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Abstract 

 
This paper focuses on the general determinants of autocorrelation and the relationship between 
autocorrelation and volatility in particular.  Using UK stock market index and individual stock price 
data, a multivariate generalized autoregressive conditional heteroskedasticity (M-GARCH) model is 
used to generate estimates of conditional autocorrelation.  The covariance equation of this model is 
modified to include the potential determinants of autocorrelation including volatility, which is proxied 
using the time series of filtered probabilities of a Markov regime switching model.  Consistent with 
the previous literature, this paper documents a negative relationship between volatility and 
autocorrelation.  The results suggest that an asymmetry exists in this relationship which is attributed 
to the constraints placed on short selling.   
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1. Introduction 

 

Despite the efforts of academic researchers, identifying the determinants of serial correlation 

in share prices has proven to be an elusive goal.  Fama (1971) attributed the presence of 

autocorrelation to changes in the risk premia while Fisher (1966) and Scholes and Williams 

(1977) focused on explanations related to thin trading.  The empirical evidence however, 

suggests that actual autocorrelation estimates are significantly greater than those implied by 

either of these factors (see Atchison, Butler and Simonds, 1987, Conrad and Kaul, 1988, 

1989, Lo and MacKinlay, 1988, 1990 and Ogden, 1997).   

More recently, the presence of autocorrelation has been linked to the activities of 

“feedback” traders (see Sentana and Wadhwani, 1992).  Recognizing the existence of both 

positive and negative feedback traders in the market, the observed level of autocorrelation at 

any given point in time is a function of the relative strength of these two different classes of 

traders.  Over time, this relative strength will change and with it, the level of autocorrelation.  

For example, the arguments of Black (1988, 1989) suggest that a positive relationship exists 

between volatility and the extent to which rational investors pursue positive feedback trading.  

As autocorrelation is argued to reflect the activity of feedback traders, changes in volatility 

therefore have implications for the level of autocorrelation.  Where negative return 

autocorrelation exists, volatility increases should serve to heighten the observed level of 

autocorrelation.  On the other hand, where positive autocorrelation is evident, a rise in 

volatility should lessen the level of return autocorrelation.  In support of this theory, a 

negative relationship between volatility and autocorrelation has been found in the literature 

(see inter alia Sentana and Wadhwani, 1992, Koutmos, 1997, and McKenzie and Faff, 2003).   

In testing the nature of the relationship between volatilty and autocorrelation, the 

previous literature has failed to recognise that heightened volatility may result from either an 

increase or a decrease in prices.  In this paper, we argue this to be an important distinction.  
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To understand why, recall that positive feedback traders tend to follow market trends and buy 

(sell) in a rising (falling) market.  Many stock markets, however, have placed outright bans 

on short trading or imposed regulations which make short trading unfeasible.1  In those 

markets where short trading is allowed, it is typically subject to some form of regulation 

(such as up-tick and vesting rules) which adds to the cost of trading.  Short positions are also 

frequently closely monitored by the exchange which inhibits the ability of an investor to trade 

where they wish to remain anonymous.  Equivalent restrictions on long positions do not exist.   

The restrictions which apply to short trading will curtail the ability of an investor to 

engage in positive feedback trading following an increase in volatility caused by a fall in 

prices.  No such equivalent restrictions exist to curb the ability of an investor to engage in 

feedback trading following a volatility shift caused by a rise in prices.  In the extreme case of 

a short trading ban, no positive feedback trading will take place following a volatility 

increase caused by a fall in prices.  In this case, there will be no observable change in 

autocorrelation as there is no trading response to the volatility shift.  Where restrictions on 

short sales exist, the trading response to a rise in volatility will be less when compared to the 

trading response following an equivalent increase in volatility caused by a rise in prices.  

Thus, the change in the observed level of autocorrelation following a rise in volatility will be 

less where prices are falling compared to where prices are rising.    

The restrictions imposed on short selling suggest the presence of an asymmetry in the 

relationship between volatility and autocorrelation.  While our hypothesis applies equally to 

any stock market with restrictions on short selling, in this paper we will test our hypothesis 

using data sampled from the London Stock Exchange (LSE).  While the UK does not have 

any regulations that are specifically designed to restrict short selling, its practice is limited to 

                                                 
1 For a survey of short selling arrangements in stock markets around the world see Bris, Goetzmann and Zhu 

(2003) and Charoenrook and Daouk (2003). 
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only a small number of professional investors.2  Establishing a short position involves a 

complex and costly transaction process, which generally requires the investor to secure 

vesting rights over the stock.  Further, the UK government has specific taxation rules that 

apply to stock lending in equities.  These practical limitations on short selling mean that it is 

more difficult and less profitable for investors to engage in feedback trading when the market 

is falling.  

  

Our use of individual stock data sampled from the LSE contrasts with much of the 

previous literature which has focused on the US experience.  These two markets operate 

under a very different trading systems as the NYSE is a quote-driven market in which market 

makers take the opposite side of every transaction.  The LSE, however, is primarily an order-

driven market in which the public trades with each other via a centralized exchange. 

Madhavan (2000) provides a concise survey of these differences and their implications for 

market outcomes.  It is not necessarily obvious that the lessons learned in one market can be 

assumed to apply to the other (see Goodhart and O’Hara, 1997).  Thus, the use of LSE data in 

this paper allows us to provide empirical evidence on the determinants of autocorrelation for 

a different trading system to that which has been the focus of the previous literature. 

One further contribution of our paper relates to the model we employ to test our 

hypothesis.  A multivariate generalized autoregressive conditional heteroskedasticity (M-

GARCH) model is specified in which the covariance equation contains a conditional 

autocorrelation variable that is a function of a number of factors including volatility, among 

others, which is proxied using a Markov switching model.  As such, this paper overcomes a 

                                                 
2  For complete details on short selling in the UK see Financial Services Authority (2002), Short selling, 

Discussion Paper DP17, www.fsa.gov.uk/pubs/discussion/dp17.pdf.  Details on short selling restrictions on the 

US market may be found in Alexander and Peterson (1999). 
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potential endogeneity problem that has hampered previous studies in which the conditional 

variance from the GARCH model was used to generate the conditional autocorrelation series 

as well as to proxy for volatility (see McKenzie and Faff, 2003).   

 

The remainder of this paper is presented as follows. Section 2 details the M-GARCH 

model used to test the nature of the relationship between autocorrelation and its determinants. 

The regime switching model that is used to generate the estimates of volatility for each stock 

is presented in Section 3.  Section 4 introduces and describes the data to be tested.  Following 

this discussion, M-GARCH model estimates are presented and the hypothesised asymmetric 

relationship between volatility and autocorrelation considered.  Finally, Section 5 provides 

some concluding comments to our paper and summarises our findings. 

 

2. Multivariate GARCH Model Estimates of Conditional Autocorrelation 

 

Empirical estimates reveal that stock return autocorrelation is sample dependent and may 

exhibit sign reversals (see Chan, 1993, and Knif, Pynnönen and Luoma, 1996) which 

suggests that it is appropriate to model autocorrelation as a time-varying process.  Following 

this lead, Sentana and Wadhwani (1992), Koutmos (1997) and Booth and Koutmos (1998) 

generated conditional autocorrelation estimates whose temporal variation was driven solely 

by changes to the variance.  One weakness of this model is the assumption of a constant 

covariance which potentially suppresses an important source of variation in autocorrelation.  

In this paper, conditional autocorrelation estimates are generated using an M-GARCH model 

in which both the variance and covariance equations are time varying.  Estimates of 

conditional autocorrelation may be generated where this M-GARCH model is fitted to that 

returns series (R1t) as well as its one day lagged values (R2t).   
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Specifically, the mean equation for each series is specified with a constant as well as 

day-of-the-week dummies, i.e.: 

1 1 1 1

2 2 2 1 2

Thu

t c i it t
i Mon

Thu

t c i it t
i Mon

R DayDum e

R DayDum e

α α

α α
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= + ⋅ +

∑

∑
      (1) 

 
where R is the continuously compounding return on a stock (or index), calculated as log price 

relative ×100, and DayDumit is the dummy variable capturing daily periodicity, where i = 

Mon, Tue, Wed and Thu.  The error terms (e1t, e2t) are assumed to be normally distributed 

with a mean of zero and a conditional variance which is modeled as a GARCH process which 

has been modified to include a threshold term and day of the week dummy variables, ie.: 
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=
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∑

∑
  (2) 

 
where I1t is an indicator variable that takes one where e1t-1 < 0, and zero otherwise. I2t is 

similarly defined for e2t-1. This threshold term is designed to capture the asymmetric nature of 

volatility responses to positive and negative shocks to the market (see Bollerslev et al. 1994). 

This approach to modeling variance asymmetry is first introduced in Glosten, Jagannathan, 

and Runkle (1993) and is referred to as GJR. In addition, Exponential GARCH (EGARCH) 

specifications were also tested.  The results are qualitatively unchanged to those obtained 

using a GJR model and are available on request. 

 

In addition to the variance equations, the covariance equation also needs to be 

specified and as has already been discussed, a conditional specification is adopted in which 

all elements are time varying:  
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1, 2, 1, 2,R R t t R t R th h hρ= ⋅ ×      (3) 

 
where ρt is the conditional return autocorrelations of an individual stock (or an Index) which 

is specified as: 

( ) 121112112110 / −−−−− ×⋅⋅+⋅+= tRtRtttt hheeddd ρρ     (4) 

 
The focus of this paper is on identifying the determinants of autocorrelation and as such, 

equation (4) may be augmented to include these variables, ie.  
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  (5) 

 
where MRP3t-1 (MRP4t-1) is the time series of filtered Markov regime probabilities of return 

regime 3 (4) which corresponds to a negative (positive) return and high return volatility. 

These terms and their derivation are explained more fully in section 2.2.  AAPt-1 (AANt-1) is a 

dummy variable that takes the value one if an above average positive (negative) return occurs. 

LVMt-1 is the natural log of traded volume of stock or the index.  Finally, EcoCyclet-1 is the 

economic cycle dummy that takes the value of one if business cycle is on a downward path, 

and zero otherwise.  By augmenting the autocorrelation equation in this way, this paper 

avoids the two-step estimation procedure of McKenzie and Faff (2003) with resulting gains 

in estimation efficiency.  Further, the use of Markov probabilities avoids the issue of 

endogeneity that occurs when the volatility proxy and the autocorrelation series are not 

independent.3  

                                                 
3 McKenzie and Faff (2003) generated conditional autocorrelation estimates using an M-GARCH model and 

subsequently tested the relationship between autocorrelation and its determinants in a SUR framework.  The 
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The arguments of Black (1988, 1989) and the empirical evidence of Sentana and 

Wadhwani (1992), Koutmos (1997), Booth and Koutmos (1998) and McKenzie and Faff 

(2003) suggest that a negative relationship exists between volatility and autocorrelation.  In 

terms of the model to be tested, c1 and c12 in equation (5) are expected to be negative in sign 

reflecting this relationship.  A change in autocorrelation from a given rise in volatility 

however, is argued to be less where the underlying cause for the change in volatility is falling 

prices.  Recognising this potential asymmetry in the context of the model, we conjecture that 

the coefficient associated with the high volatility/falling market scenario will be less than the 

coefficient estimated for the high volatility/rising market scenario, ie.⏐c1⏐ < ⏐c12⏐. 

 

3 Markov Regime Shifting Models of Exchange Rate Volatility 

 

The observed volatility clustering in high frequency return series may be explained by the 

existence of different regimes with different variances present in the data generating process. 

These regimes can be modelled as a pure Markov switching variance process (see Turner, 

Starz and Nelson, 1989, and Kim, Nelson and Starz, 1998).  We use the Markov model of 

Bollen, Gray and Whaley (2000) to generate the regime probabilities which are interpreted as 

a proxy for volatility in that series. In this section, we outline the essential elements of this 

model and interested readers are directed to the original article for a more detailed discussion 

of this approach.   

 

 

 

                                                                                                                                                        
conditional variance from this GARCH model was used to proxy volatility and also appeared as the 

denominator in the autocorrelation estimate. 
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The return r in period t is defined as: 

t MSP1,t tr e= μ +           where             2
2,~ (0, )t MSP te N σ  (6)

 

where, MSP1 is the first order, two state Markov switching process that drives the return and 

has the transition probability of : 

p 1 p
1 q q

μ μ
μ

μ μ

−⎡ ⎤
Π ≡ ⎢ ⎥−⎣ ⎦

 
(7)

Depending on the state governed by MSP1 the mean return could be either ( )1 State 1μ =  or 

( )2 State 2μ = . The variance of the error term, et, is driven by another first order, two state 

independent Markov switching process, MSP2 whose transition probability is:  

p 1 p
1 q q

σ σ
σ

σ σ

−⎡ ⎤
Π ≡ ⎢ ⎥−⎣ ⎦

 
(8)

Thus, the variance could be either ( )2
1 State 1σ =  or ( )2

2 State 2σ = , depending on the state. It 

is clear from (6) that the model for the return generating process is conditionally normal and 

the parameters of the distribution depend on the state under consideration. But the nature of 

the two independent Markov switching processes suggests that we have four different state 

combinations to consider. These are { } { }MSP1,MSP2 (1,1),(2,1),(1,2),(2,2)≡ . That is, there 

are four separate regimes that need to be considered: Regime 1 = low mean (negative return) 

state and low volatility state; Regime 2 = high mean (positive return) and low volatility; 

Regime 3 = low mean (negative return) and high volatility; and Regime 4 = high mean 

(positive return) and high volatility. Using equations (7) and (8), the overall transition 

probability of the combined process can be written as: 

.p .(1 p )
.(1 q ) .q

μ σ μ σ

μ σ μ σ

Π Π −⎡ ⎤
⎢ ⎥Π − Π⎣ ⎦

 
(9)
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Since the return generating process is conditionally normal, it is straightforward to write the 

conditional density function of the joint process given a state pair (a regime). We multiply the 

conditional densities for different states by the corresponding probabilities of the states and 

sum them to obtain the likelihood function. Next, we maximize the weighted likelihood 

function numerically with respect to the parameters of the model, which are 

( )2 2
1 1 2 2, , , ,p ,q ,p ,qμ μ σ σΘ ≡ μ σ μ σ .  This algorithm generates the filtered probabilities of each 

state, i.e. the probability of a particular state occurring given the information up to that point 

in time. These are the time series of return/volatility regime probabilities that represent the 

market participants’ view of the state of return/volatility in the individual stock.  In this paper, 

the time series of the resulting probabilities for each of the four regimes are used to explain 

the time varying nature of conditional return autocorrelations. As the regime 1 and 2 

probabilities will contain the same information (with opposite sign) as the high volatility 

regime probabilities (regimes 3 and 4), our model only formally considers the latter as 

exogenous variables in equation (5).  

 

4  Data and Results 

 

The data in this study consists of daily price and traded volume data for the FTSE100 market 

index as well as 20 individual stocks listed on the LSE (details of these stocks are available in 

the Table 1).  These individual stocks collectively represent some of the best known, most 

keenly followed and most heavily traded shares on the LSE.  This bias toward heavily traded 

stocks is intentional and important as it effectively controls for the induced autocorrelation 

that comes from thin trading.  The data is sampled over a period beginning November 1986 
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to the end of September 2003 giving a total of 4140 daily observations.4    A lengthy sample 

period is chosen to allow a more complete exploration of the dynamic evolution of first order 

autocorrelation coefficients over time.  These data were taken from Datastream and the price 

series were transformed to approximate continuously compounded returns.  The UK business 

cycle data were obtained from the Economic Cycle Research Institute and indicates 

recessionary phases for the period May 1990 to March 1992.   

 

4.1   Conditional and Unconditional Autocorrelation 

 

Unconditional autocorrelation estimates are generated for each of our 20 stocks as well as the 

index and the results are presented in the third column of Table 1.  The market index exhibits 

significant autocorrelation, 0.0315, as do eight of the individual stocks.  The highest observed 

level of autocorrelation is 0.0951 for Rio Tinto and the lowest significant level of 

autocorrelation is 0.0320 for Diageo.  Of the 12 stocks which did not generate significant 

autocorrelation, it is possible that a relationship may exist at various points within the sample 

period and that this information is lost in the averaging process underlying the derivation of 

                                                 
4 A relevant issue given our choice of daily data is whether, as assumed by the theoretical model developed 

earlier, investors undertake shifts in risk bearing activities on a daily basis.  The following comments justify our 

stance.  First, the majority of the technical trading literature focuses on daily decisions made by investors which 

implicitly assumes that they do modify (or at least act as if they modify) their risk bearing activities to reflect 

changing conditions in the market on a daily basis.  Second, not all investors must update their portfolios every 

day.  Where only a subset of investors update at any point in time, say weekly, and imperfect correlation exists 

between the trading activities of each subset (such that their trading is spatially distinct), we will be able to 

observe shifts in risk bearing activities on a continual basis. Third, the bulk of previous literature in this area has 

also used daily data and for reasons of consistency, the same interval is chosen for analysis in this paper.   
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these standard estimates.  To investigate this further, time varying autocorrelation estimates 

are generated using the M-GARCH model specified in equations (1) – (4).  The estimated 

model coefficients and diagnostic properties of the residuals are not presented to conserve 

space and are available on request.   

The final three columns of Table 1 present a summary of the average conditional 

autocorrelation estimates as well as the maximum and minimum observed values.  The mean 

conditional autocorrelation for the FTSE index is 0.0522, which is similar to the point 

estimate.  These conditional autocorrelation estimates however, exhibit a good deal of 

variation and range in value from a maximum of 0.1914 to a minimum of –0.1399.  Of the 

eight stocks that generated significant point estimates of autocorrelation, the mean 

conditional estimate was higher in every case except for Rio Tinto.  Further, all of the 

average conditional autocorrelation estimates are positive whereas four of the point estimates 

were negative (although insignificant).   

The conditional autocorrelation estimates exhibit a great deal of variation and the 

largest range of observations was found in the case of Rio Tinto (0.7053) while the smallest 

range of observations was exhibited by Marks & Spencer Group (0.2133).  To gain a better 

appreciation of the variability of this data, consider a plot of the conditional autocorrelation 

for Cadbury Schweppes, which is presented in Figure 1.  The plot clearly highlights the 

variability of autocorrelation and a number of other interesting features can also be identified.  

From June 1988 until the end of 1997, the autocorrelation varies around the mean value of 

0.1255.  The equivalent point estimate of autocorrelation estimated over this period is 0.0808, 

which is significant at 5%.  Towards the end of 1997, however, a regime shift is apparent in 

the data as evidenced by the sudden fall in autocorrelation values.  This regime shift could be 

attributed to the adverse impacts emenating form the 1997 Asian financial crisis.  From 1998 

until the end of June 2000, the mean conditional autocorrelation is 0.0571, which represents a 
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decline of almost 60%.  The equivalent point estimate declines by a similar amount to 0.0358, 

which is insignificant.  A further decline in the conditional autocorrelation series takes place 

at this juncture and the mean autocorrelation value estimated from July 2000 to the end of the 

sample period is –0.0085.   The unconditional autocorrelation value estimated during this 

final subperiod is –0.0772, which is significant at 5%.  It is reassuring that these shifts in the 

conditional autocorrelation estimates are mirrored in the unconditional values estimated 

within each subperiod.   

 

Overall, a comparison of the point estimates of autocorrelation to the average 

conditional autocorrelation estimate reveals that these two techniques provide a similar 

degree of information about the general level of observed autocorrelation which is consistent 

with previous research on US stocks.  The unconditional specification, however, omits 

important information about the variability of autocorrelation and is potentially misleading.  

For example, the point autocorrelation estimate generated over the entire sample period was 

insignificant in the case of Cadbury Schweppes.  Subperiod analysis however, revealed two 

distinct periods of significant positive and negative autocorrelation were present in the data.  

This analysis of Cadbury Schweppes is representative of the rest of the sample insomuch as 

they all exhibited a high degree of variability as well as structural breaks and trends, which 

were able to be validated using point estimates of the sub-period analysis.  It is an interesting 

empirical issue to consider the extent to which the observed variability in autocorrelation can 

be explained using economic factors and the remainder of this paper considers this importnat 

issue.   
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4.2   Markov Regime Switching Model Estimates of Volatility 

 

The literature suggests that one of the primary determinants of autocorrelation is volatility.  

In this paper, volatility proxies are generated using the Markov regime switching models as 

detailed in Section 3.  Table 2 reports the estimated parameters of the four regime Markov 

models driven by the two independent Markov switching processes. The mean returns 1 2,  μ μ  

indicate negative and positive stock returns with respect to the twenty stocks and the FTSE. 

The transition probabilities Pμ  and Qμ  help us infer the persistence of these two different 

regimes. The high values of Pμ  relative to Qμ , for all the stocks, except for BOC Group and 

the FTSE, indicate that that the probability of encountering negative return period is very 

high during the sample period analyzed.  Similarly, the probability of encountering positive 

return dollar period is quite low. The two estimated variance parameters suggest different 

levels of variances in the two regimes. The higher variance is bigger by a factor ranging from 

about three to seven compared to the variance in the low-variance regime. This is similar to 

results reported in Bollen, Gray and Whaley (2000). The transition probabilities for the 

variance regimes suggest that in all cases stocks have high propensity to stay in a particular 

variance regime once it is in that regime. Bollen, Gray and Whaley (2000) explores this 

particular finding in the context of currency option pricing.  

 To provide a feel for these regime probabilities, Figure 2 presents a representative plot 

of these four regime states for the FTSE where regime 1 = negative returns and low volatility, 

regime 2 = positive return and low volatility, regime 3 = negative returns and high volatility, 

and regime 4 = positive returns and high volatility.  These probability plots are typical of the 

Markov model results for each of the stocks included in the sample.  These coefficients reveal 

that the probability of the market being in one of the two low volatility states is high most of 

the time.  Quite sharp and sudden reversals of these probabilities can be seen however, 



 14

suggesting that these tranquil periods are interspersed with a number of high volatility 

episodes, which is consistent with the volatility clustering phenomena.  For these FTSE 

probabilities, the correlation between regime 1 and 2 (1 and 4) is –0.2107 (–0.3258) while the 

correlation between regime 2 and regime 3 (2 and 4) is –0.7277 (–0.7111).  The two high 

volatility regimes exhibit a positive association with a correlation between regime 3 and 4 of 

0.6711. 

 

4.3   The Determinants of Autocorrelation 

 

To test the determinants of autocorrelation, the bivariate GARCH model summarised in 

equations (1) - (3) and (5) is fitted to the data, where MRP3 and MRP4 correspond to Markov 

Regime Probability (MRP) 3 and 4 respectively.  In addition to volatility, other determinants 

of autocorrelation are also considered which have been found in the previous literature to be 

important.  These are trading volume, the business cycle, above average returns and the day-

of-the-week, which are also included in the autocorrelation equation. 

Tables 3 and 4 present the estimated coefficients for the M-GARCH model fitted to 

the market index as well as the individual stocks.  In terms of the ARCH and GARCH 

coefficients, all of the estimates are significant at 5% except for the GARCH (βe11) term in 

the model fitted to the returns for BOC, which are significant at 10%.  The threshold terms 

(βe12, βe22) capture the presence of asymmetry in the volatility response to shocks to the 

market.  It is shown that βe12 is significant at least at 5% in all cases, whereas βe22 is 

significant in only two cases.  Of the day-of-the-week dummy variables in the volatility 

equation, all were negative and the Monday dummy is significant at 1% for the index.  For 

the individual stocks, the coefficient for the Monday dummy variable, β1MON, is negative for 

19 of the 20 stocks and 15 of these coefficients were significant at least at 5%.  This suggests 
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that volatility on Mondays is significantly less than that typically observed on a Fridays (the 

omitted case).  For the other days of the week, the results are more mixed.  The Tuesday 

coefficient is negative for six stocks and significant in three of those cases while 11 of the 14 

positive coefficients were significant.  The Wednesday coefficient generated an even mix of 

ten positive (five significant) and ten negative coefficients (six significant).  Two significant 

and negative coefficients and 18 positive coefficients (17 of which are significant) were 

generated for the Thursday dummy variable.  Overall, there is certainly evidence of day-of-

the-week effects in the volatility of these stock returns series.  Most notably, Monday and 

Thursday exhibit clear evidence of lower and higher volatility respectively compared to the 

base case of Friday.   

The last four rows of Panel A of Table 3 and 4 present the Ljung Box test of white 

noise for the estimated standardized residuals, /t t tz e h= .  The test results reveal there is 

evidence of first moment serial correlation but the second moment dependencies are 

eliminated in most cases.  To address any potential concerns over these diagnostics, we tested 

different functional forms for each of the 21 return series. Specifically, we tested alternative 

lag structures of the M-GARCH models and the number of lagged dependent variables 

included in the mean equations, and found that the results of the conditional autocorrelation 

equation (4) estimations remain robust. Thus, we report the results for the parsimonious 

models and note that any conclusions we draw are not dependent on the model specification.  

 

The arguments of Black (1988, 1989) suggest a negative relationship between 

volatility and autocorrelation.  This relationship has been verified in the empirical literature 

by papers such as Mckenzie and Faff (2003).  Changes in volatility, however, may be caused 

by either rising or falling prices and we argue this to be an important distinction which the 

previous literature has failed to consider.  Our hypothesis is that the change in autocorrelation 
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from a given rise in volatility will be less where the underlying cause for the change in 

volatility is falling prices due to short sales restrictions.  The specification of the covariance 

equation in the MGARCH model presented in Tables 3 and 4 includes a time varying 

autocorrelation coefficient, which is specified as a function of a number of variables.  Of 

primary interest in the current context is the volatility variable, which is proxied by the 

regime probabilities of the Markov switching model presented in section 3.  Specifically, 

MRP3 (MRP4) is the time series of filtered Markov regime probabilities of return regime 3 

(4) which corresponds to a period of high volatility and negative (positive) returns.  The 

estimated coefficients for c1 and c12 capture the nature of the relationship between 

autocorrelation and volatility for MRP3 and MRP4, respectively. The estimated results for 

the FTSE index reveal that the coefficient for c1 is not significantly different from zero.  The 

estimate for c12, however, is negative and significant.  A Wald test of coefficient equality (ie. 

c1 = c12) is undertaken and the results are presented in the second row of Panel A in Tables 3 

and 4.  The Wald test coefficient is highly significant rejecting the null hypothesis of equality.  

For the 20 individual stocks tested, all of the c1 and c12 coefficients are negative and 

significant.  If the analysis is framed in the context of distinguishing between heightened 

volatility caused by a rise in prices compared to a fall in prices, the absolute value of the c1 

coefficients are less than the absolute value of the c12 coefficient in all cases except Rio Tinto, 

Sainsbury and Marks and Spencer.  The Wald test of coefficient equality is rejected at the 5% 

level or less in 12 cases.  Thus, our results are consistent with the previous literature, as these 

estimation results provide consistent evidence of a negative relationship between 

autocorrelation and volatility.  Distinguishing between the different causes of volatility 

changes and clear evidence of an asymmetry is found.  For over half of our sample, the 

change in autocorrelation caused by heightened volatility is greater where the underlying 

cause of the increase in volatility is a rise in prices compared to where the cause is a fall in 
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prices.5  This asymmetry is argued to be a function of the limitations that are placed on taking 

short positions.  Quite simply, it is more difficult and less profitable for investors to engage in 

feedback trading when the market is falling.  The result is a greater response by feedback 

traders to volatility increases caused by rising prices compared to falling prices. 

A number of other determinants of autocorrelation are also considered which have 

been found in the previous literature to be important.  For our sample of individual stocks, 

above average changes in price have a significant negative impact on autocorrelation for 18 

stocks.  The exceptions are Diageo where only the above average positive return coefficient 

is negative and significant at 1% and Barclays where neither is significant.  Traded volume 

has a negative and significant impact on autocorrelation for the FTSE index as well as for 

Glaxo Smith Cline, Aviva, Sainsbury and BOC.  For nine stocks however, traded volume is 

found to have a positive and significant impact on autocorrelation while for the remaining 

seven stocks no relationship is found.  Thus, the results provide clear evidence of a 

relationship between autocorrelation and traded volume however no clear consensus exists as 

to the nature of this relationship.  In terms of the impact of the economic cycle, 

autocorrelation should be greater during a period of rising stock prices, and the index as well 

as 13 individual stocks exhibit a negative sign (of which 8 are significant) indicating that 

autocorrelation is lower during a recession which is as expected.  The significant and positive 

coefficient for Barclays, Unilever and Imperial Chemicals however, are not consistent with 

expectations.  Finally, evidence of a day-of-the-week effect can be found in the 

autocorrelation equation as roughly half of the estimates are negative and significant for the 

Tuesday, Wednesday and Thursday dummy variables.  These results suggest that 

                                                 
5 As the four regime probabilities sum to one, the low volatility regimes (1 and 2) should have the opposite 

effect on the dependant variable as the high volatility regimes (3 and 4).  In unreported results, we find that the 

two low volatility coefficients have positive estimates and the estimated coefficient for MP1 > MP2.   
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autocorrelation on these three days tends to be lower than autocorrelation evidence on 

Fridays which is the omitted case.  When compared to the previous literature, these results 

are broadly consistent with those found for US stocks which trade under a very different 

platform.   

 

5 Conclusion 

 

The presence of serial correlation in security prices has important implications for market 

efficiency and trading strategies.  Despite this importance, however, little is known about the 

determinants of autocorrelation. The purpose of this paper is to build on the nascent literature 

which has considered the determinants of autocorrelation.  The method specified in this paper 

overcomes a number of problems which have impacted on the previous literature in terms of 

the dynamics driving the variation in the autocorrelation estimates, possible problems related 

to the endogeneity of the variables tested, and the efficiency of the estimation procedure.  

Consistent with the previous literature, this paper finds evidence of a relationship between 

autocorrelation and volatility, above average returns, traded volume, the business cycle and 

the day-of-the-week.   

The main contribution of this paper is the identification of an asymmetry in the 

relationship between volatility and autocorrelation.  Distinguishing between increases in 

volatility caused by a rise in prices and a fall in prices, the estimation results document a 

greater change in autocorrelation where the increase in volatility is caused by a rise in prices.  

This asymmetry is argued to be the result of short sales restrictions that limit the ability of 

investors to profit in a falling market. The difference between quote and order driven markets 

does not appear to impact on the known determinants of autocorrelation as our results are 

similar to those for the US. The implication of our study is that when modelling 



 19

autocorrelation, the relationships may be more complex than has been previously documented.  

In this paper,  we find that the nature of the relationship between autocorrelation and 

volatility has an asymmetry which is linked to short selling.  This has important implications 

for policy with respect to trading rules which may impact on the market dynamics in 

unexpected ways.  In the context of our work, controls on short selling appears to have an 

impact on the intertemporal characteristics of the market. Further work is needed in this area 

to attempt to uncover other determinants of autocorrelation paying special attention to the 

nature of the relationship as it is not obvious that simple linear determinism can be assumed.   

Finally, the unconditional and average conditional autocorrelation estimate were 

compared and in comparison provide similar information.  The former, however, does not 

indicate the presence of a number of stylised characteristics of autocorrelation including the 

presence of trends and structural breaks.  Subperiod point estimates of autocorrelation verify 

the presence of these patterns and suggests unconditional autocorrelation estimates omit 

important information about the variability of autocorrelation which may be useful for 

analysis. 
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Figure 1 

 

Time Varying Autocorrelation for Cabury Schweppes
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This figure presents a plot of the conditional autocorrelation estimate for Cadbury Schweppes estimated using a 
multivariate GARCH model as summarised in equations (1) – (4). 
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Figure 2 
Markov Regime Switching Probabilities for the FTSE Market Index

Regime 1: Negative returns and low  volatility
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Table 1 
Conditional and Unconditional Autocorrelation Estimate Summary 

This table presents unconditional autocorrelation (ρi) estimates obtained using the regression equation ri t = μ0 + 
ρ ri t-1 + εt for U.K. market and individual stock returns data sampled over the period October, 1986 to 
September, 2003.  The mean, maximum and minimum conditional autocorrelation (ρit) estimate generated by a 
bivariate GARCH model for these same series is provided in the final three columns. 

 
 

Code 
 

ρi Mean ρit Max  ρit Min  ρit 
FTSE100 FTSE 0.0315* 0.0522 0.1914 -0.1399 
GLAXO SMITH KLINE (GSK) GSK 0.0345* 0.0801 0.2560 -0.1077 
SHELL TRANSPORT & TRDG. SHEL 0.0250 0.0643 0.2219 -0.1254 
BARCLAYS BARC 0.0899* 0.0692 0.3252 -0.1244 
DIAGEO DGE 0.0320* 0.0986 0.3676 -0.0440 
UNILEVER (UK) ULVR 0.0537* 0.0573 0.2067 -0.0606 
TESCO TSCO -0.0174 0.1002 0.3566 -0.0225 
BRIT. AMERICAN TOBACCO BATS 0.0247 0.0513 0.3119 -0.2267 
RIO TINTO RIO 0.0951* 0.0661 0.4011 -0.3042 
AVIVA AV. 0.0222 0.1047 0.3200 -0.1367 
PRUDENTIAL PRU 0.0195 0.0654 0.2184 -0.0373 
RECKITT BENCKISER RB. 0.0398* 0.0663 0.2161 -0.1098 
CADBURY SCHWEPPES CBRY 0.0250 0.0826 0.2898 -0.0781 
MARKS & SPENCER GROUP MKS -0.0286 0.0454 0.1241 -0.0893 
LEGAL & GENERAL LGEN -0.0146 0.0553 0.2217 0.0027 
SAINSBURY (J) SBRY 0.0208 0.0532 0.2465 -0.1012 
BOOTS GROUP BOOT 0.0222 0.0790 0.2291 -0.0536 
BOC GROUP BOC 0.0105 0.0652 0.2407 -0.1581 
ALLIED DOMECQ LAND -0.0046 0.0659 0.2164 -0.1056 
DIXONS GP. DXNS 0.0472* 0.0767 0.2120 -0.1029 
IMPERIAL CHEMICAL IND. ICI 0.0755* 0.0840 0.3000 -0.0666 

Note: * = significant at the 5% level. 
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Table 2 
Markov Regime Switching Model Estimates 

 Pμ Qμ Pσ Qσ σ1 σ2 μ1 μ2 Log-L 
FTSE 0.2423 * 0.9830 ** 0.9952 ** 0.9763 ** 0.5825 ** 3.6451 ** -1.5881 ** 0.0731 ** 6014.36 
GSK 0.9533 ** 0.2436 ** 0.9854 ** 0.9637 ** 1.2158 ** 5.6621 ** -0.0657 1.8464 ** 8058.77 
SHEL 0.9851 ** 0.2915 ** 0.9846 ** 0.9533 ** 1.7303 ** 7.5135 ** 0.0001 3.1815 ** 8612.53 
BARC 0.9760 ** 0.3947 ** 0.9943 ** 0.9885 ** 0.9348 ** 5.3914 ** -0.0300 1.6827 ** 7090.99 
DGE 0.9818 ** 0.2895 ** 0.9850 ** 0.9702 ** 1.4641 ** 8.1792 ** -0.0066 2.8015 ** 8731.00 
ULVR 0.9696 ** 0.1443 * 0.9765 ** 0.9348 ** 1.1070 ** 7.5493 ** -0.0337 2.6181 ** 8142.94 
TSCO 0.9137 ** 0.4693 ** 0.9802 ** 0.9440 ** 0.7980 ** 6.7859 ** -0.0875 1.0176 ** 7527.47 
BATS 0.9579 ** 0.1902 ** 0.9847 ** 0.9376 ** 1.6960 ** 7.5790 ** -0.0677 2.2394 ** 8482.75 
RIO 0.9586 ** 0.1801 * 0.9863 ** 0.9366 ** 1.5650 ** 12.9283 ** -0.0560 2.4939 ** 8582.66 
AV. 0.9506 ** 0.4097 ** 0.9843 ** 0.9709 ** 1.1385 ** 7.3774 ** -0.0816 1.7243 ** 8460.72 
PRU 0.9525 ** 0.3229 ** 0.9890 ** 0.9662 ** 1.4484 ** 10.3933 ** -0.1169 ** 2.2896 ** 8674.54 
RB. 0.9764 ** 0.2542 ** 0.9930 ** 0.9603 ** 2.0667 ** 14.7529 ** -0.0474 3.1412 ** 8873.49 
CBRY 0.9360 ** 0.3507 ** 0.9673 ** 0.8865 ** 0.7560 ** 8.0498 ** -0.0977 ** 1.5665 ** 7589.16 
MKS 0.9708 ** 0.2183 ** 0.9682 ** 0.8853 ** 1.1437 ** 7.1358 ** -0.0608 * 2.5816 ** 8003.82 
LGEN 0.9738 ** 0.2784 * 0.9793 ** 0.9441 ** 1.3564 ** 8.0739 ** -0.0601 2.3391 ** 8436.19 
SBRY 0.9554 ** 0.1471 0.9840 ** 0.9720 ** 1.3918 ** 8.4881 ** -0.0476 2.2356 ** 8890.99 
BOOT 0.9590 ** 0.2238 ** 0.9815 ** 0.9174 ** 1.3065 ** 8.8848 ** -0.0648  2.2703 ** 8155.17 
BOC 0.4032 0.9518 ** 0.9689 ** 0.9069 ** 1.1840 ** 6.3233 ** -1.2955 ** 0.1433  7529.12 
LAND 0.9702 ** 0.1773 * 0.9825 ** 0.9552 ** 0.8790 ** 6.0048 ** -0.0361 2.1879 ** 7644.63 
DXNS 0.9627 ** 0.2210  0.9720 ** 0.9448 ** 0.7097 ** 3.1913 ** -0.0442 1.4367 ** 7041.71 
ICI 0.9478 ** 0.2768 ** 0.9668 ** 0.9043 ** 1.9008 ** 15.4774 ** -0.1591 ** 2.7417 ** 9572.51 

 

Note : *,** = significant at the 5 and 1 percent level, respectively. 
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Table 3 
MGARCH Results Exploring the Determinants of Conditional Return Autocorrelation in the UK Market Index and Individual Stocks 

 FTSE GSK SHEL BARC DGE ULVR TSCO BATS RIO AV. 
α1c 0.0534  0.1127 ** 0.0302 0.0695 ** 0.1068 ** 0.0949 ** 0.0795 ** 0.0681 * 0.0542  0.1596 ** 
α1MON -0.0818  -0.0619 0.0075 -0.0245 -0.1367 * 0.0132 -0.0558 -0.0579 -0.1032  -0.1407 **
α1TUE 0.0092 -0.0118 0.1188 * 0.0664 0.0268 -0.0462 -0.0191 0.0239 0.0017 -0.1567 **
α1WED 0.0027 -0.0852  0.0185 -0.0714 0.0307 0.0295 0.0054 0.0678 0.0583 -0.1405 **
α1THU -0.0249 -0.0348 0.0647 -0.0969 ** -0.0644 0.0105 -0.0084 0.0157 0.0751  -0.0772 * 
α2c 0.0599 ** 0.0695 ** 0.0001 0.0626 0.0909 * 0.0794 ** 0.0256 0.0011 0.0001 0.1290 ** 
α2MON -0.0866 ** -0.0416 0.0505 0.0034 -0.1281 -0.0284 -0.0166 -0.0141 -0.0209 -0.1354  
α2TUE -0.0004 0.0210 0.1293  0.0825 0.0301 -0.0644 0.0178 0.0521 0.0274 -0.1431 * 
α2WED 0.0038 -0.0646 0.0451 -0.0553 0.0357 0.0194 0.0466 0.0783 0.0928 -0.1045  
α2THU -0.0217 -0.0290 0.0603 -0.0845 -0.1009 -0.0416 0.0316 -0.0030 0.0322 -0.0555 
β1c 0.1188 ** 0.0939 ** 0.0800 ** 0.0098 ** -0.0276 ** 0.1328 ** 0.3803 ** 0.0033 -0.0368 * -0.0675 **
β1h 0.9170 ** 0.9495 ** 0.8900 ** 0.9315 ** 0.9023 ** 0.9286 ** 0.9516 ** 0.9152 ** 0.9018 ** 0.9363 ** 
βe11 0.0686 ** 0.0522 ** 0.0728 ** 0.0452 ** 0.0807 ** 0.054 ** 0.0398 ** 0.0570 ** 0.1265 ** 0.0452 ** 
βe12 0.0021 -0.0154 0.0001 0.0267 ** 0.0004 0.0005 0.0104 -0.0037 -0.0702 ** 0.0177  
β1MON -0.1899 ** -0.5363 ** -0.1097 ** -0.0191 ** -0.4142 ** -0.3276 -0.7048 ** -0.5901 ** -0.0806 -0.2548  
β1TUE -0.1139  0.0288 0.1825 ** -0.2335 ** 0.1904 ** -0.5161 ** -0.3220 * 0.6024 ** 0.5113 ** 0.1445 ** 
β1WED -0.1134  -0.1306 * -0.4938 ** 0.0029 0.0625 ** -0.1972 -0.4904 ** -0.2435 ** -0.4245 * 0.3147 ** 
β1THU -0.1108  0.2706 ** 0.7024 ** 0.2984 ** 0.6660 ** 0.6997 ** -0.3224 * 0.7139 ** 0.6056 ** 0.2842 ** 
β2c 0.0046 ** 0.0683 0.1445 * -0.1724  -0.4735 -0.0792 0.0338 ** -0.1387 -0.0713 -0.3755 * 
β2h 0.9137 ** 0.9448 ** 0.9024 ** 0.9391 ** 0.9056 ** 0.9382 ** 0.9480 ** 0.9171 ** 0.9097 ** 0.9474 ** 
βe21 0.0713 ** 0.0560 ** 0.0777 ** 0.0426 ** 0.0866 ** 0.0456 ** 0.0433 ** 0.0542 ** 0.1228 ** 0.0375 ** 
βe22 0.0015 -0.0147 -0.0114 0.0201  -0.0112 0.0062 0.0108  0.0027 -0.0692 0.0152 
β2MON -0.0221 -0.4777  0.1809 ** 0.3570 * 0.5827 0.3268 -0.1784 ** 0.2006 0.4779 0.5252  
β2TUE -0.0074 ** 0.0450 -0.3191 ** -0.1377 0.3436 -0.5789 * -0.0226 * 0.0677 -0.1749 0.1674 
β2WED 0.0161 * -0.0907 -0.0915 0.2401 * 0.7403 ** 0.2241 -0.0897 ** 0.3797 * 0.2021 0.9659 ** 
β2THU 0.0617 ** 0.2865 -0.0193 0.4819 ** 1.0063 * 0.6399 * 0.1804 ** 0.4720  0.1311 0.3343 
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Table 3 (Continued) 

 FTSE GSK SHEL BARC DGE ULVR TSCO BATS RIO AV. 
d0 0.2922 ** 0.5105 ** 0.3983 ** 0.2359 ** 0.3995 ** 0.5323 ** 0.4288 ** 0.3151 ** 0.2227 * 0.7574 ** 
d1 0.7062 ** -0.1815 * -0.4939 ** -0.3243 ** -0.4383 ** -0.2578 ** -0.4300 ** -0.2695 ** -0.2207 * -0.3339 * 
d3 -0.0240 ** -0.0131 * -0.0075 -0.0146  -0.0075 -0.0123 * -0.0079  -0.0263 ** -0.0067 -0.0115 * 
c1 0.0559 -0.1980 ** -0.3869 ** -0.0641 ** -0.2978 ** -0.3832 ** -0.3773 ** -0.4434 ** -0.3643 ** -0.2519 **
c12 -0.0772 ** -0.3076 ** -0.7108 ** -0.3128 ** -0.4973 ** -0.6487 ** -0.5166 ** -0.6129 ** -0.3304 ** -0.4140 **
c2 0.0299  -0.1441 ** -0.1152 ** -0.0224 -0.0960 ** -0.2456 ** -0.1638 ** -0.1967 ** -0.2219 ** -0.0646 **
c3 0.0150 -0.0751 ** -0.1122 ** -0.0423  -0.0658  -0.2062 ** -0.1538 ** -0.1614 ** -0.2358 ** -0.0568 * 
c4 -0.0172 ** -0.0124 ** 0.0145 * 0.0036 ** 0.0111 * 0.0207 ** 0.0257 ** 0.0285 ** 0.0329 ** -0.0304 **
c5 -0.0327  0.0580 -0.0816 ** 0.1321 ** -0.0126 0.0927 ** -0.0950 * 0.1055 ** -0.0501 -0.0130 
cMON 0.0190 -0.0339 0.0459 -0.0530 -0.0284 -0.0215 -0.0253 -0.1267 ** 0.0263 -0.0923 * 
cTUE -0.1634 ** -0.0946 * 0.0671  -0.1439 ** -0.0503 -0.0786 * -0.0279 -0.0233 0.0475 -0.1352 **
cWED -0.0294 -0.0717  0.0101 -0.0942 * -0.0186 -0.1516 ** -0.0295 -0.0748 ** -0.0606 -0.0925 **
cTHU -0.0935 * -0.0194 -0.0292 -0.0810 * -0.0237 -0.1309 ** -0.0711 * -0.0582  -0.0700 -0.0646 * 
Panel A           
Log-L -3461 -7380 -8691 -6562 -8894 -7794 -6384 -8402 -8990 -8154 
H0: c1=c12 7.0269 ** 2.9119  25.2706 ** 20.3286 ** 10.2994 ** 72.9020 ** 3.3570  4.1672 * 0.2577 4.2202 * 
LB z1(1) 31.5024 * 62.6097 ** 43.8194 ** 45.5842 ** 62.2461 ** 50.3480 ** 55.8600 ** 44.0278 ** 25.3144 61.3345 **
LB z12(2) 42.0350 ** 17.3516 28.0487 25.2980 25.1413 11.8170 27.9418 30.6175  4.4231 37.6244 **

 

Note : *,** = significant at the 5 and 1 percent level, respectively. 

(1) (2) Ljung-Box test of white noise for the estimated standardized residuals from the model, /t t tz e h= and squared (zt)2, respectively. 

 



 28

Table 4 
MGARCH Results Exploring the Determinants of Conditional Return Autocorrelation in UK Stocks 

 PRU RB. CBRY MKS LGEN SBRY BOOT BOC LAND DXNS ICI 
α1c 0.0892 ** 0.1198 ** 0.0630 0.0918 * 0.0679 ** 0.1281 ** 0.0551 ** 0.1078 ** 0.0663 -0.0247 0.0987 ** 
α1MON -0.1622 ** -0.1741 ** -0.0966 -0.1303 ** -0.0795 -0.1360 * -0.0666 -0.0767 -0.0840 0.0201 -0.0471 
α1TUE 0.0215 0.0017 0.0264 -0.0542 -0.0696 -0.0430 0.0374 -0.1051 * -0.0616 0.1087 ** -0.0849 
α1WED -0.1040 * -0.0752 0.0625 -0.0514 0.0017 -0.0788 0.0366 -0.0464 -0.0180 0.1238 ** 0.0340 
α1THU 0.0379 0.0763  0.0645 -0.0715 -0.0679 0.0244 -0.0218 0.0279 -0.0265 0.0419 -0.1147 
α2c 0.0622 * 0.0692 -0.0587 ** 0.0133 0.0927  0.0392 0.0069 0.1175 * 0.0475 -0.0629  0.0809 ** 
α2MON -0.1341 ** -0.1352  0.0032 -0.0829 -0.1220  -0.0813 -0.0519 -0.0236 -0.0846 * 0.0392 -0.1288 ** 
α2TUE 0.0240 0.0223 0.0944 * -0.0016 -0.1226 * 0.0025 0.0470 -0.0067 -0.0141 0.1217 * 0.0504 
α2WED -0.1027  -0.0529 0.1104 * -0.0182 -0.0431 -0.0063 0.0347 -0.0013 -0.0045 0.1253 * -0.0211 
α2THU 0.0317 0.0564 0.0587 -0.0776 -0.1256 * 0.0346 -0.0720 0.0226 -0.0474 0.0117 -0.0574 
β1c 0.0902 ** 0.1277 ** 0.0026 0.0152 ** -0.1868 0.0906 -0.0082 ** 0.0296 * -0.0806 ** 0.0623 ** 2.4108 ** 
β1h 0.9141 ** 0.8810 ** 0.9438 ** 0.9012 ** 0.9343 ** 0.9377 ** 0.9459 ** 0.9427 ** 0.9088 ** 0.9148 ** 0.4261 ** 
β1e11 0.0577 ** 0.0994 ** 0.0498 ** 0.0528 ** 0.0495 * 0.0492 ** 0.0401 ** 0.0344  0.0708 ** 0.0581 ** 0.3532 ** 
β1e12 0.0288 * -0.0119 ** -0.0031 0.0288 ** 0.0150 0.0086 0.0066 * 0.0109 0.0129 -0.0043 -0.0651 ** 
β1MON -0.4982 ** -0.6094 ** -0.1859 ** -0.4202 ** -0.3806 -0.6471 * -0.4894 ** -0.3439 * 0.0811 * -0.1585 ** -1.7957 ** 
β1TUE 0.0614 ** -0.1308 0.0213 0.1351 ** 0.8351 ** -0.0661 0.0815 ** 0.1155 0.4104 ** -0.0309 0.9785 ** 
β1WED -0.0037 0.0813 0.0140 0.2109 ** 0.0770 -0.2654 0.1110 ** -0.0879 -0.3146 ** 0.0634 2.2855 ** 
β1THU 0.2772 ** 0.6042 ** 0.3326 ** 0.5006 ** 0.5848 * 0.7551 * 0.5574 ** 0.4817 ** 0.4716 ** 0.0767  -1.4044 ** 
β2c 0.0411 ** 0.6179 ** -0.0117 -0.1565 -0.0023 -0.0150 0.4924 * 0.2577 ** -0.0229 ** 0.1081 ** -0.0023 
β2h 0.9241 ** 0.8886 ** 0.9430 ** 0.9094 ** 0.9236 ** 0.9449 ** 0.9488 ** 0.9548 ** 0.8997 ** 0.9273 ** 0.7049 ** 
β2e11 0.0526  0.1009 ** 0.0453  0.0449 ** 0.0734 ** 0.0420 ** 0.0359 ** 0.0217 * 0.0807 ** 0.0565 ** 0.2304 ** 
β2e12 0.0243 -0.0230 0.0090 0.0410 * -0.0090 0.0121 0.0081 0.0212 0.0123 -0.0050 -0.0543 ** 
β2MON -0.0664 * -0.9980 ** 0.1528 0.2862 -0.2589 ** -0.0928 -0.9959 * -0.3034 ** 0.1096 * -0.1065 * 0.7442 ** 
β2TUE -0.2654 ** -0.9876 ** -0.2901  -0.1284 0.2242 ** -0.3290 -0.6991 * -0.6330 ** 0.2051 ** -0.2034 * 0.9228 ** 
β2WED 0.3245 ** -0.0538 0.4857 * 0.7341 ** 0.2726 ** 0.1144 0.1027 0.1238 -0.2402 * 0.1350 2.3251 ** 
β2THU 0.0236 -0.5454 ** -0.1392 0.2608 -0.0531 * 0.5426 * -0.6882 * -0.2875 ** 0.2636 ** -0.2069 ** -0.2276 ** 
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Table 4 (Continued) 

 PRU RB. CBRY MKS LGEN SBRY BOOT BOC LAND DXNS ICI 
d0 0.4281 ** 0.4165 ** 1.0910 ** 0.8359 ** 0.4475 ** 1.1045 ** 0.7542 ** 1.2733 ** 0.6906 ** 0.7896 ** 0.6891 ** 
d1 -0.3949 ** -0.6121 ** -0.3320 ** -0.3613 ** -0.3168 ** -0.2807 ** -0.3617 ** -0.2930 ** -0.3763 ** -0.2147 ** -0.4629 ** 
d3 -0.0065  -0.0133  -0.0037  -0.0097  -0.0164 * -0.0091  -0.0043  -0.0160 ** -0.0070 * -0.0192  -0.0100  
c1 -0.2757 ** -0.3138 ** -0.7658 ** -0.6917 ** -0.4180 ** -0.3964 ** -0.4618 ** -0.7930 ** -0.3713 ** -0.5602 ** -0.5823 ** 
c12 -0.5421 ** -0.4499 ** -0.8627 ** -0.6773 ** -0.5043 ** -0.4143 ** -0.9476 ** -0.8758 ** -0.5740 ** -0.5703 ** -0.7292 ** 
c2 -0.1179 ** -0.1335 ** -0.2451 ** -0.1757 ** -0.0819 ** -0.1951 ** -0.2331 ** -0.2835 ** -0.2107 ** -0.1840 ** -0.1521 ** 
c3 -0.0959 ** -0.1047 ** -0.2684 ** -0.2280 ** -0.1246 ** -0.166 ** -0.2018 ** -0.2101 ** -0.2424 ** -0.1916 ** -0.2125 ** 

c4 0.0077 ** 0.0122  -0.0115  -0.0016  0.0115  -0.0463 * 0.0051  -0.0388 * -0.0079  -0.0106  0.0308 ** 
c5 -0.0586 * -0.1412 ** -0.0112  -0.0047  0.0334  -0.1189  0.0051  -0.1387 ** -0.0429  -0.0923 * 0.1395 * 
cMON -0.0370  0.0215  -0.0548  -0.0645  -0.0604  -0.0999 ** -0.017  0.0217  0.0471  -0.0321  -0.1769 ** 
cTUE -0.0399  -0.1237 * -0.0129  -0.0243  -0.0921 * -0.1817 ** -0.0181  0.0293  0.0496  -0.0584  -0.1731 ** 
cWED -0.0684  -0.1582 ** -0.0944 ** -0.0893 * -0.1171 ** -0.1892 ** -0.1239 ** -0.0822 * -0.0145  -0.0623  -0.0058  
cTHU -0.0395  -0.1322 ** -0.0596 * 0.0164  -0.1042 ** -0.1774 ** -0.0137  -0.0268  -0.0704  -0.0389  0.0390  
Panel A            
Log-L -8748 -9191 -6861 -7548 -8315 -9049 -7953 -7497 -6841 -5547 -10842 
H0: c1=c12 12.6334 ** 4.5802 * 0.9560 0.0265  2.2503  0.1102  99.3826 ** 1.5328  6.7117 ** 0.0261  7.4893 ** 
LB z2 37.8137 ** 41.6730 ** 34.4325 * 30.5309  46.6524 ** 27.1261  36.4210 * 44.1169 ** 22.7443  23.9088  24.1852  
LB z22 21.2515  18.3222  15.3185  37.6293 ** 21.6487  26.6952  22.7405  28.7062  14.2955  35.3576 * 16.5118  

 

Note : *,** = significant at the 5 and 1 percent level, respectively. 

(1) (2) Ljung-Box test of white noise for the estimated standardized residuals from the model, /t t tz e h= and squared (zt)2, respectively. 

 
 
  
 

 


