
Learning obstacle avoidance by a mobile robot

Author:
Esmaili, Nasser

Publication Date:
1999

DOI:
https://doi.org/10.26190/unsworks/8502

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/63087 in https://
unsworks.unsw.edu.au on 2024-04-27

http://dx.doi.org/https://doi.org/10.26190/unsworks/8502
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/63087
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

THE UNIVERSITY OF NEW SOUIH WAT,FS

Learning Obstac[e 5-'Lvoidance

by a Af obi[e !RJ}bot

Nasser Esmaili
B.Sc. Eng. - Bahonar University of Kerman

Artificial Intelligence Research Group

School of Computer Science and Engineering

University of New South Wales

Sydney 2052, Australia

A thesis submitted as partial requirementfor the degree of

Master of Engineering (Computer Science and Engineering)

August, 1999

I aedicate t/iis thesis to tfte_ one Who

inspire{ me, 11WStj

g ~ h> ~A1:? ~ • .9~ w~

!r~fo~~ UAd ~ ~ ~

~o/A1;?~-

9' ~ ~ A1:? ~ ~ A1:?

~~ ~ ~ ~ ~ Die ukp

~ ~ ~vne 9' a,a.J,~~

~,~«d1~h>A1;?~~~~~

DleUAd~~~~~mmf~~.

~ UAd ~ d«/9' coa&~@

'Ta6Ce of Content

Chapter 1. Introduction .. 1

1-1. Aim ... 2

1-2. Task in Hand .. 4

1-3. Organization ... 8

1-4. Contribution ... 8

Chapter 2. Background•......•.................•..••..................... 12

2.1 Navigation ..•........................ 12

2.1.1 Behaviour-based (Reactive Control) ... 12

2.1.1.1 Subsumption Architecture ... 13

2.1.1.2 Wander ... 16

2.1 .1.3 Circumnavigation .. 20

2.1.1.4 Unmanned Vehicle System AFV-l. ... 23

2.1.1.5 Potential Fields .. 26

2.2 Learning ... 32

2.2.1. Machine Learning ... 32

2.2.1.1. Machine learning methods' classification 34

2.2.1.1.1. Inductive Learning .. .37

2.2.1.1.2. Deductive Learning .. .38

2.2.1 .1 .3. Reinforcement Learning .. .39

2.2.1.1.5. Evolutionary Learning41

2.2.2. Learning to Control Dynamic Systems .. .42

2.2.2.1. Learning by trial-and-error43

2.2.2.2. Learning by observing a human operator45

2.2.2.2.1. Learning to Fly ... 46

2.2.2.2.2. Learning to Control Container Cranes 50

2.2.2.2.3 Learning to fly, Parvaz .. 54

2.2.2.2.4. Flying with CHURPS ... 56

2.2.2.3. Learning using neural networks .. 59

Table of Content i

2.2.2.3.1. ALVINN .. 60

2.2.2.3.2. Auto-lander ... 63

2.2.2.4. Learning using Fuzzy Logic .. 65

2.2.2.4.1. Mobile Robot Navigation ... 65

2.3. Discussion and Conclusion ... 66

Chapter 3. Robotic Platforms•.. 67

3.1. Purpose Built Robot .. 68

3.1.1 Sensors .. 69

3.1.1.1. Ultra-Sound Rotary Scanner ... 69

3.1.1.2. lnfrared Sensors .. 70

3.1.2. Motors, Controller and Shaft Encoders .. 71

3.1.3. Power Supplies ... 74

3.1.4. Compu~er and Communication Boards ... 75

3.1.4.1. MCP-550 data Acquisition Card ... 75

3.1.4.2. MCP-330 Digital Input/Output Card 76

3.1.5. The Main Control Program Loop .. .77

3.2. Upgrade and Changes ... 77

3.2.1. The 68HC11 Mini-Controller board78

3.2.2. The Parallel Port Control Box .. 80

3.2.3. The Control Program .. 81

3.3. Fander-1 Robot .. 82

3.3.1. Sensory system ... 83

3.3.2. Motors and Shaft Encoders .. 84

3.3.3. Programs .. 85

Chapter 4. Learning Navigation ... 87

4.1 . The Problem ... 88

4.2. Manual Control ... 89

4.3. Logging Control lnformation .. 94

4.4. Data Analysis .. 96

4.5. Generating the Control Rules .. 100

4.6. Cause and Time of Action ... 103

Table of Content ii

4.7. Automatic Control ... 105

4.8. Induct/ XRDR approach .. 106

4.9. Experiments after Upgrade .. 108

4.10. Experiments on Fander-1 .. 108

4.11. Performance .. 110

Chapter 5. Discussion and Conclusion .. 110

5.1. Discussion .. 110

5.2. Conclusion .. 111

5.3. FutureWork .. 114

Bibliography ... 116

Table of Content iii

1. Introduction
The rapid development of computer technology has brought intelligent

systems within the realm of possibility. The methods of monitoring, control

and operation of all types of modern systems have changed dramatically.

Intelligent machines now accomplish many of the tasks formerly performed

by human operators. Many of today's control systems are benefiting from the

complex and very fast decisions that augment traditional automation using

machine intelligence, making them capable of handling such functions as

problem solving, perception and learning.

1-1. Aim

Mobile robots are gradually entering the real world. There have been

demands on autonomous robot systems to accomplish given tasks in

unknown and/or dynamic environments. They are employed in automated

factories, used for plant supervision, and more recently are increasingly

becoming successful in service tasks such as health care and rescue missions.

However, in order to have a wider use in the real world, mobile robots must

be able to learn from their past experiences. To achieve this goal, one way is

to dramatically increase the complexity of the robot's control software. This

research is aiming at providing an alternative.

1. Introduction 1

One of the basic tasks of a mobile robot is to move from one point to another

(preferably the target) quickly and collision-free. To do so, it needs to be

equipped with one or more sensory systems to perceive information from the

world (the environment in which it is wandering). Recent mobile robots have

been using distance-measuring sensors based on infrared, sonar and /or laser

technologies widely. Due to the fact that the information provided by these

sensors can be processed quickly (referred to as on-line), they are ideal for

real-time monitoring of the environment.

Mobile robots also require an interface or a control link between the sensory

systems and the actuators. Using this link the robots can alter their action with

respect to their perception and also possibly with respect to the given task.

The control link arises from situation-action rules provided to the robot.

If we can foresee all the situations likely to be encountered by the robot, it

would be possible (but very costly) to program the robot to handle those

situations appropriately. However, in the real world, with all its noise and

variability, this approach becomes rather impossible. Therefore, robots should

be able to learn from the experiences gained during the operations, or even

more preferably be able to learn by observation. Applying machine learning

techniques can help mobile robots meet the need for increased safety and

adaptivity that real-world operation demands.

This thesis has adopted a machine learning method, Behavioural Cloning

[MBM90], to attempt to solve the problem of Mobile Robot Navigation in an

1. Introduction 2

unknown terrain. At the time this research started, it was one of the first efforts

ever to use a physical platform rather than a simulation program. Furthermore

it is one of the first attempts to use behavioural cloning technique on a

physical system.

The aim is to learn how to navigate a mobile robot using behavioural cloning,

a term introduced by Michie describing systems and methods to clone a

human-operated system [MBM90]. This job is performed by learning specific

rules to describe the operation of the machine, which can be used to emulate

the operation of that machine. Behavioural cloning is the imitation of

human's sub-cognitive skills.

Developing a mobile robot gives us the opportunity to investigate issues in the

design of intelligent systems because the robot's mobility forces us to deal

with many unpredictable environmental situations. One dictionary definition

of intelligence is the ability to deal with new or changing situations. Thus, a

mobile robot that reliably navigates in unknown environments gives the

appearance of intelligent behaviour. The main idea of an autonomous vehicle

is quite simple: given a task to perform, it must have the ability to perceive the

environment and act appropriately without human intervention. This ability

requires a feedback control system to link the vehicle's sensing and control.

Unfortunately, autonomous robots have characteristics not yet satisfactorily

addressed by the classical control community:

1. Introduction 3

• Solving the problems encountered by the mobile robot generally

requires the integration of several methodologies.

• The robot's decision space is discrete and composed of distinct

elements as opposed to continuous functions. The system must react to

the environment in an appropriate time period.

• Due to the limitations of the sensors and sensory processing, most of

the knowledge the robot acquires is either incomplete or uncertain.

1-2. Task in Hand

Interest in the robot learning field has been growing fast in the last few years.

Providing learning ability to robots offers certain benefits:

• Increasing the ability of the machine in a dynamic environment, where the

propagated knowledge will eventually become obsolete or even is not

available at all.

• Reducing the cost of programming robots to perform specific tasks.

• Furthermore, increasing the robots' ability to overcome changes in their

own physical specifications, such as sensor drift or power failure.

Navigation is one of the standard tasks in the mobile robots' domain. In order

for a mobile robot to accomplish a non-trivial task, the task should be

described in terms of primitive actions of the robot's actuators. The complete

navigation problem can be broken down in to related sub-tasks, which will be

referred to as behaviours here after in this thesis.

1. Introduction 4

Autonomous agents, like mobile robots, typically operate in dynamic and

uncertain environments. Such environments can only be sensed imperfectly,

so the effects of those are not always predictable. Also, the robots may not

usually control the changes due to the environment. Prominent among the

approaches to design agents operating in these kind of environments are the

so-called behaviour based, situated, and animat methods

[Bro86b] [KR90] [Mae89] [Wil, 1987].

As useful as we imagine the robots to be, they must be capable of obtaining

(learning) new behaviours, either primitive or complex. There have been

several methods used to obtain more complex behaviours

[MB90][Mit89][WDEP89]. These techniques mostly depend on hand-coded

programs or built-in circuitry. In our experiments the acquisition of

behaviours has been carried out by imitating human trainers.

To control a dynamic system one requires the sort of skill that can not be

completely described, but can be behaviourally demonstrated. Behavioural

cloning [MBM90], is the process of reconstructing skills from operators'

behavioural traces by means of machine learning techniques.

To build a controller for a physical process, different methods can be used.

Some examples of these methods are optimal control [MKK86}, fuzzy control

[Wil87], neural network [Np90], expert systems [Dev87], and machine

learning [UB94], each of which has its own capabilities and limitations

[WK90]. Although, each method may be suitable for a task, it will not suit

I. Introduction 5

another task. Also, there is no clear criterion to decide on which method is

most suitable for a specific task. But, we know that a competent human

operator can control most dynamic systems, even those difficult to control by

classical methods. As a result, there is growing interest in mimicking the skills

ofthe human operator [MBM90][SUKM92][UB931[UB94].

Also, learning through interacting with an operator is an efficient method to

increase the knowledge of an intelligent robot. Through its experiences, the

robot can become more and more autonomous, improving its reactions to

events in the environment. There have been several attempts to develop a

system based on explanation-based learning [Dej86] [MMS85] [MKK86] or

external guidance [GRL87] [LNR87] [RL86] methods.

Inductive learning [MC94] is concerned with the extraction of general

principles from examples. In the other words, in this method "inductive

inferences are obtained from facts provided by a teacher or the environment''

[Mic83]. It is one of the major goals of machine learning.

In the experiments related to this thesis a mobile robot is demonstrated to

acquire a primitive motor skill by being guided through a set of trials by a

human operator. The robot has 2 main wheels and a leading front wheel, 6

infra-red sensors for obstacle detection, one rotary sonar sensor on top, and a

386 IBM-PC compatible computer as its controller [ECM94][ECS95].

A log file of the robot's sensory and motor data is recorded as a trainer steers

the robot through a set of obstacle avoidance scenarios. The final logged file

I. Introduction 6

consists of data gathered during more than 300 sets of training runs in several

different scenarios by different trainers. Later, the file is pre-processed to

remove unwanted lines of data or noise. If the consecutive lines show a little

change in sonar data, or there is no change in action control, then the last line

of data is kept and the early history is removed. The reason is to keep the

latest occurrence which will eventually produce the action.

The results then are processed by two induction algorithms, each of which

extracts a decision tree that represents appropriate skirting movements for a

range of obstacle patterns. The skill is then evaluated by observing the robot

executing the codes generated from the obtained decision trees in response to

objects encountered during autonomous movements.!

We have used Ripple Down Rules (RDR) [CH89][Gc92] as the knowledge

acquisition tool and Induct & C4.5 as machine learning mechanisms to

automatically create rules from the logged data. We compare the decision

trees induced by different algorithms. The 'skill' is then evaluated by

observing the robot as it executes code generated from the decision trees in

response to objects encountered during autonomous movement.

1-3. Organization

This thesis is organized in five chapters. Chapter 2 is a survey of a variety of

robot navigation systems, mostly similar to the employed method in this

thesis. It covers a detailed discussion on Behaviour-based or reactive control

1. Introduction 7

as well as representational world modeling. It also covers a survey on

available literatures on learning, concentrating on machine learning

techniques.

Chapter 3 will explain in details the design and implementation of a mobile

robot which specifically was designed as an experimental platform for this

thesis, as well as covering detailed technical information on the second robot

used for the second parts of the experiments.

Chapter 4 covers the experiments performed as partial requirements for this

thesis. And finally, chapter 5 will be the discussion and conclusion of this

thesis.

1-4. Contribution

So far, the majority of mobile navigation systems in general and object

avoidance behaviour in particular have been implemented either by hard

coded programming or by simulation.

However, just as medical diagnosis can be learnt by observing a physician at

work, or riding bicycle can be learnt from experience, we should be able to

learn how to control a dynamic system just by watching a human operator in

action.

I. Introduction 8

Learning to control by observation is only possible by means of having a vast

history of the previous situations and actions taken based on those situations.

In the case of the experiments related to this thesis, the data collected during

the training period was logged to a file. The logging only applied when an

action was taken by the operator in response to changes in the robot and/or

environment's states.

Very few attempts prior to the start of this research have used a physical

platform (a mobile robot in this case) as opposed to a simulation environment

for the purpose of navigation learning. Also, during the course of these

experiments, for the first time a physical mobile robot has been used for

behavioural cloning purpose. For this thesis a specific robot was designed,

built, and trained by a human operator through sets of different obstacle

avoidance scenarios. The logged data from the training sessions were then

used to build sets of control rules using an induction program.

We have shown that by using machine learning technique to control a

dynamic physical system in a dynamic environment, the control tasks could

be learnt. Therefore, learning control rules by observation is another way of

building more complex but yet cheaper control systems quickly and easily.

"Clean-up" effect was an important issue of the results from these

experiments, confirming the previous findings [SUKM92], which shows that

the physical systems can over-perform the human trainer. While our

experiments have been primarily concentrated on mobile robot navigation in

I. Introduction 9

general and obstacle avoidance in particular, inductive methods and learning

by observation can be applied to a variety of similar problems, such as

educational purposes, training simulators and plant control.

This thesis, based on the current research, was aimed at producing a reliable

and reproducible method for building controllers for a mobile robot. The

following papers have been published relating to the topic of this thesis:

Esmaili, N., C.A. Sammut, and G.A. Mann (1994). "Navigation learning by a

Mobile Robot'', Proceedings of ICEE-94, Tarbiat Modarres University, Iran, pp.

142-150.

Esmaili, N., C.A. Sammut and G.M. Shiraz (1995). "Behavioural Cloning in

Control of Dynamic Systems'', Proceedings of 1995 IEEE International

Conference on Systems, Man & Cybernetics SMC'9, Vancouver - BC, Canada,

Oct. 22-25, pp. 2904-2909.

Shiraz, G.M., C.A. Sammut and N. Esmaili (1995). "Man, Machine Cooperation

for learning to Control Dynamic Systems'', Proceedings ofl 995 IEEE

International Conference on Systems, Man & Cybernetics SMC'95, Vancouver -

BC, Canada, Oct. 22-25, pp. 1108-1112.

1. Introduction 10

2. Background

2.1 Navigation

This section provides a general description of existing Robot Navigational

Strategies. This investigation of available algorithms will provide useful

information on how program based control works.

It is perhaps advantageous to make a distinction between high-level global

navigation (i.e., planning an optimal path to some desired goal location in the

world coordinates), and local navigation (i.e., piloting the robot around

unexpected obstructions). This chapter shall address only the latter category,

from the two perspectives of:

+ Required sensors.

+ Interpretation of data collected by sensors.

2.1.1 Behaviour-based (Reactive Control)

Sometimes, in the control strategy of a mobile robot there is no usage of the

intervening symbolic representations attempting to model, in absolute sense, a

part of the robot's operating environment. Then, the behaviour-based strategy

directly coupling real-time sensory information to motor actions is referred to

Chapter 2: Background - Navigati.on 11

as "reactive control". In this method the control strategy is clearly based on the

state of the robot and its environment.

Arkin lists the following general characteristics of reactive control [Ar92a]:

• It is typically manifested by decomposition into primitive behaviours.

• Global representations are avoided.

• Sensor de-coupling is preferred over sensor fusion.

• It is well suited for dynamically changing environments.

The most simple reactive collision avoidance capability for an autonomous

mobile robot is perhaps illustrated by the basic wander routine implemented by

several research-groups [Eve82][Bro86a][Ark87]. The term, wander, is used

here to describe a behavioural primitive that involves travelling more or less in

a straight line until an obstacle is encountered, altering course to avoid

collision, then resuming straight-line motion. Such a capability can be simply

hard-coded, rule-based, or inherent in a more sophisticated layered

subsumption architecture [Bro86a]. Brooks' layered subsumption architecture

will be discussed later in greater detail.

2.1.1.1 Subsumption Architecture

A mobile robot's control system should be able to process complex information

real time due to the fact that it performs in an environment with rapid condition

changes. An ordinary control system would be one big program loop, while a

better method is to break this complex system into many simple and basic

Chapter 2: Background - Navigation 12

modules, each in charge of a simple task. This method will not be vulnerable to

unexpected errors during operation and also would allow a simple layering

modulation for applications of higher level.

Figure 2-1 shows a decomposed control system into a series of functional units

by a series of vertical boxes. The control feedback loop is made from the

environment information collected from the sensors and fed through the

modules and finally returned back to the environment by the actuators as

Seosors

• ..a
Perceptioo

..a
Moc)effiog I .u
Pfoooiog I Sensors .u

Tos6 E:Kecotioo

Motor Cootro(I .u
I Actootors ~

Figure 2-1 .. Traditional decomposition of a

mobile robot control system into

Remmtliaiud(ijd

Proo C6ooga to Wona

laeotifg ~ect

Monitor C6ooges
Actuators

8oi(c) Mops

EHp(ore

Woodec-

Aootd ~ects

Figure 2-2 Decomposition of a mobile robot control

system based on task achieving behaviours

functional modules (Brook's layered control system)

action control decisions. Instances of each layer must be built in order to run

the robot. Later changes to a particular layer must either be done in such a way

Chapter 2: Background - Navigation 13

that the interfaces to neighboring layer do not change, or the effects of the

change must be also incorporated to neighboring layer, changing their

functionality. [Bro86a].

Alternatively, Brooks used task-achieving behaviours as his primary

decomposition of the problem, which is illustrated in Figure 2-2. In his

powerful and versatile subsumption architecture, layers are implemented as

additional finite-state machines to support progressively intelligent control. This

decomposition method has several advantages over the other type of control

system in terms of:

* Multiple Goals: The control system is responsive to higher priority

goals, while still servicing necessary "low-level" goals.

~* Multiple Sensors: As all sensors' readings include an error

component and there is no direct analytic mapping from sensor

values to desired physical quantities, the readings are often

consistent. So, the robot must make decisions under these

conditions.

~* Robustness: When some sensors fail, the robot should be able

to adapt and cope by relying on the functional ones.

Control is layered with higher level layers subsuming the roles of lower level

layers when they decide to take control. The system can be broken at any level,

and the remaining layers can form as a complete operational control system.

Brooks also defined a number of levels of competence for an autonomous

mobile robot. A level of competence is an informal specification of a desired

class of behaviours, which are:

Chapter 2: Background - Navigation 14

1 . Object avoidance.

2. Aimless and collision-free wander.

3. Heading for observed accessible targets in the distance.

4. Notice changes in the "static" environment.

5. Reason about the world in terms of identifiable objects and

perform tasks related to certain objects.

6. Formulate and execute plans that involve changing the world's

state in some desirable way.

7. Reason about the behaviour of world's objects and modify

plans accordingly.

According to Brooks: "the main idea of the competence levels is that

corresponding to each level, layers of control system can be built and every

new layer simply is added to the existing set to move to the higher level of

overall competence. In addition, the lower layer will continue to run unaware

of the layer above it, which sometimes interferes with its data path. The same

process is repeated to achieve higher levels of competence, which is described

as Subsumption Architecture'' [Bro86a].

2.1.1.2 Wander

By way of illustration, the wander routine employed on ROBART I [Eve82] was

based on a six-level scheme of proximity and impact detection using the

following sensor inputs:

* A positional near-lR proximity scanner.

*~ Forward-looking sonar sensor.

Chapter 2: Background - Navigation 15

~* Ten near-lR proximity sensors.

~* Projecting "cat-whisker" tactile sensor.

,,, C b '* ontact umpers.

* Drive motor current sensors.

The first two categories, looking out ahead of the robot for planning purposes,

were loosely classified as non-contact ranging sensors, while the next three

were considered close-in proximity and tactile sensors requiring immediate

action. Drive motor overload was used as the last resort in the event that no

other sensors did not detect collision.

In some ways the software implementation was similar to Brooks' subsumption

architecture approach [Bro86a]. There were two distinctly separate hierarchical

layers in a bottom-up design:

• low-level interrupt-driven layer,

• and, intermediate-level polling layer in the main program loop.

This layering was basically an algorithmic differentiation of software categories

running on a single processor, however limited in actual embodiment to only

two layers, although a future higher-level expansion was suggested [Eve82].

The sensors responsible for close-in environment monitoring of ROBART (i.e.,

proximity detectors, feeler probes, and bumpers drive current overload) were

highly priotorized. Therefore, a maskable interrupt request (IRQ) routine was

used to read them. This routine monitoring the state of sensors' output would

Chapter 2: Background - Navigation 16

redirect the action of the robot according to the hard-coded reactions

specifically designed for individual sensors, unless stopped by the main loop of

the program. A hard-coded response for a right-front bumper impact would

consist of the following steps:

• Stop all forward direction travel.

• Turn steering full right.

• Back up for x number of seconds while monitoring rear bumper.

• Stop and center steering.

• Resume forward travel.

Both the main loop and the IRQ routine contained multiple behaviours

according to the assigned priority in case of conflict. For example, in order to

specify which device has requested the service (by triggering the interrupt

handler), all the potential inputs would be checked by the collision avoidance

interrupt service. Those inputs representing actual impact with an obstacle had

higher ranks of being checked, followed by inputs associated with 11cat

whisker11 probes, near-lR proximity detectors, and so forth. Based on the

ranking associated with the sensors, the interrupt service would initiate the

appropriate action for the first active condition, ensuring that higher concern

situations received priority attention. The issued avoidance response in turn

would also check the other inputs to ensure appropriate reaction in chain of

the event (i.e., monitoring rear bumper while reversing).

Chapter 2: Background - Navigation 17

On the occasion of triggering of an interrupt by the close-in collision avoidance

sensor, the intermediate level software's execution was temporarily suspended

as the control switched to the interrupt service routine. At this stage, the low

level avoidance maneuvers would be in charge until the robot was clear from

the obstacle (unlike the subsumption architecture approach). On the other

hand, the intermediate level software was able to disable IRQ interrupts

associated with collision avoidance sensors, or otherwise suppress or inhibit

the lower level behaviours.

The intermediate-level software also would continuously check the sonar and

head-mounted near-lR scanner on each pass of the main loop, to avoid any

poor randomly "bump-and-recover" situation. These sensors were responsible

for monitoring of the distance up to 1.5 meters ahead of the robot and in turn

producing a suitable representation of detected targets, relatively. If the forward

path found blocked, the wander algorithm would choose the least obstructed

direction to continue its movement. Since all zones were equally weighted in a

binary fashion (i.e., either blocked or clear), the least obstructed direction

would be the one with the largest number of adjacent clear zones. The

simplicity of this model enabled real-time on-the-fly response, without the

robot having to "stop and think" before continuing its path.

A major shortcoming of this world representation is the problem with

continuous update of the polar model to produce more accurate probability

zone occupancy.

Chapter 2: Background - Navigation 18

For example, a detected obstacle located at point P1 in Figure 2.3 would

transition due to robot motion from Zone 05 to Zone 00, crossing through all

zones in between. Repetitive sightings would likely not be associated with the

same zone number. As a result, reactions are always made to "snapshot" sensor

information subject to numerous sources of potential error, usually resulting in

jerky or erratic vehicle movement. Borenstein and Koren [BK90a} [BK90bJ solve

this problem by deriving the polar model in real time from a certainty grid

representation.

Axis of Travel

Pl

Figure 2-3. The world model employed on RO BART I consisted of sixteen wedges

shaped zones relative to the direction of travel [Eve82).

2.1.1-3 Circumnavigation

The term circumnavigation describes a collision avoidance behaviour in which

the robot moves around an obstacle, while still attempting to move in the

general direction of the goal. When the on-board sensors show the object is no

longer a threat, the desired path is recovered. In a sense, circumnavigation can

be regarded as a wander behaviour that turns to a goal-seeking behaviour

when clear, instead of simply resuming straight-line motion.

Chapter 2: Background - Navigation 19

A good example of circumnavigation collision avoidance behaviour is the one

implemented by Cyber-motion, Inc. on their K2A Navmaster autonomous

vehicle. In normal operation, the K2A controller calculates a motion vector

from its current position to a down loaded X-Y goal location. To reset the

robot's heading according to the vector orientation, this vector is re-calculated

on-the-fly as the robot moves. If a threatening obstacle is detected in front of

the robot, advancing speed is reduced and a fixed bias is added to the heading

command. The sign of the bias chosen in a way to deviate the robot away in

the direction of free space. Once the obstruction is cleared, the steering bias is

removed, and the robot moves towards the goal location.

Another example is the work of Lumeslsky and Stepanov [LS87]. In their work,

they present the mobile automaton as a point and presume any shape of

obstacles with continuos boundaries and finite sizes with no restriction on the

size of the scene. While the only information available to the automaton is only

its own coordinates and the target's positions', the obstacles are detected by the

automaton's sensors only when they are hit. Lumeslsky and Stepanov have

presented three basic path planning algorithms, as well as analysing their

performances and deriving the upper bounds on the length of their generated

paths.

Under 'Bug1' basic algorithm, the automaton never meets the same obstacle

twice between the origin and target point, while it only can meet finite number

of obstacles in that path. 'Bug2' sharing the second characteristic of 'Bug1 ',

also defines that the automaton will pass any point of the lh obstacle boundary

Chapter 2: Background - Navigation 20

at most n/2 times in which n; is the number of intersections between the

straight line (Origin, Target) and the t' obstacle. While Bugl never creates any

local cycles, it is over-cautious and never covers less than the full perimeter of

the obstacle. On the other hand, Bug2 takes advantage of the simple situations,

but seems to be quite inefficient in more complicated cases. To overcome the

shortcomings of these two procedures, they combined the better features of the

two in a new algorithm and called it 'BugM1'. This new procedure combined

the efficiency of Bug2 in simpler scenes with the more conservative strategy of

Bugl. In this new algorithm, the number of local cycles for a given point on the

path, containing this point, never exceeds two which means that the automaton

never passes the same point of the obstacle boundary more than three times.

The very obvious advantages of the circumnavigation approach are the

simplicity and speed of execution without any need for high complexity of

processing power. However, The technique is limited to the occurrence of

minor advances into the intended path. Any obstacle significantly blocking the

desired route can push the robot too far from its intended target causing any

normal path resumption to be close to impossible. Furthermore,

circumnavigating robot must always travel forward in the general direction of

the goal without backtracking. No further arrangement can be made for

choosing alternate routes if the original path is completely blocked.

In addition, as specific behaviours, both wander and circumnavigation can also

be considered stand-alone collision avoidance control strategies.

Chapter 2: Background - Navigation 21

The following sections deal with additional examples of control strategies for

collision avoidance (and other purposes) that are capable of implementing not

only wander and circumnavigation but various other behaviours as well.

2.1.1.4 Unmanned Vehicle System AFV-I

Montgomery et al., designing a flying vehicle, illustrated the advantages of

hierarchical, behaviour-based control, with low-level behaviours ensuring

robot's survival and high-level behaviours performing tasks such as navigation

and object location [MFB95]. They have used a radio-controlled model

helicopter, powered by a two-stroke engine as their robotic platform. This craft

has 5 degrees of control including roll, pitch, yaw, collective, and throttle (both

controlling thrust). Various sensors including a compass (measuring heading),

three ultra-sonic sensors (down-facing, measuring distance from the ground),

RPM (measuring the speed of the main rotor), and a CCD camera (providing

visual information) were mounted on the craft. In addition the chopper used

three solid-state gyros. The AFV-1 can not use its sensors to find the targets or

move around, depending heavily on the vision system.

Montgomery et al. claim that creating a flying robot with the capabilities to

locate and manipulate objects and transport them from one location to another

presents many challenges. To achieve its goals under hazardous conditions,

without human guidance, and within a fixed time limit, the robot must make

control decisions based on imperfect sensory data, while adapting to

unexpected situations such as gusts of wind or sensor failure. It must make

Chapter 2: Background - Navigation 22

these decisions in real time to maintain the craft's safety and ensure system

survival. In order to do so, the AFV-1 uses a behaviour-based control

architecture, which partitions the control problem into a set of loosely coupled

computing modules. Each module, or behaviour, is responsible for achieving a

specific task. These behaviours interact to achieve the robot's overall goals. The

modules are organized hierarchically, with low-level, reflexive behaviours

responsible for craft survival and high-level behaviours responsible for tasks

such as navigation and object location.

They emphasised that a behaviour-based approach has many advantages over

traditional methods of controlling autonomous mobile robots, they claim that

traditional methods attack the control problem sequentially. In another word, a

robot first senses, perceives, and models its environment; then it plans and acts

in that environment. Since the world is full of information, traditional methods

are bound to be overloaded by information, which makes the robot incapable

of functioning in real time. In addition, these methods assume that the robot

can construct accurate, global world models based on the incoming sensory

information. A number of factors such as rapidly changing world, limited

computer processing power and inaccurate and incomplete sensor models

make this matter very difficult if not impossible. In contrast, a behaviour-based

approach solves the problem in a parallel fashion. Each behaviour, acting

concurrently with other behaviours, in order to prevent information overload,

only absorbs the information required to complete a given task at a given time

{from the environment). This reduction of work also reduces the robot's

Chapter 2: Background - Navigation 23

computational load by eliminating the need for construction and maintenance

of a global world model.

Montgomery and et al. also believe that another advantage of the behaviour

based approach is that it provides the ability to create layers of increasingly

complex behaviours. If necessary, higher-level behaviours can inhibit or

modulate lower-level behaviours. Thus, one can incrementally build and test a

robot control system with increasing capabilities, without losing low-level

capabilities already created. This control approach has been explored by

others, including in the subsumption architecture [Bro86a] and in an

architecture for reactive navigation, AuRa [Ark90].

However, the behaviour-based approach has its own limitations. Interactions

and possible combining of behaviours, which may critically affect the robot's

stability, are unknown beforehand. It may be necessary to do experiments in

order to find such combinations. However, since no models are available, this

operation can be time consuming and potentially hazardous to the craft. And

they have observed that any attempt to expand the complexity of the system

can worsen the coupling problem by increasing the number of behaviours and

layers. To overcome this problem, they have proposed to develop behaviour

based models from performance data, including methods by which the robot

can obtain relevant parameters by learning.

Chapter 2: Background - Navigation 24

2.1.1.5 Potential Fields

Krogh [Kro84] introduced the concept of potential fields for simulation of

localised mobile robot control. The classical approach mathematically involves

an artificial force acting on the robot, which is the vector summation of an

attractive force representing the goal and number of repulsive forces associated

with the individual known obstacles [Til90]:

Where:

i,(x) = resultant artificial force vector

Fo(X) = resultant of repulsive obstacle forces

.Fg(X) = attractive goal force

The attractive goal forces, which are the priority and the weights of the goal(s)

can be classically represented as the following equation [Til90]:

Where:

-() X-Xg
Fg x = Qgoat 1- _ I X-Xg

Qgoal = a positive constant (ie, the "charge" of the goal).

The classical potential field is the summation of the attractive goal force and

the repulsive force contributions from those directions defined by the various

fields of view of the obstacle detection sensors. The individual repulsive forces

are aligned away from their respective obstacles and towards the robot, falling

Chapter 2: Background - Navigation 25

off with the klh power of separation distance [Til90]. For example, an early MIT

implementation on the robot treated each detected sonar target as the origin of

a repulsive force decaying as the square of the indicated range [Brooks, 1986].

The desired vehicle heading was represented as an attractive force. The

resultant of all such virtual forces acting on the robot, if greater than a

predetermined threshold, was used to compute the instantaneous drive motor

commands for steering and velocity, effectively moving the platform away from

obstacles and in the general direction of the goal.

Alternatively, Arkin [Arc92b] uses a repulsive force magnitude that is a linear

function of obstacle range:

Where:

S-d
Om=G--forR <d:::;S

S-R

Om = magnitude of repulsive force associated with obstacle

G = gain constant

S = sphere of influence from centre of obstacle (ie, Om = 0 ford> S)

d = distance from centre of obstacle to robot

R = radius of obstacle.

In both of the preceding examples, since the resulting field depends only upon

the relative positions of nearby obstacles, it is possible for repulsive forces to be

generated by object that in fact do not lie along the intended path of travel.

Such a situation is illustrated in Figure 2-4.

Chapter 2: Background - Navigation 26

In recognition of the above concerns, Krogh [Kro84] had introduced the

concept of generalised potential fields, wherein the potential field intensity is a

function of not only relative position with respect to obstacles but also the

robot's instantaneous velocity vector at that position. The generalised potential

is the inverse of what Krogh calls the reverse avoidance time.

A

Figure2-4.

Surt~

Goal

Sta~

Goal

B

(a) The classical potential field method considers only separation

distance, causing the robot to deviate from a straight-line path segment

even though moving away from the circular obstacle;

(b) The generalised potential field method considers relative velocity in

addition to separation distance [Til90).

Consider a robot approaching a stationary object at some constant velocity V0

as illustrated in Figure 2-5. There is some maximum allowable deceleration

rate am•• that will bring the robot to a halt in the shortest possible length of time

t1 • Similarly there is some minimum deceleration rate amin that w ill cause the

robot to stop just before impact over some longer time interval t2 • Reserve

avoidance time is simply the distance in time required to stop for the two cases

of maximum-allowed versus minimum-required decelerations, (i.e., t2 - tJ The

generalised potential field is thus sensitive to time to impact as opposed to

separation distance (F igure 2-4, part B), and approaches infinity as the reserve

avoidance time approaches zero [Til90].

Chapter 2: Background - Navigation 27

Velocity

Maximum A IIOWM Deceleration

V, 1------~----""'\.
Minimum Required Deceleration

Figure 2-5. Krogh [Kro84] defines the generalised potential as the inverse of reverse

avoidance time, which is the difference in stopping times associated with

maximum-allowed and minimum required decelerations.

The principle limitation of the potential field approach is its vulnerability to

becoming boxed in or 11trapped 11 by intervening obstacles as illustrated in Figure

2-6. Culbertson [Cul63] predicted this problem for more general cases of

''memory-less robots" that react to current stimuli in a deterministic fashion

without taking into consideration the results of previous behaviour under

similar conditions.

X
Goal

Saul

Fig ure 2-6. The robot successfully negotiated first obstruction but has become

trapped by the U-shaped structure of the closest and is unable to reach

the goal in the next room.

Chapter 2: Background - Navigation 28

The likely occurrence of cyclic behaviour as well as local maxima and Minima

make any system that relies sorely on the potential-field navigation approach

somewhat unreliable [Arc92a). To get around this problem, Thorpe [Thorpe,

1984a) [Thorpe, 1984b) employed a grid-based search to find a good low-cost

path towards the goal, adjusted the path off grid to further minimise costs, then

executed the path with a variant of potential fields to keep the vehicle on the

path. Krogh & Thorpe [Kro86) discuss the integration of a generalised potential

field collision avoidance scheme, with a global path planner based on certainty

grids (to be discussed in a later section) for optimal route planing and trap

recovery.

In a different approach, Nam and et al. have proposed a unified method for

avoiding obstacles while moving [NL95). Their method combines the artificial

potential field (APF) concept and view-time based motion planning, where the

driving force is generated at every interval of the view-time [KL93). Prior to

their attempt, APF has already been used on stationary obstacle avoidance

[Kro84)[Kor91). The whole idea is to split the moving obstacle avoidance into

two separate problems, path planning for stationary obstacles and velocity

planning for moving obstacles.

A mathematically formulated approach has been achieved to "Plan the motion

of a robot from the initial to the final location avoiding a moving obstacle in

two dimensional space subject to the various constraints of robot and obstacle

motions''. The time set from one sampling time instant to the next is defined as

view-time. They also assume that velocity and acceleration of the moving

Chapter 2: Background - Navigation 29

obstacle are monitored or known at each sampling time. At each sampling

instance, an accessible region that will be swept by the obstacle in the next

view-time is predicted based on the velocity, acceleration, and dynamic

limitations of the obstacle. Then, an artificial potential field is constructed

around the accessible region, which exerts repulsive force on the robot. During

the view-time, the force induced by the artificial potential field drives the robot

away from the accessible obstacle trajectories in real-time. The dynamic

physical limitations of the robot are also considered. Application of the

described procedure at each successive sampling time from the initial to final

location suggests the collision-free trajectory for moving obstacle avoidance.

Chapter 2: Background - Naviganon 30

2.2 Learning

This Chapter is the result of a survey of some machine learning methods related

to this research. It includes a survey of different methods of machine learning

and a survey of previous works performed in learning to control dynamic

systems. The conclusion comes with some discussions about previous works in

this area and the way that it has inspired, to some extent, the methodology

used in this thesis.

2.2.1. Machine Learning

The beginning of artificial intelligence marks the start of research on machine

learning techniques. Samuel's checker system [Sam59] and Winston's

programs for learning structural descriptions [Win75] can be named as

examples of early machine learning researches. The last twenty years have

produced a remarkable expansion of research in machine learning with a rapid

growth in this field, despite the slow growth in 50s and early 60s.

There are several reasons for this growth. First, the ability to learn and to

modify behaviour is part of intelligence and it is hard to consider an intelligent

system without a capability for learning and self-improvement. Also, being able

to learn makes it easier to build high performance systems.

Early success of symbolic learning systems in various areas such as medicine

[DeDo72], agriculture [Mic83], robotics [AB751, reinforcement learning

Chapter 2: Background - Navigation 31

[Wat92), process control of optimizing a Nuclear Fuel plant [Lea86], and

chemistry [Buc78} helped this growth and turned more attention to this field.

To determine the rules or decisions mimicking the human trainer's actions,

machine learning programs normally take a set of examples called the training

set. This includes a sufficiently large and diverse set of cases and the action

taken or decisions made accordingly by the trainer. It should be pointed out

that the training set does not cover all possible situations, so the learning

system should be able to generalize the possible decisions when coming across

unseen (untrained) situations.

Machine learning methods could be classified in several different ways

depending on: the underlying strategy that they used, the presence or absence

of a teacher, the type of knowledge representation, and domain application.

[Mic84]. Before we describe each of these categories, it is necessary to explain

what machine learning means. Machine learning is the "Modification or

construction by program of stored information structures, so that the machine

deliverable information becomes more accurate, larger in amount, or cheaper

to obtain 11 [Mic82]. Machine learning is a sub-field of Al, whose ultimate goal

is to replace explicit programming by teaching. By teaching in this thesis we

mean any form of instruction, ranging from examples of the desired behaviour,

domain knowledge of the task, or even weak performance feedback. Teaching

is usually less difficult than explicit programming.

Chapter 2: Background - Navigation 32

2.2.1.1. Ma.chine learning methods' classification

Generally speaking, there are two types of learning, supervised and

unsupervised. In the former, a teacher carefully selects examples for the

learner, whereas in the latter the learner is given little or no feedback on the

learning task.

Supervised Learning: In this method, a teacher assists the learning system, by

providing a set of examples (a training set) presenting the appropriate action or

output for a given situation to the learning system. The aim of the learning

system is to minimize the difference between the reaction of the system and the

reaction provided by the teacher in the training set for the same situation. In

practice, the training set does not cover all the possible situations and the

examples can be noisy. Hence, the learning system can be considered

successful if it produces the correct output with a high degree of probability

when exposed to unseen situations.

"Learning with a critic", too, can be classified as supervised learning. The critic,

like a teacher, assists the learning system by providing useful information.

However, the role of the critic is different to the role of the teacher. In this case,

the critic provides an evaluation of the learning system's reaction to a given

input instead of providing the correct reaction that is provided by the teacher in

the supervised learning. The learning system itself is responsible for finding the

correct reaction to a given input. The evaluation (credit score) and previous

experience will be used to find the correct action.

Chapter 2: Background - Navigation 33

As examples of which method, we can name two paradigms, inductive concept

learning and explanation-based learning. The first paradigm assumes that the

teacher presents examples of the reactions for the learner. In this paradigm,

since the teacher is essentially, in some particular situations, is telling the

learner what action to perform, the temporal credit assignment problem does

not exist. However, the task credit assignment problem has to be solved, since

the examples provided by the teacher pertain to some particular tasks. In the

second paradigm, the teacher not only supplies the examples of the reactions,

but also provides a domain theory for determination of which reaction is useful

in certain situation.

Unsupervised Learning: There are different views on the definition of

unsupervised learning, such as labeled and unlabeled. According to some

[RN95], "Learning when there is no hint at all about the correct outputs is

called unsupervised learning. An unsupervised learner can always learn

relationships among its percepts using supervised learning methods - that is, it

can learn to predict its future percepts given its previous percepts. It can not

learn what to do unless it already has a utility function."

However, the hereunder text is based on Sutton's definition. In this method, the

learner is not provided with which actions to take, and must discover which

actions yield the best output by trying them (trial and error). As described by

Sutton [Sut92] reinforcement learning is "the learning of a mapping from

situation to action so as to minimize a scalar reward or reinforcement signal".

Chapter 2: Background - Navigation 34

The underlying strategy is one of the most important parts of any learning

system, the ability of which it can influence. The machine learning categories

can also be classified based on the strategy used by a machine learning system.

An important aspect of learning systems affecting their ability to learn different

concepts is the representation language. How to represent the training

information (objects and their relations) and how the learning system expresses

its acquired knowledge about the system, are some of the related problems.

Many different representational systems and techniques have been used so far.

Just as examples we can name some, including semantic networks (Winston's

work [Win75]), predicate calculus (Sprouter [HaRo77], Marvin [Sam81],

CIGOL [Mug88]), attribute/value vectors [Qui79], FOIL [Qui89], neural

networks [WL90], and GRAIL [B597].

Other sources of problem in many systems are the existence of noise in training

set and missing attribute values. Misclassification of the examples and increase

in size of the resulting classifier can be caused by these problems. Some

learning systems assuming all the training examples are provided by an expert,

so being complete and without noise, ignore these problems. Other systems

use techniques such as tree pruning to deal with the noise

[Qui93] [Kon84] [Bre84].

Chapter 2: Background - Navigation 35

2.2.1.1.1. Inauctive Learning

We begin with the most classical paradigm in machine learning, namely

inductive concept learning. The learning system, knowing that the concept to

be learned comes from some space of hypotheses, proceeds from individual

cases to general principals. The system is also provided with a set of training

examples of the target concept. Normally, these examples are drawn from

some space of instances according to some unknown but fixed probability

distribution. In the other words, the main task is to build a concept description

being able to cover as many of the positive instances, and as few of the

negative instances as possible, especially in the presence of noise in the

system.

Many methods have been developed for solving the inductive learning

problem; two of the most well known methods are decision trees [Qui86] and

neural networks [MR86]. A classic example of a robot learning system based

on the inductive learning paradigm is the ALVINN system [Pom90}. There are

many other examples of inductive concept learning applied to robot learning

systems [CM93] [Dor96] [Fra96] [Mah94}.

Inductive learning systems are suitable f?r cases where there exists a large

number of training examples and the objective learning task is classification

[Mic83][Mic84]. Well, of course it is also true to say that this problem

somehow exists with all types of learnings. Another problem with this paradigm

is that function approximators, such as neural nets, often take huge number of

Chapter 2: Background - Navigation 36

exemplars to converge. One critical issue is how to speed up learning by

incorporating some form of search strategy.

2.2.1.1.2. 'lJeauctive Learning

Humans appear to be capable of generalizing from a few examples. Clearly,

humans bring to bear considerable amount of background knowledge to the

learning task. This method is based on learning from a few examples but with a

large amount of prior knowledge. The goal is to analyze and transform existing

knowledge (past problem solving experience) into a more effective, efficient

and operational form, using deduction as the primary inference mechanism.

The result of deductive learning is as valid as the background knowledge and

the input information. In this method, the emphasis is on improving the

efficiency of the system, rather than extending the set of cases that the system

can handle.

Explanation-based learning captured the major focus in this field during the last

decade [Dej86][MKK86][Sil86][Min90][MC90]. Explanation-base learning does

not assume any particular representation for the domain theory. It can be a

logical theory, a neural network, or even an approximate qualitative physics

based theory. An explanation-based learner tries to explain a new instance in

terms of its background, and then creates as many new descriptions as possible

by using this explanation. They produce a description of the concept that

enables instances of the concept to be recognized efficiently and in an effective

manner.

Chapter 2: Background - Navigation 37

The primary advantage of the explanation-based learning formulation of the

robot learning problem is that it provides a way of incorporating previous

domain knowledge or bias to speed up learning. The savings in number of

examples needed to learn the policy could be quite significant.

In spite of many advantages of this learning method, there are also some

disadvantages. The requirement of complete, consistent, and traceable

background knowledge not being available in most real systems is one of these

disadvantages [Mic90]. In addition, if the domain theory is very approximate,

the learning system requires to exercise some care in using the theory to guide

its generalization. Much work remains to be done in addressing these issues,

especially in robot learning problems.

2.2.1.1.3. 9?.!,inf orcement Leaming

Reinforcement Learning (RL) studies the problem of learning by trial and error,

a policy that maximizes a fixed performance measure, or reward

[BS83][Kae93][Sut90]. It is a trial and error paradigm, so the examples are not

carefully chosen by the teacher. Instead, since the states and rewards

experienced by the system depend on the actions it takes, the distribution of

examples is influenced by its actions.

In other words, RL is a method for learning how to map situations in to actions,

so the learner does not learn which actions to take but rather must discover the

action based on the reward taken from it. In some cases not only the immediate

Chapter 2: Background - Navigation 38

rewards are affected by the action taken, but also the future rewards could be

affected. This makes trail-and-error and delayed reward characteristics the most

important features of reinforcement learning.

Besides the learner and the environment, four other elements of the RL are the

policy, reward function, value function, and model of the environment

(optional). A policy defines the learner's behaviour pattern at a given time, i.e.

a set of stimulus-response rules or associations. A reward function specifies the

immediate goal, whereas the value function specifies the long-term goal. And

finally the model of the environment is in charge of mimicking the environment

and is used for planning or deciding on the course of action based on

considered future situations.

Reinforcement learning does not require a domain theory (as required by

explanation-based learners), which might be a substantial undertaking in any

real world robotics task. Also, RL can be used for online learning in contrast to

some types of inductive learning methods, so the robot continually improves its

performance. In addition, for many tasks, it is relatively straightforward to

supply the robot with appropriate reward functions.

On the other hand, reinforcement learning suffers from a number of limitations.

Sometimes, requiring many steps to converge, it can be very slow. This is due

to the fact that to obtain a better reward, the RL agent should try all actions in

order to be able to compare the rewards yielded by them to the previously tried

producing better reward actions. Moreover, in corporation of domain

Chapter 2: Background - Navigation 39

knowledge to speed up the learning is difficult. Also, RL assumes that the

current state and the action determines a probability distribution on future

states, and in other words the environment can be modeled as Markov decision

process [Put94]. The robots can rarely sense the true state of their environment,

due to the lack of high-tech cheap sensory devices, hence this "memory-less"

property is most likely to be false.

2.2.1.1.5. 'Evo{utionary Leaming

Evolutionary learning includes Genetic Algorithms [Gol89] and Genetic

Programming [Koz93]. A population of policies is chosen as the starting point,

and combined to achieve better policies until an optimal policy is produced.

Genetic operators such as crossover and mutation are responsible for this

combination. In order to measure the quality of the achieved policy, the

paradigm uses a fitness function.

A number of studies involving robots' training has been performed using

evolutionary learning method. The training includes obstacle avoidance,

navigation around a close area, and learning goal-seeking behaviours

[GS94] [Dor96].

Important advantages of the evolutionary learning paradigm include the ability

to start in a pre-set state - allowing speed learning - and being able to learn

arbitrary policies - against being constrained to stationary policies.

Chapter 2: Background - Navigation 40

The key disadvantage of this paradigm is the limitation on off-line learning.

Before testing the learnt policies on a real robotic platform, all training should

be performed on a simulator.

2.2.2. Learning to Control Dynamic Systems

Controlling dynamic systems, specially the complex ones, require such skills

that can not be practically explained using words, but can be demonstrated.

This section presents some basic background on this subject. Several

approaches have been so far used to build controllers for dynamic systems.

Machine learning [SUKM92] [UJ92] [Ben96], Optimal control [SS82], fuzzy

control [Lee90] [YB94], neural networks [MS90], and expert systems [Dev87]

can be named as some of these methods. Several papers [WL90] have

discussed the capabilities and limitations of these approaches.

In order to construct a controller for a physical process by classical methods,

constructing a model of the system is necessary. Unfortunately, it is often very

difficult to construct an accurate model of such systems. This is due to the

complexity and lack of information about the environment of many physical

systems.

An alternative approach to deal with this problem is using qualitative reasoning

[Mak91] [Bra91] [Bra93] [BU95] [Bra97]. Another approach is learning from

experience [MC68][SS85][SUKM92][ESM94][ESS95][UB94][Shi94]. In this

method, the system can learn by emulating the behaviour of a skilled operator

Chapter 2: Background - Navigation 41

(behavioural Cloning), that is "Learning by observing a human operator", or it

may perform trials repeatedly until a given success criterion is met. This is

known as 11Learning by trial and error". These two methods are explained in

more detail in the following sections.

In contrast to the success of the behavioural cloning in some applications ,

qualitative reasoning also has been used in some experiments such as pole

balancing [Mak91] and discovering dynamics [Dze93], and is the one more

widely studied and used.

2.2.2.1. Learning by trial-and-error

In this method, the learning agent repeatedly performs trials in order to gain

knowledge about the effects of different control decisions. Often, a trial starts

by positioning the system in a random state, and ends when a failure occurs or

successful control is performed for a specified period of time. Repeated trials

stop when a certain success criterion is met.

The BOXES algorithm is one of the earliest trial-and-error learning methods

[MC68]. The algorithm has been used as a benchmark for many studies of

subsequent machine learning methods. It also demonstrated an effective and

flexible method for learning to control physical dynamic systems.

In many situations the learning system is notified about an incorrect action after

some delay. Therefore, it is difficult for the learning system to find out which of

its actions has caused the failure. It is known as 11The Credit Assignment ·

Chapter 2: Background - Navigation 42

Problem" which is one of the major problems that a trial-and-error learning

system must deal with. In other word, credit assignment is how to assign the

credit or blame for a final output among several outputs that lead to the final

output.

A further problem with trial-and-error learning is finding the best trade-off

between "exploitation" and "exploration". "Exploitation" means using what has

already been learned trying to obtain the best performance. On the other hand,

"exploitation" means possibly sacrificing performance versus gaining more

information about the system by trying something new. The BOXES algorithm

and Watkin's [Wat92] Q-learning provide some solutions to this problem.

One of the important advantages of trial-and-error systems is that they do not

require a teacher. However, the slow rate of learning and the necessity to solve

additional problems such as credit assignment and balancing between

exploration versus exploitation, make it difficult to scale these methods up to

problems with big dimensionality. This method is effective when the domain is

simple like the pole and cart. However, when the domain is complicated (e.g.

navigation or flight control} dealing with a large search space makes this

method non-applicable. Furthermore, larger search spaces will cause slower

rates of learning, and sometimes the big search space can kill the learning

process.

Chapter 2: Background - Navigation 43

2.2.2.2. Learning by observing a human operator

Although learning by trial-and-error can be used for controlling physical

systems, it can be very time consuming. The alternative method is to emulate

the behaviour of a skilled operator. So far only a few attempts have been made

to build a controller using this method [MBM90][SUKM92][UB93]

[ESS9S][SSM95].

One approach is to extract the skill from the operator in a dialogue manner; i.e.

question and answer, and then using the description to formalize and build an

appropriate automatic controller. However, the problem is that the skills can be

mostly described approximately and not completely; in other words, the skills

are sub-cognitive. Thus, these descriptions can only be used as the guidelines

for construction of the controllers.

Considering this problem, an alternative approach in transferring the skills

would be to trace the operator's actions. The idea is to use them as examples,

extracting the operational descriptions of the skill by machine learning

techniques. This is known as "Behavioural Cloning" [Mic93], and contains

three stages. First, a skilled operator is asked to control the system, while the

states of the system along with the operator's action are logged in to a file. In

the next stage, a learning algorithm is used to construct control the rules for the

system from the logged information. And finally during the third stage, the rules

are made operational on the system.

Chapter 2: Background - Navigation 44

Behavioural cloning has been studied and used in various dynamic domains

[BU95]. The summarized conclusion from these experiments and studies shows

that successful clones have been produced in several domains. In some, the

clone surpasses the skill of the operator (so-called Clean-Up effect).

Bratko believes that the current approaches suffer from the lack of robustness in

providing the perfect clone, clones do not show enough robustness following

the changes in control task, and finally they generally lack conceptual structure

and representation. This is a clear sign of slow progress in the process of

creating clones representing the sub-cognitive skills of operators. It is shown

that often such representations do not match those operators work based upon

[Bra97]. However, we have seen otherwise, and clear examples are learning to

fly [SUKM92] and the experiment related to this thesis.

In addition, we can also name the neural network based system called ALVINN

that learns to drive a real robot truck by Pomerleau [CM93]. Although he has

used the training by observation method, but since the work classifies under

supervised learning and the work is based on neural networks, a more detailed

study of his work will be included later in this chapter.

2.2.2.2.1. Learning to 1ly

Learning to fly an aircraft is one of the earliest successful learning systems that

used behavioural cloning strategy [SUKM92]. The aim of this experiment was

Chapter 2: Background - Navigation 45

to automatically build a controller to pilot an aircraft by observing the

operation of a skilled human operator during the task.

For the experiments a Cessna aircraft flight simulator on a Silicon Graphic

computer was used, limiting the flight to a predefined route. The core of the

simulator is a loop, which receives control input and updates the state of the

simulation according to a set of motion equations.

Human experts were asked to fly the aircraft thirty times. The aim of this

project was to build a learning system to emulate the behaviour of a particular

pilot (behavioural cloning). Three pilots were used to demonstrate repeatability

of the experiment. Different pilots have their own strategies for controlling an

aircraft. This strategy is different for each pilot even in the same flight plan.

Thus, induction was restricted to one set of pilot data at a time and a separate

set of controllers was constructed for each pilot.

During a flight, different stages may require different strategies. In this

experiment the flight path was broken into seven different maneuvers. These

maneuvers are take off, level out and fly to a specific distance, turn right, turn

left, lining up on the runway, descend to the runway and land. This technique

also reduced the complexity of the system.

During each flight, information about the flight status was logged in to a data

file only when an action was taken. This information contains the state of the

system at that instant and the response of the pilot to that situation (log action

Chapter 2: Background - Navigation 46

and state). During each flight, up to 1000 events can be recorded, while an

event refers to the performance of a control action.

The accumulated file of thirty flights for each pilot was segmented into seven

files corresponding to the seven stages. In each stage, four separate decision

trees were constructed, one for each of the elevators, ailerons, thrust, and flaps

(classes) using C4.5 [Qui93] as the induction program. For the induction task, it

is necessary to have a set of training examples. Each example in this set must

be described as a collection of attributes. The class of each example also must

be known in advance. A program filters the flight logs of each stage and

generates four input files for the induction program. The logged flight

parameters in the data file are the attributes of the training examples. The class

value or dependent variable is the attribute describing a control action. For

example, in generating a decision tree for the elevators, the elevators column is

considered to be the class value and the other columns in the file are

considered to be ordinary attributes. It is the same when generating decision

trees for flaps, ailerons, and elevators.

The decision trees were then converted into if-statements in "C" by using a

post-processor. The auto-pilot code of the flight simulator was replaced by the

induced rules of all the decision trees to test the correctness of these rules.

During this experiment, Sammut and his colleagues encountered a number of

problems. It is essential to record the state of the system along with the

response of the pilot to that state when an event occurs. However, there is

Chapter 2: Background - Navigation 47

always a delay in human response to a stimulus. This delay is known as the

response time. In order to log accurate data, the state of the system should be

logged sometimes before the action. To be able to do this, the response time of

the pilot must be estimated. Clearly, pilot response time will vary according to

person and state. The response time of a pilot depending on the position in the

flight and the type of reaction required can vary considerably. Moreover,

during the flight, the pilot usually anticipates where the aircraft will be in near

future and prepares the response before the stimulus happen [SUKM92].

To overcome this problem, Sammut and his colleagues used a circular buffer to

store the current state of the simulation each time the simulator passes its main

control loop. When a control action is performed, the action is logged along

with the previous state of the simulation from the circular buffer. Although by

these techniques, they solved the problems in some sense and the learning

process was successful, they stated that the problem of 11what is the actual delay

between the stimulus and the action 11 is still unsolved.

The C4.5 program [Qui87b] [Qui93] was used as the induction program.

Similar results have since been obtained using a regression tree algorithm

[Bre84] [Kar92].

Another problem reported by Sammut and colleagues [SUKM92] is that the

induced rules in some stages are very complex and difficult to understand by

an expert. This problem exists because the learning system constructs rules

based on the primitive attributes. Introducing some high-level parameters

Chapter 2: Background - Navigation 48

containing more information about the system may help producing smaller and

more understandable decision tree [SUKM92].

Michie and Camacho also reported a similar experiment in learning to pilot an

aircraft using a flight simulator for an F-16 combat plane [MC94]. They used

the same technique as Sammut et al. in previous experiment [SUKM92J. In an

attempt to improve the robustness of clones in the "Learning to Fly" experiment,

Arentz introduced disturbance into the system. He successfully created a set of

clones, which he claimed to be robust to disturbance.

2.2.2.2.2. Leaming to Contro{ Container Cranes

Traditional control theory sometimes can not be used to build a controller for

some physical systems. Controlling a container crane is an example of such a

system. Sakawa (5582) has shown that due to some unpredictable factors such

as wind, it is not possible to build an accurate controller by means of the

traditional control theory.

Figure 2-10. A container crane

Chapter 2: Background - Navigation 49

An attempt at building a controller for a container crane was done using

machine learning techniques [UB93]. In that experiment the aim was to

automatically construct control rules from the recorded performance of a

skilled operator following the strategy used [MBM90][SUKM92][MST94].

The crane is made of a trolley at the end of a rope, which are moved together.

In this experiment, the task was to transport a container from one place to a

target position. An operator, who picks up a load from some point and

transports it to a goal point, performs the task. The speed of the trolley and the

length of the rope can be altered in order to lift, transfer, or drop the load.

The basic performance requirements for this system as described by Urbancic

and et al. [UB93] are:

• Basic Safety: Keeping the system within the defined limits

and avoid any obstacle,

• Stop-gap accuracy: Keeping the gap between target and load

positions within the defined limit, and

• High capacity: Minimizing the time of transportation .

To minimize the transportation time, two simultaneous operations should be

performed. These operations bring the trolley above the target position and the

container to the specified height. In this experiment, a real time simulator of a

real crane is used. Six unskilled human operators were asked to learn to

operate the crane using the simulation. All subjects succeeded in learning the

task, working from 1 to 10 hours on the simulator. During the operation, state

Chapter 2: Background - Navigation 50

variables were logged to the computer showing the state of the system. These

variables were:

+ trolley's position,

+ trolley's velocity,

+ the rope inclination's angle,

+ the rope inclination's angular velocity,

• the rope's length,

+ the rope's length velocity.

The RETIS program [Kar92] for regression tree construction was used as the

induction program and every 0.1 seconds samples were recorded. Different

levels of delay were considered in that experiment. However, at the end they

decided to use zero delay for the response to any event. In the construction of

the controller rules, they found it hard to find a common strategy among the

recorded information from different operators. Thus, they decided to work on

collected trials performed by the same operator instead of working on all of the

information.

Using the recorded information they built a controller that they claim 11 ••• is

conservative and minimizes the swinging but at the cost of time" [UB93].

As explained earlier, Urbancic and Bratko introduced the human operator's

instruction into the "cloning cycle" by using six volunteers to learn to control a

crane simulator. After the operators had mastered the task, they were asked to

write down instructions for how to perform the task and were also encouraged

Chapter 2: Background - Navigation 51

to discuss their experience and their written instructions with each other to

improve their performance. A clone was also induced from a set of successful

traces of each operator by using machine learning techniques. The clone was

able to control the task in a manner similar to the human operator.

The main goal in this experiment was to establish a bridge between the

induced clones and the operators' instructions to improve the transparency,

robustness, and generality of the clones. Also, improving the operators'

instructions using the information gained from the clones set to be the other

goal. In the paper titled "Reconstructing Human Skill with Machine Learning"

[UB94], they made it clear how these two sets of rules can be used to

complement each other. In this paper, they explained how the induced clone

could uncover some of the operator's subconscious control skill. However,

they did not make it clear how the human operator's instruction can be used as

background knowledge by the machine learning techniques, especially

induction. Moreover, although human experts are able to control dynamic

tasks quite easily, it is often hard or impossible for them to explain how they

perform the task. Compton has argued that even when the operators provide

some explanation about their strategy, it is often a justification for their action

rather than the way they have reached their conclusion [Com92]. Furthermore,

this justification depends on the context in which it is provided. Therefore, it is

important to use the knowledge that the expert has provided in the context

within which it has been acquired [CJ89]. Hence, the approach of Urbancic and

Chapter 2: Background - Navigation 52

Bratko could be strengthened to provide a more reliable and accurate way of

capturing the expert's explanations.

Later, Bratko in a further study has investigated reasons for the slow progress in

generating clones which is directly in relation to the lack of conceptual

structure and representation that would clearly capture structure and style of

the operator's control strategy [Bra97]. He has claimed that one of the reasons

is that since the usual representation used in reconstruction of the skill is

inherited from traditional control theory, it is entirely numerical. He shows that

more appropriate representations are largely qualitative and involve history and

not just the current state of the system.

2.2.2.2.3 £earning to f{y, Parvaz

Following Sammut and colleagues' work, Shiraz in his Ph.D. thesis used an

interactive method [Shi97], in which the expert cooperates with the learning

program to create the controller. Shiraz broke down the system in to two parts.

He used Dynamic Ripple Down Rules (DRDR) for the parts of the flight

simulator where the pilot had the ability of verbalizing the control strategy with

the system. DRDR is a modification of the Ripple Down Rules (RDR) which has

been developed for dynamic system control. For other parts, where it was

difficult or even impossible for the pilot to formulate the strategy, he also

developed Learning Dynamic Ripple Down Rules (LDRDR). LDRDR

automatically produces rules from the logged data from the pilots actions

instead of C4.5 which was used in "Learning to Fly" experiments by Sammut

Chapter 2: Background - Navigation 53

and colleagues [55E95]. A schematic diagram presenting the structure of Parvaz

is presented in Figure 2-11. He claims that the use of a pilot's advice resulted in

the creation of more transparent and robust rules [5595). However as he also

cites that the major limitation of his work was the separation of the knowledge

acquisition and learning part.

Automatic control

Dynamic System

Manual control

Behavioural traces
Expert (operator) I

' ' I I I

Machine Learning Knowledge Acquisition ,._
(LRDR) (DRDR)

Knowledge Bases -
Automatically created rules Manually created rules

'
Behavioural Gone

Figure 2-11. The basic structure of Parvaz

He presented a new machine learning program using sequential data and

called it LDRDR, short for learning Dynamic Ripple Down Rules [5hi97]. The

real reason behind the introduction of this program was the need for a learning

program capable of dealing with sequential data and also its compatibility

towards DRDR that is an incremental learning tool. DRDR is also a

Chapter 2: Background - Navigation 54

modification of RDR, a simple and powerful method for knowledge acquisition

and representation. The basic form of a ripple-down rule is and if statement:

If condition then conclusion because case except

If condition then conclusion because case except

If ...

else if ...

And in the absence of any other information, the RDR recommends taking the

default action, that is:

If true then default conclusion because default case

In his experiments, Shiraz also divided the flight procedure in to seven stages.

For each stage he created four separate RDRs, each for every control action

(elevators, flaps, ailerons and throttle). Each RDR (28 altogether) was

constructed either using DRDR interactive knowledge acquisition method or by

applying lnduct/RDR (LDRDR) to the logged data. He applied both machine

learning and knowledge acquisition procedures independently.

2.2.2.2.4. !f{ying witli C:J{'l.l.9{.PS

In another experiment, Stirling for his Ph.D. experiments employed CHURPs

(Compressed Heuristic Universal Reaction Planners) to achieve a new

technique for uncovering and synthesizing control skills evolved by human

Chapter 2: Background - Navigation 55

pilots. He developed CHURPS as a method to capture human control

knowledge.

He observes that behavioural cloning seeks to learn control skills by observing

and learning the interactions between the machine/process and human

operator/agent. However, he claims that "there are fundamental problems

about the scope of training exemplars one must provide to obtain robust and

reasonably generalized skills" [Sti95a]. Thus, using CHURPs he tends to

overcome the problems of brittleness and generality, by separating the planning

and execution phases. He has actually emphasized on robust controllers built

to stand failure in actuators.

To do so, his approach tends to acquire a starting point from the expert from

which the controller can be automatically generated.

A Effector set allocations Goals

Controls A B C
SE A B C

B (X 0.6 0.2 0.0
Y~HE;__"*"*-~1--1~ UE - p - /J 0.1 0.7 0.3
(}

C ME r /J (}

SE «,/J «,fJ /J,y

Figure 2-12. (a) An example of a plant control system

(b) Agent's effector view of the system

r
(}

p

(c) Influence matrix for control inputs over output goals

0.8 0.0 0.6

0.0 0.4 0.8

0.0 0.2 0.0

"Influence Factors", numbers in the range of Oto 1 specifying the level of effect

of input on an output goal, are asked from the expert for a certain system. As

shown in Figure 2-12, in the plant control system with 5 inputs and 3 output

Chapter 2: Background - Navigation 56

goals, input or control action ex has no effect on goal variable C, while it has

greater effects on A and B. The control action ex is called the main effector for

goal variable A, meaning that it has the most influence on the goal variable A.

From the influence matrix, Figure 2-12 (b), for each goal variable there can be

three sets of control actions:

+ UE, a Unique Effector, the only effector influencing the goal variable

+ ME, a Maximal Effector, the one with highest level of influence over the

goal variable

+ SE, Secondary Effectors, all effectors over a goal variable except the

maximal effector

Influence CPG PD

Matrix C4.5 Controller
Plans

Figure 2-13. CHURPS Architecture

Stirling has used these three sets for his CPG (Control Plan Generator) algorithm

to generate plans for the operation control. According to this algorithm, an UE

control action can not be chosen as ME or SE for other goal variables and also

an SE control action has the least effects on the other goal variables.

Stirling proposes that in the CHURPs paradigm, only the planning skill is learnt

using machine learning technique and the skills can be modeled by common

Chapter 2: Background - Navigation 57

feedback control loops. He also assumes that any complex task can be broken

down in to a series of sub-tasks. Each sub-task has a clearly defined objective

and target, and once the current sub-task's objective has been achieved the

next sub-task is entered. Arguing that since both CHURPs and the behavioural

cloning auto-pilots were constructed using the same learning method, he

suggests that the difference in their performance is due to the source of

examples and the addition of multi-controller feed-back. Apart from the flight

domain, he also has demonstrated CHURPs on other multi-input/multi-output

domains [Sti95b].

2.2.2.3. Learning using neural networks

In the last two decades, we have witnessed a rapid increase in the use of neural

network in different areas [WL90]. They have been applied in several different

domains such as pattern recognition [CG83][WW88], Image processing

[NP90], hand writing recognition [Bar90], natural language processing, and

economics [BF91]. The ability of a neural network to deal with non-linear tasks

make them a suitable choice for learning to control dynamic systems

[HA90]US90]. Auto-lander US90J, Bio-reactor [Un90], and pole cart [WW88]

are some examples of this.

The following section provides a brief review of the auto-lander project, which

is related to some aspects of the work reported in this thesis.

Chapter 2: Background - Navigation 58

2.2.2.3.1 • ..9LL'lll9{_9{_

ALVINN, Pomerleau's trainable road tracker is one of the world's most famous

neural network applications. The specialty of ALVINN is not its driving

capability, but it can also learn how to drive just by watching a human driver

for a while [Pom93a]. ALVINN uses a training system designed in four layers.

In the first layer the system uses a low resolution video camera to input three

30x32 pixel images, one for each of the video color bands (red, green and

blue) to the neural network. These images are taken from the road ahead and

the current position of the steering wheel. There is a connection between every

single pixel in each of these three images and the corresponding pixel in the

30x32 unit array of hidden units, which is the second layer. The system was

designed in such a way that there were only three distinct weights, one for

each distinct color, between the color bands and the array of hidden units. On

top of this layer four hidden units were used to connect the hidden unit array to

the forth layer. Finally, the forth layer was made from 30 output units

corresponding to the direction control units, ranging from sharp-left to straight

ahead and to sharp-right (figure 2-14).

ALVINN was able to drive on single lane, multi-lane and unpaved roads. To

drive at night, it was equipped with laser reflectance imaging system. Using a

laser range-finder unit, ALVINN was able to perform object avoidance task

maintaining a fixed distance from the parked cars.

Chapter 2: Background - Navigati.on 59

Red lnfut
ff,nd

GiccnlnJM
llind

30,Ja trxl~et,
Unit A..1ay

Figure 2-14. The four-layered architecture used to train AL VINN

Pomerleau used a new methodology for "on-the-fly" training in neural

networks. In this methodology, the training set is kept small in order to meet

the limitations of real-time processing. However, the examples were removed

only when they were completely studied and efficiently learnt. In addition, his

new methodology requires a training set representing a balance variety of

cases.

To train on-the-fly (Figure 2-15), Pomerleau first considered generating artificial

images of situations likely to be encountered by the robot, to ensure enough

diversity in the training set. To do this, he developed a simulated road

generator program. He then used this program to create 1200 examples used to

train the network by randomly changing its parameters.

Chapter 2: Background - Navigation 60

Figure 2-15. Schematic representation of training "on-the-fly"

There were serious drawbacks in this approach, ranging from the log time

needed for artificial road generation, poor performance of the network due to

the differences between the artificial roads and the real ones, and finally the

need for prohibitively complex training data generators for multi-lane and off

road driving trainings. As a result, Pomerleau developed another training

scheme in which the network imitates a human driver under actual driving

conditions. He has called this technique, "training on-the-fly''. He believes that

training on real images would need lesser human effort to develop networks for

new situations [Pom93b].

There were also two potential problems associated with training on live sensor

images, recovering from misalignment errors due to road center concentrated

training and over-learning recent inputs due to training with only the current

image and steering direction. To prevent those problems Pomerleau came up

Chapter 2: Background - Navigation 61

with another technique for transformation of sensor images to create additional

training exemplars.

Furthermore, to complete the previous technique, he also used the pure pursuit

steering to adopt the correct steering direction for the transformed sensor

images. In this model, the correct steering direction brings the vehicle to the

desired location (which usually is the center of the road) a fixed distance

ahead. In order to further ensure against the effects of repeated exemplars,

Pomerleau increased the diversity of the training set by maintaining a buffer of

previously encountered training patterns. In this method, the newly digitized

and transformed sensor images are added to the buffer while the older patterns

matching these new ones are removed from it. This will ensure having an

updated history of the recently encountered driving situations in the training

pattern buffer.

Pomerleau claims that training on-the-fly scheme gives ALVINN a better

flexibility that is new among other navigational control systems.

2.2.2.3 .2 . .!lluto-fanaer

An auto-lander is usually available in most commercial aircraft. However, they

are not designed to handle large winds and turbulence [AM90]. To explore an

alternative for the current auto-landers, Jorgensen and Schley suggested using a

neural network US90].

Chapter 2: Background - Navigation 62

They believed, because of the capability of the neural network to generate a

map from large set of variables (e.g. sensors) to another set of variables (e.g.

control actions), they may be able to capture some critical behaviour of the

human pilot. A pilot's skills, usually developed through years of experience,

help the pilot to make appropriate responses in a new state. They are called

sub-cognitive skills and are very difficult to explore.

Jorgensen and Schley believed also that the use of neural networks might make

it possible to capture some of variable interrelationships in an aircraft, which

are not normally considered by a design engineer.

Jorgensen and Schley in their experiments found that it is impossible to capture

the performance capabilities of a linear auto-lander controller by a single

network. Therefore, they decided instead to use a set of neural networks. They

used a simple and linearized mathematical model of a controller to train these

networks. Their model considers just longitudinal and vertical movement of the

aircraft. To simulate some of environmental disturbances, they modeled head

and tail wind. This model exhibits wind shear at different altitudes.

The auto-lander system has four major components:

a) Auto throttle: To maintain constant airspeed

b) Pitch auto-pilot: To provide adaptive damping and a speed response

to desired pitch attitude

c) Wind disturbance calculation: To generate random gusts of head or

tail winds.

Chapter 2: Background - Navigation 63

d) Glide slope and flare controller: To provide pitch commands in

response to desired altitude and altitude rate of change.

The input to the system consists of current altitude, altitude rate of change,

desired altitude, and desired altitude rate of change. The goal of the system is

to generate elevator angles at any time to land the aircraft on the runway.

In this experiment, Jorgensen and Schley successfully generated a set of

networks that could land the aircraft in the presence of headwinds and

tailwind.

This work was limited in that it used a very simple flight model and only

considered the elevator actions during landing, not an entire flight. Moreover, it

did not explore the areas of interest in this thesis, namely combining human

and machine knowledge.

2.2.2.4. Learning using Fuzzy Logic

2.2.2.4.1. Afo6ile 9?.p6ot 9{_,avigation

Recently there have been many attempts at mobile robot navigation using

Fuzzy Logic techniques. Aycard and colleagues have shown a new method to

design, in two levels, a fuzzy controller for reactive navigation of a mobile

robot in a structured unknown environment [ACH97]. Using a Nomad200

robot for their behaviour based control of reactive navigation, they have

conducted two experiments with different local behaviours and different

Chapter 2: Background - Navigation 64

mechanism of integration. At the first level, the adjacent sensors of the robot

were grouped in areas and were used to define the local behaviours, which

were later in the second level gathered in order to define a global behaviour.

Adaptive behavioural capabilities are necessary for robust mobile robot

navigation in non-engineered environments. Robust behaviour requires that

uncertainty be accommodated in the robot control system, especially when

autonomy is desired. Claiming that fuzzy logic control technology enables

development of controllers which can provide the necessary computational

intelligence in real-time, Tunstel et al. have presented the incorporation of

fuzzy logic, into the framework of behaviour-based control [TDLJ97]. They

have implemented an architecture for hierarchical behaviour control in which

control decisions result from a consensus of behavioural recommendations.

Applying multiple fuzzy-behaviour coordination to autonomous navigation

without explicit maps, they have declared that performance and robustness is

demonstrated by implementation on a mobile robot with significant

mechanical imperfections.

2.3. Discussion and Conclusion

In this chapter we presented the background work on both navigation and

learning approaches. The first section covered different approaches for

localised navigation, while the second attempted to cover as much as possible

a complete related survey of various methods of machine learning.

Chapter 2: Background - Navigation 65

In the navigation section, it was clearly pointed out that the two widely used

navigational methods (i.e. localised and global) are clearly separable and

distinguishable by means of implemented strategies and data processing.

Consequently, in this thesis, we have proposed to use reactive control of a

locally developed mobile robot. We gradually develop the navigation system

based on the previously attempted strategies, however the difference is that the

strategies are not hard coded and will be learnt eventually by the robot during

trial sessions.

In the second section, it was shown that machine learning techniques could be

successful in constructing a controller for complex dynamic systems such as

flying an aircraft and robot navigation, in simulation or using physical

platforms. The main focus of this section was on describing behavioural

cloning (behaviour based control) which seems to be one of the promising

methods for building controllers.

It has been observed that behavioural cloning, seemingly, has been successful

in building control systems. However, many problems remain to be solved, and

much more research is to be done before this method can be practically

applicable.

In our experiments, we have concentrated on applicability of a combination of

behavioural cloning and other conventional navigational methods to a physical

system. At first, we have tried simple and primitive obstacle avoidance

behaviour by observation and changing the training strategy.

Chapter 2: Background - Navigation 66

3. Robotic Platforms
Experiments related to this thesis have been performed in two different phases.

Two different robots have been used, one for each phase. There are similarities

between both robots, and the major difference lies in the way the experiments

have been performed. Robots have been used to acquire the primitive

behaviour of object avoidance. Also, two different algorithms have been

applied for comparison purposes.

3.1. Purpose Built Robot

The robot was designed and built by the author, based on the previous physical

frame by Graham Mann (Graham built the base and frame for a different

purpose, no reference is available on his work though). The structure of the

robot was based on an IBM-Compatible 386 computer. It adopted a simple

peripheral interface to the main board via Xeltek MCP-550 data acquisition and

MCP-330 digital interface cards. The physical structure of the robot is shown in

Figure 4-1. The robot is made in three individual separable sections, top,

middle and the base. Located atop the robot is an ultra-sound rotating scanner,

the computer and motor controllers are in the middle section, and all the

power related parts and motors are also residing on the base section.

Chapter 3: Robotic Platforms 67

The overall system architecture of the robot is shown in Fig. 4-2. The left-hand

side illustrates the sensors, while the lower right section shows the computer

and communication boards. The picture also shows the interconnection

between different parts of the robot. The different parts and sections of the

robot are described in details in the following sections.

T
0
p

1
5

C
m

8
a
$

e

3
5

C
m

@ 0

CJ

Chapter 3: Robotic Platforms

-=,m , a

51: jo/0111

IBM-PC computer

C

Figure 4-1. The Robot Sketch

H

9
0

C

68

3.1.1 Sensors

The purpose built robot is equipped with a rotary ultra-sound sensor, as well as

five infrared proximity sensors. These sensors are used for long distance object

detection and close proximity obstacle avoidance.

Polaroid Ultrasonic Transducer

DC StBpper Mol!Jr

Texas Instrunent

Sonar Board

stepper Motor
Control er

386

Motherboard

Interface Card (MCP-330)

Shaft
Encoder #1

Shaft
Encoder #2

Figure 4-2 Overall system architecture of Purpose-Built Robot

3.1.1.1. Ultra-Sound Rotary Scanner

0
~

<
I"'>
~
Ul

A rotary ultrasonic range finder mounted atop the robot scans the su rroundings

continuously, generating a 48-value polar proximity map from a 360-degree

scan every 15 seconds. The stepper motor in charge of rotation has the

resolution of 7.5 degrees.

Chapter 3: Robotic Platforms 69

The sonar ranging module is made by Texas Instrument, which matches the

Polaroid Ultrasonic transducer. For each reading, there should be an

initialization from the controller board to the transducer, followed by emition

of a series of vibrations which sounds as a single click noise to human ears.

Then the ranging system goes to receiving mode, waiting for an echo to receive

from the object(s) ahead in case there is any. In the meantime, an external

counting system which is also initialized at the beginning will continue

counting and will only stop when either an echo is received or its buffer is full.

If the reading shows an overflow in the counter value, it simply means that

there is not sensible object in th evicinity of the next 10 meters.

The ranging module is capable of operation in both single-echo and multiple

echo mode. We have only used the module in single-echo mode, so in any

sigle reading only the closest object in that direction is sensed.

3.1.1.2. Infrared Sensors

The robot is also equipped with five infra-red proximity sensors (modulated IR

detector, coupled transmitter and receiver) arranged around the base half-way

up the robot; each sets one bit of a digital input port (on MCP-330 board) if an

object falls within range of approximately 10 to 15cm.

The IS471 F is an infrared detector with integrated modulation system. It is a

perfect device to be used in high atmosphere light conditions by elimination of

detected unwanted light emissions.

Chapter 3: Robotic Platforms 70

3.1.2. Motors, Controller and Shaft Encoders

The robot has employed two motors on its base. There is also a gearbox

located under the motors and connected to the side wheels, facilitating the

engagement of the motors with the wheels during the start-up moment and stop

moment of the operations. The gearbox acts as a damper during the stop

procedure, stopping the robot without any residual movement.

The robot is also equipped with a motor controller system, in order to

command the motors. We have chosen the current control method, so it is

possible to drive the motors using Pulse Width Modulation (PWM) in order to

save power and avoid over-consumption of the battery module. Generally

there are two types of motor controllers in respect to the design, Linear Servo

Amplifier based and PWM Servo-Amplifier based. The PWM based controller

will keep the driving transistor in switching mode, causing less power

consumed as well as lesser time needed for switching.

In many applications it is preferred that the motor's driving current to be

directly controlled by the input command (signal). This is simply because the

developed torque in the motor that is the most important factor for creation of

the rotational motion in speed/position controls is directly proportional to the

motor's driving current:

where:

m = instantaneous torque

Chapter 3: Robotic Platforms 71

im = motor's driving current

K1 = torque constant of the motor

So, the servo-amplifier is designed in such a way that the input signal controls

the motor's driving current, so by changing the level of current we can change

the speed of the motors.

The current control signal is generated by a Pulse Width Modulation (PWM)

technique. To do this a triangular wave generator is used in conjunction to the

speed command, which is created by the built-in communication board (using

software) and fed to an operational amplifier (as a level comparator). We define

the analogue command signal to be modulated by the source (triangular -

modulator) signal (Figure 4-3).

The chosen motors can be directly driven forward or backward, simply by

reversing the applied voltage direction. This has been made possible using

simple relay modules. Figure 4-4. Shows a block diagram of the motor

controller designed specifically for this robot.

Analogue Signal

Triangular Signal

PWM Signal

~ nn nnR LJULJUO

Figure 4-3. PWM generation

Chapter 3: Robotic PlaJforms 72

Dtg.Toan~.converter

DAC 'Ye Impedance Matcher

Processor

Direction
Command
H: Oock Wise
L: Counter C#

error amplifier

PWM 'Vm

Vltg. to freq. converter

Polariser VFC

Figure 4-4. Motor controller block diagram

servoampllfler

Current Drlwr

Wave Shaper

Encxxler line

It has been observed that while both motors are working simultaneously,

whether forward or backward, there will be race condition in which one motor

rotates faster than the other. To prevent this, we have designed a couple of

shaft encoders, located on the shafts of the motors. The encoders are in a clear

circular disk with 36 black stripes lying from the center towards the edge of the

circle. The main purpose of the shaft encoders is to measure the wheel rotation.

The encoders rotate within standard infrared optical units (encapsulated

transmitter and receiver), connected to a pair of 8 bits counters through signal

conditioning circuits creating square wave signals. Each transition from clear

zone to a black zone is counted as one tick, 36 zones in total, 10-degree

resolution.

Chapter 3: Robotic PlaJforms 73

To detect any racing between the motors, it is imperative to check the shaft

encoders continuously only when both motors are driven at the same time in

one direction. Figure 4-5 illustrates a flow chart of the process responsible for

taking care of the race condition. Each motor can be set on two different

speeds in both forward and backward directions.

3.1.3. Power Supplies

Power is provided by a 12-Volt/40 Amps high-duty car battery, which is then

Start

1 Pulse Write

M1 & M2 (7.5 dearee)

Motor Command

Control Word

:Hardware
(Movement Process Control)

Figure 4-5. Flow chart of motor control

fed through a combination of converters to different parts of the robot,

Chapter 3: Robotic PlaJforms 74

providing positive and negative 5-Volt and negative 12-Volt. The 5-Volt

converter also provides the fine +5-Volt necessary for the motherboard.

Also, the robot is provided with a power supply supervisor chip, which is

responsible for lower power warnings. The power supply supervisor unit

RS3543 contains full monitoring and shutdown control systems. It is suitable

for both linear and switch mode power supplies, and is programmable for over

voltage and under-voltage protection.

3.1.4. Computer and Communication Boards

The robot is equipped with two communication boards, which sit in two slots

in the IBM compatible computer. MCP-550 data acquisition and MCP-330

digital input/output cards are products of Xeltek.

3.1.4.1. MCP-550 data Acquisition Card

The data acquisition system converts the raw analogue/digital outputs from

transducer readings into equivalent digital signals/data usable for further

processing. MCP-550 card provides an analogue Multiplexer, a sample and

hold circuit, two Digital to Analogue Converters (DAC), two Analogue to

Digital Converters (ADC) with reference, programmable clock, and buffers. Fast

speed and multi-function data acquisitions are the main features of this card.

DAC ports are used for motor control task, while the timer/counters are used

for shaft encoders reading. The output of each digital to analogue converter is

Chapter 3: Robotic Platforms 75

connected to the reference analogue voltage of the comparator described in

previous section, and then modulated with a triangular waveform generating

the pulse width modulation driving power for the robot's motors. The level of

the analogue voltage determines the speed of the robot.

The ADC (analogue port) was used for joystick control reading. The joystick

was made of 4 linear potentiometers, one for each direction of movement. The

analogue reading from joystick is changed to digital and then based on the

position of the stick, the control command will be issued through the two DAC

ports.

3.1.4.2. MCP-330 Di,gital Input/Output Card

The general interface method among personal computers is programmable

digital input and output registers. MCP-330 card provides 32 digital input

channels, 32 digital output channels and 2 interrupt functions. The digital

input/output channels are TTL compatible, but the board provides higher

driving capacity for digital output channels and lower loading current

consumption for digital input channels than normal TTL circuits.

The ultra-sound scanning system's counter is connected to 16 digital input

channels, while 8 input channels have been used for infrared proximity

sensors.

Chapter 3: Robotic Platforms 76

3.1.5. The Main Control Program Loop

The robot is programmed by two simple nested control loops. The program is

responsible for sensors checking, movement commands, and data logging.

At the beginning of the program, the sonar transducer, MCP-330 and MCP-550

boards are initialized. The inner loop is repeated four times, before the outer

loop can be completed once. The outer loop is only for sonar readings. It takes

4 seconds to scan the full 3602 by the sonar transducer, forcing us to do it in

four equal intervals. After every quarter of scanning, the inner loop starts, and

monitors the infrared sensors, battery level, and joystick movement

respective! y.

Also, the loop contains file initialization and manipulation processes for data

logging purposes. The logging can be turned on and off using a physical switch

connected to one of digital input channels of MCP-330 board, which is also

monitored within the inner loop. The main purpose of this switch is to prevent

the data logging while in transition and movement with out a specific target;

i.e. when the robot is moved from one location to another outside of the

training periods.

3.2. Upgrade and Changes

In the continuation of our experiments, the robot was upgraded to use an IBM

compatible 486 processor based computer and also the interfaced boards were

replaced with a Motorola M68HC11 Micro-controller based mini-board (Mini-

Chapter 3: Robotic Platforms 77

computer). This change was followed by the change to a newer sonar

transducer, which is basically the same as the original one, but the only

difference is the controller that is matched to the mini-board controller and is

designed for this specific transducer, which makes it faster. Also, the analogue

joystick is replaced with a digital one specifically designed to be connected to

the parallel port of the IBM compatible computer.

8.2.1. The BBHCll Mint-Controller board

The mini-board 2.0, designed by Fred G. Martin at Media Laboratory of MIT, is

a single board micro controller/computer designed to control small DC motors

and receive data from a variety of electronic sensors. It is smaller than a

business card in size, low power, and programmable. These features make the

board ideal for mobile robot control. It is capable of communication with a

desktop PC via a standard RS-232 serial port, which provides a good

opportunity for desktop PC based control as well.

The mini-board is capable of:

• Control 4 DC motors using software based PWM in 16 different levels of
speed

• Eight analogue inputs for analogue sensors and devices

• Eight digital inputs

• Three/four programmable counters

• RS-232 compatible serial port for communication with a PC

Chapter 3: Robotic PlaJforms 78

+ Includes 256 bytes on internal memory on the 68HC11 chip, and takes

2K bytes EPROM for onboard programming purposes.

)> ("".) ... ~
0 ::s
C: -::s ~
c. :--:
::. C') No
<§

c.

0
I

N
V,

("')

0
::,
::,
(1) s -,

0

n
0 z

TxD

ND

D25 Connector :
P2 : '.JI.S2321(.l(l)
P3 : '.JI.S232 'Tl(l)

: '.JI.S232S(j

Port C

P6
Pl
PB

+ 0
0

Yellow i
Orange;

: .uft Shaft 'Encorkr, 'l?.J;/D
: 1(jgfit Shaft 'Encorkr, (j1(.'E'E'J{_
: .uft '.Motor 'Drive, ')'ELLO'W

P18
P19
P21 P5

P4,6,8
P14
P15

: (jrouna ('D9 - Computer Sitfe) P9 : .uft '.Motor 'Direction, cy:;v,{_ P22
: Sonar- ('}(J,(j) PlO : 1(jgfit '.Motor 'Drive, 'B1(.CYWJ,{_ P23
:Sonar+ (POS) Pll : 1(jgfit '.Motor 'Direct:wn, 'BL71Cl(_ P24

P12 : (j'l{_'D P13 : +5'11 P25

Figure 4-6. Mini-board's wiring diagram

Connector CON2 is connected to the Mini
Board using a D9:

1- S V input (from regulator - Red)
2- Echo (orange)
3- Ground (Black)
4· Trigger (Blue)

Port A 3 : Echo (Orange)

Port CO : Trigger , Sonar !NIT (Blue 0·9)
Cl : Stepper HOME (White D2S·P21)
C2 : Left Shaft Encoder (Orange D2S-P6)
C3 : Right Shaft Encoder (Red D2S-P7)
C4 : Left Motor driver (Green D2S-P8)
CS : Left Motor Drctn (Yellow D2S-P9)
C6 : Right Motor Drive (Cyan D2S-P10)
Cl : Right Motor Drctn (Brown D2S-P11)

: 'Tran.saucer, Suppfy
: 'Tran.saucer, (j'l{_'D
: 'Tran.saucer, j{O'J,{'E,

: Stepper, ')'ELUJ'W
: Stepper, O'J(JV,{_(j'E
: Stepper, 'B1(.CYWJ,{_
: Stepper, 1(.'E'D

Figure 3-6 is an illustration of the mini-board and its connections as used in our

locally built robot. The board is connected to the stepper motor of the sonar

scanning system, sonar transducer, motor control driving circuits, motors

direction control, and RS-232 standard serial connector of the onboard PC.

One of the reasons for choosing 68HC11 based-controller/computer is the vast

existence of the C cross compilers. One can simply write a control program in

C and then use the cross compilers to compile it to the 68HC11 assembly

Chapter 3: Robotic Platforms 79

language. Furthermore, a small uploading program 1s used to send the

translated program in to the onboard EPROM.

The motors are also connected directly to the Mini-Board, and are to be driven

using pulse width modulation provided by micro-programmed pieces. Wheel 's

IR detectors (rotation counter from the shaft encoders) are also connected to

internal counters on the Mini-Board.

8.2.2. The Parallel Port Control Box

The other change involved was the replacement of the joy-stick with an electronic

control box, also providing switches and LEDs for better control and navigation. The

box was connected to the PCs parallel port.

LO L1 L2 L3

osc
S30 0S1

Osz
L4 e L5

n n n,.0
Figure 4-7. Parallel port control box

There are 4 push-buttons, 2 switches and 6 LEDs on the box. The following explains

the specification and use of each part:

Chapter 3: Robotic Platforms 80

• SO to S3 are push-buttons connecting to ground when pressed, and are used

for direction control of the robot.

• LO to L5 are LEDs and can be programmed for any purpose. For the moment,

L4 and L5 are related to the situation of toggle switches Tl and TO

respective} y.

• TO and Tl are programmable toggle switches. The training program uses

them just for recognition of automatic I manual control and data log on / off

status of the system.

3.2.3. The Control Program

The control program explained in the previous sections has also been changed

accordingly. The main loop has been broken in to two different parts. The

sensors reading part has been changed and transferred on board of the 68HC11

based micro-controller board. The onboard program scans all the sensors and

input devices, including the shaft encoder digital square wave signals, ultra

sound transducer echo signal, infrared sensors' output and the parallel port

digital controller box. The program is also responsible for sending control

signals to the sonar controller, and motor controllers.

The other part of the program is executed on the IBM compatible PC, and

communicating with the mini-board processes the incoming data. It also logs

the environment and robot's status data into a file in case the related switch is

on (the switch is located on the parallel port control box). In addition, this

program can be executed in two different modes, manual control and

Chapter 3: Robotic Platforms 81

automatic control. Within the automatic control mode, extra steps would be

executed, which are explained in the next chapter under automatic control

section.

3.3. Fander-1 Robot

This robot is very similar in structure to what we have used before. The robot's

architecture is illustrated using Figure 4-8, and the only difference is that there

also exists a LCD display and a keypad, which are not shown in the picture.

The use of this keypad is for direct control of the system as specified in the

provided program with the robot. The LCD display is used for information

display.

Figure 4-8. Fander-1 Robot

Chapter 3: Robotic Platforms 82

3.3.1. Sensory system

Fande r-1 robot is equipped with many built-in sensors that can be used and

adapted to any robot navigational approaches. The sensors include, rotary

ultrasonic range-finder transducer mounted on top of the robot with 48 steps

(7.SQ /step angular resolution), three sets of infrared proximity sensors, two shaft

encoders located on its main wheels, bumper detectors, and a line sensor for

following designated lines on the ground. Of all these sensors we have decided

to use only the sonar transducer, the infrared proximity sensors, and the

shaft encoders.

Polaroid Ultrasonk: Transd.cer

/

Texas Instrument

Sonar Board

Steppe- Mato,
Controller

386

Motherboard

Interface Card

1 8253 1 1 8255 1

Figure 4-9. System architecture for Fander-1

0 ,..,.
:::r
"' ...
0

"' < -n

"' "'

The sonar transducer, made by Polaroid and coupled w ith the Texas

Instrument controller board, was used for range finding and object detection

in longer distances up to 10 meters. The process is exactly the same as the

Chapter 3: Robotic Platforms 83

one described in an earlier section for the soar system used in purpose built

robot. The transducer is sitting on top of a stepper motor with 7.5° per step

resolution. The step control signals are provided by a special purpose

designed control board, which also include ADC, DAC, digital input/ output

channels and timer/ counters.

Three sets of IR proximity sensors, as well as two wheel shaft encoders

enable the motors to detect the obstacles unrecognized by other means. The

other use of shaft encoders can be to measure up the rotations of each wheel,

especially useful for racing detection as has been described earlier in this

chapter.

The infrared transmitter and receiver pairs are attached to the front of the

robot's body, just below the lower bumper strip. The transmitters and the

receivers are separate modules, unlike the purpose built robot's, and are also

connected to square wave signal generators.

3.3.2. Motors and Shaft Encoders

Each wheel has a shaft encoder measuring the wheel's rotation. The shaft

encoder is made of two parts quite similar to the previous ones, and include

the rotating striped disc and a coupled infra-red optical detector. The disc

has 16 stripes so the total of 16 pulses are generated on a full rotation (22.5°

resolution). The signal conditioning circuit is also responsible for generating

the square wave signal on each transition from clear to black stripe. The

generated square wave signal is TTL compatible.

Chapter 3: Robotic PlaJ/orms 84

Unfortunately, the resolution of the shaft encoders is not enough for most of

the robot navigation approaches like grid-base strategy, however other

strategies that do not need high level odometer information can still be

applied.

The main motors are located on the sides of the robot's body towards the

back. The control system drives the two motors separately, providing

straight ahead, right, left and backward motions.

3.3.3. Programs

The robot comes with pre-compiled monitoring software, and also provided

in disks are the library modules that can be used for control programming

purposes. The functions are mostly useful in primitive action-response

processes. For further information, we refer the reader to the programming

manual provided by the manufacturer.

The monitoring program is designed to be used by a serial connection

between a monitoring computer and the robot. Since we had decided to use

wire-less communication, it was necessary to implement the monitoring

program from the scratch based on our needs. The new monitoring program

included features such as, graphical display updating the representation of

the environment in 2 seconds intervals. The data would be provided by the

robot through the wire-less modems, processed and screened in shape of

colored dots. The control should have been performed using arrow keys on

Chapter 3: Robotic Platforms 85

the keyboard. During training periods, the data logging would be turned on

by the trainer.

Chapter 3: Robotic Platforms 86

4. Learning Navigation
To be as useful as we imagine they could be, robots must be capable of

learning new behaviours. Truly adaptive behaviour means not only the ability

to put together sequences of behavioural primitives in new ways, but even to

acquire new behavioural primitives. A number of methods of acquiring

complex skills from primitives have been developed including plan learning

[Mit89] and coordination of behaviours on a subsumption network using

positive and negative feedback [MB90]. These techniques depend on primitives

implemented as hand-written code or purpose-built circuits. The focus of this

thesis is the acquisition of behaviours by imitating a human trainer.

In these experiments a mobile robot is demonstrated to acquire a primitive

motor skill by being guided through a set of trials by a human operator. A log

file of the robot's sensory and motor data is recorded as a trainer steers the

robot through a set of obstacle avoidance scenarios. The logged data are then

processed by an induction algorithm, which extracts a set of decision trees

representing appropriate skirting movements for a range of obstacle patterns.

The skill is then evaluated by observing the robot as it executes code generated

from the decision trees in response to objects encountered during autonomous

movement.

Also, for comparison purposes, another set of rules is extracted using

lnduct/RDR from exactly the same set of data. This is to show that there is a

Chapter 4: Learning Navigation 87

little difference between the extracted rules, and the only difference lies on the

strategy applied by the trainer (demonstrator).

4.1. The Problem

In these experiments, we have demonstrated that a simple but important

behavioural primitive, obstacle avoidance, can be acquired by induction from

steering motions performed by a human operator. When the robot encounters

an object large enough to cause obstruction, it must make movements to skirt

the object and continue on its way. These movements are not always a simple

function of the size and shape of the object, but also depend on the movement

capabilities, size and shape of the robot, and on the local spatial situation.

Human operators, controlling the robot by a joystick, can perform this skill. If

sensory and motor data are logged by the robot during a number of avoidance

trials, an inductive learning algorithm can be used to extract a number of

decision trees. Encoded rules derived from the decision trees can then be used

to control the robot during autonomous movements. The quality of the

behaviour is then assessed by observation.

This learning method, called "behavioural cloning' by Michie [MBM90), has

been successfully applied to the control of pole-balancing machines [MC68),

aircraft [SUKM92] [SSE95), cranes [5S82] [UB93), all of which have been done

by simulation models. This is apparently the first use of the technique for

Chapter 4: Learning Navigation 88

navigation in a mobile robot. It is likely that the technique will find other uses

for robot systems.

4.2. Manual Control

The central control mechanism of the trainer program is a loop that interrogates

the robot controls and updates the state of the robot according to a set of

sensors readings. Before repeating the loop, the requested data is logged in the

data file.

The robot can be manually steered using a joystick. Continuous motion of the

joystick are converted into numbers in the range of O to 12 (Figure 4-1). Each

number represents the robot's heading and it's speed. In manual training mode,

these signals are converted into motor commands, which move the machine in

a direction roughly corresponding to the angle of the stick. The speed of

movement is related to the amount by which the stick is displaced from the

origin. With practice, a human can drive the robot as if it were a toy car. While

the trainer controls the motors, the sensors just continue their regular job that is

sensing the environment's changes. However, the sensors readings are not

reported to the trainer.

As shown in Figure 4-1, there are three speed regions in the joystick control.

The central region is stop, the mid-region is low speed, and the outer region for

high speed. The directions are forward, turn_right_forward, turn_right_rear,

reverse, turn_left_rear, and turn_left_forward.

Chapter 4: Learning Navigation 89

Figure 4-1. The control region of joystick

300 different obstacle avoidance trials, performed by 5 trainers (demonstrators),

in which 3 objects of various sizes and shapes were placed in 7 different

positions (Figures 4-2 through 4-5) were set up. The pictures show a general

sketch of the position of the object and the robot in different situations, as well

as the direction of the movement.

(a) (b)

Figure 4-2. Center Obstacle

In Figure 4-2, The object has been placed on the center of the road in between

two parallel walls. The robot has been steered by the trainer in either direction

around the obstacle. The process was that the steering continues towards the

object until the front infrared sensor has sensed the obstacle, after the data

Chapter 4: Learning Navigation 90

logging switch is turned on. Then the robot is steered backward (backing off

procedure in order to make enough space to steer around the object without

bumping to it) until the sensor(s) were cleared. Finally the trainer would decide

to continue the path on the right or left side of the robot, clearing the obstacle.

Finally, the original direction and path would be picked up and the trainer

would continue the steering for some more time. After that the data logging

would be turned off, and reproduce the same scene again or try another scene.

(a) (b)

Figure 4-3. Side Obstacle

(a) (b)

Figure 4-4. Side Obstacle

In the situation illustrated by Figure 4-3 and 4-4 the obstacle was located closer

to wa ll or just beside the wall, making it only possible to travel in one

di rection. The difference between the two situation is that the robot can sense a

Chapter 4: Learning Navigation 91

free space in Figure 4-3 between the obstacle and the wall , but observes that

can not pass through, while in Figure 4-4 the wall and the obstacle would

make the situation I ike a corner.

In scenarios illustrated by Figure 4-5, the robot was steered towards an object

located on a corner, distanced differently from the wall in different scenarios.

The steering similarly continued until the object was sensed, then the robot was

cleared from the obstacle turning right or left respectively in scenario (a) and

(b), finally continuing the travel along the wall further away from the object.

Figure 4-5. Comer Obstacle

The strategy for the obstacle avoidance is chosen by the trainer, and naturally is

different for each individual. The following picture (Figure 4-6.) shows typical

strategy's sketch for covering and avoiding an object. The steps are numbered

for easier recognition of the procedure. The solid shape in the center is the

obstacle, and the square shapes around it represent the robot in different

positions during the skirting operation.

In steps 1 and 2 the robot is steered towards the object. Step 3 is the back-off

step, and during the steps 4 to 7 the trainer is trying to cover the obstacle. Steps

Chapter 4: Learning Navigation 92

8 and 9 represent the original path recovery and in step 10 the data logging is

turned off.

The dotted lines represent another possible path for obstacle avoidance in this

particular case. Of course, in the other scenarios, on ly one possible path may

exist.

Figure 4-6. The strategy of obstacle avoidance

4.3. Logging Control Information

Every single trainer/operator took the robot through 5 training sessions for each

scenario, with all sensors operational during the training. All the sessions

involved three phases:

1. Sense obstruction and approach object to within 9 to 15cm, until one of

the IR sensors detects the object's presence.

Chapter 4: Learning Navigation 93

2. Skirt object, minimizing complications with respect to other objects, that

is if the object has more than one corner in one side, the robot should

have recognized it and start the procedure for object avoidance from the

beginning.

3. Recover original path with minimum disturbance.

During each trial, a set of vectors for the following sensory and motor data was

recorded:

polar_map

ir_sensors

wheel_count_l

wheel_ count_r

collision

Vector of 8 bytes each representing the distance

from the environment around at increments of 7.5°

clockwise from origin, collected by a complete

rotation of the transducer (sonar-sensor). The value

of each byte can be one of Cl_rng (close range),

Md_cls (medium-dose range), Md_rng (medium

range), or Fr_rng (far range) values corresponding to

0-0.Sm, 0.5-1 m, 1-2m, and more than 2 meters

respectively (sense_ 1 to sense_B).

A vector of 5 Boolean values, indicating the close

proximity of the objects around the lower part

(base) of the robot. Each vector can show either Sns

(sensed) or Nsns (not-sensed) values (IR_ 1 to IR_S).

One byte from the left shaft encoder, representing

the distance covered since the last reset (wl et/).

One byte from the right shaft encoder, representing

the distance covered since the last reset (wl_ctr).

Boolean, derived from a disparity between motor

speed variables and wheel counts (Bang).

Chapter 4: Leaming Navigation 94

obstacle_flag Boolean, showing the presence of the obstacle

(Warning).

2_previous_control One byte, representing the second-previous action's

direction and speed of the motors (stat_2).

previous_ control

Current_ control

One byte, corresponding to the previous action's

direction and speed of the motors (stat_ 1).

One byte, indicating the direction and speed of the

motors' control (class).

It is essential to point out that originally the polar_map data were in numeric

form made up of 48 different numbers between O and 255. Those numbers

were the content of counter connected to the sonar system. However, the

Polar_map was changed later to be in the range of specified discrete values,

later which is explained in the following sections.

Each control attribute can take a value from the set of Stop, Bkwrd (backward),

Frwrd (forward), Rght (right), Left, Frwd_Rght (right-forward), Frwd_Left (left

forward), Bk_Rght (right-backward), or Bk_Left (left-backward).

The number of recorded line (each line representing one event, including

sonar, infrared sensors, shaft encoder counters, traveling direction for the last

two events and the current control command) during each trial varies and

depends on the trial's duration and chosen strategy. The program has been

written so that when the trainer turns a specified switch on, the state of the

whole system is written to the log file. And also, when the switch is turned off,

logging would be stopped.

Chapter 4: Leaming Navigation 95

4.4. Data Analysis

Even with a well-specified navigating plan such as the one we are using here,

there is a large degree of variation in the navigation strategies. Because of this

variation, the number of trials we have is not sufficient to allow an induction

program to distinguish useful actions from noise, using the raw data. However,

it would not be very practical if it were necessary to have hundreds of trials

before anything useful could be obtained. So, before applying the induction

program to the data, we perform some pre-processing to assist it.

We define the similar cases to be the ones that are different only in few sonar

vector values. This means that other environment variables are the same. These

kinds of cases can be created by having the robot stationary for a short time

and the trainer has moved a little, or there has been a slight bump to the robot,

and etc.

The data file(s) were scanned for any exactly repeated or similar cases of

events. The repeated events were omitted from the data file(s) and also within

the similar events range, the one seeming most different to others were chosen

and kept, resulting in deletion of the rest. To discard the similar or repeated

cases, we used two different approaches. First, when the polar_map was in

numeric form, we used a weight factor on the full map using an array of vectors

kept for the last 10 readings and the summation of the whole vector as another

comparison factor.

Chapter 4: Learning Navigation 96

Furthermore, the continuos data collected from the sonar scanner were also

changed in to discrete values of Close, near, near far and far distance as

mentioned in the previous section. The original data collected from the sonar

range-finder system were in numeric format, causing a lot of branching in

decision-makings. In this case, to establish the similarity or duplication of the

events, the summation comparison factor was dropped and we only used the

buffer method for only last 5 readings.

We have used Quinlan's C4.5 [Qui93] as the induction program in these

experiments. Learning reactive strategies is a task for which C4.5 was never

intended. However, having used this algorithm before and also the availability

of an auto-generator, which translates decision trees to nested 11if-else

statements11 in the C language, we decided to use C4.5 in this experiment. The

transition to C was necessary so that the decision tree code can be inserted into

the main automatic control program.

Like the learning to fly experiments [SUKM92], we also observed that at the

early stages, data logging during each control cycle caused a vast amount of

data to be recorded, producing inaccurate and huge decision trees. So, we

decided to log the data only when the state of the robot was changed or an

action has occurred. Each control cycle includes reading the position of the

joystick, control switches and IR-sensors, and finally one sonar reading cycle.

The motor speeds and heading are then recorded.

Chapter 4: Leaming Navigation 97

138,

138,

143,

, 255,255,

, 126, 58, ..•

, 126, 58, •••

, 255, 0, 0,255,0,0,1

, 70, 50, 50,223,1,1,0

, 70, 20, 20,239,1,0,4

203,

203,

146,

146,

146,

146,

146,

, 116, 164,

, 116,164,

, 119,231,

, 119,231,

, 119,231,

, 119,231,

, 119,231,

, 252, 55, 55, 223, 0, 1, 0

, 252, 155, 155, 239, 1, 0, 4

, 179, 250, 250, 127, 1, 2, 2

, 179, 255, 255, 255, 0, 1, 1

, 179, o, o, 255, o, o, 1

, 179, 75,75, 159, 1, 1, 0

, 179, 55, 55, 223, 1, o, 4

Figure 4-7. A portion of typical .ile 'robot.data'

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.

Snes_l : Cl_rng, Md_cls, Md_rng, Fr_rng.

Snes_2 : Cl_rng, Md_cls, Md_rng, Fr_rng.

Snes_8: Cl_rng, Md_cls, Md_rng, Fr_rng.

IR_ 1 : Sns, NSns.

IR_5 : Sns, NSns.

Wl_ctl: continuous.

Wl_ctr: continuous.

Bang: 0, 1.

Warning: 0, 1.

Stat_2:0, 1,2,3,4,5,6,7,8,9, 1 0, 11, 12.

Stat_ 1 :0, 1,2,3,4,5,6,7,8,9, 10, 11, 12.

Figure 4-8. A typical names file

Chapter 4: Learning Navigation 98

C4.5 requires two input files. The first file is the data file gathered during the

experiments, which is called 'robot.data' (Figure 4-7) and the second file is

named 'robot.names' (Figure 4-8) and contains the class values, attribute

names and legal attribute values of the data in the data file.

Figure 4-7 is a partial data collected during the experiments with the polar_map

vectors were set to be a continuous value between O and 255. While the Snes_ 1

through Snes_B attributes illustrated in Figure 4-8, represent the latter case,

when the polar_map was changed to a discrete value. The original names file

contained 48 Snes attribute names with the continuous values.

During the first stages, given the two files, C4.5 was used to build a preliminary

decision tree from the raw data, i.e. without filtering or pre-processing of data.

4.5. Generating the Control Rules

After processing the data as described above, we can finally apply C4.5 and

summarize them as rules that can be executed in an automatic controller.

C4.5 has two parameters that can be changed by the user to adjust tree

pruning. We have experimented with them trying to obtain the simplest

workable rules. One parameter controls C4.5's confidence level. That is, the

algorithm will prune the decision tree so that it maintains a minimum

classification accuracy with respect to test data. The second parameter controls

the minimum number of instances required for a split. For example, if this

Chapter 4: Learning Navigation 99

parameter is set to 10, then no branch in tree will be created unless at least 10

examples descend down that branch.

Proceeding with the default parameter settings for C4.S, the decision tree is

generated and the rules are tested using the automatic control program. The

automatic control program is a part of the main program implemented for the

robot training. The main loop was implemented in a way that reading a specific

switch position, it would either be executed in manual control mode or in

automatic control mode. Most of the codes were common, and only certain

. portions of each section would have been executed based on the value of a

designated switch. The code were put among if statements, and satisfying the

situation (for example, if switch is on), the automatic part would have been

executed. Otherwise, the manual control would be performed. The sensor

reading related codes were part of the common sections. Also, other parts

involved the movement command (writing to motor controllers) and sensor

system activity.

Furthermore, the simpler rules are obtained by adjusting the C4.S parameters,

gradually. The procedure is continued until the rule breaks, i.e. the system is no

longer able to control the robot.

Table 1 shows two sample decision trees and the error rate differences. The left

part of the table is the result of the first execution of C4.S on a small logged file.

This file was logged during two short training scenarios. However, the right

hand side part was the result of the execution of C4.S on one of the last logged

files that was a combination of over 250 training trials. It can be observed that

Chapter 4: Learning Navigation 100

the more logged events, the more complex the decision tree would be. Having

more rules in the decision tree is not necessarily a good thing. However, table 1

shows the opposite. The reason is that since the smaller tree is based on a

shorter log file, it does not necessarily represents the complete decision making

process. But, the longer version on the right is based on a longer logged file,

which is also covering more obstacle avoidance training sessions' data.

An event is recorded only when there is a change in the robot's status; that is

when any control setting is changed. A buffer is designated for each of previous

actions (stat_2 and stat_1), and a change is always determined by observing the

current robot's state (stat) and in comparison with the content of the buffer. If

the logging speed is too high, then the side effect of recording all the

intermediate values between the two changes can occur. That is the majority of

the event would be the same as the previously recorded one, causing

unnecessary recorded events as well as confusion in decision-making process.

This undesirable side effect can be discarded with the choice of appropriate

scanning and recording speed.

Chapter 4: Learning Navigation 101

Read 46 cases (16 attributes) from robotl.data

Decision Tree:

IR_l = Sns: Bkwrd (7 .0)
IR_l = NSns:

stat_l = Stop: Frwd (5.0)
stat_l = Frwd_Rght: Frwd (0.0)
stat_l = Rght: Frwd (8.0)
stat_l = Bck_Rght: Frwd
stat_l = Bck_left: Frwd
stat_l = Left: Frwd.
stat_l = Frw_left: Frwd
stat_l = Frwd:
I sens_7 = a_mg: Left
I sens_7 = Md_ds: Left
I sens_7 = Md_mg: Left
I sens_7 = Fr_mg: Rght
stat_l = Bkwrd:
I sens_ 4 = a_mg: Rght
I sens_ 4 = Md_ds: Left
I sens_ 4 = Md_mg: Left
I sens_ 4 = Fr_mg: Rght

Evaluation on training data (46 items):

Before Pruning After Pruning

Size Errors Size Errors Estimate

20 1 (2.2%) 20 1 (2.2%) (26.8%)
(a) Decision tree from first run

Read 966 cases (8 attributes) from robot2.data

Decision Tree:

IR_l = Sns: Bkwrd (147.0)
IR_l = NSns:

stat_l = Stop: Frwd (105.0)
stat_l = Frwd_Rght: Frwd (0.0)
stat_l = Rght: Frwd (168.0)
staLl = Bck_Rght: Frwd
stat_l = Bkwrd: Rght
stat_l = Bck_left: Frwd
stat_l = Left: Frwd
stat_l = Frw_left: Frwd
stat_l = Frwd:

IR_4 = Sns:
I stat_2 = Stop: Rght
I stat_2 = Frwd: Rght
I stat_2 = Frwd_Rght: Rght
I stat_2 = Rght: Left
I stat_2 = Bck_Rght: Rght
I stat_2 = Bkwrd: Rght
I stat_2 = Bck_left: Rght
I stat_2 = Left: Rght
I stat_2 = Frw_left: Rght
IR_4 = NSns:
I IR_5 = Sns: Left
I IR_5 = NSns:
I I stat_2 = Stop: Left
I I stat_2 = Frwd: Left
I I stat_2 = Frwd_Rght: Left
I I stat_2 = Rght: Rght
I I stat_2 = Bck_Rght: Left
I I stat_2 = Bkwrd: Left
I I stat_2 = Bck_left: Left
I I stat_2 = Left: Left
I I stat_2 = Frw_left: Left

Evaluation on training data (966 items):

Before Pruning After Pruning

Size Errors Size Errors Estimate

34 63 (6.S%) 34 63 (6.5%) (8.3%)
(b) Decision tree from final run

Table 1. Two sample decision tree and the differences

By trial and error, we found out that the best rate of scan and recording is

equivalent to a full sonar scan. However, since there are four sensor readings

(except the sonar) during a complete cycle of sonar scanning, it is necessary to

keep a buffer of previous events based on other sensor readings. In case of

difference(s), the previous immediate data were recorded.

Chapter 4: Leaming Navigation 102

4.6. Cause and Time of Action

C4.5 only constructs purely reactive rules, which make decisions base on the

values in a single state of the control program. Time and causality of the data is

not part of the induction program's concepts. That is the rules are not situation

based -- the time and the cause of actions are not considered.

(line 1)

(line 2)

(rule 1)

(rule 2)

IR_l =Sns:

IR_2 = Sns:

Stat = 1 : 0

I Stat=2:2

IR_ ... :

Figure 4-9. Part of a typical decision tree

As a result some strange rules can turn up. For example, the above rule for IR

sensors in the approaching stage (towards the obstacle) was derived from data

that was not filtered as described in the previous section. There were about 300

examples in the training set, and since there were 30 trials combined, the

minimum split size was set to 30, and finally the confidence parameter was set

to 10%. The outcome is shown in Figure 4-9.

The first two lines (line 1 and line 2) state that if the two front lnfrared sensors

have detected an object, the previous direction of motion should be tested. If it

was forward, the robot should stop, and if it was making a

Chapter 4: Learning Navigation 103

turn_right_movement, it should continue. Thus C4.5 has detected a correct

relationship between previous movement and IR sensors. Unfortunately, the

second rule is not correct. By applying the filtering described in section 4.2.5,

problems caused because of the absence of the cause of decision can be

overcome to some extent, but rules like this sometimes still may occur. For the

above case, C4.5 was executed again with minimum split size set to 50

resulting in the following rule:

IR_l =Sns:

IR_2 = Sns:

Stat = 1 : 0

Figure 4-9. Corrected rule

This is quite sensible, if the robot has been moving forward sensing an object it

should stop. As Sammut and colleagues also mentioned in learning to fly

experiments [SUKM92]: "We believe that learning could be improved by

including some knowledge of causality in the system so that it is able to

correctly identify dependencies among variables''.

4.7. Automatic Control

In applying the above decision tree (Table 1, right hand side) to the robot and

it's control program, some level of success have been achieved. The main part

of the automatic control section of the program is made of if-then statements.

The if-then statements are the final result of C-translated rules induced by C4.5

Chapter 4: Learning Navigation 104

from the logged data. During the automatic travel, the appropriate rules for

each control action are selected according to the sensors' readings

[SUKM92].Using this control program the robot can approach an object, sense

it, avoid it, and choose a good direction for the next movement. But, still there

has not been a success in making the robot to recover the original travelling

path after passing the object.

One way to overcome this problem can be providing more history in the data

file. This approach would need to add more buffers into the program,

incorporating more history of the state of the robot, environment and control

actions. However, this can backfire, simply because of the size of the rules and

branches of decisions created based on this complex data file.

The other way, using force field approach, is to calculate the angle of

movement before every log and recording it along with the rest of the vectors.

Thus, later on, while the robot is trying to recover the original travelling path

(and direction), it should be able to reproduce the previous angle with negative

sign. However, this method can cause other problems including entrapment of

the robot around the object. Nevertheless, it may be necessary to change the

approach partially in this regard. This matter is discussed in further details in

the last chapter.

It is very interesting to mention that if we apply the data file taken from only

one trainer to C4.5, then the robot will follow the personal strategy of the

trainer in movements control and decision makings provided by the individual.

Chapter 4: Learning Navigation 105

And that is exactly why it is considered a clone behaviour based control

strategy.

4.8. Induct/ XRDR approach

The same procedure has been carried out using lnduct/XRDR, but in this case

Induct on 966 cases

1 RULE: 1: IR_l = NSns & stat_2 = Stop-> stat_l = Stop

2 RULE: 2: IR_l = Sns -> stat_l = Frwd

3 RULE: 3: stat_2 = Left -> stat_l = Frwd

4 RULE: 4: stat_2 = Rght-> stat_l = Frwd

5 RULE: 5: IR_3 = Sns & stat_2 = Frwd -> stat_l = Rght

6 RULE: 6: IR_3 = NSns & stat_2 = Bkwrcl -> stat_l = Rght

7~~~~=~&~=~&staU=~~staU=~

8 RULE: 8: IR_5 = Sns & stat_2 = Frwd -> stat_l = Bkwrd

9 RULE: 9: IR_3 = NSns & 1~5 = NSns & IR_6 = NSns

& stat_2 = Frwd -> stat_l = Bkwrd

10 RULE: 10: IR_6 = Sns & stat_2 = Frwd -> stat_l = Left

11 RULE: 11: IR_3 = Sns & stat_2 = Bkwrd -> stat_l = Left

12 RULE: 12: IR_5 = Sns & stat_2 = Frwd -> stat_l = Left

13 RULE: 13: IR_3 = NSns & IR_5 = NSns

& stat_2 = Frwd -> stat_l = Left

Rules 13 Oauses O (Mean 0.0)
Evaluating Induced Rules :

Total Correct 714/966 Errors +:252 -:0 Total: 252
26.09% when testing on itself

Figure 4-10. Corresponding Induct rule sample

there is only one file involved starting with the names of classes and attributes

followed by their values. Induct produces a binary tree, and a primary rule set.

The induced rule set by Induct and XRDR format of the same rule set is shown

in Fig. 4-10 and 4-11.

Chapter 4: Learning Navigation 106

While there is a very straightforward way of interpreting the rules produced by

C4.5, the XRDR rules are a bit complicated. Rule 11 of the C4.5 rule set (Table

1, right side) implies that if the robot has been going to the right it should now

move forward (unless one of the sensors is sensing an object on the way

forward). The second rule of XRDR (~ #2, in Figure 4-11) specifies that if

infrared sensor number 3 has sensed the object, and the second previous action

(Stat_2) has been move-forward, then turn right. Also, it says the left & right

branches of the tree are rules #1 (~ #1, in Figure 4-11) and rule #3 (~ #3, in

Figure 4-11) respectively, and the upper node for this node is node #0.

Naturally, the default class value for both is moving forward, which is what we

wou Id expect.

When translated from Induct format to XRDR format it looks like this:

Rule num, conditions, parent true fail branch, cond, comer

~ #1 true = true -(0 8 O> stat_l = Frwd

~ #2 IR_3 = Sns;stat_2 = Frwd -(1 Cl> 3> stat_l = Rght

~ #3 IR_3 = Sns -(2 CD 4> stat_l = Left

~ #4 IR_6 = NSns;stat_2 = Frwd ~3 Cl> S> stat_l = Bkwrd

~ #5 IR_l = NSns;stat_2 = Stop -(4 CD 6> stat_l = Stop

~ #6 stat_2 = Bkwrd "'5 Cl> 7> stat_l = Rght

~ #7 IR_6 = Sns -(6 CD O> stat_l = Left

~ #8 IR_S = Sns -(4 CD O> stat_l = Left

Figure 4-11. XRDR Rule format

The reason for this short comparison is to show that the both c4.5 and RDR

methods produce very similar results. So, in order to avoid the complexity we

have decided to continue using the C4.5 technique.

Chapter 4: Leaming Navigation 107

4.9. Experiments after Upgrade

After making changes for upgrade, as discussed in the last chapter, the

experiments were reproduced and the results were almost the same. However,

better sensory devices, specially the ultra-sound transducer and the micro

controller made a lot of difference in the speed and accuracy. This means that

besides the improvement of speed and accuracy, the experiments were device

independent. However, it is also expected that changing the robotic platform

all together will need a little bit of change in approach, especially in program

parts that are sensor dependent.

The next step was to use wire-less modems in place of the parallel control box

(electronic joystick). Unfortunately, the modems did not match the robotic

platform and we were forced to employ another robot, Fander-1.

4.10. ·Experiments on Fander-1

After the unfortunate problem(s) with the wire-less modems on the purpose

built robot used in the previous experiments, we decided to also change the

approach of the experiments to "grid-based navigational strategies" and

combining it with the previously done trial scenarios.

Also, using the wire-less modems instead of the joystick would provide

observation of the environment from the eyes of the robot, or as the robot sees

the world around it. In the previous set of experiments, since the trainer is using

Chapter 4: Leaming Navigation 108

his/her natural senses which are much more complex than the robot's primitive

sensors, the training to some extent would have been based on the operator's

senses and not the information mostly gathered by the robot. But, if the trainer

steers the robot from a distance without being able to use human senses

directly, and only observe the environment based on the robot's sensor, we

believe that the training would be more successful. The reason is the

involvement of the electronic device errors and delays in the observation as

well, and so the decision making process of the trainer is also based on the

robot's observation.

Furthermore, this strategy would have let us to make a degree of map of the

area visited by the robot during the wandering process.

But, yet again, there were set backs due to technical problems with the wire

less modems. In addition the Fander-1 shaft encoders do not give high enough

resolutions to be used in many navigational strategies including grid-based.

However, it should be mentioned that the resolution is enough to achieve any

navigational task not relying on too much of odometer information. For

example, the previously described experiments could be repeated using

Fander-1. But, as we mentioned before, since the Fander's sensory system is

somehow different in design, the manual and automatic control programs

should be somehow different as well.

Chapter 4: Leaming Navigation 109

4.11. Performance

The performance observed from the automatic control systems, specially the

one based on the rules generated by C4.5 from the filtered and pre-processed

original logged data file have been successful to some extent. As explained

before, the obstacle avoidance behaviour was learnt successfully. However, the

robot could not successfully recover the original travelling path, after skirting

and clearing the obstacle.

To have a better performance, or even further in order to make an accurate

clone, we still need more training trials and more scenarios. Also, better history

buffers and more of them are needed, in case the physical platform stays the

same.

Nevertheless, using improved sensory system, specially purpose designed gyro

systems, the process can be improved dramatically. For example using gyros,

approaching an obstacle the coordinates can be saved and after clearing the

obstacle and according to the situation newer coordination can be calculated

on-the-fly. The calculation can also be based on the saved coordination.

Chapter 4: Leaming Navigation 110

5. Discussion and

Conclusion

5.1. Discussion

One of the interesting things we have learnt in this study is that even good

trainers could not control the robot very smoothly. But, it is essential to note

that the control quality is actually based on the hardware and the control

software, and due to these shortcomings we can not blame all the problems on

trainers. As discussed in previous chapter by changing the hardware, the

software and as a result the training approach should be also altered.

Nevertheless, the quality of the training to some extent is based on the

approach of the trainer.

For example, if the trainer(s) make a mistake and in some control responses due

to special situations choose the wrong action, and the number of the w rong

actions are more that the right ones for the same situation, then the induction

algorithm can come up with the wrong rule as well. However, this problem

can be overcome by choosing more training scenarios and more trainers/trials.

We expected the behavioural cloning simply to be similar to copying a trainers

behaviour. However, similar to the same results observed in Learning to Fly

Chapter 5: Discussion & Conclusion 110

experiment, it was also observed that the robot's behaviour somehow would be

different to that of the trainer. This has been called "clean-up" effect as noted by

Michie, Bain and Hayes-Michie [MBM90] and Sammut [SUKM92]. The

navigation log of any trainer will contain many different and opposite actions

due to human inconsistency and corrections required as a result of inattention.

However, it seems due to the fact that the inducting algorithm built in C4.5

makes the rules based on the majority of matched action instances, it would

actually prune away the wrong affects of the bad logged data. This would make

the control rules, navigating the robot, much more smoother.

This effect was particularly noticeable in the stage of making a turn around and

skirting an obstacle. Primarily, it has been observed that the automatic

controller does a much better and smoother skirting job during this stage.

5.2. Conclusion

So far, most applications of inductive learning have been in classification tasks

such as medical diagnosis. Just as diagnostic rules can be learned by observing

a physician at work, we should be able to learn how to control a system by

watching a human operator at work.

In the case our experiments, the data provided to the induction program (C4.5)

are the data logged to a file when an action taken by the operator/trainer in

response to changes in the system's and/or environment's state.

Chapter 5: Discussion & Conclusion 111

We have used a procedure to inductively build sets of control rules. An

induced rule-set makes up a "strategy" for the given sub-task - a kind of

classifier that maps state records into action names, just like mapping/assigning

patient records into disease names. In our preliminary study we were able to

partly demonstrate the feasibility of learning a specific control task.

Machine learning of control systems may lead to a better understanding of sub

cognitive skills, which are inaccessible to introspection.

For example, if you have been asked about the method that you use to ride a

bicycle, you will not be able to provide an adequate answer because the skill

has been learnt and is executed at a subconscious level. However,

mathematical operations can be explained step-by-step.

As another example, when someone is driving home, no matter how engaged

that person is while driving, he/she would never go the wrong way, of course

unless they have recently moved to the new place. This example provides a

different method of learning, and surely it is not memorization. It can also be

regarded as sort of association in memory of the person, i.e. somehow people

specify some remarkable spots on the way home and then by comparing those

spots would find their way home. However, we believe that is not completely

true.

Furthermore, we believe that it's possible to construct a functional description

of a sub cognitive skill in the form of symbolic rules, just by monitoring the

performance of that skill. This will not only reveal the nature of the skill, but

Chapter 5: Discussion & Conclusion 112

also will aid the training in different aspects of automation. So, as in first

example, by riding over and over again, the person will automatically acquire

the skill in his/her sub-conscious. While in the latter example, the map has

been automatically saved into the sub-conscious of the driver, forcing him

automatically drive home.

Learning control rules by induction/observation provides a new way of building

complex control systems quickly and easily. Where these involve safety critical

tasks, the 11clean-up11 effect mentioned in the previous section holds particular

interest. While our experiments have been primarily concerned with the

navigation of a mobile robot, inductive methods can be applied to a wide

range of related problems.

Though, our experiments have been preliminary concentrated on obstacle

avoidance related problem(s), one can apply the discussed method to a wide

range of related problems such as manufacturing plant control, educational

purposes, or even pattern recognition. This research was aimed at producing a

reliable and reproducible method for building (learning or imitating) controllers

for a mobile robot.

5.3. Future Work

The robot designed for the purpose of these experiments was built during the

time that no affordable robotic platforms were available. And since we started

the experiments with the aim of working on a real physical platform rather than

Chapter 5: Discussion & Conclusion 113

a simulated environment, we were bounded to use the available equipment

and affordable devices.

To be able to better understand the nature of the problems arising from

experiments in the real world, we will have to use a robot benefiting from

today's technology. For example, gyro-sensors, better sonar equipment, wire

less LAN-based network cards (instead of wire-less modems) and so can

provide better opportunity in tackling the problem discussed in this thesis.

Future experiments might attempt to learn other behaviours such as following

another moving object, or finding a spar along a wall. Teaching more primitive

behaviours to the robot can be combined with incremental learning boosting

the ability of the system towards producing a subsumption like structure of

higher-level behaviours.

Also, it can be noteworthy if the wire-less modem based training is combined

with the grid-base occupancy approach. Or even further, one can combine the

learning/cloning procedure with other methods of providing information. For

example, the obstacle avoidance behaviour can be broken into two parts. The

hard-coded obstacle skirting and clearance can be provided to the robot and

the trainer can choose the specific hard-coded behaviour on the arising of the

condition. This would make the learning procedure faster and easier. It is

exactly similar to the situations where kids are trained to do something specific

associated with certain condition. For example, one should put down the fire

Chapter 5: Discussion & Conclusion 114

only when in hazardous situation. No one in the right mind would kill the

heating fire in a winter night.

Future work can also be directed to finalize the work started, and also to

combine these control behaviours together into a subsumption architecture to

control the navigation of a mobile robot [Bro86a]. The same method of training

can be used to obtain other simple and primitive behaviours like the ones

mentioned above. Combining those primitive behaviours by teaching/training

the robot when to use them can be implemented in to a behavioural cloning

subsumption architecture.

Chapter 5: Discussion & Conclusion 115

Bibliography

[AB75] Ambler, A.P. and H.G. Barrow (1975). "A Versatile System for

Computer Controlled Assembly', Artificial Intelligence, Vol.6:

pp.129-156.

[ACH97] Aycard, 0., F. Charpillet and J.P. Haton (1997). "A New Approach

to Design Fuzzy Controllers for Mobile Robots Navigation", 1997

IEEE International Symposium on Computational Intelligence in

Robotics and Automation (CIRA '97),

[AM90] Anderson, C.W. and W.T. Miller (1990). "A Challenging Set of

Control Problems', Neural Network for Control, MIT Press, pp.475-

511.

[Ama97] Amant, R.S. (1997). "Navigation and Planning in a Mixed-Initiative

User Interface', Proceedings of 14th International Conference on

Artificial Intelligence and 9th Innovative Applications of Artificial

Intelligence Conference.

[Arc87] Arkin, R.C. (1987). "Motor Schema Based Navigation for a Mobile

Robot: An Approach to Programming by Behavior', Proceedings of

the IEEE International Conference on Robotics and Automation.

Bibliography 116

[Arc89]

[Arc90]

Arkin, R.C. (1989). "Motor Schema Based Mobile Robot

Navigation", International Journal of Robotics Research, Vol.8 (4):

pp.91-112.

Arkin, R.C. (1990). "Integrating Behavioral, Perceptual, and World

Knowledge in Reactive Navigation", Robotics and Autonomous

Systems, Vol.6, pp.1 7-34.

[Arc92a] Arkin, R.C. (1992a). "Cooperation Without Communication: Multi

Agent Seema-Based Robot Navigation", Journal of Robotic Systems.

[Arc92b] Arkin, R.C. (1992b). "Behavior-based Robot Navigation in Extended

Domains', Journal of Adaptive Behavior, Vol.1 (2): pp.201-225.

[AS97]

[AT90]

[Bar90]

[8883]

Atkeson, C.G. and S. Schall (1997). "Robot Learning from

Demonstration", Proceedings of the 14th International Conference on

Machine Learning (ICML 19~}-

Amidi, 0. and C. Thorpe (1990). "Integrated Mobile Robot Control',

SPIE, Vol.1388 : pp.504-523.

Barto, A.G. (1990). "Connectionist Learning for Control', Neural

Network for Control, MIT Press, pp.5-59.

Buchanan, G., D. Barstaw, et al. (1983). "Constructing an Expert

System", Building Expert Systems, Massachusetts, Addison-Wesley,

Bibliography 117

[8894]

[8D91]

Vol.36: pp.127-168.

Bell, D.A. and J. Borenstein (1994). "An Assistive System for

Wheelchairs Based Upon Mobile Robot Obstacle Avoidance", IEEE

International Conference on Robotics and Navigation.

Basye, K., T. Dean, et al. (1991). "Coping with Uncertainty in Map

Learning•, Autonomous Mobile Robots, Vol.1: Perception, Mapping,

and Navigation, IEEE Computer Society, pp.347-352.

[Ben96] Benson, S.S. (1996). "Learning Action Model for Reactive

Autonomous Agents'~ Stanford University.

[BF91] Bradshaw, J.M., K.M. Ford, et al. (1991). "Knowledge Representation

of Knowledge Acquisition: A Three Schemata Approach", Proceeding

of 6th AAAI Sponsored Banff Knowledge Acquisition for Knowledge

Based Systems Workshop, Banff, Canada.

[BK90a] Borenstein, J. and Y. Koren (1990a). "Real-Time Map Building for

Fast Mobile Robot Obstacle Avoidance•, SPIE, Vol.1388: Mobile

Robots V.

[BK90b] Borenstein, J. and Y. Koren (1990b). "Real-Time Obstacle Avoidance

for Fast Mobile Robots in Cluttered Environments', IEEE International

Conference on Robotics and Automation, Cincinnati, OH.

Bibliography 118

[BK91]

[BK91]

[BM78]

[BN92]

[8090]

[BR97]

Borenstein, J. and Y. Koren (1991). "The Vector Field Histogram -

Fast Obstacle Avoidance for Mobile Robots', IEEE Journal of Robotics

and Automation, Vol.7 (3): pp.278-288.

Bozma, 0. and R. Kuc (1991). "Building a Sonar Map in a Specula

Environment Using a Single Mobile Sensor'', IEEE Transaction on

Pattern Analysis and Machine Intelligence, Vol.13 (12): pp.1260-

1269.

Buchanan, G. and T.M. Mitchell (1978). "Model Directed Learning

Production Rules', Pattern-Directed Inference Systems, D.A.

Waterman and F. Hayes-Roth (Eds.), New York, Academic Press,

pp.297-312.

Banta, L., R.S. Nutter, et al. (1992). "Mode-Based Navigation for

Autonomous Mine Vehicles•, IEEE Transaction on Industry

Applications, Vol.28 (1): pp.181-184.

Beckerman, M. and E.M. Oblow (1990). "Treatment of Systematic

Errors in the Processing of Wide-Angle Sonar Sensor Data for Robotic

Navigation", IEEE International Conference on Robotics and

Automation, Vol.6 (2).

Blank, D.S. and J.O. Ross (1997). "Learning in a Fuzzy Logic Robot

Controller'', Proceedings of 14th International Conference on Artificial

Bibliography 119

[Bra91]

[Bra93]

[Bra96]

[Bra97]

Intelligence and 9th Innovative Applications of Artificial Intelligence

Conference.

Bratko, I. (1991). "Qualitative Modeling: Learning and Control',

Proceedings of the 61h Czechoslovak Conference on Artificial

Intelligence, Prague.

Bratko, I. (1993). "Qualitative Reasoning about Control',

Proceedings of ETFA'93 Conference, Cairns, Austria.

Bratko, I. (1996). "Deriving Qualitative Control for Dynamic

Systems'', Machine Intelligence 14, K. Furukawa, D. Michie and S.

Muggleton (Eds.), Oxford: Clarendon Press.

Bratko, I. (1997). "Qualitative Reconstruction of Control Skills'', 11 th

International Workshop on Qualitative Reasoning, Cortona, Italy.

[Bre84] Breiman, L. (1984). Classification and Regression Trees, Belmont,

Wadsworth.

[Bro83] Brooks, R.A. (1983). "Find-Path for a PUMA-Class Robof',

Proceeding of AAAI '83, pp. 40-44.

[Bro86a] Qrooks, R.A. (1986a). "A Robust Layered Control System for a

Mobile Robof', IEEE Journal of Robotics and Automation, Vol.RA-2

Bibliography 120

(1): pp.14-23.

[Bro86b] Brooks, R.A. (1986b). "Achieving Artificial Intelligence Through

Building Robots'~ MIT Al Memo 899.

[Bro89]

[Bro90]

[BS83]

[BS97]

[BU95]

[Buc78]

[Buc86]

Brooks, R.A. (1989). 11 A Robot that Walks: Emergent Behavior from a

Carefully Evolved Network', Neural Computation, Vol.1 (2).

Brooks, R.A. (1990). "The Behavior Language'~ MIT Al Memo 1227.

Barto, A., R. Sutton, et al. (1983). 11 Neuron like Adaptive Elements

that can Solve Difficult Learning Control Problems', IEEE Transaction

on Systems, Man, and Cybernetics, Vol.13 (5): pp.834-846.

Bain, M. and C.A. Sammut (1997). 11 Structuring Learning for

Behavioral Cloning Tasks'.

Bratko, I., T. UrbarPi-,et al. (1995). "Behavioral Cloning: Phenomena,

Results and Problems', Automated Systems Based on Human Skills,

IFAC Symposium, Berlin.

Buchanan, G. (1978). 11 Dendral And Meta-Dendral: Their

Application Dimension", Artificial Intelligence, Vol.11, pp.5-24.

Buchanan, B. (1986). 11 Expert Systems: Working Systems and the

Bibliography 121

Research Literature'', Expert Systems, Vol.3: pp.32-51.

[Bun88] Buntine, W. (1988). "Generalized Subsumption and its Applications

to Induction and Redundancy', Artificial Intelligence, Vol.36:

pp.149-1 76.

[Car83a] Carbonell, J.G. and et al. (1983a). "An Overview of Machine

Learning', Machine Learning and Artificial Intelligence Approach,

R.S. Michalski, J.G. Carbonell and T. M. Mitchell (Eds.), Palo Alto,

California, Morgan-Kaufmann, pp.3-23.

[Car83b] Carbonell, J.G. and et al. (1983b). "Learning by Analogy:

[Car89]

[CG83]

Formulating and Generalizing Plans from Past Experience'', Machine

Learning and Artificial Intelligence Approach, R.S. Michalski, J.G.

Carbonell and T.M. Mitchell (Eds.), Palo Alto, California, Morgan

Kaufmann, pp.13 7-161.

Carbonell, J.G. (1989). "Introduction: Paradigms for Machine

Learning', Artificial Intelligence, Vol.40 (1-3): pp.1-9.

Carpenter, G.A. and S. Grossberg (1983). "A Massively Parallel

Architecture for a Self-Organizing Neural Pattern Recognition

Machine", Computer Vision, Graphics, and Image Processing, pp.15-

54.

Bibliography 122

[CH89]

[CJ89]

[CM93]

[CN90]

Compton, P.J. and R. Horn (1989). "Maintaining an Expert System",

Applications of Expert Systems, Compton, P.J. and R. Horn (Eds.),

London, Addison-Wesley, pp.366-385.

Compton, P.J. and R. Jansen (1989). 11A Philosophical Basis for

Knowledge Acquisition", Proceedings of 3rd European Knowledge

Acquisition for Knowledge Systems Workshop.

Connell, J. and S. Mahadevan (1993). Robot Learning, Kluwer

Academic Publishers.

Constant, P., S. Natwin, et al. (1990). "LEW: Learning by Watching',

IEEE Transaction on Pattern Analysis and Machine Intelligence,

Vol.12 (3): pp.294-308.

[Com92] Compton, P.J. (1992). "Insight and Knowledge', Proceedings of

AAAI, Spring Symposium: Cognitive Aspects of Knowledge

Acquisition, Stanford University.

[Cro85] Crowley, J.L. (1985). "Navigation for an Intelligent Mobile Robot',

IEEE journal of Robotics and Automation, Vol.RA-1 (1).

[CU87] Connell, M.E. and P.E. Utgoff (1987). "Learning to Control a

Dynamic Physical System", Proceeding of the 6th MAI International

Conference.

Bibliography 123

[Dedo72] DeDombal, F.T. (1972). "Computer Aided Diagnosis f Acute

Abdominal Pain", British Medicine Journal, Vol.2: pp.9-13.

[Dej86] Dejong, G.F. (1986). "Explanation Based Learning: An Alternative

View', Machine Learning, Vol.1: pp.145-176.

[Dela92] Delafontaine, J. (1992). "Autonomous Spacecraft Navigation and

Control for Comet Landing', Journal f Guidance, Control, and

Dynamics, Vol.15 (3): pp.567-576.

[Dev87] Devorak, D.L. (1987). "Expert Systems for Monitoring and Control'~

The University of Texas at Austin.

[DK90] Davies, H.C., A.E. Kayaalp, et al. (1990). "Autonomous Navigation

in a Dynamic Environment', SPIE, Vol.1388 (Mobile Robots V):

pp.165-175.

[Dod90] Dodds, D.R. (1990). "Coping With Complexity in the Navigation of

an Autonomous Mobile Robot', SPIE, Vol.1388 (Mobile Robots V):

pp.448-452.

[Dor96] Dorigo, M. (1996). "Introduction to the Special Issue on Learning

Autonomous Robots', IEEE Transactions on Systems, Man, and

Cybernetics, Vol.26 {June): pp.361-364.

Bibliography 124

[0S97] DeRougement, M. and C. Schlieder (1997). "Spatial Navigation with

Uncertain Deviations', Proceedings of 14m International Conference

on Artificial Intelligence and 9th Innovative Applications of Artificial

Intelligence Conference.

[Dze93] Dzeroski, S. (1993). 11 Discovering Dynamics', Prceeding of the 10th

International Cnference on Machine Learning, Amhert,

Massachusetts.

[EG94a] Everett, H.R., G.A. Gilbreath, et al. (1994a). "Controlling Multiple

Security Robots in a Warehouse Environment', Proceedings of the

Conference n Intelligent Robotics in Field, Factory, Service, and

Space (CIRFFSS '04), NASA, Linthicum Heights, MD, USA.

[EG94b] Everett, H.R., G.A. Gilbreath, et al. (1994b). "Coordinated Control

of Multiple Security Robots', SPIE, Vol.2058: pp.292-305.

[Elf86] Elfes, A. (1986). "A Distributed Control Architecture for an

Autonomous Mobile Robot', Artificial Intelligence, Vol.1 (2): pp.99-

108.

[Elf89a] Elfes, A. (1989a). "Using Occupancy Grids for Mobile Robot

Perception and Navigation", IEEE Computer Magazine, Vol.22 (6):

pp.46-57.

Bibliography 125

[Elf89b] Elfes, A. (1989b). "Occupance Grids: A Probabilistic Framework for

Mobile Robot Perception and Navigation'~ Electrical and Computer

Engineering Department / Robotics lnstituteL Carnegie Mellon

University,.

[ESM94] Esmaili, N., C.A. Sammut, and G.A. Mann (1994). "Navigation

Learning by a Mobile Robot', Proceedings of ICEE'94, Tarbial

Modaress University, Tehran, Iran.

[ESS95]

[Eve82]

[Fau84]

[FH90]

Esmaili, N., C.A. Sammut, and G.H.M. Shiraz (1995). "Behavioral

Cloning in Control of Dynamic Systems'', Proceedings of 1995 IEEE

International Conference on Systems, Man, and Cybernetics SMC

'95, Vancouver, Canada.

Everett, H.R. (1982). '~ Microprocessor Controlled Autonomous

Sentry Robot'~ Monterey, CA, Naval Postgraduate School.

Faugeras, O.D. (1984). "Object Representation, Identification, and

Positioning from Range Data", 1 st International Symposium on

Robotics Research, Cambridge, MA.

Fennema, C., A. Hanson, et al. (1990). "Model-Directed Mobile

Robot Navigation", IEEE Transaction on Systems, Man, and

Cybernetics, Vol.20 (6): pp.1352-1369.

Bibliography 126

[Fly88]

[FR86]

[Fra96]

[Fry87]

[GC92]

[GE88]

Flynn, A.M. (1988). "Combining Sonar and Infra-Red Sensors for

Mobile Robot Navigation", The International Journal of Robotics

Research, Vol.7 (6).

Forsyth, R. and R. Rada (1986). Machine Learning: Applications in

Expert Systems and Information Retrieval, NewYork, Printed by

Horwood Halsted.

Franklin, J. (1996). Robot Learning. Number 2-3, Kluwer Academic

Press.

Fryxell, R.C. (1987). "Navigation Planning Using Quadtrees•, SPIE,

Cambridge, MA, Vol. Mobile Robots II,: pp.256-261.

Gaines, B.R. and P.J. Compton (1992). "Induction of Ripple Down

Rules•, Proceedings of Al 192: 5th Australian Joint Conference on

Artificial Intelligence, Hobart, Australia, World Scientific, Singapore,

Gilbreath, G.A. and H.R. Everett (1988). "Path Planning and

Collision Avoidance for an Indoor Security Robot•, SPIE, Cambridge,

MA pp.19-27.

[Geh89] Gehani, N.H. (1989). "Concurrent Programming and Robotics', The

International Journal of Robotics Research, Vol.8 (2).

Bibliography 127

[Gol89]

[GP86]

[Gp97]

Goldberg, T. (1989). Genetic Algorithms, Addison-Wesley.

Grefenstette, J.J. and C. B. Pettey (1986). "Approaches to Machine

Learning with Algorithms•, IEEE, pp.55-60.

Gaudiano, P. and C.C. Phone (1997). 11Adaptive Obstacle Avoidance

with a Neural Network for Operant Conditioning: Experiments with

Real Robots•, 1997 IEEE International Symposium on Computational

Intelligence in Robotics and Automation (CIRA 197),

[GRL87] Golding, A., P.S. Rosenbloom and J.E. Laird (1987). "Learning

General Search Control from Outside Guidance•, Proceedings of

IJCAI 187: International Joint Conference on Artificial Intelligence,

Milano, Italy.

[GS94]

[HA90]

Grefenstette, J.J. and A. Schultz (1994). "An Evolutionary Approach

to Learning in Robotics•, Proceedings of the 1994 Workshop on

Robot Learning.

Herman, M., J.S. Albus, et al. (1990). 11 /ntelligent Control for

Multiple Autonomous Undersea Vehicles•, Neural Network for

Control, MIT Press, pp.427-511.

[HaRo77] Hayes-Roth, F. (1977). 11 Knowledge Acquisition from Structural

Descriptions•, Proceedings of Fifth International Joint Conference on

Bibliography 128

Artificial Intelligence IJCAI '77, Cambridge, Massachusetts.

[HoRo83 Hayes-Roth, F. (Ed.) (1983), Building Expert Systems, Teknowledge

] series in knowledge engineering, Reading, Massachusetts, Addison

Wesley.

[HP91]

[IK91]

[JS90]

[KA90]

[Kae93]

Hartley, R. and F. Pipitone (1991). "Experiments with the

Subsumption Architecture", Proceedings f the 1991 IEEE International

Conference on Robotics and Automation.

lkegami, T., J.1. Kato, et al. (1991). 11 Sensor Data Integration Based

on the Border Distance Model', Autonomous Mobile Robots, Vol.1:

Perception, Mapping, and Navigation (IEEE Computer Society):

pp.339-346.

Jorgensen, C.C. and C. Schley (1990). "A Neural Network Baseline

Problem for Control of Aircraft Flair and Touchdown", Neural

Network for Control, MIT Press, pp.403-425.

Krozel, J. and D. Andisani (1990). 11 Navigation Path Planning for

Autonomous Aircraft: Voronoi Diagram Approach", Journal of

Guidance, Control, and Dynamics, Vol.13 (6): pp.1152-1154.

Kaelbling, L.P. (1993). Learning in Embedded Systems, Cambridge,

Massachusetts, MIT Press.

Bibliography 129

[Kar92]

[KB89]

[KB91]

[KK90]

[KL90]

[Kli71]

[KL93]

Karalic, A. (1992). "Employing Linear Regression in Regression Tree

Leaves•, Proceeding of the 10th European Conference on Artificial

Intelligence, Wein, Austria, John Wiley & Sons.

Kuc, R. and B. Barshan (1989). "Navigating Vehicles Through an

Unstructured Environment with Sonar•, IEEE International

Conference on Robotics and Automation.

Koren, Y. and J. Borenstein (1991). "Potential Field Methods and

Their Inherent Limitations for Mobile Robot Navigations•, Proceeding

of 1991 IEEE International Conference on Robotics and Automation,

Kahn, P., L. Kitchen, et al. (1990). "A Fast Line Finder for Vision

Guided Robot Navigation", IEEE Transaction on Pattern Analysis and

Machine Intelligence, Vol.12 (11): pp.1098-1105.

Kibler, D. and P. Langley (1990). "Machine Learning as an

Experimental Science", Readings in Machine learning, J.W. Shavlik

and T.G. Dietterich (Eds.), Morgan Kauffman Publishers Inc., pp.38-

43.

Kling, R.E. (1971). "A Paradigm for Reasoning by Analogy', Artificial

Intelligence, Vol.2: pp.147-187.

Ko, N.Y., R.H. Lee, et al. (1993). "An Approach t Robot Motion

Bibliography 130

Planning for Time-Varying Obstacle Avoidance Using the View-Time

Concept'', Robotica, Vol.11 (4): pp.315-327.

[Kon84] Kononenko (1984). "Experiments in Automatic Learning of Medical

Diagnostic Rules'~ Ljubjana, Yogoslavia, Jozef Stefan Institute.

[Kor92]

[Koz93]

[KR90]

[Kro84]

[KS87]

Kortenkamp, D. (1992). "Integrating Obstacle Avoidance, Global

Path Planning, Visual Cue Detection and Landmark Triangulation in

a Mobile Robot, SPIE, Vol.1831 (Mobile Robots VII): pp.515.

Koza, J. (1993). Genetic Programming, MIT Press.

Kaelbling, L.P. and S.J. Rosenschein (1990). "Action and Planning in

Embedded Agents', Robotics and Autonomous Systems, Vol.6 (1 &2):

pp.35-48.

Krogh, R.H. (1984). 11A Generalized Potential Field Approach to

Obstacle Avoidance Contror•, SME Conference Proceeding for

Robotics Research: The Next Five Years and Beyond, Bethlehem,

Pennsylvania USA.

Kuc, R. and M. W. Siegel (1987). "Physically Based Simulation

Model for Acoustic Sensor Robot Navigation", IEEE Transaction on

Pattern analysis and Machine Intelligence, Vol.PAMl-9 (6).

Bibliography 131

[KT86]

[Kuf97]

[LD92]

[Lea86]

[Lee90]

[Leo91]

[LK96]

Krogh, B.H. and C.E. Thorpe (1986). "Integrated Path Planning and

Dynamic Steering for Autonomous Vehicles•, Proceedings of 1986

IEEE International Conference on Robotics and Automation,

Washington DC, USA, IEEE Computer Society Press.

Kufrin, R. (1997). "Generating C4.5 Production Rules in Paralle/1,

Proceedings of 14th International Conference on Artificial Intelligence

and 9th Innovative Applications of Artificial Intelligence Conference.

Leonard, J.J. and H.F. Durrant-Whyte (1992). Directed Sonar

Sensing for Mobile Robot Navigation, Kluwer Academic Publishers.

Leach, W.J. (1986). "Proceedings of the International Conference

and Exhibit', Instrument Society f America, Research Triangle Park,

NC.

Lee, C.C. (1990). IEEE Transaction on Systems, Man, and

Cybernetics.

Leonard, J.J. (1991). "Mobile Robot Localization by Tracking

Geometric Beacons•, IEEE Transaction on Robotics and Automation,

Vol.7 (3).

Lee, L.F. and A. Kean (1996). "An Architecture for Autonomous

Flying Vehicles: A Preliminary Report•, Proceedings of PRICAI 196:

Bibliography 132

Topics in Artificial Intelligence, 4th Pacific Rim International

Conference on Artificial Intelligence, Springer-Verlag.

[LL90] Levitt, T.S. and D. T. Laeton (1990). "Qualitative Navigation for

Mobile Robots', Artificial Intelligence, Vol.44: pp.305-360.

[LNR86] Laird, J., A. Newell, and P.S. Rosenbloom (1986). "Chunking in

Soar: The Anatomy of a General Learning Mechanism", Machine

Learning, Vol.1 (1): pp.11-46.

[LNR87] Laird, J., A. Newell, and P.S. Rosenbloom (1987). "Soar: An

Architecture for General Intelligence', Artificial Intelligence, Vol.33

(3): pp.1-64.

[LoPe79] Lozano-Perez, T. (1979). "An Algorithm for Planning Collision Free

Paths among Polyhedral Objects', Communications of the ACM,

Vol.22 (10): pp.560-570.

[LS90]

[LS87]

Lumelsky, V. and T. Skewis (1990). "Incorporating Range Sensing in

the Robot Navigation Function", IEEE Transaction on Systems, Man,

and Cybernetics, Vol.20 (5): pp.1058-1991.

Lumelsky, V.J. and A.A. Stepanov (1987). ,. Path-Planning

Strategies for a Point Mobile Automaton Moving Admist

Unknown Obstacles of Arbitrary Shape", Algorithmica, Vol.2

Bibliography 133

(4): pp.403-430.

[Mae89] Maes, P. (1989). "How to Do the Right Thing', Connection Science,

Vol.1 (3): pp.291-323.

[Mah94] Mahadevan, S. (1994). Proceedings of the Workshop on Robot

Learning, held in conjunction with the 11 th International Conference

on Machine Learning IMLC '94.

[Mak91] Makarovic, A. (1991). "A Qualitative Way of Solving the Pole

Balancing Problem", Machine Intelligence, J. Hayes, D. Michie and

E. Tyugu (Eds.), Oxford, pp.241-258.

[MB90] Maes, P. and R.A. Brooks (1990). "Learning to Coordinate

Behaviors', Proceedings of MAl-90, Boston, MA.

[MBM90] Michie, D., M. Bain, J.E. Heyes-Michie (1990). "Cognitive Model

from Sub-Cognitive Skills', Knowledge Base Systems in Industrial

Control, M. Grimble, S. McGhee and P. Mowforth (Eds.), Peter

Peregrinus, pp.71-99.

[MC68] Michie, D. and R.A. Chambers (Eds.) (1968), Boxes: An Experiment

in Adaptive Control, Machine Intelligence 2, Edinburgh, Oliver and

Boyd.

Bibliography 134

[Mc90]

[MC91]

[MC94]

[McKe]

[ME85]

Minton, S., J.G. Carbonell, et al. (1990). "Explanation-Based

Learning: A Problem Solving Perspective', Machine Learning:

Paradigms and Methods, J.G. Carbonell (Ed.), MIT-Elseveir Press.

Mahadevan, S. and J. Connell (1991). "Scaling Reinforcement

Learning to Robotics by Exploiting the Subsumption Architecture',

Proceedings of the 8th International Workshop on Machine Learning.

Michie, D. and R. Camacho (1994). "Building Symbolic

Representation of Intuitive Real-Time Skills from Performance Data",

Machine Intelligence, K. Furukawa, D. Michie and S. Muggleton

(Eds.), Vol.13: pp.1-30.

McKerrow, P.J. "A Data Fusion Architecture for Ultrasonic

Mapping'.

Moravec, H.P. and A.E. Elfes (1985). "High Resolution Maps from

Wide Angle Sonat', proceedings of the 1985 IEEE International

Conference on Robotics and Automation, St. Louis pp.116-121.

[MFB95] Montgomery, J.F., A.H. Flagg, G.A. Bekey (1995). "The USC AFV-1:

A Behavior Based Entry in the 1994 International Aerial Robotics

Competition", IEEE Expert/ Intelligent Systems & Their Applications,

Vol.10 (2): pp.16-22.

Bibliography 135

[Mic82] Michie, D. (1982). "The State of the Art in Machine Learning•,

Introductory Reading in Expert Systems, D. Michie, Gordon and

Breach (Eds.), pp.208-229.

[Mic83] Michalski, R.S. (1983). "A Theory and Methodology of Inductive

Learning•, Artificial Intelligence, Vol.20 (2): pp.111-161.

[Mic84] Michalski, R.S. (1984). "A Theory and Methodology of Inductive

Learning•, Machine Learning: An Artificial Intelligence Approach,

R.S. Michalski, J.G. Carbonell and T.M. Mitchell (Eds.) Morgan

Kaufmann Publishers, pp.83-134.

[Mic90] Michalski, R.S. (1990). "Research in Machine Learning: Recent

Progress, Classification of Methods, and Future Directions', Machine

Learning, and Artificial Intelligence Approach, Y. Kordratoff and R.S.

Michalski (Eds.), San Mateo, California, Morgan Kaufmann Pub. Inc.,

Val.Ill.

[Mic93] Michie, D. (Ed.) (1993), Knowledge, Learning and Machine

Intelligence, Intelligent Systems, New York, Plenum Press.

[Min61] Minsky, M. (1961). "Steps towards Artificial Intelligence', The

Institute of Radio Engineers Proceedings, Vol.49.

[Min90] Minton, S. (1990). Machine Learning: Paradigms and Methods, MIT-

Bibliography 136

[Mit88]

[Mit89]

Elseveir Press.

Mitchell, J.S.B. (1988). "An Algorithm Approach to Some Problems

in Terrain Navigation", Artificial Intelligence, Vol.37: pp.171-201.

Mitchell, T.M. (1989). "Towards a Learning Robot'~ Carnegie-Mellon

University.

[Mit97] Mitchell, T.M. (1997). Machine Learning, New York, McGraw Hill.

[MKCS91 Mansouri, Y., J.G. Kim, P.J. Compton and C.A. Sammut (1991). "An

] Evaluation of Ripple Down Rules', Australia, KAW 1991.

[MKK86] Mitchell, T., R.M. Keller and S.T. Kedar-Cabelli (1986). "Explanation

Based Generalization: A Unifying View", Machine Learning, Vol.1:

pp.47-80.

[MMS85] Mitchell, T.M., S. Mahadevan and LI. Steinberg (1985). "LEAP: A

Learning Apprentice for VLSI Design", Proceedings of IJCAI '85, Los

Angeles, CA pp.616-623.

[MP90]

[MR86]

Malik, R. and E.T. Polkowski (1990). "Robot Self-Location Based on

Corner Detection", SPI E, Vol.1388 (Mobile Robots V): pp.306-316.

McClelland, J. and D. Rumelhrt (Eds.) (1986), Parallel Distributed

Processing: Explorations in the Microstructure of Cognition, Bradfrd

Bibliography 137

[MS90]

Books.

Miller, W.T., R.S. Sutton, et al. (1990). Neural Networks for

Control,, MIT-Elseveir Press.

[MST94] Michie, D., D.J. Spiegelhalter and C.C. Taylor (Eds.) (1994),

Machine Learning, Neural and Statistical Classification, England, Ellis

Horwood.

[Mug88] Muggleton, S. (1988). "Machine Invention of First-Order Predicates

by Inverting Resolution", Proceedings of the Fifth Machine Learning

Workshop, Ann Arbor, Ml.

[NL95]

[NP90]

[PH93]

Nam, Y.S., B.H. Lee, et al. (1995). "An Analytic Approach to Moving

Obstacle Avoidance Using an Artificial Potential Field', Proceedings

of 1995 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS '95), Pittsburg, Pennsylvania USA, IEEE Computer

Society Press.

Narendra, K.S. and K. Parthasarathy (1990). "Identification and

Control of Dynamic Systems Using Neural Networks', IEEE

Transaction on Neural Networks,: pp.4-27.

Pearson, D.J., S.B. Huffman, et al. (1993). "A Symbolic Solution to

Intelligent Real-Time Control', Vol.11: pp.279-291.

Bibliography 138

[Pom90] Pomerleau, D. (1990). "Neural Network Based Autonomous

Navigation", Vision and Navigation: The CMU Navlab, C. Thorpe

(Ed.), Kluwer Academic Publishers.

[Pom93a] Pomerleau, D.A. (1993a). Neural Network Perception for Mobile

Robot Guidance, Norwell, Massachusetts, Kluwer Academic

Publishers.

[Pom93b Pomerleau, D.A. (1993b). "Knowledge-Based Training of Artificial

] Neural Networks for Autonomous Robot Driving', Robot

[Put94]

[Qc93]

Learning,,Pomerleau, D.A. (Ed. Norwell, Massachusetts, Kluwer

Academic Publishers.

Puterman, M. (1994). Markov Decision Processes: Discrete Dynamic

Stochastic Programming,, John Wiley.

Quinlan, J.R. and R.M. Cameron-Jones (1993). "FOIL: A Midterm

reporf', Proceedings of European Conference n Machine Learning

ECML '97, Springer-Verlag.

[Qui79] Quinlan, J.R. (1979). "Discovering Rules by Induction from Large

Collectin of Examples', Expert Systems in The Micro-electronic Age,

D. Michie (Ed.), Edinburgh, Edinburg University Press.

[Qui86] Quinlan, J.R. (1986). "Induction of Decision Tress', Machine

Learning, Vol.1 (1): pp.81-106.

Bibliography 139

[Qui87a] Quinlan, J.R. and e. al. (1987a). "Induction Knowledge Acquisition:

A case Study, Application of Expert Systems", Application of Expert

Systems, J.R. Quinlan (Ed.), Turing Institute Press, pp.157-173.

[Qui87b] Quinlan, J.R. (1987b). "Simplifying Decision Tress', International

Journal of Man-Machine Studies, Vol.27: pp.221-234.

[Qui89] Quinlan, J.R. (1989). "Learning Relations: Comparison of Symbolic

and Connectionist Approach", Proceedings of ISSEK Workshop,

Udine, Italy.

[Qui90] Quinlan, J.R. (1990). "Learning Logical Definition from Relations',

Machine Learning, Vol.5 (239-266).

[Qui93] Quinlan, J.R. (1993). C4.5: Programs for Machine Learning,, Morgan

Kaufmann.

[Rao89] Rao, N.S.V. (1989). "Algorithmic Framework for Learned Robot

Navigation in Unknown Terrains', IEEE Computer Magazine, Vol.22

(6): pp.37-43.

[RB90] Raschke, U. and J. Borenstein (1990). "A Comparison of Grid-Type

Map-Building Techniques by Index of Performance", Proceedings of

1990 IEEE International Conference on Robotics and Automation,

Los Alamitos, CA, USA, IEEE Computer Society Press, pp.1828-1832.

Bibliography 140

[RB92]

[RL86]

[RN95]

[Rog97]

[RR90]

[RS97]

Roberts, B. and B. Bhanu (1992). "Inertial Navigation Sensor

Integrated Motion Analysis for Autonomous Vehicle Navigation",

Journal of Robotic Systems, Vol.9 (6): pp.817-842.

Rosenbloom, P.S. and J.E. Laird (1986). "Mapping Explanation Based

Generalization onto Soar', Proceedings of MAI 186, Philadelphia,

PA

Russel, S. and P. Norvig (1995). Arificial lntellignece, A Modern

Approach, Prentice Hall Inc.

Rogers, S.O. (1997). "Symbolic Performance & Learning in

Continuos-Valued Environment'~ Michigan, The University of

Michigan.

Roning, J., J. Riekki, et al. (1990). "Simulator for Developing Mobile

Robot Control Systems", SPIE, Vol.1388 (Mobile Robots V): pp.350-

360.

Rybski, P., S. Stoeter, et al. (1997). "A Cooperative Multi-Robot

Approach to the Mapping and Exploration of Mars', Proceedings of

14th International Conference on Artificial Intelligence and 9th

Innovative Applications of Artificial Intelligence Conference.

[Sam59] Samuel, A.L. (1959). "Some Studies in Machine Learning Using the

Game of Checkers', IBM Journal of Research and Development,

Bibliography 141

pp.211-229.

[Sam81] Sammut, C.A. (1981). "Learning Concepts by Performing

Experiments'~ "Department of Computer Science"L Sydney, Australia,

University of New South Wales.

[SB86]

[Sc88]

[SC97]

[SD94]

[She93]

Sammut, C.A. and R.R. Banerji (1986). "Learning Concepts by

Asking Questions', Machine Learning: An Artificial Intelligence

Approach, R.S. Michalski, J.G. Carbonell and T.M. Mitchell (Eds.),

Los Altos, CA, Morgan Kaufmann Pub. Inc., Vol.ll: pp.167-191.

Sobek, R.P. and R.G. Chatila (1988). "Integrated Planning and

Execution Control for an Autonomous Mobile Robot', Artificial

Intelligence in Engineering, Vol.3 (2): pp.103-113.

Stormont, D., J. Canulette, et al. (1997). "Lbokhod: The University

of New Mexico's Robotic Mars Rover', Proceedings of 14th

International Conference on Artificial Intelligence and 9th Innovative

Applications of Artificial Intelligence Conference.

Sestito, S. and T.S. Dillon (1994). Automatic Knowledge Acquisition,

New York, Printice Hall.

Shen, W.M. (1993). "Discovery as Autonomous Learning from the

Environment', Machine Learning, Vol.12: pp.143-165.

Bibliography 142

[Shi94]

[Shi97]

[Sil86]

[SM91]

[SS82]

[SS85]

[SS95]

Shiraz, G.M. (1994). "Learning to Control Dynamic System", Ofogh,

The Journal of Computer Sc. & Eng., Vol.3 (2): pp.65-71.

Shiraz, G.M. (1997). "Building Controller for Dynamic Systems

Using Machine Learning and Knowledge Acquisition". "School of

Computer Sc. & Eng."L Sydney, University of New South Wales,

pp.260.

Silver, B. (1986). "Precondition Analysis: Learning Control

Information", Machine Learning: An Artificial Intelligence Approach,

R.S. Michalski and e. al. (Eds.), Los Alts, CA, Morgan Kaufmann,

Vol.ll: pp.647-670.

Sammut, C.A. and D. Michie (1991). "Controlling a Black Box

Simulation of a Spacecraft', Al Magazine, Vol.12 (1): pp.56-63.

Sakawa, Y. and Y. Shinido (1982). "Optimal Control of Container

Crane", Autmatica, Vol.18 (3): pp.257-266.

Selfridge, O.G., R.S. Sutton, et al. (1985). "Training and Tracking in

Robotics', Proceedings of the 9th International Conference on

Artificial Intelligence, Los Altos, CA, Morgan Kaufmann.

Shiraz, G.M. and C.A. Sammut (1995). "Learning to Fly in Presence

of an Expert', Control Proceedings of Third Iranian Conference in

Bibliography 143

[SS95]

[SSE95]

[ST94]

[Sti95a]

[Sti95b]

Electrical Engineering ICEE '95, Tehran, Iran.

Stevens, A. and M. Stevens (1995). "OxNav: Reliable Autonomous

Navigation", IEEE International Conference on Robotics and

Automation, Vol.3: pp.2607-2612.

Shiraz, G.M., C.A. Sammut, N. Esmaili (1995). "Man-Machine

Cooperation for Learning to Control Dynamic Systems", Proceedings

of 1995 IEEE International Conference on Systems, Man, and

Cybernetics SMC 195, Vancouver, Canada.

Safra, S. and M. Tennenholtz (1994). "On Planning while Learning•,

Journal of Artificial Intelligence Research, Vol.2: pp.111-129.

Stirling, D. (1995a). "Learning to Fly with CHURPS1, The 8th

Australian Joint Conference on Artificial Intelligence Al'95, Canberra,

Australia, World Scientific.

Stirling, D. (1995b). "CHURPS: Compressed Heuristic Universal

Reaction Planners". Basser Department of Computer ScienceL

Sydney, University of Sydney.

[SUKM92 Sammut, C.A., S. Uurst, D. Kedzier, and D. Michie (1992).

] "Learning to Fly', Proceedings of the 9th international Workshop on

Machine Learning, Morgan Kaufmar:in.

Bibliography 144

[Sut90]

[Sut92]

[SW92]

Sutton, R. (1990). "Integrated Architectures for Learning, Planning,

and Reacting Based on Approximating Dynamic Programming',

Proceedings of Seventh International Conference on Machine

Learning, Morgan Kaufmann.

Sutton, R.S. (1992). "The Challenge of Reinforcement Learning',

Machine Learning, Vol.8: pp.225-227.

Salin, E.D. and P.H. Winston (1992). "Machine Learning and

Artificial Intelligence: An Introduction", Analytical Chemistry, Vol.64

(1): pp.49-60.

[TDLJ97] Tunstel, E., H. Danny, T. Lippincott and M. Jamshidi (1997).

"Autonomous Navigation using an Adaptive Hierarchy of Multiple

Fuzzy-Behaviours', 1997 IEEE International Symposium on

Computational Intelligence in Robotics and Automation (CIRA '97).

[Tho84a] Thorpe, C. (1984a). "Path Relaxation: Path Planning for a Mobile

Robot'~ Robotics Institute, Carnegie Mellon University.

[Tho84b] Thorpe, C. (1984b). "FIDO: Vision and Navigation for a Mobile

Robot", Robotics lnstituteL Carnegie Mellon University.

[Til90] Tilove, R.B. (1990). "Local Obstacle Avoidance for Mobile Robots

Based n The Method of Artificial Potentials', Proceedings of 1990

Bibliography 145

[TL97]

[UB93]

[UB94]

[UJ92]

IEEE International Conference on Robotics and Automation, IEEE

Computer Society Press.

Tam, K., J. Lloyd, et al. (1997). "Controlling Autonomous Robots

with GOLOG', 10th International Conference on Artificial

Intelligence Al' 97, Springer-Verlag.

Urbancic, T. and I. Bratko (1993). "Learning to Control Dynamic

Systems'', Machine Learning, Neural and Statistical Classification, D.

Michie, D. Spiegelhalter and C. Taylor (Eds.), Ellis-Harwood.

Urbancic, T. and I. Bratko (1994). "Reconstructing Human Skill With

Machine Learning', Proceedings of 11 th European Conference on

Artificial Intelligence.

Urbancic, T., D. Jurii, et al. (1992). "Automated Synthetic of Control

for Non-Linear Dynamic Systems', Proceedings of IFAC/IFIP/IMACS

International Symposium on Artificial Intelligence in Real-Time

Control.

[Ung90] Ungar, L.H. (1990). 11A Bio-reactor Benchmark for Adaptive

Network-Based Process Control', Neural Network for Control, MIT

Press, pp.387-403.

[Wat92] Watkins, C. (1992). "Technical Notes on Q-Learning', Machine

Bibliography 146

Learning, Vol.8: pp.278-292.

[WD95] Weckesser, P., R. Dillmann, et al. (1995). "Multiple Sensor

processing for High- Precision Navigation and Environmental

Modeling with a mobile Robot, Proceedings of 1995 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS

'95), Pittsburgh, Pennsylvania USA, IEEE Computer Society Press.

[WDEP8 Weisbin, C.R., G. DeSaussure, J.R. Einestein and F.G. Pin (1989).

9] "Autonomous Mobile Robot Navigation and Learning', IEEE

Computer Magazine, Vol.22 (6): pp.29-35.

[Wei76] Weizenbaum, J. (1976). Computer Power and Human Reason, San

Francisc, W.H. Freeman & Co.

[Wil75]

[Wil87]

Winston, P.H. (1975). "Learning Structure Description from

Examples', The Psychology of Computer Vision, P.H. Winston (Ed.),

New York, McGraw-Hill.

Wilson, S.W. (1987). "The AN/MAT Path to Af', From Animat to

Animats; Proceedings of the First International Conference on the

Simulation of Adaptive Behavior, J. A. Meyer and S. W. Wilson

(Eds.), Cambridge, MA, MIT Press/ Bradford Books.

[Win84] Winston, P.H. (1984). "Learning and Reasoning by Analogy', Journal

Bibliography 147

[WK90]

[WL90]

of CACM, Vol.23 (12): pp.680-703.

Weiss, S.M. and I. Kapouleas (1990). "An Empirical Comparison of

Pattern Recognition, Neural Nets, and Machine Learning

Classification Methods', Proceeding of the 11 th International Joint

Conference on Artificial Intelligence, Michigan, USA, pp.781-787.

Widrow, B. and M. A. Lehr (1990). 1130 Years of Adaptive Neural

Networks: Perception, Madeline, and Back-Propagation", IEEE

Proceedings on Neural Networks, Vol.48 (9): pp.1415-1442.

[WW88] Widrow, B. and R.G. Winter (1988). 11 Neural Nets for Adaptive

Filtering and Adaptive Pattern Recognition", IEEE Computer

Magazine, (J\1arch): pp.25-39.

[WZ97]

[YB94]

[YP93]

Ward, K. and A. Zelinsky (1997). "Learning Mobile Robot Behaviors

by Discovering Associations Between Input Vectors and Trajectory

Velocities', Proceedings - Poster Papers of 10th Australian Joint

Conference on Artificial Intelligence.

Yu, W. and Z. Bein (1994). 11 Design of Fuzzy Logic Controller with

Inconsistent Rule Base', Journal of Intelligence and Fuzzy Systems.

Yaseh, I. and B. Priel (1993). 11 Design of Leveling Loop for Marine

Navigation System", IEEE Transactions on Aerospace and Electronic

Bibliography 148

[YS97]

[ZB90]

Systems, Vol.29 (2): pp.599-604.

Yamauchi, B., A. Shultz, et al. (1997). "ARIEL: Autonomous Robot

for Integrated Exploration and Localization", Proceedings of 14th

International Conference on Artificial Intelligence and 9th Innovative

Applications of Artificial Intelligence Conference, pp.804-805.

Zhao, Y. and S.L. BeMent (1990). "A Heuristic Search Approach for

Mobile Robot Trap Recovery', SPIE, Vl.1388 (Mobile Robots V):

pp.122-130.

Bibliography 149

	Title Page : Learning Obstacle Avoidance by a Mobile Robot
	Acknowledgment
	Table of Content

	1. Introduction
	2. Background
	3. Robotic Platforms
	4. Learning Navigation
	5. Discussion and Conclusion
	Bibliography

