
Towards immunization of complex engineered systems:
products, processes and organizations

Author:
Efatmaneshnik, Mahmoud

Publication Date:
2009

DOI:
https://doi.org/10.26190/unsworks/3179

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/43358 in https://
unsworks.unsw.edu.au on 2024-05-04

http://dx.doi.org/https://doi.org/10.26190/unsworks/3179
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/43358
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Towards Immunization of Complex Engineered
Systems: Products, Processes and Organizations

By

Mahmoud Efatmaneshnik

A Thesis Submitted for the degree of Doctor of Philosophy
School of Mechanical and Manufacturing Engineering

The University of New South Wales
January, 2009

II

ORIGINALITY STATEMENT
‘I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by another
person, or substantial proportions of material which have been accepted for the
award of any other degree or diploma at UNSW or any other educational
institution, except where due acknowledgement is made in the thesis. Any
contribution made to the research by others, with whom I have worked at UNSW
or elsewhere, is explicitly acknowledged in the thesis. I also declare that the
intellectual content of this thesis is the product of my own work, except to the
extent that assistance from others in the project's design and conception or in
style, presentation and linguistic expression is acknowledged’
Signed ……………………………………………..............
Date ……………………………………………..............

III

COPYRIGHT STATEMENT
‘I hereby grant the University of New South Wales or its agents the right to archive
and to make available my thesis or dissertation in whole or part in the University
libraries in all forms of media, now or here after known, subject to the provisions of
the Copyright Act 1968. I retain all proprietary rights, such as patent rights. I also
retain the right to use in future works (such as articles or books) all or part of this
thesis or dissertation. I also authorise University Microfilms to use the 350 word
abstract of my thesis in Dissertation Abstract International (this is applicable to
doctoral theses only). I have either used no substantial portions of copyright
material in my thesis or I have obtained permission to use copyright material; where
permission has not been granted I have applied/will apply for a partial restriction of
the digital copy of my thesis or dissertation.’
Signed ……………………………………………………………
Date ……………………………………………………………

AUTHENTICITY STATEMENT
‘I certify that the Library deposit digital copy is a direct equivalent of the final
officially approved version of my thesis. No emendation of content has occurred and
if there are any minor variations in formatting, they are the result of the conversion
to digital format.’
Signed …………………………………………………………...
Date ……………………………………………………………

IV

Abstract

Engineering complex systems and New Product Development (NPD) are major

challenges for contemporary engineering design and must be studied at three

levels of: Products, Processes and Organizations (PPO). The science of

complexity indicates that complex systems share a common characteristic: they

are robust yet fragile. Complex and large scale systems are robust in the face of

many uncertainties and variations; however, they can collapse, when facing

certain conditions. This is so since complex systems embody many subtle,

intricate and nonlinear interactions. If formal modelling exercises with available

computational approaches are not able to assist designers to arrive at accurate

predictions, then how can we immunize our large scale and complex systems

against sudden catastrophic collapse?

This thesis is an investigation into complex product design. We tackle the

issue first by introducing a template and/or design methodology for complex

product design. This template is an integrated product design scheme which

embodies and combines elements of both design theory and organization theory;

in particular distributed (spatial and temporal) problem solving and adaptive team

formation are brought together. This design methodology harnesses emergence1

and innovation through the incorporation of massive amount of numerical

simulations which determines the problem structure as well as the solution space

characteristics.

Within the context of this design methodology three design methods based

on measures of complexity are presented. Complexity measures generally reflect

holistic structural characteristics of systems. At the levels of PPO, we

correspondingly introduce, the Immunity Index (global modal robustness) as an

objective function for solutions, the real complexity of decompositions, and the

cognitive complexity of a design system. These three measures are helpful in

immunizing the complex PPO from chaos and catastrophic failure.

1 A property of a system is emergent if and only if the property is present in global scales and
cannot be traced to the local properties of parts of the system, an emergent property is thus the
global effect of local interactions.

V

In the end, a conceptual decision support system (DSS) for complex NPD

based on the presented design template and the complexity measures is

introduced. This support system (IMMUNE) is represented by a Multi Agent

Blackboard System, and has the dual characteristic of the distributed problem

solving environments and yet reflecting the centralized viewpoint to process

monitoring. In other words IMMUNE advocates autonomous problem solving

(design) agents that is the necessary attribute of innovative design organizations

and/or innovation networks; and at the same time it promotes coherence in the

design system that is usually seen in centralized systems.

VI

Acknowledgement

First and foremost, I would like to extend my gratitude to Dr. Carl Reidsema, my

supervisor, who has greatly contributed to this work; the presented material on

engineering design methodology and Decision Support Systems is much in debt to

his knowledge and supervision. His support has been accompanied by smart and

yet brave management, which reflects his understanding of postgraduate

supervision. The content of this work contains a considerable amount of novelty

which is owed to the support, encouragement and mentoring of Dr. Jacek

Marczyk.

I am very grateful to the heads of Mechanical School of UNSW, Prof.

Kaebernik, and Prof. Leonardi and also the postgraduate research coordinator,

Prof. Randall, for showing understanding, support and encouragement. I would

like to sincerely thank my previous supervisors: Mr. John Page and Dr. Berman

Kayis who gave me the opportunity to undertake this PhD program. Also many

thanks go to my ex-co-supervisor Dr. Inge Koch from Mathematical School

whose presence gave some depth and insight into parts of this work.

I am and have been always grateful to my parents (Fatemah and Ali), my

sisters, and brothers for the support, encouragement, and tolerance during these

years. I would like to extend my appreciation to Dr. Asghar Tabatabaie and

Hadith for, indeed, being friends in need. Also I would like to thank the

Conceptual Design Laboratory students, Luke Djukic, Garth Pearce, Robert

Wootton and Ian Watson for being kind and caring companions.

I am grateful to Warrane College staff for bestowing the peace of mind in

a supportive environment, especially David Curran and the priest Fr. Anthony

Khoudair. Finally, I would like to thank my spiritual guide, Prof. Nader Angha,

whose distant call is an everlasting source of hope for those who accept and

choose to know.

VII

PUBLICATIONS DURING Ph.D. CANDIDATURE

Efatmaneshnik M, and Reidsema CA. 2007. Immunity as a Design Decision

Making Paradigm for Complex Systems: a Robustness Approach. Cybernetics

and Systems, Vol 38, No 8, pp 759-780.

Efatmaneshnik M, Reidsema CA. 2007. Immunity and Information Sensitivity of

Complex Product Design Process in Overlap Decomposition. InterJournal,

Complex Systems Section, Manuscript No. 2035.

Efatmaneshnik M, and Reidsema CA. 2008. Decomposition Modes and

Integration Schemes in Complex Systems Design. In proceedings of Systems

Engineering Test and Evaluation SETE 2008, September, Canberra.

Efatmaneshnik M, and Reidsema CA. 2008. Exploiting Non-Dominance in Multi

Agent Systems: An Artificial Immune Algorithm for Distributed and Complex

Problem Solving Environments. In proceedings of 12th Asia Pacific Symposium

on Intelligent and Evolutionary Systems IES08, 7-8 December, Melbourne.

Efatmaneshnik M, and Reidsema CA. 2009. IMMUNE: A Collaborating

Environment for Complex System Design. In Studies in Computational

Intelligence: Collaboration, Fusion and Emergence, Eds Mumford C, and Jain L,

Ch 9, Springer. “in press”

VIII

Table of Contents

1 Why Complexity? ... 1
1.1 Complex Engineering Design .. 5
1.2 Objective: Immunity of Complex PPO .. 8

2 Background: Engineering Design ... 12
2.1 Descriptive Models of Design Process ... 13
2.2 Prescriptive models for design ... 15
2.3 Computer‐based models of design processes 21
2.4 Design models for distributed problem solving 23
2.5 Design models for complex design problems 26

3 All about Complexity ... 37
3.1 Complexity Measure .. 37
3.2 Complexity and Emergence .. 42
3.3 Graph Theoretic Measure of Complexity ... 43
3.3.1 Size ... 45
3.3.2 Coupling .. 46
3.3.3 Cycles ... 46

3.4 Complexity Measures in Engineering Design 47
3.4.1 Complexity Measures for Design Problems 49
3.4.2 Complexity Measures for the Design Process 54
3.4.3 Complexity Measures for a Design Artifact 57

3.5 Methodology: Measuring the Complexity of PPO 57

4 A Template for Complex Design Problems ... 62
4.1 Generation .. 63
4.2 Simulation ... 64
4.3 Decomposition ... 68
4.4 Distribution (and Composition) ... 70
4.5 Integration .. 73
4.6 Discussion: Adaptive Structuration .. 78

5 Immune Decomposition and Process Immunity 81
5.1 Spectral Diagonalization Technique ... 82
5.2 Partitioning Quality Criteria ... 85
5.3 Real Complexity ... 87
5.4 Real Complexity of Overlap Decompositions 93
5.5 On Decomposability ... 98

6 Integration and Organizational Immunity ... 103
6.1 Radical Innovation ... 104
6.2 Holistic Process Monitoring .. 107
6.3 An Artificial Immune Algorithm ... 112

7 Product Immunity ... 119

IX

7.1 Current Practices of Robust Design .. 119
7.2 A Global Robustness Index Based on Complexity Modes 123
7.3 Discussion: Complexity Based Decision Making 127

8 A Decision Support System: IMMUNE .. 129
8.1 Collaborating Architecture .. 133
8.2 Blackboard Architecture .. 138
8.3 Control Source .. 139
8.3.1 Decomposition Agent ... 139
8.3.2 Composition Agent ... 139
8.3.3 IT manager .. 140
8.3.4 Simulation and Computation Agent .. 140
8.3.5 CEO (Complexity Evaluator and Observer) 141

8.4 Agents Structures ... 143
8.4.1 The Lowest Layer ... 146
8.4.2 The Middle Layer .. 146
8.4.3 The Top Layer ... 148

8.5 Overall Behaviour .. 149
8.5.1 Adaptive Structuration in IMMUNE .. 151
8.5.2 Independent process mode ... 154
8.5.3 Integrative process mode .. 155
8.5.4 Autonomy based process mode .. 156
8.5.5 Collaborative process mode .. 157
8.5.6 Competitive process mode .. 158

9 Conclusion and Future Work ... 159

References ... 164

A Appendix : The Nondisclosures and MatlabTM Codes A1
A.1 Graph Theoretic Complexity Measure .. A1
A.2 Lower and Upper Complexity Bounds .. A3
A.3 MATLABTM Codes .. A5
A.3.1 Codes related to Chapter 3 ... A5
A.3.2 Codes Related to Chapter 5 ... A6

X

List of Figures

Figure 1.1 Product, process and organization structures 9
Figure 1.2 Sub‐domains of artificial intelligence .. 10
Figure 2.1 Prescriptive Design Process ... 18
Figure 2.2 The symmetrical relationships ... 19
Figure 2.3 New concepts can totally change the design landscape 20
Figure 2.4 Decomposition and integration processes .. 24
Figure 2.5 A multiple abstraction level design process 24
Figure 2.6 GDDI cycle, or the distributed model of Reidsema 25
Figure 2.7 Information builds up in concurrent engineering 27
Figure 2.8 The spiral model of design .. 29
Figure 2.9 The Evolutionary design process model ... 29
Figure 2.10 Task Based Model ... 30
Figure 2.11 Design matrix in axiomatic design .. 33
Figure 2.12 Shows multiple divergent followed by multiple convergent 34
Figure 2.13 The ideal design abstraction strategy .. 35
Figure 3.1 Deterministic Complexity increases with randomness 38
Figure 3.2 Statistical complexity measures ... 39
Figure 3.3 Three patterns .. 40
Figure 3.4 The three patterns belong to the same pictures 41
Figure 3.5 High complexity irrelevance .. 41
Figure 3.6 The entropy based mutual information .. 44
Figure 3.7 Relations between Problem, Process, Artifact 47
Figure 3.8 The block and the interaction part of a decomposition 58
Figure 3.9 Two scatter plots of a FL .. 58
Figure 3.10 Shows different linear trends in the FL ... 59
Figure 3.11 An example of a self map ... 60
Figure 3.12 Two modes of a FL.. 61
Figure 4.1 A Simulation Based model of design process 62
Figure 4.2 Simulation Engine module .. 65
Figure 4.3 Scatter Plots as Meta‐Models ... 66
Figure 4.4 The self graph of problem/system .. 67
Figure 4.5 Two components (subsystems) are overlapped 70
Figure 4.6 Product architecture is tied to organization 71
Figure 4.7 Design Process Knowledge ... 73
Figure 4.8 Integration team acts as a high level coordinator 75
Figure 4.9 Low level integration scheme .. 76
Figure 4.10 Multi agent design system .. 77
Figure 4.11 Product partitions have overlapped boundaries 78
Figure 4.12 Ranking various integration schemes ... 79
Figure 5.1 Coupled sub‐problems and number of process iterations 82
Figure 5.2 Diagonal automorphisms of a graph .. 84
Figure 5.3 The partitioning and block diagram of graphs. 88
Figure 5.4 Decomposition increases risk and reduces information 90
Figure 5.5 Decomposition of a DSM into various numbers of partitions ... 92
Figure 5.6 Comparison of real complexity and other measures 93

XI

Figure 5.7 Real complexity for overlapping subsystems 95
Figure 5.8 Overlapping makes the system to converge faster 96
Figure 5.9 Extracting desired overlap decompositions 97
Figure 5.10 Using real complexity to test decomposability. 101
Figure 5.11 A system with the whole is more than sum of the parts 102
Figure 6.1 Different types of innovation .. 105
Figure 6.2 The emergence of cognitive complexity .. 109
Figure 6.3 A simple fuzzification scheme .. 109
Figure 6.4 Measuring the cognitive complexity.. 111
Figure 6.5 Design process functionality versus process complexity 114
Figure 6.6 An Immune algorithm for design of complex systems 116
Figure 7.1 Different approaches to robustness .. 122
Figure 7.2 Perturbation of an initial state to neighbouring states 125
Figure 8.1 Collaborating environment comparison .. 137
Figure 8.2 Shared mail boxes for coalitions ... 140
Figure 8.3 The control source structure of IMMUNE 142
Figure 8.4 Agent structure in IMMUNE .. 148
Figure 8.5 The design process at different abstraction levels 150
Figure 8.6 Knowledge sharing architectures ... 152
Figure 8.7 System modes for collaborative design systems 154
Figure 8.8 Independent process mode ... 155
Figure 8.9 Integrative process mode ... 156
Figure 8.10 Autonomy based process model ... 157
Figure 8.11 Collaborative process mode .. 157
Figure 8.12 Competitive process mode .. 158
Figure A.1 A complexity measure ... A2
Figure A.2 The scatter plots that contain useful information A4
Figure A.3 The maximum entropy of the image on the boundary A4

XII

List of Tables

Table 1.1 The magnitude and scale of the failed projects 4
Table 2.1 Need analysis of a hypersonic striker .. 14
Table 2.2 Aerodynamic sub‐domain of the problem space 21
Table 4.1 A Simulated DSM is a weighed adjacency matrix 67
Table 4.2 Decomposition Modes of self map of problems............................... 70
Table 5.1 Several partitioning quality criteria ... 86
Table 6.1 A PDSM with three subsystems ... 103
Table 6.2 The predicted team based DSM for the entire system 104
Table 6.3 The monitored (reported) fuzzy team based DSM 117
Table 6.4 The defuzzified monitored team based DSM 117

1

1 Why Complexity?

The science of complexity has roots both in natural and social sciences (Erdi,

2008). Physicist, Heinz Pagels (1989) regarded complexity as being on the cutting

edge of science and stated that:

I am convinced that the societies that master the new

sciences of complexity and can convert that knowledge into

new products and forms of social organization will become

the cultural, economic, and military superpowers of the

next century.

In the same lines on January 23, 2000 Stephen Hawking said in “San Jose

Mercury News”, “I think the next century will be the century of complexity”

(Erdi, 2008). Human history has demonstrated a relentless progress towards

greater complexity —in man made products and artefacts (Minai et al, 2006). The

last two centuries in particular can be characterized by a radical move towards

greater complexity, in economical, political, social and technological systems

(Minai et al, 2006) such that complexity, desired or otherwise, is now dominating

almost every aspect of modern life (Marczyk, 1999). Today’s challenges and

future ones necessitate novel approaches to understanding, analysing and

synthesizing complex and interconnected large scale systems (Sanders, 2003).

For that reason, complex systems science is an imperative for the future of

scientific evolution and has captured the attention of scientists from almost every

scientific discipline (Ottino, 2004).

This need for novel approaches as part of the science of complexity in

engineering is even more obvious since engineered systems are becoming more

and more complex and the consequences of increasing complexity are inevitable

(Marczyk, 1999). The design, implementation, and manufacturing of new

complex products with tight performance and quality requirements, and strict cost

constraints contributed to the fragility of the engineering projects (Marczyk,

1999). The design of complex systems with emergent properties (collective

2

properties absent at the local level of parts) is almost impossible with the

traditional engineering tools and methods (Ottino, 2004).

A complex situation is one in which a large number of independent variables

interact (Sanders, 2003). According to Erdi (2008) simple systems are

characterized by:

1. Single cause and single effect

2. A small change in the cause implies a small change in the effects

3. Predictability

In contrast complex systems have interconnected elements and are characterized

by (Erdi, 2008):

1. Circular causality, feedback loops, logical paradoxes, and strange

loops2

2. Small change in the cause implies dramatic effects

3. Emergence and unpredictability

Complex systems intrinsically possess potential for catastrophic failure

since the behaviour of complex systems is not predictable from the knowledge of

individual elements, no matter how much we know about them (Merry, 1995;

Cook, 2000). Complex systems require special treatment since they possess

potential for catastrophic failure (Merry, 1995; Marczyk, 1999). The failure in

unsuccessful complex projects (like redesign of the air traffic control systems) is

often attributed to simple reasons (Bar-Yam 2003). For example the fatal outcome

of the Challenger mission disaster was caused due to failure of a seemingly

innocent component; in another case the first unsuccessful launch of Ariane 5 was

caused by trivial software problems (Marczyk, 1999). Similar examples include

the crashes of new generation commercial aircraft due, in the majority of cases, to

minor but unforseen software problems. It is well known that modern flight

control avionics systems are extremely complex; what complicates the situation is

2 Circular causality in essence is a sequence of causes and effects whereby the explanation of a
pattern leads back to the first cause and either confirms or changes that first cause (Erdi, 2008).

3

that the pilot (man in the loop) is a stochastic entry which can occasionally enter

into conflict with the flight computer (Marczyk, 1999).

While people have attributed the failure of the advanced automation

systems (computer based systems) as the root cause of these kinds of problems,

according to Bar-Yam (2003) “the magnitude of failures of the large projects

shown in Table 1.1, and the suggestion that each case involved its own unique

reasons does not seem to strike at the core of the causes of failure”. Despite the

fact that failure in any specific case may be appear to be related to a specific

cause, but the common inability to implement large scale and high cost systems

can be attributed to their “intrinsic complexity” (Bar-Yam 2003). In fact

according to Marczyk (1999) “complexity in conjunction with uncertainty brings

about a host of new problems and phenomena”. He explained that the complexity

principle perceived by Lotfy-Zadeh (1973) reflects the new status quo of science

and engineering. This principle states that:

As the complexity of a system increases, human ability to

make precise and relevant (meaningful) statements about its

behaviour diminishes until a threshold is reached beyond

which the precision and the relevance become mutually

exclusive characteristics.

Uncertainty, innocent and harmless in simple systems, becomes a

fundamental issue, namely the introducer of fragility in large and complex

systems: with the combination of complexity and uncertainty, catastrophe is

always around the corner (Merry, 1995; Marczyk, 1999). Casti (1994) describes

catastrophe:

Occasionally, in a system, we encounter a combination of

input values such that if we change them only a small

amount, the corresponding output will shift discontinuously

to an entirely new region. This is called bifurcation and it is

considered a catastrophe.

4

Table 1.1 The magnitude and scale of the failed projects due to their inherent
complexity (From Bar-Yam, 2002).

System Function
Responsible organization

Year of Work
(Outcome)

Approximate
Cost

Vehicle Registration, Drivers license Dept.
Of Motor Vehicles

1987-1994
(Scrapped)

$44M

Automated reservations, ticketing, flight,
scheduling, fuel deliver, kitchens and general

administration-United States Airlines

Late 1960s-Early
1970s

(Scrapped)

$50M

State wide Automated Child Support
System(SACSS)-California

1991-1997
(Scrapped)

$110M

Hotel reservation and flights-Hilton, Marriott,
Budget, American Airlines

1988-1992
(Scrapped)

$125M

Advanced Logistics System-British Stock
Exchange

1968-1975
(Scrapped)

$250M

Taurus Share trading systems-British Stock
Exchange

1990-1993
(Scrapped)

$100-$600M

IRS Tax Systems Modernization Projects 1989-1997
(Scrapped)

$4B

FAA Advanced Automation System 1982-1994
(Scrapped)

$3-$6B

London Ambulance Service Computer Aided
Dispatch Systems

1991-1992
(Scrapped)

$2.5M, 20
lives

The new region to which a system enters may be characterized by higher

complexity, implying higher fragility. Bifurcation by itself may not signify failure

but it has the potential to introduce tremendous amount of fragility and

vulnerability into the system: simply, a bifurcation can change the mode of a

system from a robust mode to a potentially non-robust and dangerous mode which

would, because of its unpredictability, lead to catastrophic outcomes

(Efatmaneshnik and Reidsema, 2007.a). As such, catastrophe is a major reason for

the failure of complex systems.

The catastrophic behaviour of complex systems can be, however,

discovered by studying how the system elements interact and how the system

changes and adapts through time as a result of this interaction (Merry, 1995). As

Sanders (2003) has described “in essence complexity science is moving us away

5

from a linear, mechanistic view of the world, to one based on nonlinear dynamics,

evolutionary development and systems thinking.” Sanders argued that the insights

from complex systems research provide a dramatically novel theory-driven

framework for understanding and influencing the complex systems, and their

emergent properties.

1.1 Complex Engineering Design

Design is about constructing artefacts and the engineering design of artifacts in a

mechanical engineering context constitutes the following steps (Finger and Dixon,

1989):

• recognition of need

• specification of requirements

• concept formulation (design synthesis)

• concept selection (design analysis)

• embodiment of design detail

It is important to distinguish between the design/redesign of previously

established products and that of completely new ones. New Product Development

(NPD) is the process of bringing a new product to market e.g. an aircraft, a

computer or a Mars probe. The product can be regarded as a system, the common

definition of which is set of interacting or interdependent entities, real or abstract,

forming an integrated whole3. These entities can be systems on their part in which

case the term System of Systems is used. A complex product is a system of

systems (or subsystems). Systems engineering, in general, is an interdisciplinary

field of engineering. It focuses on the development and organization of complex

artificial systems and is defined by INCOSE 4 (International Council On Systems

Engineering) as:

3 From Wikipedia, the free online encyclopaedia.
4 Source: http://www.incose.org/practice/whatissystemseng.aspx.

http://www.incose.org/practice/whatissystemseng.aspx

6

A branch of engineering whose responsibility is creating

and executing an interdisciplinary process to ensure that

customer and stakeholder's needs are satisfied in a high

quality, trustworthy, cost efficient and schedule compliant

manner throughout a system's entire life cycle, from

development to operation to disposal.

 This process usually comprises the following seven phases:

1. Stating the problem

2. Investigating alternatives

3. Modelling the system

4. Integrating

5. Launching the system

6. Assessing the performance

7. Re-evaluating

The phases involved in systems engineering are performed in a parallel

and iterative manner rather than sequentially: and is often referred to as

Concurrent Engineering. Keating et al (2003) explained that “systems engineering

integrates all the disciplines and specialty groups into a team effort forming a

structured development process that proceeds from concept to production to

operation". Systems engineering methodologies have been applied to the design of

“loosely coupled” systems successfully. The integration problem in Complex

NPD and its tasks at all levels of PPO involves a tremendous effort. At the

integration level, it has been observed that often complex NPD processes tend to

spiral out of control (Mihm and Loch, 2006): the process oscillates between being

ahead and behind the schedule. Mihm and Loch (2006) describe a host of these

types of oscillating process performance behaviours resulting in failures within

various industries; for example, in the development of the Microsoft Office

Project (Iansiti, 1990), in the aeronautics industry for the Boeing 767-F project

(Klein et al, 2003.a), and from the semiconductor industry in Intel’s Itanium chip

design project (Hamilton, 2001). Engineers of future complex systems face an

emerging challenge of how to address problems associated with integration of

7

(multiple) complex systems (Keating et al, 2003). In response to this need a

branch of systems engineering is beginning to emerge known and be known as

Complex-System Engineering.

Bar-Yam (2003) spoke of the radical departure of complex systems design

from traditional systems engineering. Acknowledging that complexity is not a new

phenomena in engineering and has been addressed by the traditional systems

engineering (for centuries), he argued that for designing highly complex systems, two

of the main methods of traditional systems engineering that deal with complexity

need to be discarded, namely, abstraction and modularity. Abstraction simplifies the

description or specification of the system. Decomposition of a problem/system into

modules (or sub-problems/sub-systems) is a well recognized way to separate a

large system into parts that can be individually designed and modified. Bar-Yam

(2002) added that:

These methods are useful, but at some degree of

interdependence (in the system’s elements) they become

ineffective: modularity incorrectly assumes that a complex

system behaviour can be reduced to the sum of its parts and

abstraction assumes that the details to be provided to one

part of the system (module) can be designed independently

of details in other parts.

Bar-Yam (2002) emphasized the concepts of “radical innovation”,

“gradual implementation” and “evolutionary engineering” as the remedies for the

difficulty of integration within complex systems design. In a more moderate view,

Kuras (2007) called for modifications in the traditional engineering

process/template as to suit complex systems design. He portrayed a fundamental

difference that traditional systems engineering and complex systems engineering

ought to have: the need for multiple conceptualizations (evolutionary and dynamic

modelling) of the system at different scales as compared to one static

conceptualization (unchanged model) of the system in traditional systems

engineering. Ring and Madni (2005) acknowledged that a static model of the

system is not only insufficient but also leads to serious misunderstandings and

8

under-conceptualization of the solution, which opens the way for unintended

consequences (for example; catastrophic failures). Keating et al (2003) voiced

several other modifications to the traditional systems engineering, such as:

• Avoiding optimization based decision making

• Avoiding strict goal and objective setting (anticipating constraint

relaxation)

• Maintaining distributed focus during the design process (as opposed to a

single focus in traditional systems engineering)

Norman and Kuras (2006) stressed the presence and actions of

autonomous agents as important elements in complex systems engineering, since

they can significantly contribute to the innovativeness of the design system.

Norman and Kuras also asserted that complex systems engineering is not simply

an increased attention to detail rather it is an attention to overall coherence. The

overall regimen of complex system engineering must create and manage an

environment in which multiple autonomous agents each address a fraction of the

relationships that might be involved in an overall complex system (Norman and

Kuras, 2006).

1.2 Objective: Immunity of Complex PPO

In the context of systems engineering there are three main streams in which

complexity can be addressed:

• Complexity of Products

• Complexity of NPD Processes

• Complexity of NPD Organizations

In addition to inherent complexity of product, process and organization,

there is another source of complexity in NPD: this complexity arises from the

coupling between the product, process and organization structures. This coupling,

9

depicted in Figure 1.1, makes the planning for development of even not-that-

complex products, a complex task.

Planning and problem solving are discussions in the domain of artificial

intelligence. Within artificial intelligence three main sub-domains extensively

deal with complexity:

• Swarm Intelligence: characterizes collective behaviour of decentralized,

self-organized systems.

• Artificial Life: explores the logic of living organic systems in artificial

settings.

• Artificial Immunity: induction of immunity into artificial systems.

These three areas overlap in that they deal with complexity, emergent

properties and collectives (Figure 1.2). Artificial immunity in particular seems to

have a lot to offer complex systems engineering. After justifying that complex

systems are prone to sudden failure and collapse without prior notice, it is enticing

to think that complex systems can be immunized. Hart et al (2009) introduces the

new concept of Immuno-engineering as:

 The abstraction of immuno-ecological and immuno-

informatics principles, and their adaptation and application

to engineered artefacts (comprising hardware and

software), so as to provide these artefacts with properties

Figure 1.1 Product, process and organization structures are tightly related, after
Browning (2001).

Process
Structure

Organizational
Architecture

Product
Structure

10

analogous to those provided to organisms by their natural

immune systems.

This thesis explores the ways in which complex systems (products,

processes and organizations) might be immunized. Some core elements of the

immune system such as recognition of self from non-self are employed and are

central to the approach of this thesis. It should however be noted that the

algorithms presented in this thesis for immunizing PPO, may not seem deeply

immuno inspired or exact mimics of computational models of biological immune

systems; rather the algorithms may appear as reasoned by the metaphor of

immunity. Hart et al (2009) and others (Stepney et al, 2005; Timmis, 2007) see

reasoning by metaphor as a drawback for Artificial Immune Systems as it does

not allow for full exploitation of the field and will limit the ultimate success of the

field.

While we accept the above limitation to this work, it should be noted that

this thesis provides more rigor in its effort to establish a template for complex

systems engineering, in that the presented model (methodology) and methods

Artificial Intelligence

Swarm
Intelligence

Artificial
 Life

 Complexity

Artificial Immunity

Figure 1.2 Sub-domains of artificial intelligence that address complexity.

11

(algorithms) are computationally justifiable (and not just vague recommendations

or imperatives). Furthermore, we believe that the introduction of the immunity

metaphor to the engineering community through this work is per se a graceful

move in the right direction towards dealing with complex systems. Natural

systems are robust because they have immune systems and not vice versa, and this

message can have important implications for the future of engineering design

research.

Measurement constitutes the basis of any rigorous scientific activity

(Marczyk and Deshpande, 2006) and the methods presented here exploit the

measures of complexity at all levels of PPO. The contribution of this thesis is

summarized in the following:

• Measure theoretic approach to harnessing robustness and simplicity in

products.

• Measure theoretic approach to decomposition and integration: the

deficiency of decomposition based problem solving is explicitly shown.

• Measure theoretic approach to holistic process monitoring to maintain

coherence in multi agent design system.

A background of engineering design methodologies and the necessary

definitions for understanding the thesis is presented in Chapter 2. Chapter 3 is

about complexity, complexity measures and the literature review of their

utilization in engineering design. It ends with a discussion on the methodology of

this thesis. Chapter 4 presents our template for complex product design. Chapters

5, 6, and 7 describe three design methods at all levels of PPO and how complexity

measures can immunize, or reduce the risk of their, sudden failure. All the

material described up to Chapter 7 constitutes the domain knowledge of a DSS

which we refer to as IMMUNE and is presented in Chapter 8.

12

2 Background: Engineering Design

Engineering design is about creating a desired functionality that may be complex

and managing the design process of a complex product. Nobel laureate Herbert

Simon in the Sciences of the Artificial (1969) proposed that the scientific method

can be used to hypothesize and develop a design science. He asserted that design

may be regarded as a science more than an art. The aim of science is to explain as

much as possible the complexity of the natural phenomena and its processes;

whereas designers want to create complexity in the form of complex artefacts.

From this standpoint natural sciences and design science overlap in their extensive

use of observations, and predictions. Both designers and scientists seek to find the

contributing parameters for the behaviour of the systems and determine the

interplay of these parameters. Within this perspective both natural sciences and

design science are problem solving procedures.

The problem solving process is a search and decision making process:

searching for solutions of a given problem then opting and deciding, from those

solutions for the one that has the highest utility (Rusbult, 2000). The process of

design can be characterized in terms of its efficiency and effectiveness. The

efficiency of a design process is mostly determined by high level characteristics

such as the quality of the final product, the design lead time and overall cost

(Fixson, 2005). The design process effectiveness, on the contrary, is dependent by

how the designers have met the top level goals with their finite resources (Fixson,

2005). In the case of complex systems the design efficiency issue is not a trivial

one. To address the concerns about the efficiency and effectiveness of design

processes, design methods are developed Design methods are tools for designing

that can be integrated into the design process (Cross, 2000). Design methods

generally lead to more holistic solutions and thus better final products by gaining

important insights about the design PPO. However there is no solid consensus

about their validity. Cross (2000) states that:

It might seem that some of these new methods can become

over formalized, or can be merely fancy names for old

13

common-sense techniques. They can also appear to be too

systematic to be useful in the rather messy and often

hurried world of the design office. For these kinds of

reasons, many designers are still mistrustful of the whole

idea of design methods.

The main argument against design methods is that they might destroy

creativity, considered to be the pillar for good designs. Design methods are,

however, the product of the scientific approach to design and can be related to and

combined into any stage of the design process. As such, in order to facilitate

systematic thinking about a design and to develop new design methods there

needs to be models of the design process and/or design methodologies. Design

theory includes several classes of design process models (Finger and Dixon,

1989):

1. Descriptive models of design processes

2. Prescriptive models for design

3. Computer-based models of design processes

4. Models for Distributed Design Problems

5. Models for Complex Design Problems

These models are described in the following sections. In the section related

to models of complex problem solving we have also listed a number of design

methods that have been tailored specifically to cope with the complexity at

various levels of PPO.

2.1 Descriptive Models of Design Process

Descriptive models of design are cognitive models which explain, simulate, or

emulate the human designer’s underlying mental processes when creating an

artefact (Finger and Dixon, 1989). A monumental detailed descriptive model of

14

the design process was presented by French (1985) that included the following

stages or activities:

1. analysis of problem

2. conceptual design

3. embodiment of schemes

4. detailing

The analysis of the problem was regarded as a small yet significant stage

of the overall design process. The output of this stage is the problem statement

that has three elements:

1. The problem itself.

2. Limitations placed upon the solution, e.g. customers' standards, date of

completion, overall cost, etc. all of which can be known as constraints.

3. The design objectives or criterion of excellence.

Table 2.1 presents the problem analysis that contains all the above

elements for the design of a hypersonic combat aircraft.

Table 2.1 Need analysis of a hypersonic combat aircraft, from Hollingsworth and
Mavris (2000).

Performance/Attribute Threshold Desired
Cruise Speed Mach 4 Mach 8

Max Speed at sea level 400 Kts 630 Kts
Mission Radius 750 NM 1500 NM

Structure Load Factor 3 G’s 5 G’s
Takeoff & Landing 8000 ft Runway at sea

level
Carrier suitable

Combat Turnaround Time Less than 6 hours Less than 2 hours
Alternate Weapon 1 2 JASSMs 8 JASSMs
Alternate Weapon 2 2 AAMs 8 AAMs

The conceptual design phase in French’s model (1985) was described as a

phase in which the problem statement is taken as an input; and broad solutions in

15

the form of schemes are generated. In the conceptual phase of design, innovative

and striking improvements can be made that require the collaboration of people

involved in the production, manufacturing and commercial aspects of the

development. The embodiment of schemes stage involves detail clarification of

schemes and, in case there is more than one scheme, a final selection amongst

them. This phase usually provides feedback to the initial conceptual design phase.

In the last phase of detailing a very large number of small but essential points

remain to be addressed.

Another descriptive model of design was the model of Cross (2000) consisting

of four steps:

1. Exploration: the designer explores the satisfactory solution concepts to

a typically ill-defined design problem.

2. Generation: the designer generates alternatives that are like design

proposals.

3. Evaluation: the designer evaluates each alternative. This phase, if

required, provides feedback to the generation stage to refine the

concepts and alternatives.

4. Communication: this stage includes the presentation of the design

artefact to the production crew in a form (language or representation

scheme) that is understandable to them.

Descriptive models of design processes thus plainly describe the

succession of activities that naturally happen in designing. They study the design

process in light of how humans create designs (Finger and Dixon, 1989).

Descriptive models are solely based on the observations made on the previous

design experiences and give no detail of how the design process ought to proceed.

2.2 Prescriptive models for design

Prescriptive models for design describe the necessary and crucial procedures that

the design process ought to have (Finger and Dixon, 1989). These models try to

16

devise ways of thinking that are more systematic and lead to improved (design)

process efficiency and effectiveness; however they are often regarded as a

particular design methodology rather than design methods (Cross, 2000). These

models have tended to suggest a basic structure of analysis-synthesis-evaluation to

the design process (Jones 1984). Jones (1984) defined these stages as follows:

1. Analysis: listing all the design requirements and performance

specifications.

2. Synthesis: finding possible solutions.

3. Evaluation: evaluating the accuracy of alternative designs in fulfilling

the performance requirements for operation, manufacture and sales.

A more detailed prescriptive model was developed by Archer (1984) who

identified six types of activities:

1. Programming: establishment of crucial issues and the suggestion

on the course of actions.

2. Data collection: collecting, classifying and storing data.

3. Analysis: identifying sub-problems; preparing performance (or

design) specifications; reappraising the proposed programme and

estimation

4. Development: developing design(s) prototype(s); preparation and

execution of validation studies.

5. Communication: preparing the manufacturing documentation

A reasonably comprehensive model known as canonical design process is

that offered by Pahl and Beitz (1984). It is based on the following design stages:

1. Clarification of the task: collect information about the requirements to be

embodied in the solution and also about the constraints.

2. Conceptual design: establish function structures; search for suitable

solution principles; combine into concept variants.

17

3. Embodiment design: starting from the concept, the designer determines

the layout and forms and develops a technical product or system in

accordance with technical and economic considerations.

4. Detail design: arrangement, form, dimensions and surface properties of

all the individual parts laid down; materials specified; technical and

economic feasibility re-checked; all drawings and other production

documents produced.

The canonical design process can be regarded as very similar to French’s

descriptive model only with more details and elaborations. The aim in descriptive

models should be to close the gap, as much as possible, between the reality of

design (as a mixture of art and science) and the systemic view of design. The

model can be further extended (Figure 2.1) to include a manufacturing process

selection phase in which the appropriate machines and processes are selected, and

a design prototype phase in which concepts are evaluated by soft prototyping

using the computer for solid modeling and simulations, as opposed to hard

prototyping where concepts that are more refined are fabricated and physically

tested It is assumed that the design environment under consideration recognizes

the cost, time, functional, and quality benefits of soft prototyping design concepts

early in the design process (Reidsema, 2001). Other prescriptive design models

include, but are not limited to, an integrative model based on the co-evolution of

the problem space and solution space proposed by Cross (2000), parametric model

(parameter analysis) of Kroll et al (2001) and Morphological analysis (Allen,

1952).

The integrative model of Cross (2000) is based on the fact that in most

design situations it is not possible, or relevant, to attempt to analyse the problem

ab initio and in abstract isolation from solution concepts. Rather, the designer

explores and develops the problem and solution together. As illustrated in Figure

2.1, although there may be some logical progression from problem to sub-

problems and from sub-solutions to solution, there is a symmetrical and

commutative relationship between problem and solution, and between sub-

problems and sub-solutions. This model attempts to capture the essential nature of

the design process, in which the understanding of the problem and of the solution

18

develop together, or co-evolve. There is a constant transfer of the designer's

attention backwards and forwards between the problem space (left-hand side of

the model) and the solution space (right-hand side of the model). The model

recognises that there is an expected pattern of progression in the design process,

from a given problem to a proposed solution. There is therefore assumed to be a

general anti-clockwise direction of movement in the model (see Figure 2.1), from

top left around to top right, but with substantial periods of iterative activity, going

to-and-fro between problem and solution, sub-problems and sub-solutions.

Design
Requirements

Design
Concepts

Geometric
Modelling

(Embodiment)

Manufacturing
Process

Selection

Design
Prototype

Final
Design

Other CAD
Functions

Parametric
Modelling

Other CAM
Functions

Other CAE
Functions

Need
Description

Figure 2.1 Prescriptive Design Process (Reidsema, 2001).

19

Kroll et al (2001) presented an important prescriptive design methodology

(to the work of this thesis) to improve the creativity of the design process called

parameter analysis. In this approach parameters are important factors, issues,

concepts, or influences that play important roles in the realization of the problem

and the development of the product. This methodology has three main elements

with significant feedback loop joining the last to the first stage:

1. Parameter Identification: recognizing the important parameters. This

is the establishment of the problem space. New parameters bring with

them new insights and trigger new solutions to the problem and/or

stimulate new directions.

2. Creative Synthesis: exploring the created space by the various

parameters and generating possible solutions. This stage is similar to

the configuration and embodiment stage in canonical design process.

3. Evaluation: estimating those generated solution.

Figure 2.3 shows that introduction of new parameters bring with

themselves their specific solution space in which optimization may be performed.

The parametric view of the design process will be discussed in the next two

sections in more detail.

Overall Problem

Sub Solutions Sub Problems

Overall Solution

In
te

gr
at

io
n

D
ecom

positio

Figure 2.2 The symmetrical relationships of problem/ sub problem / sub
solution / solution in design, after Cross (2000).

20

To choose between several design concepts and configurations

(convergence), goodness of design criteria is needed; and this is often determined

by the product’s performance quality, and/or the overall cost of the final product.

Simplicity can be taken as the goodness criteria for concept selection of complex

products, the rationale and benefit of which will be elaborated on in Chapter 7.

Morphological analysis is a methodology to generate and select

alternatives and has subsequently evolved since its first introduction by Allen

(1952). Morphological analysis is based on the following assumptions (Finger and

Dixon, 1989):

1. Any complex engineering problem can be divided into a finite number

of sub-problems.

2. Each sub-problem can be considered separately and its relations with

other sub-problems can be temporarily suspended.

3. All sub-problems and their solutions can be presented in a

morphological table.

4. A global solution to any complex engineering problem can be found as

a combination of solutions to individual sub-problems.

G
oo

dn
es

s o
f P

ro
du

ct

Design Variables Set

Figure 2.3 New concepts can totally change the design landscape, after Kroll et
al (2001).

Optimization

Optimization

Landscapes related to two different
concepts

21

5. A global solution can be found in an unbiased way through a random

generation of combinations of solutions to sub-problems from the

morphological table.

A morphological table of the aerodynamic sub-domain of the combat

aircraft is presented in Table 2.2. The different functional requirements roughly

correspond to sub-domains of aerodynamics, structure, propulsion and control;

correspondingly the problem can be decomposed into those categories. Similarly

additional morphological tables can be produced for each sub-domain. In Chapter

4 we use the notion of a solution space that can be regarded as a parametric

morphological table. Prescriptive models usually require the intervention of

human designers, and thus cannot be utilized in computer aided design.

Table 2.2 Aerodynamic sub-domain of the problem space for hypersonic combat
aircraft. From Hollingsworth and Mavris (2000).

Type of wing small Delta wing tails Wing
and tails

Swing
wing

Aerofoil traditional Diamond Almond Biconvex
Wing location Tail Canard Centre Multiple

Body type wave rider Partial Non
Waverider

Body cross section square Triangle Ellipse Crescent Other
Body shape wedge Cone Square Other

Nose blunt Sharp Spatula Spike
Surface Location Tail Canard Centre Top Multiple

2.3 Computerbased models of design processes

Computer-based models of design processes are concerned with how computers

can design or assist in designing (Finger and Dixon, 1989). A computer-based

model expresses a method by which a computer may accomplish a specified task.

Computer-based models are generally specific to a well-defined class of design

problems such as Conceptual Design, Configuration Design, and Parametric

Design (Finger and Dixon, 1989). In each of these design classes, the design

automation is achieved by the emulation of a computer based design model that is

based, more than anything else, on specific problem representation schemes.

22

The subject of innovation or creativity often arises in connection with

conceptual design (Finger and Dixon, 1989). Innovative conceptual design is a

widespread research theme with substantial emphasis on searching past products

configurations and then mutating those chosen parts (or the information of the

parts) by a genetic algorithm to establish novel configuration (for example see

Pramee and Bonham (2000)). CYCLOPS (Criteria Yielding, Consistent Labeling

with Optimization and Precedents-Based System) was able to deliver innovative

designs by effective searching past product information (Sriram et. al., 1989). The

limitation of automation in conceptual design is that it requires specific

representation schemes of the product information; and it should be noted that

there is no universal representation scheme (i.e. the past product information is

not always available in the specific representational scheme). Kurtoglu (2007), for

example, used a graph theoretic representation of different configurations and then

an automation scheme for conceptual design. In Chapter 6 we address the

innovation and creativity in design by utilizing parametric representation of the

design problems at the conceptual stage.

In parametric design, usually, the structure or attributes of the artefact are

known at the outset of the design process (Zdrahal and Motta, 1996). These

include the set of design variables (or inputs) and the set of design objectives (or

outputs). Design objectives relate to the functions of the product. The design

variable sets, usually, include subsets of sizing variables, shape variables,

topologies and process knowledge and manufacturing variables such as process

capabilities (Prasad, 1996). It should be noted that the values to be assigned are

not always numeric, but may also be a type or class designation, or even an issue

e.g., a material choice, a motor type or any other issues (Kroll et al, 2001; Zdrahal

and Motta, 1996). Prasad (1996) has defined some of these as follows:

• Sizing Variables: these include variables like thicknesses (for thin walled

sections) and areas (for solid objects) that can be changed

23

• Shape Variables: These involve changing the configuration points or the

geometry of the parts that are represented such as length width, height,

coordinates and so on.

• Topology Variables: These define parameters that actually determine

where material should or should not be removed. As long as the topology

change can be represented parametrically in the CAD system, the model

can be optimized. Topology optimization allows feature patterns such as

how many bolts are needed to hold down a given part, or how many ribs

provide a given stiffness.

• Process Variables: these involve changing the rules concerning the part’s

forming or processing needs that have the effect on changing the part’s

size, shape, topology or functions themselves, cost and lead time.

• Manufacturing Variables: these include the process capability indices, and

required precisions, manufacturing lead time and cost.

Each variable may be accompanied by a set of constraints. Parametric design

problem solving is the process of assigning values to design variables in

accordance with the given design requirements, constraints, and optimization

criterion (Zdrahal and Motta, 1996). A design task in this view constitutes the

determination of a single design variable. Computer models of the design process

can be extended to address the problem solving procedure of the large scale

design problems.

2.4 Design models for distributed problem solving

For large scale design problems such as aircrafts, cars etc. the design process is

carried out by multiple design teams that are more often than not multidisciplinary

design teams. In multi-team design, a team refers to a collaboration of design

participants that, in a broad sense, can consist of designers, computers, or even

algorithms, and in general whosoever that is able to cope with a distributed task as

part of the whole design problem (Chen and Li, 2001).

24

The distributed models generally utilize two different tools: decomposition

and abstraction. Decomposition reduces the problem to several sub-problems

which may be distributed amongst severally distinct design teams (Figure 2.4).

Several decomposition modes are discussed in Chapter 4. Abstraction, on the

other hand, decomposes the problem along the axis of time (Figure 2.5). Several

abstraction strategies are discussed in Liu et al (2003) and will be presented in the

next section.

Respectively the integration issue is concerned with the coherence of the

product across many abstraction levels (temporally distributed) or sub-problems

(distributed to spatially divers design teams). This is of course an organizational

Figure 2.5 A multiple abstraction level design process consisting of several

divergence and convergence processes, after Liu et al (2003).

Complex
Problem

Integrated
Solution

Sub Systems

Decomposition Integration

Figure 2.4 Decomposition and integration processes, after Eppinger (1997).

25

structure type of problem. Coordination strategies are required to handle the

coherence problem and the models of distributed design are diverse on how they

handle the integration problem. For example Meunier and Dixon (1988) described

a computer program for hierarchical distributed problem solving that is based on

iterative re-specification. In this model, system and subsystem nodes, called

managers, each formulate a subsystem design that meets the specifications passed

down from a higher manager. Managers meet their specifications by writing

specifications for a subsystem and then integrate the sub-solutions into a complete

sub-system. The resulting design is then evaluated. If the design is not acceptable,

the manager must change the sub-solutions’ specifications, hence the term

“iterative re-specification" to obtain subsystem solutions that result in a better

integrated design. This model did not allow for direct communication among

managers that are at the same hierarchical level.

Reidsema (2001) proposed a model for distributed planning that had the

elements of both abstraction and decomposition. He described it as a cyclic

approach (GDDI cycle), including four stages shown in Figure 2.6.

 Although this model was proposed in the context of planning for problem

solving, it can be regarded as a powerful and generalized problem solving

methodology when combined with the parameter analysis of Kroll et al (2001)

since it formalizes the utilization of both abstraction and decomposition. The

Generation

Decomposition

Distribution

Integration

Next abstraction
level

Figure 2.6 GDDI cycle or the distributed model of Reidsema (Reidsema, 2001).

26

original planning model consumed the task model of the design process, which is

a managerial tool developed in the 1990s for management of the complex problem

solving processes and is discussed in the next section. In Reidsema’s model the

plans comprised a set of tasks. The model can be modified to be applicable to

parametric design problem solving (and not only for the planning phase). It would

be enough to replace the notion of plan with a set of design variables or in a

broader context, parameters that are related to and describe a generated design

concept. The design process in this case would be performed in various

abstractions or cycles. This is a gradualist approach to design and is adopted in

this thesis. However, our approach is simulation based which is a feature of the

spiral design process model explained in the next section.

2.5 Design models for complex design problems

Models of complex problem solving are specifically tailored for designing large

scale system that embed substantial coupling between their parts, subsystems and

components. We believe any model that addresses all or some of the following

issues can be regarded as a model of complex design problems:

1. The relationship between global emergent properties of an engineered

artefact and local properties of its parts.

2. The control, coordination and cooperation relationships between

design teams at the level of NPD organization.

3. The interdependencies of the solutions at different abstraction levels.

4. The integration problem of many interdependent sub-problems at one

abstraction level.

5. The management of complex NPD projects prone to desirable cost,

time and quality requirements.

This section presents the design methodologies as well as the design

methods and design strategies that deal with complexity. The Concurrent

Engineering model can be regarded as a model of complex problem solving, since

27

it considers several upstream issues (or top level issue) at the downstream of the

design process. Concurrent Engineering has been devised to rectify the life cycle

reliability issues of complex products such as manufacturability, reparability,

usability, and assemblability (Reidsema, 2001). This model is derived from, and is

a modified version of the canonical problem solving procedure. Concurrent

engineering emphasizes the considerable overlap between the tasks of the

different stages in the canonical design model. The concurrent engineering

strategy as applied to the design process can be viewed as one in which enriched

information is continuously or iteratively passed between overlapping phases

(Prasad, 1996; Reidsema, 2001). Information builds up within one phase and is

released to the succeeding phases as it is needed. As the NPD process progresses,

new requirements, constraints and matured information are introduced into the

product’s design which alter the original design plan (Figure 2.7).

Another model for complex problem solving is the spiral model of the

design process (Figure 2.8). The spiral process has been mainly adopted by

software developers to reduce rework, and by that, to lower the development time

and cost (Boehm, 1988; Gilb, 1988; McConnell, 1996). This model combines the

Time

Information
Requirements PDT

Concept PDT

Analysis PDT

Embodiment PDT

Figure 2.7 Information builds up in concurrent engineering development, after
Reidsema (2001).

28

features of the prototyping model (simulation based engineering), concurrent

engineering model and GDDI cycle distributed model of Reidsema (2001). We

will, to a sufficient extent, cover the applications and methods of the simulation in

computer aided engineering and design in Chapter 4. The major advantage of the

spiral process is multiple cross-phase iterations, which is beneficial for handling

difficulties presented by unclear initial product requirements (Unger, 2003). “The

spiral process enables brief glimpses into the future (of the design process) by

executing each stage with the full expectation of returning back to them later”

(Unger, 2003). The information gained from this glimpse can be incorporated into

early design activities such as concept generation, requirement specifications and

architectures. The look into the future reduces the risks (Unger, 2003). However,

Unger (2003) specifies two major disadvantages with the spiral process:

1. The first step of determining objectives, alternatives and constraints is

difficult. The difficulty results from the fact that the effectiveness and

efficiency of the entire spiral process is sensitive to choices that should

be made in the first step.

2. It is difficult to decide on the termination of one stage and the start of

another stage.

In Chapter 4 we will address both of these issues first by describing the

problem at the initial stage as a seed that will transform or grow into the

subsequent stages. Then we introduce a simple termination criterion by

considering the abstracting techniques introduced by Liu et al (2003).

29

Another model for complex problem solving is the evolutionary model of

the design process (Bar-Yam, 2004; McConnell, 1996). This is based on

prototyping and testing multiple versions of the product and competition in

between those solutions for higher fitness (Figure 2.9). The evolutionary model of

the process is most suitable for design problems that are likely to have emergent

properties due to their high complexity.

Initial
concept

Design and
implement

initial
prototype

Refine
prototype

until
acceptable Complete

and release
prototype

Figure 2.9 The Evolutionary design process model. After Mcconnell (1996).

Figure 2.8 The spiral model of design, from Unger (2003).

30

The Task model was one of the first models that tended to address

complexity (Figure 2.10). This model has been developed to address and assess

high level estimation of the integration problem and interdependency issues of

low level design activities such as parametric design (Kusiak, 1999). According to

this model a task or activity has both an information input and an output. The task

itself is subject to a control that influences the tasks. A Mechanism is the tool or

resource required to perform the task. There are a number of possible models for

representing design activities or tasks that are commonly used, such as Program

Evaluation and Review Technique, Structured Analysis and Design Technique,

and Design Structure Matrices (DSM) (Eppinger et al, 1992; Reidsema, 2001).

The design structure matrix is a system modelling and knowledge

representation tool that is useful in decomposition and integration (Browning,

2001). A DSM shows the relationships and interplay of components of a system

as a matrix that has identical row and column labels (Eppinger et al, 1992;

Reidsema, 2001; Browning, 2001). DSMs are usually employed in modelling

products, processes, and organizational architectures. Browning (2001) presented

the following types of DSM:

1. Parameter-Based DSM (PDSM): represents the product architecture

and is used for modelling low-level relationships between design

variables.

Task
Activity

Control

Mechanism

Input Output

Figure 2.10 Task Based Model represents the low levels design activities as a
black box, from Kusiak (1999).

31

2. Activity-Based DSM: models the information exchange and

dependencies between various tasks of an activity network.

3. Team-Based or Organizational DSM: models the organizational

structure interns of the information exchanges and interactions

between the design players such as design teams.

In general the task based model of design is a managerial tool that allows

for identifying activities that have important interconnections to other activities,

namely those tasks that consume information output of many other tasks, and also

the ones that generate the information input of many other tasks. Obviously the

failure of these tasks introduces vulnerability into the entire design tasks network.

Braha and Bar-Yam (2006), in an empirical study, showed that complex NPD task

networks, in general, are characterized with few of the central tasks on which a

specific managerial focus must thus be given. They also showed that these

networks show small world properties5. These managerial techniques seek to

mitigate the complexity of design process by either rescheduling the activity

sequences or grouping the more interdependent tasks into similar groups. We

discuss this approach in detail in Chapter 5.

An important design methodology was developed by Suh (1988), with the

aim of enabling systemic representation and design analysis, a rather advanced

description of which can be found in Suh (2005). Axiomatic design is based on

the concept of functional requirement, design parameters and their

quantitative/qualitative interplays. The design parameters, here, are regarded as

means of achieving the functional requirements. The design matrix thus signifies

how functional requirements and design parameters are related. A design, in

axiomatic design is defined as the interplay between the functional domain

(functional requirements) and the physical domain (design parameters) (see

Figure 2.11). A design that follows the recommendations of the design axioms is

regarded as a good design. Originally there were two design axioms, namely

Independence axiom and Information axiom but recently Suh (2005) introduced a

5 A network with small world property is one in which most nodes are not neighbors of one
another, but most nodes can be reached from every other by a small number of hops or steps
(Source: Wikipedia, online encyclopedia).

32

third axiom of Complexity that, according to him, demands both axioms of

Independence and Information. These axioms are:

1. Independence Axiom: Maintain the independence of functional

requirements.

2. Information Axiom: Minimize the information content of design.

Information content of the design is whatever information that is

required to reduce the uncertainty about achieving the functional

requirements.

3. Complexity Axiom: Reduce the complexity of the system.

 The main argument in axiomatic design is that the more the functions of

the product are satisfied or performed by independent components in the physical

domain, then the design process will be simpler to handle and will be more

effective at predicting the total cost and overall quality performance. However,

another trend in design process models of complex products is to take a different

viewpoint and suggest the exploitation of emergence and more complexity (rather

than less complexity) in the functions of the product and thus at the conceptual

design level.

Weber and Condoor (1998) recommended exploiting synergetic effects of

combining design solutions from the morphological table. According to them

synergy is achieved when one component (or subsystem) can meet the criteria of

more than one functional requirements. They explained a top-down approach

based on abstraction:

1. Identify independent primary functions.

2. Create solutions for primary functions.

3. Create primary morphological matrix.

4. Choose a compatible synergistic solution.

5. Identify lower-level functions.

6. Create lower-level solutions.

7. Create lower-level morphological matrices.

8. Choose a compatible synergistic solution.

33

9. Evaluation: go to step 5 if more detail is required.

This approach however fails to address the synergy between different

abstraction levels. One possible solution to this problem was proposed by Liu et al

(2003). They posed that for complex problems an ideal approach to abstraction

would be to carefully specify the number of possible solutions to be considered at

the divergent stage of each abstraction level in order to have a global trend of

divergence-convergence. Figure 2.12 demonstrates all the possible scenarios in

the global divergence-convergence patterns that Liu et al (2003) recognized.

Figure 2.12(a) demonstrates an approach that first only carries out the

synthesis activities at each solution abstraction level until all possible solutions

are generated, and then evaluates and selects these concepts. Divergence of all

abstraction levels takes place afterwards in the final stage. This method provides

the opportunity of considering synergetic solutions at different abstraction levels,

but since the solution space would be too large, the search for those solutions may

be difficult. Figure 2.12(b) demonstrates an alternative approach in which we

carry out divergent and convergent activities at each level of the solution

abstraction. This should allow a reasonable number of concepts to be generated at

Figure 2.11 Design matrix in axiomatic design shows the coupling of the
physical domain and functional domain, from Lee (2003).

34

each solution level (divergent step), immediately followed by a screening of these

concepts (convergent step). By means of these multiple divergent and convergent

steps, the management of the solution space is possible. The challenge here is that

solutions represented at an abstract level (e.g. functional level) can be hard for

designers to understand. It is a question of how to screen an abstract solution

space. Figure 2.12(c) shows the classical design process approach to multiple

levels of abstraction posed by Pugh (1991) and Cross (2000).They stated the

necessity of the global trend of the solution space size to be towards convergence.

This means that the number of concepts must gradually be decreased and only one

or few solutions must be left at the end of the design stage. Figure 2.12(d) shows

multiple solution abstraction levels with the global trend towards divergence.

The ‘ideal’ approach of concept generation according to Liu et al (2003)

(Figure 2.13) should follow multiple divergence—convergence in order to

gradually increase the number of solutions for the concepts generation, followed

(a) (b)

(c) (d)

Figure 2.12 Shows multiple divergent followed by multiple convergent

processes (a), multiple consecutive divergent-convergent processes (b), with a

global trend towards smaller solution space (c), with global trend towards larger

solution space (e), after Liu et al (2003).

35

by a divergent and convergent tendency to detail these concepts with an overall

decrease in the solution number. This way the design process would benefit both

from synergetic solutions and also a manageable search in the solution space.

In a seminal paper, Alstyne and Logan (2007) called for the redesigning of

the design process in a way that can harness emergence:

Only through emergence new innovative products emerge

which can revitalize and also survive in the global

economical market. All the great innovations of the history

harnessed emergence: tool making of the early man; the

internet; Gutenberg’s printing press etc. Nature’s products

have emergent properties and functions that are performed

by the cooperation of millions of micro-organisms and

several parts.

Alstyne and Logan (2007) posed that a homeostatic relationship between

design and emergence is a required condition for innovation. They called for

employing emergence and self-organising processes as bottom up and massively

Figure 2.13 The ideal design abstraction strategy of Liu et al (2003).

Solutions discarded by
screening

Ideal approach

36

iterative processes. Anderson (2006) described how bottom up6 strategies at the

NPD organization level can harness emergence in the product and in the process.

Bar-Yam (2004) called for forsaking the planning based method (that renders the

process utterly top down) and allowing for radical innovation to emerge. Bar-Yam

(2004) believed that only through employment of radical innovation, could the

integration problem of complex systems could be addressed. This thesis takes a

moderate position, which is to use low level design problem knowledge to

configure and control high level organizational structure (which can be regarded

as planning). This is discussed in Chapters 4 and 7.

We present a model of design process for complex products that is,

distributed, evolutionary and has elements of the spiral process. It is based on the

parametric representation of the design at various abstraction levels and uses the

low level parametric knowledge of the problem to plan the development

organization such that emergence of innovation becomes a possibility. The

presented model benefits extensively from complexity measures at three levels of

PPO.

6 Top down design asserts the role of hierarchical command and control, in contrast bottom up
design asserts the pivotal role of low level design agents in shaping the overall and emergent
properties of the design artefact. In essence bottom up view calls for flat organizational structures.

37

3 All about Complexity

It is important to better understand why complex systems, be they complex

organizations, complex design processes, design projects, and complex products,

possess high potential for failure. In order to attain this goal we first need to

define the notion of a complex phenomenon.

A phenomenon is any observable occurrence7. Observation is the activity

of sensing and assimilating the knowledge of a phenomenon, or the recording of

its data by utilizing instruments. The set of techniques for investigation of a

phenomenon is referred to as the scientific method. These techniques entail data

collection by means of experimentation and observation, the formulation of

hypotheses, and testing. A complex phenomenon is one that initially may not be

observed straightforwardly and could be confused with pure randomness.

Furthermore, a complex phenomenon may not be hypothesized by simple means;

and even when the complex phenomenon is hypothesized, it may not be tested

without difficulty. In this Chapter we show that measures of complexity serve

well in demonstrating and explaining these statements. As the scientific method is

based on measurement, a science of complexity without a measure of complexity

would not be valid (Marczyk and Deshpande, 2006).

3.1 Complexity Measure

The most commonly agreed definition of complexity as a measure is the size of

the minimal description of a phenomenon (a system, or an object) when expressed

in a chosen vocabulary (Crutchfield, 1994). This is also known as algorithmic

complexity, Kolmogorov-Chaitin complexity or deterministic complexity

(Crutchfield, 1994). It should be obvious that, this measure of complexity would

increase proportionally with the observed randomness in the phenomenon8

7 Definitions in this section are taken from Wikipedia the free Encyclopaedia.
8 Randomness is the absence of pattern, relation, meaning, or relevance.

38

(Figure 3.1). However, what is missing in the definition of deterministic

complexity is the role of the observer and this is exactly why the measure is

referred to as “deterministic”: it is a subjective measure. Because of this it is

generally accepted that deterministic complexity is not computable. For example,

Crutchfield (1994) explained that:

Kolmogorov-Chaitin (deterministic) complexity requires

accounting for all of the bits, including the random ones

and is dominated by the production of randomness and so

obscures important kinds of structure.

Science now agrees that the observer sees through his/her cognitive

models, descriptions of objective reality and conceptualizations (Minati and

Pessa, 2006). The observer is an integral part of the phenomenon with an active

role and not a passive one. This active role is reflected in the limitations of the

observation. In general, there are three intrinsic limitations with any observation

(Minati and Pessa, 2006; Kuras, 2007):

1. Inherent lack of subjective knowledge in the observer’s mind; thus

there is a limitation in the scope of the observation.

Randomness

D
et

er
m

in
is

tic
 C

om
pl

ex
ity

Figure 3.1 Deterministic Complexity increases with randomness, from
(Crutchfield, 1994).

39

2. Inherent limitation of the resolution of the observation. How much of

the phenomenon have been observed is dependent on the resolution of

the measurement and detection devices.

3. Limitation in computational resources, such as memory and

computational power. These lead to and reflect in a limitation of the

scope of the observation.

Therefore the amount of regularities, patterns, etc. that are observed depend by

and large on the observer.

 In contrast to deterministic complexity, stands statistical complexity which

discounts the computational effort in simulating what is seen as random

(Crutchfield, 1994): “statistical complexity is the minimum amount of information

required to optimally hypothesize the phenomenon”. Thus statistical complexity is

not a measure of randomness and is a measure of structure above and beyond that

describable as ideal randomness (Crutchfield, 1994). The fundamental property of

statistical complexity is that it is both zero for an ideal random phenomenon and

also for an ideal ordered phenomenon (Figure 3.2). In this regard a complex

phenomenon to the observer with limitations in resolution and computation

resources is one that fits between order and chaos (Duin and Pekalska, 2006).

Randomness

St
at

is
tic

al
 C

om
pl

ex
ity

Order Chaos

Complex

Figure 3.2 Statistical complexity measures the complexity with reference to the
observation characteristics (resolution and scope), after (Crutchfield, 1994).

40

Figure 3.3 presents three patterns that clearly demonstrate that statistical

complexity is an intuitive measure of structure. The middle pattern (b) has a

relatively higher complex structure when compared to the other two patterns.

Pattern (a) is very ordered and is not complex. While the far right one, pattern (c)

seems to be structure-less, it is not complex especially when it is thought of as

being produced by pseudorandom number generators (Grassberger, 1989). In this

case the distinction about the complexity levels of three patterns is made relative

to the resolution and accuracy of the observation and thus the inferred complexity

is statistical.

Figure 3.3 Three patterns, after Grassberger (1989).

However, deterministic complexity can identify structure existing even in pattern

3c that seems purely random. Pattern 3c truly has a high deterministic complexity

relative to the other two 3a and 3b. The proof is in Figure 3.4. These patterns in

fact belong to the same pattern but are at different scales. An immediate

consideration is that scale or level of description can change both the statistical

and deterministic complexity. This means that hierarchical systems pose different

structures and thus different properties at different scales. These properties are

emergent and do not exist in the entities of the lower levels (Minati and Pessa,

2006). A simple example of an emergent property is the temperature of gas. At the

atomic level, the temperature of a single atom is meaningless and irrelevant. The

relation between complexity and emergence is discussed in Section 3.2.

 (a) (b) (c)

41

Figure 3.4 The three patterns belong to the same pictures seen at three different

scales. After Grassberger (1989).

It should be indicated that a necessary departure from a deterministic approach to

stochastic approach (in modelling and hypothesizing) is essential only when the

statistical complexity is not far away from deterministic complexity (Figure 3.5).

The difference between statistical complexity and deterministic complexity tends

to become higher after the statistical complexity has peaked. When the difference

is high it is irrelevant to hypothesize, test or even fully observe the complex

phenomenon. As mentioned before this is so since the observer has limitations

accordingly in scope, computational resources and resolution.

Figure 3.5 High complexity makes the endeavours of the scientist, in
hypothesizing, hypothesis testing and even observing, irrelevant activities.

Observing, Hypothesizing, and Testing

R
elevant

Irrelevant

42

3.2 Complexity and Emergence

 Edmonds (1999) defines complexity as:

... that property of a model which makes it difficult to

formulate its overall behaviour in a given language, even

when given reasonably complete information about its

atomic components and their inter-relations.

This definition couples complexity with emergence. Complexity as structure gives

birth to emergent properties. Emergent properties of complex systems are hard to

predict. Although we may not be able to exactly describe the emergent property;

we can argue about the potential existence of emergent properties. Therefore a

comprehensive definition of complexity would be the intensity of emergence. This

is a fundamental notion in this thesis and is in accordance with the notion

introduced by Marczyk and Deshpande (2006) that complexity is a potential (for

creating top level properties and overall functionalities). For example a car is

relatively more complex than a bike and it has also more functionalities. So is a

human community (more complex) relative to an ant community and has

relatively more functionalities. Complexity allows the potential for emergence be

it desirable emergent properties (functionality) or catastrophic ones (surprise

failure).

It should now be clear why complex systems possess potential for

catastrophic failure: because complexity can be mistakenly dismissed as noise

(therefore not be observed), and emergent properties of complex systems cannot

be modelled, or even tested (Bar-Yam, 2004). The failure examples in Chapter 1

all had their own specific reasons, however, there is common agreement that if

anything can go wrong it eventually will. This is known as Murphy’s Law, a

lesson from history.9

9 From Wikipedia online Free Encyclopaedia.

43

3.3 Graph Theoretic Measure of Complexity

We defined what a statistical measure of complexity must represent but did not

give a detailed account of how to measure it. Statistical complexity is a statistic

calculated from a data set. The data set represents the observations made about a

phenomenon or a system. The first attempt to measure statistical complexity was

reported in Crutchfield and Young (1989), who initially proposed the concept as

well. In 1997, Edmonds (1997) presented a database of complexity measures

containing 386 entries, which according to Shalizi (2001), was not

comprehensive. We do not attempt to review these measures; however an

extensive literature review of complexity measures in engineering design is

presented in 3.4. The central idea in measuring statistical complexity though, is to

use entropy based mutual information as a measure of dependency between two

variables (Edmonds, 1999). The main property of mutual information is the ability

to capture both linear and non-linear relationships, making it more attractive than

the covariance based correlation coefficient (Boschetti et al 2005).

Equation (1) shows the entropy based mutual information between two

random variables X and Y. This requires estimation of the probability distribution

of every random variable (PX(x), PY(y)) in the data set and also the mutual

probability distribution of all pairs of random variables (PX,Y(x,y)).

 (1)

For example, if two variables have a circular relationship (Figure 3.6),

then the covariance and thus the linear correlation coefficient in between them is

zero, whereas the entropy based information exchange in between the variables x

and y is 3.1810. Since the mutual information is a number between zero and

infinity, it can be normalized to be a value between zero and one. One such

normalized correlation coefficient based on the mutual information exchange is

10 The MatlabTM codes that produce the data set presented in Figure 3.6 as well as the mutual
information exchange are included in Section A.3.

44

the global correlation coefficient, a description of which can be found in Soofi

(1997), Darbellay (1998) and Dionisio et al (2007).

After measuring all the mutual information of pair of variables in a data

set, a graph theoretic measure of complexity can be adopted to capture the amount

of structure in the data set (Boschetti et al 2005). But in order to do that the

system must be represented in graphical format. A graph G can be characterized

by its vertex set, V = {1,…,n}, and the edge set E. The total number of nodes in G

is denoted by |G| and referred to as the order of G. The number of edges in G is

the size of G and denoted by E(G). G (n, m) is a graph of order n and size m.

Associated with every graph G is its adjacency matrix, AG, which entries (ai,j) are

defined as:

 (i,j) Ewi,ja i, j 0 otherwise

∈⎧⎪= ⎨
⎪⎩

 (2)

x

y

Figure 3.6 The entropy based mutual information captures linear as well as
nonlinear relationships.

45

For un-weighted graphs all wi,j=1, and in undirected graphs for all (i,j) ∈E, ai,j =

aj,i. Another matrix that can be associated with graphs is the Laplacian matrix. A

Laplacian matrix is defined as L(G) = D − A where D is n × n diagonal matrix

with entries Di,i = di and di is the degree of the vertex i defined as the total

number of edges (or sum of the weights of the edges) that touch the vertex.

Hence, every system can be represented elegantly by graphical means. Each

variable in the data set can be symbolized as a vertex and each relationship in

between the variables is an edge with the given weight (which for example can be

determined by entropy based correlation).

With regards to the complexity of a system and its structure being

represented with a graph, there are different perspectives amongst system

researchers as to what represents a system’s complexity. The general belief is that

the complexity can be fully represented by size, coupling and cyclic interactions.

These are discussed next and after that complexity measures in engineering design

literature is reviewed.

3.3.1 Size

There is clearly a sense in which people use “complexity” to indicate the number

of parts. The size of a system is the minimum number of variables that the system

can be described with (order of its graphical representation)11. The notion of

minimum size overcomes some of the inadequacies of mere size as a complexity

measure (Edmond, 1999): it avoids the possibility of needless length. Size (or

order) has been used in the literature as a measure of complexity in applications

that include (Edmond, 1999): the social organisation and community size

(Carneiro, 1987); the minimum number of gates in a circuit (Lazarev, 1992); the

cyclical behaviour of systems (Walker, 1971); self-replicating sequences

(Banzhaf, 1994); rule-based systems (O’Neal and Edwards, 1994); neural

networks and cellular automata (Gorodkin et al, 1993); and grammatical

development (Kemper, 1995).

11 Systems of high order are usually known as large scale systems.

46

3.3.2 Coupling

Coupling (or connectivity) is the sum of the densities of dependencies between the

system’s variables (size of the graphical representation). The coupling of a system

is a strong indicator of its decomposability: it is difficult if not impossible to

decompose a system with densely interconnected elements/components without

changing the overall characteristics of the system (Edmonds, 1999). Applications

of coupling as complexity measure include (Edmonds, 1999): the reliability of

circuits (Winograd, 1963), the stability of random linear systems of equations

(Ashby and Gardner, 1970), stability in computational communities (Kindlmann,

1984), stability in ecosystems (Casti, 1977; Lakshmanan et al, 1991; Pimm,

1984), the diversity of ecosystems (Margalef, 1984), the structure of memory

(Kroll and Klimesch, 1992), logical and computational properties of bounded

graphs (Meinel, 1990), competition in networks (Reggiani, Nijkamp, 1995),

random digraphs (Seeley and Ronald, 1992), chemical reaction mechanisms

(Zeigarnik, and Temkin, 1996).

3.3.3 Cycles

The number of Independent Cycles is a basic graph measure sometimes referred

to as cyclomatic complexity and is the number of independent cycles or loops12 in

a graph (McCabe, 1976). As indicated in Chapter 1, complex systems are

characterized by circular causality. Thus a graph theoretic measure of complexity

must point to circularity of dependencies between the system’s variables. In

general there is no direct relation between the order (number of vertices) and the

cyclomatic complexity: the number of vertices will limit the cyclomatic

complexity but this effect is only significant with very few vertices as the number

of possible edges goes up exponentially with the number of vertices (Temperly,

1981). McCabe (1976) uses this as a measure of program complexity, in particular

to calculate the number of different logical paths through a program to gauge how

many tests it might need. Other applications include: complexity of simulation

12 Number of independent cycles is easily calculated by the formula c(G) = m – n + p where m is
graph size, n is graph order, and p is the number of independent components determined by
multiplicity of zero in eigenvalue spectrum of Laplacian matrix.

47

models (Schruben, and Ycesan, 1993), and the difficulty of software maintenance

(Bechir and Kaminska, 1995; Curtis et al, 1979; Hops and Sherif, 1995).

3.4 Complexity Measures in Engineering Design

In engineering design, there are three elements that may be externally represented

by a designer and for which complexity can be measured: the design problem, the

design process, and the design artefact (Summers and Shah, 2003). Figure 3.7

shows that by utilizing the process, a problem is transformed into an artefact.

The design problem is a statement of the requirements, needs, functions, or

objectives of design. The design problem is a structured representation of the

specific question or situation that must be considered, answered, or solved by the

designer (Summers and Shah, 2003). This thesis assumes that the design problem

is a collection of variables (numeric, geometric, functional, configurational, etc.).

Problems may include the evaluation criteria for the generated solutions. In this

light, a design problem consists of a collection of design goals, independent

Organizational Architecture

Design
Knowledge

Common
Knowledge

Design
Problem

Design
Process

Design
Artefact

Figure 3.7 Relations between Problem, Process, Artifact, after Summers and
Shah (2003).

48

design variables, measures of goodness, and design relations13 (Summers and

Shah, 2003).

The design process is the method that is used in guiding the problem

solving. The design process includes the domain knowledge available to the

designer (Summers and Shah, 2003). This domain knowledge may be explicitly

represented in rules, design procedures, design manuals, previous solutions, etc.

The design process includes both facts and how to apply those facts. Thus, the

design process has the following elements (Summers and Shah, 2003):

1. Design problem.

2. The background knowledge is used to modify either the design

problem or the design artifact by changing values to existing variables

through satisfaction of the existing design relations or by introducing

new variables and relations as needed.

3. The design tasks that are the collection of sub-processes performed

during the design process.

The design artifact is a representation of the envisioned physical solution

to the design problem through the realization of the design variables such that the

design constraints are satisfied (Summers and Shah, 2003). The design artifact is

the result of the design process when applied to the design problem. The

dependent design variables may take the form of parameters or

geometric/topologic entities.

It is important to notice that metrics in general can be either result or

predictor oriented (Bashir and Thomson, 1999.a). A result metric is an observed

characteristic of a completed system such as development time and design effort.

A predictor metric has a strong correlation to some further result, such as product

complexity, design difficulty, etc., as they relate to design effort or duration.

13 Relations are the how the design variables, and function variables effect each other.

49

Complexity measures that apply to the design problem are predictors whereas

measures that apply to the design artifact are result. In the proceeding subsections

a literature review of various types of complexity measures for each of the three

design elements and how/why they have been regarded useful is presented.

3.4.1 Complexity Measures for Design Problems

Within the problem domain, measuring complexity has been regarded useful

because it can give a quantitative estimation of problem solving difficulty, the

required problem solving effort or design effort, design lead time, cost and risk14

(Bashir and Thomson, 1999.a). Measuring the complexity of a design problem

allows for planning by using the results (design process or design artifact) from

previous comparably complex design problems to predict necessary resources,

time, or commitment required for the new design problem (Summers and Shah,

2003). Thus it is important to have measures of problem complexity.

One primitive problem complexity measure was introduced by Griffin

(1993) and Kannapan (1995) as the number of functions included in the functional

requirements and to be delivered to the customer. Bashir and Thomson (1999.b)

argued that this metric is not realistic since it is insensitive to the complexity of

each function and the relative difficulty of developing functions which are more

complex. They proposed a simple metric based on the concept of functional

decomposition which assumed that product complexity depends on the number of

functions and the depth of their functional trees (hierarchies). Their measure was

given as:

 PC = ∑
=

×
l

j
jjF

1
 (3)

Where Fj is the number of functions at level j and l is the number of levels in the

functional decomposition hierarchy. These measures however only indicate the

14 Design risk is the probability of not satisfying the functional requirements at the end of the
design cycle.

50

size of the problem. Dierneder and Scheidl (2001) further advanced the trend of

the functional tree based measures and introduced a complexity measure for the

design problems that gave strong emphases to the coupling between the functions.

The complexity value was the sum of all the functional coupling information

contents up to a certain level in the functional decomposition hierarchy. The

function based measures give estimates of the design difficulty.

Dierneder and Scheidl (2001) also introduced two other complexity

measures: Technical Product Complexity, and the Reliability Product Complexity.

These two measures reflected correspondingly the coupling degrees of design

parameters to the functional requirements and the amount of uncertainty in

achieving the functional requirements by the given set of design parameters. Their

approach was based on the representation format of axiomatic design of which

three major flaws can be found. First, they do not clarify how the dependencies

may be determined. They are assumed to be known to the designer. Second, all

the correlations including those between the design parameters, and functional

requirements are calculated based on the linear correlation coefficient which

cannot capture nonlinear dependence. Third, they did not account for cyclic

dependencies that are the root cause of emergence properties.

Complexity as the amount of uncertainty15 in achieving the functional

requirements has been introduced earlier by Suh (2001). Consider Pi as the

probability that the ith functional requirement would be satisfied Then Suh (1989)

defined Real Complexity as:

 ∑=
n

i
R P

C
1

2
1log (4)

Where n is the total number of functional requirements. This complexity measure

is redundant and unnecessary; because it is not clear what a measure of

complexity as a function of uncertainty has to offer that an estimation of

uncertainty by itself could not (Crutchfield and Young, 1898). It would appear

15 This is more robustly known as the risk involved in a design process.

51

that Suh’s definition of complexity is based on functional requirements

uncertainty being solely due to variability and noise particularly those due

introduced in manufacturing. It is the argument of this thesis that the major source

of risk (in form of surprise) as an emergent property is complexity itself, not the

other way around.

Suh (2001) also presented the imaginary complexity as a degree of

uncertainty based upon the designer’s lack of understanding. This view of

complexity attempts to explain why two designers may have different levels of

difficulty handling the same problem. This approach includes the designer while

measuring the “system” (design problem and designer). This uncertainty may be

measured as the probability of the designer “stumbling” upon a solution.

Braha and Maimon (1998) presented two definitions of complexity in

engineering design: functional and structural. Their functional complexity was the

same as Suh’s real complexity. They, however, defined the structural complexity

of design as the information content of the minimal representation of the artifact.

In this definition information is whatever that is represented by the designer. The

difference between the functional and structural complexity according to them is

reflected in the difference between design and design efficiency effectiveness.

Braha and Maimon (1998) supposed a design artifact as a collection of operands

(entities) and operators (relationships). Given a design with n operands and

operators {X1, X2, Xn}, each of which with a distinct probability distribution, they

defined the structural complexity as the entropy of the joint probability

distribution of all Xi s:

 H(X1, X2,…, Xn) = ∑ P(X1, X2,…, Xn) × log P(X1, X2,…, Xn) (5)

According to Braha and Maimon (1998), a structural definition of complexity has

several appealing properties:

1. Simplicity in evaluation of design complexity

52

2. Simplicity in knowledge exchange between different computer

aided design systems since two parts of information can be added

together.

And also some limitations:

1. It hardly finds relevance to satisfying design objectives.

2. It is dependent on the method of information acquisition, which

means that the information may not be interpretable after the

information acquisition process is stopped.

3. It cannot explain the designers underlying psychological and

reasoning patterns.

Structural complexity is the engineering version of the Kolomogorv-Sinai

entropy (or deterministic complexity) that was originally introduced in the context

of dynamical systems theory. This notion of complexity is incomputable in

exactly the same way as deterministic complexity (See Crutchfield (1994) for

proof). Roughly speaking we can argue that the estimation of joint probability

distributions of all design entities by rationally bounded16 design agents

(observers) is prone to error to the degree that the resulting complexity measure

would not reflect the collective inter-dependencies (or complexity) of the design

problem. We must, therefore, restrict ourselves to estimation of pair wise joint

probability distributions of design variables (Fraser, 1989). Braha and Maimon

(1998) solved Equation (5) only for when all the design entities were independent

(with no interrelation) which is far too simplistic and renders the complexity

measure purely as the function of design information content size.

16 The concept of bounded rationality accounts for the fact that perfectly rational decisions are
often not feasible in practice, due to the finite computational resources available for decision
making. (Source: Wikipedia)

53

El-Haik and Yang (1999) tried to incorporate the measure of structure as a

component of complexity into the complexity measure. They posed that given:

 {FR} = [A] {DP} (6)

Then complexity as the uncertainty in achieving the functional requirements

(Suh’s definition) has three components:

1. Variability which is the uncertainty in design parameters measured by

their total entropy. Given each of n design parameters follow a distinct

probability distribution Pi the entropy would be:

 PlogPh
n

1
i∑= (7)

2. Vulnerability of the design that was the determinant of domain

mapping matrix, which hints at the overall sensitivity of functional

requirements to design variables. This is perhaps the closest the

literature has got to the approach of this thesis.

3. Correlation or coupling between the design parameters.

El-Haik and Yang’s (1999) method takes into consideration the size,

coupling and possibly the circularity of the interdependencies between design

variables (obviously, in the latter case, without them being aware of it). However,

again, it was based on linear correlation coefficients. This measure could be used

to compare different design solutions and as such was a measure of artifact

complexity as well. In general, axiomatic complexity suffers from applicability

issues and that limits the usefulness of the measures that are developed on the

basis of this theory.

54

Summers and Shah (2003) proposed that complexity measures must have

three components of solvability, size, and coupling. They presented the following

definitions:

1. Solvability is whether the design artifact may be predicted to satisfy

the design problem.

2. Size of several elemental counts including the number of design

variables, functional requirements, constraints, sub-assemblies, etc.

3. The coupling between elements.

They extended their definition to the design problem, the design process, and the

design artifact. We believe that solvability must have to do with cyclic

dependencies or cyclomatic complexity because they produce emergence effects

that cannot be predicted: by presenting empirical results Watson and McCabe

(1996) reported that the number of errors in the implemented (software) systems

has been in direct proportion with the cyclomatic complexity. In addition they

suggested cyclomatic complexity as a test and evaluation mean.

3.4.2 Complexity Measures for the Design Process

Determining the complexity of a design process may be useful for selecting

between two or more design processes for the same design problem. The design

problem’s complexity does not change, but the complexities of the available

design processes may be different. The process complexity measures have

applications in design automation where the machine needs to decide between

several available processes.

Ko et al (2007) presented an evolutionary complexity of information for

analysis of the design process. They reported that the minimization of their

entropy based measure of complexity can lead to the identification of the least

biased sequence of activities. This thesis does not address the sequencing or

55

synchronization of the design activities based on their dependencies. Instead we

suggest tackling the process complexity at the problem decomposition stage. This

is based on the recognition that the design process may be modeled graphically to

closely mirror a problem’s graphical representations. This trend of modeling

started with Simon’s definition of decomposability. Simon (1969) defined a

complex system as a system of a large number of parts that interrelate in a non-

simple manner. Within complex systems, a distinction may be made between the

relationships between subsystems and within subsystems. This leads to the

concept of decomposability of the complex system. Generally, links within

subsystems must be stronger than links between subsystems, allowing for

handling the subsystems concurrently rather than as a single system. Simon

(1969) proposes “nearly decomposable systems” as an approach to mitigate the

effects of complexity in system synthesis.

Chen and Li (2005) presented a complexity index that was the ratio of the

complexity of the problem after decomposition to that of the problem before

decomposition. They associated this index with the process efficiency. The

problem was modelled as the set of design components or physical constituents of

a design (design variables), and the design attributes that described the behavioral

properties of a design (functional response). They studied the decomposition of

the incident matrix of components-attributes pair that reflects how components

influence attributes. The immediate observed drawback with this approach is that

it does not include the interactions of components-components or attributes-

attributes. They presented the following measure for the problem complexity

(before decomposition):

 COM0 = m ln(2n) (8)

Where m is the number of attributes and n is the number of components. The

complexity after decomposition had two sources contributing to the total

complexity of the interaction-involved matrix: the interaction part and the blocks

(the resulting, subsystems, or sub-problems):

56

 ∑
=

+=
nb

i
inc

imna
amCOM

1
)2ln()2ln((9)

Where ma is the number of attributes present in the interaction part that is a

number between 2 and m, nb the number of blocks, mi the number of attributes

inside the blocks, and ncis the number of components inside each block. The first

term in Equation (9) is the complexity of the interactions and the second term is

the sum of the complexity of the blocks (Figure 3.8).

Chen and Li (2005) also presented an iterative algorithm that could

determine the number of blocks. They claimed that this approach to mitigate the

complexity of the design process has not been reported in the literature before.

Our approach to measure the process’s complexity is very similar to this, with the

distinction that our measure of decomposition has a more holistic approach and

does not sum up the complexity of the blocks and interactions to arrive at the

complexity of the decomposition. We contend that they incorrectly argue that

decomposition can decrease complexity which is perhaps the consequence of their

reductionist approach. We will show that regardless of the decomposition type, it

cannot reduce the overall complexity of the process, which is utterly rational

when the ‘no free lunch theorem’17 is considered.

17 No free lunch theorem is discussed in the context of optimization theory and states that if a
search algorithm achieves superior results on some problems, it must pay with inferiority on other

Blocks

Figure 3.8 Shows the block and the interaction part of a decomposition of an
incident matrix. From Chen and Li (2005).

57

3.4.3 Complexity Measures for a Design Artifact

Complexity measures for a design artefact are defined for the solution space and

thus can be regarded as goodness of design measures. Pahl and Beitz (1985)

offered a simplicity rule for embodiment design. This rule is based on the

presumption that simple designs are preferred to complex designs. With respect to

evaluating the simplicity (or conversely the complexity) of a design artifact, Pahl

and Beitz (1985) suggested counting the number of functions represented,

evaluating the working principles (number of processes, components, and

coupling), or checking the symmetry of shape, topology of shape, motion (easy to

analyze and manufacture). No details are provided with respect to analyzing the

complexity measures, rather qualitative interpretations by the designer with

limited enumeration counts of parts, assemblies, interfaces, etc. are suggested.

Balazs and Brown (2002) offer an approach for design artifact simplification

through analogical reasoning by reducing redundant sub-graphs. Several of the

measures introduced previously including those of Braha and Maimon (1998), and

El-Haik and Yang (1999) are also applicable to the design artifact.

3.5 Methodology: Measuring the Complexity of PPO

This thesis assumes that what make a system complex are the three components of

size, coupling and cycles. A graph theoretic complexity measure18 is presented in

the Appendix (Section A.1) that is an increasing function of the three components

of complexity. In this thesis, this measure is applied to various types of DSM in a

unified manner and by that we accomplish the immunization of complex PPO

against catastrophic failures. The following discussion presents some necessary

definitions and metaphors used in the complexity management and complexity

based design method introduced by Marczyk (2008). This method is at the heart

problems. We argue that decomposition makes a problem tractable at the price of more overall
complexity.
18 This measure is the proprietary complexity measure of Ontonix s.r.l and has been
commercialized in OntospaceTM software.

58

of the software, OntospaceTM, which its underlying principles have been a

knowledge source to the approach of this thesis. Although OntospaceTM was

originally devised as a Computer Aided Engineering analysis tool, its principles

has never been taken as the backbone of a DSS which can facilitate design

synthesis as well as analysis. The conceptual DSS presented in Chapter 8 is a

demonstration of this.

Fitness Landscape (FL): FL is a multi dimensional data set of inputs and outputs

of a system. Figure 3.9 shows two of the anthills related to a FL. FL is another

name for parametric problem space.

Forming a FL: FL can be formed from experimental data about a system, and/or

statistical simulation of the system by means of methods such as Monte Carlo

simulation techniques. Combinatorial methods can also be employed. For

example a combination of Design of Experiments and Monte Carlo Simulation

would be quite adequate for the simulation of product and process models.

Fuzzification of the FL: OntospaceTM fuzzifies the entire FL in 3, 5, or 7 fuzzy

levels. Figure 3.10 shows two anthill plots of the fuzzified FL with 5 fuzzy levels.

Fuzzy States: If the FL is partitioned into 3, 5, or 7 fuzzy states, then each multi

dimensional partition is a fuzzy state of FL. Fuzzy states are the fuzzified points

of the FL.

Figure 3.9 Two scatter plots of a FL.

59

Map of the System: is the graphical representation of the structure or dependencies

in the system (Figure 3.10). Dependencies are determined by the entropy based

correlation coefficients.

Complexity of the Map: reflects the coupling, size and cycles of the system. We

will refer to the complexity of this map as self complexity.

Lower Complexity Bound: A system with a complexity lower than this bound has

lost its intrinsic characteristics and has failed to emerge as a spontaneous self.

Dembski (2002) explained that, a system is irreducibly complex when the removal

of any of the parts or the links amongst them parts lead to the failure of the system

in performing the assumed basic functions. The lower complexity bound

represents the irreducible complexity of the system that contains the intrinsic

characteristics of the system.

Upper Complexity Bound: The complexity of the system may be increased to this

bound without exhibiting chaos. Every closed system can only evolve/grow to

a specific maximum value of complexity which is also known as the system’s

critical maximum complexity. For closed systems, the increase of entropy leads

Figure 3.10 Shows different linear trends in the FL.

60

to the increase in complexity but only to certain point (the upper bound), beyond

which even small increase of entropy cause the reduction in complexity and the

structure of the system starts to collapse (Marczyk and Deshpande, 2006).

Complexity Modes: A mode represents the characteristics of various regions of the

FL with certain complexity value complexity modes (or modes) are fixed

topologies of a system’s important parameters and their correlations. A

complexity mode is a collection of system fuzzy states that have a unique map.

Figure 3.12 shows a FL and two of its complexity modes with their maps (left and

right). The large red and blue points are respectively the input and output

parameters that have at least one important correlation to the other variables. The

small red dots represent an important link between the two variables. The number

of important links and variables that have at least one link to other variables is

different for different regions of the FL. Each region with a fixed topology of

important variables and links is a complexity mode. A FL may have many modes

(e.g. 10). Complexity modes exist because of either nonlinearity or piecewise

linearity in the system (Figure 3.9 shows an example of the latter). Each

complexity mode is characterized by a different complexity value.

Figure 3.11 An example of a self map and its three complexity measures
delivered by OntospaceTM.

61

This methodology (comprising the above definitions) can be best described as a

modeless approach for systemic studies. This methodology does not attempt to

make models from the observations and then try to estimate the behaviour of the

model under different variations in variables (which is the common approach of

science). Rather, we use the measurement of complexity as a quantitative

indicator of surprise. Consequently this measure per se can be used in robust

decision making with regards to choosing between the solution alternatives.

Figure 3.12 Two modes of a FL(left and right).

62

4 A Template for Complex Design Problems

This Chapter presents our template for engineering complex products. This

template is the extended version of Reidsema’s model and has characteristics of

evolutionary and spiral processes. The template is a simulation based design

methodology. Here, the role of simulation is central in immunizing PPO with the

help of complexity measures. The template is depicted in Figure 4.1.

It should be noted that the processes at various abstraction levels may be

carried out simultaneously. The DSS presented in Chapter 8 exploits and enables

this simulation based model of the design problem solving process. The steps of

this process are explained next.

Generation

Simulation

Decomposition

Composition and
Distribution

Integration

Iteration
Next Abstraction

Level

Figure 4.1 A Simulation Based model of design process for complex problems.

63

4.1 Generation

This is to generate the design concepts, or conceptual design. Here we assume that

these concepts are generated in the parametric format as sets of new design

variables. But if this is not the case the concepts must be parameterized before

proceeding to the next stage. The task of determining the values of the design

variables constitute a low level problem solving activity.

Naturally the generated variables at the initial abstraction levels are taken

as those variables related to the higher abstraction levels that encompass the more

intrinsic characteristics of the product, which has to do with the main functions

and performances of the product. In the same way the lower abstraction levels

usually locate the variables that describe the detailed functionalities of the

product. However these rules may be forsaken. We believe that it is advantageous

to think of the variables in the first abstraction level in the hierarchy as a seed that

all the solutions of all other abstraction levels, depend heavily upon. Given this

premise, the seed must have a foretaste of other problems at other abstraction

levels. Thus the seed must not only reflect the most important and general

functions of the product but also those functions that are low in the functional

decomposition chart and still have large dependencies on the other

functions/attributes of the product.

The number of variables at each abstraction level can be regarded as the

termination criteria. This is so since more variables implies a larger solution space

and a higher number of states in the FL. To follow the ideal approach of Liu et al

(2003), we suggest that the number of variables at each stage or abstraction level

must increase until about the midpoint in the design process and by then the

global trend (determined by the number of variables) must be towards

convergence (decrease in the number of variables).

64

4.2 Simulation

Referring to the process of systematically testing ideas early in NPD as

enlightened experimentation, Thomke (2001), in the article “Enlightened

Experimentation: the New Imperative for Innovation” argued that simulation

technologies enhance the number of design breakthroughs by testing a greater

variety of ideas in a virtual environment. According to Thomke (2001) “computer

simulation doesn’t simply replace physical prototypes as a cost-saving measure

but it introduces an entirely different way of experimenting that invites

innovation.” Simulation is the key to resolve performance as well as operational

requirements improvement with sensible development and production costs, times

and risks for multi-disciplinary systems (Formica and Marczyk, 2007; Sinha et al,

2001). Monte Carlo Simulation is often suggested as means of establishing a

design space and FL since creating high-fidelity simulation models are often

expensive (Marczyk, 1999; Sinha et al, 2001).

Monte Carlo Simulations can digest information gained from the design of

experiments to tune the simulation for higher compatibility with the real system.

Monte Carlo Simulation requires the estimation of the conditional probability

distribution of every pair of design variables, e.g. from the Design of Experiments

results or from the available models of the artefact/problem. Figure 4.2 shows the

typical modules that a simulation engine might contain. Here the simulation is the

parametric simulation in the statistical sense and the simulation consumes the

parametric model of the problem/artefact. Thus a simulation engine must contain

a parameterization module to present the problem in the parametric format.

65

As stated before the outcome of simulation is the FL or design space at a

given abstraction level. A FL is thus the Meta-Model of the design variables and

design relations. A Meta-Model is a scatter plot of two random variables (Figure

4.3). Marczyk (1999) described Meta-Models as the goldmines of information;

they are ontologies that describe a system (Efatmaneshnik and Reidsema, 2007.a).

Any model would not be as precise as the Meta-Models and this forms the basis

for the argument that complex systems require Meta-Modelling (Marczyk, 1999).

Meta-Models have the ability to transfer all the required information about the

structure (and thus the self) of the system and therefore may be used to measure

the complexity. Despite the fact that Meta-Models only show the variability of

two variables relative to each other (both of which are characteristics of the

environment of the system or non-self), the self of the system is embedded or

hidden within them in the most prime way.

Concept
Generation

Simulation Parametric
Modeling

Feedback

Simulation Engine

Parameterization Conditional Probability
Estimation

Random Number
Generator Models Data Base

Design of Experiments Results

Figure 4.2 Simulation Engine module and its integration in the problem solving
procedure.

66

We propose the employment of design space simulation in the design

process to estimate the PDSM of the product/problem at the upstream of the

design process (Efatmaneshnik and Reidsema, 2008.a). The simulated PDSM

gives important insights about the couplings in the problem structure and thus the

tasks structure. Therefore, by simulation not only the performance of the product

can be estimated but also the design process can be managed more effectively and

efficiently (Efatmaneshnik and Reidsema, 2008.a). In Section 4.4 this issue is

extensively elaborated. We suggest that decomposition must be taken as the

decomposition of simulated PDSM. Table 4.1 shows an example of a typical

simulated PDSM. Figure 4.4 shows the corresponding graph to PDSM in Table

4.1 to which we refer as self graph (or map) of the problem (this graph is identical

to the hypergraph presented in the Figure 3.11). Self maps intuitively convey the

level of coupling in a system. Decomposition is applied to the self map of the

system (Efatmaneshnik and Reidsema, 2008.a).

Figure 4.3 Scatter Plots as Meta-Models can be established by Monte Carlo
simulation and used for determining the correlation between design variables,

from McDonald and Mavris (2000).

67

Table 4.1 A Simulated PDSM is a weighed adjacency matrix. This PDSM has 10

Variables.
- V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

V1 0 0.76 0.45 0.16 0.22 0.77 0.12 0.01 0 0

V2 0.76 0 0.11 0.65 0.44 0.78 0 0 0 0.18

V3 0.45 0.11 0 0.64 0.11 0.31 0.02 0 0.15 0

V4 0.16 0.65 0.64 0 0.45 0.34 0 0 0 0

V5 0.22 0.44 0.11 0.45 0 0 0 0.01 0 0.01

V6 0.77 0.78 0.31 0.34 0 0 0 0 0 0

V7 0.12 0 0.02 0 0 0 0 0.2 0.7 0.1

V8 0.01 0 0 0 0.01 0 0.2 0 0.2 0.8

V9 0 0 0.15 0 0 0 0.7 0.2 0 0.9

V10 0 0.18 0 0 0.01 0 0.1 0.8 0.9 0

Figure 4.4 The self graph of problem/system.

68

4.3 Decomposition

According to Papalambros (2002) decomposition of large-scale design problems

allows for:

• conceptual simplification of the system

• reduction in the dimensionality of the problem

• more efficient computational procedures

• utilization of different solution techniques for individual sub-problems

• simultaneous design, modularity, multi-objective analysis

• efficient communication and coordination among the diverse groups

involved in the design process

Problem decomposition and partitioning of the self map of the system fits

within the area of graph partitioning. A bi-partitioning of graph G is a division of

its vertices into two sets or sub-graphs, P1 and P2. Similarly a k-partitioning is the

division of the vertices of the graph into k non-empty sets P = {P1, P2 ,…,Pk}. A

graph can be partitioned in many different ways. In the domain of problem

solving, every node or vertex of a graph represents a variable of the system and

every edge of the graph suggests that two parameters of the system are dependent

on each other; however there are several other representational schemes (for

example see Michelena and Papalambros (1995), and Chen et al (2005)). Here,

the strength of the relationship between two variables is the corresponding edge

weight. An undirected graph as the self map of the system indicates that variables

affect one another mutually and equally. The sub-graphs can be regarded as

subsystems or sub-problems or agents (Kusiak, 1999). The notion of agency

implies that the sub-problems are solved more or less independently from each

other. Each design team has autonomy to explore parts of the solution space that

is of interest to its own assigned sub-problem (agent).

We suggest decomposing the PDSM in several modes and according to its

connectivity level (Efatmaneshnik and Reidsema, 2008.a). Problem connectivity

69

is the total number of edges in the self map of the product/problem divided by the

total number of possible edges; that is the number of edges of a complete graph

with the same number of nodes (Efatmaneshnik and Reidsema, 2008.a). The total

number of possible edges in a complete undirected graph with n nodes or vertices

is:

 (2)

If the self map of the PDSM has k connections (edges), we define the problem

connectivity as:

 (3)

The decomposition modes have been scattered in the literature (Sosa et al,

2000; Klein et al, 2003.b; Browning, 2001) and are brought together here for the

first time (Table 4.2). Bearing in mind that it is usually desirable to have

subsystems of similar order, the implementation of some of these decomposition

modes (in particularly full decomposition mode and integrative mode) may not

always be feasible. The connectivity values in Table 4.2 are based on this

knowledge and the experience of the author with randomly generated graphs. For

problems with a denser self map (higher connectivity), modular clustering and

overlap decomposition can be used. If the problem’s map is very dense and the

system is regarded as highly complex then it may not be decomposed at all (Bar-

Yam, 2004). We will come back to this important issue in Chapter 5.5.

Each of these decomposition modes brings specific strengths, weaknesses

and particularity to the problem solving process. As an example, an aircraft with a

blended wing body may not be decomposed completely into separate body and

wings with the related design variables being independent or loosely dependent

(Figure 4.5). Instead for systems that have subsystems with fuzzy boundaries

overlap decomposition may be used. The reason that much effort in this thesis has

been devoted to problem decomposition is that clustering in fact is the key to

tying top-down, activity-based DSMs together with bottom-up, parameter-based

70

DSMs (Browning, 1999). The decomposition problem will be treated in Chapter

5.

Table 4.2 Decomposition Modes of self map of problems.

Connectivity Very Low

(0-0.02)

Low

(0.02-0.1)

Intermediate

(0.1-0.2)

High

(0.2-0.3)

Very High

(0.3-1)

Possible or best
decomposition

strategy

Full
decomposition

Integrative
Clustering

Modular
clustering

Overlap
clustering

No
decomposition

Illustration

4.4 Distribution (and Composition)

Distribution refers to the distribution of the design tasks amongst the design teams

and composition is thus the formation of the design teams. Integrated NPD

describes how tasks are interconnected and seeks to integrate the product process

and organization (Prasad, 1996). As depicted in Figure 4.6, organizational

Figure 4.5 Two components (subsystems) are overlapped in blended wing-body
types of aircrafts.

71

partitioning and integration are tied to the nature of the product decomposition

(Gulati and Eppinger, 1996; Browning, 1999; Eppinger and Salminen, 2001). It is

arguably true that the efficiency of the design integration process is somehow

dependent on the alignment of the task structure and organizational structure

(Browning, 1999).

Thus integrated NPD requires that decomposition and integration schemes

have congruence. This harmony marks a complex NPD project with success. In

general two main approaches are reported in the literature for the deliberate

alignment of problem structure and NPD organization structure (Efatmaneshnik

and Reidsema, 2008.a):

1. Bottom up planning for flexible organizational structure forms the

design teams after product decomposition has taken place. For example the

aligned organizational architecture in charge of conceptual and parametric

design of an aircraft’s body and wings, in the same way, constitute two

different design teams with overlapping boundaries. Tanaka et al (2000)

took this approach in the context of distributed problem solving and called

it multi-agent system creation. This approach has also been used in a

manufacturing system MetaMorph (Maturana et al, 1999) that could

dynamically change its form to mimic the task structure. In this case the

Figure 4.6 Product architecture is tied to organization through
decomposition/integration problem, after Gulati and Eppinger (1996).

72

number of the subsystems the system is decomposed to may be maximized

for better overall performance.

2. Top-down planning for fixed organizational structures decomposes the

problem/product in a way that suits the organizational structure; this is

used when the organizational structure is fixed and solid which means that

design teams are formed prior to the introduction of the problem. A greater

use of coordination activities between the design teams and/or the use of

integration teams results. In this case the number of the subsystems is

determined according to the number of design teams.

These two approaches correspond to using low level and high level

knowledge for design planning. In general in a problem solving environment the

designers actions can be planned or controlled by using three kinds of knowledge

(Reidsema, 2001) (Figure 4.7):

1. Low level problem knowledge

2. Medium level knowledge of the problem solving process

3. High level organisational knowledge

Browning (2001) emphasized that parameter-based DSM which represents

the low level product knowledge has integrative applications:

Most design planning takes place in a top–down fashion

through decomposition. If they begin at the top, such

models rarely reach the lowest levels of design activity,

where individual design parameters are determined based

on other parameters. A bottom-up, integrative analysis of

these low-level design activities can provide process

structure insights.

This characteristic of the parameter based DSM which represents the low level

product knowledge makes it suitable to be utilized in planning and distributing

complex engineering problems (Efatmaneshnik and Reidsema, 2008.a).

73

4.5 Integration

Integration combines the partial solutions of a large problem (Reidsema, 2001).

The integration problem of complex problems and complex problem solving

environments is the main challenge for problem solvers. For complex systems,

due to coupling between the distributed tasks, integration may not be performed

linearly simply by adding the partial solutions together. Since the coupled

problems tend to be nonlinear (same as the coupled differential equations) the

solutions may not be achieved by using the usual concurrent planning (that adds

the partial solutions to obtain the overall solution). The nonlinearity limits the

kind of knowledge being used for planning.

In product design the performance and operational requirements of the

product are micro or low level parameters, whereas production costs, times and

risks are macro or high level and often emergent properties of the process

Figure 4.7 Design Process Knowledge (Reidsema, 2001).

74

(Efatmaneshnik and Reidsema, 2009). Macro level properties (those that are

observed at the organizational level) dynamically arise from the interactions

between the micro-level properties that are the low level activities (Efatmaneshnik

and Reidsema, 2009). Thus, in order to resolve the uncertainty and dealing with

high level emergent properties of the process and organisational operations (that

can be chaotic), the low level knowledge of the problem must be used to

characterize the behavioural rules of individual problem solvers (Efatmaneshnik

and Reidsema, 2009). Using low level knowledge of the product is indeed a

bottom up approach that has been suggested as the panacea for complex problem

solving failures (Anderson, 2006), (Efatmaneshnik and Reidsema, 2009). Bottom

up modelling of the design process offers the greatest fidelity to the process being

modelled or emulated (Anderson, 2006).

Integration within the design process can be conducted by two major

methods (Efatmaneshnik and Reidsema, 2008.a):

1. Supervised integration

2. Unsupervised integration

Supervised problem solving architecture involves high level integration teams and

centralized planning (Efatmaneshnik and Reidsema, 2008.a) (see Figure 4.8).

Eppinger (1997) stated that:

One important level of integration takes place within each

development team; this is the now common practice of

concurrent engineering, in which a cross-functional team

addresses the many design and production concerns

simultaneously. To assure that the entire system works

together, sub-system development teams must work

together and for that additional teams are assigned the

special challenge of integrating those subsystems into the

overall system.

75

However for densely coupled and complex problems/systems using high

level integration teams as coordinators cannot be effective, since the high load of

coordination complexity would be a greater barrier to effectiveness of the

integration process.

Unsupervised problem solving architectures can cope with problems of

more complexity using a distributed planning approach (Efatmaneshnik and

Reidsema, 2008.a). These include systems that use 1) low level integration team

and 2) multi agent architecture and 3) information intensive architecture

(Efatmaneshnik and Reidsema, 2008.a).

Systems using low level integrators and multi agent architectures

correspond to two decomposition patterns that are recognized by Sosa et al (2000)

as coordination-based and modular. Coordination based decompositions partition

the system into several relatively independent subsystems and only one (or few)

strongly connected subsystem(s) namely the coordination block(s) (Figure 4.9).

The identification of coordination block (Figure 4.9(b)) in a system can be

performed through integer programming (Sosa et al, 2000). The coordination

block (CC) is an integrative subsystem and the design team in charge of

integrative subsystem design is regarded as a low level integration team that

implicitly coordinates the activities of other teams (Efatmaneshnik and Reidsema,

2008.a). Obviously, the design of the integrative subsystem must be much more

High level
coordination
team

Low level
design teams

 Figure 4.8 Integration team acts as a high level coordinator.

76

complex than the other subsystems. As such, the integration of the complex

systems with more than a certain amount of coupling is not desirable with low

level integration schemes through coordination based problem decompositions

(Efatmaneshnik and Reidsema, 2008.a).

The interactions between the design teams in multi agent systems are

autonomous and based on agents social knowledge (Efatmaneshnik and

Reidsema, 2008.a). Multi agent systems are a relatively complex field of research.

The solution to the design problems in multi agent systems is formed in a self

organizing fashion that emerges as result of autonomous interaction of the agents

(Figure 4.10(a)); multi agent systems correspond to modular problem

decomposition (Figure 4.10(b)) (Efatmaneshnik and Reidsema, 2008.a).

Figure 4.9 Interactions between design teams of low level integration scheme

(a) and the corresponding PDSM of order 100 with coordination based 4-
partitioning (b).

(a) (b)

Low level design teams

Coordination Block

77

Information intensive architecture can also be regarded as multi agent

system in which the design teams (or coalition of agents) have overlapping

boundaries (Efatmaneshnik and Reidsema, 2008.a). Information intensive

architecture corresponds to overlap decomposition of product/system in which

subsystems are overlapped and share some of the design variables with each other

(Efatmaneshnik and Reidsema, 2008.a). Information intensive structures facilitate

collaborative design for large scale and complex design problems.

According to Klein et al (2003.b) collaborative design is performed by

multiple participants representing individuals, teams or even entire organizations

each potentially capable of proposing values for design parameters and/or

evaluating these choices from their own particular perspective. For large scale

and severely coupled problems collaborative problem solving is possible when

the design space or problem space is decomposed in an overlapped manner: the

design teams explicitly share some of their parameters, problems, and tasks

(figure 4.11). The main characteristic of this process model is the intense

collaboration between coalitions of agents making this mode an information and

knowledge intensive process (Klein et al, 2003.b). The impact of new information

on the design process in this integration scheme is relatively high; as such overlap

decomposition and its corresponding integration scheme are suitable for problems

of high complexity and self connectivity (Efatmaneshnik and Reidsema, 2008.a).

Figure 4.10 Multi agent design system (a), the corresponding modular PDSM
decomposition (b).

Low level design teams

(a)
(b)

78

Following the idea of Enlightened Engineering (Bar-Yam, 2004) we

propose that for problems with high levels of connectivity several design groups

must work in parallel to each other on the same problem (that has not been

decomposed) (Efatmaneshnik and Reidsema, 2008.a). The design teams in this

situation compete rather than cooperate with each other. The innovative problem

solving as the integration breakthrough (Bar-Yam, 2004) is discussed and treated

in Chapter 6.

4.6 Discussion: Adaptive Structuration

The proposed model of design goes beyond the traditional models of

design and is virtually an amalgamation of organization theory and design theory.

An important research question in the field of organization design is how to

constitute cross-functional teams (Browning, 1999). Coordination schemes are

needed to direct the design process so that a design solution is sought in a way

that accommodates the team interactions (Chen and Li, 2001). “The productivity

of design teams depends to a large extent on the ability of its members to tap into

an appropriate network of information and knowledge flows” (Kratzer, 2004).

Figure 4.11 Design teams (a) as well as product partitions (b) have
overlapped boundaries.

(a) (b)

79

Utilizing cross-functional teams that adapt the organization structure to the task

structure is one way to address these situations (Browning, 1999). The presented

template poses that at each round of the design cycle (of each abstraction level)

the organization (team configuration) must be adapted to the generated tasks and

reconfigured according to the complexity of the problem at that level. According

to their adequacy to cope with problems of higher complexity, these integration

schemes are listed in Figure 4.12 (Efatmaneshnik and Reidsema, 2008.a). The

idea of embedding different knowledge sharing patterns amongst the design

agents and design teams of one system has been to date, considered by several

other systems researchers (Zhang, 1992; Shen and Norrie, 1998; Rosenman and

Wang, 1999; Chen and Li, 2001). These models will be reviewed in Chapter 8.

“The production and reproduction of the social systems through members’

use of rules and resources in interaction” has been studied by Giddens in a

sociological context and is known as the Theory of Structuration (DeSanctis and

Poole, 1994). DeSanctis and Poole (1994) adopted Giddens theory to study the

interaction of groups and organizations with information technology denoted as

Adaptive Structuration Theory. The theory deals with the evolution and

development of groups and organizations with observable patterns of relationships

and communicative interaction among the people (DeSanctis and Poole, 1994).

High level
integration
teams

Problem’s connectivity increase

Figure 4.12 Ranking various integration schemes capability in coping with
complexity.

Low level
integration
teams

Unsupervised
multi agent
system

Information
intensive
architecture

Enlightened
Engineering

Irreducible
System

s
Lo

os
el

y
co

up
le

d
pr

ob
le

m
s

Integration Schemes

80

IMMUNE, the conceptual DSS presented in Chapter 8 enables Adaptive

Structuration through virtual teams. “Virtual teams (or coalitions) are groups of

individuals collaborating in the execution of a specific project while

geographically and often temporally distributed, possibly anywhere within (and

beyond) their parent organization” (Leenders et al, 2003). “Virtual teams work

across boundaries of time and space by utilizing modern computer-driven

technologies”; as an instrument of team design, Information Technology (IT) is

used for creating interdependent relationships by actively shaping and reshaping

interdependencies and the communication structure of the virtual teams (Leenders

et al, 2003). As these are altered, consequently, so are the team’s productivity

(Leenders et al, 2003) and creativity (DeSanctis and Monge, 1999) which are

related to the creation of the appropriate information flow between the design

teams. Adaptive Structuration can be implemented with less effort by using virtual

teams. This is so, because the creation of interdependencies within and between

the virtual teams is arguably easier than in a conventional team (DeSanctis and

Monge, 1999), and so the management of creativity is more affordable in virtual

organizations (Leenders et al, 2003).

81

5 Immune Decomposition and Process Immunity

Decomposition is a means of reducing the complexity of the main problem to

several sub-problems. This is a reductionist approach which reduces complex

things to their constituent parts and their interactions in order to understand their

nature. In contrast holism is an approach to problem solving that emphasizes the

study of complex systems as wholes. “In the design community, decomposition

and partitioning of design problems has been attended for the purpose of

improving coordination and information transfer across multiple disciplines and

for streamlining the design process by adequate arrangement of the multiple

design activities and tasks” (Michelena and Papalambros, 1997).

Pimmler and Eppinger (1994) explained that “for a complex product, such

as an automobile, a computer, or an airplane, there are thousands of possible

decompositions which may be considered; each of these alternative

decompositions defines a different set of integration challenges at the

organizational level”. Alexander (1964) posed that design decomposition (or

partitioning) must be performed in a way that the resulting sub-problems are

minimally coupled. In the literature this is also referred to as optimal

decomposition (Michelena and Papalambros, 1997) and robust decomposition

(Browning, 1999). Along the same line Simon (1969) suggested that complex

design problems could be better explained when considered as “hierarchical

structures consisting of nearly decomposable systems organized such that the

strongest interactions occur within groups and only weaker interactions occur

among groups”.

More coupled sub-problems usually lead to more process iterations and

rework, because conflicts may arise when dependency (edges) in between the

subsystems exists (Efatmaneshnik and Reidsema, 2008.a). A conflict is when the

solution to one sub-problem is in contrast with the solutions to another sub-

problem(s). An important conflict resolution technique is negotiation. Negotiation

leads to iteration in the design process. Obviously a design process with least

number of iterations is more desirable, and to do this decomposition must be

82

performed in way that the entire system after decomposition entails less coupling

(see Figure 5.1).

The system (or problem) is fully decomposable if there is no edge in

between the sub-systems. In this case the corresponding design process can be

made fully concurrent: problems are solved separately and solutions are added

together. A two stage algorithm is usually used to decompose a design problem

into sub-problems that are less coupled (Kusiak, 1999; Chen et al, 2005). These

stages are:

1. To diagonalize the PDSM of the problem (or the adjacency matrix

of the corresponding graph).

2. To cut the diagonalized PDSM from the appropriate points.

5.1 Spectral Diagonalization Technique

Several methods exist for diagonalization including integer programing (Kusiak,

1999), genetic algorithms (Altus et al, 1996) and spectral methods. Spectral

graph theory uses the eigenvalues and eigenvectors of the adjacency and

Figure 5.1 More coupled sub-problems increase the number of process
iterations.

Complex
Problem

Integrated
Solution

Sub-problems

Integration

 Conflict resolution
through iteration and

negotiation

More coupled

subsystems
implies added
conflicts and
further design

iterations

Assigning each
subsystem

 to a design team

Decomposition

83

Laplacian matrices. The eigenvectors of adjacency matrix and Laplacians can be

used to diagonalize the adjacency matrices of both weighted and un-weighted

graphs. Consider A to be the adjacency matrix of an undirected, weighed graph

(G). An automorphism of a graph G is a permutation g of the vertex set of G with

the property that, for any vertices u and v, we have ug ~ vg if and only if u ~ v.

“vg” is the image of the vertex v under the permutation g and (~) denotes

equivalence. Automorphisms of graph G produce isomorphic graphs (Cameron,

2004).

 The first step in spectral partitioning of graphs is to sort the eigenvectors

of the adjacency and Laplacian matrices in ascending order, and then to permute

G by those indices of the sorted vector (Efatmaneshnik and Reidsema, 2007.b).

Some of these permutations (by different sorted eigenvectors) are diagonalized

(Efatmaneshnik and Reidsema, 2007.b). Although initially it was thought that

only the eigenvector of the second eigenvalue of the Laplacian (known

corresponding as the Fiedler vector and Fieldler value) has the property of

diagonalization but later it was shown that using other eigenvectors (of both

adjacency and Laplacian) can outperform the Fiedler vector in this regard,

specifically in case of the weighted graphs (Alpert et al, 1999). Figure 5.2(a)

shows the graphical representation of the adjacency matrix of an un-weighted

randomly generated graph of order one hundred. Each dot points to the existence

of a link between two corresponding variables. The automorphisms of this

adjacency matrix are also shown which are permuted by fiddler vector (Figure

5.2(b)), third eigenvector of the Laplacian (Figure 5.2(c)), and 98th eigenvector of

adjacency matrix (Figure 5.2(d)).

The utilization of spectral diagonalization has not been reported in the

engineering design literature. One reason for this may be that mathematical

representation of this method used in the discrete mathematics community is very

different from the way it is presented here. Traditionally the diagonalization was

achieved through lengthy integer programming and hefty branch and bound

algorithms (Kusiak, 1999). The spectral diagonalization technique is already

exploited extensively in the context of discrete mathematics (Alpert et al, 1999;

Spielman and Teng, 2007), circuit design (Chan et al, 1994), data mining (Ding et

84

al, 2001; White and Smyth, 2005) and image segmentation (Shi and Malik, 2000).

This algorithm is very fast compared to the traditional integer programming and

branch and bound algorithms that were iteration based as those reported in Kusiak

(1999).

(a) (b)

(c) (d)

Figure 5.2 Shows the adjacency matrices of a graph (a) and its spectral
permutations by various eigevectors that are diagonal automorphisms of the

graph.

85

5.2 Partitioning Quality Criteria

After diagonalization, the cutting points must be determined. Since for a given

graph many different decompositions are possible there must be a metric that

enables comparison between them (Efatmaneshnik and Reidsema, 2008.a). These

metrics are referred to as partitioning quality criteria. Table 5.1 shows some of

these metrics and characteristics. In this table k denotes the number of sub-graphs

and n is the cardinality (order) of the original graph, and λi is the ith eignevalue of

the Laplacian matrix, Eh is sum of the weights of all edges that have only one end

in sub-graph Ph:

 (1)

Also the cut size is defined as:

 (2)

And finally the total edge weights in the sub-graph Ph is:

 (3)

For a more detailed comparison in between the performance of these

metrics see Chan et al (1994) and Verma and Meila (2003). The minimization of

the quality partitioning criteria is an optimization problem and requires

employing the appropriate optimization techniques. There are various spectral

methods to determine the indices of cut points that can minimize different

partitioning criteria however their accuracy is disputed (Verma and Meila, 2003;

Alpert et al, 1999). We suggest using exhaustive search algorithm after

diagonalization.

86

Table 5.1 Several partitioning quality criteria.

Name

The measure Proposed

by

General remarks

Cut ratio

Spielman
and Teng

(2007)

Has a lower and an upper

bound: 2
2

λ ,

Cut Ratio 1 2

1 2

cut (P ,P)
P P×

Cheng
and Hu
(1989)

Has a lower bound:

2

n
λ

Min-Max
cut ratio

1 2 1 2

1 2

cut(P , P) cut(P , P)
E(P) E(P)

+ Ding et al
(2001)

Favors balance sized sub-
graphs

Normalize
d cut ratio

1 2 1 2

1 1 2 2

cut(P , P) cut(P ,P)
E E(P) E E(P)

+
+ +

Shi and
Malik
(1991)

Favors balance sized sub-
graphs

Min cut
k

h
h 1

E
=
∑ Alpert et

al(1999)
Can lead to unbalance

sized sub-graphs

Cost

k

i
i 1

k 1 k

i j
i 1 j i 1

1 E
2

 P P

=
−

= = +

×

∑

∑ ∑
 Yeh et al

(2005)
Leads to balance ordered

sub-graphs

Scaled cost
k

i

i 1 i

E1
n(k-1) P=

∑ Chan et al
(1994)

Has a lower bound:
k

i
i 1

n (k 1)

λ
=

−

∑

Modality
function

2k
i i i

i 1

E(P) E E(P)
E(G) E(G)=

⎡ ⎤⎛ ⎞+
−⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑

White and
Smyth
(2003)

Strong cluster
identification metric for

very large networks.
Maximizes at k =3.

87

To reduce the computational costs it is desirable to have an estimate of the

number and order of subsystems although this is not essential. As a general rule, a

higher number of sub-problems is better (Michelena and Papalambros, 1995) to

the extent that decomposing the problem into its very elements (the single

variables) might seem appropriate. This means that the number of sub-problem

should is equal to the number of variables. SINE (Brown et al, 1995) for example

was a multi agent design system based on the mechanism of assigning single

design variables to each of its design agents that were called single function

agents. In Section 5.3 a partitioning quality criterion of decompositions is

presented that amongst other advantages explicitly suggests the number of

partitions that should not be used.

5.3 Real Complexity

Let S be the graphical representation of a problem with the adjacency matrix A =

[ai,j] and its complexity C(S) (self complexity) measured by the graph theoretic

complexity measure presented in Section A.1. Consider k-partitioning P of the

graph S: P = {P1,P2,…,Pk}. Each of these sub-graphs is a block of the system. Let

C(Pi) be the complexity of each sub-graph determined by the complexity

measure. A block diagram is the graph representation of partitioned graph

(Diestel, 2005) i.e. it is more abstract than the self of the system. As such a block

diagram is the graphical representation of the decomposed system (Figure 5.3)

(Efatmaneshnik and Reidsema, 2008.a). We define the k dimensional square

matrix B as the Complexity Based Adjacency Matrix of the Block Diagram with

the diagonal entries as the complexity of the sub-graphs (or blocks), and the off-

diagonal entries as the sum of the weight of the edges that have one end in each of

the two corresponding sub-graphs (Efatmaneshnik and Reidsema, 2008.a). The

real complexity of the block diagram C(B) is achieved by applying the

complexity measure to matrix B (Efatmaneshnik and Reidsema, 2008.a). This

measure is a better measure of complexity of systems after decomposition and a

more holistic one than the complexity index of Chen and Li (2005) that was the

sum of some components.

88

C L . . L1 1, 2 1, k
L C . . L2,1 2 2, k

. . . .B

. . . .
L L . . Ck,1 k, 2 k

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

K

K

M M O M

K

 (4)

Where (5)

Real complexity C(B) is a subjective measure of the system’s complexity

and is relative to how one might decompose the system (Efatmaneshnik and

Reidsema, 2008.a). Conversely the self complexity C(S) is an objective measure

of the system and is absolute in being independent from the type of

decomposition P (Efatmaneshnik and Reidsema, 2008.a). The purpose of

decomposition is to reduce the initial problem complexity C(S) to a number of

sub-problems with complexity C(Pi) less than self complexity C(S). The real

complexity represents the overall complexity and the complexity of the whole

system of subsystems. While being a quality of partitioning criteria, real

complexity represents the integration effort for the whole system after

1 2

3

4

5

6

7

8 9

C3

C1

C2

10

Figure 5.3 The partitioning and block diagram of graphs.

89

decomposition since real complexity in addition to the complexity of each sub-

problem, expresses the coupling of the system of sub-systems (Efatmaneshnik

and Reidsema, 2008.a). The system integration efficiency and risk is dependent

on real complexity as much as it depends on self complexity (Efatmaneshnik and

Reidsema, 2008.a).

Ulrich and Eppinger (2004) have argued that design efficiency can be

considered directly proportional to the overall complexity of the system and

decomposition affects the design efficiency. Problem decomposition must be

performed very in a way that adds least possible uncertainty to the design process.

Obviously by minimizing the real complexity the integration effort and risk is

minimized. As such we define decomposition with minimum real complexity as

immune decomposition (Efatmaneshnik and Reidsema, 2008.a).

Braha and Maimon (1998) defined design information as a distinct notion,

and independent of its representation; information allows the designer to attain the

design goals and has a goal satisfying purpose. Design can be regarded as an

information process in which the information of the design increases by time:

making progress and adding value (to the customer), which in a NPD system

compares to producing useful information that reduces performance risk

(Browning et al, 2002). Browning et al (2002) states the performance risk

increases with product and problem complexity and complex system NPD

involves enormous risk. Since decomposition increases the overall complexity, it

must, as a result, reduce design information and increase the design risk. Figure

5.4 suggests that the process (1), by employing a better decomposition, adds less

risk to the design process and reduces less information from it; and thus process

(1) is likely to have a higher design efficiency (Efatmaneshnik and Reidsema,

2008.a).

90

 The immune decomposition is likely to lead to better, cheaper and faster

production of complex products and to enhance the design process efficiency with

respect to:

1. Better products in terms of quality and robustness: Less complexity

means lower risk or rework during the design process (Browning et al,

2002) and this implies that higher quality can be achieved with less effort.

Furthermore, in terms of the robustness of the product itself, immunity

from a chaotic and overly sensitive response to stochastic uncertainties in

the manufacturing process capabilities and during the performance cycle

of the product is the direct influence of lower complexity (Efatmaneshnik

and Reidsema, 2007.a).

2. Cheaper product and process design costs: The lower complexity

structure implies less coupling between subsystems and that means less

number of design iterations amongst various engineering tasks in a large

problem (Smith and Eppinger, 1997) easier coordination, less conflicts

arising in the integration of the product, and all these suggest a cheaper

design process.

Risk

Information

Time

Decomposition

D
es

ig
n

Sy
st

em
 C

ha
ra

ct
er

is
tic

s

Process (1)
Process (2)

Figure 5.4 Decomposition increases risk and reduces information.

91

3. Faster design process: Designing a product is a value adding process, and

that involves an accumulation of the required information to meet the

design requirements (Browning et al, 2002). Obviously for less complex

products this accumulation happens faster because the design process

system of a less complex product would be less fragile (at lower risk) to

uncertainties available in the early stages of the design process.

Figure 5.5 shows the immune decompositions of the system example in

Figure 5.4, for various numbers of subsystems. The figure shows that amongst all

decompositions 5-partitioning has had the minimum real complexity. The spectral

diagonalization method combined with random search algorithm was used (see

Section A.3.2 for the related MatlabTM Codes).

Figure 5.6 compares the performance of real complexity against three

other cut quality measures for 20000 randomly chosen and distinct

decompositions of a randomly generated graph of order 100 and of size 150. This

figure shows that real complexity has responded differently to the number of

subsystems than other measures. For this randomly chosen graph, the minimum

real complexity is the global minimum (amongst different partition numbers) at

bi-partitioning (k=2). After 6 partitions the minimum real complexity decreases

by the increase of the number of subsystems. The minimum real complexity

maximizes at the number of subsystems equal to 6. Other cut quality measures

show strictly decreasing linear relationship between the measure of minimums

cuts and number of partitions. Another observation and interesting characteristic

of real complexity is that its minimum for a particular number of subsystems

maximizes at a certain number of subsystems which is different for different

graphs. Amongst the quality partitioning criteria presented in Table 5.1 only

modality function had this property which was always maximized at 3-

partitioining.

92

Number of partitions

R
ea

l C
om

pl
ex

ity

 Figure 5.5 Decomposition of a DSM into various numbers of partitions.

93

5.4 Real Complexity of Overlap Decompositions

Several operation researchers have addressed the overlapping decomposition

problem and have emphasized its quality improving, lead time and cost reducing

benefits (Roemer and Ahmadi, 2004; Terwiesch and Loch, 1999; Krishnan et al,

1997) to the extent that design process efficiency can be regarded as proportional

to the amount of the overlap between the subsystems (Clark and Fujimoto,

1989)19. Taking the information processing view of the product design process,

Krishnan et al (1997) has argued that overlap decomposition of the problems can

lead to faster information acquisition and more frequent information exchange

between the subsystems enabling the concurrent execution of coupled activities in

an overlapped process. However, the design teams can be collaborative only when

the design space or problem space is decomposed in an overlapped manner, so

19 As it will be clarified later in this section, this statement implies that the parts of the problem
that are shared between design groups must preferably have denser connectivity (i.e. higher
complexity); otherwise perfectly overlapped sub-systems lead to identical sub-problems which is
equivalent to the Enlightened Engineering explained in Section 4.5.

Figure 5.6 Comparison between the performance of real complexity and other
cut quality measures.

94

that the design teams share some of their parameters, problems, and tasks

(Efatmaneshnik and Reidsema, 2007.b).

Krishnan et al (1997) however noted that the overlap decomposition of the

system must be performed very carefully as without careful management of the

overlapped NPD process, the development effort and cost may increase, and

product quality may worsen. It should be noted that no appropriate measure has

yet been proposed to distinguish the overall behaviour of the systems under a

range of possible overlap decompositions (Efatmaneshnik and Reidsema, 2007.b).

An overall complexity measure for overlap decomposition can be readily

obtained by exploiting the real complexity (Efatmaneshnik and Reidsema,

2007.b). In overlap decomposition of graphs, vertices are allowed to be shared

between the sub-graphs. The measurement of the overall real complexity of the

overlap decompositions can be gained based on the formulation of the

decentralized control strategies for overlapping information sets (Ikeda et al,

1981). Ikeda et al (1981) states that:

The simple underlying idea is to expand the state space of

the original system (design space or FL in case of the

product design) so that the overlapping subsystems appear

as disjoint. The expanded system contains all the necessary

information about the behaviour of the original system

which then can be extracted using conventional techniques

devised for standard disjoint decompositions.

Figure 5.7 shows the extraction of the Complexity Based Adjacency

Matrix of Block Diagram with overlapped subsystems. It can be tested that the

dimension of this matrix is four whereas the number of subsystems are two.

95

In general the extended Complexity Based Adjacency Matrix of Block Diagram

with elements B = [bij] where sub-graphs share some vertices can be defined as:

 (6)

The effect of overlapping the decompositions on the design efficiency is a

very subtle one. The integration phase of the design process is often accompanied

by inadvertent information hiding due to the asynchronous information exchanges

between the design teams, referred to as design churn effect (Eppinger et al,

2003). Design churn delays the design process convergence to a global solution.

C 2 2 01
2 C 0 1lap
2 0 C 1lap
0 1 1 C 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

2 1
C1 C2 Clap

2 1
C1 C2 Clap Clap

Figure 5.7 Real structural complexity measurement for overlapping subsystems.
All link weights equal to one.

Apply the
graph theoretic

complexity
measure

Extend

Block
Diagram

Adjacency
Matrix

96

The remedy to this effect lies in overlapping the design tasks. Overlapping leads

to faster and in time information transfer between the design teams. This is to say

that overlapping can increase the design process response and sensitivity to new

information reducing design lead time and increasing design process efficiency

(Figure 5.8) (Efatmaneshnik and Reidsema, 2007.b).

Overlapping leads to more real complexity in comparison with the disjoint

decomposition of the design space, since overlapping virtually increases the

dimensionality of the problem space (Efatmaneshnik and Reidsema, 2007.b).

Thus, it is not recommended to simply overlap the subsystems as much as

possible because it may lead to high overall complexity (Efatmaneshnik and

Reidsema, 2007.b). We propose two seemingly conflicting objectives when

overlapping subsystems (Efatmaneshnik and Reidsema, 2007.b):

1. To minimize the real complexity of the whole (extracting immune

decompositions).

2. To maximize the sum complexity of the overlapped parts. The

complexity sum of the overlapped parts (Clap) is representative of

how much the system is overlapped

Figure 5.8 Decomposition increases risk and reduces information. Overlap
decomposition makes the system to converge faster.

Risk

Information

Time
Decomposition

Disjoint Decomposition (1)

Overlap Decomposition (2)

Pr
od

uc
t D

es
ign

 S
ys

te
m

Ch

ar
ac

te
ris

tic

End of Process 2 End of Process 1

97

Figure 5.9 demonstrates the real complexity and the overlapping degree

(complexity sum of the overlapping parts) of many random decompositions

(Efatmaneshnik and Reidsema, 2007.b). This figure shows the desired region for

the decompositions, the characteristic of which is minimum overall real

complexity (maximum efficiency, minimum fragility of the corresponding design

process or immunity) and maximum overlapping complexity (high sensitivity of

the design process to new information) (Efatmaneshnik and Reidsema, 2007.b).

Desired Region

Figure 5.9 Extracting the desired overlap decompositions for routine design
process of complex systems by random search and spectral diagonalization.

98

 5.5 On Decomposability

According to Edmonds (1999) the general area of decomposability is covered by

Arbib (1974), Conant (1972), Dussauchoy (1982), Naylor (1981) and Steel

(1992). The complexity based approach to decomposability has been considered

by Edmonds (1999). He used the “analytical complexity measure” to determine

the decomposability of the syntactical expressions in formal languages. The ease

with which a system can be decomposed into sub-systems has close connections

with the real complexity. Real complexity provides a medium for decomposability

testing. A system that is not decomposable is irreducible. Before proceeding lets

introduce the lower bound for the real complexity that will be used in the

subsequent discussion.

Observation: Given system S with graph GS as its graphical representation and for

all k-partitioning P = {P1,P2,…,Pk} of S with i={1…k},the following is valid (see

Section A.1 for proof):

 C(B) ≥ C(S) ≥ C(Pi) (7)

Where B is the Complexity Based Adjacency Matrix of the Block Diagram of

decomposition P on GS. This means that the lower bounds for real complexity are

the self complexity, and also the complexity of each of the sub-systems

(Efatmaneshnik and Reidsema, 2008.a). The equality happens when the system

can be fully decomposed. This observation is important since it indicates that

decomposition cannot decrease the overall complexity of a problem, and the

perceived complexity after decomposition: C(B) is never less than the complexity

before decomposition C(S). Note that in the block diagram the information that

indicates which nodes in different subsystems have been linked is lost

(Efatmaneshnik and Reidsema, 2008.a). Similarly when a system is decomposed

the information indicating which vertices are linked to which ones in other

subsystems is also lost. Klir (2003) states:

When a system is simplified it is unavoidable to lose some

of the information contained in the system; the amount of

99

information lost results in the increase of an equal amount

of relevant uncertainty. Any kind of simplification

including break of the overall system to subsystems can

increase uncertainty.

More uncertainty implies more complexity and thus the lower bound for

real complexity must be and cannot be anything but the complexity of the system

before decomposition (self complexity) (Efatmaneshnik and Reidsema, 2008.a);

in other words facing more overall complexity as the price for the tractability of

sub-problems can, in fact, be regarded as a read of no free lunch theorem

(Efatmaneshnik and Reidsema, 2008.a).

Considering decomposition P={P1, P2 ,…,Pk} of system S. Then

complexity of the whole for the system can be represented by the real complexity

C(B) and that of the parts by the complexity of individual subsystems C(Pi). Real

complexity can then explain whether the whole is more than sum of the parts

(Efatmaneshnik and Reidsema, 2008.a):

k?

i
i 1

C(B) C(P)
=

≥ ∑ (8)

When and if (8) holds, the system cannot be or has not been reduced to the

sum of its constituents and therefore the system is irreducible (Efatmaneshnik and

Reidsema, 2008.a). It should be reminded that the graph theoretic complexity

measure is a measure of the intensity of emergence and possibility of emergent

surprise (characteristics). Therefore, the integration of a system, being

decomposed in a way that (8) holds, is prone to a significant amount of risk; it is

very likely that the whole system of sub-systems shows emergent properties that

do not exist in the sub-problems (Efatmaneshnik and Reidsema, 2008.a). The

integration, in such conditions cannot be implicitly performed while the sub-

problems are being solved concurrently because as much attention must be given

to communication between the design teams (Efatmaneshnik and Reidsema,

2008.a). Where all viable decompositions of a system have the property of (8),

then decomposition is not a valid and robust methodology for problem solving

100

(however it may not be impossible). In such cases the whole is more than sum of

the parts (regardless of what is deemed as parts), and distributed problem solving

must be forsaken (Efatmaneshnik and Reidsema, 2008.a); the problem may be

tackled satisfactorily as a whole utilizing several design teams working and

competing parallel to each other (with no collaboration).

When the opposite of (8) is true and a decomposition P can be found in a

way that the real complexity is less than sum of the subsystems complexities then

the system is reducible. Under such circumstances, the complexity of the whole

can be reduced to the complexity of the individual components. Obviously the

reducibility depends on two main factors: the self complexity and decomposition

restriction.

In Figure 5.10 two systems are decomposed in many different ways

(different subsystems). The two left matrices are the PDSM (or self) of systems Sa

and Sb (each dot represents a link between the two nodes or variables). The

system Sa in this figure is of order 100 and size 100 whereas system Sb is of the

same order and size 400; system Sb is four times denser that Sa. Some

decompositions of the system Sa do not render the whole (real complexity) as

being more than the sum complexity of the parts (Figure 5.10(a)). Thus system Sa

can be reduced to the sum of its parts by some decomposition(s). On the contrary

regardless of how system Sb may be decomposed, it cannot be reduced to the sum

of its parts, and therefore system Sb is irreducible (Figure 5.10(b)). Figure 5.11

compares the whole and sum of the parts for many decompositions of the system

presented in Table 5.1. This system was decomposed in 200 different ways all of

which had relatively balanced subsystems (equally ordered). The system was

irreducible under almost all the viable decompositions.

101

Figure 5.10 Using real complexity to test decomposability.

(x) whole is less than sum of the parts
(+) whole is more than sum of the parts

(b)

(a)

C
om

pl
ex

ity
 su

m
 o

f t
he

 su
bs

ys
te

m
s/

pa
rts

C

om
pl

ex
ity

 su
m

 o
f t

he
 su

b-
sy

st
em

s/
pa

rts

Real Complexity of the Whole

Real Complexity of the Whole

Sa Sb

102

For irreducible systems decomposition does not lead to higher tractability.

Decomposition for such systems can further complicate the process of

collaboration between design teams: the overall effort of integrating the system of

subsystems amounts to more than sum of the efforts spent on integrating each

subsystem. This notion indicates substantial amount of rework and design

iteration in the design of complex systems by means of decomposition. As such

the application of concurrent engineering for some highly complex systems can

be questioned.

Figure 5.11 For almost all decompositions of the example PDSM (except one)
the whole is more than sum of the parts.

C
om

pl
ex

ity
 su

m
 o

f t
he

 p
ar

ts

Real Complexity of the Whole

(x) whole is less than sum of the parts
(+) whole is more than sum of the parts

103

6 Integration and Organizational Immunity

In Chapter 4 we argued that the organisational DSM must be derived directly

from the simulated PDSM, and that a direct mapping can be used to force the

organisation structure to mirror the product architecture. This allows for

predefined communication and information exchange channels, in a large and

complex environment, which, per se, prevent the process from spiralling out of

control (Mihm and Loch, 2006). For example, consider the example PDSM

introduced in Table 4.1 being decomposed as shown in Table 6.1. The design of

each subsystem is then assigned to a design team. From the PDSM a team based

DSM (Table 6.2) is derived by summing up the amount of information exchange

(dependency) of the design variables each team is responsible for. This predicted

team based matrix reflects the likely information exchanges as well as the internal

complexity of the problems that the design teams ought to deal with

(Efatmaneshnik and Reidsema, 2009).

Table 6.1 The variables of Table 4.1 are rearranged to form three subsystems.

 Subsystem1 Subsystem2 Subsystem3

 V5 V4 V2 V10 V8 V7 V9 V6 V1 V3

Su
bs

ys
te

m
1

V5 0 0.45 0.44 0 0 0.02 0.02 0.53 0.22 0.11

V4 0.34 0 0.65 0 0 0 0 0.43 0.16 0.64

V2 0.3 0.12 0 0 0 0.2 0.1 0.2 0.76 0.12

Su
bs

ys
te

m
2 V10 0.01 0 0.18 0 0.8 0.1 0.9 0 0 0

V8 0.01 0 0 0.1 0 0.2 0.4 0 0.01 0

V7 0 0 0 0.3 0.45 0 0.1 0 0.12 0.02

V9 0 0 0 0.5 0.2 0.7 0 0 0 0.15

Su
bs

ys
te

m
3

V6 0 0.34 0.78 0 0 0 0 0 0.77 0.31

V1 0 0 0.53 0 0 0 0 0.1 0 0.32

V3 0 0 0.11 0.72 0 0.3 0.52 0.2 0.45 0

While this approach is necessary as it yields a predefined map for problem

solving it is not sufficient since it does not allow for innovation (Efatmaneshnik

104

and Reidsema, 2009). Innovation is often regarded as a means of achieving

competitive edge over other NPD companies. However, in the case of complex

systems innovation has a more vital role to play: integration (Efatmaneshnik and

Reidsema, 2009). Before proceeding let’s consider a detailed account of the

innovation types.

Table 6.2 The predicted team based DSM for the entire system.

- Team1 Team2 Team3
Te

am
1

CT1 0.34 3.17

Te
am

2

0.2 CT2 0.3

Te
am

3

1.76 1.52 CT3

6.1 Radical Innovation

Henderson and Clark (1990) demonstrated that there are different kinds of

innovation as depicted in Figure 6.1 where innovation is classified along two

dimensions; the horizontal dimension captures an innovation's impact on

components (subsystems), while the vertical dimension captures its impact on the

linkages between core concepts and components (Henderson and Clark, 1990).

Incremental innovation refines and extends an established design. Improvement

occurs in individual components, but the underlying core design concepts, and the

links between them, remain the same. Modular innovation on the other hand,

changes only the core design concepts without changing the product's

architecture. Architectural innovation changes only the relationships between

modules but leaves the components, and the core design concepts that they

embody, unchanged. Radical innovation establishes a new dominant design, hence

a new set of core design concepts embodied in subsystems that are linked together

in a new architecture. We can say that radical innovation embodies both modular

and architectural innovation.

105

An organization's communication channels, both formal and informal are

critical to achieving radical and architectural innovation (Henderson and Clark,

1990). The communication channels that are created between these groups will

reflect the organization's knowledge of the critical interactions between product

modules. An organization's communication channels will embody its architectural

knowledge of the linkages between components that are critical to effective design

(Henderson and Clark, 1990). They are the relationships around which the

organization builds architectural knowledge.

Innovation processes in complex products and systems differ from those

commonly found in mass produced goods (Hobday et al, 2000). The creation of

complex products and systems often involves radical innovation, not only because

they embody a wide variety of distinctive components and subsystems (modular

innovation), skills, and knowledge inputs, but also because large numbers of

different organizational units have to work together in a collaborative manner

(architectural innovation). Here, the key capabilities are systems design, project

management, systems engineering and integration (Hobday et al, 2000).

Integration in complex system and product design is aimed at making the

solutions to sub-problems compatible with each other and is possible through

Figure 6.1 Different types of innovation, after Henderson and Clark (1990).

106

innovation (Efatmaneshnik and Reidsema, 2008.b). The innovation that integrates

the complex system must be radical innovation and creativity (Sosa and Gero,

2005) and is an emergent property of the entire system rather than the property of

the sub-solutions to the individual sub-problems (Sosa and Gero, 2004). A

property that is only implicit, i.e. not represented explicitly, is said to be an

emergent property if it can be made explicit and it is considered to play an

important role in the introduction of new schemas (Gero, 1996). The radical

innovation and coherency in an engineered large scale system is emergent and

obtained in a self organizing fashion in a multi agent environment.

When designing self-organizing multi-agent systems with emergent

properties, a fundamental engineering issue is to achieve a macroscopic behaviour

that meets the requirements and emerges only from the behaviour of locally

interacting agents (Efatmaneshnik and Reidsema, 2008.b). Agent-oriented

methodologies today are mainly focused on engineering the microscopic issues,

i.e. the agents, their rules, how they interact, etc, without explicit support for

engineering the required macroscopic behaviour. As a consequence, the

macroscopic behaviour is achieved in an ad-hoc manner (Wolf and Holvoet,

2005).

Creativity requires ad hoc communication in which the need to

communicate often arises in an unplanned fashion, and is affected by the

autonomy of the agents to develop their own communication patterns (Leenders et

al, 2003). It is thus obvious that, a fixed organizational structure with established

patterns of communication is unlikely to deliver new complex structures

(products) (Efatmaneshnik and Reidsema, 2008.b). As such we propose that the

derived team based DSM must remain as a backbone and suggestion for intra

team communication (Efatmaneshnik and Reidsema, 2008.b). Leenders et al

(2003) also showed that team creative performance will be negatively related to

the presence of central team members (including brokers, mediators and

facilitators) in the intra-team communication network. However a great threat to

multi agent design systems is chaos. To immunise the design organization from

this threat we suggest holistic process monitoring described next.

107

6.2 Holistic Process Monitoring

When the inherent nature of a complex task is too large, a better solution is to

create an environment in which continuous innovation can occur (Bar-Yam,

2004). This can be accomplished through process monitoring: Bayrak and Tanik

(1997) reported that improving the design process, which increases the product

quality without increasing the design resources, is possible by providing feedback

to the designer to help him/her understand the nature of the design process.

Therefore, the nature of the design becomes easier to analyse if there are metrics

obtained from activity monitoring (Bayrak and Tanik, 1997).

Since the design process of the complex systems by concurrent

engineering is an emergent process (Cisse et al, 1996), holistic metrics are

required to monitor the design process. One such metric is the cognitive

complexity of a process that is defined as the ability of a problem solver to

flexibly adapt to a multidimensional problem space (Lee and Truex, 2000).

Cognitive complexity represents the degree to which a potentially

multidimensional cognitive space is differentiated and integrated (Lee and Truex,

2000). A problem solver (a person, organization or a multi agent system) with

higher cognitive complexity is more capable of having creative (and holistically

correct) outcomes.

We suggest measuring the cognitive complexity of a multi agent design

process as a function of the amount of information exchange between the design

agents (Efatmaneshnik and Reidsema, 2009). It is assumed here that all the design

agents are equal in their cognitive complexity and problem solving abilities but

the violation of this assumption does not jeopardize the method (the agents can be

ranked by their cognitive complexity). The required cognitive complexity is, thus,

derived by applying the graph theoretic complexity measure (presented in the

Appendix) to the team based DSM at all instances of design process

(Efatmaneshnik and Reidsema, 2009).

Cognitive complexity is an emergent property of the design system. As

such, cognitive complexity must be measured, for various hierarchies that the

108

design system might have, as the real cognitive complexity20 of that level. This

can be derived from the fact that information exchange and communication

between one element of a connected subset and that of a different subset will

indirectly affect the entire elements of both subsets. In the context of the design

systems, this statement can be reiterated: different design teams (collection of

design agents) and various design systems (groups of teams) deal with each

others’ emergent properties (real cognitive complexity) rather than the

characteristics of their individual elements, however, the actual communication

might occur in between the design agents (elements of the teams).

Figure 6.2 shows a hierarchical design system with three hierarchical

levels: design teams, design systems and the design system of systems. CCTs are

the emergent cognitive complexity of the design teams, CCSs are the emergent

cognitive complexity of the design systems (the details of one of which is only

shown) and CCG is the cognitive complexity of the entire design system of

systems. It is important to note that cognitive complexity could otherwise be

measured for a flat picture of the system. We will, however, use these hierarchical

notions in the next Chapter where the design systems can work in parallel on

various abstraction levels of the problem, where each system may contain several

design teams.

The main complication here is the way in which the information exchange

is measured. Kan and Gero (2005) suggested the use of entropy based measures

for evaluation of information content of a design agent’s interactions. We suggest

using a fuzzy method by simply asking the design participants to tag qualitative

and quantitative information content of their interactions with a single fuzzy

variable, e.g. high, low, and medium, etc. The fuzzy interactions tags can then be

defuzzified, which is the process of producing a quantifiable result in fuzzy logic,

according to a simple fuzzification rule such as that in Figure 6.3. Note that in this

figure, depending on the hierarchical level, N is the maximum amount of

information exchange between the collective entities of the hierarchy (and not just

the elements). Also note that the fuzzification scheme in this figure is the simplest

20 This is similar to the notion of real complexity.

109

possible scheme where all the membership functions are equal to one; thus this

scheme actually depicts crisp boundaries between the sets. Obviously elaborate

fuzzy membership functions such as the trapezoid and triangular can increase the

precision of defuzzification.

Figure 6.3 A simple fuzzification scheme.

CCT1
CCT2 CCT3

CCS1

Team
Level:
CCT

System Level:
CCS

System
of

Systems
Level:
CCG

CCS3

CCS2

CCG

Figure 6.2 Shows the emergence of cognitive complexity at three hierarchical
levels.

110

The example in Figure 6.4 further illustrates the process of defuzzification.

This figure shows an example of the observed fuzzy team based DSM (Figure

6.4(a)) in charge of designing subsystem 2 in Table 6.1. Four design agents are

assumed to be in team 1, the internal interactions of which create the cognitive

complexity of team 1 (CCT1). This DSM is then defuzzified based on the

information in Figure 6.3 and that the maximum amount of information exchange

for that subsystem 2 was 0.9. (Figure 6.4(b)). The procedure of estimating the

cognitive process complexity for a design system comprised of three design teams

is illustrated in Figure 6.4(c) and Figure 6.4(d).

Having measured the cognitive complexity of all the design teams (CCT1,

CCT2, CCT3) at any instance, and knowing the amount of intra team information

exchange, one can measure the cognitive complexity of the entire system (CCS).

The N values in this stage are based on the maximum information exchanges in

Table 6.2. Similarly, the cognitive complexity of the system of systems, at any

design instance, can be estimated. By means of these fuzzy transformations we

can compare the complexity of the design problem solving system with that of

design problem at instance of the problem solving process. Note that the

maximum and minimum complexity values for the design system of teams and the

design system of systems must reflect the real minimum and maximum

complexities corresponding to those hierarchical levels.

111

Figure 6.4 Measuring the cognitive complexity of the design process at certain
design instance.

Team1 Agent1 Agent2 Agent3 Agent4

Agent1 Nil Low Nil High

Agent2 High Nil Nil Nil

Agent3 Nil Nil Nil Nil

Agent4 Nil Medium
Low Nil Nil

Deffuzify
N = 0.9

Cognitive Complexity
of all teams measured

(CCT)

Design
System Team1 Team2 Team3

Team1 CCT1 Low Nil

Team2 High CCT2
Medium

High

Team3 Nil Nil CCT3

Deffuzify
N = 3.17

Design
System Team1 Team2 Team3

Team1 CCT1 0.634 0

Team2 2.536 CCT2 1.902

Team3 0 0 CCT3

(a)

(d)

(c)

(b)

System
of

Systems
System1 System2 System3

System1 CCS1
Fuzzy
value

Fuzzy
value

System2 Fuzzy
value CCS2

 Fuzzy
value

System3 Fuzzy
value

Fuzzy
value CCS3

Team1 Agent
1

Agent
2

Agent
3

Agent
4

Agent
1 0 0.18 0 0.72

Agent
2 0.72 0 0 0

Agent
3 0 0 0 0

Agent
4 0 0.36 0 0

(e)

Deffuzify
N = Maximum

amount of Inforation
exchange between

design systems

Cognitive Complexity of
all design systems
measured (CCS)

112

6.3 An Artificial Immune Algorithm

We argue that the Cognitive Complexity of the design system must be lower and

upper bounded by the minimum and maximum complexity of the problem. This

constitutes the proposed method of this thesis for immunization of the design

organization (Efatmaneshnik and Reidsema, 2008.b). Two premises form the

basis of this argument:

1. In order to solve a problem, the problem solver needs to have a

(cognitive) complexity more than or equal to the problem complexity

(Bar-Yam, 2004). This is indeed a specific interpretation of the law of

requisite variety in Cybernetics (Ashby, 1970). As such the cognitive

complexity of the process must be more than the minimum complexity

of the problem.

2. The tendency of the design agents for increased collaboration by

means of information exchange do not necessarily lead to more overall

cognitive complexity of the design system. By testing a sample of 44

NPD organizations, Leenders et al (2003) have shown that the

performance of innovation networks (innovation teams) has an

inversely U-shape relationship to frequency of intra team cooperation.

Balanced participation of design players in a design decision making

process is favoured against increasing information flow between the design

players to a maximum (Chiva-Gomez, 2004). This is to say unnecessary

information exchange may lower the overall cognitive complexity. It is obvious

that the cognitive complexity of the process need not be more than the real

maximum complexity of the problem. In fact more than the required information

exchange can lead to creativity blocks (Leenders et al, 2003) which can be termed

a chaotic situation. Thus an upper bound for the cognitive complexity of the

process is the maximum complexity of the problem (Efatmaneshnik and

Reidsema, 2009):

 Cmax ≥ CC ≥ Cmin (1)

113

According to Stacey (1995) innovation in a multi agent environment is the

result of communication between social agents that happens in a self organizing

fashion and when the multi agent system finds itself on the so-called edge of

chaos. When the cognitive complexity of the process is more than the minimum

complexity and tending towards the maximum complexity of the problem, the

design system might be on the edge of chaos but certainly not chaotic

(Efatmaneshnik and Reidsema, 2008.b). Besides for collaborative multi agent

systems with cognitive complexity less than the minimum complexity, the design

process is certainly away from the edge of chaos, thus the design system does not

have sufficient functionality to deliver radical innovation in an optimal and

efficient manner (Efatmaneshnik and Reidsema, 2008.b). For systems that are

excessively persistent in collaboration and cooperation, the cognitive complexity

may reduce and chaos appears in such condition (Efatmaneshnik and Reidsema,

2008.b). Chaos makes the design process fragile and susceptible to failure and

reduces the design system efficiency (Efatmaneshnik and Reidsema, 2008.b).

Figure 6.5 shows that the design system’s overall cognitive complexity

increases only to a certain threshold by the increase in the tendency of the design

agents for exchanging design information. In order to ensure the health of the

design process it is necessary to ensure that the overall cognitive complexity stays

away from the maximum complexity and above the minimum. This way the real

minimum and maximum complexity that are obtained using the initial Monte

Carlo Simulation of the complex product (low level product knowledge) are used

to monitor the efficiency and effectiveness (health) of the complex product design

process. This may be achieved through monitoring the design process. The

process monitoring here serves the purposes of meeting the design objectives

(quality, cost, and lead time) by immunizing the design system against chaos and

lack of effectiveness. This immunization enables the design system to integrate

the complex system and product through emergence of radical innovation.

114

This is indeed an immune algorithm that would allow for the emergence of

innovation. According to Cohen (2007) the immune system is a ‘‘computational

strategy’’ to carry out the functions of protecting and maintaining the body.

Cohen’s maintenance role of the immune system requires it to provide three

properties:

1. Recognition: to determine what is right and wrong.

2. Cognition: to interpret the input signals, evaluate them, and make

decisions.

3. Action: to carry out the decisions.

These properties are provided via a cognitive strategy in which self-organization

of the immune system is used to make decisions (Timmis et al, 2008). The stages

correspond to the holistic control of the system, which is to immunize or ensure

the realization of self-organization, by using a complexity measure:

1. Recognition: recognizing the lower and upper complexity bounds.

2. Cognition: to evaluate the instantaneous complexity of the system.

3. Action: to maintain this complexity in between the bounds at all

times.

Figure 6.5 Design process functionality versus process complexity.

 Chaos:
 Lack of Efficiency

Emergence of innovation

Lack of Effectiveness

O
ve

ra
ll

co
gn

iti
ve

 c
om

pl
ex

ity

Minimum complexity

Maximum complexity

Tendency of agents to proactively communicate

115

An immune algorithm is a plan that determines how the components of the

systems are going to interact to determine the system dynamics (Timmis et al,

2008). For example Dasgupta (1998) examined various response and recognition

mechanisms of immune systems and suggested their usefulness in the

development of massively parallel adaptive decision support systems. Lau and

Wong (2004) presented a multi agent system that could imitate the properties and

mechanisms of the human immune system. The agents in this artificial immune

system could manipulate their capabilities to determine the appropriate response

to various problems. Through this response manipulation, a non-deterministic and

fully distributed system with agents that were able to adapt and accommodate to

dynamic environment by independent decision-making and inter-agent

communication was achieved (Lau and Wong, 2004). Ghanea-Hercock (2007)

maintained a multi agent simulation model that could demonstrate self organizing

group formation capability and collective immune response. He showed that the

network of agents could survive in the face of continuous perturbations. Fyfe and

Jain (2006) presented a multi agent environment in which the agents could

manipulate their intentions by using concepts suggested by artificial immunes

system to dynamically respond to challenges posed by the environment. Goel and

Gangolly (2007) presented a decision support for robust distributed systems

security based on biological and immunological mechanism.

We define a system to be immune to chaos and preserving its holistic self

characteristics if its complexity is in between the minimum and maximum

complexity bounds (Efatmaneshnik and Reidsema, 2008.b). The proposed

immune algorithm provides a collective immune response for engineering design

of complex systems and is illustrated in Figure 6.6. This figure shows the

proposed algorithm for a system with only one hierarchical level. As shown in this

figure upon the arrival of new information (finalization of the values of one or

some of the design variables), it can be incorporated into the design system by

performing a new simulation and measuring the values of the minimum and

maximum complexity. This way the bounds reflect the true status of the low level

design problem on the design system.

116

For an example and more clarification consider the problem with

simulated PDSM that was presented in Table 4.1. From this table and its

corresponding hypergraph in Figure 3.11 the following prosperities can be

determined:

 Cmin=1.64 (2)

 Cmax = 4.19 (3)

N=0.9 (4)

Where N is the maximum amount of information exchange, Cmin is the minimum

complexity and Cmax is the maximum complexity. Each of the variables in Table

4.1 is assigned to a design agent to determine its value. The design agents are,

then, asked to report the amount of their information exchanges and interactions

with each other. Consider Table 6.3 as the reported or observed fuzzy team based

DSM at a given instance of the design process.

Simulate the FL or the solutions space

Measure the cognitive complexity of
the system of design agents

Measure the minimum and maximum
complexity of the problem

Maintain the collective cognitive
complexity of the agents in between the
minimum and maximum complexity of

the problem

Figure 6.6 An Immune algorithm for design of complex systems.

New
Information

117

Table 6.3 The monitored (reported) fuzzy team based DSM

- A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

A1 - Low - Low Low High Low VL - -

A2 H - L MH ML H - - - L

A3 ML L - MH L ML VL - L -

A4 L MH MH - ML L - - - -

A5 L ML L ML - - - VL - VL

A6 H H ML ML - - - - - -

A7 L - VL - - - - VH VL L

A8 VL - - - VL - L - L H

A9 - - L - - - H L - H

A10 - L - - VL - L H H -

Table 6.4 is resulted by defuzzifying the observed team based DSM according to

the fuzzy rule in Figure 6.3. The complexity of the defuzzified team based DSM is

1.19 which is in between the minimum and maximum complexity bounds (1.64,

and 4.19).

CC=1.9191 (5)

This information indicates that that design agents can safely communicate more

actively to increase the cognitive complexity of the system.

Table 6.4 The defuzzified monitored team based DSM

- A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

A1 0 0.18 0 0.18 0.18 0.72 0.18 0.04 0 0

A2 0.72 0 0.18 0.56 0.36 0.72 0 0 0 0.18

A3 0.36 0.18 0 0.56 0.18 0.36 0.04 0 0.18 0

A4 0.18 0.56 0.56 0 0.36 0.18 0 0 0 0

A5 0.18 0.36 0.18 0.36 0 0 0 0.04 0 0.04

A6 0.72 0.72 0.36 0.36 0 0 0 0 0 0

A7 0.18 0 0.04 0 0 0 0 0.9 0.04 0.18

A8 0.04 0 0 0 0.04 0 0.18 0 0.18 0.72

A9 0 0 0.18 0 0 0 0.72 0.18 0 0.72

A10 0 0.18 0 0 0.04 0 0.18 0.72 0.72 0

118

One last point here is that, in cases where the design system is

hierarchical, the minimum and maximum complexity bounds must be measured

from the corresponding Complexity based Adjacency Matrices of the Block

Diagrams (Real minimum and maximum complexity21). This algorithm ensures

the successful emergence of the complex product in a multi agent design

environment. This is so because the algorithm is in accordance with the recent

results that argue for flatter, organic organizational structures that enable workers

to deal more effectively with dynamic and uncertain environments (Hinds and

McGrath, 2006). It also permits the formation and execution of hierarchical

design organizations without the need for the top level managers, coordinators,

facilitators, etc.

21 See Section A.2 for more clarification on minimum and maximum complexity.

119

7 Product Immunity

So far immunity was studied at the process level and organization level. Immunity

of a product that performs in an uncertain environment, as well as the uncertainty

introduced to its performance by manufacturing process capabilities, is studied in

this Chapter. It was explained in Chapter 1 that complexity and uncertainty

together lead to the failure and fragility of a system due to sensitive dependence to

small perturbations. This sensitivity dependence or chaos is the reason why

complex systems fail. We also posed that bifurcating from one mode of

complexity to another mode with higher complexity must be a major concern for

complex products. This Chapter presents a global robustness measure as an

Immunity Index that can be used in parametric decision making to reduce the

likelihood of catastrophic bifurcation to a higher complexity mode

(Efatmaneshnik and Reidsema, 2007.a).

7.1 Current Practices of Robust Design

Robustness in general is the insensitivity of some features of a system to

uncertainty or, in the case of concurrent design, stochastic perturbations either

caused by an uncertain environment in which the artefact is to perform, or by

manufacturing and assembly imperfection. Robustness has been discussed, in the

past, in parameter design and tolerance design as methods of maintaining the

‘‘reliability’’ (reliability engineering) of a product in the upstream design cycle,

whereas on-line process monitoring such as statistical process control methods

and failure mode and effect analysis constitute downstream methods of ensuring

robustness. Amongst the upstream design cycle methods of robustness, Sensitivity

Analysis and Variance Reduction have been the prime tools for robust parameter

and tolerance design.

Mellacheruvu et al (2000) used the gradient estimation method to estimate

the sensitivity of the manufacturing outputs (such as cost and lead time) to

120

simultaneous perturbations of some input parameters. He concluded that this

method is very effective for, (1) output noise reduction of complex systems, and

(2) the identification of the input parameters that have the most impact on the

system. Some of the more recent sensitivity analyses, however, have been based

on an entropy approach, which can measure the effect of stochastic perturbation

on the entropy (a form of global scatter) of the performance parameters.

Fathi and Palko (2001) proposed a signal-to-range ratio for a robust

parameter design problem by using Design of Experiments. Liu and Chen (2006)

proposed a probabilistic sensitivity analysis for robust design based on the

concept of relative entropy to evaluate the impact of a random variable on a

performance parameter by measuring the divergence between two probability

density functions of the performance response, obtained before and after the

variation reduction of the random variable. Robustness indices have been used

sporadically to characterize the robustness of different solutions, and mainly as a

tool to grade the sensitivity of the performance parameters to other system

parameters. For example, Caro et al (2005) proposed a robustness index based on

the sensitivity analysis of the performance parameters to the variation of the

design parameters. They showed the sum of the Euclidean and Frobenius norms

of the sensitivity Jacobian matrix of the design, was an index to quantify the

robustness.

 These methods, however, are not able to immunize the system against

fragility and chaos, or unpredictable failure events. For complex systems in which

emergence or collective effect of variables plays a significant role, robust

solutions cannot be achieved solely through ‘‘variance reduction’’ which is a

reductive approach. Also sensitivity analyses cannot be effective in maintaining

robustness at the complex systems level. Sensitivity analysis usually assesses the

effect of each individual parameter on each other and ignores their synergies. We

need a holistic approach, or at least some combination of reductive and holistic.

For this purpose, complexity measures that are based on a holistic representation

of systems thinking may be more beneficial.

121

Process capabilities have been a centre of focus for robust tolerance

synthesis (or tolerance design). Since they relate the manufacturing process

capabilities to tolerance specifications it is quite natural to apply them to

concurrent design of tolerances and processes (Feng and Balusu 2002). Kusiak

and Feng (2000) approached robust tolerance design by relaxing the non-critical

dimensions to be determined via a combination of Design of Experiments and

Monte Carlo Simulation. They also used both worst-case scenarios and response

surfaces to calculate tolerance stack up. This kind of tolerance relaxation is not

suitable for complex systems, because it may introduce additional complexity

modes and global modalities to the system which threatens the immunity of the

system.

English and Taylor (1993) used a Kolmogorov-Smirnov distance as a

robustness index to characterize the robustness of the process capability ratios.

Multimodal variables are those that have two or more most likely values and it is

measured by the departure of the variable’s probability distribution from the

corresponding Gaussian distribution which in statistics is called Kolmogorov-

Smirnov distance. They attributed the lack of robustness of manufacturing

processes to a large departure of the probability distributions of process capability

ratios, Cp and Cpk, from normality. In complex systems the most likely value shift

or modality of the probability distribution of the system parameters plays a more

important role, and can largely affect the collective behaviour of the system.

Unlike the variance reduction approach, the modality of variables approach to

robustness is a holistic approach because it considers the cause of global

bifurcations and emergence of anomalies (Figure 7.1).

Testing the modality of the variables, however, ensures the robustness of

the non-self or the environment. The environment of a system or ‘‘non-self ’’ is

the set of input and outputs whereas the self of the system is an ‘‘effect’’ on the

inputs which results in outputs. In other words the self of the system is the way

inputs and outputs interact. The metaphors of ‘‘self ’’ and ‘‘nonself ’’ help us to

better understand the dependency of the system-environment and the role of

complexity measure in characterizing the ‘‘mode’’ of a system. Testing the

robustness of the product’s self against catastrophic bifurcation constitutes the

122

right approach to maintaining the robustness of complex product. We propose to

regard the change in the complexity as ‘‘global modality’’ for it refers to the

bifurcation of the self as opposed to the modality of the system’s variables.

Marczyk (2002) stated that to make complex systems robust first and

foremost consideration should be to avoid optimal solutions. Optimization as

performance related decision making technique for satisfying multiple objectives

must be forsaken when dealing with complex systems. Marczyk (2002) has stated

that:

Entropy is an ever increasing quantity, and therefore

optimum solutions that are in general minimum entropy

solutions imply hyper sensitivity to small perturbations.

Therefore optimal solutions introduce tremendous amount

of fragility into complex systems.

Marczyk (2008) maintained that optimizing an artefact or a system for

structural simplicity (least complexity) would make the artefact robust. He also

posed that the relative distance between the complexity and the maximum

complexity of an artefact as yet another indicator of the robustness. While we

Figure 7.1 Variance Reduction (left) and Modality analysis (right) approaches
to robustness.

123

cannot argue against the former, the latter is per se a sort of optimization, and

should be avoided. Simply by optimizing for simplicity the system may be

temporarily robust but the likelihood of shifting to a high complexity mode (non-

robust) is not eliminated. It is more reasonable to avoid design space states in the

most complex modes that are potential failure modes.

We expand on the complexity based design method introduced by

(Maczyk, 2008) and propose a global Immunity Index for each state of the

solution space (FL) (Efatmaneshnik and Reidsema, 2007.a). Marczyk and

Deshpande (2006) state that:

There is a sufficient body of knowledge to sustain the belief

that whenever dynamical systems undergo a catastrophe,

the event is accompanied by a sudden jump in complexity.

This is also intuitive: a catastrophe implies loss of

functionality, or organisation.

The Immunity Index can draw comparison between the solutions in terms

of their global modality and by that can indicate the immunity of the design

solutions (Efatmaneshnik and Reidsema, 2007.a). The solutions should be located

in the states that pose the least amount of threat in terms of complexity shift when

and if a bifurcation to another complexity mode takes place (Efatmaneshnik and

Reidsema, 2007.a). This kind of immunity is a characteristic of the system’s self

and not its environment and can be most useful in robust parameter and tolerance

design of a complex system such as concurrent product-process design.

7.2 A Global Robustness Index Based on Complexity Modes

Considering a d dimensional FL with N fuzzy levels. This FL would have Nd

fuzzy states. We define a complexity gradient for the nth state of the FL as

(Efatmaneshnik and Reidsema, 2007.a):

124

Where Xis are system parameters including inputs and outputs. The term (a) is the

sum of all changes in complexity due to the perturbation of only one variable

while all other variables are unchanging (have no perturbation). The term (a)

estimates the amount of change in complexity for single parameter perturbation.

The term (b) estimates the amount of change in complexity for the simultaneous

perturbations of any two arbitrary set of variables. The term (c) calculates the

same sum for simultaneous perturbations of all d variables at the same time. For

simplification let’s assume that a random perturbation would be no more than one

fuzzy level and then all sX i∂ would be equal to 1. Thus we have (Efatmaneshnik

and Reidsema, 2007.a):

n′ and n ′′ are respectively the left and right states of the state n along the Xi axis. I

is the number of impossible states amongst the 2p states which are the states that

contain no data points. The derivatives related to these states must be eliminated

from these equations. If I equals to 2 then no perturbation could occur for variable

Xi. Figure 7.2 clarifies this: each arrow in left anthill plot of Figure 7.2 represents

the state transition as the result of single variable perturbation (left-and-right or

up-and-down).

One fuzzy level to
the right

One fuzzy level to
the left

}

2

X
C

X
C

X
C 1

i

n

i

n

i

n

I−
∂
∂

+
∂
∂

=
∂
∂ +−

876

nn
i

n CC
X
C

−=
∂
∂

′− and nn
i

n CC
X
C

−=
∂
∂

′′+ (3) Where:

(2)

XX

C
)

XX
C

XX
C

XX
C

()
X
C

X
C

X
C

(C
d1

n
d

d1d

n
2

31

n
2

21

n
2

d

n

2

n

1

n
n

434214444444 34444444 214444 34444 21
∂⋅⋅⋅∂

∂
+⋅⋅⋅+

∂∂
∂

+⋅⋅⋅+
∂∂

∂
+

∂∂
∂

+
∂
∂

+⋅⋅⋅+
∂
∂

+
∂
∂

=∇
−

 (1)

ba c

125

 Equations (4) and (5) formulate the sum of all likely changes in

complexity by simultaneous disturbance of two variables (Efatmaneshnik and

Reidsema, 2007.a):

where n ′′′ is the state down and left to the state n, and so on.

In the right scatter plot of Figure 7.2 arrows show the possible state

transitions as result of simultaneous perturbation of two variables. The remaining

derivatives are calculated in the same way. In general, for simultaneous

perturbation of p parameters at the same time we have (Efatmaneshnik and

Reidsema, 2007.a):

M

nn
21

n
2

2
21

n
2

21

n
2

21

n
2

21

n
2

21

n
2

CC
XX

C
2

XX
C

XX
C

XX
C

XX
C

XX
C

−=
∂∂

∂

−
∂∂

∂
+

∂∂
∂

+
∂∂

∂
+

∂∂
∂

=
∂∂

∂

′′′−−

+++−−+−−

I

(4)

(5)

Figure 7.2 Perturbation of an initial state to neighboring states.

126

 Where Cm is the complexity of state m at which p parameters of the system have

shifted one fuzzy level relative to the initial state (n). Finally the Immunity index

for the state n of the FL is defined as (Efatmaneshnik and Reidsema, 2007.a):

 Rn = (1- (
nCm

C
×−

∇
)1(

)) %100× (8)

Where m is calculated as:

 (9)

Ii s are the number of impossible states for the perturbation of i parameter

at the same time. An Immunity Index close to 100% represents the situation that

the least amount of likelihood exists for the complexity of the state to change with

any stochastic perturbation of the system parameters, which implies that the state

of the system is globally uni-modal, robust and immune from increasing in

complexity (Efatmaneshnik and Reidsema, 2007.a). An Immunity Index value

close to zero shows that there is a large chance of complexity increase or

catastrophe by stochastic perturbation, i.e.; the state of the system is globally

multi-modal and non-robust (Efatmaneshnik and Reidsema, 2007.a). A value

greater than 100% implies that a bifurcation is even less likely to produce a

catastrophe and that there are chances of a decrease in complexity (Efatmaneshnik

and Reidsema, 2007.a).

M

nm
p

pppp

p

CC
X

I
XXXX

X

−=
∂⋅⋅⋅∂∂

∂

−

∂⋅⋅⋅∂∂
∂

⋅⋅⋅+
∂⋅⋅⋅∂∂

∂
+

∂⋅⋅⋅∂∂
∂

+
∂⋅⋅⋅∂∂

∂

=
∂⋅⋅⋅∂∂

∂

−−−

+++−++−−+−−−

21

n
p

p
21

n
p

21

n
p

21

n
p

21

n
p

21

n
p

XX
C

2
XX

C
XX

C
XX

C
XX

C

XX
C

(6)

(7)

127

7.3 Discussion: Complexity Based Decision Making

This approach, in fact, is the sensitivity analysis of the complexity mode of a

system to random perturbations of the system parameters. The Immunity Index

gives the estimation of the robustness of every state of the FL based on its

tendency to change its complexity mode with random perturbations of the system

parameters. Entering to a new complexity mode implies bifurcation whether it

increases the complexity or not. The complexity increase as a result of entering to

a new state should be taken as a catastrophe. A state in the FL is globally robust if

all of its neighbouring states are located in the modes with the same or less

complexity (Efatmaneshnik and Reidsema, 2007.a). Thus, the state closer to the

centre of the mode has more robustness and is immune from jumping to other

modes (Efatmaneshnik and Reidsema, 2007.a).

The global Immunity Index in effect indicates the above fact by testing the

complexity modes of all neighbouring states of a given fuzzy state of the FL

(Efatmaneshnik and Reidsema, 2007.a). For multi-modal solutions a stochastic

perturbation in the system’s state increases the complexity of the system, thus,

chaotic behaviour becomes more likely (Efatmaneshnik and Reidsema, 2007.a).

We say, in this case, that the system is globally sensitive and unstable with regard

to stochastic perturbations (Efatmaneshnik and Reidsema, 2007.a).

In summary, the Immunity Index is a form of objective or cost function

that requires the absence of any other objective function (Efatmaneshnik and

Reidsema, 2007.a). Rather the performance objectives should be regarded as

performance constraints (Efatmaneshnik and Reidsema, 2007.a). After

determining the design variables and their constraints, the FL containing the set of

solutions corresponding to those constraints must be simulated (Efatmaneshnik

and Reidsema, 2007.a). Then the decision making must be based on the rule of

lower complexity, and the first step is to choose a mode in the landscape that has a

low enough complexity (Efatmaneshnik and Reidsema, 2007.a). Each mode

usually contains many states of the system, each of which can be regarded as the

solution (Efatmaneshnik and Reidsema, 2007.a). The solution should be located in

a state that has the maximum immunity and that is exactly at the core or centre of

128

the multi dimensional mode; this leads to little chance that random perturbations

will move the state of the system to another mode with higher complexity

(Efatmaneshnik and Reidsema, 2007.a). The global robustness index must be

calculated for every fuzzy state of the complexity mode (Efatmaneshnik and

Reidsema, 2007.a).

8 A Decision Support System: IMMUNE

“There is a substantial amount of empirical evidence that human intuitive

judgment and decision making can be far from optimal, and it deteriorates even

further with the complexity of the problem and stress” (Druzdzel and Flynn,

2000). Decision making under these conditions requires support in the estimation,

the evaluation and/or the comparison of alternatives (Turban, 1995). A DSS is a

“knowledge-based system, which formalizes the domain knowledge so that it is

amenable to mechanized reasoning” (Druzdzel and Flynn, 2000). More

specifically a DSS is an integrated, interactive, flexible, and adaptable computer-

based computing environment, especially developed for supporting the solution of

a non-structured complex management problem (Turban, 1995; Druzdzel and

Flynn, 2000).

Knowledge-based problem solving is the domain of Artificial Intelligence

(AI) and the selection of an appropriate AI development tool that may provide a

framework to incorporate knowledge will come from this area (Reidsema and

Szczerbicki, 2002). Reidsema and Szczerbicki (2002) identified three different

architectures for DSS for product design planning and manufacturing in a

concurrent engineering environment: Expert Systems, Agent Based Systems, and

Blackboard Database Systems. These have been defined as follows:

• An Expert system is one of a class of AI techniques that is able to capture

the knowledge and reasoning of an experienced expert for re-use in

assisting the less experienced in making decisions.

• The Blackboard Database Architecture (BBDA) is a problem solving

system based on the metaphor of human experts who cooperate by

entering partial solutions to the current problem onto a physical

blackboard. The type of problems best suited to this approach is those that

are able to be reduced to a set of simpler problems that are reasonably

independent. The integration of the partial solutions to the overall solution

130

takes place by the intervention of a centralized controller known as a

control source and therefore has a top down approach to problem solving.

• Multi agent systems are distributed systems that use a bottom up approach

to problem solving in which case the intervention of the centralized

coordination between agents is minimal or totally eliminated. Each agent

in a multi agent system behaves as an abstraction tool which has the

characteristics of a self-contained problem solving system that is capable

of autonomous, reactive, proactive as well as interactive behaviour. The

solution in this case emerges as a whole and is the result of a synergetic

effect. “Synergy denotes a level of group performance that is above and

beyond what could be achieved by the members of the group working

independently” (Larson, 2007). Synergy in a multi agent system enables

the integration of partial solutions of nonlinear and coupled problem.

Multi agent systems are the natural candidate for complex systems which

show heavy interdependency between partial problems.

Providing an extensive literature review of concurrent design and

manufacturing systems, Shen et al (2001) identifies three different approaches for

agent based architectures: hierarchical architectures, federated architectures and

autonomous agent architectures. Each architecture has particular strengths for

specific applications and choosing the right architecture involves matching

requirements to capabilities. Hierarchical architectures consist of semi-

autonomous agents with a global control agent dictating goals/plans or actions to

the other agents. Multi-Agent Systems with a global blackboard database are

hierarchical architectures. According to Shen et al (2001) some researchers have

considered their blackboard systems to be multi-agent systems, and others have

implemented their agent based systems using blackboard architectures. In these

systems, control can be implemented in different ways: using a special control

expert called a supervisor as in EXPORT (Monceyron and Barthes, 1992): using a

shared graphical model as in ICM (Interdisciplinary Communication Medium)

(Fruchter et al, 1996) or a shared database as in SHARED (Wong and Sriram,

1993); or through multiple shared workspaces as in MATE (Saad and Maher,

1996).

131

Because hierarchical architectures suffer from deficiencies associated with

their centralized character, federated multi agent architectures are increasingly

being considered as a compromise solution for industrial agent based applications,

especially for large scale engineering applications (Shen et al, 2001). A fully

federated agent based system has no explicit shared facility for storing active data;

rather, the system stores all data in local databases and handles updates and

changes through message passing (Shen et al, 2001). In theory, a truly open multi

agent system need not have any predefined global control (Shen et al, 2001). An

example of such architecture is DIDE (Distributed Intelligent Design

Environment) (Shen and Barthes, 1996). Another good example of such a system

is ANARCHY which was a working prototype of an asynchronous design

environment (Quadrel et al, 1993). Agents in ANARCHY were autonomous, and

used broadcast communications. It however, utilised a global design strategy

based on simulated annealing. For such systems there is the threat of exhibiting

chaotic behaviour (Sycara, 1998).

This Chapter presents IMMUNE which is a flat federated architecture for

the parametric design of complex products (Efatmaneshnik and Reidsema, 2009).

IMMUNE uses a global blackboard to save the current state of the design

(Efatmaneshnik and Reidsema, 2009). All the agents are grouped into virtual

teams or coalitions in a way that the design system becomes capable of mirroring

the structure of the problem and its decomposition pattern at each abstraction level

(Efatmaneshnik and Reidsema, 2009). This idea was previously, to some extent,

utilized in MetaMorph (Maturana et al, 1999) that was devised “as an adaptive

agent based architecture to address system adaptation and extended-enterprise

issues at four fundamental levels: virtual enterprise, distributed intelligent

systems, concurrent engineering, and agent architecture”. MetaMorph was a

federated architecture that could dynamically adapt to the tasks and changing

environment by using dynamically formed agent groups (Shen et al, 2001). The

agents with various knowledge and utility were clustered into virtual groups or

coalitions. In MetaMorph, resource agents could be cloned as needed for

concurrent information processing (Maturana et al, 1999). The clone agents were

132

included in the virtual clusters. MetaMorph benefited extensively of low level

mediators to coordinate between different groups (or coalitions).

IMMUNE, however, does not have any low level mediator, broker or

facilitator, and is a flat architecture (Efatmaneshnik and Reidsema, 2009). Instead

IMMUNE benefits from a special unit in the control shell of the blackboard to

which we denote as the CEO (Complexity Estimator and Observer)

(Efatmaneshnik and Reidsema, 2009). The CEO estimates the complexity

measure of the problem and compares it to the observed complexity of the multi

agent system that is raised from agents’ interactions (Efatmaneshnik and

Reidsema, 2009). Based on the complexity of the problem after decomposition

(real complexity), the CEO estimates the minimum and maximum complexity of

the process (Efatmaneshnik and Reidsema, 2009). It then monitors the complexity

of the process as a function of the exchanged information between the agents

(cognitive complexity) (Efatmaneshnik and Reidsema, 2009). An effective and

efficient design process must have a cognitive complexity in between the

minimum and maximum complexity of the problem (Efatmaneshnik and

Reidsema, 2009); this is the result of a simple notion which is: the best a single

person (or a single system) can do is limited by his/her (cognitive) complexity

(Bar-Yam, 2004).

A design system, with its cognitive complexity surpassing the maximum

complexity of the problem, has lost effectiveness since the design process may

become chaotic (Efatmaneshnik and Reidsema, 2009). If the cognitive complexity

of the design system is lower than the minimum complexity of the problem, then

the efficiency of the system, in solving the complex problem and managing the

interdependencies between its sub-problems, would not be achieved In both cases,

the agents are expected to undertake corrective measures to stabilize the cognitive

complexity of the system and immunize it against fragility, and failure

(Efatmaneshnik and Reidsema, 2009). The CEO monitors the complexity at two

levels: inside the coalitions (at the local levels) and the entire system (at the

federal level) (Efatmaneshnik and Reidsema, 2009). The next section discusses

the fundamentals of design planning for complex products and a complexity based

method for monitoring the design process.

133

8.1 Collaborating Architecture

Shen et al (2001) states that:

Real world concurrent engineering design projects require

the cooperation of multidisciplinary design teams;

individuals and multidisciplinary design teams work in

parallel with various engineering tools that are located at

different sites often for quite a long time. To coordinate the

design activities of various groups and guarantee good

cooperation among the different engineering tools a

distributed intelligent environment is required.

Such an environment requires the utilization of collaborating software as a

DSS that involves the integration and coordination of relatively independent, self-

contained software systems that are able to work together effectively on their own

(Corkill, 2003). “Collaborating software is very different from collaboration

software, where the software is used to facilitate the interaction among human

participants rather than to provide an automated environment where software—

and potentially human—entities work together in order to perform complex

activities” (Corkill, 2003). For effective development of collaborating software

Corkill (2003) identified six main challenges:

1. Representation: To enable system components and modules to

understand one another.

2. Awareness: to render modules aware when something relevant

to them occurs.

3. Investigation: helping modules to quickly find information

related to their current activities.

4. Interaction: to create modules that are able to use the concurrent

work of others while working on a shared task.

5. Integration: to combine results produced by other modules.

6. Coordination: ensuring that modules focus their activities on the

right things at the right time.

134

Except the representation that is the main challenge is collaboration

software, remainders of these challenges are addressed in IMMUNE. So far two

main approaches have been considered for the design of a collaborating

environment: Blackboard architectures and Multi Agent architectures. Corkill

(1991) presented the following metaphor to describe the Blackboard-based

problem solving:

imagine a group of human specialists seated next to a large

blackboard. The specialists are working cooperatively to

solve a problem, using the blackboard as the workplace for

developing the solution. Problem solving begins when the

problem and initial data are written onto the blackboard.

The specialists (knowledge sources) watch the blackboard,

looking for an opportunity to apply their expertise to the

developing solution. When a specialist finds sufficient

information to make a contribution, she records the

contribution on the blackboard, hopefully enabling other

specialists to apply their expertise. This process of adding

contributions to the blackboard continues until the problem

has been solved

Each problem solving expert is designed to independently contribute

specialized knowledge required to solve one aspect of the overall problem. The

sequence of the contributions of these experts is not determined a priori but is

instead based on the current state of the solution and the selection of the most

applicable and effective expert for solving the associated problem part (Reidsema,

2001). As such, the blackboard model of problem solving is a highly structured

case of opportunistic problem solving (Reidsema, 2001).

The Blackboard architectures utilize abstraction and solve problems

through iteration. Blackboard architectures are able to maintain the focus of

attention of different knowledge sources asynchronously on different abstraction

levels within this memory; As a result the design knowledge of various parts of a

135

product in various abstraction levels can be considered together. This means that

the hitch that Bar-Yam (2004) (mentioned in Chapter 2) has maintained about the

abstraction for design of complex systems is not relevant when Blackboard

databases are used The downside with purely blackboard architectures however is

that the knowledge sources (design players) do not communicate with each other

directly and communication is solely done through the blackboard. As such

blackboard systems suit only the loosely coupled problems (Corkill, 2003). On the

other hand multi agent systems due to their ability to interact autonomously can

reach to high overall cognitive complexity to solve densely interconnected

problems without the need for a global integrator.

Multi agent systems on the other hand have the following problem solving

characteristics (Corkill, 2003):

• Distribution (no central data repository)

• Autonomy (local control)

• Interaction (communication and representation)

• Coordination (achieving coherence in local control decisions)

• Organization (emergent organizational behaviour)

Multi Agent System architectures are expressed as the pattern of

relationships amongst agents (Shen et al, 2001). Two kinds of relationships may

be supposed between agents: Control relationships and Collaboration relationships

(Shen et al, 2001). A Control relationship relates to the degree of autonomy which

an agent possesses. An agent whose goals, plans and/or actions are prescribed by

the imperatives of another agent(s) has little autonomy. In a collaborating

relationship however, the agents involved are free to accept, reject or modify

goals, plans or actions proposed to them. In theory, a truly open multi agent

system need not have any predefined global control. An example of such

architecture is that of DIDE (Shen and Barthes, 1996).

According to Corkill (2003) a quarter-century of blackboard-system

experience and more than a decade of multi agent system development have

produced a strong baseline of collaborating-software technologies. The next

136

generation of complex, collaborating software applications must span the entire

design space of Figure 8.1 to enable development of high performance, generic

collaborating-software capabilities. This is the motivation behind the design of the

presented architecture in this paper (IMMUNE) which combines the agent based

and blackboard technologies and remains very uncommon to date. Collaboration

in the combination of multi agent blackboard environments can be asynchronous

(through the blackboard) and not restricted to one abstraction level, as well as

autonomous direct communication. This rare approach first started by Lander et al

(1996) proposing to use agent based blackboards to manage agent interactions

(Shen et al, 2001). Their model contained multiple blackboards, used as data

repositories for each group of agents. Along with design data, tactical control

knowledge could be represented in the shared repository, enabling reasoning

about the design itself (Shen et al, 2001). SINE (Brown et al, 1995) was another

agent based blackboard platform that used a single global blackboard to record the

current state of the design. Even though agents could exchange messages directly,

design data could flow through the blackboard, and it was accessible to all agents

(Shen et al, 2001).

Our proposed architecture (IMMUNE) is an agent based blackboard

system that uses a flat and federated architecture (Efatmaneshnik and Reidsema,

2009). All the agents are grouped into virtual teams or coalitions. There is no

local controller for coordination in between the coalitions. IMMUNE uses a

global blackboard to save the current state of the design and to facilitate

asynchronous communication between agents through the blackboard by saving

the complete solution and partial solutions of different abstraction hierarchies.

137

The primary purpose of designing this architecture was to incorporate the

complexity science into the collaborating software paradigm. Lissack (1999)

demonstrated that since both organization science and complexity science deal

with uncertainty it is important to combine the two. This marriage of the two

sciences allows for having an autopoietic view to organization. Autopoietic

systems theory, analyse systems as having self-productive, self-organized, and

self-maintained nature (Dissanayake and Takahashi, 2006). The main

characteristic of IMMUNE is the digestion of complexity measures of the product

and process which enables the manifestation of autopoietic characteristics

(Efatmaneshnik and Reidsema, 2009).

The control source of the proposed blackboard does not dictate the pattern

of cooperation between agents allowing autonomy in the interaction. It however

does monitor the complexity of the system at two levels: inside the coalitions and

in between the coalitions at the same abstraction level (we refer to this as a layer).

The agents are designed to react to the information that they receive from the

control source about complexity of the coalitions and layers (Efatmaneshnik and

Figure 8.1 Collaborating environment comparison, after Corkill (2003).

138

Reidsema, 2009). Adding or eliminating agent(s) from the design system is

possible in IMMUNE, making it an open architecture.

8.2 Blackboard Architecture

The Blackboard Database is a hierarchical and partitioned global memory space

that acts as a central storage area for holding problem solving data, information

and partial solutions that represent the problem to be solved (Craig, 1993). The

blackboard provides a common data structure that acts as an interface to agents (or

knowledge sources in standard blackboard systems) allowing them to read the

problem data and alter the state of this data when necessary, thereby effecting an

incrementally improved solution to the problem (Reidsema, 2001). Abstraction

levels are introduced on the blackboard gradually. Each abstraction hierarchy is

decomposed according to one of the modes described earlier in Chapter 4. The

envisaged IMMUNE’s blackboard contains the design variables, their interactions

(derived from simulation) and the agents’ proposed solutions (Efatmaneshnik and

Reidsema, 2009).

In IMMUNE the Blackboard facilitates the measurement of problem

complexity at three levels: sub-problems in one abstraction level, problems of one

abstraction level and global problem complexity between all abstraction levels

(Efatmaneshnik and Reidsema, 2009). All of these three complexities change with

time (progression of the design process). As the agents generate a design variable,

the problem complexity and global problem complexity can only increase. In case

the value of a design variable is resolved the problem complexity and the global

problem complexity can only decrease. The global complexity, in particular,

provides the opportunity to monitor temporally distributed problem solving that

takes place in the form of asynchronous information exchange between various

abstraction levels.

The blackboard also facilitates incorporation of the Immunity Index

presented in Chapter 7 in the decision making process. The complexity modes can

be estimated at the three levels of subsystems in one abstraction level, a given

139

abstraction level and the entire system. The decision makers can immediately

estimate the effect of their choices on the immunity/robustness of the whole

product/artifact.

8.3 Control Source

Typically blackboard architectures provide a control mechanism called a control

source to coordinate the use of knowledge sources in a consistent and effective

manner (Reidsema, 2001). The control source determines which knowledge

sources should make a contribution to the solution, when it should do so, and what

part of the solution should be the focus (Efatmaneshnik and Reidsema, 2009). In

IMMUNE, however, the agents decide their focus of attention in a manner

described in the next section (Efatmaneshnik and Reidsema, 2009). The control

source of IMMUNE comprises several agents with distinct tasks, all of which can

be computationally modeled (Efatmaneshnik and Reidsema, 2009).

8.3.1 Decomposition Agent

Decomposition agent decomposes the generated problem on the main blackboard

according to the connectivity of the problem (as was discussed in Chapter 4).

Important control features that affect the entire system’s performance can be

incorporated in this agent’s knowledge namely the number of subsystems, and

decomposition mode (Efatmaneshnik and Reidsema, 2009).

8.3.2 Composition Agent

Composition Agent groups the agents based on their bids for the problems in

coalitions using the contract net protocol (Efatmaneshnik and Reidsema, 2009).

Composition agent contains the map of all the agents, their characteristics and

types of expertise (Efatmaneshnik and Reidsema, 2009).

140

8.3.3 IT manager

IT manager sets up the LAN and communications channels of the dispersed

agents for each abstraction level (Efatmaneshnik and Reidsema, 2009). All the

agents in the same coalition must be visible to each other meaning that the

messages that one agent receives is made visible to all team members

(Efatmaneshnik and Reidsema, 2009). This may be thought of as a shared mailbox

for each coalition (Efatmaneshnik and Reidsema, 2009). For example, Figure 8.2

shows that when a message is sent from agent 2 in coalition A to agent 4 in

coalition B, it would be visible to all the members of these two coalitions.

8.3.4 Simulation and Computation Agent

Simulation Agent performs Monte Carlo Simulation to generate the design space

FL, and tags each state of the FL with its immunity index. The agent comprises a

Monte Carlo Simulation software package, OntospaceTM software. It gathers

information about the conditional probability distribution of the design variables

from the agents that generate them. This agent, runs the OntospaceTM software

using the generated FL, extracts the complexity modes and gives a tag to each

state of the FL. The agent performs all the above at three levels of the subsystems

in one abstraction level, the system at one abstraction level and the entire system

of systems at all abstraction levels that are introduced up to then. This agent must

be able to dynamically simulate the FL when the new entries (design variables)

appear on the blackboard for a given abstraction level and also when design

Figure 8.2 Shared mail boxes for coalitions.

5

1

4

2

3

1 2

5

3

4
A B

C

1
2

5

3

4

141

values are finalized by the design agents. Since there is no prerequisite for the

activation of one abstraction level, this agent must be able to run parallel

simulations for two or more abstraction levels in one time (Efatmaneshnik and

Reidsema, 2009).

8.3.5 CEO (Complexity Evaluator and Observer)

This agent announces the termination of the generation stage for a given

abstraction level as soon as the complexity of the level reaches a certain threshold

(Efatmaneshnik and Reidsema, 2009). This threshold is a control feature of the

entire system. As mentioned before the termination of the generation stage in each

abstraction level, can be conditional to the self size. This provides control over the

size of the problem space (or FL). The knowledge of the ideal abstraction

approach of Liu et al (2003) can be incorporated into the CEO by constraining the

number of design variables at each abstraction level.

The CEO agent also monitors the design process (Efatmaneshnik and

Reidsema, 2009). It has an embedded blackboard on which all the

communications between the agents and in between the agents and blackboard are

recorded (Figure 8.3). The design agents can only write on this blackboard but

there is no necessity for them to be able to read it (Efatmaneshnik and Reidsema,

2009). The communication arrows on this blackboard must have a tag that

represents both the qualitative and quantitative weight of transferred information

(Efatmaneshnik and Reidsema, 2009). Based on these maps of the system which

vary regularly over time, the CEO measures the instantaneous cognitive process

complexity of each coalition (a team of agents), a layer (in between the coalitions

of one abstraction level), and the global cognitive complexity (in between the

layers that are temporally distributed) (Efatmaneshnik and Reidsema, 2009). The

CEO measures the lower and upper complexity bounds at all these three levels

(Efatmaneshnik and Reidsema, 2009). The control source must contain

knowledge of the different types of resource agents in terms of their capabilities,

functionalities and discipline knowledge. If an agent is being recruited to the

142

system it must register all its characteristics with the composition agent of the

control source (Efatmaneshnik and Reidsema, 2009).

The control source may be fully computational and may not need any

human intervention to proceed with its tasks (Efatmaneshnik and Reidsema,

2009). The design process begins with the control source broadcasting notices to

all agents with regard to the generation of new design variables (Efatmaneshnik

and Reidsema, 2009). The agents place their entries on the blackboard in the

specified abstraction level. This is the generation stage of the presented design

template.

The first set of initial design variables act like a seed on the blackboard

that would gradually evolve to other design parameters at other abstraction levels

(Efatmaneshnik and Reidsema, 2009). The control source, then, whether by itself

or through knowledge sources, is in charge of simulating the FL (or design space)

corresponding to these sets of design parameters and the extraction of the self map

CEO

Coalitions

Information exchanges

C
om

m
unication Interface

Decomposition Agent

Composition Agent

Simulation Agent

Process Blackboard

System
Knowledge

Information from
main blackboard

Communication
to design agents

IT Manager

Figure 8.3 The control source structure of IMMUNE.

143

for the design parameters (Efatmaneshnik and Reidsema, 2009). After this, the

control source decides on the number of sub problems, and the decomposition

mode, decomposes the self by considering the number of active design agents

(design resources) and the real complexity (Efatmaneshnik and Reidsema, 2009).

The control source then clusters the design agents into virtual teams and

distributes the sub-problems to them (Efatmaneshnik and Reidsema, 2009). The

design agents within the virtual teams solve the problems cooperatively. They

send the results back to the blackboard, and negotiate the conflicts with the other

groups until they reach a resolution.

Using the common practices of sequential engineering would lead to

starting a new cycle (at new abstraction level) after all activities of the previous

cycle are performed and the results are finalized. However, the concurrent

engineering principle of overlapping the activities to shorten the design lead time

may be applied here. Therefore agents must be allowed to introduce their

proposed design variables on the blackboard (problem generation), however the

decomposition and distribution stages start only when the CEO supposes an

abstraction level as having reached a certain complexity threshold. Since agents

can be cloned to perform different tasks, it is possible that two or more abstraction

levels could simultaneously be at different stages of design process. In order to

reduce the complexity of the entire design system, we propose that the design

agents of different abstraction levels be allowed to communicate only through the

blackboard.

8.4 Agents Structures

In artificial intelligence, an intelligent agent observes and acts upon an

environment, as a rational agent: an entity that is capable of perception, action and

goal directed behavior. Such an agent might be a human, computer code or an

embedded real time software system. The internal architecture of an agent is

essentially the description of its modules and how they work together (Shen et al,

2001): agent architectures in various agent based systems (including agent based

concurrent design and manufacturing systems) range from the very simple (a

144

single function control unit with a single input and output) to very complex

human like models. The agents in IMMUNE are Single Function Agents (SiFAs)

which were developed in the AIDG research group (Dunskus, 1994) to investigate

concurrent engineering design problem solving using multi agent architectures. It

involves multiple agents that cooperatively produce a solution when the task of

the entire system is decomposed into many, very small subtasks; where exactly

each one of these is assigned to an individual agent (Dunskus, 1994). Every agent

now has one function to perform, that is, to execute its subtask. Agents have their

own point of view that represented the expertise of the agent; which might be

cost, strength, manufacturability etc (Dunskus, 1994). In IMMUNE, SiFAs have

three functions: 1) to generate the design variable; 2) to estimate the values of the

design variables; and 3) to evaluate the solutions of other agents from their own

point of view, verifying the existence of any conflicts (Efatmaneshnik and

Reidsema, 2009). SiFAs are collaborative agents (also called interacting or social

agents) that work together to solve problems. The joint expertise of collaborative

agents is applied to ensure that the overall design is consistent (Shen et al, 2001).

“Coherence is a global (and regional) property of the MAS that could be

measured by the efficiency, quality, and consistency of a global solution (system

behavior) as well as the ability of the system to degrade gracefully in the presence

of local failures” (Sycara, 1998). Coherency is about the ability of the MAS’s to

“cope” with problem integration. Several methods for increasing coherence have

been studied, all of which relate to the individual agent’s ability to reason about

the following questions: who should I interact with? And when should I do it and

why? Sophisticated individual agent reasoning can increase MAS coherence

because each individual agent can reason about non-local effects of local actions,

form expectations of the behavior of others, or explain and possibly repair

conflicts and harmful interactions (Sycara, 1998). On this basis, four different

agent architectures have been discussed in the literature: reactive agents (also

known as behavior based or situated agent architectures), deliberative agents (also

called cognitive agents, intentional agents, or goal directed agents), collaborative

agents (also called social agents or interacting agents), and hybrid agents (Shen et

al, 2001).

145

Reactive agents are passive in their interactions with other agents. They do

not have an internal model of the world and respond solely to external stimuli.

They respond to the present state of the environment in which they are situated

and do not take history into account or plan for the future (Sycara, 1998). Through

simple interactions with other agents, complex global behaviour can emerge. In

reactive systems, the relationship between individual behaviours, environment,

and overall behaviour is not understandable (Shen et al, 2001). However, the

advantage of reactive agent architecture is simplicity (Shen et al, 2001).

Deliberative agents use internal symbolic knowledge of the real world and

environment to infer actions in the real world. They proactively interact with other

agents based on their sets of Beliefs, Desires and Intentions (BDI system). These

agents perform sophisticated reasoning to understand the global effects of their

local actions (Sycara, 1998). Consequently, they have difficulties when applied to

large complex systems due to the potentially large symbolic knowledge

representations required (Sycara, 1998). Shen et al (2001) identified collaborative

agents as a distinct class of agents that work together to solve problems;

communication in between them leads to synergetic cooperation, and emergent

solutions.

Hybrid architectures are neither purely deliberative nor purely reactive

(Sycara, 1998), and the agents in IMMUNE have a hybrid architecture (Figure

8.4). According to Sycara (1998) hybrid agents usually have three layers:

1. The Lowest Layer: at the lowest level in the hierarchy, there is

typically a reactive layer, which makes decisions about what to do on

the basis of raw sensor input. This layer contains the self knowledge

that is the knowledge of the agent about itself including physical state,

location, and skills, etc (Shen et al, 2001).

2. The middle layer: this layer typically abstracts away from raw sensor

input and deals with a knowledge-level view of the agent’s

environment, often making use of symbolic representations (Sycara,

1998). This layer contains two types of knowledge: domain knowledge

and common sense knowledge. The domain knowledge is the

146

description of the working projects (problems to be solved), partial

states of the current problem, hypothesis developed and the

intermediate results (Shen et al, 2001).

3. The uppermost layer: this layer handles the social aspects of the

environment (Sycara, 1998).

The detail of these layers with their modules in design agents of IMMUNE is

presented next and depicted in Figure 8.4.

8.4.1 The Lowest Layer

This layer contains the agent’s self knowledge that is used to participate in tasks

and reply to other agents (through the uppermost social layer) as well as control

source’s requests about its competence, and capabilities in the bidding process.

The main responsibility of the low layer, in fact, is to decide on the values of the

design variables. In doing so it checks the immunity of each state of the FL (note

that states are already tagged with their immunity). At this layer the agent decides

on the potential solutions for the design variables and sends them to the two upper

layers to study the potential conflicts that these solutions may have with the

objectives of other design agents and for further negotiations with them.

8.4.2 The Middle Layer

The middle layer has two modules, namely agenda manager and COPE

(Complexity Oriented Problem Evaluator) that respectively contain the above two

types of knowledge and are in contact with backboard and the CEO.

Agenda Manager

Agenda manager is in direct contact with the lower layer. It decides on the focus

of attention and reports it to the lower layer. The agenda manager in the middle

layer regularly monitors the blackboard to maintain its domain knowledge.

Agenda manager also receives the potential solutions from the lower layer and is

alert on the reports of the conflicts that the potential solutions have had with the

147

solutions of other design agents (these reports come into the middle layer directly

from the communication interface of the agent. Agenda manager has been used in

many blackboard systems such as HEARSAYII (Carver and Lesser, 1994) with

the difference that in these systems a central agenda manager has been in charge

of maintaining the focus of attention for the entire set of knowledge sources

(agents). Generally agenda managers are data driven (what is present on the

blackboard) and its operation leads to opportunistic problem solving (Carver and

Lesser, 1994). The agenda manager chooses the focus of attention of the agent on

different problems at different abstraction levels. It may shift the focus of

attention of the agent from one abstraction level to another depending on the

status of the problems and partial solution on the blackboard. The main reason for

using agendas for control is to speed up the process of problem solving, and for

reducing agent idle time (Carver and Lesser, 1994).

COPE

The common sense knowledge that enables the agent to make sense of the

cognitive complexity measure of the environment that is reported by the CEO is

embedded in this module. The COPE module maintains the cognitive complexity

of the one coalition, group of coalitions in one abstraction level and the entire

system of active coalitions in all abstraction levels in the appropriate range

(Efatmaneshnik and Reidsema, 2009). COPE can make sense of the

environment’s cognitive complexity (at all three levels) by comparing it to the

maximum and minimum complexities that is determined by CEO. COPE is a goal

driven module and communicates with the agent’s upper layer. To increase the

complexity of the environment COPE informs the upper layer of the agent to

socialize and collaborate more actively. To decrease the complexity of the

environment the upper layer of the agent must become more passive by simply

reacting to the incoming information from the control source and other agents. In

this way COPE may provide immunity from agent overreacting or under acting in

the environment. Also COPE can dictate the upper layer to choose different

conflict resolution schemes that are more passive like constraint relaxation to

reduce the complexity. Conversly active negotiation techniques can be used to

148

increase the cognitive complexity of the environment when there is conflict with

another agent’s solutions.

8.4.3 The Top Layer

This layer contains the social knowledge and is in charge of negotiation and

coordination with other agents. It reports its information exchanges to the process

blackboard of the CEO (Efatmaneshnik and Reidsema, 2009). The uppermost

layer receives the potential solutions from the lowest layer and broadcasts them to

other design agents that have interactions to the problem being considered. This

layer also receives the same information from other agents and directly sends

them to the lowest layer of the agent where the information is processed for

determination of conflicts. The information about the conflicting objectives is also

sent to the COPE module which determines the strategy of the negotiations

(reactivity, pro-activity, selfishness) that is then reported to the upper most layer

of the design agent (Efatmaneshnik and Reidsema, 2009).

Figure 8.4 Agent structure in IMMUNE.

C
om

m
unication Interface

The W
orld

Low layer (self knowledge)

Top layer (social knowledge)

Middle layer

Agenda
Manager COPE

149

8.5 Overall Behaviour

The decomposition module of the control source is in charge of decomposing the

problem after the generation stage of a given abstraction level was accomplished

The process of multi disciplinary team formation is based on the decomposition

format of the problem, and SiFAs that were the elements of teams were grouped

on this basis (Efatmaneshnik and Reidsema, 2009).

The control source of IMMUNE is active throughout the entire design

process. The design process starts with the generation of an initial set of product

variables upon a notification from the control shell to single agents to introduce

their entries on the blackboard. This set of product variables act as a seed

representing the highest abstraction hierarchy of the problem space. The seed

might be a rough guess of what needs to be done (Figure 8.5). The simulation

agent of the control source simulates the FL of the generated problem space and is

in charge of gathering all the required information (for simulation) from the

design agents.

Generally, this support system relies on and digests massive amount of

information outcomes from the many simulations that might occur in each of the

process layers. The decomposition agent of control source decomposes the set of

generated variables and calls for the design agents’ bids to participate in solving

them. The decomposition module decides on one of the decomposition modes on

the basis of estimated problem connectivity for a given abstraction level. The

agents announce their interest back to the control shell by weighting their interest

in solving each individual design variable or estimating the value of a design

constraint. The composition agent assigns each individual parameter to a single

design agent. In IMMUNE, the SiFAs are also grouped into virtual teams

(coalitions). The composition agent announces the coalitions’ formats according

to one of the unsupervised integration modes described in Chapter 4. The IT

manager is in charge of setting the shared mail boxes for each coalition, and also

each layer.

150

The CEO agent of the control source estimates the minimum and

maximum process cognitive complexities at all three levels of the coalitions, the

layers and the entire system. The problem solving process starts at this stage; the

problems are solved by the design agents and the results are sent back to the

blackboard. During this process the information exchanges including those for

conflict resolutions and negotiations in between the design agents take place

entirely without the intervention of any module of the control source. CEO only

monitors the design process cognitive complexity that is raised from the

collaboration of the design agents during this last stage. If all the solutions are

prepared the virtual groups are dismantled and collaboration process is stopped.

The next set of the design variables are introduced and the cycle continues. It is

also possible to start the next layer before the termination of the last stage.

The parallel execution of two or more layers of the problem solving

process may need a single agent to be active in two or more process layers. The

agenda manager of each individual design agent was a module that was

introduced to maintain the focus of attention of the agent. The agents are allowed

to introduce new product variables at any abstraction level at any time during the

design process. They may also be cloned to solve two different design variable

related to different design groups or in the same design group.

The SEED
Layers Communicate only
through the blackboard

Layers at the generation
stage

Global Blackboard At solving stage

Figure 8.5 The design process at different abstraction levels may run
simultaneously.

151

8.5.1 Adaptive Structuration in IMMUNE

As explained in Chapter 4 the problem solving modality in different

abstraction levels can be disparate and based on the mode of decomposition at

each level. We interpreted this modality as adaptive structuration. According to

Chen and Li (2001), in order to enable dynamic structuration and adaptability, two

preconditions must be satisfied:

1. The relevant design attributes, functions and variables necessary to

formalize a design problem have been identified.

2. The interacting relation existing in teams is prescribed a priori in

seeking a multi-team design solution.

In Chapter 7 we suggested that prior knowledge of the interactions (driven

from the simulated PDSM) must remain as a suggestion and backbone to measure

the process complexity, rather than to be used for forced communications through

channels and filters. The reason to use this democratic method was to enhance the

creativity across the entire design system and within the teams. The CEO module

of the control source is in charge of measuring and tracking cognitive complexity

of the integrated design system. However, the mode of problem decomposition

and also integration mode remain unchanged for each layer after their introduction

up until when the coalitions at that layer are dismantled.

 To date, several other researchers have developed adaptable systems with

modal functionalities. For example, Shen and Norrie (1998) argued that

knowledge in modern manufacturing should have flexibility so that it can be

applied to different kinds of applications. They used three different types of

knowledge sharing patterns, primarily introduced by Tomiyama et al (1995)

(Figure 8.6). There pattern were:

1. Independent knowledge bases: in this case, the strength of

knowledge cannot be more than the sum of each of the independent

knowledge bases (Figure 8.6(a)).

152

2. Integrated knowledge bases: Here, the knowledge bases can be

applied to various situations and the strength of knowledge is near

maximum (Figure 8.6(b)).

3. Interoperable knowledge bases: independent knowledge bases can

communicate and form an interoperable situation (Figure 8.6(c)),

although the strength of knowledge might be weaker than that in

integrated knowledge bases.

Another example was Zhang (1992) who classified types of problem

solving among human experts in four predominant kinds according to their

interdependencies:

1. Horizontal cooperation is where each expert in the cooperative

group can get solutions to problems without depending on other

experts, but if the experts cooperate, possibly using different

expertise and data, they can increase confidence in their solutions.

2. Tree cooperation is where a senior expert depends on lower-level

experts in order to get solutions to problems.

3. Recursive cooperation is where different experts mutually depend

on each other in order to get solutions to problems.

4. Hybrid cooperation is where different experts use horizontal

cooperation at some level in an overall tree or recursive

cooperation.

Figure 8.6 Knowledge sharing architectures (Tomiyama et al 1995).

153

Also Rosenman and Wang (1999) introduced the Component Agent-based

Design-Oriented Model (CADOM) for collaborative design. This was a dynamic

integrated model, using an integrated schema to contain data for multiple

perspectives, but also with flexibility to support dynamic evolution. They

recognized five types of modelling mechanisms for a collaborative design

environment:

1. Integrated mode (Figure 8.7(a)): This is an integrated CAD system

which works as a sharable server for all users using an integrated

data model and a central management mechanism.

2. Distributed-integrated mode (Figure 8.7(b)): in this mode,

distributed designers usually have their own domain systems along

with a central service module called a sharable workspace.

3. Discrete mode (Figure 8.7(c)): this is a fully distributed system,

where usually there is no central module but simply a set of

distributed domain systems with discrete models and management

mechanisms.

4. Stage-based mode (Figure 8.7(d)): In this mode a base model is set

up at the first stage, and all subsequent models are derived from the

base model.

5. Autonomy-based mode (Figure 8.7(e)): This is based on the

concept of autonomy, in which each model is implemented as a

distributed set of knowledge sources representing autonomous,

interacting components.

154

We propose five modes of knowledge sharing and organizational structure

that correspond to decomposition modes described in Chapter 4. These

correspond to unsupervised integration schemes and are independent, integrative,

multi agent, collaborative and competitive. It should be noted again that each

process layer can acquire only one of these modes for the entire design process at

that layer. Also it is important to note that the general structure of the system,

here, is autonomy based and the following knowledge sharing patterns are highly

and/or expected rather than definitive solid patterns. The process modes are

described next (Efatmaneshnik and Reidsema, 2009).

8.5.2 Independent process mode

In this mode the decomposition agent has managed to fully decompose the

problem; generally, very low self map connectivity that is the indication of a loose

problem coupling leads to such situations. In this mode no collaboration is likely

between the coalitions as depicted in Figure 8.8; this is so because when tasks are

not interdependent, there is no need or reason to collaborate (Leenders et al,

2003). Consequently the need for radical innovation to integrate the system at the

considered abstraction level would be minimal, and the process will be

Figure 8.7 System modes for collaborative design systems (Rosenman and Wang,
1999).

155

characterized by short lead times. However collaboration exists between the

design agents inside the same coalition. The CEO monitors the cognitive

complexity inside the coalitions using the system knowledge provided by the

agents regarding the degree of interaction with other members of the coalition;

this is the only control relationship in the system.

8.5.3 Integrative process mode

Integrative systems were explained in 4.5. Simple coordination of the design

process makes this mode desirable, since all the coalitions have to coordinate their

communications with only one integrative coalition. The corresponding (likely)

organizational structure and integrative process mode is that illustrated in Figure

8.9.

Figure 8.8 Independent process mode: coalitions do not need to communicate.

CEO

Blackboard

Communication

Information about
System’s complexity

Design data

Coalitions

156

One drawback of this mode is that it might be hard for the design agents of the

integrative coalition to maintain the cognitive complexity of the layer above the

CEO-prescribed minimum cognitive complexity; since one module must be able

to reach a high cognitive complexity. In other words the coordination in between

several coalitions through one coalition might not be efficient or effective.

8.5.4 Autonomy based process mode

In this mode the agents explicitly act autonomously in their social behavior. The

main characteristic of the autonomy process model is the intense cooperation

amongst the design agents inside and across the boundaries of coalitions (Figure

8.10). This cooperation is an engine for innovation which is the main

characteristic of autonomy based process.

CEO

Blackboard

Figure 8.9 Integrative process mode. All coalitions exchange information with
only one central coalition.

Communication

Information about
System’s complexity

Design data

Coalitions

157

8.5.5 Collaborative process mode

In this mode subsystems are overlapped and they share some of the design

variables with each other. As a result some of the coalitions explicitly share some

of the agents, and there are some agents that have the membership of two or more

coalitions (Figure 8.11). The real complexity is measured for overlap

decompositions. As stated in 4.5 the main characteristic of this process mode is

the intense collaboration between coalitions that makes this mode an information

and knowledge intensive process (Klein et al, 2003.b).

CEO

Blackboard

Figure 8.11 Collaborative process mode.

Communication

Information about
System’s complexity

Design data

Coalitions

Blackboard

CEO

Figure 8.10 Autonomy based process model.

Communication

Information about
System’s complexity

Design data

Coalitions

158

8.5.6 Competitive process mode

When the problems are very connected resulting in dense self maps, any kind of

decomposition leads to large departures of the real complexity from the self

complexity (CR >> CS) . In this condition, decomposition may not be a solution to

problem tractability. In the competitive mode the problem is not decomposed, and

each coalition tackles the entire problem by itself. The main characteristic of this

process model is the competition between the design coalitions (Figure 8.12). The

CEO monitors the cognitive complexity inside each coalition. Note that there

naturally there shouldn’t be any emergent system level cognitive complexity for

this mode since it is assumed that coalitions do not no cooperate. However,

informal cooperation may exist between the coalitions, but the cognitive

complexity introduced by the informal cooperation of the coalitions can be

ignored. The quality of the solutions is determined by the control source, based on

the accuracy weights that the coalitions suggest for their solutions.

CEO

Blackboard

Figure 8.12 Competitive process mode, emulates the Enlightened Engineering
design process.

Communication

Information about
System’s complexity

Design data

Coalitions

159

9 Conclusion and Future Work

Complex engineered systems are large scale and densely coupled systems. This

thesis consists of a design methodology, several design methods and design

strategies for managing a complex product design; the design methods include

process monitoring, modal decomposition, and immunity index for parametric

decision making. The inherent fragility of a complex development process, a

complex NPD organization and a complex product, are the central focus of these

design methods. We used the term “immunity” to convey the message that

complex systems must be immunized in order to be robust.

The presented design methodology was a model of distributed

computation and complex problem solving as a new conceptual approach to

concurrent parametric design of complex products. This approach extended the

reach of parametric problem solving methodology to the conceptual stage, and by

that addressed issues such as innovation and creativity that are subjects of

conceptual design stage. This has been previously introduced by Kroll et al (2001)

as the parameter analysis, and was regarded as an imperative for innovative

conceptual design. The main contribution to the design methodology, here, was

the inclusion of simulation based engineering to the gradualist model of design.

Design Gradualism asserts that a design problem must be introduced

gradually and in steps usually regarded as abstraction levels. Abstraction levels

refer to the levels of importance of the design problems for the main

functionalities of the final product. One characteristic of complex products is the

sensitivity of their core functionalities even to low level parameters (details) such

as aesthetics. As an example consider the human skin; it can be regarded as a

detail (thus low level) in the abstraction hierarchy, although it plays sensitive roles

in overall health and immunity of the body. Therefore the argument is that for

complex products the details and the core functionalities must be developed and

designed together. As such we made the comparison between the first set of

design variables and the seed of a plant. The seed needs to have a foretaste of all

abstractions in the product (functionalities). The termination criteria for each

160

design stage (abstraction level) were also introduced as the number of design

variables.

 The presented template suggests simulation as a tool for the purpose of

design management as well as its commonly accepted purpose: an imperative for

design optimization and performance improvement. Monte Carlo Simulation and

the Global Entropy Based Correlation Coefficients were suggested for

establishing, early in the design phase, the self map of the system which shows the

sensitivity of design objectives and variables. This self map is represented as a

weighted graph or parametric based design structure matrix (Browning, 2001).

Decomposition is a design method, which is applicable to the design problem (self

map). Modal decomposition of the problem space was suggested: a problem may

be decomposed in several modes depending on the connectivity (or coupling) of

the design variables at each level of abstraction. These decomposition modes are

described as being analogous to the growing connectivity of the problem and are

defined as: 1) Full decomposition, all subsystems (sub-problems) are independent

for least connected systems. 2) Integrative or coordination based decomposition;

where one subsystem (named integrative subsystem) is connected to all other

independent subsystems that are independent. 3) Modular or multi agent

decomposition, where all subsystems or some of them are connected 4) Overlap

decomposition, which is similar to Multi Agent decomposition with the exception

that some of the subsystems are overlapped indicating shared design and objective

variables. 5) No decomposition for densely connected systems that show strong

emergence.

 We also presented three design methods that were based on the measures

of complexity of the design problems, cognitive complexity of the problem

solvers and complexity of the design solutions. Here, we referred to the problem

structure as the self map of the problem or the under-development system. If the

problem is large the self needs to be decomposed for tractability. It was noted that

the structure of the problem after decomposition is the real structure to be dealt

with. We referred to the complexity of the system/problem before decomposition

as the self complexity and complexity of system after decomposition as the real

complexity. It was shown that the real complexity cannot be less than the self

161

complexity, thus, contrary to what is commonly assumed, decomposition does not

reduce the complexity. The immune decomposition was introduced that utilized

real complexity as the quality partitioning criteria which can be applied to all

types of decompositions: integrative decompositions, modular decompositions as

well as overlap decompositions. The real complexity enables comparison between

the outcomes of these three decompositions. It was reasoned that minimizing the

real complexity leads to better efficiency and effectiveness of the design process.

Real complexity constitutes the approach of this thesis to immunization of the

design process.

Cognitive complexity was defined for a design organization. Cognitive

complexity is the ability of a person or an organization to integrate a system. We

suggested measuring cognitive complexity of an organization as a function of

information exchanges between design agents and in general design units (e.g.

design teams) by applying our graph theoretic complexity measure to the

monitored team based DSM. In order to integrate and manage a complex problem

the problem solving system requires a cognitive complexity that is more, or at

least equal, to the complexity of the problem. Our method to immunization of

complex design organizations constituted maintaining the cognitive complexity of

an organization around the complexity of the problem (in between the minimum

and maximum complexity of the problem). It was also noted that for hierarchical

organizations e.g. federation of coalitions and collection of federations the

cognitive complexity and their bounds must be measured as the real cognitive

complexity of the hierarchies.

Finally, Immunity Index was introduced to insure the immunity from

sudden collapse at the product level. It was based on the It was noted that the

variation in some parameters of a system can affect the underlying structural

relationship between the system’s variables. Based on this notion, a globally

robust product was regarded as one that uncertainties in the environment as the

variation in the product’s input variables were unable to change the structural

properties of the product’s variables. This way, the unexpected behaviour is more

unlikely, since a source of failure is the modal bifurcation of the structures.

162

A conceptual DSS was introduced that incorporated the design

methodology, design methods and strategies into a flat organizational architecture.

IMMUNE is capable of adaptive structuration which is planning decisions in a

metamorphose environment for each of the five mentioned decomposition modes.

Design agents are clustered within each GDDI cycle as virtual teams or coalitions

of agents whose structure mimics the structure of the problem. Subsequently, and

correspondingly to the five modes of decomposition, the IMMUNE architecture is

capable of employing five modes of design integration: 1) Independent mode that

is fully concurrent problem solving. 2) Integrative mode which is coordination

based problem solving. 3) Autonomy based problem solving that is cooperative

and on the basis of cooperation of several coalitions of agents. 4) Collaborative

problem solving where some of the coalitions of agents are semi merged and

overlapped 5) Competitive problem solving on basis of Enlightened Engineering

in which several independent coalitions of agents competing to solve the same

problem.

Adaptive Structuration is accomplished by employing a global blackboard

containing the current state of the design at all abstraction levels. The control

source decides on the decomposition mode based on the connectivity of the

problem and then decomposes it on the basis of minimum real complexity. The

CEO module of the control source is in charge of maintaining the coherence of the

multi agent design environment. CEO informs all the design agents of the amount

of cognitive complexity of their coalition and the federation. The COPE module

of the design agents are then in charge of maintaining the cognitive complexity of

the coalitions and the federation above the announced (by CEO) minimum and

away from the maximum bound. COPE module, decides on the high level

interactions mode (passive or proactive-social) by using the conflict resolution

strategies that are passive like constraint relaxation or proactive such as active

negotiation.

 The presented architecture is IMMUNE against sudden failure in meeting

the top level organization objectives including cost, lead time and the quality of

the product. It is often argued that complex systems are robust yet in the presence

of uncertainties they become fragile; this strange behaviour is related to the

163

chaotic and sensitive characteristic of complex systems. In the domain of

sustainability of the organizations that design complex products this means that

the top level goals may often be robustly met, however, sudden and large

departures from those goals may seem inevitable. To immunize against this

fragility the proposed system advocates coherency in collaboration. That is, the

locally aware design agents (aware of their local tasks) maintain the global

coherency, harmony and order through their COPE module by making the agents’

social behaviour subservient to the information the system’s cognitive complexity

received from the CEO module.

The immunity discussed in this thesis is more of a “reasoning by

metaphor” which means that there has not been much enough effort to study the

natural immune systems characteristics. One reason for this was that the limited

timing of the PhD (4 years period) was only enough to introduce myself to the

field and notions of complex systems science. A more rigorous approach could be

to use detail description of the recently uncovered as well as new understandings

of the already known mechanisms of natural immune system. These mechanisms

should be reflected on and incorporated into a distributed computation strategies;

and by that the core output of the research would be immune computational

strategies within the context of machine learning. The incorporation of complexity

measure into artificial immune systems and algorithms, however, is a novel

approach that has not been tried yet. The implementation of IMMUNE by an

Artificial Intelligence programming language such as LISP is an important

continuation of this project.

164

References

Allen MS. 1952. Morphological Creativity. Prentice-Hall, Englewood

Cliffs, NJ.

Alexander C. 1964. Notes on the Synthesis of Form. Harvard University

Press, Cambridge.

Alpert CJ, Kahng AB, and Yao SZ.1999. Spectral Partitioning with Multiple

Eigenvectors. Discrete Applied Mathematics, Vol 90, pp 3-26.

Altus SS, Kroo IM, and Gage J. 1996. A Genetic Algorithm for Scheduling

and Decomposition of Multidisciplinary Design Problems. Journal of mechanical

design, Vol 118, No 4, pp 486-89.

Alstyne V, and Logan GR. 2007. Designing for Emergence and Innovation:

Redesigning Design. Artifact, 2007, Vol 1, No 2, pp 120-129.

Anderson C. 2006. Creation of Desirable Complexity: Strategies for

Designing Self-Organized Systems. In Complex Engineered Systems, Eds Braha,

Minai and Bar-Yam, pp 22-39. Springer, Cambridge, Massachusetts.

Arbib MA, and Manes EG. 1974. Foundations of System Theory:

Decomposable Systems. Automatica, Vol 10, pp 285-302.

Ashby WR, and Gardner M. 1970. Connectance of Large, Dynamic

Cybernetic Systems: Critical Values for Stability. Nature, pp 228: 784.

Balazs M, and Brown D. 2002. Design Simplification by Analogical

Reasoning. In From Knowledge Intensive CAD to Knowledge Intensive

Engineering. Eds Cugini and Wozny, pp 29-44, Kluwer Academic Press,

Netherlands.

Banzhaf W. 1994. Self-Replicating Sequences of Binary Numbers: The

Build-up of Complexity. Complex Systems, Vol 8, pp 215-225.

Bar-Yam Y. 2002. Large Scale Engineering and Evolutionary Change:

Useful Concepts for Implementation of FORCEnet. Report to Chief of Naval

Operations Strategic Studies Group.

Bar-Yam Y. 2003. When systems engineering fails - toward complex

systems engineering. In proceedings of IEEE International Conference on

Systems, Man, and Cybernetics, No 2, pp 2021- 2028.

165

Bar-Yam Y. 2004. Making Things Work: Solving Complex Problems in a

Complex World. NECSI Knowledge Press, Cambridge.

Bashir HA, and Thomson V. 1999.a. Metrics for design projects: a review.

Design Studies, Vol 20, pp 263–277.

Bashir HA, and Thomson V. 1999.b. Estimating Design Complexity.

Journal of Engineering Design, Vol 10, No 3.

Bayrak C, and Tanik MM. 1998. A Process Oriented Monitoring

Framework. Systems Integration, Vol 8, pp 53-82.

Bechir A, and Kaminska B. 1995. CYCLOGEN: Automatic, Functional-

Level Test Generator Based on the Cyclomatic Complexity Measure and on the

ROBDD Representation. IEEE Transactions on Circuits and Systems - II:

Analogue and Digital Signal Processing, Vol 42, pp 446-452.

Boehm B. 1988. A Spiral Model of Software Development and

Enhancement. IEEE Computer, Vol 5, pp 61-72.

Boschetti F, Prokopenko M, Macreadie I, et al. 2005. Defining and

Detecting Emergence in Complex Networks. In proceedings of 9th International

Conference on Knowledge-Based Intelligent Information and Engineering

Systems, Melbourne, Australia, September 14-16, p573:580.

Braha D, and Bar-Yam Y. 2006. The Structure and Dynamics of Complex

Product Design. In Complex Engineered Systems: Science Meets Technology, Eds

Minai A, Braha D, Bar-Yam Y, pp 40-71, Springer, Cambridge, Massachusetts.

Braha D, and Maimon O. 1998. The Measurement of a Design Structural

and Functional Complexity. IEEE Transactions on Systems, Man, and

Cybernetics-Part A, Vol 28, No 4, pp 527-535.

Brown DC, Dunskus B, Grecu DL et al. 1995. SINE: Support for single

function agents. Paper presented in Applications of AI in Engineering, Udine,

Italy.

Browning TR. 1999. Designing system development projects for

organizational integration. Systems Engineering, Vol 2, pp 217-225.

Browning TR. 2001. Applying the Design Structure Matrix to System

Decomposition and Integration Problems: A Review and New Directions. IEEE

Transactions on Engineering Management, Vol 48, No 3, pp 292-306.

166

Browning TR, Deyst J, and Eppinger S D. 2002. Adding Value in Product

Development by Creating Information and Reducing Risk. IEEE Transactions on

Engineering Management, Vol 49, No 4, pp 443-58.

Cameron PJ. 2004. Automorphisms of Graphs. In Topics in Algebraic

Graph Theory, Eds Beineke LW, and Wilson RJ, Cambridge University Press, pp

137-55.

Carneiro RL. 1987. The Evolution of Complexity in Human Societies and

its Mathematical Expression. International Journal of Comparative Sociology,

Vol 28, pp 111-128.

Caro S, Bennis F, and Wenger P. 2005. Tolerance Synthesis of

Mechanisms: A Robust Design Approach. Journal of Mechanical Design, Vol

127, No 1, pp 86–94.

Carver N, and Lesser V. 1994. The Evolution of Blackboard Control

Architectures. Expert Systems with Applications, Vol 7, pp 1-30.

Casti JL. 1977. Complexity, Connectivity and Resilience in Complex

Ecosystems. IFAC Symposium on Bio- and Ecosystems, Liepzig, Germany.

Casti JL. 1994. Complexification: Explaining a Paradoxical World Through

the Science of Surprise. Abacus, London.

Chan PK, Schlag MD, and Zien JY. 1994. Spectral K-Way Ratio-Cut

Partitioning and Clustering. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Vol 13, No 9, pp 1088 – 1096.

Chen L, Ding Z, Simon L. 2005. A Formal Two-Phase Method for

Decomposition of Complex Design Problems. Journal of mechanical design, Vol

127, pp 184-195.

Chen L, and Li S. 2001. Concurrent Parametric Design Using a

Multifunctional Team Approach. Paper presented in Design Engineering

Technical Conferences DETC‘01. Pittsburgh, Pennsylvania.

Chen L, and Li S. 2005. Analysis of Decomposability and Complexity for

Design Problems in the Context of Decomposition. Journal of Mechanical

Design, Vol 127, pp 545-557.

Cheng CK, and Hu TC. 1989. The optimal partitioning of networks.

Technical Report, University of California, San Diego.

Chiva-Gomez R. 2004. Repercussions of complex adaptive systems on

product design management. Technovation, Vol 24, pp 707-711.

167

Cisse A, Ndiaye S, and Link-Pezet J. 1996. Process Oriented Cooperative

Work: an Emergent Framework. In IEEE Symposium and Workshop on

Engineering of Computer Based Systems, pp 342-347, Friedrichshafen, Germany.

Clark KB, and Fujimoto T. 1989. Overlapping Problem Solving in Product

Development. In proceeding of Managing International Manufacturing

Conference, pp 127-152, Amsterdam, North-Holand.

Cohen I. 2007. Real and Artificial Immune Systems: Computing the State of

the Body. Immunological Reviews, Vol 7, pp569-574.

Conant RC. 1972. Detecting Subsystems of a Complex System. IEEE

Transactions on Systems,Man and Cybernetics, Vol 2, pp 550-553.

Cook R. 2000. How complex systems fail. Cognitive Technologies

Laboratory Publication, University of Chicago. Chicago, IL.

http://www.ctlab.org/documents/How%20Complex%20Systems%20Fail.pdf

Cross N. 2000. Engineering Design Methods: Strategies for Product

Design. Third Edition, John Wiley and Sons Ltd.

Corkill DD. 1991. Blackboard Systems. AI Expert, Vol 6, pp 40-47.

Corkill DD. 2003. Collaborating Software: Blackboard and Multi-Agent

Systems & the Future. Paper presented in International Lisp Conference, New

York.

Craig ID. 1993. Formal Techniques in the Development of Blackboard

Systems. Research Report Coventry, Department of Computer Science, University

of Warwick, UK.

Crutchfield JP. 1994. The calculi of emergence: Computation, dynamics

and induction. Physica D, Vol 75, pp 11–54.

Crutchfield JP, and Young K. 1898. Inferring Statistical Complexity.

Physical Review Letters, Vol 63, pp 105-108.

Curtis B, Sheppard SB, and Milliman P. 1979. Measuring the psychological

complexity of software maintenance tasks with the Halstead and McCabe metrics.

IEEE Transactions on Software Engineering, Vol 5, pp 96-104.

Darbellay G. 1998. Predictability: an Information-Theoretic Perspective. In

Signal Analysis and Prediction, Eds Proch´azka A, Uhl´ır J, Rayner PJW, and

Kingsbury NG, pp 249-262, Boston.

Dasgupta D. 1998. An Artificial Immune System as a Multi-Agent Decision

Support System. In proceedings of IEEE International Conference on Systems,

http://www.ctlab.org/documents/How%20Complex%20Systems%20Fail.pdf

168

Man and Cybernetics (SMC), October , Vol 4, pp 3816-3820, San Diego,

California.

Dembski W. 2002. No Free Lunch: Why Specified Complexity Cannot Be

Purchased without Intelligence. Rowman & Littlefield Publishers, Inc.

DeSanctis G, and Monge P. 1999. Communication processes for virtual

organizations. Organization Science, Vol 10, pp 693-703.

DeSanctis G, and Poole MS. 1994. Capturing the Complexity in Advanced

Technology Use: Adaptive Structuration Theory. Organization Science, Vol5, pp

121-147.

Dierneder S, and Scheidl R. 2001. Complexity Analysis of Systems from a

Functional and Technical Viewpoint. Lecture Notes in Computer Science LNCS

No 2178, pp 223-232, Springer-Verlag Berlin Heidelberg.

Diestel R. 2005. Graph Theory. Third ed, Springer-Verlag, Heidelber/ New

York.

Ding C, He X, Zha H, et al. 2001. A Min-Max Cut Algorithm for Graph

Partitioning and Data Clustering. IEEE International Conference on Data

Mining, Dec. 2, San Jose, CA.

Dionisio A, Menezes R, and Mendes DA. 2007. Entropy and Uncertainty

Analysis in Financial Markets. ArXiv e-print, arXiv:0709.0668,

http://adsabs.harvard.edu/abs/2007arXiv0709.0668D.

Dissanayake K, and Takahashi M. 2006. The Construction of

Organizational Structure: Connections with Autopoietic Systems Theory.

Contemporary Management Research, Vol 2, pp 105-116.

Druzdzel MJ, and Flynn RR. 2000. Decision Support Systems. In Library

and Information Science, Ed Kent A, pp 120-133, Marcel Dekker Inc, New York.

Duin RPW, and Pekalska E. 2006. Object Representation, Sample Size and

Dataset Complexity, In Data Complexity in Pattern Recognition, Eds Basu M, and

Ho TK, Springer, pp. 25-47.

Dunskus BV. 1994. Single Function Agents and Their Negotiation Behavior

in Expert Systems. Research Report, Worcester Polytechnic Institute, Worcester,

MA.

Dussauchoy RL. 1982. Generalized Information theory and the

Decomposability of Systems. International Journal of General Systems, Vol 9, pp

13-36.

http://adsabs.harvard.edu/abs/2007arXiv0709.0668D

169

Edmonds B. 1997. Hypertext Bibliography of Measures of Complexity.

http://www.cpm.mmu.ac.uk/_bruce/combib/

Edmonds B. 1999. Syntactic Measures of Complexity. PhD Thesis,

University of Manchester, Manchester, UK.

Efatmaneshnik M, and Reidsema CA. 2007.a. Immunity as a Design

Decision Making Paradigm for Complex Systems: a Robustness Approach.

Cybernetics and Systems, Vol 38, No 8, pp 759-780.

Efatmaneshnik M, and Reidsema CA. 2007.b. Immunity and Information

Sensitivity of Complex Product Design Process in Overlap Decomposition. In

Proceedings of 7th International Conference on Complex Systems, Boston, MA.

Efatmaneshnik M, and Reidsema CA. 2008.a. Decomposition Modes and

Integration Schemes in Complex Systems Design. In proceedings of Systems

Engineering Test and Evaluation SETE 2008, September, Canberra.

Efatmaneshnik M, and Reidsema CA. 2008.b. Exploiting Non-Dominance

in Multi Agent Systems: An Artificial Immune Algorithm for Distributed and

Complex Problem Solving Environments. In proceedings of 12th Asia Pacific

Symposium on Intelligent and Evolutionary Systems IES08, 7-8 December,

Melbourne.

Efatmaneshnik M, and Reidsema CA. 2009. IMMUNE: A Collaborating

Environment for Complex System Design. In Studies in Computational

Intelligence: Collaboration, Fusion and Emergence, Eds Mumford C, and Jain L,

Ch 9, Springer. “in press”

El-Haik B, and Yang K. 1999. The components of complexity in

engineering design. IIE Transactions, Vol 31, No 10, pp 925-934.

English JR, and Taylor GD. 1993. Process Capability Analysis: A

Robustness Study. International Journal of Production Research, Vol 31, No 7,

pp 1621–1635.

Eppinger, SD. 1997. A Planning Method for Integration of Large Scale

Enginering Systems. Paper presented at the International Conference on

Engineering Design ICED 97, Tampere, Finland, August 19-21.

Eppinger, SD, and Salminen V. 2001. Patterns of Product Development

Interactions. Paper presented at the International Conference on Engineering

Design, Glasgow, Scotland, August, 21-23.

http://www.cpm.mmu.ac.uk/_bruce/combib/

170

Eppinger SD, Whitney DE, and Gebala DA. 1992. Organizing the Tasks in

Complex Design Projects: Development of Tools to Represent Design Procedures.

In NSF Design and Manufacturing Systems Conference, pp 301-309, Atlanta,

Georgia.

Eppinger SD, Whitney D, Yassine A, et al. 2003. Information Hiding in

Product Development: The Design Churn Effect. Research in Engineering

Design, Vol 14, No 3, pp 145-161.

Erdi P. 2008. Complexity Explained. Springer-Verlag.

Fathi Y, and Palko D. 2001. A Mathematical Model and Heuristic

Procedure for the Robust Design Problem with High-Low Tolerances. IIE

Transactions, Vol 33, No 12, pp 1121–1127.

Feng CX, and Balusu R. 2002. Robust Tolerance Design Considering

Progress Capability and Quality Loss. Conceptual and Innovative Design for

Manufacturing, Vol 103, pp 1–14.

Finger S, and Dixon JR. 1989. A Review of Research in Mechanical

Engineering Design. Part I: Descriptive, Prescriptive, and Computer-Based

Models of Design Processes. Research in Engineering Design, No 1, pp 51-67.

Fixson SK. 2005. Product architecture assessment: a tool to link product,

process, and supply chain design decisions. Journal of Operations Management,

Vol 23, No 3-4, pp 345-369.

Formica A, Marczyk J. 2007. Strategic Multiscale A New Frontier for R&D

and Engineering. Ontonix, Turin.

http://www.ontonix.com/index.php?page=download&CID=36

Fraser AM. 1989. Measuring Complexity in Terms of Mutual Information.

In Measures of Complexity and Chaos, Ed Abraham NB, pp 117-119, Plenum

Press, New York.

French MJ. 1985. Conceptual Design for Engineers. Design Council,

London.

Fruchter R, Clayton MJ, Krawinkler H, et al. 1996. Interdisciplinary

Communication medium for Collaborative Conceptual Building Design. Advances

in Engineering Software, Vol 25, pp 89-101.

Fyfe C, and Jain L. 2006. Teams of intelligent agents which learn using

artificial immune systems. Journal of Network and Computer Applications, Vol

29, pp 147–159.

http://www.ontonix.com/index.php?page=download&CID=36

171

Gero J S. 1996. Creativity, emergence and evolution in design. Knowledge-

Based Systems, Vol 9, pp 435-448.

Ghanea-Hercock R. 2007. Survival in cyberspace. Information Security,

Vol, 12, pp 200–208.

Gilb T. 1988. Principles of Software Engineering Management. Reading

Addison-Wesley Publishing Company, MA.

Goel S, and Gangolly J. 2007. On decision support for distributed systems

protection: A perspective based on the human immune response system and

epidemiology International. Journal of Information Management, Vol 27, pp 266–

278.

Gorodkin J, Sorensen A, and Winther O. 1993. Neural Networks and

Cellular Automata Complexity. Complex Systems, Vol 7, pp 1-23.

Grassberger P. 1989. Problems in Quantifying Self-organized complexity.

Helvetica Physica Acta, Vol 62, pp 498-511.

Griffin A. 1993. Metrics for Measuring New Product Development Cycle

Time. Journal of Product Innovation Management, No 10, pp 112–125.

Gulati RK, and Eppinger SD. 1996. The Coupling of Product Architecture

and Organizational Structure Decisions. MIT publication, Cambridge, MA.

Hamilton DP. 2001. Circuit Break: Gambling It Can Move Beyond the PC,

Intel Offers a New Microprocessor. Wall Street Journal, No 29, May issue.

Hart E, McEwan C, and Davoudani D. 2009. Exploiting Collaborations in

the Immune Systems: the future of artificial immune systems. In Studies in

Computational Intelligence: Collaboration, Fusion and Emergence, Eds Chrisitne

Mumford and Lakhmi Jain, Ch 16, Springer. 2009

Henderson RM, Clark KB. 1990. Architectural Innovation: The

Reconfiguration of Existing Product Technologies and the Failure of Established

Firms. Administrative Science Quarterly, Vol 35, No1, pp 9-30.

Hinds P, and McGrath C. 2006. Structures that work: social structure, work

structure and coordination ease in geographically distributed teams. In

Proceedings of 2006 the 20th anniversary conference on Computer supported

cooperative work (CSCW '06), Nov 04-08, pp 343-352, Banff, Alberta, Canada.

Hobday M, Rush H, and Tidd J. 2000. Innovation in Complex Products and

System. Research Policy, Vol 29, pp 793-804.

172

Hollingsworth P, and Mavris DN. 2000. A Method for Concept Exploration

of Hypersonic Vehicles in the Presence of Open and Evolving Requirements.

Paper presented at World Aviation Conference October 10-12, San Diego, CA.

Hops JM and Sherif JS. 1995. Development and application of composite

complexity models and a relative complexity metric in a software maintenance

environment. Journal of Systems and Software, Vol 31, pp 157-169.

Iansiti JC. 1990. Microsoft Corporation: Office Business Unit. HBS Case,

Vol 9, pp 691-330.

Ikeda M, Siljak DD, and White DE. 1981. Decentralized Control with -

Overlapping Information Sets. Journal of Optimization Theory and Applications,

Vol 34, No 2, pp279-310.

Kan J, and Gero J. 2005. Can entropy Represent Design Richness in Team

Designing? In pproceedings of the 10th International Conference on Computer

Aided Architectural Design Research in Asia CAADRIA'05, Ed Bhatt A, New

Delhi, pp 451-457.

Kannapan SM. 1995. Function Metrics for Engineered Devices. Applied

Artificial Intelligence, Vol 9, No 1, pp 45-64.

Keating C, Rogers R, Unal R, et al. 2003. System of Systems Engineering.

Engineering Management Journal, Vol 15, No 3, pp 36-45.

Kemper S, Rice K, and Chen Y. 1995. Complexity metrics and growth

curves for measuring grammatical development from five to ten. First Language,

Vol 15, pp 151-166.

Kindlmann P. 1984. Stability vs. Complexity in Model Computational

Communities. Lecture Notes in BioMathematics, Vol 54, pp 191-207.

Klein M, Braha D, Syama H, and Bar-Yam Y. 2003.a. Editorial: Special

Issue on a Complex Systems Perspective on Concurrent Engineering. Concurrent

Engineering Research and Applications, Vol 11, No 3, pp 163.

Klein M, Sayama H, Faratin P, and Bar-Yam Y. 2003.b. The Dynamics of

Collaborative Design: Insights from Complex Systems and Negotiation Research.

Concurrent Engineering Research & Applications, Vol 11, No 3, pp 201-209.

Klir, GJ. 2003. Facets of Generalized Uncertainty-Based Information. In

Entropy Measures, Maximum Entropy Principle and Emerging Applications, Ed

Karmeshu J, Springer, pp 55-75.

173

Ko KH, Pochiraju K, and Manoochehri S. 2007. Dynamic Evolution of

Information Complexity for Analysis of Design and Development. Journal of

Advanced Mechanical Design, Systems, and Manufacturing. Vol 1, No 1, pp 36-

47.

Krishnan V, Eppinger SD, and Whitney DE. 1997. A Model-Based

Framework to Overlap Product Development Activities. Management Science,

Vol 43, No 4, pp 437-51.

Kratzer J, Leenders RTAJ, and Engelen JMLV. 2004. A Delicate

Managerial Challenge: How Cooperation and Integration Affect the Performance

of New Product Development teams. Team Performance Management, Vol 10, pp

20-25.

Kroll NEA, and Klimesch W. 1992. Semantic Memory - Complexity or

Connectivity. Memory and Cognition, Vol 20, pp 192-210.

Kroll E, Condoor SS, and Jansson DG. 2001. Innovative Conceptual

Design. Cambridge University Press.

Kuras ML. 2007. An Introduction to Complex-System Engineering,

InterJournal Complex Systems, manuscript ID 2006.

Kurtoglu T. 2007. A Computational Approach to Innovative Conceptual

Design. PhD Thesis, University of Texas at Austin.

Kusiak A. 1999. Engineering Design: Products, Processes, and Systems.

Academic Press.

Kusiak A, and Feng CX. 2000. Robust Tolerance Synthesis with the Design

of Experiments Approach. Journal of Manufacturing Science and Engineering,

Vol 122, No 3, pp 520–528.

Lakshmanan KB, Jayaprakash S, and Sinha PK. 1991. Properties of

Control-Flow Complexity Measures. IEEE Transactions on Software

Engineering, Vol 17, pp 1289-1295.

Lander SE, Staley SM, and Corkill DD. 1996. Designing Integrated

Engineering Environments: Blackboard-Based Integration of Design and Analysis

Tools. Concurrent Engineering: Research and Applications, Vol 4, pp 59-72.

Larson J R. 2007. Deep Diversity and Strong Synergy: Modeling the Impact

of Variability in Members' Problem-Solving Strategies on Group Problem-Solving

Performance. Small Group Research, Vol 38, pp 413-436.

174

Lau H, and Wong V. 2004. Immunologic Responses Manipulation of AIS

Agents. Lecture Notes in Computer Science, Vol 3239, pp 65-79.

Lazarev VI. 1992. Complexity and Synthesis of Minimal Logic Circuits

using Multiplexers. Cybernetics, Vol 28, pp 796-799.

Lee J, and Truex DP. 2000. Cognitive Complexity and Methodical Training:

Enhancing or Suppressing Creativity. In proceedings of 33rd International

Conference on System Sciences, Hawaii.

Lee T. 2003. Complexity Theory in Axiomatic Design. PhD Thesis

Massachusetts Institute of Technology. Dept. of Mechanical Engineering.

Leenders RTAJ, Kratzer J, and Hollander J. 2003. Virtuality,

Communication, and New Product team Creativity: a Social Network Perspective.

Engineering and Technology Management, Vol 20, No 1, pp 69-92.

Lissack M. 1999. Complexity: the Science, its Vocabulary, and its Relation

to Organizations. Emergence, Vol 1, No 1, pp 110-126.

Liu H, and Chen W. 2006. Relative Entropy Based Method for Probabilistic

Sensitivity Analysis in Engineering Design. Journal of Mechanical Design, Vol

128, No 2, pp 326–336.

Liu Y C, Chakrabarti A, and Bligh T P. 2003. Towards an Ideal Approach

for Concept Generation. Design Studies Journal, Vol 24, No 4, pp 341-355.

Marczyk J. 1999. Principles of Simulation Based Computer Aided

Engineering. FIM Publications, Barcelona.

Marczyk J. 2002. Beyond optimization in computer-aided engineering.

International Centre for Numerical Methods in Engineering, Barcelona.

Marczyk J, and Deshpande B. 2006. Measuring and Tracking Complexity in

Science. In proceedings of 6th International Conference on Complex Systems,

Boston, MA.

Marczyk J. 2008. Complexity Management : New Perspective and

Challenges for CAE in the 21-st Century. BENCHmark Magazine, July issue, pp

13-17.

Margalef R. 1984. Ecosystems: Diversity and Connectivity as measurable

components of their complication. In The Science and Praxis of Complexity, Ed

Aida et al, pp 228-244, United Nations University, Tokyo.

175

Maturana F, Shen W, and Norrie DH. 1999. MetaMorph: an Adaptive

Agent-Based Achitecture for Intelligent Manufacturing. International Journal of

Production Research, Vol 37, pp 2159 – 2173.

McCabe TJ. 1976. A Complexity Measure. IEEE Transactions on Software

Engineering, Vol 2, No 4, pp 308-320.

Mcconnell S. 1996. Rapid Development: Taming Wild Software Schedules.

Microsoft Press, Redmond.

McDonald RA, and Mavris DN. 2000. Formulation, Realization, and

Demonstration of a Process to Generate Aerodynamic Metamodels for

Hypersonic Cruise Vehicle Design. Paper presented in World Aviation

Conference, San Diego, CA, October 10-12.

Meinel C. 1990. Logic vs. Complexity Theoretic Properties of the Graph

Accessibility Problem for Directed Graphs of Bounded Degree. Information

Processing Letters, Vol 34, pp 143-146.

Mellacheruvu PV, Fu MC, and Herrmann JW. 2000. Comparing Gradient

Estimation Methods Applied to Stochastic Manufacturing System. Technical

Report, Institute for systems Research, University of Maryland.

Merry U. 1995. Coping with Uncertainty: Insights from the New Sciences of

Chaos, Self-Organization, and Complexity. Praeger, London.

Meunier K, and Dixon JR. 1988. Iterative Respecification: A Computational

Model for Hierarchical Mechanical System Design. In proceedings of the ASME

Computers in Engineering Conference, American Society of Mechanical

Engineers, San Francisco, CA, July 31-August 3.

Michelena NF, and Papalambros PY. 1995. A Network Reliability

Approach to Optimal Decomposition of Design Problems. Journal of Mechanical

Design, Vol 117, No 3, pp 433-40.

Michelena NF, and Papalambros PY. 1997. A Hypergraph Framework for

Optimal Model-Based Decomposition of Design Problems. Computational

Optimization and Applications, Vol 8, pp 173-96.

Mihm J, and Loch CH. 2006. Spiraling out of Control: Problem-Solving

Dynamics in Complex Distributed Engineering Projects. In Complex Engineered

Systems, Eds Braha, Minai and Bar-Yam, pp 141-157, Springer, Cambridge,

Massachusetts.

176

Minati M, and Pessa L. 2006. Collective beings: Contemporary Systems

Thinking. Springer, New York.

Minai AA, Braha D, and Bar-Yam Y. 2006. Complex Engineered Systems:

A New Paradigm. In Complex Engineered Systems: Science Meets Technology,

Eds Minai AA, Braha D, Bar-Yam Y, pp 1-21, Springer, Cambridge,

Massachusetts.

Monceyron E, and Barthes JP. 1992. Architecture for ICAD Systems: an

Example from Harbor Design. Sience et Techniques de la Conception, No 1, pp

49-68.

Naylor AW. 1981. On Decomposition Theory: Generalised Dependence.

IEEE Transactions on Systems, Man and Cybernetics, Vol 10, pp 699-713.

Norman DO, and Kuras ML. 2006. Engineering Complex Systems. In

Complex Engineered Systems: Science Meets Technology, Eds Braha D, Minai A

A, Bar-Yam Y, pp 204-244, Springer, Cambridge, Massachusetts.

O’Neal MB, and Edwards WR. 1994. Complexity Measures for Rule-Based

Programs. IEEE Transactions on Knowledge and Data Engineering, Vol 6, pp

669-680.

Ottino JM. 2004. Engineering Complex Systems. Nature, No 427, pp 399.

Pagels RH. 1989. Dreams of Reason: The Computer and the Rise of the

Science of Complexity. Bantam Books, New York.

Pahl G, and Beitz W. 1996. Engineering Design – A Systematic Approach.

Springer, New York, NY.

Papalambros PY. 2002. The Optimization Paradigm in Engineering Design:

Promises and Challenges. Computer-Aided Design, Vol 34, pp 939-51.

Pimm S. 1984. The complexity and stability of ecosystems. Nature, Vol

307, pp 321-326.

Pimmler TU, and Eppinger SD.1994. Integration Analysis of Product

Decompositions. Paper presented in ASME Design Theory and Methodology

Conference, Minneapolis, MN, September.

Pramee IC, and Bonham CR. 2000. Towards the Support of Innovative

Conceptual Design through Interactive Designer Evolutionary Computing

Strategies. Artificial Intelligence for Engineering Design, Analysis and

Manufacturing, Vol 14, pp 3–16.

177

Prasad B.1996. Concurrent engineering fundamentals: integrated product

and process organisation. Prentice Hall, New Jersey.

Pugh S. 1991. Total Design. Addison Wesley, Wokingham, UK.

Quadrel RW, Woodbury RF, and Fenves SJ. 1993. Controlling

Asynchronous Team Design Environments by Simulated Annealing. Research in

Engineering Design, Vol 5, pp 88-104.

Reggiani A, and Nijkamp P. 1995. Competition and complexity in spatially

connected networks. System Dynamics Review, Vol 11, pp 51-66.

Reidsema, C. 2001. A Conceptual Blackboard Database Model For Design

Process Planning In Concurrent Engineering. PhD Thesis, University of

Newcastle, Newcastle, Australia.

Reidsema C, and Szczerbicki E. 2002. Review of Intelligent Software

Architectures for the Development of An Intelligent Decision Support System for

Design Process Planning in Concurrent Engineering. Cybernetics and Systems,

Vol 33, pp 629-658.

Ring J, and Madni A. 2005. Key Challenges and Opportunities in 'System of

Systems' Engineering. In proceedings of IEEE International Conference on

Systems, Man and Cybernetics, Waikoloa, Hawaii, pp 973–978, October 10–12.

Roemer TA, and Ahmadi R. 2004. Concurrent Crashing and Overlapping in

Product Development. Operations Research, Vol 52, No 4, pp 606-622.

Rosenman M, and Wang F. 1999. CADOM: A Component Agent-based

Design-Oriented Model for Collaborative Design. Research in Engineering

Design, Vol 11, pp 193–205.

Rusbult C. 2000. Relationships between Design and Science (Part 1)

Effective Combining of Creative and Critical Thinking. American Scientific

Affiliation, http://www.asa3.org/ASA/education/think/science-design.htm

Saad M, and Maher ML. 1996. Shared Understanding in Computer-

Supported Collaborative Design. Computer-Aided Design, Vol 28, pp 183-192.

Sanders I. 2003. What is Complexity?. Washington Centre for Complexity

and Public Policy, Washington.

http://www.complexsys.org/pdf/what_is_complexity.pdf

Schruben L, and Ycesan E. 1993. Complexity of simulation models: a graph

theoretic approach. In Proceedings of the 1993 Winter Simulation Conference,

http://www.asa3.org/ASA/education/think/science-design.htm
http://www.complexsys.org/pdf/what_is_complexity.pdf

178

Eds Evans GW, Mollashasemi M; Russell EC, et al, pp 641-649, IEEE,

Piscataway, NJ.

Seeley D, and Ronald S. 1992. The Emergence of Connectivity and Fractal

Time in the Evolution of Random Digraphs. Complex Systems, Vol 92, Australia

National University.

Shalizi CR. 2001. Causal Architecture, Complexity and Self-Organization in

Time Series and Cellular Automata. PhD Thesis, University of Wisconsin-

Madison, US.

Simon HA. 1969. Sciences of the artificial. M.I.T. Press, Cambridge, MA.

Sinha R, Liang VC, Paredis CJJ, et al. 2001. Modeling and Simulation

Methods for Design of Engineering Systems. Computing and Information Science

in Engineering, Vol 1, pp 84-91.

Shen W, and Barthès JP. 1996. An Experimental Multi-Agent Environment

for Engineering Design. International Journal of Cooperative Information

Systems, Vol 5, pp 131-151.

Shen W, and Norrie DH .1998. A Hybrid Agent-Oriented Infrastructure for

Modeling Manufacturing Enterprises. In proceedings of Eleventh Workshop on

Knowledge Acquisition, Modeling and Management KAW'98, pp 117-128.

Banff, Canada.

Shen W, Norrie DH, and Barthès J-P. 2001. Multi-Agent Systems for

Concurrent Intelligent Design and Manufacturing. CRC Press.

Shi J, and Malik J. 2000. Normalized Cuts and Image Segmentation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol 22, pp 888-905.

Smith RP, and Eppinger SD. 1997. Identifying Controlling Features of

Design Iteration. Management Science, Vol 43, No 3, pp 276-93.

Soofi E. 1997. Information Theoretic Regression Methods. In Advances in

Econometrics - Applying Maximum Entropy to Econometric Problems, Eds

Fomby T, and Carter HR, Vol 12, Jai Press Inc., London.

Sosa ME, Eppinger SD, and Rowles CM. 2000. Designing Modular and

Integrative Systems. Paper presented at International Design Engineering

Technical Conferences and Computers and Information in Engineering

Conference, Baltimore, Maryland, September.

Sosa R, and Gero J. 2004. Diffusion of Creative Design: Gate keeping

Effects. International Journal of Architectural Computing, Vol 2, pp 518-531.

179

Sosa R, and Gero J. 2005. A Computational Study of Creativity in Design.

Artificial Intelligence for Engineering Design Analysis and Manufacturing, Vol

19, pp 229-244.

Spielman DA, and Teng S.2007. Spectral Partitioning Works: Planar Graphs

and Finite Element Meshes. Linear Algebra and its Applications, Vol 421, pp

284–305.

Sriram D, Stephanopoulos G, Logcher R, et al. 1989. Knowledge-Based

System Applications in Engineering Design: Research at MIT. AI Magazine, Vol

10, No 3, pp 79-96.

Stacey R D. 1995. The Science of Complexity: An Alternative Perspective

for Strategic Change Processes. Strategic Management Journal, Vol 16, pp 477-

495.

Steel M. 1992. The Complexity of Reconstructing Trees from Qualitative

Characters and Subtrees. Journal of Classification, Vol 9, pp 91-116.

Stepney S, Smith RE, Timmis J, et al. 2005. Conceptual frameworks for

artificial immune systems. Journal of Unconventional Computing, Vol 1, No 3, pp

315–338.

Suh NP. 1988. The Principles of Design. Oxford University Press, Oxford,

UK.

Suh NP. 1999. A Theory of Complexity, Periodicity and the Design

Axioms. Research in Engineering Design, Vol 11, No 2, pp116–131.

Suh NP. 2001. Axiomatic Design: Advances and Applications. Oxford

University Press, New York, NY.

Suh NP. 2005. Complexity theory and applications. Oxford University

Press, New York.

Summers JD, Shah J. 2003. Developing Measures of Complexity for

Engineering Design. Proceedings of ASME Design Engineering Technical

Conferences DETC’03, September 2-6, Chicago, Illinois.

Sycara K. 1998. Multi Agent Systems. AI Magazine, Vol 19, pp 79-93.

Tanaka K, Higashiyama M, and Ohsuga S. 2000. Problem Decomposition

and Multi-agent System Creation for Distributed Problem Solving. Proceedings of

the 12th International Symposium on Foundations of Intelligent Systems,

Springer-Verlag.

180

Temperly HNV. 1981. Graph Theory and Applications. Ellis Horwood,

Chichister.

Terwiesch C, and Loch CH. 1999. Measuring the Effectiveness of

Overlapping Development Activities. Management Science, Vol 45, No 4, pp

455-465.

Thomke S. 2001. Enlightened Experimentation: The New Imperative for

Innovation. Harvard Business Review, Vol 79, No 2.

Timmis J. 2007. Artificial immune systems - today and tomorrow. Natural

Computing, Vol 6, No 1, pp 1–18.

Timmis J, Andrews P, Owens N, et al (2008) an Interdisciplinary

Perspective on Artificial Immune Systems. Evolutionary Intelligence, 1: 5-26

Tomiyama T, Umeda Y, Ishii M, et al (1995) Knowledge systematization

for a knowledge intensive engineering framework. In Knowledge Intensive CAD,

Eds Tomiyama T, Mantyla M, Finger S, pp 55-80, Chapman & Hall.

Turban E. 1995. Decision support and expert systems: management support

systems. Prentice Hall, Englewood Cliffs, N.J.

Ulrich KT, and Eppinger SD. 2004. Product Design and Development.

Third ed, Mc Graw-Hill/Irwin.

Unger DW. 2003. New Product Process Design: Improving Development

Response to Market, Technical, and Regulatory Risks. PhD Thesis, MIT School of

Management and Engineering, MA.

Verma D, and Meila M. 2003. A Comparison of Spectral Clustering

Algorithms. Technical Report. University of Washington.

Watson AH, and McCabe TJ. 1996. Structured Testing: A Testing

Methodology Using the Cyclomatic Complexity Metric. NIST (U.S. National

Institute of Standards and Technology) Special Publication, pp 500-235,

Washington.

Walker CC. 1971. Behaviour of a Class of complex systems: The effect of

systems size on properties of terminal cycles. Journal of Cybernetics, Vol 1, pp

55-67.

Weber RG, and Condoor SS. 1988. Conceptual Design Using a

Synergistically Compatible Morphological Matrix. In proceedings of Frontiers in

Education Conference FIE '98, Vol 1, pp 171-176

181

White S, and Smyth P. 2005. A spectral Clustering Approach to Finding

Communities in Graphs. In 5th SIAM International Conference on Data Mining.

Society for Industrial and Applied Mathematics, 2005.

Winograd S. 1963. Redundancy and Complexity of Logical Elements.

Information and Control, Vol 5, pp 177-194.

Wolf TD, and Holvoet T. 2005. Towards a Methodology for Engineering

Self-Organising Emergent Systems. In Self-Organization and Autonomic

Informatics, Eds Czap H, Unland R, Branki C, et al, pp 18-34. Glasgow, UK

Wong A, and Sriram D. 1993. SHARED: An information model for

cooperative NPD. Research in Engineering Design, Vol 5, pp 21-39.

Yeh CW, Cheng CK., and Lin T. 1992. A probabilistic Multicommodity-

Flow Solution to Circuit Clustering Problems. Paper presented in IEEE Int. Conf.

Computer-Aided Design ICCAD-92, Santa Clara, CA.

Zadeh LA. 1973. Outline of a new approach to the analysis of complex

systems and decision processes. IEEE Trans. On Systems, Man and Cybernetics,

No 3, pp 28-44.

Zhang C. 1992. Cooperation under uncertainty in distributed expert systems.

Artificial Intelligence, Vol 56, pp 21-69.

Zeigarnik AV, and Temkin ON. 1996. A graph-theoretic model of complex

reaction mechanisms: a new complexity index for reaction mechanisms. Kinetics

and Catalysis, Vol 37, pp 372-385.

Zdrahal Z, and Motta E. 1996. Case-Based Problem Solving Methods for

Parametric Design Tasks. In proceedings of the Third European Workshop

EWCBR-96 Lausanne, November 14–16, Switzerland, pp 473-486.

A1

A Appendix : The Nondisclosures and MatlabTM
Codes

A.1 Graph Theoretic Complexity Measure

The graph theoretic measure of complexity of the OntospaceTM software (and this

thesis) is the Spectral Norm of the adjacency matrix of the graph. In general, the

Spectral norm of a matrix A is also known as the spectral radios (or second norm)

of the matrix and is the largest singular value of A. For real matrices the spectral

norm is:

Where AT is the transpose of matrix A. In general, a norm is an abstraction of the

concept of length. In robust control theory22 the spectral norm of a controller

transfer function is known as H∞ or Hankel norm, and is used to minimize the

closed loop impact of a perturbation of outputs to input perturbation. There is an

analogy between robust controller design and robust engineering design. In fact a

controller transfer function in control theory is the equivalent of a DSM in design

theory. Robust control design has become a new paradigm in modern control

design already many years ago. However the introduction of this technique into

engineering design which is also accompanied by its mix with the science of

emergence is relatively new.

The notion of emergence has very close relationship with this measure.

The emergence of connectivity in random graphs (Erdős–Rényi graphs) is usually

analysed in terms of the size of the largest connected subgraph (LGS) (Boschetti

et al 2005). A subgraph of a graph G is a graph whose vertex set is a subset of that

of G, and whose adjacency relation is a subset of that of G restricted to this subset.

22 Robust control theory is concerned with how control systems react to erroneous or failed inputs
or stressful environmental conditions.

A2

A subgraph is connected if only if it cannot be any further partitioned into two or

more independent components (or subgraphs with no edge in between them).

Spectral norm is obviously a property of the LGS since if we consider matrix A

that is collection of sub-matrices on its diagonal and zero elsewhere then the

spectral norm of A would be the maximum of the spectral norms of the sub-

matrices:

Note that Ais can be the adjacency matrices of the sub-graphs of a graph (with

adjacency matrix A) that are not connected to each other. We used this property of

this measure in chapter 5 to set the lower bound for the real complexity of

decompositions. Figure A.1 shows that on average the measure increases with

three components of complexity (order, size or coupling, and cycles). In this

figure each point represents a randomly generated graph (see Section A.3 for the

related MatlabTM code).

Figure A.1 The spectral norm as a complexity measure on average increases

with size, order and cycles number.

A3

A.2 Lower and Upper Complexity Bounds

The lower and upper complexity bounds are measured from a dataset that

describes a system and by applying the complexity measure to respectively a

reduced adjacency matrix and an augmented one. The reduced adjacency matrix

contains only the important edge weights and is zero for the weak links. This way

the reduced adjacency matrix expresses the essence of connectivity in the system

and the irreducible core of the system. OntospaceTM computes the information

exchange (by estimating the mutual entropy) and the entropy of all the scatter

plots for the pairs of systems variables (by treating the scatter plots as images).

The scatter plots that contain significant information exchange (the important

links in the system’s graph) are decided by drawing a boundary in the plot of

Entropy versus Information Exchange of all scatter plots of pairs of system’s

variables (Figure A.2). This boundary separates the scatter plots that contain

useful information (shown by red dots) from the remainder (blue dots).

Generation of the augmented adjacency matrix involves Monte Carlo

sample generation to fill up each individual scatter plot with more samples points

(based on the estimated mutual probability distributions from the original data

set). Naturally, every time a new sample is generated the entropy in the scatter

plot increases. The augmented adjacency matrix is formed by measuring the

information exchanges when all scatter plots have the maximum entropy as shown

in the Figure A.3 (i.e. all scatter plots would be saturated with the maximum

entropy).

In chapter 6 we mentioned the notions of real minimum and maximum

complexities for the hierarchies. Real minimum and maximum complexities are

obtained by decomposing the reduced and augmented adjacency matrices of the

system, then measuring the real complexity for these decompositions.

A4

Figure A.3 The maximum entropy is the entropy of the image that lies on the
boundary.

Entropy

Figure A.2 The scatter plots that contain useful information are separated from
those that do not.

Information
Exchange

A5

A.3 MATLABTM Codes

A.3.1 Codes related to Chapter 3

Function: figure3_6

This function generates the Figure 3.6 and the mutual information exchange

presented in the corresponding section.

function figure3_6
x = linspace(-1,1,200);
y = xcircle(x);
x = [x x];
tt(:,1) = x';
tt(:,2) = y';
plot(x,y,’.’)
mutual information = xentropy(tt);

Function: xcircle

This function generates a half circle.

Output:

• y: a vector containing the y coordinates of a circle.

Input

• x: a vector containing the x coordinates of the circle.

function y = xcircle (x)
y1 = (1 - x.^2) .^ 0.5;
y2 = -((1 - x.^2) .^ 0.5);
y = [y1 y2];
end

A6

Function: xentropy

This function estimates the joint probability distribution of two random variables

and their mutual information.

Output:

• ent: the mutual information

Input:

• tt: a vector with two columns. Each row of the vector is a data point

of a two dimensional data set.

function ent = xentropy(tt)
 h = hist3(tt);
 N = sum(sum(h));
 w = h / N;
 q = find(w(:,:) ~= 0);
 ent = - sum(sum(w(q) .* log (w(q))) , 2)
end

A.3.2 Codes Related to Chapter 5

A number of MatlabTM functions have written and used to produce the presented

figures of Chapter 5. These functions are included next.

Function: dcm

This function measures the real complexity of decompositions.

Outputs:

• com: real complexity of the decomposition

• Csum: sum complexity of the parts ort subsystems

• rcut: cut ratio of Cheng and Hu (1989)

• mcut: min-max cut of Ding et al (2001)

A7

• ncut: normalized cut of Shi and Malik (1991)

Inputs:

• a: adjacency matrix of the self, can be weighted or un-weighted.

• m: partitions (row) vector. Each of the elements of this vector are

the order of one of the partitions, in a way that, the size of the

vector is the number of the partitions, and the sum of the elements

of the vector are the order of the adjacency matrix of the self graph.

• pn: the permutation (row) vector of the self adjacency matrix. Its

size is the same as the size of self adjacency matrix and contains

the permutation indices. For example if the matrix A is a 3×3 self

adjacency matrix then the permutation vector can be one of the

following six vectors:

[3 2 1], [2 3 1], [3 1 2], [2 1 3], [1 3 2] and [1 2 3]

The permutation of A with the last vector would be equal to A.

function [com, Csum, rcut , mcut , ncut] = dcm(a,m,pn)
a_n = a(pn,pn);
nsus = length(m);
nim = cumsum(m);
for ii = 1:nsus
 Sus(ii)= {a_n(nim(ii) - m(ii) + 1 : ...
 nim(ii), nim(ii)- m(ii)+ 1 : nim(ii))};
 for jj = 1:ii-1
 cut(jj,ii)={a_n(nim(jj) - m(jj) + 1 : nim(jj),...
 nim(ii) - m(ii) + 1 : nim(ii))};
 cut(ii,jj)={a_n(nim(ii) - m(ii) + 1 : nim(ii),...
 nim(jj) - m(jj) + 1 : nim(jj))};
 end
 cut(ii,ii) = {[]};
end
 Cum = cellfun(@norm, Sus);
 sums = sum(Cum);
 smin = min(Cum);
 subcom = cellfun(@(x) sum(sum(x)), Sus);
 Csum = sum(Cum);
 Cum = diag(Cum);
 cutsum = cellfun(@(x) sum(sum(x)), cut);
 cum = Cum + cutsum;
 com = norm(cum);
 rcut = sum(sum(cutsum)./m)/nsus/(nsus-1);
 mcut = sum (sum (cutsum) ./ subcom) / nsus/(nsus -1);

ncut = sum (sum (cutsum) ./ (sum (cutsum) + subcom))/
nsus/... (nsus -1);

A8

end

Function: Overlapdcm

This function calculates the real complexity of the overlap decompositions.

Outputs:

• com: real complexity of the overlap decomposition

Inputs:

• a: adjacency matrix of the self graph

• m: the partitions (row) vector. This includes partitions size

including the overlap blocks. For example if the matrix “a” is 3×3

and it is decomposed in the following form:

Then the partitions matrix is written as [1 1 1].

• l: the vector containing the indices of the laps in the partition

vector. For the above example, l would be [2].

• pn: the permutation row vector containing the permutation indices

of adjacency matrix.

function [com] = overlapdcm(a,m,l,pn)

mm = size(m,2);
ll = size(l,2);
I = zeros(mm+ll,mm);
j = 0;
for i = 1:mm
 j = j+1;
 I(j,i)=1;
 if sum(i == l)== 0
 else

A9

 j = i + find(i==l);
 I(j,i) = 1 ;
 end

a_n = a(pn,pn);
nsus = length(m);
nim = cumsum(m);
mm = m;
mm(l-1) = mm(l) + mm(l-1);
mm(l)=[];
mim = cumsum(mm);
mm = m;
mm(l-1) = mm(l) + mm(l-1);
mm(l+1) = mm(l) + mm(l+1);
mm(l)=[];
msus = length (mm);
for i = 1:msus
 b = [mim(i)-mm(i)+1 : mim(i)];
 Mb(i) = {a_n(b,b)};
end
parts = cellfun(@norm,Mb);
for ii = 1:nsus
 Sus(ii)= {a_n(nim(ii) - m(ii) + 1 : ...
 nim(ii), nim(ii)- m(ii)+ 1 : nim(ii))};
 for jj = 1:ii-1
 cut(jj,ii)={a_n(nim(jj) - m(jj) + 1 : nim(jj),...
 nim(ii) - m(ii) + 1 : nim(ii))};
 cut(ii,jj)={a_n(nim(ii) - m(ii) + 1 : nim(ii),...
 nim(jj) - m(jj) + 1 : nim(jj))};
 end
 cut(ii,ii) = {[]};
 end
 Cum = cellfun(@norm, Sus);
 Cum = diag(Cum);
cutsum = cellfun(@(x) sum(sum(x)), cut);
Cum = Cum + cutsum;
cum = I*Cum*I';
com = norm(cum);

end

Function: adj

This function generates an adjacency matrix of an unweighted graph.

Output:

• a: the unweighted adjacency matrix

Inputs:

A10

• n: the order of the graph or the size of the adjacency matrix.

• p: the probability that an edge exists between two vertices.

function a = adj(n,p)
if p>1 | p<0, error('p must be between zero and one')
else
a = rand(n)< p;
a = triu(a,1);
a = a+a';
end

Function: adjweid

This function changes an unweighted adjacency matrix to a weighted one.

Output:

• a: the weighted adjacency matrix.

Inputs:

• a: the unweighted adjacency matrix.

• p1: depending on the value of l, can be the mean or the minimum

of the edge weights.

• p2: depending on the value of l, can be the standard deviation or

the maximum of the edge weights.

• l: can be either 1 or 2. If l=1 then a normal distribution is used for

the distribution of the weights. If l=2 then a uniform distribution is

used.

function a = adjweid(a,p1,p2,l)
i = find(a);
j = nnz(a);
switch l
 case 1%p1 = mean,p2 = std
 a(i) = sqrt(p2) * randn(1,j) + p1 ;
 a(i) = a(i) .* (a(i) > 0);
 case 2%p1 = min,p2 = max

A11

 a(i) = (p2 - p1) * rand(1,j) + p1 ;

 otherwise
 error('l must be zero or one')
end
end

Function: fdlr

This function produces the permutation vector based on the sorted indices of the

eigenvectors of the adjacency and Laplacian matrices.

Outputs:

• pn: the permutation vector

Inputs:

• a: adjacency matrix (can be weighted or unweighted)

• i: can be either 0 or 1

function [pn] = fdlr(a,i)
% m = zero -> adjacency
% m = 1 -> laplacain
n = length(a);
 L = diag(sum(a,2)) - a ;
 [v1 v2] = eig(L);
[u1 u2] = eig(a);
if i == 0
[x1 pn] = sort(u1(:,n));
elseif i==1
[x1 pn] = sort(v1(:,n));
end

A12

Function: kpart

This function produces a row vector that contains the size of the partitions. The

size of this vector is the number of partitions. The partition sizes are balanced

since they are drawn from a normal distribution. The minimum and maximum

size of the partitions can also be stated.

Outputs:

• m: partitions raw vector

Inputs:

• n: order of the original graph that is to be partitioned.

• k: the number of partitions

• mu: the mean size of the partitions.

• sigma: the standard devisation of the size of partitions from the

mean.

• smin: the minimum size of the partitions.

• smax: the maximum size of the partitions.

function m = kpart(n,k,sigma, mu, smin,smax)
m = zeros(1,k);
while nnz(m > smax) || nnz(m < smin)
m = mu * randn(1,k) + sigma;
 m = m * n / sum(m);
m = ceil(m);
[jj,j] = max(m);
m(j) = m(j)- (sum(m)-n);
p = randperm(k);
m = m(p);
end

	Title Page - Towards Immunization of Complex Engineered Systems: Products, Processes and Organizations
	Abstract
	Acknowledgement
	PUBLICATIONS DURING Ph.D. CANDIDATURE
	Table of Contents
	List of Figures
	List of Tables

	1 Why Complexity?
	2 Background: Engineering Design
	3 All about Complexity
	4 A Template for Complex Design Problems
	5 Immune Decomposition and Process Immunity
	6 Integration and Organizational Immunity
	7 Product Immunity
	8 A Decision Support System: IMMUNE
	9 Conclusion and Future Work
	References
	A Appendix : The Nondisclosures and MatlabTM Codes
	A.1 Graph Theoretic Complexity Measure
	A.2 Lower and Upper Complexity Bounds
	A.3 MATLABTM Codes

