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Chapter 1

Introduction

The goal of this thesis is to illustrate the applications of the theory of double operator
integration to a family of interesting and difficult problems in harmonic analysis con-
cerning the singular values of the commutators of multiplication operators and Riesz
transforms. The primary motivation for studying these questions comes from the work
of A. Connes in the 1980s in his quantised calculus.

1.1 Quantised calculus

Connes’ quantised calculus arose from considerations in noncommutative geometry, and
although the original motivations for quantised calculus are largely not relevant for the
present work, it is worthwhile and instructive to discuss Connes’ reasoning.

1.1.1 Infinitesimals

Connes has promoted the idea that one can use the terminology of infinitesimals in
quantised calculus [29]. Many of the results discussed in the present text can be helpfully
recast as statements about infinitesimals.

An infinitesimal (from Latin infinitesimus) is a non-zero positive quantity which is
smaller than 1

n for every natural number n ≥ 1. Historically in mathematics, the notion
of a “continuum” was not always clearly understood, and mathematicians and philoso-
phers struggled with the apparent contradiction stemming from the fact that a line is
made up of points, and yet a point has no length. Numerous solutions to this paradox
were proposed, but one of the most enduring was the idea that a point does in fact have
length – but this length is so small that when added to itself a finite number of times
it is impossible to obtain the length of an interval. In algebraic terms, the “length” of
a point must therefore be a quantity ε > 0 such that n · ε < 1 for all natural numbers
n ≥ 1. Infinitesimals found use in the foundations of calculus: for example, one can
say that a function f is continuous if f(t) is infinitesimally close to f(s) whenever t is
infinitesimally close to s.

It is very important to note that there is great difficulty in interpreting historical math-
ematics from a modern perspective. Prior to the late 19th century, notions such as

1
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“function” and “set” did not exist in their modern form, and it is impossible to under-
stand the works of Newton, Leibniz, Euler etc. without appreciating that those authors
exist in their historical context. The above definition of an infinitesimal may not faith-
fully represent how all historical authors thought about infinitesimals and at least some
authors may have had in mind a completely different notion. I do not count myself a
historian and make no claims to authority on such subtle matters, the interested reader
is directed to the extensive bibliography in [10].

In the 19th century, the perceived vagueness of the notion of an infinitesimal was trou-
bling to many and there were numerous attempts to put infinitesimals on a secure footing
or to develop calculus without them. Today we credit Bolzano, Dedekind, Weierstrass
and many others with developing a convincing formulation of real analysis without in-
finitesimals.

Nonetheless, the idea of an infinitesimal remains appealing. It is an interesting problem
to determine exactly why historical mathematicians had such success using them and
whether they can be interpreted in a modern context. Indeed, there are several mod-
ern theories of real analysis which include infinitesimals. Notably, Robinson’s theory of
non-standard analysis has been promoted as a faithful recreation of the infinitesimals of
Leibniz [86, 112, 126]. Smooth infinitesimal analysis is another approach based instead
around nilpotent infinitesimals [9], and Conway’s surreal numbers are based on an ex-
tension of the Dedekind completeness property of R. A fascinating recent article with a
survey of different approaches to infinitesimals is [48].

Connes’ infinitesimals stand apart from many other approaches in that there has been
little focus on the reinterpretation of classical real analysis. Instead, Connes’ primary
interest has been in new settings.

Let us return to the (debatably historically faithful) idea that an infinitesimal is supposed
to be an object ε such that:

0 < ε <
1

n
, for all n ≥ 1. (1.1.1)

Of course, (1.1.1) is not satisfied for any real number ε. In non-standard analysis,
surreal analysis and some other approaches, one considers an embedding of R into a
larger ordered field which contains an element ε satisfying (1.1.1).

Connes, however, finds inspiration in quantum mechanics. Let us think of ε as being not
a real number, but instead as a quantum observable. This opens up the possibility that
we can instead interpret (1.1.1) as being a superposition of the statements “0 < ε < 1

n”
as n ranges over 1, 2, 3, . . ..

To be more precise, suppose that ε is, rather than a number, actually a positive compact
operator on a Hilbert space, which has a sequence of distinct and positive eigenvalues
{λj}∞j=0 with corresponding orthonormal eigenvectors {vj}∞j=0. Consider the state:

ψ = α0v0 + α1v1 + α2v2 + · · · =
∞∑
j=0

αjvj

where {αj}∞j=0 is a sequence of complex numbers satisfying
∑∞

j=0 |αj |2 = 1. That is, ψ
is a superposition of the eigenstates of ε. If we decide to measure ε, then the outcome
will be one of {λj}∞j=0 with corresponding probabilities {|αj |2}∞j=0.
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The probability that the measured value of ε will be less than 1
n is:∑

|λj |< 1
n

|αj |2.

So that if infinitely many {αj}∞j=0 are nonzero, then for every n ≥ 1 the outcome

“0 < ε < 1
n” will be observed with positive probability. This is an unconventional but

not-unreasonable interpretation of (1.1.1).

We can remove the dependence on the choice of state ψ with the following definition:
Say that a linear operator T on a Hilbert space H is infinitesimal if for all n ≥ 1, there
exists a finite dimensional subspace E ⊆ H such that the norm of T restricted to E is
less than or equal to 1

n .

Thus, an operator T is infinitesimal if it can be approximated in the operator norm by
finite rank operators, and so we come to the realisation that T is infinitesimal in the
above sense if and only if T is compact.

Let us examine a simple case of Connes’ infinitesimal arithmetic. Consider the algebra
C1 +K(H), where H is a Hilbert space, K(H) denotes the algebra of compact operators
and 1 denotes the identity operator. By mapping z ∈ C to z1, there is a natural
embedding C ↪→ C1 + K(H). The above discussion is an attempt to motivate the idea
that C1 +K(H) can be regarded as an “infinitesimal extension” of C.

For the purposes of this example, adopt the following language: The “infinitesimal
neighbourhood” of Z ∈ C1 + K(H) is the set {Z + T : T ∈ K(H)}, and say that two
operators Z,W ∈ C1 +K(H) are infinitesimally close if Z −W is infinitesimal. That is,
if Z and W have the same infinitesimal neighbourhood.

The self-adjoint subspace of C1+K(H) is R1+Ksa(H), where Ksa(H) denotes the space
of self-adjoint compact operators. If f : R → C is a bounded Borel function, we may
define f(Z) for Z ∈ R1 + Ksa(H) by functional calculus. We then have the following
(not particularly deep) theorem:

Theorem. A bounded Borel function f : R → C is continuous at t ∈ R if and only if
f(t+ ε) is infinitesimally close to f(t) for all self-adjoint infinitesimals ε.

Equivalently, f is continuous at t if f maps the self-adjoint part of the infinitesimal
neighbourhood of t into the infinitesimal neighbourhood of f(t). With sufficient care,
one can also discuss continuity of general Borel functions f : C→ C using the functional
calculus of normal operators.

The above description of continuity is simply a restatement of the fact that f is contin-
uous at t if and only if f(t+ λn)→ f(t) for all sequences λn → 0. If this were the only
product of Connes’ infinitesimal arithmetic, then it would be nothing but a curiosity.
However, one interesting feature of C1 + K(H) is that there is a natural way to make
sense of the “size” or “order” of an infinitesimal ε ∈ K(H).

For n ≥ 0, the nth singular value of T ∈ K(H) is defined as:

µ(n, T ) := inf{‖T −R‖ : rank(R) ≤ n}.

One may also characterise {µ(n, T )}∞n=0 as being the sequence of eigenvalues of the
absolute value |T | arranged in non-increasing order with multiplicities. The sequence
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µ(T ) := {µ(n, T )}∞n=0 is a sequence of non-negative numbers vanishing towards zero,
and it is reasonable to think of the rate of decay of µ(T ) as measuring the size of the
infinitesimal T . As justification, consider the case when T is positive. In this case,
µ(T ) is simply the sequence of eigenvalues of T arranged in non-increasing order with
multiplicities. Denote the corresponding eigenvectors as {vn}∞n=0. When in a state
ψ ∈ H with ‖ψ‖H = 1, the probability that T is observed having value less than 1

n is:∑
k : µ(k,T )< 1

n

|〈ψ, vk〉|2.

This relates the rate of decay of µ(T ) to the “observed size” of T .

Following Connes, an infinitesimal of order 1 is an operator T ∈ K(H) such that:

µ(n, T ) = O(
1

n
), n→∞.

More generally, an infinitesimal of order p > 0 has singular value asymptotics:

µ(n, T ) = O(
1

n1/p
), n→∞.

In the language of operator theory, an infinitesimal of order p is thus identical to a
compact operator in the weak Schatten ideal Lp,∞ (as defined in Subsection 1.5.2).

Much of the work of this thesis is devoted to the problem of determining when some
compact operator is in an ideal Lp,∞. It can, in many cases, be enlightening to instead
use this language of infinitesimals to describe our results.

1.1.2 Index Theory

Connes’ quantised calculus was primarily motivated by his work in noncommutative
geometry, and a large part of this particular branch of noncommutative geometry was
motivated by index theory. Therefore, it is appropriate to say at least something about
that topic.

The announcement in 1963 of the Atiyah–Singer index theorem [6] and the later dis-
semination of complete proofs [98] led to rapid developments in algebraic topology and
index theory. Besides Atiyah and Singer, numerous authors including (but certainly
not limited to) Kasparov [80], Bott and Patodi [4] and Getzler [56] began a thorough
dissection of the original proofs of the index theorem. The literature on index theory is
vast and a full account of the history of the subject is beyond the scope of the present
text, further historical details may be found in [58, Chapter 5].

After substantial work by many authors, notably Kasparov and the important work of
Brown, Douglas and Fillmore [22], it was eventually realised that an essential insight of
the Atiyah–Singer index theorem is that an elliptic differential operator D on a manifold
M defines a class [D] in the K-homology of M , K-homology being a topological invariant
which is dual to K-theory. After close examination it became clear that the Atiyah-
Singer index theorem could be proved via an analytic construction of K-homology [5, 7].
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The fundamental notion in what is now known as analytic K-homology is a Fredholm
module. Subtly varying definitions are available in the literature, however typically a
Fredholm module for a C∗-algebra A is a triple (π,H, F ), where H is a Hilbert space,
F is a bounded operator on H and π is a representation of A on the bounded operators
of H such that for all a ∈ A we have:

(i) π(a)(F 2 − 1) ∈ K(H)

(ii) π(a)(F − F ∗) ∈ K(H)

(iii) [F, π(a)] ∈ K(H).

(c.f. [75, Chapter 8].) The K-homology of a C∗-algebra A is defined to be the set of
Fredholm modules of A modulo a certain equivalence relation. Often, Fredholm modules
are augmented with additional structure such as a Z2-grading γ, where γ is a self-adjoint
idempotent on H which commutes with π(A) and anticommutes with F . One can think
that A is an algebra of functions of a “space”, H is a space of sections of a “bundle” on
that space, and F is an “order zero elliptic operator” on H.

Putting aside the technical details, theK-homological perspective on index theory begins
by associating to an elliptic differential operator D on a compact manifold M a certain
Fredholm module for C(M) (the algebra of continuous functions on M).

The K-homology and K-theory of a manifold M are linked with its de Rham cohomol-
ogy and homology by a functor called the Chern character. Within the framework of
Fredholm modules, the Chern character is described as follows. One says that a Fred-
holm module (π,H, F ) with grading γ is p-summable if [F, π(a)] ∈ Lp+1(H) (where the
Schatten Lp+1 classes are defined below in Section 1.5.2) for all a in a dense subalgebra
A ⊂ A. Given a p-summable Fredholm module and an integer n > p, the nth component
of the Chern character is the multilinear functional on A given by:

chn(a0, a1, a2, . . . , an) = cnTr(γF [F, π(a0)][F, π(a1)] · · · [F, π(an)]), a0, a1, . . . , an ∈ A,

where cn is a certain constant (strictly speaking, the Chern character is defined as a
certain class in periodic cyclic cohomology rather than merely a multilinear functional,
and it is essential that we assume F 2 = 1 in order that chn to be a cyclic cocycle). The
above formula for the K-homological Chern character was the original motivation for
the definition of cyclic cohomology, and moreover for quantised calculus. Connes [26]
initiated a program of developing a formal analogy between expressions involving traces
of products of commutators [F, π(a)] and integrals of differential forms.

There is a certain formal similarity between the Chern character on K-homology and
multilinear functionals of the form:

(f0, f1, . . . , fd) 7→
∫
M
f0 df1df2 · · · dfd, f0, f1, . . . , fd ∈ C∞(M).

This is more than a visual resemblance: there is a close link between cyclic homology and
de Rham cohomology, and under mild regularity assumptions an explicit identification
between the two is possible [85, Section 2.3]. It is not the case that [F, π(a)] could
literally be interpreted as a differential form, but cyclic homology is a close analogy
of de Rham cohomology, and [F, π(a)] can play the same role as a differential df . It
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was this analogy that led Connes to postulate that i[F, π(a)] should be interpreted as a
“quantised differential” of a [28, Chapter 4].

For noncommutative geometry, this is one motivation to understand the singular values
of operators of the form [F, π(a)], and Chapters 5 and 7 are devoted to analysing the
singular value asymptotics of [F, π(a)] for certain very special examples.

For further details on the relationship to noncommutative geometry, see the survey [24]
or [64, Chapter 8]. In a related vein to the preceding discussion of index theory, this
thesis fits into the general context of noncommutative geometry as developed by Connes.
Indeed, one of the features of the analytic perspective on K-homology is that to define
Fredholm module there is no need for an underlying “space”. Noncommutative geometry
(especially in the sense related to the present work) is often attributed to Connes, due to
his substantial contributions to and promotion of this philosophy [28, 30, 31]. Connes’
contributions include (with H. Moscovici) a far-reaching extension of the Atiyah-Singer
index theorem to a purely algebraic setting [34, 74]. Many of the techniques used in this
thesis can be traced to that line of research.

1.2 Double operator integration

The notion of a double operator integral originates with the pioneering work of Yu. L.
Daletskii and S. G. Krein [38, 39], and was later further developed and extended by M.
S. Birman and M. Z. Solomyak [15–17] and others in the same research group, including
S. Ju. Rotfel’d [114] and L. S. Koplienko [13].

Let H be a (complex, separable) Hilbert space, and let A and B be (potentially un-
bounded) self-adjoint linear operators on H, with spectral resolutions EA and EB re-
spectively. Let f : R→ C be a Borel function. The theory of double operator integration
was developed to analyse expressions of the form f(A) − f(B), where f(A) and f(B)
are determined by functional calculus:

f(A) =

∫
Spec(A)

f(λ) dEA(λ), f(B) =

∫
Spec(B)

f(µ) dEB(µ).

The following questions are relevant to operator theory:

(i) if A−B is bounded, is f(A)− f(B) bounded?

(ii) Similarly, if A−B is trace class, or in the Schatten-von Neumann ideal Lp, is the
same true of f(A)− f(B)?

(iii) When is the function t 7→ f(A+ tB) differentiable?

A 1968 result of Yu. B. Farfarovskaya [51] states that not all Lipschitz functions on R
are Lipschitz in the operator norm: a result which implies that there exist Lipschitz
functions f : R → R and self-adjoint operators A and B with A − B bounded but
f(A) − f(B) not bounded. It was later established by E. B. Davies that even the
absolute value function f(t) = |t| is not operator Lipschitz [40].
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How can we study the difference f(A)− f(B)? Formally, we may compute f(A)− f(B)
as:

f(A)− f(B) =

∫
Spec(A)

f(λ) dEA(λ)−
∫

Spec(B)
f(µ) dEB(µ)

=

∫∫
Spec(A)×Spec(B)

f(λ)− f(µ)dEA(λ)dEB(µ)

=

∫∫
Spec(A)×Spec(B)

f(λ)− f(µ)

λ− µ
(λ− µ)dEA(λ)dEB(µ)

=

∫∫
Spec(A)×Spec(B)

f(λ)− f(µ)

λ− µ
dEA(λ)(A−B)dEB(µ).

In the final step, we have used the (formal) identities:

λdEA(λ)dEB(µ) = AdEA(λ)dEB(µ) = dEA(λ)AdEB(µ),

µdEA(λ)dEB(µ) = dEA(λ)BdEB(µ).

A “double operator integral” refers to a formal expression:

T A,Bφ (X) =

∫∫
Spec(A)×Spec(B)

φ(λ, µ)dEA(λ)XdEB(µ). (1.2.1)

Here, φ is a bounded measurable function on the product of the spectra Spec(A) and
Spec(B), and X is a linear operator on H. It is, in general, a difficult technical problem
to give rigorous meaning to the above expression, and there is no universally accepted
definition which can make sense of the above integral for all bounded operators X and
for all φ. Nonetheless, there are compelling reasons to study expressions of the above
form.

Daletskii and Krein noticed that if one can justify the preceding formal computations,
then we have the following striking identity for a Lipschitz continuous function f :

f(A)− f(B) = T A,Bφ (A−B). (1.2.2)

where φ is the function φ(λ, µ) = f(λ)−f(µ)
λ−µ . Similar identities were already known to K.

Löwner in 1934 [90], at least in the finite dimensional setting.

Thus if sense can be made of a double operator integral, then we have the possibility
to “convert non-linear problems into linear problems”, in the sense that the non-linear
relationship between A − B and f(A) − f(B) can be related to the linear map X 7→
T A,Bφ (X).

A substantial proportion of the research into double operator integrals has been moti-
vated by attempting to make sense of the formal expression (1.2.1) and verifying (1.2.2)
for various classes of operators A and B and functions f . The potential rewards of such
an endeavour are high: for example, if one can characterise the set of functions φ for
which (1.2.1) makes sense and such that X 7→ T A,Bφ (X) is a bounded linear operator
in the operator norm, then one in principle has an analytical test to determine which
functions f satisfy a Lipschitz estimate in the operator norm:

‖f(A)− f(B)‖∞ ≤ Cf‖A−B‖∞
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for some constant Cf .

A similar formal computation yields:

f(A+ tB)− f(A)

t
= T A+tB,A

φ (B).

Suggesting that:

d

dt
f(A+ tB)|t=0 = lim

t→0
T A+tB,A
φ (B) = T A,Aφ (B). (1.2.3)

The above formula is called the Daletskii-S. Krein formula, and it is a highly nontrivial
matter to make rigorous sense of the latter equality, as one needs to understand the
continuity of the mapping (A,B) 7→ T A,Bφ . Nonetheless, if (1.2.3) can be made rigorous
then one has an explicit formula for the Gâteaux derivative of the function A 7→ f(A).

It is thanks to the far-reaching work of V. V. Peller [99] that we have what is arguably
the central pillar of double operator integral theory: Peller’s theorem. Peller’s theorem
precisely characterises the class of functions φ such that the double operator integral
T A,Bφ defines a bounded linear operator on L∞ (or equivalently, on L1). We shall explore
Peller’s theorem in Chapter 3. In his more recent publications and in joint work with
A. B. Aleksandrov and F. L. Nazarov, Peller has contributed to the extension of the
theory to more advanced problems: such as those involving multiple operator integrals
and non-selfadjoint and even non-normal operators [1, 2].

Double operator integration and its applications remain an active area of research. Sur-
vey articles devoted to this topic include a 2003 survey of Birman and Solomyak [14]
and the more recent expository work of Peller [101, 102].

1.2.1 Schur products

Some light can be shed on the formal identity (1.2.1) if one focuses initially on the finite
dimensional case. If H = CN , then we should consider A,B and X as N ×N matrices.
The spectral resolutions of A and B are now discrete:

A =
N−1∑
j=0

λ(j, A)vjv
∗
j , B =

N−1∑
j=0

λ(j, B)uju
∗
j

where {λ(j, A)}N−1
j=0 , {λ(j, B)}N−1

j=0 are the eigenvalues of A and B, and {vj}N−1
j=0 and

{uj}N−1
j=0 are corresponding orthonormal bases of eigenvectors. In this case, the double

integral (1.2.1) becomes a double sum:

T A,Bφ (X) =

N−1∑
j=0

N−1∑
k=0

φ(λ(j, A), λ(k,B))ujv
∗
k〈uj , Xvk〉.

If one writes ej,k = ujv
∗
k, and Xj,k = 〈uj , Xvk〉, then we have:

T A,Bφ (

N−1∑
j,k=0

Xj,kej,k) =
N−1∑
j,k=0

φ(λ(j, A), λ(k,B))Xj,kej,k
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From the perspective of linear algebra, it now becomes clear that T A,Bφ is what is known
as a Schur (or Hadamard) product. The Schur product of two matrices A,B of the same
size (say, n×m) is defined as the entrywise product:

A ◦B := {Aj,kBj,k}.

The importance of the Schur product in linear algebra was already appreciated long
before Daletskii and Krein, having appeared in I. Schur’s 1911 paper [121].

A double operator integral may therefore be reasonably termed a “measurable Schur
product” and indeed this terminology sometimes appears in the literature [133]. We
will have more to say concerning the relationship between Schur products and double
operator integrals in Chapter 3.

1.2.2 Functional calculus

Another perspective on the formal double operator integral (1.2.1) is from functional
calculus. Let p(x, y) =

∑
j,k aj,kx

jyk be a polynomial in two variables, and let A and B
be bounded linear operators on the Hilbert space H. If A and B commute, then we can
make unambiguous sense of the expression:

p(A,B) =
∑
j,k

aj,kA
jBk.

From a more algebraic point of view, the assignment p(x, y) 7→ p(A,B) represents an
algebra homomorphism from the space of polynomials in two variables to the space of
bounded linear operators, and indeed is the unique algebra homomorphism which maps
x to A and y to B.

If A and B do not commute, then the expression p(A,B) is ambiguous; xy and yx
represent identical polynomials but AB and BA in general are distinct operators. One
can resolve this ambiguity with the use of various operator-ordering conventions (such
as declaring that xjyk maps to AjBk) but there is in general no algebra homomorphism
from the space of polynomials in two variables to the space of bounded linear operators
which maps x to A and y to B.

The functional calculus perspective on double operator integration begins with the ob-
servation that A and B act not only on H, but also on the Hilbert-Schmidt space L2(H).
The Hilbert-Schmidt space is a two sided ideal of the algebra of bounded linear operators,
and we can define the operators of “left multiplication” and “right multiplication”:

LAX = AX, RBX = XB, X ∈ L2(H).

While A and B do not necessarily commute on H, LA and RB do commute on L2(H),
since:

A(XB) = (AX)B, X ∈ L2(H).

So while p(A,B) is an ambiguous expression, p(LA, RB) may be unambiguously defined
as a bounded linear operator on L2(H):

p(LA, RB)X :=
∑
j,k

aj,kA
jXBk.
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The mapping p 7→ p(LA, RB) inherits all of the desirable properties of functional calculus
of two commuting variables (in particular, it is an algebra homomorphism).

Let us consider the relationship with the formal double operator integral (1.2.1). If A
and B are self-adjoint, then they may be reconstructed as spectral resolutions:

A =

∫
Spec(A)

λ dEA(λ), B =

∫
Spec(B)

µdEB(µ).

For X ∈ L2(H), we have:

AjXBk =

∫
Spec(A)

λj dEA(λ)X

∫
Spec(B)

µk dEB(µ).

Then formally applying Fubini’s theorem,

AjXBk =

∫
Spec(A)×Spec(B)

λjµk dEA(λ)XdEB(µ).

So for a general polynomial p,

p(LA, RB)X =

∫∫
Spec(A)×Spec(B)

p(λ, µ) dEA(λ)XdEB(µ).

While the application of Fubini’s theorem was only heuristic, the left hand side p(LA, RB)X
is a rigorously defined object. The approach to double operator integration pursued by
Birman, Solomyak [15–17] and Peller [99, 101, 102] is essentially to define the double
operator integral as p(LA, RB)X,

T A,Bp (X) := p(LA, RB)X.

This approach has the advantage that there is no need to restrict attention to polynomial
functions or bounded operators A and B, since one may appeal to the existence of
a functional calculus for arbitrary Borel functions of pairs of commuting self-adjoint
operators. This approach does have the disadvantage that (1.2.1) is then only defined
a priori for X ∈ L2(H), although in some cases it is possible to extend the definition
to wider classes of X using duality or density arguments. This point of view shall be
pursued in Chapter 2.

1.2.3 Double operator integrals as operator-valued integrals

A third perspective on (1.2.1) views the double operator integral T A,Bφ (X) as being a
certain operator-valued integral.

Let us make the ansatz that one can separate the variables of the function φ in the sense
that there is some measure space (Ω, µ) such that:

φ(t, s) =

∫
Ω
α(t, ω)β(s, ω) dµ(ω), t, s ∈ R (1.2.4)

where α and β are measurable functions on R× Ω.
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Formally applying Fubini’s theorem now yields:

T A,Bφ (X) =

∫
Ω

∫
R2

α(t, ω)β(s, ω)dEA(t)XdEB(s) dµ(ω)

=

∫
Ω
α(A,ω)Xβ(B,ω) dµ(ω).

While the preceding computation was only formal, the expression on the right-hand-
side can be defined for large classes of X, α and β, and we will explore this definition in
Section 4.1.1. This is a method which makes sense of (1.2.1) for wide classes of operators
X, but is essentially limited to functions which can be decomposed as in (1.2.4).

1.2.4 Further perspectives

At present, there is no universally accepted definition of a double operator integral which
applies equally well in all situations. If one wishes to consider a wide class of functions
φ in (1.2.1), then the perspective in Subsection 1.2.2 is appropriate. If instead the focus
is on considering a wider class of operators X, then the perspective of Subsection 1.2.3
is advantageous. In some circumstances, even more exotic interpretations of (1.2.1)
are needed. For example, in [106] a definition was developed based on taking limits of
discrete Schur multipliers and in [41] the theory was based on integration of functions
with respect to finitely additive spectral measures on Banach spaces.

The perspective of this thesis is to take a “stereoscopic” approach to double operator
integrals: rather than promote a single definition, instead two competing definitions will
be presented on an equal footing. These definitions are consistent whenever they are
both meaningful, however for certain applications it can be helpful to adopt one or the
other point of view.

1.3 Julia sets

One of the most impressive applications of Connes’ quantised calculus has been to the
apparently unrelated area of holomorphic dynamics. This line of inquiry originates with
Connes and D. Sullivan, and the first results in this direction were announced in [28].
Holomorphic dynamics is a well-established research area, and several monographs on
the topic exist [8, 25, 95].

1.3.1 Background on holomorphic dynamics

The primary focus of study in holomorphic dynamics is the iteration of functions. Let
φ : C → C be a holomorphic function, and let z0 ∈ C. Define a sequence {zn}n≥1 by
the rule zn+1 = φ(zn) for n ≥ 0. In other words, zn = φn(z0). It is usually hopeless to
derive a closed form for zn in terms of n and z0; instead the main focus of the theory of
holomorphic dynamics is to describe the qualitative features of the sequence {zn}n≥0. Of
special interest is the relationship between the choice of z0 and the asymptotic behaviour
of {zn}n≥0 as n→∞.
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Figure 1.1: K(φ) for φ(z) = z3 + 0.4− 0.1i

For example, if φ is a polynomial of degree d > 1, then when z is sufficiently large φ(z)
is dominated by the degree d term, so there is the following dichotomy: either |zn| → ∞
as n→∞ or |zn| remains uniformly bounded in n.

Define the filled in Julia set, K(φ), of a polynomial φ to be the set of z0 such that the
sequence zn = φn(z0) is uniformly bounded as n→∞ [25, Section III.4]. The set K(φ)
is necessarily bounded, and it can also be proved to be closed [25, Section II.1]. Since the
equation φ(z) = z always has at least one solution, K(φ) is also necessarily non-empty.
The Julia set J(φ) may be defined in this context to be the boundary of K(φ).

One can approximate K(φ) on a computer. Several algorithms exist [95, Appendix H],
but the simplest one is described as follows: consider a large (2N + 1)× (2N + 1) grid of
complex numbers, say {nε + imε}Nn,m=−N for some grid spacing ε > 0. Assign to each
number in the grid a pixel, initially coloured white. Select appropriate constants J and
K, and colour the (n,m)th pixel black if |φJ(nε+ imε)| < K.

For example, Figure 1.1 shows K(φ) for φ(z) = z3 + 0.4− 0.1i.

The Julia set J(φ) can be approximated from K(φ) by applying an edge-detection algo-
rithm. Figure 1.2 was produced with such an algorithm.

1.3.2 The Conformal Trace Theorem

In Chapter 1.2, we give an indication of the utility of quantised calculus in the concrete
example of the so-called Conformal Trace Theorem for Julia sets.
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(a) φ(z) = z2 + 0.3− 0.1i (b) φ(z) = z3 + 0.4− 0.1i

(c) φ(z) = z4 + 0.2− 0.1i

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5Im(z)

Re(z)

(d) φ(z) = z5 − 0.29 + 0.5i

Figure 1.2: Numerical estimation of of J(φ) for various φ.

An important feature of Julia sets in general is that they are fully invariant : that is, z
belongs to the Julia set of a polynomial φ if and only if φ(z) also belongs to the Julia
set of φ [95, Lemma 4.3]. We will be concerned with examples where φ is hyperbolic on
J(φ), which roughly means that |φ′(z)| > 1 for all z ∈ J(φ) (see Definition 5.1.1). This
hyperbolic self-similarity accounts for the rough appearance of the Julia sets in Figure
1.2 and in the cases that interest us, J(φ) will have Hausdorff dimension strictly between
1 and 2.

Let us briefly discuss the motivation behind the conformal trace theorem. Suppose that
one has a simple closed curve C in the plane R2, parametrised by a function s : [0, 1)→ C.
If s is of bounded variation, then one can recover the arc-length measure on C by
integration: the integral of a continuous function f on C with respect to the arc-length
measure is given by the Riemann-Stieltjes integral:∫ 1

0
f(s(t))|ds|(t).

On the other hand, typical Julia sets cannot be parametrised by a function of bounded
variation, although in place of an arc-length measure they do have a Hausdorff measure.
The conformal trace theorem states that we may recover the integral of a function f on
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J with respect to the p-dimensional Hausdorff measure by the formula:

−
∫
f(Z)|d̄Z|p

where Z is an appropriate parametrisation of J , and now d̄Z denotes a quantised dif-
ferential and −

∫
is a singular trace.

In general it is a nontrivial matter to determine if the Julia set of a polynomial is a
simple closed curve. In [33], the decision was made to restrict attention to the heavily
studied class of examples of the form φ(z) = z2+c for c sufficiently small and nonzero. In
Chapter 5, instead we work with a larger class of polynomials which we term admissible
(see Definition 5.1.1). The Julia sets of admissible polynomials are simple closed curves,
and certain basic polynomials such as φ(z) = zd + c for d ≥ 2 and c sufficiently small
and nonzero are admissible.

The precise version of the Conformal Trace Theorem to be proved in Chapter 5 is as
follows. The relevant notations will be reviewed in Chapter 5.

Theorem. Let p ∈ (1, 2) be the Hausdorff dimension of the Julia set J of an admissible
polynomial φ. Let mp be the p-dimensional Hausdorff measure on J . Then,

(a) [F,MZ ] ∈ Lp,∞.

(b) For every continuous Hermitian trace ϕ on L1,∞, there exists a constant K(ϕ, φ)
such that for every f ∈ C(J) we have:

ϕ(Mf◦Z |[F,MZ ]|p) = K(ϕ, φ)

∫
J
f dmp.

(c) If ω is a dilation invariant extended limit on L∞(0,∞) such that ω ◦ log is also
dilation invariant, then K(trω, φ) > 0. Here, trω is a Dixmier trace corresponding
to the extended limit ω.

This version of the theorem has not previously appeared in writing, and the proofs given
in Chapter 5 are original to this thesis.

1.4 Plan of the thesis

In the next section of this chapter we will review some background material concerning
von Neumann algebras (Subsection 1.5.1) and operator ideals (Subsection 1.5.2).

Chapter 2 continues exposition of background material with an exhaustive account of
the theory of integration with respect to spectral measures. This material is included
primarily in service of Chapter 3, and so readers familiar with this material could move
very quickly through Chapter 2. In Chapter 3, we include a complete proof of Peller’s
theorem concerning necessary and sufficient conditions for the boundedness of double
operator integrals on the trace class ideal corresponding to a separable Hilbert space.

In Chapter 4, we include an alternative exposition of double operator integration theory
based instead on the concept of a weak∗ or Gel’fand integral. This is developed for the
purposes of proving a theorem relating the difference of complex powers of operators.
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Chapter 5 details a proof of the Conformal Trace Theorem. It is primarily based on the
paper [33].

Chapters 6 and 7 are concerned with the problem of characterising the singular value
asymptotics of quantised differentials associated to noncommutative Euclidean spaces.
These chapters are based on the published paper [94] and the submitted paper [92]
respectively.

1.5 Preliminary material

1.5.1 Von Neumann algebras

Let us briefly recall the basics of von Neumann algebra theory. Further details may
be found in, for example, the books [43, 77, 118, 131]. A von Neumann algebra M is
a unital ∗-subalgebra of the algebra of bounded linear operators on a Hilbert space H
which is closed in the weak operator topology (or equivalently in the strong operator
topology).

If X ⊆ B(H), let X ′ ⊆ B(H) denote the set of operators which commute with every ele-
ment of X. Von Neumann’s celebrated bicommutant theorem states that a ∗-subalgebra
M of B(H) is a von Neumann algebra if and only if M =M′′.

The algebraM inherits a partial ordering from its representation on H: for self-adjoint
a, b ∈ M we say that a ≤ b if for all ξ ∈ H we have that 〈ξ, aξ〉 ≤ 〈ξ, bξ〉. We say that
a ∈ M is positive if a ≥ 0. Equivalently, an element a is positive if a = b∗b for some
b ∈ M. Let M+ denote the set of positive elements of M. The cone M+ satisfies the
following Dedekind completeness property: if {xλ}λ∈Λ ⊆M+ is a net where (Λ,4) is a
directed set, we say that {xλ}λ∈Λ is monotone increasing if λ 4 µ implies that xλ ≤ xµ.
Given a monotone net {xλ}λ∈Λ which is bounded above in the sense that there is some
y ∈ M+ with xλ ≤ y for all λ ∈ Λ, there exists a least upper bound supλ∈Λ xλ in M+.
Note that in M+ we can only prove the existence of the supremum of a monotone net:
for A,B ∈ B(H) a least upper bound A∨B exists if and only if either A ≤ B or B ≤ A.

A self-adjoint idempotent of M is called a projection. Many of the properties of the
lattice of projections of B(H) transfer to M. For example, if p, q ∈ M are projections,
and if p ∨ q denotes the projection onto the closed subspace pH + qH then p ∨ q ∈ M
due to the bicommutant theorem. We also have that p ∨ q is the minimal projection
such that p ≤ p∨ q and q ≤ p∨ q. We denote P(M) for the lattice of projections inM.

A distinguishing feature of von Neumann algebras is that a von Neumann algebra M
has a Banach space pre-dual M∗. This introduces a new notion of convergence in the
setting of von Neumann algebras, weak∗ convergence: say that a net {xα}α∈A (indexed
by a directed set A) in M converges to x ∈ M in the weak∗-sense if xα(ω) → x(ω) for
all ω ∈M∗.

It will later be important to give sufficient conditions for weak∗-convergence in terms
of the representation of M on H, and for this purpose we use the σ-weak topology.
Consider subsets of H of the form {ξk}∞k=0 and {ηk}∞k=0 where ξj is orthogonal to ξk for
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j 6= k, ηj is orthogonal to ηk for j 6= k, and

∞∑
k=0

‖ξk‖2H <∞,
∞∑
k=0

‖ηk‖2H <∞.

Define the following seminorm on M:

ρ{ξk},{ηk}(x) =

∣∣∣∣∣
∞∑
k=0

〈ξk, xηk〉

∣∣∣∣∣ , x ∈M. (1.5.1)

Then the σ-weak topology of M is defined to be the topology generated by the family
of seminorms ρ{ξk},{ηk} as {ξk} and {ηk} vary over all possible choices satisfying the
stated conditions (c.f. [131, Definition II.2.1]). The predual M∗ can be identified with
the set of σ-weakly continuous functionals on M [131, Theorem II.2.6(iii)] and hence if
{xα}α∈A is a net which converges to x in the σ-weak sense then {xα}α∈A converges to
x in the weak∗-topology of M.

A faithful normal trace τ on M+ is an additive mapping from M+ to [0,∞] which
satisfies the following properties:

(i) Faithfulness: τ(x) = 0 if and only if x = 0.

(ii) Normality: if {xλ}λ∈Λ is a monotone increasing net of operators which is bounded
above, then τ(supλ∈Λ xλ) = supλ∈Λ τ(xλ).

(iii) Traciality: If u ∈M is unitary, then τ(uxu∗) = τ(x) for all x ∈M+.

There exist von Neumann algebras where every trace is infinite on every nonzero element.
For this reason, the notion of a semifinite von Neumann algebra is introduced. Say that a
projection p ∈ P(M) is τ -finite if τ(p) <∞. A pair (M, τ) is a semifinite von Neumann
algebra if the identity projection 1 ∈ P(M) is a monotone limit of τ -finite projections.
If (M, τ) is semifinite, then every x ∈ M+ can be obtained as the supremum of a
monotone net {xα}α∈A such that τ(xα) is finite for each α.

In the semifinite case, an explicit description ofM∗ is available. Let p ≥ 1 and consider
the set

Np = {x ∈M : τ(|x|p) <∞}

then the quantity ‖x‖p := τ(|x|p)1/p is a norm on Np, and the completion of Np with
respect to this norm is called the Lp space associated to (M, τ), denoted Lp(τ) for
brevity. One can identify L1(τ) with M∗ with the duality pairing:

(x, z) 7→ τ(xz), x ∈M, z ∈ L1(τ).

The particular case p = 2 is a Hilbert space, with inner product 〈y, x〉L2 := τ(y∗x).

A von Neumann algebra M is said to be σ-finite if M admits at most countably many
pairwise orthogonal projections ([131, Definition 3.18]). The σ-finiteness ofM is equiv-
alent to the assumption that M admits a faithful representation on a separable Hilbert
space [131, Proposition 3.19] and further implies that every x ∈ M can be obtained as
a weak∗-limit of a sequence in L1(τ) ∩M.
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1.5.2 Singular traces and operator ideals

This section introduces notation and terminology concerning singular traces (in partic-
ular Dixmier traces) and operator ideals. Let H be a complex separable Hilbert space
with orthonormal basis {en}∞n=0. Denote by B(H) the ∗-algebra of bounded linear op-
erators on H and denote by K(H) the set of compact operators. Given an operator
T ∈ K(H), the singular value function s 7→ µ(s, T ) is defined to be the distance of T to
the set of all operators of rank at most s:

µ(s, T ) := inf{‖T −R‖ : rank(R) ≤ s}, s ≥ 0.

Equivalently, {µ(k, T )}∞k=0 is the sequence of eigenvalues of |T | arranged in non-increasing
order with multiplicities.

Given p ∈ (0,∞], the p-Schatten class Lp is defined to be the set of operators T ∈ B(H)
such that {µ(n, T )}∞n=0 is in the sequence space `p. The weak Schatten class Lp,∞ is the
set of operators T ∈ B(H) such that µ(n, T ) = O(n−1/p). The Schatten p-class Lp (resp.
the weak Schatten class Lp,∞) is equipped with the norm (resp. quasi-norm) given by
‖T‖p := ‖{µ(n, T )}∞n=0‖`p (resp. ‖T‖p,∞ := supn≥0 n

1/pµ(n, T )). The closure of the set
of finite rank operators in Lp,∞ shall be denoted (Lp,∞)0.

When p ≥ 1, Lp is a Banach space, and an ideal of B(H). Although the weak Schatten
quasinorm ‖ ·‖p,∞ is not a norm, when p > 1 there is an equivalent norm for Lp,∞, given
by:

‖T‖′p,∞ = sup
n≥0

(n+ 1)1/p−1
n∑
k=0

µ(k, T ).

As with the Lp spaces, Lp,∞ is an ideal of B(H). We also have the following form of
Hölder’s inequality,

‖TS‖r,∞ ≤ cp,q‖T‖p,∞‖S‖q,∞
where 1

r = 1
p + 1

q , for some constant cp,q. For 0 < r <∞, the closure of the set of finite
rank operators in the Lr,∞ quasinorm is denoted (Lr,∞)0. It is straightforward to check
that (Lr,∞)0 is again an ideal of B(H).

An operator theoretic result which will be useful is the Araki-Lieb-Thirring inequality [3,
Page 169] (see also [81, Theorem 2]) which states that if A and B are bounded operators
and r ≥ 1, then:

|AB|r ≺≺log |A|r|B|r

where ≺≺log denotes logarithmic submajorisation. In particular this implies the follow-
ing inequality for the Lr,∞ quasinorm, when r ≥ 1:

‖AB‖r,∞ ≤ e‖|A|r|B|r‖1,∞ ≤ e‖A‖r−1
∞ ‖A|B|r‖1,∞. (1.5.2)

For q ∈ [1,∞), we also consider the ideal Lq,1, defined as the set of bounded operators
T on H satisfying:

‖T‖Lq,1 :=
∑
n≥0

µ(n, T )

(n+ 1)
1− 1

q

<∞.

We have the following Hölder-type inequality, if 1
p + 1

q = 1 then:

‖TS‖1 ≤ ‖T‖p,∞‖S‖q,1. (1.5.3)
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A functional ϕ : L1,∞ → C is called a continuous trace if it is continuous in the L1,∞
quasinorm and for all A ∈ L1,∞ and B ∈ B(H), we have ϕ(BA) = ϕ(AB). A trace ϕ is

hermitian if ϕ(A∗) = ϕ(A) for all A ∈ L1,∞.

An important fact about traces is that any trace ϕ on L1,∞ vanishes on L1 [89, Theo-
rem 5.7.8]. It is known that not all traces on L1,∞ are continuous [88, Remark 3.1(3)].
Within the class of continuous traces on L1,∞ there are the well-known Dixmier traces
[89, Chapter 6], which we discuss below.

There is a bijective correspondence between traces on L1,∞ and certain functionals on
`∞ which we will describe here for later use. A continuous linear functional θ ∈ `∗∞ is
called translation-invariant if it is invariant under translations in the sense that

θ(x0, x1, . . .) = θ(0, x0, x1, . . .), for all (x0, x1, . . .) ∈ `∞.

Additionally, a functional θ is Hermitian if θ(x∗) = θ(x) for all x ∈ `∞

The following result is a combination of [123, Theorem 4.1, Theorem 4.9]. Note that in
[123] the implicit assumption is made that all functionals are Hermitian.

Theorem 1.5.1. For every continuous Hermitian trace ϕ on L1,∞ there exists a unique
translation-invariant Hermitian functional θ ∈ `∗∞ such that for all A ≥ 0 in L1,∞ we
have:

ϕ(A) = θ

 1

log 2


2n+1−2∑
k=2n−1

µ(k,A)


n≥0

 . (1.5.4)

Moreover, for every translation invariant θ ∈ `∗∞ the right hand side of (1.5.4) defines
a trace on L1,∞.

Corollary 1.5.2. Every continuous Hermitian trace ϕ on L1,∞ can be written as a
difference ϕ = ϕ+ − ϕ− where ϕ− and ϕ+ are positive continuous traces.

Proof. Due to Theorem 1.5.1, the result will follow from the assertion that for any trans-
lation invariant Hermitian linear functional θ on `∞ that there are positive translation-
invariant linear functionals θ+, θ− such that θ = θ+ − θ−. This fact is established in
[123, Lemma 4.8], thus completing the proof.

In Section 5.6 we also refer to the specific subclass of traces on L1,∞ of Dixmier traces.
A linear positive linear functional ω on the von Neumann algebra L∞(0,∞) is called
an extended limit if ω vanishes on all functions of bounded support and ω(1) = 1. The
dilation semigroup {σs}s>0 on L∞(0,∞) is defined by:

(σsf)(t) = f(t/s).

A dilation invariant extended limit is defined to be an extended limit ω such that ω◦σs =
ω for all s > 0.

Given a dilation invariant extended limit ω, the Dixmier trace trω is defined on 0 ≤ A ∈
L1,∞ by

trω(A) = ω

(
t 7→ 1

log(1 + t)

∫ t

0
µ(s,A) ds

)
.

It is proved in [89, Theorem 6.3.6] that trω extends by linearity to a continuous trace
on L1,∞.



Chapter 2

Spectral integration

The theory of double operator integration on the Hilbert-Schmidt class rests on the
standard theory of spectral integration.

As mentioned in Subsection 1.2.2 of the introduction, the definition of a double operator
integral T A,Bφ (X) when X ∈ L2(H) (the Hilbert-Schmidt space of a Hilbert space H)
can be seen as an application of the functional calculus of two commuting operators
of “left multiplication” LAX := AX and “right multiplication” RBX = XB. Many
of the elementary properties of T A,Bφ can be seen as consequences of well-known facts
about functional calculus of commuting self-adjoint operators [120, Chapters 4 and 5],
[18, Chapter 6].

We will now attempt a thorough overview of this theory. Much of the following material
is standard, but there appears to be no single reference which adequately covers the
material in sufficient generality for our purposes.

An important distinction occurs between the notion of spectral measure valued in the
projection lattice of a Hilbert space and spectral measure valued in the projection lattice
of a von Neumann algebra. In the former theory, many of the desirable properties of
double operator integrals follow from the specific tensor product structure of the Hilbert-
Schmidt class. On the other hand, when working in the setting of general semifinite von
Neumann algebras, we must instead take greater care to ensure that product measures
are well-defined. We will review the problem of defining products in Subsection 2.2.2.

Ultimately, we will be able to define double operator integrals for spectral measures
valued in the projections of a von Neumann algebra provided that the underlying mea-
surable space is a σ-compact standard Borel space. This is more than sufficiently general
to cover all known applications of double operator integration theory.

Sections 2.1 and 2.2 cover the elementary theory of spectral measures on a Hilbert space.
Readers familiar with spectral theory can skip to Subsection 2.2.2, where we discuss the
more subtle issues involving in defining products of spectral measures. Section 2.3 begins
the discussion on spectral measures on von Neumann algebras. Double operator integrals
in the functional-calculus sense are defined in Section 2.4.

19
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2.1 Finitely additive measures on algebras

Recall that a family A of subsets of a set X is called an algebra (sometimes a Boolean
algebra) if A is non-empty and closed under the set operations of finite union, finite
intersection and complementation. A σ-algebra is an algebra which is further closed
under countable union.

Denote the σ-algebra generated by an algebra A as σ(A).

A finitely additive measure µ on an algebra A is a mapping from A to [0,∞] which is:

(i) Finitely additive: if A,B ∈ A are disjoint, then µ(A ∪B) = µ(A) + µ(B).

(ii) Nontrivial: µ(∅) = 0 (equivalently, at least one set has finite measure).

A finitely additive measure µ on an algebra A is called σ-additive on A if it satisfies
the following additional property: if A ∈ A is a countable disjoint union A =

⋃∞
n=0An

where each An ∈ A, then µ(A) =
∑∞

n=0 µ(An).

A σ-additive measure on a σ-algebra is simply called a measure. A central problem in
elementary measure theory is to determine when a finitely additive measure µ on an
algebra A extends to a measure on a σ-algebra containing A. Certainly, it is necessary
that µ be σ-additive on A. The classical Hahn-Kolmogorov theorem (see e.g. [135,
Theorem 11.20], [47, Section III.5, Theorem 8] or [70, Theorem 13A] for the σ-finite
case) states that σ-additivity on A is also sufficient:

Theorem 2.1.1 (Hahn-Kolmogorov). A finitely additive measure µ on an algebra A
of subsets of a set X admits an extension to a measure on σ(A) if and only if µ is
σ-additive on the algebra A.

Moreover, the extension can be described precisely by:

µ∗(Z) = inf{
∞∑
j=0

µ(Aj) : Z ⊆
∞⋃
j=0

Aj , Aj ∈ A}

and µ∗ defines a measure on the σ-algebra of sets C which satisfy:

µ∗(Z) = µ∗(Z ∩ C) + µ∗(Z \ C)

for all Z ⊆ X.

If X is in fact a separable complete metric space, and A consists of Borel subsets of X,
then we have another tool at our disposal to prove that a finitely additive measure µ on
A extends to a measure on σ(A) [21, Theorem 7.1.7, Theorem 7.3.11]:

Theorem 2.1.2. Let X be a complete separable metric space, and let A be an algebra
whose elements are Borel subsets of X. A finitely additive measure µ on A is σ-additive
if and only if it satisfies the following inner regularity condition:

µ(A) = sup{µ(K) : K ∈ A,K ⊆ A and K is compact}

where K denotes the closure of a set K.
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Combining the Hahn-Kolmogorov theorem and Theorem 2.1.2 yields the following: if
µ is a finitely additive measure on an algebra of Borel sets on a complete separable
metric space, and µ satisfies the inner regularity condition of Theorem 2.1.2, then µ is
the restriction to A of a measure on σ(A).

The above theorem turns out to be crucial in the theory of double operator integrals in
the semifinite setting. Without it, we would be unable to even state the basic definitions.

Ultimately a double operator integral on the L2-space of a semifinite von Neumann alge-
bra will be defined as an integral with respect to a so-called spectral measure. However
in order to prove that the claimed spectral measure even exists, we must review the
theory of finitely additive spectral measures.

Definition 2.1.3. Let A be an algebra of subsets of a set X, and let H be a Hilbert
space. A finitely additive spectral measure ν is a mapping from A to the lattice P(H) of
projections in H which satisfies the following two properties:

(i) ν(X) = 1 (here, 1 is the identity operator on H)

(ii) Finite additivity: if A,B ∈ A are disjoint, then ν(A ∪B) = ν(A) + ν(B).

Wherever necessary, the inner product and norm on H will be denoted 〈·, ·〉 and ‖ · ‖
respectively.

Although these assumptions of Definition 2.1.3 appear quite mild the algebraic properties
of P(H) are sufficiently powerful that we can prove the following:

Lemma 2.1.4. Let ν be a finitely additive spectral measure on an algebra A. If B1, B2 ∈
A are disjoint, then ν(B1) and ν(B2) are orthogonal.

Proof. To see this, one simply need note that if p and q are two projections on H whose
sum is again a projection, then p and q are orthogonal. For the sake of completeness,
we include the argument here. Since (p+ q)2 = p+ q, we have pq + qp = 0.

Therefore, pqp + qp = 0, and since pqp is self-adjoint, we therefore have that pqp =
−1

2(qp+ pq) = 0. Thus, pq = ppq = −pqp = 0, and similarly qp = 0.

To conclude, since ν(B1 ∪ B2), ν(B1), ν(B2) are all projections and ν(B1 ∪ B2) =
ν(B1) + ν(B2), it follows that ν(B1) and ν(B2) must be orthogonal as claimed.

Remark 2.1.5. Due to Lemma 2.1.4, it follows immediately that:

ν(X \A) = ν(A)⊥ = 1− ν(A).

where ⊥ denotes the orthogonal complement.

In fact, a finitely additive spectral measure induces a lattice homomorphism from the
algebra A to the lattice of projections P(H). The key to this fact is that the image of a
spectral measure ν in fact consists of pairwise commuting projections, as the following
lemma shows:
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Lemma 2.1.6. Let ν be a finitely additive spectral measure on an algebra A. Then for
any A1, A2 ∈ A, we have:

ν(A1 ∩A2) = ν(A1)ν(A2) = ν(A2)ν(A1).

Proof. Let ∆ = A1 ∩ A2. Since A is an algebra, we of course have ∆ ∈ A. Decompose
A1 and A2 as:

A1 = A1 \∆ ∪∆, A2 = A2 \∆ ∪∆.

Since ν is finitely additive:

ν(A1) = ν(A1 \∆) + ν(∆), ν(A2) = ν(A2 \∆) + ν(∆).

Since the family of sets {A1 \∆, A2 \∆,∆} is pairwise disjoint, it follows from Lemma
2.1.4 that the family of projections {ν(A1 \∆), ν(A2 \∆), ν(∆)} is pairwise orthogonal,
and thus:

ν(A1)ν(A2) = (ν(A1 \∆) + ν(∆))(ν(A2 \∆) + ν(∆))

= ν(∆)2

= ν(∆)

= ν(A1 ∩A2).

By symmetry, we also have ν(A2)ν(A1) = ν(A1 ∩A2).

Since ν(A1) and ν(A2) commute for all A1, A2 ∈ A, it follows that ν(A1)ν(A2) =
ν(A1) ∧ ν(A2), and hence:

ν(A1 ∩A2) = ν(A1) ∧ ν(A2).

By taking complements, it follows immediately that:

ν(A1 ∪A2) = ν(A1) ∨ ν(A2).

In algebraic terms, a finitely additive spectral measure ν on an algebra A is a lattice
homomorphism from A to P(H).

2.2 Spectral measures on a Hilbert space

While there does exist a theory of integration relative to finitely additive spectral mea-
sures, we will instead develop the theory of countably additive spectral measures.

Definition 2.2.1. Let (X,Σ) be a measurable space, and let H be a Hilbert space. A
spectral measure ν is a mapping from Σ to the lattice of projections P(H) in H satisfying
the following two properties:

(i) Completeness: ν(X) = 1 (again, 1 is the identity operator on H).
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(ii) Weak σ-additivity: If {Aj}∞j=0 is a countable family of pairwise disjoint sets in Σ,
then:

ν

 ∞⋃
j=0

Aj

 = lim
n→∞

n∑
j=0

ν(Aj)

where the limit is taken in the sense of the weak operator topology of B(H).

Call the tuple (X,Σ, H, ν) a spectral measure space.

It is perhaps not immediately obvious that a spectral measure is automatically a finitely
additive spectral measure. One way to see that this is true is to note that the infinite
family {∅}∞n=0 is pairwise disjoint, so we can apply (ii) to conclude that ν(∅) = 0, and
from there one can see that (ii) implies finite additivity.

Remark 2.2.2. Within the literature there are some variations in the way that the
definition of a spectral measure is stated. For example, some authors (such as [18, Sec-
tion 5.1.1]) assume that the limit in Definition 2.2.1.(ii) is taken in the strong operator
topology.

Since a spectral measure ν is in particular a finitely additive spectral measure, if a family
{Aj}∞j=0 ⊆ Σ is pairwise disjoint then:

pn := ν(

∞⋃
j=0

Aj)−
n∑
j=0

ν(Aj) = ν(

∞⋃
j=n+1

Aj)

defines a sequence of projections converging in the weak operator topology to zero as
n → ∞. Thus for all x ∈ H, 〈x, pnx〉 = ‖pnx‖2 converges to zero, and so pn also
converges strongly to zero. Thus in Definition 2.2.1.(ii), we could have equivalently
assumed that the convergence is in the strong operator topology.

Other authors (such as [110, Section VIII.3]) assume as part of the definition that if
A,B ∈ Σ then ν(A ∩B) = ν(A)ν(B). However this follows from Lemma 2.1.6.

Almost immediately from Definition 2.2.1, we get the following:

Theorem 2.2.3. Let (X,Σ, H, ν) be a spectral measure space and let x, y ∈ H. Then
the mapping:

νx,y(A) := 〈ν(A)x, y〉, A ∈ Σ

is a (complex) measure on (X,Σ).

In particular, taking x = y, the mapping:

νx,x(A) = ‖ν(A)x‖2, A ∈ Σ

is a (non-negative) measure on Σ.

Moreover if A is an algebra, and ν is a finitely additive spectral measure on A, then νx,x

defines a finitely additive non-negative measure on A.

As with scalar-valued measures, a central question in the theory of spectral measures
concerns the problem of extending a finitely additive spectral measure on an algebra A
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to a spectral measure on σ(A). In parallel to the Hahn-Kolmogorov theorem, we have
the following:

Theorem 2.2.4 (Spectral Hahn-Kolmogorov). Let A be an algebra of subsets of a set
X, and let ν : A → P(H) be a finitely additive spectral measure.

Then ν extends to a spectral measure on σ(A) if and only if for all x ∈ H, the finitely
additive measure νx,x is σ-additive on A.

Proof. One direction of the implication is clear: if ν is the restriction to A of a spectral
measure, then each νx,x is the restriction to A of a measure (Theorem 2.2.3) and hence
must be σ-additive on A. We now focus attention on the reverse implication.

Recall from the precise statement of the Hahn-Kolmogorov theorem that the finitely
additive measure νx,x can be extended to a measure in the following way:

For each fixed x, consider the following mapping µ∗x on a subset Z ⊆ X:

µ∗x(Z) = inf{
∞∑
j=0

νx,x(Aj) : Z ⊆
∞⋃
j=0

Aj , Aj ∈ A}.

The family of sets C(x) defined by:

C(x) = {C ⊆ X : µ∗x(Y ) = µ∗x(Y ∩ C) + µ∗x(Y \ C), for all Y ⊆ X}

is a σ-algebra, and µ∗x defines a measure on C(x). According to the Hahn-Kolmogorov
theorem, A ⊆ C(x) and µ∗x(A) = νx,x(A) for all A ∈ A.

We now define a “spectral outer measure” on X from ν as follows. If Z ⊆ X, define:

ν∗(Z) := inf{s− lim
n→∞

n∑
j=0

ν(Aj) : Aj ∈ A, Aj ∩Ak = ∅ for j 6= k, Z ⊆
∞⋃
j=0

Aj}.

Here, s− lim denotes the limit in the strong operator topology. It should be noted that
the strong limit of a monotone family of projections is again a projection, and thus for
each pairwise disjoint family {Aj}∞j=0 the limit s− limn→∞

∑n
j=0 ν(Aj) is a projection.

Hence, ν∗(Z) is well defined as the infimum of a family of projections, and in particular
is a projection.

It is not hard to see that for each x ∈ H and an arbitrary subset Z ⊆ X that we have:

〈x, ν∗(Z)x〉 = µ∗x(Z). (2.2.1)

Let C(ν) denote the family of subsets V of X such that:

ν∗(Y ) = ν∗(V ∩ Y ) + ν∗(Y \ V )

for all Y ⊆ X. If C ∈ C(x), then by the definition of C(x) for all subsets Y ⊆ X we
have:

µ∗x(Y ) = µ∗x(Y ∩ C) + µ∗x(Y \ C).

Using (2.2.1), it follows that:

〈x, ν∗(Y )x〉 = 〈x, ν∗(Y ∩ C)x〉+ 〈x, ν∗(Y \ C)x〉.
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So if Z ∈ C(x) for every x ∈ H, then by an application of the polarisation identity we
have:

〈x, ν∗(Y )y〉 = 〈x, ν∗(Y ∩ C)y〉+ 〈x, ν∗(Y \ C)y〉

for all x, y ∈ H, and therefore C ∈ C(ν). Conversely, if C ∈ C(ν) then immediately
C ∈ C(x) for every x ∈ H.

Therefore C(ν) =
⋂
x∈H C(x) and so C(ν) is a σ-algebra.

Since every µ∗x is σ-additive on C(x), µ∗x is in particular σ-additive on C(ν). Applying
the polarisation identity, it follows that 〈x, ν∗(·)y〉 is σ-additive on C(ν) and therefore
ν∗ is a spectral measure on C(ν).

Now that we have necessary and sufficient conditions for it to be possible to extend a
finitely additive measure to a spectral measure, we should also discuss the question of
uniqueness.

Lemma 2.2.5. Let ν : A → P(H) be a finitely additive spectral measure on an algebra
A of subsets of a set X. Then there is at most one spectral measure ν̃ on σ(A) which
extends ν.

Proof. Suppose that there are two extensions, µ0 and µ1 of ν to σ(A). That is,

µ0(A) = µ1(A) = ν(A) A ∈ A

and µ0 and µ1 are spectral measures on σ(A). Let F ⊂ σ(A) denote the family of
subsets where µ0 and µ1 agree. That is,

F = {A ∈ σ(A) : µ0(A) = µ1(A)}.

By assumption we have A ⊆ F . Let us show that F is a σ-algebra. First, thanks to
Lemma 2.1.6, it is clear that F is closed under finite unions and intersections, and from
Remark 2.1.5 F is also closed under complementations. Hence F is an algebra.

To complete the proof, it suffices to show that F is closed under countable increasing
unions. Thus let {An}n≥0 be an upward-nested family of sets, where each An ∈ F .
Then,

µ0(An) = µ1(An), n ≥ 0.

Since µ0 and µ1 are spectral measures, we therefore have:

µ0

⋃
n≥0

An

 = lim
n→∞

µ0(An) = lim
n→∞

µ1(An) = µ1

⋃
n≥0

An


where the limits are in the weak operator topology. Thus F is a σ-algebra containing
A, and so in particular F contains σ(A).

2.2.1 Integration with respect to spectral measures

Let (X,Σ, H, ν) be a spectral measure space, and let x, y ∈ H. Recall that νx,y denotes
the (scalar) measure:

νx,y = 〈x, ν(·)y〉 : Σ→ C
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In fact νx,y is of finite total variation.

Lemma 2.2.6. For each x, y ∈ H, the measure νx,y defined above has finite total vari-
ation, and:

|νx,y|(X) ≤ ‖x‖‖y‖.

Proof. Let {Aj}∞j=0 be a family of pairwise disjoint sets in Σ. Then:

∞∑
j=0

|νx,y(Aj)| =
∞∑
j=0

|〈x, ν(Aj)y〉| =
∞∑
j=0

|〈ν(Aj)x, ν(Aj)y〉|.

Thus by the Cauchy-Schwarz inequality:

∞∑
j=0

|νx,y(Aj)| ≤
∞∑
j=0

‖ν(Aj)x‖‖ν(Aj)y‖ ≤

 ∞∑
j=0

‖ν(Aj)x‖2
1/2 ∞∑

j=0

‖ν(Aj)y‖2
1/2

.

Since the projections {ν(Aj)}∞j=0 are pairwise orthogonal (Lemma 2.1.4), we can apply
Bessel’s inequality to arrive at:

∞∑
j=0

|νx,y(Aj)| ≤ ‖x‖‖y‖.

Taking the supremum over all countable families {Aj}∞j=0 of pairwise disjoint sets, we
can thus bound the total variation of νx,y above by ‖x‖‖y‖.

Lemma 2.2.6 implies that if φ is a bounded measurable function on X, for each x, y ∈ H
we may define:

Tx,y :=

∫
X
φdνx,y.

It is reasonable to think that there should be an operator T ∈ B(H) such that:

〈x, Ty〉 = Tx,y.

As we will demonstrate in the next proposition, this is indeed the case, and moreover T
satisfies:

‖T‖ ≤ ‖φ‖∞.

From now on, denote the class of bounded measurable functions on (X,Σ) as B(X).
We will develop an integration theory for functions φ in B(X), although we remark
that many authors instead prefer to work with almost-everywhere equivalence classes of
functions, where a set A ∈ Σ is declared to be a null set if ν(A) is the zero projection.
The decision to work with bounded functions rather than pointwise-almost-everywhere
equivalence classes has been made since we will later need to integrate the same function
with respect to different measures on the same measurable space.

The uniform norm ‖φ‖∞ for φ ∈ B(X) is defined in the usual way as supx∈X |φ(x)|.
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Proposition 2.2.7. Let (X,Σ, H, µ) be a spectral measure space, and let φ ∈ B(X).
Then there exists a unique operator T ∈ B(H) such that for all x, y ∈ H we have:

〈x, Ty〉 =

∫
X
φdνx,y

and:
‖T‖ ≤ ‖φ‖∞.

Proof. Since νx,y is a scalar measure of bounded total variation, the integral
∫
X φdν

x,y

is indeed well-defined for all x, y ∈ H.

Since νx,y(A) := 〈x, ν(A)y〉, it follows from the sesquilinearity of the inner product that
we have:

νx,y+z = νx,y + νx,z, νx+y,z = νx,z + νy,z

and if α ∈ C,
ναx,y = ανx,y, νx,αy = ανx,y.

Therefore the mapping:

B(x, y) =

∫
X
φdνx,y.

is a sesquilinear map on H. Thanks to Lemma 2.2.6,

|B(x, y)| ≤ ‖φ‖∞‖x‖‖y‖.

Hence from the Riesz theorem, there exists a unique bounded operator T on H such
that:

B(x, y) = 〈x, Ty〉

and ‖T‖ ≤ ‖φ‖∞.

Proposition 2.2.7 permits the following definition:

Definition 2.2.8. Let (X,Σ, H, ν) be a spectral measure space, and let φ ∈ B(X).
Define the integral

∫
X φdν as the unique bounded linear operator on H such that:

〈x,
∫
X
φdν y〉 =

∫
X
φdνx,y, x, y ∈ H.

One could also define the spectral integral as a continuous extension of the spectral
integrals of simple functions in an appropriate sense [120, Section 4.3.1].

The second part of Proposition 2.2.7 can now be restated as:∥∥∥∥∫
X
φdν

∥∥∥∥ ≤ ‖φ‖∞, φ ∈ B(X). (2.2.2)

Moreover since each νx,y for x, y ∈ H is a measure, it is immediate that if φ, ψ ∈ B(X)
and α ∈ C, then: ∫

X
αφ+ ψ dν = α

∫
X
φdν +

∫
X
ψ dν.
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Since νx,y = νy,x, we also have: (∫
X
φdν

)∗
=

∫
X
φdν.

Moreover, it is easy to see that if A ∈ Σ then:∫
X
χA dν = ν(A).

It is an immediate consequence of (2.2.2) and the linearity of the integral that uniform
convergence of the integrand implies norm convergence of the integral:

Lemma 2.2.9. Let (X,Σ, H, ν) be a spectral measure space. Let {φj}∞j=0 ⊆ B(X)
converge uniformly to some φ:

lim
n→∞

‖φn − φ‖∞ = 0.

Then,

lim
n→∞

∫
X
φn dν =

∫
X
φdν

in the norm topology.

An arbitrary bounded measurable function can be uniformly approximated by simple
functions. Indeed, if φ ∈ B(X) is real-valued for each n ≥ 0, define:

Ak,n := φ−1([‖φ‖∞
k

2n
, ‖φ‖∞

k + 1

2n
)), k = −2n,−2n + 1, . . . , 2n.

Then the function:

φn :=
2n∑

k=−2n

χAk,n
k

2n

is within ‖φ‖∞2−n of φ in the uniform norm, so ‖φn − φ‖∞ converges to zero. We can
similarly approximate bounded complex valued functions arbitrarily well by a sequence
of simple functions in the uniform norm.

There is a property of integration with respect to spectral measures which is of great
use in double operator integral theory, and which does not have any obvious analogy
in the scalar-valued case: integration with respect to a spectral measure defines a func-
tional calculus. The following theorem, in essence, states that integration is an algebra
homomorphism from B(X) to the algebra of bounded linear operators on H.

Theorem 2.2.10. Let (X,Σ, H, ν) be a spectral measure space, and let φ and ψ be
bounded measurable functions. Then:∫

X
φψ dν =

∫
X
φdν

∫
X
ψ dν.

Proof. Suppose initially that φ and ψ are characteristic functions of measurable sets.
That is, suppose that φ = χA1 and ψ = χA2 , where A1, A2 ∈ Σ. Then:

φψ = χA1∩A2 .
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Thus by Lemma 2.1.6, ∫
X
φψ dν = ν(A1 ∩A2) = ν(A1)ν(A2).

Thus the theorem is true when φ and ψ are characteristic functions of measurable sets.
Due to linearity of the integral, the result extends straightforwardly to simple functions.

Now if φ and ψ are arbitrary bounded measurable functions, we can select sequences
{φn}∞n=0 and {ψn}∞n=0 of simple functions which approximate φ and ψ respectively in
the uniform norm. Lemma 2.2.9 then implies:

lim
n→∞

∫
X
φn dν =

∫
X
φdν, lim

n→∞

∫
X
ψn dν =

∫
X
ψ dν

where the limits are in the operator norm.

Moreover, φnψn approximates φψ in the uniform norm. Thus using Lemma 2.2.9, we
have the norm topology convergence:∫

X
φψ dν = lim

n→∞

∫
X
φnψn dν

= lim
n→∞

(

∫
X
φn dν

∫
X
ψn dν)

= ( lim
n→∞

∫
X
φn dν)( lim

n→∞

∫
X
ψn dν)

=

∫
X
φdν

∫
X
ψ dν.

With the dominated convergence theorem for scalar valued functions on measure spaces,
we also have the following result in the same spirit as Lemma 2.2.9, where instead we
deal with weaker notions of convergence.

Corollary 2.2.11. Suppose that {φn}∞n=0 is a sequence of bounded functions on X which
is uniformly bounded:

sup
n≥0
‖φn‖∞ <∞

and which converges pointwisely to some bounded function φ on X. Then,

lim
n→∞

∫
X
φn dν =

∫
X
φdν

in the strong operator topology.

Proof. Let x ∈ H, and consider:∥∥∥∥(∫
X
φn − φdν

)
x

∥∥∥∥2

.
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In terms of the inner product on H, this is:〈
x,

(∫
X
φn − φdν

)∗(∫
X
φn − φdν

)
x

〉
.

Now using Theorem 2.2.10, this reduces to the scalar integral:∫
X
|φn − φ|2 dνx,x

which by the dominated convergence theorem converges to zero as n→∞.

Hence,

lim
n→∞

∥∥∥∥∫
X
φdν · x−

∫
X
φn dν · x

∥∥∥∥ = 0

and this is precisely the desired claim.

An important tool for double operator integration theory is the change-of-variables for-
mula.

Theorem 2.2.12. Let (X,Σ, H, ν) be a spectral measure space, and let (Y,Ω) be a
measurable space. If h : X → Y is measurable, we can define the pushforward spectral
measure h∗ν by:

h∗ν(A) = ν(h−1(A)) A ∈ Ω.

Then for all φ ∈ B(Y ): ∫
X
φ ◦ h dν =

∫
Y
φd(h∗ν).

Proof. Observe that for x, y ∈ H and A ∈ Σ we have:

〈x, (h∗ν)(A)y〉 = 〈x, ν(h−1(A))y〉 = νx,y(h−1(A)).

So that for each x, y ∈ H, the mapping A 7→ 〈x, h∗ν(A)y〉 is the pushforward of the
(scalar-valued) measure νx,y. It then follows that A 7→ 〈x, h∗ν(A)y〉 is a measure for
each x, y ∈ H. Since A 7→ h∗ν(A) is projection valued, this completes the proof of the
claim that h∗ν is a spectral measure. We have also proved that:

(h∗ν)x,y = h∗(ν
x,y),

where the pushforward on the left is the pushforward of the spectral measure ν, and the
pushforward on the right is the pushforward of the scalar-valued measure νx,y.

By definition, we have:

〈x,
∫
X
φ ◦ h dν y〉 =

∫
X
φ ◦ h dνx,y.

The integral on the right may be computed using the (scalar-valued) change of variables
formula: ∫

X
φ ◦ h dνx,y =

∫
Y
φdh∗(ν

x,y)
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However h∗(ν
x,y) = (h∗ν)x,y, and thus:

〈x,
∫
X
φ ◦ h dν y〉 =

∫
Y
φd(h∗ν)x,y.

We conclude with a mention of the spectral theorem for self-adjoint operators. See e.g.
[116, Theorem 13.30], [110, Theorem VIII.6] or [18, Chapter 6, Theorem 1.1].

Theorem 2.2.13 (Spectral theorem). Let T : dom(T ) ⊆ H → H be a (possibly un-
bounded) self-adjoint operator on H. Then there is a unique spectral measure ET on R
such that for all x ∈ H and y ∈ dom(T ) we have:

〈x, Ty〉 =

∫
R
t dEx,yT (t).

Moreover dom(T ) is precisely the set of x ∈ H such that
∫
R t

2 dEx,xT (t) <∞.

If f is a bounded Borel function on the real line and T is a self-adjoint operator on H
with spectral measure ET , then by definition ([110, Section VIII.3]) f(T ) is the unique
operator such that:

〈x, f(T )y〉 =

∫
R
f dEx,yT , x, y ∈ H.

In this way the theory of integration with respect to a spectral measure is compatible
with Borel functional calculus, as we have:

f(T ) =

∫
R
f dET , f ∈ B(R).

Combining the Spectral theorem and Theorem 2.2.12 yields a useful identity: if f ∈ B(R)
and T is a self-adjoint operator, and h : R→ R is Borel, then:

f(h(T )) =

∫
R
f ◦ h dET =

∫
R
f dh∗ET

Moreover,
Eh(T ) = h∗ET .

2.2.2 Products of spectral measures

Given two measurable spaces (X1,Σ1), (X2,Σ2), one conventionally defines the product
(X1×X2,Σ1⊗Σ2) by defining Σ1⊗Σ2 to be the σ-algebra generated by {E×F : E ∈
Σ1, F ∈ Σ2}. If µ1 and µ2 are σ-finite measures on X1 and X2 respectively, then there
is a unique product measure µ1 × µ2 on X1 ×X2, specified by the “product measure”
property that (µ1 × µ2)(E × F ) = µ1(E)µ2(F ) for all E ∈ Σ1 and F ∈ Σ2 (see [70,
Chapter VII]).

It is natural to ask whether the same can be said for spectral measures defined on
the same Hilbert space. Birman, Solomyak and Vershik [20] considered the following
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question: given two spectral measure spaces (Xj ,Σj , H, νj), j = 1, 2 defined on the same
Hilbert space H which commute in the sense that:

ν1(E)ν2(F ) = ν2(F )ν1(E), E ∈ Σ1, F ∈ Σ2 (2.2.3)

does there exist a spectral measure ν on (X1 ×X2,Σ1 ⊗ Σ2) such that:

ν(E × F ) = ν1(E)ν2(F ), E ∈ Σ1, F ∈ Σ2?

Birman, Solomyak and Vershik resolved this question in the negative, by providing the
counterexample given in the proof of the next theorem. See [18, Section 5.5]. It is
interesting to note that this impossibility result can also be obtained from older works
concerning non-direct products of measures due to Marczewski and Ryll-Nardezewski
[91], and the counterexample provided in [91] is virtually the same as that of Birman,
Solomyak and Vershik. The same counterexample appears to have been rediscovered a
third time by Berg, Christensen and Ressel [12, Exercise 1.31, Chapter 2] and was later
applied by Karni and Merzbach [79], in a very similar context.

Theorem 2.2.14 (Birman, Solomyak and Vershik). There exist spectral measure spaces
(Xj ,Σj , H, νj), j = 1, 2 on the same Hilbert space H which commute in the sense of
(2.2.3) such that there is no spectral measure ν on (X1×X2,Σ1⊗Σj) such that ν(E×F ) =
ν1(E)ν2(F ) where E ∈ Σ1 and F ∈ Σ2.

Proof. Let B([0, 1]) denote the Borel σ-algebra of [0, 1], and let λ denote the Lebesgue
measure on [0, 1] restricted to B([0, 1]). Denote λ∗ for the outer-Lebesgue measure.

Select two disjoint nonmeasurable subsets N1 and N2 of [0, 1] such that N1 ∪N2 = [0, 1]
and λ∗(N1) = λ∗(N2) = 1 and define the following two families of sets:

Σ1 = {N1 ∩∆ : ∆ ∈ B([0, 1])},
Σ2 = {N2 ∩∆ : ∆ ∈ B([0, 1])}.

Evidently, Σ1 and Σ2 are σ-algebras for N1 and N2 respectively.

Our choice of measurable spaces will be (Nj ,Σj), j = 1, 2 and the Hilbert space will be
L2([0, 1], λ).

For a set A ∈ Σj , with j = 1, 2 fixed, choose Ã ∈ B([0, 1]) such that Ã ∩ Nj = A. We
shall define:

νj(A) := Mχ
Ã
∈ P(L2([0, 1], λ)).

where Mχ
Ã

denotes the operator on L2([0, 1], λ) of pointwise multiplication by the char-

acteristic function of Ã. To show that this is a well-defined spectral measure on Σj , we

must first show that Ã is unique up to λ-null sets.

Suppose that Y1, Y2 ∈ B([0, 1]) are such that Y1 ∩ Nj = Y2 ∩ Nj = A, and let Y1∆Y2

denote the symmetric difference. Since Y1∆Y2 is (in particular) Lebesgue measurable,
the Lebesgue outer measure λ∗ of Nj decomposes as:

λ∗(Nj) = λ∗(Nj ∩ (Y1∆Y2)) + λ∗(Nj \ (Y1∆Y2)) (2.2.4)
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and the Lebesgue outer measure of Nj ∪ (Y1∆Y2) decomposes as:

λ∗(Nj ∪ (Y1∆Y2)) = λ∗(Y1∆Y2) + λ∗(Nj \ (Y1∆Y2)). (2.2.5)

Since λ∗(Nj) = λ∗(Nj∪(Y1∆Y2)) = 1, it follows by subtracting (2.2.4) from (2.2.5) that:

λ∗(Y1∆Y2) = λ∗(Nj ∩ (Y1∆Y2)).

However Nj ∩ Y1 = Nj ∩ Y2 = A and so in fact Nj ∩ (Y1∆Y2) = ∅. Thus:

λ∗(Y1∆Y2) = 0.

Thus Y1 and Y2 differ only by a Lebesgue null set, and therefore the mapping νj(A) =
Mχ

Ã
is well defined. It then follows easily that νj is in fact a spectral measure on

(Nj ,Σj), j = 1, 2.

Now we show that there is no product measure ν1 × ν2 on N1 × N2. Let n ≥ 1 and
consider the following subset of N1 ×N2:

δn =
2n−1⋃
k=0

([k · 2−n, (k + 1) · 2−n) ∩N1)× ([k · 2−n, (k + 1) · 2−n) ∩N2)

If there were a product measure ν1 × ν2, then we would have:

(ν1 × ν2)(δn) =
2n−1∑
k=0

Mχ[k2−n,(k+1)2−n)
= 1.

Note that if (x1, x2) ∈ δn, then |x1−x2| ≤ 2−n. Thus if (x1, x2) ∈
⋂
n≥1 δn, then x1 = x2.

But x1 ∈ N1 and x2 ∈ N2 and by assumption N1 ∩N2 = ∅. Therefore:⋂
n≥1

δn = ∅.

That is, we have a nested family of subsets {δn}n≥1 which has empty intersection,
but (ν1 × ν2)(δn) does not converge weakly to zero. This is in contradiction to σ-
additivity.

Nonetheless, there are circumstances where the product of two commuting spectral mea-
sures is well defined. In particular, if (Xj ,Σj , Hj , νj), j = 1, 2 are two spectral measure
spaces, then one can define a spectral measure ν on (X1×X2,Σ1⊗Σ2, H1⊗H2), where
H1 ⊗ H2 is the Hilbert space tensor product, such that ν(E × F ) = ν1(E) ⊗ ν2(F ),
E ∈ Σ1, F ∈ Σ2 [19]. This construction was then used by Birman and Solomyak to
prove that if (Xj ,Σj , H, νj), j = 1, 2 are two spectral measure spaces, then there is a
unique measure ν on X1×X2 valued in projections on the Hilbert-Schmidt space L2(H)
such that:

ν(E × F )X = ν1(E)Xν2(F ), X ∈ L2(H), E ∈ Σ1, F ∈ Σ2.

(Recall that L2(H) is isometrically isomorphic to the tensor product H ⊗ H). This
construction is sufficient to develop the theory of double operator integrals in the setting
of bounded linear operators on a Hilbert space.
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However, for our purposes this will not be sufficient, and we seek alternative conditions
under which the product of commuting spectral measures defines a spectral measure.
The following was originally obtained (in fact in even more generality) by H. Schaefer
[119], and can also be found as [18, Theorem V.2.6]. Recall that a measurable space
(X,Σ) is called a standard Borel space if (X,Σ) is isomorphic to the Borel σ-algebra of
a complete separable metric space. Standard Borel spaces include R, open intervals in
R and separable Banach spaces.

It is important to note that if (X1,Σ1) and (X2,Σ2) are standard Borel spaces, then so
is (X1 ×X2,Σ1 ⊗ Σ2) [21, Lemma 6.4.2].

Theorem 2.2.15 (Schaefer). Let (X1,Σ1) and (X2,Σ2) be standard Borel spaces, and
let H be a Hilbert space. If (Xj ,Σj , H, νj), j = 1, 2 are spectral measure spaces such that
ν1 and ν2 commute:

ν1(E)ν2(F ) = ν2(F )ν1(E), E ∈ Σ1, F ∈ Σ2

then there exists a unique spectral measure ν1 × ν2 on (X1 ×X2,Σ1 ⊗ Σ2) such that:

(ν1 × ν2)(E × F ) = ν1(E)ν2(F ), E ∈ Σ1, F ∈ Σ2.

Proof. This proof is based on a combination of Theorem 2.2.4 and Theorem 2.1.2.

Let A denote the algebra generated by Σ1 × Σ2. That is, A is the algebra formed by
taking finite unions of sets of the form A1 ×A2, where A1 ∈ Σ1 and A2 ∈ Σ2. On A we
can define the finitely additive spectral measure ν1 × ν2 by extension of the identity:

(ν1 × ν2)(A1 ×A2) = ν1(A1)ν2(A2), Aj ∈ Σj , j = 1, 2.

According to Theorem 2.2.4, to prove that ν1 × ν2 extends to a spectral measure on
Σ1 ⊗ Σ2 = σ(A), it suffices to show that for all x ∈ H, the finitely additive measure
〈x, (ν1 × ν2)(·)x〉 is σ-additive on A. Theorem 2.2.5 implies that this extension will be
unique if it exists.

On the other hand, since Σ1⊗Σ2 is Borel the σ-algebra of X1×X2, we can also appeal
to Theorem 2.1.2.

Let us now show that the finitely additive measure µx(·) := 〈x, ν1 × ν2(·)x〉 satisfies the
“inner regularity” condition of Theorem 2.1.2. Since νx,x1 and νx,x2 are Borel measures,
they are inner regular due to the “necessity” component of Theorem 2.1.2. Let ε > 0.
Suppose that A = A1 ×A2 ∈ A, and let K1 ⊂ A1 and K2 ⊂ A2 be compact and chosen
such that:

νx,xj (Aj \Kj) < ε, j = 1, 2.

But then since µx is finitely additive (and using Lemma 2.2.6)

µx(A\(K1×K2)) ≤ µx((A1\K1)×K2)+µx(A1×(A2\K2)) ≤ ε(νx,x1 (A1)+νx,x2 (A2)) ≤ 2ε‖x‖2.

Since K1 ×K2 is compact and contained within A, it follows that the finitely additive
measure µx satisfies the condition of Theorem 2.1.2 and thus is σ-additive. Now applying
Theorem 2.2.4 it follows that ν1 × ν2 extends to a measure on Σ1 ⊗ Σ2.
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The most famous result which can be seen as a corollary of Theorem 2.2.15 is the
existence of a bounded functional calculus for commuting self-adjoint operators [18,
Chapter 6, Section 5]:

Theorem 2.2.16 (Functional calculus for commuting operators). Let A1 and A2 be two
(possibly unbounded) self-adjoint operators on the same Hilbert space which commute in
the sense that their respective spectral measures commute,

EA1(∆1)EA2(∆2) = EA2(∆2)EA1(∆1) ∆1,∆2 ∈ B(R).

Then there exists an algebra homomorphism from B(R2) to B(H) given by:

f ∈ B(R2) 7→
∫
R2

f d(EA1 × EA2)

which extends the usual Borel functional calculus in the sense that if f depends only on
the first variable, then the functional calculus for A1 is recovered.

Moreover, under this algebra homomorphism pointwise convergent uniformly bounded
sequences are mapped to sequences which converge in the strong operator topology.

Corollary 2.2.17. Let (Xj ,Σj), j = 1, 2 be standard Borel spaces with commuting
spectral measures ν1 and ν2, and let f be a bounded function on X1×X2 which depends
only on the first variable. Then:∫

X1×X2

f d(ν1 × ν2) =

∫
X1

f dν1.

Proof. If f is the characteristic function of an element of Σ1, then the assertion follows
from the definition of the product measure. By linearity, the assertion extends to simple
functions and then Lemma 2.2.9 implies that the result holds for arbitrary bounded
measurable functions.

An immediate application of Theorem 2.2.12 yields:

Corollary 2.2.18. Let X1, X2, Y1 and Y2 be standard Borel spaces, and (Xj ,Σj , H, νj),
j = 1, 2 are commuting spectral measures. If h1 : X1 → Y1 and h2 : X2 → Y2 are
measurable functions and φ ∈ B(Y1 × Y2) then:∫

X1×X2

φ(h1, h2) d(ν1 × ν2) =

∫
Y1×Y2

φd((h1)∗ν1 × (h2)∗ν2).

2.2.3 Convergence of spectral measures

Suppose that (X,Σ) is a measurable space, H is a Hilbert space and we have a family
{νj}∞j=0 of spectral measures on (X,Σ) with values as projections on H.

Of the various notions of convergence of the sequence of spectral measures {νj}∞j=0, the
one which is of most importance to us is weak convergence:

Definition 2.2.19. Let (X,Σ) be a standard Borel space, and write Cb(X) for the
algebra of functions continuous on X and bounded. A sequence of spectral measures
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{νj}∞j=0 on the same Hilbert space H is said to converge weakly to a spectral measure ν
if for all x ∈ H and h ∈ Cb(X) we have:(∫

X
h dνj

)
x→

(∫
X
h dν

)
x

That is, the integrals
∫
X h dνj converge in the strong operator topology to

∫
X h dν.

The importance of weak convergence of spectral measures is the following, which is
essentially [110, Theorem VIII.20]. Recall that a sequence of (possibly unbounded) self-
adjoint operators {An}∞n=0 is said to converge to A in the strong resolvent sense if for
all λ ∈ C \ R, the sequence {(λ − An)−1}∞n=0 of the resolvents of {An}∞n=0 converges in
the strong operator topology to (λ−A)−1.

Theorem 2.2.20. A sequence of self-adjoint operators {An}∞n=0 converges in the strong
resolvent sense to a self-adjoint operator A if and only if the corresponding spectral
measures {EAn}∞n=0 on R converge weakly to the spectral measure of A on R.

The following theorem is based on the elementary fact that if {An}n≥0 and {Bn}n≥0 are
sequences of bounded operators which converge strongly to A and B respectively, and
moreover supn≥0 ‖An‖ <∞, then AnBn converges strongly to AB.

Recall that a topological space X is called σ-compact if X is a union of at most countably
many compact subspaces. In particular, this implies that every h ∈ Cb(X) can be
obtained as a pointwise limit of a sequence of compactly supported continuous functions.

Theorem 2.2.21. Let (X,Σ), (Y,Ω) be σ-compact standard Borel spaces, and let H be
a Hilbert space. Suppose that {νn}∞n=0 and {µn}∞n=0 are sequences of spectral measures
valued in projections on H and defined on X and Y respectively.

Suppose that there are spectral measures ν and µ on X and Y respectively so that νn → ν
and µn → µ weakly.

If, for all n ≥ 0, the measures νn and µn commute, then ν and µ commute and we have:

νn × µn → ν × µ

in the weak sense.

Proof. First let us show that ν and µ commute, so that the product measure ν × µ is
defined.

Let U and V be open sets in X and Y respectively, and select uniformly bounded
sequences {fk}k≥0 ⊆ Cb(X) and {gk}k≥0 ⊂ Cb(Y ), supported in U and V respectively,
such that fk converges pointwisely to the characteristic function of U and gk converges
pointwisely to the characteristic function of V . Then for each fixed k and n we have:∫

X
fk dνn

∫
Y
gk dµn =

∫
Y
gk dµn

∫
X
fk dνn.

Passing n→∞ and using the fact stated before the theorem, we have that:∫
X
fk dν

∫
Y
gk dµ =

∫
Y
gk µ

∫
X
fk dν.
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Now taking k →∞, and appling Corollary 2.2.11 yields:

ν(U)µ(V ) = µ(V )ν(U)

for all open sets U ⊆ X and V ⊆ Y . Let FV denote the family of measurable subsets
A ∈ Σ which satisfy:

ν(A)µ(V ) = µ(V )ν(A).

Since ν is a spectral measure, it is easy to see that FV is a σ-algebra, and since FV
contains all open subsets of X, it follows that FV = Σ. Similarly, for any A ∈ Σ let GA
denote the set of B ∈ Ω such that ν(A)µ(B) = µ(B)ν(A). Again it is easy to see that
GA is a σ-algebra containing all open subsets of Y , and hence GA = Ω. Finally we have
established that:

ν(A)µ(B) = µ(B)ν(A) A ∈ Σ, B ∈ Ω

and so ν and µ commute as claimed.

Now we prove the claimed convergence νn×µn → ν×µ. First, we show that for functions
of the form f(x, y) = g(x)h(y), where x ∈ X, y ∈ Y , g ∈ Cb(X) and h ∈ Cb(Y ) that we
have: ∫

X×Y
f d(νn × µn)→

∫
X×Y

f d(ν × µ) (2.2.6)

in the strong operator topology. This follows from Theorem 2.2.10 and Corollary 2.2.17:∫
X×Y

f d(νn×µn) =

∫
X×Y

g(x) d(νn×µn)(x, y)

∫
X×Y

h(y) d(νn×µn)(x, y) =

∫
X
g dνn

∫
Y
h dµn.

Now passing n→∞ and using the assertion stated before the theorem yields (2.2.6) for
functions f of the form f(x, y) = g(x)h(y).

Since the linear span of such functions is dense in C0(X × Y )1 in the uniform norm, it
then follows from Lemma 2.2.9 that (2.2.6) holds for all f ∈ C0(X × Y ).

To complete the proof, we must use the σ-compactness of X × Y . Select a uniformly
bounded sequence {gk}k≥0 ⊂ C0(X × Y ) which converges pointwisely to the identity
function. Then using Corollary 2.2.11, the sequence of integrals

∫
X×Y gk d(ν × µ) con-

verges strongly to the identity operator as k →∞.

1Here, C0(X × Y ) denotes the subalgebra of functions vanishing at infinity
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Let x ∈ H. Then using Theorem 2.2.10 we have:∥∥∥∥∫
X×Y

f d(νn × µn)x−
∫
X×Y

f d(ν × µ)x

∥∥∥∥
≤
∥∥∥∥∫

X×Y
(f − fgk) d(νn × µn)x

∥∥∥∥
+

∥∥∥∥∫
X×Y

fgk d(νn × µn)x−
∫
X×Y

fgk d(ν × µ)x

∥∥∥∥
+

∥∥∥∥∫
X×Y

fgk d(ν × µ)x−
∫
X×Y

f d(ν × µ)x

∥∥∥∥
≤
∥∥∥∥∫

X×Y
f d(νn × µn)

∥∥∥∥∥∥∥∥x− ∫
X×Y

gk d(νn × µn)x

∥∥∥∥
+

∥∥∥∥∫
X×Y

fgk d(νn × µn)x−
∫
X×Y

fgk d(ν × µ)x

∥∥∥∥
+

∥∥∥∥∫
X×Y

f d(ν × µ)

∥∥∥∥∥∥∥∥x− ∫
X×Y

gk d(ν × µ)x

∥∥∥∥ .
Taking n→∞, we have for arbitrary fixed k, since gk ∈ C0(X × Y ):

lim
n→∞

∥∥∥∥∫
X×Y

f d(νn × µn)x−
∫
X×Y

f d(ν × µ)x

∥∥∥∥ ≤ 2‖f‖∞
∥∥∥∥x− ∫

X×Y
gk d(ν × µ)x

∥∥∥∥ .
Now taking k →∞ yields the result.

To conclude our discussion of convergence of measures, we discuss an important example
where convergence occurs in practice:

Theorem 2.2.22. Let (X,Σ, H, ν) be a standard Borel measure space, and let (Y,Ω)
be another standard Borel space. Suppose that {hn}∞n=0 is a sequence of measurable
functions from X to Y which converges pointwisely to a measurable function h : X → Y .
Then we have:

(hn)∗ν → h∗ν

in the weak sense.

Proof. Let f ∈ Cb(Y ). Then due to Theorem 2.2.12, for each n ≥ 0 we have:∫
Y
f d(hn)∗ν =

∫
X
f ◦ hn dν.

The sequence {f ◦ hn}n≥0 ⊆ B(X) is uniformly bounded, and since f is continuous we
have the pointwise limit f ◦ hn → f ◦ h. Thus from Corollary 2.2.11, for all x ∈ H we
have: (∫

X
f ◦ hn dν

)
x→

(∫
X
f ◦ h dν

)
x

That is, (∫
Y
f d(hn)∗ν

)
x→

(∫
Y
f dh∗ν

)
x

for all f ∈ Cb(Y ).
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Note that we do not need to assume in the above theorem that each hn is continuous.

2.3 Spectral measures on a von Neumann algebra

Before proceeding to the definition of a double operator integral, a remark is necessary
concerning spectral measure spaces (X,Σ, H, ν) when ν is considered as being valued in
the lattice of projections of a von Neumann algebra.

Recall (from Section 1.5.1) that a von Neumann algebra is equipped with weak∗-topology,
and convergence in the weak∗ topology of a von Neumann algebra M ⊆ B(H) is in
general stronger than convergence in the weak operator topology of H. Therefore in
principle if one replaced the weak operator topology convergence in Definition 2.2.1
with weak∗ convergence then one would have a different notion of spectral measure.

Fortunately this is not the case, and although weak∗ convergence is a stricter condition
than weak operator toplogy convergence, both notions of convergence define the same
notion of spectral measure, as the next lemma shows.

Lemma 2.3.1. Let H be a Hilbert space, and let M⊆ B(H) be a von Neumann algebra
with pre-dual M∗. Let (X,Σ, H, ν) be a spectral measure such that ν(E) ∈ P(M) for
all E ∈ Σ. Let {Aj}∞j=0 be a pairwise disjoint family in Σ.

Then for all ω ∈M∗ we have:

ν(

∞⋃
j=0

Aj)(ω) = lim
n→∞

n∑
j=0

ν(Aj)(ω).

Proof. As discussed in Remark 2.2.2, the sequence given by

pn := ν(
∞⋃
j=0

Aj)−
n∑
j=0

ν(Aj), n ≥ 0

is a sequence of projections in B(H) which converges to zero in the strong operator
topology. Let us show that pn converges to zero in the weak∗-topology of M.

As discussed in Section 1.5.1, it suffices to show that ρ{ξk},{ηk}(pn) converges to zero for
all pairwise orthogonal families {ξk}∞k=0 and {ηk}∞k=0 such that

∑∞
k=0 ‖ξk‖2 +‖ηk‖2 <∞,

where ρ{ξk},{ηk} is the seminorm defined in (1.5.1).
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Using the Cauchy-Schwarz inequality:

ρ{ξk},{ηk}(pn) =

∣∣∣∣∣
∞∑
k=0

〈ξk, pnηk〉

∣∣∣∣∣
≤
∞∑
k=0

|〈ξk, pnηk〉|

≤
∞∑
k=0

‖ξk‖H‖pnηk‖H

≤

( ∞∑
k=0

‖ξk‖2H

)1/2( ∞∑
k=0

‖pnηk‖2H

)1/2

.

Since pn converges strongly to zero, it follows that for each k ≥ 0 we have limn→∞ ‖pnηk‖H =
0. Since,

∞∑
k=0

‖ξk‖2H <∞,
∞∑
k=0

‖ηk‖2H <∞

we may apply the dominated convergence theorem to conclude that:

lim
n→∞

ρ{ξk},{ηk}(pn) = 0.

Therefore pn converges to zero in the weak∗-topology, and this is precisely the desired
result.

Our primary interest in the von Neumann algebraic setting is semifinite algebras. For a
semifinite von Neumann algebra (M, τ), a spectral measure valued in P(M) determines
two distinct spectral measures on the Hilbert space L2(τ), defined by left and right
multiplication.

Corollary 2.3.2. Let (X,Σ, H, ν) be a spectral measure space such that ν is valued in
the projections of a von Neumann algebra M ⊆ B(H) which has a semifinite trace τ .
Then ν defines spectral measures on the Hilbert space L2(τ) by “left multiplication” and
“right multiplication”. Namely, if we define:

Lν(E)x = ν(E)x, Rν(E)x = xν(E), E ∈ Σ, x ∈ L2(τ)

then Lν and Rν are spectral measures on the Hilbert space L2(τ).

Proof. The inner product for L2(τ) is:

〈y, x〉L2 = τ(y∗x), x, y ∈ L2(τ).

So,
〈y, Lν(E)x〉L2 = τ(y∗ν(E)x)

and
〈y,Rν(E)x〉L2 = τ(y∗xν(E)) = τ(xν(E)y∗).

Since ν(E) is a projection on H, it follows immediately that Lν(E) and Rν(E) are
projections for L2(τ) for all E ∈ Σ.
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To complete the proof, it suffices to check that,

E 7→ τ(xν(E)y)

is a σ-additive measure on Σ for all x, y ∈ L2(τ). Since τ(xν(E)y) = τ(yxν(E)) and
yx ∈ L1(τ), it suffices to show instead that:

E 7→ τ(zν(E)), E ∈ Σ, z ∈ L1(τ)

is σ-additive. According to our identification of L1(τ) with M∗, the σ-additivity of
E 7→ τ(zν(E)) is provided by Lemma 2.3.1.

2.4 Double operator integrals as spectral integrals

Now we can put the machinery of spectral integration theory to use to define double
operator integrals.

A double operator integral on a semifinite von Neumann algebra (M, τ) is conventionally
defined in terms of two spectral measures E and F on R with values in the lattice of
projections of M, P(M). Corollary 2.3.2 states that the mappings:

LE(∆)x = E(∆)x, RF (∆)x = xF (∆), x ∈ L2(τ), ∆ ∈ B(R)

are spectral measures on R for the Hilbert space L2(τ). In particular, these two measures
commute, since:

LE(∆1)RF (∆2)x = E(∆1)(xF (∆2)) = (E(∆1)x)F (∆2) = RF (∆2)LE(∆1)x, x ∈ L2(τ).

It follows from Theorem 2.2.15 that a product measure LE × RF exists on R2. This
permits the definition of a double operator integral:

Definition 2.4.1 (Double operator integral). Let E and F be spectral measures on the
Borel σ-algebra B(R) valued in P(M). Let E ⊗ F denote the spectral measure on the
Hilbert space L2(τ) determined uniquely by:

(E ⊗ F )(∆1 ×∆2)(x) = E(∆1)xF (∆2), x ∈ L2(τ), ∆1,∆2 ∈ B(R).

For a bounded Borel function φ on R2, the double operator integral is defined to be the
spectral integral:

T E,Fφ :=

∫
R2

φd(E ⊗ F ) ∈ B(L2(τ)).

Since R is in particular a σ-compact standard Borel space, Theorem 2.2.15 implies that
E⊗F is indeed a uniquely defined spectral measure. The already established properties
of the spectral integral (see Subsection 2.2.1) transfer immediately to the double operator
integral. In particular, we have the following:

Theorem 2.4.2. Let φ, ψ be bounded functions on R2 and α ∈ C, then:

(i) T E,Fαφ = αT E,Fφ

(ii) T E,Fφ+ψ = T E,Fφ + T E,Fψ
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(iii)
∥∥∥T E,Fφ

∥∥∥ ≤ ‖φ‖∞
(iv) T E,Fφψ = T E,Fφ T E,Fψ

(v) If {φn}∞n=0 converges uniformly to φ, then T E,Fφn
converges to T E,Fφ in the norm

topology

(vi) If supn≥0 ‖φn‖∞ <∞ and φn converges pointwisely to a bounded function φ, then

T E,Fφn
converges to T E,Fφ in the strong operator topology.

(vii) If φ ∈ Cb(R2), and {En}n≥0 and {Fn}n≥0 converge in the weak sense to spectral

measures E and F , then T En,Fnφ converges in the strong operator topology to T E,Fφ .
The same conclusion may not hold for discontinuous φ.

(viii) If φ depends only on the first variable, then T E,Fφ =
∫
R φdE, and similarly if φ

depends only on the second variable then T E,Fφ =
∫
R φdF .

Having defined T E,Fφ for functions φ on R2, it is worth remaking that the role of R can
be replaced by any σ-compact standard Borel space. In particular, there is an essentially
identical theory for functions on the unit circle T.

Recall that a (possibly unbounded) self-adjoint operator A is called affiliated with a von
Neumann algebra M if XA ⊆ AX for all X ∈ M′. In particular, this implies that the
spectral measure of A is P(M)-valued.

Definition 2.4.3. If A and B are self-adjoint operators affiliated with M and with
spectral measures EA and EB, we shall adopt the notation:

T A,Bφ = T EA,EBφ .

Theorem 2.2.20, combined with the Theorem 2.2.21 yields the following:

Theorem 2.4.4. If {An}∞n=0 and {Bn}∞n=0 are sequences of self-adjoint operators affili-
ated with M which converge to self-adjoint operators A and B respectively in the strong
resolvent sense and φ ∈ Cb(R2), then:

T An,Bnφ → T A,Bφ

in the strong operator topology.

Theorem 2.4.5. Suppose that φ ∈ Cb(R2), and A and B are self-adjoint operators
affiliated with M. If {hn}n≥0 and {gn}n≥0 are sequences of measurable functions from
R to R which converge pointwisely to h and g respectively, then we have:

T hn(A),gn(B)
φ = T A,Bφ(hn,gn) → T

h(A),h(B)
φ

in the strong operator topology.



Chapter 3

Peller’s theorem

We have so far discussed double operator integrals on the Hilbert-Schmidt class L2(τ).
Consider f , a Lipschitz function on R and let f [1](t, s) denote the divided difference
f(t)−f(s)

t−s (set to an arbitrary value on the diagonal t = s). If A and B are two self-
adjoint operators affiliated with M such that A − B ∈ L2(τ), then Theorem 2.4.2.(iv)
yields the formula:

f(A)− f(B) = T A,B
f [1]

(A−B).

A problem of great interest is to determine when f is operator Lipschitz. That is, does
there exist a constant Cf such that:

‖f(A)− f(B)‖M ≤ Cf‖A−B‖M?

Via the theory of double operator integration, the problem of characterising operator
Lipschitz functions is reduced to determining the class of φ ∈ B(R2) such that T A,Bφ

extends to a bounded linear operator from M to M (or from L1(τ) to L1(τ)).

A condition that is sufficient is that φ is in the so-called Birman-Solomyak class. That is,
there exists a probability space (Ω, σ) and bounded measurable functions α, β : R×Ω→
C such that:

φ(t, s) =

∫
Ω
α(t, ω)β(s, ω) dσ(ω), t, s ∈ R.

If φ has the above form, then for X,Y ∈ L2(τ) we have:

τ(Y ∗T A,Bφ (X)) =

∫
Ω
τ(Y ∗α(A,ω)Xβ(B,ω)) dσ(ω)

from which it (not entirely trivially) follows that T A,Bφ |L1(τ)∩L2(τ) extends to a bounded
linear map from L1(τ) to L1(τ) (see Theorem 3.4.5).

Peller’s theorem (named for V.V. Peller due to his foundational paper [99]) essentially
states that this “Birman-Solomyak” condition is also necessary. Peller’s original proof
(which is similar to the proof given by Hiai and Kosaki [72, Section 2.1]) is based on the
theory of operator ideals.

The proof given here is intended to be more elementary, and a particular goal was to
highlight the role of Grothendieck’s inequality (stated below as Theorem 3.2.1). While
many of the steps in the following proof exist in various places throughout the literature,

43
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to the best of our knowledge they have never been assembled together with the goal of
proving Peller’s theorem.

Before stating the theorem, it is useful to define the notion of a null-set and essential
boundedness in the context of a spectral measure (X,Σ, ν,H). Say that a set A ∈ Σ is
null if ν(A) is the zero projection. One can define the essential supremum of a measurable
function φ on X similarly to the case of scalar-valued measures. Similarly the notion of
“almost everywhere equivalence” is meaningful in the setting of spectral measures.

The theorem states the following:

Theorem 3.0.1 (Peller’s theorem). Let E and F be two spectral measures on R, valued
in the projections of a separable Hilbert space H. Let φ be a measurable function on R2,
essentially bounded with respect to E ⊗ F . The following two statements are equivalent:

(i) The double operator integral T E,Fφ is bounded from the trace class L1(H) to L1(H).

(ii) The function φ admits a Birman-Solomyak decomposition relative to E and F .
That is, there exists a σ-finite measure space (Ω, σ) such that

φ(t, s) =

∫
Ω
α(t, ω)β(s, ω)dσ(ω),

for almost every t, s ∈ R, where α and β are essentially bounded measurable func-
tions such that: ∫

Ω
esssup
t∈R

|α(t, ω)|esssup
s∈R

|β(s, ω)| d|σ|(ω) <∞. (3.0.1)

Moreover, there is a universal constant KG such that:

1

KG
‖φ‖BS(E×F ) ≤ ‖T

E,F
φ ‖L1→L1 ≤ ‖φ‖BS(E×F )

where ‖φ‖BS(E×F ) is the infimum of (3.0.1) over all such representations of φ.

Remark 3.0.2. Let us make a few observations about Peller’s theorem.

• The meaning of “essential supremum” in (3.0.1) is taken with respect to the mea-
sures E and F .

• It is important to emphasise that the Birman-Solomyak representation is only taken
pointwise almost everywhere with respect to the measures E and F . Indeed, we
may modify φ on a null set relative to E⊗F without changing the spectral integral
defining T E,Fφ . Moreover, the choice of the measure space (Ω, σ) depends on the
spectral type of the spectral measures E and F .

• We have stated the result for spectral measures on R only for the sake of simplicity.
A similar statement holds for spectral measures on Rd on Td or on any σ-compact
standard Borel space.

• The constant KG is known as Grothendieck’s constant and it is known to be strictly
between 1 and 2. Further details are in Remark 3.2.2.
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• The assumption that H is separable is needed to ensure that H admits elements of
maximal spectral type relative to E and F , as we will see in Lemma 3.4.7.

• Finally, the measure space (Ω, σ) appearing in the theorem may seem quite abstract
but in fact the following proof of the theorem gives an explicit choice of Ω, depending
only on the spectral types of E and F . In particular, Ω may always be taken to be
a compact Hausdorff space with its Borel σ-algebra, the measure σ may always be
chosen to be a finite Borel regular measure.

3.1 The injective tensor product

Peller’s theorem is often stated in terms of tensor product norms for Banach spaces.
Arguably the most important such norm in this context is the injective tensor product,
which we now describe.

For Banach spaces X and Y , let BX∗ and BY ∗ denote the closed unit balls of the duals
X∗ and Y ∗ respectively.

Definition 3.1.1. Let X and Y be Banach spaces, and let X�Y denote their algebraic
tensor product. For linear functionals α ∈ X∗ and β ∈ Y ∗, let α ⊗ β denote the linear
functional on X � Y given by the linear extension of the mapping:

(α⊗ β)(x⊗ y) = α(x)β(y), x ∈ X, y ∈ Y.

The injective tensor norm, ‖ · ‖X⊗εY , is the norm on T ∈ X � Y given by:

‖T‖X⊗εY := sup
α∈BX∗ , β∈BY ∗

|(α⊗ β)(T )|.

We will denote the completion of X � Y with the norm ‖ · ‖X⊗εY as X ⊗ε Y .

Recall that the linear dual of X�Y can be identified with the space of bilinear mappings
from X × Y to C. The continuous dual of X ⊗ε Y can therefore be identified with the
space of bilinear mappings X × Y → C which are continuous in the injective tensor
product norm.

The following theorem describes those bilinear maps X × Y → C which are continuous
for the injective tensor product, and is (a minor modification of) [42, Chapter VIII,
Section 1, Theorem 5]. Recall that due to the Banach-Alaoglu theorem, the unit balls
BX∗ and BY ∗ are compact Hausdorff spaces when equipped with the weak∗-topology.

Theorem 3.1.2. Let X and Y be Banach spaces, and let X0 and Y0 be (possibly not
closed) subspaces of X and Y respectively. Let Ψ : X0 � Y0 → C be a bilinear map.
Suppose that Ψ is continuous in the X ⊗ε Y norm. That is, assume that there is a
constant CΨ such that for all T ∈ X0 � Y0 we have:

|Ψ(T )| ≤ CΨ‖T‖X⊗εY = CΨ sup
α∈BX∗ , β∈BY ∗

|(α⊗ β)(T )|.

Then there is a regular Borel measure σ on the compact Hausdorff space BX∗ × BY ∗
such that for all x ∈ X0 and y ∈ Y0:

Ψ(x⊗ y) =

∫
BX∗×BY ∗

α(x)β(y) dσ(α, β)
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and moreover, the total variation norm of σ is no greater than CΨ.

Proof. Consider the embedding map J from X0�Y0 into the Banach space C(BX∗×BY ∗)
defined as:

J(x⊗ y) = ((α, β) 7→ α(x)β(y)), α ∈ BX∗ , β ∈ BY ∗ .

Here, C(BX∗×BY ∗) is equipped with the uniform norm, and so it follows almost imme-
diately from the definition of the injective tensor product norm that J is an isometric
embedding when X0 � Y0 is equipped with the norm ‖ · ‖X⊗εY . Indeed, if T ∈ X0 � Y0

then:
‖J(T )‖C(BX∗×BY ∗ ) = sup

(α,β)∈BX∗×BY ∗
|(α⊗ β)(T )| = ‖T‖X⊗εY .

Thus Ψ ◦ J−1 defines a bounded linear functional on the (possibly not closed) subspace
J(X0 � Y0) of C(BX∗ × BY ∗), with norm at most CΨ. By the Hahn-Banach extension
theorem, there is a continuous linear functional W on C(BX∗×BY ∗), with norm at most
CΨ such that:

W (J(x⊗ y)) = Ψ(x⊗ y), x ∈ X0, y ∈ Y0.

Thanks to the Riesz representation theorem for linear functionals on the space of con-
tinuous functions on compact Hausdorff spaces, there exists a complex Borel regular
measure σ on BX∗ ×BY ∗ with total variation norm at most CΨ such that:

W (J(x⊗ y)) =

∫
BX∗×BY ∗

J(x⊗ y) dσ, x ∈ X0, y ∈ Y0.

By the definition of J , for a given (α, β) ∈ BX∗ ×BY ∗ we have:

J(x⊗ y)(α, β) = α(x)β(y), x ∈ X0, y ∈ Y0

and therefore:

W (J(x⊗ y)) =

∫
BX∗×BY ∗

α(x)β(y) dσ(α, β), x ∈ X0, y ∈ Y0.

Since W (J(x⊗ y)) = Ψ(x⊗ y), the proof is complete.

3.2 Consequences of Grothendieck’s theorem

For n, p ≥ 1, we will use the notation `np to denote the Banach space on Cn with norm

‖x‖`np := (
∑n

k=1 |xk|p)
1/p. Recall the classical result that the dual of `n1 is isometric to

`n∞. Let {ej}nj=1 denote the canonical basis of Cn, and we regard the space Mn,m(C) of
n×m matrices as being identical to Cn ⊗ Cm, according to the isomorphism {Aj,k} 7→∑

j,k Aj,kej ⊗ ek. By the definition of the injective tensor product, for a matrix A ∈
Mn,m(C) we have:

‖A‖`n1⊗ε`m1 = sup


∣∣∣∣∣∣
n∑
j=1

m∑
k=1

Aj,ktjsk

∣∣∣∣∣∣ : max
1≤j≤n

|tj | ≤ 1, max
1≤k≤m

|sk| ≤ 1

 . (3.2.1)
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Grothendieck’s celebrated inequality, (see e.g. [104, Theorem 1.1], [103, Corollary 5.7]
and [84, Section 2]), states the following:

Theorem 3.2.1. Let n,m ≥ 1, and let A ∈ Mn,m(C). Then there is a universal
constant KG such that for all complex Hilbert spaces (H, 〈·, ·〉) and finite sets {xj}nj=1,
and {yk}mk=1 in H we have:∣∣∣∣∣∣

n∑
j=1

m∑
k=1

Aj,k〈xj , yk〉

∣∣∣∣∣∣ ≤ KG‖A‖`n1⊗ε`m1 max
1≤j≤n

‖xj‖H max
1≤k≤m

‖yk‖H .

Remark 3.2.2. To be precise, Theorem 1.1 of [104] is stated for the case where n = m.
However there is no additional generality from considering the n 6= m case, since one
may consider an n × m matrix as being the top left submatrix of the square matrix
A⊕ 0 ∈Mn+m,n+m(C).

The optimal value of KG is unknown, but it is known the optimal value satisfies:

4

π
≤ KG <

π

2 log(1 +
√

2)

(in fact better results are known, see [104, Section 4]).

The following theorem is in fact an equivalent form of Grothendieck’s inequality. How-
ever, following [104, Section 2], we prove it as a corollary of Theorem 3.2.1.

Theorem 3.2.3. Let A ∈ Mn,m(C), and let {Xr}dr=1 and {Yr}dr=1 be sequences in Cn

and Cm respectively, with components denoted Xr = (X
(1)
r , X

(2)
r , . . . , X

(n)
r ), etc. Then:∣∣∣∣∣∣

d∑
r=1

n∑
j=1

m∑
k=1

Aj,kX
(j)
r Y (k)

r

∣∣∣∣∣∣ ≤ KG‖A‖`n1⊗ε`m1 max
1≤j≤n

(
d∑
r=1

|X(j)
r |2

)1/2

max
1≤k≤m

(
d∑
r=1

|Y (k)
r |2

)1/2

Proof. Exchanging the order of summation, we have:

d∑
r=1

n∑
j=1

m∑
k=1

Aj,kX
(j)
r Y (k)

r =
n∑
j=1

m∑
k=1

Aj,k

(
d∑
r=1

X(j)
r Y (k)

r

)
.

Let H be the Hilbert space `d2, and let xj and yk for 1 ≤ j ≤ n and 1 ≤ k ≤ m be the
vectors:

xj =

d∑
r=1

X
(j)
r er, yk =

d∑
r=1

Y (k)
r er.

Then for each j and k,

‖xj‖H =

(
d∑
r=1

|X(j)
r |2

)1/2

, ‖yk‖H =

(
d∑
r=1

|Y (k)
r |2

)1/2

and:

〈xj , yk〉 =

d∑
r=1

X(j)
r Y (k)

r .
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So applying Theorem 3.2.1:∣∣∣∣∣∣
n∑
j=1

m∑
k=1

Aj,k

(
d∑
r=1

X(j)
r Y (k)

r

)∣∣∣∣∣∣
=

n∑
j=1

m∑
k=1

Aj,k〈xj , yk〉

≤ KG‖A‖`n1⊗ε`m1 max
1≤j≤n

‖xj‖H max
1≤k≤m

‖yk‖H

= KG‖A‖`n1⊗ε`m1 max
1≤j≤n

(
d∑
r=1

|X(j)
r |2

)1/2

max
1≤k≤m

(
d∑
r=1

|Y (k)
r |2

)1/2

.

The most technical component of this section is the following corollary of Theorem 3.2.3.
This is an argument which is largely inspired by Pisier’s [104, Proposition 23.3]. The
argument rests on a version of the Hahn-Banach theorem which is sometimes called the
Hahn-Banach separation theorem, or simply the hyperplane separation theorem. That
result states that if V is a real Banach space, and E and G are two non-empty disjoint
convex sets in V (and G is open), then there is a continuous linear functional ω ∈ V ∗
and a real number c such that ω(x) ≥ c for all x ∈ E and ω(x) < c for all x ∈ G. See
e.g. [116, Theorem 3.4].

Corollary 3.2.4. Let A ∈ Mn,m(C). There exist vectors of non-negative numbers
{λj}nj=1, {µk}mk=1 with

∑n
j=1 λj =

∑m
k=1 µk = 1 such that for all x ∈ Cn and y ∈ Cm we

have: ∣∣∣∣∣∣
n∑
j=1

m∑
k=1

xjAj,kyk

∣∣∣∣∣∣ ≤ KG‖A‖`n1⊗ε`m1

 n∑
j=1

λj |xj |2
1/2(

m∑
k=1

µk|yk|2
)1/2

.

Proof. In order to lighten the notation, rescale A so that KG‖A‖`n1⊗ε`m1 = 1 (unless A
is zero, in which case the result is trivial).

Let ∆n denote the n− 1-dimensional simplex:

∆n = {(λ1, . . . , λn) ∈ [0, 1]n :
n∑
j=1

λj = 1}.

Similarly ∆m denotes the m− 1-dimensional simplex.

Let {Xr}dr=1, {Yr}dr=1 be sets of vectors in Cn and Cm respectively, with components de-

noted Xr = (X
(1)
r , X

(2)
r , · · · , X(n)

r ), and similarly with Yr. Let t > 0. By the arithmetic-
geometric mean inequality, we have:

max
1≤j≤n

(
d∑
r=1

|X(j)
r |2

)1/2

max
1≤k≤m

(
d∑
r=1

|Y (k)
r |2

)1/2

≤ 1

2

(
t max

1≤j≤n

d∑
r=1

|X(j)
r |2 + (1/t) max

1≤k≤m

d∑
r=1

|Y (k)
r |2

)
.
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Replacing the maximum with the supremum over ∆n ×∆m, Theorem 3.2.3 yields:∣∣∣∣∣∣
d∑
r=1

n∑
j=1

m∑
k=1

Aj,kX
(j)
r Y (k)

r

∣∣∣∣∣∣ ≤ 1

2
sup

(λ,µ)∈∆n×∆m

(t

n∑
j=1

λj

d∑
r=1

|X(j)
r |2 +(1/t)

m∑
k=1

µk

d∑
r=1

|Y (k)
r |2).

(3.2.2)
Note that the right hand side of (3.2.2) does not change if we multiply each Xr or Yr
by some zr with |zr| = 1, so we can replace the left hand side with:

d∑
r=1

∣∣∣∣∣∣
n∑
j=1

m∑
k=1

Aj,kX
(j)
r Y (k)

r

∣∣∣∣∣∣ .
By rearranging the right hand side of (3.2.2), we arrive at:

d∑
r=1

∣∣∣∣∣∣
n∑
j=1

m∑
k=1

Aj,kX
(j)
r Y (k)

r

∣∣∣∣∣∣ ≤ 1

2
sup

(λ,µ)∈∆n×∆m

d∑
r=1

t n∑
j=1

λj |X(j)
r |2 + (1/t)

m∑
k=1

µk|Y (k)
r |2

 .

(3.2.3)

Consider the following real-valued function on ∆n × ∆m, defined for each d ≥ 1 and
each choice of X = {Xr}dr=1 ⊂ Cn and Y = {Yr}dr=1 ⊂ Cm as:

FX,Y (λ, µ) =

d∑
r=1

1

2

t n∑
j=1

λj |X(j)
r |2 + (1/t)

m∑
k=1

µk|Y (k)
r |2

−
∣∣∣∣∣∣
n∑
j=1

m∑
k=1

Aj,kX
(j)
r Y (k)

r

∣∣∣∣∣∣
 .

For each X and Y , (3.2.3) states that there exists a point (λ, µ) ∈ ∆n ×∆m such that
FX,Y (λ, µ) ≥ 0.

Let us prove that we can choose a fixed (λ∗, µ∗) ∈ ∆n ×∆m such that FX,Y (λ∗, µ∗) ≥ 0
for all X and Y .

Note that each FX,Y is continuous (in fact, affine linear) on ∆n×∆m, and let F denote
the convex cone formed by all positive linear combinations of the functions FX,Y over
all X and Y . Let N denote the convex cone of all real-valued continuous functions on
∆n ×∆m which are strictly negative. That is, define:

N := {f ∈ C(∆n ×∆m,R) : sup
(λ,µ)∈∆n×∆m

f(λ, µ) < 0}.

Note that a positive linear combination of functions of the form FX,Y is again of the
form FX,Y . To see this, note that if X1, X2 ⊂ Cn and Y1, Y2 ⊂ Cm are sets with
|Xj | = |Yj | = dj , j = 1, 2, then FX1,Y1 + FX2,Y2 = FX3,Y3 , where X3 and Y3 are the
disjoint unions of X1, X2 and Y1, Y2 respectively. Thus each f ∈ F is non-negative at
at least one point, and so we have:

F ∩N = ∅.

Since N is clearly open, we can apply the Hahn-Banach separation theorem to F and
N . Thus there exists a nonzero bounded linear functional ν ∈ C(∆n × ∆m,R)∗ and
c ∈ R such that: ∫

∆n×∆m

f dν ≥ c, f ∈ F (3.2.4)
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and ∫
∆n×∆m

g dν<c, g ∈ N . (3.2.5)

Let us show that c is necessarily zero. To see this, simply note that if f ∈ F and g ∈ N
then λf ∈ F and λg ∈ N for all λ > 0. Then (3.2.4) and (3.2.5) remain valid with c
replaced by c/λ, and since λ is arbitrarily large it follows that c = 0. With c = 0, (3.2.5)
implies that ν is a positive (in particular, nonzero) measure on ∆n ×∆m. By rescaling
ν if necessary, we may further assume that ν is a probability measure. Define:

λ∗j :=

∫
∆n×∆m

tjdν(tj , sk), µ∗k :=

∫
∆n×∆m

sk dν(tj , sk), 1 ≤ j ≤ n, 1 ≤ k ≤ m.

Since ν is positive, λ∗j and µ∗j are non-negative and since ν is a probability measure,
λ∗ ∈ ∆n and µ∗ ∈ ∆m.

Now for each choice of X and Y , since FX,Y is affine linear in λ and µ we have:

FX,Y (λ∗, µ∗) =

∫
∆n×∆m

FX,Y (t, s) dν(t, s)

and this is non-negative, due to (3.2.4).

Consider the special case where d = 1, and X = {x} and Y = {y}. From the definition
of FX,Y , we have proved that:∣∣∣∣∣∣

n∑
j=1

m∑
k=1

Aj,kxjyk

∣∣∣∣∣∣ ≤ 1

2

t n∑
j=1

λ∗j |xj |2 + (1/t)

m∑
k=1

µ∗k|yk|2
 .

Using the numerical identity:

(ab)1/2 = inf
t>0

1

2
(ta+ (1/t)b), a, b ≥ 0

we can take the infimum over t to arrive at:∣∣∣∣∣∣
n∑
j=1

m∑
k=1

Aj,kxjyk

∣∣∣∣∣∣ ≤
 n∑
j=1

λ∗j |xj |2
1/2(

m∑
k=1

µ∗k|yk|2
)1/2

.

Finally, replacing xj with xj yields the result.

Remark 3.2.5. Note that by choosing the vectors x = ej and y = ek for 1 ≤ j ≤ n and
1 ≤ k ≤ m in Corollary 3.2.4, it follows that:

|Aj,k| ≤ KG‖A‖`n1⊗ε`m1 λjµk.

Thus, if λj = 0 or µk = 0, then Aj,k = 0

We now arrive at the main result of this section, which is again a reformulation of
Grothendieck’s inequality (see [104, Theorem 2.1]).

Theorem 3.2.6. Let n,m ≥ 1. Then for all A = {Aj,k} ∈ Mn,m(C), there exist unit
vectors ξ = {ξj}nj=1 ∈ `n2 , η = {ηk}mk=1 ∈ `m2 and a matrix T = {Tj,k}nj=1

m

k=1
∈ Mn,m(C)
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such that:
Aj,k = ξjTj,kηk, 1 ≤ j ≤ n, 1 ≤ k ≤ m

and
‖T‖B(`m2 ,`

n
2 ) ≤ KG‖A‖`n1⊗ε`m1 .

Proof. Select λ ∈ ∆n and µ ∈ ∆m so that Corollary 3.2.4 holds for A. Let:

ξj = λ
1/2
j , ηk = µ

1/2
k , 1 ≤ j ≤ n, 1 ≤ k ≤ m.

Then ξ ∈ `n2 and η ∈ `m2 are unit vectors. Let T be the matrix with entries:

Tj,k =

{
Aj,k
ξjηk

ξj 6= 0 and ηk 6= 0.

0, otherwise.

From Remark 3.2.5, we have that if ξj = 0 or ηk = 0 then Aj,k = 0, thus for all 1 ≤ j ≤ n
and 1 ≤ k ≤ m we have:

Tj,kξjηk = Aj,k

Corollary 3.2.4 yields that for all α ∈ Cn and β ∈ Cm we have:∣∣∣∣∣∣
n∑
j=1

m∑
k=1

αjTj,kβk

∣∣∣∣∣∣ ≤ KG‖A‖`n1⊗ε`m1 ‖α‖`n2 ‖β‖`m2 .

Hence,
‖T‖B(`m2 ,`

n
2 ) ≤ KG‖A‖`n1⊗`m1

as required.

Before continuing, it is worth making some remarks concerning the meaning of Theorem
3.2.6. It is not hard to prove from (3.2.1) that there is an isometric isomorphism:

B(`m∞, `
n
1 ) ∼= `n1 ⊗ε `m1 .

So that we can view the `n1 ⊗ε `m1 norm of A ∈ Mn,m(C) as being exactly its norm as
a map from `n∞ to `m1 . Theorem 3.2.6 then states the following: for all linear maps
A : `m∞ → `n1 there exist unit vectors η ∈ `m2 and ξ ∈ `n2 and a linear map T : `m2 → `n2
such that the following diagram commutes:

`m∞ `n1

`m2 `m2

Mξ

A

T

Mη

where Mξ and Mη denote pointwise multiplication, and

‖T‖B(`m2 ,`
n
2 ) ≤ KG‖A‖B(`m∞,`

n
1 ).
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3.3 Matrix Schur multipliers

For n,m ≥ 1, let L1(`m2 , `
n
2 ) denote the Banach space on Mn,m(C) with norm given by:

‖T‖L1(`m2 ,`
n
2 ) := sup

‖A‖B(`m2 ,`n2 )≤1
|tr(A∗T )|.

The matrix Schur product A ◦B of two n×m matrices is given by:

A ◦B =

n∑
j=1

m∑
k=1

Aj,kBj,kej ⊗ ek.

The L1-Schur multiplier norm, ‖ · ‖m, of a matrix A ∈Mn,m(C), is defined as:

‖A‖m := sup
‖B‖L1(`m2 ,`n2 )≤1

‖A ◦B‖L1(`m2 ,`
n
2 ). (3.3.1)

We will call this simply the Schur norm of A.

Lemma 3.3.1. Let A,B ∈Mn,m(C), and ξ ∈ Cn and η ∈ Cm. Then:

|tr(B∗(A ◦ (ξ ⊗ η)))| ≤ ‖A‖m‖B‖B(`m2 ,`
n
2 )‖ξ‖`n2 ‖η‖`m2 .

Proof. By the definition of the L1(`m2 , `
n
2 ) norm and the Schur multiplier norm, we have:

|tr(B∗(A ◦ (ξ ⊗ η)))| ≤ ‖B‖B(`m2 ,`
n
2 )‖A ◦ (ξ ⊗ η)‖L1(`m2 ,`

n
2 )

≤ ‖B‖B(`m2 ,`
n
2 )‖A‖m‖ξ ⊗ η‖L1(`m2 ,`

n
2 ).

However it is easily seen that:

‖ξ ⊗ η‖L1(`m2 ,`
n
2 ) = ‖ξ‖`n2 ‖η‖`m2

and this completes the proof.

The following result is of crucial importance in our proof of Peller’s theorem. It allows
us, via Theorem 3.2.6, to relate the Schur norm (given by (3.3.1)) to (the dual of) the
injective tensor product norm.

Corollary 3.3.2. Let A,B ∈Mn,m(C). Then:

|tr(B∗A)| ≤ KG‖A‖m‖B‖`n1⊗ε`m1 .

Proof. Choosing a factorisation as in Theorem 3.2.6, we have:

Bj,k = ξjTj,kηk

where ξ and η are unit vectors in `n2 and `m2 respectively, and ‖T‖B(`m2 ,`
n
2 ) ≤ KG‖B‖`n1⊗ε`m1 .
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Then simply computing tr(B∗A), we have:

tr(B∗A) =

n∑
j=1

m∑
k=1

Bj,kAj,k =

n∑
j=1

m∑
k=1

ξjTj,kηkAj,k

=

n∑
j=1

m∑
k=1

Tj,k · ξjηkAj,k

= tr(T ∗(A ◦ (ξ ⊗ η))).

Thus by Lemma 3.3.1, we have:

|tr(B∗A)| ≤ ‖A‖m‖T‖B(`m2 ,`
n
2 )‖ξ‖`n2 ‖η‖`m2 ≤ KG‖A‖m‖B‖`n1⊗ε`m1 .

Before moving onto the completion of the proof of Peller’s theorem, at this point it
should be remarked that we can also obtain a “finite dimensional” Peller’s theorem from
the above. Corollary 3.3.2 states that:

‖A‖(`n1⊗ε`m1 )∗ ≤ KG‖A‖m.

If we appeal to some outside knowledge concerning tensor products, there is in fact
an isometric isomorphism between the dual of `n1 ⊗ε `m1 and `n∞ ⊗π `m∞, where π is the
projective tensor product. We can then arrive at:

1

KG
‖A‖`n∞⊗π`m∞ ≤ ‖A‖m ≤ ‖A‖`n∞⊗π`m∞ .

That is, the Schur norm ‖A‖m of an n × m matrix is equivalent to the norm of A in
`n∞⊗π `m∞, where the constants are independent of n and m. For further details see [103,
Chapter 5].

3.4 Measurable Schur multipliers

Let (L, λ) and (M,µ) be two σ-finite measure spaces. To lighten notation, we will write
Lp(λ) for Lp(L, λ), and similarly Lp(µ) for Lp(M,µ) and Lp(λ×µ) for Lp(L×M,λ×µ).

Definition 3.4.1. Let φ ∈ L∞(λ × µ). Then φ defines a bilinear map B(φ) : L1(λ) �
L1(µ)→ C given by:

B(φ)(f ⊗ g) =

∫
L×M

φ(t, s)f(t)g(s) dλ(t)dµ(s), f ∈ L1(λ), g ∈ L1(µ).

Definition 3.4.2. Suppose that I = {Ij}nj=1 and J = {Jk}mk=1 are two families of
pairwise-disjoint measurable sets in L and M respectively, such that each Ij and Jk have
finite and nonzero measure, (that is, 0 < λ(Ij) <∞, 0 < µ(Jk) <∞). Let I ×J denote
the family of sets:

I × J = {Ij × Jk : 1 ≤ j ≤ n, 1 ≤ k ≤ m}.
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Define [φ]I×J as the n×m matrix with (j, k)th entry given by:

1

λ(Ij)µ(Jk)

∫
Ij×Jk

φd(µ× λ).

We are now ready to prove what is essentially Peller’s theorem, stated in terms of Schur
multipliers.

Theorem 3.4.3. Suppose that φ ∈ L∞(λ× µ) is such that:

sup
I,J
‖[φ]I×J ‖m = Cφ <∞

where the supremum is over all I and J as in Definition 3.4.2.

Then there is a compact Hausdorff space Ω, a Borel regular measure σ on Ω with total
variation norm at most KGCφ, and there are measurable functions α ∈ L∞(L×Ω) and
β ∈ L∞(M × Ω) with ‖α‖∞ ≤ 1 and ‖β‖∞ ≤ 1 such that:

φ(t, s) =

∫
Ω
α(t, ω)β(s, ω) dσ(ω)

for pointwise almost-all (t, s) ∈ L×M .

Proof. Let X := L1(λ) and Y := L1(µ). Let X0 and Y0 be the subspaces of X and Y
consisting of simple functions.

Recall that since λ and µ are σ-finite, we have an isometric identification:

X∗ = L∞(λ), Y ∗ = L∞(µ).

Let T ∈ X0�Y0. Then T =
∑N

r=1 xr⊗yr, where each xr and yr are simple functions, i.e.,
finite linear combinations of indicator functions. Choose familes of measurable subsets
I = {Ij}nj=1 and J = {Jk}mk=1 of L and M respectively so that each xr (resp. yr) is a
finite linear combination of indicator functions of sets in I (resp. J ).

Therefore T can be written as a linear combination of indicator functions of I × J .
Hence,

T :=
n∑
j=1

m∑
k=1

aj,k
λ(Ij)µ(Jk)

χIj ⊗ χJk

for some matrix a ∈Mn,m(C).
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In fact the norm of T in L1(λ)⊗ε L1(µ) is exactly ‖a‖`n1⊗ε`m1 . To see this, note that by
definition we have:1

‖T‖L1(λ)⊗εL1(µ) = sup
f∈BX∗ ,g∈BY ∗

∣∣∣∣∣∣
n∑
j=1

m∑
k=1

aj,k
1

λ(Ij)

∫
Ij

f dλ · 1

µ(Jk)

∫
Jk

g dµ

∣∣∣∣∣∣
= sup
|αj |≤1,|βk|≤1

∣∣∣∣∣∣
n∑
j=1

m∑
k=1

aj,kαjβk

∣∣∣∣∣∣
= ‖a‖`n1⊗ε`m1 (3.4.1)

Then by the definition of B(φ) (Definition 3.4.1) we have:,

B(φ)(T ) =

∫
L×M

φ(t, s)

n∑
j=1

m∑
k=1

aj,k
χIj (t)χJk(s)

λ(Ij)µ(Jk)
dλ(t)dµ(s)

=

n∑
j=1

m∑
k=1

aj,k
λ(Ij)µ(Jk)

∫
Ij×Jk

φd(λ× µ)

= tr(a∗[φ]I×J ).

Therefore, from Corollary 3.3.2 and (3.4.1), we have:

|B(φ)(T )| = |tr(a∗[φ]I×J )| ≤ KG‖[φ]I×J ‖m‖a‖`n1⊗ε`m1
≤ KGCφ‖T‖L1(λ)⊗εL1(µ).

Hence B(φ) satisfies the assumptions of Theorem 3.1.2. Thus there is a regular Borel
measure on BX∗ × BY ∗ with total variation norm at most KGCφ and such that for all
sets of finite measure, I ⊂ L and J ⊂M we have:

B(φ)(χI ⊗ χJ) =

∫
BX∗×BY ∗

ω0(χI)ω1(χJ) dσ(ω0, ω1) (3.4.2)

For each ω0 ∈ BX∗ and ω1 ∈ BY ∗ , we can identify ω0 and ω1 with elements of L∞(λ)
and L∞(µ) respectively. Write ω = (ω0, ω1), and consider the functions α and β defined
by α(t, ω) := ω0(t) and β(s, ω) = ω1(s). We can use α and β to write the pairing of ω0

and ω1 with χI and χJ as integrals:

ω0(χI) =

∫
I
α(t, ω) dλ(t), ω1(χJ) =

∫
J
β(s, ω) dµ(s).

Inserting this into (3.4.2) and using Fubini’s theorem, (which is valid due to the σ-
finiteness of λ and µ), we have:

B(φ)(χI ⊗ χJ) =

∫
BX∗×BY ∗

∫
I
α(t, ω) dλ(t)

∫
J
β(s, ω) dµ(s)dσ(ω)

=

∫
I×J

∫
BX∗×BY ∗

α(t, ω)β(s, ω) dσ(ω)d(λ× µ)(t, s)

=

∫
L×M

(∫
BX∗×BY ∗

α(t, ω)β(s, ω) dσ(ω)

)
χI(t)χJ(s) d(λ× µ)(t, s).

1Note that ‖a‖`n1⊗ε`
m
1

= ‖a∗‖`m1 ⊗ε`
n
1

= ‖a‖`n1⊗ε`
m
1

.
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From the definition of B(φ) (Definition 3.4.1) we have:∫
L×M

φ(t, s)χI(t)χJ(s) dλ(t)dµ(s) =

∫
L×M

(∫
BX∗×BY ∗

α(t, ω)β(s, ω) dσ(ω)

)
χI(t)χJ(s) d(λ×µ)(t, s).

Since I and J are arbitrary, it follows that for almost all t and s we have:

φ(t, s) =

∫
BX∗×BY ∗

α(t, ω)β(s, ω) dσ(ω).

This gives precisely the desired result.

Definition 3.4.4. The Birman-Solomyak class of functions φ ∈ L∞(λ × µ), denoted
BS(λ× µ), is defined to be the class of functions which can be expressed as:

φ(t, s) =

∫
Ω
α(t, ω)β(s, ω)dσ(ω), a.e.t ∈ L, s ∈M.

for some σ-finite measure space (Ω, σ) and measurable functions α and β such that:∫
Ω

esssupt∈L|α(t, ω)|esssups∈M |β(s, ω)| d|σ|(ω) <∞. (3.4.3)

Such a representation is called a Birman-Solomyak decomposition. The infimum of
(3.4.3) over all Birman-Solomyak decompositions of φ is called the Birman-Solomyak
norm, and denoted ‖φ‖BS.

If ν0 and ν1 are spectral measures, then BS(ν0 × ν1) is defined in precisely the same
way (given that the product exists), where instead the representation is assumed to hold
pointwise almost everywhere with respect to ν0 × ν1.

With this definition, the content of Theorem 3.4.3 could be stated as: if ‖[φ]I×J ‖m ≤ C
over all I and J , then φ ∈ BS(λ×µ) and ‖φ‖BS ≤ KGC, where KG is Grothendieck’s
constant.

Recall that (M, τ) is a semifinite von Neumann algebra, and B(R2) denotes the algebra
of bounded Borel measurable functions on R2.

We now deal with the easiest direction of Peller’s theorem: the sufficiency of the Birman-
Solomyak condition for a double operator integral to map L1(H) into itself continuously.
Actually, for the sake of future use in Chapter 4, we will state and prove the follow-
ing theorem in slightly more generality. Recall that (M, τ) denotes a semifinite von
Neumann algebra.

Theorem 3.4.5. Let (X0,Σ0, H, ν0), (X1,Σ1, H, ν1) be two P(M)-valued spectral mea-
sure spaces on σ-compact standard Borel spaces (X0,Σ0) and (X1,Σ1). Let x ∈ L1(τ)∩
M, and ‖φ‖BS(ν0×ν1) <∞. Then T ν0,ν1φ (x) ∈ L1(τ) ∩ L2(τ), and:

‖T ν0,ν1φ (x)‖1 ≤ ‖φ‖BS‖x‖1.

Proof. Note that since L1(τ) ∩ M is a subset of L2(τ), the double operator integral
T ν0,ν1φ (x) is certainly defined.
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Let x, y ∈ L1(τ) ∩M, and recall that ν0 ⊗ ν1 denotes the spectral measure on L2(τ)
given as in Definition 2.4.1. We have:

τ(y∗T ν0,ν1φ (x)) =

∫
R2

φd(ν0 ⊗ ν1)x,y.

Since (ν0 ⊗ ν1)x,y is a measure of bounded variation (Lemma 2.2.6), we may write φ in
terms of its Birman-Solomyak decomposition and use Fubini’s theorem:

τ(y∗T ν0,ν1φ (x)) =

∫
X0×X1

∫
Ω
α(t, ω)β(s, ω) dσ(ω)d(ν0 ⊗ ν1)x,y(t, s)

=

∫
Ω

∫
X0×X1

α(t, ω)β(s, ω)d(ν0 ⊗ ν1)x,y(t, s)dσ(ω). (3.4.4)

Let us examine the inner integral. This is the function (of σ) given by:∫
X0×X1

α(t, ω)β(s, ω)d(ν0 ⊗ ν1)x,y(t, s).

We may recognise this as being precisely a double operator integral:∫
X0×X1

α(t, ω)β(s, ω)d(ν0 ⊗ ν1)x,y(t, s) = τ(y∗T ν0,ν1α(·,ω)β(·,ω)(x)).

Using Corollary 2.2.17, this is:

τ(y∗T ν0,ν1α(·,ω)β(·,σ)(x)) = τ(y∗
∫
X0

α(t, ω) dν0(t)x

∫
X1

β(s, ω) dν1(s)).

So that pointwisely for σ-almost all σ, we have:∣∣∣∣∫
X0×X1

α(t, ω)β(s, ω)d(ν0 ⊗ ν1)x,y(t, s)

∣∣∣∣ ≤ ‖y‖M‖x‖1esssupt∈X0
|α(t, ω)|esssups∈X1

|β(s, ω)|.

Applying this upper bound to (3.4.4) yields:

|τ(y∗T ν0,ν1φ (x))| ≤ ‖x‖1‖y‖M‖φ‖BS, x, y ∈ L1(τ) ∩M. (3.4.5)

Let p be a τ -finite projection in M, and let u be a partial isometry defining a polar
decomposition for T ν0,ν1φ (x):

uT ν0,ν1φ (x) =
∣∣∣T ν0,ν1φ (x)

∣∣∣
Let y∗ = pu Then (3.4.5) yields:

τ(p
∣∣∣T ν0,ν1φ (x)

∣∣∣ p) ≤ ‖x‖1‖φ‖BS

for all τ -finite projections p. Since τ is semifinite, we may take the supremum over a
monotone family {pα}α with pα ↑ 1 to arrive at:

‖T ν0,ν1φ (x)‖1 ≤ ‖x‖1‖φ‖BS.
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To complete the proof of Peller’s theorem, we explain how the assumption of Theorem
3.4.3 is related to the boundedness of double operator integrals L1(H) for a separable
Hilbert space H.

The following lemma will be important to relate double operator integrals with scalar
integrals.

Lemma 3.4.6. Let (Xj ,Σj , H, νj), j = 1, 2 be spectral measures on a σ-compact stan-
dard Borel space, and let ν0 ⊗ ν1 be the corresponding measure on the Hilbert-Schmidt
class L2(H) by left and right multiplication.

If ξ, η ∈ H are vectors, let ξη∗ denote the rank one operator v 7→ ξ〈η, v〉. Then:

〈ξ, T ν0,ν1φ (ξη∗)η〉 =

∫
X0×X1

φd(νξ,ξ0 × ν
η,η
1 ).

Proof. This simply amounts to the claim that we have an equality of scalar measures:

(ν0 ⊗ ν1)ξ⊗η
∗,ξ⊗η∗ = νξ,ξ0 × ν

η,η
1 .

This is easily verified on measurable sets ∆0×∆1 ∈ Σ0⊗Σ1, and hence the coincidence
of the above measures follows from the monotone class theorem.

Consider a pair of spectral measure spaces (Xj ,Σj , H, νj), j = 1, 2 defined on σ-compact
standard Borel spaces (Xj ,Σj), j = 1, 2, and H is separable. To complete the proof, we
need to select (scalar) measures µ0 and µ1 which are equicontinuous with respect to ν0

and ν1 respectively.

Here, we say that a measure µ is equicontinuous with a spectral measure ν if ν(∆) = 0
if and only if µ(∆) = 0.

It is that this point we use the assumption that H is separable: if E is a spectral measure
on a separable Hilbert space H, there exists x ∈ H such that the scalar measure Ex,x,
defined by Ex,x(∆) = ‖E(∆)x‖2, is equicontinuous with respect to E. An element
x ∈ H satisfying this property is called an element of maximal spectral type. A proof
that elements of maximal spectral type exist for spectral measures on separable Hilbert
spaces may be found as [18, Theorem 4, Chapter 7].

Theorem 3.4.7. Suppose that (Xj ,Σj , H, νj), j = 1, 2 are two spectral measure spaces
on σ-compact standard Borel spaces and on a separable Hilbert space H.

Let x, y ∈ H be chosen such that the scalar-valued measures:

µ0 = νx,x0 , µ1 = νy,y1 .

are equicontinuous with respect to ν0 and ν1. Assume that φ ∈ L∞(µ0 × µ1) satisfies:

sup
‖T‖L1(H)≤1

‖T ν0,ν1φ (T )‖L1(H) = K <∞.

Then
sup
I,J
‖[φ]I×J ‖m ≤ K
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where the supremum is taken over all finite pairwise disjoint families of sets I = {Ij}
and J = {Jk} in R, and the entries of the matrix [φ]I×J are computed with the measures
µ0 and µ1, defined by x and y respectively.

Proof. Let I = {Ij}nj=1 ⊂ Σ0 and J = {Jk}mk=1 ⊂ Σ1 be two finite families of disjoint
measurable sets, with finite and nonzero µ0 and µ1 measure respectively.

For each 1 ≤ j ≤ n and 1 ≤ k ≤ m, let ξj and ηk denote the following elements of L2(τ):

ξj =
ν0(Ij)x

‖ν0(Ij)x‖
, ηk =

ν1(Jk)y

‖ν1(Jk)y‖
.

Since the sets {Ij} and {Jk} are assumed to be pairwise disjoint, the sets of vectors {ξj}
and {ηk} are pairwise orthogonal.

We define the following two linear maps, Φ : H → `n2 and Ψ : H → `m2 ,

Φ(v) =

n∑
j=1

ej〈ξj , v〉, Ψ(v) =

m∑
k=1

ek〈ηk, v〉.

The adjoints of Φ and Ψ map `n2 and `m2 into H respectively,

Φ∗(w) =
n∑
j=1

ξjwj , Ψ∗(z) =
m∑
k=1

ηkzk, w ∈ `n2 , z ∈ `m2 .

Since the sets {ξj} and {ηk} are pairwise orthonormal, Φ and Ψ are partial isometries,
and we have:

ΦΦ∗ = 1`n2 , ΨΨ∗ = 1`m2 .

The operators Φ∗Φ and Ψ∗Ψ are the orthogonal projections onto the linear spans of {ξj}
and {ηk} respectively.

For a matrix a ∈Mn,m(C), considered as a linear map from `m2 to `n2 , we may consider:

Φ∗aΨ : H → H.

Similarly, a linear operator T : H → H descends to a linear map from `m2 to `n2 given
by:

ΦTΨ∗ : `m2 → `n2 .

Since Φ and Ψ are partial isometries, it is easy to see that:

‖Φ∗aΨ‖L1(H) = ‖a‖L1(`m2 ,`
n
2 ), a ∈Mn,m(C)

and
‖ΦTΨ∗‖L1(`m2 ,`

n
2 ) ≤ ‖T‖L1(H), T ∈ L1(H).

Let a ∈Mn,m(C). We shall prove that:

ΦT ν0,ν1φ (Φ∗aΨ)Ψ∗ = [φ]I×J ◦ a. (3.4.6)
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It will be helpful to write x∗ for the linear functional defined by v 7→ 〈x, v〉, and similarly
with y. We have:

ΦT ν0,ν1φ (Φ∗aΨ)Ψ∗ =
n∑
j=1

m∑
k=1

aj,kΦT ν0,ν1φ (Φ∗(ej ⊗ ek)Ψ)Ψ∗

=

n∑
j=1

m∑
k=1

aj,k
1√

µ0(Ij)µ1(Jk)
ΦT ν0,ν1φ (ν0(Ij)xy

∗ν1(Jk))Ψ
∗

=
n∑
j=1

m∑
k=1

aj,k
1√

µ0(Ij)µ1(Jk)
Φν0(Ij)T ν0,ν1φ (xy∗)ν1(Jk)Ψ

∗

=
n∑
j=1

m∑
k=1

aj,k
1√

µ0(Ij)µ1(Jk)
ej ⊗ ek〈ξj , T ν0,ν1φχIj×Jk

(xy∗)ηk〉

=
n∑
j=1

m∑
k=1

aj,k
1

µ0(Ij)µ1(Jk)
ej ⊗ ek〈x, T ν0,ν1φχIj×Jk

(xy∗)y〉.

Now Lemma 3.4.6 implies:

〈x, T ν0,ν1φχIj×Jk
(xy∗)y〉 =

∫∫
Ij×Jk

φd(µ0 × µ1).

So we have proved (3.4.6).

Finally,

‖[φ]I×J ◦ a‖L1(`m2 ,`
n
2 ) = ‖ΦT ν0,ν1φ (Φ∗aΨ)Ψ∗‖L1(`m2 ,`

n
2 )

≤ ‖T ν0,ν1φ (Φ∗aΨ)‖L1(H)

≤ K‖Φ∗aΨ‖L1(H)

= K‖a‖L1(`m2 ,`
n
2 ).

So indeed ‖[φ]I×J ‖m ≤ K.

Proof of Peller’s theorem. Specialising Lemma 3.4.5 to the case M = B(H), we have
that φ ∈ BS(E × F ) is sufficient for T E,Fφ to be bounded from L1(H) to L1(H), and

the norm of T E,Fφ is no more than ‖φ‖BS(E×F )

For the necessity of the Birman-Solomyak condition, if T E,Fφ is bounded from L1 to L1,
then Theorem 3.4.7 implies that supI,J ‖[φ]I×J ‖m < ∞, Finally, Lemma 3.4.3 yields
the conclusion that φ ∈ BS(E × F ), with the appropriate norm bound.

3.5 Final comments

Note that in the proof of Theorem 3.4.3 we have used the σ-finiteness of λ and µ in
a number of places (at the very least, σ-finiteness is used to ensure that λ × µ is well
defined). However there is good reason to try and work in a slightly more general
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situation. For example we can also prove that if {φ(t, s)}t∈T,s∈S is a bounded function,
where T and S are arbitrary sets, and

sup
|T0|<∞, |S0|<∞

‖{φ(t, s)}t∈T0,s∈S0‖m <∞

then φ ∈ BS(S × T ). This follows from a version of Theorem 3.4.3 stated for S and
T considered as discrete measures. If S and T are uncountable then these measures
are not σ-finite, however the proof of Theorem 3.4.3 can easily be reworded to suit this
situation.

It is worth remarking that Peller’s theorem does not in fact give necessary conditions
for φ ∈ B(R2) such that T A,Bφ is bounded from L1 to L1 for all affiliated operators

A and B. If φ ∈ B(R2) is such that T A,Bφ is bounded from L1 to L1 for all affiliated
operators A and B, then Peller’s theorem states that for each pair of measures λA and
λB equicontinuous with respect to the spectral measures of A and B, we have that
φ ∈ BS(λA × λB). Note however that the Birman-Solomyak decomposition necessarily
depends on the choice of measures λA and λB.

In the following chapter, we will develop a theory of double operator integration based
on the a priori assumption that the symbol is in the Birman-Solomyak class.





Chapter 4

Weak∗-integration and the
difference of powers formula

This section is devoted to a proof of a useful integral representation for the difference of
complex powers of two non-negative operators. For lack of a better name, let us call it
the “difference of powers” formula (Theorem 4.2.1).

The difference of powers formula originally appeared in a particular special case as [35,
Lemma 5.2], and was later strengthened in [128]. In Chapter 5, we will put the formula
to use to prove the conformal trace theorem for Julia sets, and then in Chapter 7 we
will highlight the application to quantum differentiability.

We begin with a section on certain technical preliminaries concerning so-called weak∗-
integration (Section 4.1). This includes the definition of T A,Bφ,M , an alternative definition of
a double operator integral transformer (Definition 4.1.9). Section 4.2 contains the proof
of the difference of powers formula. Finally we give two applications of the formula in
Section 4.3.

4.1 Preliminaries

In Chapter 2, we discussed at length the definition of a double operator integral as a
spectral integral on the Hilbert space L2(τ) corresponding to a von Neumann algebra
M with semifinite normal trace τ . This is a definition that is particularly well-suited to
the study of double operator integrals on ideals whose intersection with L2(τ) is dense:
for example on the ideal L1(τ). It is possible to extend to other ideals using duality,
interpolation or weak∗-density, however it is preferable to have a direct definition.

In this chapter we present an alternative definition of a double operator integral better
suited to study double operator integrals on M, which we denote T A,Bφ,M . While this
definition is particularly well suited for later applications, it has a limitation in the fact
that it presently only applies to those von Neumann algebrasM which are σ-finite. This
is an observation which has at times gone unobserved in the literature, for example it
was apparently unnoticed in [107]. The recently submitted paper [45] was an inspiration
for this section, although the proofs provided here are different and have not previously
appeared in writing.

63
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The definition of T A,Bφ,M is inspired by Peller’s Theorem. In Chapter 3 (specifically,

Theorems 3.4.3 and 3.4.5) we proved that a double operator integral T A,Bφ is continuous
on L1(H) in the L1-norm if and only if its symbol φ admits a representation in terms
of a σ-finite measure space (Ω, µ) of the form:

φ(t, s) =

∫
Ω
α(t, ω)β(s, ω) dµ(ω), t, s ∈ R

pointwise almost everywhere relative to the spectral measures of A and B, and where∫
Ω

esssup
t∈R

|α(t, ω)|esssup
s∈R

|β(s, ω)| dµ(ω) <∞.

To define T A,Bφ,M , we exclusively consider symbols of the above form. We shall define

T A,Bφ,M on x ∈M as

T A,Bφ,M (x) :=

∫
Ω
α(A,ω)xβ(B,ω) dµ(ω). (4.1.1)

For this to be a meaningful definition, we must discuss the sense in which the above
right hand side converges. Since von Neumann algebras are typically non-separable, the
theory of Bochner integration turns out to be inadequate to develop the theory in full
generality. It is better to understand the integral in a weak sense, and for us the theory
of Gel’fand or weak∗-integration is the most suitable.

4.1.1 Weak∗-integration

Let X be a Banach space, and let (Ω,Σ, µ) be a measure space, where there is no need
to assume that µ is positive. The theory of weak∗-integration concerns defining integrals
of X∗-valued functions f : Ω → X∗ which converge in the weak∗-topology. According
to at least some authors, this is called a Gel’fand integral [42, Chapter II, Section 3].

We shall denote the dual pairing between X and X∗ as:

(z, x) := z(x), z ∈ X∗, x ∈ X.

Definition 4.1.1. If X is a Banach space, and (Ω,Σ, µ) a σ-finite measure space, then
a function f : Ω → X∗ is called weak∗-measurable if for all x ∈ X, the scalar-valued
function (f, x) := ω 7→ (f(ω), x) is measurable. Furthermore we say that f is weak∗-
integrable if (f, x) ∈ L1(Ω, µ) for all x ∈ X.

The following is adapted from [42, Chapter II, Section 3, Lemma 1]:

Lemma 4.1.2. Let f : Ω→ X∗ be weak∗-integrable, where (Ω,Σ, µ) is a measure space
with µ(Ω) <∞. There exists a unique If ∈ X∗ such that for all x ∈ X we have:

If (x) =

∫
Ω

(f(ω), x) dµ(ω).

Proof. Consider the linear mapping T : X → L1(Ω, µ) defined by:

T (x) = (f, x).
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The mapping T is indeed linear and well defined by the assumption that f is weak∗-
integrable. We will show that T is in fact bounded using the closed graph theorem. Since
T is everywhere defined, it suffices to show that T is closed. Suppose that {xn}n≥0 is a
sequence converging in X to x ∈ X and such that T (xn) converges in L1(Ω, µ) to some
g ∈ L1(Ω, µ),

xn → x, T (xn)→ g.

Then since T (xn) → g in L1(Ω, µ) and µ is finite, there is a subsequence {T (xnk)}k≥0

which converges pointwisely µ-almost everywhere to g. But for fixed ω ∈ Ω, we have:

lim
n→∞

(f(ω), xn) = (f(ω), x)

since f(ω) ∈ X∗ is a continuous linear functional. Hence T (xn) converges everywhere
to the function (f, x) and has a subsequence which converges pointwise almost every-
where to g, and thus (f, x) = g pointwise µ-almost everywhere. Thus T is closed and
everywhere defined, and hence bounded. Hence,∣∣∣∣∫

Ω
(f, x) dµ

∣∣∣∣ ≤ ‖(f, x)‖L1(Ω) ≤ ‖T‖X→L1‖x‖X .

Thus the functional If on X defined by

If (x) =

∫
Ω

(f, x) dµ

is continuous, and thus an element of X∗.

Note that the finiteness of µ(Ω) was used in an essential way in the above proof in order
to extract a pointwise-almost everywhere convergent subsequence of {T (xn)}n≥0.

We now define the weak∗-integral.

Definition 4.1.3. Let f : Ω → X∗ be a weak∗ integrable function. If there exists an
element If ∈ X∗ such that for all x ∈ X we have:

(If , x) =

∫
Ω

(f(ω), x) dµ(ω).

then called If the weak∗-integral of f , and denote:

If :=

∫
Ω
f dµ.

It is clear that If is necessarily unique. Lemma 4.1.2 states that weak∗-integrable func-
tions on spaces of finite measure have weak∗-integrals.

Let (Ω,Σ, µ) be a measure space where µ is a positive measure, and let h : Ω → [0,∞]
be an arbitrary (possibly non-measurable) function. Recall that the lower Lebesgue
integral of h is defined as the extended real number:∫

Ω
h dµ := sup{

∫
Ω
g dµ : 0 ≤ g ≤ h, g is measurable }.
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The lower Lebesgue integral is not necessarily additive, but it is easily seen to be mono-
tone and positively homogeneous.

Instead of assuming weak∗-integrability, we can show existence of the weak∗-integral
under the assumption that

∫
Ω ‖f(ω)‖X∗ d|µ|(ω) is finite. Note that in contrast to Lemma

4.1.2, the following lemma does not require µ(Ω) <∞.

Lemma 4.1.4. Suppose that (Ω,Σ, µ) is σ-finite, and let f : Ω → X∗ be weak∗-
measurable. If: ∫

Ω
‖f(ω)‖X∗ d|µ|(ω) <∞

then f is weak∗-integrable and the weak∗-integral satisfies:∥∥∥∥∫
Ω
f dµ

∥∥∥∥
X∗
≤
∫

Ω
‖f(ω)‖X∗ d|µ|(ω).

Proof. Let x ∈ X. Then since

|(f(ω), x)| ≤ ‖x‖X‖f(ω)‖X∗

and (f(ω), x) is measurable by assumption, the monotonicity of the lower Lebesgue
integral implies:∣∣∣∣∫

Ω
(f(ω), x) dµ(ω)

∣∣∣∣ ≤ ∫
Ω
|(f(ω), x)| d|µ|(ω) ≤

∫
Ω
‖x‖X‖f(ω)‖X∗ d|µ|(ω). (4.1.2)

Thus f is weak∗-integrable. Then same is true for fχΩ′ for any measurable subset
Ω′ ⊆ Ω, and Lemma 4.1.2 implies that the weak∗ integral

∫
Ω′ f dµ is uniquely defined

for each Ω′ ⊆ Ω with µ(Ω′) <∞.

Since the lower Lebesgue integral is positively homogeneous, we may take out ‖x‖X in
(4.1.2) to obtain the following norm bound for any subset Ω′ ⊆ Ω of finite µ-measure:∣∣∣∣∫

Ω′
(f(ω), x) dµ(ω)

∣∣∣∣ ≤ ‖x‖X ∫
Ω′
‖f(ω)‖X∗ d|µ|(ω).

By the definition of the weak∗-integral, the above inequality can be restated as:∣∣∣∣(∫
Ω′
f dµ, x

)∣∣∣∣ ≤ ‖x‖X ∫
Ω′
‖f(ω)‖X∗ d|µ|(ω).

Taking the supremum over x ∈ X with ‖x‖X ≤ 1 yields the norm bound:∥∥∥∥∫
Ω′
f dµ

∥∥∥∥
X∗
≤
∫

Ω′
‖f(ω)‖X∗ d|µ|(ω) ≤

∫
Ω
‖f(ω)‖X∗ d|µ|(ω). (4.1.3)

Since (Ω,Σ, µ) is σ-finite, there exists a sequence Ω0 ⊆ Ω1 ⊆ Ω2 ⊆ · · · ⊆ Ω such that⋃
n≥0 Ωn = Ω and each Ωn has finite µ-measure. Then (4.1.3) implies that the sequence:

In :=

∫
Ωn

f dµ ∈ X∗

is uniformly bounded in the norm of X∗. From the Banach-Alaoglu theorem, it follows
that the sequence {In}n≥0 has a limit point I in the weak∗-topology of X∗. However
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since (f, x) is integrable for each x ∈ X, the dominated convergence theorem implies
that for all x ∈ X we have:

lim
n→∞

(In, x) = lim
n→∞

∫
Ωn

(f, x) dµ =

∫
Ω

(f, x) dµ.

Hence the weak∗-limit point I satisfies:

(I, x) =

∫
Ω

(f, x) dµ, for all x ∈ X.

Thus I is the integral of f , and satisfies the stated norm bound.

4.1.2 Weak∗-integration in von Neumann algebras

Let M be a von Neumann algebra, with semifinite faithful normal trace τ . We will
apply the theory of weak∗ integration developed in the preceding subsection to the pair
(X,X∗), where we take X = L1(M, τ) and identify M with the dual of L1(M, τ)
according to the dual pairing:

(z, x) := τ(zx), z ∈M, x ∈ L1(τ).

In this setting, for a function f : Ω → M to be weak∗ measurable means that for all
x ∈ L1(M, τ), the function ω 7→ τ(xf(ω)) is measurable in (Ω,Σ, µ), and similarly to
be weak∗-integrable means that ω 7→ τ(xf(ω)) is in L1(Ω, µ) for all x ∈ L1(M, τ). We
assume in the sequel that (Ω,Σ, µ) is σ-finite, since it will be necessary to apply Fubini’s
theorem.

According to Lemma 4.1.4, the assumption that
∫

Ω ‖f‖Md|µ| <∞ is sufficient for there

to exist a weak∗-integral
∫

Ω f dµ ∈M and such that for all x ∈ L1(M, τ) we have:

τ(x

∫
Ω
f dµ) =

∫
Ω
τ(xf(ω)) dµ(ω).

The following lemma is routine, and so the proof is omitted.

Lemma 4.1.5. Let f : Ω→M, and let x ∈M.

(i) If f is weak∗ measurable (resp. integrable), then ω 7→ f(ω)∗ is weak∗-measurable
(resp. integrable),

(ii) If f is weak∗ measurable (resp. integrable), then ω 7→ xf(ω) and ω 7→ f(ω)x are
weak∗-measurable (resp. integrable),

(iii) If f is weak∗ measurable, and g : Ω → C is a measurable scalar valued function,
then ω 7→ f(ω)g(ω) is weak∗-measurable.

Let us now verify that the integrand appearing in (4.1.1) is weak∗-measurable.
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Lemma 4.1.6. Let (Ω,Σ, µ) be a measure space, and let α, β be bounded measurable
functions on R × Ω such that supt∈R |α(t, ω)| < ∞ and supt∈R |β(t, ω)| < ∞ for each
ω ∈ Ω.

Let x ∈M and A,B be two self-adjoint operators affiliated with M. We define,

α(A,ω) :=

∫
R
α(t, ω) dEA(t), β(B,ω) =

∫
R
β(s, ω) dEB(s).

Then the M-valued function on Ω

ω 7→ α(A,ω)xβ(B,ω)

is weak∗-measurable.

Proof. Let us first remark that if α and β are functions of the form,

α(t, ω) = χA1(t)χA2(ω), β(t, ω) = χB1(t)χB2(ω) (4.1.4)

for some measurable sets A1, B1 ⊆ R and A2, B2 ⊆ Ω, then

α(A,ω)xβ(B,ω) = χA1(A)xχB1(B)χA2∩B2(ω)

and so the weak∗-measurability of α(A,ω)xβ(B,ω) follows in this case from parts (ii)
and (iii) of Lemma 4.1.5. Similarly, if α and β are linear combinations of functions of
the form (4.1.4) then the measurability follows.

Suppose that u, v ∈ L2(τ). Recall (from Lemma 2.3.2) that A and B define operators
LA and LB of left multiplication on L2(τ), and it can be easily seen that:

α(A,ω)u = α(LA, ω)u, β(B,ω)v = β(LB, ω)v

where α(LA, ω) and β(LB, ω) may be defined in terms of the spectral measures of LA
and LB on L2(τ). So we may write τ(u∗α(A,ω)xβ(B,ω)v) as an inner product in the
space L2(τ),

τ(u∗α(A,ω)xβ(B,ω)v) = 〈α(LA, ω)u, xβ(LB, ω)v〉.

Every measurable function on the product space R×Ω may be obtained as a pointwise
limit of linear combinations of functions of the form (4.1.4), so suppose that {αn}n≥1

and {βn}n≥1 are linear combinations of functions of the form (4.1.4) such that αn → α
and βn → β pointwisely. We may assume that supn≥0 supt∈R |αn(t, ω)| < ∞ for all ω,
and similarly with {βn}∞n=0. Appealing to Corollary 2.2.11, it follows that αn(LA, ω)u→
α(LA, ω)u and βn(LB, ω)v → β(LB, ω)v in L2(τ). Thus,

lim
n→∞

τ(u∗αn(A,ω)xβn(B,ω)v) = τ(u∗α(A,ω)xβ(B,ω)v).

Therefore ω 7→ τ(u∗α(A,ω)xβ(B,ω)v) is a pointwise limit of measurable functions, and
is thus measurable. Since every z ∈ L1(τ) can be factorised as z = vu∗ for some u, v ∈
L2(τ), it follows that ω 7→ τ(zα(A,ω)xβ(B,ω)) is measurable for all z ∈ L1(τ).

Now we may discuss the connection to double operator integration theory. Recall The-
orem 3.4.5: if a function φ is in the Birman-Solomyak class, then the double operator
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integral transformer T A,Bφ admits an extension to a bounded linear mapping from L1(τ)
to L1(τ). With the theory of weak∗-integration, we can shed additional light on this
result.

Theorem 4.1.7. Let x, y ∈ L1(τ) ∩M, and let A,B be self-adjoint operators affiliated
with M. If φ is a function admitting the representation:

φ(t, s) =

∫
Ω
α(t, ω)β(s, ω) dµ(ω)

for almost all t, s ∈ R relative to the joint spectral measures of A and B and a σ-finite
measure space (Ω, µ), and we have∫

Ω
esssup
t∈R

|α(t, ω)|esssup
s∈R

|β(s, ω)| d|µ|(ω) <∞

then

τ(y∗T A,Bφ (x)) =

∫
Ω
τ(y∗α(A,ω)xβ(B,ω)) dµ(ω) = τ(y∗

∫
Ω
α(A,ω)xβ(B,ω) dµ(ω))

where the latter integral is a weak∗ integral.

Proof. The assumption that:∫
Ω

sup
t∈R
|α(t, ω)| sup

s∈R
|β(s, ω)| d|µ|(ω) <∞

implies: ∫
Ω
‖α(A,ω)‖M‖β(B,ω)‖M d|µ|(ω) <∞

and hence Lemma 4.1.4 implies that ω 7→ α(A,ω)xβ(B,ω) is weak∗-integrable, and so
the weak∗-integral indeed exists.

By definition of the weak∗-integral, we then have:∫
Ω
τ(y∗α(A,ω)xβ(B,ω)) dµ(ω) = τ(y∗

∫
Ω
α(A,ω)xβ(B,ω) dµ(ω)).

As was already noted in the proof of Theorem 3.4.5, we also have:

τ(y∗T A,Bφ (x)) =

∫
Ω
τ(y∗α(A,ω)xβ(B,ω)) dµ(ω)

and this completes the proof.

One of the more subtle consequences of Theorem 4.1.7 is that when x ∈ L1(τ)∩M, the
value of the weak∗-integral ∫

Ω
α(A,ω)xβ(B,ω) dµ(ω)

does not depend on α, β and µ specifically, but instead depends only on φ, A, B and x.
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It is tempting to think that the same will hold not only for x ∈ L1(τ) ∩M, but for all
x ∈ M. It is possible to prove that this is the case – provided that the von Neumann
algebra M is σ-finite.

Corollary 4.1.8. Assume that (M, τ) is σ-finite. Let α and β and φ satisfy the same
conditions as in Theorem 4.1.7 and let x ∈M. Then the weak∗-integral∫

Ω
α(A,ω)xβ(B,ω) dµ(ω)

exists, and depends only on φ, A, B and x, and not the representation of φ in terms of
α, β and µ.

Proof. The existence of the weak∗-integral follows from the assumption that

‖φ‖BS(EA×EB) =

∫
Ω

esssup
t∈R

|α(t, ω)|esssup
s∈R

|β(s, ω)| d|µ|(ω) <∞

combined with Lemma 4.1.4.

Let T denote the linear map from M to M,

T (x) :=

∫
Ω
α(A,ω)xβ(B,ω) dµ(ω)

Lemma 4.1.4 then implies that T is bounded in the norm topology of M with norm at
most ‖φ‖BS.

Since we have made the extra assumption that M is σ-finite, there exists a sequence
{xn}n≥0 ⊂ L1(τ)∩M such that xn → x in the weak∗-topology and supn≥0 ‖xn‖M <∞.
Let us show that T (xn)→ T (x) in the weak∗-topology. By definition, for all z ∈ L1(τ)
we have:

τ(zT (xn)) =

∫
Ω
τ(zα(A,ω)xnβ(B,ω)) dω.

Since xn → x in the weak∗-sense, for each ω ∈ Ω we have:

lim
n→∞

τ(zα(A,ω)xnβ(B,ω)) = τ(zα(A,ω)xβ(B,ω)).

Moreover for each ω the sequence {τ(zα(A,ω)xnβ(B,ω))}n≥0 is uniformly bounded by
the function

sup
t∈R
|α(t, ω)| sup

s∈R
|β(s, ω)|

which is integrable by assumption.

Thus by Lebesgue’s dominated convergence theorem:

lim
n→∞

τ(zT (xn)) = lim
n→∞

∫
Ω
τ(zα(A,ω)xnβ(B,ω)) dµ(ω)

=

∫
Ω

lim
n→∞

τ(zα(A,ω)xnβ(B,ω)) dµ(ω)

=

∫
Ω
τ(zα(A,ω)xβ(B,ω)) dµ(ω)

= τ(zT (x)).
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That is, T (xn)→ T (x) in the weak∗-sense.

Let φ̃ be the function obtained by exchanging the variables of φ, that is, define φ̃(t, s) =
φ(s, t). Note that ‖φ̃‖BS = ‖φ‖BS.

Let y ∈ L1(τ) ∩M. Theorem 4.1.7 yields:

τ(y∗T (xn)) = τ(y∗
∫

Ω
α(A,ω)xnβ(B,ω) dµ(ω)) = τ(y∗T A,Bφ (xn)) = τ(T B,A

φ̃
(y∗)xn).

Taking the limit as n→∞,

τ(y∗T (x)) = τ(T B,A
φ̃

(y∗)x), y ∈ L1(τ) ∩M.

Since L1(τ) ∩M is dense in L1(τ), it follows that T (x) is uniquely determined by the
mapping y 7→ τ(y∗T (x)) for y ∈ L1(τ)∩M. However the above right hand side depends
only on φ, A, B, y and x, and does not depend on the choice of representation of φ.

Since the value of
∫

Ω α(A,ω)xβ(B,ω) dω does not depend on the specific choice of rep-
resentation of the function φ, we are now permitted to give the following definition:

Definition 4.1.9. Suppose that (M, τ) is σ-finite, and let φ ∈ BS(R2) admit a repre-
sentation as in Theorem 4.1.7. Define T A,Bφ,M on x ∈M as the weak∗-integral:

T A,Bφ,M (x) =

∫
Ω
α(A,ω)xβ(B,ω) dµ(ω).

Note that unlike Definition 2.4.1, we have stated the definition in terms of two self-
adjoint operators A and B rather than two spectral measures. There is no substantial
technical difference between the two ways of writing the definition, however here it is
notationally slightly more convenient to define the double operator integral transformer
in terms of operators rather than spectral measures.

The following properties of T A,Bφ,M follow in a straightforward manner from the definition,
Corollary 4.1.8 and Theorem 3.4.5.

Theorem 4.1.10. Let φ, ψ ∈ BS(EA × EB). Then we have:

1. T A,Bφψ,M = T A,Bφ,MT
A,B
ψ,M,

2. T A,Bψ+φ,M = T A,Bφ,M + T A,Bψ,M.

3. T A,Bφ,M is a bounded linear map from M to M, and can be extended to a bounded
linear map from L1(τ) to L1(τ), in both cases having norm at most ‖φ‖BS.

Proof. We assume that φ and ψ have Birman-Solomyak representations:

φ(t, s) =

∫
Ω0

α0(t, ω)β0(s, ω) dσ0(ω), ψ(t, s) =

∫
Ω1

α1(t, ω)β1(s, ω) dσ1(ω).
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To prove (1), we recall that since the measures σ0 and σ1 are σ-finite, Fubini’s theorem
is applicable and we have the following Birman-Solomyak representation of φψ:

(φψ)(t, s) =

∫
Ω0×Ω1

α0(t, ω0)α1(t, ω1)β0(s, ω0)β1(s, ω1) dσ(ω0, ω1).

where σ = σ0 × σ1 is the product measure. Thus for x ∈M and z ∈ L1(τ), we have:

τ(zT A,Bφψ,M(x)) =

∫
Ω0×Ω1

τ(zα0(A,ω0)α1(A,ω1)xβ0(B,ω0)β1(B,ω1)) dσ(ω0, ω1).

On the other hand,

τ(zT A,Bφ,M (T A,Bψ,M(x))) =

∫
Ω0

τ(zα0(A,ω0)T A,Bψ,M(x)β0(B,ω0)) dσ0(ω0)

=

∫
Ω0

τ(β0(B,ω0)zα0(A,ω0)T A,Bψ,M(x)) dσ0(ω0)

=

∫
Ω0

∫
Ω1

τ(β0(B,ω0)zα0(A,ω0)α1(A,ω1)xβ1(B,ω1)) dσ1(ω1)dσ0(ω0).

Thus (1) follows from Fubini’s theorem.

To prove (2), one can give φ+ψ a Birman-Solomyak representation on the disjoint union
measure space Ω0 ⊕ Ω1. The details are elementary and so we omit this proof.

To prove theM→M boundedness component of (3), this follows from (4.1.4) and the
definition of the Birman-Solomyak norm (we also noted this in the proof of Corollary
4.1.8). Finally, the L1(τ)-component of (3) is essentially the result of Theorem 3.4.5,
since L1(τ)∩M ⊆ L2(τ)∩L1(τ), and on L2(τ)∩L1(τ) the transformer T A,Bφ,M coincides

with T A,Bφ , thanks to Theorem 4.1.7.

4.2 Proof of the difference of powers formula

Let us assume henceforth that (M, τ) is a σ-finite von Neumann algebra.

For an integrable function h on R, we let ĥ denote the (rescaled) Fourier transform:

ĥ(s) = (2π)−1

∫ ∞
−∞

e−isth(t) dt.

With this particular convention, the Fourier inversion theorem takes the form:

h(t) =

∫ ∞
−∞

exp(ist)ĥ(s) ds

(under suitable assumptions on h).

In what follows, A andB will be non-negative elements ofM, and we adopt the (unusual)
convention that 0is = 0 for all s ∈ R, including s = 0.

For a self-adjoint element B ∈ M, we denote by supp(B) the support projection of B,
that is the maximal projection p ∈ M such that Bp = B. Equivalently, supp(B) =
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χR\{0}(B). Due to our convention that 0z = 0 for all <(z) ≥ 0, the operator Bz is given
by:

Bz :=

∫
Spec(B)\{0}

λzdEB(λ), <(z) ≥ 0.

where EB is the P(M)-valued spectral measure of B. This ensures that 0z = 0 as
required.

Theorem 4.2.1 (Difference of powers formula). Let A,B ∈M be positive, and let

C := A1/2BA1/2.

Let z ∈ C be in the half-plane <(z) > 1, and define the mapping Tz : R→M as:

Tz(0) := Bz−1[BA1/2, Az−1/2] + [BA1/2, A1/2]Cz−1,

Tz(s) := Bz−1+is[BA1/2, Az−1/2+is]C−is +Bis[BA1/2, A1/2+is]Cz−1−is, s 6= 0.

Define the function gz : R→ C by

gz(t) := 1− ezt/2 − e−zt/2

(et/2 − e−t/2)(e(z−1)t/2 + e−(z−1)t/2)
, t 6= 0

with gz(0) := 1− z
2 . Then:

(i) For each z with <(z) > 1, the mapping Tz : R → M is continuous in the weak∗-
sense.

(ii) We have:

BzAz − Cz = Tz(0)−
∫ ∞
−∞

Tz(s)ĝz(s) ds

where the integral is a weak∗-integral in M.

Theorem 4.2.1 originated in [35] in the special case where z is real and B is compact.
Theorem 4.2.1 was proved in the above form as [128, Theorem 5.2.1]. In this section we
will give an overview of the proof, which follows similar lines to [128] but admits certain
simplifications due to our version of double operator integration theory.

The following is [128, Remark 5.22]. The proof is more tedious than insightful, and
therefore is omitted.

Lemma 4.2.2. For <(z) > 1, the function gz is in the Schwartz class.

Theorem 4.2.3. Let 0 ≤ X,Y ∈ M, z ∈ C and define Vz := Xz−1(X − Y ) + (X −
Y )Y z−1. Then we have a weak∗-integral representation:

Xz − Y z = Vz −
∫ ∞
−∞

XisVzY
−isĝz(s) ds.

Proof. Let φ1,z denote the function:

φ1,z(λ, µ) = 1− λz − µz

(λ− µ)(λz−1 + µz−1)
, λ 6= µ > 0.
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Also define φ1,z(λ, 0) = φ1,z(0, µ) = 0 when λ, µ ≥ 0. When λ, µ > 0, then φ1,z(λ, µ) =
gz(log(λ/µ)).

Let t = log(λ/µ). Then by the Fourier inversion theorem:

φ1,z(λ, µ) =

∫ ∞
−∞

ĝz(s)e
its ds =

∫ ∞
−∞

ĝz(s)λ
isµ−is ds, λ 6= µ ≥ 0.

The above identity is also easily verified when either λ or µ is zero due to our standing
assumption that 0is = 0.

Since ĝz ∈ L1(R), it follows that the measure ĝzdt has finite total variation, and so the
above furnishes a Birman-Solomyak representation of φ1,z. That is, φ1,z ∈ BS(EX ×
EY ), and therefore for all T ∈M we have the weak∗-integral representation:

T X,Yφ1,z ,M(T ) =

∫ ∞
−∞

ĝz(s)X
isTY −is ds ∈M. (4.2.1)

Now define:
φ2,z(λ, µ) := (λz−1 + µz−1)(λ− µ), λ, µ ≥ 0

so that
T X,Yφ2,z ,M(1) = Xz−1(X − Y ) + (X − Y )Y z−1 = Vz.

However:
φ1,z(λ, µ)φ2,z(λ, µ) = φ2,z(λ, µ)− (λz − µz).

and thus Theorem 4.1.10 implies

T X,Yφ1,z ,M(T X,Yφ2,z ,M(1)) = T X,Yφ2,z ,M(1)− (Xz − Y z)

That is,
Vz − (Xz − Y z) = T X,Yφ1,z ,M(Vz).

Putting T = Vz in (4.2.1) yields the result.

We will now explain how to prove Theorem 4.2.1 in the special case that one of the
operators has finite spectrum. Specifically, we will assume that B =

∑n
j=1 λjpj , where

{λ1, . . . , λn} = σ(B) and {pj}nj=1 are pairwise orthogonal projections in M. After this
is established, the general result will follow from an approximation argument.

Lemma 4.2.4. Theorem 4.2.1 holds under the assumption that there exists some ε > 0
such that B ≥ ε and that the spectrum of B is finite.

Proof. Since B is non-negative, if σ(B) is finite then there exist pairwise orthogonal
projections {pj}nj=1 with

∑n
j=1 pj = 1 and non-negative real numbers {λj}nj=1 such that:

B =

n∑
j=1

λjpj .
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Let z ∈ C have real part strictly greater than 1. Then:

Bz =

n∑
j=1

λzjpj .

Note that the above is consistent with our assertion that 0is = 0 for all s ∈ R.

Since the sum
∑n

j=1 λ
z
jpj is finite and

∑n
j=1 pj = 1, we have:

BzAz − Cz =
n∑
j=1

pj(λ
z
jA

z − Cz).

We proceed by applying Theorem 4.2.3 to each summand, with X = λjA and Y = C
for the jth summand. Let vj,z := (λjA)z−1(λjA−C) + (λjA−C)Cz−1. Then Theorem
4.2.3 implies that for each j we have:

λzjA
z − Cz = vj,z −

∫ ∞
−∞

(λjA)isvj,zC
−isĝz(s) ds.

Then multiplying by pj and summing over j:

BzAz − Cz =
n∑
j=1

pj(λ
z
jA

z − Cz) =
n∑
j=1

pjvj,z −
∫ ∞
−∞

n∑
j=1

pj(λjA)isvj,zC
−isĝz(s) ds.

(4.2.2)
For the first sum on the right hand side, we have:

n∑
j=1

pjvj,z =

n∑
j=1

(
pj((λjA)z − (λjA)z−1C) + pj(λjA− C)Cz−1

)
= BzAz −Bz−1Az−1C + (BA− C)Cz−1

= Bz−1(BAz −Az−1C) + (BA− C)Cz−1.

Now recalling that C = A1/2BA1/2, we have:

n∑
j=1

pjvj,z = Bz−1(BAz −Az−1/2BA1/2) + (BA−A1/2BA1/2)Cz−1

= Bz−1[BA1/2, Az−1/2] + [BA1/2, A1/2]Cz−1

= Tz(0).

For the second sum on the right hand side of (4.2.2), we have:

n∑
j=1

pj(λjA)isvj,k =
n∑
j=1

pj((λjA)z+is − (λjA)z−1+isC) + pj((λjA)1+is − (λjA)isC)Cz−1

= Bz+isAz+is −Bz−1+isAz−1+isC + (B1+isA1+is −BisAisC)Cz−1

= Bz−1+is[BA1/2, Az−1/2+is] +Bis[BA1/2, A1/2+is]Cz−1.
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Substituting this into (4.2.2) yields:

BzAz − Cz = Tz(0)−
∫ ∞
−∞

ĝz(s)B
z−1+is[BA1/2, Az−1/2+is]C−is +Bis[BA1/2, A1/2+is]Cz−1−is ds

= Tz(0)−
∫ ∞
−∞

ĝz(s)Tz(s) ds

exactly as needed.

Now we remove the assumption that the spectrum of B is finite, using an approximation
argument and the continuity properties of functional calculus.

Proof of Theorem 4.2.1. Let n ≥ 0, and let Fn denote the function:

Fn(t) =
∞∑
k=0

k + 1

2n
χ(k2−n,(k+1)2−n](t), t ∈ [0, ‖B‖].

Then,

Bn := Fn(B) =
∞∑
k=0

k + 1

2n
χ(k2−n,(k+1)2−n](B).

Since B is bounded, this sum is actually finite, and Fn(B) (being a finite linear com-
bination of orthogonal projections) has spectrum given by a finite subset of {2−n, 2 ·
2−n, 3 · 2−n, . . .}. The support projection of Bn is the projection:

supp(Bn) =
∑
k≥0

χ(k2−n,(k+1)2−n](B) = χ(0,∞)(B) = supp(B).

Moreover,

Bn −B =
∞∑
k=0

(
k + 1

2n
−B)χ[k2−n,(k+1)2−n)(B).

Since Fn converges uniformly to the identity function on [0, ‖B‖], the spectral theory of
self-adjoint operators (or Lemma 2.2.9) implies that Bn converges to B in the operator
norm topology, or equivalently in the topology of M. Hence, the spectral measure of
Bn converges weakly to that of B (Theorem 2.2.20).

Since the function λ 7→ λz is continuous and bounded on [0, ‖B‖] for <(z) > 1, the
definition of weak convergence of spectral measures (Definition 2.2.19) implies that in
particular we have Bz

nsupp(B)→ Bzsupp(B) in the strong operator topology, and since
supp(Bn) = supp(B), we have:

Bz
nsupp(Bn)→ Bzsupp(B)

in the strong operator topology. Since strong convergence implies weak∗-convergence in
M (see Section 2.3), it follows that Bz

nsupp(Bn) → Bzsupp(B) in the weak∗-topology
of M.
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For each n ≥ 0, define Cn = A1/2BnA
1/2 and:

Tn,z(0) := Bz−1
n [BnA

1/2, Az−1/2] + [BnA
1/2, A1/2]Cz−1

n ,

Tn,z(s) := Bz−1+is
n [BnA

1/2, Az−1/2+is]C−isn +Bis
n [BnA

1/2, A1/2+is]Cz−1−is
n , s 6= 0.

That is, Tn,z : R → M is defined identically to Tz in Theorem 4.2.1, but with Bn and
Cn in place of B and C respectively.

Note that since Bz
n → Bz in the weak∗-topology, it follows easily that Tn,z(s) → Tz(s)

in the weak∗-topology.

Since Bn has finite spectrum, Lemma 4.2.4 implies that:

Bz
nA

z − Czn = Tn,z(0)−
∫ ∞
−∞

Tn,z(s)ĝz(s) ds. (4.2.3)

Taking the limit in the weak∗-topology as n→∞, the above left hand side converges to
BzAz − Cz. As for the right hand side, since the integral is in the weak∗-sense, for all
ω ∈M∗ we have:

ω

(∫ ∞
−∞

Tn,z(s)ĝz(s) ds

)
=

∫ ∞
−∞

ω(Tn,z(s))ĝz(s) ds.

We have established that Tn,z(s) → Tz(s) in the weak∗-topology, and since evidently
‖Tn,z(s)‖M is uniformly bounded in s and ĝz is Schwartz class, it follows from the
Lebesgue dominated convergence theorem that:

lim
n→∞

∫ ∞
−∞

ω(Tn,z(s))ĝz(s) ds =

∫ ∞
−∞

ω(Tz(s))ĝz(s) ds = ω

(∫ ∞
−∞

Tz(s)ĝz(s) ds

)
.

so that the right hand side of (4.2.3) converges in the weak∗-topology to

Tz(0)−
∫ ∞
−∞

ĝz(s)Tz(s) ds.

4.3 Applications of the difference of powers formula

The main utility of the difference of powers formula is to give sufficient conditions on
A, B and 1 < r < ∞ such that BrAr − (A1/2BA1/2)r is in a desired operator ideal.
Since our primary applications are to ideals of B(H) for a Hilbert space H, we will now
restrict attention to that setting, and consider the Schatten-von Neumann ideals Lp.

One technical result we use is the following, which is essentially [108, Equation (14)].
Suppose that E is an interpolation space between Lp and Lq for some 1 < p < q < ∞.
If X and Y are positive operators such that [X,Y ] ∈ E , and f is a Lipschitz function on
R then

‖[X, f(Y )]‖E ≤ cE‖f ′‖L∞(R)‖[X,Y ]‖E .
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In particular, if f(t) = t1+2is then f is a Lipschitz function on R, with |f ′(t)| = |1 + 2is|
for t ∈ R, and therefore:

‖[X,Y 1+2is]‖E ≤ 2cE(1 + |s|)‖[X,Y ]‖E . (4.3.1)

We will use E = Lr,1 and E = Lr,∞ where 1 < r <∞.

4.3.1 Sufficient conditions for a difference of powers to be trace class

The result of this subsection concerns conditions on positive bounded operators A and
B so that the difference BrAr − (A1/2BA1/2)r is trace class, and originally appeared in
[32, Appendix B]. We will use this result in Chapter 7.

Before proving the theorem, it is worth remarking on L1-valued integrals. Suppose that
T : R→ B(H) is a weak∗-measurable function such that for all s ∈ R, the value of T at
s is in L1. If

∫
R ‖T (s)‖1 ds <∞, then the weak∗-integral is in L1.

To see this, note that the assumption implies that
∫∞
−∞ ‖T (s)‖∞ ds <∞, and therefore

Theorem 4.1.4 implies that the weak∗-integral exists. Therefore, there exists a polar
decomposition: ∣∣∣∣∫ ∞

−∞
T (s) ds

∣∣∣∣ = u

∫ ∞
−∞

T (s) ds

for some partial isometry u. Since u is bounded, it may be moved inside the weak∗-
integral. Then letting X ∈ L1 the definition of the weak∗-integral implies that:

tr

(
X

∣∣∣∣∫ ∞
−∞

T (s) ds

∣∣∣∣) =

∫ ∞
−∞

tr(XuT (s)) ds ≤
∫ ∞
−∞
‖X‖∞‖T (s)‖1 ds.

If one then takes the supremum over all X ∈ L1 with ‖X‖∞ ≤ 1, it follows that
the absolute value of the weak∗-integral

∫∞
−∞ T (s) ds has finite trace, and so the weak∗

integral is in L1.

Theorem 4.3.1. Let A and B be two positive bounded operators, and let r > 1. If the
following four conditions hold:

(i) Br−1Ar−1 ∈ L r
r−1

,∞,

(ii) A1/2BA1/2 ∈ Lr,∞,

(iii) [BA1/2, A1/2] ∈ Lr,1,

(iv) Br−1[B,Ar−1]A ∈ L1.

Then
BrAr − (A1/2BA1/2)r ∈ L1.

Proof. Taking z = r and observing that <(z) = r > 1 allows us to apply Theorem 4.2.1
to get:

BrAr − (A1/2BA1/2)r = Tr(0)−
∫
R
Tr(s)ĝr(s) ds.
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We now focus on proving that Tr(0) ∈ L1 and∫
R
‖Tr(s)‖1|ĝr(s)| ds <∞.

Let s ∈ R. As the function t 7→ tis on R takes values in {z ∈ C : |z| = 0, 1}, the operator
Cis = (A1/2BA1/2)is is a partial isometry. So we have by the triangle inequality:

‖Tr(s)‖1 ≤ ‖Br−1[BA1/2, Ar−1/2+is]‖1 + ‖[BA1/2, A1/2+is]Cr−1‖1.

Note that this holds even in the s = 0 case. By the Leibniz rule:

[BA1/2, Ar−
1
2

+is] = [BA1/2, Ar−1A1/2+is]

= [BA1/2, Ar−1]A1/2+is +Ar−1[BA1/2, A1/2+is]

= [B,Ar−1]A1+is +Ar−1[BA1/2, A1/2+is].

Therefore,

‖Tr(s)‖1 ≤ ‖Br−1[B,Ar−1]A‖1 + ‖Br−1Ar−1[BA1/2, A1/2+is]‖1
+ ‖[BA1/2, A1/2+is]Cr−1‖1.

Using the Hölder-type inequality (1.5.3) we have:

‖Tr(s)‖1 ≤ ‖Br−1[B,Ar−1]A‖1 + ‖Br−1Ar−1‖ r
r−1

,∞‖[BA1/2, A1/2+is]‖r,1

+ ‖[BA1/2, A1/2+is]‖r,1‖Cr−1‖ r
r−1

,∞.

By assumption (iv), the first norm ‖Br−1[B,Ar−1]A‖1 is finite, and by (i) the norm
‖Br−1Ar−1‖ r

r−1
,∞ is finite. Finally by (ii), we have Cr−1 ∈ L r

r−1
,∞ and so ‖Cr−1‖ r

r−1
,∞

is finite.

So there are constants c1 and c2 such that:

‖Tr(s)‖1 ≤ c1 + c2‖[BA1/2, A1/2+is]‖r,1.

If s = 0, then by assumption (iii) the latter norm is finite, so we have proved that
‖Tr(0)‖1 <∞.

Since by (iii) we have that [BA1/2, A1/2] ∈ Lr,1, we can apply (4.3.1) with X = BA1/2,
Y = A1/2 and E = Lr,1 to get:

‖Tr(s)‖1 ≤ c1 + 2c2cr(1 + |s|)

with cr := ‖[BA1/2, A1/2]‖r,1. Since gr is a Schwartz-class function, the Fourier transform
ĝr is also in the Schwartz-class, and therefore,∫

R
|ĝr(s)|‖Tr(s)‖1 ds ≤ c1

∫
R
|ĝr(s)| ds+ 2c2cr

∫
R
|ĝr(s)|(1 + |s|) ds <∞.

The argument preceding the theorem then implies that
∫
R ĝr(s)Tr(s) ds ∈ L1, and so

BrAr − (A1/2BA1/2)r ∈ L1.
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4.3.2 Sufficient conditions for a difference of powers to be in (L1,∞)0

In this subsection we provide sufficient conditions for a difference of powers of operators
to be in the quasi-Banach ideal (L1,∞)0. We will use this in Chapter 5.

We begin with a simple observation. Recall that if 1 < r <∞ then (Lr,∞)0 is a separable
ideal of B(H) defined as the closure of the set of all finite rank operators in the quasinorm
‖ · ‖r,∞. Since r > 1, there is a norm equivalent to the defining quasinorm ‖ · ‖r,∞.

Lemma 4.3.2. Let f be a continuous function from R to (Lr,∞)0 where 1 < r <∞. If∫
R
‖f(s)‖r,∞ ds <∞

then the weak∗-integral
∫
R f(s) ds is in (Lr,∞)0.

Proof. The proof relies on the fact that (Lr,∞)0 can be given an equivalent Banach norm,
and the assumption implies that f is integrable in the (Lr,∞)0-valued Bochner sense.

Indeed, since f is continuous, and ‖f(·)‖r,∞ is integrable, it follows that f is integrable
in the (Lr,∞)-valued Bochner sense. So the integral:∫ ∞

−∞
f(s) ds

taken in the Bochner sense, is an element of the space (Lr,∞)0. Let us show that the
Bochner integral must coincide precisely with the weak∗-integral.

Since the Lr,∞ topology is finer than the norm topology, f is also continuous in the
operator norm, and hence in particular is weak∗-measurable. Since ‖f(s)‖∞ ≤ ‖f(s)‖r,∞
for all s ∈ R, it follows from Lemma 4.1.4 that f is weak∗-integrable.

For all X ∈ L1 and T ∈ (Lr,∞)0, we have:

|Tr(XT )| ≤ ‖X‖1‖T‖∞ ≤ ‖X‖1‖T‖r,∞.

Therefore the map T 7→ Tr(XT ) is a continuous linear functional on (Lr,∞)0. Since
continuous linear functionals can be moved inside a Bochner integral, we have:

Tr

(
X

∫ ∞
−∞

f(s) ds

)
=

∫
−∞

Tr(Xf(s)) ds

where the integral on the left is a Bochner integral. However the right hand side is
precisely the definition of:

Tr

(
X

∫ ∞
−∞

f(s) ds

)
where now the integral is a B(H)-valued weak∗-integral. Thus, for all X ∈ L1 we have:

Tr

(
X

∫ ∞
−∞

f(s) ds

)
= Tr

(
X

∫ ∞
−∞

f(s) ds

)
where the integral on the left is an (Lr,∞)0-valued Bochner integral, and the integral
on the right is a B(H)-valued weak∗-integral. Since this holds for all X ∈ L1, it follows
that these two integrals are identical.
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The following result first appeared in the literature as [28, Lemma 3.β.11] without proof.
A proof was later provided in [35, Lemma 5.3].

Lemma 4.3.3. Let A and B be non-negative bounded operators, and 1 < r < ∞. If
B ∈ Lr,∞ and [A1/2, B] ∈ (Lr,∞)0, then

BrAr − (A1/2BA1/2)r ∈ (L1,∞)0.

Proof. Since [A1/2, B] ∈ (Lr,∞)0, it follows that for all k ≥ 0,

[Ak/2, B] =
k−1∑
l=0

A(k−l−1)/2[A1/2, B]Al/2 ∈ (Lr,∞)0.

By linearity, for all polynomials p we have:

[p(A1/2), B] ∈ (Lr,∞)0.

Since B ∈ Lr,∞, we also have the trivial bound for all continuous functions f on
[0, ‖A‖∞]:

‖[f(A1/2), B]‖r,∞ ≤ ‖f‖L∞([0,‖A‖∞])‖B‖r,∞.

Now let f be an arbitrary continuous function on the interval [0, ‖A‖∞], and select a
sequence {pn}∞n=0 such that pn → f uniformly on [0, ‖A‖∞]. Then,

‖[f(A1/2), B]− [pn(A1/2), B]‖r,∞ ≤ ‖f − pn‖L∞([0,‖A‖∞])‖B‖r,∞ → 0

as n → ∞. Since each [pn(A1/2), B] is in (Lr,∞)0, and this ideal is by definition closed
in the Lr,∞ quasinorm, it follows that:

[f(A1/2), B] ∈ (Lr,∞)0.

In particular, if we take f(t) = t2r−1+2is for s ∈ R then

[Ar−1/2+is, B] ∈ (Lr,∞)0.

Since A1/2 is bounded, we have immediately that

[BA1/2, Ar−1/2+is] ∈ (Lr,∞)0. (4.3.2)

for all s ∈ R. If we use (4.3.1), with X = BA1/2, Y = Ar−1/2 then we have the estimate:

‖[BA1/2, Ar−1/2+is(2r−1)]‖r,∞ ≤ 2cr(1 + |s|)‖[BA1/2, Ar−1/2]‖r,∞

which is finite by (4.3.2) with s = 0. Rescaling s by a factor of 1
2r−1 yields:

‖[BA1/2, Ar−1/2+is]‖r,∞ ≤ 2cr(1 +
|s|

2r − 1
)‖[BA1/2, Ar−1/2]‖r,∞. (4.3.3)

Similarly, [BA1/2, A1/2+is] ∈ (Lr,∞)0 and

‖[BA1/2, A1/2+is]‖r,∞ ≤ 2cr(1 + |s|)‖[BA1/2, A1/2]‖r,∞. (4.3.4)
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We write the integral formula in Theorem 4.2.1 as follows. We have:

BrAr − (A1/2BA1/2)r = Tr(0)−Br−1

∫ ∞
−∞

ĝr(s)B
is[BA1/2, Ar−1/2+is]C−isds

+

∫ ∞
−∞

ĝr(s)B
is[BA1/2, A1/2+is]C−is ds · Cr−1. (4.3.5)

Since Tr(0) = Br−1[BA1/2, Ar−1/2] + [BA1/2, A1/2]Cr−1, we have:

Tr(0) ∈ L r
r−1

,∞ · (Lr,∞)0 + (Lr,∞)0 · L r
r−1

,∞

so by the Hölder inequality, Tr(0) ∈ L1,∞, and since (Lr,∞)0 is an ideal, we have further
that Tr(0) ∈ (Lr,∞)0.

Finally, using the fact that ĝr is in the Schwartz class and the estimates (4.3.3) and
(4.3.4), Lemma 4.3.2 applied to (4.3.5) yields:

BrAr − (A1/2BA1/2)r ∈ (L1,∞)0 + L r
r−1

,∞ · (Lr,∞)0 + (Lr,∞)0 · L r
r−1

,∞.

From the Hölder inequality, it follows that BrAr − (A1/2BA1/2)r ∈ (L1,∞)0 as required.



Chapter 5

Application to Julia sets

5.1 Introduction

Using the machinery developed in Chapter 4, we are able to finally move to one of the
most surprising applications of quantised calculus: the Conformal Trace Theorem (The-
orem 5.1.3). This result (in the specific setting of Julia sets of quadratic polynomials)
was first announced by Connes in [28, Page 23], and later in [30] and [31] but the detailed
proofs were not given. Eventually, a complete proof for the quadratic case was published
in [33] which consisted of joint work of the author with A. Connes, F. Sukochev and D.
Zanin. The content of this chapter largely reproduces [33], however a number of edits
have been made.

The most substantial change made here compared to the published version of [33] is that
we consider a much larger class of polynomials. In [33], for the sake of simplicity the
authors restricted attention to Julia sets of quadratic polynomials z 7→ z2 + c where c is
in the set {w(1− w) : 0 < |w| < 1/2}. Here we consider a larger class which contains
polynomials of arbitrarily high degree (in particular, we can consider z 7→ zd+c for d ≥ 2
and c 6= 0 is sufficiently small). This has necessitated changes to some of the proofs:
most notably, Lemma 5.5.5 has a new and arguably simpler proof than the published
version of [33].

We recall the definition of Julia sets of polynomials, as outlined in [25, Chapter III]. Let
φ be a polynomial. For k ≥ 1 we denote φk for the k-fold iteration of φ. The Julia set
J(φ) of φ may be defined to be the boundary of the set of points z ∈ C such that φk(z)
is bounded as k →∞.

The results of this chapter will be applicable to a class of polynomials which we call
“admissible”.

Definition 5.1.1. We call a polynomial φ of degree d ≥ 2 admissible if the following
two conditions hold:

(i) The Julia set J of φ is a Jordan curve of Hausdorff dimension p > 1 (we recall the
definition of Hausdorff dimension in Section 5.4).

(ii) φ is hyperbolic on J (i.e, there exists an n ≥ 0 such that for every z ∈ J we have
|(φn)′(z)| > 1).

83
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The second assumption (that φ is hyperbolic) implies that J has Hausdorff dimension
strictly less than 2 (see Theorem 5.4.2).

It is in general not trivial to determine if a given polynomial is admissible, but there exist
examples of admissible polynomials of arbitrary degree greater than 1. The following
lemma demonstrates the most important class of examples.

Lemma 5.1.2. Let d ≥ 2 and consider φ(z) := zd + c. If c is sufficiently small and
nonzero, then φ is admissible.

Proof. Recall that an attracting fixed point of a polynomial φ is a point z ∈ C such
that φ(z) = z and |φ′(z)| < 1. The fixed points of φ correspond to solutions to to
zd − z + c = 0, and a fixed point z0 is attracting when |φ′(z0)| < 1. That is, when
|z0|d−1 < d−1. One can then see directly that φ has an attracting fixed point if and only
if c ∈ {w − wd : 0 < |w|d−1 < d−1}.

Since the function w 7→ w − wd is one-to-one on the open disc |w|d−1 < d−1, it follows
that for each c ∈ M0 there exists a unique 0 < |w|d−1 < d−1 such that c = w − wd.
Thus, φ always has a unique attracting fixed point which we denote z0.

A critical point of φ is a solution to φ′(z) = 0. According to [25, Theorem III.2.2], for
every attracting fixed point of a polynomial there is at least one critical point z such
that limk→∞ φ

k(z) = z0. In this case, φ has precisely one critical point at zero and hence
limk→∞ φ

k(0) = z0.

Since z0 is attractive, there is a bounded neighbourhood U of z0 such that φk(U) ⊆ U
for all k ≥ 0 (see [25, Section II.2]). Thus z0 /∈ J . Moreover, as limk→∞ φ

k(0) = z0, it
follows that:

∞⋃
k=1

{φk(0)} ⊆
∞⋃
k=1

φ−k(U)

the latter set is an open neighbourhood of z0, and thus is disjoint from J . Therefore

∞⋃
k=1

{φk(0)} ∩ J = ∅.

According to a well-known characterisation of hyperbolicity (see [25, Lemma V.2.1] and
[95, Theorem 19.1]) a general polynomial φ is hyperbolic on its Julia set J if and only if

∞⋃
k=1

φk(CP) ∩ J = ∅

where CP is the set of all critical points of φ. Since 0 is the only critical point of φ, we
have therefore demonstrated that φ is hyperbolic on J .

Let us now show that J is a Jordan curve. Since we know that φ is hyperbolic on J ,
it suffices to show that the attracting basin of ∞ is simply connected [8, Lemma 9.9.1].
Indeed, this follows from the fact that φ has no critical points which are iterated to
infinity, see the discussion in [25, Section III.4].

Finally, the fact that J has Hausdorff dimension strictly greater than 1 follows from a
computation of Ruelle [117, Appendix 2], which shows that the Hausdorff dimension of
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J is 1 + |c|2
4 log(d) + O(|c|3), so that when c is sufficiently small and nonzero then J has

Hausdorff dimension strictly greater than 1.

More specifically, [25, Theorem V.2.1] implies the stronger result that J is a quasicircle,
but for our present purposes it suffices to know that J is a Jordan curve.

Let T denote the unit circle in the complex plane, equipped with its standard Haar
measure. Let F : L2(T)→ L2(T) be the Hilbert transform, defined on exponential basis
functions en(z) := zn, n ∈ Z by Fen = sgn(n)en. Given an essentially bounded function
f on the unit circle T, the symbol Mf denotes the operator on L2(T) of pointwise
multiplication by f . Since J is a Jordan curve, due to the Riemann mapping theorem
there is a conformal mapping Z from the exterior of the unit disc {z ∈ C : |z| > 1}
to the unbounded component of C \ J . By the Carathèodory theorem on continuous
extensions of conformal maps, Z extends to a continuous bijection Z : T→ J . We may
therefore consider Z as a function on the circle, and we write MZ as the corresponding
linear operator on L2(T). It is known that Z may be chosen such that for all z ∈ T we
have Z(zd) = φ(Z(z)) (see Subsection 5.4.3).

The main result of this chapter is the following theorem (all heretofore unexplained
symbols and notions will be defined in Section 1.5.2).

Theorem 5.1.3 (The Conformal Trace Theorem). Let p ∈ (1, 2) be the Hausdorff
dimension of the Julia set J of an admissible polynomial φ. Let mp be the p-dimensional
Hausdorff measure on J . Then,

(a) [F,MZ ] ∈ Lp,∞.

(b) For every continuous Hermitian trace ϕ on L1,∞, there exists a constant K(ϕ, φ)
such that for every f ∈ C(J) we have:

ϕ(Mf◦Z |[F,MZ ]|p) = K(ϕ, φ)

∫
J
f dmp.

(c) If ω is a dilation invariant extended limit on L∞(0,∞) such that ω ◦ log is also
dilation invariant, then K(trω, φ) > 0. Here, trω is a Dixmier trace corresponding
to the extended limit ω.

Theorem 5.1.3 should be compared with [35, Theorem 1.1] which concerns geometric
measures on limit sets of finitely generated quasi-Fuchsian groups. The statement of
the result is very similar, however it should be noted that the methods of proof used
in this text are completely different to those used in [35]. We follow a proof outlined
by the Connes in [28, Chapter 4], which proceeds by identifying the functional f 7→
ϕ(Mf◦Z |[F,MZ ]|p) on the space C(J) with the (essentially unique) p-conformal measure
with respect to φ on J (as defined by Sullivan [130, Theorem 3]). Another theorem
of Sullivan [130, Theorem 4] identifies this p-conformal measure with the p-dimensional
Hausdorff measure.

The pair (L2(T), F ) is a Fredholm module for C(T) in the sense discussed in Section
1.1.2. It was the analysis of this particular Fredholm module by Connes and Sullivan
which ultimately led to Theorem 5.1.3. To provide some intuition for the appearance of
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F in a formula for the Hausdorff measure, it is worth noting that F is invariant under
endomorphisms of T which are the restrictions of conformal maps. This is the essential
property of F which leads to the identification of the measure f 7→ ϕ(Mf◦Z |[F,MZ ]|p)
with the conformal measure of the Julia set.

This chapter is broken up as follows:

1. Section 5.2 collects necessary results concerning commutators of multiplication
operators and the Hilbert transform. Many of the proofs relevant to this section
are provided in Appendix A.

2. Section 5.3 proves that if C is any Jordan curve in the complex plane with finite
upper s-dimensional Minkowski content, and ζ is a conformal equivalence between
the exterior of the unit disc D and the exterior of C, then [F,Mζ ] (where Mζ is
considered as an operator on L2(T)) is in the weak Schatten ideal Ls,∞.

3. Section 5.4 collects properties of Julia sets of admissible polynomials, and demon-
strates that the Julia set of an admissible polynomial is a Jordan curve with
Hausdorff dimension p ∈ (1, 2) and with finite upper and strictly positive lower
p-Minkowski content. Combined with the results of Section 5.3, this immediately
yields Theorem 5.1.3.(a).

4. Section 5.5 then completes the proof of Theorem 5.1.3.(b), by showing that the
functional f 7→ ϕ(Mf◦Z |[F,MZ ]|p) is p-conformal with respect to φ (in the sense
of Subsection 5.4.2).

5. Section 5.6 then provides a proof of Theorem 5.1.3.(c) by referring to known results
on the relationship between Dixmier traces and zeta-function residues.

Sections 5.3 and 5.6 are in a sense self-contained in that no reference is made to Julia
sets. Instead, we work with arbitrary Jordan curves with finite upper and positive lower
s-dimensional Minkowski content. We have opted to work at this level of generality
because it is anticipated that in future work we may be able to work with more general
conformally self-similar Jordan curves.

We give thanks to Professors Smirnov and Sullivan for useful discussions and Professor
Bishop for communicating to us the idea of the proof of Proposition 5.4.3.

5.2 Commutators of multiplication operators and the Hilbert
transform

Denote by D the open unit disc in the complex plane. Given f ∈ L1(T)1, let f̂(n)
be the nth Fourier coefficient of f . It is well known that f can be identified with the
non-tangential boundary values of a holomorphic function in the interior of the unit disc
if and only if f̂(n) = 0 for all n < 0. In this case we identify f with its holomorphic
extension. The Hilbert transform F : L2(T)→ L2(T) is defined on functions f ∈ L2(T)
by

(Ff)(z) =
∑
n∈Z

sgn(n)f̂(n)zn, z ∈ T.

1Spaces Lp(T) on the circle are always defined with respect to the Haar measure



Application to Julia sets 87

Given f ∈ L∞(T), the symbol Mf stands for the operator on L2(T) given by pointwise
multiplication by f . We are concerned with conditions on f which are necessary and
sufficient for the commutator [F,Mf ] to be in the Schatten p-class Lp. The following
result is a restatement of a result due to Peller [100, Chapter 6] and a full proof is
included in Appendix A. Recall that dzdz denotes the Lebesgue measure on C.

Theorem 5.2.1. Let f be a function on T with holomorphic extension to D, and let
p0 > 1. There exist constants k,K > 0 (depending on p0) such that for all p ∈ (p0, 2)
we have

k

(∫
D
|f ′(z)|p(1− |z|2)p−2 dzdz

)1/p

≤ ‖[F, f ]‖p ≤ K
(∫

D
|f ′(z)|p(1− |z|2)p−2 dzdz

)1/p

.

Note that f ′ denotes the derivative of the holomorphic extension of f to the interior of
D, not the holomorphic extension of the derivative of f . We also utilise the following
one-sided result, giving sufficient conditions for [F,Mf ] to be in the weak p-Schatten
class and which is identical to [35, Lemma 3.5].

Theorem 5.2.2. Let p > 1, and let f be a function on T with holomorphic extension to
D. Define h(z) := f ′(z)(1− |z|2) and let ν be the measure on D given by dν = dzdz

(1−|z|2)2
.

Then there exists a constant cp > 0 such that

‖[F,Mf ]‖p,∞ ≤ cp‖h‖Lp,∞(D,ν).

The proof of Theorem 5.2.2 amounts to a combination of Theorem 5.2.1 and an inter-
polation argument.

5.3 Jordan curves with finite upper Minkowski content

Let A be an arbitrary subset of Rd (we will ultimately be concerned with the case d = 2).
The δ-neighbourhood of A is the set,

Sδ(A) = {x ∈ Rd : dist(x,A) < δ}.

Let |Sδ(A)| denote the Lebesgue measure of Sδ(A) and let 0 ≤ s ≤ d. The upper
s-dimensional Minkowski content of A is defined by:

M s(A) := lim sup
δ→0

δs−d|Sδ(A)|.

By definition, M s(A) is finite if and only if |Sδ(A)| = O(δd−s) as δ → 0.

The lower s-dimensional Minkowski content is defined as,

Ms(A) := lim inf
δ→0

δs−d|Sδ(A)|.

The above given definitions of upper and lower Minkowski content follow [52, Definition
3.2.37].

Let C be a Jordan curve in the plane, and let Ω ⊂ C be the bounded component
of C \ C, so that C = ∂Ω. By the Riemann mapping theorem, there is a conformal



Application to Julia sets 88

mapping ξ : D→ Ω which by the Carathèodory theorem extends to a continuous function
ξ : T → C. This section is devoted to the proof of the fact that if C has finite upper s-
dimensional Minkowski content then the commutator [F,Mξ] (considered as an operator
on L2(T)) is in the weak Schatten s-class Ls,∞.

The following Lemma appears as [28, Equation (4.21)], and we supply a detailed proof
for convenience.

Lemma 5.3.1. Let Ω be a domain in C whose boundary ∂Ω is a Jordan curve, and let
ξ : D→ Ω be a conformal map. Then for all |z| < 1,

1

4
(1− |z|2)|ξ′(z)| ≤ dist(ξ(z), ∂Ω) ≤ (1− |z|2)|ξ′(z)|

Proof. Let h be any conformal mapping h : D→ Ω. Since h is conformal, it is bijective
and we have h′(0) 6= 0. Hence we may define a function k by

k(z) =

{
z

h(z)−h(0) , z 6= 0
1

h′(0) , z = 0.

Since h is holomorphic, k is also holomorphic. Since ∂Ω is a Jordan curve, by the
Carathèodory theorem [54, Theorem 3.1], h extends to a continuous function on the
circle T. Since h(0) is in the interior of the curve ∂Ω, we have infz∈T |h(z)− h(0)| > 0,
so it follows that k also extends continuously to T. By the maximum modulus principle,
since k is holomorphic in the open unit disc,

|k(0)| ≤ sup
|z|=1
|k(z)|

Equivalently,
1

|h′(0)|
≤ sup
|z|=1

|z|
|h(z)− h(0)|

.

Since |z| = 1, we then obtain

inf
|z|=1
|h(z)− h(0)| ≤ |h′(0)|

When |z| = 1, the point h(z) lies in the boundary ∂Ω, so immediately:

dist(h(0), ∂Ω) ≤ |h′(0)| (5.3.1)

We now refer to the Koebe 1/4-theorem, [115, Theorem 14.14], which states that if h is
a conformal mapping from D to a simply connected domain Ω, then Ω contains the disc

centred at h(0) with radius |h
′(0)|
4 . Equivalently, dist(h(0), ∂Ω) is not less than 1

4 |h
′(0)|,

so:
1

4
|h′(0)| ≤ dist(h(0), ∂Ω). (5.3.2)

Combining (5.3.1) and (5.3.2),

1

4
|h′(0)| ≤ dist(h(0), ∂Ω) ≤ |h′(0)|. (5.3.3)
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Let |z| < 1. Consider the function

h(w) := ξ

(
z − w
1− zw

)
, |w| < 1.

Note that the map w 7→ z−w
1−zw is a conformal automorphism of the unit disc, so the

image of the unit disc under h is the same as the image under ξ. Thus, h is a conformal
mapping from the unit disc to Ω. We can then simply compute:

h(0) = ξ(z), h′(0) = −ξ′(z)(1− |z|2).

So immediately from (5.3.3)

1

4
(1− |z|2)|ξ′(z)| ≤ dist(ξ(z), ∂Ω) ≤ (1− |z|2)|ξ′(z)|.

The next result shows how we can use Lemma 5.3.1 to reduce the question of whether
(1− |z|2)|ξ′(z)| ∈ Ls,∞(D, dzdz

(1−|z|2)2
) to a purely geometric question concerning C.

Proposition 5.3.2. Let C be a Jordan curve in the plane with interior Ω, and let ξ :
D→ Ω be a conformal map. Let h be the function on D given by h(z) = |ξ′(z)|(1−|z|2).
Let D be the function on Ω defined by D(z) = dist(z, ∂Ω) = dist(z, C). Then for all
s > 0,

h ∈ Ls,∞(D,
dzdz

(1− |z|2)2
)⇐⇒ D ∈ Ls,∞(Ω,

dwdw

dist(w, ∂Ω)2
).

Proof. Restating Lemma 5.3.1, we have:

1

4
h(z) ≤ D(ξ(z)) ≤ h(z). (5.3.4)

Rearranging the result of Lemma 5.3.1 yields

1

(1− |z|2)2
≤ |ξ′(z)|2

dist(ξ(z), ∂Ω)2
≤ 16

(1− |z|2)2
, z ∈ D. (5.3.5)

The function ξ maps D conformally into Ω, so in particular it is injective. If w = ξ(z),
then dwdw = |ξ′(z)|2dzdz, so from (5.3.5) for any Borel set A ⊆ D we have∫

A

dzdz

(1− |z|2)2
≤
∫
ξ(A)

dwdw

dist(w, ∂Ω)2
≤ 16

∫
A

dzdz

(1− |z|2)2
.

Thus, the images of the measure dzdz
(1−|z|2)2

under ξ is equivalent to the measure dwdw
dist(w,∂Ω)2

.

Combining (5.3.4) and (5.3.5) yields the equivalence that h ∈ Ls,∞(D, dzdz
(1−|z|2)2

) if and

only if D ∈ Ls,∞(Ω, dwdw
dist(w,∂Ω)2

).

The following is the key result which yields [F,Mξ] ∈ Ls,∞ if C has finite upper s-
dimensional Minkowski content.
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Proposition 5.3.3. If ∂Ω has finite upper s-dimensional Minkowski content, then:

z 7→ dist(z, ∂Ω) ∈ Ls,∞
(

Ω,
dzdz

dist(z, ∂Ω)2

)
.

Proof. We partition the region Ω into countably many regions, {Ak}k≥0 defined by:

Ak := {z ∈ Ω : dist(z, ∂Ω) ∈ [21−k, 2−k)}

and define A−1 := {z ∈ Ω : dist(z, ∂Ω) > 2}. Then Ω is a disjoint union:

Ω =

∞⋃
k=−1

Ak.

Let µ be the measure dµ = dzdz
dist(z,∂Ω)2

. Then for all n ≥ 0,

µ({z ∈ Ω : dist(z, ∂Ω) ≥ 2−n) =

n∑
k=−1

µ(Ak).

Inside the region Ak, the function z 7→ 1
dist(z,∂Ω)2

is bounded from above by 22k. So for

k ≥ 0,

µ(Ak) ≤ 22k|Ak|
= 22k(|S21−k(∂Ω) ∩ Ω| − |S2−k(∂Ω) ∩ Ω|)
≤ 22k|S21−k(∂Ω)|.

By the assumption that the s-dimensional Minkowski content is finite there exists C > 0
such that for all k,

|S21−k(Ω)| ≤ C · 2(1−k)(2−s)

= C · 22−s · 2−2k · 2ks.

Letting K = C22−s, we obtain that for all k ≥ 0 we have µ(Ak) ≤ K2ks. So,

µ({z ∈ Ω : dist(z, ∂Ω) ≥ 2−n) ≤ µ(A−1) +K
n∑
k=0

2ks

= O(2ns).

Thus, µ({z ∈ Ω : dist(z, ∂Ω) ≥ t}) = O(t−s) as t→ 0.

We obtain our main result concerning conformal maps from the unit disc to the interior
of a Jordan curve.

Theorem 5.3.4. Let C be a Jordan curve in the plane with finite s-dimensional upper
Minkowski content, and let ξ be a conformal map from the interior of the unit disc to
the interior of C. Then the extension of ξ to the boundary, considered as a function on
the circle T, satisfies

[F,Mξ] ∈ Ls,∞.
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Proof. Let Ω denote the interior of C and let D be the function on Ω given by D(w) :=
dist(w, C). From Proposition 5.3.3, we have D ∈ Ls,∞(Ω, dwdw

dist(w,C)2 ). Applying Proposi-

tion 5.3.2, it follows that the function h(z) := (1− |z|2)|ξ′(z)| is in Ls,∞(D, dzdz
(1−|z|2)2

).

Due to Theorem 5.2.2, if h ∈ Ls,∞(D, dzdz
(1−|z|2)2

) then [F,Mξ] ∈ Ls,∞.

Theorem 5.3.4 concerns conformal equivalences between the open unit disc and the
interior of a Jordan curve. In fact, similar results hold for equivalences between the
exterior of the unit disc and the exterior of a Jordan curve.

Theorem 5.3.5. Let C be a Jordan curve in the plane with finite s-dimensional upper
Minkowski content, and let ζ be a conformal map from the exterior of the unit disc,
{z ∈ C : |z| > 1} to the exterior of C. Then the extension of ζ to the T, considered as
a function on the circle T, satisfies

[F,Mζ ] ∈ Ls,∞.

Proof. Without loss of generality we may assume that the point 0 is in the interior of
C, and also ζ may be chosen such that as |z| → ∞ we have |ζ(z)| → ∞. Define the
function η on D \ {0} by

η(z) := ζ(z−1)−1.

Since 0 is in the interior of C, the range of ζ(z−1) is bounded away from zero, so η is
bounded in any punctured neighbourhood of zero and so has holomorphic extension to
D, and by our assumption is extended to D by defining η(0) = 0. Since ζ is injective, η
is also injective and hence is a conformal equivalence onto its image. Since 0 /∈ C, the
image C−1 is also a Jordan curve. Hence, η is a conformal equivalence between D and
the interior of the Jordan curve C−1.

For all δ > 0, by definition we have

Sδ(C−1) =
⋃
z∈C

B(z−1, δ).

Since the function z 7→ z−1 is Lipschitz when restricted to the complement of any ball
containing 0, then for any ε > 0 there exists a constant C > 0 such that for all |z| > ε
and all δ < ε/2 we have,

B(z−1, δ) ⊆ B(z, Cδ)−1.

Hence for δ sufficiently small the inclusion

Sδ(C−1) ⊆ SCδ(C)−1

holds.

The Jacobian of the function z 7→ z−1 is uniformly bounded on compact subsets of C\0.
Hence, there is a constant K > 0 (depending on C) such that for δ sufficiently small,

|SCδ(C)−1| ≤ K|SCδ(C)| = O(δ2−s).

So finally |Sδ(C−1)| = O(δ2−s). Hence C−1 has finite s-dimensional upper Minkowski
content.
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Let W be the unitary map on L2(T) which maps the basis function zn to z−n for all
n ∈ Z. Then W ∗FW = −F +R, where R is a rank one map, and Mζ = (WMηW

∗)−1.
Thus,

[F,Mζ ] = −(WMηW
∗)−1[F,WMηW

∗](WMηW
∗)−1

= −(WMηW
∗)−1W [−F +R,Mη]W

∗(WMηW
∗)−1.

So finally, [F,Mζ ] ∈ Ls,∞.

Theorem 5.3.5 will yield Theorem 5.1.3.(a) once it is shown that the Julia sets of ad-
missible polynomials φ are Jordan curves with finite p-dimensional upper Minkowski
content.

5.4 Julia sets

We now specialise to Jordan curves which arise as Julia sets of admissible polynomials.
We use the concepts of Hausdorff measure and Hausdorff dimension, conventionally
defined as follows (see e.g. [50, Section 2.4], [52, Section 2.10.2]).

Let S be a Borel subset of Rd, and let A ⊆ S be Borel. Let s, δ > 0, and define:

Hsδ(A) := inf{
∞∑
j=1

rsj ; : there is a covering of A with open sets with diameters rj < δ}.

The Hausdorff measure ms(A) is defined to be supδ>0Hsδ(A). The assignment A 7→
ms(A) is then a Borel measure on S, and the Hausdorff dimension of S is defined to be
the infimum of the set of all s such that ms(S) is positive.

Let d ≥ 2, and fix an admissible polynomial φ of degree d. As usual, we denote the
k-fold iteration of the function φ with itself by φk.

Definition 5.4.1. The Julia set J of φ is the boundary of the set of points z ∈ C such
that φk(z) remains bounded as k →∞ (see [25, Chapter III] and [95, Lemma 9.4]). Let
p denote the Hausdorff dimension of J .

It is well known that J is invariant under φ, and also φ−1(J) = J (see [25, Theorem
III.1.3] and [95, Lemma 4.3]).

Recall that we have assumed that an admissible polynomial φ is hyperbolic on J . That
is, there exists n ≥ 1 such that

inf{|(φn)′(z)| : z ∈ J} > 1.

This condition is important for characterising the Hausdorff measure on J .

From [130, Theorem 4], the Julia set of a hyperbolic map has Hausdorff dimension
strictly between 0 and 2. So immediately it follows that:

Lemma 5.4.2. If φ is an admissible polynomial, then the Hausdorff dimension p of J
satisfies 1 < p < 2.
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The hyperbolicity of φ also implies that the Hausdorff measure mp(J) of J is finite [134,
Theorem 2.3].

5.4.1 Minkowski content of the Julia set

The following proposition allows us to apply the results of Section 5.3 to the Julia set
J .

Proposition 5.4.3. If φ is an admissible polynomial, then the Julia set J has finite
upper p-dimensional Minkowski content, and positive lower p-dimensional Minkowski
content.

Proof. Let δ > 0. The set Sδ(J) can be written as a union of balls of radius δ,

Sδ(J) =
⋃
z∈J

B(z, δ).

By the Vitali covering lemma, there is a disjoint finite subset {B(zj , δ)}K(δ)
j=1 such that

K(δ)⋃
j=1

B(zj , δ) ⊆ Sδ(J) ⊆
K(δ)⋃
j=1

B(zj , 5δ). (5.4.1)

Since the finite set {B(zj , δ)}K(δ)
j=1 is disjoint, applying the Lebesgue measure to (5.4.1):

K(δ)∑
j=1

|B(zj , δ)| ≤ |Sδ(J)| ≤
K(δ)∑
j=1

|B(zj , 5δ)|.

So,
K(δ)πδ2 ≤ |Sδ(J)| ≤ 25K(δ)πδ2. (5.4.2)

Let mp denote the p-dimensional Hausdorff measure on J . Now applying mp to (5.4.1):

K(δ)∑
j=1

mp(B(zj , δ) ∩ J) ≤ mp(J) ≤
K(δ)∑
j=1

mp(B(zj , 5δ) ∩ J).

Now we refer to [134, Theorem 2.3], where it is stated (as a consequence of the hyper-
bolicity of φ) that there exist constants α, β > 0 such that for all r ∈ (0, 1) and z ∈ J
we have,

αrp ≤ mp(B(z, r) ∩ J) ≤ βrp.

So,
K(δ)αδp ≤ mp(J) ≤ K(δ)β5pδp. (5.4.3)

Rearranging the inequalities (5.4.3) we obtain

mp(J)

5pβ
δ−p ≤ K(δ) ≤ mp(J)

α
δ−p. (5.4.4)
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Combining (5.4.2) and (5.4.4) yields,

mp(J)π

5pβ
δ2−p ≤ |Sδ(J)| ≤ 25πmp(J)

α
δ2−p.

Since
mp(J)π

5pβ > 0, the lower p-dimensional Minkowski content is positive, and since
25mp(J)π

α <∞, the upper p-dimensional Minkowski content is finite.

Remark 5.4.4. Proposition 5.4.3 also shows that the Minkowski dimension of J is equal
to the Hausdorff dimension p.

5.4.2 Conformal measures on the Julia set

Let q ∈ (0,∞), and let ν be a Borel measure on J . The measure ν is said to be
q-conformal with respect to φ (in the sense of Sullivan [130, Theorem 3]) if for any
measurable set A ⊆ J such that φ|A is injective we have

ν(φ(A)) =

∫
A
|φ′(z)|q dν(z).

Conditions which guarantee the uniqueness of a q-conformal measure with respect to
φ have been previously studied, of particular interest is the case where q = p, the
Hausdorff dimension of J . We refer to [130, Theorem 4], where it is proved that there
is (up to a scaling factor) a unique p-conformal measure for φ when φ is a hyperbolic
map. Moreover, [130, Theorem 4] states that this essentially unique measure coincides
with the Hausdorff measure on J .

5.4.3 Conformal equivalence of the exterior of J with the exterior of
the unit disc

By the Riemann mapping theorem, we can choose a conformal map Z from the exterior
of the unit disc to the exterior of J . By the Carathèodory theorem ([54, Theorem 3.1]),
Z extends continuously to the boundary, Z : T → J . It is known as a special case of
[25, Chapter 2, Theorem 4.1] that Z can be chosen such that:

Z(zd) = φ(Z(z)), for all |z| ≥ 1. (5.4.5)

The above equation is due to L. Böttcher, and implies that the map Z provides a
conjugacy between the endomorphism φ : J → J and the dth power map z 7→ zd on the
unit circle.

A combination of Corollary 5.4.3 and Theorem 5.3.5 immediately yields Theorem 5.1.3.(a).
That is, that [F,MZ ] ∈ Lp,∞.

The reason for considering Z as a mapping from the exterior of the unit disc to the
exterior of J is precisely so that (5.4.5) holds. Indeed, [25, Theorem II.4.1] shows
that there is a conformal map Z such that Z(zd) = φ(Z(z)) defined for all z in a
neighbourhood of a superattracting fixed point of the extension of φ to the Riemann
sphere. The extension of the map z 7→ φ(z) has a superattracting fixed point on the
Riemann sphere at ∞ (see the Example at the end of page 34 in [25]).
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For the remainder of this text, we assume that Z satisfies (5.4.5).

5.5 The Conformal Trace Formula

As in the previous section, we assume that φ is an admissible polynomial, so that the
Julia set J of φ is a Jordan curve of Hausdorff dimension 1 < p < 2, with finite upper and
positive lower p-dimensional Minkowski content, and moreover that there is a unique
(up to scaling) p-conformal measure on J with respect to φ. Everywhere in this section,
Z is a fixed conformal map from the exterior of the unit disc D to the exterior of J ,
identified with its continuous extension to T, and satisfying (5.4.5).

Due to Theorem 5.3.5 we have |[F,MZ ]|p ∈ L1,∞ so the following functional is well
defined and bounded on C(J).

Definition 5.5.1. Let ϕ be a continuous trace on L1,∞. Due to Theorem 5.3.5, we may
consider the linear functional lϕ on C(J) given by:

lϕ(f) := ϕ(Mf◦Z |[F,MZ ]|p), f ∈ C(J).

Remark 5.5.2. Suppose ϕ in definition 5.5.1 is positive. By the Riesz theorem there is
a unique regular non-negative Borel measure νϕ on J with the normalisation νϕ(J) = 1
such that

ϕ(Mf◦Z |[F,MZ ]|p) = K(ϕ, φ)

∫
J
f dνϕ

where K(ϕ, φ) is a constant.

The first part of the following proposition appears as [28, Chapter 4, Section 3.β, The-
orem 8(a)].

Proposition 5.5.3. Let f ∈ C(T). Then,

(i) [Mf , [F,MZ ]] ∈ (Lp,∞)0, and

(ii) [Mf , |[F,MZ ]|p] ∈ (L1,∞)0.

Proof. For both part (i) and part (ii), it suffices to prove the result for f(z) = en(z) = zn,
n ∈ Z, due to linearity and continuity.

First we prove part (i). Since Mf commutes with MZ ,

Men [F,MZ ]M∗en = [MenFM
∗
en ,MZ ]

However it can be computed that,

MenFM
∗
enek = sgn(k − n)ek, for all k ∈ Z.

Hence, MenFM
∗
en − F is a finite rank operator, and in particular is in (Lp,∞)0. Thus,

[MenFM
∗
en ,MZ ]− [F,MZ ] = Men [F,MZ ]M∗en − [F,MZ ] ∈ (Lp,∞)0. (5.5.1)
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Multiplying (5.5.1) on the right by Men yields [Men , [F,Mz]] ∈ (Lp,∞)0, thus completing
the proof of part (i).

Now we prove part (ii). Applying [28, Chapter 4, Section 3.β, Proposition 10] to (5.5.1)
yields,

|Men [F,MZ ]M∗en |
p − |[F,MZ ]|p ∈ (L1,∞)0.

Since Men is unitary, it follows that |Men [F,MZ ]M∗en |
p = Men |[F,MZ ]|pM∗en , so

Men |[F,MZ ]|pM∗en − |[F,MZ ]|p ∈ (L1,∞)0.

As in part (i), multiplying on the right by Men yields [Men , |[F,MZ ]|p] ∈ (L1,∞)0, thus
completing the proof.

The following theorem consists of special cases of parts (b) and (c) of [28, Chapter 4,
Section 3.β, Theorem 8], however the proof of part (c) in that reference was not included
and so for the convenience of the reader we supply a self-contained proof.

Note that we make repeated use of the following fact: if X and Y are bounded operators
with X − Y ∈ (Lp,∞)0, then |X|p − |Y |p ∈ (L1,∞)0. This may be found as [28, Chapter
4, Section 3.β].

Theorem 5.5.4. Let f be a complex polynomial. Then,

(i) [F, f(MZ)]− f ′(MZ)[F,MZ ] ∈ (Lp,∞)0

(ii) |[F, f(MZ)]|p − |f ′(MZ)|p|[F,MZ ]|p ∈ (L1,∞)0.

Proof. First we prove part (i). Due to linearity, it suffices to prove (i) for f(z) = zn,
n ≥ 0. By the Leibniz rule,

[F,Mn
Z ] =

n∑
k=1

Mn−k
Z [F,MZ ]Mk−1

Z .

From Lemma 5.5.3.(i), [[F,MZ ],Mk−1
Z ] ∈ (Lp,∞)0 for all k ≥ 1, so

[F,Mn
Z ]− nMn−1

Z [F,MZ ] ∈ (Lp,∞)0.

Since f ′(z) = nzn−1, this completes the proof of part (i).

Now we prove part (ii). Firstly, we apply [28, Chapter 4, Section 3.β, Proposition 10]
to the difference [F, f(MZ)]− f ′(MZ)[F,MZ ], which gives us

|[F, f(MZ)]|p − |f ′(MZ)[F,MZ ]|p ∈ (L1,∞)0.

Note that2,
|f ′(MZ)[F,MZ ]| =

∣∣|f ′(MZ)|[F,MZ ]
∣∣

Hence,
|[F, f(MZ)]|p −

∣∣|f ′(MZ)|[F,MZ ]
∣∣p ∈ (L1,∞)0 (5.5.2)

2For any operators A and B, we have ||A|B|2 = B∗A∗AB = |AB|2, so ||A|B| = |AB|
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From Proposition 5.5.3.(i), since the function |f ′ ◦ Z| is continuous on T, we have:

[|f ′(MZ)|, [F,MZ ]] ∈ (Lp,∞)0.

Again applying [28, Chapter 4, Section 3.β, Proposition 10], it follows that:∣∣|f ′(MZ)|[F,MZ ]
∣∣p − ∣∣[F,MZ ]|f ′(MZ)|

∣∣p ∈ (L1,∞)0. (5.5.3)

Subtracting (5.5.3) from (5.5.2) yields

|[F, f(MZ)]|p −
∣∣[F,MZ ]|f ′(MZ)|

∣∣p ∈ (L1,∞)0. (5.5.4)

Hence, since |[F,MZ ]|f ′(MZ)|| = ||[F,MZ ]||f ′(MZ)||

|[F, f(MZ)]|p −
∣∣|[F,MZ ]| · |f ′(MZ)|

∣∣p ∈ (L1,∞)0.

Since the function |f ′ ◦Z|1/2 is continuous on T, from Proposition 5.5.3.(i) (with Mf in
that proposition given as M|f ′◦Z|1/2) the double commutator [|f ′(MZ)|1/2, [F,MZ ]] is in

(Lp,∞)0. Taking the adjoint, we also have that [|f ′(MZ)|1/2, [F,MZ ]∗] ∈ (Lp,∞)0. Thus
from [35, Lemma 6.2],

[|f ′(MZ)|1/2, |[F,MZ ]|] ∈ (Lp,∞)0. (5.5.5)

Multiplying (5.5.5) on the right by |f ′(MZ)|1/2, it follows that

|f ′(MZ)|1/2|[F,MZ ]||f ′(MZ)|1/2 − |[F,MZ ]| · |f ′(MZ)| ∈ (Lp,∞)0.

Applying [28, Chapter 4, Section 3.β, Proposition 10], it follows that

(|f ′(MZ)|1/2 · |[F,MZ ]| · |f ′(MZ)|1/2)p −
∣∣|[F,MZ ]| · |f ′(MZ)|

∣∣p ∈ (L1,∞)0. (5.5.6)

Subtracting (5.5.6) from (5.5.4) yields

|[F, f(MZ)]|p − (|f ′(MZ)|1/2 · |[F,MZ ]| · |f ′(MZ)|1/2)p ∈ (L1,∞)0. (5.5.7)

From (5.5.5), [|f ′(MZ)|1/2, |[F,MZ ]|] ∈ (Lp,∞)0, so we may apply Lemma 4.3.3 to get:

|[F,MZ ]|p|f ′(MZ)|p − (|f ′(MZ)|1/2|[F,MZ ]||f ′(MZ)|1/2)p ∈ (L1,∞)0. (5.5.8)

Subtracting (5.5.8) from (5.5.7) yields

|[F, f(MZ)]|p − |[F,MZ ]|p · |f ′(MZ)|p ∈ (L1,∞)0.

Taking the adjoint, we arrive at

|[F, f(MZ)]|p − |f ′(MZ)|p|[F,MZ ]|p ∈ (L1,∞)0.

We wish to show that νϕ from Remark 5.5.2 is p-conformal with respect to φ, thus
identifying it as the unique such measure on J (up to a constant). Let U be the linear
map on L2(T) defined by (Uh)(z) = h(zd). By the definition of Z, we have:

UMZ = Mφ◦ZU.
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More generally, if g is any Borel function on J then:

UMg◦Z = Mg◦φ◦ZU.

The following lemma contains the details required to prove that νϕ is p-conformal with
respect to φ.

Lemma 5.5.5. Let ϕ be a positive continuous trace on L1,∞, and let νϕ be the cor-
responding measure from Remark 5.5.2. Suppose that A is an open subset of J such
that φ|A is injective. Then νϕ satisfies the following transformation property: for all
g ∈ C(J) supported in φ(A), we have∫

φ(A)
g dνϕ =

∫
A

(g ◦ φ) · |φ′|p dνϕ.

Proof. Let q(z) = zd, so that (5.4.5) may be restated as

φ ◦ Z = Z ◦ q. (5.5.9)

Recall that U is defined as the linear operator on L2(T) given by (Uh)(z) = h(zd) =
(h◦q)(z). Since by assumption φ is injective on A, it follows that q is injective on Z−1(A).
Select a branch cut u of the function z 7→ z1/d such that u ◦ q|Z−1(A) = id|Z−1(A), and
define the operator V on L2(T) given by:

(V h)(z) = h(u(z)), z ∈ T.

Then,
V U = 1, UVMχZ−1(A)

= MχZ−1(A)
.

Here, χZ−1(A) is the indicator function of the set Z−1(A) ⊂ T, and so MχZ−1 (A) is a
projection on L2(T) and since g is supported in φ(A),

Mg◦φ◦Z = Mg◦φ◦ZMχZ−1(A)
.

As V U = 1, we have:

ϕ(Mg◦Z |[F,MZ ]|p) = ϕ(V UMg◦Z |[F,MZ ]|p).

Since UMh = Mh◦qU for all h ∈ L2(T), it follows that,

ϕ(Mg◦Z |[F,MZ ]|p) = ϕ(VMg◦Z◦qU |[F,MZ ]|p).

From (5.5.9), we get:

ϕ(Mg◦Z |[F,MZ ]|p) = ϕ(VMg◦φ◦ZU |[F,MZ ]|p). (5.5.10)

Since U commutes with F ,

U [F,MZ ] = [F,UMZ ]

= [F,MZ◦qU ]

= [F,MZ◦q]U.
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The same argument yields

U [F,MZ ]∗ = [F,MZ◦q]
∗U.

So,

U |[F,MZ ]|2 = [F,MZ◦q]
∗U [F,MZ ]

= |[F,MZ◦q]|2U.

By induction, for every n ≥ 1,

U |[F,MZ ]|2n = |[F,MZ◦q]|2nU.

Hence for any polynomial r we have Ur(|[F,MZ ]|2) = r(|[F,MZ◦q]|2)U . Applying the
continuous functional calculus with the function r(t) = |t|p/2, it then follows that:

U |[F,MZ ]|p = |[F,MZ◦q]|pU.

We now have:
ϕ(Mg◦Z |[F,MZ ]|p) = ϕ(VMg◦φ◦Z |[F,MZ◦q]|pU). (5.5.11)

Applying (5.5.9), it follows that

ϕ(Mg◦Z |[F,MZ ]|p) = ϕ(VMg◦φ◦Z |[F,Mφ◦Z ]|pU).

However φ is a polynomial, so we can apply Theorem 5.5.4.(2) to the right hand side of
the above to obtain:

ϕ(Mg◦Z |[F,MZ ]|p) = ϕ(VMg◦φ◦Z |φ′(MZ)|p|[F,MZ ]|pU).

Now using the cyclicity of the trace,

ϕ(Mg◦Z |[F,MZ ]|p) = ϕ(UVM(g◦φZ)·|φ′◦Z|p |[F,MZ ]|p).

Now we use the fact that g is supported in φ(A). So we can multiply by the indicator
function of Z−1(A):

Mg◦Z = MχZ−1(A)
Mg◦Z .

Since we have chosen V such that UVMχZ−1(A)
= MχZ−1(A)

, it follows that:

ϕ(Mg◦Z |[F,MZ ]|p) = ϕ(M(g◦φ◦Z)·|φ′◦Z|p |[F,MZ ]|p).

and this is the desired result.

The following proposition is the main result of this section.

Proposition 5.5.6. The measure νϕ from Remark 5.5.2 corresponding to a positive
continuous trace ϕ is p-conformal with respect to the map φ.

Proof. Let U be an open subset of J such that φ|U is injective and let g be a continuous
function on J supported in φ(U). Since φ is injective when restricted to U , it is easy to
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see that φ(U) is also open. Since g is supported on φ(U), Lemma 5.5.5 states that:∫
φ(U)

g dνϕ =

∫
U

(g ◦ φ)|φ′|p dνϕ.

Since φ|U is injective, as g varies over all continuous functions supported in φ(U),
(g ◦ φ)|U varies over all continuous functions supported in U . So,

sup
supp(g)⊆φ(U),‖g‖∞≤1

∫
φ(U)

g dνϕ = sup
supp(h)⊆U,‖h‖∞≤1

∫
U
h|φ′|p dνϕ.

Since νϕ is positive, it follows from the Riesz theorem that we have an equality of
measures,

νϕ(φ(U)) =

∫
U
|φ′|p dνϕ

for all open subsets U such that φ|U is injective. Due to the regularity of the measure
νϕ it follows that for all Borel subsets A such that φ|A is injective that:

νϕ(φ(A)) =

∫
A
|φ′|p dνϕ.

This is precisely the desired result.

We may now finally complete the proof of Theorem 5.1.3.(b).

Corollary 5.5.7. Let ϕ be a continuous Hermitian (not necessarily positive) trace on
L1,∞. There is a constant K(ϕ, φ) such that for all f ∈ C(J)

ϕ(Mf◦Z |[F,MZ ]|p) = K(ϕ, φ)

∫
J
f dν (5.5.12)

where ν is the (essentially unique) p-conformal measure on J with respect to φ.

Proof. If ϕ is positive, then this is simply a restatement of Proposition 5.5.6. For general
traces ϕ, we may use Corollary 1.5.2 to write ϕ = ϕ+ − ϕ− for positive traces ϕ+ and
ϕ−. Then,

ϕ(Mf◦Z |[F,Mz]|p) = K(ϕ+, φ)

∫
J
f dνϕ+ −K(ϕ−, φ)

∫
J
f dνϕ− .

Then applying Proposition 5.5.6 to the positive traces ϕ+ and ϕ− individually, we have
that νϕ+ and νϕ− is p-conformal. Hence the measure K(ϕ+, φ)νϕ+ − K(ϕ−, φ)νϕ− is
p-conformal, so there is a constant K(ϕ, φ) such that

K(ϕ+, φ)νϕ+ −K(ϕ−, φ)νϕ− = K(ϕ, φ)ν

where ν is the essentially unique p-conformal measure on J with respect to φ.

Remark 5.5.8. Since φ is hyperbolic on J by assumption, the p-conformal measure on
J is identical to the p-dimensional Hausdorff measure on J by [130, Theorem 4], so
Corollary 5.5.7 could also be stated with ν denoting the Hausdorff measure mp.
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5.6 Non-triviality of the conformal trace formula

The remaining task is to show that the formula (5.5.12) is nontrivial: that is, that there
is ϕ such that K(ϕ, φ) > 0. We show that indeed such a ϕ does exist, and is given by
a Dixmier trace trω where ω is a dilation invariant extended limit such that ω ◦ log is
also dilation invariant.3 We achieve this using [89, Theorem 8.6.8], which states that if
ω is a dilation invariant extended limit on L∞(0,∞) such that ω ◦ log is still dilation
invariant, then the Dixmier trace trω is equal to the following ζ-function residue:

trω(T ) = (ω ◦ log)(t 7→ 1

t
tr(T 1+1/t)), 0 ≤ T ∈ L1,∞.

Hence to show that trω(|[F,Z]|p) > 0, it suffices to show that

lim inf
s→0

s · tr(|[F,Z]|p+s) > 0.

The crucial result is the following, which is stated as [28, Chapter 4, Section 3.α, Propo-
sition 7]:

Proposition 5.6.1. Let C be a Jordan curve with interior Ω, and let ξ be a conformal
map ξ : D→ Ω. Since ξ extends continuously to T, we may consider ξ as a function on
T. Let p0 > 1. Then then there are positive constants Cp0 and cp0 such that:

cp0

∫
Ω

dist(z, ∂Ω)p−2dzdz ≤ tr(|[F,Mξ]|p) ≤ Cp0
∫

Ω
dist(z, ∂Ω)p−2dzdz

for all p > p0.

Proof. This result is an immediate consequence of Lemma 5.3.1 and Theorem 5.2.1.

Proposition 5.6.2. Let C be a Jordan curve with finite upper p-dimensional Minkowski
content and positive lower p-dimensional Minkowski content. Let Ω be the interior of C
so that ∂Ω = C. Then,

lim inf
s→0

s ·
∫

Ω
dist(z, C)p+s−2 dzdz > 0.

Proof. By the assumption that C has positive lower p-Minkowski content and finite upper
p-Minkowski content, there are constants b, B > 0 such that

bδ2−p ≤ |Sδ(C) ∩ Ω| ≤ Bδ2−p, ∀δ > 0.

Let λ > 0. Define Ak ⊆ Ω, k ≥ 1 by

Ak = {z ∈ Ω : dist(z, C) ∈ [λ−k, λ1−k)}.
3For an extended limit ω ∈ L∞(0,∞)∗, the notation ω ◦ log denotes the extended limit defined as

f 7→ ω(f ◦max{log, 0}).
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So,

|Ak| = |Sλ1−k(C) ∩ Ω| − |Sλ−k(C) ∩ Ω|
≥ (bλ(1−k)(2−p) −Bλ−k(2−p))

= (bλ2−p −B)λ−k(2−p).

Now fix λ > 1 such that b0 := bλ2−p −B > 0. Then,∫
Ω

dist(z, C)p+s−2 dzdz ≥
∞∑
k=0

b0λ
−kp−ks+kpλ−2k+kp

=
∞∑
k=0

b0λ
−ks

=
b0

1− λ−s
.

From the l’Hôpital rule, the limit as s→ 0 of s
1−λ−s is 1

log(λ) . Hence lim infs→0
b0s

1−λ−s =
b0

log(λ) > 0.

Due to Lemma 5.4.3 we can apply the above proposition to immediately obtain:

Corollary 5.6.3. Let ω be a dilation invariant extended limit on L∞(0,∞) such that
ω ◦ log is still dilation invariant. Then

trω(|[F,MZ ]|p) > 0.

5.7 Final comments

A reasonable conjecture is that K(ϕ, φ) does not depend on ϕ up to normalisation,
however this problem is still open.

It is noteworthy that Sections 5.2, 5.3, 5.6 and the proof of Proposition 5.5.3 make no
explicit reference to Julia sets. In fact, much of the mathematics in this chapter applies
equally well to arbitrary Jordan curves with finite upper and positive lower p-Minkowski
content.

Indeed, with an almost verbatim repetition of the proofs in this chapter one can prove
the following: if C is a Jordan curve with finite upper and positive lower p-Minkowski
content, where 1 < p < 2, and Z is a conformal equivalence between the exterior of D
and the exterior of C, extended continuously to the boundary, then [F,MZ ] ∈ Lp,∞ and
the functional:

g 7→ ϕ(Mg◦Z |[F,MZ ]|p), g ∈ C(C)

represents a measure on C for any continuous trace ϕ. If ϕ is a Dixmier trace satisfying
the conditions of Section 5.6, then the measure is non-trivial. It would be of great interest
to identify this measure for Jordan curves other than limit sets of quasi-Fuchsian groups
or Julia sets of admissible polynomials.

Before concluding this chapter, let us make one more aside about the curious place of the
Conformal Trace Theorem in noncommutative geometry. Despite making essential use



Application to Julia sets 103

of noncommutative tools, such as singular traces and the difference of powers formula, it
is not yet clear how the theorem fits into the broader noncommutative paradigm. There
has been significant research on the application of operator algebraic and noncommuta-
tive geometric ideas to dynamical systems and in particular to Julia sets (such as the
recent work of Kaminker, Putnam and Whittaker in the geometry of Smale spaces [78]),
however the relationship to the conformal trace theorem remains unclear to the author.





Chapter 6

Connes’ trace theorem for
noncommutative Euclidean spaces

The following chapter is primarily based on the published paper [94], a joint work of
the author with F. Sukochev and D. Zanin. The presentation here is slightly simplified
from the published version of [94], since we restrict attention to the example of quantum
Euclidean spaces. Nonetheless, some of the proofs remain essentially unchanged.

The purpose of [94] was to prove an analogy for Connes’ trace theorem for noncommuta-
tive planes and noncommutative tori. Connes’ trace theorem [27, Theorem 1] concerns
classical pseudodifferential operators on compact manifolds. Suppose that (X, g) is a
compact n-dimensional manifold, and T is a classical pseudodifferential operator of or-
der −n on X. If we consider T as an operator on the space L2(X, g), then in fact T is
in the ideal L1,∞. If we evaluate a Dixmier trace trω (c.f. Section 1.5.2) on T , then the
result is the Wodzicki residue of T , which may be computed as the integral of the degree
−n homogeneous component of the symbol of T over the cosphere bundle of X, with
respect to the measure induced by g. Similar statements are also possible with certain
non-compact manifolds (such as Rd) and with wider classes of traces [89, Chapter 11].

Here we take a “simple minded” approach to Connes’ trace theorem. Rather than
develop a theory of pseudodifferential operators, we consider a C∗-algebra Π generated
by homogeneous Fourier multipliers and left multiplication operators. The algebra Π is
our substitute for the algebra of pseudodifferential operators of order zero. Connes’ trace
theorem in this setting is ultimately a consequence of the structure of tensor products
of C∗-algebras. The essential idea is to associate the principal symbol map (strictly
speaking, the zeroth order symbol map) with the quotient map with respect to the ideal
of compact operators. This is an idea which originates with and which was a central
feature of the work of H. O. Cordes [37]. Generally speaking, the identification of the
symbol mapping as a Calkin quotient map is essential to the K-homological viewpoint
on index theory, briefly alluded to in Section 1.1.2. See for example the pioneering work
of Brown, Douglas and Fillmore [22] for this approach.

Our original motivation for developing such an operator algebraic approach was to handle
operators with non-smooth symbols. Indeed, the C∗-algebraic machinery in the following
sections permits the use of operators with low regularity with relative ease. The cost of
this is a certain lack of flexibility: the theory developed in [94] relies on the triviality of
the tangent bundles of the manifolds under consideration. This is a severe disadvantage
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compared to the standard theory of pseudodifferential operators. In addition, we make
no attempt to study operators of order greater than zero, so in particular differential
operators are excluded. This theory is certainly no substitute for a full pseudodifferential
calculus, and is intended to be complementary to the standard theory rather than a
replacement.

Despite these weaknesses, the C∗-algebraic perspective yields previously unknown ex-
tensions of Connes’ trace theorem and it does so with clarity and simplicity. The trace
theorem for quantum tori has since been used to obtain a very general characterisation
of quantum differentiability in that setting [93]. In Chapter 7, we will use the machinery
developed here to study quantum differentiability on noncommutative Euclidean spaces.

Quantum Euclidean spaces were first introduced by a number of authors, including
Groenewold [65] and Moyal [96], for the study of quantum mechanics in phase space.
The constructions of Groenewold and Moyal were later abstracted into more general
canonical commutation relation (CCR) algebras, and have since become fundamental
in mathematical physics. Under the names Moyal planes or Moyal-Groenewold planes,
these algebras play the role of a central and motivating example in noncommutative
geometry [23, 55]. As geometrical spaces with noncommuting spatial coordinates, non-
commutative Euclidean spaces have appeared frequently in the mathematical physics
literature [46], in the contexts of string theory [122] and noncommutative field theory
[97].

Quantum Euclidean spaces have also been studied as an interesting noncommutative
setting for classical and harmonic analysis, and for this we refer the reader to recent
work such as [62, 83, 94, 129].

6.1 Algebraic preliminaries

Before discussing Connes’ trace theorem, it is helpful and insightful to take a broader
view and consider an abstract setting.

6.1.1 C∗−norms on tensor products of C∗−algebras

Given two C∗-algebras A1 and A2, we denote the algebraic tensor product as A1 �A2.
The following results are taken from [118] (see Theorem 1.22.6, Propositions 1.22.5 and
1.22.3 there).

Theorem 6.1.1. Let A1 and A2 be unital C∗−algebras. There are pre-C∗−norms on
the algebraic tensor product A1 �A2, and there exists a norm which is minimal.

The completion of A1�A2 with respect to the minimal C∗−norm is denoted by A1⊗min

A2.

Theorem 6.1.2. Let A1 and A2 be unital C∗−algebras. If A2 is commutative, then
there exists a unique pre-C∗−norm on A1 �A2 (which we may take to be the minimal
one).

The above theorem is a essentially a statement of the fact that commutative algebras
are nuclear.
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Theorem 6.1.3. Let A1 and A2 be unital C∗−algebras. If A2 is commutative (read
A2 = C(X) for some compact Hausdorff space X), then A1 ⊗min A2 is isometrically
∗-isomorphic to C(X,A1).

Theorem 6.1.3 is an immediate consequence of Theorem 6.1.2, since the embedding of
A1 � C(X) into C(X,A1) induces a C∗ norm on A1 �A2.

We also have,

Theorem 6.1.4. Let ψ1 ∈ A∗1 and ψ2 ∈ A∗2. Then the tensor product ψ1 ⊗ ψ2 extends
continuously to A1 ⊗min A2.

Proof. First we may normalise ‖ψ1‖A∗1 = ‖ψ2‖A∗2 = 1. Then for T ∈ A1 �A2,

|(ψ1 ⊗ ψ2)(T )| ≤ sup
α⊗β∈A∗1�A∗2,‖α‖=‖β‖=1

|(α⊗ β)(T )| = ‖T‖A1⊗εA2 .

(Recall the injective tensor product norm ‖ · ‖A1⊗εA2 from Definition 3.1.1). From [118,
Proposition 1.22.2], we have that ‖T‖A1⊗εA2 ≤ ‖T‖min.

6.2 Noncommutative Euclidean space

For this section, let θ be a d × d real antisymmetric matrix with trivial kernel1. Our
approach is to define the Noncommutative Euclidean space (also known as the Moyal
plane) in terms of a certain family of unitary operators {U(t)}t∈Rd .

Definition 6.2.1. Let t ∈ Rd. We define the following linear operator on L2(Rd),

(U(t)ξ)(u) = e−
i
2

(t,θu)ξ(u− t).

The family {U(t)}t∈Rd then consists of unitary operators satisfying

U(t)U(s) = e
i
2

(t,θs)U(t+ s). (6.2.1)

The algebra L∞(Rdθ) is then defined to be the von Neumann algebra generated by {U(t)}t∈Rd.

Denote the representation of L∞(Rdθ) on L2(Rd) as π1
2.

It is known (see [129]) that there is an isometric ∗-isomorphism from B(L2(Rd/2)) →
L∞(Rdθ). Denote the image of the compact operators K(L2(Rd/2)) under this isomor-
phism C0(Rdθ). The standard trace Tr on B(L2(Rd/2)) then induces a semifinite trace on
the algebra L∞(Rdθ), which we denote as τθ.

We define L2(Rdθ) to be the GNS-space for L∞(Rdθ) defined by τθ.

Remark 6.2.2. We also note that if we formally take θ = 0 in Definition 6.2.1 we
recover the commutative algebra L∞(Rd). However our definitions of τθ and C0(Rdθ) rely
on the non-degeneracy of θ.

1this implies that d is automatically even
2π1 is simply the identity mapping
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Definition 6.2.3. For k = 1, . . . , n, let ∂k denote the multiplication operators on
L2(Rd),

Dkξ(t) = tkξ(t).

We define the operators ∂kx, k = 1, . . . , d by

∂kx := i[Dk, x].

There exists a dense subspace D ⊂ L2(Rdθ) such that the operators ∂k, k = 1, . . . , d may
be considered as self-adjoint operators on L2(Rdθ) with common core D. We denote ∇ =
(∂1, ∂2, . . . , ∂d), considered as a self-adjoint linear operator from L2(Rdθ) to L2(Rdθ)⊗Cd.
For a multi-index α, define

∂α := ∂α1
1 ∂α2

2 · · · ∂
αd
d

which is also considered as a self-adjoint operator on L2(Rdθ).

Definition 6.2.4. With τθ we can define Lp-spaces associated to L∞(Rdθ) with the norm:

‖x‖p := τθ(|x|p)1/p, x ∈ L∞(Rdθ).

Note that this is consistent with our definition of L2(Rdθ) as a GNS-space.

The corresponding Sobolev space, W k
p (Rdθ) is defined to be the set of x ∈ Lp(Rdθ) with

∂αx ∈ Lp(Rdθ) for all |α| ≤ k. The W k
p norm is the sum of the Lp norms of ∇αx for all

0 ≤ |α| ≤ k.

6.2.1 Cwikel-type estimates for Noncommutative Euclidean Space

The following is [83, Proposition 6.15(v)],

Lemma 6.2.5. Wm
2 (Rdθ) is a norm-dense subset of C0(Rdθ) for every m ≥ 0.

We also require the following Theorem, which is a special case of [83, Theorem 7.2]:

Theorem 6.2.6. Let p ∈ [2,∞). If x ∈ Lp(Rdθ) and g ∈ Lp(Rd), then

‖π1(x)g(∇)‖Lp ≤ C(p, d, θ)‖x‖Lp(Rdθ)‖g‖Lp(Rd).

If p ∈ (2,∞), and g ∈ Lp,∞(Rd), then:

‖π1(x)g(∇)‖Lp,∞ ≤ C(p, d, θ)‖x‖Lp(Rdθ)‖g‖Lp,∞(Rd).

The space `1,∞(L∞)(Rd) is defined as the set of g ∈ L∞(Rd) such that:{
esssup
t∈n+[0,1]d

|g(t)|

}
n∈Zd

∈ `1,∞(Zd).

The space `1(L∞)(Rd) is defined similarly, with `1 in place of `1,∞.

The following is a special case of [83, Theorem 7.6]:

Theorem 6.2.7. For every x ∈W d
1 (Rdθ) and g ∈ `1,∞(L∞(Rd)) we have that π1(x)g(∇) ∈

L1,∞(L2(Rd)) and ‖π1(x)g(∇)‖1,∞ ≤ Cd,θ‖x‖W d
1
‖g‖`1,∞(L∞).
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Applying Theorem 6.2.7 to the function g(t) = (1 + |t|2)−d/2, we obtain a corollary,

Corollary 6.2.8. If x ∈W d
1 (Rdθ), then

‖π1(x)(1−∆)−d/2‖1,∞ ≤ Cd‖x‖W d
1
.

The following is an L1 Cwikel estimate, proved in [83, Theorem 7.7].

Lemma 6.2.9. If g ∈ `1(L∞)(Rd) and x ∈W d
1 (Rdθ), then π1(x)g(∇) ∈ L1.

6.3 Main construction

We now proceed to define the simple algebraic construction which underlies our version
of Connes’ trace theorem.

Lemma 6.3.1. Let A1, A2 and B be C∗−algebras and let ρ1 : A1 → B and ρ2 : A2 → B
be C∗−homomorphisms. Suppose that

1. ρ1(x) commutes with ρ2(y) for all x ∈ A1, y ∈ A2.

2. The mapping θ : A1 �A2 → B defined by the formula

θ(a1 ⊗ a2) = ρ1(a1)ρ2(a2), a1 ∈ A1, a2 ∈ A2,

is injective.

3. A1,A2 are unital and A2 is abelian.

4. B is generated by ρ1(A1) and ρ2(A2).

Under these conditions, θ extends to a C∗−algebra isomorphism

θ : A1 ⊗min A2 → B.

Proof. Condition (1) is required to ensure that that θ is a ∗−homomorphism. Condition
(2) states that θ is an injection on the algebraic tensor product.

At this stage, we have an injective ∗-homomorphism from A1�A2 to B. This allows us
to define a pre-C∗−norm on A1 �A2 by setting

‖T‖ = ‖θ(T )‖B, T ∈ A1 �A2.

By condition (3) and Theorem 6.1.2, the latter norm coincides with the minimal pre-
C∗−norm on A1 � A2. Thus, θ : A1 � A2 → B is an isometric embedding of the
algebra A1 � A2 equipped with the minimal C∗−norm into B. Since A1 � A2 is dense
in A1 ⊗min A2, the surjectivity of θ and the conclusion of the lemma follow from the
condition (4).
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Remark 6.3.2. Lemma 6.3.1 uses the fact that there is a unique pre-C∗-norm on A1�
A2. It is enough to assume that one of the factors is nuclear, instead of abelian. For
the remainder of this text we restrict to the case where one factor is abelian.

Let Q(H) be the Calkin algebra and let q : L(H)→ Q(H) be the quotient mapping.

Theorem 6.3.3. Let A1 and A2 be C∗−algebras and let π1 : A1 → L(H) and π2 :
A2 → L(H) be representations. Let Π(A1,A2) be the C∗−algebra generated by π1(A1)
and π2(A2). Suppose that

1. A1,A2 are unital and A2 is abelian.

2. The representations π1 and π2 “commute modulo compact operators” i.e., for all
a1 ∈ A1 and a2 ∈ A2 the commutator [π1(a1), π2(a2)] is compact.

3. If xk ∈ A1, yk ∈ A2, 1 ≤ k ≤ n, then

n∑
k=1

π1(xk)π2(yk) ∈ K(H) =⇒
n∑
k=1

xk ⊗ yk = 0.

There exists a unique continuous ∗−homomorphism sym : Π(A1,A2) → A1 ⊗min A2

such that

sym(π1(x)) = x⊗ 1, sym(π2(y)) = 1⊗ y, x ∈ A1, y ∈ A2.

Proof. This is a special case of Lemma 6.3.1 with B = q(Π(A1,A2)), and ρj = q ◦ πj ,
j = 1, 2. We verify each of the required conditions. Condition 6.3.1(4) is satisfied since
by definition B = q(Π(A1,A2)) is generated by ρ1(A1) and ρ2(A2). Condition 6.3.1(1)
follows from (2). Condition 6.3.1(3) is automatic, due to (1).

Finally, condition 6.3.1(2) is a consequence of (3).

Thus, Lemma 6.3.1 states that
θ := ρ1 ⊗ ρ2

defines an isometric ∗-isomorphism θ : A1 ⊗min A2 → B.

Define
sym := θ−1 ◦ q.

By construction sym : Π(A1,A2) → A1 ⊗min A2 is a continuous ∗-algebra homomor-
phism. Let x ∈ A1. Then sym(π1(x)) = θ−1(q(π1(x))), and since θ(x ⊗ 1) = ρ1(x) =
q(π1(x)), we get that sym(π1(x)) = x⊗ 1. Similarly, if y ∈ A2 then sym(π2(y)) = 1⊗ y.

As Π(A1,A2) is generated by π1(A1) and π2(A2), and sym is continuous, it follows that
sym is uniquely determined by its restriction to π1(A1) and π2(A2).

Lemma 6.3.4. If T ∈ K(H) and if {pk}k≥0 ⊂ L(H) is a sequence of pairwise orthogonal
projections, then ‖Tpk‖∞ → 0 as k →∞.
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Proof. Let ε > 0, and let T = T1 + T2, where T1 is finite rank and ‖T2‖∞ < ε. Since,

‖Tpk‖∞ ≤ ‖T1pk‖∞ + ε

it suffices to show that ‖T1pk‖∞ → 0.

Note that ‖T1pk‖∞ ≤ ‖T1pk‖2. As each pk is pairwise orthogonal and T1 ∈ L2,

∞∑
k=0

‖T1pk‖22 =

∥∥∥∥∥T1

∞∑
k=0

pk

∥∥∥∥∥
2

2

<∞.

Thus limk→∞ ‖T1pk‖2 = 0.

Lemma 6.3.5. Let xk ∈ C0(Rdθ) and yk ∈ C(Sd−1), 1 ≤ k ≤ n. If

n∑
k=1

π1(xk)π2(yk) ∈ K(L2(Rd)),

then
n∑
k=1

xk ⊗ yk = 0.

Proof. Fix s ∈ Sd−1 and choose a sequence {mj}j≥0 ⊂ Zd such that
mj
|mj | → s and

|mj | → ∞ as j →∞. It follows that

sup
t∈mj+[0,1]d

∣∣∣∣ t|t| − s
∣∣∣∣→ 0, j →∞.

By continuity, we have

sup
t∈mj+[0,1]d

∣∣∣∣yk( t|t|)− yk(s)
∣∣∣∣→ 0, j →∞.

By the spectral theorem, we have

π2(yk)χmj+[0,1]d(∇)− yk(s)χmj+[0,1]d(∇)→ 0

in the uniform norm as j →∞.

By Lemma 6.3.4, we have that

n∑
k=1

π1(xk)π2(yk)χmj+[0,1]d(∇)→ 0

in the uniform norm as j →∞. By the preceding paragraph, we have

n∑
k=1

π1(xk)yk(s)χmj+[0,1]d(∇)→ 0
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in the uniform norm as j → ∞. By Lemma [83, Lemma 7.5], there exists a unitary
operator Vj ∈ L(L2(Rd)) which commutes with L∞(Rdθ) and such that

Vjχmj+[0,1]d(∇)V −1
j = χ[0,1]d(∇).

Thus,

n∑
k=1

π1(xk)yk(s)χ[0,1]d(∇) = V · (
n∑
k=1

π1(xk)yk(s)χmj+[0,1]d(∇)) · V −1 → 0

in the uniform norm as j →∞. The left hand side does not depend on j and, therefore,

n∑
k=1

π1(xk)yk(s)χ[0,1]d(∇) = 0.

Since each yk(s) is a scalar, we have

π1(

n∑
k=1

xk · yk(s)) · χ[0,1]d(∇) = 0.

Appealing once again to [83, Lemma 7.5], there exists a family of unitaries {Vn}n∈Zd
on L2(Rd), each of which commutes with L∞(Rdθ) and such that Vnχ[0,1]d(∇)V −1

n =
χn+[0,1]d(∇). Conjugating by Vn and summing over n yields:

π1

(
n∑
k=1

xk · yk(s)

)
·
∑
n∈Zd

χn+[0,1]d(∇) = 0

where the sum converges in the strong operator topology. However
∑

n∈Zd χn+[0,1]d(∇) =
1. Hence,

n∑
k=1

xk · yk(s) = 0.

Since s ∈ Sd−1 is arbitrary, the assertion follows.

The preceding Lemma applies for Rdθ, where as always the assumption is made that
det(θ) 6= 0. We also record the following, which applies for the commutative case Rd:

Lemma 6.3.6. Let xk ∈ L∞(Rd) and yk ∈ C(Sd−1), 1 ≤ k ≤ n. If

n∑
k=1

π1(xk)π2(yk) ∈ K(L2(Rd)),

then
n∑
k=1

xk ⊗ yk = 0.

Proof. The argument of Lemma 6.3.5 works mutatis mutandi for this case, by taking
instead (Vjξ)(t) := e−i(mj ,t)ξ(t) rather than referring to [83, Lemma 7.5].
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6.4 Verification of the commutator condition

In the published version of [94], a self-contained proof of the following lemma was in-
cluded. Here, such a proof is redundant since in the next chapter we will prove a much
more general result (Theorem 7.1.6). Therefore the proof of the following will be deferred
to the next chapter.

Lemma 6.4.1. There is a norm dense subspace S(Rdθ) ⊂ C0(Rdθ) such that for all
x ∈ S(Rdθ), we have:

[(1−∆)
1
2 , π1(x)](1−∆)−

1
2 ∈ K(L2(Rd)). (6.4.1)

The subspace S(Rdθ) will be explicitly defined in (7.1.6), and its density in C0(Rdθ) is an
immediate consequence of Proposition 7.1.9. For now, we do not need the details of the
definition and only need to know that S(Rdθ) is norm-dense in C0(Rdθ).

The operators Dk√
−∆

, k = 1, . . . , d are the noncommutative equivalent of the Riesz trans-

forms Rk. The following Lemma can be viewed as a noncommutative variant of the
classical result that if f ∈ C0(Rd), then the commutators [Mf , Rk] are compact.

Lemma 6.4.2. If x ∈ S(Rdθ), then

[π1(x),
Dk

(−∆)
1
2

] ∈ K(L2(Rd)), k = 1, . . . , d (6.4.2)

Proof. Firstly, we consider the commutator

[π1(x),
Dk

(1−∆)
1
2

] = −[Dk, π1(x)](1−∆)−
1
2 +

Dk

(1−∆)
1
2

· [(1−∆)
1
2 , π1(x)](1−∆)−

1
2 .

Using Theorem 6.2.7 for the first summand and Lemma 6.4.1 for the second summand,
we infer that

[π1(x),
Dk

(1−∆)
1
2

] ∈ K(L2(Rd)).

Define a function hk on Rd by setting

hk(t) =
tk
|t|
− tk

(1 + |t|2)
1
2

=
tk
|t|
· 1

(1 + |t|2)
1
2 · ((1 + |t|2)

1
2 + |t|)

, t ∈ Rd.

It follows from Theorem 6.2.7 that

[π1(x), hk(∇)] = π1(x)hk(∇)− hk(∇)π1(x) ∈ Ld+1(Rdθ).

Thus,

[π1(x),
Dk

(−∆)
1
2

] = [π1(x),
Dk

(1−∆)
1
2

] + [π1(x), hk(∇)] ∈ K(L2(Rd)).
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Now we may complete the verifications of the condition 6.3.3(2) for Rdθ,

Theorem 6.4.3. If x ∈ C0(Rdθ) and if y ∈ C(Sd−1), then [π1(x), π2(y)] ∈ K(L2(Rd)).

Proof. Lemma 6.4.2 shows that [π1(x), π2(y)] ∈ K(L2(Rd)) when x ∈ S(Rdθ) and y(t) =
tk
|t| . Since and the compact operators are closed in the norm topology, the result follows

for arbitrary x ∈ C0(Rdθ) and y(t) = tk
|t| .

We may now extend the result to all y given as a polynomial in the variables tk
|t| using the

Leibniz rule. Finally by the Stone-Weierstrass theorem, we may approximate arbitrary
y ∈ C(Sd−1) by polynomials in the uniform norm. Hence again using the fact that
K(L2(Rd)) is norm-closed, this completes the proof.

At this point we should compare the present approach to that of [127], where many
similar results were proved for functions in L∞(Rd) without assuming any continuity.
The restriction to C0(Rdθ) and C(Sd−1) is most likely necessary for the present approach
however, since Lemma 6.4.3 is untrue in the commutative case if we do not assume that
x is at least continuous.

6.5 Connes’ Trace Formula

We now proceed to establish a variant of Connes’ trace theorem which applies to non-
commutative Euclidean space. Let H be a separable Hilbert space. We recall that a
linear functional ϕ : L1,∞(H) → C is called a continuous trace if ϕ([A,B]) = 0 for all
A ∈ B(H) and B ∈ L1,∞(H) and |ϕ(B)| . ‖B‖1,∞. We will call ϕ normalised if

ϕ

(
diag

{
1

n+ 1

}∞
n=0

)
= 1.

If ϕ is a normalised trace, then note also that

ϕ

(
diag

{
1

(1 + |n|2)d/2

}
n∈Zd

)
=

Vol(Sd−1)

d
.

It is known (see [89, Corollary 5.7.7]) that any continuous trace ϕ on L1,∞(H) vanishes
on K(H) · L1,∞(H).

We establish that for any continuous normalised trace ϕ on L1,∞, T ∈ Π(C0(Rdθ) +
C, C(Sd−1)) and z ∈W d

1 (Rdθ),

ϕ(Tπ1(z)(1−∆)−d/2) = cd,θ

(
τθ ⊗

∫
Sd−1

)
(zsym(T )). (6.5.1)

To prove (6.5.1), we use the following two results. Lemma 6.5.1 follows immediately from
the fact that any continuous normalised trace on L1,∞(H) vanishes on K(H) · L1,∞(H)

Lemma 6.5.1. Let V ∈ L1,∞(H), and let ϕ be a continuous trace on L1,∞(H). Then,

T 7→ ϕ(TV )
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is a continuous linear functional on B(H) which vanishes on K(H).

Proof. All traces on the ideal L1,∞ are singular (i.e., vanishing on finite rank operators)
[89, Corollary 5.7.7].

Thus, if T is finite rank then TV is finite rank and:

ϕ(TV ) = 0.

Since ϕ is assumed to be continuous, we have:

|ϕ(TV )| ≤ ‖ϕ‖(L1,∞)∗‖TV ‖1,∞ ≤ ‖ϕ‖(L1,∞)∗‖T‖∞‖V ‖1,∞.

So the functional T 7→ ϕ(TV ) is continuous in the operator norm and vanishes on finite
rank operators. Immediately it follows that ϕ(TV ) = 0 whenever T is compact.

Lemma 6.5.2. Let A1,A2 and H be as in Theorem 6.3.3. Suppose that ω is a continuous
linear functional on Π(A1,A2) which vanishes Π(A1,A2) ∩ K(H). Then there exists a
unique linear functional ρ on A1 ⊗min A2 such that

ω(T ) = ρ(sym(T ))

for all T ∈ Π(A1,A2).

If, in addition, we have ψ1 ∈ A∗1 and ψ2 ∈ A∗2, and

ω(π1(a)π2(b)) = ψ1(a)ψ2(b)

for all a ∈ A1 and b ∈ A2, then

ω(T ) = (ψ1 ⊗ ψ2)(sym(T ))

or in other words, ρ = ψ1 ⊗ ψ2.

Proof. Since ω vanishes on Π(A1,A2) ∩ K(H), ω descends to a linear functional ω̃ on
Π(A1,A2)/(Π(A1,A2) ∩ K(H)), which is simply q(Π(A1,A2). Theorem 6.3.3 gives an
isometric ∗-isomorphism j : q(Π(A1,A2)→ A1 ⊗min A2. Defining ρ = ω̃ ◦ j−1 gives the
required linear functional.

Now to prove that ρ = ψ1 ⊗ ψ2, first we note that it follows from Theorem 6.1.4 that
ψ1 ⊗ ψ2 is well defined on A1 ⊗min A2. Since by assumption ψ1 and ψ2 are continuous,
ψ1⊗ψ2 is determined by its values on the algebraic tensor product A1�A2. Hence, the
linear functional ψ1 ⊗ ψ2 is uniquely characterised by

(ψ1 ⊗ ψ2)(a⊗ b) = ψ1(a)ψ2(b) a ∈ A1, b ∈ A2.

Since by assumption ρ(a ⊗ b) = ω(π1(a)π2(b)) = ψ1(a)ψ2(b), it follows that ρ = ψ1 ⊗
ψ2.

We fix z ∈W d
1 (Rdθ), and consider the functional

ω(T ) := ϕ(Tπ1(z)(1−∆)−d/2)
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and we must prove that for all x ∈ C0(Rdθ) + C and g ∈ C(Sd−1),

ω(π1(x)π2(g)) = τθ(xz)

∫
Sd−1

g(t) dt (6.5.2)

(at least up to some constant). From Lemma 6.5.2 it will that follows that ω(T ) =
cd,θ

(
τθ ⊗

∫
Sd−1

)
(sym(T )(z ⊗ 1)) for an appropriate constant cd,θ.

6.5.1 Connes’ Trace formula on noncommutative Euclidean space

The following assertion is proved in [129].

Theorem 6.5.3. If x ∈ W d
1 (Rdθ), then x(1 − ∆)−

d
2 ∈ L1,∞ and there is a constant

C(d, θ) > 0 such that

ϕ(x(1−∆)−
d
2 ) = C(d, θ)τθ(x)

for every normalised continuous trace on L1,∞.

We also need a pair of important intermediate results from [129]. Firstly,

Lemma 6.5.4. If F is a continuous functional on W d
1 (Rdθ) such that

F (x) = F (U(−t)xU(t)), x ∈W d
1 (Rdθ), t ∈ Rd,

then F = τθ (up to a constant factor).

Let Md(R) be the space of d× d real matrices. We define

Sp(θ, d) :=
{
g ∈Md(R) : g∗θg = θ

}
.

As we are working under the assumption that det(θ) 6= 0, it follows that Sp(θ, d) is a
group under usual matrix multiplication.

By our assumption that det(θ) 6= 0, it follows that if g ∈ Sp(θ, d) then | det(g)| = 1.

The second result from [129] we require is:

Lemma 6.5.5. Let g ∈ Sp(θ, d). We define an action g 7→Wg on L2(Rd) by

(Wgξ) = ξ ◦ g−1.

The operator Wg is unitary on L2(Rd), and conjugation by Wg defines a trace-preserving
group of automorphisms of L∞(Rdθ).

Note that the assumption that g ∈ Sp(θ, d) in Lemma 6.5.5 is crucial: otherwise we
do not necessarily have that WgxW

∗
g ∈ L∞(Rdθ) when x ∈ L∞(Rdθ). Let Ω be the

antisymmetric matrix Ω :=

(
0 −1
1 0

)⊕d/2
. Then Sp(Ω, d) is the usual symplectic group.

Let g ∈ GL(d,R). Referring to Appendix A, consider the operator Vg on C(Sd−1) defined
by

(Vgf)(t) =
1

|gt|d
f

(
gt

|gt|

)
.
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It can be easily verified that g 7→ Vg is an “opposite group action” in the sense that it
satisfies the rule Vgh = Vh ◦ Vg for all g, h ∈ GL(d,R). Lemma 6.6.1 proves that the
rotation-invariant integration functional m on C(Sd−1) transforms under Vg by m◦Vg =
(det(g))−1m.

Lemma 6.5.6. Let l ∈ C(Sd−1)∗. If l ◦ Vg = l for every g ∈ Sp(θ, d), then l = αm for
some α ∈ C.

Proof. The following result of linear algebra is well known, and follows easily from [124,
Section 9.44]. There exists a real invertible matrix β with ββ∗ = β∗β = | det(θ)|−1 such
that

β∗θβ = Ω. (6.5.3)

Hence, if g ∈ Sp(Ω, d) is arbitrary, then:

(βgβ−1)∗θ(βgβ−1) = (β∗)−1g∗β∗θβgβ−1

= (β∗)−1Ωβ−1

= θ,

so βgβ−1 ∈ Sp(θ, d). Since by assumption, l ◦ Vh = l for all h ∈ Sp(θ, d), we have:

l ◦ V −1
β ◦ Vg ◦ Vβ = l.

Therefore for arbitrary g ∈ Sp(θ, d),

(l ◦ Vβ−1) ◦ Vg = l ◦ Vβ−1 , for all g ∈ Sp(Ω, d).

So by Theorem 6.6.2, there is a constant C such that l◦Vβ−1 = Cm. Hence l = Cm◦Vβ.
By Lemma 6.6.1, m ◦ Vβ = det(β)−1m. Let α = C det(β)−1, so that l = αm.

Lemma 6.5.7. Let ϕ be a continuous trace on L1,∞. There is a continuous functional
l ∈ C(Sd−1)∗ such that for all x ∈W d

1 (Rdθ) and all b ∈ C(Sd−1) we have

ϕ(π1(x)π2(b)(1−∆)−
d
2 ) = τθ(x) · l(b).

Proof. Since ϕ is unitarily invariant, it follows that

ϕ(π1(x)π2(b)(1−∆)−
d
2 ) = ϕ(ei〈θt,∇〉π1(x)π2(b)(1−∆)−

d
2 e−i〈θt,∇〉)

However, ∇ commutes with ∆ and with π2(b). Thus,

ϕ(π1(x)π2(b)(1−∆)−
d
2 ) = ϕ(ei〈θt,∇〉π1(x)e−i〈θt,∇〉π2(b)(1−∆)−

d
2 ).

Note that if ξ ∈ L2(Rd),

ei〈θt,∇〉U(s)e−i〈θt,∇〉ξ(r) = ei〈θt,∇〉U(s)e−i(θt,r)ξ(r)

= ei〈θt,∇〉e
i
2

(s,θr)−i(θt,r−s)ξ(r − s)

= ei(θt,r)+
i
2

(s,θr)−i(θt,r)+i(θt,s)ξ(r − s)
= ei(θt,s)(U(s)ξ)(r)
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On the other hand from (6.2.1),

U(−t)U(s)U(t) = ei〈θt,s〉U(s).

Since the family {U(t)}t∈Rd generates L∞(Rdθ), it follows that for all x ∈ L∞(Rdθ) we
have:

ei〈θt,∇〉xe−i〈θt,∇〉 = U(−t)xU(t).

Since π1 is actually the identity function, this is equivalent to

ei〈θt,∇〉π1(x)e−i〈θt,∇〉 = π1(U(−t)xU(t)).

Hence,

ϕ(π1(x)π2(b)(1−∆)−
d
2 ) = ϕ(π1(U(−t)xU(t))π2(b)(1−∆)−d/2).

Consider now the linear functional on W d
1 (Rdθ),

F (x) = ϕ(π1(x)π2(b)(1−∆)−d/2)

From Corollary 6.2.8, F is continuous in theW d
1 -norm. We have proved that F (U(−t)xU(t)) =

F (x), and so from Lemma 6.5.4 we can conclude that F (x) is a scalar multiple of τθ(x).
So,

ϕ(π1(x)π2(b)(1−∆)−
d
2 ) = τθ(x) · l(b), (6.5.4)

for some functional l on C(Sd−1). Since ϕ is continuous,

|l(b)| ≤ C‖b‖∞

for some C ≥ 0. So l is continuous.

Lemma 6.5.8. Let x ∈ W d
1 (Rdθ) and b ∈ C(Sd−1), then for any continuous normalised

trace ϕ on L1,∞.

ϕ(π1(x)π2(b)(1−∆)−
d
2 ) =

C(d, θ)

Vol(Sd−1)
τθ(x)

∫
Sd−1

b(t) dt.

where C(d, θ) is the same constant as in Theorem 6.5.3.

Proof. Let l be the linear functional from Lemma 6.5.7. It is required to show that we
have:

l(b) =
C(d, θ)

Vol(Sd−1)

∫
Sd−1

b(t) dt.

From Lemma 6.5.6, it suffices to show that l ◦ Vg = l for all g ∈ Sp(d, θ), and we will be
able to recover the constant by substituting b = 1.

Now let g ∈ Sp(θ, d). Since the operator Wg from Lemma 6.5.5 is unitary, it follows
that:

τθ(x)l(b) = ϕ(W ∗g π1(x)π2(b)(1−∆)−d/2Wg) (6.5.5)

= ϕ(π1(W ∗g xWg)W
∗
g π2(b)(1−∆)−d/2Wg). (6.5.6)
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We now show that for all y ∈W d
1 (Rdθ),

π1(y)W ∗g π2(b)(1−∆)−d/2Wg − π1(y)π2(Vgb)(1−∆)−d/2 ∈ L1. (6.5.7)

Let ξ ∈ L2(Rd), then

(W ∗g π2(b)(1−∆)−d/2Wgξ)(t) = W ∗g (b

(
t

|t|

)
(1 + |t|2)−d/2ξ(g−1t))

= b

(
gt

|gt|

)
(1 + |gt|2)−d/2ξ(t)

= b

(
gt

|gt|

)
|t|d

|gt|d
|gt|d

|t|d
(1 + |gt|2)−d/2ξ(t).

The above computation shows that:

W ∗g π2(b)(1−∆)−d/2Wg = π2(Vgb)
|g∇|d

|∇|d
(1 + |g∇|2)−d/2.

Hence,

π1(y)W ∗g π2(b)(1−∆)−d/2Wg − π1(y)π2(Vgb)(1−∆)−d/2

= π1(y)π2(Vg(b))

(
|g∇|d

|∇|d
(1 + |g∇|2)−d/2 − (1−∆)−d/2

)
= π1(y)

(
|g∇|d

|∇|d
(1 + |g∇|2)−d/2 − (1−∆)−d/2

)
π2(Vg(b)).

Due to Lemma 6.2.9, to prove (6.5.7), it suffices to show that:

h(t) :=
|gt|d

|t|d
(1 + |gt|2)−d/2 − (1 + |t|2)−d/2.

is in `1(L∞(Rd)). It is clear that h is bounded in the ball {|t| ≤ 1}. Supposing |t| > 1,
we rewrite h as,

h(t) = |t|−d
(

|gt|d

(1 + |gt|2)d/2
− |t|d

(1 + |t|2)d/2

)
Since |gt|2

1+|gt|2 and |t|2
1+|t|2 are bounded above by 1, we may use the numerical inequality:

|αd/2 − βd/2| ≤ d

2
|α− β|, |α|, |β| ≤ 1

to obtain,

|h(t)| ≤ d

2
|t|−d

∣∣∣∣ |gt|21 + |gt|2
− |t|2

1 + |t|2

∣∣∣∣
However,

|gt|2

1 + |gt|2
− |t|2

1 + |t|2
= (1 + |t|2)−1 |gt|2 − |t|2

1 + |gt|2

= O((1 + |t|2)−1), |t| → ∞.
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Hence, |h(t)| = O(|t|−d−2) as |t| → ∞. From there it is easy to see that h ∈ `1(L∞)(Rd).
This completes the proof of (6.5.7).

As ϕ vanishes on L1, we may use (6.5.7) with y = W ∗g xWg to obtain in (6.5.6) to obtain,

τθ(x)l(b) = ϕ(π1(W ∗g xWg)π2(Vgb)(1−∆)−d/2)

so by Lemma 6.5.7:
τθ(x)l(b) = τθ(W

∗
g xWg)l(Vgb).

From Lemma 6.5.5 we have τθ(W
∗
g xWg) = τθ(x), so now

τθ(x)l(b) = τθ(x)l(Vgb).

Since x ∈ W d
1 (Rdθ) is arbitrary, it follows that l(b) = l(Vgb). So from Lemma 6.5.6,

l(b) = α
∫
Sd−1 b(t) dt for some constant α. By substituting b = 1 and using Theorem

6.5.3, we recover the constant α.

Theorem 6.5.9. Let z ∈ W d
1 (Rdθ). Then for every continuous normalised trace ϕ on

L1,∞, and every T ∈ Π(C0(Rdθ) + C, C(Sd−1)),

ϕ(Tπ1(z)(1−∆)−d/2) =
C(d, θ)

Vol(Sd−1)

(
τθ ⊗

∫
Sd−1

)
(sym(T )(z ⊗ 1)).

In particular, if T = Tπ1(z), then

ϕ(T (1−∆)−d/2) =
C(d, θ)

Vol(Sd−1)

(
τθ ⊗

∫
Sd−1

)
(sym(T )).

Once again, C(d, θ) is the same constant as in Theorem 6.5.3.

Proof. We apply Lemma 6.5.2 to the functional

ω(T ) = ϕ(Tπ1(z)(1−∆)−d/2).

Since π1(z)(1 − ∆)−d/2 ∈ L1,∞, it follows from Lemma 6.2.7 that this functional is
well defined and vanishes on compact operators. Consider the functionals ψ1(x) :=
C(d, θ)τθ(xz) and ψ2(b) = 1

Vol(Sd−1)

∫
Sd−1 b(t) dt on C+C0(Rdθ) and C(Sd−1) respectively.

From Lemma 6.5.2, to show that ω(T ) = (ψ1 ⊗ ψ2)(sym(T )) it suffices to prove:

ω(π1(x)π2(b)) = ψ1(x)ψ2(b).

To this end, we compute ω(π1(x)π2(b)). Since [π1(x), π2(b)] is compact,

ω(π1(x)π2(b)) = ω(π2(b)π1(x)).

Hence

ω(π1(x)π2(b)) = ϕ(π2(b)π1(x)π1(z)(1−∆)−d/2)

= ϕ(π2(b)π1(xz)(1−∆)−d/2).

Using the cyclicity of the trace ϕ, and that π2(b) commutes with ∆,

ω(π1(x)π2(b)) = ϕ(π1(xz)π2(b)(1−∆)−d/2).
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The right hand side may be computed using Lemma 6.5.8,

ϕ(π1(xz)π2(b)(1−∆)−d/2) =
C(d, θ)

Vol(Sd−1)
τθ(xz)

∫
Sd−1

b(t) dt

= ψ1(x)ψ2(b).

So finally, we have ω(π1(x)π2(b)) = ψ1(x)ψ2(b). So from Lemma 6.5.2, we immediately
obtain ω = ψ1 ⊗ ψ2, and this completes the proof.

6.6 Measures invariant under the action of symplectic groups

For g ∈ GL(d,R), we define an action Vg on C(Sd−1) as follows:

(Vgb)(t) =
1

|gt|d
b

(
gt

|gt|

)
, t ∈ Sd−1.

This is indeed an (opposite) action: we have

Vg1 ◦ Vg2 = Vg2g1 , g1, g2 ∈ GL(d,R).

Lemma 6.6.1. If m is a rotation-invariant measure on C(Sd−1), then m◦Vg = det(g−1)·
m.

Proof. By converting to polar coordinates, for every b ∈ C(Sd−1) we have the formula,

m(b) =
1

Γ(d)

∫
Rd
b

(
t

|t|

)
e−|t| dt

So,

m(Vgb) =
1

Γ(d)

∫
Rd
b

(
gt

|gt|

)
|t|d

|gt|d
e−|t| dt.

Applying the linear transformation s = gt, we get,

m(Vgb) =
1

Γ(d)

∫
Rd
b

(
s

|s|

)
|g−1s|d

|s|d
e−|g

−1s| d(g−1s)

=
det(g−1)

Γ(d)

∫
Rd
b

(
s

|s|

)
|g−1s|d

|s|d
e−|g

−1s| ds.

Now using polar coordinates,

m(Vgb) =
det(g)−1

Γ(d)

∫
Sd−1

b(s)

∫ ∞
0
|g−1s|de−r|g−1s|rd−1 drds.

Applying the formula Γ(d) = αd
∫∞

0 rd−1e−αr dr, we get

m(Vgb) =
det(g−1)

Γ(d)
Γ(d)

∫
Sd−1

b(s) ds

= det(g−1)m(b).
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Recall that d is even. The symplectic group Sp(d,R) is the subgroup of GL(d,R) defined
as follows:

Sp(d,R) =
{
T ∈Md(R) : T ∗ΩT = Ω

}
, Ω =

(
0 −1
1 0

)⊕ d
2

.

In the published version of [94], the next theorem was proved by a lengthy induction
argument. It was suggested to us by M. Goffeng that a much simpler proof is possible
by instead restricting g 7→ Vg to orthogonal matrices. Even though the restriction of
V to SO(d) uses only a fraction of the available symmetries, it is still sufficient for our
purposes. We supply this simplified argument below.

The key component of the argument is that if µ is a measure on the unit sphere
{(z1, . . . , zd) ∈ Ck : |z1|2 + |z2|2 + · · ·+ |zd|2 = 1} which is invariant under the action of
the unitary group U(k), then µ is the (up to a scalar factor) the usual rotation-invariant
measure on S2k−1. This follows from the fact that U(k) acts transitively on the sphere
in Ck. One way to see this implication is that for all U ∈ U(k) and f ∈ C(S2k−1) we
have (by assumption) ∫

S2k−1

f dµ =

∫
S2k−1

f ◦ U dµ

Now if we integrate over U ∈ U(k) with respect to the Haar measure dU and use Fubini’s
theorem, we have: ∫

S2k−1

f dµ =

∫
S2k−1

(∫
U(k)

f ◦ U dU

)
dµ.

Since U(k) acts transitively on S2k−1, the integral
∫

U(k) f ◦ U dU is a scalar and hence:∫
S2k−1

f dµ = µ(S2k−1)

∫
U(k)

f(Uz) dU

where z ∈ S2k−1 is arbitrary. It follows that all U(k)-invariant measures on S2k−1 are
proportional to the pushforward of the Haar measure on U(k) to S2k−1, so in particular
are proportional to each other.

Theorem 6.6.2. If l ∈ C(Sd−1)∗ is such that l ◦ Vg = l, for all g ∈ Sp(d,R), then l
is invariant under rotations, and hence up to rescaling is the unique rotation-invariant
measure on Sd−1.

Proof. Let K be the compact subgroup of Sp(d,R) given by:

K = SO(d) ∩ Sp(d,R).

We will prove that if l◦Vg = l for all g ∈ K, then necessarily l◦VR = l for all R ∈ SO(d).
Since V |SO(d) is exactly the action of SO(d) on Sd−1 by rotations, this is the required
result.

Recall that d is even, and let k ≥ 1 be such that d = 2k. The unit sphere Sd−1 in
Rd can be identified with the unit sphere SkC := {(z1, . . . , zk) ∈ Ck :

∑k
j=1 |zk|2 = 1}

in k-dimensional complex space Ck. We claim that the action of K on Sd−1 can be



Connes’ trace theorem for Quantum Euclidean spaces 123

identified precisely with the action of U(k) on SkC, and this yields the uniqueness of the
functional l due to the discussion preceding the theorem.

Write T ∈ K in block-matrix form:

T =

(
T1,1 T1,2

T2,1 T2,2

)
where Tj,k ∈Mk,k(R). The condition that TΩT ∗ = Ω implies that TΩ = ΩT . It follows
that we have T1,1 = T2,2 and T2,1 = −T1,2. Rewriting A = T1,1 and B = T2,1, we have:

T =

(
A −B
B A

)
.

We can identify T with the k × k complex matrix U = A + iB. In fact the mapping
T 7→ U is a group isomorphism. To see this, note that since T is orthogonal we have:

T ∗T =

(
A∗A+B∗B −A∗B +B∗A
−B∗A+A∗B B∗B +A∗A

)
=

(
Ik,k 0
0 Ik,k

)
and similarly, AA∗+BB∗ = I and BA∗ = AB∗. These relations imply that U = A+ iB
is unitary, and moreover if U is a unitary matrix, we can consider the matrix(

<(U) −=(U)
=(U) <(U)

)
where <(U) and =(U) are the real and imaginary parts of U respectively3. It is easily
checked that the above matrix belongs to K. This T 7→ U is a bijection between K and
U(k), and it is straightforward to check that it is indeed a group homomorphism.

Consider the following (R-linear) isomorphism from Rd to Ck:

ι(x1, x2, . . . , x2k) = (x1 + ixk+1, x2 + ixk+2, . . . , xk + ix2k), x ∈ Rd.

That is, the point (x, y) ∈ Rd is mapped to x+ iy ∈ Ck. Note that x ∈ Sd−1 if and only
if ι(x) ∈ SkC. It is readily verified that for all x ∈ Rd, we have:

ι(Tx) = Uι(x).

It follows that ι intertwines the action V |K on Sd−1 with the standard action of U(k)
on SkC, and this gives the desired identification of V |K with the action of U(k) on SkC.

3By “real part”, we do not mean 1
2
(U +U∗), but instead the matrix formed by taking the real parts

of the entries of U





Chapter 7

Quantum differentiability on
noncommutative Euclidean spaces

This chapter is based on the research paper [92], which consists of joint work of the
author with F. Sukochev and X. Xiong.

The topic of the paper concerns quantum differentiability conditions for so-called Moyal
or Groenewold Euclidean spaces. This is a line of research which follows on from [87]
and [93] which proved the analogous results for classical Euclidean spaces and quantum
tori respectively.

Some changes have been made here to simplify the presentation: in particular, one of
the most difficult parts of [92] was in redeveloping the general theory of noncommuta-
tive Euclidean spaces to apply simultaneously to the commutative and noncommutative
cases. Here, we restrict attention to the exclusively noncommutative case.

7.1 Introduction

Following [26], quantised calculus may be defined defined in terms of a Fredholm module.
A Fredholm module can be defined with the following data: a separable Hilbert space
H, a unitary self-adjoint operator F on H and a C∗-algebra A represented on H such
that the commutator [F, a] is a compact operator on H for all a in A. The quantised
differential of a ∈ A is then defined to be the operator d̄a = i[F, a].

A problem of particular interest in quantised calculus is to precisely quantify the asymp-
totics of the sequence {µ(n, d̄a)}∞n=0 in terms of a. In operator theoretic language, we
seek conditions under which the operator d̄a is in some ideal of the algebra of bounded
operators on H. Of the greatest importance are Schatten-von Neumann Lp ideals, the
Schatten-Lorentz Lp,∞ spaces and the Macaev-Dixmier ideals M1,∞.

The link between quantised calculus and geometry is discussed by Connes in [27]. A
model example for quantised calculus is to take a compact d-dimensional Riemannian
spin manifold M (with d ≥ 2) with Dirac operator D, and define H to be the Hilbert
space of pointwise almost-everywhere equivalence classes of square integrable sections

125
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of the spinor bundle. The algebra A = C(M) of continuous functions on M acts by
pointwise multiplication on H, and one defines F as a difference of spectral projections:

F := χ[0,∞)(D)− χ(−∞,0)(D).

One then has d̄f = i[F,Mf ], where Mf is the operator on H of pointwise multiplication
by f ∈ C(M). In quantised calculus the immediate question is to determine the rela-
tionship between the degree of differentiability of f ∈ C(M) and the rate of decay of
the singular values of d̄f . This is the problem which we term “characterising quantum
differentiability”. In general, we have the following inclusion [27, Theorem 3.1]:

f ∈ C∞(M)⇒ |d̄f |d ∈M1,∞.

This corresponds to the implication:

f ∈ C∞(M)⇒ sup
n≥0

1

log(2 + n)

n∑
j=0

µ(j, d̄f)d <∞.

It is possible to specify even more precise details about the asymptotics of {µ(j, d̄f)}j≥0.
Suppose that ω is an extended limit (a continuous linear functional on the space of
bounded sequences `∞(N) which extends the limit functional). If ω is invariant under
dilations (in the sense of [89, Definition 6.2.4]) then [27, Theorem 3.3] states that:

ω

 1

log(2 + n)

n∑
j=0

µ(j, d̄f)d


∞

n=0

 = cd

∫
M
|df ∧ ?df |d/2 (7.1.1)

where cd is a known constant, d is the exterior differential and ? denotes the Hodge
star operator associated to the orientation of M . The quantity on the left hand side
of (7.1.1) is precisely the Dixmier trace trω(|d̄f |d). According to Connes, this formula
“shows how to pass from quantised 1-forms to ordinary forms, not by a classical limit,
but by a direct application of the Dixmier trace” [27, Page 676].

When working with particular manifolds, rather than general compact manifolds, it is
possible to specify with even greater precision the relationship between f and the singular
values of d̄f . In the one dimensional cases of the circle and the line, the appropriate
choice for F turns out to be the Hilbert transform (see [28, Chapter 4, Section 3.α]) and
the commutators of pointwise multiplication operators and the Hilbert transform are
very well understood. If f is a function on either the line R or the circle T, necessary
and sufficient conditions on f for d̄f to be in virtually any named operator ideal are
known (see e.g. [57]).

In higher dimensions (in particular Td and Rd for d ≥ 2), an appropriate choice for F is
given by a linear combination of Riesz transforms [36, 87]. Commutators of pointwise
multiplication operators and Riesz transforms are well studied in classical harmonic
analysis, and Janson and Wolff [76] determined necessary and sufficient conditions for
such a commutator to be in Lp for all p ∈ (0,∞). For the case of Euclidean space Rd an
even more precise characterisation including a complete if and only if characterisation
for d̄f to be in a wide class of operator ideals was obtained by Rochberg and Semmes
[113].
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If f ∈ C∞(Td), let∇f = (∂1f, ∂2f, . . . , ∂df) be the gradient vector of f , and let ‖∇f‖2 =(∑d
j=1 |∂jf |2

) 1
2
. Then as a special case of (7.1.1), we have the following:

trω(|d̄f |d) = kd

∫
Td
‖∇f(t)‖d2dm(t), (7.1.2)

where kd > 0 is a known constant, and m denotes the flat (Haar) measure on Td.
A similar integral formula can also be obtained in the non-compact setting of Rd [87,
Theorem 2]. Quantum differentiability in the commutative setting is a topic of active
research interest, with many results known outside the classical examples of Euclidean
spaces and tori. For example, Goffeng and Gimperlein have explored the deviations from
classical spectral asymptotics for non-smooth functions [59, 60]. A number of results
are also known in the strictly noncommutative setting, especially as regards sufficient
conditions. For example, Goffeng and Mesland have explored the quantum differentia-
bility relating to spectral triples on Cuntz-Krieger algebras [61] and Emerson and Nica
provided sufficient conditions for finite summability of Fredholm modules relating to
hyperbolic groups [49].

Recently the author, F. Sukochev and X. Xiong have established a characterisation of
the Ld,∞-ideal membership of quantised differentials for noncommutative tori [93]. The
primary result of [93] is as follows. Let θ be an antisymmetric real d×dmatrix with d > 2,
and consider the noncommutative tori Tdθ. In this setting, there is a conventional choice
of Fredholm module and an associated quantised calculus [64, Section 12.3]. An element
x ∈ L2(Tdθ) belongs to the (noncommutative) homogeneous Sobolev space Ẇ 1

d (Tdθ) if
and only if its quantised differential d̄x has bounded extension in Ld,∞. The quantum
torus analogue of (7.1.2) is also obtained as [93, Theorem 1.2]: for x ∈ Ẇ 1

d (Tdθ), there is
a certain constant cd such that for any continuous normalised trace ϕ on L1,∞ we have

ϕ(|d̄x|d) = cd

∫
Sd−1

τ

(( d∑
j=1

|∂jx− sj
d∑

k=1

sk∂kx|2
) d

2

)
ds, (7.1.3)

where τ is the standard trace on the algebra L∞(Tdθ), and the integral is over the
(d − 1)-sphere Sd−1 with respect to its rotation invariant measure ds. To the best of
our knowledge, these results were the first concerning quantum differentiability in the
strictly noncommutative setting.

The primary task of this paper is to determine similar results for noncommutative Eu-
clidean spaces. A number of major obstacles make this task far more difficult than
for noncommutative tori. In particular, the methods of [93] were facilitated by a well-
developed theory of pseudodifferential operators on noncommutative tori [66, 67]. How-
ever, despite recent advances [62, 82, 94], the theory of pseudodifferential operators for
noncommutative Euclidean spaces is still in its infancy and it is not clear how to di-
rectly adapt the existing theory to this problem. It has therefore been necessary for us
to develop new arguments, based on a very simple form of pseudodifferential calculus
(see Section 7.3).

Another difficulty with Rdθ compared to Tdθ is that the nature of the required analysis
changes dramatically with θ. For example, the range of the canonical trace τ on the
algebra L∞(Tdθ) on projections is [0, 1], while for the canonical trace on L∞(Rdθ) the
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range of the trace on projections is either [0,∞] if det(θ) = 0 or instead ranges over
integral multiples of (2π)d/2|det(θ)|1/2 if det(θ) 6= 0.

On a related issue, in the non-degenerate case the C∗-algebra C0(Rdθ) is isomorphic
to the algebra of compact linear operators on L2(Rd), and L∞(Rdθ) is isomorphic to
all of B(L2(Rd)). This has some counterintuitive consequences for both the analysis
and geometry of Rdθ. Firstly, C0(Rdθ) becomes an ideal of L∞(Rdθ) so that “continuous
times bounded is continuous”. Secondly, C0(Rdθ) is generated by projections as a C∗-
algebra. This is quite unlike Euclidean space, where there are no nontrivial continuous
projections.

From the point of view of K-theory and the algebraic-topological point of view on
noncommutative geometry, C0(Rdθ) is strongly Morita equivalent to a point. From that
point of view, the “space” Rdθ is trivial. This situation is analogous to classical K-
theory: Euclidean space Rd is contractable, and so is homotopically indistinguishable
from a point.

A noteworthy side effect of the self-contained approach is that we obtain in an abstract
manner the following commutator estimates for quantum Euclidean spaces: Let ∆ be
the Laplace operator associated to the noncommutative Euclidean space Rdθ (see Section
6.2 for complete definitions). For an appropriate class of smooth elements x ∈ L∞(Rdθ),
if α, β ∈ R are such that α < β + 1, then we have

[(1−∆)α/2, x](1−∆)−β/2 ∈ L d
β−α+1

,∞.

In the classical (commutative) case, this estimate follows almost immediately from the
calculus and mapping properties of pseudodifferential operators (see [87, Lemma 13]).

7.1.1 Main results on quantum differentiability

In this section we state the main results of this chapter.

Let θ be an antisymmetric real d × d matrix, where d ≥ 2. As in Section 6.2, we
will exclude the degenerate case when det(θ) = 0. In the published version of [92] the
degenerate case det(θ) = 0 was included, however this came at the cost of substantially
increasing the length and complexity of the paper. For the sake of clarity, we have opted
to exclude the degenerate case here.

Our first main result provides sufficient conditions for d̄x ∈ Ld,∞:

Theorem 7.1.1. Assume that det(θ) 6= 0. If x ∈ Lp(Rdθ)∩Ẇ 1
d (Rdθ) for some d ≤ p <∞,

then d̄x has bounded extension, and the extension is in Ld,∞.

The space Ẇ 1
d (Rdθ) is a noncommutative homogeneous Sobolev space for Rdθ. This is dis-

tinct from the Sobolev spaces defined in Section 6.2, and will be introduced in Definition
7.1.11.

The a priori assumption x ∈ Lp(Rdθ) for some d ≤ p <∞ may not be necessary, however
we have been unable to remove it. One reason for this difficulty is that there is no clear
replacement for the use of the Poincaré inequality in the noncommutative situation. See
Proposition 7.1.17.
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With Theorem 7.1.1, we can prove our second main result, the following trace formula:

Theorem 7.1.2. Assume that det(θ) 6= 0. Let x ∈ Lp(Rdθ) ∩ Ẇ 1
d (Rdθ) for some d ≤ p <

∞. Then there is a constant cd depending only on the dimension d such that for any
continuous normalised trace ϕ on L1,∞ we have:

ϕ(|d̄x|d) = cd

∫
Sd−1

τθ

(( d∑
j=1

|∂jx− sj
d∑

k=1

sk∂kx|2
) d

2

)
ds.

Here, the integral over Sd−1 is taken with respect to the rotation-invariant measure ds
on Sd−1, and s = (s1, . . . , sd).

Recall that τθ is the canonical trace on the algebra L∞(Rdθ) (see Section 6.2). Although
the above integral formula is identical in appearance to (7.1.3), the proof involves dif-
ferent techniques.

The next corollary is a direct application of Theorem 7.1.2. The proof is the same as
[93, Corollary 1.3], so we omit the details.

Corollary 7.1.3. Assume that det(θ) 6= 0. Let x ∈ Lp(Rdθ) ∩ Ẇ 1
d (Rdθ) for some d ≤

p < ∞. Then there are constants cd and Cd depending only on d such that for any
continuous normalised trace ϕ on L1,∞ we have

cd‖x‖dẆ 1
d
≤ ϕ(|d̄x|d) ≤ Cd‖x‖dẆ 1

d
.

Since ϕ vanishes on the trace class L1, Corollary 7.1.3 immediately yields the following
noncommutative version of the p ≤ d component of [76, Theorem 1]:

Corollary 7.1.4. Assume that det(θ) 6= 0. If x ∈ Lp(Rdθ)+C for some d ≤ p < ∞ and
d̄x has bounded extension in Lp for p ≤ d, then x is a constant.

As a converse to Theorem 7.1.1, we prove our third main result: the necessity of the
condition x ∈ Ẇ 1

d (Rdθ) for d̄x ∈ Ld,∞.

Theorem 7.1.5. Assume that det(θ) 6= 0. Let x ∈ Lp(Rdθ) for some d ≤ p < ∞. If
d̄x has bounded extension in Ld,∞, then x ∈ Ẇ 1

d (Rdθ), and there is a constant cd > 0
depending only on d such that

cd‖x‖Ẇ 1
d
≤ ‖d̄x‖Ld,∞ .

It is worth noting that one may consider the commutative (θ = 0) case in Theorems
7.1.1, 7.1.2 and 7.1.5 and in this case the results obtained are very similar to those of
[87]. The only difference being in the integrability assumptions: in [87], boundedness
was assumed, and here we assume p-integrability for some d ≤ p < ∞. Nonetheless
the proofs we give here are independent to those of [87]. It would be of great interest
to extend the results here to include p = ∞, however technical obstacles have so far
prevented this. See the discussion preceding Proposition 7.1.17.
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7.1.2 Main commutator estimate

As a byproduct of the proof of Theorem 7.1.2, we obtain a commutator estimate on
quantum Euclidean spaces. We shall define the noncommutative Schwartz space S(Rdθ)
in Subsection 7.1.3.

Theorem 7.1.6. Let α, β ∈ R, and let x ∈ S(Rdθ). Then if α < β + 1:

[(1−∆)α/2, x](1−∆)−β/2 ∈ L d
β−α+1

,∞.

On the other hand if α = β + 1, then the operator

[(1−∆)α/2, x](1−∆)−β/2

has bounded extension.

This estimate is to be compared with the Cwikel type estimates provided in [83]. Using
the latter estimates, one can deduce that (1−∆)α/2x(1−∆)−β/2 ∈ L d

β−α ,∞
and x(1−

∆)(α−β)/2 ∈ L d
β−α ,∞

, however showing that the difference of these two operators is in

the smaller ideal L d
β−α+1

,∞ requires additional argument.

If we consider the classical (commutative) setting, the result of Theorem 7.1.6 would
follow from a standard application of pseudodifferential operator calculus: x is viewed
as an order 0 pseudo-differential operator, while (1−∆)α/2 is of order α. It follows that
the commutator [(1−∆)α/2, x] is of order α−1, and thus [(1−∆)α/2, x](1−∆)−β/2 is of
order α−β−1. From there, a short argument which essentially uses the fact that x decays
at infinity can be used to show that the result of Theorem 7.1.6 holds (an argument of
precisely this nature was used in [87, Lemma 13]). It likely is possible to carry out a
similar argument in the noncommutative setting using the quantum pseudodifferential
operator theory of [62], however we have found the direct argument to be insightful.

The layout of this chapter is the following. In the following section we introduce notation,
terminology and required background material concerning operator ideals and analysis
on quantum Euclidean spaces, and we also recount some elementary properties such
as the dilation action and Cwikel type estimates. Section 7.2 is devoted to the proof
of Theorem 7.1.1. Section 7.3 concerns our proof of Theorem 7.1.6, and is the most
technical component of the paper. The final section, Section 7.4, completes the proofs
of Theorems 7.1.2 and 7.1.5.

7.1.3 Weyl quantisation

Let f ∈ L1(Rd). We will define U(f) ∈ L∞(Rdθ) as the operator given by the L∞(Rdθ)-
valued weak∗-integral:

U(f) =

∫
Rd
f(t)U(t) dt ∈ L∞(Rdθ).

Since the family {U(t)}t∈Rd is strongly continuous, the weak∗ measurability of integrand
is immediate. Since each U(t) is unitary, Lemma 4.1.4 implies that:

‖U(f)‖∞ ≤ ‖f‖1. (7.1.4)
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We will denote U = Uθ when there is a need to refer to the dependence on θ. The
map U has other names and notations in the literature: for example composing U
with the Fourier transform determines a mapping S(Rd) → B(L2(Rd/2)) which is also
known as the Weyl quantisation map [69, Section 13.3]. In the det(θ) 6= 0 case, the
map U is also essentially the same as the so-called Weyl transform [132, Page 138].
In [62], the map denoted there λθ is very similar to U , the only difference being that
U(t1e1)U(t2e2) · · ·U(tded) is used in place of U(t).

Remark 7.1.1. In [92], the Weyl transform was defined by giving U(f)ξ as an L2(Rd)-
valued Bochner integral for ξ ∈ L2(Rd). Since we have already discussed weak∗-integrals
at length in Section 4.1.1, it is more convenient to instead define U(f) as a weak∗-integral
here.

Assume now that f ∈ S(Rd). For ξ ∈ S(Rd), by the definition of U(t) we have:

(U(f)ξ)(s) =

∫
Rd
f(t)e−

i
2

(t,θs)ξ(s− t) dt. (7.1.5)

Since ξ is continuous, it is easy to see that (U(f)ξ)(s) is continuous as a function of s.
Evaluating U(f)ξ(s) at s = 0 yields:

(U(f)ξ)(0) =

∫
Rd
f(t)ξ(−t) dt.

Hence, if U(f) = U(g) for f, g ∈ L1(Rd), it follows that:∫
Rd

(f(t)− g(t))ξ(−t) dt = 0

for all ξ ∈ S(Rd), and thus f = g pointwise almost everywhere. It follows that U is
injective.

The class of Schwartz functions on Rdθ is defined as the image of S(Rd) under U . That
is,

S(Rdθ) := {x ∈ L∞(Rdθ) : x =

∫
Rd
f(s)U(s)ds, for some f ∈ S(Rd)}, (7.1.6)

The Schwartz space S(Rdθ) is equipped with the topology induced by the isomorphism
U : S(Rd)→ S(Rdθ), where S(Rd) is equipped with its canonical Fréchet topology. It is
important to note that the Fréchet topology of S(Rdθ) is finer than the Lp(Rdθ) topology
for every 1 ≤ p ≤ ∞. This follows, for example, from Proposition 7.1.10 below.

It is worth emphasising that in the non-degenerate case (det(θ) 6= 0), the non-commutativity
of L∞(Rdθ) implies that S(Rdθ) has a number of properties quite unlike the classical
Schwartz space S(Rd) (for example, see Theorem 7.1.7 below). In terms of the isomor-
phism of L∞(Rdθ) with B(L2(Rd/2)), it is possible to select a specific basis such that
S(Rdθ) is an algebra of infinite matrices whose entries have rapid decay ([63, Theorem
6] and [109, Theorem 6.11]). While we will not need the specific details of the matrix
description, we do make use of the following result, which is [55, Lemma 2.4].

Theorem 7.1.7. There exists a sequence {pn}n≥0 ⊂ S(Rdθ) such that:

(i) Each pn is a projection of rank n (considered as an operator on L2(Rd/2)).
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(ii) We have that pn ↑ 1, where 1 is the identity operator in L∞(Rdθ).

(iii)
⋃
n≥0 pnL∞(Rdθ)pn is dense in S(Rdθ) in its Fréchet topology.

The presence of smooth projections is a feature of analysis on quantum Euclidean spaces
in the det(θ) 6= 0 case entirely distinct from analysis on Euclidean space. For our
purposes we do not need to know the precise form of the sequence {pn}n≥0, however a
description using the map U may be found in [55, Section 2]. The following is a property
of S(Rdθ) which we use several times. It has a short proof which can be found in [63, pg.
877].

Proposition 7.1.8. The Schwartz class S(Rdθ) has the following factorisation property:
every x ∈ S(Rdθ) is the product x = yz of two elements y, z ∈ S(Rdθ).

An important property of the Weyl transform is that f 7→ U(f) effects an isometry from
L2(Rd) to L2(Rdθ) [132, Chapter 2, Lemma 3.1].

Proposition 7.1.9. Let f ∈ S(Rd). Then we have

‖U(f)‖2 = ‖f‖2 .

Proposition 7.1.9 permits us to extend the domain of U from L1(Rd) to L1(Rd)+L2(Rd).
The following inequality may be thought of as the quantum Euclidean analogue of the
Hausdorff-Young inequality.

Proposition 7.1.10. Let 1 ≤ p ≤ 2 with 1
p+ 1

q = 1. Then for every f ∈ Lp(Rd)∩L1(Rd),
we have U(f) ∈ Lq(Rdθ), and

‖U(f)‖q ≤ ‖f‖p
and hence U has continuous extension from Lp(Rd) to Lq(Rdθ).

Proof. First consider the case p = 1 and q =∞. According to (7.1.4), we have:

‖U(f)‖∞ ≤ ‖f‖1, f ∈ L1(Rdθ).

The case p = 2 is provided by Proposition 7.1.9:

‖U(f)‖2 = ‖f‖2.

We may deduce the result for all 1 ≤ p ≤ 2 by using complex interpolation for the
couples (L1(Rd), L2(Rd)) and (L∞(Rdθ), L2(Rdθ)). The complex interpolation method for
the latter couple is covered by the standard theory of interpolation of noncommutative
Lp-spaces (see e.g. [105]).

We now define the space S ′(Rdθ) of tempered distributions, and the associated operations.

Definition 7.1.2. Let S ′(Rdθ) be the space of continuous linear functionals on S(Rdθ),
which may be called the space of quantum tempered distributions.

As in the classical case, denote the pairing of T ∈ S ′(Rdθ) with φ in S(Rdθ) by (T, φ), and
L∞(Rdθ) is embedded into S(Rdθ) by:

(x, φ) := τθ(xφ), x ∈ L∞(Rdθ), φ ∈ S(Rdθ).
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For a multi-index α ∈ Nd0 and T ∈ S(Rdθ), define ∂αT as the distribution (∂αT, φ) =
(−1)|α|(T, ∂αφ).

It is not hard to verify that ∂α on distributions extends ∂α on L∞(Rdθ) as defined in
Section 6.2, so there is no conflict of notation.

In terms of the isomorphism U : S(Rd)→ S(Rdθ), we can compute derivatives easily:

∂αU(φ) = U(tα1
1 · · · t

αd
d φ(t)). (7.1.7)

By duality, we can extend the derivatives Dk to operators on S ′(Rdθ). With these gener-
alised derivatives, we are able to reintroduce the homogeneous Sobolev spaces Ẇm

p (Rdθ)
associated to noncommutative Euclidean space.

Definition 7.1.11. The homogeneous Sobolev space Ẇm
p (Rdθ) consists of those x ∈

S ′(Rdθ) such that every partial derivative of x of order m is in Lp(Rdθ), equipped with the
norm:

‖x‖Ẇm
p

=
∑
|α|=m

‖∂αx‖p .

We will have frequent need to refer to the operator (1−∆)1/2, which we abbreviate as
J ,

J := (1−∆)1/2.

That is, J is the operator on L2(Rd) of pointwise multiplication by (1 + |t|2)1/2, with
domain L2(Rd, (1 + |t|2)dt). Classically, the operator J is called the Bessel potential.

Definition 7.1.12. Let N = 2bd/2c and {γj}1≤j≤d be self-adjoint N ×N matrices satis-
fying γjγk + γkγj = 2δj,k. The Dirac operator D associated with L∞(Rdθ) is the operator
on CN ⊗ L2(Rd) defined by

D :=

d∑
j=1

γj ⊗Dj .

7.1.4 The dilation map

We now describe the “dilation” action of R+ on a quantum Euclidean space. A pecu-
liarity of the noncommutative situation is that the natural dilation semigroup does not
define an automorphism of L∞(Rdθ) to itself, but instead the value of θ varies.

The heuristic motivation for the dilation mapping is as follows. Recall that we consider
Rdθ as being generated by elements {x1, . . . , xd} satisfying the commutation relation

[xj , xk] = iθj,k.

However this relation is not invariant under rescaling. That is, if we let λ > 0 then the
family {λx1, . . . , λxd} satisfies the relation:

[λxj , λxk] = iλ2θj,k.
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It therefore becomes clear that if we wish to define a “dilation by λ” map on Rdθ,
we should instead consider dilation as mapping between two different noncommutative
spaces. That is, from Rdθ to Rdλ2θ.

The following rigorous definition of the “dilation by λ” map follows [62]. Given λ > 0,
define the map Ψλ from L∞(Rdθ) to L∞(Rdλ2θ) as

Ψλ : Uθ(s) 7→ Uλ2θ(
s

λ
). (7.1.8)

Recall that we include a subscript θ (or λ2θ) to indicate the dependence on the matrix.

Denote by σλ the usual L2-norm preserving dilation on Euclidean space:

σλξ(t) = λd/2ξ(λt), ξ ∈ L2(Rd).

We have σ∗λ = σλ−1 . It is standard to verify that

Uθ(s) = σ∗λ Uλ2θ(
s

λ
)σλ. (7.1.9)

Moreover, by (7.1.9), it is evident that for every λ > 0, Ψλ is a ∗-isomorphism from
L∞(Rdθ) to L∞(Rdλ2θ).

The following proposition shows how the dilation Ψλ affects the Lp norms for quantum
Euclidean spaces.

Proposition 7.1.13. Let λ > 0 and x ∈ Lp(Rdθ), and denote ξ = λ2θ. Then for all
2 ≤ p <∞, we have:

‖Ψλx‖Lp(Rdξ) ≤ λ
d/p‖x‖Lp(Rdθ)

and Ψλ is an isometry from L∞(Rdθ) to L∞(Rdξ).

If in addition x ∈W 1
p (Rdθ), then:

‖∂jΨλ(x)‖Lp(Rdξ) ≤ λ
d/p−1‖∂jx‖Lp(Rdθ) , j = 1, · · · , d. (7.1.10)

Proof. As was already mentioned, Ψλ is a ∗-isomorphism between L∞(Rdθ) and L∞(Rdξ),
and since a ∗-isomorphism of C∗-algebras is an isometry, it follows immediately that
Ψλ : L∞(Rdθ)→ L∞(Rdξ) is an isometry.

For p = 2, recall from Proposition 7.1.9 that the mapping (2π)−d/2Uθ (resp. (2π)−d/2Uξ)
defines an isometry from L2(Rdθ) (resp. L2(Rdξ)) to L2(Rd). Also note that:

Ψλ ◦ Uθ = Uξ ◦ dλ, λ > 0.

where dλ is the dilation by λ map f 7→ f(·/λ). Hence Ψλ has the same norm between
L2(Rdθ) and L2(Rdξ) as dλ does on L2(Rd). This is easily computed to be λd/2.

Finally, the result for 2 < p < ∞ follows from complex interpolation of the couples
(L2(Rdθ), L∞(Rdθ)) and (L2(Rdξ), L∞(Rdξ)).
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We recall that the complex interpolation space (L2(Rdθ), L∞(Rdθ))η is L2/η(Rdθ), where
η ∈ (0, 1), and that we have:

‖Ψλ‖L2/η→L2/η
≤ ‖Ψλ‖ηL2→L2

‖Ψλ‖1−ηL∞→L∞ ≤ λ
dη/2.

Taking η = 2
p yields the desired norm bound.

The second claim follows from the easily-verified identity:

∂j(Ψλ(x)) = λ−1Ψλ∂j(x).

7.1.5 Density of S(Rd
θ) in Sobolev spaces

Let us discuss the density of S(Rdθ) in the Sobolev spaces Wm
p (Rdθ) and Ẇm

p (Rdθ). Prov-

ing the density of S(Rdθ) in the homogeneous Sobolev space Ẇm
p (Rdθ) presents certain

difficulties and we have been unable to achieve this for the full range of indices (m, p).

For this section, we fix ψ ∈ S(Rd) such that
∫
Rd ψ(s) ds = 1. We do not assume that ψ

is positive or has compact support. For ε > 0, define:

ψε(t) = ε−dψ(
t

ε
). (7.1.11)

The following theorem provides us a means of “approximation in the spatial variables”.

The proof is straightforward and shall be omitted here, but full details may be found in
[92, Theorem 3.8].

Theorem 7.1.14. Let 1 ≤ p < ∞. For all x ∈ Lp(Rdθ), we have that U(ψε)x → x in
the Lp(Rdθ) norm as ε→ 0.

The p = 2 component of Theorem 7.1.14 may be equivalently, stated as U(ψε) → 1 in
the strong operator topology of L∞(Rdθ) in its representation on L2(Rdθ).

We note one further property of U(ψε):

Lemma 7.1.15. Let 1 ≤ j ≤ d. Then for all 2 ≤ p ≤ ∞, we have:

‖∂jU(ψε)‖p ≤ ε1− d
p ‖ψ1‖q.

where q satisfies 1
p + 1

q = 1.

Proof. Recall (from (7.1.7)) that:

∂jU(ψε) = U(tjψε(t))

so that we may apply Proposition 7.1.10 to bound ‖∂jU(ψε)‖p by:(∫
Rd
tqjε
−dq|ψ(

t

ε
)|qdt

)1/q
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where q is Hölder conjugate to p.

Applying the change of variable s = t
ε , we get the norm bound:

‖∂jU(ψε)‖p ≤ ε1−d+ d
q ‖ψ1‖q.

Proposition 7.1.16. Let m ≥ 0 and 1 ≤ p <∞, and x ∈Wm
p (Rdθ). Then:

lim
ε→0
‖U(φε)x− x‖Wm

p
= 0.

In particular, S(Rdθ) is norm-dense in Wm
p (Rdθ).

At the time of this writing, we are unable to prove that the inclusion S(Rdθ) ⊂ Ẇm
p (Rdθ)

is dense. In the classical (commutative) setting or on quantum tori, this can be achieved
by an application of a Poincaré inequality (see, e.g., [68, Theorem 7]). To the best of
our knowledge, no adequate replacement is known in the noncommutative setting. In
the following proposition, to obtain the desired convergence in Ẇ 1

d (Rdθ) norm, we have
to assume additionally that x ∈ Lp(Rdθ) for some d ≤ p <∞. This is the ultimate cause
of the a priori assumption in the statements of Theorems 7.1.1, 7.1.2 and 7.1.5 that
x ∈ Lp(Rdθ) for some d ≤ p <∞.

Proposition 7.1.17. If x ∈ Ẇ 1
d (Rdθ) ∩ Lp(Rdθ) for some d ≤ p <∞, then the sequence

U(φε)x converges to x in Ẇ 1
d -seminorm when ε→ 0+.

7.2 Proof of Theorem 7.1.1

This section is devoted to the proof of Theorem 7.1.1, that is, that the condition x ∈⋃
d≤p<∞ Lp(Rdθ)∩W 1

d (Rdθ) is sufficient for d̄x ∈ Ld,∞, and with an explicit norm bound:

‖d̄x‖d,∞ .d ‖x‖Ẇ 1
d (Rdθ).

The proof given here is similar to the corresponding result on quantum tori [93], relying
heavily on the Cwikel type estimate stated in the last section.

Lemma 7.2.1. Suppose that p > d
2 and x ∈ Lp(Rdθ). If p ≥ 2, then:∥∥∥∥[sgn(D)− D√

1 +D2
, 1⊗x

]∥∥∥∥
Lp

.p,d ‖x‖p.

Proof. Let 1 ≤ j ≤ d, and for ξ ∈ Rd define

hj(ξ) :=
ξj
|ξ|
− ξj

(1 + |ξ|2)
1
2

.

Thus,

Mhj = hj(i∇) =
Dj√
−∆
− Dj

(1−∆)
1
2
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Note that there is no ambiguity in writing
Dj√
−∆

, as this is simply Mg for g(ξ) =
ξj
|ξ| . and

so,

sgn(D)− D√
1 +D2

=
d∑
j=1

γj ⊗
( Dj√
−∆
− Dj

(1−∆)
1
2

)
=

d∑
j=1

γj ⊗Mhj .

One can easily check that hj ∈ Lp(Rd) as p > d
2 . Expanding out the commutator,

[
sgn(D)− D√

1 +D2
, 1⊗x

]
=

 d∑
j=1

γj⊗Mhj , 1⊗x

 =
d∑
j=1

γj⊗[Mhj , x].

Hence, ∥∥∥∥[sgn(D)− D√
1 +D2

, 1⊗x
]∥∥∥∥
Lp
≤ d max

1≤j≤d

∥∥[Mhj , x
]∥∥
Lp

≤ d max
1≤j≤d

(∥∥Mhjx
∥∥
Lp

+
∥∥xMhj

∥∥
Lp

)
= d max

1≤j≤d

(
‖x∗Mhj‖Lp + ‖xMhj‖Lp

)
.

The desired conclusion follows then from Theorem 6.2.6.(i).

The proof of the next lemma is modelled on that of [93, Lemma 4.2] and [87, Lemma 10],
via the technique of double operator integrals.

Lemma 7.2.2. The function ψ on R2 given by:

ψ(λ, µ) =
(1 + λ2)1/4(1 + µ2)1/4

(1 + λ2)1/2 + (1 + µ2)1/2

is in the Birman-Solomyak class BS(ν0 × ν1) for any pair of spectral measures ν0 and
ν1.

Proof. Let t := 1
4(log(1 + λ2)− log(1 + µ2)). Then,

ψ(λ, µ) =
1

et + e−t
=

1

2
sech(t).

The function t 7→ 1
2sech(t) is Schwartz class, and so has Schwartz-class Fourier transform

F , so by the Fourier inversion theorem:

ψ(λ, µ) =

∫ ∞
−∞

eistF (s) ds =

∫ ∞
−∞

(1 + λ2)is/4(1 + µ2)−is/4F (s) ds.

This is a Birman-Solomyak decomposition, since F is in particular integrable.

Lemma 7.2.3. Let x ∈ Ẇ 1
d (Rdθ) ∩ Lp(Rdθ) for some d ≤ p <∞. Then

∥∥[ D√
1 +D2

, 1⊗x
]∥∥
Ld,∞

.d ‖x‖Ẇ 1
d
.
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Proof. Set g(t) = t(1 + t2)−
1
2 for t ∈ R. Thanks to Theorem 4.1.10, we have:

[g(D), 1⊗x] = T D,Dg(λ)−g(µ),B(L2)(x) = T D,D
g[1],B(L2)

([D, 1⊗x]), (7.2.1)

where g[1](λ, µ) := g(λ)−g(µ)
λ−µ = ψ1(λ, µ)ψ2(λ, µ)ψ3(λ, µ), with

ψ1 = 1 +
1− λµ

(1 + λ2)
1
2 (1 + µ2)

1
2

, ψ2 =
(1 + λ2)

1
4 (1 + µ2)

1
4

(1 + λ2)
1
2 + (1 + µ2)

1
2

, ψ3 =
1

(1 + λ2)
1
4 (1 + µ2)

1
4

.

For k = 1, 3, the function ψk can be written as a linear combination of products of
bounded functions of λ and µ individually, so ψ1, ψ3 ∈ BS(ED × ED). From Lemma
7.2.2, we also have that ψ2 ∈ BS(ED × ED).

Applying Theorem 4.1.10, we have:

T D,D
g[1],B(L2)

= T D,Dψ1,B(L2)T
D,D
ψ2,B(L2)T

D,D
ψ3,B(L2). (7.2.2)

Theorem 4.1.10 yields the boundedness of T D,Dψk
on L1 and B(L2(Rd)) for k = 1, 2, 3.

Then by real interpolation of (L1,L∞) (see [44]), the transformers TD,Dψk
with k = 1, 2, 3

are bounded linear transformations from Ld,∞ to Ld,∞. Using (7.2.1) and the product
representation of g in (7.2.2), we have

‖[g(D), 1⊗x]‖Ld,∞ ≤ ‖T
D,D
ψ1,B(L2)‖Ld,∞→Ld,∞‖T

D,D
ψ2,B(L2)‖Ld,∞→Ld,∞‖T

D,D
ψ3,B(L2)([D, 1⊗x])‖Ld,∞

.d ‖T D,Dψ3,B(L2)([D, 1⊗x])‖Ld,∞ .

Since ψ3(λ, µ) = (1 + λ2)−1/4(1 + µ2)−1/4, Theorem 4.1.10 implies that:

T D,Dψ3,B(L2)([D, 1⊗x]) = (1 +D2)−1/4[D, 1⊗x](1 +D2)−1/4.

Recalling that D =
∑d

j=1 γj⊗Dj ,

‖[g(D), 1⊗x]‖Ld,∞ .d ‖(1 +D2)−1/4[D, 1⊗x](1 +D2)−1/4‖Ld,∞

.d

d∑
j=1

‖(1 +D2)−1/4[γj⊗Dj , 1⊗x](1 +D2)−1/4‖Ld,∞ .

But by definition, [γj⊗Dj , 1⊗x] = γj⊗∂jx, thus we obtain

‖(1 +D2)−1/4[γj⊗Dj , 1⊗x](1 +D2)−1/4‖Ld,∞ = ‖J−1/2 ∂jxJ
−1/2‖Ld,∞ .

Here the first norm ‖ · ‖Ld,∞ is the norm of Ld,∞(CN ⊗ L2(Rd)), and the second one

is the norm of Ld,∞(L2(Rd)), and J = (1 − ∆)1/2. We are reduced to estimating the
quantity ‖J−1/2 ∂jxJ

−1/2‖Ld,∞ . By polar decomposition, for every j, there is a partial

isometry Vj on L2(Rd) such that

∂jx = Vj |∂jx| = Vj |∂jx|
1
2 |∂jx|

1
2 .
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Recalling that x is such that ‖Vj |∂jx|
1
2 ‖2d ≤ ‖ |∂jx|

1
2 ‖2d = ‖∂jx‖

1
2
d < ∞, we apply

Theorem 6.2.8 to get

‖|∂jx|
1
2J−1/2‖L2d,∞ = ‖J−1/2|∂jx|

1
2 ‖L2d,∞ .d ‖ |∂jx|

1
2 ‖2d

and
‖J−1/2Vj |∂jx|

1
2 ‖L2d,∞ .d ‖Vj |∂jx|

1
2 ‖2d .d ‖ |∂jx|

1
2 ‖2d.

Thus, by Hölder’s inequality for weak Schatten classes,

‖J−1/2∂jxJ
−1/2‖Ld,∞ .d ‖ |∂jx|

1
2 ‖22d .d ‖∂jx‖d.

Combining the preceding estimates, we arrive at

‖[g(D), 1⊗x]‖Ld,∞ .d

d∑
j=1

‖∂jx‖d .d ‖x‖Ẇ 1
d
,

which completes the proof.

Now we are able to complete the proof of Theorem 7.1.1.

Proof of Theorem 7.1.1. Lemmas 7.2.1 and 7.2.3 already yield

‖d̄x‖Ld,∞ .d ‖x‖d + ‖x‖Ẇ 1
d
, (7.2.3)

for all x ∈W 1
d (Rdθ), and with constants independent of θ. We are going to get rid of the

dependence on ‖x‖d by a dilation argument as follows. Let λ > 0 and Ψλ : L∞(Rdθ) →
L∞(Rdλ2θ) be the ∗-isomorphism defined in (7.1.8). By (7.1.9), for x ∈ L∞(Rdθ), we

have Ψλ(x) = σλxσ
∗
λ. Since the operator

Dj√
−∆

, viewed as a Fourier multiplier on Rd,
commutes with σλ (and σ∗λ), we have

d̄
(
Ψλ(x)

)
= i[sgn(D), 1⊗Ψλ(x)] = i[sgn(D), 1⊗σλxσ∗λ]

= iσλ[sgn(D), 1⊗x]σ∗λ = σλd̄x σ
∗
λ.

Whence, ‖d̄
(
Ψλ(x)

)
‖Ld,∞ = ‖d̄x‖Ld,∞ . Applying (7.2.3) to Ψλ(x) ∈ L∞(Rdλ2θ), we obtain

‖d̄
(
Ψλ(x)

)
‖Ld,∞ .d ‖Ψλ(x)‖d +Bd‖Ψλ(x)‖Ẇ 1

d
.

By virtue of Proposition 7.1.13, we return back to x ∈ L∞(Rdθ):

‖d̄x‖Ld,∞ = ‖d̄
(
Ψλ(x)

)
‖Ld,∞ .d λ‖x‖d + ‖x‖Ẇ 1

d
.

Letting λ→ 0 completes the proof of Theorem 7.1.1 for x ∈ S(Rdθ).

The general case x ∈ Ẇ 1
d (Rdθ) ∩

⋃
d≤p<∞ Lp(Rdθ) is achieved by approximation. By

Corollary 7.1.17, select a sequence {xn} in S(Rdθ) such that xn→x in Ẇ 1
d seminorm.

Proposition 7.1.16 implies that we can choose this sequence such that we also have that
xn→x in the Lp(Rdθ)-sense. For these Schwartz elements xn, we have ‖d̄xm−d̄xn‖Ld,∞ .d

‖xm − xn‖Ẇ 1
d
, so {d̄xn} is Cauchy in Ld,∞, and thus converges to some limit (say, L) in

the Ld,∞ quasinorm.
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Let η ∈ L2(Rd) be compactly supported, and let K ⊂ Rd be a compact set containing
the support of η. Then (xn − x)η = (xn − x)MχKη. We have:

‖(xn − x)η‖2 = ‖(xn − x)χKη‖2 ≤ ‖(xn − x)MχK‖∞‖η‖2 ≤ ‖(xn − x)χK‖Lp‖η‖2.

Theorem 6.2.6 implies that ‖(xn−x)MχK‖Lp .p,K ‖xn−x‖p, and since we have selected
the sequence to converge in the Lp(Rdθ) sense:

lim
n→∞

‖(xn − x)η‖2 = 0. (7.2.4)

Similarly, if ξ ∈ CN ⊗ L2(Rd) is compactly supported, then sgn(D)ξ is still compactly
supported and we have:

lim
n→∞

‖1⊗ (xn − x) sgn(D)ξ‖2 = 0. (7.2.5)

Combining (7.2.4) and (7.2.5) implies that (d̄xn)ξ → (d̄x)ξ for all compactly supported
ξ ∈ CN ⊗ L2(Rd). Since we know that d̄xn → L in the Ld,∞ topology, it follows that
d̄x = L, and therefore d̄x ∈ Ld,∞.

To complete the proof, we use the quasinorm triangle inequality:

‖d̄x‖Ld,∞ .d ‖d̄x− d̄xn‖Ld,∞ + ‖d̄xn‖Ld,∞ .d ‖x− xn‖Ẇ 1
d

+ ‖xn‖Ẇ 1
d
.

Upon taking the limit n→∞ we arrive at:

‖d̄x‖Ld,∞ .d ‖x‖Ẇ 1
d
.

7.3 Commutator estimates for Rd
θ

This section is devoted to a proof of Theorem 7.1.6, which is an essential ingredient
for our proof of Theorem 7.1.2 i.e., the computation of ϕ(|d̄x|d) when x ∈ L∞(Rdθ) ∩
Ẇ 1
d (Rdθ) and ϕ is a continuous normalised trace on L1,∞. One powerful tool used in

[93] for quantum tori is the theory of noncommutative pseudodifferential operators.
The proof in [93] proceeds by viewing the quantised differential d̄x = i[sgn(D), 1⊗x] as
a pseudodifferential operator, then determining its (principal) symbol and order, and
finally appealing to Connes’ trace formula as obtained in [94].

For potential future utility we will prove Theorem 7.1.6 for the full range of parameters
(α, β), although ultimately we will only need certain specific choices of α and β.

7.3.1 The pseudodifferential calculus

Our method of proof for Theorem 7.1.6 is to develop a very basic pseudodifferential
calculus for Rdθ. It is possible to provide a fully developed symbol calculus, as in [62] and
[82, Section 3], however for our purposes only a much weaker framework is necessary.
The calculus developed here is essentially a special case of the abstract pseudodiffer-
ential calculus developed by Connes and Moscovici [34] and Higson [74]. The ideas
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discussed here have also been greatly extended by L. Gao, M. Junge and the author to
noncommutative Euclidean spaces with non-commuting derivatives [53].

Recall that J denotes the Bessel potential operator J = (1 − ∆)1/2. The following
definition is essentially the same as [73, Definition 1.1], adapted to Rdθ.

Definition 7.3.1. For s ∈ R, a linear operator T : S(Rd) → S(Rd) is said to have
analytic order s if for all r ∈ R, the operator:

JrTJ−r−s

extends to a bounded linear operator on L2(Rd). If T has analytic order s for some s,
say that T is an operator of finite analytic order.

Obviously, if T has analytic order t and S has analytic order s, then TS and ST have
analytic order t+s, and T+S has analytic order max{t, s}. In [53], the term “asymptotic
degree” was used for essentially the same concept as analytic order.

According to the above definition, it T has analytic order s and t > s, then T also has
analytic order t. It is tempting to define the “minimal order” of an operator T as the
infimum of all s such that T has analytic order s. However this can be misleading, since
an operator can be analytic of every order t > 0 but not analytic of order zero (e.g., the
operator log(J)).

In practice it is not necessary to check that JrTJ−r−s is bounded for every r ∈ R, due
to an interpolation argument. Recall that the operator J is defined as being simply the
multiplication operator (1 + |t|2)1/2 on L2(Rd, (1 + |t|2)1/2dt).

Definition 7.3.2. For s ∈ R, let Ls2(Rd) denote the space:

Ls2(Rd) := L2(Rd, (1 + |t|2)s/2 dt).

Equivalently, Ls2(Rd) is the domain of the self-adjoint operator Js.

Evidently, Ls2(Rd) is the image under the Fourier transform of the Bessel potential
Sobolev space W s

2 (Rd) on Rd.

Proposition 7.3.3. Let T : S(Rd)→ S(Rd) be linear, and let s ∈ R. The following are
equivalent:

(i) T has analytic order s.

(ii) For every k ∈ 2Z, the map JkTJ−k−s has bounded extension.

(iii) T extends to a bounded linear map from Lk+s
2 (Rd) to Lk2(Rd) for every k ∈ 2Z.

(iv) T extends to a bounded linear map from Lr+s2 (Rd) to Lr2(Rd) for every r ∈ R.

Proof. That (i) implies (ii) is trivial. Since Jk maps Lk2(Rd) to L2(Rd) continuously,
that (ii) implies (iii) is self-evident from the definitions. Similarly, (iv) implies (i) for
the same reason.

The only somewhat nontrivial implication is that (iii) implies (iv). For this, we use the
fact that the family {Ls2(Rd)}s∈R is a complex interpolation scale. This is well-known
(see [11, Chapter 4, Theorem 3.6]), since Ls2(Rd) is simply a weighted L2 space.
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As one would expect, the analytic order of an operator of multiplication by x ∈ S(Rdθ)
is zero.

Lemma 7.3.4. Every x ∈ S(Rdθ) has analytic order zero.

Proof. Note that x : S(Rd)→ S(Rd), this can be seen directly from (7.1.5).

Due to Proposition 7.3.3.(ii), it suffices to check that J2kxJ−2k has bounded extension
for every k ∈ Z. For k ≥ 0, the proof can be achieved by induction on k, with the case
k = 0 being immediate. Recall that J2 = 1+

∑d
j=1D

2
j , and that [D2

j , x] = 2∂jxDj+∂2
j x.

Assuming that k ≥ 0 and J2kxJ−2k has bounded extension for every x ∈ S(Rdθ), we
have (on S(Rd))

J2k+2xJ−2k−2 = J2kxJ−2k + J2k[J2, x]J−2k−2

= J2kxJ−2k −
d∑
j=1

2iJ2k∂jxDjJ
−2k−2 + J2k∂2

j xJ
−2k.

Since ∂jx and ∂2
j x are in S(Rdθ) for all j = 1, . . . , d, and since each DjJ

−2 is bounded,

it follows that the operator J2k+2xJ−2k−2 coincides on S(Rd) with a sum of operators
with bounded extension to L2(Rd). Hence, J2k+2xJ−2k−2 has bounded extension, and
thus by induction J2kxJ−2k has bounded extension for every k ≥ 0.

One can handle the case k < 0 using the identity:

〈J2kxJ−2kξ, η〉L2(Rd) = 〈ξ, J−2kx∗J2kη〉L2(Rd), ξ, η ∈ S(Rd).

That is, on S(Rd) the operator J2kxJ−2k coincides with the adjoint of the bounded
extension of J−2kx∗J2k, so J2kxJ−2k itself has bounded extension.

The following Lemma strengthens the Cwikel-type estimate given in Lemma 6.2.8, given
additional smoothness assumptions on x.

Lemma 7.3.5. For every β > 0 and x ∈ S(Rdθ), the operator xJ−β is in the ideal
Ld/β,∞.

Proof. For β = d, this is already the result of Lemma 6.2.8 since S(Rdθ) ⊂W d
1 (Rd).

We can extend the result to 0 < β ≤ d using the Araki-Lieb-Thirring inequality (1.5.2),
with r = d/β, A = x and B = J−β to obtain:

xJ−β ∈ Ld/β,∞

We may complete the proof by showing that if the result holds for some β > 0, then it
continues to hold for β + 2. Since we know the result is true for 0 < β ≤ 2 ≤ d, this
suffices to complete the proof.

Assume that the result holds for some β > 0. That is, assume that β > 0 is such that
for all x ∈ S(Rdθ) we have xJ−β ∈ Ld/β,∞. Since every x ∈ S(Rdθ) can be factorised as

x = yz for some y, z ∈ S(Rdθ) (Proposition 7.1.8), we have that:

J−2xJ−β = J−2yzJ−β = (y∗J−2)∗(xJ−β)
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and this product is in L d
β+2

,∞, due to Hölder’s inequality. Hence

J−2xJ−β ∈ L d
β+2

,∞ (7.3.1)

for all x ∈ S(Rdθ).

Now write xJ−β−2 as follows:

xJ−β−2 = J−2xJ−β + [x, J−2]J−β

= J−2xJ−β + J−2[J2, x]J−β−2.

Using J2 = 1 +
∑d

j=1D
2
j and [D2

j , x] = −2i∂jxDj − ∂2
j x, we have:

xJ−β−2 = J−2xJ−β − 2i

d∑
j=1

J−2∂jxDjJ
−β−2 −

d∑
j=1

J−2∂2
j xJ

−β−2.

Since each ∂jx and ∂2
j x is still in S(Rdθ) and each DjJ

−2 is bounded, it now follows from

(7.3.1) that xJ−β−2 is in L d
β+2

,∞.

Immediately from Lemma 7.3.5, we have the following:

Corollary 7.3.6. If T has analytic order −β < 0 and x ∈ S(Rdθ), then xT ∈ Ld/β,∞.

Proof. Since JβT has analytic order zero, JβT is in particular bounded on L2(Rd).
Hence by Lemma 7.3.5, the product xT = xJ−βJβT is in the ideal Ld/β,∞.

7.3.2 Commutator identities

The following integral formula will be useful: let ζ < 1 and η > 1− ζ. Then for all t > 0
we have ∫ ∞

0

1

λζ(t+ λ)η
dλ = t1−ζ−η B(η + ζ − 1, 1− ζ). (7.3.2)

where B(·, ·) is the Beta function.

For a linear operator T : S(Rd) → S(Rd), let L(T ) := J−1[J2, T ], and define δ(T ) :=
[J, T ] similarly. Inductively, for k ∈ N we define Lk(T ) = L(Lk−1(T )) and δk(T ) =
δ(δk−1(T )). We also make the convention that L0(T ) = T and δ0(T ) = T . Note that
L(T )J−1 = L(TJ−1).

In conventional pseudodifferential calculus, the order of a commutator of two operators
with commuting symbols is one less than the sum of their orders. In our very basic
calculus, the following theorem is a suitable substitute for our purposes when one of the
operators is a power of J .

The essential idea behind the proof of the following goes back to Connes and Moscovici
[34, Appendix B].

Theorem 7.3.1. Let T be an operator with finite analytic order and let α ∈ R. Suppose
that L(T ) and L2(T ) have analytic order s. Then [Jα, T ] has analytic order s− 1 + α.
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Proof. Initially consider the case where 0 < α < 2. Using (7.3.2) with the parameters
η = 1 and ζ = 1− α

2 , we have:

(J2)α/2−1 =
1

B(1− α/2, α/2)

∫ ∞
0

λα/2−1 1

J2 + λ
dλ.

Since J2 + λ ≥ 1 + λ, the integrand is bounded in norm by λα/2−1(1 + λ)−1 and so
the above integral exists in the weak∗ sense thanks to Lemma 4.1.4. The coincidence
of the integral and the operator Jα−2 = (J2)α/2−1 follows from the spectral theorem.
Multiplying through by J2 yields the identity:

Jα =
1

B(1− α/2, α/2)

∫ ∞
0

λα/2−1 J2

J2 + λ
dλ.

One should take caution about about the interpretation of this identity, since the integral
is not absolutely convergent in the operator norm (indeed, the integral is Jα which is
unbounded). A valid interpretation is that if ξ, η ∈ S(Rd), then we have:

〈Jαξ, η〉 = 〈Jα−2 · J2ξ, η〉 =
1

B(1− α/2, α/2)

∫ ∞
0

λα/2−1〈 1

J2 + λ
· J2ξ, η〉 dλ

by the definition of the weak∗ integral, since the map X 7→ 〈XJ2ξ, η〉 is in the predual
of B(L2(Rd)).

The above interpretation justifies the identity:

[Jα, T ] =
1

B(1− α/2, α/2)

∫ ∞
0

λα/2−1

[
J2

J2 + λ
, T

]
dλ.

Using the identity: [
J2

J2 + λ
, T

]
= λ(J2 + λ)−1[J2, T ](J2 + λ)−1,

we have:

[Jα, T ] =
1

B(1− α/2, α/2)

∫ ∞
0

λα/2
J

λ+ J2
L(T )(J2 + λ)−1 dλ.

Now we commute the resolvent (λ+ J2)−1 with L(T ) as follows:

L(T )(λ+ J2)−1 = (λ+ J2)−1L(T ) +
J

λ+ J2
L2(T )(λ+ J2)−1

Substituting this into the integral, we have:

[Jα, T ] =
1

B(1− α/2, α/2)

∫ ∞
0

λα/2
J

(λ+ J2)2
dλ · L(T )

+
1

B(1− α/2, α/2)

∫ ∞
0

λα/2
J2

(λ+ J2)2
L2(T )(λ+ J2)−1 dλ.
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Using (7.3.2) with the parameters ζ = −α/2 and η = 2, we arrive at:

[Jα, T ] =
B(1− α/2, 1 + α/2)

B(1− α/2, α/2)
Jα−1L(T )

+
1

B(1− α/2, α/2)

∫ ∞
0

λα/2
J2

(λ+ J2)2
L2(T )(λ+ J2)−1 dλ.

To complete the proof of the 0 < α < 2 case, we need to show that the integral term
has analytic order s − 1 + α. Since L2(T ) has analytic order s, by definition for every
r ∈ R we have:

‖Jr−sL2(T )J−r‖∞ <∞.

Let β, r ∈ R. For all λ > 0, it follows that we have the bound:

‖λα/2Jr−s−β J2

(λ+ J2)2
L2(T )(λ+ J2)−1J−r‖

≤ λα/2‖J2−β(λ+ J2)−2‖∞‖Jr−sL2(T )J−r‖∞‖(λ+ J2)−1‖∞.

By functional calculus,

‖J2−β(λ+ J2)−2‖∞ ≤ sup
t≥0

t2−β(λ+ t2)−2 .β λ
−β/2−1

and similarly ‖(λ+ J2)−1‖ ≤ (λ+ 1)−1. Thus we have the upper bound:

‖λα/2Jr−s−β J2

(λ+ J2)2
L2(T )(λ+ J2)−1J−r‖ .β,r,s2 λ

(α−β)/2−1(λ+ 1)−1.

If α−β
2 − 1 ∈ (−1, 0), the above function is integrable over [0,∞) and hence the integral:∫ ∞

0
λα/2

J2

(λ+ J2)2
L2(T )(λ+ J2)−1 dλ

converges in the operator norm from Lr2(Rd) to Lr−s+β2 (Rd). Therefore, [Jα, T ] has order
at most max{s + α − 1, s + β} for all β ∈ (α − 2, 0). Taking β = α − 1 completes the
proof of the 0 < α < 2 case.

Note that the cases α = 0 and α = 2 are trivial, so the result holds for α ∈ [0, 2]. Using
the identities:

[Jα+2, T ] = Jα[J2, T ] + J2[Jα, T ], [J−α, T ] = −J−α[Jα, T ]J−α

the result is easily extended to all α ∈ R.

Remark 7.3.7. Note that if we continued taking iterated commutators with (λ+ J2)−1

in the proof of Theorem 7.3.1, we would have for each n the identity:

L(T )(λ+ J2)−1 =

n−1∑
k=1

Jk(λ+ J2)−kLk(T ) + Jn+1(λ+ J2)−nLn+1(T )(λ+ J2)−1.
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This expansion yields the following formula for [Jα, T ], when α ∈ (0, 2):

[Jα, T ] =
n−1∑
k=1

B(k − α/2, 1 + α/2)

B(1− α/2, α/2)
Jα−kLk(T )

+
1

B(1− α/2, α/2)

∫ ∞
0

λα/2
Jn+1

(λ+ J2)n+1
Ln+1(T )(λ+ J2)−1 dλ.

In some circumstances (e.g., T = x ∈ S(Rdθ) as discussed below), this is an asymptotic
expansion in the sense of Higson [74, Definition 4.18].

Corollary 7.3.8. If T is an operator such that Lk(T ) has analytic order s for all k ≥ 0,
then δk(T ) has analytic order s for all k ≥ 0.

Proof. Let us show that δk(T ) has analytic order s for every k by proving that for every
l and k, the operator:

δl(Lk(T )) (7.3.3)

has analytic order s, by induction on l. For l = 0, this is simply the claim that Lk(T )
has analytic order s for every k, which is assumed.

Supposing that the operator (7.3.3) has analytic order s for some l ≥ 0, let us show that
δl+1(Lk(T )) has analytic order s. Since L and δ commute, we have:

L(δl(Lk(T )) = δl(Lk+1(T )), L2(δl(Lk(T ))) = δl(Lk+2(T )).

So by the inductive hypothesis, both L(δl(Lk(T ))) and L2(δl(Lk(T ))) have analytic order
s. Theorem 7.3.1 with α = 1 then proves that δl+1(Lk(T )) has analytic order s, and
thus by induction the operator (7.3.3) has analytic order s for every l ≥ 0 and k ≥ 0.

The converse of Corollary 7.3.8 also holds: if δk(T ) has analytic order s for every k, then
Lk(T ) has analytic order s for all k ≥ 0, and the proof follows from the simple identity:

L(T ) = 2δ(T )− J−1δ2(T ).

This converse was already known to Connes and Moscovici [34, Appendix B].

Lemma 7.3.9. For every k ≥ 0 and x ∈ S(Rdθ), the operators Lk(x) and δk(x) have
analytic order zero.

Proof. Thanks to Corollary 7.3.8, it suffices to prove that Lk(x) has analytic order zero
for every k ≥ 0.

We first show that [J2, x] has analytic order 1.

Since J2 = 1 +
∑d

j=1D
2
j and [D2

j , x] = 2∂jxDj + ∂2
j x, it follows that [J2, x] can be

expanded as:

[J2, x] =

d∑
j=1

−2i∂jxDj − ∂2
j x,

Since each Dj has order 1 and each ∂jx and ∂2
j x has order zero (Lemma 7.3.4), it follows

that D(x) = [J2, x] has order 1, and therefore L(x) has analytic order zero.
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Similarly, if we assume that Lk(x) has analytic order k for every x ∈ S(Rdθ) then since
J commutes with each Dj and ∂jx = [Dj , x], we have:

Lk+1(x) = J−1[J2, Lk(x)] =
d∑
j=1

−2iJ−1Lk(∂jx)Dj − J−1Lk(∂2
j x)

so it follows that Lk+1(x) has analytic order zero for every x ∈ S(Rdθ), and thus the
result follows by induction.

Corollary 7.3.10. Let T be an operator which is analytic of order −β < 0. Then for
every x ∈ S(Rdθ) and k ≥ 0, we have δk(x)T ∈ Ld/β,∞.

Proof. By Lemma 7.3.9, every δk(x) has analytic order zero.

We prove the result by induction on k, with the k = 0 case being the result of Corollary
7.3.6. Supposing the result is true for 0 ≤ l < k, we prove it for k by factorising x as
x = yz for y, z ∈ S(Rdθ) (Proposition 7.1.8). Then by the kth order Leibniz rule we have

δk(yz)T =

k∑
l=0

(
k

l

)
δl(y)δk−l(z)T = δk(y)zT + yδk(z)T +

k−1∑
l=1

(
k

l

)
δl(y)δk−l(z)T.

Since every δl(y) and δk−l(z) have order zero, the result now follows from the inductive
hypothesis and Corollary 7.3.6.

Using Theorem 7.3.1, we obtain the key theoretical tool behind the proof of Theorem
7.1.6.

Corollary 7.3.11. For every α, β ∈ R, x ∈ S(Rdθ) and k ≥ 0, the operator [Jα, δk(x)]J−β

has analytic order α− β − 1.

Proof. From Lemma 7.3.9, in particular L(x) and L2(x) have analytic order zero for
every x ∈ S(Rdθ). Theorem 7.3.1 then implies that [Jα, x] has analytic order α − 1.
Similarly, since every Lk+1(x) and Lk+2(x) have analytic order zero, it follows that
[Jα, Lk(x)] has analytic order α− 1.

Since we have:
[Jα, Lk(x)] = Lk([Jα, x])

it follows from Corollary 7.3.8 that δk([Jα, x]) has analytic order α− 1 for every k, and
hence [Jα, δk(x)] has analytic order α− 1.

Multiplying by J−β reduces the order by β, so the operator [Jα, x]J−β has analytic order
α− β − 1.

Next, we prove Theorem 7.1.6 for the cases where α ≤ 1 and β > 0 by a factorisation
argument.

Lemma 7.3.12. Let x ∈ S(Rdθ). For every α ≤ 1, β > max{α− 1, 0}, γ ≥ 0 and k ≥ 0,
the operator J−γ [Jα, δk(x)]J−β is in the ideal Ld/(β+γ−α+1),∞.
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Proof. For simplicity, consider the case γ = 0. Since the Schwartz class S(Rdθ) can be
factorised (Proposition 7.1.8), write x = yz for y, z ∈ S(Rdθ). Then:

δk(yz) =
k∑
l=0

(
k

l

)
δk−l(y)δl(z).

Thus it suffices to prove the result for δk−l(y)δl(z) in place of δk(x). By the Leibniz
rule, we have:

[Jα, δk−l(y)δl(z)]J−β = δk−l(y)[Jα, δl(z)]J−β + [Jα, δk−l(y)]δk−l(z)J−β. (7.3.4)

Corollary 7.3.11 shows that the first term on the right hand side of (7.3.4) has order
α − β − 1 < 0. This combines with Corollary 7.3.10 to deduce that the first term is in
Ld/(β−α+1),∞.

As for the second term in (7.3.4), we factorise z into z = wv for w, v ∈ S(Rdθ), and
write δk−l(z) as a linear combination of terms of the form δl0(u)δl1(v). If α < 1, the
operators [Jα, δk−l(y)]δl0(u) and δl1(v)J−β are in Ld/(1−α),∞ and Ld/β,∞ respectively

due to Lemma 7.3.10, so by Hölder’s inequality it follows that [Jα, y]δk−l(z)J−β is in
Ld/(β−α+1),∞. On the other hand, if α = 1 then Corollary 7.3.11 implies that [Jα, y] is

order zero, so in particular [Jα, y] is bounded, and since δk−l(z)J−β ∈ Ld/β,∞, it follows

that [Jα, δl(y)]δk−l(z)J−β ∈ Ld/β,∞.

It is possible to prove the cases where γ > 0 by a similar factorisation argument, so this
proof is omitted.

7.3.3 Proof of Theorem 7.1.6

In Lemma 7.3.12 we have already proved Theorem 7.1.6 when β > 0 and α ≤ 1. More-
over, the cases where β − α + 1 = 0 are covered by Corollary 7.3.11, since operators of
analytic order zero are in particular bounded on L2(Rd).

We now complete the proof for the full range of parameters {(α, β) : β − α + 1 ≥ 0}.
First we note that since [J2, δk(x)] is computed as:

[J2, δk(x)] = −
d∑
j=1

2iδk(∂jx)Dj + δk(∂2
j x).

It then follows from Lemma 7.3.10 that if β − α + 1 > 0, then [J2, δk(x)]Jα−β−2 ∈
Ld/(β−α+1),∞.

Now we consider the cases where α > 1 and β > 0. By the Leibniz rule:

[Jα, δk(x)]J−β = [J2 · Jα−2, δk(x)]J−β

= [J2, δk(x)]Jα−β−2 + J2[Jα−2, δk(x)]J−β

= [J2, δk(x)]Jα−β−2 − J−α[J2−α, δk(x)]Jα−β−2.

The first summand is in Ld/(β−α+1),∞. Since α > 1, it follows that 2− α < 1 and since
β − α+ 1 > 0 it follows that α− β − 2 < −1 < 0, so Lemma 7.3.12 is applicable to the
second summand, which is hence in Ld/(β−α+1),∞.
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Thus, the result remains true for the parameter range {(α, β) : β − α+ 1 ≥ 0, β > 0}.

To complete the proof, we show that if [Jα, δk(x)]J−β ∈ L d
β−α+1

,∞ for every k then also

[Jα−1, δk(x)]J1−β ∈ L d
β−α+1

,∞ for every k. By the Leibniz rule, we have:

[Jα−1, δk(x)]J1−β = [Jα, δk(x)]J−β + Jα[J−1, δk(x)]J1−β

= [Jα, δk(x)]J−β − Jα−1δk+1(x)J−β

= [Jα, δk(x)]J−β − J−1[Jα, δk+1(x)]J−β

− J−1δk+1(x)Jα−β

= [Jα, δk(x)]J−β − J−1[Jα, δk+1(x)]J−β

− [J−1, δk+1(x)]Jα−β − δk+1(x)Jα−β−1

= [Jα, δk(x)]J−β − J−1[Jα, δk+1(x)]J−β

+ J−1δk+2(x)Jα−β−1 − δk+1(x)Jα−β−1.

It now follows from Lemma 7.3.10 that each of the above four summands is in L d
β−α+1

,∞
if α < β + 1.

Therefore the result holds for the parameters (α− 1, β− 1) whenever it holds for (α, β),
and this suffices to handle every possible case.

7.4 Proofs of Theorems 7.1.2 and 7.1.5

Using Theorem 7.1.6 and the commutator estimates developed in Section 7.3, we are
able to establish the trace formula in Theorem 7.1.2, and finally prove Theorem 7.1.5.
This will be done by showing that for all x ∈ S(Rdθ),

|d̄x|d − |A|d(1 +D2)−d/2 ∈ L1

for a certain bounded operator A on CN ⊗L2(Rd) (depending on x), and then applying
the trace formula given by [94, Theorem 6.15] to |A|d(1 +D2)−d/2.

7.4.1 Operator difference estimates

We begin with the construction of the above mentioned operator A. For 1 ≤ j, k ≤ d,
denote gj,k(t) =

tjtk
|t|2 on Rd. Let x ∈ S(Rdθ). Define the operator Aj on L2(Rd) as

Ajξ := (∂jx)ξ −
d∑

k=1

(Mgj,k∂kx)ξ = (∂jx)ξ −
d∑

k=1

gj,k(D1, · · · , Dd)(∂kx)ξ, ξ ∈ L2(Rd)

(7.4.1)
and define the operator A on CN⊗L2(Rd)

A :=

d∑
j=1

γj⊗Aj ,

where N and γj are the same as in Definition 7.1.12.
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The main result in this subsection is the following theorem:

Theorem 7.4.1. Let x ∈ S(Rdθ). Then we have:

|d̄x|d − |A|d(1 +D2)−d/2 ∈ L1.

Recall that D =
∑d

j=1 γj⊗Dj , and d̄x = i[sgn(D), 1⊗x]. Let g(t) = t(1 + t2)−1/2 and
write

d̄x = i[sgn(D)− g(D), 1⊗x] + i
d∑
j=1

γj⊗[DjJ
−1, x].

By Lemma 7.2.1, [sgn(D)− g(D), 1⊗x] belongs to Lp when p > d
2 . Define the auxiliary

operator Ãj for 1 ≤ j ≤ d on L2(Rd) as

Ãj := ∂jx−
d∑

k=1

DjDkJ
−2∂kx . (7.4.2)

The following proposition connects the commutator [DjJ
−1, x] with Ãj .

Proposition 7.4.2. Let 1 ≤ j ≤ d, and x ∈ S(Rdθ). Then,

i[DjJ
−1, x]− ÃjJ−1 ∈ L d

2
,∞.

Proof. From the Leibniz rule, we have

i[DjJ
−1, x] = ∂jxJ

−1 + iDj [J
−1, x] = ∂jxJ

−1 − iDjJ
−1δ(x)J−1.

We have the following algebraic identities:

J−1δ(x)J−1 =
1

2
J−1([J2 · J−1, x] + [J−1 · J2, x])J−1

=
1

2
J−1(J2[J−1, x] + [J2, x]J−1 + J−1[J2, x] + [J−1, x]J2)J−1

=
1

2
J−2[J2, x]J−1 +

1

2
J−1([J2, x]J−1 − J [J, x]J−1 − J−1[J, x]J)J−1

=
1

2
J−1L(x)J−1 +

1

2
J−1(δ(x)− J−1δ(x)J)J−1

=
1

2
J−1L(x)J−1 +

1

2
J−2δ2(x)J−1.

From Corollary 7.3.10, we have that that DjJ
−2δ2(x)J−1 is in Ld/2,∞.

So we obtain:

i[DjJ
−1, x] ∈ ∂jxJ−1 − i

2
DjJ

−1L(x)J−1 + L d
2
,∞. (7.4.3)
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Examining the second term, we have:

DjJ
−2[J2, x]J−1 = DjJ

−2[J2, x]J−1

= DjJ
−2

d∑
k=1

[D2
k, x]J−1

=

d∑
k=1

DjJ
−2(−iDk∂kx− i∂kxDk)J

−1

=

d∑
k=1

DjJ
−2(−2iDk∂kx+ i∂2

kx)J−1

Due to the factorisation property of S(Rdθ) and Lemma 7.3.5, we have DjJ
−2∂2

kxJ
−1 ∈

Ld/2,∞, and therefore

DjJ
−1L(x)J−1

θ ∈ −2i

d∑
k=1

DjDkJ
−2∂kxJ

−1 + Ld/2,∞. (7.4.4)

Combining (7.4.3) and (7.4.4) yields:

i[DjJ
−1, x] ∈ ∂jxJ−1 −

d∑
k=1

DjDkJ
−2∂kxJ

−1 + Ld/2,∞ = ÃjJ
−1 + Ld/2,∞

as was claimed.

Let us also compare ÃjJ
−1 with AjJ

−1.

Proposition 7.4.3. Let 1 ≤ j ≤ d, and x ∈ S(Rdθ). Then,

AjJ
−1 − ÃjJ−1 ∈ L d

2
,∞.

Proof. By definition, Aj =
∑d

k=1Mgj,k∂kx and Ãj =
∑d

k=1Mg̃j,k∂kx with g̃j,k(t) =
tjtk

1+|t|2 . So we are reduced to estimating Mgj,k∂kxJ
−1 −Mg̃j,k∂kxJ

−1 for every k. Using

the factorisation of x = yz ∈ S(Rdθ) (Proposition 7.1.8) and the Leibniz rule, we have

Mgj,k∂kxJ
−1 −Mg̃j,k∂kxJ

−1 = (Mgj,k −Mg̃j,k)∂ky zJ
−1 + (Mgj,k −Mg̃j,k)y ∂kzJ

−1.

From Lemma 7.3.5, both zJ−1 and ∂kzJ
−1 belong to Ld,∞. On the other hand, one can

easily check that gj,k − g̃j,k ∈ Lp(Rd) as p > d
2 , which yields by Theorem 6.2.6 that

(Mgj,k −Mg̃j,k)y ∈ Lp ⊂ Ld,∞, (Mgj,k −Mg̃j,k)∂ky ∈ Lp ⊂ Ld,∞.

Thus it follows from the Hölder inequality that

Mgj,k∂kxJ
−1 −Mg̃j,k∂kxJ

−1 ∈ Ld/2,∞,

whence the proposition.
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For g(t) = t(1 + t2)−1/2 on R, Propositions 7.4.2 and 7.4.3 imply that

i[g(D), 1⊗ x]−A(1 +D2)−1/2 ∈ L d
2
,∞. (7.4.5)

This – combined with Lemma 7.2.1 – yields:

d̄x−A(1 +D2)−1/2 ∈ L d
2
,∞

for all x ∈ S(Rdθ).

Lemma 7.4.4. Let x ∈ S(Rdθ). We have

|d̄x|d − ((1 +D2)−1/2|A|2(1 +D2)−1/2)d/2 ∈ L1.

Proof. We already know from Lemma 7.2.1 that i[g(D), 1⊗x]− d̄x ∈ L d
2
, which together

with (7.4.5) ensures that
d̄x−A(1 +D2)−1/2 ∈ L d

2
,∞.

Taking the adjoint:
d̄x∗ − (1 +D2)−1/2A∗ ∈ L d

2
,∞.

Recall that d̄x ∈ Ld,∞ by Theorem 7.1.1 (as has been proved in Section 7.2), so it follows
that A(1 +D2)−1/2 ∈ Ld,∞. Using the Hölder inequality, we have

|d̄x|2 − (1 +D2)−1/2|A|2(1 +D2)−1/2 = d̄x∗
(
d̄x−A(1 +D2)−1/2

)
+
(
d̄x∗ − (1 +D2)−1/2A∗

)
A(1 +D2)−1/2

∈ L d
3
,∞ ⊂ L 5d

12
.

If d = 2, then we are done.

Now assume that d > 2. We appeal to a recent result from E. Ricard [111, Theorem
3.4], which says that we can take a power 1/2 to each term of the preceding inclusion to
get

|d̄x| −
(

(1 +D2)−1/2|A|2(1 +D2)−1/2
)1/2

∈ L 5d
6
,∞.

Next we introduce a power d:

|d̄x|d −
(

(1 +D2)−1/2|A|2(1 +D2)−1/2
)d/2

=
d−1∑
k=0

|d̄x|d−k−1
(
|d̄x| −

(
(1 +D2)−1/2|A|2(1 +D2)−1/2

)1/2)(
(1 +D2)−1/2|A|2(1 +D2)−1/2

) k
2

∈
d−1∑
k=0

L d
d−k−1

,∞ · L 5d
6
· L d

k
,∞ ⊂ L 5d

5d+1
,∞ ⊂ L1.

Writing |A|2 = A∗A, it follows from Theorem 7.1.6 that

[|A|2, (1 +D2)α/2](1 +D2)−β/2 ∈ L d
β−α+1

,∞ (7.4.6)
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for all β > 0 and α < 1. Therefore, if d = 2, letting α = −1 and β = 1 in (7.4.6), we
have

[|A|2, (1 +D2)−1/2](1 +D2)−1/2 ∈ L2/3,∞ ⊂ L1

This inclusion can be combined with Lemma 7.4.4 to arrive at

|d̄x|2 − |A|2(1 +D2)−1 ∈ L1

which completes the proof of Theorem 7.4.1 for the d = 2 case.

For d > 2, we need

Proposition 7.4.5. Let d > 2. Then

|A|d(1 +D2)−d/2 − ((1 +D2)−1/2|A|2(1 +D2)−1/2)d/2 ∈ L1.

Proof. From Theorem 4.3.1 it suffices to show the following four conditions:

(i) |A|d−2(1 +D2)1− d
2 ∈ L d

d−2
,∞.

(ii) (1 +D2)−1/2|A|2(1 +D2)−1/2 ∈ L d
2
,∞.

(iii) [|A|2(1 +D2)−1/2, (1 +D2)−1/2] ∈ L d
2
,1.

(iv) |A|d−2[|A|2, (1 +D2)1− d
2 ](1 +D2)−1 ∈ L1.

Since d > 2, we have that |A|d−2 = |A|d−3 sgn(A)A, so (i) follows immediately from
Lemma 7.3.5. Similarly using |A|2 = A∗A, we get also get (ii) immediately from the
Hölder inequality and the fact that A(1 + D2)−1/2 and its adjoint operator belong to
Ld,∞.

For (iii), we write:

[|A|2(1 +D2)−1/2, (1 +D2)−1/2] = [|A|2, (1 +D2)−1/2](1 +D2)−1/2

which is in L 2d
5
,∞ due to (7.4.6) (with α = −1 and β = 1). Since 2d

5 < d
2 , it follows

that L2d/5,∞ ⊂ Ld/2,1 and this proves (iii). Finally, (iv) immediately follows from (7.4.6)
with α = 2− d and β = 2.

Lemma 7.4.4 and Proposition 7.4.5 yield Theorem 7.4.1 for the case d > 2, and thus we
have completed the proof of Theorem 7.4.1.

7.4.2 Proof of Theorem 7.1.2

Now we are able to give the proof of Theorem 7.1.2, via Theorem 6.5.9

Proof of Theorem 7.1.2. We will assume initially that x ∈ S(Rdθ). For a continuous
normalised trace ϕ on L1,∞, Theorem 7.4.1 ensures that

ϕ(|d̄x|d) = ϕ
(
|A|d(1 +D2)−d/2

)
.
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But since A =
∑

j γj⊗Aj self-adjoint unitary matrices γj , the only part that contributes

to the trace on the right hand side above is (1⊗
∑

j A
∗
jAj)

d/2(1 +D2)−d/2. Hence,

ϕ(|d̄x|d) = ϕ
(
(
∑
j

A∗jAj)
d/2(1−∆)−d/2

)
.

However, note that each Aj is a linear combination of operators of multiplication by a
function x ∈ S(Rdθ) and Fourier multiplication by a function g ∈ C(Sd−1), and so is in
the algebra Π(C0(Rdθ) + C, C(Sd−1)), with symbol:

sym(Aj) = ∂jx⊗ 1−
d∑

k=1

sjsk ⊗ ∂kx.

Since sym is a norm-continuous ∗-homomorphism, we have

sym(
∑
j

A∗jAj)
d/2 =

( d∑
j=1

∣∣∂jx− sj d∑
k=1

sk∂kx
∣∣2)d/2.

Since d is necessarily even, this is indeed an operator of the form Tz for T ∈ Π(C0(Rdθ)+
C, C(Sd−1)) and z ∈ W d

1 (Rdθ). Hence Theorem 6.5.9 is applicable, and thus we have
proved Theorem 7.1.2 for x ∈ S(Rdθ).

By virtue of Proposition 7.1.17, the general case of Theorem 7.1.2 is done via an ap-
proximation argument, identically to the proof of [93, Theorem 1.2].

7.4.3 Proof of Theorem 7.1.5

Finally, we prove Theorem 7.1.5.

Proof of Theorem 7.1.5. Assume that x ∈ Lp(Rdθ) for some d ≤ p < ∞ and that d̄x ∈
Ld,∞.

Let {φε}ε>0 be a family of Schwartz class functions as in Theorem 7.1.14. Then U(φε)x ∈
S(Rdθ), and Theorem 7.1.1 implies:

‖d̄(U(φε)x)‖d,∞ .d ‖U(φε)‖∞‖d̄x‖d,∞ + ‖U(φε)‖W 1
d
‖x‖∞.

Since ‖U(φε)‖∞ ≤ ‖φε‖1 is uniformly bounded in ε, and ‖U(φε)‖W 1
d

is uniformly

bounded in ε by Lemma 7.1.15, it follows that {U(φε)x}ε>0 is uniformly bounded in
Ẇ 1
d (Rdθ), so for every 1 ≤ j ≤ d, {∂j(U(φε)x)}ε>0 is uniformly bounded in Ld(Rdθ).

Since d ≥ 2, the space Ld(Rdθ) is reflexive and therefore {∂j(U(φε)x)}ε>0 has a weak
limit point in Ld(Rdθ). But we know from Theorem 7.1.14 that U(φε)x → x in the Lp
sense. In particular, in the distributional sense, and therefore ∂j(U(φε)x)→ ∂jx in the
distributional sense.

Therefore, ∂jx ∈ Ld(Rdθ) for every 1 ≤ j ≤ d. That is, x ∈W 1
d (Rdθ).

Finally, we obtain the bound on the norm using Corollary 7.1.3. That result implies
that there exists a constant cd > 0 such that for all continuous normalised traces ϕ on



Quantum differentiability on noncommutative Euclidean spaces 155

L1,∞,

‖x‖Ẇ 1
d
.d ϕ(|d̄x|d)

1
d .

Since ϕ is continuous,
‖x‖Ẇ 1

d
.d ‖ϕ‖(L1,∞)∗‖d̄x‖d,∞.

Selecting a continuous normalised trace ϕ of norm 1 completes the proof.





Appendix A

Function spaces and commutators
with the Hilbert transform

This section of the appendix is devoted to a self-contained proof of Theorem 5.2.1. The
content here is largely unaltered from the published version in the appendix of [33].

A.1 Bergman and Analytic Besov spaces

Definition A.1.1. Let µ be the measure on D defined by

dµ(z) =
dzdz

(1− |z|2)2

(i.e., the Poincaré disc model volume form). For p ∈ (0,∞] the space A
1/p
p is defined to

be the set of functions f holomorphic in the unit disc satisfying z 7→ (1− |z|2)2|f ′′(z)| ∈
Lp(D, µ) with the seminorm ‖f‖

A
1/p
p

:= ‖(1− |z|2)2|f ′′(z)|‖Lp(D,µ).

We also define the space C
1/p
p of functions f holomorphic in the interior of the unit

disc satisfying (1−|z|2)|f ′(z)| ∈ Lp(D, µ) with corresponding seminorm ‖f‖
C

1/p
p

= ‖(1−
|z|2)|f ′(z)|‖Lp(D,µ).

The following result shows that for p ∈ (1, 2) the spaces A
1/p
p and C

1/p
p coincide, and

in fact there is an equivalence of (semi)-norms with constants that are uniform for
p ∈ (1 + ε, 2) for all ε > 0.

Theorem A.1.2. Let p0 > 1, and let f be a function holomorphic in the unit disc
satisfying f ′(0) = 0. There exist constants k,K > 0 (depending only on p0) such that
for all p0 < p < 2 we have

k‖f‖
A

1/p
p
≤ ‖f‖

C
1/p
p
≤ K‖f‖

A
1/p
p
.

Proof. Let h(z) := f ′(z)(1 − |z|2) and g(z) := f ′′(z)(1 − |z|2)2, and fix p0 > 1. The
assertion of this theorem is equivalent to saying that there are positive constants k,K > 0
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such that for all p ∈ [p0, 2],

k‖h‖Lp(D,µ) ≤ ‖g‖Lp(D,µ) ≤ K‖h‖Lp(D,µ). (A.1.1)

By applying the method of complex interpolation as in [35, Lemma 3.4], it suffices to

prove (A.1.1) for p = p0 and p = 2. Firstly, for p = 2, we note that the spaces A
1/2
2

and C
1/2
2 are Hilbert spaces, and that the functions en(z) = zn, n ≥ 0 are orthogonal

in both spaces with dense linear span. Hence for p = 2 it suffices to prove (A.1.1)
for f(z) = zn, n ≥ 0. When f(z) = zn, we have h(z) = nzn−1(1 − |z|2) and g(z) =
n(n− 1)zn−2(1− |z|2)2. Then,

‖h‖2L2(D,µ) =

∫
D
n2|z|2n−2dzdz

=
2πn2

2n
= πn

and furthermore,

‖g‖2L2(D,µ) =

∫
D
n2(n− 1)2|z|2n−4(1− |z|2)2dzdz

= 2πn2(n− 1)2

∫ 1

0
r2n−3(1− r2)2dr

= πn2(n− 1)2 2

n(n2 − 1)

≤ Kn

for some K > 0, hence proving (A.1.1) for p = 2.

The case p = p0 is more subtle. We refer to [71, Proposition 1.11], a special case of

which states that f ∈ C1/p0
p0 if and only if f ∈ A1/p0

p0 . We explain how it is possible to
modify the proof of [71, Proposition 1.11] to obtain the left hand inequality of (A.1.1) for
p = p0. The right hand side inequality of (A.1.1) will then follow from the open mapping
theorem, since [71, Proposition 1.11] establishes that there is a bijective correspondence

between A
1/p0
p0 and C

1/p0
p0 .

We refer to the following formula, given in the proof of [71, Proposition 1.11]. If β >
α > −1 and ξ ∈ Lp0(D, (1− |z|2)αdzdz) is holomorphic and n is a positive integer, then
there is a universal constant C such that

(1− |z|2)nξ(n)(z) = C(1− |z|2)n
∫
D

(1− |w|2)β

(1− zw)2+n+β
wnξ(w)dwdw.

We apply this result with ξ = f ′, n = 1 and α = p0 − 2, which is possible since p0 > 1
so α > −1. Fix any β > α Thus,

(1− |z|2)f ′′(z) = C(1− |z|2)

∫
D

(1− |w|2)β

(1− zw)3+β
wf ′(w)dwdw.
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Restating this in terms of h, g and µ,

g(z) = C(1− |z|2)2

∫
D

(1− |w|2)β+1

(1− zw)β+3
wh(w) dµ(w).

It is established in [71, Theorem 1.9] that the right hand side (considered as a function
of h) is an integral operator which maps Lp0(µ) to Lp0(µ). Hence, there is a constant k
such that for all p > p0

k‖g‖Lp0 (D,µ) ≤ ‖h‖Lp0 (D,µ).

A.2 Peller’s theorem on commutators

The following two theorems express the equivalence of the Lp norm of the commutator

[F,Mf ] with the A
1/p
p norm of f . This result is originally due to Peller [100, Chapter 6].

We include a proof here since the results in [100, Chapter 3] are not stated with bounds
on the norms.

Theorem A.2.1. Let f be a function holomorphic in the unit disc such that f ′(0) = 0.
There exists a universal constant K > 0 such that for all p ∈ [1, 2]:

‖[F,Mf ]‖p ≤ K‖f‖A1/p
p
. (A.2.1)

Proof. The required inequality (A.2.1) for p ∈ [1, 2] can be obtained from the p = 1 and
p = 2 cases by the method of complex interpolation as discussed in [35, Lemma 3.4].

The case p = 2 is omitted since it can be verified by computing ‖[F,Mf ]‖p and ‖f‖
A

1/2
2

for the exponential basis functions f(z) = zn, n ≥ 0. For the case p = 1, we use [136,
Lemma 2], which implies that if f ∈ L1(D, dzdz) is holomorphic and f(0) = f ′(0) =
· · · = f (4)(0) = 0, then

f(z) =
1

2

∫
D

(1− |w|2)2f ′′(w)

w2(1− zw)2
dwdw.

Hence,

[F, f(z)] =
1

2

∫
D

(1− |w|2)2f ′′(w)

w2 [F,
1

(1− zw)2
] dwdw. (A.2.2)

However,

[F,
1

(1− zw)2
] = −(1− zw)−2[F, (1− zw)2](1− zw)−2.

Since (1− zw)2 = 1− 2zw + z2w2, the commutator [F, (1− zw)2] is finite rank, and in
fact rank at most 5. So there is a constant C such that

‖[F, (1− zw)−2]‖1 ≤ C‖(1− zw)−2‖∞.

If w 6= 0, then the function on T z 7→ |1 − zw|−2 is maximised when z is as close to
1
w = w

|w|2 as possible, which is at the point w
|w| . Hence |1−zw|−2 ≤ (1−|w|)−2. Applying
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the L1-triangle inequality to (A.2.2) it follows that

‖[F,Mf ]‖1 ≤
C

2

∫
D

|f ′′(w)|(1− |w|2)2

|w|2(1− |w|)2
dwdw.

Since 1 ≤ (1 + |w|) ≤ 2 we may simplify this to

‖[F,Mf ]‖1 ≤ C
∫
D

|f ′′(w)|
|w|2

dwdw.

We now split the integral over D into the two regions R1 := {z ∈ D : |w| ≤ 1/2} and
R2 := {z ∈ D : |w| > 1/2}. For w ∈ R2, we have

|f ′′(w)|
|w|2

≤ 4|f ′′(w)|

so ∫
R2

|f ′′(w)|
|w|2

dwdw ≤ 4

∫
R2

|f ′′(w)| dwdw.

Since f is holomorphic and f(0) = f ′(0) = · · · = f (4)(0) = 0, we have the power series
expansion:

f(w) =
∑
n>4

f̂(n)wn.

Substituting the series expansion into the integral,∫
R1

|f ′′(w)|
|w|2

dwdw ≤
∑
n>4

∫
R1

n(n− 1)|f̂(n)||w|n−4dwdw

=
∑
n>4

2πn(n− 1)|f̂(n)|
∫ 1/2

0
rn−3dr

=
∑
n>4

2π
n(n− 1)

n− 2
|f̂(n)|22−n.

Hence, ∫
R1

|f ′′(w)|
|w|2

dwdw ≤
∑
n>4

2π
n(n− 1)

n− 2
|f̂(n)|22−n. (A.2.3)

Let ξ be a function holomorphic in D, then by the Cauchy integral formula, for every
r > 0,

ξ̂(n) =
1

2πi

∫ 1

0

ξ(re2πit)

rn+1e2πi(n+1)t
· 2πie2πitrdt,

Hence,

|ξ̂(n)| ≤
∫ 1

0
|ξ(re2πit)|r−ndt.

So in fact,

rn+1|ξ̂(n)| ≤
∫ 1

0
|ξ(re2πit)|rdt

So integrating over 0 ≤ r ≤ 1,

1

n+ 2
|ξ̂(n)| ≤ ‖ξ‖L1(D).
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Applying this result to ξ = f ′′, we have ξ̂(n) = (n+ 2)(n+ 1)f̂(n+ 2), so

(n+ 1)|f̂(n+ 2)| ≤ ‖f ′′‖L1(D). (A.2.4)

Hence, for all n > 1,

(n− 1)|f̂(n)| ≤ ‖f ′′‖L1(D) for all n ≥ 0.

Applying this to (A.2.3), it follows that there exists C > 0 such that,∫
R1

|f ′′(w)|
|w|2

dwdw ≤ 2π

(∑
n>4

n

n− 2
22−n

)
‖f ′′‖L1(D)

≤ C‖f‖A1
1
.

This proves the desired result when f(0) = · · · = f (4)(0) = 0. For arbitrary functions f
holomorphic in D, consider the function g given by

g(z) = f(z)−
4∑

k=0

f̂(k)zk.

By the preceding argument, there is a constant K > 0 such that ‖[F,Mg]‖1 ≤ K‖g‖A1
1
.

Thus, there is a constant C > 0 such that

‖[F,Mf ]‖1 ≤ C(‖f‖A1
1

+ |f̂(1)|+ |f̂(2)|+ |f̂(3)|+ |f̂(4)).

Applying (A.2.4) with n = 0, 1, 2, there is a constant K > 0 such that:

‖[F,Mf ]‖1 ≤ C‖f‖A1
1
.

Theorem A.2.2. There is a universal constant k > 0 such that for all p ∈ [1, 2],

k‖f‖
A

1/p
p
≤ ‖[F,Mf ]‖p.

Proof. We first prove the result for p = 1 and p = 2, with the general case following
from interpolation. This result essentially follows from [100, Theorem 6.1.1], where it is
proved that there is a constant k > 0 such that

k‖f‖B1
1,1
≤ ‖[F,Mf ]‖1

where B1
1,1 is the Besov space on the circle.

However, following [125, Chapter 5, Proposition 7], ‖f‖A1
1
≤ α‖f‖B1

1,1
. This prove the

result for p = 1, and for p = 2 it is enough to check the inequality on exponential basis
functions f(z) = zn, for which it is easily verified.

Combining Theorems A.1.2, A.2.1 and A.2.2 we obtain the following corollary,
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Corollary A.2.3. Let p0 > 1. There exist constants bp0 , Bp0 > 0 (depending on p0)
such that for all p ∈ (p0, 2) we have

bp0‖f‖C1/p
p
≤ ‖[F,Mf ]‖p ≤ Bp0‖f‖C1/p

p
.
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[62] González-Pérez, A. M., Junge, M., and Parcet, J. (2017). Singular integrals in
quantum euclidean spaces.



Bibliography 167

[63] Gracia-Bond́ıa, J. M. and Várilly, J. C. (1988). Algebras of distributions suitable
for phase-space quantum mechanics. I. J. Math. Phys., 29(4):869–879.

[64] Gracia-Bond́ıa, J. M., Várilly, J. C., and Figueroa, H. (2001). Elements of non-
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