
Optimal Distributed Multiple Sequence Alignment Using
Conformal Computing Methods

Author:
Helal, Manal; El-Gindy, Hossam; Gaeta, Bruno; Mullin, Lenore

Publication details:
Proceedings of the International Conference on High Performance Computing,
Networking and Communication Systems (HPCNCS- 07
pp. 120-127
978-0-9727412-5-5 (ISBN)

Event details:
International Conference on High Performance Computing, Networking and
Communication Systems (HPCNCS- 07)
Orlando, USA

Publication Date:
2007

DOI:
https://doi.org/10.26190/unsworks/368

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/37293 in https://
unsworks.unsw.edu.au on 2024-03-28

http://dx.doi.org/https://doi.org/10.26190/unsworks/368
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/37293
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Optimal Distributed Multiple Sequence Alignment Using Conformal Computing
Methods

Abstract

Multiple sequence alignment (MSA) is a very common
bioinformatics technique used in biological and medical
research, to study the function, structure and evolution of
genes and proteins. The algorithm for the optimal
solution to the MSA problem is well-understood, but
cannot be implemented even on high-performance
computers since it cannot be easily distributed across
multiple processors.

We are redesigning the optimal MSA method to facilitate
its deployment on supercomputers. This will allow high-
performance and distributed computing platforms, which
are becoming more prevalent in biological research, to
be harnessed for the calculation of reference alignments
for genes and protein sequences, and also for the
identification of sequence regions in common in a group
of sequences (multiple local sequence alignment) The
exponential growth in time and memory requirements
were found to be compensated by exponential
parallelism, using the proposed partitioning scheme, and
optimizing the communication cost..

1. Dynamic Programming MSA

MSA is solved optimally using the dynamic
programming method. It is proven mathematically to
produce the optimal global alignment using the
Needleman and Wunch algorithm, and for local alignment
using the Smith and Waterman algorithm. The idea, as
described in [Gusfield 1997] for 2 sequences, is to start
from the ends of both sequences and attempt to match all
possible pairs of characters by following a scoring
scheme for matches, mismatches and gaps, generating a
matrix of numbers that represent all possible alignments.
The optimal alignment can be found by tracing back,
starting from the highest score on the bottom edges, and
following the highest scores on the matrix. In the global
alignment the recurrence used to fill in the scoring matrix
is:

⎪
⎪
⎩

⎪⎪
⎨

⎧

−

−

−−

g+S

g+S

)b,sub(a+SMAX=S

ji,

ji

jijiij

1

1,

11,

Where S is the scores matrix, a and b are the pairs being
compared corresponding to the ith and jth position in the
matrix, and sub is the scoring function that reads the
value from the scoring matrix used, and g is the gap
penalty value.

Using the Dynamic Programming algorithm described
above to align more than two sequences will require
computational steps and memory space that increases
exponentially with the number of sequences to be
analyzed. This creates a dimensionality problem, as the
neighbors to be checked in the recurrence will grow O
(2k-1), where k is the number of sequences or the
dimensions, and makes the algorithm applicable only to a
limited number of sequences. Filling a tensor of
alignment scoring values will provide the alignment of
combination of the sequences, and the internal values will
be the alignment of all sequences together, without any
bias to the order of the sequences.

Complexity Analysis

Given two sequences of lengths n and m, the matrix
initialization executes in O (n+m), where n is the size of
the first sequence, m is the size of the second sequence.
Then, filling the rest of the matrix using the recurrence
executes in O (nm). The trace back executes in O (n+m).
If sequences have the same length, total time would be O
(n2). Dynamic programming is efficient since there are:
2n!/(n!)2 = O(22n) possible alignments. However, as we
add more sequences it becomes exponential in data size
as O (nn), assuming n is the average length of all
sequences.

The only way to decompose the complexity is to
distribute on HPCs or computer clusters. This direction
will create two challenges: management of dependencies
and selection of a suitable partitioning method. A

candidate solution is provided by Mathematics of Arrays
(MoA) provided in Conformal Computing methods.

The solution needs to work invariant of the number of
sequences used to avoid rebuilding the program for every
new dataset. This means the retrieval of neighbors
function needs to be scalable and not static and is defined
as an index transformation. The assignments of temporary
scores need to be generalized and aware of how many gap
scores to add, based on the relative position of the
neighbor to the current cell being computed, i.e. how
many dimensions will need to be decremented to retrieve
this neighbor.

The partitioning method needed requires that elements in
each part need to be aware of their positions in the whole
global tensor at any time, and all neighbors locations can
be identified whether local, remote, or border elements,
and can be initialized. We therefore need index mapping
between whole and parts at any time.

2. Conformal Computing Methods

Conformal Computing 1 as described in [Mullin /
Raynolds - 2005] is a formalism based on an algebra of
abstract data structures, A Mathematics of Arrays (MoA)
and an array indexing calculus, the Psi-Calculus. The
method allows the composition of a sequence of algebraic
manipulations in terms of array shapes and abstract
indexing. The approach works invariant of dimension and
shape, and allows for partitioning an n-dimensional tensor
based on a given MoA function. It is called Conformal
Computing because the mathematics used to describe the
problem is the same as that used to describe the details of
the hardware. Thus at the end of a derivation the resulting
final expression can simply be translated into portable,
efficient code for implementation in hardware and/or
software. MoA offers a set of constructs that help
represent multidimensional arrays in memory in a linear,
concise and efficient way, with many useful properties,
and applications. For a full listing of the MoA constructs,
please refer to [Mullin–88].

MoA Example:
 3D Tensor saves in memory as <1 2 3.... 36>

 1 2 3 4 5 6 19 20 21 22 23 24
ξ = 7 8 9 10 11 12 25 26 27 28 29 30
 13 14 15 16 17 18 31 32 33 34 35 36

 of shape vector Ψρ ξ↑↓ = <2 3 6>
 Psi-Ψ Indexing function works as partitioning with

1 The name Conformal Computing © is protected.
Copyright 2003, the Research Foundation of State
University of New York, University at Albany.

 partial indices, and for elements retrievals with full
 index.
 19 20 21 22 23 24
 <>Ψξ= 25 26 27 28 29 30
 31 32 33 34 35 36

 <0 2> Ψξ= < 13 14 15 16 17 18 >
 <0 1 3>Ψξ= 10
 +red < 1 1 > ↓ (< 1 > ↑ ξ) = < 22 24 26 28 30>

Figure 1: MOA Example

Figure 1 describes an example of how to use MoA

constructs, and its representation in memory. The nested
function in the bottom, takes (↑) 1 from the first
dimension like in <0> Ψ ξ as shown above, then drops (↑)
one row, and one column, then reduce the remaining by
adding them on the first dimension.

3. Solution Abstraction

The solution proposed is to redesign the dynamic
programming algorithm using the MoA to generalize for
K-Dimension, and to distribute the processing on HPC or
computers cluster. A master process needs to be created
for partitioning, dependency analysis, and scheduling
over processors, and managing the trace back processors
over the distributed partitions. The rest of the available
processors work as slave processes, receive partitions and
score them, receive dependency requirements, and trace
back through the partitions. The master process has a
partitioning thread, a dependency analysis thread, and a
sending thread. The slave processes contain a score
computation thread, a receiving thread that buffers all
received packets from the master or from other slaves,
and a sending thread to send dependency to the waiting
slaves' processors.

Figure 2: Solution Abstract Design

4. Dependency Analysis

Master Process - 0

Partitioning
Thread

Scheduling
Thread

Slave P-1 Slave 1 Slave 2

To be able to parallelize the score computation, the
dependency between the scoring of elements (cells) needs
to be understood to communicate the required scores

between processors. As analyzed in [Yap -1995] and
[Chen-Schmidt 2005], the dependency to score each
element in the scoring matrix for pair wise alignment, is
based on retrieving the calculated score for the top, left,
and left-up diagonal, creating a wave-front
communication pattern as shown in figure 3.

Figure 3: MSA Pair Wise Traditional Dependency

So, if every processor takes a row, all can initialize the
first element, and once the first processor finishes the
second element in the first row, the second processor can
act on the second element in the second row, and so forth.
This will make parallelism increase to the middle
diagonal, and then decrease as it approaches the end of
the scoring matrix.

Generalizing the problem to multiple dimensions requires
retrieving the dependency invariant of dimension. In K-
dimensions, each internal cell has 2k-1 lower border cells.
Using the MoA constructs, neighbors are retrieved by
decrementing the multidimensional index in all possible
combinations. For example, a 2D scoring matrix:

S0,0 S1,0 S2,0 S3,0
 S0,1 S1,1 S2,1 S3,1
 S0,2 S1,2 S2,2 S3,2
 S0,3 S1,3 S2,3 S3,3
 S0,4 S1,4 S2,4 S3,4

Neighbors for cell S2,4 having multidimensional index
vector as (2 4) are: S1,3, S2,3, S1,4, and with MoA can be
retrieved as:

 (2 2) ↑ ((-1)+(2 4)) ↓ S)

This is a nested function, where the drop section gets
executed, and the take function gets executed on the
results. This function drops the other lower indexed cells
that are not of interest by subtracting one from the current
cell index to drop, and takes only 2 cells of each
dimension to return the direct neighbors only. This will
return a matrix with the points:

 S1,3 S2,3
 S1,4 S2,4

Generalizing to K-Dimension, the neighboring function
becomes:

<20 21 22... 2k> ↑ (((-1)+<i0 i1 i2 i3 ... ik>) ↓S)

This function retrieves the elements required to compute
the cell at the index represented by the i-vector above.
We call this function the get lower border MoA function.

5. Partitioning Scheme

Having understood the dependency invariant of
dimension and shape, we can follow the same scheme to
partition the alignment tensor to maximize parallelism, in
a wave-front pattern. The MoA function created above
can be used iteratively, in a breadth-first traversal fashion,
starting from i-vector containing zeros for the first cell in
the tensor, then on each retrieved partition. All higher
order neighboring partitions can be retrieved to create the
next diagonal wave. The first wave will be one partition
starting at the zero-cell, and ending at < p0 p1 p2 p3 ... pk
>, where p is the partitioning size chosen. Then at each
higher border corner cell of this partition, the get higher
border function is called to retrieve the next neighboring
partition from this corner, and adding them to the next
wave. This traversal method is based on the following
generalized MoA equation:
<p0 p1 p2 p3 ... pk> ↑ (((+1)+<i0 i1 i2 i3 ... ik>) ↓S)

That is, we drop the higher indexed cells by adding one to
the current cell index, then taking a partition of size p
from the remaining tensor. We start with the cell at zero
index, and get its higher neighboring partitions for the
next wave, and then for all partitions in the next wave, we
get all higher border partitions for the following wave,
creating breadth-first traversal method till the whole
tensor is covered. Figure 4 shows the communication
pattern between the respective threads in both master and
slave processes responsible for the partitioning.

Figure 4: Partitioning Thread in Master & Receiving
Thread in Slave

Master Process Slave Process

Repeat for
all partition
s in all
waves

Send Partition i in wave j

If wave j > 2, then send

dependency of j-2 and j-1

In 2-D MSA dependency takes the form of small squares
around the previously finished wave. The dependency
changes as shown in figure 5.

Figure 5: MoA 2D MSA Waves Partitions

This makes the parallelism increase from one wave to
another, and not dependent on a fixed dimension
distribution. In 3-D MSA, dependency takes the shape of
enclosed cubes, with inner cubes being scored before the
outer ones. As shown in figure 5, the first dark gray cube
is scored first in one wave, and next wave contains the 2k-
1 neighboring cubes, colored in light gray, and then the
white wave of cubes. Later waves will contain higher
neighbors partitions of the partitions in the previous
wave, minus the ones previously partitioned (neighbors to
other partitions that were traversed before). The
overlapping edge cells in each partition need to be
communicated between processors.

Figure 6: 3D MoA MSA Waves Partitions for shape <3 3
3>

Figure 7: 4D MoA MSA Waves Partitions for shape <3 3
3 3>

Figure 8: 5D MoA MSA Waves Partitions for shape <3 3
3 3 3>

As shown in figures 6, 7 and 8, the number of partitions
that can be scored at one wave increase exponentially
with the increase in dimension. However, the
communication dependency between the partitions
increases as well, and optimization on the communication
vs. computation is required on the choice of the partition
size. Similarly distribution over processors and achieving
data locality as much as possible will affect the
performance significantly.

6. Distributed Scoring

The dynamic programming recurrence described above, is
now generalized for K-dimension and arbitrary sequence
lengths (shape), using the following recurrence:

 G1 + TS (G1)
S(i0 i1 i2 i3 ... ik) = max G2 + TS (G2)
 :
 G2k-1 + TS (G2k-1)
Where:
TS (Gi) = (sub(dj, dk) for each pair j, k in G) +(gS * (K-D))

Gi: Neighbor i of current cell, up to 2k-1 neighbors
D: No of decremented indices to get this particular
neighbor
TS: Temporary Score function assigned to each neighbor
based on how many multidimensional indices were
decremented to get to this neighbor
gS: gap Score Value * (K-D): multiply the gap Score
Value with number of indices that remained the same
(were not decremented to get this neighbor), retrieved by
Total Dimensions K (Sequences) – D.

We iterate through the partitions received by each
processor. At each cell, and retrieve the lower border
neighboring cells scores, using the function described
above. These neighbors might be local (in the same
partition, or in another partition computed by the same
processor), or remote (in another processor), or a lower
border cell on the whole un-partitioned scoring tensor. In
the first two cases, we retrieve the score, and compute TS
based on how many indices got decremented in the
multidimensional index to retrieve this neighbor. If the
neighbor is remote, the processor computation thread
waits to receive the score from the remote processor. If
the neighbor is a lower border cell in the whole tensor,
the score gets initialized to the gap score used multiplied
by the values in the multi-dimensional index of the cell.
Figure 9 shows the 2k-1 lower border cell neighbors that
are required to score a cell. After scoring this cell, another
2k-1 cells can retrieve one of their required scores. Both
lower indexed neighbor’s cells and higher, can be local or
remote.

Figure 9: ND MoA MSA Dependency

Figure 10: Slave Process Threads

Figure 10 shows the design of the slave process, with its
main threads and functionality.

7. Distributed Trace Back

Once the partitions have been fully scored and scores

stored in each slave processor’s local disk space, the
distributed trace back program starts. Again a
master/slave approach is followed. The master process
retrieves the highest scoring higher border cell from all
higher edge partitions in all processors, and sends to the
processor with the highest score to trace back through its
partitions. If the trace back done by the slave reaches the
lower border edge of the current partition it is working
on, it checks if the next adjacent partition was previously
scored by the same processor, and available in its local
memory. If so, it loads the adjacent partition and resumes
the trace back from it. This process continues, till the next
adjacent partition is not local. Then, the slave process
reports to the master process with the last cell index, the
partial path found so far among all its adjacent local
partitions, and which processor contain the adjacent
required partition. The master sends to the next processor
containing the last cell index reported from the previous
processor, to resume the trace back and repeat the same
process. The process iterates like that until there are no
more partitions in any of the processors. The master then
assembles all received partitions, forms the optimal full
path and reports it. Figure 11 illustrates the distributed
trace back process.

0 1 2k-12 3

0 1 2k-12 3

3

with previous portions

Send to processors containing the

Max Score to trace back

Receive Partial Paths and assemble

Master Process Slave Process

Loop till
global
index of last
partial path
is Zero

Get Max Scores

Send the Termination Signal

Receiving
Thread
Probe for
Messages,
and buffer then:
1) Partitions,
2) Dependency
Info
from Master,
3) Dependency
Scores
from other
partitions.

Scoring Thread
Loop for all cells
in all received
partitions.
Get their lower
neighbors (initialize if
borders, retrieve local,
or wait for remote,
Calculate Temporary
Score, then final cell
score, and check
dependency & send
the score to waiting
processors.

Sending
Thread
Send
Calculated
Scores to
waiting
Processors.

Figure 11: Distributed Trace Back Design

8. Scheduling Scheme

Since we are not following a fixed dimension distribution
scheme, there is no fixed row or column distribution
method as was described before in literature for the pair-
wise MSA. Three methods of scheduling are considered,
each with positives and negatives. The first two are
already implemented, and the third is in progress. First is
the bag of tasks method. It is most suitable for
heterogeneous systems, where each computing node
differs in its computing power. The second method is

Slave Process

round robin. It is currently used, because of the
availability of clusters of homogeneous computing nodes.
The third method is dependency based scheduling, which
is optimized to increase locality and decrease data
communications. Bag of tasks scheduling is based on
adding processors to a queue using push and pop. Starting
with a queue containing all slave processors, a processor
is retrieved to be assigned, and after it finishes
computation, it returns to the scheduler, to receive
another assignment. The advantage of this method is that
each processor can finish in its own time. The
disadvantage is that the scheduler might remain idle,
waiting for processors to come back from an initial
assignment in a previous wave. Round robin scheduling is
based on getting the scheduler to finish partitioning all
waves uniformly to all available processors by sending all
partitions and their dependency. Once done, the scheduler
can serve as slave itself, to avoid idleness. The advantage
is that the master process will be better optimized.
However, the disadvantage is that there is no
consideration for dependency and locality of data among
the processors.

Dependency based scheduling optimizes the assignments
to processors to increase dependency locality, to reduce
communication time, and idleness due to waiting to
receive required resources. The advantage is less
communication overhead, and more data locality. Again,
the disadvantage is the preprocessing overhead, to
calculate the best assignment based on dependency.

9. Results

Initial testing was carried out using small hand written
data sets, using different machines. Test sequence
numbers and lengths were increased incrementally until it
reached that of reference 1 in Balibase. Balibase is a
database of hand-written reference sequence alignments
as desired by biologists. It contains 142 reference
alignments with over 1000 sequences. Of the 200,000
residues in the database, 58% are defined within the core
blocks. The remaining 42% are in ambiguous regions,
which cannot be reliably aligned. There are four
hierarchical reference sets. Reference 1 provided the basis
for construction of the following sets. Each of the main
sets may be sub-divided into smaller groups, based on
sequence length and percent similarity. [Balibase
Website].

Initial experiments were carried out on a single processor
machine (Intel Pentium M Processor 740 – 1.73 Ghz, 1
GB RAM, 70 GB HDD), with simulated distributed
processes using the mpich library version 2-1.0.4-rc1.

Then, scalability testing was carried out on an SGI Altix
3700 Bx2 cluster with 1928 1.6Ghz Itanium2 processors
L1 cache, 16 Kbytes (D) + 16 Kbytes (I). Cache line
64bytes, L2 cache: 256 Kbytes. Cache line 128 bytes, L3
cache: 6 Mbytes. Cache line 128 bytes, Total memory is
5.6Tbytes, interconnect with 3.2 GBytes/s bidirectional
bandwidth per link and < 2us MPI latency, and 30 TBytes
of global storage. The operating system is based on SUSE
SLES9 Linux with an enhanced Linux 2.6 kernel and
SGI, Total peak speed of over 11Tflops. It is ranked 26th
in June 2005 Top500 list. The distributed messaging
library in SGI is Intel MPI Library.2

Initial results are summarized in table 1. M1 is the single
machine, and M2 is the SGI Altix as described above.
The testing is continuing to identify the optimization
chances based on varying the partitioning size, number of
processors, and better scheduling techniques. Partition
size of 3 is used on all tests, except the last, a partition
size of 20 was used.

P K L M1 CPU M2 CPU M2 E-
Time

P
Mem

V
Mem

3 3 4, 3, 2 00:00.12 00:00:00 00:00:03 15 122

3 3 7, 8, 9 00:03:77 00:00:03 00:00:07 48 281

4 5 6,
5,4,3,2

01:00.15 00:00:08 00:00:05 62 355

4 6 7, 6,
5,4,3,2

01:19.36 00:00:10 00:00:05 76 429

3 3 90,80,
85

39:30.34 02:09:43 00:44:25 371 606

Table 1: Initial Results: column “P” is the number of
processes created, “K” is the number of sequences
aligned, and “L” is their lengths, and the “M1 CPU” is
the CPU time in first machine in minutes:seconds format,
then “M2 CPU”& M2 E-Time are CPU & Elapsed Time
in second machine, and the”P Mem” and “V Mem” are
Physical and Virtual Memory used in Mega Bytes in both
machines.

10. Conclusion

2 This work was supported by an award under
the Merit Allocation Scheme on the National
Facility of the Australian Partnership for
Advanced Computing.
(http://nf.apac.edu.au/facilities/ac/hardware.php)

We have applied conformal computing methods in order
to parallelize the alignment of multiple sequences. The
method does not reduce the complexity of the problem,
which is still growing exponentially with the data size.
However, conformal computing provides a method for
computing MSA invariant of dimension and shape, and
dividing the complexity into chunks that can be
distributed over processors. The scalability of the
parallelism is found to be growing exponentially as well.
Our approach provides automatic load balancing among
processors, and better locality inside each single
processor. The more powerful the machines used, the
higher the upper-bound of the input data size. Heuristics
and further optimization can be applied to this
implementation of the multiple sequence alignment, to
reduce the search space to suit less powerful computing
platforms. Other high dimensional scientific computation
problems can also benefit from these methods

Currently, the work is focused on optimizing the
communication and computation costs by enhancing the
dependency based scheduling. Future work includes the
reduction of search space without loosing optimality.
Also, the program can be modified to return more than
one optimal paths, or sub-optimal paths. This can be
achieved without much penalty as it impacts only the
trace back process, which is the least computationally
demanding. Moreover, the program can be modified to
generate distributed local (rather than global) alignments,
which would only require minor changes.

Portability is achieved by avoiding use of any proprietary
libraries. Currently, standard C, and standard functions in
the MPI standards are being used. The MoA library is
implemented in standard C and can be easily recompiled
on any machine as required.

Further portability enhancement would be to model the
processors as an extra dimension to the alignment scoring
tensor, and partition by reshaping the tensor to divide
itself over the processors automatically. Our presentation
assumes a simple one dimensional array of processors.
For a hypercube or other topology of processors, the
processors can be defined as another MoA tensor, and
using the PSI correspondence theorem as described in

[Mullin 1988], the correspondence between the scoring
tensor elements and processor elements can be
established to achieve the best partitioning and scheduling
required. Further optimization on the memory hierarchy
levels can be achieved on each processor, by mapping the
memory hierarchies as an extra dimension, and partition
required elements to be in the fastest memory level, in
order to avoid frequent context-switching.

11. References

Manal Helal, “Mathematics of Arrays – The

implementation and the application”, A Thesis submitted
in partial fulfillment of the requirements for the degree of
Master of Science, Department of Computing Science,
American University in Cairo, Fall 2001.

Lenore M. Mullin, “A Mathematics of Arrays”, Doctor

of Philosophy Dissertation in Computer and Information
Science Completed at Syracuse University, Syracuse, NJ,
December 1988.

J. Raynolds and L. Mullin, “Applications of conformal

computing Techniques to Problems in computational
physics: the FFT”, Computer Physics communications
170(2005)1-10, 2005

L. Mullin, “A Uniform way of reasoning about array

based computation in radar”, Digital Signal Processing
Elsevier Publishers, September 2005

Dan Gusfield, “Algorithms on Strings, Trees, and

Sequences”, Cambridge University Press, 1997

Chunxi Chen, Bertil Schmidt, “An Adaptive grid

implementation of DNA sequence alignment”, Source,
Future Generation Computer Systems archive Volume 21
, Issue 7, July 2005, pp: 988 - 1003 .

Tieng Kim Yap, “Parallel Computation in Biological

Sequence Analysis”, A Dissertation submitted in partial
fulfillment of the requirements for the degree of Doctor of
Philosophy, Department of Computing Science, George
Mason University, Spring 1995.

