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Abstract

The shortest-path distance is a fundamental concept in graph data analytics and has been ex-
tensively studied in literature. In many real-world applications, quality constraints are naturally
associated with edges in the graph, and finding the shortest distance between vertices along only
valid edges (i.e., edges that satisfy a given quality constraint) is also critical. In this work, we
investigate this novel and important problem of quality constraint shortest distance queries. We
propose an efficient index structure based on 2-hop labeling approaches. Supported by a path
dominance relationship incorporating both quality and length information, we demonstrate the
minimal property of the new index. An efficient query processing algorithm is also developed.
Extensive experimental studies over real-life datasets demonstrates efficiency and effectiveness of
our techniques.
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Chapter 1

Introduction

Computing the shortest path distance between two entities in a network is one of the fundamental

problems in graph data analytic. Specifically, a path between two vertices s and t is the shortest

path if its length is the shortest among all paths between s and t. The distance of the shortest path

is called the shortest-path distance, or the shortest distance for short. Due to its optimality, the

notion of the shortest distance has been exploited to tackle a broad range of problems, including

keyword search [1, 3–5], betweenness centrality [6, 7] and route planning [8].

The shortest distance between two vertices s and t can reflect the vertices’ significance. For

instance, i) in the nearest keyword search, the vertices closest to the query source are favoured [4],

and ii) in social networks, distances are employed in the search ranking to aid users in identifying

the most relevant results [1].

Recently, many researchers have studied the efficient processing of shortest distance queries on

graph data [9, 10]. However, most of these approaches assume that the network only contains

edges without labels. In many real-world applications, many networks’ data naturally impose

a quality constraint over edges. While computing shortest distances, constraints can be applied

on the edge labels to obtain valid shortest distances that are specified for certain applications. For

instance, in a road network, road segments may specify the weight limits permitted for auto-trucks.

In this scenario, the weight limit is the quality of edges on road networks, and it is demanded to
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CHAPTER 1. INTRODUCTION

compute the shortest path by which an auto-truck can pass. Namely, compute the shortest path

and the distance along which the auto-truck satisfies the quality constraint of each edge. Another

example is to compute the shortest distance on a communication network to determine the most

optimal path while restricting all edges on the path to satisfy certain throughput constraints.

To fill in this research gap, we investigated the novel and important problem of quality constraint

shortest distance and proposed an efficient 2-hop labeling index approach, namely the WC-Index.

Given query vertices, s and t in a graph G and a quality constraint w, the quality constraint shortest

distance problem finds the shortest-path distance where the quality of each edge along the path

is at least w. Taking advantage of a path dominance relationship incorporating both quality and

length information, we developed an efficient indexing construction algorithm for our 2-hop index.

Our approach incorporates an extension to the 2-hop index that takes advantage of the ordering

of weights and distance, and significantly prunes vertices that would have been processed in a

classical 2-hop index while maintaining index minimality. We also investigated the ordering of

BFS searches and discovered that using vertex degree or tree decomposition can have different

effects on different kinds of networks. An efficient query processing algorithm is also developed.

We also demonstrate that our index preserves the property of minimality.

1.1 Applications

Some essential applications are listed as follows:

Communication Networks [11]. To achieve end-to-end Quality-of-Service (QoS) guarantees [12],

the transmission of multimedia streams imposes a minimum-bandwidth requirement on all the

links of a path. A quality constrained shortest distance query can determine the distance (for the

consideration of minimum cost or delay) between two nodes in a network, where each edge/link

has a minimum bandwidth demand of w. The resultant path can handle w bits per second for the

transmission of a stream, such as audio or video, with guaranteed bandwidth. Figure 1.1 illustrates

a motivating example. Given a minimum speed guarantee such as 3 Mbps, a query asks for the

distance from R3 to R2 with such a speed guarantee. In this case, the resultant distance is 4 since

2



1.1. APPLICATIONS

R1 R2 R5

R3 R4

S1 S2

4Mbps

3.2Mbps

2Mbps
20Mbps 5Mbps

6Mbps

7Mbps

Figure 1.1: A Communication Network. Ri indicates the i
th router, and Si indicates the i

th switch.

R3 æ S1 æ R4 æ S2 æ R2 fulfills all the criteria, while R3 æ S1 æ R2 does not owing to the

speed of S1 æ R2 = 2Mbps < 3Mbps.

Social Networks [1]. In social networks, determining the closeness of two individuals is a crit-

ical issue. A popular metric is the distance between them in the social networks, e.g., a 2-hop

friendship connection is stronger than a 3-hop one. The strength of connections between users

is indicated based on profile similarity and interaction activity [13, 14], and the distance between

users needs to incorporate such strength information. To support this, a distance query with the

quality constraint identifies the distance with only strong connections. Figure 1.2 illustrates an

example of friendship network.

Biology Networks [2]. Pathway queries are vital in the analysis of biological networks, where

vertices represent the entities, e.g., enzymes and genes, while edges reflect interactions or rela-

tions [2]. As shown in [2], one of the four important pathway queries in biological networks is to

identify the shortest path between two substances subject to certain constraints. The quality can

derive from the activity of kinase [15, 16]. A frequently issued query in these biology networks

is to determine the shortest pathway from substance u to transfer to substance v, where all the

3



CHAPTER 1. INTRODUCTION

Figure 1.2: An example of social network of "friendship" [1]. In this example, John is at distance
1 of ‘Maria A’, at distance 2 of ‘Maria B’, and at distance 3 of ‘Maria C’.

activities of the kinase on this pathway are as least w.

1.2 Motivations and challenges

To compute the quality constraint shortest distance, a straightforward online approach is to con-

duct breath first search while taking edge quality into account. Alternatively, one can partition

the original graph based on edge quality and perform a breadth-first search on the corresponding

graph based on the query. However, for these naïve approaches, the vast search space and the real-

time response time are the primary obstacles to this problem. Since there are numerous queries

in real applications, the online search algorithms would face the vast search space and could not

answer the queries in real time. As for the index-based approach, a naïve index approach in-

volves constructing an index for every possible weight w. In each constructed graph, pairwise

distance information is stored. When a query arrives, we could immediately return the results by

the corresponding constructed graph’s index. Such a solution could be restricted by the fact that

the potential number of w values may be rather large. Consequently, such a naïve index scheme

4



1.3. OUR SOLUTIONS

Figure 1.3: Representation of the reactions using the PQL data model [2]. Molecules are boxes,
interactions are rounded boxes.

could not satisfy the requirements in the aforementioned applications. We design a modified 2-hop

labeling index for the weight-constrained shortest path problem to fill this research gap. To fur-

ther accelerate indexing time, query time, and to reduce index size, we investigate various pruning

rules, propose a query-efficient methodology, and produce efficient vertex ordering.

1.3 Our solutions

To address the above challenges, in this work we adopt the 2-hop labeling index approach to solve

the quality constraint shortest distance problem. 2 hop-labeling approaches have been proven to be

effective for addressing shortest path problems [17, 18]. 2-hop indexes store the distance between

vertices that have been precomputed. Each vertex in the index has its own label, which consists of

information about distances to other vertices. Queries can be answered by calculations based on

the labels of the two query vertices.

The 2-hop index model can be modified by including qualities into index entries, resulting in

the labels of vertices containing pairs of distances and qualities as entries. To obtain the con-

5



CHAPTER 1. INTRODUCTION

strained distance, it performs a similar procedure as for distance queries mentioned previously.

The difference is that when a common vertex is found, it checks to see whether both entries have

a satisfactory quality value. Our developed WC-Index possesses soundness, completeness, and

minimal properties. We investigate the BFS search orders in building the index and propose a

quality- and distance-priority-constrained BFS to naturally meet the three properties without in-

curring additional costs. The query operation over the index is used not only in answering the

quality constraint distance queries but also in the index construction phase. We carefully design

the query function and achieve linear time complexity by utilizing a nice dominance property of

the problem. Last, a hybrid vertex ordering is proposed to tackle both graphs with small and

non-small tree width.

1.4 Contributions

Our principal contributions are as follows:

• Theoretical Analysis. First, the quality constrained distance problem is defined, which has

a variety of applications in road networks, social networks, and biological networks. This

paper theoretically analyzes the time and space complexity of this problem. In addition, it

investigates the soundness, completeness, and minimal properties, and proposes a sophisti-

cated index capable of naturally preserving these three desirable features.

• Efficient Index. We propose a 2-hop labeling based index method. Both query-efficient

method and distance-prioritized traversal strategy are presented to expedite index construc-

tion. With a nice property of this problem, the query function could be implemented in

linear time, which could accelerate both query time and indexing time. Additionally, a hy-

brid vertex ordering is investigated. In addition, we investigate how to simply modify our

index to support the quality constraint shortest path problem.

• Comprehensive Experiments. Compared to the baselines, our comprehensive experiments

demonstrate the efficiency and effectiveness of our proposed method.

6



1.4. CONTRIBUTIONS

Roadmap. The rest of this thesis is organized as follows. Chapter 2 discusses existing works

on the shortest path problem. Chapter 3 introduces the definition of the problem we are trying to

tackle. Our 2-hop labeling-based method is proposed in Chapter 4. Chapter 5 presents our experi-

mental results. Chapter 6 concludes the thesis and discusses limitations and future directions.
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CHAPTER 2. LITERATURE REVIEW

Chapter 2

Literature Review

In this chapter, we discuss the existing works related to the shortest path problem. We first provide

an overview of Index-Free algorithms, which are relatively slow to run. Then, we discuss Index-

Based algorithms, which are faster at answering shortest path queries but require pre-computation

to build the index. Most shortest path finding algorithms can be categorized into two types. The

first type is called the single source shortest path, where the shortest paths from one source vertex

to all other vertices are to be calculated. The second type of algorithm is called the all-pairs

shortest path, where the paths from every vertex to every other vertex are to be found. Shortest path

algorithms can also be classified as exact solutions or approximate solutions. After introducing

the fundamental shortest path problem, we present works related to the constraint shortest path

problem, which imposes some constraints on the fundamental problem.

2.1 Index-Free Algorithms

First, we introduce the shortest path problem. Given a graph G(V, E) where V is the vertex set

and E = {(u, v)} where u, v œ V is the edge set. Each edge e œ E is associated with a numeric

label that represents its weight. In real-world networks, the weight can represent distance, time,

or any other form of cost, where in this case, a larger value weight indicates a higher cost of

8



2.1.1 Single Source Shortest Path (SSSP)

traveling along this edge. A path p between the vertex s and the vertex t is a sequence of vertices

Èv0, v1, ·, vkÍ such that s = v0, t = vk and (vi≠1, vi) is an edge that belongs to E(G) for ’i œ [k].

2.1.1 Single Source Shortest Path (SSSP)

Definition 1. (SSSP problem) Given a starting vertex s and a target vertex t where s, t œ V , the

shortest path algorithm finds the path with minimal combined edge weights between s and t.

For unweighted graphs, breadth-first search (BFS) [19] is the simplest method to compute the

shortest path. By selecting a vertex as starting point s, BFS expands from s by visiting all of its

neighbors in each step. Once the target vertex is reached, the minimum distance to the target is the

number of steps the expansion has occurred. The path can be deducted by tracing up each vertex’s

parent. This simple case can be viewed performing calculation on a labeled graph with all edges

having a weight equal to one.

In a more practical case, edges contain different numeric weights. Thus, finding the shortest path

requires the combined edge weight of the path to be minimal. Dijkstra’s algorithm [20] searches

the network by the best-first strategy and computes the shortest path from the source vertex to all

other vertices. If the destination vertex is given, the algorithm can terminate when the destination

is visited. The algorithm starts the shortest path from a source vertex s to all other vertices in

the graph. Initially, the distance from s to all vertices is set to infinity, and the source vertex is

set as visited. In the first round, it checks and updates all weights from s’s neighbors, selects the

neighbor with the shortest recorded distance as the next expansion point, and marks it as visited.

This process continues until all vertices in the graph are visited. The complexity of Dijkstra’s

algorithm is O(n2). One constraint of Dijkstra’s algorithm is that it requires all edge weights to be

non-negative. A variation of Dijkstra’s algorithm for destination-specific SSSP problems searches

the network in a bidirectional manner [21].

Figure 2.2 illustrates an example of performing Dijkstra’s algorithm to obtain the shortest path

and shortest distance from vertex A to all other vertices. The second column of the table stores

the flag indicating which vertices have been visited. The third column of the table stores the

9



CHAPTER 2. LITERATURE REVIEW

shortest total distance from the starting vertex A to other vertices. The fourth column stores the

shortest sequence of vertices from A. By backtracking the sequence of previous vertices from the

destination, we are able to obtain the shortest path from A to the destination. The detailed steps

are as follows.

1. Figure 2.1a consider the starting vertex A. The distance from A to itself is 0, and the distance

from A to all other vertices is unknown. Therefore, we set the distance to all other vertices

as Œ.

2. Referring to Figure 2.1b. The algorithm then starts by visiting the unvisited vertex that has

the smallest distance to the starting vertex A, which is A itself with a distance of 0. Thus, we

mark A as visited. From vertex A, we examine all of its unvisited neighbors. We calculate

the updated distance between each neighbor of A with the starting vertex (A) by adding the

edge weight to the current distance. If the updated distance is less than the known distance,

we update the table. The updated distance of B is 0 + 6 = 6, which is less than Œ. Thus,

we update the distance of B as 6. Similarly, we updated the distance of D to 0 + 1 = 1. We

also update the previous vertex of both B and D to A.

3. Referring to Figure 2.1c. The algorithm continues to visit the unvisited vertex with the

smallest distance to A, which in this round is D. Thus, we mark D as visited. The unvisited

neighbors are B and E. The updated distance to B is 1+2 = 3, which is less than the current

recorded distance of 6. Therefore, we update B’s distance to 3. Similarly, we update E’s

distance to 1 + 1 = 2. We update the previous vertices accordingly.

4. Referring to Figure 2.2a. In this round, we visit vertex E, which has the smallest distance to

A amongst all unvisited vertices. We mark E as visited. The unvisited neighbors are B and

C. For vertex B, the updated distance is 2 + 2 = 4, which is less than the current recorded

distance of 3. Thus, we do not update the distance of B. We update the distance of C to

2 + 5 = 7.

5. Referring to Figure 2.2b. In this round, we visited vertex B and marked it as visited. The

only unvisited neighbor is C. The updated distance to C is 3 + 5 = 8, which is larger than

the current recorded distance. Therefore, we do not update it.

10



2.1.1 Single Source Shortest Path (SSSP)

6. Referring to Figure 2.2c. The final unvisited vertex is C. We mark it as visited. Since there

are no unvisited neighbors left, the algorithm terminates here.

After the algorithm is terminated, the table of information is complete. The shortest path can be

retrieved by backtracking the sequence of previous vertices from the destination. For example,

to obtain the shortest path from A to C. We notice that we arrived C via E. This is shown

in the previous vertex column of C. When we examine the information for E, we notice we

arrived at E via D. Similarly, we arrived D via A. As a result, the shortest path from A to C is

A æ D æ E æ C.

Fredman et al. developed a new data structure called the Fibonacci heap [22] to improve Dijkstra’s

algorithm. For a heap with size n, the Fibonacci heap enables arbitrary deletion in O(logn) and

other standard heap operations in O(1) time. Therefore, the overall time complexity of Dijkstra’s

Algorithm improves to O(nlogn + m). Fredman et al., in another work [23] proposed a data

structure called AF-Heap, which enables O(logn/loglogn) cost for deletion in a heap and constant

cost for other heap operations. The proposed variant of Dijkstra’s algorithm has the complexity of

O(m + nlogn/loglogn). Based on the idea of the Fibonacci heap, Driscoll et al. [24] introduced

the relaxed Fibonacci heap and proposed a parallel variation of Dijkstra’s algorithm.

Thorup [25] discovered the relationship between the SSSP problem and the sorting problem and

proposed that SSSP should be no harder than sorting edge weights. The paper proposed a prior-

ity queue structure that allows a time complexity of O(mloglogn) to compute the SSSP problem.

Boas et al. [26] optimize the SSSP problem by improving the implementation priority queue based

on a stratified binary tree. The algorithm has a time complexity of O(loglogn) and space com-

plexity of O(nloglogn). Thorup [27] proposed a deterministic linear space algorithm for the

undirected SSSP problem. The paper proposed a hierarchical bucket, which is a dynamic set that

allows arbitrary insertion and deletion. By utilizing a hierarchical bucketing structure, the algo-

rithm is able to avoid the sorting bottleneck.

One limitation of Dijkstra’s algorithm is that it only works on networks with non-negative edge

weights. To address this issue, the Bellman-Ford algorithm [28] provides a solution to the SSSP

problem that is able to handle negative edge weights. The overall process of the algorithm is

11
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(a) The 1st iteration.

(b) The 2nd iteration.

(c) The 3rd iteration.

Figure 2.1: An example of Dijkstra’s algorithm.
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(a) The 4th iteration.

(b) The 5th iteration.

(c) The 6th iteration.

Figure 2.2: An example of Dijkstra’s algorithm.
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similar to that of Dijkstra’s. However, during each step of expansion, instead of selecting the

neighbor with the shortest edge distance, the algorithm selects all neighbors, then proceeds in

n ≠ 1 cycles to ensure all changes have been propagated through the graph. The time complexity

of the Bellman-Ford algorithm is O(nm). However, if the network contains negative cycles, there

are no SSSP solutions due to the lowering of accumulated weights through traversing the cycle.

Karp [29] studied the issue of whether the network contains negative cycles. The study proposed

the concept of minimum cycle mean, such that finding a negative cycle is analogous to finding a

minimum cycle mean.

The A* algorithm is a best-first algorithm [30]. It starts from the source vertex and aims to find

the shortest path to the given destination based on heuristics of cost. A tree of paths is maintained

beginning at the source vertex and extending all paths edge by edge until termination is reached.

In each expansion round, the algorithm decides which edge to expand based on a problem-specific

heuristic. More specifically, it selects the path that minimizes a heuristic function f(n), which

estimates the total weight of the cheapest path from vertex n to the destination. The algorithm

terminates either when the destination is reached, or there is no viable path. A* is guaranteed to

return the shortest path from the starting node to the destination if the heuristic function never

overestimates the actual cost.

2.1.2 All-Pair Shortest Path (APSP)

Definition 2. (APSP problem) For a graph G = (V, E), compute all distances between all apris

of s œ V and t œ V .

A straightforward approach would be to apply Dijkstra’s algorithm separately for every vertex in

the graph. Thus, the time complexity of doing so is O(mn + n
2
log(n)) [19].

Floyd-Warshall algorithm [31] is a classical solution for finding all pairs’ shortest paths in a

weighted graph. It can handle graphs with both positive and negative edge weights as long as

there are no negative cycles. The algorithm is able to detect negative cycles but is not able to re-

solve the issue of having them. Although the algorithm only returns the all-pair shortest distance,
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simple modification can be performed to reconstruct all the shortest paths. The time complexity

of the Floyd-Warshall algorithm is O(n3) as it compares all possible paths between each pair of

vertices. By using a displacement array, the space complexity can be reduced to O(n2). On sparse

graphs where m << n
2, running Dijkstra’s algorithm on all vertex results in a time complexity of

(mn + n2logn), which outperforms the Floyd-Warshall algorithm.

An improved Floyd-Warshall algorithm [9] resolves the issue of the traditional algorithm having

too many iterations, which prohibits it from being used on large graphs such as urban road net-

works. The two significant improvements are: firstly, construct an iterative matrix for solving the

shortest path, compare all vertices in the matrix and remove all vertices not in the matrix, then

search for the next vertex directly to reduce the number of iterations; secondly, construct a serial

number matrix to find the shortest path, it is used to record the case of inserting vertex during

iterations.

2.2 Index-Based Algorithms

Index-based shortest-path algorithms pre-compute various kinds of indexes to allow fast query

answering. As a general rule, larger indexes take a longer time to be pre-computed but store more

information and result in faster query answering.

2.2.1 Separator-Based Algorithms

Separator-Based algorithms divide the network into disjoint partitions and divide the searching

process based on the split partitions. Vertices or edges can be regarded as separators that divide

the partitions. The shortest paths between vertices of different partitions must pass through their

separators. Thus, indexing on the separators is proposed for computing shortest paths.

Van Vliet [32] proposed to utilize vertices as separators that divide graphs into disjoint partitions.

The set of separator vertices is regarded as an overlay graph. Pre-computed shortcuts are added

between these vertices to preserve the distance of the original graph, thus accelerating pathfinding.
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Schulz et al. [33] extend the idea of storing pre-computed shortcuts to multi-level graph structure

by allowing shortcuts to be added between levels, where the levels are divided based on a hier-

archical decomposition technique proposed by the paper. On the other hand, edge separators are

also used as overlay graphs for accelerating pathfinding. Jung et al. [34] divided the graph into sets

of edge-disjoint partitions and added shortcuts between the boundaries of each partition. Delling

et al. [35] used a similar technique and added real-world optimizations such as turning costs. [36]

utilized GPU for further performance improvements.

2.2.2 Hub Labeling Algorithms

Hub Labeling approaches store pre-computed distances as labels for each vertex such that finding

the distance between vertices only requires a combination of the labels of each vertex. When

answering queries, no computations other than examining the distance entries are needed. It can

be viewed as there is a hop vertex between the starting vertex s and destination vertex t.

2.2.2.1 Transit Node Routing

Transit Node Routing is one of the first hub labeling techniques proposed [37]. A subset of vertices

is regarded as transit nodes while having their all-pair shortest distance computed. While comput-

ing the shortest distance between an arbitrary vertex pair s, t œ V , if any transit vertex appears on

one of the shortest paths, it will be regarded as an access vertex an(s). Then, the shortest distance

is simplified to computing min(s≠ > a(s)≠ > a(t)≠ > t). Nevertheless, this algorithm is an

approximate algorithm that does not guarantee to return of the correct result.

2.2.2.2 2-hop Labeling

Cohen et al. [38] proposed the 2-hop Labeling and index structure that answers the shortest dis-

tance queries correctly with only one intermediate hop vertex. For each vertex v œ V , it’s label set

consists of other vertices and their corresponding shortest distance to v, L(v) = {(u, d(v, u))}.
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For directed graphs, each vertex has an in-label set and an out-label set, each storing the corre-

sponding information based on edge direction. For query q(s, t), the algorithm loops through the

labels of s and t to look for common hop vertices w such that w œ L(s) fl L(t). The shortest

distance is obtained by finding the hop vertex that results in the minimum distance.

Figure 2.3: Illustration of a 2-hop index. Edges of the graph are represented by solid lines. Hops
that are not edges are represented as dashed arrows.

2.2.2.3 Pruned Landmark

Akiba et al. [18] proposed the Pruned Landmark Labeling for shortest distance computation. It is

widely applicable for social networks with low graph diameters as the search space can be pruned

dramatically with the help of landmarks. During each iteration of the construction algorithm, a

vertex u is chosen as the starting point of Dijkstra’s algorithm. The computed shortest distances

are added to the in-labels of all other vertices. Then, a backward Dijkstra’s is performed, and the

resultant distance is added to all other vertices’ out-labels. During the searching process, if the

distance between u and v can be answered by existing labels, then this process will be pruned.

The time complexity of the construction algorithm is 2|V | times that of Dijkstra’s and becomes

faster as the index size grows.

2.2.2.4 IS-Label

For a graph G, and independent set I is a subset of vertices V such that for any u, v œ I ,

(u, v) /œ E. Fu et al. [39] proposed the IS-Label, which utilizes the independent set of a graph
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for index construction. By extracting independent vertex sets from each level, IS-LABEL orga-

nizes the graph into layers that form a hierarchical structure. The remaining vertices at each step

are augmented with an edge to preserve distance. Then, labels are constructed with a top-down

approach based on the hierarchy. To limit the height of the hierarchy level, IS-Label limits the

number of iterations k during the label construction. As a result, instead of building a full index,

a residual graph Gk is left in the memory. As the hierarchy is not complete, there may remain a

residual graph Gk, where queries performed on it utilizes both the label and a bi-Dijkstra search.

2.2.2.5 Hop Doubling

To address the challenge of large index sizes on large networks, Jiang et al. [40] proposed a hop-

doubling method to answer point-to-point path queries for scale-free networks. In contrast to the

total label size of O(|V |
2) in the worst case for 2-hop indices, this work derives a complexity

bound of O(h|V |) on the index size, where h is a small constant. The algorithm also provides a

runtime complexity of O(|V |logM(|V |/M + log|V |)), where M is the memory size.

2.2.3 Materialized Approaches

Materialized approaches fully pre-compute the shortest path results and store them to allow nearly

constant query performance with a large index size. Sankaranarayanan et al. [41] use path coher-

ence between the shortest path and the spatial positions of vertices on the spatial network to per-

form compact encoding and fast distance retrieval. Samet et al. [42] proposed an algorithm based

on pre-computing the shortest paths between all vertices, taking advantage of the fact that for each

vertex u to all other vertices, the shortest paths can be decomposed into subsets based on the first

edge from the other vertices. The decomposed paths are organized by a quad-tree, and answering

queries involves iteratively visiting neighbors from the corresponding division. Sankaranarayanan

et al. [43] proposed Distance Oracle, a framework that computes approximate results by taking

advantage of the spatial coherence of the source vertices to reduce space requirements further. Ex-

pressly, for source vertices set A and destination vertices set B where they are sufficiently far from

each other while the vertices within the sets are close to each other, the shortest paths between any
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vertex in A to any vertex in B will be similar. Such an oracle could answer queries in O(logn)

time using a B-tree.

2.2.4 Goal-Directed Approaches

Goal-Directed approaches pre-compute index to direct the search space toward the destination.

Lauther [44] proposed a modified Dijkstra’s algorithm for fast and exact calculation of shortest

paths in networks with geometrical information stored at the nodes. By doing so, it is able to

prevent redundant costs for expanding in the incorrect directions. The algorithm pre-processes the

network by dividing it into regions. Each edge is assigned a label that contains a flag for each

region, which indicates whether there is the shortest path into the given region. When calculating

the shortest path using Dijkstra’s algorithm, only those edges assigned with an appropriate flag

need to be investigated. By doing so, the algorithm is able to speed up by a factor of 64 compared

to classical Dijkstra implementation. Acceleration is achieved by performing pre-processing on

the graph data to create auxiliary information for speed-up shortest path queries.

As Goal-Directed approaches are suitable for solving point-to-point shortest distance problems,

researchers have investigated applying this technique, known as the arc-flag approach, to existing

shortest path algorithms to enhance performance. Kohler [45] proposed an acceleration method

for point-to-point shortest path and constrained shortest path computation in directed graphs. Ac-

celeration is achieved by pre-processing the network to create auxiliary information, which is then

used to speed-up shortest path queries. The algorithm focuses on combining multiway-separator

with the arc-flag approach. Similar to [44], the arc-flag technique divides the graph into regions

and flags edges based on whether it is on the shortest path that leads into specific regions. The

multiway-separator also divides the graph along separators and uses that information to improve

the shortest path calculation process across different regions. By combining these approaches and

bi-directional searches, the algorithm can narrow down the search space for Dijkstra’s algorithm.

It achieves an average speed-up of up to 1,400 on large road networks.
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2.3 Constrained Shortest Path Algorithms

While the shortest path problem focuses on optimizing one goal, which is finding the shortest

distance, the Constrained Shortest Path (CSP) problem optimizes based on one objective while

requiring other criteria to satisfy some predefined constraints [46]. In such applications, edges

e œ E feature multiple labels, in which usually one will be the optimization target (such as cost,

distance) while the others are constrained labels. For example, the two objectives can be distance

d and some cost c. In this case, we try to find the path that has the shortest distance d(p) while

keeping the cost c(p) under particular constraint C. The number of such possible criteria can be

unlimited, but in this work, we will focus on one single criterion CSP problem, where there is only

one constraint label.

Definition 3. (CSP problem) For a graph G(V, E) where each edge e œ E is associated with a

distance d and cost c, find the path with minimum distance d(p) while keeping the cost c(p) under

pre-defined constraint C.

Figure 2.4 illustrates an example of the CSP problem. Each edge is associated with a label that

contains two values. The first value indicates the distance between the two nodes, while the second

value indicates the cost of traversing along this edge. Given query (A, E, 6), which indicates

finding the shortest path from A to E while keeping the total cost below 6. The answer to this

query would be the path A æ C æ E, as any other paths either have a higher combined weight,

or does not meet the cost constraint.

Figure 2.4: An example of the Constrained Shortest Path (CSP) problem.
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2.3.1 Exact Algorithms

Hansen [47] proposed the Skyline-Dijkstra to handle multiple criteria pathfinding. Starting from

the source vertex, a priority queue is used to store skyline paths. During the search process, each

vertex maintains a label set containing all skyline paths passed through this vertex. When a vertex

expands its path to its neighbors, it first checks if the proposed path can be dominated by any

existing other paths of its neighbor. If not, then this path is added to the label of that neighbor.

The search terminates when the priority queue is empty. The complexity of this algorithm is

O(wmax|V ||E|log(wmax|V |) where wmax is the longest edge distance of the graph.

Kriegel et al. [48] incorporate graph embedding technique to calculate skylines on route selection

based on arbitrary network attributes. The core of this skyline query processor is a route iterator

that computes top routes according to preference efficiently while avoiding the route computations

that need to be issued from scratch in each iteration. In addition, this algorithm is also proposed

with pruning techniques to reduce search space. Gong et al. [49] propose a new type of skyline

query for finding skyline destinations. The proposed skyline query takes as input a multi-cost

transportation network (MCTN), a query point q, and a set of objects of interest D with spatial

information. The answer to such queries are objects in D that are not dominated by other objects

when considering multiple attributes of these objects and multiple network costs. An exact search

algorithm was proposed with the addition of efficient heuristics methods for enhancement.

2.3.2 Approximate Algorithms

Lee [50] proposed an approximate algorithm for multi-constraint decisions named Fallback. Fall-

back is divided into two phases. In the first phase, it computes the approximate shortest path

according to the optimization criteria of the first constraint. If the other constraints are also satis-

fied, then the result is returned. Otherwise, it re-computes the path based on the second constraint

and checks if other constraints are satisfied. This process is repeated until all the constraints are

satisfied, or there is no path that satisfies all constraints. As an approximate algorithm, it has no

guarantee for the optimal path. Pornavalai et al. [51] modify the algorithm by combining inter-
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mediate results. The enhanced algorithm runs a set of forwarding path searches based on each

constraint and another set of backward path searches. Then, it finds a relatively optimal path from

all combinations of these intermediate results. Ishida et al. [52] proposed a distributed extension

of this algorithm. It discusses the issue of constrained least-cost path routing of real-time traffic

networks and formulated the problem in a distributed manner. Vertices in the network are dis-

tributed across multiple machines. The proposed heuristic algorithm always chooses the shortest

path for each intermediate vertex until it satisfies the resource constraint, and is guaranteed to find

a delay-constrained path between the source vertex and target vertex.

COLA [53] is a solution for approximate CSP processing on large networks. COLA takes advan-

tage of the fact that there exists a small set of landmark vertices that commonly appear in CSP

results. By partitioning the network into regions, CSP is able to index vertices lying on partition

boundaries and compute paths within a partition with –-Dijkstra algorithm, which is able to prune

paths based on landmarks. Due to the nature of the approximate algorithm, it is able to answer

CSP queries in sub-second time.
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Chapter 3

Problem Statement and Preliminaries

This chapter introduces the concept of quality constrained shortest distance problem. Part of this

chapter comes from the work (Y. Peng, Z. Ma, W. Zhang, X. Lin, Z. Ying, X. Chen, “Efficiently

Answering Quality Con-strained Shortest Distance Queries in Large Graphs”, submitted to Inter-

national Conference on Data Engineering(under revision), 2022).

3.0.1 Problem Definition

Quality constrained shortest distance (WCSD) is defined over an undirected unweighted graph

G(V, E, �, ”), where V (G) denotes the set of vertices, E(G) denotes the set of edges, � µ R is

a set of real-valued qualities, and ” : E(G) æ � is a function that assigns each edge e œ E(G)

to a real-valued quality w œ �. For each vertex u œ V (G), NG(u) = {v|(u, v) œ E(G)} denotes

the set of neighbors of u, and degG(u) denotes the degree of u, i.e., degG(u) = |NG(u)|. A path p

from the vertex s œ V (G) to the vertex t œ V (G) is a sequence of vertices Èv0 æ v1 æ · · · æ vkÍ

such that s = v0, t = vk and (vi≠1, vi) is an edge that belongs to E(G) for ’i œ [k]. The length

of p, denoted by len(p), is the number of edges included in the path p, i.e., len(p) = k. A path

between s and t is the shortest if its length is no larger than any other path between s and t, and

the distance between s and t in G, denoted by distG(s, t), is defined as the length of the shortest

path between s and t.
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Figure 3.1: An example graph. The values besides edges are their qualities.

Definition 4. (w-PATH) Given a graph G and a threshold w, a w-path, denoted by pw, is a path

in G such that each of its edge has a quality not smaller than w, i.e., ’e œ pw, ”(e) Ø w.

Definition 5. (w-CONSTRAINED DISTANCE) Given two vertices s and t in a graph G, and a

threshold w, the w-constrained distance between s and t, denoted by dist
w
G(s, t), is the minimum

length among all the w-paths between s and t.

For simplify, this work focuses on the distance first. Once the distance is found, the quality

constrained shortest path can be easily located.

Definition 6 (WCSD). Given two vertices s and t in a graph G, and a real-valued threshold w, the

WCSD problem is to answer the w-constrained distance query, i.e., computing the w-constrained

distance between s and t.

Example 1. Figure 3.1 depicts a weighted undirected graph, with the quality of each edge denoted

by the number adjacent to it. In this example, a 1-constrained path between v0 and v8 is {v0 æ

v2 æ v8} since each edge on the path has a quality no less than 1. It is also the shortest 1-

constrained path between v0 and v8, therefore dist1(v0, v8) = 2. However, {v0 æ v2 æ v8} is

not a 2-constrained path, since the edge (v0, v2) has a quality less than 2. Alternatively, {v0 æ

v1 æ v2 æ v8} is the shortest 2-constrained path between v0 and v8, therefore dist2(v0, v8) = 3.

For vertices v1 and v4, the path {v1 æ v2 æ v9 æ v8 æ v5 æ v4} is both a 2-constrained path

and a 3-constrained path. However, it is not the shortest 2-constrained path as {v1 æ v2 æ v8 æ

v5 æ v4} also meets the constraint and has a shorter length.
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3.0.2 2-Hop Labeling Framework

Hub Labeling for Distance Queries. Hub labeling [38] is a vital category of algorithms for dis-

tance evaluation. In this class, a label L(v) is computed for each vertex v s.t. the distance between

two vertices s and t can be obtained by inspecting L(s) and L(t) only, without traversing the

graph. It is NP-hard to generate a labeling with the minimum size [38]. Efficient hub labeling

for road networks is explored in [8, 54]. [18] presents a labeling scheme that instead employs

paths as hubs. Under the assumption of small treewidth and bounded tree height, [17] proposed a

scheme combining both hub labeling and hierarchy for road networks. Pruned landmark labeling

(PLL) [55] is the state-of-the-art for real graphs, and its various extensions have been devised.

For instance, [40] proposed an external algorithm that generates the same set of labels; [56] de-

vised a parallel algorithm; and [57] describes an algorithm that updates the labels as new edges

are inserted into the graph. [58] conducted an experimental study on hub labeling for distance

queries.
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Chapter 4

WC-Index Solution

This chapter elaborates on our index-based solution to the quality constrained shortest distance

problem. Part of this chapter comes from the work (Y. Peng, Z. Ma, W. Zhang, X. Lin, Z. Ying, X.

Chen, “Efficiently Answering Quality Con-strained Shortest Distance Queries in Large Graphs”,

submitted to International Conference on Data Engineering(under revision), 2022).

4.1 Baseline Solutions

4.1.1 Basic Online and Indexing Approaches

BFS-based Online Approaches. A naïve online approach is to conduct a constrained breadth first

search, which filters out-edges with quality values lower than the constraint w. The time and space

complexity is both O(|V | + |E|). Alternative algorithms such as Dijktra can also be performed.

Another solution is to partition the original graph according to the values of quality, then it can

perform constrained BFS on the corresponding partition. On large graphs, none of these online

approaches is efficient in terms of query time. These algorithms are evaluated as baselines in the

experiments.

Details. Algorithm 1 depicts the BFS-based online computation. Line 1 initializes the arrays dis
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and visited. Line 1 initializes the search queue with the vertex s, and set visited[s] = true. Lines

2 to 16 constitute the search procedure. In each iteration, size is set as the current size of P and

dis = dis + 1 in Line 3. Then, all the vertices are traversed in Line 4 according the to vertex

order. For vertex u in P , each vertex v in its neighbors is explored, and it will be pruned in Line 7

if e(u, v) < w or visited[v]. Line 10 returns the dis if explores t. Otherwise, w is added into the

P and set visited[v] = true to prevent duplication of candidates. INF is returned in Line 17 if

not reach t.

Algorithm 1 WC-BFS
Input:any two vertices s, t œ V , and constraint w;

Output:dist
w between s and t

1: dis = 0, ’v œ V, visited[v] = false, P.push((s)), visited[s] = true;

2: while P ”= ÿ do

3: size Ω P.size(), dis = dis + 1;

4: for ’i œ {1, .., size} do

5: (u) Ω P.pop();

6: for ’i œ {1, .., size} do

7: if e(u, v) < w or visited[v] then

8: Continue;

9: end if

10: if v == t then

11: Return dis;

12: end if

13: P.push(v), visited[v] = true;

14: end for

15: end for

16: end while

17: return INF

2-hop Labeling Approach. 2 hop-labeling approaches have been proven to be effective for ad-

dressing shortest path problems [17, 18]. 2-hop indexes store the distance between vertices that

has been precomputed. Each vertex u œ V has its own label consisting of the form (v, d), where v

is another vertex in the graph and d is the distance from u to v. To obtain the distance from vertex

s to vertex t, common vertices are identified in the labels of both s and t, calculate the distance as
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the sum of their respective distance to w, and return the minimum sum of distances.

Naïve 2-hop labeling method for WCSD. A naïve 2-hop labeling solution involves filtering the

graph based on edge qualities and constructing a classical 2-hop labeling index for each filtered

graph. |w| is used to denote the number of distinct values of edge qualities. Thus, |w| 2-hop

indices will be constructed, each containing only edges satisfying ’e œ E, ”(e) Ø w. Given

a query (s, t, w0), it can be answered by using the classical 2-hop labeling method by a simple

set intersection operation for the corresponding index with w0. This approach becomes infeasi-

ble since the space required to store all of the indices grows as the graph sizes and |w| increase.

Moreover, in some instances, e.g., communication networks, the edge qualities are not integers.

In such a scenario, it is impossible to create the naïve 2-hop labeling for every possible value of

w. The time complexity of the naïve method is O(|V | · (|V | + |E|) · |w|). The space complexity

is O(|V | · |V | · |w|) since the number of induced graphs is |w|, and in each of them, every vertex

could store |V | label entries in the worst case.

4.2 Index Construction

4.2.1 Our proposed 2-hop Labeling Index-based Approach

The naïve approach can answer queries efficiently. Nevertheless, it needs to construct |w| distinct

2-hop indices, which is inefficient and space-consuming. It becomes prohibitive to construct and

maintain such a vast number of indices when |w| is large.

Observation 1. By building |w| 2-hop labeling indexes, one may notice that numerous entries in

the separate indices are redundant and elimination of those redundant entries does not impair the

correctness of the queries. In this section, a modified 2-hop indexing approach is proposed which

seeks to build only one index while efficiently supporting quality constrained shortest distance

queries.

Before providing this approach, the concept of path dominance is firstly described.
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Definition 7. (PATH DOMINANCE) Given two vertices s and t in a graph G, as well as two w-

paths from s to t, i.e., pw1 and pw2 , pw1 dominates pw2 if len(pw1) Æ len(pw2) and w1 Ø w2.

Definition 8. (MINIMAL PATH) A w-path pw is a minimal path if it cannot be dominated by any

other w-path.

Example 2. An example is illustrated in Figure 4.1. For paths between vertices v0 and v4, path

{v0 æ v3 æ v4} with length 2 dominates path {v0 æ v3 æ v5 æ v4} with length 3, since

the two paths have the same minimum edge quality of 1 and the length of {v0 æ v3 æ v4} is

smaller. For paths between vertices v1 and v3, {v1 æ v2 æ v3} with a minimum edge quality of

4 dominates {v1 æ v0 æ v3} with a minimum edge quality of 1, while both have the same length

of 2. Likewise, {v1 æ v3} dominates {v1 æ v0 æ v3} due to both length and minimum edge

quality. Path {v0 æ v3 æ v4} is the minimal 1-path between v0 and v4, because it cannot be

dominated by any other paths. Also, {v1 æ v2 æ v3} is both the minimal 3-path and minimal

4-path between v1 and v3.

In this work, the dominance relationship between paths is leveraged and a single compact 2-hop

index is generated, which is capable of answering queries regarding arbitrary quality constraint w.

The WC-INDEX index is defined as follows:

Definition 9. (WC-INDEX) Given an undirected weighted graph G, a WC-INDEX L of G as-

signs a label set L(u) to each vertex u œ V (G). An index entry (v, dist
w̄
G(u, v), w̄) œ L(u)

indicates that there exists a minimal w̄-path between u and v, and it also records the correspond-

ing w̄-constrained distance dist
w̄
G(u, v) between them.

Table 4.1: Summary of Datasets

Vertex L(·)
v0 (v0, 0, Œ)
v1 (v0, 1, 3), (v1, 0, Œ)
v2 (v0, 2, 3), (v1, 1, 5), (v2, 0, Œ)
v3 (v0, 1, 1), (v0, 2, 2), (v0, 3, 3), (v1, 1, 2), (v1, 2, 4), (v2, 1, 4), (v3, 0, Œ)
v4 (v0, 2, 1), (v0, 3, 2), (v0, 4, 3), (v1, 2, 2), (v1, 3, 4), (v2, 2, 4), (v3, 1, 4), (v4, 0, Œ)
v5 (v0, 2, 1), (v0, 3, 2), (v0, 5, 3), (v1, 2, 2), (v1, 4, 3), (v2, 2, 2), (v2, 3, 3), (v3, 1, 2), (v3, 2, 3), (v4, 1, 3), (v5, 0, Œ)
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Figure 4.1: A running example.

Given a complete WC-INDEX L of G, for any two vertices s, t œ V (G) and an arbitrary real-value

w œ R, query Q(s, t, w) computes the w-constrained distance between s and t as:

dist
w
G(s, t) = min

uœL(s)flL(t)
w1,w2Øw

dist
w1
G (s, u) + dist

w2
G (u, t) (4.1)

Algorithm 2 Query Algorithm
Input:any two vertices s, t œ V , and constraint w;

Output:dist
w between s and t

1: dist
w

Ω Œ;

2: for every index entry Ii in L(s) do

3: if Ii.quality Ø w then

4: for every index entry Ij in L(t) such that Ij .vertex = Ii.vertex do

5: if Ij .quality Ø w then

6: if Ii.dist + Ij .dist < dist
w then

7: dist
w

Ω Ii.dist + Ij .dist;

8: end if

9: end if

10: end for

11: end if

12: end for

13: return dist
w;

Example 3. Figure 4.1 illustrates how these 2-hop labeling index works. Given a query Q(v2, v5, 2),

L(v2) and L(v5) are explored. This example starts with the first entry of L(v2), (v0, 2, 3), and dis-

cover that it satisfies the quality constraint of 2. In the following, entries in L(v5) are explored that

share the same vertex v0 and also satisfy the quality constraint. (v0, 3, 2) is the first constraint-
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satisfying entry in L(v5). Therefore, dist
2 = 2 + 3 = 5 is obtained. The next entry (v0, 4, 3) also

satisfies the constraint. Nevertheless, since the resultant distance dist
2 = 2+4 = 6 is larger than

the previous distance obtained, no update is performed and dist
2 remains as 5. It then moves on to

the second entry of L(v2) which satisfies the constraint: (v1, 1, 5). In L(v5), label entries (v1, 2, 2)

and (v1, 4, 3) are found satisfactory and subsequently update the distance as dist
3 = 1 + 2 = 3.

Lastly, it visits (v2, 0, Œ) in L(v2) and finds (v2, 2, 2) in L(v5), resulting in dist
2 = 0 + 2 = 2.

(a) The 1st iteration. (b) The 2nd iteration. (c) The 3rd iteration.

(d) The 4th iteration. (e) The 5th iteration. (f) The 6th iteration.

Figure 4.2: The constrained BFS process for v0.

4.2.2 Distance-Prioritized Search Order

The whole index construction process consists of |V | iterations’ constrained BFS starting from

different vertices. In each constrained BFS, it will explore at most |V | vertices, but each vertex will

be touched at most once. The order of these |V | iterations’ starting vertex is named Vertex Order,

while in i-th constrained BFS starting from vertex vi, the order to explore remaining vertices is

called the search Order of vi. These two types of orders are crucial for indexing time, indexing

size, and query time in the 2-hop based index.
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Below we introduce three properties that we aim to preserve for WC-INDEX. Then, a smart search

order is proposed to guarantee these three properties at no additional cost, particularly the minimal

property.

• Soundness. If there are two index entries (v, d1, w1) œ L(s) and (v, d2, w2) œ L(t) with

w1 Æ w2 (w2 Æ w1), then there exists a quality constrained path from s to t with distance

d1 + d2 that satisfies quality constraint w Æ w1 (w2).

• Completeness. If there is a quality constrained shortest path P0 from s to t with distance

d, and satisfying quality constraint w (w = min(w(e)|e œ P0)), then there exist either

two label entries (v, d1, w1) œ L(s) and (v, d2, w2) œ L(t). If w = min(w1, w2), then

d1 + d2 = d and w = w, or single label entry such as (s, d, w) œ L(t) or (t, d, w) œ L(s).

• Minimal. Intuitively, the minimal property indicates that any deletion of the existing label

entries will cause incorrect results for some queries. This property is formulated as follows:

For a vertex u, an entry I = (v, d1, w1) is minimal if I is not dominated by any other entries

in L(u); that is, there is no entry I
Õ = (v, d2, w2) œ L(v) s.t. d2 Æ d1, and w2 Ø w1. An

index entry I = (v, d1, w1) is necessary if there does not exist a vertex u0 s.t. (u0, d0, w0) œ

L(s) and (u0, d
Õ
0, w

Õ
0) œ L(t) where d0 + d

Õ
0 Æ d1 and min(w0, w

Õ
0) Ø w0. Then, a WC-

INDEX is minimal if every index entry in it is both minimal and necessary.

To efficiently construct the WC-INDEX, the dominance relationships between edge qualities are

exploited. Utilizing path domination, pruning is performed by traversing vertices in a certain

order. To optimize the number of path traversals that are pruned throughout the index construction

process, the following priority-based search orders are strictly adhered:

1. Distance order. Computing the index entries with smaller distance d first;

2. Quality order. When tackling one specific d value, explore the entries with the largest quality

value w first.

Based on the above processing order, the WC-INDEX is constructed using BFS traversals from

each vertex. Consider the BFS process from vertex v œ V . The maximum w value of paths from
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v to all other vertices are recorded. During each iteration of BFS expansion, it will be determined

whether the visited vertices, say u, can be reached from v by an existing path that dominates the

current path, where an existing path is a path indicated by the current index entries. If the current

path from v to u is dominated by an existing path, u is pruned from the BFS process. Otherwise,

the corresponding index entries are added into the WC-INDEX. Before moving onto the next

iteration, all paths are processed from this iteration of expansion. Therefore, it is guaranteed that

the index entries added in this iteration will not be dominated by any other entries.

Algorithm 3 WC-Index Construction
Input:a graph G, and a vertex order O;

Output:the constructed 2-hop index L;

1: L(v) Ω {(v, 0, Œ)} for all v œ V (G);

2: for k = 1, 2, · · · , n do

3: vk Ω the k-th vertex in O;

4: R(v) Ω 0 for all v œ V (G);

5: P Ω an empty queues;

6: P.push((vk, 0, Œ));

7: while P ”= ÿ do

8: vec Ω ÿ;

9: while P ”= ÿ do

10: (u, d, w) Ω P.pop();

11: if QUERY(vk, u, w, L) Æ d then continue;

12: else Lk(u) Ω Lk(u)
t

(vk, d, w);

13: for each vi œ NG(u): O(vi) > O(vk) do

14: w
Õ
Ω min(”(e = (u, vi)), w);

15: if w
Õ
Æ R(vi) then continue;

16: vec Ω vec
t

{vi}; R(vi) Ω w
Õ;

17: end for

18: end while

19: for each w œ vec do P.push(vi, d + 1, R(vi));

20: end while

21: end for

22: return L;
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The algorithm for constructing WC-INDEX is shown in Algorithm 3. Given graph G and a vertex

order O, this algorithm constructs the WC-INDEX L, which consists of entry sets L(v) for every

v œ V . Each entry set L(v) is initialized as a set that contains only one entry, which corresponds

to v itself (Line 1). Then, BFS is executed for all vk œ V following the specified order. A vector

R(v) of size |V | is used to record the current largest w value of all paths from v to all other

vertices in the graph, with values set to 0 (Line 4). The maximum w value from vk to u is denoted

as w
u
max. A queue P is used to store tuples in the form of (u, d, w), where u is a vertex visited

in the previous round of BFS, d is the associated BFS path length, and w is the minimum edge

quality of that path. P is initialized to contain a single element of (vk, 0, Œ) (Line 5). The BFS

process from vk is described in Line 7-17 of Algorithm 3.

During each iteration of BFS expansion, for each entry in queue P , a query is performed on the

w-constrained path from vk to u using the current index constructed so far (Line 11). This entry

will be pruned if the result w-constrained distance from the query is smaller than the current BFS

distance d. If not, the entry is appended to the index (Line 12). Then, for each vi œ N(u), it will

determine whether vi can be reached from v by an alternative path with a greater w value (Line

13-16). This is determined by comparing the current w to w
vi
max. If w < w

vi
max, then w is pruned

from the BFS process. Otherwise, vi is added to a temporary set, and update w
vi
max with the value

w. After all neighbors of u have been processed, all temporary queue entries are pushed into P to

be processed in the next expansion iteration, with a distance of one step further from vk (Line 17).

Thus, the algorithm ensures that for each vi only one path with the greatest w will be considered

in the next iteration. After all potential entries are popped from P , the process is repeated on

this queue for the following round of BFS. The entire BFS from vk ends when P is empty. The

construction of WC-INDEX index finishes, after performing BFS for all v œ V .

Example 4. Figure 4.2 illustrates how the Algorithm 3 operates for the vertex v0 in Figure 4.1.

R(v) Ω 0 for every v œ V (G) and R(v0) = Œ. Figure 4.2a investigates the neighbors of v0, i.e.,

v1 and v3. Then, R(v1) = 3 and R(v3) = 1. In addition, P is updated to include the newly added

vertices v1 and v3. Figure 4.2b indicates that v2, v3, v4, and v5 will be explored. It is noted that v3

is updated into P again since in the round, R(v3) is updated with a larger value, i.e., 2. Likewise,

in Figure 4.2c, v3, v4 and v5 are inserted into P due to their updated R values. In Figure 4.2d,
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only v4 is inserted into P and R(v4) is updated with 3 since a path v0 æ v1 æ v2 æ v3 æ v4

is found. In this path, the minimal quality is e(v0, v1) = 3. Figure 4.2e depicts the updates for

v5 with only v5 being inserted into P and R(v5) being updated with value 3. This is the result of

the newly found path v0 æ v1 æ v2 æ v3 æ v4 æ v5. Figure 4.2f illustrates the last iteration.

The constrained BFS for v0 terminates at this iteration since there is no update for any vertex. For

every triple inserted into P , the corresponding label entry is inserted into L(v0).

Lemma 1. In Algorithm 3, for each candidate index entry popped by the queue (Line 10), it cannot

be dominated by all the candidate index entries popped by the queues afterwards.

Proof. Since for each iteration of BFS expansion, all entries in queue P are popped, and then new

entries are added back to this queue P . Then, this queue can only contain entries with the same

d at a given moment. For vertex u in a certain BFS iteration, if u already exists in the temporary

set, which indicates there is an existing path from vk to u with w
u
max. If the current path induces

an entry with w > w
u
max, w

u
max is updated to be w. Otherwise, nothing happens. Consequently,

w will only exist once in the temporary set, and will only be pushed into queue P once, with

w = w
u
max, which is the maximum w value at distance d. Any future entries in P regarding u

will include a larger d. Therefore, popped entries will never be dominated by future entries in the

queues.

Correctness of Algorithm. Then, the correctness of the algorithm is proved by its Soundness and

Completeness. Additionally, the Minimal properties is proved.

Theorem 1. Algorithm 3 can construct a Sound, Complete, and Minimal index for WCSD prob-

lem.

Proof. First, the Soundness and Completeness are demonstrated. These two characteristics are

equivalent to the correctness of Algorithm 3.

Soundness. It is proved by contradiction. Assume there are two index entries (v, d1, w1) œ L(s)

and (v, d2, w2) œ L(t) with w1 Æ w2 (w2 Æ w1), and there does not exist a quality constrained

path from s to t with distance d1 + d2 and satisfy quality constraint w Æ w1 (w2). According
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to the index construction process, there are two quality constrained shortest paths. The first is

s  v with distance d1 and quality constraint w1, whereas the second is v  t with distance d2

and quality constraint w1. Therefore, it can be combined to produce a new path Pnew. Note that

soundness simply requires a quality constraint path; it does not have to be shortest.

Completeness. Similarly, the Completeness is demonstrated by contraction. Assume that there is

a quality constrained shortest path from s to t with distance d, satisfying quality constraint w,

then there does not exist either two label entries (v, d1, w1) œ L(s) or (v, d2, w2) œ L(t). If

w = min(w1, w2), then d1 + d2 = d, nor one label entry like (s, d, w) œ L(t) or (t, d, w) œ L(s).

Assume s is explored before t
1 and s is the first vertex that leads to such incorrectness, and s, t

is the first vertex pair to lead the incorrectness. This indicates that the Completeness of all the

previously explored vertices is maintained. Consequently, according to Algorithm 3 Line 11, if

the Query(s, t, w) is pruned, then it indicates that there exist two label entries (v, d1, w1) œ L(s)

and (v, d2, w2) œ L(t). If w = min(w1, w2), then d1 + d2 = d. Otherwise, the label entry

(s, d, w) is inserted into L(t) in accordance with Algorithm 3 Line 12.

Minimal. According to Algorithm 3 Line 11, a newly added label entry is Minimal when it is

inserted into the index. Therefore, it is only necessary to prove it will not be dominated in the

label entries that are inserted after it. Due to the distance order, quality order, and Definition 7,

this property is automatically maintained.

Theorem 2. The index constructed by Algorithm 3 is capable of producing correct results.

Proof. Theorem 1 proves the Soundness and Completeness of constructed index. Thus, its cor-

rectness is immediately proved.

Complexity Analysis. The while loop dominates the time complexity of indexing from the vertex

vk. Let I(v) denote all the index entries associated with v and let ’ = max
vœV (G)

|I(v)|. Let dmax

denote the maximum vertex degree in the graph. Observe that in Algorithm 3, Lines 13-16 are

executed at most ’ times, hence the size of the priority queue cannot exceed ’dmax. For each index

1The proof process is similar if t is the earlier one.
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entry in the queue, a query operation is performed to determine whether it can be covered by the

existing index entries, and the query time is bounded by O(’). As a result, the time complexity of

Algorithm 3 is O(n · ’ · dmax(log ’ · dmax + ’)).

The size of the index is bounded by O(quœV (G)
q

vœV (G)Æu
min(D, |w|)).

4.2.3 Query-Efficient Implementation

Since the Query function is commonly utilized during the index construction and query stages, it

is a vital component that influences three aspects of the index: indexing time, index size, and query

time. This subsection investigates how to efficiently implement the Query function by utilizing

the problem’s property.

Given a query(s, t, d, w), a basic operation is to determine whether there are two label entries

(u1, d1, w1) and (u2, d2, w2) with u = u1 = u2, d1 + d2 Æ d, w1 Ø w, and w2 Ø w.

Naïve Implementation. For simplicity, L[u] denotes all the label entries of vertex u, and L[u][v]

denotes all the label entries as (v, dv, wv) in L[u]. The naïve query function is represented by

Algorithm 4. Line 1 traverses every label entry in the L[t]. Assume a label entry is Ij , Line 3

prunes it if its vertex order is larger than s or quality is less than the quality constraint. Otherwise,

entries of L[s][v] are explored, where v is the vertex of Ij , and validate whether there are two

valid label entries Ij and Ii to return a true result. The time complexity of this implementation is

O(|L(s)| + |L(t)| + q
vœL[t].vertex |L[t][v]| ◊ |L[s][v]|).

The following theorem helps speed up this procedure.

Theorem 3. For two label entries (u0, d0, w0) and (u0, d1, w1) in L(v), if d0 > d1, then w0 > w1,

and vice versa.

Proof. This theorem is proved by contradiction. Assume that there are two label entries (u0, d0, w0),

and (u1, d1, w1), s.t. d0 > d1 and w0 Æ w1. According to Lemma 1, (u0, d0, w0) will be elim-

inated since it is dominated by (u1, d1, w1), which results in a contradiction. Likewise, a similar

contradiction exists when w0 > w1 with d0 Æ d1.
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Algorithm 4 Query

Input:any two vertices s, t œ V , constraint w, and current distance d;

Output:a boolean value indicating if a path is found;

1: for ’Ij œ L[t] do

2: if Ij .vertex > s or Ij .quality < w then

3: continue;

4: end ifv = Ij .vertex;

5: if L[s][v] = ÿ then

6: continue;

7: end if

8: for ’Ii œ L[s][v] do

9: if Ii.quality Ø w then

10: if Ii.dist + Ij .dist <= d then

11: return True;

12: end if

13: end if

14: end for

15: end for

16: return False;

Querying. During the BFS process for one vertex vk, it is noted that all queries are issued with

one end-point as vk. Therefore, an array T of size |V | is initialized with the existing index entry

of that vk before the BFS begins. To evaluate QUERY (u, vk), the new querying algorithm needs

O(|L(u)|) time rather than O(|L(u)|) + O(|L(vk)|) for looping through two entry lists.

Based on Theorem 3, the index entries (di, wi), i = 1, 2, ..., |L(v)| for vertex v œ V must be in

increasing order in terms of d and w. If j > i, then both dj > di and wj > wi. Instead of iterating

through T , binary search could be utilized to locate elements. Then, in such an implication, the

time complexity is O(|L(s)| + |L(t)| + q
vœL[t].vertex |L[t][v]| ◊ log|L[s][v]|).

Query-Efficient Implementation. Based on Theorem 3, the time complexity can be further re-

duced to O(|L(s)|+ |L(t)|). The idea is explained as follows: Since the index entries (di, wi), i =

1, 2, ..., |L(v)| for vertex v œ V must be in ascending order in terms of d and w, if finding the first

index entry (ui, wi, di) whose wi Ø w, di is minimal for (ui, ·, ·). Thus, for every v œ L(s) or

38



4.2.3 Query-Efficient Implementation

L(t), only one label entry is required. Then, a naïve scanning could be conducted to answer the

queries. The time complexity is O(|L(s)| + |L(t)| + q
vœL[t].vertex (log|L[t][v]| + log|L[s][v]|)).

Since
q

vœL[t].vertex (log|L[t][v]| + log|L[s][v]|) Æ |L(s)| + |L(t)|, the final time complexity is

O(|L(s)| + |L(t)|).

Details. The details of the Query-Efficient Implementation is illustrated in Algorithm 5. Line 1

traverses every vertex v œ L(t). Line 3 prunes if L[s][v] = ÿ. If not empty, a modified binary

search is utilized to locate the first label entry with wi Ø w in L[t][v] and wj Ø w in L[s][v],

respectively. true is immediately returned if d1 + d2 Æ d in Line 7. Otherwise, the query answer

is false in Line 8;

Algorithm 5 Query
+

Input:any two vertices s, t œ V , constraint w, and current distance d;

Output:a boolean value indicating if a path is found;

1: for ’ vertex v œ L[t] do

2: if L[s][v] = ÿ then

3: continue;

4: end if

5: Find Ii œ L[t][v] which is the first label entry with wi Ø w;

6: Find Ij œ L[s][v] which is the first label entry with wj Ø w;

7: if di + dj Æ d then

8: return True;

9: end if

10: end for

11: return False;

Efficient Initialization. An important aspect is to avoid O(n) time initialization for data structures

during each round of BFS. This may develop into a bottleneck. A solution is to set updated values

in the array, without recreating the whole array. This can be accomplished by recording which

vertices have been processed during the process, and only update them.

Further Pruning. Whenever a path is found during the query process of index construction, the

algorithm records the result for the current quality of that vertex pair. If a potential query in the

same BFS round has the same vertex pair and a quality not greater than the recorded quality, the
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query process can be skipped since its result is recorded.

4.2.4 Vertex Ordering Strategies

Vertex ordering is one of the vital orders that significantly affect indexing time, index size, and

querying time. This subsection investigates a hybrid vertex ordering based on some observations.

Observation 2. The degree ordering is shown to have better performance than other order-

ings [18] for the shortest path distance problem in the scale-free network, e.g., social networks.

Notwithstanding, for the road network “Indochina"2, the tree decomposition based ordering has

much better performance.

Observation 3. It is shown in [17] that Vertex Hierarchy via Tree Decomposition technique is

appropriate for the road network for distance query.

To use the Observation 3, it first introduces the degree-based ordering as well as the Vertex Hier-

archy through Tree Decomposition.

Degree-Based Scheme. A vertex with a higher degree is likely to cover more shortest paths. In

summary, in degree-based ordering, vertices are sorted in non-ascending order of degree. This

scheme leads to the state-of-the-art canonical hub labeling for shortest distance queries.

Tree Decomposition Ordering. Tree decomposition is a technique for mapping a graph to a tree in

order to accelerate the resolution of certain computational problems in graphs [59,60]. Numerous

algorithmic problems, such as maximum independent set and Hamiltonian circuits that are NP-

complete for arbitrary graphs, can be solved efficiently by dynamic programming for graphs of

finite treewidth, employing the tree-decompositions of these graphs. A summary of Bodlaender’s

introduction can be found in [61]. The tree decomposition provides a natural hierarchy to vertices.

In this work, tree decomposition is utilized to establish the vertex hierarchy, and demonstrate that

the hierarchy is effective in resolving quality constrained distance queries in networks. A tree

decomposition of a graph G(V, E) is defined as follows [61]:

2http://law.di.unimi.it
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Definition 10 (Tree Decomposition). A tree decomposition of a graph G(V, E), denoted by TG,

is a rooted tree in which each node X œ V (TG) is a subset of V (G) (i.e., X µ V (G)) with the

following three conditions:

•
t

XœV (TG) X = V ;

• For every (u, v) œ E(G), there exists X œ V (TG) s.t. u œ X and v œ X .

• For every v œ V (G) the set {X|v œ X} forms a connected subtree of TG.

Based on Observations 2 and 3, it simply employed vertex ordering of the Vertex Hierarchy via

Tree Decomposition in [17] and developed a fast approach to obtain this ordering as opposed to

constructing their whole index for the WCSD problem.

The computation of the treewidth of a graph has been shown to be NP-Complete [62]. One of the

most effective heuristics Tree decomposition is based on minimum degree elimination.

Minimum Degree Elimination (MDE)-based Tree Decomposition. Minimum Degree Elimina-

tion [63] based tree decomposition removes recursively the vertex v in G with the minimum degree

and then adds v’s neighbors’ clique back to G. A bag of the tree decomposition is comprised of

each node v and its neighbors on the transient graph right before the deletion of v.

Definition 11 (Minimum Degree Elimination). Generate n bags of nodes {B1, B2, ..., Bn} and

a sequence of nodes {v1, v2, ..., vn} in n rounds with the starting graph G0 = G. In the i ≠ th

round, i takes value from 1 to n:

• vi : the node with the lowest degree (or any one of these nodes if there is a tie situation) in

Gi≠1.

• Ni : the neighbor set of vi in Gi≠1.

• Bi : {vi} fi Ni.

• Gi : a graph that eliminates vi from Gi≠1 and then adds clique(Ni), that is V (Gi) =

V (Gi≠1\{vi}, and E(Gi) = E(Gi≠1) fi E[clique(Ni)] \{Ni} ◊ Ni.
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Hybrid Vertex Ordering. Therefore, this work proposes a hybrid vertex ordering that compromises

between the computational efficiency of degree vertex order and the index size effectiveness of the

tree decomposition order as follows:

• Classification. All vertices are classified into two categories: core part and periphery. To

achieve this, a degree threshold ” is specified. If a vertex v’s degree is above this threshold,

it is classified into the core-part. Otherwise, it is classified into the periphery.

• Core-Part. Regarding the core-part vertices, it is observed that the computation cost can be

quite high if the tree decomposition method is used. Therefore, all these vertices are ordered

according to their degree.

• Periphery. The vertices in periphery are ranked according to tree decomposition order.

• Combinations. Then, these two types of vertices are combined to produce a hybrid vertex

order.
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Chapter 5

Experimental evaluations

This chapter evaluates the WC-Index through extensive experiment. Part of this chapter comes

from the work (Y. Peng, Z. Ma, W. Zhang, X. Lin, Z. Ying, X. Chen, “Efficiently Answering

Quality Con-strained Shortest Distance Queries in Large Graphs”, submitted to International Con-

ference on Data Engineering(under revision), 2022).

5.1 Datasets

Datasets. Tables 5.1 and 5.2 provide the statistics of real graphs used in the experiments. 14

publicly available datasets are used. These datasets can be downloaded from either KONECT [64]1

or SNAP [65]2. Directed graphs were converted to undirected ones in our testings. For query

performance evaluation, 10,000 random queries were employed and the average time is reported.

For labelled graphs such as Movielens, |w| is directly taken from the original dataset. For other

non-labelled graphs, we randomly generate those weights.

1http://konect.uni-koblenz.de
2https://snap.stanford.edu
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CHAPTER 5. EXPERIMENTAL EVALUATIONS

5.2 Experimental Settings

Settings. In experiments, all programs were implemented in standard c++11 and compiled with

g++4.8.5. All experiments were performed on a machine with 20X Intel Xeon 2.3GHz and 385GB

main memory running Linux(Red Hat Linux 7.3 64 bit).

Table 5.1: Summary of Road Networks

Name Dataset |E(G)| |V (G)|
NY New York City 264,346 733,846
FLA Florida 1,070,376 2,712,798
CAL California and Nevada 1,890,815 4,657,742

E Eastern USA 3,598,623 8,778,114
W Western USA 6,262,104 15,248,146

CTR Central USA 14,081,816 34,292,496
USA Full USA 23,947,347 58,333,344

Table 5.2: Summary of Social Networks

Name Dataset |E(G)| |V (G)| |w|

MV-10 Movielens-10m 80,555 10,000,054 5
EU eu-2005 862,664 16,138,468 3
ES eswiki-2013 970,331 21,184,931 3

MV-25 Movielens-25m 221,588 25,000,095 5
FR frwiki 1,350,986 31,037,302 3
UK uk-2007 1,000,000 37,061,970 3

SO-Y Stackoverflow (year) 28,183,518 2,601,977 9

5.3 Baseline Algorithms

Algorithms We compare our techniques with the following baseline solutions.

• W-BFS. The original graph is partitioned into |w| parts, and then conduct BFS.

• Dijkstra. After the partitioning of the original graph into |w| parts, Dijkstra is conducted.

• C-BFS. It conducts Constrained BFS on the original graph, with the valid edges explored.
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Figure 5.1: Indexing Time (s) for baseline, WC-INDEX, and WC-INDEX+.

Figure 5.2: Indexing Size (GB) for baseline, WC-INDEX, and WC-INDEX+.

Figure 5.3: Querying time (ms) for baselines, WC-INDEX, and WC-INDEX+.
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• Naïve. The naïve 2-hop labeling method introduced in Section 4.1.

• WC-INDEX. The basic algorithm for the quality-constrained shortest path problem. e

• WC-INDEX+. The advanced algorithm with the query-efficient and hybrid order tech-

niques.

5.4 Evaluation on Road Network

5.4.1 Index Construction

Exp 1: Indexing Time for Road Networks. Figure 5.1 illustrates the indexing time for Naïve 2-

hop labeling index, WC-INDEX, and WC-INDEX+. What stands out in these figures is that WC-

INDEX+ is the fastest method to construct the index among these three algorithms. For instance,

for CTR, only WC-INDEX+ can construct the 2-hop index. As for Naïve and WC-INDEX, WC-

INDEX is slower than Naïve in small datasets, e.g., NY, BAY, COL, EST. Notwithstanding, WC-

INDEX is much faster than Naïve for large datasets, e.g., WST and CTR. We observed that for

smaller graphs, the construction overhead of WC-INDEX dominates the index construction time.

As a result, WC-INDEX builds up slower than the baseline index. On the other hand, na ¨ıve

index simply filter the graph based on every possible weight and construct simple 2-hop indexes

for each filter graph. When the graphs are small, this can be done relatively quickly compared

to WC-INDEX. However, as the size of the graphs gets large, building indexes for every separate

filtered sub-graph is costing much more time, and is eventually outperformed by WC-INDEX, b

which only constructs one index.

Exp 2: Indexing size for Road Networks. Figure 5.2 depicts the index size for Naïve 2-hop

labeling index, WC-INDEX, and WC-INDEX+. What is striking in this figure is that WC-INDEX

and WC-INDEX+ could achieve the same index size. The reason is that they use the same vertex

ordering, and the Query-Efficient technique can only speed up the construction process, but does

not have any impact on the index size. As for Naïve, its index size is the largest among these three

in all datasets.
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5.4.2 Query Time

Exp 3: Query Time for Road Networks. Figure 5.3 demonstrates the query time for W-BFS, Di-

jkstra, C-BFS, Naïve, WC-INDEX, and WC-INDEX+. An interesting obervation is that Dijkstra

is the slowest among all the algorithms. It is evident from Figure 5.3 that W-BFS and C-BFS have

comparable query efficiency. C-BFS is more efficient than W-BFS in terms of query time. These

two BFS-based online algorithms can commit on all the datasets. The query time for the index-

based technique is substantially smaller than the online search based method. On average, 4-5

orders of magnitudes speedup can be achieved. Nevertheless, the Naïve 2-hop labeling index can

not be constructed for CTR and WST, hence the query time for these two datasets is set as INF .

As with WC-INDEX and WC-INDEX+, they can be constructed in all datasets with a feasible

index size, indexing time, and query time in microseconds. For very large road networks such as

WST and CTR, the na ¨ıve indexing cannot be constructed due to memory constraint, since the

method builds separate indices for each w. As a result, the query time cannot be tested and thus

listed as infinity.

Figure 5.4: Indexing time (s) for baseline, WC-INDEX, and WC-INDEX+, when |W | = 20.

5.4.3 Evaluation for large |w|

Exp 4 investigates the indexing time and indexing size for the number of different constraint values

|w| = 20. Figures 5.4 and 5.5 reports the findings. The results are similar to that in Exp 1 and 2.

Regarding indexing time, Figure 5.4 reveals that WC-INDEX+ is the fastest method among these
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Figure 5.5: Indexing size (GB) for baseline, WC-INDEX, and WC-INDEX+, when |W | = 20.

three to construct the index. Regarding Naïve and WC-INDEX, WC-INDEX is slower than Naïve

across all datasets evaluated, i.e., NY, BAY, COL, EST. As for indexing size, what is striking in

Figure 5.5 is that WC-INDEX and WC-INDEX+ can achieve the same index size. The reason for

this is because they both employ the same vertex ordering, and the Query-Efficient technique can

only speed up the construction process, without affecting on the index size. As for Naïve, its index

size is the largest among these three in all datasets.

Figure 5.6: Indexing Time (s) for baseline, WC-INDEX, and WC-INDEX+.

5.5 Evaluation on Social Networks

Exp 5: Indexing Time, Size, and Query Time for Social Networks. Exp 5 evaluates the in-

dexing time, size and query time for social networks. As shown in Figures 5.6, 5.7, and 5.8,

the patterns resemble those of road networks. It is interesting to notice that the indexing time
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5.5. EVALUATION ON SOCIAL NETWORKS

Figure 5.7: Indexing Size (GB) for baseline, WC-INDEX, and WC-INDEX+.

Figure 5.8: Querying time (ms) for baselines, WC-INDEX, and WC-INDEX+.
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and size over social networks are larger than that of road networks since social networks have a

higher average degree. For the query time, this experiment does not consider the Dijkstra since

the edge is unweighted and thus it is the same as W-BFS in the social networks. The query times

of WC-INDEX, and WC-INDEX+ are much faster than that of Naïve method.
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Chapter 6

Conclusion and Future Directions

6.1 Conclusion and Future Works

The shortest path is a fundamental concept in graph analytics. Existing works mainly focus on the

distance computer of shortest paths. Nevertheless, finding a shortest path between s and t with a

quality constraint along each edge is an important problem in many applications. To bridge this

research gap, this work presents a 2-hop labeling based solution to answer quality constrained

shortest distance queries. Our techniques support query processing over large-scale graphs in

real-time. Our approach incorporates an extension to the 2-hop index that takes advantage of the

ordering of weights and distance, and significantly prunes vertices that would have been processed

in a classical 2-hop index while maintaining index minimality. We also investigated the ordering

of BFS searches and discovered that using vertex degree or tree decomposition can have different

effects on different kinds of networks.

6.1.1 Trade-off between Space and Query Time

The proposed WC-Index possesses a relatively high space complexity compared to online meth-

ods, which seems to be an optimal solution to the Constrained Distance problem in some contexts.
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For some smaller networks, the Constrained Shortest Distance problem can be easily solved by

weight-constrained BFS without any extra index, as well as the corresponding extra space cost.

In contrast, the proposed 2-hop labeling-based index has high space complexity. However, as

presented in the experiment section, WC-Index outperforms online methods by 4-5 orders of mag-

nitudes on larger graphs in terms of query speed. There exists a trade between index space and

query time, and the usage will depend on the context of the application.

In real applications, the quality constraint shortest distance queries can be issued frequently over

large-scale graphs. It requires both real-time response time and scalability. An online BFS-based

search needs to traverse the graph for given query vertices s and t, making it impractical for real

scenarios where real-time responses are demanded. 2-hop labeling approaches are shown to be ef-

ficient in supporting distance queries. Nevertheless, to deal with the constraints on edge qualities,

a na¨ıve adaption of a 2-hop labeling solution involves constructing an index for every possible

quality value w among all edges of the graph. Such a solution is infeasible since the number of

distinct w values can be large. To overcome these challenges, a modified 2-hop labeling index

is designed for the quality-constrained distance problem to fill this research gap. To further ac-

celerate index construction and query processing and to reduce index size, this paper investigates

various pruning methods, proposes a query-efficient approach, and develops efficient vertex order-

ing strategies. Since these applications deserve both real-time response time (the online method

could not satisfy) and scalability (the existing index-based method could not satisfy), our proposed

method could cope with all these two challenges.

The 2-hub index approach still performs much faster than conducting online constrained BFS,

which is ideal in circumstances where the query response time is crucial, and queries come in

frequently. The selection between the two kinds of approaches is decided by which trade-off

between time and space the user would like to take. Also, since these applications deserve both

real-time response time (the online method could not satisfy) and scalability (the existing index-

based method could not satisfy), our proposed method could cope with all these two challenges.
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6.1.2 Future Works

Maintenance under Dynamic Updates. Given a graph G, a labeling L(·) for G and an update

�G to G, the problem of dynamic labeling under �G is to maintain L(·) such that the resulting

labeling is the corresponding one for G ü �G, where G ü �G is the graph obtained by apply-

ing �G to G. Since the real-world applications for our problem is naturally dynamic, it is still

challenging to achieve high efficiency while maintaining the Minimal property.

For canonical distance labeling, the existing dynamic algorithms all fail to achieve high efficiency

while retaining the minimality of the labeling [57], and it is still an open problem regarding how to

address this issue. Since our labeling L Æ (·) contains the canonical labeling L
c
Æ(·) as a subset, the

same challenge persists when designing a dynamic algorithm for L
c
Æ(·). Worse yet, the necessity

to maintain the information about ‡v,w can further complicate the design.

Indexing Size. As shown in the experiments, although it could speed up the indexing time by in-

creasing the number of threads. Nevertheless, for some graphs such as DB and FL, our algorithms

require far more index space than other graphs of similar size. Unfortunately, thus far it is still not

clear what properties of these graphs lead to this inefficiency. Is there an efficiently computable

ordering that effectively handles these graphs? Or is the huge resource consumption inevitable

even with an optimal ordering under the current
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