
The deprioritised approach to prioritised algorithms

Author:
Howe, Stephen Alexander

Publication Date:
2008

DOI:
https://doi.org/10.26190/unsworks/18847

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/41753 in https://
unsworks.unsw.edu.au on 2024-04-24

http://dx.doi.org/https://doi.org/10.26190/unsworks/18847
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/41753
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

The deprioritised approach to prioritised

algorithms

Stephen Howe

School of Mathematics and Statistics

The University of New South Wales

Doctor of Philosophy

2008

Abstract

Randomised algorithms are an effective method of attacking computationally in-

tractable problems. A simple and fast randomised algorithm may produce results

to an accuracy sufficient for many purposes, especially in the average case. In this

thesis we consider average case analyses of heuristics for certain NP-hard graph op-

timisation problems. In particular, we consider algorithms that find dominating sets

of random regular directed graphs. As well as providing an average case analysis,

our results also determine new upper bounds on domination numbers of random

regular directed graphs.

The algorithms for random regular directed graphs considered in this thesis are

known as prioritised algorithms. Each prioritised algorithm determines a discrete

random process. This discrete process may be continuously approximated using

differential equations. Under certain conditions, the solutions to these differential

equations describe the behaviour of the prioritised algorithm. Applying such an

analysis to prioritised algorithms directly is difficult. However, we are able to use

prioritised algorithms to define new algorithms, called deprioritised algorithms, that

can be analysed in this fashion.

Defining a deprioritised algorithm based on a given prioritised algorithm, and then

analysing the deprioritised algorithm, is called the deprioritised approach. The

initial theory describing the deprioritised approach was developed by Wormald and

has been successfully applied in many cases. However not all algorithms are covered

by Wormald’s theory: for example, algorithms for random regular directed graphs.

The main contribution of this thesis is the extension of the deprioritised approach to

a larger class of prioritised algorithms. We demonstrate the new theory by applying

it to two algorithms which find dominating sets of random regular directed graphs.

1

Originality Statement

I hereby declare that this submission is my own work and to the best of my knowledge

it contains no materials previously published or written by another person, or substantial

proportions of material which have been accepted for the award of any other degree or

diploma at UNSW or any other educational institution, except where due acknowledge-

ment is made in the thesis. Any contribution made to the research by others, with whom

I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also

declare that the intellectual content of this thesis is the product of my own work, except

to the extent that assistance from others in the project’s design and conception or in style,

presentation and linguistic expression is acknowledged.

..

December 19, 2008

2

Copyright Statement

I hereby grant the UNSW or its agents the right to archive and to make available my

thesis or dissertation in whole or part in the University libraries in all forms of media,

now or here after known, subject to the provisions of the Copyright Act 1968. I retain all

proprietary rights, such as patent rights. I also retain the right to use in future works (such

as articles or books) all or part of this thesis or dissertation. I also authorise University

Microfilms to use the three hundred and fifty word abstract of my thesis in Dissertation

Abstract International (this is applicable to doctoral theses only). I have either used no

substantial portions of copyright material in my thesis or I have obtained permission to

use copyright material; where permission has not been granted I have applied/will apply

for a partial restriction of the digital copy of my thesis or dissertation.

..

December 19, 2008

Authenticity Statement

I certify that the Library deposit digital copy is a direct equivalent of the final officially

approved version of my thesis. No emendation of content has occurred and if there are

any minor variations in formatting, they are the result of the conversion to digital format.

..

December 19, 2008

3

Acknowledgments

There are many people without whom I could not have written this thesis. Most

significantly, my supervisor Catherine Greenhill who suggested my research topic. I

am very grateful for her considerable effort and friendship.

My family, Mum, Dad, Zoe, and Luke, have always looked out for me which has

made life so much easier. Thanks also to Fiona and Mark for providing me with a

place to stay when I needed it.

Many people have encouraged me in my attempt to become a mathematician. Such

encouragement makes a tremendous difference and I value it highly. I would also like

to thank all my friends at UNSW for making my time as a PhD student enjoyable.

4

Contents

1 Introduction 9

2 Directed Graphs and Dominating Sets 15

2.1 Basic Definitions . 16

2.1.1 Domination in digraphs . 17

2.1.2 Asymptotic notation . 18

2.2 More Definitions . 20

2.2.1 Basic results on domination in digraphs 21

2.2.2 Complexity results . 26

3 Random Digraphs and Algorithms 28

3.1 Random Regular Digraphs . 28

3.1.1 Pairing models . 30

3.1.2 Lower bounds on domination numbers 32

3.2 Algorithms and the Pairing Process 33

5

3.2.1 An example algorithm . 35

3.2.2 Prioritised algorithms . 38

3.2.3 Analysing prioritised algorithms 40

3.2.4 Deprioritised algorithms . 43

4 Prioritised and Deprioritised Algorithms 45

4.1 Deprioritisable Algorithms . 46

4.2 Type Distributions . 50

4.2.1 Proportions of operation types 50

4.2.2 Irreducible type sets . 58

4.2.3 Using irreducible type sets . 60

4.2.4 Determining irreducible type sets 65

4.3 The Differential Equations . 70

4.3.1 Proving the Lipschitz property 74

4.3.2 Properties of the differential equations 76

4.4 The Deprioritised Algorithm . 77

5 Analysing Deprioritised Algorithms 79

5.1 A Differential Equations Theorem . 80

5.2 Applying the Differential Equations Theorem 82

6

5.3 The Hypotheses . 86

5.3.1 Remaining in V (τ)(δ) . 87

5.3.2 After the preprocessing subphase 90

5.4 The Theorem . 94

5.4.1 The proof . 95

5.5 Changing Phase . 100

5.5.1 Alternative hypotheses . 107

6 Algorithms on Random Regular Digraphs 111

6.1 Dominating Sets . 112

6.1.1 The operations and their priorities 113

6.1.2 The differential equations . 116

6.1.3 Applying the deprioritised approach 122

6.1.4 Determining the irreducible type sets 123

6.1.5 Numerical analysis for d = 2 126

6.2 Analysing 2-Path Dominating Set Algorithms 133

6.2.1 The operations and their priorities 134

6.2.2 The differential equations . 135

6.2.3 Applying the deprioritised approach 137

6.2.4 Determining the irreducible type sets 138

7

6.2.5 Numerical analysis for d = 2 140

7 Conclusion 145

Symbol Index 148

Bibliography 152

8

Chapter 1

Introduction

Randomisation, made practical by computers, is an important tool in modern math-

ematics. In this thesis, randomisation appears frequently as we consider randomised

algorithms, that is, algorithms that rely on random choices, and random combina-

torial structures. In particular, this thesis extends a technique of analysing certain

randomised algorithms. As a demonstration of this new theory, we design and anal-

yse such algorithms for random regular directed graphs with fixed degree.

Combinatorial structures, such as graphs and directed graphs, are effective at mod-

eling real world phenomena. For example, graphs and directed graphs are used

to model the world wide web [4, 22] and social networks [52]; they also appear in

operations research [32] and game theory [51, 53]. Networks that arise in prac-

tice are often modeled by random graphs: for example, social networks are often

modeled by scale-free random graphs. Random graphs are also frequently used to

represent an average case. Some random graphs are of interest because they have

useful properties: for example, random regular graphs have high connectivity and

logarithmic diameter. So computer networks based on random regular graphs have

good communication properties.

We are often interested in special substructures of combinatorial structures. Algo-

rithms are commonly used to find such substructures. However, some substructures,

9

especially those that are optimal (in some sense), are very difficult to find. So the

corresponding algorithms may be impractical to use. In such cases, randomised al-

gorithms have proved to be effective. Of course the use of randomisation comes at a

cost: such algorithms may give incorrect or suboptimal results. But typically we are

able to bound the probability that the output of such an algorithm is incorrect or is

too far from optimal. The increase in speed and simplicity of randomised algorithms

often makes up for their drawbacks.

Some randomised algorithms, mainly for graphs and satisfiability (SAT) instances

[24, Chapter 34], have been successfully analysed using the differential equations

method of Wormald [60]. This method gives an asymptotic analysis by letting, for

example, the number of vertices of a graph tend to infinity. Then, under certain

conditions, the asymptotic behaviour of an algorithm is approximated by solutions

to systems of ordinary differential equations.

Differential equations may seem an unlikely way to analyse combinatorial algorithms,

but they arise quite naturally. Indeed, differential equations have a long history

as continuous approximations to discrete random processes. For example, the ex-

ponential models of population growth and of radioactive decay [18]. Consider a

radioactive substance, which decays by emitting radiation randomly. Experiments

suggest that the decay rate is proportional to the mass of the substance. So letting

m(t) be the mass of a radioactive substance at time t, we have

dm

dt
= km (1.0.1)

for some negative constant k. Solving (1.0.1) with the initial condition m(0) = m0 we

approximate the discrete random process of radioactive decay with the continuous

function m(t) = m0e
kt.

The continuous approximations of the algorithms we consider arise as follows. Each

algorithm starts with an empty directed graph and adds edges one at a time un-

til certain conditions are satisfied. Thus we obtain sequences of random directed

graph processes indexed by the number of vertices. Under certain conditions, as

the number of vertices tends to infinity, the behaviour of such algorithm in some

10

sense “settles down” and we can describe this behaviour by systems of differential

equations. Thus the behaviour of the algorithms can be approximated by continuous

functions.

The first such use of differential equations for random graphs is due to Karp and

Sipser [46] (1981) who analysed an algorithm for finding maximum matchings in

sparse random graphs. Karp and Sipser used an earlier theorem of Kurtz [47] (1970)

which applies to discrete random processes. Subsequently, algorithms for satisfying

random k-SAT instances were studied by Chao and Franco [20] (1986), and Frieze

and Suen [33] (1996). In both cases, random processes defined by the algorithms

were analysed using binomial random variables. A more successful technique for

analysing such random processes, based on martingales, was introduced by Wormald

[58] (1995). A similar approach is used by Aronson et al. [7] (1998) to obtain an

improved analysis of the algorithm of Karp and Sipser. This technique is codified

in a theorem of Wormald [60, Theorem 5.1] (1999) which we will refer to as the

Differential Equations Theorem. The Differential Equations Theorem and variations

thereof have been applied in many papers [2, 16, 27, 37, 45, 61] and a new variation

appears later in this thesis as Theorem 5.1.1. We will use Theorem 5.1.1 to prove

the main result of this thesis.

The algorithms considered in this thesis, known as prioritised algorithms, are similar

to those mentioned above. We now briefly describe some aspects of prioritised algo-

rithms. Prioritised algorithms proceed via a sequence of operations. Each operation

has one of a finite number of types. Prioritised algorithms are so called because the

type of the next operation performed is chosen according to a prioritisation of the

types. This prioritisation causes the algorithms to perform well but also makes the

analysis of prioritised algorithms difficult. So related algorithms which are easier to

analyse have been sought.

The introduction of deprioritised algorithms by Wormald [61] was foreshadowed by

work by Zito and (independently) Achlioptas. Zito [62] (2001) introduced a new class

of algorithm; these algorithms use the same operations as prioritised algorithms but

11

avoid prioritisation by using part of the input to specify the type of each operation

of the algorithm. Zito was able to analyse such algorithms more easily than the

corresponding prioritised algorithms. However evidence suggests that prioritised

algorithms have superior performance. Meanwhile, Achlioptas [1] (2000) defined an

algorithm that combines prioritisation with a random selection to determine the

type of the next operation. Wormald [61] (2003) extended this idea by defining

deprioritised algorithms which avoid prioritisation altogether.

Deprioritised algorithms choose the type of the next operation to perform ran-

domly. In particular, deprioritised algorithms specify a probability distribution,

which changes during the execution of the algorithm, that is used to select the type

of the next operation. We attempt to define a deprioritised algorithm so that its

behaviour is similar to the behaviour of a given prioritised algorithm.

Wormald has provided a general theory [61] for analysing deprioritised algorithms

based on prioritised algorithms. This theory has been successfully applied in many

cases [11, 28, 29, 31]. However, prioritised algorithms for random regular directed

graphs have not been considered. (By regular we mean that for some positive r each

vertex has in-degree r and out-degree r). Indeed, the theory provided by Wormald

does not cover many natural algorithms for random regular directed graphs. Some

algorithms on graphs are also not covered [25, 56]. So this thesis extends Wormald’s

theory to a larger class of prioritised algorithms, including algorithms for random

regular directed graphs.

While the deprioritised approach is now a standard technique, prioritised algorithms

are still analysed directly. For example, Bohman and Frieze [15] use martingales to

analyse the Karp-Sipser algorithm for random graphs with a fixed degree sequence.

Their method of analysis is similar to that used by Wormald to prove the Differential

Equations Theorem. However, they also derive analytic properties of the correspond-

ing differential equations. Using these properties, they analyse the algorithm until

very near its end (nearer than is possible using the Differential Equations Theorem

directly). Bohman and Frieze also avoid the need for numerical approximations. So

12

while deprioritisation has proved effective, prioritisation is still important, notably

for algorithms that either succeed or fail. For example, algorithms for satisfying

random k-SAT instances [45] and colouring algorithms [55, 56] have used prioriti-

sation. The latter algorithms, due to Shi and Wormald, are partially deprioritised

(like the algorithm of Achlioptas mentioned above) in the sense that some operation

types are chosen randomly and others are not.

We demonstrate the new theory presented in this thesis by applying it to algo-

rithms for finding dominating sets of random regular directed graphs. Domination

in graphs is a large and important subject area [40, 41]. One major application of

dominating sets is in computer science: identifying a dominating set of a computer

network enables efficient communication within that network [19, 48]. Previously

the differential equations method has been used to find small dominating sets of

random regular graphs [30, 31]. However, dominating sets of directed graphs have

been studied little, despite their many applications (an example in game theory is

discussed in Section 2.2). So it is natural to now apply the differential equations

method to algorithms for finding (small) dominating sets of random regular directed

graphs. The author has previously consider the case for 2-in 2-out digraphs [42].

We finish the introduction with an outline of the thesis. In the next chapter we

introduce directed graphs and dominating sets of directed graphs; we also provide

some relevant previous results. Chapter 2 provides the context in which we develop

the theory of this thesis, however the main results are presented more generally. The

third chapter introduces random directed graph models and describes prioritised and

deprioritised algorithms. Chapter 3 also describes how differential equations arise

in the analysis of prioritised and deprioritised algorithms. This chapter provides a

overview of the more technical work that follows in Chapter 4 and Chapter 5.

In Chapter 4 and Chapter 5 we present the main theory of this thesis. Chapter 4

introduces prioritised and deprioritised algorithms in a general setting. The differ-

ential equations and their solutions, which describe the deprioritised algorithm, are

also defined. Chapter 5 presents the theorem that allows us to analyse the depri-

13

oritised algorithms given in Chapter 4. Some time is also devoted to showing how

this theorem may be applied. Quite a bit a notation is required for Chapter 4 and

Chapter 5, so a symbol index is included after the final chapter. Applications of

the theory in Chapter 4 and Chapter 5 are given in Chapter 6, where we analyse

algorithms for finding certain types of dominating sets of random regular directed

graphs. Chapter 7 concludes the thesis and discusses possibilities for future work.

14

Chapter 2

Directed Graphs and Dominating

Sets

The theory presented in this thesis was developed to solve certain domination prob-

lems in directed graphs. So we now introduce some basic definitions and results

relating to dominating sets of digraphs. These and further definitions and results

can be found in a number of books on graphs and digraphs [8, 26, 35, 39], unless

otherwise noted. The definitions of this chapter do not include random models of

digraphs; although a particular model, that of random d-in d-out digraphs, is used

throughout this thesis. Random d-in d-out digraphs and other related definitions

are covered in the next chapter.

The content of this chapter divides into two parts. First we provide the definitions

needed to understand the major results of this thesis (presented in Chapter 4 and

Chapter 5) and the motivation leading to these results (given in Chapter 3). These

definitions include digraphs, regular digraphs, and dominating sets. In the second

part of this chapter we present definitions and results that are either used in appli-

cations of the theory of this thesis or are relevant and interesting in their own right.

For example, we give new bounds on the minimum size of a dominating set of a

digraph. We also define 2-path dominating sets, which are considered in Chapter

6. We conclude with a discussion of the complexity of finding dominating sets of

digraphs.

15

2.1 Basic Definitions

Directed graphs often arise naturally in modeling real world phenomena. For exam-

ple, directed graphs appear as models of web graphs [22] and in operations research

[32]. Indeed, directed graphs arise naturally in the theory developed in this thesis,

see Chapter 4. We consider only directed graphs. Definitions similar to those that

follow can also be made for undirected graphs.

A simple directed graph or digraph G is a set V = V (G) of vertices and a set

E = E(G) of (directed) edges where each edge is an element of

{(u, v) : u, v ∈ V with u 6= v}.

Let e = (u, v) ∈ E(G) be an edge of G. Then we say that e is an edge from u to

v, that u and v are adjacent, and that u and v are incident with e. Notice that

in a simple digraph no vertex is adjacent to itself and each edge occurs at most

once. By removing these restrictions, that is, by allowing E(G) to be multi-subset

of {(u, v) : u, v ∈ V } we obtain a multi-digraph. In a multi-digraph, edges of the

form (u, u) are called loops while an edge that occurs more than once is called a

multiple edge (or, more specifically, a double edge or a triple edge and so on).

When referring to simple digraphs we usually drop the word simple; that is, by

digraph we always mean a simple digraph. The vertices of the graphs we consider

are always labeled; usually 1 through n where n is the number of vertices. The

definitions that follow all hold for both simple and multi-digraphs.

In order to define and analyse the algorithms considered in this thesis, we classify

vertices of digraphs using the following definitions. For a vertex u ∈ V , the in-

neighbours of u are vertices in the set

Nin(u) = {v ∈ V : (v, u) ∈ E},

while the out-neighbours of u are vertices in the set

Nout(u) = {v ∈ V : (u, v) ∈ E}.

16

We then define the in-degree of u to be |Nin(u)| and the out-degree of u to be

|Nout(u)|. We denote the in-degree and the out-degree of u by in-deg(u) and

out-deg(u) respectively. The pair whose first component is the in-degree of u and

whose second component is the out-degree of u is called the degree pair of u. We de-

note that degree pair of u by deg-pair(u); so deg-pair(u) = (in-deg(u), out-deg(u)).

If the degree pair of u is (0, 0) then we say that u is isolated. Figure 2.1.1(a) shows

the in-neighbours, out-neighbours, and degree pair of a vertex in a digraph. We can

now define the class of digraphs in which we are most interested. For fixed positive

integer d, a digraph G is d-in d-out or regular (of degree d) if every vertex of G has

degree pair (d, d).

We now consider sequences of edges of digraphs. A directed walk is a sequence

v1, e1, v2, e2, . . . , em−1, vm of vertices vi and edges ei such that ei is an edge from vi

to vi+1 (for i = 1, . . . ,m− 1). Walks may contain repeated edges and vertices. The

number of edges in a walk W is called the length of W . A walk for which each

vertex is distinct is called a directed path, while a directed walk such that no edge

is repeated and the only repeated vertex is v1 = vm is called a directed cycle. A

directed cycle that contains each vertex of V (G) is called a directed Hamilton cycle.

Any digraph containing a directed Hamilton cycle is called Hamiltonian. Next we

consider special subsets of the vertices of a digraph.

2.1.1 Domination in digraphs

For a digraph G, a dominating set of G is a subset D of the vertices V (G) such that,

for each vertex u /∈ D there is an edge from some vertex in D to u. In general, for a

vertex v and a set of vertices D, if there is an edge from some vertex in D to v then

we say the D dominates v. So D is a dominating set if D dominates each vertex

in V \D. For undirected graphs it is natural to consider independent dominating

sets, that is, dominating sets in which no two vertices are adjacent. However, some

digraphs do not have an independent dominating set (see Figure 2.1.1(b)), so we do

not consider independent dominating sets of digraphs.

17

The most interesting dominating sets are those of minimum cardinality. A minimum

dominating set of a random 2-in 2-out digraph is shown in Figure 2.1.1(c). In

particular we are interested in the size of such dominating sets. For a digraph G

we denote the minimum size of a dominating set of G by −→γ (G) and call −→γ (G) the

domination number of the digraph G. Determining domination numbers exactly

is difficult so we usually look for upper and lower bounds. In Chapter 6 we use

the theory developed in this thesis to determine upper bounds on the domination

numbers of random d-in d-out digraphs. These bounds will be determined by letting

the number of vertices n of such digraphs tend to infinity; so next we introduce the

required asymptotic notation. Note that we always take d to be fixed, that is, d

never depends on n. So we do not consider d-in d-out digraphs where d tends to

infinity with n, for example.

2.1.2 Asymptotic notation

We use n to denote the number of vertices of a given digraph. To describe properties

of digraphs as the number of vertices tends to infinity, we use the usual big-O and

little-o notation. Let {an}, {bn}, and {cn} be sequences of real numbers such that

each cn is positive. Then we write

• an = O(cn) if there exists positive numbers C and N such that |an| ≤ Ccn for

all n > N ,

• an = Ω(cn) if there exists positive numbers C and N such that |an| ≥ Ccn for

all n > N , and

• an = o(cn) if limn→∞ an/cn = 0.

Occasionally we consider equations of the form an = bn +o(cn). By such an equation

we mean that there exists a positive sequence {fn} such that |an − bn| ≤ fn and that

fn = o(cn). Graham et al. [36, Chapter 9] give a detailed introduction to asymptotic

notation.

18

Nin(4) Nout(4)

4
3

2

1

6

5

(a) A digraph in which vertex 4 has degree

pair (3, 2).

1 2

34

(b) A digraph with no independent domi-

nating set.

1

2 3

4

56

(c) The set {1, 6} is a minimum dominating

set of the above 2-in 2-out digraph.

1

2 3

4

56

(d) The set {2, 3, 4} is a minimum 2-path

dominating set of the above 2-in 2-out di-

graph.

Figure 2.1.1: Examples of directed graphs

19

2.2 More Definitions

We now present some more definitions relating to, and some basic results about,

domination in digraphs. However, domination is not the focus of this thesis and the

definitions and results that follow are not required to understand the most important

parts of this thesis, namely Chapter 4 and Chapter 5.

The definition of dominating sets for digraphs naturally suggests some related def-

initions. In particular, if we reverse the direction of the required edge we obtain

the definition of an absorbent set. That is, a subset A ⊆ V (G) of the vertices of a

digraph G is absorbent if for each vertex u /∈ A, there is an edge from u to some

vertex in A. The minimum size of an absorbent set of a digraph G is called the

absorption number and denoted by ←−γ (G).

It is natural to consider a set B that is both dominating and absorbent. Figure

2.1.1(d) shows such a set for a random 2-in 2-out digraph. Notice that each vertex

not in B lies on a directed path (or cycle) of length two between vertices of B.

So we call B a 2-path dominating set. As far as we are aware, this definition has

not previously been made. The minimum size of a 2-path dominating set is called

the 2-path domination number and denoted by −→γpath(G). We focus mainly on the

domination number and 2-path dominating number.

Absorbent sets and dominating sets are closely related. As suggested by the sym-

metry of the definitions, results on the domination number tranfer easily to the

absorption number. For a digraph G, the reversal of G is the digraph G−1 with the

same vertex set as G and the edges {(u, v) : (v, u) ∈ G}. If D is a dominating set of

G then D is an absorbent set of G−1, and vice-versa. Moreover, if D is a minimum

dominating set of G then D is a minimum absorbent set of G−1. Clearly, G and

G−1 have exactly the same 2-path dominating sets.

We now briefly describe an application of domination in digraphs. Digraphs occur

naturally in game theory with independent absorbent sets (usually called kernels)

20

playing an important role. Many papers have been published on this topic [14, 51,

53]. We now, as an example, consider a two player game (with players Alice and

Bob) in which both players can make the same moves and the last player to move

wins. We may represent such a game by a digraph.

We define a digraph G on a vertex set where each vertex represents a possible state

of the game. Then the edges of G are such that there is an edge from vertex u

to vertex v if a player can change the state of the game from u to v in one move.

Playing a game corresponds to a directed walk on G; we call this walk the game

walk. Any vertex with out-degree 0 is called terminal and these vertices represent

game states from which no move is possible. So a player wins if they extend the

game walk to a terminal vertex.

Now let K be an independent absorbent set of G. Then every terminal vertex lies

in K. Assume that Alice extends the game walk to a vertex of K. Then Alice need

not lose. Since K is independent, Bob must extend the game walk to a vertex not

in K. This vertex cannot be a terminal vertex and Bob cannot win with this move.

Now, since K is absorbent, Alice can extend the game walk back to a vertex in K.

Thus Bob can never win the game. Because of such applications, kernels in digraphs

have received much attention [35, Section 15.4].

Next we consider some basic results on dominating sets, absorbent sets, and 2-path

dominating sets.

2.2.1 Basic results on domination in digraphs

The following results bound the domination, absorption, and 2-path domination

numbers using in-degrees and out-degrees. Throughout this section we let δin and

δout be the minimum in-degree and out-degree of a given digraph, respectively. Like-

wise, we let ∆in and ∆out be the maximum in-degree and out-degree, respectively.

The first result is due to Lee [49].

21

Theorem 2.2.1 ([49, Theorem 1.2.6]). Let G be a digraph on n vertices with

minimum in-degree δin at least one. Then

1 ≤ −→γ (G) ≤ δin + 1

2δin + 1
n.

Notice that the above bound tends to n/2 as δin tends to infinity. The next theorem,

again by Lee [49], gives an upper bound that is o(n) as δin tends to infinity and

improves upon Theorem 2.2.1 except when δin = 1 or δin = 2.

Theorem 2.2.2 ([49, Theorem 1.2.1]). Let G be a digraph on n vertices with

minimum in-degree δin at least one. Then

−→γ (G) ≤

(
1−

(
1

1 + δin

) 1
δin

+

(
1

1 + δin

) 1+δin
δin

)
n.

The following result, due to Ghoshal et al. [35], gives bounds for all digraphs based

on the maximum out-degree.

Theorem 2.2.3 ([35, Theorem 15.57]). Let G be a digraph on n vertices. Then

n

1 + ∆out

≤ −→γ (G) ≤ n−∆out.

The above bounds are sharp. Let Ka,b (for integers a, b ≥ 1) be the digraph on the

vertices {1, . . . , a + b} with the edge set

{(u, v) : 1 ≤ u ≤ a, a + 1 ≤ v ≤ a + b}.

Then ∆out(Ka,b) = b and the vertices {1, . . . , a} are a minimum dominating set for

Ka,b. Hence −→γ (Kn−b,b) = n−∆out(Kn−b,b) = n− b achieves the upper bound and

−→γ (K1,b) =
1 + b

1 + ∆out(K1,b)
= 1

achieves the lower bound of Theorem 2.2.3.

Clearly a digraph must satisfy some strong conditions to have small dominating

sets. For a connected undirected graph, the domination number is at most half the

number of vertices. To obtain a similar bound for a digraph G we require G to be

22

strongly connected ; that is, we require that for every pair of distinct vertices u and

v of G, there exists a directed path from u to v and from v to u. Then we have the

following theorem, again due to Lee [49].

Theorem 2.2.4 ([49, Corollary 1.2.11]). Let G be a strongly connected digraph

on n vertices. Then

−→γ (G) ≤
⌈n

2

⌉
.

So, for instance, the bound in Theorem 2.2.4 applies if G is Hamiltonian since

Hamiltonian digraphs are strongly connected. These are the most important (for

us) of the known results for the domination number of a directed graph. We next

consider equivalent bounds for the absorption number.

As mentioned above, a minimum absorbent set of G is a minimum dominating set

of the reversal of G. Thus we may apply the theorems above to obtain bounds on

←−γ (G). In particular we have the following two theorems.

Theorem 2.2.5. Let G be a digraph on n vertices with minimum out-degree δout at

least one. Then

1 ≤ ←−γ (G) ≤ min

{
δout + 1

2δout + 1
, 1−

(
1

1 + δout

) 1
δout

+

(
1

1 + δout

) 1+δout
δout

}
n.

Theorem 2.2.6. Let G be a digraph on n vertices. Then

n

1 + ∆in

≤ ←−γ (G) ≤ n−∆in.

Of course, the reversal of a strongly connected digraph is also strongly connected.

So if a digraph G is Hamiltonian (or just strongly connected) then ←−γ (G) ≤
⌈

n
2

⌉
.

We now present some original bounds on the 2-path domination number. The lower

bounds given above for the domination and absorption number also hold for the

2-path domination number. For upper bounds we obtain the following result by

considering directed paths. The proof is straightforward and so is omitted.

23

Lemma 2.2.7. Let G be a digraph on n vertices containing a directed path or cycle

of length L. Then

−→γpath(G) ≤ n−
⌊

L

2

⌋
.

In particular, if G is Hamiltonian, then

−→γpath(G) ≤
⌈n

2

⌉
.

To obtain good upper bounds on the 2-path dominating set, we look for a result

similar to Theorem 2.2.2. We only consider d-in d-out digraphs since in other cases

the generalisation of Theorem 2.2.2 is quite difficult. Fortunately d-in d-out digraphs

are the digraphs in which are most interested.

Theorem 2.2.8. Let G be a d-in d-out digraph with d ≥ 1. Then

−→γpath(G) ≤

(
1−

(
1

2d + 1

) 1
d

+ 2

(
1

2d + 1

) d+1
d

−
(

1

2d + 1

) 2d+1
d

)
n.

Proof. We use a common technique known as the probabilistic method [5, 6, 49, 54].

Fix p with 0 < p < 1. Define a set S ⊆ V such that for each vertex v ∈ V we have

v ∈ S with probability p independently of the other vertices. Let T be the set of

vertices not in S with either no in-neighbour in S or no out-neighbour in S. Then

S ∪ T is a 2-path dominating set of G.

We now determine an upper bound on, E(|T |), the expected size of T . Note that

we use E(·) to denote expectation and P(·) to denote probability. Let χv be the

indicator variable for v ∈ T . Then

E(|T |) =
∑
v∈V

E(χv) =
∑
v∈V

P(v ∈ T).

Now v ∈ T if and only if each of the following are satisfied:

• v /∈ S,

• Nin(v) ∩ Nout(v) ∩ S = ∅, and

• (Nin(v)\Nout(v) ∩ S = ∅) or (Nout(v)\Nin(v) ∩ S = ∅).

24

d 2 3 4 5 6

upper bound 0.71379n 0.61594n 0.54383n 0.48840n 0.44433n

Table 2.2.1: Upper bounds on the 2-path domination number of a d-in d-out digraph

on n vertices.

So let |Nin(v) ∩Nout(v)| = j. Then

P(v ∈ T) = (1− p)j+1
(
2(1− p)d−j − (1− p)2(d−j)

)
= 2(1− p)d+1 − (1− p)2d+1

(
1

1− p

)j

≤ 2(1− p)d+1 − (1− p)2d+1

and so

E(|S ∪ T |) ≤
(
p + 2(1− p)d+1 − (1− p)2d+1

)
n. (2.2.1)

The right hand side of (2.2.1) is minimised by taking

p = 1−
(

1

2d + 1

) 1
d

.

Substituting this value for p into (2.2.1) we obtain the desired result.

Table 2.2.1 gives upper bounds on the 2-path domination number of a d-in d-out

digraph obtained from Theorem 2.2.8. This completes our survey of bounds on the

domination, absorption, and 2-path domination numbers of directed graphs. Next

we consider how regular digraphs are related to regular bipartite undirected graphs.

Domination in regular bipartite graphs

A bipartite graph is an undirected graph whose vertices can be partitioned into two

independent sets, called parts. If a bipartite graph is regular, then its parts must be

the same cardinality. Regular bipartite graphs are closely related to regular directed

graphs. In particular, some bounds on the domination number of d-in d-out digraphs

obtained in the previous section also determine bounds on the domination number

of regular bipartite graphs.

25

Consider a bipartite graph B, regular of degree (d + 1), with two parts S and T ,

each of size n. Regular bipartite graphs necessarily have a perfect matching [26,

Corollary 2.1.3], so let M be a perfect matching of B. Direct all the edges of B

from S to T and then contract the edges in M . The result is a (simple) d-in d-out

digraph G(B) on n vertices. Note that B is a graph on 2n vertices.

Let P be a 2-path domination set of the digraph G(B). Each vertex in P corresponds

to two vertices in B via the perfect matching M . Let D be the set of vertices of B

that correspond to the vertices in P ; so |D| = 2 |P |. Then D is a dominating set of

B. Hence we have the following corollary to Theorem 2.2.8.

Corollary 2.2.9. Let B be a (d + 1)-regular bipartite graph on 2n vertices. Then

the domination number γ(B) of B satisfies

γ(B) ≤

(
1−

(
1

2d + 1

) 1
d

+ 2

(
1

2d + 1

) d+1
d

−
(

1

2d + 1

) 2d+1
d

)
n.

So Table 2.2.1 also gives upper bounds for the domination number of (d+1)-regular

bipartite graphs on 2n vertices. Further results should also be possible, but we do

not pursue them here. Instead we finish the chapter by considering the complexity

of finding a dominating set of minimum size.

2.2.2 Complexity results

Finding a dominating set of minimum size in an undirected graph is NP-hard [34].

Of course any graph can be represented as a digraph by replacing each edge {u, v} by

the two edges (u, v) and (v, u). Hence the problems of finding minimum dominating,

absorbent, and 2-path dominating sets of directed graphs are also NP-hard problems.

In general we expect the the complexity results in digraphs to be similar to those

in undirected graphs. However Chleb́ık and Chleb́ıková [21] note a significant dif-

ference. While every undirected graph has an independent dominating set, it is

NP-complete to determine whether an arbitrary digraph has an independent dom-

inating set. Some approximation results are also given by Chleb́ık and Chleb́ıková

26

[21]. Complexity results for some special classes of dominating sets have been ob-

tained by Barkauskas and Host [10] and Bar-Yehuda and Vishkin [9].

This completes our introduction to digraphs and dominating sets. In the next chap-

ter we consider random directed graphs and dominating sets; we also describe pri-

oritised and deprioritised algorithms, and how differential equations arise in their

analysis.

27

Chapter 3

Random Digraphs and Algorithms

In this chapter we introduce the uniform model of random d-in d-out digraphs. We

call a uniformly distributed random d-in d-out digraph simply a random d-in d-out

digraph (that is, we do not explicitly mention the distribution). We always take

d to be some fixed integer greater than one. To determine properties of random

d-in d-out digraphs, a related random model called the pairing model is often used.

We demonstrate the pairing model by determining lower bounds on the domination

numbers of random d-in d-out digraphs for some d. However, the main focus of this

chapter is the design and analysis of randomised algorithms for random d-in d-out

digraphs. As an example we consider an algorithm that finds small dominating sets

of random 2-in 2-out digraphs.

3.1 Random Regular Digraphs

There are many models of random d-in d-out digraphs but we are mainly interested

in the uniform model. Consider the set of all labeled d-in d-out digraphs on the

vertex set {1, . . . , n}. By choosing a digraph randomly from this set, with each

digraph having an equal chance of being selected, we obtain a uniformly distributed

random d-in d-out digraph. We denote this model by DGn,d and call DGn,d the

random d-in d-out digraph (on the vertex set {1, . . . , n}).

28

Since we are working with random digraphs, the results we obtain will nearly always

involve probabilities. We denote the probability of an event A by P(A). In this

context the underlying sample space is the (finite) set of d-in d-out digraphs on

the vertex set {1, . . . , n}. Hence an event is a set of digraphs and, as the model

is uniform, the probability of an event is just the proportion of digraphs which

belong to that event. However we prefer the probabilistic notation. We often define

random variables on random digraphs. Mostly we are interested in the expected

values of random variables, which we denote by E(·). Note that each event and

random variable is indexed by n, the number of vertices, though usually we do not

make this explicit. Finally, we often randomly select an element from a given set

using the uniform distribution. When we make such a selection, we say that we are

selecting uniformly at random (u.a.r.).

There are many properties of digraphs which are not satisfied by every digraph (on

the vertex set {1, . . . , n}), but the proportion of digraphs satisfying the property

tends to 1 as the number of vertices tends to infinity. In this case we say that the

property holds asymptotically almost surely (a.a.s.). In probabilistic notation, let

An be the event that a random d-in d-out digraph G ∈ DGn,d has some property

Pn. For example, Pn could be the property that G has a directed Hamilton cycle.

Then a random d-in d-out digraph has property Pn asymptotically almost surely if

P(An) → 1 as n → ∞. In our example, a random d-in d-out digraph a.a.s. has a

directed Hamilton cycle when d ≥ 3 but when d = 2 a.a.s. does not [23]. Later in

this thesis we determine a.a.s. bounds on the domination number of random d-in

d-out digraphs.

There are many techniques for studying random d-in d-out digraphs, including

switchings, direct expectation arguments, randomised algorithms, and pairing mod-

els. These techniques may also be applied to random regular graphs and Wormald

[59] has provided a survey of many such applications. Pairing models are closely

related to uniform models of random d-in d-out digraphs and we introduce them

next.

29

3.1.1 Pairing models

Pairing models, although not always by that name, have a long history in the study

of random regular graphs and digraphs. They first appeared implicitly [12, 13, 57],

before being given explicitly by Bollobás [17], who called them configuration models.

We use the name pairing model, another common name. Pairing models provide an

indirect way of studying random d-regular graphs and digraphs on n vertices. We

define the pairing model for DGn,d only; the pairing model for Gn,d is similar and a

detailed explanation is given by Wormald [59].

The pairing model for DGn,d has previously appeared [44, 50], with varying terminol-

ogy. We take two sets of nd points; points of one set are called in-points and points

of the other set are called out-points. With each vertex in the set {1, . . . , n}, we

associate d in-points and d out-points so that each point is associated with exactly

one vertex. A pairing is then a partition of the set of points (both in and out) into

nd blocks of size 2 such that each block contains exactly one in-point and exactly

one out-point. Each block of the pairing is called a pair.

For each pairing P there is a corresponding d-in d-out multi-digraph DG(P). The

digraph DG(P) is the digraph such that, for every pair {pin, pout} of P (where pin

is the in-point and pout is the out-point), DG(P) contains an edge from the vertex

associated with pout to the vertex associated with pin. Distinct pairs may correspond

to the same edge and in this case DG(P) has a multiple edge. If pin and pout are

associated with the same vertex then DG(P) has a loop. Thus DG(P) may be

a multi-digraph. Of course, distinct pairings may correspond to the same multi-

digraph; in particular, there are exactly (d!)2n pairings corresponding to each simple

d-in d-out digraph. So from a pairing we obtain a d-in d-out multi-digraph.

By choosing a random pairing we obtain a random d-in d-out multi-digraph. Let

DPn,d denote the uniform probability space on the set of all pairings for a d-in d-out

digraph on n vertices. Then for a random pairing P ∈ DPn,d, the corresponding

digraph DG(P) is a random d-in d-out multi-digraph distributed non-uniformly.

30

However, conditioning on DG(P) having no loops and no multiple edges we obtain

the uniform model DGn,d. (If we condition on DG(P) having no multiple edges

only, then we also obtain a uniform model. However, digraphs with multiple edges

obtained via the pairing model are not distributed uniformly.) So to study the

uniform model DGn,d we often use the pairing model DPn,d.

Results for pairing models can translate to results for random d-in d-out digraphs.

Let Σn be the set of pairings corresponding to the simple d-in d-out digraphs on the

vertex set {1, . . . , n}. Applying a theorem of McKay [50, Theorem 4.6] we find that,

for fixed d, we have

PDPn,d
(Σn) = exp

(
−d2 + 1

2
+ O

(
1

n

))
.

That is, the proportion of pairings corresponding to simple d-in d-out digraphs is

bounded below by a positive constant. Thus any property that holds a.a.s. in the

pairing model DPn,d, also holds a.a.s. for random d-in d-out digraphs.

The pairing model for regular digraphs is very similar to the pairing model for

regular bipartite graphs. The two models only differ in how points are associated

with vertices: for regular digraphs each vertex is associated with two sets of points,

the in-points and the out-points; while for regular bipartite graphs there are twice

as many vertices and each vertex associated with only one set of points. Thus

we expect results, similar to Corollary 2.2.9, relating random regular digraphs and

random regular bipartite graphs.

For the rest of this thesis, we work solely with the pairing model. In particular,

we determine a.a.s. upper and lower bounds on the domination numbers of random

d-in d-out digraphs (for some d) by showing that these bounds hold a.a.s. in the

corresponding pairing model. As an introduction to the pairing model, we determine

some lower bounds in the next section. We then consider randomised algorithms for

random d-in d-out digraphs.

31

3.1.2 Lower bounds on domination numbers

We now determine a.a.s. lower bounds on domination numbers of random d-in d-out

digraphs, for fixed d, using the pairing model DPn,d. Following an approach of Zito

[62], we use direct expectation arguments and generating functions. Let N(k) be

the number of dominating sets of size k of a random d-in d-out digraph. Note that

any set of vertices containing a dominating set is also a dominating set. Hence the

probability that a random d-in d-out digraph has a dominating set of size at most

k is

P
([∑

k?≤k
N(k?)

]
≥ 1
)

= P(N(k) ≥ 1) ≤ E(N(k)),

by Markov’s inequality. Thus any k with E(N(k)) = o(1) is an a.a.s. lower bound

on the domination number.

Consider a subset D of the vertices with size k. Let P be a pairing and let O be the

out-points associated with the vertices in D. Define

I = {pin : {pin, pout} ∈ P for some pout ∈ O}.

Then D is a dominating set if, for each vertex v /∈ D, some in-point associated with

v is in I.

We use generating functions to determine the number of pairings for which D is a

dominating set. First (1 + x)d is the generating function for choosing subsets of d

in-points and (1+x)d−1 is the generating function for choosing non-empty subsets.

Each of the n − k vertices not in D must have at least one of their associated in-

points in I. The vertices in D may have any number of their associated in-points in

I. So the generating function for the number of ways to choose the set I of in-points

such that D is a dominating set is

((1 + x)d − 1)n−k(1 + x)dk. (3.1.1)

The vertices of D are associated with dk in-points, so we are interested in the

coefficient of xdk in (3.1.1). This coefficient is no greater than

((1 + x)d − 1)n−k(1 + x)dk

xdk
, for all x > 0.

32

d 2 3 4 5 6

lower bound 0.34960n 0.27602n 0.23115n 0.20049n 0.17801n

Table 3.1.1: A.a.s. lower bounds on the domination number of a random d-in d-out

digraph.

Now, having chosen the in-points of I there are (dk)! ways to put the points of O

and I into pairs. The remaining d(n−k) in-points and out-points can be arranged in

pairs in (d(n− k))! ways. Finally there are
(

n
k

)
ways to choose D and (dn)! possible

pairings. Hence

E(N(k)) ≤
(

n

k

)(
dn

dk

)−1
((1 + x)d − 1)n−k(1 + x)dk

xdk
(3.1.2)

for all x > 0.

Applying Stirling’s approximation to the right hand side of (3.1.2), and letting

φ(w) = ww and k = κn, a.a.s. we have

E(N(k))1/n ≤ [φ(κ)φ(1− κ)]d−1 ((1 + x)d − 1)1−κ(1 + x)dκ

xdκ
(3.1.3)

for all x > 0. For fixed κ, we evaluate the right hand side of (3.1.3) by choosing

x > 0 so as to minimise

((1 + x)d − 1)1−κ(1 + x)dκ

xdκ
.

By finding κ and x for which the right hand side of (3.1.3) is less than 1, we obtain

the lower bounds given in Table 3.1.2.

Next we describe a class of randomised algorithms for random d-in d-out digraphs.

3.2 Algorithms and the Pairing Process

We now describe how we define and analyse algorithms for random d-in d-out di-

graphs and give a specific example of an algorithm that finds dominating sets. Each

algorithm we consider is defined using the pairing model given in Section 3.1.1.

33

Instead of selecting a pairing uniformly at random in one go, we now construct a

pairing one pair at a time. By constructing the pairing in an appropriate way, we

still obtain a pairing that is uniformly distributed. The random process that con-

structs a uniformly distributed random pairing is called the pairing process, which

we define next.

The pairing process proceeds as follows. We start with the empty set P0. At each

step t, to obtain Pt+1 we add a pair {pin, pout} to Pt, such that neither pin nor pout

is already present in a pair of Pt. The process ends at step F when PF is a pairing.

During the process, if a point does not occur in a pair of Pt we say the point is free;

otherwise we say the point has been exposed. Adding the pair {pin, pout} to Pt is

called exposing pin (or pout, or the pair {pin, pout}, or the edge to which {pin, pout}

corresponds). To complete the definition of the pairing process we next describe

how {pin, pout} may be chosen.

The key to the pairing process is the manner in which the next pair is chosen.

There are two allowable ways: either the in-point pin is chosen arbitrarily and the

out-point pout is chosen u.a.r. from the set of free out-points; or the out-point is

chosen arbitrarily and the in-point is chosen u.a.r. from the set of free in-points.

By choosing the next pair in one of these two ways, the final pairing PF will be

distributed uniformly.

We use the pairing process to define algorithms on random d-in d-out digraphs. By

specifying either the in-point or the out-point of the next pair to be exposed we

obtain an algorithm that generates a random pairing and thus a random d-in d-out

multi-digraph. Choosing our specification carefully we obtain an algorithm that

generates a random d-in d-out multi-digraph G and, at the same time, identifies

a dominating set for G. Of course, many other special subsets of the vertices and

edges can also be identified.

These algorithms can seem unnatural. However they can be easily modified to obtain

algorithms that find a dominating set of a given d-in d-out digraph. In this case

the digraph is part of the input to the algorithm, rather than part of the output.

34

Instead of adding pairs, such an algorithm proceeds by removing edges of the input

graph. In this context, analysing the algorithm on a random d-in d-out digraph can

be considered an average case analysis of the algorithm on the non-random digraph.

Before considering an example algorithm, we need some further definitions relating

to the pairing process. The pairing process defines a random sequence of sets of

pairs P0, . . . , PF , starting with the empty set P0 and ending with a pairing PF . For

each Pt we obtain a digraph Gt = DG(Pt) (as in Section 3.1.1). So the pairing

process also defines a random sequence of multi-digraphs G0, . . . , GF where G0 is

the empty digraph and GF is a d-in d-out multi-digraph.

Algorithms for random d-in d-out digraphs are analysed by considering the degree

pairs of the vertices during the algorithm. So we define V(i,j)(t) = V(i,j)(Gt) to be the

set of vertices of degree pair (i, j) in Gt. Note that if a vertex v of Gt has degree pair

(i, j) then, in Pt, of the in-points associated with v exactly i are exposed and d− i

are free, and of the out-points associated with v exactly j are exposed and d− j are

free. If all points associated with a vertex v are exposed, and so v has degree pair

(d, d) in Gt, then we say that the vertex is saturated. If all the points associated with

v are free, and so v has degree pair (0, 0) in Gt, then we say that v is isolated. We

also define Y(i,j)(t) =
∣∣V(i,j)(t)

∣∣ to be the random variable counting the numbers of

vertices of degree pair (i, j). These random variables will be used for every algorithm

we analyse. The definitions of this section are used for the algorithms defined in the

next section and in Chapter 6.

3.2.1 An example algorithm

Algorithms 1 and 2 define the algorithm DominatingSet2 which finds a dominating

set of a random 2-in 2-out digraph (note that DominatingSet2 has previously been

defined and analysed in preliminary work [42] for this thesis). DominatingSet2

starts with empty sets P0 and D which become a pairing and a dominating set (for

the digraph corresponding to the pairing) respectively when the algorithm finishes.

35

DominatingSet2 achieves this by repeatedly performing the following three steps:

it selects a vertex u u.a.r. from all vertices of a given degree pair; exposes the free

points of u and the new out-neighbours of u (determined by exposing the out-points

of u); adds u and any vertices, other than the out-neighbours of u, that become

saturated during the previous step to D (vertices other than u that are added to

D at this stage are called accidental saturates). The three steps outlined above

are called an operation. Notice that after each operation every saturated vertex is

either in D or is an out-neighbour of a vertex in D. This invariant ensures that

DominatingSet2 returns a dominating set as expected. To complete the description

of DominatingSet2 we must look at the first step of an operation in more detail.

In the first step of each operation, excluding the first operation, a vertex of degree

pair (1, 0), (2, 0), or (2, 1) is selected. The first operation, which occurs before the

while loop, selects a vertex of degree pair (0, 0). DominatingSet2 proceeds via a

sequence of operations until there are no vertices of degree pairs (1, 0), (2, 0), or

(2, 1). At this point, as the sum of the in-degrees must equal the sum of the out-

degrees, we see that there are vertices of degree pairs (0, 0), (1, 1), and (2, 2) only.

The last two steps of DominatingSet2 ensure a dominating set is returned by adding

all unsaturated vertices to D and complete the pairing by exposing the remaining

free points. In practice it seems that the last two steps have little influence on the

behaviour of DominatingSet2.

To continue our discussion of DominatingSet2, we need a little more terminology.

Although each operation is different, some operations are sufficiently similar that

we say they have the same type. In fact, the type of an operation depends solely

on the degree pair of the vertex chosen in that operations first step. For now we

take this degree pair to be the type of the operation; later we will use integers for

types. So when considering an algorithm as a sequence of operations, we classify

the operations according to their type.

36

Algorithm 1 DominatingSet2

Set P := ∅;

Set D := ∅;

Choose u ∈ V(0,0) uniformly at random;

D := D ∪ {u};

Saturate(u);

while Y(1,0) + Y(2,0) + Y(2,1) 6= 0 do

if Y(2,1) 6= 0 then

Choose u ∈ V(2,1) uniformly at random;

else if Y(2,0) 6= 0 then

Choose u ∈ V(2,0) uniformly at random;

else

Choose u ∈ V(1,0) uniformly at random;

end if

D := D ∪ {u};

Saturate(u);

end while

Add all unsaturated vertices to D;

Expose all remaining free points;

return D, P ;

Algorithm 2 Saturate

When we expose points we add the corresponding pairs to P

Expose the free points associated with u;

Expose the free points associated with the out-neighbours of u;

Add accidental saturates to D;

37

At step t of DominatingSet2, the type of the next operation depends on the degree

pairs of the vertices in the digraph Gt. From the definition of an operation, an

operation of type (p, q) can only take place when there is a vertex of degree pair

(p, q) in Gt. So when Y(p,q) > 0 we say that an operation of type (p, q) is permissible.

We next explain the most important aspect of DominatingSet2 and the reason that

DominatingSet2 is known as a prioritised algorithm.

3.2.2 Prioritised algorithms

Consider how DominatingSet2 determines the type of the next operation. Notice

that an operation of type (2, 1) is performed whenever an operation of type (2, 1) is

permissible. If an operation of type (2, 1) is not permissible but an operation of type

(2, 0) is, then the type of the next operation is (2, 0). If the only permissible operation

type is (1, 0), then an operation of type (1, 0) is performed. If there are no operation

types permissible then the algorithm has finished. So DominatingSet2 prioritises

operations of type (2, 1) over operations of type (2, 0) and (1, 0), and prioritises

operations of type (2, 0) over operations of type (1, 0). (Note that although the first

operation of DominatingSet2 has type (0, 0), we do not consider the type (0, 0) to

have a priority as there is only one type (0, 0) operation; however, in general the

type (0, 0) does have a priority). This is the sense in which DominatingSet2 is a

prioritised algorithm. All the algorithms we consider are prioritised in this way.

Finally, before describing how algorithms such as DominatingSet2 are analysed, we

consider the algorithm DominatingSet2Det (given in Algorithms 3 and 4). Domi-

natingSet2Det is a modification of DominatingSet2 which determines a dominating

set for a 2-in 2-out digraph, given as input. Note that in Algorithm 3 we have

V(i,j) = V(i,j)(G) and Y(i,j) = Y(i,j)(G) where G is the current state of the input

graph. The analysis of DominatingSet2 [42] can be viewed as an average case anal-

ysis of DominatingSet2Det. Average case analysis has been the motivation of some

of the early work [46] on analysing graph algorithms with differential equations. We

leave it to the reader to notice the parallels between the two algorithms.

38

Algorithm 3 DominatingSet2Det

Require: G is a 2-in 2-out digraph

Set D := ∅;

Choose u ∈ V(2,2) uniformly at random;

D := D ∪ {u};

Isolate(u);

while Y(1,2) + Y(0,2) + Y(0,1) 6= 0 do

if Y(0,1) 6= 0 then

Choose u ∈ V(0,1) uniformly at random;

else if Y(0,2) 6= 0 then

Choose u ∈ V(0,2) uniformly at random;

else

Choose u ∈ V(1,2) uniformly at random;

end if

D := D ∪ {u};

Isolate(u);

end while

Add any non-isolated vertices to D;

return D;

Algorithm 4 Isolate

Remove the edges incident with the out-neighbours of u from G;

Remove the edges incident with u from G;

Add accidental isolates to D;

Accidental isolates are vertices, other than u and its (former) out-neighbours,

that have all their remaining edges removed by the first two steps.

39

3.2.3 Analysing prioritised algorithms

Wormald [60] gives a detailed introduction to analysing prioritised algorithms on

random regular graphs. Algorithms for random d-in d-out digraphs are analysed

using the random variables Y(i,j) (0 ≤ i, j ≤ 2), as well as any other random variables

Zi (1 ≤ i ≤ `) of interest; for example, when analysing DominatingSet2 we also

consider the random variable Z(t) = |D(t)|. Under certain conditions, the behaviour

of the random variables ‘settles down’ as the number of vertices n tends to infinity.

Of course, as n increases the ranges of the random variables increase (since the

random variables count vertices) and the length of the process increases (since there

are more edges to expose). So we scale the random variables in time and value by

defining

y(i,j)(t/n) = Y(i,j)(t)/n and zi(t/n) = Zi(t)/n.

Then under certain conditions the scaled random variables approach deterministic

functions as n tends to infinity.

These deterministic functions are the solutions to a system of ordinary differential

equations. In particular, we group the sequence of operations defined by a prioritised

algorithm into contiguous subsequences called clutches (the details are given below).

Then we treat the expected changes in the random variables Y(i,j) and Zi due to

a clutch as a derivative. Writing these expected changes in terms of the scaled

random variables suggests functions which are used to define a system of differential

equations. Under certain conditions, the scaled random variables approach the

solution to this system of differential equations as n tends to infinity.

The expected change in the random variables depends on the type of the operations

performed in a clutch. Figure 3.2.1 shows the sequence of operation types from a

run of an algorithm similar to DominatingSet2. Notice that the behaviour of the

algorithm falls into three distinct phases and that in each phase, the set of types

of operations performed is different. Thus each phase is analysed separately. Also

during a phase, most operations are of a single type (as indicated by the horizontal

lines). So we categorise phases by types as we do operations, with the type of a phase

40

being the type of lowest priority amongst all the types of operations performed.

The expected changes of the random variables, and the differential equations they

suggest, depend on the phase of the algorithm.

Prioritised algorithms cannot be analysed operation by operation. The expected

change in a random variable due to an operation depends on the type of the opera-

tion, but this type is not determined by the scaled random variables. So we group

the sequence of operations defined by an algorithm in the following way. A clutch

during a phase of type τ is a subsequence opt, opt+1, . . . , opt+k of the operations

performed by the algorithm, starting with an operation of type τ and ending at

the last operation to have a type with higher priority than that of type τ (or the

last operation of the algorithm). So opt is an operation of type τ , the operations

opt+1, . . . , opt+k have types of higher priority than operations of type τ , and opt+k+1

is an operation of a type with priority not higher than the priority of type τ . In

Figure 3.2.1, the vertical lines indicate clutches of length greater than one. Clutches

of the same phase have very similar structure (although their lengths vary) and the

scaled random variables do determine the expected change in the random variables

due to a clutch. Therefore we are able to analyse prioritised algorithms clutch by

clutch.

Unfortunately, analysing prioritised algorithms in this way is very difficult. There are

two main problems. First we need to know that a clutch is not too long. If clutches

are long then the change in the random variables will be large and the (scaled)

random variables will be hard to approximate. Previously clutches have been shown

to be sufficiently short using large deviation arguments [55, 60]. But such arguments

are hard to apply in general. The other main problem arises because each phase

is analysed separately. To obtain an analysis of the entire algorithm, the analyses

of each phase need to be combined; so each change of phase must be detected and

proved. In response to both of these problems, Wormald [61] introduced a new class

of algorithms, called deprioritised algorithms.

41

Figure 3.2.1: The sequence of operation types from a run of a prioritised algorithm.

The types appear on the vertical axis in order of ascending priority.

42

3.2.4 Deprioritised algorithms

Deprioritised algorithms are a new class of algorithms which are easier to analyse

than prioritised algorithms. Like prioritised algorithms, deprioritised algorithms

proceed via a sequence of operations; but instead of selecting the type of the next

operation according to a priority list, the type is selected according to a probability

distribution. We call this distribution the type distribution. Note that the type

distribution changes over the course of the algorithm. Thus we deprioritise the

selection of the operation types.

In order to define a deprioritised algorithm, we need to define its type distribution.

Because prioritised algorithms perform well, we would like to choose a type distribu-

tion so that the deprioritised algorithm approximates a given prioritised algorithm

(in this case, both algorithms must use the same operations). In particular, we

would like the probability that the next operation in the deprioritised algorithm has

type r to approximate the proportion of type r operations at a similar stage of the

prioritised algorithm (by a similar stage, we mean when the values of the random

variables are similar). Unfortunately, it is not possible to be precise about the pro-

portion of type r operations in the prioritised algorithm. However, we still define a

type distribution with this goal in mind.

By selecting the type of the next operation using a probability distribution we solve

the problems of prioritised algorithms mentioned above. We may now analyse the

algorithm operation by operation: since operations (usually) have only a small affect

on the random variables, it is easy to approximate the (scaled) random variables

operation by operation. As a deprioritised algorithm is based on a given prioritised

algorithm, the deprioritised algorithm also has phases. We again classify phases

with types. But now the definition of the phases becomes part of the definition

of the deprioritised algorithm. So analysing deprioritised algorithms is significantly

easier than analysing prioritised algorithms.

43

However, deprioritised algorithms do have one extra complication. For a depriori-

tised algorithm to proceed, it must be able to perform an operation of the type

selected. So if an operation of type r has a non-zero probability in the type dis-

tribution at time t, then the digraph Gt must have at least one vertex of degree

pair r (recall that, for the moment, types are degree pairs). To ensure that there

are always sufficient vertices with the required degree pairs, we start each phase

of the deprioritised algorithm with a preprocessing subphase. In the preprocessing

subphase only operations of type (0, 0) are performed; this allows vertices of other

degree pairs to build up. Thus we may perform operations of any type. As long

as the preprocessing subphase is sufficiently short, its impact on the behaviour of

the algorithm is negligible. Preprocessing subphases are a necessary part of the

definition of any deprioritised algorithm.

The design of a deprioritised algorithm is based on a given prioritised algorithm. In

particular, both algorithms use the same operations. But the algorithms choose the

types of operations performed differently, so the algorithms define distinct random

digraph processes. However, the algorithms can be analysed using the same tech-

nique. Moreover, the deprioritised algorithm is analysed using the same random

variables that are defined for the prioritised algorithm. We will only analyse depri-

oritised algorithms, since analysing prioritised algorithms is much more difficult.

So when we use randomised algorithms to investigate random d-in d-out digraphs,

we often take the following approach. We start by designing a prioritised algorithm.

Next a deprioritised algorithm is defined so as to approximate the prioritised al-

gorithm. Finally we analyse the deprioritised algorithm. The last two steps we

call the deprioritised approach to analysing prioritised algorithms. Wormald [61]

has previously shown how to apply the deprioritised approach to a general class of

prioritised algorithms. However, Wormald’s theory does not apply to every algo-

rithm of interest, including algorithms for random d-in d-out digraphs. The next

two chapters describe how the deprioritised approach may be applied to a class of

prioritised algorithms defined more generally than the class considered by Wormald.

Chapter 6 describes the analysis of two algorithms which requires the new theory

presented in this thesis.

44

Chapter 4

Prioritised and Deprioritised

Algorithms

Defining a deprioritised algorithm based on a given prioritised algorithm, and then

analysing the deprioritised algorithm, is called the deprioritised approach and is now

a standard technique. The deprioritised approach has been used with many priori-

tised algorithms [11, 31] including DominatingSet2 [42], the algorithm presented in

Chapter 3. This chapter, and the next, describe how the deprioritised approach

may be applied to any of a large class of prioritised algorithms. In particular, in

this chapter we define the deprioritised algorithms based on certain prioritised al-

gorithms.

The chapter begins with a description, in Section 4.1, of a class of prioritised al-

gorithms called deprioritisable algorithms. The description is given in a general

context, so the theory presented is not restricted to algorithms for random d-in d-

out digraphs. In Section 4.2 we determine functions which we believe approximate

the expected proportions of operation types for a deprioritisable algorithm. Then in

Section 4.3 we define functions which, under conditions given in the next chapter,

describe the behaviour of the deprioritised algorithm. We end the chapter by giving

an explicit definition of the deprioritised algorithm based on a given deprioritisable

algorithm.

45

4.1 Deprioritisable Algorithms

The theory presented in this chapter, and the next, applies to a class of prioritised

algorithms we call deprioritisable algorithms. We define deprioritisable algorithms

in an abstract setting and, using this definition, we define a deprioritised algorithm

based on a given deprioritisable algorithm.

A deprioritisable algorithm is a randomised algorithm P defined on sets Ωn for

n ≥ 1. For each n, we assume that for any element G0(n) ∈ Ωn the algorithm P ,

given G0(n) as input, generates a random process {Gt}F (n)
t=0 on Ωn. For example,

Ωn may be the set of all multi-digraphs on the vertex set {1, . . . , n} for which each

vertex has in-degree at most d and out-degree at most d, and G0(n) the empty

digraph. The properties P must satisfy to be a deprioritisable algorithm are given

in the following definition.

Definition 4.1.1 (Deprioritisable Algorithms). A randomised algorithm P

defined on sets Ωn (for n ≥ 1) is deprioritisable if the following properties hold.

(i) The random process {Gt}Ft=0 on Ωn is Markovian.

(ii) The algorithm proceeds via a sequence of operations op1, . . . , opF such that

Gt is obtained from Gt−1 via opt for t = 1, . . . , F . Moreover, the operations

are classified into types. That is, for some fixed integer k, operation opt has

type τ(opt) ∈ {0, 1, . . . , k}, for t = 1, . . . , F .

(iii) There exists random variables Y0, . . . , Ym defined on Ωn (for all n) such that,

for i = 0, . . . ,m and r = 0, . . . , k, we have

E(Yi(Gt+1)− Yi(Gt) |Gt, τ(opt) = r)

= fi,r(t/n, Y0(Gt)/n, . . . , Ym(Gt)/n) + o(1)
(4.1.1)

for some functions fi,r. Moreover, for some polynomial H, each function fi,r

has the form

fi,r(x, y0, . . . , ym) =
gi,r(x, y0, . . . , ym)

(H(x, y0, . . . , ym))`i
(4.1.2)

for some integer `i ≥ 1 and some polynomial gi,r.

46

(iv) For r = 0, . . . , k, an operation of type r can be performed on every G ∈ Ωn

for which Yr(G) > 0. When Yr(G) > 0 we say that an operation of type r is

permissible (on G). Then, given Gt, the type τ(opt+1) of the next operation

is the maximum of all types which are permissible on Gt.

(v) For some fixed β we have

max
0≤i≤m

|Yi(Gt+1)− Yi(Gt)| ≤ β

for all t ≥ 0.

(vi) For some fixed M we have |Yi(Gt)| ≤Mn for i = 0, . . . ,m and all t ≥ 0.

(vii) The limits limn→∞ Yi(0)/n exist for i = 0, . . . ,m.

Properties (i)–(iv), excluding property (4.1.2) of the form of the functions fi,r, give

an adequate definition of a prioritised algorithm; though we do not usually give

such a precise definition. Much of what follows in this chapter applies to prioritised

algorithms, not just deprioritisable algorithms; so we will only require a prioritised

algorithm be deprioritisable when needed. Properties (4.1.2) and (v)–(vii) are nec-

essary for analysing the deprioritised algorithm based on a deprioritisable algorithm.

Note that the restriction on the functions fi,r given by (4.1.2) is reasonable since we

are interested in combinatorial algorithms. Many prioritised algorithms, including

the algorithms we are interested in, are also deprioritisable algorithms.

Since we are interested in the behaviour of deprioritisable algorithms as n tends to

infinity, we often drop n from the notation. Recall that we consider two random

processes on Ωn: one defined by a deprioritisable algorithm and one defined by

a deprioritised algorithm. The random variables Yi are defined on both random

processes. So we let Yi(t) = Yi(Gt) for the random process {Gt} when the random

process being considered is clear from the context. The random process will depend

on which algorithm (deprioritisable or deprioritised) we are considering.

47

Notice that the functions fi,r depend only on the random variables. So we let

fi,r(t) = fi,r(t/n, Y0(t)/n, . . . , Ym(t)/n)

when the underlying random process is clear from the context. Since the random

variables are defined on both random processes, the functions fi,r are defined for the

deprioritised algorithm as well. Later we consider continuous functions correspond-

ing to the scaled random variables. So we also let

fi,r(x) = fi,r(x, y0(x), . . . , ym(x))

when the functions yi are clear from the context.

At this point, it is useful to introduce the domain

D(δ) = {(x, y0, . . . , ym) : −δ < x < C, y0 > δ, H > δ,

|yi| < 2M (i = 0, . . . ,m)}

for δ > 0. Later, in Section 4.3, we use D(δ) to define functions which approximate

the scaled random variables of the deprioritised algorithm. Notice that the condition

H > δ ensures that the functions fi,r are defined on D(δ). We will discuss the domain

D(δ) further in Section 4.3.

In an earlier analysis of deprioritised algorithms by Wormald [61, Theorem 2], the

form of the functions fi,r is also used. In particular, Wormald requires that these

functions satisfy

C1yi+1 − C2yi ≤ fi,r ≤ C3yi+1 (4.1.3)

for positive constants C1, C2, and C3 on an appropriate domain. However, the

functions fi,r for the algorithms that we consider have the form

fi,r = δi,r − pyi + q1yj1 + q2yj2

where p, q1, and q2 are polynomials. Moreover, at least one term in q1 does not

contain the variable yj2 . Thus we cannot bound fi,r above using just yj2 . Indeed,

there is no variable yj and constant C for which fi,r ≤ Cyj. (In Section 4.2.4, we

discuss this topic further.) Hence we cannot apply the earlier work of Wormald. So

48

the theory presented in this thesis is developed in order to apply the deprioritised

approach to a larger class of prioritised algorithms, including algorithms on random

d-in d-out digraphs (where d is fixed).

We now review how a prioritised algorithm is analysed, as this affects the design of

the corresponding deprioritised algorithms. Prioritised algorithms are not analysed

operation by operation. Instead they are analysed using contiguous subsequences

of operations called clutches. For r = 0, . . . , k, an (r, k)-clutch is a contiguous sub-

sequence of the operations of a prioritised algorithm consisting of an operation of

type r, followed by all operations of types greater than r, up to (but not includ-

ing) the next operation of type r or less. Note that an (r, k)-clutch may contain

(r′, k)-clutches for r′ > r. In fact, an (r, k)-clutch is an operation of type r, followed

by zero or more (k, k)-clutches, followed by zero or more (k − 1, k)-clutches, and so

on, until ending with zero or more (r + 1, k)-clutches. We use clutches to define the

deprioritised algorithm based on a given prioritised algorithm.

Prioritised algorithms go through long periods in which the operations can be

grouped into a sequence of short (r, k)-clutches (for some fixed r). We call such

periods of the algorithm a phase of type r. The phases of prioritised algorithms

are not defined precisely as it is difficult to do so and is not required to define the

corresponding deprioritised algorithm. As we would like deprioritised algorithms to

approximate prioritised algorithms, deprioritised algorithms also have phases. Again

the phases of deprioritised algorithms are classified by types.

For the deprioritised approach to be useful, the correctness of the prioritised algo-

rithm must not rely on the prioritisation of the operation types. Most prioritised

algorithms are designed to maintain an invariant between operations. For example,

DominatingSet2 maintains a set of vertices D for which, between each operation,

every saturated vertex is either in D or is dominated by some vertex in D. Thus

at the end of DominatingSet2, the set D is a dominating set (as every vertex is

saturated). So the prioritisation of DominatingSet2 is not required for D to be a

dominating set. All the deprioritisable algorithms we consider maintain such invari-

49

ants and do not require the prioritisation to achieve their goal. For such algorithms

the deprioritised approach is useful.

4.2 Type Distributions

Deprioritised algorithms proceed via a sequence of phases. The phases of depriori-

tised algorithms begin with a preprocessing subphase, in which only operations of

type 0 are performed. The preprocessing subphase is followed by the main subphase

of a phase. Preprocessing subphases are much shorter than main subphases: for

each phase, the proportion of time spent in the preprocessing subphase is only o(1).

The main subphases of a deprioritised algorithm are based on phases of a prioritised

algorithm while the preprocessing subphases allow the main phases to occur.

During a main subphase, the type of the next operation to be performed is chosen

according to a probability distribution called the type distribution. The type distri-

bution is calculated before each operation of the deprioritised algorithm. During a

phase of type τ , we would like the type distribution to approximate the expected

proportion of operation types during a (τ, k)-clutch at a similar stage of the priori-

tised algorithm. By ‘a similar stage’ we mean when the random variables of both

algorithms have similar values. Unfortunately we are not able to determine the

expected proportions of operation types in a clutch rigorously. However, we can de-

termine functions that we believe approximate these proportions. These functions,

given in the next section, are sufficient to define the deprioritised algorithm.

4.2.1 Proportions of operation types

A prioritised algorithm, when in a phase of type τ , proceeds via a sequence of

(τ, k)-clutches. The phase continues while the clutches are sufficiently short; if the

clutches become too long then the algorithm enters a new phase. When clutches

are short, the expected proportions of operation types near step t should be close

50

to the expected proportions of operation types in a clutch occurring near step t. So

we determine functions which we believe approximate the expected proportions of

operation types using clutches.

So we would like to know when a (τ, k)-clutch will be ‘short’. Consider a (τ, k)-clutch.

If the random variable Yr, for some r ∈ {τ + 1, . . . , k}, increases quickly, then many

operations of type r are performed and the clutch is long. So consider the expected

change in Yr due to a (r, k)-clutch for r = τ + 1, . . . , k. Note that if an (r, k)-clutch

occurs, then Yr is positive at the start of the clutch. If for all r, the expected change

in Yr due to a (r, k)-clutch is negative, that is, Yr has an expected decrease between

type r operations, then we expect a (τ, k)-clutch will be short.

Previously we defined clutches that consisted of operations of all types in {τ, . . . , k}

for some τ . However, during a phase of type τ of a prioritised algorithm, it may be

that for some types greater than τ , a.a.s. no operations of those types are performed.

So we now generalise the definition of a clutch. Let O = {w1, . . . , wa} be a subset

of {0, . . . , k} such that w1 < w2 < · · · < wa. Then an O-clutch is a sequence of

operations consisting of an initial operation of type w1, followed by each subsequent

operation of a type from O\{w1}, up to (but not including) the next operation of

a type not in O\{w1}. Note that we can also define O-clutches recursively. Define

Oi = O\{w1, . . . , wi−1} = {wi, . . . , wa}. Then an O-clutch is an operation of type

w1, followed by zero or more Oa-clutches, followed by zero or more Oa−1-clutches,

and so on, until ending with zero or more O2-clutches. This recursive definition is

used to determine functions which we believe approximate the expected proportion

of operation types in a prioritised algorithm.

Assume that the operations occurring near step t of the prioritised algorithm algo-

rithm can be grouped into a sequence of O-clutches. Let O = {w1, . . . , wa} with

w1 < · · · < wa. In Definition 4.2.1, we define functions pr(t) (for r = 0, . . . , k) which

we believe approximate the proportion of type r operations occurring near step t.

We also define functions Φb(t) (for b = 2, . . . , a) which we believe approximate the

expected change in Ywb
due to anOb-clutch occurring near step t. As we do not prove

these interpretations of pr and Φb, we do not make the interpretations rigorous.

51

Now fix a particular O-clutch Γ occurring near step t. Let nr be the expected

number of type r operations in Γ. For j ≥ 1, the random variable Ywj
is zero at the

beginning and end of Γ. So the expected change in Ywj
due to Γ is

a∑
i=1

nwi
fwj ,wi

= 0.

We also have nw1 = 1. Note that these equations have previously been considered

by Shi and Wormald [55]. Setting pr = nr/
∑k

r=0 nr we obtain the equations
a∑

i=1

pwi
fwj ,wi

= 0 (for j = 2, . . . , a) and
a∑

i=1

pwi
= 1.

We can write the above equations as the matrix equation

(pw1 , . . . , pwa)C = (1, 0, . . . , 0),

where C is called the clutch matrix and is defined in Definition 4.2.1 below. Applying

Cramer’s rule we find an explicit formula for pwi
. The functions Φb are also defined

using the clutch matrix, and both pr and Φb are given in Definition 4.2.1. Note that

solving the matrix equation numerically is a more efficient way of determining the

values of pwi
than using the explicit formula in Definition 4.2.1. However the explicit

formula is useful for determining properties of the functions pr and functions defined

in terms of pr. We determine such properties later in this chapter and in Chapter 5.

The functions pr and Φb are defined using determinants of submatrices of the clutch

matrix. For submatrices of an arbitrary matrix we use the following notation: for

an m ×m matrix A and sets R,C ⊆ {1, . . . ,m} we denote by A(R,C) the matrix

obtained from A by deleting the rows and columns with indices in R and C respec-

tively. If R = {r} and C = {c}, then we write A(R,C) as A(r, c). It is also useful to

define the determinant of the matrix with zero rows and zero columns to be 1. The

following definition gives functions we believe approximate the expected proportion

of operation types in a clutch.

Definition 4.2.1 (Proportions of Operation Types). Let O = {w1, . . . , wa}

with w1 < · · · < wa. The clutch matrix for an O-clutch at step t is

C(t) =

1 fw2,w1(t) . . . fwa,w1(t)
...

...
...

1 fw2,wa(t) . . . fwa,wa(t)

 .

52

Then, for b = 2, . . . , |O|, we define

Φb(t) =
det C(t)({1, . . . , b− 1}, {1, . . . , b− 1})

det C(t)({1, . . . , b}, {1, . . . , b})
, (4.2.1)

and, for r = 0, . . . , k, we define

pr(t) =

 0 if r /∈ O,

(−1)b+1 det C(t)(b,1)
det C(t) if r = wb ∈ O.

(4.2.2)

Notice that the clutch matrix and the functions pr and Φb depend only on O and

the random variables Yi (via the functions fi,r). So the above definition applies for

both a prioritised algorithm and the corresponding deprioritised algorithm. Later

in this section we define the type distribution of a deprioritised algorithms using

Definition 4.2.1. But first we give another heuristic justification for the definition of

pr which also addresses the definition of the functions Φb.

Again we consider a O-clutch Γ which occurs near step t of the prioritised algorithm.

Note that for this justification we are considering the random process defined by the

prioritised algorithm. Recall that Φb(t) is analogous to the expected change in Ywb

due to a Ob-clutch occurring in Γ. When Φb(t) < 0 for b = 2, . . . , a, we expect Γ

to be short. Indeed Γ should be sufficiently short that the random variables only

change by o(n) during Γ. So the functions fi,r, pr, and Φb should only change by

o(1). Such a result has been proved in some special cases [60, Section 4] [55, Section

5] (and is trivially true for |O| = 1), however we are unable to prove this claim for

arbitrary clutches. If we could prove the above claim, then we should be able to

provide a rigorous interpretation of the functions pr and Φb.

The justification proceeds by induction on |O| and the recursive definition of clutches

given above. Throughout the justification we ignore any o(1) terms and drop t from

the notation. We break Γ into a head, consisting of all the operations occurring

before the first operation of type w2, and a tail, consisting of all the operations not

in the head. During the head no operations of type w2 are performed. So we view

the head as a O\{w2}-clutch. The tail is a sequence of O2-clutches. The clutch

matrix corresponding to the head is D = C(2, 2), while the clutch matrix for an

O2-clutch is E = C(1, 2).

53

Notice that

detD({1, . . . , s− 1}, {1, . . . , s− 1})
detD({1, . . . , s}, {1, . . . , s})

=
det E({1, . . . , s− 1}, {1, . . . , s− 1})

det E({1, . . . , s}, {1, . . . , s})

= Φs+1 < 0

for s = 2, . . . , a−1. Thus the expected proportion of type wb operations in the head

is hb where

h1 =
det C({1, 2}, {1, 2})

det C(2, 2)
, h2 = 0, and hb = (−1)b det C({2, b}, {1, 2})

det C(2, 2)

for b = 3, . . . , a. While the expected proportion of type wb operations in anO2-clutch

of the tail is tb where

t1 = 0 and tb = (−1)b det C({1, b}, {1, 2})
det C(1, 2)

for b = 2, . . . , a.

Next we determine the expected number of O2-clutches in the tail of Γ. Let β be the

expected change in Yw2 due to an O2-clutch. Since there is exactly one operation of

type w2 in an O2-clutch, the expected length of an O2-clutch is 1/t2. Thus

β = fw2,w2 +
1

t2
(t3fw2,w3 + · · ·+ tafw2,wa)

= det C(1, 1)/ det C({1, 2}, {1, 2}) = Φ2.

Similarly to the above, the expected change in Yw2 due to the head is α where

α = fw2,w1 +
1

h1

(h3fw2,w3 + · · ·+ hafw2,wa)

= det C(2, 1)/ det C({1, 2}, {1, 2}).

Note that Γ is a head followed by a sequence of O2-clutches. So Γ is similar to

a clutch consisting of two operations, but instead of operations there are clutches.

Consider an {a, b}-clutch where a < b. The expected number of type b operations

is −fb,a/fb,b provided fb,b < 0. Similarly, the expected number of O2-clutches in

Γ is −α/β provided β < 0. As β = Φ2 < 0, the expected proportion of type wb

operations in Γ is

pwb
=

(
hb

h1

− αtb
βt2

)(
1

h1

− α

βt2

)−1

(4.2.3)

for b = 1, . . . , a. Thus we have a equalities to prove.

54

Consider pw1 : we want to show that(
1

h1

− α

βt2

)−1

=
det C(1, 1)

det C
. (4.2.4)

Expanding and simplifying, we see that (4.2.4) is equivalent to

det C(2, 2) det C(1, 1)− det C(1, 2) det C(2, 1) = det C det C({1, 2}, {1, 2}). (4.2.5)

Equation (4.2.5) holds by a theorem of Jacobi [3, Section 2.4], and indeed equation

(4.2.5) still holds when C is replaced by an arbitrary matrix. From (4.2.4), equation

(4.2.3) holds for b = 2 as well.

Now for b = 3, . . . , a, we want to show that(
hb

h1

− αtb
βt2

)(
1

h1

− α

βt2

)−1

= (−1)b+1 det C(b, 1)

det C
.

Expanding and simplifying, this equation is equivalent to

det C({1, b}, {1, 2}) det C(2, 1)

− det C({2, b}, {1, 2}) det C(1, 1) = det C(b, 1) det C({1, 2}, {1, 2}). (4.2.6)

Each matrix in (4.2.6) is obtained from C by deleting at least the first column. So let

Q be the matrix obtained by replacing the first column of C by the b-th standard basis

vector. Then (4.2.6) is equivalent to the corresponding equation for Q. Applying

(4.2.5) with Q in place of C shows that (4.2.6) holds. So (4.2.3) is satisfied for

b = 3, . . . , a. This concludes our heuristic justification of Definition 4.2.1.

We now define the type distributions of the deprioritised algorithm based on a given

deprioritisable algorithm. The type distribution for a phase of type τ is defined

using Definition 4.2.1 and a set of typesM(τ) ⊆ {τ, . . . , k} called an irreducible type

set. We note that the irreducible type sets are determined by the deprioritisable

algorithm. Irreducible type sets are defined later in the chapter (see Definition 4.2.5).

In terms of the deprioritisable algorithm, we believe that operations of types in

{τ, . . . , k}\M(τ) a.a.s. do not occur in a phase of type τ (but, we do not prove this).

55

We could also define the type distribution using Definition 4.2.1 withO = {τ, . . . , k}.

However, we prove later in Lemma 4.2.8 that such a definition would result in the

same type distribution as that obtained using O = M(τ). We prefer to define the

type distribution using the irreducible type sets.

Definition 4.2.2 (Type Distributions). Let P be a deprioritisable algorithm

and let M(τ) be the irreducible type set for a phase of type τ of P . Then the type

distribution for a phase of type τ of the deprioritised algorithm based on P is defined

by the functions p
(τ)
r (t) = pr(t) (for r = 0, . . . , k) obtained via Definition 4.2.1 with

O =M(τ).

We also define C(τ)(t) to be the clutch matrix of an M(τ)-clutch at step t and

Φ
(τ)
b (t) = Φb(t) via Definition 4.2.1 with O =M(τ).

Next we determine conditions under which the above definition of a type distribu-

tion should be used. These same conditions also determine when a deprioritised

algorithm is in the main subphase of a phase of type τ . Recall that the definitions

of the type distribution and phases are part of the definition of the deprioritised

algorithm.

The functions p
(τ)
r (t) are used to define the type distribution of a deprioritised al-

gorithm at step t during a phase of type τ . (The underlying random process is now

the process defined by the deprioritised algorithm.) Thus the functions p
(τ)
r (t) must

satisfy p
(τ)
r (t) ≥ 0 (for r = 0, . . . , k) and

∑k
r=0 p

(τ)
r (t) = 1. From the form of the

functions p
(τ)
r (t) (see (4.2.2)), we see that they do indeed sum to one. We ensure

that each function is non-negative by restricting the definition of a phase of type τ .

For technical reasons we also require that p
(τ)
r (t) be positive for r ∈ M(τ). Note

that p
(τ)
r (t) = 0 for r ∈ {τ, . . . , k}\M(τ), which we prove later in Lemma 4.2.8.

The functions p
(τ)
r (t) are used to define differential equations and so must also be

Lipschitz. So we also require that
∣∣det C(τ)(t)

∣∣ > δ for some constant δ > 0. Thus

for a deprioritised algorithm to be in a phase of type τ at step t, we require that:

56

(a)
∣∣det C(τ)(t)

∣∣ > δ for some δ > 0,

(b) p
(τ)
r (t) > 0 for r ∈M(τ), and

(c)

Φ
(τ)
b (t) =

det C(τ)(t)({1, . . . , b− 1}, {1, . . . , b− 1})
det C(τ)(t)({1, . . . , b}, {1, . . . , b})

< 0

for b = 2, . . . ,
∣∣M(τ)

∣∣.
The next lemma provides equivalent conditions which are easier to use. We use this

result when analysing each main subphase of a deprioritised algorithm.

Lemma 4.2.3. Let a =
∣∣M(τ)

∣∣. For all t, the conditions (a), (b), and (c) above are

equivalent to the following:

(i) (−1)a+1 det C(τ)(t) > δ for some δ > 0,

(ii) (−1)a+b det C(τ)(t)(b, 1) > 0 for b = 1, . . . , a, and

(iii) (−1)a−b+1 det C(τ)(t)({1, . . . , b− 1}, {1, . . . , b− 1}) > 0 for b = 2, . . . , a.

Also, conditions (i) and (ii) imply (a) and (b).

Proof. Let M(τ) = {w1, . . . , wa} where w1 < . . . < wa. First we show that (a), (b),

and (c) imply (i), (ii), and (iii). Note that

C(τ)(t)({1, . . . , a}, {1, . . . , a})

is the empty matrix and by convention has determinant 1. Thus for b = 2, . . . , a we

have

det C(τ)(t)({1, . . . , b− 1}, {1, . . . , b− 1}) = Φ
(τ)
b (t) · · ·Φ(τ)

a (t).

By (c) the sign of Φ
(τ)
b (t) · · ·Φ(τ)

a (t) is (−1)a−b+1. Therefore (c) implies (iii).

Now by (iii) with b = 2 we have

(−1)a+1 det C(τ)(t)(1, 1) > 0.

57

So (ii) with b = 1 is satisfied. From (b) and (4.2.2) we have

p(τ)
w1

(t) =
det C(τ)(t)(1, 1)

det C(τ)(t)
> 0,

and so

(−1)a+1 det C(τ)(t) > 0. (4.2.7)

Together with (a), this implies that (i) is satisfied. Now from (4.2.7) and p
(τ)
r (t) > 0

for r ∈M(τ) condition (ii) holds for b = 3, . . . , a. Thus (a),(b), and (c) imply (i),(ii),

and (iii).

On the other hand, substituting (i) and (ii) into the equations p
(τ)
r (t), we obtain (a)

and (b). Similarly (iii) implies (c).

For a given type τ , we use (i), (ii), and (iii), plus some other conditions, to define

a domain V (τ)(δ) which specifies the main subphase of a phase of type τ for a

deprioritised algorithm. In particular, the main subphase of a phase of type τ lasts

while the scaled random variables of the deprioritised algorithm remain in V (τ)(δ).

When the scaled random variables exit V (τ)(δ), the algorithm either finishes or enters

a new phase of a different type. Later in the chapter, we complete the definition of

the deprioritised algorithm by defining V (τ)(δ) and the sequence of phase types of

the algorithm.

4.2.2 Irreducible type sets

We now define the irreducible type sets M(τ). Consider a phase of type τ during

a prioritised algorithm. This phase is a sequence of {τ, . . . , k}-clutches. Note that

at the start of each clutch of the phase, the random variables Yτ+1, . . . , Yk are zero.

Now an operation of type r, for r > τ , is performed only if Yr > 0. So for an

operation of type r to be performed during the phase, the random variable Yr must

increase. Thus we must have fr,w > 0 for some type w such that an operation of

type w is performed. This motivates the definitions and results that follow. Note

that these definitions and results concern only the functions fi,r, pr, and Φb and not

58

the random processes defined by the algorithms. Throughout this section, we refer

to the domain D(δ) defined after Definition 4.1.1.

Definition 4.2.4 (Expected Change Digraph (ECD)). The expected change

digraph (or ECD) for a phase of type τ is the digraph Γ(τ) on the vertices {τ, . . . , k}

for which there is an edge from w1 to w2 if and only if w1 6= w2 and there exists

(x, y0, . . . , ym) ∈ D(δ) such that

yτ+1 = · · · = yk = 0 and fw2,w1(x, y0, . . . , ym) 6= 0.

To check the condition above, we can substitute yi = 0 for i = τ + 1, . . . , k in fw2,w1

and simplify the resulting expression. We will obtain either 0 or a polynomial in

the variables x, y0, . . . , yτ , yk+1, . . . , ym. So determining an ECD should not be too

difficult, especially with the aid of a computer. Next we define the irreducible type

sets in terms of expected change digraphs.

Definition 4.2.5 (Irreducible Type Set). The irreducible type set for a phase

of type τ is the setM(τ) of vertices of Γ(τ) that can be reached from τ via directed

paths.

During a phase of type τ of a prioritised algorithm, (we believe that) operations

of types from {τ, . . . , k}\M(τ) a.a.s. do not occur. Thus we have defined the de-

prioritised algorithm so that, during a phase of type τ , operations of types from

{τ, . . . , k}\M(τ) are not performed. The most important property ofM(τ) is given

by the next lemma. It is also useful to note that τ ∈M(τ) always.

Lemma 4.2.6. Fix a type r ∈ {τ, . . . , k}\M(τ). Then for all (x, y0, . . . , ym) ∈ D(δ)

with yτ+1 = · · · = yk = 0, we have fr,w(x, y0, . . . , ym) = 0 for all w ∈M(τ).

59

Proof. Assume not. That is, assume for some r ∈ {τ, . . . , k}\M(τ) there exists

(x, y0, . . . , ym) ∈ D(δ) with yτ+1 = · · · = yk = 0 and fr,w(x, y0, . . . , ym) 6= 0 for some

w ∈M(τ). Then by definition, there is an edge from w to r in the expected change

digraph. Since w lies on a directed path from τ , so too must r. Therefore r ∈M(τ);

a contradiction.

Lemma 4.2.6 is useful because the functions ŷi that describe the scaled random

variables of the deprioritised algorithm (or so we wish to prove) are such that ŷi = 0

for i = τ + 1, . . . , k during a phase of type τ . These functions are defined in the

next section. We use Lemma 4.2.6 to show, for example, that the type distributions

obtained via Definition 4.2.1 with O = M(τ) and O = {τ, . . . , k} are the same.

However, the functions fi,r often satisfy a stronger, and very useful, property than

that implied by Lemma 4.2.6.

Definition 4.2.7 (Independent Types Property). The functions fi,r satisfy

the Independent Types Property for a phase of type τ if, for r ∈ {τ, . . . , k}\M(τ)

and for all (x, y0, . . . , ym) ∈ D(δ) with yτ+1 = · · · = yk = 0, we have

fr,w(x, y0, . . . , yk) = −δr,w

for w = 0, . . . , k.

When the functions fi,r satisfy the Independent Types Property for all the phase

types of a deprioritised algorithm, analysing the algorithm is significantly easier.

4.2.3 Using irreducible type sets

In this section, we consider the functions of Definition 4.2.1 obtained with O =M(τ)

and O = {τ, . . . , k}.

Let

ix(r, S) =

 |{w ∈ S : w ≤ r}| if r ∈ S,

0 if r /∈ S.

60

That is, if r ∈ S, then ix(r, S) is the index of r in S; otherwise ix(r, S) = 0. Recall

that p
(τ)
r are the functions obtained from (4.2.2) of Definition 4.2.1 using O =M(τ).

Lemma 4.2.8. Let N = {τ, . . . , k} and let nr be the functions (4.2.2) of Definition

4.2.1 with O = N . If the clutch matrix for a N -clutch has non-zero determi-

nant, then the clutch matrix for a M(τ)-clutch has non-zero determinant, and for

all (x, y0, . . . , ym) ∈ D(δ) with yτ+1 = · · · = yk = 0 we have

nr(x, y0, . . . , ym) =

 0 if r ∈ N\M(τ),

p
(τ)
r (x, y0, . . . , ym) if r ∈M(τ).

Moreover, if the Independent Types Property for a phase of type τ is satisfied and the

clutch matrix for a M(τ)-clutch has non-zero determinant, then the clutch matrix

for a N -clutch has non-zero determinant.

Proof. Fix (x, y0, . . . , ym) ∈ D(δ) with yτ+1 = · · · = yk = 0; all functions are

evaluated at (x, y0, . . . , ym), although we do not make this explicit. Let a = |N | and

let N\M(τ) = {w1, . . . , wb} where w1 < . . . < wb. So operations of types w1, . . . , wb

occur in N -clutches but not inM(τ)-clutches; note that τ /∈ {w1, . . . , wb}. Let D be

the clutch matrix for a N -clutch and C(τ) be the clutch matrix for aM(τ)-clutch.

We start by considering D. Let σ be the permutation of {1, . . . , a} that maps

ix(wi,N) to i (for i = 1, . . . , b) and maps ix(w,N) to ix(w,M(τ)) + b for w ∈M(τ).

Then permuting both the rows and columns of D by σ we obtain the matrix

D̂ =

 A B

O C

where

A =

fw1,w1 · · · fwb,w1

...
...

fw1,wb
· · · fwb,wb

 , (4.2.8)

B is a b× (a− b) matrix, O is a (a− b)× b matrix, and

C = D({ix(w1,N), . . . , ix(wb,N)}, {ix(w1,N), . . . , ix(wb,N)}) = C(τ).

By Lemma 4.2.6, each entry of O is zero.

61

As the permutation applied to the rows is the same as that applied to the columns,

we have

detD = det D̂ = detA det C(τ).

Since detD 6= 0 we have detA 6= 0 and det C(τ) 6= 0. Moreover, if the Independent

Types Property holds, then A = diag(−1, . . . ,−1) and so det C(τ) 6= 0 implies that

detD 6= 0.

Now fix r ∈ N\M(τ). We show that nr = 0. Let R be the rows of D with indices

from {ix(w,N) : w ∈ M(τ)}. By Lemma 4.2.6, each vector in R has a zero in

columns

ix(w1,N), . . . , ix(wb,N).

Note that these indices are all at least 2 as τ /∈ {w1, . . . , wb}. Let R̂ be the vectors

obtained by removing the first component of the vectors of R. There are a − b

vectors in R̂ and each vector appears as a row of D(ix(r,N), 1). So each vector of

R̂ has at least b zeros, namely in columns

ix(w1,N)− 1, . . . , ix(wb,N)− 1.

Hence the vectors of R̂ are contained in a subspace of dimension a− b− 1. So R̂ is

linearly dependent and thus detD(ix(r,N), 1) = 0. Therefore

nr = (−1)ix(r,N)+1 detD(ix(r,N), 1)

detD
= 0.

Now fix r ∈M(τ) and let i = ix(r,N). Consider the matrix D(i, 1). Let E be the ma-

trix obtained from D by replacing the entries in row i and column 1 with zeros, then

placing a 1 in the entry with row i and column 1. Then det E = (−1)i+1 detD(i, 1).

The permutation taking D to D̂ also takes E to

Ê =

 A B̂

O Ĉ

where A and O are as before, B̂ is another b× (a− b) matrix, and Ĉ is the matrix

obtained from C(τ) by replacing the entries of row ix(r,M(τ)) and column 1 with

zeros, then placing a 1 in the entry with row ix(r,M(τ)) and column 1.

62

Therefore

(−1)i+1 detD(i, 1) = det E = det Ê

= (−1)ix(r,M(τ))+1 detA det C(τ)(ix(r,M(τ)), 1).

Then we have

nr = (−1)i+1 detD(i, 1)/ detD

= (−1)ix(r,M(τ))+1 detA det C(τ)(ix(r,M(τ)), 1)

detA det C(τ)
= p(τ)

r .

This concludes the proof of the lemma.

We also have a similar lemma concerning to the functions Φb of Definition 4.2.1.

Lemma 4.2.9. Let N = {τ, . . . , k}. Denote the clutch matrices of a N -clutch and

a M(τ)-clutch by D and C(τ) respectively. For r ∈ N , define

F (r) = detD({1, . . . , r − τ}, {1, . . . , r − τ})

and for r ∈M(τ), define

E(r) = det C(τ)({1, . . . , ix(r,M(τ))− 1}, {1, . . . , ix(r,M(τ))− 1}).

Note that F (r) and E(r) are functions from Rm+2 to R. Also, for w ∈ N with

w ≤ maxM(τ), let

µ(w) = min {r ∈M(τ) : r ≥ w}.

Then, for w ∈ N and for all x = (x, y0, . . . , ym) ∈ D(δ) with yτ+1 = · · · = yk = 0,

there exists a function Cw : Rm+2 → R such that

F (w)(x) =

 Cw(x)E(µ(w))(x) if w ≤ maxM(τ),

Cw(x) if w > maxM(τ).

Moreover, if the Independent Types Property for a phase of type τ is satisfied, then

Cw =

 (−1)k−w−|M(τ)|+ix
(

µ(w),M(τ)
)

if w ≤ maxM(τ),

(−1)k−w+1 if w > maxM(τ).

63

Proof. The proof is similar to the proof of Lemma 4.2.8. So fix (x, y0, . . . , ym) ∈ D(δ)

with yτ+1 = · · · = yk = 0; again, all functions are evaluated at (x, y0, . . . , ym)

although we do not make this explicit. Define D̂ to be the matrix obtained by

permuting the rows and columns of D according to σ (where σ is defined in the

proof of Lemma 4.2.8). Let a = |N | and let b =
∣∣N\M(τ)

∣∣. Recall from the proof

of Lemma 4.2.8 that

D̂ =

 A B

O C

where A is a b × b matrix (as given by (4.2.8)), B is a b × (a − b) matrix, O is an

(a− b)× b zero matrix, and C = C(τ). Now fix w ∈ N . Then

F (w) = det D̂({σ(1), . . . , σ(w − τ)}, {σ(1), . . . , σ(w − τ)}).

Let ξw =
∣∣{τ, . . . , w − 1}\M(τ)

∣∣ and let χw =
∣∣{τ, . . . , w − 1} ∩M(τ)

∣∣. Then

σ({1, . . . , w − τ}) = {1, . . . , ξw} ∪ {b + 1, . . . , b + χw}.

Therefore

F (w) = det

 Â B̂

Ô Ĉ

where

• Â = A({1, . . . , ξw}, {1, . . . , ξw}),

• B̂ = B({1, . . . , ξw}, {1, . . . , χw}),

• Ô = O({1, . . . , χw}, {1, . . . , ξw}), and

• Ĉ = C(τ)({1, . . . , χw}, {1, . . . , χw}).

Now, if w > maxM(τ), then χw =
∣∣M(τ)

∣∣ and Ĉ is the empty matrix (which by

convention has determinant 1). Thus F (w) = det Â. Otherwise w ≤ maxM(τ) and

χw + 1 =
∣∣{r ∈M(τ) : r ≤ w − 1}

∣∣+ 1 = ix(µ(w),M(τ)),

64

thus

F (w) = det Â det C(τ)({1, . . . , χw}, {1, . . . , χw})

= det ÂE(µ(w)).

Now assume that the Independent Types Property is satisfied. Then Â is diagonal

of order
∣∣{w, . . . , k}\M(τ)

∣∣ and each diagonal entry is −1. If w > maxM(τ), then∣∣{w, . . . , k}\M(τ)
∣∣ = k − w + 1 and so

Cw = det Â = (−1)k−w+1.

Otherwise, ∣∣{w, . . . , k}\M(τ)
∣∣ = k − w + 1−

∣∣{r ∈M(τ) : r ≥ w}
∣∣

= k − w −
∣∣M(τ)

∣∣+ ix(µ(w),M(τ))

and so

Cw = (−1)k−w−|M(τ)|+ix(µ(w),M(τ)).

Lemma 4.2.8 and Lemma 4.2.9 suggest that operations of types fromN\M(τ) do not

affect the behaviour of a N -clutch. We may use either N orM(τ) to define the type

distribution of the deprioritised algorithm. We choose to define the deprioritised

algorithm using irreducible type sets.

To complete the definition of the deprioritised algorithm, we must specify the phases

of the algorithm. We do so as we define functions that approximate the scaled

random variables of the algorithm. But first we consider how to determine the

irreducible type sets for algorithms defined on random d-in d-out digraphs.

4.2.4 Determining irreducible type sets

For random d-in d-out digraphs, we do not require the expected change digraphs

to determine the irreducible type sets. Instead we can use a method called the

65

Degree Pair Progress Digraph (or DPPD) method, which we describe in this section.

The DPPD method should be easier to apply than using expected change digraphs

directly. Although we consider only algorithms for random d-in d-out digraphs in

this section, the main ideas could be adapted to other algorithms.

The DPPD method, as its name suggests, is based on how the degree pairs of vertices

change during an operation of a given deprioritisable algorithm. Note that we now

require prioritised algorithms to be deprioritisable . We start by defining a digraph

called the degree pair progress digraph, which can be defined for every deprioritisable

algorithm on a random d-in d-out digraph.

Definition 4.2.10 (Degree Pair Progress Digraph). Consider a deprioritisable

algorithm on a random d-in d-out digraph defining the random process {Gt}. For

each degree pair (i, j), let B(i,j) be the minimal set of degree pairs such that, for

all t ≥ 1, if vertex v has degree pair (i, j) in Gt, then a.a.s. v has degree pair

(p, q) ∈ B(i,j)∪{(i, j)} in Gt−1. Then the degree pair progress digraph is the digraph

with the vertex set

{(i, j) : 0 ≤ i, j ≤ d}

and the edge set ⋃
(i,j)

{(
(p, q), (i, j)

)
: (p, q) ∈ B(i,j)

}
.

For example, consider the algorithm DominatingSet2 described in Chapter 3. During

an operation of DominatingSet2, the degree pair of a vertex v changes only if v is

saturated or a randomly selected free point associated with v is exposed. As the

number of free points exposed by an operation is bounded (independently of n), a.a.s.

no vertex has two free points randomly selected and exposed during an operation.

Hence, if v has degree pair (i, j) (with (i, j) 6= (2, 2)) after an operation, then before

that operation a.a.s. v had degree pair (p, q) ∈ B(i,j) where

B(i,j) = {(i− 1, j), (i, j − 1)} ∩ {(p, q) : 0 ≤ p, q ≤ 2}.

66

(0,0)

(1,0) (0,1)

(2,0) (1,1) (0,2)

(2,1) (1,2)

Figure 4.2.1: The Degree Pair Progress Digraph for DominatingSet2 (with vertex

(2, 2) removed).

For (i, j) = (2, 2) we have B(2,2) = {(i, j) : 0 ≤ i, j ≤ 2}\{(2, 2)}. Note that by

definition (i, j) /∈ B(i,j). The DPPD for DominatingSet2 is shown in Figure 4.2.1;

since vertex (2, 2) has no out-neighbours but many in-neighbours, we do not show

vertex (2, 2).

To apply the DPPD method, the random variables Y0, . . . , Ym (from Definition 4.1.1

(iii)) must include the random variables Z(i,j) which count the number of vertices of

degree pair (i, j); moreover, each operation type must correspond to a degree pair.

So we define a function

dp: {0, . . . , k} → {(i, j) : 0 ≤ i, j ≤ d}

such that Yr = Zdp(r), and a function

ν : {(i, j) : 0 ≤ i, j ≤ d} → {0, . . . ,m}

such that Z(i,j) = Yν(i,j). Note that ν(dp(r)) = r for r ∈ {0, . . . , k}. We use these

functions to go between the general setting of Definition 4.1.1 and the specific setting

of algorithms for random d-in d-out digraphs.

For example, the algorithm DominatingSet2 has four types of operations. In Chapter

3, we took these types to be the degree pairs (0, 0), (0, 1), (0, 2), and (1, 2). Note

that we now consider the type (0, 0) to have a priority less than the priority of the

types (0, 1), (0, 2), and (1, 2). To analyse DominatingSet2 in the general setting

67

of this chapter, we must use the types 0, 1, 2, and 3. The two sets of types are

related via ν and dp in the following way: ν(0, 0) = 0, ν(0, 1) = 1, ν(0, 2) = 2, and

ν(1, 2) = 3. The definition of ν may be completed in any way.

We can determine the irreducible type sets using the degree pair progress digraph.

Consider a phase of type τ . We colour black those vertices corresponding (via dp

and ν) to types greater than τ . The remaining vertices, including the vertex dp(τ),

are coloured white. For example, Figure 4.2.2 shows the DPPD for DominatingSet2

coloured for a phase of type 1. Let O(τ) be the subset of {τ, . . . , k} such that r ∈ O(τ)

if and only if the vertex dp(r) or any of the in-neighbours of dp(r) are coloured white.

In Lemma 4.2.11, given below, we prove that under certain conditions the irreducible

type set for a phase of type τ is O(τ).

To apply the DPPD method, properties of the functions fi,r must be captured by

the DPPD. Fix a phase type τ . Recall that fi,r = gi,r/H
`i for some polynomials

gi,r and H, and some `i ≥ 1. Let Σ = {(b, a0, . . . , am) ∈ Zm+2 : b, a0, . . . , am ≥ 0}.

Then consider the polynomial gi,r + δi,rH
`i : we have

gi,r + δi,rH
`i =

∑
(b,a0,...,am)∈Σ

C(b, a0, . . . , am)xbya0
0 · · · yam

m

for real numbers C(b, a0, . . . , am). We say that fi,r is Bdp(i)-determined if

(a) for all (b, a0, . . . , am) ∈ Σ with C(b, a0, . . . , am) 6= 0, there exists j ∈ {i} ∪

ν(Bdp(i)) such that aj > 0, and

(b) for (p, q) ∈ Bdp(i), there exists b, a0, . . . , am with aν(p,q) > 0 and aj = 0 for

j = τ + 1, . . . , k, such that C(b, a0, . . . , am) 6= 0.

If fi,r is Bdp(i)-determined for all i ∈ {τ, . . . , k} and for all r ∈ {0, . . . , k}, then the

DPPD can be used to determine the irreducible types sets.

Lemma 4.2.11. Define O(τ) as above and recall that M(τ) is the irreducible type

set for a phase of type τ (see Definition 4.2.5). If fi,r is Bdp(i)-determined for all

i ∈ {τ, . . . , k} and for all r ∈ {0, . . . , k}, then O(τ) = M(τ) and the Independent

Types Property is satisfied for a phase of type τ .

68

(0,0)

(1,0) (0,1)

(2,0) (1,1) (0,2)

(2,1) (1,2)

Figure 4.2.2: The Degree Pair Progress Digraph for DominatingSet2 (with the vertex

(2, 2) removed) coloured for a phase of type 1.

Proof. Notice that, in the coloured DPPD (for a phase of type τ), a vertex (i, j) is

coloured black if and only if ν(i, j) ∈ {τ + 1, . . . , k}. Also τ ∈ O(τ) and τ ∈ M(τ)

by the definitions of O(τ) andM(τ).

Consider w ∈ O(τ) with w 6= τ . Then in the coloured DPPD, the vertex dp(w)

has at least one white in-neighbour. That is, there exists (p, q) ∈ Bdp(w) such that

ν(p, q) /∈ {τ + 1, . . . , k}. Now fw,τ is Bdp(w)-determined: so by part (b), setting

yi = 0 in fw,τ for i = τ + 1, . . . , k we obtain a non-zero rational function. Note

that τ + 1 > 0. Hence there exists (x, y0, . . . , ym) ∈ D(δ) with yτ+1 = · · · = yk = 0

and fw,τ (x, y0, . . . , ym) 6= 0. So in the ECD there is an edge from τ to w and thus

w ∈M(τ).

Now consider w ∈ {τ +1, . . . , k}\O(τ). In the coloured DPPD, all the in-neighbours

of the vertex dp(w), and the vertex dp(w), are coloured black. Hence, for all

(p, q) ∈ Bdp(w) ∪ {dp(w)}, we have ν(p, q) ∈ {τ + 1, . . . , k}. Fix u ∈ {0, . . . , k}.

Now fw,u is Bdp(w)-determined: so by part (a), for all (x, y0, . . . , ym) ∈ D(δ) with

yτ+1 = · · · = yk = 0

we have fw,u(x, y0, . . . , ym) = −δw,u. Hence, in the ECD, vertex w has zero in-degree

and so w /∈ M(τ). Therefore O(τ) = M(τ) and, moreover, the Independent Types

Property is satisfied for a phase of type τ .

69

The DPPD for DominatingSet2 coloured for a phase of type 1 is given in Figure

4.2.2. Applying Lemma 4.2.11 we can see that the irreducible type set for a phase of

type 1 is {1, 2, 3}, which corresponds to the set of degree pairs {(0, 1), (0, 2), (1, 2)}.

Later, in Chapter 6, we shall see examples whereM(τ) 6= {τ, . . . , k}.

With a slight adjustment, the DPPD method could be used for algorithms for ran-

dom regular undirected graphs. Many such algorithms use random variables count-

ing the number of vertices of a given degree. In this case the corresponding DPPD

would be a directed path, with edges from vertex i to vertex i + 1. Assuming the

DPPD method is valid, the irreducible type sets would have size 1 or 2. Indeed,

this is assumed in Wormald’s [61] earlier analysis of deprioritised algorithms. For

the algorithms we consider, most irreducible type sets have size greater than two.

4.3 The Differential Equations

We now define functions that, under certain conditions, asymptotically approximate

the scaled random variables of the deprioritised algorithm. The behaviour of these

functions depends on the phase of the algorithm and so are defined piecewise, with

each piece corresponding to a phase. The functions for each piece are the solutions

to a system of differential equations defined using the functions fi,r and the type

distribution given by p
(τ)
r . For each phase, we choose the domain on which we

solve the differential equations so that the solutions do indeed approximate the

scaled random variables; the domain also determines the phases of the deprioritised

algorithm. From the functions defined in this section, asymptotic properties of the

deprioritised algorithm are determined.

The differential equations are suggested by the expected changes in the random

variables Y0, . . . , Ym due to an operation. For the rest of this chapter, we consider

the random process defined by the deprioritised algorithm. Consider a phase of type

τ . The expected change in the random variable Yi due to the operation at step t

(occurring in a phase of type τ) is

70

E(Yi(t + 1)− Yi(t) | opt+1) =
k∑

r=0

E(Yi(t + 1)− Yi(t) | τ(opt+1) = r)P(τ(opt+1) = r)

=
k∑

r=0

fi,r(t)p
(τ)
r (t) + o(1).

Thus, for a phase of type τ , we use the differential equations

dyi

dx
(x; τ) =

k∑
r=0

fi,r(x)p(τ)
r (x) (4.3.1)

for 0 ≤ i ≤ m. Solving these differential equations with appropriate initial condi-

tions we obtain functions that, under certain conditions (including Lipschitz condi-

tions), a.a.s. approximate the scaled random variables in a phase of type τ .

The domain on which we solve the differential equations is defined as the intersection

of three subsets of Rm+2. Of course, the differential equations must be Lipschitz on

this domain. Let C be a constant such that Cn is an upper bound on the number

of operations performed by the deprioritised algorithm. Recall the constant M and

polynomial H from the definition of deprioritisable algorithms (Definition 4.1.1). In

particular, M is an upper bound on each |Yi| /n and the denominator of each fi,r is

some power of the polynomial H. Recall that

D(δ) = {(x, y0, . . . , ym) : −δ < x < C, y0 > δ, H > δ,

|yi| < 2M (i = 0, . . . ,m)}.

On D(δ) the functions fi,r are Lipschitz, which we prove later in this section. The

parameter δ expresses how close to the end of the deprioritised algorithm we can ap-

proximate the random variables; while the condition y0 > δ allows the preprocessing

subphases to be performed.

71

Recall that C(τ) is the clutch matrix for anM(τ)-clutch. Now for b = 1, . . . ,
∣∣M(τ)

∣∣,
let

q
(τ)
b = (−1)|M(τ)|+b det C(τ)(b, 1). (4.3.2)

We then define

L(τ)(δ) = {(x, y0, . . . , ym) : (−1)|M(τ)|+1 det C(τ) > δ,

q
(τ)
b > 0 (b = 1, . . . ,

∣∣M(τ)
∣∣)}.

By Lemma 4.2.3, the definition of L(τ)(δ) ensures that, on D(δ) ∩ L(τ)(δ), the dif-

ferential equations (4.3.1) are Lipschitz and the functions p
(τ)
r define a probability

distribution.

Now for b = 2, . . . ,
∣∣M(τ)

∣∣, we let

E
(τ)
b = (−1)|M(τ)|−b+1 det C(τ)({1, . . . , b− 1}, {1, . . . , b− 1}). (4.3.3)

Then we define

A(τ) = {(x, y0, . . . , ym) : yτ > 0, E
(τ)
b > 0 (b = 2, . . . ,

∣∣M(τ)
∣∣)}.

The domain A(τ) defines the boundaries of a phase of type τ . We solve the differential

equations (4.3.1) on the domain V (τ)(δ) = D(δ) ∩ L(τ)(δ) ∩ A(τ).

Solutions to the differential equations (4.3.1) for each phase are combined to define

functions ŷi (i = 0, . . . ,m) that, under certain conditions, a.a.s. approximate the

scaled random variables for nearly the entire deprioritised algorithm. The functions

ŷi are defined piecewise, with piece j given by functions y
(j)
i (for i = 0, . . . ,m) which

approximate the scaled random variables during phase j of type τj. So to define ŷi,

we need to know the types of the phases of the deprioritised algorithm. We assume

that the type of the first phase is given; it can be determined from the prioritised

algorithm. For subsequent phases, the phase type is determined by the functions

y
(j)
i which correspond to the previous phase. We expect, but do not prove, that the

number and types of phases are the same for both the prioritised and deprioritised

algorithms.

72

Definition 4.3.1 (Functions ŷi). Let x0 = 0 and define ŷi(x0) = limn→∞ Yi(0)/n

for i = 0, . . . ,m (recall that these limits exist for deprioritisable algorithms). Fix

δ > 0 and assume that τ1 is given and satisfies

ŷτ1+1(x0) = · · · = ŷk(x0) = 0.

Denote the closure of V (τ)(δ) by V
(τ)

(δ). Assume that j ≥ 1 and that τj is defined.

If

(xj−1, ŷ0(xj−1), . . . , ŷm(xj−1)) /∈ V
(τj)

(δ),

then there is no phase j, so set K = j− 1 and finish the definition of ŷi. Otherwise

let y
(j)
0 , . . . , y

(j)
m be the solutions to the differential equations (4.3.1) with τ = τj

and initial conditions y
(j)
i (xj−1) = ŷi(xj−1) (for i = 0, . . . ,m) on some open set

containing V (τ)(δ) (the Lipschitz property guarantees that a unique solution exists).

Then define xj to be the infimum of those x > xj−1 for which

(x, y
(j)
0 (x), . . . , y(j)

m (x)) /∈ V (τj)(δ).

We extend ŷi by defining ŷi(x) = y
(j)
i (x) for x ∈ [xj−1, xj]. Whether there is a next

phase, and if so its type, is determined by the following steps:

(i) if (xj, y
(j)
0 (xj), . . . , y

(j)
m (xj)) lies on the boundary of D(δ), then there is no phase

j + 1, so set K = j and finish the definition of ŷi; otherwise

(ii) if (xj, y
(j)
0 (xj), . . . , y

(j)
m (xj)) lies on the boundary of

{(x, y0, . . . , ym) : E
(τj)
b > 0 for b = 2, . . . ,

∣∣M(τj)
∣∣},

then we set τj+1 to be the maximum r ∈M(τj) such that E
(τj)
b (xj) = 0 where

b = ix(r,M(τj)); otherwise

(iii) if y
(j)
τj (xj) = 0, then we set τj+1 to be the maximum r ∈ {0, . . . , k} such that

y
(j)
r (xj) > 0; otherwise

(iv) there is no phase j + 1, so set K = j and finish the definition of ŷi.

Note that order is important in the above steps, and that τj may be defined even if

K = j − 1.

73

The above definition allows for a more general sequence of phases that allowed in

Wormald’s [61] previous analysis. In particular, we allow multiple phases of the

same type and we allow phases of type 0. Note that a phase of type 0 is different

from a preprocessing subphase, since operations of types greater than 0 may (and

usually do) occur. The next corollary gives some useful properties of the phase types

defined by Definition 4.3.1.

Corollary 4.3.2. For some j ≥ 2, assume that τj is defined according to Definition

4.3.1. Then the following are true:

• the point (xj−1, ŷ0(xj−1), . . . , ŷm(xj−1)) lies in D(δ),

• if τj > τj−1, then τj ∈M(τj−1) and for β = ix(τj,M(τj−1)) we have

E
(τj−1)
β (xj−1) = 0 and E

(τj−1)
b (xj−1) > 0

for b = β + 1, . . . ,
∣∣M(τj−1)

∣∣, and

• if τj < τj−1, then E
(τj−1)
b (xj−1) > 0 for b = 2, . . . ,

∣∣M(τj−1)
∣∣.

Later in the chapter we describe some properties of the functions ŷi. First though,

we prove that the differential equations (4.3.1) are Lipschitz on the domain V (τ)(δ).

We also prove that the functions defining the domain V (τ)(δ), and their derivatives,

are Lipschitz.

4.3.1 Proving the Lipschitz property

To prove the Lipschitz property of a function we use the following standard lemma

[43, Chapter 2].

Lemma 4.3.3. Let R ⊂ Ra be embedded in a larger region D ⊆ Ra such that

every point of R is at least a (Euclidean) distance of ρ from the boundary of D.

If f = f(x1, . . . , xa) : Ra → R and ∂f/∂xi (i = 0, . . . , a) are bounded by M and N

respectively on D, then f satisfies a Lipschitz condition on R with Lipschitz constant

max

(
2M

ρ
, aN

)
.

74

We first show that each fi,r is Lipschitz in the variables x, y0, . . . , ym on the domain

D(δ). From Definition 4.1.1, the functions fi,r of a deprioritisable algorithm can

be written as gi,r/H
a where gi,r and H are polynomials in x, y0, . . . , ym and a is a

positive integer. The partial derivatives of each fi,r have a similar form: a polynomial

in x, y0, . . . , ym divided by some positive power of H. So the functions fi,r and their

partial derivatives are bounded on the domain

D̂(δ) = {(x, y0, . . . , ym) : −3δ/2 ≤ x ≤ C + δ/2, y0 ≥ δ/2, H ≥ δ/2,

|yi| ≤ 2M + δ/2 for i = 0, . . . ,m.}

Every point of D(δ) is at least a distance of δ/2 from the boundary of D̂(δ). So by

Lemma 4.3.3 the functions fi,r are Lipschitz on D(δ).

Now consider the functions dyi/dx given by (4.3.1). Similarly to the above, each

function dyi/dx is a polynomial in x, y0, . . . , ym divided by some positive power of

H and some positive power of det C(τ). The partial derivatives of each dyi/dx also

have the same form. So let

L̂(τ)(δ) = {(x, y0, . . . , ym) : det C(τ) ≥ δ/2}.

Then each dyi/dx and their partial derivatives are bounded on D̂(δ)∩L̂(τ)(δ). Every

point of D(δ)∩L(τ)(δ) is at least a distance of δ/2 from the boundary of D̂(δ)∩L̂(τ)(δ);

so by Lemma 4.3.3 the functions dyi/dx are Lipschitz on D(δ) ∩ L(τ)(δ).

The same argument shows that higher order derivatives of each dyi/dx are also

Lipschitz on D(δ)∩L(τ)(δ). Moreover, the same argument shows that the functions

defining the domain V (τ)(δ), and their derivatives, are Lipschitz on D(δ) ∩ L(τ)(δ).

Note that for any δ > 0 and τ ∈ {1, . . . , k} we can always find some open and

bounded set W containing D(δ)∩L(τ)(δ) on which the functions dyi/dx are Lipschitz.

So the solutions to the differential equations given by (4.3.1) exist on a domain larger

than require. This is useful when solving the differential equations numerically. We

now consider properties of the functions ŷi.

75

4.3.2 Properties of the differential equations

In this section we note some properties of the functions ŷi. These properties are

useful when applying the theory presented in this chapter and Chapter 5. We start

by considering the differential equations, given by (4.3.1), for a phase of type τ .

Lemma 4.3.4. Let dyi/dx be defined by (4.3.1). For all (x, y0, . . . , ym) ∈ D(δ), we

have
dyi

dx
(x, y0, . . . , ym) = 0

for i ∈M(τ)\{τ}. Furthermore, if yτ+1 = · · · = yk = 0 also, then for i = τ +1, . . . , k

we have
dyi

dx
(x, y0, . . . , ym) = 0.

Proof. LetM(τ) = {w1, . . . , wa} where w1 < · · · < wa. Recall that C(τ) is the clutch

matrix for anM(τ)-clutch. Then

det C(τ)dyi

dx
= detA where A =

fi,w1 fw2,w1 · · · fwa,w1

...
...

...

fi,wa fw2,wa · · · fwa,wa

 .

For i ∈ M(τ) with i > τ , the matrix A has two equal columns, and so dyi/dx = 0.

While for i ∈ {τ + 1, . . . , k}\M(τ), by Lemma 4.2.6, when yτ+1 = · · · = yk = 0 the

first column of A is all zero. So again dyi/dx = 0.

Using Lemma 4.3.4 and the definition of the phase types (from Definition 4.3.1), we

prove below that for each phase j, the functions ŷτj+1, . . . , ŷk are zero on the interval

[xj−1, xj]. We also note that ŷτj
(xj−1) = 0 when τj > τj−1, which we will find useful

in the next chapter.

Lemma 4.3.5. For j = 1, . . . , K, where K is defined in Definition 4.3.1, we have

ŷτj+1(x) = · · · = ŷk(x) = 0

for all x ∈ [xj−1, xj]. Therefore, for j > 1, if τj > τj−1, then ŷτj
(xj−1) = 0.

76

Proof. We prove the lemma by induction on j. So assume that for phase j we have

ŷτj+1(xj−1) = · · · = ŷk(xj−1) = 0.

This is true for phase 1 from Definition 4.3.1. Consider the differential equations

obtained by setting yτ+1, . . . , yk to zero in dyi/dx given by (4.3.1). These modified

differential equations are Lipschitz on V (τj)(δ) for the same reasons given in Section

4.3.1. Thus the modified differential equations have a unique solution which, by

Lemma 4.3.4, extend to the unique solution of the original differential equations

dyi/dx. Thus for i = τj + 1, . . . , k we have ŷi(x) = y
(j)
i (x) = 0 for x ∈ [xj−1, xj].

Now consider phase j + 1. If τj+1 > τj, then we have already shown that ŷi(xj) = 0

for i = τj+1 + 1, . . . , k; on the other hand, if τj+1 < τj, then by definition we have

ŷi(xj) = 0 for i = τj+1 + 1, . . . , k. Hence the result follows.

4.4 The Deprioritised Algorithm

We finish Chapter 4 by explicitly defining the deprioritised algorithm based on a

given deprioritisable algorithm. Recall that the deprioritised algorithm uses the

same operations and random variables as the deprioritisable algorithm. Pseudo-

code for the deprioritised algorithm is given in Algorithm 5. We do not expect the

deprioritised algorithm to be implemented in practice, instead the deprioritisable

algorithm would be used.

As input, the deprioritised algorithm takes a sequence of positive real numbers

ε1, . . . , εK . These numbers are the (scaled) lengths of the preprocessing subphases.

The number of phases, and their types, are determined by Definition 4.3.1, which

relies only on the definition of the deprioritisable algorithm. The domains D(δ) and

V (τ)(δ) and the type distribution also depend solely on the deprioritisable algorithm.

During the main subphase of the deprioritised algorithm, the types of the opera-

tions performed are chosen randomly. So there is a chance that an operation of the

selected type is not able to be performed. In such a case, we say that the algorithm

77

has failed and we stop the execution of the algorithm. The analysis of the depri-

oritised algorithm, presented in the next chapter, shows that a.a.s. the deprioritised

algorithm does not fail.

Algorithm 5 The deprioritised algorithm
Set G := G0;

for j = 1, . . . , K do

The preprocessing subphase of phase j

for v = 1, . . . , bεjnc do

if (Y0(G)/n, . . . , Ym(G)/n) ∈ D(0) then

Perform an operation of type 0;

else

return fail;

end if

end for

The main subphase of phase j

while (Y0(G)/n, . . . , Ym(G)/n) ∈ V (τj)(0) do

Calculate the type distribution p
(τj)
r (Y0(G), . . . , Ym(G)) for r = 0, . . . , k;

Select a type r randomly using the type distribution;

if Yr(G) = 0 then

return fail;

else

Perform an operation of type r;

end if

end while

end for

In this chapter we have introduced deprioritisable algorithms and described the

deprioritised algorithm based on a given deprioritisable algorithm. We have also

defined functions ŷi which we believe approximate the scaled random variables of the

deprioritised algorithm. In the next chapter we prove that, when certain conditions

are satisfied, the functions ŷi (given in Definition 4.3.1) a.a.s. approximate the scaled

random variables of the deprioritised algorithm. We may then determine properties

of the deprioritised algorithm from the functions ŷi.

78

Chapter 5

Analysing Deprioritised

Algorithms

In Chapter 4 we defined the deprioritised algorithm based on a given deprioritisable

algorithm. In this chapter we analyse the asymptotic behaviour of the deprioritised

algorithm. So we only consider the random process defined by the deprioritised

algorithm. Recall the functions ŷi, defined in Chapter 4, which correspond to the

(scaled) random variables of the deprioritised algorithm. (Throughout this chapter,

we use the definitions and notation introduced in Chapter 4). The major result of

this thesis, presented as Theorem 5.4.1, shows that under certain conditions, a.a.s.

the functions ŷi approximate closely the scaled random variables of the deprioritised

algorithm. In the next chapter, we apply Theorem 5.4.1 to two algorithms for

random d-in d-out digraphs.

A deprioritised algorithm is analysed phase by phase. Each phase is analysed us-

ing Theorem 5.1.1, which is similar to theorems of Wormald [61, Theorem 3] [60,

Theorem 5.1] and is introduced in Section 5.1. In Section 5.2 we describe how

Theorem 5.1.1 is applied for a particular phase. Next we motivate and state the

conditions under which the functions ŷi approximate the scaled random variables of

the deprioritised algorithm for a given phase; in particular, Section 5.3 describes the

79

hypotheses to Theorem 5.4.1, the main theorem of this thesis. The statement and

proof of Theorem 5.4.1 is given in Section 5.4. Finally we consider how to satisfy the

hypotheses of Theorem 5.4.1 and determine a more convenient set of hypotheses,

which are useful for many algorithms.

5.1 A Differential Equations Theorem

Each phase of a deprioritised algorithm is analysed with Theorem 5.1.1, given below.

This theorem is very similar to two theorems by Wormald [61, Theorem 3], [60,

Theorem 5.1]. Using Theorem 5.1.1 we will show that, when certain conditions

are satisfied, a.a.s. the scaled random variables Yi(t)/n are approximated by the

solutions to a certain system of differential equations.

Theorem 5.1.1 concerns a discrete time Markov process (indexed by a variable n,

although not always explicitly) and random variables Z1, . . . , Za defined on this

process. There are three main hypotheses to Theorem 5.1.1. Each hypothesis refers

to a domain W which contains some subset of the possible values of the scaled

random variables. The first hypothesis ensures that a.a.s. the process starts in

W . The Boundedness Hypothesis, which is the second hypothesis, ensures that the

change in the random variables during one step of the process is not too large. The

third hypothesis, the Trend Hypothesis, ensures that (asymptotically) the behaviour

of the random variables is described by the random variables alone.

Before stating the theorem we need a few definitions. For a given domain W ⊆ Ra+1,

we define the stopping time TW for the random variables Z1, . . . , Za to be the mini-

mum t such that

(t/n, Z1(t)/n, . . . , Za(t)/n) /∈ W.

A function f : Rb → R is Lipschitz on W (for W ⊆ Rb) with Lipschitz constant L

if, for a positive constant L, for all x and y in W we have

|f(x)− f(y)| ≤ L max
1≤i≤b

|xi − yi|.

80

Note that the function ‖ · ‖ defined by ‖x‖ = max1≤i≤b |xi| is the `∞ norm. Finally,

a sequence of functions fn uniformly converges to a function f on an interval I if,

for every ε > 0, there exists an N such that

|f(x)− fn(x)| < ε

for all x ∈ I and all n > N . We are now ready to state Theorem 5.1.1.

Theorem 5.1.1. Let a be a fixed positive integer. For 1 ≤ ` ≤ a, let Z` be a random

variable defined on a discrete time Markov process {Gt}t≥0. Assume that W ⊂ Ra+1

is open and bounded such that

(i) for some closed subset U of W , asymptotically almost surely

(0, Z1(0)/n, . . . , Za(0)/n) ∈ U,

(ii) (Boundedness Hypothesis) for some constant β we have

max
1≤`≤a

|Z`(t + 1)− Z`(t)| ≤ β

for t ≥ 0, and

(ii) (Trend Hypothesis) for some functions F` : Ra+1 → R, which are Lipschitz

on W for all 1 ≤ ` ≤ a, and for some λ = λ(n) = o(1), we have

|E(Z`(t + 1)− Z`(t) |G0, . . . , Gt)− F`(t/n, Z1(t)/n, . . . , Za(t)/n)| ≤ λ

for t < TW and 1 ≤ ` ≤ a.

Then the following are true:

(a) For (0, ẑ1, . . . , ẑa) ∈ W the system of differential equations

dz`

dx
= F`(x, z1, . . . , za) for ` = 1, . . . , a (5.1.1)

has a unique solution in W for z` : R → R such that z`(0) = ẑ` for 1 ≤ ` ≤ a

and which extends to points arbitrarily close to the boundary of W .

81

(b) Asymptotically almost surely, for ` = 1, . . . , a, we have

Z`(t) = nz`(t/n) + o(n)

uniformly for 0 ≤ t ≤ σn, where (x, z1(x), . . . , za(x)) is the solution to (5.1.1)

with initial conditions (0, Z1(0)/n, . . . , Za(0)/n) and σ = σ(n) is the supremum

of those x to which the solution can be extended before being within `∞-distance

Cµ of the boundary of W , for some constant C > 0 and for some µ > λ with

µ = o(1).

5.2 Applying the Differential Equations Theorem

Theorem 5.1.1 is used to analyse each phase of the deprioritised algorithm. Re-

call that each phase is split into a preprocessing subphase and a main subphase;

Theorem 5.1.1 is applied to both subphases. In this section, we introduce the func-

tions obtained by applying Theorem 5.1.1 and determine some properties of these

functions.

Consider phase j of the deprioritised algorithm. Set the length of the preprocessing

subphase to be εj for some εj > 0. Then tj−1 = bnxj−1c is the end of phase j−1 and

the start of phase j, and t′j−1 = tj−1 +bnεjc is the end of the preprocessing subphase

of phase j and the start of the main subphase. Later we take εj = εj(n) = o(1) and

show that the effect of the preprocessing subphases on the behaviour of the random

variables is negligible.

For the preprocessing subphase, we apply Theorem 5.1.1 to the random variables

Zi(t) = Yi(tj−1 + t) with the functions Fi = fi,0 on the domain

Wδ,εj
= D(δ) ∩ {(x, y0, . . . , ym) : −δ < x < 2εj}.

Recall that during a preprocessing subphase, only type 0 operations are performed.

The Boundedness and Trend Hypotheses are satisfied by the definition of depri-

oritisable algorithms (see Definition 4.1.1). Hypothesis (i) is satisfied whenever we

82

have

(xj−1, ŷ0(xj−1), . . . , ŷm(xj−1)) ∈ D(δ) (5.2.1)

and ∣∣(xj−1, ŷ0(xj−1), . . . , ŷm(xj−1))

− (xj−1, Y0(tj−1)/n, . . . , Ym(tj−1)/n)
∣∣ = o(1).

(5.2.2)

We will only analyse phase j when the above two conditions hold. Note that, for

j > 1, equation (5.2.1) holds whenever τj is defined according to Definition 4.3.1

(see Corollary 4.3.2).

Now define (x, z
(p)
0 (x), . . . , z

(p)
m (x)) to be the solution to the system of differential

equations
dyi

dx
= fi,0

with initial conditions (0, Y0(tj−1)/n, . . . , Ym(tj−1)/n) on Wδ,εj
. Applying Theorem

5.1.1 we obtain the following results concerning the functions z
(p)
i (i = 0, . . . ,m).

Lemma 5.2.1. If (5.2.1) and (5.2.2) hold, then for all εj sufficiently small, a.a.s.

we have

(i) Yi(t
′
j−1) = nz

(p)
i (εj) + o(n) for i = 0, . . . ,m, and

(ii) for x ∈ [0, εj], the point (x, z
(p)
0 (x), . . . , z

(p)
m (x)) is bounded away from the

boundary of Wδ,εj
.

Proof. By applying Theorem 5.1.1 as described above, we conclude that for

i = 0, . . . ,m, a.a.s. we have

Yi(tj−1 + t) = nz
(p)
i (t/n) + o(n) (5.2.3)

for 0 ≤ t ≤ σn, where σ is the supremum of those x to which (x, z
(p)
0 (x), . . . , z

(p)
m (x))

can be extended before being within some distance d(n) = o(1) of the boundary of

Wδ,εj
.

83

We now show that σ → 2εj for sufficiently small εj. Consider the condition H > δ

from the definition of D(δ) (and hence the definition of Wδ,εj
). Recall that H is

a polynomial such that the denominator of each fi,r is some power of H. So the

condition H > δ ensures the functions fi,r are Lipschitz. By (5.2.1), (5.2.2), and the

Lipschitz property of H we have

H(tj−1/n, Y0(tj−1)/n, . . . , Ym(tj−1)/n) > δ

for sufficiently large n. Since each operation changes the random variables by only

a constant, and as H is Lipschitz, we have

H((tj−1 + t)/n, Y0(tj−1 + t)/n, . . . , Ym(tj−1 + t)/n) =

H(tj−1/n, Y0(tj−1)/n, . . . , Ym(tj−1)/n) + O(t/n)

for t = 0, . . . , b2nεjc. Thus, for all εj sufficiently small and for n sufficiently large,

we have

H((tj−1 + t)/n, Y0(tj−1 + t)/n, . . . , Ym(tj−1 + t)/n)

bounded above δ for t = 0, . . . , b2nεjc. Therefore, from (5.2.3), a.a.s.

H(x, z
(p)
0 (x), . . . , z(p)

m (x))

is bounded above δ for x ∈ [0, εj]. Similar reasoning applies for the other conditions

defining Wδ,εj
except x < 2εj. Therefore σ → 2εj and the result follows.

To analyse the preprocessing subphase of phase j, we also consider the solution

(x, y
(p)
0 (x), . . . , y

(p)
m (x)) to the system of differential equations dyi/dx = fi,0, with

initial conditions (xj−1, ŷ0(xj−1), . . . , ŷm(xj−1)). The functions y
(p)
i are useful be-

cause their initial conditions are deterministic. Using the following standard lemma

[61, Lemma 1], we can show that when (5.2.2) holds, the solutions z
(p)
i and y

(p)
i are

very similar.

84

Lemma 5.2.2 ([61, Lemma 1]). Let W be some bounded and open set. Suppose

that (x,yn(x)) and (x, zn(x)) satisfy the same differential equations on W with initial

conditions (0,yn(0)) and (0, zn(0)) respectively. If the differential equations are Lip-

schitz on W and |yn(0)− zn(0)| → 0 as n→∞, then |yn(x)− zn(x)| → 0 uniformly

for x ∈ [0, x?
n) where x?

n is the infimum of those x > 0 for which (x,yn(x)) /∈ W or

(x, zn(x)) /∈ W .

In particular, for z
(p)
i and y

(p)
i we have the following result.

Lemma 5.2.3. If (5.2.1) and (5.2.2), then for all εj sufficiently small, a.a.s. we

have ∣∣∣(z(p)
0 (εj), . . . , z

(p)
m (εj))− (y

(p)
0 (x′j−1), . . . , y

(p)
m (x′j−1))

∣∣∣ = o(1).

Proof. Define wi(x) = y
(p)
i (xj−1 + x). By (5.2.2), we may apply Lemma 5.2.2 to

(x, z
(p)
0 (x), . . . , z

(p)
m (x)) and (x, w0(x), . . . , wm(x)) on the domain Wδ,εj

. Assume that

(x?, w0(x
?), . . . , wm(x?)) /∈ Wδ,εj

for some positive x? ≤ εj. Then by Lemma 5.2.2, the solution (x, z
(p)
0 (x), . . . , z

(p)
m (x))

approaches arbitrarily close to the boundary of Wδ,εj
at x = x?. This contradicts

part (ii) of Lemma 5.2.1; hence the result follows.

We also apply Theorem 5.1.1 to the main subphase of phase j. So we define

(x, z
(j)
0 (x), . . . , z

(j)
m (x)) to be the solution to the system of differential equations

(4.3.1) (with τ = τj) for the initial conditions

(0, Yi(t
′
j−1)/n, . . . , Ym(t′j−1)/n).

Theorem 5.1.1 is used in the proof of Theorem 5.4.1 to show that, under certain

conditions, the functions z
(j)
i approximate the scaled random variables during the

main subphase of phase j. Recall the functions y
(j)
i (from Definition 4.3.1) which

are used to define ŷi on the interval corresponding to phase j. We will relate the

functions z
(j)
i and y

(j)
i using Lemma 5.2.2 as in the proof of Lemma 5.2.3. Thus we

show that, under conditions given in the next section, the functions ŷi approximate

the scaled random variables for the deprioritised algorithm during phase j.

85

5.3 The Hypotheses

Theorem 5.4.1 allows us to analyse a deprioritised algorithm based on a given de-

prioritisable algorithm. In this section, we determine hypotheses that allow phase

j to be analysed. So Theorem 5.4.1 requires that these hypotheses be satisfied for

each phase.

Each hypothesis for phase j concerns one or more of the functions defining the

domain V (τj)(δ). These are the functions in the set

B(τj)(δ) = {y0 − δ, x + δ, C − x, H − δ, yτj
,

(−1)|M
(τj)|+1 det C(τj) − δ,

2M − yi (i = 0, . . . ,m),

yi + 2M (i = 0, . . . ,m),

q
(τj)
b (b = 1, . . . ,

∣∣M(τj)
∣∣),

E
(τj)
b (b = 2, . . . ,

∣∣M(τj)
∣∣)}

(5.3.1)

where q
(τj)
b and E

(τj)
b are defined by (4.3.2) and (4.3.3) respectively. Notice that

h(x, y0, . . . , ym) > 0 for all h ∈ B(τj)(δ) =⇒ (x, y0, . . . , ym) ∈ V (τj)(δ). (5.3.2)

Moreover a point (x, y0, . . . , ym) satisfying h(x, y0, . . . , ym) ≥ 0 for all h ∈ B(τj)(δ)

lies in the closure of V (τj)(δ). From the definition of ŷi (Definition 4.3.1), we only

analyse the deprioritised algorithm while the functions

y0 − δ, x + δ, C − x, H − δ,

2M − yi (i = 0, . . . ,m), yi + 2M (i = 0, . . . ,m)

are strictly positive. The remaining functions of B(τj)(δ) may be zero at some point

of the analysis. Thus it is also useful to define the set of functions

B̂(τj)(δ) = {(−1)|M
(τj)|+1 det C(τj) − δ, yτj

,

q
(τj)
b (b = 1, . . . ,

∣∣M(τj)
∣∣),

E
(τj)
b (b = 2, . . . ,

∣∣M(τj)
∣∣)}.

86

To prove Theorem 5.4.1, we require that phases have non-zero length. That is, we

require that for some c1 > xj−1 we have

(x, y
(j)
0 (x), . . . , y(j)

m (x)) ∈ V (τj)(δ)

for x ∈ [xj−1, c1]. By (5.3.2), it is sufficient to show that, for all h ∈ B(τj)(δ), we

have

h(x, y
(j)
0 (x), . . . , y(j)

m (x)) > 0

for x ∈ [xj−1, c1]. Similarly, we need to show that for some c2 > 0, we have

(x, z
(j)
0 (x), . . . , z(j)

m (x)) ∈ V (τj)(δ)

for x ∈ [0, c2]. So we also consider the functions h(x, z
(j)
0 (x), . . . , z

(j)
m (x)) for x ≥ 0.

Such considerations lead us to the hypotheses of Theorem 5.4.1.

5.3.1 Remaining in V (τ)(δ)

We consider a general setting. Assume that y0(x), . . . , ym(x) satisfy the differential

equations dyi/dx = gi (i = 0, . . . ,m) for some functions gi of x, y0, . . . , ym. For a

function h of x, y0, . . . , ym, the derivative of h with respect to x is given by

m∑
i=0

∂h

∂yi

· gi.

There are two important cases: when dyi/dx = fi,0, which corresponds to a prepro-

cessing subphase, and when dyi/dx is given by (4.3.1), which corresponds to a main

subphase and the functions ŷi. For the first case we denote the derivative using the

differential operator ∆(P) defined by

∆(P)h =
m∑

i=0

∂h

∂yi

· fi,0.

In the second case we denote the derivative using the differential operator ∆(τ)

defined by

∆(τ)h =
m∑

i=0

[
∂h

∂yi

·
k∑

r=0

p(τ)
r fi,r

]
,

87

where p
(τ)
r are defined using Definition 4.2.1 with irreducible type sets. For arbitrary

differential equations we denote the corresponding differential operator by ∆g.

We are interested in showing that some of the functions in B(τ)(δ) are increasing, so

we make the following definition.

Definition 5.3.1 (Positive Growth). A function h of (x, y0, . . . , ym) has posi-

tive growth (of order s) at (x?, y?
0, . . . , y

?
m) (with respect to the differential equations

dyi/dx = gi) if, for some non-negative integer s, we have

(i) for r = 0, . . . , s, the function (∆g)
rh exists and is continuous in (x, y0, . . . , ym)

on an open neighbourhood containing (x?, y?
0, . . . , y

?
m),

(ii) (∆g)
αh(x?, y?

0, . . . , y
?
m) = 0 for α = 0, . . . , s− 1, and

(iii) (∆g)
sh(x?, y?

0, . . . , y
?
m) > 0.

We also say that a function has negative growth if the inequality in (iii) is reversed.

For the particular cases we are interested in, that is, when ∆g = ∆(P) or ∆g = ∆(τ),

we prefer to say ‘during a preprocessing subphase’ and ‘during a phase of type τ ’

respectively, instead of ‘with respect to the differential equations dyi/dx = gi’. We

will only use Definition 5.3.1 with

(x?, y?
0, . . . , y

?
m) = (xj, ŷ0(xj), . . . , ŷm(xj))

for some j. So, instead of ‘at the point (xj, ŷ0(xj), . . . , ŷm(xj))’, we say ‘at the

point xj’ . Finally we note that the functions of B(τ)(δ) are all rational functions in

x, y0, . . . , ym. As we consider these functions on domains that exclude their poles,

condition (i) is always satisfied.

For a function of positive or negative growth we may obtain a lower bound on the

value of the function over some interval. The next lemma determines this lower

bound, which is negative for a function with negative growth. In particular, the

next lemma shows that a function with positive growth is positive on some interval.

88

Lemma 5.3.2. Let h(x, y0, . . . , ym) have positive or negative growth of order s at

(x?, y?
0, . . . , y

?
m) with respect to the differential equations dyi/dx = gi. If each gi is

Lipschitz on some domain open domain U containing (x?, y?
0, . . . , y

?
m) then define

h(x) = h(x, y0(x), . . . , ym(x))

where y0(x), . . . , ym(x) are the solutions to the differential equations dyi/dx = gi

with initial conditions (x?, y?
0, . . . , y

?
m). For any strict lower bound L on (∆g)

sh(x?)

there exists a constant CL > 0 such that

h(x) >
L(x− x?)s

s!

for x ∈ (x?, x? + CL].

Proof. The functions yi(x) (for i = 0, . . . ,m) are solutions to differential equations

satisfying a Lipschitz property, so they are continuous on some open neighbourhood

of (x?, y?
0, . . . , y

?
m). Thus, for α = 0, . . . , s, the function (∆g)

αh(x) is also continuous

on some open neighbourhood of x?. Thus there exists a CL > 0 such that

(∆g)
sh(x) > L

for x ∈ [x?, x? + CL]. Then, using the Fundamental Theorem of Calculus, we have

(∆g)
s−1h(x) = (∆g)

s−1h(x)− (∆g)
s−1h(x?) =

∫ x

x?

(∆g)
sh(u)du >

∫ x

x?

Ldu

for x ∈ (x?, x? + CL]. The required result follows by induction.

If each function of B(τj)(δ) has positive growth at xj−1, then by Lemma 5.3.2, con-

dition (5.3.2) is satisfied on a non-empty interval. Thus the functions y
(j)
i remain

in V (τj)(δ) for a non-empty interval; this interval does not necessarily contain the

initial point xj−1. Note that from the definition of ŷi (see Definition 4.3.1), only

functions in the set B̂(τj)(δ) may have positive growth of order s with s ≥ 1. Next

we consider how we might apply similar reasoning to the functions z
(j)
i .

89

5.3.2 After the preprocessing subphase

To prove Theorem 5.4.1 we need to show that, for some C > 0, we have

(x, z
(j)
0 (x), . . . , z(j)

m (x)) ∈ V (τj)(δ) for x ∈ [0, C] . (5.3.3)

By analysing the preprocessing subphase, we are able to show that

(0, z
(j)
0 (0), . . . , z(j)

m (0)) = (0, Y0(t
′
j−1)/n, . . . , Ym(t′j−1)/n) ∈ V (τj)(δ). (5.3.4)

In this section we determine conditions that, together with (5.3.4), imply (5.3.3).

We use an approach similar to that of the previous section.

Assume that h ∈ B(τj)(δ) has positive growth of order s at xj−1 during a phase of

type τj. Since each operation changes the random variables by O(1) (see Definition

4.1.1) and (∆(τj))αh is Lipschitz for α = 0, . . . , s (see Section 4.3.1), we have

(∆(τj))αh(x′j−1, z
(j)
0 (x′j−1), . . . , z

(j)
m (x′j−1))

= (∆(τj))αh(xj−1, Y0(tj−1)/n, . . . , Ym(tj−1)/n) + O(εj)

for α = 0, . . . , s. So, when (5.2.2) holds and taking εj tending to zero sufficiently

slowly, we have

(∆(τj))αh(x′j−1, z
(j)
0 (x′j−1), . . . , z

(j)
m (x′j−1))

= (∆(τj))αh(xj−1, ŷ0(xj−1), . . . , ŷm(xj−1)) + O(εj)

for α = 0, . . . , s. Therefore

(∆(τj))αh(x′j−1, z
(j)
0 (x′j−1), . . . , z

(j)
m (x′j−1)) = O(εj)

for α = 0, . . . , s− 1, and

(∆(τj))sh(x′j−1, z
(j)
0 (x′j−1), . . . , z

(j)
m (x′j−1)) > L + O(εj)

where L is a lower bound on (∆(τj))s(xj−1, ŷ0(xj−1), . . . , ŷm(xj−1)).

90

To obtain a result similar to Lemma 5.3.2 we require explicit lower bounds on

(∆(τj))αh(x′j−1, z
(j)
0 (x′j−1), . . . , z

(j)
m (x′j−1))

for α = 0, . . . , s. So we make the following definition. For any h ∈ B(τj)(δ) satisfying

(i) for some non-negative integer s, the function h has positive growth of order s

at xj−1 during a phase of type τj, and

(ii) for α = 0, . . . , s − 1, for some non-negative integer sα, the function (∆(τj))αh

has positive or negative growth of order sα at xj−1 during a preprocessing

subphase,

we let Bα (for α = 0, . . . , s− 1) be a strict lower bound for

(∆(P))sα(∆(τj))αh(xj−1, ŷ0(xj−1), . . . , ŷ0(xj−1))

and let L > 0 be a strict lower bound for

(∆(τj))sh(xj−1, ŷ0(xj−1), . . . , ŷ0(xj−1)),

and define

Lh(x, εj) =
Lxs

s!
+

s−1∑
α=0

Bαεsα
j xα

sα!α!
.

Note that the function Lh(x, εj) is only defined when (i) and (ii) (above) are satisfied

for h. The next lemma shows that, under certain conditions, the function Lh(x, εj)

is a lower bound for h(x, z
(j)
0 (x), . . . , z

(j)
m (x)).

Lemma 5.3.3. If (5.2.1) and (5.2.2) hold and the function Lh(x, εj) is defined for

h ∈ B(τj)(δ), then for some constant Ch > 0 and for all εj sufficiently small, a.a.s.

we have

h(x, z
(j)
0 (x), . . . , z(j)

m (x)) > Lh(x− x′j−1, εj)

for x ∈
(
x′j−1, x

′
j−1 + Ch

]
.

91

Proof. For α = 0, . . . , s− 1, let B′
α be a strict lower bound on

(∆(P))sα(∆(τj))αh(xj−1, ŷ0(xj−1), . . . , ŷ0(xj−1))

with B′
α > Bα. Then, since (∆(τj))αh has positive or negative growth of order sα at

xj−1 during a preprocessing subphase, by Lemma 5.3.2, we have

(∆(τj))αh(x, y
(p)
0 (x), . . . , y(p)

m (x)) > B′
α

(x− xj−1)
sα

sα!

for x ∈ (xj−1, xj−1 + Cα] for some constant Ch > 0.

Then using Lemma 5.2.3, Lemma 5.2.1, and the Lipschitz property of (∆(τj))αh,

a.a.s. we have

(∆(τj))αh(0, z
(j)
0 (0), . . . , z(j)

m (0)) > B′
α

(εj)
sα

sα!
+ o(1).

By replacing B′
α with Bα, we may drop the o(1) term. The result follows as in the

proof of Lemma 5.3.2.

So, by showing that Lh(x, εj) is positive for all sufficiently small and positive x and

εj, we may conclude from the previous lemma that for some C > 0 we have

h(x, z
(j)
0 (x), . . . , z(j)

m (x)) > 0

for x ∈ [0, C]. Thus we can use the functions Lh(x, εj) (for h ∈ B(τj)(δ)) to show

that (5.3.3) holds. The next lemma considers four of the most useful cases of h and

Lh(x, εj); the proof of the lemma follows easily from the definition of the functions

Lh(x, εj).

Lemma 5.3.4. Let h ∈ B(τj)(δ) be such that the function Lh(x, εj) is defined. Then

Lh(x, εj) is positive for all sufficiently small and positive x and εj when any of the

following hold:

(i) s = 0, or

(ii) s = 1 and B0 > 0, or

(iii) s = 2, s0 = 1, s1 = 1, and B0 > 0, or

(iv) Bα > 0 for α = 0, . . . , s− 1.

92

We are now ready to give the hypotheses that allow phase j of the deprioritised

algorithm to be analysed. Theorem 5.4.1 requires that these hypotheses are satisfied

for each phase.

Hypotheses: to be satisfied for each phase

Let j be the phase number.

(A) There is a phase j according to Definition 4.3.1. That is, τj is defined and

(xj−1, ŷ0(xj−1), . . . , ŷm(xj−1)) ∈ V
(τj)

(δ),

where V
(τj)

(δ) is the closure of V (τj)(δ).

(B) Each function in the set B̂(τj)(δ) has positive growth at xj−1 during a phase of

type τj.

(C) For i ∈M(τj), the function yi has positive growth at xj−1 during a preprocess-

ing subphase.

(D) Each

q ∈ {(−1)|M
(τj)|+1 det C(τj) − δ, q

(τj)
b (b = 1, . . . ,

∣∣M(τj)
∣∣)}

has positive growth at xj−1 during a preprocessing subphase.

(E) For b = 2, . . . ,
∣∣M(τj)

∣∣, the function E
(τj)
b has positive growth at xj−1 during a

preprocessing subphase.

(F) For each h ∈ B̂(τj)(δ), the function Lh(x, εj) is defined and positive for all

sufficiently small and positive x and εj.

93

When hypotheses (A)–(F) hold for phase j, a.a.s. the scaled random variables of the

deprioritised algorithm are well approximated by the functions ŷi (i = 0, . . . ,m) on

[xj−1, xj]. Hypothesis (A) allows the functions ŷi to be defined on [xj−1, xj]. We show

that phase j has non-zero length using (B). By (C) and (D), we can apply Theorem

5.1.1 to the main subphase of phase j: using (C) we show that an operation of the

selected type can be performed and using (D) we show that the Trend Hypothesis

of Theorem 5.1.1 is satisfied. Hypothesis (E), together with (C), ensures that the

phase does end immediately. The last hypothesis, (F), allows us to show that the

functions z
(j)
i , obtained by applying Theorem 5.1.1 to the main subphase of phase j,

do no stop approximating the scaled random variables immediately; this is required

to show that the functions z
(j)
i approximate the functions ŷi.

Conditions on certain derivatives are also required for Wormald’s analysis of de-

prioritised algorithms [61]. However, the extra restrictions Wormald places on the

functions fi,r result in fewer conditions than contained in hypotheses (A)–(F). For

example, Wormald considers only algorithms for which (in our notation)
∣∣M(τj)

∣∣ = 2.

Now, although it may seem that hypotheses (A)–(F) require much effort to check,

in practice checking the hypotheses is quite straightforward. First, many functions

are positive at xj−1, so their derivatives do not need to be considered. Also, any

derivatives required can be easily calculated using automatic differentiation [38].

Indeed, the verification of hypotheses (A)–(F) can be programmed along with the

numerical approximation of the functions ŷi.

5.4 The Theorem

We now state the major theorem of this thesis. Note that the conclusion of this

theorem concerns the random process defined by the deprioritised algorithm, not

the random process defined by the deprioritisable algorithm.

94

Theorem 5.4.1. Let P be a deprioritisable algorithm and let ŷi (for i = 0, . . . ,m),

K, and xK be defined as in Definition 4.3.1. Recall that ŷi(x0) = lim
n→∞

Yi(0)/n. If

(x0, ŷ0(x0), . . . , ŷm(x0)) ∈ D(δ) (5.4.1)

and hypotheses (A)–(F) are satisfied for j = 1, . . . , K, then, for the random process

{Gt} generated by the deprioritised algorithm based on P, a.a.s. we have

Yi(Gt) = nŷi(t/n) + o(n) for i = 0, . . . ,m,

uniformly for t = 0, . . . , bnxKc.

5.4.1 The proof

We prove Theorem 5.4.1 by induction on the number of phases. The base case is

K = 0 and holds by the definition of (x0, ŷ0(x0), . . . , ŷm(x0)) and (vii) of Definition

4.1.1. Now assume that, for some j ≤ K, the conclusion of Theorem 5.4.1 holds

for t = 0, . . . , bnxj−1c. The proof of the inductive step is done in three parts.

Throughout the proof we make use of the functions z
(p)
i , y

(p)
i , and z

(j)
i defined in

Section 5.2. We start by showing that phase j has non-zero length.

Part I: Showing xj > xj−1.

Let V
(τj)

(δ) be the closure of V (τj)(δ). By hypothesis (A) and Definition 4.3.1, we

have

(xj−1, ŷ0(xj−1), . . . , ŷm(xj−1)) ∈ V
(τj)

(δ).

Recall that ŷi is defined in terms of y
(j)
i where the functions y

(j)
i (i = 0, . . . ,m) are

the solutions to the differential equations dyi/dx given by (4.3.1) (with τ = τj) for

the initial conditions y
(j)
i (xj−1) = ŷi(xj−1).

The functions in the set B(τj)(δ)\B̂(τj)(δ) have positive growth of order 0 at xj−1 by

hypothesis (A) and Corollary 4.3.2 if j > 1, or by (5.4.1) if j = 1. So, together with

95

(B), we may apply Lemma 5.3.2 to each h ∈ B(τj)(δ). Hence for each h ∈ B(τj)(δ),

there exists a ch > 0 such that

h(x, y
(j)
0 (x), . . . , y(j)

m (x)) > 0

for x ∈ (xj−1, xj−1 + ch]. Thus we have

xj > xj−1 + min
h∈B(τj)(δ)

ch > xj−1,

from (5.3.2) and as B(τj)(δ) is finite. Next we consider the random variables during

the preprocessing subphase of phase j.

Part II: The Preprocessing Subphase.

We apply Theorem 5.1.1 to the main subphase of phase j with the random variables

Zi(t) = Yi(t
′
j−1 + t) on the domain

U (τj)(δ) = V (τj)(δ) ∩ {(x, y0, . . . , ym) : yi > 0 for i ∈M(τj)\{τj}}.

Recall that x′j−1 = xj−1 + εj and that t′j−1 =
⌊
nx′j−1

⌋
is the end of the preprocessing

subphase. To satisfy hypothesis (i) of Theorem 5.1.1, we need to show that a.a.s.

the point

(t′j−1/n, Y0(t
′
j−1)/n, . . . , Ym(t′j−1)/n)

lies in U (τj)(δ) and is a distance of at least a constant from the boundary of U (τj)(δ).

Now the functions y
(p)
i (i = 0, . . . ,m) are the solutions to the differential equations

dyi/dx = fi,0 with initial conditions y
(p)
i (xj−1) = ŷi(xj−1). By Corollary 4.3.2 and

(A) (for j > 1), or by (5.4.1) (for j = 1), equation (5.2.1) holds. Equation (5.2.2)

holds by the inductive hypothesis for j > 1, and by (vii) of Definition 4.1.1 for j = 1.

So applying Lemma 5.2.3, for all sufficiently small εj, a.a.s. we have

y
(p)
i (x′j−1) = z

(p)
i (εj) + o(1) (5.4.2)

for i = 0, . . . ,m. Thus, by Lemma 5.2.1 (ii), for all sufficiently small εj, a.a.s. the

point

(x′j−1, y
(p)
0 (x′j−1), . . . , y

(p)
m (x′j−1))

lies in D(δ) and is a distance of at least a constant from the boundary of D(δ).

96

As hypotheses (C), (D), and (E) hold, we may apply Lemma 5.3.2. Thus, by (5.3.2),

for all εj sufficiently small, a.a.s. the point

(x′j−1, y
(p)
0 (x′j−1), . . . , y

(p)
m (x′j−1))

lies in U (τj)(δ) and is a distance of at least a constant from the boundary of U (τj)(δ).

Now from (5.4.2) and Lemma 5.2.1 (i), for all εj sufficiently small, a.a.s. we have

y
(p)
i (x′j−1) = Yi(t

′
j−1)/n + o(1) for i = 0, . . . ,m.

Therefore, for all εj sufficiently small, a.a.s. the point

(t′j−1/n, Y0(t
′
j−1)/n, . . . , Ym(t′j−1)/n)

lies in U (τj)(δ) and is a distance of at least a constant from the boundary of U (τj)(δ).

Thus hypothesis (i) of Theorem 5.1.1 is satisfied. We complete the proof of Theorem

5.4.1 by analysing the main subphase of phase j.

Part III: The Main Subphase

We analyse the main subphase of phase j by applying Theorem 5.1.1 to the random

variables Zi(t) = Yi(t
′
j−1+t) with functions Fi given by the right hand side of (4.3.1)

(with τ = τj) on the domain U (τj)(δ). Hypothesis (i) is satisfied by Part II and the

Boundedness hypothesis is satisfied by part (v) of Definition 4.1.1. The definition of

U (τj)(δ) ensures that operations of types fromM(τj) can be performed and that, by

Lemma 4.2.3, the functions p
(τj)
0 , . . . , p

(τj)
k define a probability distribution. Thus the

Trend hypothesis follows from part (iii) of Definition 4.1.1, the definition of U (τj)(δ),

the definition of the deprioritised algorithm, and Section 4.3.1 (for the Lipschitz

conditions).

Recall that (x, z
(j)
0 (x), . . . , z

(j)
m (x)) is the solution to the system of differential equa-

tions (4.3.1) (with τ = τj) for the initial conditions z
(j)
i (0) = Yi(t

′
j−1)/n, on the

domain U (τj)(δ). From Theorem 5.1.1, a.a.s. we have

Yi(t
′
j−1 + t) = nz

(j)
i (t/n) + o(n) (5.4.3)

97

uniformly for 0 ≤ t ≤ σn, where σ is the supremum of those x for which the

solution (x, z
(j)
0 (x), . . . , z

(j)
m (x)) can be extended before being within some distance

d(n) = o(1) of the boundary of U (τj)(δ). Note that σ depends on εj.

First, by Lemma 4.3.4, for i ∈M(τj)\{τj} we have

z
(j)
i (x) = z

(j)
i (0) = Yi(t

′
j−1)/n > 0

for all x for which the solutions are defined. Therefore

(x, z
(j)
0 (x), . . . , z(j)

m (x)) ∈ V (τj)(δ) =⇒ (x, z
(j)
0 (x), . . . , z(j)

m (x)) ∈ U (τj)(δ). (5.4.4)

Now ∣∣∣(z(j)
0 (0), . . . , z(j)

m (0))− (ŷ0(xj−1), . . . , ŷm(xj−1))
∣∣∣ = O(εj)

by part (v) of Definition 4.1.1. Taking εj = εj(n) = o(1), we apply Lemma 5.2.2 on

the domain V (τj)(δ) and conclude that∣∣∣(z(j)
0 (x), . . . , z(j)

m (x))− (ŷ0(xj−1 + x), . . . , ŷm(xj−1 + x))
∣∣∣ = o(1) (5.4.5)

uniformly for x ∈ [0, min{x?
1, x

?
2}), where x?

1 is the infimum of those x > 0 for which

(x, z
(j)
0 (x), . . . , z(j)

m (x)) /∈ V (τj)(δ)

and x?
2 is the infimum of those x > 0 for which

(x, ŷ0(xj−1 + x), . . . , ŷm(xj−1 + x)) /∈ V (τj)(δ).

Note that by definition we have σ < x?
1 and x?

2 = xj − xj−1.

Next we show that xj −xj−1 can be at most o(1) larger than σ. By (F) and Lemma

5.3.3, for some constant C > 0 and for all h ∈ B(τj)(δ) we have

h(x, z
(j)
0 (x), . . . , z(j)

m (x)) > 0

for x ∈ [0, C]. Therefore a.a.s. σ > C; note that C does not depend on εj. Let

D = min{C, min
h∈B(τj)(δ)

ch}

where ch is defined in Part I.

98

Now condition on the event σ > D. For all κ > 0, sufficiently small so that

xj − xj−1− κ > D (such κ exist by Part I), we want to show that xj − xj−1− κ < σ

for sufficiently large n. Assume that xj − xj−1− κ > σ for infinitely many n. Then,

as σ < x?
1 and σ < xj − xj−1 = x?

2, from (5.4.5) we have∣∣∣(z(j)
0 (σ), . . . , z(j)

m (σ))− (ŷ0(σ), . . . , ŷm(σ))
∣∣∣ = o(1).

By definition, at x = σ, the solution (x, z
(j)
0 (x), . . . , z

(j)
m (x)) approaches the bound-

ary of V (τj)(δ). Hence the distance from (x, ŷ0(xj−1 + x), . . . , ŷm(xj−1 + x)) to the

boundary of V (τj)(δ) is bounded above by a function that tends to zero as n tends to

infinity. This is a contradiction since (x, ŷ0(xj−1 + x), . . . , ŷm(xj−1 + x)) is bounded

away from the boundary of V (τj)(δ) on [D, xj −xj−1−κ] and σ ∈ [D, xj −xj−1−κ].

Hence xj − xj−1 − κ < σ for sufficiently large n. Therefore, a.a.s. there exists a

sequence κ(n) = o(1) such that xj − xj−1 − κ(n) < σ(n).

Now for t = bnxj−1c+ 1, . . . , bnxjc, let x = t/n and x′ = x− xj−1 − κ(n). By part

(v) of Definition 4.1.1 we have

Yi(t) = Yi(nx) = Yi(tj−1 + nx′) + o(n) = Yi(t
′
j−1 + bn(x′ − εj)c) + o(n).

By (5.4.3), a.a.s. we have

Yi(t
′
j−1 + bn(x′ − εj)c) + o(n) = nz

(j)
i (x′ − εj) + o(n).

Since t ≤ bnxjc, we have x′ < x?
2 and (from above) a.a.s. x′ = xj − xj−1− κ(n) < σ.

Therefore, by (5.4.5), a.a.s. we have

nz
(j)
i (x′ − εj) + o(n) = nẑi(x

′ − εj) + o(n)

= nŷi(x
′ + xj−1 − εj) + o(n)

= nŷi(x− κ(n)− εj) + o(n).

Finally since each ŷi is Lipschitz, a.a.s. we have

nŷi(x− κ(n)− εj) + o(n) = nŷi(x) + o(n).

Therefore, for i = 0, . . . ,m, a.a.s. we have

Yi(t) = nŷi(t/n) + o(n)

uniformly for t = bnxj−1c + 1, . . . , bnxjc, as required. This completes the proof of

Theorem 5.4.1.

99

5.5 Changing Phase

In the applications considered in Chapter 6, we satisfy the hypotheses of Theorem

5.4.1 using values calculated numerically and the theoretical results given in this

section. The theoretical results show that certain functions are zero at the change

of phase. These results also allow us to specify alternative hypotheses that are easier

to satisfy and are sufficient in many cases.

First we describe a common situation which motivates the work of this section.

Assume that after phase j − 1 of type τj−1 there is a phase of type τj = τj−1 + 1.

Difficulties arise when we try to check hypothesis (B) for phase j numerically; for

example, we cannot show that ∆(τj)yτj
has positive growth at xj−1 during a phase

of type τj. When we solve the differential equations numerically, as we usually do,

we are unable to determine xj−1 exactly. Instead we determine points x1 and x2

such that x1 < xj−1 < x2. At x1 the function ∆(τj)yτj
is small and negative, while

at x2 the function ∆(τj)yτj
is small and positive. However, to apply Theorem 5.4.1

we must show that ∆(τj)yτj
(xj−1) is non-negative. The results of this section show

that, in fact, ∆(τj)yτj
(xj−1) = 0. Other functions, such as q

(τj)
b for some b, behave

similarly.

First we consider ∆(τj)yτj
at xj−1 when τj > τj−1. Recall the definition of the

Independent Types Property from Definition 4.2.7.

Lemma 5.5.1. Assume that j > 1 and τj > τj−1. Let E be the clutch matrix for a

{τj, . . . , k}-clutch. If det E(xj−1) 6= 0 or the Independent Types Property holds for a

phase of type τj, then ∆(τj)yτj
(xj−1) = 0.

Proof. Recall that ix(r, S) = |{w ∈ S : w ≤ r}| if r ∈ S, and ix(r, S) = 0 if r /∈ S.

Now, by Corollary 4.3.2, we have E
(τj−1)
β (xj−1) = 0 for β = ix(τj,M(τj−1)). Therefore

det C(τj−1)({1, . . . , ix(τj,M(τj−1))− 1}, {1, . . . , ix(τj,M(τj−1))− 1})

evaluated at xj−1 is zero. Let D be the clutch matrix for a {τj−1, . . . , k}-clutch.

100

Then by Lemma 4.2.9, the function

detD({1, . . . , τj − τj−1}, {1, . . . , τj − τj−1})

evaluated at xj−1 is also zero.

Now by definition

∆(τj)yτj
=

∑
r∈M(τj)

p(τj)
r fτj ,r.

By the hypothesis to the lemma, we may apply Lemma 4.2.8 to show that

∆(τj)yτj
=

k∑
r=τj

prfτj ,r

where

pr = (−1)r−τj
det E(r − τj + 1, 1)

det E
.

Therefore

∆(τj)yτj
=

1

det E
det

fτj ,τj

fτj+1,τj
· · · fk,τj

...
...

...
...

fτj ,k fτj+1,k · · · fk,k

=

detD({1, . . . , τj − τj−1}, {1, . . . , τj − τj−1})
det E

.

Hence ∆(τj)yτj
(xj−1) = 0.

The next lemma gives sufficient conditions for q
(τj)
b to be zero.

Lemma 5.5.2. LetM(τj) = {w1, . . . , wa} with w1 < · · · < wa, and let x ∈ [xj−1, xj].

If τ is such that 0 ≤ τ < τj, τj ∈ M(τ), and ŷi(x) = 0 for i = τ + 1, . . . , τj, then

q
(τj)
b (x) = 0 whenever wb ∈M(τj)\M(τ).

Proof. Recall that C(τj) is the clutch matrix for aM(τj)-clutch and

q
(τj)
b = (−1)a+b det C(τj)(b, 1).

By Lemma 4.3.5, we have ŷi(x) = 0 for i = τj + 1, . . . , k; so by Lemma 4.2.6, for

w ∈M(τj)\M(τ), we have fw,u(x) = 0 for all u ∈M(τ).

101

Now fix wb ∈M(τj)\M(τ) and, for s = 2, . . . , a, denote column s− 1 of C(τj)(b, 1)(x)

by cs; so

cs = (fws,w1(x), . . . , fws,wb−1
(x), fws,wb+1

(x), . . . , fws,wa(x))T .

For ws ∈ M(τj)\M(τ) we have s ≥ 2 as τj ∈ M(τ). So let C be the set of columns

cs for all s such that ws ∈ M(τj)\M(τ). For each wi ∈ M(τ) we have i 6= b and so

every column in C has a zero in row i if i < b, and i− 1 if i > b. Thus C is a set of∣∣M(τj)\M(τ)
∣∣ vectors contained in a vector space of dimension a−1−

∣∣M(τj) ∩M(τ)
∣∣.

Now ∣∣M(τj)\M(τ)
∣∣+ ∣∣M(τj) ∩M(τ)

∣∣ = a,

so C is linearly dependent. Therefore q
(τj)
b (x) = 0.

The above lemma is most useful at the beginning of phase j when τj > τj−1, and at

the end of phase j − 1 when τj < τj−1. These cases are given in the next corollary.

We may also apply Lemma 5.5.2 more generally, for example, to the first phase of

an algorithm.

Corollary 5.5.3. Let M(τj) = {w1, . . . , wa} with w1 < · · · < wa.

(i) Let j > 1 (so that M(τj−1) is defined) and assume that τj > τj−1. Then for

each wb ∈M(τj)\M(τj−1) we have q
(τj)
b (xj−1) = 0.

(ii) Let j < K (so that M(τj+1) is defined) and assume that τj+1 < τj. If we have

τj ∈M(τj+1), then q
(τj)
b (xj) = 0 for each wb ∈M(τj)\M(τj+1).

Proof. (i) By Lemma 4.3.5 we have

ŷτj−1
(xj−1) = · · · = ŷτj

(xj−1) = 0,

and by Definition 4.3.1 (see also Corollary 4.3.2) we have τj ∈M(τj−1). So the

result follows by Lemma 5.5.2 with τ = τj−1 and x = xj−1.

102

(ii) By Definition 4.3.1 (see also Corollary 4.3.2) we have

ŷτj+1+1(xj) = · · · = ŷτj
(xj) = 0.

So the result follows by Lemma 5.5.2 with τ = τj+1 and x = xj.

In order to satisfy hypothesis (C), we must show that each q
(τj)
b has positive growth

at xj−1 during a phase of type τj. So when q
(τj)
b (xj−1) = 0, we must consider the

derivatives of q
(τj)
b at xj−1. The next lemma shows that (∆(τj))q

(τj)
b (xj−1) may also

be zero.

Lemma 5.5.4. Assume that j > 1 and τj > τj−1. Let M(τj) = {w1, . . . , wa}

with w1 < · · · < wa. If the clutch matrix for a {τj, . . . , k}-clutch has a non-zero

determinant or the Independent Types Property holds for a phase of type τj, then

∆(τj)q
(τj)
b (xj−1) = 0 for wb ∈M(τj)\M(τj−1).

Proof. Recall that

∆(τj)q
(τj)
b (xj−1) =

m∑
i=0

∂q
(τj)
b

∂yi

(xj−1)
dyi

dx
(xj−1; τj).

By Corollary 4.3.2, Lemma 4.3.4, and Lemma 5.5.1 we have dyi/dx(xj−1) = 0 for

i = τj, . . . , k. Thus it is enough to show that for i ∈ {0 . . . , m}\{τj, . . . , k} we have

∂q
(τj)
b

∂yi

(xj−1) = (−1)a+b ∂

∂yi

(
det C(τj)(b, 1)

)
(xj−1) = 0.

So fix i /∈ {τj, . . . , k}. Let C` be the matrix obtained by replacing column ` of

C(τj)(b, 1), which is

(fw`+1,w1 , . . . , fw`+1,wb−1
, fw`+1,wb+1

, . . . , fw`+1,wa)
T ,

by (
∂

∂yi

(fw`+1,w1), . . . ,
∂

∂yi

(fw`+1,wb−1
),

∂

∂yi

(fw`+1,wb+1
), . . . ,

∂

∂yi

(fw`+1,wa)

)T

.

103

Then
∂

∂yi

(
det C(τj)(b, 1)

)
=

a−1∑
`=1

det C`.

We now show that det C`(xj−1) = 0 for ` = 1, . . . , a − 1. Let w ∈ M(τj)\M(τj−1).

Then, by Lemma 4.2.6, for all (x, y0, . . . , ym) ∈ D(δ) with yτj
= . . . = yk = 0, we

have

fw,u(x, y0, . . . , ym) = 0 for all u ∈M(τj−1). (5.5.1)

Note that by Corollary 4.3.2 we have ŷi(xj−1) = 0 for i = τj, . . . , k.

Recall from Definition 4.1.1 that, for some polynomial H, each function fs,r can be

written as gs,r/H
`s for some polynomial function gs,r and some positive integer `s.

Let Σ = {(b, a0, . . . , am) ∈ Zm+2 : b, a0, . . . , am ≥ 0}. Then

gs,r =
∑

(b,a0,...,am)∈Σ

C(b, a0, . . . , am)xbya0
0 · · · yam

m

where all but a finite number of the values C(b, a0, . . . , am) are zero. Consider gw,u

with u ∈ M(τj−1). By (5.5.1), for each (b, a0, . . . , am) ∈ Σ with C(b, a0, . . . , am) > 0

we have at least one of aτ+1, . . . , ak positive. Since i /∈ {τj, . . . , k}, this property still

holds after differentiating gw,u with respect to yi. Therefore, for all (x, y0, . . . , ym) ∈

D(δ) with yτj
= . . . = yk = 0, we have

∂fw,u

∂yi

(x, y0, . . . , ym) = 0 for all u ∈M(τj−1).

Now, as in the proof of Lemma 5.5.2 (and using Corollary 4.3.2), each matrix C`
has a set of

∣∣M(τj)\M(τj−1)
∣∣ column vectors contained in a subspace of dimension

a − 1 −
∣∣M(τj) ∩M(τj−1)

∣∣. Hence det C` = 0 for ` = 1, . . . , a − 1, and the result

follows.

The next lemma, similar to Lemma 5.5.2, considers the derivatives of the functions

ŷi during a preprocessing subphase.

104

Lemma 5.5.5. Assume that the Independent Types Property holds for a phase of

type τj. If τ ∈ {0, . . . , τj − 1} is such that

ŷτ+1(xj−1) = · · · = ŷτj
(xj−1) = 0,

then for all i ∈M(τj)\M(τ) we have ∆(P)ŷi(xj−1) = 0.

Proof. By Lemma 4.3.5 we have

ŷτj
(xj−1) = · · · = ŷk(xj−1) = 0.

As i ∈M(τj), we have i ≥ τj > τ ≥ 0 and so i 6= 0. Thus by the Independent Types

Property (see Definition 4.2.7), we have ∆(P)ŷi(xj−1) = fi,0(xj−1) = 0.

As with Lemma 5.5.2 we usually apply Lemma 5.5.5 with τ = τj−1 when changing

to a phase of higher type. Finally we consider the functions E
(τj)
b at a change of

phase.

Lemma 5.5.6. Assume that j > 1, soM(τj−1) is defined. If the Independent Types

Property holds for a phase of type τj, then

E
(τj)
b (xj−1) > 0 for b = max {2, 2 + τj−1 − τj}, . . . ,

∣∣M(τj)
∣∣ .

In particular, if τj > τj−1, then hypothesis (E) is satisfied for phase j.

Proof. For τ = τj−1 and τ = τj, let C(τ) be the clutch matrix for a M(τ)-clutch.

Define N (τ) = {τ, . . . , k} and let D(τ) be the clutch matrix for a N (τ)-clutch. Also

define

S(τ)(r) = detD(τ)({1, . . . , r − τ}, {1, . . . , r − τ})

for r ∈ N (τ), and

T (τ)(r) = det C(τ)({1, . . . , ix(r,M(τ))− 1}, {1, . . . , ix(r,M(τ))− 1})

for r ∈M(τ).

105

Consider w ∈ M(τj) with ix
(
w,M(τj)

)
= b for b ≥ max{2, 2 + τj−1 − τj}. Recall

that (from (4.3.3))

E
(τj)
b = (−1)|M

(τj)|−ix
(

w,M(τj)
)
+1T (τj)(w).

By Lemma 4.3.5, Lemma 4.2.9, and as w ∈M(τj), we have

S(τj)(w)(xj−1) = (−1)k−w−|M(τj)|+ix
(

w,M(τj)
)
T (τj)(w)(xj−1)

and so

E
(τj)
b (xj−1) = (−1)k−w+1S(τj)(w)(xj−1).

Now, for τj > τj−1 we have

D(τj) = D(τj−1)({1, . . . , τj − τj−1}, {2, . . . , τj − τj−1 + 1}),

while for τj < τj−1 we have

D(τj−1) = D(τj)({1, . . . , τj−1 − τj}, {2, . . . , τj−1 − τj + 1}).

If τj > τj−1, then S(τj)(w) = S(τj−1)(w) as (w− τj) + (τj − τj−1) = w− τj−1. On the

other hand, if τj < τj−1, then w− τj = (w− τj−1) + (τj−1 − τj) and w− τj−1 > 0 as

ix(w,M(τj)) ≥ 2 + τj−1 − τj; hence S(τj)(w) = S(τj−1)(w) also.

Therefore

E
(τj)
b (xj−1) = (−1)k−w+1S(τj−1)(w)(xj−1).

Recall that µ(w) = min{r ∈ M(τj−1) : r ≥ w}. By Lemma 4.3.5 and Lemma 4.2.9,

we have

S(τj−1)(w) = (−1)k−w−|M(τj−1)|+ix(µ(w),M(τj−1))T (τj−1)(µ(w))

if w ≤ maxM(τj−1), and S(τj−1)(w) = (−1)k−w+1 if w > maxM(τj−1).

If w > maxM(τj−1), then E
(τj)
b (xj−1) = 1. On the other hand, if w ≤ maxM(τj−1),

then E
(τj)
b (xj−1) = E

(τj−1)

b̂
(xj−1) where b̂ = ix(µ(w),M(τj−1)). Now, if τj > τj−1,

then w > τj and so ix(µ(w),M(τj−1)) > ix(τj,M(τj−1)); thus by Corollary 4.3.2 we

have E
(τj)
b (xj−1) > 0. If τj < τj−1, then b̂ ≥ 2 as b ≥ 2 + τj − τj−1; thus, again by

Corollary 4.3.2, we have E
(τj)
b (xj−1) > 0.

106

5.5.1 Alternative hypotheses

The hypotheses (A)–(F) presented in Section 5.3 are more general than has been

required for the applications considered so far (see Chapter 6). So in this section

we give two alternative sets of hypotheses: one for changing to a phase of higher

type and one for changing to a phase of lower type. These hypotheses assume that

the algorithm is changing phase and so cannot be used for the first phase. However,

for the first phase, we often know the initial conditions exactly, so it is not hard

to check the hypotheses (A)–(F). First we consider changing to a phase of a higher

type.

Hypotheses for changing to a phase of higher type

Let j > 1 be the phase number.

(A2) The phase type τj is defined (according to Definition 4.3.1) and τj > τj−1.

(B2) At xj−1 we have

(i) (−1)|M
(τj)|+1 det C(τj) > δ,

(ii) (∆(τj))2ŷτj
(xj−1) > 0, and

(iii) ∆(P)∆(τj)ŷτj
(xj−1) 6= 0.

(C2) For w ∈M(τj)\M(τj−1) we have

(i) ∆(P)q
(τj)
b (xj−1) > 0,

(ii) ∆(P)∆(τj)q
(τj)
b (xj−1) 6= 0,

(iii) (∆(τj))2q
(τj)
b (xj−1) > 0, and

(iv) (∆(P))2ŷw(xj−1) > 0

where b = ix(w,M(τj)).

107

(D2) For w ∈M(τj) ∩M(τj−1) we have

q
(τj)
b (xj−1) > 0 and ∆(P)ŷw(xj−1) > 0

where b = ix(w,M(τj)).

We now prove that the hypotheses (A2)–(D2) imply the original hypotheses (A)–(F)

when the Independent Types Property holds.

Lemma 5.5.7. Assume that j > 1 and the Independent Types Property holds for a

phase of type τj. If (A2)–(D2) hold, then there is a phase j of type τj and hypotheses

(A)–(F) are satisfied for phase j.

Proof. We treat each of the hypotheses (A)–(F) in turn.

Hypotheses (A) By (A2), it is enough to show that (xj−1, ŷ0(xj−1), . . . , ŷm(xj−1))

lies in the closure of V (τj)(δ). By Corollary 4.3.2 we have

(xj−1, ŷ0(xj−1), . . . , ŷm(xj−1)) ∈ D(δ).

So it remains to consider the functions in the set

B̂(τj)(δ) = {(−1)|M
(τj)|+1 det C(τj) − δ, yτj

,

q
(τj)
b (b = 1, . . . ,

∣∣M(τj)
∣∣),

E
(τj)
b (b = 2, . . . ,

∣∣M(τj)
∣∣)}.

These functions are all non-negative by (B2) (ii), Corollary 4.3.2, Corollary 5.5.3,

(D2), and Lemma 5.5.6. Therefore hypothesis (A) is satisfied.

Hypothesis (B) We need to show that each function in the set B̂(τj)(δ) has positive

growth at xj−1 during a phase of type τj. Any function that is positive at xj−1

has positive growth at xj−1. Thus by Lemma 5.5.6, (B2) (i), (D2), it remains

to consider the functions ŷτj
and q

(τj)
b for b such that b = ix(w,M(τj)) for some

w ∈ M(τj)\M(τj−1). By Corollary 4.3.2, Lemma 5.5.1, and (B2) (ii), the function

ŷτj
has positive growth of order 2 at xj−1 during a phase of type τj. By Corollary

5.5.3, Lemma 5.5.4, and (C2) (iii), each function q
(τj)
b has positive growth of order

2 at xj−1 during a phase of type τj. Therefore hypothesis (B) is satisfied.

108

Hypothesis (C) For w ∈ M(τj)\M(τj−1), the function ŷw has positive growth of

order 2 at xj−1 during a preprocessing subphase by Lemma 4.3.5, Lemma 5.5.5, and

(C2) (iv). For w ∈ M(τj) ∩M(τj−1), the function ŷw has positive growth of order 1

at xj−1 during a preprocessing subphase by Lemma 4.3.5, Corollary 4.3.2, and (D2).

Therefore hypothesis (C) is satisfied.

Hypothesis (D) Hypothesis (D) follows from (B2) (i), (C2) (i), and (D2).

Hypothesis (E) As τj > τj−1, hypothesis (E) is satisfied by Lemma 5.5.6.

Hypothesis (F) Each function in the set B̂(τj)(δ) has positive growth at xj−1 during

a phase of type τj of order 0 or 2. By (B2) (iii), (D2), (C2) (i) and (ii), each function

in the set B(τj)(δ) is covered by case (i) or (iii) of Lemma 5.3.4. Hence hypothesis

(F) is satisfied.

Now we consider changing to a phase of a lower type.

Hypotheses for changing to a phase of lower type

Let j > 1 be the phase number.

(A3) The phase type τj is defined (according to Definition 4.3.1) and τj < τj−1.

(B3) At xj−1 we have

(i) (−1)|M
(τj)|+1 det C(τj) > δ, and

(ii) E
(τj)
b (xj−1) > 0 for b = 2, . . . , τj−1 − τj + 1.

(C3) For b = 1, . . . ,
∣∣M(τj)

∣∣ we have q
(τj)
b (xj−1) > 0.

(D3) For w ∈M(τj)\{τj} we have ∆(P)ŷw(xj−1) > 0.

We now prove that the hypotheses (A3)–(D3) imply the original hypotheses (A)–(F)

when the Independent Types Property holds.

109

Lemma 5.5.8. Assume that j > 1 and that the Independent Types Property holds

for a phase of type τj. If (A3)–(D3) hold, then there is a phase j of type τj and

hypotheses (A)–(F) are satisfied for phase j.

Proof. By Corollary 4.3.2 we have

(xj−1, ŷ0(xj−1), . . . , ŷm(xj−1)) ∈ D(δ).

So now consider the functions in the set B̂(τj)(δ). By Corollary 4.3.2 we have ŷτj
> 0;

while by (B3) (i) we have (−1)|M
(τj)|+1 det C(τj) − δ > 0. The functions q

(τj)
b are

positive at xj−1 by (C3). Finally by (B3) (ii) and Lemma 5.5.6 we have E
(τj)
b > 0

for b = 2, . . . ,
∣∣M(τj)

∣∣. Therefore hypothesis (A) is satisfied. Moreover, each function

in the set B̂(τj)(δ) is positive at xj−1. Thus hypotheses (B), (D), (E), and (F) are

all satisfied. The remaining hypothesis, (C), is satisfied by (D3) and Corollary

4.3.2.

Analysing deprioritised algorithms based on prioritised algorithms is a standard

technique, which we call the deprioritised approach. The theory presented in this

and the previous chapter allows the deprioritised approach to be applied to a large

class of prioritised algorithms. This theory extends the work of Wormald [61]. In

the next chapter we use the results of Chapter 4 and Chapter 5 to analyse some

algorithms on random d-in d-out digraphs.

110

Chapter 6

Algorithms on Random Regular

Digraphs

In this chapter we demonstrate the theory of Chapter 4 and Chapter 5 by applying

the deprioritised approach to two algorithms for random d-in d-out digraphs (for

fixed d). The first algorithm, called DominatingSet and given in Section 6.1, is an

extension of the algorithm DominatingSet2 presented in Chapter 3. DominatingSet

is currently the best algorithm for finding dominating sets of random d-in d-out

digraphs. By analysing the deprioritised algorithm based on DominatingSet, we

obtain the best known a.a.s. upper bounds on the domination number of random

d-in d-out digraphs for d = 2, 3, 4. In particular, we improve upon the upper bound

from analysing DominatingSet2 [42] for random 2-in 2-out digraphs.

In Section 6.2, we introduce the algorithm PathDominatingSet which finds 2-path

dominating sets of random d-in d-out digraphs. Applying the deprioritised approach

to PathDominatingSet, we determine the best known a.a.s. upper bounds on the 2-

path domination numbers for d ∈ {2, . . . , 6}. Although quite a simple algorithm,

PathDominatingSet is interesting as the deprioritised algorithm based on PathDom-

inatingSet has a phase of type 0. (Note that a phase of type 0 is not the same as a

preprocessing subphase.) As far as we are aware, this is the first case of a depriori-

tised algorithm having a phase of type 0.

111

d DominatingSet Best Previous

2 0.38069n 0.39856n

3 0.32269n 0.57143n

4 0.28409n 0.55556n

Table 6.1.1: Asymptotically almost sure upper bounds on the domination number

of a random d-in d-out digraph.

6.1 Dominating Sets

We now present a prioritised algorithm for finding dominating sets of random d-in

d-out digraphs. This algorithm, called DominatingSet, is an extension of Dominat-

ingSet2 presented in Chapter 3. Applying the theory of Chapter 4 and Chapter 5 to

DominatingSet, we obtain the best known (a.a.s.) upper bounds on the domination

number for a random d-in d-out digraph (when d = 2, 3, 4). These and previous

bounds from the analysis of DominatingSet2 [42] (for d = 2) and Theorem 2.2.1 (for

d = 3, 4) are given in Table 6.1.1.

We start this section by defining the operations of DominatingSet. Next the prior-

ities of these operations are given and the definition of the algorithm is completed.

We then determine, from the definition of the operations, the differential equa-

tions whose solutions describe the behaviour of deprioritised algorithm based on

DominatingSet. Theorem 5.4.1 is applied in detail for d = 2, where we see that

the sequence of phase types is 2, 3, 4, 5, 6. In Section 6.1.4 we show that the In-

dependent Types Property is satisfied for all phase types. So we are able to use

the alternative hypotheses (A2)–(D2) for phases two to five. The application of

Theorem 5.4.1 proceeds similarly for larger d and so is not given. When we apply

the deprioritised approach to PathDominatingSet in Section 6.2, we will use the

alternative hypotheses (A3)–(D3).

112

6.1.1 The operations and their priorities

The operations of DominatingSet are defined similarly to the operations of Domi-

natingSet2 in Chapter 3. Recall that each operation of DominatingSet2 begins by

randomly selecting a vertex of a given degree pair; we call this vertex the processed

vertex. Also the type of an operation is determined by the degree pair of the pro-

cessed vertex. DominatingSet has two classes of operations based on whether the

degree pair (p, q) of the processed vertex satisfies p > q or p ≤ q. Operations pro-

cessing vertices of degree pairs (p, q) with p > q are straightforward generalisations

of the operations of DominatingSet2 to arbitrary d. The remaining operations are

more complicated.

As with DominatingSet2, the algorithm DominatingSet constructs a digraph G and

a set D that becomes a dominating set for G at the end of the algorithm. The

operations of DominatingSet are designed so that after each operation:

(a) the processed vertex is either in D or is an out-neighbour of a vertex in D,

and

(b) every vertex of degree pair (d, d) is either in D or is an out-neighbour of a

vertex in D.

Property (a) ensures that the algorithm terminates and (b) ensures that D is a

dominating set of G at the end of the algorithm. We also define each operation

to expose as many edges as possible, so that the dominating set returned by the

algorithm DominatingSet is small.

First we consider operations that process vertices of degree pairs (p, q) with p > q.

Such an operation performs the following steps in order:

(i) a vertex v of degree pair (p, q) is selected u.a.r.,

(ii) the vertex v is added to D,

113

(iii) the remaining (d−p) free in-points and (d− q) free out-points associated with

v are exposed,

(iv) the free points associated with the (d−q) new out-neighbours of v are exposed,

and

(v) any vertices, other than v and the out-neighbours of v, that become satu-

rated during the operation are added to D (such vertices are called accidental

saturates).

That is, we select v, add v to D, and then call the procedure Saturate with v; as we

did in DominatingSet2.

We now define operations that process vertices of degree pairs (p, q) with p ≤ q.

Such an operation begins by selecting a vertex u of degree pair (p, q) uniformly at

random. Then the (d− p) free in-points associated with u are exposed to obtain a

multi-set w1, . . . , wd−p of new in-neighbours of u. A vertex v from u, w1, . . . , wd−p is

chosen by comparing the degree pairs of the vertices from before the exposure of the

in-points associated with u. Let (r, s) be the minimum degree pair of the vertices

w1, . . . , wd−p with respect to the reverse lexicographic ordering (which we denote by

4). If (p, q) 4 (r, s), then we let v = u; otherwise we select v u.a.r. from the vertices

of w1, . . . , wd−p with degree pair (r, s). We then add v to D and call Saturate with

v. Note that, if v 6= u, then u is an out-neighbour of v and so u is saturated during

the call to the procedure Saturate.

We now define the type of each operation and the priorities of the operation types.

The type of an operation is determined by the degree pair of the vertex processed

by that operation. So we also define types for degree pairs. In particular, the type

of a degree pair is an integer in the set {0, . . . , (d + 1)2 − 1} such that

(i) the degree pairs (0, 0) and (d, d) have type 0 and (d + 1)2 − 1, respectively,

(ii) the type of (p, q) is less than the type of (r, s) whenever p + q < r + s,

114

(iii) for degree pairs (p, q) and (r, s) with p + q = r + s, p ≤ q, and r > s, the type

of (p, q) is less than the type of (r, s),

(iv) for (p, q) and (r, s) with p + q = r + s, p > q, and r > s, the type of (p, q) is

less than the type of (r, s) if and only if p < r, and

(v) for degree pairs (p, q) and (r, s) with p + q = r + s, p ≤ q, and r ≤ s, the type

of (p, q) is less than the type of (r, s) if and only if p > r.

Clearly the type of a degree pair is well-defined. Now an operation has type τ if

the degree pair of the vertex processed by that operation also has type τ . Then we

define an operation of type τ1 to have higher priority than an operation of type τ2

if τ1 > τ2. The types of degree pairs for DominatingSet (for d = 2, 3) are given in

Figure 6.1.1.

The priorities of the operation types are chosen so that operations which expose

a large number of edges are performed more often than operations which expose a

small number of edges. Somewhat counter-intuitively, this requires assigning higher

priority to operations that expose fewer edges. However, the higher priority means

that vertices of the corresponding degree pair do not build up, thus reducing the

number of such operations in the long run.

Having defined the priorities of the operation types, we may now complete the defini-

tion of the algorithm DominatingSet. DominatingSet begins with the empty pairing

and proceeds via a sequence of operations until no operation may be performed. The

type of the next operation performed by DominatingSet is the type of highest prior-

ity that may be performed. So DominatingSet finishes when there are only vertices

of degree pair (d, d). Hence DominatingSet returns a d-in d-out (multi-)digraph G

together with a dominating set for G.

115

(0,0)0

(0,1)1 (1,0)2

(0,2)4 (1,1)3 (2,0)5

(1,2)6 (2,1)7

(0,0)0

(0,1)1 (1,0)2

(0,2)4 (1,1)3 (2,0)5

(0,3)7 (1,2)6 (2,1)8 (3,0)9

(1,3)11 (2,2)10 (3,1)12

(2,3)13 (3,2)14

Figure 6.1.1: The types of operations displayed on the DPPD for DominatingSet for

d = 2, 3 (with the vertex (d, d) not shown). The type of an operation is displayed

next to the degree pair of the vertex processed by that operation.

6.1.2 The differential equations

In this section we determine the system of differential equations whose solution

describes the deprioritised algorithm based on DominatingSet. First we derive func-

tions that approximate the expected change in the random variables due to a single

operation of DominatingSet. We are interested in the random variables Z(i,j) count-

ing the number of vertices of degree pair (i, j), and Z = |D| which counts the

number of vertices that have been added to the dominating set. Later, when we

apply Theorem 5.4.1, we use the random variables Yi for i = 0, . . . , (d + 1)2; so we

define Yi = Z(p,q) where (p, q) has type i (for i = 0, . . . , (d+1)2−1) and Y(d+1)2 = Z.

However, we determine the differential equations using the more natural random

variables Z(i,j) and D.

We start by determining functions f
(r)
(i,j) and f (r) such that, for 0 ≤ i, j ≤ d and

r ∈ {0, . . . , (d + 1)2 − 2},

f
(r)
(i,j)(t/n, Z(0,0)(t)/n, . . . , Z(d,d)(t)/n, Z(t)/n) + o(1)

is the expected change in Z(i,j) due to an operation of type r at time t, and

116

f (r)(t/n, Z(0,0)(t)/n, . . . , Z(d,d)(t)/n, Z(t)/n) + o(1)

is the expected change in Z due to an operation of type r at time t. These functions

correspond to the functions fi,r of Definition 4.1.1. Note that for now the underlying

random process is that defined by the prioritised algorithm DominatingSet.

Consider an operation that chooses vertex v to add to D (so v is not an accidental

saturate). During this operation there are six sorts of vertices:

• vertices that have no associated free points exposed,

• the vertex u processed by the operation,

• the vertex v which is added to D (which may be u),

• vertices, other than u, that are out-neighbours of v and so have all their

associated free points exposed, called rems,

• vertices, other than u, v and the out-neighbours of v, that have an associated

in-point exposed, called in-incs, and

• vertices, other than u, v and the out-neighbours of v, that have an associated

out-point exposed, called out-incs.

Notice that the operations are defined using free points (either in or out) selected

uniformly at random. So let

ρ =
∑

0≤i,j≤d

(d− i)Z(i,j) =
∑

0≤i,j≤d

(d− j)Z(i,j)

be the number of free in-points (which equals the number of free out-points). Then

the functions f
(r)
(i,j) and f (r) are rational functions of polynomials in the random

variables Z(i,j) divided by powers of ρ. Hence the polynomial H of Definition 4.1.1

is equal to ρ. Since more than one edge may be exposed during an operation, the

random variables Z(i,j) change during an operation. However, a constant number

of edges are exposed (as d is fixed) and so the random variables only change by a

117

constant amount. As H = ρ = Ω(n) while the deprioritised algorithm is analysed,

the value of Z(i,j)/ρ during an operation is within o(1) of its value at the start of the

operation. So when determining the functions f
(r)
(i,j) and f (r), we treat each Z(i,j) as

fixed throughout each operation.

Now let Pin(w ∈ V(i,j)) be the probability that a vertex w, selected via a free in-point

chosen uniformly at random, has degree pair (i, j). Define Pout(w ∈ V(i,j)) similarly.

Then

Pin(w ∈ V(i,j)) = (d− i)Z(i,j)/ρ and Pout(w ∈ V(i,j)) = (d− j)Z(i,j)/ρ.

In-incs and Out-incs

For convenience we extend the definition of Z(i,j) so that Z(i,j) = 0 for i < 0 or j < 0.

The expected change in Z(i,j) due to an in-inc w is In(i,j) + o(1) where

In(i,j) = Pin(w ∈ V(i−1,j))− Pin(w ∈ V(i,j)) = ((d + 1− i)Z(i−1,j) − (d− i)Z(i,j))/ρ.

Similarly, the expected change in Z(i,j) due to an out-inc w is Out(i,j) + o(1) where

Out(i,j) = Pout(w ∈ V(i,j−1))−Pout(w ∈ V(i,j)) = ((d+1− j)Z(i,j−1)− (d− j)Z(i,j))/ρ.

Rems

A rem is a vertex, other than the processed vertex, that is an out-neighbour of the

vertex v added to D. Let w be a rem. Contributions to the expected change in Z(i,j)

from calling Saturate with w come from three sources: w moving to V(d,d), in-incs

from exposing the free out-points associated with w, and out-incs from exposing the

free in-points associated with w. Let Fin and Fout be the number of free in-points

and out-points associated with w (respectively) before the edge (v, w) is added, and

let δa,b be the usual Kronecker delta.

118

Then the expected change in Z(i,j) due to a rem is Rem(i,j) + o(1) where

Rem(i,j) = δi,dδj,d − Pin(w ∈ V(i,j)) + E(Fin − 1) Out(i,j) + E(Fout) In(i,j)

= δi,dδj,d − (d− i)Z(i,j)/ρ

+
1

ρ

[
d∑

p=0

d∑
q=0

(d− p− 1)(d− p)Z(p,q)

]
Out(i,j)

+
1

ρ

[
d∑

p=0

d∑
q=0

(d− q)(d− p)Z(p,q)

]
In(i,j).

Operations

There are two distinct sorts of operations as described above. Consider an operation

of type r that processes a vertex u of degree pair (p, q). Let v be the vertex added

to D. Then there are two cases to consider.

Case p > q: In this case v = u always. So there are d− q rems and d− p out-incs

from exposing the free points associated with u. Also u moves from V(p,q) to V(d,d).

Therefore the expected change in Z(i,j) is Opr(i,j) + o(1) where

Opr(i,j) = δi,dδj,d − δi,pδj,q + (d− q)Rem(i,j) + (d− p)Out(i,j).

Case p ≤ q: In this case, either v = u or v is an in-neighbour of u obtained

by exposing a free in-point associated with u. Asymptotically almost surely the in-

neighbours of u are distinct (as we do not consider the very end of the algorithm), so

this is assumed for the following analysis. Let χp = {(r, s) ∈ Z2 : 0 ≤ r, s ≤ d}d−p.

For z = (z1, . . . , zd−p) ∈ χp, let Ez be the event that, for a = 1, . . . , d− p, the vertex

wa has degree pair za. Then for z ∈ χp, we define γ(i,j)(z) such that γ(i,j)(z) + o(1)

is the expected change in Z(i,j) conditioned on Ez.

We determine γ(i,j)(z) by considering the contributions to the expected change in

Z(i,j) due to the vertices u, v, and w1, . . . , wd−p. If wa is not added to D, then the

contribution of wa to the change in Z(i,j) is δra,iδsa,j−1 − δra,iδsa,j. Let (r, s) be the

minimum of {(ra, sa) : a = 1, . . . , d − p} with respect to the reverse lexicographic

119

ordering. Define λz = 1 if v = u, and λz = 0 if u 6= v. Then we take

γ(i,j)(z) = δi,dδj,d − δp,iδq,j +

[∑
wa 6=v

(δra,iδsa,j−1 − δra,iδsa,j)

]

+ λz(d− q)Rem(i,j)

+ (1− λz)[(d− s− 1)Rem(i,j) + (d− r)Out(i,j)

+ (d− q)In(i,j) + δi,dδj,d − δi,rδj,s].

The probability that z is the sequence of degree pairs corresponding to w1, . . . , wd−p

is
d−p∏
a=1

Pout(wa ∈ V(ra,sa)) + o(1).

Hence the expected change in Y(i,j) is Opr(i,j) + o(1) where

Opr(i,j) =
∑
z∈χp

(
γ(i,j)(z)

d−p∏
a=1

Pout(wa ∈ V(ra,sa))

)
.

Changes in the Size of the Dominating Set

The expected change in the size of the dominating set due to any operation is one

plus the expected number of accidental saturates. Accidental saturates are either in-

incs or out-incs; they are never rems. Consider an operation of type r that processes

a vertex u of degree pair (p, q). Then again we need to consider two cases.

Case p > q: The expected change in Z is domr + o(1) where

domr = 1 + (d− q)(Rem(d,d) − 1) + (d− p)Out(d,d).

Case p ≤ q: We determine a function domr such that the expected change in Z is

domr + o(1). This function takes a similar form to Opr(i,j) for p ≤ q. In particular

we take

domr = 1 +
∑
z∈χp

(
σ(z)

d−p∏
a=1

Pout(wa ∈ V(ra,sa))

)

120

where

σ(z) =

[∑
wa 6=v

δra,dδsa,d−1

]
+ λz(d− q)(Rem(d,d) − 1)

+ (1− λz)
[
(d− s− 1)(Rem(d,d) − 1) + (d− r)Out(d,d) + (d− q)In(d,d)

]
and λz is defined as above.

The Functions f
(r)
(i,j) and f (r)

To obtain the functions f
(r)
(i,j) and f (r), we scale the random variables by setting

Z(i,j)(t) = nz(i,j)(t/n) and Z(t) = nz(t/n). Then we write Opr(i,j) and domr in

terms of z(i,j) (for 0 ≤ i, j ≤ d) and z. (Of course, when we apply Theorem 5.4.1 we

use the scaled variables yi defined by Yi(t) = nyi(t/n) for i = 0, . . . , (d + 1)2). First

we have

In(i,j) =
(d + 1− i)z(i−1,j) − (d− i)z(i,j)

s
,

Out(i,j) =
(d + 1− j)z(i,j−1) − (d− j)z(i,j)

s
, and

Rem(i,j) = δi,dδj,d − (d− i)z(i,j)/s

+ (1/s)

(
d∑

p=0

d∑
q=0

(d− p− 1)(d− p)z(p,q)

)
Out(i,j)

+ (1/s)

(
d∑

p=0

d∑
q=0

(d− p)(d− q)z(p,q)

)
In(i,j)

where s =
∑d

p=0

∑d
q=0(d− p)z(p,q). The other equations follow from those above.

The Differential Equations

We use the theory of Chapter 4 (in particular Section 4.3) to define differential

equations whose solutions, as we prove later, describe the random variables of the

121

deprioritised algorithm based on DominatingSet. Recall that the differential equa-

tions for a given phase are obtained from the type distribution of that phase and

the functions f
(r)
(i,j) and f (r). The type distribution for a phase of type τ is given by

Definition 4.2.1 with O =M(τ), where M(τ) is the irreducible type set for a phase

of type τ (as defined in Definition 4.2.5). We determine the irreducible type sets in

the next section using the DPPD method described in Section 4.2.4.

The differential equations relate to the deprioritised algorithm based on Dominat-

ingSet. So we now consider the random process {Gt} defined by the deprioritised

algorithm. Recall that p
(τ)
r is the probability of performing an operation of type r

during a phase of type τ . So we obtain the differential equations

dz(i,j)

dx
=
∑

r∈M(τ)

p(τ)
r f

(r)
(i,j)

and
dz

dx
=
∑

r∈M(τ)

p(τ)
r f (r).

The first function approximates E(Z(i,j)(t+1)−Z(i,j)(t) |G0, . . . , Gt), while the sec-

ond approximates E(Z(t + 1)− Z(t) |G0, . . . , Gt).

The solutions to the differential equations dz(i,j)/dx and dz/dx describe the ran-

dom variables Z(i,j) and Z during the deprioritised algorithm. However, it is more

convenient to solve the differential equations

dz(i,j)

dz
=

dz(i,j)

dx
/
dz

dx
.

So we do not determine (approximations to) the values xj for j = 1, . . . , K. Instead

we determine approximations to z(i,j)(xj) and z(xj). Of course we are still able to

check the hypotheses to Theorem 5.4.1, as the functions f
(r)
(i,j) and f (r) do not depend

on the variable x.

6.1.3 Applying the deprioritised approach

We wish to apply the deprioritised approach, as described in Chapter 4 and Chapter

5, to the analysis of DominatingSet. So we must show that DominatingSet is a

122

deprioritisable algorithm. We also need to determine the irreducible type sets. Then

Theorem 5.4.1 may be applied.

Consider the definition of deprioritisable algorithms given in Definition 4.1.1. Parts

(i), (ii), and (iv) of Definition 4.1.1 follow from the definition of DominatingSet. The

previous section shows that part (iii) is satisfied (with the polynomial H = s and

integers k = (d + 1)2 − 1 and m = (d + 1)2). Notice that in each operation, since d

is fixed, the number of edges exposed is bounded; hence part (v) is satisfied. Since

the random variables count vertices, part (vi) is satisfied with M = 1. Finally, part

(vii) is satisfied as Y0(0) = n and Yi(0) = 0 for i ≥ 1. Therefore DominatingSet is a

deprioritisable algorithm.

6.1.4 Determining the irreducible type sets

We determine the irreducible type sets using the DPPD method described in Section

4.2.4. Recall the definition of B(i,j)-determined from Section 4.2.4. It will be more

convenient to use the variables z(p,q) rather than the variables yi. To translate

between the two sets of variables, we define ν(p, q) = i where i is the type of (p, q)

(as in Section 6.1.1) and dp(ν(p, q)) = (p, q). Note that, as for DominatingSet2,

when (i, j) 6= (d, d) we have

B(i,j) = {(i− 1, j), (i, j − 1)} ∩ {(p, q) : 0 ≤ p, q ≤ d}.

Therefore f
(r)
(i,j) is B(i,j)-determined if

(a) every term in the numerator of f
(r)
(i,j) + δν(i,j),r contains at least one variable in

the set {z(i,j), z(i−1,j), z(i,j−1)}, and

(b) for all (p, q) ∈ B(i,j), there exists a term of the numerator of f
(r)
(i,j) + δν(i,j),r

containing the variable z(p,q) but no variables in the set

{zdp(j) : j = τ + 1, . . . , k}.

123

Note that we do not need to consider the function f (r) as f (r) corresponds to the

expected change in Ym and m > k.

We will show that f
(r)
dp(i) is Bdp(i)-determined for all i ∈ {0, . . . , k} and r ∈ {0, . . . , k}.

Then, by Lemma 4.2.11, we may determine the irreducible type sets for all phase

types; moreover, the Independent Types Property will hold for phases of all types.

Fix (i, j) 6= (d, d) and consider r such that dp(r) = (p, q) with p > q. Then

f
(r)
(i,j) + δν(i,j),r = (d− q)Rem(i,j) + (d− p)Out(i,j).

Notice that every term of the numerators of In(i,j), Out(i,j), and Rem(i,j) involves

z(i,j) or z(i−1,j), or z(i,j−1). Therefore part (a) of the definition of B(i,j)-determined

is satisfied. Next we show that part (b) is satisfied. Let (s, t) ∈ B(i,j). From the

definition of Rem(i,j), it is clear that the numerator of Rem(i,j) contains a term

involving only z(s,t) and z(0,0). Notice that the function H = s contains the term

z(0,0). Thus if we multiply the numerator of Rem(i,j) by any power of H, the result

still contains a term involving only z(s,t) and z(0,0). Hence part (b) is satisfied.

Now consider r such that dp(r) = (p, q) with p ≤ q. Then

f
(r)
(i,j) + δν(i,j),r = Rem(i,j) [(d− p)P(u = v) + (d− s− 1)P(u 6= v)]

+ Out(i,j) [(d− r)P(u 6= v)] + In(i,j) [(d− q)P(u 6= v)]

+
∑
z∈χp

[(∑
wa 6=v

δra,iδsa,j−1 − δra,iδsa,j

)
− (1− λz)δr,iδs,j

]
P(Ez)

where P(u = v) =
∑

z∈χp
λzP(Ez) and P(u 6= v) =

∑
z∈χp

(1− λz)P(Ez). Notice that

the sum (∑
wa 6=v

δra,iδsa,j−1 − δra,iδsa,j

)
− (1− λz)δr,iδs,j

is non-zero only when dp(wa) = (i, j) or dp(wa) = (i, j − 1) for some a. In this case

the numerator of

P(Ez) =

d−p∏
a=1

Pout(wa ∈ V(ra,sa))

contains either the variable z(i,j) or the variable z(i,j−1). Hence part (a) of the

definition of B(i,j)-determined is satisfied.

124

(0,0)0

(0,1)1 (1,0)2

(0,2)4 (1,1)3 (2,0)5

(1,2)6 (2,1)7

Figure 6.1.2: The coloured DPPD for a phase of type 2 of DominatingSet for d = 2.

We show part (b) as we did above; so let (s, t) ∈ B(i,j). Notice that

Rem(i,j) [(d− p)P(u = v) + (d− s− 1)P(u 6= v)]

contains the term Cz(p,q)z
d−p+1
(0,0) for some C 6= 0. This is the only way such a term

can be obtained and so part (b) is satisfied.

Therefore f
(r)
dp(i) is Bdp(i)-determined for all i ∈ {0, . . . , k} and r ∈ {0, . . . , k}. Thus,

for all phase types, we may determine the irreducible type sets using the DPPD

method and the Independent Types Property holds.

We determine the irreducible type sets for DominatingSet for d = 2 only. Figure

6.1.2 gives the coloured DPPD for a phase of type 2. Using the DPPD method, we

see that the irreducible type set for a phase of type 2 is {2, 3, 4, 5}. Table 6.1.2 gives

the irreducible type sets for phases of each type.

Finally we must choose the type of the first phase of the deprioritised algorithm

based on DominatingSet. We take this type to be the type of the first phase of

DominatingSet. Consider the first operation of DominatingSet, which has type

0. Asymptotically almost surely the first operation creates vertices of degree pairs

(2, 2), (1, 0), and (0, 1) only. Thus the second operation a.a.s. has type 2 and so

phase one of DominatingSet has type 2. Hence the deprioritised algorithm based

125

Phase Type Irreducible Type Sets

0 {0, 1, 2}

1 {1, 2, 3, 4}

2 {2, 3, 4, 5}

3 {3, 4, 5, 6, 7}

4 {4, 5, 6, 7}

5 {5, 6, 7}

6 {6, 7}

7 {7}

Table 6.1.2: The operations types that may occur during a phase of a given type.

on DominatingSet also begins with a phase of type 2. The types of any subsequent

phases can be determined from the application of Theorem 5.4.1, as described in

Section 4.3.

6.1.5 Numerical analysis for d = 2

We only give details for the case d = 2. The analysis for larger d proceeds similarly,

but with many more phases (the number of phases appears to grow quadratically

with d). We check the hypotheses to Theorem 5.4.1 with solutions to the differential

equations obtained (non-rigorously) using the fourth order Runge-Kutta method.

Note that these hypotheses depend on the parameter δ. We leave δ unspecified and

extend the numerical solutions as far as possible while the hypotheses are satisfied

for some δ > 0. We may then take δ sufficiently small so as to include each point of

the numerical solutions.

First we show that the initial conditions (0, ŷ0(0), . . . , ŷ9(0)) lie in D(δ). Recall that

ŷ0(0) = lim
n→∞

Y0(0)/n = 1 and ŷi(0) = lim
n→∞

Yi(0)/n = 0 (for i = 1, . . . , 9).

As we have exact values for ŷi(0), the function values we calculate for phase one are

126

also exact. Thus H(0, ŷ0(0), . . . , ŷ9(0)) = 2 and so

(0, ŷ0(0), . . . , ŷ9(0)) ∈ D(δ).

We start the analysis with a phase of type 2.

Checking hypotheses for phase 1 of type 2

Hypothesis (A) To satisfy hypothesis (A) we need to show that

(x0, ŷ0(x0), . . . , ŷ9(x0))

lies in the closure of V (2)(δ). Above we showed that

(x0, ŷ0(x0), . . . , ŷ9(x0)) ∈ D(δ),

show it just remains to show that the functions

− det C(2) − δ, ŷ2, q
(2)
b for b = 1, 2, 3, 4, and E

(2)
b for b = 2, 3, 4,

are all non-negative at x0 = 0. Calculating the values of these functions

numerically at (x0, ŷ0(x0), . . . , ŷ9(x0)) we find

− det C(2)−δ = 1, ŷ2 = 0,

q
(2)
b = δb,1 for b = 1, 2, 3, 4, and E

(2)
b = 1 for b = 2, 3, 4.

Therefore hypothesis (A) is satisfied.

Hypothesis (B) We need to show that each function in B̂(2)(δ) has positive

growth at x0 during a phase of type 2. Any function that is positive at x0 has

positive growth at x0. Thus we only need to consider the functions ŷ2 and q
(2)
b

for b = 2, 3, 4. Using automatic differentiation [38] we calculate the derivatives

of these functions and find

∆(2)ŷ2(x0) = 3 and ∆(2)q
(2)
b (x0) =

21, if b = 2

4.5, if b = 3

6, if b = 4.

Therefore hypothesis (B) is satisfied.

127

Hypothesis (C) We must show that ŷi (for i = 2, 3, 4, 5) has positive growth

at x0 during a preprocessing subphase. Since ŷi(x0) = 0 for each i, we must

consider the derivatives (as calculated in a preprocessing subphase) of ŷi for

each i. We have

∆(P)ŷ2(x0) = 4, ∆(P)ŷi(x0) = 0 for i = 3, 4, 5

and

(∆(P))2ŷi(x0) =

 32, if i = 3

8, if i = 4, 5.

Therefore hypothesis (C) is satisfied.

Hypothesis (D) We must show that the functions − det C(2) − δ and q
(2)
b (for

b = 1, 2, 3, 4) have positive growth at x0 during a preprocessing subphase. We

have already shown that − det C(2) − δ and q
(2)
1 are positive at x0 and so have

positive growth. We consider the derivatives at x0 of q
(2)
b for b = 2, 3, 4:

∆(P)q
(2)
b (x0) =

28, if b = 2

6, if b = 3

8, if b = 4

Therefore hypothesis (D) is satisfied.

Hypothesis (E)

For hypothesis (A) we showed that E
(2)
b (x0) is positive for b = 2, 3, 4. Therefore

hypothesis (E) is also satisfied.

Hypothesis (F)

Each function of B̂(2)(δ) has positive growth during a phase of type 2 of order

0 or 1, as shown when considering hypothesis (B). For hypotheses (C) and

(D), we showed that the functions with positive growth of order 1 during a

phase of type 2 also have positive growth of order 1 during the preprocessing

subphase. Thus hypothesis (F) is satisfied by Lemma 5.3.4.

Computing numerical solutions to the differential equations dyi/dy9 = dzdp(i)/dz

(for i = 0, . . . , 8) we find that ŷ9(x1) = z(x1) satisfies

0.0422191 < ŷ9(x1) < 0.0422192.

128

The solutions exit V (2)(δ) at the boundary q
(2)
1 = E

(2)
2 = 0. Thus there is a next

phase and this phase has type 3. We check the hypotheses for phase 2 at x̂1 such

that ŷ9(x̂1) = 0.0422191, instead of at x1. Earlier, in Section 6.1.4, we showed that

the Independent Types Property hold for phases of all types. Hence we may use the

alternative hypotheses (A2)–(D2).

Checking hypotheses for phase 2 of type 3

Hypothesis (A2) As mentioned above.

Hypothesis (B2)

(i) det C(3)(x̂1) = 0.82592 · · ·

(ii) (∆(3))2ŷ3(x̂1) = 20.91221 · · ·

(iii) ∆(P)∆(3)ŷ3(x̂1) = 25.34147 · · ·

Hypothesis (C2) Note thatM(3) = {3, 4, 5, 6, 7} and thatM(2) = {2, 3, 4, 5}.

(i) ∆(P)q
(3)
4 (x̂1) = 2.25177 · · · and ∆(P)q

(3)
5 (x̂1) = 2.25177 · · ·

(ii) ∆(P)∆(3)q
(3)
4 (x̂1) = 46.43098 · · · and ∆(P)∆(3)q

(3)
5 (x̂1) = 35.21154 · · ·

(iii) (∆(3))2q
(3)
4 (x̂1) = 38.31563 · · · and (∆(3))2q

(3)
5 (x̂1) = 29.05715 · · ·

(iv) (∆(P))2ŷ6(x̂1) = 3.11359 · · · and (∆(P))2ŷ7(x̂1) = 3.05130 · · ·

Hypothesis (D2)

(i) q
(3)
b (x̂1) =

0.54965 · · · , if b = 1

0.14315 · · · , if b = 2

0.13310 · · · , if b = 3

(ii) ∆(P)ŷi(x̂1) =

0.88740 · · · , if i = 3

0.22521 · · · , if i = 4

0.21848 · · · , if i = 5

129

Computing numerical solutions to the differential equations we find that ŷ9(x2)

satisfies

0.1379476 < ŷ9(x2) < 0.1379477.

The solutions exit V (3)(δ) at the boundary q
(3)
1 = E

(3)
2 = 0. Thus there is a next

phase and this phase has type 4. We check the hypotheses for phase 3 at x̂2 such

that ŷ9(x̂2) = 0.1379476 instead of x2.

Checking hypotheses for phase 3 of type 4

Hypothesis (A2) As mentioned above.

Hypothesis (B2)

(i) det C(4)(x̂2) = 0.83502 · · ·

(ii) (∆(4))2ŷ4(x̂2) = 3.98914 · · ·

(iii) ∆(P)∆(4)ŷ4(x̂2) = 1.69585 · · ·

Hypothesis (C2) Note thatM(4) = {4, 5, 6, 7} ⊂ M(3); so there is nothing to

check.

Hypothesis (D2)

(i) q
(4)
b (x̂2) =

0.32644 · · · , if b = 1

0.25305 · · · , if b = 2

0.14588 · · · , if b = 3

0.10964 · · · , if b = 4

(ii) ∆(P)ŷi(x̂2) =

0.52984 · · · , if i = 4

0.48551 · · · , if i = 5

0.22935 · · · , if i = 6

0.21036 · · · , if i = 7

130

Computing numerical solutions to the differential equations we find that ŷ9(x3)

satisfies

0.2334262 < ŷ9(x3) < 0.2334263.

The solutions exit V (4)(δ) at the boundary q
(4)
1 = E

(4)
2 = 0. Thus there is a next

phase and this phase has type 5. We check the hypotheses for phase 4 at x̂3 such

that ŷ9(x̂3) = 0.2334262.

Checking hypotheses for phase 4 of type 5

Hypothesis (A2) As mentioned above.

Hypothesis (B2)

(i) det C(5)(x̂3) = 1.14587 · · ·

(ii) (∆(5))2ŷ4(x̂3) = 2.05665 · · ·

(iii) ∆(P)∆(5)ŷ5(x̂3) = −3.77295 · · ·

Hypothesis (C2) Note that M(5) = {5, 6, 7} ⊂ M(4); so there is nothing to

check.

Hypothesis (D2)

(i) q
(5)
b (x̂3) =

0.36307 · · · , if b = 1

0.35304 · · · , if b = 2

0.42975 · · · , if b = 3

(ii) ∆(P)ŷi(x̂3) =

0.52817 · · · , if i = 5

0.79990 · · · , if i = 6

0.62516 · · · , if i = 7

131

Computing numerical solutions to the differential equations we find that ŷ9(x4)

satisfies

0.3746430 < ŷ9(x4) < 0.3746431.

The solutions exit V (5)(δ) at the boundary q
(5)
1 = E

(5)
2 = 0. Thus there is a next

phase and this phase has type 6. We check the hypotheses for phase 5 at x̂4 such

that ŷ9(x̂4) = 0.3746430.

Checking hypotheses for phase 5 of type 6

Hypothesis (A2) As mentioned above.

Hypothesis (B2)

(i) det C(6)(x̂4) = 0.67586 · · ·

(ii) (∆(6))2ŷ6(x̂4) = 1.40866 · · ·

(iii) ∆(P)∆(6)ŷ6(x̂4) = −693.54375 · · ·

Hypothesis (C2) Note that M(6) = {6, 7} ⊂ M(5); so there is nothing to

check.

Hypothesis (D2)

(i) q
(6)
b (x̂4) =

 0.35556 · · · , if b = 1

0.32030 · · · , if b = 2

(ii) ∆(P)ŷi(x̂4) =

 2.02426 · · · , if i = 6

1.59804 · · · , if i = 7

Computing numerical solutions to the differential equations we find that ŷ9(x5)

satisfies

0.3806845 < ŷ9(x5) < 0.3806846.

The solutions exit V (5)(δ) at the boundary ŷ0 = 0. Thus the algorithm has finished.

Therefore an a.a.s. upper bound on the domination number of a random 2-in 2-out

digraph is 0.38069n.

132

d PathDominatingSet Best Previous

2 0.55283n 0.71379n

3 0.48912n 0.61594n

4 0.43531n 0.54383n

5 0.39262n 0.48840n

6 0.35813n 0.44433n

Table 6.2.1: Asymptotically almost sure upper bounds on the 2-path domination

number of a random d-in d-out digraph.

6.2 Analysing 2-Path Dominating Set Algorithms

We introduce a prioritised algorithm, called PathDominatingSet, that finds a 2-path

dominating set of a random d-in d-out digraph. Applying the deprioritised approach

to PathDominatingSet, we obtain a.a.s. upper bounds on the 2-path domination

number as given in Table 6.2.1; previous upper bounds, from Theorem 2.2.8, are

also given.

The algorithm PathDominatingSet is designed rather differently than Dominat-

ingSet. As PathDominatingSet proceeds, vertices are added to a set B. The oper-

ations are defined so that, after each operation, each edge is incident with at least

one vertex in B. Thus, after each operation, every vertex with in-degree at least

one and out-degree at least one is either in B or has both an in-neighbour and an

out-neighbour in B. The algorithm finishes when there are no vertices of in-degree

zero or out-degree zero; at which point B is a 2-path dominating set. Note that

PathDominatingSet does not return a d-in d-out digraph. In fact, the fewer points

exposed by PathDominatingSet, the better PathDominatingSet has performed. The

digraph returned by PathDominatingSet can be completed to a random d-in d-out

digraph by exposing the remaining free points.

133

6.2.1 The operations and their priorities

Each operation processes a vertex of degree pair (p, q) where p = 0 or q = 0. The

type of an operation is determined by the degree pair of the processed vertex: so

there are 2d + 1 types of operations. An operation that processes a vertex of degree

pair (p, q) proceeds as follows:

(i) a vertex v is degree pair (p, q) is selected uniformly at random;

(ii) if p = 0, then

(a) a free in-point associated with v is exposed to obtain an in-neighbour w1,

(b) the vertex w1 is added to B, and

(c) the free points associated with w1 are exposed;

(iii) if q = 0, then

(a) a free out-point associated with v is exposed to obtain an out-neighbour w2,

(b) the vertex w2 is added to B, and

(c) the free points associated with w2 are exposed.

This completes the definition of the operation.

We define the priorities of the operation types by also defining types for degree pairs.

In particular, the degree pair (p, q) has type 2(p + q)− δp>q where δp>q = 1 if p > q

and δp>q = 0 if p ≤ q. Then the type of an operation is the type of the degree

pair of the vertex processed by that operation. An operation of type τ1 has higher

priority than an operation of type τ2 if τ1 > τ2. We can now complete the definition

of PathDominatingSet: the algorithm begins with the empty pairing and proceeds

via a sequence of operations, until no operation may be performed; at each step, the

type of the next operation is the type of highest priority that may be performed.

134

6.2.2 The differential equations

We now determine differential equations whose solution describes the deprioritised

algorithm approximating PathDominatingSet. Again we require that d be fixed.

The differential equations are determined using random variables Z(i,j), which count

the vertices with degree pair (i, j), and Z = |B|. Later, when applying Theorem

5.4.1, we rename these random variables Yi for i = 0, . . . , (d + 1)2. In particular, for

(p, q) with p = 0 or q = 0, we let Z(p,q) = Yi where (p, q) has type i, as described in

Section 6.2.1. We also let Z = Y(d+1)2 . The random variables Z(p,q) for p, q > 0 can

be renamed in any way.

We start by determining functions that approximate the expected change in the

random variables due to a single operation of PathDominatingSet. So in this section

(Section 6.2.2), the underlying random process is defined by the prioritised algorithm

PathDominatingSet. As in Section 6.1.2, we determine functions f
(r)
(i,j) and f (r), for

0 ≤ i, j ≤ d and r ∈ {0, . . . , 2d}, such that

f
(r)
(i,j)(t/n, Z(0,0)(t)/n, . . . , Z(d,d)(t)/n, Z(t)/n) + o(1)

is the expected change in Z(i,j) due to an operation of type r at time t, and

f (r)(t/n, Z(0,0)(t)/n, . . . , Z(d,d)(t)/n, Z(t)/n) + o(1)

is the expected change in Z due to an operation of type r at time t.

The analysis is similar to that of DominatingSet; the main difference is that there

are no rems. We again use the functions Pin(w ∈ V(i,j)), Pout(w ∈ V(i,j)), In(i,j), and

Out(i,j), as defined in Section 6.1.2, to define f
(r)
(i,j) and f (r).

Now consider an operation that processes a vertex v of degree pair (p, q). If p = 0,

then we expose a free in-point associated with v to obtain a new in-neighbour w1.

Let Fin and Fout be the number of free in-points and free out-points associated with

w1 respectively, before the edge from w1 to v is exposed. Then the expected change

in Z(i,j) due to exposing the free points associated with w1 is Ψin
(i,j) + o(1) where

Ψin
(i,j) = δi,dδj,d − Pout(w1 ∈ V(i,j)) + E(Fin)Out(i,j) + E(Fout − 1)In(i,j)

135

and

E(Fin) =
d∑

r=0

d∑
s=0

(d− r)Pout(w1 ∈ V(r,s))

and

E(Fout − 1) =
d∑

r=0

d∑
s=0

(d− s− 1)Pout(w1 ∈ V(r,s)).

Similarly, if q = 0, then we expose an out-point associated with v to obtain a new

out-neighbour w2. The expected change in Z(i,j) due to exposing the free points

associated with w2 is Ψout
(i,j) + o(1) where

Ψout
(i,j) = δi,dδj,d − Pin(w2 ∈ V(i,j))

+

(
d∑

r=0

d∑
s=0

(d− r − 1)Pin(w2 ∈ V(r,s))

)
Out(i,j)

+

(
d∑

r=0

d∑
s=0

(d− s)Pin(w2 ∈ V(r,s))

)
In(i,j).

The change in Z(i,j) from exposing the free points associated with v is
δi,1δj,1 − δi,0δj,0 if p = q = 0,

δi,1δj,q − δi,0δj,q if p = 0 and q > 0,

δi,pδj,1 − δi,pδj,0 if p > 0 and q = 0.

Now consider an operation of type r that processes a vertex of degree pair (p, q).

Then expected change in Z(i,j) due to an operation of type r is Opr(i,j) + o(1) where

Opr(i,j) =

δi,1δj,1 − δi,0δj,0 + Ψin

(i,j) + Ψout
(i,j) if p = q = 0,

δi,1δj,q − δi,0δj,q + Ψin
(i,j) if p = 0 and q > 0,

δi,pδj,1 − δi,pδj,0 + Ψout
(i,j) if p > 0 and q = 0.

The expected change in Z due to an operation of type r is domr +o(1) where

domr = δp,0 + δq,0.

The Functions f
(r)
(i,j) and f (r)

The functions f
(r)
(i,j) and f (r) are obtained by scaling the random variables Z(i,j) and

P . In particular, we set Z(i,j)(t) = nz(i,j)(t/n) and Z(t) = nz(t/n) and then write

136

Opr(i,j) and domr in terms of z(i,j) and z. We use the scaled variables yi such that

Yi(t) = nyi(t/n) (for i = 0, . . . , (d + 1)2) when applying the deprioritised approach.

The differential equations

The differential equations dz(i,j)/dx and dz/dx are obtained using the theory of

Chapter 4, as described for DominatingSet. Recall that now the underlying random

process {Gt} is defined by the deprioritised algorithm based on PathDominatingSet.

Again we have dz(i,j)/dx approximating E(Z(i,j)(t + 1)− Z(i,j)(t) |G0, . . . , Gt) while

dz/dx approximating E(Z(t + 1) − Z(t) |G0, . . . , Gt). As in Section 6.1, it is more

convenient to solve the differential equations dz(i,j)/dz.

6.2.3 Applying the deprioritised approach

We apply the deprioritised approach to PathDominatingSet, as described in Chapter

4 and Chapter 5. So in this section we show that PathDominatingSet is a depriori-

tisable algorithm and determine the irreducible type sets for each phase. We then

apply Theorem 5.4.1 for d = 2.

Recall the definition of deprioritisable algorithms from Definition 4.1.1. From the

definition of PathDominatingSet, we see that parts (i), (ii), and (iii) are satisfied.

Part (iii) is satisfied (with the polynomial H = s and integers k = 2d and m =

(d+1)2) as described in the previous section. The number of edges exposed by each

operation is bounded, so part (v) is satisfied. Part (vi) is satisfied with M = 1, as

the random variables count vertices. Finally, we have Y0(0) = n and Yi(0) = 0 for

i ≥ 1, so part (vii) is satisfied. Therefore PathDominatingSet is a deprioritisable

algorithm.

137

6.2.4 Determining the irreducible type sets

The irreducible type sets are determined using the DPPD method described in

Section 4.2.4. Recall the definition of B(i,j)-determined from Section 4.2.4. It is

more convenient to use the variables z(p,q). Recall that the functions ν and dp are

used to translate between the variables z(p,q) and yi. We define ν(p, q) = i where i is

the type of (p, q) (as in Section 6.2.1) and dp(ν(p, q)) = (p, q). Now, for (i, j) 6= (d, d)

and (i, j) 6= (1, 1), we have

B(i,j) = {(i− 1, j), (i, j − 1)} ∩ {(p, q) : 0 ≤ p, q ≤ d};

when (i, j) = (1, 1) we have B(1,1) = {(0, 1), (1, 0), (0, 0)}.

As for DominatingSet, for (i, j) corresponding to an operation type, the function

f
(r)
(i,j) is B(i,j)-determined if

(a) every term in the numerator of f
(r)
(i,j) + δν(i,j),r contains at least one variable in

the set {z(i,j), z(i−1,j), z(i,j−1)}, and

(b) for all (p, q) ∈ B(i,j), there exists a term of the numerator of f
(r)
(i,j) + δν(i,j),r

containing the variable z(p,q) but no variables in the set

{zdp(j) : j = τ + 1, . . . , k}.

Now fix (i, j) with i = 0 or j = 0. Notice that every term of the numerators of

In(i,j) and Out(i,j) involves z(i,j) or z(i−1,j) or z(i,j−1). Therefore every term of the

numerator of Ψin
(i,j), Ψin

(i,j), and f
(r)
(i,j) + δν(i,j),r involves z(i,j) or z(i−1,j) or z(i,j−1). So

part (a) above is satisfied. It is also clear from the definition of f
(r)
(i,j) + δν(i,j),r that

for (p, q) ∈ B(i,j), the numerator of f
(r)
(i,j) + δν(i,j),r contains a term involving only the

variables z(p,q) and z(0,0). Hence part (b) above is also satisfied. Therefore f
(r)
dp(i) is

Bdp(i)-determined for all i ∈ {0, . . . , k} and r ∈ {0, . . . , k}. Therefore, we may apply

Lemma 4.2.11 for all phase types.

138

(0,0)0

(0,1)2 (1,0)1

(0,2)4 (1,1) (2,0)3

(1,2) (2,1)

Figure 6.2.1: The coloured DPPD for a phase of type 2 of PathDominatingSet.

Phase Type Operation Types

0 0,1,2

1 1,2,3

2 2,3,4

3 3,4

4 4

Table 6.2.2: The operations types that may occur during a phase of a given type.

We determine the irreducible type sets for PathDominatingSet for d = 2 only. The

coloured DPPD for a phase of type 2 is shown in Figure 6.2.1. By Lemma 4.2.11,

we have M(2) = {2, 3, 4}. Table 6.2.2 gives the irreducible type sets for each phase

type when d = 2.

To apply Theorem 5.4.1, we must choose the type of the first phase. Consider

the prioritised algorithm PathDominatingSet. The first operation of PathDominat-

ingSet has type 0. So after the first operation, a.a.s. there are vertices of degree

pairs (2, 2), (1, 1), (1, 0), and (0, 1) only. Therefore the type of the second operation

and the first phase of PathDominatingSet is 2. So we take the type of the first phase

of the deprioritised algorithm based on PathDominatingSet to be 2.

139

6.2.5 Numerical analysis for d = 2

We now use Theorem 5.4.1 to analyse the deprioritised algorithm based on Path-

DominatingSet for d = 2. For this deprioritised algorithm, the types of the phases

decrease and the last phase has type 0. As the Independent Types Property holds

for all phase types, we are able to use the alternative hypotheses (A3)–(D3) for

phases two and three. We omit the analyses for larger d, as they do not demon-

strate anything new. As before we solve the differential equations (non-rigorously)

using the fourth order Runge-Kutta method. The numerical solutions are used to

check the hypotheses of Theorem 5.4.1. The numerical solutions are extended as

far as possible while the hypotheses are satisfied for some δ > 0. We then take δ

sufficiently small so as to include each point of the numerical solutions.

Before considering the hypotheses of Theorem 5.4.1, we finish the definition of the

random variables Yi (for i = 0, . . . , (d + 1)2). Recall that for i = 0, . . . , 2d, we have

Yi = Z(p,q) where (p, q) has type i; in particular,

Y0 = Z(0,0), Y1 = Z(1,0), Y2 = Z(0,1), Y3 = Z(2,0), and Y4 = Z(0,2).

We also define

Y5 = Z(1,1), Y6 = Z(2,1), Y7 = Z(1,2), Y8 = Z(2,2), and Y9 = Z.

We now check the hypotheses of Theorem 5.4.1. First we show that the initial

conditions (0, ŷ0(0), . . . , ŷ9(0)) lie in D(δ). Recall that

ŷ0(0) = lim
n→∞

Y0(0)/n = 1 and ŷi(0) = lim
n→∞

Yi(0)/n = 0 (for i = 1, . . . , 9).

Since the initial conditions are known exactly, the values of the functions of B(2)(δ)

are calculated exactly for phase one. Again we have H(0, ŷ0(0), . . . , ŷ9(0)) = 2 and

so

(0, ŷ0(0), . . . , ŷ9(0)) ∈ D(δ).

We start the analysis with a phase of type 2.

140

Checking hypotheses for phase 1 of type 2

Hypothesis (A) To satisfy hypothesis (A) we need to show that

(0, ŷ0(0), . . . , ŷ9(0))

lies in the closure of V (2)(δ). Above we showed that

(0, ŷ0(0), . . . , ŷ9(0)) ∈ D(δ),

so it just remains to show that the functions

det C(2) − δ, ŷ2, q
(2)
b for b = 1, 2, 3, and E

(2)
b for b = 2, 3

are non-negative at x = 0. Calculating the values of these functions numeri-

cally at (0, ŷ0(0), . . . , ŷ9(0)) ∈ D(δ) we find

det C(2)−δ = 1, ŷ2 = 0,

q
(2)
b = δb,1 for b = 1, 2, 3 and E

(2)
b = 1 for b = 2, 3.

Therefore hypothesis (A) is satisfied.

Hypothesis (B) We need to show that each function in B̂(2)(δ) has positive

growth at x0 during a phase of type 2. Any function that is positive has

positive growth. Thus we only need to consider the functions ŷ2 and q
(2)
b for

b = 2, 3. Using automatic differentiation [38] we calculate the derivatives of

these functions and find

∆(2)ŷ2(x0) = 1 and ∆(2)q
(2)
b (x0) =

 0.5, if b = 2

1, if b = 3

Therefore hypothesis (B) is satisfied.

Hypothesis (C) We must show that ŷi (for i = 2, 3, 4) has positive growth at

x0 during a preprocessing subphase. Since ŷi(x0) = 0 for i = 2, 3, 4, we must

consider the derivatives of ŷi (as calculated in a preprocessing subphase) for

i = 2, 3, 4. We have

∆(P)ŷ2(x0) = 3, ∆(P)ŷi(x0) = 0 for i = 3, 4

141

and

(∆(P))2ŷi(x0) = 4.5 for i = 3, 4.

Therefore hypothesis (C) is satisfied.

Hypothesis (D) We must show that the functions det C(2) − δ and q
(2)
b (for

b = 1, 2, 3) have positive growth at x0 during a preprocessing subphase. We

have already shown that det C(2) − δ and q
(2)
1 are positive at x0 and so have

positive growth. We consider the derivatives of q
(2)
b at x0 for b = 2, 3:

∆(P)q
(2)
2 (x0) = 1.5 and ∆(P)q

(2)
3 (x0) = 3.

Therefore hypothesis (D) is satisfied.

Hypothesis (E) For hypothesis (A), we showed that E
(2)
b (x0) is positive for

b = 2, 3. Therefore hypothesis (E) is satisfied.

Hypothesis (F) Each function in B̂(2)(δ) has positive growth of order 0 or 1,

as shown for hypothesis (B). For hypotheses (C) and (D), we showed that the

functions with positive growth of order 1 during a phase of type 2, also have

positive growth of order 1 during the preprocessing subphase. Thus hypothesis

(F) is satisfied by part (ii) of Lemma 5.3.4.

Computing numerical solutions to the differential equations we find that ŷ9(x1)

satisfies

0.4030707 < ŷ9(x1) < 0.4030708.

The solutions exit V (2)(δ) at the boundary ŷ2 = q
(2)
3 = 0 (by Corollary 5.5.3). Thus

there is a next phase. Let x̂1 be such that ŷ9(x̂1) = 0.4030707. Then we have

ŷ1(x̂1) = 0.061195 · · · , so phase two has type 1. We check the hypotheses for phase

two at x̂1 instead of at x1.

As we showed earlier, the Independent Types Property holds for a phase of type 1.

Therefore, by Lemma 5.5.8, we satisfy hypotheses (A)–(F) by satisfying hypotheses

(A3)–(D3).

142

Checking hypotheses for phase 2 of type 1

Hypothesis (A3) As mentioned above.

Hypothesis (B3)

(i) det C(1)(x̂1) = 0.71401 · · ·

(ii) E
(1)
2 (x̂1) = 0.53792 · · ·

Hypothesis (C3)

• q
(1)
b (x̂1) =

0.53792 · · · , if b = 1

0.09610 · · · , if b = 2

0.07998 · · · , if b = 3

Hypothesis (D3)

• ∆(P)ŷ2(x̂1) = 0.47819 · · · and ∆(P)ŷ3(x̂1) = 0.17173 · · ·

Computing numerical solutions to the differential equations we find that ŷ9(x2)

satisfies

0.4858464 < ŷ9(x2) < 0.4858465.

The solutions exit V (3)(δ) at the boundary ŷ1 = q
(1)
3 = 0 (by Corollary 5.5.3). Thus

there is a next phase. Let x̂2 be such that ŷ9(x̂2) = 0.4858464. Then we have

ŷ0(x̂2) = 0.04454 · · · , so phase three has type 0. We check the hypotheses for phase

three at x̂2 instead of at x2.

As we showed earlier, the Independent Types Property holds for a phase of type 0.

Therefore, by Lemma 5.5.8, we satisfy hypotheses (A)–(F) by satisfying hypotheses

(A3)–(D3).

143

Checking hypotheses for phase 3 of type 0

Hypothesis (A3) As mentioned above.

Hypothesis (B3)

(i) det C(0)(x̂2) = 1.04690 · · ·

(ii) E
(0)
2 (x̂2) = 0.62187 · · ·

Hypothesis (C3)

• q
(0)
b (x̂2) =

 0.62187 · · · , if b = 1

0.21251 · · · , if b = 2, 3

Hypothesis (D3)

• ∆(P)ŷ1(x̂2) = ∆(P)ŷ2(x̂2) = 0.25469 · · ·

Computing numerical solutions to the differential equations we find that ŷ9(x3)

satisfies

0.5528359 < ŷ9(x3) < 0.5528360.

The solutions exit V (3)(δ) at the boundary ŷ0 = 0. Thus the algorithm has finished.

Therefore an a.a.s. upper bound on the domination number of a random 2-in 2-out

digraph is 0.55283n.

144

Chapter 7

Conclusion

Prioritised algorithms, of the type considered in this thesis, have been applied to

many combinatorial problems. However, such algorithms are difficult to analyse.

The deprioritised approach has proved to be an effective alternative. In this thesis

we have extended earlier work by Wormald [61], so that the deprioritised approach

may be applied to a larger class of prioritised algorithms: for example, algorithms

for random d-in d-out digraphs (where d is fixed). Of course, further development

is still possible and we now consider some possibilities for further work.

Some of the work in this thesis is specific to designing algorithms based on priori-

tised algorithms. For example, determining which types of operations occur during

a phase and the expected proportions in which they occur. However we may also

be interested in algorithms that choose the types of operations to perform using

a probability distribution more generally. For such algorithms (unprioritised algo-

rithms, perhaps?) the type distribution would not come from a prioritised algorithm

but would be defined in some other way. The work in this thesis may be helpful in

analysing unprioritised algorithms.

To analyse a deprioritised algorithm, as described by Theorem 5.4.1, a large number

of conditions must be checked. Although automatic differentiation makes checking

these conditions easy, it would be worthwhile to reduce the number of conditions.

145

Indeed, the conditions seem rather artificial, as they do not directly relate to the

algorithms being analysed; so we would like to know whether or not they are nec-

essary. Recently, Shi and Wormald [55] have introduced a method that may allow

us to prove Theorem 5.4.1 assuming fewer hypotheses. Alternatively, there may be

simple global conditions on a prioritised algorithm which ensure that the changes of

phase of the corresponding deprioritised algorithm proceed smoothly.

Most of the hypotheses to Theorem 5.4.1 concern the change of phase. These hy-

potheses are required because the type distribution is discontinuous at the changes

of phase. Using an idea of Shi and Wormald, we could modify our type distribution

with a smoothing parameter so that the type distribution changes continuously dur-

ing the execution of the algorithm. Letting the parameter tend to zero, the modified

type distribution should approach the original type distribution. Thus the functions

ŷi describe the behaviour of the deprioritised algorithm. Such an approach should

yield a theorem that is easier to apply than Theorem 5.4.1.

When developing the theory presented in this thesis, there were a number of choices

regarding the hypotheses and definitions. For example, the functions ŷi which

describe the random variables of the deprioritised algorithm were defined using

M(τ)-clutches, where M(τ) are the irreducible type sets. However, we could also

have defined ŷi using {τ, . . . , k}-clutches, provided we slightly change the hypothe-

ses. In particular, we would need to allow the functions p
(τ)
r defining the type

distribution to be zero throughout a phase; this could be shown using the results

of Section 4.2.2 or with ad hoc methods. Another restriction we made is that the

change in the random variables due to an operation must be bounded by a con-

stant. This restriction could be eased to allow the change in the random variables

to be bounded by a function that is o(n). Indeed, earlier analyses of prioritised

algorithms allowed for this possibility [60]. There are many possible variations of

Theorem 5.4.1; we give the version that we have found most useful.

146

Finally we ask the question: do deprioritised algorithms perform better, worse, or the

same as prioritised algorithms? In the (few) cases when both a prioritised algorithm

and the corresponding deprioritised algorithm have been analysed, the results have

been the same [30, 31]. So it seems that in using the deprioritised approach we obtain

a simpler analysis which leads to results as good as those obtained by analysing

prioritised algorithms.

147

Symbol Index

A(τ) The domain describing a phase of type τ , 72

B(τj)(δ) The set of functions defining the domain on which phase j of

the deprioritised algorithm is analysed, 86

B̂(τj)(δ) The subset of functions of B(τj)(δ) that may have positive

growth of positive order, 86

C(t) The clutch matrix of an O-clutch at step t, 52

C(τ)(t) The clutch matrix forM(τ)-clutch at step t during a phase of

type τ , 56

deg-pair(u) The degree-pair of the vertex u, 17

∆(P) The differential operator for a preprocessing subphase, 87

∆(τ) The differential operator for a phase of type τ , 87

DGn,d The model of random d-in d-out digraphs, 28

DG(P) The multi-digraph obtained from the pairing P , 30

dp A function relating variables to degree pairs, 67

DPn,d The pairing model for random d-in d-out digraphs, 30
dyi

dx
The differential equations whose solutions describe the scaled

random variables of the deprioritised algorithm, 71

E(·) The expectation of a random variable, 24

E
(τ)
b Functions relating to Φ

(τ)
b (t), 72

148

εj The scaled length of the preprocessing subphase of phase j, 82

fi,r Functions describing the expected change in the random vari-

ables due to an operation, 46

fi,r(t) The value of the function fi,r at step t of an algorithm, 48

fi,r(x) The value of the function fi,r in terms of some continuous

functions, 48

←−γ (G) The absorption number of the digraph G, 20

−→γ (G) The domination number of the digraph G, 18

−→γpath(G) The 2-path domination number of the digraph G, 20

gi,r The numerator of the function fi,r, 46

H A function for which H`i is the denominator of fi,r, 46

in-deg(u) The in-degree of the vertex u, 17

ix(r, S) The index of r in S, 60

K The number of phases of the deprioritised algorithm, 73

L(τ)(δ) A domain on which the differential equations are Lipschitz, 72

Lh(x, εj) A lower bound on the function h during the preprocessing

subphase, 91

M An upper bound on the scaled random variables, 47

M(τ) The irreducible type set for a phase of type τ , 59

Nin(u) The set of in-neighbours of the vertex u, 16

Nout(u) The set of out-neighbours of the vertex u, 16

ν A function relating degree pairs to variables, 67

149

o(cn) The set of functions which divided by cn are asymptotically

zero, 18

O(cn) The set of functions asymptotically bounded above by cn, 18

Ω(cn) The set of functions asymptotically bounded below by cn, 18

out-deg(u) The out-degree of the vertex u, 17

P(·) The probability of an event, 24

Φb(t) Functions analogous to the expected change in the random

variables due to a subclutch, 53

Φ
(τ)
b (t) Functions analogous to the expected change in the random

variables due to a subclutch of anM(τ)-clutch, 56

pr(t) Functions related to the expected proportions of operation

types, 53

p
(τ)
r (t) Functions which are used to define the type distribution for

a phase of type τ at step t, 56

q
(τ)
b Functions relating to p

(τ)
r , 72

D(δ) A domain on which the functions fi,r are Lipschitz, 48

tj The first step of the preprocessing subphase of phase j, 82

t′j The first step of the main subphase of phase j, 82

V (τ)(δ) The domain on which we approximate a phase of type τ , 72

Wδ,εj
The domain on which the preprocessing subphase of phase j

is analysed, 82

Y0, . . . , Ym Random variables defined for a deprioritisable algorithm, 46

ŷi Functions describing the scaled random variables of the de-

prioritised algorithm, 73

150

y
(j)
i Functions describing the scaled random variables of the de-

prioritised algorithm during phase j, 73

Yi(t) The value of a random variable at step t, 47

y
(p)
i Functions approximating the scaled random variables during

a preprocessing subphase, 84

z
(j)
i Functions obtained by applying Theorem 5.1.1 to the main

subphase of phase j, 85

z
(p)
i Functions obtained from applying Theorem 5.1.1 to the pre-

processing subphase, 83

151

Bibliography

[1] D. Achlioptas. Setting 2 variables at a time yields a new lower bound for random

3-SAT. In Proceedings of the 32nd ACM Symposium on Theory of Computing

(STOC32), pages 28–37. ACM, New York, NY, 2000.

[2] D. Achlioptas. Lower Bounds for Random 3-SAT via Differential Equations.

Theoretical Computer Science, 265:159–185, 2001.

[3] A.G. Akritas, E.K. Akritas, and G.I. Malaschonok. Various proofs of Sylvester’s

(determinant) identity. Mathematics and Computers in Simulation, 42:585–593,

1996.

[4] R. Albert, A. Barabási, and H. Jeong. Scale-free characteristics of random

networks: the topology of the world-wide web. Physica A, 281:69–77, 2000.

[5] N. Alon and J.H. Spencer. The Probabilistic Method. John Wiley & Sons, Inc.,

New York, NY, 1992.

[6] V.I. Arnautov. Estimation of the exterior stability number of a graph by means

of the minimal degree of the vertices. Prikl. Math. i Programmirovanie, 11:3–8,

1974.

[7] J. Aronson, A. Frieze, and B.G. Pittel. Maximum matchings in sparse random

graphs: Karp-Sipser revisited. Random Structures and Algorithms, 12:111–177,

1998.

[8] J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications.

Springer Monographs in Mathematics. Springer-Verlag, New York, NY, 2000.

152

[9] R. Bar-Yehuda and U. Vishkin. Complexity of finding k-path-free dominating

sets in graphs. Information Processing Letters, 14:228–232, 1982.

[10] A. Barkauskas and L. Host. Finding efficient dominating sets in oriented graphs.

Congressus Numerantium, 98:27–32, 1993.

[11] M. Beis, W. Duckworth, and M. Zito. Packing vertices and edges in random

regular graphs. Random Structures and Algorithms, 32:20–37, 2008.

[12] A. Békéssy, P. Békéssy, and J. Komlós. Asymptotic enumeration of regular

matrices. Studia Scientiarum Mathematicarum Hungarica, 7:343–353, 1972.

[13] E.A. Bender and E.R. Canfield. The asymptotic number of non-negative integer

matrices with given row and column sums. Journal of Combinatorial Theory,

Series A, 24:296–307, 1978.

[14] C. Berge and M.P. Schützenberger. Juex de Nim et solutions. Comptes Rendus

de l’Académie des Sciences, 242:1672–1674, 1956.

[15] T. Bohman and A. Frieze. Karp-Sipser on random graphs with a fixed degree

sequence. preprint.

[16] T. Bohman, A. Frieze, and N.C. Wormald. Avoidance of a giant component

in half the edge set of a random graph. Random Structures and Algorithms,

25:432–449, 2004.

[17] B. Bollobás. A probabilistic proof of an asymptotic formula for the number of

labelled regular graphs. European Journal of Combinatorics, 1:311–316, 1980.

[18] W.E. Boyce and R.C. DiPrima. Elementary Differential Equations and Bound-

ary Value Problems. John Wiley & Sons, Inc., New York, NY, 2001.

[19] M. Cardei, F. Dai, J. Wu, and S. Yang. Extended Dominating Set and Its

Applications in Ad Hoc Networks Using Cooperative Communication. IEEE

Transactions on Parallel and Distributed Systems, 17:851–864, 2006.

[20] M. Chao and J. Franco. Probabilistic analysis of two heuristics for the 3-

satisfiability problem. SIAM Journal on Computing, 15:1106–1118, 1986.

153

[21] M. Chleb́ık and J. Chleb́ıková. Approximation hardness of dominating set prob-

lems. In Algorithms—ESA 2004, volume 3221 of Lecture Notes in Computer

Science, pages 192–203. Springer, Berlin, 2004.

[22] C. Cooper and A. Frieze. A general model of web graphs. Random Structures

and Algorithms, 22:311–335, 2003.

[23] C. Cooper, A. Frieze, and M. Molloy. Hamilton cycles in random regular di-

graphs. Combinatorics, Probability & Computing, 3:39–50, 1994.

[24] T. Corman, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms.

The MIT Press, Cambridge, MA, 2001.

[25] J. Diaz, M. Serna, and N.C. Wormald. Bounds on the bisection width for

random d-regular graphs. Theoretical Computer Science, 382:120–130, 2007.

[26] R. Diestel. Graph Theory. Number 173 in Graduate Texts in Mathematics.

Springer-Verlag, New York, NY, 1997.

[27] W. Duckworth. Greedy algorithms and cubic graphs. PhD thesis, University of

Melbourne, 2001.

[28] W. Duckworth. Total Domination of Random Regular Graphs. Australasian

Journal of Combinatorics, 33:279–289, 2005.

[29] W. Duckworth and B. Mans. Randomised greedy algorithms for finding small k-

dominating sets of random regular graphs. Random Structures and Algorithms,

27:401–412, 2005.

[30] W. Duckworth and N.C. Wormald. Minimum independent dominating sets of

random cubic graphs. Random Structures & Algorithms, 21:147–161, 2002.

[31] W. Duckworth and N.C. Wormald. On the independent domination number

of random regular graphs. Combinatorics, Probability and Computing, 15:513–

522, 2006.

[32] A. Frieze. Minimum Paths in Directed Graphs. Operational Research Quarterly,

28:339–346, 1977.

154

[33] A. Frieze and S. Suen. Analysis of two simple heuristics on a random instance

of k-SAT. Journal of Algorithms, 20:312–355, 1996.

[34] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman & Co., New York, NY, 1979.

[35] J. Ghoshal, R. Laskar, and D. Pillone. Domination in Graphs: Advanced Topics,

pages 401–437. Marcel Dekker Inc., New York, NY, 1998.

[36] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics: a foun-

dation for computer science. Addison-Wesley Publishing Company, Reading,

MA, 1988.

[37] C. Greenhill, A. Ruciński, and N.C. Wormald. Random Hypergraph Processes

with Degree Restrictions. Graphs and Combinatorics, 20:319–332, 2004.

[38] A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic

Differentiation. Frontiers in Applied Mathematics. SIAM, Philadelphia, PA,

2000.

[39] F. Harary. Graph Theory. Addison-Wesley Publishing Company, Reading, MA,

1969.

[40] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, editors. Domination in Graphs:

Advanced Topics. Marcel Dekker, Inc., New York, NY, 1998.

[41] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater. Fundamentals of Domination

in Graphs. Marcel Dekker, Inc., New York, NY, 1998.

[42] S. Howe. Dominating sets of random 2-in 2-out directed graphs. Electronic

Journal of Combinatorics, 15:#R29 (electronic), 2008.

[43] W. Hurewicz. Lectures on ordinary differential equations. The MIT Press,

Cambridge, MA, 1958.

[44] S. Janson. Random Regular Graphs: Asymptotic Distributions and Contiguity.

Combinatorics, Probability and Computing, 4:369–405, 1995.

155

[45] A.C. Kaporis, L.M. Kirousis, and E.G. Lalas. The probabilistic analysis of a

greedy satisfiability algorithm. Random Structures and Algorithms, 28:444–480,

2006.

[46] R.M. Karp and M. Sipser. Maximum Matchings in Sparse Regular Graphs. In

Proceedings of the 22nd IEEE Symposium on Foundations of Computer Science

(FOCS’81), pages 364–375. IEEE Computer Society Press, Los Alamitos, CA,

1981.

[47] T.G. Kurtz. Solutions of Ordinary Differential Equations as Limits of Pure

Jump Markov Processes. Journal of Applied Probability, 7:49–58, 1970.

[48] S. Kutten and D. Peleg. Fast Distributed Construction of Small k-Dominating

Sets and Applications. Journal of Algorithms, 28:40–66, 1998.

[49] C. Lee. On the domination number of a digraph. PhD thesis, Michagon State

University, 1994.

[50] B.D. McKay. Asymptotics for 0-1 matrices with prescribed line sums. In Enu-

meration and Design, pages 225–238. Academic Press, 1984.

[51] J. Von Neumann and O. Morgenstern. Theory of Games and Ecomonic Be-

haviour. Princeton University Press, Princeton, 1944.

[52] M.E.J. Newman, D.J. Watts, and S.H. Strogatz. Random graph models of

social networks. PNAS, 99:2566–2572, 2002.

[53] R.J. Nowakowski, editor. Games of no chance, volume 29 of Mathematical Sci-

ences Research Institute Publications. Cambridge University Press, Cambridge,

1996.

[54] C. Payan. Sur le nombre d’absorption d’un graphe simple. Cahiers Centre

Études Recherche Opér, 17:307–317, 1975.

[55] L. Shi and N.C. Wormald. Colouring random 4-regular graphs. preprint.

[56] L. Shi and N.C. Wormald. Colouring random regular graphs. preprint.

156

[57] N.C. Wormald. Some Problems in the Enumeration of Labelled Graphs. PhD

thesis, University of Newcastle, 1978.

[58] N.C. Wormald. Differential Equations for Random Processes and Random

Graphs. The Annals of Applied Probability, 5:1217–1235, 1995.

[59] N.C. Wormald. Models of Random Regular graphs. In Surveys in Combina-

torics, 1999, number 267 in London Mathematical Society Lecture Note Series,

pages 239–298. Cambridge University Press, 1999.

[60] N.C. Wormald. The differential equation method for random graph processes

and greedy algorithms. In Lectures on Approximation and Randomized Algo-

rithms, pages 73–155. Polish Scientific Publishers PWN, Warsaw, 1999.

[61] N.C. Wormald. Analysis of greedy algorithms on graphs with bounded degrees.

Discrete Mathematics, 273:235–260, 2003.

[62] M. Zito. Greedy algorithms for minimisation problems in random regular

graphs. Lecture Notes in Computer Science, 2161:524–536, 2001.

157

	Title Page - The deprioritised approach to prioritised algorithms
	Abstract
	Acknowledgments
	Table of Contents

	Chapter 1 - Introduction
	Chapter 2 - Directed Graphs and Dominating Sets
	Chapter 3 - Random Digraphs and Algorithms
	Chapter 4 - Prioritised and Deprioritised Algorithms
	Chapter 5 - Analysing DeprioritisedAlgorithms
	Chapter 6 - Algorithms on Random Regular Digraphs
	Chapter 7 - Conclusion
	Symbol Index
	Bibliography

