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1. Introduction 
The rapid development of computer technology has brought intelligent 

systems within the realm of possibility. The methods of monitoring, control 

and operation of all types of modern systems have changed dramatically. 

Intelligent machines now accomplish many of the tasks formerly performed 

by human operators. Many of today's control systems are benefiting from the 

complex and very fast decisions that augment traditional automation using 

machine intelligence, making them capable of handling such functions as 

problem solving, perception and learning. 

1-1. Aim 

Mobile robots are gradually entering the real world. There have been 

demands on autonomous robot systems to accomplish given tasks in 

unknown and/or dynamic environments. They are employed in automated 

factories, used for plant supervision, and more recently are increasingly 

becoming successful in service tasks such as health care and rescue missions. 

However, in order to have a wider use in the real world, mobile robots must 

be able to learn from their past experiences. To achieve this goal, one way is 

to dramatically increase the complexity of the robot's control software. This 

research is aiming at providing an alternative. 
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One of the basic tasks of a mobile robot is to move from one point to another 

(preferably the target) quickly and collision-free. To do so, it needs to be 

equipped with one or more sensory systems to perceive information from the 

world (the environment in which it is wandering). Recent mobile robots have 

been using distance-measuring sensors based on infrared, sonar and /or laser 

technologies widely. Due to the fact that the information provided by these 

sensors can be processed quickly (referred to as on-line), they are ideal for 

real-time monitoring of the environment. 

Mobile robots also require an interface or a control link between the sensory 

systems and the actuators. Using this link the robots can alter their action with 

respect to their perception and also possibly with respect to the given task. 

The control link arises from situation-action rules provided to the robot. 

If we can foresee all the situations likely to be encountered by the robot, it 

would be possible (but very costly) to program the robot to handle those 

situations appropriately. However, in the real world, with all its noise and 

variability, this approach becomes rather impossible. Therefore, robots should 

be able to learn from the experiences gained during the operations, or even 

more preferably be able to learn by observation. Applying machine learning 

techniques can help mobile robots meet the need for increased safety and 

adaptivity that real-world operation demands. 

This thesis has adopted a machine learning method, Behavioural Cloning 

[MBM90], to attempt to solve the problem of Mobile Robot Navigation in an 
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unknown terrain. At the time this research started, it was one of the first efforts 

ever to use a physical platform rather than a simulation program. Furthermore 

it is one of the first attempts to use behavioural cloning technique on a 

physical system. 

The aim is to learn how to navigate a mobile robot using behavioural cloning, 

a term introduced by Michie describing systems and methods to clone a 

human-operated system [MBM90]. This job is performed by learning specific 

rules to describe the operation of the machine, which can be used to emulate 

the operation of that machine. Behavioural cloning is the imitation of 

human's sub-cognitive skills. 

Developing a mobile robot gives us the opportunity to investigate issues in the 

design of intelligent systems because the robot's mobility forces us to deal 

with many unpredictable environmental situations. One dictionary definition 

of intelligence is the ability to deal with new or changing situations. Thus, a 

mobile robot that reliably navigates in unknown environments gives the 

appearance of intelligent behaviour. The main idea of an autonomous vehicle 

is quite simple: given a task to perform, it must have the ability to perceive the 

environment and act appropriately without human intervention. This ability 

requires a feedback control system to link the vehicle's sensing and control. 

Unfortunately, autonomous robots have characteristics not yet satisfactorily 

addressed by the classical control community: 
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• Solving the problems encountered by the mobile robot generally 

requires the integration of several methodologies. 

• The robot's decision space is discrete and composed of distinct 

elements as opposed to continuous functions. The system must react to 

the environment in an appropriate time period. 

• Due to the limitations of the sensors and sensory processing, most of 

the knowledge the robot acquires is either incomplete or uncertain. 

1-2. Task in Hand 

Interest in the robot learning field has been growing fast in the last few years. 

Providing learning ability to robots offers certain benefits: 

• Increasing the ability of the machine in a dynamic environment, where the 

propagated knowledge will eventually become obsolete or even is not 

available at all. 

• Reducing the cost of programming robots to perform specific tasks. 

• Furthermore, increasing the robots' ability to overcome changes in their 

own physical specifications, such as sensor drift or power failure. 

Navigation is one of the standard tasks in the mobile robots' domain. In order 

for a mobile robot to accomplish a non-trivial task, the task should be 

described in terms of primitive actions of the robot's actuators. The complete 

navigation problem can be broken down in to related sub-tasks, which will be 

referred to as behaviours here after in this thesis. 
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Autonomous agents, like mobile robots, typically operate in dynamic and 

uncertain environments. Such environments can only be sensed imperfectly, 

so the effects of those are not always predictable. Also, the robots may not 

usually control the changes due to the environment. Prominent among the 

approaches to design agents operating in these kind of environments are the 

so-called behaviour based, situated, and animat methods 

[Bro86b] [KR90] [Mae89] [Wil, 1987]. 

As useful as we imagine the robots to be, they must be capable of obtaining 

(learning) new behaviours, either primitive or complex. There have been 

several methods used to obtain more complex behaviours 

[MB90][Mit89][WDEP89]. These techniques mostly depend on hand-coded 

programs or built-in circuitry. In our experiments the acquisition of 

behaviours has been carried out by imitating human trainers. 

To control a dynamic system one requires the sort of skill that can not be 

completely described, but can be behaviourally demonstrated. Behavioural 

cloning [MBM90], is the process of reconstructing skills from operators' 

behavioural traces by means of machine learning techniques. 

To build a controller for a physical process, different methods can be used. 

Some examples of these methods are optimal control [MKK86}, fuzzy control 

[Wil87], neural network [Np90], expert systems [Dev87], and machine 

learning [UB94], each of which has its own capabilities and limitations 

[WK90]. Although, each method may be suitable for a task, it will not suit 
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another task. Also, there is no clear criterion to decide on which method is 

most suitable for a specific task. But, we know that a competent human 

operator can control most dynamic systems, even those difficult to control by 

classical methods. As a result, there is growing interest in mimicking the skills 

ofthe human operator [MBM90][SUKM92][UB931[UB94]. 

Also, learning through interacting with an operator is an efficient method to 

increase the knowledge of an intelligent robot. Through its experiences, the 

robot can become more and more autonomous, improving its reactions to 

events in the environment. There have been several attempts to develop a 

system based on explanation-based learning [Dej86] [MMS85] [MKK86] or 

external guidance [GRL87] [LNR87] [RL86] methods. 

Inductive learning [MC94] is concerned with the extraction of general 

principles from examples. In the other words, in this method "inductive 

inferences are obtained from facts provided by a teacher or the environment'' 

[Mic83]. It is one of the major goals of machine learning. 

In the experiments related to this thesis a mobile robot is demonstrated to 

acquire a primitive motor skill by being guided through a set of trials by a 

human operator. The robot has 2 main wheels and a leading front wheel, 6 

infra-red sensors for obstacle detection, one rotary sonar sensor on top, and a 

386 IBM-PC compatible computer as its controller [ECM94][ECS95]. 

A log file of the robot's sensory and motor data is recorded as a trainer steers 

the robot through a set of obstacle avoidance scenarios. The final logged file 
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consists of data gathered during more than 300 sets of training runs in several 

different scenarios by different trainers. Later, the file is pre-processed to 

remove unwanted lines of data or noise. If the consecutive lines show a little 

change in sonar data, or there is no change in action control, then the last line 

of data is kept and the early history is removed. The reason is to keep the 

latest occurrence which will eventually produce the action. 

The results then are processed by two induction algorithms, each of which 

extracts a decision tree that represents appropriate skirting movements for a 

range of obstacle patterns. The skill is then evaluated by observing the robot 

executing the codes generated from the obtained decision trees in response to 

objects encountered during autonomous movements.! 

We have used Ripple Down Rules (RDR) [CH89][Gc92] as the knowledge 

acquisition tool and Induct & C4.5 as machine learning mechanisms to 

automatically create rules from the logged data. We compare the decision 

trees induced by different algorithms. The 'skill' is then evaluated by 

observing the robot as it executes code generated from the decision trees in 

response to objects encountered during autonomous movement. 

1-3. Organization 

This thesis is organized in five chapters. Chapter 2 is a survey of a variety of 

robot navigation systems, mostly similar to the employed method in this 

thesis. It covers a detailed discussion on Behaviour-based or reactive control 
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as well as representational world modeling. It also covers a survey on 

available literatures on learning, concentrating on machine learning 

techniques. 

Chapter 3 will explain in details the design and implementation of a mobile 

robot which specifically was designed as an experimental platform for this 

thesis, as well as covering detailed technical information on the second robot 

used for the second parts of the experiments. 

Chapter 4 covers the experiments performed as partial requirements for this 

thesis. And finally, chapter 5 will be the discussion and conclusion of this 

thesis. 

1-4. Contribution 

So far, the majority of mobile navigation systems in general and object 

avoidance behaviour in particular have been implemented either by hard 

coded programming or by simulation. 

However, just as medical diagnosis can be learnt by observing a physician at 

work, or riding bicycle can be learnt from experience, we should be able to 

learn how to control a dynamic system just by watching a human operator in 

action. 
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Learning to control by observation is only possible by means of having a vast 

history of the previous situations and actions taken based on those situations. 

In the case of the experiments related to this thesis, the data collected during 

the training period was logged to a file. The logging only applied when an 

action was taken by the operator in response to changes in the robot and/or 

environment's states. 

Very few attempts prior to the start of this research have used a physical 

platform (a mobile robot in this case) as opposed to a simulation environment 

for the purpose of navigation learning. Also, during the course of these 

experiments, for the first time a physical mobile robot has been used for 

behavioural cloning purpose. For this thesis a specific robot was designed, 

built, and trained by a human operator through sets of different obstacle 

avoidance scenarios. The logged data from the training sessions were then 

used to build sets of control rules using an induction program. 

We have shown that by using machine learning technique to control a 

dynamic physical system in a dynamic environment, the control tasks could 

be learnt. Therefore, learning control rules by observation is another way of 

building more complex but yet cheaper control systems quickly and easily. 

"Clean-up" effect was an important issue of the results from these 

experiments, confirming the previous findings [SUKM92], which shows that 

the physical systems can over-perform the human trainer. While our 

experiments have been primarily concentrated on mobile robot navigation in 
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general and obstacle avoidance in particular, inductive methods and learning 

by observation can be applied to a variety of similar problems, such as 

educational purposes, training simulators and plant control. 

This thesis, based on the current research, was aimed at producing a reliable 

and reproducible method for building controllers for a mobile robot. The 

following papers have been published relating to the topic of this thesis: 

Esmaili, N., C.A. Sammut, and G.A. Mann (1994). "Navigation learning by a 

Mobile Robot'', Proceedings of ICEE-94, Tarbiat Modarres University, Iran, pp. 

142-150. 

Esmaili, N., C.A. Sammut and G.M. Shiraz (1995). "Behavioural Cloning in 

Control of Dynamic Systems'', Proceedings of 1995 IEEE International 

Conference on Systems, Man & Cybernetics SMC'9, Vancouver - BC, Canada, 

Oct. 22-25, pp. 2904-2909. 

Shiraz, G.M., C.A. Sammut and N. Esmaili (1995). "Man, Machine Cooperation 

for learning to Control Dynamic Systems'', Proceedings ofl 995 IEEE 

International Conference on Systems, Man & Cybernetics SMC'95, Vancouver -

BC, Canada, Oct. 22-25, pp. 1108-1112. 
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2. Background 

2.1 Navigation 

This section provides a general description of existing Robot Navigational 

Strategies. This investigation of available algorithms will provide useful 

information on how program based control works. 

It is perhaps advantageous to make a distinction between high-level global 

navigation (i.e., planning an optimal path to some desired goal location in the 

world coordinates), and local navigation (i.e., piloting the robot around 

unexpected obstructions). This chapter shall address only the latter category, 

from the two perspectives of: 

+ Required sensors. 

+ Interpretation of data collected by sensors. 

2.1.1 Behaviour-based (Reactive Control) 

Sometimes, in the control strategy of a mobile robot there is no usage of the 

intervening symbolic representations attempting to model, in absolute sense, a 

part of the robot's operating environment. Then, the behaviour-based strategy 

directly coupling real-time sensory information to motor actions is referred to 
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as "reactive control". In this method the control strategy is clearly based on the 

state of the robot and its environment. 

Arkin lists the following general characteristics of reactive control [Ar92a]: 

• It is typically manifested by decomposition into primitive behaviours. 

• Global representations are avoided. 

• Sensor de-coupling is preferred over sensor fusion. 

• It is well suited for dynamically changing environments. 

The most simple reactive collision avoidance capability for an autonomous 

mobile robot is perhaps illustrated by the basic wander routine implemented by 

several research-groups [Eve82][Bro86a][Ark87]. The term, wander, is used 

here to describe a behavioural primitive that involves travelling more or less in 

a straight line until an obstacle is encountered, altering course to avoid 

collision, then resuming straight-line motion. Such a capability can be simply 

hard-coded, rule-based, or inherent in a more sophisticated layered 

subsumption architecture [Bro86a]. Brooks' layered subsumption architecture 

will be discussed later in greater detail. 

2.1.1.1 Subsumption Architecture 

A mobile robot's control system should be able to process complex information 

real time due to the fact that it performs in an environment with rapid condition 

changes. An ordinary control system would be one big program loop, while a 

better method is to break this complex system into many simple and basic 
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modules, each in charge of a simple task. This method will not be vulnerable to 

unexpected errors during operation and also would allow a simple layering 

modulation for applications of higher level. 

Figure 2-1 shows a decomposed control system into a series of functional units 

by a series of vertical boxes. The control feedback loop is made from the 

environment information collected from the sensors and fed through the 

modules and finally returned back to the environment by the actuators as 

Seosors 

• ..a 
Perceptioo 

..a 
Moc)effiog I .u 
Pfoooiog I Sensors .u 

Tos6 E:Kecotioo 

Motor Cootro( I .u 
I Actootors ~ 

Figure 2-1 .. Traditional decomposition of a 

mobile robot control system into 

Remmtliaiud(ijd 

Proo C6ooga to Wona 

laeotifg ~ect 

Monitor C6ooges 
Actuators 

8oi(c) Mops 

EHp(ore 

Woodec-

Aootd ~ects 

Figure 2-2 Decomposition of a mobile robot control 

system based on task achieving behaviours 

functional modules (Brook's layered control system) 

action control decisions. Instances of each layer must be built in order to run 

the robot. Later changes to a particular layer must either be done in such a way 
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that the interfaces to neighboring layer do not change, or the effects of the 

change must be also incorporated to neighboring layer, changing their 

functionality. [Bro86a]. 

Alternatively, Brooks used task-achieving behaviours as his primary 

decomposition of the problem, which is illustrated in Figure 2-2. In his 

powerful and versatile subsumption architecture, layers are implemented as 

additional finite-state machines to support progressively intelligent control. This 

decomposition method has several advantages over the other type of control 

system in terms of: 

* Multiple Goals: The control system is responsive to higher priority 

goals, while still servicing necessary "low-level" goals. 

~* Multiple Sensors: As all sensors' readings include an error 

component and there is no direct analytic mapping from sensor 

values to desired physical quantities, the readings are often 

consistent. So, the robot must make decisions under these 

conditions. 

~* Robustness: When some sensors fail, the robot should be able 

to adapt and cope by relying on the functional ones. 

Control is layered with higher level layers subsuming the roles of lower level 

layers when they decide to take control. The system can be broken at any level, 

and the remaining layers can form as a complete operational control system. 

Brooks also defined a number of levels of competence for an autonomous 

mobile robot. A level of competence is an informal specification of a desired 

class of behaviours, which are: 
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1 . Object avoidance. 

2. Aimless and collision-free wander. 

3. Heading for observed accessible targets in the distance. 

4. Notice changes in the "static" environment. 

5. Reason about the world in terms of identifiable objects and 

perform tasks related to certain objects. 

6. Formulate and execute plans that involve changing the world's 

state in some desirable way. 

7. Reason about the behaviour of world's objects and modify 

plans accordingly. 

According to Brooks: "the main idea of the competence levels is that 

corresponding to each level, layers of control system can be built and every 

new layer simply is added to the existing set to move to the higher level of 

overall competence. In addition, the lower layer will continue to run unaware 

of the layer above it, which sometimes interferes with its data path. The same 

process is repeated to achieve higher levels of competence, which is described 

as Subsumption Architecture'' [Bro86a]. 

2.1.1.2 Wander 

By way of illustration, the wander routine employed on ROBART I [Eve82] was 

based on a six-level scheme of proximity and impact detection using the 

following sensor inputs: 

* A positional near-lR proximity scanner. 

*~ Forward-looking sonar sensor. 
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~* Ten near-lR proximity sensors. 

~* Projecting "cat-whisker" tactile sensor. 

,,, C b '* ontact umpers. 

* Drive motor current sensors. 

The first two categories, looking out ahead of the robot for planning purposes, 

were loosely classified as non-contact ranging sensors, while the next three 

were considered close-in proximity and tactile sensors requiring immediate 

action. Drive motor overload was used as the last resort in the event that no 

other sensors did not detect collision. 

In some ways the software implementation was similar to Brooks' subsumption 

architecture approach [Bro86a]. There were two distinctly separate hierarchical 

layers in a bottom-up design: 

• low-level interrupt-driven layer, 

• and, intermediate-level polling layer in the main program loop. 

This layering was basically an algorithmic differentiation of software categories 

running on a single processor, however limited in actual embodiment to only 

two layers, although a future higher-level expansion was suggested [Eve82]. 

The sensors responsible for close-in environment monitoring of ROBART (i.e., 

proximity detectors, feeler probes, and bumpers drive current overload) were 

highly priotorized. Therefore, a maskable interrupt request (IRQ) routine was 

used to read them. This routine monitoring the state of sensors' output would 
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redirect the action of the robot according to the hard-coded reactions 

specifically designed for individual sensors, unless stopped by the main loop of 

the program. A hard-coded response for a right-front bumper impact would 

consist of the following steps: 

• Stop all forward direction travel. 

• Turn steering full right. 

• Back up for x number of seconds while monitoring rear bumper. 

• Stop and center steering. 

• Resume forward travel. 

Both the main loop and the IRQ routine contained multiple behaviours 

according to the assigned priority in case of conflict. For example, in order to 

specify which device has requested the service (by triggering the interrupt 

handler), all the potential inputs would be checked by the collision avoidance 

interrupt service. Those inputs representing actual impact with an obstacle had 

higher ranks of being checked, followed by inputs associated with 11cat­

whisker11 probes, near-lR proximity detectors, and so forth. Based on the 

ranking associated with the sensors, the interrupt service would initiate the 

appropriate action for the first active condition, ensuring that higher concern 

situations received priority attention. The issued avoidance response in turn 

would also check the other inputs to ensure appropriate reaction in chain of 

the event (i.e., monitoring rear bumper while reversing). 
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On the occasion of triggering of an interrupt by the close-in collision avoidance 

sensor, the intermediate level software's execution was temporarily suspended 

as the control switched to the interrupt service routine. At this stage, the low­

level avoidance maneuvers would be in charge until the robot was clear from 

the obstacle (unlike the subsumption architecture approach). On the other 

hand, the intermediate level software was able to disable IRQ interrupts 

associated with collision avoidance sensors, or otherwise suppress or inhibit 

the lower level behaviours. 

The intermediate-level software also would continuously check the sonar and 

head-mounted near-lR scanner on each pass of the main loop, to avoid any 

poor randomly "bump-and-recover" situation. These sensors were responsible 

for monitoring of the distance up to 1.5 meters ahead of the robot and in turn 

producing a suitable representation of detected targets, relatively. If the forward 

path found blocked, the wander algorithm would choose the least obstructed 

direction to continue its movement. Since all zones were equally weighted in a 

binary fashion (i.e., either blocked or clear), the least obstructed direction 

would be the one with the largest number of adjacent clear zones. The 

simplicity of this model enabled real-time on-the-fly response, without the 

robot having to "stop and think" before continuing its path. 

A major shortcoming of this world representation is the problem with 

continuous update of the polar model to produce more accurate probability 

zone occupancy. 
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For example, a detected obstacle located at point P1 in Figure 2.3 would 

transition due to robot motion from Zone 05 to Zone 00, crossing through all 

zones in between. Repetitive sightings would likely not be associated with the 

same zone number. As a result, reactions are always made to "snapshot" sensor 

information subject to numerous sources of potential error, usually resulting in 

jerky or erratic vehicle movement. Borenstein and Koren [BK90a} [BK90bJ solve 

this problem by deriving the polar model in real time from a certainty grid 

representation. 

Axis of Travel 

Pl 

Figure 2-3. The world model employed on RO BART I consisted of sixteen wedges 

shaped zones relative to the direction of travel [Eve82). 

2.1.1-3 Circumnavigation 

The term circumnavigation describes a collision avoidance behaviour in which 

the robot moves around an obstacle, while still attempting to move in the 

general direction of the goal. When the on-board sensors show the object is no 

longer a threat, the desired path is recovered. In a sense, circumnavigation can 

be regarded as a wander behaviour that turns to a goal-seeking behaviour 

when clear, instead of simply resuming straight-line motion. 
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A good example of circumnavigation collision avoidance behaviour is the one 

implemented by Cyber-motion, Inc. on their K2A Navmaster autonomous 

vehicle. In normal operation, the K2A controller calculates a motion vector 

from its current position to a down loaded X-Y goal location. To reset the 

robot's heading according to the vector orientation, this vector is re-calculated 

on-the-fly as the robot moves. If a threatening obstacle is detected in front of 

the robot, advancing speed is reduced and a fixed bias is added to the heading 

command. The sign of the bias chosen in a way to deviate the robot away in 

the direction of free space. Once the obstruction is cleared, the steering bias is 

removed, and the robot moves towards the goal location. 

Another example is the work of Lumeslsky and Stepanov [LS87]. In their work, 

they present the mobile automaton as a point and presume any shape of 

obstacles with continuos boundaries and finite sizes with no restriction on the 

size of the scene. While the only information available to the automaton is only 

its own coordinates and the target's positions', the obstacles are detected by the 

automaton's sensors only when they are hit. Lumeslsky and Stepanov have 

presented three basic path planning algorithms, as well as analysing their 

performances and deriving the upper bounds on the length of their generated 

paths. 

Under 'Bug1' basic algorithm, the automaton never meets the same obstacle 

twice between the origin and target point, while it only can meet finite number 

of obstacles in that path. 'Bug2' sharing the second characteristic of 'Bug1 ', 

also defines that the automaton will pass any point of the lh obstacle boundary 
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at most n/2 times in which n; is the number of intersections between the 

straight line (Origin, Target) and the t' obstacle. While Bugl never creates any 

local cycles, it is over-cautious and never covers less than the full perimeter of 

the obstacle. On the other hand, Bug2 takes advantage of the simple situations, 

but seems to be quite inefficient in more complicated cases. To overcome the 

shortcomings of these two procedures, they combined the better features of the 

two in a new algorithm and called it 'BugM1'. This new procedure combined 

the efficiency of Bug2 in simpler scenes with the more conservative strategy of 

Bugl. In this new algorithm, the number of local cycles for a given point on the 

path, containing this point, never exceeds two which means that the automaton 

never passes the same point of the obstacle boundary more than three times. 

The very obvious advantages of the circumnavigation approach are the 

simplicity and speed of execution without any need for high complexity of 

processing power. However, The technique is limited to the occurrence of 

minor advances into the intended path. Any obstacle significantly blocking the 

desired route can push the robot too far from its intended target causing any 

normal path resumption to be close to impossible. Furthermore, 

circumnavigating robot must always travel forward in the general direction of 

the goal without backtracking. No further arrangement can be made for 

choosing alternate routes if the original path is completely blocked. 

In addition, as specific behaviours, both wander and circumnavigation can also 

be considered stand-alone collision avoidance control strategies. 
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The following sections deal with additional examples of control strategies for 

collision avoidance (and other purposes) that are capable of implementing not 

only wander and circumnavigation but various other behaviours as well. 

2.1.1.4 Unmanned Vehicle System AFV-I 

Montgomery et al., designing a flying vehicle, illustrated the advantages of 

hierarchical, behaviour-based control, with low-level behaviours ensuring 

robot's survival and high-level behaviours performing tasks such as navigation 

and object location [MFB95]. They have used a radio-controlled model 

helicopter, powered by a two-stroke engine as their robotic platform. This craft 

has 5 degrees of control including roll, pitch, yaw, collective, and throttle (both 

controlling thrust). Various sensors including a compass (measuring heading), 

three ultra-sonic sensors (down-facing, measuring distance from the ground), 

RPM (measuring the speed of the main rotor), and a CCD camera (providing 

visual information) were mounted on the craft. In addition the chopper used 

three solid-state gyros. The AFV-1 can not use its sensors to find the targets or 

move around, depending heavily on the vision system. 

Montgomery et al. claim that creating a flying robot with the capabilities to 

locate and manipulate objects and transport them from one location to another 

presents many challenges. To achieve its goals under hazardous conditions, 

without human guidance, and within a fixed time limit, the robot must make 

control decisions based on imperfect sensory data, while adapting to 

unexpected situations such as gusts of wind or sensor failure. It must make 
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these decisions in real time to maintain the craft's safety and ensure system 

survival. In order to do so, the AFV-1 uses a behaviour-based control 

architecture, which partitions the control problem into a set of loosely coupled 

computing modules. Each module, or behaviour, is responsible for achieving a 

specific task. These behaviours interact to achieve the robot's overall goals. The 

modules are organized hierarchically, with low-level, reflexive behaviours 

responsible for craft survival and high-level behaviours responsible for tasks 

such as navigation and object location. 

They emphasised that a behaviour-based approach has many advantages over 

traditional methods of controlling autonomous mobile robots, they claim that 

traditional methods attack the control problem sequentially. In another word, a 

robot first senses, perceives, and models its environment; then it plans and acts 

in that environment. Since the world is full of information, traditional methods 

are bound to be overloaded by information, which makes the robot incapable 

of functioning in real time. In addition, these methods assume that the robot 

can construct accurate, global world models based on the incoming sensory 

information. A number of factors such as rapidly changing world, limited 

computer processing power and inaccurate and incomplete sensor models 

make this matter very difficult if not impossible. In contrast, a behaviour-based 

approach solves the problem in a parallel fashion. Each behaviour, acting 

concurrently with other behaviours, in order to prevent information overload, 

only absorbs the information required to complete a given task at a given time 

{from the environment). This reduction of work also reduces the robot's 
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computational load by eliminating the need for construction and maintenance 

of a global world model. 

Montgomery and et al. also believe that another advantage of the behaviour­

based approach is that it provides the ability to create layers of increasingly 

complex behaviours. If necessary, higher-level behaviours can inhibit or 

modulate lower-level behaviours. Thus, one can incrementally build and test a 

robot control system with increasing capabilities, without losing low-level 

capabilities already created. This control approach has been explored by 

others, including in the subsumption architecture [Bro86a] and in an 

architecture for reactive navigation, AuRa [Ark90]. 

However, the behaviour-based approach has its own limitations. Interactions 

and possible combining of behaviours, which may critically affect the robot's 

stability, are unknown beforehand. It may be necessary to do experiments in 

order to find such combinations. However, since no models are available, this 

operation can be time consuming and potentially hazardous to the craft. And 

they have observed that any attempt to expand the complexity of the system 

can worsen the coupling problem by increasing the number of behaviours and 

layers. To overcome this problem, they have proposed to develop behaviour­

based models from performance data, including methods by which the robot 

can obtain relevant parameters by learning. 
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2.1.1.5 Potential Fields 

Krogh [Kro84] introduced the concept of potential fields for simulation of 

localised mobile robot control. The classical approach mathematically involves 

an artificial force acting on the robot, which is the vector summation of an 

attractive force representing the goal and number of repulsive forces associated 

with the individual known obstacles [Til90]: 

Where: 

i,(x) = resultant artificial force vector 

Fo(X) = resultant of repulsive obstacle forces 

.Fg(X) = attractive goal force 

The attractive goal forces, which are the priority and the weights of the goal(s) 

can be classically represented as the following equation [Til90]: 

Where: 

-() X-Xg 
Fg x = Qgoat 1- _ I X-Xg 

Qgoal = a positive constant (ie, the "charge" of the goal). 

The classical potential field is the summation of the attractive goal force and 

the repulsive force contributions from those directions defined by the various 

fields of view of the obstacle detection sensors. The individual repulsive forces 

are aligned away from their respective obstacles and towards the robot, falling 
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off with the klh power of separation distance [Til90]. For example, an early MIT 

implementation on the robot treated each detected sonar target as the origin of 

a repulsive force decaying as the square of the indicated range [Brooks, 1986]. 

The desired vehicle heading was represented as an attractive force. The 

resultant of all such virtual forces acting on the robot, if greater than a 

predetermined threshold, was used to compute the instantaneous drive motor 

commands for steering and velocity, effectively moving the platform away from 

obstacles and in the general direction of the goal. 

Alternatively, Arkin [Arc92b] uses a repulsive force magnitude that is a linear 

function of obstacle range: 

Where: 

S-d 
Om=G--forR <d:::;S 

S-R 

Om = magnitude of repulsive force associated with obstacle 

G = gain constant 

S = sphere of influence from centre of obstacle (ie, Om = 0 ford> S) 

d = distance from centre of obstacle to robot 

R = radius of obstacle. 

In both of the preceding examples, since the resulting field depends only upon 

the relative positions of nearby obstacles, it is possible for repulsive forces to be 

generated by object that in fact do not lie along the intended path of travel. 

Such a situation is illustrated in Figure 2-4. 
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In recognition of the above concerns, Krogh [Kro84] had introduced the 

concept of generalised potential fields, wherein the potential field intensity is a 

function of not only relative position with respect to obstacles but also the 

robot's instantaneous velocity vector at that position. The generalised potential 

is the inverse of what Krogh calls the reverse avoidance time. 

A 

Figure2-4. 

Surt~ 

Goal 

Sta~ 

Goal 

B 

(a) The classical potential field method considers only separation 

distance, causing the robot to deviate from a straight-line path segment 

even though moving away from the circular obstacle; 

(b) The generalised potential field method considers relative velocity in 

addition to separation distance [Til90). 

Consider a robot approaching a stationary object at some constant velocity V0 

as illustrated in Figure 2-5. There is some maximum allowable deceleration 

rate am•• that will bring the robot to a halt in the shortest possible length of time 

t1 • Similarly there is some minimum deceleration rate amin that w ill cause the 

robot to stop just before impact over some longer time interval t2 • Reserve 

avoidance time is simply the distance in time required to stop for the two cases 

of maximum-allowed versus minimum-required decelerations, (i.e., t2 - tJ The 

generalised potential field is thus sensitive to time to impact as opposed to 

separation distance (F igure 2-4, part B), and approaches infinity as the reserve 

avoidance time approaches zero [Til90]. 
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Velocity 

Maximum A IIOWM Deceleration 

V, 1------~----""'\. 
Minimum Required Deceleration 

Figure 2-5. Krogh [Kro84] defines the generalised potential as the inverse of reverse 

avoidance time, which is the difference in stopping times associated with 

maximum-allowed and minimum required decelerations. 

The principle limitation of the potential field approach is its vulnerability to 

becoming boxed in or 11trapped 11 by intervening obstacles as illustrated in Figure 

2-6. Culbertson [Cul63] predicted this problem for more general cases of 

''memory-less robots" that react to current stimuli in a deterministic fashion 

without taking into consideration the results of previous behaviour under 

similar conditions. 

X 
Goal 

Saul 

Fig ure 2-6. The robot successfully negotiated first obstruction but has become 

trapped by the U-shaped structure of the closest and is unable to reach 

the goal in the next room. 
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The likely occurrence of cyclic behaviour as well as local maxima and Minima 

make any system that relies sorely on the potential-field navigation approach 

somewhat unreliable [Arc92a). To get around this problem, Thorpe [Thorpe, 

1984a) [Thorpe, 1984b) employed a grid-based search to find a good low-cost 

path towards the goal, adjusted the path off grid to further minimise costs, then 

executed the path with a variant of potential fields to keep the vehicle on the 

path. Krogh & Thorpe [Kro86) discuss the integration of a generalised potential 

field collision avoidance scheme, with a global path planner based on certainty 

grids (to be discussed in a later section) for optimal route planing and trap 

recovery. 

In a different approach, Nam and et al. have proposed a unified method for 

avoiding obstacles while moving [NL95). Their method combines the artificial 

potential field (APF) concept and view-time based motion planning, where the 

driving force is generated at every interval of the view-time [KL93). Prior to 

their attempt, APF has already been used on stationary obstacle avoidance 

[Kro84)[Kor91). The whole idea is to split the moving obstacle avoidance into 

two separate problems, path planning for stationary obstacles and velocity 

planning for moving obstacles. 

A mathematically formulated approach has been achieved to "Plan the motion 

of a robot from the initial to the final location avoiding a moving obstacle in 

two dimensional space subject to the various constraints of robot and obstacle 

motions''. The time set from one sampling time instant to the next is defined as 

view-time. They also assume that velocity and acceleration of the moving 
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obstacle are monitored or known at each sampling time. At each sampling 

instance, an accessible region that will be swept by the obstacle in the next 

view-time is predicted based on the velocity, acceleration, and dynamic 

limitations of the obstacle. Then, an artificial potential field is constructed 

around the accessible region, which exerts repulsive force on the robot. During 

the view-time, the force induced by the artificial potential field drives the robot 

away from the accessible obstacle trajectories in real-time. The dynamic 

physical limitations of the robot are also considered. Application of the 

described procedure at each successive sampling time from the initial to final 

location suggests the collision-free trajectory for moving obstacle avoidance. 
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2.2 Learning 

This Chapter is the result of a survey of some machine learning methods related 

to this research. It includes a survey of different methods of machine learning 

and a survey of previous works performed in learning to control dynamic 

systems. The conclusion comes with some discussions about previous works in 

this area and the way that it has inspired, to some extent, the methodology 

used in this thesis. 

2.2.1. Machine Learning 

The beginning of artificial intelligence marks the start of research on machine 

learning techniques. Samuel's checker system [Sam59] and Winston's 

programs for learning structural descriptions [Win75] can be named as 

examples of early machine learning researches. The last twenty years have 

produced a remarkable expansion of research in machine learning with a rapid 

growth in this field, despite the slow growth in 50s and early 60s. 

There are several reasons for this growth. First, the ability to learn and to 

modify behaviour is part of intelligence and it is hard to consider an intelligent 

system without a capability for learning and self-improvement. Also, being able 

to learn makes it easier to build high performance systems. 

Early success of symbolic learning systems in various areas such as medicine 

[DeDo72], agriculture [Mic83], robotics [AB751, reinforcement learning 
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[Wat92), process control of optimizing a Nuclear Fuel plant [Lea86], and 

chemistry [Buc78} helped this growth and turned more attention to this field. 

To determine the rules or decisions mimicking the human trainer's actions, 

machine learning programs normally take a set of examples called the training 

set. This includes a sufficiently large and diverse set of cases and the action 

taken or decisions made accordingly by the trainer. It should be pointed out 

that the training set does not cover all possible situations, so the learning 

system should be able to generalize the possible decisions when coming across 

unseen (untrained) situations. 

Machine learning methods could be classified in several different ways 

depending on: the underlying strategy that they used, the presence or absence 

of a teacher, the type of knowledge representation, and domain application. 

[Mic84]. Before we describe each of these categories, it is necessary to explain 

what machine learning means. Machine learning is the "Modification or 

construction by program of stored information structures, so that the machine­

deliverable information becomes more accurate, larger in amount, or cheaper 

to obtain 11 [Mic82]. Machine learning is a sub-field of Al, whose ultimate goal 

is to replace explicit programming by teaching. By teaching in this thesis we 

mean any form of instruction, ranging from examples of the desired behaviour, 

domain knowledge of the task, or even weak performance feedback. Teaching 

is usually less difficult than explicit programming. 
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2.2.1.1. Ma.chine learning methods' classification 

Generally speaking, there are two types of learning, supervised and 

unsupervised. In the former, a teacher carefully selects examples for the 

learner, whereas in the latter the learner is given little or no feedback on the 

learning task. 

Supervised Learning: In this method, a teacher assists the learning system, by 

providing a set of examples (a training set) presenting the appropriate action or 

output for a given situation to the learning system. The aim of the learning 

system is to minimize the difference between the reaction of the system and the 

reaction provided by the teacher in the training set for the same situation. In 

practice, the training set does not cover all the possible situations and the 

examples can be noisy. Hence, the learning system can be considered 

successful if it produces the correct output with a high degree of probability 

when exposed to unseen situations. 

"Learning with a critic", too, can be classified as supervised learning. The critic, 

like a teacher, assists the learning system by providing useful information. 

However, the role of the critic is different to the role of the teacher. In this case, 

the critic provides an evaluation of the learning system's reaction to a given 

input instead of providing the correct reaction that is provided by the teacher in 

the supervised learning. The learning system itself is responsible for finding the 

correct reaction to a given input. The evaluation (credit score) and previous 

experience will be used to find the correct action. 
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As examples of which method, we can name two paradigms, inductive concept 

learning and explanation-based learning. The first paradigm assumes that the 

teacher presents examples of the reactions for the learner. In this paradigm, 

since the teacher is essentially, in some particular situations, is telling the 

learner what action to perform, the temporal credit assignment problem does 

not exist. However, the task credit assignment problem has to be solved, since 

the examples provided by the teacher pertain to some particular tasks. In the 

second paradigm, the teacher not only supplies the examples of the reactions, 

but also provides a domain theory for determination of which reaction is useful 

in certain situation. 

Unsupervised Learning: There are different views on the definition of 

unsupervised learning, such as labeled and unlabeled. According to some 

[RN95], "Learning when there is no hint at all about the correct outputs is 

called unsupervised learning. An unsupervised learner can always learn 

relationships among its percepts using supervised learning methods - that is, it 

can learn to predict its future percepts given its previous percepts. It can not 

learn what to do unless it already has a utility function." 

However, the hereunder text is based on Sutton's definition. In this method, the 

learner is not provided with which actions to take, and must discover which 

actions yield the best output by trying them (trial and error). As described by 

Sutton [Sut92] reinforcement learning is "the learning of a mapping from 

situation to action so as to minimize a scalar reward or reinforcement signal". 
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The underlying strategy is one of the most important parts of any learning 

system, the ability of which it can influence. The machine learning categories 

can also be classified based on the strategy used by a machine learning system. 

An important aspect of learning systems affecting their ability to learn different 

concepts is the representation language. How to represent the training 

information (objects and their relations) and how the learning system expresses 

its acquired knowledge about the system, are some of the related problems. 

Many different representational systems and techniques have been used so far. 

Just as examples we can name some, including semantic networks (Winston's 

work [Win75]), predicate calculus (Sprouter [HaRo77], Marvin [Sam81], 

CIGOL [Mug88]), attribute/value vectors [Qui79], FOIL [Qui89], neural 

networks [WL90], and GRAIL [B597]. 

Other sources of problem in many systems are the existence of noise in training 

set and missing attribute values. Misclassification of the examples and increase 

in size of the resulting classifier can be caused by these problems. Some 

learning systems assuming all the training examples are provided by an expert, 

so being complete and without noise, ignore these problems. Other systems 

use techniques such as tree pruning to deal with the noise 

[Qui93] [Kon84] [Bre84]. 
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2.2.1.1.1. Inauctive Learning 

We begin with the most classical paradigm in machine learning, namely 

inductive concept learning. The learning system, knowing that the concept to 

be learned comes from some space of hypotheses, proceeds from individual 

cases to general principals. The system is also provided with a set of training 

examples of the target concept. Normally, these examples are drawn from 

some space of instances according to some unknown but fixed probability 

distribution. In the other words, the main task is to build a concept description 

being able to cover as many of the positive instances, and as few of the 

negative instances as possible, especially in the presence of noise in the 

system. 

Many methods have been developed for solving the inductive learning 

problem; two of the most well known methods are decision trees [Qui86] and 

neural networks [MR86]. A classic example of a robot learning system based 

on the inductive learning paradigm is the ALVINN system [Pom90}. There are 

many other examples of inductive concept learning applied to robot learning 

systems [CM93] [Dor96] [Fra96] [Mah94}. 

Inductive learning systems are suitable f?r cases where there exists a large 

number of training examples and the objective learning task is classification 

[Mic83][Mic84]. Well, of course it is also true to say that this problem 

somehow exists with all types of learnings. Another problem with this paradigm 

is that function approximators, such as neural nets, often take huge number of 
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exemplars to converge. One critical issue is how to speed up learning by 

incorporating some form of search strategy. 

2.2.1.1.2. 'lJeauctive Learning 

Humans appear to be capable of generalizing from a few examples. Clearly, 

humans bring to bear considerable amount of background knowledge to the 

learning task. This method is based on learning from a few examples but with a 

large amount of prior knowledge. The goal is to analyze and transform existing 

knowledge (past problem solving experience) into a more effective, efficient 

and operational form, using deduction as the primary inference mechanism. 

The result of deductive learning is as valid as the background knowledge and 

the input information. In this method, the emphasis is on improving the 

efficiency of the system, rather than extending the set of cases that the system 

can handle. 

Explanation-based learning captured the major focus in this field during the last 

decade [Dej86][MKK86][Sil86][Min90][MC90]. Explanation-base learning does 

not assume any particular representation for the domain theory. It can be a 

logical theory, a neural network, or even an approximate qualitative physics 

based theory. An explanation-based learner tries to explain a new instance in 

terms of its background, and then creates as many new descriptions as possible 

by using this explanation. They produce a description of the concept that 

enables instances of the concept to be recognized efficiently and in an effective 

manner. 
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The primary advantage of the explanation-based learning formulation of the 

robot learning problem is that it provides a way of incorporating previous 

domain knowledge or bias to speed up learning. The savings in number of 

examples needed to learn the policy could be quite significant. 

In spite of many advantages of this learning method, there are also some 

disadvantages. The requirement of complete, consistent, and traceable 

background knowledge not being available in most real systems is one of these 

disadvantages [Mic90]. In addition, if the domain theory is very approximate, 

the learning system requires to exercise some care in using the theory to guide 

its generalization. Much work remains to be done in addressing these issues, 

especially in robot learning problems. 

2.2.1.1.3. 9?.!,inf orcement Leaming 

Reinforcement Learning (RL) studies the problem of learning by trial and error, 

a policy that maximizes a fixed performance measure, or reward 

[BS83][Kae93][Sut90]. It is a trial and error paradigm, so the examples are not 

carefully chosen by the teacher. Instead, since the states and rewards 

experienced by the system depend on the actions it takes, the distribution of 

examples is influenced by its actions. 

In other words, RL is a method for learning how to map situations in to actions, 

so the learner does not learn which actions to take but rather must discover the 

action based on the reward taken from it. In some cases not only the immediate 
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rewards are affected by the action taken, but also the future rewards could be 

affected. This makes trail-and-error and delayed reward characteristics the most 

important features of reinforcement learning. 

Besides the learner and the environment, four other elements of the RL are the 

policy, reward function, value function, and model of the environment 

(optional). A policy defines the learner's behaviour pattern at a given time, i.e. 

a set of stimulus-response rules or associations. A reward function specifies the 

immediate goal, whereas the value function specifies the long-term goal. And 

finally the model of the environment is in charge of mimicking the environment 

and is used for planning or deciding on the course of action based on 

considered future situations. 

Reinforcement learning does not require a domain theory (as required by 

explanation-based learners), which might be a substantial undertaking in any 

real world robotics task. Also, RL can be used for online learning in contrast to 

some types of inductive learning methods, so the robot continually improves its 

performance. In addition, for many tasks, it is relatively straightforward to 

supply the robot with appropriate reward functions. 

On the other hand, reinforcement learning suffers from a number of limitations. 

Sometimes, requiring many steps to converge, it can be very slow. This is due 

to the fact that to obtain a better reward, the RL agent should try all actions in 

order to be able to compare the rewards yielded by them to the previously tried 

producing better reward actions. Moreover, in corporation of domain 
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knowledge to speed up the learning is difficult. Also, RL assumes that the 

current state and the action determines a probability distribution on future 

states, and in other words the environment can be modeled as Markov decision 

process [Put94]. The robots can rarely sense the true state of their environment, 

due to the lack of high-tech cheap sensory devices, hence this "memory-less" 

property is most likely to be false. 

2.2.1.1.5. 'Evo{utionary Leaming 

Evolutionary learning includes Genetic Algorithms [Gol89] and Genetic 

Programming [Koz93]. A population of policies is chosen as the starting point, 

and combined to achieve better policies until an optimal policy is produced. 

Genetic operators such as crossover and mutation are responsible for this 

combination. In order to measure the quality of the achieved policy, the 

paradigm uses a fitness function. 

A number of studies involving robots' training has been performed using 

evolutionary learning method. The training includes obstacle avoidance, 

navigation around a close area, and learning goal-seeking behaviours 

[GS94] [Dor96]. 

Important advantages of the evolutionary learning paradigm include the ability 

to start in a pre-set state - allowing speed learning - and being able to learn 

arbitrary policies - against being constrained to stationary policies. 

Chapter 2: Background - Navigation 40 



The key disadvantage of this paradigm is the limitation on off-line learning. 

Before testing the learnt policies on a real robotic platform, all training should 

be performed on a simulator. 

2.2.2. Learning to Control Dynamic Systems 

Controlling dynamic systems, specially the complex ones, require such skills 

that can not be practically explained using words, but can be demonstrated. 

This section presents some basic background on this subject. Several 

approaches have been so far used to build controllers for dynamic systems. 

Machine learning [SUKM92] [UJ92] [Ben96], Optimal control [SS82], fuzzy 

control [Lee90] [YB94], neural networks [MS90], and expert systems [Dev87] 

can be named as some of these methods. Several papers [WL90] have 

discussed the capabilities and limitations of these approaches. 

In order to construct a controller for a physical process by classical methods, 

constructing a model of the system is necessary. Unfortunately, it is often very 

difficult to construct an accurate model of such systems. This is due to the 

complexity and lack of information about the environment of many physical 

systems. 

An alternative approach to deal with this problem is using qualitative reasoning 

[Mak91] [Bra91] [Bra93] [BU95] [Bra97]. Another approach is learning from 

experience [MC68][SS85][SUKM92][ESM94][ESS95][UB94][Shi94]. In this 

method, the system can learn by emulating the behaviour of a skilled operator 
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(behavioural Cloning), that is "Learning by observing a human operator", or it 

may perform trials repeatedly until a given success criterion is met. This is 

known as 11Learning by trial and error". These two methods are explained in 

more detail in the following sections. 

In contrast to the success of the behavioural cloning in some applications , 

qualitative reasoning also has been used in some experiments such as pole 

balancing [Mak91] and discovering dynamics [Dze93], and is the one more 

widely studied and used. 

2.2.2.1. Learning by trial-and-error 

In this method, the learning agent repeatedly performs trials in order to gain 

knowledge about the effects of different control decisions. Often, a trial starts 

by positioning the system in a random state, and ends when a failure occurs or 

successful control is performed for a specified period of time. Repeated trials 

stop when a certain success criterion is met. 

The BOXES algorithm is one of the earliest trial-and-error learning methods 

[MC68]. The algorithm has been used as a benchmark for many studies of 

subsequent machine learning methods. It also demonstrated an effective and 

flexible method for learning to control physical dynamic systems. 

In many situations the learning system is notified about an incorrect action after 

some delay. Therefore, it is difficult for the learning system to find out which of 

its actions has caused the failure. It is known as 11The Credit Assignment · 
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Problem" which is one of the major problems that a trial-and-error learning 

system must deal with. In other word, credit assignment is how to assign the 

credit or blame for a final output among several outputs that lead to the final 

output. 

A further problem with trial-and-error learning is finding the best trade-off 

between "exploitation" and "exploration". "Exploitation" means using what has 

already been learned trying to obtain the best performance. On the other hand, 

"exploitation" means possibly sacrificing performance versus gaining more 

information about the system by trying something new. The BOXES algorithm 

and Watkin's [Wat92] Q-learning provide some solutions to this problem. 

One of the important advantages of trial-and-error systems is that they do not 

require a teacher. However, the slow rate of learning and the necessity to solve 

additional problems such as credit assignment and balancing between 

exploration versus exploitation, make it difficult to scale these methods up to 

problems with big dimensionality. This method is effective when the domain is 

simple like the pole and cart. However, when the domain is complicated (e.g. 

navigation or flight control} dealing with a large search space makes this 

method non-applicable. Furthermore, larger search spaces will cause slower 

rates of learning, and sometimes the big search space can kill the learning 

process. 
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2.2.2.2. Learning by observing a human operator 

Although learning by trial-and-error can be used for controlling physical 

systems, it can be very time consuming. The alternative method is to emulate 

the behaviour of a skilled operator. So far only a few attempts have been made 

to build a controller using this method [MBM90][SUKM92][UB93] 

[ESS9S][SSM95]. 

One approach is to extract the skill from the operator in a dialogue manner; i.e. 

question and answer, and then using the description to formalize and build an 

appropriate automatic controller. However, the problem is that the skills can be 

mostly described approximately and not completely; in other words, the skills 

are sub-cognitive. Thus, these descriptions can only be used as the guidelines 

for construction of the controllers. 

Considering this problem, an alternative approach in transferring the skills 

would be to trace the operator's actions. The idea is to use them as examples, 

extracting the operational descriptions of the skill by machine learning 

techniques. This is known as "Behavioural Cloning" [Mic93], and contains 

three stages. First, a skilled operator is asked to control the system, while the 

states of the system along with the operator's action are logged in to a file. In 

the next stage, a learning algorithm is used to construct control the rules for the 

system from the logged information. And finally during the third stage, the rules 

are made operational on the system. 
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Behavioural cloning has been studied and used in various dynamic domains 

[BU95]. The summarized conclusion from these experiments and studies shows 

that successful clones have been produced in several domains. In some, the 

clone surpasses the skill of the operator (so-called Clean-Up effect). 

Bratko believes that the current approaches suffer from the lack of robustness in 

providing the perfect clone, clones do not show enough robustness following 

the changes in control task, and finally they generally lack conceptual structure 

and representation. This is a clear sign of slow progress in the process of 

creating clones representing the sub-cognitive skills of operators. It is shown 

that often such representations do not match those operators work based upon 

[Bra97]. However, we have seen otherwise, and clear examples are learning to 

fly [SUKM92] and the experiment related to this thesis. 

In addition, we can also name the neural network based system called ALVINN 

that learns to drive a real robot truck by Pomerleau [CM93]. Although he has 

used the training by observation method, but since the work classifies under 

supervised learning and the work is based on neural networks, a more detailed 

study of his work will be included later in this chapter. 

2.2.2.2.1. Learning to 1ly 

Learning to fly an aircraft is one of the earliest successful learning systems that 

used behavioural cloning strategy [SUKM92]. The aim of this experiment was 
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to automatically build a controller to pilot an aircraft by observing the 

operation of a skilled human operator during the task. 

For the experiments a Cessna aircraft flight simulator on a Silicon Graphic 

computer was used, limiting the flight to a predefined route. The core of the 

simulator is a loop, which receives control input and updates the state of the 

simulation according to a set of motion equations. 

Human experts were asked to fly the aircraft thirty times. The aim of this 

project was to build a learning system to emulate the behaviour of a particular 

pilot (behavioural cloning). Three pilots were used to demonstrate repeatability 

of the experiment. Different pilots have their own strategies for controlling an 

aircraft. This strategy is different for each pilot even in the same flight plan. 

Thus, induction was restricted to one set of pilot data at a time and a separate 

set of controllers was constructed for each pilot. 

During a flight, different stages may require different strategies. In this 

experiment the flight path was broken into seven different maneuvers. These 

maneuvers are take off, level out and fly to a specific distance, turn right, turn 

left, lining up on the runway, descend to the runway and land. This technique 

also reduced the complexity of the system. 

During each flight, information about the flight status was logged in to a data 

file only when an action was taken. This information contains the state of the 

system at that instant and the response of the pilot to that situation (log action 
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and state). During each flight, up to 1000 events can be recorded, while an 

event refers to the performance of a control action. 

The accumulated file of thirty flights for each pilot was segmented into seven 

files corresponding to the seven stages. In each stage, four separate decision 

trees were constructed, one for each of the elevators, ailerons, thrust, and flaps 

(classes) using C4.5 [Qui93] as the induction program. For the induction task, it 

is necessary to have a set of training examples. Each example in this set must 

be described as a collection of attributes. The class of each example also must 

be known in advance. A program filters the flight logs of each stage and 

generates four input files for the induction program. The logged flight 

parameters in the data file are the attributes of the training examples. The class 

value or dependent variable is the attribute describing a control action. For 

example, in generating a decision tree for the elevators, the elevators column is 

considered to be the class value and the other columns in the file are 

considered to be ordinary attributes. It is the same when generating decision 

trees for flaps, ailerons, and elevators. 

The decision trees were then converted into if-statements in "C" by using a 

post-processor. The auto-pilot code of the flight simulator was replaced by the 

induced rules of all the decision trees to test the correctness of these rules. 

During this experiment, Sammut and his colleagues encountered a number of 

problems. It is essential to record the state of the system along with the 

response of the pilot to that state when an event occurs. However, there is 
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always a delay in human response to a stimulus. This delay is known as the 

response time. In order to log accurate data, the state of the system should be 

logged sometimes before the action. To be able to do this, the response time of 

the pilot must be estimated. Clearly, pilot response time will vary according to 

person and state. The response time of a pilot depending on the position in the 

flight and the type of reaction required can vary considerably. Moreover, 

during the flight, the pilot usually anticipates where the aircraft will be in near 

future and prepares the response before the stimulus happen [SUKM92]. 

To overcome this problem, Sammut and his colleagues used a circular buffer to 

store the current state of the simulation each time the simulator passes its main 

control loop. When a control action is performed, the action is logged along 

with the previous state of the simulation from the circular buffer. Although by 

these techniques, they solved the problems in some sense and the learning 

process was successful, they stated that the problem of 11what is the actual delay 

between the stimulus and the action 11 is still unsolved. 

The C4.5 program [Qui87b] [Qui93] was used as the induction program. 

Similar results have since been obtained using a regression tree algorithm 

[Bre84] [Kar92]. 

Another problem reported by Sammut and colleagues [SUKM92] is that the 

induced rules in some stages are very complex and difficult to understand by 

an expert. This problem exists because the learning system constructs rules 

based on the primitive attributes. Introducing some high-level parameters 
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containing more information about the system may help producing smaller and 

more understandable decision tree [SUKM92]. 

Michie and Camacho also reported a similar experiment in learning to pilot an 

aircraft using a flight simulator for an F-16 combat plane [MC94]. They used 

the same technique as Sammut et al. in previous experiment [SUKM92J. In an 

attempt to improve the robustness of clones in the "Learning to Fly" experiment, 

Arentz introduced disturbance into the system. He successfully created a set of 

clones, which he claimed to be robust to disturbance. 

2.2.2.2.2. Leaming to Contro{ Container Cranes 

Traditional control theory sometimes can not be used to build a controller for 

some physical systems. Controlling a container crane is an example of such a 

system. Sakawa (5582) has shown that due to some unpredictable factors such 

as wind, it is not possible to build an accurate controller by means of the 

traditional control theory. 

Figure 2-10. A container crane 
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An attempt at building a controller for a container crane was done using 

machine learning techniques [UB93]. In that experiment the aim was to 

automatically construct control rules from the recorded performance of a 

skilled operator following the strategy used [MBM90][SUKM92][MST94]. 

The crane is made of a trolley at the end of a rope, which are moved together. 

In this experiment, the task was to transport a container from one place to a 

target position. An operator, who picks up a load from some point and 

transports it to a goal point, performs the task. The speed of the trolley and the 

length of the rope can be altered in order to lift, transfer, or drop the load. 

The basic performance requirements for this system as described by Urbancic 

and et al. [UB93] are: 

• Basic Safety: Keeping the system within the defined limits 

and avoid any obstacle, 

• Stop-gap accuracy: Keeping the gap between target and load 

positions within the defined limit, and 

• High capacity: Minimizing the time of transportation . 

To minimize the transportation time, two simultaneous operations should be 

performed. These operations bring the trolley above the target position and the 

container to the specified height. In this experiment, a real time simulator of a 

real crane is used. Six unskilled human operators were asked to learn to 

operate the crane using the simulation. All subjects succeeded in learning the 

task, working from 1 to 10 hours on the simulator. During the operation, state 
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variables were logged to the computer showing the state of the system. These 

variables were: 

+ trolley's position, 

+ trolley's velocity, 

+ the rope inclination's angle, 

+ the rope inclination's angular velocity, 

• the rope's length, 

+ the rope's length velocity. 

The RETIS program [Kar92] for regression tree construction was used as the 

induction program and every 0.1 seconds samples were recorded. Different 

levels of delay were considered in that experiment. However, at the end they 

decided to use zero delay for the response to any event. In the construction of 

the controller rules, they found it hard to find a common strategy among the 

recorded information from different operators. Thus, they decided to work on 

collected trials performed by the same operator instead of working on all of the 

information. 

Using the recorded information they built a controller that they claim 11 ••• is 

conservative and minimizes the swinging but at the cost of time" [UB93]. 

As explained earlier, Urbancic and Bratko introduced the human operator's 

instruction into the "cloning cycle" by using six volunteers to learn to control a 

crane simulator. After the operators had mastered the task, they were asked to 

write down instructions for how to perform the task and were also encouraged 
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to discuss their experience and their written instructions with each other to 

improve their performance. A clone was also induced from a set of successful 

traces of each operator by using machine learning techniques. The clone was 

able to control the task in a manner similar to the human operator. 

The main goal in this experiment was to establish a bridge between the 

induced clones and the operators' instructions to improve the transparency, 

robustness, and generality of the clones. Also, improving the operators' 

instructions using the information gained from the clones set to be the other 

goal. In the paper titled "Reconstructing Human Skill with Machine Learning" 

[UB94], they made it clear how these two sets of rules can be used to 

complement each other. In this paper, they explained how the induced clone 

could uncover some of the operator's subconscious control skill. However, 

they did not make it clear how the human operator's instruction can be used as 

background knowledge by the machine learning techniques, especially 

induction. Moreover, although human experts are able to control dynamic 

tasks quite easily, it is often hard or impossible for them to explain how they 

perform the task. Compton has argued that even when the operators provide 

some explanation about their strategy, it is often a justification for their action 

rather than the way they have reached their conclusion [Com92]. Furthermore, 

this justification depends on the context in which it is provided. Therefore, it is 

important to use the knowledge that the expert has provided in the context 

within which it has been acquired [CJ89]. Hence, the approach of Urbancic and 
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Bratko could be strengthened to provide a more reliable and accurate way of 

capturing the expert's explanations. 

Later, Bratko in a further study has investigated reasons for the slow progress in 

generating clones which is directly in relation to the lack of conceptual 

structure and representation that would clearly capture structure and style of 

the operator's control strategy [Bra97]. He has claimed that one of the reasons 

is that since the usual representation used in reconstruction of the skill is 

inherited from traditional control theory, it is entirely numerical. He shows that 

more appropriate representations are largely qualitative and involve history and 

not just the current state of the system. 

2.2.2.2.3 £earning to f{y, Parvaz 

Following Sammut and colleagues' work, Shiraz in his Ph.D. thesis used an 

interactive method [Shi97], in which the expert cooperates with the learning 

program to create the controller. Shiraz broke down the system in to two parts. 

He used Dynamic Ripple Down Rules (DRDR) for the parts of the flight 

simulator where the pilot had the ability of verbalizing the control strategy with 

the system. DRDR is a modification of the Ripple Down Rules (RDR) which has 

been developed for dynamic system control. For other parts, where it was 

difficult or even impossible for the pilot to formulate the strategy, he also 

developed Learning Dynamic Ripple Down Rules (LDRDR). LDRDR 

automatically produces rules from the logged data from the pilots actions 

instead of C4.5 which was used in "Learning to Fly" experiments by Sammut 
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and colleagues [55E95]. A schematic diagram presenting the structure of Parvaz 

is presented in Figure 2-11. He claims that the use of a pilot's advice resulted in 

the creation of more transparent and robust rules [5595). However as he also 

cites that the major limitation of his work was the separation of the knowledge 

acquisition and learning part. 

Automatic control 

Dynamic System 

Manual control 

Behavioural traces 
Expert (operator) I 

' ' I I I 

Machine Learning Knowledge Acquisition ,._ 
(LRDR) (DRDR) 

Knowledge Bases -
Automatically created rules Manually created rules 

' 
Behavioural Gone 

Figure 2-11. The basic structure of Parvaz 

He presented a new machine learning program using sequential data and 

called it LDRDR, short for learning Dynamic Ripple Down Rules [5hi97]. The 

real reason behind the introduction of this program was the need for a learning 

program capable of dealing with sequential data and also its compatibility 

towards DRDR that is an incremental learning tool. DRDR is also a 
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modification of RDR, a simple and powerful method for knowledge acquisition 

and representation. The basic form of a ripple-down rule is and if statement: 

If condition then conclusion because case except 

If condition then conclusion because case except 

If ... 

else if ... 

And in the absence of any other information, the RDR recommends taking the 

default action, that is: 

If true then default conclusion because default case 

In his experiments, Shiraz also divided the flight procedure in to seven stages. 

For each stage he created four separate RDRs, each for every control action 

(elevators, flaps, ailerons and throttle). Each RDR (28 altogether) was 

constructed either using DRDR interactive knowledge acquisition method or by 

applying lnduct/RDR (LDRDR) to the logged data. He applied both machine 

learning and knowledge acquisition procedures independently. 

2.2.2.2.4. !f{ying witli C:J{'l.l.9{.PS 

In another experiment, Stirling for his Ph.D. experiments employed CHURPs 

(Compressed Heuristic Universal Reaction Planners) to achieve a new 

technique for uncovering and synthesizing control skills evolved by human 
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pilots. He developed CHURPS as a method to capture human control 

knowledge. 

He observes that behavioural cloning seeks to learn control skills by observing 

and learning the interactions between the machine/process and human 

operator/agent. However, he claims that "there are fundamental problems 

about the scope of training exemplars one must provide to obtain robust and 

reasonably generalized skills" [Sti95a]. Thus, using CHURPs he tends to 

overcome the problems of brittleness and generality, by separating the planning 

and execution phases. He has actually emphasized on robust controllers built 

to stand failure in actuators. 

To do so, his approach tends to acquire a starting point from the expert from 

which the controller can be automatically generated. 

A Effector set allocations Goals 

Controls A B C 
SE A B C 

B (X 0.6 0.2 0.0 
Y~HE;__"*"*-~1--1~ UE - p - /J 0.1 0.7 0.3 
(} 

C ME r /J (} 

SE «,/J «,fJ /J,y 

Figure 2-12. (a) An example of a plant control system 

(b) Agent's effector view of the system 

r 
(} 

p 

(c) Influence matrix for control inputs over output goals 

0.8 0.0 0.6 

0.0 0.4 0.8 

0.0 0.2 0.0 

"Influence Factors", numbers in the range of Oto 1 specifying the level of effect 

of input on an output goal, are asked from the expert for a certain system. As 

shown in Figure 2-12, in the plant control system with 5 inputs and 3 output 
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goals, input or control action ex has no effect on goal variable C, while it has 

greater effects on A and B. The control action ex is called the main effector for 

goal variable A, meaning that it has the most influence on the goal variable A. 

From the influence matrix, Figure 2-12 (b), for each goal variable there can be 

three sets of control actions: 

+ UE, a Unique Effector, the only effector influencing the goal variable 

+ ME, a Maximal Effector, the one with highest level of influence over the 

goal variable 

+ SE, Secondary Effectors, all effectors over a goal variable except the 

maximal effector 

Influence CPG PD 

Matrix C4.5 Controller 
Plans 

Figure 2-13. CHURPS Architecture 

Stirling has used these three sets for his CPG (Control Plan Generator) algorithm 

to generate plans for the operation control. According to this algorithm, an UE 

control action can not be chosen as ME or SE for other goal variables and also 

an SE control action has the least effects on the other goal variables. 

Stirling proposes that in the CHURPs paradigm, only the planning skill is learnt 

using machine learning technique and the skills can be modeled by common 
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feedback control loops. He also assumes that any complex task can be broken 

down in to a series of sub-tasks. Each sub-task has a clearly defined objective 

and target, and once the current sub-task's objective has been achieved the 

next sub-task is entered. Arguing that since both CHURPs and the behavioural 

cloning auto-pilots were constructed using the same learning method, he 

suggests that the difference in their performance is due to the source of 

examples and the addition of multi-controller feed-back. Apart from the flight 

domain, he also has demonstrated CHURPs on other multi-input/multi-output 

domains [Sti95b]. 

2.2.2.3. Learning using neural networks 

In the last two decades, we have witnessed a rapid increase in the use of neural 

network in different areas [WL90]. They have been applied in several different 

domains such as pattern recognition [CG83][WW88], Image processing 

[NP90], hand writing recognition [Bar90], natural language processing, and 

economics [BF91 ]. The ability of a neural network to deal with non-linear tasks 

make them a suitable choice for learning to control dynamic systems 

[HA90]US90]. Auto-lander US90J, Bio-reactor [Un90], and pole cart [WW88] 

are some examples of this. 

The following section provides a brief review of the auto-lander project, which 

is related to some aspects of the work reported in this thesis. 

Chapter 2: Background - Navigation 58 



2.2.2.3.1 • ..9LL'lll9{_9{_ 

ALVINN, Pomerleau's trainable road tracker is one of the world's most famous 

neural network applications. The specialty of ALVINN is not its driving 

capability, but it can also learn how to drive just by watching a human driver 

for a while [Pom93a]. ALVINN uses a training system designed in four layers. 

In the first layer the system uses a low resolution video camera to input three 

30x32 pixel images, one for each of the video color bands (red, green and 

blue) to the neural network. These images are taken from the road ahead and 

the current position of the steering wheel. There is a connection between every 

single pixel in each of these three images and the corresponding pixel in the 

30x32 unit array of hidden units, which is the second layer. The system was 

designed in such a way that there were only three distinct weights, one for 

each distinct color, between the color bands and the array of hidden units. On 

top of this layer four hidden units were used to connect the hidden unit array to 

the forth layer. Finally, the forth layer was made from 30 output units 

corresponding to the direction control units, ranging from sharp-left to straight­

ahead and to sharp-right (figure 2-14). 

ALVINN was able to drive on single lane, multi-lane and unpaved roads. To 

drive at night, it was equipped with laser reflectance imaging system. Using a 

laser range-finder unit, ALVINN was able to perform object avoidance task 

maintaining a fixed distance from the parked cars. 
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Figure 2-14. The four-layered architecture used to train AL VINN 

Pomerleau used a new methodology for "on-the-fly" training in neural 

networks. In this methodology, the training set is kept small in order to meet 

the limitations of real-time processing. However, the examples were removed 

only when they were completely studied and efficiently learnt. In addition, his 

new methodology requires a training set representing a balance variety of 

cases. 

To train on-the-fly (Figure 2-15), Pomerleau first considered generating artificial 

images of situations likely to be encountered by the robot, to ensure enough 

diversity in the training set. To do this, he developed a simulated road 

generator program. He then used this program to create 1200 examples used to 

train the network by randomly changing its parameters. 
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Figure 2-15. Schematic representation of training "on-the-fly" 

There were serious drawbacks in this approach, ranging from the log time 

needed for artificial road generation, poor performance of the network due to 

the differences between the artificial roads and the real ones, and finally the 

need for prohibitively complex training data generators for multi-lane and off­

road driving trainings. As a result, Pomerleau developed another training 

scheme in which the network imitates a human driver under actual driving 

conditions. He has called this technique, "training on-the-fly''. He believes that 

training on real images would need lesser human effort to develop networks for 

new situations [Pom93b]. 

There were also two potential problems associated with training on live sensor 

images, recovering from misalignment errors due to road center concentrated 

training and over-learning recent inputs due to training with only the current 

image and steering direction. To prevent those problems Pomerleau came up 
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with another technique for transformation of sensor images to create additional 

training exemplars. 

Furthermore, to complete the previous technique, he also used the pure pursuit 

steering to adopt the correct steering direction for the transformed sensor 

images. In this model, the correct steering direction brings the vehicle to the 

desired location (which usually is the center of the road) a fixed distance 

ahead. In order to further ensure against the effects of repeated exemplars, 

Pomerleau increased the diversity of the training set by maintaining a buffer of 

previously encountered training patterns. In this method, the newly digitized 

and transformed sensor images are added to the buffer while the older patterns 

matching these new ones are removed from it. This will ensure having an 

updated history of the recently encountered driving situations in the training 

pattern buffer. 

Pomerleau claims that training on-the-fly scheme gives ALVINN a better 

flexibility that is new among other navigational control systems. 

2.2.2.3 .2 . .!lluto-fanaer 

An auto-lander is usually available in most commercial aircraft. However, they 

are not designed to handle large winds and turbulence [AM90]. To explore an 

alternative for the current auto-landers, Jorgensen and Schley suggested using a 

neural network US90]. 
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They believed, because of the capability of the neural network to generate a 

map from large set of variables (e.g. sensors) to another set of variables (e.g. 

control actions), they may be able to capture some critical behaviour of the 

human pilot. A pilot's skills, usually developed through years of experience, 

help the pilot to make appropriate responses in a new state. They are called 

sub-cognitive skills and are very difficult to explore. 

Jorgensen and Schley believed also that the use of neural networks might make 

it possible to capture some of variable interrelationships in an aircraft, which 

are not normally considered by a design engineer. 

Jorgensen and Schley in their experiments found that it is impossible to capture 

the performance capabilities of a linear auto-lander controller by a single 

network. Therefore, they decided instead to use a set of neural networks. They 

used a simple and linearized mathematical model of a controller to train these 

networks. Their model considers just longitudinal and vertical movement of the 

aircraft. To simulate some of environmental disturbances, they modeled head 

and tail wind. This model exhibits wind shear at different altitudes. 

The auto-lander system has four major components: 

a) Auto throttle: To maintain constant airspeed 

b) Pitch auto-pilot: To provide adaptive damping and a speed response 

to desired pitch attitude 

c) Wind disturbance calculation: To generate random gusts of head or 

tail winds. 
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d) Glide slope and flare controller: To provide pitch commands in 

response to desired altitude and altitude rate of change. 

The input to the system consists of current altitude, altitude rate of change, 

desired altitude, and desired altitude rate of change. The goal of the system is 

to generate elevator angles at any time to land the aircraft on the runway. 

In this experiment, Jorgensen and Schley successfully generated a set of 

networks that could land the aircraft in the presence of headwinds and 

tailwind. 

This work was limited in that it used a very simple flight model and only 

considered the elevator actions during landing, not an entire flight. Moreover, it 

did not explore the areas of interest in this thesis, namely combining human 

and machine knowledge. 

2.2.2.4. Learning using Fuzzy Logic 

2.2.2.4.1. Afo6ile 9?.p6ot 9{_,avigation 

Recently there have been many attempts at mobile robot navigation using 

Fuzzy Logic techniques. Aycard and colleagues have shown a new method to 

design, in two levels, a fuzzy controller for reactive navigation of a mobile 

robot in a structured unknown environment [ACH97]. Using a Nomad200 

robot for their behaviour based control of reactive navigation, they have 

conducted two experiments with different local behaviours and different 
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mechanism of integration. At the first level, the adjacent sensors of the robot 

were grouped in areas and were used to define the local behaviours, which 

were later in the second level gathered in order to define a global behaviour. 

Adaptive behavioural capabilities are necessary for robust mobile robot 

navigation in non-engineered environments. Robust behaviour requires that 

uncertainty be accommodated in the robot control system, especially when 

autonomy is desired. Claiming that fuzzy logic control technology enables 

development of controllers which can provide the necessary computational 

intelligence in real-time, Tunstel et al. have presented the incorporation of 

fuzzy logic, into the framework of behaviour-based control [TDLJ97]. They 

have implemented an architecture for hierarchical behaviour control in which 

control decisions result from a consensus of behavioural recommendations. 

Applying multiple fuzzy-behaviour coordination to autonomous navigation 

without explicit maps, they have declared that performance and robustness is 

demonstrated by implementation on a mobile robot with significant 

mechanical imperfections. 

2.3. Discussion and Conclusion 

In this chapter we presented the background work on both navigation and 

learning approaches. The first section covered different approaches for 

localised navigation, while the second attempted to cover as much as possible 

a complete related survey of various methods of machine learning. 
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In the navigation section, it was clearly pointed out that the two widely used 

navigational methods (i.e. localised and global) are clearly separable and 

distinguishable by means of implemented strategies and data processing. 

Consequently, in this thesis, we have proposed to use reactive control of a 

locally developed mobile robot. We gradually develop the navigation system 

based on the previously attempted strategies, however the difference is that the 

strategies are not hard coded and will be learnt eventually by the robot during 

trial sessions. 

In the second section, it was shown that machine learning techniques could be 

successful in constructing a controller for complex dynamic systems such as 

flying an aircraft and robot navigation, in simulation or using physical 

platforms. The main focus of this section was on describing behavioural 

cloning (behaviour based control) which seems to be one of the promising 

methods for building controllers. 

It has been observed that behavioural cloning, seemingly, has been successful 

in building control systems. However, many problems remain to be solved, and 

much more research is to be done before this method can be practically 

applicable. 

In our experiments, we have concentrated on applicability of a combination of 

behavioural cloning and other conventional navigational methods to a physical 

system. At first, we have tried simple and primitive obstacle avoidance 

behaviour by observation and changing the training strategy. 
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3. Robotic Platforms 
Experiments related to this thesis have been performed in two different phases. 

Two different robots have been used, one for each phase. There are similarities 

between both robots, and the major difference lies in the way the experiments 

have been performed. Robots have been used to acquire the primitive 

behaviour of object avoidance. Also, two different algorithms have been 

applied for comparison purposes. 

3.1. Purpose Built Robot 

The robot was designed and built by the author, based on the previous physical 

frame by Graham Mann (Graham built the base and frame for a different 

purpose, no reference is available on his work though). The structure of the 

robot was based on an IBM-Compatible 386 computer. It adopted a simple 

peripheral interface to the main board via Xeltek MCP-550 data acquisition and 

MCP-330 digital interface cards. The physical structure of the robot is shown in 

Figure 4-1. The robot is made in three individual separable sections, top, 

middle and the base. Located atop the robot is an ultra-sound rotating scanner, 

the computer and motor controllers are in the middle section, and all the 

power related parts and motors are also residing on the base section. 
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The overall system architecture of the robot is shown in Fig. 4-2. The left-hand 

side illustrates the sensors, while the lower right section shows the computer 

and communication boards. The picture also shows the interconnection 

between different parts of the robot. The different parts and sections of the 

robot are described in details in the following sections. 
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3.1.1 Sensors 

The purpose built robot is equipped with a rotary ultra-sound sensor, as well as 

five infrared proximity sensors. These sensors are used for long distance object 

detection and close proximity obstacle avoidance. 

Polaroid Ultrasonic Transducer 

DC StBpper Mol!Jr 

Texas Instrunent 

Sonar Board 

stepper Motor 
Control er 

386 

Motherboard 

Interface Card (MCP-330) 

Shaft 
Encoder #1 

Shaft 
Encoder #2 

Figure 4-2 Overall system architecture of Purpose-Built Robot 

3.1.1.1. Ultra-Sound Rotary Scanner 
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A rotary ultrasonic range finder mounted atop the robot scans the su rroundings 

continuously, generating a 48-value polar proximity map from a 360-degree 

scan every 15 seconds. The stepper motor in charge of rotation has the 

resolution of 7.5 degrees. 
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The sonar ranging module is made by Texas Instrument, which matches the 

Polaroid Ultrasonic transducer. For each reading, there should be an 

initialization from the controller board to the transducer, followed by emition 

of a series of vibrations which sounds as a single click noise to human ears. 

Then the ranging system goes to receiving mode, waiting for an echo to receive 

from the object(s) ahead in case there is any. In the meantime, an external 

counting system which is also initialized at the beginning will continue 

counting and will only stop when either an echo is received or its buffer is full. 

If the reading shows an overflow in the counter value, it simply means that 

there is not sensible object in th evicinity of the next 10 meters. 

The ranging module is capable of operation in both single-echo and multiple­

echo mode. We have only used the module in single-echo mode, so in any 

sigle reading only the closest object in that direction is sensed. 

3.1.1.2. Infrared Sensors 

The robot is also equipped with five infra-red proximity sensors (modulated IR 

detector, coupled transmitter and receiver) arranged around the base half-way 

up the robot; each sets one bit of a digital input port (on MCP-330 board) if an 

object falls within range of approximately 10 to 15cm. 

The IS471 F is an infrared detector with integrated modulation system. It is a 

perfect device to be used in high atmosphere light conditions by elimination of 

detected unwanted light emissions. 
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3.1.2. Motors, Controller and Shaft Encoders 

The robot has employed two motors on its base. There is also a gearbox 

located under the motors and connected to the side wheels, facilitating the 

engagement of the motors with the wheels during the start-up moment and stop 

moment of the operations. The gearbox acts as a damper during the stop 

procedure, stopping the robot without any residual movement. 

The robot is also equipped with a motor controller system, in order to 

command the motors. We have chosen the current control method, so it is 

possible to drive the motors using Pulse Width Modulation (PWM) in order to 

save power and avoid over-consumption of the battery module. Generally 

there are two types of motor controllers in respect to the design, Linear Servo­

Amplifier based and PWM Servo-Amplifier based. The PWM based controller 

will keep the driving transistor in switching mode, causing less power 

consumed as well as lesser time needed for switching. 

In many applications it is preferred that the motor's driving current to be 

directly controlled by the input command (signal). This is simply because the 

developed torque in the motor that is the most important factor for creation of 

the rotational motion in speed/position controls is directly proportional to the 

motor's driving current: 

where: 

m = instantaneous torque 
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im = motor's driving current 

K1 = torque constant of the motor 

So, the servo-amplifier is designed in such a way that the input signal controls 

the motor's driving current, so by changing the level of current we can change 

the speed of the motors. 

The current control signal is generated by a Pulse Width Modulation (PWM) 

technique. To do this a triangular wave generator is used in conjunction to the 

speed command, which is created by the built-in communication board (using 

software) and fed to an operational amplifier (as a level comparator). We define 

the analogue command signal to be modulated by the source (triangular -­

modulator) signal (Figure 4-3). 

The chosen motors can be directly driven forward or backward, simply by 

reversing the applied voltage direction. This has been made possible using 

simple relay modules. Figure 4-4. Shows a block diagram of the motor 

controller designed specifically for this robot. 

Analogue Signal 

Triangular Signal 

PWM Signal 

~ nn nnR LJULJUO 

Figure 4-3. PWM generation 
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Figure 4-4. Motor controller block diagram 
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It has been observed that while both motors are working simultaneously, 

whether forward or backward, there will be race condition in which one motor 

rotates faster than the other. To prevent this, we have designed a couple of 

shaft encoders, located on the shafts of the motors. The encoders are in a clear 

circular disk with 36 black stripes lying from the center towards the edge of the 

circle. The main purpose of the shaft encoders is to measure the wheel rotation. 

The encoders rotate within standard infrared optical units (encapsulated 

transmitter and receiver), connected to a pair of 8 bits counters through signal 

conditioning circuits creating square wave signals. Each transition from clear 

zone to a black zone is counted as one tick, 36 zones in total, 10-degree 

resolution. 
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To detect any racing between the motors, it is imperative to check the shaft 

encoders continuously only when both motors are driven at the same time in 

one direction. Figure 4-5 illustrates a flow chart of the process responsible for 

taking care of the race condition. Each motor can be set on two different 

speeds in both forward and backward directions. 

3.1.3. Power Supplies 

Power is provided by a 12-Volt/40 Amps high-duty car battery, which is then 

Start 

1 Pulse Write 

M1 & M2 (7.5 dearee ) 

Motor Command 

Control Word 

:Hardware 
(Movement Process Control) 

Figure 4-5. Flow chart of motor control 

fed through a combination of converters to different parts of the robot, 
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providing positive and negative 5-Volt and negative 12-Volt. The 5-Volt 

converter also provides the fine +5-Volt necessary for the motherboard. 

Also, the robot is provided with a power supply supervisor chip, which is 

responsible for lower power warnings. The power supply supervisor unit 

RS3543 contains full monitoring and shutdown control systems. It is suitable 

for both linear and switch mode power supplies, and is programmable for over­

voltage and under-voltage protection. 

3.1.4. Computer and Communication Boards 

The robot is equipped with two communication boards, which sit in two slots 

in the IBM compatible computer. MCP-550 data acquisition and MCP-330 

digital input/output cards are products of Xeltek. 

3.1.4.1. MCP-550 data Acquisition Card 

The data acquisition system converts the raw analogue/digital outputs from 

transducer readings into equivalent digital signals/data usable for further 

processing. MCP-550 card provides an analogue Multiplexer, a sample and 

hold circuit, two Digital to Analogue Converters (DAC), two Analogue to 

Digital Converters (ADC) with reference, programmable clock, and buffers. Fast 

speed and multi-function data acquisitions are the main features of this card. 

DAC ports are used for motor control task, while the timer/counters are used 

for shaft encoders reading. The output of each digital to analogue converter is 
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connected to the reference analogue voltage of the comparator described in 

previous section, and then modulated with a triangular waveform generating 

the pulse width modulation driving power for the robot's motors. The level of 

the analogue voltage determines the speed of the robot. 

The ADC (analogue port) was used for joystick control reading. The joystick 

was made of 4 linear potentiometers, one for each direction of movement. The 

analogue reading from joystick is changed to digital and then based on the 

position of the stick, the control command will be issued through the two DAC 

ports. 

3.1.4.2. MCP-330 Di,gital Input/Output Card 

The general interface method among personal computers is programmable 

digital input and output registers. MCP-330 card provides 32 digital input 

channels, 32 digital output channels and 2 interrupt functions. The digital 

input/output channels are TTL compatible, but the board provides higher 

driving capacity for digital output channels and lower loading current 

consumption for digital input channels than normal TTL circuits. 

The ultra-sound scanning system's counter is connected to 16 digital input 

channels, while 8 input channels have been used for infrared proximity 

sensors. 
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3.1.5. The Main Control Program Loop 

The robot is programmed by two simple nested control loops. The program is 

responsible for sensors checking, movement commands, and data logging. 

At the beginning of the program, the sonar transducer, MCP-330 and MCP-550 

boards are initialized. The inner loop is repeated four times, before the outer 

loop can be completed once. The outer loop is only for sonar readings. It takes 

4 seconds to scan the full 3602 by the sonar transducer, forcing us to do it in 

four equal intervals. After every quarter of scanning, the inner loop starts, and 

monitors the infrared sensors, battery level, and joystick movement 

respective! y. 

Also, the loop contains file initialization and manipulation processes for data 

logging purposes. The logging can be turned on and off using a physical switch 

connected to one of digital input channels of MCP-330 board, which is also 

monitored within the inner loop. The main purpose of this switch is to prevent 

the data logging while in transition and movement with out a specific target; 

i.e. when the robot is moved from one location to another outside of the 

training periods. 

3.2. Upgrade and Changes 

In the continuation of our experiments, the robot was upgraded to use an IBM­

compatible 486 processor based computer and also the interfaced boards were 

replaced with a Motorola M68HC11 Micro-controller based mini-board (Mini-
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computer). This change was followed by the change to a newer sonar 

transducer, which is basically the same as the original one, but the only 

difference is the controller that is matched to the mini-board controller and is 

designed for this specific transducer, which makes it faster. Also, the analogue 

joystick is replaced with a digital one specifically designed to be connected to 

the parallel port of the IBM compatible computer. 

8.2.1. The BBHCll Mint-Controller board 

The mini-board 2.0, designed by Fred G. Martin at Media Laboratory of MIT, is 

a single board micro controller/computer designed to control small DC motors 

and receive data from a variety of electronic sensors. It is smaller than a 

business card in size, low power, and programmable. These features make the 

board ideal for mobile robot control. It is capable of communication with a 

desktop PC via a standard RS-232 serial port, which provides a good 

opportunity for desktop PC based control as well. 

The mini-board is capable of: 

• Control 4 DC motors using software based PWM in 16 different levels of 
speed 

• Eight analogue inputs for analogue sensors and devices 

• Eight digital inputs 

• Three/four programmable counters 

• RS-232 compatible serial port for communication with a PC 
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+ Includes 256 bytes on internal memory on the 68HC11 chip, and takes 

2K bytes EPROM for onboard programming purposes. 
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Figure 4-6. Mini-board's wiring diagram 

Connector CON2 is connected to the Mini­
Board using a D9: 

1- S V input (from regulator - Red) 
2- Echo (orange) 
3- Ground (Black) 
4· Trigger (Blue) 

Port A 3 : Echo (Orange) 

Port CO : Trigger , Sonar !NIT (Blue 0·9) 
Cl : Stepper HOME (White D2S·P21) 
C2 : Left Shaft Encoder (Orange D2S-P6) 
C3 : Right Shaft Encoder (Red D2S-P7) 
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Figure 3-6 is an illustration of the mini-board and its connections as used in our 

locally built robot. The board is connected to the stepper motor of the sonar 

scanning system, sonar transducer, motor control driving circuits, motors 

direction control, and RS-232 standard serial connector of the onboard PC. 

One of the reasons for choosing 68HC11 based-controller/computer is the vast 

existence of the C cross compilers. One can simply write a control program in 

C and then use the cross compilers to compile it to the 68HC11 assembly 
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language. Furthermore, a small uploading program 1s used to send the 

translated program in to the onboard EPROM. 

The motors are also connected directly to the Mini-Board, and are to be driven 

using pulse width modulation provided by micro-programmed pieces. Wheel 's 

IR detectors (rotation counter from the shaft encoders) are also connected to 

internal counters on the Mini-Board. 

8.2.2. The Parallel Port Control Box 

The other change involved was the replacement of the joy-stick with an electronic 

control box, also providing switches and LEDs for better control and navigation. The 

box was connected to the PCs parallel port. 

LO L1 L2 L3 

osc 
S30 0S1 

Osz 
L4 e L5 

n n n,.0 
Figure 4-7. Parallel port control box 

There are 4 push-buttons, 2 switches and 6 LEDs on the box. The following explains 

the specification and use of each part: 

Chapter 3: Robotic Platforms 80 



• SO to S3 are push-buttons connecting to ground when pressed, and are used 

for direction control of the robot. 

• LO to L5 are LEDs and can be programmed for any purpose. For the moment, 

L4 and L5 are related to the situation of toggle switches Tl and TO 

respective} y. 

• TO and Tl are programmable toggle switches. The training program uses 

them just for recognition of automatic I manual control and data log on / off 

status of the system. 

3.2.3. The Control Program 

The control program explained in the previous sections has also been changed 

accordingly. The main loop has been broken in to two different parts. The 

sensors reading part has been changed and transferred on board of the 68HC11 

based micro-controller board. The onboard program scans all the sensors and 

input devices, including the shaft encoder digital square wave signals, ultra­

sound transducer echo signal, infrared sensors' output and the parallel port 

digital controller box. The program is also responsible for sending control 

signals to the sonar controller, and motor controllers. 

The other part of the program is executed on the IBM compatible PC, and 

communicating with the mini-board processes the incoming data. It also logs 

the environment and robot's status data into a file in case the related switch is 

on (the switch is located on the parallel port control box). In addition, this 

program can be executed in two different modes, manual control and 

Chapter 3: Robotic Platforms 81 



automatic control. Within the automatic control mode, extra steps would be 

executed, which are explained in the next chapter under automatic control 

section. 

3.3. Fander-1 Robot 

This robot is very similar in structure to what we have used before. The robot's 

architecture is illustrated using Figure 4-8, and the only difference is that there 

also exists a LCD display and a keypad, which are not shown in the picture. 

The use of this keypad is for direct control of the system as specified in the 

provided program with the robot. The LCD display is used for information 

display. 

Figure 4-8. Fander-1 Robot 
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3.3.1. Sensory system 

Fande r-1 robot is equipped with many built-in sensors that can be used and 

adapted to any robot navigational approaches. The sensors include, rotary 

ultrasonic range-finder transducer mounted on top of the robot with 48 steps 

(7.SQ /step angular resolution), three sets of infrared proximity sensors, two shaft 

encoders located on its main wheels, bumper detectors, and a line sensor for 

following designated lines on the ground. Of all these sensors we have decided 

to use only the sonar transducer, the infrared proximity sensors, and the 

shaft encoders. 
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Figure 4-9. System architecture for Fander-1 
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The sonar transducer, made by Polaroid and coupled w ith the Texas 

Instrument controller board, was used for range finding and object detection 

in longer distances up to 10 meters. The process is exactly the same as the 
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one described in an earlier section for the soar system used in purpose built 

robot. The transducer is sitting on top of a stepper motor with 7.5° per step 

resolution. The step control signals are provided by a special purpose 

designed control board, which also include ADC, DAC, digital input/ output 

channels and timer/ counters. 

Three sets of IR proximity sensors, as well as two wheel shaft encoders 

enable the motors to detect the obstacles unrecognized by other means. The 

other use of shaft encoders can be to measure up the rotations of each wheel, 

especially useful for racing detection as has been described earlier in this 

chapter. 

The infrared transmitter and receiver pairs are attached to the front of the 

robot's body, just below the lower bumper strip. The transmitters and the 

receivers are separate modules, unlike the purpose built robot's, and are also 

connected to square wave signal generators. 

3.3.2. Motors and Shaft Encoders 

Each wheel has a shaft encoder measuring the wheel's rotation. The shaft 

encoder is made of two parts quite similar to the previous ones, and include 

the rotating striped disc and a coupled infra-red optical detector. The disc 

has 16 stripes so the total of 16 pulses are generated on a full rotation (22.5° 

resolution). The signal conditioning circuit is also responsible for generating 

the square wave signal on each transition from clear to black stripe. The 

generated square wave signal is TTL compatible. 
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Unfortunately, the resolution of the shaft encoders is not enough for most of 

the robot navigation approaches like grid-base strategy, however other 

strategies that do not need high level odometer information can still be 

applied. 

The main motors are located on the sides of the robot's body towards the 

back. The control system drives the two motors separately, providing 

straight ahead, right, left and backward motions. 

3.3.3. Programs 

The robot comes with pre-compiled monitoring software, and also provided 

in disks are the library modules that can be used for control programming 

purposes. The functions are mostly useful in primitive action-response 

processes. For further information, we refer the reader to the programming 

manual provided by the manufacturer. 

The monitoring program is designed to be used by a serial connection 

between a monitoring computer and the robot. Since we had decided to use 

wire-less communication, it was necessary to implement the monitoring 

program from the scratch based on our needs. The new monitoring program 

included features such as, graphical display updating the representation of 

the environment in 2 seconds intervals. The data would be provided by the 

robot through the wire-less modems, processed and screened in shape of 

colored dots. The control should have been performed using arrow keys on 
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the keyboard. During training periods, the data logging would be turned on 

by the trainer. 
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4. Learning Navigation 
To be as useful as we imagine they could be, robots must be capable of 

learning new behaviours. Truly adaptive behaviour means not only the ability 

to put together sequences of behavioural primitives in new ways, but even to 

acquire new behavioural primitives. A number of methods of acquiring 

complex skills from primitives have been developed including plan learning 

[Mit89] and coordination of behaviours on a subsumption network using 

positive and negative feedback [MB90]. These techniques depend on primitives 

implemented as hand-written code or purpose-built circuits. The focus of this 

thesis is the acquisition of behaviours by imitating a human trainer. 

In these experiments a mobile robot is demonstrated to acquire a primitive 

motor skill by being guided through a set of trials by a human operator. A log 

file of the robot's sensory and motor data is recorded as a trainer steers the 

robot through a set of obstacle avoidance scenarios. The logged data are then 

processed by an induction algorithm, which extracts a set of decision trees 

representing appropriate skirting movements for a range of obstacle patterns. 

The skill is then evaluated by observing the robot as it executes code generated 

from the decision trees in response to objects encountered during autonomous 

movement. 

Also, for comparison purposes, another set of rules is extracted using 

lnduct/RDR from exactly the same set of data. This is to show that there is a 
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little difference between the extracted rules, and the only difference lies on the 

strategy applied by the trainer (demonstrator). 

4.1. The Problem 

In these experiments, we have demonstrated that a simple but important 

behavioural primitive, obstacle avoidance, can be acquired by induction from 

steering motions performed by a human operator. When the robot encounters 

an object large enough to cause obstruction, it must make movements to skirt 

the object and continue on its way. These movements are not always a simple 

function of the size and shape of the object, but also depend on the movement 

capabilities, size and shape of the robot, and on the local spatial situation. 

Human operators, controlling the robot by a joystick, can perform this skill. If 

sensory and motor data are logged by the robot during a number of avoidance 

trials, an inductive learning algorithm can be used to extract a number of 

decision trees. Encoded rules derived from the decision trees can then be used 

to control the robot during autonomous movements. The quality of the 

behaviour is then assessed by observation. 

This learning method, called "behavioural cloning' by Michie [MBM90), has 

been successfully applied to the control of pole-balancing machines [MC68), 

aircraft [SUKM92] [SSE95), cranes [5S82] [UB93), all of which have been done 

by simulation models. This is apparently the first use of the technique for 

Chapter 4: Learning Navigation 88 



navigation in a mobile robot. It is likely that the technique will find other uses 

for robot systems. 

4.2. Manual Control 

The central control mechanism of the trainer program is a loop that interrogates 

the robot controls and updates the state of the robot according to a set of 

sensors readings. Before repeating the loop, the requested data is logged in the 

data file. 

The robot can be manually steered using a joystick. Continuous motion of the 

joystick are converted into numbers in the range of O to 12 (Figure 4-1 ). Each 

number represents the robot's heading and it's speed. In manual training mode, 

these signals are converted into motor commands, which move the machine in 

a direction roughly corresponding to the angle of the stick. The speed of 

movement is related to the amount by which the stick is displaced from the 

origin. With practice, a human can drive the robot as if it were a toy car. While 

the trainer controls the motors, the sensors just continue their regular job that is 

sensing the environment's changes. However, the sensors readings are not 

reported to the trainer. 

As shown in Figure 4-1, there are three speed regions in the joystick control. 

The central region is stop, the mid-region is low speed, and the outer region for 

high speed. The directions are forward, turn_right_forward, turn_right_rear, 

reverse, turn_left_rear, and turn_left_forward. 
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Figure 4-1. The control region of joystick 

300 different obstacle avoidance trials, performed by 5 trainers (demonstrators), 

in which 3 objects of various sizes and shapes were placed in 7 different 

positions (Figures 4-2 through 4-5) were set up. The pictures show a general 

sketch of the position of the object and the robot in different situations, as well 

as the direction of the movement. 

(a) (b) 

Figure 4-2. Center Obstacle 

In Figure 4-2, The object has been placed on the center of the road in between 

two parallel walls. The robot has been steered by the trainer in either direction 

around the obstacle. The process was that the steering continues towards the 

object until the front infrared sensor has sensed the obstacle, after the data 
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logging switch is turned on. Then the robot is steered backward (backing off 

procedure in order to make enough space to steer around the object without 

bumping to it) until the sensor(s) were cleared. Finally the trainer would decide 

to continue the path on the right or left side of the robot, clearing the obstacle. 

Finally, the original direction and path would be picked up and the trainer 

would continue the steering for some more time. After that the data logging 

would be turned off, and reproduce the same scene again or try another scene. 

(a) (b) 

Figure 4-3. Side Obstacle 

(a) (b) 

Figure 4-4. Side Obstacle 

In the situation illustrated by Figure 4-3 and 4-4 the obstacle was located closer 

to wa ll or just beside the wall, making it only possible to travel in one 

di rection. The difference between the two situation is that the robot can sense a 
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free space in Figure 4-3 between the obstacle and the wall , but observes that 

can not pass through, while in Figure 4-4 the wall and the obstacle would 

make the situation I ike a corner. 

In scenarios illustrated by Figure 4-5, the robot was steered towards an object 

located on a corner, distanced differently from the wall in different scenarios. 

The steering similarly continued until the object was sensed, then the robot was 

cleared from the obstacle turning right or left respectively in scenario (a) and 

(b), finally continuing the travel along the wall further away from the object. 

Figure 4-5. Comer Obstacle 

The strategy for the obstacle avoidance is chosen by the trainer, and naturally is 

different for each individual. The following picture (Figure 4-6.) shows typical 

strategy's sketch for covering and avoiding an object. The steps are numbered 

for easier recognition of the procedure. The solid shape in the center is the 

obstacle, and the square shapes around it represent the robot in different 

positions during the skirting operation. 

In steps 1 and 2 the robot is steered towards the object. Step 3 is the back-off 

step, and during the steps 4 to 7 the trainer is trying to cover the obstacle. Steps 
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8 and 9 represent the original path recovery and in step 10 the data logging is 

turned off. 

The dotted lines represent another possible path for obstacle avoidance in this 

particular case. Of course, in the other scenarios, on ly one possible path may 

exist. 

Figure 4-6. The strategy of obstacle avoidance 

4.3. Logging Control Information 

Every single trainer/operator took the robot through 5 training sessions for each 

scenario, with all sensors operational during the training. All the sessions 

involved three phases: 

1. Sense obstruction and approach object to within 9 to 15cm, until one of 

the IR sensors detects the object's presence. 
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2. Skirt object, minimizing complications with respect to other objects, that 

is if the object has more than one corner in one side, the robot should 

have recognized it and start the procedure for object avoidance from the 

beginning. 

3. Recover original path with minimum disturbance. 

During each trial, a set of vectors for the following sensory and motor data was 

recorded: 

polar_map 

ir_sensors 

wheel_count_l 

wheel_ count_r 

collision 

Vector of 8 bytes each representing the distance 

from the environment around at increments of 7.5° 

clockwise from origin, collected by a complete 

rotation of the transducer (sonar-sensor). The value 

of each byte can be one of Cl_rng (close range), 

Md_cls (medium-dose range), Md_rng (medium 

range), or Fr_rng (far range) values corresponding to 

0-0.Sm, 0.5-1 m, 1-2m, and more than 2 meters 

respectively (sense_ 1 to sense_B). 

A vector of 5 Boolean values, indicating the close 

proximity of the objects around the lower part 

(base) of the robot. Each vector can show either Sns 

(sensed) or Nsns (not-sensed) values (IR_ 1 to IR_S). 

One byte from the left shaft encoder, representing 

the distance covered since the last reset (wl et/). 

One byte from the right shaft encoder, representing 

the distance covered since the last reset (wl_ctr). 

Boolean, derived from a disparity between motor 

speed variables and wheel counts (Bang). 
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obstacle_flag Boolean, showing the presence of the obstacle 

(Warning). 

2_previous_control One byte, representing the second-previous action's 

direction and speed of the motors (stat_2). 

previous_ control 

Current_ control 

One byte, corresponding to the previous action's 

direction and speed of the motors (stat_ 1 ). 

One byte, indicating the direction and speed of the 

motors' control (class). 

It is essential to point out that originally the polar_map data were in numeric 

form made up of 48 different numbers between O and 255. Those numbers 

were the content of counter connected to the sonar system. However, the 

Polar_map was changed later to be in the range of specified discrete values, 

later which is explained in the following sections. 

Each control attribute can take a value from the set of Stop, Bkwrd (backward), 

Frwrd (forward), Rght (right), Left, Frwd_Rght (right-forward), Frwd_Left (left­

forward), Bk_Rght (right-backward), or Bk_Left (left-backward). 

The number of recorded line (each line representing one event, including 

sonar, infrared sensors, shaft encoder counters, traveling direction for the last 

two events and the current control command) during each trial varies and 

depends on the trial's duration and chosen strategy. The program has been 

written so that when the trainer turns a specified switch on, the state of the 

whole system is written to the log file. And also, when the switch is turned off, 

logging would be stopped. 
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4.4. Data Analysis 

Even with a well-specified navigating plan such as the one we are using here, 

there is a large degree of variation in the navigation strategies. Because of this 

variation, the number of trials we have is not sufficient to allow an induction 

program to distinguish useful actions from noise, using the raw data. However, 

it would not be very practical if it were necessary to have hundreds of trials 

before anything useful could be obtained. So, before applying the induction 

program to the data, we perform some pre-processing to assist it. 

We define the similar cases to be the ones that are different only in few sonar 

vector values. This means that other environment variables are the same. These 

kinds of cases can be created by having the robot stationary for a short time 

and the trainer has moved a little, or there has been a slight bump to the robot, 

and etc. 

The data file(s) were scanned for any exactly repeated or similar cases of 

events. The repeated events were omitted from the data file(s) and also within 

the similar events range, the one seeming most different to others were chosen 

and kept, resulting in deletion of the rest. To discard the similar or repeated 

cases, we used two different approaches. First, when the polar_map was in 

numeric form, we used a weight factor on the full map using an array of vectors 

kept for the last 10 readings and the summation of the whole vector as another 

comparison factor. 
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Furthermore, the continuos data collected from the sonar scanner were also 

changed in to discrete values of Close, near, near far and far distance as 

mentioned in the previous section. The original data collected from the sonar 

range-finder system were in numeric format, causing a lot of branching in 

decision-makings. In this case, to establish the similarity or duplication of the 

events, the summation comparison factor was dropped and we only used the 

buffer method for only last 5 readings. 

We have used Quinlan's C4.5 [Qui93] as the induction program in these 

experiments. Learning reactive strategies is a task for which C4.5 was never 

intended. However, having used this algorithm before and also the availability 

of an auto-generator, which translates decision trees to nested 11if-else­

statements11 in the C language, we decided to use C4.5 in this experiment. The 

transition to C was necessary so that the decision tree code can be inserted into 

the main automatic control program. 

Like the learning to fly experiments [SUKM92], we also observed that at the 

early stages, data logging during each control cycle caused a vast amount of 

data to be recorded, producing inaccurate and huge decision trees. So, we 

decided to log the data only when the state of the robot was changed or an 

action has occurred. Each control cycle includes reading the position of the 

joystick, control switches and IR-sensors, and finally one sonar reading cycle. 

The motor speeds and heading are then recorded. 
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138, 

138, 

143, 

, 255,255, 

, 126, 58, ..• 

, 126, 58, ••• 

, 255, 0, 0,255,0,0,1 

, 70, 50, 50,223,1,1,0 

, 70, 20, 20,239,1,0,4 

203, 

203, 

146, 

146, 

146, 

146, 

146, 

, 116, 164, 

, 116,164, 

, 119,231, 

, 119,231, 

, 119,231, 

, 119,231, 

, 119,231, 

, 252, 55, 55, 223, 0, 1, 0 

, 252, 155, 155, 239, 1, 0, 4 

, 179, 250, 250, 127, 1, 2, 2 

, 179, 255, 255, 255, 0, 1, 1 

, 179, o, o, 255, o, o, 1 

, 179, 75,75, 159, 1, 1, 0 

, 179, 55, 55, 223, 1, o, 4 

Figure 4-7. A portion of typical .ile 'robot.data' 

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. 

Snes_l : Cl_rng, Md_cls, Md_rng, Fr_rng. 

Snes_2 : Cl_rng, Md_cls, Md_rng, Fr_rng. 

Snes_8: Cl_rng, Md_cls, Md_rng, Fr_rng. 

IR_ 1 : Sns, NSns. 

IR_5 : Sns, NSns. 

Wl_ctl: continuous. 

Wl_ctr: continuous. 

Bang: 0, 1. 

Warning: 0, 1. 

Stat_2:0, 1,2,3,4,5,6,7,8,9, 1 0, 11, 12. 

Stat_ 1 :0, 1,2,3,4,5,6,7,8,9, 10, 11, 12. 

Figure 4-8. A typical names file 
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C4.5 requires two input files. The first file is the data file gathered during the 

experiments, which is called 'robot.data' (Figure 4-7) and the second file is 

named 'robot.names' (Figure 4-8) and contains the class values, attribute 

names and legal attribute values of the data in the data file. 

Figure 4-7 is a partial data collected during the experiments with the polar_map 

vectors were set to be a continuous value between O and 255. While the Snes_ 1 

through Snes_B attributes illustrated in Figure 4-8, represent the latter case, 

when the polar_map was changed to a discrete value. The original names file 

contained 48 Snes attribute names with the continuous values. 

During the first stages, given the two files, C4.5 was used to build a preliminary 

decision tree from the raw data, i.e. without filtering or pre-processing of data. 

4.5. Generating the Control Rules 

After processing the data as described above, we can finally apply C4.5 and 

summarize them as rules that can be executed in an automatic controller. 

C4.5 has two parameters that can be changed by the user to adjust tree 

pruning. We have experimented with them trying to obtain the simplest 

workable rules. One parameter controls C4.5's confidence level. That is, the 

algorithm will prune the decision tree so that it maintains a minimum 

classification accuracy with respect to test data. The second parameter controls 

the minimum number of instances required for a split. For example, if this 
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parameter is set to 10, then no branch in tree will be created unless at least 10 

examples descend down that branch. 

Proceeding with the default parameter settings for C4.S, the decision tree is 

generated and the rules are tested using the automatic control program. The 

automatic control program is a part of the main program implemented for the 

robot training. The main loop was implemented in a way that reading a specific 

switch position, it would either be executed in manual control mode or in 

automatic control mode. Most of the codes were common, and only certain 

. portions of each section would have been executed based on the value of a 

designated switch. The code were put among if statements, and satisfying the 

situation (for example, if switch is on), the automatic part would have been 

executed. Otherwise, the manual control would be performed. The sensor 

reading related codes were part of the common sections. Also, other parts 

involved the movement command (writing to motor controllers) and sensor 

system activity. 

Furthermore, the simpler rules are obtained by adjusting the C4.S parameters, 

gradually. The procedure is continued until the rule breaks, i.e. the system is no 

longer able to control the robot. 

Table 1 shows two sample decision trees and the error rate differences. The left 

part of the table is the result of the first execution of C4.S on a small logged file. 

This file was logged during two short training scenarios. However, the right 

hand side part was the result of the execution of C4.S on one of the last logged 

files that was a combination of over 250 training trials. It can be observed that 
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the more logged events, the more complex the decision tree would be. Having 

more rules in the decision tree is not necessarily a good thing. However, table 1 

shows the opposite. The reason is that since the smaller tree is based on a 

shorter log file, it does not necessarily represents the complete decision making 

process. But, the longer version on the right is based on a longer logged file, 

which is also covering more obstacle avoidance training sessions' data. 

An event is recorded only when there is a change in the robot's status; that is 

when any control setting is changed. A buffer is designated for each of previous 

actions (stat_2 and stat_1), and a change is always determined by observing the 

current robot's state (stat) and in comparison with the content of the buffer. If 

the logging speed is too high, then the side effect of recording all the 

intermediate values between the two changes can occur. That is the majority of 

the event would be the same as the previously recorded one, causing 

unnecessary recorded events as well as confusion in decision-making process. 

This undesirable side effect can be discarded with the choice of appropriate 

scanning and recording speed. 
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Read 46 cases (16 attributes) from robotl.data 

Decision Tree: 

IR_l = Sns: Bkwrd (7 .0) 
IR_l = NSns: 

stat_l = Stop: Frwd (5.0) 
stat_l = Frwd_Rght: Frwd (0.0) 
stat_l = Rght: Frwd (8.0) 
stat_l = Bck_Rght: Frwd 
stat_l = Bck_left: Frwd 
stat_l = Left: Frwd. 
stat_l = Frw_left: Frwd 
stat_l = Frwd: 
I sens_7 = a_mg: Left 
I sens_7 = Md_ds: Left 
I sens_7 = Md_mg: Left 
I sens_7 = Fr_mg: Rght 
stat_l = Bkwrd: 
I sens_ 4 = a_mg: Rght 
I sens_ 4 = Md_ds: Left 
I sens_ 4 = Md_mg: Left 
I sens_ 4 = Fr_mg: Rght 

Evaluation on training data (46 items): 

Before Pruning After Pruning 

Size Errors Size Errors Estimate 

20 1 ( 2.2%) 20 1 ( 2.2%) (26.8%) 
(a) Decision tree from first run 

Read 966 cases (8 attributes) from robot2.data 

Decision Tree: 

IR_l = Sns: Bkwrd (147.0) 
IR_l = NSns: 

stat_l = Stop: Frwd (105.0) 
stat_l = Frwd_Rght: Frwd (0.0) 
stat_l = Rght: Frwd (168.0) 
staLl = Bck_Rght: Frwd 
stat_l = Bkwrd: Rght 
stat_l = Bck_left: Frwd 
stat_l = Left: Frwd 
stat_l = Frw_left: Frwd 
stat_l = Frwd: 

IR_4 = Sns: 
I stat_2 = Stop: Rght 
I stat_2 = Frwd: Rght 
I stat_2 = Frwd_Rght: Rght 
I stat_2 = Rght: Left 
I stat_2 = Bck_Rght: Rght 
I stat_2 = Bkwrd: Rght 
I stat_2 = Bck_left: Rght 
I stat_2 = Left: Rght 
I stat_2 = Frw_left: Rght 
IR_4 = NSns: 
I IR_5 = Sns: Left 
I IR_5 = NSns: 
I I stat_2 = Stop: Left 
I I stat_2 = Frwd: Left 
I I stat_2 = Frwd_Rght: Left 
I I stat_2 = Rght: Rght 
I I stat_2 = Bck_Rght: Left 
I I stat_2 = Bkwrd: Left 
I I stat_2 = Bck_left: Left 
I I stat_2 = Left: Left 
I I stat_2 = Frw_left: Left 

Evaluation on training data (966 items): 

Before Pruning After Pruning 

Size Errors Size Errors Estimate 

34 63 ( 6.S%) 34 63 ( 6.5%) ( 8.3%) 
(b) Decision tree from final run 

Table 1. Two sample decision tree and the differences 

By trial and error, we found out that the best rate of scan and recording is 

equivalent to a full sonar scan. However, since there are four sensor readings 

(except the sonar) during a complete cycle of sonar scanning, it is necessary to 

keep a buffer of previous events based on other sensor readings. In case of 

difference(s), the previous immediate data were recorded. 
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4.6. Cause and Time of Action 

C4.5 only constructs purely reactive rules, which make decisions base on the 

values in a single state of the control program. Time and causality of the data is 

not part of the induction program's concepts. That is the rules are not situation 

based -- the time and the cause of actions are not considered. 

(line 1) 

(line 2) 

(rule 1) 

(rule 2) 

IR_l =Sns: 

IR_2 = Sns: 

Stat = 1 : 0 

I Stat=2:2 

IR_ ... : 

Figure 4-9. Part of a typical decision tree 

As a result some strange rules can turn up. For example, the above rule for IR 

sensors in the approaching stage (towards the obstacle) was derived from data 

that was not filtered as described in the previous section. There were about 300 

examples in the training set, and since there were 30 trials combined, the 

minimum split size was set to 30, and finally the confidence parameter was set 

to 10%. The outcome is shown in Figure 4-9. 

The first two lines (line 1 and line 2) state that if the two front lnfrared sensors 

have detected an object, the previous direction of motion should be tested. If it 

was forward, the robot should stop, and if it was making a 

Chapter 4: Learning Navigation 103 



turn_right_movement, it should continue. Thus C4.5 has detected a correct 

relationship between previous movement and IR sensors. Unfortunately, the 

second rule is not correct. By applying the filtering described in section 4.2.5, 

problems caused because of the absence of the cause of decision can be 

overcome to some extent, but rules like this sometimes still may occur. For the 

above case, C4.5 was executed again with minimum split size set to 50 

resulting in the following rule: 

IR_l =Sns: 

IR_2 = Sns: 

Stat = 1 : 0 

Figure 4-9. Corrected rule 

This is quite sensible, if the robot has been moving forward sensing an object it 

should stop. As Sammut and colleagues also mentioned in learning to fly 

experiments [SUKM92]: "We believe that learning could be improved by 

including some knowledge of causality in the system so that it is able to 

correctly identify dependencies among variables''. 

4.7. Automatic Control 

In applying the above decision tree (Table 1, right hand side) to the robot and 

it's control program, some level of success have been achieved. The main part 

of the automatic control section of the program is made of if-then statements. 

The if-then statements are the final result of C-translated rules induced by C4.5 
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from the logged data. During the automatic travel, the appropriate rules for 

each control action are selected according to the sensors' readings 

[SUKM92].Using this control program the robot can approach an object, sense 

it, avoid it, and choose a good direction for the next movement. But, still there 

has not been a success in making the robot to recover the original travelling 

path after passing the object. 

One way to overcome this problem can be providing more history in the data 

file. This approach would need to add more buffers into the program, 

incorporating more history of the state of the robot, environment and control 

actions. However, this can backfire, simply because of the size of the rules and 

branches of decisions created based on this complex data file. 

The other way, using force field approach, is to calculate the angle of 

movement before every log and recording it along with the rest of the vectors. 

Thus, later on, while the robot is trying to recover the original travelling path 

(and direction), it should be able to reproduce the previous angle with negative 

sign. However, this method can cause other problems including entrapment of 

the robot around the object. Nevertheless, it may be necessary to change the 

approach partially in this regard. This matter is discussed in further details in 

the last chapter. 

It is very interesting to mention that if we apply the data file taken from only 

one trainer to C4.5, then the robot will follow the personal strategy of the 

trainer in movements control and decision makings provided by the individual. 
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And that is exactly why it is considered a clone behaviour based control 

strategy. 

4.8. Induct/ XRDR approach 

The same procedure has been carried out using lnduct/XRDR, but in this case 

Induct on 966 cases 

1 RULE: 1: IR_l = NSns & stat_2 = Stop-> stat_l = Stop 

2 RULE: 2: IR_l = Sns -> stat_l = Frwd 

3 RULE: 3: stat_2 = Left -> stat_l = Frwd 

4 RULE: 4: stat_2 = Rght-> stat_l = Frwd 

5 RULE: 5: IR_3 = Sns & stat_2 = Frwd -> stat_l = Rght 

6 RULE: 6: IR_3 = NSns & stat_2 = Bkwrcl -> stat_l = Rght 

7~~~~=~&~=~&staU=~~staU=~ 

8 RULE: 8: IR_5 = Sns & stat_2 = Frwd -> stat_l = Bkwrd 

9 RULE: 9: IR_3 = NSns & 1~5 = NSns & IR_6 = NSns 

& stat_2 = Frwd -> stat_l = Bkwrd 

10 RULE: 10: IR_6 = Sns & stat_2 = Frwd -> stat_l = Left 

11 RULE: 11: IR_3 = Sns & stat_2 = Bkwrd -> stat_l = Left 

12 RULE: 12: IR_5 = Sns & stat_2 = Frwd -> stat_l = Left 

13 RULE: 13: IR_3 = NSns & IR_5 = NSns 

& stat_2 = Frwd -> stat_l = Left 

Rules 13 Oauses O (Mean 0.0) 
Evaluating Induced Rules : 

Total Correct 714/966 Errors +:252 -:0 Total: 252 
26.09% when testing on itself 

Figure 4-10. Corresponding Induct rule sample 

there is only one file involved starting with the names of classes and attributes 

followed by their values. Induct produces a binary tree, and a primary rule set. 

The induced rule set by Induct and XRDR format of the same rule set is shown 

in Fig. 4-10 and 4-11. 
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While there is a very straightforward way of interpreting the rules produced by 

C4.5, the XRDR rules are a bit complicated. Rule 11 of the C4.5 rule set (Table 

1, right side) implies that if the robot has been going to the right it should now 

move forward (unless one of the sensors is sensing an object on the way 

forward). The second rule of XRDR (~ #2, in Figure 4-11) specifies that if 

infrared sensor number 3 has sensed the object, and the second previous action 

(Stat_2) has been move-forward, then turn right. Also, it says the left & right 

branches of the tree are rules #1 (~ #1, in Figure 4-11) and rule #3 (~ #3, in 

Figure 4-11) respectively, and the upper node for this node is node #0. 

Naturally, the default class value for both is moving forward, which is what we 

wou Id expect. 

When translated from Induct format to XRDR format it looks like this: 

Rule num, conditions, parent true fail branch, cond, comer 

~ #1 true = true -(0 8 O> stat_l = Frwd 

~ #2 IR_3 = Sns;stat_2 = Frwd -(1 Cl> 3> stat_l = Rght 

~ #3 IR_3 = Sns -(2 CD 4> stat_l = Left 

~ #4 IR_6 = NSns;stat_2 = Frwd ~3 Cl> S> stat_l = Bkwrd 

~ #5 IR_l = NSns;stat_2 = Stop -(4 CD 6> stat_l = Stop 

~ #6 stat_2 = Bkwrd "'5 Cl> 7> stat_l = Rght 

~ #7 IR_6 = Sns -(6 CD O> stat_l = Left 

~ #8 IR_S = Sns -(4 CD O> stat_l = Left 

Figure 4-11. XRDR Rule format 

The reason for this short comparison is to show that the both c4.5 and RDR 

methods produce very similar results. So, in order to avoid the complexity we 

have decided to continue using the C4.5 technique. 
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4.9. Experiments after Upgrade 

After making changes for upgrade, as discussed in the last chapter, the 

experiments were reproduced and the results were almost the same. However, 

better sensory devices, specially the ultra-sound transducer and the micro­

controller made a lot of difference in the speed and accuracy. This means that 

besides the improvement of speed and accuracy, the experiments were device­

independent. However, it is also expected that changing the robotic platform 

all together will need a little bit of change in approach, especially in program 

parts that are sensor dependent. 

The next step was to use wire-less modems in place of the parallel control box 

(electronic joystick). Unfortunately, the modems did not match the robotic 

platform and we were forced to employ another robot, Fander-1. 

4.10. ·Experiments on Fander-1 

After the unfortunate problem(s) with the wire-less modems on the purpose 

built robot used in the previous experiments, we decided to also change the 

approach of the experiments to "grid-based navigational strategies" and 

combining it with the previously done trial scenarios. 

Also, using the wire-less modems instead of the joystick would provide 

observation of the environment from the eyes of the robot, or as the robot sees 

the world around it. In the previous set of experiments, since the trainer is using 
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his/her natural senses which are much more complex than the robot's primitive 

sensors, the training to some extent would have been based on the operator's 

senses and not the information mostly gathered by the robot. But, if the trainer 

steers the robot from a distance without being able to use human senses 

directly, and only observe the environment based on the robot's sensor, we 

believe that the training would be more successful. The reason is the 

involvement of the electronic device errors and delays in the observation as 

well, and so the decision making process of the trainer is also based on the 

robot's observation. 

Furthermore, this strategy would have let us to make a degree of map of the 

area visited by the robot during the wandering process. 

But, yet again, there were set backs due to technical problems with the wire­

less modems. In addition the Fander-1 shaft encoders do not give high enough 

resolutions to be used in many navigational strategies including grid-based. 

However, it should be mentioned that the resolution is enough to achieve any 

navigational task not relying on too much of odometer information. For 

example, the previously described experiments could be repeated using 

Fander-1. But, as we mentioned before, since the Fander's sensory system is 

somehow different in design, the manual and automatic control programs 

should be somehow different as well. 

Chapter 4: Leaming Navigation 109 



4.11. Performance 

The performance observed from the automatic control systems, specially the 

one based on the rules generated by C4.5 from the filtered and pre-processed 

original logged data file have been successful to some extent. As explained 

before, the obstacle avoidance behaviour was learnt successfully. However, the 

robot could not successfully recover the original travelling path, after skirting 

and clearing the obstacle. 

To have a better performance, or even further in order to make an accurate 

clone, we still need more training trials and more scenarios. Also, better history 

buffers and more of them are needed, in case the physical platform stays the 

same. 

Nevertheless, using improved sensory system, specially purpose designed gyro­

systems, the process can be improved dramatically. For example using gyros, 

approaching an obstacle the coordinates can be saved and after clearing the 

obstacle and according to the situation newer coordination can be calculated 

on-the-fly. The calculation can also be based on the saved coordination. 
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5. Discussion and 

Conclusion 

5.1. Discussion 

One of the interesting things we have learnt in this study is that even good 

trainers could not control the robot very smoothly. But, it is essential to note 

that the control quality is actually based on the hardware and the control 

software, and due to these shortcomings we can not blame all the problems on 

trainers. As discussed in previous chapter by changing the hardware, the 

software and as a result the training approach should be also altered. 

Nevertheless, the quality of the training to some extent is based on the 

approach of the trainer. 

For example, if the trainer(s) make a mistake and in some control responses due 

to special situations choose the wrong action, and the number of the w rong 

actions are more that the right ones for the same situation, then the induction 

algorithm can come up with the wrong rule as well. However, this problem 

can be overcome by choosing more training scenarios and more trainers/trials. 

We expected the behavioural cloning simply to be similar to copying a trainers 

behaviour. However, similar to the same results observed in Learning to Fly 
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experiment, it was also observed that the robot's behaviour somehow would be 

different to that of the trainer. This has been called "clean-up" effect as noted by 

Michie, Bain and Hayes-Michie [MBM90] and Sammut [SUKM92]. The 

navigation log of any trainer will contain many different and opposite actions 

due to human inconsistency and corrections required as a result of inattention. 

However, it seems due to the fact that the inducting algorithm built in C4.5 

makes the rules based on the majority of matched action instances, it would 

actually prune away the wrong affects of the bad logged data. This would make 

the control rules, navigating the robot, much more smoother. 

This effect was particularly noticeable in the stage of making a turn around and 

skirting an obstacle. Primarily, it has been observed that the automatic 

controller does a much better and smoother skirting job during this stage. 

5.2. Conclusion 

So far, most applications of inductive learning have been in classification tasks 

such as medical diagnosis. Just as diagnostic rules can be learned by observing 

a physician at work, we should be able to learn how to control a system by 

watching a human operator at work. 

In the case our experiments, the data provided to the induction program (C4.5) 

are the data logged to a file when an action taken by the operator/trainer in 

response to changes in the system's and/or environment's state. 
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We have used a procedure to inductively build sets of control rules. An 

induced rule-set makes up a "strategy" for the given sub-task - a kind of 

classifier that maps state records into action names, just like mapping/assigning 

patient records into disease names. In our preliminary study we were able to 

partly demonstrate the feasibility of learning a specific control task. 

Machine learning of control systems may lead to a better understanding of sub 

cognitive skills, which are inaccessible to introspection. 

For example, if you have been asked about the method that you use to ride a 

bicycle, you will not be able to provide an adequate answer because the skill 

has been learnt and is executed at a subconscious level. However, 

mathematical operations can be explained step-by-step. 

As another example, when someone is driving home, no matter how engaged 

that person is while driving, he/she would never go the wrong way, of course 

unless they have recently moved to the new place. This example provides a 

different method of learning, and surely it is not memorization. It can also be 

regarded as sort of association in memory of the person, i.e. somehow people 

specify some remarkable spots on the way home and then by comparing those 

spots would find their way home. However, we believe that is not completely 

true. 

Furthermore, we believe that it's possible to construct a functional description 

of a sub cognitive skill in the form of symbolic rules, just by monitoring the 

performance of that skill. This will not only reveal the nature of the skill, but 
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also will aid the training in different aspects of automation. So, as in first 

example, by riding over and over again, the person will automatically acquire 

the skill in his/her sub-conscious. While in the latter example, the map has 

been automatically saved into the sub-conscious of the driver, forcing him 

automatically drive home. 

Learning control rules by induction/observation provides a new way of building 

complex control systems quickly and easily. Where these involve safety critical 

tasks, the 11clean-up11 effect mentioned in the previous section holds particular 

interest. While our experiments have been primarily concerned with the 

navigation of a mobile robot, inductive methods can be applied to a wide 

range of related problems. 

Though, our experiments have been preliminary concentrated on obstacle 

avoidance related problem(s), one can apply the discussed method to a wide 

range of related problems such as manufacturing plant control, educational 

purposes, or even pattern recognition. This research was aimed at producing a 

reliable and reproducible method for building (learning or imitating) controllers 

for a mobile robot. 

5.3. Future Work 

The robot designed for the purpose of these experiments was built during the 

time that no affordable robotic platforms were available. And since we started 

the experiments with the aim of working on a real physical platform rather than 
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a simulated environment, we were bounded to use the available equipment 

and affordable devices. 

To be able to better understand the nature of the problems arising from 

experiments in the real world, we will have to use a robot benefiting from 

today's technology. For example, gyro-sensors, better sonar equipment, wire­

less LAN-based network cards (instead of wire-less modems) and so can 

provide better opportunity in tackling the problem discussed in this thesis. 

Future experiments might attempt to learn other behaviours such as following 

another moving object, or finding a spar along a wall. Teaching more primitive 

behaviours to the robot can be combined with incremental learning boosting 

the ability of the system towards producing a subsumption like structure of 

higher-level behaviours. 

Also, it can be noteworthy if the wire-less modem based training is combined 

with the grid-base occupancy approach. Or even further, one can combine the 

learning/cloning procedure with other methods of providing information. For 

example, the obstacle avoidance behaviour can be broken into two parts. The 

hard-coded obstacle skirting and clearance can be provided to the robot and 

the trainer can choose the specific hard-coded behaviour on the arising of the 

condition. This would make the learning procedure faster and easier. It is 

exactly similar to the situations where kids are trained to do something specific 

associated with certain condition. For example, one should put down the fire 

Chapter 5: Discussion & Conclusion 114 



only when in hazardous situation. No one in the right mind would kill the 

heating fire in a winter night. 

Future work can also be directed to finalize the work started, and also to 

combine these control behaviours together into a subsumption architecture to 

control the navigation of a mobile robot [Bro86a]. The same method of training 

can be used to obtain other simple and primitive behaviours like the ones 

mentioned above. Combining those primitive behaviours by teaching/training 

the robot when to use them can be implemented in to a behavioural cloning 

subsumption architecture. 
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