical system

with latent variable can be accordingly defined.

Definition 2.12 ([40]). For a dynamical system with latent variable Σfull =

(R,R,R,Bfull) whose latent variable V : R → R represents the supply stored in

the system and satisfies

V (T )− V (t0) ≤
∫ T

t0

s(t) dt (2.16)

for all t0 ∈ R, T ≥ t0, its corresponding manifest system Σ is a dissipative dynam-

ical system if V (t) is non-negative. The inequality (2.16) is call the dissipation

inequality.

If the time axis is Z instead of R, then the representations for both the manifest

behaviour and that with latent variables can be constructed analogously as

−
K∑

k=k0

s(k) ≤M (2.17)

and

V (K + 1)− V (k0) ≤
K∑

k=k0

s(k), (2.18)

respectively.
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2.1.3.2 Quadratic Differential/Difference Forms

System analysis based on QSR-type supply rate can be conservative, as the supply

rate in (2.14) can only provide a coarse description of the system’s dynamic features

[56]. The quadratic differential form (QDF) was introduced in [57] to represent

dissipativity property of system behaviours in a more relaxed and detailed way. A

QDF QΦ(w) takes the form

QΦ(w) :=
L∑
k=0

L∑
l=0

(
dk

dtk
w

)T
Φ̃kl

(
dl

dtl
w

)
, (2.19)

where L is the order of the QDF. Defining wT ζ = ẇT and ηw = ẇ, a QDF can

also be written more compactly as

QΦ(w) = wTΦ(ζ, η)w (2.20)

where

Φ(ζ, η) =
L∑
k=0

L∑
l=0

ζkΦklη
l (2.21)

and is said to be induced by the two-variable polynomial matrix Φ ∈ Sw[ζ, η]. The

corresponding coefficient matrix, denoted as Φ̃, is

Φ̃ =



Φ00 Φ01 · · · Φ0L

Φ10 Φ11 · · · Φ1L

...
...

. . .
...

ΦL0 ΦL1 · · · ΦLL


. (2.22)

A QDF induced by Φ is said to be positive (non-negative), denoted by Φ � 0

(� 0) if and only if Φ̃ > 0 (≥ 0). The derivative of a QDF d
dt
QΦ(w) is induced by

∇Φ(ζ, η) = (ζ + η)Φ(ζ, η). (2.23)
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The definitions for the discrete-time counterpart, quadratic difference form

(QdF), is almost exactly the same [58, 59], except that the indeterminates ζ

and η represent shift operators instead of differential operators, i.e., wTk ζ = wTk+1

and ηwk = wk+1, and that instead of a derivative, a rate of change operation,

QΦ(wk+1)−QΦ(wk), is defined, and it is induced by

∇Φ(ζ, η) = (ζη − 1)Φ(ζ, η). (2.24)

2.1.3.3 QDF/QdF Dissipativity of LTI Systems

Due to the similarity between the structure of continuous-time and discrete-time

systems, concepts in this sections are reviewed for continuous-time systems only.

For a dynamical system (2.1) with trajectories in B infinitely differentiable, dis-

sipation inequality (2.16) can be written in a differential form and both s(t) and

V (t) can be expressed as QDFs of w. As a result, the dissipativity with respect

to a QDF is given in the following definition.

Definition 2.13 (QDF dissipativity [57]). A dynamical system (2.1) with T ⊂ R

is said to be dissipative with respect to QΦ(w), or Φ-dissipative, if there exists a

storage function induced by QΨ(w) such that

QΨ(w) ≥ 0

d

dt
QΨ(w) ≤ QΦ(w)

(2.25)

holds for all w ∈ B, where QΦ(w) is a QDF supply rate.

Since QDF dissipativity takes the extended manifest variable

ŵ := col
(
w,w(1), . . . , w(L)

)
into account, it captures much more detailed features of the system dynam-

ics compared to the QSR-type dissipativity, leading to a much less conserva-

tive dissipativity-based analysis [56]. Assuming that the manifest variable has
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an input-output partition w = (y, u) with u ∈ Ru and y ∈ Ry, the QDF QΦ(w)

can be rewritten as

QΦ(y, u) =


y

u


T 
Q(ζ, η) S(ζ, η)

S?(ζ, η) R(ζ, η)



y

u

 =


ŷ

û



Q̃ S̃

S̃T R̃



ŷ

û

 (2.26)

where Q ∈ Sy[ζ, η], S ∈ Ry×u[ζ, η], R ∈ Su[ζ, η] and

ŷ = col
(
y, y(1), · · · , y(L)

)
, û = col

(
u, u(1), · · · , u(L)

)
,

which means that QΦ(y, u) can be understood as a dynamic QSR supply rate. As

a result, it can be used to describe frequency-weighted H∞ gain bound of LTI

systems.

Proposition 2.3 ([56]). Assuming that an LTI system G : u 7→ y with transfer

function G(s) is Φ-dissipative (i.e., dissipative with respect to the supply rate given

in (2.26)) with Q(ζ, η) ≺ 0 (i.e., Q̃ < 0), then the system G satisfies∥∥∥∥Nα G
∥∥∥∥
∞
≤ γ (2.27)

where, N(jω) = (−Q)
1
2 (−jω, jω) and a scalar α(ω) > 0 satisfying

γ2α2(ω)I ≥ R(−jω, jω)− ST (−jω, jω)Q−1(−jω, jω)S(−jω, jω), ∀ω. (2.28)

The dissipativity analysis of a dynamical system using QDFs relies exclusively

on the positivity of them along the behaviour of the system. A QDF is said to

be positive (respectively, non-negative) along a behaviour B, denoted as Φ
B� 0

(respectively, Φ
B

� 0) if it is positive (respectively, non-negative) for all w ∈ B

[57]. With this definition, stability and dissipativity can be verified accordingly.

Proposition 2.4 (Stability and dissipativity along B [57]). For a dynamical sys-

tem (2.1),
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(i) B is stable if there exists Ψ
B

� 0 such that −∇Ψ
B

� 0. The QDF induced by

Ψ ∈ Sw[ζ, η] is a Lyapunov function.

(ii) B is Φ-dissipative if there exists Ψ
B

� 0 such that Φ −∇Ψ
B

� 0. The QDFs

induced by Φ ∈ Sw[ζ, η] and Ψ ∈ Sw[ζ, η] are the supply rate and a storage

function, respectively, and the pair (Φ,Ψ) is a dissipativity property of B.

If Σ ∈ Lw with B = ker(R), then the non-negativity of a QDF along B can

be validated using the following proposition.

Proposition 2.5 (Non-negativity along a behaviour [57]). Given a QDF Φ ∈

Sw[ζ, η] and a behaviour B = ker(R) where R ∈ R•×w[ξ], then Φ
B

� 0 if and only

if there exists F ∈ R•×w[ζ, η] such that

Φ(ζ, η) + He {F ?(ζ, η)R(η)} � 0. (2.29)

In (2.29), the two-variable polynomial matrix F (ζ, η) can be understood as

a Lagrange multiplier for the “equality constraint” – kernel representation (2.4).

With this result, the dissipativity along a behaviour B can be validated using the

following theorem.

Theorem 2.6 (Φ-dissipativity along ker(R) [60]). Let B be given by the kernel

representation in (2.4). B is Φ-dissipative if there exist Ψ ∈ Sw[ζ, η] with Ψ � 0,

and F ∈ Rw×•[ζ, η] such that

Φ(ζ, η)−∇Ψ(ζ, η) + He {F ?(ζ, η)R(η)} � 0 (2.30)

where ∇Ψ(ζ, η) is given in (2.23) for continuous-time systems and in (2.24) for

discrete-time systems.

The condition in Theorem 2.6 can be further converted into a linear matrix

inequality (LMI) [61]

Φ̃−∇Ψ̃ + He
{
F̃ T R̂

}
≥ 0 (2.31)
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with Φ̃, Ψ̃, F̃ the coefficient matrices of Φ(ζ, η), Ψ(ζ, η), F (ζ, η), respectively (all

of which can be obtained according to (2.22)), and

∇Ψ̃ =


0 Ψ̃

0 0

+


0 0

Ψ̃ 0

 , R̂ =



R0 R1 · · · RL 0 · · · 0

0 R0 R1 · · · RL
. . . 0

...
. . . · · · . . . . . . . . .

...

0 0 · · · R0 R1 · · · RL


. (2.32)

Conditions when B is represented as a state-space model are presented in [62].

The discrete counterpart of the above concepts and operations can be formulate

analogously by replacing ∇Φ defined in (2.23) into that defined in (2.24), in which

case the second condition in (2.25) as

QΨ(wk+1)−QΨ(wk) ≤ QΦ(wk) (2.33)

and ∇Ψ̃ in (2.31) should be replaced by

∇Ψ̃ =


0 0

0 Ψ̃

−


Ψ̃ 0

0 0.


In the case when T = Z+

L , and B|[1,L] is described by a data set, the operators ζ

and η can still be defined as forward-shifting operators but the “current” step is

in fact the last step of the QdF. The rate of change ∇Φ can be defined similarly

as in (2.24) but the implication is the difference between the current step and the

previous step (i.e., backward difference) rather than between the next step and the

current step (i.e., forward difference). For the clarity of presentation, such a QdF

is still denoted at QΦ(wk) but the dissipation inequality (2.33) should be changed

as

QΨ(wk)−QΨ(wk−1) ≤ QΦ(wk). (2.34)
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Furthermore, the notion of Φ-dissipativity is less useful because the time axis itself

is finite. The definition of the dissipativity on a finite time axis is hence given as

follows.

Definition 2.14 (Φ−L-dissipativity [63]). A dynamical system Σ =
(
Z+
L ,W,B|[1,L]

)
is Φ−L-dissipative if

L∑
k=1

QΦ(wk) ≥ 0 (2.35)

for all w ∈ B|[1,L].

Φ−L-dissipativity of a system Σ when B|[1,L] is represented by a the column

span of a Hankel matrix are given in [63, 64].

2.1.3.4 Factorisation of QDFs

An important information QDFs have is the parametrisation of behaviours and

the mapping from a relatively complex behaviour to a much simpler one [65, 66].

This is done through polynomial spectral factorisation, or J-factorisation [67–69],

in which a para-hermitian polynomial matrix (i.e., ZT (ξ) = Z(−ξ)) with constant

signature (π+, 0, π−), with π+ and π− being the positive and negative eigenvalues

of Z(ξ), is factorised as

Z(ξ) = KT (−ξ)JK(ξ), (2.36)

where J =


Iπ+ 0

0 −Iπ−

 is a signature matrix. Obviously, if Φ ∈ S•[ζ, η], then

Φ(−ξ, ξ) is para-hermitian.

Theorem 2.7 ([65]). Assuming that the polynomial matrix Φ ∈ Sw[ζ, η] admits

a J-factorisation (2.36), then the following statements hold:

(i) if B = im(M) is Φ-dissipative, then B′ = im(KM) is J-dissipative;
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(ii) let KA(ξ) be the adjoint matrix for K(ξ), i.e., KA(ξ)K(ξ) = det(K(ξ))I. If

B = im(M) is J-dissipative, then B′ = im(KAM) is Φ-dissipative.

In [68], a complete algorithm to compute such a factorisation using the solu-

tion to an algebraic Riccati equation (ARE) of sufficiently high order has been

formulated.

Algorithm 2.1 ([68]).

(1) Find a solution P ∈ S(L+h)w to the ARE

He {PA(h)}+φ11(h)−(φ01(h)+BT (h)P )Tφ−1
00 (φ01(h)+BT (h)P ) = 0 (2.37)

where h ≥ 0 is sufficiently large, φ00 = Φ̃00,

φ01(h) =

[
Φ̃01 · · · Φ̃0L 0w×hw

]
, φ11(h) =



Φ̃11 · · · Φ̃1L 0w×hw

...
. . .

...
...

Φ̃1L · · · Φ̃LL 0w×hw

0w×hw · · · 0w×hw 0w×hw


,

A(h) =


0w(L+h−1)w 0w×w

I(L+h−1)w 0(L+h−1)w×w

 , B(h) =


Iw

0(L+h−1)w×w

 .

(2) Factorise φ00 = KT
0 JK0 with a non-singular K0 ∈ Sw, and K(ξ) can be

constructed as

K(ξ) = K0

[
Iw φ−1

00 (φ01(h) +BT (h)P )

]
ILw(ξ) (2.38)

where ILw(ξ) = col(Iw, ξIw, . . . , ξ
LIw).
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2.1.4 Interconnection of Systems

One of the advantages of the behavioural approach is that the interconnection of

systems can be carried out easily. Rather than viewing interconnections as signals

flowing from one subsystem to another, they are viewed as two systems sharing

the same variables. The rationale for the analysis of interconnections follows the

roadmap of “tearing” - partitioning an interconnected system into small pieces of

subsystems, “zooming” - analysing the dynamics of each piece, and “linking” -

determining the sharing variables and forcing external equivalences on them [40].

For two systems

Σ1 = (T,W1 ×W2,B
1), Σ2 = (T,W2 ×W3,B

2) (2.39)

with manifest variables w1 = (w1, w2) and w2 = (w2, w3), respectively, the inter-

connected system (through w2) has behaviour

B =
{

(w1, w2, w3)|(w1, w2) ∈ B1, (w2, w3) ∈ B2
}
. (2.40)

This type of interconnection is called partial interconnection [28, 29]. If all vari-

ables are shared in the interconnection, i.e., if Σ1 and Σ2 have the same signal

space, then the interconnection is called full interconnection [34, 70]. In this case,

the interconnected behaviour is simply the common trajectories admissible to both

subsystems, i.e., B = B1 ∩B2. All partial interconnections can be augmented in

to full interconnections by assuming the variables belonging to the other systems

as free variables. For example, the two systems in (2.39) can be augmented as

Σ1 = (T,W1 ×W2 ×W3,B
1 ×WT

3 ),

Σ2 = (T,W1 ×W2 ×W3,WT
1 ×B2),

(2.41)

after which the signal spaces become the same.

If the systems in question are LTI systems, then there exists a kernel repre-

sentation for every B ∈ L•. This can be viewed as a set of “rules” that the
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trajectories in the behaviour must satisfy. If two systems were interconnected,

then the admissible trajectories should be those that satisfy the “rules” of both

systems. In fact, this rationale can be summarised into the lemma below.

Lemma 2.8 (Interconnection of linear systems [28]). Suppose Σ1,Σ2 ∈ Lw with

B1 = ker (R1), B2 = ker (R2), in which at least one of R1 and R2 is a polynomial

matrix, then

B1 ∩B2 = ker



R1

R2


 .

On the other hand, if two systems are dissipative dynamical systems, then

the interconnected system has a manifest variable being the linear combination of

that of its subsystems [62]. For example, consider two systems (G1 : u1 7→ y1 and

G2 : u2 7→ y2) in negative feedback configuration (as shown in Figure 2.1) with

supply rate matrix


Qi Si

STi Ri

 , i = 1, 2. The net supply rate of the closed-loop

system from col(d1, d2) to col(y1, y2) can be written as

s(y1, y2, d1, d2) =



y1

y2

d1

d2



T 

Q1 +R2 S1 + ST2 S1 R2

ST1 + S2 Q2 +R2 R1 S2

ST1 R1 R1 0

R2 ST2 0 R2





y1

y2

d1

d2


. (2.42)

With the above discussions, it is obvious that since the behavioural approach is a

theory focusing on the external variables with no a-priori partition of input and

output, it is a scalable and flexible framework for analysis of large-scale networked

systems [34, 55, 71].
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Figure 2.1: Feedback interconnection of two systems.

2.1.5 Control as Interconnection

One of the cases with an interconnected system is where one or more of the sub-

systems are controllers. This means that controllers are simply another dynamical

system used to restrict the possible outcome of the system. This is another core

concept in the behavioural systems theory: the controllers are not creating new

trajectories nor do they shape the to-be-controlled system into a new direction. It

is simply selecting trajectories that are already in the system that meet the design

criteria. In other words, if the system originally contains no trajectory satisfying

the prescribed requirements, then the effort of designing a controller to achieve

the goals is futile.

Denoting the uncontrolled behaviour as B = {w|∃wc, (w,wc) ∈ Bfull}, the

controller behaviour as Bc with manifest variable wc and the controlled behaviour

as Bd = {w|∃wc ∈ Bc, (w,wc) ∈ Bfull}, it is obvious that Bd is a restricted

behaviour from B by Bc. Control design then becomes the search for such a

controller behaviour Bc that implements Bd. For B ∈ Lw, an important concept

is the hidden behaviour Bh = {w|(w, 0) ∈ Bfull}. This set of trajectories are called

“hidden” trajectories because no dynamics can be observed from wc should any

of these trajectories occur. As a result, if a trajectory w ∈ B has a corresponding

trajectory wc, then all trajectories in {w} ⊕Bh, where

A⊕B := {a+ b|a ∈ A, b ∈ B} (2.43)
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have the corresponding trajectory as wc. Obviously, if Bh = {0}, then w is ob-

servable from wc [72]. With these definitions, the implementability of a controlled

behaviour can be checked using the following theorem.

Theorem 2.9 (Controller implementability [73]). Given an uncontrolled behaviour

B and a desired controlled behaviour Bd, there exists a controller behaviour Bc

that implements Bd if and only if

Bh ⊂ Bd ⊂ B. (2.44)

This theorem conveys an important message: for the controlled behaviour to

be implementable, the entire hidden behaviour must be contained in the con-

trolled behaviour. This is because they are indistinguishable from wc point of

view, and there is no way to eliminate these trajectories through control. This

characterisation works only for LTI systems because trajectories in L• follows su-

perposition principle. In [73], necessary and sufficient conditions for the existence

of an implementable LTI controlled behaviour satisfying a requirement specified

using QSR-type supply rate have been given with the aid of QDF-type storage

functions.

2.2 Distributed Control of Networked Systems

Distributed control structure is the interconnection of a network of subsystems and

a network of local controllers. One of the structures is to group each subsystem

with its respective controller into individual feedback loops and regroup all other

dynamics as a large system. In such a way, a controlled interconnected system

can be viewed as two large systems with feedback interconnection [74, 75]. This

method is an intuitive way for the analysis of such a system as it has similar

structure as a feedback system, but due to various assumptions on the system
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Figure 2.2: Configurations of (a) a controlled subsystem and (b) distributed con-

trol of an interconnected system

structure, flexibility becomes an issue if the interactions among subsystems and

controllers become progressively complex.

An alternative structure is to represent the interconnected system as a network

of subsystems and design a network of local controllers to control the intercon-

nected system system [56, 62]. On the local level, as shown in Figure 2.2a, each

subsystem P i, i ∈ Z+
N is with output yi, interconnecting input uip, control input

uic, and external disturbance di. The process interconnecting output yip = F i
py

i

denotes the physical flows to other subsystems. Each subsystem is equipped with

a local controller Ci, which is a dynamical system with yil the control action for

P i, uil the process measured output and uir, y
i
r the exchanged input/output infor-

mation between Ci and other controllers. P i and Ci are interconnected through
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the relationships uil = F i
cy

i and yil = uic. On the global level, as depicted in

Figure 2.2b, the subsystems are arranged in two arrays. The corresponding local

variables are stacked together as the corresponding variables for the entire system.

Matrices Fp = diag(F 1
p , . . . , F

N
p ) and Fc = diag(F 1

c , . . . , F
N
c ) represent “selectors”

for the interconnecting and measured outputs. Matrix Hp with elements either 0

or 1 represents the process network topology. The interconnection relations among

subsystems can be described by

up = Hpyp = HpFpy (2.45)

where y = col(y1, y2, . . . , yN) and up can be defined analogously. Similarly, Hc

defines the controller communication network, which may have any structure. A

common choice is the controller network to have the same topology as the process

network, yr = yp and ur = up. This structure also includes the fully decentralised

control structure as a special case by choosing Hc = 0. This layout is much more

flexible, in that almost no structural constraints are imposed onto the system.

Distributed controllers can mainly be synthesised in two ways. The first way

is assuming controller structure and solving the undetermined coefficients [76].

Interconnection is dealt with by substituting one model into another, resulting

in a multi-variable model for the entire controlled system. The to-be-designed

controllers can then be found using relative LMI solving techniques. Another

direction that has seen rapid developments is the distributed model predictive

control (DMPC), in which an array of controllers computes the control actions for

their respective subsystems in real time subject to constraints such as terminal

costs, global constraints and coordination [22, 77–79].

Since dissipativity properties are easy to handle in a complex system, a method

centring around dissipativity has been proposed in [56]. In this method, a dissipa-

tivity property is solved for each subsystem, and a supply rate for each controller

to be satisfied is assigned as a decision variable. The controller supply rates are
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then solved simultaneously with that of the subsystems under the condition that

the resulting supply rate for the controlled distributed system (as linear combina-

tions of that of the subsystems and controllers) meets the design criteria, which

can also be specified using dissipativity properties. In such a way, all resulting

equations and inequalities are LMIs with respect to the decision variables, which

are readily solvable using any convex optimisation toolboxes such as YALMIP

[80]. The resulting controller supply rates can be used to deduce controller tra-

jectories either through J-factorisation mentioned above or as constraints through

distributed model predictive control [81–83]. It is important to know that none

of the supply rates, except for the one for the entire controlled system, has any

physical meaning. From the behavioural point of view, they are just another set of

variables used to describe the dynamical system from a different perspective. This

method inevitably introduces a certain degree of conservativeness, in that dissipa-

tivity is a sufficient condition, but by solve all supply rates and storage functions

simultaneously, the level of conservativeness can be significantly reduced.

A crucial issue in the design of distributed controllers is the choice of the

controller network. In many cases, there are prescribed requirements that the

network design must obey. For example, in [78], it is required that all controllers

must be interconnected with each other to ensure full communication. If no specific

requirements are imposed, then a common choice of the controller network is to be

the same as the system network [76]. It is also possible to “optimise” the network

design by integrating it into the cost function [84].

2.3 Robust Control

Robust control has been an important and ongoing research topic for a long period

of time due to its practicality in applications. It is the branch of control theory
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that aims to design controllers for processes with inaccurate models. This prob-

lem may arise from many causes. For example, since many models are determined

empirically, inaccuracy is an inherent property of them [18, 24]. Other examples

include modelling assumptions, parameter uncertainties and linearisation errors.

The control design is therefore to ensure stability and a certain level of perfor-

mance for the worst case scenario. Controllers designed based on this rationale

are undoubtedly conservative, but the method is practical and works reasonably

well if a good description of uncertainty is available.

2.3.1 The Norm-bound Structure

The norm-bound description of uncertainty describes the uncertain system as a

theoretical model with a hyper-spherical region of uncertainty. The theoretical

model is called the nominal model and it is assumed to be able to describe the

system dynamics reasonably well if there were no uncertainties involved. Robust

stability of this type of uncertain systems has been extensively studied in either

input-output formulation or state-space representation [25–27, 85–90].

Given a nominal model with transfer functionG0(s) = D−1
0 (s)N0(s), depending

on the structure, the uncertainty can be characterised as [91]

• additive uncertainty: G = G0 + wA∆A, ‖∆A‖∞ < 1,

• multiplicative uncertainty: G = G0(I+wI∆I), ‖∆I‖∞ < 1 (input multiplica-

tive uncertainty) or G = (I +wO∆O)G0, ‖∆D‖∞ < 1 (output multiplicative

uncertainty), and

• co-prime factor uncertainty: G = (D0+∆D)−1(N0+∆N), ‖[∆D ∆N ]‖∞ < ε.

An intuitive depiction of such an uncertainty description is shown in Figure 2.3a.

In the behavioural framework, robustness has also been discussed with uncer-

tainties described in this form, except that instead of the specification represented
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(a) (b)

Figure 2.3: Description of uncertainties by (a) norm bound (b) a convex polytope

as transfer functions, it is represented as kernel representations or image repre-

sentations. Suppose the uncertainty-free behaviour can be represented using a

nominal kernel representation B0 = ker(R0), then the uncertain region can be

represented as a ball centring at B0 with radius ε [28], i.e.,

‖R−R∆‖∞ ≤ ε. (2.46)

A storage function (represented by a QDF) of the nominal plant can also be used

to describe the smallest upper bound on the radii of the neighbourhoods [28]. If,

on the other hand, B is representation-free, then uncertainty can be described

using the concept of distance between behaviours [29, 92].

2.3.2 Polytopic Description of Uncertainty

Polytopic uncertainty describes the uncertain system in an entirely different way.

Rather than assuming a nominal model and then formulating the uncertain region

around it, this description of uncertainty assumes that all models in the uncertain

region are equally likely to happen, and therefore it is un-necessary to assume

any particular model to be more important than others. Therefore, the original

uncertain region can be bounded by a convex polytope [30, 31], as shown in the
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depiction in Figure 2.3b. The advantage of this uncertainty description compared

with the one in the previous section is obvious: the uncertain region can be much

smaller and therefore controllers synthesised according to this description is much

less conservative than that according to a norm-bound description. This is es-

pecially true if the chosen nominal model is at a skewed point in the uncertain

region because the radius of the uncertain region is the distance between the nom-

inal model and the model furthest from it. This description is particularly useful

in the case where uncertain behaviour is caused by parameter uncertainty. An un-

certain system LTI system Σθ = (R,Rw,Bθ) with generic parametric uncertainty

can be represented as a parametric kernel representation

R(θ, ξ)w :=
L∑
k=0

Rk(θ)ξ
kw = 0 (2.47)

in the case of polytopic uncertainty, the uncertain representation can be written

as

R(θ, ξ)w =
M∑
j=1

θjRj(ξ)w = 0, θ ∈ Θ :=

{
θ ∈ [0, 1]M |

M∑
j=1

θj = 1

}
. (2.48)

In such a case, the uncertain behaviour is denoted as Bθ = ker(Rθ) and the

behaviour on each vertex is denoted as Bj = ker(Rj). If Bθ is the manifest

behaviour of a state space representation, then Bfull
θ admits generic and polytopic

coefficient matrices A(θ), B(θ), C(θ) and D(θ) analogous to (2.47) and (2.48),

respectively [93, 94].

For control design, since the system has parametric uncertainty, it is reasonable

to associate it with a parametric Lyapunov function, after which parametric LMIs

can be obtained. In particular, if Bθ = ker(R(θ)) with Bj = ker(Rj), then the

stability of any behaviour within the polytope can be guaranteed by guaranteeing

that of the vertices.

Theorem 2.10 (Stability along ker(R(θ)) [32, 61]). Assuming Bθ can be repre-

sented as (2.48), then all behaviours within the region are stable if there exists an
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array of QDFs Ψ1,Ψ2, . . . ,ΨM ∈ Sw[ζ, η] such that Ψj

Bj

� 0 and −∇Ψj

Bj

� 0 for all

j ∈ Z+
M .

2.4 Summary and Research Gaps

In this chapter, brief reviews on the behavioural systems theory, the distributed

control structures and design methods and the main types of uncertainty descrip-

tions in robust control have been carried out. It can be seen that by placing

behaviour as the centre of a dynamical system, analysis and control of systems

becomes much more flexible because more than one representation can be assigned

to each system and each representation provides different insights of the dynamical

features of a system. As a relatively new framework, many aspects of control in the

behavioural framework remain largely underdeveloped, or even undeveloped. Fur-

thermore, despite the popularity of distributed control and robust control, there

are still topics that fail to be covered in the literature. Specifically, there are

several gaps awaiting to be filled:

1. To the best of the author’s knowledge, little has been reported in the litera-

ture on robust distributed control for interconnected systems, and even less

so within the behavioural framework. This is a crucial aspect in distributed

control because the interactions between process units may exacerbate the ef-

fects of uncertainties, leading to poor performance or even instability. There

are a number of robust decentralised control approaches for interconnected

systems including multi-unit decentralised control (with block diagonal con-

trollers) [16, 18, 95–98]. In these approaches, both interactions between

process units and model-plant mismatch are modelled as uncertainties and

dealt with using a robust control framework. Obviously this is not the best

way to control an interconnected system because interactions among sub-
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systems limits the possible outcomes of each subsystem significantly, and

controllers design by ignoring this information is undoubtedly conservative.

Some results have been reported for the distributed robust control of multi-

agent systems [99–101], but the setup is different to the scope of this thesis,

in that multi-agent systems contain identical subsystems while this thesis

considers the interconnection of subsystems different from each other. In

Chapters 3 and 4, this issue will be discussed in details.

2. Robust control design based on generic description of uncertainty in the be-

havioural framework remains undeveloped. In fact, the generic description of

uncertainty is less preferable among all fields of control because the problem

is not convex. Nevertheless, it is still the most accurate way in describ-

ing the actual behaviour of the system with parametric uncertainties, hence

relative control design techniques and algorithms should be developed. In

Chapter 4, two algorithms will be developed to address this issue. The first

algorithm targets at relatively small-scaled systems with reasonably well-

behaved generic uncertainty and the second algorithm targets at a much

more relaxed description of uncertainty.

3. Despite being a set-theoretic centric theory, a complete set-theoretic frame-

work for the analysis and distributed control of an interconnected system

using the behavioural language is still undeveloped. In existing literature,

all behaviours have some prescribed representations such as linear differential

systems [28, 34–39, 45, 46, 53, 56, 57, 60, 70, 72, 102], dissipative dynam-

ical systems [48, 55] or other representations [41–43, 103]. Even the ones

assuming no representations of behaviours still impose linearity [29, 73]. In

Chapter 5, a framework for the analysis and distributed control of intercon-

nected system will be formulated in a purely set-theoretic point of view.
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While the discussions in all of the rest of the chapters will use the behavioural

language, it is still assumed in Chapters 3 and 4 that the systems in consideration

are LTI system and admit input/output partitions. Chapter 5, on the other hand,

will demonstrate the essence of the behavioural systems theory: trajectories as the

foundation of a system, complete blurry of input and output, and interconnection

as restriction on the set of possible trajectories.



Chapter 3

Distributed Robust Control with

Polytopic Uncertainty

In this chapter, a novel robust distributed control approach based on dissipativity

analysis is proposed. In this approach, the global robust stability, robust per-

formance and distributed control (i.e., the model uncertainties, the interaction

effects as well as the external disturbances) are achieved using a single frame-

work: they are all viewed from a dissipativity perspective. This approach is made

possible by the use of supply rates and storage functions in QDFs [57], which cap-

ture more detailed features of process dynamics compared to conventional QSR-

dissipativity [56]. The interconnected system and the distributed control system

are represented as two interacting networks. The subsystems are with parametric

uncertainties and described by uncertain polytopic kernel representation (2.48).

Parameter-dependent QDF dissipativity, which is also a convex combination of

QDFs associated with vertex behaviours, is proposed to describe the dynamic

features of uncertain subsystems. By associating each controller with a QDF dis-

sipativity property, the controlled interconnected behaviour can be constructed

according to the method of interconnecting dissipative dynamical systems. Sta-

38
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Figure 3.1: An interconnected Uncertain System

bility and performance conditions of the controlled behaviour are also represented

using a global dissipativity condition, which in turn are translated into the dissipa-

tivity conditions that individual controllers must satisfy. The controller behaviour

can then be parametrised through J-factorisation according to Theorem 2.7.

The key results in this chapter have been published in:

• Y. Yan, R. Wang, J. Bao and C. Zheng, “Robust Distributed Control of

Plantwide Processes Based on Dissipativity,” Journal of Process Control,

vol. 77, pp. 48–60, 2019.

3.1 Controlled System Layout

Since this thesis is built on behavioural systems theory, the description of the

configuration of the interconnected system with distributed control system is given

from the context of the behavioural systems theory. A depiction of the overall

control system is in Figure 3.1. The uncertain system Pθ consists of N diagonally

stacked subsystems, i.e., Pθ =
{
P1
θ ,P2

θ , . . . ,PNθ
}

where P iθ = (R,Rwi ,Bi
θ). In this

chapter, each subsystem is assumed to have polytopic uncertainty described by
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(2.48), i.e.,

Ri
θi(ξ)w

i =
M i∑
j=1

θijR
i
j(ξ)w

i = 0, θi ∈ Θi =

θi ∈ [0, 1]M
i |

M i∑
j=1

θij = 1

 , (3.1)

where wi = col
(
yi, uip, u

i
m, d

i
)
, whose four partitions denote, respectively, the ith

system output, interconnection input, manipulated input and disturbance. As

such, each vertex behaviour can be denoted as Bi
θ = ker(Ri

θ). The controller

network is set up in a similar way: it consists of N diagonally stacked distributed

controllers so that C =
{
C1, C2, · · · , CN

}
, Ci = (R,Rci ,Bi

c), in which Bi
c are to be

determined, and ci = col (yil , y
i
r, u

i
l, u

i
r) in which the four partitions of ci denote,

respectively, the ith local output, remote output, local input and remote input.

Similar to the construction in Figure 2.2, the manifest variables in the system

on the global level are column vectors of their respective local counterparts in all

subsystems, i.e., w = col(w1, w2, . . . , wN), c = col(c1, c2, . . . , cN) and similarly for

other variables.

The network for the subsystems, the network for the controllers and the inter-

connection between the system and controller networks are constructed in similar

ways as (2.45), with system topology HP , controller topology HC, interconnec-

tion variable selection matrix FP and control variable selection matrix FC. This

structure permits a wide range of configurations, whereby the controller topology

matrix HC can be designed according to the requirements. If the criterion were

to achieve the best performance possible, then HC should be chosen such that

the controller topology is the same as that of the plant. For other requirements,

control design can be carried out repeatedly with different choices of HC until a sat-

isfactory result is obtained. In this chapter, the interconnections are represented
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as

[
HPFP −I

]
y

up

 = 0,

[
HC −I

]
yr

ur

 = 0,


FC 0 0 −I

0 I −I 0





y

um

yl

ul


= 0

Although this description is with similar rationale to that depicted in Figure 2.2,

the viewpoint is rather different - while it is assumed that a priori input/output

partition of the system is available, they are treated entirely equally. Furthermore,

these representations are structurally identical to kernel representations. In fact,

they can be thought of as kernel representations with constant coefficients. This

perspective is a crucial aid for the development and understanding of the much

more abstract layout that will be presented in Chapter 5. The problem to be

addressed can be summarised as follows.

Problem 3.1. As shown in Figure 3.1, given N uncertain subsystems with topol-

ogy given by HP , in which the ith subsystem P iθi has behaviour described by

Bi
θi = ker

(
Ri
θi

)
, where Ri

θi(ξ) is given in (3.1), design N distributed controllers

Ci with controller network topology HC such that the controlled interconnected

system is robustly stable and that the frequency-weighted H∞ norm from distur-

bances d to outputs y satisfies

‖WTyd‖∞ ≤ γ (3.2)

for all θi ∈ Θi, i ∈ Z+
N , where W(s) is a weighting function, Tyd(s) is the sensitivity

function from disturbance to output, and γ is the desired gain bound.

If W(s) = N(s)/p(s) where W ∈ Ry×d[s] and p(s) ∈ R[s], then (3.2) can be
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Figure 3.2: Corresponding dissipativity of a behaviour with polytopic uncertainty

easily translated into a desired supply rate induced by the QDF

Φdesired(ζ, η) =


−NT (ζ)N(η) 0

0 γ2p(ζ)p(η)

 . (3.3)

The goal is then to design an array of controllers to render the controlled inter-

connected system dissipative with respect to the supply rate induced by (3.3) for

all θi ∈ Θi, i ∈ Z+
N .

3.2 Control via Parameter-dependant QDFs

3.2.1 Parameter-dependant QDF Dissipativity

For a system Σθ = (R,Rw,Bθ) where Bθ ∈ Lw is described by (2.48), a QDF-

dissipativity property (Φj,Ψj) can be associated with each vertex behaviour Bj.

In such a way, an uncertain region for the dissipativity property can be constructed

accordingly, as shown in Figure 3.2. Similar to the construction of Bθ from Bj, a

parameter-dependant QDF-dissipativity property (Φθ,Ψθ) can also be constructed

from (Φj,Ψj) as

Φθ(ζ, η) =
M∑
j=1

θjΦj(ζ, η), Ψθ(ζ, η) =
M∑
j=1

θjΨj(ζ, η), θ ∈ Θ. (3.4)
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An immediate question following this construction is that whether (Φθ,Ψθ) is a

valid dissipativity property for Bθ. The answer is affirmative, provided that Bj

are described by kernel representations and that there is a common “Lagrange

multiplier” (similar to the polynomial matrix F (ζ, η) in (2.30)) among all vertex

behaviours.

Proposition 3.1. Given an uncertain LTI system Σθ = (R,Rw,Bθ) in which

Bθ is given by (2.48) and θ ∈ Θ, if there exist Φj,Ψj ∈ Sw[ζ, η] for each vertex

behaviour Bj and a two variable polynomial matrix F ∈ Rw×•[ζ, η] such that

Ψj � 0, (3.5a)

Φj(ζ, η)−∇Ψj(ζ, η) + He {F ?(ζ, η)Rj(η)} � 0, (3.5b)

for all ∀j ∈ Z+
M , then (Φθ,Ψθ) defined in (3.4) is a dissipativity property for the

uncertain behaviour Bθ, i.e., Bθ is Φθ-dissipative with Ψθ as a storage function.

Proof. Since every θj is a constant, it is easy to see that θj∇Ψj = ∇(θjΨj) and

that He {θjF ?(ζ, η)Rj(η)} = He {F ?(ζ, η)θjRj(η)}. Since θj ≥ 0 for all j, mul-

tiplying each vertex dissipativity property in (3.5) by their respective weightings

and adding them up lead to the condition

Ψθ � 0, (3.6a)

Φθ(ζ, η)−∇Ψθ(ζ, η) + He {F ?(ζ, η)Rθ(η)} � 0. (3.6b)

Dissipativity follows readily from Proposition 2.4(ii), Proposition 2.5 and Theorem

2.6. This completes the proof.

Although the value of θ is unknown, it does not impede the construction of

the parameter-dependant dissipativity condition because none of the conditions

use any information of θ. Furthermore, this argument is only valid for kernel

representations due to the fact that the non-negativity of a QDF along a behaviour



3. Distributed Robust Control with Polytopic Uncertainty 44

B = ker(R) is a linear inequality in R. Similar to (2.31), dissipativity properties

for the vertices can be found by solving the following LMIs

Ψ̃j ≥ 0, (3.7a)

Φ̃j −∇Ψ̃j + He
{
F̃ T R̂j

}
≥ 0, (3.7b)

for all j ∈ Z+
M simultaneously.

3.2.2 Global Dissipativity Synthesis

The central idea for the analysis of the interconnected system is to search for

parametric dissipativity properties of individual subsystems and controllers such

that the global stability and performance condition is satisfied. In such a way, the

description of the behaviour of each subsystem change from LTI systems to dissipa-

tive dynamical systems. As illustrated in Section 2.1.4, interconnecting dissipative

dynamical systems is much less demanding computationally than interconnecting

differential systems, and such reduction in computational burden is crucial in the

efficient search for controllers. The distributed controllers are then synthesised

individually based on their respective supply rates through J-factorisation (see

Algorithm 2.1).

For each subsystem, a parameter-dependant supply rateQΦi
θi

(wi) = (wi)
T

Φi
θiw

i

can be associated with it. A θ-free supply rate QΦic
(ci) = (ci)

T
Φi
cc
i can also be

assigned to each corresponding controller because the controllers have no infor-

mation of θ. Denoting the collective manifest variables, input/output partition of

the variables and the input/output partition of the overall controlled system after

interconnection as

wP = col(w, c), w′P = col(y,yl,yr,up,d,um,ul,ur), wPC = col(y,yl,yr,d),

(3.8)
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then

wP = Pπw
′
P = PπHπwPC, (3.9)

where Pπ is a permutation matrix with exactly one entry of 1 in each row and

each column and 0’s elsewhere, and Hπ is defined as

Hπ =



I 0 0 F T
PH

T
P 0 0 F T

C 0

0 I 0 0 0 I 0 0

0 0 I 0 0 0 0 0

0 0 0 0 I 0 0 HT
C



T

. (3.10)

Assuming that the i-th subsystem P iθ and the corresponding controller Ci are

Φi
θ- and Φi

c-dissipative, respectively, then the net supply rate of the controlled

interconnected system can be written as

QΦPC(wPC) =
N∑
i=1

QΦiθ
(wi) +QΦic

(ci)

= wT
Pdiag(Φ1

θ, . . . ,Φ
N
θ ,Φ

1
c , . . . ,Φ

N
c )︸ ︷︷ ︸

ΦP

wP

= wT
PCH

T
π P

T
π ΦPPπHπ︸ ︷︷ ︸

ΦPC

wPC

=



y

yl

yr

d



T 

Qyy Qyl Qyr Syd

? Qll Qlr Sld

? ? Qrr Srd

? ? ? Rdd





y

yl

yr

d


,

(3.11)

where ? denotes elements inferred by symmetry. Since the resulting supply rate is

a description of the dissipativity of the controlled interconnected system, it can be
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used to impose conditions on the controller supply rates that lead to the desired

behaviour.

Theorem 3.2. Let P iθ and Ci be Φj
θ- and Φj

c-dissipative, respectively. If the net

supply rate in (3.11) satisfies [
Qyl(ζ, η) Qyr(ζ, η)

]
= 0, (3.12a)[

S?yd(ζ, η) S?ld(ζ, η) S?rd(ζ, η)

]
= 0, (3.12b)

Qll(ζ, η) Qlr(ζ, η)

? Qrr(ζ, η)

 � 0, (3.12c)

Qyy(ζ, η) + NT (ζ)N(η) � 0, (3.12d)

Rdd(ζ, η)− γ2DT (ζ)D(η) � 0, (3.12e)

with D Hurwitz, then the controlled interconnected system is robustly stable and

satisfies the frequency-weighted H∞ norm condition (3.2) with weighting function

W(s) = D−1(s)N(s).

Proof. Condition in (3.12) implies that

QΦPC(wPC)

≤


y

d


T 
−NT (ζ)N(η) 0

0 γ2DT (ζ)D(η)




y

d

+


yl

yr


T 
Qll(ζ, η) Qlr(ζ, η)

? Qrr(ζ, η)




yl

yr



≤


y

d


T 
−NT (ζ)N(η) 0

0 γ2DT (ζ)D(η)




y

d

 .
(3.13)
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Since the controlled interconnected system is dissipative with respect toQΦPC(wPC),

there exists a storage function QΨPC(wPC) such that

d

dt
QΨPC(wPC) ≤ QΦPC(wPC).

Thus, the inequality

d

dt
QΨPC(wPC) ≤


y

d


T 
−NT (ζ)N(η) 0

0 γ2DT (ζ)D(η)




y

d


is also true, meaning that the controlled interconnected system is also dissipative

with respect to the supply rate induced by diag
(
−NT (ζ)N(η), γ2DT (ζ)D(η)

)
,

which, according to the definition of dissipativity [48], means that∫ ∞
−∞

ŷT ÑT Ñŷ dt ≤
∫ ∞
−∞

γ2d̂T D̃T D̃d̂ dt, (3.14)

or equivalently ∥∥∥Ñŷ
∥∥∥2

2
≤ γ2

∥∥∥D̃d̂
∥∥∥2

2
. (3.15)

Since Ñŷ = N(s)y, D̃d̂ = D(s)d, it then follows that

‖N(s)y‖2
2

‖D(s)d‖2
2

=
‖D−1(s)N(s)y‖2

2

‖d‖2
2

=
‖Wy‖2

2

‖d‖2
2

≤ γ2. (3.16)

Since Wy = WTydd and the above inequality holds true for any d, it then follows

that

max
d6=0

‖Wy‖2
2

‖d‖2
2

= ‖WTyd‖2
∞ ≤ γ2. (3.17)

Taking the square roots of both sides gives the result. Note that this is an extension

to Proposition 2.3.

In the proposed approach, the parameter-dependant dissipativity of all sub-

systems (Φi
j,Ψ

i
j), ∀j ∈ Z+

M i , i ∈ Z+
N , and supply rate matrices for all controllers
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Φi
c, ∀i ∈ Z+

N need to be solved simultaneously to satisfy the global robust per-

formance condition (3.2). The above dissipativity synthesis takes into account

all interactions among process units/controllers to achieve a high level of global

robust performance and is carried out offline. Real-time control is implemented

in a fully distributed manner.

As the weighting parameter θi is unknown, all possible combinations of sub-

system supply rates on the vertices need to be checked, in which case the number

of LMIs increases rapidly with the increase in the numbers of subsystems and

polytopic vertices. One way to resolve this issue is to find a common supply rate

QΦi(w
i) shared by all vertex behaviours, i.e., a single supply rate for the uncertain

behaviour Bθ. This only requires the solution to one set of LMIs for (3.12). On

the other hand, different storage functions are still determined for each vertex be-

haviour Bj. This significantly reduces the conservativeness caused by the common

supply rate, thereby preserving the flexibility of the polytopic conditions whilst

keeping the computational complexity within a manageable level.

Remark 3.1. Equations in (3.12) represent the conditions that ensure global ro-

bust stability and robust performance requirements. Often the robust performance

conditions competes with that of robust stability. If a robust performance require-

ment were not achievable, then the LMIs in (3.12) would not be feasible. In this

case, the weighting function W(s) could be adjusted to reduce the performance

requirement.

Remark 3.2. Generally speaking, all robust control designs bear a certain level of

conservatism. The proposed approach reduces the conservatism by: (a) describing

the uncertain region using a convex hull to provide a tighter bound; (b) adopting

QDF type dissipativity to capture detailed dynamic features of the processes and

(c) allowing the use of different storage functions for each vertex of the polytope

as well as using the multiplier F i(ζ, η), ∀i ∈ Z+
N .
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3.2.3 Distributed Robust Controller Synthesis

Once the controller supply rates for the controllers are obtained, behaviour parametri-

sation can be carried out using J-factorisation according to Theorem 2.7 and Algo-

rithm 2.1. However, a J-factorisation for a polynomial Φ(−ξ, ξ) exists if and only

if it has constant signature and no zeros on the imaginary axis, i.e., the signature

of Φ(−jω, jω) is constant for all ω ∈ R [68]. The following proposition gives a

sufficient condition for the existence of J-factorisation.

Proposition 3.3. If the supply rate QΦ(w) =


y

u


T 
Q(ζ, η) S(ζ, η)

? R(ζ, η)



y

u

 with

y ∈ Ry, u ∈ Ru satisfies

Q(ζ, η) ≺ 0, R(ζ, η) � 0, (3.18)

then Φ admits a J-factorisation

Φ(−ξ, ξ) = KT (−ξ)JK(ξ), K ∈ Rw×w[ξ]. (3.19)

Proof. Firstly, observe that

Φ(ζ, η) =


Q(ζ, η) S(ζ, η)

? R(ζ, η)

 = Γ?(ζ, η)Ω(ζ, η)Γ(ζ, η), (3.20)

where

Γ(ζ, η) =


I Q−1(ζ, η)S(ζ, η)

0 I

 ,

Ω(ζ, η) =


Q(ζ, η) 0

0 R(ζ, η)− S?(ζ, η)Q−1(ζ, η)S(ζ, η)

 .
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Setting ζ = −jω and η = jω, it can be seen that Φ(−jω, jω) is congruent to

Ω(−jω, jω) because Γ(−jω, jω) is a congruent transformation. Since conditions

in (3.18) imply

Q(ζ, η) ≺ 0⇔ Q̃ < 0⇔ Q(−jω, jω) < 0,

R(ζ, η) � 0⇔ R̃ > 0⇔ R(−jω, jω) > 0,

for all ω such that det (Q(−jω, jω)) 6= 0 and det (R(−jω, jω)) 6= 0, it follows that

the signature of Ω(−ξ, ξ) on the imaginary axis, hence that of Φ(−ξ, ξ), is constant

at (y, 0, u). According to Proposition 3.1 in [68], Φ(−ξ, ξ) admits factorisation

(3.19) where J =


Iu 0

0 −Iy

. This completes the proof.

In summary, the proposed dissipativity-based distributed robust control ap-

proach can be carried out using the following algorithm.

Algorithm 3.1.

(1) Dissipativity synthesis: search for the parametric dissipativity (Ψi
j,Φ

i) with

i ∈ Z+
N , j ∈ Z+

M i and supply rate matrix Φi
c of i-th controller by solving the

following LMIs simultaneously :

– the dissipativity condition in (3.7) (for an individual process unit) for

all N process units;

– plantwide stability and performance condition in (3.12);

– controller feasibility condition in (3.18).

(2) Distributed robust control synthesis for each controller Ci,

– compute the J-factorisation of Φi
c as Φi

c(−ξ, ξ) = KiT (−ξ)J iKi(ξ);

– construct a J i-dissipative system with image representation zi = M i(ξ)`i;

– obtain the image representation of the i-th controller as vi = Li(ξ)M i(ξ)`i.
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3.3 Case Study

A case study of an interconnected system consisting of two chemical reactors and

one separator, with configuration depicted in Figure 3.3, is carried out to illustrate

the proposed controller design procedure. The chemical reaction involved is A→

B → C where A is the reactant, B is the product and C is the undesirable by-

product [22]. The aim is to control the temperature in the two reactors and the

separator under the disturbances from the temperature of the feed streams 1 and

2 by manipulating the heat supplies Q1, Q2 and Q3. The subsystems can be

described by

P1 :



dxA1

dt
=

F1f

V1
(xA1f

− xA1) + Fr
V1

(xAr − xA1)− k1e
−E1
RT1 xA1

dxB1

dt
=

F1f

V1
(xB1f

− xB1) + Fr
V1

(xBr − xB1) + k1e
−E1
RT1 xA1 − k2e

−E2
RT1 xB1

dT1
dt

=
F1f

V1
(T1f − T1) + Fr

V1
(T3 − T1) + −∆H1

Cp
k1e

−E1
RT1 xA1 + −∆H2

Cp
k2e

−E2
RT1 xB1 + Q1

ρCpV1

P2 :



dxA2

dt
= F1

V2
(xA1 − xA2) +

F2f

V2
(xA2f

− xA2)− k1e
−E1
RT2 xA2

dxB2

dt
= F1

V2
(xB1 − xB2) +

F2f

V2
(xB2f

− xB2) + k1e
−E1
RT2 xA2 − k2e

−E2
RT2 xB2

dT2
dt

= F1

V2
(T1 − T2) +

F2f

V2
(T2f − T2) + −∆H1

Cp
k1e

−E1
RT2 xA2 + −∆H2

Cp
k2e

−E2
RT2 xB2 + Q2

ρCpV2

P3 :



dxA3

dt
= F2

V3
(xA2 − xA3)− Fr

V3
(xAr − xA3)

dxB3

dt
= F2

V3
(xB2 − xB3)− Fr

V3
(xBr − xB3)

dT3
dt

= F2

V3
(T2 − T3) + Q3

ρCpV3

In the models, xA1 , xA2 , xA3 , xA1f
and xA2f

denote, respectively, mass fraction

of A in the first reactor, second reactor, separator, the first feed stream and the

second feed stream. Similar counterparts can be defined for xB and T , respectively,

for the mass fraction of B and temperature. xAr and xBr denote, respectively, the

mass fraction of A and B in the recycle stream. F1f and F2f denote, respectively,
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P1 : Reactor 1

C1

Q1

F1

P2 : Reactor 2

C2

Q2

Feed 2

F2

P3 : Separator

C3

Q3

Fr

Product

Feed 1

Figure 3.3: Configuration of the reactor-separator process

the volumetric flowrates in Feed 1 and Feed 2. Since the mass fraction of C, xC ,

is not independent to xA and xB (xA + xB + xC = 1 always holds for all streams),

a model for it is not included. For this process, the manifest and interconnection

variables can be defined as

yi = col(xAi , xBi , Ti), u
i
c = yil = Qi, u

i
l = Ti , d

i = Tjf , i = 1, 2, 3, j = 1, 2,

u1
p = y3, u2

p = y1, u3
p = y2, u1

r = y3
r , u

2
r = y1

r , u
3
r = y2

r .

The operating point and parameters in the process are given in Table 3.1. For

illustration purposes, it is assumed that there are variations on k1 and k2 up to

10% and that αC varies between 0.5 and 0.7. The models are linearised around

the operating point and transformed into kernel representation. Polytopic regions

can capture a variety of uncertainties. In this case, the polytopic regions are used

to capture the effects of uncertain parameters in the nonlinear process models and

linearisation errors. The manifest variables considered for each unit are

w1 = col (xA1 , xB1 , T1, xA3 , xB3 , T3, Q1, T1f ) ,

w2 = col (xA2 , xB2 , T2, xA1 , xB1 , T1, Q2, T2f ) ,

w3 = col (xA3 , xB3 , T3, xA2 , xB2 , T2, Q3) .
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Table 3.1: Operating point and parameters

Operating Point Parameters

xA1 0.292 xA1f
0.846 ρ 1000 kg m−3

xB1 0.666 xB1f
0.154 Cp 4.2 kJ kg−1 K−1

T1 447.6 K xA2f
0.610 R 8.314 kJ kmol−1 K−1

xA2 0.287 xB2f
0.390 k1 2.77 × 103 s−1

xB2 0.670 V1 1 m3 k2 2.5 × 103 s−1

T2 444.3 K V2 0.5 m3 E1 5 × 104 kJ kmol−1

xA3 0.114 V3 1 m3 E2 6 × 104 kJ kmol−1

xB3 0.800 F1f 5 m3 h−1 ∆H1 −6 × 104 kJ kmol−1

T3 449.3 K F2f 5 m3 h−1 ∆H2 7 × 104 kJ kmol−1

T1f 300 K Fr 50 m3 h−1

T2f 300 K αA 3.5

Q1 12.6 × 105 kJ h−1 αB 1

Q2 16.2 × 105 kJ h−1 αC 0.5

Q3 12.6 × 105 kJ h−1

After linearisation and setting up the polytopic region, the first process is within

a region of 8 vertices, whose kernel representations are

R1
1(ξ) =



ξ + 65.97 0 0.128 −102.2 6.46 0 0 0

−14.57 ξ + 55.90 −0.106 77.83 −27.3 0 0 0

−2082 383.6 ξ + 45.97 0 0 −50 −0.0002 −5


,
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R1
2(ξ) =



ξ + 65.97 0 0.128 −102.2 6.46 0 0 0

−16.03 ξ + 55.98 −0.104 77.83 −27.3 0 0 0

−2290 422.0 ξ + 46.90 0 0 −50 −0.0002 −5


,

R1
3(ξ) =



ξ + 71.03 0 0.140 −102.2 6.46 0 0 0

−16.03 ξ + 55.90 −0.119 77.83 −27.3 0 0 0

−2390 383.6 ξ + 44.15 0 0 −50 −0.0002 −5


,

R1
4(ξ) =



ξ + 71.03 0 0.140 −102.2 6.46 0 0 0

−14.57 ξ + 55.98 −0.117 77.83 −27.3 0 0 0

−2082 422.0 ξ + 45.07 0 0 −50 −0.0002 −5


,

R1
5(ξ) =



ξ + 65.97 0 0.128 −103.8 3.77 0 0 0

−14.57 ξ + 55.90 −0.106 70.66 −32.2 0 0 0

−2082 383.6 ξ + 45.97 0 0 −50 −0.0002 −5


,

R1
6(ξ) =



ξ + 71.03 0 0.128 −103.8 3.77 0 0 0

−16.03 ξ + 55.98 −0.104 70.66 −32.2 0 0 0

−2290 422.0 ξ + 46.90 0 0 −50 −0.0002 −5


,
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R1
7(ξ) =



ξ + 71.03 0 0.140 −103.8 3.77 0 0 0

−16.03 ξ + 55.90 −0.119 70.66 −32.2 0 0 0

−2290 383.6 ξ + 44.15 0 0 −50 −0.0002 −5


,

R1
8(ξ) =



ξ + 65.97 0 0.140 −103.8 3.77 0 0 0

−14.57 ξ + 55.98 −0.117 70.66 −32.2 0 0 0

−2082 422.0 ξ + 45.07 0 0 −50 −0.0002 −5


.

The second process is in a polytopic region with 4 vertices, namely

R2
1(ξ) =



ξ + 133.2 0 0.115 −110 0 0 0 0

−13.20 ξ + 120.8 −0.096 0 −110 0 0 0

−1886 340.8 ξ + 111.9 0 0 −110 −0.0005 −10


,

R2
2(ξ) =



ξ + 133.2 0 0.115 −110 0 0 0 0

−13.20 ξ + 120.9 −0.094 0 −110 0 0 0

−1886 374.8 ξ + 112.7 0 0 −110 −0.0005 −10


,

R2
3(ξ) =



ξ + 134.5 0 0.127 −110 0 0 0 0

−14.52 ξ + 120.8 −0.107 0 −110 0 0 0

−2074 340.8 ξ + 110.2 0 0 −110 −0.0005 −10


,
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R2
4(ξ) =



ξ + 134.5 0 0.127 −110 0 0 0 0

−14.52 ξ + 120.9 −0.105 0 −110 0 0 0

−2074 374.8 ξ + 111.1 0 0 −110 −0.0005 −10


.

The last process is within a 2-vertex region whose vertices are

R3
1(ξ) =



ξ + 112.2 −6.46 0 −60 0 0 0

−77.83 ξ + 37.30 0 0 −60 0 0

0 0 ξ + 60 0 0 −60 −0.0002


,

R3
2(ξ) =



ξ + 113.8 −3.77 0 −60 0 0 0

−70.66 ξ + 42.15 0 0 −60 0 0

0 0 ξ + 60 0 0 −60 −0.0002


.

The objective of the distributed control system is to control the purity of

product B in all units. As T3 is the control error of the temperature of the final

product, higher level of disturbance attenuation should be achieved compared

with T1 and T2. The weighting functions for plantwide performance (as in (3.2))

is therefore chosen as W(s) = diag (W1(s),W2(s),W3(s)), where

W1(s) = W2(s) =
1

0.2s+ 1
diag (0, 0, 20) ,

W3(s) =
1

0.2s+ 1
diag (0, 0, 50) ,

(3.21)

are the weighting functions for process units 1 to 3 respectively. This specification

requires a new steady state to be reached within approximately 1 hour after the

introduction of the disturbance and the disturbance effect to be attenuated by 20

times in the reactors and 50 times in the separator. To show how to transform the
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weighting function into a supply rate, W1(s) is used as an example to illustrate

the procedure and the other ones follow analogously. W1(s) can be written as

W1(s) = N1(s)/p1(s) where N1(s) = diag(0, 0, 20) and p1(s) = 0.2s + 1. Since in

linearized systems all variables are deviation variables, it then follows that s = ξ.

Therefore, N(ξ) = diag(0, 0, 20) and p(ξ) = 0.2ξ + 1. It then follows that

NT (ζ)N(η) =



0 0 0

∗ 0 0

∗ ∗ 400


, (3.22)

p(ζ)p(η)I3 = [1 + 0.2(ζ + η) + 0.04ζη] I3 =


I3

ζI3


T 

I3 0.2I3

∗ 0.04I3



I3

ηI3

 . (3.23)

In most cases, the order of the QDFs in an inequality are not necessarily of the same

order. To match the dimensions, these QDFs can be augmented. For example, to

represent (3.23) with second order, one can write it as

p(ζ)p(η)I3 =



I3

ζI3

ζ2I3



T 

I3 0.2I3 03×3

∗ 0.04I3 03×3

∗ ∗ 03×3





I3

ηI3

η2I3


. (3.24)

Simulation studies were carried out for a “true” process behaviour randomly

chosen within the polytopic regions (i.e., with different θi, i ∈ Z+
3 ). Following the

two-step design, inequalities (3.7), (3.12) and (3.18) were solved simultaneously,

resulting in a total of 39 LMIs. The J-factorisation process (2.37)− (2.38) is then
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Figure 3.4: Simulation result

used to determine the final controllers that attain the image representation

Qi

yir

Ti

uir


=


M i

y(ξ)

M i
u(ξ)

 `i (3.25)

for some polynomial matrix M i(ξ) and latent variable `i.

The simulation result is depicted in Figure 3.4. As shown, the performance

specified by the weighting matrices (3.21) has been achieved. In fact, the actual
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performance is much better than specified. Most notably, temperature in the

separator almost fully rejects the disturbance effect.

3.4 Summary

In this chapter, a distributed robust control approach has been proposed for inter-

connected systems with uncertain subsystems from the dissipativity perspective.

Uncertainties in the subsystems are described using polytopic uncertainty. The

global robust stability and performance conditions have been developed based on

global dissipativity conditions, which in turn have been converted into supply rates

that the distributed controllers must satisfy. The controllers can be synthesised

individually in parallel by computing J-factorisation of their corresponding supply

rates.

While this approach provides a much less conservative design method than

the norm-bound design and the computational burden is quite manageable for a

distributed uncertain system, it is still based on describing the uncertain region

using a convex region. In this case, extra degrees of conservativeness would be

inevitable if the original region is non-convex by nature. In the next chapter, the

non-convex region will be handled directly. All representations and properties in

this chapter will be generalised accordingly.



Chapter 4

Distributed Robust Control with

Generic Uncertainties

In this chapter, a more generic control design approach is formulated for intercon-

nected systems. Unlike in Chapter 3 in which convex polytopes are constructed

for the subsystems, in this chapter all subsystems are described by a kernel repre-

sentation with generic parameter uncertainty similar to (2.47), i.e.,

Ri(θ, ξ)wi :=
Li∑
k=0

Ri
k(θ)ξ

kwi = 0, i ∈ Z+
N . (4.1)

The uncertain behaviour in each subsystem is then denoted as Bi
θ = ker (Ri(θ))

and Problem 3.1 can also be modified accordingly - to achieve (3.2) for subsystems

with generic uncertainties.

Mathematically, the main focus in Chapter 3, i.e., interconnected systems

whose subsystems are represented by (3.1), can be viewed as a special case of

(4.1) by setting θ = col(θ1, θ2, . . . , θN) and Ri(θ, ξ) =
∑M i

j=1 θ
i
jR

i(ξ). The physi-

cal implication for such generalisation is, on the other hand, more profound. In

practice, many parameters in the models are with inexact values but rather well

understood ranges. These parameters rarely occur naturally linear in the models.

60
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By solving the uncertain problem directly, the physical meanings of the results

become much clearer and the design is much less conservative. However, as the

problem becomes non-convex and more generic, new tools and algorithms are

needed.

The key results in this chapter have been published in:

• Y. Yan, R. Wang and J. Bao, “Robust Control Synthesis for Linear Differ-

ential Systems with Parametric Uncertainty,” in Proceedings of Australian

& New Zealand Control Conference (ANZCC) 2018, Melbourne, Australia,

pp. 281–284, 2018.

• Y. Yan and J. Bao, “A Scenario Approach to Robust Distributed Control for

Plantwide Process Systems,” in Proceedings of European Control Conference

(ECC) 2019, Naples, Italy, pp. 560–565, 2019.

The model in Section 4.1 is a simplified version of that published in:

• Y. Yan, Y. Li, M. Skyllas-Kazacos and J. Bao, “Modelling and simulation

of thermal behaviour of vanadium redox flow battery,” Journal of Power

Sources, vol. 322, pp. 116–128, 2016.

• Y. Yan, M. Skyllas-Kazacos and J. Bao, “Effects of battery design, envi-

ronmental temperature and electrolyte flowrate on thermal behaviour of a

vanadium redox flow battery in different applications,” Journal of Energy

Storage vol. 11, pp. 104–118, 2016.

4.1 A Motivating Example

To demonstrate the necessity of the considered problem, a motivating example of

a multi-cell vanadium redox flow battery (VRFB) stack is given.



4. Distributed Robust Control with Generic Uncertainties 62

C
el

l 
1

C
el

l 
2

C
el

l 
n

C
el

l 
n

+
1

C
el

l 
N

-1

C
el

l 
NV(II)/V(III) V(IV)/V(V)

Equipment

C
u

rr
e
n

t 
C

o
ll

ec
to

r

C
u

rr
e
n

t 
C

o
ll

ec
to

r

+  - +  - +  - +  - +  - +  -

Figure 4.1: A VRFB Stack

Example 4.1. A VRFB is a type of redox flow battery whose electrolyte contains

vanadium ions only. The reactions taking place within a cell are

V3+ + e− 
 V2+,

VO2+ + H2O 
 VO+
2 + 2H+ + e−,

where the first reaction takes place in the negative half-cell and the second reaction

happens in the positive half-cell. The ions V2+, V3+, VO2+ and VO+
2 are normally

denoted as V(II), V(III), V(IV) and V(VI), respectively, to indicate the type of

vanadium ions. The two half-cells are separated by a membrane to allow electrons

to flow between half-cells, but small amounts of vanadium will pass through the

membrane and react directly with the ions on the other side, causing capacity loss

(self-discharge). More details regarding the setup and properties of the battery

can be found in [104].
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Consider the VRFB system depicted in Figure 4.1, in which the stack consists

of N cells. For simplicity, only material dynamics are discussed and all physical

properties are assumed to be temperature independent. The mass balance models

for each cell can be constructed from first principle as

Vc
2

dcn2
dt

= Qc

(
ct2 − cn2

)
+

i

F
− k2

cn2
d
S − k4

cn4
d
S − 2k5

cn5
d
S,

Vc
2

dcn3
dt

= Qc

(
ct3 − cn3

)
− i

F
− k3

cn3
d
S + 2k4

cn4
d
S + 3k5

cn5
d
S,

Vc
2

dcn4
dt

= Qc

(
ct4 − cn4

)
− i

F
+ 3k2

cn2
d
S + 2k3

cn3
d
S − k4

cn4
d
S,

Vc
2

dcn5
dt

= Qc

(
ct5 − cn5

)
+

i

F
− 2k2

cn2
d
S − k3

cn3
d
S − k5

cn5
d
S,

where c2, c3, c4 and c5 are the concentrations of V (II), V (III), V (IV) and V (VI),

respectively. The superscripts n and t denote, respectively the n-th cell and the

storage tank. The current applied to the stack is denoted as i, and k2, k3, k4 and

k5 are the diffusivity of each vanadium ion. Vc is the volume of each cell, Qc is the

volumetric flowrate of the electrolyte in each cell, S is the surface area of the mem-

brane, d is the thickness of the membrane and F is the Faraday’s constant. The re-

sulting manifest variables in each cell is then wn = col (cn2 , c
n
3 , c

n
4 , c

n
5 , c

t
2, c

t
3, c

t
4, c

t
5, i).

By appropriate input/output partition, the first principle models can be rear-

ranged as [
Rn
y (θ, ξ) Rn

u(θ, ξ)

]
yn

un

 = 0, (4.2)

where

yn =

[
cn2 cn3 cn4 cn5

]T
, un =

[
ct2 ct3 ct4 ct5 i

]T
,
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Rn
y (θ, ξ) =



Vc
2
ξ +Qc + k2

S
d

0 k4
S
d

2k5
S
d

0 Vc
2
ξ +Qc + k3

S
d

−2k4
S
d

−3k5
S
d

−3k2
S
d

−2k3
S
d

Vc
2
ξ +Qc + k4

S
d

0

2k2
S
d

k3
S
d

0 Vc
2
ξ +Qc + k5

S
d


,

Rn
u(θ, ξ) =



−Qc 0 0 0 − 1
F

0 −Qc 0 0 1
F

0 0 −Qc 0 1
F

0 0 0 −Qc − 1
F


.

From the above representation, it is clear to see that the dynamics are linear.

However, in practice all physical properties of the system (i.e., k2, k3, k4, k5, Vc,

Qc, S and d) are uncertain. It is possible to obtain a linear uncertain model by

lumping certain variables into a new uncertain variable. For example, by choosing

θ = col

(
Vc, Qc, k2

S

d
, k3

S

d
, k4

S

d
, k5

S

d

)
,

the original representation immediately becomes linear with respect to θ and a

polytopic region can be easily formulated. However, such choice of the uncertain

parameter leads to conservative design, as it is neglecting the inherent dependen-

cies among the parameters. For example, it is obvious that k2
S
d

and k3
S
d

are not

independent, but by naming them as θ3 and θ4, they are treated as two completely

independent variables. Therefore, by making the region convex, conservatism is

introduced. Such conservatism may also accumulate due to the scale of the prob-

lem and even be amplified due to interactions. It is therefore more appropriate to

deal with the uncertainties of the parameters directly instead of forcing linearity
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and convexity by lumping variables together. �

While the uncertain region is not assumed to be convex, some mild assumptions

are still needed.

Assumption 4.1. All uncertain parameters in all subsystems are uniformly dis-

tributed with their respective bounds, i.e.,

θ ∈ Θ =
{
θ ∈ RM | θj ∼ U

(
θj, θj

)
, ∀j ∈ Z+

M

}
. (4.3)

Assumption 4.2. All entries in the coefficient matrix of the kernel representations

of the subsystems, Ri(θi, ξ), are finite for all θi ∈ Θi.

Assumption 4.1 states that the uncertain parameters are within certain ranges,

and all values in the ranges are equally likely to happen. This is reasonable

assumption since the region of the uncertain parameters are mostly determined

empirically, in which case the range should not have particular distributions. As-

sumption 4.2 states that there will not be a case where any coefficient will be

infinity for any parameter within their regions. This is also a natural assumption

because it physically cannot happen.

As the complexity of the problem increases, it is obvious that new tools and

concepts are required to accommodate it. In the next section, a relaxed version

of QDFs will be defined so that dynamic features of systems with non-convex

uncertainty regions can be described in more details.

4.2 Dissipativity Analysis via Parametric QDFs

Much like the coefficient matrix in a kernel representation, QDFs themselves can

also have uncertainties in their coefficient matrices, making them more flexible in

dealing with uncertainties in the subsystems. A parametric QDF (PQDF) can be
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defined as

Φ(θ, ζ, η) :=
L∑
k=0

L∑
l=0

ζkΦkl(θ)η
l, (4.4)

where the coefficient matrix depends on the uncertain parameter θ. Analogous

to (2.48) being the special case of (2.47), parameter-dependant QDF defined in

(3.4) is a special case of the PQDF defined in (4.4). Although θ is unknown, it

is still constant, and therefore the operator ∇ can be defined in a similar way,

i.e., ∇Φ(θ, ζ, η) = (ζ + η)Φ(θ, ζ, η). However, since the uncertain parameters are

not assumed to be of any special form, PQDF-dissipativity conditions are also

generic. The following theorem gives the conditions of PQDF-dissipativity along

an uncertain behaviour.

Theorem 4.1 (PQDF-Dissipativity along ker(R(θ))). A dynamical system Σθ =

(R,Rw,Bθ) with behaviour Bθ represented by (2.47) is dissipative with respect to

a PQDF induced by Φ(θ, ζ, η) if there exist PQDFs Ψ ∈ Sw[ζ, η] and F ∈ R•×w[ζ, η]

such that

Ψ(θ, ζ, η) � 0, (4.5a)

Φ(θ, ζ, η)−∇Ψ(θ, ζ, η) + He {F ?(θ, ζ, η)R(θ, η)} � 0, (4.5b)

hold for all θ ∈ Θ.

Proof. This proof is analogous to the proof of Proposition 3.1 and is therefore

omitted.

Similar to (3.5), inequalities in (4.5) can be transformed into (θ-dependant) LMIs

Ψ̃(θ) ≥ 0, (4.6a)

Φ̃(θ)−∇Ψ̃(θ) + He
{
F̃ T (θ)R̂(θ)

}
≥ 0, (4.6b)
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where

∇Ψ̃(θ) =


0 0

Ψ̃(θ) 0

+


0 Ψ̃(θ)

0 0

 ,

R̂(θ) =



R0(θ) · · · RN(θ) 0 · · · 0

0 R0(θ) · · · RN(θ)
. . .

...

...
. . . . . . . . . . . . 0

0 · · · 0 R0(θ) · · · RN(θ)


.

The supply rate for the controlled interconnected system can be constructed

in similar fashion to (3.11). The requirements to ensure the frequency-weighted

condition (3.2) is similar to that in Theorem 3.2, but they are no longer linear with

respect to the uncertain parameter θ. To highlight this difference, the following

theorem gives the requirements in terms of parametric LMIs.

Theorem 4.2. Given the controlled system depicted in Figure 3.1, whose subsys-

tems P iθi and corresponding controllers Ci are dissipative with respect to PQDFs

induced by Φi(θi, ζ, η) and QDFs induced by Φi
c(ζ, η), if[

Qyl(θ, ζ, η) Qyr(θ, ζ, η)

]
= 0, (4.7a)[

S?yd(θ, ζ, η) S?ld(θ, ζ, η) S?rd(θ, ζ, η)

]
= 0, (4.7b)

Qll(θ, ζ, η) Qlr(θ, ζ, η)

? Qrr(θ, ζ, η)

 � 0, (4.7c)

Qyy(θ, ζ, η) + NT (ζ)N(η) � 0, (4.7d)
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Rdd(θ, ζ, η)− γ2DT (ζ)D(η) � 0, (4.7e)

are satisfied for all θ ∈ Θ, then the controlled behaviour is robustly stable and satis-

fies the performance condition (3.2) with weighting function W(s) = D−1(s)N(s).

Proof. The proof is analogous to the proof of Theorem 3.2 and is omitted.

Since the controller supply rates are QDFs, they can still be used to parametrise

the controller behaviours Bi
c through J-factorisation. For each subsystem, in order

for the controller supply rate matrices Φi
c(ζ, η) to be factorisable, they must have

constant signatures. Defining

yic := col
(
yil , y

i
r

)
, uic := col

(
uil, u

i
r

)
, Qic :=


Qil Qilr

? Qir

 , Ri
c :=


Ri
l Ri

lr

? Ri
r

 ,
then either πi+ = dim(uic), π

i
− = dim(yic) or πi+ = dim(yic), π

i
− = dim(uic) need to

be satisfied to ensure factorisability. Sufficient conditions for these two cases are,

respectively,

Qic ≺ 0, Ri
c � 0⇒ πi =

(
dim(yic), 0, dim(uic)

)
, or (4.8a)

Qic � 0, Ri
c ≺ 0⇒ πi =

(
dim(uic), 0, dim(yic)

)
. (4.8b)

Whilst the former is preferred over the latter because it guarantees stable con-

trollers, it is possible that there is no solution if the processes are unstable. In this

case, the latter condition can be used.

To sum up, conditions in (4.5), (4.7) and one of (4.8) should be solved simul-

taneously to determine Φi
c. If a solution exists, behaviours Bi

c can be constructed

in image representation through J-factorisation. It is easy to recognise that the

parametric LMIs can be non-convex, hence a solution is much harder to find, and

in many cases a deterministic solution may not exist at all. In the next section,
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two possible methods are proposed to solve the problem. The first approach re-

sults in deterministic solutions via sum-of-square (SOS) programming [105–107]

and robust optimisation [108]. To this effect, additional assumptions are required

and the scale of the problem cannot be too large. The second approach results

in a probabilistic solution via the scenario approach [109–111], which can handle

larger systems with no further assumptions.

4.3 The Search for Controller Supply Rates

4.3.1 Deterministic Solution via SOS

SOS programming is a computationally tractable algorithm for the validation of

the positivity of a polynomial. A polynomial p ∈ R[x] with real coefficients and

indeterminate vector x is called an SOS polynomial if it can be written as

p(x) = mT (x)Qm(x) (4.9)

where Q ∈ R•×• is a positive semidefinite matrix and m(x) is a vector of monomials

[105–107, 112]. The set of all SOS polynomials are denoted as

P[x] =
{
p ∈ R[x]

∣∣ p = mTQm, m ∈ R•[x], Q ∈ R•×•, Q ≥ 0
}
. (4.10)

While Σ[x] is a more popular notation for the set of SOS polynomials, P[x] is used

here since Σ is exclusively reserved to represent a dynamical system throughout

this thesis.

To use this algorithm, obviously all uncertain matrices in question should be

polynomials of the indeterminates. While it is not always necessarily the case,

this algorithm can still be used to achieve rather satisfactory results if additional

regularity assumptions can be made.
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Assumption 4.3. The coefficient matrices Ri(θi, ξ) are smooth matrix functions

on Θi for all i ∈ Z+
N .

From Assumption 4.3, all coefficient matrices Ri(θi, ξ), i ∈ Z+
N can be rep-

resented or approximated by polynomials of θ. Then SOS programming can be

implemented to solve the parametric LMIs in (4.5) and (4.7). Assuming (4.8b) is

used to ensure feasibility, the LMI and SOS conditions to be satisfied can then be

summarised as

(
ŵi
)T

Ψ̃i(θi)ŵi ∈ P
[
ŵi, θi

]
, (4.11a)(

ŵi
)T (

Φ̃i(θi)−∇Ψ̃i(θi) + He

{(
F̃ i
)T

(θi)R̂i(θi)

})
ŵi ∈ P

[
ŵi, θi

]
, (4.11b)(

ĉi
)T Q̃icĉi ∈ P

[
ĉi
]
, (4.11c)

−
(
ĉi
)T R̃i

cĉ
i ∈ P

[
ĉi
]
, (4.11d)[

Q̃yl(θ) Q̃yr(θ)

]
= 0, (4.11e)[

S̃Tyd(θ) S̃Tld(θ) S̃Trd(θ)

]
= 0, (4.11f)

−


ŷl

ŷr


T 
Q̃ll(θ) Q̃lr(θ),

∗ Q̃rr(θ)




ŷl

ŷr

 ∈ P [ŷl, ŷr, θ] , (4.11g)

−ŷT
(
Q̃yy(θ) + ÑT Ñ

)
ŷ ∈ P [ŷ, θ] , (4.11h)

d̂T
(
D̃T D̃− R̃dd(θ)

)
d̂ ∈ P

[
d̂, θ
]
, (4.11i)

for all θ ∈ Θ and i ∈ Z+
N . The SOS decomposition (4.9) for the conditions in

(4.11) can be obtained through semidefinite programming (SDP) [112]. In this

case, open source Matlab toolbox – YALMIP [80, 113] and SDP solver – SeDuMi

[114] are used to find the Q matrix. The resulting controller supply rates can

then parametrise the controller behaviour through J-factorisation. Observe that
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(4.11) solves for feasible supply rates for any θ, which is much more than required

and can easily lead to infeasibility. The uncertain parameters can be specified as

uncertain parameters within their respective bounds and the supply rates can be

determined via robust optimisation [108].

Example 4.2. Consider a system with transfer function

y =
1

s+ θ
u+

2

2s+ 1
d, (4.12)

where θ ∈ [−1, 1]. Note that this process can potentially be unstable. The transfer

function can be transferred into a θ-dependant kernel representation[
2ξ2 + (2θ + 1)ξ + θ −2ξ − 1 −2ξ − 2θ

]
w = 0, (4.13)

where w = col(y, u, d). The weighting function chosen is

W (s) =
5

s+ 1
, (4.14)

which requires the disturbance to be attenuated by 5 times in approximately 5

seconds.

A step change disturbance with a magnitude of 1 is introduced into the process

and the output for θ = 0, ±0.2, ±0.5 and ±1 are shown in Figure 4.2. It clearly

shows that, for all of the tested θ values, the closed-loop system is stable and the

performance requirement is achieved.

4.3.2 Probabilistic Solution via the Scenario Approach

Since the problem concerned in this chapter is not necessarily convex and the scale

of the problem can be rather large, it is difficult, sometimes impossible, to find

distributed controllers to solve the problem definitely. The basic idea introduced

in this section is to use the scenario approach, a randomised algorithm, to search

for QDF supply rates for the controllers Ci and PQDF dissipativity conditions
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Figure 4.2: Step Change Response with Various θ Values

for the uncertain subsystem Σi
θ such that the supply rate of the controlled sys-

tem satisfies the H∞ performance condition (3.2) for almost all of the uncertain

behaviours [109, 110]. The distributed controllers can then be synthesised ex-

plicitly from the supply rates through J-factorisation. Note that while another

randomised algorithm, namely the sequential method [115], is effective as well, it

is not applicable to the problem in this section because it is impossible to compute

stochastic gradients without a priori knowledge of the forms of the matrices. For

the clarity of presentation, dependencies on ζ and η for polynomial matrices are

omitted.

The scenario approach involves finding an optimal solution to the problem

min
q

CT q

s.t. J (Xα, q) ≤ β, α ∈ Z+
K ,

(4.15)

where q is a vector of design parameters, J (·) is the performance function, α is

the index from 1 to K and Xα are the scenarios. Under this setting, the original

uncertain problem that is NP-hard is converted to a finite, potentially solvable
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problem. The requirement for this approach to be applicable is that J (X, q) is

convex in q for any fixed value of X [111]. Denoting the optimal solution for a set

of scenarios X as qsX , the probability of violation is then defined as

Y(qsX) = Pr {J (X, qsX) > β} . (4.16)

The following lemma provides a method to choose a lower bound on the required

number of samples.

Lemma 4.3 ([109]). Let ε, ρ ∈ (0, 1). Assuming a unique solution exists and

K ≥ q + 1, if K satisfies

K ≥ 2

ε
(q − ln ρ), (4.17)

then Pr {Y(qsX) > ε} ≤ ρ. In other words, with high probability 1− ρ, the proba-

bility of violation is no greater than ε.

This lemma suggests that the solution obtained from the scenario approach is

a nested probabilistic solution: the probability that the solution works more than

1 − ε of the time is 1 − ρ. However, since K is related with ρ in a logarithmic

way, ρ can be set to an extremely small number without increasing the complexity

significantly. As a result, the upper bound on the probability of violation ε can be

almost definitely guaranteed. In the case where the scale of the problem is larger,

the coefficient 2 in (4.17) can be replaced by e
e−1

[111], which reduces the number

of samples by approximately 21%.

Suppose Kc samples have been generated, then for each scenario α, the con-

straints to be satisfied are

Ψi
α � 0, (4.18a)

Φi
α −∇Ψi

α + He
{

(F i
α)?Ri(θ̂α)

}
� 0, (4.18b)[

Qylα Qyrα

]
= 0, (4.18c)
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[
S?ydα S

?
ldα
S?rdα

]
= 0, (4.18d)

Qllα Qlrα

? Qrrα

 � 0, (4.18e)

Qyyα + N?N � 0, (4.18f)

Rddα − γ2D?D � 0, (4.18g)

and one of

Qic ≺ 0, Ri
c � 0, or (4.18h)

Qic � 0, Ri
c ≺ 0. (4.18i)

for all i ∈ Z+
N and α ∈ Z+

Kc
. In (4.18), all polynomial matrices with a subscript

or superscript α attain different values for each scenario, all of those without stay

the same for all scenarios. For each scenario, a different kernel representation for

each subsystem is generated as Ri(θ̂α, ξ)wi = 0, making the coefficient matrices

θ-free. This means that all LMIs in (4.18) are deterministic LMIs. All of the LMIs

in the Kc scenarios are then solved simultaneously. A probabilistic solution to the

problem can be obtained using the following proposition.

Proposition 4.4. For the interconnected system depicted in Figure 3.1, assume

the number of design variables in the controller supply rate QΦc(c) is qc. If there

exists a solution to the simultaneous LMIs (4.18) for Kc randomly generated sam-

ples, where

Kc ≥
2

ε
(qc − ln ρ), (4.19)

then with high probability 1− ρ, there exist controller supply rates (and hence an

array of distributed controllers) such that the closed-loop system is robustly stable

and satisfies the performance condition (3.2) with the probability of violation no

greater than ε.
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Proof. Following Lemma 4.3, if a solution qscX exists with Kc scenarios, then

Pr {Y(qscX) > ε} ≤ ρ. This means that with high probability 1 − ρ, there exist

θ-dependant process supply rates Φi(θ), storage functions Ψi(θ) and multipliers

F i(θ) such that Φi(θ̂α) = Φi
α, Ψi(θ̂α) = Ψi

α and F i(θ̂α) = F i
α for α = 1, . . . , N ,

as well as controller supply rates Φi
c such that inequalities (4.5), (4.7) and one

of (4.8) hold with a probability of violation no greater than ε. The satisfaction

of robust stability and performance conditions follow from Lemma 4.1 and The-

orem 4.2. The controllers can be subsequently synthesised using J-factorisation

because the supply rates are θ-free and have constant signatures. This completes

the proof.

Remark 4.1. Notice that closed forms of Φi(θ), Ψi(θ) or F i(θ) as matrix functions

of θ are not obtained eventually. What can be concluded is that with a high

probability, there exist these polynomial matrices that take the values of the αth

solution when substituting θ with θ̂α. Since they are auxiliary variables to aid the

search for the controller supply rates and are not used in control design, obtaining

closed forms for them is not necessary.

Example 4.3. Consider a plantwide system with 2 subsystems whose behaviours

are described by

P1
θ :

dy1

dt
+ θ1θ2y

1 = sin(θ1)u1
p + u1

m + d, (4.20a)

P2
θ : θ3

dy2

dt
+ y2 = e−θ4u2

p + (θ1 − θ4)u2
m, (4.20b)

where θm ∈ [0.8, 1.2] , m = 1, . . . , 4. The time base is seconds. Converting differ-

entials to ξ leads to the following kernel representations

R1(θ, ξ) =

[
ξ + θ1θ2 − sin(θ1) −1 −1

]
, (4.21a)

R2(θ, ξ) =

[
θ3ξ + 1 −e−θ4 θ4 − θ1

]
. (4.21b)
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In this example, P1
θ and P2

θ are connected in series and the output of P2
θ is fed

into P1
θ . Hence, FP = I2 and HP =


0 1

1 0

. Since all outputs are sent to the

controllers, FC = I2. The controller topology in this example is assumed to be

the same as that of the interconnected system. Therefore, HP = HC. In this case

d = d and y = col(y1, y2). The goal is to attenuate the effect of disturbance d on

y1 by 5 times and y2 by 10 times at the steady state with the attenuation achieved

in approximately 5 seconds. The weighting function in (3.2) can then be chosen

as

W(s) =
1

s+ 1

[
5 10

]
. (4.22)

Setting ε = 0.1, ρ = 10−6 and the QDF order L = 2, Kc can be calculated from

(4.17) to be at least 2677.

To test the probability of feasibility, a posteriori tests using 25, 000 samples

with a step change disturbance of magnitude 1 introduced at t = 1 have been

carried out. The test shows the probability of feasibility of 99.2%, which is much

higher than specified (90%). One of the test samples is shown in Figure 4.3 with

θ = [1.15, 0.89, 0.96, 1.14], including the process behaviours with and without the

controllers, from which it can be seen that the disturbance is effectively rejected.

4.4 Summary

In this chapter, a distributed robust control design approach for interconnected

systems whose subsystems have generic parametric uncertainties based on PQDF

have been proposed. The resulting LMI conditions to be satisfied can be thought

of as the parametric versions of those formulated in Chapter 3. For smaller-

scaled systems whose subsystems have coefficient matrices that are smooth with
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Figure 4.3: Step Change Response with d = 1

respect to the uncertain parameters, SOS programming combined with robust

optimisation can be carried out to obtain a deterministic solution; for larger-scaled

systems whose subsystems have coefficient matrices that are less well-behaved with

respect to the uncertain parameters, the scenario approach can be used to obtain

a probabilistic solution.

While the uncertain description in this chapter is much less conservative than

that in Chapter 3, it is still only an inaccurate representation of the actual be-

haviour of the systems. The main idea behind robust control is also to control the

system subject to an inaccurate description. The most accurate way to represent

a system is through its behaviour as a collection of trajectories, in which case the

idea of robustness is non-existent. In the next chapter, analysis and control design

will be carried out from a set-theoretic point of view, leading to a representation-

free framework.



Chapter 5

A Set-theoretic Approach to

Distributed Control

As pointed out in Chapter 4, analysis of a dynamical system with prescribed rep-

resentation is only applicable to that particular class of system. This chapter

formulates a framework for the analysis and distributed control of interconnected

systems from the perspective of the essence of the behavioural systems theory -

the set-theoretic perspective. The core of a dynamical system is the set of all

trajectories admissible through the system and interconnections are interpreted

as constraints on the choice of trajectories. Under this setting, the discussion of

system dynamics and control can be carried out entirely representation-free. From

this view, it will be shown that the interconnected behaviour can be directly built

from the behaviours of the subsystems in an explicit way. Furthermore, neces-

sary and sufficient conditions for the existence of distributed controller behaviours

as well as the explicit construction of the distributed controller behaviours will

be presented. For each set-theoretic development, the realisation in the context

of LTI systems described by image of Hankel matrices will be performed. This

framework unites various representations and descriptions of features of dynamical

78
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systems (e.g. models, dissipativity, data, etc.) as behaviours, thereby allowing the

formation of a hybrid platform for the analysis and distributed control generically

and systematically.

Some results in this chapter have been/will be published in:

• Y. Yan, J. Bao and B. Huang, “Dissipativity Analysis for Linear Systems in

the Behavioural Framework,” in Proceedings of Australian & New Zealand

Control Conference (ANZCC) 2019, Auckland, New Zealand, pp. 152–156,

2019.

• Y. Yan, J. Bao and B. Huang, “Behavioral Approach to Distributed Control

of Interconnected Systems,” to be submitted to Automatica.

5.1 Basic Set Theory and Algebra of Sets

The discussions carried out in this chapter are from the set-theoretic point of

view under the Zermelo-Fraenkel axiomatic set theory with the Axiom of Choice

(ZFC). The conventional operators ∩, ∪ and \ are used to denote set intersection,

union and difference, respectively. The algebra of sets can be abstracted into the

Boolean algebra [116], which is a set S that has at least elements 0 and 1 with

binary operations + and · and a unary operation − that satisfy

Commutativity a+ b = b+ a, a · b = b · a,

Associativity (a+ b) + c = a+ (b+ c), (a · b) · c = a · (b · c),

Distributivity a+ (b · c) = (a+ b) · (a+ c), a · (b+ c) = (a · b) + (a · c),

Absorption a · (a+ b) = a, a+ (a · b) = a,

Complementation a+ (−a) = 1, a · (−a) = 0.
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Note that the 0 and 1 are, respectively, the additive identity (a + 0 = a) and

multiplicative identity (a · 1 = a) rather than numbers. The difference of two

elements in S can be defined as

a− b = a · (−b).

From these basic operations, some important rules can be derived, such as

a+ a = a · a = a, a · 0 = 0, a+ 1 = 1

and the well-known De Morgan’s Laws

−(a+ b) = (−a) · (−b), −(a · b) = (−a) + (−b).

It can be shown that every Boolean algebra is isomorphic to an algebra of sets.

In this particular case, the elements 0 and 1 are, respectively ∅ and WT, and the

operations +, · and − are, respectively, ∩, ∪ and \.

The Cartesian product × will also be used extensively in this chapter. The

formal definition of the Cartesian product of two sets A and B, with their elements

denoted by a and b, respectively, is

A×B = {(a, b) | a ∈ A and b ∈ B} .

It is important to make clear distinction between ∩ and ×. Specifically, ∩ operates

on sets with the same elements whereas × operates on those with different ones.

Furthermore, ∩ is commutative and associative while × is neither. Other than the

basic operations listed above, the rest of the operations as well as their relations

with × used in this paper are summarised in the following lemma.

Lemma 5.1 (Set Operations [117–119]).

(i) Let A be a set and let A1, A2 ⊂ A, then
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(a) A1 ⊂ A2 if and only if A1 ∩ A2 = A1 if and only if A1 \ A2 = ∅;

(b) A1 ∩ A2 = ∅ if and only if A1 \ A2 = A1;

(c) A1 = A \ A2 if and only if A1 ∩ A2 = ∅ and A1 ∪ A2 = A.

(ii) Let A1, A2, . . . , AN be N sets with different elements. Let Ai1, A
i
2 ⊂ Ai,∀i ∈

Z+
N and define

N×
i=1

Ai = A1 × A2 × . . .× AN ,

then
N×
i=1

(
Ai1 ∩ Ai2

)
=

(
N×
i=1

Ai1

)
∩
(

N×
i=1

Ai2

)
. (5.1)

Notice that (5.1) illustrates the distributivity of × over ∩. Furthermore, setting

N = 2 in (5.1) yields the important identity(
A1

1 ∩ A1
2

)
×
(
A2

1 ∩ A2
2

)
=
(
A1

1 × A2
1

)
∩
(
A1

2 × A2
2

)
. (5.2)

5.2 Representation of Interconnected Systems

This section proposes a new structure to obtain interconnected behaviour directly

from the behaviours of the subsystems. By introducing the concept of abstracting

the network of an interconnected system as a dynamical system, the interconnec-

tion network becomes a distinct object with its own trajectories instead of being

a feature of the interconnected system. This viewpoint leads to the representation

of the interconnected behaviour in a general form built up from its components

explicitly.

5.2.1 Network as a Dynamical System

As proposed by Willems [38], interconnection of dynamical systems can be thought

of as variable sharing, and henceforth one of the two variables interconnected to-

gether can be eliminated. This procedure yields a compact representation of an



5. A Set-theoretic Approach to Distributed Control 82

Σ1 Σ2 Σ3 Σ4
v1 v2 v3 v4

v5
v′
5 v′′

5

(a)

Σ1 Σ2 Σ3 Σ4

ΣH

w1 w2 w3 w4

(b)

Figure 5.1: Four Systems with Switched Network

interconnected system and shows clearly what variables are left unconnected (i.e.,

the free variables). However, after this process, the membership of the intercon-

nected variables to the subsystems becomes ambiguous: one variable is shared

between two subsystems while it is in fact two distinct variables that happen to

share the same value. It is only when all variables of the interconnected subsys-

tems are shared variables that the ambiguity vanishes. It is therefore natural to

propose a structure in which all subsystems are isolated but sharing all of their

variables to a central system which can be seen as a generalised “topology”. To

explain the rationale, an example is given to illustrate the concept.

Example 5.1. Consider a network depicted in Figure 5.1a, in which four dynam-

ical systems are interconnected in a network with a switch. Based on the outcome

of the rest of the plant, v5 can connect with either v′5 or v′′5 . Assuming v5, v′5 and

v′′5 are of the same dimension, the interconnected system can be represented as
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Σ = (T,V1 × V2 × V3 × V4 × V5 × V5,B) where

B =
{

(v1, v2, v3, v4, v5, v
′′
5) | (v1, v2, v5) ∈ B1,

(v2, v3, v
′′
5) ∈ B2, (v3, v4) ∈ B3, (v4, v5) ∈ B4

} (5.3)

if v5 is interconnected with v′5 and

B =
{

(v1, v2, v3, v4, v5, v
′
5) | (v1, v2, v

′
5) ∈ B1,

(v2, v3, v5) ∈ B2, (v3, v4) ∈ B3, (v4, v5) ∈ B4
} (5.4)

if v5 is interconnected with v′′5 .

While an elegant and insightful description of the interconnected behaviour,

representing the behaviour in this slightly over-compacted fashion creates two ob-

stacles towards the analysis of the system. Firstly, due to variable elimination,

only one variable is used to represent variables that originally come from several

different systems, making it difficult to construct the interconnected behaviour

from that of its subsystems directly and explicitly. A more natural representation

is that each subsystem has its own manifest variables and several of them ‘hap-

pen to’ coincide during interconnection. Secondly, for different networks, variables

shared among subsystems are different. If the above method of representation were

adopted, a new representation is needed every time the interconnection changes.

What is actually changing is the network itself, and pushing the ‘dynamics’ of

the network into the subsystems makes the analysis of the interconnected be-

haviour much more complicated. It is therefore reasonable to treat the network as

a dynamical system itself with its own behaviour. With this thinking, the inter-

connected system in Figure 5.1a can be equivalently depicted as in Figure 5.1b,

in which four (isolated) dynamical systems Σi = (T,Wi,Bi) are ‘plugged’ into

a dynamical system ΣH = (T,W1 ×W2 ×W3 ×W4,BH) that is the network.

By setting w = col(w1, w2, w3, w4), the interconnected system can be described as

Σ = (Σ1 u Σ2 u Σ3 u Σ4) ∧ ΣH = (T,W1 ×W2 ×W3 ×W4,Bint) where

B =
{
w | wi ∈ Bi, i ∈ Z+

4 and w ∈ BH
}
. (5.5)
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Figure 5.2: Network Viewed as a Dynamical System

In this way, the interconnected system can be constructed directly from its com-

ponents. �

Note that this description of an interconnected behaviour can be generalised

into arbitrary numbers of subsystems. This leads to the definition of a network as

a dynamical system.

Definition 5.1. The network of an interconnected system consisting of N sub-

systems with the ith subsystem denoted as Σi = (T,Wi,Bi) is itself a dynamical

system

ΣH =

(
T,

N×
i=1

Wi,BH

)
(5.6)

where BH is the network behaviour.

The hint of representing the network as a dynamical system has already ap-

peared in literature. In [48], the network was represented by a static intercon-

nection function and in [14, 81], it was represented by a static LTI system using

input/output representation and was translated into a static kernel representation

in Chapter 3. The above definition encompasses these cases and generalises the

network to be a dynamical system on its own, which allows much more systematic

description of an interconnected system with an arbitrary and probably time vary-

ing topology. It is, however, important to realise the difference between the net-
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work behaviour defined in Definition 5.1 and the topology matrix/interconnecting

function in the literature: the network behaviour has it own set of behaviour

whereas those in the literature are entirely defined by the interconnection inputs

and outputs. To name but one distinct difference, if all subsystems were isolated,

the topology matrix HP in Figure 3.1, for example, would be 0, whereas the be-

haviour defined in Definition 5.1 would be BH = WT where W =×N

i=1
Wi, which

means that all mappings from the time axis to the signal space are admissible in

ΣH . A closer observation reveals that in this particular case, the former is in fact a

representation of BH . In this way, variables with no physical interconnection can

also be interpreted as “interconnected” with the network. In the next section, it

will be shown that the proposed structure provides a clean and flexible represen-

tation of the interconnected system which can be constructed from its subsystems

explicitly.

5.2.2 The Interconnected Behaviour

As illustrated above, the proposed structure allows for the representation of all

interconnections as full interconnections. A result of this is that the behaviour

of a dynamical system formed by the interconnection of two subsystems, denoted

by Σ = Σ1 ∧ Σ2, can be simply constructed as B = B1 ∩B2. One special case

associated with this is when Σ1 and Σ2 have two distinct signal spaces W1 and

W2. In this case, the behaviour of Σ can be constructed as

B =
[
B1 ×

(
W2
)T] ∩ [(W1

)T ×B2
]

= B1 ×B2. (5.7)

Since in this case Cartesian product represents the interconnected behaviour much

clearer than augmentation, it will be used for this particular case, and, with a

little abuse of notation, the interconnected system constructed through Cartesian

product is expressed as Σ = Σ1 u Σ2. Note that the relationship between u and
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∧ is similar to that between × and ∩. It is also straightforward to construct

the interconnected behaviour from the relationship among different components

if all behaviours were fully known by replacing Σ with B, ∧ with ∩ and u with

×. For example, a dynamical system Σ = (Σ1 u Σ2) ∧ Σ3 has behaviour B =

(B1 ×B2) ∩B3.

As shown in Figure 5.2, assuming that the plant consists of N subsystems with

the ith subsystem denoted as Σi = (T,Wi,Bi), then all subsystems can be written

together compactly as a large system Σsys with an array of isolated subsystems,

i.e.,

Σsys =
N⊔

i=1

Σi =

(
T,

N×
i=1

Wi,Bsys

)
. (5.8)

Since all subsystems are isolated at this point, the behaviour Bsys is simply the

Cartesian product of that of all of its subsystems, i.e.,

Bsys =
N×
i=1

Bi. (5.9)

The final interconnection is the interconnection of Σsys with ΣH . Since they have

exactly the same signal space and they have full interconnection, the final inter-

connected system can be obtained as Σ = Σsys ∧ ΣH =

(
T,

N×
i=1

Wi,B

)
where

B =

(
N×
i=1

Bi

)
∩BH . (5.10)

Note that in the last part the variable elimination procedure is still adopted

by naming the manifest variable of the network ΣH as w, the collection of all

manifest variables in the subsystems, because Σsys and ΣH are indeed sharing all

variables. In this way, the interconnected behaviour is constructed from that of

its subsystems and network directly and explicitly in a very simple fashion, which

allows the manipulation of the behaviours to be carried out easily. Furthermore,

the change of network behaviour does not affect that of the subsystems at all,
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making this representation a very general one. Lastly, and perhaps more impor-

tantly, the manifest variables of each subsystem is defined unambiguously - there is

no overlapping of variables due to variable elimination, the “sharing of variables”

happen inside the network ΣH . As a result, observation of the trajectories of spe-

cific variables within the interconnected system can be easily obtained by using

the projection operation. In the next section, a detailed treatment of the projec-

tion operation will be carried out. It will be shown that all trajectories that are

admissible within an interconnected system can be obtained from the projections,

hence it is not necessary to know the complete behavioural set of all subsystems

in order to obtain the complete interconnected behaviour.

5.3 The Projection Operation

5.3.1 Projection onto Subspaces

Given a dynamical system (2.1), the projection of the behaviour B onto the space

Wi is a map πwi : WT →WT
i defined by

πwi (B) =
{
wi | ∃`j, j ∈ Z+

w \ {i}, (`1, . . . , `i−1, wi, `i+1, . . . , `w) ∈ B
}
. (5.11)

This map allows for the extraction of the set of trajectories of any specific manifest

variable from B. Obviously, if the dynamical system is already one with latent

variables Σfull = (T,W,L,Bfull), then the projection πw
(
Bfull

)
is the manifest

behaviour of Σfull. The following lemma provides the relationship when distribut-

ing the projection operation over intersection, union and difference.

Lemma 5.2. Given B1,B2 ∈ (W1 ×W2)T, we have

(i) πw1 (B1 ∩B2) ⊂ πw1 (B1) ∩ πw1 (B2);

(ii) πw1 (B1 ∪B2) = πw1 (B1) ∪ πw1 (B2);
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(iii) πw1 (B1 \B2) ⊃ πw1 (B1) \ πw1 (B2).

Proof. (i) Notice that B1 ∩B2 ⊂ B1, hence πw1 (B1 ∩B2) ⊂ πw1 (B1). Similar

argument can be made such that πw1 (B1 ∩B2) ⊂ πw1 (B2). The two relationships

give the result in (i). On the other hand, it is easy to find counterexamples

to show that the two sets are not equal. For example, if πw2 (B1 ∩B2) = ∅

but πw1 (B1) ∩ πw1 (B2) (the same trajectory of w1 corresponding to different

trajectories in of w2 in different behaviours) is not, then obviously πw1 (B1 ∩B2) =

∅ 6= πw1 (B1) ∩ πw1 (B2).

(ii) This is a standard result (see [120], for example).

(iii) The set on the left hand side is

πw1

(
B1 \B2

)
=
{
w1|∃`2, (w1, `2) ∈ B1, (w1, `2) 6∈ B2

}
. (5.12)

while the one on the right hand side is

πw1

(
B1
)
\ πw1

(
B2
)

=
{
w1|∃`21∀`22, (w1, `21) ∈ B1, (w1, `22) 6∈ B2

}
(5.13)

Obviously the latter includes the former with `21 = `22.

The projected behavioural set can be understood in two ways: from the point

of view of the dynamical system Σ, πwi (B) can be interpreted as the observation

of all possible trajectories of wi; from the point of view of the manifest variable

wi itself, πwi (B) can also be interpreted as a virtual “dynamical system” with

manifest variable wi having full interconnection with another virtual “dynamical

system” with wi as manifest variable and all other manifest variables in Σ as

“latent variables”. Note that the definition of πwi (B) in (5.11) deliberately uses

`j instead of wj to emphasise that the choices of `j may not be unique and that

wj may be only one of the choices. If, however, the choices of wj are actually

unique, then the system is said to be observable, as is defined in Definition 2.7.



5. A Set-theoretic Approach to Distributed Control 89

From the projection point of view, if w1 is observable from w2 in Σ, then for a

given trajectory of w2 ∈ πw2 (B), there exists only one trajectory of w1 ∈ πw1 (B)

such that (w1, w2) is an admissible trajectory in B. In other words, knowing the

complete information of w2 is equivalent to knowing the complete information of

w1. It is, however, important to see that w1 being observable from w2 does not

necessarily mean that each trajectory of w2 corresponds to a distinct trajectory

of w1. It is perfectly possible for different trajectories of w2 to have the same

corresponding trajectory of w1.

The projection operation leads to a crucial result on how to construct the pro-

jected behaviour from an interconnected system and what observability implies

in an interconnected system. It shows explicitly how to reconstruct an intercon-

nected system from its projections. Note that in this proposition, and in many

subsequent results, the interconnected systems are only given in terms of their

subsystems Σi and not in terms of their behaviours Bi because although the in-

terconnected systems are physically configured in the way described by Σi, the

interconnected behaviour may be obtained through other methods.

Proposition 5.3. Given a dynamical system

Σ =
[(

Σ1 ∧ Σ2
)
u Σ3

]
∧ Σ4 = (T,W1 ×W2,B), (5.14)

then

(i) πw1 (B) = B1∩πw1 ((B2 ×B3) ∩B4) = B1∩B2∩πw1

([
(W1)

T ×B3
]
∩B4

)
;

(ii) B = [B1 × πw2 (B)] ∩ B4 =
[
(W1)

T × πw2 (B)
]
∩ B4 if and only if w1 is

observable from w2 in Σ.

Proof. (i) This is obvious because the projection of the overall system onto certain

spaces is the same as the intersection of the behaviour(s) containing the variables

and the rest of the system with the said variables regarded as “manifest” variables.
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(ii) For this part, only the proof of the equivalence of the observability of the

system and B = (B1 × πw2 (B)) ∩ B4 is given. The other equivalence follows

analogously. The definitions of the two behaviours are, respectively,[(
B1 ∩B2

)
×B3

]
∩B4

=
{

(w1, w2) | w1 ∈ B1, w1 ∈ B2, w2 ∈ B3, (w1, w2) ∈ B4
}
,

(5.15a)

(
B1 × πw2 (B)

)
∩B4

=
{

(w1, w2) | ∃`, ` ∈ B2, (`, w2) ∈ B4, w1 ∈ B1, w2 ∈ B3, (w1, w2) ∈ B4
}
.

(5.15b)

The two sets are equal if and only if ` = w1, and this should hold true for all w1,

which is true if and only if w1 is observable from w2.

The first statement is a mathematical representation of the projection opera-

tion illustrated above. Other than this, it also provides a very useful operation:

it is possible to move one or more sets of behaviours into or out of the projection

operator if the set of behaviour to be moved has the same signal space as that

the interconnected system is projected onto. The second statement is a powerful

result due to the definition of observability. It states that if w1 is observable from

w2, then the projection of w2, together with the network, determines the entire

behaviour completely. As will be shown in the next section, this result is one of

the foundations of the construction of the desired controlled behaviour.

5.3.2 Construction of the Interconnected Behaviour

One of the physical interpretations of a trajectory belonging to the projected

behaviour is a measured trajectory. The projected behaviour is therefore the set

of all measured trajectories. The question that naturally arises is that whether

this behaviour is enough to construct the complete interconnected behaviour. The

following theorem claims that the behaviour of an interconnected system can be
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reconstructed from the projections of the behaviour onto the signal space of each

subsystem combined with the network behaviour.

Theorem 5.4. Given an interconnected system

Σ =

(
N⊔

i=1

Σi

)
∧ ΣH =

(
T,

N×
i=1

Wi,B

)
, (5.16)

then,

(i) assuming that behaviours Bi are not known but the projections on their man-

ifest variables are known, the interconnected behaviour can be fully obtained

as

B =

(
N×
i=1

πwi (B)

)
∩BH ; (5.17)

(ii) assuming, without loss of generality, that the first n behaviours are fully

known while the rest only have information of the projections, the intercon-

nected behaviour can be fully obtained as

B =

[(
n×
i=1

Bi

)
×
(

N×
i=n+1

πwi (B)

)]
∩BH . (5.18)

Proof. To prove this theorem, an auxiliary result is needed, which is stated in the

following lemma.

Lemma 5.5. Suppose an interconnected behaviour is of the form (5.10), then

(i) πwi (B) ⊂ Bi, ∀i ∈ Z+
N ;

(ii) B ⊂
N×
i=1

πwi (B).

Proof. (i) This is a direct generalisation from Proposition 5.3(i).

(ii) Using the definitions of the two sets:

B =
{
w | ∀i, wi ∈ Bi, w ∈ BH

}
(5.19)
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and

N×
i=1

πwi (B) =
{
w | ∀i∃`ij∀j 6= i, wi ∈ Bi, `ij ∈ Bj,

(`i1, . . . , `
i
i−1, w

i, `ii+1, . . . , `
i
N) ∈ BH

}
,

(5.20)

it is obvious that the former is the latter with extra condition `ij = wj,∀i, j. Note

that the two behaviours are the same when BH = WT (i.e., πwi (B) = Bi, ∀i).

This happens when all subsystems are isolated.

We are now in the position to prove the theorem.

(i) From Proposition 5.3(i),

πwi (B)

=Bi ∩ πwi
([(

i−1×
j=1

Bj

)
×
(
Wi
)T ×( N×

j=i+1

Bj

)]
∩BH

)
:=Bi ∩Bi

π

(5.21)

It follows from Lemma 5.1(iii) that(
N×
i=1

πwi (B)

)
∩BH

=

(
N×
i=1

Bi ∩Bi
π

)
∩BH

=

(
N×
i=1

Bi

)
∩
(

N×
i=1

Bi
π

)
∩BH

=B ∩
(

N×
i=1

Bi
π

)
.

(5.22)

According to Lemma 5.1(i), it suffices to prove that B ⊂×N

i=1
Bi
π. Obviously, for
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all i,

Bi
π =πwi

([(
i−1×
j=1

Bj

)
×
(
Wi
)T ×( N×

j=i+1

Bj

)]
∩BH

)

⊃πwi
([(

i−1×
j=1

Bj

)
×Bi ×

(
N×

j=i+1

Bj

)]
∩BH

)

=πwi

((
N×
i=1

Bi

)
∩BH

)
=πwi (B) .

(5.23)

It then follows that
N×
i=1

Bi
π ⊃

N×
i=1

πwi (B) ⊃ B. (5.24)

To prove (ii), note that πwi (B) ⊂ Bi, ∀i. Combining with the result in (i), it

then follows that

B =

(
N×
i=1

πwi (B)

)
∩BH

⊂
[(

n×
i=1

Bi

)
×
(

N×
i=n+1

πwi (B)

)]
∩BH

⊂
(

N×
i=1

Bi

)
∩BH

= B.

(5.25)

This completes the proof of Theorem 5.4.

The first claim of Theorem 5.4 is that all of the projections of the interconnected

behaviour, together with the network behaviour, determine the interconnected be-

haviour completely. This provides an insight to an interconnected system: each

subsystem within an interconnected system contains a set of trajectories that can

never happen. Therefore, it is in fact not necessary to know the complete in-

formation of each subsystem, knowing the behaviour of each subsystem as an

integrated part of the interconnected system is enough. The most interesting part

of this statement is that the network behaviour is still needed to reconstruct the
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interconnected behaviour even though the projections already contain the network

information. This can be understood from the property of the projection oper-

ation: by projecting B onto Wi, the manifest variables of all other subsystems

are essentially set to latent variables with respect to wi. As such, there may be

trajectories that are not admissible through the interconnected system but indis-

tinguishable from wi point of view. The network behaviour precisely eliminates

this problem because any trajectory that is admissible in the interconnected sys-

tem must be admissible through the network behaviour. In most cases, πwi (B)

can be obtained to a high level of completeness with a large data bank of measured

trajectories and BH is essentially known completely, which gives a possibility for

data-driven control design under this framework.

The second claim of Theorem 5.4, on the other hand, is a much more powerful

result. It shows that if an interconnected system contains several subsystems

with fully known behaviour (e.g., behaviour described by models), using these

fully known behaviours, the observations of the interconnected system from the

manifest variables of the subsystems with unknown behaviours and the network

behaviour also recovers the complete interconnected behaviour. This means that

the proposed construction allows for a unified platform for a hybrid interconnected

system.

If the number of subsystem is 2, then a special, simplified result can be ob-

tained, which is given in the corollary below.

Corollary 5.6. Given a system Σ = (Σ1 u Σ2) ∧ ΣH = (T,W1 ×W2,B), then

B =
[
πw1 (B)×B2

]
∩BH (5.26a)

=
[
B1 × πw2 (B)

]
∩BH (5.26b)

= [πw1 (B)× πw2 (B)] ∩BH . (5.26c)

Proof. This is a direct result from Theorem 5.4 by setting N = 2 and n = 1.
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This result is crucial in the synthesis of controlled behaviour as the intercon-

nected system and the distributed controllers can be seen as two large subsystems.

5.3.3 The Linear Time-Invariant Case

This section presents the realisation of the behaviour constructed in the previous

section with the case where each subsystem is represented by the image of Han-

kel matrices. Consider an interconnected system consisting of N controllable LTI

subsystems. Assume that the network is described by kernel representation with a

constant coefficient matrix Hw = 0, or BH = ker(H). Note that if w admits an in-

put/output partition, then ker(H) is the same as the topology matrix described in

[56]. Suppose the measured trajectories of the subsystems are available. It is then

possible to construct Hankel matrices HL (ṽi) where ṽi is a measured trajectory

for the ith subsystem (see Eq. (2.10)) and it is possible to express the behaviour

of the rest of the subsystems from time steps 1 to L using the column span of the

Hankel matrices. In this case, the order of excitation for the free variables should

be at least L+
∑N

i=1 n (Bi) because

n(B) = n
(
BH
)

+
N∑
i=1

n
(
Bi
)

=
N∑
i=1

n
(
Bi
)
. (5.27)

For a Hankel matrix HL(w̃), its sub-matrix with depth l starting from the kth

block row is denoted as Hl,k(w̃). Assuming sufficient excitation, then according to

Theorem 2.1,

colspan
(
HL

(
ṽi
))

= πwi (B)|[1,L] . (5.28)

According to Theorem 5.4(i) and following Lemma 2.8, a trajectory w ∈ B|[1,L]

can be generated by 
ILw

IL ⊗H

 w̃|[1,L] =


HL(ṽ)

0•×g

 g, (5.29)
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where g is an arbitrary vector, ⊗ is the Kronecker product, and

HL(ṽ) = col (H1,1 (ṽ) ,H1,2 (ṽ) , . . . ,H1,L (ṽ)) , (5.30a)

H1,k(ṽ) = col
(
H1,k

(
ṽ1
)
,H1,k

(
ṽ2
)
, . . . ,H1,k

(
ṽN
))
, (5.30b)

w = col
(
w1, w2, . . . , wN

)
. (5.30c)

Defining A⊥ := I − A†A where † denotes the Moore-Penrose inverse and H⊗L :=

IL ⊗ H where ⊗ is the Kronecker product, some simple manipulations of (5.29)

will lead to the representation

w̃|[1,L] = HL(ṽ)
[
H⊗LHL(ṽ)

]⊥
z, (5.31)

where z ∈ Rg is an arbitrary vector.

Through this construction, the complete behaviour of the interconnected sys-

tem from local measurements can be generated. On the other hand, in order to

obtain the behaviour up to step L, all free variables must be persistently exciting

of order the sum of the state cardinalities of all subsystems.

5.4 Distributed Control Design

This section presents the procedure of obtaining the behavioural sets for dis-

tributed controllers that, when integrated into the system, yield the desired be-

haviour for the variables of interest. The control structure is firstly set up using

the behaviours of the subsystems and problem to be solved can be formulated.

It is then shown that under the behavioural framework, the controller behaviours

can be obtained in a very intuitive way.

5.4.1 Control Structure and Problem Formulation

Consider an interconnected system Σp = (T,Wp,Bp) consisting of N subsystems,

where the ith subsystem is denoted as Σi
p =

(
T,Wi

p,B
i
p

)
. The subsystems are
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interconnected with a network ΣH
p =

(
T,Wp,B

H
p

)
. As a result, the interconnected,

uncontrolled behaviour can be constructed according to (5.10) as

Bp =

(
N×
i=1

Bi
p

)
∩BH

p . (5.32)

Suppose that an array of Nc controllers Σj
c = (T,Wj

c,B
j
c) are employed to control

Σp and the controllers have their own network ΣH
c =

(
T,Wc,B

H
c

)
. Then the

interconnected controllers can be represented as an interconnected system Σc =

(T,Wc,Bc) where

Bc =

(
Nc×
j=1

Bj
c

)
∩BH

c . (5.33)

Note that the number of controllers is not necessarily the same as that of the

subsystems, nor is it assumed that the manipulated variables have any relationship

with the system variables at this stage.

When interconnecting the system with the distributed controllers, another net-

work is needed. This network is defined as ΣH
pc =

(
T,Wp ×Wc,B

H
pc

)
. With these

building blocks, a controlled system can be constructed, which is depicted in Fig-

ure 5.3. As is depicted, the controlled system can be viewed as the interconnection

of two interconnected systems, which defines a latent variable dynamical system

Σfull
pc = (Σp u Σc) ∧ ΣH

pc =
(
T,Wp,Wc,B

full
pc

)
with full behaviour

Bfull
pc = (Bp×Bc)∩BH

pc =

[(
N×
i=1

Bi
p

)
×
(

Nc×
j=1

Bj
c

)]
∩
(
BH
p ×BH

c

)
∩BH

pc. (5.34)

The controlled system can then be expressed as the triple Σpc = (T,Wp,Bpc)

where

Bpc = πwp
(
Bfull
pc

)
. (5.35)

Note that by defining

B′p :=
(
Bp ×BH

c

)
∩BH

pc, (5.36)

it follows that

Bfull
pc = B′p ∩

[
WT

p ×
(

Nc×
j=1

Bj
c

)]
, (5.37)
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Figure 5.3: The Interconnected System Layout

which shows that the distributed control design is equivalent to decentralised con-

trol design to an augmented system with controller network and system-controller

network integrated. By treating the networks as dynamical systems, they have

their own behavioural sets and can thus be treated and rearranged like physical

subsystems.

The objective of control is to select the set of behaviour from the uncontrolled

system such that all selected trajectories meet certain specifications. These spec-

ifications can be formulated as a behavioural set Bps imposed on all manifest

variables wp. As a result, the objective for the control design is to implement

Bp ∩ Bps. On the other hand, the controllers themselves may have restrictions

and objectives such as control saturation and minimum gain requirement, which

can also be formulated as a set of behaviour Bcr on the control variables wc. Al-

though for illustration purpose it is assumed that the system and specifications

share the same signal space, it is easy to formulate such a Bps even if the require-

ments are specified otherwise. Suppose the desired requirements are described

by a set Bs ⊂ WT
s with manifest variable ws, then for Bs to be able to restrict
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Bp, there must exist a network behaviour BH
ps ⊂ (Wp ×Ws)

T such that for all

wp ∈ Bp, there exists ws ∈ Bs such that (wp, ws) ∈ BH
ps. In this case, the set

describing the requirements can be constructed as

Bps = πwp
((
WT

p ×Bs

)
∩BH

ps

)
. (5.38)

Similarly, if the restrictions are imposed on the variable wr ∈ Br ⊂ WT
r , then

there must exsit a network behaviour Bcr linking wc to wr. In such a case, Bcr

can be constructed as

Bcr = πwc
((
WT

c ×Br

)
∩BH

cr

)
. (5.39)

For the clarity of presentation, the notations Bps and Bcr will be used and it is

assumed that Bps and Bcr always have the same signal spaces as Bp and BH
c ,

respectively.

With these components, the problem to be solve in this paper can be formulated

as follows:

Problem 5.1. Given an interconnected dynamical system Σp = (T,Wp,Bp) with

N subsystems Σi
p =

(
T,Wi

p,B
i
p

)
and a network ΣH

p =
(
T,Wp,B

H
p

)
, as well as

the control objectives described by Bps, design, if possible, a distributed control

system Σc = (T,Wc,Bc) with Nc controllers Σj
c = (T,Wj

c,B
j
c) and a network

ΣH
c =

(
T,Wc,B

H
c

)
and restrictions Bcr such that after the interconnection of

Σp and Σc with network ΣH
pc =

(
T,Wp ×Wc,B

H
pc

)
, the controlled system Σpc =

(T,Wp ×Wc,Bpc) shown in Figure 5.3 satisfies

Bpc = Bp ∩Bps (5.40a)

πwf (Bpc) = WT
f , (5.40b)

where Bpc is given in (5.35) and wf denotes the chosen free variables after inter-

connection.
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The meaning of (5.40a) is straightforward: the control design should result

in the manifest controlled behaviour to be the set of common trajectories from

Bp and Bps. In other words, the controlled behaviour should be the subset of

the uncontrolled system behaviour whose trajectories satisfy the requirements.

The implication of (5.40b) is that after the integration of the controller network,

wf (which normally contains exogenous inputs such as disturbance and reference

signals) should still be able to chose whatever trajectories it prefers. This objective

was specified in [73] as a cardinality condition for LTI systems in relation to the

signature of the desired QSR supply rate and was termed “liveness”. Here it is

specified more generically so that the behaviours are representation-free.

5.4.2 Controller Behaviour Synthesis

This section gives the main result of this chapter: the construction of behaviours

of the distributed controllers. Necessary and sufficient conditions for the existence

of the controllers that achieve the objectives in (5.40) will be provided and it will

be shown that the controller behavioural sets can be constructed in a very simple

way.

Before stating the main result, an intuitive explanation is provided to aid the

understanding of the rationale of the control design. As stated in Problem 5.1, the

given components are the subsystems Σi
p, the system network ΣH

p , the controller

network ΣH
c and the system-controller network ΣH

pc. The specifications on the

system and the restriction on the controllers can be constructed as two virtual

“systems” Σps = (T,Wp,Bps) and Σcr = (T,Wc,Bcr), respectively. By doing so,

the two virtual systems can be integrated into the given components, resulting in

a desired objective dynamical system as shown in Figure 5.4. Obviously, the full

behaviour of this system, denoted by Bd, is

Bd :=
[
(Bp ∩Bps)×

(
BH
c ∩Bcr

)]
∩BH

pc. (5.41)
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Figure 5.4: The Desired System Behaviour

The projection of the behaviour of this dynamical system on the control variables

wc gives the largest possible set of behaviour for the controllers. As shown in (5.37),

since the controllers can be viewed as decentralised, the projection on the control

variables of each controller wjc gives the behavioural set for the corresponding

controller Σj
c. Therefore, if the controllers with the aforementioned behavioural

sets are integrated into the system depicted in Figure 5.3, the resulting behaviour

should, in some sense, resemble that shown in Figure 5.4.

The above illustration is now formulated rigorously with the following theorem.

It shows that under certain conditions, the control design can indeed be carried

out using this philosophy, but the resulting controller behaviours require much

more careful descriptions.

Theorem 5.7. For an interconnected system Σp = (T,Wp,Bp) whose stucture

is of the form (5.16), a desirable behavioural set Bps, a controller network ΣH
c =

(T,Wc,B
H
c ), a set of controller constraints Bcr and a system-controller network
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ΣH
pc = (T,Wp ×Wc,B

H
pc), there exists a set of controllers Σj

c = (T,Wj
c,B

j
c) such

that Bc ⊂ BH
c ∩Bcr, where Bc is given by (5.33), that achieves (5.40) if and only

if

Bp ∩Bps ⊂ πwp
([
Bp ×

(
BH
c ∩Bcr

)]
∩BH

pc

)
(5.42a)

πwp (Bex) ⊂ πwp
(
[Bp × πwc (Bin)] ∩BH

pc

)
(5.42b)

πwf (Bp \Bps) ⊂ πwf (Bp ∩Bps) (5.42c)

πwf (Bp) = WT
f (5.42d)

where

Bin =
[(
Bp ∩Bps \ πwp (Bex)

)
×
(
BH
c ∩Bcr

)]
∩BH

pc

Bex = [(Bp ∩Bps)× πwc (Bout)] ∩BH
pc

Bout =
[
(Bp \Bps)×

(
BH
c ∩Bcr

)]
∩BH

pc.

In such a case, all controller trajectories that implement Bp ∩Bps are given by

Bj
c = πwjc (Bin) (5.43a)

= πwjc (πwc (Bd) \ πwc (Bex)) (5.43b)

= πwjc (πwc (Bd) \ πwc (Bout)) (5.43c)

where Bd is given in (5.41).

Proof. (only if ): Suppose (5.40) is achieved, we then have

Bp ∩Bps = πwp
(
(Bp ×Bc) ∩BH

pc

)
.

Then (5.42a) is obvious because Bc ⊂ BH
c ∩ Bcr. (5.42c) is trivially true be-

cause πwf (Bp ∩Bps) = WT
f . Also, according to Lemma 5.2(i), πwf (Bp ∩Bps) ⊂

πwf (Bp) ∩ πwf (Bps), which means πwf (Bp) ∩ πwf (Bps) = WT
f . Since WT

f is the

largest possible set, it follows that (5.42d) is true. To prove (5.42b), we begin by

explaining the construction of the various sets in the theorem. For a given trajec-

tory of wc, there may be a set of trajectories of wp such that (wp, wc) ∈ Bfull
pc . We
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call these trajectories the multiplicities of a trajectory wp and we denote the set

of all these trajectories as

Bm
p =

{
wp ∈ Bp|∃wc ∈ BH

c ∩Bcr, (wp, wc) ∈ Bfull
pc

}
.

In the situation where Bm
p ∩Bp\Bps 6= ∅, in other words, where some trajectories

of wp ∈ Bp ∩Bps has multiplicities outside of the desired behavioural set, these

trajectories need to be excluded from control design because all multiplicities are

exactly the same from wc point of view. To do so, note that these trajectories can

be obtained in two ways: either as trajectories within the desired set with mul-

tiplicities outside, or as trajectories outside with multiplicities within the desired

set. While the former is hard to construct, the latter can be constructed in the

following way:

1. Find all trajectories of wc projected from integrating a dynamical system

containing all trajectories of wp that belongs to Bp but not belong to Bps into

the system. Note that the resulting behaviour for wc is precisely πwc (Bout);

2. All excluded trajectories of wp can be found by projecting all of wc found from

the previous step to wp through the system and intersecting with Bp ∩Bps.

This gives the set πwp (Bex).

The largest possible set of the controller behaviour Bc is hence the subset of

BH
c ∩Bcr containing all trajectories of wc projected from implementing Bp ∩Bps

excluding πwp (Bex) into the network, which is precisely πwc (Bin). Therefore, if

there exists Bc such that (5.40) holds, we must have Bc ⊂ πwc (Bin). As a result,

πwp (Bex) ⊂ Bp ∩Bps

= πwc
(
(Bp ×Bc) ∩BH

pc

)
⊂ πwp

(
[Bp × πwc (Bin)] ∩BH

pc

)
.

This completes the only if part of the proof.
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(if ): Suppose that conditions in (5.42) hold. According to Lemma 5.1(i),

(5.42a) is true if and only if

Bp ∩Bps ∩ πwp
([
Bp ×

(
BH
c ∩Bcr

)]
∩BH

pc

)
=πwp

([
(Bp ∩Bps)×

(
BH
c ∩Bcr

)]
∩BH

pc

)
=Bp ∩Bps.

This precisely means that

πwp (Bd) = Bp ∩Bps

where Bd is defined in (5.41). The goal then is to construct Bc such that

Bpc = πwp (Bd) .

We now show that if (5.42b) holds, we have

πwp
(
[Bp × πwc (Bin)] ∩BH

pc

)
= πwp (Bd) . (5.44)

In other words, πwp (Bd) can be achieved by choosing

Bc = πwc (Bin) . (5.45)

Firstly, notice that

[(Bp \Bps)× πwc (Bin)] ∩BH
pc

=
[
(Bp \Bps)×

(
πwc (Bin) ∩BH

c ∩Bcr

)]
∩BH

pc

=Bout ∩ [(Bp \Bps)× πwc (Bin)] ∩BH
pc

= [(Bp \Bps)× (πwc (Bin) ∩ πwc (Bout))] ∩BH
pc.

We now show that

πwc (Bin) ∩ πwc (Bout) = ∅. (5.46)
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Notice that πwc (Bout) ⊂ BH
c ∩ Bcr, then according to Proposition 5.3(i) and

Theorem 5.4(ii), we have

πwc (Bin) ∩ πwc (Bout)

=πwc
([(

Bp ∩Bps \ πwp (Bex)
)
× πwc (Bout)

]
∩BH

pc

)
=πwc (Bex \Bex) = ∅.

Therefore,

πwp
(
[Bp × πwc (Bin)] ∩BH

pc

)
=πwp

(
[((Bp ∩Bps) ∪ (Bp \Bps))× πwc (Bin)] ∩BH

pc

)
=πwp

(
[(Bp ∩Bps)× πwc (Bin)] ∩BH

pc

)
⊂Bp ∩Bps = πwp (Bd) . (5.47)

For the reverse inclusion, we first show that

πwc (Bin) = πwc (Bd) \ πwc (Bex) , (5.48)

which, according to Lemma 5.1(i), is equivalent to proving that

πwc (Bin) ∩ πwc (Bex) = ∅, (5.49a)

πwc (Bin) ∪ πwc (Bex) = πwc (Bd) . (5.49b)

Since πwc (Bex) ⊂ πwc (Bout), (5.49a) can be directly deduced from (5.46). We

prove (5.49b) using contradiction. To begin with, it is easy to see that

πwc (Bin) ∪ πwc (Bex) ⊂ πwc (Bd) ∪ πwc (Bd) = πwc (Bd) .

Suppose that there exists a subset of πwc (Bd), call it the residual set πwc (Bres),

such that

πwc (Bres) = πwc (Bd) \ πwc (Bin) \ πwc (Bex)
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and suppose that πwc (Bres) 6= ∅. Since πwp (Bex) ⊂ πwp (Bd) = Bp ∩ Bps, it

follows that

πwp (Bin) ∪ πwp (Bex)

=
(
Bp ∩Bps \ πwp (Bex)

)
∪ πwp (Bex)

=Bp ∩Bps = πwp (Bd) .

Furthermore, πwp (Bin) ∩ πwp (Bex) = ∅. Therefore, for all wc ∈ πwc (Bd) there

must exist at least one wp that belongs to either πwp (Bin) or πwp (Bex) such

that (wp, wc) ∈ BH
pc. We first show that for wc ∈ πwc (Bres), the corresponding

trajectories of wp cannot come from πwp (Bin), i.e.,[
πwp (Bin)× πwc (Bres)

]
∩BH

pc = ∅.

Notice that [
πwp (Bin)× πwc (Bex)

]
∩Bpc = Bex \Bex = ∅.

Also, we have

Bd \Bin ⊂ Bd =
[
πwp (Bd)× πwc (Bd)

]
∩BH

pc,

which means that

Bd \Bin

=Bd \Bin ∩
[
πwp (Bd)× πwc (Bd)

]
∩BH

pc

=
[
πwp (Bex)×

(
BH
c ∩Bcr

)]
∩BH

pc ∩
[
πwp (Bd)× πwc (Bd)

]
∩BH

pc

=
[
πwp (Bex)× πwc (Bd)

]
∩BH

pc.

As a result, [
πwp (Bin)× πwc (Bres)

]
∩BH

pc

⊂
[
πwp (Bin)× (πwc (Bd) \ πwc (Bin))

]
∩BH

pc

=
([
πwp (Bin)× πwc (Bd)

]
∩BH

pc

)
\Bin

=
([(

πwp (Bd) \ πwp (Bex)
)
× πwc (Bd)

]
∩BH

pc

)
\Bin

=Bd \Bin \
([
πwp (Bex)× πwc (Bd)

]
∩BH

pc

)
= ∅.
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Therefore, all corresponding trajectories of wp ∈ πwp (Bd) for wc ∈ πwc (Bres)

must belong to πwp (Bex). On the other hand, all trajectories in πwp (Bex) has

multiplicities in Bp \Bps, it follows that

πwc (Bres) ⊂ πwc
([

(Bp \Bps)×
(
BH
c ∩Bcr

)]
∩BH

pc

)
= πwc (Bout) ,

but πwc (Bres) ⊂ πwc (Bd) by definition. We therefore have

πwc (Bres) ⊂ πwc (Bd) ∩ πwc (Bout)

= πwc
(
[(Bp ∩Bps)× πwc (Bout)] ∩BH

pc

)
= πwc (Bex) .

But πwc (Bres) 6⊂ πwc (Bex) by construction, which leads to a contradiction. This

means that πwc (Bres) = ∅. Therefore, (5.49b), hence (5.48), is satisfied.

Now, from (5.47), (5.48) and according to Proposition 5.3(i), Lemma 5.2(iii),

we have

πwp
(
[Bp × πwc (Bin)] ∩BH

pc

)
=πwp

(
[Bp × πwc (Bin)] ∩BH

pc

)
∩Bp ∩Bps

=πwp
(
[(Bp ∩Bps)× πwc (Bin)] ∩BH

pc

)
=πwp

(
[(Bp ∩Bps)× (πwc (Bd) \ πwc (Bex))] ∩BH

pc

)
=πwp (Bd \Bex)

⊃πwp (Bd) \ πwp (Bex) .

Since (5.42b) holds, we then have

πwp
(
[Bp × πwc (Bin)] ∩BH

pc

)
⊃ πwp (Bd) \ πwp

(
[Bp × πwc (Bin)] ∩BH

pc

)
This is true if and only if

πwp (Bd) \ πwp
(
[Bp × πwc (Bin)] ∩BH

pc

)
= ∅,

which, according to Lemma 5.1(i), is true if and only if

πwp (Bd) ⊂ πwp
(
[Bp × πwc (Bin)] ∩BH

pc

)
. (5.50)



5. A Set-theoretic Approach to Distributed Control 108

The combination of (5.47) and (5.50) gives (5.44). This completes the proof of

achieving (5.40a).

For achieving (5.40b), if (5.42c) holds, then according to Lemma 5.2(ii)

πwf (Bp ∩Bps) = πwf (Bp ∩Bps) ∪ πwf (Bp \Bps)

= πwf ((Bp ∩Bps) ∪ (Bp \Bps))

= πwf (Bp)

Since πwf (Bp) = WT
f due to (5.42d), it follows that

πwf (Bp ∩Bps) = WT
f . (5.51)

Since other conditions guarantee (5.40a), (5.51) implies (5.40b).

Finally, we show that choosing individual controllers as (5.43) will result in

(5.45). Since Bc is of the form (5.10) and πwc (Bin) ⊂ BH
c , we have

Bc =

(
Nc×
j=1

Bj
c

)
∩BH

c =

(
Nc×
j=1

πwjc (Bc)

)
∩BH

c .

By choosing (5.43), we can construct Bc according to Theorem 5.4(i) as

Bc =

(
Nc×
j=1

πwjc (Bin)

)
∩BH

c =

(
Nc×
j=1

πwjc (πwc (Bin))

)
∩BH

c = πwc (Bin) .

Furthermore,

πwc (Bd) \ πwc (Bex)

=πwc (Bd) \ πwc
(
[(Bp ∩Bps)× πwc (Bout)] ∩BH

pc

)
=πwc (Bd) \

[
πwc

([
(Bp ∩Bps)×WT

c

]
∩BH

pc

)
∩ πwc (Bout)

]
=
(
πwc (Bd) \

[
πwc

([
(Bp ∩Bps)×WT

c

]
∩BH

pc

)])
∪ [πwc (Bd) \ πwc (Bout)]

=πwc (Bd) \ πwc (Bout) . (5.52)

Equations (5.48) and (5.52) give the equivalence relationships in (5.43).
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Notice that (5.43) is the smallest controller behavioural set to achieve (5.45).

Bj
c may contain other trajectories but they must not be admissible through BH

c .

This completes the proof of Theorem 5.7.

The meanings of (5.42a) and (5.42d) are easy to understand. (5.42a) claims

that the desired behaviour should be admissible through the uncontrolled be-

haviour and (5.42d) states that the free variables must already be free in the

interconnected system. The rationales of conditions (5.42b) and (5.42c) are the

same so they are explained together. Although the process of design is essentially

elimination of a subset of trajectories from the original set from the point of view

of the design variables, there will be corresponding trajectories of the other vari-

ables eliminated as well during the process. On the other hand, it is desirable

to have the behaviours of a set of variables unchanged during the process. In

order to achieve this, trajectories that are eliminated for this set of variables must

have other corresponding trajectories within the desired behaviours of the design

variables so that these trajectories can still be implemented. For (5.42b), the elim-

inated trajectories of wp from Bp ∩Bps must have corresponding trajectories of

wc that will be used for implementation; for (5.42c), the eliminated trajectories

of wf due to the restriction of Bp by Bps should also be able to be implemented

somehow by the trajectories of other variables within the set Bp ∩Bps.

The most notable feature of Theorem 5.7 is that it carries out control design in a

completely balanced way: instead of assuming dominance of the to-be-controlled

variable over the manipulated variables, they are simply two sets of variables

whose trajectories need to be admissible through the system. The controllers are

simply restricting the trajectories of the system to a subset that is also a subset

of the behaviour describing the desired requirements rather than inverting the

system dynamics in any way. Another interesting observation is that the final

set of controller trajectories is only a subset of the desired controlled behaviour
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πwc (Bd). This is because all trajectories in πwc (Bd) are coming form the desired

controlled behaviour, trajectories in Bp that are admissible with those in πwc (Bd)

may not come from πwp (Bd). To make sure that these trajectories are not going

to happen, the size of the possible choice of wc must be reduced to the point that

all corresponding trajectories of wp cover exactly the whole desired behavioural

set. However, under certain regularity assumptions, the controller behaviour is in

fact the exact behaviour projected from the desired controlled behaviour.

Corollary 5.8. For the setup in Theorem 5.7, if, additionally, wp is observable

from wc and/or wc is observable from wp, then the controller behaviours can be

obtained as

Bj
c = πwjc (Bd) . (5.53)

Proof. We prove this corollary by showing that πwp (Bex) = ∅ for both cases,

thereby deducing that Bd = Bin.

Case I: wp observable from wc

According to Proposition 5.3(ii),

πwp (Bex) = (Bp ∩Bps) ∩ πwp
([
WT

p × πwc (Bout)
]
∩BH

pc

)
= Bp ∩Bps ∩ πwp (Bout) .

Now, notice that

πwp (Bout) = πwp
([

(Bp \Bps)×
(
BH
c ∩Bcr

)]
∩BH

pc

)
⊂ Bp \Bps

it follows that

πwp (Bex) ⊂ (Bp ∩Bps) ∩ (Bp \Bps) = ∅. (5.54)

Note that for this case, (5.42b) becomes redundant.

Case II: wc observable from wp

To begin with, (5.42b) implies that

πwp (Bex) = πwp (Bex) ∩ πwp
(
[Bp × πwc (Bin)] ∩BH

pc

)
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= πwp
([
πwp (Bex)× πwc (Bin)

]
∩BH

pc

)
.

Then, according to Proposition 5.3(ii) and Corollary 5.6, we have

πwp (Bex) =πwp
([
πwp (Bex)×WT

c

]
∩
[
WT

p × πwc (Bin)
]
∩BH

pc

)
=πwp

(
Bex ∩

[
WT

p × πwc (Bin)
])

=πwp
(
πwp (Bex)× [πwc (Bin) ∩ πwc (Bex)]

)
.

The emptiness of the last line above follows from (5.49a).

This corollary suggests that with the regularity assumptions, the controller be-

haviour can be found easily using the rationale illustrated before the introduction

of Theorem 5.7: construct the desired controlled behaviour and see how wc be-

haves. The trajectories obtained are the ones giving the desired behaviour for wp.

While the case where wc is observable from wp is rather rare, the case where wp

is observable from wc appears much more frequently. For example, wc is generally

observable from wp in decentralised control. Therefore, if one were to search for

the controller trajectories, one should begin by checking if either special case in

Corollary 5.8 applies, in which case fewer conditions or relaxed conditions were

needed to be verified. The general conditions in Theorem 5.7 should be used if

neither of the special cases would apply.

5.4.3 The Linear Time-Invariant Case

The discussion in this section is a continuation of that in Section 5.3.3. Suppose

that BH
p = ker(Hp), then following Section 5.3.3, Bp|[1,L] can represented by

w̃p|[1,L] = HL (ṽp)
[
H⊗Lp HL (ṽp)

]⊥
zp := Mpzp. (5.55)

Suppose now that a network of distributed controllers is to be designed to render

the controlled system dissipative with respect to a supply rate QΦ(wp). The dissi-

pativity can be verified according to the following proposition. Note that a similar
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formulation has been given in the context of stand-alone systems with forward

shifts in [64].

Proposition 5.9. Given Bp|[1,L] represented by (5.55) and a QdF induced by

Φ ∈ Sw[ζ, η] with order K with K ≤ L(B), then Bp|[K+1,L] is Φ-dissipative if

MT
p ΠT Φ̃⊗L−KΠMp ≥ 0, (5.56)

where

Πw̃p|[1,L] =



w̃p|[1,K+1]

...

w̃p|[L−K,L]


.

Proof. The proof is relatively straightforward by seeing that (5.56) is a compact

representation of (2.35) with wp represented by (5.55) for L−K steps and therefore

omitted. Note that the dissipativity of the first K steps cannot be verified because

there is no previous trajectory for them.

Similar to the representation of BH
p , it is assumed in this section that BH

pc =

ker(Hpc) and BH
c = ker(Hc). For now, no further requirements for the controllers

are imposed, i.e., Bcr = WT
c . The effect of Bcr will be discussed by the end of

this section. In general, wp and wc are not observable from each other since it is

normally not possible to deduce the trajectories within the network from partial

information of the external variables. Therefore, conditions in (5.42) need to be

verified.

In this setting, (5.42a) means that all trajectories from Bp that is dissipative

with respect to the supply rate induced by Φ(ζ, η) should be admissible to the

system-controller network and the corresponding trajectories of the control vari-

ables should be admissible to the controller network. The representation of BH
pc
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can be written as [
H⊗Lpcp −H⊗Lpcc

]
w̃p|[1,L]

w̃c|[1,L]

 = 0 (5.57)

Combining with the kernel representation of BH
c , i.e.,

H⊗Lc w̃c|[1,L] = 0, (5.58)

the behaviour of πwp
((
Bp ×BH

c

)
∩BH

pc

)
can be constructed as the image of Mp

with zp satisfying

H⊗LpcpMpzp =
(
HpcpH

⊥
c

)⊗Lzc1. (5.59)

Assuming, for illustration purpose, that H⊗LpcpMp is right invertible, the represen-

tation for zp is then

zp =

[(
H⊗LpcpMp

)† (
HpcpH

⊥
c

)⊗L (
H⊗LpcpMp

)⊥]

zc1

zc2

 := Mzzc (5.60)

where zc and z′c are arbitrary and Mz ∈ Rzp×(zp+Lwc). The condition is then that

(5.60) holds for all zp such that

zTpM
T
p ΠT Φ̃⊗L−KΠMpzp ≥ 0. (5.61)

This is equivalent to stating that (5.61) does not hold for all zp such that (5.60)

does not hold. It is a well-known fact that the orthogonal complement of (5.60)

is given by

MT
z z
⊥
p = 0. (5.62)

According to the well-known Finsler Lemma (see [121], for example), the negation

of (5.61) for all z⊥p satisfying (5.62) is equivalent to the existence of a matrix

F ∈ R(zp+Lwc)×zp such that

−MT
p ΠT Φ̃⊗L−KΠMp + He

{
F TMT

z

}
> 0. (5.63)
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As ΣH
p , ΣH

pc and all subsystems in Σsys
p are LTI systems, (5.42b) can be for-

mulated more uniformly in terms of the hidden behaviour. Since the resulting

system by interconnecting ΣH
p , ΣH

pc and Σsys
p is still linear, the requirement (5.42b)

becomes

πwp (Bex) ⊂ πwp (Bin)⊕Bhc (5.64)

where Bhc is the behaviour “hidden” from wc. Since πwp (Bin) and πwp (Bin) ⊕

Bhc are indistinguishable from wc point of view, it follows that the distributed

controllers exist if and only if Bhc ⊂ πwp (Bd) = Bp ∩ Bps (as guaranteed by

(5.42a)). Since Bhc is already a subset of Bp, this condition reduces to Bhc ⊂ Bps.

This result is the generalised version of that in (2.44).

From (5.57), it is obvious that the hidden behaviour of BH
pc is Hpcpwp = 0

and that the behaviour “hidden” from wc can be constructed similarly as that in

(5.29), with H replaced by col (Hp, Hpcp). Leading to the representation of the

behaviour as

w̃p|[1,L] = HL(ṽp)



Hp

Hpcp


⊗L

HL(ṽp)


⊥

zh := Mhzh, (5.65)

where zh ∈ Rzp is an arbitrary vector. Although not all trajectories in Bp are

supposed to be dissipative with respective to Φ, the hidden behaviour described

in (5.65) should. According to Proposition 5.9, the realisation of (5.42b) is hence

MT
hΠT Φ̃⊗L−KΠMh ≥ 0, (5.66)

Conditions (5.42c) and (5.42d) are related with the internal dynamics of the

interconnected system Σp. In fact, every dynamical system can be viewed as a

miniature interconnected system. As an example, consider an LTI system de-

scribed by a latent variable representation R(σ)w = M(σ)`. According to [39],
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there always exist unimodular matrices U(σ) and V (σ) such that

U(σ)R(σ) =


R1(σ)

R2(σ)

, U(σ)M(σ) =


0

M2(σ)

 ,

V (σ)R(σ) =


0

R4(σ)

, V (σ)M(σ) =


M3(σ)

M4(σ)

 .
(5.67)

Now, by defining Σw = (T,W,Bw), Σ` = (T,L,B`) and ΣH = (T,W × L,BH),

it follows that (Σw u Σ`) ∧ ΣH = Σ. Although impossible to get Bw or B`, it is

true that πw (B) = ker(R1), π` (B) = ker(M3) and BH = ker



R2 −M2

R4 −M4


.

According to Theorem 5.4, (Bw×B`)∩BH = B, and it is not hard to verify that

this is the case by constructing B according to Lemma 2.8.

Similar to the realisation of (5.42b), (5.42c) can be formulated as a condition

on Bhd, the behaviour with manifest variable wf that is “hidden” from wd, i.e.,

all trajectories of wf such that (wf , 0) ∈ Bp. Following the logic of realising

(5.42b) discussed above, the condition for (5.42c) is then Bhd ⊂ πwf (Bp ∩Bps).

By partitioning wp as wp = (wd, wf ) where wf contains all of the components that

should remain free in the interconnected system and permuting Mp accordingly

to col (Md,Mf ), (5.55) can be represented equivalently as,

w̃d|[1,L] = Mdzp, (5.68a)

w̃f |[1,L] = Mfzp. (5.68b)

The trajectories of wf that corresponds to the trivial trajectory in wd can be

obtained by all choices of zp such that w̃d|[1,L] = 0, or

w̃f |[1,L] = MfM
⊥
d zhd. (5.69)



5. A Set-theoretic Approach to Distributed Control 116

Following Proposition 5.9, (5.42c) in this context is then
0

MfM
⊥
d


T

ΠT Φ̃⊗L−KΠ


0

MfM
⊥
d

 ≥ 0. (5.70)

Lastly, (5.42d) can be formulated as

rank (Mf ) = Lwf (5.71)

because in this way there always exists a zp, hence a trajectory w̃d|[1,L] for any

given trajectory w̃f |[1,L] ∈WZ+
L
f .

If (5.63), (5.66), (5.70) and (5.71) are satisfied, then the controller behaviours

can be constructed based on one of the ways in (5.43). In this case, (5.43c) is

used because Bd and Bout share the component
(
Bp ×BH

c

)
∩BH

pc. In this case,

they are the set of trajectories (wp, wc) satisfying (5.55), (5.57) and (5.58). The

wc component of the combination of (5.55) and (5.57) can be obtained with some

linear algebra as

w̃c|[1,L] =

[(
H†pccHpcp

)⊗LMp

(
H⊥pcc

)⊗L]

zp

z′c

 . (5.72)

Substituting into (5.58) gives
zp

z′c

 =

[(
HcH

†
pccHpcp

)⊗LMp

(
HcH

⊥
pcc

)⊗L]⊥ zpc :=


Mp

Mc

 zpc. (5.73)

The set of trajectories for the control variable wc are generated by the choices of

zpc such that the corresponding choice of wp, in addition to all of its multiplicities,

are within Bps. For a given z∗pc, all choices of w∗p that leads to this particular w∗c

can be parametrised as

w∗p|[1,L] = MpMpz
∗
pc + Mhzh, (5.74)
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where the latter part is the hidden behaviour defined in (5.65). The valid choices

of zpc are then those such that

(MpMpzpc + Mhzh)
T ΠT Φ̃⊗L−KΠ (MpMpzpc + Mhzh) ≥ 0 (5.75)

for all zh ∈ Rzp . The trajectories for wc can then be generated as

w̃c|[1,L] =
[(
H†pccHpcp

)⊗L
MpMp +

(
H⊥pcc

)⊗LMc

]
zpc, (5.76)

and the controller trajectories for each distributed controller w̃jc|[1,L] are simply the

corresponding elements because, with the network behaviour embedded already,

the controllers are essentially “decentralised” at this point.

At this point, there is no further restriction on the controller behaviour, hence

zpc can be chosen arbitrarily. However, further conditions can be posed onto

the controller behaviour by adding restriction through Bcr. For example, the

representation of Bcr can be a min function with some argument (e.g. a positive

semi-definite QdF with respective to wc), in which case zpc should be chosen such

that the argument is minimised.

5.5 Summary

In this chapter, a framework for the analysis and distributed control of intercon-

nected systems from set-theoretic point of view using behavioural systems theory

has been proposed. The network of an interconnected system have been viewed as

a dynamical system with its own internal dynamics, which enables the representa-

tion of interconnected behaviour to be constructed explicitly from its components,

regardless of their respective representations. Furthermore, it has been shown

that the interconnected behaviour can be completely constructed using the pro-

jections of the behaviours of the subsystems from the interconnected system and

the behaviour of the network. It has also been shown that the same effect can be
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achieved with any numbers of complete behavioural sets for some subsystems, the

projections of the others and the behaviour of the network, allowing for a hybrid

platform for model-based/data-driven interconnected systems. Necessary and suf-

ficient conditions for the existence of distributed controllers have been provided

and controller behaviours have been constructed explicitly. It is believed that this

is a more natural view of a dynamical system and is a promising direction for the

development of data-driven and hybrid control methods.



Chapter 6

Conclusions and

Recommendations

6.1 Summary and Conclusions

The rapid development of technology has promoted new paradigms in the design

and monitoring of systems. The scale of the systems has become larger, the

interconnections among subsystems has becomes increasingly complex and the

main focus on the analysis of a systems has shifted from model-based analysis

to hybrid model/data structure or even purely data driven. While these new

paradigms lead to much higher production rate and more efficient energy usage, the

complex dynamical features due to the strong interactions among subsystems make

the control of such a system a challenging task. This thesis amounts to provide a

unified platform for the design of distributed controllers under the framework of

the behavioural systems theory. The set-theoretic view of dynamical systems, the

free choice of representations of subsystems and the effectiveness in representing

interconnections make this framework ideal in the analysis and control of large-

scale interconnected system with components represented in a variety of ways.

119
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In Chapter 3, the framework of distributed robust control of an interconnected

system whose subsystems are LTI but have uncertain regions described by convex

polytopes has been formulated. By representing the behaviours of the vertices of

the uncertain regions as kernel representations, the uncertain behaviours can also

be represented by a kernel representation whose coefficient matrices are represented

by the linear combinations of the vertices of their respective uncertain polytopes.

Parameter-dependant QDF dissipativity properties of the uncertain systems can

then be found by finding that of the vertices and combining them using the same

uncertain weightings. In such a way, the uncertain LTI systems are viewed from

the perspective of dissipative dynamical systems, which makes the representation

of the interconnected system much easier to construct. The controllers can also be

initially described as dissipative dynamical systems with to-be-determined mani-

fest variables. As such, the controlled interconnected behaviour can be represented

as a dissipative dynamical system whose supply rate is the linear combination of

that of the subsystems and the controllers. Restrictions can then be posed on the

supply rate of the controlled interconnected behaviour as a supply rate as well,

from which the controller supply rates can be found. The controllers can then

be described by LTI differential systems through J-factorisation of the controller

supply rates and parametrisation of the behaviour.

In Chapter 4, the philosophy described above has been extended into intercon-

nected systems whose subsystems have parametric uncertainties. The resulting

uncertain region may no longer be convex and polytopic uncertainty illustrated

above can be viewed as a special case of this. The notion of PQDF has been pro-

posed accordingly as a generalisation of the parameter-dependant QDF. As such,

the entire framework can be generalised from polytopic description to generic de-

scription of uncertainties in the subsystems. However, due to the non-convexity

of the description, convex optimisation tools can no longer be directly applied to
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search for the solutions and other methods needs to be proposed. Two methods

have been proposed in Chapter 4. If the scale of the problem is relatively small

and that the uncertain systems have relatively smooth representations in terms of

the uncertain parameters, then SOS programming can be used by approximating

the uncertain coefficient matrices using polynomials of the uncertain parameters

and assuming PQDFs as polynomials of the uncertain parameters as well. If the

uncertain coefficient matrices are naturally polynomial with respect to the uncer-

tain parameters, then this method yields a deterministic solution. On the other

hand, if the scale of the problem is large and the uncertain coefficients are not

smooth enough, then a probabilistic solution can be obtained through the sce-

nario approach. This approach yields a solution that is highly possible to achieve

the control goals almost all the time.

In Chapter 5, the distributed control problem have been discussed from a purely

set-theoretic point of view. This is a further, and a rather big, leap of generalisation

of the issues discussed in the previous two chapters. In fact, this framework

is a generalisation and unification of a wide range of control problems, in that

the discussions are not restricted to any type of systems but systems in general.

Dynamical systems are viewed purely as a set of trajectories with no prescribed

representations and interconnections are viewed as the restriction on the possible

admissible trajectories by posing additional constraints on the system. Control is

hence not so much a trajectory making process as a trajectory selection process.

By abstracting the network of an interconnected system as a dynamical system,

the interconnected behaviour can be constructed explicitly from the behaviour of

the subsystems and the network. It has also been shown, through the notion of

projection, that the projected behaviour of each subsystem, or any combinations

of the projected and complete behaviours of the subsystems, together with the

behaviour of the network, can also recover the complete interconnected behaviour.
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The control specifications and controller restrictions can also be abstracted as

dynamical systems, in which case the controlled interconnected system can be

viewed as a dynamical system whose trajectories are the common ones in the

interconnected system, the distributed controller, the system describing the control

specification and the system describing controller restriction. With this setting,

necessary and sufficient conditions for the existence of controller behaviour as well

as the explicit construction of the controller behavioural sets have been given.

6.2 Main Contributions

The main contribution of this thesis is to the distributed control of interconnected

system in the behavioural systematic settings. Specifically, the following contri-

butions have been made:

1. A single control framework that deals with both interconnections among

subsystems and uncertainties within the subsystems has been formulated;

2. Algorithms for the design of distributed controllers with subsystems hav-

ing polytopic uncertainties, smooth generic uncertainties and non-smooth

generic uncertainties have been proposed;

3. A completely representation-free framework for the analysis and distributed

control of interconnected systems has been developed;

4. Necessary and sufficient conditions for the existence of controller behaviours

have been given;

5. The controller behavioural sets that achieve desired control goals have been

constructed explicitly.
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6.3 Future Work

As a new framework, it opens up numerous questions and there is considerable

scope for further developments. In this section, a few of the immediate future

directions are listed.

6.3.1 Data-driven/Hybrid Control Algorithms

The primary characteristics of a data-driven system is that its behaviour is de-

scribed entirely based on data sets, and data-driven control stems to control such

a system without explicitly identifying the model. This philosophy fits into the

behavioural framework perfectly, as the framework sees behaviour as a set of tra-

jectories. For LTI systems, the behaviour restricted to a finite length can be

well-represented by the column span of the Hankel matrix generated from one of

its measured trajectories (see Theorem 2.1) and some preliminary studies on de-

scribing such a system from dissipativity point of view have already been carried

out [64]. However, for a system with no prescribed structure, there is generally no

uniform way, or even a regressive way, to describe its behaviour. Two immediate

directions that deserve further research can be summarised as follows.

1. Theorem 5.4 has already shown the possibility of constructing the intercon-

nected behaviour from the measurements of the subsystems and Theorem

5.7 has provided set-theoretic guidelines for the validation of the existence

of the controllers as well as the controller behaviours. However, efficient al-

gorithm to actually implement the guidelines and controllers are yet to be

formulated.

2. Since data sets are collections of finite numbers of finite trajectories of a

behaviour, it can only describe a finite section of the behaviour up to a

certain degree of accuracy. Therefore, it is reasonable to assume that the
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solution to such a problem is going to be a probabilistic one, and that online

recursive training should be carried out when possible.

6.3.2 Partial Measurements

Throughout this thesis, it has been assumed, when necessary, that the required

measurements are always available. This is not necessarily the case in reality. In

such a case, the required information may need to be estimated from local partial

measurements and information sent from neighbour subsystems. Observability

(or detectability) in this case becomes even more important than it already is.

Observability problem can be formulated in two ways: either the required variables

are observable from their own measurements, in which case local observability can

be achieved, or all required variables are observable from all of the measurements

through the network, in which case global observability can still be guaranteed

even though local observability cannot be achieved [122]. Due to the duality of

estimation and control [123], observer trajectories may still be able to be obtained

from implementing (possibly modified version of) the procedure in Theorem 5.7,

but much more work is needed for the case where only global observability can

be guaranteed than the case where local observability can be guaranteed. The

discussion of the internal dynamics of a system in Section 5.4.3 may be of great

importance.

6.3.3 Flexible Manufacturing

Due to the current trend in designing multifunctional plants and factories, the

concept of flexible manufacturing becomes increasingly popular. However, the dy-

namics of such a system becomes complex as it is hard to change the representation

of the interconnected behaviour with the reconfiguration of the interconnection.

The key issue here is that the dynamics of the network is pushed into that of
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the subsystems. By abstracting the network of an interconnected system into a

dynamical system itself according to Definition 5.1, the interconnected behaviour

can be constructed much more easily. One of the precautions though is that since

the network is with its own dynamics, its own memory span must be considered

should the control is carried out in a data-driven context.
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tributed predictive control: Methods and nonlinear process network applica-

tions. Springer, 2011.

[23] P. D. Christofides, R. Scattolini, D. Muñoz de la Peña, and J. Liu, “Dis-
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