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Optimal Distributed Multiple Sequence Alignment Using Conformal Computing 
Methods 

 
 
 
 
 
 

Abstract 
 
Multiple sequence alignment (MSA) is a very common 
bioinformatics technique used in biological and medical 
research, to study the function, structure and evolution of 
genes and proteins. The algorithm for the optimal 
solution to the MSA problem is well-understood, but 
cannot be implemented even on high-performance 
computers since it cannot be easily distributed across 
multiple processors.  
 
We are redesigning the optimal MSA method to facilitate 
its deployment on supercomputers.  This will allow high-
performance and distributed computing platforms, which 
are becoming more prevalent in biological research, to 
be harnessed for the calculation of reference alignments 
for genes and protein sequences, and also for the 
identification of sequence regions in common in a group 
of sequences (multiple local sequence alignment) The 
exponential growth in time and memory requirements 
were found to be compensated by exponential 
parallelism, using the proposed partitioning scheme, and 
optimizing the communication cost.. 
 
1. Dynamic Programming MSA 
 

MSA is solved optimally using the dynamic 
programming method. It is proven mathematically to 
produce the optimal global alignment using the 
Needleman and Wunch algorithm, and for local alignment 
using the Smith and Waterman algorithm. The idea, as 
described in [Gusfield 1997] for 2 sequences, is to start 
from the ends of both sequences and attempt to match all 
possible pairs of characters by following a scoring 
scheme for matches, mismatches and gaps, generating a 
matrix of numbers that represent all possible alignments. 
The optimal alignment can be found by tracing back, 
starting from the highest score on the bottom edges, and 
following the highest scores on the matrix. In the global 
alignment the recurrence used to fill in the scoring matrix 
is: 
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Where S is the scores matrix, a and b are the pairs being 
compared corresponding to the ith and jth position in the 
matrix, and sub is the scoring function that reads the 
value from the scoring matrix used, and g is the gap 
penalty value.   
 
Using the Dynamic Programming algorithm described 
above to align more than two sequences will require 
computational steps and memory space that increases 
exponentially with the number of sequences to be 
analyzed. This creates a dimensionality problem, as the 
neighbors to be checked in the recurrence will grow O 
(2k-1), where k is the number of sequences or the 
dimensions, and makes the algorithm applicable only to a 
limited number of sequences. Filling a tensor of 
alignment scoring values will provide the alignment of 
combination of the sequences, and the internal values will 
be the alignment of all sequences together, without any 
bias to the order of the sequences. 
 
Complexity Analysis 
 
Given two sequences of lengths n and m, the matrix 
initialization executes in O (n+m), where n is the size of 
the first sequence, m is the size of the second sequence. 
Then, filling the rest of the matrix using the recurrence 
executes in O (nm). The trace back executes in O (n+m). 
If sequences have the same length, total time would be O 
(n2). Dynamic programming is efficient since there are: 
2n!/(n!)2 = O(22n) possible alignments. However, as we 
add more sequences it becomes exponential in data size 
as O (nn), assuming n is the average length of all 
sequences.  
  
The only way to decompose the complexity is to 
distribute on HPCs or computer clusters. This direction 
will create two challenges: management of dependencies 
and selection of a suitable partitioning method. A 



candidate solution is provided by Mathematics of Arrays 
(MoA) provided in Conformal Computing methods. 
 
The solution needs to work invariant of the number of 
sequences used to avoid rebuilding the program for every 
new dataset. This means the retrieval of neighbors 
function needs to be scalable and not static and is defined 
as an index transformation. The assignments of temporary 
scores need to be generalized and aware of how many gap 
scores to add, based on the relative position of the 
neighbor to the current cell being computed, i.e. how 
many dimensions will need to be decremented to retrieve 
this neighbor. 
 
The partitioning method needed requires that elements in 
each part need to be aware of their positions in the whole 
global tensor at any time, and all neighbors locations can 
be identified whether local, remote, or border elements, 
and can be initialized. We therefore need index mapping 
between whole and parts at any time. 
 
2. Conformal Computing Methods 
 

Conformal Computing  1 as described in [Mullin / 
Raynolds - 2005] is a formalism based on an algebra of 
abstract data structures, A Mathematics of Arrays (MoA) 
and an array indexing calculus, the Psi-Calculus. The 
method allows the composition of a sequence of algebraic 
manipulations in terms of array shapes and abstract 
indexing. The approach works invariant of dimension and 
shape, and allows for partitioning an n-dimensional tensor 
based on a given MoA function. It is called Conformal 
Computing because the mathematics used to describe the 
problem is the same as that used to describe the details of 
the hardware. Thus at the end of a derivation the resulting 
final expression can simply be translated into portable, 
efficient code for implementation in hardware and/or 
software. MoA offers a set of constructs that help 
represent multidimensional arrays in memory in a linear, 
concise and efficient way, with many useful properties, 
and applications. For a full listing of the MoA constructs, 
please refer to [Mullin–88]. 

 
MoA Example: 
 3D Tensor saves in memory as <1 2 3.... 36> 
 
       1     2      3      4     5      6 19  20  21  22  23  24 
ξ =      7     8      9     10   11   12 25  26  27  28  29  30 
      13  14    15    16   17   18 31  32  33  34  35  36 
 
  of shape vector  Ψρ ξ↑↓ = <2 3 6> 
  Psi-Ψ Indexing function works as partitioning with   

                                                 
1  The name Conformal Computing © is protected. 
Copyright 2003, the Research Foundation of State 
University of New York, University at Albany. 

  
 partial indices, and for elements retrievals with full  
  index.  
   19  20  21  22  23  24 
  <>Ψξ=  25  26  27  28  29  30 
   31  32  33  34  35  36 
 
 <0 2> Ψξ=  < 13  14    15    16   17   18 > 
  <0 1 3>Ψξ= 10 
   +red < 1 1 > ↓ (< 1 > ↑ ξ) = < 22   24   26  28   30> 
 

Figure 1: MOA Example 
 
 
Figure 1 describes an example of how to use MoA 

constructs, and its representation in memory. The nested 
function in the bottom, takes (↑) 1 from the first 
dimension like in <0> Ψ ξ as shown above, then drops (↑) 
one row, and one column, then reduce the remaining by 
adding them on the first dimension. 

 
3. Solution Abstraction 

 
The solution proposed is to redesign the dynamic 
programming algorithm using the MoA to generalize for 
K-Dimension, and to distribute the processing on HPC or 
computers cluster.  A master process needs to be created 
for partitioning, dependency analysis, and scheduling 
over processors, and managing the trace back processors 
over the distributed partitions. The rest of the available 
processors work as slave processes, receive partitions and 
score them, receive dependency requirements, and trace 
back through the partitions. The master process has a 
partitioning thread, a dependency analysis thread, and a 
sending thread. The slave processes contain a score 
computation thread, a receiving thread that buffers all 
received packets from the master or from other slaves, 
and a sending thread to send dependency to the waiting 
slaves' processors. 
 

 
 
Figure 2: Solution Abstract Design 
 
4. Dependency Analysis 

 

Master Process - 0 
 

Partitioning 
Thread  

Scheduling 
Thread 

Slave P-1 Slave 1 Slave 2 . . . .  

To be able to parallelize the score computation, the 
dependency between the scoring of elements (cells) needs 
to be understood to communicate the required scores 



between processors. As analyzed in [Yap -1995] and 
[Chen-Schmidt 2005], the dependency to score each 
element in the scoring matrix for pair wise alignment, is 
based  on retrieving the calculated score  for the top, left, 
and left-up diagonal, creating a wave-front 
communication pattern as shown in figure 3. 
 

 
Figure 3: MSA Pair Wise Traditional Dependency 
 
So, if every processor takes a row, all can initialize the 
first element, and once the first processor finishes the 
second element in the first row, the second processor can 
act on the second element in the second row, and so forth. 
This will make parallelism increase to the middle 
diagonal, and then decrease as it approaches the end of 
the scoring matrix.  
 
Generalizing the problem to multiple dimensions requires 
retrieving the dependency invariant of dimension.  In K-
dimensions, each internal cell has 2k-1 lower border cells. 
Using the MoA constructs, neighbors are retrieved by 
decrementing the multidimensional index in all possible 
combinations. For example, a 2D scoring matrix: 
 

S0,0 S1,0 S2,0 S3,0
 S0,1  S1,1 S2,1 S3,1
 S0,2  S1,2 S2,2 S3,2
 S0,3 S1,3 S2,3 S3,3
 S0,4 S1,4 S2,4 S3,4
 
Neighbors for cell S2,4 having multidimensional index 
vector as (2 4) are: S1,3, S2,3, S1,4, and with MoA can be 
retrieved as: 
    
 (2 2 ) ↑ ((-1)+(2 4))  ↓ S) 
     
This is a nested function, where the drop section gets 
executed, and the take function gets executed on the 
results. This function drops the other lower indexed cells 
that are not of interest by subtracting one from the current 
cell index to drop, and takes only 2 cells of each 
dimension to return the direct neighbors only. This will 
return a matrix with the points:  
                             
         S1,3 S2,3
         S1,4 S2,4

 
Generalizing to K-Dimension, the neighboring function 
becomes: 
 
<20 21 22... 2k> ↑ (((-1)+<i0  i1 i2 i3 ... ik>) ↓S) 
 
This function retrieves the elements required to compute 
the cell at the index represented by the i-vector above.  
We call this function the get lower border MoA function. 
 
5. Partitioning Scheme 

 
Having understood the dependency invariant of 
dimension and shape, we can follow the same scheme to 
partition the alignment tensor to maximize parallelism, in 
a wave-front pattern. The MoA function created above 
can be used iteratively, in a breadth-first traversal fashion, 
starting from i-vector containing zeros for the first cell in 
the tensor, then on each retrieved partition. All higher 
order neighboring partitions can be retrieved to create the 
next diagonal wave. The first wave will be one partition 
starting at the zero-cell, and ending at < p0  p1 p2 p3 ... pk 
>,  where p is the partitioning size chosen. Then at each 
higher border corner cell of this partition, the get higher 
border function is called to retrieve the next neighboring 
partition from this corner, and adding them to the next 
wave. This traversal method is based on the following 
generalized MoA equation: 
<p0  p1 p2 p3 ... pk> ↑ (((+1)+<i0  i1 i2 i3 ... ik>) ↓S) 
 
That is, we drop the higher indexed cells by adding one to 
the current cell index, then taking a partition of size p 
from the remaining tensor. We start with the cell at zero 
index, and get its higher neighboring partitions for the 
next wave, and then for all partitions in the next wave, we 
get all higher border partitions for the following wave, 
creating breadth-first traversal method till the whole 
tensor is covered. Figure 4 shows the communication 
pattern between the respective threads in both master and 
slave processes responsible for the partitioning.  

 
Figure 4:  Partitioning Thread in Master & Receiving 
Thread in Slave 

Master Process Slave Process 

Repeat for 
all partition
s in all 
waves             

Send Partition i in wave j 

If wave j > 2, then send  
 
dependency of j-2 and j-1 

 



In 2-D MSA dependency takes the form of small squares 
around the previously finished wave. The dependency 
changes as shown in figure 5. 
 

 
Figure 5: MoA 2D MSA Waves Partitions 
 
This makes the parallelism increase from one wave to 
another, and not dependent on a fixed dimension 
distribution. In 3-D MSA, dependency takes the shape of 
enclosed cubes, with inner cubes being scored before the 
outer ones. As shown in figure 5, the first dark gray cube 
is scored first in one wave, and next wave contains the 2k-
1 neighboring cubes, colored in light gray, and then the 
white wave of cubes. Later waves will contain higher 
neighbors partitions of the partitions in the previous 
wave, minus the ones previously partitioned (neighbors to 
other partitions that were traversed before). The 
overlapping edge cells in each partition need to be 
communicated between processors. 
 

 
 
Figure 6: 3D MoA MSA Waves Partitions for shape <3 3 
3> 

 
Figure 7: 4D MoA MSA Waves Partitions for shape <3 3 
3 3> 
 

 
Figure 8: 5D MoA MSA Waves Partitions for shape <3 3 
3 3 3> 
 
As shown in figures 6, 7 and 8, the number of partitions 
that can be scored at one wave increase exponentially 
with the increase in dimension. However, the 
communication dependency between the partitions 
increases as well, and optimization on the communication 
vs. computation is required on the choice of the partition 
size. Similarly distribution over processors and achieving 
data locality as much as possible will affect the 
performance significantly. 
 
6. Distributed Scoring 

 
The dynamic programming recurrence described above, is 
now generalized for K-dimension and arbitrary sequence 
lengths (shape), using the following recurrence: 
 
   G1 + TS (G1) 
S(i0  i1 i2 i3 ... ik) = max G2 + TS (G2) 
   : 
   G2k-1 + TS (G2k-1) 
Where: 
TS (Gi) = (sub(dj, dk) for each pair j, k in G) +( gS * (K-D))
  
Gi: Neighbor i of current cell, up to 2k-1 neighbors 
D: No of decremented indices to get this particular 
neighbor 
TS: Temporary Score function assigned to each neighbor 
based on how many multidimensional indices were 
decremented to get to this neighbor 
gS: gap Score Value * (K-D): multiply the gap Score 
Value with number of indices that remained the same 
(were not decremented to get this neighbor), retrieved by 
Total Dimensions K (Sequences) – D. 
 



We iterate through the partitions received by each 
processor. At each cell, and retrieve the lower border 
neighboring cells scores, using the function described 
above. These neighbors might be local (in the same 
partition, or in another partition computed by the same 
processor), or remote (in another processor), or a lower 
border cell on the whole un-partitioned scoring tensor. In 
the first two cases, we retrieve the score, and compute TS 
based on how many indices got decremented in the 
multidimensional index to retrieve this neighbor. If the 
neighbor is remote, the processor computation thread 
waits to receive the score from the remote processor. If 
the neighbor is a lower border cell in the whole tensor, 
the score gets initialized to the gap score used multiplied 
by the values in the multi-dimensional index of the cell. 
Figure 9 shows the 2k-1 lower border cell neighbors that 
are required to score a cell. After scoring this cell, another 
2k-1 cells can retrieve one of their required scores. Both 
lower indexed neighbor’s cells and higher, can be local or 
remote. 
 

 
 
Figure 9: ND MoA MSA Dependency 
 
 

 
Figure 10: Slave Process Threads 
 
Figure 10 shows the design of the slave process, with its 
main threads and functionality. 
 

7. Distributed Trace Back 
 
Once the partitions have been fully scored and scores 

stored in each slave processor’s local disk space, the 
distributed trace back program starts.  Again a 
master/slave approach is followed. The master process 
retrieves the highest scoring higher border cell from all 
higher edge partitions in all processors, and sends to the 
processor with the highest score to trace back through its 
partitions. If the trace back done by the slave reaches the 
lower border edge of the current partition it is working 
on, it checks if the next adjacent partition was previously 
scored by the same processor, and available in its local 
memory. If so, it loads the adjacent partition and resumes 
the trace back from it. This process continues, till the next 
adjacent partition is not local. Then, the slave process 
reports to the master process with the last cell index, the 
partial path found so far among all its adjacent local 
partitions, and which processor contain the adjacent 
required partition. The master sends to the next processor 
containing the last cell index reported from the previous 
processor, to resume the trace back and repeat the same 
process. The process iterates like that until there are no 
more partitions in any of the processors. The master then 
assembles all received partitions, forms the optimal full 
path and reports it. Figure 11 illustrates the distributed 
trace back process. 

0 1 2k-12 3 . . . .  

0 1 2k-12 3 . . . .  

3 
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Thread 
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Figure 11: Distributed Trace Back Design 
 
8. Scheduling Scheme 

 
Since we are not following a fixed dimension distribution 
scheme, there is no fixed row or column distribution 
method as was described before in literature for the pair-
wise MSA. Three methods of scheduling are considered, 
each with positives and negatives. The first two are 
already implemented, and the third is in progress. First is 
the bag of tasks method. It is most suitable for 
heterogeneous systems, where each computing node 
differs in its computing power. The second method is 

Slave Process 



round robin. It is currently used, because of the 
availability of clusters of homogeneous computing nodes. 
The third method is dependency based scheduling, which 
is optimized to increase locality and decrease data 
communications. Bag of tasks scheduling is based on 
adding processors to a queue using push and pop. Starting 
with a queue containing all slave processors, a processor 
is retrieved to be assigned, and after it finishes 
computation, it returns to the scheduler, to receive 
another assignment. The advantage of this method is that 
each processor can finish in its own time. The 
disadvantage is that the scheduler might remain idle, 
waiting for processors to come back from an initial 
assignment in a previous wave. Round robin scheduling is 
based on getting the scheduler to finish partitioning all 
waves uniformly to all available processors by sending all 
partitions and their dependency. Once done, the scheduler 
can serve as slave itself, to avoid idleness. The advantage 
is that the master process will be better optimized. 
However, the disadvantage is that there is no 
consideration for dependency and locality of data among 
the processors.  
 
Dependency based scheduling optimizes the assignments 
to processors to increase dependency locality, to reduce 
communication time, and idleness due to waiting to 
receive required resources. The advantage is less 
communication overhead, and more data locality. Again, 
the disadvantage is the preprocessing overhead, to 
calculate the best assignment based on dependency. 
 
9. Results 

 
Initial testing was carried out using small hand written 
data sets, using different machines. Test sequence 
numbers and lengths were increased incrementally until it 
reached that of reference 1 in Balibase. Balibase is a 
database of hand-written reference sequence alignments 
as desired by biologists. It contains 142 reference 
alignments with over 1000 sequences. Of the 200,000 
residues in the database, 58% are defined within the core 
blocks. The remaining 42% are in ambiguous regions, 
which cannot be reliably aligned. There are four 
hierarchical reference sets. Reference 1 provided the basis 
for construction of the following sets. Each of the main 
sets may be sub-divided into smaller groups, based on 
sequence length and percent similarity. [Balibase 
Website].  
 
 
Initial experiments were carried out on a single processor 
machine (Intel Pentium M Processor 740 – 1.73 Ghz, 1 
GB RAM, 70 GB HDD), with simulated distributed 
processes using the mpich library version 2-1.0.4-rc1.  
 

Then, scalability testing was carried out on an SGI Altix 
3700 Bx2 cluster with 1928 1.6Ghz Itanium2 processors 
L1 cache, 16 Kbytes (D) + 16 Kbytes (I). Cache line 
64bytes, L2 cache: 256 Kbytes. Cache line 128 bytes, L3 
cache: 6 Mbytes. Cache line 128 bytes, Total memory is 
5.6Tbytes, interconnect with 3.2 GBytes/s bidirectional 
bandwidth per link and < 2us MPI latency, and 30 TBytes 
of global storage. The operating system is based on SUSE 
SLES9 Linux with an enhanced Linux 2.6 kernel and 
SGI, Total peak speed of over 11Tflops. It is ranked 26th 
in June 2005 Top500 list. The distributed messaging 
library in SGI is Intel MPI Library.2  
 
Initial results are summarized in table 1. M1 is the single 
machine, and M2 is the SGI Altix as described above. 
The testing is continuing to identify the optimization 
chances based on varying the partitioning size, number of 
processors, and better scheduling techniques.  Partition 
size of 3 is used on all tests, except the last, a partition 
size of 20 was used. 
 

P K L M1 CPU M2 CPU M2 E-
Time 

P 
Mem 

V 
Mem 

3 3 4, 3, 2 00:00.12 00:00:00 00:00:03 15 122 

3 3 7, 8, 9 00:03:77 00:00:03 00:00:07 48 281 

4 5 6, 
5,4,3,2

01:00.15 00:00:08 00:00:05 62 355 

4 6 7, 6, 
5,4,3,2

01:19.36 00:00:10 00:00:05 76 429 

3 3 90,80,
85 

39:30.34 02:09:43 00:44:25 371 606 

 
Table 1: Initial Results: column “P” is the number of 
processes created, “K” is the number of sequences 
aligned, and “L” is their lengths, and the “M1 CPU” is 
the CPU time in first machine in minutes:seconds format, 
then “M2 CPU”& M2 E-Time are CPU & Elapsed Time 
in second machine, and the”P Mem” and “V Mem” are 
Physical and Virtual Memory used in Mega Bytes  in both 
machines.   
 
10. Conclusion 

 
                                                 
2 This work was supported by an award under 
the Merit Allocation Scheme on the National 
Facility of the Australian Partnership for 
Advanced Computing. 
(http://nf.apac.edu.au/facilities/ac/hardware.php) 
 



We have applied conformal computing methods in order 
to parallelize the alignment of multiple sequences. The 
method does not reduce the complexity of the problem, 
which is still growing exponentially with the data size. 
However, conformal computing provides a method for 
computing MSA invariant of dimension and shape, and 
dividing the complexity into chunks that can be 
distributed over processors. The scalability of the 
parallelism is found to be growing exponentially as well. 
Our approach provides automatic load balancing among 
processors, and better locality inside each single 
processor. The more powerful the machines used, the 
higher the upper-bound of the input data size. Heuristics 
and further optimization can be applied to this 
implementation of the multiple sequence alignment, to 
reduce the search space to suit less powerful computing 
platforms. Other high dimensional scientific computation 
problems can also benefit from these methods 
 
Currently, the work is focused on optimizing the 
communication and computation costs by enhancing the 
dependency based scheduling. Future work includes the 
reduction of search space without loosing optimality. 
Also, the program can be modified to return more than 
one optimal paths, or sub-optimal paths. This can be 
achieved without much penalty as it impacts only the 
trace back process, which is the least computationally 
demanding. Moreover, the program can be modified to 
generate distributed local (rather than global) alignments, 
which would only require minor changes.  
 
Portability is achieved by avoiding use of any proprietary 
libraries. Currently, standard C, and standard functions in 
the MPI standards are being used. The MoA library is 
implemented in standard C and can be easily recompiled 
on any machine as required.  
 
Further portability enhancement would be to model the 
processors as an extra dimension to the alignment scoring 
tensor, and partition by reshaping the tensor to divide 
itself over the processors automatically. Our presentation 
assumes a simple one dimensional array of processors. 
For a hypercube or other topology of processors, the 
processors can be defined as another MoA tensor, and 
using the PSI correspondence theorem as described in 

[Mullin 1988], the correspondence between the scoring 
tensor elements and processor elements can be 
established to achieve the best partitioning and scheduling 
required. Further optimization on the memory hierarchy 
levels can be achieved on each processor, by mapping the 
memory hierarchies as an extra dimension, and partition 
required elements to be in the fastest memory level, in 
order to avoid frequent context-switching. 
 
11. References 

 
Manal Helal, “Mathematics of Arrays – The 

implementation and the application”, A Thesis submitted 
in partial fulfillment of the requirements for the degree of 
Master of Science, Department of Computing Science, 
American University in Cairo, Fall 2001. 

 
Lenore M. Mullin, “A Mathematics of Arrays”, Doctor 

of Philosophy Dissertation in Computer and Information 
Science Completed at Syracuse University, Syracuse, NJ, 
December 1988. 

 
J. Raynolds and L. Mullin, “Applications of conformal 

computing Techniques to Problems in computational 
physics: the FFT”, Computer Physics communications 
170(2005)1-10, 2005 

  
L. Mullin, “A Uniform way of reasoning about array 

based computation in radar”, Digital Signal Processing 
Elsevier Publishers, September 2005 
 
Dan Gusfield, “Algorithms on Strings, Trees, and 

Sequences”, Cambridge University Press, 1997 
 
Chunxi Chen, Bertil Schmidt, “An Adaptive grid 

implementation of DNA sequence alignment”, Source, 
Future Generation Computer Systems archive Volume 21 
, Issue 7, July 2005, pp: 988 - 1003 . 

 
Tieng Kim Yap, “Parallel Computation in Biological 

Sequence Analysis”, A Dissertation submitted in partial 
fulfillment of the requirements for the degree of Doctor of 
Philosophy, Department of Computing Science, George 
Mason University, Spring 1995.

 


