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COMPARING NEURAL NETWORK,
DECISION TREE & MAXIMUM LIKELIHOOD

L.K. Milne1, T.D. Gedeon1 and A.K. Skidmore2

1School of Computer Science and Engineering
2School of Geography

The University of New South Wales

Abstract

Detailed maps derived from geographical data
are becoming increasingly desirable for use in
forest management. Many types of data are
available for use in generating maps, for
example, soil and vegetation maps. 

We look at a method for giving high level
classifications that can be used as additional
data for the generation of more detailed maps,
and compare the results with other currently
used techniques. We use multiple techniques
to increase the reliability and accuracy of
predictions. 

We describe a simple method of adjusting the
balance of false positive and false negative
classifications that are produced by the neural
network. This allows better integration with
non-neural network techniques.

Introduction

Collecting data for detailed maps from ground
surveys over large areas is prohibitively
expensive. The areas being studied can also
change considerably over short periods of
time, so it is desirable to be able to generate
maps of forest attributes automatically.

Satellite data has been used quite successfully
to distinguish gross features, such as land
and water (Omatu and Yoshida, 1991). It has
been found that using satellite data alone does
not provide sufficient information for more
detailed mapping to be done, such as
distinguishing forest species (Skidmore and
Turner, 1988).

Ancillary data, such as aerial photographs,
have been used to augment the satellite data to
achieve better results (Skidmore et al, 1994).

The Data

We are using geographical data which is from
an area in the Nullica State Forest on the
south coast of New South Wales. The area,
approximately 20 by 10 km, is broken up into
a grid of 179831 pixels, 30 by 30 m in size.

The data has been collected from satellite
imagery, soil maps and aerial photographs.
From the aerial photographs it is possible to
derive a terrain model and from this derive a
number of terrain features. In this case each
pixel has a value for altitude, aspect, slope,
geology, topographic position, rainfall,
temperature, and Landsat TM bands 1 to 7.

For the purpose of training 190 detailed
sample plots have been surveyed. This data
gives us classifications for 190 of the pixels
in the field area. For use in testing we have
70 pixels that have been surveyed in less
detail, for which we know the classes.

The data has been preprocessed using a
cumulative histogram enhancement technique
(Richards, 1986). For each feature, the
cumulative histogram gives the total number
of pixels that are less than or equal to a given
value, for all possible values. The spread of
the data in the histogram is smoothed out
using the transformation:

       v ' =  bv ∗ á l −  1 é  /  n

where bv  is the cumulative histogram bin
count for a given value v,

l is the number of values required,
n is the number of pixels, and
v '  is the value that v is mapped to.

Using this algorithm the values were scaled to
between 0 and 99 and then divided by 100.
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The requirement for this preprocessing is
demonstrated by the distribution of values for
the geology field, in Figure 1.
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Figure 1. Geology descriptor distribution

As the aspect values are represented in
degrees we have a problem of continuity. An
aspect of 0 is north, but so is 360. To
overcome this, the aspect is represented using
vectors such that each vector is a fixed
distance from its neighbouring values (Bustos
and Gedeon, 1995). That is, the aspect is
encoded in four inputs representing the major
compass points, with some smaller input
values for the adjacent directions. In this way
the distance in the input space between North
to NE is the same as to NW and so on. 

There are five classes for each of the pixels -
scrub, dry sclerophyll, wet/dry sclerophyll,
wet sclerophyll and rainforest. Initially, we
wish to be able to distinguish pixels that
contain only dry sclerophyll forest. Of the
190 training pixels, 99 are Dry.

Decision Tree Classification

To derive a set of rules for classifying the
pixels the C4.5 program was used (Quinlan,
1993). This is a program based on the ID3
algorithm for generating a knowledge base
from a data set.

The default class for pixels not covered by the
rules above is Dry. The performance of the
rules on the training and test sets is shown
below:

Note that 109 out of 190 patterns corresponds
to 57.4% performance on the training set,
while 46 out of 70 patterns is 65.7%
performance on the test set. 

It is relatively unusual to achieve a higher 
value on the test set. This may be due to a

higher proportion of noisy patterns in the
training set. That is, the test set is from the
same population as the training set, but is
cleaner.

C4.5 performance

correct false +ve false -ve

 training 109 81 0

 test 46 24 0

Maximum Likelihood Classification

Maximum likelihood classification is a
statistically based method (Richards, 1993).
For each pixel, x, the discriminant function gi á x é
is calculated.

gi á x é  =  − ln Σ
i
 −  áx −  mi é

t .Σ
- 1

i áx −  mi é

The class i given to a pixel is that with the
maximum value that is over the threshold:

 Ti  =  − 4.774 − 1

2 ln Σ
i
 +  ln p áw i é

where mi  is mean of class i

Σ
i
 is covariance matrix for class i

The performance of the maximum likelihood
classification on the training and test sets is
shown below:

Maximum likelihood performance

correct false +ve false -ve

 training 124 24 42

 test 42 14 14

The performance is 65.3% on the training set,
and only 60% on the test set. This result
seems to contradict our possible explanation
for the difference in the results between
training and test sets using the C4.5 program.

Neural Network Classification

A number of network topologies were tested
by varying the numbers of hidden nodes and
hidden layers. There was no significant
differences in the classifcation abilites of the

2



topologies. The network we have used is a 3
layer network, with a 17 node input layer, a
single 14 node hidden layer and a single node
output layer. The 17 inputs are 4 aspect
values, altitude, slope, geology, topographic
position, rainfall, temperature, and TM bands
1 to 7. We have used a standard back-
propagation model, and will subsequently
just use the words neural network.

The neural network was trained on the
training set, until the error on the test set was
minimum, to avoid overtraining on the
training set. The point at which to stop
training was confirmed by a cross-validation
performed on the training set.

Kogan (1991) has shown that a neural
network trained for categorisation such as
ours, can not be used for scoring. That is, we
can not use the value of the output node as a
confidence factor. If we wished to do the
latter, we would need to train networks
explicitly using the probabilities of class
membership. 

One subtle consequence of Kogan’s work
which we have not seen elsewhere is that the
value of 0.5 as a threshold to distinguish
between two classes is not sacrosanct either.
Thus, in this experiment we vary the
threshold θ from 0.4 to 0.75. The results on
the training set are shown below, left.

Neural net performance on the training set

θ correct false +ve false -ve

0.40 99 91 0

0.45 100 90 0

0 . 5 0 100 9 0 0

0.55 107 81 2

0.60 113 47 30

0.65 89 17 84

0 . 7 0 9 0 1 9 9

The test set results are shown above, right.

Neural net performance on the test set

θ correct false +ve false -ve

0.40 46 24 0

0.45 46 24 0

0 . 5 0 4 6 2 4 0

0.55 46 23 1

0.60 46 16 8

0.65 37 3 30

0 . 7 0 2 4 0 4 6

The results for the standard threshold of 0.5
are similar to the C4.5 result, with
performance of 52.6% on the training set,
and a performance of 65.7% on the test set.
The network seems similarly to have chosen
the Dry category as default.

We have varied the threshold θ, between 0.4
and 0.75. 

With a threshold of 0.7, the network
performance on the training set has dropped
slightly, and dropped noticeably on the test
set. Note the situation with respect to false
positives/negatives has essentially reversed.
Where at a threshold of 0.5, there were no
false negatives, at a threshold of 0.70 there
are no false positives. Note that the threshold
of 0.6 maximises performance on the training
set without degrading the performance on the
test set, with quite roughly similar numbers
of false positives and negatives.

For our purposes, in combining the evidence
from multiple sources and to thus arrive at
better classifications of the forest supratype,
we are more interested in producing low
numbers in the false positive category. At the
threshold of 0.7, the performance on the test
set is only 34.3%, but all errors are false
negatives. That is, any pixel categorised as
Dry is a member of the dry sclerophyll forest
supratype. Of course, the pixels classified as
not Dry will include some pixels which are
incorrectly labelled. Using the two threshold
values of 0.5 and 0.7 allow us to classify
some pixels accurately. Intuitively, what we
are doing is finding the boundaries of the
overlap regions of the classification. 

We have found these boundaries by looking
at the number of occurrences using the test
set, moving and stopping moving the
threshold in a fashion analogous to the use of
test sets and their error values as a validation
test to terminate training. Clearly, by setting
the threshold to 0.0 or 1.0, we can trivially
maximise or minimise the values of the false

3



positive or negative categories. The issue here
is to find the boundaries which do not reduce
the correct values too much.

Conclusions and Further Work

We have used satellite imaged data of a NSW
state forest augmented by ancillary data
derived from aerial photography and other
available information. The data has been used
to derive classifications for dry sclerophyll
forest supratype, using maximum likelihood,
C4.5, and neural network techniques.

Statistically there is no significant difference
in the classification abilities of the three
methods. The maximum likelihood classifier
produced the worst results on the test data.
Both C4.5 and the neural network produced
similar results, with some improvement over
the maximum likelihood, but both producing
overestimations of the number of D r y
classifications. That is, both produced high
false positive results (and low false negative).

We showed how a simple technique of
modifying the threshold in accordance with
the results on the validation test set, can be
used to modify the neural network result to
minimise the false positive results while
keeping correct results as high as possible.

The next stage in our work will be to use the
remaining values in the existing C4.5 and
maximum likelihood classifiers, and to retrain
both of these as well as a separate neural
network to classify those pixels. This hybrid
approach shows considerable improvement in
identifying areas of dry sclerophyll forest.
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