
Compositionality of Hennessy-Milner logic by structural
operational semantics

Author:
Fokkink, W; van Glabbeek, Robert; de Wind, P

Publication details:
Theoretical Computer Science
v. 354
Chapter No. 3
pp. 421-440
0304-3975 (ISSN)

Publication Date:
2006

Publisher DOI:
http://dx.doi.org/10.1016/j.tcs.2005.11.035

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/44465 in https://
unsworks.unsw.edu.au on 2024-04-23

http://dx.doi.org/http://dx.doi.org/10.1016/j.tcs.2005.11.035
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/44465
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Compositionality of Hennessy-Milner Logic by

Structural Operational Semantics

Wan Fokkink1,4, Rob van Glabbeek1,2,3, and Paulien de Wind4

1 CWI, Department of Software Engineering
PO Box 94079, 1090 GB Amsterdam, The Netherlands

2 National ICT Australia
Locked Bag 6016, University of New South Wales, Sydney 1466, Australia

3 University of New South Wales, School of Computer Science and Engineering
Sydney 2052, Australia

4 Vrije Universiteit Amsterdam, Department of Theoretical Computer Science
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

wanf@cs.vu.nl, rvg@cs.stanford.edu, pdwind@cs.vu.nl
http://www.cs.vu.nl/~wanf/

http://theory.stanford.edu/~rvg/

http://www.cs.vu.nl/~pdwind/

Abstract. This paper presents a method for the decomposition of HML
formulas. It can be used to decide whether a process algebra term sat-
isfies a HML formula, by checking whether subterms satisfy certain for-
mulas, obtained by decomposing the original formula. The method uses
the structural operational semantics of the process algebra. The main
contribution of this paper is the extension of an earlier decomposition
method for the De Simone format from the PhD thesis of Kim G. Larsen
in 1986, to more general formats.

1 Introduction

In the past two decades, compositional methods have been developed for check-
ing the validity of assertions in modal logics, used to describe the behaviour of
processes. This means that the truth of an assertion for a composition of pro-
cesses can be deduced from the truth of certain assertions for its components.
Most research papers in this area focus on a particular process algebra.

Barringer, Kuiper & Pnueli presented in [4] (a preliminary version of)
a compositional proof system for concurrent programs, which is based on a rich
temporal logic, including operators from process logic [15] and LTL [26]. For
modelling concurrent programs they defined a language including assignment,
conditional and while statements. Parallel components interact via shared vari-
ables.

In [29], Stirling developed modal proof systems for subsets of CCS [22]
(with and without silent actions) including only sequential and alternative com-
position, to decide the validity of formulas from Hennessy-Milner Logic (HML)

2 Wan Fokkink, Rob van Glabbeek, and Paulien de Wind

[16]. In [31, 30], Stirling extended the results from [29], creating proof systems
for subsets of CCS and SCCS [24] including asynchronous and synchronous par-
allelism and infinite behaviour, using ideas from [4]. In [32], Stirling generalised
the proposals from [31, 30] in order to cope with the restriction operator.

Winskel gave in [33] a method to decompose formulas with respect to each
operation in SCCS. The language of assertions is HML with infinite conjunction
and disjunction. This decomposition provides the foundations of Winskel’s proof
system for SCCS with modal assertions. In [34], [3] and [2] processes are described
by specification languages inspired by CCS and CSP [8]. The articles describe
compositional methods for deciding whether processes satisfy assertions from a
modal µ-calculus [18].

Larsen developed in [20] a more general compositional method for deciding
whether a process satisfies a certain property. Unlike the aforementioned meth-
ods, this method is not oriented towards a particular process algebra, but it is
based on structural operational semantics [25], which provides process algebras
and specification languages with an interpretation. A transition system specifi-
cation, consisting of an algebraic signature and a set of transition rules of the
form premises

conclusion , generates a transition relation between the closed terms over the
signature. An example of a transition rule, for alternative composition, is

x1
a

−→ y

x1 + x2
a

−→ y

meaning for states t1, t2 and u that if state t1 can evolve into state u by the
execution of action a, then so can state t1 + t2. Larsen showed how to decom-
pose HML formulas with respect to a transition system specification in the De
Simone format [27]. This format was originally put forward to guarantee that
the bisimulation equivalence associated with a transition system specification
is a congruence, meaning that bisimulation equivalence is preserved by all func-
tions in the signature. In [21], Larsen and Xinxin extended this decomposition
method to HML with recursion (which is equivalent to the modal µ-calculus).

Since modal proof systems for specific process algebras are tailor-made, they
may be more concise than the ones generated by the general decomposition
method of Larsen (e.g., [31, 30, 32]). However, in some cases the general decom-
position method does produce modal proof systems that are similar in spirit to
those in the literature (e.g., [29, 33]).

For systems consisting of parallel compositions of interacting components
and specification logics based on the modal µ-calculus, the efficacy of Larsen’s
compositional approach was demonstrated by Andersen in [1]. Laroussinie &

Larsen applied this approach in [19] to real-time systems modelled as networks
of timed automata.

Bloom, Fokkink & van Glabbeek presented in [5] a method for decom-
posing formulas from a fragment of HML with infinite conjunction, with respect
to terms from any process algebra that has a structural operational semantics in
ready simulation format, which is the ntyft/ntyxt format [13] without lookahead.
A rule in ntyft/ntyxt format may contain negative premises, the left-hand side of

Compositionality of Hennessy-Milner Logic 3

the conclusion contains at most one function symbol and no multiple occurrences
of variables, and the right-hand sides of positive premises are variables that are
all distinct and do not occur in the left-hand side of the conclusion. Such a rule
has no lookahead if variables in the right-hand sides of premises do not occur
in the left-hand sides of premises. This format is a generalisation of the De Si-
mone format, and still guarantees that bisimulation equivalence is a congruence.
The decomposition method is not presented in its own right, but is used in the
derivation of congruence formats for a range of behavioural equivalences from
van Glabbeek [11].

In the current paper, the decomposition method from [5] is extended to full
HML with infinite conjunction, for process algebras with a structural operational
semantics in ntyft/ntyxt format without lookahead or in tyft/tyxt format [14].
The latter format is the same as the ntyft/ntyxt format, but disallows negative
premises. The rules in this format may contain lookahead, i.e. there may be a
chain of premises such that the right-hand side of each premise occurs in the
left-hand side of the next premise; if this chain is finite, we speak of bounded
lookahead. We show that if a rule has unbounded lookahead, it can be replaced
by a rule with bounded lookahead. This is needed because no HML formula can
capture unbounded lookahead.

In [28], Simpson presented a proof system for establishing the validity of
HML formulas for processes in arbitrary languages with a structural operational
semantics in GSOS format [6], using a mixture of compositional and structural
styles of proof. His method differs from ours, and from the work referenced
above, in that the validity of an assertion for a process term may be inferred
from statements about the dynamic behaviour of that process, whereas we only
allow modal assertions for subterms.

An earlier version of this paper, which featured only a compositionality result
for ntyft/ntyxt format without lookahead, appeared as [10].

The structure of the paper is as follows. Section 2 contains the preliminaries
on modal logic and structural operational semantics. In Section 3 we present the
decomposition method for HML formulas. Finally, in Section 4 we show as an
application of this method that the congruence theorem for the tyft/tyxt format
from [14, 9] is an immediate corollary of our decomposition result.

2 Preliminaries

In this section we give the basic notions of Hennessy-Milner Logic and structural
operational semantics that are needed to define our decomposition method.

Definition 1 (LTS, transition relation). A labelled transition system (LTS)
is a pair (

�
,→) with

�
a set of processes and → ⊆

�
× A ×

�
for A a set of

actions. The relation → is called the transition relation and its elements are
called transitions. We write p

a
−→ q for (p, a, q) ∈ → and p 6

a
−→ for ¬∃q ∈

�
:

p
a

−→ q.

The elements of
�

represent the processes we are interested in, and p
a

−→ q

means that process p can evolve into process q while performing the action a.

4 Wan Fokkink, Rob van Glabbeek, and Paulien de Wind

2.1 Hennessy-Milner Logic

Modal logic aims at formulating properties of processes, and to identify pro-
cesses that satisfy the same properties. In [16], Hennessy & Milner defined a
modal language, often called Hennessy-Milner Logic (HML), which characterises
the bisimulation equivalence relation on processes, assuming that the transition
relation is image finite, i.e. each process has finitely many outgoing a-transitions
for each a ∈ A. This assumption can be discarded if infinite conjunctions are
allowed; see [23, 17].

Definition 2 (Hennessy-Milner Logic). Assume an action set A. The set �
of potential observations or modal formulas is recursively defined by

ϕ ::=
∧

i∈I

ϕi | 〈a〉ϕ | ¬ϕ

with a ∈ A and I some index set.

Definition 3 (satisfaction relation). Let (
�
,→) be an LTS. The satisfaction

relation |= ⊆
�
× � is defined as follows, with p ∈

�
:

p |=
∧

i∈I

ϕi iff p |= ϕi for all i ∈ I

p |= 〈a〉ϕ iff there is a q ∈
�

such that p
a

−→ q and q |= ϕ

p |= ¬ϕ iff p 6|= ϕ

We will use the binary conjunction ϕ1 ∧ ϕ2 as an abbreviation of
∧

i∈{1,2} ϕi,
whereas > is an abbreviation for the empty conjunction. We identify formu-
las that are logically equivalent using the laws > ∧ ϕ ∼= ϕ,

∧

i∈I(
∧

j∈Ji
ϕj) ∼=

∧

i∈I, j∈Ji
ϕj and ¬¬ϕ ∼= ϕ. This is justified because ϕ ∼= ψ implies p |= ϕ ⇔

p |= ψ.

Definition 4 (bisimulation). Let (
�
,→) be an LTS. A binary relation B ⊆

�
×

�
is a bisimulation if it is symmetric and pBq implies: if p

a
−→ p′ then there

is a q′ such that q
a

−→ q′ and p′Bq′. For p, q ∈
�

we write p↔ q if there is a
bisimulation B such that pBq.

Proposition 1 ([23, 17]). Let (
�
,→) be an LTS. Then p↔ q if and only iff

p |= ϕ⇔ q |= ϕ for all ϕ ∈ � .

2.2 Structural Operational Semantics

Structural operational semantics [25] provides a framework to give an operational
semantics to programming and specification languages. In particular, because of
its intuitive appeal and flexibility, structural operational semantics has found
considerable application in the study of the semantics of concurrent processes.

Let V be a set of variables. If S is any syntactic object, var (S) denotes the
set of variables that occur in S. A syntactic object S is called closed if it does
not contain any variables from V , i.e. if var (S) = ∅.

Compositionality of Hennessy-Milner Logic 5

Definition 5 (signature). A signature is a collection Σ of function symbols
f 6∈ V , equipped with a function ar : Σ → � . The set � (Σ) of terms over a
signature Σ is defined recursively by:

– V ⊆ � (Σ),
– if f ∈ Σ and t1, . . . , tar(f) ∈ � (Σ), then f(t1, . . . , tar(f)) ∈ � (Σ).

A term c() is abbreviated as c. T (Σ) is the set of closed terms over Σ. A Σ-
substitution σ is a partial function from V to � (Σ). The domain of σ is denoted
by dom(σ). If σ is a Σ-substitution and S is any syntactic object, then σ(S)
denotes the object obtained from S by replacing, for x in the domain of σ, every
occurrence of x in S by σ(x). In that case σ(S) is called a substitution instance
of S. A Σ-substitution σ is closed if σ(x) ∈ T (Σ) for all x ∈ V .

In the remainder, let Σ denote a signature and A a set of actions.

Definition 6 (literal). A positive Σ-literal is an expression t
a

−→ t′ and a

negative Σ-literal an expression t 6
a
−→ with t, t′ ∈ � (Σ) and a ∈ A. For t, t′ ∈

� (Σ) and a ∈ A, the literals t
a

−→ t′ and t 6
a
−→ are said to deny each other.

Definition 7 (transition rule). A transition rule over Σ is an expression of
the form H

α
with H a set of Σ-literals (the premises of the the rule) and α a

positive Σ-literal (the conclusion). With lhs(H) and rhs(H) we denote the sets
of left- and right-hand sides of the premises in H, respectively. The left- and
right-hand side of α are called the source and the target of the rule, respectively.
A rule H

α
with H = ∅ is also written α.

Definition 8 (transition system specification). A transition system speci-
fication (TSS) is a pair (Σ,R) with R a collection of transition rules over Σ.

The purpose of a TSS (Σ,R) is to specify an LTS of the form (T (Σ),→) with
as processes the closed terms over Σ and as transition relation a set of closed
positive literals → ⊆ T (Σ)×A×T (Σ). Hence we refer to a closed positive literal
as a transition.

Definition 9 (proof). Let P = (Σ,R) be a TSS. An irredundant proof from
P of a transition rule H

α
is a well-founded, upwardly branching tree whose nodes

are labelled by Σ-literals, and some of the leaves are marked “hypothesis”, such
that:

– the root is labelled by α,
– H is the set of labels of the hypotheses, and
– if β is the label of a node q which is not a hypothesis and K is the set of

labels of the nodes directly above q, then K
β

is a substitution instance of a
transition rule in R.

A proof from P of K
α

is an irredundant proof from P of H
α

with H ⊆ K. If an

(irredundant) proof from P of K
α

exists, then K
α

is (irredundantly) provable from

P , notation P ` K
α

(resp. P `irr
K
α

).

6 Wan Fokkink, Rob van Glabbeek, and Paulien de Wind

The proof of H
α

is called irredundant because H must equal (instead of include)
the set of labels of the hypotheses. The main advantage of irredundant proofs
is that derived rules may inherit certain syntactic structure from the transition
rules in the TSS from which they are derived; in standard proofs this syntactic
structure is usually lost, because arbitrary literals can be added as premises of
derived rules. In the current paper, irredundancy of proofs is not of immediate
importance, but it can be essential in applications of our decomposition method
for modal formulas. For instance, in [5], irredundancy is essential to guarantee
that the syntactic restrictions of congruence formats for TSSs are also satisfied
by the rules derived from those TSSs.

A TSS with only positive premises specifies a transition relation in a straight-
forward way as the set of all provable transitions. But it is much less trivial to
associate a transition relation to a TSS with negative premises. Several solutions
are proposed by Groote in [13], Bol & Groote in [7], and van Glabbeek in
[12]. From the last we adopt the notion of a well-supported proof and a complete
TSS.

Definition 10 (well-supported proof). Let P = (Σ,R) be a TSS. A well-
supported proof from P of a closed literal α is a well-founded, upwardly branch-
ing tree whose nodes are labelled by closed Σ-literals, such that:

– the root is labelled by α, and
– if β is the label of a node q and K is the set of labels of the nodes directly

above q, then

1. either K
β

is a closed substitution instance of a transition rule in R

2. or β is negative and for every set N of closed negative literals such that
P ` N

γ
for γ a closed literal denying β, a literal in K denies one in N .

We say α is ws-provable from P , notation P `ws α, if a well-supported proof
from P of α exists.

In [12] it was noted that `ws is consistent, in the sense that no TSS admits
well-supported proofs of two literals that deny each other.

Definition 11 (completeness). A TSS P is complete if for any closed literal

p 6
a
−→ either P `ws p

a
−→ p′ for some closed term p′ or P `ws p 6

a
−→.

Now a TSS specifies a transition relation if and only if it is complete. The
specified transition relation is then the set of all ws-provable transitions. For
positive TSSs, the set of `ws -provable closed positive literals and the set of `-
provable closed literals are the same.

Example 1. Let A = {a, b} and P = (Σ,R), where Σ consists of the constant c
and the unary function symbol f , and R is:

x 6
a
−→

f(x)
b

−→ c

c 6
a
−→

c
a

−→ c

Compositionality of Hennessy-Milner Logic 7

There are well-supported proofs for the closed negative literals fn+1(c) 6
a
−→ for

n ≥ 0 and c 6
b
−→. In each case, the proof consists of a single node, labelled

by the literal itself. Furthermore, there are well-supported proofs for the closed

positive literals fn+2(c)
b

−→ c for n ≥ 0, where the proof consists of a tree of
two nodes: the root has as label the literal itself, and the node above it has label
fn+1(c) 6

a
−→. The TSS P is not complete, since there is no well-supported proof

for c 6
a
−→ or c

a
−→ p for p ∈ T (Σ); moreover, there is no well-supported proof for

f(c) 6
b
−→ or f(c)

b
−→ p for p ∈ T (Σ).

2.3 Formats

We recall the tyft/tyxt format [14] and the ready simulation format [5]. Both for-
mats are restrictions of the ntyft/ntyxt format [13], which was introduced as the
most liberal format known to guarantee congruence properties for bisimulation
equivalence.

Definition 12 (ntytt). An ntytt rule is a transition rule in which the right-
hand sides of positive premises are variables that are all distinct, and that do not
occur in the source. An ntytt rule is an ntyxt rule if its source is a variable, and
an ntyft rule if its source contains exactly one function symbol and no multiple
occurrences of variables. An ntytt rule is an nxytt rule if the left-hand sides of
its premises are variables. A tytt, tyxt, tyft or xytt rule is an ntytt, ntyxt, ntyft
or nxytt rule, respectively, without negative premises. A xyft rule is a tyft rule
that is also an xytt rule.

Given a premise t
a

−→ y of an ntytt rule, there is a dependency between each
variable in t and y. This is captured in the dependency graph of the rule. We
will strive for rules in which there is neither infinite forward dependency between
variables (bounded lookahead), nor infinite backward dependency between vari-
ables (well-foundedness).

Definition 13 (lookahead, well-foundedness). Assume a set of positive Σ-

literals {ti
ai−→ t′i | i ∈ I}. Its dependency graph is a directed graph, with the

collection of variables V as vertices, and with as edges

{〈x, y〉 | x and y occur in ti and t′i respectively, for some i ∈ I}.

The dependency graph of a transition rule is the dependency graph of its posi-
tive premises. A transition rule is well-founded if any backward chain of edges
in its dependency graph is finite. A transition rule has lookahead if there is a
variable in the right-hand side of a premise that also occurs in the left-hand side
of a premise; the lookahead is bounded if any forward chain of edges in the
dependency graph is finite.

Definition 14 (pure). A variable in a transition rule is free if it occurs neither
in the source nor in right-hand sides of positive premises of this rule. A rule is
pure if it is well-founded and does not contain free variables.

8 Wan Fokkink, Rob van Glabbeek, and Paulien de Wind

Definition 15 (depth). If r is a pure tytt rule of the form {vk

ck−→yk|k∈K}

t
a

−→u
, then

the depth of terms v with var(v) ⊆ var(r) is defined by:

depthr(x) = 0 for x ∈ var (t)
depthr(yk) = depthr(vk) + 1 for k ∈ K

depthr(v) = max{depthr(z) | z ∈ var (v)} if var(v) ⊆ var(r)

This is well-defined since the set of premises is well-founded. When clear from
the context, the subscript r will be omitted. For d ≥ 0 we write Kd for {k ∈ K |
depth(vk) = d}.

Each combination of syntactic restrictions on transition rules induces a corre-
sponding syntactic format of the same name for TSSs. For example, a TSS is in
tyft/tyxt format if and only if it contains only tyft and tyxt rules.

Definition 16 (ready simulation format). A TSS is in ready simulation
format if it contains only ntyft and ntyxt rules without lookahead.

3 Decomposing HML Formulas

In this section it is shown how one can decompose HML formulas with respect
to process terms. Section 3.1 explains what this means. The TSS defining the
transition relation on these terms should be in ready simulation format or in
tyft/tyxt format, i.e. in ntyft/ntyxt format and either without lookahead or
without negative premises.

The decomposition method uses a collection of rules extracted from this TSS,
called ruloids. These rules have the property that there is a well-supported proof
of a transition p

a
−→ q, with p a closed substitution instance of a term t, if and

only if there exists a proof that uses at the root a ruloid with source t (Theorems 1
and 2). We require our ruloids to be pure nxytt rules with bounded lookahead.
Moreover, when dealing with a TSS without lookahead, the ruloids are required
to be without lookahead as well, and when dealing with a TSS without negative
premises, the ruloids likewise have to be xytt rules.

The construction of the ruloids for a TSS in ready simulation format stems
from Bloom, Fokkink & van Glabbeek [5] and is briefly recalled in Section
3.2. In Section 3.3 we construct ruloids for TSSs in tyft/tyxt format, applying
the transformation from tyft/tyxt to pure xyft format from Fokkink & van

Glabbeek [9]. An essential new step in the construction is the replacement of
any pure nxytt rule by an equivalent rule with bounded lookahead.

The decomposition method is given in Section 3.4, together with the proof
that a term t under closed substitution σ satisfies a formula if and only if the
variables in t under substitution σ satisfy the formulas given by the decomposi-
tion method.

Section 3.6 contains two toy examples to illustrate the method. Section 3.7
features two counterexamples; one to underline the importance that TSSs are
complete, and one to show why our two decomposition results for ready simula-
tion and tyft/tyxt format cannot be combined in a straightforward fashion.

Compositionality of Hennessy-Milner Logic 9

3.1 Some Intuition

To explain our decomposition method, we start with an example.

Example 2. Consider the TSS with rules

a.x
a

−→ x
x

a
−→ x′

x‖y
a

−→ x′‖y

y
a

−→ y′

x‖y
a

−→ x‖y′

for a ∈ A. The following rules describe all circumstances under which a process
x‖y satisfies the modal formula 〈a〉〈b〉>:

x |= 〈a〉〈b〉>

x‖y |= 〈a〉〈b〉>

x |= 〈a〉> y |= 〈b〉>

x‖y |= 〈a〉〈b〉>

x |= 〈b〉> y |= 〈a〉>

x‖y |= 〈a〉〈b〉>

y |= 〈a〉〈b〉>

x‖y |= 〈a〉〈b〉>

In this paper we show how to produce, for any modal formula ϕ, a complete
set of rules for deriving x‖y |= ϕ, whose premises have the form x |= ψ or
y |= ψ. As the number of rules we need grows dramatically in the size of ϕ,
we cannot simply list these rules exhaustively. Instead we generate them with
induction on the structure of ϕ. Let us start with proposing some notation.
The set of rules above, all of which share the conclusion x‖y |= 〈a〉〈b〉>, is
completely determined by their sets of premises. Each set of premises can be
given as a partial function ψ that associates modal formulas ψ(x) to variables
x. The second rule, for instance, is given by the partial function ψ2, defined
by ψ2(x) = 〈a〉> and ψ2(y) = 〈b〉>. For convenience, we extend these partial
functions to total ones—in the first rule above by defining ψ1(y) = >. This is
justified because the premise y |= > is vacuously true for any process y. The
set of the four mappings ψ1–ψ4 characterising the four rules displayed above is
called the modal decomposition of the formula 〈a〉〈b〉> with respect to the term
x‖y in the TSS above. This model decomposition is denoted (x‖y)−1(〈a〉〈b〉>).

In general, for a given term t and a modal formula ϕ, the modal decomposition
t−1(ϕ) of ϕ w.r.t. t is a set of requirements ψi, one of which must be satisfied in
order for t to satisfy ϕ. Each requirement ψi is given as a mapping from variables
to modal formulas; it holds when for all x ∈ var (t) the process represented by x
satisfies ψi(x).

The main contribution of this paper is the definition of t−1(ϕ) for any HML
formula ϕ and any term t, relative to a complete TSS in ready simulation format
or in tyft/tyxt format (Definition 19), together with the theorem that states that
this definition is correct (Theorem 3):

For any closed substitution σ, the process σ(t) satisfies ϕ exactly when
there is a mapping ψ in the modal decomposition t−1(ϕ) such that σ(x)
satisfies ψ(x) for all variables x in t.

This model decomposition result can be used to infer the validity of a statement
t |= ϕ by structural induction on t. However, the result is obtained by structural
induction on ϕ.

10 Wan Fokkink, Rob van Glabbeek, and Paulien de Wind

3.2 Ruloids for the Ready Simulation Format

In the decomposition of modal formulas, we need an important result from [5],
where for any TSS P in ready simulation format a collection of pure nxytt
rules, called P -ruloids, is constructed. We explain this construction on a rather
superficial level; the precise transformation can be found in [5].

First P is converted to a TSS in pure ntyft format without lookahead. In this
conversion from [14], free variables in a rule are replaced by closed terms, and if
the source is of the form x then this variable is replaced by a term f(x1, . . . , xn)
for each f ∈ Σ. Next, using a construction from [9], left-hand sides of pos-
itive premises are reduced to variables. Roughly the idea is, given a premise
f(t1, . . . , tn)

α
−→ y in a rule r, and a rule H

f(x1,...,xn)
α

−→t
, to transform r by re-

placing the aforementioned premise by H , y by t, and the xi by the ti; this is
repeated (transfinitely) until all positive premises with a non-variable left-hand
side have disappeared. The same idea will be applied in the proof of the forth-
coming Proposition 3. In the final transformation step, rules with a negative
conclusion t 6

α
−→ are introduced. The motivation is that instead of the notion

of well-founded provability of Def. 10, we want a more constructive notion, like
the one of Def. 9, in which proof step 2 is cast as a special case of proof step 1.
A rule r with a conclusion f(x1, . . . , xn) 6

α
−→ is obtained by picking one premise

from each rule with a conclusion f(x1, . . . , xn)
α

−→ t, and including the denial of
each of the selected premises as a premise of r. For this last transformation it is
essential that rules do not have lookahead.

The resulting TSS, which is in pure ntyft format without lookahead, is de-
noted by P+. In [5] it is established that P+ ` α ⇔ P `ws α for all closed
literals α. The notion of irredundant provability is adapted in a straightforward
fashion to accommodate rules with a negative conclusion. P -ruloids are the pure
nxytt rules without lookahead that are irredundantly provable from P+. The fol-
lowing correspondence result from [5] between a TSS and its ruloids will play a
crucial rôle in our decomposition method. It says that, provided we have enough
variables to build ruloids, there is a well-supported proof from P of a transition
p

a
−→ q, with p a closed substitution instance of a term t, if and only if there is

a proof of this transition that uses at the root a P -ruloid with source t.

Theorem 1 (Lemma 8.2 from [5], which is Lemma 13 in the report
version of [5]). Let the set V of variables be infinite and satisfying |V | ≥ |A|.
Let P = (Σ,R) be a TSS in ready simulation format with |Σ| ≤ |V |. Then
P `ws σ(t)

a
−→ p for t ∈ � (Σ), p ∈ T (Σ) and σ a closed substitution, if and

only if there are a P -ruloid H

t
a

−→u
and a closed substitution σ′ with P `ws σ

′(α)

for α ∈ H, σ′(t) = σ(t) and σ′(u) = p.

3.3 Ruloids for the Tyft/Tyxt Format

In this section we construct ruloids for TSSs in tyft/tyxt format (see Theorem 2).
We proceed in three steps. First any TSS in tyft/tyxt format is converted into a
TSS in pure xyft format, applying a result from [9] (Proposition 2). Then we show

Compositionality of Hennessy-Milner Logic 11

that the pure xytt rules irredundantly provable from the resulting TSS satisfy
all properties of ruloids, except for having bounded lookahead (Proposition 3).
Finally we get rid of unbounded lookahead (Proposition 4).

Proposition 2 ([9], Section 4). Let the set V of variables be infinite. For
each TSS P in tyft/tyxt format there is a TSS Q in pure xyft format, such that
P ` α⇔ Q ` α for all closed positive literals α.

Proposition 3. Let the set V of variables be infinite and satisfying |V | ≥ |A|.

Let P = (Σ,R) be a TSS in pure tyft format with |Σ| ≤ |V |. Then P ` σ(t)
a

−→ p

for t ∈ � (Σ), p ∈ T (Σ) and σ a closed substitution, if and only if there are a
pure xytt rule H

t
a

−→u
and a closed substitution σ′ with P `irr

H

t
a

−→u
, P ` σ′(α) for

α ∈ H, σ′(t) = σ(t) and σ′(u) = p.

Before giving the proof of this proposition, we simultaneously illustrate Theo-
rem 1 and Proposition 3 through a TSS in pure tyft format without lookahead.
It is based on an example in [9].

Example 3. (A fragment of CCS with replication). Let A be a set of names.
The set Ā of co-names is given by Ā = {ā | a ∈ A}, and L = A∪ Ā is the set of
visible actions. The function ·̄ is extended to L by declaring ¯̄a = a. Furthermore
A = L ∪ {τ} is the set of actions. Note that τ̄ is undefined.

The process algebra CCS has a constant 0, a unary operator a for a ∈ A,
binary operators + and |, and a few constructs that are omitted here. In addition
we consider the unary replication operator !. The TSS CCS! is given by the pure
tyft rules without lookahead below; note that the rule for replication is not xyft.
These rules are actually schemata, where a ranges over A.

ax
a

−→ x
x

a
−→ x′

x+ y
a

−→ x′

y
a

−→ y′

x+ y
a

−→ y′

x
a

−→ x′

x | y
a

−→ x′ | y

x
a

−→ x′ y
ā

−→ y′

x | y
τ

−→ x′ | y′
y

a
−→ y′

x | y
a

−→ x | y′
!x | x

a
−→ x′

!x
a

−→ x′

We give an example application of Proposition 3, with t =!(a0 + x), σ(x) = ā0

and p = (a0 + ā0) | 0 | 0. Note that σ(t)
τ

−→ p is part of the transition relation.
Below we depict the construction of an irredundant proof of the pure xytt

rule
x

ā
−→ x′

!(a0 + x)
τ

−→ !(a0 + x) | 0 | x′
. Labels of the proof tree are obtained by

applying ρ to the conclusions of the rules in the structure below. Definition 9 of
a proof tree does not specify the identity of the nodes that occur in the tree; it
merely poses requirements on their labels. Following a convention from [9], we
do not depict the hypothesis explicitly, and any other node we take to be an
α-conversion of the proof rule applied in that node to obtain its label from the
labels of the nodes above it. By choosing the variables in all these rules to be
disjoint, we can unite the substitutions applied in each of these nodes into one

12 Wan Fokkink, Rob van Glabbeek, and Paulien de Wind

global substitution ρ.

!z | z
τ

−→ z′

!z
τ

−→ z′

?

y1
a

−→ y′1 y2
ā

−→ y′2

y1 | y2
τ

−→ y′1 | y′2

�
�	

x2
ā

−→ x′2

x1 + x2
ā

−→ x′2

@
@R

!w | w
a

−→ w′

!w
a

−→ w′

?

v2
a

−→ v′2

v1 | v2
a

−→ v1 | v′2

?

u1
a

−→ u′1

u1 + u2
a

−→ u′1

?

as
a

−→ s

ρ(s) = 0
ρ(u1) = a0
ρ(u′1) = 0
ρ(u2) = x

ρ(v1) = !(a0 + x)
ρ(v2) = a0 + x

ρ(v′2) = 0
ρ(w) = a0 + x

ρ(w′) = !(a0 + x) | 0
ρ(x1) = a0
ρ(x2) = x

ρ(x′2) = x′

ρ(y1) = !(a0 + x)
ρ(y′1) = !(a0 + x) | 0
ρ(y2) = a0 + x

ρ(y′2) = x′

ρ(z) = a0 + x

ρ(z′) = !(a0 + x) | 0 | x′

Moreover, σ′(x) = ā0 and σ′(x′) = 0. Note that σ′(x
ā

−→ x′) = ā0
ā

−→ 0 is part
of the transition relation.

Proof of Proposition 3: ⇐ Suppose there are a pure xytt rule H

t
a

−→u
and a

closed substitution σ′, with P `irr
H

t
a

−→u
, P ` σ′(α) for α ∈ H , σ′(t) = σ(t)

and σ′(u) = p. Let π be an irredundant proof from P of H

t
a

−→u
. Then a proof of

σ(t)
a

−→ p is obtained by taking σ′(π) and replacing each σ′(α) for α ∈ H by a
proof of σ′(α).

⇒ Let P ` σ(t)
a

−→ p. First, suppose t is a variable. Let y be a different

variable. By definition, the pure xytt rule t
a

−→y

t
a

−→y
is irredundantly provable from

P . Let σ′ be a closed substitution with σ′(t) = σ(t) and σ′(y) = p. Clearly,

P ` σ′(t
a

−→ y).

Next, suppose t = f(t1, . . . , tar(f)). We apply structural induction on a closed

proof π from P of σ(t)
a

−→ p. Let r ∈ R be the pure tyft rule and ρ with
dom(ρ) = var (r) be the closed substitution used at the bottom of π, where r is

of the form {vk

ck−→yk|k∈K}

f(x1,...,xar(f))
a

−→v
. Then ρ(xi) = σ(ti) for i ∈ {1, . . . , ar(f)}, ρ(v) = p,

and ρ(vk)
ck−→ ρ(yk) for k ∈ K are provable from P by means of strict subproofs

of π.

Compositionality of Hennessy-Milner Logic 13

We now show how to define two substitutions ρ∞ and σ∞, and a pure xytt
rule H

t
a

−→ρ∞(v)
that is irredundantly provable from P , such that P ` σ∞(α) for

α ∈ H and σ∞(t
a

−→ ρ∞(v)) = σ(t)
a

−→ p. The substitutions ρ∞ and σ∞ will
be given as the “limits” of sequences of substitutions ρd and σd, and the set H
will be defined in the process. We begin by inductively defining substitutions ρd

and σd for d ∈ � , such that

dom(ρd) = {z ∈ var(r) | depth(z) ≤ d}, (1)

var(ρd(z)) ⊆ dom(σd) for z ∈ dom(ρd), and (2)

σdρd(z) = ρ(z) for z ∈ dom(ρd). (3)

Let ρ0 and σ0 be substitutions such that

dom(ρ0) = {x1, . . . , xar(f)}, (4)

dom(σ0) = var(t), (5)

ρ0(xi) = ti for i ∈ {1, . . . , ar(f)}, and (6)

σ0(z) = σ(z) for z ∈ var(t). (7)

Note that σ0(z) ∈ T (Σ) for z ∈ dom(σ0).

Properties (1)–(3) hold for d = 0: dom(ρ0)
(4)
= {z ∈ var(r) | depth(z) ≤ 0},

var (ρ0(xi))
(6)
= var(ti) ⊆ var (t)

(5)
= dom(σ0) for i ∈ {1, . . . , ar(f)}, and σ0ρ0(xi)

(6)
=

σ0(ti)
(7)
= σ(ti) = ρ(xi) for i ∈ {1, . . . , ar (f)}.

Suppose ρd and σd have been defined for some d ≥ 0. According to Defini-

tion 15, for k ∈ Kd we have depth(vk) = d, so P ` σdρd(vk)
(1),(3)

= ρ(vk)
ck−→ ρ(yk)

by means of a strict subproof of π. By induction on the structure of π there are
a pure xytt rule Hk

ρd(vk)
ck−→uk

and a closed substitution σ′
k with

P `irr
Hk

ρd(vk)
ck−→ uk

, (8)

P ` σ′
k(α) for α ∈ Hk, (9)

σ′
kρd(vk) = σdρd(vk), and (10)

σ′
k(uk) = ρ(yk). (11)

We define the substitution ρd+1 by:

dom(ρd+1) = dom(ρd) ∪ {yk ∈ var(r) | k ∈ Kd}, (12)

ρd+1(z) = ρd(z) if z ∈ dom(ρd), and (13)

ρd+1(yk) = uk for k ∈ Kd. (14)

14 Wan Fokkink, Rob van Glabbeek, and Paulien de Wind

Owing to the assumption that |Σ| ≤ |V | and |A| ≤ |V |, we can choose the sets
rhs(Hk) for k ∈ Kd pairwise disjoint, and disjoint from dom(σd) (cf. Lemma 6.4
in [5], which is Lemma 6 in the report version of [5]). We define the substitution
σd+1 by:

dom(σd+1) = dom(σd) ∪
⋃

k∈Kd

rhs(Hk), (15)

σd+1(z) = σd(z) if z ∈ dom(σd), and (16)

σd+1(z) = σ′
k(z) if z ∈ rhs(Hk) for some k ∈ Kd. (17)

Note that σd+1(z) ∈ T (Σ) for z ∈ dom(σd+1).
We proceed to prove (1)–(3) for d+ 1, assuming by induction that they hold

for d. First, dom(ρd+1)
(12),(1)

= {z ∈ var (r) | depth(z) ≤ d + 1}. Next, we prove
that var(ρd+1(z)) ⊆ dom(σd+1) for z ∈ dom(ρd+1).

– Let z ∈ dom(ρd). Then var(ρd+1(z))
(13)
= var(ρd(z))

(2)

⊆ dom(σd)
(15)

⊆ dom(σd+1).

– Let z = yk for some k ∈ Kd. Then var (ρd+1(z))
(14)
= var(uk) ⊆ var (ρd(vk))∪

rhs(Hk) by the pureness of Hk

ρd(vk)
ck−→uk

. We have var (vk)
(1)

⊆ dom(ρd), so

var (ρd(vk))
(2)

⊆ dom(σd)
(15)

⊆ dom(σd+1). Further, rhs(Hk)
(15)

⊆ dom(σd+1).

Finally, we prove that σd+1ρd+1(z) = ρ(z) for z ∈ dom(ρd+1).

– Let z ∈ dom(ρd). Then σd+1ρd+1(z)
(13)
= σd+1ρd(z)

(2),(16)
= σdρd(z)

(3)
= ρ(z).

– Let z = yk for some k ∈ Kd. Let w ∈ var(ρd(vk)). Then w
(2)
∈ dom(σd),

and hence σd+1(w)
(16)
= σd(w). Since σ′

kρd(vk)
(10)
= σdρd(vk), it follows that

σd(w) = σ′
k(w). Hence

σd+1(w) = σ′
k(w), if w ∈ var (ρd(vk)) for some k ∈ Kd. (18)

By the pureness of Hk

ρd(vk)
ck−→uk

, we have var(uk) ⊆ var(ρd(vk))∪ rhs(Hk), so

σd+1ρd+1(z)
(14)
= σd+1(uk)

(17),(18)
= σ′

k(uk)
(11)
= ρ(z).

Hence, (1)-(3) hold for d+ 1.
Now we define a substitution ρ∞ with dom(ρ∞) = var (r) as the limit of the

ρd, so

ρ∞(z) = ρd(z) for z ∈ dom(ρd) and d ∈ � . (19)

Let H =
⋃

k∈K Hk. We define a closed substitution σ∞ that behaves as the
limit of the σd on variables from var (t) ∪ rhs(H) and maps all other variables
to arbitrary closed terms.

σ∞(z) = σd(z) for z ∈ dom(σd) and d ∈ � . (20)

The substitutions ρ∞ and σ∞ are well-defined, owing to (13) and (16). We
verify that the rule H

t
a

−→ρ∞(v)
together with the closed substitution σ∞ satisfies

the desired properties.

Compositionality of Hennessy-Milner Logic 15

– H

t
a

−→ρ∞(v)
is pure xytt:

The right-hand sides of the positive premises in anyHk are distinct variables.
By construction, these sets of variables (one for every k ∈ K) are pairwise
disjoint, and disjoint from var (t). Furthermore, the left-hand sides of the
premises in any Hk are variables. This makes H

t
a

−→ρ∞(v)
an xytt rule.

We prove that this rule does not contain free variables. We consider two
cases:
• z is the left-hand side of a premise in Hk for some k ∈ K and z 6∈ rhs(H).

Since Hk

ρ∞(vk)
ck−→uk

is pure, z ∈ var (ρ∞(vk)).

• z ∈ var (ρ∞(v)).

Since var(ρ∞(w))
(2)

⊆ dom(σ∞)
(5),(15)

= var(t) ∪ rhs(H) for w ∈ var (r), in
either case z ∈ var (t) ∪ rhs(H).
We prove that H

t
a

−→ρ∞(v)
is well-founded. Let y ∈ lhs(Hk) ∩ rhs(H`) with

k ∈ Kd, ` ∈ Ke and k 6= `. We prove that e < d. Since H

t
a

−→ρ∞(v)
is xytt and

y ∈ rhs(H`), it follows that y 6∈ rhs(Hk) and y 6∈ var (t). Since Hk

ρ∞(vk)
ck−→uk

is pure and y ∈ lhs(Hk)\rhs(Hk), we have y ∈ var (ρ∞(vk)). This implies

that y ∈ var (ρd(vk))
(2)

⊆ dom(σd)
(5),(15)

⊆ var(t) ∪
⋃

k′∈Kd−1∪...∪K0

rhs(Hk′). Since

y 6∈ var (t) and y ∈ rhs(H`) with ` ∈ Ke we have e ∈ {0, . . . , d − 1} and
thus e < d. Thus, if 〈x, y〉 and 〈y, z〉 are edges in the dependency graphs of
respectively H` with ` ∈ Ke and Hk with k ∈ Kd and k 6= `, then e < d.
Moreover, well-foundedness of the rules Hk

ρ∞(vk)
ck−→uk

for k ∈ K implies that

their dependency graphs do not contain infinite backward chains. Hence, the
dependency graph of H does not contain an infinite backwards chain of edges
either. Therefore, H

t
a

−→ρ∞(v)
is well-founded.

– P `irr
H

t
a

−→ρ∞(v)
:

Since r ∈ R, we have P `irr ρ∞(r)
(6),(14)

= {ρ∞(vk)
ck−→uk |k∈K}

t
a

−→ρ∞(v)
. Furthermore,

P
(8)

`irr
Hk

ρ∞(vk)
ck−→uk

for k ∈ K. As H =
⋃

k∈K Hk, it follows that P `irr

H

t
a

−→ρ∞(v)
.

– P ` σ∞(α) for α ∈ H :
Let α ∈ H . Then there is a k ∈ K such that α ∈ Hk, so k ∈ Kd for some
d ≥ 0. By the pureness of Hk

ρd(vk)
ck−→uk

, it follows that var(α) ⊆ var(ρd(vk))∪

var (rhs(Hk)), so P
(9)

` σ′
k(α)

(17),(18)
= σd+1(α))

(20)
= σ∞(α).

– σ∞(t)
(7)
= σ(t).

– σ∞ρ∞(v)
(3)
= ρ(v) = p. �

We have now obtained the required ruloids, except that we still have to get rid
of unbounded lookahead. We will do this by replacing any ruloid by one with
bounded lookahead.

16 Wan Fokkink, Rob van Glabbeek, and Paulien de Wind

Definition 17 (replacement). We say that a transition rule r can be replaced
by a transition rule s if r is a substitution instance of s and for any closed
substitution instance K

α
of s there is a closed substitution instance H

α
of r such

that H ⊆ K.

Note that if a transition rule r can be replaced by a transition rule s, the TSSs
(Σ,R ∪ {r}) and (Σ,R ∪ {s}) specify the same transition relation.

The following proposition requires an abundance of variables. Whereas for
Theorem 1 and Propositions 2 and 3 we merely needed infinitely many variables
and |V | ≥ |A| + |Σ|, here we need uncountably many variables and |V | > |Σ|,
so that we have |V | > |T (Σ)|.

Proposition 4. Suppose V is uncountable and |Σ| < |V |. Any pure xytt rule
r can be replaced by a pure xytt rule s with bounded lookahead with the same
conclusion.

Proof: Let r = H
α

. Let κ be an infinite cardinal, such that |T (Σ)| < κ ≤ |V |,
and let Oκ denote the set of sequences of strictly decreasing ordinals that have
a cardinality smaller than κ. Let V (r) denote the finite set of variables y0 such

that r has premises y0
a1−→ y1

a2−→ · · ·
an−→ yn for n ≥ 0 with yn occurring in α,

and let U(r) be the set of all other variables occurring in r. For every variable
x ∈ U(r) and η ∈ Oκ, pick a distinct variable xη ∈ V not occurring in r. This is
possible because |Oκ| = κ. Let s = K

α
with

K = {x
a

−→ y | (x
a

−→ y) ∈ H, y ∈ V (r)} ∪

{x
a

−→ yλ | (x
a

−→ y) ∈ H, x ∈ V (r), y ∈ U(r), λ < κ} ∪

{xη
a

−→ yηλ | (x
a

−→ y) ∈ H, x ∈ U(r), η, ηλ ∈ Oκ}.

By definition s is an xytt rule, and if r is pure then so is s. As there are only
finitely many variables occurring in α, and there is no infinite chain of strictly
decreasing ordinals, the rule s has bounded lookahead. It remains to be shown
that r can be replaced by s.

First of all the substitution ξ given by ξ(xη) = x for all x ∈ U(r) and η ∈ Oκ

shows that r is a substitution instance of s.
Now consider a closed substitution σ. We need to define a closed substitution

ρ, such that ρ(H) ⊆ σ(K) and ρ(α) = σ(α). For x ∈ V (r) let ρ(x) = σ(x). Since
x ∈ V (r) for x ∈ var (α), ρ(α) = σ(α). Define the relative depth rd(x) of variables
x ∈ var (r) by

rd(x) = 0 for x ∈ V (r)

rd(y) = rd(x) + 1 for y ∈ U(r) and (x
a

−→ y) ∈ H.

As in Definition 15 this is well-defined because r is well-founded. With induc-
tion on the relative depth of x ∈ U(r) we are going to define ρ(x) and Sx ⊆
{η ∈ Oκ | σ(xη) = ρ(x)} such that |{λ < κ | ∃η ∈ Oκ : ηλ ∈ Sx}| = κ.

Base case: Let x ∈ V (r), y ∈ U(r) and (x
a

−→ y) ∈ H . As |T (Σ)| < κ, there
must be a set S ⊆ {λ | λ < κ} with |S| = κ and σ(yλ) = σ(yλ′) for λ, λ′ ∈ S.

Compositionality of Hennessy-Milner Logic 17

Let ρ(y) = σ(yλ) for some λ ∈ S. We define Sy = S. Then we have ρ(x
a

−→ y) =

σ(x
a

−→ yλ) ∈ σ(K) for λ ∈ Sy and |{λ < κ | ∃η ∈ Oκ : ηλ ∈ Sy}| = |Sy| = κ.

Induction step: Let x ∈ U(r), ρ(x) is already defined, and (x
a

−→ y) ∈ H . As
|{λ < κ | ∃η ∈ Oκ : ηλ ∈ Sx}| = κ and hence |{ν | ∃ηλ ∈ Sx : ν < λ}| = κ,
whereas |T (Σ)| < κ, there must be a set S ′ ⊆ {ην ∈ Oκ | η ∈ Sx} with
|{ν < κ | ∃η ∈ Oκ : ην ∈ S′}| = κ and σ(yη) = σ(yη′) for η, η′ ∈ S′. Let

ρ(y) = σ(yην) for some ην ∈ S′. We define Sy = S′. Then we have ρ(x
a

−→ y) =

σ(xη
a

−→ yην) ∈ σ(K) for ην ∈ Sy. Hence, ρ(H) ⊆ σ(K). So r can be replaced
by s. �

In the following definition of a ruloid and the forthcoming Theorems 2 and 3 we
assume the existence of sufficiently many variables (satisfying the conditions of
Propositions 3 and 4). However, this assumption will be discharged in Section 3.5,
showing that our mail result (Theorem 3) will hold regardless.

Definition 18 (ruloid). Let P be a TSS in tyft/tyxt format. According to
Proposition 2 there is a TSS Q in pure xyft format, such that P ` α ⇔ Q ` α

for all closed positive literals α. The set of P -ruloids is obtained by first taking
the set of pure xytt rules, irredundantly provable from Q, and next replacing each
of these pure xytt rules by one with bounded lookahead, using Proposition 4.

Theorem 2. Suppose V is uncountable and |A| ≤ |V |. Let P = (Σ,R) be a TSS

in tyft/tyxt format with |Σ| < |V |. Then P ` σ(t)
a

−→ p for t ∈ � (Σ), p ∈ T (Σ)
and σ a closed substitution, if and only if there are a P -ruloid H

t
a

−→u
and a closed

substitution σ′ with P ` σ′(α) for α ∈ H, σ′(t) = σ(t) and σ′(u) = p.

Proof: According to Proposition 2 there is a TSS Q in pure xyft format, such
that P ` α⇔ Q ` α for all closed positive literals α.

⇒ Suppose P ` σ(t)
a

−→ p. Then Q ` σ(t)
a

−→ p. According to Proposi-

tion 3 (⇒), there are a pure xytt rule G

t
a

−→u
and a closed substitution σ′ with

Q `irr
G

t
a

−→u
, Q ` σ′(α) for α ∈ G, σ′(t) = σ(t) and σ′(u) = p. Replace G

t
a

−→u

by the P -ruloid H

t
a

−→u
, using Proposition 4. According to Definition 17, there is

a substitution σ′′ such that σ′′(H

t
a

−→u
) = G

t
a

−→u
. Hence Q ` σ′σ′′(α) for α ∈ H ,

σ′′(t) = t and σ′′(u) = u. Thus for the P -ruloid H

t
a

−→u
and the closed sub-

stitution σ′σ′′ we have P ` σ′σ′′(α) for α ∈ H , σ′σ′′(t) = σ′(t) = σ(t) and
σ′σ′′(u) = σ′(u) = p.

⇐ Suppose there are a P -ruloid H

t
a

−→u
and a closed substitution σ′ with

P ` σ′(α) for α ∈ H , σ′(t) = σ(t) and σ′(u) = p. Then Q ` σ′(α) for α ∈ H .
H

t
a

−→u
is a replacement of a pure xytt rule G

t
a

−→u
irredundantly provable from Q.

According to Definition 17, for σ′(H

t
a

−→u
) there is a closed substitution σ′′ such

that σ′′(G) ⊆ σ′(H), σ′′(t) = σ′(t) and σ′′(u) = σ′(u). Since Q ` σ′(α) for
α ∈ H , we have Q ` σ′′(α) for α ∈ G. Thus according to Proposition 3 (⇐) we

have Q ` σ(t)
a

−→ p, so P ` σ(t)
a

−→ p. �

18 Wan Fokkink, Rob van Glabbeek, and Paulien de Wind

3.4 Decomposition of HML Formulas

Given a TSS P = (Σ,R) in tyft/tyxt format or in ready simulation format, the
following definition assigns to each term t ∈ � (Σ) and each observation ϕ ∈ � a
collection t−1

P (ϕ) of decomposition mappings ψ : V → � . Each of these mappings
ψ ∈ t−1

P (ϕ) guarantees, given a closed substitution σ, that σ(t) satisfies ϕ if σ(x)
satisfies the formula ψ(x) for all x ∈ var(t). Moreover, whenever for some closed
substitution σ the term σ(t) satisfies ϕ, there must be a ψ ∈ t−1

P (ϕ) with σ(x)
satisfying ψ(x) for all x ∈ var (t). This is formalised in Theorem 3.

Definition 19. Let P = (Σ,R) be a TSS in tyft/tyxt format (resp. ready simu-
lation format) and assume that the set V of variables is infinite, with |V | ≥ |A|
and |V | > |Σ|. Then ·−1

P : � (Σ) → (� → P(V → �)) is defined by:

– ψ ∈ t−1
P (〈a〉ϕ) iff there is a P -ruloid H

t
a

−→u
and a χ ∈ u−1

P (ϕ) and ψ : V → �
is given by

ψ(x) =

∧

(x
b

−→y)∈H

〈b〉ψ(y) ∧
∧

(x 6
c
−→)∈H

¬〈c〉> ∧ χ(x) if x ∈ var(u)

∧

(x
b

−→y)∈H

〈b〉ψ(y) ∧
∧

(x 6
c
−→)∈H

¬〈c〉> if x 6∈ var(u)

– ψ ∈ t−1
P (

∧

i∈I ϕi) iff

ψ(x) =
∧

i∈I

ψi(x)

where ψi ∈ t−1
P (ϕi) for i ∈ I.

– ψ ∈ t−1
P (¬ϕ) iff there is a function h : t−1

P (ϕ) → var(t) and ψ : V → � is
given by

ψ(x) =
∧

χ∈h−1(x)

¬χ(x)

To explain the idea behind Definition 19, we expand on two of its cases. Consider
t−1
P (〈a〉ϕ), and let σ be any closed substitution. The question is under which

conditions ψ(x) ∈ � on σ(x), for x ∈ var(t), there is a transition σ(t)
a

−→ q with
q |= ϕ. According to Theorems 1 and 2, there is such a transition if and only if
there is a closed substitution σ′ with σ′(t) = σ(t) and a P -ruloid H

t
a

−→u
such that

(1) the premises in σ′(H) are satisfied and (2) σ′(u) |= ϕ. The first condition is

covered if for x ∈ var (t), ψ(x) contains conjuncts 〈b〉ψ(y) for x
b

−→ y ∈ H and

conjuncts ¬〈c〉> for x 6
c
−→ ∈ H . By adding, for some χ ∈ u−1(ϕ), a conjunct

χ(x) if x ∈ var(u), the second condition is covered as well.
Consider t−1

P (¬ϕ), and let σ be any closed substitution. We have σ(t) 6|= ϕ if
and only if there is no χ ∈ t−1(ϕ) such that σ(x) |= χ(x) for all x ∈ var(t). In
other words, for each χ ∈ t−1(ϕ), ψ(x) must contain a conjunct ¬χ(x), for some
x ∈ var (t).

Compositionality of Hennessy-Milner Logic 19

Each ψ(x) in Definition 19 is a HML formula, owing to the fact that the rule
H

t
a

−→u
in the definition of t−1

P (〈a〉ϕ) has bounded lookahead. When clear from

the context, subscripts P will be omitted.

Theorem 3. Let P = (Σ,R) be a complete TSS in tyft/tyxt format (resp. ready
simulation format). For any t ∈ � (Σ), σ : V → T (Σ) and ϕ ∈ � :

σ(t) |=P ϕ ⇔ ∃ψ ∈ t−1
P (ϕ) ∀x ∈ var(t) : σ(x) |=P ψ(x)

Proof: With induction on the structure of ϕ. Here we assume that V is infinite,
|V | ≥ |A| and |V | > |Σ|. This assumption will be discharged in Section 3.5.

– ϕ = 〈a〉ϕ′

⇒ Suppose σ(t) |= 〈a〉ϕ′. Then by Definition 3 there is a p ∈ T (Σ) with

P `ws σ(t)
a

−→ p and p |= ϕ′. Thus, by Theorem 2 (resp. Theorem 1) there
must be a P -ruloid H

t
a

−→u
and a closed substitution σ′ with P `ws σ

′(α) for

α ∈ H , σ′(t) = σ(t), i.e. σ′(x) = σ(x) for x ∈ var (t), and σ′(u) = p. Since
σ′(u) |= ϕ′, the induction hypothesis can be applied, and there must be a χ ∈
u−1(ϕ′) such that σ′(z) |= χ(z) for all z ∈ var (u). Now define ψ ∈ t−1(〈a〉ϕ′)

as indicated in Definition 19, using H

t
a

−→u
and χ. For (x

b
−→ y) ∈ H one has

P `ws σ
′(x)

b
−→ σ′(y). Moreover, for (x 6

c
−→) ∈ H one has P `ws σ

′(x) 6
c
−→,

so the consistency of `ws yields P 6`ws σ
′(x)

c
−→ q for all q ∈ T (Σ), and

thus σ′(x) |= ¬〈c〉>. We proceed to prove that σ′(x) |= ψ(x) for x ∈ V . We
apply ordinal induction on the lookahead of x in H , which is defined by

sup{1 + lookahead of y in H | x
b

−→ y ∈ H for some b ∈ A}

Since H

t
a

−→u
has bounded lookahead, the lookahead of x in H is a well-defined

ordinal number. We distinguish two cases.

x ∈ var(u). Then ψ(x) =
∧

(x
b

−→y)∈H
〈b〉ψ(y)∧

∧

(x 6
c
−→)∈H

¬〈c〉> ∧χ(x). By

induction on lookahead σ′(y) |= ψ(y), so σ′(x) |= 〈b〉ψ(y) for (x
b

−→ y) ∈

H . Since moreover σ′(x) |= ¬〈c〉> for (x 6
c
−→) ∈ H and σ′(x) |= χ(x), it

follows that σ′(x) |= ψ(x).
x 6∈ var(u). Then ψ(x) =

∧

(x
b

−→y)∈H
〈b〉ψ(y)∧

∧

(x 6
c
−→)∈H

¬〈c〉>. By induc-

tion on lookahead σ′(y) |= ψ(y), so σ′(x) |= 〈b〉ψ(y) for (x
b

−→ y) ∈ H .

Since moreover σ′(x) |= ¬〈c〉> for (x 6
c
−→) ∈ H , it follows that σ′(x) |=

ψ(x).

Finally, σ(x) = σ′(x) |= ψ(x) for x ∈ var (t).
⇐ Suppose that there is a ψ ∈ t−1(〈a〉ϕ′) such that σ(x) |= ψ(x) for all

x ∈ var (t). Let ψ be defined in terms of the P -ruloid H

t
a

−→u
and χ ∈ u−1(ϕ′).

We define a closed substitution σ′ with as domain the variables in this P -
ruloid such that:

σ′(t) = σ(t), (21)

20 Wan Fokkink, Rob van Glabbeek, and Paulien de Wind

P `ws σ
′(x)

b
−→ σ′(y) for (x

b
−→ y) ∈ H, (22)

P `ws σ
′(x) 6

c
−→ for (x 6

c
−→) ∈ H ; and (23)

σ′(y) |= ψ(y) for y ∈ dom(σ′). (24)

σ′(y) is defined by induction on the depth of y in the P -ruloid.
• depth(y) = 0. Then y ∈ var (t). We define σ′(y) = σ(y). This yields

property (21). Moreover, property (24) for y holds. The formula ψ(y)

contains the conjunct ¬〈c〉> for (y 6
c
−→) ∈ H , so by the completeness of

P , property (24) for y implies property (23) for y.

• depth(y) > 0. Let x
b

−→ y be the positive premise in the P -ruloid with
right-hand side y. By induction, σ′(x) is already defined. By property

(24), σ′(x) |= ψ(x), so σ′(x) |= 〈b〉ψ(y). Hence, P `ws σ
′(x)

b
−→ p for

some p ∈ T (Σ) with p |= ψ(y). We define σ′(y) = p. Then property (22)

for the premise x
b

−→ y and property (24) for y hold. By the completeness
of P , property (24) for y implies that property (23) for y holds as well.

Since ψ(z) implies χ(z) for z ∈ var(u), property (24) yields σ′(y) |= χ(y) for
y ∈ var (u). Thus the induction hypothesis can be applied, so σ′(u) |= ϕ′.
By properties (21)–(23) together with Theorem 2 (resp. Theorem 1), P `ws

σ(t)
a

−→ σ′(u). Hence, σ(t) |= 〈a〉ϕ′.
– ϕ =

∧

i∈I ϕi

σ(t) |=
∧

i∈I ϕi ⇔ ∀i∈I : σ(t) |= ϕi

⇔ ∀i∈I ∃ψi∈ t−1(ϕi) ∀x∈var (t) : σ(x) |= ψi(x)
⇔ ∃ψ∈ t−1(

∧

i∈I ϕi) ∀x∈var (t) : σ(x) |= ψ(x).
– ϕ = ¬ϕ′

σ(t) |= ¬ϕ′ ⇔ σ(t) 6|= ϕ′

⇔ ∃h : t−1(ϕ′) → var(t) ∀χ ∈ t−1(ϕ′) : σ(h(χ)) 6|= χ(h(χ))
⇔ ∃h : t−1(ϕ′) → var(t) ∀x ∈ var (t) : σ(x) |=

∧

χ∈h−1(x) ¬χ(x)

⇔ ∃ψ ∈ t−1(¬ϕ′) ∀x ∈ var (t) : σ(x) |= ψ(x). �

3.5 Counting variables

So far we have developed a modal decomposition method that applies to arbi-
trary languages with a structural operational semantics in tyft/tyxt format or in
ready simulation format, provided that we have an uncountable set of variables
whose cardinality exceeds the cardinality of the collection of operators in the
language, and at least equals the cardinality of the set of actions. In computer
science applications, however, it is customary to work with countable sets of
variables. Here we show that our decomposition result applies regardless of the
cardinality of the set of variables.

Assume a given set of true variables Vtrue . These are the only ones that are
used in a given application. Now, given a set of actions A and a TSS P = (Σ,R),
we define an uncountable set V ⊇ Vtrue satisfying |V | ≥ |A| and |V | > |Σ|. The
elements of V are called variables and variables in V −Vtrue are virtual variables.

Compositionality of Hennessy-Milner Logic 21

As long as only the true variables appear in TSSs and specifications of processes,
nothing stops us from defining any amount of virtual variables to be used in our
constructions. Terms, TSSs, ruloids and other syntactic constructions are called
true if they only contain true variables, and virtual otherwise.

Theorems 1 and 2 (our intermediate results) apply merely to virtual ruloids;
they may fail to hold for true ruloids. Definition 19 on the other hand provides
a modal decomposition t−1(ϕ) for any virtual term t (and any HML formula ϕ),
and thus surely for every true term t. Such a modal decomposition consists of a
set of decomposition mappings ψ, each of which allocates an HML formula ψ(x)
to every variable x. As only the ψ(x) for x ∈ var (t) play a rôle in Theorem 3,
nothing is lost by restricting the domain of ψ(x) to var (t). (This is an a posteriori
restriction; virtual variables may have been used in the definition of ψ(x).) Using
this restriction of the decomposition mappings, Theorem 3 restricts to a valid
statement involving true variables only.

3.6 Examples

We give two examples of the application of Theorem 3.

Example 4. Let A = {a, b} and P = (Σ,R), where Σ consists of the constant c
and the binary function symbol f , and R is:

c
a

−→ c
x1

a
−→ y

f(x1, x2)
b

−→ y

x2
a

−→ y x1 6
b
−→

f(x1, x2)
b

−→ y

This TSS is complete and in ready simulation format. We proceed to compute
f(x1, x2)

−1(〈b〉>). The only two P -ruloids (modulo α-conversion) with a con-

clusion f(x1, x2)
b

−→ are

x1
a

−→ y

f(x1, x2)
b

−→ y

x2
a

−→ y x1 6
b
−→

f(x1, x2)
b

−→ y

According to Definition 19, f(x1, x2)
−1(〈b〉>) = {ψ1, ψ2} where ψ1 and ψ2 are

defined as follows, using some χ ∈ y−1(>) (so χ(x) = > for all x ∈ V):

ψ1(y) = χ(y) = > ψ2(y) = χ(y) = >
ψ1(x1) = 〈a〉ψ1(y) = 〈a〉> ψ2(x1) = ¬〈b〉>
ψ1(z) = > if z 6∈ {y, x1} ψ2(x2) = 〈a〉ψ2(y) = 〈a〉>

ψ2(z) = > if z 6∈ {y, x1, x2}

So by Theorem 3 a closed term f(p1, p2) can execute a b if and only if p1 can
execute an a, or p1 cannot execute a b and p2 can execute an a.

We proceed to compute f(x1, x2)
−1(¬〈b〉>). There are four possible functions

h : f(x1, x2)
−1(〈b〉>) → var(f(x1, x2)), yielding four possible definitions of ψ ∈

f(x1, x2)
−1(¬〈b〉>). In all four cases, ψ(z) = > for z 6∈ {x1, x2}.

22 Wan Fokkink, Rob van Glabbeek, and Paulien de Wind

1. If h(ψ1) = h(ψ2) = x1 then

ψ(x1) = ¬ψ1(x1) ∧ ¬ψ2(x1) = ¬〈a〉> ∧ ¬¬〈b〉> = ¬〈a〉> ∧ 〈b〉>
ψ(x2) = >

2. If h(ψ1) = h(ψ2) = x2 then

ψ(x1) = >
ψ(x2) = ¬ψ1(x2) ∧ ¬ψ2(x2) = ¬> ∧ ¬〈a〉>

3. If h(ψ1) = x1 and h(ψ2) = x2 then

ψ(x1) = ¬ψ1(x1) = ¬〈a〉>
ψ(x2) = ¬ψ2(x2) = ¬〈a〉>

4. If h(ψ1) = x2 and h(ψ2) = x1 then

ψ(x1) = ¬ψ2(x1) = ¬¬〈b〉> = 〈b〉>
ψ(x2) = ¬ψ1(x2) = ¬>

By Theorem 3 a closed term f(p1, p2) cannot execute a b if and only if either (1)
p1 can execute a b but not an a, or (3) neither p1 nor p2 can execute an a. The
other two possibilities (2) and (4) do not qualify, since no term can ever satisfy
¬>.

Example 5. Let A = {a, b} and P = (Σ,R), where Σ consists of the constant c
and the unary function symbol f , and R is:

c
a

−→ c
x

a
−→ y

f(x)
b

−→ y

x
b

−→ y y
a

−→ z

f(x)
a

−→ f(y)

This TSS is complete and in tyft/tyxt format. We compute f(f(x))−1(〈b〉〈a〉>).

The only P -ruloid (modulo α-conversion) with a conclusion f(f(x))
b

−→ is

x
b

−→ y y
a

−→ z

f(f(x))
b

−→ f(y)

So for each ψ ∈ f(f(x))−1(〈b〉〈a〉>) we have ψ(x) = 〈b〉ψ(y) = 〈b〉(〈a〉ψ(z) ∧
χ(y)) = 〈b〉(〈a〉> ∧ χ(y)) with χ ∈ f(y)−1(〈a〉>). The only P -ruloid (modulo

α-conversion) with a conclusion f(y)
a

−→ is

y
b

−→ z z
a

−→ w

f(y)
a

−→ f(z)

So χ(y) = 〈b〉χ(z) = 〈b〉(〈a〉χ(w) ∧ χ′(z)) = 〈b〉(〈a〉> ∧ χ′(z)) for some χ′ ∈
f(z)−1(>). Since χ′(z) = >, ψ(x) = 〈b〉(〈a〉> ∧ 〈b〉〈a〉>).

By Theorem 3 a closed term f(f(p)) can execute a b followed by an a if and

only if p
b

−→ p′ where p′ can execute an a and also a b followed by an a.

Compositionality of Hennessy-Milner Logic 23

3.7 Counterexamples

The following example shows that in Theorem 3 it is essential that the TSS is
complete. That is, the result would fail if we took the transition relation induced
by a TSS to consist of those transitions for which a well-supported proof exists.

Example 6. Let A = {a, b} and P = (Σ,R), where Σ consists of the constant c
and the unary function symbol f , and R is:

x 6
a
−→

f(x)
b

−→ c

c 6
a
−→

c
a

−→ c

As shown in Example 1, this TSS, which is in ready simulation format, is incom-
plete. In particular, neither P `ws c

a
−→ p for a closed term p nor P `ws c 6

a
−→.

Let us assume that the transition relation induced by this TSS consists of
those transitions for which a well-supported proof exists. Then there is no a-
transition for c and no b-transition for f(c), so c |=P ¬〈a〉> and f(c) |=P ¬〈b〉>.

The only P -ruloid with a conclusion f(x)
b

−→ is x 6
a
−→

f(x)
b

−→c
. Hence Theorem 3

would yield f(c) |=P 〈b〉> ⇔ c |=P ¬〈a〉>. Since this is false, Theorem 3 would
fail with respect to P .

Finally, we argue that Theorem 1 and Theorem 2 cannot be combined in a
straightforward fashion to apply to TSSs that contain both bounded lookahead
and negative premises.

Example 7. Let A = {a, b} and P = (Σ,R), where Σ consists of the constant 0,
the unary function symbols a , b and f and the binary function symbol + ,
and R is as follows for all m ∈ A:

x
m
−→ x′

x+ y
m
−→ x′

y
m
−→ y′

x+ y
m
−→ y′

mx
m
−→ x

x
a

−→ y

f(x)
a

−→ f(y)

x
a

−→ y y 6
b
−→

f(x)
b

−→ 0

This TSS is complete and in nxyft format. Note that for closed substitutions σ,

σ(f(f(x))) |= 〈b〉>
⇔ σ(f(x)) |= 〈a〉(¬〈b〉>)
⇔ σ(x) |= 〈a〉¬(〈a〉¬〈b〉>)

Suppose that there would exist a notion of P -ruloids, being nxytt rules, such
that P `ws σ(f(f(x)))

a
−→ 0 for σ a closed substitution if and only if there are

a P -ruloid H

f(f(x))
a

−→u
and a closed substitution σ′ with P `ws σ

′(α) for α ∈ H ,

σ′(x) = σ(x) and σ′(u) = 0. In that case we would have, as in Theorem 3, that
for all closed substitutions σ,

σ(f(f(x))) |= 〈b〉> ⇔ ∃ψ ∈ f(f(x))−1(〈b〉>) : σ(x) |= ψ(x)

24 Wan Fokkink, Rob van Glabbeek, and Paulien de Wind

However, according to Definition 19, for each ψ ∈ f(f(x))−1(〈b〉>) and y ∈ V ,
ψ(y) does not contain nested negations, whereas the formula 〈a〉¬(〈a〉¬〈b〉>)
above cannot be written as a (possibly infinite) disjunction of HML formulas
(as defined in Definition 2) without nested negations. The latter follows because
the formula 〈a〉¬(〈a〉¬〈b〉>) distinguishes the two process of Figure 1—yet these
processes are 2-nested simulation equivalent [14] and 2-nested equivalent pro-
cesses cannot be distinguished by HML formulas without nested negations [14].

?b
�

�
�	

a

b

�
�

�	

a

b

@
@
@R

a

b

?
b

b

@
@
@R

a

b

?
a

b

?
b

b

a(a0 + ab0) + aab0

|= 〈a〉¬(〈a〉¬〈b〉>)

?b
�

�
�	

a

b

�
�

�	

a

b

@
@
@R

a

b

?
b

b

a(a0 + ab0)

6|= 〈a〉¬(〈a〉¬〈b〉>)

Fig. 1. Two 2-nested simulation equivalent processes that can be distinguished by the
HML formula with nested negations 〈a〉¬(〈a〉¬〈b〉>)

4 Bisimulation as a Congruence

In [14], Groote & Vaandrager introduced the tyft/tyxt format, and proved
that on any LTS specified by a well-founded TSS in tyft/tyxt format, bisimula-
tion equivalence is a congruence, i.e. is preserved by all functions in the signature.
Fokkink & van Glabbeek showed in [9] that the well-foundedness condition
can be dropped, by constructing for each TSS in tyft/tyxt format an equiva-
lent TSS that consists of pure xyft rules only. In this section we show that the
congruence result for TSSs in tyft/tyxt format is a corollary of Theorem 3.

Corollary 1. Let P = (Σ,R) be a TSS in tyft/tyxt format, t ∈ � (Σ) and σ, σ′

closed substitutions. If σ(x)↔σ′(x) for x ∈ var (t), then σ(t)↔σ′(t).

Proof: In light of Proposition 1, it suffices to show that σ(t) and σ(t′) satisfy the
same formulas from � . Let σ(t) |= ϕ ∈ � . By Theorem 3 there is a ψ ∈ t−1(ϕ)
such that σ(x) |= ψ(x) for x ∈ var (t). Since ψ(x) ∈ � and σ(x) ↔ σ′(x) for
x ∈ var (t), it follows by Proposition 1 that σ′(x) |= ψ(x) for x ∈ var(t). So by
Theorem 3, σ′(t) |= ϕ. By symmetry, σ′(t) |= ϕ ∈ � implies σ(t) |= ϕ. �

Likewise, it follows from Theorem 3 that on any LTS specified by a complete TSS
in ready simulation format, bisimulation equivalence is a congruence. This is a
special case of the congruence result from [7, 9] for complete TSSs in ntyft/ntyxt
format.

Compositionality of Hennessy-Milner Logic 25

Bloom, Fokkink & van Glabbeek [5] showed how the decomposition
method of modal formulas can be used to obtain general congruence formats
for a wide range of behavioural semantics. The idea is to take as a starting
point the modal characterization of the semantics under scrutiny, this being a
set O of HML formulas such that two processes are semantically equivalent if
and only if they make true the same formulas in O. The congruence format for
this semantics should guarantee that the decomposition of a formula in O always
produces formulas in O. With the decomposition method in the current paper,
we could use this same approach to produce congruence formats that include
lookahead. We leave this as future work.

References

1. H. R. Andersen (1995): Partial model checking. In Proceedings Tenth Annual
IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press,
San Diego, California, pp. 398–407.

2. H.R. Andersen, C. Stirling & G. Winskel (1994): A compositional proof
system for the modal µ-calculus. In Proceedings Ninth Annual IEEE Symposium
on Logic in Computer Science, IEEE Computer Society Press, pp. 144–153.

3. H.R. Andersen & G. Winskel (1992): Compositional checking of satisfaction.
Formal Methods in System Design 1(4), pp. 323–354.

4. H. Barringer, R. Kuiper & A. Pnueli (1984): Now you may compose temporal
logic specifications. In ACM Symposium on Theory of Computing (STOC ’84),
ACM Press, pp. 51–63.

5. B. Bloom, W.J. Fokkink & R.J. van Glabbeek (2004): Precongruence formats
for decorated trace semantics. Transactions on Computational Logic 5(1), pp. 26–
78.

6. B. Bloom, S. Istrail & A.R. Meyer (1995): Bisimulation can’t be traced. Jour-
nal of the ACM 42(1), pp. 232–268.

7. R. Bol & J.F. Groote (1996): The meaning of negative premises in transition
system specifications. Journal of the ACM 43(5), pp. 863–914.

8. S.D. Brookes, C.A.R. Hoare & A.W. Roscoe (1984): A theory of communi-
cating sequential processes. Journal of the ACM 31(3), pp. 560–599.

9. W.J. Fokkink & R.J. van Glabbeek (1996): Ntyft/ntyxt rules reduce to ntree
rules. Information and Computation 126(1), pp. 1–10.

10. W.J. Fokkink, R.J. van Glabbeek & P. de Wind (2003): Compositionality of
Hennessy-Milner logic through structural operational semantics. In A. Lingas &
B.J. Nilsson, editors: 14th International Symposium on Fundamentals of Compu-
tation Theory (FCT ’03), LNCS 2751, Springer, pp. 412–422.

11. R.J. van Glabbeek (2001): The linear time – branching time spectrum I: The
semantics of concrete, sequential processes. In J.A. Bergstra, A. Ponse & S.A.
Smolka, editors: Handbook of Process Algebra, chapter 1, Elsevier, pp. 3–99.

12. R.J. van Glabbeek (2004): The meaning of negative premises in transition system
specifications II. Journal of Logic and Algebraic Programming 60/61, pp. 229–258.

13. J.F. Groote (1993): Transition system specifications with negative premises. The-
oretical Computer Science 118(2), pp. 263–299.

14. J.F. Groote & F. Vaandrager (1992): Structured operational semantics and
bisimulation as a congruence. Information and Computation 100(2), pp. 202–260.

26 Wan Fokkink, Rob van Glabbeek, and Paulien de Wind

15. D. Harel, D. Kozen & R. Parikh (1982): Process logic: Expressiveness, de-
cidability, completeness. Journal of Computer and System Sciences 25(2), pp.
144–170.

16. M.C.B. Hennessy & R. Milner (1985): Algebraic laws for non-determinism and
concurrency. Journal of the ACM 32(1), pp. 137–161.

17. M.C.B. Hennessy & C. Stirling (1985): The power of the future perfect in
program logics. Information and Control 67, pp. 23–52.

18. D. Kozen (1983): Results on the propositional µ-calculus. Theoretical Computer
Science 27(3), pp. 333–354.

19. F. Laroussinie & K. G. Larsen (1995): Compositional model checking of real
time systems. In I. Lee & S. A. Smolka, editors: CONCUR ’95: Concurrency
Theory, 6th Conference, LNCS 962, Springer-Verlag, pp. 27–41.

20. K.G. Larsen (1986): Context-Dependent Bisimulation between Processes. PhD
thesis, University of Edinburgh, Edinburgh.

21. K.G. Larsen & L. Xinxin (1991): Compositionality through an operational se-
mantics of contexts. Journal of Logic and Computation 1(6), pp. 761–795.

22. R. Milner (1980): A Calculus of Communicating Systems. Springer. LNCS 92.
23. R. Milner (1981): A modal characterization of observable machine-behaviour. In

E. Astesiano & C. Böhm, editors: CAAP ’81: Trees in Algebra and Programming,
6th Colloquium, LNCS 112, Springer, pp. 25–34.

24. R. Milner (1983): Calculi for synchrony and asynchrony. Theoretical Computer
Science 25(3), pp. 267–310.

25. G. D. Plotkin (2004): A structural approach to operational semantics. Journal
of Logic and Algebraic Programming 60/61, pp. 17–139. Originally appeared in
1981.

26. A. Pnueli (1981): The temporal logic of concurrent programs. Theoretical Com-
puter Science 13, pp. 45–60.

27. R. de Simone (1985): Higher-level synchronising devices in Meije–SCCS. Theo-
retical Computer Science 37(3), pp. 245–267.

28. A. Simpson (2004): Sequent calculi for process verification: Hennessy-Milner logic
for an arbitrary GSOS. Journal of Logic and Algebraic Programming 60/61, pp.
287–322.

29. C. Stirling (1985): A proof-theoretic characterization of observational equiva-
lence. Theoretical Computer Science 39(1), pp. 27–45.

30. C. Stirling (1985): A complete modal proof system for a subset of SCCS. In
H. Ehrig, C. Floyd, M. Nivat & J.W. Thatcher, editors: Mathematical Foundations
of Software Development: Proceedings of the Joint Conference on Theory and
Practice of Software Development (TAPSOFT), Volume 1: Colloquium on Trees
in Algebra and Programming (CAAP ’85), LNCS 185, Springer, pp. 253–266.

31. C. Stirling (1985): A complete compositional modal proof system for a subset
of CCS. In W. Brauer, editor: Automata, Languages and Programming, 12th
Colloquium (ICALP ’85), LNCS 194, Springer, pp. 475–486.

32. C. Stirling (1987): Modal logics for communicating systems. Theoretical Com-
puter Science 49(2-3), pp. 311–347.

33. G. Winskel (1986): A complete proof system for SCCS with modal assertions.
Fundamenta Informaticae IX, pp. 401–420.

34. G. Winskel (1990): On the compositional checking of validity (extended abstract).
In J.C.M. Baeten & J.W. Klop, editors: CONCUR ’90: Theories of Concurrency:
Unification and Extension, LNCS 458, Springer, pp. 481–501.

