

### Achieving Flexible & Adaptable Healthcare Facilities - findings from a systematic literature review (presentation)

#### **Author:**

Carthey, Jane; Chow, Vivien; Jung, Yong-Moon; Mills, Susan

#### **Event details:**

Health and Care Infrastructure Research and Innovation Centre (HaCIRIC) 3rd Annual Conference: Better Healthcare Through Better Infrastructure Edinburgh, Scotland

#### **Publication Date:**

2010

#### DOI:

https://doi.org/10.26190/unsworks/1137

#### License:

https://creativecommons.org/licenses/by-nc-nd/3.0/au/ Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/45582 in https://unsworks.unsw.edu.au on 2024-03-28



- Centre for Health Assets Australasia

HaCIRIC Conference, Edinburgh, 2010

Achieving Flexible & Adaptable Healthcare Facilities – findings from a systematic literature review

Jane Carthey, Vivien Chow, Jung Yong-Moon, Susan Mills

Faculty of the Built Environment, The University of NSW, Sydney, Australia









### **OUTLINE OF PRESENTATION**

- 1. Health Infrastructure NSW: Future Directions Project
- 2. Flexibility: Beyond the buzzword
- 3. Some considerations when designing new hospitals
- 4. Lessons from 4 of the case studies
  - a. Martini Teaching Hospital, Groningen, Netherlands
  - b. Insel Hospital, Bern, Switzerland
  - c. St Olav's Hospital, Trondheim, Norway
  - d. Clarian Health, Indianapolis, Indiana USA
- 5. Future Research
- 6. Next Phase of Research





## 1. HEALTH INFRASTRUCTURE NSW: FUTURE DIRECTIONS PROJECT

#### Purpose of the project:

Guide the planning and delivery of NSW health infrastructure for the next 20-30 years

### **Problem being studied:**

Lack of flexibility leads to early obsolescence & expensive replacements/upgrades





## 1. FUTURE DIRECTIONS PROJECT: FLEXIBILITY STUDY

#### **Research question:**

How can hospitals be designed for flexibility and adaptability to increase their lifespan, meet changing demands and reduce operational costs over the whole facility lifecycle?

#### For the study this was framed as:

Drawing on international case studies, what useful costeffective lessons can be learnt for Australia facilities that could prolong for up to 30 years or so?





## 1. FUTURE DIRECTIONS PROJECT: FLEXIBILITY STUDY

#### Method:

International systematic literature review (49 publications, 11 nationalities)

#### **Result:**

19 case studies identified (with sufficient information for analysis purposes)

#### **Outcome (anticipated):**

Cost-effective ways to future-proof health assets





- What does flexibility mean?
- "Flexibility is often described as an option the right but not obligation to a specific future action" (Neufville, et al., 2008)
- Such actions might involve:
  - Managing different modes of treatment for patients within existing space;
  - Adapting to technological advances with minor modifications to existing space;
  - Designing room layouts to accommodate fluctuations in patient demand e.g. moving walls, adding and altering;
  - Future expansions on site to accommodate increased demand, etc





## 19 Case Studies – main functional strategy adopted for flexibility (adopted definitions):

#### 1. Adaptability

(Ability to adapt existing space to operational changes e.g. workplace practices – no / minimal building work required)

#### 2. Expandability

(Ability to expand or contract the building envelope and increase/decrease capacity for specific hospital functions – major building work required)

6

#### 3. Convertibility

(Ability to convert rooms to different functions – some building work required)





Drawn from the literature: 'Who is using the word & for what purpose?'

| Foc  | cus | Managerial considerations               | Functional requirement                  | Building system                      |  |
|------|-----|-----------------------------------------|-----------------------------------------|--------------------------------------|--|
|      |     | Operational                             | Adaptability                            | Tertiary                             |  |
| Micr | ro  | Easy to reconfigure, low impact on      | Ability to adapt existing space to      | 5-10 years lifespan, no structural   |  |
|      |     | time and cost (e.g. furniture and       | operational changes e.g. workplace      | implications e.g. furniture          |  |
|      |     | interior spaces)                        | practices                               |                                      |  |
|      |     | Tactical                                | Convertibility                          | Secondary                            |  |
|      |     | Involves commitment of capital          | Ability to convert rooms to different   | 15-50 years lifespan, e.g. walls and |  |
|      |     | expenditure; changes not easy to        | functions                               | ceilings, building services capacity |  |
|      |     | undo (e.g. design of operating          |                                         |                                      |  |
|      |     | theatres, provision of interstitial     |                                         |                                      |  |
|      |     | floors)                                 |                                         |                                      |  |
|      |     | Strategic                               | Expandability                           | Primary                              |  |
|      |     | Substantial increase in the lifetime of | Ability to expand (or contract) the     | 50-100 years lifespan, e.g. building |  |
| ↓    | ,   | the infrastructure (e.g. long term      | building envelope and                   | shell                                |  |
| Mac  | cro | expansion plans, future conversion      | increase/decrease capacity for specific |                                      |  |
|      |     | to other functions)                     | hospital functions                      |                                      |  |
| Sour | rce | (Neufville, Lee, & Scholtes, 2008)      | (Pati, et al., 2008)                    | (Kendall, 2005b)                     |  |







**Sources of 19 Case Studies** 





| No | Hospital / Facility                                      | Year          | Location | Classification of    |
|----|----------------------------------------------------------|---------------|----------|----------------------|
|    | Strategies adopted for flexibility / adaptability        | Completed     |          | Strategy(ies)        |
|    |                                                          |               |          | adopted              |
|    |                                                          |               |          | Major (/ minor)      |
| 1  | Addenbrooke's Hospital, Cambridge (Neufville, et al.,    | 1984          | UK       | Expandability        |
|    | 2008)                                                    | NB final      |          | (strategic /primary) |
|    | The old hospital (1,100 beds) was relocated to cope with | transition to |          |                      |
|    | expanding functions                                      | new hospital  |          |                      |
| 2  | Banner Estrella Medical Center, Phoenix (Eagle, 2006)    | 2005          | USA      | Expandability        |
|    | Designed to facilitate future expansion by adding two    |               |          | (strategic /primary) |
|    | new towers in the future to cope with increased demand.  |               |          |                      |
|    | (DPR Constructions, 2010)                                |               |          |                      |
| 3  | Celebration Health, Orlando                              | Not specified | USA      | Adaptability         |
|    | (Gallant & Lanning, 2001)                                |               |          | (operational /       |
|    | Universal room design - reduction in average lengths of  |               |          | tertiary)            |
|    | stay and nursing hours per patient day.                  |               |          | .,                   |
| 4  | Clarian West Medical Center, Avon, Indianapolis (Eagle,  | 2004          | USA      | Adaptability         |
|    | 2007)                                                    |               |          | (operational /       |
|    | Universal patient rooms - size of the room and           |               |          | tertiary)            |
|    | configuration can serve all the purposes from medical-   |               |          |                      |
|    | surgical to labour / delivery to intensive care.         |               |          |                      |





### 3. SOME FINDINGS: MASTERPLANNING

- The "Core hospital": up to 50% of hospital functions as ancillary buildings (Bjørberg & Verweij, 2009)
- The "hospital-on-demand": 30%
   permanent / "fixed" space, 40%
   short lease, 30% hired on demand
   (Neufville, et al., 2008)
- Incorporated in contract using option fees (Lee, 2007)
- "Empty chair" strategy based on the "four quadrants" principle (Thiadens, et al., 2004)







### 3. SOME FINDINGS: BUILDING DESIGN

- Modular Architecture: Based on uniform grid that is then subdivided to suit a range of functions (Diamond, 2006)
- Interstitial Floors: full height (> 1.8m) servicing floors between "patient floors", to allow for universal wall-less cabling and servicing (Verderber & Fine, 2000)









### 3. SOME FINDINGS: FUNDING / TENDERING

- Life-cycle approach total construction costs = 2-3 years operational cost (Valen & Larssen, 2006)
- Beware of over-specifying contracts (Building Design Partnership, 2004)
- Engage with hospital staff and committee members to understand long term needs (Bush, et al., 2005) & (Rechel, et al., 2009)
- Past PFI in UK "stifles innovation" should consider design stage separate to tendering process (Barlow & Koberle-Gaiser, 2009)
- Quantifiable measures for flexibility should be written as conditions to PFI agreement (Neufville, et al., 2008)





# 4. CASE STUDY: MARTINI TEACHING HOSPITAL, GRONINGEN, NETHERLANDS

- "Empty chair" strategy
  - 16m x 60m floor plan













# 4. CASE STUDY: INSEL HOSPITAL, BERN SWITZERLAND

- Primary, secondary, tertiary systems
- Floor structure grid of 8.4m x 8.4m2, with openings of 3.6m x 3.6m2, which can be opened later for vertical access, cables, pipes, lift shafts or light shafts (Geiser, 2004)











# 4. CASE STUDY: ST OLAV'S HOSPITAL, TRONDHEIM, NORWAY

- "Generic Clinic": identical locations of functions on each floor
  (Jensø & Haugen, 2005)
- User participation: engagement with hospital staff (Rechel et al, 2009)
- Surplus HVAC capacity of 20-30% (Valen & Larssen, 2006)











# 4. CASE STUDY: CLARIAN HEALTH PARTNERS, INDIANAPOLIS, INDIANA USA

- Patient-focussed care: acuity-adaptable rooms
- Transports of patients decreased by 90% and medication errors decreased by 70% (Hendrich, et al., 2004)
- Decentralised nursing stations







Acuity-Adaptable Patient Room





### 5. CONCLUSIONS

- Due to limitations on the search frame, not many facilities operational for long enough to be able to study how well they have adapted over time.
- There is little consistency in how the terms for flexibility are used – need for clearer and agreed definitions to be able to test how health facilities are doing.
- Local conditions can impact on successful strategies.
- Pressler (2006) 'good design should proved an adequate amount of flexibility, but no more than that'. What does this actually mean?
- Further research suggestions are given.





### 5. FUTURE RESEARCH – NEXT STEPS

- Need to widen search frame to include older facilities
- Focus on Australian hospitals
- Review existing facilities

#### **EXAMPLE AUSTRALIAN CASE STUDIES**

- Westmead Hospital, NSW (1978)
- Mount Druitt Hospital, NSW (1980)
- Prince of Wales Hospital, NSW (1995)
- St Vincent's Hospital, NSW (2002)
- Blacktown Hospital, NSW (2002)
- Coffs Harbour Hospital, NSW (2002)

- Toowoomba Base Hospital, QLD (1997)
- Princess Alexandra Hospital, QLD (2002)
- Townsville Hospital, QLD (2002)
- Royal Melbourne Hospital, VIC (1942-95)
- The Alfred Hospital, VIC (1990)
- Sunshine Hospital, VIC (2002)





# 6. NEXT PHASE OF RESEARCH Health Infrastructure NSW Stage 2 project – 2010

- Search frame widened to include older facilities
- Focus on Australian / NSW hospitals
- Project commenced July 2010 / complete late 2010
   NSW Case Studies
- Westmead Hospital, NSW (1978)
- Mount Druitt Hospital, NSW (1980)
- Prince of Wales Hospital, NSW (1995)
- Blacktown Hospital, NSW (2002)

Level 2

Level 1







#### THANK YOU

#### Want to contact us?

Email: <a href="mailto:chaa.admin@unsw.edu.au">chaa.admin@unsw.edu.au</a> Tel: 02 9385 5619 web: <a href="mailto:www.chaa.net.au">www.chaa.net.au</a>

<sup>\*\*</sup>CHAA acknowledges the support of the Australasian Health Infrastructure Alliance (AHIA), of which NSW Health is a member, and the Built Environment Faculty at the University of NSW