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Abstract 
 
While regulatory compliance data has been governed in the financial services industry for a 

long time to identify, assess, remediate and prevent risks, improving data governance 

(“DG”) has emerged as a new paradigm that uses machine learning models to enhance the 

level of data management. 

 

In the literature, there is a research gap. Machine learning models have not been extensively 

applied to DG processes by a) predicting data quality (“DQ”) in supervised learning and 

taking temporal sequences and correlations of data noise into account in DQ prediction; b) 

predicting DQ in unsupervised learning and learning the importance of data noise jointly 

with temporal sequences and correlations of data noise in DQ prediction; c) analyzing DQ 

prediction at a granular level; d) measuring network run-time saving in DQ prediction; and 

e) predicting information security compliance levels. 

 

Our main research focus is whether our ML models accurately predict DQ and information 

security compliance levels during DG processes of financial institutions by learning 

regulatory compliance data from both theoretical and experimental perspectives. 

 

We propose five machine learning models including a) a DQ prediction sequential learning 

model in supervised learning; b) a DQ prediction sequential learning model with an attention 

mechanism in unsupervised learning; c) a DQ prediction analytical model; d) a DQ 

prediction network efficiency improvement model; and e) an information security 

compliance prediction model. 

 

Experimental results demonstrate the effectiveness of these models by accurately predicting 

DQ in supervised learning, precisely predicting DQ in unsupervised learning, analyzing DQ 

prediction by divergent dimensions such as risk types and business segments, saving 

significant network run-time in DQ prediction for improving the network efficiency, and 

accurately predicting information security compliance levels. 
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Our models strengthen DG capabilities of financial institutions by improving DQ, data risk 

management, bank-wide risk management, and information security based on regulatory 

requirements in the financial services industry including Basel Committee on Banking 

Supervision Standard Number 239, Australia Prudential Regulation Authority (“APRA”) 

Standard Number CPG 235 and APRA Standard Number CPG 234.  These models are part 

of DG programs under the DG framework of financial institutions. 
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Chapter 1 
 

Introduction 
 
This thesis is about learning from regulatory compliance data for supporting the data 

governance (“DG”) processes in the financial services industry. In this chapter, we provide 

information about DG in the industry, and DG coverage along with relevant regulatory 

requirements. We then explain the thesis motivation by describing opportunities offered by 

machine learning (“ML”) work for DG. Following this, we propose the thesis scope, aims, 

models, model networks before presenting the research methodology.  Finally, we 

conclude the chapter by introducing upcoming chapters. 
 

1.1 Background and Motivation 

 
1.1.1 Data Governance in the Financial Services Industry 

 

Industry Characteristics 
 

In this financial services industry, regulatory compliance data has been governed for a long 

time under various DG processes to identify, assess and prevent risks [151, 152, 153]. 

 

In this study, DG refers to policies and procedures geared towards the management of 

usability, availability, integrity and security of data [151, 152]. It is a function owned by 

the business and executed by business stewards to recognize the value of data to an 

enterprise and manage it as a company asset. The more data is shared across the company, 

the more valuable it becomes. This increases the value of data which is the primary goal 

for DG. 
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In this industry, massive amounts of data need to be governed [63, 82, 153].  Their 

significance is classified by business criticality and sensitivity [120]. The classification 

becomes a benchmark for the determination of information security (“IS”) controls. These 

controls impact IS compliance levels. Generally, critical data is prioritized for early 

improvements. The data is mostly regulatory compliance related [5, 153] although financial 

institutions (“FIs”) lack powerful tools to aggregate data from various sources [6].  

 

Data in this industry is commonly governed under a data governance framework (“DGF”) 

[153] pursuant to DG policies and procedures. Under such a framework, a series of DG 

initiatives are launched by FIs as part of meeting their DG objectives. These initiatives are 

called data governance programs (“DGP”). 

Data Governance Coverage 
 

In a DG framework, DG rules and policies related to data ownership, data processes, and 

the level of data quality (“DQ”) controls are defined. These rules and policies set out 

required controls for the whole DG process specifically: 

a. lay out data standards for what DQ key performance indicators [153] are required and 

which data elements (“DEs”) are deemed as critical. They include what business rules 

that are to be adhered to and to be profiled for the quality assessment; 

b. set out information security controls (“ISCs”) [153] to provide guidance on how to 

secure data in systems. An example of this is a control over application systems, 

operating systems and networks; 

c. are implemented by a series of DGP to ensure the oversight of DM; and 

d. include a business glossary which is a primer to establish the metadata for achieving 

common data definitions. The glossary is used in the DQ management. 
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A DGF can be used to maintain and improve the level of DQ and IS during DG processes. 

It is commonly implemented by launching various DGP. 

Data Governance Regulatory Requirements 

In launching DGP as part of a framework, FIs are obligated to meet three regulatory 

requirements related to DG.  These requirements defining quantitative DQ in terms of DQ 

metrics are issued by international and local regulators in the financial services industry. 

The first requirement is that from an international perspective, FIs are expected to meet 

DQ principles in the process of aggregating risk data into risk reports. These principles 

include the principle number 3 (accuracy and integrity), the principle number 4 

(completeness) and the principle number 5 (timeliness) under Basel Committee on Banking 

Supervision (“BCBS”) Standard Number 239 (“BCBS 239”) [3]. FIs are recommended to 

provide forward-looking capabilities of DQ for the improvement of DQ. 

In meeting these principles, DQ issues, namely data noise (“DN”), need to be minimized 

including an omission of translation, a negligence in the data format transformation, and 

retention of data which is redundant, duplicated, stale, unreasonable, invalid, mis-matched, 

incomplete or null. These issues are common [3]. 

 

The second requirement is that from a local standpoint, FIs are required to manage data 

risks through the assessment and management of DQ by six dimensions including the 

dimension of (a) accuracy; (b) completeness; (c) consistency; (d) timeliness; (e) 

availability; and (f) fitness for use under Australia Prudential Regulation Authority 

(“APRA”) Standard Number CPG 235 (“CPG 235”) [120]. 

 

The third requirement is that from another local point of view, FIs are expected to manage 

IS risks under APRA Standard CPG 234 (“CPG 234”) [75] by including thirteen IS 

controls, called ISCs, during the information asset life-cycle (“Life Cycle”) under IS policy 

frameworks. 
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These regulatory requirements reveal the importance of meeting DG objectives including 

an improvement of DQ [3], the management of data risk [120] and an enhancement of IS 

[75] respectively. 

 

1.1.2 Opportunities for Using Machine Learning in Data Governance 

 

In recent years, DG has emerged as a new paradigm that uses ML models to enhance the 

level of data management (“DM”) [151, 153].  Using these models, FIs can strengthen their 

capabilities to adapt to the changing regulatory compliance data environment [153]. 

Applying ML models to DG is indispensable for multiple reasons listed below. 

a. Tera scale ML is an important ingredient in the quality modeling and monitoring of big 

data [38]. This covers large scale applications of ML and their computational models; 

b. Applying ML by FIs benefits risk management significantly by addressing specific 

problems including data risk such as data quality risk [141]; 

c. ML can create accurate methods for data analysis, modeling and prediction by 

identifying complex and non-linear patterns in huge data sets [142]; 

d. Making efficient performance prediction for large-scale advanced analytics minimizes 

the amount of training data required [143]; and 

e. ML can play an essential role in the regulatory reporting of the financial services 

industry by improving the compliance processes [142]. 

ML models have become critically important in supporting decision making in real time in 

the financial services industry [53]. In an examination of existing research relating to the 

application of ML models to DG, these models have not been widely deployed to DG 

processes in the industry despite the availability of many models. 

a. In 2018, the regulator, Financial Stability Board (“FSB”) monitoring the global 

financial system, in this financial services industry recognized the need to leverage ML 

models for DQ improvement [6]. FSB recommended FIs to provide an assurance on 

DQ through additional checks with these models. This is similar to the suggestion from 
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BCBS highlighting the importance of providing forward looking capabilities of DQ 

[3]. A typical example of this is prediction of DQ; 

b. In 2017, many FIs have been striving to build an analytics hub to implement ML for 

high quality analytics [80]. They recognized the need to exert more efforts on 

developing advanced analytical capabilities [154]. These events show the significance 

of leveraging ML for an analysis of DQ including current and future DQ for the 

compliance purpose; 

c. In 2016, FIs have been putting much efforts on the application of artificial intelligence 

(“AI”) to reduce FI compliance costs, called RegTech or Regulatory Technology, by 

utilizing the power of big data [81]. They trust that AI or ML would be able to swiftly 

filter bad quality from big data and slide good quality for use [82]. They recognize the 

need to improve the network efficiency of learning DQ with ML; and 

d. In 2019, APRA revised a standard, CPG 234 [75], to guide the management of IS 

through ISCs in the financial services industry. Until 2020, many banking systems have 

been attacked by hackers impacting numerous customers [83]. To address this, 

information security levels (“ISL”) need to be enhanced. ML can be used to predict 

potentially anomalous patterns of threats for the risk management purpose [190]. An 

example is to forecast IS compliance levels for preventing IS issues from happening 

[40]. 

The above discussion reveals problems of DG in the financial services industry and the 

opportunity to use ML to improve data quality prediction (“DQP”), DQ and DQP analytics 

capabilities, an improvement in network efficiency of DQP, and prediction of IS 

compliance levels during DG processes. These problems motivate us for using ML in DQP 

and IS compliance prediction under DG of the industry. 

1.2 Scope, Aims and Models 

In facing these DG problems, we describe scope, aims and models of this thesis. 
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1.2.1 Scope 

The scope of the thesis centres on data analysis in connection with DG regulatory 

requirements: a) risk data as set out in BCBS 239 consisting of market risk (“MR”), credit 

risk (“CR”), operational risk (“OR”) and liquidity risk (“LR”); b) business and operations 

data as defined in CPG 235 including data used for analytics and intelligence purposes; 

and c) IS data as specified in CPG 234. As such, data in this thesis is regulatory compliance 

data. This belongs to big data due to the large volume and a wide variety of data and a high 

degree of veracity [165, 166]. 

 
1.2.2 Aims 

The aims of the thesis are to address the data governance problems by applying ML models 

to DG mentioned in Section 1.1.2. The specific aims of the thesis are listed below 

correspondingly for the enhancement of DG for FIs: 

a. Improving DQ through the initiation of an action plan to remediate deficient DQ [4]. 

DQP under DG in supervised learning enables to identify poor data in advance; 

b. Managing data risk through DQ assessment and management [120]. DQP analysis by 

multi-dimensions under DG provides a notion on what kinds of data are of low quality; 

c. Managing bank-wide risk through building an effective operating model for risk data 

aggregation and reporting practices [4]. The network efficiency improvement in DQP 

under DG helps to identify potential poor data swiftly; and 

d. Enhancing IS through ISCs implementation [75]. Prediction of ISL under DG provides 

an early alert to which ISCs are inadequate. 

 

Our main research question is: “Whether DQ and IS compliance levels during DG 

processes of FIs can be accurately predicted through our ML models by learning regulatory 

compliance data from both theoretical and experimental perspectives”. 
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1.2.3 Models 

 
To meet the aims, we propose five models which are briefly described below. 

a. A DQP model using supervised learning under DG to meet the regulatory requirement 

of DG. This model considers sequential learning of DN by taking temporal sequences 

and correlations of DN into account. This DQP enables to identify poor data in advance, 

as mentioned in item number (a) of the Section 1.2.2; 

b. A DQP model using unsupervised learning under DG to meet the regulatory 

requirement of DG. This model considers the importance of DN on top of the temporal 

sequences and correlations of DN collectively in DQP. Additionally, this model takes 

temporal sequences and correlations of DN into account in DQ measurement. This 

DQP enables to identify poor data in advance, as mentioned in item number (a) of the 

Section 1.2.2; 

c. A DQP analytical model under DG to meet the regulatory requirement of DG. This 

DQP analysis provides a notion on what kinds of data are of low quality, as mentioned 

in item number (b) of the Section 1.2.2; 

d. A DQP network efficiency improvement model under DG to meet the regulatory 

requirement of DG by measuring network run-time saving. This network efficiency 

improvement in DQP helps to identify potential poor data swiftly, as mentioned in item 

number (c) of the Section 1.2.2; and 

e. An ISL prediction model considering sequences, correlations and importance of IS 

factors collectively for IS compliance prediction under DG to meet the regulatory 

requirement of DG. This ISL prediction provides an early alert to which ISCs are 

inadequate, as mentioned in item number (d) of the Section 1.2.2. 

These models address limitations of ML work related to DG mentioned in Section 2.2. 

 
Models 1 - Data Quality Prediction in Supervised Learning  

In literature discussed in Section 2.2.2.1 to 2.2.2.3 and 2.2.3, there are limitations of ML 

work related to DQP in supervised learning under DG: a) ML techniques have not been 

applied in DQP using supervised learning extensively. In particular, a ML model has not 
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been proposed for DQP in supervised learning; b) ML techniques have not been applied in 

the forecast of DQ during DG processes by taking temporal sequences and correlations of 

DN into consideration. In particular, a ML model considering temporal sequences and 

correlations of DN has not been proposed for DQP; and c) ML techniques have not been 

applied to DQP during DG processes for meeting DG regulatory requirements.  These are 

common issues from research results, as summarized below. 

 

a. For DQP in supervised learning, [31] predicted DQ in a ML model, [34] focused on 

outliner detection and data discretization without confirming the model effectiveness 

from theoretical and experimental aspects, and [36] implemented an international 

requirement, BCBS 239, without running any experiments; 

b. DN are time-series dependent [167] and co-relate with another or others. Temporal 

sequences of DN need to be considered. However, DQP are yet to be extended to 

sequential learning in deep neural networks (“DNN”) [171, 172]. These did not apply 

ML models to learn sequential dependencies of DN for DQP. Existing methods focus 

on matched and mis-matched data [173] and missing data [58]; and 

c. [32] utilized ML tools to improve DQ and [87] classified speech signals by labelling 

noisy data. Both did not consider any international or local standards [3, 120]. 

 

In this thesis, we intend to tackle the problem with a DQP model using supervised learning 

under DG to meet the regulatory requirement of DG. This model considers sequential 

learning of DN by taking temporal sequences and correlations of DN into account. 

Model 2 - Data Quality Prediction in Unsupervised Learning 

In literature discussed in Section 2.2.2.1, 2.2.2.2, 2.2.2.4 and 2.2.3, there are limitations of 

ML work related to DQP in unsupervised learning under DG: a) ML techniques have not 

been applied in DQP using unsupervised learning.  In particular, a ML model has not been 

proposed for DQP in unsupervised learning; b) temporal sequences and correlations of DN 

have not been considered in DQ measurement. In particular, a ML model has not been 

proposed for DQ measurement under DG taking temporal sequences and correlations of 

DN into account; c) ML techniques have not been applied in the forecast of DQ during DG 
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processes by taking temporal sequences, correlations and importance of DN into account. 

In particular, a ML model considering temporal sequences, correlations and importance of 

DN has not been proposed for DQP; and d) ML techniques have not been applied to DQ 

learning such as DQP during DG processes for meeting DG regulatory requirements. These 

are generic from research results, as summarized below. 

 

a. Unsupervised learning is yet to be applied in DQP. [102] leveraged Gaussian Mixture 

Model (“GMM”) to exploit a connection between the statistical estimation and 

clustering problems and [84] utilized Bayesian GMM (“BGMM”) to learn new topics 

in a set of conversations. Both were not applied to the estimation of DN weights.  Others 

estimated the density of paper currency [85] and the sensitivity of data [190]; 

b. DN are time-series dependent [167]. Temporal sequences of DN need to be considered. 

However, current scientific measurement methods fail to capture the overlap of data 

including DN and cannot weigh DN or their relations: [168] fitted a mixture model to 

mainly capture the interdependence of numerical data attributes and [110] reiterated 

that data clustering could not identify feature dependencies for mixed data; 

c. DQP are yet to be extended to sequential learning [171, 172] and made with an ATTN 

[171, 178] by learning different data weights based on data importance though 

sequential data demands for a temporal attention to learn its order dependences [30]; 

d. [32] utilized ML to improve DQ and [87] classified speech signals by labelling noisy 

sequence data. These did not consider any international or local standards [3, 120]. 

 

In this thesis, we intend to tackle the problem with a DQP model using unsupervised 

learning under DG to meet the regulatory requirement of DG. This model considers the 

importance of DN in DQP on top of temporal sequences and correlations of DN. Also, this 

model takes temporal sequences and correlations of DN into account in DQ measurement. 

 

Model 3 - Data Quality Prediction Analytics 

In literature discussed in Section 2.2.2, there are limitations of ML work related to DQP 

analytics under DG: a) ML techniques have not been applied in DQP analytics under DG 
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to meet DG regulatory requirements. A ML model for analyzing DQP during DG processes 

has not been proposed; and b) ML techniques have not been applied to DQ learning such 

as DQP analytics during DG processes for meeting DG regulatory requirements. These are 

common issues from research results, as summarized below. 

The most relevant research on ML work related to DQP analytics for complying with DG 

regulatory requirements of the financial services industry are that: [88] used two networks, 

Multi-Layer Perceptron and Bayesian Networks, to measure and predict liquidity risk 

whereas [63] used ML to predict bank credits. [195] analysed flood risks with an AHP 

method and [196] classified credits with two neural networks instead. 

 

In this thesis, we intend to tackle the problem with a DQP analytical model under DG to 

meet the regulatory requirement of DG. 

 

Model 4 – Network Efficiency Improvement in Data Quality Prediction 

In literature discussed in Section 2.2.2 and 2.2.3, there are limitations of ML work related 

to the network efficiency improvement in DQP under DG: a) ML techniques have not been 

applied in the network efficiency improvement in DQP. DQP network run-time saving has 

not been measured and a ML model for the network efficiency improvement in DQP during 

DG processes has not been proposed; and b) ML techniques have not been applied to DQ 

learning such as DQP during DG processes for meeting DG regulatory requirements. These 

are generic issues from research results, as summarized below. 

a. The most relevant research related to network efficiency improvement in DQP are that: 

[197] used neural networks to predict consumption including the training speed while 

[198] assessed simulated trades for prediction in a reasonable time. These did not focus 

on DQP. There have been many DQP works but they are yet to be extended to learning 

the network efficiency improvement in DQP: [199] measured the quality on a large 

dataset and [200] enhanced the network predictive power with ML. These are yet to 

measure the network efficiency in terms of the network run-time saving; and 
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b. [32] utilized ML to improve DQ and [87] classified speech signals by labelling noisy 

sequence data. These did not consider any international or local standards [3, 120]. 

In this thesis, we intend to tackle the problem with a DQP network efficiency improvement 

model under DG to meet the regulatory requirement of DG by measuring network run-time 

saving. 

 

Model 5 - Information Security Compliance Prediction  

In literature discussed in Section 2.2.2 and 2.2.4, there are limitations of ML work related 

to IS compliance prediction under DG: a) ML techniques have not been applied in the 

prediction of ISL and IS compliance levels under DG. ISL during DG processes have not 

been predicted. A ML model considering sequences, correlations and importance of IS 

factors collectively for IS compliance prediction has not been proposed; and b) ML 

techniques have not been applied to IS learning during DG processes for meeting DG 

regulatory requirements. These are common from research results, as summarized below. 

a. IS factors are inter-dependent [250]. Their sequences need to be considered. Certain 

works have been performed for prediction of compliance levels: [125] proposed ML 

for the privacy policy and [252] automated the evaluation of data privacy. These were 

not extended to ISL or IS compliance prediction under DG. Instead, there have been 

numerous research applying ML models to predict financial data: stock prices were 

predicted in Long Short-Term Memory (“LSTM”) DNN with an Attention Mechanism 

(“ATTN”) [207] and liquidity risks were forecasted with DNN [126]. Also, ML models 

making prediction by considering sequences, correlations and importance of data have 

been proposed in ample research. These models were applied with sequential learning 

and ATTN [94, 95, 96, 203]. However, sequential learning and ATTN have not been 

extended to ISL or IS compliance prediction; and 

b. The most relevant IS learning research are that: [252] automated the evaluation of data 

privacy for the compliance purpose, [253] suggested an automated mean to process 

personal data relating to the General Data Protection Regulations with ML, and [125] 

proposed a ML approach to make forecasts for the privacy policy from a risk-based 
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perspective. These did not consider IS or DG related regulatory requirements. 

In this thesis, we tackle the problem with an ISL prediction model for IS compliance 

prediction under DG to meet the regulatory requirement of DG. This model takes temporal 

sequences, correlations and importance of IS factors collectively into prediction. 

 

Above models are proposed to address limitations of ML work related to DG in Section 

2.2.  These can be launched as DGP under the DGF to improve the level of DM for FIs. 

1.3 Deep Neural Networks for Machine Learning Models 

ML models are implemented with DNN in which LSTM Recurrent Neural Networks 

(“RNNs”) are trained to learn regulatory compliance data. Three types of LSTM RNNs are 

trained: feedforward (“FF”), backward (“BK”) and bi-directional (“BD”). These are 

applied with an ATTN to meet regulatory requirements of the financial services industry. 

 

In the industry, data is usually retained over years, which may more than three decades 

[63]. A massive network is required. The data structure is unbalanced for aggregate bank 

and individual bank data [63]. Hence, to analyze data is a challenge for FIs [156]. 

 

For data co-relations, DEs that are most strongly correlated in the aggregate bank dataset 

are not the same DEs that are mostly correlated in the individual bank dataset [63]. For 

instance, the correlation between deposits and net interest-bearing liabilities is negative for 

the individual bank data. In contrast, this is almost zero for the aggregate bank data. Instead, 

the correlation between loans and net interest-bearing liabilities is positive.  In real world, 

the learning of data is sophisticated [246]. DN are time-series dependent. The probability 

of an issue occurrence for next time would be high after issues have been identified last 

time. In contrast, the probability would be low if issues were remediated last time. 

Similarly, the probability of re-occurrence would be high in case new issues emerged. 

 

In the industry, an aggregation of risk data requires the processing of enormous amounts 

of data [153, 155]. Historical and future scenarios ought to be considered in prediction over 
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years [3]. The prediction should be justified by the history of a sequence since reports are 

submitted to regulators [247]. DQP is one of the reports to be run with ML models [243]. 

 

In the consideration of these requirements in the industry, LSTM RNNs are suitable: a) 

RNNs can build an immerse network [11, 210] to process huge amounts of data. They 

cyclically pass states in networks to accept a wider range of time series related data [211]. 

Also, they can encode sequential correlations between instances before decoding sequences 

for prediction; b) LSTM RNNs [7, 8] can model long term temporal dependencies 

automatically. BD RNNs have forward network preserving past information [212].  This 

can predict data over time. In contrast, BK networks can preserve future information by 

propagating output error backwards. They aid in solving complex problems. With the 

merge, BD networks can exploit information from the past and the future for prediction 

[11] by introducing a 2nd layer to make connections flow in an opposite temporal order 

[8]; and c) ATTN can be applied to LSTM RNNs to compute a response at a position by 

attending to all positions [94] saving training time, to improve model dependencies [95], 

and to consider co-occurrence dependencies of attributes for time series prediction [96]. 

1.4 Research Methodology 

In this thesis, a design science methodology is used to design proposed artifacts.  Design 

science is a problem-solving paradigm [248] and has its basis in engineering.  It is an 

approach to create guidelines, new ideas, and a set of practices that do this efficiently.  The 

Design Science Research (“DSR”) approach uses design as a research technique and 

primarily uses structure design artifacts to address the research problem. 

 

The final product of DSR is an artifact that relates directly to the problem, which needs to 

be a “verifiable contribution” to the problem area [248]. Finally, the contribution needs to 

be described in a way that both the technical and audiences understand. 

 

The adaptation of the DSR methodology (“DSRM”) process for this thesis consists of the 

following steps: 
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a. Identify the problem and motivation: This addresses the lack of research work to predict 

DQ and IS compliance levels by learning regulatory compliance data; 

b. Define aims of a solution: The aim is to develop ML models to predict DQ and IS 

compliance levels, define a model approach to measure DQ and compliance levels, and 

make a program to compile new datasets (risk data and IS).  This allows FIs to make 

prediction in experiments with a synthesized dataset or a realistic banking dataset, 

resulting in the enhancement of DG including the improvement of DQ [4], management 

of data risks [120], management of bank-wide risks [4] and enhancement of IS [75]; 

c. Design and implement: The artifacts developed in this thesis are made in the research 

proposal. These include ML models, model approach and data synthetization program; 

d. Demonstration: Experiments are made for the implementation of DNN with different 

learning methodologies or algorithms; 

e. Evaluation: Cross-validation techniques are used with validation data to evaluate DNN 

in terms of the prediction accuracy and loss; and 

f. Communication: This thesis and DNN are available to demonstrate the concepts 

presented. 

 
Above steps are implemented in the DSRM, as visualized in Fig. 1.1.  
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1 Implementation of the DSRM 
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1.5 Thesis Outline 

The rest of this thesis is organized as follows: 

 

Chapter 2 Literature Review: This chapter lists all research topics that have been studied 

including ML techniques, ML models, model networks, ML work related to DG, summary 

on the limitations of research work, and our research proposal together with the research 

approach. 

 

Chapter 3 DQP in Supervised Learning: This chapter demonstrates how to predict DQ 

under DG in supervised learning with a ML model. In the model, we label data based on 

an international requirement, BCBS 239. The model is implemented with networks, LSTM 

RNNs, for DQP including FF LSTM RNN, BK LSTM RNN and BD LSTM RNN. Then, 

we direct networks to learn temporal sequences and correlations of DN. The model is tested 

with a synthesized dataset and validated with a realistic banking dataset in experiments. 

 

Chapter 4 DQP in Unsupervised Learning: In this chapter, we present how to predict DQ 

under DG in unsupervised learning with a ML model.  At first, we detect DN from a dataset 

pursuant to an international requirement, BCBS 239. In our ML model, detected DN 

impacts are estimated in two generative mixture methods as weights in unsupervised 

learning. The weights are input into networks for DQP. Networks implemented are LSTM 

RNNs applying sequential learning along with an ATTN to pay attention to important DN. 

In experiments, network performance is examined at integrated and individual levels. 

 

Chapter 5 DQP Analytics: In this chapter, we show how to analyze DQP under DG with a 

ML model. In the model, DQP are analyzed in accordance with a local requirement, CPG 

235. The model is implemented by LSTM RNNs applying complex learning methods such 

as windows, timesteps and memory between batches. In experiments, the model predicts 

DQ and at the same time analyzes DQ by divergent dimensions. 
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Chapter 6 Network Efficiency Improvement in DQP: This chapter proposes how to 

improve DQP network efficiency under DG with a ML model.  Before predicting DQ based 

on a local requirement, CPG 235, we propose a data profiling approach to slide divergent 

portions of data from a dataset for learning in networks. After this, we present a ML model 

to train LSTM RNNs applying memory between batches for measuring network run-time 

saving. In experiments, networks are tested with various algorithms and evaluated by 

validation data. Experimental results show the network efficiency improvement in DQP. 

 

Chapter 7 IS Compliance Prediction: This chapter proposes how to predict IS compliance 

levels under DG with a ML model. At first, we develop a compliance approach. Then, we 

define IS rules according to a local requirement, CPG 234, for detecting ISCs in a ML 

model. Detection results are aggregated in a scoring function for ranking IS compliance 

levels. The levels are input into networks, LSTM RNNs, with sequential learning and an 

ATTN for prediction. These networks generate analytical reports showing the levels under 

the Life Cycle. Experimental results of our model are compared with that of other DNN. 

 

Chapter 8 Conclusion: This chapter summarizes the outcomes of this thesis and 

contributions. We also present possible future research directions, and finish the chapter 

by discussing untouched, but interesting topics in this research area. 
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Chapter 2 

 

Literature Review 
 
 
There are many ML techniques for making predictions that have been developed to date. 

This chapter reviews ML work related to DG, discusses limitations of research work, and 

presents the research proposal, research approach, and research methodology. First, in 

Section 2.1, we provide an overview of ML types, their model components, and their 

various networks. Heterogenous network learning methods are explored. In Section 2.2, 

we survey ML work related to DG. Survey results are analyzed in four dimensions. Next, 

Section 2.3 summarizes limitations of current research work. In Section 2.4, we introduce 

our research proposal, research approach and research methodology. Finally, the literature 

review outcomes in this chapter are summarized in Section 2.5. 

 

2.1 Machine Learning 

 
The literature review starts with an introduction to ML techniques, model components, and 

model networks. 

 
2.1.1 Techniques 

 
Unsupervised Learning 

 

Unsupervised learning generally amounts to discovering a number of patterns, subsets, or 

segments (clusters) within the data, without any prior knowledge of the target classes or 

concepts [145]. This saves time in labeling [161]. In the absence of labeling data, networks 

will learn the inherent structure of training data. Some researchers use this for clustering 

whereas other researchers highlight the use of representation learning and density 

estimation. 
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In unsupervised learning, an algorithm learns on its own using the provided data. The 

algorithm is frequently used to generate labeled instances automatically [144]. These 

instances are used in supervised learning. The learning can be taken for an exploratory 

analysis and the dimensionality reduction. It makes use of mostly unlabeled data for 

training. An example of these is an unsupervised clustering technique to segment customers 

for an analysis of the relationship learning between individual features with less features 

or latent features that are interrelated with initial features. Algorithms that can be used are 

k-means clustering, principal component analysis and autoencoders [146]. 

 

Supervised Learning 

 

A supervised learning technique deals with how to input data into networks and how to 

label data.  Some researchers make inputs in the form of a vector or matrix and reduce the 

number of inputs by MapReduce method [45]. This provides the flexibility that input data 

is transformed before they are fed to the model.  Other researchers highlight the use of 

structured labeling for the ML model [46].  Rules can be defined for data by labelling. This 

avoids any unexpected or messy prediction or analysis which always occurs in 

unsupervised learning. In supervised learning, an algorithm learns from training data which 

is labeled. The result of learning is a model. The model can be used to predict a response 

when it is presented with input data which has not been seen before by the model [144]. 

 

For supervised learning algorithms, values for the model parameters are chosen and 

determined with experimentation and hyperparameter tuning. There is an algorithm which 

analyzes training data and produces an inferred function that can be used for mapping new 

examples. For instance, this provides a mapping from attributes to specified classes or 

concept groupings. Classes are identified and prelabelled in data prior to learning [145].  In 

case an optimal scenario is designed, the network algorithm can be used to correctly 

determine class labels for unseen instances.  Common algorithms are Logistic Regression 

(“LReg”), Naïve Bayes (“NB”), K-Nearest Neighbors (“KNN”), Decision Tree (“DT”), 

Support Vector Machines (“SVM”), Artificial Neural Networks (“ANN”) and Random 

Forests (“RF”). 
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Reinforcement Learning 

This is a kind of learning from mistakes.  To implement this, networks will make a lot of 

inaccurate predictions in the beginning.  Reinforcement learning is commonly used in 

deconstructing a task into a hierarchy of subtasks [148], learning with higher-level 

temporally abstract or actions [149] and efficiently abstracting over the state space through 

function approximation. 

Whenever the network algorithm learns good behaviors with positive signal and bad 

behaviors with a negative one, networks will reinforce the algorithm to prefer good 

behaviors over bad ones. Over time, networks are training with the algorithm to make less 

mistakes. In the process of learning, networks require an agent and an environment [147], 

both need to be connected through a feedback loop. With the loop, a set of actions taken in 

networks can influence the environment. By continuously providing a signal of an updated 

state and reward to the agent, networks will be able to learn the reinforcement signal of 

behaviors. For example, an agent can learn to play a game by being told whether it wins or 

loses. However, it is never given the “correct” action at any given point in time [150].  

 

In comparison of these learning methods, supervised learning and unsupervised learning 

can be used to resolve the research problem stated in the thesis. The supervised learning 

requires labeling of data inputs to train networks and the design of data labels are described 

in the following chapters.  On the contrary, the unsupervised learning demands for an 

additional training of data inputs before importing trained outputs into networks for 

scientific computation with ML algorithms.   

 
2.1.2 Model Components 

 
During ML model development, network components which contain inputs, processing 

and outputs [7] are defined.  Apart from the dataset, data feature selection and optimizer 

will be selected. In the network setup, some factors are to be considered such as input layer, 

trainable layer and output layer. In each layer, the activation function along with classifiers 

will be determined. 
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In the model implementation, some networks are trained. Before the training, the number 

of epochs for the network training is determined [22]. This number influences the network 

prediction performance such as accuracy and error. Apart from this, the network run-time 

can be recorded to see how efficient the network is [10]. 

 

After the implementation, the network performance is evaluated in terms of metrics such 

as prediction error which is called a loss [51]. The error is estimated by training data as 

well as testing data [52].  To confirm the model effectiveness, the network is evaluated by 

validation data. 

 

2.1.3 Potential Networks for Machine Learning Models 

A wide range of networks are available for ML model implementation. They are generally 

classified into three types including a) LReg, DT, SVM, NB, RF [53]; b) KNN [55]; and 

c) ANN [54]. 

 

The first type networks have their merits. For example, LReg takes inputs with two possible 

values based on data input relationships by optimizing the conditional likelihood [213]. 

Decision Trees (“DTs”) are trees classifying instances by filtering them based on feature 

values. Each node in a DT represents a feature in an instance to be classified, and each 

branch represents a value that the node can assume. Instances are classified starting at the 

root node and sorted based on their feature values [53].  SVM are supervised learning 

models with associated learning algorithms that analyze data used for classification and 

regression analysis. It includes some components including regularized linear learning 

models (such as classification and regression), theoretical bounds, convex duality and the 

associated dual-kernel representation, and sparseness of the dual-kernel representation 

[159].  NB networks are very simple Bayesian networks composing of directed acyclic 

graphs with only one parent (representing the unobserved node) and several children 

(corresponding to observed nodes) with a strong assumption of independence among child 

nodes in the context of their parent [53, 158]. RF are ensemble learning methods for 
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classification, regression and other tasks that operate by constructing a multitude of 

decision trees at training time and outputting the class that is the model of the classes or 

mean/ average prediction of the individual trees [160].  

 

All these can be used for analytical and prediction purposes.  But they could not be used 

for sequential learning by considering temporal sequences and correlations of data in the 

network training. 

 

The second type is KNN. It can be used to construct a divergent approximation of the 

expected function for each instance [214] while the nearest neighbors of an instance are 

Euclidean geometry. 

 

The third type is ANN.  There has been a key research comparing functionalities of this 

network against above-mentioned networks. The comparative results showed that ANN 

was the most common method for prediction and analysis [56]. This network type has been 

well developed in prior years [57]. It covers FF networks and RNNs. 

 

From the network architecture and algorithm viewpoint, feedforwarding networks are 

classified into deviating types encompassing auto-encoder, probabilistic, time delay and 

convolutional whereas RNNs contain simple, complex, Elman, Jordan, Bidirectional and 

LSTM networks [57].   

 

In comparison, RNNs can be used to model sequential data by loops to capture temporal 

evolution of data [11]. They can train data that occur in current state, previous state and 

future state, dissimilar to the first and second types of networks. 

 

In an in-depth examination of RNNs, network structures are different. They can be 

exploited to encode sequences for application as the encoder-decoder framework [215]. 

Apart from this, sequence-to-sequence models with an encoder-decoder framework have 

been successful in experiments [216, 217]. These models can be trained from both 

theoretical and experimental perspectives.  
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In the comparison of network functionalities, RNNs can establish a temporal relation of 

input data and at the same time build an immense network (with 1,000 input size) with the 

highest memory (100) when compared with other neural networks [56]. RNNs can help to 

process huge amount of regulatory compliance data across years or big data. 

 

Out of RNNs, there are multiple networks that can be considered. Further research on 

RNNs reveal that networks can be designed in a FF run or a BK run depending on learning 

requirements.  The FF run network can be combined with the BK run network to form a 

hybrid network for learning prediction or analyzing patterns differently. The hybrid one is 

a BD network introducing a 2nd layer to make hidden-to-hidden connections flow in an 

opposite temporal order [10].  

 

There have been myriad models comparing BD networks against FF and BK networks in 

experiments. Their experimental results vary. For example, [222] used BD LSTM sentence 

representations to model a parser state with only 3 sentence positions and compared the 

network against BK and FF LSTM networks. Furthermore, [251] proposed a FF LSTM 

language model, a BK LSTM language model and a BD LSTM based gap completion 

model to investigate the estimation of sentence probability while [219] presented BD 

LSTM networks to compare with FF and BK LSTM networks for the classification of 

framewise phoneme. Additionally, [225] developed an approximate inference algorithm 

for 1-Best (and M-Best) decoding in BD neural sequence models to reason about both FF 

and BK time dependencies. Its experiment included FF, BK and BD network results.    

 

We survey how networks learn differently, as elaborated below. 

 

Recurrent Neural Network (“RNN”) computes the sequence of hidden state vector (ℎ = 

ℎ1, … , ℎ𝑇𝑇) to generate vector sequence (𝑦𝑦 = 𝑦𝑦1, … ,𝑦𝑦𝑇𝑇) for a given input vector sequence (𝑥𝑥 

= 𝑥𝑥1, … , 𝑥𝑥𝑇𝑇), iterating the equations from 𝑡𝑡 = 1 to T [26]: 

 

ℎ𝑡𝑡 = ℋ(𝑊𝑊𝑥𝑥ℎ𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎℎℎ𝑡𝑡−1 + 𝑏𝑏ℎ) (2.1) 

𝑦𝑦𝑡𝑡 = �𝑊𝑊ℎ𝑦𝑦ℎ𝑡𝑡 + 𝑏𝑏𝑦𝑦� (2.2) 
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where 𝑊𝑊 is weight matrices, 𝑊𝑊𝑥𝑥ℎ is weight matrix between input and hidden vectors, 𝑏𝑏 is 

bias vector, 𝑏𝑏ℎ is bias vector for hidden state vector, and ℋis an activation function (of 

Sigmoid) for hidden nodes. 

 

LSTM RNN model temporal sequences and dependencies by replacing traditional nodes 

with memory cells such that it has an internal and outer recurrence. The cell is influenced 

by gates (forget, input modulation, internal state and hidden state gates) other than the input 

and output. The activations of units for LSTM neurons in layers at time 𝑡𝑡 are computed 

below:  

𝑖𝑖𝑡𝑡 = σ(𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 +  𝑊𝑊ℎ𝑥𝑥ℎ𝑡𝑡−1 +  𝑊𝑊𝑐𝑐𝑥𝑥𝑐𝑐𝑡𝑡−1 + 𝑏𝑏𝑥𝑥) (2.3) 

 

𝑓𝑓𝑡𝑡 = σ(𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 +  𝑊𝑊ℎ𝑥𝑥ℎ𝑡𝑡−1 +  𝑊𝑊𝑐𝑐𝑥𝑥𝑐𝑐𝑡𝑡−1 + 𝑏𝑏𝑥𝑥) (2.4) 

 

𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡⨀𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡⨀tanh(𝑊𝑊𝑥𝑥𝑐𝑐𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑐𝑐ℎ𝑡𝑡−1 + 𝑏𝑏𝑐𝑐) (2.5) 

 

𝑜𝑜𝑡𝑡 = σ(𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 +  𝑊𝑊ℎ𝑥𝑥ℎ𝑡𝑡−1 +  𝑊𝑊𝑐𝑐𝑥𝑥𝑐𝑐𝑡𝑡 + 𝑏𝑏𝑥𝑥) (2.6) 

 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡⨀tanh(𝑐𝑐𝑡𝑡) (2.7) 

 

where input gate is 𝑖𝑖𝑡𝑡 with weight matrix of 𝑊𝑊𝑥𝑥𝑥𝑥,𝑊𝑊ℎ𝑥𝑥 ,𝑊𝑊𝑐𝑐𝑥𝑥, forget gate is 𝑓𝑓𝑡𝑡 with weight 

matrix is 𝑊𝑊𝑥𝑥𝑥𝑥 ,𝑊𝑊ℎ𝑥𝑥 ,𝑊𝑊𝑐𝑐𝑥𝑥, the cell is 𝑐𝑐𝑡𝑡 (generated by calculating the weighted sum using 

previous cell state and current information generated by the cell), σ is the Logistic Sigmoid 

function, 𝑏𝑏 is bias, output gate is 𝑜𝑜𝑡𝑡 with a weight matrix of 𝑊𝑊𝑥𝑥𝑥𝑥 ,𝑊𝑊ℎ𝑥𝑥 ,𝑊𝑊𝑐𝑐𝑥𝑥 and output 

response is ℎ𝑡𝑡.  The input gate and forget gate govern the information flow into and out of 

the cell. The output gate controls how much information from the cell is passed to the 

output ℎ𝑡𝑡.  With current input 𝑥𝑥𝑥𝑥, the state  ℎ𝑥𝑥−1 of a previous step is generated and the 

current state of the cell 𝑐𝑐𝑥𝑥−1 decides whether to take inputs, forget memory stored, and 

output the state generated latter [8, 212]. 
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In a BD network, two LSTMs based on timesteps of the input sequence are trained - on the 

existing input sequence and then on the reversed input sequence. This combines forward 

and backward outputs in the network.  

 

BD RNN computes FF hidden sequence ℎ�⃗  and BK hidden sequence ℎ⃖� respectively before 

combining ℎ𝑡𝑡���⃗  and ℎ𝑡𝑡�⃖��  to generate outputs 𝑦𝑦𝑡𝑡: 

 

ℎ𝑡𝑡���⃗ = 𝐻𝐻(𝑊𝑊𝑥𝑥
ℎ
→ 𝑥𝑥𝑡𝑡 + 𝑊𝑊

ℎ
→
ℎ
→ℎ𝑡𝑡−1��������⃗ + 𝑏𝑏

ℎ
→) (2.8) 

ℎ𝑡𝑡�⃖�� = 𝐻𝐻(𝑊𝑊𝑥𝑥
ℎ
← 𝑥𝑥𝑡𝑡 + 𝑊𝑊

ℎ
←
ℎ
←ℎ𝑡𝑡+1�⃖�������+ 𝑏𝑏

ℎ
←) (2.9) 

𝑦𝑦𝑡𝑡 = 𝑊𝑊
ℎ 𝑦𝑦
�⎯� ℎ𝑡𝑡���⃗ + 𝑊𝑊

ℎ 𝑦𝑦
�⎯� ℎ𝑡𝑡�⃖�� + 𝑏𝑏𝑦𝑦 (2.10) 

 

In a FF pass [21], LSTM runs forwards from time to time when the input is feed. In the 

process, activations are updated and network stores all hidden layer and output activations 

at each time step. For each memory block, activations are updated below: 

 

Input gates:  𝑥𝑥𝑥𝑥 =  ∑ 𝑊𝑊𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖(𝒯𝒯 − 1)𝑖𝑖∈𝑁𝑁 +  ∑ 𝑊𝑊𝑥𝑥𝑐𝑐𝑠𝑠𝑐𝑐(𝒯𝒯 − 1)𝑐𝑐∈𝐶𝐶  (2.11) 

𝑦𝑦𝑥𝑥 = 𝑓𝑓(𝑥𝑥𝑥𝑥) (2.12) 

Forget gates: 𝑥𝑥∅ =  ∑ 𝑊𝑊∅𝑖𝑖𝑦𝑦𝑖𝑖(𝒯𝒯 − 1)𝑖𝑖∈𝑁𝑁 +  ∑ 𝑊𝑊∅𝑐𝑐𝑠𝑠𝑐𝑐(𝒯𝒯 − 1)𝑐𝑐∈𝐶𝐶  (2.13) 

𝑦𝑦∅ = 𝑓𝑓(𝑥𝑥∅) (2.14) 

Cells: ∀𝑐𝑐∈ 𝐶𝐶, 𝑥𝑥𝑐𝑐 =  ∑ 𝑊𝑊𝑐𝑐𝑖𝑖𝑦𝑦𝑖𝑖(𝒯𝒯 − 1)𝑖𝑖∈𝑁𝑁  (2.15) 

𝑠𝑠𝑐𝑐 = 𝑦𝑦∅𝑠𝑠𝑐𝑐𝑓𝑓(𝒯𝒯 − 1) + 𝑦𝑦𝑥𝑥𝑔𝑔(𝑥𝑥𝑐𝑐) (2.16) 

Output gates: 𝑥𝑥𝑤𝑤 =  ∑ 𝑊𝑊𝑤𝑤𝑖𝑖𝑦𝑦𝑖𝑖(𝒯𝒯 − 1)𝑖𝑖∈𝑁𝑁 +  ∑ 𝑊𝑊𝑤𝑤𝑐𝑐𝑠𝑠𝑐𝑐(𝒯𝒯)𝑐𝑐∈𝐶𝐶  (2.17) 

𝑦𝑦𝑤𝑤 = 𝑓𝑓(𝑥𝑥𝑤𝑤) (2.18) 

Cell outputs: ∀𝑐𝑐∈ 𝐶𝐶,𝑦𝑦𝑐𝑐 = 𝑦𝑦𝑤𝑤ℎ(𝑠𝑠𝑐𝑐) (2.19) 

 

In a BK pass, the LSTM propagates output errors backwards through unfolded net after 

resetting all partial derivatives to 0. For each LSTM block, δ’s is calculated as: 

 

Cell outputs: ∀𝑐𝑐∈ 𝐶𝐶,∈𝑐𝑐=  ∑ 𝑊𝑊𝑖𝑖𝑐𝑐δ𝑖𝑖(𝒯𝒯 + 1)𝑖𝑖∈𝑁𝑁  (2.20) 

Output gates: δ𝑤𝑤 =  𝑓𝑓′(𝑥𝑥𝑤𝑤) ∑ ∈𝑐𝑐 ℎ(𝑠𝑠𝑐𝑐)𝑐𝑐∈𝐶𝐶  (2.21) 
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States: 𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠𝑐𝑐

(𝒯𝒯) = ∈𝑐𝑐 𝑦𝑦𝑤𝑤ℎ′(𝑠𝑠𝑐𝑐) + ∑ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠𝑐𝑐𝑐𝑐∈𝐶𝐶 (𝒯𝒯 + 1)𝑦𝑦∅(𝒯𝒯 + 1) + δi(𝒯𝒯 + 1)𝑤𝑤ic +

δi(𝒯𝒯 + 1)𝑤𝑤∅c + δw𝑤𝑤wc 

(2.22) 

Cells: ∀𝑐𝑐∈ 𝐶𝐶, δ𝑐𝑐 =  𝑦𝑦𝑥𝑥  𝑔𝑔′(𝑥𝑥𝑐𝑐) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠𝑐𝑐

 (2.23) 

Forget gates: ∅ = 𝑓𝑓′(𝑥𝑥∅) ∑ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠𝑐𝑐

𝑠𝑠𝑐𝑐(𝒯𝒯 − 1)𝑐𝑐∈𝐶𝐶  (2.24) 

Input gates: δ𝑥𝑥 =  𝑓𝑓′(𝑥𝑥𝑥𝑥)∑
𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠𝑐𝑐𝑐𝑐∈𝐶𝐶 𝑔𝑔(𝑥𝑥𝑐𝑐) (2.25) 

  

Network Memory 

 

LSTM can be applied to RNNs as training networks have difficulty in capturing long term 

dependency because of vanishing gradients [219].  It directs networks to model long term 

temporal dependencies as sequences automatically as it exploits information from the past 

and future to build a giant network. As such, networks remember memory across long 

sequences [8] to obtain a control over when an internal state is cleared for a forecast [7, 

171] or for a data sequence modelling [104]. Sequences are learnt based on the history of 

sequences of input data in the context of time series. This replaces traditional nodes with 

memory cells leading to an internal and outer recurrence [9]. As a consequence, LSTM 

RNNs are able to learn time sequence features for prediction or analysis [25]. They store 

long term data in additional cells and to use gates to control information flow [220]. 

 

Further literature analysis has revealed that there have been myriads of similar models 

comparing BD networks against FF and BK networks in experiments and their 

experimental results vary. For example, [221] used BD LSTM sentence representations to 

model a parser state with only 3 sentence positions and compared the network against BK 

and FF LSTM networks. Also, [222] proposed a FF LSTM language model, a BK LSTM 

language model and a BD LSTM based gap completion model to investigate the estimation 

of sentence probability while [223] presented BD LSTM networks to compare with FF and 

BK LSTM networks for the classification of framewise phoneme. Additionally, [219] 

developed an approximate inference algorithm for 1-Best (and M-Best) decoding in BD 

neural sequence models to reason about both FF and BK time dependencies. Its experiment 

included FF, BK and BD network results. 
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Network Wrapper 

 
TimeDistributed Wrapper is an example of a Keras wrapper. The wrapper layer applies the 

same dense (neural network layer), which is a fully-connected, operation to every timestep 

of a three-dimensional data input to allow to gather the output at each timestep. This leads 

to an effective sequence learning. The sequence is split into input-output pairs and for the 

sequence to be predicted one step at a time. 

The output layer is a Keras dense layer which is a regular densely connected network layer 

with the activation function to predict a probability distribution for the next value in the 

sequence [106]. The 3-dimensional data input is TimeDistributed as interpreted below: 

 

(𝑋𝑋,𝑇𝑇,𝐹𝐹)  
𝑇𝑇𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑥𝑥𝑠𝑠𝑡𝑡𝑇𝑇𝑥𝑥𝑇𝑇𝑇𝑇𝑡𝑡𝑇𝑇𝑇𝑇(𝐿𝐿𝐿𝐿𝑇𝑇𝐿𝐿)
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� 𝑚𝑚1,…,𝑚𝑚𝑛𝑛 

The input shape is a triple (samples, timesteps and features) represented by (X, T, F) in 

LSTM networks in which the TimeDistributed wrapper enables the network training by 

applying the component of memory network, M, to each time-step [122]. 

 

Network Activation 

 
For activation dynamics [33, 52], data inputs to each memory block are multiplied with 

input gates for that block, and the final output of a block is the activation of the cell status 

multiplied by the output gate, as computed below: 

 

𝑥𝑥𝜆𝜆 = 𝑤𝑤𝜆𝜆𝑛𝑛 𝑦𝑦𝑡𝑡−1𝑛𝑛 , 𝑓𝑓𝑜𝑜𝑓𝑓 𝜆𝜆 𝜖𝜖 {𝑙𝑙, 𝑐𝑐,𝑤𝑤, 𝑜𝑜} (2.26) 

𝑦𝑦𝜆𝜆 = 𝑓𝑓𝜆𝜆(𝑥𝑥𝑡𝑡−1𝜆𝜆 ), 𝑓𝑓𝑜𝑜𝑓𝑓 𝜆𝜆 𝜖𝜖 {𝑙𝑙, 𝑐𝑐,𝑤𝑤, 𝑜𝑜} (2.27) 

𝑠𝑠 = 𝑠𝑠𝑡𝑡−1 +  𝑦𝑦𝑙𝑙 ∘ 𝑦𝑦𝑐𝑐, (2.28) 

𝑦𝑦𝜃𝜃 = 𝑦𝑦𝑤𝑤 ∘ 𝑓𝑓𝑠𝑠(𝑠𝑠) (2.29) 

 

There are divergent layers: inputs layer (𝑐𝑐), input gates (𝑙𝑙), memory cells (𝑠𝑠), output layer 

(𝑜𝑜), output gates (w), cell outputs (𝜃𝜃) and layer connecting with nodes between timesteps 

(𝑛𝑛). At layer 𝜆𝜆, 𝑥𝑥𝜆𝜆is input and 𝑓𝑓𝜆𝜆 is an activation function while 𝑦𝑦𝜆𝜆 is output, 𝑡𝑡 is time, ∘ 
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is entry wise product and f(𝑥𝑥) is a vector of function values when applying 𝑓𝑓 to each element 

of the vector 𝑥𝑥.  The equation for 𝑥𝑥𝜆𝜆 and 𝑦𝑦𝜆𝜆 are similar in networks but activation dynamics 

for memory cell statuses and outputs are divergent. Thereupon, network inputs, activations 

and partial derivatives are evaluated at time 𝑡𝑡 such as 𝑦𝑦 ≡ y𝑡𝑡. 

 

Network Sequence Prediction 

In the research on sequential learning in DNN, numerous works are related to prediction. 

They centred on many domains: some researchers investigated the application of sequential 

learning in speech recognition [88], video captioning [89], reading comprehension [90], 

ads recommendation [91] and natural language processing [92]. None of them was learnt 

for DQP. 

 

Sequential learning has been applied in various research projects to explore dependencies 

of an image content problem [93]. For example, [94] presented a self-attention network to 

compute response at a position in a sequence by attending to all positions. The most recent 

one [96] predicted attributes of images by taking the co-occurrence dependencies among 

attributes into account. Thus, sequential learning can be applied to a model to explore DQ 

correlations. 

 

Network Optimization – ATTN 

To optimize sequential learning, we study an ATTN to see whether it improves the network 

performance for prediction. ATTN is one of the predominant mechanisms that has been 

applied to DNN recently.  It assigns different weights to various data to enable networks 

to focus on important data [97]. The application was on a few domains: An earlier study 

[89] presented a temporal ATTN for video caption generation. Another study [182] 

introduced a deep attention selective network for image classification. Others used it to 

recognize 3D action [99]. Some of them leveraged it for machine translation [92, 100] and 

document classification [101]. [102] introduced temporal attention on different time steps 

for electronic health records. In last few years, ATTN has been introduced to use encoder 

to reference records dynamically in the decoder [100]. This is yet to be applied to DQP or 
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prediction of IS compliance levels to pay attention to important DN or IS factors 

respectively. 

 

Network Algorithms 

Back Propagation Through Time is used as an algorithm in RNNs to update cell weights 

[225]. It calculates data sequentially. When outputs are estimated, an error is back 

propagated to obtain error responsibilities. The error of next time step is back-propagated 

with the error of this time step. The sum of errors exploits the information of recent input 

sequence and put more importance on the latest input. Thereupon, prediction are 

sequentially dependent [226]. 

 

To optimize networks, network optimization algorithms such as ADAM and ADAGRAD 

can be used. 

 

ADAM is derived from adaptive moment estimation and computes dual adaptive learning 

rates for multiple parameters from the estimates of the first and second moments of the 

gradients [29, 227]. As the algorithm updates exponential moving averages of gradient and 

squared gradient when-ever hyper-parameters control the exponential decay rates of 

moving averages, it can train networks efficiently.  The ADAM algorithm is computed in 

the following [227]: 

𝑥𝑥𝑡𝑡= 𝑥𝑥 · 
�1−𝛽𝛽2

𝑡𝑡

�1−𝛽𝛽1
𝑡𝑡�

 
(2.30) 

𝑥𝑥𝑡𝑡= 𝜃𝜃𝑡𝑡← 𝜃𝜃𝑡𝑡−1−𝑥𝑥𝑡𝑡· 𝑚𝑚𝑡𝑡/ (�𝑣𝑣𝑡𝑡+∈�) (2.31) 

 

where 𝛽𝛽 is a delay rate, 𝑡𝑡 is a time step, 𝑚𝑚𝑡𝑡 is the moving average of gradient, 𝑣𝑣𝑡𝑡 is a 

squared gradient and 𝜃𝜃 is a parameter, Assuming 𝑓𝑓(𝜃𝜃) is an objective function, the 

stochastic scalar function is differentiable with regards to the parameter. To minimize the 

expected value of this, E[𝑓𝑓(𝜃𝜃)], the realization of stochastic function at timesteps 1,…, 𝑡𝑡 

and the gradient (vector of partial derivatives of 𝑓𝑓𝑡𝑡) at timestep 𝑡𝑡 can be defined. Then, the 

algorithm updates exponential moving averages of the gradient and the squared gradient 
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whenever hyper-parameters β1, β2 ∈ [0,1] control exponential decay rates of these moving 

averages. ADAM has an update rule: a choice of step sizes. Assuming ∈, an effective step 

taken in a parameter space at timestep is Δ𝑡𝑡 equalling to the equation of 𝑥𝑥 · 𝑚𝑚�𝑡𝑡/  �𝑣𝑣�𝑡𝑡. 

 

The effective size has two upper bounds, and the computation is shown below: 

 

|Δ𝑡𝑡| ≤ 𝑥𝑥 ·(1 − 𝛽𝛽1)/ �1 − 𝛽𝛽2 if (1 − 𝛽𝛽1) > �1 − 𝛽𝛽2 and |Δ𝑡𝑡| ≤ 𝑥𝑥 (2.32) 

� 𝑚𝑚�𝑡𝑡/  �𝑣𝑣�𝑡𝑡� < 1 if (1 − 𝛽𝛽1) = �1 − 𝛽𝛽2 (2.33) 

 

In most scenarios, the � 𝔼𝔼[𝑔𝑔] / �𝔼𝔼[𝑔𝑔2]� ≤ 1 gives the following: 

 

� 𝑚𝑚�𝑡𝑡/  �𝑣𝑣�𝑡𝑡� ≈ ±1 (2.34) 

 

where 𝑔𝑔 is gradient. The effective magnitude of the steps taken in the parameter space at 

each time step are bounded by the step size setting 𝑥𝑥. That is |Δ𝑡𝑡| < & ≈ 𝑥𝑥. 

 

ADAGRAD is another algorithm which is a variant of stochastic gradient descent [227]. 

 

The computation of this algorithm is: 

 

𝜃𝜃𝑡𝑡+1,𝑥𝑥 =  𝜃𝜃𝑡𝑡,𝑥𝑥 −
𝜂𝜂

�𝐺𝐺𝑡𝑡+1,𝑖𝑖+ 𝜖𝜖
• 𝑔𝑔𝑡𝑡,𝑥𝑥• (2.35) 

 

where 𝜂𝜂 is learning rate at each time step 𝑡𝑡 for every parameter 𝜃𝜃𝑥𝑥 based on the past 

gradients computed for 𝜃𝜃𝑥𝑥  and 𝑔𝑔𝑡𝑡,𝑥𝑥 is the partial derivative of the objective function.  𝐺𝐺𝑡𝑡 ϵ 

ℝ𝑇𝑇x𝑇𝑇 is a diagonal matrix where each element 𝑖𝑖 is a sum of squares of gradients up to the 

timestep whereas ϵ is a smoothing term avoiding division by 0 (on order of 1𝑒𝑒 -8).  

 

ADAGRAD uses a different learning rate for every parameter 𝜃𝜃𝑥𝑥 at each time step [29] and 

converges in batch [234]. It sets the value as 0.01, and adapts the rate to parameters, 

performing low rates for parameters with frequently occurring features and high rates for 
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those with infrequent features. Then, the implementation is vectorized by performing a 

matrix vector product ⨀ between 𝐺𝐺𝑡𝑡 and 𝑔𝑔𝑡𝑡 (denoting gradient at 𝑡𝑡): 

 

𝜃𝜃𝑡𝑡+1 =  𝜃𝜃𝑡𝑡 −
𝜂𝜂

�𝐺𝐺𝑡𝑡+ 𝜖𝜖
 ⨀𝑔𝑔𝑡𝑡• (2.36) 

 

As we can see, these algorithms have their merits for the optimization of network 

performance. 

 

Network Performance Metrics 

 

A number of metrics can be used to measure the performance of networks. 
 
Firstly, the accuracy of networks can be evaluated as: 

 

Accuracy = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑁𝑁
𝑇𝑇𝑇𝑇+𝑇𝑇𝑁𝑁+𝐹𝐹𝑇𝑇+𝐹𝐹𝑁𝑁

 (2.37) 

 

where 𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇,𝐹𝐹𝑇𝑇 𝑎𝑎𝑛𝑛𝑎𝑎 𝐹𝐹𝑇𝑇 denote true positive, true negative, false positive and false 

negative respectively [105]. 

 

The loss can be defined as an averaged cross entropy to maximize the likelihood of correct 

prediction. The computation is: 

 

𝐿𝐿 =
1
𝑀𝑀
�(−𝑦𝑦𝑥𝑥 𝑙𝑙𝑜𝑜𝑔𝑔(𝑝𝑝𝑥𝑥) − (1 − 𝑦𝑦𝑥𝑥)
𝐿𝐿

𝑥𝑥=1

log (1 − 𝑝𝑝𝑥𝑥)) 
(2.38) 

 

where 𝑀𝑀 represents the number of training samples in a dataset and y is the target output. 

The 𝑖𝑖𝑡𝑡ℎ sample is labelled as 𝑦𝑦𝑥𝑥 ∈ {0,1} and 𝑝𝑝𝑥𝑥 is the predicted probability based on the 

input sequence [48]. 

 

The precision, recall and F1-Support can be calculated based on the following equations: 
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Precision (P) = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 (2.39) 

 

Recall (R) = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁

 (2.40) 

 

F1-Support = 2𝑇𝑇𝑃𝑃
𝑇𝑇+𝑃𝑃

 (2.41) 

 

where 𝑇𝑇𝑇𝑇,𝐹𝐹𝑇𝑇,𝐹𝐹𝑇𝑇 𝑎𝑎𝑛𝑛𝑎𝑎 𝑇𝑇𝑇𝑇 represent true positive, false positive, false negative and true 

negative respectively [249]. 

2.2 Machine Learning Work Related to Data Governance 

From Section 1.1.2, there are opportunities for using ML in DG for the financial services 

industry. In fact, statistical researchers and financial regulators recently suggested that the 

quality of big data could be statistically computed by ML techniques [243]. 

 

We analyse literature for ML work related to DG. Relevant results are summarized in 

Section 1.2.3 of Chapter 1. The results show that following considerations need to be 

addressed: 

 

2.2.1 Data Governance and Regulatory Data 

 

In this financial services industry, regulatory compliance data has been governed for a long 

time under various DG processes to identify, assess and prevent risks [151, 152, 153]. DG 

refers to policies and procedures geared towards the management of usability, availability, 

integrity and security of data [151, 152]. In this industry, FIs need to meet three 

requirements defining quantitative DQ in terms of DQ metrics. These requirements are 

issued by international and local regulators in the industry. 

The first requirement is that from an international perspective, FIs are expected to meet 

DQ principles in the process of aggregating risk data into risk reports. These principles 

include the principle number 3 (accuracy and integrity), the principle number 4 
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(completeness) and the principle number 5 (timeliness) under BCBS 239 [3]. FIs are 

recommended to provide forward-looking capabilities of DQ for the improvement of DQ. 

In meeting these principles, DQ issues, DN need to be minimized including an omission 

of translation, a negligence in the data format transformation, and retention of data which 

is redundant, duplicated, stale, unreasonable, invalid, mis-matched, incomplete or null. 

These issues are common [3]. 

In assessing the compliance level with this requirement, many FIs have not been able to 

meet certain principles till 2018 [4]. Their compliance levels are summarized in Table 2.1. 

 

Table 2.1 Compliance Status 

 
 

This table showed that some principles should be improved. For instance, the principle 

number P4 (completeness) and P7 (accuracy) could not be met by FIs despite their best 

efforts for the compliance. To accelerate the compliance, the financial regulator took action 

by performing tests over FIs for the compliance level checking in 2018 [4]. 

 

The second requirement is that from a local standpoint, FIs are required to manage data 

risks through the assessment and management of DQ by six dimensions including the 

dimension of (a) accuracy; (b) completeness; (c) consistency; (d) timeliness; (e) 

availability; and (f) fitness for use under APRA CPG 235 [120]. When evaluating the 

compliance level with these dimensions, a few FIs have not met this requirement until 

2019. In Australia, the government demanded for the restoration of trust in the financial 

system after several cases of misconducts [76]. This is attributable to recent scandals. For 

instance, the Prudential Regulator refused a bank's corporate risk data due to data 

inaccuracy and incompleteness in April 2018 [77]. This month, the Royal Commission 

challenged FIs for financial misconducts arising from the poor quality of risk data [78]. 
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The third requirement is that from another local point of view, FIs are expected to manage 

IS risks under APRA CPG 234 [75] by including thirteen IS controls, called ISCs, during 

the information asset life-cycle (“Life Cycle”) under IS policy frameworks.  In terms of the 

compliance level of CPG 234, FIs are yet to enhance IS [83]. In January 2020, there was a 

data breach resulting from a cyber-attack for P&N Bank. In August 2019, PayIDs of 

customers have been stolen across Australian big four banks [79]. In March 2019, the Bank 

of Queensland experienced a personal data breach by a third-party provider. 

 

From the above compliance assessments, it is onerous for FIs to meet these three 

requirements. Many FIs found it challenging due to multiple problems: insufficient 

controls over risk data [5], lack of a DG framework [24], inadequate quality data [6] and 

lack of a robust IT infrastructure [12]. In making preparation for the compliance, 40% of 

domestic systemically important banks worldwide have performed an independent 

validation of their capabilities to meet the first requirement, BCBS 239 [4]. 

 

Regulatory data can cover a) risk data as set out in BCBS 239 consisting of MR, CR, OR 

and LR; b) business and operations data as defined in CPG 235 including data used for 

analytics and intelligence purposes; and c) IS data as specified in CPG 234.  

 

2.2.2 Data Quality Measurement and Prediction 

Applying ML models to DQ measurement and prediction is critical. Tera scale ML is an 

important ingredient in the quality modeling and monitoring of big data [38]. This covers 

large scale applications of ML and their computational models. Applying ML by FIs 

benefits the risk management significantly by addressing specific problems such as data 

risk [141]. These are mentioned in Section 1.1.2 of Chapter 1. 

 

We now examine existing data science research on ML work related to DQ measurement 

and prediction during DG processes. We identify the following studies: 
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2.2.2.1  Data Quality Characteristics 

In real life, data quality may not be high. Data may be inaccurate or has inherent noise 

[162]. High quality data may not be available. This, however, is a pre-condition to add 

value by utilizing the data. The analysis of data by developing dashboards aids in the 

management decision making [71]. When the decision is applied to risk data, enterprises 

understand the risky areas of their business. They can start to develop a plan for mitigating 

risks [72, 73]. An ideal case is when risks are forecasted. Then, potential risks can be 

minimized. This risk management practice is common in the financial services industry 

[74]. Unless the quality of data is verified and is well managed, the value of data cannot be 

assured [151, 153]. 

 

DN in business applications have different impacts and they are time-series dependent 

[167]. On the one hand, DN may co-relate with another or others. Their relationships are 

many-to-many. This makes the weighing DN impact complicated. On the other hand, DN 

are time-series dependent. For instance, current DN usually reoccur in next period, but 

remediated DN rarely occur in future. Similarly, emerged DN contaminate subsequent data 

recurrently unless they are rectified. Temporal sequences, correlations and importance of 

DN have not been considered. These are summarized in Section 1.2.3 of Chapter 1. 

2.2.2.2 Data Quality Measurement and Prediction with Machine Learning Models 

In DQ measurement work, we study existing ML models. 

a. Prior research commonly measured DQ issues based on three dimensions: accuracy, 

completeness and timeliness [238, 239]. Some used metrics [132]. Other leveraged 

missing data [58]. All are yet to consider DG regulatory requirements of the financial 

services industry; and 

b. Current scientific methods fail to capture the overlap of data including DN.  [168] fitted 

a mixture model to mainly capture the interdependence of numerical data attributes. 

[110] reiterated that data clustering could not identify feature dependencies for mixed 

data. [170] found that errors of model-based clustering are neglected due to the difficult 
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computation. It is onerous to use these methods for weighing DN and their relations or 

correlations. 

 

These results show that ML techniques have not been applied in the measurement of DQ 

during DG processes. In summary, temporal sequences and correlations of DN have not 

been considered in DQ measurement. In particular, a ML model has not been proposed for 

DQ measurement under DG taking temporal sequences and correlations of DN into 

account. These are mentioned in Section 1.2.3 of Chapter 1. 

In DQ prediction work, we study existing ML models. 

 

a. Existing DQP methods focus on matched and mis-matched data [173] as well as 

missing data [58]; 

b. In recent years, [33] identified DQ by rules in an energy industry to predict data that is 

to be corrected with statistical relational learning; 

c. Another work [167] forecasted DQ on Apache Spark with ML which allowed users to 

define verification codes before the declarative API was leveraged for forecasts; 

d. Although DQP are gaining significant amount of interest in recent literatures, they have 

not been extended to sequential learning in DNN [171, 172]. Data sequences and 

correlations were not considered in prediction; 

e. DQ is yet to be predicted with an ATTN [171, 178] to pay attention to important data. 

However, sequential data demands for a temporal attention to learn order dependences 

of data inputs [30]. ATTN can aid in learning different data weights based on their 

importance; and 

f. Instead, ATTN has been experimented in a few domains: a research [103] presented a 

temporal ATTN for video caption generation and another research [89] introduced a 

deep attention selective network for the image classification. In recent years, research 

leveraged ATTN for 3D action recognition [182], machine translation [100] and [184], 

document classification [92] and electronic health recording [101]. All these have not 

been applied with a ML model to learn temporal sequences, correlations and 

importance of DN collectively in DQP during DG processes. 
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These results show that ML techniques have not been applied in the forecast of DQ during 

DG processes by taking temporal sequences, correlations and importance of DN into 

consideration. In particular, a ML model considering temporal sequences, correlations and 

importance of DN has not been proposed for DQP under DG. These are mentioned in 

Section 1.2.3 of Chapter 1. 

 

2.2.2.3  Data Quality Prediction Using Supervised Learning 

 

We analyse the application of ML techniques in DQP during DG processes using 

supervised learning. 

a. [31] made prediction in a ML model for an estimation of DQ. This proposed a solution, 

DQ-Long Short-Term Memory. It is yet to take any regulatory requirements into 

account; 

b. Another work is [32] utilizing ML tools to improve DQ. This identified DQ and defined 

a DQ rating algorithm and grading system, DataIQ, to rank data before making 

prediction. DQ scores were analyzed in terms of simple statistics such as median, mean, 

std, max and min, as opposed to international and local standards (considering integrity 

and accuracy, completeness and timeliness, availability, and fitness for use) [3, 120]; 

c. One work is a research [37] classifying DQ issues. This used a semi-auto classification 

method to identify simple DQ issues such as matched or mis-matched data; 

d. One more work is a research [34] focusing on outliner detection, data discretization 

and feature construction. It did not consider regulatory requirements or run experiments 

to confirm the model effectiveness from theoretical and experimental aspects; 

e. An additional work is a classification of speech signals in RNNs by labelling noisy and 

unsegmented sequence data [87]; and 

f. Last work is a research [36] recognizing the importance of an international requirement, 

BCBS 239, for the Industry. This described the implementation of BCBS 239 and 

interpreted two cases (insider trading and FIBO) for the application of the requirement. 

However, it was not tested in experiments to confirm its practicability. 
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These results show that ML techniques have not been applied in DQP during DG processes 

using supervised learning extensively. In summary, DQ have not been predicted under DG 

in supervised learning. In particular, a ML model has not been proposed for DQP during 

DG processes in supervised learning.  These are mentioned in Section 1.2.3 of Chapter 1. 

 

2.2.2.4 Data Quality Prediction Using Unsupervised Learning 

 

We analyse the application of ML techniques in DQP during DG processes using 

unsupervised learning. 

 

a. One study [102] has leveraged GMM to exploit a connection between the statistical 

estimation and clustering problems in computational geometry and another one [84] as 

a mixture of Gaussian Distribution with Dirichlet Process (“DP”) has utilized BGMM 

to learn new topics in a set of conversations. Both are yet applied to the estimation of 

DN weights. Weighing DN has not been proposed in prior research studies, as 

discussed in Section 2.2.2.2; 

b. Other methods estimated the density of paper currency [85] and the sensitivity of data 

from an Austrian bank [190]; and 

c. A recent study [191] showed that a GMM was used to build a semi-supervised model 

in multi-mode processes for forecasting the quality of big data. 

 
These results show that ML techniques have not been applied in DQP during DG processes 

using unsupervised learning. In summary, DQ have not been predicted under DG in 

unsupervised learning. In particular, a ML model has not been proposed for DQP during 

DG processes in unsupervised learning.  These are mentioned in Section 1.2.3 of Chapter 

1. 

 

2.2.3 Data Governance Requirement Compliance 

 
Applying ML models to DG requirement compliance is indispensable.  ML is essential in 

the regulatory reporting of the financial services industry by improving the compliance 
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processes through the organization of structured and unstructured data [142]. In fact, ML 

can create accurate methods for data analysis, modeling and prediction by identifying 

complicated and non-linear patterns in huge data sets [142]. These are mentioned in Section 

1.1.2 of Chapter 1. 

 

We examine existing data science research on ML work to meet DG regulatory 

requirements of the financial services industry. There are two types of compliance 

including DQ and IS. 

 

Firstly, we survey the application of ML models in DQ learning for complying with DG 

regulatory requirements of the financial services industry. The most relevant research 

include the following: 

 

a. A research [88] leveraged Multi-Layer Perceptron and Bayesian Networks to measure 

and predict LR respectively. Experiments output relatively low error rates (8.0e-3 for 

GA and 1.7e-10 for LMA) and low RMSE (less than 0.2). Financial data has been 

forecasted for analysis rather than the quality of data; 

b. Another one [63] used ML to predict bank credits with twenty-three features achieving 

a prediction accuracy of 80%. Consistently, this prediction was on financial data; 

c. One more [195] analysed flood risks with AHP method by defining the importance of 

risks and dividing hazards into 5 risks. This analysis was on flood risks instead of the 

quality of data; and 

d. Last more [196] classified credit with two networks such as logistic regression and 

support vector machine. The network accuracy was 75% but reduced to 43.5% for 

critical regions. In the same way, this focused on financial data which is unrelated to 

DQ. 

 
These results show that ML techniques have not been applied to DQ learning such as DQP 

or DQP analytics during DG processes for meeting DQ regulatory requirements. In 

particular, DQP analytics during DG processes have not been proposed with a ML model. 

These are mentioned in Section 1.2.3 of Chapter 1. 
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Secondly, we survey the application of ML models in IS learning for complying with DG 

regulatory requirements of the financial services industry. The most relevant research 

include the following: 

a. A research automated the evaluation of data privacy for the compliance purpose and 

generated a report on the evaluation result [252]; 

b. Another research suggested an automated mean to process personal data relating to the 

General Data Protection Regulations [253]. It utilized Semantic Analytical Stack on 

top of the Apache Spark to provide a stack of functional layers from RDF/ OWL data 

representation to ML algorithms; and 

c. One recent research proposed a ML based approach for the privacy policy from a risk-

based perspective [125]. It used Github to test the approach and leveraged a market 

available tool (applying ML algorithms including Naïve Bayes, Support Vector 

Machine, Decision Tree and Random Forest) to make forecasts. All these did not 

consider IS or DG related regulatory requirements. 

These results reveal that ML techniques have not been proposed to IS learning or IS 

prediction for meeting DG regulatory requirements. Prior work targeted on other regulatory 

requirements with ML models. In summary, IS compliance levels have not been predicted 

during DG processes with a ML model. These are summarized in Section 1.2.3 of Chapter 

1. 

 

Above results show that the application of ML models in DQ learning and IS learning for 

complying with DG regulatory requirements of the financial services industry is limited. 

 

2.2.4 Network Efficiency Improvement in Data Quality Prediction 

 

Applying ML models to network efficiency improvement in DQP is essential.  Making 

efficient performance prediction for large-scale advanced analytics minimizes the amount 

of training data required [143], as mentioned in Section 1.1.2 of Chapter 1. 
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We now discuss existing data science research on ML work relating to the network 

efficiency of DQP during DG processes.  The most relevant research studies are limited to 

the following: 

a. A research study [197] used metrics for neural networks aiming at the consumption 

prediction including the training speed and network accuracy. Its networks were 

Support Vector Regression (SVR), local SVR and H2O deep learning.  Its prediction 

was yet to be extended to DQ or DQP; 

b. Another research [198] back-tested a strategy to assess simulated trades and checked 

the accuracy and loss of network prediction by cross-validations. It demonstrated the 

success of processing a cluster of big data for prediction within a reasonable time of 

few hours.  Equally, its focus was not on DQ; and 

c. Some research predicted DQ but did not learn the network efficiency improvement in 

DQP. One work [199] measured the quality on a large dataset with networks in terms 

of the accuracy, completeness and consistency. It was yet to be used in the 

measurement of the network efficiency in terms of network run-time. Another work 

[200] studied how ML enhanced the network performance in terms of the predictive 

power and classification accuracy. Both are yet to measure the network efficiency in 

terms of the network run-time saving. 

These results show that ML techniques have not been proposed to address the network 

efficiency improvement of DQP. In summary, DQP network efficiency under DG has not 

been improved with ML models. In particular, DQP network run-time saving has not been 

measured and a ML model for DQP network efficiency improvement during DG processes 

has not been proposed. These are mentioned in Section 1.2.3 of Chapter 1. 

 

2.2.5 Information Security Compliance Prediction 

Applying ML models to IS compliance prediction is crucial. ML is essential in the 

regulatory reporting of the financial services industry by improving the compliance 

processes [142], as mentioned in Section 1.1.2 of Chapter 1. 
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We now examine existing data science research on ML work relating to the prediction of 

ISL and IS compliance levels during DG processes. We identify the following studies: 

 

2.2.5.1  Information Security Characteristics 

IS factors in computer systems and networks have different impacts and they are inter- 

dependent [250]. IS risks co-relate with another or others. Their sequences, correlations 

and importance need to be considered. 

 

2.2.5.2  Information Security Compliance Prediction 

In IS prediction work, we study existing ML models. 

a. A research proposed a ML based approach for the privacy policy from a risk-based 

perspective [125]. It used Github to test the approach and leveraged a market available 

tool (applying ML algorithms) to make forecasts. Another research automated the 

evaluation of data privacy for the compliance purpose [252]. They were not extended 

to ISL or IS compliance prediction. Although there were some ML work for regulatory 

requirement compliance, ML techniques have not been applied in ISL prediction or 

relevant compliance prediction. Prior ML research centred on the prediction of other 

requirement levels; 

b. For ML models predicting data of the financial services industry, there have been 

abundant work.  In last two years, stock prices have been predicted in LSTM DNN with 

an ATTN to learn temporal sequences and pay attention to more important stock prices 

[207] and LR have been forecasted with DNN [126]. These predictions have not been 

extended to the prediction of ISL or IS compliance levels. Earlier ML research focus 

on the prediction of financial data; and 

c. ML models making prediction by taking sequences, correlations and importance of data 

into account have been proposed in ample research. Over a decade, a significant amount 

of studies used and directed sequential learning with an ATTN in a ML model for 

prediction, such as forecast of dependencies for an image content problem [203], 

computation of responses at a position by attending to all positions in a self-attention 
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network [94], improvement in model dependencies with DNN applying a self-attention 

[95], and prediction of image attributes by considering attribute co-occurrence 

dependencies [96]. However, sequential learning and ATTN have not been applied in 

ISL or IS compliance prediction by considering sequences, correlations and importance 

of IS factors collectively. 

 
These results show that ML techniques have not been applied in the prediction of ISL and 

IS compliance levels during DG processes. In summary, ISL during DG processes have 

not been predicted. In particular, a ML model considering sequences, correlations and 

importance of IS factors collectively for IS compliance prediction has not been proposed. 

These are mentioned in Section 1.2.3 of Chapter 1. 

2.3 Summary on the Limitations of Research Work 

 
From above data science results, ML techniques have not been largely deployed to DG 

including the following: 

a. From Section 2.2.2, key limitations are: a) temporal sequences and correlations of DN 

have not been considered in DQ measurement. In particular, a ML model has not been 

proposed for DQ measurement under DG taking temporal sequences and correlations 

of DN into account; b) ML techniques have not been applied in the forecast of DQ 

during DG processes by taking temporal sequences, correlations and importance of DN 

into consideration. In particular, a ML model considering temporal sequences, 

correlations and importance of DN has not been proposed for DQP under DG; c) ML 

techniques have not been applied in DQP during DG processes using supervised 

learning extensively. In particular, a ML model has not been proposed for DQP during 

DG processes in supervised learning; d) ML techniques have not been applied in DQP 

during DG processes using unsupervised learning.  In particular, a ML model has not 

been proposed for DQP during DG processes in unsupervised learning; and e) ML 

techniques have not been applied to DQ learning such as DQP during DG processes for 

meeting DG regulatory requirements; 

b. From Section 2.2.3, ML techniques have not been applied to DQ and IS learning during 
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DG processes DG to meet regulatory requirements of DG; 

c. From Section 2.2.4, a) ML techniques have not been applied in network efficiency 

improvement for DQP. DQP network run-time saving has not been measured and a ML 

model for the network efficiency improvement in DQP during DG processes has not 

been proposed; and b) ML techniques have not been applied to DQ learning such as 

DQP during DG processes for meeting DG regulatory requirements; and 

d. From Section 2.2.5, a) ML techniques have not been applied in the prediction of ISL 

and IS compliance levels under DG. ISL during DG processes have not been predicted. 

A ML model considering sequences, correlations and importance of IS factors 

collectively for IS compliance prediction has not been proposed; and b) ML techniques 

have not been applied to IS learning during DG processes for meeting DG regulatory 

requirements. 

 
All these are limitations of ML works related to DG although ML techniques were highly 

recommended to support DG. These are mentioned in Section 1.2.3 of Chapter 1. 

2.4 Research Proposal 

 
To address above limitations, we propose five ML models in the research proposal. 

 
2.4.1 Proposed Models 

Our proposed models are listed below, as mentioned in Section 1.2.3 of Chapter 1. 

a. A DQP model using supervised learning under DG to meet the regulatory requirement 

of DG. This model considers sequential learning of DN by taking temporal sequences 

and correlations of DN into account; 

b. A DQP model using unsupervised learning under DG to meet the regulatory 

requirement of DG. This model considers the importance of DN on top of the temporal 

sequences and correlations of DN collectively in DQP. Additionally, this model takes 

temporal sequences and correlations of DN into account in DQ measurement; 

c. A DQP analytical model under DG to meet the regulatory requirement of DG; 

d. A DQP network efficiency improvement model under DG to meet the regulatory 
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requirement of DG by measuring network run-time saving; and 

e. An ISL prediction model considering sequences, correlations and importance of IS 

factors collectively for IS compliance prediction under DG to meet the regulatory 

requirement of DG. 

We design these five models, Model 1 to Model 5, by taking DG regulatory requirements 

into account, as visualized in Fig. 2.1. These models can be framed as DGP under DGF to 

improve the level of DM for the governance purpose. Fig. 2.1 illustrates procedures for the 

design of five ML Models, mentioned in Chapter 3 to 7 correspondingly.  This spans steps 

from broad assumptions to detailed methods of data collection, analysis, and interpretation 

of the model. These models are illustrated below: 

a. For the research limitation in Chapter 3 – DQP in supervised learning, a ML model in 

alignment with the international requirement, BCBS 239, implemented by FF, BK and 

BD LSTM RNNs applying sequential learning is proposed. The model is experimented 

with two input data including the synthesized risk dataset and realistic banking dataset; 

b. For the research limitation of Chapter 4 – DQP in unsupervised learning, a ML model 

in alignment with the international requirement, BCBS 239, implemented by LSTM 

RNNs applying sequential learning and an ATTN is proposed. The model is 

experimented with the synthesized risk dataset. 

c. For the research limitation of Chapter 5 – DQP analytics, a ML model in alignment 

with the local requirement, CPG 235, implemented by LSTM RNNs applying 

sequential learning and complex learning methods is proposed. The model is 

experimented with the synthesized risk dataset; 

d. For the research limitation in Chapter 6 – Network efficiency improvement in DQP, a 

ML model in alignment with the local requirement, CPG 235, implemented by LSTM 

RNNs applying sequential learning and memory between batches is proposed. The 

model is experimented with the synthesized risk dataset; and 

e. For the research limitation in Chapter 7 – IS compliance prediction, a ML model in 

alignment with the local requirement, CPG 234, implemented by LSTM RNNs 

applying sequential learning and an ATTN is proposed. The model is experimented 

with the IS dataset. 
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Fig. 2.1 Model 1 to Model 5 

This model approach shows inputs and outputs of each model and the connections between 

the five models. This stands out how models are developed for making contributions of 

each chapter, as described in Chapter 8. 

 
 
2.4.2 Research Approach 
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For this thesis research approach, we cover three artifacts: 

a. Data synthetization program is given in Fig. 2.2. This is used to create new datasets 

(risk data and IS).  DEs are labelled for the measurement of DQ and compliance levels; 

b. Model approach is mentioned in Fig. 2.1.  This is adopted to solve problems with the 

calculation of DQ and IS compliance scores after DQ and ISL are measured; and 

c. ML models are depicted in Section 2.4.1. They train DNN to predict DQ and IS 

compliance levels for regulatory compliance data based on the scores calculated. 

 
The first artifact, data synthetization program, in the approach is shown in Fig. 2.2. 

 

 

 

 

 

 

 

 

Fig. 2.2 Data Synthetization Program 

 

Fig. 2.2 depicts steps for the synthetization of new datasets. In the data synthetization 

program, we label data, define determinants and score data before pre-processing data.  In 

the progress of synthetization, we define rules and develop programs for synthetization 

experiments. When networks are developed, relevant parameters are pre-set for generating 

new datasets. 

 

The second artifact, model approach, is visualized in Fig. 2.1 and the third artifact in the 

research approach is ML Models, as described in Section 2.4.1. 
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2.5 Summary 

 

In this chapter, we provide an overview of ML techniques including ML methods, their 

model components along with their various networks. Then, we survey current ML work 

related to DG from four perspectives including DQ measurement and prediction, DG 

Requirement Compliance, network efficiency improvement in DQP and IS compliance 

prediction. In a nutshell, there have been numerous ML models developed. These could be 

applied to DG including learning of DQ or IS compliance levels.  However, the extent of 

application to DG was not extensive. 

 

Following this, we summarize limitations of current research work. These limitations 

motive us to propose our research work.  In view of this, we introduce our research proposal 

and research approach. In the research proposal, we propose five ML models in Section 

2.4.1 addressing limitations mentioned in Section 2.3.  Under the research approach, we 

cover three artifacts containing data synthetization program, model approach and ML 

models. 

 

Chapter 3 proposes a ML model to predict DQ in supervised learning. Chapters 4 and 5 

present a ML model to predict DQ in unsupervised learning and analyze DQP 

correspondingly. Chapters 6 and 7 propose a ML model improving the network efficiency 

in DQP and predicting IS compliance levels respectively. Finally, Chapter 8 concludes the 

thesis, and discusses contributions as well as possible future works. 
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Chapter 3 

 

Data Quality Prediction in Supervised Learning 
 
 
 
In Chapter 3, we propose a ML model that can be used to predict DQ under DG in 

supervised learning. This is part of DGP under the DG framework. This chapter proposes 

how to label data in accordance with the international requirement, BCBS 239. Herein, we 

utilize LSTM RNNs with sequential learning to learn temporal sequences and correlations 

between DN for DQP. 

 

In this chapter, Section 3.1 is an introduction of the proposed model. In Section 3.2, we 

first explain data labeling based on BCBS 239. The labelled data is then used for sequence 

prediction in divergent LSTM RNNs including FF, BK and BD networks. The network 

learning is explained with a system architecture. We then discuss the utilized data and the 

conducted experiments in Section 3.3. Finally, Section 3.4 concludes and summarizes this 

chapter.  

3.1 Introduction 

 
From research results summarized in Section 1.2.3 and elaborated in Section 2.2, there are 

limitations of ML work related to DQP in supervised learning under DG: a) ML techniques 

have not been applied in DQP during DG processes using supervised learning extensively. 

In particular, a ML model has not been proposed for DQP during DG processes in 

supervised learning; b) ML techniques have not been applied in the forecast of DQ during 

DG processes by taking temporal sequences and correlations of DN into consideration. In 

particular, a ML model considering temporal sequences and correlations of DN has not 

been proposed for DQP under DG; and c) ML techniques have not been applied to DQ 

learning such as DQP during DG processes for meeting DG regulatory requirements. 
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To address these, we leverage a ML model in supervised learning to predict DQ according 

to an international requirement, BCBS 239 [3] in this chapter. This improves DQ [4, 6] 

during DG processes. 

 

For DQP, we develop a ML model to train DNN for learning regulatory compliance data.   

With the prediction, FIs understand what DQ are going to be. 

 

In total, three networks are implemented including FF LSTM RNNs, BK LSTM RNNs and 

BD LSTM RNNs. In these networks, DN form a sequence over timeline to predict DQ by 

learning correlations between sequential data. 

3.2 Proposed Model 

 

DQ are predicted in a ML model with DNN.  In our approach, we label regulatory 

compliance data in supervised learning for the measurement of DQ in terms of DQ scores. 

 
3.2.1 Data Labelling in Supervised Learning 

In the model, we label data for scoring before DQP. Data labelling is depicted in Fig. 3.1. 

 

 
Fig. 3.1 Data Labelling 

 

We: a) label data as 1 or 0 to indicate whether they are critical; b) assign a risk data rating 

(0.1 to 0.4) and a DQ rating (1.1 to 2) based on types of risk data and quality issues 

respectively; c) classify DQ scores (<1, =>1 & <2, =>2 & <4 and =>4) into four (4) ranks 

Data Criticality Risk Data Rating Data Quality Rating Intrepretation

Calculation formula: a liquidity risk data 
classified as critical and influenced by 2 data 
quality issues will be scored as 4.782 = [1* 
(1+0.4) * (1.8*1.9)] and ranked as high issue.

CDE = 1

Liquidity Risk = 0.4

Not CDE = 0

Operational Risk = 0.3

Credit Risk = 0.2

Market Risk = 0.1

Missing = 2.0

Mis-match = 1.8

Translation = 1.1

Incomplete = 1.9

Invalid = 1.7

Unreasonable = 1.6

Stale = 1.5

Duplicated = 1.4

Redundant = 1.3

Transformation = 1.2

Score <1 = Rank 0

Score =>1 & <2 = Rank 1

Score =>2 & <4 = Rank 2

Score =>4 = Rank 3

No DQ Issue

Low DQ Issue

Medium DQ Issue

High DQ Issue

Data Quality Rank
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(no, low, medium, or high DQ issue or DN) as actual outputs to be compared with the 

prediction made in experiments.  These ratings are justified: 

 

a. Data Criticality Factors: Data is classified based on business criticality and sensitivity 

[120]. Referring to a research defining factors impacting DQ [98], we make a similar 

assumption: DE Criticality = 0 if a DE is not used in the data aggregation and DE Criticality 

= 1 if a DE is used in the aggregation influencing DQ. 

 

b. Risk Data Rating: different risk types are inherited with different levels of risk.  MR is 

approximated at 10% (E(Ri)) under a CAPM [228], CR is assumed to be 20% (CVaR) 

under a confidence level of 99.5% to 99.99% for the finance sector using Monte-Carlo 

simulation [224], OR is set to 30% due to VaR between 27.84% and 37.71% [208, 209] 

and LR is defined as 40% (R2) under a liquidity measure of Depth [194, 204]. Rating 

for these risks are used together for the risk data aggregation under BCBS 239 [3]; 

 

c. DQ Rating: min. or max. operation (from 0 to 1) is applied to aggregate multiple quality 

issues [193].  We define DQ ratings (1.1 to 2.0) by normalizing 10 issues. These are 

intuitive since there is no empirical research available; and 

 

d. DQ Scores: We classify scores after referencing to a research ranking quality to allow 

the management to understand which ones are crucial to DQ [98]. 

DQ scores are a multiplication of the ratings for each DN. The overall score is computed 

as: Data Criticality Factors*(1 + Risk Data Rating)*DQ Rating. The ratings and ranks are 

usually assigned by risk experts in real life. 

 

Data is pre-processed before they are imported into networks. They are input into networks 

to find unusual records which are different from the standard (e.g. null values) such as 

BCBS 239. To pre-process data, data is scored and then normalized to a binary value of 

either 1 or 0 by a min-max scaler. 
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3.2.2 Feedforward, Backward, and Bi-Directional Networks 

Three networks including FF, BK and BD LSTM RNNs are implemented in the model. 

Relevant network methodologies are described in Table 3.1. 

 

Table 3.1 Network Methodologies 

Networks Methodologies 

FF LSTM 

RNNs 

We build a 3-dimensional LSTM based on factors of samples, timesteps and 

features for sequence classification prediction. At an input layer, we take 1 

million samples (as sequences), leverage timesteps and input the number 

of features.  Then, we determine the number of memory units for the hidden 

layer. At an output layer, we generate a value for each timestep using an 

activation function to predict DQ. In this layer, the network forms a time-

distributed wrapper layer based on input sequences to forecast outputs. 

The network weights are found by ADAM algorithm [10] and the accuracy 

of outputs is computed. Afterwards, the network generates new input 

sequences to predict DQ. Those exceeding thresholds are classified. At the 

end, outputs turn out to be 0 or 1. This layer is the input for BD LSTM RNNs.  

BK LSTM 

RNNs 

This network wraps the LSTM hidden layer with the backward layer to 

construct two sets of hidden layers – one fits in the input sequence and 

another one fits with a reversed input sequence. Then, the time-distributed 

wrapper layer around the output layer will receive dual input sequences for 

merging before forecasting DQ [21]. This wrapper is unlike the block 

processing and look-ahead convolution layer utilized in a bidirectional 

network [218]. 

BD LSTM 

RNNs 

In training this network, we revise input sequences and import them into 

the LSTM as the backward input sequences before merging them. After 

fitting the combined one into the model, we measure the performance 

between them in terms of a log loss [23] over epochs. 

Other 

Methods 

for 

Analysis 

Apart from the concatenation method (con), we incorporate three methods 

into our model to analyze the outcome of our hybrid network including 

multiply (mul), average-out (ave) and summation (sum) giving rise to 

divergent outcomes in our case studies. 
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These networks forecast DQ according to the past and future data. They include sequence 

prediction with ADAM algorithm for optimizing the learning performance. ADAM is 

selected due to its merits mentioned in Section 2.1 of Chapter 2. 

 

In LSTM RNNs, a Back Propagation Through Time algorithm is calculated sequentially. 

When outputs are estimated, RNNs will back propagate an error to obtain error 

responsibilities. The error of the next time step is backpropagated with the error of this 

time step. The sum of errors exploits the information of the recent input sequence and puts 

more importance on the latest input. Accordingly, DQP are sequentially dependent. This is 

estimated as the P(Y|X) which is computed by the following: 

 

�
exp (𝑓𝑓�ℎ𝑡𝑡−1,  𝑒𝑒𝑦𝑦𝑡𝑡�)

∑ exp(𝑓𝑓�ℎ𝑡𝑡−1,   𝑒𝑒𝑦𝑦′�)𝑦𝑦′𝑡𝑡∈�1,𝑛𝑛𝑦𝑦� 

 (3.1) 

 

This equation is from ∏ 𝑇𝑇(𝑦𝑦𝑡𝑡| 𝑥𝑥1, 𝑥𝑥2𝑡𝑡∈�1,𝑛𝑛𝑦𝑦� , … , 𝑥𝑥𝑡𝑡, 𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑡𝑡−1) where f(ℎ𝑡𝑡−1, 𝑒𝑒𝑦𝑦𝑡𝑡) is 

an activation function between 𝑒𝑒ℎ−1 and 𝑒𝑒𝑦𝑦𝑡𝑡, and ℎ𝑡𝑡−1 is an output at a previous time t−1. 

 

In this chapter, we apply regularization to networks. We try to dropout (10% of the 

activations) on the LSTM layer and make regularization to see whether the problem of 

overfitting can be alleviated. Dropout prevents the co-adaptation of hidden units by 

randomly omitting feature detectors from the network during the forward propagation. 

Constraining L2-norms of weight vectors (𝑤𝑤) by rescaling 𝑤𝑤 after a gradient descent step, 

we obtain a cost function [212] as computed below: 

 

𝐽𝐽(𝜃𝜃)= - 1
𝑇𝑇
∑ 𝑡𝑡𝑥𝑥log (𝑦𝑦𝑥𝑥)𝑇𝑇
𝑥𝑥=1  + 𝜆𝜆‖𝜃𝜃‖𝐹𝐹2  (3.2) 

 

This is a negative log-likelihood of true class label 𝑦𝑦 where 𝑡𝑡 is time, 𝑚𝑚 is number of target 

classes, 𝜆𝜆 is L2 the regularization hyperparameter and 𝑦𝑦𝑥𝑥 are predicted outputs. 
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3.2.3 Sequence Prediction 

 
Sequence prediction in RNNs can be from one to many, many to one or many-to-many. 

Correspondingly, the data input can be mapped to a sequence with multiple steps as an 

output, a sequence of multiple steps as data inputs can be mapped to class the prediction or 

a sequence of multiple steps are data inputs which can be mapped to a sequence with 

multiple steps as outputs. Accordingly, RNNs can be used for text data, speech data, 

classification prediction, regression prediction and generative models. 

 

In BD LSTM RNNs, sequences of received signals are fed in the FF direction into the 

LSTM cell resulting in an output 𝑎𝑎𝑘𝑘����⃗  , and fed in the BK into another LSTM cell resulting 

in an output 𝑎𝑎𝑘𝑘�⃖��� [28]. Assuming that  𝑎𝑎���⃗ 𝑘𝑘
(𝑙𝑙)and 𝑎𝑎 �⃖��𝑘𝑘

(𝑙𝑙) are outputs of the final BD layer, the layer 

with an activation function is used to gain 𝑥𝑥�𝑘𝑘 as: 

 

𝑥𝑥�𝑘𝑘 = ∅�𝑊𝑊𝑎𝑎�⃗  𝑎𝑎���⃗ 𝑘𝑘
(𝑙𝑙) + 𝑊𝑊�⃖�𝑎�  𝑎𝑎 �⃖��𝑘𝑘

(𝑙𝑙) + 𝑏𝑏𝑥𝑥� (3.3) 

 

This estimated 𝑥𝑥�𝑘𝑘 is given by the following: 

 

�
�̂�𝑝𝑇𝑇𝑥𝑥𝑇𝑇𝑇𝑇𝑙𝑙 (𝑥𝑥�𝑘𝑘 = 𝑠𝑠1⃓ 𝑦𝑦𝑘𝑘 ,  𝑎𝑎���⃗ 𝑘𝑘−1

(𝑙𝑙) ,  𝑐𝑐��⃗ 𝑘𝑘−1
(𝑙𝑙) ,𝑎𝑎 �⃖��𝑘𝑘−1

(𝑙𝑙) , 𝑐𝑐 �⃖�𝑘𝑘−1
(𝑙𝑙) ) ≈ �̂�𝑝𝑇𝑇𝑥𝑥𝑇𝑇𝑇𝑇𝑙𝑙 (𝑥𝑥�𝑘𝑘 = 𝑠𝑠1⃓ 𝑦𝑦𝒯𝒯 ,𝑦𝑦𝒯𝒯−1, … ,𝑦𝑦1)

�̂�𝑝𝑇𝑇𝑥𝑥𝑇𝑇𝑇𝑇𝑙𝑙 (𝑥𝑥�𝑘𝑘 = 𝑠𝑠𝑇𝑇⃓ 𝑦𝑦𝑘𝑘 ,  𝑎𝑎���⃗ 𝑘𝑘−1
(𝑙𝑙) ,  𝑐𝑐��⃗ 𝑘𝑘−1

(𝑙𝑙) ,𝑎𝑎 �⃖��𝑘𝑘−1
(𝑙𝑙) , 𝑐𝑐 �⃖�𝑘𝑘−1

(𝑙𝑙) ) ≈ �̂�𝑝𝑇𝑇𝑥𝑥𝑇𝑇𝑇𝑇𝑙𝑙 (𝑥𝑥�𝑘𝑘 = 𝑠𝑠𝑇𝑇⃓ 𝑦𝑦𝒯𝒯 ,𝑦𝑦𝒯𝒯−1, … ,𝑦𝑦1)
�  

 (3.4) 

 

where �̂�𝑝𝑇𝑇𝑥𝑥𝑇𝑇𝑇𝑇𝑙𝑙 is the probability of estimation, 𝑦𝑦𝑘𝑘 is input to the layer, 𝑘𝑘 is a sequence of 

transmission, 𝑊𝑊 is weight, 𝑏𝑏𝑥𝑥 is bias parameter and 𝒯𝒯 is a sequence of length. The output 

of layer is of the length 𝑚𝑚 and the network considers data from previously received signals 

(encoded in 𝑎𝑎𝑘𝑘−1
(𝑙𝑙)  and  𝑐𝑐𝑘𝑘−1

(𝑙𝑙) ) and from current signals. 

 
3.2.4 System Architecture 

 
For the network topology, the architecture is displayed in Fig. 3.2. The FF LSTM RNN is 

at the 1st layer. Turning to the BK one, one layer is added such that the network is BD. 
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Then they are concatenated to generate an output at another layer, “2in1” circles, inside 

Fig. 3.2 constructing a hybrid network [192]. 

 

This model is implemented with a scoring approach for classifying DQ (exceeding 

threshold or not) in BD LSTM RNNs. This is not equivalent to the model [207] 

experimenting neural networks in unidirectional and bidirectional structures - built with 

deep bidirectional LSTM network-based sequences for classifying signals.  Instead, it is 

similar to a model [25] learning time-sequence features in a BD LSTM RNNs. The variance 

is that we explore other methodologies to ascertain the effectiveness of BD LSTM RNNs. 

 

Model output sequences are dynamic depending on input sequences and the number of 

predictions at each time step. Output values initially are set at 0. When the cumulative sum 

of input attributes in the sequence exceeds a threshold, values will turn to 1 while the 

threshold is a portion of the length of the input sequence [189]. The threshold is trained in 

networks based on a sequence length [0:1]. The output sequence of 1 reveals that a DQ 

exceeds the threshold which is the data risk threshold. 

 

 
 

Fig. 3.2 System Architecture 

3.3 Experiments 

Python v3.5 with Keras and TensorFlow backend is used on a system with the processor 

Backward 
LSTM

Output Layer –
Time-distributed 

Wrapper
Y Y Yt+1t-1 t

LSTM 
Block

LSTM 
Block

LSTM 
Block

LSTM 
Block

LSTM 
Block

LSTM 
Block

LSTM RNNs

2in12in12in1

1st Layer

Y

Forward 
LSTM

LSTM Block

Output

+ +

Input gate

Input

Forget
gate

Output gate

𝒉𝒕

+

tanh tanh

+

tanh tanh

++

+

C
tanh

𝑪𝒕

𝑪𝒕−𝟏𝟏

+
Y Y Yt+1t-1 t

2in12in12in1

LSTM 
Block

LSTM 
Block

LSTM 
Block

LSTM 
Block

LSTM 
Block

LSTM 
Block

Y Yt+1t-1 t

2nd layer

Output Layer

Hidden Layer

2in 1 - concatenate

BiLSTM



 

 55 

of i.7-7500U CPU@2.9GHz, OS of 64-bit and Win 10 Pro. The dataset is divided into two 

parts. 70% of data is fitted to networks and 30% is used for the network evaluation.  This 

system setup and data split are used in the models of other chapters of this thesis. 

 

The purpose of these experiments is to demonstrate the effectiveness of our model on DQP 

in supervised learning by conducting a set of experiments over the synthesized dataset as 

well as the realistic banking dataset. 

 

Dataset 

 
Under BCBS 239, the risk data quality is to be assessed including MR, CR, OR and LR. In 

real world, there was no dataset for the financial services industry containing these four 

types of risk data collectively. Instead, there have been a plethora of datasets for a single 

risk type from the internet or public domain. 

 

In the industry, diverse risk data would be compared to find whether data is matched or not 

before the identification of DN. In the absence of different risks, data mis-matches cannot 

be identified to meet regulatory requirements as required by regulators of the financial 

services industry. 

 

After searching publicly available datasets, we discover abundant banking datasets. 

Notwithstanding, none of them includes four types of risk data jointly. The market 

available datasets are limited to the following: 

a. Direct marketing campaigns (phone calls) in a Portuguese bank institution [41]; 

 

b. Eighteen datasets from data.world [42] – The data is up-to-date ranging from 1999 to 

Sep 2018. These mainly cover assets, ATM locations, credit card complaints, federal 

reserve system, failed banks, UK economy data, interest rates, bank suspension data, 

real anonymized transactions, loan data, bank institution history, financial 

empowerment centres, bank statistics of the US, and check cashing locations as well as 

financial services. These datasets did not cover four types of risks collectively;  

mailto:CPU@2.9
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c. Over one thousand datasets (1,197 as of Apr 2019) from World Bank [43] – The data 

date is close to recent years.  Correspondingly, none of them has a full set of risk data. 

The dataset focused on liquid reserves to bank assets ratio, capital to asset ratio, 

nonperforming loan to total gross loans, merchandise imports, external debt stocks and 

concessional, merchandise exports, private creditors, IBRD loans and IDA credits, risk 

premium on lending, social protection rating, lending, IBRD, multilateral, tariff, gross 

fixed capital, net taxes on product, bonds, debt buyback, inflation (consumer prices), 

deposit interest rate, lending interest rate and losses due to theft; and 

 
d. Plenty banking dataset from biml [44] – the data update date is recent.  The situation is 

the same. A full set of risk data cannot be found.  The dataset solely covered loan risk 

data, loan status, marketing, BBVA cards, credit, currency exchange, card cubes, apply 

shares, IPOs, churn, tech share values and volume, crunchbase data, project assessment, 

financial intermediary funds, average value weighted returns and Europe debts. 

In view of the above, networks in this chapter are trained with a synthesized dataset. This 

dataset is synthetized based on real-world risk DN. In risk publications, key DEs have been 

announced by risk experts regularly.  They have been published in publications of MR [13, 

14], CR [15], OR [16, 17] and LR [18].  After making reference to these, we: a) summarize 

characteristics of DEs; b) capture their commonalities; and c) synthesize a set of data 

simulating realistic data features.  Inside the dataset, data is implanted with common quality 

issues from DQ publications [128, 129, 193]. The dataset is depicted in Table 3.2. 

 

Table 3.2 Integrated Dataset 

Total Number of 
DEs 

DEs for Each Risk 
Data Type 

Data Nature DN 

132 33 Market Risk 8 Static Data (seldom 
changed after being 
recorded) and 25 Dynamic 
Data (which may change 
continually) in Each Risk 
Database 

10 Classes 
33 Credit Risk 
33 Operational Risk 
33 Liquidity Risk 

 



 

 57 

This dataset has 132 DEs belonging to four (4) risk databases. Each database contains 33 

features in which 8 are static and 25 are dynamic. 

 

The dataset covers one (1) million banking customer records. It includes corporate and 

individual data, and values are discrete instead of continuous.  Some features are extracted 

to Table 3.3. 

Table 3.3 Data Features (Examples) 

MR CR OR LR 
Asset Maturity 

(1945 days, tbc, na) 

Loan ID 

(385623, 0, tbc, na) 

Loss Income Ratio 

(1.15%, 92.04%, 
54.6%) 

Liquidity Rate 

(10.39%, 65.29%) 

NPV 

(425543, 0, tbc, na) 

Weighted Avg PD 

(6.31%, 19.48%) 

Residual Legal Liability 

($1385, 12, 0) 

Instrument 

(TBC, Forward, 
Equity) 

 

Table 3.3. shows that data features are embedded with heterogenous quality issues such as 

MR's NPV (0, tbc and na), CR's loan ID (0, tbc or na), OR's legal liability (0) and LR's 

instrument (TBC). 

 

To drill down into a database, MR data features are extracted to Table 3.4 for reference. 

 

Table 3.4 MR Data Features (Sample) 

MR 
Discount 

Rate 

Cost 
Of 

Equity 

Return 
On 

Equity 

Risk 
Free 
Rate 

Systematic 
Risk 

Mkt 
Risk 

Premium 

Equity 
Risk 

Premium 
Mean 0.50 2.99 1.00 0.50 33.58 0.50 1.47 
Min 0 0 0 0 0 0 0 
Max 1 414 83 1 558 1 164 

 
MR AssetAmt Nationality  CustID AssetMaturity CashFlow 

Count 993350 993991 990227 993286 993268 
Unique 625185 34 109769 3653 624452 

Top tbc CAD ABC61595 tbc na 
freq 6589 31292 26 6761 6563 
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In this MR database, the number of DN by DQ ranks are listed in Table 3.5. 

 

Table 3.5 Number of DN by Ranks (“Rating” in Table) 

 
 

Note: 0 – no DN, 1 – low DN, 2 – medium DN, 3 – high DN in the rating while business 

segments are classified into 0, 1, 2 and 3 representing no segment, the private bank 

(“PvB”), the wholesale bank (“WB”) and the retail bank (“RB”). 

 
DN are aligned with DQ principles of the BCBS 239 including the principle # 3 - accuracy 

and integrity, principle # 4 - completeness and principle # 5 – timeliness, as defined in 

Table 3.6. 

 

Table 3.6 DN Mapped to BCBS 239  

 Principle # 3 Principle # 4 Principle # 5 
DN 1.1 Translation: a bank balance in foreign 

currency not yet converted into a local 
currency 
1.2 Transformation: the birthday format of 
a banking system not yet synchronized 
with other systems 
1.3 Redundant: potential customers not yet 
on-board as a true bank customer (due to a 
failure in the bank’s customer due diligence 
approval process) are retained 
1.4 Duplicated: an extra customer ID for the 
same clients not yet verified 
1.6 Unreasonable: undesirable clients with 
a very poor credit are kept 
1.7 Invalid: customers over age 150 hold an 
account in a bank without investigation 
1.8 Data mis-match: a master data cannot 
be reconciled to other banking systems 

1.9 
Incomplete: 
passport 
number 
deviates from 
the standard 
(e.g. required 
digits) 
2.0 Missing: 
an amount 
cannot be 
shown in a 
statement for 
equity trading 
 

1.5 Stale: 
obsolete 
records over 
the data 
retention 
period of a 
bank not yet 
purged 
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Results 

Applying ADAM algorithm to networks for DQP, we note that the accuracy of prediction 

of the integrated dataset for the BD LSTM RNN (100%) is superior to that of the FF LSTM 

RNN (0) and the BK LSTM RNN (31%), as depicted in Table 3.7.  The high accuracy is 

similar to a BD LSTM RNN in a research [188] solving a current problem - customers’ 

purchase decisions by process automation. 

 

The prediction error in terms of a loss for the BD LSTM RNN is constantly lower than that 

of other two networks.  The loss for the former is close to 0.67% whereas that of other two 

networks are 0.78% and 0.77% respectively. Accordingly, the BD LSTM RNN is better 

other two RNNs. 

 

Table 3.7 Loss and Accuracy in 3 LSTM RNNs: FF, BK and BD 

RNN FF BK BD 

Epoch Accuracy Loss Accuracy Loss Accuracy Loss 

1 0 0.807 30.78 0.771 52.3 0.695 

2 0 0.799 30.78 0.770 69.4 0.698 

3 0.1 0.791 30.78 0.770 90.2 0.682 

4 0.2 0.783 30.78 0.769 100 0.673 

5 0.4 0.775 30.78 0.768 100 0.665 

 

Among them, we further compare the loss, as shown in Fig. 3.3.  The loss of the BK 

network is the lowest (0.55%), lower than that of the FF and BD networks by 0.07% to 

0.08%.  Nonetheless, the loss of the BD network is lower than that of the FF network.  

 

In order to confirm whether the BK network is consistently better than other two networks, 

we verify the network using an OR database. The result differs, as visualized in Fig. 3.3 - 

the loss of FF and BK networks is similar (0.683%) and both are higher than that of the 
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BD network (0.005% to 0.0075%). Thereupon, the BD LSTM RNN is superior to other 

networks for this OR database. 

 

 
Integrated Dataset                OR Database 

Fig. 3.3 Loss for 3 LSTM RNNs: FF, BK and BD 

Evaluation 

 

We test the effectiveness of the BD LSTM RNN by cross-validating the accuracy and loss. 

Results show that the accuracy of training and testing data sets for the FF and BD LSTM 

RNNs is the same (100%) while that for the BK network is much lower (30.78%). This is 

consistent with the loss, as shown in Table 3.8. Training and testing loss for the former 

two networks decreases consistently and stabilizes at the same point, unlike the BK 

network. This demonstrates a good fit that training loss meets with testing loss at the end. 

 

Table 3.8 Cross Validated Loss for 3 LSTM RNNs 

Epochs 1 2 3 4 5 6 7 8 9 10 

FF 0.607 0.598 0.588 0.578 0.568 0.559 0.549 0.539 0.529 0.519 

BK 0.765 0.764 0.763 0.763 0.762 0.761 0.760 0.759 0.758 0.758 

BD 0.598 0.588 0.578 0.568 0.559 0.549 0.539 0.529 0.519 0.509 

 

This cross-validation technique deviates from a studying training LSTM RNNs [192] 

(unidirectional, bidirectional, and cascaded architectures based) to benchmark other 

models (e.g. SVM) for prediction. 
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Case Studies 

 
To drill down into the network performance, we study the following three cases. 

 

Case 1 - We select OR data to justify the accuracy and loss of the integrated dataset. The 

accuracy is found high (over 99%) for the BK and BD LSTM RNNs whereas the loss of 

them is as low as that of the integrated dataset - 0.68% for the FF LSTM RNN, 0.69% for 

the BK LSTM RNN and 0.66% for the BD LSTM RNN, as shown in Table 3.9. However, 

the loss of the BD LSTM RNN is the lowest (0.664%). In view of this, this LSTM RNN is 

more favorable in DQP than other networks. 

 
Table 3.9 Accuracy and Loss of 3 LSTM RNNs for OR Data 

 FF BK BD 

Epoch Accuracy Loss Accuracy Loss Accuracy Loss 

1 81.8 0.693 99.3 0.694 99.9 0.678 

2 99.3 0.690 99.3 0.694 99.3 0.675 

3 99.9 0.687 99.3 0.693 99.3 0.672 

4 99.3 0.684 99.3 0.693 99.3 0.667 

5 99.3 0.680 99.3 0.691 99.3 0.664 

 

To find the lowest loss, we inspect four (4) loss estimation methods, as compared in Fig. 

3.4. The loss is minimized in the summation method (0.673%) whereas the highest loss is 

estimated by the multiply method (0.691%). Other two methods, including concatenate and 

average, estimate that the loss is reduced to 0.678% to 0.683% respectively.  
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Fig. 3.4 BD LSTM RNNs’ Performance by Four Methods 

With these results, the summation method is preferable. From the literature review, we 

notice that these methods deviate from a study implementing a stacked bidirectional and 

BD LSTM network [90] to measure the BK dependency. 

 

Case 2 – We conduct an independent check to see whether our prediction are convincing.  

To achieve this, we explore the problem of under-fitting or over-fitting for networks with 

a set of training data and a set of validation data.  The outcome is visualized in Fig. 3.5. 

 

FF                    BK                         BD 

 

Fig. 3.5 Validated Loss of 3 LSTM RNNs for OR Data 

For all networks, the loss of the validation data is found lower than that of the training data.  

There is no under-fit or over-fit issue.  This occurs when the network generalizes well or 

the training set is large. In the result, there is a good fit for the BD LSTM RNN, not the 

other two RNNs. This is the same as that of the result for the integrated dataset – the loss 

of training and validation data reduces steadily and meets at the end. In view of this, we 

are confident of the model for DQP.  
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Case 3 – From the integrated dataset, the accuracy and loss of prediction for the BD LSTM 

RNN is 100% and 0.665% respectively utilizing the algorithm of ADAM. In order to 

explore whether the loss can be improved, we apply another algorithm, Stochastic Gradient 

Descent (“SGD”), to networks due to its merit. SGD can be used to estimate the probability 

of output based on a randomly selected subset of inputs with the stochastic approximation 

of gradient descent optimization. The output can be estimated using least squares where 

the objective function is minimized [235]. Results are displayed in Table 3.10. 

 

Utilizing SGD, we observe that the highest accuracy occurs in the BD LSTM RNN 

(>99.9%) which is lower than that in the integrated dataset (100%). There is a contradictory 

result for the loss. Utilizing SGD, the loss for the BD LSTM RNN (0.68%) is higher than 

that of the BD LSTM RNN with ADAM (0.67%). In comparison, ADAM algorithm is 

preferable. When compared three networks applying SGD, we can see that the highest 

accuracy is found in the BD LSTM RNN but the loss for this is higher than that of the FF 

network (0.658%) and lower than that of the BK network (1.427%). 

Table 3.10 Accuracy and Loss in 3 LSTM RNNs (SGD) 

FF BK BD 

Epoch Accuracy Loss Accuracy Loss Accuracy Loss 

1 64.37 0.693 30.78 1.460 95.09 0.690 

2 98.56 0.685 30.78 1.453 97.20 0.688 

3 99.98 0.675 30.78 1.444 98.55 0.687 

4 99.32 0.667 30.78 1.433 99.27 0.683 

5 99.30 0.658 30.78 1.427 99.96 0.680 

 

To confirm whether ADAM is the best for the network performance, we benchmark other 

algorithms. Outcomes are shown in Fig. 3.6. The accuracy is found high for ADAM 

(100%), SGD (99.96%) and ADAGRAD (100%) but the loss is the lowest for ADAGRAD 

(0.452%) when compared with ADAM, SGD, ADADELTA and RMSPROP. 

Consequently, ADAGRAD is better than ADAM in our experiments with respect to DQP. 
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Fig. 3.6 Accuracy and Loss for BD LSTM RNN by Algorithms 

 

Model Re-testing 

 

To ensure that our model is effective in real life, we utilize a realistic banking dataset to 

predict DQ in supervised learning although this dataset covers single risk type.  Re-testing 

results are summarized in the following paragraphs.  Before an illustration of the testing, 

we introduce the dataset first. 

 

This dataset contains the International Development Association (IDA) credits which are 

public and publicly guaranteed debt extended by the World Bank Group. Data can be found 

from the link of 

https://finances.worldbank.org/browse?category=Loans+and+Credits&limitTo=datasets 

 

IDA provides development credits, grants and guarantees to its recipient member countries 

to meet their development needs. Credits from IDA are at concessional rates and data is in 

U.S. dollars calculated using historical rates. This dataset contains historical snapshots of 

the IDA Statement of Credits and Grants including the latest available snapshot. As the 

World Bank complies with all sanctions applicable to World Bank transactions.  

 

In total, this dataset covers thirty (30) DEs. They are similar to data fields of our 

synthesized dataset. Some data features are extracted to Table 3.11 for reference. 

 

https://finances.worldbank.org/browse?category=Loans+and+Credits&limitTo=datasets
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Table 3.11 Realistic Banking Data Features (Samples) 

 

Attributes 
Sample 
Values 

DN 
Examples 

Features 

Borrower STATE 
PLANNING 

COMM. 

Null value Unique=328, top=MINISTRY OF 
FINANCE, freq=130338 

Closed Date 12/31/1984 
12:00:00 AM 

Date format 
inconsistent with 

%d/%m/%Y 
%I:%M:%S %p 

Unique=1210, top=06/30/2013 
12:00:00 AM, freq=12452 

Project ID P007353, 
P009314 

89100192, PSW, 
null value 

Unique=6818, top=P079736, 
freq=856 

Project Name LIVESTOCK 
MARKETING 

na, n/a, nil, tbc, 
any, all 

Unique=7373, top=EDUCATION 
II, freq=4329 

Credit Number IDA07770, 
IDA07780 

Repeated numbers Unique=9115, top=IDA06250, 
freq=111 

Agreement 
Signing Date 

4/06/1978  
12:00:00 AM 

Date format 
inconsistent with 

%d/%m/%Y 
%I:%M:%S %p 

Unique=4756, top=06/23/2003 
12:00:00 AM, freq=1443 

Cancelled 
Amount 

24276.41, 
21912427.15 

Null value Mean= 2733973.78894761, SD= 
17323842.8046962 

Country Code HN, AF, JO 4P, 6C, 8S Unique=128, top=IN, freq=46074 
Region EUROPE 

AND 
CENTRAL 

ASIA 

OTHER Unique=7, top=AFRICA, 
freq=437374 

Currency of 
Commitment 

USD EUR, XAF or JPY Unique=5, top=XDR, 
freq=704864 

Exchange 
Adjustment 

0 -, null value Unique=3, top=0, freq=810201 

Service Charge 
Rate 

0.75, 1.11, 1.3 0, null value Unique=NaN, top= NaN, freq= 
NaN 

 

Model Re-Testing Results 

 
To verify the effectiveness of our ML model, we re-test the model with a “realistic banking 

dataset” under the same experiment settings. The testing networks and parameters (such as 

algorithm of ADAM) are the same as that of the model that we have experimented in this 

chapter. Additionally, data fields in the realistic dataset are more or less the same as that of 
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our synthesized dataset. More importantly, the size of this realistic dataset is large (with 

842,969 records) which is comparable to our synthesized dataset (1 million). 

 

In this re-testing, we train three networks to predict DQ including FF, BK and BD LSTM 

RNNs.  Prediction results are extracted to Table 3.12. It shows the prediction accuracy and 

error (in terms of a loss) which are comparable to our initial experimental results tested 

with the synthesized dataset.  

 
Table 3.12 (Re-Testing) 

Loss and Accuracy in Three LSTM RNNs: FF, BK and BD 

 
RNN FF BK BD 

Epoch Accuracy Loss Accuracy Loss Accuracy Loss 
1 33.41 0.723 33.41 1.253 66.85 0.658 
2 33.41 0.719 2.72 1.253 66.59 0.653 
3 33.38 0.716 2.72 1.250 66.59 0.648 
4 33.25 0.712 2.72 1.249 66.59 0.644 
5 32.80 0.709 2.72 1.249 66.59 0.640 

 
 

From these results, we note the following: 

 

a. The accuracy for two networks (BK LSTM RNN and BD LSTM RNN) is lower (2.72% 

and 66.59%) in re-testing results as the accuracy for these networks in initial results is 

as good as 30.78% and 100% respectively; and 

b. However, the accuracy for the FF LSTM RNN is better (32.80%) when compared with 

initial results in which the accuracy for this network is only 4%.  Regardless of these, 

the highest accuracy in re-testing and initial results is found in the BD LSTM RNN at 

the end. 

 

Unlike accuracy results, losses for the FF LSTM RNN (0.709) and BD LSTM RNN (0.640) 

in re-testing results are better than that of our initial experimental results (0.775 for the FF 

LSTM RNN and 0.665 for the BD LSTM RNN) except for the BK LSTN RNN.  Finally, 

the lowest loss in re-testing and initial results is found in the BD LSTM RNN. 
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Model Re-Testing Evaluation 

 
In the re-testing, we validate the effectiveness of three RNNs and compare their results 

with actual outputs. The validated accuracy for the FF LSTM RNN, BK LSTM RNN and 

BD LSTM RNN corresponds to 66.59%, 66.59% and 2.72%. These differ from our initial 

experimental results in which these figures were 100%, 100% and 30.78% respectively. 

 

Apart from this, we validate the prediction error in terms of the validated loss, as shown in 

Table 3.13. This is equivalent to the validation made in our initial experiments of this 

chapter. 

 
Table 3.13 (Re-Testing) 

Cross Validated Loss for Three LSTM RNNs 

  
Epoch 1 2 3 4 5 6 7 8 9 10 

FF 0.703 0.700 0.697 0.694 0.691 0.688 0.685 0.683 0.680 0.677 
BK 1.248 1.245 1.244 1.244 1.244 1.243 1.240 1.241 1.240 1.240 
BD 0.632 0.629 0.626 0.624 0.621 0.619 0.618 0.616 0.615 0.614 

 
By comparing re-testing results with initial results, we find that the lowest validated loss is 

found in the BD LSTM RNN.  The lowest validated loss in the re-testing is 0.614 whereas 

that in initial results is 0.509. They are relatively similar. In the re-testing, the validated 

loss for the FF LSTN RNN (0.677) and BK LSTM RNN (1.240) is much higher than that 

of the same networks in our initial experimental results (0.519 and 0.758). 

 

Above performance measurements such as accuracy and loss are defined in equations 2.37 

and 2.38 respectively inside Chapter 2. 

 

As we can see, our experiments show the effectiveness of our model on DQP in supervised 

learning by conducting a set of experiments over the synthesized dataset as well as the 

realistic banking dataset. 

 

Related Works 
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How to decide DN has been discussed in divergent fields of academia. Prior research 

commonly decided them based on three dimensions: accuracy, completeness and 

timeliness [238, 239]. Some used metrics [132]. Other researchers addressed the same 

problem such as missing data [58]. Their dimensions did not consider regulatory 

requirements. Additionally, we introduce other factors to decide data noise including, 

omission of translating data, negligence in data transformation, and data which are 

redundant, duplicated, unreasonable, invalid, mis-match, incomplete, missing and stale. 

 

Factors are derived from an international standard, BCBS 239 [4] requiring an aggregation 

of risk data and the measurement of their DQ according to DQ principles. In the model, we 

define 10 factors. This is novel in comparison with prior researchers addressing the same 

problem [240, 241, 242]. 

 

Reviewing the literature of sequential learning in DNN, we notice that the importance is 

continuously growing. Many earlier works were related to prediction. However, none of 

them was learnt for DQP. They centred on other domains: Some researchers have 

investigated the application of sequential learning in speech recognition [88], video 

captioning [89], reading comprehension [90], ads recommendation [91] and natural 

language processing [92]. 

3.4 Summary 

 
In this chapter, we propose a ML model for DQP in supervised learning. In supervised 

learning, we label data based on DQ principles of the international requirement, BCBS 

239. Table 3.6 shows these principles including the principle # 3 - accuracy and integrity, 

principle # 4 - completeness and principle # 5 – timeliness. 

 

With labelled data, we input the labelled data in LSTM RNNs for DQP. Three networks 

are implemented in the model including FF, BK and BD LSTM RNNs, as mentioned in 

Table 3.1. Their learning methodologies, sequence prediction and system architecture are 

explained in Section 3.2.2, 3.2.3 and 3.2.4 respectively.  
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In experiments, we firstly direct networks to learn temporal correlations between DN 

sequences with a synthesised dataset, as mentioned in Section 3.3. Afterwards, we re-test 

the model with a realistic banking dataset. Both experimental results demonstrate that our 

model is effective in training synthesized and realistic datasets for DQP. The effectiveness 

is confirmed in BD LSTM RNN results.  The prediction accuracy in our initial results and 

in the re-testing is relatively high and the prediction error (in terms of a loss) is low. The 

network performance is further elaborated with some case studies. 

 

Prediction of DQ accurately in LSTM RNNs are advantageous to the financial services 

industry. FIs can understand what DQ are going to be with a sceientific computational 

method. This enhances their forward-looking capabilities of DQ by providing any potential 

violations of risk limits over thresholds in advance. Thereupon, DQ can be improved in 

long term [4] which is consistent with the expectation of financial regulators. 

 

The next chapter presents DQP using unsupervised learning with a ML model.  Model 

networks learn the importance of DN on top of the temporal sequences and correlations of 

DN collectively in DQP. 
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Chapter 4 

 

Data Quality Prediction in Unsupervised Learning 
 
 
Chapter 3 focuses on DQP under DG in supervised learning with ML models. In this 

chapter, we make prediction with a ML model using a more advance learning method - 

unsupervised learning.  This is part of DGP under the DG framework.  

 

Although model networks in this chapter are equivalent to that of Chapter 3, they are 

additionally applied with an ATTN mentioned in Section 2.1.3 of Chapter 2. The model in 

this chapter considers the importance of DN on top of the temporal sequences and 

correlations of DN collectively in DQP. Additionally, this model takes temporal sequences 

and correlations of DN into account in DQ measurement before DQP. 

 

In this chapter, Section 4.1 provides an introduction. Section 4.2 describes the way to detect 

DN based on rules deriving from an international requirement, BCBS 239. Detected DN 

impacts are estimated in terms of weights by generative mixture methods in unsupervised 

learning. These are input into networks for DQP. In Section 4.3, we report experiments and 

network evaluation results. Finally, we summarize this chapter in Section 4.4. 

4.1 Introduction 

 
From research results summarized in Section 1.2.3 and elaborated in Section 2.2, there are 

limitations of ML work related to DQP in unsupervised learning under DG: a) c) ML 

techniques have not been applied in DQP using unsupervised learning.  In particular, a ML 

model has not been proposed for DQP in unsupervised learning; b) temporal sequences and 

correlations of DN have not been considered in DQ measurement. In particular, a ML 

model has not been proposed for DQ measurement under DG taking temporal sequences 

and correlations of DN into account; c) ML techniques have not been applied in the forecast 

of DQ during DG processes by taking temporal sequences, correlations and importance of 
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DN into account. In particular, a ML model considering temporal sequences, correlations 

and importance of DN has not been proposed for DQP; and d) ML techniques have not 

been applied to DQ learning such as DQP during DG processes for meeting DG regulatory 

requirements. 

 

To address these, we leverage a ML model in unsupervised learning to predict DQ in 

accordance with the international requirement, BCBS 239 [3] in this chapter. This model 

improves DQ [4, 6] during DG processes. 

In unsupervised learning, DN impacts are estimated in two generative mixture methods in 

terms of weights by taking their correlations into account after the detection of DN. These 

methods are GMM and BGMM. 

 

To predict DQ, the model is implemented by LSTM RNNs, similar to that in Chapter 3. 

On top of the sequential learning, we apply a new mechanism, ATTN, to these networks 

in this chapter.  An ATTN directs network learning to pay attention to more important DN. 

 

4.2 Proposed Model 

 
DQ are predicted in a ML model with DNN.  Before DQP, we approach the weighing of 

DN impacts by two methods, GMM and BGMM, in unsupervised learning after DN are 

detected. How DN are detected and weighed before the DQP is outlined in Fig. 4.1. 
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Fig. 4.1 Model Overview 

 

In the model, we take three steps as elaborated below. 

 

4.2.1 Data Noise Detection 

 

First Step 

 

DN are detected as anomalies as they deviate from normal attribute values. The detection 

for each DE is made in a fitness function [167] based on ten rules [130, 131] (below) 

defined as DQ Ratings (DQRi) [179] in the model. DQRi in the following paragraphs are 

classified into three criteria (DQCi) according to DQ principles of BCBS 239 [4].  

 

DQR1 Interpretability: The degree to which DEs are interpreted in appropriate languages 

[173]. An actual banking value may not be translated from a foreign currency (such as 

USD) into a standard currency (such as EUR): 

 

𝑓𝑓�𝑙𝑙𝑎𝑎𝑐𝑐𝑡𝑡𝑇𝑇𝑎𝑎𝑙𝑙,𝑙𝑙𝑐𝑐𝑥𝑥𝑛𝑛𝑐𝑐𝑇𝑇𝑇𝑇𝑡𝑡𝑇𝑇𝑇𝑇� = �1, 𝑙𝑙𝑎𝑎𝑐𝑐𝑡𝑡𝑇𝑇𝑎𝑎𝑙𝑙 = 𝑙𝑙𝑐𝑐𝑥𝑥𝑛𝑛𝑐𝑐𝑇𝑇𝑇𝑇𝑡𝑡𝑇𝑇𝑇𝑇
0, 𝑙𝑙𝑎𝑎𝑐𝑐𝑡𝑡𝑇𝑇𝑎𝑎𝑙𝑙 ≠ 𝑙𝑙𝑐𝑐𝑥𝑥𝑛𝑛𝑐𝑐𝑇𝑇𝑇𝑇𝑡𝑡𝑇𝑇𝑇𝑇

 (4.1) 
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DQR2 Conformity: The degree to which DEs conform to a format [133]. E.g. DD/MM/YY. 

The value decreases with the number of mis-matches with a data dictionary. 

 

𝑓𝑓�𝑜𝑜𝑎𝑎𝑐𝑐𝑡𝑡𝑇𝑇𝑎𝑎𝑙𝑙,𝑜𝑜𝑇𝑇𝑥𝑥𝑐𝑐𝑡𝑡𝑥𝑥𝑥𝑥𝑛𝑛𝑎𝑎𝑇𝑇𝑦𝑦� = �
1, 𝑜𝑜𝑎𝑎𝑐𝑐𝑡𝑡𝑇𝑇𝑎𝑎𝑙𝑙 = 𝑜𝑜𝑇𝑇𝑥𝑥𝑐𝑐𝑡𝑡𝑥𝑥𝑥𝑥𝑛𝑛𝑎𝑎𝑇𝑇𝑦𝑦
0, 𝑜𝑜𝑎𝑎𝑐𝑐𝑡𝑡𝑇𝑇𝑎𝑎𝑙𝑙 ≠ 𝑜𝑜𝑇𝑇𝑥𝑥𝑐𝑐𝑡𝑡𝑥𝑥𝑥𝑥𝑛𝑛𝑎𝑎𝑇𝑇𝑦𝑦

 (4.2) 

 

DQR3 Indispensability: The degree to which DEs are critical [133]. A client incapable of 

passing a bank due diligence check due to anti-money laundering may be wrongly deemed 

as a true essential client: 

 

𝑓𝑓�𝑓𝑓𝑎𝑎𝑐𝑐𝑡𝑡𝑇𝑇𝑎𝑎𝑙𝑙,   𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇−𝑇𝑇𝑥𝑥𝑙𝑙𝑥𝑥𝑔𝑔𝑇𝑇𝑛𝑛𝑐𝑐𝑇𝑇� = �
1, 𝑓𝑓𝑎𝑎𝑐𝑐𝑡𝑡𝑇𝑇𝑎𝑎𝑙𝑙 = 𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇−𝑇𝑇𝑥𝑥𝑙𝑙𝑥𝑥𝑔𝑔𝑇𝑇𝑛𝑛𝑐𝑐𝑇𝑇 
0, 𝑓𝑓𝑎𝑎𝑐𝑐𝑡𝑡𝑇𝑇𝑎𝑎𝑙𝑙 ≠ 𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇−𝑇𝑇𝑥𝑥𝑙𝑙𝑥𝑥𝑔𝑔𝑇𝑇𝑛𝑛𝑐𝑐𝑇𝑇

 (4.3) 

 

DQR4 Uniqueness: The degree to which a DE is unique [175]. A DE with extra instances 

is non-unique. Duplicated customer IDs in a banking dataset reduce the value of 

uniqueness: 

 

𝑓𝑓�𝑎𝑎𝑎𝑎𝑐𝑐𝑡𝑡𝑇𝑇𝑎𝑎𝑙𝑙,   𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛−𝑇𝑇𝑛𝑛𝑥𝑥𝑢𝑢𝑇𝑇𝑇𝑇� = �
1,𝑎𝑎𝑎𝑎𝑐𝑐𝑡𝑡𝑇𝑇𝑎𝑎𝑙𝑙 ∉ 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛−𝑇𝑇𝑛𝑛𝑥𝑥𝑢𝑢𝑇𝑇𝑇𝑇 
0,𝑎𝑎𝑎𝑎𝑐𝑐𝑡𝑡𝑇𝑇𝑎𝑎𝑙𝑙 ∈ 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛−𝑇𝑇𝑛𝑛𝑥𝑥𝑢𝑢𝑇𝑇𝑇𝑇

 (4.4) 

 

DQR5 Timeliness: The degree to which DEs are kept up to date. It is a lag between present 

time and last update time over a data retention period dependent on a bank’s policy. The 

period is an expiry period which is a time limit of data retention [134]. 

 

𝑓𝑓�𝑡𝑡𝑛𝑛𝑥𝑥𝑤𝑤, 𝑡𝑡𝑝𝑝𝑇𝑇𝑇𝑇𝑐𝑐𝑥𝑥𝑥𝑥𝑇𝑇𝑠𝑠, 𝑡𝑡𝑇𝑇𝑇𝑇𝑡𝑡𝑇𝑇𝑛𝑛𝑡𝑡𝑥𝑥𝑥𝑥𝑛𝑛� = �
1, 𝑖𝑖𝑓𝑓 𝑡𝑡𝑛𝑛𝑥𝑥𝑤𝑤 −  𝑡𝑡𝑝𝑝𝑇𝑇𝑇𝑇𝑐𝑐𝑥𝑥𝑥𝑥𝑇𝑇𝑠𝑠 ≤  𝑡𝑡𝑇𝑇𝑇𝑇𝑡𝑡𝑇𝑇𝑛𝑛𝑡𝑡𝑥𝑥𝑥𝑥𝑛𝑛 
0, 𝑖𝑖𝑓𝑓 𝑡𝑡𝑛𝑛𝑥𝑥𝑤𝑤− 𝑡𝑡𝑝𝑝𝑇𝑇𝑇𝑇𝑐𝑐𝑥𝑥𝑥𝑥𝑇𝑇𝑠𝑠 >  𝑡𝑡𝑇𝑇𝑇𝑇𝑡𝑡𝑇𝑇𝑛𝑛𝑡𝑡𝑥𝑥𝑥𝑥𝑛𝑛

 (4.5) 

  

DQR6 Believability: The degree to which DEs are regarded as credible [133]. A banking 

client classified with a risk level other than low is an unbelievable customer. 
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𝑓𝑓�𝑏𝑏𝑎𝑎𝑐𝑐𝑡𝑡𝑇𝑇𝑎𝑎𝑙𝑙,   𝑏𝑏𝑙𝑙𝑥𝑥𝑤𝑤−𝑇𝑇𝑥𝑥𝑠𝑠𝑘𝑘� = �1, 𝑏𝑏𝑎𝑎𝑐𝑐𝑡𝑡𝑇𝑇𝑎𝑎𝑙𝑙 = 𝑏𝑏𝑙𝑙𝑥𝑥𝑤𝑤−𝑇𝑇𝑥𝑥𝑠𝑠𝑘𝑘 
0, 𝑏𝑏𝑎𝑎𝑐𝑐𝑡𝑡𝑇𝑇𝑎𝑎𝑙𝑙 ≠ 𝑏𝑏𝑙𝑙𝑥𝑥𝑤𝑤−𝑇𝑇𝑥𝑥𝑠𝑠𝑘𝑘

 (4.6) 

 

DQR7 Validity: The degree to which DEs have a right age over a valid period [169, 173]. 

A client younger than a valid age, vright−age =12, holding a bank account is invalid: 

 

𝑓𝑓�𝑣𝑣𝑎𝑎𝑐𝑐𝑡𝑡𝑇𝑇𝑎𝑎𝑙𝑙,   𝑣𝑣𝑇𝑇𝑥𝑥𝑔𝑔ℎ𝑡𝑡−𝑎𝑎𝑔𝑔𝑇𝑇� = �
1, 𝑣𝑣𝑎𝑎𝑐𝑐𝑡𝑡𝑇𝑇𝑎𝑎𝑙𝑙 ≤ 𝑣𝑣𝑇𝑇𝑥𝑥𝑔𝑔ℎ𝑡𝑡−𝑎𝑎𝑔𝑔𝑇𝑇 
0, 𝑣𝑣𝑎𝑎𝑐𝑐𝑡𝑡𝑇𝑇𝑎𝑎𝑙𝑙 > 𝑣𝑣𝑇𝑇𝑥𝑥𝑔𝑔ℎ𝑡𝑡−𝑎𝑎𝑔𝑔𝑇𝑇

 (4.7) 

 

DQR8 Consistency: The degree to which contents are matched for a DE from different 

perspectives. When the value of a DE in a banking database mismatches with that of other 

databases (s1, . . . , s4), there is a distance (D) [137, 173], reducing the value of consistency. 

 

𝑓𝑓�𝑠𝑠𝑎𝑎𝑐𝑐𝑡𝑡𝑇𝑇𝑎𝑎𝑙𝑙,   𝑠𝑠𝑇𝑇1,…,𝑇𝑇4� = �1, 𝑖𝑖𝑓𝑓 𝑠𝑠𝑇𝑇1 = 𝑠𝑠𝑇𝑇2  = 𝑠𝑠𝑇𝑇3  = 𝑠𝑠𝑇𝑇4 
0, 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑓𝑓𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒  (4.8) 

 

DQR9 Completeness: The degree to which DEs are complete. A phone digit deviating from 

a standard, such as 11 digits, in a banking dataset is incomplete due to data corruption [137, 

138]: 

𝑓𝑓�𝑐𝑐𝑎𝑎𝑐𝑐𝑡𝑡𝑇𝑇𝑎𝑎𝑙𝑙,   𝑐𝑐𝑇𝑇𝑥𝑥𝑔𝑔𝑥𝑥𝑡𝑡� = � 1, 𝑖𝑖𝑓𝑓 𝑐𝑐𝑎𝑎𝑐𝑐𝑡𝑡𝑇𝑇𝑎𝑎𝑙𝑙 𝑖𝑖𝑠𝑠 𝑠𝑠𝑡𝑡𝑎𝑎𝑛𝑛𝑎𝑎𝑎𝑎𝑓𝑓𝑎𝑎 
0, 𝑖𝑖𝑓𝑓  𝑐𝑐𝑎𝑎𝑐𝑐𝑡𝑡𝑇𝑇𝑎𝑎𝑙𝑙 𝑖𝑖𝑠𝑠 𝑇𝑇𝑁𝑁𝑇𝑇 𝑠𝑠𝑡𝑡𝑎𝑎𝑛𝑛𝑎𝑎𝑎𝑎𝑓𝑓𝑎𝑎 (4.9) 

  

DQR10 Availability: The degree to which a value of DEs is available [175]. An existing DE 

containing a null value [139] is deemed as unavailable: 

 

𝑓𝑓�𝑢𝑢𝑎𝑎𝑐𝑐𝑡𝑡𝑇𝑇𝑎𝑎𝑙𝑙,   𝑢𝑢𝑇𝑇𝑙𝑙𝑎𝑎𝑛𝑛𝑘𝑘� = �1, 𝑖𝑖𝑓𝑓 𝑐𝑐𝑎𝑎𝑐𝑐𝑡𝑡𝑇𝑇𝑎𝑎𝑙𝑙 𝑖𝑖𝑠𝑠 𝑇𝑇𝑁𝑁𝑇𝑇 𝑏𝑏𝑙𝑙𝑎𝑎𝑛𝑛𝑘𝑘 
0, 𝑖𝑖𝑓𝑓 𝑐𝑐𝑎𝑎𝑐𝑐𝑡𝑡𝑇𝑇𝑎𝑎𝑙𝑙 𝑖𝑖𝑠𝑠 𝑏𝑏𝑙𝑙𝑎𝑎𝑛𝑛𝑘𝑘  (4.10) 

 

Above rules are defined according to an inductive logic programming and rule mining 

approach [140] and run by an operator, Python. With current DN, we can infer and 

determine target noise. 
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4.2.2 Data Noise Impact Analysis in Unsupervised Learning 

 

Second Step 

 
Detected values are used as data points (xi) to estimate impacts of DN on each DE. Impacts 

are estimated by the probability of attribute values in two methods in terms of the 

probability density function (“PDF”). All PDFs are aggregated [135] before they are scored 

as the joint occurrence probability as follows: 

 

𝑇𝑇(𝑥𝑥1 =  𝑎𝑎1) ∙ 𝑇𝑇(𝑥𝑥2 = 𝑎𝑎2) ∙…∙ 𝑇𝑇(𝑥𝑥132 = 𝑎𝑎132) (4.11) 

 

This is a weighted sum of DQR scores (DQRi) [130, 164] which are input into networks 

for prediction. The sum is the DQ level for each DQCi [157, 163].  In the model, DQRi are 

categorized into three DQ dimensions [124, 127, 238]: 𝐷𝐷𝐷𝐷𝐶𝐶1 = 𝐷𝐷𝐷𝐷𝐷𝐷1 ∙ 𝐷𝐷𝐷𝐷𝐷𝐷2 ∙

𝐷𝐷𝐷𝐷𝐷𝐷3 ∙ 𝐷𝐷𝐷𝐷𝐷𝐷4 ∙ 𝐷𝐷𝐷𝐷𝐷𝐷6 ∙ 𝐷𝐷𝐷𝐷𝐷𝐷7 ∙ 𝐷𝐷𝐷𝐷𝐷𝐷8, 𝐷𝐷𝐷𝐷𝐶𝐶2 = 𝐷𝐷𝐷𝐷𝐷𝐷9 ∙ 𝐷𝐷𝐷𝐷𝐷𝐷10 and 𝐷𝐷𝐷𝐷𝐶𝐶3 = 𝐷𝐷𝐷𝐷𝐷𝐷5.  

 

To aggregate DN for scoring, we customize an aggregate quality scoring algorithm in Fig. 

4.2. This algorithm shows the pseudo code for scoring aggregate DQ. Before scoring, we 

detect DN. After scoring, we analyze DN impacts prior to forecasting DQ. This algorithm 

provides guidance on the measurement of DQ by a new DQ scoring method under DG.  

This method has not been proposed in earlier ML research related to DG, as mentioned in 

Section 1.2. A ML model is yet to be developed for DQP during DG processes in 

supervised and unsupervised learning. 
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Fig. 4.2 Algorithm for Aggregate Quality Scoring 

 

For measuring impacts of DN, we use two methods including GMM [102] and BGMM. 

Their outputs are multivariate PDFs as weights of DN. BGMM is a mixture of Gaussian 

Distribution with a DP. But it is an extension from the GMM. Both methods help to find 

weights [84]. 

 

Take a set of latent groups as an example, we observe that there are three scenarios: One 

of the scenarios is that a Gaussian is centered at (DQR1 = 1, DQR2 = 1, . . . , DQR10 = 1) 

and so data points are free from DN. Another scenario is that a Gaussian is centered at 

(DQR1 = 0, DQR2 = 1, . . . , DQR10 = 1) indicating that some DN are embedded. Last 

scenario is that a Gaussian is centered at (DQR1 = 0, DQR2 = 0, . . . , DQR10 = 0) where 

data points are full of noise.  



 

 77 

 

In estimating impacts, we take the following steps in the two generative mixture methods.  

 

GMM. The probability of a data point is the weighted sum of k Gaussians while k = 1: 

 

𝑝𝑝(𝑥𝑥𝑛𝑛|𝑝𝑝𝑎𝑎𝑓𝑓𝑎𝑎𝑚𝑚𝑒𝑒𝑡𝑡𝑒𝑒𝑓𝑓𝑠𝑠) = �𝜋𝜋𝑘𝑘𝒩𝒩(𝑥𝑥𝑛𝑛|𝑢𝑢𝑘𝑘 ,∑𝑘𝑘)
𝐾𝐾

𝑘𝑘=1

 (4.12) 

  

where πk represent weights for each Gaussian, uk denote means of Gaussians and ∑𝑘𝑘 

indicate covariances of each Gaussian. With the combination of k Gaussians, we compute 

means and covariances. In order to learn weights, means, covariances for each Gaussian, 

we reform the GMM by incorporating a new variable z and a uniform number generator, 

and apply an Expectation Maximization algorithm. In the step of Expectation, we 

determine the probability of a Gaussian 𝔼𝔼(𝑧𝑧𝑥𝑥𝑘𝑘) = 𝑓𝑓𝑥𝑥𝑘𝑘 to generate a data point xi by 

calculating the probability of a Gaussian, 𝜋𝜋𝑘𝑘𝒩𝒩(𝑥𝑥𝑥𝑥|𝑢𝑢𝑘𝑘,∑𝑘𝑘). Following this, we normalize 

it through ∑ 𝜋𝜋𝑖𝑖𝑖𝑖 𝒩𝒩�𝑥𝑥𝑥𝑥�𝑢𝑢𝑖𝑖 ,∑𝑖𝑖�. This assesses responsibilities (r) based on current Gaussian. 

In the step of Maximization, we estimate a new weight, mean and covariance for each data 

point with an equation 𝜋𝜋𝑘𝑘 = 𝑁𝑁𝑘𝑘
𝑁𝑁

  and then another equation uk = 𝑢𝑢𝑘𝑘 = 1
𝑁𝑁𝑘𝑘
∑ 𝑓𝑓𝑥𝑥𝑘𝑘𝑥𝑥𝑥𝑥𝑁𝑁
𝑥𝑥=1 . 

Afterwards, we find outputs ∑𝑘𝑘 using the following equation:  

 

∑𝑘𝑘 =
1
𝑇𝑇𝑘𝑘

�𝑓𝑓𝑥𝑥𝑘𝑘(𝑥𝑥𝑛𝑛−𝑢𝑢𝑘𝑘)
𝑁𝑁

𝑥𝑥=1

(𝑥𝑥𝑛𝑛−𝑢𝑢𝑘𝑘)𝑇𝑇  (4.13) 

 

In this equation, the new weight is a sum of probabilities of a Gaussian k divided by the 

number of points. A new mean is a multiplication of probabilities for that cluster and a new 

covariance is multiplied by probabilities for that cluster. By utilizing these equations, we 

take data correlations into account. This approach is similar to a study [86] assessing 

weights by estimating their distributions with a GMM and capturing the relations between 

context information and DQ.  
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BGMM. The probability 𝑝𝑝(𝜇𝜇,∑) is sampled from a Dirichlet distribution and is computed 

with the following equation: 

 

𝒩𝒩(𝜇𝜇|𝑚𝑚0, (𝛽𝛽0∑−1)−1)𝑊𝑊(∑−1|,𝑊𝑊0𝑣𝑣0) (4.14) 

 

From this equation, W0 is a general shape determining the variability of samples v0, a center 

m0 and a constant β0. This indicates how far the mean should be from m0 on average. The 

probability of the BGMM is 𝑝𝑝(𝑥𝑥𝑛𝑛|𝜋𝜋, 𝜇𝜇,∑). This is similar to the GMM:  

 

�𝜋𝜋𝑘𝑘𝒩𝒩(𝑥𝑥𝑛𝑛|𝜇𝜇𝑘𝑘 ,⋀𝑘𝑘)
𝐾𝐾

𝑘𝑘=1

 where ⋀ = �)−1 (4.15) 

 

However, the joint probability, 𝑝𝑝(𝑋𝑋,𝑍𝑍, 𝜇𝜇,∑,𝜋𝜋), is more complex: 

𝑝𝑝(𝑋𝑋|𝑍𝑍, 𝜇𝜇,∑)𝑝𝑝(𝑍𝑍|𝜋𝜋)𝑝𝑝(𝜋𝜋)𝑝𝑝(𝜇𝜇|∑)𝑝𝑝(∑). To integrate unobserved variables, we can find the 

probability p(X) as: 

 

����𝑝𝑝(𝑋𝑋|𝑍𝑍, 𝜇𝜇,⋀)𝑝𝑝(𝑍𝑍|𝜋𝜋)𝑝𝑝(𝜋𝜋)𝑝𝑝(𝜇𝜇|⋀) 𝑝𝑝(⋀)𝑎𝑎𝑍𝑍𝑎𝑎𝜇𝜇𝑎𝑎⋀𝑎𝑎𝜋𝜋 
(4.16) 

 

This integration is intractable. For the computation of the weight estimation error, we adopt 

a weighted algorithm to minimize MSE in an objective function [111] below: 

 
1
2

� ��𝑇𝑇�𝑦𝑦�𝑥𝑥(𝑘𝑘)� − 𝑇𝑇��𝑦𝑦�𝑥𝑥(𝑘𝑘)��
2

𝑦𝑦𝑥𝑥(𝑘𝑘)∈𝑇𝑇𝑘𝑘
 (4.17) 

 

In this equation, D represents a dataset and w refers to a weight of an attribute. On top of 

this, we estimate errors in terms of explained variances [123]. This is similar to a study 

[121] adopting Bayesian’s weighing of high-quality data and with incomplete data for 

testing. This study identified that the smallest weight of solid-state data was 0.3 but the 

largest weight was 1. The key was that the optimal weight of high-quality data selected a 

large value and decreased sharply whenever noise and sparseness increased. 
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As we can see, these two methods estimate DN weights in unsupervised learning. These 

weights are used to predict DQ in experiments. 

 

4.2.3 Data Quality Prediction with an Attention Mechanism 

 

Third Step 

 
To predict DQ, we input PDFs into LSTM RNNs [49, 59, 188] for learning. These networks 

are the same as that in Chapter 3. 

 

In total, six networks are implemented. They are three LSTM RNNs with and without an 

ATTN.  Three LSTM RNNs are FF, BK and BD LSTM RNNs. 

 

The network learning is directed by an ATTN while the network performance is optimized 

by two regularizations including regularization 1 and regularization 2.   

 

Network Learning 

In sequential learning of LSTM RNNs, we direct the network to pay attention to more 

important DN for DQP by applying an ATTN. 

 

An ATTN enables networks to focus on selective or specific information [50, 103, 172].  

It assigns different weights to different data. Consequently, the network pays attention to 

important data [97]. It can be used to capture inter-relationships among data. The intensity 

of each DE is affected by others. Accordingly, attentions for some data could be distracted 

and others could be enhanced. Outputs turn out to be sequences taking the impacts of others 

into account. They are calculated by summarizing input representations with different 

attention weights. 

 

In the model, ATTN is applied to LSTM layer. If data inputs at a given time are important, 

the network learning algorithm updates the memory cell of the LSTM layer by importing 
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more information. If not, the network suppresses its impact on the memory and takes more 

historical information. Consequently, the network selectively attends to the most related 

DN. This enables the model to adaptively attend to important DN [104].  

 

DQ learn differently in divergent LSTM RNNs with an ATTN, as described below. 

 

Feedforward Sequential Learning. The FF network learns from the past and future 

prediction of a timestep to predict DQ in a feedforwarding (f) way: 

 

𝑦𝑦𝑡𝑡+1
𝑥𝑥1 ,ℎ𝑡𝑡+1

𝑥𝑥1 , 𝑐𝑐𝑡𝑡+1
𝑥𝑥1 =  𝐿𝐿𝐿𝐿𝑇𝑇𝑀𝑀𝑥𝑥1(𝑐𝑐𝑡𝑡−1

𝑥𝑥1 ,ℎ𝑡𝑡−1
𝑥𝑥1 ,𝑥𝑥𝑡𝑡;  𝑊𝑊𝑥𝑥1)  (4.18) 

  

At first, the network hidden state and cell state of each layer are initialized at 0. In the 

network, the 1st layer uses an input at a time (𝑥𝑥𝑡𝑡), previous hidden state (ℎ𝑡𝑡−11 ) and previous 

internal hidden state (𝑐𝑐𝑡𝑡−11 ) to generate an output (𝑦𝑦𝑡𝑡+1
𝑥𝑥1 ) with a weight (𝑊𝑊𝑥𝑥1).  

 

The LSTM computes the forward hidden sequence ℎ�⃗  with a bias (b) to generate an output 

below: 

 

𝑦𝑦𝑡𝑡+1 = 𝑊𝑊ℎ��⃗ 𝑦𝑦 ℎ�⃗ 𝑡𝑡 + 𝑏𝑏𝑦𝑦 (4.19) 

 

The input (𝑥𝑥𝑡𝑡) is a sequence passing to the 1st layer (1) at a time (𝑡𝑡-1, 𝑡𝑡 to 𝑡𝑡+1). Input 

attributes in the network generating outputs are read from left to right. How to generate 

outputs is described in Fig. 4.3 showing an algorithm of the FF LSTM RNN: 

 

 

 

 

 

 

 

 



 

 81 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3 Algorithm for FF LSTM RNN 

 

Backward Sequential Learning. In training the BK network, LSTM computes backward 

hidden sequences ℎ⃖� instead: 

 

𝑦𝑦𝑡𝑡+1 = 𝑊𝑊ℎ⃖��𝑦𝑦 ℎ⃖�𝑡𝑡 + 𝑏𝑏𝑦𝑦 (4.20) 

  

where input attributes generating outputs are read from right to left. This algorithm for BK 

network is customized in Fig. 4.4: 
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Fig. 4.4 Algorithm for BK LSTM RNN 

 

Bi-directional Sequential Learning. Two LSTMs are trained based on timesteps of input 

sequences on current input sequence and then on a reversed input sequence. The BD 

network combines forward and backward LSTM outputs to predict DQ. 

  

As the network is BD, the network computes a forward hidden sequence ℎ�⃗  and a backward 

hidden sequence ℎ⃖� and then combines them to generate an output: 

 

𝑦𝑦𝑡𝑡 = 𝑊𝑊ℎ��⃗ 𝑦𝑦 ℎ�⃗ 𝑡𝑡 + 𝑊𝑊ℎ⃖��𝑦𝑦 ℎ⃖�𝑡𝑡 + 𝑏𝑏𝑦𝑦 (4.21) 

 

An input attribute in the FF network is read from left to right while that in the BK network 

is read from right to left. A combination of these forms a BD network. An algorithm for 

the BD LSTM RNN is given in Fig. 4.5: 
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Fig. 4.5 Algorithm for BD LSTM RNN 

 

All these algorithms provide guidance on DQP by different DQ learning methods under 

DG. These methods have not been proposed in earlier ML research related to DG, as 

mentioned in Section 1.2.3 of Chapter 1 and 2.2 of Chapter 2. A ML model has not been 

proposed for DQP during DG processes in supervised and unsupervised learning. 

 

Following this, the network learning is optimized by two regularizations including 

regularization 1 and regularization 2.   

 

Regularization 1.  To increase the predictive power of the model, we select a network with 

an outstanding performance in experiments for testing. It is trained separately on four data 

sub-sets including MR, CR, OR and LR. These data sets [206] or recaptured data sub-sets 

[207] aid in refining the model by exploring which parts of data can be trained efficiently. 

 

Regularization 2. To alleviate an overfitting problem in prediction, we apply regularization 

[100] to the worst prediction result. The regularization improves the prediction error in 

terms of a loss and MSE. We continue to follow a pioneering work [205] to add dropout to 

avoid co-adaption of hidden units through the omission of features in network propagation. 
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The dropout is applied on the LSTM layer. On top of this, we add L2 − norms of weight 

vectors to scale weights to a level equivalent to DQ. 

 

4.3 Experiments 

 
The experiment setup and data split are the same as that in Chapter 3. The purpose of these 

experiments is to demonstrate the effectiveness of our model on DQP in unsupervised 

learning by conducting a set of experiments over a dataset. 

 

Dataset 

 
The dataset in this chapter is from Chapter 3. 
 

Results 

 
First Result - Detected DN: Detected DN from the dataset are visualized in Fig. 4.6. They 

are classified into four categories including MR, CR, OR and LR.  Take OR as an example, 

the believability value of an attribute, LossFrequency, is 51% whereas its validity and 

consistency values correspond to 81% and 100%. Instead, values of believability, validity 

and consistency of an attribute, Loss-Severity, are 100%, 73% and 100% respectively while 

that of an attribute, OpsLoss, are 100%, 97% and 100% respectively. 
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Fig. 4.6 Detected DN 

 

As we can see, the value of attributes is measured in terms of DQ metrics by a percentage. 

 

Second Result – Weighed DN Impacts: Impacts of DN are estimated as weights. Impacts 

for twelve attributes by DQRi under two methods including GMM (G) and BGMM (B) are 

listed in Table 4.1. 

 

Table 4.1 Impacts of DN in Terms of PDFs 

 

Attribute 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒙𝒙𝟒𝟒 𝒙𝒙𝟓𝟓 𝒙𝒙𝟔𝟔 𝒙𝒙𝟕𝟕 𝒙𝒙𝟖𝟖 𝒙𝒙𝟗𝟗 𝒙𝒙𝟏𝟏𝟏𝟏 𝒙𝒙𝟏𝟏𝟏𝟏 𝒙𝒙𝟏𝟏𝟐𝟐 

𝐷𝐷𝐷𝐷𝐷𝐷𝑥𝑥 1 3 6 3 5 7 1 7 10 3 1 6 

B 0.49 0.20 0.56 0.39 0.41 0.10 0.83 0.26 0.82 0.86 0.51 0.92 

G 0.49 0.80 0.00 0.61 0.41 0.10 0.83 0.74 0.82 0.86 0.51 0.92 

 

From Table 4.1, PDFs are the same in both methods except four attributes including x2, x3, 

x4 and x8. To understand their estimation effectiveness, we measure prediction errors in 

terms of MSE and explained variances (“VAR”), as listed in Table 4.2. MSE can relax the 
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zero-bias assumption [236] while VAR in both positive and negative vectors can still be 

used to explain the association of data features [237] since the variance is not due to error 

variance. VAR also gives the percentage of variance explained by the regression. 

 

Table 4.2 Impact Estimation Errors: MSE vs VAR 

 

Attribute 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒙𝒙𝟒𝟒 𝒙𝒙𝟓𝟓 𝒙𝒙𝟔𝟔 𝒙𝒙𝟕𝟕 𝒙𝒙𝟖𝟖 𝒙𝒙𝟗𝟗 𝒙𝒙𝟏𝟏𝟏𝟏 𝒙𝒙𝟏𝟏𝟏𝟏 𝒙𝒙𝟏𝟏𝟐𝟐 

B – MSE 0.00 0.00 1.00 0.00 5.71 3.69 1.00 0.00 1.00 1.00 31.91 0.34 

G – MSE 0.00 1.00 4.55 1.00 5.71 3.69 1.00 1.00 1.00 1.00 31.91 0.34 

B – VAR 1.00 1.00 -3.00 1.00 -15.00 -8.00 -3.00 -1.00 -3.00 -3.00 -79.80 -3.00 

G - VAR 1.00 -3.00 -3.00 -3.00 -15.00 -8.00 -3.00 -3.00 -3.00 -3.00 -79.80 -3.00 

 

MSEs are the same for all attributes under both methods except four attributes (x2, x3, x4 

and x8) whose MSEs are consistently lower in the BGMM relative to the GMM. Similarly, 

VARs are found identical for all attributes except three attributes (x2, x4 and x8). In 

consideration of these, BGMM method is superior. This superior method’s results are used 

as inputs into networks for DQP. 

 
Third Result – DQP: In training three networks with and without an ATTN, we output 

predicted DQ. The network learning performance is measured in terms of the PN, RL and 

F1, as summarized in Table 4.3. 

 

Table 4.3 PN, RL and F1 by Networks 

 

LSTM RNNs PN RL F1 

FF 64% 80% 71% 

FF+ATTN 74% 80% 71% 

BK 68% 47% 52% 

BK+ATTN 64% 80% 71% 

BD 68% 72% 70% 

BD+ATTN 64% 80% 71% 
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From Table 4.3, networks with an ATTN achieve better results. The maximum PN is 74%, 

average RL is 80% and F1 is 71% in general. The best performance is found in the network 

of FF+ATTN. 

 

Fourth Result – DQP Analysis: To analyze DQP at a granular level, we disaggregate twelve 

attributes into four parts: MR, CR, OR and LR. Each is input into the best network, FF 

LSTM RNN with an ATTN, for learning. Results are visualized in Fig. 4.7. 

 

 

    

 

 

 

Fig. 4.7 PN, RL and F1 by Databases 

 

Fig. 4.7 shows the average score for the PN, RL and F1. Specifically, the PN is the highest 

in the LR (74%), better than that of the MR (64%), CR (35%) and OR (54%). This PN is 

apparently higher than the average PN by 23%. Consistently, the best RL and F1 are found 

in this risk type (86% and 80% respectively). In comparison, the RL in the LR (86%) is 

higher than that of others by 6%, 27% and 12% respectively while the F1 in the LR (80%) 

is superior to others by 9%, 36% and 18% respectively. The best RL and F1 are 

significantly better than the average RL and F1 by 13% and 22% respectively. 

 

Evaluation 

 
To test the model effectiveness, we verify networks with validation data. The validation is 

measured in terms of the accuracy, loss and MSE, as listed in Table 4.4, which is compared 

with the initial network performance (as shown in Table 4.5). 
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Table 4.4 Validated (V) Accuracy, Loss and MSE 

 

Databases V. Accuracy V. Loss V. MSE 

MR 80.08% 0.537 0.175 

CR 58.86% 0.680 0.244 

OR 73.56% 0.586 0.198 

LR 86.05% 0.544 0.177 

 

Table 4.5 Prediction Accuracy, Loss and MSE 

 

Databases Accuracy Loss MSE 

MR 80.08% 0.542 0.177 

CR 58.86% 0.681 0.244 

OR 73.56% 0.589 0.199 

LR 86.05% 0.552 0.180 

 

From Table 4.5, the network of FF+ATTN predicts DQ accurately for four risk types. The 

accuracy for all is high ranging from 58.86% to 86.05% while their prediction errors in 

terms of losses are limited to a range of 0.542 to 0.681. Furthermore, all MSEs are kept at 

a comparably low level from 0.537 to 0.680. 

 

When comparing these with validated results (Table 4.4), we can see that lowest validated 

loss and validated MSE are found in the MR (0.537 and 0.175 respectively), lower than 

that of other three risks (by 27% and 39% at most). In consideration of the accuracy, loss, 

MSE and PN/ RL/ F1 collectively, the poor performance occurs in the CR in this 

experiment.  

 

DQP Improvement 
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To further improve the performance, we apply regularization to the best network 

(FF+ATTN) with the CR database for testing. CR database is selected due to its poor 

performance found in last two tables.  Outcomes are summarized in Table 4.6. 

 

Table 4.6 Regularized Network Prediction Improvement 

 

Database CR 

Accuracy 58.86% 

Loss 0.679 

MSE 0.243 

PN 35% 

RL 59% 

F1 44% 

 

By adding regularization, we observe that the network of FF+ATTN attains the same 

accuracy, PN, RL and F1. Instead, both loss and MSE improve from 0.681 to 0.679 and 

from 0.244 to 0.243 respectively. 

 

DQP Improvement Evaluation 

 

For ascertaining the effectiveness of the model, we verify the prediction with validation 

data. Outcomes are similar to that of prediction outcomes, as shown in Table 4.7.  

 

Table 4.7 Regularized Network Prediction Improvement Validation 

 

Database CR 

V. Accuracy 58.86% 

V. Loss 0.679 

V. MSE 0.243 
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Table 4.7 shows that validated loss and validated MSE are lower from 0.680 to 0.679 and 

0.244 to 0.243 respectively. These are equivalent to [184] regularizing an ATTN in an 

entropy term to encourage attention weights to be uniform and to penalize excessive 

attention to a certain region. Accordingly, the prediction error is improved due to the 

gradual learning from the ATTN. 

 

Above performance measurements such as accuracy, loss, precision, recall and F1-Support 

are defined in equations 2.37 to 2.41 inside Chapter 2. 

 

As we can see, our experiments over the prepared dataset show the effectiveness of our 

model on DQP in unsupervised learning by conducting a set of experiments over a dataset. 

 

Related Works 

 

The way to determine DN has been discussed in different fields of academia. Earlier 

research generally determined them according to 3 dimensions: accuracy, completeness 

and timeliness [238, 239]. Some used metrics [132]. Other researchers addressed the same 

problem such as missing data [58]. Their dimensions did not consider regulatory 

requirements, unlike us. 

 

DQP are yet extended to unsupervised learning to a great extent. This can be seen from 

current situation: a) GMM [102] has been used to exploit a connection between the 

statistical estimation and clustering problems in computational geometry; b) BGMM [84] 

has been used for learning new topics in a set of conversations. These unsupervised 

learning are yet applied to the estimation of DN weights; c) Other unsupervised learning 

methods estimated the density of paper currency [85] and the sensitivity of data from an 

Austrian bank [190] instead of DN; and d) a recent study [191] showed that a GMM was 

used to build a semi-supervised model in multi-mode processes for forecasting the quality 

of big data. This is far from unsupervised learning of DN or DQ.  Furthermore, there was 

limited prior research on DQP according to regulatory requirements in supervised learning.  

In the past, there was a prediction of missing data [58] which did not take regulatory 
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requirements into account. In contrast, there have been ample research learning non-DQ 

domains in supervised learning. An example of this is a classification of speech signals in 

RNN by labelling noisy and unsegmented sequence data [87]. 

 

In the literature review of sequential learning for DNN, we find that the importance is 

continuously growing. Plenty of earlier works were associated with prediction. However, 

none of them was learnt for DQP. Instead, they focused on other domains: Some 

researchers have investigated the application of sequential learning in speech recognition 

[88], video captioning [89], reading comprehension [90], ads recommendation [91] and 

natural language processing [92]. 

 

Despite this, sequential learning has been successfully applied to various research to 

explore dependencies of an image content problem [93]. Also, [95] proposed a generative 

adversarial network with self-attention to achieve an improvement in the balance between 

the ability to model dependencies. The most recent one [96] predicted attributes of images 

by taking co-occurrence dependencies among attributes into account. Thereupon, 

sequential learning can be applied to our model to explore DN correlations. 

 

In recent years, ATTN is one of the major mechanisms that has been applied to DNN.  It 

assigns divergent weights to various data to direct networks to pay attention to important 

data [97]. The application was on a few domains: A previous study [89] presented a 

temporal ATTN for video caption generation whereas a study [182] introduced a deep 

attention selective network for image classification. Some used it to recognize 3D action 

[99]. Others leveraged it for machine translation [92, 100] and document classification 

[101]. [102] presented temporal attention on different time steps for electronic health 

records. In recent few years, ATTN has been introduced to use encoder to reference records 

dynamically in the decoder [100]. All these are yet applied to DQP to pay special attention 

to important DN. 

 

From above results, prior research on DQP with ML models were rare.  They are yet to 

propose any algorithms relating to the scoring of aggregate DQ or heterogenous learning 
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methods for DQP. 

 

In the financial services industry, to predict DQ is challenging. [6] has emphasized that 

many FIs are yet to comply with DQ principles as stated in BCBS 239. In a later 

publication, statistical researchers and the financial regulators suggested that big data 

quality can be statistically computed by ML techniques [243]. From the literature review, 

there have been restricted research on DQP under DG for the industry. On the contrary, 

there have been abundant prediction of non-DQ domains for the industry. For instance 

[244] used neural network model to forecast stock market and [245] deployed RNN to 

calculate stock returns. Furthermore, [207] experimented ATTN LSTM to predict stock 

price. Besides, some centred on financial prediction such as LR of banks with ANN and 

Bayesian networks [126], bank failure with SVM [66] and bad customers with low CR 

using LReg and DNN [69]. None of them targets on DQ. This motivates us to widen a 

horizon to DQP to the industry. 

 

4.4 Summary 

 
This chapter demonstrates how to leverage a ML model to predict DQ accurately in 

unsupervised learning.  

 

In unsupervised learning, labelling DN is not required. Before DQP, DN are detected from 

a dataset in Section 4.2.1. Detected DN impacts are estimated in terms of PDF in two 

generative mixture methods. GMM and BGMM methods are mentioned in Section 4.2.2. 

The PDF are probabilistic values representing relative impacts of each noise to an attribute. 

These as weights are aggregated in a scoring function before they are input into networks 

for prediction.  Fig. 4.2 shows an aggregate quality scoring algorithm guiding on a new 

DQ scoring method under DG. The input data is trained in LSTM RNNs inside Section 

4.2.3. The prediction can help to meet the international requirement, BCBS 239. 

 

In the model, networks trained are LSTM RNNs with three learning methodologies 

including FF, BK and BD. Their learning algorithms are provided in Fig. 4.3, 4.4 and 4.5 
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correspondingly. They guide on different DQ learning methods under DG. These networks 

are additionally applied with an ATTN. Thereupon, the model prediction not only take 

temporal sequences and correlations of DN into account but also the importance of DN, 

unlike Chapters 3. 

 

Experimental results are remarkable. The network prediction accuracy, PN, RL and F1 are 

high while the prediction error is low. The network performance is examined at two levels 

including an integrated level and an individual level. 

This model for DQP incontrovertibly brings values to the financial services industry. It 

creates a method to predict DQ in an unsupervised learning by saving time on labelling 

data [161] which demands for numerous resources. Time saving is indispensable in the 

industry where there are massive amounts of data [63]. Other than this, prediction of DQ 

precisely with LSTM RNNs enable FIs to understand what DQ are going to be with a 

sceientific computational method. This enhances their forward-looking capabilities of DQ 

[3] by providing any potential violations of risk limits over thresholds. Hence, DQ can be 

improved in long term [3] which is consistent with the expectation of financial regulators. 

 
The next chapter presents DQP analytics with a ML model.  The analysis is made by multi-

dimensions including the dimension of risk types and business segments. 
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Chapter 5 

 

Data Quality Prediction Analytics 
 
In this chapter, we further explore the analysis of DQP under DG by multi-dimensions with 

a ML model on top of DQP mentioned in Chapter 3 and 4. This is part of DGP under the 

DG framework.  

 

Relying on the ML model with sequential learning using supervised learning in Chapter 3, 

we apply more complicated network learning methods to direct DQ learning in this chapter.  

Apart from this, the focus of this chapter is on the compliance with a local regulatory 

requirement, CPG 235, instead of BCBS 239. This tests the applicability of our ML model 

in complying with other DG regulatory requirements. In order to meet another requirement, 

we label data differently based on six DQ dimensions. Consequently, the model generates 

visualized prediction by different dimensions such as risk types and business segments. 

 

In this chapter, Section 5.1 provides an introduction. In Section 5.2, we present a proposed 

model for DQP analytics. In the model, data is labelled based on six DQ dimensions. Then, 

the model is implemented with LSTM RNNs, similar to Chapter 3. These networks are 

further applied with more complex network learning methods to understand how networks 

learn differently. Following this, we demonstrate performed experiments in Section 5.3. 

Finally, Section 5.4 concludes this chapter. 

5.1 Introduction 

From research results summarized in Section 1.2.3 and elaborated in Section 2.2, there are 

limitations of ML work related to DQP analytics under DG: a) ML techniques have not 

been applied in DQP analytics under DG to meet DG regulatory requirements. A ML model 

for analyzing DQP during DG processes has not been proposed; and b) ML techniques 

have not been applied to DQ learning such as DQP analytics during DG processes for 

meeting DG regulatory requirements. 
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To address these, we leverage a ML model to analyze DQP in accordance with a local 

requirement of CPG 235 [120] in this chapter. This manages data risk [120] during DG 

processes. 

 

The model data is labelled based on six DQ dimensions in supervised learning before DQP 

analytics. These dimensions include accuracy, completeness, consistency, timeliness, 

availability, and fitness for use. 

 

The model is implemented with multiple LSTM RNNs to find the best network for DQP 

analytics.  These networks are applied with more complex learning methods such as 

windows, time-steps and memory between batches (“MBB”). These networks generate 

DQP analytical reports by risk types such as MR, CR, OR and LR, and by business 

segments such as PvB, WB and RB. With DQP analysis, FIs understand what kinds of data 

are of low quality. 

5.2 Proposed Model 

 
DQ are predicted in a ML model with DNN. In our approach, data labelling and scoring 

methods are the same as that in Chapter 3 except the regulatory requirement to be complied. 

 
5.2.1 Regulatory Requirement CPG 235 Mapping 

 
In this chapter, FIs are expected to meet the regulatory requirement of CPG 235.  According 

to CPG 235, DQ are assessed by six dimensions: (a) accuracy; (b) completeness; (c) 

consistency; (d) timeliness; (e) availability; and (f) fitness for use [120]. These are 

illustrated with an example of DN, as defined in Fig. 5.1. In total, ten (10) DN [128, 129] 

are mapped to these dimensions. The fewer the DN, the higher the quality. 
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Fig. 5.1 DN (Data Quality Issues) Mapped to CPG 235 DQ Dimensions 
 
 

5.2.2 Networks with Windows, Timesteps and Memory between Batches 

 

The model consists of four (4) networks. These networks are LSTM RNNs [187] analyzing 

DQP, as depicted in Table 5.1.  
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Table 5.1 Networks and Relevant Methodologies 

 

Networks Methodologies 

LSTM 

RNN 

Input data (x) is in the form of: samples, time steps, features.  There is one 

sample and feature. Given DN for each DE now (t), we predict the problem 

for next time (t+1). For these data, we prioritize sequences of values and 

define look_back – the number of previous time steps as input variables to 

predict next result. In case the number is 1, next result will be t+1. Also, 

we define a layer with 1 input, a hidden layer with four LSTM blocks and 

1 output layer. The activation function is Sigmoid and the number of epochs 

is 10 while the size of batch is 1. After fitting data into the network, we 

predict DQ based on training and testing data. Then, we test the network 

for unforeseen data by cross-validation techniques. 

LSTM 

RNN 

Using 

Windows 

DQ is predicted at next time (t+1) by utilizing current time (t) and two 

recent timesteps (t-1 and t-2) as inputs. The number of previous timesteps 

is a window and the size of it is tuned for each problem. By looking back, 

network error may increase, and so the window size and network 

architecture will be tuned. 

LSTM 

RNN 

Using 

Time 

Steps 

Previous time steps are taken as inputs to predict outputs at next step instead 

of treating past observations as separate input features. As such, different 

numbers of timestep are used – from a point of failure or a point of surge.  

This shows whether the problem is framed accurately or not. 
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LSTM 

RNN 

Using 

MBB 

Utilizing memory to make prediction aids in remembering long sequences. 

When we fit data into the network, the state of network will be reset after 

each batch. This allows to manage as to when the internal state of the LSTM 

network is cleared. As a result, a stateful layer is formed. At the end, the 

state for the complete sequence is developed. In training the network, no 

data is reshuffled, and the network state is reset after each epoch. Once the 

network is built, the stateful parameter is set to true. In setting the batch 

input shape, we hard-code the number of samples in a batch, the number of 

timesteps in a sample and the number of features in each time step. Hence, 

we forecast DN to see whether DQ exceed the risk threshold. 

 

We train these four LSTM RNNs to find the most favorable network. These networks 

model varying length sequences and capture long range dependencies in DQP analytics. 

 
The model architecture, network equations and learning method are the same as that in 

Chapter 3. 

5.3 Experiments 

The purpose of these experiments is to investigate the DQP performance of our model by 

risk types and business segments with separate experiments over individual datasets. The 

experiment setup and data split are the same as that in Chapter 4. 

 

Dataset 

 

The dataset is the same as that in Chapter 3.  Some data features for four risk types are 

extracted to Table 5.2.  
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Table 5.2 Data Features (Examples) 

 

MR CR OR LR 

Asset Maturity 

(1945 days, tbc, 

na) 

Loan ID 

(385623, 0, tbc, 

na) 

Loss Income Ratio 

(1.15%, 92.04%, 

54.6%) 

Liquidity Rate 

(10.39%, 65.29%) 

NPV 

(425543, 0, tbc, 

na) 

Weighted Avg 

PD 

(6.31%, 19.48%) 

Residual Legal 

Liability 

($1385, 12, 0) 

Instrument 

(TBC, Forward, 

Equity) 

 

Table 5.2 shows that some data features are embedded with DN such as MR's NPV (0, tbc 

and na), CR's loan ID (0, tbc or na), OR's legal liability (0) and LR's instrument (TBC). 

 

Results 

 
At first, we predict DQ with an integrated dataset. We train four networks with the 

algorithm of ADAM to output the prediction accuracy ("Acc") and prediction error 

("Loss"), as displayed in Table 5.3. ADAM is selected due to its merits mentioned in 

Section 2.1 of Chapter 2. 

 

The accuracy for the four networks is similar (at a level of 69%) in the 10th epochs but the 

level is consistently high only for the LSTM RNN using MBB. With regards to the loss, 

this LSTM RNN using MBB is as good as the LSTM RNN using time steps. The loss for 

the former is minimized at the 1st and end of the epoch whereas that for the latter reaches 

a minimal level in last 3 epochs in comparison with others. Both are comparable for DQP. 
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Table 5.3 Accuracy and Loss for Four LSTM RNNs 

 

LSTM RNN RNN  

using Win 

RNN  

w Time Steps 

RNN  

using MBB 

Epoch Acc Loss Acc Loss Acc Loss Acc Loss 

1 0.6913 0.6198 0.6877 0.6366 0.6918 0.6191 0.6921 0.6188 

2 0.6921 0.6183 0.6921 0.6183 0.6921 0.6183 0.6921 0.6184 

3 0.6921 0.6181 0.6921 0.6183 0.6921 0.6182 0.6921 0.6183 

4 0.6921 0.6179 0.6921 0.6183 0.6921 0.6181 0.6921 0.6182 

5 0.6921 0.6179 0.6921 0.6183 0.6921 0.6181 0.6921 0.6181 

6 0.6921 0.6179 0.6921 0.6183 0.6921 0.6179 0.6921 0.6181 

7 0.6921 0.6179 0.6921 0.6183 0.6921 0.6179 0.6921 0.6180 

8…10 0.6921 0.6179 0.6921 0.6183 0.6921 0.6179 0.6921 0.6179 

 

To confirm the prediction error, we estimate mean square error (“MSE”), as exhibited in 

Fig. 5.2. The lowest MSE is achieved by three RNNs including LSTM RNN, LSTM RNN 

using time steps and LSTM RNN using MBB. These three RNNs minimize the loss to 

0.2133 over 10 epochs. 

 

 
Fig. 5.2 MSE for Four LSTM RNNs 
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Evaluation 

 
We test the effectiveness of networks and compare their results with actual outputs. The 

validated accuracy is equal for all networks (69.25%) and validated losses are compared in 

Fig. 5.3. The loss is the lowest in the LSTM RNN using Windows (0.6174). Similarly, the 

validated MSE is minimized in this RNN (0.2131) out of all networks, as visualized in Fig. 

5.4. In view of this, the LSTM RNN using Windows is superior to networks. The MSE for 

others is that: 0.2132 for the LSTM RNN, 0.2133 for the LSTM RNN using time steps, 

and 0.2134 for the LSTM RNN using MBB. 

 

LSTM RNN    LSTM w/ Win 

 
LSTM w/ Time Steps   LSTM w/ MBB 

 
Fig. 5.3 Validated Loss for Four LSTM RNNs 
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Fig. 5.4 Validated MSE for Four LSTM RNNs 

 

DQP Analytics 

 
For analytics of DQP, we study three cases below. 

 

Case 1 – We select the LSTM RNN using MBB and the LSTM RNN with time steps for a 

further study as a result of their similar excellent performance. To maximize the accuracy 

and minimize the loss, we analyze prediction with three more algorithms, as listed in 

Tables 5.4 and 5.5. The LSTM RNN using MBB with ADAGRAD achieves the highest 

accuracy (69.21%) and the lowest loss (0.6174). In view of this, this LSTM RNN is 

preferrable. 
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Table 5.4 Accuracy and Loss of RNNs with Time Steps by Algorithms 

 

RNN ADAM RMSPROP ADADELTA ADAGRAD 

Epoch Acc Loss Acc Loss Acc Loss Acc Loss 

1 0.6918 0.6191 0.6919 0.6267 0.6919 0.6218 0.6918 0.6183 

2 0.6921 0.6183 0.6921 0.6219 0.6921 0.6222 0.6921 0.6177 

3 0.6921 0.6182 0.6921 0.6217 0.6921 0.6228 0.6921 0.6176 

4 0.6921 0.6181 0.6921 0.6216 0.6921 0.6221 0.6921 0.6176 

5 0.6921 0.6181 0.6921 0.6216 0.6921 0.6221 0.6921 0.6175 

6 0.6921 0.6179 0.6921 0.6216 0.6921 0.6221 0.6921 0.6175 

7 0.6921 0.6179 0.6921 0.6217 0.6921 0.6221 0.6921 0.6175 

8 0.6921 0.6179 0.6921 0.6216 0.6921 0.6213 0.6921 0.6175 

9 0.6921 0.6179 0.6921 0.6216 0.6921 0.6214 0.6921 0.6175 

10 0.6921 0.6179 0.6921 0.6216 0.6921 0.6215 0.6921 0.6175 

 

Table 5.5 Accuracy and Loss of RNNs using MBB by Algorithms 

 

RNN ADAM RMSPROP ADADELTA ADAGRAD 

Epoch Acc Loss Acc Loss Acc Loss Acc Loss 

1 0.6921 0.6188 0.6921 2.8424 0.6921 0.6213 0.6921 0.6178 

2 0.6921 0.6184 0.6921 4.9079 0.6921 3.9912 0.6921 0.6175 

3 0.6921 0.6183 0.6921 4.9079 0.6921 4.9079 0.6921 0.6175 

4 0.6921 0.6182 0.6921 4.9079 0.6921 4.9079 0.6921 0.6175 

5…6 0.6921 0.6181 0.6921 4.9079 0.6921 4.9079 0.6921 0.6174 

7 0.6921 0.6180 0.6921 4.9079 0.6921 4.9079 0.6921 0.6174 

8…10 0.6921 0.6179 0.6921 4.9079 0.6921 4.9079 0.6921 0.6174 
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Besides, we examine the MSE of these two LSTM RNNs, as visualized in Fig. 5.5. The 

loss is minimized in ADAGRAD (0.2131) for both RNNs when compared with other 

networks: a) the LSTM RNN with time steps applying ADAM (0.2133), RMSPROP 

(0.2147) or ADADELTA (0.2147); and b) the LSTM RNN with MBB applying ADAM 

(0.2133), RMSPROP (0.4105) or ADADELTA (0.3369). 

 

LSTM w/ Time Steps   LSTM w/ MBB 

 
Fig. 5.5 MSE of Two LSTM RNNs under Four Algorithms 

 

Case 2 – For DQP analysis by risk types, we train four databases separately including MR, 

CR, OR and LR. Then, we input data into LSTM RNNs using MBB and applying the 

algorithm of ADAGRAD for DQP. Prediction outcomes are visualized in Fig. 5.6. This 

figure shows that different data characteristics lead to various predictive powers under the 

same algorithm. Relevant data features are described in Table 3.2, 3.3 and 3.4. 
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Fig. 5.6 Prediction of LSTM RNNs for Four Risk Types 

 

Applying ADAGRAD to networks, we estimate the precision (“PN”), recall (“RL”) and 

F1-Support (“F1”), as listed in Table 5.6.  Results show that the PN for CR and OR is high 

(96% and 99% respectively) but the lowest one belongs to MR (9%). LR is in between 

(58%). The RL and F1 outcomes are similar. Thus, different data characteristics lead to 

divergent precision and recall rates under the same algorithm. Data features are described 

in Table 3.2, 3.3 and 3.4. 

 

Table 5.6 PN, RL and F1 of LSTM RNNs for Four Risks 

 

LSTM RNN MR CR OR LR 

PN/ RL/  

F1 

0.09/ 0.31/ 

0.51 

0.96/ 0.98/ 

0.97 

0.99/ 0.99/ 

0.99 

0.58/ 0.76/ 

0.66 
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Additionally, we measure the prediction error in terms of MSE, as visualized in Fig. 5.7.  

Consistently, the MSE for the OR (0.0368) and CR (0.0448) is the lowest whereas the 

highest MSE occurs in the MR (0.2133). 

 
Fig. 5.7 MSE of LSTM RNNs for Four Risk Types 

 

Case 3 – For the analytics by business segments, we leverage the RB database as an 

example for the demonstration purpose. Prediction are made in LSTM RNNs with MBB 

applying the algorithm of ADAGRAD, as revealed in Fig. 5.8. By comparing databases, 

we note that the prediction outcomes focus on a limited range for the MR (0.33-0.365), OR 

(0.265-0.30) and LR (0.29-0.325) but they cover a wider range for the OR (0.16-0.20) due 

to more DN as inputs generated by Python. The range of output sequence length for MR is 

the shortest as a result of fewer DQ issues. Converting visualized prediction into DQ 

metrics, we note that the percentage of aggregated DQ for MR ranges from 32% to 36%. 
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Fig. 5.8 Prediction of the RB Segment for Four Databases 

 

To verify the prediction error, we test LSTM RNNs by cross-validation. The validated loss 

results are shown in Fig. 5.9. The validated loss for the OR (0.4693) and OR (0.5939) is 

the lowest, similar to the MSE in Fig. 5.10. The lowest occurs in the CR (0.0177) and OR 

(0.0512). 
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Fig. 5.9 Loss and Validated Loss of the RB Segment by Databases 

 

 
Fig. 5.10 MSE of the RB Segment for Four Databases 

 

Above performance measurements such as accuracy, loss, precision, recall, F1-Support are 

defined in equations 2.37 to 2.41 inside Chapter 2.  

 

As we can see, our experiments over individual datasets show the DQP performance by 

risk types and business segments in separate experiments. 
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Related Works 

 

To the best of our knowledge, there was no previous work on ML to predict DQ for the 

compliance with a local requirement, CPG 235. Analytics of DQP were limited.  Related 

works are that: a) [88] leveraged MLP and Bayesian Networks to measure and predict LR 

respectively. Error rate was low (8.0e-3 for GA and 1.7e-10 for LMA) while the RMSE 

was < 0.2.   

 

Instead, our model predicts DQ of 4 risks; b) [63] used ML to predict a bank credit with 23 

features achieving an accuracy of 80%. Instead, we measure DQ with 132 features; c) [196] 

classified credit with logistic regression and SVM. The accuracy was 75% but reduced to 

43.5% for critical region, unlike our experimental results; and d) [195] analyzed flood risk 

with an AHP method. The importance has been defined and the hazard has been divided 

into 5 risks, similar to the data criticality and data quality ranking in our model. 

 

5.4 Summary 

 
In this chapter, we propose a model to analyze DQP based on a local regulatory 

requirement, CPG 235. In supervised learning, data is labelled according to six DQ 

dimensions including accuracy, completeness, consistency, timeliness, availability, and 

fitness for use, as illustrated in Section 5.2.1.  

 

With labelled data, we input the labelled data into LSTM RNNs for analytics of DQP. To 

understand how networks learn differently, we apply complex learning methods to these 

networks such as windows, time-steps and MBB in Section 5.2.2. These networks are 

tested by divergent algorithms and evaluated by cross-validation techniques to confirm the 

model effectiveness. 

 

We also implement the model with a set of experiments in Section 5.3. The overall 

experiment results show that our model is effective in DQP analytics under supervised 
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learning. The model accurately predicts DQ and at the same time analyzes DQ at a granular 

level by risk types (such as MR, CR, OR and LR) and by business segments (including 

PvB, WB and RB). 

 

Performing multi-dimensional analytics is beneficial to the financial services industry. 

With granular analytical reports, FIs understand which types of data should be prioritized 

for data risk management [120]. In addition, analytics of DQP in alignment with the 

regulatory requirement aids in meeting the expectation of financial regulators. 

 

The next chapter presents our attempt to improve the network efficiency for DQP, where 

we focus on the network run-time saving for the improvement purpose. 
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Chapter 6 

 

Network Efficiency Improvement in Data Quality 

Prediction 
 
 
In this chapter, we further explore the network run-time saving of DQP under DG on top 

of DQP and DQP analytics. Since Chapter 5 model accurately predicts DQ and at the same 

time analyzes DQ by divergent dimensions. The model in Chapter 5 is further improved in 

this chapter in terms of the network efficiency improvement, as part of DGP under the DG 

framework. 

 

For improving the network efficiency, we propose a ML model to profile different portions 

of data from a dataset and test them in networks for DQP. In the model implementation, 

we adopt the most efficient network in Chapter 5 for this chapter. They are LSTM RNNs 

with MBB predicting DQ in accordance with a local requirement, CPG 235. Section 6.1 

provides an introduction of this chapter. In Section 6.2, we discuss how to perform data 

profiling systemically and how DQP are learnt in LSTM RNNs with MBB. We 

demonstrate the performed experiments in Section 6.3. Finally, Section 6.4 concludes this 

chapter. 

 

6.1 Introduction 

From research results summarized in Section 1.2.3 and elaborated in Section 2.2, there are 

limitations of ML work related to the network efficiency improvement in DQP under DG: 

a) ML techniques have not been applied in the network efficiency improvement in DQP. 

DQP network run-time saving has not been measured and a ML model for the network 

efficiency improvement in DQP during DG processes has not been proposed; b) ML 

techniques have not been applied to DQ learning such as DQP during DG processes for 
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meeting DG regulatory requirements. 

 

To address these, we improve the network efficiency of DQP with a ML model in this 

chapter. This manages bank-wide risk [4] during DG processes. 

 

In the financial services industry, data is stored in multiple repositories. To analyze and 

predict them takes tremendous amount of time [186].  Facing this, we propose a ML model 

to perform data profiling for network learning by extracting different portions of data from 

a dataset. Profiled data is imported into networks for DQP. In the prediction process, we 

measure network run-time saving. 

 

In this model, how to justify data as good or bad is referenced to six DQ dimensions as set 

out in a local requirement, CPG 235 [120], similar to that in Chapter 5. 

 

The model is implemented with LSTM RNNs, similar to that in Chapter 5. These networks 

with MBB are applied with the algorithm of ADAGRAD to find the most efficient network 

for DQP while maintaining accurate DQP. 

6.2 Proposed Model 

 
DQ are predicted in a ML model with DNN.  In our approach, data labelling and scoring 

methods are the same as that in Chapter 5.  In this chapter, DN are mapped to the regulatory 

requirement, CPG 235.  After the mapping, the model is implemented by networks with 

profiled data. 

 

6.2.1 Data Profiling 

 
In performing data profiling, we select data clusters for testing.  In total, four databases are 

profiled. 

 

1st Database - the data element (“DE”) of “Asset Amount” in MR database is selected. 
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• Asset Amount (in number) is classified into 4 categories (1, 2, 3 and 4 corresponding 

to the amount of <85,000, between 85,000 & 385,000, over 385,000 & all amounts). 

Out of these categories, the number of records is around 10%, 30%, 60% and 100% of 

the database correspondingly. 

 

Besides, the DE of “Nationality” is selected. 

• Nationality (in several options) is classified into 4 categories: 1, 2, 3 and 4 

corresponding to a group of countries (CAD, SGD & EUR), another group of countries 

(AUD, CAD, CNY, CZK, EUR, GBP, HKD, JPY, MYR, NZD & SGD), a group of 

countries (excluding category 1 & 2) and all countries. Out of these, the number of 

records is 9%, 34%, 65% and 100% of the database respectively. 

 

2nd Database - the DE of “CollateralAmt” in CR database is selected. 

• CollateralAmt (in amount) is classified into 4 categories (1, 2, 3 and 4 corresponding 

to the amount of <85,000, between 85,000 & 385,000, over 385,000 and all amounts). 

Out of these categories, the number of records corresponds to 10%, 30%, 60% and 

100% of the database. 

 

3rd Database - the DE of “EventDate” in OR database is chosen. 

• EventDate (in date format of mm.dd.yyyy) is classified into 4 categories (1, 2, 3 and 4 

corresponding to the dates later than 19 Feb 2017, the dates later than 19 Feb 2015, the 

dates later than 19 Feb 2012 and all dates). Out of these categories, the number of 

records is 16%, 36%, 66% and 100% of the database respectively. 

 

4th Database - the DE of “SettlementDate” in LR database is chosen. 

• SettlementDate (in date format of DD/MM/YYYY) is classified into 4 categories (1, 2, 

3 and 4 corresponding to aging period: between 1 & 2 years, 1 & 4 years, 1 & 7 years 
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and all years). Out of these categories, the number of records is 10%, 30%, 60% and 

100% of the database correspondingly. 

 

These four databases are consolidated into an integrated dataset. After performing data 

profiling, we use the least percentage of data from the entire database (either 9%, 10% or 

16%) as a base for comparison of the network run-time saving. 

 

6.2.2 LSTM Networks with Memory between Batches 

 

In the implementation of the model, we input profiled data into LSTM RNNs with MBB. 

These network equations, learning method and network setups are the same as that in 

Chapter 5. 

 

In LSTM networks, the MBB enables networks to remember the content of previous 

batches: the last state for each sample in a batch is used as an initial state for the same in 

the next batch. This propagates previous states for each sample across batches. Thereupon, 

the data feature is standardized as: 

 

𝑥𝑥�𝑘𝑘 =  
𝑥𝑥𝑘𝑘 − �̅�𝑥𝑘𝑘
�δ𝑘𝑘2 + 𝜖𝜖

   (6.1) 

 

where 𝜖𝜖 is a positive constant to improve the numerical stability. This feature 

standardization is a procedure that can be used to reduce convergence rates. 

 

The optimization of batch is normalization (BN) introducing learnable parameters γ and β 

to scale and shift data correspondingly resulting in the form of:  

 

𝐵𝐵𝑇𝑇(𝑥𝑥𝑘𝑘) =  γ𝑘𝑘 𝑥𝑥�𝑘𝑘 + 𝛽𝛽𝑘𝑘  (6.2) 
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Setting γ𝑘𝑘to σ𝑘𝑘 and 𝛽𝛽𝑘𝑘to �̅�𝑥𝑘𝑘, networks recover its initial layer. For this, the layer in the 

network becomes:  

 

𝑦𝑦 = 𝜙𝜙 (𝑊𝑊𝑥𝑥+ b) (6.3) 

 

where 𝑊𝑊 is weights matrix, b is bias vector, 𝑥𝑥 is input and 𝜙𝜙 is an activation function. 

Hence, the batch normalization is: 

 

𝑦𝑦 = 𝜙𝜙 (BN(𝑊𝑊𝑥𝑥)) (6.4) 

 

Given the standardization, the effect of bias vector is cancelled. By normalization, the 

backpropagation needs to be adapted to propagate gradients. 

 

6.3 Experiments 

 

In experiments, we direct sequence learning in LSTM RNNs without MBB first. Upon 

completion, we compare these network results with the outcomes of LSTM RNNs with 

MBB. The experiment setup and data split are the same as that in Chapter 5. 

 

The purpose of these experiments is to achieve convincing network runtime saving in DQP 

with our model by running experiments with various DEs on a dataset. 

 

Dataset 

 

The dataset is from Chapter 3.  It contains four risk types including MR, CR, OR and LR. 

Some data features with DN are extracted to the following (with examples). 

 

a. MR – Asset Amount (251527, na, ‘ ’, 838); Nationality (‘ ’, tbc, JPY, GBP, AUD); MR 

Segments (Retail Bank, Private Bank, Wholesale Bank); Customer Risk Rating (H, M, 

L, OnBoarding, P, Q); 
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b. CR – Collateral Amount (29397, 6727, tbc, ‘ ’); TimeStamp (3/10/2015 6:09, 6/02/2008 

3:15, 16/06/2018 4:34); Guarantor ID Number (123272, 32416, tbc); Product Price (725, 

85, 3089, na); 

c. OR – Event Date (06.25.2009, 10.05.2012, 1.29.2018); Residual Legal Liability (1385, 

12, 3307, 715); Control Factors (system control, na, others, regular review); Loss 

Multiplier (1, ‘ ’, 1.4, 2); and 

d. LR – Settlement Date (4/11/2014, 13/12/2009, 19/08/2018); NAV (tbc, 871942, 17914, 

‘ ’); Liquidity Rate (0.1039, 0.5103, 0.9975); Number of Trades (1685, 13, na, ‘’). 

These data features with DN are assigned with quality scores before DN are classified into 

quality rankings, as inputs into networks for DQP. 

 

Results 

 
Utilizing the algorithm of ADAGRAD, we select DEs from MR to train LSTM RNNN 

without MBB with the dataset of 10%, 30%, 60% and 100% of the entire database. DEs 

are asset amount and nationality. Testing results are shown in Fig. 6.1 and Fig. 6.2. 
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(a) Cumulative Runtime for Diff. % of Database with ADAGRAD 

 
(b) Runtime Range with ADAGRAD 

 
(c) Runtime Trend with ADAGRAD 

 
Fig. 6.1 Runtime - MR Asset Amount Fig. 6.2 Runtime - MR Nationality 

(ADAGRAD)    (ADAGRAD) 

 

a. Regarding the DE of MR asset amount in Fig. 6.1, much run time is saved in the network 

with a dataset which is 10%, 30%, 60% of the entire database. Using 10% of the network 

running time as a base, we notice that the percentage of time saving is 178%, 589% and 

849% for the dataset having 30%, 60% and 100% of the data from entire database. It is 

attributable to the total runtime of 1811, 4215 and 6181 seconds (“sec”) respectively. 

By selecting a small fraction of data for prediction (by 10%), we can reduce a huge 

amount of network run time. It simply requires 651 sec. 
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b. Inside the network, the run time on average is stable over 10 epochs for the dataset with 

10% and 30% of the entire database (over 65 sec and 181 sec) except that with 60% and 

100%. The run time for the dataset with 60% of data from entire database rises to a high 

level (598 sec) at 2nd epochs but returns to a normal level till the end of epoch (393 sec) 

whereas that for the dataset having 100% of the entire database is unstable – dropping 

at 2nd epochs (611 sec) and bouncing back to a high level at 3rd epochs (711 sec) before 

decreasing at an average level (600 sec) at the 4th epoch. 

 
c. The average runtime results are visualized in Fig. 6.1. They are for the dataset sourcing 

10%, 30%, 60% and 100% of the data from the entire database. The widest range of run 

time lies in 100% dataset sourcing all data from the entire database. 

 

d. Concerning the DE of nationality in Fig. 6.2, we achieve a similar result.  Significant 

amount of runtime is saved with the dataset of 9% data sourcing from the entire 

database. The network runtime is limited to 674 sec.  This is also saved for the dataset 

having 34% and 65% of the database – only 1945 and 3800 sec in comparison with the 

lengthy time (by 6344 sec) required for the entire database. Using 9% of the network 

running time as a base, we note that saving corresponds to 189%, 464% and 841% for 

the dataset containing 34%, 65% and 100% of the database. 

 
e. In this network, the run time is stable for datasets with 9%, 34% and 65% of the entire 

database (by 67, 195 and 380 sec respectively) except that with the dataset having 100% 

of the data. 
 

f. We can also see that different data characteristics lead to various network saving under 

the same algorithm. The data features are described in Table 3.2 and 3.3. 

 
Test Scenarios 

 
To check if the network performance can be further improved, we conduct additional tests.  

Scenario 1 - We train the network with another algorithm, SGD, due to its merit [235]. SGD 

can be used to estimate the probability of output based on a randomly selected subset of 

inputs with the stochastic approximation of gradient descent optimization. The output can 
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be estimated using least squares where the objective function is minimized. The run time 

for DE of MR asset amount is depicted in Fig. 6.3 while that for the DE of MR nationality 

is made in Fig. 6.4. 

 

Cumulative Runtime for Diff. % of Database 

in Network without MBB Applying SGD 

 
Fig. 6.3 Runtime - MR Asset Amount (SGD) Fig. 6.4 Runtime - MR Nationality (SGD) 

 

Consistently, much time is saved by applying the algorithm of SGD. The run time for the 

dataset with 10%, 30% and 60% of the entire database corresponds to 743, 2020 and 4304 

sec when compared with the total time of 7012 sec. In view of this, the percentage of extra 

run time is 178%, 589% and 849% for the dataset of 30%, 60% and 100% of the data from 

the entire database respectively assuming the runtime of the dataset with 10% of the entire 

database is used as a base. Additionally, this situation is the same as that of the DE of 

nationality. The variance is the percentage of extra time – 189%, 464% and 841% for the 

dataset sourcing 34%, 65% and 100% of the data from the entire database. 

 

Scenario 2 – We compare the initial LSTM RNN with another network, the LSTM RNN 

with MBB. To test it, we select the DE of asset amount from MR to apply different 

algorithms (ADAGRAD and SGD) to this network, as given in Fig. 6.5 and Fig. 6.6. 
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Cumulative Runtime for Diff. % of Database in Network with MBB 

 
Fig. 6.5 Runtime for MR Asset Amount Fig. 6.6 Runtime for MR Asset Amount 

in Network with MBB (ADAGRAD)   in Network with MBB (SGD) 

 

To train the LSTM RNN with MBB with another algorithm, ADAGRAD, we note that the 

saved time is 169%, 490% and 756% for the dataset having 30%, 60% and 100% of the 

entire database correspondingly. When compared with the initial network, we observe that 

the saving is similar. By applying SGD, we find that the saving is explicit - 137%, 392% 

and 697%. Then, we check prediction outcomes, prediction accuracy and prediction error 

(in terms of a loss) of the network with MBB. 

 

Scenario 3 – Selecting a dataset with 10% of data for testing, we notice that the accuracy is 

high (69.40%) and loss is low (0.616) with respect to the network applying ADAGRAD, as 

shown in Fig. 6.7. For the network with MBB applying SGD, the accuracy is highly low 

(0.89%) whereas the loss is high (11.187), as indicated in Fig. 6.8. As a result, the algorithm 

of ADAGRAD is preferrable. 
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(a) Prediction in Network with MBB 

 
(b) Accuracy & Validated Accuracy 

 
(c) Loss & Validated Loss 

 
Fig. 6.7 Network Performance (ADAGRAD) Fig. 6.8 Network Performance (SGD) 

 

Above performance measurements such as accuracy and loss are defined in equations 2.37 

and 2.38 respectively inside Chapter 2. 

 

As we can see, our experiments achieve convincing network runtime saving in DQP with 

our model by running experiments with various DEs on a dataset. 

 

Related Works 
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DQP. [201] studied how ML enhanced the network performance in terms of the predictive/ 

classification accuracy. Our experiments demonstrate how to drive the efficiency 

improvement with a DNN.  

 

Network Architecture. [201] applied a deep architecture model using auto-encoders to 

represent traffic flow features for prediction. Our model is a LSTM RNN modelling long-

term temporal dependencies and remembering memory across long sequences. It 

successfully discovered latent traffic flow feature representation but ours find out a 

superior architecture (with ADAGRAD algorithm) for the quality prediction.  

 

Network algorithm. [202] innovated a shallow neural network model to detect colon cancer 

but our model compares heterogeneous algorithms (ADAGRAD and SGD) in LSTM 

RNNs to rapidly predict DQ. Both achieved excellent results.  

 

Performance Measurement. [197] utilized metrics for its networks aiming at the 

consumption prediction – training speed and accuracy of networks including Support 

Vector Regression (SVR), local SVR & H2O deep learning. The measurement is 

equivalent to us, but ours are LSTM RNN and LSTM RNN with MBB.  

 

DQ Dimensions. [200] measured the quality on a large dataset in terms of the accuracy, 

completeness and consistency. Ours include these as well as other dimensions sch as 

translation, transformation, redundancy, duplication, obsolescence, reasonableness and 

validity. Both compared the network with various algorithms.  

 

DQ Score Calculation. [123] calculated the accuracy by dividing the number of correct 

values from the number of observations based on the ISO 25012 standard 11 efficient risk 

data learning while our calculation computes data scores under a scientific method – taking 

the risk of quality issues into account after alignment with CPG 235.  

 

Network Performance Evaluation. [198] back-tested a strategy to assess simulated trades. 

This does not deviate from us – utilizing cross-validations to check the accuracy and loss 
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of network prediction. Both demonstrated the success of processing a cluster of the big 

data for a prediction within a reasonable time of few hours. 

6.4 Summary 

 

In this chapter, we present a ML model to improve the network efficiency in DQP. Before 

the network learning, we adopt a systematic approach to profile input data, as described in 

Section 6.2.1. 

 

Given an accurate prediction of DQ in Chapter 5, we leverage the same network, LSTM 

RNNs with MBB, for this chapter. Section 6.2.2 depicts how MBB is leant in networks. In 

this chapter, we additionally apply various algorithms to test networks with varying 

fractions of data. The network saving time is measured in various test scenarios inside our 

experiments. Consequently, we identify the most efficient network for DQP. 

 

The experiment results demonstrate a significant improvement in the network efficiency 

for DQP in terms of the network run-time saving while maintaining a high prediction 

accuracy. 

 

Saving network run-time to predict DQ is helpful for FIs relying heavily on enormous sets 

of data for analytics. This enables FIs to identify poor DQ earlier for the bank-wide risk 

management [4]. 

 

The next chapter presents IS compliance prediction with a ML model.  The prediction focus 

is IS compliance levels based on ISCs under the Life Cycle as set out in CPG 234. 
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Chapter 7 

 

Information Security Compliance Prediction 
 
 
In previous chapters, we predict DQ as part of DGP under the DGF. In this chapter, another 

DG initiative as part of DGF to meet DG objectives is to predict IS compliance levels 

during DG processes.  This tests the applicability of our ML model in complying with non-

DQ regulatory requirements. 

 

Similar to Chapter 3, we make prediction with a ML model applying sequential learning in 

supervised learning.  In this chapter, we extend the ML model in Chapter 3 by applying an 

ATTN for prediction. This not only captures temporal sequences and correlations of IS 

factors but also the importance of them. 

 

Our model starts with a compliance approach development followed by defining 

information security rules (“ISR”) for the determination of IS scores. Afterwards, the 

scores are aggregated into a scoring function for ranking ISL. Following this, the ISL are 

input into networks for prediction. Section 7.1 provides an introduction of this chapter. The 

proposed model with sequential learning and an ATTN is explained in Section 7.2. Section 

7.3 reports the utilized data, the performed experiments, and the achieved results. Finally, 

Section 7.4 summarizes this chapter. 

7.1 Introduction 

From research results summarized in Section 1.2.3 and elaborated in Section 2.2, there are 

limitations of ML work related to IS compliance prediction under DG: a) ML techniques 

have not been applied in the prediction of ISL and IS compliance levels under DG. ISL 

during DG processes have not been predicted. A ML model considering sequences, 

correlations and importance of IS factors collectively for IS compliance prediction has not 

been proposed; and b) ML techniques have not been applied to IS learning during DG 
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processes for meeting DG regulatory requirements. 

 

To address these, we leverage a ML model to predict IS compliance levels according to a 

local requirement, CPG 234 [75] in this chapter. This enhances IS during [75] DG 

processes. 

 

CPG 234 sets out a guideline on the management of IS by implementing thirteen controls, 

called ISCs.  These ISCs influence ISL over systems, networks and information assets 

(collectively named as “Systems”). FIs are obliged to consider these controls inside the 

Life Cycle to guard against any cyber-attacks and IS threats or vulnerabilities. 

 

To assist FIs in making preparation for the compliance of CPG 234, we propose a 

compliance approach before presenting a ML model in supervised learning to predict IS 

compliance levels in a real time mode by automating the IS compliance process in LSTM 

RNNs.  

 

The model networks are the same as that in Chapter 3 – LSTM RNNs with sequential 

learning.  In this chapter, networks are additionally applied with an ATTN. Consequently, 

they take the importance of IS scores into account during IS compliance prediction on top 

of the temporal sequences and correlations of IS scores. In experiments, they are trained to 

generate compliance reports for an analysis of IS scores by thirteen ISCs. 

7.2 Proposed Model 

 
IS compliance levels are predicted in a ML model with DNN.  Before the prediction, we 

develop a compliance approach to evaluate ISL by leveraging ISCs which are dependent 

on ISR. 

 
7.2.1 Compliance Approach 

 

In order to meet CPG 234, we make reference to the industry best practice [183, 185] in 

the approach development. The approach is illustrated in Fig. 7.1. 
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Fig. 7.1 Compliance Approach 

This approach is to leverage ISCs for evaluating ISL in Systems while ISCs are determined 

by multiple ISR, defined as ISR in equations (below). Accordingly, we design a compliance 

checklist to cover these ISR. All rules are applied to six systems which are tested in the 

model. 

 

7.2.2 Information Security Rules 

 

In total, Forty ISR are defined. They are presented in the form of questions in a compliance 

checklist, as listed in Table 7.1. These rules are categorized by thirteen controls of the Life 

Cycle. 

 

Table 7.1 ISR Checklist 

 

 ISR1 to ISR3 Under Process 1 – Change Management 

1.1 Are changes to systems reviewed for the changes in risk profiles? [254] 

1.2 Is data kept confidential and private in new e-banking technologies? [255] 

1.3 Is the data model adjusted to the changed system? [180] 

 ISR4 to ISR6 Under Process 2 – Configuration Management 

2.1 How well is system configured to protect against vulnerability? [256] 

Note: ISLs are rated as non-compliant, limited 
compliant, partially compliant, significantly 
compliant or wholly compliant.

• There are thirteen (13) 
information security 
controls (ISCs) over 
systems, networks and 
information assets 
(Systems) under the 
System Security Cycle 
Life

Information 
Security 

Controls (ISCs)

• Compliance checklist 
is used to assess 
information security 
levels (ISLs)  
dependent on ISCs

• ISCs are determined 
by 3 or 4 information 
security rules (ISRs)

Information 
Security Rules 

(ISRs)

• Each ISL is a weighted 
average of scores based 
on forty (40) ISRs for 
Systems

• Scores are analyzed by 
thirteen (13) dimensions 
(ISCs)

Information 
Security Levels 

(ISLs)
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2.2 
Are uses restricted from accessing server configuration files to avoid directory 

traversal attacks? [257] 

2.3 Is virtualization focused configuration management tool deployed? [258] 

 ISR7 to ISR9 Under Process 3 – Deployment and Environment Management 

3.1 Is banking software development segregated from software testing? [259] 

3.2 Is cloud computing in bank systems segregated by logical storage? [260] 

3.3 
Is a regular review performed to confirm who manages and administers data, 

and controls to detect and react to security breaches? [261] 

 ISR10 to ISR12 Under Process 4 – Access Management Controls 

4.1 
Is system access assigned based on user roles which are constantly updated? 

[262] 

4.2 Are access controls implemented in banking biometrics systems? [263] 

4.3 Are access controls for outsourced vendors defined in SLA? [264] 

 ISR13 to ISR15 Under Process 5 – Hardware & Software Asset Controls 

5.1 
Is an external machine authenticated and authorized based on cyber banking 

security protocols and standards? [265] 

5.2 Does IP packet filtering protect networks against intruder attacks? [266] 

5.3 Are firewalls configured to protect against unauthorized access? [266] 

 ISR16 to ISR18 Under Process 6 – Network Design 

6.1 Is data encrypted to prevent hacker sniffing e-banking networks? [267] 

6.2 Is penetration testing used for identifying network vulnerabilities? [268] 

6.3 
Are networks configured to guard against physical attack and unauthorized 

network intrusion? [254] 

 ISR19 to ISR21 Under Process 7 – Vulnerability Management Controls 

7.1 
Are malware protection technologies deployed to protect systems (e.g. 

encryption of code, polymorphism or obfuscation)? [269] 

7.2 Is an intrusion prevention system used to analyze traffic control? [270] 

7.3 Are web applications scanned to identify vulnerable instances? [271] 

 ISR22 to ISR24 Under Process 8 – Patch Management Controls 

8.1 Are security patches updated regularly for online banking? [254] 
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8.2 
Does patch management include the collection of the latest patches and the 

management of post-patch conflicts? [272] 

8.3 Are event logs reviewed to confirm the latest patches applied? [273] 

 ISR25 to ISR27 Under Process 9 – Service Level Management (SLA) 

9.1 Are SLAs with each infrastructure provider customized? [229] 

9.2 
Can vendors quickly reallocate computing resources without any downtime 

based on the SLA? [230] 

9.3 Are metrics used to measure the service level of vendors? [231] 

 ISR28 to ISR30 Under Process 10 – Monitoring Controls 

10.1 
Are transactions in online banking systems monitored to detect fraud patterns 

with artificial intelligence or transaction history analysis? [232] 

10.2 
Are network traffic for mobile banking apps monitored to inspect deep packets 

and their flow for vulnerability assessment? [233] 

10.3 
Are removable device and email system vulnerability detected by security 

monitoring systems? [27] 

 ISR31 to ISR33 Under Process 11 – Response Controls 

11.1 
Are cyber security incidents detected, prevented and responded by a computer 

emergency response team? [35] 

11.2 Are cyber-attacks well communicated and documented? [60] 

11.3 Are cyber security incidents reported and forecasted? [61] 

 ISR34 to ISR36 Under Process 12 –  

Capacity and Performance Management Controls 

12.1 Is system service capacity optimized? [62] 

12.2 Is network and web performance tracked to manage system events? [64] 

12.3 Is controller performance on server clusters analyzed? [65] 

 ISR37 to ISR40 Under Process 13 – Service Provider Management Controls 

13.1 Are outsourced systems managed with a degree of control? [264] 

13.2 Are vendor services designed based on the size of organization? [67] 

13.3 Are vendor service failures and service recoveries analyzed? [68] 

13.4 Are vendor service level guarantees specified in SLA? [70] 
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By leveraging these rules, FIs understand which process in the Life Cycle lacks ISCs [181]. 

 

7.2.3 Information Security Scoring Function 

 

In the model, the level of all ISR is computed as: 

 

∑ 𝐼𝐼𝐿𝐿𝐷𝐷1𝑖𝑖
6
𝑥𝑥=1 𝑘𝑘1𝑖𝑖 + ∑ 𝐼𝐼𝐿𝐿𝐷𝐷2𝑖𝑖

6
𝑥𝑥=1 𝑘𝑘2𝑖𝑖 + ⋯+ ∑ 𝐼𝐼𝐿𝐿𝐷𝐷40𝑖𝑖

6
𝑥𝑥=1 𝑘𝑘40𝑖𝑖

∑ 𝐼𝐼𝐿𝐿𝐷𝐷1𝑖𝑖
6
𝑥𝑥=1 + ∑ 𝐼𝐼𝐿𝐿𝐷𝐷2𝑖𝑖

6
𝑥𝑥=1 + ⋯+ ∑ 𝐼𝐼𝐿𝐿𝐷𝐷40𝑖𝑖

6
𝑥𝑥=1

 (7.1) 

  

where ki is the score of ISRi within a range (of one to five) representing the level of each 

of the ISR - very low, low, average, high and very high: 

 

𝑘𝑘𝑥𝑥 =

⎩
⎪
⎨

⎪
⎧
𝐼𝐼𝐿𝐿𝐷𝐷𝑐𝑐𝑇𝑇𝑇𝑇𝑦𝑦𝑙𝑙𝑥𝑥𝑤𝑤,𝑘𝑘𝑥𝑥 = 1
𝐼𝐼𝐿𝐿𝐷𝐷𝑙𝑙𝑥𝑥𝑤𝑤,𝑘𝑘𝑥𝑥 = 2

𝐼𝐼𝐿𝐿𝐷𝐷𝑎𝑎𝑐𝑐𝑇𝑇𝑇𝑇𝑎𝑎𝑔𝑔𝑇𝑇 ,𝑘𝑘𝑥𝑥 = 3
𝐼𝐼𝐿𝐿𝐷𝐷ℎ𝑥𝑥𝑔𝑔ℎ,𝑘𝑘𝑥𝑥 = 4

𝐼𝐼𝐿𝐿𝐷𝐷𝑐𝑐𝑇𝑇𝑇𝑇𝑦𝑦ℎ𝑥𝑥𝑔𝑔ℎ,𝑘𝑘𝑥𝑥 = 5

 (7.2) 

 

Forty (40) ISR are defined. Subsequently, the total score of Systems for ISR is computed 

as: 

ISR1k1 + ISR2k2 +… + ISR40k40 (7.3) 

  

The lower the score, the lower the level of ISCs. Let inputs are xi for Systems: 

 

f(xi) = xi(ISR1k1 + ISR2k2 +… + ISR40k40) (7.4) 

  

This is applied to a scoring function f(xi) with a dataset. The function is a weighted average 

of scores for Systems. Scores are determined by questions defined in ISR, similar to the 

function in a previous research [180]. Upon confirmation of these scores, we aggregate 

them to evaluate the collective level of controls. 
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With all scores, the probability (P) of the joint occurrence for ISRi is computed as: 

 

P(ISRi) = P(ISR1(xi)) ∙ P(ISR2(xi)) ∙… ∙P(ISR40(xi)) (7.5) 

 

The probability is classified into a rank (ri) out of five ranks: the level of non-compliance 

(Cnon), limited compliance (Climited), partially compliance (Cpartially), significantly 

compliance (Csignificantly) and wholly compliance (Cwholly): 

 

𝑓𝑓(𝑓𝑓𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧

𝐶𝐶𝑛𝑛𝑥𝑥𝑛𝑛, 𝑓𝑓𝑥𝑥 = 1
𝐶𝐶𝑙𝑙𝑥𝑥𝑇𝑇𝑥𝑥𝑡𝑡𝑇𝑇𝑇𝑇, 𝑓𝑓𝑥𝑥 = 2
𝐶𝐶𝑝𝑝𝑎𝑎𝑇𝑇𝑡𝑡𝑥𝑥𝑎𝑎𝑙𝑙𝑙𝑙𝑦𝑦, 𝑓𝑓𝑥𝑥 = 3

𝐶𝐶𝑠𝑠𝑥𝑥𝑔𝑔𝑛𝑛𝑥𝑥𝑥𝑥𝑐𝑐𝑎𝑎𝑛𝑛𝑡𝑡𝑙𝑙𝑦𝑦, 𝑓𝑓𝑥𝑥 = 4
𝐶𝐶𝑤𝑤ℎ𝑥𝑥𝑙𝑙𝑙𝑙𝑦𝑦, 𝑓𝑓𝑥𝑥 = 5

 (7.6) 

 

In case an overall information security control over Systems is adequate, the compliance 

level (C) will be ranked as 5. Otherwise, the level will scale from one to four dependent on 

the adequacy of controls (measured in terms of scores for all ISR). As a result, this is a five-

ranking function. 

 

7.2.4 LSTM Networks with an Attention Mechanism 

 
In the model, we take a series of steps to train LSTM RNNs for predicting IS compliance 

levels, as described in Fig. 7.2. 
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Fig. 7.2 Network Training Procedures 

 

In the beginning, LSTM RNNs are imported with a dataset. Data features are ISR’ scores 

of six systems. Scores are classified into ISCs. All ISCs are ranked by IS compliance levels 

before networks forecast the levels. 

 

In total, we train four networks including FF LSTM RNNs without an ATTN, BK LSTM 

RNNs without an ATTN, FF LSTM RNNs with an ATTN, and BK LSTM RNNs with an 

ATTN. These networks learn temporal sequences and correlations of ISCs with an 

activation function, Sigmoid. They predict IS compliance levels to ascertain whether output 

sequences exceed thresholds. This threshold refers to the acceptance level of IS. Apart from 

the sequence prediction, we apply an ATTN to networks to direct the learning to pay 

attention to important ISCs. 

 

In experiments, these network outcomes are compared with other networks such as NB, 

KNN, LReg and DT. Regardless of network types, all networks use classifiers to categorize 

IS compliance levels before making prediction. 

7.3 Experiments 
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The purpose of these experiments is to study the IS compliance prediction performance of 

our proposed model by running experiments with an IS dataset. 

 

The experiment setup and data split are the same as that in Chapter 3. 

Dataset 

 
In real life, no real banking data related to IS is publicly available. These are confidential 

information which cannot be disclosed.  In view of this, we synthesize a dataset with 

Python. To create this, we pre-define rules including a) scores with a range from one to 

five; and b) forty instances (equivalent to ISR). 

 

In this dataset, we assume six systems, forty instances, and three data inputs such as 

question numbers, questions and scores. The assumption is made to meet CPG 234 

requirement. Under CPG 234, multiple systems need to be considered and a range of ISCs 

should be proposed [75]. These parameters in this chapter are set for the demonstration 

purpose. These vary depending on the real situation of a company. 

 

For these six systems, answers to questions are stated in terms of IS scores.  Some data 

features are extracted to Table 7.2. 

 

Table 7.2 IS Data Features (Samples) 

 
 

The statistics of scores are listed in Table 7.3. The scores are binarized before they are 
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input into networks for prediction. 

 
 

Table 7.3 Score Statistics (S.D. – Standard Deviation) 

 
Scores System 1 System 2 System 3 System 4 System 5 System 6 
Mean 2.8250 3.5500 3.3500 3.0750 2.9500 2.9500 
S.D. 1.5340 1.2598 1.5115 1.3085 1.4841 1.4841 

 

Results 

 
We compare different LSTM RNNs to check which one outputs the best prediction result. 

Experimental outcomes are compared in Table 7.4. 

 

Table 7.4 Prediction Results by Networks 

 

LSTM RNNs Accuracy Loss PN RL F1 

FF 0.9500 0.4120 0.9025 0.9500 0.9256 

BK 0.3000 0.7167 0.8726 0.3000 0.4213 

FF+ATTN 0.9500 0.3603 0.9025 0.9500 0.9256 

BK+ATTN 0.9500 0.4543 0.9025 0.9500 0.9256 

 

From Table 7.4, the highest accuracy is found in the network of FF, FF+ATTN and 

BK+ATTN. But the lowest loss occurs in the network of FF+ATTN (0.3603). In addition, 

these three networks have similar PN, RL and F1, significantly higher than that of the 

network, BK. Overall, the FF+ATTN attains the highest prediction accuracy and 

minimalizes the loss. ATTN helps BK improve the network predictability from 30% to 

95%. Also, it optimizes the performance of FF and BK by reducing the loss from 0.4120 

to 0.3603 and increasing the accuracy from 30% to 95% respectively. 

 

Result Evaluation 
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We evaluate networks by cross-validation (CV). Results are listed in Table 7.5. Validated 

(V.) accuracy for all networks except the BK is the highest (95%) while validated loss for 

the FF+ATTN is the lowest (0.0922). 

Table 7.5 Evaluation Results by Networks 

 

LSTM RNNs V. Accuracy V. Loss 

FF 0.9500 0.4016 

BK 0.3000 0.2614 

FF+ATTN 0.9500 0.0922 

BK+ATTN 0.9500 0.1375 

 

Case Studies 

 

We make an in-depth analysis on the prediction of IS compliance levels as follows. 

Case 1 – We analyze how prediction look like, as visualized in Fig. 7.3. Prediction are 

measured in terms of output sequence length (from 0 to 1). From the BK LSTM RNN, 

prediction deviate from actual outputs significantly when compared with other networks 

over timesteps. 
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Fig. 7.3 Prediction of Compliance Levels by Networks 

Note to Fig. 7.3 and 7.4: FF LSTM RNN is NNet_FD, BK LSTM RNN is NNet_BK, FF 

LSTM RNN with ATTN is NNet_FD+ATT and BK LSTM RNN with ATTN is 

NNet_BK+ATT 

 
Case 2 - To confirm if there is an overfit or underfit issue for networks, we compare training 

losses against validated losses, as given in Fig. 7.4. Both training and validated data cannot 

meet for these networks. This can be avoided using more data. When training data and 

validated data meet at an inflection point, we can stop training the network.  Note that the 

loss of the FF LSTM RNN (0.4120), BK LSTM RNN (0.7167) and BK LSTM RNN with 

an ATTN (0.4543) are not comparable to that of the FF LSTM RNN with an ATTN 

(0.3603). 
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Fig. 7.4 Train Loss and Validated Loss by Networks 

 

Case 3 - To compare MSE and V. MSE of networks, we extract results to Fig. 7.5. 

Consistently, the FF LSTM RNN with an ATTN minimizes the MSE and V. MSE out of 

all networks. 

 

 

 

 

 

Fig. 7.5 MSE and Validated MSE by Networks 

 
Case 4 - We compare LSTM RNNs with other networks. Comparison results are listed in 

Table 7.6.  
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Table 7.6 Comparison of Different Networks 

 

Networks Accuracy Loss PN RL F1 

NB 0.4286 1.5109 0.3389 0.3333 0.2976 

KNN 0.5357 20.6675 0.0208 0.0833 0.0333 

LReg 0.5357 2.2851 0.5139 0.4167 0.3556 

DT 0.9286 23.1414 0.3833 0.2500 0.2847 

FF LSTM RNN +ATTN 0.9500 0.3603 0.9025 0.9500 0.9256 

 

The FF LSTM RNN with an ATTN achieves the highest accuracy (95.00%) and the lowest 

loss (0.3603) in comparison with NB, KNN, LReg and DT. At the same time, it attains the 

highest PN (90.25%), RL (95.00%) and F1 (92.56%). 

 

Case 5 - We evaluate other networks by CV. Results are listed in Table 7.7. V. accuracy 

and loss in the FF LSTM RNN with an ATTN (95.00% and 0.0922 respectively) are 

superior to that in NB, KNN, LReg and DT. In consideration of the accuracy and loss 

collectively, the FF LSTM RNN with an ATTN is the most efficient network relative to 

others in this experiment. 

Table 7.7 Evaluation of Different Networks 

 
Networks V. Accuracy V. Loss 

NB 0.3333 4.6189 

KNN 0.0833 6.8511 

LReg 0.4167 2.6536 

DT 0.2500 4.9994 

FF LSTM RNN +ATTN 0.9500 0.0922 
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Model Reports 

 
In order to prepare reports for the compliance purpose, we compute the distribution of 

scores for six systems. Outputs are extracted to Fig. 7.6. This shows the overall compliance 

level of all systems which are to be attested by financial regulators (when needed). 

 

 

 

 

 

Fig. 7.6 Distribution of Five Scores for Six Systems 

It can be observed that most ‘score 1’ are found in system 1. They should be improved as 

soon as possible due to significant control weaknesses. Fig. 7.6 shows the measurement of 

compliance levels in terms of metrics such as 60% of compliance for score 6, 60% of 

compliance for score 5, 60% of compliance for score 4, 80% of compliance for score 3, 

80% of compliance for score 2, and 60% of compliance for score 1. 

 

Apart from this high-level report, we analyze scores by ISCs under the Life Cycle. These 

scores in detailed reports are extracted to Fig. 7.7. Two controls out of all ISCs are found 

with the highest number of ‘score 1’. They are change management and response controls. 

Take the change process as an example, 7 ISR are rated as ‘score 1’. Hence, we notice that 

system 1, 5 and 6 have two ISR rated as ‘score 1’ while system 2 has one ISR rated as ‘score 

1’. To avoid violating the regulatory requirement, FIs can prioritize these controls for IS 

enhancement purpose earlier. Fig. 7.7 can be interpreted as the measurement of compliance 

levels in terms of metrics. Take the information security control of change management as 

an example, system 3 is 100% compliant with control 1 and 3 but only 60% compliant with 

control 2. 
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Fig. 7.7 Compliance Report by Controls under the Life Cycle 
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Above performance measurements such as accuracy, loss, precision, recall and F1-Support 

are defined in equations 2.37 to 2.41 inside Chapter 2. 

 

As we can see, our experiments show an outstanding IS compliance prediction performance 

of our proposed model by running experiments with an IS dataset. 

 

Related Works 

 

There has been limited research on the application of LSTM networks with an ATTN to 

automate the IS compliance process. We are the first to present a ML model predicting IS 

compliance levels based on IS score correlations and their importance for the financial 

services industry. 

 

Instead, a significant amount of previous studies directed sequential learning with an 

attention in other domains such as dependencies of a problem [203], computation of 

response at a position in a sequence by attending to all positions in a self-attention network 

[94], improvement in the balance between the ability to model dependencies in a generative 

adversarial network with a self-attention [95], and prediction of attributes for images by 

considering co-occurrence dependencies of attributes [96].   

 

In the industry, there have been a few research studies applying a similar ML model such 

as prediction of stock prices in attention LSTM DNN [207] and forecast of LR with DNN 

[126]. These are yet extended to predict compliance levels. 

 

7.4 Summary 

 
We propose a ML model to overcome the problem of predicting IS compliance levels. The 

model networks can be leveraged to automate the compliance process in a real time mode. 

The model prediction in accordance with a local requirement, CPG 234, facilitates FIs to 

meet the expectation of financial regulators in the financial services industry.  
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We firstly develop a compliance approach in Fig. 7.1. Next step is to define ISR to 

determine IS scores while rules are listed in Table 7.1.  The scores are aggregated into a 

scoring function for ranking IS compliance levels. The levels are input into networks for 

prediction.  

 

Section 7.2.3 describes the procedure of network training where networks in this chapter 

are LSTM RNNs which are the same as that in Chapter 3. These networks in this chapter 

are applied with an ATTN. Our model goes beyond the traditional method by exploiting 

sequential correlations of IS scores and paying special attention to important IS scores. 

 

Overall experiment results over an IS dataset demonstrate that our model achieves higher 

prediction accuracy, PN, RL and F1 in ISL prediction in comparison with other DNN, such 

as NB, KNN, LReg and DT.  

 

Predicting IS compliance levels with analytical reports is beneficial to the industry. Relying 

on the reports, FIs understand which controls under the Life Cycle should be prioritized 

for the IS enhancement purpose [75]. 

 

Next chapter concludes all of the chapters mentioned above and key contributions made 

with these research works followed by a discussion on future works. 
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Chapter 8 

 

Conclusion 
 
The aim of this thesis mentioned in Section 1.2.2 of Chapter 1 is to enhance DG of FIs by: 

a) improving DQ [4]; b) managing data risks [120]; c) managing bank-wide risks [4]; and 

d) enhancing IS [75]. 

 

For this purpose, we propose five ML models to learn regulatory compliance data:  

a. In Chapter 3, a DQP model using supervised learning under DG to meet the regulatory 

requirement of DG. This model considers sequential learning of DN by taking temporal 

sequences and correlations of DN into account; 

b. In Chapter 4, a DQP model using unsupervised learning under DG to meet the 

regulatory requirement of DG. This model considers the importance of DN on top of 

the temporal sequences and correlations of DN collectively in DQP. Additionally, this 

model takes temporal sequences and correlations of DN into account in DQ 

measurement; 

c. In Chapter 5, a DQP analytical model under DG to meet the regulatory requirement of 

DG; 

d. In Chapter 6, a DQP network efficiency improvement model under DG to meet the 

regulatory requirement of DG by measuring network run-time saving; and 

e. In Chapter 7, an ISL prediction model considering sequences, correlations and 

importance of IS factors collectively for IS compliance prediction under DG to meet 

the regulatory requirement of DG. 

These models address research limitations mentioned in Section 1.2.3 that most of the state-

of-the-art research works have not covered, as elaborated in Section 2.2.  These limitations 

are summarized in Section 8.1 of this chapter. 
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Chapter 3 to 7 show how our ML models accurately predict DQ and IS compliance levels 

during DG processes of FIs by learning regulatory compliance data from both theoretical 

and experimental perspectives. Experimental results demonstrate that these models under 

DG succeed in accurately predicting DQ in supervised learning, precisely predicting DQ 

in unsupervised learning, analyzing DQP by divergent dimensions such as by risk types 

and business segments, saving significant network run-time in DQP for improving the 

network efficiency, and accurately forecasting IS compliance levels. 

 

This chapter first summarizes proposed models, findings and research aims of each chapter 

of this thesis. Then, Section 8.2 discusses contributions of our models and Section 8.3 

outlines our future work. 

8.1 Summary of Chapters 

In Chapter 1, we introduced thesis background, scope, aims, models, model networks, 

research methodology and thesis outline. Prior research showed that ML models have not 

been extensively applied to DG problems. In view of these ML research limitations, five 

ML models were proposed: a) DQP model using supervised learning under DG to meet the 

regulatory requirement of DG. This model considers sequential learning of DN by taking 

temporal sequences and correlations of DN into account; b) A DQP model using 

unsupervised learning under DG to meet the regulatory requirement of DG. This model 

considers the importance of DN on top of the temporal sequences and correlations of DN 

collectively in DQP. Additionally, this model takes temporal sequences and correlations of 

DN into account in DQ measurement; c) A DQP analytical model under DG to meet the 

regulatory requirement of DG; d) A DQP network efficiency improvement model under 

DG to meet the regulatory requirement of DG by measuring network run-time saving; and 

e) an ISL prediction model considering sequences, correlations and importance of IS 

factors collectively for IS compliance prediction under DG to meet the regulatory 

requirement of DG. 

 

In Chapter 2, we listed all research topics that have been studied including ML techniques, 

ML models, model networks, ML work related to DG, summary on the limitations of 
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research work, and our research proposal together with the research approach and research 

methodology. There have been many ML methods including unsupervised, supervised and 

reinforcement learning. In the ML model development, many components need to be 

considered including inputs, processing and outputs. For the model implementation, 

numerous networks could be leveraged including a) LReg, DT, SVM, NB, RF; b) KNN; 

and c) ANN. These networks were commonly used for prediction and analytical purposes. 

In networks, there have been various learning techniques. We introduced network 

methodologies, network memory, network wrapper, network activation, network sequence 

prediction, network optimization, network algorithms and network performance metrics. 

Following this, we surveyed ML works related to DG. There have been numerous ML 

models developed. These could be applied to DG including learning of DQ or IS 

compliance.  Research results showed that the extent of ML application to DG was not 

extensive from four perspectives including DG measurement and prediction, DG 

requirement compliance, network efficiency improvement in DQP and IS compliance 

prediction. Then, we summarized limitations of current research work. These limitations 

motived us to propose our research work.  In the research proposal, we proposed five ML 

models. Under the research approach, we covered three artifacts. To design proposed 

artifacts, we used a design science methodology “DSRM”. 

 

In Chapter 3, we proposed a ML model to predict DQ under DG in supervised learning. 

This model tackled a real DG issue in the financial services industry that most of the state-

of-the-art research works have not covered: i.e., a) ML techniques have not been applied 

in DQP during DG processes using supervised learning extensively. In particular, a ML 

model has not been proposed for DQP during DG processes in supervised learning; b) ML 

techniques have not been applied in the forecast of DQ during DG processes by taking 

temporal sequences and correlations of DN into consideration. In particular, a ML model 

considering temporal sequences and correlations of DN has not been proposed for DQP 

under DG; and c) ML techniques have not been applied to DQ learning such as DQP during 

DG processes for meeting DG regulatory requirements. In our ML model, we firstly 

labelled data based on an international requirement of BCBS 239. The model was 

implemented with LSTM RNNs for DQP including FF LSTM RNN, BK LSTM RNN and 
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BD LSTM RNN. Then, we directed networks to learn temporal sequences and correlations 

between DN sequences with a synthesised dataset. Following this, the model was validated 

with a realistic banking dataset. Experimental results demonstrated that our model was 

effective in DQP in terms of the prediction accuracy and error. This model could be used 

to improve DQ [4, 6] by predicting DQ according to an international requirement, BCBS 

239, in supervised learning. 

 

In Chapter 4, we proposed a ML model to predict DQ under DQ in unsupervised learning. 

This model tackled a real DG issue in the financial services industry that most of the state-

of-the-art research works have not covered: i.e., a) ML techniques have not been applied 

in DQP during DG processes using unsupervised learning.  In particular, a ML model has 

not been proposed for DQP during DG processes in unsupervised learning; b) temporal 

sequences and correlations of DN have not been considered in DQ measurement. In 

particular, a ML model has not been proposed for DQ measurement under DG taking 

temporal sequences and correlations of DN into account; c) ML techniques have not been 

applied in the forecast of DQ during DG processes by taking temporal sequences, 

correlations and importance of DN into consideration. In particular, a ML model 

considering temporal sequences, correlations and importance of DN has not been proposed 

for DQP under DG; and d) ML techniques have not been applied to DQ learning such as 

DQP during DG processes for meeting DG regulatory requirements. In our model, 

unsupervised learning method saved time in data labelling. At first, we detected DN from 

a dataset pursuant to an international requirement, BCBS 239. Detected DN impacts were 

estimated in two generative mixture methods as weights in unsupervised learning. The 

weights were input into networks for DQP. Networks implemented were LSTM RNNs 

applying sequential learning along with an ATTN to predict DQ taking not only temporal 

sequences and correlations of DN into account but also the importance of DN. Network 

performance was further optimized by dual regularizations. Consequently, the network 

prediction accuracy, PN, RL and F1 were high while the prediction error was low. The 

network performance was examined at two levels including an integrated level and an 

individual level to analyze the model predictive power. This model could be used to 

improve DQ [4, 6] by predicting DQ in accordance with the international requirement, 
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BCBS 239, in unsupervised learning. 

 

In Chapter 5, we presented a ML model to analyze DQP under DG. This model tackled a 

real DG issue in the financial services industry that most of the state-of-the-art research 

works have not covered: i.e., a) ML techniques have not been applied in DQP analytics 

under DG to meet DG regulatory requirements. A ML model for analyzing DQP during 

DG processes has not been proposed; and b) ML techniques have not been applied to DQ 

learning such as DQP analytics during DG processes for meeting DG regulatory 

requirements. In the model, DQP were analyzed in accordance with a local requirement, 

CPG 235. The model was implemented by LSTM RNNs applying more complicated 

learning methods such as windows, timesteps and MBB to learn DQP differently. 

Experimental results showed that our model was effective in DQP analytics. The model 

accurately predicted DQ and at the same time analyzed DQ at a granular level by risk types 

(such as MR, CR, OR and LR) and business segments (including PvB, WB and RB).  

Networks were tested with divergent algorithms. This model could be used to manage data 

risk [120] by analyzing DQP according to a local requirement of CPG 235. 

 

In Chapter 6, we proposed a ML model to improve the network efficiency in DQP under 

DG. This model tackled a real DG issue in the financial services industry that most of the 

state-of-the-art research works have not covered: i.e., a) ML techniques have not been 

applied in the network efficiency improvement in DQP. DQP network run-time saving has 

not been measured and a ML model for the network efficiency improvement in DQP during 

DG processes has not been proposed; and b) ML techniques have not been applied to DQ 

learning such as DQP during DG processes for meeting DG regulatory requirements. 

Before predicting DQ based on a local requirement, CPG 235, we proposed a data profiling 

approach to slide divergent portions of data from a dataset for learning in networks. After 

this, we proposed a ML model to train LSTM RNNs applying MB for measuring network 

run-time saving. Networks were tested with various algorithms to find the most efficient 

network. They have been evaluated by validation data to confirm the model effectiveness. 

Experimental results demonstrated a significant improvement in the network efficiency for 

DQP in terms of the network run-time saving while maintaining a high prediction accuracy. 
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This model could be used to manage bank-wide risk [4] by improving the network 

efficiency of DQP. 

 

In Chapter 7, we proposed a ML model to predict IS compliance levels under DG. This 

model tackled a real DG issue in the financial services industry that most of the state-of-

the-art research works have not covered: i.e., a) ML techniques have not been applied in 

the prediction of ISL and IS compliance levels under DG. ISL during DG processes have 

not been predicted. A ML model considering sequences, correlations and importance of IS 

factors collectively for IS compliance prediction has not been proposed; and b) ML 

techniques have not been applied to IS learning during DG processes for meeting DG 

regulatory requirements.  At first, we developed a compliance approach. Then, we defined 

ISR according to a local requirement of CPG 234 for detecting ISCs in a ML model. After 

this, detection results were aggregated in a scoring function for ranking ISL. The ISL were 

input into networks, LSTM RNNs, for predicting IS compliance levels. LSTM RNNs were 

applied with sequential learning and an ATTN to learn sequential correlations of IS scores 

and pay special attention to important IS scores. These networks automated the compliance 

process to generate analytical reports showing IS compliance levels under the Life Cycle. 

Experimental results demonstrated that our model achieved higher prediction accuracy, 

PN, RL and F1 in ISL prediction when compared with other DNN, such as NB, KNN, 

LReg and DT.  This model could be used to enhance IS [75] by predicting IS compliance 

levels according to a local requirement, CPG 234. 

8.2 Contributions 

From literature results summarized in Section 1.2.3 and elaborated in Section 2.2, ML 

techniques have not been largely deployed to DG. ML models have not been widely applied 

to and experimented in DG processes.  These motivate us to make contributions towards 

the application of ML models to DG for the financial services industry, as elaborated 

below. 

 
8.2.1 Data Quality Prediction in Supervised Learning 

We propose an effective ML model to tackle a real DG issue in the financial services 
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industry that most of the state-of-the-art research works have not covered: i.e., a) ML 

techniques have not been applied in DQP during DG processes using supervised learning 

extensively. In particular, a ML model has not been proposed for DQP during DG 

processes in supervised learning; b) ML techniques have not been applied in the forecast 

of DQ during DG processes by taking temporal sequences and correlations of DN into 

consideration. In particular, a ML model considering temporal sequences and correlations 

of DN has not been proposed for DQP under DG; and c) ML techniques have not been 

applied to DQ learning such as DQP during DG processes for meeting DG regulatory 

requirements. These are summarized in Section 1.2.3 and elaborated in Section 2.2. 

 

The contributions of this model can be summarized as follows: a) we take advantage of 

DQ principles from an international regulatory requirement of BCBS 239 [3] under DG to 

measure DQ in supervised learning with a ML model; b) we exploit a ML model 

considering DN in the current state, the previous state and the future state to predict DQ 

during DG processes by applying sequential learning to DNN; c) we train multiple LSTM 

RNNs (FF, BK and BD LSTM RNNs) in the model to test the predictability of divergent 

learning methodologies, improve the network predictive power by applying heterogenous 

algorithms (ADAM, SGD, ADADELTA, ADAGRAD and RMSPROP) to networks, and 

find the most efficient network for DQP; and d) we construct a dataset made of four risk 

types which are not available in the public domain. This dataset is used to test networks for 

confirming the model effectiveness, and can be used in other research works. To our 

knowledge, this presents the first attempt to develop a ML model in alignment with the 

international regulatory requirement of BCBS 239 to predict DQ and the model is designed 

with sequential learning taking temporal sequences and correlations of DN into account in 

DQP. Accordingly, the learning of complex DN relations is close to real word scenarios 

for DQP under DG. At the end, experiments show accurate prediction of DQ. Thereupon, 

the model is helpful for the improvement of DQ [4] (as mentioned in Section 1.2.2 Aims 

of this thesis) earlier, as part of the DG. 
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8.2.2 Data Quality Prediction in Unsupervised Learning 

We propose an effective ML model to tackle a real DG issue in the financial services 

industry that most of the state-of-the-art research works have not covered: i.e., a) ML 

techniques have not been applied in DQP during DG processes using unsupervised 

learning.  In particular, a ML model has not been proposed for DQP during DG processes 

in unsupervised learning; b) temporal sequences and correlations of DN have not been 

considered in DQ measurement. In particular, a ML model has not been proposed for DQ 

measurement under DG taking temporal sequences and correlations of DN into account; c) 

ML techniques have not been applied in the forecast of DQ during DG processes by taking 

temporal sequences, correlations and importance of DN into consideration. In particular, a 

ML model considering temporal sequences, correlations and importance of DN has not 

been proposed for DQP under DG; and d) ML techniques have not been applied to DQ 

learning such as DQP during DG processes for meeting DG regulatory requirements. These 

are summarized in Section 1.2.3 and elaborated in Section 2.2. 

 

We propose a new unsupervised learning model that does not require data labelling. The 

unsupervised learning saves significant data labeling time [161]. Our ML model firstly 

exploits DN weighing in two generative mixture methods rather than labelling data 

manually after detection of DN pursuant to an international regulatory requirement of 

BCBS 239 [3]. DN weights are aggregated in a scoring function before they are input into 

networks for prediction. Relevant aggregate quality scoring algorithm is proposed to 

provide guidance on the measurement of DQ by a new DQ scoring method under DG. This 

method has not been proposed in earlier ML research related to DG, as mentioned in 

Section 1.2.3 and Section 2.2. Since a ML model is yet to be developed for DQP during 

DG processes in supervised and unsupervised learning. The model then takes advantage of 

sequential learning of DNN to predict DQ during DG processes by considering DN in the 

current state, the previous state and the future state. Multiple networks are tested including 

FF, BK and BD LSTM RNNs and their learning algorithms are proposed to provide 

guidance on DQP by different DQ learning methods under DG. These methods have not 

been proposed in earlier ML research related to DG, as mentioned in Section 1.2.3 and 
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Section 2.2. A ML model is yet to be developed for DQP during DG processes in 

supervised and unsupervised learning. The networks are applied with an ATTN, not only 

taking temporal sequences and correlations of DN into account in the DQP but also the 

importance of DN. This deviates from Chapter 3. The experiment results show that our 

model provides accurate estimates of DQ at both integrated and individual levels when 

supervised learning is not practicable or labelling data is costly. These accurate estimates 

enable FIs to understand what DQ are going to be with a sceientific computational method 

under DG. Thus, FIs can enhance their forward-looking capabilities of DQ [3] by providing 

any potential violations of risk limits over thresholds. They can also improve DQ in long 

term [3] to satisfy the expectation of regulators in the industry. Accordingly, our model is 

useful for an early improvement of DQ [4] (as mentioned in Section 1.2.2 Aims of this 

thesis), as part of the DG. 

 

8.2.3 Data Quality Prediction Analytics 

We propose an effective ML model to tackle a real DG issue in the financial services 

industry that most of the state-of-the-art research works have not covered: i.e., a) ML 

techniques have not been applied in DQP analytics under DG to meet DG regulatory 

requirements. A ML model for analyzing DQP during DG processes has not been 

proposed; and b) ML techniques have not been applied to DQ learning such as DQP 

analytics during DG processes for meeting DG regulatory requirements. These are 

summarized in Section 1.2.3 and elaborated in Section 2.2. 

 

Given this research gap, we are motivated to analyze DQP under DG with a ML model. 

We take a series of steps to achieve this by: a) labelling data according to a local regulatory 

requirement of CPG 235 [120] in terms of six DQ dimensions including accuracy, 

completeness, consistency, timeliness, availability, and fitness for use in supervised 

learning; b) directing networks, LSTM RNNs, in a ML model with complex learning 

methods to learn DQP differently for the multi-dimensional analytical purpose while the 

methods contain windows, time-steps and memory between batches; c) testing networks 

with divergent algorithms to find the most efficient performance; and d) generating 
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granular analytical reports on DQP during DG processes by risk types (such as MR, CR, 

OR and LR) and by business segments (such as PvB, WB and RB) for use by FIs. These 

analytics can be used to satisfy the expectation of regulators in the industry and help to 

strengthen the capabilities of FIs to understand where potential poor data is under DG. The 

model effectiveness is demonstrated by conducting a set of experiments over the risk 

dataset. Accordingly, this model is advantageous for an early data risk management [120] 

(as mentioned in Section 1.2.2 Aims of this thesis), as part of the DG. 

 

8.2.4 Network Efficiency Improvement in Data Quality Prediction 

We propose an effective ML model to tackle a real DG issue in the financial services 

industry that most of the state-of-the-art research works have not covered: i.e., a) ML 

techniques have not been applied in the network efficiency improvement in DQP. DQP 

network run-time saving has not been measured and a ML model for the network efficiency 

improvement in DQP during DG processes has not been proposed; and b) ML techniques 

have not been applied to DQ learning such as DQP during DG processes for meeting DG 

regulatory requirements. These are summarized in Section 1.2.3 and elaborated in Section 

2.2. 

 

The issue is addressed by a) adopting a systematic approach to measure the network run-

time saving for DQP during DG processes; b) improving the network efficiency for DQP 

based on a local regulatory requirement, CPG 235 [120], in a ML model; c) reporting 

network run-time saving by testing different portions of data in the model; and d) showing 

a significant percentage of the DQP run-time saving in experimental results. We believe 

that the approach and model can be used by FIs to swiftly find future good and bad quality 

of data from the massive amount of data [82] with the use of a small fraction of data while 

maintaining accurate DQP under DG. This model is scalable and has the potential to 

expand its applicability to other network efficiency improvement research works. Thus, the 

model helps to efficiently manage bank-wide risks [4] (as mentioned in Section 1.2.2 Aims 

of this thesis) earlier, as part of the DG. 
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8.2.5 Information Security Compliance Prediction 

We propose an effective ML model to tackle a real DG issue in the financial services 

industry that most of the state-of-the-art research works have not covered: i.e., a) ML 

techniques have not been applied in the prediction of ISL and IS compliance levels under 

DG. ISL during DG processes have not been predicted. A ML model considering 

sequences, correlations and importance of IS factors collectively for IS compliance 

prediction has not been proposed; and b) ML techniques have not been applied to IS 

learning during DG processes for meeting DG regulatory requirements. These are 

summarized in Section 1.2.3 and elaborated in Section 2.2. 

We propose a ML model to overcome limitations of these research works. Considering the 

automation of IS compliance process in a real time mode, we leverage networks, LSTM 

RNNs, to predict IS compliance levels during DG processes. The prediction are made in 

accordance with a local requirement, CPG 234 [75]. At first, we develop a compliance 

approach and define ISR to determine IS scores. The scores are aggregated into a scoring 

function for ranking ISL which are input into networks for prediction. The networks are 

applied with sequential learning and an ATTN. This goes beyond the traditional method 

by exploiting temporal sequences and correlations of IS scores and paying attention to 

important IS scores under DG. Experimental results over the dataset indicate that 

performance of our model significantly outperforms that of other networks such as NB, 

KNN, LReg and DT in terms of prediction accuracy, precision, recall and F1-Support. 

Beyond comparing the predictability of our model, we report weaknesses of ISCs by 

thirteen controls under the Life Cycle to satisfy the expectation of regulators in the industry. 

These help to strengthen the capabilities of FIs to understand where potential weaknesses 

of ISCs are. Accordingly, this model is beneficial to an enhancement of IS [75] (as 

mentioned in Section 1.2.2 Aims of this thesis) earlier, as part of the DG. 

Thereupon, all these models strengthen the capabilities of FIs in DG by improving DQ [4], 

managing data risks [120], managing bank-wide risks [4], and enhancing IS [75] based on 

regulatory requirements of the financial services industry including BCBS 239, CPG 235 

and CPG 234. These improvements can be included in DGP under DGF to enhance the 
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governance of DM. 

 

8.3 Future Work 

This section first outlines potential short-term extensions to our proposed models in each 

chapter, and then returns to discuss untouched directions for future research. 

 
8.3.1 Short Extensions 

In Chapter 3, we proposed a DQP sequential learning model considering DN in the current 

state, the previous state and the future state during supervised learning under DG. However, 

data remediation process is yet to be automated [4]. For example, data can be rectified by 

the imputation of values for the quality improvement. With predicted DQ in Chapter 3, 

data of low quality can be improved with another ML model. 

 

In Chapter 4, we presented a DQP sequential learning model with an ATTN in 

unsupervised learning under DG. This work exploited temporal sequences and correlations 

of DN as well as the importance of DN in DQP. This work can be extended to non-

regulatory compliance data in the financial services industry such as big data. An example 

of big data is equities [178]. 
 

In Chapter 5, we presented a DQP analytical model taking the dimension of risk types and 

business segments into account under DG. For meeting regulators’ expectation [4], we can 

automate data remediation and analyze the remediation by different dimensions with a new 

ML model. 

 

In Chapter 6, we presented how to measure network run-time saving with divergent 

portions of data in a DQP network efficiency improvement model under DG. We selected 

some data features for testing such as MR. More data features such as CR, OR and LR can 

be used to test the network saving time for finding the most efficient network by risk types. 

 

In Chapter 7, we proposed an ISL prediction model under DG to predict IS compliance 
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levels based on IS scores. In order to demonstrate the applicability and scalability of this 

model, we will apply the ML model in Chapter 7 to predict compliance levels of General 

Data Protection Regulations. This facilitates to identify data privacy risks [174]. 

 

8.3.2 Future Direction 

Along with the proposed improvements above, there are some related areas that we did not 

touch on in this thesis. This section explains these areas. 
 

Constructing Datasets for High Risk Data 

 

In Chapter 3, we constructed a huge dataset made of four risk types. However, we did not 

focus on constructing datasets containing high risk data such as anti-money laundering 

[176] for the purpose of DQP. However, current datasets from the Internet did not cover 

this financial crime risk data due to the data sensitivity. This hampers the progress of ML 

models to identify and predict DN. Simulating datasets for this data is a crucial future 

direction that will help to improve DQ and manage data risks from the perspective of the 

anti-money laundering. 

 

Harnessing ML for the Non-Financial Services Industry 
 

Harnessing ML models for learning data in other industries is also an important direction 

which is untouched in this thesis. For example, there have been multiple data issues in the 

telecommunication industry [177]. We will improve the network efficiency of DQP for this 

industry by applying the ML model in Chapter 6. This helps to solve other industry issues. 

 

All these become the follow-up research of this thesis. The aim is to help resolve more real 

problems in the financial services industry as well as in the non-financial services industry. 
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