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ABSTRACT 

Condition monitoring of blades within gas turbines has been and will continue to be of 
importance in all areas of their use, for maintenance and reliability purposes. Non-intrusive 
measurement of blade condition is the ambition of most techniques for this endeavour, with a 
number of methods proposed, investigated and employed for such measurement, with the 
current dominant method using proximity probes to measure blade arrival time for subsequent 
processing. It is proposed, however, that the measurement of the casing vibration, due to the 
aerodynamic-structural interaction within a gas turbine, could provide a means of blade 
condition monitoring and modal parameter estimation, without requiring perforation of the 
casing. An analytical model of a gas turbine casing and simulated pressure signal associated 
with the rotating blades, individual blade vibrations and transfer of stator blade vibrations has 
been developed in order to understand the complex relationship between casing response and 
the most important excitation forces. 

Due to the force interaction being through a fluid medium, a certain degree of randomness 
is introduced into the excitations, and the viability of this inherent randomness as a useful aid 
for separation of the contributing excitation forces from the system response is explored. 

1. INTRODUCTION 

Blades within gas turbines operate under high unsteady pressure forces and turbulent pressure 
fluctuations at temperatures often approaching the design limit for metallic crystalline 
structure degradation. It is therefore not surprising that both forced vibration and heat transfer 
efficiency of turbine blades are of major concern in design and operation, and as such have 
been subject to a considerable amount of research study. Reduction of the forced vibration of 
blades is an important design factor to limit the dynamic forces to which the blades are 
subjected during operation. Traditionally, this promoted the use of the Campbell diagram to 
try to arrange design operating conditions such that the blades are not excited at a blade 
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natural frequency. Furthermore the modeling of blade forced structural motion has advanced 
to take into account effects of wake passing, blade tip vortices, with semi-empirical models, 
as well as structural and aerodynamic loadings on blades [1], with further extensions using 
computational methods to calculate blade mode shapes and pressure loadings to better 
estimate the structural and aerodynamic loadings [2]. Having the ability to measure the forced 
vibration of the bladed arrangement during design to verify predicted vibrations is therefore 
advantageous. Under operating conditions the introduction of a fault in a gas turbine blade 
will alter the blade vibration properties and as the blades are under forced vibration, 
measurement of the blade vibration can lead to determination of a blade’s condition. 

This need to measure blade vibration in both design and in operation has led to the 
development of the current dominant method; blade tip timing (BTT) for blade vibration 
measurement in the aero-industry [3, 4]. Measurements are taken using radially mounted 
proximity probes which measure the blade arrival times at different points around the casing 
in order to deduce blade vibration information. BTT methods are currently able to 
satisfactorily measure asynchronous, non-integer multiples of shaft speed, blade vibrations 
such as rotating stall, flutter and compressor surge, however no one single method is able to 
fully characterise the vibration parameters of blades in service [5]. 

An alternative method has been proposed for non-intrusive measurement of blade 
vibrations by means of external accelerometer measurements on the casing of a gas turbine 
[6]. This recent work however only dealt with the deterministic periodic forced blade 
vibrations, as is customary with blade vibration modeling and non-intrusive blade vibration 
measurement methods [1, 2, 7]. This current trend to model only the periodic forced 
responses within gas turbines in blade vibration models is thought to be driven by the fact that 
these periodic forces are usually the most destructive forces within an engine, which can 
cause large deflections and blade failure. It is however well understood that the operating 
conditions inside a gas turbine are highly turbulent, due to a wide variety of influences 
including; but not limited to, ingested turbulence, turbulent boundary layer flow, wake 
interaction, reversed flow and tip vortex flow. Each of these turbulent mechanisms have been 
investigated by numerous authors; (see for example [8-10]), however the motivation for 
understanding the turbulent flow phenomena has mainly been for the heat transfer efficiency 
and the aerodynamic efficiency of the blades through the boundary layer transition or 
separation [11, 12]. It has however been seen in a centrifugal compressor with no periodic 
pressure fluctuations, that the dominant excitation can be from broadband turbulent flow [13]. 

Without turbulence effects, the flow and pressure fluctuations would be purely 
deterministic and periodic, yet when the flow becomes turbulent these periodic pressure 
fluctuations become modulated by a random component. This is conventionally dealt with by 
adding a stationary random excitation component to the periodic forcing term, however it has 
been shown that a random amplitude modulated periodic signal is in fact cyclostationary, and 
displays periodicity in any second order statistic of the signal such as the variance, or 
autocorrelation function. [14]. The two-dimensional Fourier transform of the autocorrelation 
function is called the spectral correlation, and for second order cyclostationary signals is 
discrete in “cyclic frequency” α (Fourier transform with respect to normal time t exhibiting 
periodicity) while continuous in normal frequency f (Fourier transform with respect to time 
lag τ). This periodicity can then be exploited in separating differing signal types, viz; 
periodic, stationary random, and cyclostationary with different cyclic frequencies. This signal 
property has been successfully used in mechanical systems, for instance in the separation of 
bearing and gear faults [15], and is generally described as a signal processing tool for 
mechanical systems in [16]. The effects of cyclostationarity in the forced response of blades 
within turbo-machinery and simulation of the casing response under these operating 
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conditions is explored in the subsequent sections. 

2. FORCES ON CASING AND STATOR/ROTOR BLADES 

The casing of a gas turbine, under test conditions, can be excited by two groups of forces 
[17], viz: (a) forces from the engine and running gear through casing/bearing attachments, (b) 
forces from the aerodynamic/structural interaction within the engine. The second group of 
forces, (b), can then be further broken down into its believed constituents; (i) interaction with 
the rotating pressure profile around each rotor/stator blade, (ii) propagation of acoustic waves 
inside the casing, (iii) pressure fluctuations due to turbulent and impulsive flows. The casing 
response due the steady state forces, (i), have been studied in [6]. As stated earlier, all known 
general blade forced response modelling and BTT techniques for measurement of blade 
response have only focused on the steady state response conditions. The current modelling 
takes into account the forces due to random turbulent flows, (iii), and in fact uses the inherent 
characteristics of these signal types to aid in the separation of the excitation forces. 

 
Figure 1 longitudinal section of 1.5 stage turbine (a), wake interaction between blade rows (b) 

The current model is of a 1.5 stage turbine, with a row of 5 inlet guide vanes, IGV’s, 
followed by a row of 6 rotor blades, with a final row of 5 stator blades. The IGV’s and stator 
blades are also not “clocked”, i.e. they are aligned axially. A longitudinal section of the 
simulated blade rows is shown in Figure 1(a), a transverse sectional view is seen in Figure 2. 

In order to understand how the casing responds under the influence of the simulated 
operating conditions, we first discuss how the pressure profiles around each blade cause the 
casing to undergo forced vibration. In Figure 2, the first harmonic of the pressure field around 
the rotor blades, which rotates at the input shaft speed Ω , is displayed. It is clear that as this 
pressure profile rotates with shaft speed; there will be a fluctuating pressure on the inner 
surface of the casing. An equivalent static pressure field also exists around the stator blades. 
As a rotor blade goes past a stator blade, the pressure potential fields would interact with each 
other and provide a force on each. Along with the pressure potential around the blades, a 
more impulsive pressure fluctuation on the blades is introduced from the wakes behind 
leading blade rows which interact with downstream blade rows, as can be seen in Figure 1(b). 
Unlike the pressure potential effects, the wakes from upstream blades only affect downstream 
blades, whereas the pressure potential effects can affect both up- and downstream blade rows. 
The combination of the passing blade potentials and wake forces, often referred to as the 
pressure unsteadiness, therefore describe the total steady state force loadings on both the 
stator and rotor blades. It can now be seen that if all the blades undergo no deflection the 
response of the casing would be defined by its forced vibration under the effect of the rotating 
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pressure profile around the rotor blades, and the forces transmitted through the stator blades, 
which in the limit would produce a local moment on the inside surface of the casing. This 
assumption of the stator blades remaining stationary will be maintained throughout the 
analysis, this being justified partly due to the fact that few stator blade vibration problems in 
turbo-machinery have been reported [18]. Stator blade vibration could however be included in 
more detailed models. 

 
Figure 2 transverse sectional view of 1.5 stage turbine, s(1)-s(5) stator blade locations, b(1)-

b(6) rotor blade locations 

Now if the rotor blades are free to vibrate during the gas turbine operating cycle, the 
pressure around the rotor blades would vary in phase due to the blades’ motion. Allowing 
each blade to vibrate individually, the rotating pressure field around each blade that acts on 
the casing surface, and the associated pressure profile around the blade following its motion, 
may be expressed mathematically as follows. 

 ( ). .rjb t x t
n rP P e H t H t

b b
θ

r
π πθ α θ α⎡ ⎤−Ω −⎣ ⎦ ⎡ ⎤⎛ ⎞ ⎛= −Ω − + − −Ω −⎜ ⎟ ⎜⎢ ⎥⎝ ⎠ ⎝⎣ ⎦

⎞− ⎟
⎠

 (1) 

where H  is the Heaviside function and ( )r
x t  motion of the ‘rth’ blade. 

The forces on both the rotor and stator blades, downstream of a blade row, have been 
shown to have, in general, a damped impulse shape [10] (obviously this varies widely and is 
dependent on the specific turbine). The forces acting on the blade are therefore modelled as a 
raised cosine with a period of half the blade pass forcing frequency, as illustrated in Figure 3. 
The Fourier series expansion of this force on the ‘rth’ blade can be expressed as: 

 ( ) (01
0

cosi spf rr
i

f t F A i tω γ
∞

=
)⎧ ⎫⎡ ⎤= +⎨ ⎬⎣ ⎦⎩ ⎭

∑  (2) 

 
( ) ( )2 1 1 2roundr

r s r
b b

π
s
πγ

⎛ ⎞− −
= − ⎜ ⎟

⎝ ⎠
 (3) 

 
where Ai are the Fourier coefficients and spfω  is the stator passing frequency. 
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(a) 

(b) 

Figure 3 blade forcing function, purely deterministic (a), with random fluctuations (b) 

Turbo-machinery flow conditions however are inherently turbulent, as stated earlier, with 
background turbulence intensity levels often reported to be approx. 3-4%, and turbulence 
within the wake region often 5 times greater than the background turbulence [8, 11, 19]. It is 
also noted that the frequency content of turbulence within a gas turbine will be somewhat 
band-limited, however in the context of this work the turbulence was assumed to be 
completely broadband. As the turbulence affects the magnitude of the blade pressure profile 
and pressure due to wake forces, this would then give a random amplitude modulation of the 
force on the blades, so the force including the turbulent fluctuations on the ‘rth’ blade can now 
be expressed as (it is to be noted in this study only the effect of random fluctuations on the 
blade motion were considered, and not the random fluctuations on absolute magnitude of the 
pressure on stator blades and casing surface): 

 ( ) ( )( ) (02
0

1 cosi spf rr
i

f t F b t A i tω γ
∞

=
)⎧ ⎫⎡ ⎤= + +⎨ ⎬⎣ ⎦⎩ ⎭

∑  (4) 

where  is a uniformly distributed random variable with zero mean and deviation of 
. 
( )b t

7.5%±
Lastly the force transmitted to the casing through the stator blades, with their dynamic 

motion neglected, can be applied as a discrete moment at the location of the stator blade 
attachment, with the same form as the loading on the rotor blades as given in equation (4), 
however the phase will now be dependent on the rotor blades’ motion such that the resulting 
moment for the ‘pth’ stator blade can be expressed as: 

 ( )( ) ( )0
1 0

1cos
b

p j r pr
r j

T M A j t x t p R
α α δ θ α

∞

= =

⎧ ⎫ ⎛ ⎞⎡ ⎤= Ω − + − −⎨ ⎜ ⎟⎣ ⎦ ⎝ ⎠⎩ ⎭
∑∑ ⎬  (5) 

The turbulence effects can be seen in the above equations to influence the forces causing 
the rotor blade motion; however, they also affect the direct pressures acting on the casing 
through the phase modulation of the rotating pressure field and moment loadings on the 
casing from the stator blades. 
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3. BLADE FORCED VIBRATION SOLUTION 

The force acting on the rotor and stator blades has now been defined in equation (4), with 
terms for both the pressure unsteadiness, the deterministic component; and the turbulence, the 
random component. The blade is assumed to act as a simple oscillator, i.e. a single degree of 
freedom spring-mass-damper system, this has been stated to be an adequate model of the 
blade’s response if only one natural frequency is near the excitation frequencies [7], it has 
also been stated that at most a two degree of freedom system would adequately model the 
blades’ forced vibration at any given operating condition (bending and twisting). All blades 
have been given an arbitrary natural frequency of 500Hz, with no coupling between blades or 
mistuning effects, with light damping of 0.005ζ = , and the blades’ maximum deflection is 
limited to / 2bπ , or one quarter of the blade spacing, at resonance. 

 
Figure 4 single degree of freedom blade model 

The solution for the forced response of the above SDOF system, under a deterministic 
forcing function is easily shown to be: 

 ( ) (
0

cosir spf ir rrd
i

x t X i t )ω φ γ
∞

=

⎡ ⎤= − +⎣ ⎦∑  (6) 

where ibX  and ibφ  are the non-dimensional amplitude and phase for the ‘rth’ rotor blade, and 
can be found in any general vibration text such as [20]. 

The blades’ motion for the deterministic part of ( ) 2r
f t  is now fully defined. However, if 

we now look back at the random component of equation (4), we see that we have an 
amplitude modulated random signal, which is a classic type of cyclostationary signal [14]. It 
is however purely stochastic which makes it relatively straightforward to solve for the blades’ 
response to this signal.  

The normal procedure to solve for the response of a linear time invariant, LTIV, filter to a 
random input is to express the Power Spectral Density, PSD, as: 

 ( ) ( ) ( ) ( )*
yS H H Sxω ω ω= ω  (7) 

 ( ) ( ) ( ){1 *limx WW W
S E X X }Wω ω ω

→∞
=  (8) 

where * is the conjugate operator. 
Now the response of the blade can be seen to be defined for the entire forcing function, 

equation (4). 

4. CASING RESPONSE SOLUTION 

The response of the blade under the specific loading conditions was shown in the previous 
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section, now the casing response under the influence of the forces given in equations (1) and 
(5) can be undertaken. The casing was modelled as an ideal circular ring, with the geometric 
and material properties as given in Table 1. The equations of motion are then solved for the 
circular ring under the given forces to provide a complete analytical closed form simulated 
solution. 

Table 1 Geometric and material properties of ring 

Density 9 27.85 10 /Ns mmρ −= × 4  
Young’s Modulus 4 220.6 10 /E N mm= ×  
Mean Radius 100R mm=  
Radial Thickness 2h mm=  
Damping 0.01ζ =  

4.1 RESPONSE DUE TO ROTATING PRESSURE FIELD 

For both the deterministic and random blade vibrations the solution is undertaken by first 
solving the generalised force vector for the system. The generalised force vector is given as: 

 ( )3
1 .

2nk n k
nk

F P conj U Rd
hN θ

θ
ρ

= ∫  (9) 

The necessary mode shapes for an elastic ring under a moving load are given below [21], 
the solution is also only solved for 1k = , as the lowest natural frequency at , is an order 
of magnitude above blade pass frequency, BPF. 

2k =

 ( )
3

rjnU e θ α−=  (10) 

It is also shown that: 

 ( )21nN Cπ= + n R

n

 (11) 

and approximated: 

 1/nC ≈ −  (12) 

The generalised force vector can therefore be shown to be: 

 ( ) ( ).. .
.

2
ri n t b x t

n
n

P R f n
F e

hNρ
⎡ ⎤− Ω +⎣ ⎦=  (13) 

 ( )

( )2 sin

2

b n
n b

b n bf n

n b
b

π

π

⎛ ⎞−
≠⎜ ⎟− ⎝ ⎠=

=

 (14) 

The solution for the periodic part of a blade’s response, ( )rd
x t , is given by: 
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u a e θ ν ω γ ϕ ψ α∞ ∞ ∞

− Ω − + + − −

= = =−∞ =

⎡ ⎤
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⎣ ⎦
∑∑ ∑∑ )

 ( ) ( )

( )( ) ( )
22 22 2 2 2 2 4

. . . .

2 / 4

ir
ni

n n spf n spf

P R f n J b X
a

hN n n i n n i n

ν

ρ ω ν ω ζ ω ν ω
=

− Ω− + Ω−% % /
 (16) 

 1
2

/
2

tan
/

1

spf

n
ni

spf

n

i n

i n

ν ω
ζ

ω
ψ

ν ω
ω

−

⎛ ⎞Ω−⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎝= ⎜ Ω−⎛ ⎞⎜ ⎟− ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

%

%

⎟⎠
⎟  (17) 

where /n n nω ω=% . 
The solution for the random component of the blade motion on the rotating pressure field 

is solved in the same manner for a stochastic process as for the blade random excitation given 
in equation (7). 

4.2 RESPONSE DUE TO STATOR BLADE LOADINGS 

The same methodology for the stator blade loadings will be used as for the rotating pressure 
field. With first solution of the generalised force vector, which can be shown for a moment 
load on an elastic ring to be given by [22]. 

 
( )

3
1 p

n
n

T R
F U

hN θ

dθ
ρ θ

⎡ ⎤∂
⎢ ⎥=

∂⎢ ⎥⎣ ⎦
∫  (18) 

where the mode shapes are now given as: 

 ( )3 cos pU n θ φ= −  (19) 

The solution for the generalised force vector is now given as: 

 ( )( ){ }0

0
cosn j bpf p r

jn

M nF A j t x t
hN

ω γ φ
ρ

∞

=
j

⎡ ⎤= + − +⎣ ⎦∑  (20) 

 
( ) ( )b 1 22roundp

p p
s b s

ππγ
⎛ ⎞ 1− −

= −⎜ ⎟
⎝ ⎠

 (21) 

setting the condition that: 

 
2p n p
πφ α= − +  (22) 

The solution to the deterministic part of the blade vibration is given as: 
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0 0 0 1

cos .cosir n
d j bpf p spf i n j p

j i n p n

u A j t i t
hN

ν

ν

s M nJ X A
nω γ ν ω φ φ φ θ φ

ρ= = = = =−∞
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∞ ∞ ∞ ∞
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( ) ( )2 22 2

1

1 / 4 /
n

n n

A
ω ω ω ζ ω ω

=
⎡ ⎤− +⎣ ⎦ n

 (24) 

 ( )
( )

1 2 /
tan

1 /
n

n
n

ζ ω ω
φ

ω ω
− ⎛ ⎞

= ⎜⎜ −⎝ ⎠
⎟⎟  (25) 

The solution to the random part of the blade vibration is once again solved for in the same 
manner as outlined in preceding sections. It will however be shown here for clarity how the 
random forcing function on the rotor blades propagates through to a random force on the 
casing through the stator blade loadings and contains information on the blade vibrations 
themselves. 

Substitution of the instantaneous stochastic blade vibrations into equation (20), gives the 
generalised force vector for loading on each stator blade. 

 ( ) ( ) ( ) ( ){ }0
,

1 0
cos .cos sin .sin

b

n random j r p r r p r
r j n

M nF A j t x j t
hN

α α α α
ρ

∞

= =

⎡ ⎤ ⎡ ⎤= Ω + − + Ω + −⎣ ⎦ ⎣ ⎦∑∑ x (26) 

where  is the instantaneous time signal of the blade motion under the stochastic part of 
the forcing function. The PSD, of the casing vibration would therefore be comprised of the 
generalised force on each stator blade after it passes through the LTIV filter of the casing’s 
structural transfer function. From equation 

randomx

(26), it can be seen  that the random blade 
vibrations are multiplied by ‘j’ multiples of Ω . This causes, not initially intuitively, the 
response for the blade structural response, with a peak at its natural frequency, to be present 
in the PSD at the multiples of shaft speed, Ω , ± blade natural frequency. 

5. RESULTS 

Results were obtained for the radial displacement of a circular ring under the loading 
conditions outlined earlier, with an input shaft speed, Ω , of 80 Hz. The analytical solution of 
the PSD is shown in Figure 5, the response form is seen to be made up of discrete peaks at 
multiples of shaft speed, with the dominant peak being at BPF, which is what was observed in 
[6]. Underlying the discrete peaks is the casing structural response as excited by the stochastic 
part of the blade forcing function. Separation of the periodic discrete contribution to the 
casing PSD is relatively straightforward with a range of techniques available, such as 
synchronous averaging. Once separated the deterministic components or the residual signal 
can be further utilised. It is in this instance the residual signal which is to be further 
examined, as is illustrated in Figure 6. The residual PSD can be seen to have multiple peaks 
not at the locations of structural resonance of the ring, these peaks are in-fact the forcing 
function, given in equation (4), filtered by the structural response of the blade. The peaks 
appear at multiples of shaft speed  the blade natural frequency for the contribution given by 
both the stator blade loadings and rotating internal pressure field. Interestingly, for the 
rotating pressure load, the contribution at any integer multiple of shaft speed comes solely 
from the same integer numbered mode. 

±
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Figure 5 PSD of total casing response, vertical dashed lines at shaft speed spacing 
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Figure 6 Residual PSD         , structural transfer function         , vertical dashed lines at  

 (4-6)× shaft speed +  blade natural frequency. 

Although the PSD of the casing vibrations can be seen to show information pertaining to 
the rotor blade vibrations, if more than a single stage turbine was analysed the contribution 
from each stage would be masked by excitations from other stages. It is therefore 
advantageous that a single stage may be extracted from the overall measurements. This could 
be done by exploiting the cyclostationary properties that the stochastic forcing signal 
contains. Contributions to the casing vibration from the stator blades and rotating pressure 
field, from a given stage, can be seen to have cyclic frequencies of  and spfi jω ± Ω spfi nω ± Ω  
respectively. Although contributions are not unique for each stage, as all stage frequencies are 
harmonics of shaft speed, the contribution at harmonics corresponding to the sums of 
multiples of a particular SPF and the down stream BPF are presumed to be dominant. 

Shown in Figure 7 is the cyclic spectrum (spectral correlation for a particular cyclic 
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frequency) at a cyclic frequency of twice the sum of BPF and SPF. The contribution at this 
cyclic frequency would be dominated by this engine stage, even if other engine stage 
contributions were also present, and this would aid in separating different blade stages. It is 
also noted that the peaks in the PSD given by the blade natural frequency have all shifted by 
an amount α , which causes the multiples of shaft speed minus blade natural frequency which 
wrap around zero frequency to be more prominent, as shown by the dotted lines in Figure 6. 
This is due to the fact that the cyclic spectrum is derived as follows: 

 ( ) ( ) ( ) ( )*
yS H H Sα

x
αω ω ω α ω= −  (27) 

 ( ) ( ){1 *limx WW W
S E X Xα }ω ω α

→∞
= −  (28) 

And highlights phenomena happening at cyclic frequency α . 
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Figure 7 Cyclic spectrum at , vertical dashed lines at (4-6)× shaft speed (2 BPF SPFα = + ) +  

blade natural frequency, vertical dotted lines at frequencies wrapped around zero. 

6. CONCLUSIONS 

The closed form analytical solution for a circular ring, under the simulated operating 
conditions for a gas turbine with both periodic and turbulent force components included, has 
been presented. Importantly, the random contribution to the excitation of the casing and the 
rotor blades has been shown to contain information of the blade vibration characteristics. The 
separation of the different force signal types was also shown, with periodic contributions 
removed and the potential ability to separate the contribution to the casing vibration for 
different stages by taking advantage of the signal’s inherent cyclostationary properties. 
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