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Declaration of originality

All the work in this thesis is the original work of 

G. Lewis, with the exception of the concept of "club” which 

provides the setting for a precise statement of the results.

That concept was developed by the supervisor 

G.M. Kelly and expounded in the series of papers [4], [51 3 

[ 6] and [ 7] .

Historically, however, it was inspired by the first 

results of Lewis on the monoidal case of the present problem. 

When it became clear that even here "not all diagrams commute", 

as in (1.1) below, Kelly was at first prepared to settle for a 

partial result: those diagrams commute whose codomain is of

the form aT. Lewis convinced him that one could do better, and 

gave necessary and sufficient conditions for commutativity.

These conditions, however, did not make precise sense 

while the morphisms were, as in Kelly-Mac Lane [ 8] , actual 

natural transformations. It was this that led Kelly to replace 

them by their formal descriptions in the theory, and so to 

invent clubs and to investigate their nature. Kelly wishes 

here to acknowledge this debt to Lewis.
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Abstract of the thesis

The theory of closed categories was greatly simplified 

by the coherence result of Kelly and Mac Lane [ 8] , which 

showed that a large class of diagrams, writable in a generic 

closed category, commute in any particular one. In this 

thesis we carry this simplification further by considering 

diagrams writable in the context of a closed functor a: A -*■ A'
between two closed categories.

Like Kelly-Mac Lane we begin with a coherence result for 

the simpler problem where the functor and categories are not 

closed but only symmetric monoidal, and use the cut-elimination 

technique to pass to the closed case. Unlike Kelly-Mac Lane 

we find that it is not the case that "all diagrams commute" 

in the simpler case. Nevertheless, we have been able to 

determine in the symmetric monoidal case precisely which diagrams 

do commute.

It was already recognized in [ 8] that when dealing with 

a fragment f: T S of a diagram, T and S had to be

abstract descriptions of functors rather than their actual 

realizations in particular categories. We find that the 

morphism f must also be represented by an abstract description 

rather than as an actual natural transformation. This 

necessity, arising from this very problem, has led my thesis
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supervisor, Professor G.M. Kelly, to examine these categories 
of "formal functors and formal natural transformations" 
associated to a coherence problem. The appropriate setting 
is found in his notion of club.

We define functors r^, r2 and whose domain categories 
may be either P’, the club for a symmetric monoidal functor 
between symmetric monoidal categories, or C’, the club for a 
closed functor between closed categories. We see that T^ 
summarizes those parts of P* or Cf which involve the first or 
domain category, summarizes those parts involving the second 
category, and r^ the formal occurrences of the connecting 
symmetric monoidal or closed functor.

For the symmetric monoidal case we show that for 
morphisms f,g: T -► S of P’, their realizations are equal in
any particular model if and only if r^f = T^g, T^f = T2& and

r3f = r3g‘

An object T of C is called proper if in its formation 
there is no use of any [ X,Y] , for which I\Y = 0 (Y is constant 
with respect to the appropriate invariant), yet I\X ^ 0, for 
one of i = 1, 2, or 3.

For the closed case, we show that for any morphisms 
f,g: T 4 S of C' for which T and S are proper, their realizations 
are equal in any particular model if and only if 
r1f = r1g, r2f = r2g and r f = r^g.
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1. Description of the problem

1.1 The theory of symmetric monoidal closed categories,
which we shall call closed categories for short, was 
greatly simplified by the coherence result of Kelly and 
Mac Lane [8], which showed that a large class of diagrams, 
writable in a generic closed category, commute in any 
particular one. There are two obvious directions in which 
this simplification might be carried further. The first 
is to consider diagrams writable in the context of a 
closed category A, together with a pair 8,C of A-categories, 
a pair T,S: 8 C of A-functors, and an A-natural
transformation r\: T -* S. The second is to consider
diagrams writable in the context of two closed categories 
A,Af together with a closed functor A -* A’. Here a 
closed functor means the same thing as a symmetric monoidal 
functor: a functor a: A -* AT together with a natural
transformation a: aA®faB -* a(A0B) and a morphism
a°: I’ -*011, subject to the well-known axioms (see [2]
pp 473 and 513).

Both of these extensions were considered in the 
recent volume on coherence problems [ 15] ; the first in the 
paper of Kelly-Mac Lane [ 91 , and the second in my own 
paper [ 12] . This last paper, written in a hurry while my 
work was still in a comparatively primitive form, contained
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some inaccuracies and some infelicities, as well as proofs 

more complicated than necessary. The purpose of the present 

thesis is to give an improved version of the results of 

that paper.

1.2 Our problem, then, is the "coherence problem"

for the structure consisting of two closed categories 

A,A’ and a closed functor a = (a,a,a°): A A’. As in the

corresponding problem for a single closed category, studied 

by Kelly-Mac Lane in [8], we begin with a coherence result 

for the simpler problem in which A,A’ are not closed but 
only symmetric monoidal. We also borrow the cut-elimination 

technique from Gentzen and Lambek ([10] and other papers) 

to pass to the closed case. There is, however, a significant 

difference: for a single symmetric monoidal category A,
Mac Lane had proved in [14] the classical coherence result 

"all diagrams commute". For two symmetric monoidal 

categories joined by a symmetric monoidal functor 

a: A -► Ar, there is no coherence result already available

in the literature. We must prove our own, and it turns out 

that not all diagrams commute. (It is true that Epstein [3] 

has proved an "all diagrams commute" result in a related 

case: but the "tensor products" ®,®’ in his A,A? had lacked
identities 1,1* and it is precisely these that cause 

non-commutativity. In this context see also Mac Donald [131;



3.

and recall that it was the presence of the identity I that 
forced the Kelly-Mac Lane result in [ 8] to fall short of 
"all diagrams commute". It seems to always be the constants 
that cause trouble.)

1.3 Nevertheless, we have been able in the symmetric
monoidal case to determine precisely which diagrams do 
commute. Think of the two edges of a diagram as morphisms 
f,g: T -+ S in a suitable category. To a first approximation
we can conceive of T,S as functors (of many variables and, 
in general, of mixed variances), and of f,g as natural 
transformations (of the generalized kind introduced by 
Eilenberg-Kelly [1]). An object such as T has a type TT, 
specifying its arity, the category from which the i-th 
argument is to be drawn, and the variance of this argument.
A morphism such as f also has a type Tf, specifying the 
arguments of T and of S that it is to pair off; this was 
called its graph in [ 1] and then in [ 8] , but we shall avoid 
this over-used word.

The generic components of f and of g form a 
closed diagram only when Tf = Tg; this then is a necessary 
condition for the diagram to be writable at all. When in 
a coherence problem one says "all diagrams commute" one 
means that every writable diagram does so; that is, one 
means that Tf = Tg implies f = g; or in short that r is 
faithful. What Kelly-Mac Lane proved in [8] was a partial
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coherence result of the form "for suitably restricted 
T and S, and for f,g: T -► S, It is the case that Tf = Tg
implies f = g".

Our coherence result in the symmetric monoidal 
case a: A -> A’, where, as we have said, not all diagrams
commute, is a more complete one. We have said that r is 
not faithful; we could indeed prove a partial result as 
above that Tf = Tg implies f = g for suitably restricted 
T and S; but we do more. We assign to f: T S a 
second invariant Af: AT AS, and prove without restriction
on T,S that "Tf = Tg and Af = Ag imply f = g" - that is, 
that T and A are jointly faithful.

When we then pass to the closed case of a: A -► A'
we get a result which, while like that of Kelly-Mac Lane 
[ 8] it is incomplete, is still more complete than if we 
looked at r alone. It takes the form: "Suppose T and S
are T-proper (essentially the condition imposed by Kelly- 
Mac Lane in [ 8] ) and also A-proper. Then f,g: T -► S 
coincide if and only if Tf = Tg and Af = Ag." This is 
our main theorem, and it must of course be formulated 
with precision. Before passing to the discussion of the 
necessary precision we illustrate by examples two of our
remarks above.
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First, even in a single symmetric monoidal 

category, nobody expects to have c = 1: A®A A®A where

c is the symmetry. The generic components of c and of 1 

look like

B®A

A®B,

and do not form a closed diagram. Equivalently, 

c: ® ® and 1: ® ® are natural transformations of

different types; T® = 2, Tc is the non-identity permutation 

of 2 and ri is the identity permutation. Coherence is 

concerned with the natural transformations, and not with 

particular components such as c^: A®A A®A.

Secondly, an example of a writable but non­

commuting diagram in the symmetric-monoidal a: A -+ Af 
case. It is

(1.1) al > I* ®’ al

1 ®’a° 
---------- >

a° ® ’ 1

T
al ®» I*

v
al ®’ al
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Here the r of every vertex is 0 - all are constants - 
and the r of each edge is the identity permutation 0 -* 0.
Yet the diagram fails to commute even when a is the 
forgetful closed functor from Abelian Groups to Sets, 
the two legs sending n e al = g to (n,l) and to (l,n).
But the second invariant A looks at the occurrences of a; 
A(al) = l, A(aI0’aI) = 2, and the A’s of the two legs 
are the two possible functions 1 -*• 2.

1.4 Already in [ 8] it was recognized that the
vertices T,S of the diagrams must not be actual functions 
in the model but their abstract descriptions in the theory - 
otherwise one would have unwanted composites of f: T -► S
and g: Sf R, where S and S’ although formally different
had identical realizations in a particular model. Still, 
the morphisms f,g in [8] were actual natural transformations. 
Since each natural transformation f had a definite type 
rf, this served well enough for the kind of result given 
in [ 8] . But it will not serve for us: the edges of (1.1)
may coincide in a particular model, but are to be assigned 
different images under A. For us, not only the vertices 
of the diagrams but also the edges must be abstract 
descriptions in terms of the theory.

This necessity, arising originally from this 
very problem, where precise sense had to be made of my
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"second invariant" A, has led my thesis supervisor, 

Professor G.M. Kelly, to examine these categories of 

"formal functors and formal natural transformations" 

associated to a coherence problem. The appropriate 

setting is found in his notion of club, the first ideas 

on which were expounded in [ 4] , [5] and [ 6], and a defin­
itive, generalized treatment of which is to appear in [7] 

We now turn to a discussion of clubs which, while merely 

an outline, should be sufficient for the reader wishing 

to understand the present thesis.
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2. The Idea of a club

2.1 Consider first a structure o>f the following kind,
to be borne by a single category A.; examples would be 
a symmetric monoidal structure, or a strict monoidal 
structure .

We are first to be giveni, as. part of the structure
functors |b| : An -*• A9 indexed by the elements. B o-f a set
B, and each associated with an arlty or type n e
depending on B and written as n = TB.. Note our careful
distinction between the abstract B of the theory and its
realisation |b| in the model A. Add to B a formal identity
1 with ri = 1, and then close B under the operation formal.
sub stit ution; that is, from operat ions 'T O’f type n and
,Sn , . . . , S of types mu , . . . , we form T( S-* , . . -, ;S )-L n _l n jl n
of type m-^ + ... +- mn; -we also write n(mu, , . - . , m^) for
m^ + ... -i- m . Each T in this closure B of B has itself 
an obvious; realization |t| : An -► A, where n = IT. In.
the examples above, B consists of ® and the unit I for <8, 
with T® = 2, TI = 0.

We are next to be given axioms of the form 
|T| = |S| for certain pairs T,S e B with TT = TS; for 
example in the strict monoidal case we have the axioms 
18 (® a 1) I = |0(1,0)|, |®(I,1)|| = 111 = |®(1,I)|, while in



the non-strict monoidal case the list of such axioms is

9

vacuous. The set of objects obK of the corresponding 

club K is the quotient set of 8 by the substitution- 

congruence generated by these axioms. Clearly each 

T e obK again has a realization |t| : An A when the
axioms are satisfied in the model A.

We are then to be given a set V of formal 

natural transformations, each with a domain and codomain 

in obK, a typical one being then d: T S. These are

to be generalized natural transformations in the sense 

of Eilenberg-Kelly [1]; but since T and S are covariant, 

we must have FT = FS = n say, and type Td of d is only a 

permutation of n. Each such d is to have a realization 

|d|: |T| |S|, an actual generalized natural transform­

ation in A of type Td. For example, in the symmetric 

monoidal case, V consists of a: @(Q,1) 0(1,0),

l: 0(1,1) 1, r: 0(1,1) 1, c: 0-^0, of respective

types Ta = 1, Ft = 1, Fr = 1, Tc = the non-identity 

permutation of 2; together with formal inverses 

a: 0(1,0) 0(0,1), r; we need no c since it is to

be the same as c.

We close V to get V = Exp Inst V, the set of 

expanded instances of the d e V. An instance of d is a
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formal natural transformation

e = d(R15 . .., Rn): T(R1, . .., Rr) - S(R1# . .., Rr)

where R^ e obK; it has an obvious type Te = rd(TR^,...,TR ), 

and an obvious realization |e| in the model A. An 

expansion of the instance e: P ^ Q is a formal natural

transformation h = T(l, ..., 1, e,l, ..., 1): T(S^...,P...S )

T(S^... Q... S ), again with an obvious type 

Th = rT(l, . .., l,Te, 1,..., 1) and an obvious realization 

|h| in the model A.

The objects obK and the axioms V form a graph, 

in the classical sense of the word; and T is a map of 

graphs (obK, V) g, where £ is the category with g 

as its set of objects and with permutations n -► n

as its only morphisms. We pass from the graph (obK, P) 

to the category L it generates freely; then T extends to 

a functor T:L P. Clearly every f: T S in L has a

realization |f|: |t| |s| which is a generalized natural

transformation of type Tf.

Finally we are given a second set of axioms; 

a typical one is given by a pair f,g: T -► S of morphisms

of L, with Tf = Tg; and the axiom to be satisfied by A 

is that |f| = |g|. For example, in the monoidal case, 

we have the coherence axioms such as the "pentagon axiom" 

for a, as well as axioms asserting aa = 1, aa = 1, and so 

on. We close these axioms under the process of taking
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expanded Instances; this gives us a set A^ of pairs 
f,g: T 4 S in I. We add to these a second set
of such pairs, asserting things like
|®(l,f). ®(g,l)| = |®(g,l). ®(l,f)|, which follow from 
the functoriality of |®|; or more generally of course of 
|T|. We add to these a third set A^ of such pairs, 
formally asserting the naturality of |d| for d e V; and 
we define the club K corresponding to the given structure 
as L/A where A = A^ + A^ + A^.

We now have the following situation. We have a 
category K with a functor T: K -* g (called its
augmentation); that is an object of the 2-category 
Cat/P. Next, K admits an operation of substitution 
T(S^, ..., Sn) for its objects, and a corresponding 
operation f(g-^, •••> Sn) for its morphisms, with the 
special cases T(g^,...,gn) and f(S^,...,Sn) where for 
example T denotes 1^. Kelly [ 4] , [5] has shown that 
Cat/P is a monoidal (indeed a closed) category with 
’’tensor product” denoted by o; and that this substitution 
operation is a multiplication y: KoK ^ K in Cat/P.
Finally K has among its objects the formal identity 1, 
and this corresponds to a unit map n: J -► K, where J is 
the identity for o. It turns out that y and n satisfy 
the associative and identity axioms, so that K is a
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o-monoid in Cat/P.

2.2 We now make the definition: a club is a
o-monoid in Cat/P. Then what we have shown above is that 
every structure of the kind considered gives rise to a 
club: its basic operations B,d and its two sets of
axioms may be said to be generators and relations for 
K. A diagram in K is a pair f,g: T S in K; it 
commutes if f = g; this cannot be so unless Tf = Tg3 
i.e. unless the diagram is writable (in terms of 
components); we may say ’’all diagrams commute” if r is 
faithful; the coherence problem is that of deciding which 
diagrams commute; it is essentially the problem of 
determining K explicitly, starting from its generators 
and relations.

We must say what we mean by a model A of a 
general club K; we call such an A a /(-category. We 
embed Cat fully in Cat/P by giving to A e Cat the 
trivial augmentation r: A g which is the constant
functor at 0. Then KoA e Cat if A e Cat. A /(-category is 
a category A together with an action 6 : KoA -*• A satisfying
the usual associativity and identity axioms. When K is 
constructed as above from basic operations and axioms, it 
is easy to see that a /(-category A in the above sense is 
precisely a model for the structure in question.
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This description of a /(-category A exhibits 
it as an algebra for the monad Ko_: Cat Cat. A
morphism of (Ko-)-algebras is a strict morphism of 
/(-categories, or a strict /(-functor; a functor A -* B 
between /(-categories, preserving all the structure on 
the nose. (In this covariant case, but not in mixed- 
variance cases like that of closed categories, the monad 
Ko- is actually a 2-monad, or equational doctrine in 
the sense of Lawvere [ 11] .)

So the forgetful functor from the category of 
/(-categories and strict /(-functors, to the category Cat 
of categories, has a left adjoint sending A to KoA; thus 
KoA is the free /(-category on A. If I denotes the unit 
category with one object * and one morphism, we have 
Kol = K; so K itself is the free /(-category on the object 
1 e K; given a /(-category A and A e A, there is a unique 
strict /(-functor K A sending J to A.

For the details of all this the reader may refer 
to Kelly’s papers [4] and [5] . What he needs to know of 
clubs for the purposes of this thesis is the following:

(a) The fact above that K is the free /(-category
on its object 1;
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(b) The manner of constructing ob/C form the basic

(c)

functorial operations;

The fact that the morphisms of K are composites

of expanded instances of the basic natural

transformation equations.

There are a few further points we should notice.

One is the matter of notation: an object of KoA has the 

form T[A^, . .., A ] where T e K, A^ e A, and n = TT.

We write its image under an action 0: KoA 4 A as 

T(A^, . .., A ) (which is therefore the same as 

| T | (A2, . .., Ar) ) . Similarly we write T(S^» . .., S ) 

for the image of T[ Sp..,SR] under the multiplication 

]i: KoK -+ K, which is itself an action of K on K.

Similarly too for morphisms: note that if f: T T’ has 

rf = (, a permutation of n, and if g^: A^ A^, then

that is, of a map <j>: K -*■ L of o-monoids in Cat/P. It 

is clear that any /.-category A with an action 0 : LoA -► A 

is then also a /(-category with action

Then there is the question of a map of clubs,

(poA
KoA * A.LoA

0
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In particular P Itself Is a club (with 
augmentation 1: g "4 g); and for any club K the augmentation
T: K 4 g is a map of clubs. A g-category is, by
Mac Lane’s original coherence theorem [14], just a strict 
symmetric monoidal category. By the same theorem, if P 
denotes the club whose algebras are (non-strict) symmetric 
monoidal categories, the augmentation T: F 4 g is an
equivalence of categories. Since we know the objects of P, 
as iterates of ®, I, and 1, this information suffices to 
describe P completely. Again the discrete category 
with inclusion augmentation g, is a club, whose algebras 
are the strict monoidal categories. If W is the club for 
(non-strict) monoidal categories, then N has the same 
objects as P, and by Mac Lane’s results its augmentation 
T: W 4 g is an equivalence of W with its image under r,
which is g[.

2. 2 There is little to change in the above when we
allow the structure on A to involve functors of mixed 
variance, such as A x A x Aop A, and the most general 
natural transformations of Eilenberg-Kelly [ 1] . Such a 
structure is that of a closed category, which is a symmetric 
monoidal category with an extra basic functor 
[ , ] : A0^ x A -► A, and extra basic natural transformations 
e: [A,B] ® A -► B, d: A ^ [B,A®B] , satisfying as extra



16.

axioms the triangular axioms which make them the counit 
and unit of an adjunction A(A0B,C) = A(a,[B,C]). Again 
we refer to Kelly’s papers [41, [5] for details, just 
giving enough here to make this thesis readable.

The type TT of a functorial operation T is no 
longer just its arity n, but a string v of + and - signs, 
such as ++-+—, indicating the variances of the arguments 
in T. The type of a natural transformation f: T S,
where TT = v and rs = y, is a pairing-off or linking of 
the arguments of T and of S taken together, as in the 
example of d and e above. Two arguments that are paired 
are to have the same variance if one is in T and one in S, 
and opposite variances if both are in T or both in S.
This is best said by defining (v, -y} to be the string 
obtained by first writing v3 and then writing y with all 
its signs changed; then the type of f: T S is a
bijection between the + signs and the - signs in the type 
{v, -y} . We write this type of f as Tf: TT -► rs, or as
say K : v -► y .

The difficulty is that generalized natural 
transformations f: T^S, g: S R can be composed only 
when Tf and Tg are compatible in the sense of [ 1] - we 
also discuss this in detail in §5.2 below. When 5: v y



and T]: y t are compatible, we define their composite

as in [1], and then is the type of gf. When they are 

not, there is no natural transformation gf. We elect in 

this case to define the composite to be a special 

"zero map" * : v -► x.

So we replace g, as the category of types, by a 

category T whose objects are strings v, y, x, ... as above. 

A morphism from v to y is either a bijection of the +’s with 

the -’s in {v, -y}, called a non-trivial morphism, or the 

trivial morphism * = *. Composition in T of non-trivial

morphisms is the Eilenberg-Kelly composite if they are 

compatible and is * otherwise; the composite is also * 

if either n = * or £ = *.

Now in the mixed-variance case, starting from 

basic functors and natural transformations and their 

axioms, we again get as in §2.1 a category K of their 

formal iterates, this time with an augmentation functor 

Y: K -+ T. We can define KoA if, for each f: T S in 

K, Tf ^ #: that is, if no incompatibilities arise. Kelly 

has shown in [ 6] that incompatibilities never arise if we 

start from a purely covariant situation (where they are 

impossible) and thenadd some right adjoints, such as [-,-] 

in the closed category situation. This will cover all the

17.

cases we deal with.
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So the "tensor product" o is only partially 
defined on Cat/T. but we shall not run outside its domain 
of definition. The K we get for such a mixed-variance 
structure will again be a o-monoid, that is, a mixed- 
variance club; a K-category A is a category A with an 
action 0: KoA A; the free such on A is KoA; and K
itself is the free /(-category on J e K.

In these terms the coherence result of Kelly- 
Mac Lane [8] for closed categories is as follows. Let C

i

be the club whose algebras are closed categories. Call 
an object T of C proper if in its construction by iteration 
from I, I, [ , ] , we never form [ P,Q] where TP ^ 0 and
fQ = 0 (0 is the empty string; in general we identify a 
string of n + signs with n e g). They then show that, if 
f,g: T S in C where T and S are proper, the condition
Tf = Tg (i.e. writability of the diagram) implies f = g.
The club C for this case has never been fully determined: 
partial results have been obtained by Voreadu in her 
thesis. It is certainly not the case that all diagrams 
commute.

2.4 Again, there is not much to change if the structure
in question is borne not by a single category A but by a 
family of categories Regarding the set A as a
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discrete category, such a family may be taken as an object 
A of Cat/A. The type TT of T now has to prescribe not 
only the arity n of T and the variance + or - of its 
i-th argument, but the index X e A of the category A^ from 
which the argument is drawn. The type Tf of f is still a 
pairing-off, but can only pair arguments from the same 
category A^. This gives in place of T a new category 
T^, or in the purely covariant case: and the 
augmentation as a functor T: K (or . The only
other point of difference is that K now has among its 
objects ’’identities" lx for each X; the forgetful functor 
from /(-algebras (families (A^) with the given structure 
and strict functors) now lands not in Cat but in Cat/A: 
and K itself is the free /(-algebra not on I but on A.

For our purposes it is simpler to write K as a 
family (K^) and to recognize the object e K^. Then 
the fact that K is free on A is expressed thus: the
family (K^) bears the structure in question; and if 
(A^) does too, and if we choose e A^ for each X e A, 
then there are unique functors (p^: -► A^, sending 1^
to A^, and constituting a strict morphism of the structure 
everything preserved on the nose.
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3. Our problem in terms of clubs

3.1 Let K be a covariant club of the single­
category kind, as in §2.1 and §2.2. Then Ko_: Cat Cat
is not only a functor but a 2-functor, as shown by 
Kelly [4], [; so it is not merely a monad but a 2-monad 
or doctrine. (This is false in the mixed-variance case.) 
This leads to the possibility of a lax or non-strict 
morphism of ^-categories; that is, of a ^-functor, as 
distinct from a strict K-functor. See Kelly [, §7*

Let A’ be /^-categories with actions 9,9’.
A K-functor A -*■ A' consists of a functor a: A -► A's
not required to preserve anything at all, together with a 
natural transformation a as in

9
KoA ------------------- > A

^ r
--------> A'
0 '

Koa

v
KoA'

subject to the following axioms:
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(3*1) The composite

KoKoA
yoA

K oA

KoKoa

KoKoA’

Koa

yoA'
^ KoA»

4 A

A'

coincides with the composite

K o0
KoKoA -> /CoA

KoKoa

\k
KoKoA'

Koa

K oQ

Koa

S/
-> KoA'

■> A

^ A’

(3.2) The composite

yoA
KoA

SK

■> A

Koa

noA'
V
KoA'

\|/

* A-

is the identity.
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It is clear how to compose such /(-functors: 

they form a category, indeed a 2-category. The natural 

transformation a has components

T(aAn ...aA ) 1 n aT(A1...AR).

When K is given by basic operations, it is easy to see that 

the above component need only be given for basic T, and its 

naturality in T only for basic d: T T' (or for

identifications T = T’ occurring in the axioms). Thus 

in the care where K corresponds to monoidal or to 

symmetric monoidal categories, strict or not, a is 

determined by its components

a = ^0(A B) * ® ’ aB a(A0B)

a° = ®i(_) : I ’ -+ al.

The naturality with respect to a, £, r when K = N gives 

the usual definition of monoidal functor; in the case 

K = | we have identifications in place of a, £, r but we 

still get a monoidal functor, now between strict monoidal 

categories (but not itself strict) . In the cases 

K = P or P, we get the usual definition of symmetric 

monoidal functor (of Eilenberg-Kelly [ 2] , pp 473 and 513). 

Note that a strict /(-functor is a /(-functor in which a = 1.
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Now consider, for such a club K, the following 
structure borne by a pair of categories A, A’ - or 
rather for the moment, by a pair A^, A The category A^
is to have the structure of a ^-category; so is the 
category A^; and there is to be also a K-functor 
(a,a): A A This is a structure (covariant) of the
kind considered in §2.4 with A = 2; and it corresponds to
a club K in Cat/P^. with components say and K Since
K is itself a model, and are both ^-categories, 
and there is a K-functor (K,ic): K -> The fact that

K is the free model on e K^ and J2 € ^2 means that, 
given any model (a9a): A-> A^, and given A^ e A^ and
A2 e A there are unique strict ^-functors <f>^: A^,

^25 rendering commutative

(3.3)
K1

(k,k) (a,a)

K 2

and such that <J>^(1^) = A^, <f>2 (12) = A2 .
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Now take to be the unit category I, which is 
trivially a ^-category for any K; and take (a,a) to be 
the only thing it can, which is trivially a K-functor.
We deduce that there is a unique strict K-functor 
<f>l: sending to A^; that is, that is the
free ^-category on one object, namely K itself. This 
could also have been seen directly from the mode of

A A

construction of K in §2.1; the part of K must be K 
itself, since k goes from to K^, k lives in K^, 
and the K-structure on remains within .

We therefore change notation, replacing (3*3)
by

(3.4) K ■> A

(k,k)
\k
V

(a,a)

T
A’ j

and 1^, by 1 and lf; so that the determination of K 
reduces to that of K1, k and k.
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3.2 The covariant part of our problem is such a
determination in the case where K = P. We can solve this 
case but in the four cases ^ = P, g, W, g (see the end 
of §2.2 for the meanings of these); that is, when K 
corresponds to monoidal or symmetric monoidal categories, 
strict or not.

Going back to a general K, recall that we have an
/N /S.

augmentation T: K -* • We are of course interested
A

only in its restriction T: K1 -*■ since we know all about
K. The writable diagrams f,g: T S in K' are those for

A A

which Tf = Tg. We can simplify this criterion of writability
/\

by splitting up T into its two parts r^, K' £;
the first looks only at the arguments drawn from K, and the 
second at those drawn from K1; recall that a natural 
transformation may only link arguments drawn from the same 
category. It is clear that and are the unique strict 
K-functors given by the following cases of (3*^0 (recall 
that, as at the end of §2.2, j? is a ^-category by virtue of 
the club map r : K -+ g, with T(m^, . . . ,mn) = rT(m^, . . . ,m ) =
mn + ... + m : that I is a P-category and hence a K-category 
for any K; and that a P-functor is automatically a K-functor)
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(3.5) -> P

(k,k)

V
K'

NV

^ E

where r(l) = 1 and rhi') = 0; — jl —

(3.6)

(k,k)

v
K 1

(ot, a)

V
^ £

where K -* I is the unique functor, sending 1 to *, where 

r2 sends 1* to 1, and where a(*) = 0, while the component

*] : T(a*> •••> a*) ^ aT(*} •••, *)

or T(0, 0) 0, is the identity map 0 0 (for

T(0, 0) = rT(0, ..., 0) = 0, when g is regarded as

a ^-category via the club-map r: K g) .
So the writable diagrams f,g: T "► S in K1 are

those for which f^f = f^g and r f = f2g. As we said in
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§1.2 and §1.3, not all writable diagrams commute.

We spoke In §1.3 of another Invariant A alongside

is given as follows.

Denote by g the skeletal category of finite sets, 

with objects n e g and with functions n "► m as morphisms.

It is a strict symmetric monoidal category if we take 

m + n as its tensor product m®n, with 0 as the identity 

for ®; hence it is a ^-category. There is a symmetric 

monoidal functor (3, B): I g, and hence a K-functor,

where 3(*) = 1, and where

is the unique map n 1, n being TT. We therefore get a 

case of (3.^0, to wit

f, i.e. alongside and We now write A as r^. It

. . ., : T( $*, . . ., 6*) -*■ 6T(* , . . . ,

(3.7) K I

(k,k) (3,3)

v
v

v
* §r 3

where K I is the unique map sending J to *, and

sends 1’ to 0. It is clear that ro "looks at the = 2
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occurrences of km, and does what is claimed for it in 
§1.3* distinguishing for instance the two legs of (1.1).

Our first main result Theorem 4.5, to be proved 
in §4.4 below, is the assertion that and are
jointly faithful in the cases K = P,g,W,g. Actually we 
first prove in Proposition 4.3 that, for any K, the 
morphisms of K1 have a certain form; and we then prove 
in Theorem 4.5 the joint fidelity of under
conditions satisfied by each of P,g,N,g.

This is all, strictly speaking, that we need 
know about the covariant case for our applications to 
the mixed-variance one of two closed categories and a 
closed functor; but because we can go further here, we 
do so. We can give K1 , k, i< explicitly in the four 
cases P,E,W,JJ, and we do so; our method is to "guess" 
the result, and then to use the above Theorem 4.5 to prove 
it.

2.3 We are now in a position to formulate our main
result, in terms of a mixed-variance analogue of §3.2 
above. Let C be the mixed-variance club for closed 
categories; there is of course a club-map P C. (Note 
that every covariant club K -* g can be considered as a 
mixed-variance club K g T, with the obvious embedding
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g T sending n to a string of n + signs.) Now there is 

no such thing as a "non-strict map of C-algebras”, as 

such; for a mixed-variance club such as C, the functor 

Co- is no longer a 2-functor, and a diagram such as (3.1) 

makes no sense when K = C, there being no "Koa” . What 

has always been meant by a closed functor a: A -► A’

between closed categories is just a symmetric monoidal 

functor (a,3,a°); these are what occur in nature. Such 

a functor induces a natural transformation
A

a: a[A,B] [aA,aB] f; but this is no independent datum.

So we consider the structure, borne by a pair 

of categories A,A’, consisting of closed structures on each 

and a closed, i.e. a symmetric monoidal, functor 

(a,a,a°): A -► Af; or in the more general notation,

(a,a): A -► A1. The basic functors and natural
A

transformations are those which generate the club P in 

Cat/P^? together with [ , ] : Aop x A -* A,

[ , ] A’op x A’ A * and natural transformations

e: [ A,B] ® A B, d: A ^ [ B, A®B] , eT : [ X,Y] ’ ®’ X Y,

dT: X [Y,X®’Y]', satisfying the extra axioms asserting

that d,e provide an adjunction A(A®B,C) = A(A,[B,C]) and 

that d’, eT provide an adjunction AT(X®’Y,Z) = A’(X,[Y,Z]’). 

By Kelly’s result in [ 6] , since we do no more than add
A

right adjoints to certain of the functors in a club P,
A

this structure is given by a club C in Cat/T^.
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As in §3.1, C is itself the free such structure on 
1 and I', and may be written as (y,y): C -> C1 the
domain part being C itself for the same reasons as in 
§3.1* Our task is to determine Cf as far as we are able: 
we cannot at the moment determine it completely, any 
more than C is known completely at this time - see our 
comments in §2.3.

We certainly know the objects of CT; they are 
those iterates of the basic functors whose codomain is C’; 
it is immediately clear that each such is uniquely writable 
in the form T(X^, Xn) where T e C and where each
is either lf or yS^ for e C. We also know the 
generators for the morphisms of C' - namely the expanded 
instances of a’, l', r’, cT, df, e’, ya, y£, yr, yc, yd, 
ye, y and y°, and the (formal) inverses of a', £’, rf, ya, 
y£ and yr. Our partial determination of CT consists in 
determining which writable diagrams f,g: T -► S commute for
restricted T,S - as in the Kelly-Mac Lane result [8] for 
C itself.

As in §3.2, we break up the functor r, which 
determines "writability”, into two functors r^ and V 
and we add a third functor A or as a further invariant. 
ri and r2 are determined as in (3*5) and (3*6), except 
that ( k , ic) : K -*■ K1 is replaced by (y,y): C CT, and g
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is replaced by T. is determined as in (3.7), with
C etc. in place of K etc., and with a suitable 
replacement G for g.

Just as £ is a subcategory of §, with the same 
objects, so T is a subcategory of G, with the same 
objects. Whereas a non-trivial morphism v -► y in T is 
a bijection from the + signs to the - signs in {v, -y}, 
a non-trivial morphism in G is a function from the + signs 
to the - signs; there is still the trivial morphism #, and 
the matter of compatibility. It is the case that both T and 
G are closed categories, so that we do indeed get the 
analogues of (3*5) - (3.7); since T c G, we may if we like 
consider I\ as a functor C -> G for i = 1, 2, 3. These 
I\ are of course extensions of the I\ of §3*2 in the 
case K = P.

We call an object T of C proper if, in its con­
struction from the basic functors, one never forms [A,B] 
or [A,B]’ where, for some i, f. A / 0 and B = 0. Our 
main result then becomes:

Let T,S e CT be proper, and let f,g: T S. Then f = g
if and only if I\f = I* g for 1 = 1, 2, 3* Note that the 
third invariant is necessary here; mere writability, given 
by f f = I\g for i = 1, 2, does not imply f = g even for
proper T and S.
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The method of proof is parallel to that of 

Kelly-Mac Lane in [ 8] . We first prove a cut-elimination 

result. Lemma 5.8 below, providing an inductive 

construction of the morphisms of Cf from those of lower 

"rank"; we then use induction on rank T + rank S to 

prove the main theorem, using as a starting point the 

corresponding result for P’ obtained from Corollary 4.6.
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4. Coherence in the covariant case

4.1 Let K be a covariant club of the single-category

kind, as in §2.1 and §2.2. We begin with a description 

of /(’, the /(-category mentioned at the conclusion of §3.1.

The objects of /(’ are generated as a /(-category 

by iT and kB for all B e k. Thus if A is an object of 

K with TA = n, and Z^,...,Z are objects of K?, then there 

is an object

(4.1) A(Z1,...,Zn)

of K'. If all the Z^ are either 1’ or kB^, we say that the 

object (4.1) is in its prime factorization and that the Z^ 

are the prime factors of (4.1). All objects of K' have 

prime factorizations.

All morphisms of K' are composites of 

expansions of morphisms of the following forms:

(4.2) a(Z1,...,Zn): A( Z^, . . . Z^) B(Z1...Zn)

where a: A -> B is a morphism of K with Ta = and each

Z± e K

(4.3) Ka: kA «B

for a: A B in K; and

(4.it) ic(A;B1, . . . ,Bn) : A( KB1. . . <Br) ->• kA(B1. . .Bn)

where A;B^,...,B are objects of K.
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We have the following two relations: 

(4.5) The composite 

A(B1(kC1...) ... Bn(---KCm)

A(k(B1;C1...) ... K(Bn;...Cm))
\r

A(kB(C1...) ...KBn(...Cm))

k(A;B(C1...) ...Bn(...Cm))
\r

kA(Bl(C1...) ...Bn(...Cm)) 

is equal to

A(B .. .B )(kC, . . ,KC ) 1 n l m

K(A(B1...Bn);C1...Cm)

KA(B1...Bn)(C1...Cm);

(4.6) ic(l;A) : I(kA) -* k(1(A)) is the identity morphism

because (k,k): K -> K1 is a K-functor.

4.2 Let the central morphisms of K1 be those

morphisms (4.2) for which all are prime, i.e. J’ or kA^. 

Clearly the central morphisms are closed under composition,
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and each identity morphism is central. We observe that if 
z: Z -► Y is central then Z and Y have the same prime
factors to within order.

Lemma 4.1: If a: A B in K has Ta = £, then

(4.7) a(Zls...Zn): ACZ^.-.Z^) ->B(Z1...Zn)
is central for all Z^ e K'.

Proof: Let the prime factorizations of the Z^ be
Z1 = ..., Zn = Cn(..., Ym). Then (4.7) is
a(C-,...C )(Yn...Y ) which is central because 1 n 1 m
a(C1...Cn) : A(CC1...CCn) B(C1...Cn)
is a morphism of K. □

Lemma 4.2: If z^: Z^ Y^ is central for each i, and
if A e K, then the following morphism is central

(4.8) A(z1...zn): A(Z1...Zn) - A(...YR),

Proof: Let z^ be

a1(X1,...): B1(XC1,...) - C1(X1,...),

etc, where a^: CL is in K and the X^ are prime.
Then (4.8) is A(an...a )(X,...X ) which is central since1 n 1 m

A(a1...an): A(B1...Bn) -*A(C1...Cn)
is a morphism of K. □



4.S In this section we show that each morphism of K1

can be expressed as the composite of a central morphism, 

an expansion of instances of k, and an expansion of 

instances of Ka, in that order.

Let a morphism z: Z Y of K1 be called decomposable 

if z can be written as

t x y
(4.9) Z -» W -> X -* Y 

where

(4.10) The prime factorization of Y is A(V^...Vn) and 

of X is A(U±...U ).

(4.11) The morphism y is A(w^...w ) where for each 

1 £ i < n either

= th = 1 f and w^ = 1; or

Vi = kEL, U. = kCL and WL = where

a^: ^ in K.

(4.12) One factorization of W (not necessarily prime) is
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(4.13) The morphism x is A(v^...v ) where for each 
1 £ i £ n either

th = = 1* and = 1; or

Ui = KEj_( • • -Dj • • •) > Tj_ = E^( . . . kDj . . .) and

v. isl

k(E . ; . . . D . . . . ) : E . ( ... kD .... ) -► kE . ( . . ,D . . . .) .l J i J ^ j

(4.14) t is central.

Proposition 4.3: All morphisms of K' are decomposable.

Proof: Since k1: kA ^ kA and
k(1;A) : 1(kA) -> k(1(A))

are both equal to 1: kA kA, it readily follows that
1: Z Z satisfies both (4.11) and (4.13). Thus any
central morphism z: Z -► Y is decomposable being

z 1 1
Z -► Y Y Y.

The morphism (4.3) is decomposable as
1 1 l(ica)

kA kA 1(kA) ---- > 1(kB).

The morphism (4.4) is decomposable as
1 1(k)

A( . . . kB± . . .) -► 1 (A ( . . . kB±. ..)) ---->1(kA( . . .B±. . . )

1(kA( . . ,B± ...)).
1
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Suppose z^.: are decomposable for
1 £ k £ p, and that each z^ is

fck xk yk
(H.15) zk--- > wk--- > xk--- » Yk
as in (4.9). For F e K with FF = p, it is necessary to 
show that F(z^...z ) is decomposable.

But F( z^ . . . z ) is

F( t^... t )
F(Z1...Zp) --------- > F(A1...A )( . ..T±...)

F(A1...Ap)(...V1...)
--------------------> F(A1...Ap)(...U1...)

F(A1...Ap)(...W1...)
------------------- ^ F(A1...A )(..,V±...)

which is decomposable.

The proof of the proposition will be completed with 
the following lemma:

Lemma 4.4: If z: Z Y and u: Y -* S are decomposable
so is the composite uz: Z “► S.

Proof: Let z be (4.9). It is sufficient to show the truth
of the lemma when

(i) u is central;
(ii) u is an expansion of instances of k;
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(iii) u is an expansion of instances of Ka. 

Case (i): Let u be

(4.16) b(Vcl. . .V ) : A(V1...Vn) -*F(V?1..

for b: A -► F in K with fb =

)

But uz is now

Z -> A(T1...Tn)
b(T51...T?n)

■>F(Ta...TSn)

F(v5r..v5n) F(w61*"F^r-V
••w5n) 
---->

F(va*“V6n)
which is decomposable by the centrality of

b<Ter--V-t-
Case (ii) : Let u be

G1(sl-’•sm'
(4.17) A(v1...vn) = a(F1(v1...)...Fnl(...vn)) ------- >

G(Ri...Rm)

where R, , . . . .R are prime, and if

(a) is l1, then F^(...Vj...) = 1(1’) and s^ = 1;

(b) is kJL, then F^(...Vj...) = F^(. . .kHj . . .) ,

J. = F.(...H... . ) . and s. = ic (F. : . . .H . . . .) .i i j 9 i i9 J



Since A = G(F^...Fm), uz is the composite

t F(...F±(...WjV.)
(4.18) Z -► G(...F.(...T) —--------------- —*

G( . ..s^ . . .)
G(••.F±(...V.^ G(...R±...),

This is decomposable if each s.. F.(...w.v....) is,i J J
because as we have seen in the proof of Proposition 4.3, 
an expansion of decomposables is decomposable.
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If R± is 1T, then s± = 1, F±(...Vj...) = 1’, 
wj = 1 a v. = 1, Fj_( • * .Tj • • •) = 1T a so that 
si* Fi(*••wjv....) is 1: 1’ ^1’, and so decomposable.

Suppose R± is kJ.. Then s. . F (...w.v___ ) isa li J J

(4.19) Pi(...E (...KDk.
P.(... K...)

P1(...KE(...Dk.
P±(...Ka ....)

F.(...kH ...) kF .( ... H ....)i J i 0

But by the naturality of k, (4.19) is

F.(...E.(...kD ...)...)1 J k
F.(...k...)

F. ( . . . kE . ( .i J

kF . ( . . . E . ( . i Jv Dk-
kF .(... a ....)^ J

•> <P.j_( . . H. . . . )
J
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However this is decomposable since ic. F.(...k...) equals
K

V-- .E.
J

KD, . . . ) kF. ( .k i
. . .E. ,

J

by (4 .5) .

Case (iii): Let u be

(4.20) A(s1...sn): A(Vi...Vn) - A(Rr...Rn)

where if

(a) V. isl

C
O

•HOC
O

t—
III R., and s. = 1: 

i 5 l : V 1’ •

(b) V. isl kB^, then R. is kF. and £ 
i i

;. is 
i

<b . for b . : B. F.l ill

But uy Is

A(s1w1...snwn): A(U1...Un) “►A(R1...Rn)

where s.w. is either 1: 1’ “► 1’, or <(b.a.): kC. kF..ii = = 5 ii i i

Thus uz Is decomposable. □

4.4 We proceed to use Proposition 4.3 in order to prove 

a theorem concerning certain sufficient conditions upon K 

ensuring the joint faithfulness of r^} and r .

Theorem 4.3: Suppose that every a: C(A^...A ) C(B^...B )

in K with Ta = n(£., . . .£ ) for some £. : rA. Tb. is of the1 n ill



form a = C(b^...bn) for some b^: A. -► B. in K with 1 1
Tb^ = Then if every map in K is an isomorphism,
ri, r2 and r3 are jointly faithful.

Proof: Let z,z’: Z -+ Y in K' be such that r.z = r.z------ 5 i l
for i = 1, 2, 3. We must show that z = zf.

By Proposition 4.3* z and zT are decomposable so 

may be written as in (4.9) as

t A(w1...wn)
X A(U1...U ) 1 n ■>

and A(v’...v^)
A(U'...U’)1 n

A(w*...w1) 1 n
A(V....V ). K 1 n

_1If s = t'. t we must show the commutativity of
s

(4.21)

A(U'...U') 1 n

A(v^ ...vp

A(V....V ) 1 n
given that r.(4.21) commutes for 1 = 1, 2, 3-
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We assert that s associates each prime factor of 
T\ with a prime factor of 1W . Otherwise r2 or of 
(4.21) fails to commute in view of the evident character 
of r2 and r3 of the left and right legs of (4.21).

Let the prime factorizations of the YW be

m t - 
L1 B{(Yi'' ) T1 =•/>•••> ^ n B 1 ( . ..Y ), and of the n m 5 T. be i

II

i—
1

Eh

VYni’ ••>’•••’ Tn = B (...Y ). Since T n pm has the

same fac tors as T!, TB.l5 l = fB£, and s is

a(Y1...Y ): A(B, . . .B )(Y . . . .Y ) A(B ' . . .B ’ ) (Yn . . . Y )1 m 1 n ril nm 1 n 1 m
where a: A(B,..,B ) A(B'. . .B 1 ) , Ta1 n' 1 n 5 A(5r..5n)

for TB^ rB^. By the property of K mentioned in
the statement of the theorem there exist b.: B. -* B!ill
for which Tb. = £. and a = A(bn...b ). Denote the central i i In
morphisms b1(Y1...): B^Y^...) B^ (Y^ ...),... ,

bn(-"Ym): BnO..Ynm) - B^(...Ym) by Sl,...,sn. Then
s = A(sx...sn).

By the strictness of each I\ and the commutativity 
of I\ of (4.21), it follows that I\ of
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s .«](4.22) T.0

vj t
U.J U!J

V.J

commutes.

If V. = 1’, then (4.22) reduces to 

1

1

which obviously commutes.

If Vj is kC for some C e K, then (4.22) is

(4.23) -> D ’ ( kEt . . . kE )1 p

K As KV
kD'...E )1 p

for various D,D',E^,...,E ,f,f1. But Sj is central and so



may be written as

d(KE1. . .kE ) : D(kE?1...kE ) -»■ D* (kE1 . . . kE )

for d: D D’ with fd = c. By the naturality of k the
right leg of (4.23) equals

K Kd(E1...Ep)
(4.24) D(kEc1...kE ) kD(E^1.

Kf ’
KD1 (En . . .E ) --> KC .1 p

The commutativity of r (4.23) means that

d(E- ...E )1 p------* D'CE^.-Ep)

C

commutes. By this result and the expansion (4.24) we see 
that (4.23) commutes. Thus (4.22) commutes for any prime 
V.. Consequently (4.21) commutes, so that z = z'.

This completes the proof of Theorem 4.5.

Corollary 4.6: If f: K £ is full and faithful, then

^1* ^2 anc^ ^3 are faithful.
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Proof: Let a: C(A1...An) C(B1...B ) in K be such
that Ta = n(61...^n) and £±: Ta± rB±. Since r ±s
full and faithful there exist unique b.: A B. with1 i i
Fbi = ^i* Since Ta = rc(b1...bn) and r is faithful 
a = C(b1...bn).

We now want to show that every morphism 
a: A -* B of K is an isomorphism. There is an inverse 
Tl: rB ta of Ta in g. Since T is full and faithful 
there exists a unique b: B A with Tb = n .
But T(ba) = r(l^) and T(ab) = r(lg), so ba = 1^ and
ab = Iga thus a is an isomorphism. □

4^5 We now turn our attention to the specific cases 
K = E> P, N and N. In this section we shall define and 
consider a E-category E, an g-category 8, a E-functor 
(e,e): E E, and an g-functor (8,F): g B. In §4.6 we

A

shall show that E is isomorphic to (e,e): ? -*■ E5 and that
A

H is isomorphic to (B,F): g 8; and in §4.7 we show that
^ A A /s

P is equivalent to £, and N is equivalent to g.

The objects of E are 

(4.25) (f; n p, u, 6)

where n,p,u are non-negative integers, f is an increasing map, 
and (p is a (p,u)-shuffle. A (p,u)-shuffle is a permutation 
6 of p+u for which 61 < (p2< ... <6p, and <Kp+l)< 6 (p+2) <. . . <6 (p+u)
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A morphism of E from (f: n -* p,u,<f>) to

(ff: n’ £ * ,uT , <P1) exists only when n ’ = n and u ’ =

It is written

(4.26) (6,h,0)

where 6: n n and 6: u u are permutations, and h:

is any map such that the following diagram commutes

h

The composite of (£,h,0) and (£’,hf,0’) is (C,C,hlh,0f 

The morphism (1,1,1) is the identity for any object.

The g-action on E is given by

(f: n~*p,u,(f)) 0 (fT: n’ p T ,u 1 ,cf) ’ ) =

(f+fT: n+nT p+p ’, u+uf , <J>+<|>' )

and

I = (0 0, 0, 1)

where f+f', for example,is the tensor product of f and f 

The functor e: E E is given by

\K

-> P

'Y

-> P

P P’

6) .

’ in S.zz

en= (P: n 1, 0, 1)
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where is the unique morphism n 1 in §; and 

e(S: n n) = (£, 1, 1).

The g-functor structure on eis defined by 

~ f2+f2
e(0; n, m) = e = n+m---------^ 1+1 , 0,1

n+m

a
v

----- > i
>1/
o , i

e(I;-) o= e 0 * 0 ,0,1

■'V v
0 ------- > 1 0 , 1.

The objects of 8 are the same as those of E.

The morphisms of 8 are those of E for which £ and 0 are 1, 

h is increasing, and the following condition holds.

For each i * p, and 0 < j, k £ u such that <f>(p+j) < (pi,

(pi < 4>(p+k), 4>T is such that <j)’(q+j) < <|>fhi and

4>Thi < cf>!(q+k). The g-action on 8 is the restriction of

the g-action on E; and 3 and H are the restrictions of

e and e.
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Lemma 4

(4.27)

(4.28)

(4.29)

(4.30)

.7: The morphisms of E are generated by

vK
0

-> 0 , u

-> 0
v

y/

p

V sK
P > U , <P' ,

p(fl...fl)
p(n^...n__) ------------■> p , 0 , 1ni np

n(nx...np)
\K

p(n-...n )1 p p(fi...ft)

V
P

\K
0,1,

p(ft...ft)
p(nl...n ) ------------p

1

p(nl,,,np) ----------- ? 1
ft

0 , 1

0 , 1 and
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(4.31) *1,0,1

\k \k

* i
sk
o

Proof: A typical morphism of £

(4.32) * P > u , $

-\k sk
■> q

V (j)«

can be written as the composite

(4.33)

\k

n

v
n

\K

v
n

■> P , u 5 <P

\K
* P

\y
* P

NK
* q

g
----> q

\Ku

vl/

\k

\|/
<f>’
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The first and fourth of the four factors of (4.33)

are instances of (4.28). But the second factor is the 

tensor product

an expansion of an instance of (4.27).

The third factor is the tensor product

i.e. an expansion of
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f

(4.3*0 n -----^ p 0 , 1

C
v
n

h
v

—>q
g

o , 1

We will show that (4.34) is generated by (4.29), (4.30) and 

(4.31). We will only consider the square diagrams, for 

example (4.35) instead of (4.34)

f
(4.35) n --------- » p

5
n

h

--- --> q
g

Every increasing map f: n p can be written as

(4.36) p(ft,...fi): n = p(n1«..n ) ^ p(l...l) = p

for a unique selection n^,...,n . Also any map 

h: p q may be written

n q(^.•.ft)
(4.37) P p = q(p1...pq) --------» q

for a unique selection p^,...,p , and a not necessarily 

unique permutation n.
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The following diagram in S commutes

p(ft.. .ft)
(4.38) n = p(nnl...nnp)

nCn-L- . .n )
nK p(ft . . .ft)

> P

•V

P(nl”'nD) P = q(Px.•-Pq)

v
q(p1(n1...)...p (...n ))

q(Cx ... Sq)

q(ft. . .ft)

q(ft ...ft)

^ q

n = q(p1(n1...)...pq(...n ))
q(ft...ft) 'S
--------- > q

for any permutations £ . But by (4.36) and (4.37) the right 
leg of (4.38) is hf. By (4.35) hf = g£, so that 
g = q(ft...ft) by (4.37). For any x e n suppose hfx = i.
By (4.38) n(n....n )x e p.(...n....). But g£x = i, so that

\r cJ
Cx € p.(...n....) also. Thus there exist permutations 
?i of pi(...n....) so that £ = q(^1>..^q) . n(n1...np).
Thus diagram (4.35) is the same as diagram (4.38).

It is now sufficient to show that each of the three 
factors of (4.38) is generated by (4.29), (4.30) and (4.31).
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The first factor is already an instance of (4.29). 
The second factor is tensor product of the morphisms 
1 < i * q,

p.(...n....)J
p^(ft...ft)

> P-

V r

P, ( • . n.J .)
\|/

> 1

all instances of (4.30). The third factor is a tensor 
product of the morphisms 1 < i £ q

P (* * * n j » • •) ^ 1

\K
P±(.•-n....) •> 1

all instances of (4.31).

This completes the proof of Lemma 4.7

Lemma 4.8: The morphisms of B are generated by

(4.39) 0 >0,1,1

Y
~7> 0 and
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(4.40) P(ni* * *np)

V
P(n1. . .rip)

p(ft...ft)
--------* P

\k V

Proof: Consider a morphism of 8 of the form

(4.41) n -> P , 0 , 1

'y 'V
q

V
0

g

By (4.36) this may be written

q(p1(n1...)...p (...n )) -
q(p1(ft...)...p ( . . .ft))

q(p1. . .p ) ,0 , 1

q(ft...ft)

q(pl(nl-..)...p (...n ))
q(ft...ft) <*■ ,0 , 1

which is a tensor product of the morphisms 1 £ i £ q

Pi(...nr..)

y
Pl(...nr..)

P^(.•.ft...)
P-

\l/
* 1

\K

all instances of (4.40).
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Because of the condition relating (p} <J> ’ and h, a 

general morphism of B

f
n --------- > P , u , <J>

n ----------^ q , u , <p'
S

may be readily "disentangled" as the tensor product of 

morphisms like (4.41) (with the "u" part = 0), and

(4.42) 0 ---------- ^ 0 , u± , 1

1
V n'

0---------- £ 0 , u± , 1 .

But (4.42) is the tensor product of u^ of (4.39).

This completes the proof of Lemma 4.8. □

4.6 Define the strict symmetric monoidal functors

r1 E: E E > V2 E: E E and r3 E: 6 § on (4.25) by
n, u and p respectively, and on (4.26) by 6, 0 and h

respectively. Let the strict monoidal functors gi B -►

8 -> P and Tn B -> S be the restrictions of the2, B = 3 s B
to B.
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Let us write g as (tt,tt): g g 1 , and g as
(v,v): g ^g’. By (3*3) there are strict symmetric monoidal
functors pf and p, and strict monoidal functors a’ and a 
rendering commutative

(4.43)
P'

(tt5tt)

P!

(e ,e)
\r

—> E 
p

(4.44) i aT
g

(v,v)
V
N'=z . a

(3,6)

^ B

and such that P’(l) = 1, cr’(l) = 1, and 
P(l’) = d(lf) = (0 0, 1, 1). But pf and a’ are the
identity functors. In the remainder of this section we 
shall show that p and a are isomorphisms.

Lemma 4.9: Both P and o are bisections on objects.

Proof: Since p and a have the same underlying object
function, we only consider p.
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Any object of E can be written uniquely as

(4.45) p(ft...ft): p(n1...n ) p, u, 4>
which is of the form

(4.46) (p+u)(En...E^(p+u))

where = (0 0, 1, 1) if i > p,

and = (ft: n^ 1, 0, 1) if i < p.

(4.46) (p+u)(E

But p(l’) = (0 0, 1, 1) and p(Trn) = (ft: n 1, 0, 1).

Thus p maps the generators of to the generators of E.

Lemma 4.10: Both p and o are surjective on morphisms.

Proof: We know the generators of the morphisms of E and

of B by Lemma 4.7 and Lemma 4.8. We just need to check that 

each such generator is the image of a morphism of gf and 

respectively:

Therefore p is bijective on objects. □
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using the notation of (4.46);

(4.29) is p(imnr..im )

n (Tm-, . . .Trn )
ir

p(TTn1. . .Trn )

(4.30) is p j p(7rn1. . .Trn )

■v

Tr(p; n1 . . .n )

Tr(nn + ... + n )1 p

(4.31) is p(tt£: Trn -+ Trn);

(4.39) is a(l: 1’ -> 1’ ); and

(4.40) is o j p(vn^...vnp)

v(p; nx...n )

V
v(nn + ... + n ) \ J- P

Lemma 4.11: Both p and o are faithful

Proof: We now use the T. r and T. D---- i,E i,B
beginning of this section.

constructed at the
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We know that r. (lf) are 0, 1 and 0 respectively.1 j g
But r. P . p applied to 1* also yield 0, 1, 0. Prom the 

i jc
uniqueness of r. , it follows that r. f .p = r. for 

i = 1, 2, 3. Similarly I\ g . a = I\ N for i = 1, 2, 3.

Suppose z,y: Z Y are morphisms of g' such that
pz = py. Then I\ E (pz) = I\ E (py), that is,

ri,P ^ = ri P for 1 = 1> 2> 3. But r: g £ is
the identity so Corollary 4.6 applies. Consequently z = y 
and p is faithful.

It follows similarly for any morphisms f,g: T “► S
of H’ with af = ag, that r (f) = r (g) for i = 1, 2, 3.

} = 5
However readily satisfies the conditions of Theorem 4.5,
T: N P being the inclusion. Thus the T. are jointly- - l,
faithful so f = g and o is faithful. □

A /S

Theorem 4.12: g is isomorphic to (e,e): g E, and {J
is isomorphic to (3,3): g B.

Proof: By Lemmas 4.9, 4.10 and 4.11, p and a are isomorphisms.
In diagrams (4.43) and (4.44), p’ and o' are known to be 
identity functors. □

4.7 Let us write P as (P,P): P P’ and W as (N,N) : W Wf
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We know that g and P’ are P-categories (symmetric 
monoidal categories) and that (tt3tt) is a P-functor (symmetric 
monoidal functor). Thus if we let K = P in (3*3) we know 
that there exist unique strict symmetric monoidal functors 
U,V rendering commutative

(tt,tt)(P,P)
*

-> P

-> E

such that U(l) = 1 and V(l’) = 1'.

Similarly by considering K = W, there exist unique 
strict monoidal functors W, X rendering commutative

N

(N,N)
V
N»

V
(v,v)

t> S’

such that W(l) = 1 and X(l’) = 1’.
/S A A

Theorem 4.13: P is equivalent to P, and W is equivalent to
A

N.
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Proof: We will show that U, V, W, X are equivalences. But
we already know that U and W are equivalences by the work 
of Mac Lane [ 14] .

It is clear that both V and X are surjective on 
both objects and morphisms. It remains to show that V and 
X are faithful.

For- i = 1, 2, 3, rljE . v(i') = r1)P (i’K But 
by the uniqueness of T. p it follows that V. p = F. . V.1,| lj'
If the morphisms z,y: Z -+ Y in P’ have Vz = Vy, then

Fi,P (z) = ri,p (VZ) = ri,P (Vy) = Fi,P (y)* But F: P ^ E
is full and faithful, so by Corollary 4.6, the p are

jointly faithful. Therefore z = y and V is faithful.

For morphisms f,g: T ^ S in W with Xf = Xg, we 
obtain in the same way that I\ ^ (f) = I\ ^ (g) for i = 1, 2, 3. 
But W easily satisfies the conditions of Theorem 4.5 so the 
r\ ware jointly faithful. Consequently X is faithful. □
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5. The closed categories G and C'

3.1 We shall confine our study of mixed-variance clubs
to the case K = C. Since our main Theorem 6.11 involves 
functors : C' -*■ T, Cf -*■ T, : CT -> G it is
necessary that we investigate the closed categories C’,
T and G.

3.2 We begin with a study of G.

Let the objects of G be the finite lists of the 
signs + and Of course the empty list, which we shall
write 0, is an object of G. For any list y, let -y be the 
list with all signs changed. Let {y,v}be the list consisting 
of the elements of y followed by those of v. Let y+ 
(respectively y_) be the set of + elements (respectively -) 
of y. A non-trivial morphism from y to v is a function 
from (y,-v}+ to {y,-v}_. For every pair of objects y,v 
let there be a morphism *: y -* v called the trivial morphism.

We say that the non-trivial morphisms f: y -* v and
g: v 7T are incompatible (written ffg) if there is a
subset

(5*1) vi, v^} . . . ,v"2.Y1 n * 1
of the elements of v, such that f maps to vi+-^ for i odd,
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and g maps to \>i+^ for i even (g(v2n) = v]_) • Otherwise 
f and g are compatible (written f~g).

If f~g we define gf: y tt . Consider the sequence

(5.2) x0,x15...,xn n ^ 1

where Xq e y + or tt_; and xi+^ is f(x^) if x^ e y + or v_,
and x.,t is g(x.) if x. e v, or tt : and x is the first x. l+l & l l + - n i
in tt+ or y_. We define the composite gf to be the map 
which sends each Xq to xn as in (5.2). If fjg or f or g is 
trivial, let gf be the trivial morphism.

Lemma 5.1: Suppose f: y^v, g: v tt and h: tt -► p are
non-trivial morphisms of G. Then f~g and gf~h, if and only 
if, g~h and f~hg. (We write this as f~g~h.)

Proof: Suppose ffg. Then there exists a sequence

(5.1). But if g~h, hg maps to for i even. Thus
f f hg.

Suppose f~g, but gffh. Then there exist

elements of tt, such that gf maps tt^ 
tt^ to tt^+^ (i even). Since gf maps

a sequence (possibly empty)

vil» vi2’ ’•‘» vir1

n £ 1

to TK+^(i odd) and h maps 

tt2i_i to 7T2i3 there exists

r. even i
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of elements of v, such that g(7T21 1) = g^vir ) = 'n213

g(vij.) = v± .+1 if j is even; and fCv^) = v± if j is
odd. If = 0 for all i then gjh. Suppose r^ is not 
always 0. Then the sequence

v v v v vll9*** lr15 21»‘2r2»*’*» nr
shows that ffhg. The converse is proved in exactly the
same way. □

Lemma 5*2' Suppose f: r^Vj g: v -* tt and h: tt -* p are
non-trivial morphisms of G such that f~g~h. Then h(gf) = (hg)f.

Proof: Consider the sequence

x09xqj••-xn ' n > 1

where xn e y, or p ; x.,n = f(x.) if x. e y.or v ;0 + - l+l i i + -

xi+l = s^xi^ lf xi e v+ or n-> xi+i = h^xi^ if xi e 7T+ or P_3
and x is the first x. in P. or y . n i +

Let

be those x^ which are in y,v or p. But y= f(y^) if 
y± e P+ or v_; and y ±+1 = hg(y±) if y± e v+ or p_. Thus 
(hg)f(xQ) = x . Similarly by considering the x^ in y ,tt or p 
we find that h(gf)(Xg) = x . Consequently (hg)f = h(gf). □
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For any object jj of G we define the identity morphism 

1: y -► y. It is a function from {y,-y}+ to {y,-y}_, i.e.

from y+u(-y)+ to y_ u(-y)_. Let it be the function comprising 

the identity maps from y+ to (-y)_ and from (-y) to y .

Given objects y,v of G, define y®v to be {y,v}, and 

[y,v]! to be {-y,v}. Given non-trivial morphisms f: y tt

and g: v 4 p we want to define f®g: y®v tt®p and 

[ f ,g] : [ tt,v] -*■ [ y, p] . Now f®g will be a map from 

{y, v,-tt,-p>+ to {y, v, -tt, -p }_, i.e. from {y,-7r}+ u {v,-p} + 

to {y,-Tr} u {v3-p} . We define f®g to be the morphism which 

acts as f on {y,-7r}+ and as g on {v,-p}+. We can similarly 

define [f,g]. If one or both of f and g is trivial we 

define f®g and [f,g] as the respective trivial maps.

If f~h and g~k then f®g~h®k and h®k.f®g = hf®kg.

Thus ® is a functor. Similarly [ , ] is a functor.

Proposition 5*3: G is a closed category.

Proof: We have already defined composition of morphisms,

identity morphisms, tensor product and internal horn functors. 

Let the identity object of G be the empty list 0.

Lemma 5.2 states that composition is associative when 

f~g~h. Consider the cases when we do not have f~g~h. If any 

of f,g and h is *, then so are both (hg)f and h(gf).
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So suppose that at least one of f^g, gf^h, g|h and f-fhg.
But by Lemma 4.1 we deduce that (hg)f = h(gf) = #. Thus 
composition is always associative. Since the identity 
morphisms readily satisfy the category axioms, G is a category.

Since (y®v)®p = y®(v®p) the associativity isomorphism 
is the identity morphism. Also since y®0 = y = 0®y, the 
left and right identity isomorphisms are also the identity 
morphisms. The commutativity isomorphism c: y®v v®y
is a map from {y,v,-v,-y} to {y,v,-v,-y} , and comprises 
the identity maps {y,-y}+ to {y,-y}_, and from (v,-v}+ to 
{ v, -v } _ .

The maps d: y [v,y®v] and e: [y,v]®y v are
respectively the maps from the + elements to the - elements 
of respectively {y,v,-y,-v} and {-y,v,y,-v}, induced from 
the evident identity maps.

It is easy to check that the relevant axiom-diagrams 
[see Eilenberg-Kelly [2]]’ commute so G is a closed category. □

We can see that T is a closed subcategory of G with 
the same objects. The non-trivial morphisms of T are those 
morphisms of G whose underlying functions are bijections.

Let a central morphism f: y -► v of G be a morphism
ofTwhich maps y+ bijectively to v+, and v_ bijectively to y .
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It is easy to see that if g: v -* tt is a non-trivial

morphism of G, and f: y v and h: it p are central, then
f~g~h.

Note that the centrals are the smallest set of the 

morphisms of G containing l,a,c,£,r and closed under 0 and

[ , j.

5.8 Define the closed functor (a,a): I -*■ G by:

a(#) = +; 5(0;*,*): + ,+ + is the unique such morphism in

G; and a°: 0 -> + is also the unique such morphism in G.

Let ($,3): I -* G be the closed functor with 3(*) = 0.

We know that there exist unique strict symmetric 

monoidal functors A^, r^, T2 and rendering

commutative

(y,y)

(y,y)
ir

->

(i3i)
v

G'

I

(3,S)
v

^ G
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(o ,a)

and such that A^(l) = 1, (1) = A^(l) = *j r^(l') = 0}

r2(If ) - + and r3(1T ) = 0. We know that : C -* G is the 
graph functor of Kelly-Mac Lane [ 8] .

5.4 We now turn our attention to the category C’.
We shall define the constructible morphisms of C'. Our aim 
is to show that all morphisms of CT satisfy this definition.
In Chapter 6, we shall use this characterization of the morphisms
of C'.

(y»y)

c»

I

V

G

The objects of C1 may be considered to be T{X^,...,Xm> 
where T e C and each X^ is 1’ or yAi for A. e C. Mentions 
of 0 and [ , ] in T correspond to 0’ and [ , ] ’ in T(X^,..,Xm). 
Having been inspired by this correspondence, we shall frequent­
ly abbreviate 0f and [ , ] 1 to 0 and [ , ] .

However, we find it more useful to factorize the 
objects of C’ as

(5.3) P(Z
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where P e P and each is either 1T; yA^ for e C; or 
[X^Y.P for X^,Y^ e C'. We call such the prime factors 
of (5.3). We write If for the identity object I(-) of C’.

If f: A0B C is a morphism of C, and z: Z0Y -► X 
is a morphism of CT denote by irf and ttz the respective 
composites

d [l,f]
A -MB,A0B] ----- > [B,C],

d ’ [ 1, z]Z -> [Y,Z0Y] ----- ■> [ Y,X] .

If g: A B and y: Z “► Y are morphisms of C and Cf respective­
ly, anc C and X are objects of C and C1, denote by <g>c and 
<y>X (usually abbreviated to <g> and <y>) the respective composites

10g e[ B, C] ®A --- > [ B, C] ®B —5> C,
l®y e'[ Y, X] ®Z ----> [ Y,X] 0Y —^ X.

We define the central morphisms of C' to be those of
the form

(5.4) p(Z1...Zn): P(Za...Z5n> ^Q(Z1...Zn)

where P,Q e P, p: P-^Qisa morphism of P with rp = £
and the Z^ are prime.

Lemma 5.4: Let f be the central morphism (5.4) of C’.
i = 1,2,3, I\(f) is central in G.

For
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Proof: Because the are strict ^-functors,
r (f) = P( T^( Z^) . . . r (Zn)) . These morphisms are clearly 
central in G, □

For each object Z of C or C» we define its rank 
written r(Z) or rZ. Let

r(I) = r(I’) = 0, 
r(1) = r(l’) = 1, 
r(Z®Y) = rZ + rY, 
r([Z,Y]) = rZ + rY + 1, 
r(YZ) = rZ + 1.

For each morphism z: Z Y of let its rank rz be
rZ + rY. Note that if z is central rZ = rY.

5.5 We define the constructible morphisms of C' to be the
smallest class of morphisms of C» satisfying the following 
conditions:

(5*5) Every central morphism is in the class;
(5.6) If x: X V and y: W U are in the class with

r(x) > 0, r(y) > 0, then so is 
a x®y b

Z X0W -- ■> V0U Y
where a and b are central;

(5.7) If y: Z0X W is in the class, then so is
Try b

Z [ X,W] -> y
where b is central;
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(5.8) If y: X W and x: V®U -+ Y are in the class then

so is

a <y>®l x
Z ([W,V]0X)0U ------ V0U -► Y

where a is central;

(5.9) If P e P with TP = n and A^,...,A
C and f: P(A^...A ) B is a morphism of C
following morphism is in the class

y(P;An ...A ) a ' 5 1 n

are objects of 

, then the

Z P(yA1. . .yAn) > yP(A1...An)

yf b
yB Y

where a and b are central.

Suppose z: Z -* Y with r(z) = 0 is constructible.

By elimination z can only be central.

Lemma 5.5: Suppose z: Z -► Y is constructible and af: Zf Z

and bf: Y Y’ are central. Then b’za' is constructible.

For i = 1,2,3, ria' ~ " Tj^b’.

Proof: The latter part of the lemma follows directly from

Lemma 5.4 and the second-last paragraph of §5.2.

It is readily seen from the definition of central 

morphisms of Cf that the composite of two central morphisms is 

central. Thus we need only consider the cases:
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(i) za' where z is defined by (5.7); and
(ii) b'z where z is defined by (5.8).

We use induction on r(z) assuming that b'za' is constructible 
for all z with smaller rank.

Case (i):
a1 Try b ’b

Z »—> Z —y[ X, W] ---> Y'
a' d' [1,y] b 'b

= Z'-—> Z —>[ X, Z0X]--- ^ [ X,W] -- ^ Y'
df [ 1,a'01] [l,y] bT b

= Z’ --^ [ X,Z ' ®X] ------> [X,Z0X]--- > [X,W] --> Y '
tt(y .a ’01) b 1 b= z ’ -------> [ X,W] --^ Y 1

which is constructible by (5.7) if y.a’®l is. But this is 
so by the induction assumption, r(y) being less than r(z).

Case (ii) : b’za*
= b'x . <y>01 . aa’

which is constructible by (5.8) if b'x is. But this is so 
because r(x) < r(z). □

Lemma 5.6: If x: X V and y: W -► U are constructible, so
is x®y: X®W V0U.

Proof: By (5.6) we need only consider the cases where at least
one of r(x) and r(y) is 0. But then at least one of x and y 
is central. Thus at lease one of
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x®l: X0W V0W and 10y: V0W -► V0U is central. But

x®y = 10y . x®l must be constructible by Lemma 5.5. □

Lemma 5.7. If for i = 1,2,3s I\(x), I\(y) and r(f) are 

non-trivial, then r\ (5.6), r^ (5.7)> (5.8) and I\ (5-9)

are non-trivial.

Proof: The morphisms can be checked to be non-trivial by

their straightforward but tedious evaluation. □

5-t-6
Lemma 5.8 (Cut-elimination) : If z: Z Y and w: Y0X -► W

are constructible so is 

z®l w
(5.10) Z0X -* Y0X -► W

Proof: Write a = rZ + rY + rX + rW, and o = rZ + rY.

The proof is by double induction; we suppose the lemma to be 

true for all situations with lower a, or the same a and 

lower a . If either z or w is central, the lemma is a case 

of Lemma 5.5.

For non-central z and w we consider cases according 

to whether z or w be defined by (5.6) - (5.9). Clearly we may 

omit central factors occurring at the beginning or end of z, 

and at the end of w. In the proof any numbered arrow represents 

the evident central morphism.
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Case 1: z is defined by (5.6)

Let z be f®g: A®B -*• C®D. Then (5.10)

(f®g)®l w
= (A®B) ®X •-----^ (C®D) ®X -> W

2 g®l 3 f®l
= (A®B)®X -> B®(A®X)  > D®(A®X) -► A®(D®X) —^

4 w
C® (D®X) ( C®D) ®X -> W.

Now w4.f®l is constructible by the induction hypothesis. 

So too is w4(f®l)3.g®l. Thus w.z®l is constructible.

Case 2: z is defined by (5*8).

Let z be

<f>®l g
([ A,B] ®C)®D---- B®D -> Y.

Then w.z®l

(<f>®l)®l g®l w
= ( ([ A,B] ®C )®D) ®X --------- > ( B®D)®X---> Y®X -► W

5 <f>®l
= (([ A,B] ®C)®D)®X -> ([ A,B] ®C ) ® (D®X) ----> B®(D®X)

6 g®l w
-> (B®D) ®X  ^ Y®X W

which we shall call (5.11). But w.g®l is constructible by 
the induction hypothesis. Thus (5.11) is constructible.

We next consider the remaining cases where z is defined 
by either (5*7) or (5.9). In either case Y is a prime factor.
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Case 3: w is defined by (5.6).

Let w be

7 f®g
Y®X A®B -- y C0D.

Without loss of generality assume 7 associates the prime

factor Y with a prime factor of A. Let E be a tensor product

of those prime factors of X associated via 7 with prime

factors of A. Then w.g®l

z®l 8 9®1 f®g
= Z0X  > Y®X -> (Y®E)®B  > A®B-- » C®D

10 (z®1)®1 9®1 f®g
= Z®X —> (Z®E)®B -------> (Y®E)®B  > A®B > C®D.

This is constructible by Lemma 5.5 and Lemma 5.6 if 

z®l 9 f
(5.12) Z®E -> Y®E -> A -» C

is constructible. But ct(5.12) = rZ + rY + rE + rC, while 

a(5.10) = rZ + rY + rX + rC + rD. So the induction assumption 

applies unless rE > rX + rD, i.e. rB + rD £ 0. But since w 

is formed by (5.6), r(g) = rB + rD > 0.

Case 4: w is defined by (5*7).

Let w be irf: Y0X -► [ A,B] . Then (5.10) is

Z01 TTf
Z0X-- ? Y0X--A,B]

which is 7T applied to
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(z®l)01 f

(5.13) (Z0X)0A -----> (Y@X)@A^B.

So we must show that (5.13) is constructible. But (5.13) 
is

z@l 11 f
Z0(X0A) -- > Y®( X®A) --(Y0X)0A ^ B

The result follows by induction since rZ + rY + r(X0A)
+ rB < rZ + rY + rX + r[A,B].

Case 5: w is defined by (5*9).

Let w be
12 y yf

Y0X —> P(yA1...yAn) ^yP(A1...An) —? yB

where P e P. The prime factor Y must be one of the yA’s, 
say yA^, so z must be defined by (5.9) not (5.7). Let z be

Y YgQ(yC-,...yC ) ->yQ(C1...C ) —> yA,1 ' m ' 1 m k

Then (5-10)
y®l yg®l

= Q(yC1...yCm)0X -----> yQ(C1...Cm)®X ------- >yAk®X

12 y Yf
—>P(yA1. . .yAn) -► yP(A1...An) —^ yB

13 P(l...y...l)
= Z®X — P(yA1...Q(yC1...yCm)...yAn) --------------- ------>

P(yA1...YQ(C1...Cm)...yAn) ->
yP(i...g...1)yP(A1...Q(C1...Cm)...An)------------- >

yf
yP(A1. • *A^.. . .A^) --^ Y^
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13 Y
= z®x —> p(i. ..Q...l) (yA, .. .yC- .. . ye .. . yA ) -►— — ± ± m n

yP(l-..Q...1)(A1..,C1...Cm...An)

y(f . P(1..,g...1))
-------------------^ yB.

This last morphism is constructible by (5*9) since 

f.P(l...g...1) is a morphism of C.

Case 6: w is defined by (5.8)

Let w be

14 <f>01 g
Y0X —> ([ A,B] 0C)0D ----->B0D -> W.

Subcase 1; The prime factor Y is associated via 14 with the 

prime factor [A,B].

Here z cannot be defined by (5.9) so must be defined 

by (5.7). Also Y must be [ A,B] . Let z be

Trh: Z [A,B] . Thus (5-10) is

Trh01 14 <f>01 g
Z0X --- > [ A,B] 0X -->([ A,B] ®C)0D ---- > B0D -> W

15 (7T h® 1) 01 <f>01 g
= Z0X —> ( Z0C )®D------- ^ ([ A,B] ®C)0D----> B0D -► W

This is constructible, by induction if

TT h®l <f>
(5.14) Z0C-- p> [ A,B] ®C —^ B

is constructible.
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However (5.14) is
d 101 [ 1 ,h] 01 10f e *

Z0C > [ A, Z0A] 0C ----- > [ A,B] 0C > [ AjB] 0A—»B
10f d * 01 e’ h

= Z0C  > Z0A --> [ A, Z0A] 0A >Z0A -> B
10f h

= Z0C *-- >Z0A B
16 f 01 17 h

(5.15) = Z0C >C0Z > A0Z 9>Z0A B

using the adjunction axiom that e’.df01 = 1.
But (5.15) is constructible since rC + rA + rZ + rB < 
rZ + r[ A,B] + rX + rW.

Subcase 2: 14 associates Y with a prime factor of C.

Let E be a tensor product of the prime factors of X 
which are associated via 14 with prime factors of C. Then 
(5.10) is

18 (1®(z01))01
Z0X —* ([ A,B] ®(Z0E) )0D --------- > ([ A ,B] 0(Y0E) ) 0D

(1019)01 <f>01 g
-------> ([ A,B] 0C)0D --- > B0D -► W
18 <(5.17)>01 g

(5.16) = Z0X —>([ A,Bl 0(Z0E))0D -------- > B0D “► W

where (5.17) is 
z01

(5.17) Z0E—*
19 f

Y0E C A.

By definition (5.8), (5.16) is constructible if (5.17) is 
this is so because rZ + rY + rE + r A 
< rZ + rY + r[ A,B] + rE + rD + rW.

But
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Subcase 3» 14 associates Y with a prime factor of D.

Let E be a tensor product of the prime factors of X 

which are associated via 14 with prime factors of D. Then 

(5.10) is

20 l®(z®l)
Z0X —}([ A,B]0C)0(Z0E) ------- > ([ A,B]®C)0(Y0E)

1021 <f>01 g
--- } ([ A,B] ®C)0D ---- > B0D W

20 <f>01 (5.19)
(5.18) = Z0X-->([ A,B]®C)0(Z0E) ---- > B®(Z0E) -----> W

where
z®l 21 g

(5.19) = Z0E—^ Y0E —} D ^ W

But (5.19) is constructible by induction, hence (5.18) is 

constructible by Definition (5*8).

This completes the proof of Lemma 5.8, all cases 

having been dealt with. □

Proposition 5.9: Every morphism of C' is constructible.

Proof: All the generators of Cf are constructible. If z and

y are constructible, z®y is constructible by Lemma 5.6.
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Suppose z: Z Y and y: Y -*• X are constructible.

Then z®l: Z®If -► Y0I1 Is constructible by Lemma 5*6.

The composite

22 z®l 23 y
(5.20) Z —^Z®I’ --->Y®I» —-^ Y -> X

is constructible by Lemma 5*5 and Lemma 5.8.

But (5.20) Is yz.

Suppose z: Z -► Y is constructible. Then so are
e * 2

(5.21) |X,Z]®X-> Z -» Y 

and tt(5.21)

d' tl,e'] [l,z]= (x,z] —[ x,[x,z]ex] - - - 5. [x,z]-- ■> [x,y]

= [ l,z] : [ X,Z] ->■ [ X,Y] .

Also

18z e'
(5.22) [ Y, X) ®Z-> IY,X]®Y—> X

Is constructible as is ir(5.22)

d' [l,10z]
= [ Y,X] > [ Z,[ Y,X] ®Z] --------Z,[ Y,X] ®Y]

[ l,e']
----- => [ Z,X]

d' [ z,l]
= [ Y,X]--> [ Y,[ Y,X] ®Y]---- >■ [Z,[Y,X]®Y]

[ 1 ,e' ]
---- ^ [ Z, X]

(by the naturality of d')



82.
d’ [l,ef] [z,l]

= [ Y,X] —^ [Y,[ Y,X]®Y]-----> [Y,X] --- >[Z,X]

= [ z,l] : [ Y,X] -> [Z,X] .

If f: A B is a morphism of C, the following is
constructible

y yf
1 (YA) yA —> yB .

But this is yf since y(l;A) is the identity morphism.

Thus the category with objects the same as C’, and 
with the constructibles as morphisms, is a closed category 
containing the generators of the morphisms of C'. Consequently, 
all morphisms of C* are constructible. □

Theorem 5.10: No incompatibilities arise in C’. That is,
if z: Z Y and zf: Y -* X are morphisms of C ’, then
r.(z) ~ ri(z») for i = 1,2,3.

Proof: We know that z'z is constructible, so it is only
necessary to show that each of every morphism in C' is 
non-trivial.

This is certainly true if the morphism is central. If 
the morphism is defined by (5.6), (5.7) or (5.8), we need 
only consider, by Lemma 5.7, the relevant x and y. But in 
each case r(x) and r(y) are less than the rank of our morphism, 
so the theorem follows by induction. Suppose z is defined by
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(5*9). Then T^(z) is the map 0^0, and r^(z) maP 
n -► 1. But r (z) is

rf: rP(A1. . .An) -► TB

for f e C. But we know from Kelly-Mac Lane [8], that f is a 

constructible morphism of C, so the graph rf is allowable, 
i.e. ff is a non-trivial morphism of T. □



84.

6 .____Coherence for a closed functor.

6.1 In this chapter we prove our main theorem, using
methods of proof based heavily on those used by Kelly and 
Mac Lane in §7 of [81.

Let the reduced objects of P be I, and any object 
of P formed by iterates of 1 and ® . Let the
reduced objects of CT be P(Z^,...,Z ) where P e P is reduced 
and the are prime.

If Z^,...Z are prime objects of C’, a tensor product 
of Z^,...,Z is P(Z^,...,Z ) where P is a reduced object of P 
with TP = n.

An object T of C is constant if TT = 0, and an object 
Z of C1 is i-constant if I\Z = 0, where i = 1,2 or 3. A 
constant object of C1 is one which is 1-constant, 2-constant 
and 3-constant.

The proper objects of C are those satisfying the 
following rules:

1 and I are proper;
If T and S are proper, so is T®S; and
If T and S are proper, so is [ T,S] , unless S is constant 

and T is not constant.
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For i = 1,2 or 3, let the i-proper objects of C* 

be those satisfying the following rules:

For each i, 1’ and I’ are i-proper;

If T e C, yT is 2-proper and 3-proper;

If T e C is proper, yT is 1-proper;

For each i, if Z and Y are i-proper so is [Z,Y] 

unless Y is i-constant and Z is not i-constant;

If P e P, and Zl,...,Zn are i-proper, then so is 

P(Zj)•..3Zn).

A proper object of C' is an object that is 1-proper, 

2-proper and 3-proper.

6.2

Lemma 6.1: For any object Z of C' there exist a reduced

object Y of C», and a central morphism z: Z -*■ Y.

Proof: Let the prime factorization of Z be P(X^...Xn). From 

our knowledge of P we know that there is a reduced object Q 
of P with TQ = n, and a morphism y: P -► Q of P with Ty the
identity permutation. Let Y be Q(X^,...,X ) and z be

y(x1...xn) □

Consequently:

Lemma 6.2: In Definition (5.6) we may assume that X,W,V and U
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are reduced. In (5.8) we may assume that X and U are reduced. 
In (5.9) we may assume that P is reduced. □

We make some observations about i-proper objects.
If Z is i-constant then Z is i-proper. If [Z,Y] is i-proper, 
so are both Z and Y; and Z®Y is i-proper if and only if Z 
and Y are i-proper, whence Z is i-proper if and only if each 
prime factor of Z is i-proper.

Lemma 6.3 ♦ Let z: Z Y be a central morphism of C' .
If either Z or Y is i-proper so is the other one.
If either Z or Y is i-constant so is the other

Proof: Z and Y have the same prime factors. □

Proposition 6.4: Let z: Z Y be a morphism of CT with
Y i-constant and Z i-proper, where i is 1,2 or 3. Then 
Z is i-constant.

Proof: Suppose inductively that the proposition is true
for all smaller values, if any, of r(z). If Z is central,
Z is i-constant by Lemma 6.3. Also by Lemma 6.3 we may 
ignore central factors occurring at the beginning and end 
of z. Since z is constructible we consider cases according 
to whether z is defined by (5*6) - (5*9)..



If z is defined by (5.6), let z be 

f®g: A®B COD. Then C and D are i-constant and A and B

are i-proper. Since r(f) < r(z) and r(g) < r(z), A and B
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are i-constant by induction.

If z is defined by (5.7) let z be irf: A -► [B,C] . 

Since [B,C] is i-constant so are both B and C. Indeed they 

are i-proper. Thus A®B is i-proper. But f: A®B C

satisfies the conditions of the proposition and r(f) < r(z). 

Thus A®B is i-constant so A is i-constant.

If z is defined by (5.8), let z be 

<f>®l g
([ A ,B] ®C)®D -----» B®D Y.

Since ([A,B]®C)®D is i-proper, so are [A,B],C,D, 

A,B and B®D. Bur r(g) < r(z) so B®D is i-constant, as are 

B and D. But [A,B] is i-proper, so A must be i-constant.

But f: C A satisfies the conditions of the proposition

and r(f) < r(z), so C is i-constant. Thus ([A,B]®C)®D is 

i-constant.

If z is defined by (5-9)* let z be 

Y Yf
P(YA1. . .YAn’> yP(A1. . .An) —? YB.

But yB is not 3-constant, so this case does not exist for 

i = 3. Also P(yA^...yA ) is 2-constant, so we only have to
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consider i = 1. If P(yA^...yAn) is 1-proper, each A. and 
hence P(A^...A ) is proper. By Proposition 7*^ of Kelly- 
Mac Lane [8], P(A^...A ) is constant. Thus P(yA^...yA ) 
is 1-constant. □

Our next lemma concerns the elimination of constant 
prime factors, i.e. [T,S]’ where T and S are constant.

Lemma 6.5: For any object Z of Cf, there exist an object
Y with r(Y) £ r(Z), and an isomorphism z: Z Y in C1 such
that

(i) Y is reduced;
(ii) Y has no constant prime factors, its prime factors 
being precisely the non-constant prime factors of Z;
(iii) If Z is i-proper, so is Y;
(iv) There is a constant object X of O and a central
morphism y: Z -► Y®X with r z = I\y for i = 1,2,3.

Proof: Let Y^,...,Y be the non-constant prime factors
of Z, and X^,...,X the constant prime factors of Z, both 
lists keeping the factors in the same order as they occur in Z.
Let Y be a tensor product of the Y^,...,Y , and X a product of
X^,...,X . There exists a central morphism y: Z Y0X. It
is now sufficient to find an isomorphism z: Z Y.
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We show that if W is constant, there exists an 
isomorphism k^: W -► I’ in C', Let the numbered morphisms
denote the obvious central morphisms.

If W = [ I ’ , I ’] let kw = h be
2 eT

[ I»,I»] -> [ I’,I’] ©I’ —> I’ .

The inverse of h is
dr [1,31

I' —^ [ I ’, I ’01 ’]--- ^ [I’,I’].

We now define inductively by setting k ^ f 
k^gy to be the composite

ku0kv
U0V IT 01 ’ I’ ;

and kj ^ ^ to be the composite

[1% 1>kv]
[U,V]

VJ h
If .

= 1; by taking

We let z be the composite 

y 10k 4
Z Y0X--- -> Y0I ’ -> Y . □

Lemma 6.6: If Z is an i-proper object of CT for which
there are no + elements of r^Z, then Z is i-constant.

Proof: By Lemma 6.5 we may assume that Z is reduced with
no constant prime factors. Consider the class of objects X 
of C’ which are i-proper, reduced, have no i-constant prime
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factors, and for which I\X+ = 0, I\X_ ^ 0. We shall show 
that this class is empty. Suppose Y is a member of this 
class with least rank.

Clearly Y ^ 1’ or I’. If Y = W0V then both W and 
V are in the class (remember Y is reduced) and rW < rY, 
rV < rY, which contradicts the hypothesis that Y has minimum 
rank.

If Y is yA for A e C, r^Y+ ^ 0 and = ^ • Thus
we only consider the case i = 1. Clearly Y is not yl or 
yl. If A = B®C then both yB and yC are in the class, and 
ryB < rY, ryC < rY, again contradicting the minimum rank 
hypothesis. If A = [B,C] then T1yC+ = 0, r^yB_ = 0• If 
riYC_ ? 0, there exists by Lemma 6.5 an object W, with 
rW $ r C which is in the class. But ryC < rY so again a 
contradiction. Since r^yY_ ? 0, r^yB+ must n°t be 0* But 
then [B,C ]is not a proper object of C, so y[B,C] is not 
1-proper.

Suppose Y = [W,V] . Then I\W_ = 0, I\V+ = 0. If 
r\V_ ? 0, there exists by Lemma 6.5 an object U with rU < rV 
which is in the class. But rV < rY so again a contradiction. 
This leaves I\V = 0 and I\W+ ^ 0. But then Y is not i-proper. 
Consequently Y does not exist, so that the class is empty 
and the lemma is proved. □
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Proposition 6.7: Let z: Z®Y -► X®W be a morphism of CT
^3

where Z,Y ,X,W are proper. Suppose that each r±z =
for r. z r. X and n . :ii i r.Y -* r.w.l l Then there are
morphisms x: Z X and y: Y -*■ W such that z = x®y,
I\x = £ and f y = r^.

Proof: Suppose inductively that the proposition is true
for all smaller values, if any, of r(z). By Lemma 6.5 we 
may suppose each of Z,Y,X,W to be reduced with no constant 
prime factors. Since z is constructible we shall consider 
cases according to the Definitions (5.5) - (5.9). A 
numbered arrow will indicate the appropriate central morphism.

Suppose z is central. By Lemma 5.^} each r.z is 
central, so by the forms r z = there are one-to-one
correspondences set up between the prime factors of Z and X, 
and Y and W. Hence there exist central x and y with the 
desired properties.

If z is defined by (5.6), let z be
2 f0g 3Z0Y -> A0B -- *C0D X0W.

Let a tensor product of those factors of Z associated via 2 
with a prime factor of A (respectively B) be E(respectively P)
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Let a tensor product of those factors of Y associated via
3 with a prime factor of A (respectively B) be G (respectively
H) . In the same way let E’^F’jG’jH’ be tensor products of
the prime factors "common" to X anc C, X and D, W and C,
W and D respectively. Define p^: r.E E 1 as the
restrictions of I\ z to {I\E,I\ET}. These are indeed morphisms
ofGbecause r.z is of the form £.®n..1 i i
Similarly define : I\F -► ILF’, I\G I\G’a

ki: I\H -► riHT . For the morphisms
4 f 5

(6.1) E0G -> A -> C -► E’0Gf
6 g 7(6.2) F0H B -> D -> FT0Hf,

I\(6.1) = p10t^, I\(6.2) = a^0k^. By the inductive hypothesis
we conclude that (6.1) and (6.2) are respectively r®t and
s0k, where I\r = p^3 I\s = o^3 I\t = I\k = k^. Define
x and y to be the composites

8 r0s 9
Z -* E0F -- > E’ 0F’ -> X

10 t0k 11
Y--?>G0H —^GT0Hf —^ W

But z = x®y and I\x = 6^, r.y = .

If z is defined by (5.7) or (5.9) let z be 
W 12

Z0Y -* V —» X0W

where V is prime. Then either X = V and W = I’, or X = 11 and
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W = V. Without loss of generality we assume the former.
Then z is the composite 

W 13
Z®Y -► V —> V0I’

If z is defined by (5*7) let w be irf: Z0Y [A,B] .
Since r.z = 6.®n., it follows that r. ofill9 l

14 f 15
(6.3) (Z0A)0Y—> ( Z0Y) ®A B —^ B0I

is v^®n^ where tt(v^) = Therefore by induction, (6.3) is
v®y where I\(v: Z0A B) = and I\(y: Y "► I) = n^.
Let x: Z [ A,B] be ttu. Then T^x = 6^ and z = x®y.

If z is defined by (5.9) let z be
16 Y yf 17

(6.4) Z0Y —> P(yA1. . .yA ) yP(A1. . .A ) ->yB —>yB0I' .

By the form (6.4) each prime factor yA is mapped by r^(6.4) 
to yB. Thus by the form of I\(z) each prime factor yA
is associated via 16 with Z, so Y = I'.

Thus y = 1: I’ If, and x is
18 y Yf

Z —^ P(yA1...yAn) -* yP(A1.. .An) —> yB.

Then T^x = 6^ and z = x®y.

If z is defined by (5.8) let z be
19 <f>01 g

Z0Y —»([A,B]0C)0D ---- ^B0D->X0W.(6.5)
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Assume that 19 associates [A,B] with a prime factor of Z. Let 
a tensor product of those prime factors of C associated via 19 
with a prime factor of Z (resp Y) be E (resp F). The image 
under F.z of an element of r.F, is in r.A or r.B by the form
(6.5) of z, but is in I\Y or I\W by the hypothesis that
r.z = £.®n.. It must therefore be in r.F . Thus F. of ill i - i

20 f 21
(6.6) E®F C -+ A —? A®I ’

is p.®a. where p. : f.E r.A and a.: r.F -► T.I’. By theii ill ill J
inductive hypothesis (6.6) is r®s where T^(r: E -► A) =
and T^(s: F I’) = . But by Proposition 6.4, F is constant,
so must be I'. This means that all prime factors of C 
are associated via 19 with Z.

Let a tensor product of those prime factors of D 
associated via 19 with Z be G. But r^ of

22 g
(6.7) (B®G)®Y—*B®D X®W

is where r^(B®G) -► is the restriction of 6^
to (r B, r G, r±X}. By induction (6.7) is w®y where 
T^(w: B®G X) = and r^(y: Y -+ W) = Let x be the
composite

23 <f>01 W
Z —> ([ A,B] ®C)®G ----> B®G X.

Then z = x®y and r^x =
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This completes the proof of Proposition 6.7. □

Proposition 6.8: Let z: Z®Y X be a morphism of CT where
ZjY,X are proper. Suppose that each f^z sends each element of
T. Y. to an element of T.Y . Then Y is constant.l +___________________________l -_____________________________

Proof: Each T. of------- l
z 24

Z0Y X —> X0I’

is of the form Therefore by Proposition 6.7 there is
a morphism y: Y I1. But by Proposition 6.4, Y must be
constant. □

Proposition 6.9: Let z: ([ Z,Y]®X)®W 4 V be a morphism of C’
between proper shapes, with [Z,Y] not constant. Suppose, 
for each i, T\z = ni(<6i>®l) for 6^* ILX -► T^Z and 
ni: r±(Y®W) I\V. Suppose finally that there do not exist
U, T,S,R, such that for each i, can be written

UK P1(<01>®1)
(6.8) r±x (([u,t]®r)»s) r z

where ok is a central morphism of G. Then there exist 
x: X Z and y: Y®W -*• V such that z = y(<x>01),
T±x = and r\y = ni.

Proof: Suppose inductively that the proposition is true for
all smaller values, if any, of r(z). By Lemma 6.5 we may 
suppose each of X,W,V is reduced with no constant prime factors
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Since z is constructible we consider cases according to the 
Definitions (5.5) - (5.9). Note that once we have 
z = y(<x>®l) it is automatic that r x = I\y = n^.

Suppose that z is central. Then the image under 
I\z of any element of r X or I\Z is in I\V. But by the form 
Ci(<ni>01) of r z, any element of I\X+ or I\Z is mapped 
to r.X or r.Z. . Hence for each i, there are no elements of 
TiX+ or I\Z . By Lemma 6.6, X = I’. Since z is central, V 
has a prime factor [Z,Y]. But any element of I\Z+ in 
r\V_ is mapped to an element of I\Z + in I\( ([ Z,Y] 01 f )®W)_ 
by the centrality of z; and to I\V, I\W or I\Y by the form 
Ci(<n1>01) of r z. Hence I\Z + is empty so Z is constant too.

Let x be kz~^ where kz is defined in the proof of
Lemma 6.5. Let y be the composite

d’01 (10k7)01 z
Y0W ---> ([ Z , Y] ®Z ) ®W -------> ([ Z,Y] 01’ )0W “► V.

But upon simplification we find that y(<x>01) = z.

If z is defined by (5.6) let z be 
2 f®g 3

(6.9) (( Z , Y] ®X)0W A0B-- > C0D V.

We may suppose that [Z,Y] is associated via 2 with a prime 
factor of A. Let E be a tensor product of those prime factors 
of X associated via 2 with a prime factor of B. Each element
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of r.E+ is mapped by r z to an element of I\Z or I\X by the 
form n1(<^i>®l) of r z, and to an element of I\B or I\D 
by the form (6.9). Thus each element of r\E+ is mapped to 
an element of r E . By Proposition 6.8, E must be constant 
Thus all prime factors of X are associated via 2 with prime 
factors of A.

Let F be a tensor product of the prime factors of 
¥.associated via 2 with prime factors of A. Then I\ of

4 f
(6.10) ([ Z,Y] ®X)®F A C

is C^(<£^>®1) where is the restriction of to
{I\Y, r F, I\C}. By induction (6.10) = w(<x>®1) where
r (x: X -* Z) = and I\(w: Y®F -► C) = Let y be

5 w®g 3
Y®W -> (Y®F)®B-- > C®D -► V.

Then z = y(<x>®1).

If z is defined by (5.7) let z be 
Tif: ([ Z,Y] ®X)®W -> [ A,B] . But T.f is

<£>®1 C,([ r±z,r1Y] ®rix)®ri(w®A) —±—^ r±Y®ri(w®A) —^r±B

where 71^ = n^. By induction there exist x: X Z and
w: Y0(W®A) -► B with I\x = and I\w = such that f is
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6 <x>®1 w

( ([ Z,Y] ®X)®W)®A -►([ Z,Y] ®X)®(W®A)--- f Y®(W®A) B.

But then Trf is
<X>®1 7TW

([ Z,Y] ®X)®W *----* Y®W —MA,B] .

If z is defined by (5.9) let z be

7 Y Yf 8
([ Z,Y] ®X)®W -> P(yA1. . .yAn) -> yP^. . .An) —>yB -+ V.

But [ Z,Y] cannot be associated via 7 with any prime factor 
yA. Consequently z cannot be defined by (5.9).

If z is defined by (5.8) let z be
9 <f>®l g

(6.11) ([ Z,Y] ®X)®W -> ([ A ,B] ®C)®D---- p B®D V.

We consider three cases, namely IZ,Y] is associated via
9 with (1) [ A,B] , (2) a prime factor of C, or (3) a prime 
factor of D.

Case 1: Here A = Z and B = Y. Let E be a tensor product of
the prime factors of X associated via 9 with prime factors 
of D. Each element of F^E+ is mapped by I\z to an element of 
r±Y or r\D or I\V by the form (6.11) of z; and to an element 
of I\X or r±Z by the form n^(<6^>®l) of I\z. Consequently 
each element of is mapped to an element of By
Proposition 6.8, E is constant so all prime factors of X are 
associated via 9 with prime factors of C. A similar argument
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shows that all prime factors of W are associated via 9 with 
prime factors of D.

Thus z is
(1010)011 <f >01 g

([ Z jY] 0X)0W -------^ ([ Z, Y] 0C)0D —---> Y0D -> V.

Let x = f.10 and y = g(1011).

Case 2: [Z,Y] is associated via 9 with a prime factor of
C.

Suppose, if possible, that [A,B] was associated via 
9 with a prime factor of X. Let E be a tensor product of 
those prime factors of ([Z,Y]0X)0W, that either are prime 
factors of X, or else are associated via 9 with prime factors 
of C. Each element of I\C+ is mapped by I\z to an element 
of r A or r C by the form (6.11) of z. Each element of 
r\X+ is mapped by I\z toan element of I\X or I\Z by the 
hypothesis that z = n^(<£^>01). Thus each element of 
I\E+ is mapped by T^z to an element of I\E. Thus by Proposition 
6.8 E is constant, which contradicts the hypothesis that 
[Z,Y] is not constant.

Thus [ A,B] must be associated via 9 with a prime 
factor of W. Let F be a tensor product of those prime factors 
of X associated via 9 with a prime factor of D. By consider­
ing the two forms of I\z we see that I\z maps each element of



r F+ to I\F, so F is constant. Thus each prime factor of 

X is associated via 9 with a prime factor of C.

Let G be a tensor product of the prime factors 

of W associated via 9 with C. Then r of

12 f
(6.12) ([ Z,Y] 0X)0G —? C -* A

is £^(<£^>01) where I\(Y0G) -* I\A is the restriction
of n± to {r\Y, I\G, I\A}. By induction (6.12) is 
w(<x>01) where I\(x: X Z) = and I\(w: Y®G -► A) = c .

Let y be

13 <w>01 g
Y®W —> ([ ASB] 0(Y0G) )0D -----^ B0D V.

Then z = y(<x>01).

Case 3: [Z,Y] is associated via 9 with a prime factor of
D.

Suppose if possible that [A,B] was associated via 

9 with a prime factor of X. Let E be a tensor product of 

those prime factors of C associated via 9 with prime factors 

of W. By considering the two forms of I\z, we see that I\z 

maps each element of I\E+ to an element of r JE. Thus E is 

constant so every prime factor of C is associated via 9 with 

X. This implies that each is of the form
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o)i <r.f>®i p.r±x -^> (ri[ a,b] ®ric)®riF —- -- r Bar f —^ilz

for central on. But this is excluded by hypothesis so 
[A,B] must be associated via 9 with a prime factor of W.

Let G be a tensor product of those prime factors 
of X associated via 9 with prime factors of C. By the two 
forms of r z we see that r z maps each element of r G+ to 
an element of I\G. Thus G is constant, so each prime factor 
of X is associated via 9 with D.

Let H be a tensor product of the prime factors 
of W associated via 9 with prime factors of D.

Then T. of i

14 g
([ Z,Y] ®X)0(B0H) —^ B®D V

is £^(<£^>01) where I\(Y®(B0H)) is the restriction

of n1 to {I\Y, r B, I\H, r±V} . By induction

(6.13) = w(<x>01) where I\(x: X Z)

r\(w: Y®(B®H) V) = Let y be

6^ and

Y0W Y® (([ A,B] ®C)®H) -- ------ > Y0(B0H) V.

Then z = y (<x>01).
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Proposition 6.10: Let z: P(yA^...yA ) 4 yB be a morphism
of C* between proper objects, P being an object of P.
Then z may be written

y Yy
P(yA1...yAn) yP(A1. . .An) —> yB.

Proof: By Lemma 5.5 we may assume that P is reduced.
Obviously z cannot be defined by (5.7) or (5.8).

If z is defined by (5.6) let z be 
2 f®g 3

P(yA^. . ,yA ) ** COD -- > EOF -+ yB.

We may suppose that yB is associated via 3 with a prime 
factor of E. But then F is constant. However D is proper, 
so by Proposition 6.4 D is constant. Thus r(g) = 0, 
so z cannot be defined by (5.6).

If z is defined by (5.9) let z be
4 y yx

(6.14) P(yA1. . .yAn) -» Q(yC1. . .yCR) yQ(Cr . .Cn) yB.

Since 4 is central, 4 may be written as

w(yC1... yCR) : P(yC^1... C^R) Q(yC1. . .yCR)

where w: P Q is a morphism of P with rw = £, and = A^.
Thus (6.14) equals

yw(Cn...C )y 'In yx
P(yA1...yAn) yP(A1...An) ----------^ yQ(C1. . .Cn) yB

which is of the desired form, with y = x.w(C^...C ).
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If z is central, n must be 1, and must be B.
But P is a reduced object of P with TP = 1, so P must be 1. 
Thus z: yB yB must be the identity morphism, which can be 
written in the desired form as

Y Yl
JL(yB) y(1B) —>yB. □

6.4

Theorem 6.11: Let z,z’: Z Y be morphisms of C* between 
proper objects, such that I\z = I\z’ for i = 1,2,3* Then 
z = z ’ .

Proof: Suppose inductively that the theorem is true for
all smaller value, if any, of r(z) = r(zT). By Lemma 6.5 
we may suppose that Z and Y are reduced with no constant 
prime factors. If both z and z’ are central, z = z’, so we 
may suppose that z is not central.

If z is defined by (5*7) let z be
irf 2

Z -> [ A,B] Y.

But then 2~\z = irf, so 2~^.z’ = tt (f1) where f’ = (2”^ . z T) .
But r.f = T.f’ because T.z = T.z’. Hence f = ff by induction, ii ii
whence z = z’.

If z is defined by (5.6) let z be
3 f®g 4 

Z -> A®B --^ C®D -> Y
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Then 4 1.z.3“1 = f®g: A®B C0D. Then

ri(4‘1.zf.3"1) = r.(4“1.z.3"1) = r.f®r.g.

By Proposition 6.79 4"^.z.3~^ = f’®g’ where I\(fT: A -* C) = r.f
and T (g1: B D) = I\g, whence f = ff, g = gf by induction,
so that z = z1.

If z is defined by (5.9) let z be
5 y yf 6

Z P(yA1. . .yAn) -> yP(A1. . .An) —* yB -► Y.

Then 6 ^.zf.5_"*' = 6”^ . z . 5-"*': PfyA^...yAn) -* yB.

—1 —1By Proposition 6.10, 6 .zf.5 equals
y yf'P(yA1...yAn) -* yP(A1. . . An) -- > yB .

But ri(6-1.z>.5_1) = rf' and rl(6_1.z.5-1) = rf.

Therefore by Theorem 2.4 of Kelly-Mac Lane [ 8] , f = ff, 
whence z = z’.

Finally, if z is defined by (5.8) let z be
7 <y>01 x

Z ([ X,W] ®V)0U ----^ W®U -> Y.

Then it may be the case that there exist A,B,C,D such that 
for each i, r.y is

“i <a.>®1 piqv—. ([ r\A, riB] 0ric)0r1D —-—* r.B®r d —^ r.x



105.

for central ok in G. In this case I\z = I\x( <I\y>01) I\7 • 

But <I\y> = <pi>(10(<a^>01)) (10ok) . But now I\z =

xi(<ai>01)for some and central ip^. But perhaps there

exist E,F,G,H such that for each i, o^ is of the form
k .4>i <X.>®1 1

ric —^> ([ r1Ear1F] ®riG)®r1H---- > i^fsi^h —>r\A

for central <j>^. But C has strictly fewer prime factors than 

V, since [ X,W] is a prime factor of V but not of C; G has 

strictly fewer prime factors than C; and so on. Thus this 

process terminates, and ultimately we have an expression for 

r±z of the form
yi <£±>®i n±

i\z —>([ r1Q,riM]®r1P)®riN --- ^ r±M®r1N —> i\y

for y^ central and not of the form (6.8). Moreover 

[ Q,M] is not constant since Z has no constant prime factors. 

There exists a central

8: Z -> ([ Q,M] 0P)®N

— 1 —1with r±8 = y ^. From Proposition 6.9 applied to z.8 and z’.8 we 

conclude that z.8 ^ = g(<f>01) and z’.8 g'(<ff>01) for

f,f’: P Q, and g,g’: M0N Y with I\f = I\ f' and I\g = I\g'.

By the inductive hypothesis f = ff and g = gf so that 

z = z ' .

This completes the proof of Theorem 6.11. □
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