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Abstract

The relationship between fisheries and climate has been given renewed emphasis owing to increasing concern regarding

anthropogenically induced climate change. This relationship is particularly important for estuarine fisheries, where there are

documented correlations between river discharge and productivity. The commercial catch of school prawns (Metapenaeus macleayi)

has been shown to be positively correlated with the rates of river discharge in northern New South Wales, Australia. In the present

study, a simulation model was developed to analyse the dynamics of the stock for 10 years under alternative river discharge scenarios,

and the effectiveness of a series of management strategies under these scenarios was examined. A size-based metapopulation model

was developed that incorporated the dynamics of school prawn populations in three habitats being harvested by three different fishing

methods. The model indicated that both the growth and movement of prawns were affected by the rates of river discharge, and that

higher rates of river discharge usually generated increased commercial catches, but this outcome was not certain. It was concluded

that the population does not appear to be overexploited and that none of the three alternative management strategies performed better

within the model than the current spatio-temporal closures, even under a wide range of river discharge scenarios.

Additional keywords: Bayesian modelling, climate variability, management strategy evaluation, stock assessment.

Introduction

The relationship between the productivity of commercial fisheries, rainfall and temperature has been given

renewed emphasis with concerns regarding anthropogenically induced climate change (Murawski 1993;

Klyashtorin 1998; Klyashtorin 2001). One of the many concerns associated with climate change is the effect

that climate change may have on river discharge and water resources (Oki and Kanae 2006). These impacts

are likely to be compounded by increasing demands from human populations for freshwater (Vorosmarty et

al. 2000).

Correlations have been found between river discharge and the productivity of several estuarine fisheries

around the world (Growns and James 2005; Childs et al. 2008; Nicholson et al. 2008). Such correlations

appear to be particularly important for penaeids, which inhabit subtropical regions (Vance et al. 2003; Robins

et al. 2005; Díaz-Ochoa and Quiñones 2008). The association between river discharge and catch may be

positive (e.g. Penaeus fluviatilis and Penaeus aztecus Gunter and Edwards 1969; Penaeus merguiensis Vance

et al. 1985) or negative (e.g. Penaeus merguiensis Vance et al. 1998) and may not be consistent between

regions for the same species (e.g. P. merguiensis Vance et al. 1985, 1998). One of the key commercial

penaeids in Australia that has been identified as having a positive correlation between commercial catch and

river discharge rates is the eastern school prawn (Metapenaeus macleayi) (Racek 1959; Ruello 1973b;

Glaister 1978a).
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The eastern school prawn is a valuable target species for commercial fisheries operating on the east coast

of Australia. Metapenaeus macleayi also plays an important ecological role in estuarine ecosystems as a

significant species in the food web that connects detritus and primary production to higher trophic levels

(Ruello 1973a; Dall et al. 1990; Griffiths et al. 2007). The commercial and ecological importance of school

prawns has encouraged several research studies into the species’ life history, growth and movement (Ruello

1977; Glaister 1978; Coles and Greenwood 1983); behaviour (Ruello 1973a); size selectivity in fishing gear

(Broadhurst et al. 2004; Macbeth et al. 2005, 2006); and the extent of recreational harvest (Reid and

Montgomery 2005).

The life cycle of the eastern school prawn occurs primarily in estuarine waters and, in general, only

sexually mature prawns move out into ocean waters to spawn. However, as has been identified in almost

every major study of the species, heavy rain events and subsequent large river discharges appear to promote

the seaward movement of both mature and immature school prawns (Ruello 1973a; Glaister 1987; Loneragan

1999).

A major fishery for school prawns exists in the Clarence River, in northern New South Wales (NSW),

Australia. The Clarence River is the largest coastal river in south-eastern Australia, with a total water area of

~103 km2 and a catchment area that covers over 220 000 km2 (McVerry 1995). The Clarence River region

has a mostly subtropical climate with over 1400 mm of rain per annum, most of which occurs in the months

from December to April. Rainfall is highest in the upper regions of the catchment area, and periodic flooding

of the lower catchment occurs after heavy rain events (although major flood mitigation works completed in

the 1960s and 1970s have significantly reduced the volume of flooding) (McVerry 1995). The commercial

prawn fisheries operating in the Clarence River region land approximately half of the total annual catch of

school prawns in NSW (NSW DPI Catch statistics). During the past 5 years, the Estuary Prawn Trawl (EPT)

fishery has landed, on average, over 70% of the school prawns caught in this Clarence region, with the Ocean

Prawn Trawl (OPT) and stow-net fisheries landing ~15% and 9% respectively.

The research presented here had two objectives. The first objective was to develop a simulation model

based on the association between river discharge and school prawn landings in the Clarence River, and to

analyse the dynamics of the stock under various alternative river discharge scenarios. The second objective

was to evaluate alternative management strategies for the three major commercial fisheries that harvest the

stock, considering the uncertainty associated with future rainfall variability.

Materials and methods

Operating model

The model developed for the present study can be classified as a stage/size-structured metapopulation model

(Caswell 1989). Explicitly modelling the spatial population structure using a metapopulation model was

considered essential to capture the dynamics of the interactions between the prawn population and the three

fisheries that target the species (Cadrin and Secor 2009). Together with the dynamics of the school prawn

population, the model incorporated river discharge and temperature, as drivers of school prawn movement

and growth (and hence catchability/vulnerability), and a fisheries component encompassing the three major
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commercial fisheries that harvest the species. As each of these fisheries operates in a different area of the

Clarence system, any environmental effects on prawn movement and growth can impact the fisheries in

different ways. The model was used to analyse the impact of various simulated environmental scenarios on

the three main fisheries in the Clarence River area, as well as on the state of the school prawn stock. A full

description of the model used in this project is presented in an Accessory Publication, available on the web.

Spatial structure of the model

The model represented the Clarence River region and was defined by three broad compartments. The division

of compartments was based primarily on the fisheries that exploit the population, but could be loosely

represented as spatial zones (Fig. 1). The first compartment was the non-fishing zone (C1), which consisted

of the areas of the Clarence River closed to commercial fishing and encompassed all areas upstream of

Ulmarra (near Grafton). The second compartment was the estuary fishing zone (C2), which consisted of the

areas of the Clarence River open to estuary prawn trawl and stow-net fishing. The third compartment was the

ocean fishing zone (C3), which consisted of the ocean waters surrounding the mouth of the Clarence River

classified by NSW DPI as Zone 2 of the ocean prawn trawl grounds; this compartment lies between 29° and

30°S. This zone covered what is understood to be the extent of ocean movements of the school prawns that

emigrate out of the Clarence River estuary to spawn (Glaister 1978). Each of the compartment zones were

chosen specifically so that the model would represent the entire Clarence River school prawn stock (Ruello

1977).

The three compartments shown in Fig. 1 can also be represented diagrammatically in the context of the

model structure (Fig. 2). The top half of Fig. 2 shows each of the prawn stock metapopulations in each of the

compartments, with reproduction and the movement of prawns between compartments shown with arrows.

The bottom half of Fig. 2 presents the size stages used in the model, with the relative numbers of the three

main life stages – larvae, juveniles and adults – represented by the polygons. As shown, the modelled larvae

occurred in greatest numbers in the non-fishing zone, whereas juveniles occurred in all compartments, but

mostly in the estuary fishing zone. Adults were primarily present in the estuary and ocean fishing zones.

Stages of each model run

Each model simulation underwent three stages. A model run began with a population of 107 larval prawns

and underwent a 10-year burn-in process with fishing effort based on the average monthly effort from the

calibration data. Following this, the model moved into the 21-year calibration period (1985–2005) where

observed fishing effort and river discharge data were applied (see the Accessory Publication for data sources).

Finally, the model moved into the 10-year simulation period from January 2006 to December 2015. In this

stage, fishing effort was based on the average historical monthly effort from the past 10 years as well as catch

per unit of effort levels (see Eqn (9) in the Accessory Publication), and river discharges were generated using

a probabilistic model based on the past 21 years of observed records.
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Figure 1: A map of the Clarence River region showing the three model compartments. C1, the non-
fishing zone; C2, the estuary fishing zone; C3, the ocean fishing zone.

Model calibration

The model was calibrated against existing catch data from the Clarence River fisheries. The output from the

model was compared with 21 years of existing catch history from January 1985 to December 2005. However,

it became evident in the calibration of the model to catch history that early life mortality and catchability

were highly correlated. This resulted in several possible solutions from very different combinations of these

parameters. This dilemma was resolved in part by also calibrating the size distributions of the harvested

prawns produced by the model with empirical distributions presented in several publications (Broadhurst and

Kennelly 1996; Broadhurst et al. 2003), including information on the change in size distribution after a major

rain event (Ruello 1973b).
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Figure 2: The stage-size structured metapopulation model showing the three model compartments (C1–C3). The upper area
displays the three metapopulation stocks within each compartment and shows the movement between the populations. The lower

area displays the various life stages based on carapace lengths (CL) into which individuals are graded. The polygons provide a
stylistic representation of the relative numbers of individuals of the three main life stages – larva, juvenile and adult – and in

which compartment these life stages predominantly reside.

The model was then fitted to the observed catch data using a maximum likelihood function and the

Bayesian Sampling Importance/Re-sampling (SIR) method (Brandon et al. 2007; Ives and Scandol 2007).

Owing to computational limitations, Bayesian priors were only applied to a subset of parameters (see also

Fay and Punt 2006). Choosing the most appropriate parameters for the Bayesian priors was a three-step

process. First, the model was manually calibrated using a cost function. Second, a sensitivity analysis was

conducted on the manually calibrated model to help determine the most appropriate parameters. Finally, the

Bayesian SIR approach was applied to the manually calibrated model with Bayesian priors given to the five

most suitable parameters. Each of these steps is explained in more detail in the Accessory Publication.

Climate variability scenarios

The present study examined the effect of nine different climate scenarios on the prawn stock and the estuary

and ocean fisheries that harvest them. The nine scenarios were combinations of the different river discharge

states created by increasing and decreasing future rates of mean river discharge and river discharge variability

with respect to a scenario that maintained historic rates (i.e. those observed from January 1985 to December

2005; see Fig. 3a, b). The historic river discharge rates will hereafter be referred to as the L20D data (Late

20th Century Discharge data).
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Figure 3: Sine curves used to model seasonal variation in the (a) mean and (b) coefficient of variation (CV) of log-
normal distributions fitted to historical maximum river discharge data. The Actual line shows the values from the

historical record and the Low, Avg and High lines show the values used in their respective scenarios.

The scenarios were conducted by projecting into the future the joint posterior distribution of the model

runs produced in the Bayesian SIR step of the calibration process. Each of the model runs that made up the

posterior was projected forward 10 years to produce posterior probability distributions of the management

indicators. The re-sampled joint posterior distribution consisted of 4000 model runs, each with its own set of

values for the five key parameters and each with its own unique stochasticity in river discharge levels,

recruitment error and effort dynamics. The effort for each fishery in the future months was dependent on the

average historical effort, but also on each future month’s catch per unit effort levels (Eqn (9) in the Accessory

Publication). The log of the recruitment error was a normally distributed random variable (mean = 0,

coefficient of variation (CV) = 0.2; Eqn (10) in the Accessory Publication). The future maximum monthly

river discharge rates were derived from a series of seasonal log-normal distributions (one distribution for each
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month), each with a separate mean and CV. This allowed for months that are historically wetter to have a

higher mean and CV than drier months and thus an increased likelihood of a higher river discharge. The

monthly mean and CV values were calculated by fitting the past 21 years of river discharge data to log-

normal distributions. The mean and CV values of these distributions were then modelled with a sine curve

(Fig. 3a, b). These two sine curves represented the L20D levels. As the log-normal distribution has a very

long tail, a cap was placed on the maximum allowed river discharge of 15-fold the mean value. The lower and

higher values involved a 50% decrease and increase, respectively, from the L20D levels. At the extremes,

these scenarios translated into a 20% increase or decrease in the maximum river discharge over the 10-year

projected period, which is consistent with the extremes of predicted changes in precipitation levels for the

Clarence River basin as generated by the climate change model OzClim Version 2.0.1 Beta (CSIRO and IGCI

2007) (see the Accessory Publication for further details).

Stochasticity was incorporated into the model through the log-normal distributions, from which the river

discharge values were generated, as well as through the recruitment error in the stock-recruitment function

(Eqn (10) in the Accessory Publication). Each scenario was simulated with 100 replicates, producing a

distribution of possible outcomes. Each of the nine climate scenarios was conducted under the ‘current

closures’ management strategy explained below.

Alternative management strategies

The eastern school prawn fisheries in NSW are input controlled. The NSW Department of Primary Industries

(NSW DPI) manages the activities of fishers through the number of commercial licences, through restrictions

on fishing gear, boat size and engine power; and through temporal and spatial closures. The alternative

management strategies examined in the present study were restricted to alternative temporal closures and

included the following four strategies.

(1) Current closures (base case): in the current closures strategy, the ocean prawn trawl fishery does not have

any closed season. However, the main channel of the Clarence River is closed to estuary prawn trawling

for the months of June through to November, with Lake Wooloweyah (part of the Clarence estuary

system) closed from June though to September. Finally, for the stow-net fishery, there is a closed season

extending from June though to July, with some additional complexities that did not affect the present

study.

(2) Add May EPT closures: this strategy includes all of the closures in the ‘current closures’ strategy plus the

closure of the EPT fishery in May.

(3) Add Oct EPT closures: this strategy includes all of the closures in the ‘current closures’ strategy plus the

closure of the EPT fishery in October.

(4) Sampled prawns per 1/2 kg closures: in this strategy, a sample is taken at the end of each month using a

single standard estuary prawn trawl boat-day of effort (without error). If the average number of sampled

prawns per 1/2 kg lies above a set threshold (130 prawns per 1/2 kg) then the EPT fishery is closed the

following month. The ocean prawn trawl and stow-net fishery closures remain the same as in the ‘current

closure’ strategy.
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The three alternative management strategies were chosen after consultation with fisheries managers and

representatives of the Clarence River Fishermen’s Co-operative. Each of these four management strategies

was examined under three climate variability scenarios, namely scenarios S4, S5 and S6 (Table 1), which are

the low, average and high L20D discharge scenarios with average L20D variability. This enabled each

strategy to be examined for its performance given the uncertainty associated with future river discharge

levels.

Table 1. The nine climatic scenarios evaluated

Summary of the alternative combinations of low to high historic river discharge (L20D) rates and low to high discharge variance (represented
by the coefficient of variation (CV)) that form the nine climatic scenarios

Low L20D mean Avg L20D mean High L20D mean

Low L20D variability S1: Low CV, Low Mean S2: Low CV, Avg Mean S3: Low CV, High Mean

Average L20D variability S4: Avg CV, Low Mean S5: Avg CV, Avg Mean S6: Avg CV, High Mean

High L20D variability S7: High CV, Low Mean S8: High CV, Avg Mean S9: High CV, High Mean

Results

Model calibration

Step 1: manual calibration

After careful manual calibration, the model was found to have a ‘good’ fit to the observed catch records

from 1985 to 2005 for each of the three fisheries (cost function values of 0.35 for EPT, 0.36 for OPT and 0.73

for stow net). Fig. 4a-c display the observed and estimated catch values for the model run produced by the

manual calibration process. This single replicate indicated that the model was capable of both a good

qualitative and quantitative representation of the three commercial fisheries in the present study.

The observed ocean and estuary catches are considered to be reasonably accurate records, although there

exists an issue with the logbooks before July 1997 where estuary catches from stow nets were uncertain

(approximately 10% of estuary catches). Furthermore, there is some speculation as to the accuracy of the

misclassification of juvenile eastern king prawns (Melicertus plebejus) as juvenile school prawns.

One possible explanation for why the modelled stow-net catches did not always track the peaks of the

observed data is that stow nets are generally set adjacent to the banks of the river in the water column where it

is believed that many of the larger prawns choose to move out to sea on the river flow-out currents. As the

modelled stow-net fishers pulled their catch from the entire population in the estuary rather than a smaller

subset of larger prawns, the modelled catches would be expected to be lower than the catches observed.

Finally, although gear selectivity and size frequency distributions produced in the field can differ greatly

both temporally and spatially within the same river system (Broadhurst et al. 2004; Macbeth et al. 2005), the

size frequency distributions produced by the model were found to lie within the range of published

distributions from the Clarence River (Broadhurst and Kennelly 1996; Broadhurst et al. 2003).

Step 2: sensitivity analysis

In each of the stepwise regression analyses for the sensitivity analysis the R2 correlation co-efficient was

above 50% (Table 2), indicating that the retained parameters could be associated with the key processes
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driving the changes to the management indicators. The R2 for the Future Ocean Prawn Trawl Catch was 69%

(Table 2), indicating a relatively good fit for this regression. The comparatively lower R2 values for the

depletion ratio (DR) and estuary catches (DR R2 = 50%, EPT R2 = 51%) suggest that the responses of these

indicators could not be so easily represented as a simple combination of the parameters in the model.

Table 2. Results of the stepwise regression best-fit to model parameters for the three management indicators

The management indicators are Future Ocean Prawn Trawl Catch (OPT), Future Estuary Prawn Trawl Catch (EPT) and the Depletion Ratio
Biomass 2005/Biomass 1985 (DR). The percentage values indicate the average movement in the management indicator (columns) attributed to
a 20% absolute deviation in each parameter (row) over that parameter’s estimated range of possible values. The final row shows the R2 value

for each regression equation

Parameter Description OPT (%) EPT (%) DR (%)

AM Adult natural mortality 3 2 3

JM Juvenile natural mortality 7 4

LM Larva natural mortality 17 13

q Catchability/fleet efficiency 29 31 36

Rv Virgin recruitment levels 4 3

z Steepness of the stock-recruit relationship 1 1

InitN Initial population number of prawn larvae 3

F8 Fecundity of female prawns >35 mm carapace length 1

LMov3_1 Larva migration from ocean to unfished zone 1

JMov2_1 Juvenile migration from estuary to unfished zone 1

AMov2_3 Adult migration from estuary to ocean 4 2 1

C1TempCa Unfished zone temperature cycle amplitude 1 1 2

C1TempCb Unfished zone temperature cycle base level 2 2 5

C1TempCp Unfished zone temperature cycle phase 10

C1TempCf. Unfished zone temperature cycle phase 1

C2TempCa Estuary temperature cycle frequency 1 1 1

C2TempCb Estuary temperature cycle base level 2 2 4

C2TempCf. Estuary temperature cycle frequency 1 1

C2TempCp Estuary temperature cycle phase 4 3

C3TempCp Ocean temperature cycle phase 1

C1SalBas Unfished zone salinity base level 15 17

C1FooBas Unfished zone food base level 7 5 3

C2SalBas Estuary salinity base level 2 4 4

C2FooBas Estuary food base level 7 7 7

MDCVb L20D variance cycle base level 1

TMRD Total future maximum river discharge 3

RE Months since last major rain event 2

EPT_BasE Estuary Prawn Trawl base monthly effort level 2

OPT_BasE Ocean Prawn Trawl base monthly effort level 1

OPT_MaxE Ocean Prawn Trawl maximum monthly effort level 1

Mult. R2 Multiple R2 0.50 0.69 0.51

The sensitivity analysis illustrated that the key drivers of the estuary and ocean catch levels and DR were

catchability (q), larval mortality (LM), juvenile mortality (JM), the base unfished zone salinity levels

(C1SalBas) and the base unfished zone and estuary food levels (C1FooBas and C2FooBas). The importance

of catchability and larval and juvenile mortality is reasonable given their importance in stock dynamics. Thus,
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these three variables were obvious candidates for the Bayesian analysis, especially considering the lack of

research regarding their true values (see Accessory Publication). Salinity levels are directly related to the

impact of river discharge on migration into fishing zones and hence catch levels. Investigation of the impact

of base unfished zone and estuary food levels (C1FooBas and C2FooBas) showed that these parameters had

virtually the same effect on the model results as larval and juvenile mortality. Because these parameters

directly affected the rate of growth of prawns, changes in these parameters affected the amount of time

prawns spent in each of the high-mortality early life stages.

The significance of some of the temperature-related parameters indicates the importance of the model

assumptions regarding the effect of seasonal patterns on prawn growth and migration. The phase and

frequency parameters (e.g. C1TempCp and C1TempCf) are of less concern than the amplitude and base

parameters (e.g. C1TempCa and C2TempCb). The phase and frequency are dictated by the more rigid annual

seasonal pattern of the Earth’s rotation around the sun, whereas the base and amplitude of seasonal

temperature cycles have changed in recent history, with a portion of these changes likely to be attributable to

anthropogenic impacts (Hennessy et al. 2004).

Several notable parameters did not show up in any of the regression results. The fact that only three

migration parameters were found to be significant (LMov3_1, JMov2_1 and AMov2_3) suggests that the

initial migration parameter values did not greatly impact the results. This is noteworthy as these parameters

were selected to initiate the model and could only be speculated on based on published trends (detailed in the

section on movement in the Accessory Publication). In addition, the parameter for the initial number of larval

prawns (InitN), which was used to start each model run, was found to be non-significant for all of the

management indicators except ocean trawl catch. This suggests that the burn-in process that generated a

steady-state prawn population before the calibration stage was working satisfactorily. The von Bertalanffy

growth parameters would most likely be significant in a sensitivity analysis, but they were not included in the

analysis as the uncertainty in these parameters was contained within the growth rate distributions applied to

the population (see the section on individual growth in the Accessory Publication).

Step 3: Bayesian SIR calibration

The quality of the joint posterior pdf was found to be adequate (in particular maximum importance ratio

(MIR) <0.005 and maximum single density (MSD) <1% (Ives and Scandol 2007)) only when raw (i.e. not log

transformed) catch values were used in the likelihood function (Eqn (24) in the Accessory Publication). This

required the reasonable assumption that the residuals between the observed and predicted catches were

normally distributed.
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Figure 4: Modelled and observed catches from the three fishing methods considered in the present study from the
Clarence River and Ocean Zone 2 (29° and 30°S) from January 1985 to December 2005. (a) Estuary Prawn Trawl; (b)

Ocean Prawn Trawl; (c) stow netting.

Scenarios

Moving from smaller to larger river discharges resulted in an increase in mean ocean catches (a 20% increase

in mean catch with a 20% increase in mean discharge) and a small decrease in estuary catches (a 4% decrease

in mean catch with a 20% increase in mean discharge) (Table 3). This is unsurprising given the effect that

river discharge has on the ocean migration of prawns. The DR also increased, but not to any significant

extent. The lack of change in the DR was likely to be the result of the effect of rain events on increased
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growth away from early-life mortality being tempered by the higher overall catches. That is, the feedback

loops in the model, in particular the density dependence built into the stock recruitment function and the

fisher effort dynamics, helped to maintain a fairly stable biomass.

Table 3. Results from the nine climatic scenarios showing median values (the 25th and 75th percentiles are in parentheses)
for each of the three management indicators

Low L20D mean Avg L20D mean High L20D mean

Future Average Annual OPT Catch (tonnes)

Low L20D variability S1: 67 (63, 74) S2: 84 (72, 100) S3: 105 (85, 121)

Avg L20D variability S4: 67 (63, 75) S5: 82 (67, 99) S6: 102 (80, 120)

High L20D variability S7: 65 (63, 73) S8: 74 (66, 91) S9: 87 (73, 107)

Future Average Annual EPT Catch (tonnes)

Low L20D variability S1: 225 (217, 234) S2: 213 (204, 222) S3: 208 (198, 216)

Avg L20D variability S4: 226 (219, 237) S5: 219 (207, 226) S6: 212 (204, 220)

High L20D variability S7: 229 (221, 238) S8: 223 (212, 231) S9: 218 (207, 227)

Future Depletion Ratio (Estimated Biomass 2015/Estimated Biomass 1985)

Low L20D variability S1: 1.08 (1.04, 1.13) S2: 1.09 (1.04, 1.15) S3: 1.08 (1.04, 1.16)

Avg L20D variability S4: 1.08 (1.04, 1.14) S5: 1.08 (1.04, 1.15) S6: 1.08 (1.04, 1.16)

High L20D variability S7: 1.08 (1.04, 1.14) S8: 1.08 (1.04, 1.14) S9: 1.08 (1.04, 1.15)

The variance of each indicator also increased with increasing river discharge levels. That is, the low

extremes for the high L20D discharge scenarios were similar to the low extremes of the low L20D discharge

scenarios. This can be interpreted as indicating that higher discharge levels do not guarantee higher catches.

Alternative management strategies

Very little separated the results from the four alternative management strategies (Table 4), with none of the

alternative management strategies showing a significantly different effect on the management indicators than

the current strategy (i.e. the 90% confidence intervals of the modelled outcomes overlapped). That said, the

current closure and high prawns kg–1 strategies provided the highest combined catch weights. However, the

May closure and October closure strategies produced a slightly lower variance in the catch. Lower variance in

catches can also be an important management goal as it provides a steadier flow of income to fishers (Grafton

et al. 2004). Thus, if we were to judge the alternative strategies using a range of criteria even these small

differences between the alternative strategies may disappear.

Discussion

One of the key findings from the present modelling study was the possible impact on the Clarence River

school prawn fisheries of future droughts, or reduced river discharge from increasing human water

extractions. If, as suggested by recent research (Hennessy et al. 2004), climate change results in lower future

river discharge levels and increased variability for the Clarence River, the various school prawn fisheries

could be significantly affected. However, some reassurance can be found from the present modelling study in

that none of the alternative discharge scenarios showed a significant depletion in the school prawn stock if the

current fisheries were maintained. Given the role that M. macleayi plays in the Clarence River food web, this



Ives et al. 2009 AAM – for published article DOI: 10.1071/MF07110

Page 13 of 19

is an important finding for the long-term condition of the estuarine ecosystem, which could be susceptible to

the ability of key species to cope with drought (Martin and Michael. 2000).

Table 4. Results from the four alternative management strategies against the three climatic scenarios showing median values (5th and 95th
percentiles in parentheses) for each of the four management indicators
Low L20D mean Avg L20D mean High L20D mean

Future Average Annual OPT Catch (tonnes)

Current closures 67 (63, 75) 82 (67, 99) 102 (80, 120)

Add May closure 68 (63, 75) 82 (68, 99) 103 (80, 120)

Add October closure 68 (63, 75) 82 (68, 99) 103 (80, 120)

High prawns kg–1 68 (63, 75) 82 (67, 99) 102 (80, 120)

Future Average Annual EPT Catch (tonnes)

Current closures 226 (219, 237) 219 (207, 226) 212 (204, 220)

Add May closure 206 (202, 216) 200 (190, 208) 193 (186, 201)

Add October closure 218 (211, 227) 211 (200, 218) 204 (195, 212)

High prawns kg–1 226 (219, 236) 220 (208, 226) 213 (204, 220)

Future Depletion Ratio (Estimated Biomass 2015/Estimated Biomass 1985)

Current closures 1.08 (1.04, 1.13) 1.09 (1.04, 1.15) 1.08 (1.04, 1.16)

Add May closure 1.09 (1.04, 1.15) 1.10 (1.05, 1.15) 1.09 (1.05, 1.16)

Add October closure 1.08 (1.04, 1.14) 1.09 (1.05, 1.15) 1.08 (1.05, 1.16)

High prawns kg–1 1.08 (1.03, 1.14) 1.08 (1.04, 1.15) 1.08 (1.04, 1.15)

The sensitivity analysis showed that one of the most important drivers of each of the management

indicators was the total future river discharge rate. Higher discharge levels resulted in an increased

probability of higher catches and a higher stock biomass, but they did not guarantee them (as illustrated in the

spread of the management indicators).

The sensitivity analysis also showed some clear insights into the main drivers of the population dynamics.

In particular, the catchability of the prawns was shown to have a significant impact on all three of the

management indicators. Given that these populations are known to school, this process may well be more

complex than that represented, yet little research was available to understand this important process for

school prawns (but see Zhou et al. 2007). Also significant in the sensitivity analysis were parameters

associated with larval and juvenile mortality and the stock-recruitment process. Unfortunately, these are also

areas in which little research was available to parameterise the model. The sensitivity of the results to these

parameters suggests that research into recruitment and early-life survival of prawns could significantly

improve the understanding of such stocks (Werner et al. 1983). Research on issues such as the role played by

non-fishing zones (Sheaves et al. 2007) and the impact of pollutants on early survival could prove fruitful

(McVerry 1995). Another research area of potential value is the artificial stocking of juvenile prawns to help

alleviate problems associated with seasonal fluctuations in recruitment (Loneragan et al. 1998; Rothlisberg et

al. 2001). Finally, the fact that the recreational catch of school prawns was included in ‘natural mortality’

could be a significant oversimplification of this process, particularly as recreational catch is most likely to

have increased over time with increases in coastal populations.
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Although an increase in river discharge generally resulted in an increase in the variability in both estuary

and ocean catches, the effect of such large catches on the biomass was mixed. Large river discharge levels

sometimes increased the catch so much that they actually resulted in an overall reduction in future

recruitment in several model runs. This result suggests that alternative management strategies, such as the

closure of different fisheries at different times, could reduce the variability in catch levels. In any case, there

was no significant reduction in catch variability between the four management strategies tested.

The results of the alternative management strategies suggested that there was little reason to change from

the current spatio-temporal closures, and this would be the case even under a wide range of river discharge

scenarios. First, the current strategy produced one of the highest overall future average annual catches in all

scenarios. Second, although the mean DR was slightly lower for the current strategy, the difference between

the strategies was not significant and in all cases the DR was greater than one, suggesting that the stock was

not at serious risk of recruitment overfishing, regardless of the management strategy used. Finally, significant

industry and transition costs could be involved in moving to a new strategy, particularly to a strategy based

on sampled prawn counts. Although this latter closure strategy fared reasonably well in this analysis it would

be difficult for fishers to manage because it would create an inconsistency in their income streams and make

the payment of large costs and loans more difficult. Furthermore, it would make it harder for the fishers to

retain skilled workers as they would not be able to offer defined periods of work. Such considerations are

rarely included in models, so they should not be the only source of information used to base management

decisions (Schnute and Richards 2001).

One weakness with the analysis presented here is that it does not include economic components such as the

market price of the prawns and the costs of inputs such as fuel. It is the profitability of fishing rather than the

total catch that drives the long-term behaviour of fishers. Finally, each of the three fishing methods presented

in the present study – stow netting, estuary prawn trawling and ocean prawn trawling – harvest multiple

species. In particular, the trawling methods also catch eastern king prawns, which are another highly valued

prawn species in NSW. These additional dimensions of these fisheries are avenues for future research that

could generate contrasting results to those presented here.

The SIR algorithm used in the present study is a relatively simple and versatile Monte Carlo method for

use in fisheries assessment. However, the models used in the present study uncovered some of the limits of

the SIR algorithm, as evidenced by our difficulty in finding an acceptable joint posterior pdf for more than a

handful of parameters. Furthermore, although the assumption that the residuals between the observed and

predicted catches were normally distributed was reasonable, we were forced into this option by the limitations

of the SIR method. When log-transformed catches were used, the joint posterior pdf was excessively

dominated by the simulation that generated the maximum likelihood. This problem can only be resolved in

SIR by running an order of magnitude more iterations (which was beyond our current computational limits)

or by using a more directed importance function, which would have its own inherent biases (McAllister and

Ianelli 1997).
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Bayesian methods have a proven track record in these types of population modelling studies (Peterman

2004; Zeller et al. 2008; Zhou et al. 2008), even in the somewhat limited capacity used here (Fay and Punt

2006), but they clearly enable a better representation of the uncertainties associated with such stock

assessments. The net result of including more uncertainty in this assessment is that the differences between

the management scenarios were reduced. That is, when the alternative management strategies were compared

using only the manually calibrated model there was more separating the effects of the alternative strategies on

the various indicators (with the current closure strategy proving the best option). This suggests that the more

we incorporate uncertainty into modelling studies, the less conclusive the results may be. Intuitively this

makes sense because the increased uncertainty would widen the distribution of possible outcomes from each

alternative strategy, creating greater possibility for overlap.

Bayesian methods can provide modellers with the ability to more fully represent the uncertainty in their

models (Punt and Hilborn 1997), but at the possible expense of a reduction in the clarity of outcomes

(especially if model structure uncertainty is also included (Ives and Scandol 2007; Jiao et al. 2009)). This,

however, is only because the models are more encompassing of our uncertain knowledge. Such a finding

implies that the fisheries management community should be cautious when interpreting the results of

complex models if their additional complexity came at the expense of more thorough representations of

uncertainty (Longhurst 2006).

The impact of climate change on harvested marine resources is an issue of increasing international interest

(Perry et al. 2005; Brander 2007; Allison et al. 2009). The impact of changes to river discharge levels is of

particular importance for several species, both in terms of the sustainability of the species and the fisheries

that exploit them (Esmaeili and Omar 2003; Fernández-Delgado et al. 2007). Fortunately, improvements in

both technology and assessment techniques have given scientists greater capacity to evaluate the possible

impacts of such changes. There are many obvious benefits to being able to evaluate alternative management

strategies without incurring costs and frustrations to industry. The challenge for resource managers is to focus

research into key areas of uncertainty and to develop and apply management strategies that are more robust to

uncertainty, particularly scenarios associated with increasing climate variability.
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