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Abstract 

This thesis describes an investigation of the encoding of the speaker characteristics identity, 
sex, and dialect, in the prosodic acoustic parameters energy, fundamental frequency, voicing, 
and zero crossing rate, of speech. The acoustic parameters are extracted from a database of 
sentences, repeated by nineteen adult speakers of Australian English. 

Speech analysis experiments are described using four different sentences. Discriminant anal-
ysis is applied to the examinations of identity and sex, while least-squares-fit analysis is applied 
for dialect. The twenty-one meeisures of properties of each parameter are logically divided into 
two groups:- dynamic measures pertaining to the time varying properties of the parameters, 
and static measures pertaining to the time invariant properties of the parameters. 

Results reveal that all three speaker characteristics may be determined significantly above 
chance based on the parameters extracted. Identity and dialect are shown to be more strongly 
encoded in the time varying properties of the parameters, while sex is more strongly encoded in 
the time invariant properties. Measures of the dynamic time warping-path are found to contain 
significant encodings of speaker characteristic information. 

All four parameters are found to have encoded information pertinent to each of the three s-
peaker characteristics and encoding is found to be utterance, speaker characteristic, and speaker 
dependent. 

Perceptual experiments are described using a linear prediction analysis-resynthesis scheme 
which allows the independent manipulation of energy, fundamental frequency, voicing, and tim-
ing. Perception of identity is found to be significantly influenced by the prosodies, and results 
are both speaker and parameter dependent. Listeners are found to use both time varying and 
invariant parameter properties in judgements of identity. Perception of sex is found to be 
primeirily a function of mean fundamental frequency with no significant effect for the other 
parameters. Judgements of dialect are generally consistent across listeners with shortening of 
utterance shifting perception towards cultivated, and lengthening of utterance shifting percep-
tion tow£irds broad dialect. No consistent significant effect on dialect is found for the other 
parameters. 

A number of topics for further research are suggested. 
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Chapter 1 

Introduction 

Within a spoken utterance there is much information beside the 'textual message'. A large part 
of this extra information details facts about the speaker. Such data as the speaker's identity, 
sex, and dialect are implicitly encoded, and other characteristics such as the speaker's state of 
health and psychological state may also be encoded. Speaker Characteristics is the term used 
to describe the characteristics or qualities of a person which may be encoded in an utterance. 

A detailed understanding of the relationship between speaker characteristics and the acoustic 
parameters of the speech waveform has many applications. Foremost of these are: 

• More realistic speech synthesis systems, allowing the production of speech with any de-
sired speaker characteristic combination (e.g., a synthetic voice that captures immediate 
attention for a warning system). 

• Speaker recognition systems (e.g., security access systems). 

• More robust speech recognition systems which can account for speaker characteristic 
variability (e.g., adjustment to compensate for headcold in a speaker). 

With these and other objectives in mind, a large body of research has been published in the 
area of speaker characteristics and their correlation to the acoustic parameters of the speech 
waveform. The greater part of this research has involved static acoustic features, and has 
concentrated upon spezJcer identity, however studies have been made both of dynamic acoustic 
features and other speaker characteristics. SpejJcer recognition systems have been used in 
limited applications for well over a decade with error rates less than one percent ([Dod85]). 
However, the exact relationship of speaker characteristics to acoustic features is still not fully 
understood. In particular, this lack of knowledge occurs at a 'sentence level', at which many 
speaker chsiracteristics appear to manifest themselves most strongly (see Chapter 2). 

It is the objective of this work to address some of the inadequacies with regard to the un-
derstanding of the manifestation of speaker characteristics at a prosodic level. The approach 
taken is to use a combination of analysis and resynthesis techniques to investigate the contri-
butions of both time varying and time invariant properties of various acoustic parameters to 
automatically distinguishable, and listener perceived, speaker characteristics. 

1 



2 CHAPTER 1. INTRODUCTION 

This thesis is organised as follows: Chapter is a review of the literature related to speaker 
characteristics. Section 2.1 details perceptually motivated investigations, while section 2.2 
describes analytical investigations of speaker characteristics. Section 2.3 details the long running 
and controversial area of speaker identification by visual inspection of speech spectrograms, and 
section 2.4 draws several conclusions and implications based on earlier sections. 

Chapter S provides a bridge between the previous work as detailed in the literature review 
and the approach as taken in this thesis. Particular elements of the literature review, relevant 
to the current work, are highlighted, and an outline of the experimental approach is given. 

Details of the speech database collected, including spoken material, choice and quantification 
of speaker characteristics, and recording, are described in Chapter 4-

Chapters 5, 6, and 7 pertain to the analytical investigation of the relationship between 
prosodies and speaker characteristics, and form the main body of the thesis. Chapter 5 details 
the experimental method used in examination. Chapter 6 presents the results of the experiments 
as broken down by form of analysis and speaker characteristic. Chapter 7 provides a discussion 
of the method and results of the previous two chapters. 

Chapters 8, 9, and JO pertain to the perceptual examination of prosodies and speaker 
characteristics. Chapter 8 describes the experimental method of the investigation. Chapter 
9 presents the results of the experiments, subdivided by speaker characteristic and form of 
analysis. Chapter 10 is a discussion of the approach and results of the perceptually based 
scheme. 

Finally, Chapter 11 provides a conclusion to the work by highlighting the major experimental 
results and indicating several directions for further research. 



Chapter 2 

Literature Review 

In this chapter a review of research upon the acoustic correlates of speaker characteristics in 
speech will be made. 

The definition of what are speaker characteristics is a troublesome problem itself. For the 
purposes of this study speaker characteristics will be defined as: physical, physiological, 
or menial characteristic of a speaker thai may be determined from their speech."^ This broad 
definition includes such features of the speaker as their age, sex, mental health, physical health, 
identity, race, socio-economic background and emotional state. Within the area of research 
upon speaker characteristics certain aspects have received more attention than others which 
is probably due to the relative difficulties of obtaining data, potential applications of findings, 
and areas of expertise of the researchers. This review will primarily deal with five speaker 
characteristics which appear to have received the greatest amount of attention: 

• speaker identity 

• speaker "emotional state" 

• speaker sex 

• speaker age 

• speaker race, dialect and accent 

as well as considering other studies of less fully investigated and "more unusual" speaker char-
acteristics. 

The review is broken into four sections. The first section deals with research motivated by 
human auditory perception of speaker characteristics. The second section deals with purely 
analytic research upon speaker characteristics. The third section covers the controversial ap-
plied area of speaker identification via visual inspection of speech spectrograms. Finally, some 
implications and conclusions will be drawn based on the current state of research into speaker 
characteristics. 
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2.1 Perceptually Based Investigations 

Many researchers have sought to investigate speaker characteristics via human auditory percep-
tion. Such studies involve the presentation of speech sounds to listeners who evaluate the speech 
as to its content of one or more speaker characteristics ( e.g. two voices played to listeners who 
decide whether they are the same or not). The answer to two main questions are sought by 
such studies: 

• How accurate are listeners at identifying the characteristic(s)? 

• Which acoustic parameters do listeners utilise in making their judgements? 

Several sub-questions arise from these two primary questions including: to what extent is ac-
curate identification of characteristics speaker and listener dependent; is acoustic cue utilisation 
listener dependent; which acoustic features are given heavier weighting by listeners etc. 

2.1.1 Identity 

The auditory identification of speakers is a reality which is familieir in daily life (e.g., listening to 
friends over the telephone). Many researchers have sought to investigate this phenomenon and 
answer such questions as human accuracy, the effect upon identification of different linguistic 
contents, and durations, correlations to acoustic parameters, and the effects upon identification 
of mimicry or disguise. 

Human Accuracy 

An area of interest, both in terms of legal applications of forensic speaker identification [Tos79], 
and as a yardstick for gauging performance of automatic speaker recognition schemes, is that 
of human ability and accuracy when identifying speakers from their voices. 

In 1954 Pollack, Pickett, and Sumby [PPS54] conducted experiments investigating the effects 
of several variables upon speaker identification rates. A homogeneous set of 16 male speakers 
recorded a set text. These recordings were then presented to a group of 7 listeners who were 
familiar with the speakers through daily contact and who made guesses as to the identity of the 
speaker. Mean identification rates of 92% for 4 possible speakers and 84% for 8 possible speakers 
were found, and identification performance dropped only slightly as the possible number of 
speakers was increased up to 16. Pollack et. al. high and low pass filtered the utterance 
at various frequencies and tested the effect upon speaker identification rates. They found 
that speaker identification rates were resistant to both forms of filtering and concluded: "This 
result suggests that the identification of a speaker's voice is not critically dependent upon the 
delicate balance of different frequency components in any single portion of the speech frequency 
spectrum." Pollack et. al. also tested speaker identification rates for whispered (no voicing) 
speech and found it to be considerably lower than that of normal speech; such that an utterance 
of whispered speech 3 times the duration of the normal speech was required to achieve the same 
identification rate. 



2.1. PERCEPTUALLY BASED INVESTIGATIONS 5 

Clarke and Becker [CB69] compared speaker identification performance based on direct 
listening, ratings on psychophysical and semantic scales, and measurement of properties of the 
speech wave. A series of four-alternate forced choice speaker identification trials were conducted 
with a population of 20 male speakers and 5 listeners. A 67% identification rate was found 
for the direct listening experiments; and a 51% identification rate based on the values of 5 
psychophysical and semantic ratings for each utterance (using a Euclidean distance measure). 
In paired speaker discrimination experiments (2 utterance presented, decision as to whether 
from same speaker or not), discrimination rates of 90%, 83% and 68% were found for direct 
listening, spectral distance, and psychophysical and semantic rating, respectively. 

In 1971 Rosenberg [Ros71] conducted auditory speaker identification experiments using the 
same speech data as that employed by Doddington in his investigation of automatic speaker 
identification [Dod71a]. Stimulus material, consisting of a sentence from one of 40 speakers, 
was presented to a group of 10 listeners in pairs. Listeners were required to decide if the two 
utterances were produced by the same or different speakers. Rosenberg reports that a mean 
error rate of 4.2% for false acceptemce (speakers were actually different) and 4.2% for false 
rejection (speakers were actually the same) was obtained. 

Legge, Grosmann and Pieper [LGP84] investigated learning and recognition of unfamiliar 
voices. A total of 477 listeners were used in the experiments, with a population of 46 white 
female speakers aged 18 to 35 years. Listeners were previously unfamiliar with the speakers 
and were given an initial training period in which they heard a read text from all speakers. 
Experiments involved the presentation of two voice samples to the listeners, one known, the 
other not, the experimenter nominated one of the utterances and the listeners were required 
to indicate whether the speaker was part of the training set or not. Recognition rates were 
significantly above chance, and Legge et. al. found that recognition rates improved when the 
target speaker set size was reduced from 20 to 5 (approximately 13%), when photographs of the 
speaker set were continuously present (approximately 10%) and when the duration of the speech 
sample was increased. Further, Legge et. al. found that there was no significant difference in 
recognition rates for experiments administered 15 minutes after initial training or experiments 
administered 10 days after training. 

In a series of experiments Schmidt-Nielsen and Stern [SNS85, SNS86] investigated audi-
tory identification of speakers both familiar and unfamiliar to listeners. Schmidt-Nielsen and 
Stern recorded 24 speakers (15 male, 6 female) while playing the Battleship game over both 
unprocessed and LPC processed (DoD LPG-10 algorithm) channels. In the first experimen-
t [SNS85] listeners were co-workers of the speakers and were asked to identify the speakers 
from an expected speaker population of 40. Prior to the listening experiment, listeners were 
asked to rate each voice as to its familiarity and distinctiveness. An identification rate of 69% 
for LPC processed speech and 88% for unprocessed speech was obtained. Speaker familiari-
ty ratings were significantly correlated with correct identifications. In the second experiment 
[SNS86] exactly the same speech material was used but listeners unfamiliar with the speakers 
were employed. During the familiarisation period the listeners were asked to rate each speaker 
as to their 'distinctiveness'. The speaker population was then broken up into 3 groups of 5; 
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being the most 'distinctive' set of male and female speakers and the least 'distinctive' set of 
males. Identification experiments were then carried out and the 'more distinctive' speakers 
were found to have a far higher identification rate than the 'less distinctive' speakers for an 
unprocessed channel (60% versus 30%). When the channel was LPC coded identification rates 
dropped to 30% for male and 40% for female 'distinctive' speaker while identification rates for 
'less distinctive' speakers dropped little. 

Effects of Linguistic Content and Utterance Duration 

Several researchers have addressed the questions of the effects that the length and content of 
uttereinces have upon auditory identification of speaker. Such questions address the relative 
contributions of segmental (phonemic) level and suprasegmental (prosodic) level uniqueness of 
speakers, and the relative worth of different phonetic material. 

In their 1954 investigation of auditory identification of familiar speakers Pollack, Pickett and 
Sumby [PPS54] found that identification performance improved as the duration of the utterance 
increased. Pollack et. al. found that an identification rate of 100% could be achieved for a 
speaker population of 8 if 2 minutes of speech was used to represent each speaker. Further, 
Pollack et. al. found that identification performance improvement as a function of duration 
could be described by the growth function 1 — c " " ' and attributed this improvement to the 
admittance of more statistical samplings of the speaker's speech repertoire. To investigate this 
theory multiple utterances of a short passage were played to listeners for speaker identification. 
No consistent difference was found to the identification rate for only one repetition of the 
passage. 

Bricker and Pruzansky [BP66] investigated the efifect of linguistic content and duration of an 
utterance upon identification of 10 familiar speakers by 16 listeners. Excerpted vowels, excerpt-
ed consonant-vowels, monosyllabic words, disyllabic words and sentences were recorded from 
each speaker and presented to the listeners for speaker identification. Identification rates ranged 
from 56% for vowel excerpts up to 98% for the sentences and were found to improve directly 
with the number of phonemes present in the utterance. Two vowels, /a , i / were used in the 
vowel based identification experiments, and identification rates and specific misidentifications 
were found to vary between them. 

In another investigation of recognition of familiar speakers Lariviere [Lar71] recorded 8 
male speakers uttering 2 sentences and 4 isolated vowels. The vowels were voiced, whispered 
(no voicing) and low-pass filtered at 200Hz (source characteristics preserved). Identification 
rates were 97% for the sentences and 40%, 22% and 21% for the voiced, whispered and filtered 
vowels. Acoustic parameters of the isolated vowel utterances were extracted and it was found 
that Fo, F2, and F3 were equally good predictors of speaker confusion in the identification 
experiments. Lariviere stated that he believed that the contribution of the vocal source and 
vocal tract to speaker identification are equal and additive. 

Cort and Murray [CM72] investigated the ability of children to identify each other using 
utterances of different phonetic complexity. The 20 children (10 male, 10 female) each recorded 
a paragraph, a sentence, and a sustained vowel. Identification scores were significantly above 
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chance and were found to increase as the utterance heard changed from sustained vowel, to 
sentence to paragraph. Multiple repetitions of the same utterance did not increase identification 
scores. 

Psychological and Semantic Scaling and Judgements 

Another area of investigation of auditory identification of speakers is the nature and number of 
dimensions that listeners use in determining speaker difference and how they relate to acoustic 
parameters. 

In 1964 Voiers [Voi64] used a modified semantic-differential form containing 49 bipolar items 
to obtain descriptions of the utterances of 16 speakers from 32 listeners. Based on an analysis 
of variance Voiers found that 4 orthogonal factors labeled clarity, roughness, magnitude and 
animation accounted for 88% of the between speaker differences in rating (inter-speaker ratings). 
In a later investigation Voiers [Voi79] used 18 professional listeners to investigate a total of 550 
voice descriptors. Eight orthogonal dimensions labeled animation, pitch, continuity, charisma, 
roughness, vocality, clickiness and stability were found to account for the systematic inter-
speaker variance. 

Matsumoto, Hiki, Sone and Nimura [MHSN73] attempted to relate the perceived personal 
quality of isolated vowels uttered by 8 speakers to acoustic parameters of the speech wave. 
Measures of speaker similarity/difference as perceived by listeners were correlated with acoustic 
parameters. It was found that mean FQ played the most important role in the perception of 
personal quality followed by characteristics of the vocal tract and then other characteristics of 
the vocal source. In a very similar experiment Yokoyama and Inoue [YI84] used 5 voice quality 
terms to describe a sustained vowel from 13 speakers. Similarity judgements between speakers 
were then based on the voice quality description and after correlation with extracted acoustic 
parameters it was found that personal quality was mainly characterised by FQ and the higher 
formant frequencies. 

Disguise, Mimicry and Stress 

The effect of various distortions of the voice due to disguise, mimicry or stress has received 
relatively little attention from researchers though it has obvious applications in such areas as 
forensic speaker identification. Rosenberg [Ros72] describes the methodology of an auditory 
speaker identification experiment in which 4 intensively trained mimics were used to imitate a 
set of "true" speakers. Unfortunately, no results were published. 

Reich and Duke [RD79] examined the effect of various vocal disguises upon auditory speaker 
identification rates. A series of sentences were recorded by 40 male speakers in normal voice and 
5 disguise conditions: old age, hoarse, hypernasal, slow rate, and free disguise of speaker's choice. 
Sentences were presented in pairs (one sample always undisguised) to two sets of listeners, one 
naive and one speech professionals, who were asked to judge if the two sentences were from 
the same speaker or not. Both groups of listeners discriminated talkers at approximately 92% 
for undisguised speech. For disguised speech discrimination rates ranged from 59% to 81% 
depending upon the disguise used. Nasal disguise was found to cause the greatest reduction 
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in discrimination rate, sophisticated listeners discriminated between speakers better than naive 
listeners for disguised speech, and high confidence decisions by the listeners did not yield a 
significantly higher discrimination rate. 

In 1982 Hollien, Majewski and Doherty [HMD82] investigated auditory identification rates 
for normal, stressed and disguised speech. 10 adult male speakers recorded a text using normal 
voice, using a free disguise of their choice and while receiving random electric shocks to induce 
stress. Three groups of listeners were used to judge the identity of a speaker. The first group 
of listeners were familiar with the speakers, the second group were unfamiliar with the speakers 
and the third group were not only unfamiliar with the speakers but could not speak the lan-
guage. Identification rates ranged from 98%, 98% and 79% for familiar listeners under normal, 
stress and disguised condition down to 27%, 27% and 18% for non-English speaking listeners 
under the same conditions. Stress was found to have no significant effect upon identification 
rates while disguise did. Performance dropped across the 3 listening groups of the order of 
60% from the familiar to unfamiliar listeners and 70% from familiar listeners to Non-English 
speaking listeners. Unfamiliar English speaking listeners were split into 2 groups based on their 
identification performance and a significant difference was found between their identification 
scores. 

Acoustic Alteration 

Very few researchers have examined the interaction of acoustic parameters and speaker identi-
fication by examining the effect of acoustic parameter alteration upon identification rates. 

Bricker and Pruzansky [BP66] tested the effect upon identification scores of presenting 
utterances in reverse order (playing backward) to listeners. Bricker and Pruzansky found that no 
matter whether the speech material ranged from vowels to sentences the identification rate was 
approximately 10% below that for the equivalent material played forward; though identification 
rates were still significantly above chance. 

Van Lancker, Kreiman, Emmorey and Wickers [LKE85, LKW85] describe a series of novel 
experiments involving the rate alteration and backward playing of famous voices. In the first 
experiment utterances from 45 "famous" male entertainers, politicians, film, television and 
radio personalities were obtained such that the contextual message gave little or no indication 
as to the speaker's identity. These samples were then played to 94 subjects whose task it was to 
identify the speaker. For 2 seconds of forward speech with no other information an identification 
rate of 26.6% was obtained; for 2 seconds of forward speech with a list of 6 possible speakers an 
identification rate of 69.9% was obtained; and for 4 seconds of reversed (played backward) speech 
again with 6 possible candidates an identification rate of 57.5% was obtained. Identification 
rates were found to be speaker and listener dependent. The relatively good performance of the 
backward played speech led Van Lancker et. al. to state "such relatively successful performance 
. . .suggested that voice recognition can be achieved from acoustic information limited to pitch, 
pitch range, rate, voice quality, and vowel quality, but without acoustic detail reflecting specific 
articulatory and phonetic patterns, and orderly temporal structure." In their second experiment 
Van Lancker et. al. checked the effect of rate alteration upon the identification rate for the 
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30 most recognised voices from the first experiment. Utterances had their rate increased and 
decreased by g without altering FQ. Identification rates dropped by approximately 14% for 
the slowed speech and 11% for the hastened speech. Again identification rates were found to 
be speaker dependent and those speakers who experienced large drops in identification score 
due to rate alteration differed from those severely aff'ected by backward presentation in the 
earlier experiment. Van Lancher et. al. concluded that listeners utilise a subset of the potential 
acoustic cues to identify a speaker and the subset is speaker dependent. 

Takagi and Kuwabara [TK86] investigated the independent manipulation of formant char-
acteristics and fundamental frequency upon speaker identification rates. Takagi and Kuwabara 
recorded 2 speakers uttering a nonsense word composed of the 5 Japanese vowels. Systematic 
alteration was then made to the frequency and bandwidths of the lower 3 formants together 
and all formants together. The resulting speech was then played back to 3 listeners who were 
familiar with the speaker. An 8% formant frequency shift led to a total loss of speaker recogni-
tion, and identity appeared more related to the frequency of the 3 lower formants than of the 
higher formants. For bandwidth alterations accurate speaker recognition was lost at scale of 
3 times and | of the original, with identity appearing more related to the bandwidths of the 
higher formants than the lower 3. For the FQ investigation 5 speakers were recorded and mean 
Fo was shifted between half and twice its original value. Speaker identity was lost at double 
the original FQ, but at half original Fo identification rates of 50% were still found. The eff"ects 
upon identification were found to be speaker dependent. 

Childers and associates [CYW85, CWH87b, CWH87a, CWHY89] have described the de-
velopment of sophisticated resynthesis system for altering the speech of one talker to that 
of another. Several factors were identified as making significant contributions to either the 
perception of identity or the quality of the transformed utterance. These include spectral com-
pression/expansion (format shifting), FQ scaling, the need to modify the energy termed based 
on new spectral information, and accurate pitch synchronous measurements of FQ and voicing. 
Childers et. al. mention: "...Formal intensive listening tests..." however no details of these 
tests are presented; merely the results gained thereby. 

Dommelen [Dom90] has reported on listener perception of the identity of 5 female speakers 
known to the 11 listeners in the set. Speakers uttered a 9 syllable nonsense sentence composed 
from the syllable "mama", and via manipulation the three features mean FO, FQ contour, and 
speech rhythm (segmental duration) were examined for their contribution to speaker identity. 
Mean Fo was found to be the most significant, followed by Fo contour and segmental duration. 

Recently Johnson [Joh90] examined the role of perceived speaker identity for Fo normalisa-
tion of vowels. Creating purely synthetic word and phrase utterance he found that alterations 
in mean Fo do cause alterations in listener perception of identity. There were significant differ-
ences between individual listener's perceptions, indicating the weighting assigned by different 
listeners to different acoustic cues. 
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2.1.2 Emotions and Stress 

Several questions arise regarding human perception of emotional and stressed speech. These 
include how accurate listeners are at detecting vocal emotions, does the degree of detection 
depend upon the emotion, and what acoustic cues do listeners use in the detection of vocal 
emotions. 

Dusenbury and Knower [DK38] performed an early test of perception of emotions via filming 
two speakers facially expressing 11 emotions while uttering the letters in the alphabet from "A" 
to "K". Judgements of emotion ranged from 62% for naive viewers up to 91% for speech stu-
dents; showing that emotions can be identified by facial expressions and that relevant emotional 
data is contained within the speech wave for those capable of utilising it. Knower [Kno41] used 
the same data but included whispering. Utterances were played to listeners forward and back-
ward. Whispering dropped identification rates by approximately 30% and playing in reverse 
dropped identification by approximately 45% showing the importance of prosodies in emotion 
identification by listening. Pfofi" [Pfo54] also investigated the ability of listeners to identity e-
motions from 'content-free' speech (digits 1 to 8). Pfoff found a mean identification rate of 50% 
for 10 emotions and found that some emotions were identified with higher rates than others. 

Fenster, Blake, and Goldstein [FBG77] examined severzil aspects of the vocal transmission 
of emotions. An adult and child speaker set recorded six emotions (anger, fear, sadness, con-
tentment, happiness and love) which were played to adult and children listeners. It was found 
that adult and children listeners perceived negative emotions more accurately than positive 
emotions. Adult listeners were more accurate in the perception of emotions and there was no 
significant difference in the ability of adults and children to express emotions. 

Nilsonne and Sundberg [ANS85] evaluated the ability of listeners to recognise depression in 
the voice of patients. Speech of depressive patients before and after treatment was recorded. 
Listeners heard a constant vowel sound upon which the FQ contour of the patient's speech was 
synthesised. Listeners identified the "depressed" speech samples with 80% accuracy. Ross, 
Duffy, Cooker and Sargeant [RDCS73] examined the effect of low-pass filtering upon emotion 
recognition rates. 9 emotions were examined and the recognition rate was found to be emotion 
dependent. Recognition rate dropped slowly as filtering dropped to 300Hz low-pass, but at 
150Hz low-pass recognition rates were little better than chance. 

Brown, Strong and Rencher [BSR73] experimented with independent manipulation of mean 
FQ and speaking rate, and its effect upon perception of the personality of the speaker. Increased 
Fo was perceived as more benevolent, while decreased FQ was perceived as less benevolent. Rate 
increased voices were perceived as benevolent, and rate decreased as less competent. 

Streeter, Apple, Draus and Coalatti [SAKG83] conducted a novel investigation of acoustic 
and perceptual indicators of stress. Tape recordings were made of the System Operator for 
Consolidated Edison speaking to their immediate superior in the hour leading up to the 1977 
New York power blackout. The utterances of both speakers were presented to listeners who 
rated them as to stress. Acoustic analysis was performed and it was found that the pitch 
and amplitude of the superior's utterances increased markedly with situational stress while 
the System Operators pitch was found the decrease. Listener stereotypes of stress included 
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evaluated FQ and amplitude levels, as well as their increased variability. 
Ladd, Silverman, Tolkmitt, Bergmann, and Scherer [LST+85] examined the effect of manip-

ulation of voice quality, intonation contour and FQ range upon listener judgement of affect— 
evaluation of arousal and attitude. Ladd et. al. found that FQ range and contour, and Fo range 
and voice quality had independent effects upon the way utterances were judged. 

Pittam et. al. [PGC88, PGC90] have examined the long-term spectrum characteristics of 
perceived emotions. Thirty speakers recorded three passages with the intention of evoking the 
emotions pleasure, arousal, and control. A listener set of 120 students rated all utterances on 
a 15 adjective scale correlated to the intended emotions. Analysis of listener responses showed 
a listener perceptions of the passages a being representative of the intended emotions. Long-
term spectrum measures were then extracted and compared on the basis of the three effective 
dimensions. The long-term spectrum was found to be systematically related to the affective 
dimensions based on particular frequency bands of the spectrum, and there was found to be no 
significant sex or ethnic group effects. 

2.1.3 Sex 

It has long been known that mean fundamental frequency is a primary indicator of sex of a 
speaker [Wea24, HP69, HHP88], however other acoustic parameters may well signal speaker sex 
reliably. 

In a series of experiments in the late 1960's Schwartz and Rine, and Ingemann [Sch68, SR68, 
Ing68] showed that listeners were able to identify speaker sex from isolated, whispered vowels 
and consonants. Identification rates were found to depend upon the individual phoneme and 
ranged as high as 93%. Analysis of the spectra by Schwartz and Rine showed a generd shifting 
to higher frequencies of the formants for female speakers. 

Coleman [Col71, Col76] investigated the relative contribution of FQ and the lower three 
formants to perception of maleness and femaleness of the voice. In an initial experiment using 
10 male and 10 female speakers uttering isolated vowels an artificial FQ of 85Hz was synthesised 
for all utterances before presenting to listeners. An identification rate of 98% for male speakers 
and 79% for female speakers was obtained; and analysis of the lower three formant frequencies 
showed a significantly lower mean for male speakers. In later experiments Coleman played 
backward speech to listeners and correlated judgements of speaker sex with mean FQ and the 
mean frequency of Fi, F2, F3. Judgements of sex were extremely highly correlated with FQ 
and less highly correlated with the vocal tract resonance. Colemem then synthesised speech 
using the vocal tract resonance of females and the FQ of males. In both cases approximately 
two-thirds of responses from listeners were that the speaker was a male. Coleman concluded 
that in natural speech FQ was the primary cue to speaker sex. 

More recently Lass et. al. have investigated the effect of certain variables upon speaker sex 
identifications. Lass et. al. [LHB''"76] also investigated the relative contribution of Fq and vocal 
tract resonance to speaker sex identification. Isolated sustained vowels were spoken in normal 
and whispered voice as well as low-pass filtered at 255Hz. Speaker sex identification rates were 
96% for voiced speech, 91% for filtered speech and 75% for whispered speech; showing the 
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higher importance of Fo over vocal tract resonance for speaker sex identifications. 
Lass, Mertz, and Kimmel [LMK78] investigated speaker sex identification rates for backward 

played speech and speech compressed (rate increased) by 40%. Speech material was sentences 
from 10 male and 10 female speakers and was presented to 30 listeners. Identification rates did 
not drop for speech played backward and dropped only 2% to 3% for compressed speech. Using 
the same set of speakers Lass, Tecca, Mancuso, and Black [LTMB79] investigated the effect of 
phonetic complexity upon sex identification. F^om isolated vowels through to sentences a mean 
sex identification rate of 98% was obtained. Again using the same speakers as previously Lass, 
Almerino, Jordan, and Walsh [LAJ80] tested the effects of filtering upon sex identification 
rates. Unaltered, low-pass filtered at 255Hz and high pass filtered at 255Hz speech samples 
were presented to listeners for sex identification. Identification rates of 96%, 94% and 95% 
were found for the unfiltered, low-pass filtered, and high-pass filtered samples; showing that sex 
identification is not affected by this form of filtering. 

In an interesting study of the speech of male-to-female transsexuals Spencer [Spe88] used 46 
listeners to judge the gender and male/femaleness of the voices of 8 male-to-female transsexuals. 
The transsexuals and a control group of male and female speakers recorded a passage that was 
played to listeners. Listeners judged the sex of the control group with 100% accuracy. Results 
varied markedly between the individual transsexuals; from 100% identification as male, through 
a part-male-part-female spread of responses, to 100% female identification. Listener judgements 
were found to be highly correlated with mean Fo with a sharp discontinuity at 160Hz. Not all 
sex perceptions could be explained by mean FQ in which case Spencer cited vocal tract size as 
the likely cue. 

Childers et. al. [CYW85, CWH87b, CWH87a, CWHY89] have described a series of sophisti-
cated resynthesis experiments involving the alteration of one speaker's voice to that of another, 
as perceived by listeners. Among other experiments were the transformation of a male's sen-
tence to that of a female's. Various parameters were uttered individually and in combination 
and it was found that mean Fo was the most significant cue for gender perception. 

Recently Johnson [Joh90] described a series of identity and sex identification experiments 
as the initial stage in an investigation of vowel normalisation. A series of synthetic utterances 
with varying Fo were created and the perceived cross over point between the sexes was found 
to be between 140Hz and 150Hz. 

2.1.4 Age 

Several investigators have sought to examine listener judgements of speaker age based on the 
voice. 

Shipp and Hollien [SH69] gathered speech data from 175 adult males equally divided into 
the 7 age decades between 20 and 90. Three groups of listeners were employed to estimate age 
based on young, middle aged or old; the decile band within which the age of the speaker fell; and 
the actual age of the speaker. Shipp and Hollien found that listeners were able to accurately 
estimate speaker age (correlation co-efficient of 0.88 between judged age and chronological 
age). Ryan and Capadano [RC78] conducted a similar experiment with both male and female 
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speakers. Listeners reliably judged the chronological age of speakers (female speakers more 
accurately), and it was found that certain listener ratings of personality, such as flexibility and 
reservedness, were correlated with perceived age. 

Linville, Fisher, and Korabic [LF85a, LK86] evaluated the ability of young and elderly adult 
female listeners to estimate vocal age of adult females from a sustained vowel. 75 women 
speakers equally divided into the age groups 25-35, 45-55 and 70-80. Speakers were trained to 
produce the sustained vowel /ae/ at a steady FQ within the 200Hz to 220Hz range; as well as 
whispered. Listeners were asked to judge which of the 3 possible age groups a presented 1 second 
segment of the vowel belonged to. Young listeners were more capable of accurate judgement of 
age (51% voice, 43% whispered) than elderly listeners (45% voiced, 38% whispered). Correlation 
of acoustic parameters with judged age showed that FQ (both mean and standard deviation) 
was the most important cue used by listeners for voiced speech, and Fi was the most important 
cue for whispered speech (lower FQ, FI perceived as older). 

Recently Neiman and Applegate [NA90] have examined the accuracy of listener judgements 
of speaker age. Thirty sex speakers as divided into 3 male and 3 female speakers in the age 
ranges 20-25, 30-35,... 70-75 recorded a passage of which the first three sentences were played 
to a listening group of aged 20-25. Listeners judged which of the six age categories a speaker 
belonged to and a correlation of 80 was found between listener judgements and actual speaker 
age categories. Further it was found that young speaker age was judged more accurately than 
old speaker. 

Other researchers have sought to investigate the perceptual dimensions that listeners use 
in making judgements of vocal age. Ryan and Burke [RB74] used trained listeners to estimate 
the vocal age of 80 male speakers. Speech samples, from those speakers whose judgement vo-
cal age corresponded closely (standard deviation less than 6 years) to their chronological age, 
were presented to speech pathologists to rate on 10 voice characteristics. It was found that 
voice tremor, laryngeal tension, air loss, imprecise consonants, and slow rate of articulation 
were strong predictors of perceived vocal age. Hartman and Danhauer [HD76, Har79] per-
formed similar experiments and found such voice features as pitch, rate of speech, quality, and 
articulation to be strong predictors of perceived vocal age. 

Jaques and Rastatter [JR90] recently examined the perception of young and old speakers 
by groups of young and old listeners. Speakers produced sustained vowels which were then 
processed and played to listeners. Listeners heard FQ and resonance, FQ alone, and resonance 
alone and were required to judge young or old speaker. Identification rates ranged from 40% 
up to 80% and were found to be dependent upon a number of factors. FQ was found to be a 
significant perceptual cue. 

2.1.5 'Race', Dialect and Accent 

The area of speaker 'race' and dialect is extremely diverse and attempting to cover it entirety is 
beyond the scope of this work. In fact the whole question of'race', its definition, and interaction 
with socio-economic environment is a complicated issue. Therefore, whenever the term 'race' is 
used the term is that chosen by the original authors of the papers and used in the context defined 
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or assumed by those authors. Various questions, however, arise as to the acoustic correlates of 
perceived dialect, the degree of correspondence between different listeners' perception of dialect 
and the linguistic level at which dialect differences manifest themselves. 

In a series of experiments Abrams [Abr73] examined listener perception of 'race' based on 
different degrees of phonetic complexity; vowels through to sentences. With a speaker set of 
36 black and white Americans, and 60 listeners Abrams found that listeners judged skin colour 
(race) correctly 62% of the time. Identification rates were found to be highly variable based 
both on individual listener and speaker group; while phonetic complexity had no regular effect 
upon identification scores. Further, it was found that response bias varied directly with the 
language community of the speaker. Thus speakers of Standard English were usually classified 
as White, while speakers of Non-Standard English were classified as Black. 

Brennan, Ryan and Dawson [BRD75] investigated the degree of correspondence between 
72 naive listeners' rating of accentedness in speech samples from 8 Spanish-English bilinguals. 
Brennan et. al. found there was a significant agreement between listeners on the perceived de-
gree of accentedness in the test utterances and concluded that nonlinguistically trained listeners 
are capable of making accurate and consistent judgements of the degree of accentedness. 

Lass et. al. [LTMB79] and Flege [Fle84] have both examined the effects of phonetic com-
plexity upon listener's identification of accented speech. Lass et. al. recorded utterances of 
various phonetic complexities from 10 black American and 10 white American speakers. Iden-
tification rates were found to range form 55% (little better than chance) for isolated vowels 
up to 78% for sentence length utterances. Flege investigated the detection of French accent in 
American English by listeners at a segmental through to a phrase level. Correct detection rates 
ranged from 70% for isolated / t / up to 90% for phrases. 

Lass et. al. [LMK78, LAJ80] have looked at the effects upon 'race' identification of manip-
ulation of the acoustics of the speech wave. Using sentences from 10 black American and 10 
white American speakers Lass et. al. investigated the efifects upon listener race identification 
rate of time compression and backward playing of the speech. Identification rates were 70% 
for forward speech and approximately 62% for backw^d speech and 65% for time compressed 
speech. Lass et. al. concluded that temporal clues play a role in speaker 'race' identification. 
Lass et. al. also examined the effect of filtering upon perceived speaker 'race' for the same set 
of speakers. Low-pass filtering at 255Hz was found to have a greater detrimental effect upon 
correct 'race' identification than did high-pass filtering at 255Hz. 

Moon, Leeper, and Mencel [MHAL84, MML88] have investigated the speaker 'race' iden-
tification of North American adults and children. For both adult and children speaker «ets 
utterances of varying phonetic complexity from sustained vowels through to sentences were 
recorded voiced, whispered and with an electrolarynx synthesised FQ . It was found that iden-
tification scores rose as phonetic complexity did and identification scores dropped from voiced, 
to whispered to electrolarynx. Identification scores were well above chance given sufficient pho-
netic complexity and suprasegmental features were used by the listeners in decision making. 
Identification scores were examined on the basis of speaker 'race' for both speaker sets. Indian 
males and Non-Indian females were markedly better identified as to 'race' than Non-Indian 



2.2. ANALYTICALLY BASED INVESTIGATIONS 15 

males, and Indian females had the lowest correct 'race' identification rate (below chance). 

2.1.6 Other 

Several other traits of a speaker such as physical health, physical size, and socio-economic 
background may also be detected by listeners. 

Andrews, Cox Smith [ACS77] investigated the perceived characteristics of speakers after 
consuming alcohol and compared them with perceptions of non-intoxicated speech. Speech 
of subjects after consuming alcohol was rated by listeners as less efficient, reasonable, self 
confident, artistic, and theatrical, and more untrained than the equivalent utterances without 
prior consumption of alcohol. 

Lass, Beverly, Nicosia, and Simpson [LBNS78] examined listener ability to judge the height 
and mass of a speaker. Both male and female speakers and listeners were used. Mean judged 
male speaker mass was overestimated by 1.50kg while mean judged female speaker mass was 
underestimated by 1.65kg. Mean judged male speaker height was underestimated by 6mm 
while mean judged female speaker height was underestimated by 32mm. Lass et. al. found 
that listeners were able to accurately judge the approximate height and mass of speakers. 

Reich [ReiSl] examined the ability of listeners to detect the presence of vocal disguise in the 
voice of male speakers. Both naive and sophisticated (speech scientists) listeners heard vocal 
stimuli from the speaker set in either normal or disguised voice and were asked to determine 
whether the utterance was disguised or not. Speakers chose their own form of disguise, the only 
criteria being that it disguise their identity as much as possible; and were not told to make 
the disguise undetectable. Naive listeners detected vocal disguise with 89.4% accuracy, while 
sophisticated listeners detected disguise with 92.6% accuracy. 

2.2 Analytically Based Investigations 

The alternate to the perceptual approach to speaker characteristic examination is a purely 
analytic approach. Characteristic of such studies is the analysis of speech data containing 
well-defined pre-measured speaker characteristics (e.g., speech samples from speakers of various 
known ages). 

The two major questions to which answers are sought in such studies are: 

• Which acoustic parameters show manifestations of the speaker characteristic(s)? 

• What level of accuracy can be obtained for automatic identification of the speaker char-
acteristic(s)? 

Again, several sub-questions arise. These include: what degree of manifestation is there in 
the individual characteristics; to what degree are these speaker dependent etc. 
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2.2.1 Speaker Identity 

By far the largest area of research into speaker characteristics is that of Automatic Speaker 
Recognition. Research in this area is principally motivated by practical applications such as 
access control systems, forensic speaker identification, and telephone banking. 

Spectral Approach 

In 1962 Smith [Smi62] described the first known automatic speaker recognition system. Output 
from a 35 channel filter-bank was analysed via multi-dimensional analysis of variance, and a 
smaller set of linear transformations of the original filter measurements was derived such that 
their variance ratio was optimal. These transformed parameters were then used to identify the 
speaker from a set of known speakers. Unfortunately, no more details are available. 

In 1963 Pruzansky [Pru63] described a speaker identification system using the outputs of a 
17 channel filter bank. Using 7 repetitions of 5 sentences from 10 speakers (7 male, 3 female) 
Pruzansky investigated the identification scores when different vectors were used. Selected 
words were excerpted from the sentences and representative vectors, based on the filter bank 
outputs, were formed. Vectors investigated were of 3 forms:- time-frequency-energy (one value 
per band per sample), time-energy (total energy per sample) and frequency-energy (mean energy 
in each of the bands across the entire word). Using matrix correlation as a measure of similarity 
speaker identification scores of 89%, 47% and 89% were achieved. These results tend to lead 
to the conclusion that the energy contour has little benefit in speaker recognition, but much of 
its poor performance may be attributed to the means of time alignment (moment of maximal 
energy matched). 

In a follow-up investigation motivated by human performance in spectrogram reading 
Pruzansky and Mathews [PM64] tested recognition rates when various sized rectangular re-
gions in the time-frequency domain were used. Using the same speech data as Pruzansky's 
previous work they defined various sized rectangular regions (different numbers of samples, and 
different numbers of filter bands) for which the mean energy was calculated. Recognition per-
formance improved as larger time intervals were used and decreased as the number of frequency 
bands composing a region increased. Pruzansky and Mathews concluded that the energy in 
successive time intervals is relatively dependent. 

Li and Hughes[LH74] investigated speaker identification based on correlation matrices of 
continuous speech spectra [LHH66]. Output from a 35 channel bandpass filter was used to 
generate correlation matrices for 8 speakers reading a text. Matrix differences, calculated via 3 
different measures, were found to be consistently smaller in the intra-speaker as opposed to the 
inter-speaker case. When speaker identification and verification experiments were conducted 
for the 8 speakers from a total population of 30 error rates of 1% to 3% were found. 

In 1974 Atal [Ata74] conducted a series of speaker recognition experiments using Linear 
Predictive Co-efficients (LPC)^ Atal recorded 10 female speakers pronouncing the all-voiced 
sentence: "May we all learn a yellow lion roar." 3 times on each of two days, the days being 

^ LPC analysis is based upon the model of the speech production process as a source-filter mechanism; in 
which the vocal tract is represented as an all-pole filter [MAHG76]. 
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separated by 27 days. Each utterance was divided into 50 equal segments and 12 LPC pre-
dictor co-efBcients were determined for each segment. From these predictor co-efficients other 
parameters, including cepstrum co-efficients and area function co-efficients were derived and 
each set was tested for its ability to discriminate the speakers. Using only one segment (ap-
proximately 50 msec) identification experiments were conducted for each of the parameter sets 
and cepstrum co-efficients were found to have the highest identification rate of 70%. When half 
a second of speech was used the identification rate increased to 98%. Similarly, the cepstrum 
co-efficients yielded a verification rate of 83% for 50 msec of speech, increasing to 98% for 1 
second of speech. Comparing these results with those he obtained using pitch contours of the 
same data Atal stated: .. these results suggest that the spectral envelope information is more 
effective than the pitch contour information for automatic speaker recognition.*' 

In a series of speaker identification experiments Sambur [Sam76] investigated the use of 
orthogonal LPC parameters derived via eigenvector analysis. 21 male speakers recorded the 
sentence "I was stunned by the beauty of the view." on 6 separate occasions. Orthogonal LPC 
parameters that showed little variance across the utterance were selected as representing the 
speaker, while those with high variance were selected as representing the linguistic content. 
The higher order co-efficients were found to be "stable", while the lower order varied greatly. 
Orthogonal LPC, orthogonal PARCOR, and orthogonal Log Area Ratio (LAR) co-efficients 
were all compared for their ability to identify the speaker with varying number of co-efficients 
identification scores of 96.8%, 99.2% and 98.9% were achieved for the LPC, PARCOR and LAR 
co-efficient sets respectively. Similar results were obtained for verification experiments. 

In another set of experiments investigating orthogonal LPC co-efficients Shridar et. al. 
[SMB81] tested their utility for text-independent speaker recognition. Using a dynamic pro-
gramming procedure for co-efficient selection Shridar et. al. found that the higher order co-
efficients weren't necessarily the optimal co-efficients. 

Furui [Fur81a] investigated cepstrum co-efficients for speaker verification. Time functions 
of the cepstrum co-efficients were used to represent the speaker. These were compared via 
Dynamic Time Warping (DTW) and error rates as small as 0.3% were reported. 

Prosodies and Suprasegmentals 

Many speaker recognition systems use prosodic and suprasegmental information as an adjunct 
to their main vectors of recognition which are based on spectral data [Luc69, MOJ77, NND89]. 
However few approaches primarily investigate prosodic or suprasegmental sources of informa-
tion. 

Doddington [Dod71b, Dod71a] investigated the use of time functions of the formant fre-
quencies, fundamental frequency and speech energy for their ability to identify speakers. Using 
40 speakers (8 designated customers and 32 imposters) Doddington found that proper time 
normalisation was an important factor in improving error rates. Non-linear time normalisation 
was performed by maximising the correlation between sample and reference second-formant 
profiles through a piece-wise linear transformation of time. Non-linear time normalisation im-
proved error rates by a factor of 4 over simple end-point alignment. Average speaker verification 
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error rates after non-linear time normalisation were 5% for FQ; 4% for the formants; 4% for the 
energy; and a combined error rate of 1.5%. 

In 1971 Levitt and Rabiner [LR71] attempted to quantify the various levels of variability 
in the production of FQ contours. Three speakers repeated the two sentences "Larry and Bob 
are here." (with emphasis on "Bob") and "This is an olive." (emphasis on "olive") three times 
each. Fo contours were then extracted and each was divided into "epoches", generally corre-
sponding to voiced/unvoiced boundaries. Orthogonal polynomials were used to represent the Fo 
contour within a time window. The co-efficients of the orthogonal polynomisils themselves were 
then treated as contours and an orthogonal polynomial determining them was then calculated. 
Sources of variability in the FQ contour were then compared and rank ordered. Inter-speaker 
variability was found to be significantly larger than intra-speaker variability. Also, intra-speaker 
variability was found to be greater during non-stressed than stressed sections. 

In 1972 Atal [Ata72] described a series of speaker identification experiments using pitch 
contours. 10 female speakers made 6 recordings of the all voiced sentence: "May we all learn 
a yellow lion roar." The contours were all linearly normalised to a 2 second duration and 
represented by a 20 dimensional vector in the Karhunen-Loeve co-ordinate system. These 
vectors were then linearly transformed so as to optimise their intra-speaker to inter-speaker 
variance (F ratio [PM64]). Identification was based on the nearest-neighbour approach. Using 
a training set of 5 utterances and 1 for testing for each speaker, recognition rates of 93% to 
98% were achieved. Atal then compared the system to several other well-known approaches to 
speaker recognition, namely:- minimum distance classifiers, cross correlation, moments of pitch 
period, which yielded recognition rates of 68%, 70%, and 78% respectively. These results showed 
the applicability of pitch contours to the recognition of speakers in general, the usefulness of 
the linear transformation of the feature space (97% versus 68%) and the significance of the 
moment to moment variations in pitch (moments of pitch period performance versus pitch 
contour performance). 

In 1973 Lummis described another speaker recognition technique based on the use ofprosodic 
features [Lum73]. The procedure was based on Doddington's earlier approach [Dod71b] where, 
however, gain was used for temporal alignment as opposed to Doddington's more computa-
tionally expensive F2. Parameters analysed were pitch, gain, Fi, F2, and F3. Using the all 
voiced sentence "We were away a year ago." with a speaker set of 41 (8 customers, 32 casual 
imposters, and 1 twin brother of a customer) verification error rates of the order of 1% were 
achieved, and the contribution of the formant contours was found to be minimal. 

Wasson and Donaldson [WD75] describe a speaker identification system based on orthonor-
mal functions of the amplitude and zero crossing rate. For a mixed sex speaker population of 10 
an identification rate of 96.6% was reported using the ubiquitous "We were away a year ago". 

Johnson et. al. [JHH84] examined temporal measures of utterances of speakers for encoded 
speaker identity. Twenty male speakers read a passage under normal voice, disguise, and 
stressed conditions. Two vectors, a time-energy distribution and voiced/voiceless time contrast 
were extracted and examined via speaker discrimination experiments. Both vectors were found 
to discriminate speaker, energy-time better than voicing/voiceless, and combined yielded a 
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speaker discrimination rate of 55%. 
Chen and Lin [CL87] have reported on the use of FQ contours to identify speakers of Man-

darin. Based on slope, mean, and duration FQ measures of the four basic Mandarin tones a 
text-independent speaker identification rate of 99.2% was obtained for a speaker population 
of 11 males and it was shown that the period of one month between utterances did not alter 
recognition rates. 

Barlow and Wagner [BW88] have examined the speaker discriminant ability of four prosodic 
parameters using the DTW paradigm. For a small population of five Australian males uttering 
four sentences the four parameters energy, voicing, FQ, and LPC error were all found to show 
significant encodings of speaker identity. 

Phonetically Based 

Another known source of speaker difference in is the uniqueness of segmental^ production of 
each person. Both phonetic and acoustic definitions of segmental units have been used. 

Glenn and Kleiner [GK68] were the first to investigate the uniqueness of segmental produc-
tion as applied to speaker identification. In an investigation of the uniqueness of nasal phonation 
Glenn and Kleiner recorded 30 speakers (20 men, 10 women) reading two words lists containing 
10 words each; each word containing a minimum of two nasals. Nasals were represented by 25 
element power spectra in the range of Ikhz to 3.5khz which were manually calculated. Vector 
similarity was measured by their correlation. Using the mean of 10 consonants as test input a 
speaker identification rate of 97% was achieved for a population of 10, and 93% for a population 
of 30. 

In a similar investigation Su, Li, and Fu [SLF74] examined the identification of speakers via 
nasal co-articulation. Isolated utterances, containing nasal-vowel combinations, were phonated 
by two phonetically trained adult males and two adult females. Three front vowels/ i, e, ae/ 
2md three back vowels /u, o, a/ were combined with the two nasals / m / and /n / for a total of 
12 combinations. Each combination was repeated 3 times by each speaker. A 25 channel filter 
bank was used to extract the nasal spectrum in the range 250Hz to 3681Hz. Euclidean distance 
between mean vectors showed a far larger inter-speaker distance between [mV] combinations 
than [nV]. 10 further male speakers were recorded and identification experiments were conducted 
based on correlation matrix similarity. An identification rate of 100% was obtained. 

Luck [Luc69] examined the cepstra of the first two vowels combined with the speaker's pitch 
and the length of the word "my" in the phrase "my code is for their ability to discriminate 
speakers. 34 adult male speakers were recorded. Four were designated customers and recorded 
the test phrase 25 times on 8 separate occasions. The other thirty were designated imposters 
and recorded the utterance 25 times on a single day. Spectral extraction was performed at the 
position of maximum amplitude in the word "my" and / o / . Speaker verification experiments 
were then conducted using a nearest neighbour criteria and error rates of 6% to 13% were 
obtained depending upon the inclusion of FQ and the word length. 

^Here defined as the production of individual speech sounds, whether these units are defined phonetically or 
acoustically. 
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In 1972 Hair and Rekeita [HR72] performed a series of experiments investigating the spectra 
of phonemes and their use in speaker verification, 40 speakers, each of whom had uttered 10 
isolated words once on each of nine weeks were used as customers and imposters. Thirty 
element power spectra for each of 6 phonemes were used to characterise the speakers. Using 
a hypersphere decision rule (threshold distance) an error rate of 2% was found and Hair and 
Rekeita concluded that the technique was a reliable method for speaker verification. 

Pfeifer [Pfe78] obtained more than 63 minutes of conversational speech from 20 speakers 
(10 male, 10 female) via an interview-like situation. The vowels /i, I, E, ae, a/ were manually 
detected and represented by 12 reflection co-efficients obtained at the stablest portion of the 
vowel. Five reference vectors (one for each of the vowels) were used for each speaker. Speak-
er identification experiments were then conducted using a weighted Euclidean distance. For 
straight vowel matching an identification rate of 39.2% was achieved. Interestingly, when only 
one reference vector was used to represent the 5 vowels (vowel space) the speaker identification 
rate increased markedly to 44.98%. When a sequential deferred decision process was used with 
only one reference vector for each speaker a speaker identification rate of 85% was obtained 
using speech data corresponding to approximately 30 seconds of speech. This approach has al-
so been taken by Wood [Woo78] who expanded the system to automatic spotting of vowel-like 
sounds (vowels, nasals, and liquids) in running-speech. 

Li [Li87] describes a series of experiments to separate speaker specific and phoneme specific 
features of the formants of vowels. Using both a conversational database from sixteen speakers, 
and a connected database from ten speakers, Li applied orthogonal analysis prior to speaker 
verification experiments for which error rates ranging from 21% down to 11% were reported. 

Savic and Gupta [SG90] describe a speaker verification system based on HMM and a broad 
phonetic categorisation of utterances. The broad groupings of vowels, fricatives, nasals, plosives, 
and voiced are used and LPC parameters are extracted. Verification experiments with a speaker 
set of 43 are carried out separately for these categories, and in combination. Error rates were 
found to vary greatly between the different categories but all were found to have encoded speaker 
identity information. 

Recently Rosenberg et. al. [RLS90] have reported on both an acoustic and phonetic tran-
scription based approach to speaker verification using the Hidden Markov Model paradigm. 
With a 100 speaker database of isolated digit utterances, and using cepstral co-efl5cients as the 
vectors of recognition both approaches were found to have roughly equal speaker verification 
performance. For a single digit error rates of 7% to 8% were reported, dropping to 1% for 7 
digits. 

Feature Selection 

The selection of "good" acoustic parameters for speaker recognition is a task facing all appli-
cations. In their 1964 investigation Pruzansky and Mathews [PM64] based feature selection on 
the basis of having a small variance between utterances from a given speaker, compared to the 
variation among utterances of different speakers. Thus, they defined a measure of this variance 
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ratio, known as the F ratio: 

„ . variance of talker means 
F ratio = average within talker variance 

to select the k best features based on the highest k F-ratios. 
Wolf [Wol72] was the first investigator to examine in detail a large number of acoustic 

features for their speaker specificity. Using utterances from 21 adult American males speaking 
6 sentences Wolf examined various parameters extracted at particular speech events (e.g., peak 
FQ value in the syllable "not" of one of the 6 sentences). Wolf defined six properties that 
measured speech parameters should have for good speaker recognition:-

1. occur naturally and frequently 

2. be easily measurable 

3. vary widely among speakers, but be consistent within speakers 

4. not change over time or be affected by health of speaker 

5. not be unreasonably affected by background noises or transmission system 

6. not be modified by conscious effort (unaffected by attempts to disguise). 

Wolf investigated over 30 parameters on the basis of their F ratio, a measure of their inter-
speaker variance to intra-speaker variance [PM64, DS71], being closely related to the above 
third property. High F ratio parameters were chiefly measures of Fo (although these were 
often highly correlated with one another), though vowel and nasal formants also yielded high 
ratios. Using the best 9 parameters (based on their F ratio and measure of interdependence) 
Wolf achieved an identification error rate of 1.5%. Unfortunately Wolf's speech material was 
all recorded in one sitting, highly reducing the intra-speaker variability. Further, due to the 
nature of the measures investigated, it is first necessary to "phonetically" segment an input 
utterance before measures may be taken (a task which appears far more difficult than speaker 
recognition). 

In 1975 Sambur [Sam75] investigated a set of 92 features extracted at particular speech 
events (including formant bandwidths and frequencies in vowels, durations of speech events, 
dynamics of formants etc). Using a probability of error criterion based upon a Gaussian error 
rate Sambur chose a best subrset of features via a 'knock-out' strategy. Starting with the N 
features to be investigated N sets of TV - 1 features were generated (where each feature had 
been left out of 1 of the N sets). The set of iST - 1 features having the lowest probability of 
error was then kept (effectively eliminating one feature). The same process was then followed 
with this set of i V - 1 features (breaking into N-I sets of N-2 features and selecting the best 
set of TV — 2 features). Using the same speech material as Wolf (with additional recordings to 
introduce intra-speaker variability over time) Sambur found the formant frequencies in vowels 
and nasals and the mean FQ to be most important. In a speaker identification experiment using 
the best 5 features an identification error rate of 0.3% was obtained. 
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Goldstein [Gol76] used a similar method to obtain the best features for 10 American males 
based on the formant structure of 3 diphthongs, 4 tense vowels, and 3 retroflex sounds. 109 
features were examined and those that yielded F ratios greater than 60 were further investi-
gated (29 features). Based on Sambur's probability of error measure the 'best' k features were 
determined via an 'add-on' process. Of the N features the one yielding the lowest error estimate 
was taken. Then each of the remaining N -I features were paired with the already selected 
feature. The pair yielding the lowest error estimate was then selected. This process was then 
repeated for triplets etc. until k features had been found. Goldstein found that minimum and 
maximum measures of the formants (particularly F2) were particularly effective and attributed 
these differences to being more a matter of speaker habits than of vocal tract anatomy. Using 
only the two best features an identification error rate of 15% was obtained. 

Cheung and Eisenstein [Che78] used a dynamic programming procedure to select the best 
ib-subset of N features. For ten male speakers reading 4 of the Harvard Phonetically Balanced 
lists Fo, energy, PARCOR co-efBcients, cepstral co-eflEicients, and normalised autocorrelation 
co-efRcients were extracted and averaged over the voiced duration of the utterances. In an 
approach similar to Goldsetein's "add-on" technique the feature subset was built up from one 
feature. However, at any stage t, there are N subsets of t features, each subset having been 
started with a different one of the N features (as opposed to Goldstein's one subset). The best 
k subset is then selected from the N ib-featured subsets. Speaker identification experiments 
were then performed using each of ten cepstral co-eflBcients, ten PARCOR co-efficients, the ten 
best features as determined by Sambur's "knock-out approach", and the ten best features as 
determined by the dynamic programming approach. The two sets of selected features performed 
significantly better than the PARCOR co-efficients and the cepstral co-efficients (no doubt 
due to the FQ and energy information lacking in the straight spectral representation). Of 
the two selection process the features derived via dynamic programming yielded an error rate 
approximately 1% less than those derived via the "knock-out" technique. 

Shridar et. al. [SMB81] used a dynamic programming procedure to select the k best set of 
12 orthogonal LPC co-efficients. They found that on the criteria of ^ Inter-speaker distance 
— intra-speaker distance that the best co-efficients were speaker specific and varied from one 
speaker to another. 

Long Term Features 

Two types of variability in the speech produced by a given speaker compound the problem of 
speaker recognition. One problem is that of intra-speaker variability; particularly over the long 
term (e.g., intervals of greater than 6 months). The second problem is that of the variability 
introduced by the linguistic content of the speech. Several researchers have addressed this 
problem by examining long-term features of the speech. 

As early as 1963 Pruzansky [Pru63] tested a semi text-independent speaker identification 
system. Ten speakers recorded a series of sentences from which certain keywords were extracted. 
The mean energy across 17 different frequency bands for all words was then used as a reference 
and test vector for each speaker. Using a correlation similarity measure 100% identification was 
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obtained. 

In 1972 Furui, Itakura, and Saito [FIS72] investigated the ability of the long-term power 
spectrum (LTS) to represent the characteristics of a speaker. Speech material, consisting of a 
fixed sentence of approximately 10 seconds length, was obtained from nine speakers over the 
period of a year and a half. Speaker identification and verification experiments were conducted 
and the effects of difi'erent distance measures, training interval, and interval between training 
and test utterances was investigated. It was found that recognition rates dropped significantly as 
time between a single training utterance and test utterances increased. With increased training 
sets spanning greater time, recognition performance improved markedly, although recognition 
scores still dropped as the time between training and test utterances increased. Furui et. al. 
concluded that a speaker's spectral pattern appeared stable for a period of between 2 to 3 days 
up to 3 months, but there-after variations were observable. 

Li and Hughes [LH74] in their investigation of correlation matrices of continuous speech 
spectra showed that correlation matrices for speakers stabilised after approximately 30 seconds 
of speech. This lead them to conclude that a least 30 seconds of continuous speech was necessary 
to characterise the speech of a single speaker. 

Both Atal [Ata74] and Sambur [Sam76] conducted text independent speaker identification 
experiments via LPC derived parameters. Atal used a random re-ordering of the original 
sentence and achieved an identification rate of 93% for 10 speakers. Sambur used a set of 6 
difi'erent sentences (5 for training, 1 for test) and achieved an identification rate of 94% for a 
population of 21 speakers. 

Hollien and Majewski [MH74, HM77] examined the use of Long-Term Spectra to identify a 
large number of speakers. Fifty American male speakers and 50 Polish male speakers (speaking 
in Polish) were recorded reading a text. Long-Term Spectra for each was calculated over 30 
seconds of speech using the output of a 22 channel filter bank. Mean intra-speaker distances 
were calculated for both groups (American and Polish) and the Poles were found to have a 
significantly smaller distance than the American speakers. Speaker identification experiments 
were then conducted for each speaker group separately and identification rates of 96% for the 
Polish speakers, and 94% for the American speakers were found. 

Markel, Oshida, and Gray [MOJ77] took a somewhat difi'erent approach to Furui et. al. 
[FIS72]. Markel et. al. obtained approximately 15 minutes of speech in a single sitting from 
each of 4 speakers via an interview situation. FQ, gain, and reflection co-efficients were extracted 
for the voiced frames over the entire duration of each speaker's utterance. Calculating the mean 
for each of these parameters over periods of up to 70 seconds the standard deviation across the 
entire utterance was analysed. The standard deviation of FQ and the reflection co-efficients 
dropped rapidly showing the advantage of long-term averaging of these parameters. Inter-
speaker to intra-speaker variance ratios [PM64, Wol72] were then calculated, again for means 
calculated over varying lengths of time. Variance ratios increased significantly as the averaging 
interval increased. Using a transformed parameter set of 3 and calculating mean references 
from 70 seconds of speech Markel et. al. were able to identify the speakers with 100% accuracy. 

In 1978 Furui [Fur78] reported on the efl'ects of long-term spectral variability on speaker 
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recognition. Using speech collected over a period of up to 5 years Furui showed that speaker 
recognition performance decreased markedly as the time interval increased. Furui found it de-
sirable to collect reference samples over a long time period and weight the distance calculations 
based on the long-term variability of the individual parameters. 

In a further investigation of the effects of averaged parameters Markel and Davis [MD78, 
MD79] used a database of over 36 hours of linguistically unconstrained extemporaneous speech. 
This data was obtained from 17 speakers (11 male, 6 female) in 10 separate sessions over a 
3 month period and was band-limited to frequencies of telephone speech. In an extension of 
Markel et. al.'s earlier work [MOJ77] Markel and Davis showed that for FQ and reflection co-
efficients the standard deviation decreased and variance increased as the interval over which 
mean averaging was done increased. Interestingly, the reflection co-efficients with high variance 
ratios differed between the male and female speakers. Speaker identification experiments testing 
both the effect of the duration of averaging and that of using training data from several sessions 
showed the reliance of identification scores upon both these factors. As both the averaging 
interval, and the number of sessions from which training data were extracted increase, speaker 
identification rates also increase such that; for training data from two sessions and averaging 
done over approximately 1 second of speech an identification rate of 52% was achieved, when 
these were increased to 5 sessions and approximately 50 seconds respectively an identification 
rate of 92% was achieved. 

In their recent investigation Harmegnies and Landercy [HL88] examined the intra-speaker 
variability of the long-term speech spectrum. 10 French speaking males recorded an 18 second 
phonetically balanced text 10 times each, as well as reading a passage from a novel. LTS for 
various sections of the passages were extracted and their correlation compared on an individual 
speaker basis. It was found that the degree of correlation varied for different speakers and thus 
Harmegnies and Landercy concluded the degree of LTS variability is speaker-dependent. 

Millar [Mil86, Mil88] has examined variations in the long term distributions of the FQ and 
energy, and timing of the speech of 33 Australians. The speakers recorded a number of passages, 
each approximately one minute in length, over a period of three months. Differences between 
speakers were found for many features examined. 

Gelfer et. al. [GMH89] have examined the impact of sample duration and time between 
example and reference utterances upon a text independent speaker identification system using 
long-term spectra. It was found that for reference utterance durations of 5 seconds or less that 
identification rates were highly variable and utterance dependent, while for 10 seconds and 
above this was not the case; indicating the need for more than 5 seconds of reference utterance 
to obtain true text independence. Further, non-contemporary utterances were found to greatly 
degrade verification performance, by a factor of up to 40%. 

Large Scale and Practically Motivated Investigations 

Most speaker recognition experiments have involved relatively few speakers due to the problem 
of data collection; and have been recorded under ideal laboratory conditions. These parameters 
do not reflect the situation of most applications of speaker recognition. An increasing number 
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of investigations are now addressing these inadequacies in two aspects. Many experimenters 
have examined telephone quality speech [FurSla, HM77, INN78, NND89] an area of obvious 
application, while others have used increasingly large speech databases [MD79, HM77, Dod85]. 

In 1971 Das and Saleeby [DS71] conducted verification experiments upon a population of 
118 males. Over 7000 utterances of the sentence: "Check this terminal please.'' were used from 
the 118 speakers. An average "misclassification" rate of 1%, with a 10% "no decision" was 
obtained. 

Ichikawa, Nakajima and Nakata [INN78] conducted a series of speaker verification experi-
ments over telephone lines. Through the application of selective frequency band analysis and 
self inverse filtering to normalise the effects of transmission distortion verification performance 
exceeded that of PARCOR co-efiicients. With the addition of Fq frequency verification rates 
exceeded 95%, and with a single type of telephone handset verification rates of just below 100% 
were achieved. 

Markel and Davis [MD78, MD79] obtained over 36 hours of linguistically unconstrained 
extemporaneous speech from 17 speakers (11 male, 6 female) via a series of interviews over a 
3 month period. Speech was band-limited to telephone frequencies and mean Fq and reflection 
co-efficients were used to represent the speakers. A text-independent speaker identification rate 
of 98.05% was obtained. In a speaker verification experiment an equal error rate of 4.25% was 
obtained. 

Furui [Fur81a] investigates another verification system based on dynamic acoustic features, 
using telephone quality speech. Time functions of cepstrum co-efficients were represented by 
orthogonal polynomials over short time intervals. The utterance was then represented by the 
time function of the first two polynomial co-efficients [LR71]. Using DTW for time alignmen-
t several verification experiments were carried out using different data sets in an attempt to 
investigate several aspects of the process. Error rates varied from approximately 0.3% up to 
4% depending upon the data set (10 male, 40 male imposters; 10 female, 40 female imposters 
and 21 male, 55 imposters). The technique was found to be robust in terms of transmission 
system variability, and cepstrum co-efficients were found to be better than log-area ratio pa-
rameters. Further, verification experiments using only the cepstrum co-efficients were found to 
have an error rate approximately three times that when the combined cepstrum co-efficients 
and polynomial co-efficients were used. 

In 1985 Doddington [Dod85] reviews the area of speaker recognition. Included in the review 
is a description of the Texas Instruments voice verification system used to control access to 
their computer centre, and which had been operating 24 hrs per day for over a decade. This 
system uses the output of a 14 channel filter bank with simplified DTW for time alignment. 
An utterance consisting of 4 words randomly selected from a candidate set of 16 is prompted 
for, and multiple utterances may be used in the verification procedure (operational mean of 
1.6 utterances). A gross rejection rate of 0.9% has been measured, together with a casual 
imposter acceptance rate of 0.7%; showing the validity of speaker verification for well chosen 

commercial tasks. In concluding the review Doddington makes the following points. There has 
not been the proliferation of speaker recognition systems that was envisaged in the mid 70's 
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and this is mainly attributed to a lack of robustness, lack of business interest, the problems of 
a man/machine interface, and the lack of a true need. System performance is highly dependent 
upon the operating conditions and there is a great need for benchmarking databases so that 
serious system evaluation may be carried out. Finally, Doddington recommends that research 
be directed toward high quality recognition over telephone circuits. 

Recently Noda has investigated the distinctiveness of a speaker's utterance in the parameter 
space and its use in forensic speaker recognition [Nod89]. The distinctiveness of an utterance 
is defined as the distance between its position in the N dimensional parameter space and the 
mean position for that utterance from all speakers. Using speech from 523 males (20 to 50 
speakers from each of 15 different Japanese prefectures) uttered over telephone lines Noda breaks 
the speakers into 5 equal groups based upon their 'parametric distinctiveness'. Conducting 
identification experiments, (of the form: nearest speaker, and nearest 5% of speakers) using 
cepstral co-efficients Noda examined the recognition rates on a distinctiveness basis. He found 
that the 'more distinct' groups always had higher recognition rates, whether on single vowel, 
multiple vowel, single word, or multiple word identification and verification and that error rates 
more than doubled from the most distinct group to the least distinct. These results re-enforced 
the fact that speaker recognition accuracy is a speaker-dependent phenomenon and therefore 
the need for large benchmarking databases. 

Naik, Netsch and Doddington [NND89] recently investigated speaker verification over phone 
lines on two speech databases. The first database consisted of 20 speakers recorded using 10 
varieties of telephone handsets. The second database consisted of 100 speakers recorded over 
long distance telephone lines. 

Disguised Speech 

Several researchers have addressed the area of disguised and/or mimicked speech and its efifect 
upon speaker recognition systems. 

In his 1969 investigation of speaker verification using cepstral measurements Luck [Luc69] 
gave 3 members of his 'imposter' population the opportunity to mimic one of the customers. The 
3 imposters were selected on the basis of how closely, as measured by the recognition system, 
their normal voices matched the customer's (closest match for entire imposter population, worst 
match, and lO'th best match). The imposters were informed as to how the recognition system 
worked, and were repeatedly played the customer's code phrase to practice mimicking. The 
best (closest matching) imposter increased his equal error rate from approximately 10% to 20%. 
The other mimickers did not increase their equal error rates. 

Rekieta and Hair [RH72] report on the success of a professional mimic's attempt to pose as a 
valid speaker for their speaker verification system based on phoneme spectra. The professional 
mimic was given recordings of 6 valid speakers, allowed to become familiar with them and then 
to record their utterance directly after the customer's utterance. Spectra analysis showed an 
increase in similarity for some speakers and phonemes. However, when verification experiments 
were performed using features from 5 phonemes, the impersonator was unsuccessful in all mimic 
attempts. 
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Lummis and Rosenberg [Lum72] conducted a more exhaustive experiment testing the effect 
of mimics upon speaker verification performance. Several professional mimics were selected 
from a large group via audition. These mimics were given intensive training on 8 speakers 
from Doddington's 40 speaker population [DodTla]. Doddington's speaker verification system 
[DodTla] based on time contours of FQ, energy, and Fi, F2, F3 was used to test mimic perfor-
mzince. During training the system gave feedback to the mimics on how close their utterance 
was to that of the speaker being mimicked. Recordings of the best utterances from the 4 best 
mimics were then processed by the verification scheme. On an equal error rate criteria, 27% 
of the best utterances by the best mimics would be accepted. This acceptance rate compares 
with 1.2% for non-mimidcing imposters. 

In their 1977 investigation of Long-Term Spectra for speaker identification Hollien and 
Majewski [HM77] examined the effects of vocal distortion due to task induced stress and vocal 
disguise upon identification scores. Two speakers sets, one of 50 American males, the other of 
50 Polish males were recorded reading a text. Speakers then read the text a second time and 
mild electric shocks were applied at random intervals to induce stress. Finally, the speakers read 
the text again and were encouraged to disguise their voice as much as possible but not to put 
on a foreign accent or to whisper. Speaker identification rates dropped from the order of 100% 
for normal voice, to 92% for stressed, and 20% for disguised. This led Hollien and Majewski 
to conclude that while LTS appeared viable for detecting speaker identity under stressed and 
normal voice, but that it was incapable of determining identity when the voice was disguised. 

Dynamic 

Very few researchers have compared the utility of parameters for speaker recognition based 
upon their inherent property of time-variability. The terms dynamic and static, as used by 
different investigators, have different meanings. However for this review dynamic is defined 
to pertain to the time variability of a parsuneter, while static is defined to the time invariant 
properties (e.g., mean). 

Saito and Furui [SF78] describe a novel approach to examing encoded speaker identity in the 
dynamics of speech spectra. Nine male speakers uttering two isolated words were recorded over 
a period of 2 years and Log Area Ratio, and Fo were extracted. Standard DTW recognition 
experiments were conducted and an error rate of 2% was reported. The warp paths calculated 
for these experiments were examined on an intra-speaker versus inter-speaker basis. It was found 
that for intra-speaker comparisons there appeared regions on the warp path that remained close 
to the diagonal joining the start and end of both vectors, while for inter-speaker comparisons 
there appeared no such regions. A measure was defined to count the number of warp transitions 
that had come from the diagonally previous position. Using this measure and both words a 
speaker recognition rate of 63% was achieved. When this measure was added to that of the 
standard DTW experiment the error rate was approximately half that without the warp path 
measure. Saito and Furui drew the conclusion that "... the rate of similarity in a specific region 
is useful as a supplementary measure for talker recognition, although it is insufficient to be used 
as an independent measure for talker recognition." 
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Furui [FurSlb] compared the performance of dynamic and static approaches to speaker 
recognition. Two Japanese words were repeated by 9 male speakers over a period of 7 years. Log 
area ratios and FQ were extracted. The statistical approach used correlation matrices derived 
from the mean value of each parameter. The dynamic approach compared time functions of the 
parameters via dynamic time warping. The two approaches were compared under a number 
of conditions involving training set data and duration between training and test utterances. 
The statistical approach was generally found to perform better, but needed a larger, more 
representative training set than did the dynamic scheme. When both schemes were combined 
the error rate was less than half that of either one individually. 

Soong and Rosenberg [SR88] compared instantaneous and transitional schemes for speaker 
recognition over phone lines. 10 speakers (5 male, 5 female) each recording 200 utterances 
of isolated digits (20 per digit) over a 2 month period. Both instantaneous and transitional 
Vector QuEuitisation codebooks were made for each speaker. Soong and Rosenberg found that 
the instantaneous approach generally yielded higher results, but the transitional based scheme 
was more resistant to channel noise. Finally, they found that instantaneous and transitional 
schemes complemented each other and appeared relatively uncorrelated. 

Bernasconi [Ber90] has also compared instantaneous and transitional measures of cepstral co-
efficients for text-dependent speaker verification. For a speaker population of 22 males reading 
phonetically balanced sentences over a period of 4 months it was found that the transitional 
scheme was practically as good as the instantaneous based scheme, though combined there were 
no further improvements. Error rates below 0.1% were reported. 

Probabilistic Approach 

Many speaker recognition systems implicitly assume an underlying Gaussian probability dis-
tribution [Ata74] and use distance metrics based on this assumption. Schwartz, Roucos and 
Berouti [SRB82] were the first to investigate the actual use of Probability Distribution Func-
tions (pdf's) for speaker identification. Probabilistic classifiers compute the conditional joint 
probability that the successive test vectors x were produced by speaker t (successive vectors are 
assumed to be independent). The speaker with the highest probability estimate is then select-
ed. Using speech consisting of a read text of over a minute's duration, from 21 male speakers, 
three different probabilistic classifiers together with a Mahalanobis distance [Ata74] were ex-
amined and compared. The pdf's tested were Gaussian (gpdf), Gaussian with the addition of 
clipping (gdpfH-c), and a non-parametric pdf (npdf) based on a i-nearest neighbour scheme. 
Test and reference vectors consisted of Log Area Ration (LAR) co-efficients. Performance was 
investigated under a number of conditions including the number of LAR Parameters used, the 
effects of noise and the duration of training. The pdf based schemes yielded higher identifica-
tion rates under all conditions than the Mahedanobis distance based scheme. Of the pdf's the 
non-parametric scheme generally performed the best. 

In their 1983 follow-up paper [WKK+83] Wolf et. al. investigated the same four recognition 
schemes' (namely Mahalanobis distance, Gaussian pdf, Gaussian pdf with the addition of clip-
ping, and a non-parametric pdf) performance using speech recorded over radio channels. Over 
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30 seconds of speech from each of 19 speakers was obtained. Each radio transmission was of 
approximately 2 seconds duration and the noise characteristics of the channels were highly vari-
able. Further, it was reported that: "The speakers vary from being calm and talking "normally" 
to being very excited and yelling." thus introducing an extra complication of speaker state (no 
further information is given regarding this variance, nor is the exact source of the speech data 
detailed). Speaker identification experiments for the four schemes tested performance under 
conditions of variable training length, test and training data from same and different sessions, 
and the number of Log Area Ratio co-efficients used. Interestingly, the Gaussian pdf (with and 
without clipping) yielded the highest identification rates as opposed to the Non-parametric pdfs 
superior performance in the earlier experiment [SRB82]. Generally identification rates dropped 
by 20% to 30% from those achieved using laboratory speech. 

Matsumoto [Mat89] describes a text-independent speaker identification scheme for a 10 
speaker population. Speaker's utterances in the k phonetic subspaces are modelled by gaussian 
pdfs and joint probabilities are calculated for an active utterance. Using cepstrum co-efficients 
and Fo an identification rate of 90% for 0.5 seconds, ranging up to 100% for 1.4 seconds of 
speech is achieved. 

More recently Rose and Reynolds [RLS90] have reported on a gaussian based (iterative 
maximum likelihood) approach to text independent speaker identification using acoustic seg-
mentation. For a 12 speaker database of conversational speech and the use of Mel frequency 
cepstra an identification rate of 89% was achieved with a 1 second duration test utterance. 

Reviews and Evaluations 

Few comparisons or evaluations of the different approaches to automatic speaker recognition 
have been made. 

In 1976 Atal and Rosenberg produced two excellent reviews of speaker recognition and s-
peaker verification [Ata76, Ros76]. Atal said of speaker recognition:- . . motivation for speaker 
recognition research came from a desire to isolate speaker-dependent parameters of speech from 
message dependent ones. So far little progress has been made in this respect. . . . Almost every 
acoustic parameter derived from speech is speaker-dependent to some extent." Both Atal and 
Rosenberg emphasised practical, commercially viable motivated research. Rosenberg highlight-
ed the need to test recognition techniques using large databases of speakers and described both 
the Texas Instruments Entry System (a system still working a decade later [Dod85]) and the 
Bell Labs Systems [Lum73, Ros76]. 

More recently, both O'Shaughnessy [0'S86] and Doddington [Dod85] have provided excellent 
overviews and introductions to the area of speaker recognition, though with the subsequent 
application of both Hidden Markov Models (HMM) and Artificial Neural Networks (ANN) to 
speaker recognition there is need for a more current review. 

Recent Developments 

More recently several newer approaches, such as Hidden Markov Models or Artificial Neural 
Networks [Lip87] have been taken to the problem of automatic speaker recognition. 
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In a recent investigation of verification performance using speech recorded over phone lines 
Naik, Netsch, and Doddington [NND89] investigated, the performance of DTW and HMM 
speaker verification algorithms together with speaker discriminant modelling. Two databases 
were investigated, one with 20 speakers using 10 different varieties of telephone handsets, and 
the other with 100 speakers recorded over long distance telephone lines. At a fixed true speaker 
rejection rate of 1.5% using DTW the rate of imposter acceptances dropped from 30% to 23.6% 
upon the second database. Using the handset database it was shown that the HMM approach 
yielded an equal error rate of 2.3% as opposed to an error rate of 6.2% for DTW. Naik et. al. 
concluded that speaker discriminating modelling gives a marked improvement in verification 
results and that word level HMM modelling is superior to whole-phrase DTW. 

In their recent paper Xu, Oglesby and Mason [XOM89] investigated the application of 
perceptually-based parameters for speaker identification. With a speaker set of 5 males and 
5 females a series of VQ based speaker identification experiments were carried out using LPC 
derived cepstral co-efficients. Utterances were pseudo text-independent with any of the ten 
digits being used. LPC parameters were perceptually weighted based upon 3 elements of psy-
choacoustic knowledge: - critical band (Bark scale) integration, equal-loudness pre-emphasis, 
and intensity loudness transformation. Perceptually-weighted LPC (PLP) consistently achieved 
higher speaker identification accuracy than the standard LPC, and speaker-specific information 
was found in the higher order LPC and PLP co-efficients. These results show the benefits of 
combining perceptual knowledge with automatic speaker verification systems. 

Several researchers such as Lovell and Tsoi [LT90], Templeton and Guillemin [TG90], Ben-
nani et. al. [BSG90], and Oglesby and Mason [OM90] have begun investigating the application 
of Artificial Neural Networks to speaker recognition. To date such experiments have been lim-
ited in scope; Lovell and Tsoi using a single isolated word from two speakers, and Templeton 
and Guillemin examining eleven vowels in [h-d] context from nine speakers. Bennani et. al. 
report identification rates of 97% for a speaker population of 10 and sentence utterances; while 
Oglesby and Mason describe a feedforward ANN with 10 speaker and digit utterances with an 
error rate of 8%. However, given the wide attention that Artificial Neural Networks (ANNs) 
are receiving in many sectors of the scientific community there appears little doubt that ANNs 
will receive far more in depth examination with regard to speaker recognition. 

2.2.2 Emotions and Stress 

Analytic research upon acoustic correlates of speaker emotions has been carried out from an 
early date. 

In 1935 Skinner [Ski35] investigated the parameters of a sustained / a / vowel from 19 speakers 
for indicators of happiness or sadness. Speakers read excerpts from books and were played 
classical music intended to induce the feelings of happiness or sadness. At the end of the 
stimuli presentation speakers phonated a sustained /a / . Acoustic analysis revealed that FQ 
increased appreciability for happiness while for sadness it remained approximately at the same 
level as a 'neutral' phonation. Similarly, intensity increased for happiness and decreased for 
sadness. 
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Fairbanks and Pronovost [FP39] and Fairbanks and Hoaglin [FH41] investigated the pitch 
and temporal characteristics of 6 male actors during the expression of the emotions contempt, 
anger, fear, grief, and indifference. Fairbanks and Pronovost found significant differences in 
mean FQ, (e.g. indifference 108Hz, fear 254Hz) FQ range, rate of FQ change, and other mea-
sures of FQ dynamics between the expression of the different emotions. Fairbanks and Hoaglin 
investigated such temporal characteristics as total speaking time, rate of phonation, duration 
and number of pauses; and found that these also differed markedly between the different vocal 
expressions of emotion. 

Hecker, Stevens, Von Bismarck and Williams [HSBW68] used a combined reading and adding 
task under time constraints to investigate the manifestation of task induced stress in utterances. 
Intensity and FQ parameters were extracted. Approximately half of the speakers examined 
showed significant differences between control parameter levels and parameter levels during 
stress. No common change in parameters was found between speakers; though for a given 
speaker parameters tended to change in a specific direction under stress. 

Williams and Stevens [WS72] examined the acoustic correlates of 'acted' and 'real-life' e-
motions. Three method actors were used to portray the emotions: fear, neutral, anger and 
sorrow. Mean FQ, FQ dynamics, formant frequencies and rate of articulation all varied between 
the emotional states. 'Real-life' emotional data was obtained via recordings of the radio an-
nouncer commentary on the approach and subsequent destruction of the Zeppelin Hindenburg 
at Lakehurst, New Jersey, in 1937. Spectrographic analysis of the announcer's speech prior 
to, and after the disaster show marked differences in mean FQ (increased 30Hz), FQ range and 
irregularities in the FQ contour. Williams and Stevens concluded: "The aspect of the speech 
signal that appears to provide the clearest indication of the emotional state of a talker is the 
contour of FQ VS time." 

Both Ekman, Freisen and Scherer [EFS76] and Streeter, Kraus, Geller, Olson and Apple 
[SKG"''77] have exemiined the acoustic characteristics of voice during attempted deception. 
Speech samples in both studies were elicited through an interview situation in which the subject 
attempted to deceive the interviewer on certain subjects. Both studies found that there was a 
significant increase in mean FQ for deceitful utterances. 

Cosmides [Cos83] attempted to determine whether acoustic changes for different emotions 
were invariant across speakers. Cosmides measured various static and dynamic parameters of 
Fo and amplitude, together with timing; for utterances from 11 speakers (5 female, 6 male) 
expressing 10 different emotions. Based on a scoring system for parameter clustering Cos-
mides found that the results supported a common 'acoustic configuration' to express emotions 
independent of speakers. 

More recently Jimenez et. al. [JPL+85] have investigated the ability to differentiate be-
tween emotions based on acoustic parameters. Repetitions of a Spanish sentence conveying 
5 different emotional states were acoustically analysed. Fo, temporal, and energy parameters 
were extracted and several were found to differ significantly between emotions. It was found 
that for each emotion at least 3 parameters differed significantly from neutral value; but no one 
acoustic parameter sufficed to differentiate between any 2 emotions. 



32 CHAPTER 2. LITERATURE REMEW 

2.2.3 Sex 

Many investigators [Wea24, MT34, Cow36, HP69, Lin73, HT78, Sto81, HHP88] have examined 
the mean fundamental frequency of male and female voices. Mean ranges for adult male and 
female FQ typically have been found to span 80 to 150Hz and 200-300Hz respectively; with 
female pitch generally being regarded as being approximately one octave higher than male 
pitch. 

Peterson and Barney [PB52] examined formants of vowels extracted from [h-d] context. 
Speakers were adult male and female, children, and some English 2'nd language speakers. 
Significant shifts to higher frequencies were found for all vowels when comparing female speakers' 
formants with those of males. 

Brend [Bre71] in an initial exploratory study found differences in Fo contour patterns be-
tween adult American male and female speakers. No systematic investigation was performed 
but Brend shows several sentences where typical male and female jntonation patterns differed. 
Brend observed that male speakers tended to avoid certain intonation patterns including the 
use of high pitch and final patterns that don't finish at the lowest pitch level. 

Millar [Mil86, Mil88] exajnined the long term variability of acoustic features for encoding 
identity and sex information. A total of 33 speakers, 15 male, 18 female, were recorded reading 
5 different passages over a 3 month duration. Distributions, means, and durations of FQ, energy, 
and voicing were examined. Significant sex differences were noted for voicing duration, energy 
distribution, and FQ measures. Currently it remains unclear whether the voicing differences are 
an artifact of the extraction process or not [Mil91]. 

Titze [Tit89] examined the physiological and acoustic differences between male and female 
speakers. Using data obtained by other investigations Titze found a prime scale factor of 1.6 
between male and female mean FQ based upon the length of the vocal folds. 

Price [Pri89] examined the mono-syllabic utterances of 4 male and 4 female speakers. Spec-
trally Price found that female speakers, regardless of voice quality, had lower high frequency 
energy in the middle of vowels than men and that there were temporal differences between the 
two groups. 

In an investigation of the voice quality breathiness Klatt and Klatt [KK90] recorded speech 
from 10 female and 6 male speakers. A number of features of the speech were extracted including 
aspiration noise in the FQ region and amplitude and bandwidth of formants, a number of which 
showed sex specific differences. 

2.2.4 Age 

Relatively few researchers have sought to objectively measure changes in the acoustics of the 
speech wave due to advancing age. 

In 1966 Ptacek, Sander, Maloney and Jackson [PSMJ66] compared the vocal performance 
of younger adult speakers (under 40) with older speakers (over 65). Over 50 speakers of each 
sex were studied and elderly speakers showed reduced scores in maximum FQ range, speech 
rate, maximum vowel intensity and maximum vowel duration as compared with the younger 
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speakers. 

Wilcox and Horii [WH80] examined the vocal jitter^ of young and elderly males for sustained 
vowels. Elderly males were found to have a significantly higher mean jitter than younger 
speakers. 

Ramig and Ringel [RR83] investigated the effects of physiological aging upon various acoustic 
parameters. A group of 48 males were divided evenly amongst 3 age categories (25-35, 45-55, 65-
75) and 2 levels of health (good, and poor) based upon physical testing. Significant differences 
in parameter values were not only found between age groups but also between speakers of good 
and poor health within the same age group. Ramig and Ringel concluded that physiological 
age more than chronological age accounted for acoustic parameter differences. 

Linville and Fisher [LF85b] and Linville [Lin88] have performed similar investigates of young 
and elderly female voices. Results showed that FQ stability (as measure by FQ standard deviation 
and jitter) decreased with age, and that there was significant lowering of Fi frequency with age, 
signalling changes in vocal tract anatomy. 

Recently Rastatter and Jaques [RJ90] examined the formant structure of the speech of 
young and old speakers. Twenty young speakers, 10 male, 10 female aged 20-22; and 20 old 
speakers, 10 male, 10 female aged 72-76 were recorded phonating sustained vowels. Inspection 
of spectrogram was used to visually determine Fi and F2 frequency values. Shifts in formant 
frequencies were found between the age groups but direction and degree of shift were found to 
be speaker sex dependent. 

2.2.5 'Race', Dialect and Accent 

Speech differences due to 'race' or dialect span the acoustic level of speech from segmentals 
through prosodies and suprasegmentals; and extended beyond to syntax and semantics. It is 
impossible, within the scope of this work, to address these differences more than in passing; or 
without particular regard to English and its dialects (particularly Australian English). 

Bernard [Ber67] examined the formant structure of Australian vowels with regards to the 
three dialects of Australian English: Cultivated, Generjd, and Broad. Speech samples from 
approximately 170 different Australians who covered the dialect spectrum of Australian English 
were obtained. Vowels were extracted from the ubiquitous [h-d] context and it was found that 
there were significant differences in formant frequencies and formant transitions across the three 
dialects. 

Other researchers such as Flege [FH84] have examined segmental differences between native 
and non-native language speakers. Differences in formant structure are apparent even for 
phonemes which sound superficially similar, and there appears to be an inverse relationship 
between the presence of a 'similar' phoneme in the speaker's first language to their ability to 
produce a new phoneme accurately. 

Many researchers [Ada71, Eng71, Bus71, FBS84] have examined prosodic differences be-
tween native and non-native speakers of English dialects. Adams showed that non-native s-
peakers of Australian English were variable in their positioning of stress and characteristically 

®cycle to cycle perturbations in FQ, a meMure of FQ ttability. 
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had a higher ratio of pause intervals to total duration. Bush contrasted British, Indian, and 
American English and found marked differences in segmental durations and durational ratios. 

Wagner [Wag78] details the application of a learning technique to the examination of di-
alect differences. Six sentences from 5 Australian and 5 North American male speakers were 
automatically analysed and broken into a series of speech events. Static and dynamic measures 
of features, such as intensity, Fo, and formant frequencies, were extracted at these events and 
compared on the basis of dialect. Differences were found in dynamic range, energy difference 
between vowels and fricatives, nasal spectral balance, F3 range for vowels, Fo changes, and 
duration of stop-vowel transitions. 

Barry et. al. [BHN89] describe a dialect normalisation process in order to aid vowel recog-
nition. Fifty eight speakers from 4 regional dialects - North American, Scottish, North English, 
and South English - recorded four calibration sentences. Stressed vowels were then automat-
ically detected and scored as to dialect based on the first three formants, and speakers were 
assigned a dialect based on the total dialect results for the four sentences. Of the 58 speak-
ers 43 were classified correctly as to dialect and the vowel recognition performance increased 
significantly after mapping of the reference vectors based upon the dialect assignment results. 

Ingram and Pittam [IP86, PI90] have conducted a series of experiments examining the accent 
change of native Vietnamese living in Australia. Two separate experiments; one with a group of 
10 immigrant school children aged 6 - 12, and another with 2 pairs of male/female siblings were 
conducted. Subjects were recorded initially then up to a period of 10 to 18 months later. Vowel 
formant trajectories were examined in the school children experiment while connected speech 
processes were examined for the siblings. Substantial changes or shifts towards the formant 
structure of Australian English were found and scoring of connected speech events improved. 

2.2.6 Other 
Several researchers have examined the effect of drugs, primarily alcohol, upon the speech of 
subjects. IVojan and Kryspin-Exner [TKE68] found that the speech of subjects under the in-
fluence of alcohol underwent a general linguistic dissolution as signified by increased repetitions, 
substitutions and phonetic errors. Changes in prosodic parameters such as Fo and timing were 
also observed but were not consistent across subjects. Sobell and Sobell [SS72] conducted a 
similar study upon 16 male alcoholics and found that disfluency increased under the influence 
of alcohol. In a different approach Beam, Grant, and Mecham examined the effects of long-term 
alcoholism upon communication ability. Of the 15 subjects studied 14 had at least one aspect 
of unacceptable voice quality such as severe hoarseness or pitch deviation. Sobell, Sobell, and 
Coleman [SSC82] found that amplitude dropped and total speech time increased for nonalco-
holics under the influence of alcohol. Recently Klingholz, Penning and Liebhart [KPL88] have 
reported on investigations of the detection of low-level intoxication from the speech signal. Sys-
tematic variation in the distribution of Fo and the signal-to-noise ratio was found under the 
influence of alcohol. However, Klingholz et. al. concluded that the technique was not currently 
viable due to cost and inter-speaker variability factors. 

In an interesting examination of voice quality Kuwabara and Ohgushi [K084] investigated 
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the acoustic characteristics of professional male announcers' utterances. Analysis of professional 
announcers' and laymens' utterances showed several differences. Announcers were found to have 
a highly time-varying dynamic pattern of pitch and formant frequencies, together with a wider 
dynamic range. Differences in mean formant values were also found for certain vowels and the 
spectral envelope showed a characteristic peak between 3kHz and 4kHz not present in laymens' 
speech. 

2.3 Forensic SpeaJcer Recognition 

An interesting combination of both analytic (objective) and perceptual (subjective) approaches 
to speaker recognition occurs in the area of forensic speaker identification via visual compari-
son of speech spectrograms^. Forensic speaker identification based on speech spectrograms has 
been an area of controversy in the speech science community for over 20 years. The technique 
was originated during World War II by Gray and Kopp and was used, in conjunction with 
goniometry^, by the United States military to plot movements of German divisions via identifi-
cation of their radio operators [Tos79] (apparently German divisions often used the same radio 
operator for communications). 

In 1962 Kersta [Ker62] presented a paper in Nature entitled "Voiceprint Identification". 
Kersta described a series of speaker identification experiments based on visual comparison of 
speech spectrograms. Spectrograms of 10 words frequently used in telephone conversations 
("the, to, and, me, on, is, you, I, it, a") were generated for a population of male speakers. 
Together with standard spectrograms, contour spectrograms (named "voiceprints") were gen-
erated where amplitude levels were represented by contours and each inner progression from 
contour to contour marked a doubling in amplitude. These contour spectrograms superficially 
resemble fingerprints and Kersta states:"Closely analogous to fingerprint identification, which 
uses the unique features found in people's fingerprints, voiceprint identification uses the unique 
features found in their utterances." 8 female high school students were given 1 week training 
in spectrogram matching and worked in panels of 2 on a series of identification tasks. Two 
forms of identification tasks were conducted. In one, 4 spectrograms of discrete utterances 
of one of the 10 words for 5, 9, or 12 speakers were presented to the subjects. The subjects 
were then required to cluster the spectrograms on a by-speaker basis. Mean error rates for 
these tests using conventional bar spectrograms ranged from 0.35% to 1.0%, and from 0.37% 
to 1.5% for contour spectrograms. The second form of experiment involved the identification of 
an unknown speaker against a set of known speakers. For a given utterance the subjects were 
presented a reference spectrogram from each of 9 to 15 speakers and were required to match an 
unknown spectrogram with that of one belonging to one of the known speakers. Kersta reported 
that for the 9 known speaker case an error rate of 1% was obtained. Kersta concluded :-"It is 
my opinion, however, that identifiable uniqueness does exist in each voice, and that masking, 
disguising, or distorting the voice will not defeat identification if the speech is intelligible." 

* A means of representing the spectral characteristics of an utterance. Frequency is plotted agednst time (time 
the abscissa) with amplitude represented by density/darkness. 

5 A method of determining the source of radio signals. 
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In the years following Kersta's claim several firms began marketing "voiceprint" machines 
and voiceprints were admitted as evidence by several courts in the USA [Ano68]. Little investi-
gation of factors governing intra-speaker variability was carried out and many professionals in 
the speech area became concerned [BCJ'''69, Ano68]. 

In 1968 Stevens, Williams, Carbonell and Woods [SWCW68] conducted experiments com-
paring speaker identification based on auditory and spectrographic (visual) presentations of 
speech. Six subjects (3 male, 3 female) were presented with sets of 8 known speakers and one 
unknown speaker drawn from a population of 24 males. Both closed® and open'' experiments 
were conducted. For both representations of the utterancies the subjects had constant access to 
the reference material (i.e., for auditory tasks subjects could repeatedly play back any of the 
reference utterances). The subjects were initially untrained but the author's report that mean 
errors stabilised after approximately 4 hours of experimentation and a mean error rate of 6% for 
auditory presentation and 21% for visual presentation was obtained in the closed experiments. 
For the open experiments auditory presentation identification rates were approximately 90% 
while visual presentation identification rates varied from 60% to 70%. 

In 1970 Bolt, Cooper, David, Denes, Pickett and Stevens presented a report on the reliability 
of speaker identification by speech spectrograms for legal purposes. This report was initiated 
by the Technical Committee on Speech Communication of the Acoustical Society of America 
after growing concerns about the use of speaker identification by speech spectrogram for legal 
purposes, without adequate supporting scientific evidence. The authors raised several questions 
including :- (1) when spectrograms are alike does this mean "same speaker" or merely "same 
word" (2) Would irrelevant similarities in spectrograms mislead laypeople (e.g. juries) (3) how 
permanent are spectrographic patterns (4) how unique or distinctive are the spectrographic 
patterns of the individual and (5) can spectrograms be disguised or faked. The authors raised 
the point that the speech signal carries several sub-messages (e.g. identity, mode of speaking, 
mood) all of which affect the parameters of speech (and hence, possibly spectrograms) in a 
complex and not fully understood manner. In addressing Kersta's analogy to fingerprinting the 
authors state that the differences between the two techniques exceed the similarities. With re-
gard to previous experimental results the authors attribute differences in results to dependence 
upon: experimental test procedure, experience and training of the observer, speaking condi-
tions the samples were obtained under, and instrumentation; and further state that none of the 
experiments to date have matched actual forensic applications. The authors state: "We con-
cluded that the available results are inadequate to establish the reliability of voice identification 
by spectrograms." 

Endres, Bambach and Flosser [End71] reported on the effects of age, voice disguise and 
voice imitation upon voice spectrograms. The formant and fundamental frequency structure of 
several phonemes were investigated. For the investigation of the effects of age, speech material 
was obtained from 6 speakers (4 male, 2 female) over the period of 13 to 15 years. Formant 
frequencies decreased markedly, as did mean FQ, while the range of FQ decreased and became 
more centralised. For disguised speech Endres et. al. found that Fi remained fairly stable, 

^The unknown speaker is definitely one of the known speakers. 
''The unknown speaker may or may not be one of the Imown speakers. 



2.3. FORENSIC SPEAKER RECOGNITION 37 

but the other formants increased or decreased markedly in frequency and some could not be 
traced. Investigation of the voice of imitators showed that while they were capable of misleading 
listeners their formant structure differed from that of the speaker being imitated. 

In 1972 Tosi, Oyer, Lashbrook, Pedrey, Nocole and Nash released results of a 2 year in-
vestigation of speaker identification by speech spectrogram [TOP+71, TON72, TOL+72]. A 
population of 250 male speakers, which were randomly selected from a population of 25,000, 
was used; with a total of 34,996 trials of identity being conducted by 29 examiners who had 
received a minimum of a month's training. All trials used a known set of 40 speakers and one 
unknown utterance. Experimental variables examined included closed and open trails, con-
temporary and non-contemporary spectrograms, six or nine clue words, and words spoken in 
isolation, fixed context and reindom context; all of which were considered relevant to forensic 
applications (through neither mimicking or vocal disguise were examined). Examiners were 
forced to make a positive decision for each trial. A mean error rate across all trial conditions of 
6% false identifications and 13% false eliminations was achieved. Based on confidence ratings 
of each trial, if the examiner had not been forced to make a positive decision then 26% of the 
trials would have been "non-decision"; and an error rate of 2% false identification and 5% false 
elimination would have been found. Based on these results Tosi et. al. stated that the results 
confirmed Kersta's data [Ker62] and that the technique could yield a negligible error if: (1) 
examiners were properly trained in phonetics, spectrography and speech science in addition to 
completing a 2 year supervised apprenticeship, and (2) examiners made no-positive decision if 
they weren't absolutely certain. 

Bolt et. al. [BCJ+73] addressed the results and statements of Tosi et. al. [TON72]. 
Bolt et. al. noted the doubling in error rates when the population of speakers was increased 
from 10 to 40, together with the increase in error for the change in experimental condition 
of contemporary to non-contemporary spectrograms, and words spoken in isolation to word 
in-context. Further, Bolt et. al. stated that they believed the error rates were artificially low 
due to the controlled laboratory conditions, and that the understanding of the relationship 
between voice characteristics and spectrographic features was still poor. Bolt et. al. stated: 

.. But for less-than-ideal conditions encountered in forensic situations, the indications are 
that the probability of error will increase substantially." and .. We wish only to point out 
that present methods for such use lack an adequate scientific basis for estimating reliability in 
many practical situations . . . " . 

Black et. al. [BLN+73] replied to Bolt et. al. [BCJ+73] pointing out their lack of personal 
experience in spectrographic identification and stated: "It is our contention that opinions based 
on feelings other than in actual experience are of little value, irrespective of the scientific 
authority of those who produce such an opinion." Black et. al. claim that Bolt and associates 
disregarded crucial facts that interacted with the decision process when professional full-time 
examiners are employed; such as professional tredning and responsibility, the possibility to make 
no-decision, the number of speech samples used, and the amount of time allowed to perform 
each comparison. In addressing the possibility of increased error as conditions departed from 
those of the laboratory Black et. al. claimed that the percentage of no-decisions would increase. 
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not the percentage of errors. 
Hazen [HeizTS] investigated the effects upon spectrographic speaker identification from differ-

ent contexts in spontaneous speech. Five keywords were used and identification tasks consisted 
of closed and open trials with a known population of 50 speakers and a single unknown speaker. 
Error rates as high as 83% were reported and Hazen concluded that given the conditions of the 
study accurate identification of speakers by visual comparisons of spectrograms is not possible. 

Reich, Moll and Curtis [RMC76] examined the effects of vocal disguise upon spectrographic 
speaker identification. Speakers produced 2 sentences under 6 different voice conditions: (1) 
normal voice, (2) old-age disguise, (3) hoarse disguise, (4) hypernasal disguise, (5) slow-rate 
disguise and (6) disguise of the speaker's choice. Identification rate for undisguised voices was 
a low 56.67%, but this dropped as low as 30% for hoarse disguise and 21.67% for the disguise of 
the speaker's choice. Reich et. al. concluded: "These experimental data obviously contradict 
Kersta's (1962c) claim that spectrographic speaker identification is essentially unaffected by 
attempts at disguising one's voice." 

In 1979 Tosi published his book entitled Voice Ideniificaiion: Theory and Legal Practice 
[Tos79]. Tosi presents an overview of research results on voice identification and a good de-
scription of the actual forensic practice of voice identification, together with a history of the 
legal cases involving voice identification. Addressing the adverse results of voice identification 
obtained by Reich, Hazen and others under conditions of vocal disguise, poor transmission 
channel etc. Tosi states that a trained examiner would merely make no-decision:- "In such a 
case, different samples can lead only to a no-opinion decision or at the worst a false elimination, 
but obviously they cannot lead to a false identification unless the examiner is not properly 
trained," 

In 1980 Koenig, a Special Agent in the Technical Services Division of the American Federal 
Bureau of Investigation (F.B.I.) reported on an American National Academy of Sciences study 
of voice identification [KoeSOa, Koe80b]. The investigation was instigated at the request of 
the F.B.I, in 1976 and consisted of a committee of 8 independent experts. In 1979 the report, 
entitled On the Theory and Practice of Voice ideniificaiion was released and addressed the 
following points. 

• Some information upon the identity of an individual is obtainable through listening and 
observing speech spectrograms. 

• Spectrograms are fundamentally different to fingerprints. 

• Investigation of error performance to date have only examined relatively few conditions 
and combinations found in real-life; and do not constitute an adequate basis for deter-
mining its reliability or acceptability from a legal standpoint in forensic applications. 

More recently Koenig [Koe86] has reported on the results of 2000 voice identification com-
parisons, using spectrographic voice identification techniques, conducted by the F.B.I, over the 
previous 15 years. Koenig reports that the service is provided to requesting law enforcement 
agencies and is for investigative purposes only, as no expert evidence will be given in court by 
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the examiner. All examiners have a minimum of 2 years experience in spectrographic identifica-
tion, had completed over 100 comparison in actual cases, completed a course in spectrographic 
reading and passed a yearly hearing test. Koenig reports that a combination of auditory exam-
ination and visual inspection of spectrograms is used. Spectral pattern matching comparisons 
are made by comparing beginning, mean and end format frequencies, formant shaping, pitch, 
timing and the other parameters of each word. Auditory examination is performed by playing 
both samples of a word simultaneously and switching rapidly from one to the other while lis-
tening through headphones. Koenig reports that of the 2000 comparisons, 1304 were rendered 
no decision, there was 1 case of false identification and 2 cases of false elimination (data based 
on outcome of cases), with 378 eliminations and 318 identification. This data corresponds to a 
decision rate of 34.8% with a 0.31% false identification rate and a 0.53% false elimination rate. 

Shipp, Doherty, and Hollien [SDH87] questioned several statements made by Koenig. In 
particular they questioned the exact means of spectrogram analysis, the qualification of the 
examiners, and the means by which the F.B.I, determined their error rate. Shipp et. al. raised 
the question of independent testing of the examiners, and considered that court case outcomes 
and replies from organisations that used the service could not be considered as totally accurate 
scientific data. 

In their reply Koenig, Ritenmour, Kohus and Kelly [KDVRKK87] made the following points. 
The F.B.I, does not consider voice identification to be a positive means of identification, nor is it 
error free. Court decisions are not a perfect criteria for determining the accuracy of the scheme, 
but it is the best source of data available. Koenig et. al. concluded that voice identification is 
a valuable investigative aid. 

2.4 Conclusions, and Implications of Literature Review 

Based on this review of the literature several major observations may be made. 
The area of research into "speaker characteristics" is extremely broad and a large number 

of papers have been published in the area. The degree of investigation of the different charac-
teristics varies greatly, for example automatic speaker recognition has received more research 
effort than all other areas combined. 

Speech in general, and speaker characteristics more specifically, is a multi-disciplinary re-
search area, and researchers come from, amongst others, such diverse backgrounds as medicine, 
engineering, computing, psychology, linguistics and physics. Such differences of expertise have 
naturally led to different methods and forms of experimentation, both in terms of the speech 
data used and the types of "trials" conducted. 

Together with these variabilities based on experimenters' expertise are other variations be-
tween investigations including:- the size of the investigation (e.g., the number of speakers used 
in a speaker identification experiment), source of speech data (e.g., acted emotional speech 
versus speech obtained from a real-life emotional situation), degree of control over phonetic 
content and other (non-investigated) speaker characteristics, type of trial conducted (e.g., s-
peaker verification versus speaker identification), and acoustic parameters examined. All such 
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variations between investigations make unification and comparison of results difficult at best 

and often impossible. 

Much research has been carried out into the acoustic correlates of speaker characteristics 
taking either the perceptual or analytic approach. The choice of which of these two method-
ologies to use in investigating a specific speaker characteristic again appears to depend upon 
multiple factors such as the aim of the research and its potential application (e.g., a speech 
synthesis application would be oriented toward human perception of the characteristic(s)), the 
speaker characteristic being investigated, background of the researcher(s), and speech data con-
siderations. However, relatively few researchers (e.g., Lass, Linville, Pruzansky) have bridged 
these two approaches and sought to combine or compare results from the two methodologies. 
Such a combination would appear to be extremely useful as, amongst other things, it facilitates 
the direct comparison of human and machine speaker characteristic recognition performance, 
shows potential areas of improvement or further experimentation in either approach; and in 
general provides a more thorough and rigorous investigation of the speaker characteristic in 
question. 

The determination of the acoustic correlates of speaker characteristics was the major ob-
jective of this review. In answer to the question: Which acoustic parameters are correlated to 
speaker characteristics? the short answer appears to be all of them! Again, of course, many 
factors influence this correlation, such as the speaker characteristic itself, but it appears safe 
to say that for any acoustic parameter one or more speaker characteristics may influence the 
value of that parameter, and indeed, for several acoustic parameters, all speaker characteristics 
may exert some influence over the value of that parameter. 

The degree to which a speaker characteristic aff'ects or alters an acoustic parameter appears 
to be dependent both on the acoustic parameter and on the speaker characteristic. Thus, for 
example, it appears that speaker sex has a major influence upon mean fundamental frequency, 
but far less influence upon segmental durations. Similarly, the segmental formant structure 
appears to vary more between different dialects of Australian English than between sober and 
intoxicated speakers of the same dialect (other speaker characteristics remaining fixed). 

For all the speaker characteristics examined, prosodic and suprasegmental features appear 
to be consistent and strong indicators of the characteristic. Unfortunately, in many cases 
examiners have failed or been unable to to quantify differences in such parameters in more than 
a crude or very limited fashion. There is a need, therefore, to apply existing techniques to 
help quantify these observed differences, and to develop new techniques, based on the unique 
features of these parameters, to measure these parameters and their variance. 

A further significant observation possible from the review is the dependency of findings, of 
the acoustic correlates of speaker characteristics, upon the speaker and listener sets used in the 
investigation. Many researchers have shown that listeners vary in their ability to identify speaker 
characteristics based on their experience, background, language skills, and innate ability. Of 
still further significance is the fact that different listeners appear to utilise different acoustic 
parameters, or at least to apply diflferent weightings to the parameters in their perceptual 
processes. Further, direct analysis has shown that the manifestation of speaker characteristics 
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in the acoustics of speech is to some degree speaker dependent. Not only does the degree of 
manifestation in a given acoustic parameter differ between speakers, but also the parameters 
most affected and the type of change in a parameter have been found to differ between speakers. 
Again, unfortunately, there has been no in depth study of such factors, and little is known of 
their potential effect upon the results of an experiment. 

The following chapter, Chapter 3, will describe the broad details of the experiments to be 
conducted, and link that approach taken back to the literature reviewed in this chapter. 
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Chapter 3 

Motivation and Approach 

This chapter identifies the key questions arising from the literature review which will be explored 
further in this thesis and provide the basic outlines for the methods to be used. 

3.1 Motivation 

Section 2.4 (page 39) of the literature review illustrates several areas within which continued 
research upon the acoustic correlates of speaker characteristics may be carried out. 

The division of research into that taking an analytic ("objective") approach, and a perceptu-
al ("subjective") approach, highlights one area deserving of further investigation. While most 
experimenters have "specialised" in one approach or the other very few, e.g., Lass, Linville, 
Pruzansky, Xu [LMK78, LF85a, Pru63, XOM89], have sought to utilise or combine the two 
methods. 

An analytical approach generally is motivated by machine performance, such as recognition 
systems, and is most often performed when the speaker characteristics are simple to measure 
and quantify. The perceptual approach utilises human perception of speech to study speaker 
characteristics, an approach often used when the speaker characteristics are hard to objectively 
quantify, or when human perceptusJ performance is to be assessed, and finding application in 
such areas as speech synthesis. The two techniques taken together should complement each 
other well, resulting in a more thorough examination of the topic and possibly yielding new 
insights based upon the combination of the two schemes. 

As pointed out at the conclusion of the literature review it appears that most, if not all, 
speaker chwacteristics are correlated to some extent with most, if not all, acoustic parameters. 
Such a result is not unexpected but leaves the question of which parameters to investigate. 
One division of parameters is into prosodies, such as FQ contours, and segmentals such as 
steady state vowel formant frequencies. Perusal of the literature review shows that by far 
and away the most analytic effort has been devoted to segmentals while the balance is far 
more even for perceptually based experiments. This deficit in research upon prosodies has 
several causes; however the two major reasons appear to be:- 1) it is diflScult to quantify, 
measure, and compare prosodic parameters; 2) most research upon speaker characteristics is into 
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speaker identity (having the most obvious and numerous applications) and as has been shown 
by several investigators [Ata74, Luc69, Sam75, Fur81b, SR88] segmental parameters generally 
yield higher correlation (recognition performance) than do prosodic parameters. However, if this 
lack of a scheme for quantifying and comparing prosodies could be overcome, further analytical 
study of the correlates of prosodic parameters to speaker characteristics could be performed, 
and the results complemented, and enhanced by a corresponding perceptually based series of 
experiments. Further, such a scheme could find application in the investigation of such speaker 
characteristics as speaker dialect or emotional state where several researchers, for example 
Williams [WS72], have noted the fact and significance of prosodic correlates to the speaker 
characteristic but have not quantified or measured the relationship. Finally, several researchers 
[LarTl, Luc69, FurSlb, SR88] have shown that prosodic parameters complement segmental 
parameters in terms of recognition systems; the performance of recognition systems based upon 
segmental parameters increases when prosodies are added. Hence, prosodic parameters appear 
a worthy topic of further experimentation. 

The inter-relationships of experimental factors, such as acoustic parameters examined, s-
peaker set, speaker characteristics examined, experimental method, and speech material, con-
tributing to the results derived via experimentation is extremely complex and occurs at multiple 
"levels". It appears that it is nigh impossible to separate the effects of any one factor; the fac-
tors being interwoven and overlapping with respect to their effect upon the results. Though 
such knowledge is generally implicit and assumed in most experimentation, few experimenters 
have sought to address the issue of the relationships between these factors. Several researchers 
such as Bricker and Pruzansky [BP66] have shown the effect that different linguistic material 
has upon results, while others such as Van Lancker et. al. [LKE85, LKW85] have illustrated 
that the choice of both speaker and listener sets affect results, and others such as Hecker et. 
al. [HSBW68] have shown that the form of manifestation of a speaker characteristic (in this 
case stress) in acoustic parameters is speaker dependent. All these and other papers hint at the 
complexity and inter-dependent nature that the choice of such factors has upon the final results 
of the experiments. There is therefore a great need to achieve better understanding of these 
relationships. In particular the effects of linguistic material, speaker set, acoustic parameter set, 
and speaker characteristic set, and how they are inter-related is worthy of deeper exploration. 

Based upon these points the research shall take the following form. The experiments will ex-
amine the correlation between prosodic acoustic parameters and speaker characteristics. Both 
purely analytical experiments and experiments based upon human perception will be conducted 
independently, though using the same database and examining the same fundamental issues. 
Procedures will be utilised or designed to enable the quantification, measurement, comparison 
and alteration of prosodic parameters, and the results will be analysed as to the effect of lin-
guistic material, speaker set, and parameter set, as well as the larger issue of acoustic correlates 
of speaker characteristics. 
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3 , 2 A p p r o a c h 

Given the above motivation and objectives for the research a method or approach is required. 
It is clear that several issues regarding the experimental method must be addressed; namely:-

• Choice of Speaker Characteristics 

• Choice of Prosodic Acoustic Parameters 

• Schemes for Quantifying, Comparing, and Altering Prosodic Acoustic Parameters 

Each of these shall now be dealt with in turn. 

3.2.1 Choice of Speaker Characteristics 

As was shown in the literature review section there have been a great variety of speaker charac-
teristics examined, and it is beyond the scope of this work to attempt to cover all such speaker 
characteristics. It is therefore necessary to choose a subset of speaker characteristics which will 
be examined in the current work. 

Three speaker characteristics, namely 

• Identity 

• Sex 

• Dialect 

were selected to be examined. 
Several factors were responsible for the selection of these three speaker characteristics. As 

mentioned above only a limited number of speaker characteristics may be examined in any 
one work and it was deemed that three characteristics, while few, would allow more detailed 
examination of each of the characteristics in question. 

Secondly, there are two closely related issues:- the degree of research already conducted into 
the speaker characteristic and how significant the characteristic is in terms of the applications 
stemming from any findings. Speaker identity, as shown by the literature review, is the most 
thoroughly researched characteristic of all, and has the most numerous commercial applications. 
Speaker sex has also been comprehensively analysed with regard to static acoustic measures 
such as mean FQ [Wea24, Cow36, HHP88, Col76] or vowel formant frequencies [PB52] but few 
investigators [BreTl, LMK78, LTMB79] have sought to examine prosodic or suprasegmental 
indicators of speaker sex; hence making it worthy of further experimentation. There are nu-
merous dialects throughout the world, consider only the dialects of English, and it is beyond the 
scope of this work to attempt to cover them. However, of particular interest to Australians and 
for speech apphcations within Australia are the three dialects of Australian English [Ber67]. 

Thirdly, the issue of measurability, control, and consistency of the speaker characteristics 
is an imp)ortant consideration. It is highly desirable to be able to objectively quantify the 
speaker characteristic in question and further to have a large linguistically constrained test bed 
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of utterances representing the speaker characteristic. Such a task is a major undertaking in 
itself for characteristics such as emotional state or physical health, whereas for speaker identity 
and sex it is comparatively simple. Speaker dialect may be quantified by the judgement of a 
trained linguist, and while it is well known that the dialect of a single speaker may vary [Ber67], 
such variation appears to be a function of the speaker's environment, and hence controllable. 

3.2.2 Choice of Prosodic Acoustic Parameters 

As indicated above, prosodic and suprasegmental acoustic parameters appear to be strong and 
consistent indicators of speaker characteristics, and hence worthy of further detailed investiga-
tion. Due to the nature and form of investigation - both purely analytical and human perceptual 
- to be used to examine the acoustic parameters (detailed in the following sections) a small set 
of acoustic parameters was chosen. 

Properties of the parameters used as criteria for selecting whether they should be selected 
were:- previous research or reasonable expectation indicated that the parameter is correlated to 
speaker characteristics, the parameter be extractable with relative simplicity and a high degree 
of accuracy, the parameter be time varying over the duration of a sentence, and that a number 
of measures of the properties of the parameter be derivable from the parameter itself. To this 
end, the parameters energy, fundamental frequency, zero crossing rate, and voicing; all of which 
are extractable on a frame by frame basis, but measurable over the duration of an utterance, 
were selected. 

Parameter Contours 

Throughout the following text, the time series of values representing the frame by frame value of 
an acoustic parameter over the duration of an utterance will be referred to as a contour. Hence, 
for example, the sequence of Fo values for an utterance will be called the Fo contour for that 
utterance. Figure 3.1 is a contour presentation of the acoustic parameters energy, fundamental 
frequency, zero crossing rate, and voicing for the second repetition of the sentence: "We were 
away a year ago." by speaker 18. 

Energy 

Log Mean Squared Energy (LMSE) values were extracted for the each 25ms frame of an utter-
ance (A'^=400) using the formula:-

N 

£ ; = 1 0 1 o g i o ( l / A r ^ x ? ) (3.1) 
1=1 

The sequence of such values for a particular utterance is defined as the energy contour for 
that utterance (see Figure 3.1 for a sample energy contour). 
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Fundamental Frequency 

so 100 ISO 

Voicing 

We were" away '"a year'" ago 

Figure 3.1: Energy, Fo, zero crossing rate and voicing contours for the sentence "We were away 
a year ago.", as uttered by speaker 18 on her second repetition. 
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Zero Crossing Rate 

Zero crossing rate, or more simply zero crossings (ZC) values were extracted for each frame of 

an utterance using the formula: 

= E L I SIGNIXI) - 5t>n(x,-i) | (3.2) 

iVo 
The sequence of such values for a particular utterance is known as the zero crossing contour 

for that utterance (see Figure 3.1 for a sample zero crossing rate contour). 

Fundamental Frequency 

Fundamental frequency, FQ (measured in Hertz) values for an utterance were extracted using 25 
millisecond (400 sample) frames, with a 10 millisecond (160 sample) shift for greater accuracy, 
using Audlab's^ time domain parallel pitch detector [GR69, SH87]. Male utterances were low-
pass filtered at 300Hz, and female at 400Hz, before applying the pitch detector. 

Several different representations of FQ were examined in the analysis experiments (see Chap-
ter 5 for details) however one representation was used as default for most experiments. In order 
to obtain a continuous FQ contour, and to better separate the fundamental frequency from the 
voiced-unvoiced information, unvoiced frames were eliminated (voiced frames concatenated); 
leading to a shortened, continuous FQ contour. Figure 3.2 shows an original FQ contour, and 
an FQ contour, as used in most experimentation, composed only of voiced frames. 

Voicing 

Voiced-Unvoiced (VUV) values were extracted for a frame size of 25ms at 10ms intervals based 
on the output of the time domain parallel pitch detector. Voiced frames were represented by the 
binary value 1, while unvoiced frames were represented by 0, leading to a square-wave voicing 
contour (see Figure 3.1 for a sample voicing contour). 

3.2.3 Mechanisms for Quantifying, Comparing, and Altering Pro-
sodic Acoustic Parameters 

The previous discussion of experimental motivation [Section 3.1] made it clear that mecha-
nisms were required to allow the quantification, comparison and alteration of prosodic acoustic 
parameters. 

Quantifying and Comparing Prosodies 

The analytic experiments require an objective mechanism to allow quantification and compar-

ison of prosodic parameters. The Dynamic Time Warping (DTW) procedure has long been 

^Copyright ©Edinburgh University 1987 
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Figure 3.2: Sample Fo contour showing the original contour (including unvoiced frames), and 
the contour as used in experimentation containing only voiced frames. Contour is speaker 18's 
second repetition of "We were away a year ago." 
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used in speaker characteristic analysis [DodTlb, DodTla, FurSlb] to allow the comparison of 

two time series so as to minimise the calculated distance between the series (vectors). Sec-

tion 5.4 will detail the process more thoroughly but intuitively D T W makes piece-wise timing 

adjustments, via the repetition of values from one or the other of the series, to the two original 

series to derive two new series of equal length that then may be simply compared. In effect 

D T W may be considered as "stretching" portions of each series, under certain constraints, so 

tha t both series are of the same length and most closely aligned. 

While D T W has been heavily used to perform such comparisons few experimenters have 
sought to examine the DTW process itself, and in particular the calculated warp path (the 
traversal of the two contours to form the best match, see Section 5.4 for details) for further 
information regarding the relative dynamics of the two series being compared. Saito and Furui 
[SF78] conducted such a series of experiments where they sought to use information derived 
from the warp path calculation as an adjunct for their speaker recognition scheme. Using 
isolated words Saito and Furui found that there were regions of "high correspondence" (close 
to the diagonal joining starting and end points of both contours) upon the warp path for intra-
speaker comparisons and that a measure could be derived based on these regions that led to 
enhanced recognition performance when combined with an extant recognition scheme (vector 
distance measures). 

Saito and Furui's experiment was limited in scope but highlighted tha t D T W yields addi-

tional information to the calculated distance, in the form of the calculated warp path, which 

can be used to improve recognition performance. Hence, Saito and Furui showed that D T W 

provides a useful measure of the relative dynamics of two time series, in th form of the warp-

path, and thus an 'approximate' means of measuring and comparing t ime varying parameters, 

beyond that already provided by the D T W distance. Their experiment was limited in terms 

of the acoustic parameters examined (PARCOR co-efficients), the utterances (isolated word as 

opposed to sentence), and in particular the type of measures based on the D T W warp path 

that were tested. It is therefore desirable to expand upon the scope of their experimentation in 

all three of these areas. 

Alter ing Prosod ic Parameters 

Inherent in the process of using human perception to determine acoustic correlates of speaker 
characteristics is some method to link listener perceptions to veilues of the acoustic parameters. 
A technique frequently occurring in the literature [LarTl, LKE85, TK86, Kno41, LST+85, 
LHB+76, MHAL84, CWHY89] , is that of altering the speech and comparing listener perceptions 
of altered and unaltered speech samples. 

Such schemes vary in their complexity and refinement from relatively simple schemes in-

volving filtering of the speech, typically to eliminate source or filter properties of the voice, 

[PPS54, LarTl], through methods such as rate alteration and reversal (playing backwards) 

[BP66, LKE85], to the more sophisticated methods involving individual alteration of acoustic 

parameters such as FQ and formants [TK86, LST+85, CWHY89]. Very few experimenters have 
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taken this more sophisticated approach of the systematic alteration of parameters which, how-
ever, would appear to yield more detailed information. Further, most researchers have only 
examined a small subset of alterations and only applied these alterations to a limited group 
of parameters (where appropriate) to investigate a single speaker characteristic. Therefore, a 
refinement and more detailed application of this basic scheme, utilising judgements of altered 
speech, will be proposed as one of the methods employed in this thesis. 
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Chapter 4 

Speech Data 

In order to investigate the acoustic cues to speaker characteristics a suitable speech database 
was required. The important considerations in the design of such a database include: 

• large speaker set 

• minimal contextual effects 

• multiple samplings of "each characteristic" 

• controlled/measurable speaJcer characteristics 

• presence of relevant speech events 

• multiple characteristics 

• large number of speakers commonly known to a set of listeners 

The material selected for speakers to record consisted of a set of fifteen (15) isolated English 
sentences. Six (6) sentences were those used by Wolf [W^ol72], a further eight (8) designed 
by Collins [Col77], and the all voiced sentence:- "We were away a year ago." [DodTla] (see 
Appendix A for the sentence set). A fixed text was selected in order to minimise the effects 
upon acoustic parameters of textueJ vairiability. The set of fifteen sentences were selected due 
to the presence of many different speech events, the relative ease with which they could be 
segmented, and the fact that they are generally pronounced in a unique way [Sam75]. 

An initial speaker set of twenty one (21) adult Australian males and females was recorded. 
Utterances were then analysed by a linguist who nominated any speakers who weren't of one 
of the three Australian dialects [Ber67], and further, for each speaker assigned a scalar vzilue 
representing the speakers position within the dialect spectrum. Two speakers were eliminated 
from the study on the basis of the linguist's advice (these two had spent a significant portion of 
their childhood outside of Australia), leaving a total of nineteen (19) speakers; twelve (12) male, 
and seven (7) female. These speakers were then randomly ordered and designated speakers 0 
to 18 or speakers 'A ' to the two labelling systems being interchangeable. 
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The linguist was asked to assign each speaker a score based on their position in the Australian 
dialect spectrum [Ber67], a precise division into dialect groups not being desirable and also a 
far more difficult task. The range of possible scores was 0 to 10 with low scores reflecting a 
cultivated dialect, while high scores reflected a broad dialect. All scores were relative to other 
speakers in the data set, there was no absolute outside criteria used to assign a value on the 
spectrum. The hnguist was provided with all recordings made by the speakers and via the 
process of repeated pairwise listening to utterances from the speakers ordered the speakers in 
a hierarchy of broadest to most cultivated dialect. This ranking system was then the chief 
means used to assign vsdues for each speaker upon the spectrum. Figure 4.1 shows a plot of 
the speaker dialect scores. 
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Figure 4.1: Speaker Dialect Ratings. All speakers were assigned a rating by a linguist on an 
Australian dialect scale ranging from 0 to 10; with 10 representing broader speech. 

Speakers were asked to complete a form (particulars in Appendix B) detailing personal 
information of relevance to their language development. Information considered of relevance 
included age, occupation, years of formal education, sex, and places of residence of the speakers; 
together with similar details of the speakers' parents. 

Speaker ages ranged from 20 to 48 (mean=31.5, <t=8.7), with female speaker ages ranging 
from 22 to 47 (mean=27.3, (t=9.7), and male speaker ages ranging from 20 to 48 (mean=33.2, 
tr=8.1). 

Results of the survey showed that there was a wide range in the years of formal education 
between the speakers, ranging from 9 to 20. The mean was 16; approximately that of a bachelor's 
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degree. Similarly, there was a diversity of occupations with a high correlation between years of 
formal education and occupation. 

All bar one of the speakers were born in Australia; and for greater than half the speakers 
both their parents were also born in Australia (the mean number of parents born in Australia 
per speaker was 1.4). For those speakers who's parents were not born in Australia the parent's 
place of birth was always within Europe. 

Geographically the talkers were an extremely heterogeneous population; well representing 
the diversity of the Australian population. All states and territories of Australia had been 
the residence of one or more of the speakers for a significant period of time (not less than 3 
years). On average each speaker had lived in more than four (4) different geographic locations 
(towns or cities) within Australia and in three (3) states and/or territories. Approximately 
40% of speakers had "grown up" (spent the first sixteen years or more of their life) in a rural 
environment, while the rest had "grown up" in cities. A total of seven (7) speakers had spent 
a year or more in residence outside of Australia. For all bar one of these speakers this period 
of residence outside Australia was after passing the age of sixteen (16). 

Speakers recorded the sentence set on five (5) separate occasions^ over a period of no less 
than a week, with no two recordings from the same speaker being made on the same day. 
Speakers were asked to:- "Read the sentences naturally", or, "in your own voice", and to pause 
between each of the sentences. A difi"erent sentence order was used for each of the five sessions 
in an effort to further equalise the effects upon pronunciation of sentence position in the list. 

Recordings were made in a soundproof film studio using an AKG D222 low impedance 
microphone. The recordings were then low pass filtered at 7.6kHz before 12-bit quantisation at 
a sampling rate of 16kHz. 

The digitised recordings were then hand segmented to split them into their individual 
sentences. The hand segmentation process consisted of visual observation of the time series 
waveform, together with listening; and where necessary zero crossing, energy contours, and 
spectrograms were also examined. 

^One spciJcer, nominated 18, only recorded two repetitions of each sentence due to unaveulability. Her 
utterances were not analysed on an individual speaker basis but did contribute to the 'general population' 
analysis results. 
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Chapter 5 

Analysis Method 

This chapter describes the methods used to determine the prosodic acoustic correlates of speaker 
characteristics. 

In brief, analysis experiments consisted of the extraction of acoustic parameters of all repeti-
tions of a given sentence from all speakers. These parameter contours were then statistically and 
dynamically compared one to the other. Statistical analysis on the basis of each of the 3 speak-
er characteristics examined was then applied to the results of the prosodic speech parameter 
comparisons. 

In Chapter 3, Section 3.2 a brief outline of the analysis method was given, but it remains 
to the current section to detail the process. Of particular importance are descriptions of the 
speech data used, preprocessing and ireaiments performed upon the parameter contours, an 
explanation of the DTW mechanism, details of the static and dynamic measures computed 
for each comparison, an overview of the file structures and experiment itself, details of the 
'labelling' of speaker characteristics and finally the statistical methods used to analyse the 
computed measures on the basis of the afore said speaker characteristics. 

5.1 Speech Data 

In order to conduct the widest possible range of experiments given the speech material recorded 
and yet not exceed constraints of time and processing capability four (4) of the fifteen (15) 
sentences recorded were selected for analysis. These sentences were:-

1. "I cannot remember it." 

2. "How do you know?" 

3. "We are firm." 

4. "We were away a year ago." 

There were two major considerations in the choice of which four sentences to select. Firstly, 
pronunciation errors by speakers would lead to spurious results due to the strong influence 
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of linguistic content upon prosodic parameters [LR71]. Hence it was important that where 
possible sentences with no or few pronunciation errors, across all repetitions by all speakers, be 
selected. Secondly, it was desired that the individual sentences be disparate in various inherent 
properties; such as mean duration, mean voicing across entire sentence, and statement/question. 
Such a selection of sentences would be more representative of normal conversational speech than 
a single sentence chosen to yield optimal recognition performance. Further such a scheme allows 
the results to be compared upon the basis of sentence; and the differences examined with respect 
to these properties. 

5.2 Treatments 

The term ireaimeni in this context is used to describe various pre-processing and transforms 
applied to the original contours before they are compared. 

5.2.1 Smoothing 

Two different smoothing filters were used in sequence to smooth transient data values that 
appeared inconsistent with those surrounding them. The filters used were median-5, and mean-
3 [Hes83]. 

The formula for the median-5 filter is: 

(5.1) 

While the formula for the median-3 filter was: 

/ _ J 0.25x._i-h0.53!,-|-0.25x,+i i = 2,...,N-l 

As mentioned above the two filters were applied in sequence; median-5 then mean-3 to all raw 
contours. The median-5 filter has the property of eliminating either singular or paired outlying 
values, while the mean-3 filter 'averages' values in terms of their old value and those adjacent 
to it. In order that Fo and voicing contours be treated 'appropriately' the median-5 filter was 
applied before voiced and unvoiced frames had been separated. Following this application the 
voicing contour was derived, and the FQ contour generated as the mean-3 filtering of the voiced 
values, with either interpolation or elimination for unvoiced frames. The mean-3 filter was not 
applied to the voicing contour. 

5.2.2 Normalisation 

In order to accurately compare the dynamics (time varying properties) of two contours it is 
important that the scales of the two contours be the same. Consider, for instance, a comparison 
between an FQ contour from a male speaker with a mean Fo of 110 Hertz and an FQ contour from 
a female speaker with mean FQ of 230 Hertz. Without some form of normalisation to overcome 
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the non-intersecting ranges, application of the DTW process will tell us nothing significant 
of the relevant dynamics; being dominated by the disparate means; and returning only some 
measure of the differences in means. 

In order to eliminate, or separate as thoroughly as possible, the static (time invariant) prop-
erties of a contour from the dynamic, so that solely dynamic contributions might be investigated 
the following pre-transform was derived:-

X i - m i n ( i ) . . 
Xi = J— (5.3) 

max(x) — mm(3:) 

having the property that the contour is linearly shifted into the range 0 to 1, with the old 
maLximum now having the value 1 and the old minimum 0. This guarantees that comparisons 
between normalised contours occur within the same range of values and will be unaffected by 
the original range of the two contours. 

The results achieved through experimental runs with normalised contours may then be con-
trasted and compared with experimental results for the same un-normalised original contours. 

5.3 Fo Representations 

The question of what 'representation' to choose for FQ contours was addressed by using four 
different contours, all to represent the same original FQ contour. In the first two models FQ was 
represented on a linear scale. The basic model, discussed in Chapter 3, ensures the separation of 
voicing from FQ by concatenating all voiced frames and eliminated unvoiced frames. A variant 
on this, the second model, was to interpolate across unvoiced frames to ensure a continuous, 
less 'jumpy' FQ contour. 

Finally, Fujisaki [FH82, Fuj88] has proposed a log model of Fo based on modelling lexical 
and syntactic constraints, and simplified here, to eliminate the constant Fmin term, as:-

t = l..N 

Such a representation has the property of accentuating differences for low values of FQ while 
giving less weight to differences at the upper end of the FQ scale. Based upon Fujisaki's work 
and observation of the Fo contours of all speakers an Fmin value of 60 Hertz for male speakers 
and 120Hz for female speakers was selected. Thus, applying the above formula to the two linear 
Fo representations yields two log representations: Log-concatenated and Log-interpolated. 

5.4 Dynamic Time Warping Mechanism 

As stated in Section 3.2 dynamic time warping (DTW) is the chief technique used to compare 
the dynamic (time varying) qualities of the prosodic contours. Stated simply, DTW computes 
a warp-path, consisting of pairs of values from the two contours being compared, such that 
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the total distance between all pairs is minimised. Figure 5.2 is a graphic representation of the 
process. The warp path Wk joins the beginning and end of both contours, and obeys constraints 
of continuity and monotony. 

Formally stated we have: 

Calculate: 

s.t. 
Wk = ( i k j k ) , 

wi = { l , l ) 

wk = { M , N ) 

ik-i < ik < h - i + 1 

jk-l < jk < jk-1 + 1 
I . min(M,;V) . maxCM.N) 
I ̂ tmaxg.N) - Jfc 10 

k = 1..K 

Subject to 
minimising: 

where 

with 

D{ik,jk) = rnin -

Z)(0,0) = 0 
d{x,y) = |ax - by\ 

D { i k J k - l ) 

D{ik - - 1) 
D { i k - \ , j k ) 

(5.5) 

a a contour [vector] of length M{l..M) 
b a contour [vector] of length N{1..N) 

w the warp path of length K 
D{x,y) the total distance to (x,y) 
d{x,y) the distance between a^ and by 

Included with the warp path constraints of continuity and monotony above is the restriction 
that the warp path must lay within the warp window. The warp window is the region about 
the diagonal between the start and end of the two contours being compared, (1,1) and {M,N) 
(see figure 5.2). Based on an earlier investigation [BW88] the warp window width was assigned 
the value (max(M, N)/b) for all experiments. Finally, prior to application of the DTW process 
the contour of the maximum length was systematically assigned to be the abscissa, rather than 
any random process of assignment. 

The above DTW mechanism is very simple, and more sophisticated schemes; particularly 
in regard to distance metrics and warp transitions; are commonly in use. However, simplicity 
was the objective, allowing the widest range of measures to be derived from the basic process. 
Hence, there are only three possible transitions for the warp path from point to point:- diagonal, 

vertical, and horizontal] and the distance measure between individual points on the two contours 
is simple; all allowing a wide range of more complex measures to be derived from a simple 
process. 
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Figure 5.1: Time alignment of two Zero Crossing contours for the sentence "I cannot remember 
it.", via DTW. Initially the two contours are unaligned. However, after calculation of the path 
of best fit a far closer match is possible. 
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5.5 Measures 

It is necessary to quantify or measure various properties of the prosodic speech parameters in 
order to relate them to the speaker characteristics being examined. Due to the complexity 
of the prosodic contours no single measure of the properties of that contour may be derived. 
Moreover, different properties of contours will undoubtedly be related to the different speaker 
characteristics to greater and lesser extents. It is therefore desirous to extract a melange of 
measures and examine each individually and in combination as to its ability to discriminate the 
speaker characteristic in question. 

Measures of the time invariant properties of a parameter—static measures, may be extracted 
directly from a contour. The DTW process provides a rich and diverse series of measures relating 
to the relative dynamics—time varying properties, of two contours. Each of these two types of 
measures, static and dynamic, will now be dealt with in turn. 

5.5.1 Static Measures 

A suite of seven (7) measures of the static—time invariant, properties of the prosodic contours 
were extracted. These were:-

• Mean 

• Standard Deviation 

• Range 

• Minimum 

• Maximum 

• Mean Absolute Rate of Change 

• Length 

Most of these measures are self explanatory however the final two need further elabora-
tion. Length is simply a measure of the duration of an utterance. Hence for a given speaker 
characteristic-sentence pairing we would expect no difference between any of the results for the 
different prosodic parameters (Energy, voicing etc.), as the duration of the original utterance 
from which they are all derived is the same. 

The Mean absolute rate of change of a contour may be considered as the 'speed' of the 
contour. The formula for its derivation is: 

1 ^ 
MARC = x ._ i I (5.6) 

1=2 
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5»5.2 Dynamic Measures 

As stated above the DTW process provides the means for the extraction of various measures of 
the time varying properties—relative dynamics, of two contours. There are two major sources 
of information provided by the DTW process. The DTW distance is the one commonly used 
by recognition systems that employ DTW for time alignment. However, the DTW warp path 
is also a potential source of information and is one that has received little investigation to date. 

a> 
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Figure 5.2: Dynamic Time Warping Schema. A best path match (Warp Path) is calculated 
between the two contours; subject to continuity constraints (Warp Window and Transition 
Types). 

D T W Distance 

The DTW distance is a direct product of the application of the DTW procedure to two contours. 
DTW distance is defined as the normalised sum of the distance between points on the two 
contours after they have been aligned in time. Referring to the earlier formulation of DTW 
(Equation 5.5) we see that:-

DTW Dist. max{M,N) 

= max(M.Ar) E t L l d{ikjk) 

(5.7) 

(5.8) 
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Generally DTW distance is regarded as a good measure of the overall difference between 
two contours. 

Two variants upon the basic DTW distance were also examined at certain stages within the 
experimental process and will be described here for completeness. 

Firstly, one concern regarding the use of DTW is that spurious contour values may adversely 
affect its performance. As the original sentences were hand segmented it was felt that any human 
errors regarding the detection of phonation onset or termination would be detrimental to the 
performance of the DTW process. As such a simple variant on the above formula (Equation 5.8), 
labelled the Border DTW distance, was derived with the purpose of eliminating these possible 
poor matches that might occur due to the poor segmentation-

K—2 
Border DTW Dist. = ^ Y ] (5-9) 

max(M,A*) — 4 ^ 

In other words the final two matches from either end of the DTW warp path are eliminated. 
If the two contours were well aligned originally then this should have little effect upon the 
overall result; however if the process was being dominated by spurious leading or trailing values 
in one or the other of the contours then the above scheme should hopefully eliminate the this 
effect and allow the DTW process to calculate a more correct match. 

Secondly, a scheme was considered that incorporated both properties of the warp path and 
of the DTW distance into a single measure. Simply, the warp path was calculated as previously, 
however after calculation the total distance was calculated as: 

Weighted DTW Dist. = E L I d'{ik,jk) 

where: 
d'ix,y) = (l-\-W{x,y))dix,y) (5.10) 

In effect, W{x,y) is a weighting function based upon the vertical distance between the warp 
path and a theoretical optional diagonal between the start and end of both contours. Hence, 
individual distances are being "penalised", up to a maximum of doubling, based upon their 
distance from the theoretic optimal diagonal. 

These two later measures, being derivates of other measures, will not, in general, form part 
of the general body or results but will be examined as to their individual performance against 
the standard DTW distance at a later stage. 

Warp Path 

As part of the dynamic time warping process a warp path is calculated. In essence this warp 
path is a recording of the relative dynamics or timing of the two contours. Therefore, it should 
be possible to extract meaningful measures from the warp path that could be analysed with 
regard to the speaker characteristics inherent in the two contours compared via DTW. 
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Interestingly, the warp path is itself a contour. Figure 5.3 shows an original warp path 
computed for the example DTW of figure 5.1 and a simple transformation to that warp path into 
a form which highlights salient features of the warp path. The transformation is accomplished 
by assigning a value of 1 for all vertical 'transitions' on the warp path, 0 for diagonal, and -1 
for horizontal, which is similar to turning the original path on its side by 
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Figure 5.3: DTW Warp Path. Original warp path function, as computed between two Zero 
Crossing contours for the sentence "I cannot remember it", is shown together with a simple 
transformation of that warp path designed to highlight salient features. 

Two terms will be used repeatedly to refer to qualities of the warp path so it is important 
that they be defined now. The first is the term transition. A transition is a movement from 
one point on the warp path to the following point. By definition there are /i' - 1 transitions on 
the warp path and each transition is one of only three types:- vertical, diagonal, or horizontal. 
The definition of an excursion is then built upon that of a transition. 

An excursion is a sequence of transitions all in the same direction (vertical, diagonal or 
horizontal) that is terminated by transitions in other directions, or the start or end of the warp 
path. Hence, for example in Figure 5.3, there are just under 60 transitions composing the warp 
path with 4 vertical excursions, 2 of which comprise single transitions only. 
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Based on examination and consideration of the warp path a total of eleven (11) measures of 
properties of the warp path were extracted. Nine measures related to the concept of transitions 
and excursions as sub-divided for the three possible types (horizontal, diagonal, vertical); while 
two measures considered the entirety of the warp path. Undoubtedly there is overlap with 
respect to to the scope of many of the measures yet each is sufficiently different to be worthy 
of investigation. 

As stated, nine measures were extracted related to the concepts of transitions and excursions. 
These are:- number of iransHions, number of excursions, and length of maximum excursion-, as 
measured for each of the three possible types of transitions or excursions. All measures were 
normalised (divided by) the warp contour length K. Intuitively the number of transitions in 
each direction give an overall measure of goodness of alignment. If the number of diagonal 
transitions is high then intuitively its a good match. The number of excursions is a measure of 
the number of micro timing adjustments needing to be made to align the two contours. The 
msLximum length excursion measures are a measure of the size (duration) of the best (diagonal) 
and worst (horizontal amd verticjd) regions of fit between the two contours being compared. 

Of the other two measures one is a representation of the degree of non-optimal warping 
performed as measured by the ratio of the number of warp transitions to the maximum length 
of the two contours: 

Non-Optimal Warping = / f^ (511) 
max(M, N) 

The second measure is a quantification of the difference between the actual warp path line 
and a theoretically optimal warp path line passing diagonally from the start to the end of both 
contours. This measure is labelled Off-Diagonal-Warp-Distance (ODWD). Fundamentally, it 
is this measure that is applied as a weighting function to the Weighted D T W Distance of 
formula 5.10. 

5.6 Experimental Steps 

The process of experimentation involves several atomic units performed in sequence and in the 
£iid of clarity an overview shdl be given of this process. Figure 5.4 is a visual representation of 
the process. Utterances are digitised, and various extraction routines are run upon the digitised 
speech to derive the prosodic parameter contours. These contours are grouped according to 
parameter, sentence, and treatment; run through the static and dynamic (DTW) comparison 
routines to derive the raw experimental result files. Each experimental result file (sentences 
by parameters by treatments) comprises a number of records; one record for each comparison 
between two contours; and every contour pairing possibility is processed. Each record contains 
fields which are the twenty one (21) measures pertaining to that particular comparison. 
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Figure 5.4: Schematic of Analysis Procedure. Spoken utterances are digitised and parameter 
extraction routines are run to extract the speech parameters E, FQ, VUV, and Zc. Dynamic 
and static experiments are run comparing contour pairs and generating a number of result files. 
The statistical package S is then used to evaluate the results of the experiments. 
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These raw results are then 'loaded' into the S^ statistical package [BCW88] where multi-
variate analysis is applied on the basis of speaker characteristic. Based on this analysis the 
various reports, figures, and tables showing the correlation of prosodic parameters to speaker 
characteristics are produced. 

5.7 Speaker Characteristics: Labelling and Analysing 

For the purpose of these experiments, each speaker; and therefore each contour derived from an 
utterance by that speaker, has three characteristics or quantities associated with them. These 
are the speaker identity, a number from 0 to 18; speaker sex, male or female; and speaker dialect 
score, a number from 0 to 10. Figure 5.5 presents a three dimensional representation of the 
above. 

Inherent to the mechanism of D T W is that the properties of any single contour may not be 
measured in isolation but only relative to another contour. As all measurements then involve 
a paired comparison the question arises of how to quantify the 'speaker characteristics' of the 
comparison. For speaker sex, the simplest case, all comparisons can be broken down into two 
classes: - intra-sex and inter-sex comparisons. The inter-sex class contains measures derived 
from the comparison of contours derived from a male and a female speaker, while the intra-sex 
class contains both male-male and female-female measures. Similarly for speaker identity the 
measures may be split into two meta-classes:- intra-speaker and inter-speaker, with a possible 
subdivision into intra-speaker and inter-speaker classes for each of the individual speakers. For 
speaker dialect there is no obvious or simple division of comparisons into different classes. 
However, it is possible to consider the absolute difference between the dialect scores of the 
original speakers as a representation of dialect difference; yielding a number from 0 to 9. This 
quantity may then be used as a basis for statistical analysis with reference to speaker dialect. 
Figure 5.5 is a visual presentation of the above scheme. 

Given the above classification of speaker characteristics for paired comparisons the question 
arises of how to analyse the results for each speaker characteristic with no or minimum effect 
or influence of the other two speaker characteristics. A simple, but effective scheme is to only 
consider those comparisons which are relevant to the speaker characteristic and which hold 
the other two characteristics fixed. If we consider Figure 5.5 it will help clarify the matter. 
For analysis of speaker identity we may eliminate the effect of speaker sex by only considering 
intra-sex comparisons; hence regions 1 and 2 of the figure. In effect this eliminates only the 
sub-class of inter-speaker comparisons between speakers of the opposite sex which, if included, 
would likely inflate the speaker discrimination rate, due to the excellent sex discrimination 
ability of such measures as mean FQ, rather than weaken the results in any way. For analysis 
of speaker sex we may eliminate the effect of speaker identity by considering only inter speaker 
comparisons; hence regions 2 and 4. In effect this ensures that the intra-sex comparisons will 
not be enhanced by including a number of intra-speaker comparisons. Finally, for speaker 
dialect analysis we may eliminate the effects of variance of sex and identity by considering only 

^Copyright ©Bell Telephone Laboratories 1988 
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Figure 5.5: Conceptual (figure A) and actual (figure B) figures representing the 3-Dimensional 
speaker characteristic (identity, sex, dialect) space when two different contours, and hence two 
sets of speaker cheiracteristics are compared. 
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inter-speaker but intra-sex comparisons; hence region 2. This subdivision of the data does not 
affect the statistical significance of the data due to the large number of comparisons (greater 
than 4,000) computed in each individual experiment. 

5.8 Statistical Analysis 

Based on the speaker characteristic the analysis using S [BCW88] took one of two major forms. 
For the characteristics identity and sex the resultant chso-acteristic value after a comparison 
between two contours is a discrete value; either intra-characteristic or inter-characteristic; e.g., 
intra-speaker or inter-sex. For such data, discriminant analysis [HW71], was used to deter-
mine "recognition" rates for groups of measures. For individual measure analysis, Analysis of 
Variance (ANOVA) [HW71] was used to determine significance and an estimate [HW71] of 
correlation to the speaker characteristic. It is worth noting that the two class (intra versus 
inter) discriminant analysis is 'far stricter' in terms of percentage rate returned and generally 
more demanding than equivalent decision processes for most verification or identification system 
implementations. A single overlap in distributions ensures that less than 100% discrimination is 
obtained, while a simple decision procedure such as k-nearest-neighbour would be 'unaffected' 
by such deviations. 

On the other hand speaker dialect is a continuous linear spectrum from 0 to 10. Similarly 
the dialect-difference-score: the absolute difference between the two dialect scores, which is 
used when two contours are compared, is a continuum. Based on such data, least-squares-fit 
analysis [HW71] was used to quantify the correlation (R^) between a suite of measures and the 
dialect-difference score. 

Two items of data require mention regarding the use of the S package. When discrimination 
rates are given this value is calculated as the correlation between the derived vector of weights 
to be applied to the suite of measures, and the contrast between the two groups. Secondly S is 
limited in the amount of main memory that it may acquire; hence limiting the range of analysis 
possible. Several of the larger-scale analysis, e.g., all measures for all four parameters for all 
four sentences, actually had to be conducted piece-wise in several smaller runs, the results of 
which were then combined and rerun through the analysis function. At all times the piece-wise 
division of such experiments was performed so as to represent the most practical and logical 
division. For example, the speaker discrimination experiment when all twenty one measures of 
the four basic parameters from all four sentences were utilised would, if conducted as a single 
experiment, require a matrix of 4,000-1- rows and 330+ columns which is beyond the bounds of 
the memory allocation capabilities of the version of S used. However if broken down into the 
four individual experiments, one for each of the sentences, the problem becomes manageable, 
and intuitively logicd as a linked series of speaker recognition trials using each of four sentences 
in turn. Further, in all such cases where subdivision of the analysis was required it will be so 
noted in the text. Such an approach in no way invalidates the results, as in fact the presented 
discrimination or correlation value may be viewed as a lower limit which could reasonably be 
expected to be exceeded if a single all-encompassing analysis was conducted. 



Chapter 6 

Analysis Results 

In this chapter will be presented the results of the various experiments whose methods were 
described in the previous chapter. The chapter is divided into a number of sections correspond-
ing to major goals or questions that the analysis experiments seek to answer. Each section is 
further subdivided into three subsections corresponding to the three speaker characteristics— 
speaker identity, speaker sex, and speaker dialect, that are being examined. 

Section 6.1 seeks to explore the basic question of discrimination or correlation performance 
given the four parameters and twenty one measures used. How well can speaker identity, sex, 
and dialect be discriminated on this basis? Discrimination and correlation results are found for 
both individual sentences and combinations of sentences, and the relationship between amount 
of speech material and discrimination rate is modelled using exponential growth functions. 

Section 6.2 splits the twenty one measure set into two logical groups—dynamic and static— 
so as to compare their relative performance. As defined dynamic measures are extracted from 
the D T W process and quantify the time varying properties of a contour, while static measures 
quantify the time invariant properties such as mean and range. Comparison of the two sets 
shows the relative importance of the two approaches—is one markedly superior to the other, 
are they 'additive' in their contribution to total discrimination rate— and also further specifies 
the form of encoding (dynamic or static) of the speaker characteristics in the four parameters. 

Section 6.3 examines discrimination and correlation rates when par2m:ieters are pre-nor-
malised; i.e., linearly shifted into the range 0-1. In effect normalisation eliminates the static 
information of parameter range while maintaining the dynamics or 'shape' of a contour, thus 
allowing a more exacting examination of dynamics without an additional 'hidden' static factor. 
Further, normalisation may provide an approximation of system performance when properties 
of the transmission channel alter the static features of speech; e.g., additive noise on telephones 
or frequency shift in divers' speech due to breathing-gas mixture. 

Section 6.4 compares each of the four basic parameters— FQ, voicing, energy, and zero 
crossing rate— as to their discrimination or correlation levels. The fundamental question to 
which an answer is sought is: What/which is/are the best parameter(s) to use to discriminate 
the characteristic? 
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Section 6.5 examines the four alternate representations of FQ (Section 5.3) in order to de-
termine which, if any, of the four versions is the best in terms of higher correlation and dis-
crimination rates for the speaker characteristics. 

Section 6.6 investigates properties of the warp path, calculated by the DTW scheme, for 
speaker characteristic encoding. The warp path calculated between two contours is a record 
of the relative dynamics of the two contours. Most DTW based schemes calculate the warp 
path implicitly without seeking to use it. Thus the dynamic measures are split into the DTW 
distance and measures of the warp path, 2md contrasted as to discrimination and correlation 
performance. 

Section 6.7 contrasts the three varieties of the DTW distance examined as to discrimination 
and correlation performance. A simple fixed-end-point scheme was used as the basis of earlier 
experiments, however it is contrasted with a free-end-point scheme and a weighted distance 
measure using properties of the warp path. 

Section 6.8 analyses and contrasts each of the twenty one measures as to their discrimination 
and correlation rates. Inherent to the process is an examination of their utility for recognition 
systems and a further refinement of where/how the characteristics ar encoded in the parameters. 

Section 6.9 contrasts each of the four sentences used in experiments, based on properties 
of each sentence. The distribution of measure correlation values are examined in order to 
determine whether parallels may be drawn with discrimination and correlation rates for the 
sentences, and in an attempt to examine the question of: What makes a good sentence for 
speaker characteristic (e.g. identity) recognition systems? 

Section 6.10 concludes the analysis by examining the results on the basis of the individual 
speakers who comprise the speaker set. This break-down allows the evaluation of the individual 
speaker variance from that of the total speaker population. 'TVouble' speakers, those with 
markedly lower discrimination or correlation scores, may be identified, and the applicability of 
the general population model to individual speakers may be evaluated. 

It is worth noting certain salient points regarding the data, its analysis, presentation and 
significance. Both the discriminant and least-squares-fit analysis compute a weighted sum of 
the individual measures (columns) corresponding to each comparison so as to maximise divi-
sion between the two classes (discriminant analysis) in the analysis, or the linear relationship 
between variables (least-squares-fit). Thus, for each comparison of two contours a single 'score', 
as a weighted sum of individual measures, is derived. The scalar value of this score— whether 
positive, negative, etc.— is not significant of itself, only in relation to the distribution of mem-
bers of its own and the contrast class (discriminant analysis), or the determined line of best fit 
(least-squares-fit). 

The most common figure, used for both identity and sex experiments, is a distribution plot. 
The distribution of intra-class and inter-class scores (see above) are plotted against each other. 
Obviously the particular score values, which may be linearly adjusted, are not significant, rather 
the overlap between the two distributions is. 

Speaker dialect results are presented as a scatter plot. The score representing each compar-
ison between contour pairings is plotted as a single point against the dialect difference between 
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the two speakers who originated the contours. A line of best fit, based on a smoothing of the 
data [BCW88] and showing the areas of maximum density, is plotted piecewise for steps of 0.5 
in the dialect difference, the maximum resolution on that scale. 

Finally, boxplots are used as a means of comparing multiple distributions. Each individual 
box represents a separate distribution. The horizontal line through each box shows the median 
of the distribution, while the upper and lower ends of the box are the upper and lower quartiles of 
the distribution. The "whiskers"—vertical lines, show distribution range, with extreme outliers 
being plotted individually. 

Throughout the text a number of discrimination and correlation values are compared and 
contrasted. Where applicable a test of confidence interval between two proportions [WM72] was 
used to determine the significance of the differences. In many places in the text it is not explicitly 
stated that the difference is significant. However, any difference in speaker discrimination 
rates higher than 2.9% is guaranteed significant at the 5% level, any difference in speaker sex 
discrimination rates greater than 2.1% is similarly significant, and any difference in correlation 
rates greater than .030 is significant at the 5% level. These values are upper limits on differences 
before they become significant. In practice, smaller differences may also be significant in which 
case the significance will be explicitly stated. 

6.1 'Discriminant Ability' 

This section seeks to address the fundamental question of: "Given the speech material we have 
and the measures we are extracting, how well can the characteristic in question be discriminat-
ed?" 

For the three speaker chsu-acteristics this was determined by applying discriminate analysis 
in the case of speaker identity and sex, or least-squares-fit analysis in the case of speaker dialect, 
to each of the four sentences individually. For each separate sentence the total twenty one (21) 
measures, seven static and fourteen dynamic, extracted for the four basic speech parameters— 
Energy, Fo, Voicing, and Zero Crossing Rate, were utilised. 

The results for each of the four sentences were then combined in all permutations of 2,3, and 
4 sentences in order to show the dependence of discrimination performance on the amount of 
speech material. Further, in an approach similar to Pollack et. al. [PPS54], growth functions, 
of the form y = a ( l — and y = a ( l — + d, are used to model this relationship. 
Residual errors are calculated to determine the 'strength' or goodness of the models together 
with the modelled asymptotic maximum discrimination rate for an infinite amount of speech 
data. The Non-linear regression procedure of the statistical package SAS [SAS85] was used to 
calculate all growth curves. In all cases the four methods: gaussian, marquardt, gradient and 
dud were applied and found to yield identical results results. 

6.1.1 Speaker Identity 

Table 6.1 and Figures 6.1, 6.2 present the results for the ability of the scheme to discriminate 

between speakers. 
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1 2 3 4 Mean "Combined" 
61.9 53.8 53.9 59.4 57.3 75.2 

Table 6.1: Speaker identification rates for each of the four test sentences, a mean and a combined 
score. Discriminant analysis was applied for each sentence utilising all static and dynamic 
measures of the four acoustic parameters Energy, FQ, Voicing, and Zero Crossing Rate. 
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Figure 6.1: Speaker Identity Discriminate Plot - All four sentences combined. Intra-speaker 
(broken line) distribution is plotted against Inter-speaker (unbroken line) distribution. Figure 
represents the combination of the 21 measures for the 4 speech parameters E, Fq, Vuv, and Zc 
for all of the 4 sentences and corresponds to an identification rate of 75.2% 
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Figure 6.2: Speaker Identity Discriminate Plot - Results for each of the 4 sentences separately. 
Intra-speaker (broken line) distribution is plotted against Inter-speaker (unbroken line) distri-
bution. Figure represents the combination of the 21 measures for the 4 speech parameters E, 
Fo, Vuv, and Zc. 
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It is clear from the table and Figure 6.2 that an identification rate well in excess of 50%, 
and over 60% in one case, is achieved for any particular sentence. These rates are markedly 
less than those of many current speaker recognition systems [Dod85, RLS90, Ber90]. However 
it must not be forgotten that no spectral parameters are being used, and further that this is 
a discriminant analysis trial, where a single overlap between inter-speaker and intra-speaker 
distributions yields a rate below 100%, far more strict and demanding than the a 'standard' 
speaker identification criterion such as, for example, picking the maximum gaussian classifier 
[0'S86]. In fact observation of Figure 6.1 would indicate that a speaker identification rate 
approaching 100% could be achieved with the implementation of a simple k-nearest-neighbour 
algorithm. 

Comparison of Figure 6.1 with Figure 6.2 shows that a marked increase in discrimination 
rate is achieved when the four sentences are combined, corresponding to an increase from 
approximately 57% for any particular sentence to just over 75% for a combination of all four 
sentences. Further, sentences 1 and 4 yield significantly (J% level) higher discrimination rates 
than either of sentences 2 or 3. 

Figures 6.3 and 6.4 present the results of the increase in speaker discrimination with addi-
tional speech material. 

Two factors, number of sentences, and mean duration (expressed in seconds) of combined 
sentences are examined and their relationship to the discrimination rate modelled by a simple 
growth equation of the form: y = a(l - —Figure 6.3. A somewhat more complex formu-
lation of the growth equation: y = + d, where c and d are chosen on an ad. hoc. 
basis to be the x,y values for the minimum length sentence, was also examined. 

Based on all four plots the growth function appears to model discrimination rate as a 
function of speech material adequately, and show that there is a strong relationship there. It 
may be seen that discrimination rate improves markedly as more material is added. The four 
equations, with residual errors (square bracketed term) to shown closeness of fit, are: 

DiscrimRate = 71.6(1 _ e - i «5(duration)) [1Q9 3] (g 

DiscrimRate = 7 2 . 3 ( 1 _ e-i-5i7(#sentences)) j^25.0] (6.2) 

Discrim Rate = 53.8 + 23.5(1 - e-o ®i9(duration-o.8ii6)) [55 4] (5 3) 

Discrim Rate = 53.8 + 22.0(1 - e-0-»45(#sentences-i)) [UQ.6] (6.4) 

Comparing the residual error terms for all four formulations it may be seen that calculating 
discrimination rate as a function of the meein duration of the combined sentences gives a closer 
match than using the number of sentences. 

In the two basic formulations the asymptotes as defined, 71.6 and 72.3, are less than already 
achieved discrimination rates with four, and some three sentence, combinations. Clearly then, 
these are less than adequate estimates of optimal discriminant performance given infinite speech 
material. With this in mind the asymptote defined by the formulation with the minimal residual, 
a value of 77.3% must also be regarded with some suspicion, though on the basis of the data 
a better estimate than any of the other 3. On the basis of these errors it would appear that 
amount of speech material, as measured in seconds or number of sentences, is inadequate to 
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Figure 6.3: Speaker Identity Discriminate Plot - Plot of discrimination rate for all single sen-
tences, and all combinations of 2, 3 and 4 sentences. The first plot shows discrimination rate 
as a function of the number of sentences utilised, while the second as a function of the mean 
duration of the combined sentences. The curves are a least-squares fitted equation of the form: 
y = a( l — with the broken line representing the asymptote a: in this case 72.3 and 71.6. 
For all experiments both static and dynamic measures of the 4 speech parameters E, Fo, Vuv, 
and Zc were used. 
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Figure 6.4: Speaker Identity Discriminate Plot - Plot of discrimination rate for all single sen-
tences, and all combinations of 2, 3 and 4 sentences. The first plot shows discrimination rate 
as a function of the number of sentences utilised, while the second as a function of the mean 
duration of the combined sentences. The curves are a least-squares fitted equation of the form: 
y = a(l — + d) with the broken line representing the asymptote a-\-d: in this case 75.8 
and 77.3. For all experiments both static and dynamic measures of the 4 speech parameters E, 
Fo, Vuv, and Zc were used. 
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fully describe the discrimination rates obtained. Other factors, for example amount of voiced 
speech, or number of 'speech events' may need to be considered and incorporated into the 
formulation if truly accurate estimates of optimal performance are desired. 

6.1.2 Speaker Sex 

Table 6.2 and Figures 6.5, 6.6 present the results of our ability to discriminate speaker sex 
based upon the current scheme. 

1 2 3 4 Mean "Combined" 
95.2 92.5 91.0 93.5 93.1 96.2 

Table 6.2: Speaker Sex Discrimination Rates for each of the four test sentences, a mean and 
a combined score. Discriminant zinalysis was applied for each sentence utilising all static and 
dynamic measures of the four acoustic parameters Energy, Fo, Voicing, and Zero Crossing rate. 
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Figure 6.5: Speaker Sex Discriminate Plot - All four sentences combined. Intra-sex (broken 
line) distribution is plotted against Inter-sex (unbroken line) distribution. Figure represents 
the combination of the 21 measures for the 4 speech parameters E, Fo, Vuv, and Zc for all of 
the 4 sentences and corresponds to an identification rate of 96.2% 

Table 6.2 and Figure 6.6 make it clear that for any given sentence a very high sex identifi-
cation rate is achievable:- a mean rate of 93.1%. Such a rate is in no way surprising, given one 
of the four speech parameters utilised is Fo and the well known [Wea24, HP69, Sto81, HHP88] 
difference in mean Fq levels between male and female speakers. At the J% level sentence 1 is 
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Figure 6.6: Speaker Sex Discriminate Plot - Results for each of the 4 sentences separately. 
Intra-sex (broken line) distribution is plotted against Inter-sex (unbroken line) distribution. 
Figure represents the combination of the 21 measures for the 4 speech parameters E, Fq, VUV, 
and Zc. 
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significantly different to both 2 and 3, while 4 is significantly different to 3. Clearly there are 
differences between sentences as to sex discrimination levels. 

Figures 6.7 and 6.8 present the results of the increase in speaker sex discrimination with 
additional speech material. 

Two factors, number of sentences, and mean duration of combined sentences are examined, 
and their relationship to the discrimination rate modelled by a simple growth equation of the 
form: y = a(l — —Figure 6.7. A somewhat more complex formulation of the growth 
equation: y = a(l — -f d, where c and d are chosen on an ad. hoc. basis to be the x,y 
values for the minimum length sentence, was also examined— Figure 6.8. 

Based on all four plots the growth function appears to model discrimination rate as a 
function of speech material adequately, and show that a relationship between the two exists. 
Sex discrimination rate does appear to rise somewhat with additional speech, though only short 
samples of 0.8 of a second and more are adequate to discriminate sex at rates in excess of 90%. 
The four equations, with residual errors (square bracketed term) to shown closeness of fit, are: 

Discrim Rate = 95.2(1 - e '^ 992(duration)) j^g 5] (6 5) 

DiscrimRate = 95.3(1 _ e-3 '^37(#sentences)) [^g gj (6 6) 

Discrim Rate = 92.5 -f 4.0(1 - g-o 66i(duration-o.8ii6)) [^3 2] (6.7) 

DiscrimRate = 92.5 + 4.0(1 - c-°®36(#sentences-i)) j^y 9] (g.g) 

Comparing the residual error terms for all four formulations it may be seen that calculating 
discrimination rate as a function of the mean duration of the combined sentences gives a closer 
match than using the n«m6er of sentences. 

In the two basic formulations the asymptotes as defined, 95.2 and 95.3, are less than several 
of the discrimination rates achieved in the experiments. Clearly, these are less than adequate 
estimates of optimal discrimination performance given infinite speech material. With this in 
mind the asymptote defined by the formulation with the minimal residual, a value of 96.5% 
must also be regarded with some suspicion, though on the basis of the data a better estimate 
than that derived by the two 'simpler' formulations. On the basis of these errors it would 
appear that neither the amount of speech material, as measured in seconds nor the number 
of sentences, is adequate to fully describe the discrimination rates obtained. Other factors, 
for example amount of voiced speech, or number of 'speech events' may need to be considered 
and incorporated into the formulation if truly accurate estimates of optimal performance are 
desired. 

6.1.3 Speaker Dialect 

As stated previously speaker dialect was investigated by correlating the difference between 
dialect scores of the speakers with the measures being examined. Figures 6.9 and 6.10, with 
Table 6.3 present the results for these analyses. 

It can be seen from Figure 6.9 and Table 6.3 that a significant relationship does exist between 
the measures and the dialect-difference-score, implying that prosodic parameters do yield some 
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Figure 6.7: Speaker Sex Discriminate Plot - Plot of discrimination rate for all single sentences, 
and all combinations of 2, 3 and 4 sentences. The first plot shows discrimination rate as 
a function of the number of sentences utilised, while the second as a function of the mean 
duration of the combined sentences. The curves are a least-squares fitted equation of the form: 
y = a(l — with the broken line representing the asymptote a: in this case 95.3 and 95.2. 
For all experiments both static and dynamic measures of the 4 speech parameters E, FQ, VUV, 
and Zc were used. 

1 2 3 4 Mean "Combined" 
.405 .408 .361 .349 .381 .584 

Table 6.3: Speaker Dialect Correlation Scores. Least-squares-fit analysis is applied to each of 
the four test sentences in order to yield the highest correlation between the static and dynamic 
measures of the four acoustic parameters—Energy, Fo, Voicing, and Zero Crossing, with dialect 
difference values. 
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Figure 6.8: Speaker Sex Discriminate Plot - Plot of discrimination rate for all single sentences, 
and all combinations of 2, 3 and 4 sentences. The first plot shows discrimination rate as 
a function of the number of sentences utilised, while the second as a function of the mean 
duration of the combined sentences. The curves are a least-squares fitted equation of the form: 
y = a( l + with the broken line representing the asymptote a + d: in this case both 
96.5. For all experiments both static and dynamic measures of the 4 speech parameters E, Fo, 
Vuv, and Zc were used. 
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Figure 6.9: Speaker Dialect Least-Squares-Fit Scatter Plot - All four sentences combined. Figure 
represents the combination of the 21 measures for the 4 speech parameters: E, FQ, VUV, and Zc 
for each of the 4 sentences and has a correlation rate of .584 
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Figure 6.10: Speaker Dialect Least-Squares-Fit Scatter Plot - Results for each of the 4 sentences 
separately. Figure represents the combination of the 21 measures for the 4 speech parameters: 
E, Fo, Vuv, and Zc. 
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measure or quantification of the dialect of the speakers examined. Other researchers, such 
as Pittam and Ingram [PGC90] or Wagner [Wag78], have indicated that there appear to be 
prosodic differences in Australian dialect and this result confirms and furthers these previous 
findings. 

It can be seen that the choice of sentence has a marked effect upon correlation values. 
Sentences 1 and 2 are significantly different {1% level) to both 3 and 4. Therefore sentences 
1 and 2 may be regarded as being good choices and sentence 4 the poorest choice. Neither 
average sentence duration, nor degree of voicing within sentence, thought to be the two most 
likely explanations, can be related to the correlation value. It therefore appears that some 
other property of a sentence dictates the extent of dialect encoding within the prosodies of an 
utterance. 

Examination of Figure 6.9 which presents the results when all 4 sentences are combined 
shows that utilising all 4 sentences yields markedly better results than if any single sentence 
is used. Numerically the diff'erence is a correlation of .584 for the 4 combined sentences as 
opposed to a mean correlation value of .381 for a single sentence. Clearly a single sentence is 
insufficient to encapsulate all the possible dialect encoding within prosodies and the addition 
of further sentences improves ability to determine dialect. 

Figures 6.11 and 6.12 present the results of the increase in dialect correlation value with 
additional speech material. As previously for speaker identity and sex, a growth formulation of 
the relationship between correlation rate and amount of speech material (expressed in number 
of sentences, and mean duration) is derived. Unfortunately no formulation of the relationship 
between adjusted duration and correlation value was obtainable as all four non-linear methods 
examined:- gaussian, dud, gradient, and marquardt did not converge. 

Based on all four plots the growth function appears to model discrimination rate as a 
function of speech material adequately, and show that a relationship exists. Clearly correlation 
rates do increase markedly when additional speech material is used. The three equations, with 
residual errors (square bracketed term) to shown closeness of fit, are: 

DiscrimRate = 0.537(1 - c-^ 2i3(duration)j [2.821] (6.9) 

DiscrimRate = 0.565(1 - [0.689] (6.10) 

DiscrimRate = 0.408 + 0.352(1 - c-°-2^3(#sentences-i)j [l,6Z0] (6.11) 

Comparing the residual error terms for all three formulations it appears that calculating 
correlation value as a function of the n«m6cr of sentences gives a closer match than when using 
the mean duration of the combined sentences. This result contrasts with that of the previous 
speaker identity and sex where duration was found to be a more accurate factor in representing 
increased discrimination values. Section 6.8 shows that variations in total sentence duration 
appears to be a good measure for speaker dialect and hence the more sentences (rather than 
their actual length) the better the correlation value that could be obtained. 

In the two basic formulations the asymptotes as defined, 0.537 and 0.565, are less than 
already achieved correlation rates with four, and some three sentence, combinations, clearly 
less than adequate estimates of optimal performance given infinite speech material. The other 
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Figure 6.11: Speaker Dialect Correlation Plot - Plot of least-squares-fit correlation rate for all 
single sentences, and all combinations of 2, 3 and 4 sentences. The first plot shows discrimination 
rate as a function of the number of sentences utilised, while the second as a function of the 
mean duration of the combined sentences. The curves are least-squares fitted equations of the 
form: y = a(l — with the broken line representing the asymptote a: in this case .565 and 
.537. For all experiments both static and dynamic measures of the 4 speech parameters E, Fq, 
Vuv, and Zc were used. 
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Figure 6.12: Speaker Dialect Correlation Plot - Plot of least-squares-fit correlation rate for all 
single sentences, and all combinations of 2, 3 and 4 sentences. The curve is a least-squares fitted 
equation of the form: y = a( l — e"*^®"^) <f) with the broken line representing the asymptote 
a + d: 0.760. Both static and dynamic measures of the 4 speech parameters E, FQ, VUV, and 
Zc were used. 
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estimate, 0.760 must also be regarded with some doubt due to the large residual error term 
associated with it; hence no truly informed estimate of optimal correlation value may be made. 
On the basis of these errors, and paralleling earlier results for identity and sex, it would appear 
that neither the amount of speech material, as measured in seconds nor the number of sentences, 
is adequate to / « / / y describe the discrimination rates obtained. Other additional factors, as listed 
previously in the discussion of identity and sex results, may need to be considered to derive a 
truly accurate estimate of optimal performance. 

6.2 Static versus Dynamic Measures 

In Section 6.1 the basic ability to determine the speaker characteristics identity, sex, and dialect 
was examined. All measures for the speaker parameters Energy, FQ, Voicing, and Zero Cross-
ing Rate were used. One division of the measures, carried through from the initial stages of 
experimentation, is that into dynamic—those measuring the time varying (dynamic) properties 
of a contour by the D T W process— and static—those measuring the time invariant (static) 
properties of a contour across its entire duration, such as mean and range. 

A contrast of the results based upon these two classes of measures will highlight several 
salient features:- how significant are temporal related (dynamic) as opposed to static measures 
of the speech parameters examined in discriminating the speaker characteristics; and hence to 
what extent the characteristic is encoded in those properties of the speech parameters. Secondly 
do the two approaches complement each other [FurSlb] so that combined the result is superior 
to either alone, or is it sufficient to employ only one approach. 

Analysis method was similar to that of Section 6.1, discriminate analysis was used for 
speaker identity and sex, and least-squares-fit for speaker dialect. Analysis was carried out on a 
sentence basis: in each case the static, or dynamic, measures for the four speech parameters— 
Energy, Fo, Voicing, and Zero Crossing Rate, were combined and examined. In order to yield 
a combined sentence result, the results from the four individual sentences were combined and 
run through the cmalysis scheme. 

6.2.1 Speaker Identity 

Table 6.4 and Figures 6.13 and 6.14 present the results of the speaker identity discriminate 
experiments utilising static or dynamic measures exclusively. 

Measure Type Sentence Measure Type 
1 2 3 4 Mean Combined 

Static 41.4 39.2 40.0 44.9 41.4 54.8 
Dynamic 57.8 50.4 51.0 56.9 54.0 74.6 

Table 6.4: Speaker Identification rates contrasting Static and Dynamic Measures. Identification 
rates are given for all four sentences, the mean across the sentence and a 'combined' rate for 
all sentences together. In all cases the 4 speech parameters E, Fo Vuv and Zc were employed. 
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Figure 6.13: Speaker Identity Discriminate Plot - Dynamic versus Static Measures for all 4 
sentences combined. Intra-speaker (broken line) distribution is plotted against Inter-speaker 
(unbroken line) distribution. Each figure represents the combination of the relevant measures 
of the 4 speech parameters E, Fq, VUV, and Zc for all of the 4 sentences and corresponds to a 
discriminate rate of 74.6% rate for dynamic measures and 54.8% for static measures. 
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Figure 6.14: Speaker Identity Discriminate Plot - Dynamic versus Static Measures for each of 
the 4 sentences in turn. Intra-speaker (broken line) distribution is plotted against Inter-speaker 
(unbroken line) distribution. Results for each sentence were derived by combining the relevant 
(static or dynamic) measures of the 4 speech parameters E, FQ, VUV, and Zc. 
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Examination of Table 6.4 and Figure 6.14 quickly reveals that dynamic measures taken alone 
give a far higher speaker discrimination rate than do static measures alone for all sentences 
(significant at 1% level). This result confirms those of Doddington [Dod71b] which showed the 
importance of the dynamics of Fo, and contrasts with Furui [FurSlb] who showed that for Log 
Area Ratios and FQ parameters combined, static measures were better than dynamic. 

For all four sentences the dynamic based discrimination rate is over 10% higher than the 
equivalent static based discrimination rate {1% significance level). Further, contrast of these 
results with those of Table 6.1 in which combined static and dynamic measures are used reveals 
that dynamic measures alone are little worse than combined static and dynamic measures, a 
mean difference of only 3.3%. Such a result implies a large overlap between static and dynamic 
measures but that combined they yield higher discrimination rates than either alone [FurSlb]. 

Figure 6.13 and Table 6.4 reveal further information regarding the identification rate for all 
sentences combined. It can be seen that the combined sentence discrimination rate of 74.6% for 
dynamic measures exceeds the static rate of 54.8% by just under 20%, a very significant (1% 
level) difference, and that in fact the discrimination rate for dynamic measures of sentence one 
or four taken alone exceeds that of static measures of the four combined sentences. 

When regarding the increase in discrimination level from single sentence to the four combined 
sentences we see an increase of 20.6% from the mean for dynamic measures and 13.4% for static 
measures. Based on such figures it seems that not only do dynamic measures have a higher 
discrimination level, but that they are more 'additive', and more information may be extracted 
from them as more sentences are included in the experiment. 

Finally, it is worth noting that the discrimination rate of 74.6% for dynamic measures for 
all four sentences is only 0.6% lower than the discrimination rate of 75.2% for the combined 
dynamic and static measures. 

6.2.2 Speaker Sex 

Table 6.5 and Figures 6.15 and 6.16 present the speaker sex discriminant results for analysis 
using exclusively static or dynamic measures of the 4 basic speech parameters: Energy, FQ, 
Voicing, and Zero Crossings. 

Measure Type Sentence 
1 2 3 4 Mean Combined 

Static 93.7 90.9 87.7 91.5 91.0 94.7 
Dynamic 93.6 88.2 89.8 92.3 91.0 95.8 

Table 6.5: Speaker Sex Discrimination rates contrasting Static and Dynamic Measures. Dis-
crimination rates are given for all four sentences, the mean across the sentence and a 'combined' 
rate for all sentences together. In all cases the 4 speech parameters E, Fo, Vuv and Zc were 
employed. 

Comparing the results of Table 6.5 there appears little to differentiate static or dynamic 
measures as to their ability to discriminate speaker sex utilising a single sentence, both having 
a mean of 91.0%, and there being individual variations for the four sentences. 
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Figure 6.15: Speaker Sex Discriminate Plot - Dynamic versus Static Measures for all 4 sentences 
combined. Intra-sex (broken line) distribution is plotted against Inter-sex (unbroken line) dis-
tribution. Each figure represents the combination of the relevant measures of the 4 speech 
parameters E, Fo, Vuv, and Zc for all of the 4 sentences and corresponds to a discriminate rate 
of 95.8% rate for dynamic measures and 94.7% for static measures. 
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Figure 6.16: Speaker Sex Discriminate Plot - Dynamic versus Static Measures for each of the 
4 sentences in turn. Intra-sex (broken line) distribution is plotted against Inter-sex (unbroken 
line) distribution. Results for each sentence were derived by combining the relevant (static or 
dynamic) measures of the 4 speech parameters E, FQ, VUV, and Zc. 
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When the four sentences are combined it can be seen that the dynamic discrimination rate 
of 95.8% is markedly, 1.1%, higher than the static discrimination rate of 94.7%, though this is 
not significant at the 5% level. Further, the dynamic discrimination rate of 95.8% is only 0.4% 
less than the discrimination rate for combined static and dynamic measures, while the static 
measure discrimination rate is a non-trivial 1.5% less. Taken together these results would seem 
to imply that when multiple sentences are utilised that dynamic measures actually yield better 
discrimination for speaker sex and that static measures are largely redundant. This result of the 
superiority of dynamic over static appears attributable to the fact that primarily the dynamic 
approach is still measuring the differences in mean FQ while additionally extracting possible 
further prosodic indicators of sex [Bre71, Mil88]. 

6.2.3 Speaker Dialect 

Table 6.6 and Figures 6.17 and 6.18 are presentations of the results of the least-squares-fit 
analysis between dialect-difference-scores and static measure only or dynamic measure only 
experiments. 

Measure Type Sentence Measure Type 
1 2 3 4 Mean Combined 

Static .253 .263 .283 .253 .263 .452 
Dynamic .330 .322 .263 .291 .302 .563 

Table 6.6: Speaker Dialect Correlation rates contrasting Static and Dynamic Measures. Corre-
lation rates are given for all four sentences, the mean across the sentence and a 'combined' rate 
for all sentences together. In all cases the 4 speech parameters E, FQ, VUV and Zc are employed. 

From the table and Figure 6.18 it may be seen that for all sentences dynamic measures are 
significantly {1% level) more highly correlated with the dialect-difference-score than the static 
measures, a mean difference of 0.039. However, though higher than static measures, dynamic 
measures alone have a marked lower, 0.079, correlation value than when static and dynamic 
measures are combined. 

When all four sentences are combined the difference between dynamic and static measures is 
enhanced, with the dynamic correlation value of 0.563 exceeding that of the static correlation, 
0.452, by 0.111. Further, the difference between dynamic alone compared with dynamic and 
static combined is only 0.021, showing the overlap in encoding. 

Clearly dynamic measures of the prosodic parameters appear to have more encoded dialect 
information than do static measures. This is not surprising as dialect is an acquired and to 
some extent alterable [Ber67] characteristic of a speaker, whereas many static measures, such 
as mean FQ, are highly related to physical characteristics of the speaker's anatomy. 

6.3 Normalised vs. Non-Normalised Parameters 

The previous Section 6.2 sought to determine somewhat of the significance of the dynamic 
versus static properties of the speech parameters being examined. However, much of the 'static' 
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Figure 6.17: Speaker Dialect Least-Squares-Fit Scatter Plot - Dynamic versus Static Measures 
for all 4 sentences combined. Each figure represents the combination of relevant (static or 
dynamic) measures of the speech parameters E, Fq, VUV, and Zc for all four sentences; and 
have a correlation values of .452 for the static plot and .563 for the dynamic plot. 
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Figure 6.18: Speaker Dialect Least-Squares-Fit Scatter Plot - Dynamic versus Static Measures 
for each of the four sentences in turn. Results for each sentence are derived by combining the 
relevant (static or dynamic) measures of the speech parameters E, FQ, VUV, and Zc. 
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information is still preserved in the contour during DTW experiments and no doubt affects the 
results (Section 6.2.2). 

Normalisation is an attempt to address this issue by shifting all contours linearly into the 
range 0-1 prior to experimental runs (see Section 5.2.2). In effect the 'shape' of the contour is 
preserved but the static information of its range, and hence mean within that range, is eliminate 
and discarded. However no simple transformation may eliminate all static information entirely, 
and the static measures mean, standard deviation, 'speed', and duration may still carry encoded 
speaker characteristic information after normalisation, hence the static measures will still be 
examined. 

No doubt such a transformation will adversely affect discrimination and correlation scores 
but the extent tells us much of the importance of the properties we have eliminated and those 
that remain. 

Again, as for previous sections, the four basic speech parameters of the investigation, Energy, 
Fo, Voicing, and Zero Crossing Rate will be utilised in combination. The results will be analysed 
from three perspectives. The first, a straight contrast between discrimination or correlation 
rates for normalised and non-normalised parameters when all four sentences are combined. 
Secondly a contrast between normalised and non-normalised results for each of the 4 sentences 
in turn. Finally a two-way analysis where all 4 sentences are combined but examination is of 
normalised versus non-normalised as subdivided for static and dynamic measures. 

6.3.1 Speaker Identity 

Tables 6.7 and 6.8 and Figures 6.19, 6.20, and 6.21 represent the results of the analysis of the 
effects of normalisation upon speaker discrimination. 

''TYeaiment" Type Sentence ''TYeaiment" Type 
1 2 3 4 Mean Combined 

Non-Normalised 61.9 53.8 53.9 59.4 57.3 75.2 
Normalised 52.4 44.1 41.2 51.4 47.3 70.5 

Table 6.7: Speaker Identity Discrimination Rates contrasting normalised and non-normalised 
parameters on the basis of sentence. In all cases the 4 parameters E, FQ, VUV, and Zc are 
employed. 

"'Treatment'' Type Measure Type "'Treatment'' Type 
Static Dynamic Combined 

Non-Normalised 54.8 74.6 75.2 
Normalised 46.6 69.6 70.5 

Table 6.8: Speaker Identity Discrimination Rates. Two way contrast of normalised and non-
normalised parameters versus static and dynamic measures of the parameters. In all cases the 
4 parameters E, Fo, Vuv, Md Zc are employed. 

It is greatly surprising that if all four sentences are utilised. Figure 6.19, there is only a drop 

of 4.7% in discriminant performance from non-normalised to normalised parameters. Clearly 
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Figure 6.19: Speaker Identity Discriminate Plot - Normalised versus Non-Normalised parame-
ters with all four sentences combined. Intra-speaker (broken line) distribution is plotted against 
Inter-speaker (unbroken line) distribution. Results for each figure were derived by combining 
measures of the non-normedised or normalised speech parameters E, FQ, VUV, and Zc across all 
4 sentences. 
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Figure 6.20: Speaker Identity Discriminate Plot - Normalised versus Non-Normalised param-
eters for each of the 4 sentences in turn. Intra-speaker (broken line) distribution is plotted 
against Inter-speaker (unbroken line) distribution. Results for each sentence were derived by 
combining measures of the non-normalised or normalised speech parameters E, FQ, VUV, and 
Zc. 
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the elimination of static information such as range, and mean within range, has not greatly 
affected discrimination performance when the sentences are being utihsed together, implying 
that there is a great degree of speaker identity encoding in the dynamics of the parameters. 

Examination of the results on a single sentence basis, Figure 6.20 and Table 6.7 shows that 
normalisation drops identification rates an average of 10% which contrasts with the 4.7% when 
all sentences are combined. Clearly normalisation has more 'drastic' results upon discrimination 
scores when only a single sentence is used, however when sentences are combined these effects 
are lessened. It therefore appears that the addition of further speech material, in part at least, 
compensates for the reduction in discrimination rate due to normalisation. It remains to be 
determined whether, with suflBcient speech material, this reduction may be eliminated or if 
normalisation imposes a permanent loss in speaker discrimination rate. 

Figure 6.21 and Table 6.8 illustrate where the drop in discriminant performance due to 
normalisation is most marked. Not surprising is the drop in the static measures' discriminant 
ability from 54.8% to 46.6% a drop of 8.2%. However, of major significance is the difference 
between discrimination rates for dynamic measures when using non-normalised and normalised 
parameters. Surprisingly there is a drop of only 5% in performance, undoubtedly signifying that 
it is the dynamic or temporal properties of the contours that are being utilised as opposed to the 
static. Comparing discrimination rates for static measures of the non-normalised parameters 
with discrimination rates for dynamic measures of the normalised parameters it is clear that 
the later are significantly ( i% level) superior to the former (54.6% versus 69.6%). On the basis 
of this result it appears that identity is more strongly encoded in the dynamic (time varying) 
properties, of the prosodic contours examined, than in the static (time invariant) properties. 

6.3.2 Speaker Sex 

Tables 6.9 and 6.10, and Figures 6.22, 6.23, and 6.24 represent the results of the application of 
normalisation upon speaker sex discrimination. 

''Treaimenr Type Sentence 
1 2 3 4 Mean Combined 

Non-Normalised 95.2 92.5 91.0 93.5 93.1 96.2 
Normalised 55.9 37.9 58.6 62.9 53.8 77.7 

Table 6.9: Speaker Sex Discrimination Rates contrasting normalised and non-normalised pa-
rameters on the basis of sentence. In all cases the 4 parameters E, FQ, VUV, and Zc are employed. 

"TreaimenV Type Measure Type "TreaimenV Type 
Static Dynamic Combined 

Non-Normalised 94.7 95.8 96.2 
Normalised 52.1 77.0 77.7 

Table 6.10: Speaker Sex Discrimination Rates. Two way contrast of normalised and non-
normalised parameters versus static and dynamic measures of the parameters. In all cases the 
4 parameters E, FQ, VUV, and Zc are employed. 
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Figure 6.21: Speaker Identity Discriminate Plot - 2 Way breakdown of Normalised and Non-
Normalised parameters together with static versus dynamic measures. Intra-speaker (broken 
line) distribution is plotted against Inter-speaker (unbroken line) distribution. Results for each 
plot were derived by combining the relevant measures (static or dynamic) of the non-normalised 
or normalised speech parameters E, Fq, VUV, and Zc across all 4 sentences. 
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Figure 6.22: Speaker Sex Discriminate Plot - Normalised versus Non-Normalised parameters 
with all four sentences combined. Intra-sex (broken line) distribution is plotted against Inter-
sex (unbroken line) distribution. Results for each figure were derived by combining measures of 
the non-normalised or normalised speech parameters E, Fo, Vuv, and Zc across all 4 sentences. 
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Figure 6.23: Speaker Sex Discriminate Plot - Normalised versus Non-Normalised parameters for 
each of the 4 sentences in turn. Intra-sex (broken line) distribution is plotted against Inter-sex 
(unbroken line) distribution. Results for each sentence were derived by combining measures of 
the non-normalised or normalised speech parameters E, FQ, VUV, and Zc. 
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Figure 6.24: Speaker Sex Discriminate Plot - 2 Way breakdown of Normalised and Non-
Normalised pairameters together with static versus dynamic measures. Intra-sex (broken line) 
distribution is plotted against Inter-sex (unbroken line) distribution. Results for each plot 
were derived by combining the relevant measures (static or dynamic) of the non-normalised or 
normalised speech parameters E, Fo, Vuv, and Zc across all 4 sentences. 
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Not surprisingly, as is evident from Figure 6.15, the ability to discriminate speaker sex is 
greatly affected by normalisation— a drop from 96.2% to 77.7% in the four-combined-sentence 
case. What is remarkable is the high discrimination rate of 77.7%, given that the information 
conveyed by the mean FQ has effectively been eliminated. Clearly speaker sex is encoded in 
more than simply the mean FQ of an utterance [PB52, Mil88], and in fact in the dynamics of 
prosodies. 

An analysis upon a single sentence basis, as shown in Table 6.9, and Figure 6.23, reconfirms 
the drastic effect of the normalisation scheme upon sex discrimination. There is a marked 
difference between the sentences as to the effect of normalisation with the discrimination for 
sentence two being little better than chance, 37.9% as opposed to sentence four having the best 
discrimination of 62.9% (significant at the 1% level of confidence). Further, it is worth noting 
the difference between the mean discrimination rate for a single sentence of 53.8% and that 
of 77.7% for the four combined sentences, showing that it is necessary to utilise more speech 
material than a single sentence in order to determine speaker sex with a reasonably high (75%) 
degree of accuracy, if normalisation has occurred. 

When the results are subdivided on the basis of static and dynamic measures, as shown in 
Table 6.10 and Figure 6.24, it is evident that static measures are the most strongly affected by 
the normalisation process, dropping from 94.7% to 52.1%, as opposed to dynamic measures' 
drop from 94.8% to 77.0%. Such a result further shows that after normalisation dynamic mea-
sures are far superior indicators of speaker sex when compared with static measures. However, 
comparing discrimination rates for static measures of non-normalised parzmieters and dynamic 
measures of normalised parameters it is clear that static measures of non-normalised parame-
ters are significantly {1% level) better. Given this result it appears that speaker sex is more 
strongly encoded in the static (time invariant) properties of the prosodic parameters examined, 
rather than the dynamic (time varying) properties. 

6.3.3 Speaker Dialect 

Tables 6.11 and 6.12 and Figures 6.25, 6.26, and 6.27 represent the results of normalisation 
upon speaker dialect correlation rates. 

"Treaiment" Type Sentence 
1 2 3 4 Mean Combined 

Non-Normalised .405 .408 .361 .349 .381 .584 
Normalised .357 .410 .280 .279 .332 .537 

Table 6.11: Speaker Dialect Correlation Rates contrasting normalised and non-normalised pa-
rameters on the basis of sentence. In all cases the 4 speech parameters E, FQ, VUV and Zc are 
employed. 

It can be seen from Table 6.11 and Figure 6.26 that normalisation does, in general, reduce 
the correlation score for individual sentences, a mean reduction of 0.049. 

Similarly, when all four sentences are combined, normalisation reduces the correlation rate 
a drop of 0.047 from 0.584 to 0.537. However, for both single sentences and all four sentences 
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''Treaimeni'' Type Measure Type ''Treaimeni'' Type 
Static Dynamic Combined 

Non-Normalised .452 .563 .584 
Normalised .270 .524 .537 

Table 6.12: Speaker Dialect Correlation Rates. Two way contrast of normalised and non-
normalised parameters versus static and dynamic measures of the parameters. In all cases the 
4 speech parameters E, FQ, VUV and Zc are employed. 
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Figure 6.25: Speaker Dialect Least-Squares-Fit Scatter Plot - Normalised versus Non-
Normalised parameters for all 4 sentences combined. Results for each figure aire derived by 
combining all measures of the normalised or non-normalised parameters E, FQ, VUV, and Zc 
across all 4 sentences. 
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Figure 6.26: Speaker Dialect Least-Squares-Fit Scatter Plot - Normalised versus Non-
Normalised parameters for the 4 sentences in turn. Results for each sentence are derived by 
combining all measures of the normalised or non-normalised parameters E, FQ, VUV, and Zc. 
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Figure 6.27: Speaker Dialect Least-Squares-Fit Scatter Plot - 2 Way breakdown of Normalised 
and Non-Normalised parameters together with static versus dynamic measures. Results for each 
figure are derived by combining the relevant measures (static or dynamic) of the normalised or 
non-normalised parameters E, FQ, VUV, and Zc across all 4 sentences. 
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combined, the relatively minor effect of normalisation is somewhat unexpected, tending to 
indicate that it is the temporal measures that are largely being utilised. Examining Figure 6.27 
and Table 6.12, which shows a breakdown for static and dynamic measures, further credence is 
lent to this theory. It can be seen that there is a relatively small drop for dynamic measures for 
un-normalised to normalised parameters, 0.039, and that for normalised measures the difference 
between correlation scores for dynamic measures, 0.524, and combined dynamic-static measures, 
0.537, is minimal: 0.013. 

Contrasting the correlation value for static measures of the non-normalised parameters, 
0.452, with that for dynamic measures of the normalised parameters, 0.524, a significant {1% 
level) difference is noted. Given this result it appears that speaker dialect is more strongly 
encoded in the dynamic (time varying) properties of the prosodic parameters examined, than 
in the static (time invariant) properties. 

6.4 Comparison of the 4 Basic Parameters 

In all previous sections the four basic speech parameters under investigation, namely Energy, 
Fo, Voicing, and Zero Crossing Rate have been combined and their individual contributions 
submerged in order to examine other questions not directly related to the speech parameters. 
Many speaker recognition systems use Fo [INN78, Fur81b, Mat89], or energy [Lum73, MOJ77] 
as additional vectors in their recognition system, while zero crossing and voicing appear to 
have received very little [WD75, JHH84, BW88] attention. However it is important to examine 
results on a parameter basis in order to further define encoding of speaker characteristics in 
speech and to aid in the choice of appropriate speech parameters for speaker characteristic 
'recognition' systems. 

For each speaker chziracteristic examined the results are analysed on a speech parameter 
basis, utilising the speech material of all four sentences. The results are also split on the basis of 
static and dynamic measures of the four speech parameters. Appendix D gives a more thorough 
breakdown of the results for all speech parameters, showing discrimination and correlation rates 
for each parameter for each sentence—using dynamic alone, static alone, and combined static 
and dynamic measures. 

6.4.1 Speaker Identity 

Figures 6.28 and 6.29 and Table 6.13 present the results of the speaker discriminant experiments 
as analysed on the basis of the four parameters Energy, Fq, Voicing and Zero Crossing Rate. 

It is evident from Table 6.13 and Figure 6.28 that there is a definite ordering of parameters 
with regard to speaker discrimination levels, and the differences between all parameters are 
significant at the 1% level. Fq yields the highest discrimination rate of 64.6%, followed by 
energy, zero crossings, and finally voicing with a discrimination rate of 47.6%. This result 
reconfirms the significance of Fo, as a parameter for speaker recognition, that many previous 
researchers [Dod71b, Ata72, Wol72, FurSlb] have previously shown. Based on these results it 
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Parameter Measure Type Parameter 
Static Dynamic Combined 

Energy 43.4 56.6 58.2 
Fo 45.5 63.5 64.6 
Voicing 34.0 47.0 47.6 
Zero Crossing 39.1 50.9 51.5 

Table 6.13: Speaker Identity Discrimination Rates for each of the four basic parameters. Energy, 
Fo, Voicing and Zero Crossing Rate are analysed separately as to their ability to discriminate 
speaker identity. Analysis is further split to dynamic and static measures of the parameters in 
question. Quoted rates are for all 4 sentences combined. 
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Figure 6.28: Speaker Identity Discriminate Plot - Contrasting the 4 speech parameters E, Fq, 
Vuv, and Zc utilising all 4 sentences. Intra-speaker (broken line) distribution is plotted against 
Inter-speaker (unbroken line) distribution. Figures are derived by combining the 21 measures 
of the appropriate speech parameter for all 4 sentences. 
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Figure 6.29: Speaker Identity Discriminate Plot - Contrasting the 4 speech parameters E, FQ, 
Vuv, and Zc subdivided as to static versus dynamic measures. Intra-speaker (broken line) 
distribution is plotted against Inter-speaker (unbroken line) distribution. Figures eire derived 
by combining the relevant (static or dynamic) measures of the appropriate speech parameter 
for all 4 sentences. 
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is evident that there are significant differences between the individual parameters with respect 
to their speaker discriminant abilities. 

It is worth noting that while FQ yields the highest discrimination rate of 64.6% this is still 
over 10% less than the discrimination rate when all four speech parameters are utilised. Clearly 
the encoding of speaker identity is distributed over the four parameters such that no single 
parameter is sufficient to encapsulate all the encoded speaker specific information. 

When the parameters are further split with respect to static and dynamic measures, as shown 
in Figure 6.29, it is evident that dynamic measures of the parameter are always significantly 
{1% level) better at discriminating speaker than are static measures, the difference ranging 
from 11.8% up to 18%. Further, the dynamic alone discrimination rate is little different to the 
combined dynamic-static identification rate. 

6.4.2 Speaker Sex 

Figures 6.30 and 6.31 combined with Table 6.14 are presentations of the results of the sex 
discriminant experiments as analysed on the basis of the four speech parameters:- Energy, FQ, 
Voicing, and Zero Crossing Rate. 

Parameter Measure Type Parameter 
Static Dynamic Combined 

Energy 47.5 54.8 55.9 
Fo 95.0 95.1 95.5 
Voicing 41.0 69.1 71.8 
Zero Crossing 39.0 37.2 42.2 

Table 6.14: Speaker Sex Discrimination Rates for each of the four basic parameters. Energy, 
Fo, Voicing and Zero Crossing Rate are analysed separately as to their ability to discriminate 
speaker sex. Analysis is further split to dynamic and static measures of the parameters in 
question. Quoted rates are for all 4 test sentences combined. 

It is evident from Figure 6.30 and Table 6.14 that fundamental frequency yields a significant-
ly level) higher sex discrimination rate than any of the other three parameters, confirming 
this well known result [Wea24, HHP88]. 

However, it can also be seen that to lesser and greater degrees the other three parameters 
do provide some indication of speaker sex, with voicing the highest at a significant 71.8%. The 
interpretation of this voicing difference is unclear at this stage, it possibly being an artifact of 
the parameter extraction routine, though Millar [Mil88] has also reported a comparable result 
with a similar uncertainty as to its cause [Mil91]. 

When the results are further split based on static versus dynamic measures it can be noted 
that for all but zero crossing rate, which in fact has the lowest discriminant level, the dynamic 
measures of the parameters have higher discrimination rates than do the static measures. 
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Figure 6.30: Speaker Sex Discriminate Plot - Contrasting the 4 speech parameters E, FQ, VUV, 
and Zc utilising all 4 sentences. Intra-sex (broken line) distribution is plotted against Inter-
sex (unbroken line) distribution. Figures are derived by combining the 21 measures of the 
appropriate speech parameter for all 4 sentences. 
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Figure 6.31: Speaker Sex Discriminate Plot - Contrasting the 4 speech parameters E, FQ, VUV, 
and Zc subdivided as to static versus dynamic measures. Intra-sex (broken line) distribution 
is plotted against Inter-sex (unbroken line) distribution. Figures are derived by combining the 
relevant (static or dynamic) measures of the appropriate speech parameter for all 4 sentences. 
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6.4.3 Speaker Dialect 

Figures 6.32 and 6.33 combined with Table 6.15 present the results of the dialect-difference-
score correlation experiments, analysed on the basis of the four speech parameters Energy, Fo, 
Voicing, and Zero Crossing Rates. 

Parameter Measure Type Parameter 
Static Dynamic Combined 

Energy .287 .350 .359 
Fo .322 .333 .364 
Voicing .216 .255 .261 
Zero Crossing .297 .268 .306 

Table 6.15: Speaker Dialect Correlation Rates for each of the four basic parameters. Energy, 
Fo, Voicing and Zero Crossing Rate are analysed separately as to their correlation to speaker 
dialect. Analysis is further split into dynamic and static measures of the parameters in question. 

It is evident from Figure 6.32 and Table 6.15 that of the four basic parameters examined Fo 
and energy appear significantly {]% level) superior in terms of the correlation of their measures 
to the dialect-difference-score, with correlation scores of 0.364 and 0.359 respectively. Wagner 
[Wag78] has previously shown that for both Fo and energy there appear dialect differences 
at particular speech events, and it now appears that these dialect differences exist across the 
duration of a sentence, not solely at particular speech events. Further, zero crossing rate has a 
significantly {]% level) different correlation rate to that of the lowest: voicing, with a value of 
0.261. Such results shown that there are significant differences between the speech parameters 
with regard to dialect encoding. 

When the results are split on the basis of static versus dynamic measures of the parameters 
it is found, as it was for speaker sex, that for all parameters, barring the zero crossing rate, the 
dynamic measures yield a markedly better correlation score than did the static measures. 

It is also worth noting that the correlation rates for the two 'best' parameters alone: Fo with 
0.364 and energy with 0.359 are still markedly less than the combined parameter correlation 
value of 0.584, indicating the apparent importance of combining all possible speech parameters 
in an examination of speaker dialect, and that no single parameter has encoded all speaker 
dialect information. 

6.5 Comparison of Fq Representations 

Up till this point the four parameters Energy, Fq, Voicing and Zero Crossing Rate have been 
investigated. In order to eliminate an extra dimension of complexity the linear-concatenated 
representation of Fo was the only one of the 4 possible Fo representations used. This repre-
sentation had been selected as the default due to its simplicity and the fact that it lead to a 
stronger separation between Fq and voicing parameters. 

However, it is important to contrast the various possible Fo representations to determine 
whether any particular Fo representation is superior in its ability to discriminate the speaker 
characteristics. 
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Figure 6.32: Speaker Dialect Least-Squares-Fit Scatter Plot - Contrast of the 4 speech param-
eters E, fo , Vuv, Zc with «J1 4 sentences combined. Figures are derived via combining all 21 
measures of the relevant speech parameter across all 4 sentences. 
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DYNAMIC STATIC 

Figure 6.33: Speaker Dialect Least-Squares-Fit Scatter Plot - Contrast of the 4 speech 
parameters—E, FQ, VUV, and Zc, subdivided by static versus dynamic measures, with all 4 
sentences combined. Figures are derived via combining the relevjuit (static or dynamic) mea-
sures of the relevant speech parameter across all 4 sentences. 
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For each of the three speaker characteristics examined the results are analysed on the basis 
of the four representations of the FQ parameter: linear concatenated, linear interpolated, log 
concatenated and log interpolated (see Section 5.3 for details), utilising the speech material of 
all four sentences. The results are also split on the basis of static and dynamic measures of 
the different FQ representations. Appendix D gives a more thorough breakdown of the results 
for all speech parameters, including the four representations of FQ, showing discrimination and 
correlation rates for each parameter for each sentence—using dynamic alone, static alone, and 
combined static and dynamic measures. 

6.5.1 Speaker Identity 

Figures 6.34, and 6.35 together with Table 6.16 present the results of the analysis of the four 
FQ representations as to their speaker discriminate performance. 

Parameier Measure Type Parameier 
Static Dynamic Combined 

Concat. F o 45.5 63.5 64.6 
Interp. FQ 48.5 64.6 65.8 
Log Concat. F o 48.5 63.0 65.1 
Log Interp. F o 50.1 64.0 66.9 

Table 6.16: Speaker Identity Discrimination Rates for each of the four different representations 
of Fo that were considered. Analysis is further split into dynamic and static measures of the 
parameters in question. 

It can be seen from Table 6.16 that the Log-Interpolated Fo representation is superior of the 
4 alternatives in terms of its ability to discriminate speaker, with a rate of 66.9%, an increase 
of 2.3% over the linear concatenated FQ used as the default in all previous experiments. With 
such a difference in mind it becomes apparent that ezirlier quoted speaker discrimination, rates 
when all four speaker parameters were used, could reasonably be expected to be higher if the 
Log-Interpolated FQ representation was substituted for the previously used linear concatenated 
FQ. Further, this result 'strengthens' the position of Fo as the best of the four individual 
characteristics for speaker identification purposes. 

Regarding the data two hierarchies of results may be seen. Interpolated Fo, either log or 
linear, yields better discriminant rates than the corresponding concatenated form. Secondly, 
Log FQ, either concatenated or interpolated, yields better discriminant rates than the corre-
sponding Linear form. For all four versions of Fo, dynamic measures were markedly superior 
to static. 

The superiority of interpolated over concatenated Fo may be explained by examining the 
physical process of vocal cord vibration. For a change in Fo the vocal cords must change 
their rate of vibration to the new 'target'. This cannot be done instantaneously but at a rate 
constrained by the biomechanical process. Interpolation may be viewed as a simple model of this 
process, as opposed to the instantaneous, 'jumpy', concatenated version. Fujisaki [FH82, Fuj88] 
considers a log version of Fo on the basis that Fo production under the constraints of syntactic 
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Figure 6.34: Speaker Identity Discriminate Plot - Contrasting the 4 representations of the Fo 
parameter utilising all 4 sentences. Intra-speaker (broken line) distribution is plotted against 
Inter-speaker (unbroken line) distribution. Figures are derived by combining the 21 measures 
of the appropriate representation of FQ for all 4 sentences. 



6.5. COMPARISON OF FQ REPRESENTATIONS 121 

DYNAMIC STATIC 

Figure 6.35: Speaker Identity Discriminate Plot - Contrasting the 4 representations of the 
Fo parameter, subdivided as to static versus dynamic measures. Intra-speaker (broken line) 
distribution is plotted against Inter-speaker (unbroken line) distribution. Figures are derived 
by combining the relevant (static or dynamic) measures of the appropriate representation of FQ 
for all 4 sentences. 
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and lexical considerations may be more accurately modelled if on a log scale. On the basis of 
these results Fujisaki's model appears superior to one based on a linear FQ. 

6.5.2 Speaker Sex 

Figures 6.36 and 6.37 combined with Table 6.17 represent the results of the analysis of the four 
representations of FQ as to their speaker sex discriminant ability. 

Parameter Measure J YP^ Parameter 
Static Dynamic Combined 

Con cat. Fo 95.0 95.1 95.5 
Interp. FQ 95.1 94.9 95.4 
Log Con cat. Fo 66.2 64.6 66.6 
Log Interp. Fo 65.8 62.5 65.7 

Table 6.17: Speaker Sex Discrimination Rates for each of the four different representations of 
FQ that were considered. Concatenated FQ, Interpolated FQ, Log-Concatenated FQ, and Log-
Interpolated FO are analysed separately as to their ability to discriminate speaker sex. Analysis 
is further split into dynamic and static measures of the parameters in question. 

It is immediately clear from the results that Log representations of FQ are significantly {1% 
level) inferior in terms of the speaker sex discrimination power. This is in no way surprising given 
that the formula for the derivation of Log Fo involves the subtraction of a value Fomin, with 
a value of 60 Hertz for male speakers and 120 Hertz for female. Such a subtraction effectively 
eliminates much of the static information, such as the mean, that is so highly indicative of 
speaker sex. In fact, given such a scheme it is interesting to note that the sex discrimination 
rate is better than chance for the Log Fo representations. Interestingly it appears that there is 
still static information pertaining to the speaker sex in both Log representations. Such a result 
may indicate that more appropriate values of Fomin could be selected for the two sexes. 

Comparing results for the two linear representations there appears to be little difference 
between them in overall performance, a non-significant difference of 0.1%. 

6.5.3 Speaker Dialect 

Figures 6.38, all 6.39, together with Table 6.18 present the results of the analysis of the four 
versions of FQ with regard to their fitted correlation to speaker dialect. 

Two note-worthy results are discernible from the figures and table. Firstly, the log versions 
of FQ have higher correlation scores than do the linear versions. Secondly, representations on 
which FQ values were interpolated across unvoiced frames have higher correlation scores thzin do 
the corresponding concatenated versions. As for the speaker identity results it appears that an 
interpolated FQ more closely models the physical reality of pitch production, and that Fujisaki's 
rationale [Fuj88] for log scale FQ based on lexical and syntactic constraints is well founded. 

Again, as for the speaker identity experiments, given the higher correlation rates for the Log-
interpolated representation of FQ, it is reasonable to expect that earlier experiments in which the 
linear concatenated Fo representation was used would have achieved higher correlation scores 
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Figure 6.36: Speaker Sex Discriminate Plot - Contrasting the 4 representations of the Fo 
parameter utihsing all 4 sentences. Intra-sex (broken line) distribution is plotted against Inter-
sex (unbroken line) distribution. Figures are derived by combining the 21 measures of the 
appropriate representation of FQ for all 4 sentences. 

Parameter Measure Type Parameter 
Static Dynamic Combined 

Concat. Fo .322 .333 .364 
Interp. Fo .351 ..339 .378 
Log Concat. Fo .302 .333 .369 
Log Interp. Fo .319 .336 .396 

Table 6.18: Speaker Dialect Correlation Rates for each of the four different representations of 
Fo that were considered. Linear-Concatenated Fo, Linear-Interpolated Fo, Log-Interpolated 
Fo and Log-Concatenated Fo are analysed separately as to their correlation to spesiker dialect. 
Analysis is further split into dynamic and static measures of the parameters in question. 
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DYNAMIC STATIC 

Figure 6.37: Speaker Sex Discriminate Plot - Contrasting the 4 representations of the FQ 
parameter, subdivided as to static versus dynamic measures. Intra-sex (broken line) distribution 
is plotted against Inter-sex (unbroken line) distribution. Figures are derived by combining the 
relevant (static or dynamic) measures of the appropriate representation of FQ for all 4 sentences. 
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Figure 6.38: Speaker Dialect Least-Squares-Fit Scatter Plot - Contrasting the 4 representations 
of the Fo parameter utilising all 4 sentences. Figures are derived by combining the 21 measures 
of the appropriate representation of FQ for all 4 sentences. 
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DYNAMIC STATIC 

Figure 6.39: Speaker Dialect Least-Squares-Fit Scatter Plot - Contrasting the 4 representations 
of the Fo parameter, subdivided as to static versus dynamic measures. Figures are derived by 
combining the relevant (static or dynamic) measures of the appropriate representation of FQ 
for all 4 sentences. 
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if the Log-interpolated Fo representation was used instead. 

6.6 Contribution of Warp Path Measures 

In the earlier Section 6.2 the results were divided and analysed upon the basis of static versus 
dynamic measures of the speech parameters. The dynamic measures, all of which are derived 
via the DTW process may be further split and analysed. Most schemes using DTW extract 
only the distance metric calculated as part of the process and ignore the possibility of relevant 
data from the warp path calculations. However Saito and Furui [SF78] described a speaker 
recognition experiment in which properties of the warp path were used. A number of measures 
based on properties of the warp path have thus been incorporated in the experiments. 

A division of the dynamic measures into DTW distance and warp path measures will there-
fore illustrate whether there is useful information extractable from the calculated warp path 
and how such data rates against the standard of the DTW distance. 

Analysis will be performed upon an individual sentence basis, and for all four sentences com-
bined, at all times utilising the four speech parameters Energy, Fo, Voicing and Zero Crossing 
Rate. 

6.6.1 Speaker Identity 

Figures 6.40, and 6.41 together with Table 6.19 represent the results of the speaker identity 
discrimination experiments as analysed on the basis of comparing the DTW distance measure 
with the warp path measures. 

Measure Type Sentence Measure Type 
1 2 3 4 Mean Combined 

All Dynamic 57.8 50.4 51.0 56.9 54.0 74.6 
DTW Dist 40.3 30.0 34.9 43.6 37.2 54.2 
Warp Path 54.4 48.3 48.5 55.1 51.6 72.0 

Table 6.19: Speaker Identity Discrimination Rates based on dynamic measures for all four 
test sentences and the four speech parameters Energy, FQ, Voicing, and Zero Crossing Rate. 
Dynamic Measures are split into DTW Distance, and measures of properties of the warp path. 

It is clear that on an individual sentence basis, or when all four sentences are combined, 
that the warp path measures out-perform the DTW distance measure by a factor of 10% and 
more, a significant difference at the 1% level of confidence. Such a result implies that there 
is more speaker specific information in the warp path than in the calculated DTW distance. 
This result contrasts with that of Saito and Furui [SF78] who found that warp path based 
recognition yielded inferior rates to that of DTW distance, and concluded that: "...the rate 
of similarity in a specific region" [warp path measure] "is a useful supplementary measure for 
talker recognition, although it is insuflScient to be used as an independent measure for talker 
recognition." Clearly for prosodic parameters, and when a variety of properties of the warp 
path are examined the warp path significantly out-performs the DTW distance with respect to 
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Figure 6.40: Speaker Identity Discriminate Plot - Breaikdown of dynamic measures into DTW 
Distances versus Warp Path measures; utilising all 4 sentences. Intra-speaker (broken line) 
distribution is plotted against Inter-speaker (unbroken line) distribution. Figures are derived 
by combining the relevsint measures of the four speech parameters—E, Fo, Vuv, and Zc, for all 
4 sentences. 
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Figure 6.41: Speaker Identity Discriminate Plot - Breakdown of dynamic measures into DTW 
Distances versus Warp Path measures; for each of the 4 sentences in turn. Intra-speaker (broken 
line) distribution is plotted against Inter-speaker (unbroken line) distribution. Figures are 
derived by combining the relevant measures of the four speech parameters—E, FQ, VUV, and 
ZC, for each of the 4 sentences. 
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the ability to discriminate speakers. 

Upon examining the sentences individually it is evident that sentences 1 and 4 have the 
highest warp path based discriminant scores while sentences 2 and 3 have considerably lower 
scores. Both sentences 1 and 4 have a greater duration (more speech material), and a higher 
mean voicing duration (significance of Fo) either of which may explain their better performance. 

Further, when the warp path measures are compared with the total dynamic measures there 
is little difference in discriminant ability. For example, when all sentences are combined, the 
discriminant rate drops from 74.6% for all dynamic measures to 72.0%, a difference of only 
2.6%. In fact, the discrimination rate of 72.0% for warp path measures alone is little less than 
the entire discrimination score of 75.2% for all measures. Such a result implies that much of 
the relevant information is already encapsulated within the warp path measures and there is a 
high degree of overlap between them and the D T W distance measure. 

6.6.2 Speaker Sex 

Figures 6.42, and 6.43 together with Table 6.20 present the results of the speaker sex discrim-
ination experiments as analysed on the basis of comparing the warp path measures with the 
D T W distance measure. 

Measure Type Sentence Measure Type 
1 2 3 4 Mean Combined 

All Dynamic 93.6 88.2 89.8 92.3 91.0 95.8 
D T W Dist 91.0 86.3 85.7 89.6 88.2 92.8 
Warp Path 84.8 72.2 77.9 86.1 80.3 91.7 

Table 6.20: Speaker Sex Discrimination Rates based on dynamic measures for all four test sen-
tences and the four speech parameters Energy, FQ, Voicing, and Zero Crossing Rate. Dynamic 
Measures are split into D T W Distance, and measures of properties of the warp path. 

It may be seen from both the figures and table that under all circumstances the D T W dis-
tance is superior to the warp path measures for determining speaker sex. This is not surprising 
as when applied to the two contours with vastly different means, for example the FQ of a female 
and male speaker, it will measure little more than the difference in means between the two 
contours. Surprising is the discrimination rate for warp path parameters alone, 88.2% on aver-
age for a single sentence, indicating that whether on the basis of mean FQ or 'true dynamics' 
of parameters, that the warp path measures provide a 'good' discrimination of speaker sex. 
Further the D T W distance measure is on average 3.1% below all dynamic measures in speaker 
discrimination level, indicating that the warp path parameters do make a contribution to sex 
discrimination independent of that made by the D T W distance. 

6.6.3 Speaker Dialect 

Table 6.21 and Figures 6.44, and 6.45 present the results of the speaker dialect experiments 
analysed with respect to comparing warp path measures with the D T W distance measure. 
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Figure 6.42: Speaker Sex Discriminate Plot - Breakdown of dynamic measures into DTW Dis-
tances versus Warp Path measures; utilising all 4 sentences. Intra-sex (broken line) distribution 
is plotted against Inter-sex (unbroken line) distribution. Figures are derived by combining the 
relevant measures of the four speech parameters—E, Fo, Vuv, and Zc, for all 4 sentences. 

Measure Type Sentence Measure Type 
1 2 3 4 Mean Combined 

All Dynamic .330 .322 .263 .291 .302 .563 
DTW Dist .184 .223 .151 .096 .164 .301 
Warp Path .311 .281 .223 .285 .275 .450 

Table 6.21: Speaker Dialect Correlation Scores based on dynamic measures for all four test sen-
tences and the four speech parameters Energy, Fo, Voicing, and Zero Crossing Rate. Dynamic 
Measures are split into DTW Distance, and measures of properties of the warp path. 
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Figure 6.43: Speaker Sex Discriminate Plot - Breakdown of dynamic measures into DTW 
Distances versus Warp Path measures; for each of the 4 sentences in turn. Intra-sex (broken 
line) distribution is plotted against Inter-sex (unbroken line) distribution. Figures are derived 
by combining the relevant measures of the four speech parameters—E, FQ, VUV, and Zc, for 
each of the 4 sentences. 
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Figure 6.44: Speaker Dialect Least-Squares-Fit Scatter Plot - Breakdown of dynamic measures 
into DTW Distances versus Warp Path measures; utilising all 4 sentences. Figures are derived 
by combining the relevant measures of the four speech parameters—E, FQ, Vuv, and Zc, for all 
4 sentences. 
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Figure 6.45: Speaker Dialect Least-Squares-Fit Scatter Plot - Breakdown of dynamic measures 
into DTW Distances versus Warp Path measures; for each of the 4 sentences in turn. Figures 
are derived by combining the relevant measures of the four speech parameters—E, FQ, VUV, 
and Zc, for each of the 4 sentences. 
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It is apparent from the figures and tables that on a single sentence basis, the D T W distance 
measure has a low correlation with the dialect-difFerence-score, a mean value of 0.164. On the 
other hand the warp path parameters are markedly higher with a mean of 0.302 for individual 
sentences, a significant difference at the 1% level. 

When the four sentences are combined the same relationship continues with the warp path 
measures having a significantly {1% level) higher correlation than the D T W distance measure. 

Hence, it is apparent that the warp path measures are more strongly related to speaker 
dialect and contribute the greater portion of the correlation factor when all dynamic measures 
are considered together. However both approaches complement each other well and taken 
together yield higher correlation rates than either alone. 

6.7 Examination of DTW-Distance Variant Measures 

In Section 6.6 the D T W distance measure was contrasted with other measures derivable from 
the D T W process, and generally found to yield inferior discrimination or correlation rates. 

It appears worth considering whether any variant upon the basic D T W distance scheme 
might yield better performance in terms of the ability to discriminate speaker characteristics. 
In Section 5.4 two variants on the D T W distance— referred to as the Weighted D T W distance, 
which sought to include warp path derived information in the distance, and Border D T W 
distance, which eliminated two leading and trailing values from the interval over which the 
distance is calculated ('freer' end-point conditions), were proposed. This section will contrast 
between these two variants and the D T W distance itself as to the discriminant or correlation 
scores for the three characteristics. 

Analysis will be performed upon an individual sentence basis, where the four basic speech 
parameters: Energy, FQ, Voicing and Zero Crossing will be used in combination. The measures 
for each of the four parameters for all four sentences will also be combined and analysed to 
yield a result for when all four sentences are utilised together. 

6.7.1 Speaker Identity 

Figures 6.46 and 6.47 combined with Table 6.22 present the results of the analysis of the variant 
D T W distance measures with regard to their speaker discriminant ability. 

Measure Type Sentence Measure Type 
1 2 3 4 Mean Combined 

Simple Distance 40.3 30.0 34.9 43.6 37.2 54.2 
Weighted Distance 37.9 29.7 35.1 39.6 35.5 53.2 
Border Distance 39.3 29.8 35.1 42.9 36.7 55.1 

Table 6.22: Speaker Identity Discrimination Rates comparing the three quantifications of the 
D T W distjince that were examined. The four speech parameters Energy, FO, Voicing, and Zero 
Crossing Rate were used across all 4 sentences. 
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Figure 6.46: Speaker Identity Discriminate Plot - Comparison of the 3 forms of the D T W 
Distance measure; utilising all 4 sentences. Intra-speaker (broken line) distribution is plot-
ted against Inter-speaker (unbroken line) distribution. Figures are derived by combining the 
relevant measures for the four speech parameters—E, Fo, Vuv, and Zc, across all 4 sentences. 



6.7. EXAMINATION OF DTW-DISTANCE VARIANT MEASURES 137 

STANDARD DTW DIST. WEIGHTED DTW DIST. BORDER DTW DIST. 

A 
Vv. 

.« •« -4 
Soor* 

•2 

..A 
-4 

Seer* 
-2 

fi 

t\ 
V' 

-6 
Seer* 

-2 

Seer* 

ill 
\l 

•eor* 

Seer* 

Figure 6.47: Speaker Identity Discriminate Plot - Comparison of the 3 forms of the DTW 
Distance measure; for each of the 4 sentences in turn. Intra-speaker (broken line) distribution 
is plotted against Inter-speaker (unbroken line) distribution. Figures are derived by combining 
the relevant measure of the four speech parameters—E, Fq, VUV, and Zc, for each of the 4 
sentences. 
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The differences between the different measures, either for a single sentence or for the four-
combined-sentence case are not significant at the 5% level. However, under all circumstances the 
weighted DTW distance measure has an inferior discrimination ability than either of the other 
two DTW distances. Thus while warp path measures alone are good discriminators of speaker 
identity, when incorporated into the distance metric they lead to a reduction in discriminant 
ability. 

6.7.2 Speaker Sex 

Figures 6.48 and 6.49 combined with Table 6.23 show the results of the analysis of the three 
variants of the DTW distance measure with regard to their speaker sex discrimination ability. 

Measure Type Sentence Measure Type 
1 2 3 4 Mean Combined 

Simple Distance 91.0 86.3 85.7 89.6 88.2 92.8 
Weighted Distance 85.0 81.6 84.2 82.1 83.2 91.7 
Border Distance 90.7 85.4 85.6 88.1 87.4 92.9 

Table 6.23: Speaker Sex Discrimination Rates comparing the three quantifications of the DTW 
distance that were examined. The four speech parameters Energy, Fo, Voicing, and Zero Cross-
ing Rate were used across all 4 sentences. 

On a single sentence basis it may be seen that the weighted distance measure is significantly 
{1% level) inferior to either of the other two. When the four sentences are combined the weighted 
distance still is inferior to the other two measures though the difference is not significant at the 
5% level. There is no significant difference between the default DTW distance and the border 
distance. 

6.7.3 Speaker Dialect 

Figures 6.50, and 6.51 together with Table 6.24 show the results of the analysis of the three 
variants of the DTW Distance measure with respect to their correlation to the dialect-difference-
score. 

Measure Type Sentence Measure Type 
1 2 3 4 Mean Combined 

Simple Distance .184 .223 .151 .096 .164 .301 
Weighted Distance .177 .215 .146 .110 .162 .301 
Border Distance .179 .220 .152 .106 .164 .309 

Table 6.24: Speaker Dialect Correlation Scores comparing the three quantifications of the DTW 
distance that were examined. The four speech parameters Energy, FQ, Voicing, and Zero Cross-
ing Rate were used across all 4 sentences. 

Comparing the correlation values for each of the three distance measures, either on a single 
sentence, or when all four sentences are combined, there appeairs no significant difference be-
tween them, though the border distance is marginally superior for the four-combined-sentences 
case. 



6.7. EXAMINATION OF DTW-DISTANCE VARIANT MEASURES 139 

Standard DTW Dist. Weighted DTW Dist. 

CO 
d 

m ® c <D Q 
C\J 
d 

p d 

-10 -8 -6 -4 -2 
Score 

Tt 
d 

V) 

o 

p d 

-10 -8 -6 -4 -2 
Score 

Border DTW Dist. 
CO 
d 

^ d 
CO c o Q 

CM 
d 

o 
d 

-10 -8 -6 -4 
Score 

-2 

Figure 6.48: Speaker Sex Discriminate Plot - Comparison of the 3 forms of the DTW Distance 
measure; utilising all 4 sentences. Intra-sex (broken line) distribution is plotted against Inter-
sex (unbroken line) distribution. Figures are derived by combining the relevant measure for the 
four speech parameters—E, Fq, VUV, and Zc, across all 4 sentences. 
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Figure 6.49: Speaker Sex Discriminate Plot - Comparison of the 3 forms of the DTW Distance 
measure; for each of the 4 sentences in turn. Intra-sex (broken line) distribution is plotted 
against Inter-sex (unbroken line) distribution. Figures are derived by combining the relevant 
measure of the four speech parameters—E, Fq, VUV, and Zc, for each of the 4 sentences. 
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Figure 6.50: Speaker Dialect Least-Squares-Fit Scatter Plot - Comparison of the 3 forms of the 
DTW Distance measure, utilising all 4 sentences. Figures are derived by combining the relevant 
measure for the four speech parameters—E, Fo, Vuv, and Zc, across all 4 sentences. 
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Figure 6.51: Speaker Dialect Least-Squares-Fit Scatter Plot - Comparison of the 3 forms of the 
DTW Distance measure, for each of the 4 sentences in turn. Figures are derived by combining 
the relevant measure of the four speech parameters—E, Fo, Vuv, and Zc, for each of the 4 
sentences. 
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It appears worthy of note that the correlation scores for sentence four are significantly {J% 
level), by up to a factor of 2, worse than any of the other three sentences. There appears 
no ready explanation for this lower correlation value; sentence 4 is both the longest (most 
speech material) and all-voiced (importance of Fo). It appears that there are other constraints 
dictating the degree of dialect encoding within a sentence. 

6.8 Evaluation of Individual Measures 
To this stage little attention has been paid to the twenty one measures individually, rather they 
have been considered as logical groupings or a homogeneous whole, in the process of examining 
the speaker characteristics. For practical applications such as recognition systems a lack of 
focus upon the individual measures is quite acceptable as it is the overall system performance 
that is of interest, not any one individual component. However, attention to the individual 
measures may yield information pertaining to the specific forms of encoding that the speaker 
characteristic takes, yielding data of general theoretical importance and possibly illuminating 
areas where further speaker characteristic features may be extracted. 

There are several diflferent ways to view the wealth of available data on the correlation be-
tween measures and speaker characteristics. Appendix C contains a complete breakdown of the 
computed correlation or u^ values for all experiments. That is for the three speaker charac-
teristics; the four sentences; the four speech parameters, including the four representations of 
Fo; both normalised and non-normalised parameters; and both dynamic and static measures. 
However, in order to summarise this information for the present the distribution of these corre-
lation or u)̂  values will be examined for each measure across the four basic speech parameters 
and for the four sentences combined. 

Due to the large number of measures examined, it was necessary to label the measures 
on the plots numerically rather than descriptively. The static measures were labelled as such 
and numbered 1 to 7, while the dynamic were labelled dynamic and numbered 1 to 14. The 
correspondence between numeric and descriptive labels for the static measures is: 

1. Mean 

2. Standard Deviation 

3. Minimum 

4. Maximum 

5. Range 

6. Mean absolute Rate of Change 

7. Length or Duration 

Similarly for the dynamic measures: 

1. DTW Distance 
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2. Weighted DTW Distance 

3. 'Border' DTW Distance 

4. Ratio of Warp Path Length to Maximum Contour Length 

5. Fraction of Vertical Transitions on Warp Path 

6. Fraction of Horizontal Transitions on Warp Path 

7. Fraction of Diagonal Transitions on Warp Path 

8. Number of Vertical Excursions/Warp Path Length 

9. Number of Horizontal Excursions/Warp Path Length 

10. Number of Diagonal Excursions/Warp Path Length 

11. Maximum Length Vertical Excursions/Warp Path Length 

12. Maximum Length Horizontal Excursions/Warp Path Length 

13. Maximum Length Diagonal Excursions/Warp Path Length 

14. Off Diagonal Warp Path Distance 

6.8.1 Speaker Identity 

Figure 6.52 presents various statistics upon the 'performance' of of the various measures as to 
their speaker discriminant potential. 

From the figure it is clear that for all but one measure there is an extremely wide distribution 
of values for each individual measure. Such a result indicates that no single measure is highly 
correlated with speaker identity in all circumstances, parameters and sentences, and tends to 
vindicate the approach of using a melange of measures. In terms of 'consistent' performance 
the DTW distance measures and the Off Diagonal Warp Path Distance appear to be the best 
regular indicators of speaker identity. However, if extreme correlation values are considered 
then the two measure: Number of Vertical Excursions, and Number of Diagonal Excursions 
have individual correlations within their distributions which exceed 0.1 in value, and hence, 
under those particular circumstances, appear to be strong measures of speaker identity. 

Many researchers [DodTlb, NND89] have shown the significance of the DTW distance for 
speaker recognition and it needs no elaboration here. The Off Diagonal Warp Path Distance is 
an overall measure of how close the calculated warp stayed to a hypothetically optimal path of 
a straight diagonal linking the start and ends of both contours (linear time warping). We can 
reasonably expect that intra-speaker comparisons would deviate far less from this course than 
would inter-speaker comparisons [SF78]. The Number of Vertical Excursions and Number of 
Diagonal Excursions both measure the amount of micro timing adjustment and changes being 
done, implying that in general intra-speaker comparisons require far less adjustment than do 
inter-speaker comparisons. 
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Figure 6.52: Speaker Identity: Boxplot of distributions of the 21 measure correlation scores for 
all 4 sentences and the 4 speech parameters E, Fo, Vuv, and Zc. Individual boxes show the 
distribution for each of the measures, indicating median value and quartile distribution. 
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6.8.2 Speaker Sex 

Figures 6.53, and 6.54 present statistics regarding the individual measures and their ability 
to discriminate sex. Due to the difference in speaker sex discrimination level between FQ and 
the other three parameters the measure distributions have been split into two—one for the FQ 
parameter and the second for the three 'weaker' speech parameters. 
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Figure 6.53: Speaker Sex: Boxplot of distributions of the 21 measure correlation scores for all 4 
sentences and the speech parameter FQ (by far the highest correlated of the 4 basic parameters 
examined). Individual boxes show the distribution for each of the measures, indicating median 
value and quartile distribution. 

Analysis of Figure 6.53, showing the distribution of sex correlation values for measures of 
the FQ parameter show that the three static measures mean, max, and mm, together with the 
three DTW distance measures are the most strongly correlated, with average scores well in 
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Figure 6.54: Speaker Sex: Boxplot of distributions of the 21 measure scores for all 4 sentences 
and the 3 speech parameters E, Vuv, and Zc. Individual boxes show the distribution for each 
of the measures, indicating median value and quartile distribution. 
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excess of 0.6, once again showing the importance of static FQ for sex discrimination [Tit89]. 
However the larger portion of the DTW iransHion and excursion measures are also correlated 
with speaker sex to a non-trivial extent (medians ranging from 0.15 up to 0.45), showing the 
influence of these differences in mean Fo upon the calculated warp path. 

Comparing Figure 6.54 with the previous Figure 6.53 it is clear that measures of the non 
FO parameters are vastly inferior to those of FQ for discriminating speaker sex. Nevertheless, 
all three of the measures standard deviation, maximum, and Off diagonal warp path distance 
contain individual correlation values that exceed 0.1, indicating that non-trivial indications of 
speaker sex are obtainable from individual measures of the three parameters energy, voicing, 
and zero crossing rate. 

6.8.3 Speaker Dialect 

Figure 6.55 shows the distribution of the correlations of the individual measures to the dialect-
difference-score. The absolute correlation, sign less, is being used to simplify the presentation 
and in order that correlations of opposite sign derived from different speech parameters do not 
'mask' each other. 

Examination of the figure reveals that without fault all measures are correlated to lesser and 
greater extents to speaker dialect. The greater portion of measures have a median correlation 
value of 0.04 or more and the measures duration and Fraction of horizontal transitions have 
'consistently' strong correlations, markedly in excess of those for the other measures. Further, 
the greater portion of measures, over 60%, have individual correlation scores in excess of 0.1 
indicating far stronger correlation to dialect under particular constraints of sentence and speech 
parameter. Hence timing across the entirety of an utterance—duration and Fraction of hor-
izontal transitions: a sort of 'catch-up' measure of shorter contour being stretched to match 
longer—appears to be the strongest indication of speaker dialect though all measures give some 
indication. 

6.9 Examination of Sentences 

In many of the previous sections the results of the analysis have been subdivided on the basis 
of the four sentences. Such an approach can show differences between the four sentences as 
to the varying degrees that speaker characteristics may be encoded within an utterance of the 
given sentence. Information such as this may prove useful in applications where it is necessary 
to choose appropriate utterances in order to maximise speaker characteristic discrimination, for 
example a speaker recognition system. Table 6.25 lists properties of each of the four sentences 
that may influence the discrimination or correlation rate for that sentence. Shown for each 
sentence are the mean duration, number of phonemes composing the utterance, mean voicing 
level (fraction of utterance that is voiced), and mean voiced duration. 

There appears to be little previous research on the selection of suitable utterances for speaker 
recognition/verification systems. More generally, the lack of work to define suitable utterances 
is true for all speaker characteristics. It is beyond the scope of this work to derive such selection 
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Figure 6.55: Speaker Dialect: Boxplot of distributions of the 21 measure scores for all 4 sentences 
and the 4 speech parameters E, Fo, Vuv, and Zc. Individual boxes show the distribution for 
each of the measures, indicating median value and quartile distribution. 
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Number Text 
Mean 

Duration [s] 
App. Number 
of Phonemes 

Mean Voicing 
Level 

Mean Duration 
Voiced [s] 

1 I cannot 
remember it. 

1.16 15 0.61 0.70 

2 How do 
you know? 

0.81 8 0.82 0.67 

3 We are 
firm. 

0.89 6 0.71 0.63 

4 We were away 
a year ago. 

1.58 13 0.82 1.30 

Table 6.25: Properties of the four analysis sentences. Listed for each of the four sentences are its 
number, the text of the sentence, its mean duration across all utterances, number of phonemes 
composing the utterance, the mean voicing level across all utterances, and the mean voicing 
duration across all utterances. 

criteria. However, though four sentences are too few to adequately allow analysis of the various 
properties of sentences some parallels between the results obtained and properties of the four 
sentences will be drawn in this section. The following chapter. Chapter 7, will briefly outline a 
possible experiment for the establishment of such citeria. 

An additional means of analysing sentence differences is to examine the distribution of the 
correlation scores for the individual measures. It might reasonably be expected that a sentence 
illustrating a distribution of higher measure correlation scores would make a better choice for 
overall discrimination performance than one displaying a lower distribution. Hence, for each of 
the three speaker characteristics, the distribution of the measure correlation scores, regardless 
of the particular measure itself or the speech parameter it was derived from, will be examined 
on a sentence basis. Distributions of correlation scores, and the discrimination or correlation 
scores for each sentence may then be related to properties of the sentences. Table 6.25, and 
some tentative parallels drawn. 

6.9.1 Speaker Identity 

Figure 6.56 shows the results of the analysis of the measure correlations, values on the basis 
of sentence. 

Based on the results it appears that sentences 1 and 4 yield markedly higher measure corre-
lation scores in terms of general distribution, median and quartiles, and upper extremes, than 
do the other two sentences: 2 and 3. Such data correlates well with the identity discrimination 
experiments for each sentence (Section 6.1), where it was found that sentences 1 and 4 had 
significantly higher discrimination rates than either of sentences 2 or 3. 

Both sentences 1 and 4 are greater in mean duration, number of phonemes, and have a 
higher mean voicing duration than either of 2 or 3. Given the demonstrated significance of FQ, 
and increased discrimination performance with increased material, the reason for the better 
performance of sentences 1 and 4 may be attributed to any, and likely all, of these differences. 
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Figure 6.56: Speaker Identity: Boxplot of measure correlation Distributions for the 4 sentences 
examined. For all 21 measures of the 4 basic speech parameters E, FQ, VUV, and Zc the 
correlation values are grouped according to the 4 sentences. 
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6.9.2 Speaker Sex 

Figure 6.57 shows the results of the analysis of the measure correlation values on the basis 
of sentence for the speaker characteristic sex. As for the previous analysis of measures and 
their sex discrimination levels the plot has been split in two, the first plot represents the FQ 
parameter, while the second plot is for the three other parameters combined. 
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Figure 6.57: Speaker Sex: Boxplot of measure correlation Distributions for the 4 sentences 
examined. Two plots are shown, one for the speech parameter FQ, the other for the three 
speech parameters E, Vuv, and ZC. For each plot all 21 measure correlation values of the 
appropriate speech parameter(s) are grouped according to the 4 sentences. 

From the plot for the Fo parameter it is clear that both sentences 1 and 4 yield markedly 
higher measure correlation values, both in terms of general distribution, mean, and upper 
extremes, than either of sentences 2 or 3. Again, this better distribution of measure correlation 
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values for sentences 1 and 4 corresponds to the higher sex discrimination rates achieved for 
those same sentences in Section 6.1. 

Interestingly, the same two sentences found to be most effective for speaker sex discrimina-
tion, namely 1 and 4, were also found to be the most effective sentences for speaker identity 
discrimination. 

For the three other speech parameters—energy, voicing, and zero crossing rate, sentence 1 
appears the best selection in terms of distribution of measure correlation values. 

As mentioned in the previous discussion of the identity results sentences 1 and 4 have both a 
greater mean duration, number of phonemes, and a higher mean voicing duration than either of 
sentences 2 or 3. Any, and all of these reasons may be the cause for the better sex discrimination 
performance. 

6.9.3 Speaker Dialect 

Figure 6.58 shows the results of the analysis of the measure correlation values on the basis of 
sentence for the dialect-difference-score. 
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Figure 6.58: Speaker Dialect: Boxplot of measure correlation Distributions for the 4 sentences 
examined. For all 21 measures of the 4 basic speech parameters E, Fo, Vuv, and Zc the 
correlation values are grouped according to the 4 sentences. 

Based on the figures and tables it appears difficult to reliably select any one sentence as 
potentially better for speaker dialect analysis. It is known from the results of Section 6.1 that 
sentences 1 and 2 have the highest dialect correlation scores, significantly better than either 
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sentence 3 or 4, but it is hard to find a parallel to such a result in Figure 6.58. 
Further, it is hard to base these differences on properties of the sentences. For both speaker 

identity and sex results it was found that sentences 1 and 4 had better performance and this was 
assigned to the greater average duration of the sentences, higher number of phonemes, or the 
greater voiced duration of the two sentences. However the better dialect correlation performance 
of sentences 1 and 2, and poorer performance of 4, does not appear to be attributed to these 
reasons. In fact no grouping of the properties presenting in Table 6.25 appears to explain the 
better performance of sentences 1 and 2 as compared to sentences 3 and 4. Therefore there 
are other 'parameters' governing the degree of encoding of speaker dialect within a particular 
sentence. 

6.10 Individual Speaker Effect 

Up until this point the results have been analysed as to the various factors of the experimental 
design, such as static versus dynamic measures, or comparing speech parameters or other fac-
tors. In all such analysis the contribution and effect of any single speaker has been ignored and 
subsumed in the whole, the results for all speakers being grouped together and, in the cases of 
speaker sex and identity, divided into meta-classes such as inter-sex or intra-speaker. 

In general the division of results on a single speaker basis is a time consuming process. 
However such a division of the results may show several interesting items of data hidden in 
the larger scale results. Often in recognition systems it is a small number of speakers that are 
responsible for the major portion of errors. Detecting such speakers may allow the system to 
be 'tuned' to account for these special speakers. Secondly, by grouping all speakers together for 
identity and sex discrimination experiments, there is an underlying assumption that there is a 
single common threshold for all speakers at which a 'cut-off' point between intra-class and inter-
class distributions may be imposed. However, it may be that such a 'cut-off' point is speaker-
dependent. Finally, grouping all speakers together shows overall trends and results for the 
entire speaker population, yet disguises the individual variance from this 'mean' corresponding 
to each speaker. 

Many researchers [LKE85, LKW85, SMB81, Nod89, CF89, Dom90] have shown that speaker 
identity encoding in par2mieters is speaker dependent. Few if any have sought to examine this 
speaker specific manifestation for the other speaker characteristics. The breakdown of results 
on an individual speaker basis seeks to explore this phenomenon. 

Hence, for each of the three speaker characteristics examined the results of the 'discrimi-
nation' experiment, when all four sentences with all measures of the four basic parameters are 
utilised, are split on the basis of speaker identity. For the speaker sex and identity experiments 
a boxplot is used to show the distribution of individual speaker 'scores' (the weighted sum of the 
individual measures). For each of the speakers two boxes were used to show distribution. The 
first 'narrow' box represents intrarclass, sex or identity, comparisons. The second 'wider' box 
represents the inter-class comparisons for that speaker. For example, in the speaker identity 
plot, Figure 6.59, Speaker O's distribution of 'scores' may be seen by examining the first two 
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boxes of the plot. The first 'narrow' box shows the distribution of all intra-speaker comparisons; 
i.e., the comparisons between all of Speaker O's utterances. The second, 'wider' box shows the 
distribution of all inter-speaker comparisons for Speaker 0; i.e., comparisons between one of 
Speaker O's utterances and one of those of the other speakers. For speaker dialect, the scatter 
plot, as previously encountered, was used to display the results for each individual speaker. 

6.10.1 Speaker Identity 

Figure 6.59 is a boxplot showing the intra- and inter-speaker comparisons for each of the eighteen 
speakers in the experiment. 

Several items of information may be garnered from the plot. Firstly, the appears no single 
uniform distribution for intra- or inter-speaker values, and hence no single decision threshold 
may be selected for all speakers that will yield optimal discrimination performance. Rather, 
the selection of such a threshold is speaker dependent, i.e., individual for each speaker, and 
may only be made after examining a distribution such as the one shown, based on the figure 
it would appear that if such a policy were implemented then the discrimination rate would 
improve markedly. 

Secondly, there appears wide variance between individual speakers as to the separation of 
intra-speaker and inter-speaker distributions, in effect the discrimination rate. While speakers 
such as 1, 3, 10 and 11 appear, with the selection of the appropriate individual thresholds, 
to have 100% discrimination rates, others, such as speakers 6, 12, and 15 show considerable 
overlap between intra-speaker and inter-speaker distributions, such that no matter the selection 
of threshold, 100% discrimination is unobtainable. It is to these later 'trouble' speakers that 
further attention, in any speaker recognition system, must be paid, either by further processing, 
or speaker training etc. It is worth noting that in those cases of overlap it is due to a wider 
intra-speaker distribution, in effect a lack of consistency in repetitions of the utterance by the 
speakers in question. 

Hence, as other researchers as Shridar et. al. [SMB81] or Noda [Nod89] have shown, 
encoding of speaker identity within speech parameters is speaker dependent. 

6.10.2 Speaker Sex 

Figure 6.60 is a boxplot showing the distribution of inter-sex and intra-sex comparisons for each 
of the eighteen speakers used in the experiments. 

It may be seen that there is a degree of variance between the individual speaker distributions, 
implying that the imposition of a single 'catch-all' threshold to differentiate inter- and intra-
sex comparisons will lead to sub-optimal results. In fact close observation of the data reveals 
that if individual thresholds for each speaker are selected then a sex identification rate of 100% 
is obtainable for all speakers. Hence, manifestation or encoding of speaker sex within the 
parameters energy, Fo, voicing and zero crossing rate is speaker dependent to a minor extent. 
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Figure 6.59: Speaker Identity: Boxplot showing the distribution of comparison 'scores' for 
each individual speaker. For each speaker two boxes are plotted. The first narrow box shows 
intra-speaker comparisons, while the second wider box shows the distribution of inter-speaker 
comparisons. The results are from the speaker discrimination run using all 4 sentences and all 
measures of the 4 basic speech parameters. 
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Figure 6.60: Speaker Sex: Boxplot showing the distribution of compsirison 'scores' for each 
individual speaker. For each speaker two boxes are plotted. The first narrow box shows intra-
sex comparisons, while the second wider box shows the distribution of inter-sex comparisons. 
The results are from the sex discrimination run using all 4 sentences cmd aJl measures of the 4 
basic speech parameters. 
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6.10.3 Speaker Dialect 

Figures 6.61 and 6.62 show the scatter plot of the dialect-difFerence-score against the calculated 
least-squares-fit, for each of the individual speakers. Its is immediately apparent that while for 
all speakers taken together there appears an overall trend or relationship between the measured 
parameters and the dialect-difference-score, for individual speakers there are wide deviations 
from this pattern. 
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Speaker 3 Speaker 4 speakers 
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Figure 6.61: Speaker Dialect Least-Squares-Fit Scatter Plot: Individual scatter plots for the 
first 9 speakers. The results are from the experimental run using all 4 sentences and all measures 
of the 4 basic speech parameters. 

Such a result seems to imply that while there are general dialect imposed trends in prosod-
ic parameters for a large population of speakers, for individual speakers there may be large 
individual variances from this mean pattern. In effect, individual speaker effect may greatly 
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Figure 6.62: Speaker Dialect Least-Squares-Fit Scatter Plot: Individual scatter plots for the 
second 9 speakers. The results are from the experimental run using all 4 sentences and all 
measures of the 4 basic speech parameters. 
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influence such dialect imposed trends and make a general population model of prosody and 

dialect less than applicable to individual members of the population; i.e., encoding of speaker 

dialect in prosodic parameters is speaker dependent and highly variable. 



Chapter 7 

Discussion — Analysis 
Experiments 

The previous two chapters have described and presented the results of an investigation of the 
three speaker characteristics identity, sex, and dialect by a direct analysis scheme. This chapter 
will discuss the results from several perspectives. Firstly the results for each of the three 
characteristics in turn will be discussed followed by a discussion of the technique and broad 
implications of the results regardless of specific chwacteristic. 

7.1 Speaker Identity 

Speaker discrimination experiments were carried out using four different sentences, and the four 
prosodic parameters FQ, voicing, energy, and zero crossing rate. 

For a single sentence, with a spesdcer population of nineteen, a mean speaker discrimination 
rate of approximately 60% was achieved, rising, appzwently 'logarithmically', to over 75% when 
all four sentences were combined. The discrimination rates may appear low at first glance but 
the nature of discrimination analysis - simple two class discrimination, where a single overlap 
in intra-spe2iker and inter-speaker distributions results in less than 100% discrimination - is 
more restrictive and 'tighter' than the standard decision algorithms [Dod85] used in speaker 
recognition. A single sentence appears insufficient to capture all possible speaker specific infor-
mation for the four parameters and the addition of further sentences increases discrimination 
rate. Further, discrimination rate varies markedly between the individual sentences and ap-
pears adequately modelled, as a growth function, by both the duration and extent of voicing 
of the sentence. However a growth function on the basis of speech material alone was found 
to be inadequate to accurately estimate optimal discrimination performance for an unlimited 
amount of speech material. 

In contrasting dynamic (time varying) measures of the four parameters with static (time 
invariant) measures, as to their discriminant ability, it was found that dynamic measures were 
significantly better. For the four sentences combined, dynamic measure discrimination rate was 

161 
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74.6%; only 0.6% less than the combined discrimination rate of 75.2%; as opposed to the static 
measure discrimination rate of 54.8%. A difference between static and dynamic measures of 
just under 20%. Clearly static measures have little to add to dynamic measures in regards 
speaker discrimination, and, taken alone, dynamic measures are far superior to static measures 
for speaker discrimination. This result shows that dynamic measures alone are adequate to 
encapsulate the speaker specific information in the four parameters examined. 

Normalisation experiments were carried out in order to further differentiate static proper-
ties of a contour from its dynamic properties. Discrimination rates dropped by an order of 
10% for a single sentence but by only 5% for the four sentences combined, as compared to 
that for non-normalised parameters. On a further breakdown of results it was shown that 
the discrimination rate based on static measures was more adversely affected than that for 
dynamic measures. These impressive results for normalisation, 70.5% discrimination of speak-
er for normalised parameters show the importance of the dynamic properties of the contours 
examined over their static properties. Contrasting discrimination rates for static measures of 
non-normalised parameters with dynamic measures of normalised parameters it was found that 
the rates for dynamic measures of normalised parameters were significantly higher. On this 
basis it appears that speaker identity is more strongly encoded in the time varying properties, 
of the parameters examined, than in the time invariant properties. 

Examining each of the four parameters separately it was found that each carried speaker 
specific information though to greater and lesser extents. For the four sentences combined 
FQ proved the 'superior' parameter, with a discrimination rate of 64.6%, followed by energy 
at 58.2%, zero crossing, and down to voicing at 47.6%. Breaking the results down, for each 
parameter, on the basis of static versus dynamic measures it was found that dynamic based 
discrimination rates were an order of 10% to 20% higher than the corresponding static measures. 
It is worth noting that the FQ discrimination rate is still over 10% below the discrimination rate 
when all parameters are combined, showing, that while there is an overlap in speaker specific 
information between the parameters, encoding of speaker identity is distributed over the four 
parameters such that no single parameter is sufficient to encapsulate all encoded information. 

While FQ had hitherto been represented in the hnear-concatenated form, three other vari-
ants, being linear-interpolated, log-con catenated and log-interpolated were also examined as 
to their speaker discriminant properties. It was found that of the four possibilities the log-
interpolated version of FQ yielded the highest discriminant score of 66.9%; 2.3% higher than 
the control linear-concatenated FQ. This result has bearing for earlier and subsequent results 
as in all cases the linear-concatenated version of FQ is used. Therefore it could reasonably 
expected that if the log-interpolated FQ was substituted these discrimination results would be a 
minimum, with the actual result being up to 2.3% higher than previously stated. Further it was 
found that the hierarchy of results coulc} be explained by the properties of the four alternate 
representations. Results for log representations were higher than the equivalent linear version. 
Results for interpolated representations were higher than the equivalent concatenated version. 
Given these results it would appear that a log representation of FQ, where values have been 
interpolated for unvoiced frames, is the best representation of FQ to obtain optimal speaker 
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discrimination. Interestingly when results were examined on a static and dynamic basis it was 
found that log interpolated gave the highest static discrimination rate while linear interpolation 
gave the highest dynamic. Possibly there is scope to include both representations of Fo in a 
speaker recognition scheme. 

As defined, dynamic measures are logically divided into the DTW distance measure, a mea-
sure of the difference between two contours once their relative dynamics have been normalised 
or equated as thoroughly as possible, and warp path measures, measures of the relative dynam-
ics of the two compared contours. These logical grouping may be contrasted as to their efficacy 
to discriminate speakers. For a single sentence the DTW distance discriminates speakers with 
a mean of 37.2% as opposed to a rate of 51.6% for warp path measures. For all four sentences 
combined DTW distance has a discrimination rate of 54.2% as opposed to 72.0% for warp path 
measures. Clearly, the warp path measures contain more speaker specific information than the 
DTW distance. Obviously the performance of many DTW based speaker recognition systems 
could be significantly improved by using the calculated warp path! 

A simple Euclidean fixed end-point DTW distance was used for all dynamic measures. 
However two alternative distances, one weighted based on the warp path and the other allowing 
a degree of freedom in endpoint checking were also tried. It was found that the weighted DTW 
distance was inferior to both of the other two. Thus, while there is speaker specific information 
in the warp path this should be used as an additional vector for a recognition system, rather 
than attempting to incorporate it as weighting in the DTW distance. There appeared no 
significant difference between the other two measures. 

A total of twenty one measures, seven static and fourteen dynamic, were used as part of the 
discrimination experiments. These measures were individually contrasted as to their speaker 
discrimination for the four prosodic parameters used. All bar a single measure showed a wide 
distribution of values (ANOVA derived estimates of correlation) implying that no single 
measure performed consistently well for all parameters and sentences but conversely under the 
right circumstances each was significant in contributing to the overall discrimination rate. Such 
a result shows that no single or small set of these measures is sufficient to achieve optimal 
speaker discrimination and a large suite or number of measures is necessary. However, of the 
set, the DTW distance measures and the off-diagonal-warp-path-distance were the strongest 
consistent measures; while number of vertical excursions and number of diagonal excursions 
yielded the best individual extreme (high) values. 

Finally, the speaker discrimination results were analysed on the basis of each individual 
speaker. It was found that there was a wide individual variance between individual speakers' 
intra-spesdcer and inter-speaker distributions such that no common threshold could be assigned 
to divide intra and inter-speaker distributions that was applicable to all speakers. Further, it 
was found that speakers could be split into two categories; those who had clear divisions be-
tween intra and inter-speaker distributions and hence are easy to discriminate; and those with 
overlapping intra and inter-speaker distributions, and hence are more difficult to discriminate. 
It was found that those speakers with overlapping distributions characteristically had wider, or 
more diffuse, intra-speaker distributions, implying a greater degree of variability in utterance 
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productions. As could be expected it is this small group of 'trouble' speakers who account for 
a great proportion of discrimination errors and to whom most attention needs to be paid to 
improve overall system performance. Noda [Nod89] has examined this phenomenon by inves-
tigating the uniqueness of speaker utterances in the N-dimensional parameter space. However 
it appears to be very much a 'chicken-and-egg' problem because uniqueness is defined by the 
choice of parameters, hence it appears to be difficult to detect trouble speakers ahead of time. 

7.2 Speaker Sex 

Speaker sex discrimination experiments were carried out using four different sentences and the 
four prosodic parameters FQ, voicing, energy, and zero crossing rate. 

The mean rate for sex identification using a single sentence was found to be 93.1%, rising to 
96.2% for all four sentences. Discrimination rate was shown to rise as the number of sentences 
used and hence duration, increased. However the correlation between discrimination and dura-
tion does not appear to be simple as, for example, a discrimination rate of 95.2% was obtained 
for a single sentence; only 1% less than that for four sentences combined. Based on the results 
for the FQ parameter it appears more likely that the extent of voicing in the sentence has a 
strong effect. 

When the measures are split into dynamic and static categories it was found that there was 
little to differentiate the two sets. Both discriminated sex at a mean level of 91% for a single 
sentence and for four sentences combined, dynamic measures discriminated at a rate of 95.8% 
as opposed to 94.7% for static measures. The four-sentence dynamic-measure discrimination 
rate is only 0.4% less than that for both measure categories combined. Therefore it appears 
that dynamic measures alone are sufficient to capture the sex specific information in the four 
parameters examined. 

Parameter contours were normalised into the range 0 to 1 in order to examine whether 
speaker sex could still be discriminated with any degree of accuracy. Surprisingly, while dis-
crimination levels dropped markedly it was still significantly above chance, and a rate of 77.7% 
was achieved when all four sentences were combined using normalised parameters. Therefore 
speaker sex is encoded in more than the mean values of these parameters; there is a significant 
amount of information in the dynamics of the contours. However, contrasting discrimination 
rates for static measures of the non-normalised parameters, with dynamic measures of the nor-
malised parameters, it was found that static measures of non-normalised parameters yielded 
a significantly higher discrimination rate. On this basis it appears that speaker sex is more 
strongly encoded in the time invariant properties of the parameters examined, rather than time 
varying properties. 

Examining the four parameters individually it was found that, as expected, FQ was the su-
perior parameter with a discrimination rate of 95.5% for the four sentences combined. However, 
all four parameters appear to carry some degree of sex specific information; with voicing at a 
surprising 71.8% for the four sentences. The FQ alone discrimination rate of 95.5% is only 0.7% 
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less than for all four pareimeters combined; showing the other three parameters have little con-
tribution to sex specific information that FQ does not already encapsulate. For all parameters 
bar zero crossing rate dynamic measures were stronger discriminants than static measures. 

As well as the base linear-concatenated representation of Fo, three other representations 
were examined as to their speaker sex discrimination. These were linear-interpolated, log-
concatenated, and log-interpolated. It was found that there was little to differentiate the two 
linear representations. Both log versions of FQ proved to be approximately 30% worse at 
discriminating sex, at a mean of 66% than the linear version. This trend is expected as the 
formula (Equation 5.5, page 59) for log FQ involves the subtraction of a sex specific constant. 
Therefore it is surprising that log FQ is able to discriminate sex at all, and this may be a 
reflection upon the choice of Fomm in the log formula. 

Earlier it was shown that the dynamic measure set is superior to the static mesisure set for 
sex discrimination. The dynamic measures may be logically divided into the DTW distance 
measure and measures of the warp path. Examining this subdivision it was found that for a 
single sentence DTW distance discriminated sex with a mean of 88.2% as opposed to the warp 
measure rate of 80.3%. For all four sentences combined DTW distance discrimination rate was 
92.8% was opposed to 91.7%. Thus, DTW distance is superior to the warp measures though 
the warp measures are surprisingly significant, and the DTW distance rate is 3% less than 
the combined dynamic rate; indicating that warp path measures do make a contribution not 
encapsulated by the DTW distance. 

Evaluating the three variants for the DTW distance it was found that the weighted distance 
was markedly inferior to the other two. Incorporation of warp path information in the DTW 
distance appears to adversely affect sex discrimination rates. There appears little difference 
between the other two measures. 

Comparisons of each of the twenty one measures were made as to their utility for speaker 
discrimination. Given the marked superiority of FQ, measures of FQ were analysed separately 
to that of the other three parameters. Superior FQ measures were found to be the mean, 
minimum, maximum and the DTW distances; and 60% of the warp path measures showed 
significantly large, 0.15 to 0.6, values. Measures of the other three parameters were found to 
be markedly inferior to those of Fo, though based upon extreme values the off-diagonal-warp-
distance, standard deviation and maximum appeared the best. 

Finally, sex discrimination results were analysed on the basis of the individual speakers 
making up the test set. It was found that there was a high degree of individual variance 
between speakers as to the distribution of intra-sex scores. This result shows the influence of 
the individual speaker upon the results, indicating that individual thresholds will yield the best 
sex discrimination results, rather than a single threshold for the entire speaker population. 

7.3 Speaker Dialect 

Speaker dialect experiments were carried out using least-squares-fit analysis to correlate dif-
ference in dialect scores with measures of the four parameters Fo, voicing, energy, and zero 



166 CHAPTER 7. DISCUSSION - ANALYSIS EXPERIMENTS 

crossing rate; for four sentences. 

Utilising all four parameters, a single sentence mean correlation value of 0.38 was achieved, 
rising to 0.58 for four sentences. Clearly and significantly speaker dialect is encoded in the 
four prosodic parameters. Correlation rate was plotted versus number of sentences used and 
modelled by a growth function of duration or number of sentences. Sentence choice and num-
ber of sentences, rather than duration, appear to be the most significant factors in increased 
correlation performance and it appears that major increases in correlation are possible with 
the addition of yet more sentences. Therefore, with sufficient data it would seem that Aus-
tralian speaker dialect may be determined with a significant degree of accuracy based solely on 
prosodies. 

Dividing measures on the logical basis of static versus dynamic it was found that dynamic 
measures were significantly more highly correlated with dialect than static measures. For the 
four-combined-sentence case static correlation value was 0.45 as opposed to the dynamic value 
of 0.56. Further this dynamic alone value of 0.56 is barely 0.02 less than the correlation value 
for dynamic and static sets combined showing that dynamic measures are virtually a superset 
of static with regard to dialect encoded information. 

In an attempt to further explore the importance of the dynamics of the four parameters 
normalisation was applied prior to least-squares-fit analysis. For a single sentence the mean 
correlation rate dropped from 0.38 to 0.33; and for the four sentences combined from 0.58 
to 0.54. The small drop in correlation score from un-normalised to normalised parameters 
clearly shows the importance of the dynamics of a contour in determination of speaker dialect. 
Contrasting the correlation value for static measures of non-normalised parameters, with that of 
dynamic measures of normalised parameters, it was found that dynamic measures of normalised 
parameters yielded significantly higher values. On this basis it appears that speaker dialect is 
more strongly encoded in the time varying properties of the parameters examined, rather than 
in the time invariant properties. 

Analysing each of the four parameters individually it was found that all carried dialect 
specific information, the two parameters energy and FQ being the most significant, each with a 
four combined sentence correlation value of 0.36, zero crossing rate of 0.31 and voicing of 0.26. 
Clearly there is a hierarchy of parameters in terms of utility for dialect determination; but even 
the best two parameters are markedly less (0.2) correlated with dialect, when taken alone, than 
when all four are combined. Thus it appears that no single parameter suffices to capture all the 
dialect information encoded in each of the four prosodies, but that multiple parameters lead to 
enhanced performance. 

Together with the base linear-concatenated representation of FQ three other representations 
were tested. These were linear-interpolated, log-concatenated, and log-interpolated. It was 
found that of the four, measures of the log-interpolated were the most correlated, a marked 
0.032 higher than the default linear-concatenated version. Based on this result we could rea-
sonably expect that if the log-interpolated version of FQ were substituted for the default linear-
concatenated, used in all multi parameter experiments, that quoted correlation rates would be 
even higher. Further a relational hierarchy was found amongst the four versions of FQ. Log 
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versions had higher correlation values than the corresponding linear version, and interpolated 
versions were more highly correlated than the equivalent concatenated version. 

A further breakdown of dynamic measures is that between the DTW distance and the 
measures of the warp path. When these were examined separately the warp path measures 
were found to be significantly more correlated than the DTW distance alone: for the four-
combined-sentence case 0.450 versus 0.301. This result shows the importance of the relative 
dynamics of the contours for the encoding of dialect information. However the warp-path 
measures' correlation value of 0.45 is markedly less than the dynamic measure correlation value 
of 0.56 showing that the DTW distance and warp path measures combined carry more dialect 
information than either alone. 

Twenty one different measures of the four parameters were examined as to their correlation 
to the dialect difference. It appears that every single measure elicits a substantial portion of 
dialect information. In fact over 60% of measures had individual correlations exceeding 0.1 
in value. Based on this spread of correlations across many measures the strategy for optimal 
dialect correlation must be to use all of them as no single one or small subset suffices to capture 
all the information. Significantly and strongly correlated measures include duration, mean, 
maximum, fraction-of-horizontal-transitions, and maximum-length-vertical-excursion. 

Finally, the four sentence-four-parameter results were broken down on an individual speaker 
basis. It is immediately apparent that individual speaker correlations diverge markedly from 
the total population model of the relationship of prosodies and dialect. Hence, while there is a 
total population model of prosodies and dialect, individual speaker effect greatly influences this 
model; that is: there appear to be general population trends correlating dialect and prosodies 
but individual speakers may vary greatly from this model. As a corollary of this result it is 
of utmost importance to gather a large speaker set in order to model the relationship between 
prosody and dialect. 

Throughout the investigation a direct linear relationship in dialect difference was implicitly 
assumed. Thus the difference between a general and cultivated speaker is assumed to be similar 
to that between a broad and general speaker. This may however be an over-simplification. In 
order to explore this area using the dialect-difference paradigm it would be necessary to attempt 
various forms of curvilinear least-squares analysis [HW71] in order to determine if these yield 
higher correlations. Much work may yet be done in this area. 

7.4 General Issues 

The analysis experiments introduced the notion of a number of measures of the properties of 
prosodic contours. In particulw, as an expansion to Saito and Furui's [SF78] work, a number 
of measures of properties of the dynamic time warp warp-path were designed and extracted. 
Taken as a set these measures were found to be more strongly correlated with dialect, better 
discriminators of identity, and marginally worse discriminators of sex, than the DTW distance. 
This result has important implications for recognition systems based upon time alignment, 
where generally the warp path or its equivalent is discarded after calculation and not utilised. 
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By the incorporation of properties of the warp path in the vector for recognition, significant, 
and possibly major, improvements in recognition levels might be expected. Further, while the 
technique was only applied to prosodic parameters there appears no reason why it should not 
also be applicable to spectral parameters. In fact, taking the progression one step further, it 
appears that the technique could be taken beyond the analysis of speaker characteristics and 
applied to that of speech recognition where improvements in recognition rate might also be 
obtained due to temporal differences between the targeted speech 'elements'. 

A recurring theme of the analysis has been the comparison of the encoding of speaker char-
acteristics in dynamic or static properties of the parameters involved. Parameter normalisation, 
and splitting the measures into dynamic and static sets were both used to examine the encoding 
of speaker characteristics. Speaker identity and dialect were both found to be more strongly 
encoded in the dynamics of the parameters, whereas speaker sex was most strongly encoded in 
the static properties of FQ, though still to a lesser extent in the dynamics of the parameters. 
Therefore the importance of the dynamic properties of parameters should not be overlooked. 
Additionally, these invariant properties of dynamic parameters may prove 'useful' to recognition 
systems where external agencies may alter the static value of extracted parameters, for example 
recognition over noisy phone lines, or processing the voices of deep sea divers. 

Examining the four parameters FQ, voicing, energy and zero crossing rate separately it was 
found that for all three speaker characteristics each parameter carried relevant information. 
That is, that for all possible parameter-speaker characteristic pairings there was information 
relevant to the speaker characteristic encoded in the parameter. This result further strengthens 
the conclusion made in the literature review of the many-to-many relationship between speech 
parameters and speaker characteristics. Of the four parameters, FQ was found to contain the 
most encoded speaker-related (as opposed to message-related) information, regardless of the 
particular speaker characteristic; showing, as many other investigators have [DodTlb, Wol72, 
Wag78, Tit89] the significance of FQ in speaker characteristic analysis. Additionally, for both 
speaker identity and dialect, a log representation of FQ was found to give significantly better 
results than a linear scale FQ, implying the utility of a log version of FQ over linear for any 
recognition system seeking to employing FQ as an input parameter. 

As previously stated the 2 class discriminant analysis applied for both speaker identity 
and speaker sex is 'stricter' or yields lower 'scores' than most recognition system designs and 
classifiers [Ata76, 0'S86]. In fact it is expected that, for the current speaker population and 
parameters, 100% identification rates would be obtained for many trials if even a simple k-
nearest-neighbour decision algorithm was used. However, this very strictness of the discriminant 
algorithm is beneficial. Firstly it sets a lower bound on performance that could be achieved 
for a recognition system using similar input parameters. Secondly, many experimental systems 
with small speaker populations obtain very high recognition rates. Under such circumstances it 
is difficult to determine the impact of alterations in the experimental format, such as parameter 
set or measures, as all recognition rates are high. By setting stricter experimental criteria the 
impact of the changes upon a system under 'real world' conditions may possibly be more clearly 
seen. 
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A suite of twenty one measures of properties of the four prosodies, was trialed as to its utility 
in discriminating the three speaker characteristics. No single measure of the set was found to 
be the best or strongest under all conditions of parameter and speaker characteristic. In fact 
all measures appeared relevant to one or more speaker characteristics. 

Four different sentences were used throughout the experimentation. Definite and significant 
differences were found between the sentences eis to the inherent coding of speaker character-
istics. In particular sentence number 1: "I cannot remember it." was found to be the 'best' 
for all three speaker characteristics. This result shows that the choice of spoken material used 
in experiments has a strong influence upon the results. Correlation and discrimination rates 
for the individual sentences were examined against properties of the fours sentences such as 
duration, or voicing level. No fixed relationship applicable to all results (speaker characteris-
tic/sentence combinations) was found though duration (whether measured in seconds or number 
of phonemes) and voicing duration were in general good indicators. 

Ideally, a comprehensive and well designed study is required to abstract a set of guidelines 
or rules for choosing utterances for a speaker characteristic recognition system; e.g. speaker 
verification. A large corpus of different utterances from a number of speakers must be collected, 
and a number of properties of the different utterances defined and measured. Recognition 
experiments may then be run for the different utterances and the results correlated with the 
measured properties of the utterances. Based on these correlations, rules guiding the selection 
of utterances may be derived. Many factors must be considered in the design of such an 
experiment—speaker characteristic(s) examined, parameters extracted, utterance properties 
defined, utterance set, speaker set, type of recognition trial, etc. 

Increasing discrimination and correlation performance, as a function of increasing speech 
material, was modelled by growth curves. For all three speaker characteristics, and amount of 
speech material represented by mean duration in seconds or number of sentences, the model was 
found to satisfactorily represent the relationship. However the models could not satisfactorily 
represent all variance in obtained discrimination and correlation values, and gave unreliable 
estimates of upper limits upon performance. Clearly, as mentioned above, other factors than 
simply the amount of speech material affect performance and would need to be incorporated 
into any model if accurate judgements of performance for different experimental parameters 
(e.g., unlimited speech material) are required. 

Results for each of the three speaker characteristics were also examined on the basis of the 
individual speakers that comprised the speaker set. It was found that there was considerable 
variance in discriminant and correlation levels between particular speakers. For example there 
were speakers whose every utterance could clearly be recognised as theirs while for others it was 
not always possible (some inter-speaker measures being smaller than intra-speaker). Clearly 
then the choice of speaker set has major ramifications for the results obtained. A set of 'good' 
speakers will yield high correlation and recognition rates while a number of 'bad' speakers may 
greatly reduce such rates. Therefore there is a need to evaluate speaker sets to determine their 
uniqueness [Nod89] to better quantify the test-bed of speech data, and in order that these 
'trouble' speakers may be detected and suitable strategies designed to improve recognition for 
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these speakers, as it would appear that this is where considerable improvements in total system 
performance could be achieved. 



Chapter 8 

Method — Perceptual 
Experiments 

In the previous three chapters the method and results of an analytic investigation of the three 
speaker characteristics:- identity, sex, and dialect; have been presented and discussed. A com-
plementary approach, that was alluded to in Chapter 3 is that of using human perception to 
examine the acoustic correlates of speaker characteristics. 

Fundamental to the concept of such a scheme is a process of presenting speech material to 
a set of human listeners who provide judgements of the material. Said judgements are then 
compared and correlated with known qualities and parameters of the presented speech. 

Such a scheme is subjective by its very nature—listener judgements— and hence serves 
as a complement to the purely analytical approach. Moreover such an approach has direct 
application in areas such as speech synthesis and speech coding, whereas the analysis scheme 
is more applicable to speech or speaker recognition systems. 

This and the following two chapters shall present and discuss the method and results of a 
series of perceptually based experiments. The basic mechanism utilised in the examination of 
all three speaker characteristics was to compute a ^composite' utterance comprising two or four 
individual speakers. Individual parameters of the composite utterance were then systematically 
altered and correlated to listener judgements of the presented utterances. 

Following sections of this chapter will detail the experimental method—including the speech 
material, analysis-resynthesis system, listening experiments, and parameter alterations. 

8.1 Analysis-Resynthesis Scheme 

In order to compute a composite utterance from a number of speakers and allow the systematics 
alteration of prosodic speech parameters a means of analysing and resynthesising utterances 
was required. 

To this end the linear predictive [MAHG76] source-filter model of speech production was 
adopted. The model is well known and leads to a strong separation between the peirameters of 
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speech investigated—Fo, voicing, and energy— and the segmental or spectral parameters. 
The autocorrelation linear predictive algorithm [MAHG76] was applied to derive a 20-th 

order linear prediction spectrum, a voicing, Fo, and energy term, for each frame of 25ms, with 
a 12.5ms overlap. The voicing, FQ and energy terms extracted in the analysis experiments were 
substituted for those derived by the linear prediction; both due to the greater accuracy of the 
parameter values and in order that analysis and perception experiments parallel each other as 
much as possible. 

8.2 Speech Material 

A single sentence was selected to be used for all perception experiments. Based on the results 
of Chapter 6 the sentence: "I cannot remember it." - number 1, was selected because of 
its consistently high discrimination and correlation scores. A single utterance, that of each 
speaker's second recording session, was employed. 

All utterances used in experiments were hand segmented into the phonetic sequence:-

[ai <sil> k » riD t ro* m e m b© It] 

each segment being transformed to an integer frame number corresponding to frames of the 
linear predictive analysis. 

8.3 Speaker Characteristics 

As for the previous analysis experiments the three speaker characteristics, identity, sex, and 
dialect, were selected for investigation. In order to eliminate or minimise the contribution of 
the other two characteristics when a single characteristic was examined, speaker groups were 
selected for each characteristic such that unexamined speaker characteristic variance within the 
set was minimised. 

Hence, for the speaker identity trial two male speakers, numbers 7 and 12, were selected; 
both speakers having the same dialect score. For the speaker sex trials four speakers were 
selected, 2 female:- 3 and 4; and 2 male:- 9 and 14. Again, all four speakers had the same 
dialect score. Finally, for the dialect experiment, four male speakers:- 6, 10, 13 and 16 were 
selected, two from either end of the dialect scale. 

Besides the above criteria of minimising the influence of non-examined characteristics for 
each experiment other conditions were utilised in the selection of speakers. Firstly, no speaker 
used in the investigation of one characteristic was to be used in the examination of the other two 
characteristics, on the basis that association by the listeners could influence their responses. 
Secondly, based on the results of Section 6.10, speakers were selected, where possible, who 
were highly discriminable or correlated with the model for that particular characteristic. For 
example, speakers 3 and 4, used in the sex perception experiments, were 100% discernible 
as females in the sex analysis experiments. Based on these selection criteria the previously 
mentioned ten speakers were selected. 
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8.4 Composite Model 

Two significant problems need to be addressed when considering a perceptual investigation of 
the correlates of speaker characteristics to prosodic parameters. Firstly a method is required to 
neutralise or normalise the contribution of segmental or spectraP information in an utterance so 
that listeners' utilisation of prosodic parameters alone may be addressed. Secondly, for speaker 
characteristics other than identity, there is the problem of creating a single 'archetype' of that 
characteristic free of the influences of a single speaker. For example, all of speakers 0 through 
5 are female, yet they are each female with their own individuality and not solely female. 

A means of addressing these two problems is to generate a composite utterance, consisting 
of a number of component utterances from different speakers. Such a method 'averages' the 
spectral properties of the utterances while prosodic parameters may still be varied to that of one 
or the other of the component uttersuices. Further, combining a number of speakers, all with a 
single fixed speaker characteristic, leads to an 'archetype' utterance for that characteristic free 
of the influences of any single speaker. Alternatively, combining utterances from speakers of 
opposed or balanced characteristics, such as male and female speakers, may lead to a neuter 
utterance for that characteristic. Adjustments to parameters of the neuter utterance may then 
be correlated with listener alterations in perception. Figure 8.1 is a visual presentation of the 
scheme. 

rutteranceA 
n + 1 

f Utterancê  
1 

7 
Archetype 2 'Neuter' Archetypel 
Composite Composite Composite 

/'utterance'̂  
2n 

f Utterancê  
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Figure 8.1: Composite Model of Resynthesis scheme. Archetype utterances are composed via 
the incorporation of a number of utterances; each representing the chsu-acteristic to be modelled 
(e.g., utterances from a number of female speakers to create an archetype female utterance). A 
'neuter' utterance is then composed by combining two archetype utterances. 

^ Using the source-filter model of speech production associated with linear prediction the spectral information 
may be regzo-ded ea the co-efficients of the vocal filter. 
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8.5 Listener Experiments 

Three separate listening experiments were conducted in sequence, using the same set of listeners, 
one experiment for each of the three characteristics investigated. 

A total of sixteen listeners, eight male and eight female, ranging in age from 20 to 38 year 
took part in the experiments. No listeners reported any hearing defects and all bar two listeners 
were native speakers of Australian English. The two exceptions were speakers of British English 
and their judgements of speaker dialect were not incorporated into the results. 

Listeners were verbally presented with a series of instructions, reproduced in Appendix F, 
and invited to question any instruction that was unclear. 

As stated, three separate listener experiments were conducted, each consisting of between 7 
and 15 minutes of listening time. Between any two experiments a rest period of approximately 
5 minutes was imposed during which time listeners were encouraged to relax. 

All experiments were forced-decision, double-blind trials presented in a random order; each 
sample being presented twice during the listening experiment. A period of 2.5 seconds wcts 
inserted between the end of one listening unit and the start of the next in which time listeners 
were forced to make a decision; either by marking an appropriate box as for the identity and 
sex trials, or marking a point on a line for the dialect trials. 

Listeners were presented utterances in a micro-computer laboratory over stereo headphones 
(Dick Smith C-4101), a software script driving the presentation of the digitised utterances. 

8.6 Speech Alteration 

A number of alterations were made to the linear predicted speech parameters, both in order to 
generate composite utterances and to judge the effect of systematic parameter alteration upon 
listeners' perception of speaker characteristic. 

8.6.1 Piecewise Segmental Interpolation 

In order to compose a composite utterance it is necessary to time align utterances and param-
eters of different durations. Such an alignment may be achieved by performing a piecewise 
linear alignment for each of the segmental durations as derived from hand segmentation of the 
utterances. The basic algorithm, excluding special cases, for such a process is:-

Given: 
x [ l . . . N], the original contour 
S, the number of segments 
oldsizep], the original number of values in the i'th segment 
newsize[i], the target number of values for the i'th segment 

Calculate: 
y [ l . . .M] , the adjusted contour 

oldindex ^ 1 
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newindex 0 
for i ^ 1 to S do 

interpolation-factor oldsize[i]/newsize[i] 
weighting ^ 1 interpolation_factor 
for j •»— 1 to newsize[i] do 

weighting weighting + interpolation-factor 
while weighting > 1 do 

oldindex oldindex 1 
weighting ^ weighting - 1 

newindex ^ newindex + 1 
y[newindex] ^ weighting * x[oldindex-|-l] 

+ (1-weighting) * x[oldindex] 

In order to maintain filter stability the 20 linear prediction co-efficients representing each 
frame were transformed to reflection co-efficients (RC) using the STEPUP/STEPDN algorithm 
[MAHG76] for the interpolation process. 

8.6.2 Direct Parameter Substitution 

Fundamental to the listener experiments is the concept of directly substituting one or more 
prosodic parameter contours onto an extant utterance. Such a scheme is achieved by aligning 
the contour with the target utterance via the above interpolation method, followed by replacing 
the appropriate field in the linear prediction file. Such a process is applicable for the FQ, voicing, 
and energy parameters. 

8.6.3 Parameter Warping 

It is clear from the results of the analysis section that the warp path parameters, and hence 
relative dynamics of parameter contours carry significant speaker characteristic information. 
One means of investigating the perceptual significance of such information is to use the DTW 
mechanism to warp a contour to conform as closely as possible to another. Listener responses to 
the warped contour utterance may then be elicited aind contrasted to responses for the original 
and target contour utterances. 

Figure 8.2 shows the results of warping the Fo contours of two speakers towards each other. 
Speaker 7's Fo is the solid line; while speaker 12's is the broken. The first plot shows both 
speakers' Fo unaligned but transformed to the composite utterance duration via segmental 
interpolation. The second plot shows speaker 12's Fo warped to conform to speaker 7's; while 
the third plot shows speaker 7's warped to conform to speaker 12's. At no point does the 
warping process introduce new values, or discard old values; only compressing, by averaging 
multiple values together; and stretching, by repeating a single value a number of times. 

A simplified algorithm, showing the transformation to the 'horizontal' contour, of a warp 
matrix, alone is shown below. All notation used is that consistent with the explanation of DTW 
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Unwarped FOs 

Tbn« 

Speaker 12's Warped to match 

Speaker 7'8 Warped to match 

Figure 8.2: Original and warped FQ contours from speakers 7, solid line, and 12, broken line, for 
the sentence: "I cannot remember i t " . First plot shows both FQS unwarped. Second is speaker 
12's warped to match 7's, and third is 7's warped to match 12's. 
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in Chapter 5. It should be noted that the transformation algorithm for the vertical contour is 
isomorphic with the following algorithm. 

Given: 
w[k], the warp path transitions 
K, the number of warp path transitions 
a[i], the horizontal contour of length N 

Calculate: 
anew[j], the warped contour of a, of length M 

k ^ 1 
i ^ 1 

while k < K do 
sum 0 
count 0 
while w[k] = HORIZONTAL do 

i ^ i + 1 
sum •<— sum + a[i] 
count ^ count + 1 
k ^ k - f 1 

if count ^ 0 then 
anew[j] sum/count 
j - j + 1 

while w[k] = DIAGONAL do 
i ^ i - H 1 
anew[j] •»— a[i] 
j - j + 1 
k ^ k + 1 

while w[k] = VERTICAL do 
anew[j] a[i] 
j + 1 
k ^ k + 1 

Such a transformation may be applied to the parameters FQ, voicing and energy. 

8.6.4 Linear Parameter Alteration 
Another possible adjustment to a prosodic contour is to add or multiply each value on the 
contour by a fixed amount. Such an approach will be used in the speaker sex investigations 
where FQ contours will be linearly shifted to a mean of 165Hz. Such a scheme was accomplished 
by finding the mean of the original contour and comparing it with the new desired mean. 
Additive shift, which maintains absolute range and contour shape, was achieved by adding 
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the difference between the two means to each new contour value. Multiplicative shift, which 
compresses or expands contour shape and range, was performed by multiplying individual 
contour values by the ratio between the two means. Figure 8.3 shows speaker 3's original FQ 
contour for the sentence: "I cannot remember it.", and as shifted to a mean of 165Hz via the 
two methods. 

Transformed FOs 

I I 1 1 1 1 1 r-
0 10 20 30 40 50 60 70 80 90 

Time 

Figure 8.3: Linearly transformed FQ contours for the sentence: "I cannot remember it." as 
spoken by speaker 3. The unbroken line is the original contour, the 'dotted' line is the contour 
shifted to a mean of 165Hz by addition; while the 'dashed' line is the contour shifted to a mean 
of 165Hz by multiplication. 



Chapter 9 

Results — Perceptual 
Experiments 

The previous chapter outlined the method used in the conduct of the experiments to investi-
gate the relationship between listener perception of speaker characteristics and prosodic acoustic 
parameters. To reiterate, composite utterances will be generated and played to listeners. Pa-
rameters of the utterances—timing, FQ, voicing, and energy, will be systematically altered and 
the new utterance played to listeners to ascertain the importance of that parameter for listener 
perception of the characteristic examined. 

This chapter shall present the results of those experiments in three sections. Each section 
will correspond to a meta-class of experiments, one for each of the three speaker characteristics 
examined, namely:- speaker identity, speaker sex, and speaker dialect. 

9.1 Speaker Identity 

For the speaker identity experiments a single pair of speakers was selected in order that all 
parameter combinations could be thoroughly checked. The speakers selected, 7, known to 
the listeners as Alan and hereafter referred to as A, and 12, known to the listeners as Peter 
and hereafter referred to as B, were both male and had dialect scores of 2.5 (tending towards 
cultivated). For the utterance of "I cannot remember it.", used in the experiments, speaker A's 
utterance had a duration of 0.93 seconds amd a mean FQ of 114Hz; while speaker B's utterance 
was 1.20 seconds in length and had a mean FQ of 108Hz. 

From the utterances of A and B a single composite utterance was created. One concern 
with using such a model is the relative contribution of segmentail or spectrum information versus 
prosodic as to listener's judgement of identity. Therefore an initial investigation was conducted 
where prosodies were held fixed at the mean of the two speakers, while spectral information, 
the linear prediction co-efficients, was varied from 25% to 75% on a linear scale between the two 
speakers. For a small group of listeners, none of whom took part in the main experiments, it 
was found that an equal weighting, 50%, of A and B's LPC to an equal distribution in listener 
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responses to the question of who the speaker was. 

For the experiments four prosodic parameters were examined. These were Fo, voicing, 
energy, and segmental timing. Direct substitution of these parameters, both individually and 
in combination, was performed upon the composite utterance. Further, warping of the three 
parameters Fo, energy, and voicing (see Section 8.6.3) was performed and these alone, and 
in combination with each other and the segmental timing, were translated onto the composite 
utterance. Figures 9.1, 9.2 and 9.3 show the original and warped Fo, energy and voicing contours 
for the two speakers. 

Unwarpod FO Contours 

B's Warped to match 

A's Warped to match 

Figure 9.1: Original and warped Fo contours for speaker A, solid line, and B, broken line; 
uttering the sentence: "I cannot remember it.". First plot shows both Fqs unwarped. Second 
is speaker B's warped to matched A's; while the third is A's warped to match B's. 

For all result figures a barplot is used to show listener response distribution between speakers 
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Unwatped Energy Contours 

B's Warped to match 

A's Warped to match 

Figure 9.2: Original and warped Energy contours for Speaker A, solid line, and B, broken 
line; uttering the sentence: "I cannot remember it.". First plot shows both energies unwarped. 
Second is speaker B's warped to matched A's; while the third is A's warped to match B's. 
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Unwarped Voicing Contours 

B's Warped to match 

10 40 

Tkn* 
SO CO 80 

A's Warped to match 

Figure 9.3: Original and warped Voicing contours for speaker A, solid line, and B, broken 
line; uttering the sentence: "I cannot remember it.". First plot shows both voicings unwarped. 
Second is speaker B's warped to matched A's; while third is A's warped to match B's. 
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A and B. Central to each plot is the grouped listener response to the 'totally averaged' composite 
utterance; that is an utterance composed of 50% LP co-efficients and 50% prosodies from 
both speakers. This is the control against which listener responses to the alterations may be 
measured. For the result tables, the shift in response from that of the control utterance is 
shown, rather than absolute listener response. A chi-squared test of proportion [FW80] is used 
to determine the significance of the results. 

9.1.1 Parameter Substitution 

This section will present the results of the direct substitution of the non-warped parameters 
onto the composite utterance. 

Figure 9.4 and Table 9.1 show the results of listener responses to the substitution of a single 
prosodic parameter, from either speaker, onto the composite utterance. 

"Encoded" Type Perception 
Shift to A Shift to B 

î o 5 
A Energy 33 

Voicing 8 
Seg. Timing 23 
Fo 14 

B Energy 5 
Voicing 10 
Seg. Timing 0 0 

Table 9.1: Listener perception of identity based on a single encoded parameter. Rates shown 
are positive shift in percent, towards one speaker or the other, from the response to the control-
composite utterance. The left-most column indicates the speaker from whom the encoded 
parameter was derived. 

Two important facts may be noted from the figure and table. Firstly, the four prosodic 
parameters are not equivalent in their effect of listener perception of identity. While parameters 
such as energy or segmental timing appear to significsintly {5% level) alter listener perceptions, 
others such as voicing appear to have no significant effect upon identity perception. Secondly, 
the significance of a parameter does not appear to be necessarily bi-directional. That is that 
while encoding A's segmental timing upon the composite utterance significantly alters listener 
perception 'towards' A; encoding B's timing does not significantly alter the results. Thus, as 
others such as Van Lancker et. al. [LKE85, LKW85], and Takagi and Kuwabara [TK86] have 
shown, the significance of parameters in listener perception of identity is speaker dependent. 

While the alteration of a single prosodic parameter alone may give some indications of 
the cues utilised by listeners there are many other 'competing' cues which the listener may 
use. Consideration of two parameters both encoded to match a psu-ticular speaker's may yield 
further data. Figure 9.5 and Table 9.2 represent the results for the two parameter combinations 
examined. 

Contrasting the results with those for a single parameter it maybe seen that all paired 
combinations show as high as, and in all cases bar 1 higher, shifts in perception towards the 
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Figure 9.4: Listener perceptions of identity based on a single encoded parameter. Each plot 
present the results for a different encoded parameter. The left-most pair of bars on a plot show 
listener responses to an utterance containing speaker A's encoded parameter. The central pair 
of bars show listener response to the control composite utterance; while the right-most pair 
show listener response when speaker B is the originator of the encoded parameter. 
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Figure 9.5: Listener perceptions of identity based on two encoded parameters. Each plot present 
the results for a different encoded pair of parameters. The left-most pair of bars on a plot show 
listener responses to an utterance containing speaker A's encoded parameters. The central pair 
of bars show listener response to the control composite utterance; while the right-most pair 
show listener response when B is the originator of the encoded parameters. 
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""Encoded"' Type PercepUon 
Shift to A Shift to B 

Voicing K FQ 11 
A Voicing K Timing 42 

Energy k Timing 42 
Fo K Timing 36 
Voicing k FQ 24 

B Voicing k Timing 1 
Energy k Timing 11 
Fo k Timing 17 

Table 9.2: Listener perception of identity based on a two encoded parameters. Rates shown are 
positive shift in percent, towards one speaker or the other, from the response to the control-
composite utterance. The left-most column indicates the speaker from whom the encoded 
parameters were derived. 

originator of the parameter than either single parameter alone. All parameter combinations 
show a significance at the 5% level, though again; such a shift in perception is not bi-directionally 
significant. 

Finally, Figure 9.6 and Table 9.3 show the shifts in listener perception when all four prosodic 
parameters of one or the other speaker is encoded onto the composite utterance. 

""Encoded" Type Perception ""Encoded" Type 
Shift to A Shift to B 

All speaker A 51 
All speaker B 21 

Table 9.3: Listener perception of identity based on all four simultaneously encoded parameters. 
Rates shown are positive shift in percent, towards one speaker or the other, from the response 
to the control-composite utterance. 

Clearly, when all four prosodies are combined the greater weight, over 80%, of responses as 
to speaker identity favour the originator of the prosodies; indicating their significance in listener 
perception of identity. 

Based on these results it appears that all parameters examined make contributions to listener 
perception of identity. All parameters, however, are not equal in perceptual weighting, and their 
significance appears to be speaker dependent, voicing appearing to be the one consistently weak 
parameter. 

9.1.2 Warped Parameter Substitution 

This section presents the results of listener perceptions of substitution of warped parameters 
onto the composite utterance. 

Figure 9.7 and Table 9.4 present the results when a single parameter; Fo, voicing or energy; 
from a speaker is warped to match the corresponding contour from the other speaker and 
encoded in the composite utterance. 

While only marginal change is evident for Fo and voicing, substitution of energy yields 
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Figure 9.6: Listener perceptions of identity based on all four simultaneously encoded parame-
ters. The left-most pair of bars on a plot show listener responses to an utterance containing all 
speaker A's encoded parameters. The central pair of bars show listener response to the control 
composite utterance; while the right-most pair show listener response when B is the originator 
of the encoded pau^ameters. 

''Encoded'' Type Perception 
Shift to A Shift to B 

A 'sFo 12 
A's Energy 33 
A's Voicing 4 
B'sFo 4 
B's Energy 17 
B's Voicing 1 

Table 9.4: Listener perception of identity based on a single encoded warped parameter. Rates 
shown are positive shift in percent, towards one speaker or the other, from the response to the 
control-composite utterance. 
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Figure 9.7: Listener perceptions of icientity based on a single encocied warped parameter. Each 
plot present the results for a different encoded warped parameter. The left-most pair of bars 
on a plot show listener responses to an utterance containing speaker A's encoded parameter. 
The central pair of bars show listener response to the control composite utterance; while the 
right-most pair show listener response when B is the originator of the encoded parameter. 
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significant (5% level), and interesting, results. Whether speaker A or B's energy is the original, 
substituting either warped contour leads to an increase in identifications of A as the speaker. 
Such a result may indicate a uniqueness in A's energy contour that warping will not 'disguise', 
though B's may be warped to 'sound like' A. In general all listener perceptions shifted to some 
degree towards speaker A. 

Figure 9.8 and Table 9.5 show the results when two warped parameters or one speaker's 
warped parameter and the other's segmental timing are combined together. Significant results, 
at the 5% level are obtained for both timing and energy, and timing and FQ combinations. It 
appears that while parameters of speaker B's speech may be warped to such an extent that 
many listener responses indicate A as the speaker the reverse is not true of parameters of A's 
original utterance. The reason for this unidirectional shift in perception is unclear. 

"Encoded" Type Perception 
Shift to A Shift to B 

Voicing K FQ 7 
A Voicing -f P. Timing 5 

Energy -f P. Timing 18 
Fo P. Timing 11 
Voicing K FQ 2 

B Voicing -1- A. Timing 17 
Energy -f A. Timing 48 
Fo + A. Timing 22 

Table 9.5: Listener perception of identity based on two warped parameters or a warped pa-
rameter and the other speaker's segmental timing. Rates shown are positive shift in percent, 
towards one speaker or the other, from the response to the control-composite utterance. The 
left-most column indicates the speaker from whom the encoded warped parameter was derived. 

Figure 9.9 and Table 9.6 show the result of listener responses to composite utterances with 
the three warped parameters of a speaker encoded along with the other speaker's timing. 

"Encoded" Type Perception "Encoded" Type 
Shift to A Shift to B 

All A -1- B Timing 14 
All B + A Timing 48 

Table 9.6: Listener perception of identity based on the encoding of three warped parameters 
from one speaker and the other speaker's timing. Rates shown are positive shift in percent, 
towards one speaker or the other, from the response to the control-composite utterance. 

Clearly it may be seen that using A's segmental timing and the warped FQ, energy and 
voicing contours of speaker B over 80% of responses indicate a listener perception of the speaker 
as A. Further, the shift to A is 25% higher than using A's timing alone, a result which shows 
the significance (5% level) of warping in altering listener perception of identity. However the 
'transformation' does not apply in the other direction. Taking speaker B's timing and A's three 
warped parameters, listener response actually shifts further towards A, rather than towards B. 
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Figure 9.8: Listener perceptions of identity based on two warped parameters or a warped 
parameter and the other speaker's segmental timing. Each plot present the results for a different 
pair of parameters. The left-most pair of bars on a plot show listener responses to an utterance 
containing speaker A 's encoded warped parameter. The central pair of bars show listener 
response to the control composite utterance; while the right-most pair show listener response 
when B is the originator of the encoded warped parameter. 
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Figure 9.9: Listener perceptions of identity based on the encoding of three warped parameters 
from one speaker and the other speaker's timing. The left-most pair of bars on a plot show 
listener responses to an utterance containing all speaker A's encoded warped parameters. The 
central pair of bars show listener response to the control composite utterance; while the right-
most pair show listener response when B is the originator of the encoded warped parameters. 
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9.2 Speaker Sex 

For the speciker sex perception experiments four speakers, two male and two female, were 
selected to comprise the speech material. The sentence: "I cannot remember it." was again 
selected; and the four speakers; 3, 4, 9, and 14; all had dialect scores of 7 (this condition of 
having equal dialect scores limited the number of speakers that could be used to compose the 
composite utterance). The mean FQ of the two male speakers, designated male 1 and male 2, 
were 116Hz emd 133Hz respectively; while that of the two female speakers, designated female 1 
and 2, were 209Hz and 247Hz. 

A single composite or "androgynous" utterance was composed of equal weightings, 25%, 
of the utterances of the four speakers; which were segmentally aligned via the process of 
Section 8.6.3. Due to the well known significance of FQ in the perception of speaker sex 
[Col71, LHB'^76] an initial experiment was carried out with a small number of listeners who did 
not participate in the primary experiment. Using the androgynous utterance a flat FQ varying 
from 130 to 200Hz was synthesised. It was found that the point of equal distribution, between 
male and female, of listener responses, was at 165Hz. Based on such a result each speaker's FQ 
was also shifted to a mean of 165Hz via the method of Section 8.6.4. 

For each of the four speakers the three prosodic parameters Fq, energy and voicing were 
encoded alone and in combination upon the composite utterance and listener responses were 
gauged. Further the 'shifted' FQ parameters were encoded alone and in combination with the 
other two parameters from the same speaker. The results were then grouped on the basis of 
the sex of the speaker. 

Presentation of results follows the format of those for the speaker identity experiments, and 
a chi-squared based test of proportion differences [FW80] is used to determine the significance 
of the results. 

9.2.1 Original Parameters 

This section will present the results for the original three parameters as taken from each of the 
four speakers. Figure 9.10 and Table 9.7 show the results for the encoding of a single parameter 
upon the composite utterance. 

''Encoded" Perception 
Shift to Male Shift to Female 

Male FO 24 
Male Energy 3 
Male Voicing 7 
Female FQ 25 
Female Energy 4 
Female Voicing 7 

Table 9.7: Listener perception of sex based on a single encoded parameter. Rates shown are 
positive shift in percent, towards one sex or the other, from the response to the control-composite 
utterance. The left-most column indicates the parameter and its source. 
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Figure 9.10: Listener perceptions of sex based on a single encoded parameter. Each plot present 
the results for a different encoded parameter. The left-most pair of bars on a plot show mean 
listener response to utterances containing male derived parameters. The central pair of bars 
show listener response to the control composite utterance; while the right-most pair show mean 
listener response to female derived parameters. 
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Clearly, the addition of FQ to the composite significantly {5% level) influences listener per-
ception such that in all cases the majority of listener decisions favour the sex of the originating 
FQ. The other two parameters, energy and voicing, appear to have little impact upon listener 
perception of sex. For these parameters the listener response varies little from that of the purely 
'average' or androgynous utterance in which case listener response was of the ratio of 2 to 1 in 
favour of a female speaker. 

Figure 9.11 and Table 9.8 indicate listener responses when all three parameters; FQ, voicing, 
and energy; from a particular speaker are encoded upon the composite utterance. 

''Encoded" Perception ''Encoded" 
Shift to Male Shift to Female 

All Male 10 
All Female 22 

Table 9.8: Listener perception of sex based on the encoding all all three parameters from each 
of the four speakers utilised in the experiment and grouped on the basis of sex. Rates shown 
are positive shift in percent, towards one sex or the other, from the response to the control-
composite utterance. 
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Figure 9.11: Listener perceptions of sex based on the encoding of all three parameters from 
each of the four speakers utilised in the experiment and grouped on the basis of sex. The left-
most pair of bars on a plot show mean listener response to utterances containing male derived 
parameters. The central pair of bars show listener response to the control composite utterance; 
while the right-most pair show mean listener response to female derived parameters. 

It may be seen that listener responses vary from that of the androgynous utterance in relation 
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to the sex of the originator of the encoded contours. Utterances based on female prosodies 
appear clearly discernible as females to the listeners. Male derived utterances, however, are 
still perceived as being more female than male; even though there has been a minor increase in 
male responses, from the control androgynous utterance. The result appears further perplexing 
when contrasted with that of FQ alone encoded, Figure 9.10, where clearly that is sufficient to 
alter the majority of sex perceptions to the sex of the originator. 

9.2.2 Linear Shifted FQ 

This section will present the results of the listener sex perceptions for the 'shifted' FQ contours 
alone and in combination with the other two parameters from each speaker. Three methods were 
used to shift the mean FQ of all speakers to 165Hz. Additive - adding a constant; multiplicative 
- multiplying by a constant; and combined additive and multiplicative - additive, to 
then multiplicative. 

Figure 9.12 and Table 9.9 show the listener perception responses for the various transfor-
mation of FQ. 

''Encoded" Perception ''Encoded" 
Shift to Male Shift to Female 

Original Male FQ 24 
Additive Male FQ 3 
Mult. Male FQ 6 
Add.+Mult. Male FQ 14 
Original Female FQ 25 
Additive Female FQ 14 
Mult. Female FQ 11 
Add.-fMult. Female FO 19 

Table 9.9: Listener perception of sex based on the encoding of FQ, and shifted (to a mean of 
165Hz) Fo, from two male and two female speakers. Rates shown are positive shift in percent, 
towards one sex or the other, from the response to the control-composite utterance. The left-
most column indicates the parameter and its source. 

It is readily apparent that irrespective of the transformation or sex of the originator of the 
contour that listener response varies little from the 70% to 80% weighting towards female. Such 
a result indicates the significance of mean FQ in speaker sex perception. Further, as Spencer 
[Spe88] showed there appears a strong discontinuity in listener perception of sex based on mean 
FO, such that utterstnces below the 'transition' were perceived as male, and those above it 
female. Therefore, it would appear that in this case for at least 70% of the listener group their 
'transition' point for sex perception based on mean FQ was at a value below 165Hz. 

Figure 9.13 and Table 9.10 are presentations of the listener perceptions when the transformed 
Fo are combined with the energy and voicing of their original speaker. 

Contrasting the results with those of the FQ alone there appears an extremely high correla-
tion. Regardless of transformation or sex of originator; listener response varies from 60% to 80% 
towgtfds a femaJe speaker. Therefore the addition of energy and voicing contours has altered 
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Figure 9.12: Listener perceptions of sex based on the encoding of Fq, and shifted (to a mean of 
165Hz) FO, from two male and two female speakers. Each plot present the results for a different 
encoded representation of Fq. The left-most pair of bars on a plot show mean listener response to 
utterances containing male derived parameters. The central pair of bars show listener response 
to the control composite utterance; while the right-most pcdr show mean listener response to 
female derived parameters. 
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Figure 9.13: Listener perceptions of sex based on the encoding of FQ, or shifted (to a mean of 
165Hz) Fo, with energy and voicing, from two male and two female speakers. Each plot present 
the results for a different encoded representation of FQ. The left-most pair of bars on a plot 
show mean listener response to utterances containing male derived pwameters. The central 
pair of bars show listener response to the control composite utterance; while the right-most 
pair show mean listener response to female derived parameters. 
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"Encoded" Perception "Encoded" 
Shift to Male Shift to Female 

Original Male FQ 10 
Additive Male FQ 12 
Mult. Male FQ 11 
Add.-hMult. Male FQ 5 
Original Female FQ 22 
Additive Female FQ 9 
Mult. Female FQ 14 
Add.-hMult. Female FO 16 

Table 9.10: Listener perception of sex based on the encoding of FQ, and shifted (to a mean 
of 165Hz) Fo, with energy and voicing; from two male and two female speakers. Rates shown 
are positive shift in percent, towards one sex or the other, from the response to the control-
composite utterance. The left-most column indicates the FQ representation and its source. 

listener perception of sex very little, indicating the subordinate role of energy and voicing to 
FQ in listener judgements of speaker sex. 

9.3 Speaker Dialect 

For the speaker dialect experiments utterances of four speakers, all male, were selected for the 
speech material. Two speaikers, 10 and 13 with dialect scores of 1.5 and 2.5, were selected from 
the cultivated end of the dialect spectrum; while two others, 6 and 16 with dialect scores of 9 
and 8.5, were selected from the broad end of the dialect spectrum. As for previous perception 
experiments the sentence: "I cannot remember it." was selected as the base utterance and a 
composite or "general" utterance was composed of equal elements of a single utterance from 
each of the four speakers. The four component utterances were segmentally aligned prior to 
the composition of the general utterance. 

For each of the four speakers the three prosodic parameters FQ, energy, and voicing were 
encoded alone and in combination upon the composite utterance and listener responses were 
gauged. Further, the general utterance was time altered, duration increased and decreased, by 
values of 25% and 50% of its original value and played to listeners. 

Listener response to the verbal stimulus was to mark a point on a line indicating position 
of speaker/utterance on the dialect spectrum. The marked point was then converted into a 
distance from the base-point for a cultivated utterance and divided by the length of the original 
line to yield a value between 0 and 1. Results in the following sections are shown by plotting 
the distribution of listener response values for various logical groupings of encodings upon the 
general utterance; and tables showing the mean and standard deviation of the distributions. The 
statistical significance of the results are evaluated by performing an F-test [HW71] to compare 
variances, and a t-test [HW71] to compare means. In all comparisons the was found to be no 
significant, at the 5% level, difference in the variance of the distributions under comparison. 
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9.3.1 Listener Response Consistency 

This section explores two questions. Firstly, are untrained listeners capable of judging dialect 
with any degree of accuracy or consistency. Secondly, did the listeners adopt an absolute scale 
for dialect or one relative to the presented material. 

Brennan et. al. [BRD75] showed that naive listeners appeared consistent and accurate in the 
judgement of the accentedness of Spanish-English bilingual speakers. To test the consistency 
of the current listener set the distribution of listener responses to the general utterance was 
plotted. 

Further, to test the question of 'relative' or 'absolute' responses, the responses of each 
listener were linearly transformed, or normalised, such that their 'most cultivated' response 
was scored as 0; while the 'broadest' response was scored as 1; i.e. ensuring the entire range 
of values is used for each listener. The distributions of normalised and non-normalised listener 
responses to the general utterance could then be compared and contrasted. Figure 9.14 and 
Table 9.11 present these results. 

Response Type Mean Standard Deviation 
Un-normalised .50 .19 
Normalised .52 .23 

Table 9.11: Mean and standard deviation of listener dialect responses to the general utterance 
when responses are taken 'as is', or when normalised for each listener. Low response scores 
represent the perception of cultivated dialect by the listeners. 

Examining the figure it may be seen that the greater portion of listener responses to the 
general utterance are clustered about the centre of the response score spectrum; indicating a 
degree of consistency and accuracy between listeners. Therefore, though the utterance was syn-
thetic in nature and the hence the results must be regarding with some caution, it appears that 
within the context of this experiment naive Australian born listeners are consistent and reason-
ably accurate judges of Australian dialect. A far more thorough test with natural utterances is 
required, however, to ascertain the general validity of this claim. 

Comparison of the two distributions show that there is no statistical significance at the 5% 
level between the variances of the two distributions, given the current number of responses. 
However the un-normalised responses do have a marked lower variance, and hence appear a 
preferable means of representing listener responses. Therefore, for all subsequent results, the 
non-normalised listener response will be used. 

9.3.2 Parameter Encoding 

This section presents the results of listener responses to the encoding of the three parameters 
Fo, voicing and energy, alone and in combination; from each of the four speakers. Results are 
grouped on the basis of the dialect of the originator of the encoded parameter(s). Figure 9.15 
and Table 9.12 present analysis of the listener responses to the encoding of a single parameter. 

Statistical analysis of the results represented by the table and figure show that encoding 
of energy is the only parameter of the three that shows a significant diflference {5% level) 
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Figure 9.14: Distribution of listener dialect responses to the general utterance. Top plot is 
listener responses taken 'as is'; while lower plot is responses normalised for each listener. Low 
response scores represent the perception of cultivated dialect by the listeners. 

Parameter Cultivated Source Broad Source Parameter 
Mean Std. Dev. Mean Std. Dev. 

Energy .50 .19 .41 .17 
Voicing ,47 .17 .49 .19 
Fo .42 .22 .41 .18 

Table 9.12: Mean and standard deviation of listener dialect responses to the encoding of a 
single parameter, from the two cultivated and two broad dialect speakers, upon the composite 
utterance. Low response scores represent the perception of cultivated dialect by listeners. 
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Figure 9.15: Distribution of listener dialect responses to encodings of a single parameter upon 
the general utterance. Each plot represents a different parameter. The solid line represents 
utterances from broad dialect speakers, the broken line from cultivated dialect. Low response 
scores represent the perception of cultivated dialect by listeners. 
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between broad and cultivated sources. However the shift in dialect perception is opposite to 
that which might reasonably be expected. Cultivated source derived utterances have a mean 
around the centre of the dialect spectrum while broad source derived utterances have a mean 
shifted significantly towards the cultivated end of the spectrum. Examination of the four 
speaker's energy contours showed that listener perception appeared correlated with maximum 
intensity—high maximum energy perceived as broader, while lower maximum energy perceived 
as more cultivated. However other dynamic properties of the contours may be attributable as 
the cause of these results. 

Clearly no single parameter, encoded upon the general utterance, gives clear and unambigu-
ous perceptual indications of the dialect of the originator. 

Figure 9.16 and Table 9.13 show listener perception of dialect when all three prosodies from 
each speaker in turn are encoded. 

Source Mean Standard Deviation 
Cultivated .36 .18 
Broad .43 .20 

Table 9.13: Mean and standard deviation of listener dialect responses to composite utterances 
with energy, voicing, and FQ encoded from a single speaker, and grouped on the basis of the 
dialect of the speaker. Low response scores represent the perception of cultivated dialect by the 
listeners. 

While the table shows a minor difference in means there is no significant difference, at the 
5% level, between the two distributions. Further listener judgements of the two utterances 
are required to thoroughly examine this difference. Hence it may be concluded that under 
the conditions of the current experiment the prosodic parameters were insufficient cues for the 
listeners to discern the dialect of the originating speaker. 

9.3.3 Time Alteration 

This section will present an analysis of the listener perceptions of the general utterance when 
it is piecewise linearly (segment by segment) increased and decreased in duration by 25% and 
50% of its original value. Figure 9.17 and Table 9.14 present the results. 

Percentage 
Alteration 

Duration Decreased Duration Increased Percentage 
Alteration Mean Std. Dev. Mean Std. Dev. 
25% .40 .21 .61 .25 
50% .42 .23 .67 .28 

Table 9.14: Mean and standard deviation of listener dialect responses to time alterations to the 
general utterance. The general utterance was duration increased and decreased by values of 
25% and 50%. Low response scores represent the perception of cultivated dialect by listeners. 

Examination of the results shows that there is a discernible and significant {5% level) differ-
ence in the distributions for duration increased against duration decreased utterances, whether 
by 25% or 50%. It may be seen that in general listeners perceive a shorter utterance as o-
riginating from a more cultivated dialect speaker; while a longer utterance is perceived as 
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Figure 9.16: Distribution of listener dialect responses to composite utterances with energy, 
voicing, and Fo encoded from a single speaker, and grouped on the basis of the dialect of the 
speaker. Low response scores represent the perception of cultivated dialect by the listeners. 
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Figure 9.17: Distribution of listener dialect responses to linear adjustments, of 25% and 50%, 
to the duration of the general utterance. Responses to lengthened utterances are represented 
by the solid line; while shortened utterances are represented by the broken line. Low response 
scores represent the perception of cultivated dialect by listeners. 
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originating from a speaker of broader dialect. Shortening the utterance from 75% to 50% of 
its original length did not appreciably alter listeners' perception of dialect, whereas increasing 
duration from 125% to 150% of original did make the utterance 'broader' to listeners, though 
not significant at the 5% level. 

Clearly, duration is a factor in naive listener perception of dialect. This result is further 
supported by Lass et. al. [LMK78], who showed that rate alteration adversely affected correct 
listener identification of speaker 'race', indicating listener utilisation of cues based on speaking 
rate. 
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Chapter 10 

Discussion — Perception 
Experiments 

The previous two chapters introduced and applied the novel 'composite model' approach of 
emalysis-synthesis to the investigation of the perception of speaker characteristics. In particular 
three speaker characteristics: identity sex and dialect; and the prosodic parameters: FQ, voicing, 
energy, and segmental timing were examined. 

The speaker identity experiments were conducted using two speakers to build a composite 
utterance upon which each speaker's prosodies were encoded. Results for the encoding of a 
single parameter showed that all parameters are not equivalent in their degree of discrimination 
between the two speakers, at least from the listener perspective. Further the importance of a 
parameter varied according to the speaker. That is that while energy and segmental timing were 
significant in shifting perception towards speaker A when encoded from speaker A; the opposite 
was not true for the same parameters from speaker B; for whom FQ was the most significant. 
Such a result indicates that cue utilisation in the perception of identity by listeners is speaker 
dependent:- the significance of an acoustic parameter in determining a speaker's identity is a 
function of the speaker. 

When two parameters from a single speaker were both encoded upon the composite utter-
ance the shifts in listener perception became greater in magnitude than for a single parameter 
alone; and as previously of varying degrees dependent upon the parameter pair and the speaker 
they were encoded from. When all four prosodies from either speaker were encoded upon the 
composite utterance there was strong agreement, > 80%, across all listeners that the speaker 
was the originator of the four prosodies. 

Such a result indicates that the four parameters encoded upon a base composite utterance are 
sufficient to allow listeners to discriminate between two speakers with a high degree of accuracy. 
The three parameters: segmental timing, energy, and FQ all appeared to carry significant speaker 
specific information; while voicing appeared to make no significant contribution. 

In addition to the substitution of unaltered parameters, parameters time warped so as to 
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closely match that of the other speaker, were encoded upon the composite utterance. This ap-
proach intuitively sought to measure whether it was the 'shape' of a contour that listeners used; 
and was motivated by the results of Chapter 5 where it was found there was significant speaker 
specific information in the relative dynamics of a contour. As for the unaltered parameters; 
results for the warped parameters were not symmetrical between speakers. For a single warped 
parameter, no matter the parameter nor speaker from whom it was derived listener perception 
shifted towards speaker A. In particular energy showed the strongest shift. Examination of both 
speakers warped and unwarped energy contours show that speaker A's contour is particularly 
flat and monotone as compared to speaker B's. 

Results are altered somewhat when two parameters are encoded. Generally the shift in 
perception is stronger, though now not all shifts are towards speaker A. When all warped 
parameters from speaker B are encoded with A's timing there is a high degree of agreement 
amongst the listeners, > 80%, that the speaker is A. However using A's parameters and B's 
timing listener perception shifts towards A. These results indicate that warping may alter 
listener perception of speaker identity and hence the significance of the contour dynamics or 
'shape' as opposed to its mean. However, warping is not a guarantee of switching in listener 
perception; in this case the uniqueness of speaker A's energy contour and its difference from 
B's meant that it could not be warped to 'sound like' speaker B. 

One fact worthy of note is the listener perception of the 'mean' or composite utterance. If 
individual speaker's acoustic parameters used to comprise the composite were equally 'strong' or 
'unique' it could be expected that listener perception of identity would be divided approximately 
equally between A and B. However this is not the case with listener perception favouring speaker 
B at a 2:1 ratio. It may be that an 'extreme' or 'unique' parameter when averaged with a less 
'extreme' parameter is still sufficiently strong to alter listener perception. More work is required 
to examine this phenomenon. 

For the speaker sex experiments utterances from four speakers; two female, two male; were 
combined to form a composite 'neuter' utterance. As for the previous identity experiment 
listener response to the composite utterance strongly favoured one source over the other; in this 
case female by 2:1. 

Encoding of a single parameter upon the composite showed, as expected, that Fo strongly 
influenced listener perception, towards the sex of the originator. The other two parameter; 
energy and voicing had no significant efi'ect upon listener perception. When all three parameters 
were encoded together it was again found that listener perception shifted towards the sex of the 
originator. Interestingly, for male speakers the shift was significantly less than for that achieved 
by Fo alone; and in fact absolute perception of sex favours female by approximately 10%. It is 
unclear as to why this 'masking' of the effects of Fo should occur when energy and voicing are 
added. 

When Fo contours were linearly altered, by multiplication and/or addition to a mean of 
165Hz and encoded alone or in combination with energy and voicing it was found that listener 
response remained fundamentally invariant, regardless of the source of the parameters, at 70% 
to 80% in favour of female. This result combined with the above results for the unaltered FQ 
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show the importance of mean FQ, as opposed to its dynamics, in listener perception of sex. 

Speaker dialect perception experiments were carried out by composing a composite or 'gen-
eral' utterance from the utterances of four male speakers, two from either end of the dialect 
scale. Listener response to this general utterance showed a general Gaussian distribution, with 
'sidelobes', about the centre of the spectrum, indicating a degree of consistency and agreement 
between the listeners. When individual listener responses were normalised to cover the entire 
spectrum it was found that response to the general utterance was more diffuse, and hence less 
consistent between speakers. 

Encoding of a single parameter from each of the four speakers showed inconsistent and 
unreliable results. Little difference between broad and cultivated speaker distributions exists 
for the parameters FQ and voicing; while for energy the shift in perception was opposite to that 
of the originator. Examination of the energy contours shows that listener perception appears 
correlated to meiximum intensity: higher intensity being perceived as broader, lower intensity 
as more cultivated. However for both energy and FQ listener responses were widely distributed 
across the dialect spectrum implying a lack of common agreement amongst listeners and thus 
casting doubt upon the veracity of the results. 

When all three parameters from each speaker are encoded together there appears a minor 
difference in the distribution of listener responses: cultivated source composed utterances being 
perceived as more cultivated than broad source. However the difference is minimal and both 
distributions are shifted to the cultivated from that of the general utterances. This 'undecided' 
result is in no way surprising for, as was shown in the analysis investigation of dialect, while 
there appear general population trends in dialect as related to prosodies wide variations from 
this 'standard' may exist on an individual speaker basis. Clearly more data, both in terms of 
speaker and listener numbers are needed to thoroughly explore this topic. 

The general utterance was also linearly (segment by segment) increaused and decreased in 
duration by 25% and 50% of its original. Listener response was clearly correlated with duration 
such that shorter utterances were perceived as cultivated and longer as broader. A decrease 
in duration to 50% of original was not perceived significantly differently to the 75% duration 
utterance while the 150% duration utterance was significantly broader than the 125% duration 
utterance. The question of whether the perceived broadness of dialect for longer utterances ver-
sus cultivation for shorter, is a fact garnered from experience by listeners, or simply a stereotype 
of the slow drawling country speaker versus the faster city resident is unclear. However it may 
be seen that this is a perceived characteristic of dialect for the general listener. 

Unfortunately due to limits of time and speaker data it was impossible to obtain sufficient 
data to construct 'true' characteristic archetypes, nor to investigate multiple speaker pairings 
for speaker identity. However the above results appear to show the viability of the 'composite 
model' analysis-resynthesis scheme for the examination of speaker characteristics. Clearly other 
speaker characteristics; such as emotions, age or health; and other acoustic parameters including 
spectral characteristics could be investigated via this method. There is obviously a need for 
more speech data in order to utilise this scheme thoroughly. 

In informal discussion following experimentation many listeners made similar comments 
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which may shed some further light upon the results. Typical paraphrased comments include: "... 
part way through I found I changed what I was listening for..." [to determine the characteristic], 
and, "It was really hard to decide...". Apparently, a number of listeners altered the cues they 
utilised to determine identity, sex, or dialect, somewhere during the conduct of the experiment. 
This phenomenon of cue swapping requires further investigation. Secondly many decisions were 
not simple and this is likely to be attributable to the conflicting acoustic cues giving different 
messages as to speaker characteristic. 

Finally, no analysis of results on the basis of chsiracteristics of the listener was performed, 
due both to time constraints and the limited size of the listener set. However an informal 
examination of listener responses showed that there were marked differences between listeners 
as to their perception of the three speaker characteristics. Therefore the effect of listener upon 
results should not be discounted and it would be desirable with a larger listener set to examine 
results on characteristics of the listener set such as age and sex. 

The previous results barely 'scratch the surface' of the application of the 'composite model' 
method and leave as many new unanswered questions as those to which answers were sought 
initially. Obviously much work still needs to be done to explore the potential and limitations 
of this general resynthesis approach to the perception of speaker characteristics. 



Chapter 11 

Conclusion 

A database of sentence-long utterances from nineteen adult speakers of Australian English was 
collected. Four prosodic parameters—energy, fundamental frequency, voicing, and zero crossing 
rate were extracted and analytical and perceptually based investigations of the parameters' 
correlations to the speaker characteristics identity, sex, and dialect were carried out. A number 
of previously known and new results regarding the relationship of the parameters to the speaker 
characteristics were discovered. 

Analytical experiments were conducted using four of the fifteen different sentences recorded 
by speakers. Discriminant analysis was applied to examinations of the characteristics identity 
and sex, and least-squares-fit analysis for speaker dialect. Twenty-one measures of the properties 
of each of the paramieters were examined, the measures being logically split into two groups:-
dynamic—measures of the time varying properties of the parameter contours, and static— 
measures of the time invariant properties of the parameters. 

It was found that identity, sex, and dialect could be detected to significant degrees based 
on the parameters and sentences used:- identity and sex discrimination at 75% and 96% re-
spectively, and dialect correlated at 0.58. It is clear therefore that identity, sex, and dialect 
information is encoded in the prosodies examined. 

Comparison of dynamic measure based, and static measure based discrimination and correla-
tion rates showed that for all three speaker characteristics the dynamic measure set performance 
was equal to or superior to that of the static, though combined performance exceeded that of 
either alone. Clearly the dynamic measures extract more speaker-related information than the 
static measures, though dynamic measures do not encapsulate all of the information extracted 
by the static measures. 

Normalisation—linear shifting of parameter contours into the range 0-1 was used in order 
to 'distill' the dynamic properties. Discrimination rates for identity, and correlation for dialect, 
dropped little following normalisation, while sex discrimination rates dropped sharply. Discrim-
ination or correlation rates for each characteristic were contrasted between static measures of 
the non-normalised parameters and dynamic measures of the normalised parameters. Signifi-
cant differences were found in all cases such that speaker identity and dialect were found to be 
more strongly encoded in the time varying properties of the contours, while speaker sex was 
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more strongly encoded in the time invariant properties. 

A novel extension of the dynamic time warp algorithm was employed, where measures of the 
calculated warp path between two contours were examined for speaker characteristic encoded 
information. Most DTW based schemes implicitly calculate the warp path and discard it after 
deriving the DTW distance. It was found that both speaker identity and dialect were strongly 
encoded in the warp path measures, to such an extent that they were significantly 'better' 
than the DTW distance. For speaker sex the warp path measures were marginally inferior to 
the DTW distance. Clearly the DTW warp path—a measure of the relative dynamics of two 
contours, encodes temporal related speaker characteristic information to a high degree, which 
may be used to discriminate the speaker characteristics. 

The four basic parameters— energy, fundamental frequency, zero crossing rate, and voicing 
were individually investigated for encoded speaker characteristic information. >l//four parame-
ters were found to have encoded information relating to each of the three characteristics. Fun-
damental frequency was the 'best* (highest degree of encoding) parameter for all three speaker 
characteristics, though degree of encoding, and in general the relative 'worth' of parameters 
was speaker characteristic dependent. 

Four variant representations of fundamental frequency, based on log versus linear scale and 
interpolation across unvoiced or concatenated voiced only, were examined. For both speaker 
identity and dialect the log representation of FQ was found to be markedly superior to the linear 
scale. In all cases interpolation was equal or superior to concatenation. 

Discriminant or correlation performance for the three speaker characteristics was adequately 
modelled as a growth function of the amount of speech material used. However other factors 
than amount of speech material appear to influence discriminant/correlation levels so that 
accurate estimates of optimal performance were not possible, nor general guidelines regarding 
choice of utterance for text-dependent recognition systems. 

The twenty-one measures were individually compared and contrasted. It was found that all 
measures extracted some encoded speaker-related information and that no single mesisure stood 
as consistently strong for all combinations of characteristic-parameter. Clearly, the form or 
nature of encoding of speaker characteristics is parameter and speaker characteristic dependent. 

Discriminant and correlation results were analysed on the basis of the individual speakers 
that comprised the speaker population. For all three speaker characteristics results were found 
to be variable between individual speakers, and in particular highly variable for speaker dialect 
(showing prosodic correlates of dialect are general population 'trends', not firm constraints). 
That is, that for all three speaker characteristics their encoding within the parameters was 
speaker dependent. 

Perceptual experiments were conducted using a single sentence and a different subset of the 
speaker population for each of the three speaker characteristics. A novel method of analysis-
resynthesis using linear prediction to construct a composite utterance from a number of utter-
ances, and allowing the individual manipulation and alteration of energy, fundamental frequen-
cy, voicing, and timing was devised and used to evaluate listener utilisation of acoustic cues to 
speaker characteristics. 
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Identity perception experiments revealed that listeners used prosodic parameters to identify 
speaker and were capable of identifying speaker with a high degree of accuracy based on a 
combination of the four examined parameters. Weighting of parameters as perceptual cues to 
identity was found to vary between the parameters and be dependent upon speaker. That is, 
that listener cue utilisation was speaker dependent. In a parallel of the analytical examination 
of the warp path (dynamic differences) parameters from speakers were warped to match that 
of the other speaker's. In some parameter-speaker combinations listener perception was altered 
significantly based on the warping— showing listener utilisation of the dynamics of a contour 
for identity perception; while in others little or no alteration occurred. Clearly in some cases 
at least listeners use the dynamic (time varying) properties of a parameter more than its static 
(time invariant) properties to form judgements of speaker identity. 

Sex perception experiments showed the significance of mean fundamental frequency in lis-
tener perception of sex. Different dynamics of FQ and the parameters energy, and voicing were 
found to have no significant influence upon listener perception of sex. 

Dialect perception experiments were conducted using utterances of speakers from either end 
of the dialect spectrum. Naive listener response was generally found to be consistent, though 
under certain conditions of parameter alteration it became highly variable. Encoding of the 
parameters energy, fundamental frequency, and voicing showed no significant shift in listener 
perception consistent with the dialect of the originator of the parameter. Alterations in duration 
of utterance were found to significantly influence results such that shorter utterances were 
perceived as more cultivated while lengthened utterances were perceived as broader. Whether 
this listener perception is an externally imposed stereotype (e.g., media influence) and not a 
true representation of prosodic correlates of dialect for the Australian population, or a model 
drawn from listener experience is unclear, though results of the analysis section did show the 
significance of duration for speaker dialect. 

The results highlight several areas in which further work may be carried out. Both analyti-
cal and perceptual techniques may be applied to other speaker characteristics, such cis emotion, 
and to other speech parameters, such as spectral parameters. The perceptual experiments were 
limited in scope, the addition of more speakers and listeners would greatly strengthen and add 
to the results already achieved. Further examination of the phenomenon of listener perception 
of warped parameters is required. The assumption of the dialect difference as a linear scale 
may be an over-simplification and non-linear transformations may yield better results. Further 
investigation is required in order to determine what constitutes a good utterance for speaker 
recognition systems, and build accurate mathematical models of recognition performance based 
on parameters of the experiment— utterance, acoustic parameters, number of speakers etc. 
Following on from this, individual speaker variance in encoding of speaker characteristics re-
quires further examination both so that databases may be accurately quantified and compared, 
and so that existing recognition systems may be 'fine tuned' by targeting 'trouble' speakers. 
A means of quantifying the dynamics of a contour (DTW warp path) that did not require the 
comparison of two contours would be advantageous. A less restricted data set, where utter-
ances were sampled under normal conversational conditions, and hence are more variable and 
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dynamic appears desirable. Finally, implementing measures of the warp path in an existing 
recognition system would allow their evaluation under practical, application conditions. 



Appendix A 

Sentence Set 

1. "Cool shirts please me." 

2. "Pay the man first please." 

3. "I cannot remember it." 

4. "Papa needs two singers." 

5. "A few boys bought them." 

6. "Cash this bond please." 

7. "How do you know?" 

8. "A boy played a tune." 

9. "June danced hard." 

10. "The bear chews his paw." 

11. "Today I auctioned beer." 

12. "There she sits." 

13. "We are firm." 

14. "Are you poor?" 

15. "We were away a year ago." 
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Appendix B 

Speaker Information 

All speakers recorded for experimentation were asked to provide personal details of relevance to 
their language development. Due to different forms of communication:- electronic mail for some 
participants and physical mail for the others, no single format for a form was used. However 
the following information was provided by all talkers: 

Age As at November 1988. 

Gender 

Educat ion Number of years formal education, and 'highest' educational qualification. 

Occupat ion 

Paren ta l In format ion Occupation, country of birth, I'st Language/Dialect, and age on com-
ing to Australia (where applicable) of both parents. 

Places of Residence For each town or city in which the speaker had lived for six months 
or more the following information: Age during residence, town/city name, state, and 
country. 

Other Detai ls Items as judged by speakers as having been of relevance to their spoken lan-
guage development. Examples of singing and elocution lessons were given. 
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Appendix C 

Correlation Tables 

This appendix presents uP' values—ANOVA derived estimates of correlation between measure 
values and categorical speaker chwacteristics [HW71], for speaker identity and sex, and corre-
lation values for speaker dialect. These results show the relationship between all twenty one 
measures of all examined parameters—four parameters, with three alternate variants on Fo (7 
total), for both un-normalised and normalised forms of the parameters, and each of the four 
sentences ( 3 characteristics x 21 measures x [6 parameters x 2 treatments -f 1 parameter 
X 1 treatment^] x 4 sentences = 3276 separate results). The absolute magnitude of individ-
ual measures—for speaker identity and sex 0-1, and for dialect -1-1 —show the strength of 
relationship, and hence importance, of that particular parameter-measure-treatment-sentence 
combination for differentiating the speaker characteristic. 

The results are broken down into a hierarchical structure:- the three characteristics repre-
senting the major division with a subdivision into dynamic measures and static measures. Under 
these categories a number of tables, one for each parameter-treatment combination present the 
results as to individual sentence values. Rows of tables correspond to individual measures, with 
columns corresponding to sentences. 

C.l Speaker Identity 

The Tables C.1-C.26 present the values for all measures of all treatments of all parameters 
for each of the four test sentences. In the individual tables all values greater than or equal 
to 0.05 are emphasised in an attempt to highlight stronger, or 'better' measures. 

C.1.1 Dynamic Measure Correlation Tables 

Tables C.1-C.13 show the individual values for dynamic measures of all parameters from 

each sentence. 

^ Voicing is not normalised as it already lies within the range 0-1 . 
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Measures Sentences Measures 
1 2 3 4 Mean 

DTW Dist 0.07 0.03 0.04 0.07 0.05 
Weighted DTW Dist. 0.07 0.03 0.04 0.06 0.05 
Border DTW Dist. 0.07 0.03 0.04 0.07 0.05 
Warp Len./Contour Len. 0.01 0 0.01 0 0.01 
Vert. Trans. 0 0 0 0 0 
Horiz. lYans. 0.07 0.02 0.04 0.07 0.05 
Diag. Trans. 0.06 0.01 0.05 0.04 0.04 
Num. Vert. Excn 0 0 0 0.01 0 
Num. Horiz. Excn 0 0 0 0 0 
Num. Diag. Excn 0 0 0 0.02 0.01 
Max. Len. Vert. Excn 0 0 0 0 0 
Max. Len. Horiz. Excn 0.03 0.01 0.02 0.03 0.02 
Max. Len. Diag. Excn 0 0 0.01 0 0 
Off Diag. Wpath Dist. 0.06 0.03 0.04 0.07 0.05 

Table C.l : Speaker Identity. Estimated strength of relationship [correlation] of dynamic 
measure values to intra/inter Speaker categories. A quantification of each individual measure's 
ability to predict identity. Parameter: Energy. 

Measures Sentences Measures 
1 2 3 4 Mean 

DTW Dist 0.07 0.03 0.04 0.06 0.05 
Weighted DTW Dist. 0.06 0.03 0.05 0.05 0.05 
Border DTW Dist. 0.07 0.03 0.04 0.05 0.05 
Warp Len./Contour Len. 0 0 0 0 0 
Vert. IVans. 0 0 0 0 0 
Horiz. TVans. 0.06 0.03 0.04 0.06 0.05 
Diag. Trans. 0.04 0.02 0.04 0.03 0.03 
Num. Vert. Excn 0.01 0 0 0.01 0.01 
Num. Horiz. Excn 0 0 0 0 0 
Num. Diag. Excn 0 0 0 0.01 0 
Max. Len. Vert. Excn 0 0 0 0 0 
Max. Len. Horiz. Excn 0.02 0.02 0.02 0.02 0.02 
Max. Len. Diag. Excn 0 0 0 0 0 
Off Diag. Wpath Dist. 0.05 0.04 0.03 0.05 0.04 

Table C.2: Speaker Identity. Estimated strength (a;^) of relationship [correlation] of dynamic 
measure values to intra/inter Speaker categories. A quantification of each individual measure's 
ability to predict identity. Parameter: Normalised Energy. 
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Measures Sentences Measures 
1 2 3 4 Mean 

DTW Dist 0.06 0.03 0.06 0.08 0.06 
Weighted DTW Dist. 0.05 0.03 0.05 0.06 0.05 
Border DTW Dist. 0.05 0.03 0.06 0.01 0.05 
Warp Len./Contour Len. 0.05 0.08 0.05 0.01 0.06 
Vert. T^ans. 0.05 0.01 0.05 0.01 0.06 
Horiz. TVans. 0.01 0 0 0.01 0.01 
Diag. IVans. 0.03 0.02 0.02 0.04 0.03 
Num. Vert. Excn 0.11 0.12 0.08 0.11 0.11 
Num. Horiz. Excn 0.05 0.02 0.02 0.01 0.04 
Num. Diag. Excn 0.12 0.01 0.01 0.13 0.1 
Max. Len. Vert. Excn 0 0.01 0 0 0 
Max. Len. Horiz. Excn 0.01 0.02 0.01 0.02 0.02 
Max. Len. Diag. Excn 0.04 0.02 0.03 0.03 0.03 
Off Diag. Wpath Dist. 0.02 0.01 0 0.05 0.02 

Table C.3: Speaker Identity. Estimated strength (u;^) of relationship [correlation] of dynamic 
measure values to intra/inter Speaker categories. A quantification of each individual measure's 
ability to predict identity. Parameter: Concatenated Fq. 

Measures Sentences Measures 
1 2 3 4 Mean 

DTW Dist 0.03 0.02 0.01 0.02 0.02 
Weighted DTW Dist. 0.03 0.02 0.01 0.02 0.02 
Border DTW Dist. 0.03 0.02 0.01 0.01 0.02 
Warp Len./Contour Len. 0.01 0.01 0.02 0.01 0.01 
Vert. Trans. 0.01 0.01 0.02 0.01 0.01 
Horiz. Trans. 0 0.01 0 0.01 0.01 
Diag. Trans. 0 0 0 0 0 
Num. Vert. Excn 0.02 0.02 0.01 0.02 0.02 
Num. Horiz. Excn 0.01 0 0 0 0 
Num. Diag. Excn 0.02 0.01 0.01 0.01 0.01 
Max. Len. Vert. Excn 0 0 0 0 0 
Maoc. Len. Horiz. Excn 0 0.01 0 0.01 0.01 
Max. Len. Diag. Excn 0.01 0 0 0 0 
Off Diag. Wpath Dist. 0 0.01 0 0.02 0.01 

Table C.4: Speaker Identity. Estimated strength (u^) of relationship [correlation] of dynamic 
measure values to intra/inter Speaker categories. A quantification of each individual measure's 
ability to predict identity. Parameter: Normalised Concatenated Fq. 
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Measures Sentences Measures 
1 2 3 4 Mean 

DTW Dist 0.05 0.03 0.06 0.08 0.06 
Weighted DTW Dist. 0.04 0.03 0.05 0.07 0.05 
Border DTW Dist. 0.05 0.03 0.06 0.08 0.06 
Warp Len./Contour Len. 0.05 0.08 0.05 0.08 0.07 
Vert. Trans. 0.05 0.07 0.05 0.07 0.06 
Horiz. TVans. 0 0 0 0 0 
Diag. Trans. 0.02 0.02 0.01 0.03 0.02 
Num. Vert. Excn O.IS 0.13 0.07 0.11 0.11 
Num. Horiz. Excn 0.03 0.01 0.02 0.04 0.03 
Num. Diag. Excn 0.1 0.07 0.06 0.12 0.09 
Max. Len. Vert. Excn 0 0 0 0 0 
Max. Len. Horiz. Excn 0.01 0.01 0.01 0.03 0.02 
Max. Len. Diag. Excn 0.04 0.03 0.03 0.03 0.03 
Off Diag. Wpath Dist. 0.02 0.01 0 0.07 0.03 

Table C.5: Speaker Identity. Estimated strength (u;^) of relationship [correlation] of dynamic 
measure values to intra/inter Speaker categories. A quantification of each individual measure's 
ability to predict identity. Parameter: Interpolated FQ. 

Measures Sentences Measures 
1 2 3 4 Mean 

DTW Dist 0.05 0.05 0.03 0.09 0.06 
Weighted DTW Dist. 0.05 0.05 0.02 0.07 0.05 
Border DTW Dist. 0.05 0.05 0.02 0.07 0.05 
Warp Len./Contour Len. 0.03 0.04 0.02 0.03 0.03 
Vert. TYans. 0.03 0.04 0.02 0.03 0.03 
Horiz. Trans. 0 0 0 0.01 0 
Diag. Trans. 0.01 0.01 0 0 0.01 
Num. Vert. Excn 0.06 0.08 0.03 0.05 0.06 
Num. Horiz. Excn 0.01 0 0 0.01 0.01 
Num. Diag. Excn 0.04 0.04 0.02 0.04 0.04 
Max. Len. Vert. Excn 0 0 0 0 0 
Max. Len. Horiz. Excn 0.01 0.01 0.01 0.02 0.01 
Max. Len. Diag. Excn 0.03 0.01 0 0.01 0.01 
Off Diag. Wpath Dist. 0.02 0.02 0.01 0.06 0.03 

Table C.6: Speaker Identity. Estimated strength (w^) of relationship [correlation] of dynamic 
measure values to intra/inter Speaker categories. A quantification of each individual measure's 
ability to predict identity. Parameter: Normalised Interpolated FQ. 
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Measures Sentences Measures 
1 2 3 4 Mean 

DTW Dist 0.1 0.06 0.06 0.06 0.07 
Weighted DTW Dist. 0.08 0.07 0.04 0.04 0.06 
Border DTW Dist. 0.09 0.06 0.05 0.05 0.06 
Warp Len./Contour Len. 0.05 0.07 0.05 0.06 0.06 
Vert. Trans. 0.05 0.06 0.05 0.06 0.06 
Horiz. Trans. 0.01 0 0 0 0 
Diag. Trans. 0.03 0.01 0.02 0.03 0.02 
Num. Vert. Excn 0.11 0.12 0.09 0.11 0.11 
Num. Horiz. Excn 0.04 0.02 0.03 0.07 0.04 
Num. Diag. Excn 0.11 0.08 0.08 0.13 0.1 
Max. Len. Vert. Excn 0 0.01 0 0 0 
Max. Len. Horiz. Excn 0 0.02 0.02 0.02 0.02 
Max. Len. Diag. Excn 0.04 0.03 0.03 0.04 0.04 
Off Diag. Wpath Dist. 0.02 0.01 0 0.06 0.02 

Table C.7: Speaker Identity. Estimated strength (u^) of relationship [correlation] of dynamic 
measure values to intra/inter Speaker categories. A quantification of each individual measure's 
ability to predict identity. Parameter: Log-Concatenated FQ. 

Measures Sentences Measures 
1 2 3 4 Mean 

DTW Dist 0.06 0.04 0.03 0.07 0.05 
Weighted DTW Dist. 0.05 0.04 0.03 0.05 0.04 
Border DTW Dist. 0.05 0.04 0.03 0.06 0.05 
Warp Len./Contour Len. 0.02 0.03 0.01 0.01 0.02 
Vert. T^ans. 0.02 0.03 0.01 0.01 0.02 
Horiz. TYans. 0 0.01 0 0.01 0.01 
Diag. TVans. 0.01 0 0 0 0 
Num. Vert. Excn 0.07 0.07 0.03 0.05 0.06 
Num. Horiz. Excn 0.02 0.01 0.01 0.02 0.02 
Num. Diag. Excn 0.06 0.05 0.02 0.06 0.05 
Max. Len. Vert. Excn 0 0 0 0 0 
Max. Len. Horiz. Excn 0.01 0.02 0.01 0.01 0.01 
Max. Len. Diag. Excn 0.02 0.01 0.01 0.01 0.01 
Off Diag. Wpath Dist. 0.02 0.02 0.01 0.05 0.03 

Table C.8: Speaker Identity. Estimated strength (u;̂ ) of relationship [correlation] of dynamic 
measure values to intra/inter Speaker categories. A quantification of each individual measure's 
ability to predict identity. Parameter: Normalised Log-Concatenated FQ. 
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Measures Sentences Measures 
1 2 3 4 Mean 

DTW Dist 0.08 0.06 0.05 0.06 0.06 
Weighted DTW Dist. 0.01 0.05 0.03 0.04 0.05 
Border DTW Dist. 0.08 0.06 0.04 0.05 0.06 
Warp Len./Contour Len. 0.05 0.08 0.05 0.08 0.07 
Vert. lYans. 0.05 0.07 0.05 0.07 0.06 
Horiz. TVans. 0 0 0 0 0 
Diag. Trans. 0.02 0.02 0.01 0.03 0.02 
Num. Vert. Excn O.IS O.IS 0.07 0.1 J 0.11 
Num. Horiz. Excn 0.03 0.01 0.02 0.04 0.03 
Num. Diag. Excn 0.1 0.07 0.06 0.11 0.09 
Max. Len. Vert. Excn 0 0 0 0 0 
Max. Len. Horiz. Excn 0.01 0.01 0.01 0.03 0.02 
Max. Len. Diag. Excn 0.04 0.03 0.03 0.03 0.03 
Off Diag. Wpath Dist. 0.02 0.01 0 0.07 0.03 

Table C.9: Speaker Identity. Estimated strength (u^) of relationship [correlation] of dynamic 
measure values to intra/inter Speaker categories. A quantification of each individual measure's 
ability to predict identity. Parameter: Log-Interpolated FQ. 

Measures Sentences Measures 
1 2 3 4 Mean 

DTW Dist 0.05 0.04 0.02 0.07 0.05 
Weighted DTW Dist. 0.05 0.05 0.02 0.05 0.04 
Border DTW Dist. 0.05 0.04 0.02 0.05 0.04 
Warp Len./Contour Len. 0.02 0.05 0.01 0.03 0.03 
Vert. lYans. 0.02 0.04 0.01 0.02 0.02 
Horiz. TVans. 0 0 0.01 0.01 0.01 
Diag. IVans. 0.01 0.01 0 0 0.01 
Num. Vert. Excn 0.06 0.07 0.02 0.05 0.05 
Num. Horiz. Excn 0.01 0.01 0 0.01 0.01 
Num. Diag. Excn 0.04 0.04 0.01 0.04 0.03 
Max. Len. Vert. Excn 0 0 0 0 0 
Max. Len. Horiz. Excn 0.01 0.01 0.01 0.02 0.01 
Max. Len. Diag. Excn 0.03 0.01 0 0.01 0.01 
Off Diag. Wpath Dist. 0.02 0.02 0 0.05 0.02 

Table C.IO: Speaker Identity. Estimated strength (w^) of relationship [correlation] of dynamic 
measure values to intra/inter Speaker categories. A quantification of each individual measure's 
ability to predict identity. Parameter: Normalised Log-Interpolated FQ. 
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Measures Sentences Measures 
1 2 3 4 Mean 

DTW Dist 0.02 0 0.01 0.02 0.01 
Weighted DTW Dist. 0.02 0 0.01 0.02 0.01 
Border DTW Dist. 0.02 0 0.01 0.02 0.01 
Warp Len./Contour Len. 0 0 0 0 0 
Vert. IVans. 0 0 0 0 0 
Horiz. Trans. 0.06 0.03 0.03 0.01 0.05 
Diag. lYans. 0.06 0.03 0.03 0.01 0.05 
Num. Vert. Excn 0 0 0 0.01 0 
Num. Horiz. Excn 0 0.01 0 0.01 0.01 
Num. Diag. Excn 0 0.01 0 0.01 0.01 
Max. Len. Vert. Excn 0 0 0 0.01 0 
Max. Len. Horiz. Excn 0.04 0.03 0.02 0.06 0.04 
Max. Len. Diag. Excn 0.01 0.01 0.01 0.01 0.01 
Off Diag. Wpath Dist. 0.04 0.02 0.01 0.05 0.03 

Table C . l l : Speaker Identity. Estimated strength (w^) of relationship [correlation] of dynamic 
measure values to intra/inter Speaker categories. A quantification of each individual measure's 
ability to predict identity. Parameter: Voicing. 

Measures Sentences Measures 
1 2 3 4 Mean 

DTW Dist 0.01 0.05 0.03 0.04 0.05 
Weighted DTW Dist. 0.01 0.04 0.03 0.04 0.05 
Border DTW Dist. 0.06 0.05 0.03 0.04 0.05 
Warp Len./Contour Len. 0 0 0 0 0 
Vert. Trans. 0 0 0 0 0 
Horiz. lYans. 0.05 0.01 0.02 0.06 0.04 
Diag. Trans. 0.04 0 0.01 0.03 0.02 
Num. Vert. Excn 0.02 0.01 0.02 0.02 0.02 
Num. Horiz. Excn 0 0 0 0 0 
Num. Diag. Excn 0.02 0.01 0.02 0.01 0.02 
Max. Len. Vert. Excn 0 0 0 0 0 
Max. Len. Horiz. Excn 0.03 0.01 0.02 0.02 0.02 
Max. Len. Diag. Excn 0 0.01 0 0 0 
Off Diag. Wpath Dist. 0.08 0.04 0.05 0.06 0.06 

Table C.12: Speaker Identity. Estimated strength (w^) of relationship [correlation] of dynamic 
measure values to intra/inter Speaker categories. A quantification of each individual measure's 
ability to predict identity. Parameter: Zero Crossings. 
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Measures Sentences Measures 
1 2 3 4 Mean 

DTW Dist 0.03 0.01 0.01 0.01 0.02 
Weighted DTW Dist. 0.03 0.01 0.01 0.01 0.02 
Border DTW Dist. 0.03 0.01 0.01 0.01 0.02 
Warp Len./Contour Len. 0 0 0 0.01 0 
Vert. Trans. 0 0 0 0.01 0 
Horiz. T^ans. 0.04 0.02 0.02 0.03 0.03 
Diag. Trans. 0.02 0 0.01 0 0.01 
Num. Vert. Excn 0.01 0.01 0.02 0.01 0.01 
Num. Horiz. Excn 0 0 0 0 0 
Num. Diag. Excn 0.01 0 0.01 0 0.01 
Max. Len. Vert. Excn 0 0 0 0 0 
Max. Len. Horiz. Excn 0.02 0.01 0.01 0.01 0.01 
Mjix. Len. Diag. Excn 0 0 0 0 0 
Off Diag. Wpath Dist. 0.05 0.01 0.02 0.03 0.03 

Table C.13: Speaker Identity. Estimated strength (a;^) of relationship [correlation] of dynamic 
measure values to intra/inter Speaker categories. A quantification of each individual measure's 
ability to predict identity. Parameter: Normalised Zero Crossings. 
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C. l . 2 Static Measure Correlation Tables 

Tables C.14-C.26 show the individual values for static measures of all parameters from all 
sentences. 

Measures Sentences Measures 
1 2 3 4 Mean 

Mean 0.02 0.01 0.01 0.02 0.02 
Std. Dev. 0.01 0 0.01 0.02 0.01 
Min. 0.01 0 0 0 0 
Max. 0 0 0.01 0.01 0.01 
Range 0 0 0 0 0 
Mean Rate Change 0.02 0.03 0.03 0.02 0.03 
Length 0.03 0.02 0.02 0.05 0.03 

Table C.14: Speaker Identity. Estimated strength (a?^) of relationship [correlation] of static 
measure values to intra/inter Speaker categories. A quantification of each individual measure's 
ability to predict identity. Parameter: Energy. 

Measures Sentences 
1 2 3 4 Mean 

Mean 0.01 0 0 0 0 
Std. Dev. 0.01 0.01 0.01 0.02 0.01 
Mean Rate Change 0 0.02 0.01 0.01 0.01 
Length 0.03 0.02 0.02 0.05 0.03 

Table C.15: Speaker Identity. Estimated strength (w^) of relationship [correlation] of static 
measure values to intra/inter Speaker categories. A quantification of each individual measure's 
ability to predict identity. Parameter: Normalised Energy. 
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Measures Sentences Measures 
1 2 3 4 Mean 

Mean 0.04 0.03 0.05 0.06 0.05 
Std. Dev. 0.03 0.03 0.02 0.05 0.03 
Min. 0.05 0.03 0.03 0.03 0.04 
Max. 0.02 0.05 0.04 0.04 0.04 
Range 0.02 0.04 0.01 0.04 0.03 
Mean Rate Change 0.02 0.04 0.01 0.04 0.03 
Length 0.01 0.03 0.01 0.02 0.02 

Table C.16: Speaker Identity. Estimated strength of relationship [correlation] of static 
measure values to intra/inter Speaker categories. A quantification of each individual measure's 
ability to predict identity. Parameter: Concatenated FQ. 

Measures Sentences Measures 
1 2 3 4 Mean 

Mean 0.01 0.01 0.01 0.01 0.01 
Std. Dev. 0 0.01 0 0.01 0.01 
Mean Rate Change 0.01 0.01 0 0 0.01 
Length 0.01 0.03 0.01 0.02 0.02 

Table C.17: Speaker Identity. Estimated strength (w^) of relationship [correlation] of static 
measure values to intra/inter Speaker categories. A quantification of each individual measure's 
ability to predict identity. Parameter: Normalised Concatenated FQ. 

Measures Sentences Measures 
1 2 3 4 Mean 

Mean 0.04 0.03 0.06 0.06 0.05 
Std. Dev. 0.03 0.03 0.03 0.05 0.04 
Min. 0.05 0.03 0.03 0.03 0.04 
Max. 0.02 0.05 0.04 0.04 0.04 
Range 0.02 0.04 0.01 0.04 0.03 
Mean Rate Change 0.03 0.04 0.02 0.04 0.03 
Length 0.01 0.03 0.02 0.04 0.03 

Table C.18: Speaker Identity. Estimated strength (w^) of relationship [correlation] of static 
measure values to intra/inter Speaker categories. A quantification of each individual measure's 
ability to predict identity. Parameter: Interpolated FQ. 

Measures Sentences Measures 
1 2 3 4 Mean 

Mean 0.01 0.01 0.01 0.01 0.01 
Std. Dev. 0 0 0 0.01 0 
Mean Rate Change 0.01 0.01 0 0 0.01 
Length 0.01 0.03 0.02 0.04 0.03 

Table C.19: Speaker Identity. Estimated strength (u;^) of relationship [correlation] of static 
measure values to intra/inter Speaker categories. A quantification of each individual measure's 
ability to predict identity. Parameter: Normalised Interpolated FQ. 
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Measures Sentences Measures 
1 2 3 4 Mean 

Mean 0.04 0.04 0.03 0.05 0.04 
Std. Dev. 0.04 0.03 0.02 0.03 0.03 
Min. 0.01 0.01 0 0.01 0.01 
Max. 0.02 0.05 0.03 0.04 0.04 
Range 0.02 0.02 0.01 0.02 0.02 
Mean Rate Change 0.03 0.04 0.01 0.03 0.03 
Length 0.01 0.04 0.01 0.02 0.02 

Table C.20: Speaker Identity. Estimated strength (u? )̂ of relationship [correlation] of static 
measure values to intra/inter Speaker categories. A quantification of each individual measure's 
ability to predict identity. Parameter: Log-Concatenated FQ. 

Measures Sentences Measures 
1 2 3 4 Mean 

Mean 0.01 0.01 0.01 0.01 0.01 
Std. Dev. 0 0.01 0 0.01 0.01 
Mean Rate Change 0.01 0.02 0 0 0.01 
Length 0.01 0.04 0.01 0.02 0.02 

Table C.21: Speaker Identity. Estimated strength (u^) of relationship [correlation] of static 
measure values to intra/inter Speaker categories. A quantification of each individual measure's 
ability to predict identity. Parameter: Normalised Log-Concatenated FQ. 

Measures Sentences 
1 2 3 4 Mean 

Mean 0.04 0.03 0.03 0.05 0.04 
Std. Dev. 0.05 0.03 0.02 0.03 0.03 
Min. 0.01 0 0 0.01 0.01 
Max. 0.02 0.05 0.04 0.05 0.04 
Range 0.03 0.02 0.01 0.03 0.02 
Mean Rate Change 0.03 0.02 0.02 0.03 0.03 
Length 0.01 0.03 0.02 0.04 0.03 

Table C.22: Speaker Identity. Estimated strength (u^) of relationship [correlation] of static 
measure values to intra/inter Speaker categories. A quantification of each individual measure's 
ability to predict identity. Parameter: Log-Interpolated FQ. 

Measures Sentences 
1 2 3 4 Mean 

Mean 0.01 0.01 0 0.01 0.01 
Std. Dev. 0 0 0 0 0 
Mean Rate Change 0.02 0.01 0 0.01 0.01 
Length 0.01 0.03 0.02 0.04 0.03 

Table C.23: Speaker Identity. Estimated strength (u^) of relationship [correlation] of static 
measure values to intra/inter Speaker categories. A quantification of each individual measure's 
ability to predict identity. Parameter: Normalised Log-Interpolated FQ. 
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Measures Sentences 
1 2 3 4 Mean 

Mean 0.01 0.01 0 0.01 0.01 
Std. Dev. 0.01 0.01 0 0 0.01 
Mean Rate Change 0.01 0.01 0 0 0.01 
Length 0 0 0 0.01 0 

Table C.24: Speaker Identity. Estimated strength (u;^) of relationship [correlation] of static 
measure values to intra/inter Speaker categories. A quantification of each individual measure's 
ability to predict identity. Parameter: Voicing. 

Measures Sentences Measures 
1 2 3 4 Mean 

Mean 0.03 0.04 0.02 0.03 0.03 
Std. Dev. 0.04 0.01 0.01 0.01 0.02 
Min. 0 0 0 0 0 
Max. 0.04 0.01 0.01 0.01 0.02 
Range 0.04 0.01 0.01 0 0.02 
Mean Rate Change 0.03 0 0.01 0.01 0.01 
Length 0.03 0.02 0.02 0.05 0.03 

Table C.25: Speaker Identity. Estimated strength (u;^) of relationship [correlation] of static 
measure values to intra/inter Speaker categories. A quantification of each individual measure's 
ability to predict identity. Parameter: Zero Crossings. 

Measures Sentences 
1 2 3 4 Mean 

Mean 0.01 0 0.01 0 0.01 
Std. Dev. 0 0 0 0 0 
Mean Rate Change 0 0 0.02 0 0.01 
Length 0.03 0.02 0.02 0.05 0.03 

Table C.26: Speaker Identity. Estimated strength (w') of relationship [correlation] of static 
measure values to intra/inter Speaker categories. A quantification of each individual measure's 
ability to predict identity. Parameter: Normalised Zero Crossings. 
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C.2 Speaker Sex 
The Tables C.27-C.52 present the values for all measures of all treatments of all parameters 
for each of the four test sentences. In the individual tables all values greater than or equal 
to 0.05 are emphasised in an attempt to highlight stronger, or 'better' measures. 

C.2.1 Dynamic Measure Correlation Tables 

Tables C.27-C.39 show the individual values for dynamic measures of all parameters from 
all sentences. 

Measures Sentences 
1 2 3 4 Mean 

DTW Dist 0.02 0.05 0 0.01 0.02 
Weighted DTW Dist. 0.06 0.05 0.01 0.02 0.03 
Border DTW Dist. 0.03 0.05 0 0.01 0.02 
Warp Len./Contour Len. 0.01 0.01 0.02 0.01 0.01 
Vert. lYans. 0 0.01 0.02 0.01 0.01 
Horiz. Trans. 0 0 0 0 0 
Diag. lYans. 0.01 0.01 0 0 0.01 
Num. Vert. Excn 0 0.01 0.01 0.01 0.01 
Num. Horiz. Excn 0.01 0 0 0 0 
Num. Diag. Excn 0.02 0.01 0 0.01 0.01 
Max. Len. Vert. Excn 0.01 0 0.01 0.02 0.01 
Max. Len. Horiz. Excn 0.03 0 0 0 0.01 
Max. Len. Diag. Excn 0 0.03 0.01 0 0.01 
Off Diag. Wpath Dist. O.IS 0.02 0.06 0.03 0.06 

Table C.27: Speaker Sex. Estimated strength of relationship [correlation] of dynamic 
measure values to intra/inter Sex categories. A quantification of each individual measure's 
ability to predict sex. Parameter: Energy. 
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Measures Sentences Measures 
1 2 3 4 Mean 

DTW Dist 0 0 0 0 0 
Weighted DTW Dist. 0.01 0 0 0.01 0.01 
Border DTW Dist. 0 0 0 0 0 
Warp Len./Contour Len. 0 0.01 0.02 0.01 0.01 
Vert. IVans. 0 0.01 0.02 0.01 0.01 
Horiz. Trans. 0 0 0 0 0 
Diag. Trans. 0 0.01 0 0 0 
Num. Vert. Excn 0 0 0.01 0 0 
Num. Horiz. Excn 0 0 0 0 0 
Num. Diag. Excn 0 0 0 0 0 
Max. Len. Vert. Excn 0 0 0.02 0.01 0.01 
Max. Len. Horiz. Excn 0.01 0.01 0 0 0.01 
Max. Len. Diag. Excn 0 0.01 0.01 0 0.01 
Off Diag. Wpath Dist. 0.09 0.02 0.06 0.01 0.05 

Table C.28: Speaker Sex. Estimated strength (u^) of relationship [correlation] of dynamic 
measure values to intra/inter Sex categories. A quantification of each individual measure's 
ability to predict sex. Parameter: Normalised Energy. 

Measures Sentences Measures 
1 2 3 4 Mean 

DTW Dist 0.82 0.74 0.12 0.8 0.11 
Weighted DTW Dist. 0.11 0.65 0.1 0.61 0.68 
Border DTW Dist. 0.82 0.12 0.12 0.11 0.16 
Warp Len./Contour Len. 0.49 0.35 0.38 0.51 0.45 
Vert. Trans. 0.53 0.31 0.41 0.62 0.48 
Horiz. IVans. 0.14 0.14 0.06 0.25 0.15 
Diag. Trans. 0.38 0.31 0.23 0.5 0.36 
Num. Vert. Excn 0.41 0.3 0.34 0.49 0.4 
Num. Horiz. Excn 0.19 0.11 0.01 0.33 0.18 
Num. Diag. Excn 0.38 0.21 0.2 0.49 0.32 
Max. Len. Vert. Excn 0.45 0.31 0.38 0.49 0.41 
Max. Len. Horiz. Excn 0 0.01 0 0 0 
Max. Len. Diag. Excn 0.04 0.01 0 0.22 0.01 
Off Diag. Wpath Dist. 0.11 0.11 0.04 0.11 0.09 

Table C.29: Speaker Sex. Estimated strength (w^) of relationship [correlation] of dynamic 
measure values to intra/inter Sex categories. A quantification of each individual measure's 
ability to predict sex. Parameter: Concatenated FQ. 
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Measures Sentences Measures 
1 2 3 4 Mean 

DTW Dist 0 0 0.01 0.03 0.01 
Weighted DTW Dist. 0.01 0 0.01 0.04 0.02 
Border DTW Dist. 0 0 0.01 0.02 0.01 
Warp Len./Contour Len. 0 0 0 0 0 
Vert. Trans. 0.01 0 0 0.01 0.01 
Horiz. IVans. 0.01 0 0 0.01 0.01 
Diag. Trans. 0 0 0 0 0 
Num. Vert. Excn 0 0 0.01 0.01 0.01 
Num. Horiz. Excn 0 0 0 0 0 
Num. Diag. Excn 0 0 0.01 0 0 
Max. Len. Vert. Excn 0.01 0 0 0 0 
Max. Len. Horiz. Excn 0.01 0.01 0 0 0.01 
Max. Len. Diag. Excn 0 0 0 0 0 
Off Diag. Wpath Dist. 0.02 0 0 0.03 0.01 

Table C.30: Speaker Sex. Estimated strength (u;^) of relationship [correlation] of dynamic 
measure values to intra/inter Sex categories. A quantification of each individual measure's 
ability to predict sex. Parameter: Normalised Concatenated Fq. 

Measures Sentences Measures 
1 2 3 4 Mean 

DTW Dist 0.83 0.75 0.73 0.81 0.78 
Weighted DTW Dist. 0.72 0.65 0.68 0.61 0.67 
Border DTW Dist. 0.82 0.73 0.73 0.78 0.76 
Warp Len./Contour Len. 0.47 0.38 0.44 0.55 0.46 
Vert. Trans. 0.5 J 0.4 0.47 0.6 0.5 
Horiz. TVans. 0.26 0.12 0.1 0.33 0.2 
Diag. Trans. 0.49 0.3 0.31 0.54 0.41 
Num. Vert. Excn 0.42 0.32 0.34 0.48 0.39 
Num. Horiz. Excn 0.23 0.08 0.11 0.33 0.19 
Num. Diag. Excn 0.4 0.2 0.25 0.51 0.34 
Max. Len. Vert. Excn 0.41 0.34 0.42 0.48 0.41 
Max. Len. Horiz. Excn 0.01 0.01 0 0 0.01 
Max. Len. Diag. Excn 0.03 0.02 0 0.22 0.07 
Off Diag. Wpath Dist. 0.17 0.11 0.07 0.13 0.12 

Table C.31: Speaker Sex. Estimated strength (u;^) of relationship [correlation] of dynamic 
measure values to intra/inter Sex categories. A quantification of each individual measure's 
ability to predict sex. Parameter: Interpolated Fq. 
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Measures Sentences 
1 2 3 4 Mean 

DTW Dist 0 0 0 0 0 
Weighted DTW Dist. 0 0 0.01 0 0 
Border DTW Dist. 0 0 0 0 0 
Warp Len./Contour Len. 0.01 0 0.01 0 0.01 
Vert. Trans. 0.01 0 0.01 0 0.01 
Horiz. IVans. 0 0 0 0 0 
Diag. Trans. 0 0 0 0 0 
Num. Vert. Excn 0 0 0.01 0 0 
Num. Horiz. Excn 0 0 0 0 0 
Num. Diag. Excn 0 0 0 0 0 
Max. Len. Vert. Excn 0 0 0 0 0 
Max. Len. Horiz. Excn 0 0 0.01 0 0 
Max. Len. Diag. Excn 0 0 0.01 0.01 0.01 
Off Diag. Wpath Dist. 0 0.01 0.02 0 0.01 

Table C.32: Speaker Sex. Estimated strength (w^) of relationship [correlation] of dynamic 
measure values to intra/inter Sex categories. A quantification of each individual measure's 
ability to predict sex. Parameter: Normalised Interpolated FQ. 

Measures Sentences 
1 2 3 4 Mean 

DTW Dist 0.26 0.28 0.12 0.12 0.2 
Weighted DTW Dist. 0.25 0.27 0.09 0.06 0.17 
Border DTW Dist. 0.28 0.28 0.12 0.1 0.2 
Warp Len./Contour Len. 0.08 0.08 0.02 0.08 0.07 
Vert. Trans. 0.09 0.09 0.02 0.09 0.07 
Horiz. TVans. 0.01 0.05 0 0.01 0.02 
Diag. TVans. 0.06 0.1 0.01 0.05 0.06 
Num. Vert. Excn 0.09 0.05 0.02 0.07 0.06 
Num. Horiz. Excn 0.03 0.02 0 0.02 0.02 
Num. Diag. Excn 0.08 0.05 0.01 0.05 0.05 
Max. Len. Vert. Excn 0.04 0.04 0.02 0.01 0.03 
Max. Len. Horiz. Excn 0.03 0.01 0 0 0.01 
Max. Len. Diag. Excn 0.02 0.02 0.01 0.01 0.02 
Off Diag. Wpath Dist. 0 0 0 0.01 0 

Table C.33: Speaker Sex. Estimated strength (a;^) of relationship [correlation] of dynamic 
measure values to intra/inter Sex categories. A quantification of each individual measure's 
ability to predict sex. Parameter: Log-Concatenated FQ. 
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Measures Sentences Measures 
1 2 3 4 Mean 

D T W Dist 0 0 0 0 0 
Weighted D T W Dist. 0 0 0 0 0 
Border D T W Dist. 0 0 0 0 0 
Warp Len./Contour Len. 0 0 0 0.01 0 
Vert. IVans. 0 0 0 0.01 0 
Horiz. TYans. 0.02 0 0 0 0.01 
Diag. IVans. 0.02 0 0 0 0.01 
Num. Vert. Excn 0 0 0 0.01 0 
Num. Horiz. Excn 0 0 0 0.01 0 
Num. Diag. Excn 0 0 0 0 0 
Max. Len. Vert. Excn 0 0 0 0 0 
Max. Len. Horiz. Excn 0.01 0 0 0 0 
Max. Len. Diag. Excn 0.01 0 0 0 0 
Oflf Diag. Wpath Dist. 0.01 0 0.01 0.03 0.01 

Table C.34: Speaker Sex. Estimated strength (w^) of relationship [correlation] of dynamic 
measure values to intra/inter Sex categories. A quantification of each individual measure's 
ability to predict sex. Parameter: Normalised Log-Concatenated FQ. 

Measures Sentences Measures 
1 2 3 4 Mean 

D T W Dist 0.28 0.23 0.13 0.12 0.19 
Weighted D T W Dist. 0.25 0.2 0.1 0.05 0.15 
Border D T W Dist. O.S 0.23 0.12 0.1 0.19 
Warp Len./Contour Len. 0.09 0.06 0.05 0.06 0.07 
Vert. Trans. 0.09 0.06 0.05 0.06 0.07 
Horiz. IVans. 0.07 0.02 0 0.05 0.04 
Diag. Trans. 0.12 0.05 0.02 0.01 0.07 
Num. Vert. Excn 0.01 0.03 0.03 0.05 0.05 
Num. Horiz. Excn 0.06 0 0.01 0.04 0.03 
Num. Diag. Excn 0.1 0.01 0.02 0.01 0.05 
Max. Len. Vert. Excn 0.03 0.03 0.04 0.01 0.03 
Max. Len. Horiz. Excn 0 0 0 0 0 
MEIX. Len. Diag. Excn 0.02 0 0 0.02 0.01 
Oflf Diag. Wpath Dist. 0.01 0 0 0 0 

Table C.35: Speaker Sex. Estimated strength of relationship [correlation] of dynamic 
measure vsdues to intra/inter Sex categories. A quantification of each individual measure's 
ability to predict sex. Parameter: Log-Interpolated FQ. 
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Measures Sentences Measures 
1 2 3 4 Mean 

DTW Dist 0 0 0 0 0 
Weighted DTW Dist. 0 0 0.01 0 0 
Border DTW Dist. 0 0 0 0 0 
Warp Len./Contour Len. 0 0 0.01 0 0 
Vert. TVans. 0 0 0.01 0 0 
Horiz. Trans. 0 0 0 0.01 0 
Diag. Trans. 0 0 0 0.01 0 
Num. Vert. Excn 0 0 0.01 0 0 
Num. Horiz. Excn 0 0 0 0 0 
Num. Diag. Excn 0 0 0 0 0 
Max. Len. Vert. Excn 0 0 0 0 0 
Max. Len. Horiz. Excn 0 0 0.01 0 0 
Max. Len. Diag. Excn 0 0 0.01 0 0 
Oflf Diag. Wpath Dist. 0 0.01 0.02 0 0.01 

Table C.36: Speaker Sex. Estimated strength (u^) of relationship [correlation] of dynamic 
measure values to intra/inter Sex categories. A quantification of each individual measure's 
ability to predict sex. Parameter: Normalised Log-Interpolated FQ. 

Measures Sentences Measures 
1 2 3 4 Mean 

DTW Dist 0 0 0.03 0.01 0.01 
Weighted DTW Dist. 0.01 0 0.05 0.01 0.02 
Border DTW Dist. 0 0 0.03 0.01 0.01 
Warp Len./Contour Len. 0.05 0 0.02 0.01 0.02 
Vert. Trans. 0.05 0 0.02 0.01 0.02 
Horiz. IVans. 0.01 0 0.03 0 0.01 
Diag. Trans. 0.04 0 0.05 0 0.02 
Num. Vert. Excn 0.03 0 0.01 0.03 0.02 
Num. Horiz. Excn 0 0 0.02 0 0.01 
Num. Diag. Excn 0 0 0.01 0 0 
Max. Len. Vert. Excn 0.01 0 0.01 0 0.01 
Max. Len. Horiz. Excn 0.02 0 0.04 0 0.02 
Max. Len. Diag. Excn 0.01 0 0.01 0.01 0.01 
Off' Diag. Wpath Dist. 0.13 0 0.11 0.02 0.07 

Table C.37: Speaker Sex. Estimated strength (a;') of relationship [correlation] of dynamic 
measure values to intra/inter Sex categories. A quantification of each individual measure's 
ability to predict sex. Parameter: Voicing. 
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Measures Sentences 
1 2 3 4 Mean 

D T W Dist 0.05 0 0 0.01 0.02 

Weighted D T W Dist. 0.04 0 0.01 0.01 0.02 

Border D T W Dist. 0.04 0 0 0.01 0.01 

Warp Len./Contour Len. 0 0 0 0 0 

Vert. lYans. 0 0 0 0 0 

Horiz. IVans. 0 0 0.02 0 0.01 

Diag. Trans. 0 0 0.01 0 0 

Num. Vert. Excn 0 0 0 0 0 

Num. Horiz. Excn 0 0 0 0 0 

Num. Diag. Excn 0 0 0 0.01 0 

MSLX. Len. Vert. Excn 0 0 0 0 0 

Max. Len. Horiz. Excn 0 0 0.01 0 0 

Max. Len. Diag. Excn 0 0 0 0 0 

Off Diag. Wpath Dist. 0.01 0 0.01 0.02 0.01 

Table C.38: Speaker Sex. Estimated strength (u^) of relationship [correlation] of dynamic 
measure values to intra/inter Sex categories. A quantification of each individual measure's 
ability to predict sex. Parameter: Zero Crossings. 

Measures Sentences Measures 
1 2 3 4 Mean 

D T W Dist 0 0 0.02 0.02 0.01 

Weighted D T W Dist. 0.01 0 0.02 0.03 0.02 

Border D T W Dist. 0 0 0.02 0.02 0.01 

Warp Len./Contour Len. 0 0 0 0 0 

Vert. Trans. 0 0 0 0 0 

Horiz. Trans. 0 0 0.02 0 0.01 

Diag. Trans. 0 0 0.02 0 0.01 

Num. Vert. Excn 0 0 0 0.01 0 

Num. Horiz. Excn 0 0 0 0 0 

Num. Diag. Excn 0 0 0 0.02 0.01 

Max. Len. Vert. Excn 0 0 0.01 0 0 

Max. Len. Horiz. Excn 0 0 0.01 0 0 

MZLX. Len. Diag. Excn 0 0 0 0.01 0 

Off Diag. Wpath Dist. 0.01 0 0.03 0.03 0.02 

Table C.39: Speaker Sex. Estimated strength (w^) of relationship [correlation] of dynamic 
measure values to intra/inter Sex categories. A quantification of each individual measure's 
ability to predict sex. Parameter: Normalised Zero Crossings. 
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C.2.2 Static Measure Correlation Tables 

Tables C.40-C.52 show the individual values for static measures of all parameters from all 
sentences. 

Measures Sentences 
1 2 3 4 Mean 

Mean 0.02 0.04 0 0.01 0.02 
Std. Dev. 0 0 0 0 0 
Min. 0 0.01 0 0 0 
Max. 0.02 0.11 0 0 0.03 
Range 0 0.01 0.01 0 0.01 
Mean Rate Change 0.01 0 0 0 0 
Length 0 0 0.01 0 0 

Table C.40: Speaker Sex. Estimated strength (a;^) of relationship [correlation] of static measure 
values to intra/inter Sex categories, A quantification of each individual measure's ability to 
predict sex. Parameter: Energy. 

Measures Sentences 
1 2 3 4 Mean 

Mean 0 0 0 0.03 0.01 
Std. Dev. 0.01 0 0 0 0 
Mean Rate Change 0.08 0.01 0.01 0 0.03 
Length 0 0 0.01 0 0 

Table C.41: Speaker Sex. Estimated strength {u^) of relationship [correlation] of static measure 
values to intra/inter Sex categories. A quantification of each individual measure's ability to 
predict sex. Paiameter: Normalised Energy. 

Measures Sentences Measures 
1 2 3 4 Mean 

Mean 0.85 0.77 0.73 0.81 0.79 
Std. Dev. 0.15 0.09 0.1 0.15 0.12 
Min. 0.62 0.65 0.54 0.62 0.61 
Max. 0.74 0.55 0.67 0.71 0.67 
Range 0.18 0.13 0.15 0.2 0.16 
Mean Rate Change 0.1 0.09 0.17 0.07 0.11 
Length 0.01 0 0.01 0.02 0.01 

Table C.42: Speaker Sex. Estimated strength (a;^) of relationship [correlation] of static measure 
values to intra/inter Sex categories. A quantification of each individual measure's ability to 
predict sex. Parameter: Concatenated FQ. 
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Measures Sentences 
1 2 3 4 Mean 

Mean 0 0 0 0 0 
Std. Dev. 0.01 0 0 0 0 
Mean Rate Change 0 0 0 0.02 0.01 
Length 0.01 0 0.01 0.02 0.01 

Table C.43: Speaker Sex. Estimated strength {u^) of relationship [correlation] of static measure 
values to intra/inter Sex categories. A quantification of each individual measure's ability to 
predict sex. Parameter: Normalised Concatenated FQ. 

Measures Sentences Measures 
1 2 3 4 Mean 

Mean 0.86 0.77 0.74 0.82 0.8 
Std. Dev. 0.15 0.11 0.09 0.14 0.12 
Min. 0.62 0.65 0.54 0.62 0.61 
Max. 0.74 0.55 0.67 0.71 0.67 
Range 0.18 0.13 0.15 0.2 0.16 
Mean Rate Change 0.15 0.08 0.19 0.12 0.14 
Length 0 0 0.01 0 0 

Table C.44: Speaker Sex. Estimated strength (u^) of relationship [correlation] of static measure 
values to intra/inter Sex categories. A quantification of each individual measure's ability to 
predict sex. Parameter: Interpolated FQ. 

Measures Sente nces 
1 2 3 4 Mean 

Mean 0 0 0 0 0 
Std. Dev. 0.01 0 0 0 0 
Mean Rate Change 0 0 0 0.01 0 
Length 0 0 0.01 0 0 

Table C.45: Speaker Sex. Estimated strength (w^) of relationship [correlation] of static measure 
values to intra/inter Sex categories. A quantification of each individual measure's ability to 
predict sex. Parameter: Normalised Interpolated FQ. 

Measures Sentences Measures 
1 2 3 4 Mean 

Mean 0.21 0.27 0.06 0.07 0.15 
Std. Dev. 0.01 0 0.01 0.01 0.01 
Min. 0.03 0.01 0.03 0.03 0.03 
Max. 0.S2 0.18 0.12 0.23 0.21 
Range 0.03 0.01 0.03 0.02 0.02 
Mean Rate Change 0 0 0.03 0.01 0.01 
Length 0.01 0 0.01 0.02 0.01 

Table C.46: Speaker Sex. Estimated strength (a;') of relationship [correlation] of static measure 
values to intra/inter Sex categories. A quantification of each individual measure's ability to 
predict sex. Parameter: Log-Concatenated FQ. 
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Measures Sentences 
1 2 3 4 Mean 

Mean 0 0 0 0 0 
Std. Dev. 0 0 0 0 0 
Mean Rate Change 0 0.01 0 0 0 
Length 0.01 0 0.01 0.02 0.01 

Table C.47: Speaker Sex. Estimated strength (a;^) of relationship [correlation] of static measure 
values to intra/inter Sex categories. A quantification of each individual measure's ability to 
predict sex. Parameter: Normalised Log-Con catenated FQ. 

Measures Sentences Measures 
1 2 3 4 Mean 

Mean 0.23 0.19 0.05 0.07 0.14 
Std. Dev. 0.01 0 0.02 0.01 0.01 
Min. 0.03 0 0.04 0.02 0.02 
Max. 0.33 0.18 O.U 0.25 0.23 
Range 0.02 0.01 0.03 0.02 0.02 
Mean Rate Change 0.01 0 0.04 0.01 0.02 
Length 0 0 0.01 0 0 

Table C.48: Speaker Sex. Estimated strength (a;^) of relationship [correlation] of static measure 
values to intra/inter Sex categories. A quantification of each individual measure's ability to 
predict sex. Parameter: Log-Interpolated FQ. 

Measures Sentences 
1 2 3 4 Mean 

Mean 0 0 0 0 0 
Std. Dev. 0 0 0 0 0 
Mean Rate Change 0 0 0 0 0 
Length 0 0 0.01 0 0 

Table C.49: Speaker Sex. Estimated strength (w^) of relationship [correlation] of static measure 
values to intra/inter Sex categories. A quemtification of each individual measure's ability to 
predict sex. Parameter: Normalised Log-Interpolated FQ. 

Measures Sentences 
1 2 3 4 Mean 

Mean 0 0 0.02 0.03 0.01 
Std. Dev. 0.01 0 0.03 0.11 0.04 
Mean Rate Change 0.01 0 0.03 0.11 0.04 
Length 0 0 0 0 0 

Table C.50: Speaker Sex. Estimated strength (w^) of relationship [correlation] of static measure 
values to intra/inter Sex categories. A quantification of each individual measure's ability to 
predict sex. Parameter: Voicing. 
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Measures Sentences Measures 
1 2 3 4 Mean 

Mean 0.02 0 0.01 0 0.01 
Std. Dev. 0.05 0 0.01 0 0.02 
Min. 0 0 0.01 0.01 0.01 
Max. 0.04 0 0.01 0 0.01 
Range 0.03 0 0.01 0 0.01 
Mean Rate Change 0.01 0 0.03 0 0.01 
Length 0 0 0.01 0 0 

Table C.51: Speaker Sex. Estimated strength (u;^) of relationship [correlation] of static measure 
values to intra/inter Sex categories. A quantification of each individual measure's ability to 
predict sex. Parameter: Zero Crossings. 

Measures Sentences 
1 2 3 4 Mean 

Mean 0.01 0 0.01 0 0.01 
Std. Dev. 0 0 0 0.01 0 
Mean Rate Change 0 0 0 0 0 
Length 0 0 0.01 0 0 

Table C.52: Speaker Sex. Estimated strength of relationship [correlation] of static measure 
values to intra/inter Sex categories. A quantification of each individual measure's ability to 
predict sex. Parameter: Normalised Zero Crossings. 
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C.3 Speaker Dialect 

The Tables C.53-C.78 present the correlation values for all measures of all treatments of all 
parameters for each of the four test sentences. In the individual tables all correlation values 
greater than or equal to 0.05 in absolute magnitude are emphasised in an attempt to highlight 
stronger, or 'better' measures. 

C.3.1 Dynamic Measure Correlation Tables 

Tables C.53-C.65 show the individual correlation values for dynamic measures of all parameters 
from all sentences. 

Measures Sentences Measures 
1 2 3 4 Mean 

DTW Dist 0.12 0.2 0.12 0.04 0.12 
Weighted DTW Dist. 0.1 0.2 0.11 0.05 0.12 
Border DTW Dist. 0.12 0.21 0.12 0.04 0.12 
Warp Len./Contour Len. 0.06 -0.01 0 0.05 0.02 
Vert. IVans. 0.07 -0.01 0 0.06 0.03 
Horiz. Trans. -0.09 -0.08 -0.09 -0.11 -0.09 
Diag. TVans. 0.03 0.06 0.08 0.05 0.05 
Num. Vert. Excn 0.05 0.03 -0.02 -0.02 0.01 
Num. Horiz. Excn -0.08 -0.07 -0.02 -0.06 •0.06 
Num. Diag. Excn -0.06 -0.07 -0.04 -0.07 -0.06 
Max. Len. Vert. Excn 0.07 -0.03 0.02 0.05 0.03 
Max. Len. Horiz. Excn 0.02 -0.01 -0.09 -0.06 -0.04 
Max. Len. Diag. Excn 0.07 0.1 0.08 0.07 0.08 
Off Diag. Wpath Dist. 0.01 0.09 0.03 0.05 0.05 

Table C.53: Speaker Dialect difference scores correlated with dynamic measures. A quantifica-
tion of each individual measure's ability to predict dialect. Parameter: Energy. 
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Measures Sentences Measures 
1 2 3 4 Mean 

DTW Dist 0.1 0.24 0.09 -0.02 0.1 
Weighted DTW Dist. 0.08 0.24 0.07 -0.02 0.09 
Border DTW Dist. 0.1 0.24 0.08 -0.02 0.1 
Warp Len./Contour Len. 0.07 0 0.02 0.05 0.04 
Vert. Trans. 0.08 0.01 0.02 0.06 0.04 
Horiz. Trans. -0.09 '0.07 -0.08 -0.11 -0.09 
Diag. Trans. 0.02 0.05 0.06 0.06 0.05 
Num. Vert. Excn 0.07 0.06 0 0.03 0.04 
Num. Horiz. Excn '0.06 -0.1 -0.05 0 -0.05 
Num. Diag. Excn -0.02 -0.08 -0.05 0.01 -0.03 
Max. Len. Vert. Excn 0.03 -0.03 0 0.01 0 
Max. Len. Horiz. Excn 0.01 0.02 -0.05 -0.06 -0.02 
Max. Len. Diag. Excn 0.04 0.05 0.05 0.05 0.05 
Off Diag. Wpath Dist. 0.04 0.19 0.03 0.01 0.07 

Table C.54: Speaker Dialect difference scores correlated with dynamic measures. A quantifica-
tion of each individual measure's ability to predict dialect. Parameter: Normalised Energy. 

Measures Sentences Measures 
1 2 3 4 Mean 

DTW Dist 0.02 0 0 -0.08 -0.01 
Weighted DTW Dist. -0.03 -0.01 -0.01 -0.07 -0.03 
Border DTW Dist. 0.01 -0.01 -0.01 -0.08 -0.02 
Warp Len./Contour Len. 0 '0.07 0 0.08 0 
Vert. TYans. 0 '0.06 0 0.08 0 
Horiz. Trans. -0.07 '0.08 -0.05 0.02 -0.04 
Diag. TVans. 0.05 0.1 0.04 -0.05 0.04 
Num. Vert. Excn -0.05 '0.08 -0.03 0.07 -0.02 
Num. Horiz. Excn -0.07 '0.09 0.01 0 -0.04 
Num. Diag. Excn -0.07 -0.1 -0.01 0.05 -0.03 
Max. Len. Vert. Excn 0 -0.02 0.03 0.02 0.01 
Max. Len. Horiz. Excn 0.01 0.08 -0.05 0.01 0.01 
Max. Len. Diag. Excn 0.07 0.05 0.07 -0.08 0.03 
Off Diag. Wpath Dist. -0.15 0 0.03 -0.02 -0.04 

Table C.55: Speaker Dialect difference scores correlated with dynamic measures. A quantifica-
tion of each individual measure's ability to predict dialect. Parameter: Concatenated FQ. 
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Measures Sentences Measures 
1 2 3 4 Mean 

DTW Dist 0 0 0 0 0 
Weighted DTW Dist. 0 0 0 0 0 
Border DTW Dist. 0 0 0 0 0 
Warp Len./Contour Len. 0 0 0 0 0 
Vert. Trans. 0 0 0 0 0 
Horiz. TVans. 0 0 0 0 0 
Diag. Trans. 0 0 0 0 0 
Num. Vert. Excn 0 0 0 0 0 
Num. Horiz. Excn 0 0 0 0 0 
Num. Diag. Excn 0 0 0 0 0 
Max. Len. Vert. Excn 0 0 0 0 0 
MJIX. Len. Horiz. Excn 0 0 0 0 0 
Max. Len. Diag. Excn 0 0 0 0 0 
Off Diag. Wpath Dist. 0 0 0 0 0 

Table C.56: Speaker Dialect difference scores correlated with dynamic measures. A quantifica-
tion of each individual measure's ability to predict dialect. Parameter: Normalised Concaten-
ated FQ. 

Measures Sentences Measures 
1 2 3 4 Mean 

DTW Dist 0 0 0.01 '0.01 -0.02 
Weighted DTW Dist. '0.05 -0.01 0.01 -0.06 -0.03 
Border DTW Dist. -0.01 -0.01 0.01 '0.07 -0.02 
Warp Len./Contour Len. -0.01 '0.05 0.01 0.09 0.01 
Vert. IVans. -0.01 '0.05 0.01 0.09 0.01 
Horiz. Trans. -0.03 '0.08 '0.09 -0.01 -0.05 
Diag. IVans. 0.03 0.09 0.06 -0.04 0.04 
Num. Vert. Excn -0.04 -0.07 -0.04 0.09 -0.01 
Num. Horiz. Excn -0.04 '0.12 -0.04 0.04 -0.04 
Num. Diag. Excn -0.05 '0.12 '0.06 0.09 -0.03 
MELX. Len. Vert. Excn -0.01 -0.02 0.03 0.03 0.01 
Max. Len. Horiz. Excn -0.01 0.09 -0.04 -0.03 0 
Max. Len. Diag. Excn 0.04 0.08 0.08 -0.08 0.03 
Off Diag. Wpath Dist. •0.16 0.01 0.05 -0.04 -0.03 

Table C.57: Speaker Dialect difference scores correlated with dynamic measures. A quantifica-
tion of each individual measure's ability to predict dialect. Parameter: Interpolated FQ. 
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Measures Sentences Measures 
1 2 3 4 Mean 

DTW Dist 0.14 0.14 0.01 0.03 0.08 
Weighted DTW Dist. 0.1 0.16 0.02 0 0.07 
Border DTW Dist. 0.15 0.15 0.02 0 0.08 Warp Len./Contour Len. -0.1 '0.09 0.04 0.03 -0.03 
Vert. IVans. '0.1 '0.09 0.05 0.03 -0.03 Horiz. Trans. '0.1 '0.1 -0.07 '0.07 -0.09 
Diag. IVans. 0.13 0.12 0.03 0.03 0.08 Num. Vert. Excn '0.08 -0.09 0.01 0.07 -0.02 
Num. Horiz. Excn '0.09 '0.11 -0.03 -0.01 -0.06 
Num. Diag. Excn '0.11 -0.13 -0.02 0.04 -0.05 Max. Len. Vert. Excn -0.04 -0.03 0.08 -0.02 0 Max. Len. Horiz. Excn 0.01 0.08 -0.01 0 0.02 
Max. Len. Diag. Excn 0.13 0.17 0.04 0.03 0.09 
Off Diag. Wpath Dist. '0.13 0 -0.02 0.01 -0.03 

Table C.58: Speaker Dialect difference scores correlated with dynamic measures. A quantifica-
tion of each individual measure's ability to predict dialect. Parameter: Normalised Interpolated 
Fo. 

Measures Sentences Measures 
1 2 3 4 Mean 

DTW Dist 0.08 0.07 -0.01 -0.09 0.01 
Weighted DTW Dist. 0.04 0.03 -0.02 -0.09 -0.01 
Border DTW Dist. 0.08 0.04 -0.01 '0.1 0 
Warp Len./Contour Len. 0.01 -0.05 0 0.11 0.02 
Vert. IVans. 0.01 -0.04 0.01 0.11 0.02 
Horiz. Trans. -0.06 -0.08 '0.05 0.04 -0.04 
Diag. IVans. 0.04 0.08 0.03 '0.08 0.02 
Num. Vert. Excn -0.08 -0.05 -0.03 0.09 -0.02 
Num. Horiz. Excn -0.04 -0.09 0.02 -0.01 -0.03 
Num. Diag. Excn -0.07 '0.09 0 0.05 -0.03 
Max. Len. Vert. Excn 0.04 -0.02 0.01 0.04 0.02 
Max. Len. Horiz. Excn 0.02 0.08 -0.04 0.01 0.02 
Max. Len. Diag. Excn 0.05 0.07 0.05 '0.07 0.03 
Off Diag. Wpath Dist. -0.1 0.01 0.05 -0.05 -0.02 

Table C.59: Speaker Dialect difference scores correlated with dynamic measures. A quantifi-
cation of each individual measure's ability to predict dialect. Parameter: Log-Concatenated 
Fo. 
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Measures Sentences Measures 
1 2 3 4 Mean 

DTW Dist 0.12 0.18 0.04 0.02 0.09 
Weighted DTW Dist. 0.11 0.2 0.05 0.02 0.1 
Border DTW Dist. 0.13 0.18 0.05 0.01 0.09 
Warp Len./Contour Len. -0.04 -0.1 0.02 -0.02 -0.04 
Vert. Trans. -0.04 -0.1 0.02 -0.02 -0.04 
Horiz. Trans. -0.1 -0.11 -0.04 -0.01 -0.08 
Diag. Trans. 0.09 0.13 0.02 0.06 0.01 
Num. Vert. Excn '0.09 -0.11 0.02 0.02 -0.04 
Num. Horiz. Excn -0.08 -0.14 0 -0.02 -0.06 
Num. Diag. Excn -0.11 -0.16 0 0 -0.01 
Max. Len. Vert. Excn 0.05 -0.03 0.02 0 0.01 
Max. Len. Horiz. Excn 0 0.11 0 -0.01 0.02 
Max. Len. Diag. Excn 0.01 0.14 0.02 0.02 0.06 
Off Diag. Wpath Dist. -0.02 0.05 -0.01 0.01 0.01 

Table C.60: Speaker Dialect difference scores correlated with dynamic measures. A quantifi-
cation of each individual measure's ability to predict dialect. Parameter: Normalised Log-
Concatenated FQ. 

Measures Sentences Measures 
1 2 3 4 Mean 

DTW Dist 0.06 0.04 0 -0.08 0 
Weighted DTW Dist. -0.02 0 -0.02 -0.01 -0.03 
Border DTW Dist. 0.04 0.01 -0.01 -0.08 -0.01 
Warp Len./Contour Len. -0.01 -0.05 0.01 0.09 0.01 
Vert. IVans. -0.01 -0.05 0.01 0.09 0.01 
Horiz. Trans. -0.03 -0.08 -0.1 -0.01 -0.05 
Diag. Trans. 0.03 0.09 0.06 -0.04 0.04 
Num. Vert. Excn -0.04 -0.06 -0.04 0.09 -0.01 
Num. Horiz. Excn -0.04 -0.12 -0.04 0.04 -0.04 
Num. Diag. Excn -0.05 -0.12 -0.06 0.09 -0.03 
Max. Len. Vert. Excn 0 -0.01 0.03 0.03 0.01 
Max. Len. Horiz. Excn 0 0.09 -0.04 -0.03 0.01 
Max. Len. Diag. Excn 0.04 0.08 0.08 -0.08 0.03 
Off Diag. Wpath Dist. -0.16 0.01 0.05 -0.04 -0.03 

Table C.61: Speaker Dialect difference scores correlated with dynamic measures. A quantifi-
cation of each individual measure's ability to predict dialect. Parameter: Log-Interpolated 
Fo. 
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Measures Sentences Measures 
1 L 2 3 4 Mean 

DTW Dist 0.15 0.15 0.02 0.03 0.09 
Weighted DTW Dist. 0.12 0.17 0.03 0.01 0.08 
Border DTW Dist. 0.16 0.15 0.03 0 0.09 
Warp Len./Contour Len. -0.08 '0.08 0.03 0.01 -0.03 
Vert. Trans. '0.09 '0.08 0.03 0.01 -0.03 
Horiz. Trans. •0.09 '0.1 '0.08 '0.08 '0.09 
Diag. TVans. 0.11 0.11 0.04 0.05 0.08 
Num. Vert. Excn '0.09 '0.09 0.01 0.06 -0.03 
Num. Horiz. Excn '0.08 '0.11 -0.02 0.01 '0.05 
Num. Diag. Excn '0.11 '0.13 -0.01 0.05 '0.05 
Max. Len. Vert. Excn -0.02 -0.02 0.06 0 0 
Max. Len. Horiz. Excn 0.01 0.06 -0.02 -0.02 0.01 
Max. Len. Diag. Excn 0.08 0.15 0.04 0.04 0.08 
Off Diag. Wpath Dist. '0.18 0.01 -0.01 0.01 -0.03 

Table C.62: Speaker Dialect difference scores correlated with dynamic measures. A quantifi-
cation of each individual measure's ability to predict dialect. Parameter: Normalised Log-
Interpolated FQ. 

Measures Sentences Measures 
1 2 3 4 Mean 

DTW Dist 0.04 0.05 '0.06 -0.01 0.01 
Weighted DTW Dist. -0.03 0.03 '0.07 -0.04 -0.03 
Border DTW Dist. 0.02 0.03 '0.06 -0.03 -0.01 
Warp Len./Contour Len. 0.02 -0.03 0.01 0.1 0.03 
Vert. IVans. 0.02 -0.02 0.01 0.11 0.03 
Horiz. Trans. '0.13 '0.07 '0.09 '0.09 '0.1 
Diag. Trans. 0.11 0.07 0.09 0.03 0.08 
Num. Vert. Excn 0.03 0 0.02 0.06 0.03 
Num. Horiz. Excn '0.1 -0.04 -0.04 -0.04 '0.05 
Num. Diag. Excn '0.07 -0.04 -0.03 -0.03 -0.04 
Max. Len. Vert. Excn 0.04 -0.01 0 0.11 0.03 
Max. Len. Horiz. Excn '0.08 '0.07 '0.09 '0.07 '0.08 
Max. Len. Diag. Excn 0.1 0.05 0.08 0.06 0.07 
Off Diag. Wpath Dist. '0.07 -0.03 '0.08 -0.01 '0.05 

Table C.63: Speaker Dialect difference scores correlated with dynamic measures. A quantifica-
tion of each individual measure's ability to predict dialect. Parameter: Voicing. 
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Measures Sentences Measures 
1 2 3 4 Mean 

DTW Dist •0.13 -0.09 -0.06 -0.04 -0.08 
Weighted DTW Dist. -0.18 -0.08 -0.04 -0.03 -0.07 
Border DTW Dist. '0.12 -0.08 -0.06 -0.04 -0.07 
Warp Len./Contour Len. 0.02 0.02 0.03 0.04 0.03 
Vert. TVans. 0.03 0.03 0.03 0.05 0.03 
Horiz. Trans. -0.12 -0.05 -0.08 -0.11 -0.09 
Diag. TVans. 0.01 0.02 0.05 0.06 0.05 
Num. Vert. Excn 0.09 0.01 0.04 0.06 0.05 
Num. Horiz. Excn -0.01 0.03 0.03 -0.03 0 
Num. Diag. Excn 0.06 0.02 0.05 0.03 0.04 
Max. Len. Vert. Excn -0.03 0.04 0.03 0.06 0.02 
Max. Len. Horiz. Excn -0.08 -0.06 -0.07 -0.07 -0.07 
Max. Len. Diag. Excn 0.04 -0.01 -0.02 0.04 0.01 
Off Diag. Wpath Dist. -0.11 -0.04 -0.04 0 -0.05 

Table C.64: Speaker Dialect difference scores correlated with dynamic measures. A quantifica-
tion of each individual measure's ability to predict dialect. Parameter: Zero Crossings. 

Measures Sentences Measures 
1 2 3 4 Mean 

DTW Dist -0.05 -0.02 -0.03 0.04 -0.02 
Weighted DTW Dist. -0.04 -0.02 -0.03 0.04 -0.01 
Border DTW Dist. -0.04 -0.02 -0.03 0.04 -0.01 
Warp Len./Contour Len. 0.01 0.02 0.06 0.03 0.03 
Vert. IVans. 0.02 0.03 0.06 0.03 0.03 
Horiz. Trans. -0.13 -0.05 -0.07 •0.12 •0.09 
Diag. TVans. 0.09 0.02 0.03 0.08 0.06 
Num. Vert. Excn 0.05 0.01 0 0.01 0.02 
Num. Horiz. Excn -0.01 -0.02 0.03 •0.08 -0.02 
Num. Diag. Excn 0.02 -0.01 0 •0.05 -0.01 
Meix. Len. Vert. Excn 0.02 0.03 0.05 0.06 0.04 
Max. Len. Horiz. Excn -0.06 -0.02 •0.05 -0.03 -0.04 
Max. Len. Diag. Excn 0.07 0 0.02 0.12 0.05 
Off Diag. Wpath Dist. -0.05 0.04 0.01 0 0 

Table C.65: Speaker Dialect difference scores correlated with dynamic measures. A quantifi-
cation of each individual measure's ability to predict dialect. Parameter: Normalised Zero 
Crossings. 
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C.3.2 Static Measure Correlation Tables 

Tables C.66-C.78 show the individual correlation values for static measures of all parameters 
from all sentences. 

Measures Sentences Measures 
1 2 3 4 Mean 

Mean -0.01 -0.04 -0.04 -0.03 -0.03 
Std. Dev. -0.02 -0.02 -0.07 0.05 -0.01 
Min. -0.03 -0.03 -0.03 0.05 -0.01 
Max. -0.04 -0.12 0.04 0.01 -0.03 
Range -0.04 -0.01 0 0.04 -0.02 
Mean Rate Change -0.08 -0.07 0.03 0.01 -0.03 
Length 0.12 0.06 0.08 0.12 0.09 

Table C.66: Speaker Dialect difference scores correlated with static measures. A quantification 
of each individual measure's ability to predict dialect. Parameter: Energy. 

Measures Sentences 
1 2 3 4 Mean 

Mean 0.05 -0.04 -0.02 0.04 0.01 
Std. Dev. 0.05 -0.05 -0.05 0.06 0 
Mean Rate Change -0.04 0.05 0 0.07 0.02 
Length 0.12 0.06 0.08 0.12 0.09 

Table C.67: Speaker Dialect difference scores correlated with static measures. A quantification 
of each individual measure's ability to predict dialect. Parameter: Normalised Energy. 

Measures Sentences Measures 
1 2 3 4 Mean 

Mean 0.06 0.05 -0.04 0.13 0.05 
Std. Dev. -0.04 0.03 -0.09 0.03 -0.02 
Min. 0.01 -0.07 0.03 0.02 0 
Max. 0.03 0.04 0.02 0.1 0.05 
Range -0.02 0.01 -0.05 -0.01 -0.02 
Mean Rate Change -0.09 0.06 -0.03 -0.02 -0.02 
Length 0.06 0.04 0.05 0.05 0.05 

Table C.68: Speaker Dialect difference scores correlated with static measures. A quantification 
of each individual measure's ability to predict dialect. Parameter: Concatenated FQ. 
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Measures Sentences 
1 2 3 4 Mean 

Mean 0.07 -0.01 0.02 0.02 0.02 
Std. Dev. -0.01 -0.03 -0.05 0.02 -0.02 
Mean Rate Change 0.01 0.07 0.02 -0.05 0.01 
Length 0.06 0.04 0.05 0.05 0.05 

Table C.69: Speaker Dialect difference scores correlated with static measures. A quantification 
of each individual measure's ability to predict dialect. Parameter: Normalised Concatenated 
Fo. 

Measures Sentences Measures 
1 2 3 4 Mean 

Mean 0.09 0.04 -0.05 0.13 0.05 
Std. Dev. -0.06 0.03 -O.J 0.05 -0.02 
Min. 0.01 -0.07 0.03 0.02 0 
Mcix. 0.03 0.04 0.02 0.1 0.05 
Range -0.02 0.01 -0.05 -0.01 -0.02 
Mean Rate Change -0.08 0.04 -0.03 -0.01 -0.02 
Length 0.02 0.05 0.1 0.08 0.06 

Table C.70: Speaker Dialect difference scores correlated with static measures. A quantification 
of each individual measure's ability to predict dialect. Parameter: Interpolated FQ. 

Measures Sentences 
1 2 3 4 Mean 

Mean 0.05 -0.02 0.02 0.01 0.02 
Std. Dev. -0.07 -0.02 -0.1 0.04 -0.04 
Mean Rate Change -0.01 0.07 0.02 -0.08 0 
Length 0.02 0.05 0.1 0.08 0.06 

Table C.71: Speaker Dialect difference scores correlated with static measures. A quantification 
of each individual measure's ability to predict dialect. Parameter: Normalised Interpolated FQ. 

Measures Sentences Measures 
1 2 3 4 Mean 

Mean 0.04 0.08 0 0.14 0.06 
Std. Dev. 0 0.04 -0.02 -0.02 0 
Min. 0.07 -0.02 0.05 0.03 0.03 
Max. 0.03 0.04 0.01 0.09 0.04 
Range 0 -0.02 -0.02 -0.08 -0.03 
Mean Rate Change 0.04 0.05 0.04 -0.05 0.02 
Length 0.06 0.05 0.06 0.05 0.05 

Table C.72: Speaker Dialect difference scores correlated with static measures. A quantification 
of each individual measure's ability to predict dialect. Parameter: Log-Concatenated FQ. 
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Measures Sentences Measures 
1 2 3 4 Mean 

Mean 0.06 -0.09 -0.01 0.02 -0.01 
Std. Dev. -0.03 -0.09 -0.03 -0.02 -0.04 
Mean Rate Change 0.02 0.1 0 -0.05 0.02 
Length 0.06 0.05 0.06 0.05 0.05 

Table C.73: Speaker Dialect difference scores correlated with static measures. A quantifi-
cation of each individual measure's ability to predict dialect. Parameter: Normalised Log-
Concatenated FQ. 

Measures Sentences Measures 
1 2 3 4 Mean 

Mean 0.08 0.08 -0.01 0.12 0.07 
Std. Dev. -0.02 0.02 -0.03 -0.01 -0.01 
Min. 0.06 -0.04 0.05 0.03 0.02 
Max. 0.02 0.04 0 0.09 0.04 
Range -0.03 -0.05 -0.01 -0.11 -0.05 
Mean Rate Change -0.01 0.01 0.01 -0.06 -0.01 
Length 0.02 0.05 0.1 0.08 0.06 

Table C.74: Speaker Dialect difference scores correlated with static measures. A quantification 
of each individual measure's ability to predict dialect. Parameter: Log-Interpolated FQ. 

Measures Sentences Measures 
1 2 3 4 Mean 

Mean 0.02 -0.07 0 0 -0.01 
Std. Dev. -0.02 -0.05 -0.06 0.01 -0.03 
Mean Rate Change 0 0.07 -0.01 -0.08 0 
Length 0.02 0.05 0.1 0.08 0.06 

Table C.75: Speaker Dialect difference scores correlated with static measures. A quantification 
of each individual measure's ability to predict dialect. Parameter: Normalised Log-Interpolated 
Fo. 

Measures Sentences Measures 
1 2 3 4 Mean 

Mean 0.05 0.04 '0.08 0.04 0.01 
Std. Dev. 0.04 0.03 -0.11 0.03 0 
Mean Rate Change 0.04 0.03 '0.11 0.03 0 
Length -0.02 0.04 0 0.03 0.01 

Table C.76: Speaker Dialect difference scores correlated with static measures. A quantification 
of each individual measure's ability to predict dialect. Parameter: Voicing. 
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Measures Sentences Measures 
1 2 3 4 Mean 

Mean 0.08 0.12 0.07 0.11 0.09 
Std. Dev. 0.06 0.07 0.03 0.02 0.04 
Min. '0.1 -0.01 '0.07 0 '0.05 
Max. 0.08 0.11 0.04 0.09 0.08 
Range 0.08 0.08 0.03 0.03 0.05 
Mean Rate Change 0.03 0.06 0 '0.06 0.01 
Length 0.12 0.06 0.08 0.12 0.09 

Table C.77: Speaker Dialect difTerence scores correlated with static measures. A quantification 
of each individual measure's ability to predict dialect. Parameter: Zero Crossings. 

Measures Sentences Measures 
1 2 3 4 Mean 

Mean 0.05 0.02 0.01 0.02 0.02 
Std. Dev. 0.08 -0.01 0.01 -0.02 0.01 
Mean Rate Change 0.05 0.01 0.1 -0.02 0.04 
Length 0.12 0.06 0.08 0.12 0.09 

Table C.78: Speaker Dialect difference scores correlated with static measures. A quantification 
of each individual measure's ability to predict disdect. Parameter: Normalised Zero Crossings. 



Appendix D 

Sentence-Parameter Pairing 
Results 

This appendix presents the discriminant rates for speaker identity and sex experiments, and 
the correlation values for least-squares-fit analysis of speaker dialect, where individual sentence 
and parameter combinations are examined. The four basic parameters: energy, FQ (all 4 ver-
sions), voicing, and zero crossing rate, both normalised and un-normalised, are examined on an 
individual sentence basis where static measures alone, dynamic measures alone, and combined 
static and dynamic measures are used in the discriminant or least-squares-fit analysis. 

Results are subdivided on the basis of the three speaker characteristics identity, sex, and 
dialect. Within each section a figure and table present the results of the analysis of a single 
parameter (either normalised or un-normalised). The figure is composed of 12 individual plots: 
4 sentences x 3 measure groupings. Similarly the table is 4 x 3 presenting the same data in a 
numeric format. 

D. l Speaker Identity 

Figures D.1-D.13 and Tables D.1-D.13 present the results of the analysis of parameters on an 
individual sentence basis for speaker identity discrimination. All tabular values are percentages. 
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Figure D.l: Speaker Identity Discriminate Plot - Dynamic, Static, and Combined Dynamic-
Static plots for the speech parameter Energy for each of the 4 sentences in turn. Intra-speaker 
(broken line) distribution is plotted against Inter-speaker (unbroken line) distribution. 

Sentence M hasures Sentence 
Dynamic Static Both 

1 39.3 27.4 43.3 
2 29.5 24.8 32 
3 30.2 25.2 34.2 
4 39.1 30.5 40.7 

Table D.l: Speaker Identity Discriminate Rates - Dynamic, Static, and Combined Dynamic-
Static rates for the speech parameter Energy for each of the 4 sentences in turn. Values are in 
percent. 
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Figure D.2: Speaker Identity Discriminate Plot - Dynamic, Static, and Combined Dynamic-
Static plots for the speech parameter Normalised Energy for each of the 4 sentences in turn. 
Intra-speaker (broken line) distribution is plotted against Inter-speaker (unbroken line) distri-
bution. 

Sentence M hasures Sentence 
Dynamic Static Both 

1 36.3 21.9 37.8 
2 29.6 19.4 30.6 
3 29.5 18.4 30.7 
4 34.5 25.3 36 

Table D.2: Speaker Identity Discriminate Rates - Dynamic, Static, and Combined Dynamic-
Static rates for the speech parameter Normalised Energy for each of the 4 sentences in turn. 
Values are in percent. 



256 APPENDIX D. SENTENCE-PARAMETER PAIRING RESULTS 

DYNAMIC STATIC COMBINED 
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Figure D.3: Speaker Identity Discriminate Plot - Dynamic, Static, and Combined Dynamic-
Static plots for the speech parameter Linear Concatenated Fq for each of the 4 sentences in 
turn. Intra-speaker (broken line) distribution is plotted aggdnst Inter-speaker (unbroken line) 
distribution. 

Sentence M Measures Sentence 
Dynamic Static Both 

1 42.3 30.8 44.8 
2 42.3 32.5 47 
3 36.8 29.1 39.2 
4 47.8 35.5 50.1 

Table D.3: Speaker Identity Discriminate Rates - Dynamic, Static, and Combined Dynamic-
Static rates for the speech parameter Linear Concatenated Fq for each of the 4 sentences in 
turn. Values are in percent. 
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Figure D.4: Speaker Identity Discriminate Plot - Dynamic, Static, and Combined Dynamic-
Static plots for the speech parameter Normalised Linear Concatenated FQ for each of the 4 
sentences in turn. Intra-speaker (broken line) distribution is plotted against Inter-speaker 
(unbroken line) distribution. 

Sentence M hasures Sentence 
Dynamic Static Both 

1 31.8 16 32.4 
2 36.1 23.9 37 
3 27.1 15.3 27.5 
4 40.6 20.3 41.1 

Table D.4: Speaker Identity Discriminate Rates - Dynamic, Static, and Combined Dynamic-
Static rates for the speech parameter Normalised Linear Concatenated FQ for each of the 4 
sentences in turn. Values are in percent. 
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Figure D.5: Speaker Identity Discriminate Plot - Dynamiic, Static, and Combined Dynamic-
Static plots for the speech parameter Linear Interpolated FQ for each of the 4 sentences in 
turn. Intra-speaker (broken line) distribution is plotted against Inter-speaker (unbroken line) 
distribution. 

Sentence M Measures Sentence 
Dynamic Static Both 

1 43.1 32.7 46.7 
2 44.5 33 48.8 
3 38.4 33.2 42 
4 49.1 36.1 50.8 

Table D.5: Speaker Identity Discriminate Rates - Dynamic, Static, and Combined Dynamic-
Static rates for the speech parameter Linear Interpolated FQ for each of the 4 sentences in turn. 
Values are in percent. 
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Figure D.6: Speaker Identity Discriminate Plot - Dynamic, Static, and Combined Dynamic-
Static plots for the speech parameter Normalised Linear Interpolated Fq for each of the 4 
sentences in turn. Intra-speaker (broken line) distribution is plotted against Inter-speaker 
(unbroken line) distribution. 

Sentence M feasures Sentence 
Dynamic Static Both 

1 31.6 18.6 32.8 

2 37.8 23.6 38.5 

3 28.1 19.3 28.7 

4 41.3 23.4 42.2 

Table D.6: Speaker Identity Discriminate Rates - Dynamic, Static, and Combined Dynamic-
Static rates for the speech parameter Normalised Linear Interpolated Fo for each of the 4 
sentences in turn. Values are in percent. 
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Figure D.7: Speaker Identity Discriminate Plot - Dynsunic, Static, and Combined Dynamic-
Static plots for the speech parameter Log Concatenated FQ for each of the 4 sentences in turn. 
Intra-speaker (broken line) distribution is plotted against Inter-speaker (unbroken line) distri-
bution. 

Sentence M hasures Sentence 
Dynamic Static Both 

1 42.5 32.3 46.7 
2 42.9 34 47.4 
3 36.4 27.4 38.6 
4 48.8 35.8 52.1 

Table D.7: Speaker Identity Discriminate Rates - Dynamic, Static, and Combined Dynamic-
Static rates for the speech parameter Log Concatenated FQ for each of the 4 sentences in turn. 
Values are in percent. 
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Figure D.8: Speaker Identity Discriminate Plot - Dynamic, Static, and Combined Dynamic-
Static plots for the speech parameter Normalised Log Concatenated Fq for each of the 4 sentences 
in turn. Intra-speaker (broken line) distribution is plotted against Inter-speaker (unbroken line) 
distribution. 

Sentence k hasures Sentence 
Dynamic Static Both 

1 34.2 15.9 34.8 
2 36.4 25.2 38.1 
3 27.7 16.1 28.4 
4 39.2 19.2 40.5 

Table D.8: Speaker Identity Discriminate Rates - Dynamic, Static, and Combined Dynamic-
Static rates for the speech parameter Normalised Log Concatenated Fq for each of the 4 sentences 
in turn. Values are in percent. 
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Figure D.9: Speaker Identity Discriminate Plot - Dynamic, Static, and Combined Dynamic-
Static plots for the speech pcu-ameter Log Interpolated Fo for each of the 4 sentences in turn. 
Intra-speaker (broken line) distribution is plotted against Inter-speaker (unbroken line) distri-
bution. 

Sentence M Measures Sentence 
Dynamic Static Both 

1 43.1 32.5 46.6 
2 45.2 32.9 48.9 
3 38.1 30.8 41.2 
4 49.9 38 53 

Table D.9: Speaker Identity Discriminate Rates - Dynamic, Static, and Combined Dynamic-
Static rates for the speech parameter Log Interpolated FQ for each of the 4 sentences in turn. 
Values are in percent. 
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Figure D.IO: Speaker Identity Discriminate Plot - Dynamic, Static, and Combined Dynamic-
Static plots for the speech parameter Normalised Log Interpolated FQ for each of the 4 sentences 
in turn. Intra-speaker (broken line) distribution is plotted against Inter-speaker (unbroken line) 
distribution. 

Sentence M easures Sentence 
Dynamic Static Both 

1 31.9 18.4 33.3 
2 37.4 23 38.3 
3 27.5 16.7 27.8 
4 39.1 21.5 40.1 

Table D.IO: Speaker Identity Discriminate Rates - Dynamic, Static, and Combined Dynamic-
Static rates for the speech parameter Normalised Log Interpolated FQ for each of the 4 sentences 
in turn. Values are in percent. 
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Figure D . l l : Speaker Identity Discriminate Plot - Dynamic, Static, and Ck)mbined Dynamic-
Static plots for the speech parameter Voicing for each of the 4 sentences in turn. Intra-speaker 
(broken line) distribution is plotted against Inter-speaker (unbroken line) distribution. 

Sentence M easures Sentence 
Dynamic Static Both 

1 32.8 20.3 33.4 
2 22.2 19.9 23.5 
3 21 15.3 21.5 
4 31 24.4 32 

Table D . l l : Speaker Identity Discriminate Rates - Dynamic, Static, and Combined Dynamic-
Static rates for the speech parameter Voicing for each of the 4 sentences in turn. Values are in 
percent. 
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Figure D.12: Speaker Identity Discriminate Plot - Dynamic, Static, and Combined Dynamic-
Static plots for the speech parameter Zero Crossing Rate for each of the 4 sentences in turn. 
Intra-speaker (broken line) distribution is plotted against Inter-speaker (unbroken line) distri-
bution. 

Sentence M feasures Sentence 
Dynamic Static Both 

1 38.1 25 39.4 
2 30.6 25.6 31.1 
3 34.3 20.6 34.6 
4 36.4 27.4 36.9 

Table D.12: Speaker Identity Discriminate Rates - Dynamic, Static, and Combined Dynamic-
Static rates for the speech parsuneter Zero Crossing Rate for each of the 4 sentences in turn. 
Values are in percent. 
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Figure D.13: Speaker Identity Discriminate Plot - Dynamic, Static, and Combined Dynamic-
Static plots for the speech parameter Normalised Zero Crossing Rate for each of the 4 sentences 
in turn. Intra-speaker (broken line) distribution is plotted against Inter-speaker (unbroken line) 
distribution. 

Sentence M hasures Sentence 
Dynamic Static Both 

1 33.9 21.2 35.3 
2 21.7 17.3 22.4 
3 22.6 18.5 23.3 
4 27.4 23 29.2 

Table D.13: Speaker Identity Discriminate Rates - Dynamic, Static, and Combined Dynamic-
Static rates for the speech parameter Normalised Zero Crossing Rate for each of the 4 sentences 
in turn. Values are in percent. 
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D.2 Speaker Sex 

Figures D.14-D.26 and Tables D.14-D.26 present the results of the analysis of parameters on 
an individual sentence basis for speaker sex discrimination. All tabular values are percentages. 
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Figure D.14: Speaker Sex Discriminate Plot - Dynamic, Static, and Combined Dynamic-Static 
plots for the speech parameter Energy for each of the 4 sentences in turn. Intra-sex (broken 
line) distribution is plotted against Inter-sex (unbroken line) distribution. 

Sentence M Measures Sentence 
Dynamic Static Both 

1 42.8 23.1 44.1 
2 27.3 35.6 39.7 
3 32.7 15.6 35.5 
4 23.1 23.1 28.2 

Table D.14: Speaker Sex Discriminate Rates - Dynamic, Static, and Combined Dynamic-Static 
rates for the speech parameter Energy for each of the 4 sentences in turn. Values are in percent. 
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Figure D.15: Speaker Sex Discriminate Plot - Dynamic, Static, and Combined Dynamic-Static 
plots for the speech parameter Normalised Energy for each of the 4 sentences in turn. Intra-sex 
(broken line) distribution is plotted against Inter-sex (unbroken line) distribution. 

Sentence M easures Sentence 
Dynamic Static Both 

1 35.8 28.8 41.7 
2 19.8 8.6 20.4 
3 32.5 11.4 32.7 
4 16.6 18.6 22.6 

Table D.15: Speaker Sex Discriminate Rates - Dynamic, Static, and Combined Dynamic-Static 
rates for the speech parameter Normalised Energy for each of the 4 sentences in turn. Values 
are in percent. 
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Figure D.16: Speaker Sex Discriminate Plot - Dynamic, Static, and Combined Dynamic-Static 
plots for the speech parameter Linear Concatenated FQ for each of the 4 sentences in turn. 
Intra-sex (broken line) distribution is plotted against Inter-sex (unbroken line) distribution. 

Sentence M hasures Sentence 
Dynamic Static Both 

1 92.5 93.3 94.2 
2 88.6 90.6 92.1 
3 87 86.9 88.3 
4 92 91.3 93.1 

Table D.16: Speaker Sex Discriminate Rates - Dynamic, Static, and Combined Dynamic-Static 
rates for the speech parameter Linear Concatenated FQ for each of the 4 sentences in turn. 
Values are in percent. 
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Figure D.17: Speaker Sex Discriminate Plot - Dynamic, Static, and Combined Dynamic-Static 
plots for the speech parameter Normalised Linear Concatenated Fq for each of the 4 sentences 
in turn. Intra-sex (broken line) distribution is plotted against Inter-sex (unbroken line) distri-
bution. 

Sentence Measures Sentence 
Dynamic Static Both 

1 23.3 15.1 24.3 
2 12.8 9.2 14.3 
3 20.8 10.3 22.1 
4 24.3 18 28.1 

Table D.17: Speaker Sex Discriminate Rates - Dynamic, Static, and Combined Dynamic-Static 
rates for the speech parameter Normalised Linear Concatenated Fq for each of the 4 sentences 
in turn. Values are in percent. 
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Figure D.18: Speaker Sex Discriminate Plot - Dynamic, Static, and Combined Dynamic-Static 
plots for the speech parameter Linear Interpolated FQ for each of the 4 sentences in turn. 
Intra-sex (broken line) distribution is plotted against Inter-sex (unbroken line) distribution. 

Sentence M hasures Sentence 
Dynamic Static Both 

1 92.5 93.6 94.2 
2 89.1 90.5 92.2 
3 86.9 87.2 88.3 
4 92.6 91.2 93.5 

Table D.18: Speaker Sex Discriminate Rates - Dynamic, Static, and Combined Dynamic-Static 
rates for the speech parameter Linear Interpolated FQ for each of the 4 sentences in turn. Values 
are in percent. 
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Figure D.19: Speaker Sex Discriminate Plot - Dynamic, Static, and Combined Dynamic-Static 
plots for the speech parameter Normalised Linear Interpolated FQ for each of the 4 sentences in 
turn. Intra-sex (broken line) distribution is plotted against Inter-sex (unbroken line) distribu-
tion. 

Sentence Ai (easures Sentence 
Dynamic Static Both 

1 16.7 11.1 18.9 
2 15.5 6.7 16.6 
3 24.6 10 27.5 
4 14.8 11 18.1 

Table D.19: Speaker Sex Discriminate Rates - Dynamic, Static, and Combined Dynamic-Static 
rates for the speech parameter Normalised Linear Interpolated FQ for each of the 4 sentences in 
turn. Values are in percent. 
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Figure D.20: Speaker Sex Discriminate Plot - Dynamic, Static, and Combined Dynamic-Static 
plots for the speech parameter Log Concatenated Fq for each of the 4 sentences in turn. Intra-sex 
(broken line) distribution is plotted against Inter-sex (unbroken line) distribution. 

Sentence M hasures Sentence 
Dynamic Static Both 

1 55.8 59.1 63.1 
2 57 53.9 61 
3 41.5 41.7 51.8 
4 52.6 50.7 56.9 

Table D.20: Speaker Sex Discriminate Rates - Dynamic, Static, and Combined Dynamic-Static 
rates for the speech parameter Log Concatenated Fq for each of the 4 sentences in turn. Values 
are in percent. 
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Figure D.21: Speaker Sex Discriminate Plot - Dynamic, Static, and Combined Dynamic-Static 
plots for the speech parameter Normalised Log Concatenated Fo for each of the 4 sentences in 
turn. Intra-sex (broken line) distribution is plotted against Inter-sex (unbroken line) distribu-
tion. 

Sentence M feasures Sentence 
Dynamic Static Both 

1 22.3 10.8 22.5 
2 14.9 10.4 17 
3 17.4 9.6 19 
4 23.8 16.6 25.3 

Table D.21: SpezJter Sex Discriminate Rates - Dynamic, Static, and Combined Dynamic-Static 
rates for the speech parameter Normalised Log Concatenated Fq for each of the 4 sentences in 
turn. Values are in percent. 
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Figure D.22: Speaker Sex Discriminate Plot - Dynamic, Static, and Combined Dynamic-Static 
plots for the speech parameter Log Inierpolaied FQ for each of the 4 sentences in turn. Intra-sex 
(broken line) distribution is plotted agsdnst Inter-sex (unbroken line) distribution. 

Senience Measures 
Dynamic Static Both 

1 56.4 60.1 63.9 
2 51.4 48.5 57.1 
3 41.7 44.8 54.3 
4 49.1 51.4 54.8 

Table D.22: Speaker Sex Discriminate Rates - Dynamic, Static, and Combined Dynamic-Static 
rates for the speech parameter Log Inierpolaied FQ for each of the 4 sentences in turn. Values 
are in percent. 



D.2. SPEAKER SEX 277 

DYNAMIC STATIC COMBINED 

CO <y 

1124 1126 
Soar* 1128 1130 

Seer* 

-366 

Figure D.23: Speaker Sex Discriminate Plot - Dynamic, Static, and Combined Dynamic-Static 
plots for the speech parameter Normalised Log Interpolated Fq for each of the 4 sentences in turn. 
Intra-sex (broken line) distribution is plotted against Inter-sex (unbroken line) distribution. 

Sentence M Measures 
Dynamic Static Both 

1 13.5 6.9 15.2 
2 15.9 4.1 16.2 
3 24.2 9.9 26.9 
4 13.4 9.3 15.3 

Table D.23: Speaker Sex Discriminate Rates - Dynamic, Static, and Combined Dynamic-Static 
rates for the speech parameter Normalised Log Interpolated Fq for each of the 4 sentences in 
turn. Values are in percent. 
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Figure D.24: Speaker Sex Discriminate Plot - Dynamic, Static, and Combined Dynamic-Static 
plots for the speech parameter Voicing for each of the 4 sentences in turn. Intra-sex (broken 
line) distribution is plotted against Inter-sex (unbroken line) distribution. 

Sentence M Measures Sentence 
Dynamic Static Both 

1 44.2 10.2 46.5 
2 28.6 4.7 31.8 
3 48.6 21.5 52.4 
4 44.2 37.9 53.1 

Table D.24: Speaker Sex Discriminate Rates - Dynamic, Static, and Combined Dynamic-Static 
rates for the speech parameter Voicing for each of the 4 sentences in turn. Values are in percent. 
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Figure D.25: Speaker Sex Discriminate Plot - Dynamic, Static, and Combined Dynamic-Static 
plots for the speech parameter Zero Crossing Rate for each of the 4 sentences in turn. Intra-sex 
(broken line) distribution is plotted against Inter-sex (unbroken line) distribution. 

Sentence k 'easurts Sentence 
Dynamic Static Both 

1 24.3 24.4 27.8 
2 9.2 10 14.8 
3 21.3 26.1 32.3 
4 20.7 13.5 28.1 

Table D.25: Speaker Sex Discriminate Rates - Dynamic, Static, and Combined Dynamic-Static 
rates for the speech parameter Zero Crossing Rate for each of the 4 sentences in turn. Values 
are in percent. 
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Figure D.26: Speaker Sex Discriminate Plot - Dynamic, Static, and Combined Dynamic-Static 
plots for the speech parameter Normalised Zero Crossing Rate for each of the 4 sentences in turn. 
Intra-sex (broken line) distribution is plotted against Inter-sex (unbroken line) distribution. 

Sentence M (easures Sentence 
Dynamic Static Both 

1 17.2 8.7 18.8 
2 10.8 2.6 11.8 
3 24.4 14.4 28.2 
4 23.1 11.5 25.7 

Table D.26: Speaker Sex Discriminate Rates - Dynamic, Static, and Combined Dynamic-Static 
rates for the speech parameter Normalised Zero Crossing Rate for each of the 4 sentences in 
turn. Values are in percent. 
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D.3 Speaker Dialect 

Figures D.27-D.39 and Tables D.27-D.39 present the results of the analysis of parameters on 
an individual sentence basis for correlation to the dialect-difference score. All tabular values 
are correlations ranging from 0-1. 
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Figure D.27: Speaker Dialect Least-Square-Fit Scatter Plot - Dynamic, Static, and Combined 
Dynamic-Static plots for the speech psirameter Energy for each of the 4 sentences in turn. 

Sentence Jk 'easures 
Dynamic Static Both 

1 0.222 0.161 0.258 
2 0.237 0.156 0.288 
3 0.2 0.148 0.231 
4 0.19 0.141 0.202 

Table D.27: Speaker Dialect Least-Square-Fit Correlation Values - Dynamic, Static, and Com-
bined Dynamic-Static correlation values for the speech parameter Energy for each of the 4 
sentences in turn. 
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Figure D.28: Speaker Dialect Least-Square-Fit Scatter Plot - Dynamic, Static, and Combined 
Dynamic-Static plots for the speech parameter Normalistd Energy for each of the 4 sentences 
in turn. 

Sentence 'easures Sentence 
Dynamic Static Both 

1 0.211 0.139 0.234 
2 0.318 0.101 0.331 
3 0.154 0.096 0.162 
4 0.163 0.138 0.193 

Table D.28: Speaker Dialect Least-Squa^e-Fit Correlation Values - Dynamic, Static, and Com-
bined Dynamic-Static correlation values for the speech pwameter Normalised Energy for each 
of the 4 sentences in turn. 
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Figure D.29: Speaker Dialect Least-Square-Fit Scatter Plot - Dynamic, Static, and Combined 
Dynamic-Static plots for the speech parameter Linear Concatenated FQ for each of the 4 sen-
tences in turn. 

Sentence k feasures Sentence 
Dynamic Static Both 

1 0.214 0.148 0.263 
2 0.24 0.141 0.264 
3 0.138 0.171 0.227 
4 0.138 0.17 0.197 

Table D.29: Speaker Dialect Least-Square-Fit Correlation Values - Dynamic, Static, and Com-
bined Dynamic-Static correlation values for the speech parameter Linear Concatenated Fo for 
each of the 4 sentences in turn. 
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Figure D.30: Speaker DiaJect Least-Square-Fit Scatter Plot - Dynamic, Static, and Combined 
Dynamic-Static plots for the speech parameter Normalised Linear Concatenated FQ for each of 
the 4 sentences in turn. 

Sentence Measures Sentence 
Dynamic Static Both 

1 0.227 0.091 0.262 
2 0.239 0.079 0.26 
3 0.126 0.077 0.144 
4 0.134 0.077 0.145 

Table D.30: Speaker Dicdect Least-Square-Fit Correlation Values - Dynamic, Static, and Com-
bined Dynamic-Static correlation values for the speech parameter Normalised Linear Concat-
enated FQ for each of the 4 sentences in turn. 
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Figure D.31: Speaker Dialect Least-Square-Fit Scatter Plot - Dynamic, Static, and Combined 
Dynamic-Static plots for the speech parameter Linear Inierpolaied FQ for each of the 4 sentences 
in turn. 

Sentence k feasures Sentence 
Dynamic Static Both 

1 0.199 0.153 0.256 
2 0.242 0.133 0.266 
3 0.168 0.2 0.246 
4 0.164 0.191 0.216 

Table D.31: Speaker Dialect Least-Square-Fit Correlation Values - Dynamic, Static, and Com-
bined Dynamic-Static correlation values for the speech parameter Linear Inierpolaied FQ for 
each of the 4 sentences in turn. 
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Figure D.32: Speaker Dialect Least-Square-Fit Scatter Plot - Dynsimic, Static, and Combined 
Dynamic-Static plots for the speech parameter Normalised Linear Jnierpolaied FQ for each of 
the 4 sentences in turn. 

Senience k 'easxires Senience 
Dynamic Static Both 

1 0.25 0.092 0.285 
2 0.241 0.082 0.26 
3 0.155 0.134 0.19 
4 0.176 0.122 0.192 

Table D.32: Speaker Dialect Least-Square-Fit Correlation Values - Dynamic, Static, and Com-
bined Dynamic-Static correlation values for the speech parameter Normalised Linear Jnierpol-
aied Fo for each of the 4 sentences in turn. 
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Figure D.33: Speaker Dialect Least-Square-Fit Scatter Plot - Dynamic, Static, and Combined 
Dynamic-Static plots for the speech parameter Log Concaienaied Fq for each of the 4 sentences 
in turn. 

Senience k feasures Senience 
Dynamic Static Both 

1 0.209 0.117 0.285 
2 0.24 0.15 0.285 
3 0.168 0.13 0.221 
4 0.162 0.202 0.226 

Table D.33: Speaker Dialect Least-Square-Fit Correlation Values - Dynamic, Static, and Com-
bined Dynamic-Static correlation values for the speech parameter Log Concaienaied Fo for each 
of the 4 sentences in turn. 
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Figure D.34: Speaker Dialect Least-Square-Fit Scatter Plot - Dynamic, Static, and Combined 
Dynamic-Static plots for the speech parameter Normalised Log Concatenated FQ for each of the 
4 sentences in turn. 

Sentence k ^easures Sentence 
Dynamic Static Both 

1 0.21 0.093 0.255 
2 0.246 0.158 0.268 
3 0.149 0.064 0.154 
4 0.121 0.086 0.136 

Table D.34: Speaker Dialect Least-Square-Fit Correlation Values - Dynamic, Static, and Com-
bined Dynamic-Static correlation values for the speech parameter Normalised Log Concatenated 
Fo for each of the 4 sentences in turn. 
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Figure D.35: Speaker Dialect Least-Square-Fit Scatter Plot - Dynamic, Static, and Combined 
Dynamic-Static plots for the speech parameter Log Interpolated FQ for each of the 4 sentences 
in turn. 

Sentence k 'easures Sentence 
Dynamic Static Both 

1 0.201 0.127 0.278 
2 0.287 0.162 0.324 
3 0.185 0.138 0.217 
4 0.172 0.243 0.266 

Table D.35: Speaker Dialect Least-Square-Fit Correlation Values - Dynamic, Static, and Com-
bined Dynamic-Static correlation values for the speech parameter Log Interpolated FQ for each 
of the 4 sentences in turn. 



D.3. SPEAKER DIALECT 
291 

DYNAMIC STATIC COMBINED 

Figure D.36: Speaker Dialect Least-Square-Fit Scatter Plot - Dynamic, Static, and Combined 
Dynamic-Static plots for the speech parameter Normalised Log Inierpolaied FQ for each of the 
4 sentences in turn. 

Sentence Measures Sentence 
Dynamic Static Both 

1 0.259 0.034 0.283 
2 0.228 0.114 0.248 
3 0.151 0.117 0.168 
4 0.181 0.12 0.205 

Table D.36: Speaker Dialect Least-Square-Fit Correlation Values - Dynamic, Static, and Com-
bined Dynamic-Static correlation values for the speech parameter Normalised Log Interpolated 
FQ for each of the 4 sentences in turn. 
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Figure D.37: Speaker Dialect Least-Square-Fit Scatter Plot - Dynamic, Static, and Combined 
Dynamic-Static plots for the speech parameter Voicing for each of the 4 sentences in turn. 

Sentence A (easures Sentence 
Dynamic Static Both 

1 0.195 0.128 0.205 
2 0.119 0.075 0.155 
3 0.114 0.156 0.176 
4 0.196 0.121 0.203 

Table D.37: Speaker Dialect Least-Square-Fit Correlation Values - Dynamic, Static, and Com-
bined Dynamic-Static correlation values for the speech pwameter Voicing for each of the 4 
sentences in turn. 
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Figure D.38: Speaker Dialect Least-Square-Fit Scatter Plot - Dynamic, Static, and Combined 
Dynamic-Static plots for the speech parameter Zero Crossing Rate for each of the 4 sentences 
in turn. 

Sentence Measures Sentence 
Dynamic Static Both 

1 0.201 0.185 0.24 
2 0.159 0.157 0.181 
3 0.159 0.147 0.198 
4 0.165 0.189 0.228 

Table D.38: Speaker Dialect Least-Square-Fit CJorrelation Values - Dynamic, Static, and Com-
bined Dynamic-Static correlation values for the speech parameter Zero Crossing Rate for each 
of the 4 sentences in turn. 
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Figure D.39: Speaker Dialect Least-Square-Fit Scatter Plot - Dynamic, Static, and Combined 
Dynamic-Static plots for the speech parameter Normalised Zero Crossing Rate for each of the 
4 sentences in turn. 

Sentence k 'easures Sentence 
Dynamic Static Both 

1 0.198 0.147 0.212 
2 0.104 0.072 0.111 
3 0.15 0.104 0.158 
4 0.158 0.119 0.17 

Table D.39: Speaker Dialect Least-Square-Fit Correlation Values - Dynamic, Static, and Com-
bined Dynamic-Static correlation values for the speech parameter Normalised Zero Crossing 
Rate for each of the 4 sentences in turn. 



Appendix E 

Principal Component Analysis 

of Measures 

This appendix presents a principal component analysis [Dun84] of the twenty-one analysis 
mecLSure set, for each of the four parameters— energy, Fo (linear-concatenated), voicing, and 
zero crossing rate. 

Principal component analysis may be viewed as a means of capturing the essential informa-
tion in a large set of 'overlapping' variables in a new smaller set. These new variables—principal 
component variables are linear combinations of the original vziriables such that their variance 
is maximised and they are orthogonal to each other. 

Hence, principal component analysis may reduce the dimensionality of inputs, to a recog-
nition system, to a manageable size by deriving a smaller set of measures which capture the 
essence of the original data. Secondly, principal component analysis may, based on the calculat-
ed weights, show the underlying dimensionality and relationship between the original variables. 

Each of the four basic parameters is analysed separately. The measure values for the four 
sentences were combined and each individual measure, m,^, scaled as: 

Figure E.l is a scree graph showing variance values of each of the principal components for 
the four individual parameters. For all four parameters a sharp decline in variance is evident 
after the first few principal components, showing that a smaller set of variables can encapsulate 
the greater variance of the original data. 

The following four sections will present the correlations (loadings) of the major principal 
components for each of the four parameters. For the purposes of this work major is defined as 
having a varisuice greater than that of any of the original scaled measures—hence a threshold of 
1. Thus 6 principal components for energy, 3 for FQ, 5 for voicing, and 6 for zero crossing rate, 
are shown. In all tables, correlation values greater than 0.3 in absolute terms are emphasised 
in order to help readability. 
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Energy 

Voicing 

Figure E.l: Scree graph of principal component decomposition for the four parameters: energy, 
Fo, voicing, and zero crossing rate. The variance of the principal components for each parameter 
are plotted. 
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E.l Energy 

Table E.l shows the correlations (loadings) of the 21 measures with the 6 principal components 
for energy. Combined the 6 principal components account for 79.7% of all variance in the 
original data. 

Measures Principal Componenis Measures 
1 2 3 4 5 6 

DTW Dist 0.41 -0.09 0.02 -0.02 0.08 -0.16 
Weighted DTW Dist. o.u -0.06 0.01 0.04 0.09 -0.17 
Border DTW Dist. 0.41 -0.09 0.03 0.02 0.08 -0.18 
Warp Len./Contour Len. -0.03 -0.11 0.52 -0.01 0.04 0.03 
Vert. Trans. -0.04 -0.14 0.52 -0.02 0.05 0.02 
Horiz. 1>ans. 0.09 0.5 0.08 0.01 -0.05 0 
Diag. Trans. -0.06 -0.81 -0.86 0 0.02 -0.01 
Num. Vert. Excn -0.19 -0.21 0.23 -0.17 -0.82 -0.41 
Num. Horiz. Excn -0.15 0.29 -0.1 -0.04 0.57 -0.12 
Num. Diag. Excn -0.32 0.1 0.07 -0.16 0.22 -0.42 
Max. Len. Vert. Excn 0.06 -0.05 0.85 0.1 0.89 0.48 
Max. Len. Horiz. Excn 0.17 0.27 0.15 0 -0.52 0.06 
Max. Len. Diag. Excn 0.16 -0.81 -0.27 0.07 0.01 0.09 
Off Diag. Wpath Dist. 0.28 0.13 0.04 0.07 0.06 -0.08 
Mean '0.85 0.04 -0.09 -0.02 -0.14 0.08 
Std. Dev. -0.07 0 0.02 0.47 0.05 -0.05 
Min. -0.1 0.02 0.03 0.51 -0.06 -0.24 
Max. -0.17 -0.02 -0.07 0.02 0.06 0.15 
Range -0.05 -0.01 0.03 0.58 0.02 -0.29 
Mean Rate Change -0.09 0 0 0.82 -0.17 0.42 
Length -0.1 -0.48 0.16 -0.01 0.06 0.01 

Table E.l: Principal Component loadings of the 6 majior principal components of Energy with 
the 21 original measures of Energy. Combined the 6 presented principal components account 
for 79.7% of all variance in the original measures of Energy. 

Principal component (PC) one, which accounts for 24.8% of all variance, is most strongly 
correlated with the DTW distance measures and the mean. PC-2 accounts for 17.2% of variance 
and appears to be a measure of differences in total duration. PC-3 accounts for 16.1% of the 
variance and is highly correlated to measures differentiating original contour length from warped 
length. PC-4 accounts for 10.4% of variance and appears a measure of distribution (rsuige). PC-
5 accounts for 6.3% of the variance and appears a contrast of durations—horizontal excursions 
at a 'micro' and 'macro' level. Finally, PC-6 accounts for 5.0% of the total variance and appeeirs 
a measure of the relative frame to frame variance of the energy contours under comparison. 

E.2 Fo 

Table E.2 shows the correlations (loadings) of the 21 measures with the 3 major principal 
components for the parameter Fq. Combined the three PCs account for 84.4% of all variance 
in the original data. 
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Measures Principal Components Measures 
1 2 3 

DTW Dist 0.26 -0.07 0.03 
Weighted DTW Dist. 0.25 -0.16 0.05 
Border DTW Dist. 0.26 -0.07 0.03 
Warp Len./Contour Len. -0.26 0.03 -0.19 
Vert. Trans. -0.26 0.03 -0.19 
Horiz. Trans. -0.21 '0.36 0.07 
Diag. Trans. 0.25 0.19 0.06 
Num. Vert. Excn -0.25 0.04 -0.19 
Num. Horiz. Excn -0.22 -0.21 0.02 
Num. Diag. Excn -0.25 -0.11 -0.07 
Max. Len. Vert. Excn -0.25 0.03 -0.15 
Max. Len. Horiz. Excn -0.04 '0.42 0.28 
Max. Len. Diag. Excn 0.16 0.07 -0.09 
Off Diag. Wpath Dist. -0.15 '0.32 0.1 
Mean -0.27 0.06 -0.06 
Std. Dev. -0.16 0.26 0.46 
Min. -0.24 -0.04 -0.22 
Max. -0.26 0.12 0.1 
Range -0.18 0.25 0.44 
Mean Rate Change -0.16 0.22 0.45 
Length 0 0.5 -0.29 

Table E.2: Principal Component loadings of the 3 major principal components of FQ with the 
21 original measures of FQ. Combined the 3 presented principal components account for 84.4% 
of all variance in the originsd measures of FQ. 
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PC-1 accounts for a surprising 61.9% of all variance in the original data. Examining the 
correlation values it appears hard to label this dimension as most measures have medium-strong 
correlations with none predominating. However, based on knowledge of FQ and the speaker set 
this would appear to be differences in mean value. PC-2 accounts for 14.2% of the entire 
variance of FQ. Examining the correlation values it appears to be a quantification of temporal 
differences. PC-3 accounts for 8.3% of £dl variance. Based on correlation values it appears to 
be related to the distribution (range) of the original contours. 

E.3 Voicing 

Table E.3 shows the correlations (loadings) of the 18 measures (min, max, and range excluded) 
with the 5 major PCs of the parameter voicing. Combined the 5 PCs account for 72.7% of all 
variance in the original data. 

Measures Principal Components Measures 
1 2 3 4 5 

DTW Dist 0.23 -0.13 0.41 -0.17 0.23 
Weighted DTW Dist. 0.28 -0.16 0.31 -0.23 0.09 
Border DTW Dist. 0.24 -0.15 0.4 -0.2 0.18 
Warp Len./Contour Len. 0.04 '0.46 -0.18 0.08 0.08 
Vert. Trans. 0.03 '0.41 -0.18 0.07 0.07 
Horiz. lYans. 0,84 0.17 -0.12 0.24 0.1 
Diag. Trans. '0.35 0 0.19 -0.26 -0.13 
Num. Vert. Excn -0.08 '0.34 -0.17 0.09 0.12 
Num. Horiz. Excn 0.27 0.12 -0.2 'O.4I 'O.34 
Num. Diag. Excn 0.25 0.04 -0.27 'O.43 '0.3 
Max. Len. Vert. Excn 0.03 '0.43 -0.17 -0.07 -0.05 
Max. Len. Horiz. Excn 0.31 0.1 -0.06 0.34 0.24 
Max. Len. Diag. Excn -0.28 0.02 0.31 0.13 -0.08 
Off Diag. Wpath Dist. 0.32 -0.11 -0.04 -0.08 0.01 
Mean -0.19 0.2 -0.23 -0.26 0.44 
Std. Dev. -0.13 0.11 -0.25 '0.36 0.6 
Mean Rate Change -0.07 -0.03 -0.28 0.09 -0.12 
Length •0.3 -0.29 0.06 -0.2 -0.07 

Table E.3: Principal Component loadings of the 5 major principal components of voicing with 
the 18 original measures of voicing. Combined the 5 presented principal components account 
for 72.7%% of all variance in the original measures of voicing. 

PC-1 accounts for 29.4% of all variance in measures of voicing. Based on the correlation 
values the 'dimension' of PC-1 appears unclew, though temporal related. PC-2 accounts for 
19.1% of variance and appears a quantification of differences in duration. PC-3 accounts for 
12.0% of variance and is most strongly correlated to the DTW distance measures. PC-4 accounts 
for 6.9% of all variance, although its 'quality' or 'dimension' is unclear. Finally, PC-5 accounts 
for 5.2% of variance and appears a measure of the variance of voicing. 
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E.4 Zero Crossing Rate 

Table E.4 shows the correlations (loadings) of the 21 measures with the 6 major PCs of the 
parameter zero crossing rate. Combined the 6 PCs account for 83.1% of all variance in the 
original data. 

Measures Principal Components Measures 
1 2 3 4 5 6 

DTW Dist 0.36 -0.07 0.05 -0.02 0.02 -0.19 
Weighted DTW Dist. 0.86 -0.01 0.06 -0.09 0.08 -0.25 
Border DTW Dist. 0.36 -0.06 0.05 -0.02 0.03 -0.21 
Warp Len./Contour Len. 0.01 '0.39 '0.3 -0.21 0.04 -0.02 
Vert. lYans. 0 '0.41 -0.29 -0.19 0.03 -0.01 
Horiz. Trans. 0.04 0.36 '0.37 -0.07 -0.05 0 
Diag. Trans. -0.04 -0.08 0.51 0.18 0.03 0 
Num. Vert. Excn -0.13 '0.33 -0.11 0.19 '0.39 -0.21 
Num. Horiz. Excn -0.13 0.22 -0.18 0.29 0.53 -0.17 
Num. Diag. Excn -0.22 -0.08 -0.21 0.39 0.11 -0.26 
Max. Len. Vert. Excn 0.07 -0.21 -0.17 '0.32 0.44 0.23 
MCLX. Len. Horiz. Excn 0.11 0.2 -0.2 -0.22 '0.53 0.11 
Max. Len. Diag. Excn 0.13 -0.02 0.43 -0.1 -0.01 0.07 
Off Diag. Wpath Dist. 0.21 0.17 -0.01 -0.28 0.18 -0.21 
Mean '0.31 -0.08 -0.02 0.07 -0.07 0.04 
Std. Dev. '0.3 0.08 0.11 '0.3 0.03 -0.1 
Min. 0.01 0 -0.01 -0.05 -0.12 '0.73 
Max. '0.31 0.08 0.1 '0.31 0.04 -0.13 
Range -0.29 0.08 0.11 '0.33 0.02 -0.17 
Mean Rate Change -0.27 0.03 0.11 -0.25 0.01 -0.12 
Length -0.03 '0.48 0.17 -0.03 0.06 -0.01 

Table E.4: Principal Component loadings of the 6 major principal components of zero crossing 
rate with the 21 original measures of zero crossing rate. Combined the 6 presented principal 
components account for 72.7%% of all variance in the original measures of zero crossing rate. 

PC-1 accounts for 18.7% of the total variance and is most strongly correlated to measures 
of the mean and the DTW distances. PC-2 accounts for 17.6% of variance and appears a 
measure of differences in duration. PC-3 accounts for 15.8% of the variance of the original data 
and appears a measure of how well the two contours matched (diagonal transitions on warp 
path). PC-4 accounts for 10.3% of variance and appears a quantification of distribution. PC-5 
accounts for 5.7% of variance and appears a contrast of micro timing adjustments with a single 
adjustment (horizontal excursions versus max. length horizontal excursion). Finally, PC-6 
accounts for 5.0% of the total variance and is strongly correlated with the minimum measure. 



Appendix F 

Listener Instructions 

The following list of instructions were presented verbally to all listeners prior to conduct of 
the perception experiments. Listeners were invited to question anything that was unclear and 
experiments were only initiated when all listeners affirmed their understanding. 

1. You will be taking part in three separate listening experiments; speaker identification; sex 
identification; and dialect assignment. 

2. For each experiment you will hear a presented utterance or set of utterances and must 
respond by indicating your decision upon the response sheet provided. 

3. In all cases you must provide a response; do not skip any as "too hard" to decide. 

4. There is no right or wrong answer, and this is not a trial or test of the listener. 

5. Do not expect that your responses should be balanced amongst the choices. 

6. Each response is numbered. Please work down the columns then over the page. 

7. Each of the three listening experiments will take of the order of 10 minutes. Between each 
experiments we will take a break of approximately 5 minutes. Please feel free to relax 
during this period. 

8. The utteramces you will hear have been machine processed. Some may sound 'artificial' 
or synthetic. Do not deliberately listen for this effect. 

9. If at any stage in an experiment you lose sequence then notify the experimenter. A new 
response sheet will be provided and you may restart the experiment. 

10. For the speaker identification experiment you will hear three utterances for each decision. 
The first two utterances are always the same and are samples of the speakers Alan and 
Peter respectively. The third utterance is unknown. You must decide whether it is Alan 
or Peter by indicating in one of the two boxes your choice. 
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11. For the speaker sex identification experiment a single utterance is presented for each 
decision. You must decide whether the speaker is male or female and indicate your 
decision by marking one of the two boxes provided. 

12. Australian dialect is a spectrum running from broad or 'thick' accent (a heavy Australian 
accent) through to cultivated or 'narrow' (often no detectable 'Australian accent'). 

13. For the speaker dialect experiment a single utterance is presented for each decision. You 
must decide where on the dialect spectrum that utterance lies and indicate your choice 
by marking a point somewhere along the line, marked 'cultivated' to 'broad', provided. 

14. THANK YOU. 
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Thesis Corrections 

The following pages comprise thesis corrections requested by the examiners. The correc-

tions are in four parts; an errata section; an addition (section 4.1) to Chapter 4; an addition 

(section 5.1.1) to Chapter 5; and a new conclusion chapter. 

The errata section covers typographical errors, errors of expression, and other corrections 

possible for such a format. The additional sections (4.1 and 5.1.1) deal with the issues of 

linguistic/phonetic normalisation and sentence choice for the speech database collected. The 

new conclusion chapter (Chapter 11) replaces the old chapter and ties the results of the thesis 

more closely to other work in the area. 



Errata 

Page 1, Paragraph 3, Line 5 Change "Speaker recognition systems. . . " to "Automaticspeaker 

recognition systems. . .". 

Page 4, Paragraph 3, Line 3 Change ". . .answer such questions as. . ." io . .address such 

issues as. . ." . 

page 5, Paragraph 2, Lines 3-4 Change "Stimulus material, consisting of a sentence from 
one of 40 speakers, was presented to a group of 10 listeners in pairs." to "Stimulus 
material, consisting of pairs of sentences from a speaker population of 40, were presented 
to a group of 10 listeners." 

Page 5, Paragraph 4, Line 3 Change "(15 male, 6 female)" io "(15 male, 9 female)". 

Page 9, Paragraph 2, Line 8 Change "For bandwidth alterations accurate speaker recog-

nition was lost at a scale o f . . . " to "Speaker recognition rates fell to chance level for 

bandwidth alterations of. . .". 

Page 9, Paragraph 3, Line 5 Change ". . .the energy termed based. . . " to ". . .the energy 

term based. .. ". 

Page 10, Paragraph 6, Line 1 Change "Streeter, Apple, Draus and Coalat t i . . . " to 
"Streeter, Apple, Krauss, and Galotti. . . " . 

Page 22, Paragraph 3, Line 2 Change ". . .on the criteria of E . . ." to ". . .on the criteria of 
maximum E. . ." . 

Page 23, Paragraph 6, Line 7 Change " . . .dropped rapidly showing..." to " . . .dropped 

rapidly, with respect to increasing averaging time, showing. . .". 

Page 25, Paragraph 4, Line 5 Change ".. .an equal error rate o f . . . " to ".. .an equal error 
rate (false acceptance rate equals false rejection rate) of.. .". 

Page 27, Paragraph 4, Line 1 Change " . . .approach to examing encoded. . ." to "... 
approach to examining encoded.. . ". 

Page 28, Paragraph 4, Line 11 Change " . . .of Log Area Rat ion. . . " io " . . .Log Area 

Rat io . . . " . 



I l l 

P a g e 33 , P a r a g r a p h 7, L ine 2 Change " . . . t h r e e dialects of Austral ian Eng l i sh : . . . " to 

". . . three varieties of Austral ian English:. . ." . 

P a g e 35, P a r a g r a p h 1, L ine 5 Change " . . .in laymens 'speech." to " . . .in laymen's speech." 

P a g e 36 , P a r a g r a p h 4, L ine 6 Change " . . . m o r e centralised." io " . . . m o r e 

centralised within the range." 

P a g e 37, P a r a g r a p h 2, L ine 6 Change . . and open trails,. . . " io " . . . and open t r ia ls , . . .". 

P a g e 4 5 , P a r a g r a p h 4, L ine 7 Change " . . . e x a m i n e prosodic or suprasegmental . . . " to 

" . . .examine t ime varying properties of prosodic or suprasegmental parameters for. . . " . 

P a g e 54 , P a r a g r a p h 1, L ine 8 Change "This ranking system. . ." to "This hierarchical com-

parison and ranking system. . . " . 

P a g e 50 , P a r a g r a p h 3, L ine 4 Change ". . . , in th f o r m . . ." io " . . ., in the f o r m . . ." . 

P a g e 73, P a r a g r a p h 5, L ine 1 Change " . . . d i s c r imina t e a n a l y s i s . . . " io " . . . d i s c r im inan t 

analysis. . . " . 

P a g e 58, P a r a g r a p h 5, L ine 1 Change . . the median-3 filter was:" to ". . . the mean-3 fil-

ter was:" 

P a g e 58 , P a r a g r a p h 6, L ine 8 Add "No form of smooth ing was performed across voicing 

boundaries for the FQ contours." 

P a g e 59 , P a r a g r a p h 3, L ine 1 Change " . . . t h r o u g h experimental runs w i t h . . . " to 

" . . . th rough experimental trials w i t h . . . " . 

P a g e 59, P a r a g r a p h 4, L ine 3 -4 Change " . . .ensures the separat ion of voicing f rom FQ. .." 

io ". . .ensures the separat ion of the glottal source into voicing and FQ. . . " . 

P a g e 62 , P a r a g r a p h 1, L ine 5 Change " . . . therefore desirous t o . . . " io " . . . therefore desir-

able t o . . . " . 

P a g e 62 , P a r a g r a p h 2, L ine 3 Change " . . . p roper t i e s , of two contours." io "properties, 

though also incorporating aspects of the t ime-invariant na ture (see section 5.2.2) of two 

contours." 

P a g e 63 , P a r a g r a p h 1, L ine 2 Change " . . . t w o contours. There a r e . . . " to " . . . tv, 'o con-

tours. Hence the D T W derived measures, will be referred to as dynamic measures while 

the previously defined stat ic measures will be use to examine t ime-invariant encoding. In 

order to measure t ime-dependent encoding as accurately as possible normalisat ion (see 

section 5.2.2) is also applied in order to el iminate t ime-dependent encoding information 

f rom the D T W (dynamic) measures. There are. . . " . 

P a g e 64, P a r a g r a p h 6, L ine 2 Change ". . . a theoretical optional diagonal. . ." to ". . .a the-

oretical opt imal diagonal (simple macro-linear t ime n o r m a l i s a t i o n ) . . . " . 
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Page 66, Paragraph 1, Line 5 Change " . . .respect to to t h e . . . " to " . . .respect to t h e . . . " . 

Page 66, Paragraph 2, Line 6 Change " . . .its a good match." to " . . .it is a good warp 

(time) match." 

Page 72, Paragraph 2, Lines 2-4 Change "The warp path. . .to use it." to "Dynamic time 

warping performs both macro and micro time normalisation on two contours in order to 

minimise the total difference between the two contours. The D T W distance, convention-

ally used in most D T W approaches, is a measure of this total difference. However, the 

warp path, calculated in the process of the time normalisation and distance calculation, 

encodes the macro and micro time normalisation performed, and hence the relative dy-

namics of the two contours. This information encoded in the warp path is not used by 

conventional D T W based systems." 

Page 86, Paragraph 1, Line 2 Change ". . .and Ingram [PGC90] or. . t o ". . .and higram 

[PI90] o r . . . " . 

Page 86, Paragraph 5, Line 1 Change "Based on all four plots.. ." to "Based on all three 

plots.. . " . 

Page 92, Paragraph 1, Line 4 Change " . . . a n d contrasts with Furui . . . " to " . . . a n d con-

trasts to a degree with Furui. . . " . 

Page 95, Paragraph 3, Line 1 Change " . . . f o r all sentences dynamic . . . " to "for three of 

the four sentences dynamic. . .". 

Page 95, Paragraph 5, Line 2 Change "This is not surprising as dialect. . ." to "One possi-

ble explanation for this is that dialect.. ." 

Page 98, Table 6.8, Caption Add "Results are for all four sentences combined." 

Page 101, Paragraph 3, Line 5 Change "Surprisingly there is a d r o p . . . " to "There is a 

d r o p . . . " . 

Page 116, Paragraph 2, Line 5 Change " . . .dialect differences exits across t h e . . . " to 

". . .dialect differences exist and may be detected across the. . . " . 

Page 119(122) , Paragraph 5, Lines 5 -6(1 -2) Change "Fujisaki [FH82,Fuj88] considers.. . 

based on a linear FQ" to "One area of continuing debate regarding FQ is the best scale, 

whether on the basis of production mechanism or automated recognition results, to rep-

resent FQ. Proponents such as Fujisaki [FH82,Fuj88] cite a log scale for FQ on the basis 

that the vocal fold movement under syntactic and lexical constraints is best modelled 

logarithmically. On the basis of these results a log scale model appears superior to a 

linear scale model in terms of speaker recognition performance." 

Page 130, Paragraph 5, Line 5 Change 88.2% to 80.3%. 

Page 130, Paragraph 5, Line 8 Change 3 .1% to 2.8%. 



Page 135, Paragraph 4, Line 2 Change ".. .process, and generally found t o . . . " to 
".. .process, and in 2 of the 3 cases was found t o . . . " . 

Page 135, Paragraph 5, Lines 3-6 Change "In section 5.4.. .were proposed." to "In section 

5.4 two variants on the DTW distance were proposed. These were the Weighted DTW 

distance, which sought to include warp path derived information in the distance; and the 

Border DTW distance, which eliminated two leading and trailing values from the interval 

over which the distance is calculated." 

Page 143, Paragraph 1, Line 2 Change "...(level), by up to a factor of 2, worse.. ." io 

". .. (level) worse. .. ". 

Page 144, Paragraph 1, Line 1 Change . .of of. . ." to ".. .of. ..". 

Page 148, Paragraph 4, Line 4 Change . .'consistently' strong correlations, markedly in 

excess of those of other measures." to . .correlation values markedly in excess of those 

of other measures." 

Page 155, Paragraph 3, Line 1 Change . .be garnered from the plot." to . .be gathered 
from the plot." 

Page 155, Paragraph 3, Line 6 Change ". . .if such a policy were. . ." to "if such a policy of 

using speaker dependent threshold values for automatic speaker recognition were. . ." . 

Page 162, Paragraph 4, Line 6 Change "Therefore it could reasonably expected. . ." to 

"Therefore it could reasonably be expected. .. 

Page 163, Paragraph 1, Line 3 Change "Possibly there . . . " to "The reason for this phe-

nomenon is unclear though possibly there.. ." . 

Page 163, Paragraph 3, Line 4 Change ". . .other two. Thus, while. . . " to ".. .other two. 

This may be attributable to the fact that the warp path and the warp distance are 

extracting two different and separate items of data and that seeking to incorporate them 

into a single measure in such a manner leads to a loss, rather than gain, of information. 

Thus, while. . .". 

Page 164, Paragraph 5, Line 2 Change "Surprisingly, while. . ." to "While. . .". 

Page 164, Paragraph 6, Line 2 Change ". . .superior parameter wi th . . . " to ". . .superior 

parameter (as has been suggested by previous research [Wea24,HHP88]) with. . .". 

Page 164, Paragraph 6, Lines 3-4 Change " . . .wi th voicing at a surprising 71.8%.. ." to 

". . .with voicing yielding a discrimination rate of 71.8%. . ." . 

Page 165, Paragraph 3, Line 4 Change ". . .single sentence DTW distance discriminated 

sex with a mean of 88.2% as o p p o s e d . . t o ".. .single sentence, DTW distance discrim-

inated sex with a mean of 88.2%, as opposed. . . " . 
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Page 165, Paragraph 4, Line 3 Change "...discrimination rates. There appears . . . " io 
". . .discrimination rates. These may be attributable to the fact that the DTW distance 
and the warp path measures extract different sources of information:- combining them 
into a single measure leads to information loss. There appears. . . " . 

Page 165, Paragraph 6 Add "The application of such an individual thresholding system in 

order to determine speaker sex pre-supposes a knowledge of speaker identity:- a finer 

categorisation than speaker sex. However analysis of the variations in threshold between 

speakers may lead to new categorisations of speakers and hence a realistic pre-processing 

stage that may be applied to determine threshold levels for a speaker sex decision mech-

anism." 

Page 166, Paragraph 2, Line 8 Change ". . .degree of accuracy based. . ." to ". . .degree of 
accuracy (though the maximum result achievable remains unclear) based. . .". 

Page 169, Paragraph 3, Line 1 Change "Ideally, a. . ." to "Extending the analysis of the 

four sentences, ideally a. . .". 

Page 179, Paragraph 1, Lines 3-6 Change "Parameters of. ..characteristic examined." to 
"Parameters (timing, FQ, voicing, and energy) of the utterances will be .systematically 

altered to derive new utterances. The new utterances will be played to listeners and the 

results will be used to gauge the correlation between listener perception of the speaker 

characteristic and the parameter altered." 

Page 180, Paragraph 1 Add "For both the initial exploratory experiment and the following 
reported experiments listeners Were given an initial familiarisation period in which they 
heard the utterances of A and B repeatedly. The pre,sentation of each unknown utterance 
to which the listeners were asked to respond was preceded by the same utterance from A 
and B, in order that the listener had a ready reference for the two speakers." 

Page 180, Paragraph 2 Add "Figures 9.4 to 9.17 and tables 9.1 to 9.14 present the results 

of the experiments." 

Page 183, Paragraph 6, Line 1 Change ". . .parameter it maybe seen. . ." to ". . .parameter 

it may be seen. . .". 

Page 183, Paragraph 6, Line 2 Change ". . ., and in all cases bar 1 higher, shif ts . . ." to 

. ., and in all ca,ses bar 1, higher shifts. . .". 

Page 189, Paragraph 1, Line 4 Change ".. .like' A. hi general. . ." io ". . .like' A. Another 

possible explanation is the strong double peak in B's original energy contour between 15 

and 30 time frames. Warping B's energy tends to destroy this double peak while warping 

A's energy can not create the strong double peak. In general.. .". 

Page 198, Paragraph 4, Line 8 Change ".. .comparisons the was . . . " to ".. .comparisons 

there was. . .". 
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P a g e 199 , P a r a g r a p h 4 , L ine 4 Change " . . . a n d the hence t h e . . . " to " . . . a n d hence 

t h e . . . " . 

P a g e 208 , P a r a g r a p h 2 Add "The results based on the warped energy serve as a reminder of 

the l imitat ions on warping. When there are marked differences in the two contours being 

compared (such as the extreme double peaks in B's energy contour between 15 and 30 

t ime frames) , part icularly in terms of range, dynamic t ime warping will only perform with 

limited success and some form of normalisat ion is required if greater success is required." 

P a g e 208 , P a r a g r a p h 5 Add "More analysis of this phenomenon is required." 



Addit ional Sections 

4.1 Linguistic-Phonetic Control 

One possible source of variability between different instances of the same utterance is that 

corresponding to the communicative intent. Speakers repeating the same sentence on different 

occasions may use different intonation patterns (e.g., falling/rising) or place stress at different 

points within the sentence. This linguistically/phonetically induced variability is beyond the 

scope of the current work but its influence must be minimised, if not eliminated, in order that 

it does not affect the results obtained (due to the influence of these linguistic/phonetic factors 

on the acoustic parameters being examined). 

Following each recording session by each speaker; all material recorded during that session 

was listened to by the investigator. If l inguistic/phonetic variations were detected the speaker 

was asked to re-record the session or individual sentences. In practice a small number of speakers 

fell into this category of being asked to re-record a session for l inguistic/phonetic reasons. By 

the third recording session all speakers were found to be adept at mainta in ing consistency. 

A second stage of listening occurred during the digitisation process during which each sen-

tence was manual ly extracted from the tape. At this stage if l inguistic/phonetic variability was 

detected by the investigator the particular utterance was marked as an "error". The number 

of errors for each of the 15 sentences in the recording set was then used to select the four 

sentences (due to time, storage, and processing constraints) vvitli the least errors that also met 

other criteria; such as including different sentence types in the final set of four sentences. If 

any instances of the four selected sentences were marked as errors they were discarded and not 

used in experimentation. 

It is worth remarking that linguistic/phonetic derived variability is unlikely to neatly parallel 

the speaker characteristics dialect or sex and is also highly likely (if present) to be inconsistent 

for a single speaker. In effect any linguistic/phonetic variability not eliminated will most likely 

adversely affect any results obtained; not lead to artificially inflated results. 

5.1.1 Material Inadequacies 

Unfortunately the four sentences selected for analysis do not comprise an ideal set for examina-

tion. The sentences taken together are not phonetically balanced and do not represent the full 

range of typical Australian English sentence types. Constraints of time, processing capability 

viii 



IX 

and d a t a availabili ty meant t i iat a compromise in t e rms of volume and content of speech ma-

terial used in exper iments was required. While these compromises mus t of necessity impinge 

upon the general i ty of results they do not invalidate the results ob ta ined . 

At the t ime of d a t a collection it was envisaged t h a t all fifteen sentences would be used in 

the analysis exper iments . In many ways speech research is d a t a driven:- the fifteen sentences 

were selected for historical reasons; bo th due to previous well known studies in the area of 

speaker recognition [DodTlb, Wol72], and due to the availabili ty of already recorded d a t a f rom 

a number of Nor th American and Aust ra l ian speakers. 

However, due to the detailed na tu re of the analysis conducted and t ime const ra ints of 

the thesis it was necessary to select a subset of the sentences for analysis. A subset size 

of four sentences was decided upon as a compromise between the object ives of comple t ing 

the thesis while also a t t e m p t i n g to adequate ly cap ture some degree of acoustic and phonet ic 

diversity. All u t te rances of each of the fifteen possible sentences were analysed as to possible 

l inguis t ic /phonet ic variation and the number of such occurrences and plain pronuncia t ion errors 

marked for each sentence. T h e four sentences were then selected so as to effectively minimise 

the errors or l inguis t ic /phonet ic variat ion in the subset selected. Other factors including mean 

sentence dura t ion , sentence "type" (declarative, question etc.), and phonemic content (phonet ic 

balance of list) were also taken into account . These later factors were subord ina t e to the goal 

of minimis ing pronunciat ion errors and l inguis t ic /phonet ic variat ion in the subset member s in 

order t h a t sufficient speech d a t a (af ter the e l iminat ion of u t te rances showing such errors or 

var ia t ion) be employed to allow meaningful s tat is t ical analysis of any results ob ta ined . T h e set 

of four sentences chosen is the result of such a compromi.se. 

A phonemic analysis of the four selected sentences shows t h a t a few phonemes of Austra l ian 

English are missing. In par t icular there are no voiced fr icat ives (two voiceless), no laterals, and 

no back monop thongs . T h e phonet ic composi t ion of the four sentences taken together is the 

result of a number of decision factors , only one of which was phonet ic balance. It is reasonable 

to expect t h a t higher per formance than tha t repor ted here would be ob ta inab le with a more 

balanced sentence set. 

It is worth not ing tha t were the sentence .set artificially designed (which was not the case) 

so as to yield op t ima l per formance the results obta ined on such d a t a would still (regardless) 

have appl icat ion in such areas as a u t o m a t i c speaker recognit ion. For such tasks implementors 

a t t e m p t to obta in m a x i m u m recognition per formance and of ten design of an ' o p t i m a l ' u t te rance 

set is one way to obta in improvements . 

Therefore , the four sentences used for analysis are derived f rom a series of decisions, con-

s t ra in ts , goals, and compromises including historical precedence, t ime l imi ta t ions , and a t t e m p t -

ing to minimise l inguis t ic /phonet ic variability. T h e result ing sentences are not phonetical ly 

balanced, and a larger more balanced set of sentences is required to adequate ly examine and 

address all the i.ssues raised relat ing to da ta -dependence of results. However, given the con-

s t ra in t s and goals imposed, the sentences selected do allow meaningfu l analysis of the encoding 

of speaker characterist ics in prosodic paramete rs . 



Chapter 11 

Conclusion 

A database of sentence-long utterances from nineteen adult speakers of Australian English was 

collected. Four prosodic parameters— energy, fundamental frequency, voicing, and zero crossing 

rate were extracted and analytical and perceptually based investigations of the parameters' 

correlations to the speaker characteristics identity, sex, and dialect were carried out. Via this 

relatively uncommon approach (Lass, Linville, Pruzansky and Xu [LMK78, LF85a, Pru63, 

XOM89]) of combining perceptual and analytic methods a number of previously known results 

were confirmed, and new results regarding the relationship of the parameters to the speaker 

characteristics were discovered. 

Analytical experiments were conducted using four of the fifteen different recorded sentences. 

Discriminant analysis was applied to examinations of the characteristics identity and sex, and 

least-squares-fit analysis for speaker dialect. Twenty-one measures of the properties of each of 

the parameters were examined, the measures being logically split into two groups:- dynamic— 

measures of the time varying properties of the parameter contours, and static—measures of the 

time invariant properties of the parameters. 

It was found that identity, sex, and dialect could be detected to significant degrees based 

on the parameters and sentences used:- identity and sex discrimination at 75% and 96% re-

spectively, and dialect correlated at 0.58. These results show the high degree of speaker char-

acteristic encoding in the prosodic parameters and further the research of other scientists who 

have examined prosodies; Doddington [DodTlb], Lummis [Lum73], and Wasson and Donaldson 

[WD75] for speaker identity; Weaver and others [Wea24, HHP88, Mil88] for speaker sex; and 

Pokes and others [FBS84, Ada71] for speaker dialect. Further, the results illustrate the utility 

of prosodic acoustic parameters as inputs to automatic systems for the determination of speaker 

characteristics; for example automatic speaker verification systems. 

In order to examine the form of identity, sex, and dialect encoding in the prosodic parame-

ters, time varying and time invariant properties of the parameters were investigated separately. 

Several researchers:- Furui [FurSlb], Soong and Rosenberg [SR88], and Bernasconi [BerQO] have 

performed similarly motivated investigations for identity alone, examining only spectral acous-

tic parameters. Tiie current thesis expands on previous work by employing a new technique, 

investigating prosodic parameters, and examining multiple speaker characteristics rather than 
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speaker identity alone. 

Comparison of dynamic measure ba^ed, and stat ic measure based discrimination and correla-

tion rates showed that for all three speaker characteristics the dynamic measure set performance 

was equal to or superior to that of the stat ic set, though combined performance exceeded that 

of either alone. Clearly the dynamic measures of the prosodic parameters extract more speaker-

related information than the stat ic measures, though dynamic measures do not encapsulate all 

of the information extracted by the stat ic measures. 

Normalisation, that is linear shifting of parameter contours into the range 0 - 1 , was used 

in order to 'distill ' the dynamic properties of the parameters. Th is technique does not appear 

to have been previously examined. Besides enhancing the separation of t ime varying and time 

invariant properties of parameter contours, the technique appears to have applications to such 

methods as Artificial Neural Networks which often need normalisation of inputs to ensure 

stability. Discrimination rates for identity, and correlation for dialect, dropped little following 

normalisation, while sex discrimination rates dropped sharply. Discrimination or correlation 

rates for each characteristic were contrasted between stat ic measures of the non-normalised 

parameters and dynamic measures of the normalised parameters. Significant differences were 

found in all cases such that speaker identity and dialect were found to be more strongly encoded 

in the t ime varying properties of the contours, while speaker sex wa.s more strongly encoded in 

the t ime invariant properties. 

A novel extension of the dynamic time warp algorithm was employed ba.sed on significant 

enhancements to early work by Saito and Furui [SF78]:- measures of the calculated warp path 

between two contours were examined for speaker characteristic encoded information. Most 

D T W based schemes implicitly calculate the warp path and discard it after deriving the D T W 

distance. It was found that both speaker identity and dialect were strongly encoded in the warp 

path measures, to such an extent that they were significantly 'bet ter ' than the D T W distance. 

For speaker sex the warp path measures were marginally inferior to the D T W distance. Clearly 

the D T W warp p a t h — a measure of the relative dynamics of two contours—encodes temporal 

related speaker characteristic information to a high degree, which may be used to discriminate 

the speaker characteristics. 

T h e illustrated improvements in discrimination for a D T W based scheme which incorporates 

measures of the warp-path over a conventional D T W based scheme has several implications. 

Firstly re-evaluations of D T W based schemes when compared to other decision mechanisms such 

as Hidden Markov Models; e.g., Naik, Netsch, and Doddington [NND89]; should be carried out 

such that warp-path measures are incorporated in the D T W scheme. Secondly, it appears 

reasonable to expect that the performance of systems based on D T W , such as the speaker 

verification at Texas Instruments [Dod85], could be markedly improved via the incorporation 

of warp path measures. 

T h e four basic parameters— energy, fundamental frequency, zero crossing rate, and voicing 

were individually investigated for encoded speaker characteristic information. All ^om parame-

ters were found to have encoded information relating to each of the three characteristics. Fun-

damental frequency was the 'best ' (highest degree of encoding) parameter for all three speaker 
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characteristics, though degree of encoding, and in general the relative 'worth ' of parameters was 

speaker characteristic dependent. These results contribute to the body of knowledge regarding 

the encoding of speaker characteristics in individual prosodic parameters:- while considerable 

work has been done on fundamental frequency and identity [DodTlb, Ata72] or sex [Wea24, 

HHP88] the other three parameters have received little or no attention as to their encodings of 

identity [JHH84], sex [MilSS] or dialect. 

Four variant representations of fundamental frequency, based on log versus linear scale and 

interpolation across unvoiced or concatenated voiced only, were examined. For both speaker 

identity and dialect the log representation of FQ was found to be markedly superior to the linear 

scale. In all cases interpolation was equal or superior to concatenation. Though these results 

are inconclusive as evidence supporting or denying a representation of fundamental frequency 

based on physical articulator motion constraints [FH82, Fuj88] the results show the utility of 

using a log scale for fundamental frequency, when FQ is used as an input to an automatic 

recognition system; e.g. Doddington [DodTlb], Atal [Ata72] or Chen and Lin [CL87]. 

Discriminant or correlation performance for the three speaker characteristics was adequately 

modelled as a growth function of the amount of speech material u.sed. The.se results continue 

early work by Pollack et. al. [PPS54] who modelled listener performance for judgement of 

identity tasks as a function of utterance duration. However, factors other than amount of 

speech material appear to influence discriminant/correlation levels so that accurate estimates 

of optimal performance were not possible, nor were general guidelines regarding choice of ut-

terance for text-dependent recognition systems. Clearly these issues of utterance duration and 

content have major implications for the design and implementation of automatic systems (e.g., 

automatic speaker verification) yet little research has been conducted in the area and further 

work is required. 

The twenty-one measures were individually compared and contrasted. It was found that all 

measures extracted some encoded speaker-related information and that no single measure stood 

out as being consistently strong for all combinations of characteristic-parameter. Clearly, the 

form or nature of encoding of speaker characteristics is parameter and speaker characteristic 

dependent. 

Discriminant and correlation results were analysed on the basis of the individual speakers in 

the speaker population. For all three speaker characteristics results were found to be variable 

between individual speakers, and in particular highly variable for speaker dialect (showing 

that prosodic correlates of dialect are general population ' trends' , not firm constraints). Tha t 

is, that for all three speaker characteristics their encoding within the parameters was speaker 

dependent. Very little concerted re.search has been conducted in this area of speaker dependency 

of results, or the uniqueness of the speakers in the speaker population [Nod89]. These issues of 

speaker population homogeneity/heterogeneity on a number of scales have major implications 

for such important areas of speech technology as database design, collection and evaluation, and 

the performance evaluation of automatic speech recognition and automatic speaker recognition 

systems. Clearly there is considerable scope for more research to be conducted in this area. 

Perceptual experiments were conducted using a single sentence and a different subset of the 
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speaker population for each of the three speaker characteristics. A novel method of analysis-

resynthesis using linear prediction to construct a composite utterance from a number of ut-

terances, and allowing the individual manipulation and alteration of energy, fundamental fre-

quency, voicing, and timing was devised and used to evaluate listener utilisation of acoustic cues 

to speaker characteristics. A number of other researchers have examined speaker characteristic 

encoding via the manipulation of acoustic parameters with different degrees of .sophistication:-

Lass et. al. [LMK78, LA,380], Van Lancker et. al. [LKE85, LKW85], Childers et. al. [CYW85, 

CWHBTa, CWH87b, CWHY89], Takagi and Kuwabara [TK86] and Dommelen [Dom90]. The 

analysis-resynthesis technique of the thesis ranks among the most sophisticated approaches 

to 'parameter alteration and is unique in the use of multiple (more than 2) speakers to build 

composite utterances. 

Identity perception experiments revealed that listeners used prosodic parameters to iden-

tify speakers with a high degree of accuracy based on a combination of the four examined 

parameters. These results further the work of other researchers, such as Dommelen [Dom90] 

and Johnson [Joh90] who have chiefly examined fundamental frequency, as the prosodic cue for 

speaker identification. 

Weighting of parameters as perceptual cues to identity was found to vary between the 

parameters and be dependent upon speaker. Tha t is, listener cue utilisation was speaker de-

pendent. In a parallel of the analytical examination of the warp path (dynamic differences) 

parameter contours from speakers were warped to match that of the different speakers' contours 

for the same sentence. In some parameter-speaker combinations listener perception was altered 

significantly based on the warping— showing listener utilisation of the dynamics of a contour 

for identity perception—while in others little or no alteration occurred. Clearly in some cases 

at least listeners use the dynamic (time varying) properties of a parameter more than its static 

(time invariant) properties to form judgements of speaker identity. This new method of contour 

warping and perceptual trials requires considerable further investigation both of the technique 

itself and the results. 

Sex perception experiments showed the significance of mean fundamental frequency in lis-

tener perception of .sex. This result confirms the well known pre-eminence of mean fundamental 

frequency in listener perception of speaker sex [Col76, LHB-f76, Joh90]. Different dynamics 

of FQ and the parameters energy, and voicing were found to have no significant influence upon 

listener perception of sex. 

Dialect perception experiments were conducted using utterances of speakers from either end 

of the dialect spectrum. Naive listener response was generally found to be consistent, though 

under certain conditions of parameter alteration it became highly variable. This result tends to 

confirm that of Brennan et. al. [BRD75], that naive listeners are capable of judging degree of 

accent accurately and consistently. Encoding of the parameters energy, fundamental frequency, 

and voicing showed no significant shift in listener perception consistent with the dialect of the 

originator of the parameter. Alterations in duration of utterance were found to significantly 

influence results such that shorter utterances were perceived as more cultivated while lengthened 

utterances were perceived as broader. Whether this listener perception is an externally imposed 
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s tereotype (e.g., med ia influence) and not a t rue representa t ion of prosodic correlates of dialect 

for the Aus t ra l ian popula t ion , or a model drawn f rom listener experience is unclear. However, 

results of the analysis section did show the significance of du ra t ion for speaker dialect, while 

researchers such as Lass et. al. [LMK78, LAJ80] have shown t h a t t empora l cues do play a par t 

in listener percept ions of accent or dialect. 

T h e results highlight several areas in which fur ther work may be carried out . Both analyt i -

cal and perceptual techniques may be applied to o ther speaker characteris t ics , such as emot ion , 

and to o ther speech paramete rs , such as spectral pa ramete r s . T h e perceptua l exper iments were 

l imited in scope, the addi t ion of more speakers and listeners would great ly s t rengthen and add 

t o ' t h e results already achieved. Fur ther examina t ion of the phenomenon of listener perception 

of warped pa rame te r s is required. T h e assumpt ion of the dialect difference as a linear scale 

may be an over-simplification and non-linear t r ans fo rma t ions may yield bet ter results. Further 

investigation is required in order to de termine what cons t i tu tes a good u t te rance for speaker 

recognition systems, and build accurate ma thema t i ca l models of recognition pe r fo rmance based 

on pa rame te r s of the exper iment— ut terance , acoustic pa ramete rs , number of speakers etc. 

Following on f rom this, individual speaker variance in encoding of speaker character is t ics re-

quires fu r the r examina t ion both so t h a t da tabases may be accurate ly quant if ied and compared , 

and so t h a t exist ing recognition systems may be 'fine t u n e d ' by ta rge t ing ' t roub le ' speakers. 

A means of quan t i fy ing the dynamics of a contour ( D T W warp pa th ) t h a t did not require the 

compar ison of two contours would be advantageous . A less restricted d a t a set, where ut ter-

ances were sampled under normal conversational condit ions, and hence are more variable and 

d y n a m i c appears desirable. Finally, implement ing measures of the warp pa th in an existing 

recognition system would allow their evaluat ion under pract ical , appl icat ion condit ions. 
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