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Abstract

Multistage stochastic programming is an important tool in medium to long term

planning where there are uncertainties in the data. In this thesis, we consider

a special case of multistage stochastic programming in which each subproblem is a

convex quadratic program. The results are also applicable if the quadratic objectives

are replaced by convex piecewise quadratic functions. Convex piecewise quadratic

functions have important application in financial planning problems as they can be

used as very flexible risk measures. The stochastic programming problems can be

used as multi-period portfolio planning problems tailored to the need of individual

investors.

Using techniques from convex analysis and sensitivity analysis, we show that each

subproblem of a multistage quadratic stochastic program is a polyhedral piecewise

quadratic program with convex Lipschitz objective. The objective of any subproblem

is differentiable with Lipschitz gradient if all its descendent problems have unique

dual variables, which can be guaranteed if the linear independence constraint qual-

ification is satisfied. Expressions for arbitrary elements of the subdifferential and

generalized Hessian at a point can be calculated for quadratic pieces that are active

at the point.

Generalized Newton methods with linesearch are proposed for solving multistage

quadratic stochastic programs. The algorithms converge globally. If the piecewise

quadratic objective is differentiable and strictly convex at the solution, then conver-

gence is also finite.

A generalized Newton algorithm is implemented in Matlab. Numerical exper-

iments have been carried out to demonstrate its effectiveness. The algorithm is

ii
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tested on random data with 3, 4 and 5 stages with a maximum of 315 scenarios.

The algorithm has also been successfully applied to two sets of test data from a ca-

pacity expansion problem and a portfolio management problem. Various strategies

have been implemented to improve the efficiency of the proposed algorithm. We ex-

perimented with trust region methods with different parameters, using an advanced

solution from a smaller version of the original problem and sorting the stochastic

right hand sides to encourage faster convergence. The numerical results show that

the proposed generalized Newton method is a highly accurate and effective method

for multistage quadratic stochastic programs. For problems with the same number

of stages, solution times increase linearly with the number of scenarios.
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Notation

=
≤ = or ≤ as specified for each component of vector

‖ · ‖B matrix norm, ‖x‖B ≡ (xTBx)
1
2

A constraint matrix, usually of size m× n

A1, A2 equality and inequality constraints in A respectively

Ā active constraint matrix, Ā ∈ R
m̄×n

A index set of active constraints

B nonsingular basis matrix

Dt(k) set of descendent in stage t of scenario k

E the expectation operator

G Hessian matrix of f

G generalized Hessian of f

I identity matrix

J(xkt
t ) the set of quadratic pieces active at xkt

t

Kt total number of scenarios at stage t

Lkt
t the set of quadratic pieces encountered in the (t, kt) subproblem

Q recourse function, Qt(xt) = Eξt+1Qt+1(xt, ξt+1)

Q optimal value function

T number of stages

Vt stage t technology matrix, Vt ∈ R
mt×nt−1

Wt stage t recourse matrix, Wt ∈ R
mt×nt

Wt1, Wt2 the equality and inequality parts of Wt

e the vector of ones (1, 1, . . . , 1)T

f convex function

x



NOTATION xi

g gradient or any subgradient of f

g̃i
∑

j∈Li λi
jgj, aggregate subgradient

k scenario index

m, mt, m̄ number of constraints; in stage t problem; number of active constraints.

n, nt number of variables; in stage t problem

pkt probability of scenario (t, kt)

q a quadratic function

t stage (or time) index

vi sufficient function decrease

vi ≡ −
(
‖g̃i + ATµ‖2(Bi)−1 + α̃i + (b− Axi)Tµi

)
= − ((di)TBidi + α̃i + (b−Axi)Tµi)

wi stationarity measure

wi ≡ 1
2
‖g̃i + ATµ‖2(Bi)−1 + α̃i + (b− Axi)Tµi

= 1
2
(di)TBidi + α̃i + (b− Axi)Tµi

Ω support of ω

αi
j αi

j = f(xi)− f(yj)− gT
j (x

i − yj), linearization error

α̃i α̃i =
∑

j∈Li λi
jα

i
j , aggregate linearization error

λl dual variables to the lth linear supporting hyperplane, l ∈ L

µ dual variables to constraints Ax =
≤ b or Wtxt

=
≤ ht − Ttxt−1

ξ random variable

ρ step returned by linesearch routine

ω realization of the random variable ξ



Chapter 1

Introduction

Medium to long term planning is essential to the success of businesses and project

management. In these applications, the problems can often be divided into multiple

stages, usually over time. Dynamic programming [2, 6], bilevel programming [110]

and mathematical programming with equilibrium constraints [74] are useful mod-

elling and solution techniques for problems with two or more stages. As a lot of

the data is not available at the planning stage, the decisions need to be flexible

enough to cope with different eventualities. Stochastic programming [10, 62, 105] is

an increasingly important problem class for long term planning. Instead of treating

the future as a certainty with known data as in classical optimization, stochastic

programs incorporate information from a spectrum of possible future events. This

gives decision makers the ability to quantify the risk in different scenarios. The

stochastic model can be adjusted to reflect the relative importance of each scenario

giving a solution strategy that is optimal overall with an acceptable level of risk.

Stochastic programming began in the mid 1950s, and was one of the motivations

for Dantzig’s seminal work on linear programming. Early work concentrated on the

two-stage stochastic linear programs. For example, Van Slyke and Wets [121] devel-

oped the L-shaped method which is the basis of many algorithms used today. An

important application is a multistage stochastic linear program designed for a large

insurance company [13]. This is the first major commercial application of large scale

multistage stochastic programming. While important, the linear case may not ade-

1



1.1. Random Variables and Modelling Uncertainty 2

quately capture the usual risk averse attitude of decision makers, which is one of the

main reasons for applying stochastic programming. With the advance of computing

power, it is now possible to solve nonlinear problems with more stages. Nonlinear

problems provide more flexibility in the types of applications and allow planners

to take a more active role in controlling the return and risk profile of the project.

Recent applications include a two-stage air force scheduling problem with a non-

linear objective using the convex DQA algorithm [4], a multistage economic model

with general nonlinear subproblems using a nested decomposition algorithm [11] and

multistage asset-liability management with quadratic program subproblems [20]. See

also [8, 78, 79] for more recent applications of stochastic programming.

1.1 Random Variables and Modelling Uncertainty

Since stochastic programming deals with random data, we need to introduce some

notation. The Greek letter ξ is used to denote a random variable. ω represents

a possible realization of ξ out of the set of all possible outcomes Ω. A random

variable is termed continuous or discrete depending on the set of values it can take

on. Demand for electricity is a continuous random variable while the demand for

cars is discrete. A discrete random variable has finite support if the set Ω has a

finite number of elements. For example, if ξ is a random variables representing

the demand for cars in a one month period, then Ω = {0, 1, 2, . . . , N} where N

is some fraction of the population, and ω can take on one of the N + 1 values in

any month. However, for many random variables, the distinction between discrete

and continuous is blurred. In economics and finance, prices of commodities and

investment assets are routinely modelled as continuous random variables but in fact

prices are quoted to a finite number of decimal places, usually to the nearest cent.

An event A is a combination of outcomes ω. Suppose ξ represents the state of

the economy, then examples of events may be stock prices going up by 0 – 5%, 5 –

10% or more than 10%. A probability P (A) can be associated with each event A.

For P to be a probability measure, we need 0 ≤ P (A) ≤ 1 for all A ⊆ Ω, P (Ω) = 1
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and P (A1 ∪ A2) = P (A1) + P (A2) if A1 ∩A2 = ∅.
A continuous distribution is described by its density function ρ(ξ). The proba-

bility of ξ being in an interval [a, b] is

P (a ≤ ξ ≤ b) =

∫ b

a

ρ(ξ)dξ.

The expectation of ξ is defined as E[ ξ ] =
∫∞
−∞ ξρ(ξ)dξ. For the discrete case, it can

be simplified to E[ ξ ] =
∑

ω∈Ω ω P (ω). The expectation of a function of ξ is defined

similarly as E[ f(x, ξ) ] =
∫∞
−∞ f(x, ξ)ρ(ξ)dξ or E[ f(x, ξ) ] =

∑
ω∈Ω f(x, ω)P (ω).

The variance of a random variable is E[ (ξ − E[ ξ ])2 ].

1.1.1 Scenario Trees

In many applications, the distribution of the random variables is not known, or even

if it is, it may be deemed too expensive to consider a discrete distribution with many

possible outcomes or to handle a continuous distribution with numerical integration.

It is common practice to select a relatively small set of representative outcomes called

scenarios to represent the random events. The scenarios may be the quartiles of a

known distribution or historic data, the prediction of some ‘experts’ or generated

by simulations. Each scenario is then given a probability to reflect the likelihood

of it happening. The generation of a set of representative scenarios is crucial for a

balanced decision and is the topic of ongoing research, see for example [26,56,57,69,

90]. For a multistage model, the scenario information can be organized into a tree

structure. Figure 1.1 gives an example of a scenario tree for a 4-stage problem.

The ROOT node represents the present or the part of the data that is known. At

stage 2, there are four different possibilities and each of these have various different

possible outcomes in stage 3 and so on. A scenario consists of a complete path from

the root node to a single leaf node.

Let the number of stages be T and the number of possible outcomes in each

stage be Kt for t = 1, . . . , T . The nodes at each stage can be labelled sequentially

by kt = 1, . . . , Kt for all t. Denote by Dt(k) the immediate descendents in time t of

node k. For example, in the scenario tree in Figure 1.1, D3(1) denotes the immediate
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t = 2

t = 3

t = 4

t = 1

k   = 4

ROOT

k   = 32 2 2 2

Scen 2 Scen K4Scen 1 Scen K   - 14

k   = 1 k   = 2

Figure 1.1: Scenario tree

descendents of node 1 which are the two leftmost nodes in time 3. For each leaf

node k in stage T , let pkT be the associated probability of the scenario occurring.

For t = T − 1, . . . , 1, pkt is given by pkt =
∑

l∈Dt+1(k)
plt+1 with p1 = 1.

Scenario trees provide modellers with the flexibility to choose which scenarios

need to be considered and their relative importance. However, since it is impractical

to consider too many scenarios, it may limit the level of detail of the model. This is

especially true for problems where many random factors are involved. In financial

planning, since it is easier to predict trends in the near future, it is common to

have more branches at each node in the earlier stages of the scenario trees and

progressively fewer towards the end of the planning period.

1.2 Chance Constrained and Recourse Programs

While this thesis concentrates on recourse problems, both are outlined in this section.

1.2.1 Chance Constrained Programs

A chance constrained program or probabilistically constrained program is a mathe-

matical program in which some constraints are stochastic and are required to be
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satisfied with a specified minimum probability. It can take the following form:

min
x

Eξ[f(x, ξ)]

s.t. P ({ξ|gi(x, ξ) ≤ 0}) ≥ αi, i = 1, . . . , m,

where 0 ≤ αi ≤ 1 for all i. This can be interpreted, for example, as requiring that

a power supply system be able to cope with customer demand at least 95% of the

time; or that a building can withstand at least 99% of the storms and earthquakes

that the area is expected to encounter in the next 50 years without suffering serious

structural damage. This formulation is most often used when it is impossible or

prohibitively expensive to guarantee that all conditions can be satisfied at all times

and the cost of failing those constraints is difficult to quantify. In the power supply

example, equipment failure is unavoidable at times, but it is important to keep it at

a reasonably low level to avoid the extreme inconvenience and high cost of a power

outage. Chance constrained problems are often tackled by converting them into their

deterministic equivalents. If the probability distribution of the random parameter

satisfies some convexity requirements, then the feasible region is convex and closed.

Techniques from mathematical programming can be used to solve them. A chance

constraint implies a specific penalty on violation of the constraint. Although the

penalty is not spelt out, there is no principle difference between setting a penalty and

setting a required probability. See for example [10, 62] for a summary of properties

and solution methods for chance constrained programs.

1.2.2 Recourse Programs

In recourse programs, the decision process is divided into two or more stages. We

begin by considering a two stage recourse problem with linear constraints. It can

be formulated as

min
x

f1(x) + Eξ[Q(x, ξ)]

s.t. Ax = b, x ≥ 0, (1.1)
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where for each realization ω of ξ,

Q(x, ω) = min
y

f2(y, ω)

s.t. W (ω)y = h(ω)− V (ω)x, y ≥ 0. (1.2)

The expected value of the second stage objective value Eξ[Q(x, ξ)] is the recourse

term. At the first stage, a decision is made based on data currently available. In

stage two, for each possible realization of the random variables ξ, a new decision is

taken depending on the stage one decision. The expected cost over the two stages

can then be calculated and the stage one decision may be revised to achieve a better

overall balance of costs between stage 1 and 2. This process is repeated until the

overall expected cost is optimal. As an example, consider an investor who is planning

to invest in stocks and bonds for a one year period to maximize net return after

tax. Suppose our investor decided to adopt a scenario approximation approach and

believed that by the end of the year, it is equally likely that the stock price index

will fall by 5%, stay the same or rise by 10%, while the return of bonds is known

to be 2%. To model this problem, the first stage variables x in (1.1) represent the

proportion of money invested in bonds and stock and f1(x) calculates the cost of

setting up the investment portfolio. For any investment plan x and any realization

ω of the three scenarios, the recourse variables y in (1.2) represent the return and

f2(y, ω) gives the return after tax.

Here, we list some important classifications of recourse programs. A recourse

problem is said to have

fixed recourse if the recourse matrix W in (1.2) is fixed across all outcomes ω;

complete recourse if for all v ∈ R
m, there exists y ≥ 0 such that Wy = v;

relatively complete recourse if for all x ≥ 0 such that Ax = b and for all ω ∈ Ω,

there exists y ≥ 0 such that W (ω)y = h(ω)− V (ω)x;

simple recourse if W can be expressed as W = [I −I].

Simple recourse is a special case of complete recourse, which is in turn a special case

of relatively complete recourse. Relatively complete recourse implies that for all x
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that are feasible with respect to the first stage constraints, the recourse problem has

a non-empty feasible region.

It is straightforward to generalize problem (1.1)–(1.2) to include nonlinear con-

straints as well.

1.3 Modelling Real Life Problems and Applica-

tions

Because of the wide applicability of linear programming models and the availability

of reliable and efficient solution methods and software for linear programming, the

majority of attention in stochastic program has been devoted to stochastic linear

programs. However, we believe that the addition of nonlinear objectives, in partic-

ular quadratic and piecewise quadratic models will provide much greater power in

modelling applications such as quadratic and piecewise quadratic risk measures in

finance.

1.3.1 Stochastic Linear Programs

Stochastic linear programming (SLP) is a very important subclass of stochastic pro-

gramming. Not surprisingly, the first reported commercial application of multistage

stochastic programming was a SLP for the Japanese insurance company Yasuda [13]

in the early 1990s. A piecewise linear objective was used to give the desired non-

linearity while keeping the problem solvable. Other recent applications of SLP

include [14, 87, 91, 131].

A two-stage SLP can be formulated as

min
x1

cT

1x1 + Eξ2Q2(x1, ξ2)

s.t. Ax1 = b, x1 ≥ 0 (1.3)
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where for each realization ω2 of ξ2

Q2(x1, ω2) = min
y

q(ω2)
Ty

s.t. W (ω2)y + V (ω2)x1 = h(ω2), y ≥ 0. (1.4)

To generalize a two stage SLP to T stages, (1.4) is replaced by

Qt(xt−1, ωt) = min
xt

qt(ωt)
Txt + Eξt+1|ξtQt+1(xt, ωt+1)

s.t. Wt(ωt)xt + Vt(ωt)xt−1 = ht(ωt), xt ≥ 0, (1.5)

for t = 2, . . . , T and for each realization ωt of ξt and Q(xT , ·) = 0. Here ξt is the

history of the random variables up to time t and Eξt+1|ξt is the expected value with

respect to ξt+1 conditional on ξt.

SLP can be used to model problems with piecewise linear objective and con-

straints. This allows risk to be limited to an acceptable degree by controlling the

maximum possible loss or through the use of piecewise linear risk measure.

SLP can be solved either as a large scale linear program, see Section 2.1, or by

the L-shaped method and its variants which are discussed in Section 2.4.

1.3.2 Portfolio Optimization

Portfolio optimization is an important problem in financial management. It was first

developed by Markowitz in his seminal work [77] in 1952. The goal is to maximize the

expected return of a portfolio of investments while minimizing the risk posed to the

investors. The standard measure of risk used in finance is the variance or standard

deviation of return. Assume there are n asset classes with expected returns given by

r̄ ∈ R
n and covariance matrix C where C ∈ R

n×n is symmetric positive semi-definite.

Let x ∈ R
n represent the proportion of fund invested in the n investments, so it

satisfies
∑n

1 x = eTx = 1, where e = (1, 1, . . . , 1)T ∈ R
n. The portfolio return r ∈ R

is r = r̄Tx and the risk, as measured by the variance of r, is given by xTCx. Since

investments with high expected returns usually have higher risk, some compromise

is needed between striving for higher return and keeping risk under control. One
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Figure 1.2: Typical efficient frontier

way to formulate this into a mathematical program is

max
x

r̄Tx

s.t. xTCx ≤ c

Ax =
≤ b, eTx = 1, x ≥ 0,

where the symbol =
≤ means the constraints may be equalities or inequalities. This

formulation maximizes the expected return while keeping the portfolio risk under a

prespecified limit c. Alternatively, risk can be minimized while attaining an adequate

expected return τ :

min
x

xTCx

s.t. r̄Tx ≥ τ (1.6)

Ax =
≤ b, eTx = 1, x ≥ 0.

It is also possible to combine the two objectives into one by introducing a weighting

parameter α, α ≥ 0, giving

min
x

αxTCx− r̄Tx (1.7)

s.t. Ax =
≤ b, eTx = 1, x ≥ 0.

As C is positive semi-definite, (1.6) and (1.7) are convex quadratic programs and

can be solved by standard QP software, see Section 2.2 for more details. By vary-

ing respectively the level of acceptable risk c, minimum expected return τ or the
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weighting factor α in the three formulations, we can trace out what is known as the

efficient frontier. A typical efficient frontier is shown in Figure 1.2. The top half

of the curve depicts the set of portfolios which have the highest level of expected

return for a given level of variance or the lowest variance for given expected return.

For more detailed discussion on portfolio optimization, see for example [27].

1.3.3 Asymmetric Risk Measures

Although standard deviation (or variance) is the standard risk measure used in the

finance industry, it has the drawback of penalizing above target gain as much as

below target loss. It is well known from utility theory [125] that any risk measure

is convex, non-decreasing with a decreasing rate of increase. Various authors have

proposed the use of lower partial moments. For a random variable X, writing

X ≡ E[X ] as its expected value, the n-th lower partial moment [48] is defined as

Ln(X) = E[ (min(0, X −X))n ].

This measures the n-th moment of the part of the random variable that is below its

expected value. Of particular interest is the semi-variance defined as E[ (min(0, X−
X))2 ]. It is a once continuously differentiable convex piecewise quadratic function

in X. Piecewise quadratic functions will be defined and studied in Section 3.2.

The definitions of variance and lower partial moments can be generalized to

measure deviation from a target value τ instead of the expected value X,

Ln(X, τ) = E[ (min(0, X − τ))n ].

This may be viewed as the penalty for under-performing the target. Lower partial

moments have the advantage that they are intuitively much more appealing as risk

measures since people are only too happy to get a higher than expected return to

their investment. However, opponents believe that, unlike the standard deviation,

relatively little is known about the properties of lower partial moments and the

resulting optimization program is much harder to solve for n > 1. There is also

concern [64] that lower-partial moment measures over-estimate the investors’ desire
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for above target gain and put them into potentially more risky position than they

are prepared to accept. King [64] proposed piecewise linear-quadratic measures as

a compromise. This class of risk measures is defined as

ρa,b(r) =




ar − 1
2
a2 if r ≤ a,

1
2
r2 if a < r < b,

br − 1
2
b2 if b ≤ r,

(1.8)

where a ≤ 0 ≤ b. Here the argument r can be X−X or X−τ . The linear-quadratic

risk measure is compared to variance in Figure 1.3.

a 0 b 
 

variance

lin−quad risk

Figure 1.3: Linear-quadratic risk measure

The linear-quadratic risk measure can be seen as a generalized form of the M-

estimator [55]. For a discrete random variable with K realizations and residuals

ri, i = 1, . . . , K, the M-estimator is defined as

K∑
i=1

w(ri),

where

w(r) =

{
r2/2, |r| ≤ c

c|r| − c2/2, |r| > c.

It is a robust version of the sum of square error measure
∑K

i=1 r
2
i . The linear-

quadratic risk measure has the advantage that it is less sensitive to values outside

the range [a, b]. It is equivalent to the M-estimator if −a = b = c. The possibility
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of choosing different values for a and b make the linear-quadratic risk measure very

versatile.

Lower partial moments and linear quadratic risk measures are more flexible than

variance and give investors more control on how risk is measured. These general

risk measures can be used instead of variance in portfolio optimization problems.

Assume that a scenario approach is used and the forecast return in each scenario k

is given by µk ∈ R
n for the n assets and has probability pk for k = 1, . . . , K. Let

x ∈ R
n be the proportion of fund invested in the different assets. The return in

each scenario is rk = xTµk and the expected return is r̄ =
∑K

k=1 p
krk. The target

semi-variance of the portfolio is given by

K∑
k=1

pk
(
min(0, rk − τ)

)2
The target linear-quadratic risk is

K∑
k=1

pkρa,b(r
k − τ),

which is equivalent to the semi-variance if τ = r̄ and b = −a = ∞. The mean-

variance problem (1.7) can be converted to a mean target semi-variance problem

min
x,r

α

K∑
k=1

pk
(
min(0, rk − τ)

)2 − r̄

s.t. (µk)Tx = rk, k = 1, . . . , K (1.9)

r̄ =

K∑
k=1

pkrk

Ax =
≤ b, eTx = 1, x ≥ 0.

The target return τ can of course be set to equal the expected portfolio return r̄.

The objective is a separable piecewise quadratic function in r. The problem can be
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converted to an ordinary QP by splitting rk − τ into its positive and negative parts

min
x,rk

−,rk
+

α
K∑

k=1

pk(rk−)
2 − r̄

s.t. (µk)Tx− τ = rk+ + rk− (1.10)

r̄ =

K∑
k=1

pk(µk)Tx

Ax =
≤ b, eTx = 1, x ≥ 0

rk+ ≥ 0, rk− ≤ 0.

To use a linear-quadratic target risk instead of target semi-variance, we can

replace
∑K

k=1 p
k(min(0, rk− τ))2 in the objective of (1.9) by

∑K
k=1 p

kρa,b(r
k− τ). To

change the problem to a QP, rk can be split into rk = rk+ + rk0 − rk− where

rk− = −min(rk, a), rk+ = max(rk, b),

rk0 =




a, rk < a,

rk, a ≤ rk ≤ b,

b, rk > b.

The linear-quadratic risk function can be rewritten as

ρa,b(r
k − τ) = −ark− + 1

2
rk20 + brk+ − a2 − b2.

If we drop the constant terms −a2 − b2, the optimization program becomes

min
x,rk

+,rk
0 ,r

k
−

α

K∑
k=1

pk
(
b rk+ + 1

2
(rk0)

2 − a rk−
)− r̄

s.t. (µk)Tx− τ = rk+ + rk0 − rk− (1.11)

r̄ =
K∑

k=1

pk(µk)Tx

Ax =
≤ b, eTx = 1, x ≥ 0.

rk+ ≥ a, a ≤ rk0 ≤ b, rk− ≥ b.

In the next section, we show how these risk measures can be extended to multi-

stage problems.
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1.3.4 Multistage Financial Planning

For medium to long term planning problems, it is often more appropriate to use

a multistage model to adequately reflect the progression in time and the amount

of information available. It also allows the inclusion of transaction costs for more

realistic planning [88].

As an example, we now demonstrate how to formulate a multistage portfolio

planning problem using a target semi-variance risk measure. Suppose that for T

future periods, return forecasts µkt
t , for t = 1, . . . , S, kt = 1, . . . , Kt are available

in the form of a scenario tree like Figure 1.1. The investor would like to maximize

expected return and minimize transaction costs and risk as measured by target semi-

variance over the whole planning horizon. The multistage stochastic program can

be formulated as

min
x1

cT

1x1 + E[Q2(x1, ξ2) ]

s.t. Ax1
=
≤ b1, e

Tx1 = 1, x1 ≥ 0,

where ct in the objective measures the costs associated with forming the portfolio

and

Qt(xt−1, ω
k) = min

xt,rt

(ckt )
Txt − rt + α

(
min(0, rt − τk

t )
)2

+ E[Qt(xt, ξt+1) ]

s.t. rt = µk
txt−1

W k
t xt = hk

t − V k
t xt−1

Ak
t xt

=
≤ bkt , e

Txt = 1, xt ≥ 0,

and the end terms are

QT (xT−1, ωT ) = −rT + α
(
min(0, rT − τk

T )
)2

where rT = (µk
T )

TxT−1.

It is more complicated to use the expected return as the target value in the

multistage problem. As the expected return for each stage depends on the returns

of all nodes of that stage, the objective is no longer separable across the nodes. It

is necessary to pass all the return variables from each node back to the root and

calculate the expected return and variance for each stage there.
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1.4 Multistage Quadratic Stochastic Programs

(MQSPs)

This section formulates multistage quadratic stochastic programs where subprob-

lems in each stage minimize a convex quadratic objective plus a recourse term sub-

ject to linear constraints. The multistage financial planning problems discussed in

Section 1.3.4 are examples of this class of problems.

1.4.1 Model Formulation

For each stage t of a T -stage problem, let the random variable ξt = (Ht, ct,Wt, Vt, ht)

denote the stochastic input data to the multistage planning problem. Its value is

given by the realization of an underlying random event ωt defined over the event

space Ωt. A T -stage quadratic stochastic problem can be formulated as

min
x1∈R

n1
f1(x1) ≡ 1

2
xT

1H1x1 + cT

1x1 +Q1(x1)

s.t. W1x1
=
≤ h1,

where for t = 2, . . . , T , the recourse function is

Qt(xt, ξt) = Eξt+1|ξtQt+1(xt, ξt+1)

and

Qt(xt−1, ξt) = min
xt∈Rnt

ft(xt) ≡ 1
2
xT

tHt(ωt)xt + ct(ωt)
Txt +Qt(xt, ξt)

s.t. Wt(ωt)xt + Vt(ωt)xt−1
=
≤ ht(ωt), a.s.,

and QT (xT , ·) = 0. Here Eξt+1|ξt denotes the expectation with respect to ξt+1 condi-

tional on the history of ξ up to time t, abbreviated as ξt. The symbol =
≤ means the

constraints may be equalities or inequalities. Ht(ωt) ∈ R
nt×nt are symmetric positive

semi-definite, Wt(ωt) ∈ R
mt×nt , Vt(ωt) ∈ R

mt×nt−1, ct(ωt) ∈ R
nt and ht(ωt) ∈ R

mt .

All data is fixed for t = 1, but some or all may be stochastic for t = 2, . . . , T .

All variables are assumed bounded in this thesis. It is a natural assumption for

many applications. We also assume that the random variables are discrete and are
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arranged in the form of a scenario tree. Each node of the scenario tree is identified

by the index pair (t, k). Since this formulation will be referred to constantly in the

sequel, we will rewrite it with the explicit (t, k) indices for clarity.

min
x1∈R

n1
f1(x1) ≡ 1

2
xT

1H1x1 + cT

1x1 +Q1(x1) (1.12a)

s.t. W1x1
=
≤ h1, (1.12b)

where for t = 2, . . . , T and k = 1, . . . , Kt,

Qk
t (x

k
t ) =

∑
k̂∈Dt+1(k)

pk̂t+1Qk̂
t+1(x

k
t , ξ

k̂
t+1),

and

Qk
t (xt−1, ξ

k
t ) = min

xt∈Rnt
fk
t (xt) ≡ 1

2
xT

tH
k
t xt + (ckt )

Txt +Qk
t (xt) (1.13a)

s.t. W k
t xt + V k

t xt−1
=
≤ hk

t , a.s. (1.13b)

From now on, we will write Q(xkt
t ) instead of Qkt

t (xkt
t ) and similarly for other

variables to avoid unnecessary indices.

1.4.2 Large QP Equivalent

Problem (1.12) can be equivalently formulated as a large scale quadratic program

(QP):

min 1
2
xT

1H1x1 + cT

1x1 +

K2∑
k=1

pk2
(

1
2
(xk

2)
THk

2x
k
2 + (ck2)

Txk
2

)
+ . . .

+

KT∑
k=1

pkT
(

1
2
(xk

T )
THk

Tx
k
T + (ckT )

Txk
T

)
(1.14)

s.t.

W1x1
=
≤ h1,

V k
2 x1 +W k

2 x
k
2

=
≤ hk

2, k = 1, . . . , K2,
. . .

...

V k
T x

i
T−1 +W k

Tx
k
T

=
≤ hk

T , i = 1, . . . , KT−1,

k ∈ DT (i).

The QP (1.14) has
∑T

t=1 Ktnt variables and
∑T

t=1 Ktmt constraints. As the num-

ber of stages and scenarios increase, the dimension of the large scale QP increases
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dramatically. It quickly becomes impractical to solve this problem directly if the

number of scenarios in each stage Kt is too large. Therefore, it is necessary to com-

promise between the desire to model the problem more finely and the need to keep

the problem tractable.

The objective Hessian of (1.14) is block diagonal. The highly structured con-

straint matrix can be exploited by the Dantzig-Wolfe decomposition [24] on its dual

form. Benders’ decomposition [3] can be used on the primal problem which is the

basis of the L-shaped method [121].

1.5 Overview of Thesis

In Chapter 2, we survey techniques for solving linear programming and quadratic

programming problems. They are the subproblems of (1.12)–(1.13) and it is im-

portant we solve them efficiently. This is followed by a study of convex nonsmooth

programs. The techniques will be used in Chapter 4 when we develop a generalized

Newton method to solve (1.12)–(1.13). Then we survey methods for solving different

classes of stochastic programs.

Chapter 3 is concerned with the theoretical properties of the multistage quadratic

stochastic program (1.12)–(1.13). We start by summarizing many useful results from

sensitivity analysis. Then piecewise quadratic programs are defined and their sensi-

tivity properties are studied. The results are applied to show that each subproblem

of a multistage quadratic stochastic program is a piecewise quadratic program. We

look at their differential properties and show how to obtain the quadratic expression

of the component pieces of the piecewise quadratic objective.

Generalized Newton methods for solving (1.12)–(1.13) are developed in Chap-

ter 4. The first algorithm looks at the simplest case where each subproblems are

assumed to have strictly convex and differentiable objective and satisfy the rela-

tively complete recourse assumption. Then we show how feasibility can be ensured

by adding feasibility cuts to the basic algorithm. Finally, Algorithm 4.3 is obtained

by applying techniques from nonsmooth optimization to the basic algorithm so that
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it can handle problems with convex Lipschitz objectives.

In Chapter 5, the first generalized Newton algorithm is shown to converge glob-

ally and finitely if each piecewise quadratic objective of the multistage quadratic

stochastic program is strictly convex and differentiable. The rate of convergence

is shown to be superlinear. The same conclusions are extended to the case where

feasibility cuts are included. Then we prove the global convergent property of Al-

gorithm 4.3 for convex Lipschitz problems.

Chapter 6 gives details of the implementation and results of numerical experi-

ments carried out to study the performance of Algorithm 4.3. We study the line-

search strategy and trust region scheme especially developed for (1.12)–(1.13). A

number of efficiency schemes studied in the literature are implemented. The nu-

merical tests were performed on sets of random data with different scenario tree

structures. The tests are repeated on two sets of publicly available test data for

stochastic linear program, modified by adding small artificial quadratic terms to the

objective. Conclusions and directions for future research are given in Chapter 7.



Chapter 2

Survey of Stochastic Programming

Algorithms

This chapter surveys the different types of algorithms currently available to solve

multistage quadratic stochastic programs. The two main approaches are to solve

the deterministic equivalent (1.14) as a large scale mathematical program; or to

decompose the multistage problem into smaller problems.

All recourse programs can be expressed as large scale mathematical programs.

For multistage quadratic stochastic program (1.12)–(1.13), the deterministic equiv-

alent (1.14) is a standard QP and can, in principle, be solved by the many available

standard QP solvers. However, as the size of the deterministic equivalent increases

sharply as more stages and scenarios are considered, it is important to exploit the

highly structured constraint matrix and maintain sparsity as much as possible for

an efficient algorithm. Scaling and pre-solving are essential to reduce the problem

size and improve numerical stability.

Decomposition algorithms break up problem (1.12)–(1.13) into smaller subprob-

lems. This enables us to solve problems of much larger size than by attacking

the deterministic equivalents. The price is that each subproblem may have to be

solved many times. There is a need to balance the advantage of having very small

subproblems against reducing the number of iterations and subproblems solved.

Decomposition algorithms can be classified into primal and dual. Primal decompo-

19
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sition breaks up the problem along the stages. Information is passed back and forth

between the stages to achieve feasibility and optimality. Dual decomposition solves

the individual scenario problems. Information is exchanged between problems at

the same time stage to ensure nodes with the same history make the same decisions.

2.1 Large Scale Linear Programs

For multistage stochastic linear programs (1.3), the deterministic equivalent is a

large sparse linear program. This can be solved by either the simplex method or

by an interior point method. The simplex method is generally considered to be

very efficient for small to medium dense problems, while interior point methods are

superior for large sparse problems and the cputime is expected to grow only linearly

with the problem data size. There are many sophisticated commercial software like

CPLEX [21] and OSL [60] for linear programming implementing both the simplex

and interior point methods. For detailed discussion on both the simplex and interior

point methods see, for example, [124, 128].

2.1.1 Simplex Methods

The simplex method considers the standard LP problem

min cTx

s.t. Ax = b, x ≥ 0.

where c ∈ R
n, A ∈ R

m×n and b ∈ R
m. It uses the fact that n−m variables must be

zero at a vertex solution to partition the variables into basic, xi ≥ 0, and non-basic,

xi = 0. A and c are likewise partitioned: A = [B|N ] , c = (cB; cN). The basic

variables and the objective can be expressed in terms of xN :

xB = B−1(b−NxN ),

cTx = cT

BxB + cT

NxN = cT

BB
−1b+ (cN −NTB−TcB)

TxN .
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If any component i of the reduced cost vector dN = cN −NTB−TcB is negative, then

the objective value can be decreased by letting xNi
become positive, ie. basic. The

change in xB is B−1(b − NixNi
). The way i is chosen if there are more than one

negative component is termed pricing. xNi
is increased until one of the basic variables

becomes zero and non-basic. The main computational cost of the simplex method is

calculating B−TcB and B−1Ni. This can be done by using a QR or LU factorization

of B and updating the factors in each iteration. The simplex method moves between

adjacent vertices until no improvement can be found. If all the simplex steps are

non-degenerate, then the algorithm terminates after a finite number of iterations.

Large Sparse Simplex

A crash procedure [43] is used in all large simplex implementations to get a good

starting basis and this can significantly reduce the number of iterations. Fourer [34]

looked at specializing large LP technologies to the staircase constraint case. He

demonstrated how the sparse LU updates and the backward and forward substitu-

tions can exploit the staircase structure. Because of the special block structure of

the constraints in (1.14), we can consider the large constraint matrix as composed

of smaller sub-blocks and work with the associated bases. Only the inverses of the

smaller bases of the sub-blocks need to be updated which is a significant saving.

This is very similar to basis factorization [61, 116].

An efficient pricing strategy, usually Devex or steepest edge is also important

for fast solution. Unlike the originally proposed method which chooses the most

negative reduced cost, these two pricing schemes look at the gradient in the space

of the structural variable instead of the space of the current basic variables. In

steepest edge pricing, the gradient is calculated exactly, while Devex employs a

heuristic. Although these two pricing schemes are computationally demanding, they

can significantly reduce the total number of simplex steps required and lead to faster

solution time for large problems. For really large problems, it may be beneficial to

use partial pricing where only a subset of the reduced cost vector is calculated.

While pricing strategies look at the rate of decrease of the objective if a non-basic
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variable is increased, it doesn’t take into account the maximum step and therefore

the actual decrease. Multiple pricing selects a group of indices and calculate the

actual decrease. It is very expensive but can reduce the number of iterations. These

pricing schemes are discussed in [35] and techniques which adapt these schemes

efficiently to staircase LPs are proposed.

Parallel Simplex

Simplex methods are not easily amenable to parallelization. In [112], the basic

revised simplex method was parallelized, and almost linear speedup was achieved

for the problems tested (with up to 500 variables). However, there is significant fill-in

in the update scheme for the basis inverse B−1 which is clearly not suitable for large

sparse problems. An implementation with a sparse LU factorization was also tested.

However, very little speedup was achieved due to the sparsity of the matrices and

heavy communications needed. Because of the difficulties in parallelizing individual

operations in simplex methods, Hall and McKinnon [45,46] adopted an asynchronous

approach. Different operations are performed in parallel, so some processors may

be using outdated information. This approach is also more prone to numerical

instability compared to revised simplex methods. Speedups between 2 to 5 using 2

to 12 processors are reported.

2.1.2 Interior Point Methods

Interior point methods are recognized as being very efficient for large sparse linear

programs. One of their major advantages is that as the problem size increases, the

number of iterations remains stable and the cputime grows linearly, see numerical

results in Section 6.2. Here we briefly sketch the primal-dual variant of the interior

point method. See [124, 128, 130] for excellent coverage of interior point methods.

Consider the problem

min cTx

s.t. Ax ≤ b, x ≥ 0.
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By adding a slack variable w and using a log barrier function with penalty parameter

µ to enforce non-negativity of x and w, we have

min cTx+ µ
∑
j

log xj + µ
∑
i

logwi

s.t. Ax+ w = b.

The Lagrangian is

L(x, w, y) = cTx+ µ
∑
j

log xj + µ
∑
i

logwi + yT(b− Ax− w).

The first order optimality conditions are then

Ax+ w = b,

ATy − µX−1e = c,

y = µW−1e.

Here X denotes the diagonal matrix whose diagonal entries are given by x, and

similarly for W. We can rewrite the last set of equations as

Ax+ w = b, ATy − z = c, (2.1)

XZe = µe, WY e = µe. (2.2)

The solution to this system of equations for decreasing µ is termed the central path.

Starting from strictly positive primal and dual variables and slacks x, y, w, z, the

path following algorithm finds (�x,�y,�w,�z) that approximately lies on the

central path. Substituting x by x + �x and similarly for y, z, w, (2.1) and (2.2)

become

A�x+�w = b− Ax− w, (2.3)

AT�y −�z = c−ATy + z, (2.4)

Z�x+X�z = µe−XZe−�X�Ze, (2.5)

W�y + Y�w = µe− Y We−�Y�We.. (2.6)

Since W and Z are diagonal, if the nonlinear terms �X�Ze in (2.5) and �Y�We

in (2.6) are dropped, we can solve for �w and �z. (2.3) and (2.4) can be rearranged
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to obtain the reduced KT system[
−Y −1W A

AT X−1Z

][
�y

�x

]
=

[
b−Ax− µY −1e

c− ATy + µX−1e

]
. (2.7)

It is possible to solve the reduced KT system further by explicitly solving for �x

or �y to obtain the normal equations in the primal form

−(Y −1W + AXZ−1AT)�y = b−Ax− µY −1e− AXZ−1(c− ATy + µX−1e) (2.8)

or the dual form

(ATYW−1A +X−1Z)�x = c− ATy + µX−1e+ ATYW−1(b−Ax− µY −1e). (2.9)

The KT matrix in (2.7) is quasi-definite while the matrices in the normal equa-

tions (2.8) and (2.9) are positive definite. A matrix M is called quasi-definite [123]

if it is of the form

M =

[
−E AT

A F

]

where E and F are symmetric positive definite. All three systems (2.7), (2.8) and

(2.9) can be solved by using a LDLT factorization where L is lower triangular and

D is diagonal. The elements of D may be negative if the matrix is quasi-definite.

Large Sparse Interior Point Methods

Maintaining sparsity is the most important factor in an efficient implementation of

an interior point method. This is achieved by permuting the rows and columns of

the matrices in (2.7), (2.8) and (2.9) before factorization to minimize fill-in in the

factor L. The most commonly used reordering schemes for large sparse matrices

include the minimum degree ordering, its variant approximate minimum degree [37]

and nested dissection ordering [1]. These three ordering schemes are more expensive

than their competitors but they generally result in lower fill-in. As X, Y,W and Z

are diagonal matrices, the sparsity pattern in the KT system (2.7) and the normal

equations (2.8) and (2.9) remain the same throughout the algorithm, so it is only

necessary to perform the reordering once in the beginning. It is worthwhile spending

more time in reordering as the factorizations are computationally intensive operation



2.2. Large Scale Quadratic Programs 25

and need to be repeated many times. Dense columns in A can create significant fill-

in in (2.8) and dense rows lead to a dense system in (2.9). This suggests factorizing

the reduced KT matrix directly since it is sparse, although this may be less stable

numerically. Dense columns can also be handled by the Schur complement which

splits the constraint matrix into sparse and dense components. Lustig et al. [76]

suggested splitting the variables to induce sparsity at the expense of increasing the

problem size. They claim this method avoids the numerical difficulties sometimes

associated with the Schur complement and can achieve higher accuracy, however, it

is not as efficient.

Instead of dropping the nonlinear term completely, predictor-corrector meth-

ods [81] can be used to improve the accuracy of the new point. (2.7) is first solved

to give (�x,�y), then (�w,�z) can be obtained by (2.3) and (2.4). The cross

product term �X�Ze and �Y�We are calculated and (2.7) with updated right

hand side is solved again to give a more accurate estimate of (�x,�y).

Parallel Interior Point Methods

Interior point methods are more readily parallelizable than simplex methods. The

largest reduction in time can be obtained by parallelizing the Cholesky factorization

routine followed by sparse triangular system solvers and sparse matrix multiplica-

tions. IBM’s OSL [12] has reported speedup of typically 3 to 13 on 25 processors.

A lot of work has been done in this area, see for example [22, 25, 75, 129].

2.2 Large Scale Quadratic Programs

Quadratic programs are required in the solution of (1.12)–(1.13), both for the indi-

vidual subproblems or for solving the large scale equivalent problem (1.14). They

are usually solved by active set methods or interior point methods.
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2.2.1 Active Set Methods

Consider first the convex equality constrained QP

min
x∈Rn

1
2
xTHx+ cTx (2.10)

s.t. Ax = b

where H ∈ R
n×n is positive semi-definite and A ∈ R

m×n. The null space method

finds a basis Z for the null space of A, usually using a QR factorization for numerical

stability or LU factorization on a submatrix of A if it is sparse. Any feasible solutions

x can be expressed in term of another feasible point x0 as x = x0 + Zw for some

w ∈ R
n−m. Then (2.10) is equivalent to

min
w∈Rn−m

1
2
wT(ZTHZ)w + (Hx0 + c)TZw

and the solution is calculated by solving

(ZTHZ)w = −(Hx0 + c)TZ (2.11)

using a factorization of ZTHZ.

For problems with inequality constraints, the active set method maintains a

working list of active constraints Ji at iteration i. At a feasible point xi, the following

equality constrained QP is solved to give a descent direction di.

{min 1
2
(xi + d)TH(xi + d) + cT(xi + d) : Aj(xi + d) = bj , j ∈ Ji}.

If di is 0 and all Lagrange multipliers for inequality constraints are non-negative,

then xi is optimal for the original problem, otherwise, the constraint with the most

negative multiplier is dropped from the active set. If di �= 0, xi + di is the optimal

solution in the current subspace. It is necessary to calculate the maximum possible

step

α = max

{
bj − aT

jxi

aT
jdi

| aT

jdi > 0, j �∈ Ji

}
that does not violate any of the inactive constraints. The step is then given by

ρi = min{1, αi},
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and we set xi+1 = xi + ρidi. If ρi < 1, the constraint that limits the step is added to

the list of working active constraint list. As only one constraint is dropped or added

each time, the LU factors of A can be updated efficiently as in the simplex method.

Since the number of combinations of active constraints is finite, if the problem is

not degenerate, then the sequence of function values is strictly decreasing and the

active set method can be shown to converge finitely. See, for example, Fletcher [33]

for more details on active set method.

Large Sparse Active Set Method

The problem with the null space method for large sparse equality constrained QP

solver is that Z and therefore ZTHZ may be dense if A is sparse but has dense

columns. A more recent active set approach [42] aims to preserve sparsity by working

directly on the KT conditions. The model problem is

min 1
2
xTHx+ cTx (2.12)

s.t. Ax = b, l ≤ x ≤ u.

Let λ and µ be the Lagrange multipliers for the equality and bound constraints

respectively. For simplicity, we assume that no lower bounds are active since they

can be treated in the same way as upper bounds. For each working active set, let

the subscript FX denotes the variables fixed at their upper bounds. The first order

optimality condition is

Hx+ c+ ATλ+ Iµ = 0,

Ax = b,

xFX = uFX.

Writing this in matrix form and splitting the fixed and free variables, denoted by the

subscript FX and FR respectively, and using OD to denote off diagonal elements,
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the system of equations become


HFX HOD AT
FX I

HOD HFR AT
FR 0

AFX AFR 0 0

I 0 0 0






xFX

xFR

λ

µ


 =




−qFX

−qFR

b

uFX


 .

Clearly the last row is redundant as xFX = uFX , so we can eliminate the last row

and first column. After swapping the two middle columns, the optimality condition

is 
 AT

FX HOD I

AT
FR HFR 0

0 AFR 0




 λ

xFR

µ


 =


 −qFX −HFXxFX

−qFR −HODxFX

b− AFXxFX


 .

This is a (n + m) linear system which is much larger than the (n − m) reduced

Hessian system in (2.11), but it is very sparse. Another advantage is that each time

the active set changes, we only need to perform simple row permutation and only

2 out of the last n columns of the basis change. The LU factors can therefore be

updated easily as in the simplex method.

One common criticism for active set method for large scale optimization is that

many iterations is required if the starting active set is significantly different from

the optimal one. To alleviate this problem, Goldfarb [40] proposed a method for

deleting more than one constraints in each iteration.

Bound constrained QP

When only bound constraints are present, significant savings can be obtained.

See [33, 38, 86] for detailed discussions. The projection gradient algorithm which

allow for large changes in the active set can be especially beneficial for large scale

bound constrained problem. See [5, 86].

2.2.2 Interior Point Methods

Interior point methods for QP follow closely those for LP. Following the derivation

of (2.7), the reduced KT system can be expressed as[
−(X−1Z +H) AT

A Y −1W

][
�x

�y

]
=

(
c− ATy + µX−1e+Hx

b− Ax− µY −1e

)
. (2.13)
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The primal and dual normal equations are respectively

(Y −1W + A(X−1Z +H)−1AT)�y

= b− Ax+ µY −1e+ A(X−1Z +H)−1(c− ATy +Hx− µX−1e)

and

−(ATYW−1A+X−1Z+H)�x = c−ATy+Hx−µX−1e−ATY W−1(b−Ax+µY −1e).

The primal normal equation has coefficient matrix A(X−1Z + H)−1AT which is

likely to have significant fill-in due to the inverse term. The dual form has sparsity

pattern ATYW−1A+X−1Z +H which is far more likely to be sparse unless A has

dense columns. The system of equation (2.13) can be solved in exactly the same

way as for LP. See for example [124] for more detailed discussion and examples of

implementation.

2.3 Convex Nonsmooth Programs

This section gives an overview of algorithms for solving convex nonsmooth programs.

The first part of this section is devoted to studying the differential properties of

nonsmooth functions. This is followed by a review of subgradient methods, bundle

methods for nonsmooth functions and lastly methods for minimizing LC1 functions

and Lipschitz continuous functions.

2.3.1 Lipschitz Functions, Subgradients and Generalized Hes-

sians

This section summarizes some useful definitions and properties of convex Lipschitz

functions. Details can be found in, for example, [53, 101].

A convex function f is proper if f(x) > −∞ for all x ∈ R
n and there exists

x̄ ∈ R
n such that f(x̄) < +∞. This means that f is proper if and only if dom f is

nonempty and the restriction of f to dom f is finite. We will assume in the sequel

that all convex functions are proper unless otherwise specified.
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Let f be any function from R
n → [−∞,+∞] and let x̄ be a point such that f(x̄)

is finite. The directional derivative of f at x̄ along a direction h is

f ′(x̄, h) = lim
α↓0

f(x̄+ αh)− f(x̄)

α

if the limit exists (+∞ and −∞ are allowed as limits). The directional derivative

of a convex function exists everywhere.

The subdifferential of a convex function f is

∂f(x̄) = {v : f(x̄+ h) ≥ f(x̄) + vTh, ∀h ∈ R
n}.

Each element v ∈ ∂f(x̄) is called a subgradient. For a proper convex function f ,

∂f(x) is empty if x �∈ dom f and ∂f(x) is nonempty and bounded if and only if

x ∈ int(dom f).

The subdifferential and directional derivative of a convex function can be further

characterized by

f ′(x̄, h) = max
v∈∂f(x̄)

vTh (2.14)

and

∂f(x̄) = co

{
lim
x→x̄

x∈Df
∇f(x)

}
,

where co denotes the convex hull and Df ⊆ R
n is the set where f is differentiable.

The ε-subdifferential generalizes the subdifferential. It is defined as

∂εf(x̄) = {v : f(x̄+ h) ≤ f(x̄) + vTh+ ε, ∀h ∈ R
n}

for ε ≥ 0.

For a convex function f(x) : R
n → R, its conjugate f ∗(x∗) is defined as

f ∗(x∗) = sup
x∈Rn

xTx∗ − f(x).

The following results on convex conjugate functions are required in the sequel.

[P1] f ∗(x∗) is convex, closed and proper [101, Theorem 12.2].

[P2] If f is piecewise quadratic, then so is f ∗ [117,118, Proposition 2.1.7]. (Piecewise

quadratic functions will be defined precisely in Section 3.2.)
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[P3] If f is strictly convex, then int dom f ∗ �= ∅ and f ∗ is continuously differentiable

on int dom f ∗ [53, Theorem X4.1.1].

If f is also 1-coercive, that is f satisfies lim‖x‖→+∞
f(x)
‖x‖ = +∞, then the following

properties are also true:

[P4] If f is strictly convex, continuously differentiable and 1-coercive, then f ∗ is

finite-valued on R
n, strictly convex, continuously differentiable and 1-coercive

[53, Corollary X4.1.4a].

[P5] If f is 1-coercive, then dom f ∗ = R
n [53, p.89].

A function f : X ⊆ R
n → R is said to be Lipschitzian relative to X if there

exists L ≥ 0 such that

|f(y)− f(x)| ≤ L‖y − x‖, ∀x, y ∈ X.

By Rademacher’s theorem, a Lipschitz function is differentiable almost everywhere,

(see for example, [19]).

A function f is called LC1 if f is continuously differentiable and ∇f is Lipschitz.

An LC1 function is twice continuously differentiable almost everywhere. Let D2
f be

the set where f is twice continuously differentiable, Pang and Qi [95,97] introduced

the B-derivative

GB(x̄) =

{
lim
x→x̄

x∈D2
f

∇2f(x)

}
.

This is the set of generators of the generalized Hessian G of f earlier proposed by

Clarke [19]. The generalized Hessian G is the generalized Jacobian of ∇f and is

given by

G(x) = coGB(x).

∇f is said to be strongly BD-regular [95, 97] at x if all G ∈ GB(x) are nonsingular.

A function F : X ⊆ R
n → R

m is semismooth [82, 99] at x ∈ R
n if F is Lipschitz

continuous in an open neighbourhood of x and the limit

lim
V ∈∂F (x+τh)

τ↓0
V h
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exists for all h ∈ R
n, where ∂F (y) is the Clarke’s generalized Jacobian of F at

y. Proposition 1 of [96] states that a continuous piecewise differentiable function

is semismooth. An LC1 function f defined on X ⊆ R
n is SC1 at x if ∇f(x) is

semismooth.

2.3.2 Subgradient Methods

Subgradient methods were the first practical methods for solving nonsmooth opti-

mization problems. In their most basic form, they can be seen as nonsmooth versions

of steepest descent methods. Consider the problem

min
x∈X

f(x)

each iteration of a subgradient method is given by xi+1 = xi + ρidi where ρi is

an appropriate step, the search direction is di = −gi/‖gi‖ for some gi ∈ ∂f(xi).

Since only one subgradient is used at each iteration, di is not necessarily a descent

direction and it is difficult to devise a practical stopping criterion. As di may not

be a descent direction, steps have to be determined a priori. The method is globally

convergent if the steps ρi satisfy

ρi > 0, lim
i→∞

ρi = 0,

∞∑
i=1

ρi = ∞.

Subgradient methods have been modified with space dilation to improve the

convergence rate. This is similar to quasi-Newton methods for smooth optimization.

The search direction is given by

di = − H igi

(gi)TH igi

where H i is some nonsingular matrix. See [65, 111] for detailed discussions of sub-

gradient methods.

2.3.3 Bundle Methods

Consider the convex nonsmooth program

min
x∈Rn

f(x).
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Suppose at each point x ∈ R
n, a subgradient g(x) ∈ ∂f(x) is available. One way

to solve the problem is by forming a polyhedral approximation of f(x) at each

iteration i using previously obtained trial points xl, and their subgradients g(xl), l =

1, . . . , i− 1, namely

f(x) ≥ f̂(x) ≡ max
l<i

{
f(xl) + g(xl)T(x− xl)

}
.

However, minimizing f̂(x) on R
n may be unbounded, therefore the basic cutting

plane method [18, 63] obtains the next trial point by minimizing f̂(x) on some

compact set C where C is known to contain the optimal solution. The function

value and a subgradient is then calculated at xi and the algorithm repeats itself until

f(xi) ≤ f̂(xi) + ε for some given stopping tolerance ε ≥ 0. The above algorithm

is globally convergent, however, it is unstable as iterates can vary wildly as cuts

change the approximation and convergence can be very slow.

Suppose the set of subgradients (called a bundle) are calculated at some auxiliary

sequence yl, l ≤ i which can be thought of as some set similar to the sequence of

iterates {xl}. At each iterate xi, the polyhedral approximation of f can be written

as

f̂(x) = max
l≤i

{
f(yl) + gT

l (x− yl)
}
. (2.15)

Define the linearization error

α(xi, yl) = f(xi)− f(yl)− gT

l (x
i − yl). (2.16)

Substituting (2.16) into (2.15) gives

f̂(x) = f(xi) + max
l≤i

{gT

l (x− xi)− α(xi, yl)}. (2.17)

Observe that

α(xj, yl) = f(xj)− f(yl)− gT

l (x
j − yl)

= f(xi)− f(yl)− gT

l (x
i − yl) + f(xj)− f(xi) + gT

l (x
i − xj)

= α(xi, yl) + f(xj)− f(xi)− gT

l (x
i − xj).
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Therefore the linearization error can be updated easily without storing the points

yl where each gl was first derived and α(xi, yl) can be denoted by αi
l without any

loss of information.

Denote the search direction by d. Since f̂(x) may not be a good approximation

of the objective far away from xi, a stabilizing term 1
2
dTd is added to f̂ to form the

search direction finding subproblem.

min
d∈Rn

{
max
l≤i

gT

l d− αi
l +

1
2
dTd

}
. (2.18)

This is a strictly convex problem and so has a unique solution. This removes the

need for the arbitrary compact set C.

As we do not have full information about ∂f(xi), di may not be a descent direc-

tion. We need to distinguish two types of iterates.

1. If a positive step ρi can be found such that f(xi + ρidi) is sufficiently smaller

than f(xi), then set xi+1 = xi + ρidi and yi+1 = xi+1. This step is called a

serious step.

2. Otherwise, set xi+1 = xi and yi+1 = xi + ρdi for some appropriate positive ρ

such that gi+1 ∈ ∂f(yi+1) is sufficiently different from the current bundle so

that a better direction can be found in the next iteration. This step is termed

a null step since the iterate x is not updated.

An algorithm of this type is given by Mifflin [83]. Let 0 < mL < mR < 1 and

mL < 1
2
.

Algorithm 2.1

Step 0 Find x1 ∈ R
n, set y1 = x1 and i = 1. Calculate g1 ∈ ∂f(y1).

Step 1 Solve

min
u,d

1
2
dTGid+ u (2.19)

s.t. −αi
l + gT

l d ≤ u, l = 1, . . . , i

for d and u. If d = 0, stop, xi is optimal.



2.3. Convex Nonsmooth Programs 35

Step2 Linesearch

Calculate two steps 0 ≤ ρL ≤ ρR such that xi+1 = xi+ρLd
i and yi+1 = xi+ρRd

i

satisfy

f(xi+1) ≤ f(xi) +mLρLu
i,

and

−αi+1
i+1 + gT

i+1d
i ≤ mRu

i.

Goto Step 1.

In Step 1, Gi are positive definite matrices. Mifflin [83] proved that the above

algorithm is globally convergent.

However, the above algorithm is not practical as it requires storing all subgradi-

ents. One solution is the subgradient selection method [66] which uses results from

generalized cutting plane method. In each iteration, it is only necessary to keep

those subgradients whose corresponding Lagrange multiplier are positive. Since at

most n+1 dual variables can be positive, the amount of storage required is bounded.

The resulting algorithm is still globally convergent as only those subgradients with

positive Lagrange multiplier are necessary in defining the current model of f . There-

fore adding a new subgradient to this set is guaranteed to provide a better model of

f . See Kiwiel [65].

If the number of variables is large, then the subgradient selection approach may

still require too much work in each direction finding problem. To see how global

convergence can be achieved with fewer cuts, we need to introduce an aggregate

subgradient. Recall the definition of gl as that

f(x) ≥ f(yl) + gT

l (x− yl) for all x ∈ R
n.

Combine this with the linearization error (2.16) to give

f(x) ≥ f(xi) + gT

l (x− xi)− f(xi) + f(yl) + gT

l (x
i − yl)

= f(xi) + gT

l (x− xi)− α(xi, yl). (2.20)

This shows that gl is in the ε-subdifferential of f at xi, gl ∈ ∂εf(x
i) for ε = α(xi, yl).

As we will show in Lemma 5.3, the optimality condition of the ith subproblem (2.19)



2.3. Convex Nonsmooth Programs 36

requires that the dual variables λi
l, l = 1, . . . , i satisfy∑

1≤l≤i

λi
l = 1, λi ≥ 0.

Define

g̃i =
∑
1≤l≤i

λi
lgl, α̃ =

∑
1≤l≤i

λi
lα

i
l. (2.21)

The aggregate subgradient g̃i is a convex combination of ε-subgradients of f at xi.

It is easy to verify that g̃i ∈ ∂εf(x
i) for ε = α̃ by taking a convex combination of

(2.20).

Kiwiel [65] showed that the ith search direction problem (2.19) can be replaced

by

min
u,d

1
2
dTGid+ u

s.t. −α(xi, yi) + gT

i d ≤ u,

−α̃i−1 + (g̃i−1)Td ≤ u,

while still maintaining global convergence. Of course, more subgradients can and

should be included to give a finer approximation of f to achieve faster convergence.

The search direction problem is usually solved in its dual form since the number

of subgradients is generally kept much smaller than the number of variables.

A lot of work has been done on bundle type methods. A trust region method is

often used to replace the linesearch procedure. This allows the trust region radius

to be updated depending on how accurately the current model approximates f , and

so speed up convergence, see for example [68, 109]. Research has also been carried

out in generalizing techniques from smooth optimization to incorporate second order

information into bundle methods to achieve better convergence rate. Examples of

recent papers in this area include [67, 70, 84, 85].

2.3.4 LC1 optimization

In LC1 optimization, both the objective function and the constraints are continu-

ously differentiable but their gradients are only Lipschitz continuous. Qi [98] and
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Pang and Qi [96] proposed using an approximate Newton method for solving this

class of problems. Consider the problem

min
x

f(x) (2.22)

s.t. g(x) ≤ 0. (2.23)

Let u denotes the Lagrange multiplier for the inequality constraints (2.23). The

algorithm can be stated as follow. Start at some feasible (x0, u0). At each iteration

i, solve

min
x∈Rn

∇f(xi)T(x− xi) + 1
2
(x− xi)TGi(x− xi)

s.t. g(xi) +∇g(xi)T(x− xi) ≤ 0,

where Gi is symmetric positive semi-definite. If zi+1 = (xi+1, ui+1) is not unique,

choose a KTT point zi+1 which is closest to zi in the 2-norm.

Qi [98] proved that if at a KT point (x∗, u∗), the linear independence constraint

qualification, the second order sufficiency condition and the strict complementarity

condition are satisfied, if ∇f(x∗) and ∇g(x∗) are semismooth and if there exists

V i ∈ ∂B(∇f(xi)) such that

lim
i→∞

‖(Gi − V i)(xi+1 − xi)‖
‖zi+1 − zi‖ = 0,

then the algorithm converges superlinearly. See Section 3.1 for the definitions of the

linear independence constraint qualification and the strict complementarity condi-

tion. For the LC1 program (2.22), define

I(z) = {j|1 ≤ j ≤ m, gj(x) = 0}
I1(z) = {j ∈ I(z)|uj > 0}, I2(z) = {j ∈ I(z)|uj = 0}

and

D(z) = {d ∈ R
n|f ′(x, d) = 0, g′j(x, d) = 0 for j ∈ I1(z), g

′
j(x, d) ≤ 0 for j ∈ I2(z)}.

A point z is said to satisfy the second order sufficiency condition [98] for (2.22) if

it satisfies the Kuhn-Tucker conditions and if dTV d > 0 for all d ∈ D(z)\0 and

V ∈ ∂BFu where Fu = ∇f(x) + uT∇g(x).
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If the constraints g(x) are linear and a linesearch, such as an Armijo linesearch,

is used to guarantee sufficient function value decrease in each iteration, then global

convergence can also be achieved by assuming in addition thatGi are positive definite

and bounded [98].

Han and Sun [47] improved on the superlinear convergence result of Qi [98] by re-

placing the linear independence constraint qualification and second order sufficiency

condition assumptions at the solution point with the strong second order sufficiency

condition.

2.3.5 Minimizing Lipschitz Functions

Pang et al. [94] proposed an algorithm to solve

min
x∈Rn

f(x), (2.24)

where f(x) is locally Lipschitz but not necessarily convex. As f is not assumed

to be convex, the directional derivative f ′(x, d) may not exist everywhere. A more

general derivative concept is the upper Dini directional derivative of f at x in the

direction of d, defined as

fD(x, d) = lim sup
λ↓0

f(x+ λd)− f(x)

λ
. (2.25)

The upper Dini directional derivative is everywhere defined if f is locally Lipschitz

and it is equal to the usual directional derivative if f ′(x, d) exists. A point x ∈ R
n

is called a Dini stationary point if for all d ∈ R
n, fD(x, d) ≥ 0.

At each iterate xi, the search direction subproblem is given by

min
d

φ(xi, d) + 1
2
dTBid, (2.26)

where Bi ∈ R
n×n is symmetric positive definite and contains second order informa-

tion of f similar to a quasi-Newton method. The matrices {Bi} are assumed to

satisfy c1x
Tx ≤ xTBix ≤ c2x

Tx for all i for constants 0 < c1 < c2. The iteration

function φ(xi, d) is a linear approximation of f at xi. It is assumed to be continuous

in d for all x and φ(x, 0) = 0 for all x. φ(xi, d) needs not be continuous in x since
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the Dini directional derivative may be discontinuous in x. The iteration function

φ(xi, d) should also satisfy

φ(x, d) ≥ fD(x, d) for all (x, d) ∈ R
n × R

n.

This condition and the positive definiteness of Bi guarantee that the solution to

(2.26) is a descent direction at xi.

Given linesearch parameters ρ, σ ∈ (0, 1) and a stopping tolerance ε ≥ 0, the

algorithm of Pang et al. [94] can be stated as

Algorithm 2.2

Step 0 Choose initial point x0 ∈ R
n. Set i = 0.

Step 1 Solve (2.26) for di.

Step 2 If ‖di‖ = 0 , then stop, xi is a Dini stationary point.

Step 3 Armijo linesearch: let mk ≥ 0 be the smallest integer that satisfies

f(xi + ρmdi)− f(xi) ≤ −σ

2
ρm(di)TBidi.

Set xi+1 = xi + ρmkdi and i = i+ 1. Return to Step 1.

Under some technical assumptions on φ(x, d) at the limit point x̄, the algorithm is

proven to converge globally [94].

Qi and Sun [100] proposed another algorithm that also solves (2.24). Instead of

using a linesearch, convergence is enforced by a trust region method. Once again, an

iteration function is used for first order approximation of the objective. It satisfies

φ(x, 0) = 0 and φ(x, d) is lower semi-continuous for all x ∈ R
n and for all convergent

sequences xi

f(xi + di)− f(xi) ≤ φ(xi, di) + o(‖di‖)

if di → 0.

Given positive constants c0 ≤ 1, c2 < c1 < 1, c3 < 1 < c4. Their algorithm is
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Algorithm 2.3

Step 0 Choose initial trust region radius r0 > 0 and initial point x0.

Step 1 Solve the search direction subproblem

Qi(di) ≡ min f(xi) + φ(xi, d) + 1
2
dTBid

s.t. ‖d‖ ≤ ri.

If ‖di‖ = 0, then stop, xi is a Dini stationary point of f .

Step 2 Let

ak =
f(xi)− f(xi + di)

f(xi)−Qi(di)
.

Update

xi+1 =

{
xi + di, if ak > c2,

xi, otherwise,

ri+1 =




c3r
i, if ak ≤ c2,

ri, if c2 < ak ≤ c1,

min{c4ri, r0}, otherwise,

Goto Step 1.

Under some technical assumptions on φ(x, d), the algorithm is shown to be glob-

ally convergent [100]. Since convergence is enforced via the trust region radius

updating, it is not necessary to have Bi positive definite.

For both Algorithms 2.2 and 2.3, if the objective is directionally differentiable,

then f ′(x, d) satisfies all the required assumptions on φ(x, d).

2.4 Primal Decomposition Methods for Stochas-

tic Programs

For multistage stochastic programs with hundreds or thousands of scenarios, the

deterministic equivalents are very large and may require too much memory to be
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solved efficiently. Decomposition algorithms break the problems down into smaller

subproblems and therefore greatly reduce memory requirements. Similarity among

different subproblems can also be exploited to produce more efficient algorithms.

See the recent textbooks on stochastic programming [10, 62] for excellent coverage

on decomposition methods and other topics on stochastic programming.

Primal decomposition methods break the stochastic program into smaller sub-

problems corresponding to the different time stages. This class of algorithms solves

the individual time stage problems. At each node, the current solution is passed

to the appropriate descendent nodes to form problems (1.13). Feasibility and op-

timality information is passed back to the ancestor problem to obtain a new trial

point.

Decomposition methods are well suited to parallelization as subproblems can be

solved independently on different processors. The main communication needed for

primal decomposition is to broadcast the current solution to processors handling

descendent problems and to pass feasibility and optimality information back to

form a new current stage program. Depending on the ratio of time spent in each

processor to the communications time and the efficiency of the communications

network, varying levels of speed-up are possible.

Most work has been done on two stage stochastic linear programs (SLP-2) with

fixed recourse. Many primal decomposition methods take advantage of the fixed

feasibility set of the dual of the second stage subproblem induced by fixed recourse.

2.4.1 L-shaped Method

The earliest attempt to solve stochastic programs by decomposition is the L-shaped

method of Van Slyke and Wets [121]. It is designed for two stage stochastic linear

programs (1.3) with discrete random variables with a finite number of realizations.

The L-shaped method exploits the structure of the constraint matrix in the large

scale equivalent LP (1.14) by performing a Dantzig-Wolfe decomposition [24] on the

dual problem or a Benders decomposition [3] on the primal. The result is a cutting

plane method which builds an outer linearization of the recourse cost function. It
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proceeds by first solving the first-stage (master) problem (1.3). For each realization

k, k = 1, . . . , K of the stochastic parameters, (1.4) is tested for feasibility with

respect to the current master solution. If an infeasible subproblem is encountered,

a feasibility cut is generated. The cut is placed in the master problem in the form

of an inequality constraint (2.27c), and the master problem is solved again to give a

new first stage solution. Otherwise problems (1.4) are solved and if the current first

stage solution is not optimal, an optimality cut (2.27d) is constructed and passed

to the master problem.

Algorithm 2.4 L-shaped Method

Step 0 Set r, s, ν = 0.

Step 1 Set ν = ν + 1. Solve the modified master problem

min cTx+ θ (2.27a)

s.t. Ax = b, (2.27b)

Dlx ≥ dl, l = 1, . . . , r, (2.27c)

Elx+ θ ≥ el, l = 1, . . . , s, (2.27d)

x ≥ 0, (2.27e)

for (xν , θν).

Step 2 For k = 1, . . . , K

Solve the stage two feasibility problem

min w = eTv+ + eTv−

s.t. Wy + v+ − v− = hk − Vkx
ν , (2.28)

y, v+, v− ≥ 0.

If w > 0,

Let σ be the Lagrange multipliers, set r = r + 1,

Set Dr = σTVk, dr = σThk.

Return to Step 1.

If w = 0 for all k = 1, . . . , K, goto Step 3.
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Step 3 For k = 1, . . . , K solve the stage two problem

Qk(x
ν) = min qT

ky

s.t. Wy = hk − Vkx
ν , (2.29)

y ≥ 0.

Let the Lagrange multiplier be πk.

Set s = s+ 1. Es =
∑K

k=1 pkπ
T
kVk, es =

∑K
k=1 pkπ

T
khk.

If θν ≥ es −Esx
ν

xν is the optimal solution, STOP.

Else return to Step 1.

Feasibility Cuts

We now show how feasibility cut (2.27c) is derived. At a first stage solution xν ,

the feasible set for the stage two problem is {y|Wy = hk − Vkx
ν , y ≥ 0}. Let

pos W = {u|∃y ≥ 0,Wy = u}. Then a constraint right hand side hk − Vkx
ν is

feasible if and only if hk − Vkx
ν ∈ pos W . If it is infeasible, then there must exist

a hyperplane which separate hk − Vkx
ν from pos W , that is a σ which satisfies

σT(hk − Vkx
ν) > 0 and σTu ≤ 0 for all u ∈ pos W . This is satisfied by the dual

variables of (2.28) as we will now demonstrate. The dual problem of (2.28) is

max
σ

σT(hk − Vkx
ν)

s.t.


 W T

I

−I


σ ≤


 0

e

e


 . (2.30)

Since hk − Vkx
ν is assumed to be infeasible, the optimal value of (2.28) is strictly

positive. By duality, the optimal values of the primal and dual problems are the

same, that is σT(hk − Vkx
ν) > 0 or σThk > σTTkx

ν . Clearly, xν does not satisfy the

new cut (2.27c). From the first constraint of (2.30), σ satisfies W Tσ ≤ 0, that is

σTWy ≤ 0 for all y ≥ 0 or σTu ≤ 0 for all u ∈ pos W . So σ satisfies the requirement

of a separating hyperplane and (2.27c) only cuts off x that leads to infeasible stage

two problems.
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As each cut removes the current x, a new feasibility cut is created each time.

Since problem (2.28) has a finite number of optimal bases, there can only be a finite

number of feasibility cuts.

Optimality Cuts

Let πk denote the dual variables of (2.29), so by duality,

πT

k(hk − Vkx
ν) = Qk(x

ν).

Since Qk is convex,

Qk(x) ≥ Qk(x
ν) +∇Qk(x

ν)T(x− xν)

= Qk(x
ν)− πT

kVk(x− xν).

Combining the last two equations gives

Qk(x) ≥ πT

khk − πT

kVkx.

Taking the expected value over all realizations gives

Q(x) =
K∑

k=1

Qk(x) ≥
K∑

k=1

pkπ
T

khk −
K∑

k=1

pkπ
T

kVkx.

The master problem (2.27) is feasible for (xν , θν) if θν ≥ el − Elx
ν = Q(xν).

Since θ is unrestricted otherwise, the above holds as an equality. In this case, the

algorithm terminates since xν minimizes the sum of the first stage problem and the

linear lower bound of the second stage problem and the lower bound is exact at xν .

If the new cut is not satisfied by (xν , θν), then clearly the new cut is different from

all previous cuts since none before excluded xν . As there are a finite number of

optimal bases to problem (2.29), there can only be finitely many optimality cuts.

As a new cut is created in each iteration and there are finitely many feasibility

and optimality cuts, the L-shaped method is finitely convergent. The drawback

with this approach is that the number of cuts continues to grow as the algorithm

proceed. There may be numerical difficulties if the gradients of the constraints

become almost linearly dependent. The first few iterations are generally not efficient
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as the approximation to the recourse function is very poor. As the early iterates of

the cutting plane method tend to fluctuate wildly, the algorithm cannot make use

of a good starting point even if one is available.

Parallel L-shaped Method

The L-shaped method can be parallelized naturally by assigning subsets of second

stage problems to different processors. There may be significant idle time for slave

processors if the master problem is time-consuming. There is also likely to be a com-

munications bottleneck when all subproblems are trying to return cut information

to the master processor. See for example [93] for a recent implementation.

Multi-cut L-shaped Method

The original L-shaped method creates only one optimality cut per iteration using

the expected value from all scenario subproblems. It is possible to disaggregate it

to form one cut per scenario or one for each subset of scenarios. The multi-cut

version [7] leads to a larger master problem with more variables and constraints but

it is expected to reduce the number of iterations required as the recourse function

is approximated more finely. Computational experience in [87] suggests that the

multi-cut approach reduces overall solution time.

Algorithm 2.5 Multi-cut L-shaped Method

Step 0 Set r, ν = 0, sk = 0 for k = 1, . . . , K.

Step 1 Set ν = ν + 1. Solve the modified master problem

min cTx+

K∑
k=1

θk

s.t. Ax = b

Dlx ≥ dl, l = 1, . . . , r

Elkx+ θk ≥ elk , lk = 1, . . . , sk, k = 1, . . . , K

x ≥ 0

for (xν , θν1 , . . . , θ
ν
K).
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Step 2 As for Algorithm 2.4.

Step 3 For k = 1, . . . , K solve the stage two problems (1.4). Let πk be the Lagrange

multipliers.

If θνk < pkπ
T
k(hk − Vkx

ν)

Set sk = sk + 1,

Esk
= pkπ

T
kVk, esk

= pkπ
T
khk.

If θνk ≥ pkπ
T
k(hk − Vkx

ν) for all k = 1, . . . , K

xν is the optimal solution, STOP.

Else return to Step 1.

Bunching and Sifting

As we have to solve all the second stage problems (1.4) in each iteration at step 3

to obtain the dual variables, it is important to do it efficiently. For subproblems

with fixed recourse, that is if W is fixed, a technique called bunching can be used.

Bunching exploits the similarity of the recourse problems between scenarios by find-

ing groups of realizations (called bunches) that share a common optimal basis. Let

B be the optimal basis of W for some particular right hand side hk and a subscript

B denote components corresponding to the basic variables. Then πk = B−TqkB,

qk − W Tπk ≥ 0 (optimality) and B−1(hk − Vkx
ν) ≥ 0 (feasibility). Assuming q is

deterministic, define a bunch as all the right hand sides that are also feasible at this

optimal basis, namely

{hk − Vkx
ν |B−1(hk − Vkx

ν) ≥ 0, k = 1, . . . , K}.

Then nodes in the same bunch share the same dual variables. The optimal bases

for other realizations can be obtained quickly from bases in previous bunches using

dual simplex steps. This can significantly improve solution time if there are many

scenarios sharing the same or similar bases.

Sifting is a similar technique requiring the right hand side to have component-

wise independence in addition. For more general subproblems, warm starts from

the optimal bases of other scenarios can also reduce solution time. See [10, 62] and
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references therein for detailed discussions on bunching, sifting and other efficiency

techniques.

2.4.2 Nested Decomposition

Nested decomposition [39, 54] extends the L-shaped method to solve multistage

stochastic linear programming problems. It also assumes the stochastic parameters

have a finite number of realizations. As the name suggests, nested decomposition

solves the first stage problem and treats the remaining stages as another multistage

stochastic program and solves them recursively. As the algorithm progresses, cur-

rent solutions are passed forward to later stages as input to the right hand side

(called forward passes), while information is passed back from later stages in the

form of feasibility and optimality cuts to the ancestor problems (called backward

passes). There are various schemes which determine the direction to proceed at an

intermediate stage. In general, the fast forward fast backward approach seems to be

the most efficient. This scheme suggests that the algorithm should proceed in the

same direction as far as possible until an infeasible subproblem is found (when going

forward) or when there are no more cuts to pass back (when going back). Informa-

tion exchange among all stages is maximized in this scheme. See for example [87] for

a description of these and other tree traversing schemes and a comparison of their

performance.

As the number of subproblems increases rapidly with a longer planning horizon,

efficiency schemes like bunching are even more important. Morton [87] suggested

keeping a candidate list of bases when repeated optimal bases are unlikely. The

technique was designed for systems with a large network component. In the first

major iteration, the network flow is calculated using the candidate bases first and

a feasible solution for the whole subproblem can then be calculated quickly from

the network solution. The candidate with the minimum objective value is chosen as

a starting basis. For subsequent major iterations, previous optimal bases from the

same subproblem are used.

As with the L-shaped method, the initial iterations of the nested decomposition
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are very inefficient and may result in infeasible input for later stages. It is helpful to

be able to calculate preliminary cuts before starting the algorithm. If the stochastic

parameters exhibit interstage independence and they only influence the right hand

side of the nodal problems (ht and Vt in (1.13)), then the expected value problem

can be solved first and the feasibility and optimality cuts generated are valid for

the original problem. If stochastic parameters across the stages are dependent,

the cut sharing scheme of [59, 87] can be used to create preliminary cuts. This

scheme looks at a single scenario at each stage and solves its descendents. The

cuts created are passed back to the ancestor and modified using the cut sharing

formula before passing to the ancestor’s siblings. Prespecified solutions to all nodes

are required which may be obtained by solving the expected value problem. It is

suggested in [87] that more than one set of prespecified solutions, for example, three

well spaced values within the lower and upper bounds of the variables, are used.

The advanced cuts should be calculated in a backward order so that the maximum

amount of information is passed back. Computational experiments in [87] suggest

significant improvement in solution time on multistage stochastic linear programs

with a large network component.

Parallelization of the nested decomposition method follows analogously from the

L-shaped method. Sets of scenarios can be assigned to processors to create feasibil-

ity or optimality cuts simultaneously. Ruszczyński [107] suggested a different way to

parallelize the nested decomposition algorithm. All subproblems are solved simul-

taneously to generate new cuts and current solutions. This new information is then

passed to a special buffer so that the tasks can be performed asynchronously. This

scheme significantly reduces communication bottlenecks and idle time in processors

waiting for new information to come in. More information is generated at the same

time, though it is possible that some processors may be using outdated informa-

tion. Scheduling of processes will be important. Good speedup is reported [107]

over serial nested decomposition, with speedups larger for longer time periods and

more branches. The speedup was close to linear if the number of processors was

small compared to the number of nodes in the scenario tree. See also [9] for another

parallel implementation.
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2.4.3 Regularized Decomposition

The L-shaped method is essentially a cutting plane algorithm and suffers from two

major disadvantages: (1) the first few iterates are very unstable as the feasible set

and the recourse function are poorly approximated, so the algorithm cannot take

advantage of a good initial solution; (2) the number of cuts increases continuously

as the algorithm proceeds, with the increase being more significant for the multicut

version. Regularized decomposition [106, 108] generalizes the L-shaped method to

address these two problems. In two stage stochastic linear programs (1.3)–(1.4), a

convex proximal term σ‖x− x̂‖2 is added to the first stage objective function, where

σ > 0 is a weighting parameter and x̂ is a candidate solution. The proximal term

forces the objective function to become strictly convex and reduces the variability of

the solution, so a good starting point can be used to speed up the solution process.

It also allows slack cutting planes to be dropped so the size of the master problem is

well controlled. The algorithm either converges or proves the problem is infeasible

in a finite number of iterations [106, 108].

The set of constraints used in the master problem is termed the committee. They

may include constraints from the original first stage problem, feasibility and optimal-

ity cuts. The multicut approach is preferred because it approximates the piecewise

linear objective more finely than aggregated cuts and since the proximal term allows

the dropping of slack constraints, and the numbers of committee members is always

bounded above by n1 + 2K, where K is the number of scenarios.

Regularized decomposition is a two stage algorithm. The first stage identifies

a feasible starting point and uses the same algorithm as the second stage main

algorithm. The committee is initialized to contain the first stage constraints. In

the next stage, the program starts at a feasible point and the committee contains a

combination of the original constraints and feasibility and optimality cuts from the

first stage algorithm.

Algorithm 2.6

Step 0 Set ν = 0. Initialize committee and a feasible x̂1.
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Step 1 ν = ν + 1. Solve the master problem with candidate solution x̂ν

min σ‖x− x̂ν‖2 + cTx+ pTθ

s.t. x satisfies constraints in committee,

for (xν , θν) where p is the probability vector of the stage two scenarios.

f̂ ν = cTxν + pTθν .

If f̂ ν = f(x̂ν), optimal solution found, STOP.

Step 2 Delete the committee members inactive at (xν , θν) so that no more than n+K

members remain.

Step 3 If xν violates any of the first stage constraints,

add to the committee at most K violated constraints.

Set x̂ν+1 = x̂ν , goto Step 1.

Step 4 Solve (1.4) at xν for k = 1, . . . , K

If (1.4) is infeasible, append feasibility cut to the committee.

If Qk(x
ν) > θνk , append optimality cut to the committee.

Step 5 If all subproblems are solvable, goto Step 6.

Else set x̂ν+1 = x̂ν , goto Step 1.

Step 6 If either f(xν) = f̂ ν or f(xν) ≤ λf(x̂ν)+(1−λ)f̂ ν and exactly n+K members

are active at (xν , θν), then set x̂ν+1 = xν , else set x̂ν+1 = x̂ν .

Regularized decomposition is an active set method. It selects the optimality cuts

that are active at the solution. Based on this observation, a specialized active set

method is developed in [106] for solving the master problem. The method reduces the

size of the linear system so that it is bounded by the number of first stage variables.

This makes it practicable to solve problems with a huge number of realizations.

Numerical experiments in [108] suggest that regularized decomposition is a very

efficient method for two stage stochastic linear program. It outperforms the standard

L-shaped method with either aggregate or multicuts, both in terms of speed and the

size of problems that can be solved.
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The regularized decomposition method can be extended to the multistage case by

using a nested decomposition. A proximal term can be added to all the subproblems

except the terminal nodes to stabilize the current solution.

2.4.4 Stochastic Decomposition and Importance Sampling

Stochastic decomposition and importance sampling generalize the L-shaped method

for two stage stochastic linear programming. Instead of solving one subproblem for

each scenario realization in every iteration, only a subset of realizations are sampled.

This is useful for problems having a very large number of branches or when the

stochastic parameters are distributed continuously. The resulting algorithms have

fewer cuts than their deterministic cousins, and the computing time required is less

sensitive to the number of scenarios. However, as not all possible realizations are

sampled, the optimality cuts generated are only statistically valid, and convergence

can only be proven in a statistical sense.

In stochastic decomposition [50, 52], the authors propose using only one sample

per iteration. The piecewise linear approximation to the recourse function is a

statistically valid lower bound. As only a very small number of samples will be tested

in the algorithm, there is no guarantee of recourse feasibility and it is only applicable

to problems with relatively complete recourse. Optimality is achieved statistically

and it is possible to obtain statistical estimates of lower and upper bounds on the

optimal value [49]. As only one sample is used in each iteration, the solution time

is not very sensitive to increases in the number of scenarios, although increased

variability means more iterations are needed before the iterates converge. This

scheme has also been combined with regularized decomposition (see Section 2.4.3)

to bound the number of optimality cuts in the master problem [51]. This method

is not worth parallelizing if only one sample is tested per iteration. However it is

straightforward to parallelize it across a small number of processors and test the

same number of random samples as processors and return one cut for each sample.

Importance sampling [23,58] combines Monte Carlo sampling with an L-shaped

method. Importance sampling improves on the crude Monte Carlo method and
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reduces the variance of the solution estimate. In each iteration, a subset (about

50-200) of realizations is used to generate an exact feasibility cut or an approximate

optimality cut. Optimality cuts are only statistically valid. Probabilistic lower and

upper bounds of the solutions are kept and the algorithm terminates when the two

are statistically indistinguishable. Confidence intervals on the optimal value can

also be calculated. As not all the scenarios are tested, it does not always guarantee

feasibility of the second stage. Forcing the algorithm to consider some rare but

disastrous scenarios has been suggested as a way to protect the system against such

risks. The L-shaped method with importance sampling can be parallelized as the

L-shaped method. Numerical results [58] show that importance sampling is capable

of solving problems with a massive number of scenarios to a high accuracy of within

95% confidence interval of the solution.

2.4.5 Piecewise Quadratic Form of the L-shaped Method

Louveaux [72,73] adapted the nested L-shaped method to the multistage quadratic

stochastic program (1.12)–(1.13). The algorithm has the same tree traversing strat-

egy as the nested L-shaped method and uses a cutting plane method to force con-

vergence. It takes advantage of the piecewise quadratic nature of the objective

(piecewise quadratic function will be discussed further in Section 3.2) and uses a

Newton direction in each step. For each stage t subproblem, the algorithm mini-

mizes the current quadratic function with respect to a search domain St and the

domain of the current quadratic function Ct (termed a cell). The current cell bound-

ary is obtained by solving recursively the appropriate subtree. If the solution is not

optimal, then a cut is placed on the search domain St to remove at least the current

cell.

Algorithm 2.7

Step 0 Find x1 ∈ X1 = {x|W1x
=
≤ h1}. Set t = 1, E1 and d1 vacuous.

Step 1 If t = T

Goto Step 2.
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Else

For i = t+ 1 to T

ki = (Di(ki−1))1,

Gi = Hki
i , qi = cki

i , ai = 0.

fi = 1
2
xT
iGixi + qT

i xi + ai,

Xi = {x|W ki
i x+ V ki

i xi−1
=
≤ hki

i }, Ci = Si = Xi, xi ∈ Xi.

Ei and di vacuous.

Set t = T .

Step 2 Minimize the current quadratic function with respect to the search domain St

and the current cell Ct:

v = argmin{ft|x ∈ St},
w = argmin{ft|x ∈ Ct}. (2.31)

Step 3 If ∇ft(w)
T(v − w) = 0

Current subtree optimal, goto Step 4.

Else

Update St = St ∩ {x|∇ft(w)
T(x− w) ≤ 0}, Ct = Xt.

Et and dt vacuous.

xt = v.

Gt = Hkt
t , qt = ckt

t , at = 0.

ft = 1
2
xT
tGtxt + qT

t xt + at,

Goto Step 1.

Step 4 If t = 1, optimal solution found; STOP.

Otherwise, calculate boundary and quadratic expression of current cell.
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Consider the Kuhn-Tucker condition for (2.31)




Gt (W kt
1t )

T (W kt
2t )

T ET
t 0 0

W kt
1t 0 0 0 0 0

W kt
2t 0 0 0 I 0

Et 0 0 0 0 I







x

λ1

λ2

λ3

s1
s2




=




−qt
hkt
1t − V kt

1t xt−1

hkt
2t − V kt

2t xt−1

dt


 (2.32)

λ2, λ3, s1, s2 ≥ 0. (2.33)

HereW1, andW2 represent the equality and inequality constraints respectively.

Let B be an optimal complementary basis of (2.32). Calculate

r = B−1


 −qt

hkt
t − V kt

t xt−1

dt


 , E = B−1


 0

V kt
t

0


 . (2.34)

Let r̄ and Ē be the rows of r and E that correspond to the non-negative

variables λ2, λ3, s1, s2. Update

Ct−1 ← Ct−1 ∩ {x|Ēx ≤ r̄ + Ēxt−1}, (2.35)

Et−1 ←
[
Et−1

Ē

]
, dt−1 ←

(
dt−1

r̄ + Ēxt−1

)
.

Find Qt = 1
2
xT
tGxt + qTxt + a by substituting the value of the basic variable x

from (2.32) into ft.

Update Gt−1 ← Gt−1 + pkt
t G, qt−1 ← qt−1 + pkt

t q, at−1 ← at−1 + pkt
t a,

ft−1 = 1
2
xT
t−1Gt−1xt−1 + qT

t−1xt−1 + at−1.

If kt + 1 �∈ Dt(kt−1)

t = t− 1, goto Step 2.

Else solve subtree of next sibling:

kt = kt + 1,

Gt = Hkt
t , qt = ckt

t , at = 0.

ft = 1
2
xT
tGtxt + qT

t xt + at,

Xt = {x|W kt
t x+ V kt

t xt−1
=
≤ hkt

t }, Ct = St = Xt, xt ∈ Xt.

Et and dt vacuous.

Goto Step 1.
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In Step 4, the boundary of the current cell is constructed by adding cuts from

each direct descendent problem. The variable r in (2.34) gives the optimal stage

t primal and dual solution at the current xt−1. For arbitrary x̃t−1, the primal and

dual variables using the same basis is

r −E(x̃t−1 − xt−1).

This is optimal if and only if the non-negative dual variables λ2, λ3, and slack

variables s1 and s2 remains non-negative, or

r̄ − Ē(x̃t−1 − xt−1) ≥ 0.

hence the update formula (2.35).

If the recourse matrixW is fixed and all descendents have similar active sets, then

some cuts may be redundant and can be removed. However, if the problems have

stochastic recourse or very dissimilar active sets, then the number of constraints

required to define a cell may at worst be the sum of the inequality constraints,

including bounds, of all direct descendents. This may lead to numerical difficulty as

the constraint gradients become almost linearly dependent.

Since the number of cell is finite and at least one cell is removed in each iteration,

Louveaux [72] proved the algorithm converges finitely.

2.4.6 Two Stage Quadratic Stochastic Program

Chen et al. [16, 17] studied a two stage stochastic program with quadratic recourse

and continuous random variables. The problem is formulated as

min
x

f(x) ≡ P (x) +Q(x)

s.t. Ax ≤ b (2.36)

where

Q(x) =

∫
Ω

Q(x, ω)ρ(ω)dω

and

Q(x, ω) = max
y

− 1
2
yTHy + yT(h(ω)− V x)

s.t. Wy ≤ q.
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Here P (x) is a convex twice differentiable function and H is positive definite.

Since H is positive definite, the optimal value function Q(x, ωi) for each real-

ization ωi is convex and continuously differentiable [16, 17]. Its gradient is given

by

∇Qi(x, ωi) = −V T argmin
y

{− 1
2
yTHy + yT(h(ωi)− Tx),Wy ≤ q},

and the integral is approximated by numerical integration using N sample points.

∇f(x) = ∇P (x) +
1

N

N∑
i=1

∇Qi(x, ωi)ρ̃(ωi)

where ρ̃(ωi) is some appropriate probability.

Let Y denotes the feasible set of the stage two problem. Let ΠH,Y (u) be the

projection of u onto Y induced by H , that is ΠH,Y (u) = argminy∈Y ‖u− y‖2H. ΠH,Y

without any argument denotes the n1 × n2 matrix which maps a vector from R
n1

to Y ⊆ R
n2 . Let L(u) be the linearity space L(u) = {y ∈ R

m|(ΠH,Y (u)− u)THy =

0,W uy = 0} where W u is the set of active constraints at u.

Let ui = H−1(h(ωi)−Tx). An element of the generalized Hessian of the optimal

value function Q(x, ωi) is given by

V (x, ωi) =

{
V TH−1V, if ui ∈ int Y,

V TH− 1
2ΠH,L(ui)H

− 1
2V, otherwise

and an element of the generalized Hessian of f(x) is

B(x) = ∇2P (x) +
1

N

N∑
i=1

V (x, ωi)ρ̃(ωi).

Using the above differential information, the authors proposed a generalized

Newton method for solving (2.36). Let

g(x, λ) =

(
∇f(x) + ATλ

min(λ, b−Ax)

)

and

gi(d, λ) =

(
∇f(x) + ATλ+Bid

min(λ, b− A(xi + d))

)
,

where min is the component-wise minimum of the two vectors. Let {ηi} be a non-

negative forcing sequence which control the accuracy of the quadratic programs.

The algorithm can be stated as
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Algorithm 2.8

Step 0 Choose scalars ρ, σ, α, ε ∈ (0, 1). Choose feasible x0 and feasible first stage

Lagrange multipliers λ0 ≥ 0.

Step 1 For some appropriate positive definite matrix, find approximate generalized

Newton direction di

min
d

1
2
dTBid+∇f(xi)Td (2.37)

s.t. A(xi + d) ≤ b.

Let di be a feasible solution to (2.37) and λi be an approximate Lagrange

multiplier such that they satisfy

(Bidi +∇f(xi))Tdi ≤ 0

and

‖gi(di, λi+1)‖ ≤ ηi‖g(xi, λi)‖.

Step 2 If i = 0

Let δ = ‖g(x0, λ0)‖. Perform Armijo linesearch:

Find the smallest integer τ i ≥ 0 such that

f(xi + ρτdi) ≤ f(xi)− σ/2ρτ (di)TBidi.

Let xi+1 = xi + ρτidi.

Else

If ‖g(xi + di, λi+1)‖/δ ≤ ε

xi+1 = xi + di,

δ = ‖g(xi+1, λi+1)‖, ε = αε.

Else

Perform Armijo linesearch to find τ i and set xi+1 = xi + ρτidi.

Step 3 If xi+1 satisfies a prespecified stopping rule, stop;

Else return to Step 1 and set i = i+ 1.
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If all the Bi used in the descent direction search subproblem are positive definite

and the forcing sequence {ηi} satisfy limi→∞ ηi‖g(xi, λi)‖ = 0, then the algorithm

converges globally [16,17]. Moreover, if the solution satisfies the linear independence

constraint qualification and the strict complementarity condition (see Section 3.1 for

their definitions) and f(x) is BD-regular at x∗ (see Section 2.3.1), then the solution

is unique and the rate of convergence is Q-superlinear.

2.5 Dual Decomposition Methods for Stochastic

Programs

Dual decomposition works with subproblems corresponding to scenarios. Each sce-

nario consists of a complete path from the root to one leaf node. That is each

scenario problem is a deterministic multistage problem. A scenario problem can be

formulated either as a large scale problem analogous to (1.14) or recursively as in

(1.12)–(1.13).

Dual decomposition schemes are Lagrangian based methods aimed directly at

nonlinear stochastic programming problems. This class of methods takes advantage

of the weak link between scenarios. As each scenario problem is deterministic and

has a separate set of variables, they are only coupled by the non-anticipativity re-

quirement which stipulates that nodes sharing the same stochastic parameter history

up to and including that stage must make the same decisions. Dual decomposition

methods relax the non-anticipativity constraints linking the scenarios and iteratively

solve all individual scenarios while non-anticipativity is enforced gradually through

a penalty term in the objective.

Dual decomposition algorithms are well suited to parallelization as each sce-

nario problem can be stored and solved on separate processors. Generally, the only

communication requirements is for processors to share scenario solutions to enforce

non-anticipativity. As with all decomposition schemes, there is a need to balance the

advantage of having very small subproblems with the increase in the number of sub-

problems and iterations needed for convergence and the increasing communications

to computation time ratio.
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2.5.1 Lagrangian Finite Generation Method

Lagrangian finite generation [102, 103] is a Lagrangian based method applicable to

two stage stochastic programs with linear or convex quadratic subproblems with

relatively complete recourse.

Consider the problem

min
x∈X

cTx+ 1
2
xTCx+ Eψω(x) (2.38)

where

ψω(x) = max
zω∈Zω

zT

ω(hω − Vωx)− 1
2
zT

ωHωzω, (2.39)

C and Hω are positive semi-definite, and X and Zω are nonempty convex polyhedra.

The Lagrangian is

L(x, z) = cTx+ 1
2
xTCx+ E{zT

ω(hω − Vωx)− 1
2
zT

ωHωzω} (2.40)

for x ∈ X, z ∈ Z. Here Z = ⊗ω∈ΩZω and z ∈ Z is formed by appending all zω

together. L(x, z) is convex in x and concave in z.

The Lagrangian finite generation method works by finding the saddle point of

L(x, z) in X×Zν where Zν ⊆ Z, ν = 1, 2, . . . is the convex hull of a small number of

points in Z. The sets Zν are used to approximate Z. Given a termination parameter

ε ≥ 0, the Lagrangian finite generation method can be stated as

Algorithm 2.9

Step 0 Choose an initial convex polytope Z1 ⊂ Z. Set ν = 1.

Step 1 Find a saddle point (x̄ν , z̄ν) of L(x, z) relative toX×Zν and set ᾱν = L(x̄ν , z̄ν).

Step 2 For ω ∈ Ω, solve the following for zνω

αν
ω = max

zω∈Zω

zT

ω(hω − Vωx̄
ν)− 1

2
zT

ωHωzω.

Form zν ∈ Z by appending zνω and set

αν = cTx̄ν + 1
2
(x̄ν)TCx̄ν + Eαν

ω = L(x̄νzν).
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Step 3 If αν − ᾱν ≤ ε, STOP.

Step 4 Choose Zν+1 containing {z̄ν , zν}. ν = ν + 1. Goto Step 1.

The dual variable space is approximated by Zν which is the convex hull of a

subsequence {z̃νi} of {z̃ν}, that is

Zν = co{z̃νi|i = 1, . . . , mν} =

{
mν∑
i=1

λiz̃
νi

∣∣∣∣∣λi ≥ 0,

mν∑
i=1

λi = 1

}
,

where mν ≥ 2 is defined by the user. Since all points in Zν can be described by

a convex combination of all the extreme points z̃νi , the minimax problem in (x, z)

in Step 1 is equivalent to a minimax problem in (x, λ) which is of a much lower

dimension if mν is kept reasonably small. This problem can also be converted into

a standard QP. See [103] for details.

The algorithm converges to the optimal solution linearly if C and Hω are positive

definite [102]. The rate of convergence can be estimated in advance and is valid for

the whole sequence of {xν}. For problems that are only convex, not strictly convex,

a positive definite term can be added to the Hessian. The overall algorithm then

converges linearly.

2.5.2 Diagonal Quadratic Algorithm

The diagonal quadratic algorithm (DQA) [4,89] is an augmented Lagrangian based

decomposition scheme that exploits the sparsity of the linking constraints connecting

subsets of variables. It is well suited to nonlinear multistage stochastic programming

and can handle problems with nonlinear equations linking the successive stages.

The DQA can be applied as either a primal or dual decomposition scheme, al-

though it is more natural to take the dual approach. Consider a T -stage,KT -scenario

stochastic program. Associate with each scenario k, k = 1, . . . , KT , a set of variables

xk
t for each stage t, t = 1, . . . , T . The scenario k solution is xk = (xk

1, x
k
2, . . . , x

k
T )

and the complete solution to the original problem is given by x = (x1, x2, . . . , xKT ).

To enforce non-anticipativity, the idea of a sibling is used. Suppose the tree is or-

ganized so that for each scenario k, k + 1 has the most recent common ancestor
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with scenario k among all scenarios j, j > k. For each node on the scenario tree,

the first node on its right which shares its immediate ancestor is called its sibling.

If no such node exist, the leftmost node will become the sibling. The mapping is

a rotation map of nodes sharing the same immediate ancestor and each node has

a unique sibling. Non-anticipativity can be restated as: each node and its sibling

must have identical values, or

xk
t = x

s(k,t)
t , k = 1, . . . , Kt, t = 1, . . . , T (2.41)

where s(k, t) denote the index of the sibling of scenario k at stage t. If we also

denote the scenario k feasible set by

Xk = {xk|xk satisfies (1.13b) for ξ = ωk} (2.42)

and the problem feasible set as X = X1 × X2 × . . . × XKT
. Then (1.12) can be

rewritten as

min
x∈X

KT∑
k=1

pk

T∑
t=1

fk
t (ω

k
t , x

k
t ) (2.43)

s.t. xk
t = x

s(k,t)
t , k = 1, . . . , Kt, t = 1, . . . , T. (2.44)

Problem (2.43) is separable in the variable xk except for constraints (2.41). The

DQA proceeds by relaxing these non-separable linking constraints. The problem is

reformulated using the augmented Lagrangian

L(x, π) =
KT∑
k=1

T∑
t=1

pkf
k
t (x

k
t ) +

KT∑
k=1

T−1∑
t=1

(πk
t )

T(xk
t − x

s(k,t)
t ) +

1

2
ρ

KT∑
k=1

T−1∑
t=1

‖xk
t − x

s(k,t)
t ‖2

(2.45)

where π denotes the Lagrange multipliers and ρ > 0 is a penalty parameter. The

augmented Lagrangian method is chosen as it is easy to apply and does not suffer

from ill-conditioning. For an arbitrary initial multiplier π0, the algorithm can be

stated as:

Algorithm 2.10

Step 0 Choose starting multiplier π0, set ν = 0.
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Step 1 Calculate

xν = argmin
x∈X

L(x, πν). (2.46)

Step 2 If xk
t = x

s(k,t)
t for all k = 1, . . .KT , t = 1, . . . , T ,

stop, optimal solution found;

Else

Let πk,ν+1
t = πk,ν

t + ρ(xk,ν
t − x

s(k,t),ν
t ).

Set ν = ν + 1. Return to Step 1.

Clearly, the quadratic term in (2.45) is non-separable in the xk. To completely

decompose the problem, L(x, π) is approximated separately for each xk by tem-

porarily holding the other variables xj , j �= k constant at x̂.

L(x, π) �
KT∑
k=1

Lk(xk, x̂, π), (2.47)

where

Lk(xk, x̂, π) = pk

T∑
t=1

ft(ω
k
t , x

k
t ) +

T−1∑
t=1

(xk
t )

T(πk
t − π

s−1(k,t)
t )

+
1

2
ρ

T−1∑
t=1

(
‖xk

t − x̂
s(k,t)
t ‖2 + ‖xk

t − x̂
s−1(k,t)
t ‖2

)
. (2.48)

Each xk can now be minimized separately given x̂ and π. Given a relaxation

parameter 0 < τ < 1 and stopping parameter ε > 0, a nonlinear Jacobi iteration

with under relaxation is then used to enforce non-anticipativity and obtain a solution

for (2.46):

Algorithm 2.11

Step 0 Choose 0 < τ < 1, ε > 0. Set π = πν , x̂ν,m = xν−1 and m = 1.

Step 1 For k = 1, . . . , KT , find

xν,m
k = arg min

xk∈Xk
Lk(xk, x̂ν,m, π). (2.49)



2.5. Dual Decomposition Methods for Stochastic Programs 63

Step 2 If ‖xν,m − x̂ν,m‖ < ε then stop; otherwise set

x̂ν,m+1 = x̂ν,m + τ(xν,m − x̂ν,m), (2.50)

set m = m+ 1 and return to Step 1.

It is not necessary to solve (2.49) to optimality. The iterative nature of both the

Jacobi steps and interior point methods can be exploited by performing only a few

steps of the interior point method for (2.49) before updating using (2.50).

The DQA scheme converges linearly. It can also be applied to induce a primal

decomposition. However, it is shown in [4] that the rate of convergence depends

on the sparsity of the constraints linking the partially separable subsets of vari-

ables. Since each non-anticipativity constraint links only two variables while the

equations of dynamics linking nodes in successive time stages can be more com-

plex, it is expected that the method converges faster for dual decomposition than

when applied to its primal counterpart. The different convergent rates when ap-

plied to dual and primal decomposition have been demonstrated in [104]. The dual

decomposition scheme is also more attractive from a modelling point of view. The

non-anticipativity constraints have the same form in all applications and can be eas-

ily relaxed automatically while the equations of dynamics are problem dependent

and relaxing them needs to be dealt with case by case.

DQA is highly suited to a parallel environment. DQA does not need a central

coordinating unit as only siblings need to exchange solutions in step (2.49). By

choosing an appropriate computer architecture and allocating the subproblems suit-

ably, communication is restricted to the nearest neighbours only. This removes the

communication bottlenecks commonly encountered in other parallel implementa-

tions (an example is when all processors try to return cut information to the master

problem in the L-shaped method and its variants). With the DQA scheme, the

stochastic program can be decomposed into smaller problems consisting of one or

more scenarios in a very flexible manner (nodal problems for primal decomposition)

depending on the capacity of the machines and efficiency of the algorithm used to

solve the subproblems.



2.5. Dual Decomposition Methods for Stochastic Programs 64

2.5.3 Progressive Hedging Algorithm

The progressive hedging algorithm (PHA) [103] (also referred to as scenario aggre-

gation) is very similar to DQA applied as a dual decomposition scheme. It also uses

an augmented Lagrangian approach and induces a full decomposition of the stochas-

tic program into scenario problems by relaxing the non-anticipativity constraints.

The major difference between DQA and PHA is the way non-anticipativity is ex-

pressed. Instead of using a Jacobi iterations to force all sibling problems to have the

same solution, PHA takes the expected value of all the scenario optimal solutions

to form a non-anticipativity solution (termed an implementable policy) which is not

necessarily feasible in all scenarios. That is

implementable policy: x̄ =

K∑
k=1

pkx
k. (2.51)

This implementable policy is then used to form approximate scenario problems in

the next iteration in the same way as the sibling solution was used in the DQA.

The only difference is that now every scenario has the same ‘sibling’. Analogous to

(2.48), the subproblems can be written as

min
xk∈Xk

fk
t (ω

k
t , x

k
t ) + (πk)T(xk − x̄) +

1

2
ρ‖xk − x̄‖2. (2.52)

PHA can then be formulated as

Algorithm 2.12

Step 0 Choose x̄0 and π0 and set ν = 1.

Step 1 For k = 1, . . . , K, x̄ = x̄ν−1 and πk = πk,ν−1, solve (2.52) for xk,ν .

If xk,ν = x̄ν−1 for all k = 1, . . . , K, then STOP; optimal solution found.

Step 2 Calculate x̄ν =
∑K

k=1 pkx
k,ν.

Step 3 πk,ν+1 = πk,ν + ρ(xk,ν − x̄ν). Set ν = ν + 1. Return to Step 1.

This procedure can easily be parallelized. The only communication requirement

is to pass the subproblem solutions to the master processor which then returns the
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implementable policy as the next trial solution. The multipliers are easy to calculate.

The method is stable and arbitrary starting points can be used. Each iteration is

relatively simple, however, it may take many iterations and convergence can be slow.

The algorithm is proven [103] to show strict improvement at each step for convex

programs and it converges to a solution linearly.

2.6 Stochastic Quasigradient

Stochastic quasigradient [28, 29] is one of the earliest practical method to solve

stochastic programs. It is the stochastic analogue of the steepest descent method in

deterministic optimization. The problem can be stated as

min E[q(x, ξ)]

s.t. x ∈ X,

where X is a closed convex set and the random variable ξ may be discrete or con-

tinuous.

In each iteration, one or more sample observations are made and an estimate

of the objective gradient at the current point x is calculated either analytically or

using forward/backward/central differences. A step is then taken along the steepest

descent direction and the new point is projected into the feasible region if necessary.

This method is easy to apply, however, convergence is relatively slow especially for

problems in higher dimension. It is not easy to decide on an appropriate step or a

stopping criterion as the sequence of optimal value estimates is not monotonic. It

can be proven that the sequence of iterates converges to the optimal solution with

probability 1 under suitable conditions.
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2.7 Stochastic Programs with Continuous Ran-

dom Variables

For stochastic programs with continuous random variables, calculating the recourse

function often involves multidimensional integration. This can be achieved by

Monte-Carlo type methods such as stochastic decomposition and importance sam-

pling discussed in Section 2.4.4 or stochastic quasigradient method in Section 2.6.

Numerical integration technique can also be used if the number of continuous ran-

dom variables is small (no more than 10), see [17] for details.

Another approach is to discretize the continuous random variables and calculate

lower and upper bounds of the expected value. If the difference between the lower

and upper bound is higher than some prespecified tolerance, then the discretization

of the random variables need to be refined to tighten the bounds.

A simple lower bound is the Jensen’s inequality. Suppose the support of the

random variable ξ is partitioned into a number of regions Ck, k = 1, . . . , K. Let

pk = P{ξ|Ck} and ξk = E[ ξ|Ck ] be the probability and expected value of ξ with

respect to a region Ck respectively. The Jensen’s lower bound can be stated as

Eξ[g(x, ξ)] ≥
K∑

k=1

pkg(x, ξk).

If ξ has polyhedral support, then the Edmundson-Madansky inequality provides

an upper bound to the expected value if g(x, ξ) is separable in ξ or if ξ is stochas-

tically independent. Suppose the support of ξ is Ξ = [a1, b1]× . . .× [an, bn] and let

extΞ denotes the extreme points of Ξ. The Edmundson-Madansky inequality is

Eξ[(g(x, ξ)] ≤
∑

e∈extΞ

n∏
i=1

|ξ̄i − ei|
bi − ai

g(x, e).

For a thorough treatment of these and other bounds and how they can be incor-

porated into efficient algorithms, see [10, 62].



Chapter 3

Properties of Multistage

Stochastic Quadratic Programs

Multistage stochastic quadratic programs (MQSPs) defined in (1.12)–(1.13) are

highly structured mathematical programming problems. The objective of each sub-

problem is, although not C2, a convex, Lipschitz piecewise quadratic function. This

can be exploited in algorithmic development leading to significant savings over gen-

eral multistage stochastic programs. Section 3.1 summarises many results from

sensitivity analysis which are useful to our investigations. Piecewise quadratic func-

tions and piecewise quadratic programs are then defined in Section 3.2. We study

the properties of the optimal value functions of the piecewise quadratic programs

when their right hand sides are perturbed. Section 3.3 applies the above results to

show that MQSPs can be expressed as piecewise quadratic programs. We examine

the structure of the piecewise quadratic objective functions and derive expressions

for component quadratic functions active at a point. The differential information

obtained is used in the next chapter to develop generalized Newton method for

solving MQSPs.
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3.1 Sensitivity Analysis

Consider the convex programming problem with right hand side perturbation

φ(ξ) = min
x∈Rn

f(x) (3.1a)

s.t. gi(x) ≤ ξi, i = 1, . . . , r, (3.1b)

hj(x) = ξj, j = r + 1, . . . , m. (3.1c)

Here f and gi, i = 1, . . . , r are convex functions and finite on the feasible region.

The equality constraint functions hj are affine for j = r + 1, . . . , m. The feasible

region is clearly closed and it is assumed to be nonempty and bounded which is

natural for many applications. The unperturbed problem is obtained when ξi = 0,

i = 1, . . . , m.

Let ui and wj be the Lagrange multipliers for the inequality and equality con-

straints respectively. The Kuhn-Tucker (KT) condition is satisfied for the unper-

turbed problem at a feasible point x∗ if there exists u∗
i , i = 1, . . . , r and w∗

j , j =

r + 1, . . . , m such that

0 ∈ ∂f(x∗) +
r∑

i=1

u∗
i ∂gi(x

∗) +
m∑

j=r+1

w∗
j ∂hj(x

∗) (3.2a)

and

u∗
i gi(x

∗) = 0, u∗
i ≥ 0 for i = 1, . . . , r. (3.2b)

Next we list some constraint qualifications which are necessary to guarantee

the existence of the Lagrange multipliers. Details can be found in [32, 53]. For the

following constraint qualifications, we assume ξ = 0. Let X ⊆ R
n denote the feasible

region of the unperturbed problem. Let A(x) = {i|gi(x) = 0, i = 1, . . . , r} be the

set of active inequality constraints at x.

[MFCQ] The Mangasarian-Fromovitz constraint qualification is said to hold at

x∗ ∈ X if

1. the gradients {∇hj(x
∗), j = r + 1, . . . , m} are linearly independent.
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2. there exists a vector z ∈ R
n such that ∇gi(x

∗)Tz < 0 for all i ∈ A(x∗),

∇hj(x
∗)Tz = 0 for j = r + 1, . . . , m;

[SLCQ] The Slater condition is satisfied at x∗ ∈ X if hj , j = r + 1, . . . , m are

affine, gi, i = 1, . . . , r are pseudo-convex and there exists a point x̄ ∈ X with

gi(x̄) < 0 for all i ∈ A(x∗).

[SSLCQ] The strong Slater condition is satisfied if hj, j = r + 1, . . . , m are affine

and linearly independent and there exists a point x̄ ∈ X such that h(x̄) = 0

and gi(x̄) < 0 for i = 1, . . . , r.

[LICQ] The linear independence constraint qualification is satisfied at x∗ if the set

of active constraint gradients {∇hj(x
∗), j = r + 1, . . . , m,∇gi(x

∗), i ∈ A(x∗)}
are linearly independent.

If all the constraint functions are affine, then the basic constraint qualification

is satisfied. This implies that there exists Lagrange multipliers such that the KT

condition holds.

MFCQ is both necessary and sufficient for the set of Lagrange multiplier vectors

corresponding to a given local solution of a general NLP problem to be nonempty,

compact and convex. MFCQ is preserved under right hand side perturbations.

If the equality constraints are affine and the inequalities are pseudo-convex func-

tions, which is satisfied by any convex program, then MFCQ is equivalent to SLCQ.

SSLCQ extends MFCQ to convex nonsmooth programming. It is a necessary

and sufficient condition for ensuring the set of Lagrange multipliers to be nonempty,

compact and convex.

LICQ implies MFCQ. If LICQ holds and all the problem data is continuously

differentiable at a solution x∗, then the Lagrange multipliers corresponding to x∗

exists and is unique. However, if the objective is not differentiable at x∗, then LICQ

is not enough to guarantee uniqueness of the Lagrange multiplier as Example 3.1

shows.
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Example 3.1 Consider the problem

min
x

f(x) =

{
x, x ≤ 0

2x, x ≥ 0

s.t. −x ≤ 0

Clearly the solution is x∗ = 0 and the constraint is active. Let u be the Lagrange

multiplier. The optimality condition is:

∃v ∈ ∂f(0) = [1, 2] and u ≥ 0 such that v − u = 0.

Therefore u ∈ [1, 2] which is not unique even though LICQ is satisfied at the solution.

Definition 3.2 (Strict complementarity condition (SCC)) The strict comple-

mentarity condition is satisfied at x∗ if u∗
i > 0 for all i ∈ A(x∗).

Definition 3.3 (Second order sufficiency condition (SOSC), [32, Lemma 3.2.1])

An optimal solution x∗ satisfies the second order sufficiency condition for the un-

perturbed problem (3.1) if

1. the functions f, gi and hj are twice continuously differentiable in a neighbour-

hood of x∗;

2. there exists Lagrange multipliers u∗ and w∗ such that the first order Kuhn-

Tucker conditions (3.2) are satisfied;

3. zT∇2f(x∗)z > 0 for all z �= 0 such that

• ∇f(x∗)Tz = 0;

• ∇gi(x
∗)Tz ≤ 0, i ∈ A(x∗);

• ∇hj(x
∗)Tz = 0 for j = r + 1, . . . , m.

Lemma 3.4 ( [32, Lemma 3.2.1]) If a feasible point x∗ of the unperturbed prob-

lem (3.1) satisfies the second order sufficiency condition, then x∗ is a strict local

minimizer of the problem, that is there exists a neighbourhood B(x∗) around x∗ such

that f(x) > f(x∗) for all x ∈ B(x∗) ∩X.
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For a convex program, Lemma 3.4 implies that an optimal solution is unique if

the second order sufficiency condition is satisfied. For a convex quadratic program,

this result can be strengthened to read that an optimal solution is unique if and only

if SOSC holds. To see this, suppose x∗ is the unique optimal solution that satisfies

the KT condition but does not satisfy SOSC. Then there exists a feasible direction

z �= 0 such that ∇f(x∗)Tz = 0 and zT∇2f(x∗) z = 0. Since a quadratic function is

completely characterized by its second order Taylor series, f(x∗) = f(x∗ + αz) for

all α ∈ R. This contradicts the assumption that x∗ is the unique optimal solution.

When SOSC fails, it is possible to get multiple optimal solutions which form

a convex set for convex programs. However, the next proposition states that all

solutions must share the same Lagrange multiplier. So we can refer to the Lagrange

multiplier of a convex program without reference to a particular optimal solution.

Proposition 3.5 ( [53, Proposition VII 3.1.1]) Let x̄ and x̂ be two solutions

of the convex program (3.1) and U(x̄) and U(x̂) the sets of associated Lagrange

multipliers, then U(x̄) = U(x̂).

The following results study the differential property of the optimal value function

φ(ξ) of (3.1).

Theorem 3.6 ( [32, Theorem 5.4.1]) If the following conditions are satisfied at

x∗ with Lagrange multipliers u∗ and w∗ for ξ = 0:

1. the second order sufficiency condition;

2. the linear independence constraint qualification;

3. strict complementarity condition;

then

1. x∗ is a local isolated minimizer of (3.1) and u∗ and w∗ are unique;

2. for ξ in a neighbourhood of 0, there exists a once continuously differentiable

vector function y(ξ) = [x(ξ)T u(ξ)T w(ξ)T]T that satisfies the second order suffi-

ciency condition for (3.1) with y(0) = [x∗T u∗T w∗T]T;
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3. strict complementarity and LICQ hold at y(ξ) for ξ near 0;

4. for ξ in a neighbourhood of 0, the gradient of the optimal value function is

∇ξφ(ξ) =

(
−u(ξ)

−w(ξ)

)
; (3.3)

5. for ξ in a neighbourhood of 0, the Hessian of the optimal value function is

∇2
ξφ(ξ) =

(
−∇ξu(ξ)

−∇ξw(ξ)

)
. (3.4)

Rockafellar [101, §28,§29] discusses the relationship between the optimal value

function φ(ξ) and the Lagrange multiplier for the convex program (3.1).

Theorem 3.7 ( [101, Theorem 29.1]) If the optimal value φ(0) is finite, then

the Kuhn-Tucker vectors for problem (3.1) are precisely the vectors u such that −u

is a subgradient of φ(ξ) at ξ = 0, that is

−u ∈ ∂φ(0).

Corollary 3.8 ( [101, Corollaries 29.1.1, 29.1.3]) The one-sided directional deriva-

tive

φ′(0, ξ) = lim
λ↓0

φ(λξ)− φ(0)

λ

exists for every ξ ∈ R
m and is a positively homogeneous convex function of ξ. The

Kuhn-Tucker vectors u form a closed convex set U ∈ R
m and its support function is

the closure of the function ξ → φ′(0,−ξ), that is

max
u∈U

uTξ = cl φ′(0,−ξ).

The unperturbed problem (3.1) has a unique Kuhn-Tucker vector if and only if φ(ξ)

is differentiable at ξ = 0 and u∗ = −∇φ(ξ)|ξ=0.
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3.2 Piecewise Quadratic Programs (PQPs)

We now turn our attention to piecewise quadratic functions. Section 3.2.2 looks at a

minimizing piecewise quadratic function subject to linear constraints, in particular,

sensitivity information when the right hand side of the constraints is perturbed.

These results are used to show that each stage t + 1 subproblem of (1.13) is a

piecewise quadratic program with right hand side perturbation Vt+1xt and obtain

an expression for elements of the subdifferential and generalized Hessian of the stage

t recourse function.

3.2.1 Piecewise Quadratic Functions

Definition 3.9 (Piecewise quadratic function) A function is called piecewise

quadratic if it is continuous on its effective domain and its effective domain is a

nonempty polyhedron that can be decomposed into a finite number of convex poly-

hedra, on each of which the function is quadratic. Let {Pl, l ∈ L} be a polyhedral

partition of the domain X ⊆ R
n of f where L is a finite index set with |L| elements.

That is, X = P1∪P2∪ . . .∪P|L| and Pi∩Pl ⊆ R
n−1 if i �= l. Then on each polyhedron

Pl, f(x) = 1
2
xTGlx+ cT

l x+ f0l where Gl ∈ R
n×n are symmetric, cl ∈ R

n and f0l ∈ R.

Linear, piecewise linear and quadratic functions defined on convex polyhedra are

special cases of piecewise quadratic functions. Semi-variance and piecewise linear-

quadratic risk measures discussed in Section 1.3.3 are also examples of piecewise

quadratic functions.

From the definition, the sum of a finite number of piecewise quadratic functions

is also piecewise quadratic. Note however that, the maximum of two quadratic

functions may not satisfy this definition of a piecewise quadratic function since the

boundary is in general curved. For example, let f(x) = max{x21 + x22, x
2
2 + x2}, f

is clearly convex but the boundary of the quadratic pieces is the curve x2 = x21.

Thus strictly speaking, we are only dealing with what should be called ‘polyhedral

piecewise quadratic’ functions.
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Piecewise quadratic functions are an example of a class of functions called piece-

wise smooth or piecewise Ck functions. These functions are highly structured, it is

known that they are locally Lipschitz and semismooth. See [15] for more detailed

discussion.

If a piecewise quadratic function f is convex, then its subgradient exists every-

where and is given by

∂f(x) = co{∇fj(x), j ∈ J(x)}. (3.5)

Similarly, the generalized Hessian is given by

G(x) = co{∇2fj(x), j ∈ J(x)}. (3.6)

A piece fl, l ∈ L of the piecewise quadratic function is active at x if fj coincides

with the piecewise quadratic function on a set around x with positive measure. The

set of active pieces J(x) at x can be defined as

J(x) = {l ∈ L|Pl ∩ Bδ(x) has positive measure for all δ > 0},

where Bδ(x) is the ball around x with radius δ.

In a piecewise quadratic function, we call a piece degenerate if its active domain,

which is where it coincides with the piecewise quadratic function, has an empty

interior in R
n.

In Figure 3.1, f2(x) is active for x ≤ −10/7. It crosses f(x) again at x = 0 but

is clearly degenerate at that point. This example shows a potential difficulty caused

by degeneracy. Observe that the tangent of f2(x) at the origin is not a supporting

plane for f(x). If it is wrongly classified as active, then it can cause an algorithm

to consider the minimum to be at the origin instead of x = 1. This is a very serious

problem for algorithmic development if degeneracy is not clearly excluded.

3.2.2 Piecewise Quadratic Programs

A piecewise quadratic program (PQP) minimizes a piecewise quadratic function

subject to linear constraints. Consider the perturbation problem (3.1) again, with



3.2. Piecewise Quadratic Programs (PQPs) 75

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−5

0

5

10

15

20
___  

f (x)

f
1
(x)

f
2
(x)

Figure 3.1: Example of degenerate piecewise quadratic function

a convex and piecewise quadratic objective. A linear perturbation in the objective

is also considered to demonstrate the symmetry between perturbations in the right

hand side and the objective. Let

φ(ξ, η) = min
x∈Rn

f(x) + ηTx

s.t. A1x = b1 + ξ1 (3.7)

A2x ≤ b2 + ξ2.

Here f(x) : R
n → R is convex and piecewise quadratic, η ∈ R

n, ξ1 ∈ R
m1 and

ξ2 ∈ R
m2 are perturbation vectors with ξ = (ξT

1 , ξ
T
2)

T ∈ R
m.

The Lagrangian of (3.7) is

L(x, u, w, ξ, η) = f(x) + ηTx+ uT(A1x− b1 − ξ1) + wT(A2x− b2 − ξ2), (3.8)

where u ∈ R
m1 and 0 ≤ w ∈ R

m2 are the Lagrange multipliers for the equality

and inequality constraints respectively. As the constraints are all linear, the basic

constraint qualification [53] guarantees the existence of optimal Lagrange multipliers.

The primal problem associated with L(x, u, w, ξ, η) is

inf
x∈Rn

F (x, ξ, η), (3.9)



3.2. Piecewise Quadratic Programs (PQPs) 76

where

F (x, ξ, η) = sup
u∈R

m1 ,w∈R
m2
+

L(x, u, w, ξ, η)

=

{
f(x) + ηTx, A1x = b1 + ξ1, A2x ≤ b2 + ξ2
+∞, otherwise,

and the corresponding dual problem is

sup
u∈R

m1 ,w∈R
m2
+

G(u, w, ξ, η) (3.10)

where

G(u, w, ξ, η) = inf
x∈Rn

L(x, u, w, ξ, η)
= −uT(b1 + ξ1)− wT(b2 + ξ2)− sup

x∈Rn
{(−AT

1u−AT

2w − η)Tx− f(x)}
= −uT(b1 + ξ1)− wT(b2 + ξ2)− f ∗(−AT

1u−AT

2w − η). (3.11)

First we need to establish the conditions under which the saddle value of (3.8)

exists. If it exists, then the value of (3.9) and (3.10) are both equal to this saddle

value. Assume that ξ and η are fixed and (3.7) has an nonempty bounded feasible

region. Denote the domain of the primal variable x by X and the domain of the

dual variable yT ≡ (uT, wT) by Y .

Theorem 3.10 ( [101, Corollary 37.3.1]) Let L be a closed proper concave-convex

function on R
m ×R

n with effective domain X ×Y . If either X or Y is bounded, the

saddle value of L exists.

The next theorem shows that the optimal value function of (3.7) is a piecewise

quadratic function of the perturbations ξ and η. It is a direct extension of Sun [118,

Proprosition 2.2.4] which deals with monotropic piecewise quadratic programming

subject to equality constraints.

Theorem 3.11 If the feasible region of (3.7) is bounded and φ(ξ0, η0) is finite for

some (ξ0, η0), then φ(ξ, η0) and −φ(ξ0, η) are proper, closed, convex and piecewise

quadratic functions of ξ and η respectively.
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Proof: Since the feasible region of (3.7) is bounded, a saddle value exists for L from

Theorem 3.10. This implies that the optimal values of (3.9) and (3.10) coincide and

are equal to the saddle value.

First consider a right hand side perturbation in (3.7). Using strong duality,

φ(ξ, η0) = inf
x∈Rn

F (x, ξ, η0)

= sup
u∈R

m1 ,w∈Rm2
+

G(u, w, ξ, η0)

= sup
u∈R

m1 ,w∈Rm2

−uTξ1 − wTξ2 −G0(u, w)

= G∗
0(−ξ1,−ξ2),

where

G0(u, w) = uTb1 + wTb2 + f ∗(−AT

1u−AT

2w − η0) +

{
0, w ≥ 0,

+∞, w �≥ 0.
(3.12)

G0(u, w) is proper, convex and piecewise quadratic since the conjugate function f ∗

is convex as a result of properties P1 and P2 (page 30). Applying P1 and P2 again,

φ(ξ, η0) = G∗
0(−ξ1,−ξ2) is proper, piecewise quadratic and convex in ξ.

Next we prove the claim for −φ(ξ0, η). Since by assumption φ(ξ, η) is finite for

some (ξ0, η0), (3.7) remains feasible for all η for fixed ξ0, so φ(ξ0, η) is proper. From

strong duality,

−φ(ξ0, η) = − inf
x∈Rn

F (x, ξ0, η) = sup
x∈Rn

{−F (x, ξ0, η)}
= sup

x∈Rn
inf

u∈R
m1 ,w∈Rm2

+

−f(x)− ηTx− uT(A1x− b1 − ξ01)− wT(A2x− b2 − ξ02)

= sup
x∈Rn

{−ηTx− F0(x)} = F ∗
0 (−η)

where

F0(x) = f(x) +

{
0, A1x = b1 + ξ01 , A2x ≤ b2 + ξ02 ,

+∞, otherwise,

is a convex piecewise quadratic function. It follows that −φ(ξ0, η) is convex, proper

and piecewise quadratic.
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3.3 MQSPs as PQPs

The results in previous sections will now be gathered to demonstrate that all sub-

problems in the MQSP (1.12)–(1.13) are convex piecewise quadratic programs. We

examine the structure of the piecewise quadratic recourse functions to show when

they change representation. Their differential properties are also studied leading to

expressions for elements of subgradients and generalized Hessians.

Proposition 3.12 Each objective functions fkt
t in (1.12) and (1.13) is convex,

piecewise quadratic and Lipschitz continuous.

Proof: We will prove the claim on a single branched deterministic tree to simplify

notation. As each stage t stochastic parameter ξt has finite support, and the recourse

function of each subproblem is a probability weighted sum of the optimal value

functions of its descendents. It is straight forward to extend the result from a single

branched tree to one with a more general tree structure.

Consider the stage T subproblem. Since a convex quadratic function is piecewise

quadratic, and the right hand side perturbation VTxT−1 is a linear transformation of

xT−1, Theorem 3.11 implies that the stage T−1 recourse function Q(xT−1) is convex

and piecewise quadratic in xT−1. It is also locally Lipschitz since it is piecewise

smooth. By assumption, HT−1 is positive semi-definite, so the stage T − 1 objective

is convex, piecewise quadratic and Lipschitz. By repeatedly applying Theorem 3.11

and observing that all Ht are positive semi-definite, the above argument shows that

the objectives of all stages have the stated properties.

Corollary 3.8 can be used to strengthen Proposition 3.12 to show when fkt
t is

continuously differentiable.

Proposition 3.13 Each objective function fkt
t of subproblem (t, kt) in (1.12) and

(1.13) is convex, piecewise quadratic, LC1 and SC1 at xkt
t if all its descendent prob-

lems (t+1, k), k ∈ Dt+1(kt) with constraint right hand side hk
t+1−V k

t+1x
kt
t have unique

optimal Lagrange multipliers. A sufficient condition is if all descendent problems

satisfy the linear independence constraint qualification.
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Proof: By Corollary 3.8, the optimal value function of a convex program with per-

turbed right hand side is differentiable if and only if it has unique optimal Lagrange

multiplier. So, if for all k ∈ Dt+1(kt), problem (t+1, k) has unique Lagrange multi-

plier, then the optimal value functions Qk
t+1 are all differentiable at xkt

t . Combining

this with Proposition 3.12, it follows that fkt
t is convex, piecewise quadratic and

differentiable at xkt
t . Since the derivatives of differentiable piecewise quadratic func-

tions are continuous piecewise linear and therefore Lipschitz, the objective function

is LC1 at xkt
t . fkt

t (xkt
t ) is also SC1 because a piecewise smooth function is semi-

smooth.

To prove the second half of the proposition, recall that the LICQ is a suffi-

cient condition for ensuring unique Lagrange multiplier for smooth optimization.

Since the stage T problems of (1.12)–(1.13) are convex quadratic programs, LICQ

is enough to guarantee that they have unique Lagrange multipliers and therefore

differentiable optimal value functions. Clearly, the objective functions of the stage

T−1 ancestor problem are differentiable, so LICQ is sufficient to ensure unique mul-

tipliers. The conclusion follows by repeating the argument backward to the stage t

problem.

LICQ always holds if the constraint matrix has full row rank. Unfortunately this

is not true if all variables are bounded. It is straight forward to verify that if the

quadratic part of any nodal problem is replaced by a convex piecewise quadratic

function, Proposition 3.12 is still valid. If the new convex piecewise quadratic func-

tion is differentiable, then Proposition 3.13 also holds.

Writing u(xkt
t ) as an optimal Lagrange multiplier of the (t, kt) subproblem, an

element of the subgradient of f(xkt
t ) is given by (3.3)

Hkt
t xkt

t + ckt
t +

∑
k∈Dt+1(kt)

pkt+1(V
k
t+1)

Tu(xk
t+1) ∈ ∂f(xkt

t ). (3.13)

This of course simplifies to become the gradient if u(xkt
t ) is unique for all subprob-

lems.

As each optimal value function Q is a piecewise quadratic function, it is twice

differentiable almost everywhere. An element of the generalized Hessian of f(xkt
t )
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can be calculated by

Hkt
t +

∑
k∈Dt+1(kt)

pkt+1(V
k
t+1)

TG(xk
t+1)V

k
t+1, (3.14)

where G(xk
t+1) is an element of the generalized Hessian of the optimal value function

Q(xk
t+1). The calculations of G(xk

t+1) will be discussed in details in Sections 3.3.1

and 3.3.2.

3.3.1 Strictly Convex MQSPs

If Ht in (1.12) and (1.13) are assumed to be positive definite, then the objective

function is strictly convex.

More insight on the structure of the piecewise quadratic objective of (1.12) and

(1.13) can be gained by applying Theorem 3.6. For each stage t subproblem with an-

cestor solution x̂t−1, if LICQ is not satisfied at the solution x∗
t (x̂t−1), then there may

exist multiple optimal Lagrange multipliers. In this case, the optimal value func-

tion is not differentiable and x̂t−1 clearly lies on the boundary of different quadratic

pieces. Since all constraints are linear, LICQ can only fail on a set of x̂t−1 with mea-

sure zero. In the following, we assume LICQ holds at x∗
t (x̂t−1). Since Ht is positive

definite, the second order sufficiency condition is satisfied if the recourse term in the

objective is C2 at x∗
t (x̂t−1). The conditions of Theorem 3.6 are satisfied if strict com-

plementarity holds at x∗
t (x̂t−1). It follows that the optimal value function Qt(xt−1)

is C2 at x̂t−1 and x̂t−1 is in the interior of a quadratic piece. Qt(xt−1) can therefore

only change representation when 1) the active set changes which is indicated by loss

of strict complementarity or LICQ; or 2) the optimal solution x∗
t (x̂t−1) lies on the

boundary of different quadratic pieces of the stage t objective. As there are finitely

many combinations of active constraints in each stage and the constraints are linear,

this partitions the feasible region of each subproblem into a finite number of convex

polyhedra.

Before discussing how to calculate the generalized Hessian of the optimal value

function, we give an example of a strictly convex PQP subject to right hand side
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perturbation to demonstrate the piecewise quadratic nature of the optimal value

function.

Example 3.14 Consider the following perturbed piecewise quadratic program

Q(x) ≡ min
y∈R2

1
2
y22 − y1 − 2y2 +

{
1
2
y21, P1 : y1 ≥ 0

y21, P2 : y1 ≤ 0

s.t. y1 + y2 ≤ x1, (3.15)

y1 ≤ x2,

y2 ≤ x2.
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Figure 3.2: Example of perturbed PQP

This can be thought of as an intermediate stage problem of a MQSP. The objective

is strictly convex and piecewise quadratic as it contains a recourse function from

subsequent stages. The linear constraints are perturbed by the ancestor solution x.

The piecewise quadratic optimal value function Q(x) is shown in Figure 3.2. In

Table 3.1, the first row identifies the convex polyhedral convex set, labelled S1 to S9,

which partitions the domain of Q(x); the row ‘obj’ gives the piece of the piecewise

quadratic objective the optimal solution y∗(x) belongs to; A(x) is the active constraint

set, y∗(x) is the optimal solution and u∗(x) is the Lagrange multiplier.
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S1 S2 S3 S4 S5
obj. P1 P1 P1 P1 P1
A(x) ∅ 1 3 1,3 2,3

y∗(x)

(
1
2

)
1
2

(
x1 − 1
x1 + 1

) (
1
x2

) (
x1 − x2

x2

) (
x2

x2

)

u∗(x)


 0

0
0


 1

2


 3 − x1

0
0





 0

0
2 − x2





 1 − x1 + x2

0
1 + x1 − 2x2





 0

1 − x2

2 − x2




S6 S7 S8 S9
obj. P2 P2 P2 P2
A(x) 2,3 1,3 1,2 1

y∗(x)

(
x2

x2

) (
x1 − x2

x2

) (
x2

x1 − x2

)
1
3

(
x1 − 1
2x1 + 1

)

u∗(x)


 0

1 − 2x2

2 − x2





 1 − 2x1 + 2x2

0
1 + 2x1 − 3x2





 2 − x1 + x2

x1 − 3x2

0


 1

3


 5 − 2x1

0
0




Table 3.1: Solution to example PQP (3.15)

This example shows clearly that changes in quadratic pieces in Q(x) occur when

the active set changes and one or more Lagrange multipliers becomes zero or when the

optimal solution y∗(x) switches from P1 to P2 in the objective. Q(x) is continuously

differentiable everywhere except for the ray {x1 = 2x2, x1 ≤ 2} when the active

constraint gradients are linearly dependent and Q(x) is only Lipschitz continuous.

As each objective f in (1.12) and (1.13) is piecewise quadratic, the generalized

Hessian is either the singleton ∇2f(x) if f is twice differentiable at x or the convex

hull of the Hessians of all the quadratic pieces x belongs to. In this example, we see

that

G(
[

0

2

]
) =

[
2/3 0

0 0

]
,

G(
[

1

2

]
) = co

{[
2/3 0

0 0

]
,

[
1/2 0

0 0

]}
.

Since all the recourse functions in MQSP (1.12)–(1.13) are piecewise quadratic,

the second derivatives exist almost everywhere and the generalized Hessian is ev-

erywhere well defined. The following discusses how the generalized Hessian can be

calculated under various assumptions.
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If the conditions of Theorem 3.6 are satisfied at the solution x∗
t (x̂t−1), then the

optimal value function is twice continuously differentiable and the Hessian is given

by [32, Equation 5.5.3]

∇2Q(x̂t−1) = V T

t

(
ĀtG

−1
t ĀT

t

)−1
Vt, (3.16)

where Gt is the Hessian of the stage t objective at x∗
t (x̂t−1) and Āt is the matrix of

active constraint gradients.

If SCC fails, then it is likely that a constraint is switching from active to inactive

and x̂t−1 lies on the boundary of the piecewise quadratic optimal value function. In

this case, (3.16) will give the element of the generalized Hessian that corresponds to

the piece that has the same active set.

Now consider the case when LICQ is not satisfied at x∗
t (x̂t−1). Since the con-

straints are linear, this can only happen on a set of xt−1 with measure zero. Since

each quadratic piece has closed domain, there exists an ε > 0 such that for all xt−1

in an ε neighbourhood of x̂t−1 that lead to feasible stage t problems, if the active

constraints at x∗
t (xt−1) are linearly independent then the stage t optimal active sets

satisfy

A(x∗
t (xt−1)) ⊆ A(x∗

t (x̂t−1)).

Therefore all non-degenerate quadratic pieces active at xt−1 are given by active sets

in stage t with linearly independent active constraint gradients and each of these

active set are subset of the active set at x∗
t (xt−1). When LICQ is not satisfied, Ā

does not have full row rank and (ĀG−1ĀT) in (3.16) is singular. There are possi-

bly more than one linearly independent subsets of the active constraints such that

the solution is still optimal if only those constraints are present which can lead to

different optimal Lagrange multipliers. Such a linearly independent subset of ac-

tive constraints is returned if the problem is solved by an active set method. From

Theorem 3.7, the Lagrange multiplier associated with this active set is a subgradi-

ent of the optimal value function of the stage t problem. Equation (3.16) will give

an element of the generalized Hessian associated with that subgradient. Although

unlikely, the subgradient and generalized Hessian may not correspond to a non-
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degenerate active quadratic piece at x∗
t (xt−1). This is undesirable as the quadratic

piece obtained is only valid on a set of measure zero and can lead to problem in

calculating recourse information of ancestor problem as we will discuss later in this

section. Louveaux [72] described a finite procedure which can guarantee that the

gradient and Hessian generated are in fact those of a non-degenerate active quadratic

piece.

Next consider the case when SOSC fails. Since the stage t objective function ft

is strictly convex by assumption, this can only happen if the solution x∗
t (x̂t−1) lies

on a boundary between pieces of the piecewise quadratic objective. The optimality

conditions are

∑
j∈J(x)

λj(Gjx+ gj) + ATu = 0

∑
j∈J(x)

λj = 1

λ ≥ 0, ui ≥ 0, i = 1, . . . , r,

where J(x) is the set of quadratic pieces that are active at x and constraints 1 to r

are the inequalities.

Suppose the objective ft is LC
1 at x∗

t (x̂t−1). Since all active quadratic pieces have

the same gradient as ft at x
∗
t (x̂t−1), the solution satisfies the optimality condition

of all QPs with any active quadratic piece as the objective. By letting Gt be the

Hessian of one of the active quadratic piece, (3.16) yields the Hessian of the optimal

value function of the QP formed with the chosen quadratic objective. The resulting

Hessian is an element of the generalized Hessian of Qt.

However, if the objective ft is only Lipschitz continuous at the solution, x∗
t (x̂t−1)

may not satisfy the optimality condition of QPs formed by any single one of the

active quadratic functions. Substituting the Hessian of these quadratic functions

into (3.16) will return the Hessian of the optimal value function of that QP calculated

at its solution, which in general does not belong to the generalized Hessian of Qt.

To obtain a correct generalized Hessian, it is necessary to restrict the domain of xt

by including the boundary constraints of the current quadratic piece on which ft is
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nonsmooth. This ensures that the recourse Hessian is calculated at a solution to the

nonsmooth piecewise quadratic program. This can be achieved by applying results

from Louveaux [72] discussed in Section 2.4.5. Recall the Kuhn-Tucker conditions

for the stage t problem (2.32) and (2.33)




Gt (W1t)
T (W2t)

T ET
t 0 0

W1t 0 0 0 0 0

W2t 0 0 0 I 0

Et 0 0 0 0 I







x

λ1

λ2

λ3

s1
s2




=




−qt
h1t − V1tx̂t−1

h2t − V2tx̂t−1

dt


 (3.17)

λ2, λ3, s1, s2 ≥ 0.

The scenario index k has been dropped to simplify notation. Here W1t and W2t

represent the equality and inequality parts of the stage t constraints. The constraint

Etx ≤ dt gives the domain of the current quadratic piece, s1 and s2 are slack variables

for the inequality constraints. Denote by r = (x, λ1, λ2, λ3, s1, s2) the primal, dual

and slack variables to the stage t problem. Let B be an optimal basis of (3.17) for

right hand side ht − Vtx̂t−1, so B is square and nonsingular. For x̂t−1 a solution is

given by

r(x̂t−1) = B−1


 −qt
ht − Vtx̂t−1

dt


 . (3.18)

For other xt−1, the primal and dual variables using the same basis are

r(xt−1) = r(x̂t−1) +B−1


 0

−Vt(xt−1 − x̂t−1)

0


 .

This is optimal if and only if λ2, λ3, s1 and s2 remain non-negative. Let

E = B−1


 0

Vt

0




and r̄ and Ē be rows of r and E that correspond to the non-negative variables λ2,

λ3, s1 and s2. Then the basis B remains optimal if

r̄(xt−1) = r̄(x̂t−1)− Ē(xt−1 − x̂t−1) ≥ 0
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which is the polyhedron

{xt−1|Ēxt−1 ≤ r̄(x̂t−1) + Ēx̂t−1}. (3.19)

Clearly, the boundary constraints that are active at x̂t−1 are given by the rows of

r̄(x̂t−1) that are zero.

If the stage t problem is solved by an active set method, then the optimal basis

can be identified very easily by removing the columns associated with the dual

variables of constraints not considered active by the active set solver and the columns

associated with the slack variables of those constraints considered active.

As the Kuhn-Tucker conditions involve the gradient information but not second

order information, the only boundary constraints of the piecewise quadratic piece

that are necessary in determining the minimum of a piecewise quadratic program

are those on which the objective is nondifferentiable. These constraints influence

where the solution set lies and therefore the recourse information. The boundary

constraint on which the objective is smooth does not play any role in determining the

solution set since the objective gradient is continuous across it and it does not change

the Kuhn-Tucker condition whether it is present or not. This leads us to speculate

that in calculating the Hessian of the stage t− 1 optimal value function when ft is

nonsmooth at x∗
t−1, it is only necessary to include the explicit boundary of each stage

t descendent if x∗
t (x

∗
t−1) also lies on a nonsmooth part of ft−1. Otherwise, if ft is

smooth at x∗
t (x

∗
t−1), then we do not need to include Et and dt in (2.33). Another way

to see why this is plausible is this: the nonsmoothness of the stage t− 1 objective is

caused by non-uniqueness of the stage t Lagrange multiplier and therefore the loss

of LICQ in stage t. If the stage t objective is smooth at x∗
t (x

∗
t−1), the boundary of

the stage t pieces play no role in the Kuhn-Tucker conditions or in determining the

Lagrange multipliers. Therefore we believe it is possible to show that in finding the

boundary of a quadratic piece on which the function is nonsmooth, it is necessary to

include the boundary of the descendent problems only if a solution of the descendent

problem also lies on a nonsmooth part of the objective.

The following example demonstrates the potential difficulties with calculating

the optimal value function Hessian when the piecewise quadratic objective func-
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tion is not continuously differentiable at the solution. It also shows how boundary

constraints of a quadratic piece can be calculated.

Example 3.15

φ(x) = min
y

f(y)

s.t. y1 + y2 ≤ x,

where

f(y) =

{
f1(y) ≡ (y1 − 1)2 − 1

2
+ 1

2
(y2 − 1)2, P1 : y1 ≤ 0,

f2(y) ≡ 1
2
(y1 + 1)2 + 1

2
(y2 − 1)2, P2 : y1 ≥ 0

The minimizer lies on the boundary {y ∈ R
2 : y1 = 0} between P1 and P2. On

the boundary, f is nonsmooth with

∂f(y) = conv

{(
−2

y2 − 1

)
,

(
1

y2 − 1

)}
.

The optimality conditions are

λ1

(
2(y1 − 1)

y2 − 1

)
+ λ2

(
y1 + 1

y2 − 1

)
+ µ

(
1

1

)
= 0,

λ1 + λ2 = 1,

λ1, λ2, µ ≥ 0.

The solution is

x < −1 −1 < x < 1 x > 1

A 1 1 0

µ (4− 2x)/3 1− x 0

y∗ 1
3

(
x+ 1

2x− 1

) (
0

x

) (
0

1

)

λ

(
1

0

)
1
3

(
2− x

1 + x

)
1
3

(
1

2

)

f ∗(x) 1
3
(x2 − 4x+ 5/2) 1

2
x2 − x+ 1 1

2

∇2f ∗(x) 2/3 1 0

Let x = 0, then A = {1} and ∇2f(x) = 1. As y∗1(x) = 0, the solution lies on the

boundary between the quadratic pieces, where f is not differentiable. It is incorrect
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to apply (3.16) without taking into account the boundary of the piecewise quadratic

objective as we will now demonstrate.

Since the constraint right hand side is simply x, V in (3.16) is 1 and can be

ignored in the calculations below. Applying (3.16) directly using the Hessian of

f1(y) as G, we have 
[1 1

] [2 0

0 1

]−1 [
1

1

]−1

=
2

3
.

If f2(y) is used, (3.16) gives
[1 1

] [1 0

0 1

]−1 [
1

1

]−1

=
1

2
.

These are clearly incorrect for x = 0 and are in fact the Hessians of the optimal

value functions if f1(y) and f2(y) are respectively minimized subject to the constraint

y1 + y2 = x.

To get the correct optimal value function Hessian, we need to restrict y to the

boundary between P1 and P2, that is, add the constraint [1 0] y = 0 to the set of

active constraint before applying (3.16). Repeating the above calculations give:
[1 1

1 0

][
2 0

0 1

]−1 [
1 1

1 0

]−1

=

[
1 −1/4

1 3/4

]
.


[1 1

1 0

][
1 0

0 1

]−1 [
1 1

1 0

]−1

=

[
1 −1

−1 2

]
.

Since only the first constraint involves the variable x, we find that ∇2f ∗(x) = 1

which is the true Hessian.

Next we show how to obtain the boundary of a quadratic piece. Let x = 0, then

y = (0, 0) and the constraint y1+ y2 ≤ x is active. Using the quadratic piece P1, the

optimality condition (2.32) is



2 0 1 1 0 0

0 1 1 0 0 0

1 1 0 0 1 0

1 0 0 0 0 1







y1
y2
λ1

λ2

s1
s2




=



2

1

0

0



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where the last constraint correspond to the boundary y1 = 0. Since both constraints

are active, the optimal basis is obtained by setting the slack variables zero and choos-

ing the first four columns of the left hand side matrix. From (3.18),

r(0) =



0

0

1

1


 and E =




0

0

−1

0


 .

Since only the Lagrange multipliers are nonnegative, r̄ and Ē correspond to the last

two rows of r and E respectively. Equation (3.19) then gives

{x ∈ R|x ≤ 1,−x ≤ 1} = {x ∈ R| − 1 ≤ x ≤ 1}

which is the correct boundary of the quadratic piece that contains x = 0.

Note also that at x = 1, the Lagrange multiplier is 0 even though the constraint

is active, that is SCC fails at this point. Using the calculation above will give us 1

as an element of the generalized Hessian.

Despite the objective being only Lipschitz continuous at the solution, the optimal

value function φ(x) is still C2 for −1 < x < 1 or x > 1.

3.3.2 Convex Quadratic Programs

If the solution of a convex program satisfies LICQ, SCC and SOSC, standard sensi-

tivity theory [32] gives the Hessian of the optimal value function in a formula similar

to (3.16). For a convex QP, SOSC is satisfied if the objective is strictly convex on

the null space of the optimal active constraint gradients which in general may not

hold. The following calculations show how second order derivative information of a

convex QP can be obtained under the assumption of LICQ and SCC. The results

can then be extended in the same manner as in Section 3.3.1 to obtain elements of

the generalized Hessian of the optimal value function of (1.12)–(1.13) when LICQ

or SCC fails or when the objective is not differentiable at the solution.

Consider the convex QP

min
x∈Rn

1
2
xTGx+ cTx (3.20)

s.t. Ax =
≤ ξ.
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Denote the set of m binding constraints at an optimal solution x̄ as Āx̄ = ξ and the

Lagrange multiplier as λ̄. The optimality conditions are

Āx̄ = ξ

Gx̄+ c+ ĀTλ̄ = 0. (3.21)

Since Ā ∈ R
m×n has linearly independent rows and m ≤ n, we can perform a

QR decomposition.

ĀT = Q

[
R

0

]
= [Y Z]

[
R

0

]
, (3.22)

where R ∈ R
m×m is nonsingular, Y ∈ R

n×m and Z ∈ R
n×n−m are the orthonormal

basis to the range space of ĀT and null space of ĀT respectively. They satisfy the

relations ĀT = Y R,AZ = 0, Y TY = I, ZTZ = I and Y TZ = 0.

Writing x̄ = Y y + Zz, we have

ξ = Āx̄ = ĀY y + ĀZz = ĀY y = RTY TY y = RTy.

This gives y = R−Tξ. All points satisfying Āx = ξ can be expressed as x = Y R−Tξ+

Zz for z ∈ R
n−m.

We can now reformulate (3.20) as an unconstrained QP

min
z∈Rn−m

1
2
(Y R−Tξ + Zz)TG(Y R−Tξ + Zz) + cT(Y R−Tξ + Zz).

Simplifying and dropping the constant terms gives

min
z∈Rn−m

1
2
zTZTGZz + (ZTc + ZTGY R−Tξ)Tz.

The optimal solution satisfies

ZTGZz = −(ZTc+ ZTGY R−Tξ) ≡ b̂. (3.23)

If SOSC is not satisfied, ZTGZ is positive semi-definite, but singular. A spectral

decomposition gives

ZTGZ = [V W ]TD[V W ], (3.24)
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where

D =



D̄

0
. . .

0


 , D̄ =


 α1

. . .

αr


 .

V ∈ R
(n−m)×r contains in each column the eigenvector corresponding to the posi-

tive eigenvalues αi, i = 1, . . . , r and the columns of W ∈ R
(n−m)×(n−m−r) give an

orthonormal basis for the eigenspace corresponding to the zero eigenvalue. Since

[V W ] forms an orthonormal basis for R
(n−m)×(n−m), rewrite z = V v + Ww. The

vector b̂ can also be decomposed into components in the spaces spanned by the

columns of V and W , namely b̂ = V bv + Wbw where bv = V Tb̂ and bw = W Tb̂.

Equation (3.23) can then be rewritten as

ZTGZ(V v +Ww) = b̂ = V bv +Wbw. (3.25)

As W contains the eigenvectors of ZTGZ for the zero eigenvalues, ZTGZW = 0, so

w ∈ R
n−m−r is free. Equations (3.23) and (3.25) are solvable if and only if bw =

0, that is if b̂ is wholly contained in the space spanned by the columns of V . The

components v can be obtained from (3.25) by multiplying by V T to give

V TZTGZV v = D̄v = V Tb̂,

v = D̄−1V Tb̂.

Retracing the steps, the optimal solution is

x = Y y + Zz

= Y R−Tξ + Z(V v +Ww)

= Y R−Tξ + Z(V D̄−1V Tb̂+Ww)

= Y R−Tξ − ZV D̄−1V TZT(c+GY R−Tξ) + ZWw.

Since w ∈ R
n−m−r is free, the optimal solution x is not unique if n > m+ r, that is

when SOSC fails. As ĀT = Y R, from (3.21),

ĀTλ̄ = Y Rλ̄ = −(Gx̄+ c).

λ̄ = −R−1Y T(Gx̄+ c)

= −R−1Y T(GY R−Tξ −GZV D̄−1V TZT(c+GY R−Tξ) +GZWw + c).
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The expression for λ̄ contains the term −R−1Y TGZWw which at first glance

implies that λ̄ is also not unique. This cannot be true since LICQ is assumed to

hold and we now show why GZWw is zero. Since W is an orthonormal basis for the

eigenvectors corresponding to the zero eigenvalues of ZTGZ, wTW T(ZTGZ)Ww = 0

for all w ∈ R
n−m−r. We can expand that further by taking the eigenvalue decompo-

sition for G, say G = PD0P
T. Then

wTW TZT(PD0P
T)ZWw = (

√
D0P

TZWw)T(
√
D0P

TZWw) = 0,√
D0P

TZWw = 0.

That is GZWw = P
√
D0(

√
D0P

TZWw) = 0 for all w, or GZW = 0.

The Lagrange multiplier becomes

λ̄ = −R−1Y T(I −GZV D̄−1V TZT)(GY R−Tξ + c), (3.26)

which does not depend directly on the solution x̄ and is affine in ξ.

Since λ̄ = −∇φ(ξ), the Hessian of the optimal value function φ(ξ) is

∇2φ(ξ) = −∇ξλ = R−1Y T(I −GZV D̄−1V TZT)GY R−T. (3.27)

If SOSC is satisfied at the solution, then ZTGZ is nonsingular, W in (3.24)

is vacuous and D = D̄. V D̄−1V T in (3.27) is equivalent to (ZTGZ)−1. It is not

necessary to perform the spectral decomposition and (3.27) can be rewritten as

∇2φ(ξ) = R−1Y T(I −GZ(ZTGZ)−1ZT)GY R−T. (3.28)

Using the above results, an element of the generalized Hessian of the recourse

function can be calculated in an analogous way to (3.16)

∇2Q(xt−1) = V T

t R
−1Y T(I −GtZ(ZTGtZ)−1ZT)GtY R−TVt. (3.29)

where Y , Z and R are obtained from a QR decomposition of Āt.

The discussion following Example 3.14 can be applied in the convex case to

obtain an element of the generalized Hessian of the recourse function in (1.12)–

(1.13) if LICQ or SCC fails or if the objective is nonsmooth at the solution.
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It is much more difficult to carry out sensitivity analysis on a convex program if

the solution does not satisfy the second order sufficiency condition. This is because

the optimal solution need not be unique and is in general a convex set. Different

solutions can lead to different active sets. Therefore, a change in the active set does

not necessarily mean a change in the quadratic pieces in φ(ξ). However, all optimal

solutions must all share the same Lagrange multiplier as a result of Proposition 3.5.

This is correct intuitively as the set of Lagrange multipliers is the subdifferential

of the optimal value function which by definition must have the same value for all

optimal solutions. The following example illustrates the difficulties.

Example 3.16 Consider a convex QP subject to right hand side perturbations.

φ(x) = min
y∈R3

1
2
y21 − y2 − y3

s.t. y2 + y3 ≤ x1

y2 ≤ x2

y3 ≤ x2

y2, y3 ≥ 0

where x1, x2 > 0.

The Kuhn-Tucker condition is
 y1

−1

−1


+ λ1


 0

1

1


+ λ2


 0

1

0


+ λ3


 0

0

1


 + λ4


 0

−1

0


+ λ5


 0

0

−1


 =


 0

0

0




(3.30)

The piecewise quadratic optimal value function is shown in Figure 3.3 and details

are given in Table 3.2.

This example demonstrates clearly the loss of structure when SOSC fails. Al-

though the three regions S1, S2, S3 all share the same optimal value function, be-

tween them, there are seven different optimal active sets. Each of LICQ, SCC and

SOSC fails in some active sets in the interior of a piece of the piecewise optimal value

function. The optimal value function is continuously differentiable (C1) everywhere

except on the ray {x ∈ R
2 : x2 = x1/2, x1 ≥ 0} where LICQ is not satisfied.
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S1 S2

λ∗(x)




1

0

0

0

0







1

0

0

0

0




A(x) 1 1, 4 1, 5 1 1, 3, 4 1, 2, 5

y∗(x)


 0

α

x1 − α





 0

0

x1





 0

x1
0





 0

α

x1 − α





 0

0

x1





 0

x1
0




C1 Y Y Y Y Y Y

SCC Y N N Y N N

SOSC N Y Y N Y Y

LICQ Y Y Y Y N N

S3 S4 S5

λ∗(x)




1

0

0

0

0







β

1− β

1− β

0

0







0

1

1

0

0




A(x) 1 1, 2 1, 3 1, 2, 3 2, 3

y∗(x)


 0

α

x1 − α





 0

x2
x1 − x2





 0

x1 − x2
x2





 0

x2
x2





 0

x2
x2




C1 Y Y Y N Y

SCC Y N N N Y

SOSC N Y Y Y Y

LICQ Y Y Y N Y

in S1–S3, x2 ≤ α ≤ x1 − x2 in S4, 0 ≤ β ≤ 1

Table 3.2: Example of a perturbed convex quadratic program
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Figure 3.3: Example of a perturbed convex quadratic program



Chapter 4

Generalized Newton Methods for

MQSPs

This chapter presents generalized Newton algorithms for solving problem (1.12)–

(1.13). We start by examining the special case where all subproblems have strictly

convex LC1 objective and relatively complete recourse. In Section 4.2, we look at

how feasibility can be ensured for problems without relatively complete recourse

by adding feasibility cuts. In Section 4.3 the first algorithm is modified to handle

convex problems that are only Lipschitz continuous.

4.1 Strictly Convex LC1 MQSPs

The generalized Newton algorithm we present for strictly convex MQSPs com-

bines the nested decomposition method (Section 2.4.2) and the generalized Newton

method of Section 2.4.6. As in the nested decomposition method, our algorithm

starts from the root node and passes the current iterate to all appropriate descen-

dents. This is continued until the last stage where new QPs are formed and solved.

Instead of passing optimality cuts, which are linear supporting hyperplanes to an-

cestor nodes, gradients and elements of the generalized Hessians of the recourse

functions are passed back.

As discussed in Section 3.2.2, the subproblem at each node is a strictly convex

96
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PQP. Each subproblem objective is also assumed to be LC1, for instance, if each

W kt
t has full row rank. As the objective is piecewise quadratic and second order

information is available, a sequential quadratic program algorithm which uses a

quadratic model at each iteration is ideally suited to our purpose. At each iterate

xkt
t the current subtree is solved recursively to give the gradient and an element of the

generalized Hessian of the recourse function using (3.3) and (3.16) and the discussion

afterwards (p.83–86). A Newton direction is then calculated and a linesearch is used

to find the next iterate.

Algorithm 4.1 Given stopping criterion ε0 : 0 < ε0 < 1.

Step 0. V1 = 0, D1(k0) =. Initialize Qkt
t = 0 for t = 1, . . . , T, kt = 1, . . . , Kt.

Set t = 1, k1 = 1.

Step 1. Solve (1.13) for xkt
t .

Step 2. Recursively solve the subtree at xkt
t .

If t = T − 1

For kT ∈ DT (kt)

Solve the stage T scenario kT problem (1.13) with xkt
t as input.

Elseif t < T − 1

For kt+1 ∈ Dt+1(kt)

t = t+ 1.

Goto Step 1.

(**) Continue.

Step 3. Calculate the gradient gkt
t and an element Gkt

t of the generalized Hessian of

the objective function at xkt
t by

gkt
t = Hkt

t xkt
t + ckt

t +
∑

k∈Dt+1(kt)

pkt+1∇φk
t+1(x

kt
t ), (4.1)

Gkt
t = Hkt

t +
∑

k∈Dt+1(kt)

pkt+1Gk
t+1(x

kt
t ), (4.2)
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where ∇φk
t+1(x

kt
t ) and Gk

t+1(x
kt
t ), given by (3.3) and (3.16) with ξ = Vt+1x

kt
t+1,

are the gradient and an element of the generalized Hessian of the optimal value

function of the immediate descendents with respect to xkt
t .

Step 4. Calculate a descent direction dkt
t by solving

min
d∈Rnt

1
2
dTGkt

t d+ dTgkt
t (4.3)

s.t. W kt
t (xkt

t + d) ≤ hkt
t − V kt

t x
kt−1

t−1 .

Step 5. Optimality check

If ‖dkt
t ‖ ≤ ε0

dual variables to (4.3) are the dual variables to the current subproblem.

If t > 1

Current subtree optimal.

t = t− 1, return to label (**) in Step 2.

Else

optimal solution found; STOP.

Step 6. Linesearch to find a feasible and acceptable step length ρk.

Update xkt
t = xkt

t + ρkdkt
t . Goto Step 3.

In Step 3, pkt+1 is the probability conditional on its immediate ancestor being realized,

which is slightly different from that used in (1.14).

A commonly used linesearch criterion for smooth optimization is the Wolfe-

Powell condition. For each subproblem, the step ρkt
t > 0 is chosen such that

f(xkt
t + ρkt

t d
kt
t ) ≤ f(xkt

t ) + σ1ρ
kt
t ∇f(xkt

t )Tdkt
t (4.4)

|∇f(xkt
t + ρkt

t d
kt
t )Tdkt

t | ≤ −σ2∇f(xkt
t )Tdkt

t (4.5)

for some given 0 < σ1 < σ2 < 1. It is well known that if f does not goes to −∞,

then there exists an interval such that (4.4) and (4.5) hold. See Fletcher [33] for a

detailed discussion on this and other linesearch conditions.

Feasibility cuts have been omitted in the above algorithm. We show how to

implement feasibility cuts in Section 4.2 for problems that do not have relatively
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complete recourse. However, the feasibility cuts generated may create linearly de-

pendent constraints or cause numerical ill-conditioning.

4.2 Feasibility Cuts

Algorithm 4.1 is now modified to ensure feasibility when relatively complete recourse

is not guaranteed. Each time an infeasible subproblem is encountered, a feasibility

cut is generated for the immediate ancestor problem and the algorithm returns to

that node and finds a feasible solution satisfying the new cut as well. Derivation of

feasibility cut was discussed in Section 2.4.1.

Algorithm 4.2 Given stopping criterion ε0 : 0 < ε0 < 1.

Step 0. V1 = 0, D1(k0) = 1. Initialize Ckt
t , dkt

t to be empty, Qkt
t = 0 for t =

1, . . . , T, k = 1, . . . , Kt. Set t = 1, k1 = 1.

Step 1. Find a feasible xkt
t by solving (1.13) with feasibility cuts

Ckt
t x ≤ dkt

t .

If this problem is infeasible

If t = 1, program (1.12)–(1.13) is infeasible, STOP;

Else

Solve corresponding LP:

min [y1 y2 y3 y4]
Te (4.6a)

s.t. W kt
1t xt + V kt

1t xt−1 + y1 − y2 = hkt
1t , (4.6b)

W kt
2t xt + V kt

2t xt−1 − y3 ≤ hkt
2t , (4.6c)

Ckt
t xt − y4 ≤ dkt

t , (4.6d)

y1, y2, y3, y4 ≥ 0, (4.6e)

where e = (1, . . . , 1)T. Let µ be the dual variables to (4.6b) and (4.6c).

Append µT

[
V kt
t

0

]
and µT

[
hkt
t

dkt
t

]
to C

kt−1

t−1 and d
kt−1

t−1 respectively.

Goto label (**) in Step 2.
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Step 2. Recursively solve the subtree at xkt
t .

If t = T − 1

For kT ∈ DT (kt)

Solve the stage T node kT problem (1.13) with xkt
t as input.

If subproblem is infeasible

Solve corresponding LP (4.6a) with CT , dT and y4 vacuous.

Append µTV kT
T and µThkT

T to C
kT−1

T−1 and d
kT−1

T−1 respectively.

Goto Step 1.

Elseif t < T − 1

For kt+1 ∈ Dt+1(kt)

t = t+ 1, Goto Step 1.

(**) Continue.

If any subproblem is infeasible

Set t = t− 1. Goto Step 1.

Step 3. Calculate the gradient gkt
t and an element Gkt

t of the generalized Hessian at

xkt
t using (4.1) and (4.2).

Step 4. Calculate a descent direction dkt
t by solving

min
d∈Rnt

1
2
dTGkt

t d+ dTgkt
t

s.t. W kt
t (xkt

t + d) ≤ hkt
t − V kt

t x
kt−1

t−1

Ckt
t (xkt

t + d) ≤ dkt
t .

Step 5. Optimality check; as in Algorithm 4.1.

Step 6. Linesearch to find feasible and acceptable step length ρ.

If a subproblem is infeasible,

Goto Step 4 to find new descent direction.

Else

Set xkt
t = xkt

t + ρdkt
t . Goto Step 3.

In (4.6a), the equality {W1, V1, h1} and inequality {W2, V2, h2} constraints are shown

separately to clarify the dependence on the slack variables y. Algorithm 4.2 returns
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control to the parent node with a new feasible cut as soon as an infeasible descendent

is encountered. By using an appropriate cut sharing formula, new cuts can be created

for all nodes in the same stage (see the discussion in Section 2.4.2).

4.3 Modifications for Convex MQSPs

We now proceed to modify Algorithm 4.1 for the convex MQSP case. Instead of

dealing with strictly convex, piecewise quadratic, LC1 function in each subproblem,

the objectives are in general only convex, piecewise quadratic and Lipschitz contin-

uous. Feasibility cuts can be added in the same way as in Algorithm 4.2 and will

not be dealt with here.

As the objective function f may be nonsmooth, we follow the approach in bundle

method (Section 2.3.3) and form a piecewise linear approximation to f by collecting

appropriate set of subgradients. Suppose we have a set {y(l), f(yl), g(yl)}l∈L where

g(yl) ∈ ∂f(yl). Then the linear approximation of f using the lth piece is

f(x) ≥ f(yl) + g(yl)
T(x− yl). (4.7)

For some arbitrary xi ∈ R
n, define

α(xi, yl) = αi
l ≡ f(xi)− f(yl)− g(yl)

T(xi − yl) (4.8)

to be the linearization error of the lth piece at xi. Since f is convex, α(xi, yl) ≥ 0

for all xi, yl ∈ R
n. Substituting (4.8) into (4.7) gives

f(x) ≥ f(xi)− α(xi, yl)− g(yl)
T(xi − yl) + g(yl)

T(x− yl)

= f(xi)− α(xi, yl) + g(yl)
T(x− xi). (4.9)

That is g(yl) ∈ ∂εf(x
i) with ε = α(xi, yl).

Let λl, l ∈ L satisfy

λ ≥ 0,
∑
l∈L

λl = 1. (4.10)
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Define the aggregate linearization error α̃i =
∑

l∈L λ
i
l α(x

i, yl) and the aggregate sub-

gradient g̃i =
∑

l∈L λ
i
l g(yl), where λ

i satisfies (4.10). Taking the convex combination

of (4.9) gives

f(x) ≥ f(xi)− α̃i + (g̃i)T(x− xi). (4.11)

Therefore g̃i ∈ ∂εf(x
i) with ε = α̃i.

Since the objective function of each (t, kt) subproblem is known to be piecewise

quadratic, we can strengthen the approximation of f around xi by using

gl(x
i) = gl(yl) +Gl(x

i − yl) (4.12)

if the quadratic piece ql is active at xi and Gl = ∇2ql.

Define L as the set of known quadratic pieces and let J(xi) ⊆ L be the set of

quadratic pieces active at xi. Combining (4.9), (4.11) and (4.12), a linear lower

bound of f around xi is given by

f(x) ≥ f(xi) + max


 gj(x

i)T(x− xi), j ∈ J(xi),

−α(xi, yl) + gl(yl)
T(x− xi), l ∈ L \ J(xi),

−α̃i + (g̃i)T(x− xi)




for λi that satisfies (4.10).

Since f is nonsmooth, the search direction may not be a descent direction. The

linesearch routine needs to find either a point satisfying the sufficient function value

decrease condition or ensure that the new subgradient is different enough from the

current bundle to give a better search direction on the next iteration. Given 0 < σ <

1
2
, 0 < ρ̄ < 1, ρmax > 1, a linesearch scheme that satisfies the above requirement,

which we will verify in Section 5.2, is given by Kiwiel [65]. Find steps 0 ≤ ρiL ≤
ρiR ≤ ρmax such that for xi+1 = xi + ρiLd

i and yi+1 = xi + ρiRd
i

f(xi+1) ≤ f(xi) + σρiLv
i. (4.13)

Either ρiL ≥ ρ̄ and ρiR = ρiL, (a serious step) or ρiL = 0 and ρiR ≥ ρ̄ (a null step).

For the case of linearly constrained problem with constraints Ax =
≤ b, the sufficient

function decrease measure vi is

vi = − (
(di)TBidi + α̃i + (b− Axi)Tµi

)
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where µ is the vector of Lagrange multiplier for the linear constraints.

Algorithm 4.3 Given the stopping criterion ε0 : 0 < ε0 < 1.

Step 0. V1 = 0, D1(k0) = 1. Initialize Qkt
t = 0, α̃kt

t and g̃kt
t to be vacuous, Lkt

t = ∅ for

t = 1, . . . , T, kt = 1, . . . , Kt. Set t = 1, k1 = 1.

Step 1. Solve (1.13) for xkt
t .

Step 2. Recursively solve the subtree at xkt
t .

If t = T − 1

For kT ∈ DT (kt)

Solve the stage T scenario kT problem (1.13) with xkt
t as input.

Elseif t < T − 1

For kt+1 ∈ Dt+1(kt)

t = t+ 1. Goto Step 1.

(**) Continue.

Step 3. If Lkt
t is empty

Calculate fkt
t,1, g

kt
t,1 and Gkt

t,1 for an active quadratic piece at xkt
t .

Set J(xkt
t ) = Lkt

t = {1}.
Else

Calculate fl(x
kt
t ) and gl(x

kt
t ) for all l ∈ Lkt

t .

Identify the set J(xkt
t ) of quadratic pieces that are active at xkt

t .

Step 4. Find search direction dkt
t

min
d∈Rn,u∈R

u+ 1
2
dTBkt

t d (4.14a)

s.t. gj(x
kt
t )Td ≤ u, j ∈ J(xkt

t ) (4.14b)

−αl(x
kt
t , y

kt

t,l) + gl(y
kt

t,l)
Td ≤ u, l ∈ Lkt

t \ J(xkt
t ) (4.14c)

−α̃kt
t + (g̃kt

t )Td ≤ u (4.14d)

W kt
t (xkt

t + d) ≤ hkt
t − V kt

t x
kt−1

t−1 . (4.14e)
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Step 5. Optimality check

If ‖dkt
t ‖ ≤ ε0

Current subtree optimal.

Dual variables to (4.14e) are the dual variables to current subproblem.

If t > 1

t = t− 1, return to label (**) in Step 2.

Else

optimal solution found; STOP.

Step 6. Perform linesearch to get 0 ≤ ρL ≤ ρR that satisfy (4.13).

Let fkt

t,l̄
, gkt

t,l̄
and Gkt

t,l̄
be the function value, gradient and Hessian of a quadratic

function ql̄ that is active at xkt
t + ρRd

kt
t .

If ρL ≥ ρ̄ (sufficient function value decrease)

Update xkt
t = xkt

t + αkdkt
t (Serious step).

Set g̃kt
t and α̃kt

t vacuous.

Else

xkt
t = xkt

t (Null step).

Let λ be the Lagrange multiplier of constraints (4.14b)–(4.14d).

Calculate the new aggregate subgradient and its linearization error.

g̃kt
t = λT


 gj(x

kt
t )

gl(y
kt
t,l)

g̃kt
t


 , α̃kt

t = λT


 0

αl(x
kt
t , y

kt
t,l)

α̃kt
t


 ,

j ∈ J(xkt
t )

l ∈ Lkt
t \ J(xkt

t )
. (4.15)

End

If l̄ �∈ Lkt
t

Update Lkt
t = Lkt

t ∪ l̄

Store fkt

t,l̄
, gkt

t,l̄
, Gkt

t,l̄
and ykt

t,l̄
= xkt

t + ρRd
kt
t .

Else

Update fkt

t,l̄
, gkt

t,l̄
, and ykt

t,l̄
.

Goto Step 3.

The matrix Bkt
t in the descent direction calculation (4.14) is a positive definite

matrix. It can be any element of the generalized Hessian G(xkt
t ) if it is positive



4.3. Modifications for Convex MQSPs 105

definite, or G(xkt
t ) + δI for some δ > 0. As xkt

t is not changed after a null step, we

can use the same Bkt
t during a sequence of consecutive null steps which is necessary

for proving global convergence of the algorithm.

Since each nodal problem objective is only assumed to be convex Lipschitz con-

tinuous, the calculation of an element of the recourse generalized Hessian requires

more care than when the objective is strictly convex and LC1. If the objective is

not strictly convex on the active constraint manifold, then results in Section 3.3.2

are needed to generate an element of the generalized Hessian of the optimal value

function.

If there exist two positive dual variables λ̂ and λ̃ to (4.14b) with ̂, ̃ ∈ J(xkt
t )

and ̂ �= ̃, then the objective is only Lipschitz continuous at the solution. Results

from Louveaux [72] (see page 84–86) can be used to calculate a correct element

of the generalized Hessian. The matrix E in (2.33) is in the worst case of size

c× nt where c is the sum of the number of inequality constraints including bounds

of all direct descendents. This is likely to cause linear dependence of the active

constraint gradients. Since we do not include the current piece boundary in the

descent direction problem, it is not clear how to identify an optimal basis when

these boundaries are added unless the modified QP is solved again using an active

set method. Another difficulty is that to calculate a correct generalized Hessian of

the stage t optimal value function, we need to guarantee that the subgradient and

element of the generalized Hessian returned by stage t+1 belong to a non-degenerate

active piece. However, since the stage t problem does not satisfy LICQ, this requires

an extra procedure to find a non-degenerate active piece. To circumvent these

problems, the recourse Hessian can be omitted whenever the objective is nonsmooth

at the solution. The subgradient returned is still valid since it is calculated from

the Lagrange multipliers, and can therefore be used in subsequent descent direction

finding problems. However, since no Hessian information is returned, we cannot test

if the current piece is active at later iterates in Step 3 and cannot update the gradient

to other iterates if it is active. This may slow down the convergence rate but will

not affect the verification of optimality since only the subgradients are required in
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Step 4 to calculate the descent direction.

As will be shown in Lemma 5.3, λ satisfies eTλ = 1 and λ ≥ 0. So the aggregate

subgradient g̃kt
t calculated after the first in a consecutive sequence of null steps

satisfies g̃kt
t ∈ ∂εf(x

kt
t ) with ε = α̃ as (4.11) showed. Since xkt

t is not changed

after a null step, the updated g̃kt
t in subsequent null step is also given by a convex

combination of elements of ∂εf(x
kt
t ). The same calculation as (4.11) shows that the

updated g̃kt
t is an element of the ε-subdifferential of f at xkt

t with ε being the updated

α̃kt
t .



Chapter 5

Convergence Analysis

The theoretical properties of Algorithm 4.1, 4.2 and 4.3 are studied in this chapter.

We show that all three algorithms converge globally, that is all accumulation points

of the sequence generated by these algorithms are stationary points of the multistage

quadratic stochastic program (1.12)–(1.13). If the piecewise quadratic objective is

differentiable and strictly convex at the solution, then the algorithms can locate the

solution in a finite number of iterations. In this case, the iterates converge locally

to the solution at a superlinear rate, that is limi→∞
‖xi+1−x∗‖
‖xi−x∗‖ = 0. Note that the

assumption of strict convexity excludes multistage stochastic linear programming.

5.1 Strictly Convex LC1 MQSPs

We first prove Algorithm 4.1 converges globally and finitely for problem (1.12)–(1.13)

if each subproblem has relatively complete recourse and the piecewise quadratic ob-

jective is strictly convex and LC1 . These conclusions are then extended to Algo-

rithm 4.2 without the relatively complete recourse assumption.

Because of the recursive nature of the algorithms, each nodal problem, except for

those in the terminal stage, is treated in the same way. The following proofs apply

to each subproblem and in particular to the original problem (1.12) by considering

the root node. We can represent each nodal subproblem as

107
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min
x∈Rn

f(x) (5.1)

s.t. Ax =
≤ b

where f is strictly convex, piecewise quadratic and LC1, A ∈ R
m×n and X = {x ∈

R
n : Ax =

≤ b} is nonempty.

5.1.1 Global Convergence

The following global convergence proof is adapted from Pang et al. [94] which was

concerned with minimizing an unconstrained locally Lipschitz function.

Theorem 5.1 Let f be strictly convex, piecewise quadratic and LC1. If the line-

search conditions (4.4) and (4.5) are satisfied in step 6 of Algorithm 4.1, that is in

each iteration i, the step ρi > 0 is chosen such that

f(xi + ρidi) ≤ f(xi) + σ1ρ
ig(xi)Tdi (5.2)

|g(xi + ρidi)Tdi| ≤ −σ2 g(x
i)Tdi (5.3)

for some 0 < σ1 < σ2 < 1 and g ≡ ∇f , then the sequence {xi} generated by

Algorithm 4.1 converges globally to the unique minimum of (5.1).

Proof: First, note that as f is strictly convex, there exist constants c2 > c1 > 0

such that for all quadratic pieces l,

0 < c1‖d‖2 ≤ dTGjd ≤ c2‖d‖2, for all d ∈ R
n, d �= 0. (5.4)

Since X is nonempty, we can find a feasible starting point x0 in step 1 of Algo-

rithm 4.1. As only feasible steps are accepted, xi ∈ X for all i. Therefore d = 0 is

a feasible solution to (4.3), and any di that solves (4.3) satisfies

1
2
(di)TGidi + (gi)Tdi ≤ 0. (5.5)

If di = 0, xi is optimal as will be shown at the end of this proof. If d �= 0, then

(gi)Tdi ≤ − 1
2
(di)TGidi < 0,
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showing that it is a descent direction. Since f is LC1, there exists ρi > 0 which

satisfies the approximate linesearch condition (5.2) and (5.3) and {f(xi)} is a strictly

decreasing sequence. As f is strictly convex and piecewise quadratic, it is bounded

from below. The level set X0 = {x ∈ X : f(x) ≤ f(x0)} is a compact set, so the

sequence {xi} lies in X0 and has an accumulation point x̄ ∈ X0 ⊆ X.

Next we show that the sequence {di} is bounded. As {xi} is bounded and each gi

is the gradient of a quadratic function active at xi, {gi} is also a bounded sequence

and there exist a constant c0 > 0 such that

|(gi)Tdi| < c0‖di‖ for all i. (5.6)

Combining this with (5.4) and (5.5), we have

1
2
c1‖di‖2 ≤ 1

2
(di)TGidi ≤ |(gi)Tdi| ≤ c0‖di‖,

so

‖di‖ ≤ 2c0
c1

.

From (5.6), the sequence {(gi)Tdi} is also bounded. Now taking limit in (5.2),

0 ≥ lim
i→∞

σ1ρ
i(gi)Tdi ≥ lim

i→∞
f(xi+1)− f(xi) = 0.

If lim inf i→∞ ρi > 0, then limi→∞(gi)Tdi = 0. If lim infi→∞ ρi = 0, consider a

subsequence such that {gi} → ḡ, {di} → d̄ and {Gi} → Ḡ, then Ḡ satisfies (5.4).

Taking the limit i → ∞ in (5.3) gives |ḡTd̄| ≤ −σ2ḡ
Td̄, that is ḡTd̄ = 0 since σ2 < 1.

As ḡTd̄ = 0, regardless of lim inf i→∞ ρi, from (5.5),

0 ≥ − 1
2
d̄TḠd̄ ≥ ḡTd̄ = 0,

so, as Ḡ is positive definite, d̄ = 0.

Now let x ∈ X be arbitrary, as di is the unique minimum of (4.3), we have for

each i,

(x− xi − di)T(gi + Gidi) ≥ 0.

As Gi are bounded and f is LC1, taking the limit i → ∞, we have

(x− x̄)T∇f(x̄) ≥ 0,



5.1. Strictly Convex LC1 MQSPs 110

that is x̄ satisfies the optimality condition of the convex program (5.1). Moreover, as

f is strictly convex, the minimum is unique, therefore the sequence {xi} converges

globally to x̄ which is the unique minimum of (5.1).

5.1.2 Finite Convergence

The next theorem shows that Algorithm 4.1 converges finitely. The proof follows

closely that of Theorem 3 of Sun [119] which applies to equality constrained problem

and assumes an exact linesearch is used.

Theorem 5.2 Let f in (5.1) be convex and piecewise quadratic. Suppose the iterates

{xi} of Algorithm 4.1 converges to a solution x∗ of (5.1). Let f be differentiable at

x∗ and let all quadratic pieces active at x∗ be strictly convex. If the unit step is

always tested in the linesearch routine in Algorithm 4.1, then {xi} converges to the

unique minimum x∗ of (5.1) in a finite number of iterations.

Proof: Recall the partition of the piecewise quadratic objective in Definition 3.9.

Suppose x∗ ∈ P1 ∩ . . . ∩ Pr and x∗ �∈ Pr+1 ∪ . . . ∪ P|L|. Since xi → x∗, there exists ı̄

such that for all i ≥ ı̄, xi �∈ Pr+1 ∪ . . . ∪ P|L|.

By the optimality of x∗, there exists Lagrange multiplier λ∗ such that ∇f(x∗) +

ATλ∗ = 0. As ∇f is continuous, ∇f(x∗) = Glx
∗ + cl, for l = 1, . . . , r. So x∗ also

satisfies the Kuhn-Tucker conditions and is therefore the unique minimizers of the

following strictly convex programs:

min 1
2
xTGlx+ cT

l x

s.t. Ax =
≤ b,

for l = 1, . . . , r. If follows that d∗ = x∗ − xı̄ is the unique minimum of

min 1
2
dTGld+∇f(xı̄)Td

s.t. Ad =
≤ b−Axı̄.

Therefore a unit step will move from xı̄ to x∗. The optimal solution of the next

descent direction subproblem is then dı̄+1 = 0 and Algorithm 4.1 terminates.
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Algorithm 4.1 can be shown to converge superlinearly if an Armijo linesearch is

used in step 6, that is, for some γ ∈ (0, 1), σ2 ∈ (0, 1/2), x is updated by xi+1 =

xi + γridi where ri is the smallest nonnegative integer r such that

f(xi + γrdi)− f(xi) ≤ σ2γ
r∇f(xi)di. (5.7)

This follows as ∇f is semismooth and f is strictly convex, so by Theorem 3 of Pang

and Qi [96], {xi} converges to x∗ Q-superlinearly, that is,

lim
i→∞

‖xi+1 − x∗‖
‖xi − x∗‖ = 0.

Theorems 5.1 and 5.2 can be extended to Algorithm 4.2 for problems that do not

have relatively complete recourse. In Algorithm 4.2, the feasibility cuts are added

in the same way as in the nested decomposition method. As noted in Section 2.4.1,

there are only finitely many such cuts and a new cut is generated each time. There-

fore Algorithm 4.2 either proves problem (5.1) is infeasible, or adds a finite number

of constraints to the subproblems. If the assumptions of Theorem 5.1 and 5.2 hold,

then Algorithm 4.2 will converge globally to the optimal solution in a finite number

of iterations.

5.2 Convex MQSPs

As in the strictly convex case, each nodal subproblem of (1.12)–(1.13) can be repre-

sented by (5.1) where f is convex and piecewise quadratic. This section shows that

Algorithm 4.3 converges globally to a solution of (5.1). The proof is adapted from

Kiwiel [65, Chapter 2]. The original proof, concerned with convex unconstrained

minimization problems, is modified to take into account the linear constraints.
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Recall the search direction subproblem on the ith iteration:

min
u,d

u+ 1
2
dTBid (5.8a)

s.t. gj(x
i)Td ≤ u, j ∈ J(xi) (5.8b)

−α(xi, yl) + gl(yl)
Td ≤ u, l ∈ Li \ J(xi) (5.8c)

−α̃i−1 + (g̃i−1)Td ≤ u (5.8d)

Ad =
≤ bi (5.8e)

where bi ≡ b − Axi and Bi is positive definite. Constraint (5.8d) is only present if

the previous step was a null step. Let the dual variables be λi
l, l ∈ Li for (5.8b) and

(5.8c), λ̃i for (5.8d) and µi for (5.8e). We will show in Lemma 5.3 that λ satisfies

∑
l∈Li

λi
l + λ̃i = 1, λ̃i ≥ 0, λi

l ≥ 0, l ∈ Li. (5.9)

For clarity, all relevant definitions are summarized here:

gl ∈ ∂f(yl),

αi
l ≡ α(xi, yl) ≡ f(xi)− f(yl)− gT

l (x
i − yl),

g̃i ≡
∑
l∈Li

λi
lgl + λ̃g̃i−1,

α̃i ≡
∑
l∈Li

λi
lα

i
l + λ̃α̃i−1,

vi ≡ − (‖(Bi)−1/2g̃i + (Bi)−1/2ATµi‖2 + α̃i + (b− Axi)Tµi
)

= −
(
‖g̃i + ATµi‖2(Bi)−1 + α̃i + (b− Axi)Tµi

)
, (5.10)

wi ≡ 1
2
‖g̃i + ATµi‖2(Bi)−1 + α̃i + (b−Axi)Tµi. (5.11)

As xi is a feasible solution to (5.1), b−Axi ≥ 0 and µi
I ≥ 0 where the subscript

I denote the inequality constraints, so (b−Axi)Tµi ≥ 0. By convexity of f , α̃i ≥ 0.

Therefore wi = 0 if and only if all three terms equal 0. From (4.11) and the

discussion at the end of Chapter 4, g̃i ∈ ∂εf(x
i) for ε = α̃i. If wi = 0, then

0 ∈ ∂f(xi) + ATµi and (b − Axi)Tµi = 0, that is µi satisfies the complementarity

condition of (5.1). Therefore wi = 0 implies that xi is optimal and wi can be

interpreted as an optimality measure.
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The next lemma establishes the dual problem to the search direction finding

problem (5.8).

Lemma 5.3 The variables (di, ui) solve the search direction finding problem (5.8)

if and only if the dual variables (λi, µi) solve

min
λ,λ̃,µ

Λ(λ, λ̃, µ) (5.12a)

s.t.
∑
l∈Li

λl + λ̃ = 1 (5.12b)

λ̃, λl, µI ≥ 0, (5.12c)

where

Λ(λ, λ̃, µ) = 1
2

∥∥∥∥∥∑
l∈Li

λlg
i
l + λ̃g̃i−1 + ATµ

∥∥∥∥∥
2

(Bi)−1

+
∑
l∈Li

λlα
i
l + λ̃α̃i−1 + µTbi.

Proof: First consider the optimality conditions of (5.8)(
Bidi

1

)
+
∑
l∈Li

λi
l

(
gil
−1

)
+ λ̃i

(
g̃i−1

−1

)
+

(
ATµi

0

)
= 0,

−αi
l + (gil)

Tdi ≤ ui, λi
l(u

i + αi
l − (gil)

Tdi) = 0, l ∈ Li

−α̃i + (g̃i−1)Tdi ≤ ui, λ̃i(ui + α̃i − (g̃i−1)Tdi) = 0,

Adi =
≤ bi, (µi)T(bi − Adi) = 0, (5.13)

λi
l, λ̃

i, µi
I ≥ 0.

The first equation can be simplified as

Bidi +
∑
l∈Li

λi
lg

i
l + λ̃ig̃i−1 + ATµi = Bidi + g̃i + ATµi = 0, (5.14)

∑
l∈Li

λi
l + λ̃i = 1.

Now consider problem (5.12),

∇µΛ(λ
i, λ̃, µi) = A(Bi)−1

(∑
l∈Li

λi
lg

i
l + λ̃ig̃i−1 + ATµi

)
+ bi

= −Adi + bi,
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where the last equality is due to (5.14). For l ∈ Li, we have

∂Λ(λi, λ̃, µi)

∂λl
= (gil)

T(Bi)−1

(∑
l∈Li

λi
lg

i
l + λ̃g̃i−1 + ATµi

)
+ αi

l

= −(gil)
Tdi + αi

l.

Similarly
∂Λ(λi, λ̃, µi)

∂λ̃
= −(g̃i−1)Tdi + α̃i−1.

Since µ satisfies µI ≥ 0, for optimality, we must have either ∂Λ(λi,λ̃,µi)
∂µp

= 0, p =

1, . . . , m, or both of µi
p = 0 and ∂Λ(λi,λ̃,µi)

∂µp
≥ 0 for p ∈ I as we are dealing with a

minimization problem.

Denote the Lagrange multiplier to (5.12b) by u. Since λl ≥ 0 for l ∈ Li, optimal-

ity implies that either ∂Λ(λi,λ̃,µi)
∂λl

+ ui = 0, or both of λi
l = 0 and ∂Λ(λi,λ̃,µi)

∂λl
+ ui ≥ 0.

And an analogous set of relationships holds for λ̃.

Summarizing, the optimality conditions for (5.12) can be written as

ui ≥ (gil)
Tdi − αi

l, λi
l(u

i − gT

l d
i + αi

l) = 0, l ∈ Li,

ui ≥ (g̃i−1)Tdi − α̃i−1, λ̃i(ui − (g̃i−1)Tdi + α̃i−1) = 0,

Adi =
≤ bi, (µi)T(bi − Adi) = 0,∑

l∈Li

λi
l + λ̃i = 1,

λi
l, λ̃

i, µi
I ≥ 0.

As both (5.12) and (5.8) are convex programming problem and they satisfy the

same set of optimality conditions, therefore (ui, di) solve (5.8) if and only if the dual

variables (λi, λ̃i, µi) solve (5.12).

Note that from (5.14), di = −(Bi)−1(g̃i + ATµi), so

(di)TBidi = ‖g̃i + ATµi‖2(Bi)−1 . (5.15)

Next we verify that the linesearch condition (4.13) ensures either a sufficient

function value decrease or the bundle of subgradients is significantly improved by
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adding a new subgradient. At a null step, the linesearch rule (4.13) implies that

ρiL = 0, ρiR ≥ ρ̄ and

f(yi+1) ≥ f(xi) + σρiRv
i

where yi+1 = xi + ρiRd
i and vi is given by (5.10). Let g ∈ ∂f(yi+1), then

−α(xi, yi+1) + gTdi = − (
f(xi)− (f(yi+1) + ρiR gTdi)

)
+ gTdi

= f(yi+1)− f(xi) + (1− ρiR)g
Tdi

> σ ρiRv
i + (1− ρiR)g

Tdi.

By convexity, α(xi, yi+1) ≥ 0, so ρiRg
Tdi > σ ρiRv

i. Combining the last two inequali-

ties gives

−α(xi, yi+1) + gTdi > σ ρiRv
i + (1− ρiR)σv

i = σvi. (5.16)

This observation helps to establish Lemma 5.4 which will be used in the main

theorem to show that in a sequence of null steps, the optimality measure wi is

monotonically decreasing.

Lemma 5.4 Let ν ∈ [0, 1], g ∈ ∂f(yi+1) and

U(ν) = 1
2
‖(1− ν)g̃i + νg + ATµi‖2B−1 + (1− ν)α̃i + να + (bi)Tµi (5.17)

and

w̄ = min{U(ν)|0 ≤ ν ≤ 1}.
If (5.13), (5.14) and (5.16) hold, then

w̄ ≤ wi − (1− σ)2(wi)2

8C2
,

where C = max
{‖g̃i + ATµi‖2B−1 , ‖g‖B−1, ‖g̃i‖B−1 , α̃i, (bi)Tµi, 1

}
.

Proof:

U(ν) = 1
2
‖g̃i + ATµi‖2B−1 + ν(g̃i + ATµi)TB−1(g − g̃i) +

ν2

2
‖g − g̃i‖2B−1

+ α̃i + ν(α− α̃i) + (bi)Tµi

= wi − ν(g̃i + ATµi)TB−1(g̃i + ATµi) + ν(g̃i + ATµi)TB−1(g + ATµi)

+
ν2

2
‖g − g̃i‖2B−1 + ν(α− α̃i)

= wi − ν‖g̃i + ATµi‖2B−1 − ν(g + Aµi)Tdi +
ν2

2
‖g − g̃i‖2B−1 + ν(α− α̃i),
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where the last equality follows from (5.14). From (5.16)

−gTdi < −σvi − α = σ
(‖g̃i + ATµi‖2B−1 + α̃i + (bi)Tµi

)− α.

Therefore

U(ν) < wi − ν‖g̃i + ATµi‖2B−1 + σν
(‖g̃i + ATµi‖2B−1 + α̃i + (bi)Tµi

)
− να− ν(µi)TAdi +

ν2

2
‖g − g̃i‖2B−1 + ν(α− α̃i)

= wi − ν(1− σ)
(‖g̃i + ATµi‖2B−1 + α̃i + (bi)Tµi

)
+ ν(bi)Tµi − ν(µi)TAdi +

ν2

2
‖g − g̃i‖2B−1

= wi − ν(1− σ)(−vi) +
ν2

2
‖g − g̃i‖2B−1 .

Since ν(1− σ) ≥ 0, wi ≤ −vi and (5.13) stated that (µi)T(bi − Adi) = 0

U(ν) < wi − ν(1− σ)wi +
ν2

2
‖g − g̃i‖2B−1

< wi − ν(1− σ)wi +
ν2

2
(2C)2.

Let U(ν) = wi − ν(1 − σ)wi + ν2

2
(2C)2. The minimum of U(ν) is attained at

ν̄ = (1−σ)wi

4C2 . Since 0 ≤ wi ≤ 1
2
C + 2C and C ≥ 1, ν̄ satisfies 0 ≤ ν̄ < 1. Therefore

w̄ ≤ U(ν̄) < U(ν̄) = wi − (1− σ)2(wi)2

8C2
,

as claimed.

Now we are ready to prove Algorithm 4.3 converges globally to a solution. The

stopping criterion ε0 is set to 0.

Theorem 5.5 Let f : R
n → R in (5.1) be convex and piecewise quadratic. Let

the feasible region X be convex, compact and nonempty. Suppose Bi in the descent

direction subproblem (5.8) are uniformly positive definite and uniformly bounded,

that is, there exist 0 < c1 < c2 such that c1‖d‖2 ≤ 1
2
dTBid ≤ c2‖d‖2 for all i

and all d ∈ R
n. Then any accumulation point of the sequence {xi} generated by

Algorithm 4.3 is a solution of (5.1).
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Proof: If Algorithm 4.3 stops at the ith iteration, then di = 0. From the definition

of (5.8), the only linear supporting hyperplanes that can be active are those with

linearization error α = 0, so α̃i = 0. From (5.15), di = 0 is equivalent to ‖g̃i +
ATµi‖ = 0. Since the dual variables to (5.8) satisfy 0 = (bi −Adi)Tµi, if d = 0, then

(b − Axi)Tµi = 0. This demonstrates that if Algorithm stops, wi = 0 and so xi is

indeed optimal.

Now assume that Algorithm 4.3 does not stop. We need to consider the case

when there is an infinite number of serious steps and the case of infinitely many null

steps.

Suppose there is an infinite number of serious steps indexed by i ∈ I. Since the

linesearch condition (4.13) implies that {f(xi)} is a non-increasing sequence and the

feasible set X is assumed to be compact, for any converging subsequence {xi}i∈I0
where I0 ⊆ I, there exists x̄ ∈ X such that {xi}i∈I0 → x̄. Since X is compact, there

exists a finite number c such that f(x) ≥ c for all x ∈ X. From the linesearch rule

(4.13),

f(x0)− f(xi) = f(x0)− f(x1) + . . .+ f(xi−1)− f(xi)

≥
i−1∑
p=0

σ ρpL(−vp)

≥
i−1∑

p=0,p∈I0
σ ρpL(−vp)

≥ σρ̄

i−1∑
p=0,p∈I0

(−vp)

≥ σρ̄
i−1∑

p=0,p∈I0
wp.

Taking the limit as i ∈ I0 goes to infinity,

f(x0)− c ≥ f(x0)− f(x̄) ≥ σρ̄
∞∑

i=0,i∈I0
wi.

Since the left hand side is bounded and wi ≥ 0 for all i, wi i∈I0−→ 0 and any accumu-

lation point of {xi}i∈I0 is a solution to (5.1).
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Now consider the case of a finite number of serious steps but an infinite number

of null steps, that is, there exists ı̄ > 1 such that for all i ≥ ı̄, xi = xı̄. This implies

bi = bı̄ and the algorithm requires that Bi = B ı̄.

Since the dual variables of (5.8) solve problem (5.12), comparing (5.11) and

(5.12a) shows that wi is equal to the optimal value of (5.12). This can be used to

show that wi+1 < wi for i > ı̄. For the (i+ 1)th iteration, the objective of the dual

problem is

1
2

∥∥∥∥∥ ∑
l∈Li+1

λlg
i+1
l + λ̃g̃i + ATµ

∥∥∥∥∥
2

(Bi)−1

+
∑

l∈Li+1

λlα
i+1
l + λ̃α̃i + µTbi+1. (5.18)

Since B does not change after a null step, Bi+1 = Bi, so all calculations in a

consecutive sequence of null steps are carried out in the same matrix norm. Let

l̄ ∈ Li+1 be the index such that gi+1
l̄

is the subgradient added in the ith iteration.

For any ν ∈ [0, 1], the variables (λ, µ) given by

λl̄ = ν, λ̃ = (1− ν) (5.19a)

λl = 0, l ∈ Li+1 \ l̄, µ = µi (5.19b)

are feasible for (5.12) for the i+1st dual subproblem. Substituting (5.19) into (5.18)

and writing g = gi+1
l̄

, α = αi+1
l̄

, (5.18) becomes U(ν) defined in (5.17). Therefore

wi+1 is bounded above by U(ν) for ν ∈ [0, 1]. From Lemma 5.4, wi+1 ≤ wi −
(1−σ)2(wi)2

8(Ci)2
,where Ci = max

{
‖g̃i + ATµi‖2(Bi)−1 , ‖gi+1

l̄
‖(Bi)−1 , ‖g̃i‖(Bi)−1 , α̃i, (bi)Tµi, 1

}
.

Since 1
2
‖g̃i + ATµi‖2(Bi)−1 + α̃i + (b − Axi)Tµi = wi ≤ wı̄ for all i > ı̄, there exists a

constant C1 independent of i such that

C1 ≥ {‖g̃i + ATµi‖2(Bi)−1 , α̃i, (b− Axi)Tµi, 1}, i ≥ ı̄.

By assumption, X is compact, so {xi} and {yi} are bounded. Therefore {g(yi)} is

bounded, {g̃i} is also bounded as it is formed recursively by convex combinations

of {g(yi)}. Hence there exists a constant C2 such that max{‖g̃i‖, ‖g(yi)‖} ≤ C2 for

all i > ı̄. Therefore for C = max{C1, C2} ≥ 1, w satisfies wi+1 ≤ wi − (1−σ)2(wi)2

8C2

for all i ≥ ı̄. As σ ∈ (0, 1
2
) is fixed and wi ≥ 0 for all i, this implies that wi ↓ 0.

This combined with the fact that xi = xı̄ for all i > ı̄, implies that {xi} has an
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accumulation point x̄ = xı̄ which is a solution of (5.1). Therefore any accumulation

point of the iterates generated by Algorithm 4.3 is a solution of (5.1).

Let the piecewise quadratic objective f be differentiable at x∗ and all the active

pieces at x∗ be strictly convex. If B in the descent direction subproblem (5.8) is

given by an element of the generalized Hessian of f whenever it is positive definite,

then Theorem 5.2 can be used to show Algorithm 4.3 converges to the solution of

(5.1) finitely by replacing all references to Algorithm 4.1 with Algorithm 4.3. Since

f is assumed SC1 and strictly convex at x∗, by using the same argument at the end

of Section 5.1, the local rate of convergence of Algorithm 4.3 can also be shown to

be superlinear following Theorem 3 of Pang and Qi [96].



Chapter 6

Implementation Issues and

Numerical Results

In this chapter, we discuss details of an implementation of Algorithm 4.3. The

algorithm was implemented in Matlab 5.3 [80] on a SGI Origin 2000 running IRIX

6.5. Numerical results for random data with different tree structures are presented

in Section 6.2. The algorithm was also tested on publicly available stochastic linear

programming test problems modified by adding small convex quadratic terms to the

objective functions.

6.1 Implementation Issues

6.1.1 Random Data Generation

Small random data sets were generated to test the performance of Algorithm 4.3.

Only random right hand sides are considered in the current implementation, though

stochasticity in other problem data can be added with no changes to the properties

of the algorithm. Given a tree structure and subproblem sizes, random matrices

Ht, ct, Vt,Wt, t = 1, . . . , T with specified density and distribution of singular values

or eigenvalues were generated. This is done by calling Matlab’s random matrix gen-

erators. The entries are normally distributed and the desired density is achieved by

120
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performing random plane or Jacobi rotations. Each stochastic right hand side h(ωt)

is calculated from two component, the expected value h̄t and a random perturba-

tion vector vt, both of which have normally distributed entries. The set of stochastic

right hand sides are given by h(ωt) ∈ {h̄t, h̄t ± vt, h̄t ± 2vt, h̄t ± 3vt}. The stochastic

right hand sides are temporally independent, so each sibling in the same stage has

the same set of descendents. Normally distributed random lower and upper bounds

are also generated for each variable.

6.1.2 Linesearch Strategy and Trust Region Method

Function evaluations, especially for early stage problems, are very expensive in Al-

gorithm 4.3 as each function evaluation involves solving a branch of the scenario tree

to optimality. A linesearch routine that takes advantage of the piecewise quadratic

nature of the objective and the structure of MQSPs is essential to an efficient imple-

mentation. A one dimensional piecewise quadratic model is used in the linesearch

in the numerical experiments. A step of one is always tested first. Once the optimal

step has been bounded, either by the unit step or by extrapolation, the one dimen-

sional quadratic functions and their tangents at the two end points are constructed.

The tangents provide piecewise linear lower bounds on the objective function. The

next trial step is chosen from the two minima of the two quadratic pieces and the

intersections of the quadratics, if they lie within the two end points. The function

values at the candidate points are predicted using the quadratic functions and are

considered valid if they lie above the piecewise linear lower bound. The point with

the lowest valid function value prediction is chosen as the next step. If all of the

trial points are invalid, then the midpoint between the two endpoints is used instead

(See Figures 6.1 and 6.2).

Let q̂(ρ) ≡ q(x + ρd) denote a quadratic function that is active at x + ρd for

some ρ ≥ 0. Then q̂′(ρ) = ∇q(x + ρd)Td. For 0 ≤ ρL < ρR with q̂′(ρL) < 0 and

q̂′(ρR) > 0, let the convex piecewise linear function

f(ρ) ≡ max

(
q̂(ρL) + (ρ− ρL)q̂

′(ρL),
q̂(ρR) + (ρ− ρR)q̂

′(ρR)

)
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be the piecewise linear lower approximation of f defined at x + ρLd and x + ρRd.

Denote by f
0
= minρL≤ρ≤ρR

f(ρ), the minimum of the piecewise linear lower bound.

The linesearch is terminated when sufficient function value decrease (4.13) is

achieved or if the current function value is very close to the minimum f
0
of the

current linear lower bound f(ρ).

Given parameters c1 > 1, 0 < c2, c3 < 1, 0 < σ < 1
2
, maximum feasible step ρmax

and required function value decrease v, the linesearch algorithm can be stated as

Algorithm 6.1

Step 0. Let qL(x) be a quadratic function active at ρ = 0. Initialize ρ = 1, l = 1.

While l < maximum iteration count

Step 1. Calculate f(ρ) = q(ρ), g(ρ) = ∇q(ρ) and G(ρ) = ∇2q(ρ).

Step 2. If gTd > 0 or f > f(x), set ρR = ρ, qR = q.

Else, set ρL = ρ, qL = q.

Step 3. If f ≤ f(x) + σρv, set ρL = ρ, qL = q, stop.

Step 4. If ρR is undefined (Extrapolation)

If ρ = ρmax, Set ρL = ρR = ρ, qL(x) = qR(x) = q. Stop.

Set l = l + 1, ρ = min(c1ρ, ρmax).

Step 5. Else (Interpolation)

If min (q̂(ρL), q̂(ρR))− f
0
≤ c3f 0

, stop.

Set l = l + 1.

Let ρ̄1 and ρ̄2 correspond to the minima of qL and qR

and ρ̄3 and ρ̄4 correspond to the intersections of qL and qR.

Calculate qL(ρ̄1), qR(ρ̄2), qL(ρ̄3) and qL(ρ̄4)

Choose ρ̄ corresponding to the minimum qp(ρ̄k) such that

ρL + c2 ≤ ρ̄k ≤ ρR − c2 and qp(ρ̄k) ≥ f(ρ),

where p = R if k = 2, otherwise, p = L.

If no such ρ̄ exists, set ρ = 1
2
(ρL + ρR).
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Figure 6.1: Linesearch example 1
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Figure 6.2: Linesearch example 2

Figures 6.1 and 6.2 give two examples of the linesearch. In the first example,

the unit step is too large, therefore the new quadratic piece at ρ = 1 is identified as

qR. One intersection of qL and qR, and the minimum of qR lie in (ρL, ρR) and have

predicted function values above the linear lower bound (the dotted lines). Since

the minimum of qR has a lower predicted value, it is used as the next trial step.

After calculating the function value at the new trial step, the new point is found to

have negative slope and satisfies the sufficient function value decrease condition, so

the new quadratic piece becomes the new qL and the linesearch terminates. In the

second example, both the minima of qL and qR are below the linear lower bound. So
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the intersection of qL and qR that lies between ρL = 0 and ρR = 1 becomes the next

trial step. However, the second trial point is still too high and the new quadratic

piece is identified as qR. The third trial point is given by the intersection of qL and

qR and is the exact minimum of the line.

The value of the parameters used in the linesearch routine are c1 = 5, c2 = 0.01,

c3 = 0.1 and σ = 0.01. As each function evaluation is very expensive, the maximum

number of iteration in the linesearch routine is limited to 5. If the linesearch fails

to find sufficient function decrease, then ρL = 0 and ρR > 0. As discussed in the

proof of Theorem 5.5, in this case, the subgradient generated at ρR is significantly

different from those already in the set leading to a better descent direction.

Recent research in nonmonotone linesearch techniques [44, 120] suggests that

they may be beneficial in decreasing the number of function evaluations and cputime

usage.

Trust Region Method

A trust region method is also used in conjunction with linesearch when implementing

Algorithm 4.3. The trust region radius tries to approximate the size of the current

quadratic piece. This is to prevent the algorithm from taking steps that are too large

and so that the function is poorly approximated by the current quadratic piece.

From (5.8), the predicted function value decrease is

�̃f = 1
2
(di)TBidi + ui.

and the true function value decrease is

�f = f(xi + ρidi)− f(xi).

Calculate the ratio

r =
�f

�̃f
.

Let trr denotes the current trust region radius, 0 < mintrr < maxtrr are given

minimum and maximum allowable values. The following segment of MATLAB [80]

code shows how trr is commonly updated in the literature
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r = df/fpred;

if r < c1

trr = max(trr/5, mintrr);

elseif r > c2

trr = min(maxtrr, trr*2);

end

where 0 < c1 < c2 < 1 are given parameters. Typical values are c1 = 0.25 and

c2 = 0.75. The problem in the numerical experiments may not be well scaled, so

the variables may have vastly different order of magnitude. To compensate for the

possible differences in scale of different variables, each variable has its own trust

region radius. The above updating scheme is modified to allow trr to be a vector

if the same size as the variable giving

Algorithm 6.2

r = df/fpred;

if r < c1

trr = max(trr/5, mintrr);

elseif r > c2

index = find(abs(d)./trr) >= c5;

trr(index) = trr(index) * 2;

end

We introduce the parameter c5 ∈ [0, 1] to control individual trust region radius.

If c5 = 1 then only trust region radii that were active in the last direction finding

problem are increased. If c5 = 0, then all trust region radii are updated uniformly.

Results from preliminary numerical experiments show that using the above trust

region updating scheme, the algorithm often still produces very poor search direc-

tions that require several interpolation steps in the linesearch and therefore are very

expensive in terms of function evaluations.

Algorithm 4.3 is an active set method. Solving a subproblem to optimality

requires identifying the right active set in the current problem and the correct set of
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active quadratic pieces in the piecewise quadratic objective, which are in turn given

by the appropriate active sets in descendent problems. Since all QP subproblems

are solved by an active set solver, they can be sped up significantly if good starting

points and active sets are provided. As we have seen in Section 3.3, changes of

pieces in the piecewise quadratic objective involves constraints changing from active

to inactive. This suggest that pieces close to each other should have similar active

sets. Suppose the current point is xi and denote the sequence of trial points tested

by the linesearch routine as {xi,0, xi,1, . . .} with xi,0 = xi. If a step much larger than

the size of the quadratic piece at xi is used, then all the descendent subproblems are

likely to have very different active sets when they are solved with right hand side xi,1.

Using the previous optimal solutions and active sets with xi,0 probably would not

speed up the solution time by much as the starting points may not even be feasible

anymore. Therefore, the function evaluation at xi,1 is much more expensive than at

a point closer to xi,0. Moreover, the quadratic piece at xi,0 is possibly a very poor

approximation to the objective at xi,1 if the step is much larger than the distance

between xi,0 and the boundary of its associated quadratic piece. Linesearch may

have to reduce the step by a significant amount, leading to another very expensive

function evaluation since the new point xi,2 is far away from xi,1 and so is likely

to have very different active sets in the descendent problems. On the other hand,

if the trust region radius is too small, the algorithm will take more small steps.

However, these steps are likely to be relatively cheap since the descendent problems

are expected to have similar active sets as in the previous function evaluation.

Since small steps involves few active set changes and should be cheap, we prefer a

trust region updating scheme that is more sensitive to poor function approximation.

Instead of increasing trr for any r > c2, trr is only increased if r is reasonably

close to one and is decreased if r is much bigger than one.

Given 0 < c1 < c2 < 1 < c3 < c4 and 0 ≤ c5 ≤ 1. Let the step ρ returned by

linesearch algorithm 6.1 be step. The trust region radius is updated by

Algorithm 6.3

step1 = max(step, 0.1);
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trrold = trr;

r = df/fpred;

if r < c1

trr = trr*max(r,0.1)*0.5;

trr = min(trr, norm(d,inf)*step1*0.5);

elseif (r > c2) & (r < c3)

index = find(abs(d)./trr >= c5);

trr(index) = trr(index)*5;

trr = min(maxtrr, trr);

elseif r > c4

trr = min(trr, norm(d,inf)) *step1*0.8;

else

trr = min(step1*max(1,abs(d)*1.5), trr);

end

trr = max([trr trrold/50 mintrr]);

When the actual function value decrease is very small compared to the predicted

decrease, trr is reduced by a factor depending on r and the new trr satisfies trr

≤ 1
2
max(ρ, 0.1)‖d‖∞. For c1 ≤ r ≤ c2 or c3 ≤ r ≤ c4, trr is updated so that

it has approximately the same magnitude as the last d. A comparison of the two

different trust region updating schemes with different parameters will be presented

in Section 6.2.1.

6.1.3 Presolve Strategies and other Speedup Schemes

When Algorithm 4.3 is applied to (1.12)–(1.13), each subproblem is initially solved

without any recourse information. The decisions generated are myopic and maybe

infeasible with respect to subsequent stages. Solving the expected value problem

first to produce good starting point and possibly preliminary cuts is a commonly

used strategy to speed up the solution process. Morton [87] generalized this ap-

proach by considering a few representative subproblems from each node to obtain
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a good starting point. Valid feasibility and optimality cuts are generated by using

a dual sharing formula. Both these strategies are explored in the numerical exper-

iments. The solution process is divided into two phases. In the first phase, either

the expected value problem or a smaller version of the original problem is solved.

The expected value problem is obtained by replacing the stochastic variables in each

stage by their expected values. The resulting problem is a multistage deterministic

problem. Alternatively, a small set of representative nodes from the original tree can

be used to give a more balanced approximation to the stochastic variables. One way

to obtain the set is by first sorting the stochastic right hand sides by some heuristic.

From each node that is contained in the small presolve tree, a small number of sam-

ples, say two, that are reasonably well spread and are in some sense typical of other

siblings, are chosen. In the numerical experiments, if the number of siblings is less

than four, then only the one closest to the expected value is chosen. For nodes with

more descendents, siblings on either side of the one closest to the expected value are

used. This is shown in Figure 6.3 as nodes marked with ’P2’.

P2

P1
P2

P1
P2

P1
P2

P2

P2

P2

P1

Figure 6.3: Presolve tree
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There are two ways the expected value tree and the small representative tree can

be solved. Since each subproblem in the experiment is very small and the number

of nodes in the presolve tree is bounded by a small multiple of the number of stages,

the equivalent QP problem (1.14) is not very large and can be solved efficiently using

interior point methods. The solution can be used as starting point to the original

problem. This has the advantage of not producing any feasibility cuts which are

often generated in the early stages of Algorithm 4.3 when the iterates tend to be

more extreme. Since the solution from an interior point solver is in general not as

accurate as that from an active set method and does not provide any active set

information, while Algorithm 4.3 is an recursive active method and can be sped

up by accurate active set estimate, it is advantageous if the interior point solution

is first converted to an active set solution before being used as starting point in

Algorithm 4.3. Many recent papers are devoted to extending results from LP and

general nonlinear problems with good properties to general problems. See [31,71,127]

and references therein for more discussion.

Alternatively, the presolve problems can be solved by Algorithm 4.3. This pro-

vides approximate recourse functions, accurate starting point and active set esti-

mate. The trust region radii will also be better tuned to the current quadratic

piece. If there are more than one sibling at a stage in the presolve tree, only nodes

marked with ‘P1’ in Figure 6.3 are solved in the first few iterations. This avoids

solving too many branches while the iterates are still far away from the solution.

The algorithm switches to the full presolve tree only when the optimality condition

is below a prespecified tolerance.

If a subproblem repeatedly fails to find a solution feasible with respect to its

descendents, it and its immediate descendents are aggregated to a large QP similar

to (1.14). Either a feasible solution is found or a feasibility cut is created for the

ancestor stage using information from the combined problem. This strategy has

also been implemented in [11] in a nested Benders decomposition scheme. They

solved subtrees with progressively more stages until a feasible solution is found thus

avoiding using feasibility cuts altogether.
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6.1.4 Optimality Condition Verification

Algorithm 4.3 stops when ‖d‖ ≤ ε for some prespecified tolerance ε > 0. This

requires solving a convex QP (4.14) to confirm the current x is optimal. It is also

possible to check optimality by explicitly calculating the dual variables to the active

constraints and subgradients of active pieces. Consider the problem

min
λ,µ

1
2

∥∥∥∥∥∥
∑

j∈J(xi)

λjg
i
j + ĀTµ

∥∥∥∥∥∥
2

s.t.
∑

j∈J(xi)

λj = 1 (6.1)

λ, µI ≥ 0

where Ā ∈ R
m̄×n is the set of active constraints, µ is the corresponding vector of

multipliers, and the subscript I indicate the inequality constraints. This is a con-

strained linear least square problem with m̄ + |J | variables. Since the number of

active constraints and active pieces is expected to be smaller than the number of

variables, (6.1) is smaller than (4.14). Its special structure also means that (6.1) is

much easier to solve than (4.14) which is a general convex QP. For the majority of

problems, the number of iterations for each subproblem is only significant (approx-

imately 5) in the first one or two stage one iterations and is usually 1 or 2 towards

the end. This makes using (6.1) more competitive for problems that require few

iterations per subproblem.

The special structure of (6.1) also makes it more numerically stable than (4.14).

This is especially important if the subproblems are convex but not strictly convex.

In this case, B in (4.14) is made positive definite by adding a small multiple of an

identity matrix to an element of the generalized Hessian if it is singular, so B is

likely to be badly-conditioned. As the subdifferential of each recourse function is

given by the dual variables of its descendents problems, it is of vital importance

that the dual variables are calculated as accurately as possible. Therefore, in our

implementation, (6.1) is used. Algorithm 4.3 needs to be modified by moving Step

5 to before Step 4. The optimality test

If ‖dkt
t ‖ ≤ ε
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is replaced by

If

∥∥∥∥∥∥
∑

j∈J(xkt
t )

λkt
t,jg

kt
t,j + W̄ kt

t µkt
t

∥∥∥∥∥∥ ≤ ε

where λkt
t and µkt

t are the solution to (6.1) in the (t, kt) subproblem.

6.1.5 Degeneracy

As we have seen in Section 3.2.1, the presence of a degenerate quadratic piece may

lead to false convergence. However, it should be clear that it is a rare occurrence. To

show that a quadratic piece qj(x) is indeed active at x ∈ R
n, it is necessary to have

n linearly independent directions d such that qj(x+ d) = f(x+ d). Without loss of

generality, we can use the basis vectors {±δei, i = 1, . . . n} for some small positive

δ. Clearly, this is very expensive and impractical as it involves many function

evaluations. This test is not carried out in the numerical experiments. To minimize

the possibility of degenerate piece causing premature convergence and to reduce

storage, not all quadratic pieces are kept. Each time a subproblem is resolved with

a new right hand side, only a few (three in the numerical experiments) quadratic

pieces with the lowest function values from previous iteration are kept. These are

used to give a rough linear lower bound. Since all inactive pieces are used to produce

the linear lower bound, this value can be used to check against the optimal value. If

the difference is small, then we can be confident that the solution obtained is indeed

optimal.

6.2 Numerical Results

Algorithm 4.3 is applied to random data generated as described in Section 6.1.1 for

problems with 3, 4 and 5 stages. The root node has 3, 5 or 7 branches and each

node in later stages has 3 or 5 branches. The 4-stage tree in Figure 6.3 with 5

branches at the root node and 3 descendents for each stage 2 and 3 node is denoted

as a 5 × 3 × 3 tree. Each nodal subproblem has 50 variables, 2 equality and 8

inequality constraints plus lower and upper bound on each variable. The density
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of the matrices Ht and Wt are set to 40% and Vt is 20% dense. The eigenvalues

of Ht are in the range [0, 10], the singular values of Wt lie in [−10, 10]. The tests

are performed for the case where all Ht are positive definite and then repeated with

each Ht having 10 zero eigenvalues.

The stochastic right hand sides are generated in the order of h̄ − 3v, h̄ − 2v,

h̄− v, h̄, h̄+ v, h̄+ 2v, h̄+ 3v. We compare the effect of solving the siblings in this

order and also sorting them so that they are solved in increasing distance from the

expected value, ie. h̄, h̄ + v, h̄− v, h̄ + 2v, h̄ − 2v, h̄ + 3v, h̄− 3v. We also compare

the performance of Algorithm 4.3 when different presolve strategies are used. The

strategies are identified by the following keys:

ES: expected value problem solved by Algorithm 4.3; stochastic RHS sorted;

EL: expected value problem solved by an interior point method; RHS sorted;

PS: small presolve tree solved by Algorithm 4.3; RHS sorted;

PL: small presolve tree solved by an interior point method; RHS sorted;

NS: no presolve phase; RHS sorted;

NN: no presolve phase; RHS not sorted;

The large scale equivalent QP (1.14) is also generated for comparison. It is solved

using the interior point solver SPSOLQP of Ye [130] and the corresponding active

set solutions are then calculated whenever possible. Table 6.1 gives the size and

characteristics of the equivalent QP.

6.2.1 Trust Region Radius Updating

The two trust region radius updating schemes 6.2 and 6.3 are tested with different

parameters to establish appropriate values for the numerical experiments. The test

was performed on a 4 stage 5× 3× 3 tree. The values of the parameters are given

in Table 6.2. The results are given in Figure 6.4 and 6.5 for problems with strictly

convex and convex subproblems respectively. The graphs plot the geometric mean

of the cputime used to solve a set of 20 random problems. The geometric mean of
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Table 6.1: Size of equivalent deterministic QP (1.14)
# Stages 3

Tree 3 × 3 5 × 3 7 × 3

# nodes (1 3 9) 13 (1 5 15) 21 (1 7 21) 29

large QP size 130 × 650 210 × 1050 290 × 1450

# entries in A 3800 6200 8600

Density of A .045 .028 .020

# Stages 4

Tree 3 × 3 × 3 5 × 3 × 3 7 × 3 × 3 7 × 5 × 3

# nodes (1 3 9 27) 40 (1 5 15 45) 66 (1 7 21 63) 92 (1 7 35 105) 148

large QP size 400 × 2000 660 × 3300 920 × 4600 1480 × 7400

# entries in A 11900 19700 27500 44300

Density of A .015 .0090 6.5e-3 4.0e-3

# Stages 5

Tree 3 × 3 × 3 × 3 5 × 3 × 3 × 3 7 × 3 × 3 × 3 7 × 5 × 3 × 3

# nodes (1 3 9 27 81) 121 (1 5 15 45 135) 201 (1 7 21 63 189) 281 (1 7 35 105 315) 463

large QP size 1210 × 6050 2010 × 10050 2810 × 14050 4630 × 23150

# entries in A 36200 60200 84200 138800

Density of A 4.9e-3 3.0e-3 2.1e-3 1.3e-3

Algorithm 6.2 Algorithm 6.3

parameters P1 P2 M1 M2 T1 T2

c1 0.25 0.25 0.5 0.5 0.7 0.7

c2 0.75 0.75 0.8 0.8 0.95 0.95

c3 Inf Inf 1.2 1.2 1.05 1.05

c4 Inf Inf 1.5 1.5 1.3 1.3

c5 0.8 0 0.8 0 0.8 0

Table 6.2: Trust region method parameters



6.2. Numerical Results 134

  P1 P2 M1 M2 T1 T2   
0

10

20

30

40

50

60

70

80

ES

PS

EL

PL

IPM

trust region updating scheme

cp
ut

im
e 

(s
)

cputime for a 4 stage 5 x 3 x 3 tree using different trust region updating schemes

Figure 6.4: Cputime vs trust region schemes: Strictly convex random subproblems
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a random vector x ∈ R
n is given by(

n∏
i=1

xi

)(1/n)

.

The geometric mean is a more robust measure of the average as it is less sensitive to

outliers in the data. For strictly convex problems, there is no significant difference

in performance when parameters c1 to c4 are changed. Relaxing c5 from 0.8 to 0

has decreased cputime slightly, corresponding to increasing the trust region radii of

all variables instead of only those which are almost active in the search direction

problem. When the subproblems are only convex, a similar pattern holds if the

presolve phase was performed by an interior point method. However, when the

presolve problem was solved by Algorithm 4.3, the difference in the different trust

region updating schemes becomes much more prominent. Scheme ‘T’ is clearly

far more efficient than ‘M’ which is in turn faster than ‘P’. This shows that a

trust region updating scheme that is more sensitive to poor function approximation

is much more efficient. The difference in behaviour between the strictly convex

and not strictly convex problems is probably because when the objective is strictly

convex, subproblem solutions are more likely to be determined by the curvature

information and are less dependent on the trust region radii. When the presolve tree

is solved by Algorithm 4.3, the iterates need to move between different quadratic

pieces to reach the solution. A trust region updating scheme that is sensitive to poor

function approximation can reduce the chance of the iterates going to regions that

are poorly approximated by the current quadratic function which generally lead to

more function evaluations that are likely to be expensive. In the second phase, the

iterate is already in a neighbourhood not too far from the solution and therefore

it requires fewer changes in quadratic pieces and the trust region radii plays a less

important role than in the presolve phase.

Based on these results, we decided to use the updating scheme ‘T’ in the following

numerical experiments. Although setting c5 to be 0 performs better overall than

using c5 = 0.8, for the most difficult problems, using c5 = 0.8 proves to be far more

efficient. Therefore, as a compromise, parameter c5 is set to be 0.5.
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6.2.2 A Small Numerical Example

We begin our numerical experiments by running Algorithm 4.3 on a small example.

It is a two stage stochastic quadratic program taken from Louveaux [72]. The

problem is

min
x∈R2

2x1 + 3x2 +Q(x)

s.t. 3x1 + 2x2 ≤ 15

x1 + 2x2 ≤ 8

x1, x2 ≥ 0

where Q(x) = Eξ[Q(x, ξ)] and

Q(x, ξ) = min
y∈R2

1
2
y21 + y1y2 + 1

2
y22 − 6.5y1 − 7y2

s.t. y1 ≤ x1

y2 ≤ x2

y1 ≤ h1(ξ)

y2 ≤ h2(ξ)

y1, y2 ≥ 0.

The stochastic variables h1 and h2 are independent. The stochastic variable h1 can

take on the values {2, 4, 6} each with probability 1/3 and h2 can take on the values

{1, 3, 5} also with equal probability.

The problem was solved without preprocessing (strategy NN) since it is so small.

Algorithm 4.3 took 17 iterations in the first stage and 5.32 cpu second to reach

optimality. The first stage solution obtained is (2.49964, 1.00000) with objective

value −8.58333 with 5 quadratic pieces active at the solution. The relative error in

the optimal value is 5.8e−08. The number of iterations taken is quite large, because

the first stage objective is linear and all recourse Hessian are zero matrices, so

convergence is solely enforced by the subgradient cutting planes. This example shows

that Algorithm 4.3 can handle problems with both linear and quadratic objectives.
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6.2.3 Random Data with Strictly Convex Subproblems

The performance of Algorithm 4.3 is first tested on problem (1.12)–(1.13) with

strictly convex subproblems. Tables 6.3 to 6.5 summarize the results of the numerical

experiments. We report the average number of iterations for the root node problem,

cputime, the total number of times any one of the nodes in each stage are solved (for

example, if the five stage 2 nodes are solved 5, 3, 4, 2 and 5 times respectively, then

the total number we report is 19) and the number of feasibility cuts created for each

node. Note that as control is returned to the parent node as soon as an infeasible

node is detected, the total number of times nodes are solved may not be a multiple

of the number of nodes. However, nodes in the same stage always have the same

number of cuts because cuts are shared within a stage. The number of iterations in

the second column of DL and PL include only the iteration used in Algorithm 4.3

but not those used in the interior point solver. The cputime tabulated are the

minimum, geometric mean and the maximum over 20 randomly generated problems.

The average cputime required per node is also calculated. Since the numerical

experiments were performed with MATLAB, the cputime is not comparable to a

Fortran or C implementation. As an indication, the first stage problem of PLTEXP

(see Section 6.2.5) is a QP of size 62×126 with no equality constraint. The sparsity

pattern of the constraint matrix and the Hessian is given in Figure 6.6. With no

active set estimate and using the zero vector, which is feasible, as a starting point,

the active set method QP routine used in our numerical experiments took 5.9 cpu

second. For the same problem, SPSOLQP [130], which is an interior point method

written also in Matlab, took 1.2 cpu second while LOQO [122], which is an interior

point code written in C, took 0.025 cpu second.

To give an indication of the accuracy of Algorithm 4.3, the first stage optimal

solution x1 and function value f1 are compared to x̄1 and f̄1 obtained in the large

scale problem. The relative errors reported are εx = ‖x1 − x̄1‖/‖x̄1‖ and εf =

|f1 − f̄1|/|f̄1|. If a presolve phase is also used, then εf under the presolve column

gives the difference between the optimal value of the presolve problem and the full

problem. That is εf = |fpresolve − ffull|/|ffull|. The optimality norm of the root
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Figure 6.6: Sparsity pattern of problem PLTEXP

node problem is εL = ‖g1 − W T
1 λ1‖. The median and maximum are tabulated.

The large scale deterministic equivalent (1.14) is solved by the interior point solver

SPSOLQP for comparison. The interior point solution is converted to an active set

solution whenever possible. However, as the problem size increases, this becomes

increasingly difficult. To give an indication of the accuracy of the interior point

solution, the maximum infeasibility is calculated. It is defined as

δ = max


 Ax− b

b1 −A1x

0


 . (6.2)

The equality constraints are A1x = b1. The median and maximum of δ are tabulated.

The cputime shown in the IPM column includes only time spent in the interior point

solver, not in the conversion to an active set solution.

For problems with only three branches at the root node, the expected value

problem and the small presolve tree are identical. Therefore only the expected

value problem is used in the presolve phase, strategies PS and PL are not used.

Figures 6.7 to 6.9 plot the geometric mean of the cputime versus the size of the

deterministic equivalent QP (1.14) for problems with 3, 4 and 5 stages respectively.

Time spent in the presolve phase is shown as dotted lines, while the total time is

shown as solid lines. Figure 6.10 shows the geometric mean of the total cputime for

all problem sizes.

The numerical results show that having a presolve stage significantly improves

the performance of Algorithm 4.3, and the saving becomes much more prominent

as the number of branches and number of stages increase. Due to the extremely
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small size of the expected value problem, an interior point method can solve it

much more quickly than Algorithm 4.3 and strategy DL is clearly the most effective

solution scheme. Using a small scenario tree in PS and PL yielded more information

about the original problem, this is confirmed by the smaller differences between the

function values of the presolve problems and the full problems. However, strategies

PS and PL did not lead to any reduction in total cputime.

For strategies with a presolve phase, all feasibility cuts are generated in the first

phase. The reason is that in the presolve phase, iterates need to move between many

pieces before reaching the solution region. The larger change in iterates make them

much more likely to produce infeasible descendent problems. Solving the determin-

istic equivalent of the presolve problem has eliminated the need for feasibility cuts

completely in these experiments.

As the number of stages increases, the cputime required per node increases, be-

cause subtrees need to be solved many more times as the level of recursion increases.

On the other hand, cputime per node decreases as the number of branches increases

due to economy of scale. The first time the first subproblem in each stage is solved

is the most expensive while other subproblems and subsequent iterations can take

advantage of good starting points and active set information.

The expected value problems with the same number of stages and different num-

ber of branches are identical due to the way the stochastic right hand sides are

generated. However, Algorithm 4.3 performs differently on them. This is because

when feasibility cuts are generated, all stochastic right hand sides are included in

the calculation which leads to some differences in the cuts returned.

Sorting stochastic right hand sides in increasing distance from the expected value

has led to an increase in cputime. This is probably because right hand sides far away

from the expected value are more likely to lead to infeasible subproblems. By solving

them first, the necessary feasibility cuts are identified earlier. This is confirmed by

the fact that strategy NS on average creates more feasibility cuts than NN.

The accuracy of Algorithm 4.3 is very high. If the interior point solution can

be converted to an active set solution, then the relative errors in function values
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and solution points of all subproblems are very close to the machine error (2e-16).

For the other problems, the relative error is of the same order of magnitude as the

maximum infeasibility of the interior point solution.

As all variables in the experimental data have lower and upper bounds, the lin-

early independence constraint qualification may not be satisfied for all subproblems.

It is possible for active constraint gradients to be linearly dependent leading to

nonsmooth objective in ancestor problem.

Due to the large size of the deterministic equivalent (1.14). The interior point

solver was unable to solve the 5 stages 7× 5× 3× 3 problem.
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E S E L P S P L N S N N IPM

Expected Total IPM Total Presolve Total IPM Total

(incl. expected) (incl. IPM) (incl. presolve) (incl. IPM)

6.2 9.2 29.9 3.0 0.0 0.0 0.0 0.0 6.5 5.9 31.1

0.9/ 4.6/ 22.5 2.3/ 7.9/ 26.2 2.6/ 3.0/ 3.5 4.2/ 5.9/ 8.2 0.0/ 0.0/ 0.0 0.0/ 0.0/ 0.0 0.0/ 0.0/ 0.0 0.0/ 0.0/ 0.0 2.4/ 13.3/ 70.4 3.0/ 13.7/ 47.8 11.5/ 13.2/ 16.6

1.95 0.69 1.00 0.46 0.00 0.00 0.00 0.00 1.32 1.26 1.02

(1 1 1) 3 (1 3 9) 13 (1 1 1) 3 (1 3 9) 13 (1 1 1) 3 (1 3 9) 13 (1 1 1) 3 (1 3 9) 13 (1 3 9) 13 (1 3 9) 13

1 7 24 2 16 71 1 9 43 0 0 0 0 0 0 0 0 0 1 19 160 1 18 150

0.2 1.4 0.2 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 1.5 0.3 1.6

2.15e-15 2.20e-15 0.00e+00 0.00e+00 2.66e-15 2.20e-15

5.62e-15 6.05e-15 0.00e+00 0.00e+00 1.28e-14 8.24e-15

2.5e-02 8.25e-16 2.5e-02 6.89e-16 0.0e+00 0.00e+00 0.00e+00 9.23e-16 7.83e-16 median(δ)

2.9e-01 3.86e-15 2.9e-01 4.27e-15 0.0e+00 0.00e+00 0.00e+00 4.00e-15 4.41e-15 2.8e-14

5.30e-14 5.31e-14 0.00e+00 0.00e+00 4.23e-14 6.05e-14 max(δ)

4.19e-13 3.01e-13 0.00e+00 0.00e+00 2.21e-13 2.15e-13 7.2e-14

6.5 10.1 29.9 3.5 11.2 14.0 30.3 2.8 6.3 6.2 31.2

0.9/ 4.7/ 27.4 3.4/ 10.0/ 32.8 2.6/ 3.0/ 3.5 5.0/ 7.8/ 13.3 1.8/ 6.5/ 31.8 5.0/ 11.3/ 37.4 4.6/ 5.3/ 6.6 7.9/ 10.1/ 14.2 4.2/ 19.3/ 89.2 4.8/ 19.6/ 54.6 19.2/ 21.0/ 24.6

2.04 0.54 1.00 0.38 1.63 0.60 1.06 0.49 1.15 1.11 1.00

(1 1 1) 3 (1 5 15) 21 (1 1 1) 3 (1 5 15) 21 (1 2 2) 5 (1 5 15) 21 (1 2 2) 5 (1 5 15) 21 (1 5 15) 21 (1 5 15) 21

1 7 23 2 25 107 1 18 77 2 18 38 3 32 109 1 14 72 1 32 241 1 31 233

0.2 1.3 0.2 1.3 0.0 0.0 0.1 1.1 0.1 1.1 0.0 0.0 0.3 1.4 0.3 1.4

2.29e-15 2.60e-15 2.50e-15 2.52e-15 2.63e-15 2.65e-15

7.79e-07 7.79e-07 7.79e-07 7.79e-07 7.79e-07 7.79e-07

3.0e-02 9.59e-16 3.0e-02 8.34e-16 5.9e-03 9.01e-16 5.9e-03 9.10e-16 9.31e-16 7.86e-16 median(δ)

3.3e-01 3.48e-08 3.3e-01 3.48e-08 2.2e-01 3.48e-08 2.2e-01 3.48e-08 3.48e-08 3.48e-08 3.0e-14

5.07e-14 7.11e-14 3.96e-14 4.60e-14 4.49e-14 4.46e-14 max(δ)

2.14e-13 2.03e-13 2.88e-13 1.70e-13 3.05e-13 1.21e-13 2.9e-06

6.5 10.3 29.9 3.7 10.8 13.9 30.3 3.0 6.5 6.6 31.8

0.9/ 4.7/ 22.9 4.2/ 12.2/ 30.8 2.6/ 3.0/ 3.5 5.9/ 9.8/ 17.1 1.8/ 6.4/ 27.2 5.8/ 12.8/ 34.8 4.6/ 5.3/ 6.6 8.5/ 11.9/ 16.4 6.0/ 26.4/ 188.4 6.5/ 26.1/ 109.8 26.0/ 29.7/ 34.2

1.99 0.46 1.00 0.35 1.57 0.49 1.06 0.42 1.26 1.10 1.03

(1 1 1) 3 (1 7 21) 29 (1 1 1) 3 (1 7 21) 29 (1 2 2) 5 (1 7 21) 29 (1 2 2) 5 (1 7 21) 29 (1 7 21) 29 (1 7 21) 29

1 7 24 2 34 148 1 26 115 2 18 36 3 39 138 1 21 103 1 46 338 1 46 324

0.2 1.2 0.2 1.2 0.0 0.0 0.1 1.2 0.1 1.2 0.0 0.0 0.3 1.5 0.3 1.4

4.03e-15 3.22e-15 3.45e-15 2.93e-15 3.74e-15 3.49e-15

8.22e-06 8.22e-06 8.22e-06 8.22e-06 8.22e-06 8.22e-06

3.1e-01 3.80e-15 3.1e-01 3.86e-15 6.6e-03 3.60e-15 6.6e-03 3.70e-15 3.60e-15 3.64e-15 median(δ)

3.3e-01 1.64e-07 3.3e-01 1.64e-07 2.3e-01 1.64e-07 2.3e-01 1.64e-07 1.64e-07 1.64e-07 4.3e-14

4.59e-14 5.65e-14 4.31e-14 4.80e-14 4.70e-14 4.55e-14 max(δ)

3.60e-10 3.60e-10 3.60e-10 3.60e-10 3.60e-10 3.60e-10 9.2e-06

Table 6.3: Numerical results for 3 stage tree with strictly convex subproblems
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E S E L P S P L N S N N IPM

Expected Total IPM Total Presolve Total IPM Total

(incl. expected) (incl. IPM) (incl. presolve) (incl. IPM)

6.2 9.3 30.2 3.1 0.0 0.0 0.0 0.0 6.6 6.2 32.1

3.0/ 11.4/ 55.4 12.5/ 25.8/ 65.4 3.9/ 4.5/ 5.2 11.4/ 15.5/ 27.8 0.0/ 0.0/ 0.0 0.0/ 0.0/ 0.0 0.0/ 0.0/ 0.0 0.0/ 0.0/ 0.0 19.3/ 68.5/ 286.0 24.2/ 67.6/ 211.4 39.8/ 45.5/ 66.1

3.62 0.69 1.14 0.40 0.00 0.00 0.00 0.00 2.14 1.97 1.14

(1 1 1 1) 4 (1 3 9 27) 40 (1 1 1 1) 4 (1 3 9 27) 40 (1 1 1 1) 4 (1 3 9 27) 40 (1 1 1 1) 4 (1 3 9 27) 40 (1 3 9 27) 40 (1 3 9 27) 40

1 7 24 52 2 16 71 234 1 9 43 157 0 0 0 0 0 0 0 0 0 0 0 0 1 20 168 904 1 19 155 825

0.2 1.6 1.9 0.2 1.6 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 1.8 2.0 0.3 1.5 1.9

3.78e-07 3.78e-07 0.00e+00 0.00e+00 3.78e-07 3.78e-07

1.49e-05 1.49e-05 0.00e+00 0.00e+00 1.49e-05 1.49e-05

1.6e-02 5.28e-09 2.1e-01 5.28e-09 0.0e+00 0.00e+00 0.0e+00 0.00e+00 5.28e-09 5.28e-09 median(δ)

1.6e-02 3.51e-07 2.1e-01 3.51e-07 0.0e+00 0.00e+00 0.0e+00 0.00e+00 3.51e-07 3.51e-07 5.2e-06

6.03e-14 5.14e-14 0.00e+00 0.00e+00 7.48e-14 1.02e-13 max(δ)

8.83e-13 8.53e-13 0.00e+00 0.00e+00 5.56e-13 4.68e-13 3.4e-05

6.2 9.8 30.2 3.6 9.5 12.3 30.6 2.8 6.3 6.3 32.2

3.1/ 11.2/ 35.4 21.1/ 33.8/ 53.0 4.0/ 4.5/ 5.2 14.3/ 23.2/ 36.6 4.8/ 13.9/ 44.1 18.4/ 34.7/ 63.9 7.2/ 8.4/ 9.6 17.5/ 28.8/ 51.0 31.2/ 97.6/ 399.1 35.9/ 97.7/ 317.3 67.0/ 77.1/ 114.0

3.38 0.53 1.14 0.36 2.35 0.55 1.20 0.45 1.86 1.74 1.18

(1 1 1 1) 4 (1 5 15 45) 66 (1 1 1 1) 4 (1 5 15 45) 66 (1 2 2 2) 7 (1 5 15 45) 66 (1 2 2 2) 7 (1 5 15 45) 66 (1 5 15 45) 66 (1 5 15 45) 66

1 7 23 50 2 25 105 348 1 18 78 272 2 15 35 64 3 30 106 331 1 14 70 279 1 32 258 1336 1 32 245 1269

0.2 1.4 2.0 0.2 1.4 2.0 0.0 0.0 0.0 0.1 1.4 1.8 0.1 1.4 1.8 0.0 0.0 0.0 0.3 1.6 2.1 0.3 1.4 1.9

4.78e-06 4.78e-06 4.78e-06 4.78e-06 4.78e-06 4.78e-06

2.50e-05 2.50e-05 2.50e-05 2.50e-05 2.50e-05 2.50e-05

2.0e-02 3.66e-08 2.0e-02 3.66e-08 7.8e-03 3.66e-08 7.8e-03 3.66e-08 3.66e-08 3.66e-08 median(δ)

2.1e-01 1.26e-06 2.1e-01 1.26e-06 2.1e-01 1.26e-06 2.1e-01 1.26e-06 1.26e-06 1.26e-06 6.0e-06

7.07e-14 8.61e-14 6.26e-14 6.23e-14 4.50e-14 7.29e-14 max(δ)

4.00e-13 3.54e-13 3.46e-13 6.65e-13 4.89e-13 3.34e-13 3.6e-05

6.2 10.1 30.2 3.8 11.4 14.6 30.6 2.9 6.5 6.5 32.5

3.1/ 11.6/ 38.1 26.2/ 43.2/ 68.8 3.9/ 4.5/ 5.2 17.1/ 31.2/ 54.8 4.8/ 14.2/ 46.6 21.9/ 44.3/ 168.6 7.2/ 8.4/ 9.6 22.2/ 36.1/ 63.1 38.4/ 132.2/ 750.9 44.5/ 127.8/ 388.6 96.4/ 108.8/ 162.0

3.57 0.49 1.14 0.35 2.43 0.53 1.20 0.41 1.91 1.65 1.19

(1 1 1 1) 4 (1 7 21 63) 92 (1 1 1 1) 4 (1 7 21 63) 92 (1 2 2 2) 4 (1 7 21 63) 92 (1 2 2 2) 4 (1 7 21 63) 92 (1 7 21 63) 92 (1 7 21 63) 92

1 7 24 53 2 33 145 482 1 27 115 398 2 19 38 67 3 42 155 505 1 20 98 384 1 47 361 1881 1 46 346 1759

0.2 1.4 2.0 0.2 1.4 2.0 0.0 0.0 0.0 0.2 1.4 1.8 0.2 1.4 1.8 0.0 0.0 0.0 0.3 1.8 2.1 0.3 1.5 1.5

4.87e-06 4.87e-06 4.87e-06 4.87e-06 4.87e-06 4.87e-06

3.13e-05 3.13e-05 3.13e-05 3.13e-05 3.13e-05 3.13e-05

2.1e-02 4.52e-08 2.1e-02 4.52e-08 8.3e-03 4.52e-08 8.3e-03 4.52e-08 4.52e-08 4.52e-08 median(δ)

2.1e-01 4.43e-07 2.1e-01 4.43e-07 2.1e-01 4.43e-07 2.1e-01 4.43e-07 4.43e-07 4.43e-07 9.6e-06

6.11e-14 6.20e-14 6.93e-14 6.14e-14 5.59e-14 7.00e-14 max(δ)

7.62e-13 6.81e-13 2.67e-09 2.67e-09 4.39e-12 4.40e-12 4.3e-05

6.2 10.2 30.2 4.0 9.2 12.5 30.9 3.0 6.7 6.7 33.0

3.1/ 11.6/ 38.0 38.9/ 63.0/ 97.0 4.0/ 4.5/ 5.2 22.9/ 48.4/ 81.7 7.4/ 22.1/ 99.6 36.9/ 68.0/ 167.7 11.7/ 13.4/ 15.4 32.1/ 58.6/ 95.0 71.9/ 201.0/ 666.3 76.1/ 209.4/ 687.4 160.5/ 177.2/ 310.4

3.64 0.44 1.14 0.34 2.46 0.49 1.22 0.41 1.72 1.71 1.21

(1 1 1 1) 4 (1 7 35 105) 148 (1 1 1 1) 4 (1 7 35 105) 148 (1 2 4 4) 11 (1 7 35 105) 148 (1 2 4 4) 11 (1 7 35 105) 148 (1 7 35 105) 148 (1 7 35 105) 148

1 7 25 55 2 35 251 854 1 28 213 740 2 15 73 109 3 39 266 804 1 21 180 683 1 48 637 3086 1 48 628 3057

0.2 1.2 1.9 0.2 1.2 1.9 0.0 0.0 0.0 0.2 1.4 1.8 0.2 1.4 1.8 0.0 0.0 0.0 0.3 1.6 1.7 0.3 1.6 1.4

2.40e-06 2.40e-06 2.40e-06 2.40e-06 2.40e-06 2.40e-06

1.16e-05 1.16e-05 1.16e-05 1.16e-05 1.16e-05 1.16e-05

2.2e-02 9.45e-08 2.2e-02 9.45e-08 6.9e-03 9.45e-08 6.9e-03 9.45e-08 9.45e-08 9.45e-08 median(δ)

2.8e-01 1.92e-06 2.8e-01 1.92e-06 1.3e-01 1.92e-06 1.3e-01 1.92e-06 1.92e-06 1.92e-06 3.2e-05

4.73e-14 6.48e-14 5.73e-14 6.77e-14 4.82e-14 4.82e-14 max(δ)

5.09e-10 5.09e-10 3.16e-13 6.59e-13 5.66e-10 5.66e-10 1.5e-04

Table 6.4: Numerical results for 3 stage tree with strictly convex subproblems
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E S E L P S P L IPM

Expected Total IPM Total Presolve Total IPM Total

(incl. expected) (incl. IPM) (incl. presolve) (incl. IPM)

6.1 9.2 30.4 3.0 0.0 0.0 0.0 0.0 33.0

5.9/ 23.6/ 80.2 48.2/ 75.4/ 146.7 5.4/ 6.1/ 7.1 29.1/ 44.5/ 104.4 0.0/ 0.0/ 0.0 0.0/ 0.0/ 0.0 0.0/ 0.0/ 0.0 0.0/ 0.0/ 0.0 131.5/ 149.0/ 195.3

5.75 0.65 1.23 0.39 0.00 0.00 0.00 0.00 1.24

(1 1 1 1 1) 5 (1 3 9 27 81) 121 (1 1 1 1 1) 5 (1 3 9 27 81) 121 (1 1 1 1 1) 5 (1 3 9 27 81) 121 (1 1 1 1 1) 5 (1 3 9 27 81) 121

1 7 23 55 98 2 16 68 234 711 1 9 42 160 527 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.2 1.6 2.1 2.4 0.2 1.6 2.1 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.03e-06 4.03e-06 0.00e+00 0.00e+00

3.29e-05 3.29e-05 0.00e+00 0.00e+00

1.5e-02 4.29e-08 1.5e-02 4.29e-08 0.0e+00 0.00e+00 0.0e+00 0.00e+00 median(δ)

1.5e-01 8.42e-07 1.5e-01 8.42e-07 0.0e+00 0.00e+00 0.0e+00 0.00e+00 2.5e-05

1.16e-13 8.57e-14 0.00e+00 0.00e+00 max(δ)

4.78e-13 6.72e-13 0.00e+00 0.00e+00 1.1e-04

6.2 10.1 30.4 3.8 9.4 12.5 30.9 3.0 33.5

5.9/ 23.5/ 68.4 64.8/ 105.9/ 207.9 5.3/ 6.1/ 7.1 41.9/ 73.4/ 166.1 9.8/ 27.3/ 117.9 64.4/ 103.8/ 185.5 10.2/ 11.9/ 13.9 43.9/ 90.3/ 330.7 230.8/ 260.0/ 354.9

5.59 0.55 1.23 0.39 3.71 0.53 1.32 0.51 1.30

(1 1 1 1 1) 5 (1 5 15 45 135) 201 (1 1 1 1 1) 5 (1 5 15 45 135) 201 (1 2 2 2 2) 9 (1 5 15 45 135) 201 (1 2 2 2 2) 9 (1 5 15 45 135) 201

1 7 23 53 96 2 26 109 374 1153 1 19 83 300 961 2 15 35 68 117 3 31 110 349 1023 1 15 73 300 1062

0.2 1.4 2.2 2.5 0.2 1.4 2.2 2.5 0.0 0.0 0.0 0.0 0.1 1.4 2.1 2.4 0.1 1.4 2.1 2.4 0.0 0.0 0.0 0.0

3.47e-06 3.47e-06 3.47e-06 3.47e-06

2.76e-05 2.76e-05 2.76e-05 2.76e-05

1.7e-02 2.91e-07 1.7e-02 2.91e-07 1.1e-02 2.91e-07 1.1e-02 2.91e-07 median(δ)

1.8e-01 7.84e-07 1.8e-01 7.84e-07 1.3e-01 7.84e-07 1.3e-01 7.84e-07 7.7e-05

1.13e-13 6.88e-14 6.94e-14 7.35e-14 max(δ)

1.34e-10 1.34e-10 3.92e-13 6.92e-13 2.2e-04

6.2 9.9 30.4 3.7 11.4 14.7 30.9 3.1 33.9

6.0/ 23.6/ 68.5 80.3/ 135.3/ 256.9 5.4/ 6.2/ 7.1 58.5/ 101.3/ 205.6 9.9/ 27.1/ 73.3 97.3/ 135.4/ 470.5 10.2/ 11.9/ 14.0 60.3/ 118.7/ 367.2 340.5/ 370.5/ 448.6

5.64 0.50 1.23 0.38 3.51 0.52 1.32 0.47 1.32

(1 1 1 1 1) 5 (1 7 21 63 189) 281 (1 1 1 1 1) 5 (1 7 21 63 189) 281 (1 2 2 2 2) 9 (1 7 21 63 189) 281 (1 2 2 2 2) 9 (1 7 21 63 189) 281

1 7 23 54 97 2 33 144 495 1521 1 26 115 410 1298 2 19 38 69 107 3 43 159 511 1516 1 22 103 409 1408

0.2 1.4 2.2 2.4 0.2 1.4 2.2 2.4 0.0 0.0 0.0 0.0 0.2 1.4 2.0 2.4 0.2 1.4 2.0 2.4 0.0 0.0 0.0 0.0

2.78e-06 2.78e-06 2.78e-06 2.78e-06

3.56e-05 3.56e-05 3.56e-05 3.56e-05

1.7e-02 3.44e-07 1.7e-02 3.44e-07 1.2e-02 3.44e-07 1.2e-02 3.44e-07 median(δ)

1.8e-01 3.15e-06 1.8e-01 3.15e-06 1.3e-01 3.15e-06 1.3e-01 3.15e-06 1.5e-04

4.63e-14 6.08e-14 9.93e-14 1.05e-13 max(δ)

5.80e-13 5.38e-13 3.77e-10 3.77e-10 3.7e-04

6.2 10.2 0.0 4.0 9.2 12.7 0.0 3.1 0.0

6.1/ 23.6/ 65.1 127.5/ 214.4/ 460.0 5.6/ 6.4/ 7.4 91.0/ 173.9/ 412.7 16.9/ 38.8/ 139.2 141.7/ 220.3/ 430.3 18.6/ 21.6/ 25.5 121.8/ 211.7/ 471.0 0.0/ 0.0/ 0.0

5.77 0.48 1.29 0.40 3.16 0.50 1.45 0.48 0.00

(1 1 1 1 1) 5 (1 7 35 105 315) 463 (1 1 1 1 1) 5 (1 7 35 105 315) 463 (1 2 4 4 4) 15 (1 7 35 105 315) 463 (1 2 4 4 4) 15 (1 7 35 105 315) 463

1 7 23 55 98 2 35 249 856 2655 1 28 214 743 2340 2 15 75 116 166 3 39 274 844 2508 1 22 186 720 2440

0.2 1.2 1.9 2.4 0.2 1.2 1.9 2.4 0.0 0.0 0.0 0.0 0.2 1.4 1.9 2.3 0.2 1.4 1.9 2.3 0.0 0.0 0.0 0.0

NaN NaN NaN NaN

NaN NaN NaN NaN

1.9e-02 NaN 1.9e-02 NaN 9.1e-03 NaN 9.1e-03 NaN median(δ)

2.1e-01 NaN 2.1e-01 NaN 1.6e-01 NaN 1.6e-01 NaN NaN

7.33e-14 6.82e-14 9.90e-14 8.75e-14 max(δ)

4.08e-10 4.08e-10 3.09e-10 4.08e-10 NaN

Table 6.5: Numerical results for 3 stage tree with strictly convex subproblems
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6.2.4 Random Data with Convex Subproblems

In many applications, a significant proportion of the variables only appear linearly

in the objective. The Hessian matrix has a number of zero rows and columns and is

only positive semi-definite. The numerical experiments have been repeated for the

case where each Hessian matrix is positive semi-definite with 10 zero eigenvalues. To

distinguish this from problems with strictly convex objective, we sometimes refer to

this class of problems as singular convex problems. Since a presolve phase is shown

to reduce the amount of cputime required significantly, we do not test strategies NS

and NN in this section. Tables 6.6 to 6.8 summarize the results. The relative error

in x is not calculated since convex problems with singular Hessians do not in general

have unique solutions. Figure 6.11 to 6.13 plot the geometric mean of cputime spent

in problems with 3, 4 and 5 stages and Figure 6.14 plots the cputime taken for all

problems tested.

The most obvious difference between solving strictly convex subproblems and

singular convex subproblems is the increase in cputime. This is due to several fac-

tors. When the subproblems are convex but not strictly convex, the solutions are

more dependent on the constraints and bounds. This makes it more likely to have

more combinations of active sets and an increased number of quadratic pieces. Since

Algorithm 4.3 is a recursive active set method, this leads to an increase in the num-

ber of iterations. The number of feasibility cuts also increased as the iterates are

more likely to be at extreme points of the feasible regions making descendents prob-

lems more likely to be infeasible. The linear independence constraint qualification

is also more likely to be violated, therefore recourse functions may become nondif-

ferentiable. The loss of differentiability can lead to significant increase in cputime.

Lastly, singular convex QPs require more time to solve than strictly convex QPs.

The amount of cputime used by the interior point solver also increased for problems

which are not strictly convex, but the difference is much smaller.

Comparing the different presolve strategies, it is clear that using an interior point

solver to solve the presolve problem is much more efficient than using Algorithm 4.3.

It also eliminates almost entirely the need for feasibility cuts except for two random
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problems. For the 3 stage problems, solving the deterministic equivalent of the

expected value problem in the presolve phase is the most efficient solution strategy.

The same is true for the 4 and 5 stages problems with few branches. However, as the

number of branches increases, solving a small presolve tree becomes more efficient

overall as it provides a better starting point for the full problem.

One 5 stage random problem with tree structure 7× 3× 3× 3 and 7× 5× 3× 3

required more than 10 times more cputime to solve the full problem than the next

slowest problem when the expected value solution is used as starting point. The

same problem presolved with a small tree (PS and PL) required only a tiny fraction

of the cputime used by DS and DL. This illustrates the sensitivity of active set

methods to initial solutions and the advantage of using a small presolve tree which

looks at a more balanced subset of the stochastic parameters and hence returns a

better starting point.
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E S E L P S P L IPM

Expected Total IPM Total Presolve Total IPM Total

(incl. expected) (incl. IPM) (incl. presolve) (incl. IPM)

14.8 18.8 30.9 3.8 0.0 0.0 0.0 0.0 31.9

8.4/ 17.7/ 50.7 12.3/ 23.0/ 59.5 2.8/ 3.3/ 4.7 4.9/ 8.3/ 14.2 0.0/ 0.0/ 0.0 0.0/ 0.0/ 0.0 0.0/ 0.0/ 0.0 0.0/ 0.0/ 0.0 12.1/ 13.5/ 16.6

6.53 1.90 1.10 0.66 0.00 0.00 0.00 0.00 1.04

(1 1 1) 3 (1 3 9) 13 (1 1 1) 3 (1 3 9) 13 (1 1 1) 3 (1 3 9) 13 (1 1 1) 3 (1 3 9) 13

1 17 78 2 29 152 1 12 69 0 0 0 0 0 0 0 0 0

0.5 2.0 0.5 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.1e-03 1.69e-15 4.1e-03 9.55e-16 0.0e+00 0.00e+00 0.0e+00 0.00e+00 median(δ)

7.5e-02 1.94e-09 7.5e-02 1.94e-09 0.0e+00 0.00e+00 0.0e+00 0.00e+00 5.2e-14

7.45e-14 4.72e-14 0.00e+00 0.00e+00 max(δ)

5.26e-13 2.90e-13 0.00e+00 0.00e+00 4.4e-07

14.2 18.3 30.9 4.0 22.8 26.6 31.1 3.2 32.5

8.5/ 17.0/ 46.6 13.3/ 25.2/ 60.2 2.8/ 3.3/ 4.7 5.6/ 11.0/ 19.1 10.1/ 22.5/ 46.6 15.4/ 30.1/ 61.7 4.9/ 5.9/ 9.5 8.9/ 13.8/ 26.4 20.6/ 22.3/ 28.5

6.30 1.28 1.10 0.55 4.90 1.54 1.21 0.68 1.06

(1 1 1) 3 (1 5 15) 21 (1 1 1) 3 (1 5 15) 21 (1 2 2) 5 (1 5 15) 21 (1 2 2) 5 (1 5 15) 21

1 17 74 2 38 194 1 21 115 2 41 108 3 61 219 1 17 103

0.5 1.9 0.5 1.9 0.0 0.0 0.6 1.8 0.6 1.8 0.0 0.0

5.2e-03 1.72e-09 5.2e-03 1.72e-09 2.5e-03 1.72e-09 2.5e-03 1.72e-09 median(δ)

1.0e-01 5.68e-08 1.0e-01 5.68e-08 4.5e-02 5.68e-08 4.5e-02 5.68e-08 9.0e-07

4.25e-14 4.95e-14 4.18e-14 5.19e-14 max(δ)

2.13e-13 1.39e-13 1.55e-13 1.18e-11 6.4e-06

13.9 18.1 30.9 4.2 20.2 24.1 31.1 3.5 32.7

8.2/ 16.9/ 34.8 15.4/ 27.9/ 48.5 2.8/ 3.3/ 4.7 6.7/ 13.9/ 29.0 10.0/ 21.8/ 41.6 16.2/ 32.0/ 58.9 5.0/ 5.9/ 9.5 9.9/ 16.4/ 35.8 27.4/ 30.8/ 35.6

6.13 1.01 1.10 0.51 4.64 1.16 1.21 0.59 1.06

(1 1 1) 3 (1 7 21) 29 (1 1 1) 3 (1 7 21) 29 (1 2 2) 5 (1 7 21) 29 (1 2 2) 5 (1 7 21) 29

1 16 72 2 46 236 1 30 160 2 36 100 3 65 255 1 26 143

0.5 1.9 0.5 1.9 0.0 0.0 0.6 1.8 0.6 1.8 0.0 0.0

5.3e-03 7.86e-09 5.3e-03 7.86e-09 2.8e-03 7.86e-09 2.8e-03 7.86e-09 median(δ)

1.1e-01 3.33e-07 1.1e-01 3.33e-07 4.5e-02 3.33e-07 4.5e-02 3.33e-07 1.5e-06

4.41e-14 4.54e-14 4.87e-14 5.67e-14 max(δ)

1.14e-13 2.37e-13 7.57e-13 2.84e-13 1.3e-05

Table 6.6: Numerical results for 3 stage tree with convex subproblems
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Figure 6.11: Cputime vs number of variables: 3 stage tree, convex subproblems
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E S E L P S P L IPM

Expected Total IPM Total Presolve Total IPM Total

(incl. expected) (incl. IPM) (incl. presolve) (incl. IPM)

13.9 18.1 30.8 4.0 0.0 0.0 0.0 0.0 33.0

18.8/ 49.9/ 283.7 34.6/ 78.8/ 318.1 4.1/ 5.4/ 8.2 15.2/ 30.5/ 59.6 0.0/ 0.0/ 0.0 0.0/ 0.0/ 0.0 0.0/ 0.0/ 0.0 0.0/ 0.0/ 0.0 40.0/ 48.2/ 74.2

16.37 2.34 1.39 0.83 0.00 0.00 0.00 0.00 1.21

(1 1 1 1) 4 (1 3 9 27) 40 (1 1 1 1) 4 (1 3 9 27) 40 (1 1 1 1) 4 (1 3 9 27) 40 (1 1 1 1) 4 (1 3 9 27) 40

1 16 69 258 2 29 151 606 1 13 79 336 0 0 0 0 0 0 0 0 0 0 0 0

0.6 1.9 2.5 0.6 1.9 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.1e-02 1.18e-08 1.1e-02 1.18e-08 0.0e+00 0.00e+00 0.0e+00 0.00e+00 median(δ)

1.2e-00 9.40e-08 1.2e-00 9.40e-08 0.0e+00 0.00e+00 0.0e+00 0.00e+00 3.7e-06

9.59e-14 5.13e-14 0.00e+00 0.00e+00 max(δ)

2.28e-12 6.58e-13 0.00e+00 0.00e+00 2.1e-05

13.3 17.9 30.8 4.3 15.8 19.4 31.4 3.4 33.5

18.9/ 49.0/ 282.9 46.6/ 96.3/ 329.8 4.1/ 5.4/ 8.1 20.1/ 46.9/ 119.5 28.8/ 59.3/ 262.7 55.3/ 100.2/ 346.6 7.8/ 10.1/ 16.5 26.6/ 51.6/ 116.9 74.2/ 82.4/ 116.4

15.77 1.67 1.39 0.79 10.76 1.74 1.48 0.87 1.26

(1 1 1 1) 4 (1 5 15 45) 66 (1 1 1 1) 4 (1 5 15 45) 66 (1 2 2 2) 7 (1 5 15 45) 66 (1 2 2 2) 7 (1 5 15 45) 66

1 15 67 252 2 38 204 837 1 23 134 574 2 26 91 300 3 45 202 783 1 18 114 538

0.5 1.8 2.5 0.5 1.8 2.5 0.0 0.0 0.0 0.6 1.7 2.9 0.6 1.7 2.9 0.0 0.0 0.0

1.3e-02 4.87e-08 1.3e-02 4.87e-08 8.9e-03 4.87e-08 8.9e-03 4.87e-08 median(δ)

1.2e+00 2.03e-06 1.2e+00 2.03e-06 6.6e-01 2.03e-06 6.6e-01 2.03e-06 9.9e-06

6.81e-14 7.29e-14 9.12e-14 6.48e-14 max(δ)

5.98e-13 4.47e-13 6.31e-13 4.45e-13 4.3e-05

13.7 18.4 30.8 4.5 15.8 19.6 31.4 3.2 34.4

18.8/ 48.4/ 284.2 55.3/ 115.3/ 355.3 4.1/ 5.4/ 8.1 24.2/ 63.7/ 175.6 28.7/ 58.3/ 263.2 62.5/ 113.0/ 363.3 7.8/ 10.1/ 16.5 30.9/ 62.8/ 141.4 103.3/ 119.3/ 184.9

15.61 1.42 1.39 0.79 10.46 1.38 1.48 0.75 1.31

(1 1 1 1) 4 (1 7 21 63) 92 (1 1 1 1) 4 (1 7 21 63) 92 (1 2 2 2) 4 (1 7 21 63) 92 (1 2 2 2) 4 (1 7 21 63) 92

1 15 64 249 2 50 263 1100 1 34 195 832 2 26 87 286 3 53 241 943 1 24 149 682

0.6 1.8 2.5 0.6 1.8 2.5 0.0 0.0 0.0 0.6 1.8 2.8 0.6 1.8 2.8 0.0 0.0 0.0

1.3e-02 3.48e-08 1.3e-02 3.48e-08 9.2e-03 3.48e-08 9.2e-03 3.48e-08 median(δ)

1.2e+00 2.63e-06 1.2e+00 2.63e-06 6.7e-01 2.63e-06 6.7e-01 2.63e-06 6.9e-06

7.72e-14 1.11e-13 9.95e-14 8.43e-14 max(δ)

4.91e-13 4.79e-13 5.52e-13 6.50e-13 4.0e-05

13.7 18.6 30.8 4.5 16.1 20.2 31.6 3.4 34.7

20.5/ 47.6/ 249.7 89.7/ 159.1/ 349.5 4.1/ 5.5/ 8.2 38.0/ 97.5/ 267.3 38.9/ 94.8/ 295.7 82.9/ 189.4/ 471.3 12.6/ 14.4/ 20.0 49.5/ 94.8/ 230.5 169.7/ 203.3/ 354.8

14.87 1.19 1.40 0.74 11.03 1.45 1.32 0.70 1.39

(1 1 1 1) 4 (1 7 35 105) 148 (1 1 1 1) 4 (1 7 35 105) 148 (1 2 4 4) 11 (1 7 35 105) 148 (1 2 4 4) 11 (1 7 35 105) 148

1 15 65 239 2 51 444 1824 1 33 348 1447 2 28 228 523 3 57 532 1793 1 24 246 1131

0.6 1.6 2.5 0.6 1.6 2.5 0.0 0.0 0.0 0.6 1.9 3.0 0.6 1.9 3.0 0.0 0.0 0.0

1.5e-02 9.97e-08 1.5e-02 9.97e-08 6.9e-03 9.97e-08 6.9e-03 9.97e-08 median(δ)

1.1e+00 7.98e-06 1.1e+00 7.98e-06 2.4e-01 7.98e-06 2.4e-01 7.98e-06 1.8e-05

8.36e-14 8.39e-14 1.18e-13 1.12e-13 max(δ)

1.43e-12 7.72e-13 4.57e-13 6.26e-13 5.9e-05

Table 6.7: Numerical results for 4 stage tree with convex subproblems
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Figure 6.12: Cputime vs number of variables: 4 stage tree, convex subproblems
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Iteration
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max
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Iteration

cpu (s)

cpu/node

# Node

Node visited
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εL med
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Iteration

cpu (s)

cpu/node

# Node

Node visited

Cut

εf med

max

εL med

max

E S E L P S P L IPM

Expected Total IPM Total Presolve Total IPM Total

(incl. expected) (incl. IPM) (incl. presolve) (incl. IPM)

13.7 18.1 31.0 4.2 0.0 0.0 0.0 0.0 34.9

58.0/ 150.8/ 891.4 131.0/ 279.5/ 973.9 5.9/ 7.1/ 11.4 56.6/ 102.4/ 238.7 0.0/ 0.0/ 0.0 0.0/ 0.0/ 0.0 0.0/ 0.0/ 0.0 0.0/ 0.0/ 0.0 142.9/ 162.9/ 346.3

43.16 2.77 1.47 0.92 0.00 0.00 0.00 0.00 1.37

(1 1 1 1 1) 5 (1 3 9 27 81) 121 (1 1 1 1 1) 5 (1 3 9 27 81) 121 (1 1 1 1 1) 5 (1 3 9 27 81) 121 (1 1 1 1 1) 5 (1 3 9 27 81) 121

1 16 69 241 877 2 30 152 609 2293 1 13 77 335 1262 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.6 1.8 3.0 2.8 0.6 1.8 3.0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9.8e-03 8.30e-08 9.8e-03 8.30e-08 0.0e+00 0.00e+00 0.0e+00 0.00e+00 median(δ)

1.6e-01 4.02e-06 1.6e-01 4.02e-06 0.0e+00 0.00e+00 0.0e+00 0.00e+00 2.9e-05

1.26e-13 8.86e-14 0.00e+00 0.00e+00 max(δ)

3.92e-10 3.92e-10 0.00e+00 0.00e+00 8.8e-05

13.7 18.3 31.0 4.3 18.0 21.9 31.7 3.5 34.6

40.1/ 159.6/ 886.4 168.3/ 368.0/ 1001.1 5.9/ 7.2/ 11.4 79.9/ 168.6/ 605.5 73.0/ 178.7/ 777.5 204.3/ 361.7/ 1111.7 11.0/ 14.1/ 27.7 97.5/ 186.0/ 559.5 244.4/ 277.8/ 346.7

47.04 2.19 1.47 0.96 24.95 2.06 1.63 1.07 1.39

(1 1 1 1 1) 5 (1 5 15 45 135) 201 (1 1 1 1 1) 5 (1 5 15 45 135) 201 (1 2 2 2 2) 9 (1 5 15 45 135) 201 (1 2 2 2 2) 9 (1 5 15 45 135) 201

1 16 72 256 959 2 40 212 893 3407 1 23 134 600 2289 2 31 94 281 893 3 51 221 858 3103 1 18 115 567 2381

0.5 1.8 3.3 2.8 0.5 1.8 3.3 2.8 0.0 0.0 0.0 0.0 0.6 1.7 3.1 3.6 0.6 1.7 3.1 3.6 0.0 0.0 0.0 0.0

1.1e-02 2.86e-07 1.1e-02 2.86e-07 8.3e-03 2.86e-07 8.3e-03 2.86e-07 median(δ)

1.6e-01 1.28e-06 1.6e-01 1.28e-06 1.5e-01 1.28e-06 1.5e-01 1.28e-06 8.4e-05

1.07e-13 1.07e-13 9.01e-14 1.04e-13 max(δ)

5.60e-10 5.60e-10 1.39e-12 1.22e-12 2.7e-04

13.8 18.6 31.0 4.7 19.6 23.5 31.7 3.6 35.4

61.6/ 170.6/ 880.9 206.0/ 512.8/ 9380.5 6.0/ 7.2/ 11.4 121.3/ 278.8/11915.6 60.5/ 177.4/ 824.9 243.2/ 427.7/ 1257.5 11.1/ 14.1/ 27.8 124.8/ 245.6/ 635.6 361.3/ 412.6/ 493.3

48.54 3.38 1.47 2.97 25.16 1.72 1.63 0.98 1.47

(1 1 1 1 1) 5 (1 7 21 63 189) 281 (1 1 1 1 1) 5 (1 7 21 63 189) 281 (1 2 2 2 2) 9 (1 7 21 63 189) 281 (1 2 2 2 2) 9 (1 7 21 63 189) 281

1 17 72 259 989 2 51 278 1336 8093 1 34 204 1111 8285 2 34 92 267 895 3 63 265 1042 3844 1 26 157 746 3037

0.6 1.7 3.4 3.0 0.6 1.7 3.4 3.1 0.0 0.0 0.0 0.0 0.6 1.7 3.2 3.6 0.6 1.7 3.2 3.6 0.0 0.0 0.0 0.0

1.1e-02 2.51e-07 1.1e-02 2.51e-07 8.4e-03 2.51e-07 8.4e-03 2.51e-07 median(δ)

1.6e-01 2.79e-05 1.6e-01 2.79e-05 1.5e-01 2.79e-05 1.5e-01 2.79e-05 9.8e-05

1.74e-13 9.98e-14 1.23e-13 1.79e-13 max(δ)

4.87e-10 4.92e-10 1.38e-10 1.38e-10 2.8e-04

13.8 18.9 0.0 5.0 18.6 22.2 0.0 3.4 0.0

62.0/ 167.1/ 1052.8 346.8/ 733.2/ 9422.7 6.3/ 7.4/ 11.7 202.2/ 477.3/ 9992.6 82.4/ 212.5/ 1031.2 322.9/ 619.4/ 1359.6 20.3/ 25.1/ 44.7 244.7/ 425.2/ 951.4 0.0/ 0.0/ 0.0

46.00 2.49 1.53 2.01 18.60 1.47 1.71 1.00 0.00

(1 1 1 1 1) 5 (1 7 35 105 315) 463 (1 1 1 1 1) 5 (1 7 35 105 315) 463 (1 2 4 4 4) 15 (1 7 35 105 315) 463 (1 2 4 4 4) 15 (1 7 35 105 315) 463

1 17 71 256 939 2 53 465 2150 10938 1 36 383 1891 10667 2 28 181 431 1128 3 55 455 1652 5849 1 25 260 1217 5069

0.6 1.6 3.2 3.4 0.6 1.6 3.2 3.5 0.0 0.0 0.0 0.0 0.6 2.0 3.2 3.0 0.6 2.0 3.2 3.0 0.0 0.0 0.0 0.0

9.9e-03 NaN 9.9e-03 NaN 4.2e-03 NaN 4.2e-03 NaN median(δ)

2.1e-01 NaN 2.1e-01 NaN 3.1e-02 NaN 3.1e-02 NaN 9.8e-05

2.04e-13 1.21e-13 2.27e-13 1.70e-13 max(δ)

1.25e-09 2.01e-10 3.54e-09 3.89e-09 2.8e-04

Table 6.8: Numerical results for 5 stage tree with convex subproblems
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6.2.5 Stochastic Capacity Expansion Model

Due to the popularity of stochastic linear program, there are a number of publicly

available test problems [36, 89, 113–115]. Unfortunately, there are not many test

sets available for quadratic stochastic programming. Algorithm 4.3 is now tested on

a test problem set called PLTEXP [113]1. It is a linear relaxation of a stochastic

capacity expansion problem. The problem is a stochastic linear program extendable

to an arbitrary number of stages and scenarios. The problem was expressed in

standard form where all constraints are equalities. We removed the slack variables

and converted the appropriate equations to inequalities. The original data has two

distinct sets of variables. The first 44 variables in each subproblem have coefficients

in the cost function with order of magnitude 102, while the rest of the variables have

coefficients of the order of 10−3 to 10−2. In the numerical experiment, the second set

of variables are rescaled by multiplying their coefficients by a factor of 103 to bring

the two scales closer. To convert the problem to a multistage quadratic stochastic

program, an artificial Hessian matrix is added to each subproblem. It has an entry

of 10−3 on the diagonal for every variable that has a nonzero coefficient in the cost

function, see Figure 6.6.

The problem set is tested for trees with 2 to 4 stages. The root node has 6

branches and other nodes have either 2 or 6 branches. The first stage problem

has size 62× 126 and each later stage problem has size 104× 197. The size of the

deterministic QP equivalent is shown in Table 6.9. To show the effect of the artificial

Hessian term, we list the value of the optimal function value flp(xlp) of the original

LP, the optimal function value fqp(xqp) of the QP and the function value (flp(xqp))

of the LP using the QP solution. The results are given in Table 6.10 and Figure 6.15.

This problem set has very few optimal bases in the second and subsequent stages

and this is reflected in the very small number of iterations required. Most problems

only require one or two iterations before reaching optimality. This makes solving the

multistage quadratic stochastic program directly without any presolve phase a very

competitive option. Using an interior point solution as a starting point typically

1Available electronically at http://www-personal.umich.edu/˜jrbirge/dholmes/main.html
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Number Tree size of

of Stages Structure deterministic QP flp(xlp) fqp(xqp) flp(xqp)

2 6 686× 1308 -9.47935 -9.47910 -9.47936

16 1726× 3278 -9.66331 -9.66304 -9.66331

3 6× 2 1934× 3672 -13.64323 -13.64286 -13.64323

6× 6 4430× 8400 -13.96937 -13.96898 -13.96937

4 6× 2× 2 4430× 8400 -17.92819 -17.92773 -17.92819

6× 6× 6 26894× 50952 – -19.59884 -19.59941

Table 6.9: Problem sizes of PLTEXP

requires one more iteration than using the solution from Algorithm 4.3. This is

because the solution has many zero Lagrange multipliers making conversion to an

active set solution very difficult, so the starting point is not as accurate as that from

Algorithm 4.3.

There were no feasibility cuts in any problems so they were omitted in Table 6.10.

Similar to the results for the random problems, the cputime required per node in-

creases with the number of stages, but decreases as the number of siblings increases.

The large scale QP equivalent proved difficult for SPSOLQP [130]. The maxi-

mum infeasibility (defined in (6.2)) is up to 9.9e-5 for the 2 and 3 stages problems. In

Table 6.10, we report the cputime used by SPSOLQP but the deterministic equiva-

lent is solved again using LOQO [122] which was far more accurate. The accuracy of

the solution from Algorithm 4.3 is calculated by comparing to the LOQO solution.

The solution times for LOQO were not reported because it is programmed in C

and the cputime is not comparable to Algorithm 4.3 which is written in MATLAB.

The deterministic equivalent of the 6 × 6 and 6× 2 × 2 problems are too large for

SPSOLQP and were solved only by LOQO. The deterministic equivalent of the 4

stage 6× 6× 6 problem was not solved due to memory requirements in forming the

QP.
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εf
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Iteration

cpu (s)

cpu/node

number of Node

Node visited

εf

εL

Iteration

cpu (s)

cpu/node

number of Node

Node visited

εf

εL

E S E L P S P L N S N N IPM

Expected Total IPM Total Presolve Total IPM Total

(incl. expected) (incl. IPM) (incl. presolve) (incl. IPM)

1.0 2.0 19.0 3.0 2.0 3.0 15.0 2.0 1.0 1.0 0.0

22.8 59.9 2.2 87.0 42.1 65.0 10.6 34.8 48.1 47.8 142.9

11.42 8.56 1.10 12.43 14.02 9.29 3.52 4.98 6.87 6.83 20.41

(1 1) 2 (1 6) 7 (1 1) 2 (1 6) 7 (1 2) 3 (1 6) 7 (1 2) 3 (1 6) 7 (1 6) 7 (1 6) 7

1 1 2 7 1 18 2 3 3 9 1 12 1 6 1 6

5.68e-07 5.68e-07 5.68e-07 5.68e-07 5.68e-07 5.68e-07

6.80e-14 3.53e-09 6.80e-14 1.86e-12 6.81e-14 9.70e-14 δ = 9.9e-05

1.0 2.0 18.0 2.0 2.0 3.0 16.0 2.0 1.0 1.0 0.0

24.1 97.3 2.3 67.3 43.4 104.3 21.3 105.9 100.5 107.1 1486.1

12.07 5.72 1.13 3.96 14.45 6.14 7.11 6.23 5.91 6.30 87.42

(1 1) 2 (1 16) 17 (1 1) 2 (1 16) 17 (1 2) 3 (1 16) 17 (1 2) 3 (1 16) 17 (1 16) 17 (1 16) 17

1 1 2 17 1 32 2 4 3 20 1 32 1 16 1 16

1.91e-07 1.91e-07 1.91e-07 1.91e-07 Inf Inf

6.80e-14 7.49e-13 6.81e-14 1.27e-09 6.80e-14 1.79e-11 δ = 3.8e-05

1.0 2.0 20.0 2.0 2.0 3.0 22.0 2.0 1.0 1.0 0.0

55.4 436.7 8.7 471.5 124.7 405.5 26.2 505.3 341.4 332.0 0.0

18.46 22.98 2.90 24.81 24.94 21.34 5.24 26.60 17.97 17.47 0.00

(1 1 1) 3 (1 6 12) 19 (1 1 1) 3 (1 6 12) 19 (1 2 2) 5 (1 6 12) 19 (1 2 2) 5 (1 6 12) 19 (1 6 12) 19 (1 6 12) 19

1 1 1 2 7 15 1 12 26 2 3 3 3 9 15 1 12 28 1 6 12 1 6 12

1.32e-07 1.32e-07 1.32e-07 1.32e-07 1.32e-07 1.32e-07

6.80e-14 6.86e-10 3.33e-13 7.38e-11 3.16e-13 6.80e-14 δ = 0.0e+00

1.0 2.0 20.0 2.0 2.0 3.0 21.0 2.0 1.0 3.0 0.0

76.7 571.1 8.9 500.7 138.2 574.1 62.1 461.0 513.4 1778.1 0.0

25.56 13.28 2.98 11.64 27.64 13.35 12.41 10.72 11.94 41.35 0.00

(1 1 1) 3 (1 6 36) 43 (1 1 1) 3 (1 6 36) 43 (1 2 2) 5 (1 6 36) 43 (1 2 2) 5 (1 6 36) 43 (1 6 36) 43 (1 6 36) 43

1 1 1 2 7 43 1 12 78 2 3 5 3 9 41 1 12 84 1 6 36 1 30 210

1.62e-11 2.36e-11 Inf Inf Inf Inf

2.77e-13 4.44e-09 6.80e-14 1.45e-09 4.06e-13 1.33e-08 δ = 0.0e+00

1.0 2.0 21.0 4.0 2.0 3.0 25.0 2.0 1.0 1.0 0.0

100.8 1420.9 14.4 1581.2 264.7 1502.8 51.5 3228.8 1196.3 1065.0 0.0

25.19 33.04 3.61 36.77 37.82 34.95 7.36 75.09 27.82 24.77 0.00

(1 1 1 1) 4 (1 6 12 24) 43 (1 1 1 1) 4 (1 6 12 24) 43 (1 2 2 2) 7 (1 6 12 24) 43 (1 2 2 2) 7 (1 6 12 24) 43 (1 6 12 24) 43 (1 6 12 24) 43

1 1 1 1 2 7 15 31 1 42 94 190 2 3 3 3 3 9 15 27 1 12 58 120 1 6 12 24 1 6 12 24

6.0e-03 5.62e-12 6.0e-03 1.12e-10 1.9e-02 3.22e-10 1.9e-02 8.79e-11 6.74e-11 2.19e-11

2.19e-13 5.72e-09 6.82e-14 1.57e-10 6.80e-14 6.81e-14 δ = 2.1e-15

1.0 2.0 21.0 2.0 2.0 3.0 25.0 2.0 1.0 1.0 0.0

123.9 3907.7 14.8 3754.5 594.9 3709.8 1080.0 5214.6 4030.4 3605.8 0.0

30.98 15.09 3.69 14.50 84.98 14.32 154.28 20.13 15.56 13.92 0.00

(1 1 1 1) 4 (1 6 36 216) 259 (1 1 1 1) 4 (1 6 36 216) 259 (1 2 2 2) 7 (1 6 36 216) 259 (1 2 2 2) 7 (1 6 36 216) 259 (1 6 36 216) 259 (1 6 36 216) 259

1 1 1 1 2 7 43 259 1 12 78 474 2 3 7 13 3 9 43 235 1 12 84 534 1 6 42 258 1 6 36 216

2.0e-02 NaN 2.0e-02 NaN 7.3e-02 NaN 7.3e-02 NaN NaN NaN

6.81e-14 2.49e-10 6.81e-14 8.33e-12 2.76e-13 3.00e-13 δ = 0.0e+00

Table 6.10: Numerical results for problem PLTEXP: 2 to 4 stages
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6.2.6 Portfolio Management Application

In this section, we test the performance of Algorithm 4.3 on a set of portfolio mange-

ment problems called SGPF. The problem data is due to Frauendorfer [36] 2. It is a

portfolio optimization problems with stochastic parameters in both the linear cost

function and the constraint right hand side. The original problems are stochastic

linear programs with 3 to 6 stages. The magnitude of the variables of the original

data is very large, so they are rescaled to have magnitude of 1 in the numerical

experiments. The problems are converted into multistage quadratic stochastic pro-

grams by adding an artificial Hessian to each subproblem. Each Hessian has a small

positive entry (10−4) on the diagonal for every variable that has a nonzero entry in

the linear cost function. Careful inspection of the problem structure reveals that

many variables are in fact fixed by the equality constraints to be zero. Since all

variables also have lower bounds of zero, this lead to a very large number of linearly

dependent active constraints. Applying Algorithm 4.3 directly to the data proved

to be extremely slow due to the large number of quadratic pieces and boundary

constraints on which the objective is nonsmooth. A lot of the variables in stage

2 and above are also fixed by equality constraints with right hand side given by

ancestor solution and cannot be eliminated easily. However, since all ht ≥ 0 and

all entries in the technology matrices satisfy Vt ≤ 0, the non-negativity constraint

for these variables are clearly redundant and they are eliminated to reduce the pos-

sibility of having linearly dependent active constraints. Table 6.11 gives the size

of each subproblem of the original problems, the size after redundant constraints

and lower bounds are removed and the size of the equivalent large scale QP. The

values of the optimal function value flp(xlp) of the original LP, the optimal function

value fqp(xqp) of the QP and the function value (flp(xqp)) of the LP using the QP

solution are also listed to show the effect of the artificial Hessian term.

The numerical results are given in Table 6.12 and Figure 6.16. The large scale

equivalent of the 4 stage problem was very large and was only solved by LOQO [122].

The QP equivalent of the 5 and 6 stage problem are too large and were not solved

2Available electronically at http://www-personal.umich.edu/˜jrbirge/dholmes/main.html
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in the experiments. Algorithm 4.3 successfully solved the SGPF problems for 3

to 6 stages. The number of iterations is very small for all numbers of stages and

solution strategies. This indicates that the first stage solution is very close to the

solution of the stage one QP problem. The amount of cputime required increases

approximately linearly with the size of the deterministic equivalent. The perfor-

mance of the different solution strategies is mixed. Sorting the stochastic right hand

side only lead to a reduction in cputime in the 3 stage problems. The difference

in optimal function value between the presolve problem and the original problem

for strategies PS and PL are much bigger than when the expected valued problem

was used. These indicate the simple heuristic which only sorts the right hand side

but not the stochastic linear cost function is inadequate for this problem. This also

explains why the presolve trees have much larger differences in function values to

the full problems than the expected value trees and the relatively poor performance

of strategies PS and PL especially for the 5 and 6 stage problem.
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Original Eliminated

number of size of number of size of

Stage size of Wt lower bound deterministic QP size of Wt lower bound deterministic QP flp(xlp) fqp(xqp) flp(xqp)

1 62× 78 78 11× 27 27

2 63× 79 79 17× 33 27

3 63× 79 79 1952× 2448 23× 39 27 671× 1167 -3.027604e+03 -3.027603e+03 -3.027604e+03

4 63× 79 79 9827× 12323 28× 44 27 4171× 6667 -4.031391e+03 -4.031389e+03 -4.031391e+03

5 63× 79 79 49202× 61698 33× 49 27 24796× 37292 – -5.201260e+03 -5.201265e+03

6 63× 79 79 246077× 308573 38× 54 27 143546× 206042 – -6.484472e+03 -6.484479e+03

Table 6.11: Problem sizes of SGPF

Tree

Structure

5
×
5

5
×
5
×

5
5
×

5
×

5
×
5

5
5

Method

Iteration

cpu (s)
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Iteration

cpu (s)
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Iteration

cpu (s)
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number of Node

Node visited
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εf
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Iteration

cpu (s)

mean cpu/node

number of Node

Node visited

Cut

εf

εL

E S E L P S P L N S N N IPM

Expected Total IPM Total Presolve Total IPM Total

(incl. expected) (incl. IPM) (incl. presolve) (incl. IPM)

2.0 3.0 15.0 1.0 2.0 4.0 13.0 3.0 2.0 2.0 27

3.2 10.9 0.4 8.2 2.6 10.8 1.5 13.5 10.6 12.8 5.4

1.08 0.35 0.14 0.26 0.52 0.35 0.29 0.44 0.34 0.41 0.17

(1 1 1) 3 (1 5 25) 31 (1 1 1) 3 (1 5 25) 31 (1 2 2) 5 (1 5 25) 31 (1 2 2) 5 (1 5 25) 31 (1 5 25) 31 (1 5 25) 31

1 2 5 2 7 75 1 5 70 2 3 17 3 13 112 1 15 95 1 10 95 1 10 110

0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.9e-04 4.37e-09 1.9e-04 4.37e-09 1.5e-01 4.37e-09 1.5e-01 5.34e-09 4.37e-09 4.37e-09

4.56e-11 3.25e-11 3.91e-16 6.82e-16 1.62e-10 4.10e-16 δ = 1.3e-09

2.0 4.0 13.0 2.0 2.0 3.0 15.0 1.0 1.0 1.0 0.0

4.6 83.2 0.7 73.5 15.1 59.8 4.4 73.3 73.5 58.8 0.0

1.16 0.53 0.18 0.47 2.16 0.38 0.63 0.47 0.47 0.38 0.00

(1 1 1 1) 4 (1 5 25 125) 156 (1 1 1 1) 4 (1 5 25 125) 156 (1 2 2 2) 7 (1 5 25 125) 156 (1 2 2 2) 7 (1 5 25 125) 156 (1 5 25 125) 156 (1 5 25 125) 156

1 2 3 9 2 12 68 469 1 10 65 435 2 3 17 39 3 8 57 364 1 5 75 495 1 5 70 495 1 5 45 350

0.0 1.0 1.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9.5e-02 1.82e-10 9.5e-02 1.82e-10 2.9e-01 1.82e-10 2.9e-01 2.25e-09 2.25e-09 1.82e-10

7.59e-16 6.25e-16 1.83e-15 1.31e-12 7.28e-16 2.38e-15 δ = 9.6e-13

1.0 2.0 14.0 1.0 4.0 6.0 15.0 1.0 2.0 1.0 0.0

3.8 461.4 1.2 615.7 72.8 780.7 12.7 684.7 836.2 640.7 0.0

0.75 0.59 0.25 0.79 8.09 1.00 1.41 0.88 1.07 0.82 0.00

(1 1 1 1 1) 5 (1 5 25 125 625) 781 (1 1 1 1 1) 5 (1 5 25 125 625) 781 (1 2 2 2 2) 9 (1 5 25 125 625) 781 (1 2 2 2 2) 9 (1 5 25 125 625) 781 (1 5 25 125 625) 781 (1 5 25 125 625) 781

1 1 2 2 2 2 6 47 317 2097 1 5 70 495 3010 2 11 21 59 123 3 21 116 699 3833 1 5 100 630 3620 1 20 155 850 4725 1 5 50 435 2570

0.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.6e-01 NaN 1.6e-01 NaN 4.4e-01 NaN 4.4e-01 NaN NaN NaN

1.67e-15 1.54e-15 9.31e-16 1.36e-12 9.59e-16 5.04e-16 δ = 0.0e+00

1.0 2.0 11.0 1.0 2.0 3.0 18.0 1.0 1.0 1.0 0.0

6.5 5034.2 1.9 5650.4 362.1 10814.7 35.7 8450.4 7249.3 5278.1 0.0

1.09 1.61 0.31 1.81 32.92 3.46 3.24 2.70 2.32 1.69 0.00

(1 1 1 1 1 1) 6 (1 5 25 125 625 3125) 3906 (1 1 1 1 1 1) 6 (1 5 25 125 625 3125) 3906 (1 2 2 2 2 2) 11 (1 5 25 125 625 3125) 3906 (1 2 2 2 2 2) 11 (1 5 25 125 625 3125) 3906 (1 5 25 125 625 3125) 3906 (1 5 25 125 625 3125) 3906

1 1 2 2 2 2 2 6 62 487 3477 19422 1 5 70 560 3545 19330 2 3 5 23 58 115 3 8 120 903 5663 29795 1 5 50 410 3135 17905 1 5 50 425 2585 14335 1 5 25 175 1485 9090

0.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.6e-01 NaN 1.6e-01 NaN 6.2e-01 NaN 6.2e-01 NaN NaN NaN

5.37e-16 7.96e-16 7.12e-15 6.34e-16 1.60e-15 7.73e-16 δ = 0.0e+00

Table 6.12: Numerical results for problem SGPF: 3 to 6 stages
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Chapter 7

Conclusion

Uncertainty is an integral part of planning for the future. Multistage stochastic

programming allows decision makers to use mathematical programming techniques

to design strategies that are ‘optimal’ taking into account a number of possible

future scenarios.

In this thesis, we considered a class of multistage stochastic programs where

each subproblem is a convex quadratic program. Unlike the success of quadratic

programming and stochastic linear programming, there has been relatively little

work on quadratic stochastic programming. We believe this is an important class

of problems as it generalizes stochastic linear program, allowing for some degree

of nonlinearity, while remaining structured enough to be solved efficiently. This is

particularly relevant to the finance industry where the standard risk measure is the

variance. The theory and algorithms developed here are applicable if the convex

quadratic objectives are replaced by piecewise quadratic functions. This exten-

sion has important applications in financial planning as convex piecewise quadratic

functions can serve as very flexible risk measure. This allows investors to design

risk measures and therefore investment portfolios that suit their individual circum-

stances.

Each recourse function of a multistage quadratic stochastic program (1.12)–

(1.13) is a convex piecewise quadratic function. Using results from convex analysis

and sensitivity analysis, we studied the structure of the piecewise quadratic recourse

165
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function. This enabled us to derive expressions for component quadratic functions

which provide elements of subdifferentials and generalized Hessians of the piecewise

quadratic objectives in (1.12)–(1.13).

Generalized Newton methods were investigated for solving problem (1.12)–(1.13).

The algorithms were proven to converge globally. If the piecewise quadratic objective

is strictly convex and differentiable at the solution, the convergence is finite.

Numerical experiments were carried out to test the accuracy and efficiency of

Algorithm 4.3. The results show that the generalized Newton method is a highly

accurate method for solving multistage quadratic stochastic programs. Compari-

son of the different solution strategies show that using the expected value problem

solutions as starting points is a very efficient way to speed up solution time if the

number of scenarios is moderate and they are not too different from each other.

For problems with many diverse scenarios, solving a small representative subset of

them proves to be more efficient by generating a better starting point that takes

into account of the different stochastic outcomes.

The expected value problem and the small presolve tree of a multistage quadratic

stochastic program are much smaller than the original problem. Hence, they can

often be solved as large sparse deterministic problems using standard QP software.

With the capacity of modern sophisticated QP software, especially with interior

point methods which have proven to be very efficient for large sparse problem, this

can be a very fast and reliable option. On the other hand, the multistage quadratic

stochastic program formulation is in general not as smooth as the QP. It is usually

necessary in the early stages of the presolve phase to switch quadratic pieces many

times which may be expensive especially if the number of stages is large. Unlike

the full problem, where Algorithm 4.3 can use siblings’ solutions as starting points

when there are many siblings, there is little comparative advantage over the QP

formulation in the presolve phase. This suggests that solving the deterministic

equivalent may be a faster presolve option if the size of the problem is not too large.

If the equivalent problem is very large and requires too much memory to solve

efficiently, then a combination of the two alternatives, where subproblems across
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a few stages of the multistage quadratic stochastic program are aggregated into a

single QP can be used. This reduces (1.12)–(1.13) to a quadratic stochastic program

with only a few stages. Algorithm 4.3 can then solve it very efficiently.

For multistage quadratic stochastic programs with the same number of stages,

the amount of cputime required by Algorithm 4.3 increases approximately linearly

with the size of the equivalent large scale QP problem. Cputime required per node

increases as the number of stages increases since the level of recursion is increased.

This suggests that it may be more efficient to aggregate problems from two or more

consecutive stages to form larger subproblems and reduce the number of stages.

This can be done most easily in the root node since we do not need to calculate

recourse information, so interior point methods can be used without converting back

to an active set solution.

For multistage quadratic stochastic program, subgradients and generalized Hes-

sians of the recourse functions depend on the active sets of the descendent problems.

This requires each subproblem be solved to optimality in every iteration. This may

not be very efficient when the iterates are still very far from the solution. It may

be possible to relax this requirement by further research. We may be able to use

approximate dual solution to obtain ε-subdifferential information. Second order

information may be obtained by ways similar to the quasi-Newton method. This

would allow the use of an interior point method for solving subproblems which may

be more efficient if each subproblems is large and sparse, for example, when they

are obtained by aggregating subproblems from two or more stages. We can switch

back to using an exact active set solution when the iterate is close to a solution.

One difficulty in combining interior point solvers with Algorithm 4.3 is that

Algorithm 4.3 is a recursive active set method. The starting point from an interior

point solver is usually not as accurate as that of an active set solution and does

not provide any active set information. Algorithm 4.3 may need to perform more

iterations than when an active set solution is used as starting point. Interior point

methods are also less easy to warm start than active set methods, making them

less attractive when a sequence of similar problems needs to be solved. Combining
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interior point algorithm with active set method and warm starting [41] interior

point method are very active research topics. Advances in these areas would allow

Algorithm 4.3 to take advantage of the efficiency of interior point methods for large

sparse subproblems.

Algorithm 4.3 can be used to solve multistage stochastic program where each

problem in (1.12)–(1.13) is a piecewise linear-quadratic program. For this class of

problems to be solved efficiently, we need data structures that can store the data

efficiently and an algorithm that can take advantage of the special structure of

piecewise quadratic program. This will allow more general problems to be solved

such as using piecewise linear-quadratic risk measures to model the risk in different

scenarios.
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