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The responsiveness of the human central nervous system can change profoundly with
exercise, injury, disuse, or disease. Changes occur at both cortical and spinal levels but in
most cases excitability of the motoneuron pool must be assessed to localize accurately the
site of adaptation. Hence, it is critical to understand, and employ correctly, the methods
to test motoneuron excitability in humans. Several techniques exist and each has its
advantages and disadvantages. This review examines the most common techniques that
use evoked compound muscle action potentials to test the excitability of the motoneuron
pool and describes the merits and limitations of each. The techniques discussed are the
H-reflex, F-wave, tendon jerk, V-wave, cervicomedullary motor evoked potential (CMEP),
and motor evoked potential (MEP). A number of limitations with these techniques are
presented.
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INTRODUCTION
The motoneuron was described as the “final common path” of the
nervous system (Sherrington, 1906) and has been a focal point of
neuroscience research for over a century. Since the introduction
of the terminology, the designation of “final common path” has
been frequently expanded to include not only the α-motoneuron
but also the muscle fibers which it innervates (i.e., the motor
unit) (e.g., Denslow and Hassett, 1942). This expanded defini-
tion is sensible from a functional perspective because movement
requires contraction of muscle fibers and the properties of mus-
cle fibers are largely dictated by the properties of the motoneuron
which innervates them (see Burke, 1981; Henneman and Mendell,
1981; Binder et al., 1996 for reviews).

Motor unit properties have been directly studied in animals
(e.g., Burke et al., 1971; Peter et al., 1972) and are directly related
to the size of the motoneuron. In brief, motoneurons with a large
soma (and hence a large axonal diameter) have a low input resis-
tance, high firing threshold, brief after-hyperpolarization, fast
conduction velocity, and their muscle fibers have a fast twitch
contraction time, high twitch tension and a poor resistance to
fatigue. As the size of motoneurons decreases, these responses
gradually shift to the opposite ends of their spectra. Output
properties of human motoneurons can be gleaned from whole-
nerve stimulation, spike-triggered averaging (e.g., Milner-Brown
et al., 1973; Thomas et al., 1990) or intraneural stimulation (e.g.,
Thomas et al., 1990). Measurement of somato-dendritic proper-
ties is more difficult and frequently relies on reflex and antidromic
inputs to the motoneurons.

Like the assessment of motor unit properties, tests of
motoneuron pool excitability in humans are necessarily indi-
rect. Before we discuss the most common methods used to test
excitability of the human motoneuron pool, it is first necessary
to define our use of the term “excitability” in this review. For
our purposes, the term “excitability” is a relative one. That is, if

the same input is delivered to the motoneuron pool before and
after an intervention (e.g., muscle fatigue), do more or fewer
motoneurons generate action potentials after the intervention?
A bigger or smaller output would represent a net increase or
decrease in motoneuron excitability, respectively. The change in
excitability will reflect the balance of inhibition and facilitation
but it is difficult to determine the mechanism in a given situ-
ation; e.g., a decrease in excitability could be due to either an
increase in inhibition or a decrease in facilitation. Further, any
change in “excitability” may not apply uniformly across the whole
motoneuron pool.

Regardless of the methodology or the intervention studied
(e.g., acute vs. chronic), the goal of testing human motoneuron
excitability is the same: to know more about the status of the
motoneuron pool. The aim of this review is to discuss briefly
the existing methodologies which test motoneuron excitability
by evoking compound muscle action potentials with particular
focus on the benefits and limitations of each. Discussion of the
H-reflex, F-wave, tendon jerk, V-wave, cervicomedullary motor
evoked potential (CMEP) and motor evoked potential (MEP) is
included below and summarized in Table 1. There are a number
of single motor unit approaches with their own advantages and
disadvantages but these methods are largely beyond the scope of
this review. However, it deserves emphasis that these approaches
provide useful information but usually only about a limited num-
ber of motoneurons which have a low-threshold in a voluntary
contraction.

H-REFLEX
Stimulation of a peripheral nerve can evoke a reflex response
termed the Hoffmann or H-reflex (Magladery and McDougal,
1950) because it was first described in the soleus muscle by
Hoffmann (1918). The H-reflex reflects the response of the
motoneuron pool to a volley from large-diameter primary muscle
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Table 1 | Brief summary of the methodologies used to test excitability of motoneurons in humans.

Response Key information Advantages/ Disadvantages/caveats

recommendations

H-reflex Method: submaximal stimulation of a peripheral
motor nerve.
Volley: single in group I muscle afferents (and other
afferents).
Potential: motoneurons activated by Ia excitation.
Note: motoneurons recruited according to size
principle.

Potentially painless.
Possible to test in relaxation or
weak contraction.

Not entirely monosynaptic.
Limited to soleus and a few other
motoneuron pools in relaxation.
Test conditions must be painstakingly
maintained.
Subject to presynaptic inhibition.
Subject to post-activation (homosynaptic)
depression.
Affected by changes in axonal excitability.

F-wave Method: supramaximal stimulation of a peripheral
motor nerve.
Volley: single antidromic in motor axons.
Potential: motoneurons activated by antidromic
excitation.
Note: only a small number of motoneurons backfire;
in muscles with an H-reflex at rest, the response
occurs preferentially in large motoneurons because
the antidromic volley collides with the H-reflex
impulse in small motoneurons.

A direct method which does not
rely on afferents.
Interpretation is clearest when
tested in relaxation.

Relatively insensitive to motoneuron
excitability.
Necessary to average or measure many
responses.
Limited to distal muscles.
Can be painful.
Contaminated by H-reflex when recorded
during weak contraction.

Tendon jerk Method: tendon taps with a reflex hammer.
Volley: multiple from muscle spindle primary
endings (and other afferents).
Potential: motoneurons activated by Ia excitation.

Painless.
Simple to administer.
May be the only test available for a
muscle.
Tested in relaxation.

Not entirely monosynaptic.
Difficult to replicate mechanics of tendon
tap across trials and conditions.
Thixotropic state of intrafusal fibers
needs to be controlled.

V-wave Method: supramaximal stimulation of a peripheral
motor nerve during a voluntary contraction.
Volley: single in both muscle afferents and motor
axons.
Potential: motoneurons activated by Ia excitation.
Note: only motoneurons whose axons are first
cleared by collision of descending volitional and
antidromic impulses contribute.

Best for strong (maximal)
contractions.

Difficult to identify which elements of the
motor system are responsible for any
change seen in the response.
Will vary with motoneuron firing rate.
Can be painful.

CMEP Method: submaximal stimulation at the level of the
pyramidal decussation.
Volley: single descending in the corticospinal tract.
Potential: motoneurons activated by corticospinal
excitation.
Note: onset latency must be monitored to avoid root
stimulation.

Not subject to conventional
presynaptic inhibition.
Largely monosynaptic.
Unnecessary to average many
responses.
Possible to test in relaxation and
contraction.

Painful.
Not entirely monosynaptic.
Difficult to obtain in some subjects.
Difficult to obtain in some motoneuron
pools.

MEP Method: submaximal transcranial magnetic
stimulation of the motor cortex.
Volley: multiple descending in the corticospinal tract.
Potential: motoneurons activated by corticospinal
excitation.
Note: some motoneurons can discharge more than
once.

Painless.
Large proportion of the
motoneuron pool can be accessed
under appropriate conditions.
Possible to test in relaxation and
contraction.

Affected by both cortical and spinal
excitability and hence cannot measure
either in isolation.
Not entirely monosynaptic.
Although not painful, can be unsettling at
high stimulus intensities.

Note: Submaximal/supramaximal refers to the stimulus strength relative to the current required to evoke the maximal compound muscle action potential (Mmax ).

spindle afferents (Figure 1A). Most commonly recorded as a
multi-unit response from surface electromyographic activity, it is
possible to record an H-reflex in single motor units (e.g., Trontelj,
1968; Ashby and Zilm, 1982; Burke et al., 1984; Miles et al.,

1989). Similar to the descending input during voluntary con-
tractions, the synaptic Ia input will recruit motoneurons in an
orderly fashion from smallest to largest (slow to fast motor units;
Buchthal and Schmalbruch, 1970) according to the Henneman
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FIGURE 1 | Schematic representation of the volleys and pathways

involved in the production of the H-reflex, tendon jerk, F-wave,

and V-wave. Only the most critical elements are labeled so see text
for a complete description of the factors which can influence each
response. (A), #1—electrical stimulus evokes a single afferent volley
which recruits motoneurons for the H-reflex according to the size
principle; #2—presynaptic inhibition can influence afferent input to the
motoneuron; #3—tendon tap evokes multiple volleys which arrive at
the motoneuron over 25 ms. (B), #1—a small number of motoneurons

may discharge to produce F-waves after antidromic impulses reach their
soma; #2—at rest, F-waves are likely to be limited to large
motoneurons due to reflex activation of smaller motoneurons and
collision with the antidromic volley prior to the soma. (C), #1—in
motor axons conducting orthodromic impulses of voluntary drive,
voluntary and antidromic impulses will collide; #2—reflex response
which travels along motor axons cleared by the collision described in
point #1 will contribute to the V-wave; #3—presynaptic inhibition can
influence afferent input to the motoneuron.

size principle (e.g., Henneman and Mendell, 1981). Delivery of
a series of progressively stronger stimuli generates a recruitment
curve of the H-reflex and the muscle compound action potential
(M-wave). In brief, H-reflex size increases with stimulus intensity
until it reaches a maximum. This point can occur when further
increases in intensity do not result in further increases in the
net excitatory input to the motoneurons. Alternatively, a maxi-
mum can be reached because further increases in intensity reduce
H-reflex size due to collision of afferent-evoked orthodromic
impulses with antidromic impulses evoked in the motor axons
that contribute to the growing M-wave. The H-reflex recorded
at the tipping point is referred to as Hmax. Comparison of H-
reflex size to the maximal M-wave enables an estimate of the
motoneuron pool involved in the H-reflex. For the soleus muscle
in most subjects the percentage of involved motoneurons is ∼50%
(Taborikova and Sax, 1968). A recruitment curve provides addi-
tional parameters (e.g., H-reflex threshold, slope of the ascending
limb of the recruitment curve) which give insight into H-reflex
input/output relationship (e.g., Zehr, 2002; Klimstra and Zehr,
2008). Finally, data about recruitment curves improve the validity
of comparisons of data across time or experimental conditions.

Initially believed to be a purely monosynaptic Ia reflex
(Hoffmann, 1922; Magladery et al., 1951; Paillard, 1955), it has
since been established that the relatively long rise time of the
compound excitatory postsynaptic potential (EPSP) (1.9–2.1 ms
in soleus motoneurons; Birnbaum and Ashby, 1982; Burke et al.,

1983) enables disynaptic (and possibly oligosynaptic) Ia pathways
and Ib afferents to exert an influence on the H-reflex (Burke et al.,
1983, 1984). Because the threshold to electrical stimulation and
the conduction velocity of the fastest Ia and Ib afferents are proba-
bly not greatly different, both afferents feature prominently in the
initial volley which arrives at the spinal cord (Pierrot-Deseilligny
et al., 1981). Ib afferents acting via an inhibitory interneuron
do not prevent the monosynaptic Ia EPSPs which initiate the
H-reflex but do terminate the EPSPs with inhibitory postsynap-
tic potentials (IPSPs) at an interval as brief as 1 ms (Pierrot-
Deseilligny et al., 1981). The first experimental, rather than
theoretical, evidence of this non-reciprocal group I inhibition
was a disynaptic limitation of the size of the quadriceps H-reflex
(Marchand-Pauvert et al., 2002). Although this inhibition limits
the size of the H-reflex (Burke et al., 1984), the majority of the
response recorded under most conditions reflects monosynap-
tic Ia afferent input to the motoneuron pool. The influence of
disynaptic or oligosynaptic input on motoneuron recruitment is
determined by the size of the compound monosynaptic EPSP rel-
ative to the recruitment threshold of each motoneuron. That is,
early recruited units in the response will be recruited by monosy-
naptic input but the discharge of the last recruited motoneurons
will reflect the balance between monosynaptic excitation and di-
or oligosynaptic inhibition and/or excitation. Hence, a change in
H-reflex size occurs primarily through a change in this balance.
This is true regardless of the size of the test H-reflex.
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For more than 50 years, the H-reflex has been widely used as a
test of the excitability of the human motoneuron pool. However,
there are a number of caveats for this test which are commonly
ignored or under-appreciated, despite a wealth of experimental
data (e.g., Paillard, 1955) and detailed discussion of the tech-
nique (e.g., Schieppati, 1987; Pierrot-Deseilligny and Mazevet,
2000; Zehr, 2002; Pierrot-Deseilligny and Burke, 2005). A major
mechanism that has long been known to alter the size of the
H-reflex is the degree of presynaptic inhibition of Ia terminals
(e.g., Frank and Fuortes, 1957; Eccles et al., 1961; Hultborn et al.,
1987; see Rudomin and Schmidt, 1999 for review). Some other
key mechanisms which can influence the size of the H-reflex
include post-activation depression or homosynaptic depression
(e.g., Magladery and McDougal, 1950; Crone and Nielsen, 1989;
see Hultborn and Nielsen, 1998 for review) and contributions
of oligosynaptic pathways (e.g., Pierrot-Deseilligny et al., 1981;
Burke et al., 1983, 1984). Finally, in testing the H-reflex, it is dif-
ficult to be sure that the afferent volley itself is constant because
activity leads to axonal hyperpolarization and reduced excitability
in sensory and motor axons (e.g., Kiernan et al., 1997; Vagg et al.,
1998) such that the same stimulus intensity is likely to activate
fewer afferent axons after a voluntary contraction. See Pierrot-
Deseilligny and Burke (2005) for a detailed discussion of these
and other mechanisms.

The size of an H-reflex is sensitive to changes in subject pos-
ture (Hugon, 1973) and attention (Bathien and Morin, 1972),
so it is critical that these factors vary as little as possible when
collecting H-reflexes. Further, these factors make day-to-day com-
parisons of the H-reflex particularly difficult. The H-reflex is
also strongly influenced by the frequency of stimulation as post-
activation depression reduces the size of a second response elicited
within 10 s of the first. To avoid this reflex attenuation, the
stimulation frequency of repeated H-reflexes would ideally not
exceed 0.1 Hz. However, collection of the requisite large number
of responses at this rate is time-consuming and so a faster stimula-
tion rate is more practical even if some post-activation depression
remains. As the decay of post-activation depression is curvilin-
ear (Magladery and McDougal, 1950), stimulating at 0.2–0.3 Hz
strikes an acceptable balance between the level of depression and
the time required to collect the responses (Pierrot-Deseilligny and
Mazevet, 2000). The frequency of stimulation can be increased
as high as 4 Hz during voluntary contraction because the post-
activation depression seen in relaxed muscle is greatly attenuated
or abolished (Burke et al., 1989; see also Stein et al., 2007) pos-
sibly because the extra impulse evoked by the electrical stimulus
will have negligible impact on transmitter release from Ia affer-
ents which are already discharging (Stein and Thompson, 2006).
Although the size of the effect was relatively small, another fac-
tor to consider is the regularity of the stimuli. An interstimulus
interval which varied between 0.5 and 1.5 s (mean of 1 s) evoked a
larger H-reflex compared to stimulation at a constant interval of
1 s (Hoehler et al., 1981).

A practical limitation of H-reflexes is that they can only be
obtained consistently from a small number of muscles during
relaxation (typically soleus, flexor carpi radialis, quadriceps).
However, this list of muscles expands greatly if stimulation is
given while the subject performs a weak voluntary contraction.

This ensures some motoneurons are discharging repetitively,
brings others closer to threshold and thus increases motoneuron
excitability. Burke and colleagues (1989) identified a number of
other benefits to testing the H-reflex during voluntary contrac-
tion which include: the abolition of post-activation depression
(homosynaptic depression); larger response sizes with lower stim-
ulus intensities and hence a clearer distinction between the end of
the M-wave and the onset of the H-reflex; a focus of the reflex
response to the active motoneuron pool so that specific reflex
arcs can be studied. Additional benefits are a reduction in the lev-
els of homonymous (Fournier et al., 1983) and heteronymous Ib
inhibition (Pierrot-Deseilligny and Fournier, 1986). Presynaptic
inhibition is reported to be the same at rest and during steady
contraction (Meunier and Pierrot-Deseilligny, 1989; Nielsen and
Kagamihara, 1993) and so appears to represent neither an advan-
tage nor a disadvantage to testing the H-reflex during voluntary
contraction.

Thus, far, this section has described homonymous connec-
tions, that is from the stimulated Ia afferents to the motoneuron
pool of the same muscle. However, there are also heteronymous
links between Ia afferents of one nerve to the motoneuron pools
of muscles supplied by a different nerve. For example, stimulation
of the femoral nerve delivers monosynaptic Ia excitation not only
to the quadriceps motoneurons but also to the soleus motoneu-
ron pool (e.g., Bergmans et al., 1978; Meunier et al., 1990). Hence,
appropriately-timed stimulation of the femoral nerve facilitates
the soleus H-reflex. Heteronymous Ia monosynaptic excitation
has been demonstrated in both the upper (e.g., Cavallari and
Katz, 1989; Marchand-Pauvert et al., 2000) and lower limbs (e.g.,
Meunier et al., 1993) of humans. The utility of these connections
is the ability to test the excitability of a motoneuron pool without
the serious effect of activity-dependent changes in the excitability
of the homonymous afferents.

F-WAVE
Although not termed the F-wave until 1950 (Magladery and
McDougal, 1950), this late response to stimulation of a periph-
eral nerve was first described by Eccles and Pritchard (1937).
Described as a recurrent discharge (e.g., Eccles, 1955), the F-wave
reflects backfiring of a small number of motoneurons which
are reactivated by antidromic impulses following supramaximal
stimulation of a peripheral nerve (Figure 1B). Because F-waves
are small (often less than 0.5 mV) and inconsistent in both size
and shape, large numbers of responses are collected for averag-
ing (Lin and Floeter, 2004). The variability of onset latency and
morphology would cause considerable phase cancellation if raw
F-waves were averaged online so potentials must be measured
individually or full-wave rectified prior to averaging (Espiritu
et al., 2003). In a clinical setting, rather than calculating the
average response to a large number of stimuli, persistence (the
percentage of stimuli evoking a response) and the difference in
latency between the onset of the slowest and fastest single motor
unit potentials are used as objective measures of properties of the
motoneuron pool.

The production of an F-wave by a given motoneuron is
believed to depend on the excitability of the axon initial seg-
ment (Eccles, 1955), and perhaps also the first node of Ranvier
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(Gogan et al., 1984). The passage of the antidromic impulse to
the soma will make these sites transiently refractory. If the axon
initial segment remains refractory when the antidromic impulse
evokes a somato-dendritic action potential, an orthodromic
action potential will not be initiated in the axon to be propa-
gated to the periphery and recorded as an F-wave. Intraneural
stimulation of single thenar motor axons indicates that genera-
tion of an F-wave in an individual motoneuron is probabilistic
and occurs rarely (after <2% of stimuli). Further, their incidence
is unrelated to motor axon conduction velocity or twitch force
(Thomas et al., 2002). This suggests a contribution from a mixed
population of motoneurons. However, in more common experi-
mental and clinical testing, the stimulus intensity is higher and the
motoneurons which generate F-waves are likely to be limited to
large motoneurons due to reflex activation of smaller motoneu-
rons and collision with the antidromic volley prior to the soma
(Espiritu et al., 2003).

Interpretation of the F-wave is simplest when the muscle
is relaxed at the time of stimulation but responses can be
recorded during voluntary contraction (e.g., Giesebrecht et al.,
2011). The disadvantage to collecting responses during contrac-
tion is that a collision between voluntary orthodromic impulses
with antidromic impulses will leave some motor axons clear
to transmit an H-reflex to the muscle and thereby obscure the
F-wave. This problem is exacerbated as the strength of contraction
increases because a greater proportion of motor axons will see
their antidromic impulse obliterated before it reaches the soma.
During strong voluntary contractions, few antidromic impulses
will reach the soma because of collision with the orthodromic
voluntary and reflex action potentials. In these circumstances,
any recorded potential would almost certainly be a V-wave (see
V-wave section which follows).

It has been suggested that F-waves are a useful and direct
measure of motoneuron excitability (e.g., Fisher, 1992) but sub-
sequent reports suggest that F-waves only offer a flawed measure-
ment of motoneuron excitability (Hultborn and Nielsen, 1995;
Espiritu et al., 2003; Lin and Floeter, 2004; Pierrot-Deseilligny
and Burke, 2005). Chief among the limitations is the relative
insensitivity of F-waves to changes in motoneuron excitability.
Nonetheless, they are potently depressed following fatiguing vol-
untary contractions (Khan et al., 2012; Rossi et al., 2012). A
reduction in F-waves can be caused not only by inhibition of
the motoneuron pool but by facilitation as well (Eccles, 1955;
Hultborn and Nielsen, 1995). In a strongly facilitated motoneu-
ron pool, the antidromic impulse which invades the soma will
be followed by a somato-dendritic action potential at such a
short interval that the axon initial segment is still refractory
(Eccles, 1955). However, this may not be a practical limitation
in human studies based on results with voluntary contractions
(Giesebrecht et al., 2011). The other key criticisms of the F-wave
concern the practice of comparing H-reflexes and F-waves in an
effort to separate events at the level of the motoneurons; that
is, to gain insight into changes in presynaptic inhibition ver-
sus changes in motoneuron excitability (e.g., Leis et al., 1995).
Hultborn and Nielsen (1995) questioned the validity of such a
comparison on three theoretical bases. The first relates to the col-
lision between antidromic impulses and H-reflex discharges in

slowly conducting motor axons. An enhancement of motoneu-
ron excitability (e.g., by voluntary contraction) will increase the
size of the H-reflex and thereby actually decrease the number
of motoneurons capable of producing an F-wave because of a
greater number of collisions. Second, the motor unit populations
involved in the two potentials differ. The H-reflex involves small
motor units with slowly conducting axons whereas, for reasons
described above, the F-wave is likely to involve large motor units
with fast axons. The third point relates to the mode of activa-
tion of the two responses (afferent vs. antidromic). To illustrate
their concerns, Hultborn and Nielsen (1995) conducted a sim-
ple experiment which showed that F-waves could be an order of
magnitude less sensitive than H-reflexes to changes in motoneu-
ron excitability (although both responses were facilitated by a
conditioning stimulus to the femoral nerve).

TENDON JERK
For limb muscles in which an H-reflex is not easily obtained, an
alternative method of testing motoneuron excitability is a tendon
jerk reflex. A tendon tap with a reflex hammer or more controlled
means will create a stretch-induced barrage of discharges from
muscle spindle primary endings and other afferents (Figure 1A).
The size of the muscle spindle afferent volley depends on the
mechanics of the tap and the sensitivity of the sensory endings.
This sensitivity can be changed by contraction of the intra-
fusal muscle fibers on which the endings are located. Like the
electrically-induced H-reflex, the mechanically-induced tendon
jerk cannot be considered purely monosynaptic (e.g., Burke et al.,
1983). However, unlike the relatively synchronous volley of the
H-reflex, the afferent volley of the tendon jerk includes multi-
ple discharges of a single Ia afferent and lasts for 25 ms (Burke
et al., 1983, 1984). As a result, the afferent volley which arrives
at the motoneurons is more dispersed for the tendon jerk than
the H-reflex. This is one of several differences between the two
reflexes which invalidate a comparison of the two responses as a
surrogate measure of efferent drive to the muscle spindles (i.e.,
fusimotor activity) (Burke et al., 1983).

While ongoing fusimotor drive must potentially alter the size
of the afferent volley evoked by a tendon tap, the history of
prior fusimotor drive exerts a potent effect on the volley (Polus
et al., 1991)due to the “thixotropic” behavior of the intrafusal
muscle fibers (see Proske et al., 1993 for review). If a muscle
is undisturbed or lengthened slowly following fusimotor activa-
tion, intrafusal fibers remain taut as actin-myosin cross bridges
are maintained or re-established in a more stretched position.
Conversely, passive shortening after fusimotor activation will
maintain the cross bridges but cause the intrafusal fibers to
become slack (Polus et al., 1991). This can produce large changes
in background spindle firing rates. When spindles are held taut as
a result of prior activity, the response to a tendon tap is increased.
Note that this will have the opposite effect on the H-reflex as
the increased background firing will lead to increased presynaptic
inhibition (Polus et al., 1991).

The long held view that background fusimotor drive is nec-
essary to elicit a tendon jerk from relaxed muscle is false
(Burke et al., 1981). The relative ease of obtaining a tendon
jerk in one muscle compared to another is likely to depend on
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intrinsic spinal mechanisms. While the tendon jerk has the advan-
tage of being simple to administer, changes in its size depend
on many factors, beginning with the mechanical status of the
tendon and transmission of the transient lengthening to the
receptors.

V-WAVE
First described by Upton and colleagues (1971), the volitional
wave (V-wave) is a variation of the H-reflex which is recorded
during a voluntary contraction. In contrast to the submaxi-
mal stimulation used to evoke an H-reflex (see H-reflex sec-
tion), a V-wave is evoked by supramaximal stimulation of a
peripheral mixed nerve (Figure 1C). The supramaximal stimu-
lus generates antidromic impulses in all motor axons as well as
impulses in all group Ia afferents provided the stimulus intensity
is ≥ 4× motor threshold (Gracies et al., 1994). In motor axons
involved in the voluntary contraction, there is a collision between
voluntary orthodromic and the evoked antidromic impulses
which leaves these axons clear to transmit a reflex response to
the muscle. Conversely, motor axons not involved in the con-
traction, do not contribute to the production of the V-wave
because any reflex response will either collide with the antidromic
impulse or the antidromic impulse will reach the soma first
and leave these motoneurons refractory when the afferent volley
arrives.

The V-wave is influenced by many factors (e.g., strength of vol-
untary contraction and the range of maximal firing rates within
a motoneuron pool) and the consequent difficulty in interpret-
ing a change to the response raises questions about its usefulness
as an independent measure of motoneuron excitability. During
a maximal voluntary contraction, the size of the V-wave is pro-
posed to indicate the level of descending voluntary drive conveyed
by the motoneurons (Aagaard et al., 2002). According to this
proposal, an increase in V-wave size indicates increased motoneu-
ron discharge rates or recruitment (Aagaard et al., 2002) which
may reflect increased supraspinal input to the motoneuron pool.
However, it is important to recall that motoneuron discharge
rate reflects not only supraspinal input to the motoneuron but
the response to all inputs which arrive at the motoneuron so
the origin of an increase in V-wave size is uncertain. The possi-
ble sensitivity of the V-wave to supraspinal input is unlike that
of the H-reflex which is largely dependent on events at a spinal
level (see H-reflex section). This distinction has led to the recent
application whereby changes in the V-wave are compared to those
in the H-reflex before and after training to distinguish between
supraspinal and spinal neural adaptations (Aagaard et al., 2002;
Vila-Cha et al., 2012).

CMEP
Non-invasive electrical or magnetic stimulation of spinal tracts
can evoke large, short-latency responses in arm and leg mus-
cles (Ugawa et al., 1991, 1994; Gandevia et al., 1999; Martin
et al., 2008; see Taylor and Gandevia, 2004 for review). To evoke
responses in arm muscles, axons are activated at the level of
the cervicomedullary junction near the pyramidal decussation
(Figure 2). Consequently, such a response is generally termed
a CMEP. Electrical stimulation is accomplished by passing a

FIGURE 2 | Schematic representation of the volleys and pathways

involved in the production of the CMEP and MEP. Only the most critical
elements are labeled so see text for a complete description of the factors
which can influence each response. #1—transmastoid stimulation evokes a
single volley which is not subject to conventional presynaptic inhibition;
#2—transcranial magnetic stimulation evokes multiple descending
volleys;#3—transcranial magnetic stimulation can cause multiple
discharges of a single motoneuron so that MEP size can exceed that of the
maximal compound muscle action potential (Mmax).

brief high-voltage pulse between electrodes fixed near the mas-
toid processes. For magnetic stimulation, a double-cone coil
is placed at the back of the head, with the center of the coil
near the inion. Several terms describe these forms of stimu-
lation and they are often used interchangeably. These include
cervicomedullary, transmastoid, brainstem, or corticospinal tract
stimulation. However, because the stimulus site can vary, not all
the terms are actually synonymous. For example, responses with
corticospinal components can be obtained in leg muscles with
electrical stimulation over the cervical or thoracic spine (Martin
et al., 2008). Responses produced by stimulation over the thoracic
spine, are referred to as thoracic spine MEPs (TMEPs; Martin
et al., 2008) rather than CMEPs.

Descending motor pathways other than the corticospinal tract
(as well as ascending pathways) will be activated by the stimulus,
but there is strong evidence that the CMEP is primarily the result
of motoneuron activation by a single descending volley elicited
by excitation of corticospinal axons (Berardelli et al., 1991; Ugawa
et al., 1991; Gandevia et al., 1999; Taylor et al., 2002). The singular
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nature of the descending volley was confirmed by epidural record-
ing in anaesthetized patients (Rothwell et al., 1994). In awake
subjects, a collision experiment in which an ulnar nerve stimu-
lus given before the brainstem stimulus (Berardelli et al., 1991)
caused complete occlusion of the CMEP in abductor digiti min-
imi. In contrast, an ulnar nerve stimulus did not fully occlude the
response to transcranial electric (Day et al., 1987) or magnetic
stimulation (Hess et al., 1987) of the motor cortex which induce
multiple corticofugal volleys and multiple discharges from some
motoneurons. Additional collision experiments demonstrate that
the CMEP is largely conducted via the large-diameter axons of
the corticospinal tract. Brainstem stimulation given at appropri-
ate times relative to electrical (Ugawa et al., 1991) or magnetic
stimulation of the motor cortex (Berardelli et al., 1991; Gandevia
et al., 1999; Taylor et al., 2002) largely occluded the motor corti-
cal evoked potential (MEP) which suggests that the two stimuli
activate many of the same corticospinal axons.

There are two important attributes of CMEPs which make this
stimulation technique the most direct method to test motoneuron
excitability to synaptic input in conscious humans (Martin et al.,
2008). First, there is evidence that they have a large monosynaptic
component in the upper limb (Petersen et al., 2002) and probably
in the lower limb (Martin et al., 2008). Second, the descend-
ing tracts are not subject to conventional presynaptic inhibition
due to primary afferent depolarization (Nielsen and Petersen,
1994; Jackson et al., 2006). This latter feature is in contrast to the
H-reflex pathway (see Rudomin and Schmidt, 1999 for review).
However, CMEPs must also be influenced by non-monosynaptic
inputs although these have not been identified, and changes
in CMEPs after strong voluntary contractions are postulated to
reflect some presynaptic mechanism other than conventional
presynaptic inhibition (Gandevia et al., 1999). Another advan-
tage of the CMEP is that large responses can be evoked and hence
averaging of large numbers of responses is not usually necessary.

Despite the advantages of corticospinal stimulation, like all
stimulation techniques, it has limitations. A practical disadvan-
tage is the discomfort produced by the stimulus. Most subjects
will tolerate the stimuli but some find them prohibitively painful.
The issue of pain is particularly relevant for stimuli delivered
while the subject is relaxed because the discomfort is much less
during muscle contraction and decreases as the level of voluntary
effort increases. Apart from the issue of greater transient discom-
fort for the subject, the pain of stimulation when the subject is
relaxed can indirectly affect the data. The size of the CMEP is
sensitive to motoneuron excitability and so data collected in relax-
ation can be contaminated by weak inadvertent contraction if the
subject instinctively “tenses up” in anticipation of the stimulus.

Another disadvantage of corticospinal stimulation is the
inability or difficulty in obtaining responses of sufficient size in
some subjects and some motoneuron pools. Even in subjects who
tolerate stimuli within the normal range of intensities, it may not
be possible to activate motoneurons via descending tract stimu-
lation and record a valid CMEP. This occurs when the stimulus
intensity required to evoke a response also activates nerve roots
distal to the motoneuron soma. Such direct activation of the
motor axon will mean that the “CMEP” is contaminated by a

direct motor response and may not reflect motoneuron excitabil-
ity accurately. The presence of nerve root stimulation can be
identified in two ways: an abrupt ∼1–2 ms reduction in onset
latency of the CMEP with an increase in stimulus intensity; or the
absence of a large increase in CMEP size (relative to the CMEP
recorded in relaxation) if a given stimulus is delivered during a
weak voluntary contraction.

Corticospinal (transmastoid) stimulation has recently been
paired with transcranial magnetic stimulation (TMS) as a novel
means to test motoneuron responsiveness during ongoing mus-
cle activity and fatigue without the confounding influence of
unknown levels of descending voluntary drive (McNeil et al.,
2009, 2011a,b,c). With this technique, a corticospinal stimulus
is delivered 100 ms after a strong conditioning TMS pulse which
transiently (∼200 ms) silences descending drive. The interrup-
tion of descending drive briefly stops motoneuron output so the
excitability of motoneurons can be tested in a state of artificial
relaxation (McNeil et al., 2009) without stopping the task and
thereby altering the progression of fatigue.

MEP
TMS of the motor cortex (Figure 2) is widely used to test “motor
cortical” excitability but is included here because of the pro-
found impact of motoneuron excitability on the size of the MEP.
This effect is best demonstrated by the comparison of MEPs
recorded from a muscle during relaxation and voluntary con-
traction. Regardless of stimulus intensity (e.g., Di Lazzaro et al.,
1998; McNeil et al., 2011a), MEP size increases markedly from
relaxation to a weak contraction and the principal mechanism for
this shift is enhanced motoneuron excitability (Hess et al., 1987;
Taylor et al., 1997; Di Lazzaro et al., 1998). Hence, researchers
must exercise caution when interpreting changes in MEP size
as changes in “cortical” excitability. To make this claim, a valid
test of motoneuron excitability must be performed to eliminate
the possibility that the change in MEP size is mediated at a
motoneuronal level. Even then, changes in MEP size may not
represent changes in “cortical” excitability as there are signifi-
cant non-monosynaptic contributions to MEPs so that changes
at premotoneuronal sites can modify MEP size. For example, for
muscles of the upper limb other than intrinsic hand muscles, sig-
nificant excitation occurs through the C3–4 propriospinal system
(Gracies et al., 1991).

CONCLUSIONS
One element of testing motoneuron excitability which needs fur-
ther investigation is the matter of specificity. That is, if an increase
or decrease in excitability is noted with one method (e.g., CMEP),
is the same change evident when other methods (e.g., H-reflex)
are applied? We recently compared the effects of fatigue on
CMEPs (TMEPs) and F-waves (Giesebrecht et al., 2011) and there
are the previously described comparisons between H-reflexes
and F-waves (Hultborn and Nielsen, 1995) and H-reflexes and
V-waves (Aagaard et al., 2002; Vila-Cha et al., 2012). However,
additional comparisons of this nature would increase our under-
standing of the mechanisms involved and provide insight into the
validity of different methods under various conditions.
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