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Abstract 
 

Engineering complex systems and New Product Development (NPD) are major 

challenges for contemporary engineering design and must be studied at three 

levels of: Products, Processes and Organizations (PPO). The science of 

complexity indicates that complex systems share a common characteristic: they 

are robust yet fragile. Complex and large scale systems are robust in the face of 

many uncertainties and variations; however, they can collapse, when facing 

certain conditions. This is so since complex systems embody many subtle, 

intricate and nonlinear interactions. If formal modelling exercises with available 

computational approaches are not able to assist designers to arrive at accurate 

predictions, then how can we immunize our large scale and complex systems 

against sudden catastrophic collapse?  

 

This thesis is an investigation into complex product design. We tackle the 

issue first by introducing a template and/or design methodology for complex 

product design. This template is an integrated product design scheme which 

embodies and combines elements of both design theory and organization theory; 

in particular distributed (spatial and temporal) problem solving and adaptive team 

formation are brought together. This design methodology harnesses emergence1 

and innovation through the incorporation of massive amount of numerical 

simulations which determines the problem structure as well as the solution space 

characteristics.  

 

Within the context of this design methodology three design methods based 

on measures of complexity are presented. Complexity measures generally reflect 

holistic structural characteristics of systems. At the levels of PPO, we 

correspondingly introduce, the Immunity Index (global modal robustness) as an 

objective function for solutions, the real complexity of decompositions, and the 

cognitive complexity of a design system. These three measures are helpful in 

immunizing the complex PPO from chaos and catastrophic failure.  

                                                 
1 A property of a system is emergent if and only if the property is present in global scales and 
cannot be traced to the local properties of parts of the system, an emergent property is thus the 
global effect of local interactions. 
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In the end, a conceptual decision support system (DSS) for complex NPD 

based on the presented design template and the complexity measures is 

introduced. This support system (IMMUNE) is represented by a Multi Agent 

Blackboard System, and has the dual characteristic of the distributed problem 

solving environments and yet reflecting the centralized viewpoint to process 

monitoring. In other words IMMUNE advocates autonomous problem solving 

(design) agents that is the necessary attribute of innovative design organizations 

and/or innovation networks; and at the same time it promotes coherence in the 

design system that is usually seen in centralized systems.  
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1  Why Complexity? 
 
 
The science of complexity has roots both in natural and social sciences (Erdi, 

2008). Physicist, Heinz Pagels (1989) regarded complexity as being on the cutting 

edge of science and stated that: 

 

I am convinced that the societies that master the new 

sciences of complexity and can convert that knowledge into 

new products and forms of social organization will become 

the cultural, economic, and military superpowers of the 

next century. 

 

In the same lines on January 23, 2000 Stephen Hawking said in “San Jose 

Mercury News”, “I think the next century will be the century of complexity” 

(Erdi, 2008). Human history has demonstrated a relentless progress towards 

greater complexity —in man made products and artefacts (Minai et al, 2006). The 

last two centuries in particular can be characterized by a radical move towards 

greater complexity, in economical, political, social and technological systems 

(Minai et al, 2006) such that complexity, desired or otherwise, is now dominating 

almost every aspect of modern life (Marczyk, 1999). Today’s challenges and 

future ones necessitate novel approaches to understanding, analysing and 

synthesizing  complex and interconnected large scale systems (Sanders, 2003). 

For that reason, complex systems science is an imperative for the future of 

scientific evolution and has captured the attention of scientists from almost every 

scientific discipline (Ottino, 2004).  

 

This need for novel approaches as part of the science of complexity in 

engineering is even more obvious since engineered systems are becoming more 

and more complex and the consequences of increasing complexity are inevitable 

(Marczyk, 1999). The design, implementation, and manufacturing of new 

complex products with tight performance and quality requirements, and strict cost 

constraints contributed to the fragility of the engineering projects (Marczyk, 

1999). The design of complex systems with emergent properties (collective 



2 
 

properties absent at the local level of parts) is almost impossible with the 

traditional engineering tools and methods (Ottino, 2004). 

 

A complex situation is one in which a large number of independent variables 

interact (Sanders, 2003).  According to Erdi (2008) simple systems are 

characterized by: 

 

1. Single cause and single effect 

2. A small change in the cause implies a small change in the effects 

3. Predictability 

 

In contrast complex systems have interconnected elements and are characterized 

by (Erdi, 2008):   

 

1. Circular causality, feedback loops, logical paradoxes, and strange 

loops2 

2. Small change in the cause implies dramatic effects 

3. Emergence and unpredictability 

 

Complex systems intrinsically possess potential for catastrophic failure 

since the behaviour of complex systems is not predictable from the knowledge of 

individual elements, no matter how much we know about them (Merry, 1995; 

Cook, 2000). Complex systems require special treatment since they possess 

potential for catastrophic failure (Merry, 1995; Marczyk, 1999). The failure in 

unsuccessful complex projects (like redesign of the air traffic control systems) is 

often attributed to simple reasons (Bar-Yam 2003). For example the fatal outcome 

of the Challenger mission disaster was caused due to failure of a seemingly 

innocent component; in another case the first unsuccessful launch of Ariane 5 was 

caused by trivial software problems (Marczyk, 1999). Similar examples include 

the crashes of new generation commercial aircraft due, in the majority of cases, to 

minor but unforseen software problems. It is well known that modern flight 

control avionics systems are extremely complex; what complicates the situation is 

                                                 
2 Circular causality in essence is a sequence of causes and effects whereby the explanation of a 
pattern leads back to the first cause and either confirms or changes that first cause (Erdi, 2008). 
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that the pilot (man in the loop) is a stochastic entry which can occasionally enter 

into conflict with the flight computer (Marczyk, 1999).  

 

While people have attributed the failure of the advanced automation 

systems (computer based systems) as the root cause of these kinds of problems, 

according to Bar-Yam (2003) “the magnitude of failures of the large projects 

shown in Table 1.1, and the suggestion that each case involved its own unique 

reasons does not seem to strike at the core of the causes of failure”. Despite the 

fact that failure in any specific case may be appear to be related to a specific 

cause, but the common inability to implement large scale and high cost systems 

can be attributed to their “intrinsic complexity” (Bar-Yam 2003). In fact 

according to Marczyk (1999) “complexity in conjunction with uncertainty brings 

about a host of new problems and phenomena”. He explained that the complexity 

principle perceived by Lotfy-Zadeh (1973) reflects the new status quo of science 

and engineering. This principle states that:  

 

As the complexity of a system increases, human ability to 

make precise and relevant (meaningful) statements about its 

behaviour diminishes until a threshold is reached beyond 

which the precision and the relevance become mutually 

exclusive characteristics. 

  

Uncertainty, innocent and harmless in simple systems, becomes a 

fundamental issue, namely the introducer of fragility in large and complex 

systems: with the combination of complexity and uncertainty, catastrophe is 

always around the corner (Merry, 1995; Marczyk, 1999).  Casti (1994) describes 

catastrophe: 

 

Occasionally, in a system, we encounter a combination of 

input values such that if we change them only a small 

amount, the corresponding output will shift discontinuously 

to an entirely new region. This is called bifurcation and it is 

considered a catastrophe. 
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Table 1.1 The magnitude and scale of the failed projects due to their inherent 
complexity (From Bar-Yam, 2002). 

System Function 
Responsible organization 

Year of Work 
(Outcome) 

Approximate 
Cost 

Vehicle Registration, Drivers license Dept. 
Of Motor Vehicles 

1987-1994  
(Scrapped) 

$44M 

Automated reservations, ticketing, flight, 
scheduling, fuel deliver, kitchens and general 

administration-United States Airlines 

Late 1960s-Early 
1970s 

(Scrapped) 

$50M 

State wide Automated Child Support 
System(SACSS)-California 

1991-1997  
(Scrapped) 

$110M 

Hotel reservation and flights-Hilton, Marriott, 
Budget, American Airlines 

1988-1992  
(Scrapped) 

$125M 

Advanced Logistics System-British Stock 
Exchange 

1968-1975  
(Scrapped) 

$250M 

Taurus Share trading systems-British Stock 
Exchange 

1990-1993  
(Scrapped) 

$100-$600M 

IRS Tax Systems Modernization Projects 1989-1997  
(Scrapped) 

$4B 

FAA Advanced Automation System 1982-1994  
(Scrapped) 

$3-$6B 

London Ambulance Service Computer Aided 
Dispatch Systems 

1991-1992  
(Scrapped) 

$2.5M, 20 
lives 

 

 

The new region to which a system enters may be characterized by higher 

complexity, implying higher fragility. Bifurcation by itself may not signify failure 

but it has the potential to introduce tremendous amount of fragility and 

vulnerability into the system: simply, a bifurcation can change the mode of a 

system from a robust mode to a potentially non-robust and dangerous mode which 

would, because of its unpredictability, lead to catastrophic outcomes 

(Efatmaneshnik and Reidsema, 2007.a). As such, catastrophe is a major reason for 

the failure of complex systems. 

 

The catastrophic behaviour of complex systems can be, however, 

discovered by studying how the system elements interact and how the system 

changes and adapts through time as a result of this interaction (Merry, 1995). As 

Sanders (2003) has described “in essence complexity science is moving us away 
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from a linear, mechanistic view of the world, to one based on nonlinear dynamics, 

evolutionary development and systems thinking.” Sanders argued that the insights 

from complex systems research provide a dramatically novel theory-driven 

framework for understanding and influencing the complex systems, and their 

emergent properties.  

 
 
 

1.1  Complex Engineering Design 
 
 
Design is about constructing artefacts and the engineering design of artifacts in a 

mechanical engineering context constitutes the following steps (Finger and Dixon, 

1989): 

 

• recognition of need 

• specification of requirements 

• concept formulation (design synthesis) 

• concept selection (design analysis) 

• embodiment of design detail 

 

It is important to distinguish between the design/redesign of previously 

established products and that of completely new ones. New Product Development 

(NPD) is the process of bringing a new product to market e.g. an aircraft, a 

computer or a Mars probe. The product can be regarded as a system, the common 

definition of which is set of interacting or interdependent entities, real or abstract, 

forming an integrated whole3. These entities can be systems on their part in which 

case the term System of Systems is used. A complex product is a system of 

systems (or subsystems). Systems engineering, in general, is an interdisciplinary 

field of engineering. It focuses on the development and organization of complex 

artificial systems and is defined by INCOSE 4 (International Council On Systems 

Engineering) as: 

 
                                                 
3 From Wikipedia, the free online encyclopaedia. 
4 Source:  http://www.incose.org/practice/whatissystemseng.aspx. 

http://www.incose.org/practice/whatissystemseng.aspx
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A branch of engineering whose responsibility is creating 

and executing an interdisciplinary process to ensure that 

customer and stakeholder's needs are satisfied in a high 

quality, trustworthy, cost efficient and schedule compliant 

manner throughout a system's entire life cycle, from 

development to operation to disposal. 

 

 This process usually comprises the following seven phases:  

 

1. Stating the problem 

2. Investigating alternatives 

3. Modelling the system 

4. Integrating 

5. Launching the system 

6. Assessing the performance 

7. Re-evaluating 

 

The phases involved in systems engineering are performed in a parallel 

and iterative manner rather than sequentially: and is often referred to as 

Concurrent Engineering. Keating et al (2003) explained that “systems engineering 

integrates all the disciplines and specialty groups into a team effort forming a 

structured development process that proceeds from concept to production to 

operation". Systems engineering methodologies have been applied to the design of 

“loosely coupled” systems successfully. The integration problem in Complex 

NPD and its tasks at all levels of PPO involves a tremendous effort. At the 

integration level, it has been observed that often complex NPD processes tend to 

spiral out of control (Mihm and Loch, 2006): the process oscillates between being 

ahead and behind the schedule. Mihm and Loch (2006) describe a host of these 

types of oscillating process performance behaviours resulting in failures within 

various industries; for example, in the development of the Microsoft Office 

Project (Iansiti, 1990), in the aeronautics industry for the Boeing 767-F project 

(Klein et al, 2003.a), and from the semiconductor industry in Intel’s Itanium chip 

design project (Hamilton, 2001). Engineers of future complex systems face an 

emerging challenge of how to address problems associated with integration of 
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(multiple) complex systems (Keating et al, 2003). In response to this need a 

branch of systems engineering is beginning to emerge known and be known as 

Complex-System Engineering.  

 

Bar-Yam (2003) spoke of the radical departure of complex systems design 

from traditional systems engineering. Acknowledging that complexity is not a new 

phenomena in engineering and has been addressed by the traditional systems 

engineering (for centuries), he argued that for designing highly complex systems, two 

of the main methods of traditional systems engineering that deal with complexity 

need to be discarded, namely, abstraction and modularity. Abstraction simplifies the 

description or specification of the system. Decomposition of a problem/system into 

modules (or sub-problems/sub-systems) is a well recognized way to separate a 

large system into parts that can be individually designed and modified. Bar-Yam 

(2002) added that: 

 

These methods are useful, but at some degree of 

interdependence (in the system’s elements) they become 

ineffective: modularity incorrectly assumes that a complex 

system behaviour can be reduced to the sum of its parts and 

abstraction assumes that the details to be provided to one 

part of the system (module) can be designed independently 

of details in other parts.  

 

Bar-Yam (2002) emphasized the concepts of “radical innovation”, 

“gradual implementation” and “evolutionary engineering” as the remedies for the 

difficulty of integration within complex systems design. In a more moderate view, 

Kuras (2007) called for modifications in the traditional engineering 

process/template as to suit complex systems design. He portrayed a fundamental 

difference that traditional systems engineering and complex systems engineering 

ought to have: the need for multiple conceptualizations (evolutionary and dynamic 

modelling) of the system at different scales as compared to one static 

conceptualization (unchanged model) of the system in traditional systems 

engineering. Ring and Madni (2005) acknowledged that a static model of the 

system is not only insufficient but also leads to serious misunderstandings and 
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under-conceptualization of the solution, which opens the way for unintended 

consequences (for example; catastrophic failures). Keating et al (2003) voiced 

several other modifications to the traditional systems engineering, such as: 

 

• Avoiding optimization based decision making 

• Avoiding strict goal and objective setting (anticipating constraint 

relaxation) 

• Maintaining distributed focus during the design process (as opposed to a 

single focus in traditional systems engineering) 

 

Norman and Kuras (2006) stressed the presence and actions of 

autonomous agents as important elements in complex systems engineering, since 

they can significantly contribute to the innovativeness of the design system. 

Norman and Kuras also asserted that complex systems engineering is not simply 

an increased attention to detail rather it is an attention to overall coherence. The 

overall regimen of complex system engineering must create and manage an 

environment in which multiple autonomous agents each address a fraction of the 

relationships that might be involved in an overall complex system (Norman and 

Kuras, 2006).  

 

 

1.2  Objective: Immunity of Complex PPO 
 
In the context of systems engineering there are three main streams in which 

complexity can be addressed:  

 

• Complexity of Products 

• Complexity of NPD Processes 

• Complexity of NPD Organizations 

 
In addition to inherent complexity of product, process and organization, 

there is another source of complexity in NPD: this complexity arises from the 

coupling between the product, process and organization structures. This coupling, 
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depicted in Figure 1.1, makes the planning for development of even not-that-

complex products, a complex task.  

 

Planning and problem solving are discussions in the domain of artificial 

intelligence. Within artificial intelligence three main sub-domains extensively 

deal with complexity:  

 

• Swarm Intelligence: characterizes collective behaviour of decentralized, 

self-organized systems. 

• Artificial Life: explores the logic of living organic systems in artificial 

settings. 

• Artificial Immunity: induction of immunity into artificial systems. 

 

These three areas overlap in that they deal with complexity, emergent 

properties and collectives (Figure 1.2). Artificial immunity in particular seems to 

have a lot to offer complex systems engineering. After justifying that complex 

systems are prone to sudden failure and collapse without prior notice, it is enticing 

to think that complex systems can be immunized. Hart et al (2009) introduces the 

new concept of Immuno-engineering as: 
 

 The abstraction of immuno-ecological and immuno-

informatics principles, and their adaptation and application 

to engineered artefacts (comprising hardware and 

software), so as to provide these artefacts with properties 

Figure 1.1 Product, process and organization structures are tightly related, after 
Browning (2001). 

Process 
Structure

Organizational 
Architecture 

Product 
Structure 
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analogous to those provided to organisms by their natural 

immune systems. 
 
 

This thesis explores the ways in which complex systems (products, 

processes and organizations) might be immunized. Some core elements of the 

immune system such as recognition of self from non-self are employed and are 

central to the approach of this thesis.  It should however be noted that the 

algorithms presented in this thesis for immunizing PPO, may not seem deeply 

immuno inspired or exact mimics of computational models of biological immune 

systems; rather the algorithms may appear as reasoned by the metaphor of 

immunity. Hart et al (2009) and others (Stepney et al, 2005; Timmis, 2007)  see 

reasoning by metaphor as a drawback for Artificial Immune Systems as it does 

not allow for full exploitation of the field and will limit the ultimate success of the 

field.  

 
 

 
 

While we accept the above limitation to this work, it should be noted that 

this thesis provides more rigor in its effort to establish a template for complex 

systems engineering, in that the presented model (methodology) and methods 

Artificial Intelligence  

Swarm  
Intelligence 
 

Artificial 
 Life 

       Complexity 
 

 
 
 
 

Artificial Immunity 

Figure 1.2 Sub-domains of artificial intelligence that address complexity. 



11 
 

(algorithms) are computationally justifiable (and not just vague recommendations 

or imperatives). Furthermore, we believe that the introduction of the immunity 

metaphor to the engineering community through this work is per se a graceful 

move in the right direction towards dealing with complex systems. Natural 

systems are robust because they have immune systems and not vice versa, and this 

message can have important implications for the future of engineering design 

research.  

 

Measurement constitutes the basis of any rigorous scientific activity 

(Marczyk and Deshpande, 2006) and the methods presented here exploit the 

measures of complexity at all levels of PPO. The contribution of this thesis is 

summarized in the following: 

 

• Measure theoretic approach to harnessing robustness and simplicity in 

products. 

• Measure theoretic approach to decomposition and integration: the 

deficiency of decomposition based problem solving is explicitly shown.  

• Measure theoretic approach to holistic process monitoring to maintain 

coherence in multi agent design system. 

 

A background of engineering design methodologies and the necessary 

definitions for understanding the thesis is presented in Chapter 2. Chapter 3 is 

about complexity, complexity measures and the literature review of their 

utilization in engineering design. It ends with a discussion on the methodology of 

this thesis. Chapter 4 presents our template for complex product design. Chapters 

5, 6, and 7 describe three design methods at all levels of PPO and how complexity 

measures can immunize, or reduce the risk of their, sudden failure. All the 

material described up to Chapter 7 constitutes the domain knowledge of a DSS 

which we refer to as IMMUNE and is presented in Chapter 8. 
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2  Background: Engineering Design 
 

Engineering design is about creating a desired functionality that may be complex 

and managing the design process of a complex product.  Nobel laureate Herbert 

Simon in the Sciences of the Artificial (1969) proposed that the scientific method 

can be used to hypothesize and develop a design science. He asserted that design 

may be regarded as a science more than an art. The aim of science is to explain as 

much as possible the complexity of the natural phenomena and its processes; 

whereas designers want to create complexity in the form of complex artefacts. 

From this standpoint natural sciences and design science overlap in their extensive 

use of observations, and predictions. Both designers and scientists seek to find the 

contributing parameters for the behaviour of the systems and determine the 

interplay of these parameters. Within this perspective both natural sciences and 

design science are problem solving procedures.  

 

The problem solving process is a search and decision making process: 

searching for solutions of a given problem then opting and deciding, from those 

solutions for the one that has the highest utility (Rusbult, 2000). The process of 

design can be characterized in terms of its efficiency and effectiveness. The 

efficiency of a design process is mostly determined by high level characteristics 

such as the quality of the final product, the design lead time and overall cost 

(Fixson, 2005). The design process effectiveness, on the contrary, is dependent by 

how the designers have met the top level goals with their finite resources (Fixson, 

2005). In the case of complex systems the design efficiency issue is not a trivial 

one. To address the concerns about the efficiency and effectiveness of design 

processes, design methods are developed Design methods are tools for designing 

that can be integrated into the design process (Cross, 2000). Design methods 

generally lead to more holistic solutions and thus better final products by gaining 

important insights about the design PPO. However there is no solid consensus 

about their validity. Cross (2000) states that: 

 

It might seem that some of these new methods can become 

over formalized, or can be merely fancy names for old 
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common-sense techniques. They can also appear to be too 

systematic to be useful in the rather messy and often 

hurried world of the design office. For these kinds of 

reasons, many designers are still mistrustful of the whole 

idea of design methods.  

 

The main argument against design methods is that they might destroy 

creativity, considered to be the pillar for good designs. Design methods are, 

however, the product of the scientific approach to design and can be related to and 

combined into any stage of the design process. As such, in order to facilitate 

systematic thinking about a design and to develop new design methods there 

needs to be models of the design process and/or design methodologies. Design 

theory includes several classes of design process models (Finger and Dixon, 

1989): 

 

1. Descriptive models of design processes 

2. Prescriptive models for design 

3. Computer-based models of design processes 

4. Models for Distributed Design Problems 

5. Models for Complex Design Problems 

 

These models are described in the following sections. In the section related 

to models of complex problem solving we have also listed a number of design 

methods that have been tailored specifically to cope with the complexity at 

various levels of PPO.  

 

 

2.1  Descriptive Models of Design Process 
 

Descriptive models of design are cognitive models which explain, simulate, or 

emulate the human designer’s underlying mental processes when creating an 

artefact (Finger and Dixon, 1989). A monumental detailed descriptive model of 
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the design process was presented by French (1985) that included the following 

stages or activities:  

 

1. analysis of problem  

2. conceptual design 

3. embodiment of schemes  

4. detailing  

 

The analysis of the problem was regarded as a small yet significant stage 

of the overall design process. The output of this stage is the problem statement 

that has three elements:  

 

1. The problem itself. 

2. Limitations placed upon the solution, e.g. customers' standards, date of 

completion, overall cost, etc. all of which can be known as constraints. 

3. The design objectives or criterion of excellence. 

 

Table 2.1 presents the problem analysis that contains all the above 

elements for the design of a hypersonic combat aircraft. 

 

 

Table 2.1 Need analysis of a hypersonic combat aircraft, from Hollingsworth and 
Mavris (2000). 

Performance/Attribute Threshold Desired 
Cruise Speed Mach 4 Mach 8 

Max Speed at sea level 400 Kts 630 Kts 
Mission Radius 750 NM 1500 NM 

Structure Load Factor 3 G’s 5 G’s 
Takeoff & Landing 8000 ft Runway at sea 

level 
Carrier suitable 

Combat Turnaround Time Less than 6 hours Less than 2 hours 
Alternate Weapon 1 2 JASSMs 8 JASSMs 
Alternate Weapon 2 2 AAMs 8 AAMs 

 

The conceptual design phase in French’s model (1985) was described as a 

phase in which the problem statement is taken as an input; and broad solutions in 



15 
 

the form of schemes are generated. In the conceptual phase of design, innovative 

and striking improvements can be made that require the collaboration of people 

involved in the production, manufacturing and commercial aspects of the 

development. The embodiment of schemes stage involves detail clarification of 

schemes and, in case there is more than one scheme, a final selection amongst 

them. This phase usually provides feedback to the initial conceptual design phase. 

In the last phase of detailing a very large number of small but essential points 

remain to be addressed.  

 

Another descriptive model of design was the model of Cross (2000) consisting 

of four steps:  

 

1. Exploration: the designer explores the satisfactory solution concepts to 

a typically ill-defined design problem. 

2. Generation: the designer generates alternatives that are like design 

proposals.   

3. Evaluation: the designer evaluates each alternative. This phase, if 

required, provides feedback to the generation stage to refine the 

concepts and alternatives. 

4. Communication: this stage includes the presentation of the design 

artefact to the production crew in a form (language or representation 

scheme) that is understandable to them. 

 

Descriptive models of design processes thus plainly describe the 

succession of activities that naturally happen in designing. They study the design 

process in light of how humans create designs (Finger and Dixon, 1989). 

Descriptive models are solely based on the observations made on the previous 

design experiences and give no detail of how the design process ought to proceed.  

 

2.2  Prescriptive models for design 

 

Prescriptive models for design describe the necessary and crucial procedures that 

the design process ought to have (Finger and Dixon, 1989). These models try to 
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devise ways of thinking that are more systematic and lead to improved (design) 

process efficiency and effectiveness; however they are often regarded as a 

particular design methodology rather than design methods (Cross, 2000). These 

models have tended to suggest a basic structure of analysis-synthesis-evaluation to 

the design process (Jones 1984). Jones (1984) defined these stages as follows:  

 

1. Analysis: listing all the design requirements and performance 

specifications. 

2. Synthesis: finding possible solutions. 

3. Evaluation: evaluating the accuracy of alternative designs in fulfilling 

the performance requirements for operation, manufacture and sales. 

 

A more detailed prescriptive model was developed by Archer (1984) who 

identified six types of activities: 

 

1. Programming: establishment of crucial issues and the suggestion 

on the course of actions. 

2. Data collection: collecting, classifying and storing data. 

3. Analysis: identifying sub-problems; preparing performance (or 

design) specifications; reappraising the proposed programme and 

estimation 

4. Development: developing design(s) prototype(s); preparation and 

execution of validation studies. 

5. Communication: preparing the manufacturing documentation  

 

 

A reasonably comprehensive model known as canonical design process is 

that offered by Pahl and Beitz (1984). It is based on the following design stages:  

 

1. Clarification of the task: collect information about the requirements to be 

embodied in the solution and also about the constraints. 

2. Conceptual design: establish function structures; search for suitable 

solution principles; combine into concept variants. 
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3. Embodiment design: starting from the concept, the designer determines 

the layout and forms and develops a technical product or system in 

accordance with technical and economic considerations. 

4. Detail design: arrangement, form, dimensions and surface properties of 

all the individual parts laid down; materials specified; technical and 

economic feasibility re-checked; all drawings and other production 

documents produced.  

 

The canonical design process can be regarded as very similar to French’s 

descriptive model only with more details and elaborations. The aim in descriptive 

models should be to close the gap, as much as possible, between the reality of 

design (as a mixture of art and science) and the systemic view of design. The 

model can be further extended (Figure 2.1) to include a manufacturing process 

selection phase in which the appropriate machines and processes are selected, and 

a design prototype phase in which concepts are evaluated by soft prototyping 

using the computer for solid modeling and simulations, as opposed to hard 

prototyping where concepts that are more refined are fabricated and physically 

tested It is assumed that the design environment under consideration recognizes 

the cost, time, functional, and quality benefits of soft prototyping design concepts 

early in the design process (Reidsema, 2001). Other prescriptive design models 

include, but are not limited to, an integrative model based on the co-evolution of 

the problem space and solution space proposed by Cross (2000), parametric model 

(parameter analysis) of Kroll et al (2001) and Morphological analysis (Allen, 

1952).  

 

The integrative model of Cross (2000) is based on the fact that in most 

design situations it is not possible, or relevant, to attempt to analyse the problem 

ab initio and in abstract isolation from solution concepts. Rather, the designer 

explores and develops the problem and solution together. As illustrated in Figure 

2.1, although there may be some logical progression from problem to sub-

problems and from sub-solutions to solution, there is a symmetrical and 

commutative relationship between problem and solution, and between sub-

problems and sub-solutions. This model attempts to capture the essential nature of 

the design process, in which the understanding of the problem and of the solution 
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develop together, or co-evolve. There is a constant transfer of the designer's 

attention backwards and forwards between the problem space (left-hand side of 

the model) and the solution space (right-hand side of the model). The model 

recognises that there is an expected pattern of progression in the design process, 

from a given problem to a proposed solution. There is therefore assumed to be a 

general anti-clockwise direction of movement in the model (see Figure 2.1), from 

top left around to top right, but with substantial periods of iterative activity, going 

to-and-fro between problem and solution, sub-problems and sub-solutions. 

 

Design 
Requirements 

Design 
Concepts 

Geometric 
Modelling 

(Embodiment) 

Manufacturing 
Process 

Selection

Design 
Prototype 

Final 
Design 

Other CAD 
Functions 

Parametric 
Modelling 

Other CAM 
Functions 

Other CAE
Functions 

Need 
Description 

Figure 2.1 Prescriptive Design Process (Reidsema, 2001). 
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Kroll et al (2001) presented an important prescriptive design methodology 

(to the work of this thesis) to improve the creativity of the design process called 

parameter analysis. In this approach parameters are important factors, issues, 

concepts, or influences that play important roles in the realization of the problem 

and the development of the product. This methodology has three main elements 

with significant feedback loop joining the last to the first stage:  

 

1. Parameter Identification: recognizing the important parameters. This 

is the establishment of the problem space. New parameters bring with 

them new insights and trigger new solutions to the problem and/or 

stimulate new directions. 

2. Creative Synthesis:  exploring the created space by the various 

parameters and generating possible solutions. This stage is similar to 

the configuration and embodiment stage in canonical design process.  

3. Evaluation: estimating those generated solution.  

 

Figure 2.3 shows that introduction of new parameters bring with 

themselves their specific solution space in which optimization may be performed. 

The parametric view of the design process will be discussed in the next two 

sections in more detail. 

 

Overall Problem 

Sub Solutions  Sub Problems 

Overall Solution 
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Figure 2.2 The symmetrical relationships of problem/ sub problem / sub 
solution / solution in design, after Cross (2000). 
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To choose between several design concepts and configurations 

(convergence), goodness of design criteria is needed; and this is often determined 

by the product’s performance quality, and/or the overall cost of the final product. 

Simplicity can be taken as the goodness criteria for concept selection of complex 

products, the rationale and benefit of which will be elaborated on in Chapter 7.  

 

Morphological analysis is a methodology to generate and select 

alternatives and has subsequently evolved since its first introduction by Allen 

(1952). Morphological analysis is based on the following assumptions (Finger and 

Dixon, 1989):  

 

1. Any complex engineering problem can be divided into a finite number 

of sub-problems.  

2. Each sub-problem can be considered separately and its relations with 

other sub-problems can be temporarily suspended. 

3. All sub-problems and their solutions can be presented in a 

morphological table. 

4. A global solution to any complex engineering problem can be found as 

a combination of solutions to individual sub-problems. 
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Figure 2.3 New concepts can totally change the design landscape, after Kroll et 
al (2001). 
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5. A global solution can be found in an unbiased way through a random 

generation of combinations of solutions to sub-problems from the 

morphological table. 

 
 

A morphological table of the aerodynamic sub-domain of the combat 

aircraft is presented in Table 2.2. The different functional requirements roughly 

correspond to sub-domains of aerodynamics, structure, propulsion and control; 

correspondingly the problem can be decomposed into those categories. Similarly 

additional morphological tables can be produced for each sub-domain. In Chapter 

4 we use the notion of a solution space that can be regarded as a parametric 

morphological table. Prescriptive models usually require the intervention of 

human designers, and thus cannot be utilized in computer aided design. 

   

Table 2.2 Aerodynamic sub-domain of the problem space for hypersonic combat 
aircraft. From Hollingsworth and Mavris (2000). 

Type of wing small Delta wing tails Wing 
and tails 

Swing 
wing 

Aerofoil traditional Diamond Almond Biconvex  
Wing location Tail Canard Centre Multiple  

Body type wave rider Partial Non 
Waverider   

Body cross section square Triangle Ellipse Crescent Other 
Body shape wedge Cone Square Other  

Nose blunt Sharp Spatula Spike  
Surface Location Tail Canard Centre Top Multiple

   

 

2.3  Computerbased models of design processes 

 
Computer-based models of design processes are concerned with how computers 

can design or assist in designing (Finger and Dixon, 1989). A computer-based 

model expresses a method by which a computer may accomplish a specified task. 

Computer-based models are generally specific to a well-defined class of design 

problems such as Conceptual Design, Configuration Design, and Parametric 

Design (Finger and Dixon, 1989). In each of these design classes, the design 

automation is achieved by the emulation of a computer based design model that is 

based, more than anything else, on specific problem representation schemes.  
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The subject of innovation or creativity often arises in connection with 

conceptual design (Finger and Dixon, 1989). Innovative conceptual design is a 

widespread research theme with substantial emphasis on searching past products 

configurations and then mutating those chosen parts (or the information of the 

parts) by a genetic algorithm to establish novel configuration (for example see 

Pramee and Bonham (2000)). CYCLOPS (Criteria Yielding, Consistent Labeling 

with Optimization and Precedents-Based System) was able to deliver innovative 

designs by effective searching past product information (Sriram et. al., 1989). The 

limitation of automation in conceptual design is that it requires specific 

representation schemes of the product information; and it should be noted that 

there is no universal representation scheme (i.e. the past product information is 

not always available in the specific representational scheme). Kurtoglu (2007), for 

example, used a graph theoretic representation of different configurations and then 

an automation scheme for conceptual design. In Chapter 6 we address the 

innovation and creativity in design by utilizing parametric representation of the 

design problems at the conceptual stage.  

 

In parametric design, usually, the structure or attributes of the artefact are 

known at the outset of the design process (Zdrahal and Motta, 1996). These 

include the set of design variables (or inputs) and the set of design objectives (or 

outputs). Design objectives relate to the functions of the product. The design 

variable sets, usually, include subsets of sizing variables, shape variables, 

topologies and process knowledge and manufacturing variables such as process 

capabilities (Prasad, 1996). It should be noted that the values to be assigned are 

not always numeric, but may also be a type or class designation, or even an issue 

e.g., a material choice, a motor type or any other issues (Kroll et al, 2001; Zdrahal 

and Motta, 1996). Prasad (1996) has defined some of these as follows: 

 

 

• Sizing Variables: these include variables like thicknesses (for thin walled 

sections) and areas (for solid objects) that can be changed 
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• Shape Variables: These involve changing the configuration points or the 

geometry of the parts that are represented such as length width, height, 

coordinates and so on.  

• Topology Variables: These define parameters that actually determine 

where material should or should not be removed. As long as the topology 

change can be represented parametrically in the CAD system, the model 

can be optimized. Topology optimization allows feature patterns such as 

how many bolts are needed to hold down a given part, or how many ribs 

provide a given stiffness.  

• Process Variables: these involve changing the rules concerning the part’s 

forming or processing needs that have the effect on changing the part’s 

size, shape, topology or functions themselves, cost and lead time. 

• Manufacturing Variables: these include the process capability indices, and 

required precisions, manufacturing lead time and cost.  

 
 

Each variable may be accompanied by a set of constraints. Parametric design 

problem solving is the process of assigning values to design variables in 

accordance with the given design requirements, constraints, and optimization 

criterion (Zdrahal and Motta, 1996). A design task in this view constitutes the 

determination of a single design variable. Computer models of the design process 

can be extended to address the problem solving procedure of the large scale 

design problems. 

 

 

2.4  Design models for distributed problem solving 
 

For large scale design problems such as aircrafts, cars etc. the design process is 

carried out by multiple design teams that are more often than not multidisciplinary 

design teams. In multi-team design, a team refers to a collaboration of design 

participants that, in a broad sense, can consist of designers, computers, or even 

algorithms, and in general whosoever that is able to cope with a distributed task as 

part of the whole design problem (Chen and Li, 2001).  
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The distributed models generally utilize two different tools: decomposition 

and abstraction. Decomposition reduces the problem to several sub-problems 

which may be distributed amongst severally distinct design teams (Figure 2.4). 

Several decomposition modes are discussed in Chapter 4. Abstraction, on the 

other hand, decomposes the problem along the axis of time (Figure 2.5). Several 

abstraction strategies are discussed in Liu et al (2003) and will be presented in the 

next section.  

 

 
 

 
 

Respectively the integration issue is concerned with the coherence of the 

product across many abstraction levels (temporally distributed) or sub-problems 

(distributed to spatially divers design teams). This is of course an organizational 

Figure 2.5 A multiple abstraction level design process consisting of several 

divergence and convergence processes, after Liu et al (2003). 
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Problem 

Integrated 
Solution 

Sub Systems
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Figure 2.4 Decomposition and integration processes, after Eppinger (1997).  
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structure type of problem. Coordination strategies are required to handle the 

coherence problem and the models of distributed design are diverse on how they 

handle the integration problem. For example Meunier and Dixon (1988) described 

a computer program for hierarchical distributed problem solving that is based on 

iterative re-specification. In this model, system and subsystem nodes, called 

managers, each formulate a subsystem design that meets the specifications passed 

down from a higher manager. Managers meet their specifications by writing 

specifications for a subsystem and then integrate the sub-solutions into a complete 

sub-system. The resulting design is then evaluated. If the design is not acceptable, 

the manager must change the sub-solutions’ specifications, hence the term 

“iterative re-specification" to obtain subsystem solutions that result in a better 

integrated design. This model did not allow for direct communication among 

managers that are at the same hierarchical level.  

 

Reidsema (2001) proposed a model for distributed planning that had the 

elements of both abstraction and decomposition. He described it as a cyclic 

approach (GDDI cycle), including four stages shown in Figure 2.6. 

 
 Although this model was proposed in the context of planning for problem 

solving, it can be regarded as a powerful and generalized problem solving 

methodology when combined with the parameter analysis of Kroll et al (2001) 

since it formalizes the utilization of both abstraction and decomposition. The 

Generation 

Decomposition 

Distribution 

Integration 

Next abstraction 
level 

Figure 2.6 GDDI cycle or the distributed model of Reidsema (Reidsema, 2001). 
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original planning model consumed the task model of the design process, which is 

a managerial tool developed in the 1990s for management of the complex problem 

solving processes and is discussed in the next section. In Reidsema’s model the 

plans comprised a set of tasks. The model can be modified to be applicable to 

parametric design problem solving (and not only for the planning phase). It would 

be enough to replace the notion of plan with a set of design variables or in a 

broader context, parameters that are related to and describe a generated design 

concept. The design process in this case would be performed in various 

abstractions or cycles. This is a gradualist approach to design and is adopted in 

this thesis. However, our approach is simulation based which is a feature of the 

spiral design process model explained in the next section. 

 
 

2.5  Design models for complex design problems 
 

Models of complex problem solving are specifically tailored for designing large 

scale system that embed substantial coupling between their parts, subsystems and 

components. We believe any model that addresses all or some of the following 

issues can be regarded as a model of complex design problems: 

 

1. The relationship between global emergent properties of an engineered 

artefact and local properties of its parts. 

2. The control, coordination and cooperation relationships between 

design teams at the level of NPD organization. 

3. The interdependencies of the solutions at different abstraction levels. 

4. The integration problem of many interdependent sub-problems at one 

abstraction level.  

5. The management of complex NPD projects prone to desirable cost, 

time and quality requirements.   

 

This section presents the design methodologies as well as the design 

methods and design strategies that deal with complexity. The Concurrent 

Engineering model can be regarded as a model of complex problem solving, since 
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it considers several upstream issues (or top level issue) at the downstream of the 

design process. Concurrent Engineering has been devised to rectify the life cycle 

reliability issues of complex products such as manufacturability, reparability, 

usability, and assemblability (Reidsema, 2001). This model is derived from, and is 

a modified version of the canonical problem solving procedure. Concurrent 

engineering emphasizes the considerable overlap between the tasks of the 

different stages in the canonical design model. The concurrent engineering 

strategy as applied to the design process can be viewed as one in which enriched 

information is continuously or iteratively passed between overlapping phases 

(Prasad, 1996; Reidsema, 2001). Information builds up within one phase and is 

released to the succeeding phases as it is needed. As the NPD process progresses, 

new requirements, constraints and matured information are introduced into the 

product’s design which alter the original design plan (Figure 2.7).  

 

Another model for complex problem solving is the spiral model of the 

design process (Figure 2.8). The spiral process has been mainly adopted by 

software developers to reduce rework, and by that, to lower the development time 

and cost (Boehm, 1988; Gilb, 1988; McConnell, 1996). This model combines the 

Time

Information 
Requirements PDT

Concept PDT

Analysis PDT 

Embodiment PDT 

Figure 2.7 Information builds up in concurrent engineering development, after 
Reidsema (2001). 
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features of the prototyping model (simulation based engineering), concurrent 

engineering model and GDDI cycle distributed model of Reidsema (2001). We 

will, to a sufficient extent, cover the applications and methods of the simulation in 

computer aided engineering and design in Chapter 4. The major advantage of the 

spiral process is multiple cross-phase iterations, which is beneficial for handling 

difficulties presented by unclear initial product requirements (Unger, 2003). “The 

spiral process enables brief glimpses into the future (of the design process) by 

executing each stage with the full expectation of returning back to them later” 

(Unger, 2003). The information gained from this glimpse can be incorporated into 

early design activities such as concept generation, requirement specifications and 

architectures. The look into the future reduces the risks (Unger, 2003). However, 

Unger (2003) specifies two major disadvantages with the spiral process:  

1. The first step of determining objectives, alternatives and constraints is 

difficult. The difficulty results from the fact that the effectiveness and 

efficiency of the entire spiral process is sensitive to choices that should 

be made in the first step. 

2. It is difficult to decide on the termination of one stage and the start of 

another stage.  

In Chapter 4 we will address both of these issues first by describing the 

problem at the initial stage as a seed that will transform or grow into the 

subsequent stages. Then we introduce a simple termination criterion by 

considering the abstracting techniques introduced by Liu et al (2003). 
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Another model for complex problem solving is the evolutionary model of 

the design process (Bar-Yam, 2004; McConnell, 1996). This is based on 

prototyping and testing multiple versions of the product and competition in 

between those solutions for higher fitness (Figure 2.9). The evolutionary model of 

the process is most suitable for design problems that are likely to have emergent 

properties due to their high complexity.  

 

Initial 
concept 

Design and 
implement 

initial 
prototype 

Refine 
prototype 

until 
acceptable Complete 

and release 
prototype 

Figure 2.9 The Evolutionary design process model. After Mcconnell (1996). 

Figure 2.8 The spiral model of design, from Unger (2003). 
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The Task model was one of the first models that tended to address 

complexity (Figure 2.10). This model has been developed to address and assess 

high level estimation of the integration problem and interdependency issues of 

low level design activities such as parametric design (Kusiak, 1999). According to 

this model a task or activity has both an information input and an output. The task 

itself is subject to a control that influences the tasks. A Mechanism is the tool or 

resource required to perform the task. There are a number of possible models for 

representing design activities or tasks that are commonly used, such as Program 

Evaluation and Review Technique, Structured Analysis and Design Technique, 

and Design Structure Matrices (DSM) (Eppinger et al, 1992; Reidsema, 2001). 

 

 

 

The design structure matrix is a system modelling and knowledge 

representation tool that is useful in decomposition and integration (Browning, 

2001). A DSM shows the relationships and interplay of components of a system 

as a matrix that has identical row and column labels (Eppinger et al, 1992; 

Reidsema, 2001; Browning, 2001). DSMs are usually employed in modelling 

products, processes, and organizational architectures. Browning (2001) presented 

the following types of DSM:  

 

1. Parameter-Based DSM (PDSM): represents the product architecture 

and is used for modelling low-level relationships between design 

variables. 

Task 
Activity 

Control 

Mechanism 

Input Output 

Figure 2.10 Task Based Model represents the low levels design activities as a 
black box, from Kusiak (1999). 
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2. Activity-Based DSM: models the information exchange and 

dependencies between various tasks of an activity network.  

3. Team-Based or Organizational DSM: models the organizational 

structure interns of the information exchanges and interactions 

between the design players such as design teams.  

 

In general the task based model of design is a managerial tool that allows 

for identifying activities that have important interconnections to other activities, 

namely those tasks that consume information output of many other tasks, and also 

the ones that generate the information input of many other tasks. Obviously the 

failure of these tasks introduces vulnerability into the entire design tasks network. 

Braha and Bar-Yam (2006), in an empirical study, showed that complex NPD task 

networks, in general, are characterized with few of the central tasks on which a 

specific managerial focus must thus be given. They also showed that these 

networks show small world properties5.  These managerial techniques seek to 

mitigate the complexity of design process by either rescheduling the activity 

sequences or grouping the more interdependent tasks into similar groups. We 

discuss this approach in detail in Chapter 5. 

 

An important design methodology was developed by Suh (1988), with the 

aim of enabling systemic representation and design analysis, a rather advanced 

description of which can be found in Suh (2005). Axiomatic design is based on 

the concept of functional requirement, design parameters and their 

quantitative/qualitative interplays. The design parameters, here, are regarded as 

means of achieving the functional requirements. The design matrix thus signifies 

how functional requirements and design parameters are related. A design, in 

axiomatic design is defined as the interplay between the functional domain 

(functional requirements) and the physical domain (design parameters) (see 

Figure 2.11). A design that follows the recommendations of the design axioms is 

regarded as a good design. Originally there were two design axioms, namely 

Independence axiom and Information axiom but recently Suh (2005) introduced a 

                                                 
5 A network with small world property is one in which most nodes are not neighbors of one 
another, but most nodes can be reached from every other by a small number of hops or steps 
(Source: Wikipedia, online encyclopedia). 
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third axiom of Complexity that, according to him, demands both axioms of 

Independence and Information. These axioms are: 

 

1. Independence Axiom: Maintain the independence of functional 

requirements. 

2. Information Axiom: Minimize the information content of design.  

Information content of the design is whatever information that is 

required to reduce the uncertainty about achieving the functional 

requirements. 

3. Complexity Axiom: Reduce the complexity of the system.  

 

 The main argument in axiomatic design is that the more the functions of 

the product are satisfied or performed by independent components in the physical 

domain, then the design process will be simpler to handle and will be more 

effective at predicting the total cost and overall quality performance. However, 

another trend in design process models of complex products is to take a different 

viewpoint and suggest the exploitation of emergence and more complexity (rather 

than less complexity) in the functions of the product and thus at the conceptual 

design level. 

 

Weber and Condoor (1998) recommended exploiting synergetic effects of 

combining design solutions from the morphological table. According to them 

synergy is achieved when one component (or subsystem) can meet the criteria of 

more than one functional requirements. They explained a top-down approach 

based on abstraction: 

 

1. Identify independent primary functions. 

2. Create solutions for primary functions. 

3. Create primary morphological matrix. 

4. Choose a compatible synergistic solution. 

5. Identify lower-level functions. 

6. Create lower-level solutions. 

7. Create lower-level morphological matrices. 

8. Choose a compatible synergistic solution. 
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9. Evaluation: go to step 5 if more detail is required. 

 

 
 

This approach however fails to address the synergy between different 

abstraction levels. One possible solution to this problem was proposed by Liu et al 

(2003). They posed that for complex problems an ideal approach to abstraction 

would be to carefully specify the number of possible solutions to be considered at 

the divergent stage of each abstraction level in order to have a global trend of 

divergence-convergence. Figure 2.12 demonstrates all the possible scenarios in 

the global divergence-convergence patterns that Liu et al (2003) recognized.  

 

Figure 2.12(a) demonstrates an approach that first only carries out the 

synthesis activities at each solution abstraction level until all possible solutions 

are generated, and then evaluates and selects these concepts. Divergence of all 

abstraction levels takes place afterwards in the final stage. This method provides 

the opportunity of considering synergetic solutions at different abstraction levels, 

but since the solution space would be too large, the search for those solutions may 

be difficult. Figure 2.12(b) demonstrates an alternative approach in which we 

carry out divergent and convergent activities at each level of the solution 

abstraction. This should allow a reasonable number of concepts to be generated at 

Figure 2.11 Design matrix in axiomatic design shows the coupling of the 
physical domain and functional domain, from Lee (2003). 
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each solution level (divergent step), immediately followed by a screening of these 

concepts (convergent step). By means of these multiple divergent and convergent 

steps, the management of the solution space is possible. The challenge here is that 

solutions represented at an abstract level (e.g. functional level) can be hard for 

designers to understand. It is a question of how to screen an abstract solution 

space. Figure 2.12(c) shows the classical design process approach to multiple 

levels of abstraction posed by Pugh (1991) and Cross (2000).They stated the 

necessity of the global trend of the solution space size to be towards convergence. 

This means that the number of concepts must gradually be decreased and only one 

or few solutions must be left at the end of the design stage.  Figure 2.12(d) shows 

multiple solution abstraction levels with the global trend towards divergence.  

 

 
 

The ‘ideal’ approach of concept generation according to Liu et al (2003) 

(Figure 2.13) should follow multiple divergence—convergence in order to 

gradually increase the number of solutions for the concepts generation, followed 

 
 

  

(a) (b) 

(c) (d) 

Figure 2.12  Shows multiple divergent followed by multiple convergent 

processes (a), multiple consecutive divergent-convergent processes (b), with a 

global trend towards smaller solution space (c), with global trend towards larger 

solution space (e), after Liu et al (2003). 
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by a divergent and convergent tendency to detail these concepts with an overall 

decrease in the solution number. This way the design process would benefit both 

from synergetic solutions and also a manageable search in the solution space.  

 

In a seminal paper, Alstyne and Logan (2007) called for the redesigning of 

the design process in a way that can harness emergence: 

 

Only through emergence new innovative products emerge 

which can revitalize and also survive in the global 

economical market. All the great innovations of the history 

harnessed emergence: tool making of the early man; the 

internet; Gutenberg’s printing press etc. Nature’s products 

have emergent properties and functions that are performed 

by the cooperation of millions of micro-organisms and 

several parts.  

 

Alstyne and Logan (2007) posed that a homeostatic relationship between 

design and emergence is a required condition for innovation. They called for 

employing emergence and self-organising processes as bottom up and massively 

 

Figure 2.13 The ideal design abstraction strategy of Liu et al (2003). 

Solutions discarded by 
screening 

Ideal approach 
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iterative processes. Anderson (2006) described how bottom up6 strategies at the 

NPD organization level can harness emergence in the product and in the process. 

Bar-Yam (2004) called for forsaking the planning based method (that renders the 

process utterly top down) and allowing for radical innovation to emerge. Bar-Yam 

(2004) believed that only through employment of radical innovation, could the 

integration problem of complex systems could be addressed. This thesis takes a 

moderate position, which is to use low level design problem knowledge to 

configure and control high level organizational structure (which can be regarded 

as planning). This is discussed in Chapters 4 and 7.   

 

We present a model of design process for complex products that is, 

distributed, evolutionary and has elements of the spiral process. It is based on the 

parametric representation of the design at various abstraction levels and uses the 

low level parametric knowledge of the problem to plan the development 

organization such that emergence of innovation becomes a possibility. The 

presented model benefits extensively from complexity measures at three levels of 

PPO.  

 

  

 

                                                 
6 Top down design asserts the role of hierarchical command and control, in contrast bottom up 
design asserts the pivotal role of low level design agents in shaping the overall and emergent 
properties of the design artefact. In essence bottom up view calls for flat organizational structures. 
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3  All about Complexity 
 
 
It is important to better understand why complex systems, be they complex 

organizations, complex design processes, design projects, and complex products, 

possess high potential for failure. In order to attain this goal we first need to 

define the notion of a complex phenomenon.  

 

A phenomenon is any observable occurrence7. Observation is the activity 

of sensing and assimilating the knowledge of a phenomenon, or the recording of 

its data by utilizing instruments. The set of techniques for investigation of a 

phenomenon is referred to as the scientific method. These techniques entail data 

collection by means of experimentation and observation, the formulation of 

hypotheses, and testing. A complex phenomenon is one that initially may not be 

observed straightforwardly and could be confused with pure randomness. 

Furthermore, a complex phenomenon may not be hypothesized by simple means; 

and even when the complex phenomenon is hypothesized, it may not be tested 

without difficulty. In this Chapter we show that measures of complexity serve 

well in demonstrating and explaining these statements. As the scientific method is 

based on measurement, a science of complexity without a measure of complexity 

would not be valid (Marczyk and Deshpande, 2006). 

 

 

3.1  Complexity Measure 
 

The most commonly agreed definition of complexity as a measure is the size of 

the minimal description of a phenomenon (a system, or an object) when expressed 

in a chosen vocabulary (Crutchfield, 1994). This is also known as algorithmic 

complexity, Kolmogorov-Chaitin complexity or deterministic complexity 

(Crutchfield, 1994). It should be obvious that, this measure of complexity would 

increase proportionally with the observed randomness in the phenomenon8 

                                                 
7 Definitions in this section are taken from Wikipedia the free Encyclopaedia.  
8 Randomness is the absence of pattern, relation, meaning, or relevance. 
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(Figure 3.1). However, what is missing in the definition of deterministic 

complexity is the role of the observer and this is exactly why the measure is 

referred to as “deterministic”: it is a subjective measure. Because of this it is 

generally accepted that deterministic complexity is not computable. For example, 

Crutchfield (1994) explained that: 

 

Kolmogorov-Chaitin (deterministic) complexity requires 

accounting for all of the bits, including the random ones 

and is dominated by the production of randomness and so 

obscures important kinds of structure. 

 

 
 

Science now agrees that the observer sees through his/her cognitive 

models, descriptions of objective reality and conceptualizations (Minati and 

Pessa, 2006). The observer is an integral part of the phenomenon with an active 

role and not a passive one. This active role is reflected in the limitations of the 

observation. In general, there are three intrinsic limitations with any observation 

(Minati and Pessa, 2006; Kuras, 2007): 

  
1. Inherent lack of subjective knowledge in the observer’s mind; thus 

there is a limitation in the scope of the observation.  
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Figure 3.1 Deterministic Complexity increases with randomness, from 
(Crutchfield, 1994). 
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2. Inherent limitation of the resolution of the observation. How much of 

the phenomenon have been observed is dependent on the resolution of 

the measurement and detection devices. 

3. Limitation in computational resources, such as memory and 

computational power. These lead to and reflect in a limitation of the 

scope of the observation. 

 
Therefore the amount of regularities, patterns, etc. that are observed depend by 

and large on the observer.   

 
 In contrast to deterministic complexity, stands statistical complexity which 

discounts the computational effort in simulating what is seen as random 

(Crutchfield, 1994): “statistical complexity is the minimum amount of information 

required to optimally hypothesize the phenomenon”. Thus statistical complexity is 

not a measure of randomness and is a measure of structure above and beyond that 

describable as ideal randomness (Crutchfield, 1994). The fundamental property of 

statistical complexity is that it is both zero for an ideal random phenomenon and 

also for an ideal ordered phenomenon (Figure 3.2). In this regard a complex 

phenomenon to the observer with limitations in resolution and computation 

resources is one that fits between order and chaos (Duin and Pekalska, 2006).  

 

 
 
 

 

Randomness 

St
at

is
tic

al
 C

om
pl

ex
ity

 

Order Chaos 

Complex 

Figure 3.2 Statistical complexity measures the complexity with reference to the 
observation characteristics (resolution and scope), after (Crutchfield, 1994). 
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Figure 3.3 presents three patterns that clearly demonstrate that statistical 

complexity is an intuitive measure of structure. The middle pattern (b) has a 

relatively higher complex structure when compared to the other two patterns. 

Pattern (a) is very ordered and is not complex. While the far right one, pattern (c) 

seems to be structure-less, it is not complex especially when it is thought of as 

being produced by pseudorandom number generators (Grassberger, 1989). In this 

case the distinction about the complexity levels of three patterns is made relative 

to the resolution and accuracy of the observation and thus the inferred complexity 

is statistical.  

 

Figure 3.3 Three patterns, after Grassberger (1989). 

  

However, deterministic complexity can identify structure existing even in pattern 

3c that seems purely random. Pattern 3c truly has a high deterministic complexity 

relative to the other two 3a and 3b. The proof is in Figure 3.4. These patterns in 

fact belong to the same pattern but are at different scales. An immediate 

consideration is that scale or level of description can change both the statistical 

and deterministic complexity. This means that hierarchical systems pose different 

structures and thus different properties at different scales. These properties are 

emergent and do not exist in the entities of the lower levels (Minati and Pessa, 

2006). A simple example of an emergent property is the temperature of gas. At the 

atomic level, the temperature of a single atom is meaningless and irrelevant. The 

relation between complexity and emergence is discussed in Section 3.2.  

 

 
       (a)      (b)                 (c) 
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Figure 3.4 The three patterns belong to the same pictures seen at three different 

scales. After Grassberger (1989). 

 
 
It should be indicated that a necessary departure from a deterministic approach to 

stochastic approach (in modelling and hypothesizing) is essential only when the 

statistical complexity is not far away from deterministic complexity (Figure 3.5). 

The difference between statistical complexity and deterministic complexity tends 

to become higher after the statistical complexity has peaked. When the difference 

is high it is irrelevant to hypothesize, test or even fully observe the complex 

phenomenon. As mentioned before this is so since the observer has limitations 

accordingly in scope, computational resources and resolution.   

 

 
    
 

Figure 3.5 High complexity makes the endeavours of the scientist, in 
hypothesizing, hypothesis testing and even observing, irrelevant activities. 

Observing, Hypothesizing, and Testing 

 

R
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3.2  Complexity and Emergence 
 
 Edmonds (1999) defines complexity as: 
 
 

... that property of a model which makes it difficult to 

formulate its overall behaviour in a given language, even 

when given reasonably complete information about its 

atomic components and their inter-relations.  

 
This definition couples complexity with emergence. Complexity as structure gives 

birth to emergent properties. Emergent properties of complex systems are hard to 

predict. Although we may not be able to exactly describe the emergent property; 

we can argue about the potential existence of emergent properties. Therefore a 

comprehensive definition of complexity would be the intensity of emergence. This 

is a fundamental notion in this thesis and is in accordance with the notion 

introduced by Marczyk and Deshpande (2006) that complexity is a potential (for 

creating top level properties and overall functionalities). For example a car is 

relatively more complex than a bike and it has also more functionalities. So is a 

human community (more complex) relative to an ant community and has 

relatively more functionalities. Complexity allows the potential for emergence be 

it desirable emergent properties (functionality) or catastrophic ones (surprise 

failure).  

 

It should now be clear why complex systems possess potential for 

catastrophic failure: because complexity can be mistakenly dismissed as noise 

(therefore not be observed), and emergent properties of complex systems cannot 

be modelled, or even tested (Bar-Yam, 2004). The failure examples in Chapter 1 

all had their own specific reasons, however, there is common agreement that if 

anything can go wrong it eventually will. This is known as Murphy’s Law, a 

lesson from history.9  

 

 

                                                 
9 From Wikipedia online Free Encyclopaedia. 
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3.3  Graph Theoretic Measure of Complexity  
 

We defined what a statistical measure of complexity must represent but did not 

give a detailed account of how to measure it. Statistical complexity is a statistic 

calculated from a data set. The data set represents the observations made about a 

phenomenon or a system. The first attempt to measure statistical complexity was 

reported in Crutchfield and Young (1989), who initially proposed the concept as 

well. In 1997, Edmonds (1997) presented a database of complexity measures 

containing 386 entries, which according to Shalizi (2001), was not 

comprehensive. We do not attempt to review these measures; however an 

extensive literature review of complexity measures in engineering design is 

presented in 3.4. The central idea in measuring statistical complexity though, is to 

use entropy based mutual information as a measure of dependency between two 

variables (Edmonds, 1999). The main property of mutual information is the ability 

to capture both linear and non-linear relationships, making it more attractive than 

the covariance based correlation coefficient (Boschetti et al 2005). 

 

Equation (1) shows the entropy based mutual information between two 

random variables X and Y. This requires estimation of the probability distribution 

of every random variable (PX(x), PY(y)) in the data set and also the mutual 

probability distribution of all pairs of random variables (PX,Y(x,y)).   

 

                    (1)              

 

For example, if two variables have a circular relationship (Figure 3.6), 

then the covariance and thus the linear correlation coefficient in between them is 

zero, whereas the entropy based information exchange in between the variables x 

and y is 3.1810. Since the mutual information is a number between zero and 

infinity, it can be normalized to be a value between zero and one. One such 

normalized correlation coefficient based on the mutual information exchange is 

                                                 
10 The MatlabTM codes that produce the data set presented in Figure 3.6 as well as the mutual 
information exchange are included in Section A.3. 
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the global correlation coefficient, a description of which can be found in Soofi 

(1997), Darbellay (1998) and Dionisio et al (2007). 

  

 
 

After measuring all the mutual information of pair of variables in a data 

set, a graph theoretic measure of complexity can be adopted to capture the amount 

of structure in the data set (Boschetti et al 2005). But in order to do that the 

system must be represented in graphical format. A graph G can be characterized 

by its vertex set, V = {1,…,n}, and the edge set E. The total number of nodes in G 

is denoted by |G| and referred to as the order of G. The number of edges in G is 

the size of G and denoted by E(G). G (n, m) is a graph of order n and size m. 

Associated with every graph G is its adjacency matrix, AG, which entries (ai,j) are 

defined as: 

 

                                              (i,j)  Ewi,ja   i, j 0          otherwise

∈⎧⎪= ⎨
⎪⎩

                      (2) 

 

x 

y 

Figure 3.6 The entropy based mutual information captures linear as well as 
nonlinear relationships. 
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For un-weighted graphs all wi,j=1, and in undirected graphs for all (i,j) ∈E, ai,j = 

aj,i. Another matrix that can be associated with graphs is the Laplacian matrix. A 

Laplacian matrix is defined as L(G) = D − A where D is n × n diagonal matrix 

with entries Di,i = di  and di is the degree of the vertex i defined as the total 

number of edges (or sum of the weights of the edges) that touch the vertex. 

Hence, every system can be represented elegantly by graphical means. Each 

variable in the data set can be symbolized as a vertex and each relationship in 

between the variables is an edge with the given weight (which for example can be 

determined by entropy based correlation). 

 

With regards to the complexity of a system and its structure being 

represented with a graph, there are different perspectives amongst system 

researchers as to what represents a system’s complexity. The general belief is that 

the complexity can be fully represented by size, coupling and cyclic interactions. 

These are discussed next and after that complexity measures in engineering design 

literature is reviewed. 

 

3.3.1  Size 

 
There is clearly a sense in which people use “complexity” to indicate the number 

of parts. The size of a system is the minimum number of variables that the system 

can be described with (order of its graphical representation)11. The notion of 

minimum size overcomes some of the inadequacies of mere size as a complexity 

measure (Edmond, 1999): it avoids the possibility of needless length. Size (or 

order) has been used in the literature as a measure of complexity in applications 

that include (Edmond, 1999): the social organisation and community size 

(Carneiro, 1987 ); the minimum number of gates in a circuit (Lazarev, 1992); the 

cyclical behaviour of systems (Walker, 1971); self-replicating sequences 

(Banzhaf, 1994); rule-based systems (O’Neal and  Edwards, 1994 ); neural 

networks and cellular automata (Gorodkin et al, 1993); and grammatical 

development (Kemper, 1995). 

 

                                                 
11 Systems of high order are usually known as large scale systems. 
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3.3.2  Coupling 

 

Coupling (or connectivity) is the sum of the densities of dependencies between the 

system’s variables (size of the graphical representation). The coupling of a system 

is a strong indicator of its decomposability: it is difficult if not impossible to 

decompose a system with densely interconnected elements/components without 

changing the overall characteristics of the system (Edmonds, 1999). Applications 

of coupling as complexity measure include (Edmonds, 1999): the reliability of 

circuits (Winograd, 1963), the stability of random linear systems of equations 

(Ashby and Gardner, 1970), stability in computational communities (Kindlmann, 

1984), stability in ecosystems (Casti, 1977; Lakshmanan et al, 1991; Pimm, 

1984), the diversity of ecosystems (Margalef, 1984), the structure of memory 

(Kroll and Klimesch, 1992), logical and computational properties of bounded 

graphs (Meinel, 1990), competition in networks (Reggiani, Nijkamp, 1995), 

random digraphs (Seeley and Ronald, 1992), chemical reaction mechanisms 

(Zeigarnik, and Temkin, 1996). 

 

3.3.3  Cycles 

 
The number of Independent Cycles is a basic graph measure sometimes referred 

to as cyclomatic complexity and is the number of independent cycles or loops12 in 

a graph (McCabe, 1976). As indicated in Chapter 1, complex systems are 

characterized by circular causality. Thus a graph theoretic measure of complexity 

must point to circularity of dependencies between the system’s variables. In 

general there is no direct relation between the order (number of vertices) and the 

cyclomatic complexity: the number of vertices will limit the cyclomatic 

complexity but this effect is only significant with very few vertices as the number 

of possible edges goes up exponentially with the number of vertices (Temperly, 

1981). McCabe (1976) uses this as a measure of program complexity, in particular 

to calculate the number of different logical paths through a program to gauge how 

many tests it might need. Other applications include: complexity of simulation 

                                                 
12 Number of independent cycles is easily calculated by the formula c(G) =  m – n + p where m is 
graph size, n is graph order, and p is the number of independent components determined by 
multiplicity of zero in eigenvalue spectrum of Laplacian matrix.  
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models (Schruben, and Ycesan, 1993), and the difficulty of software maintenance 

(Bechir and Kaminska, 1995; Curtis et al, 1979; Hops and Sherif, 1995). 

 

3.4  Complexity Measures in Engineering Design 
 

In engineering design, there are three elements that may be externally represented 

by a designer and for which complexity can be measured: the design problem, the 

design process, and the design artefact (Summers and Shah, 2003). Figure 3.7 

shows that by utilizing the process, a problem is transformed into an artefact. 

 

 
The design problem is a statement of the requirements, needs, functions, or 

objectives of design. The design problem is a structured representation of the 

specific question or situation that must be considered, answered, or solved by the 

designer (Summers and Shah, 2003). This thesis assumes that the design problem 

is a collection of variables (numeric, geometric, functional, configurational, etc.). 

Problems may include the evaluation criteria for the generated solutions. In this 

light, a design problem consists of a collection of design goals, independent 

Organizational Architecture 

Design 
Knowledge 

Common 
Knowledge 

Design 
Problem 

Design 
Process 

Design 
Artefact 

Figure 3.7 Relations between Problem, Process, Artifact, after Summers and 
Shah (2003). 
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design variables, measures of goodness, and design relations13 (Summers and 

Shah, 2003).  

 

The design process is the method that is used in guiding the problem 

solving. The design process includes the domain knowledge available to the 

designer (Summers and Shah, 2003). This domain knowledge may be explicitly 

represented in rules, design procedures, design manuals, previous solutions, etc. 

The design process includes both facts and how to apply those facts. Thus, the 

design process has the following elements (Summers and Shah, 2003):  

 

1. Design problem. 

2. The background knowledge is used to modify either the design 

problem or the design artifact by changing values to existing variables 

through satisfaction of the existing design relations or by introducing 

new variables and relations as needed.  

3. The design tasks that are the collection of sub-processes performed 

during the design process.  

 

The design artifact is a representation of the envisioned physical solution 

to the design problem through the realization of the design variables such that the 

design constraints are satisfied (Summers and Shah, 2003). The design artifact is 

the result of the design process when applied to the design problem. The 

dependent design variables may take the form of parameters or 

geometric/topologic entities.  

 

It is important to notice that metrics in general can be either result or 

predictor oriented (Bashir and Thomson, 1999.a). A result metric is an observed 

characteristic of a completed system such as development time and design effort. 

A predictor metric has a strong correlation to some further result, such as product 

complexity, design difficulty, etc., as they relate to design effort or duration. 

                                                 
13 Relations are the how the design variables, and function variables effect each other. 
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Complexity measures that apply to the design problem are predictors whereas 

measures that apply to the design artifact are result. In the proceeding subsections 

a literature review of various types of complexity measures for each of the three 

design elements and how/why they have been regarded useful is presented. 

  

3.4.1  Complexity Measures for Design Problems 

 

Within the problem domain, measuring complexity has been regarded useful 

because it can give a quantitative estimation of problem solving difficulty, the 

required problem solving effort or design effort, design lead time, cost and risk14 

(Bashir and Thomson, 1999.a). Measuring the complexity of a design problem 

allows for planning by using the results (design process or design artifact) from 

previous comparably complex design problems to predict necessary resources, 

time, or commitment required for the new design problem (Summers and Shah, 

2003). Thus it is important to have measures of problem complexity.  

 

One primitive problem complexity measure was introduced by Griffin 

(1993) and Kannapan (1995) as the number of functions included in the functional 

requirements and to be delivered to the customer. Bashir and Thomson (1999.b) 

argued that this metric is not realistic since it is insensitive to the complexity of 

each function and the relative difficulty of developing functions which are more 

complex. They proposed a simple metric based on the concept of functional 

decomposition which assumed that product complexity depends on the number of 

functions and the depth of their functional trees (hierarchies). Their measure was 

given as: 

 

                                                         PC = ∑
=

×
l

j
jjF

1
                     (3) 

 

Where Fj is the number of functions at level j and l is the number of levels in the 

functional decomposition hierarchy. These measures however only indicate the 

                                                 
14 Design risk is the probability of not satisfying the functional requirements at the end of the 
design cycle. 
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size of the problem. Dierneder and Scheidl (2001) further advanced the trend of 

the functional tree based measures and introduced a complexity measure for the 

design problems that gave strong emphases to the coupling between the functions. 

The complexity value was the sum of all the functional coupling information 

contents up to a certain level in the functional decomposition hierarchy. The 

function based measures give estimates of the design difficulty.  

 

Dierneder and Scheidl (2001) also introduced two other complexity 

measures: Technical Product Complexity, and the Reliability Product Complexity. 

These two measures reflected correspondingly the coupling degrees of design 

parameters to the functional requirements and the amount of uncertainty in 

achieving the functional requirements by the given set of design parameters. Their 

approach was based on the representation format of axiomatic design of which 

three major flaws can be found. First, they do not clarify how the dependencies 

may be determined. They are assumed to be known to the designer. Second, all 

the correlations including those between the design parameters, and functional 

requirements are calculated based on the linear correlation coefficient which 

cannot capture nonlinear dependence. Third, they did not account for cyclic 

dependencies that are the root cause of emergence properties. 

 

Complexity as the amount of uncertainty15 in achieving the functional 

requirements has been introduced earlier by Suh (2001). Consider Pi as the 

probability that the ith functional requirement would be satisfied Then Suh (1989) 

defined Real Complexity as: 

 

            ∑=
n

i
R P

C
1

2
1log                                             (4)       

 

Where n is the total number of functional requirements. This complexity measure 

is redundant and unnecessary; because it is not clear what a measure of 

complexity as a function of uncertainty has to offer that an estimation of 

uncertainty by itself could not (Crutchfield and Young, 1898). It would appear 

                                                 
15 This is more robustly known as the risk involved in a design process. 
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that Suh’s definition of complexity is based on functional requirements 

uncertainty being solely due to variability and noise particularly those due 

introduced in manufacturing. It is the argument of this thesis that the major source 

of risk (in form of surprise) as an emergent property is complexity itself, not the 

other way around.  

 

Suh (2001) also presented the imaginary complexity as a degree of 

uncertainty based upon the designer’s lack of understanding. This view of 

complexity attempts to explain why two designers may have different levels of 

difficulty handling the same problem. This approach includes the designer while 

measuring the “system” (design problem and designer). This uncertainty may be 

measured as the probability of the designer “stumbling” upon a solution.  

 

Braha and Maimon (1998) presented two definitions of complexity in 

engineering design: functional and structural. Their functional complexity was the 

same as Suh’s real complexity. They, however, defined the structural complexity 

of design as the information content of the minimal representation of the artifact. 

In this definition information is whatever that is represented by the designer. The 

difference between the functional and structural complexity according to them is 

reflected in the difference between design and design efficiency effectiveness. 

Braha and Maimon (1998) supposed a design artifact as a collection of operands 

(entities) and operators (relationships). Given a design with n operands and 

operators {X1, X2, Xn}, each of which with a distinct probability distribution, they 

defined the structural complexity as the entropy of the joint probability 

distribution of all Xi s: 

 

                     H(X1, X2,…, Xn) = ∑ P(X1, X2,…, Xn) × log P(X1, X2,…, Xn)       (5) 

 

According to Braha and Maimon (1998), a structural definition of complexity has 

several appealing properties:  

 

1. Simplicity in evaluation of design complexity 
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2. Simplicity in knowledge exchange between different computer 

aided design systems since two parts of information can be added 

together.  

 

And also some limitations: 

 

1. It hardly finds relevance to satisfying design objectives. 

2. It is dependent on the method of information acquisition, which 

means that the information may not be interpretable after the 

information acquisition process is stopped. 

3.  It cannot explain the designers underlying psychological and 

reasoning patterns. 

 

Structural complexity is the engineering version of the Kolomogorv-Sinai 

entropy (or deterministic complexity) that was originally introduced in the context 

of dynamical systems theory. This notion of complexity is incomputable in 

exactly the same way as deterministic complexity (See Crutchfield (1994) for 

proof). Roughly speaking we can argue that the estimation of joint probability 

distributions of all design entities by rationally bounded16 design agents 

(observers) is prone to error to the degree that the resulting complexity measure 

would not reflect the collective inter-dependencies (or complexity) of the design 

problem. We must, therefore, restrict ourselves to estimation of pair wise joint 

probability distributions of design variables (Fraser, 1989). Braha and Maimon 

(1998) solved Equation (5) only for when all the design entities were independent 

(with no interrelation) which is far too simplistic and renders the complexity 

measure purely as the function of design information content size. 

  

                                                 
16 The concept of bounded rationality accounts for the fact that perfectly rational decisions are 
often not feasible in practice, due to the finite computational resources available for decision 
making. (Source: Wikipedia) 
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El-Haik and Yang (1999) tried to incorporate the measure of structure as a 

component of complexity into the complexity measure. They posed that given:  

 

          {FR} = [A] {DP}                      (6) 

 

Then complexity as the uncertainty in achieving the functional requirements 

(Suh’s definition) has three components:  

 

1. Variability which is the uncertainty in design parameters measured by 

their total entropy. Given each of n design parameters follow a distinct 

probability distribution Pi the entropy would be: 

 

     PlogPh
n

1
i∑=                           (7) 

 

2. Vulnerability of the design that was the determinant of domain 

mapping matrix, which hints at the overall sensitivity of functional 

requirements to design variables. This is perhaps the closest the 

literature has got to the approach of this thesis.  

3. Correlation or coupling between the design parameters.  

 

El-Haik and Yang’s (1999) method takes into consideration the size, 

coupling and possibly the circularity of the interdependencies between design 

variables (obviously, in the latter case, without them being aware of it). However, 

again, it was based on linear correlation coefficients. This measure could be used 

to compare different design solutions and as such was a measure of artifact 

complexity as well. In general, axiomatic complexity suffers from applicability 

issues and that limits the usefulness of the measures that are developed on the 

basis of this theory.  
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Summers and Shah (2003) proposed that complexity measures must have 

three components of solvability, size, and coupling. They presented the following 

definitions: 

 

1. Solvability is whether the design artifact may be predicted to satisfy 

the design problem.  

2. Size of several elemental counts including the number of design 

variables, functional requirements, constraints, sub-assemblies, etc.  

3. The coupling between elements.  

 

They extended their definition to the design problem, the design process, and the 

design artifact. We believe that solvability must have to do with cyclic 

dependencies or cyclomatic complexity because they produce emergence effects 

that cannot be predicted: by presenting empirical results Watson and McCabe 

(1996) reported that the number of errors in the implemented (software) systems 

has been in direct proportion with the cyclomatic complexity. In addition they 

suggested cyclomatic complexity as a test and evaluation mean. 

 

3.4.2  Complexity Measures for the Design Process 

 

Determining the complexity of a design process may be useful for selecting 

between two or more design processes for the same design problem. The design 

problem’s complexity does not change, but the complexities of the available 

design processes may be different. The process complexity measures have 

applications in design automation where the machine needs to decide between 

several available processes. 

 

Ko et al (2007) presented an evolutionary complexity of information for 

analysis of the design process. They reported that the minimization of their 

entropy based measure of complexity can lead to the identification of the least 

biased sequence of activities. This thesis does not address the sequencing or 
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synchronization of the design activities based on their dependencies. Instead we 

suggest tackling the process complexity at the problem decomposition stage. This 

is based on the recognition that the design process may be modeled graphically to 

closely mirror a problem’s graphical representations. This trend of modeling 

started with Simon’s definition of decomposability. Simon (1969) defined a 

complex system as a system of a large number of parts that interrelate in a non-

simple manner. Within complex systems, a distinction may be made between the 

relationships between subsystems and within subsystems. This leads to the 

concept of decomposability of the complex system. Generally, links within 

subsystems must be stronger than links between subsystems, allowing for 

handling the subsystems concurrently rather than as a single system. Simon 

(1969) proposes “nearly decomposable systems” as an approach to mitigate the 

effects of complexity in system synthesis. 

 
Chen and Li (2005) presented a complexity index that was the ratio of the 

complexity of the problem after decomposition to that of the problem before 

decomposition. They associated this index with the process efficiency. The 

problem was modelled as the set of design components or physical constituents of 

a design (design variables), and the design attributes that described the behavioral 

properties of a design (functional response). They studied the decomposition of 

the incident matrix of components-attributes pair that reflects how components 

influence attributes. The immediate observed drawback with this approach is that 

it does not include the interactions of components-components or attributes-

attributes. They presented the following measure for the problem complexity 

(before decomposition): 

 

             COM0 = m ln(2n)                       (8) 

 

Where m is the number of attributes and n is the number of components. The 

complexity after decomposition had two sources contributing to the total 

complexity of the interaction-involved matrix: the interaction part and the blocks 

(the resulting, subsystems, or sub-problems): 
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Where ma is the number of attributes present in the interaction part that is a 

number between 2 and m, nb the number of blocks, mi the number of attributes 

inside the blocks, and ncis the number of components inside each block.  The first 

term in Equation (9) is the complexity of the interactions and the second term is 

the sum of the complexity of the blocks (Figure 3.8).  

 

 
 

Chen and Li (2005) also presented an iterative algorithm that could 

determine the number of blocks. They claimed that this approach to mitigate the 

complexity of the design process has not been reported in the literature before. 

Our approach to measure the process’s complexity is very similar to this, with the 

distinction that our measure of decomposition has a more holistic approach and 

does not sum up the complexity of the blocks and interactions to arrive at the 

complexity of the decomposition. We contend that they incorrectly argue that 

decomposition can decrease complexity which is perhaps the consequence of their 

reductionist approach. We will show that regardless of the decomposition type, it 

cannot reduce the overall complexity of the process, which is utterly rational 

when the ‘no free lunch theorem’17 is considered. 

                                                 
17 No free lunch theorem is discussed in the context of optimization theory and states that if a 
search algorithm achieves superior results on some problems, it must pay with inferiority on other 

 

Blocks 

Figure 3.8 Shows the block and the interaction part of a decomposition of an 
incident matrix. From Chen and Li (2005). 
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3.4.3  Complexity Measures for a Design Artifact 

 

Complexity measures for a design artefact are defined for the solution space and 

thus can be regarded as goodness of design measures. Pahl and Beitz (1985) 

offered a simplicity rule for embodiment design. This rule is based on the 

presumption that simple designs are preferred to complex designs. With respect to 

evaluating the simplicity (or conversely the complexity) of a design artifact, Pahl 

and Beitz (1985) suggested counting the number of functions represented, 

evaluating the working principles (number of processes, components, and 

coupling), or checking the symmetry of shape, topology of shape, motion (easy to 

analyze and manufacture). No details are provided with respect to analyzing the 

complexity measures, rather qualitative interpretations by the designer with 

limited enumeration counts of parts, assemblies, interfaces, etc. are suggested. 

Balazs and Brown (2002) offer an approach for design artifact simplification 

through analogical reasoning by reducing redundant sub-graphs. Several of the 

measures introduced previously including those of Braha and Maimon (1998), and 

El-Haik and Yang (1999) are also applicable to the design artifact.  

 

 

3.5  Methodology: Measuring the Complexity of PPO 

 

This thesis assumes that what make a system complex are the three components of 

size, coupling and cycles. A graph theoretic complexity measure18 is presented in 

the Appendix (Section A.1) that is an increasing function of the three components 

of complexity. In this thesis, this measure is applied to various types of DSM in a 

unified manner and by that we accomplish the immunization of complex PPO 

against catastrophic failures. The following discussion presents some necessary 

definitions and metaphors used in the complexity management and complexity 

based design method introduced by Marczyk (2008). This method is at the heart 
                                                                                                                                      
problems. We argue that decomposition makes a problem tractable at the price of more overall 
complexity. 
18 This measure is the proprietary complexity measure of Ontonix s.r.l and has been 
commercialized in OntospaceTM software. 
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of the software, OntospaceTM, which its underlying principles have been a 

knowledge source to the approach of this thesis. Although OntospaceTM was 

originally devised as a Computer Aided Engineering analysis tool, its principles 

has never been taken as the backbone of a DSS which can facilitate design 

synthesis as well as analysis. The conceptual DSS presented in Chapter 8 is a 

demonstration of this.  

 

Fitness Landscape (FL): FL is a multi dimensional data set of inputs and outputs 

of a system. Figure 3.9 shows two of the anthills related to a FL. FL is another 

name for parametric problem space.  

 

                       
 

Forming a FL: FL can be formed from experimental data about a system, and/or 

statistical simulation of the system by means of methods such as Monte Carlo 

simulation techniques. Combinatorial methods can also be employed. For 

example a combination of Design of Experiments and Monte Carlo Simulation 

would be quite adequate for the simulation of product and process models.    

 

Fuzzification of the FL: OntospaceTM fuzzifies the entire FL in 3, 5, or 7 fuzzy 

levels. Figure 3.10 shows two anthill plots of the fuzzified FL with 5 fuzzy levels. 

 

Fuzzy States: If the FL is partitioned into 3, 5, or 7 fuzzy states, then each multi 

dimensional partition is a fuzzy state of FL. Fuzzy states are the fuzzified points 

of the FL.   

 

Figure 3.9 Two scatter plots of a FL. 
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Map of the System: is the graphical representation of the structure or dependencies 

in the system (Figure 3.10). Dependencies are determined by the entropy based 

correlation coefficients. 

 

Complexity of the Map: reflects the coupling, size and cycles of the system. We 

will refer to the complexity of this map as self complexity. 

 

 
 

Lower Complexity Bound: A system with a complexity lower than this bound has 

lost its intrinsic characteristics and has failed to emerge as a spontaneous self. 

Dembski (2002) explained that, a system is irreducibly complex when the removal 

of any of the parts or the links amongst them parts lead to the failure of the system 

in performing the assumed basic functions. The lower complexity bound 

represents the irreducible complexity of the system that contains the intrinsic 

characteristics of the system.   

 

Upper Complexity Bound: The complexity of the system may be increased to this 

bound without exhibiting chaos. Every  closed system  can  only  evolve/grow  to  

a  specific  maximum  value  of  complexity which is also known as the system’s 

critical maximum complexity.  For closed systems, the increase of entropy leads 

Figure 3.10 Shows different linear trends in the FL.  
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to the increase in complexity but only to certain point (the upper bound), beyond 

which even small increase of entropy cause the reduction in complexity and the 

structure of the system starts to collapse (Marczyk and Deshpande, 2006).  

 

 
 

 

Complexity Modes: A mode represents the characteristics of various regions of the 

FL with certain complexity value complexity modes (or modes) are fixed 

topologies of a system’s important parameters and their correlations. A 

complexity mode is a collection of system fuzzy states that have a unique map. 

Figure 3.12 shows a FL and two of its complexity modes with their maps (left and 

right). The large red and blue points are respectively the input and output 

parameters that have at least one important correlation to the other variables. The 

small red dots represent an important link between the two variables. The number 

of important links and variables that have at least one link to other variables is 

different for different regions of the FL. Each region with a fixed topology of 

important variables and links is a complexity mode. A FL may have many modes 

(e.g. 10). Complexity modes exist because of either nonlinearity or piecewise 

linearity in the system (Figure 3.9 shows an example of the latter). Each 

complexity mode is characterized by a different complexity value.  

 

Figure 3.11 An example of a self map and its three complexity measures 
delivered by OntospaceTM. 
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This methodology (comprising the above definitions) can be best described as a 

modeless approach for systemic studies. This methodology does not attempt to 

make models from the observations and then try to estimate the behaviour of the 

model under different variations in variables (which is the common approach of 

science). Rather, we use the measurement of complexity as a quantitative 

indicator of surprise. Consequently this measure per se can be used in robust 

decision making with regards to choosing between the solution alternatives.  

Figure 3.12 Two modes of a FL( left and right). 
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4  A Template for Complex Design Problems 
 
 
This Chapter presents our template for engineering complex products. This 

template is the extended version of Reidsema’s model and has characteristics of 

evolutionary and spiral processes. The template is a simulation based design 

methodology. Here, the role of simulation is central in immunizing PPO with the 

help of complexity measures. The template is depicted in Figure 4.1.  

 

 

 
 

It should be noted that the processes at various abstraction levels may be 

carried out simultaneously. The DSS presented in Chapter 8 exploits and enables 

this simulation based model of the design problem solving process. The steps of 

this process are explained next. 

 

 

 

 

Generation 

Simulation 

Decomposition 

Composition and 
Distribution 

Integration 

Iteration 
Next Abstraction 

Level 

Figure 4.1 A Simulation Based model of design process for complex problems. 
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4.1  Generation  

 

This is to generate the design concepts, or conceptual design. Here we assume that 

these concepts are generated in the parametric format as sets of new design 

variables. But if this is not the case the concepts must be parameterized before 

proceeding to the next stage. The task of determining the values of the design 

variables constitute a low level problem solving activity. 

 

Naturally the generated variables at the initial abstraction levels are taken 

as those variables related to the higher abstraction levels that encompass the more 

intrinsic characteristics of the product, which has to do with the main functions 

and performances of the product. In the same way the lower abstraction levels 

usually locate the variables that describe the detailed functionalities of the 

product. However these rules may be forsaken. We believe that it is advantageous 

to think of the variables in the first abstraction level in the hierarchy as a seed that 

all the solutions of all other abstraction levels, depend heavily upon. Given this 

premise, the seed must have a foretaste of other problems at other abstraction 

levels. Thus the seed must not only reflect the most important and general 

functions of the product but also those functions that are low in the functional 

decomposition chart and still have large dependencies on the other 

functions/attributes of the product.  

 

The number of variables at each abstraction level can be regarded as the 

termination criteria. This is so since more variables implies a larger solution space 

and a higher number of states in the FL. To follow the ideal approach of Liu et al 

(2003), we suggest that the number of variables at each stage or abstraction level 

must increase until about the midpoint in the design process and by then the 

global trend (determined by the number of variables) must be towards 

convergence (decrease in the number of variables).  
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4.2  Simulation 

 

Referring to the process of systematically testing ideas early in NPD as 

enlightened experimentation, Thomke (2001), in the article “Enlightened 

Experimentation: the New Imperative for Innovation” argued that simulation 

technologies enhance the number of design breakthroughs by testing a greater 

variety of ideas in a virtual environment. According to Thomke (2001) “computer 

simulation doesn’t simply replace physical prototypes as a cost-saving measure 

but it introduces an entirely different way of experimenting that invites 

innovation.” Simulation is the key to resolve performance as well as operational 

requirements improvement with sensible development and production costs, times 

and risks for multi-disciplinary systems (Formica and Marczyk, 2007; Sinha et al, 

2001). Monte Carlo Simulation is often suggested as means of establishing a 

design space and FL since creating high-fidelity simulation models are often 

expensive (Marczyk, 1999; Sinha et al, 2001).  

 

Monte Carlo Simulations can digest information gained from the design of 

experiments to tune the simulation for higher compatibility with the real system. 

Monte Carlo Simulation requires the estimation of the conditional probability 

distribution of every pair of design variables, e.g. from the Design of Experiments 

results or from the available models of the artefact/problem. Figure 4.2 shows the 

typical modules that a simulation engine might contain. Here the simulation is the 

parametric simulation in the statistical sense and the simulation consumes the 

parametric model of the problem/artefact. Thus a simulation engine must contain 

a parameterization module to present the problem in the parametric format.  
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As stated before the outcome of simulation is the FL or design space at a 

given abstraction level. A FL is thus the Meta-Model of the design variables and 

design relations. A Meta-Model is a scatter plot of two random variables (Figure 

4.3). Marczyk (1999) described Meta-Models as the goldmines of information; 

they are ontologies that describe a system (Efatmaneshnik and Reidsema, 2007.a). 

Any model would not be as precise as the Meta-Models and this forms the basis 

for the argument that complex systems require Meta-Modelling (Marczyk, 1999). 

Meta-Models have the ability to transfer all the required information about the 

structure (and thus the self) of the system and therefore may be used to measure 

the complexity. Despite the fact that Meta-Models only show the variability of 

two variables relative to each other (both of which are characteristics of the 

environment of the system or non-self), the self of the system is embedded or 

hidden within them in the most prime way. 

Concept 
Generation 

Simulation Parametric 
Modeling 

Feedback 

Simulation Engine 

Parameterization Conditional Probability 
Estimation 

Random Number 
Generator Models Data Base 

Design of Experiments Results 

Figure 4.2 Simulation Engine module and its integration in the problem solving 
procedure. 
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We propose the employment of design space simulation in the design 

process to estimate the PDSM of the product/problem at the upstream of the 

design process (Efatmaneshnik and Reidsema, 2008.a). The simulated PDSM 

gives important insights about the couplings in the problem structure and thus the 

tasks structure. Therefore, by simulation not only the performance of the product 

can be estimated but also the design process can be managed more effectively and 

efficiently (Efatmaneshnik and Reidsema, 2008.a). In Section 4.4 this issue is 

extensively elaborated. We suggest that decomposition must be taken as the 

decomposition of simulated PDSM. Table 4.1 shows an example of a typical 

simulated PDSM. Figure 4.4 shows the corresponding graph to PDSM in Table 

4.1 to which we refer as self graph (or map) of the problem (this graph is identical 

to the hypergraph presented in the Figure 3.11). Self maps intuitively convey the 

level of coupling in a system. Decomposition is applied to the self map of the 

system (Efatmaneshnik and Reidsema, 2008.a). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3 Scatter Plots as Meta-Models can be established by Monte Carlo 
simulation and used for determining the correlation between design variables, 

from McDonald and Mavris (2000). 
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Table 4.1 A Simulated PDSM is a weighed adjacency matrix. This PDSM has 10 

Variables. 
- V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 

V1 0 0.76 0.45 0.16 0.22 0.77 0.12 0.01 0 0 

V2 0.76 0 0.11 0.65 0.44 0.78 0 0 0 0.18 

V3 0.45 0.11 0 0.64 0.11 0.31 0.02 0 0.15 0 

V4 0.16 0.65 0.64 0 0.45 0.34 0 0 0 0 

V5 0.22 0.44 0.11 0.45 0 0 0 0.01 0 0.01 

V6 0.77 0.78 0.31 0.34 0 0 0 0 0 0 

V7 0.12 0 0.02 0 0 0 0 0.2 0.7 0.1 

V8 0.01 0 0 0 0.01 0 0.2 0 0.2 0.8 

V9 0 0 0.15 0 0 0 0.7 0.2 0 0.9 

V10 0 0.18 0 0 0.01 0 0.1 0.8 0.9 0 
                             
 
 

 
 
 
 
 
 
 
 
 

 
 

Figure 4.4 The self graph of problem/system. 
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4.3  Decomposition 
 

According to Papalambros (2002) decomposition of large-scale design problems 

allows for: 

 

• conceptual simplification of the system 

• reduction in the dimensionality of the problem 

• more efficient computational procedures 

• utilization of different solution techniques for individual sub-problems 

• simultaneous design, modularity, multi-objective analysis 

• efficient communication and coordination among the diverse groups 

involved in the design process 

 

Problem decomposition and partitioning of the self map of the system fits 

within the area of graph partitioning. A bi-partitioning of graph G is a division of 

its vertices into two sets or sub-graphs, P1 and P2. Similarly a k-partitioning is the 

division of the vertices of the graph into k non-empty sets P = {P1, P2 ,…,Pk}.  A 

graph can be partitioned in many different ways. In the domain of problem 

solving, every node or vertex of a graph represents a variable of the system and 

every edge of the graph suggests that two parameters of the system are dependent 

on each other; however there are several other representational schemes (for 

example see Michelena and Papalambros (1995), and Chen et al (2005)). Here, 

the strength of the relationship between two variables is the corresponding edge 

weight. An undirected graph as the self map of the system indicates that variables 

affect one another mutually and equally. The sub-graphs can be regarded as 

subsystems or sub-problems or agents (Kusiak, 1999). The notion of agency 

implies that the sub-problems are solved more or less independently from each 

other. Each design team has autonomy to explore parts of the solution space that 

is of interest to its own assigned sub-problem (agent).  

 

We suggest decomposing the PDSM in several modes and according to its 

connectivity level (Efatmaneshnik and Reidsema, 2008.a).  Problem connectivity 
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is the total number of edges in the self map of the product/problem divided by the 

total number of possible edges; that is the number of edges of a complete graph 

with the same number of nodes (Efatmaneshnik and Reidsema, 2008.a). The total 

number of possible edges in a complete undirected graph with n nodes or vertices 

is:  

 

                                                                                                (2) 

 

If the self map of the PDSM has k connections (edges), we define the problem 

connectivity as: 

 

                                                                                                                      (3) 

 

The decomposition modes have been scattered in the literature (Sosa et al, 

2000; Klein et al, 2003.b; Browning, 2001) and are brought together here for the 

first time (Table 4.2). Bearing in mind that it is usually desirable to have 

subsystems of similar order, the implementation of some of these decomposition 

modes (in particularly full decomposition mode and integrative mode) may not 

always be feasible. The connectivity values in Table 4.2 are based on this 

knowledge and the experience of the author with randomly generated graphs. For 

problems with a denser self map (higher connectivity), modular clustering and 

overlap decomposition can be used. If the problem’s map is very dense and the 

system is regarded as highly complex then it may not be decomposed at all (Bar-

Yam, 2004). We will come back to this important issue in Chapter 5.5. 

 

Each of these decomposition modes brings specific strengths, weaknesses 

and particularity to the problem solving process. As an example, an aircraft with a 

blended wing body may not be decomposed completely into separate body and 

wings with the related design variables being independent or loosely dependent 

(Figure 4.5). Instead for systems that have subsystems with fuzzy boundaries 

overlap decomposition may be used. The reason that much effort in this thesis has 

been devoted to problem decomposition is that clustering in fact is the key to 

tying top-down, activity-based DSMs together with bottom-up, parameter-based 
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DSMs (Browning, 1999). The decomposition problem will be treated in Chapter 

5. 

 

Table 4.2 Decomposition Modes of self map of problems. 

Connectivity Very Low 

(0-0.02) 

Low 

(0.02-0.1) 

Intermediate 

(0.1-0.2) 

High 

(0.2-0.3) 

Very High 

(0.3-1) 

Possible or best 
decomposition 

strategy 

Full 
decomposition 

Integrative
Clustering

Modular 
clustering 

Overlap 
clustering 

No 
decomposition

 

Illustration 

 

     

 

 
 

4.4  Distribution (and Composition)  

 

Distribution refers to the distribution of the design tasks amongst the design teams 

and composition is thus the formation of the design teams. Integrated NPD 

describes how tasks are interconnected and seeks to integrate the product process 

and organization (Prasad, 1996). As depicted in Figure 4.6, organizational 

 

Figure 4.5 Two components (subsystems) are overlapped in blended wing-body 
types of aircrafts.
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partitioning and integration are tied to the nature of the product decomposition 

(Gulati and Eppinger, 1996; Browning, 1999; Eppinger and Salminen, 2001). It is 

arguably true that the efficiency of the design integration process is somehow 

dependent on the alignment of the task structure and organizational structure 

(Browning, 1999).  

 

 

Thus integrated NPD requires that decomposition and integration schemes 

have congruence. This harmony marks a complex NPD project with success. In 

general two main approaches are reported in the literature for the deliberate 

alignment of problem structure and NPD organization structure (Efatmaneshnik 

and Reidsema, 2008.a): 

 

1. Bottom up planning for flexible organizational structure forms the 

design teams after product decomposition has taken place. For example the 

aligned organizational architecture in charge of conceptual and parametric 

design of an aircraft’s body and wings, in the same way, constitute two 

different design teams with overlapping boundaries. Tanaka et al (2000) 

took this approach in the context of distributed problem solving and called 

it multi-agent system creation. This approach has also been used in a 

manufacturing system MetaMorph (Maturana et al, 1999) that could 

dynamically change its form to mimic the task structure. In this case the 

 
 

Figure 4.6 Product architecture is tied to organization through 
decomposition/integration problem, after Gulati and Eppinger (1996). 
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number of the subsystems the system is decomposed to may be maximized 

for better overall performance. 

 

2. Top-down planning for fixed organizational structures decomposes the 

problem/product in a way that suits the organizational structure; this is 

used when the organizational structure is fixed and solid which means that 

design teams are formed prior to the introduction of the problem. A greater 

use of coordination activities between the design teams and/or the use of 

integration teams results. In this case the number of the subsystems is 

determined according to the number of design teams.  

 
These two approaches correspond to using low level and high level 

knowledge for design planning. In general in a problem solving environment the 

designers actions can be planned or controlled by using three kinds of knowledge 

(Reidsema, 2001) (Figure 4.7):  

 

1. Low level problem knowledge  

2. Medium level knowledge of the problem solving process  

3. High level organisational knowledge 

 

Browning (2001) emphasized that parameter-based DSM which represents 

the low level product knowledge has integrative applications: 

 

Most design planning takes place in a top–down fashion 

through decomposition. If they begin at the top, such 

models rarely reach the lowest levels of design activity, 

where individual design parameters are determined based 

on other parameters. A bottom-up, integrative analysis of 

these low-level design activities can provide process 

structure insights. 

 

This characteristic of the parameter based DSM which represents the low level 

product knowledge makes it suitable to be utilized in planning and distributing 

complex engineering problems (Efatmaneshnik and Reidsema, 2008.a).  
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4.5  Integration 

 

Integration combines the partial solutions of a large problem (Reidsema, 2001). 

The integration problem of complex problems and complex problem solving 

environments is the main challenge for problem solvers. For complex systems, 

due to coupling between the distributed tasks, integration may not be performed 

linearly simply by adding the partial solutions together. Since the coupled 

problems tend to be nonlinear (same as the coupled differential equations) the 

solutions may not be achieved by using the usual concurrent planning (that adds 

the partial solutions to obtain the overall solution). The nonlinearity limits the 

kind of knowledge being used for planning.  
   

In product design the performance and operational requirements of the 

product are micro or low level parameters, whereas production costs, times and 

risks are macro or high level and often emergent properties of the process 

Figure 4.7 Design Process Knowledge (Reidsema, 2001). 



74 
 

(Efatmaneshnik and Reidsema, 2009). Macro level properties (those that are 

observed at the organizational level) dynamically arise from the interactions 

between the micro-level properties that are the low level activities (Efatmaneshnik 

and Reidsema, 2009). Thus, in order to resolve the uncertainty and dealing with 

high level emergent properties of the process and organisational operations (that 

can be chaotic), the low level knowledge of the problem must be used to 

characterize the behavioural rules of individual problem solvers (Efatmaneshnik 

and Reidsema, 2009). Using low level knowledge of the product is indeed a 

bottom up approach that has been suggested as the panacea for complex problem 

solving failures (Anderson, 2006), (Efatmaneshnik and Reidsema, 2009). Bottom 

up modelling of the design process offers the greatest fidelity to the process being 

modelled or emulated (Anderson, 2006). 

 

Integration within the design process can be conducted by two major 

methods (Efatmaneshnik and Reidsema, 2008.a):  

 

1. Supervised integration 

2. Unsupervised integration 

 

Supervised problem solving architecture involves high level integration teams and 

centralized planning (Efatmaneshnik and Reidsema, 2008.a) (see Figure 4.8). 

Eppinger (1997) stated that:  

 

One important level of integration takes place within each 

development team; this is the now common practice of 

concurrent engineering, in which a cross-functional team 

addresses the many design and production concerns 

simultaneously. To assure that the entire system works 

together, sub-system development teams must work 

together and for that additional teams are assigned the 

special challenge of integrating those subsystems into the 

overall system.  
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However for densely coupled and complex problems/systems using high 

level integration teams as coordinators cannot be effective, since the high load of 

coordination complexity would be a greater barrier to effectiveness of the 

integration process.   

                 

 
 

Unsupervised problem solving architectures can cope with problems of 

more complexity using a distributed planning approach (Efatmaneshnik and 

Reidsema, 2008.a). These include systems that use 1) low level integration team 

and 2) multi agent architecture and 3) information intensive architecture 

(Efatmaneshnik and Reidsema, 2008.a).  

 

Systems using low level integrators and multi agent architectures 

correspond to two decomposition patterns that are recognized by Sosa et al (2000) 

as coordination-based and modular. Coordination based decompositions partition 

the system into several relatively independent subsystems and only one (or few) 

strongly connected subsystem(s) namely the coordination block(s) (Figure 4.9). 

The identification of coordination block (Figure 4.9(b)) in a system can be 

performed through integer programming (Sosa et al, 2000). The coordination 

block (CC) is an integrative subsystem and the design team in charge of 

integrative subsystem design is regarded as a low level integration team that 

implicitly coordinates the activities of other teams (Efatmaneshnik and Reidsema, 

2008.a). Obviously, the design of the integrative subsystem must be much more 

High level 
coordination 
team 

Low level 
design teams 

 Figure 4.8 Integration team acts as a high level coordinator.   
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complex than the other subsystems. As such, the integration of the complex 

systems with more than a certain amount of coupling is not desirable with low 

level integration schemes through coordination based problem decompositions 

(Efatmaneshnik and Reidsema, 2008.a).   

               

 
 

 

The interactions between the design teams in multi agent systems are 

autonomous and based on agents social knowledge (Efatmaneshnik and 

Reidsema, 2008.a). Multi agent systems are a relatively complex field of research. 

The solution to the design problems in multi agent systems is formed in a self 

organizing fashion that emerges as result of autonomous interaction of the agents 

(Figure 4.10(a)); multi agent systems correspond to modular problem 

decomposition (Figure 4.10(b)) (Efatmaneshnik and Reidsema, 2008.a).  

                                                                                          

 
Figure 4.9 Interactions between design teams of low level integration scheme 

(a) and the corresponding PDSM of order 100 with coordination based 4-
partitioning (b). 

(a) (b) 

Low level design teams 

Coordination Block 
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Information intensive architecture can also be regarded as multi agent 

system in which the design teams (or coalition of agents) have overlapping 

boundaries (Efatmaneshnik and Reidsema, 2008.a). Information intensive 

architecture corresponds to overlap decomposition of product/system in which 

subsystems are overlapped and share some of the design variables with each other 

(Efatmaneshnik and Reidsema, 2008.a). Information intensive structures facilitate 

collaborative design for large scale and complex design problems.  

 

According to Klein et al (2003.b) collaborative design is performed by 

multiple participants representing individuals, teams or even entire organizations 

each potentially capable of proposing values for design parameters and/or 

evaluating these choices from their own particular perspective. For large scale 

and severely coupled problems collaborative problem solving is possible when 

the design space or problem space is decomposed in an overlapped manner: the 

design teams explicitly share some of their parameters, problems, and tasks 

(figure 4.11). The main characteristic of this process model is the intense 

collaboration between coalitions of agents making this mode an information and 

knowledge intensive process (Klein et al, 2003.b). The impact of new information 

on the design process in this integration scheme is relatively high; as such overlap 

decomposition and its corresponding integration scheme are suitable for problems 

of high complexity and self connectivity (Efatmaneshnik and Reidsema, 2008.a).   

 

 

Figure 4.10 Multi agent design system (a), the corresponding modular PDSM 
decomposition (b). 

Low level design teams 

(a) 
(b) 
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Following the idea of Enlightened Engineering (Bar-Yam, 2004) we 

propose that for problems with high levels of connectivity several design groups  

must work in parallel to each other on the same problem (that has not been 

decomposed) (Efatmaneshnik and Reidsema, 2008.a). The design teams in this 

situation compete rather than cooperate with each other. The innovative problem 

solving as the integration breakthrough (Bar-Yam, 2004) is discussed and treated 

in Chapter 6.  

 

 

4.6 Discussion: Adaptive Structuration 

 

The proposed model of design goes beyond the traditional models of 

design and is virtually an amalgamation of organization theory and design theory. 

An important research question in the field of organization design is how to 

constitute cross-functional teams (Browning, 1999). Coordination schemes are 

needed to direct the design process so that a design solution is sought in a way 

that accommodates the team interactions (Chen and Li, 2001). “The productivity 

of design teams depends to a large extent on the ability of its members to tap into 

an appropriate network of information and knowledge flows” (Kratzer, 2004).  

Figure 4.11 Design teams (a) as well as product partitions (b) have 
overlapped boundaries. 

(a) (b) 



79 
 

Utilizing cross-functional teams that adapt the organization structure to the task 

structure is one way to address these situations (Browning, 1999). The presented 

template poses that at each round of the design cycle (of each abstraction level) 

the organization (team configuration) must be adapted to the generated tasks and 

reconfigured according to the complexity of the problem at that level. According 

to their adequacy to cope with problems of higher complexity, these integration 

schemes are listed in Figure 4.12 (Efatmaneshnik and Reidsema, 2008.a). The 

idea of embedding different knowledge sharing patterns amongst the design 

agents and design teams of one system has been to date, considered by several 

other systems researchers (Zhang, 1992; Shen and Norrie, 1998; Rosenman and 

Wang, 1999; Chen and Li, 2001). These models will be reviewed in Chapter 8. 

 

 

 
 

“The production and reproduction of the social systems through members’ 

use of rules and resources in interaction” has been studied by Giddens in a 

sociological context and is known as the Theory of Structuration (DeSanctis and 

Poole, 1994). DeSanctis and Poole (1994) adopted Giddens theory to study the 

interaction of groups and organizations with information technology denoted as 

Adaptive Structuration Theory. The theory deals with the evolution and 

development of groups and organizations with observable patterns of relationships 

and communicative interaction among the people (DeSanctis and Poole, 1994). 

 

High level 
integration 
teams 

Problem’s connectivity increase 

Figure 4.12 Ranking various integration schemes capability in coping with 
complexity. 

Low level  
integration 
teams 
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IMMUNE, the conceptual DSS presented in Chapter 8 enables Adaptive 

Structuration through virtual teams. “Virtual teams (or coalitions) are groups of 

individuals collaborating in the execution of a specific project while 

geographically and often temporally distributed, possibly anywhere within (and 

beyond) their parent organization” (Leenders et al, 2003). “Virtual teams work 

across boundaries of time and space by utilizing modern computer-driven 

technologies”; as an instrument of team design, Information Technology (IT) is 

used for creating interdependent relationships by actively shaping and reshaping 

interdependencies and the communication structure of the virtual teams (Leenders 

et al, 2003). As these are altered, consequently, so are the team’s productivity 

(Leenders et al, 2003) and creativity (DeSanctis and Monge, 1999) which are 

related to the creation of the appropriate information flow between the design 

teams. Adaptive Structuration can be implemented with less effort by using virtual 

teams. This is so, because the creation of interdependencies within and between 

the virtual teams is arguably easier than in a conventional team (DeSanctis and 

Monge, 1999), and so the management of creativity is more affordable in virtual 

organizations (Leenders et al, 2003). 
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5  Immune Decomposition and Process Immunity 
 

Decomposition is a means of reducing the complexity of the main problem to 

several sub-problems. This is a reductionist approach which reduces complex 

things to their constituent parts and their interactions in order to understand their 

nature. In contrast holism is an approach to problem solving that emphasizes the 

study of complex systems as wholes. “In the design community, decomposition 

and partitioning of design problems has been attended for the purpose of 

improving coordination and information transfer across multiple disciplines and 

for streamlining the design process by adequate arrangement of the multiple 

design activities and tasks” (Michelena and Papalambros, 1997). 

 

Pimmler and Eppinger (1994) explained that “for a complex product, such 

as an automobile, a computer, or an airplane, there are thousands of possible 

decompositions which may be considered; each of these alternative 

decompositions defines a different set of integration challenges at the 

organizational level”. Alexander (1964) posed that design decomposition (or 

partitioning) must be performed in a way that the resulting sub-problems are 

minimally coupled. In the literature this is also referred to as optimal 

decomposition (Michelena and Papalambros, 1997) and robust decomposition 

(Browning, 1999). Along the same line Simon (1969) suggested that complex 

design problems could be better explained when considered as “hierarchical 

structures consisting of nearly decomposable systems organized such that the 

strongest interactions occur within groups and only weaker interactions occur 

among groups”.  

 

More coupled sub-problems usually lead to more process iterations and 

rework, because conflicts may arise when dependency (edges) in between the 

subsystems exists (Efatmaneshnik and Reidsema, 2008.a). A conflict is when the 

solution to one sub-problem is in contrast with the solutions to another sub-

problem(s). An important conflict resolution technique is negotiation. Negotiation 

leads to iteration in the design process. Obviously a design process with least 

number of iterations is more desirable, and to do this decomposition must be 
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performed in way that the entire system after decomposition entails less coupling 

(see Figure 5.1).  

 

 
  

The system (or problem) is fully decomposable if there is no edge in 

between the sub-systems. In this case the corresponding design process can be 

made fully concurrent: problems are solved separately and solutions are added 

together. A two stage algorithm is usually used to decompose a design problem 

into sub-problems that are less coupled (Kusiak, 1999; Chen et al, 2005). These 

stages are: 

 

1. To diagonalize the PDSM of the problem (or the adjacency matrix 

of the corresponding graph). 

2. To cut the diagonalized PDSM from the appropriate points. 

 

5.1  Spectral Diagonalization Technique 

  

Several methods exist for diagonalization including integer programing (Kusiak, 

1999),  genetic algorithms (Altus et al, 1996) and spectral methods. Spectral 

graph theory uses the eigenvalues and eigenvectors of the adjacency and 

Figure 5.1 More coupled sub-problems increase the number of process 
iterations.

Complex 
Problem 

Integrated 
Solution 

Sub-problems 

Integration 

         Conflict resolution 
through iteration and 

negotiation 

 
More coupled 

subsystems 
implies added 
conflicts and 
further design 

iterations 

Assigning each 
subsystem  

 to a design team 

Decomposition 
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Laplacian matrices. The eigenvectors of adjacency matrix and Laplacians can be 

used to diagonalize the adjacency matrices of both weighted and un-weighted 

graphs. Consider A to be the adjacency matrix of an undirected, weighed graph 

(G). An automorphism of a graph G is a permutation g of the vertex set of G with 

the property that, for any vertices u and v, we have ug ~ vg if and only if u ~ v. 

“vg” is the image of the vertex v under the permutation g and (~) denotes 

equivalence. Automorphisms of graph G produce isomorphic graphs (Cameron, 

2004).  

 

 The first step in spectral partitioning of graphs is to sort the eigenvectors 

of the adjacency and Laplacian matrices in ascending order, and then to permute 

G by those indices of the sorted vector (Efatmaneshnik and Reidsema, 2007.b). 

Some of these permutations (by different sorted eigenvectors) are diagonalized 

(Efatmaneshnik and Reidsema, 2007.b). Although initially it was thought that 

only the eigenvector of the second eigenvalue of the Laplacian (known 

corresponding as the Fiedler vector and Fieldler value) has the property of 

diagonalization but later it was shown that using other eigenvectors (of both 

adjacency and Laplacian) can outperform the Fiedler vector in this regard, 

specifically in case of the weighted graphs (Alpert et al, 1999). Figure 5.2(a) 

shows the graphical representation of the adjacency matrix of an un-weighted 

randomly generated graph of order one hundred. Each dot points to the existence 

of a link between two corresponding variables.  The automorphisms of this 

adjacency matrix are also shown which are permuted by fiddler vector (Figure 

5.2(b)), third eigenvector of the Laplacian (Figure 5.2(c)), and 98th eigenvector of 

adjacency matrix (Figure 5.2(d)).  

 

The utilization of spectral diagonalization has not been reported in the 

engineering design literature. One reason for this may be that mathematical 

representation of this method used in the discrete mathematics community is very 

different from the way it is presented here. Traditionally the diagonalization was 

achieved through lengthy integer programming and hefty branch and bound 

algorithms (Kusiak, 1999). The spectral diagonalization technique is already 

exploited extensively in the context of discrete mathematics (Alpert et al, 1999; 

Spielman and Teng, 2007), circuit design (Chan et al, 1994), data mining (Ding et 
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al, 2001; White and Smyth, 2005) and image segmentation (Shi and Malik, 2000). 

This algorithm is very fast compared to the traditional integer programming and 

branch and bound algorithms that were iteration based as those reported in Kusiak 

(1999).  

 

 

 
 
 
 
 
 
 

(a) (b) 

(c) (d) 

Figure 5.2 Shows the adjacency matrices of a graph (a) and its spectral 
permutations by various eigevectors that are diagonal automorphisms of the 

graph. 
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5.2  Partitioning Quality Criteria 
 

After diagonalization, the cutting points must be determined. Since for a given 

graph many different decompositions are possible there must be a metric that 

enables comparison between them (Efatmaneshnik and Reidsema, 2008.a). These 

metrics are referred to as partitioning quality criteria. Table 5.1 shows some of 

these metrics and characteristics. In this table k denotes the number of sub-graphs 

and n is the cardinality (order) of the original graph, and λi is the ith eignevalue of 

the Laplacian matrix, Eh is sum of the weights of all edges that have only one end 

in sub-graph Ph: 

 

                  (1) 

                        

Also the cut size is defined as:  

 

                                                                  (2) 

                            

And finally the total edge weights in the sub-graph Ph is:  

 

                                            (3)             

     

For a more detailed comparison in between the performance of these 

metrics see Chan et al (1994) and Verma and Meila (2003). The minimization of 

the quality partitioning criteria is an optimization problem and requires 

employing the appropriate optimization techniques. There are various spectral 

methods to determine the indices of cut points that can minimize different 

partitioning criteria however their accuracy is disputed (Verma and Meila, 2003; 

Alpert et al, 1999). We suggest using exhaustive search algorithm after 

diagonalization. 
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Table 5.1 Several partitioning quality criteria. 

Name 

 

The measure Proposed 

by 

General remarks 

Cut ratio 
 

Spielman 
and Teng 

(2007) 

Has a lower  and an upper 

bound: 2
2

λ ,  

 
 

Cut Ratio 1 2

1 2

cut (P ,P )
P   P×

 
Cheng 
and Hu 
(1989) 

Has a lower bound: 

2

n
λ  

 

Min-Max 
cut ratio 

 

1 2 1 2

1 2

cut(P , P ) cut(P , P )
E(P ) E(P )

+  Ding et al 
(2001) 

Favors balance sized sub-
graphs 

 

Normalize
d cut ratio 

 

1 2 1 2

1 1 2 2

cut(P , P ) cut(P ,P )
E E(P ) E E(P )

+
+ +

 
Shi and 
Malik 
(1991) 

Favors balance sized sub-
graphs 

Min cut 
k

h
h 1

E
=
∑  Alpert et 

al(1999) 
Can lead to unbalance 

sized sub-graphs 

Cost 

k

i
i 1

k 1 k

i j
i 1 j i 1

1 E
2 

 P P

=
−

= = +

×

∑

∑ ∑
 Yeh et al 

(2005) 
Leads to balance ordered 

sub-graphs 

Scaled cost 
k

i

i 1 i

E1
n(k-1) P=

∑  Chan et al 
(1994) 

Has a lower bound: 
k

i
i 1 

n ( k 1)

λ
=

−

∑
 

Modality 
function 

2k
i i i

i  1

E(P ) E E(P ) 
E(G) E(G)=

⎡ ⎤⎛ ⎞+
−⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑

 

White and 
Smyth 
(2003) 

Strong cluster 
identification metric for 

very large networks. 
Maximizes at k =3. 
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To reduce the computational costs it is desirable to have an estimate of the 

number and order of subsystems although this is not essential. As a general rule, a 

higher number of sub-problems is better (Michelena and Papalambros, 1995) to 

the extent that decomposing the problem into its very elements (the single 

variables) might seem appropriate. This means that the number of sub-problem 

should is equal to the number of variables. SINE (Brown et al, 1995) for example 

was a multi agent design system based on the mechanism of assigning single 

design variables to each of its design agents that were called single function 

agents. In Section 5.3 a partitioning quality criterion of decompositions is 

presented that amongst other advantages explicitly suggests the number of 

partitions that should not be used. 

 

5.3  Real Complexity 
 

Let S be the graphical representation of a problem with the adjacency matrix A = 

[ai,j] and its complexity C(S) (self complexity) measured by the graph theoretic 

complexity measure presented in Section A.1. Consider k-partitioning P of the 

graph S: P = {P1,P2,…,Pk}. Each of these sub-graphs is a block of the system. Let 

C(Pi) be the complexity of each sub-graph determined by the complexity 

measure. A block diagram is the graph representation of partitioned graph 

(Diestel, 2005) i.e. it is more abstract than the self of the system. As such a block 

diagram is the graphical representation of the decomposed system (Figure 5.3) 

(Efatmaneshnik and Reidsema, 2008.a). We define the k dimensional square 

matrix B as the Complexity Based Adjacency Matrix of the Block Diagram with  

the diagonal entries as the complexity of the sub-graphs (or blocks), and the off-

diagonal entries as the sum of the weight of the edges that have one end in each of 

the two corresponding sub-graphs (Efatmaneshnik and Reidsema, 2008.a). The 

real complexity of the block diagram C(B) is achieved by applying the 

complexity measure to matrix B (Efatmaneshnik and Reidsema, 2008.a). This 

measure is a better measure of complexity of systems after decomposition and a 

more holistic one than the complexity index of Chen and Li (2005) that was the 

sum of some components.  
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                                         (4)   

 
 

Where                             (5) 

 

 
 

Real complexity C(B) is a subjective measure of the system’s complexity 

and is relative to how one might decompose the system (Efatmaneshnik and 

Reidsema, 2008.a). Conversely the self complexity C(S) is an objective measure 

of the system and is absolute in being independent from the type of 

decomposition P (Efatmaneshnik and Reidsema, 2008.a). The purpose of 

decomposition is to reduce the initial problem complexity C(S) to a number of 

sub-problems with complexity C(Pi) less than self complexity C(S). The real 

complexity represents the overall complexity and the complexity of the whole 

system of subsystems. While being a quality of partitioning criteria, real 

complexity represents the integration effort for the whole system after 
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8 9 

C3 

C1 
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10 

Figure 5.3 The partitioning and block diagram of graphs. 
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decomposition since real complexity in addition to the complexity of each sub-

problem, expresses the coupling of the system of sub-systems (Efatmaneshnik 

and Reidsema, 2008.a). The system integration efficiency and risk is dependent 

on real complexity as much as it depends on self complexity (Efatmaneshnik and 

Reidsema, 2008.a).  

 

Ulrich and Eppinger (2004) have argued that design efficiency can be 

considered directly proportional to the overall complexity of the system and 

decomposition affects the design efficiency. Problem decomposition must be 

performed very in a way that adds least possible uncertainty to the design process. 

Obviously by minimizing the real complexity the integration effort and risk is 

minimized. As such we define decomposition with minimum real complexity as 

immune decomposition (Efatmaneshnik and Reidsema, 2008.a). 

 

Braha and Maimon (1998) defined design information as a distinct notion, 

and independent of its representation; information allows the designer to attain the 

design goals and has a goal satisfying purpose. Design can be regarded as an 

information process in which the information of the design increases by time: 

making progress and adding value (to the customer), which in a NPD system 

compares to producing useful information that reduces performance risk 

(Browning et al, 2002). Browning et al (2002) states the performance risk 

increases with product and problem complexity and complex system NPD 

involves enormous risk. Since decomposition increases the overall complexity, it 

must, as a result, reduce design information and increase the design risk. Figure 

5.4 suggests that the process (1), by employing a better decomposition, adds less 

risk to the design process and reduces less information from it; and thus process 

(1) is likely to have a higher design efficiency (Efatmaneshnik and Reidsema, 

2008.a).     
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 The immune decomposition is likely to lead to better, cheaper and faster 

production of complex products and to enhance the design process efficiency with 

respect to:  

 

1. Better products in terms of quality and robustness: Less complexity 

means lower risk or rework during the design process (Browning et al, 

2002) and this implies that higher quality can be achieved with less effort. 

Furthermore, in terms of the robustness of the product itself, immunity 

from a chaotic and overly sensitive response to stochastic uncertainties in 

the manufacturing process capabilities and during the performance cycle 

of the product is the direct influence of lower complexity (Efatmaneshnik 

and Reidsema, 2007.a). 

2. Cheaper product and process design costs: The lower complexity 

structure implies less coupling between subsystems and that means less 

number of design iterations amongst various engineering tasks in a large 

problem (Smith and Eppinger, 1997) easier coordination, less conflicts 

arising in the integration of the product, and all these suggest a cheaper 

design process. 
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Figure 5.4 Decomposition increases risk and reduces information. 



91 
 

3. Faster design process: Designing a product is a value adding process, and 

that involves an accumulation of the required information to meet the 

design requirements (Browning et al, 2002). Obviously for less complex 

products this accumulation happens faster because the design process 

system of a less complex product would be less fragile (at lower risk) to 

uncertainties available in the early stages of the design process. 

 

Figure 5.5 shows the immune decompositions of the system example in 

Figure 5.4, for various numbers of subsystems. The figure shows that amongst all 

decompositions 5-partitioning has had the minimum real complexity. The spectral 

diagonalization method combined with random search algorithm was used (see 

Section A.3.2 for the related MatlabTM Codes). 

 

Figure 5.6 compares the performance of real complexity against three 

other cut quality measures for 20000 randomly chosen and distinct 

decompositions of a randomly generated graph of order 100 and of size 150.  This 

figure shows that real complexity has responded differently to the number of 

subsystems than other measures. For this randomly chosen graph, the minimum 

real complexity is the global minimum (amongst different partition numbers) at 

bi-partitioning (k=2). After 6 partitions the minimum real complexity decreases 

by the increase of the number of subsystems. The minimum real complexity 

maximizes at the number of subsystems equal to 6.  Other cut quality measures 

show strictly decreasing linear relationship between the measure of minimums 

cuts and number of partitions. Another observation and interesting characteristic 

of real complexity is that its minimum for a particular number of subsystems 

maximizes at a certain number of subsystems which is different for different 

graphs. Amongst the quality partitioning criteria presented in Table 5.1 only 

modality function had this property which was always maximized at 3-

partitioining. 



92 
 

 
 

 

                               

     

                                           

Number of partitions 

R
ea

l C
om

pl
ex

ity
 

 Figure 5.5 Decomposition of a DSM into various numbers of partitions. 
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5.4  Real Complexity of Overlap Decompositions 
 

Several operation researchers have addressed the overlapping decomposition 

problem and have emphasized its quality improving, lead time and cost reducing 

benefits (Roemer and Ahmadi, 2004; Terwiesch and Loch, 1999; Krishnan et al, 

1997) to the extent that design process efficiency can be regarded as proportional 

to the amount of the overlap between the subsystems (Clark and Fujimoto, 

1989)19. Taking the information processing view of the product design process, 

Krishnan et al (1997) has argued that overlap decomposition of the problems can 

lead to faster information acquisition and more frequent information exchange 

between the subsystems enabling the concurrent execution of coupled activities in 

an overlapped process. However, the design teams can be collaborative only when 

the design space or problem space is decomposed in an overlapped manner, so 

                                                 
19 As it will be clarified later in this section, this statement implies that the parts of the problem 
that are shared between design groups must preferably have denser connectivity (i.e. higher 
complexity); otherwise perfectly overlapped sub-systems lead to identical sub-problems which is 
equivalent to the Enlightened Engineering explained in Section 4.5.    

Figure 5.6 Comparison between the performance of real complexity and other 
cut quality measures. 



94 
 

that the design teams share some of their parameters, problems, and tasks 

(Efatmaneshnik and Reidsema, 2007.b).  

 

Krishnan et al (1997) however noted that the overlap decomposition of the 

system must be performed very carefully as without careful management of the 

overlapped NPD process, the development effort and cost may increase, and 

product quality may worsen. It should be noted that no appropriate measure has 

yet been proposed to distinguish the overall behaviour of the systems under a 

range of possible overlap decompositions (Efatmaneshnik and Reidsema, 2007.b). 

 

An overall complexity measure for overlap decomposition can be readily 

obtained by exploiting the real complexity (Efatmaneshnik and Reidsema, 

2007.b). In overlap decomposition of graphs, vertices are allowed to be shared 

between the sub-graphs. The measurement of the overall real complexity of the 

overlap decompositions can be gained based on the formulation of the 

decentralized control strategies for overlapping information sets (Ikeda et al, 

1981). Ikeda et al (1981) states that: 

 

The simple underlying idea is to expand the state space of 

the original system (design space or FL in case of the 

product design) so that the overlapping subsystems appear 

as disjoint. The expanded system contains all the necessary 

information about the behaviour of the original system 

which then can be extracted using conventional techniques 

devised for standard disjoint decompositions. 

 

Figure 5.7 shows the extraction of the Complexity Based Adjacency 

Matrix of Block Diagram with overlapped subsystems. It can be tested that the 

dimension of this matrix is four whereas the number of subsystems are two.    
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In general the extended Complexity Based Adjacency Matrix of Block Diagram 

with elements B = [bij] where sub-graphs share some vertices can be defined as:  

 

                                   (6) 

 

The effect of overlapping the decompositions on the design efficiency is a 

very subtle one. The integration phase of the design process is often accompanied 

by inadvertent information hiding due to the asynchronous information exchanges 

between the design teams, referred to as design churn effect (Eppinger et al, 

2003). Design churn delays the design process convergence to a global solution. 
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Figure 5.7 Real structural complexity measurement for overlapping subsystems. 
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The remedy to this effect lies in overlapping the design tasks. Overlapping leads 

to faster and in time information transfer between the design teams. This is to say 

that overlapping can increase the design process response and sensitivity to new 

information reducing design lead time and increasing design process efficiency 

(Figure 5.8) (Efatmaneshnik and Reidsema, 2007.b).   

 

 

Overlapping leads to more real complexity in comparison with the disjoint 

decomposition of the design space, since overlapping virtually increases the 

dimensionality of the problem space (Efatmaneshnik and Reidsema, 2007.b). 

Thus, it is not recommended to simply overlap the subsystems as much as 

possible because it may lead to high overall complexity (Efatmaneshnik and 

Reidsema, 2007.b). We propose two seemingly conflicting objectives when 

overlapping subsystems (Efatmaneshnik and Reidsema, 2007.b):  

 

1. To minimize the real complexity of the whole (extracting immune 

decompositions). 

2. To maximize the sum complexity of the overlapped parts. The 

complexity sum of the overlapped parts (Clap) is representative of 

how much the system is overlapped  

 

Figure 5.8 Decomposition increases risk and reduces information. Overlap 
decomposition  makes the system to converge faster. 
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Figure 5.9 demonstrates the real complexity and the overlapping degree 

(complexity sum of the overlapping parts) of many random decompositions 

(Efatmaneshnik and Reidsema, 2007.b). This figure shows the desired region for 

the decompositions, the characteristic of which is minimum overall real 

complexity (maximum efficiency, minimum fragility of the corresponding design 

process or immunity) and maximum overlapping complexity (high sensitivity of 

the design process to new information) (Efatmaneshnik and Reidsema, 2007.b).  

 
 

 

 

 

 

 

 

 

Desired Region 

Figure 5.9 Extracting the desired overlap decompositions for routine design 
process of complex systems by random search and spectral diagonalization.
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 5.5  On Decomposability  
 

According to Edmonds (1999) the general area of decomposability is covered by 

Arbib (1974), Conant (1972), Dussauchoy (1982), Naylor (1981) and Steel 

(1992). The complexity based approach to decomposability has been considered 

by Edmonds (1999). He used the “analytical complexity measure” to determine 

the decomposability of the syntactical expressions in formal languages. The ease 

with which a system can be decomposed into sub-systems has close connections 

with the real complexity. Real complexity provides a medium for decomposability 

testing. A system that is not decomposable is irreducible. Before proceeding lets 

introduce the lower bound for the real complexity that will be used in the 

subsequent discussion. 

 

Observation: Given system S with graph GS as its graphical representation and for 

all k-partitioning P = {P1,P2,…,Pk} of S with i={1…k},the following is valid (see 

Section A.1 for proof):         

    

                                         C(B) ≥ C(S) ≥ C(Pi)                                                     (7) 

 

Where B is the Complexity Based Adjacency Matrix of the Block Diagram of 

decomposition P on GS. This means that the lower bounds for real complexity are 

the self complexity, and also the complexity of each of the sub-systems 

(Efatmaneshnik and Reidsema, 2008.a). The equality happens when the system 

can be fully decomposed. This observation is important since it indicates that 

decomposition cannot decrease the overall complexity of a problem, and the 

perceived complexity after decomposition: C(B) is never less than the complexity 

before decomposition C(S). Note that in the block diagram the information that 

indicates which nodes in different subsystems have been linked is lost 

(Efatmaneshnik and Reidsema, 2008.a). Similarly when a system is decomposed 

the information indicating which vertices are linked to which ones in other 

subsystems is also lost. Klir (2003) states: 

 

When a system is simplified it is unavoidable to lose some 

of the information contained in the system; the amount of 
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information lost results in the increase of an equal amount 

of relevant uncertainty. Any kind of simplification 

including break of the overall system to subsystems can 

increase uncertainty. 

 

More uncertainty implies more complexity and thus the lower bound for 

real complexity must be and cannot be anything but the complexity of the system 

before decomposition (self complexity) (Efatmaneshnik and Reidsema, 2008.a); 

in other words facing more overall complexity as the price for the tractability of 

sub-problems can, in fact, be regarded as a read of no free lunch theorem 

(Efatmaneshnik and Reidsema, 2008.a).  

 

Considering decomposition P={P1, P2 ,…,Pk} of system S. Then 

complexity of the whole for the system can be represented by the real complexity 

C(B) and that of the parts by the complexity of individual subsystems C(Pi). Real 

complexity can then explain whether the whole is more than sum of the parts 

(Efatmaneshnik and Reidsema, 2008.a): 

 

                                  
k?

i
i 1

C(B)  C(P )
=

≥ ∑                                        (8)  

 

When and if (8) holds, the system cannot be or has not been reduced to the 

sum of its constituents and therefore the system is irreducible (Efatmaneshnik and 

Reidsema, 2008.a). It should be reminded that the graph theoretic complexity 

measure is a measure of the intensity of emergence and possibility of emergent 

surprise (characteristics). Therefore, the integration of a system, being 

decomposed in a way that (8) holds, is prone to a significant amount of risk; it is 

very likely that the whole system of sub-systems shows emergent properties that 

do not exist in the sub-problems (Efatmaneshnik and Reidsema, 2008.a). The 

integration, in such conditions cannot be implicitly performed while the sub-

problems are being solved concurrently because as much attention must be given 

to communication between the design teams (Efatmaneshnik and Reidsema, 

2008.a). Where all viable decompositions of a system have the property of (8), 

then decomposition is not a valid and robust methodology for problem solving 
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(however it may not be impossible). In such cases the whole is more than sum of 

the parts (regardless of what is deemed as parts), and distributed problem solving 

must be forsaken (Efatmaneshnik and Reidsema, 2008.a); the problem may be 

tackled satisfactorily as a whole utilizing several design teams working and 

competing parallel to each other (with no collaboration).  

 

When the opposite of (8) is true and a decomposition P can be found in a 

way that the real complexity is less than sum of the subsystems complexities then 

the system is reducible. Under such circumstances, the complexity of the whole 

can be reduced to the complexity of the individual components. Obviously the 

reducibility depends on two main factors: the self complexity and decomposition 

restriction. 

 

In Figure 5.10 two systems are decomposed in many different ways 

(different subsystems). The two left matrices are the PDSM (or self) of systems Sa 

and Sb (each dot represents a link between the two nodes or variables). The 

system Sa in this figure is of order 100 and size 100 whereas system Sb is of the 

same order and size 400; system Sb is four times denser that Sa. Some 

decompositions of the system Sa do not render the whole (real complexity) as 

being more than the sum complexity of the parts (Figure 5.10(a)). Thus system Sa 

can be reduced to the sum of its parts by some decomposition(s). On the contrary 

regardless of how system Sb may be decomposed, it cannot be reduced to the sum 

of its parts, and therefore system Sb is irreducible (Figure 5.10(b)). Figure 5.11 

compares the whole and sum of the parts for many decompositions of the system 

presented in Table 5.1. This system was decomposed in 200 different ways all of 

which had relatively balanced subsystems (equally ordered). The system was 

irreducible under almost all the viable decompositions.  



101 
 

 

                   
 
 

         

       
 
 
 

Figure 5.10 Using real complexity to test decomposability. 
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For irreducible systems decomposition does not lead to higher tractability. 

Decomposition for such systems can further complicate the process of 

collaboration between design teams: the overall effort of integrating the system of 

subsystems amounts to more than sum of the efforts spent on integrating each 

subsystem. This notion indicates substantial amount of rework and design 

iteration in the design of complex systems by means of decomposition. As such 

the application of concurrent engineering for some highly complex systems can 

be questioned. 
 

 

Figure 5.11 For almost all decompositions of the example PDSM (except one) 
the whole is more than sum of the parts.  
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6  Integration and Organizational Immunity 
 
 
In Chapter 4 we argued that the organisational DSM must be derived directly 

from the simulated PDSM, and that a direct mapping can be used to force the 

organisation structure to mirror the product architecture. This allows for 

predefined communication and information exchange channels, in a large and 

complex environment, which, per se, prevent the process from spiralling out of 

control (Mihm and Loch, 2006). For example, consider the example PDSM 

introduced in Table 4.1 being decomposed as shown in Table 6.1. The design of 

each subsystem is then assigned to a design team. From the PDSM a team based 

DSM (Table 6.2) is derived by summing up the amount of information exchange 

(dependency) of the design variables each team is responsible for. This predicted 

team based matrix reflects the likely information exchanges as well as the internal 

complexity of the problems that the design teams ought to deal with 

(Efatmaneshnik and Reidsema, 2009). 

 

 
Table 6.1 The variables of Table 4.1 are rearranged to form three subsystems. 

  Subsystem1 Subsystem2 Subsystem3 

  V5 V4 V2 V10 V8 V7 V9 V6 V1 V3 

Su
bs

ys
te

m
1 

V5 0 0.45 0.44 0 0 0.02 0.02 0.53 0.22 0.11

V4 0.34 0 0.65 0 0 0 0 0.43 0.16 0.64

V2 0.3 0.12 0 0 0 0.2 0.1 0.2 0.76 0.12

Su
bs

ys
te

m
2 V10 0.01 0 0.18 0 0.8 0.1 0.9 0 0 0 

V8 0.01 0 0 0.1 0 0.2 0.4 0 0.01 0 

V7 0 0 0 0.3 0.45 0 0.1 0 0.12 0.02

V9 0 0 0 0.5 0.2 0.7 0 0 0 0.15

Su
bs

ys
te

m
3 

V6 0 0.34 0.78 0 0 0 0 0 0.77 0.31

V1 0 0 0.53 0 0 0 0 0.1 0 0.32

V3 0 0 0.11 0.72 0 0.3 0.52 0.2 0.45 0 
 
 

While this approach is necessary as it yields a predefined map for problem 

solving it is not sufficient since it does not allow for innovation (Efatmaneshnik 
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and Reidsema, 2009). Innovation is often regarded as a means of achieving 

competitive edge over other NPD companies. However, in the case of complex 

systems innovation has a more vital role to play: integration (Efatmaneshnik and 

Reidsema, 2009). Before proceeding let’s consider a detailed account of the 

innovation types.  

 
 

Table 6.2 The predicted team based DSM for the entire system. 

- Team1 Team2 Team3
Te

am
1 

CT1 0.34 3.17 

Te
am

2 

0.2 CT2 0.3 

Te
am

3 

1.76 1.52 CT3 

 
 

6.1  Radical Innovation 
 

Henderson and Clark (1990) demonstrated that there are different kinds of 

innovation as depicted in Figure 6.1 where innovation is classified along two 

dimensions; the horizontal dimension captures an innovation's impact on 

components (subsystems), while the vertical dimension captures its impact on the 

linkages between core concepts and components (Henderson and Clark, 1990). 

Incremental innovation refines and extends an established design. Improvement 

occurs in individual components, but the underlying core design concepts, and the 

links between them, remain the same. Modular innovation on the other hand, 

changes only the core design concepts without changing the product's 

architecture. Architectural innovation changes only the relationships between 

modules but leaves the components, and the core design concepts that they 

embody, unchanged. Radical innovation establishes a new dominant design, hence 

a new set of core design concepts embodied in subsystems that are linked together 

in a new architecture. We can say that radical innovation embodies both modular 

and architectural innovation.  
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An organization's communication channels, both formal and informal are 

critical to achieving radical and architectural innovation (Henderson and Clark, 

1990). The communication channels that are created between these groups will 

reflect the organization's knowledge of the critical interactions between product 

modules. An organization's communication channels will embody its architectural 

knowledge of the linkages between components that are critical to effective design 

(Henderson and Clark, 1990). They are the relationships around which the 

organization builds architectural knowledge.  

 

Innovation processes in complex products and systems differ from those 

commonly found in mass produced goods (Hobday et al, 2000). The creation of 

complex products and systems often involves radical innovation, not only because 

they embody a wide variety of distinctive components and subsystems (modular 

innovation), skills, and knowledge inputs, but also because large numbers of 

different organizational units have to work together in a collaborative manner 

(architectural innovation). Here, the key capabilities are systems design, project 

management, systems engineering and integration (Hobday et al, 2000).  

 

Integration in complex system and product design is aimed at making the 

solutions to sub-problems compatible with each other and is possible through 

 
Figure 6.1 Different types of innovation, after Henderson and Clark (1990). 
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innovation (Efatmaneshnik and Reidsema, 2008.b). The innovation that integrates 

the complex system must be radical innovation and creativity (Sosa and Gero, 

2005) and is an emergent property of the entire system rather than the property of 

the sub-solutions to the individual sub-problems (Sosa and Gero, 2004). A 

property that is only implicit, i.e. not represented explicitly, is said to be an 

emergent property if it can be made explicit and it is considered to play an 

important role in the introduction of new schemas (Gero, 1996).  The radical 

innovation and coherency in an engineered large scale system is emergent and 

obtained in a self organizing fashion in a multi agent environment.  

 

When designing self-organizing multi-agent systems with emergent 

properties, a fundamental engineering issue is to achieve a macroscopic behaviour 

that meets the requirements and emerges only from the behaviour of locally 

interacting agents (Efatmaneshnik and Reidsema, 2008.b). Agent-oriented 

methodologies today are mainly focused on engineering the microscopic issues, 

i.e. the agents, their rules, how they interact, etc, without explicit support for 

engineering the required macroscopic behaviour. As a consequence, the 

macroscopic behaviour is achieved in an ad-hoc manner (Wolf and Holvoet, 

2005). 

 

Creativity requires ad hoc communication in which the need to 

communicate often arises in an unplanned fashion, and is affected by the 

autonomy of the agents to develop their own communication patterns (Leenders et 

al, 2003). It is thus obvious that, a fixed organizational structure with established 

patterns of communication is unlikely to deliver new complex structures 

(products) (Efatmaneshnik and Reidsema, 2008.b). As such we propose that the 

derived team based DSM must remain as a backbone and suggestion for intra 

team communication (Efatmaneshnik and Reidsema, 2008.b). Leenders et al 

(2003) also showed that team creative performance will be negatively related to 

the presence of central team members (including brokers, mediators and 

facilitators) in the intra-team communication network. However a great threat to 

multi agent design systems is chaos. To immunise the design organization from 

this threat we suggest holistic process monitoring described next. 
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6.2 Holistic Process Monitoring 
 
When the inherent nature of a complex task is too large, a better solution is to 

create an environment in which continuous innovation can occur (Bar-Yam, 

2004). This can be accomplished through process monitoring: Bayrak and Tanik 

(1997) reported that improving the design process, which increases the product 

quality without increasing the design resources, is possible by providing feedback 

to the designer to help him/her understand the nature of the design process. 

Therefore, the nature of the design becomes easier to analyse if there are metrics 

obtained from activity monitoring (Bayrak and Tanik, 1997).  

 

Since the design process of the complex systems by concurrent 

engineering is an emergent process (Cisse et al, 1996), holistic metrics are 

required to monitor the design process.  One such metric is the cognitive 

complexity of a process that is defined as the ability of a problem solver to 

flexibly adapt to a multidimensional problem space (Lee and Truex, 2000). 

Cognitive complexity represents the degree to which a potentially 

multidimensional cognitive space is differentiated and integrated (Lee and Truex, 

2000). A problem solver (a person, organization or a multi agent system) with 

higher cognitive complexity is more capable of having creative (and holistically 

correct) outcomes.   

 
We suggest measuring the cognitive complexity of a multi agent design 

process as a function of the amount of information exchange between the design 

agents (Efatmaneshnik and Reidsema, 2009). It is assumed here that all the design 

agents are equal in their cognitive complexity and problem solving abilities but 

the violation of this assumption does not jeopardize the method (the agents can be 

ranked by their cognitive complexity). The required cognitive complexity is, thus, 

derived by applying the graph theoretic complexity measure (presented in the 

Appendix) to the team based DSM at all instances of design process 

(Efatmaneshnik and Reidsema, 2009).  

 

Cognitive complexity is an emergent property of the design system. As 

such, cognitive complexity must be measured, for various hierarchies that the 
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design system might have, as the real cognitive complexity20 of that level. This 

can be derived from the fact that information exchange and communication 

between one element of a connected subset and that of a different subset will 

indirectly affect the entire elements of both subsets. In the context of the design 

systems, this statement can be reiterated:  different design teams (collection of 

design agents) and various design systems (groups of teams) deal with each 

others’ emergent properties (real cognitive complexity) rather than the 

characteristics of their individual elements, however, the actual communication 

might occur in between the design agents (elements of the teams). 

 

Figure 6.2 shows a hierarchical design system with three hierarchical 

levels: design teams, design systems and the design system of systems. CCTs are 

the emergent cognitive complexity of the design teams, CCSs are the emergent 

cognitive complexity of the design systems (the details of one of which is only 

shown) and CCG is the cognitive complexity of the entire design system of 

systems. It is important to note that cognitive complexity could otherwise be 

measured for a flat picture of the system. We will, however, use these hierarchical 

notions in the next Chapter where the design systems can work in parallel on 

various abstraction levels of the problem, where each system may contain several 

design teams.   

 

The main complication here is the way in which the information exchange 

is measured. Kan and Gero (2005) suggested the use of entropy based measures 

for evaluation of information content of a design agent’s interactions. We suggest 

using a fuzzy method by simply asking the design participants to tag qualitative 

and quantitative information content of their interactions with a single fuzzy 

variable, e.g. high, low, and medium, etc. The fuzzy interactions tags can then be 

defuzzified, which is the process of producing a quantifiable result in fuzzy logic, 

according to a simple fuzzification rule such as that in Figure 6.3. Note that in this 

figure, depending on the hierarchical level, N is the maximum amount of 

information exchange between the collective entities of the hierarchy (and not just 

the elements). Also note that the fuzzification scheme in this figure is the simplest 

                                                 
20 This is similar to the notion of real complexity. 
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possible scheme where all the membership functions are equal to one; thus this 

scheme actually depicts crisp boundaries between the sets. Obviously elaborate 

fuzzy membership functions such as the trapezoid and triangular can increase the 

precision of defuzzification.  

 

 
Figure 6.3 A simple fuzzification scheme.  

CCT1 
CCT2 CCT3 

CCS1 

Team 
Level: 
CCT 

System Level: 
CCS 

System 
of 

Systems 
Level: 
CCG 

CCS3 

CCS2 

CCG 

Figure 6.2 Shows the emergence of cognitive complexity at three hierarchical 
levels.
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The example in Figure 6.4 further illustrates the process of defuzzification. 

This figure shows an example of the observed fuzzy team based DSM (Figure 

6.4(a)) in charge of designing subsystem 2 in Table 6.1. Four design agents are 

assumed to be in team 1, the internal interactions of which create the cognitive 

complexity of team 1 (CCT1). This DSM is then defuzzified based on the 

information in Figure 6.3 and that the maximum amount of information exchange 

for that subsystem 2 was 0.9. (Figure 6.4(b)). The procedure of estimating the 

cognitive process complexity for a design system comprised of three design teams 

is illustrated in Figure 6.4(c) and Figure 6.4(d).  

 

Having measured the cognitive complexity of all the design teams (CCT1, 

CCT2, CCT3) at any instance, and knowing the amount of intra team information 

exchange, one can measure the cognitive complexity of the entire system (CCS). 

The N values in this stage are based on the maximum information exchanges in 

Table 6.2. Similarly, the cognitive complexity of the system of systems, at any 

design instance, can be estimated. By means of these fuzzy transformations we 

can compare the complexity of the design problem solving system with that of 

design problem at instance of the problem solving process. Note that the 

maximum and minimum complexity values for the design system of teams and the 

design system of systems must reflect the real minimum and maximum 

complexities corresponding to those hierarchical levels. 
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Figure 6.4 Measuring the cognitive complexity of the design process at certain 
design instance.

Team1 Agent1 Agent2 Agent3 Agent4

Agent1 Nil Low Nil High 

Agent2 High Nil Nil Nil 

Agent3 Nil Nil Nil Nil 

Agent4 Nil Medium 
Low Nil Nil 

Deffuzify 
N = 0.9 

Cognitive Complexity 
of all teams measured 

(CCT) 

Design 
System Team1 Team2 Team3 

Team1 CCT1 Low Nil 

Team2 High CCT2 
Medium 

High 

Team3 Nil Nil CCT3 

Deffuzify 
N = 3.17 

Design  
System Team1 Team2 Team3 

Team1 CCT1 0.634 0 

Team2 2.536 CCT2 1.902 

Team3 0 0 CCT3 

(a) 

(d) 

(c) 

(b) 

System 
of 

Systems 
System1 System2 System3

System1 CCS1 
Fuzzy 
value 

Fuzzy 
value 

System2 Fuzzy 
value CCS2 

 Fuzzy 
value 

System3 Fuzzy 
value 

Fuzzy 
value CCS3 

Team1 Agent
1 

Agent
2 

Agent
3 

Agent
4 

Agent
1 0 0.18 0 0.72 

Agent
2 0.72 0 0 0 

Agent
3 0 0 0 0 

Agent
4 0 0.36 0 0 

(e) 

 

Deffuzify 
N = Maximum 

amount of Inforation 
exchange between 

design systems 

Cognitive Complexity of 
all design systems 
measured (CCS) 
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6.3  An Artificial Immune Algorithm 
 

We argue that the Cognitive Complexity of the design system must be lower and 

upper bounded by the minimum and maximum complexity of the problem. This 

constitutes the proposed method of this thesis for immunization of the design 

organization (Efatmaneshnik and Reidsema, 2008.b). Two premises form the 

basis of this argument: 

 

1. In order to solve a problem, the problem solver needs to have a 

(cognitive) complexity more than or equal to the problem complexity 

(Bar-Yam, 2004). This is indeed a specific interpretation of the law of 

requisite variety in Cybernetics (Ashby, 1970). As such the cognitive 

complexity of the process must be more than the minimum complexity 

of the problem. 

2. The tendency of the design agents for increased collaboration by 

means of information exchange do not necessarily lead to more overall 

cognitive complexity of the design system. By testing a sample of 44 

NPD organizations, Leenders et al (2003) have shown that the 

performance of innovation networks (innovation teams) has an 

inversely U-shape relationship to frequency of intra team cooperation.  

 

Balanced participation of design players in a design decision making 

process is favoured against increasing information flow between the design 

players to a maximum (Chiva-Gomez, 2004). This is to say unnecessary 

information exchange may lower the overall cognitive complexity. It is obvious 

that the cognitive complexity of the process need not be more than the real 

maximum complexity of the problem. In fact more than the required information 

exchange can lead to creativity blocks (Leenders et al, 2003) which can be termed 

a chaotic situation. Thus an upper bound for the cognitive complexity of the 

process is the maximum complexity of the problem (Efatmaneshnik and 

Reidsema, 2009): 

 

  Cmax ≥   CC   ≥  Cmin                                    (1) 
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According to Stacey (1995) innovation in a multi agent environment is the 

result of communication between social agents that happens in a self organizing 

fashion and when the multi agent system finds itself on the so-called edge of 

chaos. When the cognitive complexity of the process is more than the minimum 

complexity and tending towards the maximum complexity of the problem, the 

design system might be on the edge of chaos but certainly not chaotic 

(Efatmaneshnik and Reidsema, 2008.b). Besides for collaborative multi agent 

systems with cognitive complexity less than the minimum complexity, the design 

process is certainly away from the edge of chaos, thus the design system does not 

have sufficient functionality to deliver radical innovation in an optimal and 

efficient manner (Efatmaneshnik and Reidsema, 2008.b). For systems that are 

excessively persistent in collaboration and cooperation, the cognitive complexity 

may reduce and chaos appears in such condition (Efatmaneshnik and Reidsema, 

2008.b). Chaos makes the design process fragile and susceptible to failure and 

reduces the design system efficiency (Efatmaneshnik and Reidsema, 2008.b).  

 

Figure 6.5 shows that the design system’s overall cognitive complexity 

increases only to a certain threshold by the increase in the tendency of the design 

agents for exchanging design information. In order to ensure the health of the 

design process it is necessary to ensure that the overall cognitive complexity stays 

away from the maximum complexity and above the minimum. This way the real 

minimum and maximum complexity that are obtained using the initial Monte 

Carlo Simulation of the complex product (low level product knowledge) are used 

to monitor the efficiency and effectiveness (health) of the complex product design 

process.  This may be achieved through monitoring the design process. The 

process monitoring here serves the purposes of meeting the design objectives 

(quality, cost, and lead time) by immunizing the design system against chaos and 

lack of effectiveness. This immunization enables the design system to integrate 

the complex system and product through emergence of radical innovation. 



114 
 

 
 
 

This is indeed an immune algorithm that would allow for the emergence of 

innovation. According to Cohen (2007) the immune system is a ‘‘computational 

strategy’’ to carry out the functions of protecting and maintaining the body. 

Cohen’s maintenance role of the immune system requires it to provide three 

properties:  

 

1. Recognition: to determine what is right and wrong.  

2. Cognition: to interpret the input signals, evaluate them, and make 

decisions. 

3. Action: to carry out the decisions.  

 

These properties are provided via a cognitive strategy in which self-organization 

of the immune system is used to make decisions (Timmis et al, 2008). The stages 

correspond to the holistic control of the system, which is to immunize or ensure 

the realization of self-organization, by using a complexity measure: 

 

1. Recognition: recognizing the lower and upper complexity bounds.  

2. Cognition: to evaluate the instantaneous complexity of the system. 

3. Action: to maintain this complexity in between the bounds at all 

times. 

Figure 6.5 Design process functionality versus process complexity. 
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An immune algorithm is a plan that determines how the components of the 

systems are going to interact to determine the system dynamics (Timmis et al, 

2008). For example Dasgupta (1998) examined various response and recognition 

mechanisms of immune systems and suggested their usefulness in the 

development of massively parallel adaptive decision support systems. Lau and 

Wong (2004) presented a multi agent system that could imitate the properties and 

mechanisms of the human immune system. The agents in this artificial immune 

system could manipulate their capabilities to determine the appropriate response 

to various problems. Through this response manipulation, a non-deterministic and 

fully distributed system with agents that were able to adapt and accommodate to 

dynamic environment by independent decision-making and inter-agent 

communication was achieved (Lau and Wong, 2004). Ghanea-Hercock (2007) 

maintained a multi agent simulation model that could demonstrate self organizing 

group formation capability and collective immune response. He showed that the 

network of agents could survive in the face of continuous perturbations. Fyfe and 

Jain (2006) presented a multi agent environment in which the agents could 

manipulate their intentions by using concepts suggested by artificial immunes 

system to dynamically respond to challenges posed by the environment. Goel and 

Gangolly (2007) presented a decision support for robust distributed systems 

security based on biological and immunological mechanism. 

 

We define a system to be immune to chaos and preserving its holistic self 

characteristics if its complexity is in between the minimum and maximum 

complexity bounds (Efatmaneshnik and Reidsema, 2008.b). The proposed 

immune algorithm provides a collective immune response for engineering design 

of complex systems and is illustrated in Figure 6.6. This figure shows the 

proposed algorithm for a system with only one hierarchical level. As shown in this 

figure upon the arrival of new information (finalization of the values of one or 

some of the design variables), it can be incorporated into the design system by 

performing a new simulation and measuring the values of the minimum and 

maximum complexity. This way the bounds reflect the true status of the low level 

design problem on the design system.  
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For an example and more clarification consider the problem with 

simulated PDSM that was presented in Table 4.1. From this table and its 

corresponding hypergraph in Figure 3.11 the following prosperities can be 

determined:  

 

                Cmin=1.64                                         (2) 

              Cmax = 4.19                                            (3) 

N=0.9                                               (4) 

 

Where N is the maximum amount of information exchange, Cmin is the minimum 

complexity and Cmax is the maximum complexity. Each of the variables in Table 

4.1 is assigned to a design agent to determine its value. The design agents are, 

then, asked to report the amount of their information exchanges and interactions 

with each other. Consider Table 6.3 as the reported or observed fuzzy team based 

DSM at a given instance of the design process. 

 
 
 
 
 

Simulate the FL or the solutions space 
 

Measure the cognitive complexity of 
the system of design agents  

Measure the minimum and maximum 
complexity of the problem 

Maintain the collective cognitive 
complexity of the agents in between the 
minimum and maximum complexity of 

the problem 

Figure 6.6 An Immune algorithm for design of complex systems. 

New 
Information 
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Table 6.3 The monitored (reported) fuzzy team based DSM 

- A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 

A1 - Low - Low Low High Low VL - - 

A2 H - L MH ML H - - - L 

A3 ML L - MH L ML VL - L - 

A4 L MH MH - ML L - - - - 

A5 L ML L ML - - - VL - VL 

A6 H H ML ML - - - - - - 

A7 L - VL - - - - VH VL L 

A8 VL - - - VL - L - L H 

A9 - - L - - - H L - H 

A10 - L - - VL - L H H - 
 

Table 6.4 is resulted by defuzzifying the observed team based DSM according to 

the fuzzy rule in Figure 6.3. The complexity of the defuzzified team based DSM is 

1.19 which is in between the minimum and maximum complexity bounds (1.64, 

and 4.19).  

CC=1.9191                                         (5) 

 

This information indicates that that design agents can safely communicate more 

actively to increase the cognitive complexity of the system. 

 

Table 6.4 The defuzzified monitored team based DSM 

- A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 

A1 0 0.18 0 0.18 0.18 0.72 0.18 0.04 0 0 

A2 0.72 0 0.18 0.56 0.36 0.72 0 0 0 0.18 

A3 0.36 0.18 0 0.56 0.18 0.36 0.04 0 0.18 0 

A4 0.18 0.56 0.56 0 0.36 0.18 0 0 0 0 

A5 0.18 0.36 0.18 0.36 0 0 0 0.04 0 0.04 

A6 0.72 0.72 0.36 0.36 0 0 0 0 0 0 

A7 0.18 0 0.04 0 0 0 0 0.9 0.04 0.18 

A8 0.04 0 0 0 0.04 0 0.18 0 0.18 0.72 

A9 0 0 0.18 0 0 0 0.72 0.18 0 0.72 

A10 0 0.18 0 0 0.04 0 0.18 0.72 0.72 0 
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One last point here is that, in cases where the design system is 

hierarchical, the minimum and maximum complexity bounds must be measured 

from the corresponding Complexity based Adjacency Matrices of the Block 

Diagrams (Real minimum and maximum complexity21). This algorithm ensures 

the successful emergence of the complex product in a multi agent design 

environment. This is so because the algorithm is in accordance with the recent 

results that argue for flatter, organic organizational structures that enable workers 

to deal more effectively with dynamic and uncertain environments (Hinds and 

McGrath, 2006). It also permits the formation and execution of hierarchical 

design organizations without the need for the top level managers, coordinators, 

facilitators, etc.  

                                                 
21 See Section A.2 for more clarification on minimum and maximum complexity. 
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7  Product Immunity 
 
 

So far immunity was studied at the process level and organization level. Immunity 

of a product that performs in an uncertain environment, as well as the uncertainty 

introduced to its performance by manufacturing process capabilities, is studied in 

this Chapter. It was explained in Chapter 1 that complexity and uncertainty 

together lead to the failure and fragility of a system due to sensitive dependence to 

small perturbations. This sensitivity dependence or chaos is the reason why 

complex systems fail. We also posed that bifurcating from one mode of 

complexity to another mode with higher complexity must be a major concern for 

complex products. This Chapter presents a global robustness measure as an 

Immunity Index that can be used in parametric decision making to reduce the 

likelihood of catastrophic bifurcation to a higher complexity mode 

(Efatmaneshnik and Reidsema, 2007.a).  
 
 

7.1  Current Practices of Robust Design 
 
Robustness in general is the insensitivity of some features of a system to 

uncertainty or, in the case of concurrent design, stochastic perturbations either 

caused by an uncertain environment in which the artefact is to perform, or by 

manufacturing and assembly imperfection. Robustness has been discussed, in the 

past, in parameter design and tolerance design as methods of maintaining the 

‘‘reliability’’ (reliability engineering) of a product in the upstream design cycle, 

whereas on-line process monitoring such as statistical process control methods 

and failure mode and effect analysis constitute downstream methods of ensuring 

robustness. Amongst the upstream design cycle methods of robustness, Sensitivity 

Analysis and Variance Reduction have been the prime tools for robust parameter 

and tolerance design.  

 

Mellacheruvu et al (2000) used the gradient estimation method to estimate 

the sensitivity of the manufacturing outputs (such as cost and lead time) to 
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simultaneous perturbations of some input parameters. He concluded that this 

method is very effective for, (1) output noise reduction of complex systems, and 

(2) the identification of the input parameters that have the most impact on the 

system. Some of the more recent sensitivity analyses, however, have been based 

on an entropy approach, which can measure the effect of stochastic perturbation 

on the entropy (a form of global scatter) of the performance parameters.  

 

Fathi and Palko (2001) proposed a signal-to-range ratio for a robust 

parameter design problem by using Design of Experiments. Liu and Chen (2006) 

proposed a probabilistic sensitivity analysis for robust design based on the 

concept of relative entropy to evaluate the impact of a random variable on a 

performance parameter by measuring the divergence between two probability 

density functions of the performance response, obtained before and after the 

variation reduction of the random variable. Robustness indices have been used 

sporadically to characterize the robustness of different solutions, and mainly as a 

tool to grade the sensitivity of the performance parameters to other system 

parameters. For example, Caro et al (2005) proposed a robustness index based on 

the sensitivity analysis of the performance parameters to the variation of the 

design parameters. They showed the sum of the Euclidean and Frobenius norms 

of the sensitivity Jacobian matrix of the design, was an index to quantify the 

robustness. 

  

 These methods, however, are not able to immunize the system against 

fragility and chaos, or unpredictable failure events. For complex systems in which 

emergence or collective effect of variables plays a significant role, robust 

solutions cannot be achieved solely through ‘‘variance reduction’’ which is a 

reductive approach. Also sensitivity analyses cannot be effective in maintaining 

robustness at the complex systems level. Sensitivity analysis usually assesses the 

effect of each individual parameter on each other and ignores their synergies. We 

need a holistic approach, or at least some combination of reductive and holistic. 

For this purpose, complexity measures that are based on a holistic representation 

of systems thinking may be more beneficial.  
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Process capabilities have been a centre of focus for robust tolerance 

synthesis (or tolerance design). Since they relate the manufacturing process 

capabilities to tolerance specifications it is quite natural to apply them to 

concurrent design of tolerances and processes (Feng and Balusu 2002). Kusiak 

and Feng (2000) approached robust tolerance design by relaxing the non-critical 

dimensions to be determined via a combination of Design of Experiments and 

Monte Carlo Simulation. They also used both worst-case scenarios and response 

surfaces to calculate tolerance stack up. This kind of tolerance relaxation is not 

suitable for complex systems, because it may introduce additional complexity 

modes and global modalities to the system which threatens the immunity of the 

system.  

 

English and Taylor (1993) used a Kolmogorov-Smirnov distance as a 

robustness index to characterize the robustness of the process capability ratios. 

Multimodal variables are those that have two or more most likely values and it is 

measured by the departure of the variable’s probability distribution from the 

corresponding Gaussian distribution which in statistics is called Kolmogorov-

Smirnov distance. They attributed the lack of robustness of manufacturing 

processes to a large departure of the probability distributions of process capability 

ratios, Cp and Cpk, from normality. In complex systems the most likely value shift 

or modality of the probability distribution of the system parameters plays a more 

important role, and can largely affect the collective behaviour of the system. 

Unlike the variance reduction approach, the modality of variables approach to 

robustness is a holistic approach because it considers the cause of global 

bifurcations and emergence of anomalies (Figure 7.1).  

 

Testing the modality of the variables, however, ensures the robustness of 

the non-self or the environment. The environment of a system or ‘‘non-self ’’ is 

the set of input and outputs whereas the self of the system is an ‘‘effect’’ on the 

inputs which results in outputs. In other words the self of the system is the way 

inputs and outputs interact. The metaphors of ‘‘self ’’ and ‘‘nonself ’’ help us to 

better understand the dependency of the system-environment and the role of 

complexity measure in characterizing the ‘‘mode’’ of a system. Testing the 

robustness of the product’s self against catastrophic bifurcation constitutes the 
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right approach to maintaining the robustness of complex product. We propose to 

regard the change in the complexity as ‘‘global modality’’ for it refers to the 

bifurcation of the self as opposed to the modality of the system’s variables.  

 

 
 

Marczyk (2002) stated that to make complex systems robust first and 

foremost consideration should be to avoid optimal solutions. Optimization as 

performance related decision making technique for satisfying multiple objectives 

must be forsaken when dealing with complex systems. Marczyk (2002) has stated 

that: 

 

Entropy is an ever increasing quantity, and therefore 

optimum solutions that are in general minimum entropy 

solutions imply hyper sensitivity to small perturbations. 

Therefore optimal solutions introduce tremendous amount 

of fragility into complex systems. 

 

 

Marczyk (2008) maintained that optimizing an artefact or a system for 

structural simplicity (least complexity) would make the artefact robust. He also 

posed that the relative distance between the complexity and the maximum 

complexity of an artefact as yet another indicator of the robustness. While we 

Figure 7.1 Variance Reduction (left) and Modality analysis (right) approaches 
to robustness. 
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cannot argue against the former, the latter is per se a sort of optimization, and 

should be avoided. Simply by optimizing for simplicity the system may be 

temporarily robust but the likelihood of shifting to a high complexity mode (non-

robust) is not eliminated. It is more reasonable to avoid design space states in the 

most complex modes that are potential failure modes. 

 

We expand on the complexity based design method introduced by 

(Maczyk, 2008) and propose a global Immunity Index for each state of the 

solution space (FL) (Efatmaneshnik and Reidsema, 2007.a). Marczyk and 

Deshpande (2006) state that: 

 

There is a sufficient body of knowledge to sustain the belief 

that whenever dynamical systems undergo a catastrophe, 

the event is accompanied by a sudden jump in complexity. 

This is also intuitive: a catastrophe implies loss of 

functionality, or organisation. 

 

The Immunity Index can draw comparison between the solutions in terms 

of their global modality and by that can indicate the immunity of the design 

solutions (Efatmaneshnik and Reidsema, 2007.a). The solutions should be located 

in the states that pose the least amount of threat in terms of complexity shift when 

and if a bifurcation to another complexity mode takes place (Efatmaneshnik and 

Reidsema, 2007.a). This kind of immunity is a characteristic of the system’s self 

and not its environment and can be most useful in robust parameter and tolerance 

design of a complex system such as concurrent product-process design.  

 

 

7.2  A Global Robustness Index Based on Complexity Modes 
 

Considering a d dimensional FL with N fuzzy levels. This FL would have Nd 

fuzzy states. We define a complexity gradient for the nth state of the FL as 

(Efatmaneshnik and Reidsema, 2007.a): 
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Where Xis are system parameters including inputs and outputs. The term (a) is the 

sum of all changes in complexity due to the perturbation of only one variable 

while all other variables are unchanging (have no perturbation). The term (a) 

estimates the amount of change in complexity for single parameter perturbation. 

The term (b) estimates the amount of change in complexity for the simultaneous 

perturbations of any two arbitrary set of variables. The term (c) calculates the 

same sum for simultaneous perturbations of all d variables at the same time. For 

simplification let’s assume that a random perturbation would be no more than one 

fuzzy level and then all sX i∂ would be equal to 1. Thus we have (Efatmaneshnik 

and Reidsema, 2007.a):  

 

 
n′ and n ′′ are respectively the left and right states of the state n along the Xi axis. I 

is the number of impossible states amongst the 2p states which are the states that 

contain no data points. The derivatives related to these states must be eliminated 

from these equations. If I equals to 2 then no perturbation could occur for variable 

Xi. Figure 7.2 clarifies this: each arrow in left anthill plot of Figure 7.2 represents 

the state transition as the result of single variable perturbation (left-and-right or 

up-and-down).  
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  Equations (4) and (5) formulate the sum of all likely changes in 

complexity by simultaneous disturbance of two variables (Efatmaneshnik and 

Reidsema, 2007.a):   

 
 

where n ′′′ is the state down and left to the state n, and so on.  

 

In the right scatter plot of Figure 7.2 arrows show the possible state 

transitions as result of simultaneous perturbation of two variables. The remaining 

derivatives are calculated in the same way. In general, for simultaneous 

perturbation of p parameters at the same time we have (Efatmaneshnik and 

Reidsema, 2007.a):   
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Figure 7.2 Perturbation of an initial state to neighboring states. 
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 Where Cm is the complexity of state m at which p parameters of the system have 

shifted one fuzzy level relative to the initial state (n). Finally the Immunity index 

for the state n of the FL is defined as (Efatmaneshnik and Reidsema, 2007.a): 

 

    Rn = (1- (
nCm

C
×−

∇
)1(

)) %100×                              (8)   

 

Where m is calculated as: 

 

                                (9) 

  

Ii s are the number of impossible states for the perturbation of i parameter 

at the same time. An Immunity Index close to 100% represents the situation that 

the least amount of likelihood exists for the complexity of the state to change with 

any stochastic perturbation of the system parameters, which implies that the state 

of the system is globally uni-modal, robust and immune from increasing in 

complexity (Efatmaneshnik and Reidsema, 2007.a). An Immunity Index value 

close to zero shows that there is a large chance of complexity increase or 

catastrophe by stochastic perturbation, i.e.; the state of the system is globally 

multi-modal and non-robust (Efatmaneshnik and Reidsema, 2007.a). A value 

greater than 100% implies that a bifurcation is even less likely to produce a 

catastrophe and that there are chances of a decrease in complexity (Efatmaneshnik 

and Reidsema, 2007.a). 
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7.3  Discussion: Complexity Based Decision Making 
 

This approach, in fact, is the sensitivity analysis of the complexity mode of a 

system to random perturbations of the system parameters. The Immunity Index 

gives the estimation of the robustness of every state of the FL based on its 

tendency to change its complexity mode with random perturbations of the system 

parameters. Entering to a new complexity mode implies bifurcation whether it 

increases the complexity or not. The complexity increase as a result of entering to 

a new state should be taken as a catastrophe. A state in the FL is globally robust if 

all of its neighbouring states are located in the modes with the same or less 

complexity (Efatmaneshnik and Reidsema, 2007.a). Thus, the state closer to the 

centre of the mode has more robustness and is immune from jumping to other 

modes (Efatmaneshnik and Reidsema, 2007.a).  

 

The global Immunity Index in effect indicates the above fact by testing the 

complexity modes of all neighbouring states of a given fuzzy state of the FL 

(Efatmaneshnik and Reidsema, 2007.a). For multi-modal solutions a stochastic 

perturbation in the system’s state increases the complexity of the system, thus, 

chaotic behaviour becomes more likely (Efatmaneshnik and Reidsema, 2007.a). 

We say, in this case, that the system is globally sensitive and unstable with regard 

to stochastic perturbations (Efatmaneshnik and Reidsema, 2007.a).  

 

In summary, the Immunity Index is a form of objective or cost function 

that requires the absence of any other objective function (Efatmaneshnik and 

Reidsema, 2007.a). Rather the performance objectives should be regarded as 

performance constraints (Efatmaneshnik and Reidsema, 2007.a). After 

determining the design variables and their constraints, the FL containing the set of 

solutions corresponding to those constraints must be simulated (Efatmaneshnik 

and Reidsema, 2007.a). Then the decision making must be based on the rule of 

lower complexity, and the first step is to choose a mode in the landscape that has a 

low enough complexity (Efatmaneshnik and Reidsema, 2007.a). Each mode 

usually contains many states of the system, each of which can be regarded as the 

solution (Efatmaneshnik and Reidsema, 2007.a). The solution should be located in 

a state that has the maximum immunity and that is exactly at the core or centre of 
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the multi dimensional mode; this leads to little chance that random perturbations 

will move the state of the system to another mode with higher complexity 

(Efatmaneshnik and Reidsema, 2007.a). The global robustness index must be 

calculated for every fuzzy state of the complexity mode (Efatmaneshnik and 

Reidsema, 2007.a).  



 
 

8  A Decision Support System: IMMUNE 
 
 
“There is a substantial amount of empirical evidence that human intuitive 

judgment and decision making can be far from optimal, and it deteriorates even 

further with the complexity of the problem and stress” (Druzdzel and Flynn, 

2000). Decision making under these conditions requires support in the estimation, 

the evaluation and/or the comparison of alternatives (Turban, 1995). A DSS is a 

“knowledge-based system, which formalizes the domain knowledge so that it is 

amenable to mechanized reasoning” (Druzdzel and Flynn, 2000). More 

specifically a DSS is an integrated, interactive, flexible, and adaptable computer-

based computing environment, especially developed for supporting the solution of 

a non-structured complex management problem (Turban, 1995; Druzdzel and 

Flynn, 2000). 

  

Knowledge-based problem solving is the domain of Artificial Intelligence 

(AI) and the selection of an appropriate AI development tool that may provide a 

framework to incorporate knowledge will come from this area (Reidsema and 

Szczerbicki, 2002). Reidsema and Szczerbicki (2002) identified three different 

architectures for DSS for product design planning and manufacturing in a 

concurrent engineering environment: Expert Systems, Agent Based Systems, and 

Blackboard Database Systems. These have been defined as follows: 

 

• An Expert system is one of a class of AI techniques that is able to capture 

the knowledge and reasoning of an experienced expert for re-use in 

assisting the less experienced in making decisions. 

• The Blackboard Database Architecture (BBDA) is a problem solving 

system based on the metaphor of human experts who cooperate by 

entering partial solutions to the current problem onto a physical 

blackboard. The type of problems best suited to this approach is those that 

are able to be reduced to a set of simpler problems that are reasonably 

independent. The integration of the partial solutions to the overall solution 
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takes place by the intervention of a centralized controller known as a 

control source and therefore has a top down approach to problem solving. 

• Multi agent systems are distributed systems that use a bottom up approach 

to problem solving in which case the intervention of the centralized 

coordination between agents is minimal or totally eliminated. Each agent 

in a multi agent system behaves as an abstraction tool which has the 

characteristics of a self-contained problem solving system that is capable 

of autonomous, reactive, proactive as well as interactive behaviour. The 

solution in this case emerges as a whole and is the result of a synergetic 

effect. “Synergy denotes a level of group performance that is above and 

beyond what could be achieved by the members of the group working 

independently” (Larson, 2007). Synergy in a multi agent system enables 

the integration of partial solutions of nonlinear and coupled problem. 

Multi agent systems are the natural candidate for complex systems which 

show heavy interdependency between partial problems.  

 

Providing an extensive literature review of concurrent design and 

manufacturing systems, Shen et al (2001) identifies three different approaches for 

agent based architectures: hierarchical architectures, federated architectures and 

autonomous agent architectures. Each architecture has particular strengths for 

specific applications and choosing the right architecture involves matching 

requirements to capabilities. Hierarchical architectures consist of semi-

autonomous agents with a global control agent dictating goals/plans or actions to 

the other agents. Multi-Agent Systems with a global blackboard database are 

hierarchical architectures. According to Shen et al (2001) some researchers have 

considered their blackboard systems to be multi-agent systems, and others have 

implemented their agent based systems using blackboard architectures. In these 

systems, control can be implemented in different ways: using a special control 

expert called a supervisor as in EXPORT (Monceyron and Barthes, 1992): using a 

shared graphical model as in ICM (Interdisciplinary Communication Medium) 

(Fruchter et al, 1996) or a shared database as in SHARED (Wong and Sriram, 

1993); or through multiple shared workspaces as in MATE (Saad and Maher, 

1996).  
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Because hierarchical architectures suffer from deficiencies associated with 

their centralized character, federated multi agent architectures are increasingly 

being considered as a compromise solution for industrial agent based applications, 

especially for large scale engineering applications (Shen et al, 2001). A fully 

federated agent based system has no explicit shared facility for storing active data; 

rather, the system stores all data in local databases and handles updates and 

changes through message passing (Shen et al, 2001). In theory, a truly open multi 

agent system need not have any predefined global control (Shen et al, 2001). An 

example of such architecture is DIDE (Distributed Intelligent Design 

Environment) (Shen and Barthes, 1996). Another good example of such a system 

is ANARCHY which was a working prototype of an asynchronous design 

environment (Quadrel et al, 1993). Agents in ANARCHY were autonomous, and 

used broadcast communications. It however, utilised a global design strategy 

based on simulated annealing. For such systems there is the threat of exhibiting 

chaotic behaviour (Sycara, 1998). 

 

This Chapter presents IMMUNE which is a flat federated architecture for 

the parametric design of complex products (Efatmaneshnik and Reidsema, 2009). 

IMMUNE uses a global blackboard to save the current state of the design 

(Efatmaneshnik and Reidsema, 2009). All the agents are grouped into virtual 

teams or coalitions in a way that the design system becomes capable of mirroring 

the structure of the problem and its decomposition pattern at each abstraction level 

(Efatmaneshnik and Reidsema, 2009). This idea was previously, to some extent, 

utilized in MetaMorph (Maturana et al, 1999) that was devised “as an adaptive 

agent based architecture to address system adaptation and extended-enterprise 

issues at four fundamental levels: virtual enterprise, distributed intelligent 

systems, concurrent engineering, and agent architecture”. MetaMorph was a 

federated architecture that could dynamically adapt to the tasks and changing 

environment by using dynamically formed agent groups (Shen et al, 2001). The 

agents with various knowledge and utility were clustered into virtual groups or 

coalitions. In MetaMorph, resource agents could be cloned as needed for 

concurrent information processing (Maturana et al, 1999). The clone agents were 
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included in the virtual clusters. MetaMorph benefited extensively of low level 

mediators to coordinate between different groups (or coalitions). 

 

IMMUNE, however, does not have any low level mediator, broker or 

facilitator, and is a flat architecture (Efatmaneshnik and Reidsema, 2009). Instead 

IMMUNE benefits from a special unit in the control shell of the blackboard to 

which we denote as the CEO (Complexity Estimator and Observer) 

(Efatmaneshnik and Reidsema, 2009). The CEO estimates the complexity 

measure of the problem and compares it to the observed complexity of the multi 

agent system that is raised from agents’ interactions (Efatmaneshnik and 

Reidsema, 2009). Based on the complexity of the problem after decomposition 

(real complexity), the CEO estimates the minimum and maximum complexity of 

the process (Efatmaneshnik and Reidsema, 2009). It then monitors the complexity 

of the process as a function of the exchanged information between the agents 

(cognitive complexity) (Efatmaneshnik and Reidsema, 2009). An effective and 

efficient design process must have a cognitive complexity in between the 

minimum and maximum complexity of the problem (Efatmaneshnik and 

Reidsema, 2009); this is the result of a simple notion which is: the best a single 

person (or a single system) can do is limited by his/her (cognitive) complexity 

(Bar-Yam, 2004). 

 

A design system, with its cognitive complexity surpassing the maximum 

complexity of the problem, has lost effectiveness since the design process may 

become chaotic (Efatmaneshnik and Reidsema, 2009). If the cognitive complexity 

of the design system is lower than the minimum complexity of the problem, then 

the efficiency of the system, in solving the complex problem and managing the 

interdependencies between its sub-problems, would not be achieved In both cases, 

the agents are expected to undertake corrective measures to stabilize the cognitive 

complexity of the system and immunize it against fragility, and failure 

(Efatmaneshnik and Reidsema, 2009). The CEO monitors the complexity at two 

levels: inside the coalitions (at the local levels) and the entire system (at the 

federal level) (Efatmaneshnik and Reidsema, 2009). The next section discusses 

the fundamentals of design planning for complex products and a complexity based 

method for monitoring the design process. 
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8.1  Collaborating Architecture 
 

Shen et al (2001) states that: 

 

Real world concurrent engineering design projects require 

the cooperation of multidisciplinary design teams; 

individuals and multidisciplinary design teams work in 

parallel with various engineering tools that are located at 

different sites often for quite a long time. To coordinate the 

design activities of various groups and guarantee good 

cooperation among the different engineering tools a 

distributed intelligent environment is required.  

 

Such an environment requires the utilization of collaborating software as a 

DSS that involves the integration and coordination of relatively independent, self-

contained software systems that are able to work together effectively on their own 

(Corkill, 2003). “Collaborating software is very different from collaboration 

software, where the software is used to facilitate the interaction among human 

participants rather than to provide an automated environment where software—

and potentially human—entities work together in order to perform complex 

activities” (Corkill, 2003). For effective development of collaborating software 

Corkill (2003) identified six main challenges:  

 

1. Representation: To enable system components and modules to 

understand one another. 

2. Awareness: to render modules aware when something relevant 

to them occurs.  

3. Investigation: helping modules to quickly find information 

related to their current activities.  

4. Interaction: to create modules that are able to use the concurrent 

work of others while working on a shared task. 

5. Integration: to combine results produced by other modules. 

6. Coordination: ensuring that modules focus their activities on the 

right things at the right time. 
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Except the representation that is the main challenge is collaboration 

software, remainders of these challenges are addressed in IMMUNE. So far two 

main approaches have been considered for the design of a collaborating 

environment: Blackboard architectures and Multi Agent architectures. Corkill 

(1991) presented the following metaphor to describe the Blackboard-based 

problem solving:  

 

imagine a group of human specialists seated next to a large 

blackboard. The specialists are working cooperatively to 

solve a problem, using the blackboard as the workplace for 

developing the solution. Problem solving begins when the 

problem and initial data are written onto the blackboard. 

The specialists (knowledge sources) watch the blackboard, 

looking for an opportunity to apply their expertise to the 

developing solution. When a specialist finds sufficient 

information to make a contribution, she records the 

contribution on the blackboard, hopefully enabling other 

specialists to apply their expertise. This process of adding 

contributions to the blackboard continues until the problem 

has been solved  

 

Each problem solving expert is designed to independently contribute 

specialized knowledge required to solve one aspect of the overall problem. The 

sequence of the contributions of these experts is not determined a priori but is 

instead based on the current state of the solution and the selection of the most 

applicable and effective expert for solving the associated problem part (Reidsema, 

2001). As such, the blackboard model of problem solving is a highly structured 

case of opportunistic problem solving (Reidsema, 2001).  

 

The Blackboard architectures utilize abstraction and solve problems 

through iteration. Blackboard architectures are able to maintain the focus of 

attention of different knowledge sources asynchronously on different abstraction 

levels within this memory; As a result the design knowledge of various parts of a 
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product in various abstraction levels can be considered together. This means that 

the hitch that Bar-Yam (2004) (mentioned in Chapter 2) has maintained about the 

abstraction for design of complex systems is not relevant when Blackboard 

databases are used The downside with purely blackboard architectures however is 

that the knowledge sources (design players) do not communicate with each other 

directly and communication is solely done through the blackboard. As such 

blackboard systems suit only the loosely coupled problems (Corkill, 2003). On the 

other hand multi agent systems due to their ability to interact autonomously can 

reach to high overall cognitive complexity to solve densely interconnected 

problems without the need for a global integrator.  

 

Multi agent systems on the other hand have the following problem solving 

characteristics (Corkill, 2003):  

 

• Distribution (no central data repository) 

• Autonomy (local control) 

• Interaction (communication and representation) 

• Coordination (achieving coherence in local control decisions) 

• Organization (emergent organizational behaviour) 

 

Multi Agent System architectures are expressed as the pattern of 

relationships amongst agents (Shen et al, 2001). Two kinds of relationships may 

be supposed between agents: Control relationships and Collaboration relationships 

(Shen et al, 2001). A Control relationship relates to the degree of autonomy which 

an agent possesses. An agent whose goals, plans and/or actions are prescribed by 

the imperatives of another agent(s) has little autonomy. In a collaborating 

relationship however, the agents involved are free to accept, reject or modify 

goals, plans or actions proposed to them. In theory, a truly open multi agent 

system need not have any predefined global control. An example of such 

architecture is that of DIDE (Shen and Barthes, 1996).  

 

According to Corkill (2003) a quarter-century of blackboard-system 

experience and more than a decade of multi agent system development have 

produced a strong baseline of collaborating-software technologies. The next 
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generation of complex, collaborating software applications must span the entire 

design space of Figure 8.1 to enable development of high performance, generic 

collaborating-software capabilities. This is the motivation behind the design of the 

presented architecture in this paper (IMMUNE) which combines the agent based 

and blackboard technologies and remains very uncommon to date. Collaboration 

in the combination of multi agent blackboard environments can be asynchronous 

(through the blackboard) and not restricted to one abstraction level, as well as 

autonomous direct communication. This rare approach first started by Lander et al 

(1996) proposing to use agent based blackboards to manage agent interactions 

(Shen et al, 2001). Their model contained multiple blackboards, used as data 

repositories for each group of agents. Along with design data, tactical control 

knowledge could be represented in the shared repository, enabling reasoning 

about the design itself (Shen et al, 2001). SINE (Brown et al, 1995) was another 

agent based blackboard platform that used a single global blackboard to record the 

current state of the design. Even though agents could exchange messages directly, 

design data could flow through the blackboard, and it was accessible to all agents 

(Shen et al, 2001).     

 

Our proposed architecture (IMMUNE) is an agent based blackboard 

system that uses a flat and federated architecture (Efatmaneshnik and Reidsema, 

2009). All the agents are grouped into virtual teams or coalitions.  There is no 

local controller for coordination in between the coalitions. IMMUNE uses a 

global blackboard to save the current state of the design and to facilitate 

asynchronous communication between agents through the blackboard by saving 

the complete solution and partial solutions of different abstraction hierarchies.  
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The primary purpose of designing this architecture was to incorporate the 

complexity science into the collaborating software paradigm.  Lissack (1999) 

demonstrated that since both organization science and complexity science deal 

with uncertainty it is important to combine the two. This marriage of the two 

sciences allows for having an autopoietic view to organization. Autopoietic 

systems theory, analyse systems as having self-productive, self-organized, and 

self-maintained nature (Dissanayake and Takahashi, 2006). The main 

characteristic of IMMUNE is the digestion of complexity measures of the product 

and process which enables the manifestation of autopoietic characteristics 

(Efatmaneshnik and Reidsema, 2009). 

 

The control source of the proposed blackboard does not dictate the pattern 

of cooperation between agents allowing autonomy in the interaction. It however 

does monitor the complexity of the system at two levels: inside the coalitions and 

in between the coalitions at the same abstraction level (we refer to this as a layer). 

The agents are designed to react to the information that they receive from the 

control source about complexity of the coalitions and layers (Efatmaneshnik and 

Figure 8.1 Collaborating environment comparison, after Corkill (2003). 
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Reidsema, 2009). Adding or eliminating agent(s) from the design system is 

possible in IMMUNE, making it an open architecture.  

 

 

8.2   Blackboard Architecture 
 

The Blackboard Database is a hierarchical and partitioned global memory space 

that acts as a central storage area for holding problem solving data, information 

and partial solutions that represent the problem to be solved (Craig, 1993). The 

blackboard provides a common data structure that acts as an interface to agents (or 

knowledge sources in standard blackboard systems) allowing them to read the 

problem data and alter the state of this data when necessary, thereby effecting an 

incrementally improved solution to the problem (Reidsema, 2001). Abstraction 

levels are introduced on the blackboard gradually. Each abstraction hierarchy is 

decomposed according to one of the modes described earlier in Chapter 4. The 

envisaged IMMUNE’s blackboard contains the design variables, their interactions 

(derived from simulation) and the agents’ proposed solutions (Efatmaneshnik and 

Reidsema, 2009).  

 
In IMMUNE the Blackboard facilitates the measurement of problem 

complexity at three levels: sub-problems in one abstraction level, problems of one 

abstraction level and global problem complexity between all abstraction levels 

(Efatmaneshnik and Reidsema, 2009). All of these three complexities change with 

time (progression of the design process). As the agents generate a design variable, 

the problem complexity and global problem complexity can only increase. In case 

the value of a design variable is resolved the problem complexity and the global 

problem complexity can only decrease. The global complexity, in particular, 

provides the opportunity to monitor temporally distributed problem solving that 

takes place in the form of asynchronous information exchange between various 

abstraction levels.  

  
The blackboard also facilitates incorporation of the Immunity Index 

presented in Chapter 7 in the decision making process. The complexity modes can 

be estimated at the three levels of subsystems in one abstraction level, a given 
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abstraction level and the entire system. The decision makers can immediately 

estimate the effect of their choices on the immunity/robustness of the whole 

product/artifact.  

 
 

8.3  Control Source  
 

Typically blackboard architectures provide a control mechanism called a control 

source to coordinate the use of knowledge sources in a consistent and effective 

manner (Reidsema, 2001). The control source determines which knowledge 

sources should make a contribution to the solution, when it should do so, and what 

part of the solution should be the focus (Efatmaneshnik and Reidsema, 2009). In 

IMMUNE, however, the agents decide their focus of attention in a manner 

described in the next section (Efatmaneshnik and Reidsema, 2009). The control 

source of IMMUNE comprises several agents with distinct tasks, all of which can 

be computationally modeled (Efatmaneshnik and Reidsema, 2009). 

 

8.3.1  Decomposition Agent 

 

Decomposition agent decomposes the generated problem on the main blackboard 

according to the connectivity of the problem (as was discussed in Chapter 4). 

Important control features that affect the entire system’s performance can be 

incorporated in this agent’s knowledge namely the number of subsystems, and 

decomposition mode (Efatmaneshnik and Reidsema, 2009).  

 

8.3.2  Composition Agent 

 

Composition Agent groups the agents based on their bids for the problems in 

coalitions using the contract net protocol (Efatmaneshnik and Reidsema, 2009). 

Composition agent contains the map of all the agents, their characteristics and 

types of expertise (Efatmaneshnik and Reidsema, 2009).  
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8.3.3  IT manager 

 

IT manager sets up the LAN and communications channels of the dispersed 

agents for each abstraction level (Efatmaneshnik and Reidsema, 2009). All the 

agents in the same coalition must be visible to each other meaning that the 

messages that one agent receives is made visible to all team members 

(Efatmaneshnik and Reidsema, 2009). This may be thought of as a shared mailbox 

for each coalition (Efatmaneshnik and Reidsema, 2009). For example, Figure 8.2 

shows that when a message is sent from agent 2 in coalition A to agent 4 in 

coalition B, it would be visible to all the members of these two coalitions. 

 

 

8.3.4  Simulation and Computation Agent 

 

Simulation Agent performs Monte Carlo Simulation to generate the design space 

FL, and tags each state of the FL with its immunity index. The agent comprises a 

Monte Carlo Simulation software package, OntospaceTM software. It gathers 

information about the conditional probability distribution of the design variables 

from the agents that generate them. This agent, runs the OntospaceTM software 

using the generated FL, extracts the complexity modes and gives a tag to each 

state of the FL. The agent performs all the above at three levels of the subsystems 

in one abstraction level, the system at one abstraction level and the entire system 

of systems at all abstraction levels that are introduced up to then. This agent must 

be able to dynamically simulate the FL when the new entries (design variables) 

appear on the blackboard for a given abstraction level and also when design 

Figure 8.2 Shared mail boxes for coalitions. 
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values are finalized by the design agents. Since there is no prerequisite for the 

activation of one abstraction level, this agent must be able to run parallel 

simulations for two or more abstraction levels in one time (Efatmaneshnik and 

Reidsema, 2009).  

 

8.3.5  CEO (Complexity Evaluator and Observer) 

 

This agent announces the termination of the generation stage for a given 

abstraction level as soon as the complexity of the level reaches a certain threshold 

(Efatmaneshnik and Reidsema, 2009). This threshold is a control feature of the 

entire system. As mentioned before the termination of the generation stage in each 

abstraction level, can be conditional to the self size. This provides control over the 

size of the problem space (or FL). The knowledge of the ideal abstraction 

approach of Liu et al (2003) can be incorporated into the CEO by constraining the 

number of design variables at each abstraction level.  

 

The CEO agent also monitors the design process (Efatmaneshnik and 

Reidsema, 2009). It has an embedded blackboard on which all the 

communications between the agents and in between the agents and blackboard are 

recorded (Figure 8.3). The design agents can only write on this blackboard but 

there is no necessity for them to be able to read it (Efatmaneshnik and Reidsema, 

2009). The communication arrows on this blackboard must have a tag that 

represents both the qualitative and quantitative weight of transferred information 

(Efatmaneshnik and Reidsema, 2009). Based on these maps of the system which 

vary regularly over time, the CEO measures the instantaneous cognitive process 

complexity of each coalition (a team of agents), a layer (in between the coalitions 

of one abstraction level), and the global cognitive complexity (in between the 

layers that are temporally distributed) (Efatmaneshnik and Reidsema, 2009). The 

CEO measures the lower and upper complexity bounds at all these three levels 

(Efatmaneshnik and Reidsema, 2009). The control source must contain 

knowledge of the different types of resource agents in terms of their capabilities, 

functionalities and discipline knowledge. If an agent is being recruited to the 
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system it must register all its characteristics with the composition agent of the 

control source (Efatmaneshnik and Reidsema, 2009). 

  

 
 

The control source may be fully computational and may not need any 

human intervention to proceed with its tasks (Efatmaneshnik and Reidsema, 

2009). The design process begins with the control source broadcasting notices to 

all agents with regard to the generation of new design variables (Efatmaneshnik 

and Reidsema, 2009). The agents place their entries on the blackboard in the 

specified abstraction level. This is the generation stage of the presented design 

template.  

 

The first set of initial design variables act like a seed on the blackboard 

that would gradually evolve to other design parameters at other abstraction levels 

(Efatmaneshnik and Reidsema, 2009). The control source, then, whether by itself 

or through knowledge sources, is in charge of simulating the FL (or design space) 

corresponding to these sets of design parameters and the extraction of the self map 
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for the design parameters (Efatmaneshnik and Reidsema, 2009). After this, the 

control source decides on the number of sub problems, and the decomposition 

mode, decomposes the self by considering the number of active design agents 

(design resources) and the real complexity (Efatmaneshnik and Reidsema, 2009). 

The control source then clusters the design agents into virtual teams and 

distributes the sub-problems to them (Efatmaneshnik and Reidsema, 2009). The 

design agents within the virtual teams solve the problems cooperatively. They 

send the results back to the blackboard, and negotiate the conflicts with the other 

groups until they reach a resolution. 

  

Using the common practices of sequential engineering would lead to 

starting a new cycle (at new abstraction level) after all activities of the previous 

cycle are performed and the results are finalized. However, the concurrent 

engineering principle of overlapping the activities to shorten the design lead time 

may be applied here. Therefore agents must be allowed to introduce their 

proposed design variables on the blackboard (problem generation), however the 

decomposition and distribution stages start only when the CEO supposes an 

abstraction level as having reached a certain complexity threshold. Since agents 

can be cloned to perform different tasks, it is possible that two or more abstraction 

levels could simultaneously be at different stages of design process. In order to 

reduce the complexity of the entire design system, we propose that the design 

agents of different abstraction levels be allowed to communicate only through the 

blackboard.   

 

8.4  Agents Structures 
 

In artificial intelligence, an intelligent agent observes and acts upon an 

environment, as a rational agent: an entity that is capable of perception, action and 

goal directed behavior. Such an agent might be a human, computer code or an 

embedded real time software system. The internal architecture of an agent is 

essentially the description of its modules and how they work together (Shen et al, 

2001): agent architectures in various agent based systems (including agent based 

concurrent design and manufacturing systems) range from the very simple (a 
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single function control unit with a single input and output) to very complex 

human like models. The agents in IMMUNE are Single Function Agents (SiFAs) 

which were developed in the AIDG research group (Dunskus, 1994) to investigate 

concurrent engineering design problem solving using multi agent architectures. It 

involves multiple agents that cooperatively produce a solution when the task of 

the entire system is decomposed into many, very small subtasks; where exactly 

each one of these is assigned to an individual agent (Dunskus, 1994). Every agent 

now has one function to perform, that is, to execute its subtask. Agents have their 

own point of view that represented the expertise of the agent; which might be 

cost, strength, manufacturability etc (Dunskus, 1994). In IMMUNE, SiFAs have 

three functions: 1) to generate the design variable; 2) to estimate the values of the 

design variables; and 3) to evaluate the solutions of other agents from their own 

point of view, verifying the existence of any conflicts (Efatmaneshnik and 

Reidsema, 2009). SiFAs are collaborative agents (also called interacting or social 

agents) that work together to solve problems. The joint expertise of collaborative 

agents is applied to ensure that the overall design is consistent (Shen et al, 2001).  

 

“Coherence is a global (and regional) property of the MAS that could be 

measured by the efficiency, quality, and consistency of a global solution (system 

behavior) as well as the ability of the system to degrade gracefully in the presence 

of local failures” (Sycara, 1998). Coherency is about the ability of the MAS’s to 

“cope” with problem integration. Several methods for increasing coherence have 

been studied, all of which relate to the individual agent’s ability to reason about 

the following questions:  who should I interact with? And when should I do it and 

why? Sophisticated individual agent reasoning can increase MAS coherence 

because each individual agent can reason about non-local effects of local actions, 

form expectations of the behavior of others, or explain and possibly repair 

conflicts and harmful interactions (Sycara, 1998).  On this basis, four different 

agent architectures have been discussed in the literature: reactive agents (also 

known as behavior based or situated agent architectures), deliberative agents (also 

called cognitive agents, intentional agents, or goal directed agents), collaborative 

agents (also called social agents or interacting agents), and hybrid agents (Shen et 

al, 2001).  
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Reactive agents are passive in their interactions with other agents. They do 

not have an internal model of the world and respond solely to external stimuli. 

They respond to the present state of the environment in which they are situated 

and do not take history into account or plan for the future (Sycara, 1998). Through 

simple interactions with other agents, complex global behaviour can emerge. In 

reactive systems, the relationship between individual behaviours, environment, 

and overall behaviour is not understandable (Shen et al, 2001). However, the 

advantage of reactive agent architecture is simplicity (Shen et al, 2001).  

 

Deliberative agents use internal symbolic knowledge of the real world and 

environment to infer actions in the real world. They proactively interact with other 

agents based on their sets of Beliefs, Desires and Intentions (BDI system). These 

agents perform sophisticated reasoning to understand the global effects of their 

local actions (Sycara, 1998). Consequently, they have difficulties when applied to 

large complex systems due to the potentially large symbolic knowledge 

representations required (Sycara, 1998). Shen et al (2001) identified collaborative 

agents as a distinct class of agents that work together to solve problems; 

communication in between them leads to synergetic cooperation, and emergent 

solutions. 

   

Hybrid architectures are neither purely deliberative nor purely reactive 

(Sycara, 1998), and the agents in IMMUNE have a hybrid architecture (Figure 

8.4). According to Sycara (1998) hybrid agents usually have three layers:  

 

1. The Lowest Layer: at the lowest level in the hierarchy, there is 

typically a reactive layer, which makes decisions about what to do on 

the basis of raw sensor input. This layer contains the self knowledge 

that is the knowledge of the agent about itself including physical state, 

location, and skills, etc (Shen et al, 2001).  

2. The middle layer: this layer typically abstracts away from raw sensor 

input and deals with a knowledge-level view of the agent’s 

environment, often making use of symbolic representations (Sycara, 

1998). This layer contains two types of knowledge: domain knowledge 

and common sense knowledge. The domain knowledge is the 
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description of the working projects (problems to be solved), partial 

states of the current problem, hypothesis developed and the 

intermediate results (Shen et al, 2001). 

3. The uppermost layer: this layer handles the social aspects of the 

environment (Sycara, 1998). 

 

The detail of these layers with their modules in design agents of IMMUNE is 

presented next and depicted in Figure 8.4. 

 

8.4.1  The Lowest Layer 

 

This layer contains the agent’s self knowledge that is used to participate in tasks 

and reply to other agents (through the uppermost social layer) as well as control 

source’s requests about its competence, and capabilities in the bidding process. 

The main responsibility of the low layer, in fact, is to decide on the values of the 

design variables. In doing so it checks the immunity of each state of the FL (note 

that states are already tagged with their immunity). At this layer the agent decides 

on the potential solutions for the design variables and sends them to the two upper 

layers to study the potential conflicts that these solutions may have with the 

objectives of other design agents and for further negotiations with them.  

 

8.4.2  The Middle Layer 

 

The middle layer has two modules, namely agenda manager and COPE 

(Complexity Oriented Problem Evaluator) that respectively contain the above two 

types of knowledge and are in contact with backboard and the CEO.  

Agenda Manager 

Agenda manager is in direct contact with the lower layer. It decides on the focus 

of attention and reports it to the lower layer. The agenda manager in the middle 

layer regularly monitors the blackboard to maintain its domain knowledge. 

Agenda manager also receives the potential solutions from the lower layer and is 

alert on the reports of the conflicts that the potential solutions have had with the 
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solutions of other design agents (these reports come into the middle layer directly 

from the communication interface of the agent. Agenda manager has been used in 

many blackboard systems such as HEARSAYII (Carver and Lesser, 1994) with 

the difference that in these systems a central agenda manager has been in charge 

of maintaining the focus of attention for the entire set of knowledge sources 

(agents). Generally agenda managers are data driven (what is present on the 

blackboard) and its operation leads to opportunistic problem solving (Carver and 

Lesser, 1994). The agenda manager chooses the focus of attention of the agent on 

different problems at different abstraction levels. It may shift the focus of 

attention of the agent from one abstraction level to another depending on the 

status of the problems and partial solution on the blackboard. The main reason for 

using agendas for control is to speed up the process of problem solving, and for 

reducing agent idle time (Carver and Lesser, 1994).  

COPE 

The common sense knowledge that enables the agent to make sense of the 

cognitive complexity measure of the environment that is reported by the CEO is 

embedded in this module. The COPE module maintains the cognitive complexity 

of the one coalition, group of coalitions in one abstraction level and the entire 

system of active coalitions in all abstraction levels in the appropriate range 

(Efatmaneshnik and Reidsema, 2009). COPE can make sense of the 

environment’s cognitive complexity (at all three levels) by comparing it to the 

maximum and minimum complexities that is determined by CEO. COPE is a goal 

driven module and communicates with the agent’s upper layer. To increase the 

complexity of the environment COPE informs the upper layer of the agent to 

socialize and collaborate more actively. To decrease the complexity of the 

environment the upper layer of the agent must become more passive by simply 

reacting to the incoming information from the control source and other agents. In 

this way COPE may provide immunity from agent overreacting or under acting in 

the environment. Also COPE can dictate the upper layer to choose different 

conflict resolution schemes that are more passive like constraint relaxation to 

reduce the complexity. Conversly active negotiation techniques can be used to 
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increase the cognitive complexity of the environment when there is conflict with 

another agent’s solutions.  

 

 

8.4.3  The Top Layer 

 

This layer contains the social knowledge and is in charge of negotiation and 

coordination with other agents. It reports its information exchanges to the process 

blackboard of the CEO (Efatmaneshnik and Reidsema, 2009). The uppermost 

layer receives the potential solutions from the lowest layer and broadcasts them to 

other design agents that have interactions to the problem being considered. This 

layer also receives the same information from other agents and directly sends 

them to the lowest layer of the agent where the information is processed for 

determination of conflicts. The information about the conflicting objectives is also 

sent to the COPE module which determines the strategy of the negotiations 

(reactivity, pro-activity, selfishness) that is then reported to the upper most layer 

of the design agent (Efatmaneshnik and Reidsema, 2009). 

 

 

 

 

Figure 8.4 Agent structure in IMMUNE. 
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8.5  Overall Behaviour     
 

The decomposition module of the control source is in charge of decomposing the 

problem after the generation stage of a given abstraction level was accomplished 

The process of multi disciplinary team formation is based on the decomposition 

format of the problem, and SiFAs that were the elements of teams were grouped 

on this basis (Efatmaneshnik and Reidsema, 2009).  

 

The control source of IMMUNE is active throughout the entire design 

process. The design process starts with the generation of an initial set of product 

variables upon a notification from the control shell to single agents to introduce 

their entries on the blackboard. This set of product variables act as a seed 

representing the highest abstraction hierarchy of the problem space. The seed 

might be a rough guess of what needs to be done (Figure 8.5). The simulation 

agent of the control source simulates the FL of the generated problem space and is 

in charge of gathering all the required information (for simulation) from the 

design agents.  

 

Generally, this support system relies on and digests massive amount of 

information outcomes from the many simulations that might occur in each of the 

process layers. The decomposition agent of control source decomposes the set of 

generated variables and calls for the design agents’ bids to participate in solving 

them. The decomposition module decides on one of the decomposition modes on 

the basis of estimated problem connectivity for a given abstraction level.   The 

agents announce their interest back to the control shell by weighting their interest 

in solving each individual design variable or estimating the value of a design 

constraint. The composition agent assigns each individual parameter to a single 

design agent. In IMMUNE, the SiFAs are also grouped into virtual teams 

(coalitions). The composition agent announces the coalitions’ formats according 

to one of the unsupervised integration modes described in Chapter 4. The IT 

manager is in charge of setting the shared mail boxes for each coalition, and also 

each layer.  
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The CEO agent of the control source estimates the minimum and 

maximum process cognitive complexities at all three levels of the coalitions, the 

layers and the entire system. The problem solving process starts at this stage; the 

problems are solved by the design agents and the results are sent back to the 

blackboard. During this process the information exchanges including those for 

conflict resolutions and negotiations in between the design agents take place 

entirely without the intervention of any module of the control source. CEO only 

monitors the design process cognitive complexity that is raised from the 

collaboration of the design agents during this last stage. If all the solutions are 

prepared the virtual groups are dismantled and collaboration process is stopped. 

The next set of the design variables are introduced and the cycle continues. It is 

also possible to start the next layer before the termination of the last stage. 

 
The parallel execution of two or more layers of the problem solving 

process may need a single agent to be active in two or more process layers. The 

agenda manager of each individual design agent was a module that was 

introduced to maintain the focus of attention of the agent. The agents are allowed 

to introduce new product variables at any abstraction level at any time during the 

design process. They may also be cloned to solve two different design variable 

related to different design groups or in the same design group.  

 

 
 

 

The SEED 
Layers Communicate only 
through the blackboard  

Layers at the generation 
stage 

Global Blackboard At solving stage 

Figure 8.5 The design process at different abstraction levels may run 
simultaneously. 
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8.5.1  Adaptive Structuration in IMMUNE 

 

As explained in Chapter 4 the problem solving modality in different 

abstraction levels can be disparate and based on the mode of decomposition at 

each level. We interpreted this modality as adaptive structuration. According to 

Chen and Li (2001), in order to enable dynamic structuration and adaptability, two 

preconditions must be satisfied:  

 

1. The relevant design attributes, functions and variables necessary to 

formalize a design problem have been identified. 

2. The interacting relation existing in teams is prescribed a priori in 

seeking a multi-team design solution.  

 

In Chapter 7 we suggested that prior knowledge of the interactions (driven 

from the simulated PDSM) must remain as a suggestion and backbone to measure 

the process complexity, rather than to be used for forced communications through 

channels and filters. The reason to use this democratic method was to enhance the 

creativity across the entire design system and within the teams. The CEO module 

of the control source is in charge of measuring and tracking cognitive complexity 

of the integrated design system. However, the mode of problem decomposition 

and also integration mode remain unchanged for each layer after their introduction 

up until when the coalitions at that layer are dismantled.  

 

  To date, several other researchers have developed adaptable systems with 

modal functionalities. For example, Shen and Norrie (1998) argued that 

knowledge in modern manufacturing should have flexibility so that it can be 

applied to different kinds of applications. They used three different types of 

knowledge sharing patterns, primarily introduced by Tomiyama et al (1995) 

(Figure 8.6). There pattern were: 

 

1. Independent knowledge bases: in this case, the strength of 

knowledge cannot be more than the sum of each of the independent 

knowledge bases (Figure 8.6(a)). 
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2. Integrated knowledge bases: Here, the knowledge bases can be 

applied to various situations and the strength of knowledge is near 

maximum (Figure 8.6(b)). 

3. Interoperable knowledge bases: independent knowledge bases can 

communicate and form an interoperable situation (Figure 8.6(c)), 

although the strength of knowledge might be weaker than that in 

integrated knowledge bases. 

 

 

Another example was Zhang (1992) who classified types of problem 

solving among human experts in four predominant kinds according to their 

interdependencies: 

  

1. Horizontal cooperation is where each expert in the cooperative 

group can get solutions to problems without depending on other 

experts, but if the experts cooperate, possibly using different 

expertise and data, they can increase confidence in their solutions.  

2. Tree cooperation is where a senior expert depends on lower-level 

experts in order to get solutions to problems.  

3. Recursive cooperation is where different experts mutually depend 

on each other in order to get solutions to problems.  

4. Hybrid cooperation is where different experts use horizontal 

cooperation at some level in an overall tree or recursive 

cooperation.  

 

 
                  

Figure 8.6 Knowledge sharing architectures (Tomiyama et al 1995). 
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Also Rosenman and Wang (1999) introduced the Component Agent-based 

Design-Oriented Model (CADOM) for collaborative design. This was a dynamic 

integrated model, using an integrated schema to contain data for multiple 

perspectives, but also with flexibility to support dynamic evolution. They 

recognized five types of modelling mechanisms for a collaborative design 

environment: 

  

1. Integrated mode (Figure 8.7(a)): This is an integrated CAD system 

which works as a sharable server for all users using an integrated 

data model and a central management mechanism.  

2. Distributed-integrated mode (Figure 8.7(b)): in this mode, 

distributed designers usually have their own domain systems along 

with a central service module called a sharable workspace.  

3. Discrete mode (Figure 8.7(c)): this is a fully distributed system, 

where usually there is no central module but simply a set of 

distributed domain systems with discrete models and management 

mechanisms.  

4. Stage-based mode (Figure 8.7(d)): In this mode a base model is set 

up at the first stage, and all subsequent models are derived from the 

base model.  

5. Autonomy-based mode (Figure 8.7(e)): This is based on the 

concept of autonomy, in which each model is implemented as a 

distributed set of knowledge sources representing autonomous, 

interacting components. 
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We propose five modes of knowledge sharing and organizational structure 

that correspond to decomposition modes described in Chapter 4. These 

correspond to unsupervised integration schemes and are independent, integrative, 

multi agent, collaborative and competitive. It should be noted again that each 

process layer can acquire only one of these modes for the entire design process at 

that layer.  Also it is important to note that the general structure of the system, 

here, is autonomy based and the following knowledge sharing patterns are highly 

and/or expected rather than definitive solid patterns. The process modes are 

described next (Efatmaneshnik and Reidsema, 2009). 

 

 

8.5.2  Independent process mode 

 

In this mode the decomposition agent has managed to fully decompose the 

problem; generally, very low self map connectivity that is the indication of a loose 

problem coupling leads to such situations. In this mode no collaboration is likely 

between the coalitions as depicted in Figure 8.8; this is so because when tasks are 

not interdependent, there is no need or reason to collaborate (Leenders et al, 

2003). Consequently the need for radical innovation to integrate the system at the 

considered abstraction level would be minimal, and the process will be 

Figure 8.7 System modes for collaborative design systems (Rosenman and Wang, 
1999). 
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characterized by short lead times. However collaboration exists between the 

design agents inside the same coalition. The CEO monitors the cognitive 

complexity inside the coalitions using the system knowledge provided by the 

agents regarding the degree of interaction with other members of the coalition; 

this is the only control relationship in the system.    

 

 
 

8.5.3  Integrative process mode 

 
Integrative systems were explained in 4.5. Simple coordination of the design 

process makes this mode desirable, since all the coalitions have to coordinate their 

communications with only one integrative coalition. The corresponding (likely) 

organizational structure and integrative process mode is that illustrated in Figure 

8.9.   

Figure 8.8 Independent process mode: coalitions do not need to communicate. 
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Blackboard 

Communication 

Information about  
System’s  complexity 

Design data 

Coalitions 
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One drawback of this mode is that it might be hard for the design agents of the 

integrative coalition to maintain the cognitive complexity of the layer above the 

CEO-prescribed minimum cognitive complexity; since one module must be able 

to reach a high cognitive complexity. In other words the coordination in between 

several coalitions through one coalition might not be efficient or effective. 

 

8.5.4  Autonomy based process mode 

 

In this mode the agents explicitly act autonomously in their social behavior. The 

main characteristic of the autonomy process model is the intense cooperation 

amongst the design agents inside and across the boundaries of coalitions (Figure 

8.10). This cooperation is an engine for innovation which is the main 

characteristic of autonomy based process. 

    

 

 

 

CEO

Blackboard 

Figure 8.9 Integrative process mode. All coalitions exchange information with 
only one central coalition. 
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8.5.5  Collaborative process mode 

 
In this mode subsystems are overlapped and they share some of the design 

variables with each other. As a result some of the coalitions explicitly share some 

of the agents, and there are some agents that have the membership of two or more 

coalitions (Figure 8.11). The real complexity is measured for overlap 

decompositions. As stated in 4.5 the main characteristic of this process mode is 

the intense collaboration between coalitions that makes this mode an information 

and knowledge intensive process (Klein et al, 2003.b).   

 

 
 

CEO 

Blackboard 

Figure 8.11 Collaborative process mode. 
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Figure 8.10 Autonomy based process model. 
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8.5.6  Competitive process mode 

 

When the problems are very connected resulting in dense self maps, any kind of 

decomposition leads to large departures of the real complexity from the self 

complexity (CR >> CS) . In this condition, decomposition may not be a solution to 

problem tractability. In the competitive mode the problem is not decomposed, and 

each coalition tackles the entire problem by itself. The main characteristic of this 

process model is the competition between the design coalitions (Figure 8.12). The 

CEO monitors the cognitive complexity inside each coalition. Note that there 

naturally there shouldn’t be any emergent system level cognitive complexity for 

this mode since it is assumed that coalitions do not no cooperate. However, 

informal cooperation may exist between the coalitions, but the cognitive 

complexity introduced by the informal cooperation of the coalitions can be 

ignored. The quality of the solutions is determined by the control source, based on 

the accuracy weights that the coalitions suggest for their solutions.  

 

 

  

CEO 

Blackboard 

Figure 8.12 Competitive process mode, emulates the Enlightened Engineering 
design process. 
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9  Conclusion and Future Work 
 
Complex engineered systems are large scale and densely coupled systems. This 

thesis consists of a design methodology, several design methods and design 

strategies for managing a complex product design; the design methods include 

process monitoring, modal decomposition, and immunity index for parametric 

decision making. The inherent fragility of a complex development process, a 

complex NPD organization and a complex product, are the central focus of these 

design methods. We used the term “immunity” to convey the message that 

complex systems must be immunized in order to be robust.  

 

 

The presented design methodology was a model of distributed 

computation and complex problem solving as a new conceptual approach to 

concurrent parametric design of complex products. This approach extended the 

reach of parametric problem solving methodology to the conceptual stage, and by 

that addressed issues such as innovation and creativity that are subjects of 

conceptual design stage. This has been previously introduced by Kroll et al (2001) 

as the parameter analysis, and was regarded as an imperative for innovative 

conceptual design. The main contribution to the design methodology, here, was 

the inclusion of simulation based engineering to the gradualist model of design.  

 

Design Gradualism asserts that a design problem must be introduced 

gradually and in steps usually regarded as abstraction levels. Abstraction levels 

refer to the levels of importance of the design problems for the main 

functionalities of the final product. One characteristic of complex products is the 

sensitivity of their core functionalities even to low level parameters (details) such 

as aesthetics. As an example consider the human skin; it can be regarded as a 

detail (thus low level) in the abstraction hierarchy, although it plays sensitive roles 

in overall health and immunity of the body. Therefore the argument is that for 

complex products the details and the core functionalities must be developed and 

designed together. As such we made the comparison between the first set of 

design variables and the seed of a plant. The seed needs to have a foretaste of all 

abstractions in the product (functionalities). The termination criteria for each 
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design stage (abstraction level) were also introduced as the number of design 

variables.      

 

 The presented template suggests simulation as a tool for the purpose of 

design management as well as its commonly accepted purpose: an imperative for 

design optimization and performance improvement. Monte Carlo Simulation and 

the Global Entropy Based Correlation Coefficients were suggested for 

establishing, early in the design phase, the self map of the system which shows the 

sensitivity of design objectives and variables. This self map is represented as a 

weighted graph or parametric based design structure matrix (Browning, 2001). 

Decomposition is a design method, which is applicable to the design problem (self 

map). Modal decomposition of the problem space was suggested: a problem may 

be decomposed in several modes depending on the connectivity (or coupling) of 

the design variables at each level of abstraction. These decomposition modes are 

described as being analogous to the growing connectivity of the problem and are 

defined as: 1) Full decomposition, all subsystems (sub-problems) are independent 

for least connected systems. 2) Integrative or coordination based decomposition; 

where one subsystem (named integrative subsystem) is connected to all other 

independent subsystems that are independent. 3) Modular or multi agent 

decomposition, where all subsystems or some of them are connected 4) Overlap 

decomposition, which is similar to Multi Agent decomposition with the exception 

that some of the subsystems are overlapped indicating shared design and objective 

variables. 5) No decomposition for densely connected systems that show strong 

emergence. 

 

 We also presented three design methods that were based on the measures 

of complexity of the design problems, cognitive complexity of the problem 

solvers and complexity of the design solutions. Here, we referred to the problem 

structure as the self map of the problem or the under-development system. If the 

problem is large the self needs to be decomposed for tractability. It was noted that 

the structure of the problem after decomposition is the real structure to be dealt 

with. We referred to the complexity of the system/problem before decomposition 

as the self complexity and complexity of system after decomposition as the real 

complexity. It was shown that the real complexity cannot be less than the self 
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complexity, thus, contrary to what is commonly assumed, decomposition does not 

reduce the complexity. The immune decomposition was introduced that utilized 

real complexity as the quality partitioning criteria which can be applied to all 

types of decompositions: integrative decompositions, modular decompositions as 

well as overlap decompositions. The real complexity enables comparison between 

the outcomes of these three decompositions. It was reasoned that minimizing the 

real complexity leads to better efficiency and effectiveness of the design process. 

Real complexity constitutes the approach of this thesis to immunization of the 

design process.  

 

Cognitive complexity was defined for a design organization. Cognitive 

complexity is the ability of a person or an organization to integrate a system. We 

suggested measuring cognitive complexity of an organization as a function of 

information exchanges between design agents and in general design units (e.g. 

design teams) by applying our graph theoretic complexity measure to the 

monitored team based DSM. In order to integrate and manage a complex problem 

the problem solving system requires a cognitive complexity that is more, or at 

least equal, to the complexity of the problem. Our method to immunization of 

complex design organizations constituted maintaining the cognitive complexity of 

an organization around the complexity of the problem (in between the minimum 

and maximum complexity of the problem). It was also noted that for hierarchical 

organizations e.g. federation of coalitions and collection of federations the 

cognitive complexity and their bounds must be measured as the real cognitive 

complexity of the hierarchies.   

  

Finally, Immunity Index was introduced to insure the immunity from 

sudden collapse at the product level. It was based on the It was noted that the 

variation in some parameters of a system can affect the underlying structural 

relationship between the system’s variables. Based on this notion, a globally 

robust product was regarded as one that uncertainties in the environment as the 

variation in the product’s input variables were unable to change the structural 

properties of the product’s variables. This way, the unexpected behaviour is more 

unlikely, since a source of failure is the modal bifurcation of the structures.  
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A conceptual DSS was introduced that incorporated the design 

methodology, design methods and strategies into a flat organizational architecture. 

IMMUNE is capable of adaptive structuration which is planning decisions in a 

metamorphose environment for each of the five mentioned decomposition modes. 

Design agents are clustered within each GDDI cycle as virtual teams or coalitions 

of agents whose structure mimics the structure of the problem. Subsequently, and 

correspondingly to the five modes of decomposition, the IMMUNE architecture is 

capable of employing five modes of design integration: 1) Independent mode that 

is fully concurrent problem solving. 2) Integrative mode which is coordination 

based problem solving. 3) Autonomy based problem solving that is cooperative 

and on the basis of cooperation of several coalitions of agents. 4) Collaborative 

problem solving where some of the coalitions of agents are semi merged and 

overlapped 5) Competitive problem solving on basis of Enlightened Engineering 

in which several independent coalitions of agents competing to solve the same 

problem. 

 

Adaptive Structuration is accomplished by employing a global blackboard 

containing the current state of the design at all abstraction levels. The control 

source decides on the decomposition mode based on the connectivity of the 

problem and then decomposes it on the basis of minimum real complexity. The 

CEO module of the control source is in charge of maintaining the coherence of the 

multi agent design environment. CEO informs all the design agents of the amount 

of cognitive complexity of their coalition and the federation. The COPE module 

of the design agents are then in charge of maintaining the cognitive complexity of 

the coalitions and the federation above the announced (by CEO) minimum and 

away from the maximum bound.  COPE module, decides on the high level 

interactions mode (passive or proactive-social) by using the conflict resolution 

strategies that are passive like constraint relaxation or proactive such as active 

negotiation. 

  

 The presented architecture is IMMUNE against sudden failure in meeting 

the top level organization objectives including cost, lead time and the quality of 

the product. It is often argued that complex systems are robust yet in the presence 

of uncertainties they become fragile; this strange behaviour is related to the 
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chaotic and sensitive characteristic of complex systems. In the domain of 

sustainability of the organizations that design complex products this means that 

the top level goals may often be robustly met, however, sudden and large 

departures from those goals may seem inevitable. To immunize against this 

fragility the proposed system advocates coherency in collaboration. That is, the 

locally aware design agents (aware of their local tasks) maintain the global 

coherency, harmony and order through their COPE module by making the agents’ 

social behaviour subservient to the information the system’s cognitive complexity 

received from the CEO module. 

 

The immunity discussed in this thesis is more of a “reasoning by 

metaphor” which means that there has not been much enough effort to study the 

natural immune systems characteristics. One reason for this was that the limited 

timing of the PhD (4 years period) was only enough to introduce myself to the 

field and notions of complex systems science. A more rigorous approach could be 

to use detail description of the recently uncovered as well as new understandings 

of the already known mechanisms of natural immune system. These mechanisms 

should be reflected on and incorporated into a distributed computation strategies; 

and by that the core output of the research would be immune computational 

strategies within the context of machine learning. The incorporation of complexity 

measure into artificial immune systems and algorithms, however, is a novel 

approach that has not been tried yet. The implementation of IMMUNE by an 

Artificial Intelligence programming language such as LISP is an important 

continuation of this project.  
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A  Appendix : The Nondisclosures and MatlabTM 
Codes 

 

A.1  Graph Theoretic Complexity Measure 
 

The graph theoretic measure of complexity of the OntospaceTM software (and this 

thesis) is the Spectral Norm of the adjacency matrix of the graph. In general, the 

Spectral norm of a matrix A is also known as the spectral radios (or second norm) 

of the matrix and is the largest singular value of A. For real matrices the spectral 

norm is:   

 
 

 
 

Where AT is the transpose of matrix A.  In general, a norm is an abstraction of the 

concept of length. In robust control theory22 the spectral norm of a controller 

transfer function is known as H∞ or Hankel norm, and is used to minimize the 

closed loop impact of a perturbation of outputs to input perturbation. There is an 

analogy between robust controller design and robust engineering design. In fact a 

controller transfer function in control theory is the equivalent of a DSM in design 

theory. Robust control design has become a new paradigm in modern control 

design already many years ago. However the introduction of this technique into 

engineering design which is also accompanied by its mix with the science of 

emergence is relatively new. 

The notion of emergence has very close relationship with this measure. 

The emergence of connectivity in random graphs (Erdős–Rényi graphs) is usually 

analysed in terms of the size of the largest connected subgraph (LGS) (Boschetti 

et al 2005). A subgraph of a graph G is a graph whose vertex set is a subset of that 

of G, and whose adjacency relation is a subset of that of G restricted to this subset. 

                                                 

22 Robust control theory is concerned with how control systems react to erroneous or failed inputs 
or stressful environmental conditions.  
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A subgraph is connected if only if it cannot be any further partitioned into two or 

more independent components (or subgraphs with no edge in between them). 

Spectral norm is obviously a property of the LGS since if we consider matrix A 

that is collection of sub-matrices on its diagonal and zero elsewhere then the 

spectral norm of A would be the maximum of the spectral norms of the sub-

matrices:  

 

 

 

Note that Ais can be the adjacency matrices of the sub-graphs of a graph (with 

adjacency matrix A) that are not connected to each other. We used this property of 

this measure in chapter 5 to set the lower bound for the real complexity of 

decompositions. Figure A.1 shows that on average the measure increases with 

three components of complexity (order, size or coupling, and cycles). In this 

figure each point represents a randomly generated graph (see Section A.3 for the 

related MatlabTM code). 

 
Figure A.1 The spectral norm as a complexity measure on average increases 

with size, order and cycles number. 
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A.2  Lower and Upper Complexity Bounds 
 
 
The lower and upper complexity bounds are measured from a dataset that 

describes a system and by applying the complexity measure to respectively a 

reduced adjacency matrix and an augmented one. The reduced adjacency matrix 

contains only the important edge weights and is zero for the weak links. This way 

the reduced adjacency matrix expresses the essence of connectivity in the system 

and the irreducible core of the system. OntospaceTM computes the information 

exchange (by estimating the mutual entropy) and the entropy of all the scatter 

plots for the pairs of systems variables (by treating the scatter plots as images). 

The scatter plots that contain significant information exchange (the important 

links in the system’s graph) are decided by drawing a boundary in the plot of 

Entropy versus Information Exchange of all scatter plots of pairs of system’s 

variables (Figure A.2). This boundary separates the scatter plots that contain 

useful information (shown by red dots) from the remainder (blue dots). 

 

Generation of the augmented adjacency matrix involves Monte Carlo 

sample generation to fill up each individual scatter plot with more samples points 

(based on the estimated mutual probability distributions from the original data 

set). Naturally, every time a new sample is generated the entropy in the scatter 

plot increases. The augmented adjacency matrix is formed by measuring the 

information exchanges when all scatter plots have the maximum entropy as shown 

in the Figure A.3 (i.e. all scatter plots would be saturated with the maximum 

entropy).  

 

In chapter 6 we mentioned the notions of real minimum and maximum 

complexities for the hierarchies. Real minimum and maximum complexities are 

obtained by decomposing the reduced and augmented adjacency matrices of the 

system, then measuring the real complexity for these decompositions. 

 

 



A4 
 

 
 

 
 
 
 
 

Figure A.3 The maximum entropy is the entropy of the image that lies on the 
boundary. 

Entropy 

Figure A.2 The scatter plots that contain useful information are separated from 
those that do not. 

Information 
Exchange 
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A.3  MATLABTM Codes 
 

A.3.1  Codes related to Chapter 3 

 

Function: figure3_6 

 
This function generates the Figure 3.6 and the mutual information exchange 

presented in the corresponding section.  

 
function figure3_6 
x = linspace(-1,1,200); 
y  = xcircle(x); 
x = [x x]; 
tt(:,1) = x'; 
tt(:,2) = y'; 
plot(x,y,’.’) 
mutual information = xentropy( tt ); 
 
 

Function: xcircle 

 
This function generates a half circle. 
 
 
Output: 

• y: a vector containing the y coordinates of a circle. 
 
 
Input 

• x: a vector containing the x coordinates of the circle. 
 
 
 
function y = xcircle (x) 
y1 = (1 - x.^2 ) .^ 0.5; 
y2 = -((1 - x.^2 ) .^ 0.5); 
y = [y1 y2]; 
end 
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Function: xentropy 

 
This function estimates the joint probability distribution of two random variables 

and their mutual information. 

  

Output: 

• ent: the mutual information 

 

Input: 

• tt: a vector with two columns. Each row of the vector is a data point 

of a two dimensional data set.     
 
 
 
function ent = xentropy( tt ) 
        h = hist3(tt); 
        N = sum(sum(h));    
        w = h / N; 
        q = find(w(:,:) ~= 0); 
        ent =  - sum( sum( w(q) .* log ( w(q) ) ) ,  2) 
end 

 

A.3.2  Codes Related to Chapter 5 

A number of MatlabTM functions have written and used to produce the presented 

figures of Chapter 5. These functions are included next. 

 

Function: dcm 

This function measures the real complexity of decompositions. 

 

Outputs: 

 

• com: real complexity of the decomposition 

• Csum: sum complexity of the parts ort subsystems 

• rcut: cut ratio of Cheng and Hu (1989) 

• mcut: min-max cut of Ding et al (2001) 
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• ncut: normalized cut of  Shi and Malik (1991) 

 

Inputs: 

 

• a: adjacency matrix of the self, can be weighted or un-weighted. 

• m: partitions (row) vector. Each of the elements of this vector are 

the order of one of the partitions, in a way that, the size of the 

vector is the number of the partitions, and the sum of the elements 

of the vector are the order of the adjacency matrix of the self graph. 

• pn: the permutation (row) vector of the self adjacency matrix. Its 

size is the same as the size of self adjacency matrix and contains 

the permutation indices. For example if the matrix A is a 3×3 self 

adjacency matrix then the permutation vector can be one of the 

following six vectors: 

[3 2 1], [2 3 1], [3 1 2], [2 1 3], [1 3 2] and [1 2 3] 

The permutation of A with the last vector would be equal to A.    

  
 
function [  com, Csum, rcut , mcut , ncut   ] = dcm(a,m,pn) 
a_n = a(pn,pn); 
nsus = length(m); 
nim = cumsum(m);             
for ii = 1:nsus 
            Sus(ii)= {a_n( nim(ii) - m(ii) + 1 : ... 
                nim(ii), nim(ii)- m(ii)+ 1 : nim(ii))}; 
                      for jj = 1:ii-1 
               cut(jj,ii)={a_n( nim(jj) - m(jj) + 1 : nim(jj),... 
                   nim(ii) - m(ii) + 1 : nim(ii))};  
               cut(ii,jj)={a_n( nim(ii) - m(ii) + 1 : nim(ii),... 
                   nim(jj) - m(jj) + 1 : nim(jj))};    
             end 
             cut(ii,ii) = {[]}; 
end 
            Cum  = cellfun(@norm, Sus); 
            sums = sum(Cum); 
            smin = min(Cum);  
            subcom = cellfun(@(x) sum(sum(x)), Sus); 
            Csum = sum(Cum); 
            Cum = diag(Cum); 
            cutsum = cellfun(@(x) sum(sum(x)), cut); 
            cum = Cum + cutsum; 
            com = norm(cum); 
            rcut = sum(sum(cutsum)./m)/nsus/(nsus-1); 
            mcut = sum (sum (cutsum) ./  subcom) / nsus/(nsus -1); 

ncut = sum (sum (cutsum)  ./ (sum (cutsum) + subcom))/ 
nsus/... (nsus -1); 
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end 
 
 
 

Function: Overlapdcm 

This function calculates the real complexity of the overlap decompositions. 

Outputs: 

 

• com: real complexity of the overlap decomposition 

 

Inputs: 

 

• a: adjacency matrix of the self graph 

• m: the partitions (row) vector. This includes partitions size 

including the overlap blocks. For example if the matrix “a” is  3×3 

and it is decomposed in the following form: 

 

Then the partitions matrix is written as [1 1 1]. 

• l: the vector containing the indices of the laps in the partition 

vector. For the above example, l would be [2].  

• pn: the permutation row vector containing the permutation indices 

of adjacency matrix.  

 
 
function [com] = overlapdcm(a,m,l,pn) 
 
mm = size(m,2); 
ll = size(l,2); 
I = zeros(mm+ll,mm); 
j = 0; 
for i = 1:mm 
    j = j+1; 
    I(j,i)=1; 
    if sum(i == l)== 0 
    else 
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        j = i + find(i==l); 
        I(j,i) = 1 ; 
    end 
 
a_n = a(pn,pn); 
nsus = length(m); 
nim = cumsum(m);             
mm = m; 
mm(l-1) = mm(l) + mm(l-1); 
mm(l)=[]; 
mim = cumsum(mm); 
mm = m; 
mm(l-1) = mm(l) + mm(l-1); 
mm(l+1) = mm(l) + mm(l+1); 
mm(l)=[]; 
msus = length (mm); 
for i = 1:msus 
    b = [mim(i)-mm(i)+1 : mim(i)]; 
    Mb(i) = {a_n(b,b)}; 
end     
parts = cellfun(@norm,Mb); 
for ii = 1:nsus 
            Sus(ii)= {a_n( nim(ii) - m(ii) + 1 : ... 
                nim(ii), nim(ii)- m(ii)+ 1 : nim(ii))}; 
                          for jj = 1:ii-1 
               cut(jj,ii)={a_n( nim(jj) - m(jj) + 1 : nim(jj),... 
                   nim(ii) - m(ii) + 1 : nim(ii))};  
               cut(ii,jj)={a_n( nim(ii) - m(ii) + 1 : nim(ii),... 
                   nim(jj) - m(jj) + 1 : nim(jj))};    
             end 
                   cut(ii,ii) = {[]}; 
                                        end 
            Cum  = cellfun(@norm, Sus); 
            Cum = diag(Cum);                   
cutsum = cellfun(@(x) sum(sum(x)), cut); 
Cum = Cum + cutsum; 
cum = I*Cum*I'; 
com = norm(cum); 
  
end 
 
 
 

Function: adj 

This function generates an adjacency matrix of an unweighted graph. 

 

Output:  

 

• a: the unweighted adjacency matrix 

 

Inputs: 
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• n: the order of the graph or the size of the adjacency matrix. 

• p: the probability that an edge exists between two vertices. 

 
 
function a = adj(n,p) 
if p>1 | p<0, error('p must be between zero and one') 
else 
a = rand(n)< p; 
a = triu(a,1); 
a = a+a'; 
end 
 
 

Function: adjweid 

This function changes an unweighted adjacency matrix to a weighted one. 

 

 

Output: 

• a: the weighted adjacency matrix. 

 

Inputs: 

 

• a: the unweighted adjacency matrix. 

• p1: depending on the value of l, can be the mean or the minimum 

of the edge weights. 

• p2: depending on the value of l, can be the standard deviation or 

the maximum of the edge   weights. 

• l: can be either 1 or 2. If l=1 then a normal distribution is used for 

the distribution of the weights. If l=2 then a uniform distribution is 

used. 

    
 
function a = adjweid(a,p1,p2,l) 
i = find(a); 
j = nnz(a); 
switch l  
    case 1%p1 = mean,p2 = std 
        a(i) = sqrt(p2) * randn(1,j) + p1 ; 
        a(i) = a(i) .* ( a(i) > 0 ); 
            case 2%p1 = min,p2 = max 
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        a(i) = (p2 - p1) * rand(1,j) + p1 ; 
         
    otherwise 
        error('l must be zero or one') 
end 
end 
 
 
 

Function: fdlr 

This function produces the permutation vector based on the sorted indices of the 

eigenvectors of the adjacency and Laplacian matrices. 

 

Outputs: 

• pn: the permutation vector  

 

 

Inputs: 

 

• a: adjacency matrix (can be weighted or unweighted) 

• i: can be either 0 or 1  

 
 
 
 
 
function [pn] = fdlr(a,i) 
% m = zero -> adjacency 
% m = 1 -> laplacain 
n = length(a); 
 L = diag(sum(a,2)) - a ; 
 [v1 v2] = eig(L); 
[u1 u2] = eig(a); 
if i == 0 
[x1 pn] = sort(u1(:,n)); 
elseif i==1 
[x1 pn] = sort(v1(:,n)); 
end 
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Function: kpart 

This function produces a row vector that contains the size of the partitions. The 

size of this vector is the number of partitions. The partition sizes are balanced 

since they are drawn from a normal distribution. The minimum and maximum 

size of the partitions can also be stated. 

 
 
Outputs: 

 

• m: partitions raw vector 

 

 

Inputs: 

 

• n: order of the original graph that is to be partitioned. 

• k: the number of partitions 

• mu: the mean size of the partitions.   

• sigma: the standard devisation of the size of partitions from the 

mean.   

• smin: the minimum size of the partitions. 

• smax: the maximum size of the partitions. 

 
 
function m = kpart(n,k,sigma, mu, smin,smax) 
m = zeros(1,k); 
while nnz(m > smax) || nnz(m < smin)  
m = mu * randn(1,k) + sigma; 
  m = m * n / sum(m); 
m = ceil(m); 
[jj,j] = max(m); 
m(j) = m(j)- (sum(m)-n); 
p = randperm(k); 
m = m(p); 
end 
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