
Stability of Learning in Classes of Recurrent and Feedforward
Networks

Author:
Wilson, William Hulme

Publication details:
Proceedings of the Sixth Australian Conference on Neural Networks (ACNN’95)
pp. 142-145

Event details:
Australian Conference on Neural Networks
Sydney, Australia

Publication Date:
1995

DOI:
https://doi.org/10.26190/unsworks/444

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/11546 in https://
unsworks.unsw.edu.au on 2024-04-19

http://dx.doi.org/https://doi.org/10.26190/unsworks/444
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/11546
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

To appear in Proceedings of the Sixth Australian Conference on Neural Networks (ACNN’95) 142-145

Stability of Learning in Classes of The relationship to work by Mozer, [5], on induction of
temporal structure, is briefly described in [13].Recurrent and Feedforward Networks In the research reported here, the task is similar to
Elman’s: predicting the next letter in a word (or the end of

William H. Wilson the word) from the current letter and the representation of
past letters held in the state vector. While the original

billw@cse.unsw.edu.au
motivation for this task was linguistic [12], the current
paper focuses on the efficacy of a range of network

School of Computer Science and Engineering architectures, and learning regimes, applied to the task.
University of New South Wales

Sydney 2052 Australia

1

ω
ω

ω

ω 1

ω

1

1

ω ω

ω

Schematic layouts:
above: Elman net

right: Elman tower

state vector

hidden layer

st
at

e
ve

ct
or

s

Figure 1 : Architectures of Elman net and Elman tower
network: ω signifies that layers are totally interconnect-
ed with trainable weights; 1 signifies that destination
layer activations are direct copies of source layer activ-
ations in the previous processing cycle. The Elman
tower can have two or more state vectors.

Abstract

This paper concerns a class of recurrent neural networks
related to Elman networks (simple recurrent networks)
and Jordan networks and a class of feedforward networks
architecturally similar to Waibel’s TDNNs. The recurrent
nets used herein, unlike standard Elman/Jordan networks,
may have more than one state vector. It is known that
such multi-state Elman networks have better learning
performance on certain tasks than standard Elman
networks of similar weight complexity. The task used
involves learning the graphotactic structure of a sample
of about 400 English words. Learning performance was
tested using regimes in which the state vectors are, or are
not, zeroed between words: the former results in larger
minimum total error, but without the large oscillations
in total error observed when the state vectors are not
periodically zeroed. Learning performance comparisons of
the three classes of network favour the feedforward nets.

1 Introduction
The state vector in Elman's networks provides theJordan [3] studied a class of recurrent networks, sometimes

potential for such networks to store information aboutcalled sequential or Jordan nets, which use a state vector
previous inputs.which contains copies of the output layer activations in

If one state vector is useful for suitable tasks, it isthe previous time step; there are weighted connections
possible that two or more state vectors (as illustrated infrom the state vector to the hidden layer. Elman [1,2], and
Figure 1, right side) will let a network perform even betterServan-Shreiber et al. [9] worked with an analogous class
at sequential tasks. We term such networks Elman towerof nets, now termed simple recurrent nets, or Elman nets,
networks. This possibility was confirmed in [13], where itwhich differed from Jordan nets in that the state vector is a
was shown that among networks with (about) the samecopy of the hidden layer in the previous time step, as
number of weights, but different numbers of state vectors,illustrated in Figure 1, left side. Such networks can learn
the networks with more state vectors learned faster andsequential structures.
found lower weight configurations with lower total error.Elman used his network architecture, along with the
For example, a standard Elman network with 24 hiddenbackpropagation learning algorithm [6], to learn the gram-
units (1923 weights) found weight values which gave totalmatical structure of a set of sentences randomly generated
error of around 920 units, whereas an Elman tower with 13from a limited vocabulary and grammar. His specific task
hidden units and 7 state vectors (1925 weights) foundwas to predict the next word in the sentence from the
weight values which gave total error of around 815 units.current word and the representation of past words held in

However, the learning performance reported in [13], wasthe state vector. Further details are in [1,2] and a summary
erratic, as illustrated in Figure 2.from the point of view of the current work is in [13].

Waibel [10], and Lang and Waibel [4], devised non-
recurrent time-delay neural networks (TDNNs) which
learnt speech recognition tasks by considering past as well
as present inputs.

142 ACNN’95

10009008007006005004003002001000

800

850

900

950

1000

1050

1100

1150

Epoch

T
S

S

1 state vector

2 state vectors

4 state vectors

7 state vectors

2 Experiments with Tower-Recurrent
Networks

Let us refer to Elman tower networks and Jordan tower
networks together as tower-recurrent networks. We use
the term time-delay neural net (TDNNs) to refer to
feedforward nets whose architecture is shown in Figure
3(c). (The TDNNs of Waibel et al. [10,4] sometimes
include an extra hidden layer, and are trained by a
backpropagation-through-time type algorithm ([11]).) Such
nets are analogous to Elman and Jordan nets and towers,
with a “feedback” connection from the input layer to the
“state vectors,” which are thus better termed past inputs.
(These nets seem to remind many people of the NETtalk
architecture [8]. In NETtalk, however, the output was a
phoneme to pronounce, and the inputs were a window of
letters on either side of the current letter.)Figure 2: Typical Error Plots for a range of Elman,

The aim of the experiments was to compare networksand Elman tower architectures, from [13].
differing in numbers of state vectors, Jordan-type vs

This paper describes three types of advance on the workElman-type vs TDNNs, and training regime, while holding
reported in [13]: (i) a learning regime which largely network complexity otherwise constant. Many
removes the erratic learning performance; (ii) results witharchitectural parameters were used as factors in the
Jordan networks and towers, and with TDNNs - seeexperiments, but it was still possible to hold constant the
Figure 3; and (iii) results with larger numbers of weights. number of weights, one factor in network learning

capacity. Thus the nets used were chosen to have equal

1

ω
ω

ω

ω 1

ω

1

1

ω ω

ω

state vector

st
at

e
ve

ct
or

s

Figure 3 : Architectures
of (a) Jordan net; (b)
Jordan tower network;
(c) TDNN. As in Fig-
ure 1, the symbol 1
means activations are
copied; ω means full
interconnection by
trainable weights.1

ω
ω

ω

ω

ω
1

1

pa
st

 in
pu

ts

(a) (b)

(c)

Jordan tower

Jo
rd

a
n

 n
e

t

TDNN

numbers of weights, as calculated below.
The number of weights and biases in an Elman tower

net with n inputs and outputs, h hidden units and s state
vectors was computed in [13] to be

wElman(n, h, s) = 2nh + h + n + sh2.

For Jordan towers and TDNNs, the formulae are:
wJordan(n, h, s) = 2nh + h + n + shn
wTDNN(n, h, s) =wJordan(n, h, s).

So, in comparing a 2-state Elman tower with a 2-state
Jordan tower, for example, we sought h1, h2 such that
wElman(n,h1,2) ≈ wJordan(n,h2,2). In our task, n=27.
There turned out to be many such nets with about 5859
weights, and these were used in the experiments: see Table
1. For instance, Elman and Jordan towers and TDNNs with
6 state vectors and 27 hidden units all have 5859 weights.

Name State
Vectors

Hidden
Units

ES1H54

JS1H72

JS4H36

1

1

4

54

72

36

Architecture
type

Elman

Jordan

Jordan

ES3H36 3 36Elman

ES6H27 6 27Elman

JS6H27 6 27Jordan

TS2H54 2 54TDNN

TS6H27 6 27TDNN
Section 2 describes the design of networks with differ-

ent numbers of state vectors, but otherwise similar comp-
tational power, and outlines simulation experiments done

Table 1: Some nets with 27 inputs and outputs,with such networks, and with the new training regimes.
 and 5859 weightsSection 3 presents the results of these simulations.

The results indicate that, for this task, the new training
regimes do provide more stable learning, but at the cost
of greater error.

ACNN’95 143

Each architecture considered was simulated for 10 runs Figure 5 shows the effect of the number of state vectors
of the PDP package’s bp program ([7]) over 1000 epochs, on the minimum error found in the first 1000 epochs
with lrate=0.05, from random starting states. The task using zeroed state vectors for Elman towers, and using
used was that of predicting the next letter in an Englishzeroed past inputs for TDNNs. Compare Figure 7.
word given an initial string of letters in the word [13].

10009008007006005004003002001000
400

600

800

1000

1200

not zeroed

zeroed

Epoch

T
S

S

Two training regimes were used (cf. [7]): in training a
net to predict next letters in, say, the English word cat,
one presents the pattern for c as input and the pattern for a
as output (c → a), next, (a → t) and finally (t →
<end-of-word>). During this process, activations are
accumulating in the state vectors. After training on cat
one can either zero the state vectors or leave them as they
are. There are arguments for both policies: briefly, the
left-over activations are irrelevant to next-letter prediction
in the next word, but it is hard to postulate a biological
process which inactivates selected neurons which happen
to have recurrent connections to them. In [13], state
vectors were not zeroed at the end of words: in some of the Figure 4: Error plot of a run of each training
simulations reported here, they were. regime, for a 6-state Elman tower (27 hidden units).

In each simulation, TSS (Total Error Sum of Squares)

6543210

500

600

700

800

900

state vectors

er
ro

r
m

in
im

a
TDNN
Elman

starts at around 1100, descends rapidly for the first 100-
300 epochs and then levels out. With the task chosen,
there is no hope of TSS approaching zero, as input
patterns (letters) early in a word can only be used to predict
the next pattern/letter in a probabilistic way.

However, we would like the altitude of the plateau to be
as low as possible, as this means that, on average, next-
letter prediction is as good as possible. We would also like
the learning to be fast, and stable - TSS should not
oscillate as it does in Figure 2.

3 Simulation Results and Interpretation
We have a number of comparisons to make: training

Figure 5: Error minima for Elman net and towers,regimes, effect of more states, Elman vs Jordan vs TDNN,
and for TDNNs, with different numbers of stateand effect of more weights. The primary comparison of a
vectors, but similar weight counts. State vectors werepair of simulations must be in terms of the (best) error
zeroed between words. Similar effects occur for Jordanminimum found, but it is also interesting to consider
nets and towers.speeds of learning. A measure of speed of learning is the

initial slope of the error vs epoch curve. Indeed, a large

10009008007006005004003002001000
200

400

600

800

1000

1200

Epoch

T
S

S

Jordan

Elman

TDNN

part of the learning has occurred after the first 150 or so
epochs.1 Space constraints preclude detailed consid-
eration of learning speed, but interested readers can glance
at the slopes of the curves in Figures 2 and 6.

Figure 4 shows plots of the TSS against epoch number
for one (typical) run of each training regime, for a 6-state
Elman tower. In [13] and Figure 2, greatest oscillation
occurred with large numbers of states, hence the choice of
6-state-vector architectures: similar effects, perhaps less
pronounced, occur for fewer state vectors and for Jordan
towers. It can be seen that zeroing the state vectors at the
end of each word essentially removes the oscillation effect,
but at the cost of slower and less effective learning. The
minimum error averaged over 10 runs with zeroed state

Figure 6: Error plots of one run of each architecturevectors was 702, whereas, without zeroed state vectors, the
type, with 6 state vectors/past inputs, and non-zeroedaverage minimum was 549 (153 less).
state vectors.

1 the measure of learning speed used in [12], namely epoch
It can be seen that for non-zeroed state vectors, the errornumber of the first local minimum, is of course inapprop-

steadily decreases as more state vectors are added (evenriate with smoothly descending error curves.

144 ACNN’95

76543210
800

810

820

830

840

850

860

870

880

890

900

910

920

930

940

State Vectors

which only the previous few letters may be useful
predictors, it seems clear that the TDNN does best, then
Elman towers. If state-vector activations / past inputs are
zeroed at the end of each word, then only two or three state
vectors / past inputs are helpful. If they are not zeroed,
then the more state vectors / past inputs the better.
Zeroing state vectors / past inputs increases error but
increases stability of learning. We emphasize that our
TDNNs are trained by a different method to that of Waibel
et al. [10,4] (see Section 2).

References
[1] Elman, Jeffrey L., Representation and structure in

connectionist models, TRL Technical Report 8903,
Centre for Research in Language, Univ. of California,Figure 7: Global Minima for 10 runs of a range of
San Diego, La Jolla, CA 92093 (1989) 26 pages.Elman, and Elman tower architectures, from [13].

[2] Elman, Jeffrey L., Finding structure in time,State vectors were not zeroed between words.
Cognitive Science 14 (1990) 179-211.

though the number of weights is held constant), while for[3] Jordan, M.I. (1986) Attractor dynamics and parallelism
in a connectionist sequential machine, Proceedings ofzeroed state vectors/past inputs, the absolute minimum
the Eighth Annual Meeting of the Cognitive Scienceerror occurs for 2 or 3 states/past inputs.
Society, Hillsdale, NJ: Erlbaum.Figure 5 shows that TDNNs found somewhat better

[4] Lang, K.J., Waibel, A.H., and Hinton, G.E., A time-minima than Elman towers (in fact, they also did better
delay neural network architecture for isolated wordthan Jordan towers).
recognition, Neural Networks 3 (1990) 23-43.

Figures 5 and 7 also permit the observation that while[5] Mozer, Michael C., Induction of multiscale temporal
the not-zeroed nets produced minima within a fairly wide structure, in Advances in Neural Information
range (and the spread increases with the number of state Processing Systems 4, J.E. Moody, S.J. Hanson, and
vectors), the zeroed nets seem to have a fairly tight R.P. Lippmann, (eds), Morgan Kaufmann, 1992.
distribution of minima for a given architecture, and not [6] Rumelhart, David E., Hinton, G.E. and Williams,
much change in the spread with the number of state R.J., Learning internal representation by error prop-

agation, pages 318-362 in Parallel Distributed Proc-vectors/past inputs.
essing: Explorations in the Microstructure of Cognit-Figure 6 shows illustrates that for 6 non-zeroed state
ion: Vol. 1: Foundations, edited by D.E. Rumelhartvectors or past inputs, a TDNN clearly outperforms an
and J.L. McClelland, Cambridge, MA: MIT Press,Elman tower which in turn outperforms a Jordan tower.
1986.Figure 8 shows the comparable situation with zeroed state

[7] Rumelhart, D.E.& McClelland, J.L Explorations in
vectors: there is still a little instability for Jordan towers, Parallel Distributed Processing, book with software,
but not for Elman towers. However, the learning is poorer Cambridge, MA: MIT Press, 1989.
than with non-zeroed state vectors/past inputs. [8] Sejnowski, T.J. and Rosenberg, C.R., Parallel

10009008007006005004003002001000

600

700

800

900

1000

1100

1200

TDNN
Elman

Jordan

Epoch

E
rr

or

networks that learn to pronounce English text,
Complex Systems 1 (1987) 145-168.

[9] Servan-Shreiber, D., Cleeremans, A. & McClelland,
J.L., Learning sequential structure in simple recurrent
networks, in Advances in Neural Information
Processing 1, edited by D.S. Touretzky, San Mateo,
CA: Morgan Kaufmann, 1989

[10] Waibel, Alex, Modular construction of time-delay
neural networks for speech recognition, Neural
Computation 1 (1989) 39-46.

[11] Werbos, P.J., Backpropagation through time: What it
is and how to do it, IEEE Proceedings 78 (1990)
1550-1560.

[12] Wilson, William H., Dealing with unknown words:
classifying unknown letter-strings using trigram

Figure 8: error plots of one run of each architecture type, analysis, Australian Computer Science Communic-
with 6 state vectors/past inputs, zeroed state vectors. ations 14(1) (1992) 981-988.

[13] Wilson, William H., A Comparison of Architectural5 Conclusions Alternatives for Recurrent Networks, Proceedings of
The results obtained might be different with a different the Fourth Australian Conference on Neural Networks

(ACNN’93) (1993) 189-192.task. However, on this graphotactic prediction task, in

ACNN’95 145

