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Embedded, Real-Time, and Operating Systems (ERTOS) Program,
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Abstract. Bypass delays are expected to grow beyond 1ns as technol-
ogy scales. These delays necessitate pipelining of bypass paths at proces-
sor frequencies above 1GHz and thus affect the performance of sequential
code sequences. We propose dealing with these delays through a dynamic
functional unit chaining approach. We study the performance benefits of
a superscalar, out-of-order processor augmented with a two-by-two ar-
ray of ALUs interconnected by a fast, partial bypass network. An online
profiler guides the automatic configuration of the network to accelerate
specific patterns of dependent instructions. A detailed study of bench-
mark simulations demonstrates these first steps towards mapping bina-
ries to a small coarse-grained array at runtime can improve instruction
throughput by over 18% and 25% when the microarchitecure includes
bypass delays of one cycle and two cycles, respectively.

1 Introduction

The datapath of a microprocessor includes bypass (also known as forwarding)
paths that route computed results among the register file, data cache and execu-
tion units. These bypass paths are typically routed in higher-level metal layers
[10] with resistance and capacitance delays that increase with the scaling of
feature size [2]. Thus, under continuous scaling of feature size and processor
frequency, the performance of future processors is increasingly limited by the
wire delays associated with bypassing for data-dependent sequences [9]. Several
approaches have been suggested over the past decade to cope with this problem.

The best known approach focuses on reducing bypass latency through bypass
hierarchy, as seen in clustered architectures [8,9] where each cluster contains a
small number of functional units interconnected via a fast local bypass network.
Data-dependent sequences are ideally steered into the same cluster to make use
of the faster intra-cluster bypass.

Self-forwarding arithmetic & logic units (ALUS) with closed loop bypass were
introduced in NetBurst [4] and Sassone’s work in [12] to efficiently execute linear
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dependent chains. Sassone uses the self-forwarding ALUs to compute results for
transient chains of sequences, where the intermediate results in the chain are
only ever consumed once by the immediate successor instruction. Intermediate
results are not forwarded after use but are simply discarded. The applicability of
this approach is limited to situations where the transient rule is known to hold.

As an alternative approach, hardware/software partitioning speeds up ex-
ecution by collapsing a sequence of operations into an atomic operation. This
approach shortens the critical path of sequential operations and absorbs result
bypasses into custom circuits. Typically, this is achieved by Application Spe-
cific Integrated Circuits (ASIC) co-processors in the embedded domain, whereas
fine-grained units in the form of Field Programmable Gate Arrays (FPGA) are
employed in reconfigurable microprocessors as configurable functional units in
the datapath or as coprocessors attached to the memory or system bus. Tradi-
tionally, sequences that can be collapsed are identified at compile time. Runtime
analysis has recently been introduced by Stitt et. al. [13] and Yehia et. al. [14] to
support a more dynamic system. Nevertheless, FPGAs come with high synthesis
and runtime reconfiguration costs.

In contrast to previous approaches, we propose the acceleration of program
binaries through the mapping of data-dependent sequences to a small array
of coarse-grained structures at runtime. We add to a superscalar, out-of-order
processor an execution unit called the chained integer ALU (CIALU) which
consists of a two-by-two array of closely-packed ALU cells (Fig. 1).
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Fig. 1. A MIPS-like architecture (adapted from [9]) enhanced with a CIALU and mod-
ules (shown as grey blocks) to support runtime analysis of dataflow patterns.

By reorganizing the floorplan and reorienting the ALU cells, we show that
a fast, partial internal bypass network quickly routes results among the cells.
Runtime analysis is a natural choice to make efficient use of the CIALU. An
online profiler tracks the relative frequency of specific dataflow patterns over
time to guide the CIALU configuration. Significant shifts in the profile history
lead to reassessment of the configuration choice, providing a CIALU that adapts
to various dataflow patterns over successive periods of execution.



Our results demonstrate that a partial internal bypass network is sufficient to
handle the small set of data-dependent patterns commonly seen at runtime. In
comparison to the full local bypass network in clustered architectures, the smaller
size of our partial network results in lower capacitive loads and faster operations.
Overheads associated with collapsing sequences and mapping them to FPGAs do
not apply in our design, but some overheads incurred by runtime analysis remain.
The runtime nature of our design achieves binary compatibility for pre-compiled
code and offers performance benefits without exposing application developers to
additional design complexity.

In Section 2, we provide an architectural overview of our design and a nor-
malized model of typical integer ALUs that forms the basis of our timing char-
acterization of the CIALU. We describe in Sect. 3 our experimental framework
based on the SimpleScalar toolset [3]. Our results are presented in Sect. 4. We
conclude with an assessment of our results and our plans for future work in

Sect. 5.

2 Proposed Architecture

2.1 Supported Dataflow Patterns

Our CIALU is a two-by-two array of integer ALU cells tightly interconnected
via an internal bypass network. Assuming a full internal bypass network, the
CIALU structure supports execution for a variety of dataflow patterns. Figure 2
depicts some of these patterns as nodes and edges. Each node in the pattern
may correspond to an instruction in the processor’s issue queue and each directed
edge represents dataflow between two nodes. A CIALU with a full internal bypass
network can support indefinitely long patterns, where up to three outgoing edges
for results forwarding are allowed for each node in the pattern. We use the term
branching pattern to refer to a pattern with more than one incoming or outgoing
edge for any of its nodes, such as patterns 2b, 2c and 3b. We note that pattern la
simply represents up to four parallel operations with no data dependencies. In our
experiments, we consider a small subset that covers all possible data-dependent
patterns of up to four nodes. Our analysis of the benefits of accelerating patterns
2a, 2b, 2c, 2d, 2e, 3a, 3b and 4a is reported in Sect. 4.

O ready node O semi-ready node O free node A_»B results forwarding from node A to node B
3a 3b 4a

1a 2a 2b 2c 2d 2e
Fig. 2. An array of four integer ALUs with low-latency internal bypasses can support
a variety of data-dependent patterns.



2.2 Architecture Overview

The CIALU is an execution unit in the integer datapath of a superscalar, out-of-
order processor. Figure 1 illustrates our model based on the MIPS architecture.
We enhance the baseline model with a CIALU and three modules that support
runtime analysis of dataflow patterns: the pattern matching circuit, the pattern
profiler and the pattern scheduler.

Initially, the processor executes a binary just as normal. The pattern profiler
monitors the integer issue queue entries for instances of the supported dataflow
patterns. A pattern instance is detected when the pattern matching circuit is
able to map one or more ready-to-execute instructions to some of the nodes of a
particular pattern, and all other nodes of the pattern are semi-ready, i.e. waiting
only on the results that will be forwarded by the ready instructions. A dataflow
pattern is merely characterized by the relationship of data dependencies. Thus
the actual operation (e.g. addition, subtraction or logical operation) of each
pattern node may vary.

The profiler updates a count history to reflect the relative frequencies of
each dataflow pattern over a period of execution. Based on the count history,
the profiler selects a CIALU configuration that appears most beneficial for the
next period. A CIALU configuration involves setting multiplexer select signals
to internally route results among the ALU cells according to the interconnection
required by the selected pattern mapping.

When the next instance of the selected mapping is matched, the pattern
scheduler takes over the normal integer scheduler. Each instruction in the pattern
instance is scheduled to the CIALU in the order enforced by data dependencies.
If the CIALU is requested but not ready to accept new operations, scheduling
is handed back to the normal integer scheduler. Execution of ready instructions
then falls back onto the processor’s fixed ALUs.

In our architecture model, the CIALU is able to replace some of the pro-
cessors’ fixed integer ALUs. Therefore, the number of register file ports need
not increase. Currently, we are studying the integration of the runtime analysis
modules into the processor’s issue logic. The performance gains of our design
may be partially offset by the overheads of these modules. In this paper, we as-
sume negligible overheads for the runtime analysis modules and we measure the
performance benefits of the CIALU to save bypass cycles for dataflow patterns
with dependencies. A detailed characterization of the runtime overheads will be
part of our on-going work.

2.3 Normalized Model of Integer ALUs

It is difficult to compare performance of architecturally diverse processors such
as MIPS, Alpha, NetBurst and our proposal. We therefore propose an execu-
tion performance model in which delays of various architectures are normalized
against clock ticks. Execution times therefore need to be compared on the basis
of number of clock cycles and clock frequency.



Our normalized model of an integer ALU has the following characteristics:
computation latency, C; bypass latency, B; and issue latency (or initiation rate),
R. In the case of the single-issue processor in Fig. 3(a), the bypass path feeds
the ALU output back to its own input as well as routing the ALU output to the
register file for result writeback. Normally, execution and forwarding (C + B) fits
into a single processor clock cycle. As processor frequency increases, the ALU
logic and/or the bypass path have to be pipelined to meet the requirement of the
clock frequency. We expect the pipelined ALU will continue to have an initiation
rate of one cycle, i.e. R = 1.
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Fig. 3. Layout of the integer datapath for (a) a single-issue processor and (b) a multiple-
issue processor. (c) shows the timeline of pattern 3a executed on a group of four nor-
malized ALUs with parameters C=1, B=1 and R=1.

Figure 3(b) shows a typical bit-sliced, linear layout of a multiple-issue proces-
sor datapath with four integer ALUs. For a multiple-issue processor, the bypass
paths span all ALUs. Similar to the single-issue case, (C + B) fits into a processor
clock cycle at relatively low clock frequencies. However, as processor frequency
increases, the ALU logic and/or the bypass path have to be pipelined.

While logic and local wires scale according to feature size, wires routed in
higher metal levels grow slowly in speed relative to logic [5]. Authors have differ-
ent opinions on whether the bypass paths for multi-issue ALUs are local wires
routed in low-level metal layers [5] or more global wires routed in higher-level
metal layers [10]. The assumption that bypass paths are local wires implies that
C = B regardless of the scaling of feature size. On the other hand, although the
bypass wires are unlikely to be routed in the topmost metal level as the global
clock signal does, we lean towards the assumption that the bypass paths are
routed in higher metal levels such that the values of B will grow relatively more
quickly with respect to C, i.e. C < B. Nevertheless, we derive ALU timing mod-
els with values of C and B as shown in Table 1 to cover both design views. We



also list in Table 1 the number of cycles needed for register access, execution
and writeback/forwarding, for each of the dataflow patterns from Fig. 2, sched-
uled to a group of four ALUs. For example, Fig. 3(c) illustrates the execution
timeline of pattern 3a on a group of four normalized ALUs with C=1, B=1 and
R=1. The motivation behind our design is to eliminate the bypass delays found
between the dependent computations.

Table 1. Clock cycles needed by a group of four normalized ALUs to compute and
bypass results for the dataflow patterns of Fig. 2.

Delay Data-dependent patterns

assumption la 2a 2b 2c 2d 2 3a 3b d4a
C+ B=1, R= 2 3 3 3 3 3 4 4 5
C=1, B=1, R=1 3 5 5 5 5 5 7 7T 9
C=1, B=2, R=1 5 8 8 8 8 8 11 11 14
C=2, B=2, R=1 6 10 10 10 10 10 14 14 18

As shown in Fig. 3(b), the operands from the register file are routed verti-
cally to the ALUs, like the bypass paths. Thus we expect the delays for routing
operands from the register file to the ALUs to scale linearly with the bypass
delays. Figure 3(c) shows that these delays are incurred only for the first com-
putation in a sequence, where subsequent routing of operands from the register
file can be hidden by results bypassing. This is accordingly reflected in the timing
calculations for Tables 1 and 2.

2.4 CIALU Model

Our CIALU model comprises a two-by-two array of cells, organized to optimize
the internal bypass paths. The CIALU has the following characteristics: compu-
tation latency of each cell, C; global bypass latency, B; internal bypass latency,
I and issue latency (or initiation rate), R. Each of the cells in the CIALU is a
fully-fledged ALU, with similar latency scaling trends to the normalized ALU
model described in Sect. 2.3. The global bypass paths of the CIALU are the usual
paths that feed the cell results back to the register file, the cache and other func-
tional units in the processor’s datapath. We use the term global bypass here to
differentiate from the internal bypass paths, which are shorter wires in lower
level metals that route results between the cells in the CIALU.

The CTALU structure accelerates computation sequences where global bypass
paths are normally in use. The tight internal bypass interconnect within the
CIALU quickly feeds the cells with pending operands. The number of execution
cycles for each dataflow pattern scheduled to a CIALU is listed in Table 2.
The bracketed values show the savings in global bypass cycles over a typical
multi-issue processor with four normalized ALUs of equivalent parameters, as
assessed in Table 1. We note that an aggressive, four-cell CIALU has the same
performance as a group of four normalized ALUs when executing instances of



pattern la because there is no need to wait for results to be forwarded via the
global bypass paths.

Table 2. Timing model for a CIALU with an initiation rate of one clock cycle.

Delay Data-dependent patterns

assumption 2a, 2b 2c 2d 2e 3a 3b 4a
C=1,B=1,1=0 | 4 (1) 4(1) 4(1) 4(1) 4(1) 5 (2) 5(2) 6 (3)
C=1,B=2,I1=0|6(2) 6(2) 6(2) 6(2) 6(2) 7 (4) 7(4) 8 (6)
C=1,B=2,1=1 | 7(1) 7(1) 7(1) 7(1) 7(1) 9 (2) 9(2) 10 (3)
C=2,B=2,I=0 | 8(2) 8(2) 8(2) 8(2) 8(2) 10(4) 10(4) 12 (6)
C=2,B=2,1=1|9(1) 9(1) 9(1) 9(1) 9(1) 12(2) 12(2) 15(3)

The internal and global bypass paths essentially form a bypass hierarchy,
where I < B. For processors with B > 1, we consider two models: an aggressive
CIALU model where the internal bypass delays are absorbed into the computa-
tion latency such that 1=0; and a conservative model with I=1. Figures 4(a) and
4(b) illustrate the execution timelines of pattern 3a on each of these models.
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Fig. 4. Timeline for pattern 3a executed on (a) an aggressive CIALU model with C=1,
B=2, I=0, R=1 and (b) on a conservative model with C=1, B=2, I=1, R=1. (c) shows
the floorplan of the CIALU and (d) a high-level view of its internal bypass network.

Figure 4(c) shows the layout of our final CIALU design. The dataflow orienta-
tion of each ALU cell is chosen to minimize the internal bypass routing between
the cells for the most prevalent patterns (2a, 2b, 2e, 3a and 4a) as indicated



by our results in Sect. 4. For example, pattern 2e may be mapped as ALU0 —
ALU1 and ALU2 — ALUS3, whereas pattern 3a may be mapped as ALU0 —
ALU1 and ALU1 — ALU2.

Our design essentially restricts the full bypass network to a partial inter-
connection network as shown in Fig. 4(d). This partial interconnection network
allows the mapping of indefinitely long patterns, where up to two outgoing edges
are allowed for each of the pattern nodes. As a result, patterns 2c and 3b cannot
be efficiently executed on the CIALU. However, both are relatively infrequent
and are simply extensions to pattern 2b. They can thus be scheduled without
loss of performance as an instance of pattern 2b and an additional operation.

The set of supported dataflow patterns do not utilize all four of the CTALU
cells simultaneously. Thus some of the cells in the CIALU may be idle in a par-
ticular clock cycle. Each of these free cells functions just like an integer ALU,
and therefore may accept ready-to-execute integer operations. Furthermore, the
CIALU’s issue latency of one cycle allows the scheduling of a new pattern in-
stance, if available, on a per cycle basis. Scheduling constraints may occur when
there is a conflict of cell mappings for two pattern instances. For example, pat-
tern 2e cannot be scheduled to the CIALU on the third execution cycle of pat-
tern 3a due to a cell mapping conflict on ALU2. In this case, the scheduling of
pattern 2e is delayed by a further cycle.

A two-dimensional organization of the ALU cells implies that a completely
bit-sliced design is no longer possible. Horizontal wires must be added within
the register file to connect the two sets of global bypass paths to the ALU cells.
The internal bypass paths between the cells will also occupy physical space. In
spite of these considerations, we do not expect the total height of the modified
datapath to be any greater than that of the linear layout shown in Fig. 3(b).

While our normalized ALU model fits the 64-bit implementation of MIPS-
like processors, it does not quite model the fast ALUs in NetBurst [4]. These
fast ALUs and address generation units are also organized as a two-by-two array.
In a 32-bit implementation, each of the fast ALUs consists of two 16-bit slices
with closed-loop bypass. A staggered add mechanism allows a 16-bit addition to
complete in half a clock cycle, and a full 32-bit addition to complete in one clock
cycle. The pipelined nature of the fast ALU allows an initiation rate of half a
clock cycle. ALU results are sent to the register file and other execution units
via a multiple cycle global bypass network. We note that the aggressive design
of NetBurst allows a clock frequency that is at least three times that of a 1GHz
MIPS implementation. However, for a cycle-by-cycle comparison, a 64-bit version
of the fast ALU should be normalized to C=2 (assuming staggered add with two
32-bit slices), an optimistic value of B=2, I=0 and R=1. The normalized fast
ALUs are able to execute indefinitely long linear chains of dependent operations
such as patterns 2a, 2e, 3a and 4a in the same time as the CIALU model listed
in the fourth row of Table 2. However, the timing of the fourth row of Table 1
applies for the other branching patterns.



3 Experimental Setup

We use the cycle-accurate SimpleScalar [3] out-of-order simulator to evaluate the
impact of varying processor configurations on the performance of our design.

Global bypass delays, B, are added as a parameter to the out-of-order sim-
ulator. The CIALU is also added as an integer functional unit, with a default
issue latency of one cycle (R=1), a parametrizable computation latency, C, and
a parametrizable internal bypass delay, I. We considered four-way and eight-way
baseline and enhanced processor configurations in which the total number of
ALUs corresponds to the issue width of the processor. Table 3 lists the non-
default parameter settings of interest.

The mechanism of the pattern matching circuit, pattern profiler and sched-
uler are as described in Sect. 2.2. The modified simulator implements an archi-
tecture where the runtime analysis modules do not incur any overheads and the
size of the profile window is set to one instruction. This setting allows us to
measure the performance gains contributed by the ability of our CIALU to save
bypass cycles for dependent patterns.

Table 3. Non-default processor configurations for sim-outorder.

Parameters 4-way 4-way 8-way 8-way
Baseline Enhanced Baseline Enhanced

Register Update Unit size 16 16 32 32
Load/Store Queue size 8 8 16 16
Number of ALUs 4 0 8 4
Number of CIALUs 0 1 0 1
Computation latency of an ALU 1/2 1/2 1/2 1/2
Computation latency of a CIALU 1/2 1/2 1/2 1/2
Global bypass delay 0/1/2 1/2 0/1/2 1/2
Internal bypass delay of a CIALU n/a 0/1 n/a 0/1

We performed simulations for benchmarks selected from the SPEC2000 [1]
and MediaBench [7] suites. We included program binaries we were able to com-
pile for SimpleScalar’s Portable Instruction Set Architecture (PISA) model.
The input sets packaged with the MediaBench benchmarks were used to run
the programs to completion. The SPEC2000 benchmarks were run using the
MinneSPEC [6] inputs, favoured for their smaller sizes. All performance figures
reported, unless otherwise stated, are averages of the results obtained over the
applications in each benchmark set.

4 Results and Analysis

4.1 Prevalence of Dataflow Patterns at Runtime

In order to determine the prevalence of the dataflow patterns of interest, we
disabled the runtime profiler and fixed the CIALU configuration for a partic-



ular pattern for the entire execution of a program. Pattern instances matched
at runtime are scheduled to the CIALU. The processors’ fixed ALUs (if any)
and idle CTALU cells were used for the execution of parallel integer operations.
For pattern la, our choice of parameters yields the same settings for both the
baseline and enhanced processors. Thus, no performance gains are expected from
pattern 1la.

From Table 4, we observe that linear chains of dependent sequences (pat-
terns 2a, 2e, 3a and 4a) are most prevalent at runtime. For four-way processors,
up to 45.92% of integer operations are scheduled as pattern 2a, achieving an
Instructions Per Cycle (IPC) gain of 13.05%. Patterns 2b and 3b which involve
results bypassing to two pending operations are less frequent, with a frequency
of up to 7.62% and an IPC gain of 2.23%. Patterns 2¢ and 2d account for approx-
imately 1% of integer instructions for four-way processors. Clearly, patterns 2c,
2d and even 3b do not contribute much to the overall performance benefits of the
CIALU. While similar trends are observed for eight-way processors, the larger
processor bandwidth allows more patterns to be mapped at runtime, achieving
a slightly better performance speedup.

Table 4. Percentage of integer operations scheduled to the CIALU (op2cialu) and
Instructions Per Cycle (IPC) gain (%) achieved by processors enhanced with a CIALU
(C=1, B=1, I=0 and R=1) fixed to accelerate the given pattern for the entire execution
of a program.

Data- MediaBench SPEC2000
dependent 4-way 8-way 4-way 8-way
patterns | opZ2cialu Gain opZ2cialu Gain op2cialu Gain op2cialu  Gain
2a 45.92 13.05 55.18 14.11 35.64 8.71 41.24 9.21
2b 7.62 2.23 13.41 3.31 6.22 1.16 9.82 1.62
2c 0.92 0.23 2.37 0.23 1.09 0.24 4.54 0.59
2d 0.87 0.13 1.43 0.19 0.72 0.09 0.97 0.13
2e 14.67 3.07 32.56 6.80 12.86 3.78 21.88 5.16
3a 24.22 10.86 33.16 13.39 21.73 10.33 25.73 11.92
3b 3.69 1.62 9.15 3.90 2.68 0.74 5.25 2.01
4a 11.91 6.49 16.79 14.70 6.45 2.97 9.59 4.67

4.2 A Runtime Adaptive CIALU

Here we attempted to gain a sense of the benefit of a CIALU which is able to
adapt its internal bypass paths to match dataflow patterns at runtime. Due to
the profile window size of one instruction, more than one dataflow pattern may
be matched in a given clock cycle. Thus, a simple greedy priority scheme was
used. Priority was given to ready instances of patterns that offered the greatest
savings of bypass cycles and then to those that used the highest number of cells
in the CIALU. Thus, ready instances of pattern 4a were given precedence over
patterns 3a, 2e, 2d, 2b, and 2a, in that order. Our CIALU design in Fig. 4(c)



excludes patterns 2c and 3b due to the limitation of the partial internal bypass
network. The results from Sect. 4.1 show that the low frequencies of patterns 2c
and 3b allow us to reschedule both patterns as pattern 2b without loss of per-
formance. The CIALU’s issue latency of one cycle allows the scheduling of a
new pattern instance on a per cycle basis, subject to the scheduling constraint
discussed in Sect. 2.4.

Table 5 lists for each benchmark the IPC gains for a four-way enhanced pro-
cessor. Similar to the CIALU with fixed configurations in Sect.4.1, instances of
pattern 2a are most frequent in many of our benchmarks, followed by pattern 3a,
4a, 2e, 2b and 2d. However, slightly different trends are observed for the epic
and 301.apsi applications.

Table 5. IPC gains (%) and breakdown of pattern frequencies (%) for a four-way
processor enhanced with a runtime adaptive CIALU (C=1, B=1, I=0, R=1).

Benchmarks | Gain Data-dependent patterns
2a 2b 2d 2e 3a 4a

MediaBench
adpcm.enc 21.45 16.57 0.31 1.56 12.21 12.42 15.56
adpem.dec 16.73 14.54 0.47 0.00 12.12 22.00 5.27

epic.enc 2.74  20.65 0.15  0.02 2.50 4.62 0.25
epic.dec 5.68 13.35 1.81 0.02 7.74 8.59 0.67
g721.enc 18.80 24.27 2.84 0.14 9.87 10.65 7.62
g721.dec 16.53  22.55 329 0.28 10.13 9.58 7.59
Jpeg.enc 24.00 14.42 1.07 0.76 9.67 19.56 7.52
Jjpeg.dec 29.04 11.69 0.52 0.02 439 19.51 1831

mpeg2.enc 13.23 14.38 13.29 1.03 3.10 9.28 4.20
mpeg2.dec 15.23 14.98 0.87 0.01 1.64 14.84 13.74
pegqwit.enc 27.01 1047 3.58 1.11 5.02 17.87 16.43
peqwit.dec 26.32 11.64 3.11  0.37 4.83 18.46 15.22
average 18.06 15.79 2.61 0.44 6.93 13.95 9.36

SPEC2000
171.swim 10.98 14.83 1.61 0.00 3.70 8.53 5.00
173.applu 18.42 17.70 1.29 0.05 3.38 16.76 15.95
176.gcc 7.18 12.29 2.84 1.24 3.46 7.91 3.85
181.mcf 5.12  13.73 3.02 0.01 1.62 5.31 9.62
188.ammp 3.14 1747 413 0.13 3.48 3.96 1.91
197.parser 10.73  16.57 9.97 0.55 2.61 3.18 1.15
301.apsi 42.49 2.57 0.18 0.01 0.32 65.92 1.15
average 14.01 13.59 3.29 0.28 2.65 1594 5.52

The epic benchmark recorded an unusually low percentage (<1%) of pat-
tern 4a at runtime, in contrast to the average 11.92% for the other applications
in MediaBench. Pattern 4a is the longest chain in the set of patterns we ana-
lyzed and instances of this pattern can potentially save the largest number of
global bypass cycles. The low frequency of pattern 4a yields the low IPC gains of



2.74% and 5.68% for the epic encoder and decoder applications, respectively. As
for 801.apsi, 65.92% of operations scheduled to the CIALU belong to instances
of pattern 3a, but less than 3% correspond to pattern 2a. The larger number
of global bypass cycles saved by pattern 3a contributes to a large IPC gain of
42.49% for 301.apsi.

4.3 Impact of Global Bypass Delays

Table 6 reports on the impact of global bypass delays on both baseline and
enhanced processors. As we expect, IPC decreases as both register access delays
and global bypass delays are increased from zero to two clock cycles. The decrease
in IPC can be partly compensated for by the higher processor frequency possible
with the pipelining of the ALUs and/or the global bypass paths. For ease of
comparison, we report our results in terms of IPC.

We also observe that the additional instruction issue bandwidth provided
by eight-way processors is insufficient to compensate for the loss of IPC caused
by the gradual increase in the global bypass delays, due to the prevalence of
dependent data patterns in the benchmark applications. For example, a baseline
eight-way processor with ALUs of parameters C=1 and B=1 achieved an IPC of
1.1487, which is a slowdown of 30.9% compared to a baseline four-way processor
with ALUs of parameters C=1 and B=0.

Table 6. IPC and IPC gains (%) for processors with different global bypass delays.

Delay MediaBench SPEC2000
assumption 4-way 8-way 4-way 8-way
IPC  Gain IPC  Gain IPC  Gain IPC  Gain

Baseline

C=1, B=0 1.6634  n/a 21778 n/a 12720 n/a 15408 n/a
C=1, B=1 0.8715 n/a 1.1487  n/a 0.7175 n/a  0.8875 n/a
C=1, B=2 0.5810  n/a 0.7646 n/a  0.5002 n/a  0.6197 n/a
C=2, B=2 05125 n/a 06812 n/a 04526 n/a 05616 n/a

C=1, B=1,1=0 | 1.0083 18.06 1.3612 20.43 0.8206 14.01 1.0205 15.25
C=1, B=2,1=0 | 0.7160 25.77 0.9789 29.67 0.6006 20.59 0.7506 22.45
C=2, B=2,1=0 | 0.6211 23.18 0.8394 25.83 0.5339 18.49 0.6700 20.29

4.4 Impact of Internal Bypass Delays of the CIALU

The timing model of the CIALU (Table 2) shows that the aggressive model saves
twice as many global bypass cycles as the conservative model. This is reflected in
the performance reported in Table 7 which indicates that the IPC gains for the
aggressive model are roughly doubled that of the conservative model. The results
also indicate that our design benefits both four-way and eight-way processors,
achieving IPC gains of up to 25.77% and 29.67%, respectively.



Table 7. IPC gains (%) for the aggressive and conservative CIALU models.

Delay assumption MediaBench SPEC2000
4-way 8-way 4-way 8-way

B=2, I=0 (aggressive) 2577 29.67 20.59 2245
, B=2, I=1 (conservative) | 13.38 1547 10.93 12.20
B=2, I=0 (aggressive) 23.18 25.83 1849  20.29
B=2, I=1 (conservative) | 12.12 1391 10.03 11.05

5 Conclusion & Future Work

In this paper we studied the benefits of allowing the functional units of a mod-
ern microprocessor to reorganize themselves into connected structures to reduce
delays in forwarding results to dependent operations. These delays are expected
to increase to several clock cycles and substantially limit instruction throughput
of superscalar architectures as process technology and clock periods continue to
decrease. We proposed adding to a superscalar, dynamically scheduled processor
a functional assembly we refer to as a chained functional unit (CTALU), a two-
by-two array of fully-fledged integer ALUs with a fast, partial interconnection
network. The network is configured to simultaneously bypass results between
the ALUs with minimal delay. At high execution initiation rates, this structure
allows long chains of linearly dependent operations and more complex branching
dataflow patterns to be accelerated. The CIALU is dynamically configured for
the dataflow pattern identified through runtime profiling of the executing binary.
Over a defined number of subsequent cycles, instances of the configured pattern
are sought out in the issue queue and mapped to the configured CIALU. During
this period the dataflow patterns present in the queue are monitored to reassess
the configuration choice and adapt to changes in the pattern distribution.

The diverse collection of existing architectures with disparate clock frequen-
cies and computational output per cycle presented the problem of comparing the
performance results of our proposal with these architectures. To overcome this
problem, we proposed a normalized timing model that takes into account the
number of clock cycles needed for register accesses, execution, results bypassing
and writebacks. The model was then used to derive the relative execution per-
formance of architectures such as MIPS, NetBurst and our proposed CIALU.
We thereby laid the groundwork for a high fidelity SimpleScalar simulation of
these architectures executing a variety of common benchmarks.

Our analysis of the results indicates that non-branching, linear chains of op-
erations are by far the most prevalent dependent dataflow patterns found in
the issue queue of pending instructions. These contributed most to speedups.
We found that a four-way processor that has its four integer ALUs replaced by
a CIALU with an internal forwarding delay of zero cycle and a global bypass
delay of one cycle is capable of boosting the number of instructions executed
per cycle by approximately 18% for MediaBench, and approximately 14% for



the MinneSPEC inputs for SPEC2000. The improvements on these benchmarks
rise towards 30% when an eight-way processor is enhanced and as bypass delays
increase to two cycles. Unfortunately, the contribution to performance improve-
ment due to branching dataflow patterns is relatively small. They accounted for
less than 10% of the dataflow patterns accelerated by our system.

Our on-going work will include profiling entire loop bodies, deriving the

dataflow graphs and mapping them at runtime to larger coarse-grained arrays.
We are also interested to investigate how our results will vary for in-order, soft-
core processors targetted to FPGAs for embedded applications.
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