Coherence for a closed functor

Author:

Lewis, Geoffrey

Publication Date:

1974

DOI:

https://doi.org/10.26190/unsworks/8943

License:

https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/63475 in https:// unsworks.unsw.edu.au on 2024-04-23

GEOFFREY LEWIS

A THESIS ON PURE MATHEMATICS

SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

AT THE UNIVERSITY OF NEW SOUTH WALES
\because
1974

TABLE OF CONTENTS

Declaration of Originality iii
Acknowledgements v
Abstract of the thesis vi

1. Description of the problem 1
2. The idea of a club 8
3. Our problem in terms of clubs 20
4. Coherence in the covariant case 33
5. The closed categories G and C'63
6. Coherence for a closed functor 84
References 106

Declaration of originality

All the work in this thesis is the original work of G. Lewis, with the exception of the concept of "club" which provides the setting for a precise statement of the results.

That concept was developed by the supervisor G.M. Kelly and expounded in the series of papers [4], [5], [6] and [7].

Historically, however, it was inspired by the first results of Lewis on the monoidal case of the present problem. When it became clear that even here "not all diagrams commute", as in (1.1) below, Kelly was at first prepared to settle for a partial result: those diagrams commute whose codomain is of the form $\alpha \mathrm{T}$. Lewis convinced him that one could do better, and gave necessary and sufficient conditions for commutativity.

These conditions, however, did not make precise sense while the morphisms were, as in Kelly-Mac Lane [8], actual natural transformations. It was this that led Kelly to replace them by their formal descriptions in the theory, and so to invent clubs and to investigate their nature. Kelly wishes here to acknowledge this debt to Lewis.

This setting apart, all the details of the covariant case and all the extension to the mixed-variance case is due to Lewis.

ACKNOWLEDGEMENTS

I particularly want to thank my thesis supervisor, Professor G. Max Kelly, for his help throughout the four years of preparation and writing of this thesis. It was he who introduced me to category theory and in particular the present problem. He was also of great assistance in helping me express my ideas in readable language.

My thanks are also due to my parents, Shirley and Allan, for continually giving me encouragement to complete this thesis.

I would also like to express my appreciation to Cathy for her excellent typing.

Abstract of the thesis

The theory of closed categories was greatly simplified by the coherence result of Kelly and Mac Lane [8], which showed that a large class of diagrams, writable in a generic closed category, commute in any particular one. In this thesis we carry this simplification further by considering diagrams writable in the context of a closed functor $\alpha: A \rightarrow A^{\prime}$ between two closed categories.

Like Kelly-Mac Lane we begin with a coherence result for the simpler problem where the functor and categories are not closed but only symmetric monoidal, and use the cut-elimination technique to pass to the closed case. Unlike Kelly-Mac Lane we find that it is not the case that "all diagrams commute" in the simpler case. Nevertheless, we have been able to determine in the symmetric monoidal case precisely which diagrams do commute.

It was already recognized in [8] that when dealing with a fragment $f: T \rightarrow S$ of a diagram, T and S had to be abstract descriptions of functors rather than their actual realizations in particular categories. We find that the morphism f must also be represented by an abstract description rather than as an actual natural transformation. This necessity, arising from this very problem, has led my thesis
supervisor, Professor G.M. Kelly, to examine these categories of "formal functors and formal natural transformations" associated to a coherence problem. The appropriate setting is found in his notion of club.

We define functors Γ_{1}, Γ_{2} and Γ_{3} whose domain categories may be either P^{\prime}, the club for a symmetric monoidal functor between symmetric monoidal categories, or C^{\prime}, the club for a closed functor between closed categories. We see that Γ_{1} summarizes those parts of P^{\prime} or C^{\prime} which involve the first or domain category, Γ_{2} summarizes those parts involving the second category, and Γ_{3} the formal occurrences of the connecting symmetric monoidal or closed functor.

For the symmetric monoidal case we show that for morphisms f,g: $T \rightarrow S$ of P^{\prime}, their realizations are equal in any particular model if and only if $\Gamma_{1} f=\Gamma_{1} g, \Gamma_{2} f=\Gamma_{2} g$ and $\Gamma_{3} f=\Gamma_{3} g$.

An object T of C^{\prime} is called proper if in its formation there is no use of any $[X, Y]$, for which $\Gamma_{i} Y=0$ (Y is constant with respect to the appropriate invariant), yet $\Gamma_{i} X \neq 0$, for one of $i=1,2$, or 3 .

For the closed case, we show that for any morphisms
f,g: $T \rightarrow S$ of C^{\prime} for which T and S are proper, their realizations are equal in any particular model if and only if
$\Gamma_{1} f=\Gamma_{1} g, \Gamma_{2} f=\Gamma_{2} g$ and $\Gamma_{3} f=\Gamma_{3} g$.
1.1 The theory of symmetric monoidal closed categories, which we shall call closed categories for short, was greatly simplified by the coherence result of Kelly and Mac Lane [8], which showed that a large class of diagrams, writable in a generic closed category, commute in any particular one. There are two obvious directions in which this simplification might be carried further. The first is to consider diagrams writable in the context of a closed category A, together with a pair B, C of $A-c a t e g o r i e s$, a pair T,S: $B \rightarrow C$ of A-functors, and an A-natural transformation $\eta: T \rightarrow S$. The second is to consider diagrams writable in the context of two closed categories A, A^{\prime} together with a closed functor $A \rightarrow A^{\prime}$. Here a closed functor means the same thing as a symmetric monoidal functor: a functor $\alpha: A \rightarrow A^{\prime}$ together with a natural transformation $\tilde{\alpha}: \quad \alpha A \otimes^{\prime} \alpha B \rightarrow \alpha(A \otimes B)$ and a morphism $\alpha^{\circ}: I^{\prime} \rightarrow \alpha I$, subject to the well-known axioms (see [2] pp 473 and 513).

Both of these extensions were considered in the recent volume on coherence problems [15]; the first in the paper of Kelly-Mac Lane [9], and the second in my own paper [12]. This last paper, written in a hurry while my work was still in a comparatively primitive form, contained
some inaccuracies and some infelicities, as well as proofs more complicated than necessary. The purpose of the present thesis is to give an improved version of the results of that paper.
1.2 Our problem, then, is the "coherence problem" for the structure consisting of two closed categories A, A^{\prime} and a closed functor $\alpha=\left(\alpha, \tilde{\alpha}, \alpha^{\circ}\right): A \rightarrow A^{\prime}$. As in the corresponding problem for a single closed category, studied by Kelly-Mac Lane in [8], we begin with a coherence result for the simpler problem in which $A, A '$ are not closed but only symmetric monoidal. We also borrow the cut-elimination technique from Gentzen and Lambek ([10] and other papers) to pass to the closed case. There is, however, a significant difference: for a single symmetric monoidal category A, Mac Lane had proved in [14] the classical coherence result "all diagrams commute". For two symmetric monoidal categories joined by a symmetric monoidal functor $\alpha: A \rightarrow A^{\prime}$, there is no coherence result already available in the literature. We must prove our own, and it turns out that not all diagrams commute. (It is true that Epstein [3] has proved an "all diagrams commute" result in a related case: but the "tensor products" $\otimes, \otimes^{\prime}$ in his A, A^{\prime} had lacked identities I,I' and it is precisely these that cause non-commutativity. In this context see also Mac Donald [13];
and recall that it was the presence of the identity I that forced the Kelly-Mac Lane result in [8] to fall short of "all diagrams commute". It seems to always be the constants that cause trouble.)

1. 3 Nevertheless, we have been able in the symmetric monoidal case to determine precisely which diagrams do commute. Think of the two edges of a diagram as morphisms f,g: $T \rightarrow S$ in a suitable category. To a first approximation we can conceive of T, S as functors (of many variables and, in general, of mixed variances), and of f, g as natural transformations (of the generalized kind introduced by Eilenberg-Kelly [1]). An object such as T has a type ΓT, specifying its arity, the category from which the i-th argument is to be drawn, and the variance of this argument. A morphism such as f also has a type Γ f, specifying the arguments of T and of S that it is to pair off; this was called its graph in [1] and then in [8], but we shall avoid this over-used word.

The generic components of f and of g form a
closed diagram only when $\Gamma f=\Gamma g$; this then is a necessary condition for the diagram to be writable at all. When in a coherence problem one says "all diagrams commute" one means that every writable diagram does so; that is, one means that $\Gamma f=\Gamma$ implies $f=g$; or in short that Γ is faithful. What Kelly-Mac Lane proved in [8] was a partial
coherence result of the form "for suitably restricted T and S, and for $\mathrm{f}, \mathrm{g}: \mathrm{T} \rightarrow \mathrm{S}$, it is the case that $\Gamma \mathrm{f}=\Gamma \mathrm{g}$ implies $f=g \prime$.

Our coherence result in the symmetric monoidal case $\alpha: A \rightarrow A^{\prime}$, where, as we have said, not all diagrams commute, is a more complete one. We have said that Γ is not faithful; we could indeed prove a partial result as above that $\Gamma f=\Gamma g$ implies $f=g$ for suitably restricted T and S; but we do more. We assign to $f: T \rightarrow S$ a second invariant $\Delta \mathrm{f}: \Delta \mathrm{T} \rightarrow \Delta \mathrm{S}$, and prove without restriction on T, S that $" \Gamma f=\Gamma g$ and $\Delta f=\Delta g$ imply $f=g "$ - that is, that Γ and Δ are jointly faithful.

When we then pass to the closed case of $\alpha: A \rightarrow A^{\prime}$ we get a result which, while like that of Kelly-Mac Lane [8] it is incomplete, is still more complete than if we looked at Γ alone. It takes the form: "Suppose T and S are Γ-proper (essentially the condition imposed by KellyMac Lane in [8]) and also Δ-proper. Then f,g: $T \rightarrow S$ coincide if and only if $\Gamma f=\Gamma g$ and $\Delta f=\Delta g . "$ This is our main theorem, and it must of course be formulated with precision. Before passing to the discussion of the necessary precision we illustrate by examples two of our remarks above.

First, even in a single symmetric monoidal category, nobody expects to have $c=1: A \otimes A \rightarrow A \otimes A$ where c is the symmetry. The generic components of c and of 1 look like

and do not form a closed diagram. Equivalently,
c: $\otimes \rightarrow \otimes$ and 1: $\otimes \rightarrow \otimes$ are natural transformations of different types; $\Gamma \otimes=2, \Gamma c$ is the non-identity permutation of 2 and $\Gamma 1$ is the identity permutation. Coherence is concerned with the natural transformations, and not with particular components such as $c_{A A}: A \otimes A \rightarrow A \otimes A$.

Secondly, an example of a writable but noncommuting diagram in the symmetric-monoidal $\alpha: A \rightarrow A$, case. It is

Here the Γ of every vertex is 0 - all are constants and the Γ of each edge is the identity permutation $0 \rightarrow 0$. Yet the diagram fails to commute even when α is the forgetful closed functor from Abelian Groups to Sets, the two legs sending $n \in \alpha I=Z$ to ($n, 1$) and to ($1, n$). But the second invariant Δ looks at the occurrences of α; $\Delta(\alpha I)=1, \Delta\left(\alpha I \nabla^{\prime} \alpha I\right)=2$, and the $\Delta^{\prime} s$ of the two legs are the two possible functions $1 \rightarrow 2$.
1.4 Already in [8] it was recognized that the vertices T,S of the diagrams must not be actual functions in the model but their abstract descriptions in the theory otherwise one would have unwanted composites of $f: T \rightarrow S$ and $g: S^{\prime} \rightarrow R$, where S and S^{\prime} although formally different had identical realizations in a particular model. Still, the morphisms f, g in [8] were actual natural transformations. Since each natural transformation f had a definite type Γf, this served well enough for the kind of result given in [8]. But it will not serve for us: the edges of (1.1) may coincide in a particular model, but are to be assigned different images under Δ. For us, not only the vertices of the diagrams but also the edges must be abstract descriptions in terms of the theory.

This necessity, arising originally from this very problem, where precise sense had to be made of my
"second invariant" Δ, has led my thesis supervisor, Professor G.M. Kelly, to examine these categories of "formal functors and formal natural transformations" associated to a coherence problem. The appropriate setting is found in his notion of club, the first ideas on which were expounded in [4], [5] and [6], and a definitive, generalized treatment of which is to appear in [7] We now turn to a discussion of clubs which, while merely an outline, should be sufficient for the reader wishing to understand the present thesis.

2. The idea of a club

2.1 Consider first a structure of the following kind, to be borne by a single category A; examples would be a symmetric monoidal structure, or a strict monoidal structure.

We are first to be given, as part of the structure functor $|B|: A^{n} \rightarrow A$, indexed by the elements \mathbb{B} of a set B, and each associated with an rarity or type $n \in \mathbb{N}$, depending on B and written as $n=\Gamma B$. Note our careful distinction between the abstract B of the theory and its realization $|B|$ in the model A. Add to B a formal identity 1 with $\Gamma \underline{\underline{I}}=1$, and then close B under the operation formal substitution; that is, from operations T of type n and $S_{1}, \ldots ., S_{n}$ of types m_{1}, \ldots, m_{n} we form $T\left(S_{\mathbb{1}}, \ldots, \mathbb{S}_{n}\right)$ of type $m_{1}+\ldots+m_{n}$; we also write $n\left(m_{\mathbb{1}}, \ldots, m_{n}\right)$ for $m_{1}+\ldots+m_{n}$. Each T in this closure \bar{B} of B has itself an obvious realization $|\mathbb{T}|: A^{n} \rightarrow A$, where $\mathrm{m}=\Gamma \mathbb{T}$. In the examples above, B consists of \otimes and the unit I for \otimes, with $\Gamma^{\prime} \otimes=2, \quad \Gamma^{\prime \prime} I=0$.

We are next to be given axioms of the form $|T|=\mid S \|$ for certain pairs $\mathbb{T}, S \in \bar{B}$ with $\Gamma^{\prime} T=\Gamma \mathbb{S} ;$ for example in the strict monoidal case we have the axioms $|\otimes(\otimes, \underline{\underline{1}})|=|\otimes(\underline{\underline{1}}, \otimes)|,|\otimes(\mathbb{I}, \underline{\underline{1}})\|=\| \underline{\underline{\underline{1}}}|=|\otimes(\underline{\underline{\underline{1}}}, I)|$, while in
the non-strict monoidal case the list of such axioms is vacuous. The set of objects obK of the corresponding club K is the quotient set of \bar{B} by the substitutioncongruence generated by these axioms. Clearly each $T \in$ obk again has a realization $|T|: A^{n} \rightarrow A$ when the axioms are satisfied in the model A.

We are then to be given a set D of formal natural transformations, each with a domain and codomain in obK, a typical one being then $d: T \rightarrow S$. These are to be generalized natural transformations in the sense of Eilenberg-Kelly [1]; but since T and S are covariant, we must have $\Gamma T=\Gamma S=n$ say, and type Γd of d is only a permutation of n. Each such d is to have a realization $|d|:|T| \rightarrow|S|$, an actual generalized natural transformation in A of type Γ. For example, in the symmetric monoidal case, D consists of $a: ~ \otimes(\otimes, \underline{\underline{1}}) \rightarrow \otimes(\underline{\underline{1}}, \otimes)$,
$\ell: \otimes(I, \underline{\underline{1}}) \rightarrow \underline{\underline{1}}, r: \otimes(\underline{\underline{1}}, I) \rightarrow \underline{\underline{1}}, c: \otimes \rightarrow \otimes$, of respective types $\Gamma a=1, \Gamma \ell=1, \Gamma r=1, \Gamma c=$ the non-identity permutation of 2 ; together with formal inverses $\overline{\mathrm{a}}: \theta(\underline{\underline{1}}, \otimes) \rightarrow \theta(\otimes, \underline{\underline{1}}), \bar{\ell}, \overline{\mathrm{r}}$; we need no $\overline{\mathrm{c}}$ since it is to be the same as c.

We close D to get $\bar{D}=\operatorname{Exp}$ Inst D, the set of expanded instances of the $d \in D$. An instance of d is a
formal natural transformation
$e=d\left(R_{1}, \ldots, R_{n}\right): T\left(R_{1}, \ldots, R_{n}\right) \rightarrow S\left(R_{1}, \ldots, R_{n}\right)$ where $R_{i} \in o b K$; it has an obvious type $\Gamma e=\Gamma d\left(\Gamma R_{1}, \ldots, \Gamma R_{n}\right)$, and an obvious realization $|e|$ in the model A. An expansion of the instance $e: P \rightarrow Q$ is a formal natural transformation $h=T(1, \ldots, 1, e, 1, \ldots, 1): T\left(S_{1} \ldots, P \ldots S_{m}\right)$ $\rightarrow T\left(S_{1} \ldots\right.$ Q... $\left.S_{m}\right)$, again with an obvious type「h $=\Gamma T(1, \ldots, 1, \Gamma e, 1, \ldots, 1)$ and an obvious realization $|h|$ in the model A.

The objects obK and the axioms \bar{D} form a graph, in the classical sense of the word; and Γ is a map of graphs (obK, \bar{D}) $\rightarrow \underline{\underline{P}}$, where $\underline{\underline{P}}$ is the category with $\underline{\underline{N}}$ as its set of objects and with permutations $\xi: n \rightarrow n$ as its only morphisms. We pass from the graph (obK, \bar{D}) to the category L it generates freely; then Γ extends to a functor $\Gamma: L \rightarrow P$. Clearly every $f: T \rightarrow S$ in L has a realization $|\mathrm{f}|:|T| \rightarrow|S|$ which is a generalized natural transformation of type $\Gamma \mathrm{f}$.

Finally we are given a second set of axioms; a typical one is given by a pair $f, g: T \rightarrow S$ of morphisms of L, with $\Gamma f=\Gamma g$; and the axiom to be satisfied by A is that $|f|=|g|$. For example, in the monoidal case, we have the coherence axioms such as the "pentagon axiom" for a, as well as axioms asserting $a \bar{a}=1$, $\bar{a} a=1$, and so on. We close these axioms under the process of taking
expanded instances; this gives us a set Δ_{1} of pairs $f, g: T \rightarrow S$ in L. We add to these a second set Δ_{2} of such pairs, asserting things like
$|\otimes(1, f) \cdot \otimes(g, 1)|=|\otimes(g, 1) \cdot \otimes(1, f)|$, which follow from the functoriality of $|\otimes|$; or more generally of course of $|T|$. We add to these a third set Δ_{3} of such pairs, formally asserting the naturality of $|d|$ for $d \in D$; and we define the club K corresponding to the given structure as L / Δ where $\Delta=\Delta_{1}+\Delta_{2}+\Delta_{3}$.

We now have the following situation. We have a category K with a functor $\Gamma: K \rightarrow \underline{\underline{P}}$ (called its augmentation); that is an object of the 2-category Cat/P. Next, K admits an operation of substitution $T\left(S_{1}, \ldots, S_{n}\right)$ for its objects, and a corresponding: operation $f\left(g_{1}, \ldots, g_{n}\right)$ for its morphisms, with the special cases $T\left(g_{1}, \ldots, g_{n}\right)$ and $f\left(S_{1}, \ldots, S_{n}\right)$ where for example T denotes I_{T}. Kelly [4], [5] has shown that Cat/P is a monoidal (indeed a closed) category with "tensor product" denoted by 0 ; and that this substitution operation is a multiplication $\mu: K o K \rightarrow K$ in Cat/P. Finally K has among its objects the formal identity $\underset{1}{ }$, and this corresponds to a unit map $\eta: J \rightarrow K$, where J is the identity for o. It turns out that μ and η satisfy the associative and identity axioms, so that K is a
o-monoid in Cat/P.
2.2 We now make the definition: a club is a o-monoid in Cat/ㄹ. Then what we have shown above is that every structure of the kind considered gives rise to a club: its basic operations B, d and its two sets of axioms may be said to be generators and relations for K. A diagram in K is a pair $f, g: T \rightarrow S$ in K; it commutes if $f=g$; this cannot be so unless $\Gamma f=\Gamma g$, i.e. unless the diagram is writable (in terms of components); we may say "all diagrams commute" if Γ is faithful; the coherence problem is that of deciding which diagrams commute; it is essentially the problem of determining K explicitly, starting from its generators and relations.

We must say what we mean by a model A of a general club K; we call such an A a K-category. We embed Cat fully in Cat/p by giving to $A \in$ Cat the trivial augmentation $\Gamma: A \rightarrow P$ which is the constant functor at 0. Then $K O A \in \underline{\underline{\text { Cat }}}$ if $A \in$ Cat. A K-category is a category A together with an action $\theta: K O A \rightarrow A$ satisfying the usual associativity and identity axioms. When K is constructed as above from basic operations and axioms, it is easy to see that a K-category A in the above sense is precisely a model for the structure in question.

This description of a K-category A exhibits it as an algebra for the monad Ko-: $\underline{\underline{\text { Cat }} \rightarrow \text { Cat. A }}$ morphism of (Ko-)-algebras is a strict morphism of K-categories, or a strict K-functor; a functor $A \rightarrow B$ between K-categories, preserving all the structure on the nose. (In this covariant case, but not in mixedvariance cases like that of closed categories, the monad Ko- is actually a 2-monad, or equational doctrine in the sense of Lawvere [11].)

So the forgetful functor from the category of K-categories and strict K-functors, to the category Cat of categories, has a left adjoint sending A to $K o A ;$ thus KoA is the free K-category on A. If I denotes the unit category with one object * and one morphism, we have KoI $\cong K$; so K itself is the free K-category on the object $\underline{1} \in K$; given a K-category A and $A \in A$, there is a unique strict K-functor $K \rightarrow A$ sending \equiv to A.

For the details of all this the reader may refer to Kelly's papers [4] and [5]. What he needs to know of clubs for the purposes of this thesis is the following:
(a) The fact above that K is the free K-category on its object 1 웅
(b) The manner of constructing obK form the basic functorial operations;
(c) The fact that the morphisms of K are composites of expanded instances of the basic natural transformation equations.

There are a few further points we should notice. One is the matter of notation: an object of KoA has the form $T\left[A_{1}, \ldots, A_{n}\right]$ where $T \in K, A_{i} \in A$, and $n=\Gamma T$. We write its image under an action $\theta: K o A \rightarrow A$ as $T\left(A_{1}, \ldots, A_{n}\right)$ (which is therefore the same as $\left.|T|\left(A_{1}, \ldots, A_{n}\right)\right)$. Similarly we write $T\left(S_{1}, \ldots, S_{n}\right)$ for the image of $T\left[S_{1}, \ldots, S_{n}\right]$ under the multiplication $\mu: K o K \rightarrow K$, which is itself an action of K on K. Similarly too for morphisms: note that if $f: T \rightarrow T$ has $\Gamma f=\xi$, a permutation of n, and if $g_{i}: A_{i} \rightarrow A_{i}^{\prime}$, then $f\left(g_{1}, \ldots, g_{n}\right): T\left(A_{\xi 1}, \ldots, A_{\xi n}\right) \rightarrow T^{\prime}\left(A_{1}^{\prime}, \ldots, A_{n}^{\prime}\right)$.

Then there is the question of a map of clubs, that is, of a map $\phi: K \rightarrow L$ of o-monoids in Cat/P. It is clear that any L-category A with an action $\theta: \quad$ LoA $\rightarrow A$ is then also a K-category with action

In particular $\underset{\underline{P}}{ }$ itself is a club (with
augmentation 1: $\underline{\underline{P}} \rightarrow \underline{\underline{P}}$); and for any club K the augmentation $\Gamma: K \rightarrow P$ is a map of clubs. A $\underset{\underline{P}}{ }$-category is, by Mac Lane's original coherence theorem [14], just a strict symmetric monoidal category. By the same theorem, if P denotes the club whose algebras are (non-strict) symmetric monoidal categories, the augmentation $\Gamma: P \rightarrow \underline{\underline{P}}$ is an equivalence of categories. Since we know the objects of P, as iterates of \otimes, I, and $\underset{\underline{1}}{1}$, this information suffices to describe P completely. Again the discrete category N, with inclusion augmentation $\underset{\underline{N}}{ } \rightarrow \underline{\underline{P}}$, is a club, whose algebras are the strict monoidal categories. If N is the club for (non-strict) monoidal categories, then N has the same objects as P, and by Mac Lane's results its augmentation $\Gamma: N \rightarrow \underline{\underline{P}}$ is an equivalence of N with its image under Γ, which is N .
2.3 There is little to change in the above when we allow the structure on A to involve functors of mixed variance, such as $A \times A \times A^{O D} \rightarrow A$, and the most general natural transformations of Eilenberg-Kelly [1]. Such a structure is that of a closed category, which is a symmetric monoidal category with an extra basic functor [,]: $A^{\circ P} \times A \rightarrow A$, and extra basic natural transformations e: [A,B] $\otimes A \rightarrow B, d: A \rightarrow[B, A \otimes B]$, satisfying as extra
axioms the triangular axioms which make them the counit and unit of an adjunction $A(A \otimes B, C) \cong A(A,[B, C])$. Again we refer to Kelly's papers [4], [5] for details, just giving enough here to make this thesis readable.

The type ΓT of a functorial operation T is no longer just its arity n, but a string v of + and - signs, such as ++-+--, indicating the variances of the arguments in T. The type of a natural transformation $f: T \rightarrow S$, where $\Gamma T=\nu$ and $\Gamma S=\mu$, is a pairing-off or linking of the arguments of T and of S taken together, as in the example of d and e above. Two arguments that are paired are to have the same variance if one is in T and one in S, and opposite variances if both are in T or both in S. This is best said by defining $\{\nu,-\mu\}$ to be the string obtained by first writing ν, and then writing μ with all its signs changed; then the type of $f: T \rightarrow S$ is a bijection between the + signs and the - signs in the type $\{\nu,-\mu\}$. We write this type of f as $\Gamma f: \Gamma T \rightarrow \Gamma S$, or as $\operatorname{say} \xi: \quad \nu \rightarrow \mu$.

The difficulty is that generalized natural transformations $f: T \rightarrow S, g: S \rightarrow R$ can be composed only when Γf and Γg are compatible in the sense of [1] - we also discuss this in detail in $\$ 5.2$ below. When $\xi: \nu \rightarrow \mu$
and $\eta: \mu \rightarrow \tau$ are compatible, we define their composite as in [1], and then $n \xi$ is the type of $g f$. When they are not, there is no natural transformation gf. We elect in this case to define the composite $\eta \xi$ to be a special "zero map" *: $\nu \rightarrow \tau$.

So we replace $\underset{\underline{P}}{ }$, as the category of types, by a category T whose objects are strings ν, μ, τ, \ldots as above. A morphism from v to μ is either a bijection of the +'s with the -'s in $\{\nu,-\mu\}$, called a non-trivial morphism, or the trivial morphism ${ }_{\nu \mu}=$ *. Composition in T of non-trivial $^{\text {. }}$ morphisms $\eta \xi$ is the Eilenberg-Kelly composite if they are compatible and is * otherwise; the composite $\eta \xi$ is also * if either $\eta=*$ or $\xi=*$.

Now in the mixed-variance case, starting from basic functors and natural transformations and their axioms, we again get as in $\S 2.1$ a category K of their formal iterates, this time with an augmentation functor $\Gamma: K \rightarrow T$. We can define $K o A$ if, for each $f: T \rightarrow S$ in K, $\Gamma f \neq$ *: that is, if no incompatibilities arise. Kelly has shown in [6] that incompatibilities never arise if we start from a purely covariant situation (where they are impossible) and thenadd some right adjoints, such as [-,-] in the closed category situation. This will cover all the cases we deal with.

So the "tensor product" o is only partially defined on Cat/T, but we shall not run outside its domain of definition. The K we get for such a mixed-variance structure will again be a o-monoid, that is, a mixedvariance club; a K-category A is a category A with an action $\theta: K \circ A \rightarrow A$; the free such on A is $K \circ A$; and K itself is the free K-category on $\xlongequal[\underline{1}]{\in} K$.

In these terms the coherence result of KellyMac Lane [8] for closed categories is as follows. Let C be the club whose algebras are closed categories. Call an object T of C proper if in its construction by iteration from $\underset{\equiv}{1}, I, \otimes,[$,$] , we never form [P, Q]$ where $\Gamma P \neq 0$ and $\Gamma_{Q}=0$ (0 is the empty string; in general we identify a string of $n+$ signs with $n \in \underset{\underline{P}}{ }$). They then show that, if $f, g: T \rightarrow S$ in C where T and S are proper, the condition $\Gamma f=\Gamma g(i . e$. writability of the diagram) implies $f=g$. The club C for this case has never been fully determined: partial results have been obtained by Voreadu in her thesis. It is certainly not the case that all diagrams commute.
2.4 Again, there is not much to change if the structure in question is borne not by a single category A but by a family of categories $\left(A_{\lambda}\right)_{\lambda \in \Lambda}$. Regarding the set Λ as a
discrete category, such a family may be taken as an object A of cat $/ \Lambda$. The type ΓT of T now has to prescribe not only the arity n of T and the variance + or - of its i-th argument, but the index $\lambda \in \Lambda$ of the category A_{λ} from which the argument is drawn. The type Γf of f is still a pairing-off, but can only pair arguments from the same category A_{λ}. This gives in place of T a new category T_{Λ}, or \underline{P}_{Λ} in the purely covariant case: and the augmentation as a functor $\Gamma: K \rightarrow T_{\Lambda}$ (or $\underline{\underline{P}}_{\Lambda}$). The only other point of difference is that K now has among its objects "identities" $\underline{\underline{E}}_{\lambda}$ for each λ; the forgetful functor from K-algebras (families (A_{λ}) with the given structure and strict functors) now lands not in Cat but in Cat/ Λ; and K itself is the free K-algebra not on I but on Λ.

For our purposes it is simpler to write K as a family $\left(K_{\lambda}\right)$ and to recognize the object $\underline{\underline{I}}_{\lambda} \in K_{\lambda}$. Then the fact that K is free on Λ is expressed thus: the family (K_{λ}) bears the structure in question; and if (A_{λ}) does too, and if we choose $A_{\lambda} \in A_{\lambda}$ for each $\lambda \in \Lambda$, then there are unique functors $\phi_{\lambda}: K_{\lambda} \rightarrow A_{\lambda}$, sending 1_{λ} to A_{λ}, and constituting a strict morphism of the structure: everything preserved on the nose.
3. Our problem in terms of clubs
3.1 Let K be a covariant club of the singlecategory kind, as in §2.1 and §2.2. Then Ko-: Cat \rightarrow Cat is not only a functor but a 2-functor, as shown by Kelly [4], [5]; so it is not merely a monad but a 2-monad or doctrine. (This is false in the mixed-variance case.) This leads to the possibility of a lax or non-strict morphism of K-categories; that is, of a K-functor, as distinct from a strict K-functor. See Kelly [5], \$7.

Let A, A^{\prime} be K-categories with actions θ, θ^{\prime}. $A K$-functor $A \rightarrow A^{\prime}$ consists of a functor $\alpha: A \rightarrow A^{\prime}$, not required to preserve anything at all, together with a natural transformation $\bar{\alpha}$ as in

subject to the following axioms:
(3.1) The composite

coincides with the composite

(3.2) The composite

is the identity.

It is clear how to compose such K-functors: they form a category, indeed a 2-category. The natural transformation $\bar{\alpha}$ has components

$$
\bar{\alpha}_{T\left[A_{1} \ldots A_{n}\right]}: \quad T\left(\alpha A_{1} \ldots \alpha A_{n}\right) \rightarrow \alpha T\left(A_{1} \ldots A_{n}\right)
$$

When K is given by basic operations, it is easy to see that the above component need only be given for basic T, and its naturality in T only for basic $d: T \rightarrow T^{\prime}$ (or for identifications $T=T$ ' occurring in the axioms). Thus in the care where K corresponds to monoidal or to symmetric monoidal categories, strict or not, $\bar{\alpha}$ is determined by its components

$$
\begin{aligned}
& \tilde{\alpha}=\bar{\alpha}_{\otimes(A, B)}: \alpha A \otimes^{\prime} \alpha B \rightarrow \alpha(A \otimes B) \\
& \alpha^{\circ}=\bar{\alpha}_{I(-)}: I^{\prime} \rightarrow \alpha I .
\end{aligned}
$$

The naturality with respect to a, ℓ, r when $K=N$ gives the usual definition of monoidal functor; in the case $K=N$ we have identifications in place of a, l, r but we still get a monoidal functor, now between strict monoidal categories (but not itself strict). In the cases $K=P$ or $\underset{\underline{P}}{ }$, we get the usual definition of symmetric monoidal functor (of Eilenberg-Kelly [2], pp 473 and 513). Note that a strict K-functor is a K-functor in which $\bar{\alpha}=1$.

Now consider, for such a club K, the following structure borne by a pair of categories A, A' - or rather for the moment, by a pair A_{1}, A_{2}. The category A_{1} is to have the structure of a K-category; so is the category A_{2}; and there is to be also a K-functor $(\alpha, \bar{\alpha}): A_{1} \rightarrow A_{2}$. This is a structure (covariant) of the kind considered in $\S 2.4$ with $\Lambda=2$; and it corresponds to a club \hat{K} in $\underline{\underline{\text { Cat }}} / \underline{\underline{P}}_{2}$, with components say K_{1} and K_{2}. Since \hat{K} is itself a model, K_{1} and K_{2} are both K-categories, and there is a K-functor $(K, \bar{K}): K_{1} \rightarrow K_{2}$. The fact that \hat{K} is the free model on $\underline{\underline{1}}_{1} \in K_{1}$ and $\underline{\underline{1}}_{2} \in K_{2}$ means that, given any model $(\alpha, \bar{\alpha}): A_{1} \rightarrow A_{2}$, and given $A_{1} \in A_{1}$ and $A_{2} \in A_{2}$, there are unique strict K-functors $\phi_{1}: K_{1} \rightarrow A_{1}$, $\phi_{2}: K_{2} \rightarrow A_{2}$, rendering commutative

and such that $\phi_{1}\left(\underline{\underline{1}}_{1}\right)=A_{1}, \phi_{2}\left(\underline{\underline{\underline{1}}}_{2}\right)=A_{2}$.

Now take A_{2} to be the unit category I, which is trivially a K-category for any K; and take ($\alpha, \bar{\alpha}$) to be the only thing it can, which is trivially a K-functor. We deduce that there is a unique strict K-functor
$\phi_{1}: K_{1} \rightarrow A_{1}$ sending 1_{1} to A_{1}; that is, that K_{1} is the free K-category on one object, namely K itself. This could also have been seen directly from the mode of construction of \hat{K} in §2.1; the K_{1} part of \hat{K} must be K itself, since k goes from K_{1} to K_{2}, \bar{k} lives in K_{2}, and the K-structure on K_{2} remains within K_{2}.

We therefore change notation, replacing (3.3) by

and $\underline{\underline{I}}_{1}, \underline{\underline{I}}_{2}$ by $\underline{\underline{1}}$ and $\underline{\underline{1}}$ '; so that the determination of \hat{K} reduces to that of K^{\prime}, K and $\bar{\kappa}$.
3.2 The covariant part of our problem is such a determination in the case where $K=P$. We can solve this case but in the four cases $K=P, P, N, N$ (see the end of $\$ 2.2$ for the meanings of these); that is, when K corresponds to monoidal or symmetric monoidal categories, strict or not.

Going back to a general K, recall that we have an augmentation $\hat{\Gamma}: \hat{K} \rightarrow \underline{\underline{P}}_{2}$. We are of course interested only in its restriction $\hat{\Gamma}: K^{\prime} \rightarrow \underline{\underline{p}}_{2}$, since we know all about K. The writable diagrams $f, g: T \rightarrow S$ in K^{\prime} are those for which $\hat{\Gamma}_{f}=\hat{\Gamma}_{g}$. We can simplify this criterion of writability by splitting up $\hat{\Gamma}$ into its two parts $\Gamma_{1}, \Gamma_{2}: K^{\prime} \rightarrow \underset{\underline{p}}{ }$; the first looks only at the arguments drawn from K, and the second at those drawn from K^{\prime}; recall that a natural transformation may only link arguments drawn from the same category. It is clear that Γ_{1} and Γ_{2} are the unique strict K-functors given by the following cases of (3.4) (recall that, as at the end of $\S 2.2, \mathrm{P}$ is a K-category by virtue of the club map $\Gamma: K \rightarrow \underline{\underline{P}}$, with $T\left(m_{1}, \ldots, m_{n}\right)=\Gamma T\left(m_{1}, \ldots, m_{n}\right)=$ $m_{1}+\ldots+m_{n}$; that I is a $\underline{\underline{p}}$-category and hence a K-category for any K; and that a $\underset{\text { P-functor }}{ }$ is automatically a K-functor):

where $\Gamma(\underline{\underline{1}})=1$ and $\Gamma_{1}\left(\underline{\underline{1}}^{\prime}\right)=0$;
(3.6)

where $K \rightarrow I$ is the unique functor, sending I to *, where Γ_{2} sends 1 ' to 1 , and where $\alpha(*)=0$, while the component

$$
\left.\bar{\alpha}_{T[*}, \ldots, *\right]: T\left(\alpha^{*}, \ldots, \alpha^{*}\right) \rightarrow \alpha T(*, \ldots, *)
$$

or $T(0, \ldots, 0) \rightarrow 0$, is the identity map $0 \rightarrow 0$ (for $T(0, \ldots, 0)=\Gamma T(0, \ldots, 0)=0$, when $\underline{\underline{P}}$ is regarded as a K-category via the club-map $\Gamma: K \rightarrow \underline{\underline{p}}$).

So the writable diagrams fog: $T \rightarrow S$ in K^{\prime} are those for which $\Gamma_{1} f=\Gamma_{1} g$ and $\Gamma_{2} f=\Gamma_{2} g$. As we said in
§1.2 and §1.3, not all writable diagrams commute.

We spoke in $\$ 1.3$ of another invariant Δ alongside $\hat{\Gamma}$, i.e. alongside Γ_{1} and Γ_{2}. We now write Δ as Γ_{3}. It is given as follows.

Denote by $\underline{\underline{S}}$ the skeletal category of finite sets, with objects $\mathrm{n} \in \mathbb{N}$ and with functions $\mathrm{n} \rightarrow \mathrm{m}$ as morphisms. It is a strict symmetric monoidal category if we take $\mathrm{m}+\mathrm{n}$ as its tensor product $\mathrm{m} \otimes \mathrm{n}$, with 0 as the identity for \otimes; hence it is a K-category. There is a symmetric monoidal functor $(\beta, \bar{\beta}): I \rightarrow S$, and hence a K-functor, where $\beta(*)=1$, and where

$$
\bar{\beta}_{\mathrm{T}[*, \ldots, *]}: \mathrm{T}\left(\beta^{*}, \ldots, \beta^{*}\right) \rightarrow \beta \mathrm{T}(*, \ldots, *)
$$

is the unique map $n \rightarrow 1$, n being ΓT. We therefore get a case of (3.4), to wit
(3.7) $\mathrm{K} \longrightarrow \mathrm{I}$

where $K \rightarrow I$ is the unique map sending 1 to ${ }^{*}$, and Γ_{3} sends $\underset{\equiv}{1}$ to 0 . It is clear that Γ_{3} "looks at the
occurrences of $\kappa^{\prime \prime}$, and does what is claimed for it in §1.3, distinguishing for instance the two legs of (1.1).

Our first main result Theorem 4.5 , to be proved in $\S 4.4$ below, is the assertion that Γ_{1}, Γ_{2} and Γ_{3} are jointly faithful in the cases $K=P, \underline{\underline{P}}, N, \underline{\underline{N}}$. Actually we first prove in Proposition 4.3 that, for any K, the morphisms of K^{\prime} have a certain form; and we then prove in Theorem 4.5 the joint fidelity of $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ under conditions satisfied by each of $P, \underline{\underline{P}}, N, N$.

This is all, strictly speaking, that we need know about the covariant case for our applications to the mixed-variance one of two closed categories and a closed functor; but because we can go further here, we do so. We can give K^{\prime}, k, \bar{K} explicitly in the four cases $P, \underline{\underline{P}}, N, \underline{N}$, and we do so; our method is to "guess" the result, and then to use the above Theorem 4.5 to prove it.
3.3 We are now in a position to formulate our main result, in terms of a mixed-variance analogue of $\$ 3.2$ above. Let C be the mixed-variance club for closed categories; there is of course a club-map $P \rightarrow C$. (Note that every covariant club $K \rightarrow \underline{\underline{P}}$ can be considered as a mixed-variance club $K \rightarrow \underset{\underline{P}}{ } \rightarrow T$, with the obvious embedding
$\underline{\underline{P}} \rightarrow T$ sending n to a string of $n+$ signs.) Now there is no such thing as a "non-strict map of C-algebras", as such; for a mixed-variance club such as C, the functor Co- is no longer a 2 -functor, and a diagram such as (3.1) makes no sense when $K=C$, there being no "Koä". What has always been meant by a closed functor $\alpha: A \rightarrow A^{\prime}$ between closed categories is just a symmetric monoidal functor ($\alpha, \tilde{\alpha}, \alpha^{\circ}$); these are what occur in nature. Such a functor induces a natural transformation $\hat{\alpha}: \alpha[A, B] \rightarrow[\alpha A, \alpha B]^{\prime} ;$ but this is no independent datum.

So we consider the structure, borne by a pair of categories A, A^{\prime}, consisting of closed structures on each and a closed, i.e. a symmetric monoidal, functor $\left(\alpha, \tilde{\alpha}, \alpha^{\circ}\right): A \rightarrow A^{\prime}$; or in the more general notation, $(\alpha, \bar{\alpha}): A \rightarrow A^{\prime}$. The basic functors and natural transformations are those which generate the club \hat{P} in $\underline{\underline{\text { Cat }}} / \underline{\underline{\underline{P}}}_{2}$, together with [,]: $A^{\circ p} \times A \rightarrow A$,
[,]': A'OP $\times A^{\prime} \rightarrow A^{\prime}$ and natural transformations $e: \quad[A, B] \otimes A \rightarrow B, d: A \rightarrow[B, A \otimes B], e^{\prime}:[X, Y]^{\prime} \otimes{ }^{\prime} X \rightarrow Y$, $\left.d^{\prime}: X \rightarrow[Y, X \otimes]^{\prime}\right]^{\prime}$, satisfying the extra axioms asserting that d, e provide an adjunction $A(A \otimes B, C) \cong A(A,[B, C])$ and that d^{\prime}, e^{\prime} provide an adjunction $A^{\prime}\left(X \otimes{ }^{\prime} Y, Z\right) \cong A^{\prime}(X,[Y, Z] ')$. By Kelly's result in [6], since we do no more than add right adjoints to certain of the functors in a club \hat{p}, this structure is given by a club \hat{C} in $\underline{\underline{\text { Cat }} / T_{2} .}$

As in §3.1, \hat{C} is itself the free such structure on 1 and $1 \underline{1}$, and may be written as $(\gamma, \bar{\gamma}): C \rightarrow C$ the domain part being C itself for the same reasons as in §3.1. Our task is to determine C^{\prime} as far as we are able: we cannot at the moment determine it completely, any more than C is known completely at this time - see our comments in $\$ 2.3$.

We certainly know the objects of C^{\prime}; they are those iterates of the basic functors whose codomain is C^{\prime}; it is immediately clear that each such is uniquely writable in the form $T\left(X_{1}, \ldots, X_{n}\right)$ where $T \in \mathcal{C}$ and where each X_{i} is either $\underset{\underline{\equiv}}{ }$ or $\gamma \mathbb{S}_{i}$ for $\mathbb{S}_{i} \in C$. We also know the generators for the morphisms of C^{\prime} - namely the expanded instances of $a^{\prime}, l^{\prime}, r^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}, \gamma a, \gamma l, \gamma r, \gamma c, \gamma d$, $\gamma e, \tilde{\gamma}$ and γ°, and the (formal) inverses of $a^{\prime}, \ell^{\prime}, r^{\prime}, \gamma a$, $\gamma \ell$ and γr. Our partial determination of C ' consists in determining which writable diagrams f,g: $T \rightarrow S$ commute for restricted T, S - as in the Kelly-Mac Lane result [8] for C itself.

As in §3.2, we break up the functor Γ, which determines "writability", into two functors Γ_{1} and Γ_{2}; and we add a third functor Δ or Γ_{3} as a further invariant. Γ_{1} and Γ_{2} are determined as in (3.5) and (3.6), except that $(\kappa, \bar{K}): K \rightarrow K^{\prime}$ is replaced by $(\gamma, \bar{\gamma}): C \rightarrow C^{\prime}$, and P
is replaced by $T . \Gamma_{3}$ is determined as in (3.7), with C etc. in place of K etc., and with a suitable replacement G for \underline{S}.

Just as $\underline{\underline{P}}$ is a subcategory of $\underline{\underline{S}}$, with the same objects, so T is a subcategory of G, with the same objects. Whereas a non-trivial morphism $\nu \rightarrow \mu$ in T is a bijection from the + signs to the - signs in $\{\nu,-\mu\}$, a non-trivial morphism in G is a function from the + signs to the - signs; there is still the trivial morphism *, and the matter of compatibility. It is the case that both T and G are closed categories, so that we do indeed get the analogues of (3.5) - (3.7) ; since $T \subset G$, we may if we like consider Γ_{i} as a functor $C \rightarrow G$ for $i=1,2,3$. These Γ_{i} are of course extensions of the Γ_{i} of $\S 3.2$ in the case $K=P$.

We call an object T of C^{\prime} proper if, in its construction from the basic functors, one never forms [A,B] or [A,B]' where, for some $i, \Gamma_{i} A \neq 0$ and $\Gamma_{i} B=0$. Our main result then becomes:

Let $T, S \in C^{\prime}$ be proper, and let $f, g: T \rightarrow S$. Then $f=g$ if and only if $\Gamma_{i} f=\Gamma_{i}$ for $i=1,2,3$. Note that the third invariant Γ_{3} is necessary here; mere writability, given by $\Gamma_{i} f=\Gamma_{i} g$ for $i=1,2$, does not imply $f=g$ even for proper T and S.

The method of proof is parallel to that of Kelly-Mac Lane in [8]. We first prove a cut-elimination result, Lemma 5.8 below, providing an inductive construction of the morphisms of C^{\prime} from those of lower "rank"; we then use induction on rank $T+$ rank S to prove the main theorem, using as a starting point the corresponding result for $\mathrm{P'}^{\prime}$ obtained from Corollary 4.6.
4.1 Let K be a covariant club of the single-category kind, as in §2.1 and §2.2. We begin with a description of K^{\prime}, the K-category mentioned at the conclusion of $\$ 3.1$.

The objects of K^{\prime} are generated as a K-category by $\underline{\equiv}^{\prime}$ and K_{B} for all $B \in K$. Thus if A is an object of K with $\Gamma A=n$, and Z_{1}, \ldots, Z_{n} are objects of K^{\prime}, then there is an object
(4.1) $A\left(Z_{1}, \ldots, Z_{n}\right)$
of K^{\prime}. If all the Z_{i} are either $\underline{\underline{\prime}}$ or $k B_{i}$, we say that the object (4.1) is in its prime factorization and that the Z_{i} are the prime factors of (4.1). All objects of K^{\prime} have prime factorizations.

All morphisms of K^{\prime} are composites of
expansions of morphisms of the following forms:
(4.2)

$$
a\left(z_{1}, \ldots, z_{n}\right): A\left(z_{\xi_{1}}, \ldots z_{\xi_{n}}\right) \rightarrow B\left(z_{1} \ldots z_{n}\right)
$$

where $a: A \rightarrow B$ is a morphism of K with $\Gamma a=\xi$, and each $Z_{i} \in K^{\prime} ;$
(4.3) ка: кА $\rightarrow \kappa$ в
for $a: A \rightarrow B$ in K; and
(4.4) $\quad \bar{\kappa}\left(A ; B_{1}, \ldots, B_{n}\right): A\left(\kappa B_{1} \ldots \kappa B_{n}\right) \rightarrow \kappa A\left(B_{1} \ldots B_{n}\right)$
where $A ; B_{1}, \ldots, B_{n}$ are objects of K.

We have the following two relations:
(4.5) The composite

$$
\begin{aligned}
& A\left(B_{1}\left(\kappa C_{1} \ldots\right) \ldots B_{n}\left(\ldots K C_{m}\right)\right. \\
& \quad \sum^{A\left(\bar{\kappa}\left(B_{1} ; C_{1} \ldots\right) \ldots \bar{\kappa}\left(B_{n} ; \ldots C_{m}\right)\right)} \\
& A\left(\kappa B\left(C_{1} \ldots\right) \ldots K B_{n}\left(\ldots C_{m}\right)\right) \\
& \\
& \qquad \begin{array}{l}
\kappa\left(A ; B\left(C_{1} \ldots\right) \ldots B_{n}\left(\ldots C_{m}\right)\right) \\
\kappa A\left(B_{1}\left(C_{1} \ldots\right) \ldots B_{n}\left(\ldots C_{m}\right)\right)
\end{array}
\end{aligned}
$$

is equal to
$A\left(B_{1} \ldots B_{n}\right)\left(\kappa C_{1} \ldots K C_{m}\right)$
$\downarrow \bar{\kappa}\left(A\left(B_{1} \ldots B_{n}\right) ; C_{1} \ldots C_{m}\right)$
$\kappa A\left(B_{1} \ldots B_{n}\right)\left(C_{1} \ldots C_{m}\right)$;
(4.6) $\bar{\kappa}(\underline{\underline{1}} ; \mathrm{A}): \underline{\underline{\underline{1}}}(\kappa \mathrm{~A}) \rightarrow \kappa(\underline{\underline{1}}(\mathrm{~A}))$ is the identity orphism; because $(K, \bar{K}): K \rightarrow K^{\prime}$ is a K-functor.
4.2 Let the central morphisms of K^{\prime} be those morphisms (4.2) for which all Z_{i} are prime, i.e. ${ }_{\equiv}^{\prime}$ or $k A_{i}$. Clearly the central morphisms are closed under composition,
and each identity morphism is central. We observe that if $z: Z \rightarrow Y$ is central then Z and Y have the same prime factors to within order.

Lemma 4.1: If $a: A \rightarrow B$ in K has $\Gamma a=\xi$, then
(4.7) $\quad a\left(Z_{1}, \ldots Z_{n}\right): A\left(Z_{\xi 1} \ldots Z_{\xi_{n}}\right) \rightarrow B\left(Z_{1} \ldots Z_{n}\right)$
is central for all $Z_{i} \in K^{\prime}$.

Proof: Let the prime factorizations of the Z_{i} be $Z_{1}=C_{1}\left(Y_{1}, \ldots\right), \ldots, Z_{n}=C_{n}\left(\ldots, Y_{m}\right)$. Then (4.7) is $a\left(C_{1} \ldots C_{n}\right)\left(Y_{1} \ldots Y_{m}\right)$ which is central because $a\left(C_{1} \ldots C_{n}\right): A\left(C_{\xi 1} \ldots C_{\xi n}\right) \rightarrow B\left(C_{1} \ldots C_{n}\right)$
is a morphism of K.

Lemma 4.2: If $z_{i}: Z_{i} \rightarrow Y_{i}$ is central for each i, and
if $A \in K$, then the following morphism is central
(4.8)

$$
A\left(z_{1} \ldots z_{n}\right): A\left(Z_{1} \ldots Z_{n}\right) \rightarrow A\left(Y_{1} \ldots Y_{n}\right)
$$

Proof: \quad Let z_{1} be

$$
a_{1}\left(x_{1}, \ldots\right): \quad B_{1}\left(x_{\xi 1}, \ldots\right) \rightarrow C_{1}\left(X_{1}, \ldots\right)
$$

etc, where $a_{i}: B_{i} \rightarrow C_{i}$ is in K and the X_{i} are prime.
Then (4.8) is $A\left(a_{1} \ldots a_{n}\right)\left(X_{1} \ldots X_{m}\right)$ which is central since

$$
A\left(a_{1} \ldots a_{n}\right): \quad A\left(B_{1} \ldots B_{n}\right) \rightarrow A\left(C_{1} \ldots C_{n}\right)
$$

is a morphism of K.
4. 3 In this section we show that each morphism of K^{\prime} can be expressed as the composite of a central morphism, an expansion of instances of $\bar{\kappa}$, and an expansion of instances of $k a$, in that order.

Let a morphism $z: Z \rightarrow Y$ of K^{\prime} be called decomposable if z can be written as
(4.9) $\quad Z \xrightarrow{t} W \xrightarrow{x} X \xrightarrow{y} Y$
where
(4.10) The prime factorization of Y is $A\left(V_{1} \ldots V_{n}\right)$ and of X is $A\left(U_{1} \ldots U_{n}\right)$.
(4.11) The orphism y is $A\left(w_{1} \ldots W_{n}\right)$ where for each
$1 \leqslant i \leqslant n$ either

$$
\begin{gathered}
V_{i}=U_{i}=1 ' \text { and } w_{i}=1 \text {; or } \\
V_{i}=k B_{i}, U_{i}=k C_{i} \text { and } W_{i}=k a_{i} \text { where } \\
a_{i}: C_{i} \rightarrow B_{i} \text { in } k .
\end{gathered}
$$

(4.12) One factorization of W (not necessarily prime) is $A\left(T_{1} \ldots T_{n}\right)$.
(4.13) The morphism x is $A\left(v_{1} \ldots v_{n}\right)$ where for each $1 \leqslant i \leqslant n$ either

$$
\begin{aligned}
& U_{i}=T_{i}=l^{\prime} \text { and } v_{i}=1 \text {; or } \\
& U_{i}=k E_{i}\left(\ldots D_{j} \ldots\right), T_{i}=E_{i}\left(\ldots k D_{j} \ldots\right) \text { and } \\
& v_{i} \text { is } \\
& \bar{\kappa}\left(E_{i} ; \ldots D_{j} \ldots\right): E_{i}\left(\ldots k D_{j} \ldots\right) \rightarrow \kappa E_{i}\left(\ldots D_{j} \ldots\right) .
\end{aligned}
$$

(4.14) $\quad t$ is central.

Proposition 4.3: All morphisms of K^{\prime} are decomposable.

Proof: Since $\kappa 1: \kappa A \rightarrow \kappa A$ and

$$
\bar{\kappa}(\underline{1} ; A): \underline{\underline{1}}(\kappa A) \rightarrow \kappa(\underline{\underline{1}}(A))
$$

are both equal to $1: \kappa A \rightarrow \kappa A$, it readily follows that 1: $Z \rightarrow Z$ satisfies both (4.11) and (4.13). Thus any central morphism z: Z $\rightarrow \mathrm{Y}$ is decomposable being

$$
\mathrm{Z} \xrightarrow{\mathrm{Z}} \mathrm{Y} \xrightarrow{1} \mathrm{Y} \xrightarrow{1} \mathrm{Y} .
$$

The morphism (4.3) is decomposable as

$$
\kappa A \xrightarrow{1} \kappa A \xrightarrow{1} \text { 兰 }(\kappa A) \xrightarrow{\underline{1}(\kappa a)} \underset{\equiv}{\underline{1}}(\kappa B) .
$$

The morphism (4.4) is decomposable as

$$
\begin{aligned}
& A\left(\ldots \kappa B_{i} \ldots\right) \xrightarrow{\underline{1}} \underset{\underline{\equiv}}{ }\left(A\left(\ldots \kappa B_{i} \ldots\right)\right) \xrightarrow{\underline{\underline{1}}(\bar{\kappa})} \xlongequal{\underline{\equiv}}\left(\kappa A\left(\ldots B_{i} \ldots\right)\right. \\
& 1 \\
& \rightarrow \underline{\underline{1}}\left(\kappa A\left(\ldots B_{i} \ldots\right)\right) .
\end{aligned}
$$

Suppose $z_{k}: Z_{k} \rightarrow Y_{k}$ are decomposable for $1 \leqslant k \leqslant p$, and that each z_{k} is
(4.15) $\mathrm{Z}_{\mathrm{k}} \xrightarrow{\mathrm{t}_{\mathrm{k}}} \mathrm{W}_{\mathrm{k}} \xrightarrow{\mathrm{X}_{\mathrm{k}}} \mathrm{X}_{\mathrm{k}} \xrightarrow{\mathrm{y}_{\mathrm{k}}} \mathrm{Y}_{\mathrm{k}}$
as in (4.9). For $F \in K$ with $\Gamma F=p$, it is necessary to show that $F\left(z_{1} \ldots z_{p}\right)$ is decomposable.

But $F\left(z_{1} \ldots z_{p}\right)$ is

$$
\begin{aligned}
F\left(Z_{1} \ldots Z_{p}\right) \xrightarrow{F\left(t_{1} \ldots t_{p}\right)} & F\left(A_{1} \ldots A_{p}\right)\left(\ldots T_{i} \ldots\right) \\
& \xrightarrow{F\left(A_{1} \ldots A_{p}\right)\left(\ldots V_{i} \ldots\right)} F\left(A_{1} \ldots A_{p}\right)\left(\ldots U_{i} \ldots\right) \\
& \\
& F\left(A_{1} \ldots A_{p}\right)\left(\ldots W_{i} \ldots\right) \\
& F\left(A_{1} \ldots A_{p}\right)\left(\ldots V_{i} \ldots\right)
\end{aligned}
$$

which is decomposable.

The proof of the proposition will be completed with the following lemma:

Lemma 4.4: If $z: Z \rightarrow Y$ and $u: Y \rightarrow S$ are decomposable so is the composite $u z: Z \rightarrow S$.

Proof: Let z be (4.9). It is sufficient to show the truth of the lemma when
(i) u is central;
(ii) u is an expansion of instances of $\bar{\kappa}$;
(iii) u is an expansion of instances of $k a$.

Case (i): Let u be
(4.16) $\quad b\left(V_{\xi 1} \ldots V_{\xi n}\right): \quad A\left(V_{1} \ldots V_{n}\right) \rightarrow F\left(V_{\xi 1} \ldots V_{\xi n}\right)$
for $\mathrm{b}: \mathrm{A} \rightarrow \mathrm{F}$ in K with $\Gamma \mathrm{b}=\xi^{-1}$.

But ez is now

$$
\begin{aligned}
& \left.Z \xrightarrow{\mathrm{t}} \mathrm{~A}_{\mathrm{C}} \mathrm{~T}_{1} \ldots \mathrm{~T}_{\mathrm{n}}\right) \xrightarrow{\mathrm{b}\left(\mathrm{~T}_{\xi 1} \ldots \mathrm{~T}_{\xi \mathrm{n}}\right)} \mathrm{F}\left(\mathrm{~T}_{\xi_{1}} \ldots \mathrm{~T}_{\xi_{\mathrm{n}}}\right) \\
& F\left(v_{\xi 1} \ldots v_{\xi_{n}}\right) \quad F\left(w_{\xi_{1}} \ldots w_{\xi_{n}}\right) \\
& \xrightarrow{ } F\left(U_{\xi_{1}} \ldots U_{\xi_{n}}\right) \\
& F\left(V_{\xi 1} \ldots V_{\xi \mathrm{n}}\right)
\end{aligned}
$$

which is decomposable by the centrality of

$$
\mathrm{b}\left(\mathrm{~T}_{\xi 1} \ldots \mathrm{~T}_{\xi \mathrm{n}}\right) \cdot \mathrm{t}
$$

Case (ii): Let u be
(4.17)

$$
\begin{aligned}
& A\left(V_{1} \ldots V_{n}\right)=G\left(F_{1}\left(V_{1} \ldots\right) \ldots F_{m}\left(\ldots V_{n}\right)\right) \xrightarrow{G_{1}\left(s_{1} \ldots s_{m}\right)} \\
& \quad G\left(R_{1} \ldots R_{m}\right)
\end{aligned}
$$

where R_{1}, \ldots, R_{m} are prime, and if
(a) R_{i} is $\underline{\underline{1}}^{\prime}$, then $F_{i}\left(\ldots V_{j} \ldots\right)=\underline{\underline{1}}\left(\underline{\underline{1}^{\prime}}\right)$ and $s_{i}=1$;
(b) $\quad R_{i}$ is $k J_{i}$, then $F_{i}\left(\ldots V_{j} \ldots\right)=F_{i}\left(\ldots k H_{j} \ldots\right)$, $J_{i}=F_{i}\left(\ldots H_{j} \ldots\right)$, and $s_{i}=\bar{k}\left(F_{i} ; \ldots H_{j} \ldots\right)$.

Since $A=G\left(F_{1} \ldots F_{m}\right)$, ut is the composite
(4.18) $Z \xrightarrow{t} G\left(\ldots F_{i}\left(\ldots T_{j} \ldots\right) \ldots\right) \xrightarrow{F\left(\ldots F_{i}\left(\ldots w_{j} v_{j} \ldots\right) \ldots\right)}$

$$
G\left(\ldots F_{i}\left(\ldots v_{j} \ldots\right) \ldots\right) \xrightarrow{G\left(\ldots s_{i} \ldots\right)} G\left(\ldots R_{i} \ldots\right) .
$$

This is decomposable if each $s_{i} . F_{i}\left(\ldots w_{j} v_{j} \ldots\right)$ is, because as we have seen in the proof of Proposition 4.3, an expansion of decomposables is decomposable.

If R_{i} is $\underline{\underline{\prime}}^{\prime}$, then $s_{i}=1, F_{i}\left(\ldots V_{j} \ldots\right)=1^{\prime}$, $w_{j}=1, v_{j}=1, F_{i}\left(\ldots T_{j} \ldots\right)=1$, so that $s_{i} \cdot F_{i}\left(\ldots w_{j} v_{j} \ldots\right)$ is $1: \underline{\equiv}^{\prime} \rightarrow \underline{\equiv}^{\prime}$, and so decomposable.

Suppose R_{i} is $k J_{i}$. Then $s_{i} \cdot F_{i}\left(\ldots w_{j} v_{j} \ldots\right)$ is
(4.19) $\quad F_{i}\left(\ldots E_{j}\left(\ldots K D_{k} \ldots\right) \ldots\right)$

$$
F_{i}\left(\ldots K E_{j}\left(\ldots D_{k} \ldots\right) \ldots\right) \xrightarrow{F_{i}\left(\ldots K a_{j} \ldots\right)}
$$

$$
F_{i}\left(\ldots \kappa H_{j} \ldots\right) \xrightarrow{\bar{K}} \kappa F_{i}\left(\ldots H_{j} \ldots\right)
$$

But by the naturality of $\bar{\kappa}$, (4.19) is

$$
\begin{aligned}
& F_{i}\left(\ldots E_{j}\left(\ldots{ }_{k} D_{k} \ldots\right) \ldots\right) \xrightarrow{F_{i}(\ldots \bar{K} \ldots)} \\
& \bar{\kappa} \\
& F_{i}\left(\ldots K E_{j}\left(\ldots D_{k} \ldots\right) \ldots\right) \rightarrow \\
& K F_{i}\left(\ldots E_{j}\left(\ldots D_{k} \ldots\right) \ldots\right) \xrightarrow{\kappa F_{i}\left(\ldots a_{j} \ldots\right)} K F_{i}\left(\ldots H_{j} \ldots\right) .
\end{aligned}
$$

However this is decomposable since $\bar{\kappa} . F_{i}(\ldots \bar{\kappa} \ldots)$ equals

$$
F_{i}\left(\ldots E_{j} \ldots\right)\left(\ldots K D_{k} \ldots\right) \xrightarrow{\bar{k}} \kappa F_{i}\left(\ldots E_{j} \ldots\right)\left(\ldots D_{k} \ldots\right)
$$

by (4.5).

Case (iii): Let u be

$$
\begin{equation*}
A\left(s_{1} \ldots s_{n}\right): A\left(V_{1} \ldots V_{n}\right) \rightarrow A\left(R_{1} \ldots R_{n}\right) \tag{4.20}
\end{equation*}
$$

where if
(a) $\quad V_{i}$ is $\underline{\underline{1}}^{\prime}$, so is R_{i}, and $s_{i}=1: \underline{\underline{1}}^{\prime} \rightarrow \underline{\underline{1}}^{\prime}$.
(b) $\quad V_{i}$ is κB_{i}, then R_{i} is κF_{i} and s_{i} is κb_{i} for $b_{i}: B_{i} \rightarrow F_{i}$

But wy is

$$
A\left(s_{1} w_{1} \ldots s_{n} w_{n}\right): \quad A\left(U_{1} \ldots U_{n}\right) \rightarrow A\left(R_{1} \ldots R_{n}\right)
$$

where $s_{i} w_{i}$ is either $1: \underline{\underline{1}}^{\prime} \rightarrow \underline{\underline{1}}^{\prime}$, or $\kappa\left(b_{i} a_{i}\right): K C_{i} \rightarrow K F_{i}$.
Thus ut is decomposable.
4.4 We proceed to use Proposition 4.3 in order to prove a theorem concerning certain sufficient conditions upon K ensuring the joint faithfulness of Γ_{1}, Γ_{2} and Γ_{3}.

Theorem 4.5: Suppose that every a: $C\left(A_{1} \ldots A_{n}\right) \rightarrow C\left(B_{1} \ldots B_{n}\right)$ in K with $\Gamma a=n\left(\xi_{1} \ldots \xi_{n}\right)$ for some $\xi_{i}: \Gamma A_{i} \rightarrow \Gamma B_{i}$ is of the
form $a=C\left(b_{1} \ldots b_{n}\right)$ for some $b_{i}: \quad A_{i} \rightarrow B_{i}$ in K with
$\Gamma b_{i}=\xi_{i}$. Then if every map in K is an isomorphism,
Γ_{1}, Γ_{2} and Γ_{3} are jointly faithful.

Proof: Let $z, z^{\prime}: Z \rightarrow Y$ in K^{\prime} be such that $\Gamma_{i} z=\Gamma_{i} z^{\prime}$ for $i=1,2,3$. We must show that $z=z^{\prime}$.

By Proposition 4.3, z and $z '$ are decomposable so may be written as in (4.9) as

$$
Z \stackrel{t}{\rightarrow} A\left(T_{1} \ldots T_{n}\right) \xrightarrow{A\left(v_{1} \ldots v_{n}\right)} A\left(U_{1} \ldots U_{n}\right) \xrightarrow{A\left(w_{1} \ldots w_{n}\right)} A\left(V_{1} \ldots V_{n}\right)
$$

and

$$
\begin{aligned}
Z \xrightarrow{t^{\prime}} A\left(T_{1}^{\prime} \ldots T_{n}^{\prime}\right) & A\left(v_{1}^{\prime} \ldots v_{n}^{\prime}\right) \\
& \xrightarrow{A\left(w_{1}^{\prime} \ldots w_{n}^{\prime}\right)} A\left(U_{1}^{\prime} \ldots U_{n}^{\prime}\right) \\
& A\left(V_{1} \ldots V_{n}\right) .
\end{aligned}
$$

If $s=t^{\prime} \cdot t^{-1}$ we must show the commutativity of

given that $\Gamma_{i}(4.21)$ commutes for $i=1,2,3$.

We assert that s associates each prime factor of T_{i} with a prime factor of T_{i}. Otherwise Γ_{2} or Γ_{3} of (4.21) fails to commute in view of the evident character of Γ_{2} and Γ_{3} of the left and right legs of (4.21).

Let the prime factorizations of the T_{i}^{\prime} be
$T_{1}^{\prime}=B_{1}^{\prime}\left(Y_{1} \ldots\right), \ldots, T_{n}^{\prime}=B_{n}^{\prime}\left(\ldots \bar{Y}_{m}\right)$, and of the T_{i} be $T_{1}=B_{1}\left(Y_{n 1} \ldots\right), \ldots, T_{n}=B_{n}\left(\ldots Y_{n m}\right)$. Since T has the same factors as $T_{i}, \Gamma B_{i}=\Gamma B_{i}^{\prime}$, and s is
$a\left(Y_{1} \ldots Y_{m}\right): A\left(B_{1} \ldots B_{n}\right)\left(Y_{n 1} \ldots Y_{n m}\right) \rightarrow A\left(B_{1}^{\prime} \ldots B_{n}^{\prime}\right)\left(Y_{1} \ldots Y_{m}\right)$ where $a: A\left(B_{1} \ldots B_{n}\right) \rightarrow A\left(B_{1} \ldots B_{n}^{\prime}\right), \Gamma a=n=A\left(\xi_{1} \ldots \xi_{n}\right)$ for $\xi_{i}: \Gamma B_{i} \rightarrow \Gamma B_{i}^{\prime}$. By the property of K mentioned in the statement of the theorem there exist $b_{i}: B_{i} \rightarrow B_{i}$ for which $\Gamma b_{i}=\xi_{i}$ and $a=A\left(b_{1} \ldots b_{n}\right)$. Denote the central morphisms $b_{1}\left(Y_{1} \ldots\right): B_{1}\left(Y_{n 1} \ldots\right) \rightarrow B_{1}^{\prime}\left(Y_{1} \ldots\right), \ldots$, $b_{n}\left(\ldots Y_{m}\right): B_{n}\left(\ldots Y_{n m}\right) \rightarrow B_{n}^{\prime}\left(\ldots Y_{m}\right)$ by s_{1}, \ldots, s_{n}. Then $s=A\left(s_{1} \ldots s_{n}\right)$.

By the strictness of each Γ_{i} and the commutativity of Γ_{i} of (4.21), it follows that Γ_{i} of
(4.22)

commutes.

$$
\text { If } V_{j}=\frac{1}{\underline{1}} \text {, then }(4.22) \text { reduces to }
$$

which obviously commutes.

$$
\text { If } V_{j} \text { is } K C \text { for some } C \in K \text {, then (4.22) is }
$$

(4.23)

for various $D, D^{\prime}, E_{1}, \ldots, E_{p}, f, f^{\prime}$. But s_{j} is central and so
may be written as

$$
d\left(K E_{1} \ldots K E_{p}\right): \quad D\left(K E_{\zeta 1} \ldots K E_{\zeta p}\right) \rightarrow D^{\prime}\left(K E_{1} \ldots K E_{p}\right)
$$

for $d: D \rightarrow D^{\prime}$ with $\Gamma d=\zeta$. By the naturality of $\bar{\kappa}$ the right leg of (4.23) equals
(4.24)

$$
\begin{aligned}
& D\left(K E_{\zeta 1} \ldots K E_{\zeta p}\right) \xrightarrow{\bar{\kappa}} \kappa D\left(E_{\zeta 1} \ldots E_{\zeta p}\right) \\
& \\
& K D^{\prime}\left(E_{1} \ldots E_{p}\right) \xrightarrow{\kappa d\left(E_{1} \ldots E_{p}\right)} \\
& \kappa C .
\end{aligned}
$$

The commutativity of $\Gamma_{1}(4.23)$ means that

commutes. By this result and the expansion (4.24) we see that (4.23) commutes. Thus (4.22) commutes for any prime V_{j}. Consequently (4.21) commutes, so that $z=z^{\prime}$.

This completes the proof of Theorem 4.5.

Corollary 4.6: If $\Gamma: K \rightarrow \underline{\underline{P}}$ is full and faithful, then Γ_{1}, Γ_{2} and Γ_{3} are jointly faithful.

Proof: Let a: $C\left(A_{1} \ldots A_{n}\right) \rightarrow C\left(B_{1} \ldots B_{n}\right)$ in K be such that $\Gamma a=n\left(\xi_{1} \ldots \xi_{n}\right)$ and $\xi_{i}: \Gamma A_{i} \rightarrow \Gamma B_{i}$. Since Γ is full and faithful there exist unique $b_{i}: A_{i} \rightarrow B_{i}$ with $\Gamma b_{i}=\xi_{i}$. Since $\Gamma a=\Gamma C\left(b_{1} \ldots b_{n}\right)$ and Γ is faithful $a=C\left(b_{1} \ldots b_{n}\right)$.

We now want to show that every morphism
a: $A \rightarrow B$ of K is an isomorphism. There is an inverse $\eta: \Gamma B \rightarrow \Gamma A$ of Γa in $\underline{\underline{P}}$. Since Γ is full and faithful there exists a unique $b: B \rightarrow A$ with $\Gamma b=\eta$. But $\Gamma(b a)=\Gamma\left(1_{A}\right)$ and $\Gamma(a b)=\Gamma\left(1_{B}\right)$, so ba $=I_{A}$ and $a b=1_{B}$, thus a is an isomorphism.
4. 5 We now turn our attention to the specific cases $K=\underline{\underline{P}}, P, N$ and N. In this section we shall define and consider a $\underline{\underline{P}}$-category E, an N-category B, a $\underline{\underline{P}}$-functor $(\varepsilon, \bar{\varepsilon}): \quad \underline{\underline{P}} \rightarrow E$, and an N -functor $(\beta, \bar{B}): \quad N \rightarrow B$. In $\S 4.6$ we shall show that $\hat{\underline{\underline{P}}}$ is isomorphic to $(\varepsilon, \bar{\varepsilon}): \quad \underline{\underline{P}} \rightarrow E$, and that $\hat{\underline{N}}$ is isomorphic to $(\beta, \bar{B}): N \vec{N} \rightarrow B$; and in $\S 4.7$ we show that \hat{P} is equivalent to $\hat{\underline{P}}$, and \hat{N} is equivalent to $\hat{\underline{N}}$.

The objects of E are
(4.25) (f; $n \rightarrow p, u, \phi)$
where n, p, u are nonnegative integers, f is an increasing map, and ϕ is a (p, u)-shuffle. A (p, u)-shuffle is a permutation ϕ of $p+u$ for which $\phi 1<\phi 2<\ldots<\phi p$, and $\phi(p+1)<\phi(p+2)<\ldots<\phi(p+u)$

A morphism of E from ($f: n \rightarrow p, u, \phi$) to
($f^{\prime}: n^{\prime} \rightarrow p^{\prime}, u^{\prime}, \phi^{\prime}$) exists only when $n^{\prime}=n$ and $u^{\prime}=u$ It is written
(4.26) (ξ, h, θ)
where $\xi: \mathrm{n} \rightarrow \mathrm{n}$ and $\theta: \mathrm{u} \rightarrow \mathrm{u}$ are permutations, and $\mathrm{h}: \mathrm{p} \rightarrow \mathrm{p}$ ' is any map such that the following diagram commutes

The composite of (ξ, h, θ) and ($\xi^{\prime}, h^{\prime}, \theta^{\prime}$) is ($\left.\xi^{\prime} \xi, h^{\prime} h, \theta^{\prime} \theta\right)$. The morphism, (1,1,1) is the identity for any object.

The $\underset{\underline{P}}{ }$-action on E is given by
$(f: n \rightarrow p, u, \phi) \otimes\left(f^{\prime}: n^{\prime} \rightarrow p^{\prime}, u^{\prime}, \phi^{\prime}\right)=$

$$
\left(f+f^{\prime}: n+n^{\prime} \rightarrow p+p^{\prime}, u+u^{\prime}, \phi+\phi^{\prime}\right)
$$

and
$I=(0 \rightarrow 0,0,1)$
where $f+f^{\prime}$, for example, is the tensor product of f and f^{\prime} in S.

The functor $\varepsilon: \quad \underline{\underline{P}} \rightarrow E$ is given by
$\varepsilon n=(\Omega: n \rightarrow 1,0,1)$
where Ω is the unique amorphism $n \rightarrow 1$ in S; and

$$
\begin{aligned}
& \varepsilon(\xi: n \rightarrow n)=(\xi, 1,1) . \\
& \text { The } \underset{\underline{P}-f u n c t o r ~ s t r u c t u r e ~ o n ~}{ } \varepsilon \text { is defined by } \\
& \bar{\varepsilon}(\otimes ; \mathrm{n}, \mathrm{~m})=\tilde{\varepsilon}=\mathrm{n}+\mathrm{m} \xrightarrow{\Omega+\Omega} 1+1 \quad, 0,1 \\
& 1 \downarrow \downarrow \\
& \mathrm{n}+\mathrm{m} \longrightarrow 1 \quad, \quad 0,1
\end{aligned}
$$

The objects of B are the same as those of E. The morphisms of B are those of E for which ξ and θ are 1 , h is increasing, and the following condition holds. For each $i \leqslant p$, and $0<j, k \leqslant u$ such that $\phi(p+j)<\phi i$, $\phi i<\phi(p+k), \phi^{\prime}$ is such that $\phi^{\prime}(q+j) \leqslant \phi^{\prime} h i$ and $\phi^{\prime} h i<\phi^{\prime}(q+k)$. The N -action on B is the restriction of the P-action on E; and β and $\bar{\beta}$ are the restrictions of ε and $\bar{\varepsilon}$.

Lemma 4.7: The morphisms of E are generated by
(4.27)
(4.28)

(4.30)

(4.31)

Proof: A typical morphism of E
(4.32)

can be written as the composite
(4.33)

The first and fourth of the four factors of (4.33)
are instances of (4.28). But the second factor is the tensor product

an expansion of an instance of (4.27).

The third factor is the tensor product
ie. an expansion of
(4.34)

We will show that (4.34) is generated by (4.29), (4.30) and (4.31). We will only consider the square diagrams, for example (4.35) instead of (4.34)
(4.35)

Every increasing map $\mathrm{f}: \mathrm{n} \rightarrow \mathrm{p}$ can be written as
(4.36) $\mathrm{p}(\Omega, \ldots \Omega): \mathrm{n}=\mathrm{p}\left(\mathrm{n}_{1} \ldots \mathrm{n}_{\mathrm{p}}\right) \rightarrow \mathrm{p}(1 \ldots 1)=\mathrm{p}$ for a unique selection n_{1}, \ldots, n_{p}. Also any map $\mathrm{h}: \mathrm{p} \rightarrow \mathrm{q}$ may be written
(4.37)

$$
p \xrightarrow{\eta} p=q\left(p_{1} \ldots p_{q}\right) \xrightarrow{q(\Omega \ldots \Omega)} q
$$

for a unique selection p_{1}, \ldots, p_{q}, and a not necessarily unique permutation n.

The following diagram in S commutes

$$
\begin{aligned}
& \text { (4.38) } n=p\left(n_{n 1} \ldots n_{n p}\right) \\
& \mathrm{p}(\Omega \ldots \Omega) \\
& n\left(n_{1} \ldots n_{p}\right) \downarrow_{p(\Omega \ldots \Omega)} \downarrow^{n} \\
& \mathrm{p}\left(\mathrm{n}_{1} \ldots \mathrm{n}_{\mathrm{p}}\right) \longrightarrow \mathrm{p}=\mathrm{q}\left(\mathrm{p}_{1} \ldots \mathrm{p}_{\mathrm{q}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& q\left(\xi_{1} \ldots \xi_{q}\right) \downarrow \\
& n=q\left(p_{1}\left(n_{1} \ldots\right) \ldots p_{q}\left(\ldots n_{p}\right)\right)
\end{aligned}
$$

for any permutations ξ_{i}. But by (4.36) and (4.37) the right leg of (4.38) is hf. By (4.35) hf $=g \xi$, so that $\mathrm{g}=\mathrm{q}(\Omega \ldots \Omega)$ by (4.37). For any $\mathrm{x} \in \mathrm{n}$ suppose $\mathrm{hfx}=\mathrm{i}$. By (4.38) $n\left(n_{1} \ldots n_{p}\right) x \in p_{i}\left(\ldots n_{j} \ldots\right)$. But $g \xi x=i$, so that $\xi_{x} \in p_{i}\left(\ldots n_{j} \ldots\right)$ also. Thus there exist permutations ξ_{i} of $p_{i}\left(\ldots n_{j} \ldots\right)$ so that $\xi=q\left(\xi_{1} \ldots \xi_{q}\right) . n\left(n_{1} \ldots n_{p}\right)$. Thus diagram (4.35) is the same as diagram (4.38).

It is now sufficient to show that each of the three factors of (4.38) is generated by (4.29), (4.30) and (4.31).

The first factor is already an instance of (4.29). The second factor is tensor product of the morphisms $1 \leqslant i \leqslant q$,

all instances of (4.30). The third factor is a tensor product of the morphisms $1 \leqslant i \leqslant q$

all instances of (4.31).

This completes the proof of Lemma 4.7.

Lemma 4.8: The morphisms of B are generated by
(4.39) $0 \longrightarrow 0,1,1$

and

Proof: Consider a morphism of B of the form
(4.41)

By (4.36) this may be written

which is a tensor product of the morphisms $1 \leqslant i \leqslant q$

all instances of (4.40).

Because of the condition relating ϕ, ϕ^{\prime} and h, a general morphism of B

may be readily "disentangled" as the tensor product of morphisms like (4.41) (with the "u" part = 0), and

But (4.42) is the tensor product of u_{i} of (4.39).

This completes the proof of Lemma 4.8.
4.6 Define the strict symmetric monoidal functor $\Gamma_{1, E}: E \rightarrow \underline{\underline{P}}, \Gamma_{2, E}: E \rightarrow \underline{\underline{P}}$ and $\Gamma_{3, E}: E \rightarrow \underline{\underline{S}}$ on (4.25) by n, u and p respectively, and on (4.26) by ξ, θ and h respectively. Let the strict monoidal functors $\Gamma_{1, B}: B \rightarrow P$, $\Gamma_{2, B}: B \rightarrow \underline{\underline{P}}$ and $\Gamma_{3, B}: B \rightarrow \underline{\underline{S}}$ be the restrictions of the $\Gamma_{i, E}$ to B.

Let us write $\hat{\underline{\underline{P}}}$ as $(\pi, \bar{\pi}): \quad \underline{\underline{P}} \rightarrow \underline{\underline{P}}^{\prime}$, and $\hat{\underline{N}}$ as
$(\nu, \bar{\nu}): N \underline{N}^{N} \underline{N}^{\prime}$. By (3.3) there are strict symmetric monoidal functor ρ^{\prime} and ρ, and strict monoidal functors σ^{\prime} and σ rendering commutative

and such that $\rho^{\prime}(\underline{\underline{1}})=1, \sigma^{\prime}(\underline{\underline{1}})=1$, and
$\rho\left(\underline{\underline{1}}{ }^{\prime}\right)=\sigma\left(\underline{\underline{1}}^{\prime}\right)=(0 \rightarrow 0,1,1)$. But ρ^{\prime} and σ^{\prime} are the identity functors. In the remainder of this section we shall show that ρ and σ are isomorphisms.

Lemma 4.9: Both ρ and σ are bijection on objects.
Proof: Since ρ and σ have the same underlying object function, we only consider ρ.

Any object of E can be written uniquely as
(4.45) $p(\Omega \ldots \Omega): p\left(n_{1} \ldots n_{p}\right) \rightarrow p, u, \phi$
which is of the form
(4.46) (p+u) $\left(E_{\phi 1} \ldots E_{\phi(p+u)}\right)$
where $\quad E_{\phi i}=(0 \rightarrow 0,1,1)$ if $i>p$,
and

$$
\mathrm{E}_{\phi \mathrm{i}}=\left(\Omega: \mathrm{n}_{\mathrm{i}} \rightarrow 1,0,1\right) \text { if } \mathrm{i} \leqslant \mathrm{p} .
$$

But $\rho\left(\underline{1}^{\prime}\right)=(0 \rightarrow 0,1,1)$ and $\rho\left(\pi_{n}\right)=(\Omega: n \rightarrow 1,0,1)$.
Thus ρ maps the generators of $\underline{\underline{P}}^{\prime}$ to the generators of E. Therefore ρ is bijective on objects.

Lemma 4.10: Both ρ and σ are surjective on morphisms.

Proof: We know the generators of the morphisms of E and of B by Lemma 4.7 and Lemma 4.8. We just need to check that each such generator is the image of a morphism of $\underline{\underline{P}}^{\prime}$ and \underline{N}^{\prime} respectively:

$$
(4.27) \quad \text { is } \rho\left(\begin{array}{c}
u\left(\underline{1}^{\prime} \ldots \underline{\underline{1}}^{\prime}\right) \\
\downarrow^{\prime} \theta\left(\underline{\underline{1}}^{\prime} \cdots \underline{\underline{1}}^{\prime}\right) \\
u\left(\underline{\underline{1}}^{\prime} \ldots \underline{\underline{1}}^{\prime}\right)
\end{array}\right)
$$

using the notation of (4.46);
(4.29) is $\rho\left(\begin{array}{c}p\left(\pi n_{n 1} \ldots \pi n_{n p}\right) \\ \downarrow \\ \downarrow\left(\pi n_{1} \ldots \pi n_{p}\right) \\ p\left(\pi n_{1} \ldots \pi n_{p}\right)\end{array}\right)$;

(4.31) is $\rho(\pi \xi: \pi n \rightarrow \pi n)$;
(4.39) is $\sigma\left(1: \underline{\underline{1}}^{\prime} \rightarrow \underline{\underline{1}}^{\prime}\right)$; and
(4.40) is $\quad \sigma \quad\left(\begin{array}{c}p\left(\nu n_{1} \ldots v n_{p}\right) \\ \\ \downarrow\left(p ; n_{1} \ldots n_{p}\right) \\ \nu \\ \nu\left(n_{1}+\ldots+n_{p}\right)\end{array}\right)$.

Lemma 4.11: Both ρ and σ are faithful.
Proof: We now use the $\Gamma_{i, E}$ and $\Gamma_{i, B}$ constructed at the beginning of this section.

We know that $\Gamma_{i, \underline{\underline{p}}}\left(\underline{\underline{1}}^{\prime}\right)$ are 0,1 and 0 respectively. But $\Gamma_{i, E} \cdot \rho$ applied to \underline{I}^{\prime} also yield 0, 1, 0 . From the uniqueness of $\Gamma_{i, \underline{\underline{p}}}$, it follows that $\Gamma_{i, E} . \rho=\Gamma_{i, \underline{p}}$ for $i=1,2,3$. Similarly $\Gamma_{i, B} . \sigma=\Gamma_{i, N}$ for $i=1,2,3$.

Suppose $z, y: Z \rightarrow Y$ are morphisms of $\underline{\underline{p}}^{\prime}$ such that $\rho z=\rho y . \quad$ Then $\Gamma_{i, E}(\rho z)=\Gamma_{i, E}(\rho y)$, that is, $\Gamma_{i, \underline{\underline{p}}}(z)=\Gamma_{i, \underline{\underline{p}}}(y)$ for $i=1,2,3$. But $\Gamma: \underline{\underline{p}} \rightarrow \underline{\underline{p}}$ is the identity so Corollary 4.6 applies. Consequently $z=y$ and ρ is faithful.

It follows similarly for any morphisms fog: $T \rightarrow S$ of \underline{N}^{\prime} with of $=\sigma g$, that $\Gamma_{i, N}(f)=\Gamma_{i, N}(g)$ for $i=1,2,3$. However $\underline{\underline{N}}$ readily satisfies the conditions of Theorem 4.5, $\Gamma: \quad \underline{\underline{N}} \rightarrow \underline{\underline{P}}$ being the inclusion. Thus the $\Gamma_{i, N}$ are jointly faithful so $f=g$ and σ is faithful.
 is isomorphic to $(\beta, \bar{B}): N \rightarrow B$.

Proof: By Lemmas 4.9, 4.10 and 4.11, ρ and σ are isomorphisms. In diagrams (4.43) and (4.44), ρ^{\prime} and σ^{\prime} are known to be identity functors.
4.7 Let us write \hat{P} as $(P, \bar{P}): P \rightarrow P^{\prime}$ and \hat{N} as $(N, \bar{N}): N \rightarrow N^{\prime}$.

We know that $\underset{\underline{P}}{ }$ and $\underline{\underline{P}}^{\prime}$ are P-categories (symmetric monoidal categories) and that $(\pi, \bar{\pi})$ is a P-functor (symmetric monoidal functor). Thus if we let $K=P$ in (3.3) we know that there exist unique strict symmetric monoidal functors U,V rendering commutative

such that $U(\underline{\underline{1}})=\underline{\underline{1}}$ and $V\left(\underline{\underline{1}}{ }^{\prime}\right)=\underline{\underline{1}}^{\prime}$.

Similarly by considering $K=N$, there exist unique strict monoidal functors W, X rendering commutative

such that $W(\underline{\underline{1}})=\underline{\underline{1}}$ and $X\left(\underline{\underline{1}}{ }^{\prime}\right)=\underline{\underline{1}}^{\prime}$.
Theorem 4.13: \hat{P} is equivalent to $\hat{\underline{P}}$, and \hat{N} is equivalent to
N.

Proof: We will show that U, V, W, X are equivalences. But we already know that U and W are equivalences by the work of Mac Lane [14].

It is clear that both V and X are surjective on both objects and morphisms. It remains to show that V and X are faithful.

For $i=1,2,3, \Gamma_{i}, \underline{p} \cdot V\left(\underline{\underline{p}}^{\prime}\right)=\Gamma_{i, p}\left(\underline{\underline{1}}^{\prime}\right) . \quad$ But by the uniqueness of $\Gamma_{i, p}$ it $\stackrel{\underline{\underline{p}}}{\underline{f}}$ glows that $\Gamma_{i, p}=\Gamma_{i, p} . V$. If the morphisms $z, y: Z \rightarrow Y$ in P^{\prime} have $V z=V y$, then $\Gamma_{i, p}(z)=\Gamma_{i, \underline{\underline{p}}}(V z)=\Gamma_{i, \underline{\underline{p}}}(V y)=\Gamma_{i, p}(y)$. But $\Gamma: \quad P \rightarrow \underline{\underline{p}}$ is full and faithful, so by Corollary 4.6 , the $\Gamma_{i, p}$ are jointly faithful. Therefore $z=y$ and V is faithful.

For morphisms $f, g: T \rightarrow S$ in N^{\prime} with $X f=X g$, we obtain in the same way that $\Gamma_{i, N}(f)=\Gamma_{i, N}(g)$ for $i=1,2,3$. But N easily satisfies the conditions of Theorem 4.5 so the $\Gamma_{i, N}$ are jointly faithful. Consequently X is faithful.
5.1 We shall confine our study of mixed-variance clubs to the case $K=C$. Since our main Theorem 6.11 involves functors $\Gamma_{1}: C^{\prime} \rightarrow T, \Gamma_{2}: C^{\prime} \rightarrow T, \Gamma_{3}: C^{\prime} \rightarrow G$ it is necessary that we investigate the closed categories C^{\prime}, T and G.
5.2 We begin with a study of G.

Let the objects of G be the finite lists of the signs + and -. Of course the empty list, which we shall write 0 , is an object of G. For any list μ, let $-\mu$ be the list with all signs changed. Let $\{\mu, \nu\}$ be the list consisting of the elements of μ followed by those of ν. Let μ_{+} (respectively $\mu_{_}$) be the set of + elements (respectively -) of μ. A nontrivial morphism from μ to v is a function from $\{\mu,-\nu\}_{+}$to $\{\mu,-\nu\}_{_}$. For every pair of objects μ, ν let there be a morphism *: $\mu \rightarrow \nu$ called the trivial morphism.

We say that the nontrivial morphisms $f: \mu \rightarrow \nu$ and $\mathrm{g}: \quad \nu \rightarrow \pi$ are incompatible (written $\mathrm{f} \dagger \mathrm{g}$) if there is a subset

$$
(5.1) \quad v_{1}, v_{2}, \ldots, v_{2 n} \quad n \geqslant 1
$$

of the elements of v, such that f maps v_{i} to v_{i+1} for i odd,
and g maps v_{i} to v_{i+1} for i even $\left(g\left(\nu_{2 n}\right)=v_{1}\right)$. Otherwise f and g are compatible (written $f \sim g$).

If $f \sim g$ we define gif: $\mu \rightarrow \pi$. Consider the sequence
(5.2) $x_{0}, x_{1}, \ldots, x_{n}$
$n \geqslant 1$
where $x_{0} \in \mu_{+}$or π_{-}; and x_{i+1} is $f\left(x_{i}\right)$ if $x_{i} \in \mu_{+}$or ν_{-}, and x_{i+1} is $g\left(x_{i}\right)$ if $x_{i} \in u_{+}$or π_{-}; and x_{n} is the first x_{i} in π_{+}or μ_{-}. We define the composite gif to be the map which sends each x_{0} to x_{n} as in (5.2). If $f \nmid g$ or f or g is trivial, let gif be the trivial morphism.

Lemma 5.1: Suppose f: $\mu \rightarrow \nu, g: \quad \nu \rightarrow \pi$ and $h: \pi \rightarrow \rho$ are nontrivial morphisms of G. Then $f \sim g$ and $g f \sim h$, if and only if, $\mathrm{g} \sim \mathrm{h}$ and $\mathrm{f} \sim \mathrm{hg}$. (We write this as $\mathrm{f} \sim \mathrm{g} \sim \mathrm{h}$.)

Proof: Suppose fig. Then there exists a sequence
(5.1). But if $g \sim h, h g m a p s v_{i}$ to v_{i+1} for i even. Thus fth.

Suppose fug, but fth. Then there exist

$$
\pi_{1}, \ldots, \pi_{2 n}
$$

$n \geqslant 1$
elements of π, such that gif maps π_{i} to $\pi_{i+1}(i$ odd) and h maps π_{i} to π_{i+1} (i even). Since gif maps $\pi_{2 i-1}$ to $\pi_{2 i}$, there exists a sequence (possibly empty)

$$
v_{i 1}, v_{i 2}, \ldots, v_{i r_{i}} \quad r_{i} \text { even }
$$

of elements of ν, such that $g\left(\pi_{2 i-1}\right)=\nu_{i 1}, g\left(\nu_{i r_{i}}\right)=\pi_{2 i}$, $g\left(\nu_{i j}\right)=\nu_{i, j+1}$ if j is even; and $f\left(\nu_{i j}\right)=v_{i, j+1}$ if j is odd. If $r_{i}=0$ for all i then $g \nmid h$. Suppose r_{i} is not always 0 . Then the sequence

$$
v_{11}, \ldots v_{1 r_{1}}, v_{21}, \ldots, \nu_{2 r_{2}}, \ldots, v_{n r_{n}}
$$

shows that f†hg. The converse is proved in exactly the same way.

Lemma 5.2: Suppose $f: \mu \rightarrow \nu, g: \nu \rightarrow \pi$ and $h: \pi \rightarrow \rho$ are non-trivial morphisms of G such that $f^{\sim} g^{\sim} h$. Then $h(g f)=(h g) f$.

Proof: Consider the sequence

$$
x_{0}, x_{1}, \ldots x_{n}
$$

$n \geqslant 1$
where $x_{0} \in \mu_{+}$or $\rho_{-} ; x_{i+1}=f\left(x_{i}\right)$ if $x_{i} \in \mu_{+}$or ν_{-};
$x_{i+1}=g\left(x_{i}\right)$ if $x_{i} \in \nu_{+}$or π_{-}; $x_{i+1}=h\left(x_{i}\right)$ if $x_{i} \epsilon \pi_{+}$or ρ_{-}; and x_{n} is the first x_{i} in ρ_{+}or μ_{-}.

Let

$$
x_{0}=y_{0}, y_{1}, \ldots, y_{m}=x_{n}
$$

be those x_{i} which are in μ, ν or ρ. But $y_{i+1}=f\left(y_{i}\right)$ if $y_{i} \in \mu_{+}$or ν_{-}; and $y_{i+1}=h g\left(y_{i}\right)$ if $y_{i} \in \nu_{+}$or ρ_{-}. Thus (hg) $f\left(x_{0}\right)=x_{n}$. Similarly by considering the x_{i} in μ, π or ρ we find that $h(g f)\left(x_{0}\right)=x_{n}$. Consequently (h gl $=h(g f)$.

For any object μ of G we define the identity morphism 1: $\mu \rightarrow \mu$. It is a function from $\{\mu,-\mu\}_{+}$to $\{\mu,-\mu\}_{-}$, i.e. from $\mu_{+} u(-\mu)_{+}$to $\mu_{-} u(-\mu)_{-}$. Let it be the function comprising the identity maps from μ_{+}to $(-\mu)_{-}$and from $(-\mu)_{+}$to μ_{-}.

Given objects μ, ν of G, define $\mu \otimes \nu$ to be $\{\mu, \nu\}$, and $[\mu, \nu]$ to be $\{-\mu, \nu\}$. Given non-trivial morphisms $f: \mu \rightarrow \pi$ and $g: \nu \rightarrow \rho$ we want to define $f \otimes g: \mu \otimes \nu \rightarrow \pi \otimes \rho$ and $[f, g]:[\pi, \nu] \rightarrow[\mu, \rho]$. Now $f \otimes g$ will be a map from $\{\mu, \nu,-\pi,-\rho\}_{+}$to $\{\mu, \nu,-\pi,-\rho\}_{-}$, i.e. from $\{\mu,-\pi\}_{+} u\{\nu,-\rho\}_{+}$ to $\{\mu,-\pi\} \cup\{v,-\rho\}$. We define $f \otimes g$ to be the morphism which acts as f on $\{\mu,-\pi\}_{+}$and as g on $\{\nu,-\rho\}_{+}$. We can similarly define [f,g]. If one or both of f and g is trivial we define $f \otimes g$ and $[f, g]$ as the respective trivial maps.

If $\mathrm{f} \sim \mathrm{h}$ and $\mathrm{g} \sim \mathrm{k}$ then $\mathrm{f} \otimes \mathrm{g} \sim \mathrm{h} \otimes \mathrm{k}$ and $\mathrm{h} \otimes \mathrm{k} . \mathrm{f} \otimes \mathrm{g}=\mathrm{hf} \otimes \mathrm{kg}$. Thus \otimes is a functor. Similarly [,] is a functor.

Proposition 5.3: G is a closed category.

Proof: We have already defined composition of morphisms,
identity morphisms, tensor product and internal hom functors. Let the identity object of G be the empty list 0 .

Lemma 5.2 states that composition is associative when f~g~h. Consider the cases when we do not have f~g~h. If any of f, g and h is *, then so are both (hg)f and $h(g f)$.

So suppose that at least one of $f \nmid g$, $g f \nmid h$, $g \nmid h$ and $f \nmid h g$. But by Lemma 4.1 we deduce that (hg) $f=h(g f)=$ *. Thus composition is always associative. Since the identity morphisms readily satisfy the category axioms, G is a category.

Since $(\mu \otimes \nu) \otimes \rho=\mu \otimes(\nu \otimes \rho)$ the associativity isomorphism is the identity morphism. Also since $\mu \otimes 0=\mu=0 \otimes \mu$, the left and right identity isomorphisms are also the identity morphisms. The commutativity isomorphism c: $\mu \otimes \nu \rightarrow \nu \otimes \mu$ is a map from $\{\mu, \nu,-\nu,-\mu\}_{+}$to $\{\mu, \nu,-\nu,-\mu\}_{-}$, and comprises the identity maps $\{\mu,-\mu\}_{+}$to $\{\mu,-\mu\}_{-}$, and from $\{\nu,-\nu\}_{+}$to $\{\nu,-v\}_{-}$.

The maps $d: \mu \rightarrow[\nu, \mu \otimes \nu]$ and $e:[\mu, \nu] \otimes \mu \rightarrow \nu$ are respectively the maps from the + elements to the - elements of respectively $\{\mu, \nu,-\mu,-\nu\}$ and $\{-\mu, \nu, \mu,-\nu\}$, induced from the evident identity maps.

It is easy to check that the relevant axiom-diagrams [see Eilenberg-Kelly [2]] commute so G is a closed category.

We can see that T is a closed subcategory of G with the same objects. The non-trivial morphisms of T are those morphisms of G whose underlying functions are bijections.

Let a central morphism $f: \mu \rightarrow \nu$ of G be a morphism of T which maps μ_{+}bijectively to ν_{+}, and ν_{-}bijectively to μ_{-}.

It is easy to see that if $g: \nu \rightarrow \pi$ is a non-trivial morphism of G, and $f: \mu \rightarrow \nu$ and $h: \pi \rightarrow \rho$ are central, then $f \sim g \sim h$.

Note that the centrals are the smallest set of the morphisms of G containing $1, a, c, \ell, r$ and closed under \otimes and [,].
5.3 Define the closed functor $(\sigma, \bar{\sigma}): I \rightarrow G$ by: $\sigma(*)=+; \tilde{\sigma}\left(\otimes ;{ }^{*}, *\right):+,+\rightarrow+$ is the unique such morphism in G; and $\sigma^{\circ}: 0 \rightarrow+$ is also the unique such morphism in G. Let $(\beta, \bar{\beta}): I \rightarrow G$ be the closed functor with $\beta(*)=0$.

We know that there exist unique strict symmetric monoidal functors $\Lambda_{1}, \Lambda_{2}, \Lambda_{3}, \Gamma_{1}, \Gamma_{2}$ and Γ_{3} rendering commutative

and such that $\Lambda_{1}(\underline{\underline{1}})=1, \Lambda_{2}(\underline{\underline{1}})=*, \Lambda_{3}(\underline{\underline{1}})=*, \Gamma_{1}\left(\underline{\underline{1}}{ }^{\prime}\right)=0$, $\Gamma_{2}\left(\underline{\underline{1}}^{\prime}\right)+$ and $\Gamma_{3}\left(\underline{\underline{1}}^{\prime}\right)=0$. We know that $\Lambda_{1}: C \rightarrow G$ is the graph functor of Kelly-Mac Lane [8].
5.4 We now turn our attention to the category C^{\prime}. We shall define the constructible morphisms of C^{\prime}. Our aim is to show that all morphisms of C ' satisfy this definition. In Chapter 6, we shall use this characterization of the morphisms of C^{\prime}.

The objects of C^{\prime} may be considered to be $T\left\{X_{1}, \ldots, X_{m}\right\}$ where $T \in \mathcal{C}$ and each X_{i} is $\underline{\underline{1}}^{\prime}$ or γA_{i} for $A_{i} \in \mathcal{C}$. Mentions of \otimes and $[$,$] in T$ correspond to \otimes^{\prime} and [,]' in $T\left(X_{1}, \ldots, X_{m}\right)$. Having been inspired by this correspondence, we shall frequently abbreviate \otimes^{\prime} and [,]' to \otimes and [,].

However, we find it more useful to factorize the objects of C^{\prime} as
(5.3) $P\left(Z_{1}, \ldots, Z_{n}\right)$
where $P \in P$ and each Z_{i} is either ${ }_{\underline{\prime}}{ }^{\prime} ; \gamma A_{i}$ for $A_{i} \in \mathcal{C}$; or $\left[X_{i}, Y_{i}\right] '$ for $X_{i}, Y_{i} \in C^{\prime}$. We call such Z_{i} the prime factors of (5.3). We write I^{\prime} for the identity object $I(-)$ of C^{\prime}.

If $f: A \otimes B \rightarrow C$ is a morphism of C, and $z: Z \otimes Y \rightarrow X$ is a morphism of C ' denote by πf and πz the respective composites

$$
\begin{aligned}
& A \xrightarrow{d}[B, A \otimes B] \xrightarrow{[1, f]}[B, C], \\
& Z \xrightarrow{d^{\prime}}[Y, Z \otimes Y] \xrightarrow{[1, Z]}[Y, X] .
\end{aligned}
$$

If $g: A \rightarrow B$ and $y: Z \rightarrow Y$ are morphisms of C and $C '$ respective$l y$, and C and X are objects of C and C^{\prime}, denote by $\langle g\rangle_{C}$ and $\langle y\rangle_{X}$ (usually abbreviated to <g> and $\langle y\rangle$) the respective composites

$$
\begin{aligned}
& {[B, C] \otimes A \xrightarrow{1 \otimes g}[B, C] \otimes B \xrightarrow{e} C,} \\
& {[Y, X] \otimes Z \xrightarrow{1 \otimes y}[Y, X] \otimes Y \xrightarrow{e^{\prime}} X .}
\end{aligned}
$$

We define the central morphisms of C ' to be those of the form
(5.4) $p\left(z_{1} \ldots z_{n}\right): P\left(z_{\xi_{1}} \ldots z_{\xi_{n}}\right) \rightarrow Q\left(Z_{1} \ldots z_{n}\right)$
where $P, Q \in P, p: P \rightarrow Q$ is a morphism of P with $\Gamma p=\xi$ and the Z_{i} are prime.

Lemma 5.4: Let f be the central orphism (5.4) of C^{\prime}. For $i=1,2,3, \Gamma_{i}(f)$ is central in G.

Proof: Because the Γ_{i} are strict $P_{\text {-functor, }}$
$\Gamma_{i}(f)=p\left(\Gamma_{i}\left(Z_{1}\right) \ldots \Gamma_{i}\left(Z_{n}\right)\right)$. These morphisms are clearly central in G.

For each object Z of C or C ' we define its rank written $r(Z)$ or $r Z$. Let

$$
\begin{aligned}
& r(I)=r\left(I^{\prime}\right)=0, \\
& r(\underline{\underline{I}})=r(\underline{\underline{I}})=1, \\
& r(Z \otimes Y)=r Z+r Y, \\
& r([Z, Y])=r Z+r Y+1, \\
& r(Y Z)=r Z+1 .
\end{aligned}
$$

For each morphism $z: Z \rightarrow Y$ of C^{\prime}, let its rank $r z$ be $r Z+r Y$. Note that if z is central $r Z=r Y$.
5.5 We define the constructible morphisms of C ' to be the smallest class of morphisms of C ' satisfying the following conditions:
(5.5) Every central morphism is in the class;
(5.6) If $x: X \rightarrow V$ and $y: W \rightarrow U$ are in the class with

$$
\begin{aligned}
& r(x)>0, r(y)>0, \text { then so is } \\
& Z \xrightarrow{a} X \otimes W \xrightarrow{x \otimes y} V \otimes U \xrightarrow{b} Y
\end{aligned}
$$

where a and b are central;
(5.7) If $y: Z \otimes X \rightarrow W$ is in the class, then so is

$$
\mathrm{Z} \xrightarrow{\pi \mathrm{y}}[\mathrm{X}, \mathrm{~W}] \xrightarrow{\mathrm{b}} \mathrm{Y}
$$

where b is central;
(5.8) If $y: X \rightarrow W$ and $x: V \otimes U \rightarrow Y$ are in the class then
so is

$$
\mathrm{Z} \xrightarrow{\mathrm{a}}([\mathrm{~W}, \mathrm{~V}] \otimes \mathrm{X}) \otimes \mathrm{U} \xrightarrow{\langle\mathrm{y}>\otimes 1} \mathrm{V} \otimes \mathrm{U} \xrightarrow{\mathrm{x}} \mathrm{Y}
$$

where a is central;
(5.9) If $P \in P$ with $\Gamma P=n$ and A_{1}, \ldots, A_{n} are objects of C and $f: P\left(A_{1} \ldots A_{n}\right) \rightarrow B$ is a morphism of C, then the following morphism is in the class.

$$
\begin{aligned}
& Z \xrightarrow{a} P\left(\gamma A_{1} \ldots \gamma A_{n}\right) \xrightarrow{\bar{\gamma}\left(P ; A_{1} \ldots A_{n}\right)} \gamma P\left(A_{1} \ldots A_{n}\right) \\
& \xrightarrow[\rightarrow]{\gamma f} \stackrel{b}{\rightarrow} Y
\end{aligned}
$$

where a and b are central.

Suppose z: $Z \rightarrow Y$ with $r(z)=0$ is constructible. By elimination z can only be central.

Lemma 5.5: Suppose z: $Z \rightarrow Y$ is constructible and $a^{\prime}: Z^{\prime} \rightarrow Z$ and $b^{\prime}: Y \rightarrow Y$ Ye central. Then $b^{\prime} z a '$ is constructible.

For $i=1,2,3, \quad \Gamma_{i} a^{\prime} \sim \Gamma_{i} z \sim \Gamma_{i} b^{\prime}$.
Proof: The latter part of the lemma follows directly from Lemma 5.4 and the second-last paragraph of $\S 5.2$.

It is readily seen from the definition of central morphisms of C^{\prime} that the composite of two central morphisms is central. Thus we need only consider the cases:
(i) aa' where z is defined by (5.7); and $b^{\prime} z$ where z is defined by (5.8).

We use induction on $r(z)$ assuming that $b^{\prime z a}$ is constructible for all z with smaller rank.

Case (i):

$$
\begin{aligned}
& Z^{\prime} \xrightarrow{a^{\prime}} Z \xrightarrow{\pi y}[X, W] \xrightarrow{b^{\prime} b} Y^{\prime} \\
= & Z^{\prime} \xrightarrow{a^{\prime}} Z \xrightarrow{d^{\prime}}[X, Z \otimes X] \xrightarrow{[1, y]}[X, W] \xrightarrow{b^{\prime} b} Y^{\prime} \\
= & Z^{\prime} \xrightarrow{d^{\prime}}\left[X, Z^{\prime} \otimes X\right] \xrightarrow{\left[1, a^{\prime} \otimes 1\right]}[X, Z \otimes X] \xrightarrow{[1, y]}[X, W] \xrightarrow{b^{\prime} b} Y^{\prime} \\
= & Z^{\prime} \xrightarrow{\pi\left(y \cdot a^{\prime} \otimes 1\right)}[X, W] \xrightarrow{b^{\prime} b} Y^{\prime} .
\end{aligned}
$$

which is constructible by (5.7) if ya' $\otimes 1$ is. But this is so by the induction assumption, $r(y)$ being less than $r(z)$.

Case (ii): b'za'

$$
=b^{\prime} x \cdot\left\langle y>\otimes 1 \cdot a a^{\prime}\right.
$$

which is constructible by (5.8) if b'x is. But this is so because $r(x)<r(z)$.

Lemma 5.6: If $x: X \rightarrow V$ and $y: W \rightarrow U$ are constructible, so is $x \otimes y: \quad X \otimes W \rightarrow V \otimes U$.

Proof: By (5.6) we need only consider the cases where at least one of $r(x)$ and $r(y)$ is 0 . But then at least one of x and y is central. Thus at lease one of
$\mathrm{x} \otimes 1: \mathrm{X} \otimes \mathrm{W} \rightarrow \mathrm{V} \otimes \mathrm{W}$ and $1 \otimes \mathrm{y}: \mathrm{V} \otimes \mathrm{W} \rightarrow \mathrm{V} \otimes \mathrm{U}$ is central. But
$\mathrm{x} \otimes \mathrm{y}=1 \otimes \mathrm{y} . \mathrm{x} \otimes 1$ must be constructible by Lemma 5.5.

Lemma 5.7: If for $i=1,2,3, \Gamma_{i}(x), \Gamma_{i}(y)$ and $\Gamma(f)$ are non-trivial, then $\Gamma_{i}(5.6), \Gamma_{i}(5.7), \Gamma_{i}(5.8)$ and $\Gamma_{i}(5.9)$ are non-trivial.

Proof: The morphisms can be checked to be non-trivial by their straightforward but tedious evaluation.
$\underline{\underline{5.6}}$
Lemma 5.8 (Cut-elimination): If $z: Z \rightarrow Y$ and $w: Y \otimes X \rightarrow W$ are constructible so is
(5.10) $\mathrm{Z} \otimes \mathrm{X} \xrightarrow{\mathrm{z} \otimes 1} \mathrm{Y} \otimes \mathrm{X} \xrightarrow{\mathrm{W}} \mathrm{W}$

Proof: Write $\sigma=r Z+r Y+r X+r W$, and $\sigma_{0}=r Z+r Y$. The proof is by double induction; we suppose the lemma to be true for all situations with lower σ, or the same σ and lower σ_{0}. If either z or w is central, the lemma is a case of Lemma 5.5.

For non-central z and w we consider cases according to whether z or w be defined by (5.6) - (5.9). Clearly we may omit central factors occurring at the beginning or end of z, and at the end of w. In the proof any numbered arrow represents the evident central morphism.

Case 1: $\quad z$ is defined by (5.6)

Let z be $f \otimes g: A \otimes B \rightarrow C \otimes D$. Then (5.10)

$$
\begin{aligned}
& =(A \otimes B) \otimes X \xrightarrow{(f \otimes g) \otimes 1}(C \otimes D) \otimes X \xrightarrow{W} W \\
& =(A \otimes B) \otimes X \xrightarrow{2} B \otimes(A \otimes X) \xrightarrow{g \otimes 1} D \otimes(A \otimes X) \xrightarrow{3} A \otimes(D \otimes X) \xrightarrow{f \otimes 1}
\end{aligned}
$$

$$
C \otimes(D \otimes X) \xrightarrow{4}(C \otimes D) \otimes X \xrightarrow{W} W .
$$

Now w4.f $\otimes 1$ is constructible by the induction hypothesis. So too is $w 4(f \otimes 1) 3 . g \otimes 1$. Thus $w . z \otimes 1$ is constructible.

Case 2: $\quad z$ is defined by (5.8).

Let z be
$([A, B] \otimes C) \otimes D \xrightarrow{<f>\otimes 1} B \otimes D \xrightarrow{g} Y$.

Then w.z $\otimes 1$

$$
\begin{aligned}
= & (([A, B] \otimes C) \otimes D) \otimes X \xrightarrow{(\langle f\rangle \otimes 1) \otimes 1}(B \otimes D) \otimes X \xrightarrow{g \otimes 1} Y \otimes X \xrightarrow{W} W \\
= & (([A, B] \otimes C) \otimes D) \otimes X \xrightarrow{5}([A, B] \otimes C) \otimes(D \otimes X) \xrightarrow{\langle f\rangle \otimes 1} B \otimes(D \otimes X) \\
& \quad \begin{array}{l}
6 \\
\\
\\
\\
(B \otimes D) \otimes X \xrightarrow{g \otimes 1} Y \otimes X \xrightarrow{W} W
\end{array}
\end{aligned}
$$

which we shall call (5.11). But w.g@1 is constructible by the induction hypothesis. Thus (5.11) is constructible.

We next consider the remaining cases where z is defined by either (5.7) or (5.9). In either case Y is a prime factor.

Case 3: w is defined by (5.6).

Let w be

$$
\mathrm{Y} \otimes \mathrm{X} \xrightarrow{7} \mathrm{~A} \otimes \mathrm{~B} \xrightarrow{\mathrm{f} \otimes \mathrm{~g}} \mathrm{C} \otimes \mathrm{D} .
$$

Without loss of generality assume 7 associates the prime factor Y with a prime factor of A. Let E be a tensor product of those prime factors of X associated via 7 with prime factors of A. Then w.g 81

$$
\begin{aligned}
& =\mathrm{Z} \otimes \mathrm{X} \xrightarrow{\mathrm{z} \otimes 1} \mathrm{Y} \otimes \mathrm{X} \xrightarrow{8}(\mathrm{Y} \otimes \mathrm{E}) \otimes \mathrm{B} \xrightarrow{9 \otimes 1} \mathrm{~A} \otimes \mathrm{~B} \xrightarrow{\mathrm{f} \otimes \mathrm{~g}} \mathrm{C} \otimes \mathrm{D} \\
& =\mathrm{Z} \otimes \mathrm{X} \xrightarrow{10}(\mathrm{Z} \otimes \mathrm{E}) \otimes \mathrm{B} \xrightarrow{(\mathrm{z} \otimes 1) \otimes 1}(\mathrm{Y} \otimes \mathrm{E}) \otimes \mathrm{B} \xrightarrow{9 \otimes 1} \mathrm{~A} \otimes \mathrm{~B} \xrightarrow{\mathrm{f} \otimes \mathrm{~g}} \mathrm{C} \otimes \mathrm{D} .
\end{aligned}
$$

This is constructible by Lemma 5.5 and Lemma 5.6 if
(5.12) $\quad Z \otimes E \xrightarrow{Z \otimes 1} Y \otimes E \xrightarrow{9} A \xrightarrow{f} C$
is constructible. But $\sigma(5.12)=r Z+r Y+r E+r C$, while $\sigma(5.10)=r Z+r Y+r X+r C+r D$. So the induction assumption applies unless $r E \geqslant r X+r D$, i.e. $r B+r D \leqslant 0$. But since w is formed by (5.6), $r(g)=r B+r D>0$.

Case 4: w is defined by (5.7).

$$
\begin{aligned}
& \text { Let } w \text { be } \pi f: Y \otimes X \rightarrow[A, B] . \text { Then (5.10) is } \\
& Z \otimes X \xrightarrow{z \otimes 1} Y \otimes X \xrightarrow{\pi f}[A, B]
\end{aligned}
$$

which is π applied to
(5.13) ($\mathrm{Z} \otimes \mathrm{X}$) $\otimes \mathrm{A} \xrightarrow{(\mathrm{z} \otimes 1) \otimes 1}(\mathrm{Y} \otimes \mathrm{X}) \otimes \mathrm{A} \xrightarrow{\mathrm{f}} \mathrm{B}$.

So we must show that (5.13) is constructible. But (5.13) is

$$
\mathrm{Z} \otimes(\mathrm{X} \otimes \mathrm{~A}) \xrightarrow{\mathrm{z} \otimes 1} \mathrm{Y} \otimes(\mathrm{X} \otimes \mathrm{~A}) \xrightarrow{11}(\mathrm{Y} \otimes \mathrm{X}) \otimes \mathrm{A} \xrightarrow{\mathrm{f}} \mathrm{~B}
$$

The result follows by induction since $r Z+r Y+r(X \otimes A)$ $+r B<r Z+r Y+r X+r[A, B]$.

Case 5: w is defined by (5.9).

Let w be

$$
Y \otimes X \xrightarrow{12} P\left(\gamma A_{1} \ldots \gamma A_{n}\right) \stackrel{\bar{\gamma}}{\rightarrow} \gamma P\left(A_{1} \ldots A_{n}\right) \xrightarrow{\gamma f} \gamma B
$$

where $P \in P$. The prime factor Y must be one of the $\gamma A^{\prime} s$, say γA_{k}, so z must be defined by (5.9) not (5.7). Let z be

$$
Q\left(\gamma C_{1} \ldots \gamma C_{m}\right) \stackrel{\bar{\gamma}}{\rightarrow} \gamma Q\left(C_{1} \ldots C_{m}\right) \xrightarrow{\gamma g} \gamma A_{k}
$$

Then (5.10)

$$
\begin{aligned}
&=Q\left(\gamma C_{1} \ldots \gamma C_{m}\right) \otimes X \xrightarrow{\bar{\gamma} \otimes 1} \gamma Q\left(C_{1} \ldots C_{m}\right) \otimes X \xrightarrow{\gamma g \otimes 1} \gamma A_{k} \otimes X \\
& \xrightarrow{12} P\left(\gamma A_{1} \ldots \gamma A_{n}\right) \xrightarrow{\bar{\gamma}} \gamma P\left(A_{1} \ldots A_{n}\right) \xrightarrow{\gamma f} \gamma B \\
&= Z \otimes X-\frac{13}{} P\left(\gamma A_{1} \ldots Q\left(\gamma C_{1} \ldots \gamma C_{m}\right) \ldots \gamma A_{n}\right) \xrightarrow{P(1 \ldots \bar{\gamma} \ldots 1)} \\
& P\left(\gamma A_{1} \ldots \gamma Q\left(C_{1} \ldots C_{m}\right) \ldots \gamma A_{n}\right) \xrightarrow{\bar{\gamma}} \\
& \gamma P\left(A_{1} \ldots Q\left(C_{1} \ldots C_{m}\right) \ldots A_{n}\right) \xrightarrow{\gamma P(1 \ldots g \ldots 1)} \\
& \gamma P\left(A_{1} \ldots A_{k} \ldots A_{n}\right) \xrightarrow{\gamma f} \gamma B
\end{aligned}
$$

$$
\begin{aligned}
&=Z \otimes X \xrightarrow{13} P\left(\underline{\underline{\underline{1}} \ldots Q \ldots \underline{\underline{\underline{1}}})\left(\gamma A_{1} \ldots \gamma C_{1} \ldots \gamma C_{m} \ldots \gamma A_{n}\right) \xrightarrow{\bar{\gamma}}}\right. \\
& \gamma P(\underline{\underline{1}} \ldots Q \ldots \underline{\underline{1}})\left(A_{1} \ldots C_{1} \ldots C_{m} \ldots A_{n}\right) \\
& \gamma(f \ldots P(1 \ldots g \ldots 1))
\end{aligned}
$$

This last morphism is constructible by (5.9) since f. $P(1 \ldots g . . .1)$ is a morphism of C.

Case 6: w is defined by (5.8)

Let w be
$\mathrm{Y} \otimes \mathrm{X} \xrightarrow{14}([\mathrm{~A}, \mathrm{~B}] \otimes \mathrm{C}) \otimes \mathrm{D} \xrightarrow{\langle f\rangle \otimes 1} \mathrm{~B} \otimes \mathrm{D} \xrightarrow{\mathrm{g}} \mathrm{W}$.

Subcase 1: The prime factor Y is associated via 14 with the prime factor [A,B].

Here z cannot be defined by (5.9) so must be defined by (5.7). Also Y must be $[A, B]$. Let z be
$\pi h: \quad Z \rightarrow[A, B]$. Thus (5.10) is

$$
\mathrm{Z} \otimes \mathrm{X} \xrightarrow{\pi \mathrm{~h} \otimes 1}[\mathrm{~A}, \mathrm{~B}] \otimes \mathrm{X} \xrightarrow{14}([\mathrm{~A}, \mathrm{~B}] \otimes \mathrm{C}) \otimes \mathrm{D} \xrightarrow{\langle\mathrm{f}\rangle \otimes 1} \mathrm{~B} \otimes \mathrm{D} \xrightarrow{\mathrm{~g}} \mathrm{~W}
$$

$$
=\mathrm{Z} \otimes \mathrm{X} \xrightarrow{15}(\mathrm{Z} \otimes \mathrm{C}) \otimes \mathrm{D} \xrightarrow{(\pi \mathrm{~h} \otimes 1) \otimes 1}([\mathrm{~A}, \mathrm{~B}] \otimes \mathrm{C}) \otimes \mathrm{D} \xrightarrow{\langle\mathrm{f}\rangle \otimes 1} \mathrm{~B} \otimes \mathrm{D} \xrightarrow{\mathrm{~g}} \mathrm{~W}
$$

This is constructible, by induction if
(5.14) $\mathrm{Z} \otimes \mathrm{C} \xrightarrow{\pi h \otimes 1}[A, B] \otimes C \xrightarrow{\langle f\rangle} B$
is constructible.

$$
\begin{aligned}
& Z \otimes C \xrightarrow{d^{\prime} \otimes 1}[A, Z \otimes A] \otimes C \xrightarrow{[1, h] \otimes 1}[A, B] \otimes C \xrightarrow{l \otimes f}[A, B] \otimes A \xrightarrow{e^{\prime}} B \\
= & Z \otimes C \xrightarrow{l \otimes f} Z \otimes A \xrightarrow{d^{\prime} \otimes 1}[A, Z \otimes A] \otimes A \xrightarrow{e^{\prime}} Z \otimes A \xrightarrow{h} B \\
= & Z \otimes C \xrightarrow{l \otimes f} Z \otimes A \xrightarrow{h} B
\end{aligned}
$$

(5.15) $=\mathrm{Z} \otimes \mathrm{C} \xrightarrow{16} \mathrm{C} \otimes \mathrm{Z} \xrightarrow{\mathrm{f} \otimes 1} \mathrm{~A} \otimes \mathrm{Z} \xrightarrow{17} \mathrm{Z} \otimes \mathrm{A} \xrightarrow{\mathrm{h}} \mathrm{B}$
using the adjunction axiom that $e^{\prime} . d^{\prime} \otimes 1=1$.
But (5.15) is constructible since $\mathrm{rC}+\mathrm{rA}+\mathrm{rZ}+\mathrm{rB}<$ $r Z+r[A, B]+r X+r W$.

Subcase 2: 14 associates Y with a prime factor of C.

Let E be a tensor product of the prime factors of X which are associated via 14 with prime factors of C. Then (5.10) is

\[

\]

(5.16) $=\mathrm{Z} \otimes \mathrm{X} \xrightarrow{18}([\mathrm{~A}, \mathrm{~B}] \otimes(\mathrm{Z} \otimes \mathrm{E})) \otimes \mathrm{D} \xrightarrow{\langle(5.17)>\otimes 1} \mathrm{B} \otimes \mathrm{D} \xrightarrow{\mathrm{g}} \mathrm{W}$
where (5.17) is
(5.17) $\mathrm{Z} \otimes \mathrm{E} \xrightarrow{\mathrm{z} \otimes 1} \mathrm{Y} \otimes \mathrm{E} \xrightarrow{19} \mathrm{C} \xrightarrow{\mathrm{f}} \mathrm{A}$.

By definition (5.8), (5.16) is constructible if (5.17) is. But this is so because $r Z+r Y+r E+r A$
$<r Z+r Y+r[A, B]+r E+r D+r W$.

Subcase 3: 14 associates Y with a prime factor of D.

Let E be a tensor product of the prime factors of X which are associated via 14 with prime factors of D. Then (5.10) is

$$
\begin{aligned}
\mathrm{Z} \otimes \mathrm{X} & \xrightarrow{20}([\mathrm{~A}, \mathrm{~B}] \otimes \mathrm{C}) \otimes(\mathrm{Z} \otimes \mathrm{E}) \xrightarrow{1 \otimes(\mathrm{z} \otimes 1)}([\mathrm{A}, \mathrm{~B}] \otimes \mathrm{C}) \otimes(\mathrm{Y} \otimes \mathrm{E}) \\
& \xrightarrow{1 \otimes 21}([\mathrm{~A}, \mathrm{~B}] \otimes \mathrm{C}) \otimes \mathrm{D} \xrightarrow{\langle\mathrm{f}>\otimes 1} \mathrm{B} \otimes \mathrm{D} \xrightarrow{\mathrm{~g}} \mathrm{~W} \\
(5.18) & =\mathrm{Z} \otimes \mathrm{X} \xrightarrow{20}([\mathrm{~A}, \mathrm{~B}] \otimes \mathrm{C}) \otimes(\mathrm{Z} \otimes \mathrm{E}) \xrightarrow{\langle f\rangle \otimes 1} \mathrm{~B} \otimes(\mathrm{Z} \otimes \mathrm{E}) \xrightarrow{(5.19)} \mathrm{W}
\end{aligned}
$$

where

$$
(5.19)=\mathrm{Z} \otimes \mathrm{E} \xrightarrow{\mathrm{z} \otimes 1} \mathrm{Y} \otimes \mathrm{E} \xrightarrow{21} \mathrm{D} \xrightarrow{\mathrm{~g}} \mathrm{~W}
$$

But (5.19) is constructible by induction, hence (5.18) is constructible by Definition (5.8).

This completes the proof of Lemma 5.8, all cases having been dealt with.
$\underline{5.7}$

Proposition 5.9: Every morphism of C^{\prime} is constructible.

Proof: All the generators of C^{\prime} are constructible. If z and y are constructible, $z \otimes y$ is constructible by Lemma 5.6.

Suppose $Z: Z \rightarrow Y$ and $y: Y \rightarrow X$ are constructible. Then $z \otimes 1: ~ Z \otimes I^{\prime} \rightarrow Y \otimes I^{\prime}$ is constructible by Lemma 5.6. The composite
(5.20) $\quad Z \xrightarrow{22} Z \otimes I \cdot \xrightarrow{z \otimes 1} Y \otimes I \cdot \xrightarrow{23} Y \xrightarrow{y} X$
is constructible by Lemma 5.5 and Lemma 5.8.
But (5.20) is yz.

Suppose z: Z $\rightarrow Y$ is constructible. Then so are
(5.21) $[X, Z] \otimes X \xrightarrow{e^{\prime}} Z \xrightarrow{z} Y$
and $\pi(5.21)$

$$
\begin{aligned}
& =[X, Z] \xrightarrow{d^{\prime}}[X,[X, Z] \otimes X] \xrightarrow{\left[1, e^{\prime}\right]}[X, Z] \xrightarrow{[1, z]}[X, Y] \\
& =[1, z]:[X, Z] \rightarrow[X, Y] .
\end{aligned}
$$

Also
(5.22) $[Y, X] \otimes Z \xrightarrow{1 \otimes Z}[Y, X] \otimes Y \xrightarrow{e^{\prime}} X$
is constructible as is $\pi(5.22)$

$$
\begin{aligned}
=[Y, X] & \xrightarrow{d^{\prime}}[Z,[Y, X] \otimes Z] \xrightarrow{[1,1 \otimes Z]}[Z,[Y, X] \otimes Y] \\
& \xrightarrow{\left[1, e^{\prime}\right]}[Z, X] \\
=[Y, X] & \mathrm{d}^{\prime} \\
& \xrightarrow{\left[1, e^{\prime}\right]}[Y,[Y, X] \otimes Y] \xrightarrow{[Z, 1]}[Z, X]
\end{aligned}
$$

(by the naturality of d^{\prime})

$$
\begin{aligned}
& =[Y, X] \xrightarrow{d^{\prime}}[Y,[Y, X] \otimes Y] \xrightarrow{\left[1, e^{\prime}\right]}[Y, X] \xrightarrow{[z, 1]}[Z, X] \\
& =[Z, 1]:[Y, X] \rightarrow[Z, X] .
\end{aligned}
$$

$$
\text { If } f^{\prime}: A \rightarrow B \text { is a morphism of } C \text {, the following is }
$$

constructible

$$
\underline{\underline{\underline{1}}}(\gamma \mathrm{~A}) \stackrel{\bar{\gamma}}{\rightarrow} \gamma \mathrm{A} \xrightarrow{\gamma f} \gamma B .
$$

But this is γf since $\bar{\gamma}(1 ; A)$ is the identity morphism.

Thus the category with objects the same as C^{\prime}, and with the constructibles as morphisms, is a closed category containing the generators of the morphisms of C^{\prime}. Consequently, all morphisms of C^{\prime} are constructible.

Theorem 5.10: No incompatibilities arise in C^{\prime}. That is, if $z: Z \rightarrow Y$ and $z^{\prime}: Y \rightarrow X$ are morphisms of C^{\prime}, then $\Gamma_{i}(z) \sim \Gamma_{i}\left(z^{\prime}\right)$ for $i=1,2,3$.

Proof: We know that $z^{\prime} z$ is constructible, so it is only necessary to show that each Γ_{i} of every morphism in C^{\prime} is non-trivial.

This is certainly true if the morphism is central. If the morphism is defined by (5.6), (5.7) or (5.8), we need only consider, by Lemma 5.7, the relevant x and y . But in each case $r(x)$ and $r(y)$ are less than the rank of our morphism, so the theorem follows by induction. Suppose z is defined by
(5.9). Then $\Gamma_{2}(z)$ is the map $0 \rightarrow 0$, and $\Gamma_{3}(z)$ the map $n \rightarrow 1$. But $\Gamma_{1}(z)$ is

$$
\Gamma f: \quad \Gamma P\left(A_{1} \ldots A_{n}\right) \rightarrow \Gamma B
$$

for $f \in C$. But we know from Kelly-Mac Lane [8], that f is a constructible morphism of C, so the graph Γf is allowable, ie. Γf is a nontrivial morphism of T.
6. Coherence for a closed functor.
6.1 In this chapter we prove our main theorem, using methods of proof based heavily on those used by Kelly and Mac Lane in $\S 7$ of [8].

Let the reduced objects of P be I, and any object of P formed by iterates of $\underline{\underline{1}}$ and \otimes. Let the reduced objects of C^{\prime} be $P\left(Z_{1}, \ldots, Z_{n}\right)$ where $P \in P$ is reduced and the Z_{i} are prime.

If $Z_{1}, \ldots Z_{n}$ are prime objects of $C '$, a tensor product of Z_{1}, \ldots, Z_{n} is $P\left(Z_{1}, \ldots, Z_{n}\right)$ where P is a reduced object of P with $\Gamma P=n$.

An object T of C is constant if $\Gamma T=0$, and an object Z of C^{\prime} is i-constant if $\Gamma_{i} Z=0$, where $i=1,2$ or 3 . A constant object of C^{\prime} is one which is 1-constant, 2-constant and 3-constant.

The proper objects of C are those satisfying the following rules:

1 and I are proper;
If T and S are proper, so is $T \otimes S$; and
If T and S are proper, so is [T,S], unless S is constant and T is not constant.

For $i=1,2$ or 3 , let the i-proper objects of C^{\prime} be those satisfying the following rules:

For each i, ${ }^{\prime}$ ' and I^{\prime} are i-proper;
If $T \in \mathcal{C}, \gamma T$ is 2-proper and 3-proper;
If $T \in C$ is proper, γT is 1-proper;
For each i, if Z and Y are i-proper so is [Z,Y] unless Y is i-constant and Z is not i-constant;

If $P \in P$, and Z_{1}, \ldots, Z_{n} are i-proper, then so is $P\left(Z_{1}, \ldots, Z_{n}\right)$.

A proper object of C^{\prime} is an object that is 1-proper, 2-proper and 3-proper.
6.2

Lemma 6.1: For any object Z of C^{\prime} there exist a reduced object Y of C^{\prime}, and a central orphism $z: Z \rightarrow Y$.

Proof: Let the prime factorization of Z be $P\left(X_{1} \ldots X_{n}\right)$. From our knowledge of P we know that there is a reduced object Q of P with $\Gamma Q=n$, and a morphism $y: P \rightarrow Q$ of P with Γy the identity permutation. Let Y be $Q\left(X_{1}, \ldots, X_{n}\right)$ and z be $y\left(X_{1} \ldots X_{n}\right)$

Consequently:

Lemma 6.2: In Definition (5.6) we may assume that X, W, V and U
are reduced. In (5.8) we may assume that X and U are reduced. In (5.9) we may assume that P is reduced.

We make some observations about i-proper objects. If Z is i-constant then Z is i-proper. If [Z,Y] is i-proper, so are both Z and Y; and $Z \otimes Y$ is i-proper if and only if Z and Y are i-proper, whence Z is $i-p r o p e r$ if and only if each prime factor of Z is i-proper.

Lemma 6.3: Let $z: Z \rightarrow Y$ be a central morphism of C^{\prime}. If either Z or Y is i-proper so is the other one. If either Z or Y is i-constant so is the other.

Proof: $\quad Z$ and Y have the same prime factors.

Proposition 6.4: Let $z: Z \rightarrow Y$ be a morphism of C^{\prime} with
Y i-constant and Z i-proper, where i is 1,2 or 3 . Then
Z is i-constant.

Proof: Suppose inductively that the proposition is true for all smaller values, if any, of $r(z)$. If Z is central, Z is i-constant by Lemma 6.3. Also by Lemma 6.3 we may ignore central factors occurring at the beginning and end of z. Since z is constructible we consider cases according to whether z is defined by (5.6) - (5.9).6

If z is defined by (5.6), let z be $f \otimes g: A \otimes B \rightarrow C \otimes D$. Then C and D are i-constant and A and B are i-proper. Since $r(f)<r(z)$ and $r(g)<r(z)$, A and B are i-constant by induction.

If z is defined by (5.7) let z be $\pi f: A \rightarrow[B, C]$.
Since $[B, C$] is i-constant so are both B and C. Indeed they are i-proper. Thus $A \otimes B$ is i-proper. But $f: A \otimes B \rightarrow C$ satisfies the conditions of the proposition and $r(f)<r(z)$. Thus A®B is i-constant so A is i-constant.

$$
\begin{aligned}
& \text { If } z \text { is defined by }(5.8) \text {, let } z \text { be } \\
& ([A, B] \otimes C) \otimes D \xrightarrow{\langle f>\otimes 1} B \otimes D \xrightarrow{g} Y \text {. }
\end{aligned}
$$

Since $([A, B] \otimes C) \otimes D$ is i-proper, so are $[A, B], C, D$, A, B and $B \otimes D$. Bur $r(g)<r(z)$ so $B \otimes D$ is i-constant, as are B and D. But $[A, B]$ is i-proper, so A must be i-constant. But f: C \rightarrow A satisfies the conditions of the proposition and $r(f)<r(z)$, so C is i-constant. Thus ([A,B] $\otimes C) \otimes D$ is $i=$ constant.

$$
\begin{aligned}
& \text { If } z \text { is defined by (5.9), let } z \text { be } \\
& P\left(\gamma A_{1} \ldots \gamma A_{n}\right) \stackrel{{ }^{\bar{\gamma}}}{ } \gamma P\left(A_{1} \ldots A_{n}\right) \xrightarrow{\gamma f} \gamma B .
\end{aligned}
$$

But γB is not 3-constant, so this case does not exist for $i=3$. Also $P\left(\gamma A_{1} \ldots \gamma A_{n}\right)$ is 2-constant, so we only have to
consider $i=1$. If $P\left(\gamma A_{1} \ldots \gamma A_{n}\right)$ is 1-proper, each A_{j} and hence $P\left(A_{1} \ldots A_{n}\right)$ is proper. By Proposition 7.4 of KellyMac Lane [8], $P\left(A_{1} \ldots A_{n}\right)$ is constant. Thus $P\left(\gamma A_{1} \ldots \gamma A_{n}\right)$ is 1-constant.

Our next lemma concerns the elimination of constant prime factors, i.e. [T,S]' where T and S are constant.

Lemma 6.5: For any object Z of C^{\prime}, there exist an object Y with $r(Y) \leqslant r(Z)$, and an isomorphism $z: Z \rightarrow Y$ in C^{\prime} such that
(i) Y is reduced;
(ii) Y has no constant prime factors, its prime factors being precisely the non-constant prime factors of Z;
(iii) If Z is i-proper, so is Y;
(iv) There is a constant object X of C^{\prime} and a central
morphism y: $Z \rightarrow Y \otimes X$ with $\Gamma_{i} z=\Gamma_{i} y$ for $i=1,2,3$.
Proof: Let Y_{1}, \ldots, Y_{n} be the non-constant prime factors of Z, and X_{1}, \ldots, X_{m} the constant prime factors of Z, both lists keeping the factors in the same order as they occur in Z. Let Y be a tensor product of the Y_{1}, \ldots, Y_{n}, and X a product of X_{1}, \ldots, X_{m}. There exists a central morphism $y: Z \rightarrow Y \otimes X$. It is now sufficient to find an isomorphism z: Z \rightarrow Y.

We show that if W is constant, there exists an isomorphism $\mathrm{k}_{\mathrm{W}}: \mathrm{W} \rightarrow \mathrm{I}^{\prime}$ in C^{\prime}. Let the numbered morphisms denote the obvious central morphisms.

If $W=[I \prime, I ']$ let $k_{W}=h$ be

$$
\left[I^{\prime}, I^{\prime}\right] \stackrel{2}{\rightarrow}\left[I^{\prime}, I^{\prime}\right] \otimes I^{\prime} \xrightarrow{e^{\prime}} I^{\prime} .
$$

The inverse of h is

$$
I^{\prime} \xrightarrow{d^{\prime}}\left[I^{\prime}, I^{\prime} \otimes I^{\prime}\right] \xrightarrow{[1,3]}\left[I^{\prime}, I^{\prime}\right] .
$$

We now define K_{W} inductively by setting k_{I}, $=1$; by taking $\mathrm{k}_{\mathrm{U} \otimes \mathrm{V}}$ to be the composite

$$
\mathrm{U} \otimes \mathrm{~V} \xrightarrow{\mathrm{k}_{\mathrm{U} \otimes \mathrm{k}}^{\mathrm{V}}} I^{\prime} \otimes I^{\prime} \xrightarrow{3} I^{\prime} ;
$$

and $\mathrm{k}_{[\mathrm{U}, \mathrm{V}]}$ to be the composite

$$
[\mathrm{U}, \mathrm{~V}] \xrightarrow{\left[k_{\mathrm{U}}{ }^{-1}, \mathrm{k}_{\mathrm{V}}\right]}\left[I^{\prime}, I^{\prime}\right] \xrightarrow{h} I^{\prime} .
$$

We let z be the composite

$$
\mathrm{Z} \xrightarrow{\mathrm{y}} \mathrm{Y} \otimes \mathrm{X} \xrightarrow{1 \otimes \mathrm{k}_{\mathrm{X}}} \mathrm{Y} \otimes \mathrm{I}^{\prime} \stackrel{4}{\rightarrow}_{\mathrm{Y} .}
$$

Lemma 6.6: If Z is an i-proper object of C^{\prime} for which there are no + elements of $\Gamma_{i} Z$, then Z is i-constant.

Proof: By Lemma 6.5 we may assume that Z is reduced with no constant prime factors. Consider the class of objects X of C^{\prime} which are i-proper, reduced, have no i-constant prime
factors, and for which $\Gamma_{i} X_{+}=0, \Gamma_{i} X_{-} \neq 0$. We shall show that this class is empty. Suppose Y is a member of this class with least rank.

Clearly $Y \neq 1$ ́́ or I^{\prime}. If $Y=W \otimes V$ then both W and V are in the class (remember Y is reduced) and rW < rY , $r V<r Y$, which contradicts the hypothesis that Y has minimum rank.

If Y is γA for $A \in C, \Gamma_{3} Y_{+} \neq 0$ and $\Gamma_{2} Y_{-}=0$. Thus we only consider the case $i=1$. Clearly Y is not $\gamma 1$ or γI. If $A=B \otimes C$ then both γB and γC are in the class, and $r \gamma B<r Y, r \gamma C<r Y$, again contradicting the minimum rank hypothesis. If $A=[B, C]$ then $\Gamma_{1} \gamma C_{+}=0, \Gamma_{1} \gamma B_{-}=0$. If $\Gamma_{1} \gamma C_{f} \neq 0$, there exists by Lemma 6.5 an object W, with $r W \leqslant r C$ which is in the class. But ryC $<r Y$ so again a contradiction. Since $\Gamma_{1} \gamma Y_{-} \neq 0, \Gamma_{1} \gamma B_{+}$must not be 0 . But then [B,C]is not a proper object of C, so $\gamma[B, C]$ is not 1-proper.

$$
\text { Suppose } Y=[\mathrm{W}, \mathrm{~V}] . \text { Then } \Gamma_{i} \mathrm{~W}=0, \Gamma_{i} \mathrm{~V}_{+}=0 \text {. If }
$$

$\Gamma_{i} V_{-} \neq 0$, there exists by Lemma 6.5 an object U with $r U \leqslant r V$ which is in the class. But rV < rY so again a contradiction. This leaves $\Gamma_{i} V_{-}=0$ and $\Gamma_{i} W_{+} \neq 0$. But then Y is not i-proper. Consequently Y does not exist, so that the class is empty and the lemma is proved.

6.3

Proposition 6.7: Let $z: Z \otimes Y \rightarrow X \otimes W$ be a morphism of C^{\prime}
where Z, Y, X, W are proper. Suppose that each $\Gamma_{i} Z=\xi_{i} \otimes n_{i}$
for $\xi_{i}: \Gamma_{i} Z \rightarrow \Gamma_{i} X$ and $\eta_{i}: \quad \Gamma_{i} Y \rightarrow \Gamma_{i} W$. Then there are
morphisms $\mathrm{x}: \mathrm{Z} \rightarrow \mathrm{X}$ and $\mathrm{y}: \mathrm{Y} \rightarrow \mathrm{W}$ such that $\mathrm{z}=\mathrm{x} \otimes \mathrm{y}$,
$\Gamma_{i} \mathrm{x}=\xi_{\mathrm{i}}$ and $\Gamma_{i} \mathrm{y}=\eta_{i}$.
Proof: Suppose inductively that the proposition is true for all smaller values, if any, of $r(z)$. By Lemma 6.5 we may suppose each of Z, Y, X, W to be reduced with no constant prime factors. Since z is constructible we shall consider cases according to the Definitions (5.5) - (5.9). A numbered arrow will indicate the appropriate central morphism.

Suppose z is central. By Lemma 5.4, each $\Gamma_{i} z$ is central, so by the forms $\Gamma_{i}{ }^{z}=\xi_{i} \otimes n_{i}$ there are one-to-one correspondences set up between the prime factors of Z and X, and Y and W. Hence there exist central x and y with the desired properties.

$$
\begin{aligned}
& \text { If } z \text { is defined by }(5.6) \text {, let } z \text { be } \\
& Z \otimes Y \xrightarrow{2} A \otimes B \xrightarrow{f \otimes g} C \otimes D \xrightarrow{3} X \otimes W \text {. }
\end{aligned}
$$

Let a tensor product of those factors of Z associated via 2 with a prime factor of A (respectively B) be $E(r e s p e c t i v e l y ~ F) ~$

Let a tensor product of those factors of Y associated via 3 with a prime factor of A (respectively B) be G (respectively H). In the same way let $E^{\prime}, F^{\prime}, G^{\prime}, H^{\prime}$ be tensor products of the prime factors "common" to X anc C, X and D, W and C , W and D respectively. Define $\rho_{i}: \Gamma_{i} E \rightarrow \Gamma_{i} E^{\prime}$ as the restrictions of $\Gamma_{i} z$ to $\left\{\Gamma_{i} E, \Gamma_{i} E^{\prime}\right\}$. These are indeed morphisms of G because $\Gamma_{i} z$ is of the form $\xi_{i} \otimes n_{i}$.
Similarly define $\sigma_{i}: \quad \Gamma_{i} F \rightarrow \Gamma_{i} F^{\prime}, \tau_{i}: \quad \Gamma_{i}{ }^{G} \rightarrow \Gamma_{i} G^{\prime}$,
$\kappa_{i}: \quad \Gamma_{i}{ }^{H} \rightarrow \Gamma_{i} H^{\prime}$. For the morphisms
(6.1) $\quad E \otimes G \xrightarrow{4} A \xrightarrow{f} C \xrightarrow{5} E^{\prime} \otimes G$,
(6.2) $\mathrm{F} \otimes \mathrm{H} \xrightarrow{6} \mathrm{~B} \xrightarrow{\mathrm{~g}} \mathrm{D} \xrightarrow{7} \mathrm{~F}^{\prime} \otimes \mathrm{H}^{\prime}$,
$\Gamma_{i}(6.1)=\rho_{i} \otimes \tau_{i}, \Gamma_{i}(6.2)=\sigma_{i} \otimes \kappa_{i} . \quad$ By the inductive hypothesis we conclude that (6.1) and (6.2) are respectively $r \otimes t$ and $s \otimes k$, where $\Gamma_{i} r=\rho_{i}, \Gamma_{i} s=\sigma_{i}, \Gamma_{i} t=\tau_{i}, \Gamma_{i} k=\kappa_{i}$. Define x and y to be the composites

$$
\begin{aligned}
& Z^{8} \mathrm{E} \otimes \mathrm{~F} \xrightarrow{\mathrm{r} \otimes \mathrm{~s}} \mathrm{E}^{\prime} \otimes \mathrm{F}^{\prime} \xrightarrow{9} \mathrm{X} \\
& \mathrm{Y} \xrightarrow{10} \mathrm{G} \otimes \mathrm{H} \xrightarrow{\mathrm{t} \otimes \mathrm{k}} \mathrm{G}^{\prime} \otimes \mathrm{H}^{\prime} \xrightarrow{11} \mathrm{~W}
\end{aligned}
$$

But $z=x \otimes y$ and $\Gamma_{i} x=\xi_{i}, \Gamma_{i} y=\eta_{i}$.

If z is defined by (5.7) or (5.9) let z be $\mathrm{Z} \otimes \mathrm{Y} \xrightarrow{\mathrm{W}} \mathrm{V} \xrightarrow{12} \mathrm{X} \otimes \mathrm{W}$
where V is prime. Then either $X=V$ and $W=I '$, or $X=I '$ and
$\mathrm{W}=\mathrm{V}$. Without loss of generality we assume the former.
Then z is the composite

$$
\mathrm{Z} \otimes \mathrm{Y} \xrightarrow{\mathrm{~W}} \mathrm{~V} \xrightarrow{13} \mathrm{~V} \otimes \mathrm{I}^{\prime}
$$

If z is defined by (5.7) let w be $\pi f: ~ Z \otimes Y \rightarrow[A, B]$.
Since $\Gamma_{i} z=\xi_{i} \otimes n_{i}$, it follows that Γ_{i} of
$(Z \otimes A) \otimes Y \xrightarrow{14}(Z \otimes Y) \otimes A \xrightarrow{f} B \xrightarrow{15} B \otimes I$
is $\nu_{i} \otimes n_{i}$ where $\pi\left(\nu_{i}\right)=\xi_{i}$. Therefore by induction, (6.3) is $\mathrm{v} \otimes \mathrm{y}$ where $\Gamma_{i}(\mathrm{v}: \quad Z \otimes A \rightarrow B)=v_{i}$ and $\Gamma_{i}(y: Y \rightarrow I)=\eta_{i}$. Let $x: Z \rightarrow[A, B]$ be πu. Then $\Gamma_{i} x=\xi_{i}$ and $z=x \otimes y$.

$$
\text { If } z \text { is defined by (5.9) let } z \text { be }
$$

(6.4) $\quad Z \otimes Y \xrightarrow{16} P\left(\gamma A_{1} \ldots \gamma A_{n}\right) \xrightarrow{\bar{\gamma}} \gamma P\left(A_{1} \ldots A_{n}\right) \xrightarrow{\gamma f} \gamma B \xrightarrow{17} \gamma B \otimes I^{\prime}$.

By the form (6.4) each prime factor γA is mapped by $\Gamma_{3}(6.4)$ to γB. Thus by the form $\xi_{i} \otimes \eta_{i}$ of $\Gamma_{i}(z)$ each prime factor γA is associated via 16 with Z, so Y = I'.

Thus $\mathrm{y}=1: \quad \mathrm{I}^{\prime} \rightarrow I^{\prime}$, and x is

$$
Z \xrightarrow{18} P\left(\gamma A_{1} \ldots \gamma A_{n}\right) \stackrel{\bar{\gamma}}{\rightarrow} \gamma P\left(A_{1} \ldots A_{n}\right) \xrightarrow{\gamma f} \gamma B .
$$

Then $\Gamma_{i} x=\xi_{i}$ and $z=x \otimes y$.
If z is defined by (5.8) let z be
(6.5) $\quad Z \otimes Y \xrightarrow{19}([A, B] \otimes C) \otimes D \xrightarrow{\langle f\rangle \otimes 1} B \otimes D \xrightarrow{g} X \otimes W$.

Assume that 19 associates [A,B] with a prime factor of Z. Let a tensor product of those prime factors of C associated via 19 with a prime factor of Z (resp Y) be E (resp F). The image under $\Gamma_{i} z$ of an element of $\Gamma_{i} F_{+}$is in $\Gamma_{i} A$ or $\Gamma_{i} B$ by the form (6.5) of z, but is in $\Gamma_{i} Y$ or $\Gamma_{i} W$ by the hypothesis that $\Gamma_{i} z=\xi_{i} \otimes n_{i}$. It must therefore be in $\Gamma_{i} F_{-}$. Thus Γ_{i} of (6.6) $\quad \mathrm{E} \otimes \mathrm{F} \xrightarrow{20} \mathrm{C} \xrightarrow{\mathrm{f}} \mathrm{A} \xrightarrow{21} \mathrm{~A} \otimes \mathrm{I}^{\prime}$
is $\rho_{i} \otimes \sigma_{i}$ where $\rho_{i}: \Gamma_{i} E \rightarrow \Gamma_{i} A$ and $\sigma_{i}: \quad \Gamma_{i} F \rightarrow \Gamma_{i} I^{\prime}$. By the inductive hypothesis (6.6) is r r s where $\Gamma_{i}(r: E \rightarrow A)=\rho_{i}$ and $\Gamma_{i}\left(s: F \rightarrow I^{\prime}\right)=\sigma_{i}$. But by Proposition 6.4, F is constant, so must be I'. This means that all prime factors of C are associated via 19 with Z.

Let a tensor product of those prime factors of D associated via 19 with Z be G. But Γ_{i} of

$$
(6.7) \quad(B \otimes G) \otimes Y \xrightarrow{22} B \otimes D \xrightarrow{g} \mathrm{X} \otimes W
$$

is $\zeta_{i} \otimes n_{i}$ where $\zeta_{i}: \Gamma_{i}(B \otimes G) \rightarrow \Gamma_{i} X$ is the restriction of ξ_{i} to $\left\{\Gamma_{i} B, \Gamma_{i} G, \Gamma_{i} X\right\}$. By induction (6.7) is $w \otimes y$ where $\Gamma_{i}(w: B \otimes G \rightarrow X)=\zeta_{i}$ and $\Gamma_{i}(y: Y \rightarrow W)=\eta_{i}$. Let x be the composite

$$
\mathrm{Z} \xrightarrow{23}([\mathrm{~A}, \mathrm{~B}] \otimes \mathrm{C}) \otimes \mathrm{G} \xrightarrow{\langle\mathrm{f}\rangle \otimes 1} \mathrm{~B} \otimes \mathrm{G} \stackrel{\mathrm{~W}}{\rightarrow} \mathrm{X} .
$$

Then $z=x \otimes y$ and $\Gamma_{i} x=\xi_{i}$.

This completes the proof of Proposition 6.7.

Proposition 6.8: Let $z: Z \otimes Y \rightarrow X$ be a morphism of C^{\prime} where Z, Y, X are proper. Suppose that each $\Gamma_{i} z$ sends each element of $\Gamma_{i} Y_{+}$to an element of $\Gamma_{i} Y_{-}$. Then Y is constant.

Proof: Each Γ_{i} of

$$
\mathrm{Z} \otimes \mathrm{Y} \xrightarrow{\mathrm{Z}} \mathrm{X} \xrightarrow{24} \mathrm{X} \otimes \mathrm{I}^{\prime}
$$

is of the form $\xi_{i} \otimes \eta_{i}$. Therefore by Proposition 6.7 there is a morphism y: Y \rightarrow I'. But by Proposition 6.4, Y must be constant.

Proposition 6.9: Let $z: \quad([Z, Y] \otimes X) \otimes W \rightarrow V$ be a morphism of C^{\prime} between proper shapes, with [Z,Y] not constant. Suppose, for each i, $\Gamma_{i} z=\eta_{i}\left(\left\langle\xi_{i}\right\rangle \otimes 1\right)$ for $\xi_{i}: \Gamma_{i} X \rightarrow \Gamma_{i} Z$ and $\eta_{i}: \quad \Gamma_{i}(Y \otimes W) \rightarrow \Gamma_{i} V$. Suppose finally that there do not exist $\underline{U, T, S, R, \text { such that for each } i, \xi_{i} \text { can be written }}$
$(6.8) \quad \Gamma_{i} X^{\omega_{i}} \Gamma_{i}(([U, T] \otimes R) \otimes S)^{\rho_{i}\left(\left\langle\sigma_{i}\right\rangle \otimes 1\right)} \Gamma_{i} Z$
where ω_{i} is a central morphism of G. Then there exist
$\mathrm{x}: \mathrm{X} \rightarrow \mathrm{Z}$ and $\mathrm{y}: \mathrm{Y} \otimes \mathrm{W} \rightarrow \mathrm{V}$ such that $\mathrm{z}=\mathrm{y}(\langle\mathrm{x}\rangle \otimes 1)$,
$\Gamma_{i} \mathrm{x}=\xi_{i}$ and $\Gamma_{i} \mathrm{y}=\eta_{i}$.
Proof: Suppose inductively that the proposition is true for all smaller values, if any, of $r(z)$. By Lemma 6.5 we may suppose each of X, W, V is reduced with no constant prime factors

Since z is constructible we consider cases according to the Definitions (5.5) - (5.9). Note that once we have $z=y(\langle x\rangle \otimes 1)$ it is automatic that $\Gamma_{i} x=\xi_{i}, \Gamma_{i} y=\eta_{i}$.

Suppose that z is central. Then the image under $\Gamma_{i} Z$ of any element of $\Gamma_{i} X$ or $\Gamma_{i} Z$ is in $\Gamma_{i} V$. But by the form $\xi_{i}\left(\left\langle\eta_{i}\right\rangle \otimes 1\right)$ of $\Gamma_{i}{ }^{z}$, any element of $\Gamma_{i} X_{+}$or $\Gamma_{i} Z_{-}$is mapped to $\Gamma_{i} X_{-}$or $\Gamma_{i} Z_{+}$. Hence for each i, there are no elements of $\Gamma_{i} X_{+}$or $\Gamma_{i} Z_{-}$. By Lemma 6.6, $X=I '$. Since z is central, V has a prime factor $[Z, Y]$. But any element of $\Gamma_{i} Z_{+}$in $\Gamma_{i} V_{-}$is mapped to an element of $\Gamma_{i} Z_{+}$in $\Gamma_{i}\left(\left([Z, Y] \otimes I^{\prime}\right) \otimes W\right)$ _ by the centrality of z; and to $\Gamma_{i} V, \Gamma_{i} W$ or $\Gamma_{i} Y$ by the form $\xi_{i}\left(\left\langle\eta_{i}>\otimes 1\right)\right.$ of $\Gamma_{i} z^{\text {. Hence }} \Gamma_{i} Z_{+}$is empty so Z is constant too. Let x be k_{Z}^{-1} where k_{Z} is defined in the proof of Lemma 6.5. Let y be the composite

$$
\mathrm{Y} \otimes \mathrm{~W} \xrightarrow{\mathrm{~d}^{\prime} \otimes 1}([\mathrm{Z}, \mathrm{Y}] \otimes \mathrm{Z}) \otimes \mathrm{W} \xrightarrow{\left(1 \otimes \mathrm{k}_{\mathrm{Z}}\right) \otimes 1}\left([\mathrm{Z}, \mathrm{Y}] \otimes \mathrm{I}^{\prime}\right) \otimes \mathrm{W} \xrightarrow{\mathrm{Z}} \mathrm{~V} .
$$

But upon simplification we find that $y(\langle x\rangle \otimes 1)=z$.

$$
\text { If } z \text { is defined by (5.6) let } z \text { be }
$$

$$
\begin{equation*}
([\mathrm{Z}, \mathrm{Y}] \otimes \mathrm{X}) \otimes \mathrm{W} \xrightarrow{2} \mathrm{~A} \otimes \mathrm{~B} \xrightarrow{\mathrm{f} \otimes \mathrm{~g}} \mathrm{C} \otimes \mathrm{D} \xrightarrow{3} \mathrm{~V} . \tag{6.9}
\end{equation*}
$$

We may suppose that [Z,Y] is associated via 2 with a prime factor of A. Let E be a tensor product of those prime factors of X associated via 2 with a prime factor of B. Each element
of $\Gamma_{i} E_{+}$is mapped by $\Gamma_{i} Z$ to an element of $\Gamma_{i} Z$ or $\Gamma_{i} X$ by the form $\eta_{i}\left(\left\langle\xi_{i}\right\rangle \otimes 1\right)$ of $\Gamma_{i} z$, and to an element of $\Gamma_{i} B$ or $\Gamma_{i} D$ by the form (6.9). Thus each element of $\Gamma_{i} E_{+}$is mapped to an element of $\Gamma_{i} E_{-}$. By Proposition 6.8, E must be constant. Thus all prime factors of X are associated via 2 with prime factors of A.

Let F be a tensor product of the prime factors of W, associated via 2 with prime factors of A. Then Γ_{i} of (6.10) $\quad([\mathrm{Z}, \mathrm{Y}] \otimes \mathrm{X}) \otimes \mathrm{F} \xrightarrow{4} \mathrm{~A} \xrightarrow{\mathrm{f}} \mathrm{C}$
is $\zeta_{i}\left(\left\langle\xi_{i}\right\rangle \otimes 1\right)$ where ζ_{i} is the restriction of η_{i} to $\left\{\Gamma_{i} Y, \Gamma_{i} F, \Gamma_{i} C\right\}$. By induction (6.10) $=w(\langle x\rangle \otimes 1)$ where $\Gamma_{i}(x: \quad X \rightarrow Z)=\xi_{i}$ and $\Gamma_{i}(w: \quad Y \otimes F \rightarrow C)=\zeta_{i}$. Let y be

$$
\mathrm{Y} \otimes \mathrm{~W} \stackrel{5}{\rightarrow}(\mathrm{Y} \otimes \mathrm{~F}) \otimes \mathrm{B} \xrightarrow{\mathrm{w} \otimes \mathrm{~g}} \mathrm{C} \otimes \mathrm{D} \stackrel{3}{\rightarrow} \mathrm{~V} .
$$

Then $z=y(\langle x>81)$.

If z is defined by (5.7) let z be
$\pi f: \quad([Z, Y] \otimes X) \otimes W \rightarrow[A, B] . \quad$ But $\Gamma_{i} f$ is

$$
\left(\left[\Gamma_{i} Z, \Gamma_{i} Y\right] \otimes \Gamma_{i} X\right) \otimes \Gamma_{i}(W \otimes A) \xrightarrow{\left\langle\xi_{i}>\otimes 1\right.} \Gamma_{i} Y \otimes \Gamma_{i}(W \otimes A) \xrightarrow{\zeta_{i}} \Gamma_{i} B
$$

where $\pi \zeta_{i}=\eta_{i}$. By induction there exist $x: X \rightarrow Z$ and $\mathrm{w}: Y \otimes(W \otimes A) \rightarrow B$ with $\Gamma_{i} x=\xi_{i}$ and $\Gamma_{i} W=\zeta_{i}$, such that f is

$$
(([Z, Y] \otimes X) \otimes W) \otimes A \xrightarrow{6}([Z, Y] \otimes X) \otimes(W \otimes A) \xrightarrow{\langle X>\otimes 1} Y \otimes(W \otimes A) \xrightarrow{w} B .
$$

But then πf is

$$
\begin{aligned}
& ([Z, Y] \otimes X) \otimes W \xrightarrow{\langle X>\otimes 1} Y \otimes W \xrightarrow{\pi W}[A, B] . \\
& \text { If } z \text { is defined by }(5.9) \text { let } z \text { be } \\
& ([Z, Y] \otimes X) \otimes W \xrightarrow{7} P\left(\gamma A_{1} \ldots \gamma A_{n}\right) \stackrel{\bar{\gamma}}{\rightarrow} \gamma P\left(A_{1} \ldots A_{n}\right) \xrightarrow{\gamma f} \gamma B \xrightarrow{8} V .
\end{aligned}
$$

But [Z, Y] cannot be associated via 7 with any prime factor γA. Consequently z cannot be defined by (5.9).

$$
\text { If } z \text { is defined by (5.8) let } z \text { be }
$$

$$
\begin{equation*}
([\mathrm{Z}, \mathrm{Y}] \otimes \mathrm{X}) \otimes \mathrm{W} \xrightarrow{9}([\mathrm{~A}, \mathrm{~B}] \otimes \mathrm{C}) \otimes \mathrm{D} \xrightarrow{\langle\mathrm{f}\rangle \otimes 1} \mathrm{~B} \otimes \mathrm{D} \xrightarrow{\mathrm{~g}} \mathrm{~V} . \tag{6.11}
\end{equation*}
$$

We consider three cases, namely [Z,Y] is associated via 9 with (1) [A,B], (2) a prime factor of C, or (3) a prime factor of D.

Case 1: Here $A=Z$ and $B=Y$. Let E be a tensor product of the prime factors of X associated via 9 with prime factors of D. Each element of $\Gamma_{i} E_{+}$is mapped by $\Gamma_{i} z$ to an element of $\Gamma_{i} Y$ or $\Gamma_{i} D$ or $\Gamma_{i} V$ by the form (6.11) of z; and to an element of $\Gamma_{i} X$ or $\Gamma_{i} Z$ by the form $\eta_{i}\left(\left\langle\xi_{i}>\otimes 1\right)\right.$ of $\Gamma_{i} z$. Consequently each element of $\Gamma_{i} E_{+}$is mapped to an element of $\Gamma_{i} E_{-}$. By Proposition 6.8, E is constant so all prime factors of X are associated via 9 with prime factors of C. A similar argument
shows that all prime factors of W are associated via 9 with prime factors of D.

Thus z is

$$
([\mathrm{Z}, \mathrm{Y}] \otimes \mathrm{X}) \otimes \mathrm{W} \xrightarrow{(1 \otimes 10) \otimes 11}([\mathrm{Z}, \mathrm{Y}] \otimes \mathrm{C}) \otimes \mathrm{D} \xrightarrow{\langle\mathrm{f}\rangle \otimes 1} \mathrm{Y} \otimes \mathrm{D} \xrightarrow{\mathrm{~g}} \mathrm{~V} .
$$

Let $x=f .10$ and $y=g(1 \otimes 11)$.

Case 2: [Z,Y] is associated via 9 with a prime factor of C.

Suppose, if possible, that [A,B] was associated via 9 with a prime factor of X . Let E be a tensor product of those prime factors of ([$\mathrm{Z}, \mathrm{Y}] \otimes \mathrm{X}) \otimes \mathrm{W}$, that either are prime factors of X, or else are associated via 9 with prime factors of C. Each element of $\Gamma_{i} C_{+}$is mapped by $\Gamma_{i}{ }^{z}$ to an element of $\Gamma_{i} A$ or $\Gamma_{i} C$ by the form (6.11) of z. Each element of $\Gamma_{i} X_{+}$is mapped by $\Gamma_{i} z$ toan element of $\Gamma_{i} X$ or $\Gamma_{i} Z$ by the hypothesis that $\Gamma_{i} z=\eta_{i}\left(\left\langle\xi_{i}\right\rangle \otimes 1\right)$. Thus each element of $\Gamma_{i} E_{+}$is mapped by $\Gamma_{i} z$ to an element of $\Gamma_{i} E$. Thus by Proposition 6.8 E is constant, which contradicts the hypothesis that $[\mathrm{Z}, \mathrm{Y}]$ is not constant.

Thus [A,B] must be associated via 9 with a prime factor of W. Let F be a tensor product of those prime factors of X associated via 9 with a prime factor of D. By considering the two forms of $\Gamma_{i}{ }^{z}$ we see that $\Gamma_{i}{ }^{z}$ maps each element of
$\Gamma_{i} F_{+}$to $\Gamma_{i} F$, so F is constant. Thus each prime factor of X is associated via 9 with a prime factor of C.

Let G be a tensor product of the prime factors of W associated via 9 with C. Then Γ_{i} of (6.12) $\quad([Z, Y] \otimes X) \otimes G \xrightarrow{12} \stackrel{f}{\rightarrow} A$
is $\zeta_{i}\left(\left\langle\xi_{i}\right\rangle \otimes 1\right)$ where $\zeta_{i}: \Gamma_{i}(Y \otimes G) \rightarrow \Gamma_{i} A$ is the restriction of η_{i} to $\left\{\Gamma_{i} Y, \Gamma_{i} G, \Gamma_{i} A\right\}$. By induction (6.12) is $w(\langle x\rangle \otimes 1)$ where $\Gamma_{i}(x: X \rightarrow Z)=\xi_{i}$ and $\Gamma_{i}(w: Y \otimes G \rightarrow A)=\zeta_{i}$. Let y be

$$
\mathrm{Y} \otimes \mathrm{~W} \xrightarrow{13}([\mathrm{~A}, \mathrm{~B}] \otimes(\mathrm{Y} \otimes \mathrm{G})) \otimes \mathrm{D} \xrightarrow{\langle\mathrm{~W}\rangle \otimes 1} \mathrm{~B} \otimes \mathrm{D} \xrightarrow{\mathrm{~g}} \mathrm{~V} .
$$

Then $z=y(<x>\otimes 1)$.

Case 3: [Z,Y] is associated via 9 with a prime factor of D.

Suppose if possible that [A,B] was associated via 9 with a prime factor of X. Let E be a tensor product of those prime factors of C associated via 9 with prime factors of W. By considering the two forms of $\Gamma_{i} z$, we see that $\Gamma_{i}{ }^{z}$ maps each element of $\Gamma_{i} E_{+}$to an element of $\Gamma_{i} E$. Thus E is constant so every prime factor of C is associated via 9 with X. This implies that each ξ_{i} is of the form

$$
\Gamma_{i} X \xrightarrow{\omega i}\left(\Gamma_{i}[A, B] \otimes \Gamma_{i} C\right) \otimes \Gamma_{i} F \xrightarrow{\left\langle\Gamma_{i} f>\otimes 1\right.} \Gamma_{i} B \otimes \Gamma_{i} F \xrightarrow{\rho_{i}} \Gamma_{i} Z
$$

for central ω_{i}. But this is excluded by hypothesis so [A,B] must be associated via 9 with a prime factor of W.

Let G be a tensor product of those prime factors of X associated via 9 with prime factors of C. By the two forms of $\Gamma_{i} z$ we see that $\Gamma_{i} z$ maps each element of $\Gamma_{i}{ }^{G}+$ to an element of $\Gamma_{i} G$. Thus G is constant, so each prime factor of X is associated via 9 with D .

Let H be a tensor product of the prime factors

 of W associated via 9 with prime factors of D.Then Γ_{i} of

$$
([\mathrm{Z}, \mathrm{Y}] \otimes \mathrm{X}) \otimes(\mathrm{B} \otimes \mathrm{H}) \xrightarrow{14} \mathrm{~B} \otimes \mathrm{D} \xrightarrow{\mathrm{~g}} \mathrm{~V}
$$

is $\zeta_{i}\left(\left\langle\xi_{i}\right\rangle \otimes 1\right)$ where $\zeta_{i}: \quad \Gamma_{i}(Y \otimes(B \otimes H)) \rightarrow \Gamma_{i} V$ is the restriction of η_{i} to $\left\{\Gamma_{i} Y, \Gamma_{i} B, \Gamma_{i} H, \Gamma_{i} V\right\}$. By induction
(6.13) $=w\left(\langle x>\otimes 1)\right.$ where $\Gamma_{i}(x: X \rightarrow Z)=\xi_{i}$ and
$\Gamma_{i}(w: \quad Y \otimes(B \otimes H) \rightarrow V)=\zeta_{i}$. Let y be

$$
\mathrm{Y} \otimes \mathrm{~W} \xrightarrow{15} \mathrm{Y} \otimes(([A, B] \otimes C) \otimes H) \xrightarrow{1 \otimes(\langle f\rangle \otimes I)} \mathrm{Y} \otimes(B \otimes H) \stackrel{\mathrm{W}}{\rightarrow} \mathrm{~V} .
$$

-Then $z=y(<x>\otimes 1)$.

Proposition 6.10: Let $z: P\left(\gamma A_{1} \ldots \gamma A_{n}\right) \rightarrow \gamma B$ be a morphism of C^{\prime} between proper objects, P being an object of P.
Then z may be written

$$
P\left(\gamma A_{1} \ldots \gamma A_{n}\right) \xrightarrow{\bar{\gamma}} \gamma P\left(A_{1} \ldots A_{n}\right) \xrightarrow{\gamma_{y}} \gamma B .
$$

Proof: By Lemma 5.5 we may assume that P is reduced. Obviously z cannot be defined by (5.7) or (5.8).

$$
\begin{aligned}
& \text { If } z \text { is defined by }(5.6) \text { let } z \text { be } \\
& P\left(\gamma A_{1} \ldots \gamma A_{n}\right) \xrightarrow{2} C \otimes D \xrightarrow{f \otimes g} E \otimes F \xrightarrow{3} \gamma B .
\end{aligned}
$$

We may suppose that γB is associated via 3 with a prime factor of E. But then F is constant. However D is proper, so by Proposition 6.4 D is constant. Thus $\mathrm{r}(\mathrm{g})=0$, so z cannot be defined by (5.6).

If z is defined by (5.9) let z be

$$
\begin{equation*}
P\left(\gamma A_{1} \ldots \gamma A_{n}\right) \xrightarrow{4} Q\left(\gamma C_{1} \ldots \gamma C_{n}\right) \xrightarrow{\bar{\gamma}} \gamma Q\left(C_{1} \ldots C_{n}\right) \xrightarrow{\gamma x} \gamma B . \tag{6.14}
\end{equation*}
$$

Since 4 is central, 4 may be written as

$$
w\left(\gamma C_{1} \ldots \gamma C_{n}\right): P\left(\gamma C_{\xi 1} \ldots C_{\xi n}\right) \rightarrow Q\left(\gamma C_{1} \ldots \gamma C_{n}\right)
$$

where $w: P \rightarrow Q$ is a morphism of P with $\Gamma w=\xi$, and $C_{\xi i}=A_{i}$. Thus (6.14) equals

$$
P\left(\gamma A_{1} \ldots \gamma A_{n}\right) \xrightarrow{\bar{\gamma}} \gamma P\left(A_{1} \ldots A_{n}\right) \xrightarrow{\gamma w\left(C_{1} \ldots C_{n}\right)} \gamma Q\left(C_{1} \ldots C_{n}\right) \xrightarrow{\gamma x} \gamma B
$$

which is of the desired form, with $y=x . w\left(C_{1} \ldots C_{n}\right)$.

If z is central, n must be 1 , and A_{1} must be B. But P is a reduced object of P with $\Gamma P=1$, so P must be 1 . Thus $z: ~ \gamma B \rightarrow \gamma B$ must be the identity morphism, which can be written in the desired form as

$$
\underline{\underline{1}}(\gamma B) \stackrel{\bar{\gamma}}{\rightarrow} \gamma(\underline{\underline{1}} B) \xrightarrow{\gamma 1} \gamma B .
$$

6.4

Theorem 6.11: Let $z, z^{\prime}: Z \rightarrow Y$ be morphisms of C^{\prime} between proper objects, such that $\Gamma_{i} z=\Gamma_{i} z^{\prime}$ for $i=1,2,3$. Then $z=z^{\prime}$.

Proof: Suppose inductively that the theorem is true for all smaller value, if any, of $r(z)=r\left(z^{\prime}\right)$. By Lemma 6.5 we may suppose that Z and Y are reduced with no constant prime factors. If both z and z^{\prime} are central, $z=z '$, so we may suppose that z is not central.

If z is defined by (5.7) let z be

$$
\mathrm{Z} \xrightarrow{\pi f}[\mathrm{~A}, \mathrm{~B}] \stackrel{2}{\rightarrow} \mathrm{Y} .
$$

But then $2^{-1} \cdot z=\pi f$, so $2^{-1} \cdot z^{\prime}=\pi\left(f^{\prime}\right)$ where $f^{\prime}=\pi^{-1}\left(2^{-1} \cdot z^{\prime}\right)$. But $\Gamma_{i} f=\Gamma_{i} f^{\prime}$ because $\Gamma_{i} z^{\prime}=\Gamma_{i} z^{\prime}$. Hence $f=f^{\prime}$ by induction, whence $z=z^{\prime}$.

If z is defined by (5.6) let z be
$Z \xrightarrow{3} \mathrm{~A} \otimes \mathrm{~B} \xrightarrow{\mathrm{f} \otimes \mathrm{g}} \mathrm{C} \otimes \mathrm{D} \xrightarrow{4} \mathrm{Y}$

Then $4^{-1} \cdot z \cdot 3^{-1}=\mathrm{f} \otimes \mathrm{g}: ~ A \otimes B \rightarrow C \otimes D$. Then
$\Gamma_{i}\left(4^{-1} \cdot z \cdot \cdot 3^{-1}\right)=\Gamma_{i}\left(4^{-1} \cdot z \cdot 3^{-1}\right)=\Gamma_{i} f \otimes \Gamma_{i} g$.
By Proposition 6.7, $4^{-1} \cdot z \cdot 3^{-1}=f^{\prime} \otimes g '$ where $\Gamma_{i}\left(f^{\prime}: A \rightarrow C\right)=\Gamma_{i} f$ and $\Gamma_{i}\left(g^{\prime}: B \rightarrow D\right)=\Gamma_{i} g$, whence $f=f^{\prime}, g=g^{\prime}$ by induction, so that $z=z^{\prime}$.

$$
\begin{array}{r}
\text { If } z \text { is defined by (5.9) let } z \text { be } \\
Z \xrightarrow{5} P\left(\gamma A_{1} \ldots \gamma A_{n}\right) \stackrel{\bar{\gamma}}{\rightarrow} \gamma P\left(A_{1} \ldots A_{n}\right) \xrightarrow{\gamma f} \gamma B \xrightarrow{6} Y .
\end{array}
$$

$$
\text { Then } 6^{-1} \cdot z^{\prime} \cdot 5^{-1}=6^{-1} \cdot z \cdot 5^{-1}: \quad P\left(\gamma A_{1} \cdots \gamma A_{n}\right) \rightarrow \gamma B .
$$

By Proposition 6.10, $6^{-1} \cdot z^{\prime} \cdot 5^{-1}$ equals

$$
P\left(\gamma A_{1} \ldots \gamma A_{n}\right) \xrightarrow{\bar{\gamma}} \gamma P\left(A_{1} \ldots A_{n}\right) \xrightarrow{\gamma f^{\prime}} \gamma B .
$$

But $\Gamma_{1}\left(6^{-1} \cdot z^{\prime} \cdot 5^{-1}\right)=\Gamma f^{\prime}$ and $\Gamma_{1}\left(6^{-1} \cdot z \cdot 5^{-1}\right)=\Gamma f$.

Therefore by Theorem 2.4 of Kelly-Mac Lane [8], $f=f^{\prime}$, whence $z=z^{\prime}$.

$$
\begin{aligned}
& \text { Finally, if } \mathrm{z} \text { is defined by (5.8) let } \mathrm{z} \text { be } \\
& \mathrm{Z} \xrightarrow{7}([\mathrm{X}, \mathrm{~W}] \otimes \mathrm{V}) \otimes \mathrm{U} \xrightarrow{<\mathrm{y}>\otimes 1} \mathrm{~W} \otimes \mathrm{U} \xrightarrow{\mathrm{x}} \mathrm{Y} .
\end{aligned}
$$

Then it may be the case that there exist A, B, C, D such that for each $i, \Gamma_{i} y$ is
$\Gamma_{i} V \xrightarrow{\omega_{i}}\left(\left[\Gamma_{i} A, \Gamma_{i} B\right] \otimes \Gamma_{i} C\right) \otimes \Gamma_{i} D \xrightarrow{\left\langle\sigma_{i}>\otimes 1\right.} \Gamma_{i} B \otimes \Gamma_{i} D \xrightarrow{\rho_{i}} \Gamma_{i} X$
for central ω_{i} in G. In this case $\Gamma_{i} z=\Gamma_{i} x\left(\left\langle\Gamma_{i} y\right\rangle \otimes 1\right) \Gamma_{i} 7$. But $\left\langle\Gamma_{i} y\right\rangle=\left\langle\rho_{i}\right\rangle\left(1 \otimes\left(\left\langle\sigma_{i}\right\rangle \otimes I\right)\right)\left(1 \otimes \omega_{i}\right)$. But now $\Gamma_{i} z=$ $\tau_{i}\left(<\sigma_{i}>\otimes 1\right) \psi_{i}$ for some τ_{i} and central ψ_{i}. But perhaps there exist E, F, G, H such that for each i, σ_{i} is of the form

$$
\Gamma_{i} C \xrightarrow{\phi i}\left(\left[\Gamma_{i} E, \Gamma_{i} F\right] \otimes \Gamma_{i} G\right) \otimes \Gamma_{i} H \xrightarrow{<\lambda_{i}>\otimes 1} \Gamma_{i} F \otimes \Gamma_{i} \xrightarrow{K_{i}} \Gamma_{i} A
$$

for central ϕ_{i}. But C has strictly fewer prime factors than V, since $[X, W$] is a prime factor of V but not of C; G has strictly fewer prime factors than C; and so on. Thus this process terminates, and ultimately we have an expression for $\Gamma_{i} z$ of the form

$$
\Gamma_{i} Z \xrightarrow{\mu_{i}}\left(\left[\Gamma_{i} Q, \Gamma_{i} M\right] \otimes \Gamma_{i} P\right) \otimes \Gamma_{i} N \xrightarrow{\left\langle\xi_{i}>\otimes 1\right.} \Gamma_{i} M \otimes \Gamma_{i} N \xrightarrow{\eta_{i}} \Gamma_{i} Y
$$

for μ_{i} central and ξ_{i} not of the form (6.8). Moreover [Q,M] is not constant since Z has no constant prime factors. There exists a central

$$
8: \quad Z \rightarrow([Q, M] \otimes P) \otimes N
$$

with $\Gamma_{i} 8=\mu_{i}$. From Proposition 6.9 applied to $z .8^{-1}$ and $z^{\prime} .8^{-1}$ we conclude that $z .8^{-1}=g(\langle f\rangle \otimes 1)$ and $z^{\prime} .8^{-1}=g^{\prime}\left(\left\langle f^{\prime}\right\rangle \otimes 1\right)$ for $f^{\prime} f^{\prime}: P \rightarrow Q$, and $g, g^{\prime}: M \otimes N \rightarrow Y$ with $\Gamma_{i} f=\Gamma_{i} f^{\prime}$ and $\Gamma_{i} g=\Gamma_{i} g^{\prime}$. By the inductive hypothesis $f=f^{\prime}$ and $g=g '$ so that $z=z^{\prime}$.

This completes the proof of Theorem 6.11.

References

[1] S. Eilenberg and G.M. Kelly, A generalization of the functorial calculus, J. Algebra 3(1966), 366-375.
[2] S. Eilenberg and G.M. Kelly, Closed categories in: Proc. Conf. on Categorical Algebra, La Jolla, 1965 (Springer-Verlag, 1966), 421-562.
[3] D.B.A. Epstein, Functors between tensored categories, Invent. Math. 1 (1966), 221-228
[4] G.M. Kelly, Many variable functorial calculus I, Lecture Notes in Mathematics 281 (1972), 66-105.
[5] G.M. Kelly, An abstract approach to coherence,
Lecture Notes in Mathematics 281 (1972), 106-147
[6] G.M. Kelly, A cut-elimination theorem,
Lecture Notes in Mathematics 281 (1972), 196-213.
[7] G.M. Kèlly, Clubs and doctrines (to appeár)
[8] G.M. Kelly and S. Mac Lane, Coherence in closed categories, J. Pure and Applied Algebra 1 (1971), 97-140.
[9] G.M. Kelly and S. Mac Lane, Closed coherence for a natural transformation, Lecture Notes in Mathematics 281 (1972), 1-28.

