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Abstract

The interactive recommendation aims to accommodate and learn from dynamic in-
teractions between items and users to achieve responsiveness and accuracy in recom-
mendation systems. Reinforcement learning is inherently advantageous for coping
with dynamic/interactive environments and thus has attracted increasing attention
in interactive recommendation research. However, most existing works tend to learn
stationary user interests, while neglecting that they are dynamic in nature.

The dissertation starts with the introduction of the recommendation system and its
applications. This is then followed by the detailed literature review which covers
three main related areas: Sequence-aware Recommendation, Interactive Recommen-
dation and the Knowledge-aware Recommendation System. The dissertation also
reviews the reinforcement learning based applications in recommendation systems
and discuss the advantages and shortcomings. After that, this dissertation reports
a general problem statement about the interactive recommendation system and the
identified challenges to be tackled, including user dynamic interest modeling, and
computational cost of reinforcement learning optimization, and performance degra-
dation for reinforcement learning based recommendation systems.

In particular, we propose a set of techniques and models for the improved interactive
recommendation via reinforcement learning. We propose a new model for learning
a distributed interaction embedding, which can capture user’s dynamic interest in a
compact and expressive manner. Inspired by the recent advance in Graph Convolu-
tional Network and the knowledge-aware recommendation, we design a Knowledge-
Guided deep Reinforcement learning (KGRL) model to harness the advantages of
both reinforcement learning and knowledge graphs for the interactive recommen-
dation. This model is implemented within the actor-critic network framework. It
maintains a local knowledge network to guide decision-making process during the
training phase and employs the attention mechanism to discover long-term seman-
tics between items. To reduce the computational cost of reinforcement learning, we
take a further step to design an enhanced optimization strategy by narrowing down
the space of updating steps and turning the reward function.

We have conducted comprehensive experiments in a simulated online environment
for the three proposed methods, which show consistent improved performance of
our models against the baselines and state-of-art methods in the literature. Finally,
this dissertation discusses the future work and potential further improvement for
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interactive recommendation systems.
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Chapter 1

Introduction

Recommendation systems have been widely used by industry giants such as Amazon,

YouTube, and Netflix to identify relevant, personalized content from large informa-

tion spaces. Modern recommendation systems are under much pressures for coping

with emerging new users, ever-changing pools of recommendation candidates, and

context-dependent interests [1, 2, 3, 4]. It has also been widely used in Internet

Of Things as a part of Smart Home [5, 6, 7]. However, traditional recommen-

dation methods often focus on modelling user’s recurrent preference and may not

reflect the dynamics and evolution of user interest and environments. In this con-

text, interactive recommendation arises as an effective solution that incorporates

dynamic recommendation processes to improve the recommendation performance.

An interactive recommendation system would recommend items to an individual

user and then receive the feedback to adjust its policies during the iterations [8].

Many studies model interactive recommendation as a Multi-Armed Bandit (MAB)

problem [9, 10, 11]. Such methods generally assume that a user’s preference is static

during the recommendation and focus on the trade-off between immediate and future

1



1. Introduction

rewards. Therefore, they face challenges of handling environments with dynamically

changing user preference or interest. Reinforcement learning (RL) is a promising

approach to the interactive recommendation. Considerable efforts have shown the

outstanding performance of RL methods in recommendation systems [12, 13, 14]

for its ability to learn from user’s instant feedback. Given its potential to han-

dle dynamic interactions, RL has been widely regarded as a potential tool for the

interactive recommendation. However, most existing RL techniques in interactive

recommendation focus on the usefulness instead of performance. For example, Liu

et al. [15] employ the RL to increase the recommendation diversity and do not fo-

cus on the efficacy. The primary reason is that the agent has partial information

about the environment, making it difficult to control the decision-making process

properly. Besides, interactive recommendation systems usually contain a large num-

ber of discrete candidate actions, leading to high time complexity and low accuracy

of RL-based techniques. Moreover, all the Deep Q-Networks (DQN)-based stud-

ies [16, 13, 17, 5] struggled with a large number of discrete actions because DQN

contains a maximise function which considers all actions. When the size of action

increases, the maximise function will become extremely slow, or even get stuck.

The policy gradient-based methods would get stuck in this case as well because

it may converge in the local minimum instead of the global minimum. Recently,

knowledge-aware recommendation systems become popular as the knowledge graph

can transfer the relation to contextual information and boost the recommendation

performance [18, 19].

2



1. Introduction

1.1 Related Work

In this section, we will conduct a detailed literature review which includes the

sequential recommendation system, interactive recommendation system and the

knowledge-aware recommendation system. The interactive recommendation can be

considered as a type of sequential recommendation as the interactive process is a

time-series sequential process [1].

1.1.1 Sequential Recommendation System

The sequential recommendation system aims to mine user preference based on the

sequential data or time-series data [20, 21]. The most common method is based on

the Markov Chain. Garcin et al. [22] propose a model based on the Markov chain.

In particular, it uses the variable-order Markov model which is the extension of the

Markov chain. The variable-order Markov model is also known as the context tree.

Their model constructs a context tree by inputting the sequential data. Then a

local prediction model called expert of each context is added as the node in this

tree. However, these approaches fully depend on the expert to predict and make a

recommendation, which may lead to substantial bias. In this case, another variable

is introduced for each node to represent the usefulness of the corresponding expert.

Wu et al. [23] propose a model that used personalized Markov Embedding for music

recommendation. Their model builds a Euclidean space which generates a joint

embedding space of music and users together and adopts the distance measurement

to represent the quantified relationship between music and users embeddings. Given

user’s latest action, their model is able to perform personalized recommendations

based on the ‘learn to rank’ algorithm.

3



1. Introduction

Hidasi et al. [24] propose a recurrent neural network(RNN) based model to make

next-item recommendation. The gated recurrent unit(GRU) is adopted to capture

the sequential features. In addition, a method called session-parallel mini-batch is

introduced to process the session data in parallel. It can generate a mini-batch which

takes the inputs from the model and splits them into different sessions. Twardowski

et al. [25] make some improvement based on Hidasi’s work to boost the performance

by employing the matrix factorization and explicit contextual session modelling .

Furthermore, Tan et al. [26] provide another approach that applied RNN into session-

aware recommendation system by using data augmentation to pre-process the data

and account for temporal shifts in user behaviour. Quadrama et al. [27] propose the

Hierarchical Neural Network which adopted two GRUs, one is for modeling the user

and the other is for modeling the session. Moreover, the session-parallel mini-batch

mechanism is used for user identifiers during the training. In a summary, all the

works mentioned in the above are based on the GRU with modification on input’s

format or customization of the GRU.

Ko et al. [28] propose a new model called the Collaborative Recurrent Neural Net-

work Model based on the RNN Language Model [29] which can analyze and track

sequences of user activities. Wu et al. [30] propose a model which fed the dynamic

rating-review embedding into the RNN. Tang et al. [31] propose a model that uses

the convolutional neural network(CNN) to conduct the sequential recommendation

system, inspired by [32] to treat the sequential data as the images in the recom-

mendation system.

However, the Markov chain-based models will be affected by the data sparsity [33, 34]

issue. The deep-learning-based method can not handle the dynamics if user’s interest

changes sharply, which may result in low efficient [35]. In order to improve the

4



1. Introduction

performance of the sequential recommendation system, the memory network comes

to a possible solution [36, 37, 38]. However, user’s evolving interest modeling is still

not addressed well.

1.1.2 Interactive Recommendation System

Interactive recommender systems naturally aligns with the requirement of repre-

senting dynamic user interactions. Therefore, it attracts much attention in recent

years. Most existing works treat interactive recommendation as a Multi-Armed

Bandit (MAB) problem. And the primary solution lies in finding an Upper Con-

fidence Bound (UCB). Li et al. [39] employ the first linear model to calculate the

UCB for each arm. Since then, many researchers combine other techniques such as

matrix factorization, to find the UCB [40]. For example, Wang et al. [11] propose a

new approach by choosing a dependent arm to calculate the UCB; Shen et al. [41],

instead, propose to solve MAB with deep neural networks.

There are two similar concepts relevant to the interactive recommendation: con-

versational recommendation and active learning-based recommendation. Active

learning-based recommendation [42] is a method which used on few-shot samples.

Wang et al. [43] adopts the Restricted Boltzmann Machine(RBM) to enrich item

information to relief the lack of the annotated data. Zhao et al. [44] integrate the

transfer learning and active learning to conduct the recommendation with limited

data. Conversational recommendation [45] is a type of recommendation system

major focuses on mining user’s intention from text data by using NLP technique.

Kraus et al. utilize both explicit and implicit information to represent user’s prefer-

ence [46]. Ren et al. [47] adopts the reinforcement adversarial learning to capture the

user’s intention iteratively. Those two concepts provide new approaches about how
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1. Introduction

to utilize and mining user’s intention from complex data. However, the interactive

recommendation place particular emphasis on utilizing the data generated during

the interactive process.

Recent studies have shown the effectiveness of reinforcement learning in modelling

interactions-related recommendation processes, where the recommendation prob-

lems are usually formulated as the Markov Decision Processes. One approach is

based on Deep Q-learning (DQN) [48], which maximizes the Q-value from the pre-

dicted item and the target item. Zheng et al. [14] combine the DQN with the Dueling

Bandit Gradient Decent (DBGD) [49] policy to recommend news. Another thread

of methods is DDPG-based [50]. Such methods aim to let the agent learn a proper

policy instead of using the Q-value. For example, Liu et al. [15] adopt DDPG to

promote the diversity in interactive recommendation; Zhao et al. [13] use DDPG for

the page-wise recommendation. It is also worth mentioning that knowledge graphs

can be useful for guiding explainable recommendation [18]. Knowledge-aware rec-

ommendation systems heavily rely on the use of relation inference to generate paths

for recommendations [51]. Wang et al. [52] show graph convolutional network can

help learn neighbour representations and thus boost the recommendation perfor-

mance. Another approach for knowledge aware recommendation is the embedding

based [53, 54].

1.1.3 Knowledge-aware Recommendation System

Recently, knowledge-aware recommendation systems become popular since knowl-

edge graphs can transfer the topological relation to contextual information and boost

the recommendation performance [18, 19]. The knowledge graph was initially used
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in search engine like Google. The knowledge graph can be represented as:

G = (E ,R)

The knowledge graph uses the entities E to represent the nodes, and the relation R

to represent the edges. Based on the graph G, one then can find the entities which

have similar properties. However, when the dataset become larger, the knowledge

graph will become extremely big and cost substantial memory, which may affect

the efficiency of model learning. In addition, knowledge graph can be useful for

providing guidance in explainable recommendation [18] because the existence of the

relation. Knowledge-aware recommendation systems heavily relies on the usage of

relation inference to generate paths for recommendations [51]. Common approach

for knowledge aware recommendation is the embedding based which embeds the

graph into the high dimensional latent space [53, 54]. Besides, Wang et al. [52]

show that the graph convolution can help to learn the neighbour representations

and thus boost the recommendation performance. All those mentioned methods are

trying to reduce the graph size and boost the efficiency of the recommendation [55].

The knowledge graph embedding have several ways which includes: TransE [56],

TransH [57], TransR [58], TransD [59], GCN [60] and its variant [61]. Suppose there

is a triplet h, r, t which is the entity-relation-entity triplet to represent an instance

of the knowledge graph. The TransE is a score function can be defined as the L-2

Norm and it assume that
−→
h +−→r ≈ −→t :

fEr (h, t) =
∥∥∥−→h +−→r −−→t

∥∥∥2
2

where
−→
h ,
−→
t ,−→r is the vector representation for h, t, r. However. the entities may

have different representations, based on that the TransH use the projection to project

the entities into hyper-planes which can rewrite the score function as:

fHr (h, t) =
∥∥∥−→h ⊥ +−→r −−→t ⊥

∥∥∥2
2

7
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where
−→
h ⊥ is the hyper-plane

−→
h r representation for h where can be defined as:

−→
h ⊥ =

−→
h −−→w ᵀ

r

−→
h−→w r

Similarly, the representation for −→t is as follows:

−→
t ⊥ =

−→
t −−→w ᵀ

r

−→
t −→w r

Inspired by the TransH, the TransR uses the project matrix Mr to map the relation

r:

fRr (h, t) = ‖
−→
hr +−→r −−→tr ‖22

where
−→
hr and −→tr are defined as:

−→
hr =

−→
hMr,

−→
tr =

−→
t Mr

TransD by replace the projection matrix Mr with the product of two projection

vector:

fDr (h, t) =
∥∥∥−→h (−→r p

−→
h ᵀ
p + I) +−→r −−→t (−→r p

−→
t ᵀ
p + I)

∥∥∥2
2

where I is the identity matrix. However, all those embedding methods focus on

partial information which are entities or relations. This means that these methods

may lose some important information. In such cases the GCN was proposed to learn

the embedding for the whole graph. The GCN is type of neural network where the

neural network layer can be written as:

H l+1 = f(H l, A)

where L is the number of layers, A is the adjacency matrix which used to represent

the whole graph, H is the feature matrix at l layer and function f(·, ·) is the function

8
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which can be chosen arbitrarily. The GCN maintain a very simple propagation rule

between layers which is:

f(H l, A) = σ(AH lW l)

where W l is the weight matrix at layer l, and σ(·) is the (non-linear) activation

function . We can rewrite the above in the vector-form as follows:

hl+1
ei

= σ

(∑
j

1

cij
hlejW

l

)

where cij is the normalization constant for the edge (ei, ej), ei is the node from G,

hl+1
ei

is the feature representation for node ei at layer l + 1. More details in relation

to the above formulations are discussed in Chapter 3.

1.2 Reinforcement Learning in Recommendation Sys-

tem

As mentioned in the last section, the reinforcement learning can be a solution for

the interactive recommendation system. In this section, we will illustrate the rein-

forcement learning technique and its application in the recommendation system.

Recommendation system can recommend k items to users on a single page, the user

can provide some feedback by clicking one of those choices or switch the pages.

After the feedback is provided, the system will record it and recommend another

k items based on user’s feedback. RL has two different branches which are model-

based RL and model-free RL. The model-free RL based recommendation systems

require a large dataset which contains a large number of user actions so that it

can identify a ‘good’ policy. The recommendation system will require a complex

9
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structure if the size of dataset increases. RL initially comes from the Markov decision

process(MDP), which is defined as:

M = (S,A, P, R) Where P ∈ [0, 1]

where S represents the set of states, A represents the set of actions, P is the proba-

bility of transition which is normally written as P (st+1|st, at) and st+1, st ∈ S, at ∈ A

which represents the probability of at transfering from st to st+1 during the period

[t, t + 1], and R is the reward function. If we consider the discount factor γ, the

MDP can be written asM = (S,A, P, R, γ).

However, the model-based RL methods often suffer from the computation difficulty

when S,A becomes large. In this dissertation, we prefer to use the model-free RL

methods. Generally speaking, the model-free RL methods involve three different

approaches, i.e., value-based methods, policy-based methods and hybrid methods.

The traditional value-based RL method is the Temporal difference(TD) which are

trying to find the optimal value V ∗ by iteration with learning rate η:

V (st)← (1− η)V (st) + η (R(st+1) + γV (st+1))

In some cases, the value will depend on both states and actions, so we have the Q-

learning. In Q-learning, we use the Q-value Q(s, a) to determine the optimal policy

π∗, different from the MDP, the Q-value baed on the pair of action a and state s

instead of using state s only. The definition of π∗ can be written as:

π∗(s) = arg max
a∈A

Q∗(s, a)

the Q∗ is the optimal Q-value where can be defined as:

Q∗(s, a) = R(s) + γ
∑
st+1∈S

P (st+1|st, at) max
at+1∈A

Q∗(st+1, at+1)

10
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This formula was used when one knows the certain state-action pair (s, a), and γ

is the discount factor which is used in a long-term RL. During the training process

the Q-value will be updated iteratively based on:

Q(s, a)← (1− η)Qo(s, a) + η(R(s) + γmax
a∈A

Q(st+1, a))

The Q-learning is an off-policy learning which means it will learn from different

policy and try to figure out the value. And it normally work in the continuous

action space [62]. However, the TD method is the on-policy learning which means

it can only learn different values in the same policy. Benefiting from the neural

network, the Q-learning was extended to the deep Q-learning(DQN). The DQN will

pass the state s into a neural network and find out many q-values at once. The

DQN have a similar target with the normal Q-learning, the DQN try to do:

min[R(s) + γmax
a′

Qw(st+1, a
′)−Qw(st, at)]

2

where the Qw(s, a) is parametrized by the neural network weight w. During the

optimization of the neural network, we only need to apply the gradient descent into

the term Qw(st, at) which is the current q value for current state st and action at.

In addition, to help the convergence, the DQN uses the technique called experience

replay that can store recent j experience pairs (st, at, R(s), st+1) with a replay batch

of size j. The DQN will choose action based on the greedy algorithm from the reply

buffer and the current value.

In order to adopt the Q-learning method, here are some key aspects need to be

declared:

• Environment: is the system which user can select on the top k items which

provided by the recommendation system.

11
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• State s ∈ S: will defined as the match from the recommended items and user’s

exactly choose, in simple it represent the value changed in the embedding

matrix.

• Action a ∈ A: is defined as a subset A ⊂ k which those k items is the possible

experts/topics show to the user. Also, the A ∈

 It

k

 where the It is the

whole possible topics/experts which may be recommended,the

 It

k

 means

that we select top k items from the item-set It at timestamp t.

• State Transition Probability P (st+1|st, at) : S × A× S 7→ [0, 1] : it corre-

sponds to a user behavior at which will give a probability from current state

s to next state st+1 at the timestamp t.

• Reward Function R(S) ∈ [0, 1]: Unlike the normal RL method, we do not

have a mapping function used for reward. The reward value used in our model

is the accuracy between the decoded embedding and the original data as we

are aiming to use the RL to improve our embedding.

• Policy π(s): is defined as the strategy on how to optimize our embedding

which generated by the auto-encoder.

• Discount Factor γ and Learning Rate η : η, γ ∈ [0, 1] are the hype-

parameters in this model, and need to be adjusted manually depending on the

metrics in concern. γ = 0 means the long-term reward will not be considered

AND only the current reward will be taken into account. On the contrary,

γ = 1 means all the reward from previous can be fully considered in current

state s.
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The overview of a simple RL based recommendation system is (where the recommend

agent represent the whole recommendation system):

User

State

��

Reward 

��

Recommend
Agent

Action

��

Figure 1.1: Flaw chart for RL

The above is the general aspect of the value-based RL method which is used in

Recommendation system. There are two more methods in model-free RL area:

Policy Based and Hybrid Method. The policy based methods aim to figure out the

optimal policy π∗ instead of maximizing the Q-value. The policy π is modeled with

a parameterized function θ which can be express as: πθ(a|s). The goal comes to find

the best way to optimize θ so that the reward is the max [63]. The reward function

can be defined as:

r(θ) =
∑
s∈S

Eπ(s)Vπ(s) =
∑
s∈S

Eπ(s)
∑
a∈A

πθ(a|s)Qθ(s, a)

where Eπ is the distribution of the Markov Chain for πθ which is the state distribution

for policy π. The policy gradient aims to optimize r(θ) which is find the ∇θr(θ):

∇θr(θ) = ∇θVπ(sr)
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As the focus of the policy gradient is to work out the optimal policy, so the Q value

function will be excluded. Assume the agent starts with a random state sr, based

on the policy gradient theorem, the final formula is:

∇θr(θ) = Eπ(s)
∑
a

∇θπθ(a|s)Qπ(s, a) = Eπ[Qπ(s, a)∇θ lnπθ(a|s)]

Anther type of method is the hybrid method. The hybrid method adopt the benefit

from value-based method and policy-based method. As in some case, the value based

method may get stuck due to the max function. The most popular hybrid method

is the actor-critic network. The critic network is the variation of the Q-learning. It

uses the value based method to find the Q(St, at) based on St. The actor network

is to work out the policy parameter θ based on St. The critic network is used to

guide actor network or measure the actor network. Actor work aims to find the best

policy which can get the highest value from the critic network. Benefit from the

hybrid methods, the policy search search comes to be possible [64].

All the above mentioned work assumes that the agent is fully observable, which is

the definition of the MDP. However, in reality, we do not know user’s next action,

which means that the environment is only partially observable. In that case, it will

be modelled as a Partially Observable Markov Decision Process (POMDP). Most

of the POMDP components are similar to MDP excepts for two more factors that

have to be considered for POMDP:

• Ω: the set of observations.

• O: the set of probabilities for the conditional observation Ω.

The updating process is slightly different from MDP. The updating process in

POMDP is called the belief update by introducing the belief function b(s) for the

14
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state s. Assume the agent reached the state s, then agent observes o ∈ O with

the probability O(o|s, a). The b(·) is a probability distribution over the state space

S, so the b(s) denotes that the probability that current environment is state s, the

updating process is:

b′(s) = ηO(o|s, a)
∑
s∈S

P (s′|s, a)b(s)

where η =
1∑

s′∈S O(o|s′, a)
∑

s∈S P (s′|s, a)b(s)

Due to the uncertainty of the POMDP, there are a few works based on POMDP

to make the recommendation [65]. Shang et al. mainly focuses on the environ-

ment reconstruction based on the POMDP by considering the hidden co-founders.

This work provides a new prospective about how to model the interactive recom-

mendation. The interactive recommendation is normally treated as the single-agent

reinforcement learning which assumes the environment is static, but in the reality, it

will be more suitable to build the system as the multi-agent reinforcement learning

as the environment is dynamic as well.

1.3 Problem Statement

We now provide a problem statement for the interactive recommendation system.

An interactive recommendation system features incorporating user’s feedback dy-

namically during the training process. Given a set of users U = {u, u1, u2, u3, ...}

and a set of items I = {i, i1, i2, i3, ...}, the system first recommends item i1 to user

u1 and then gets a feedback x. The system aims to incorporate feedback to improve

future recommendations. To this end, it needs to figure out an optimal policy π∗

regarding which item to recommend to the user to achieve positive feedback. We can

formulate the problem as a Markov Decision Process (MDP) by treating the user as
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the environment and the recommendation system as the agent. We define the key

components of the MDP as follows (Chapter summarizes the main notations used

in this paper):

• State: A state St is determined by the recent l items in which the user was

interested before time t.

• Action: Action at represents a user’s dynamic preference at time t as predicted

by the agent.

• Reward: Once the agent chooses a suitable action at based on the current

state St at time t, the user will receive the item recommended by the agent.

The user’s feedback on the recommended item (i.e., clicking the item, ignoring

it) accounts for the reward r(St, at), which will be considered to improve the

recommendation policy π.

• Discount Factor γ: The discount factor γ ∈ [0, 1] is used to balance between

the future and immediate rewards—the agent will fully focus on the immediate

reward when γ = 0 and take into account all the (immediate and future)

rewards otherwise.

• State Transition: It’s a probability of the transition from St to St+1 based on

the action at. This probability should in the range [0,1].

• Learning rate: η is the learning rate which used to let agent update its policy

which should be very small like 0.005.
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1.4 Existing Challenges

The first main challenge in the interactive recommendation systems is that the user’s

interest is evolving and dynamic. How to model this interest is a challenge. All the

existing UCB based methods assume that the user’s interest is static.

The second main challenge is that literature lacks RL based methods for interactive

recommendation systems. The possible reasons could be: a) the interactive recom-

mendation is a relative new topic. b) RL is a new technique in the recommendation

system area when compared to the CF/MF based methods. c) training the RL will

cost a significant amount of computational resource, which can be a hurdle for its

applications.

Considering the evolving and dynamic nature of the user’s interest, we choose the

reinforcement learning to deal with the dynamic environment. As reinforcement

learning has achieved impressive progress in learning representation [66], improving

generative adversarial network [67] and so on. Reinforcement learning can be applied

in many areas such as general game playing, recommendation system [12] and others.

In this dissertation, we adopt the reinforcement learning as the main technique to

make recommendation. The common reinforcement learning-based recommendation

systems treat the recommendation system as sequential actions between the users

and the system(agent) and try to figure out an optimal strategy to maximise the

reward [68]. Different from them, we use reinforcement learning to determine the

best policy to optimize our embedding instead of finding an optimal recommending

strategy.

Furthermore, inspired by the knowledge-aware recommendation system and the re-

cent advance in reinforcement learning, we propose the model KGRL and its im-
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provement, i.e., RL-KGAN. Different from the KGRL, the RL-KGAN maintains a

larger size of the Collaborative Knowledge Graph which has richer information than

the normal knowledge graph. Considering the optimization and the training effi-

ciency, we modify the experience replay into the sample efficient format to improve

the sampling efficiency. The trust region policy optimization is used to limit the

agent about updating policy. The CKG can provide a way to guide the searching

and the interpretability as the knowledge graph provides the reasoning through the

path [69, 70, 71, 72].

As the KGRL and RL-KGAN both use the knowledge graph to support the search-

ing, considering the computational cost and storage cost, we adopt the Graph Neural

Network(GNN) to refine the embedding of the KG. The GCN and GAT are widely

used to capture the features from graph-like data [73, 74, 75, 76]. GNN shows the

impressive performance in many areas like recommendation system, image classifi-

cation, image generation [77], matrix completion [78], medical imaging [79, 80, 81]

and others [82, 83, 84].

The structure of this dissertation is as follow. Firstly, we investigate the user’s dy-

namic interest embedding methods and illustrate the new method Expert2Vec in

Chapter 2, followed by a general solution for the interactive recommendation by

adopting reinforcement learning and the knowledge graph in Chapter 3. Chapter 4

will discuss the improvement and the optimization direction of the proposed model.

Chapter 5 includes the conclusion and the future directions about the interactive

recommendation system. In Chapter 2, Chapter 3, and Chapter 4, the proposed

methods will be detailedly illustrated with the experimental settings and the per-

formance evaluation.
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Chapter 2

Distributed Interaction Embedding

This section contains works published in: [1] X. Chen, C. Huang, X. Zhang, X.

Wang, W. Liu, and L. Yao, “Expert2vec:Distributed expert representation learning

in question answering community”, in International Conference on Advanced Data

Mining and Applications, pp. 281—301, November 2019. (CORE RANK:B)
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Expert Recommendation is the sub-area of the sequential recommendation. The

expert recommendation face the similar challenges with the interactive recommen-

dation which is the dynamic user’s interest. In this chapter, we proposed a new

embedding method which can be used for distributed interaction embedding. To be

specific, we build a model which use the reinforcement learning to determine the

best policy to optimize our embedding instead of finding a optimal recommending

strategy where this embedding used to represent user’s dynamic interest. The major

contributions can be concluded as:

• We acquire some idea about the distributed representation from word2vec

which is applied on the CQA problem as well as the expert recommendation.

Based that, we propose a new distributed representation for user expertise

which does not have many research before.

• Evolution on the big and complex data set - Stack Overflow where we got a

acceptable result on several measure metrics among a few state-of-art models.

• We apply the reinforcement learning to improve the embedding so that it can

get a better performance in recommendation.

The autoencoder shows the ability to capture the latent embedding for certain in-

formation in recent year [3, 85, 86]. Inspire by that, we adopted the variational

autoencoder(VAE) [87] and the reinforcement learning to self-improve the learnt

embedding. In this chapter, we will briefly illuminate our approach and the model

structure. We will discuss the pre-processing step, how to obtain the original repre-

sentation, how to get the embedding we are looking for, how to measure the accuracy

between the embedding and the original representation, how reinforcement learning

works in our model and how to used in a recommendation system.
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2.1 Methodology

2.1.1 Pre-process of the data

The original dataset provided by Stack Overflow contain all questions and the cor-

responding answers which are plain text. We use the SEWordSim [88] which is a

word similarity database for the Stack Overflow dataset which can make it more

reliable and reduce some edge effects. In addition, we delete the questions which

have zero response to overcome the cold-start problem for recommendation system.

After deleting the unnecessary words, we extract all the users and users’ answered

questions and its corresponding vote received. Furthermore, the sentences are in

higher dimension space, in order to reduce the dimension, we would convert all the

topics and answers into vectors by using word2vec[89]. As the word2vec is a dis-

tributed representation of words which can retain the relation in the sentence, so we

can use the vector form directly in the following steps.

2.1.2 Generate the User-Topic Matrix

After the pre-processing of the data, we get the formatted data which is needed for

the matrix generation and the vector for each word. To keep all the information

which is needed for ranking, we store all the voting and its corresponding user and

topic together. As the topic is vector based and has high dimension which is hard

to put it together with the topic information into the matrix. We build a hashing

function f : R 7→ R which can simply map the topicID to its corresponding original

vector, and we initialise a hash table to store all the mapping relations based on our

hash function f . Thus our user-topic matrix can contain all the voting information
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by ordering. If user don’t have action with specific topic, the value of this cell with

be null. In some cases the userId may not be continuous, and we convert all the

userId with a list of continuous id so that it can easily determine the size. Also, it’s

easy to roll back to the original id. In addition, the userId is not important in the

user-topic matrix as we only need to know the relationship between user and the

topic.

The most important thing is how to rank the topic for each user. We cannot use

the original voting information because less-popular questions may have very small

view counts which can lead to a good answer receiving only one or zero vote. Also,

the number of answers is varied for different questions which means we are unable to

compare those answers through the same measurement metric due to the different

number of competing answers. Therefore, we require a consistent measurement

metric to help us determine the order, which means we need to make sure the votes

in popular questions and less-popular questions are equivalent. To overcome this

problem, we use the percentage vote(PVote) to compare answers, where we transfer

all the votes receive for a certain answer j in a question q into a percentage mark:

PVotejq =
Vj∑n
i=0 Vi

Where Vj means the vote that jth answer get on question q, n means number of

answers we have on the question q. The denominator is the sum of all answers’

vote. In addition, PVote can restrict the value in range [0, 1] which means we do not

need further processing or normalization. We do not need to consider about the case

which denominator is zero as we delete all the topics which have zero response. Then,

we convert all the topicId back to it’s vector form as we need the topic information.

After those operations we get a User-Topic Matrix M : U ×
−→
T ∈ RT×U , where U, T

is the number of users and topics,
−→
T is the ranked topics.
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2.1.3 AutoEncoder

As the user-topic matrix R has already been generated, the dimension of R is ac-

ceptable but the size U×T is relatively large. So we use the matrix R as the input of

the variational autoencoder(VAE)[87]. Then, the VAE can learn a lower-dimension

representation during the training which is the embedding E. The reason why we

use the VAE is that the autoencoder is used widely on dimension reduction and

features learning. Our user-topic matrix R have a high dimension topic embedding,

we need to figure out a way to reduce the dimension and retain the necessary infor-

mation to conduct analysis. The representation E we get from the autoencoder is

the rough version of the embedding we are looking for. Then we need to calculate

the similarity of the representation E. We pass the E into the decoder so that we

can get a decoded matrix De which is supposedly the as same as the original matrix

R. We use the “accuracy” to measure the similarity between De and R:

accuracy =

∑n
i D

i
e �Ri

n

where n is the number of elements inside matrix R and De. The � is the XNOR

which used to calculate how many elements are exactly same, the Di
e,Ri is the i-th

element in matrix De and R. The XNOR operator has following property:

a� b =


0 if a 6= b

1 if a == b

2.1.4 Reinforcement Learning and Recommendation

As the accuracy was defined in previous section, we will use this accuracy as the

reward in our reinforcement learning framework. We use the Q-learning here, the
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training algorithm was described in the Algorithm 1. We will use the Q-learning to

allow our model to improve the embedding E by itself. The n in algorithm refers to

the number of episode. The strategy is to find a best direction of the value change in

the embedding E which can acquire the highest Q-value. Once the optimal Q-value

reached, it means we have figured out an optimal policy π∗ which can improve our

embedding representation E. Finally, we obtain an optimal embedding E∗ which

we can use in the recommendation system. In the real recommendation system,

ALGORITHM 1: Q-learning

Initialize Q-table,Q(s,a) randomly;

Initialize embedding E comes from the VAE;

Initialize η ← ηinit, γ ← γinit ;

for i = 0 to n do

Initialize s;

r = accuracy(E,R);

for each step in episode i do

choose a from s using policy derived from Q ;

Q(st, a)← Q(st, a) + η(r + γmaxaQ(st+1, a)) ;

use the q-value find the policy: π ← Q(s, a);

st ← st+1

end

use the policy update the embedding: E ← E ′;

end

what we will use is the optimal embedding E∗. The embedding cannot be used for

recommendation directly as the embedding does not have any valuable information

for recommendation system. So, we need to recover the embedding E∗, through

the decoder, into a matrix R′ that contains the user-topic information and the
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ranking information. The recommendation method we used is the collaborative

filtering(CF). So, the overall structure for our proposed model in figure 2.1.
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Figure 2.1: Model Structure,where the red line represent the work flow of RL. The
new state is st+1, new reward is Rt+1 �R′, t is the timestamp

2.2 Experiment

2.2.1 Experiment Setup

The data set used for experiment is the Stack Overflow which was flattened by re-

moving all the XML markups and converted into the json format. The original data

set contained 14,768,990 records including answers and questions. After filtering,

the dataset was changed as ‘userID:Topic’ format that was described in section 4.1.
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After that, we had 99,220 users and 118,320 questions in total. As we conduce some

data cleaning technique with the dataset, it leads to the userID not being consecu-

tive as some users are considered inactive users. If we use the original userId as the

axis it will make our matrix extremely big as the userID comes from 0 to 6,454,151,

but we only need the 99,220 active users. Using the original userId as the index of

matrix will get a matrix with shape [6454151,118320] which will take a huge amount

of memory of computer. To overcome this problem, we replace the normal userId

with our customised userId by using a hash table can map from [1,99220] to the

[1,6454151]. By using the customised userId we can save 6454151−99220
6454151

= 98.5% run-

time memory. So we have a user-topic matrix R which has shape [99,220,118,320]

with the values 1, meaning have action, and 0, meaning no action. Also, topic we

used in R is the topic id which is mapped as well(See section 4.2 for detail). The

methodology we used for getting the vector is the word2vec, we use the pre-trained

word2vec to transfer the topic into vector. What we do is that we firstly generate

all single word’s vector by using word2vec, so we get two lists which have word

name and its vector. After that, the topic will be convert into vector with the di-

mension of 300. As the data is pretty big for training, to vertify the correctness of

our approach, we just select top 20% of the samples from the dataset based on the

reputation which still have over 2,000,000 records.

After finished the pre-process step, we just put the user-topic matrix R into the

VAE to get a reconstructed representation E. To verify this representation is valid

and have the necessary information we need, we recover it back to user-topic matrix

R′ by using the decoder. Then we calculate the accuracy between R and R′ by

using the formula mentioned in section 4.3. Then we put the embedding E and the

accuracy R into the Q-learning framework to improve it. For each episode i, we

take the improved embedding Ei and compare with the original matrix R to get the
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new accuracy and transfer back to the Q-learning. After this optimize process, we

passing the optimal embedding E ′ into a normal recommendation system. Then,

using the Accuracy and the nDCG as the measure metric in our model where the

accuracy is defined previously, and the nDCG is defined as:

nDCGp =

∑p
i=1 x∑|REL|
i=1 x

where x =
2reli + 1

log2(i+ 1)

the reli is the real result which i supposed to be. We will use the nDCG@k, accu-

racy@k and the recall@k as the major measurement metric.

2.2.2 Experiment Results

As the expert recommendation is not a popular area, the state-of-art model is hard

to figure out[90]. So, the baseline we used here is:

• Probabilistic matrix factorization(PMF)[91]: it’s a probabilistic method which

based on the matrix factorization to make the recommendation.

• Bayesian probabilistic matrix factorization(BPMF)[92]: it’s a probabilistic

model which combine the Bayesian classfier and matrix factorization method

to make the recommendation.

• Segmented topic model(STM)[93]: it’s state-of-arts model in the expert rec-

ommendation system area which consider about the topic embedding by seg-

mentation.

• GRE4Rec[24]: it’s a sequential recommendation system model whcih adopt

the GRU to make the recommendation.
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• Adversarial Personalized Ranking for recommendation (APR)[94]: it’s a model

which adopt the adversarial training and make the personalized recommenda-

tion based on the sequential data.

The result can be found in figure 2.2.

2.2.3 Evaluation

It is obvious that when the accuracy increases the nDCG increases as well, which

means the reinforcement learning is improving the embedding E by itself. However

the nDCG@k is still not good enough which the highest value can reach 0.4767834.

The reason is due to data sparsity. Even if the number of records are reduced and

all the active users in the dataset are selected, it is still too sparse for the recommen-

dation system to recommend a topic for a user. But we can see that our model is

better than the others. The accuracy which is passed into the reinforcement learn-

ing is stable after a few episodes and it is stable at around 0.3, which means much

information is lost during the encoding and decoding process. However, we still ob-

tain a competitive result on the recommendation which means that our model meets

the expectation. The caser is a state-of-art model which used in recommendation

system area, it’s sensitive with the sparsity data which we can find that the result

is not good enough.

2.2.4 Discussion and future work

As discussed in section 2.1, we mentioned that in some questions they only have

one answer which means user can only vote this answer or answer one. It may lead
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to some edge effects which will make the recommendation less efficient. Further-

more, due to the limitation of NLP technique, we may still lose information during

the word2vec, and the answers are normally a paragraph which contains many sen-

tences. We need a more efficient way to capture the relation between the word in

word level and sentence level. That is the possible improvement can be done in the

dataset side. From the model perspective, we can make some improvements in the

recommendation system and the reinforcement learning system. For example, we

can change the CF to the matrix factorization(MF) based recommendation system

or a more complex model. But the challenge is that all the state-of-art recommen-

dation systems are not working properly in CQA, in the future we may can adopt

the state-of-art recommendation systems to the CQA problem so that it can make

recommendation through our embedding.

As the neural network get some surprising result on reinforcement learning, we may

change our reinforcement learning framework to deep reinforcement learning. One

typical example is that change the Q-learning to DQN which discussed in section 3.

But consider about the dataset’s complexity, it will be tough to employ the complex

recommendation system and the DQN framwork.

2.3 Conclusion

In this chapter we investigate a new distributed representation (expert2vec) for ex-

pert which is used on solving the CQA problem and the expert recommendation

problem. Expert2vec is the distributed representation which contain the informa-

tion about user and topic and its corresponding rank. We innovatively adopt the

reinforcement learning framework into the expert recommendation problem to let the
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model to improve the embedding by itself. Our model(Expert2Vec) got a promising

result among the current expert recommendation state-of-art model.
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(a)

(b)

Figure 2.2: Graph (a) is the accuracy during the RL process.(b) is the model com-
parison result in nDCG
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(a)

(b)

Figure 2.3: (a) is the comparison result in accuracy, (b) is the comparison result in
recall. 32



Chapter 3

Side Information-augmented

Interactive Recommendation

This section contains works accepted in: X. Chen, C. Huang, L. Yao, X. Wang,

W. Liu, and W. Zhang, “Knowledge-guided deep reinforcement learning for interac-

tive recommendation”, in International joint Conference on Neural Networks,IEEE,

2020. (CORE RANK: A)
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In the previous chapter, we investigate a new embedding method (Exper2Vec) which

can capture user’s dynamics interesting based on user’s question and answering his-

tory. In this chapter, we will take a further step about the interactive recommen-

dation system. To be specific, we consider about the side information like user’s

feedback about the recommended items, we adopt the actor-critic network to con-

duce the recommendation. The proposed model KGRL which can update itself

dynamically based on the feedback and achieved a state-of-art performance. In

summary, we make the following contributions in this work:

• We proposed a novel model KGRL where the knowledge graph is introduced

into the reinforcement learning process to help the agent make decisions.

• To improve the efficiency, we maintain a local knowledge network which is

based on the knowledge graph, to fasten the process while keeping the perfor-

mance;

• Comprehensive experiments in the simulated online environment with six real-

world datasets prove the performance of our propose approach.

3.1 Methodology

Our approach involves two steps: knowledge preparation and deep reinforcement

recommendation
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3.1.1 Knowledge Preparation

We construct the knowledge graph based on entity-relation-entity tuples {(i, r, j)|i, j ∈

E , r ∈ R}. For example, the tuple (The Elements of Style, book.author, William

Strunk Jr.) means that William Strunk Jr authored the book The Elements of

Style. We consider every item (e.g., The Elements of Style) as an entity in the

knowledge graph G and transform the knowledge graph to represent user’s prefer-

ence more precisely [95]. Given a user u ∈ U and an item q ∈ I, suppose D(i) is

the set of items that has direct relationship with item i and rij denotes the relation

between items i and j. We calculate the user-specific relation scores as follows:

f riju = g(u, rij) where g : Rd × Rd → R

where g is a scoring function (e.g., inner product) to compute the score between user

and relation; d is the dimension of user representation and relation representation;

u ∈ Rd, rij ∈ Rd; f riju measures the importance of rij to user u.

Let D(i) be the set of candidates to recommend, we normalize the user-specific

relation scores as follows:

f
rij
u =

f ridu∑
d∈D(i) f

rid
u
∈ [0, 1]

Inspired by [96], we transform the knowledge graph into a user-specific graph Au,

which is an adjacency matrix of R|I|×|I|. In this matrix, each position (i, j) corre-

sponds to a score f riju , and a higher score indicates a stronger relation between two

items i and j.
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Figure 3.1: The KGRL structure. The left and right parts describe the actor network
and the critic network, respectively, at time t. The model takes user’s recent actions
(regarding toys, books, and movies) as the input and recommends new items as the
output. Those actions will be represented as the latent factor in this model. The
user, in turn, provides feedback for the model to update user’s interest knowledge’s
weights.

3.1.2 Deep Reinforced Recommendation

We develop our recommendation model (Figure 3.1) based on the Actor-Critic re-

inforcement learning framework [97], where the actor generates actions, the critic

evaluates actions, and the actor network updates the policy based on the suggestion

made by the critic.

Actor Network φ

Given a current state St, the actor network employs a neural network to infer an

optimal policy π∗ to work out an action at. Given St, which consists of user’s recent
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interests (shown in Figure 3.1, we first obtain vector representation of user’s recent

interest via embedding. Suppose we have a set of user’srecently interested items

before time t, Su,t = {S1
u,S2

u, ...,S lu}. The actor network takes an input sequence

Su,t and the corresponding feedback sequence {F1
u ,F2

u , ...,F lu} to deliver an output

sequence {S2
u,S3

u, ...,S l+1
u }. Given an original item embedding matrixM∈ R|I|×d (d

is the dimension of the latent space), we apply positional embedding [98], P ∈ Rn×l,

to preserve the order of user’s previously interested items, which updates the item

embedding into the following:

E =


M1 + P1

M2 + P2

. . .

Ml + Pl


We then fed this embedding into a self-attention layer to reduce impurity in the

embedding [99]. The layer uses the scaled dot-product attention [100], which is

originally defined as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

where Q,K, V denotes queries, keys, and values, respectively;
√
dk is the scaling

factor to regulate the value range of QKT . After applying the embedding E as the

input, the attention turns into the following:

Attention(EWQ,EWK ,EW V )

where EWQ,EWK ,EW V ∈ Rd×d. We fed this embedding into two fully connected

layers, which use ReLU and tanh as the activation functions, respectively as de-

scribed in [98]. The output of the attention layer is the state St at time t.
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Critic Network ψ

We design the critic network to estimate the Q-value function Q(St, at) to evaluate

actor’s policy. The critic network takes state representation St and action represen-

tation at as the input (shown in Figure 3.1). We design a local knowledge network

within the critic network to capture the high-order structural proximity among the

items in the knowledge graph using graph convolutional network (GCN). Specifi-

cally, given a user-specific graph gui generated from the current state St, we feed it

into a two-layer GCN that applies the following layer-wide propagation rule:

H l+1 = σ(D−
1
2 ÂuD

− 1
2H lW l) (3.1)

where H l+1 is the representation of entities at layer l+1; Au is the input matrix that

aggregates the neighbour’s entities; Âu is set to Au + I, where the I is an identity

matrix used to avoid negligence of the old representation via self-connection; Du is

the diagonal degree matrix for Âu where Dii
u =

∑
j Â

ij
u (the symmetric normalization

was applied to keep the representation H l stable, as denoted by D−
1
2 ÂuD

− 1
2 ); W l

is the weight matrix for layer l; and σ(·) denotes the non-linear activation function.

Recent research shows the feasibility of searching in graphs processed by GCN [101].

Since GCN capture’s all the structural information in the knowledge graph, it will

not affect the search results. In this study, we assume an unweighted graph where

a user is equally interested in every item. Then, we start searching with the actor

predicted action at (i.e., predicted item ip) to the real target it, based on the user’s

personalized interest knowledge (i.e., trained graph with all parameters θkg). Finally,

we calculate the Q value by estimating the reward r based on the distance between

the predicted item and the target item:

r =
100√

Distance(ip, it) + ε
∗Wpt

38



3. Side Information-augmented Interactive Recommendation

where Wpt is the sum of weight of the shortest path from ip to it; ε is the parameter

to avoid the denominator becoming 0. We calculate the distance using the Dijkstra’s

algorithm with MinHeap.

3.1.3 Complexity Analysis

We analyze the time and space complexity of the critic network, especially the search

part, in this section. We consider a vector composition (i.e., the combination of the

state vector and action vector) and assume the transmission time as a constant c.

Given a user interested in Iu items, we consider the worst case—a complete graph and

each item i having M nearest non-duplicate neighbours. Thus, we get a graph with

Iu+ IuM nodes (exclude the centralised user node) and (Iu+ IuM)(Iu+ IuM −1)/2

edges. We then calculate the time and space complexity as O((|Iu + IuM)2 + |Iu +

IuM | log |Iu + IuM |) ∼ O(|Iu + IuM |2) and O(2|Iu + IuM |) ∼ O(|Iu + IuM |).

In comparison, if we feed the environment knowledge graph to the critic network

directly, the time and space complexity would be O(|I + IM |2) and O(|I + IM |).

Apparently, the local knowledge network significantly improves the performance

and saves the memory space in our model (Iu � I). Moreover, the local knowledge

network is easier to converge as it has fewer nodes than the environment knowledge

graph.

3.1.4 Training Strategy

Training the actor-critic network requires train two parts of the neural network

simultaneously. We apply the Deep Deterministic Policy Gradient (DDPG) (Al-

gorithm 1) to train our model [50], where we train the critic by minimising a loss
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function:

l(θψ) =
1

N

N∑
j=1

((r + γξ)− ψθψ(St, at))
2

where ξ = ψθ′ψ(St+1, φθ′φ(St+1))

where θψ is the parameter in critic; θφ is the parameter in actor; N is the size of

mini-batch from the replay buffer; ψθ′ψ and φθ′φ are the target critic and target actor

network, respectively. Algorithm 2 describes the training of the local knowledge

network, where we define the same loss function for all users for the local knowledge

network :

lk =
∑
u∈U

(
∑
i:yui

J(yui, ŷui))

where J is the cross-entropy; yui is a piece-wise function to reflect the interest/action

(defined below):

yui =


1 if u interested in i

0 otherwise

3.2 Experiments

In this section, we report our experimental evaluation of our model in comparison

with several state-of-the-art models using real-world datasets.

3.2.1 Datasets

We conducted experiments on six public real-world datasets (Table 3.1 shows the

statistics). All these datasets provide the necessary information for building the
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respective knowledge graphs.

Book-Crossing1: This dataset contains user’s demographic information and book

information from the Book-Crossing community. It is extremely sparse with a den-

sity of 0.0041%.

MovieLens-20M2: This is a well-known benchmark dataset that contains 20 million

ratings from around 140 thousand users on the MovieLens website. It also provides

movie tags, which can be used to build relations in the knowledge graph.

Librarything3: This dataset contains book review information collected from the

librarything website.

Amazon CDs and Vinyl4: This is a highly sparse dataset that contains the

product metadata, user reviews, ratings, and item relations, as part of the Amazon

e-commence dataset.

Netflix Prize5: This dataset contains 100 million ratings from 480 thousand users

and item information for yearly open competition to improve Netflix’s recommen-

dation performance.

Goodreads6: This dataset contains user’s ratings and reviews to books on the

Goodreads book review website.

1http://www2.informatik.uni-freiburg.de/~cziegler/BX/
2https://grouplens.org/datasets/movielens/
3http://cseweb.ucsd.edu/~jmcauley/datasets.html#social_data
4http://jmcauley.ucsd.edu/data/amazon/
5https://www.kaggle.com/netflix-inc/netflix-prize-data
6http://cseweb.ucsd.edu/~jmcauley/datasets.html#goodreads
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(a) (b)

(c) (d)

Figure 3.2: Ablation and complexity studies.

The figure 3.2 shows the ablation and complexity studies on MovieLens-20M(a,b,e)

and Book-Crossing(c,d,f): (a,c) Three models’ performance in Recall, Precision, and

nDCG; (b,d) Three models’ time and memory consumption in conducting search

for a target item located among fifth level neighbours. The figure 3.3 (a,b) are the

three models’ time consumption along with an increasing level of the target item.

M denotes our original model, M-A the model without the attention layer, meaning

the item embedding will directly goes to state, and M-K the model deprived of

the local knowledge network—in this case, the model uses GCN to learn the whole

environment inside itself. The line of M-A and M-K have the very similar trend,
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(a)

(b)

Figure 3.3: Time Comparison for the ablation study
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consider about that case, we put the high resolution image for this part which would

easy to distinguish. The level of neighbours represents the geographical location

indicative of the shortest distance. For example, first-level neighbours represent the

items which have a distance of 1 to the current item i.

3.2.2 Evaluation Metrics

We evaluate the performance of recommendation using three metrics: precision,

recall, and normalized Discounted Cumulative Gain (nDCG). All the metrics were

calculated based on the top-10 recommendations to each user for each test case. To

ease processing, we removed users who have fewer than ten interactions and scaled

the ratings from all datasets to the range of [0, 5]. Only the items with a rating

score higher than three were considered a relevant item.

3.2.3 Experimental Setup

We evaluated our model in a simulated online environment built upon offline public

datasets, using the algorithm proposed in [15] and the aforementioned reward func-

tion. This way, we avoided collecting private user information and expensive online

training [102]. Specifically, the simulator generated feedback based on logistic matrix

factorization (LMF) [103]. We randomly split each dataset into a training set (70%),

a validation set (10%), and a testing set (20%) to conduct 10-fold cross-validation.

The discount factor γ was initialized to 0.99.

44



3. Side Information-augmented Interactive Recommendation

3.2.4 Compared Methods

We compared out model with several competitive baselines:

Policy-Guided Path Reasoning (PGPR) [18]: A state-of-the-art knowledge-

aware model that employs reinforcement learning for explainable recommendation.

Tree-structured Policy Gradient Recommendation (TPGR) [104]: A state-

of-the-art model that uses reinforcement learning and binary tree for large-scale

interactive recommendation.

HLinearUCB [9]: A contextual-bandit approach that learns extra hidden features

for each arm to model the reward for interactive recommendation.

Wolpertinger [12]: A deep reinforcement learning framework that uses DDPG

and KNN for recommendations in large discrete action spaces.

DeepPage [13]: A DDPG-based reinforcement learning model that learns a ranking

vector for page-wise recommendation.

DRN [14]: A DQN-based recommendation method that employ deep Q learning

to estimate Q-value for news recommendation.

FactorUCB [40]: A matrix factorization-based bandit algorithm for interactive

recommendation .

ICTRUCB [11]: A MAB approach that uses a depend arm for online interactive

collaborative filtering.
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3.2.5 Results

Table 3.2 shows our evaluation results of recommendation models. We observed that

our model outperformed all the baselines in all metrics almost on all the datasets—it

performed only slightly worse than TPGR on the Book-Crossing dataset. This may

be attributed to the specifical design of TPGR to deal with large-scale datasets.

None of the MAB-based methods (HLinearUCB, FactorUCB and ICTRUCB) per-

formed well on those datasets because they all assume static user interest and may

not give up-to-date recommendations We also observed that PGPR performed worse

than DRN on the Amazon CD and Book-Crossing datasets—these sparse datasets

might not provide sufficient relation for PGPR to infer the recommendation path.

Finally, all the models achieved their best results on the MovieLens-20M dataset,

given the rich information and dense relation in the dataset.

3.2.6 Ablation and Complexity Studies

We conducted ablation studies to explore the impact of the attention mechanism and

local knowledge network on the performance of our model on the above six datasets.

We selectively choose MovieLens-20M and the Book-Crossing as the example be-

cause the Book-Crossing dataset is the most sparse one and the MovieLens-20M is

the most dense one; they can show the capability of our model in the normal case

and extreme case. Due to the exponential increase in time usage, we only show the

first five level of neighbours. The results (Figure 3.2(a,d)) show that our model’s

performance dropped slightly (by 1% in precision, 2% in recall, and 1% in nDCG)

without the attention mechanism while elevated slightly without the local knowledge

network because the model already contains all the information, including abundant
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relation between items to support the decision making.

We also used valgrind7 to monitor the memory usage, which, on the other hand,

reveals the huge advantages of using a local knowledge network in reducing both the

time and space complexity (also see Figure 3.2(b)). We mentioned that in figure

3.2 (c,f), the model M −K have an incredible increase in time consumption when

the level goes over 2. One possible reason is that as the level goes higher, the graph

comes more and more complex, which will affect the search critically.

3.3 Conclusion

In this chapter, we have proposed a knowledge-guided deep reinforcement learning

framework (KGRL) for interactive recommendation. KGRL uses the critic-actor

learning framework to harness the interaction between users and the recommenda-

tion system and employs a local knowledge network to improve the stability and

quality of the critic network for better decision-making. Extensive experiments

over an online simulator with six public real-world datasets demonstrate its supe-

rior performance over state-of-the-art models. To verify the effectiveness for each

component, we conduct the ablation study for the local knowledge network and at-

tention mechanism and selectively present the performance both in normal case and

extreme case.

We are planning to introduce various types of user information (e.g., user’s thought

when browsing items) to enrich the interaction and deploy our model in online

business platforms to further test the performance in the future. In addition, the

cold-start problem is another big challenge to be focused on. Besides, the algorithm

7http://www.valgrind.org/
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2 used to train the model still lacks the knowledge about how to update step size

will affect the training time and the convergence which can be solved in the future

work.
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ALGORITHM 2: DDPG algorithm for our model
Initialize actor network φ with parameter θφ and critic network ψ with

parameter θψ randomly;

Initialize target network φ′ and ψ′ with weight θ′φ ← θφ, θ′ψ ← θψ ;

Initialize the local knowledge network ;

Initialize Replay Buffer B ;

for i = 0 to n do

Receive the initial state Si ;

for t = 1 to T do

Infer a action at according to the φ(·) ;

Execute the action at to receive a reward rt and observe a new state

St+1;

B.append(St, at, rt, St+1) ;

Sample a random mini-batch of N transitions (Sk, ak, rk, Sk+1) from B ;

Set yi = rt + γξ ;

Update Critic by minimise the loss l(θψ) ;

Update local knowledge net by Algorithm 3 ;

Update the Actor policy by using the sampled policy gradient:

∇θφφ = 1
N

∑N
j=1∇aψ(Sk, a)|a=φ(Sk)∇θφφ(Sk) ;

Update target network:

θ′φ ← τθφ + (1− τ)θ′φ;

θ′ψ ← τθψ + (1− τ)θ′ψ;

end

end
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ALGORITHM 3: Training the local knowledge network
input: The user specific graph gui , environment KG Ge

Initialize the parameters for GCN θ ;

Initialize the depth of graph dg ;

Initialize the reward storage P ;

for i in gui do

Receive the reward r from Ge ;

P.append(r);

end

r = min(P);

while GCN is not converge do

if dg < r then

aggregate next level’s neighbours into gui dg ← dg + 1;

end

Update the GCN and its corresponding θ;

end

Table 3.1: Statistics of our experimental datasets

Dataset # of users # of items # of interactions
Amazon CD 75,258 64,443 3,749,004
Librarything 73,882 337,561 979,053

Book-Crossing 278,858 271,379 1,149,780
GoodReads 808,749 1,561,465 225,394,930

MovieLens-20M 138,493 27,278 20,000,263
Netflix 480,189 17,770 100,498,277
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Table 3.2: The overall results of our model comparison with several state-of-arts
models in different datasets. The result was reported by using the percentage and
based on top-10 recommendation as mentioned before. The highlighted result in
bold is the best result.

Dataset Amazon CD Librarything
Measure (%) Recall Precision nDCG Recall Precision nDCG
Wolpertinger 1.542 ± 0.192 1.521 ± 0.145 3.331 ± 0.201 3.441 ± 0.313 3.673 ± 0.221 4.115± 0.251
HLinearUCB 3.112 ± 0.331 2.647 ± 0.171 4.005 ± 0.341 8.102 ± 0.396 7.431 ± 0.204 8.157 ± 0.241
FactorUCB 3.531 ± 0.232 4.512 ± 0.242 6.012 ± 0.251 8.541 ± 0.241 8.162 ± 0.355 8.653 ± 0.351
ICTRUCB 4.124 ± 0.293 3.110 ± 0.395 5.982 ± 0.602 9.201 ± 0.241 7.980 ± 0.151 8.012 ± 0.466
DeepPage 7.124 ± 0.181 4.127 ± 0.134 7.245 ± 0.154 10.342 ± 0.422 9.012 ± 0.241 9.124 ± 0.673

DRN 8.006 ± 0.232 4.234 ± 0.241 6.112 ± 0.241 10.841 ± 0.112 9.412 ± 0.242 9.527 ± 0.455
TPGR 7.294 ± 0.312 2.872 ± 0.531 6.128 ± 0.541 14.713 ± 0.644 12.410 ± 0.612 13.225 ± 0.722
PGPR 6.619 ± 0.123 1.892 ± 0.143 5.970 ± 0.131 11.531 ± 0.241 10.333 ± 0.341 12.641 ± 0.442
Ours 8.208 ± 0.241 4.782 ± 0.341 7.876 ± 0.511 15.128 ± 0.241 12.451 ± 0.242 14.985± 0.252

Dataset Book-Crossing GoodReads
Measure (%) Recall Precision nDCG Recall Precision nDCG
Wolpertinger 0.782 ± 0.121 1.235 ± 0.131 0.976 ± 0.242 6.245 ± 0.122 3.415 ± 0.207 5.315 ± 0.321
HLinearUCB 2.421 ± 0.131 1.724 ± 0.141 2.865 ± 0.322 7.917 ± 0.303 5.151 ± 0.214 6.561 ± 0.351
FactorUCB 3.123 ± 0.141 2.976 ± 0.223 3.536 ± 0.241 5.643 ± 0.441 4.129 ± 0.221 6.122 ± 0.395
ICTRUCB 3.441 ± 0.121 3.421 ± 0.333 4.001 ± 0.321 8.415 ± 0.132 6.432 ± 0.221 7.124 ± 0.241
DeepPage 5.124 ± 0.323 3.245 ± 0.142 6.976 ± 0.142 10.071 ± 0.212 7.961 ± 0.232 8.329 ± 0.232

DRN 7.124 ± 0.122 4.123 ± 0.112 7.433 ± 0.142 10.620 ± 0.123 8.432 ± 0.241 9.461 ± 0.442
TPGR 7.246 ± 0.321 4.523 ± 0.442 7.870 ± 0.412 13.219 ± 0.323 10.322 ± 0.442 9.825 ± 0.642
PGPR 6.998 ± 0.112 3.932 ± 0.121 7.333 ± 0.133 11.421 ± 0.223 10.042 ± 0.212 9.234 ± 0.242
Ours 8.004 ± 0.223 4.521 ± 0.332 7.459 ± 0.401 13.444 ± 0.321 10.331 ± 0.331 11.641 ± 0.446

Dataset MovieLens-20M Netflix
Measure (%) Recall Precision nDCG Recall Precision nDCG
Wolpertinger 7.821 ± 0.171 2.341 ± 0.142 4.002 ± 0.151 3.924 ± 0.222 2.911 ± 0.141 3.425 ± 0.261
HLinearUCB 13.591 ± 0.281 10.601 ± 0.132 12.537 ± 0.285 5.142 ± 0.314 5.052 ± 0.362 6.007 ± 0.425
FactorUCB 14.421 ± 0.412 11.229 ± 0.365 11.422 ± 0.611 5.643 ± 0.432 4.129 ± 0.233 6.122 ± 0.442
ICTRUCB 14.345 ± 0.212 9.923 ± 0.222 11.051 ± 0.423 7.00 1± 0.312 6.212 ± 0.432 9.112 ± 0.523
DeepPage 12.472 ± 0.312 10.161 ± 0.332 13.129 ± 0.322 8.431 ± 0.212 7.324 ± 0.133 9.872 ± 0.223

DRN 14.742 ± 0.223 14.092 ± 0.342 16.245 ± 0.242 12.310 ± 0.144 10.213 ± 0.142 16.562 ± 0.153
TPGR 16.431 ± 0.369 13.421 ± 0.257 18.512 ± 0.484 12.512 ± 0.556 11.512 ± 0.595 17.425 ± 0.602
PGPR 14.234 ± 0.207 9.531 ± 0.219 11.561 ± 0.228 10.982 ± 0.181 10.123 ± 0.227 17.134 ± 0.243
Ours 18.021 ± 0.498 14.989 ± 0.432 19.007 ± 0.543 13.009 ± 0.343 11.874 ± 0.232 19.082 ± 0.348
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Chapter 4

Structural Interactive

Recommendation

This section contains works submitted to: X. Chen, C. Huang, L. Yao, X. Wang, W.

Liu, and W. Zhang, “Reinforced Graph Attention Network for Interactive Recom-

mendation”, in 29th ACM International Conference on Information and Knowledge

Management, 2020. (CORE RANK: A)

52



4. Structural Interactive Recommendation

In the previous chapter, we investigate a new RL based method for interactive recom-

mendation (KGRL) which use the actor-critic structure to empower the interactive

recommendation system. However, the proposed method still lack some technique

to boost the converge of the RL and limit the update policy’s step size. In this

chapter, we will investigate this problem.

4.1 Methodology

Our proposed approach, RL-KGAN, employs the actor-critic algorithm to support

deep reinforcement learning. Figure 4.1 shows the overall framework.

4.1.1 User’s Embedding

Given a current state St, the actor network employs a neural network to infer an

optimal policy π∗ and to work out an action at. We use user’s embedding to represent

state St.

Inspired by [105], we model the embedding trajectories of user u ∈ U and item

i ∈ I as a sequence of temporal user-item interactions It = (ut, it, ft), where t

denotes the timestamp, ft denotes user’s feedback. For each user, we maintain

two embeddings that used to represent the recent interest and long-term interest,

respectively. Given a user u, the long-term interest embedding, Eu, is relatively

stable and remain unchanged over time.

Then, we employ an RNN layer to capture the user’s recent dynamic interest Eu.

Finally, we concatenate the embedding Eu and Eu as the input and work out the
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policy function π(St) using two fully connected layers with ReLU as the activation

function.
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Figure 4.1: The proposed model structure. The left and right parts describe the
actor network and the critic network, respectively, at time t. The model takes user’s
recent actions (regarding toys, books, and movies) which will be considered as the
Embedding Eu, and the user’s long-term embedding Eu will be the output of an
LSTM layer. The user, in turn, provides feedback for the model to update the
user’s interest knowledge’s weights.

4.1.2 Policy Update

We design a critic network with a domain knowledge graph to evaluate the actor’s

policy. The critic network takes state St and action at as the input to supervise the

actor network. User interest may change over time, leading to differed importance of

relations in the graph. Therefore, we employ a graph attention network to embeds

user’s behavior and item’s property, to generate weights for the relations [61]. Let

{(i, r, j)|i, j ∈ E , r ∈ R} be a entity-relation-entity tuple, we use all the entity-
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Figure 4.2: CKG

relation-entity tuples to construct the graph, G : (E ,R). Then, we define the concept

as a collaborative knowledge graph. Consider a new triplet {(i, r, j, f)|r ∈ R, i, j ∈

E}, where the f represent the feedback from user u to the relation r. Suppose a user

u1 purchase/interact with item i1 previously, we figure out a path in knowledge graph

for u1: u1
r1−→ i1

r2−→ e1
r2−→ i2. The path indicates a share entity (e1) between items

i1 and i2. We employ Graph Attention Network (GAT) to capture such high-level

relations and to map those relations R into weight W , to indicate their importance.

In knowledge graph, one entity can be involved in several triplets which play as

the bridge to connect different triplets and share information. Consider about two

examples for user u1: u1
r1−→ i1

r2−→ e1 and u1
r1−→ i2

r2−→ e2, the item i1 have two

different entities e1, e2 which means those to entitles need to be used to enrich the

item features, then it can help to understand u1’s preference better. This process

can be replaced by the information propagation between u1 and e1, e2. To make this

process simpler, we want to propagation between entities and its neighbors. Given
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a triplet T = {(i, r, j)|(i, r, j) ∈ G, i, j ∈ E , r ∈ R},

we consider this triplet as an ego-network [106] and use the liner combination to

generate its representation li:

li =
∑

(i,r,j)∈T

d(i, r, j)ej

where d(i, r, j) is the decay factor that controls the propagation decay through the

path (i, r, j); it represents the amount of information transferred through relation r

from entity i to entity j.

We distinguish the importance of relations by control the decay factor d(i, r, j):

d(i, r, j) = a(Wrei,Wrej)

where a is the shared attention mechanism a : RF×RF = R; F is number of features;

e is the entity representation; W is an affine transformation with the weight matrix

W for relation r; d(i, r, j) is the importance about entity j to entity i through

relation r. In some situation that every node may have relation with every other

node, and the attention score may lie in different range which is hard to compared.

So we normalize the score by the following:

αi,r,j =
exp(d(i, r, j))∑

i,r′,j′∈li exp(d(i, r′, j′))

In this chapter, the attention mechanism a is a single feed-forward neural network

which the weight matrix is a ∈ R2F . In this chapter, the LeakyReLU (with Negative

slope coefficient 0.2) was used as the non-liner activation function. Based on that,

the attention score formula can be expressed as:

αi,r,j =
exp(LeakyReLU(aᵀ[Wrei‖Wrej]))∑

i,r′,j′∈li exp(LeakyReLU(aᵀ[Wr′ei‖Wr′ej′ ]))
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Different from GAT [61], we additionally include the relationship in the representa-

tion to better reflect the user’s preference.

In our model, the path searching is the last and the most important step. We can get

a weight graph for user u, gtu at this timestamp which contains all the items he may

interested in based on the attention score. Furthermore, it’s common that an item

may have several entities, to make them on the same scale, we average the score.

In addition, we also connect the item which not appear in user’s interest but have

higher-order relation with the connected item with weight. The weight is determined

by the existing attention score’s minimal value to minimize the interference from

this operation. It’s hard for critic network to evaluate the policy directly, so we

will evaluate the action which is the recommended item instead. Suppose the item

recommended by the actor-network is the ip, but the target item is it. The critic

network uses the Dijkstra algorithm to calculate the shortest distance between ip

and it to evaluate this action. The reward is designed for training process as:

rpt =
1

Distance(ip, it)
+ 50 · in(ip, g

t
u)

where we empirically set the constant to 50; the function, in(·, gtu), checks whether

an item exists in the graph—the algorithm will automatically terminate if the item

ip is not in the graph, except special cases.

Specifically, we calculate the similarity between the item recommended with the

item user selected, and provide positive feedback when the similarity surpass 0.5.

If the item already exists in the graph, we apply logistic matrix factorization and

rating to simulate the feedback (to be discussed in the next section). In addition, we

also consider the feedback xti’s impact on the system. We add the penalty param-

eter, which will directly affect the weight of the graph. If the feedback is positive,

the weight will not be changed. If the feedback is negative, we will penalize the cor-
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responding recommendation route by reducing the weight. Precisely, we maintain a

discount factor λ ∈ [0, 1] to adjust the rank of all the penitential recommendation

results. In this chapter, the λ is set to 0.1 if it was penalized otherwise λ is set to 1.

4.1.3 Attention Mechanism

The attention mechanism which used in the GAT is pretty rough and may suf-

fer the low efficiency problem. Consider about that case, and benefit from recent

year’s advance of the transformer, we can adapt the LSHAttention to relief this

problem. The multi-head attention is memory inefficient due to the size of Q,K

and V . Assume that the Q,K, V have the shape [|batch|, length, dmodel] where | · |

represents the size of the variable. The term QKT will produce a tensor in shape

[length, length, dmodel]. Given the standard image size, the length × length will take

most of the memory. Kitaev et al. [107] proposed a Locality Sensitive Hashing(LSH)

based Attention to address this issue. Firstly, we rewire the basic attention formula

into each query position i in the partition form:

ai =
∑
j∈Pi

exp(qi · kj − z(i, Pi))vj√
dk

where Pi = {j : i ≥ j}

where the function z is the partition function, Pi is the set which query position i

attends to. During model training, we normally conduct the batching and assume

that there is a larger set PL
i = {0, 1, · · · , l} ⊇ Pi without considering elements not

in Pi:

ai =
∑
j∈PLi

exp(qi · kj −N(j, Pi)− z(i, Pi))vj√
dk

(4.1)

where N(j, Pi) =


0 j ∈ Pi

∞ j /∈ Pi
(4.2)
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Then, with a hash function h(·): h(qi) = h(kj), we can rewire the Pi as:

Pi = {j : h(qi) = h(kj)}

In order to guarantee that the number of keys can uniqually match with the number

of quires, we need to ensure that h(qi) = h(ki) where ki = qi
‖qi‖ . During the hashing

process, some similar items may fall in different buckets because of the hashing. The

multi-round hashing provides an effective way to overcome this issue. Suppose there

is nr round, and each round has different hash functions {h1, · · · , hnr}, so we have:

Pi =
nr⋃
g=1

P g
i where P g

i = {j : hg(qi) = hg(qj)} (4.3)

Considering the batching case, we need to get the PL
i for each round g:

P̂L
i =

{
j :
⌊ i
m

⌋
− 1 ≤

⌊ j
m

⌋
≤
⌊ i
m

⌋}
(4.4)

where m = 2l
nr
. The last step is to calculate the LSH attention score in parallel.

With the formula (4.1) and (4.3), we can derive:

ai =
nr∑
g=1

exp(z(i, P g
i )− z(i, Pi))a

g
i√

dk

where agi =
∑
j∈P̂Li

exp(qi · kj −mg
i,j − z(i, P g

i ))vj√
dk

with mg
i,j =


∞ j /∈ P g

i

105 i = j

log |{g′ : j ∈ P g′

i }| otherwise

where | · | represents the number of elements.
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4.1.4 Training and Optimization

Training the off-policy actor-critic network [108] requires train two parts of the

neural network simultaneously. We apply the Deep Deterministic Policy Gradient

(DDPG) to train our model, where we train the critic by minimising a loss function:

l(θψ) =
1

N

N∑
j=1

((r + γξ)− ψθψ(St, at))
2

where ξ = ψθ′ψ(St+1, φθ′φ(St+1))

where θψ and θφ are the parameters for the critic network and the actor network,

respectively; N is the size of mini-batch; γ is the discount factor; ψθ′ψ and φθ′φ are the

target critic and target actor network, respectively. Training an actor-critic network

can be time-consuming; therefore, we use the actor-critic network with experience

replay structure (ACER) [109] to speed up the off-policy training by policy gradient

of the importance weighted:

ĝ = (
k∏
t=0

ρt)
k∑
t=0

(
k−t∑
i=0

γrt+i)∇θ log(πθ(at|St))

where ρt is the importance factor. As the
∏k

t=0 ρt may generate extremely large

result as time goes by will make the model not stable. Based on that we treat each

single step i policy update as:

gi = Eβ[ρt∇θ log πθ(at|St)Qπ(St, at)]

The ρt can be represented as:

ρt =
π(at|St)
µ(St|at)
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The ρt is not stable as the value of π(at|St) increasing, in order to control this value,

the importance weight truncation with bias correction [110] is used.

g =EStat [ρt∇θ log πθ(at|St)Qπ(St, at)]

=ESt
[
Eat [ρt∇θ log πθ(at|St)Qπ(St, at)] + Ea∼π

([
ρt(a)− c
ρt(a)

]
+

∇θ log(at|St)Qπ(St, at)

)]
where the ρt = min{c, ρt} and the function [·]+ is the ReLU function. The above

formula only consider about the correlation term, but the Qπ(St, at) is unknown, so

we need to estimate this term by using Retrace [111, 112].

Qr(St, at) = rt + γρt+1[Q
r(St+1, at+1)−Q(St+1, at+1)] + γV (St+1)

We use Qθv to represent the approximation of the Qπ(St, at) By combining all the

formula above we can get the final form of the g:

ĝ =ESt
[
Eat [ρt∇θ log πθ(at|St)Qr(St, at)]+

Ea∼π
([

ρt(a)− c
ρt(a)

]
+

∇θ log(at|St)Qθv(St, at)

)]
So the importance weight truncation with bias correction applied in the ACER and

the policy gradient comes to:

ĝacert = ρt∇θ log(πθ(at|St))[r(St, at)− Vθv(St)] + Ea∼π[
ρt(a)− c
ρt(a)

]
+

log(πθ(at|St))[r(St, a)− Vθv(St)]

where the classical baseline Vθv(St) is used to reduce variance, and c is a constant

determine by pt(a). As aforementioned, we assume that the user’s interest will not

change sharply in a short time period [113]. In addition, the experience replay

focuses on the actor-network, so we focus on the policy gradient here. Based on

the condition mentioned previously, we need to make sure when the model training

does not have a suitable step size. A bad step size will make the model dis-converge.
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This problem is called trust region policy optimization (TRPO) [114], which aims

to limit the agent to update the policy inside the trust-region so that it will not

go out-of-board. Mathematically, we want to control the KL-divergence not change

sharply. For our model, the trust region policy optimization can be written as:

minimize
z

1

2
‖ĝacert − z‖22

subject to∇θφ(St)DKL[f(·|θφa(St))‖f(·|θφ(St))]
ᵀ, z ≤ δ

we can work out that:

z∗ = ĝacert −max

{
0,
kᵀĝacert − δ
‖k‖22

}
where k = ∇θφ(St)DKL[f(·|θφa(St))‖f(·|θφ(St))]

In summary, based on those result we can use the parameter update rule for actor

φ as:

θ ← θ +
∂θ(S)

∂θ
z∗

Based on the derivation above, it’s easy to find that the TRPO can efficiently limit

the step size of the agent when updating the policy. Which means that every step

can not over than ∂θ(S)
∂θ

z∗.

4.2 Experiments

4.2.1 Experimental Setup

We conducted experiments on four public real-world datasets. We constructed a

knowledge graph for each dataset and then split it into user-specific collaborative
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knowledge graphs. After that, we map items into entities via title matching if there

is a mapping relation. We evaluated our model in a simulated online environment

built upon offline public datasets. This way, we avoided collecting private user

information and expensive online training. Specifically, the simulator generated

feedback based on logistic matrix factorization and the user’s rating. For example,

during the training, the system recommends item i to user u at time t, and the critic

finds that the item i inside the knowledge graph gtu if u already provide the rating

for i, we just simply map the rating into feedback as positive if ration larger than

or equal to 4. If not, we just let LMF decide the feedback. We randomly split each

dataset into a training set (70%), a validation set (10%), and a testing set (20%) to

conduct 10-fold cross-validation. The discount factor γ was initialized to 0.99.

4.2.2 Overall Comparison

We compared our model with several competitive baselines. Results (Table 4.1)

show our model consistently outperforms the baselines on all the six public datasets.

MAB-based methods generally perform poorly due to their inablility to find the

upper confidence boundary on the extremely sparse datasets; but they are more

stable on the most sparsity dataset, Book-Crossing, resulting in a much lower error-

range than other interactive recommendation methods (TPGR and ours). Consider

about the trade-off between the training time and the performance improvement,

we report the first order in the table 4.1.
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(a) (b)

(c) (d)

Figure 4.3: The figures (a)-(d) show the effect of various levels of attention. The level
of order indicate the number of Attention layer we employed. The level 0 indicates
the deployment without attention network. The dot lines are used for indicate the
baseline results where the green line used for the recall, red line for precision and
black line for nDCG.

4.2.3 Ablation Study

Our ablation studies confirm our assumption that an increased level of order im-

proves, but only slightly improves, the performance, given that most users are likely

interested in the item which have strong relation with previous purchases (or other

actions). The graph attention network affects the result significantly because the

whole model is carefully design for the generated attentive graph. If all the attention
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Table 4.1: The overall results of our model comparison with several state-of-arts
models in different datasets. The result was reported by using the percentage and
based on top-10 recommendation as mentioned before. The highlighted result in
bold is the best result.

Dataset Amazon CD Librarything
Measure (%) Recall Precision nDCG Recall Precision nDCG

HLinearUCB [9] 3.112 ± 0.331 2.647 ± 0.171 4.005 ± 0.341 8.102 ± 0.396 7.431 ± 0.204 8.157 ± 0.241
FactorUCB [40] 3.531 ± 0.232 4.512 ± 0.242 6.012 ± 0.251 8.541 ± 0.241 8.162 ± 0.355 8.653 ± 0.351
ICTRUCB [11] 4.124 ± 0.293 3.110 ± 0.395 5.982 ± 0.602 9.201 ± 0.241 7.980 ± 0.151 8.012 ± 0.466

kNN Bandit [115] 3.944 ± 0.231 2.901 ± 0.192 4.004 ± 0.124 8.787 ± 0.121 8.002 ± 0.144 8.989 ± 0.211
DRN [14] 8.006 ± 0.232 4.234 ± 0.241 6.112 ± 0.241 10.841 ± 0.112 9.412 ± 0.242 9.527 ± 0.455

TPGR [104] 7.294 ± 0.312 2.872 ± 0.531 6.128 ± 0.541 14.713 ± 0.644 12.410 ± 0.612 13.225 ± 0.722
KGAT [116] 8.234 ± 0.244 5.339 ± 0.297 6.442 ± 0.342 12.965 ± 0.146 9.438 ± 0.440 10.401 ± 0.312
PGPR[18] 6.619 ± 0.123 1.892 ± 0.143 5.970 ± 0.131 11.531 ± 0.241 10.333 ± 0.341 12.641 ± 0.442

Ours 9.178 ± 0.241 5.132 ± 0.155 8.002 ± 0.213 14.981 ± 0.184 13.667 ± 0.151 14.128 ± 0.199
Dataset Book-Crossing GoodReads

Measure (%) Recall Precision nDCG Recall Precision nDCG
HLinearUCB 2.421 ± 0.131 1.724 ± 0.141 2.865 ± 0.322 7.917 ± 0.303 5.151 ± 0.214 6.561 ± 0.351
FactorUCB 3.123 ± 0.141 2.976 ± 0.223 3.536 ± 0.241 5.643 ± 0.441 4.129 ± 0.221 6.122 ± 0.395
ICTRUCB 3.441 ± 0.121 3.421 ± 0.333 4.001 ± 0.321 8.415 ± 0.132 6.432 ± 0.221 7.124 ± 0.241
kNN Bandit 2.333 ± 0.122 1.980 ± 0.111 2.501 ± 0.301 8.321 ± 0.124 7.008 ± 0.104 8.541 ± 0.222

DRN 7.124 ± 0.122 4.123 ± 0.112 7.433 ± 0.142 10.620 ± 0.123 8.432 ± 0.241 9.461 ± 0.442
TPGR 7.246 ± 0.321 4.523 ± 0.442 7.270 ± 0.412 13.219 ± 0.323 10.322 ± 0.442 9.825 ± 0.642
KGAT 7.335 ± 0.256 5.956 ± 0.069 7.653 ± 0.163 12.659 ± 0.315 10.239 ± 0.221 10.569 ± 0.158
PGPR 6.998 ± 0.112 3.932 ± 0.121 7.333 ± 0.133 11.421 ± 0.223 10.042 ± 0.212 9.234 ± 0.242
Ours 8.241 ± 0.173 6.125 ± 0.122 7.923 ± 0.133 14.199 ± 0.123 10.992 ± 0.177 12.141 ± 0.268

score lost, the search will get stuck and make random selections in the constructed

unweighted user-specific graph, which will affect the actor network’s policy.

4.3 Conclusion

In this chapter, we have proposed a Reinforcement Learning based Knowledge Graph

Attention Network (RL-KGAN) for interactive recommendation. RL-KGAN uses

the actor-critic learning framework to harness the interactions between users and the

recommendation system. We employ the experience replay and optimize the model

through trust range policy optimization to speed up convergence. Our extensive

experiments over an online simulator with six public real-world datasets demonstrate

its superior performance.
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Chapter 5

Conclusion

This dissertation studies the interactive recommendation. We firstly overview, com-

pare and discuss the existing state-of-the-art methods for the reinforcement learning-

based recommendation systems. We briefly discuss the advantages and disadvan-

tages of the existing methods. Secondly, we identified the major existing challenges

in interactive recommendation system, i.e., the dynamic user interest and the ef-

ficiency problem of reinforcement learning. To address these two challenges, we

proposed several methods. We first introduced a new distributed representation

(expert2vec) for expert which is used on solving the CQA problem and the expert

recommendation problem. Expert2vec is the distributed representation which con-

tains the information about user and topic and its corresponding rank. It is able

to capture the dynamics of user interest. Then, we proposed a side information-

augmented method for the interactive recommendation. It uses the critic-actor

learning framework to harness the interactions between users and the recommenda-

tion systems and employs a local knowledge network to improve the stability and

quality of the critic network for better decision-making. Extensive experiments over
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5. Conclusion

an online simulator with six public real-world datasets demonstrate its superior per-

formance over state-of-the-art models. To verify the effectiveness of each component,

we also conduct the ablation study for the local knowledge network and attention

mechanism and present the performance both in normal cases and extreme cases.

Finally, we investigate the problem which exists on the KGRL, we apply the TRPO

to the optimization process which can limit the update steps and boost the conver-

gence. In addition, we extend the normal knowledge graph into the Collaborative

Knowledge Graph which can enrich the side information.

In the future, the interactive recommendation system can be further improved fol-

lowing the recent advances in the Brain-Computer Interface (BCI) [117]. The BCI

provides a new way to understand the user’s intention by using the EEG signal [118].

Current research can recover from the brain wave to user’s vision [119, 120, 121, 6].

In the future, it may be possible to use the BCI as the intention detection to rep-

resent the user’s interaction. Brain’s activity can be more accurate than the user’s

behaviour [48, 122]. Besides the EEG, the fMRI can be another approach to un-

derstand user’s behaviour [123, 124, 125]. A recent study in understanding human

mind [126] provides the direction about how to adopt those techniques into the rec-

ommendation system. In summary, for further studies, it is possible to fuse the EEG

signal and the fMRI image [127, 128] to understand user’s intention more accurately.

Based on that, the interactive recommendation system can be further enhanced.
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