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Abstract. Most modern wide-address computer architecture do not prescribe a
page table format, but instead feature a software-loaded TLB, which gives the
operating system complete flexibility in the implementation of page tables. Such
flexibility is necessary, as to date no single page table format has been established
to perform best under all loads. With the recent trend to kernelised operating
systems, which rely heavily on mapping operations for fast data movement across
address-spaces, demands on page tables become more varied, and hence less easy
to satisfy with a single structure.

This paper examines the issue of page tables suitable for 64-bit systems, partic-
ularly systems based on microkernels. We have implemented a number of candi-
date page table structures in a fast microkernel and have instrumented the kernel’s
TLB miss handlers. We have then measured the kernel’s performance under a va-
riety of benchmarks, simulating loads imposed by traditional compact address
spaces (typical for UNIX systems) as well as the sparse address spaces (typical
for microkernel-based systems). The results show that guarded page tables, to-
gether with a software TLB cache, do not perform significantly worse than any of
the other structures, and clearly outperform the other structures where the address
space is used very sparsely.
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1 Introduction

Most modern 64-bit microprocessors feature a software-loaded TLB, and thus leave
the choice of the page table format to the operating system (OS) designers. This is
a reflection of the fact that to date no single page table structure has been shown to
provide the best performance in all relevant circumstances.

At the same time, address-space usage by operating systems is changing. In particu-
lar, kernelised systems, such as those based on Mach [Rashid et al., 1988], make heavy
use of virtual memory mappings in order to transfer data efficiently between different
address spaces. This leads to sparsely populated address spaces, in contrast to the tradi-
tional two-segment model typical for UNIX systems. Sparse address space use is also
typical for some other client-server based systems, such as object-oriented databases
[Lamb et al., 1991], or for single-address-space systems [Murray et al., 1993, Chase
et al., 1994,Heiser et al., 1998].

In order to get good performance out of such systems, it is important to use page
tables which support efficiently the operations these kernels require. In this paper we
examine these issues in detail. We use a representative architecture, the MIPS R4x00
family [R4700, 1995], and our own implementation of the L4 microkernel [Liedtke,
1995, Elphinstone et al., 1997] as a testbed. L4 is presently the fastest kernel available
[Liedtke et al., 1997]; its low intrinsic overhead makes it particularly sensitive to page-
table performance, and therefore an ideal target for such an investigation.

The goal of this study is to examine how various page table structures perform under
different conditions, as they are likely to exist in the next generation of computer sys-
tems. We will specifically attempt to determine whether there exist page tables which
perform well under all anticipated loads. Such a structure would then be ideal for micro-
kernels, which are supposed to present a platform on top of which a variety of different
systems, traditional as well as novel, can be implemented.

2 Page Tables for 64-Bit Architectures

In this section we give a brief description of various page table structures in use, for
more details see [Huck and Hays, 1993].

2.1 Linear and multi-level page tables

In most 32-bit systems forward-mapped page tables are used, which consist of page
table entries (PTEs) containing physical frame numbers and which are sorted by virtual
page number. A single root page table is enough to map all the pages of a page table
covering a 32-bit address space. This root page is kept in unmapped memory.

In a multi-level page table (MPT) the most significant bits of the virtual page num-
ber are used as an index into the root page table. This contains a pointer to a secondary
page table, which is then indexed with the remaining bits of the page number to find a
PTE containing the physical address. If the secondary page is not mapped, a secondary
fault occurs, which can be avoided by allocating the page table in physical memory.
Secondary page tables are allocated as needed. This scheme is used on many 32-bit



architectures, such as the SPARC and the Motorola 680x0. For larger address spaces
more levels are required (six for a 64-bit address space with a 4kb page size and 4kb
page tables).

An elegant simplification is the linear page table, LPT, which removes the need for
the tree structure by allocating the page table for the full virtual address space as an array
in virtual memory. Any PTE can be accessed by a single indexing operation into the
page table, reducing the number of operations required, compared to the MPT. However,
if the appropriate page table page is not mapped, a secondary fault is generated. In 32-bit
systems the mapping for any page of the page table can be obtained from the root page
which is held in unmapped memory. This approach has been used in the VAX [Clark
and Emer, 1985].

For larger address spaces, multiple misses can occur, up to six cascaded faults for
64-bits. This is unavoidable, as it is infeasible to hold the complete LPT in physical
memory. Hence, the LPT is faster than the MPT only as long as all required portions
of the page table are mapped. As the cost of a nested TLB refill is much higher than
that of indexing the 5 higher-levels of an MPT, an LPT can outperform an MPT only if
cascaded TLB misses are very infrequent. Furthermore, the necessity to handle up to 5
nested TLB misses on the page table requires TLB entries for the relevant pages. Hence
a significant number of TLB entries are used up by the page table.

While both data structures work well in 32-bit address spaces, good performance in
wide address spaces can only be expected as long as address space usage is compact.

2.2 Hashed page tables

Large-address-space architectures generally use page tables based on the idea of an in-
verted page table (IPT) [Cocke, 1981,Chang and Mergen, 1988], which is a table sorted
by frame numbers containing virtual page numbers. The index is obtained from a hash
table. The more popular version combines the two tables, resulting in a table containing
both, the virtual page number and the frame number [Rosenberg and Abramson, 1985].
It is indexed by some easily computable hash of the page number. Some data structure,
usually a linear list, is used for resolving collisions. This structure is called a hashed
page table (HPT).

Clustered page tables (CPTs) are a variant of HPTs designed to reduce space needs
[Talluri et al., 1995]. They store mapping information for several consecutive pages
with a single tag.

2.3 Guarded page tables

The guarded page table (GPT) is a forward-mapped structure recently proposed by
Liedtke [Liedtke, 1993, Liedtke, 1996], specifically to deal with sparse memory usage
in large address spaces. Sparsity is problematic in MPTs as it leads to page tables with
very few (maybe only a single) valid mapping in intermediate nodes. This can at worst
lead to excessive space overhead for page tables in extreme cases, and at best wastes
TLB entries. GPTs avoid this problem by storing a guard with each pointer in the page
table. If the virtual address to be translated is valid, this guard must be a prefix of the
remaining address bits (after removing bits already used at higher levels of the page



table). In the case of a match, the prefix can be removed as if it were used for indexing
into a page table.
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Fig. 1. Guarded Page Table: Storing the guard 1011 together with the child pointer at entry 11 of
the top-level table removes the need to store and traverse two intermediate page tables.

This is shown in Figure 1: Two intermediate page tables each contain a single valid
entry, corresponding to address bits 10 and 11. The GPT short-circuits these interme-
diate pages by storing the guard 1011 with the higher-level entry. The higher level is
indexed with the leading bits (11), the guard bits (1011) are stripped, and the remaining
bits serve as an index into the next lower page table.

An interesting property of GPTs is that page tables can be of variable size, anything
from a two-PTE node to one as big as the hardware page size. A single GPT tree can
arbitrarily mix node sizes, even on the same level. Multiple page size can also easily be
supported.

2.4 Software TLB cache

Instead of just using a page table for handling TLB misses, a software cache for TLB
entries, called software TLB (STLB) or secondary TLB, can be used [Bala et al., 1994].
The TLB miss handler first attempts to load the missing entry from the STLB and only
on a miss consults the proper page table. This can significantly speed up TLB miss
handling when using forward-mapped page tables.

Tagging the entries of the STLB with address space IDs allows sharing it between
all processes. This not only reduces the amount of memory required for the STLB, it
also reduces address-space setup and tear-down cost and context switching overhead.

3 Methodology

In order to investigate the performance implications of these page table structures, we
have performed a number of experiments, running a set of benchmarks on an instru-
mented �-kernel.



3.1 Test bed

As mentioned earlier, we use for our experiments the L4 �-kernel [Liedtke, 1995,El-
phinstone et al., 1997] running on a 100MHz MIPS R4700 processor [R4700, 1995].
The R4700 has a tagged, software-loaded TLB with 48 entries, each entry mapping a
pair of contiguous virtual pages of 4kb each. The processor supports a 40-bit address
space. However, we designed our page tables to work with full 64-bit addresses.

L4 is known for low system-call overhead and efficient IPC. The MIPS version
takes �60 cycles to perform a null system call and�100 cycles for a null IPC [Liedtke
et al., 1997].

We created several versions of the kernel, each using a different page table structure.
For the study of absolute TLB miss handling costs, each TLB refill hander was carefully
instrumented. The instrumentation code counts all cycles spent in TLB refill, except the
cost of the initial fault, the return from the trap, and two instructions of the refill routine.
The uncounted part of TLB refill, as well as the instrumentation overhead, were exactly
the same for all page table versions. For the measurement of elapsed times (and thus
the study of relative TLB miss handling cost) we used uninstrumented versions of the
kernel.

3.2 Page table implementations

We implemented the following page tables:

MPT A multi-level page table. Its internal nodes contain 32-bit pointers, an optimisa-
tion possible by allocating the page table in high memory and using sign extension
on 32-bit pointers. This allows internal nodes to hold 1024 pointers to lower-level
page tables. Leaf nodes contain pairs of 4-byte PTEs as well as a pair of 4-byte
mapping tree pointers. The latter are required by the �-kernel to manage map-
pings between (recursive) address spaces. 32-Bit leaf entries suffice to map 16TB
of RAM, which is more than what the R4700 supports. In spite of these optimisa-
tions, a six-level page is required to map 64-bit addresses. The levels are indexed
by bits 63–61, 60–51, 50–41, 40–31, 30–21 and 20–13.

G2–G256 GPTs with various node sizes, fixed for the whole page table. “Gn” has
nodes holding n entries. Each internal entry consists of a 64-bit pointer and a 64-bit
guard. The leaf nodes hold pointers to external nodes containing two MIPS format
PTEs, plus two 32-bit pointers to the mapping tree. Leaf entries are therefore also
16 bytes in size.

H8k An 8kb hashed page table. It contains 32-byte entries consisting of a 64-bit tag,
two 32-bit PTEs, two 32-bit mapping tree pointers, and a 64-bit pointer to a linear
overflow chain. The refill routine moves the hit entry to the head of this list.

H128k A 128kb version of H8k.
C128k A 128kb CPT. Each bucket contains a 64-bit tag, eight 32-bit PTEs, eight 32-bit

mapping tree pointers, a 64-bit pointer to the overflow list, and 48 bytes padding for
proper alignment, for a total of 128 bytes. The overflow buckets contain the same
fields, except no padding is necessary.



S8k/G16 An 8kb tagged direct mapped software TLB cache containing 16-byte entries
consisting of a 64-bit tag and two 32-bit PTEs. The cache is backed by a G16 page
table.

S128k/G16 A 128kb version of S8k/G16.

All page tables were allocated in physical memory. This is, of course, only realistic
as long as the page tables remain relatively small. If that is no longer the case, page
tables must be allocated in virtual memory, implying the occurrence of nested TLB
misses, and thus reduced performance. Our �-kernel presently cannot handle secondary
TLB misses at all, which is why we could not implement an LPT.

3.3 Benchmarks

In order to examine the effect of page table structures on system performance under
various application loads, we used a variety of standard and non-standard benchmarks.
All benchmarks were run in memory, i.e., there was no I/O activity during the runs.

Conventional benchmarks In order to examine the performance of traditional UNIX-
like applications, we ran a subset of the SPEC95 benchmark [SPEC95, 1995]. The
selected programs are characterised by high TLB miss handling overhead. In addition
we used a number of other popular benchmarks from a collection maintained by Al
Aburto [Aburto, ]. Table 1 lists the benchmarks used. For simplicity we ran the gcc
benchmark on a single input file only (1amptjp.i). Furthermore, we ran mm only
using the “normal” algorithm, as the other algorithms do not exercise the TLB to any
significant degree. All other benchmarks were run unmodified. In the following, this
suite will be referred to as the “conventional” benchmarks.

SPEC95 benchmarks Aburto benchmarks
name size [Mb] type remarks name size [Mb] type remarks
go 0.8 I game of go c4 5.1 I game of connect four
swim 14.2 F PDE solver nsieve 4.9 I prime number generator
gcc 9.3 I GNU C compiler�� heapsort 4.0 I sorting large arrays
compress 34.9 I file (un)compression mm 7.7 F matrix multiply��

apsi 2.2 F PDE solver tfftdp 4.0 F fast Fourier transform
wave5 40.4 F PDE solver

Table 1. “Conventional” benchmarks used. Type “I”, “F” stands for integer or floating point,
respectively. �� indicates modification as explained in the text.

Sparse benchmarks In order to evaluate the handling of sparse address use by the
different page tables, we defined two sets of synthetic sparse memory benchmarks. The



first one, called “uniform”, allocates between 64 and 8192 single pages at uniformly
distributed random addresses. This is obviously a “tough”, and somewhat pathological
benchmark, as the uniform distribution implies essentially no clustering of pages.

The second benchmark, called “file”, allocates multi-page objects at uniformly dis-
tributed random addresses. The sizes of these objects are taken from a measured file
system size distribution [Elphinstone, 1993]. We expect this to be a more realistic model
of sparse address-space usage in future 64-bit systems.

Tasking benchmarks Task creation and deletion costs were measured by executing
the loop

create task
wait for IPC from child
delete child

100 times. The child does nothing but send a null IPC to the parent; it requires only a
single page to run.

Mapping benchmarks Appel and Li [Appel and Li, 1991] point out the importance
of efficient virtual memory primitives. The primitive most relevant to this study is de-
creasing accessibility (unmapping or write protecting) of large regions of the address
space (their PROTN operation).

We implemented a version of Appel & Li’s benchmark, using processes, client and
server. The server initially maps 128 consecutive pages into the client’s address space.
The benchmark times the cost of write-protecting all 128 pages and then unprotecting
them all in random order. In the PROT1 version the pages are write-protected one-by-
one, while the PROTN version protects them in a single system call.

We also implemented a sparse scenario: Again we protect and unprotect a total of
128 pages, but this time the pages are randomly (and uniformly) distributed in an other-
wise unmapped region of varying size (64kb–16Mb). Two versions of this benchmark
are implemented: In the first one the client only has a minimum set of pages mapped,
only a code and a stack segment besides the pages being protected and unprotected.
This is not a particularly realistic scenario, as a process is not likely to write-protect al-
most its whole address space (except for uses like checkpointing). The second version
therefore has, in addition, a large (64Mb) data segment, which is not affected by the
mapping operations.

4 Results

4.1 Optimal GPT size

As pointed out in Section 2.3, GPTs are a fairly general data structure; the design leaves
a significant amount of flexibility to the implementation. So far, practical experience
with GPTs is very limited. Liedtke [Liedtke, 1996] published a number of theoretical
results mostly concerned with the behaviour of GPTs under worst-case conditions. No
results on GPT sizing under practical conditions have been published to date.



For the purpose of comparing GPTs with other data structures we decided to use
only GPTs of a fixed size. This means that there is a potential for improving our results
for GPTs by implementing sophisticated sizing schemes; our results on GPTs therefore
need to be understood as a scenario which might be optimised further.

We used the conventional and the sparse benchmarks to determine a single GPT
size which would constitute a good compromise, suitable for comparison with the other
data structures.
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Fig. 2. TLB refill cost over GPT size, averaged over all conventional benchmarks. Error bars
indicate standard deviation.

Figure 2 shows the number of cycles used for TLB refills as a function of GPT
size. These (as all refill costs further on) are what is measured by the instrumentation
code, and therefore do not include the time taken for the TLB miss trap and the return
from the exception. Refill costs were averaged over all 11 conventional benchmarks.
As expected, increasing node size reduces the refill cost as a result of reducing the tree
depth. The improvement becomes small for node sizes exceeding about four.

Figure 3 shows the total size of the page tables, normalised to the number of PTEs
stored, as a function of GPT node size. While the actual data depend on the particular
program run, the general picture is the same: Very small GPT nodes result in deep trees,
leading to high overhead. Very large nodes lead to high overhead, resulting from poor
utilisation of the GPT nodes. In all benchmarks a 16-entry GPT has close to minimum
space overhead.

If address space usage is very sparse, space overhead is minimised by small GPT
nodes. This is shown in Figure 4, which shows the page table size overheads obtained
from running the synthetic sparse benchmarks. Results fluctuated significantly (as in-
dicated by the error bars) with the particular random sequence used. Interestingly, we
found essentially no dependence of the size overhead (per PTE) on the number of pages
mapped.

As expected, the overhead increases with increasing GPT node size. However, even
in the rather pathological “uniform” case, the increase is much less dramatic as pre-
dicted by the theoretical worst-case scenario. In the more realistic “file” benchmark
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space overhead remains reasonable except for the largest GPTs. All in all the space
overhead remains reasonable for node sizes �16: G16 space usage is about 2.5 times
that of G2 for “uniform” and 1.7 times for “file”.

Based on these results we selected a GPT node size of 16 for the comparisons with
other page tables.

4.2 Comparison of page table structures

Conventional benchmarks Table 2 shows the elapsed times of the conventional bench-
marks using the various page table structures. For most programs the page table struc-
ture affects the run time by a few percent, however, in some cases (mm and c4) the page
table can make a difference of more than 30 %. It is interesting to note that these are
by no means large benchmarks (7.7MB and 5.1MB respectively), but are obviously the
ones with the most “random” memory access patterns. Essentially the R4700’s TLB
is too small to support these applications well, and an efficient page table structure is
hence important even for these traditional 32-bit applications.

The good news is that a software TLB can remedy the shortage of hardware TLB
entries. This becomes clearer in Figure 5, which shows the average number of cycles
spent on TLB refills for the different page tables. (The absolute minimum number, as-
suming no cache misses, would be nine cycles.) The figure shows the reload cost of
GPTs being in between that of MPTs and HPTs. However, combining the GPT with a
TLB cache performs even better than the HPT. The reason the STLB/G16 combination
has a slight edge over the HPT is that the GPT can handle STLB misses faster than the
linear overflow chain used with the HPT. We did not implement a STLB/MPT com-
bination, but there is no reason to assume that its performance would be significantly
different from STLB/G16.

The standard deviations (shown as error bars in Figure 5) indicate that, while even



benchmark MPT G16 H8k H128k C128k S8k/G16 S128k/G16
go 1.0 1.00 0.98 0.98 0.99 0.97 0.97
swim 1.0 1.00 1.00 1.00 1.00 1.00 1.00
gcc 1.0 0.97 0.97 0.86 0.86 0.91 0.84
compress 1.0 0.99 0.95 0.91 0.92 0.91 0.91
apsi 1.0 0.99 0.96 0.96 0.97 0.96 0.96
wave5 1.0 0.97 0.97 0.91 0.91 0.91 0.91
c4 1.0 0.95 0.82 0.71 0.75 0.76 0.69
nsieve 1.0 0.97 0.94 0.93 0.93 0.93 0.93
heapsort 1.0 1.00 0.99 0.99 0.99 0.99 0.99
mm 1.0 0.96 0.67 0.67 0.63 0.64 0.63
tfftdp 1.0 0.90 0.84 0.80 0.80 0.80 0.79
geom. mean 1.0 0.97 0.91 0.88 0.88 0.88 0.87

Table 2. Elapsed time of traditional benchmark runs for different page table structures, nor-
malised to the time used with an MPT. The last line gives the geometric mean of all normalised
execution times for a particular page table.

a small 8kb cache in average reduces TLB miss handling costs significantly, there are
some programs where it has little effect. The swim benchmark actually performs better
with a plain GPT than the 8kb HPT.
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Figure 6 compares the space overhead of page tables. The GPT is by far the most
compact structure (except H8k, which is only slightly bigger). The space required for a
STLB was not included in the comparison, as the (tagged) TLB cache is a system-wide
data structure shared by all processes, while all others are per-process. The important
point to make here is that HPTs are fairly expensive space-wise, as they need to be
large to ensure good performance, but waste significant amounts of memory for small



processes. Clustering improves the size of the hashed page table somewhat, but it is still
far higher than the hierarchical data structures.

Task creation/deletion Memory consumption by itself is not a significant issue nowa-
days. However, the cost of a large data structure is not just the memory it consumes, but
the time required to initialise it. This is reflected in Figure 7, which shows the cost of
creating and deleting tasks with the different page tables.
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The results clearly show that page table setup/tear-down cost dominates task cre-
ation/deletion. GPTs have by far the lowest cost, the task creation/deletion cycle is
about 70 % of that of the small HPT, and more than an order of magnitude less than that
of the MPT, the CPT or the large HPT. The additional cost incurred through the TLB
cache is minimal (about 10 %).

Sparse memory use Figure 8 shows the space overhead of the different page tables
under very sparse memory use. MPTs are uniformly bad, consuming about two orders
of magnitude more memory than GPTs. The small HPT (which becomes unusable at
around 1000 pages because of excessive overflow chaining) uses the least memory.
The GPT’s space usage is quite stable at about twice the HPTs’ best case (for “file”).
The large HPT is space efficient only once the number of pages approaches the HPT’s
capacity. The behaviour of the CPT essentially mirrors the HPT.

Mapping operations Figure 9 shows the cost per page of protecting and unprotecting
all pages in a region of 128 pages. The HPTs perform best, the MPT worst, CPT and
GPTs in between. The differences are not very substantial. Protecting all pages at once
(PROTN) only reduces the cost by about 10–20% compared to performing all operations
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on individual pages (PROT1). This reflects the very low system-call overhead of the �-
kernel.

Figure 10 shows the results of the sparse mapping benchmark, where the pages to
be protected are sparsely allocated within a large region, and the task otherwise only
has a minimum number of mapped pages. There is little difference between the various
page tables as long as the region containing the pages is relatively small (note that a
64kb region is actually completely populated with the 16 pages). However, once the
region becomes large, performance with MPTs as well as the large HPT and the CPT
drops dramatically. The drop is less dramatic in the case of the small HPT, whereas the
performance of the GPT-based schemes is essentially unaffected by sparsity.

Figure 11 shows the result of performing the same mapping operations on a task
which has an additional compact data segment of 64Mb size. Here the small HPT per-
forms worst, as it is too small to hold all the relevant mappings. MPT and large HPT
performance are further degraded compared to the previous benchmark. Similar for the
CPT, although the degradation is much weaker. The GPT-based schemes are essentially
unaffected and perform consistently well.

5 Discussion

5.1 Conventional benchmarks

Even with the reasonably small conventional benchmarks (all small enough to fit into
physical memory on contemporary workstations) we found that the choice of the page
table structure used in the kernel had a significant effect on performance. We found that
only hashing schemes are competitive, as they support the fastest TLB refill routines.
Furthermore, the hash table needs to be large for best performance.

However, we found that, as far as performance is concerned, there was little differ-
ence between using a HPT, a CPT, or a STLB reloaded from some hierarchical page
table structure.
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Fig. 11. As Figure 10, except the client task
also has an additional 64Mb segment mapped
which is untouched by the mapping operations
measured.

A large per-process hash table, as for the HPT or CPT, implies significant space
overhead for the (mostly relatively small) conventional benchmarks. However, the space
effects do not seem big enough to constitute a serious problem for traditional applica-
tions.

5.2 Task creation/deletion

These benchmarks showed that the set-up and clean-up costs of 6-level MPTs or large
HPTs or CPTs have a disastrous effect on task creation and deletion overhead. Neither
type of page tables are usable if inexpensive tasks are desired. As MPTs are also slower
for refill, this essentially rules them out for 64-bit systems.

GPTs perform well, resulting from their ability to adapt: For small processes the
GPT tree never grows beyond a few levels, but they can grow to support large processes
as well.

5.3 Sparse address spaces

The sparse benchmarks confirm the unsuitability of MPTs for wide-address architec-
tures. The large HPT is only competitive for reasonably large processes, the same holds
true for the CPT. GPTs, however, perform very well. Their memory usage is at most
about 2-3 times that of the (unrealistically small) 8kb HPT, and is clearly less than the
small HPT for very small processes. Particularly in the more realistic “file” benchmark
GPT space overhead is reasonable.

Recall that in Section 4.1 we opted for a 16-entry GPT as delivering the best size
vs. speed tradeoff. However, this is only the best solution as long as a fixed node size is
assumed. A GPT implementation which adapts the node size to the sparsity of virtual
memory use would select two-entry GPTs in the sparse benchmarks and have a space
overhead less than or equal to the unrealistically small H8k.



5.4 Mapping

The cost of mapping operations is only weakly affected by the page table structure, as
long as address spaces are compact. However, as address space usage becomes sparse,
performance deteriorates strongly when using MPTs. HPT and CPT performance is
only acceptable if the size of the table is well tuned to the size of the mapped address
space. Mapping operations on sparse parts of an address space which contains many
other pages (unaffected by the mapping operations) is expensive with any size HPT.
The CPT performs somewhat better but is still very costly. GPT performance, however,
is essentially unaffected by sparsity, independent of whether or not the GPT is combined
with an STLB. The GPT clearly meets its design goal of supporting sparse address space
use.

5.5 LPTs

As mentioned earlier, we did not implement an LPT, because of the inability of our L4
implementation to handle nested TLB misses. However, we can speculate how LPTs
would perform in our benchmarks.

LPTs will be faster than MPTs as long as we have a high TLB hit rate when access-
ing the page table. In most cases, such a high hit rate will be accompanied by a high hit
rate on user pages, in which case TLB miss handling costs are irrelevant. The cost of
handling a secondary TLB miss is of the order of 400–500 cycles [Uhlig et al., 1995].�

As it costs, in average, about 110 cycles to traverse the five upper levels of the MPT, this
implies that the LPT would outperform the MPT when the TLB hit rate for page table
accesses is about 80 % (higher if higher-level TLB misses occur). Hence, it is possible
that the LPT would perform somewhat better than the MPT on the conventional bench-
marks. However, in the case of sparse address space usage, TLB miss rates on the page
table are most likely quite high, and LPT performance is unlikely to be competitive.

Moreover, we already concluded that any forward-mapped page table should be
combined with an STLB. Once that is done, there is unlikely to be a significant perfor-
mance advantage in a LPT. Furthermore, LPTs have essentially the same space over-
head as MPTs for sparse address spaces, and the same or worse setup/tear-down over-
head. The same arguments which rule out MPTs as a suitable page table structure for
64-bit systems therefore apply to LPTs as well.

6 Summary

We have examined a number of different page table structures in order to determine
their suitability for 64-bit computer systems. Our results show that traditional forward-
mapped page tables, which have been used in most 32-bit systems, are no longer com-
petitive on 64-bit architectures, particularly when sparse address space use is an issue,
as in �-kernel-based systems.

� Uhlig et al. measured the cost of a secondary miss on a MIPS R2000 CPU. The architecture of
the R4700 is sufficiently similar to expect the costs to be roughly the same.



Hashing schemes, such as hashed page tables, generally exhibit good TLB refill
costs, as long as they are large enough. However, large per-process hash tables have a
high space overhead for small processes, and slow down process creation and deletion.

We found a system-wide software TLB cache, backed by per-process guarded page
tables, to be the best solution. This scheme outperforms all alternatives in TLB refill
costs, task creation/deletion overheads, and VM operations on sparse address spaces. It
also exhibits the lowest space overhead for conventional (compact) 32-bit applications,
while retaining a reasonably low space overhead, comparable to optimally sized hashed
page tables, in cases of extremely sparse address usage. Our GPT implementation still
leaves room for improvement, as it does not attempt to adapt GPT node sizes to address
space usage. An improved implementation has the potential to further reduce space
overhead for very sparse address spaces.

We conclude that GPTs form an excellent base for translation management in oper-
ating systems for 64-bit architectures, particularly in microkernels which are meant to
support a wide class of operating systems and user environments.
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