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Thesis abstract 

There has been an unprecedented increase in the frequency of serious global epidemic 

risks in the last decade. The COVID-19 pandemic has overwhelmed the world since 

2020, causing over 3 million estimated deaths globally as May 2021. Influenza remains 

a perennial challenge, and the re-emergence of smallpox as bioterror attack is also of 

increasing concern. Modelling of interventions can provide critical support to public 

health decision making during an epidemic, comparing the effects of different 

interventions, and helping prioritize resources. 

This research uses modelling and risk analysis to inform policy and practice in relation 

to epidemic control for re-emergence of smallpox following a bioterror attack, the 

annual threat of seasonal influenza, and the response to the ongoing COVID-19 

pandemic in Australia. 

1. A SEIR mathematical model was constructed, simulating a smallpox re-

emergence and targeted, ring and mass vaccination in response to the outbreak. 

Age specific distribution of immunosuppression and contact rates were used to 

estimate the number of doses needed of second and third generation vaccines 

and their most effective use, while estimating the number of cases and deaths in 

different scenarios. This study informs preparedness and response planning for 

smallpox vaccination distribution. 

2. To estimate the level of residual immunity from previous vaccination in the 

population of NSW, serological data on vaccinia antibodies levels collected in 

2003, were used. The data were analysed and compared to another data set 
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showing levels following vaccination, and the decline in geometric mean titres 

(GMT) over time was modelled. This study informs current pre-existing 

immunity to smallpox in Australia. 

3. Seasonal influenza vaccination is recommended around March-April. There is 

evidence of vaccine effectiveness waning over a season. This study quantified 

how changes in timing of vaccination uptake, waning immunity and vaccine 

coverage could impact prevention of influenza in Australia. Data on vaccine 

effectiveness, waning immunity over time, influenza notification and coverage 

estimate, were used to model the effect on vaccine effectiveness of shifting the 

time of vaccination by month from March to August. 

4. Finally, for COVID-19 pandemic control, Australia implemented a travel ban on 

China from February 1st, 2020. Three scenarios were modelled to test the impact 

of this travel ban on epidemic control: no ban, and ban followed by full or 

partial lifting (were only students). Incidence data from China and air travel 

passenger movements between China and Australia during and after the 

epidemic peak in China, were used to inform an SEIR model reproducing the 

epidemic curve in Australia for each scenario.  This research informs decisions 

on placing or lifting travel bans, applied to countries with high disease 

incidence, as a control measure for the COVID-19 epidemic. 

All chapters have been published in peer reviewed journals. This thesis informs 

outbreak response policy and practices against diseases of global interest, while 

highlighting the importance of modelling as a tool for public health. Finally, there are 

several recommendations proposed to enhance the accuracy, transparency, and quality 

of mathematical modelling results for informing public health responses. 
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Chapter One 

Background and introduction 
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1.1 Guide to thesis 

The global burden of infectious diseases have reduced by 30% from 1980 to 2017 2, 

however in 2017 almost 28% of the total premature global deaths and DALYs have 

been attributed to infectious diseases 3. Jones et al.4 identified 335 emerging-disease 

'events' reported worldwide between 1940 and 2004, with the pathogens involving a 

novel species or strains. In 1980s, HIV was the main infectious threat facing the world. 

Since then, the number of emerging and re-emerging infectious diseases, has highly 

increased 5. Indeed, after controlling for reporting bias, emerging infectious diseases 

(EID) events have risen significantly over time, with their peak incidence (in the 1980s) 

concomitant with the emergence of HIV4, SARS, MERS CoV, Zika virus, and now the 

COVID-19 pandemic. 

Already in 2007, a World Health Organization (WHO) report 6  warned that infectious 

diseases were spreading more rapidly and that new infectious diseases were being 

discovered at a higher rate than ever before . In the last decade, there has been an 

unprecedented increase in the frequency of serious pandemic risks 7. In recent years 

there have been many emerging diseases 8, such as SARS, MERS CoV, Chikungunya, 

avian flu, swine flu, Zika 9, Covid-19, and re-emerging diseases, such as Ebola, Lassa 

Fever, monkeypox 10 dengue, cholera, yellow fever 11. The rate at which new influenza 

strains, infecting humans, are emerging is escalating at an unprecedented rate 12, thereby 

the probability of an influenza pandemic is constantly increasing.  

In the coming decades, the possibilities for outbreaks to become pandemics are likely to 

increase due to environmental and ecological factors, population growth, increased 

urbanization, travel, and livestock production to meet demands from the world’s 

expanding population 4,13–16. Another factor  influencing epidemic and pandemic risk is 
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population movement due to travelling 17, globalization, and the migration of refugees 

and displaced persons, which increase the potential spread of a disease across regional 

and international borders  18. Factors such as urbanization can also affect infectious 

diseases negatively or positively. While urban cities  provide easier access to health care 

services, the higher population density increases transmission 18. Furthermore, the 

recent development of artificially engineered pathogens poses an added complexity to 

global biosecurity6,17. Genetic engineering technology has given rise to a new 

generation of potential genetically engineered bioweapons which could change the 

nature of modern warfare and defense 19. Smallpox for example, eradicated in 1980, is 

listed as category A bioterrorism agent 20. The variola genome is fully sequenced and 

advances in synthetic biology means smallpox could be synthesized in a laboratory 21. 

Another important factor is the increased susceptibility and vulnerability of the 

population due to advances in medical care generating a growing immunosuppressed 

population. Immunosenescence is a predictable, exponential decline in immune function 

after the age of 50 22, which reduces the ability to respond to vaccines and fight 

infection, with increasing age. This further adds to immunosuppression in countries 

with an aging population 23. Animal	pathogens	may	evolve to transmit to human hosts. 

Once in humans, the continuous evolution of pathogens to evade host defences, develop 

drug resistance, escape vaccine protection or adapt to host environments, contributes to 

the ongoing challenge of emerging infectious diseases 24,25, as seen with SARS-COV-2 

variants of concern like Delta and Omicron. 

Preparedness for an outbreak response will vary depending on several factors that can 

involve host characteristics (such as immunosuppression and susceptibility), population 

characteristics for transmissions (such as contacts and density), disease characteristics 

(such as R0, generation time and transmissions heterogeneity), outbreak characteristics 
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(such as initial number of infected), and response characteristics (such as time to start 

intervention or vaccine effectiveness). Pandemic and epidemic prevention requires 

health systems with strong core public health functionality to detect  early symptoms, 

ensure correct diagnoses, and respond rapidly to stop the epidemic from spreading 26.  

A framework to effectively respond and control an outbreak was proposed by Lipsitch 

at al 27 in 2011 with the example of the 2009 influenza pandemic A/H1N1. Once an 

outbreak of an infectious disease starts, there are timely decisions to make to protect 

individuals, reducing severe outcomes (hospitalizations, ICU admissions and deaths) 

and finding high risk groups for protection prioritizations, and reducing the overall 

population transmissions. The latter can be done with the implementation of no-

pharmaceutical (masks use, border closure or social distancing) and pharmaceutical 

(vaccination or treatments) interventions. To support evidence based decisions, 

surveillance and epidemiological data are needed (like hospitalization or case incidence 

data) as well as an outbreak investigation to identify risk factors and intervention 

effectiveness 28,29. While serological data can be used to estimate levels of pre-existing 

immunity, indeed the proportion of population fully or partially protected against an 

infectious disease determines the time and scale of an outbreak 30,31. The progression 

from data collection to evidence-based decisions for an outbreak control is not straight 

forward. Quantitative approaches can assist decision makers to use available data 

optimally, while epidemiological trends forecast for an outbreak are essential in 

informing an outbreak response.  

There is the need to integrate capability in rapid modelling of intervention effectiveness 

to inform response, mitigation and policy options, for a continuous evolving population. 

An excellent example is the Ebola epidemic of 2014, in which drugs and vaccines 

played no role in containing the epidemic.  Instead, measures such as contacts tracing, 
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isolation, personal protective equipment, and interoperability between responding 

sectors, were the mainstay of control measures. In that case, a mathematical modelling 

study identified that to control the epidemic, 70% of patients had to be contained in 

Ebola treatment units 32. This became the first, concrete disease control goal in an 

otherwise disorganised response. The Ebola outbreak has highlighted the lack of 

preparedness to monitor, detect and control a serious infectious disease outbreak 33. The 

COVID-19 pandemic, since its emergence in China late in 2019, has spread to every 

continent except Antarctica, with almost 650,000  cases and 30,000 deaths as of 29 

March 2020, within the first 3 months 34. After just over one year, the cases number 

worldwide is almost 162 million, with almost 3.5 million deaths 35 in May 2021. In the 

absence of a vaccine, the only outbreak response to prevent the spread are to find, test 

isolate and treat cases, while trace and quarantine their contacts; the widespread use of 

face masks and lockdowns to control population movement. By 2021, the first vaccines 

against COVID-19 were being rolled out globally 36,37. Now the new Delta strain 

variant, firstly emerged in India in October 2021, and causing a massive wave of 

infections by April 2021, has placed a further challenge in controlling the pandemic, 

with a more than double basic reproductive number compared with the previous strain 

38. Its high infectivity means that a higher proportion of the population needs to be 

vaccinated to reduce the disease burden 39, which is stressing health systems capacities 

in many countries. This new strain will require additional no-pharmaceutical 

intervention together with high coverage vaccination to control the spread, however has 

been shown that the vaccine is highly effective against severe outcomes from infections 

40. 

There is the need to be able to compare the effects of different interventions that could 

be implemented and how we could prioritize resources based on the characteristics of 
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the infected population 41, and the new emerging strains. The value of mathematical 

models to investigate public health questions was first recognized in 1766 from a study 

on the benefit of smallpox inoculation 42. Since then, the estimation and prediction of 

disease parameters and transmission as well as decision-making and the development of 

a response strategy to an outbreak, increasingly depend on model analyses 43. Such 

analyses can indicate new approaches to prevention and control to shape public health 

policy for a constantly changing population. Modelling of interventions can provide 

critical support to public health decision making during an epidemic. Therefore, there 

are three main phases in an outbreak response planning 27:  

a) A transmission dynamic mathematical model. 

b) Data to inform all parameters needed to set the initial conditions. 

c) The assumption that the pathogen is not modifying during the time of the 

prediction.  

This research aims to develop modelling and risk analysis to inform policy and practice 

in relation to epidemic control and outbreak response. More specifically this analysis 

aims to develop models that can account for different immunity levels in the population, 

heterogeneous mixing for transmission and assess effectiveness of pharmaceutical and 

non-pharmaceutical interventions at a population level for the prevention and control of 

serious epidemics and emerging infectious diseases. In this thesis, mathematical tools 

have been used to optimize outbreak responses for each of the following disease 

scenarios:  re-emergence following bioterror attack (smallpox), recurring disease 

following the re-emergence of pathogens each year in a slightly different form (seasonal 

influenza), and new emerging disease (COVID-19), where there are key unanswered 

questions about interventions for disease control and prevention. Each chapter show an 

example of using statistical, epidemiological and serological data with different 
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quantitative methods to support decision makers in outbreak and pandemic response. In 

Chapter One the pathogens previously listed are introduced in Part A, and in Part B, the 

methodology utilised in their analysis is described. The following Chapters Two to Five 

comprise the original research findings of this thesis. Each chapter of original research 

has already been published in peer reviewed journals prior to submission of the thesis. 

In the final chapter (Chapter Six), the results are put into context in terms of their 

contribution to the field and application to policy development, with a discussion on the 

limitations encountered in data collection to inform model parameters and quantitative 

methods used (point (b) and (a) of an outbreak response planning listed above). Finally, 

future recommendations are proposed towards a better use of data for evidence-based 

decisions in outbreak and pandemic response.     

 

 

Figure 1.1: Guide to thesis diagram for infectious diseases treated and 

methodology used to optimize outbreak response for emerging, recurring, and re-

emerging diseases using pharmaceutical and not pharmaceutical interventions. 
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Part A: Infectious diseases 

Infectious diseases have always afflicted humankind and always will. Infectious 

diseases are caused by microscopic organisms, such as bacteria, viruses, fungi, or 

parasites that are passed directly or indirectly, from one person to another, or from an 

animal to a person. The most common to cause disease in humans are viruses (like HIV, 

Influenza, smallpox, COVID-19) or bacteria (like tuberculosis or respiratory and 

diarrheal diseases), although malaria, for example, is caused from a protozoa 44. Lower 

respiratory infections were the fourth leading cause of death worldwide in 2016 45 with 

3 million deaths. An infectious agent can be transmitted with direct contact with a 

source of infection or through the air, which makes the spread of the infection through 

the population much easier and quicker. With greatly increased human mobility, 

infectious diseases have also increased potential to become global epidemics and 

pandemics. Challenges in infectious diseases control are increasing due to new 

infectious diseases emerging and old diseases re-emerging. Furthermore, the potential 

risk of intentional introduction of infectious diseases by bioterrorists or biowarfare is 

constantly rising. For better preparedness response to emerging and re-emerging 

infections, it is vital to understand the interactions between microbial pathogens and 

their hosts and the impact of environmental and social factors on these interactions 46, 

which are constantly changing. 
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1.2 Smallpox  

1.2.1 Disease characteristics, transmission, and treatments 

Smallpox is caused by variola virus, which has two closely related strains, variola minor 

and major. Variola minor infection causes a much milder infection, while variola major 

is the cause of the most severe disease 47. Several variations of variola major were 

recognized 48. The most common form was the ordinary one, which counted for a 90% 

of cases in unvaccinated people with a 30% fatality rate. The modified type is the milder 

form, which accounted for 25% of cases in vaccinated people and 2% in unvaccinated, 

and rarely fatal. The most severe types were flat, accounting for about 7% of cases in 

unvaccinated people with 97% case fatality rate, and haemorrhagic with less than 3% of 

cases but with a nearly 100% case fatality rate. Smallpox transmits from person to 

person by the respiratory airborne route or direct contact with body fluids, contaminated 

clothing or bedding. Once infected, there is an average of 10-14 days of incubation, 

where a person is not infectious, a rash then appears with a person thought to be 

contagious to the time it heals (~2 weeks) 49.  

Smallpox can be prevented by vaccination, which is made from a similar but milder 

virus called vaccinia. The vaccine is effective only before the rash starts and can prevent 

the disease if given before exposure in 95% of those vaccinated, while given after being 

exposed can still prevent the disease in 50% or give protection from severe disease 

outcomes 50. There are side effects and risks related to the smallpox vaccine. Most 

people have mild reactions, but some can be serious, like spreading vaccinia virus by 

touching the vaccination site, to life-threatening, like progressive vaccinia or post 

vaccinal encephalitis. The second-generation vaccines are contra-indicated in 

immunosuppressed people, as they can cause disseminated and fatal vaccinia infection. 



12 
 

To treat the disease there are three available antiviral drugs, tecovirimat, cidofovir and 

brincidofovir, however, because those drugs have never been tested on people affected 

from smallpox, their effectiveness is not known. Tecovirimat is the only one approved 

by FDA in July 2018 50, and it will be considered for use if there is ever another 

smallpox outbreak.  

1.2.2 Epidemiology and eradication 

Smallpox as a natural disease is believed to have appeared around 10,000 BC with 

agricultural settlement in Africa, and then spread through India and China. It was 

introduced to Europe between 400 and 600 AC, with 400,000 people dying annually in 

the 18th century 51. The case fatality rate ranged between 20% and 60% until the 

technique of variolation was introduced in Europe at the start of the 18th century with a 

10 times lower case fatality rate associated with it 52. The inoculator usually used a 

lancet wet with a small dose of fresh matter taken from a ripe pustule of a person who 

was infected from smallpox. The material was then subcutaneously injected on the arms 

or legs of the susceptible person. In 1796 Edward Jenner discovered a safer and 

effective method of prevention of smallpox with vaccinia virus or cowpox vaccination 

53. Vaccination rapidly spread in England, and by the year 1800, it was also used in 

most European countries. However, in 1967, some 10-15 million cases were still 

occurring annually in more than 30 endemic countries 54. On January 1, 1967, the WHO 

launched the Intensified Smallpox Eradication Program based on mass vaccination, the 

technical innovation of bifurcated needle for vaccination and staff training. However, a 

review of the programmes conducted after 1967 suggests that mass vaccination alone 

could have eliminated smallpox in South America and most African countries, but not 

in the countries of Bangladesh, India, Indonesia, and Pakistan48, with a higher density 

population. A prior 1966 outbreak in Nigeria informed the evolution of a new strategy, 
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based on surveillance and isolation of new cases.  The Nigerian experience showed that, 

even with less than half population vaccinated, a different strategy of surveillance and 

containment could stop the transmissions  of smallpox55. Smallpox was eliminated with 

the combined response of mass vaccination, reducing disease incidence, and detection 

and containment to eliminate the remaining outbreaks 56,57. India remained the last 

stronghold of endemic smallpox, and mass vaccination attempts were unsuccessful, 

prompting the WHO to switch to a ring vaccination strategy, which involved active case 

finding, contact tracing and vaccination of contacts 58. WHO declared smallpox globally 

eradicated in 1980 59. The eradication of smallpox was favoured by several biological 

reasons, the most important of which were probably that there were no asymptomatic 

transmissions, that infection gives lifelong immunity, that there was no animal 

reservoir, and the availability of an effective and stable vaccine 60. 

1.2.3 Risk of re-emergence: bioterrorism 

Due to several characteristics of the virus, like a long incubation period and no 

symptoms at the time of exposure, a covert release of variola would likely be not 

detected until infected people start to seek medical care. Smallpox is a category A 

bioterrorism threat 61,  is respiratory transmissible, and it has a high fatality rate 62. 

Furthermore, since routine smallpox vaccination ceased globally by 1980, the 

population vulnerability to the disease is increasing with time from vaccination. Most of 

the world's population has never been vaccinated or was vaccinated so long ago that 

immunity to smallpox has waned 63,64, plus the increasingly rates of immunosuppression 

and an aging population will make the disease much more severe 65,66 in the current 

population.  

At present there are only two known locations where variola virus is officially stored 

and handled under WHO supervision: the Centers for Disease Control and Prevention in 
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Atlanta, Georgia, US and the State Research Center of Virology and Biotechnology 

(VECTOR Institute) in Koltsovo, Russia 67. However, in March 2017, the American 

biotech company Tonix announced that a Canadian scientist, as part of a project to 

develop a safer vaccine against smallpox, had synthesized horsepox virus 21. The first de 

novo synthesis of an orthopoxvirus poses a risk to global biosecurity 68.   

 

1.3 Influenza 

1.3.1 Disease characteristics 

Seasonal influenza viruses infect 5–15% of the human population each year, resulting in 

291,243–645,832 seasonal influenza-associated respiratory deaths (4·0–8·8 per 100 000 

individuals) annually 69,70. 

There are 4 types of seasonal influenza viruses, types A, B, C and D 71. Influenza A 

viruses are further classified into subtypes according to the combinations of the proteins 

on the surface of the virus, hemagglutinin (HA) and the neuraminidase (NA). While 

influenza B viruses can be broken down into lineages. The influenza type B viruses, 

currently circulating, belong to either B/Yamagata or B/Victoria lineage. Influenza C 

virus, which usually causes mild infections, is detected more rarely and therefore it does 

not present public health importance, while influenza D viruses primarily affect cattle 

and are not known to infect people. 

Influenza A and B viruses circulate and cause seasonal epidemics of disease. The 

continued evolution of seasonal influenza viruses enables them to escape the immunity 

induced by prior infections or vaccination, and to be transmitted efficiently from 
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human-to-human via respiratory droplets, direct contact or fomites 72. Therefore, there 

are annual recurrences of seasonal influenza epidemics. 

Only influenza type A viruses are known to have caused pandemics 71. Currently 

circulating in humans are subtype A(H1N1) and A(H3N2) influenza viruses. After 

causing the pandemic in 2009, the A(H1N1) is also written as A(H1N1)pdm09 and 

subsequently replaced the seasonal influenza A(H1N1) virus which had circulated prior 

to 2009. 

1.3.2 Past influenza pandemics 

An influenza pandemic is a global outbreak of a new influenza A virus, which are 

constantly changing. This makes it possible (though rare) for non-human influenza 

viruses to evolve in such a way to infect people easily and then change to spread 

efficiently from person to person 73. From the start of the 20th century, until now, the 

world has experienced 4 influenza pandemics. 

The most severe pandemic in recent history was the 1918 influenza pandemic (“Spanish 

flu”). Caused by an H1N1 virus with genes of avian origin, the Spanish flu infected 

about 500 million people or one-third of the world’s population, with  at least 50 million 

estimated deaths worldwide 74. Deaths were higher in people younger than 5 years old, 

20-40 years old, and 65 years and older 75, and were arguably as high as 100 million 76. 

A unique feature of this pandemic is the high mortality in healthy people, including 

those 20-40 years old, with peak numbers of deaths in this age group occurring at age 

28 years 77. The outbreak response, at that time, was limited to non-pharmaceutical 

interventions such as quarantine, isolation, good personal hygiene and use of 

disinfectants, while limiting public gatherings. 
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In February 1957, a new influenza A(H2N2) virus emerged in East Asia (“Asian Flu”), 

causing a pandemic. The estimated number of deaths was 1.1 million worldwide, with 

the highest rates estimated in the age group 15-24 followed by the age group 5-14 78. In 

this case, no-pharmaceutical interventions were generally not considered, and public 

health response focused on having supplies of vaccine, however, vaccination was only 

50-60% effective and coverage only reached 17% of the US population at the peak of 

the epidemic79. Given the limited amount and effectiveness, the vaccine had no 

appreciable effect on the trend of the pandemic 80.  The 1968 pandemic was caused by 

an influenza A(H3N2) virus (“Hong Kong flu”), first detected in the United States in 

September 1968, causing an estimated one million deaths worldwide. Most associated 

deaths were in the age group of 65 years and older. The H3N2 virus continues to 

circulate worldwide as a seasonal influenza A virus. Since the Hong Kong strain had 

retained the same (N2) NA antigen from the previous Asian virus, it is believed that its 

diverse impact in different regions of the world were due to differences in prior N2 

immunity81. Further evidence for the capacity of previous exposition to N2 antigen to 

reduce the burden of the Hong Kong virus was provided by Eickhoff and Meiklejohn, 

who showed that influenza from verified H3N2 virus infection was reduced by 54% 

vaccinating with an H2N2 adjuvant vaccine 82. 

In the spring of 2009, a novel influenza A (H1N1) virus (“Swine flu”) was firstly 

detected in the United States and quickly spread across the rest of the world. This new 

H1N1 virus contained a new combination of influenza genes not previously found in 

animals or people, however, antibodies against this virus were found in nearly one-third 

of people over the age of 60 years. Although, immune correlates of protection are 

uncertain, as serological evidence of immunity may not directly correlate with clinical 

protection 83, this immunity would likely come from a previous exposure to an older 



17 
 

H1N1 virus earlier in their lives or from vaccination with seasonal flu vaccines, which 

may offered little cross-protection against (H1N1)pdm09 virus infection 84. During the 

first year that the virus was circulating, between 151,700 and 575,400 people worldwide 

died from 2009 H1N1 virus infection 85, with 80 percent of (H1N1)pdm09 virus-

associated deaths in people younger than 65 years of age 86. This differs from typical 

seasonal influenza epidemics, during which about 70-90 percent of deaths are estimated 

to occur in people 65 years of age and older. The impact of (H1N1)pdm09 virus on the 

global population overall during the first year was less severe than that of previous 

pandemics, even if it mostly affected children to middle-aged adults. Indeed, estimates 

of previous pandemic influenza mortality ranged from 1%-3% of the world’s population 

during the 1918 H1N1 pandemic to 0.03% during the 1968 H3N2 pandemic, while it is 

estimate 0.001%- 0.007% of the world’s population died with the (H1N1)pdm09 virus 

infection during the first 12 months the virus circulated 87. This epidemic was much 

milder than expected. Indeed modelling studies based on the pandemic of 1968 

projected, for the next influenza pandemic, 89,000–207,000 excess deaths and 314,000–

734,000 hospitalizations, in the absence of effective interventions, in the United States 

alone 88 and 2 million–7.4 million excess deaths worldwide 89. However, (H1N1)pdm09 

virus continues to circulate as a seasonal influenza virus, causing morbidity and 

mortality worldwide every year.  

1.3.3 Epidemiology and prevention 

The envelopes of influenza viruses contain two surface proteins, hemagglutinin (H) and 

neuraminidase (N), and, according to their combination, influenza A viruses can be 

classified into subtypes. Influenza A(H1N1) and influenza A(H3N2) are the influenza A 

subtypes currently circulating among humans. Antigenic drift is responsible for seasonal 

epidemics of influenza, as antibodies that would normally match up to it no longer can, 
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allowing the newly mutated virus to transmit from person to person. Therefore, 

influenza vaccines need to be adjusted each season to be effective against currently 

circulating influenza viruses. 

Influenza epidemiology is characterised by seasonal epidemics of type A and/or B virus, 

which peak during the winter months in temperate areas. The circulating virus, level of 

immunity of the population (from vaccination and past infection), and effectiveness of 

the vaccine, determine the outbreak severity from seasonal influenza each year. In 

seasons where the circulating strain is predominantly influenza A (H3N2), elderly 

groups are more heavily impacted, while in seasons with influenza A(H1N1) or 

influenza B circulating, increased notification rates are shown in children, pregnant 

women and younger adults 90. Influenza vaccines change every year with the 

appearance of influenza new strains. Based on global influenza epidemiology, the 

influenza virus composition of vaccines is determined annually following 

recommendations by the World Health Organization (WHO). 

The WHO reviews the world epidemiological situation twice annually and in 

accordance with the available evidence, recommends new vaccine strain(s). In general, 

seasonal influenza vaccines are trivalent, containing a mixture of influenza A and B 

strains which are thought most likely to circulate in the coming season 91.  

 

1.4 Covid-19 

1.4.1 Disease history and epidemiology  

On 31 December 2019, the World Health Organization (WHO) was formally notified 

about a severe pneumonia disease outbreak in Wuhan City. On the 7th of January 2020 
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the virus responsible for the outbreak was isolated and known as a novel coronavirus, 

SARS-CoV-2, named COVID-19 92. By 10th of January a few cases were notified 

already in Japan, South Korea and Thailand 93. As 6th July  2021, the cumulative 

number of cases reported globally now exceeds 183 million and the number of deaths is 

almost 4 million 94. 

COVID-19 is not the first coronavirus to cause outbreaks in humans, another 6 have 

been previously identified, and all are believed to be originated from animals, then 

through mutation and adaptation, they are able to infect humans and transmit from 

human to human 95,96. The four viruses that are endemic in humans, have mild cold-like 

symptoms, however the other two not endemic ones can cause serious infections. The 

first coronavirus recognised originated in China (2002-2004) and caused severe acute 

respiratory syndrome (SARS). It infected just over 8,000 people with a case fatality rate 

of 9.5%; while the second one causes middle east respiratory syndrome (MERS). It 

originated in Saudi Arabia, and, unlike SARS, is still prevalent as a sporadic disease and 

has infected about 2,500 people with a case fatality rate of 34.4% 97. Regarding 

COVID-19, the case fatality rate is still not clearly estimated as the reported crude case 

fatality rate varies considerably across countries, largely varying by age structure of the 

population and testing rates. A comparison in March between 25 countries reported a 

crude case fatality rate for COVID-19 ranging from 0.38% in Germany to 9.26% in 

Italy 98. There are many reasons for such a difference including the population age-

distribution, the quality of reporting of cases and deaths, variations in case definitions, 

or due to different testing strategies, all factors that can bias the numerator or the 

denominator for the case fatality rate calculation 99,100.   

From a report on 72,314 cases in China 101 early this year, 80% of cases were in the age 

group 30-79 years old, 8% in the 20-29 age-group, 3% in the 80+ age-group and only 
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2% in people aged between 0 and 19 years. The case fatality rate was positively 

correlated with age from 0.1% in the youngest age groups to almost 15% in people over 

80 years old. However, the reported case fatality rate is likely to be overestimated due to 

the difficulty in identifying and counting mild and asymptomatic cases. Indeed, 

asymptomatic infection may have played an important role in disease transmissions and 

ongoing spread.   

1.4.2 Virus transmission  

COVID-19 is a highly infectious disease. The basic reproductive number (R0 value) 

represents the number of second‐generation individuals that a patient can infect after 

entering a completely susceptible population, it represents the rate of transmission and 

the potential severity of an outbreak. The R0 estimated for COVID-19 ranges between 

1.4 and 5.5 102–104.   

Early in the epidemic, COVID-19 virus was believed to be transmitted mainly through 

respiratory droplets, which are expelled when an infected person coughs, sneezes, talks 

or sings; and contact routes 102,105–108. Currently available evidence indicates that 

COVID-19 may be transmitted from person to person through several different routes. 

An infectious agent is transmitted by airborne route through the dissemination of 

droplet nuclei (aerosols) that stay infectious when suspended in air over long distances 

and time 109, more likely in indoor settings with poor ventilation. However, the quantity 

of COVID-19 aerosols needed to infect a susceptible person is not known. Droplets 

expelled by infected people could contaminate surfaces as well and create fomites 110–

112. Therefore, transmission may also occur indirectly through touching surfaces or 

objects contaminated.  
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Although, some outbreaks reported in indoor crowded spaces 113–115, like super spreader 

events, could be explained by a combination of droplet and fomite transmissions, there 

has been no evidence of those routes of transmission.  COVID-19 appears to mainly be 

spread via respiratory droplets and aerosols in close contact with infected people.  

Another important aspect regarding COVID-19 spread is that infected people that never 

develops symptoms can still transmit the virus. The extent of asymptomatic infection in 

the community and the associated infectivity remains unknown. Estimates for the level 

of  asymptomatic cases have ranged from 15%-18% 116,117 up to 45% 118,119, with a  

much higher proportion among children 117, which could explain the lower apparent 

infection rates notified in this age group. However a recent systematic review estimated 

that the percentage of asymptomatic cases rages between 6% and 41% 120, with a recent 

study from China estimating it at 23% 121. This proportion is likely age-dependent as the 

higher immunosuppression rates in older age-groups will increase the risk of developing 

severer forms of infection 65, while studies have shown that children are less likely to 

show symptoms compared to adults 117,122.  

1.4.3 Infection prevention 

The only outbreak response available in 2020 to prevent infection with COVID-19 virus 

were non-pharmaceutical interventions, like case isolation, quarantine of contacts, social 

distancing, good hygiene, school closure, travel control, mass testing and masks use. 

For outbreak response and control, knowing when infected people transmit the virus is 

as important as much as how. The duration of the infectious period for an infected 

person is likely dependent on the severity of the illness developed. The duration of RT-

PCR positivity ranges from 1-2 weeks for asymptomatic persons, up to 3 weeks or more 

for patients with mild to moderate disease 123–127 and can be much longer for severe 
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illness 128. However, detection of viral RNA, measured by RT-PCR does not necessarily 

mean that a person is infectious or able to transmit the virus to another person.   

Pre-symptomatic transmissions are now supported by several studies 129–131, however, 

the extent of transmissions happening before and after symptoms onset is still widely 

debated. Evidence showed that transmissions start 1 to 3 days before symptom onset, 

then they peak the first day of symptoms, and decrease after that 123,124,128,132,133. Those 

findings imply, on the side of isolating symptomatic people, the absolute need for  rapid 

contact tracing, quarantining and testing to break  chains of transmission and avoid 

potential secondary cases  spreading the virus 134.   

 

Part B: Methodology 

1.5 SEIR models 

1.5.1 History and applications 

Transmission of infectious disease in humans is described as a stochastic process. 

Whether or not a person susceptible to a transmissible disease in a given time actually 

gets infected is in large part a matter of chance. The answer, to how processes based on 

random event can be mathematically modelled, sits on the Bernoulli’s theorem of the 

Low of Large Numbers. This theorem demonstrates that the mean value of a random 

variable is stable after a long period of time or a large number of samples 135. Daniel 

Bernoulli was one of the pioneers to describe infectious diseases dynamics using the 

principles of statistics and probability. He published a paper in 1766, in which he used 

census data and statistical methods to study the advantages of variolation as inoculation 

against smallpox 136. Between 1870s and 1930s, public health physicians laid down the 
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foundations of the entire approach to epidemiology based on compartmental models 137. 

In 1927, a series of papers was published by Kermack and McKendrick in which they 

used a system of differential equations to describe the dynamics of disease transmission 

138. They firstly described the concept of a threshold quantity that differentiates 

transmission dynamics 139. Indeed, the expected number of secondary infections 

produced during the entire period of infectiousness of another infectious individual in a 

completely susceptible population is called the basic reproduction number (R0). An 

outbreak is expected to continue if R0 has a value >1 and to end if R0 is <1 140. 

Therefore, the value of the R0 for that disease can determine the potential  size of an 

outbreak 141, and the proportion of the population to be vaccinated to eliminate the 

infection from that population 142,143. Indeed, the concept that, to stop transmissions of 

an infectious disease, it is not essential to vaccinate the entire population, is called herd 

immunity 144,145. Since 1933, the use of  compartmental disease transmission models has 

exponentially increased in many different fields, , however, they came into more 

widespread use for public health policy making only towards the end of the twentieth 

century 146. Mathematical models started to be extensively used in predicting the 

epidemic course and to identify possible prevention strategies during the first two 

decades of the AIDS pandemic, however their real impact on public health came with 

the need for understanding epidemics and the effectiveness of public health 

interventions. Toward these aims, epidemiological data can be used to inform 

mathematical modelling to predict the future of an epidemic and, most importantly, to 

quantify the uncertainty in these predictions 147. Such uncertainties are minimized when 

the impact of numerous variables, from the micro host–pathogen level to host-to-host 

interactions, as well as ecological, demographic and social factors, are studied and their 

effect incorporated in the analyses 148.  



24 
 

The ability to study large numbers of cases and large populations makes it possible to 

apply appropriate statistical assumptions and use models based on continuous variables 

and differential equations to the study of infectious disease and make accurate 

predictions.  Mathematical modelling applied to epidemiology can provide 

understanding of the underlying mechanisms that influence the transmission of a 

disease, and in the process, it informs the development of control strategies. The 

incorporation of mathematical models in the study of diseases transmission is now 

essential.   

Over the years, several approaches have been proposed looking at different aspect of 

diseases transmission and outbreak control in epidemiology. Those models can be 

grouped into three general categories 148: (1) statistical methods for surveillance of 

outbreaks to identify temporal or spatial patterns, (2) mathematical models within the 

context of dynamical systems and (3) machine learning/ expert methods used to forecast 

the evolution of an epidemic spread. The main difference between transmission models 

(2), as opposed to statistical models (1), is a mechanistic description of the disease’s 

spread, which makes it possible to connect the individual level process of transmission 

with a population level description of incidence and prevalence of an infectious disease 

139. In infectious diseases contest, the first category describes associations between 

variables and are broadly used to derive parameters estimates, the second category sets 

the theoretical mechanism that links exposures, interventions and infection, and are used 

to make predictions using the parameters estimated 149. While machine learning uses 

data extracted from internet-based communication platforms and search engines to 

obtain early indicators of social trends 148. 

For each of those categories there are further different approaches. In this thesis, I used 

statistical methods to estimate parameters and rates and mathematical models which, 
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depending on the questions to be answered and the approach of the approximation of 

the reality, can be deterministic or stochastic 149. Deterministic models are often used 

for large populations and use average rates to move people through epidemiological 

stages to capture overall population effects. While these models are easier to solve, they 

can generate unrealistic predictions when chance plays an important role. Stochastic 

models represent events with a certain chance therefore multiple models runs with the 

same parameters can give different results. These are often used for small populations or 

to investigate the initiation of outbreaks (where only a few people are infected) and can 

be more accurate but are computationally intensive. A further distinction is represented 

by linear or non- linear models 149. The first uses linear functions, which are simple to 

construct but do not account for indirect effects and can therefore lead to inaccurate or 

unreliable estimates. Non- linear models use non- linear functions which don’t have a 

constant rate of change. For example, for transmission of infectious diseases a non-

linear model captures the interdependence between the number infected and susceptible 

and can better describe the dynamics of the system and its sensitivity to parameters. 

While depending on the methods of representing individuals, mathematical models can 

be population or individual-based model 149. The first tracks changes to population 

subgroups while the second tracks the life experience of each individual, which can be 

more accurate but for its complexity, it needs a substantial amount of information, often 

not available in early stages of an outbreak, as well as more computing power.  

Even if models are becoming more complex to better approximate reality, the simpler 

SIR-type models (deterministic compartmental models), with differential equations, 

used in this thesis, have also been extended to incorporate population characteristics 

such as age distributions, mortality and spatial dependence of the spread to account for 
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density and migration effects as well as genetic mutations in the interacting populations, 

thus enhancing their realism 150,151. 

1.5.2 Differential equation 

The deterministic compartmental models used in this thesis are based on ordinary 

differential equations (ODE). A differential equation is an equation that defines a 

relationship between one or more functions, which generally represents physical 

quantities, with their derivatives, which generally represents their rate of change. The 

derivatives of one variable are the dependent variable with respect to the other variable, 

which is the independent one. For example, if we write 

 

𝑑𝑦/𝑑𝑥	 = 	𝑓(𝑥), 

 

here “x” is an independent variable and “y” is a dependent variable. The main purpose 

of solving the differential equation is to compute the function over its entire domain.  

A differential equation can contain either partial or ordinary derivatives, and it is called 

partial or ordinary differential equation, respectively. An ordinary differential equation 

contains only one independent variable and one or more of its derivatives with respect 

to that variable. 

The order of the highest derivative that occurs in the equation is the order of the 

ordinary differential equation. The general form of n-th order ODE is given as 

 

𝐹(𝑥, 𝑦, 𝑦’, … . , 𝑦𝑛	) 	= 	0. 
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There are an infinite number of solutions to a differential equation, however there are 

the so named initial conditions, which are the conditions, or the set of conditions, that 

determine the specific solution required. Initial conditions specify the value of the 

functions at a specific input value (for time derivatives this is usually t = 0, hence the 

term initial) are of the form, 

 

𝑦(𝑡0) = 𝑦0	𝑎𝑛𝑑/𝑜𝑟	𝑦!(𝑡0) = 𝑦𝑘. 

 

So, in other words, initial conditions are values of the solution and/or its derivative(s) at 

specific points, and, according to existence and uniqueness theorems, only one solution 

to an ODE will meet the given initial conditions. The number of initial conditions that 

are required for a given differential equation will depend upon the order of the 

differential equation, which is the highest order derivative present in it. 

1.5.3 Deterministic compartmental models, SIR models and common extensions   

Models of an infectious disease within a large population often use an approach where 

individuals with similar characteristics or in a particular disease state are grouped 

together within “compartments”, and the corresponding models are 

called compartmental models, with the compartments being mutually exclusive. 

Differential equations then can be used to describe how the number of people in each 

compartment changes over time.  

In a compartmental model, the time t represents the independent variable, while the 

derivatives with respect to time of the sizes of each compartment describe  the rates of 
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transfer between compartments, and as a result those models are formulated initially as 

differential equations 152. In formulating models as differential equations, we are 

assuming that the epidemic process is deterministic, meaning that the epidemic 

characteristics is completely determined by its history and by the specific rules within 

the model. Differently, in a stochastic approach, are used probabilistic concepts based 

on the Bernoulli’s theorem of the Low of Large Numbers, for the inclusion of random 

events 152.  

 One of the simplest compartmental models is the S-I-R model made up of 3 

compartments, one for susceptible people (S), one for infectious people (I) and one for 

recovered people (R) who are immune following infection. For a disease that does not 

confer immunity, this model simplifies further to an S-I, model. Let’s call N the total 

population, S(t) the number of susceptible people at time t, I(t) the number of infected 

people at time t and R(t) the number of recovered or dead people at time t. The rate of 

transfer between the I compartment to the R compartment or back to the S compartment 

is determined by the duration of the infectious state for that disease. While the transition 

rate from susceptible to infected, called the force of infection, is more complicated and 

explained in detail in the next paragraph. For every time t we will have 

 

𝑁 = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡). 

 

As in this case we are considering a closed population, which is constant in time and 

does not account for birth and deaths from other causes. In this thesis, where the focus 

is on outbreak response and control, the population is always considered closed, 

meaning that the demographic effects on the population can be ignored as the time scale 
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of the disease is much faster than the time scale of births and deaths. If λ is the rate of 

new infections at time t and the duration of the infection is 1/α, the recovery rate will be 

the inverse of the average infection period, α, which are exponentially distributed. The 

equations that describe the rate at which the number of susceptible, infected, and 

removed changes over time are 153: 

 

𝑑𝑆
𝑑𝑡 = −𝜆𝑆 

𝑑𝐼
𝑑𝑡 = 	𝜆𝑆 − 𝛼𝐼 

"#
"$
= 	𝛼𝐼. 

 

1.5.4 Basic concepts of epidemic transmissions models 

One of the most important parameters to be estimated to understand the behaviour of a 

disease and its transmissibility is the basic reproduction number (R0), which represent 

the number of secondary infections from the introduction of an index infected case into 

a totally susceptible population 154. If R0 is less than one, a disease will eventually die 

out, however if it is higher than one, without any intervention, there will be an 

epidemic. While the value of R0 is a characteristic of a disease, the force of infection, 

often called lambda (λ), which is the rate at which susceptible people become infected, 

depends on the prevalence of infectives %($)
(

 and the probability of transmission per 

contact (β). 
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Where the rate at which susceptible people become infectious can be frequency 

dependent transmission 𝜆 = 𝛽 %($)
(

 , where it is not dependent from population size, or 

density dependent,  𝜆 = 𝛽𝐼(𝑡), where it increases with population size, however the 

distinction makes a difference only if the population size varies in time. 

If at time t=0, I(0) infected are introduced in a completely susceptible population, our 

initial conditions at t=0 will be 

 

𝑆(0) = 𝑁 − 𝐼(0) 

𝐼(0) = 𝐼(0) 

𝑅(0) = 0. 

 

An epidemic will occur if the proportion of infective increases with time, so if "%
"$
> 0 

which implies that 155 

 

"%
"$
= 	𝜆𝑆 − 𝛼𝐼 = 𝛽𝐼𝑆 − 𝛼𝐼 = 𝐼(𝛽𝑆 − 𝛼) > 0, 

 

which implies 𝛽𝑆 − 𝛼 > 0, only if 𝑆 > 𝛼/𝛽. 

An average infectious individual is transmitting the disease over a period of 1/	𝛼 days 

and infects 𝛽 people per day, therefore an infected person will on average generate 𝛽/𝛼 

new infections over his disease lifetime. So, coming back to the basic reproduction 

number, we can now express it as 152,156 
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𝑅) = 	𝛽/𝛼. 

 

And an epidemic will occur only if the number of susceptible people  

 

𝑆 > 1/𝑅). 

 

In this thesis the force of infection is calculated to include heterogeneity in mixing 

contacts by age groups and different levels of infectivity. Therefore, in this thesis, 

lambda takes the form  

 

𝜆* = ∑ ∑
+!∗-",$∗%$

!

(
./
01.! . 

 

Where i and j represent the age groups, 𝑐*,0 is the age specific contact rates that a person 

aged i has with a person aged j, and k represents the different infectivity levels.  

 

1.6 Estimation rates and assumptions  

In this thesis I use models formulated as compartmental models, with the population 

under study being divided into epidemiological compartments, with parameters 

describing the rate of transfer from one compartment to another. Modelling infectious 
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disease transmission involves the consideration of a larger number of modelling 

parameters describing the spread dynamics and recovery from the infection. Additional 

compartments are added corresponding to age categories, and other related choices. A 

key task is estimating these rates from available data. Estimation is made easy if perfect 

information about the outbreak is available. However, in a real world such data is often 

missing, and we must deal with incomplete observations, estimations, reporting delays 

and bias. While for new or re-emergent pathogens outbreak data might not be available 

at the stage where information is required. Furthermore, in epidemiology, it is often 

difficult to design and conduct experiments with control groups and there are serious 

ethical questions involved in withholding treatment from a control group. Sometimes 

data are missed or incomplete and inaccurate. Therefore, there are several statistical 

methods, used in estimation theory, to estimate the values of parameters based on 

measured empirical data with a random component. An estimator or estimation method 

is used to calculate an estimated value based on observed data. Following is the 

description of the statistical methods used in this thesis. 

1.6.1 Poisson regression methods 

In this thesis, to estimate rates of growing and decreasing epidemics, Poisson regression 

methods are used. Poisson regression is used to predict a dependent variable that 

consists of "count data" given one or more independent variables. Count data are 

discrete data with non-negative integer values and can also be expressed as rate data. 

The Poisson regression assumes that the response variable Y has a Poisson distribution, 

and that its expected value logarithm can be modelled by a linear combination of 

unknown parameters. The Poisson regression model aims to model a counting variable 

𝑌, counting the number of times that a certain event occurs during a given time, from 

which we observe a sample 𝑌., . . . , 𝑌3. 
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The Poison distribution is a discrete distribution and is appropriate for modelling counts 

of observations. While the normal distribution is described by two parameters, the mean 

and the variance, the Poisson distribution is fully described by just one parameter, 

lambda (λ), which is the average and the variance and it can take on non-integer values 

157. A random variable Y is said to have a Poisson distribution with parameter λ if it 

takes integer values K = 0, 1, 2, . . . with probability  

 

𝑃𝑟{𝑌	 = 	𝑘} 	= 	 4
%&5!

!!
		𝑓𝑜𝑟	𝜆 > 0. 

 

The mean and variance of this distribution can be shown to be  

 

𝐸(𝑌	) 	= 	𝑣𝑎𝑟(𝑌	) 	= 	𝜆, 

 

which implies that the distribution “spreads out” as λ increases.  

The Poisson regression model explains this counting variable Yi using explicative 

variables xi, for 1	 ≤ 	𝑖	 ≤ 	𝑛. This p-dimensional variable xi contains characteristics for 

the i-th observation158. Like in a standard linear regression model, we will model the 

conditional mean function using a linear combination 𝛽$𝑥* of the explicative variables, 

where every 𝑌𝑖, conditional on 𝑥* , follows a Poisson distribution with parameter 𝜆* 

 

𝐸[𝑌𝑖	|𝑥𝑖	] 	= 	𝑒𝑥𝑝(𝛽$𝑥*) = 𝜆* , 
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and we aim to estimate the unknown parameter 𝛽, which will allow us to know the 

influence of an explicative variable on the expected value of 𝑌𝑖 158. In this thesis, the 

Poisson regression model is used to estimate the decreasing rate of the number of newly 

infected people per day (disease incidence), in order to forecast epidemic curves. 

1.6.2 Least square approximation methods 

An important first step when using mathematical models of infectious diseases to 

inform health policy, is to calibrate a model to disease surveillance data for a specific or 

multiple settings 159, with often the addition of sensitivity analysis to demonstrate the 

robustness of the model results. Model calibration is used to minimize discrepancy 

between the model and reality estimating the unknown parameters of a mathematical 

model using experimental or field data. This task is complicated by possible bias in the 

data 160. In this thesis, the method of least squares is used to estimate parameters 

reproducing the epidemic curves. Doing so requires finding multiple parameters sets for 

which the model produces a consistent behaviour with the incidence data. This 

statistical method finds the model parameters that minimize the sum of the squared 

point-by-point distances between the model prediction and the data 161. 

The Method of Least Squares is a method for estimating the true value of some quantity 

based on a consideration of errors in observations or measurements, a procedure to 

determine the best fit line to data. The basic problem is to find the best fit straight line 

 

𝑦	 = 	𝑎𝑥	 + 	𝑏, 
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given that, for 𝑛	 ∈ 	 {1, . . . , 𝑁}, the pairs (𝑥3, 𝑦3) are observed.  

The method easily generalizes to finding the best fit of the form 

 

𝑦	 = 𝑎.𝑓.(𝑥) 	+	·	·	· 	+	𝑎!𝑓!(𝑥). 

 

It is not necessary for the functions 𝑓! to be linear in x, but y needs to be a linear 

combination of these functions 162. The line defined by the function 𝑦3 	= 	𝑎𝑥3 	+ 	𝑏 

(where 𝑥3 is the nth value of the variable at the nth measurement 𝑦3 ) that minimizes the 

sum of the squared distances from the line to each observation is used to approximate a 

linear relationship between x and y. As shown in the following paragraph, algebraically 

the sum over all n of (𝑦3	 − 	𝑎𝑥3 	− 	𝑏)7 is minimized by setting the partial derivatives 

of this sum with respect to a and b equal to 0. This method is easily generalizable to 

nonlinear relationships 163.  

Given the data values {(𝑥., 𝑦.)	, . . . , (𝑥3, 𝑦3)	}, and a fitted line of the form 𝑦	 = 	𝑎𝑥	 +

	𝑏, the error associated to the fitting line is a function of two variables 162 

 

𝐸(𝑎, 𝑏) 	= 	∑ (𝑦3	 − 	𝑎𝑥3 	− 	𝑏)7(
31. . 

 

The best fitting line will be the estimation of a and b that minimize the error, this 

condition can be expressed as imposing the partial derivatives of E respect to a and b 

equal to 0: 
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𝜕𝐸
𝜕𝑎 = 0,

𝜕𝐸
𝜕𝑏 = 0. 

 

Differentiating and dividing by 2, the two equations yield  

 

T(𝑦3	 − 	𝑎𝑥3 − 𝑏)
(

31.

∗ 𝑥3 = 0, 

 

And 

 

T(𝑦3	 − 	𝑎𝑥3 − 𝑏) = 0
(

31.

. 

 

Which can be rewritten as  

 

(T𝑥37)𝑎 +
(

31.

(T𝑥3)𝑏 =
(

31.

T𝑥3𝑦3

(

31.

, 

 

Or 
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(T𝑥3)𝑎 +
(

31.

(T1)𝑏 =
(

31.

T𝑦3

(

31.

. 

 

Therefore, the values of a and b which minimize the error 𝐸(𝑎, 𝑏), need to satisfy the 

following equation matrix 

 

⎝

⎜
⎜
⎛T𝑥37

(

31.

T𝑥3

(

31.

T𝑥3

(

31.

T1
(

31. ⎠

⎟
⎟
⎞
\𝑎𝑏] =

⎝

⎜
⎜
⎛T𝑥3𝑦3

(

31.

T𝑦3

(

31. ⎠

⎟
⎟
⎞
, 

 

where, if all the 𝑥3 are not equal, the determinant of the matrix on the left is not zero 

and therefore invertible, and the best fit values of a and b are obtained by solving the 

following system of equations 

 

\𝑎𝑏] =

⎝

⎜
⎜
⎛T𝑥37

(

31.

T𝑥3

(

31.

T𝑥3

(

31.

T1
(

31. ⎠

⎟
⎟
⎞

8.

⎝

⎜
⎜
⎛T𝑥3𝑦3

(

31.

T𝑦3

(

31. ⎠

⎟
⎟
⎞
. 
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1.7 The rule of mathematical modelling in informing policy and thesis 

aims 

The use of mathematical modelling to inform policy making is constantly increasing. To 

assist decision-making during the 2014–2016 Ebola virus disease (Ebola) epidemic in 

West Africa, CDC activated a Modelling Task Force to assist the response in West 

Africa and estimate the risk for importation of cases into the United States. Models were 

used to estimate number of cases with and without interventions and estimate resources 

needed to inform the most effective response with limited resources. This effort was 

challenged from limited data and time, and difficulty to communicate the modelling 

process and assumptions, as well as to interpretate the model results. However, 

modelling led to estimates and projections regarding response strategy and resources 

required to support public health officials to take key decisions. The impact of 

modelling during the Ebola response demonstrates the usefulness of modelling in future 

responses, particularly in the early stages and when data are scarce. 164 

In 2017, there was an outbreak of diphtheria in Cox’s Bazar, Bangladesh, in the world’s 

largest refugee camp with 440 reported cases in the first month. The rapidly increasing 

cases led to a collaboration between Medicine without Borders and London School of 

Hygiene and Tropical Medicine with the goal to use transmission dynamic models to 

forecast the potential scale of the outbreak and the resulting resource needs 165. The 

forecasts helped the response in terms of staffing and supply of diphtheria antitoxin 

used to treat severe cases – and to advocate for control measures with partners. 

Models have played an important role in policy development to address the COVID-19 

outbreak from its emergence in China to the current global pandemic 166. In the ongoing 

COVID-19 pandemic, Neil Ferguson and the Imperial College of London COVID-19 
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response team have been influencing the pandemic response since the start of January 

2020. When in March 2020 they used an individual based stochastic model 167  

estimating  more than 500,000 deaths in the United Kingdom and 2.2 million in the 

United States if the government took no action, Prime Minister Boris Johnson almost 

immediately announced stringent new restrictions in UK on people’s movements to 

reduce contacts, while in US the results were shared with the White House and new 

guidance on social distancing quickly followed 168. In this thesis, a population based 

deterministic model has been used for early projections of COVID-19 spread in 

Australia due to imported cases from China 169, which influenced travel restrictions and 

border closure decisions.  

Although modern data and computational resources allow disease dynamic models to be 

parameterised with increasing detail and accuracy, major challenges remain. Firstly, 

mathematical models make assumptions and simplifications of the complex spreading 

process of epidemics, and those simplifications limit their capability to represent the 

spread of epidemics in detail 170. 

Furthermore, in the past 50 years, the study of infectious disease dynamics has 

developed into a rich interdisciplinary field between mathematics, epidemiology, 

ecology, evolutionary biology, immunology, sociology, and public health. This 

interdisciplinary development adds the challenge to establish appropriate data collection 

to managing increasingly large volumes of information 43.  

An article exploring the role of mathematical modelling in the development of 

recommendations in the 2013 WHO consolidated antiretroviral therapy guidelines, 

highlighted the importance of optimizing data collection and results transparency, and 

the need for agreed standards for critical appraisal and use of modelling data in 
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healthcare policy making 171. Models used for decision making are often difficult to 

interpret due to a unsystematic or non-transparent methods of validation. For a more 

transparent and evidence-driven policy decisions for infectious diseases it is necessary 

to improve collaboration between public health decision-makers and mathematical 

modellers 172.   

Mathematical models that test the effectiveness of a public health response to control an 

outbreak are extremely dependent on the input parameters. Parameters describing 

population characteristics and behaviour are constantly changing, following the 

population evolution in time. This thesis aims to optimize public health responses and 

inform policy making. In Australia, the population’s way of interacting, the city 

densities, as well as age distribution have changed drastically, while the age specific 

rates of immunocompromised people has dramatically increased. In chapter two a 

population based deterministic model for the spread of smallpox infection in Australia 

is developed, which incorporates all those population characteristics, to forecast 

epidemics in different vaccination scenarios and inform policy about the most efficient 

way to use a limited number of vaccines.  It is found that in the modern population and 

with a limited vaccine stockpile, the most effective response to a smallpox outbreak 

would be ring vaccination 173. However, an important unknown parameter in the model 

is the residual immunity from previous smallpox vaccination. In chapter three 64, some 

smallpox serological data on population immunity collected in 2003 in Australia are 

used with a non-linear model to estimate the rate of decreasing vaccine immunity 

following vaccination and inform policy makers on residual immunity in the population. 

It is estimated that there is likely no residual immunity from previous vaccination, 

which would lead to more severe outcomes if smallpox re-emerges. In chapter four, 

when new evidence suggested that seasonal influenza vaccine effectiveness decreases in 
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time within a season, the most effective time to get vaccinated to optimize the 

protection against the highest transmission months is estimated 174, using a linear model. 

Finally, in chapter five, after the COVID-19 pandemic started, the effectiveness of 

international travel bans in controlling COVID-19 importation from one country to 

another was determined 169, using a population based deterministic model. This thesis 

focuses on modelling to inform policy for control of emerging, re-emerging, and 

epidemic infections.     
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Chapter 2 

Modelling of optimal vaccination 

strategies in response to a 

bioterrorism associated smallpox 

outbreak 
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2.1 Chapter abstract   

The re-emergence of smallpox as a bioterrorism attack is now an increasing and 

legitimate concern. Advances in synthetic biology have now made it possible for the 

virus to be synthesized in a laboratory, with methods publicly available. Smallpox 

introduction into a susceptible population, with increased immunosuppression and an 

ageing population, raises questions of how vaccination should be used in an epidemic 

situation when supply may be limited. 

We constructed three modified susceptible-latent-infectious-recovered (SEIR) models to 

simulate targeted, ring and mass vaccination in response to a smallpox outbreak in 

Sydney, Australia. We used age specific distributions of susceptibility, infectivity, 

contact rates and tested outputs under different assumptions. The number of doses 

needed of second and third generation vaccines are estimated, along with the total 

number of deaths at the end of the epidemic. We found a faster response is the key and 

ring vaccination of traced contacts is the most effective strategy and requires a smaller 

number of doses. However, if public health authorities are unable to trace a high 

proportion of contacts, mass vaccination with at least 125000 doses delivered per day is 

required. This study informs a better preparedness and response planning for 

vaccination in a case of a smallpox outbreak in a setting such as Sydney.  
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2.2 Introduction 

The eradication of smallpox in 1980 was a triumph of public health. The first generation 

smallpox vaccines using vaccinia virus, such as DryVax, were used for the World 

Health Organization (WHO) eradication program 54. Mass vaccination was the primary 

strategy of choice during the era of endemic smallpox. However, when demand 

exceeded supply and achieving mass vaccination in India became a challenge, other 

more efficient vaccination approaches were considered. Ring vaccination, which 

combines surveillance and containment with vaccination of close contacts was the 

strategy used in the final phases of eradication 175.  

The re-emergence of smallpox as a bioterrorism attack is now an increasing and 

legitimate concern. Advances in synthetic biology have now made it possible for the 

virus to be synthesized in a laboratory 21, with methods publicly available 176. By 1980 

first generation smallpox vaccines ceased to be produced, and research subsequently 

began on second generation vaccines produced via tissue culture to comply with 

modern manufacturing guidelines 175. Third generation replication deficient vaccines 

such as Imvamune (JYNNEOSTM) reduce risk of adverse events and can be used in 

people who are immunosuppressed 175. Current stockpiles are mostly second generation 

vaccines 177, with potential to cause serious adverse events 175. Smallpox vaccine 

comprises a major proportion of the US Center for Disease Control (CDC) strategic 

national stockpile believed to be the largest national stockpile in the world 178. 

Emergency response plans for most countries recommend the ring vaccination strategy 

and if this has been ineffective or if there are multiple sites of deliberate release of a 

smallpox, switching to mass vaccination strategy, while others suggest commencing 

with mass vaccination within 24 hours of confirmation of smallpox outbreak 179,180.  
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The choice of vaccination strategy could differ depending on parameters such as initial 

size of attack, relevant efficiency of control measures, vaccine supplies, vaccine 

program capacity, level of residual vaccine-induced immunity and local population and 

geographic factors 181.  

Daniel Bernoulli’s 18th century model on smallpox was then refined by Kermack and 

McKendrick in the 20th century 182, and it is now the most widely used category of 

models, the compartmental deterministic SIR (Susceptible-Infected-Recovered) models. 

Since then mathematical models have increasingly been used to understand 

transmission dynamics, forecasting epidemics and to assess the impact of intervention 

strategies 43,183,184. The risk of infectious disease is dependent on characteristics of the 

infectious host, the organism, the susceptible host, and the environment 185, however the 

traditional deterministic compartmental models usually assume homogeneous mixing 

with same probability of infection for everyone 186.  

Studies assessing the impact of pharmaceutical and non-pharmaceutical interventions 

using modelling approaches have contributed to the evidence for control of smallpox 

outbreaks 187. Several studies have compared ring and mass vaccination strategies and 

possible benefits of prior levels of herd immunity combined with control measures 188–

193. Some studies favour isolation of infected individuals and ring vaccination as the 

optimal strategy provided there are no resource constraints 188,190. In the presence of a 

large number of cases or higher reproduction number, mass vaccination may be a 

preferred option of outbreak control 180,194. Mass vaccination in a large scale outbreak 

may prevent more deaths than ring vaccination in resource-constrained settings where 

contact tracing cannot be conducted adequately, while the ring approach could be more 

suitable for the initial and final phase of an outbreak 180. Combination strategies such as 
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isolation along with targeted vaccination also may be appropriate in a small scale 

smallpox outbreak 195–198. 

Smallpox introduction into a susceptible aged population, with increased 

immunosuppression could result in a 40% death rate 65. In addition, different mixing 

patterns and immunosuppression lead to varying age specific transmission of disease 

and case fatality rates, with the highest transmitters in people aged 5-19 years, but the 

highest fatality rate in adults >65 years 65.  This raises questions of how vaccination 

should be used in an epidemic situation when supply may be limited, and risk groups 

need to be prioritized.  

In this study we focus on heterogeneity in host contact rates. While modelling studies 

focused on age-structures and heterogeneous contact rates are common, studies on 

smallpox transmission that used a heterogeneous age-structure, mixing contacts and 

different susceptibility and infectivity levels as it is done in this study are less common. 

The aim of this study was to compare different vaccination strategies (mass, targeted 

and ring) for control of a smallpox outbreak in a highly populous, high-income city, 

Sydney (Australia), with high levels of contacts, elderly and immunosuppressed.  

 

 2.3 Methods 

The study used a previously developed model which simulated an epidemic of smallpox 

in Sydney, Australia 65. Here we included three different outbreak responses to test 

different vaccination program options, under varying attack scenarios, for effectiveness 

of epidemic control and estimation of needed resources. Results are shown as incidence, 

deaths and number of vaccine doses needed for each scenario tested. 
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2.3.1 Population assumptions and parametrization  

The population of Sydney was used for this study, estimated to be 5.25 million in 2016 

199 .  The population distribution of New South Wales (NSW) in 2016 200 was used to 

stratify the Sydney population 199 into 18 age-groups, 5-year wide, up to 80- 84, and 

then combined for 85+ years old. Each age group was further divided into 6 immunity 

levels: healthy, mild and severe immunocompromised,  vaccinated and not, and health 

care workers (HCW)  65. This was the basis of tested age-based targeted vaccination 

strategies (see below). 

We categorized smallpox disease into 4 different types defined by infectivity (R0) and 

case fatality rates (CFR): haemorrhagic, flat, ordinary and vaccine modified. Estimation 

of residual immunity and probabilities of developing each disease type are age and 

immunological status dependent 65. Because each smallpox type has a different 

infectivity, related to viral shedding and virus excretion 201, we estimated  a different 

probability of infection per contact β for each smallpox type in order to reproduce an R0 

equal to 10 for haemorrhagic and flat, 7.96 for ordinary and 5.3 for modified smallpox. 

Because more severe cases are likely to stay at home from the first day of symptoms, 

we  halved the contacts number for haemorrhagic and flat subtypes for the entire 

infectious period, while for ordinary and modified, the contacts number was considered 

halved after 2 and 3 days respectively from the appearance of the rash 65,66.  

Finally, we multiplied the force of infection by a parameter (α1, α2, α3, α4) to account for 

different population susceptibility levels. We did not consider births and deaths because 

the models run only for 300 days, which is not enough to have an impact from yearly 

birth and death rates. We also estimated the number of doses of non-replicating vaccine 

required for each comparative strategy using our previous minimal estimate of 17% of 

people living with immunosuppression in Sydney 65. In comparing strategies, we also 
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compared the expected occurrence of serious adverse events and deaths from 

vaccination, based on data from the US 175, estimated to be 14 and 1.1 per million, 

respectively. Each vaccination strategy starts at the same time of isolation of infectious 

cases. In a setting like Sydney, we assumed that 95% 54 of the new daily infectious 

cases will be hospitalized and once isolated we assume zero transmissions 54. CFRs are 

based on expected distribution of hemorrhagic, flat, ordinary, and modified smallpox. 

Vaccine effectiveness has been shown to be reduced in persons already infected and in a 

latent state 54,202. For uninfected people, we assumed the vaccine to be 95% and 98% 

effective for never vaccinated, and previously vaccinated, respectively 54,203. For already 

exposed, latently infected people, studies describe a range of vaccine effectiveness, 

from 30% 54,203,204 to 80% 205.  We considered it to be 50% effective in latent infected as 

found in studies testing ACAM2000, which is assumed to be the predominant vaccine 

that would be used in Australia 178,206.  

In a pandemic emergency setting, the personnel to delivery vaccinations will be the 

authorised nurse, midwife, pharmacists and general practitioners (GPs), however 

medical and nurse students can be authorized immunizer after appropriate vaccination 

training (provided by Health Protection New South Wales) 207. Each immunizer is 

capable of delivering between 80 and 100 doses per hour 207 in emergency situations, so 

we assumed up to 125,000 doses per day could be given in Sydney, for targeted and 

mass vaccination, however we tested the case of 50,000 and 300,000 doses per day for 

mass vaccination. 

For the targeted vaccination strategy, we considered health care workers (HCWs) as 

first responders who would be prioritized for vaccination in the event of an epidemic.  

We estimated the number of HCWs in Sydney for 2016-2017 208,209 based on the total 
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estimated health workforce for NSW 210 and  adjusted for the Sydney population 199. We 

estimated 100,638 HCWs in Sydney, and applied an estimated age distribution 208. We 

estimated the proportion of HCWs previously vaccinated and unvaccinated according to 

age. We assumed HCWs to have up to 3 times higher a risk of respiratory infections, 

based on past research on respiratory pathogens 211, however we considered them 

wearing a respirator and personal protective equipment (PPE) from the start of 

intervention and estimated this to be 75% effective against transmission of respiratory 

pathogens 212. Full description of the parameters used in the models can be found in the 

Appendix. 

2.3.2 Mathematical model   

We constructed three modified SEIR models to simulate targeted, ring and mass 

vaccination. The models run for 300 days. We started the epidemic with 100, 1000 or 

10,000 (which represents 0.0019%, 0.019% and 0.19% of the population) infected in the 

latent untraced compartment, distributed following the total population age distribution 

and vaccination rates.  

The model uses ordinary differential equations, to move the population into 

epidemiological states related to their smallpox infectious status and vaccination 

strategy compartments, following disease duration rates. The nonlinear age-specific 

disease transmission rate at which a susceptible person becomes infected (𝜆*) is a 

combination of β (probability of becoming infected per contact), c (the number of 

contacts per unit time) and the infectious prevalence. To include age-dependency, we 

used Euler’s discretization of the continuous variable ‘age’, so that the force of infection 

is represented by  
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Where k=1,…,4 represents the 4 infectious levels for haemorrhagic, flat, ordinary and 

modified smallpox types and i,y=1,…,18 represents the age groups. Individuals mix by 

age groups following the contact matrix 𝑐*,;213. As it was not available specifically for 

Australia, we adopted the contact matrix estimated for UK based on more behavior 

similarity between the two countries. We started vaccination at day 15, 20 and 30 from 

the virus release, about a few days to a week or two after appearance of the first 

symptomatic cases. For targeted vaccination, we avoided immunocompromised people, 

who are at higher risk of adverse events and likelihood of a poor immune response 214, 

while for ring vaccination in close contacts and mass vaccination we included the 

immunosuppressed population.  

For mass and targeted vaccination (Figure 2.1a), a proportion of susceptible (S) or latent 

(E) individuals can be vaccinated and move to compartment V. Vaccination rates 

distribution; in different age-groups and immunity levels, as well as in symptomatic or 

latent people for mass vaccination model; are detailed from the matrix X. The model 

diagram is the same for mass and targeted vaccination, however the vaccine distribution 

rates (matrix X) differs between the two strategies (full details in the supplementary 

materials). Once symptomatic, the infected not vaccinated can be isolated (Q 

compartment) or proceed to the infectious compartment I, where they will be able to 

transmit the disease. For ring vaccination (Figure 2.1b) a susceptible individual, if 

infected, can be traced (Et) or untraced (Eu); while if not infected, can be a traced 

contact (Ct), which can be effectively vaccinated and move to the V compartment or 

come back to the S compartment. Traced infected (Et) can be successfully vaccinated 
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and move to V compartment or isolated (Q) once symptomatic; while a proportion of 

latent untraced, once symptomatic, will get isolated in Q compartment and the rest will 

be infectious in the I compartment. Isolated (Q) or not (I), infected people will then 

recover (R) or die (D). The following is a short description of the model used for each 

vaccination strategy simulated for the outbreak response. For each strategy, sensitivity 

analysis was done on time starting intervention as 15, 20 and 30 days from virus release, 

furthermore for mass and ring vaccination we conducted a sensitivity analysis on daily 

vaccinations distributed.   

Strategy 1: Targeted vaccination (Figure 2.1a) 

We previously determined that the highest risk of disease transmission is in the age 

group 5-19 years, and the highest risk of death in >65 years 65. This was the basis of 

tested age-based targeted vaccination strategies and first responders. Therefore, we 

modelled the different outcomes if the vaccination is prioritized to: 

1.  5-19 age group (being the age group with the highest number of 

contacts/transmissions 65),  

2. 60-79 age group (being the age group with highest risk of complications and 

death 65),  

3. All HCWs and all 5-19 years old,  

4. All HCWs only. 

Vaccination doses are distributed in 7 days for the first two scenarios and 8 for the third 

one, using the first day to vaccinate HCWs 207,215. The number of doses delivered per 

day is estimated to be 125,000 207. Doses were distributed proportionally to the size of 

the age groups in the targeted group and between previously vaccinated and not.  
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Strategy 2: Ring vaccination (Figure 2.1b) 

In order to simulate a response with tracing/vaccinating contacts and case isolation, we 

used the model structure from 203, but accounting for different immunity levels and 

infectivity for each smallpox type as in 65. 

Isolation of cases and percentage of traced vaccinated contacts are based on available 

pre-eradication data 54 and assumed to be 95% in the base case scenario, which is likely 

for cases hospitalized and isolated in a high income setting such as Sydney. However, 

we explored and showed results for 3 different daily proportion of contacts traced and 

vaccinated (70%, 80% and 95%).  

Strategy 3: Mass vaccination (Figure 2.1a) 

In order to calculate the vaccine coverage needed to stop a smallpox outbreak and 

reduce transmissions to <1 per infected we used the formula 153 

 

𝑉𝑐 =
1
𝑉𝑒 ∗ (1 −

1
𝑅0) 

 

where Vc is the vaccine coverage and Ve is the vaccine effectiveness, however we used 

the estimated R0=4.6, obtained as previously explained.  

In order to implement mass vaccination, we fixed the number of doses delivered per day 

and calculated the duration of the campaign (in days) needed to reduce transmissions to 

zero, however the distribution changes daily. We keep the distribution of doses 

proportional to the weighted size of each age group, immunity level and susceptible or 

latent group. The number of doses needed to reach the required coverage to stop 
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transmission depends on the proportion of latent and susceptible people (each with a 

different vaccine effectiveness VE as shown in Technical Appendix), which varies over 

the epidemic. We started mass vaccination in an ongoing smallpox outbreak, therefore 

the VE was varied for latent and susceptible people (see Technical Appendix). 

Sensitivity analysis has been done on number of daily doses delivered as 125,000 doses 

per day for the base case scenario, with a sensitivity analysis of 300,000 and 50,000 

doses per day. Results are shown by time of starting intervention after virus release.  

 

 

Figure 2.1: Model diagram for targeted and mass vaccination (a) with different 

vaccine distribution rates (matrix X), and ring vaccination (b). 

 

2.4 Results 

2.4.1 Targeted vaccination 

The higher the initial number infected, the more rapid and severe the epidemic. 

In Figure 2.2 we compare the age specific incidence of infection after 50 days from 

virus release (a) and the total number of deaths (b) for each targeted vaccination 
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scenario and the case of only isolation of cases without vaccination. The number of 

doses used to cover each targeted group are 100,000, 850,000, 900,000 and 1 million 

respectively for the four vaccination scenarios. Vaccination of HCWs has minimal 

effect on the population epidemic. Vaccinating the 5-19 age group produces a higher 

reduction in transmissions (Figure 2.2a) and consequently a smaller number of deaths 

by the end of the epidemic. Deaths are sensitive to the time starting intervention, 

quadrupling between starting intervention at day T=15 and T=30 (Figure 2.3). 

 

 

Figure 2.2: The impact of alternative targeted vaccination strategies on the 

incidence of infectious people (left) and cumulative deaths (right) over time in the 

case of a smallpox outbreak starting with 100 infected people in the Sydney 

population of just over 5 million, with the response commencing on day 20 after 

the attack.  
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Figure 2.3: Total number of deaths at the end of the epidemic by time starting 

intervention and targeted group for vaccination, with 95% case isolation. Results 

are showed for 100 initial infected. 

 

For the targeted vaccination strategy, the higher the initial number infected, the smaller 

the difference between targeting different age groups for vaccination. However, the total 

number of deaths at the end of the epidemic is proportional to the initial number 

infected, which in this case is 2.2-2.5, 3.5-4 and 8.1-9 times the initial number of 

infected respectively starting intervention at T=15, 20 and 30 days after virus release.  

2.4.2 Ring Vaccination 

With ring vaccination we explored the influence of percentage of contacts 

traced/vaccinated and time to starting intervention on epidemic size, cumulative deaths 

and number of doses needed, starting outbreak with 100 (base case), 1,000 and 10,000 

initial infected. 

With 100 initial infected starting ring vaccination at day 20 with 95% of new infected 

isolated each day, the outbreak will be controlled in about 100 days, regardless the 



56 
 

proportion of contacts traced. However, the number of doses needed and total deaths at 

the end of the epidemic is dependent from time of starting intervention and contacts 

vaccinated. Figure 2.4 shows the impact of timing of the response varying from 15, 20 

to 30 days post attack, corresponding to 3, 8 and 18 days after the first symptomatic 

patient presents, and contact traced. The results are most sensitive to timing of response 

(Figure 2.4). If the starting intervention is 30 days (T=30) after virus release, the 

number of doses needed and total deaths will be more than doubled (Figure 2.4) 

compared to starting at 20 days (T=20) A ring response with 100 initial infected, with 

isolating and vaccinating a high proportion (95%) of new infectious cases and contacts 

respectively, will end the epidemic with a total of 270 deaths (2.7 times the initial 

number of infected) using about 2,060 doses starting the intervention at T=20 days 

following the start of the epidemic compared with about 4800 doses used and 620 

deaths if intervention starts 30 days following the start of the epidemic.  

 

 

Figure 2.4: Total number of doses used (a) and total deaths (b) by the day starting 

intervention following release and contacts traced/vaccinated for 100 initial 

infected. 
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2.4.3 Mass vaccination 

For mass vaccination, assumed an average reproduction number as 4.6, vaccine 

coverage of at least 82% is required with vaccine effectiveness being 95%.  Reaching 

82% coverage in Sydney will need about 4.3 million doses, if delivered before the start 

of the outbreak. In the best-case scenario of 300,000 doses delivered daily, we found 

that will need, to vaccinate daily for 16 days, 468 vaccinators a day (considering that 

each vaccinator can delivery 80 doses per hour 207 and 640 per day )  reaching a total of 

4.8 million doses to reduce transmission to zero. If the daily number of doses is 

125,000, 4.875 million doses will be needed to stop transmission, in a 39-day 

continuous campaign. If capacity to vaccinate is only 50,000 doses a day, about 5 

million doses in 100 days would be needed by the end of the epidemic. We show how 

the number of daily doses delivered and the time starting intervention influences 

number of total deaths at the end of the outbreak in Figure 5.  The number of daily 

doses (Figure 2.5) becomes more influential when the doses number drop to 50,000.  In 

the worst-case scenarios of delivering only 50,000 doses a day there will be a total 

number of deaths as 2, 3.2 and 7.6 times the initial infected respectively by starting 

intervention at day 15, 20 and 30.  However even for mass vaccination the most 

important variable is timing.  
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Figure 2.5: Total number of deaths by time starting intervention and number of 

doses delivered daily. Result showed for 100 initial infected.  

 

Table 2.1 summarizes all the results for each vaccination strategy explored for the base 

case scenario with 100 infected people and starting intervention after about 8 days from 

the first symptomatic cases.  
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Table 2.1: Comparison of vaccination strategies for the base case scenario of 100 

initial infected with the response commencing at day 20 post-release and 95% of 

cases effectively isolated. 

Strategy N doses 

require

d 

N doses 

of non-

replicatin

g vaccine 

N of 

recovere

d people 

N 

death

s 

N 

serious 

advers

e 

events  

N 

deaths 

from 

vaccin

e 

Time to 

end of 

epidemi

c 

Targeted 

HCWs  

100000 1700 808 396 1 0 100 

Targeted 

5-19 

900000 153000 702 351 13 1 100 

Targeted 

60-79 

850000 144500 775 381 12 1 100 

Targeted 

HCW and 

5-19 

1 

million 

170000 687 345 14 1 100 

Ring 

vaccination 

2060 350 531 270 0 0 100 

Mass 

vaccination 

4.875 

million 

828750 495 274 68 5 60 

 

 

2.5 Conclusion 

Understanding the most appropriate public health vaccination strategy for epidemic 

control is critical for preventing population morbidity and mortality of re-emergent 
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smallpox. Reducing cost, wastage and adverse events are also considerations. We 

showed that the time to commencing the response is critical. However, we used time 

from the attack, which includes an average incubation period of 12 days prior to 

smallpox being recognised 66. This means in practice that for a response to start at day 

15 post-attack, vaccination must commence 3 days after the first case becomes 

symptomatic.  For 20 days, this would be 8 days after the first symptoms begin.  Given 

smallpox is eradicated, and failures in recognition of serious emerging infections is 

common in the emergency room, 20 or 30 days, or even longer, may be the reality.  For 

example, the last European outbreak of smallpox in Yugoslavia resulted from failure to 

diagnose the index case, who had returned from the Middle East 216.  In that instance, 

smallpox was not recognised until second generation cases began appearing, which 

would correspond to a response time of over 25 days after the initial infection. Given 

recent notable failures to recognise Ebola in the US 217 and Nigeria 218, and MERS in 

South Korea 219, failure in diagnosis may be a weak point in health systems. Among the 

targeted vaccination strategies, vaccination for the 5-19 age group is slightly more 

successful in reducing transmission and delaying the epidemic, but ring vaccination will 

result in better epidemic control with a smaller number of doses. In all cases, starting 

the response as early as possible is best for epidemic control, but remains better with 

higher proportions of contacts traced and vaccinated. The difference between targeted 

vaccination options delivered to very small proportions of the population is small, 

because overall vaccine coverage remains low in all of these strategies.  In practice, 

vaccination will be required for HCWs, who are unlikely to come to work if not offered 

vaccination. Therefore, for the city of Sydney, for core clinical HCWs, at least 100,000 

doses of vaccine should be available to ensure workforce willingness to work and to 
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meet occupational safety requirements. Stockpiling for other first responders such as 

paramedics, emergency services and police should also be considered. 

We estimated an overall reproductive number of R0=4.6, consistent with other estimates 

220,221. For mass vaccination, this translates to requiring 82% of the population to be 

effectively vaccinated to achieve herd immunity and stop transmission. Reaching 

vaccine coverage of 82% of susceptible people requires almost 5 million doses, 

including over 828,000 doses of non-replicating vaccine for immunosuppressed people, 

for minimal net benefit over ring vaccination, except for reduction in the duration of the 

epidemic from 100 to 60 days, or just over a month. The risk of adverse events and 

deaths from vaccination also increases with mass vaccination. However, in the case of 

not being able to trace and vaccinate a high percentage of contacts, mass vaccination 

with at least 125,000 doses delivered per day could prevent more deaths. This would 

require a large-scale program with human resources and vaccine supplies. Although 

there is lack of knowledge of the use of bifurcated needle for vaccination, and training 

of vaccinators would take some time, we estimated more than 100,000 HCWs in 

Sydney 222. A study found that each immunizer in Sydney is capable of delivering 

between 80 and 100 doses per hour 207 in emergency situations, so delivery of at least 

125,000 doses per day seems a realistic target. For every vaccination strategy the final 

number of deaths is directly proportional to the size of initial infected, and it should be 

noted that our results use a base case of 100 initial infected, which is an optimistic 

assumption.  Larger attack size will result in a longer and larger epidemic.  

The results of this study are consistent with other modelling studies that look at 

vaccination strategies for a smallpox outbreak 190,192,194–198, all suggesting that ring 

vaccination is the best strategy to contain an epidemic.  However past studies do not 

consider heterogeneous mixing patterns, residual immunity from previous vaccination 
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or population immunosuppression when estimating deaths or doses of non-replicating 

vaccine needed in different scenarios. We estimate the number of non-replicating 

vaccine doses required for the different vaccination options ranges from under 300 for 

ring vaccination to over 800,000 for a mass vaccination strategy.  To ensure the safety 

of immunosuppressed contacts, a relatively modest investment in stockpiling of third 

generation vaccine will be adequate.  

Only two previous studies showed number of doses needed for different scenarios 

192,196. Zenihana 192 showed that with 20 initial infected, ring vaccination ends with 38 

deaths, which corresponds to 190 deaths if the initial infected are 100, while we found 

270 deaths for the same scenario. However, this could be explained by our model 

considering the immunocompromised population as being at higher risk of death. 

Legrand 196 found for 100 initial infected, starting intervention at T=25 days, the 

epidemic will end with 730 deaths and 5,440 doses used. Those higher values can be 

explained from the lower percentages of isolation (60%) and contacts vaccinated (80%) 

compared to the 95% assumption in our study. Indeed, if we use the same percentages 

of isolation and vaccination, we find just over 7000 doses used and 1500 deaths, which 

is likely due to consideration on 17% of the population immunosuppressed. We 

assumed high levels of case isolation as a highly effective adjunct strategy to 

vaccination.  We expect in a setting such as Sydney that case isolation rates close to 

95% will be achieved, and this underpins epidemic control.   

The main limitation of this study is the unavailability of data regarding smallpox 

transmission in a contemporary population. Therefore, there is significant uncertainty 

regarding how effective a public health will be in managing a terror attack with variola 

virus. Furthermore, we did not account for the beneficial use of newer antivirals as 

treatment of smallpox cases, which would reduce the number of deaths.  Another 
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limitation is that we assumed HCWs partially to be protected from PPE based on data 

from respiratory transmission of pathogens, but there are no direct data on PPE use for 

smallpox. The lack of PPE data for smallpox reinforces the need for vaccination for 

HCWs. Including age-specific mixing patterns, accounting for residual immunity from 

past vaccination and age-specific estimation of immunosuppression rates is a strength of 

our model. 

In summary, rapid implementation of vaccination response, combined with high rates of 

case isolation are critical to smallpox epidemic control, which can be achieved using 

ring vaccination in a setting such as Sydney. Further research is needed to estimate 

health system capacity for managing cases, for rapidly delivering vaccination at scale, 

tracing contacts and monitoring, to inform preparedness planning for a smallpox 

outbreak. 

 

2.6 Supporting information 

2.6.1 Models Description 

The models presented here are three different one to simulate targeted, mass and ring 

vaccination strategies. They are deterministic compartmental disease transmission 

models built using Matlab 2018. They show an expended SEIR system of ordinary 

differential equations, where the population (the initial susceptible) is divided in 18 age 

groups per 6 immunity levels (severe immunocompromised j=1, mild 

immunocompromised j=2, healthy never vaccinated j=3, healthy previously vaccinated 

j=4, HCWs never vaccinated j=5 and HCWs previously vaccinated j=6), which 

determine the levels of susceptibility, details in supplementary material from 65.  The 
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differential equations move the population through diseases epidemiological stages, as 

susceptible (S), latent untraced (Eu), infectious (I) and recovered (R) or death (D), and 

public health response stages, as contacts traced (Ct), latent traced (Et), vaccinated (V) 

or isolated (Q). The infectious (I) compartment is divided in 4 sub-compartments, for 

the different types of smallpox disease (haemorrhagic k=1, flat k=2, ordinary k=3 and 

modified k=4) and two additional for the contacts reduction  65, which determines the 

level of infectivity and death rates.   

2.6.2 Disease type and age distribution rates 

People infected with haemorrhagic and flat smallpox have the highest basic 

reproduction number estimated from different historical outbreaks (R0=10) 220, however 

we used R0=5 to account for the isolation of severely ill patients 65. For ordinary and 

modified smallpox, we assumed R0=7.96, estimated from a detailed study of an 

outbreak in Nigeria in an unvaccinated community 223, and 2/3 of it respectively for the 

first two and three days of the infectious period. In order to account for isolation, we 

assumed R0 to be half for the following days.   

We used age specific rates of hemorrhagic, flat and ordinary smallpox as estimated in 

224. In order to get age-specific rates up to 85+ years old population, we linearly 

interpolated the values for the age group available from data collected. The age specific 

rates used in the model for healthy unvaccinated population in each age group are 

shown in table 2.2. 
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Table 2.2: Age-specific distribution rates of haemorrhagic and flat type of 

smallpox for healthy unvaccinated infected people 65. 

 0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44 

Hemorrhagic 0.012 0.007 0.026 0.049 0.085 0.122 0.132 0.141 0.151 

Flat 0.08 0.045 0.026 0.035 0.043 0.054 0.065 0.075 0.086 

 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 85+ 

Hemorrhagic 0.161 0.171 0.180 0.190 0.2 0.21 0.22 0.229 0.239 

Flat 0.97 0.108 0.118 0.129 0.14 0.151 0.162 0.172 0.183 

 

For mildly suppressed we doubled the age specific rates from table 2 of severe smallpox 

types, while severely immunosuppressed population infected develops only 

haemorrhagic type. Regarding the vaccinated subgroup of the population, an estimated 

25.3% of vaccinated people get modified smallpox 224. We applied a waning immunity 

function over time at a rate of 1.41% per year after vaccination 225. We applied the same 

waning for the susceptibility as well starting from 100% effective vaccination. Age 

specific rates for this subgroup are shown in table 2.3. 

 

Table 2.3: Age-specific distribution rates of haemorrhagic, flat and modified type 

of smallpox for vaccinated infected people 65. 

 35-39 40-44 45-49 50-54 55-59 60-64 65-69 

Hemorrhagic 0.037 0.045 0.053 0.063 0.072 0.084 0.094 

Flat 0.019 0.026 0.032 0.04 0.047 0.057 0.066 

Modified 0.19 0.18 0.17 0.16 0.15 0.14 0.13 

 

All parameters used in the models are listed in the following table. 
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Table 2.4: Model parameters. 

Symbol Definition Value Source 

𝛽! Probability of 
infection per contact 

0.625               for k=1,2 

0.497               for k=3 

0.331               for k=4              

65 

µ! 

 

 

 

 

 

 

µ 

 

Death rates from 
infectious not 
isolated 

 

 

 

 

Death rate from 
isolation  

0.9                   for k=1 

0.75                 for k=2 

[0.37 0.18 0.18 0.15 0.22 
0.29 0.32 0.35 0.38 0.40 
0.43 0.46 0.48 0.51 0.54 
0.56 0.59 0.62]  for k=3 

0                        for k=4 

 

0.3 

65 

s Age specific 
susceptibility for 
vaccinated people 
(reduced) 

[1 1 1 1 1 1 1 0.52 0.59 
0.66 0.73 0.80 0.87 0.94 
1 1 1 1] 

65 

𝛼0 Immunity levels 
specific susceptibility 

2,                         for j=1  

1.5,                       for j=2 

1,                          for j=3 

s                           for j=4 

3,                          for j=5 

3*s,                      for j=6 

65 

𝜑01<,=,*.  Age specific 
distribution rate of 
hemorrhagic 
smallpox in healthy 
unvaccinated people   

[0.012 0.007 0.026 0.049 
0.085 0.122 0.132 0.141 
0.151 0.161 0.171 0.180 
0.190 0.2 0.21 0.22 0.229 
0.239] 

65 

𝜑01.,*.  Distribution rate of 
hemorrhagic 

 65 
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smallpox in severe 
immunocompromised 
people   

1 

𝜑017,*.  Age specific 
distribution rate of 
hemorrhagic 
smallpox in mildly 
immunocompromised 
people 

	
2 ∗ 𝜑01<,*.  

65 

𝜑01:,>,*.  Age specific 
distribution rate of 
hemorrhagic 
smallpox in healthy 
vaccinated people 

 

𝑠 ∗ 𝜑01<,*.  

65 

𝜑01<,=,*7  Age specific 
distribution rate of 
flat smallpox in 
healthy unvaccinated 
people 

[0.08 0.045 0.026 0.035 
0.043 0.054 0.065 0.075 
0.086 0.097 0.108 0.118 
0.129 0.14 0.151 0.162 
0.172 0.183] 

65 

𝜑01.,*7  Distribution rate of 
flat smallpox in 
severe 
immunocompromised 
people   

0  

𝜑017,*7  Age specific 
distribution rate of 
flat smallpox in 
mildly 
immunocompromised 
people 

	
2 ∗ 𝜑01<,*7  

65 

𝜑01:,>,*7  Age specific 
distribution rate of 
flat smallpox in 
healthy vaccinated 
people 

 

𝑠 ∗ 𝜑01<,*7  

65 

𝜑01:,>,*:  Age specific 
distribution rate of 
modified smallpox in 

[0 0 0 0 0 0 0 0.13 0.11 
0.09 0.07 0.05 0.03 0.01 
0 0 0 0] 

65 
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healthy vaccinated 
people 

 

𝜑01.,7,<,=,*:  Distribution rate of 
modified smallpox in 
unvaccinated people 

0 65 

𝜑0,*<  Distribution rate of 
ordinary smallpox 

	
1 − (𝜑0,*. + 𝜑0,*7 + 𝜑0,*: ) 

 

𝜃 Percentage of 
infectious people 
isolated 

95% 

 

48 

𝜌 Percentages of 
contacts traced and 
vaccinated  

95% 

Sensitivity analysis on 
with 85% and 70% 

48 

𝑞. Duration of isolation 
for contacts traced 
after vaccination 

17 203 

𝑞7 Duration of isolation 
for infectious 
symptomatic cases 

25 203 

𝑑!1< Infectious duration 
for ordinary smallpox 
with full R0 + 
reduced R0 

2 days + 14 days 65 

𝑑!1: Infectious duration 
for modified 
smallpox with full R0 
+ reduced R0 

3 days + 13 days 65 

𝑑!1.,7 Infectious duration 
for hemorrhagic and 
flat smallpox with 
reduced R0 

16 days 65 

𝑣𝑒?17 Vaccine effectiveness 
in latent infected 
previously vaccinated 

0.53 205 
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𝑣?17 Vaccine effectiveness 
in uninfected 
previously vaccinated 

0.98 205 

𝑣𝑒?1. Vaccine effectiveness 
in latent infected 
never vaccinated 
before 

0.50 178,206 

𝑣?1. Vaccine effectiveness 
in uninfected never 
vaccinated before 

0.95 226 

P Number of doses 
daily distributed 

125000 doses per day 

Sensitivity analysis with 
300000 and 50000 doses 
per day 

 

 

2.6.3 Targeted and mass vaccination models 

For the implementation of targeted and mass vaccination strategy for outbreak response 

we used the same model structure as showed in Figure 1 of the main manuscript, 

however we used different matrix X2j,i for doses distribution rates between each targeted 

group vaccination strategy and mass vaccination.  

We assumed only susceptible and latent people, who do not yet have any disease 

symptoms, will get vaccinated with different effectiveness in those two epidemiological 

states. The number of daily vaccinations distributed depends on the country capacity, 

while the distribution rates depend on the number of susceptible and latent people each 

day. If M2j,i is the matrix 12 by 18 containing all the population susceptible and latent to 

get vaccinated, divided by immunity level and age groups (12 by 18) and X2j,i is the 

same size matrix of vaccine distribution rates, each element 𝑥70,* of the matrix X2j,i is 

recalculated each day and it is an endogenously estimated parameter, which depends 

from the number of people in each of the compartment 𝑚70,* of the matrix M2j,i. While, 
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for the targeted population, the vaccine is distributed to the targeted group only, for 

mass vaccination more people in the subgroup means higher probability to get 

vaccination in that compartment. In formula we have that each element 𝑥70,* of the 

distribution matrix X2j,i is recalculated every day as 

 

𝑥70,* =
@+$,"

∑ @+$,"+$,"
	𝑎𝑛𝑑	𝑋70,* = h

𝑋A$,"											𝑓𝑜𝑟	2𝑗 = 1, . . . ,6
			𝑋C$,"											𝑓𝑜𝑟	2𝑗 = 7, . . . ,12. 

 

Where 𝑚70,* is the number of people in each compartment of the matrix M.  

Following are the differential equations used for these two models with j=1,…6 

immunity levels, k=1,…4 infectivity levels, i=1,…,18 age groups, f=1,2 for vaccine 

effectiveness in never vaccinated and previously vaccinated, so 

 

𝑓 = l					1, 𝑓𝑜𝑟	𝑗 = 1,2,3,5
2, 𝑓𝑜𝑟	𝑗 = 	4,6 . 

 

𝑑𝑆0,*/𝑑𝑡 = −𝛼0 ∗ 𝜆* ∗ 𝑆0,* − 𝑣? ∗ 𝑋A$," ∗ 𝑃 

𝑑𝐸0,*/𝑑𝑡 = 𝛼0 ∗ 𝜆* ∗ 𝑆0,* − 𝐸0,*/𝑑. − 𝑣𝑒? ∗ 𝑋C$," ∗ 𝑃 

𝑑𝐼!,*/𝑑𝑡 = ((1 − 𝜃)/𝑑.) ∗T𝜑0,*! ∗ 𝐸0,*
0

− 𝐼!,*/𝑑! 

𝑑𝑄*/𝑑𝑡 = (
𝜃
𝑑.
) ∗T𝜑0,*! ∗ 𝐸0,*

0

− 𝑄*/𝑞7 
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𝑑𝑅*/𝑑𝑡 =T(
1 − µ!
𝑑!

) ∗ 𝐼!,*
!

+ (1 − µ) ∗ 	𝑄*/𝑞7 

𝑑𝐷*/𝑑𝑡 =Tµ!/𝑑! ∗ 𝐼!,*
!

+ µ ∗ 	𝑄*/𝑞7 

𝑑𝑉*/𝑑𝑡 = 𝑃	(𝑣? ∗ 𝑋A$," + 𝑣𝑒? ∗ 𝑋C$,"). 

 

2.6.4 Ring vaccination model 

For the implementation of ring vaccination, we calculated the ring contacts not infected 

as  

 

𝜆2* = ∑
∑ (.8+!)∗-",'∗%!,"()
'*(

(
:
!1. . 

 

Where k=1,…,4 represents the 4 infectious levels, (haemorrhagic, flat, ordinary, 

modified) and I,y=1,…,18 represents the age groups within the contact matrix. A 

previous model structure 203 was revisited and used. 

 

𝑑𝑆0,*/𝑑𝑡 = −𝛼0 ∗ 𝜆* ∗ 𝑆0,* − 𝜌 ∗ 𝜆2* ∗ 𝑆0,* + (1 − 𝑣?) ∗ 𝐶0,*$ /𝑞. 

𝑑𝐸0,*D /𝑑𝑡 = (1 − 𝜌) ∗ 𝛼0 ∗ 𝜆* ∗ 𝑆0,* − 𝐸0,*D /𝑑. 

𝑑𝐸0,*$ /𝑑𝑡 = 𝜌 ∗ 𝛼0 ∗ 𝜆* ∗ 𝑆0,* − (1 − 𝑣𝑒?) ∗ 𝐸0,*$ /𝑑. − 𝑣𝑒? ∗ 𝐸0,*$ /𝑞. 

𝑑𝐶0,*$ /𝑑𝑡 = 𝜌 ∗ 𝜆2* ∗ 𝑆0,*−𝐶0,*$ /𝑞. 
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𝑑𝐼!,*/𝑑𝑡 = ((1 − 𝜃)/𝑑.) ∗T𝜑0,*! ∗ 𝐸0,*D

0

− 𝐼!,*/𝑑! 

𝑑𝑄*/𝑑𝑡 = (𝜃/𝑑.) ∗T𝐸0,*D +
0

((1 − 𝑣𝑒?)/𝑑.) ∗T𝐸0,*$

0

− 𝑄*/𝑞7 

𝑑𝑅*/𝑑𝑡 =T((1 − µ!)/𝑑!) ∗ 𝐼!,*
!

+ (1 − µ) ∗ 	𝑄*/𝑞7 

𝑑𝐷*/𝑑𝑡 =T(µ!/𝑑!) ∗ 𝐼!,*
!

+ µ ∗ 	𝑄*/𝑞7 

𝑑𝑉*/𝑑𝑡 = (𝑣?/𝑞.) ∗ ∑ 𝐶0,*$ +0 (𝑣𝑒?/𝑞.) ∗ ∑ 𝐸0,*$0 . 
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Chapter three  

Serological immunity to smallpox 

in New South Wales, Australia 
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3.1 Chapter abstract 

The re-emergence of smallpox is an increasing and legitimate concern due to advances 

in synthetic biology. Vaccination programs against smallpox using the vaccinia virus 

vaccine ceased with the eradication of smallpox and, unlike many other countries, 

Australia did not use mass vaccinations. However, vaccinated migrants contribute to 

population immunity. Testing for vaccinia antibodies is not routinely performed in 

Australia, and few opportunities exist to estimate the level of residual population 

immunity against smallpox. Serological data on population immunity in Australia could 

inform management plans against a smallpox outbreak. Vaccinia antibodies were 

measured in 2003 in regular plasmapheresis donors at the Australian Red Cross Blood 

Service from New South Wales (NSW). The data were analysed to estimate the 

proportion of Australians in NSW with detectable serological immunity to vaccinia. The 

primary object of this study was to measure neutralising antibody titres against vaccinia 

virus. Titre levels in donor samples were determined by plaque reduction assay. To 

estimate current levels of immunity to smallpox infection, the decline in geometric 

mean titres (GMT) over time was projected using two values for the antibody levels 

estimated based on different times since vaccination. The results of this study suggest 

that there is minimal residual immunity to the vaccinia virus in the Australian 

population. Although humoral immunity is protective against orthopoxvirus infections, 

cell-mediated immunity and immunological memory likely also play roles, which are 

not quantified by antibody levels. These data provide an immunological snapshot of the 

NSW population, which could inform emergency preparedness planning and outbreak 

control, especially concerning the stockpiling of vaccinia vaccine. 
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3.2 Introduction 

Smallpox was introduced into Australia with the arrival of the First Fleet in 1787, 

resulting in severe outbreaks among the indigenous population 227,228. Although 

smallpox was endemic in most countries by 1920, it never became an established 

endemic disease in Australia. Australia’s geographical remoteness protected it from all 

but a few ongoing importations of smallpox, which were effectively controlled by 

quarantine measures at seaports. Most settlers in Australia likely had immunity to 

smallpox through natural infection or vaccination in Europe or elsewhere 229. The last 

major outbreak of smallpox in Australia was in May 1913, when variola minor, a milder 

form of the disease, was imported from Canada, resulting in 2398 cases and four deaths 

in New South Wales 230. The last documented case of smallpox in Australia occurred in 

1938 231. 

The re-emergence of smallpox is now an increasing and legitimate concern 232. 

Advances in synthetic biology have enabled de novo virus synthesis 21. Canadian 

researchers synthesised a closely related orthopoxvirus and published their methods in 

2018 176. We previously showed that smallpox reintroduction into Australia, where an 

estimated 17% of people live with moderate to severe immunosuppression, could result 

in high transmission and a 45% case fatality rate 65. 

Although Australia never had a universal smallpox vaccination program, several states 

implemented compulsory vaccination programs in the mid-19th century, including 

South Australia, Western Australia, Victoria, and Tasmania 230. About 30% of children 

born in Australia between 1860 and 1910 were vaccinated against smallpox, but by 

1923, the proportion of infants vaccinated against smallpox decreased to less than 10% 

229. From 1960 to 1976, with the World Health Organization’s (WHO) push for global 
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smallpox eradication, an estimated 5 million smallpox vaccination doses were 

administered in Australia through supplementary immunisation activities 233. 

Vaccination coverage in Australia was relatively low compared to countries such as the 

U.S., where more than 90% of Americans born before 1971 were vaccinated against 

smallpox 234. In the absence of a past universal vaccination program and combined with 

a low endemicity for smallpox, we previously estimated that among the current 

population in Sydney, Australia, only 30% of people born prior to 1980 (mostly 

immigrants who were vaccinated in their country of origin) have been vaccinated 65. 

Studies of the duration of immunity after smallpox vaccination have yielded mixed 

results. The U.S. Center for Disease Control (CDC) suggests immunity wanes to almost 

zero 5–10 years post-vaccination 65,224. However, a duration of protection of >20 years 

was consistently seen among 16 retrospective cross-sectional studies 63. Even if 

serological immunity wanes, past vaccination is thought to protect against fatal 

infection, following findings that human memory B and T cells can be maintained for 

life in the absence of antigenic re-exposure 235. Several factors were shown to affect 

residual immunity to smallpox, including sex, age at time of vaccination, ethnicity, gene 

polymorphisms, and type of smallpox vaccine received 236–241. There is little 

contemporary serological data on population immunity in Australia, but any data could 

inform management plans against a smallpox outbreak 242. 

This study had two aims: (1) to estimate the proportion of Australians who have 

detectable neutralising antibodies against vaccinia virus based on serological data from 

2003 and (2) to model the waning of immunity over time to project current levels of 

immunity. 



77 
 

3.3 Methods 

Aim 1 

3.3.1 Study Population and Recruitment 

A study was conducted in 2003 to estimate the proportion of Australians in New South 

Wales (NSW) with detectable serological immunity to smallpox. We recruited subjects 

from NSW who were regular plasmapheresis donors at the Australian Red Cross Blood 

Service (ARCBS) in the year 2003. The study participants ranged from age 16 to 76 

years at the time of donation and their smallpox vaccination and infection history was 

unknown. The data were not analyzed at the time, but in 2019 author J.S., who was at 

the Australian Red Cross Blood Service (ARCBS) in 2003, made the data available for 

analysis with approval from ARCBS. 

To recruit participants, the Apheresis Medical Officer approached donors and informed 

them of the study, and donors had the option to accept or decline to participate. 

Participating donors provided written consent prior to data collection. A 20–30 mL 

blood sample was collected from participants at the time of donation, along with data on 

donor date of birth and sex. The study protocol and consent documents were approved 

by the Human Research Ethics Committee at the Australian Red Cross Blood Service. 

Estimation of Neutralising Antibody Titre against Vaccinia Virus 

The primary object of this study was to measure neutralising antibody titre against 

vaccinia virus. Titre levels in donor samples were determined by the plaque reduction 

assay. Serum samples were heat-inactivated for 30 minutes at 56 °C. Initial 1:5 dilution 

of serum was performed in RPMI + 0.2% BSA (firstly developed at the Roswell Park 

Memorial Institute, hence the name), followed by five to eight further 2-fold serial 

dilutions. To 600 µL of serum dilution (or medium alone for control), 600 µL of 
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vaccinia virus (NYCBH strain) was added, at 800 PFU/mL, in RPMI + 0.2% BSA. 

Serum and virus mixtures were incubated at 37 °C for 60 minutes. Then 500 µL was 

added to duplicate wells (6-well plates) of serum-free RPMI-washed BSC-1 cell 

monolayers. Monolayers were incubated for 60 minutes at 37 °C, with regular rocking 

of the plates to allow even distribution of the virus solutions and to prevent dry patches 

forming. Subsequently, 3 mL/well of RPMI + 2% FCS (Fetal calf serum) was added, 

and monolayers were incubated for 36–48 hours. Then the medium was removed and 

stained with 1 mL/well of crystal violet stain (0.5% in methanol) for 10 minutes, before 

washing with water. Virus plaques were counted by visual inspection, and residual virus 

not neutralised by serum was compared with total virus (serum-free incubations). 

Results are expressed as percent neutralisation. 

3.3.2 Statistical Analyses 

A total of 179 blood donors were recruited into the study and provided a serum sample. 

No information on previous vaccination history, refusal rates, or sample size calculation 

was available. All data were cleaned and deidentified prior to analysis. Statistical 

analysis and figure preparation were performed using Stata version 14 243. Geometric 

mean titres (GMT) were computed for each age group included in the study. Student’s t-

test was used to compare geometric mean titres between participants that were less than 

40 years of age and participants that were 40 years or older. p ≤ 0.05 was considered 

statistically significant. Participants with an antibody titre of 1:32 or higher were 

considered seropositive based on the results from Mack et al. 244, which showed that 

smallpox patients’ contacts who had neutralising titres <1:32 against vaccinia virus 

were more susceptible to smallpox infection (20% of contacts infected) than contacts 

with pre-existing antibody titres ³1:32 (zero contacts infected). No contacts that had a 

titre of 1:32 or higher developed smallpox. 
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Based on these older data from the prospective study conducted during the endemic 

period of smallpox, the 1:32 cut-off titre has been widely accepted as a reasonable 

biomarker of protective immunity and was also used in other clinical studies 245. Based 

on those results, we considered people who had neutralising titres >1:32 seropositive, 

i.e., previously vaccinated. 

Aim 2 

To estimate current levels of immunity to smallpox infection, we modelled the decline 

in GMT over time since vaccination. We first searched for published literature reporting 

the GMT level just after vaccination. We then used the 2003 serological results of 

antibody titre levels found in NSW and estimated the possible time since vaccination to 

calculate the rate of decline in GMT, assuming an exponential model. 

3.3.3 Data/Estimates for Projection of Waning Neutralising Antibody Titre 

We found four different studies using the vaccinia-specific plaque reduction serum 

neutralisation assay to measure the level of neutralising antibody titre 246–249 pre- and 

post-re-vaccination for smallpox protection. However, only one of those studies used 

the Dryvax vaccine 249, a first generation vaccine used during the eradication period. In 

that study, 1124 civilians were vaccinated with Dryvax, and their vaccinia-specific 

antibody titres were measured before vaccination and one month after vaccination. They 

reported results by age, number of previous smallpox vaccinations, and time since last 

vaccination. To project GMT level over time (years) since vaccination, we compared 

results from the Australian samples with the results from the previously mentioned 

study 249 for GMT levels following vaccination. 

The time since previous vaccination in the Australian sample was estimated using 

estimated past vaccination history based on age at the time of testing in 2003. Smallpox 
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vaccination ceased in 1980, 23 years before these samples were taken. Therefore, the 

shortest period since vaccination in this population would have been 23 years. Since the 

last vaccinations in Australia occurred from 1960 to 1976, the longest period of time 

since vaccination in this population would have been approximately 27 to 40 years 250. 

However, people who migrated to Australia could have been vaccinated in their country 

of birth as infants. Therefore, for each age group, we assumed the possibility that 

everyone was vaccinated at one year old or in the previous 23–40 years. When 

calculating the number of years since vaccination in the case of being vaccinated at one 

year old, we considered the mean age for each age group. For the 30–39 years age 

group, the mean point is 35 years old, so being vaccinated at one year old for this age 

group would mean being vaccinated 34 years prior. The same was performed with the 

other two age groups. For the 40–49 and 50+ years age groups, vaccination at one year 

old meant being vaccinated 44 and 64 years prior, respectively.  

Prior studies suggested that after smallpox infection or vaccination, the magnitude of 

the antibody, as well as T cell responses, wane exponentially over time 234,235,251. To 

obtain an exponential decay function of the GMT levels following vaccination, we first 

calculated the decreasing annual rates of GMT for each scenario using the two GMT 

values we had in the two different time points following vaccination, then we projected 

it in time.  
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3.4 Results 

3.4.1 GMT Levels in the Australian Population 

A total of 179 plasmapheresis donors were recruited to participate in the study. Of 

these, 49 (27%) were less than 30 years of age in 2003, 33 (18%) were between the ages 

30 and 39, 45 (25%) were between the ages 40 and 49, and 52 (30%) were 50 years of 

age or older; 100 (56%) participants were male and 79 (44%) were female. The average 

age of donors did not vary significantly between men and women (p = 0.21). 

Anti-vaccinia neutralising antibody titres were available for a total of 177 out of 179 

participants. Figure 3.1 shows neutralising antibody titres plotted against age, overall, 

and by sex. GMT was significantly higher in donors 40 years and older compared to 

donors less than 40 years of age in 2003 (p < 0.001). GMT did not vary significantly by 

sex (p = 0.62). 

Geometric mean titres (GMT) and 95% confidence intervals for anti-vaccinia 

neutralising antibodies in each age group are shown in Figure 3.2. For donors less than 

30 years old, the GMT was 8.21 (95% confidence interval (CI), 7.86–8.58). Donors 

between the ages 30 and 39 years had a GMT of 10.63 (95% CI, 8.43–13.42). For 

donors aged 40–49 years, the GMT was 14.49 (95% CI, 11.05–18.99). Donors aged 50 

years and older had a GMT of 25.07 (95% CI, 18.35–34.25). When applying the 

seroconversion cut-off at >32, of donors less than 30 years old, 0% were seropositive, 

whereas 9%, 24.5% and 48% were seropositive in the age groups 30–39, 40–49, and 

50+ years, respectively. The results are shown in Table 3.1. When restricting the 

analysis to only seropositive donors (21.5% of the total sample), we found that the 

GMT by age group is 56 for those aged 30–39 years, 62 for donors aged 40–49 years, 

and 68 for donors aged 50 years or older. 
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Figure 3.1: Plot of anti-vaccinia neutralising antibody titre by age, for total sample 

(n = 177) and by sex (nmale = 100, nfemale = 77). 

 

 

 

Figure 3.2: Geometric mean titres with 95% confidence interval (CI) for anti-

vaccinia neutralising antibody by age group, including seronegative (horizontal 

line is the level considered seropositive, >32). 
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Table 3.1: Geometric mean titres (GMT) for anti-vaccinia neutralising antibody by 

age group for the total sample and restricted to the people considered seropositive 

(titre ≥ 32), with 95% confidence interval (CI). 

Age 

(Years) 

GMT 

Total 

Sample 

n % Seropositive 
GMT for 

Seropositive 
95% CI 

<30 8.21 0 0.00% - - 

30–39 10.63 3 9.09% 56.3 (6.84, 463.62) 

40–49 14.49 11 24.44% 61.74 (48.09, 79.26) 

50+ 25.07 24 48.00% 68.33 (52.87, 88.31) 

 

 

3.4.2 Projection of Waning Neutralising Antibody Titre Over Time Since 

Vaccination 

Assumptions regarding time since vaccination for the Australian sample analysed are 

shown in Table 2. In the last two columns, we show results for two different scenarios 

by lower and upper limits of the possible time since vaccination for each age group. The 

GMT level following vaccination is shown in the second column of Table 3.2. 
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Table 3.2: Age-specific GMT levels at different estimated times since vaccination. 

Age 

(Years) 

GMT Following 

Vaccination (First 

Year After 

Vaccination) [28] 

GMT at the Shortest 

Time since 

Vaccination t = 23 

Years  

GMT at the Longest Time 

since Vaccination (at 1 Year 

Old) t = 34, 44, and 64 

Years Depending on the 

Age Group 

30–39 GMT (1) = 1340 GMT (23) = 56 GMT (34) = 56 

40–49 GMT (1) = 2370 GMT (23) = 62 GMT (44) = 62 

50+ GMT (1) = 2370 GMT (23) = 68 GMT (64) = 68 

 

 

The GMT values over time since vaccination are shown in Figure 3.3. For the first 

scenario (column 3, Table 2), we assumed each age group was vaccinated 23 years 

before 2003 (in 1980). For the second scenario (last column, Table 3.2), in which we 

assumed people were vaccinated as infants, the graph shows vaccine uptake in 1969, 

1959, and 1939 for the 30–39, 40–49, and 50+ years age groups, respectively. 

For the 30–39 years age group that was found with some immunity in 2003, their level 

of GMT was below the threshold of 32 by 2010. For the 50+ years age group, in the 

scenario of being vaccinated in 1980, their GMT level would have fallen below 32 by 

2008, whereas in the scenario of being vaccinated 64 years before 2003, their GMT 

level would have been protective until 2017. In the scenario of being vaccinated 23 

years earlier, the 40–49 years age group showed no protective immunity after 2008. In 

the scenario of being vaccinated 44 years earlier (in 1959), they would have protective 

immunity until 2021. 
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Figure 3.3: Projected decline in GMT level over time for the two scenarios for time 

since last vaccination in each age group. 

 

3.5 Discussion 

Ascertaining seroprevalence to vaccinia in Australia is useful given the threat and 

potential impact of the re-emergence of smallpox and the dearth of serological data 252. 

The results of this study suggest that residual immunity to vaccinia virus is minimal in 

the Australian population. This has important implications for emergency preparedness 

planning and outbreak control, especially concerning the stockpiling of vaccinia vaccine 

252,253. Generally, immunity wanes with time since vaccination 254,255, and smallpox is no 

exception 256. However, there is no consensus on the exact duration of protection against 

smallpox from vaccination or from natural infection 63, and past vaccination is likely to 

protect against fatal infection 235. 

In countries where universal smallpox vaccination was practiced, over 20% of the 

population may have residual vaccine-induced immunity, but its degree and duration are 
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uncertain 65. There is a wide range of estimates for the duration of protection from 

smallpox infection or vaccination. Estimates were mostly obtained from vaccine trials 

and observational studies of previous outbreaks, none of which were primarily designed 

to study the duration of immunity 63,234. In studies that used Dryvax, a significantly 

lower plaque reduction neutralisation titre was observed compared with using variola as 

the antigen 257. Understanding the antigenic differences between virus and vaccine 

neutralisation titres could result in improved estimates of the duration of immunity as a 

measure of protection. 

Evidence exists of long-lasting immunity given the persistence of neutralising 

antibodies (Nabs) after smallpox vaccination for at least 20 years 234,258–260. Of the total 

antibodies produced in response to smallpox vaccination, Nabs significantly contribute 

to immunological memory 261. In a longitudinal study in the U.S., antibody titres 

persisted and remained relatively constant for up to 88 years after vaccination 245. 

Hammarlund et al. found that anti-vaccinia antibody responses persisted up to 75 years 

post-vaccination 234. Similarly, several adults in our study were still considered 

seropositive for vaccinia, suggesting that antibody responses can persist for decades 

even in the absence of natural boosting. Although the majority of adults sampled in our 

study did not have residual immunity to vaccinia, this can be explained by the low 

vaccine coverage in Australia, which never had universal vaccination 65. The number of 

previous doses received also influences the GMT level 249 and this could explain why, 

in Australia, the GMT levels found in the 2003 sample were very low compared to the 

U.S. population. These studies suggest a longer duration of immunity following 

vaccination than the three to five years that is assumed in smallpox guidelines, and 

question whether boosting at regular intervals is required 63. 
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Smallpox vaccination is also highly protective against other orthopoxvirus infections. 

The number of monkeypox cases has been increasing in the last two decades, with 

travel-related cases occurring in the U.K. and Singapore 262. A possible explanation for 

the resurgence of monkeypox could be waning immunity due to smallpox vaccine 

cessation, resulting in a largely susceptible population 263. 

The limitations of this study include a small sample size and only a single cross-

sectional snapshot of seroprotection. These were the only available data, and vaccinia 

serology is no longer routinely performed in laboratories, making this an important 

opportunity to study immunity to smallpox in Australia. In addition, with the 

eradication of smallpox in 1980, it may be impossible to definitively establish 

immunological correlates of protection against the disease in humans. The only 

available titre cut-off values for seroconversion were >1:20 264 and >1:32 244, reported 

during the period of endemic smallpox circulation, which may not be relevant to the 

contemporary population 63. From observations in the field and in trials, those who have 

immune correlate levels below the cut-off threshold for Nab levels also appear to still 

have protection 265,266. With more than 200 proteins, the smallpox vaccine based on 

vaccinia virus strains is relatively more complex compared to contemporary vaccines 

267. A wide range of potential antigenic epitopes could yield a varied and diverse 

immune response and could provide multiple options for long-lived immunity. 

Although humoral immunity is protective against orthopoxvirus infections, cell-

mediated immunity and immunological memory likely also play roles, which are not 

quantified by antibody levels. In the era of smallpox circulation, there was also the 

possibility for subclinical infections to occur after vaccination, which could boost the 

immune response and provide an inaccurate view of the duration of protection from the 

vaccine 234. Thus, our estimate of the proportion of Australians that are seropositive 
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against vaccinia may not accurately reflect the proportion that are clinically protected 

against smallpox. We found that the oldest group had the highest level of neutralising 

antibody titre, which is likely a consequence of vaccine response and immunity level 

being correlated to the age of the vaccinee and the number of previous vaccinations 63. 

In Australia, smallpox was never endemic, mass vaccination was never used, 

community vaccination was not performed after 1980, and the last case was reported in 

1938 65. As such, the majority of the younger age groups would never have been 

vaccinated. We previously estimated that no one born after 1980 was vaccinated, and 

only 30% of the total population born before 1980 (people 35–69 years of age) had been 

vaccinated 65. This explains the higher seropositivity in older age groups. We assumed 

an exponential decline in immunity, consistent with other modelling studies where the 

loss of immunity is assumed to be at a constant rate 268,269. 

Due to the lack of data on vaccination status and time since vaccination of the 

participants, we used several assumptions in estimating the decreasing rate of the 

antibody level over time since vaccination. However, we conducted sensitivity analysis 

on the possible range in the interval for the time since vaccination, and all scenarios 

confirm the main conclusion of the work—that residual anti-smallpox immunity in the 

Australian population is extremely low. 

A recent systematic review showed evidence of long-term protection of more than 20 

years in 16 retrospective cross-sectional studies, where the lowest estimated duration of 

protection was 11.7 years 63. We previously estimated that in Sydney, the impact of 

residual vaccine-induced immunity was virtually absent, and that population 

immunosuppression had correspondingly increased, leaving the population more 

vulnerable than ever to re-emergent smallpox 65. This study provides confirmation 
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through available serological data that as of 2019, almost 40 years after smallpox 

eradication, there is very little residual immunity in Australia. 
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Chapter four 

Modelling of optimal timing for 

influenza vaccination as a function 

of intraseasonal waning of 

immunity and vaccine coverage  
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4.1 Chapter abstract 

The influenza season in Australia usually peaks in August. Vaccination is recommended 

beginning in March-April. Recent studies suggest that vaccine effectiveness may wane 

over a given influenza season, leading to reduced effectiveness at the peak of the 

season. We aimed to quantify how changes in timing of influenza vaccination and 

declining vaccine coverage could change the percentages of prevented cases. 

Results from a systematic review were used to inform calculation of a waning function 

over time from vaccination. Age specific notification data and vaccine effectiveness and 

coverage estimates from 2007 to 2016 (2009 influenza pandemic year excluded) were 

used to model a new notification series where vaccine effectiveness is shifted in time to 

account for delayed vaccination by month from March to August. A sensitivity analysis 

was done on possible vaccine coverage changes and considering time gap between 

vaccine uptake and recommendation.  

Delaying vaccination from March to end of May prevents more cases over a season, but 

the variation in cases prevented by month of vaccination is not large. If delaying 

vaccination results in missed or forgotten vaccination and decrease coverage, delaying 

vaccination could have a net negative impact.  Furthermore, considering a time gap 

between recommendation and uptake, earlier recommendation is more effective in 

preventing cases.  The results are sensitive to assumptions of intra-seasonal waning of 

effectiveness. More research is required on intra-seasonal vaccine effectiveness waning 

and the effect of delayed vaccination on overall uptake to inform any potential changes 

to current vaccine scheduling recommendations.   
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4.2 Background 

Seasonal influenza results in significant morbidity and mortality worldwide 270. On 

average, there are more than 18,000 influenza-attributable hospitalisations annually in 

Australia, with the highest disease burden among the elderly and young children 271–277. 

The influenza season occurs in the southern hemisphere in winter and usually peaks in 

August 271,278,279.  

 Influenza vaccines are the most effective means of preventing influenza 280. Two 

factors are crucial for prevention: vaccine effectiveness (VE) and vaccination coverage 

(VC) 281. High VC can induce herd immunity, an additional protection provided to 

unvaccinated individuals in a population as the result of disease transmission being 

interrupted by the vaccinated fraction of the population 282.  

In Australia it is recommended to receive the annual influenza vaccination as soon the 

vaccine becomes available, typically in early autumn (March-April).  Currently national 

recommendations are for all people over 6 months of age, with vaccine available free to 

high risk groups such as those aged 65 and over, under the National Immunisation 

Program 283,284. However, influenza vaccine uptake is sub-optimal 285 and vaccine 

effectiveness is generally moderate and variable 286–292.  

There is a growing body of evidence suggesting that influenza vaccine effectiveness 

may decrease significantly within a single influenza season 286,293–299. The magnitude of 

this phenomenon may depend on which influenza virus type predominates in a given 

season 293,294,298,300. A systematic review of test-negative studies evaluating the change 

in vaccine effectiveness over time within a single influenza season, which included a 

meta-analysis of vaccine effectiveness at 15-90 days post-vaccination compared to 91-

180 days post-vaccination, showed a statistically significant decline in vaccine 
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effectiveness for influenza A/H3 (33%) and influenza B (19%), but not influenza A/H1 

(8%, non-significant) 300. Waning vaccine effectiveness may also be more pronounced 

in the elderly due to immunosenescence 293,294,301. The evidence of waning vaccine 

protection has been mixed, as some studies have observed only slight decreases in 

vaccine effectiveness within a single influenza season 302,303. For instance, a test-

negative study in the US observed no significant difference in vaccine effectiveness 

between 15-90 days post-vaccination and 91-180 days post-vaccination 303.  

While several studies have explored vaccine effectiveness, little research has been done 

to determine the optimal timing of influenza vaccine administration, accounting for 

intraseasonal waning. One surveillance study across four influenza seasons in Spain 

attempted to determine whether late season vaccination, compared to early season 

vaccination, resulted in decreased odds of hospital admission for influenza. This showed 

that late vaccinators had lower odds of hospital admission, but only when influenza 

A(H3N2) is the predominant strain 293. The effect of changing vaccine timing on both 

intra-seasonal waning and vaccine uptake at population level, on prevention of influenza 

has not yet been fully investigated.  

In this study we aimed to model the effectiveness of vaccination by assuming 

vaccination being effective from each month in the six months range from March to 

August for an average Australian influenza season, using assumptions of intra-seasonal 

waning. We also aimed to determine the effect of reduced VC associated with delayed 

vaccination uptake and explored results on delaying recommendation when considering 

a time gap between vaccine recommendation and uptake 304,305. 
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4.3 Methods 

4.3.1 Data 

Data used were from 2007 to 2016, with 2009 excluded because this was a pandemic 

year. We used monthly age-specific laboratory confirmed notifications (𝑁𝑦(𝑡)) 

available from the Australian website NNDSS 1 for two age groups, <65 and 65+. For 

each year we used estimation of vaccine effectiveness in Australia adjusted for 

circulating strains and recipient age (𝑉𝐸𝑦) 292,306,307. We used vaccine coverage in 

Australia for each year as estimated in 285, (𝑉𝐶𝑦) specific for age groups <65 and 65+ 

years old. Estimates were available for each year for the 65+ age group, however for the 

<65 age group, coverage was estimated until 2012 and where not available, we assumed 

it to be the same as for 2012 (this applies to 2013-2016). We applied this assumption 

based on a literature suggesting on average in Australia the coverage for each year in 

that age group is around 30% 308, in addition, coverage in >65s has stayed quite constant 

in that time. Averaged over the nine influenza seasons, the coverage is 32% and 73% 

for <65 and 65+ respectively, and these values were used in the study. Finally, for 

vaccine effectiveness waning percentage over time from vaccination, we used results 

from a systematic review 300, which found a waning of 33% for A(H3N2), 19% for B 

and 8% for A(H1N1). Waning was found at 4-6 months following vaccination, but not 

in the first three months. We used 0% waning for A(H1N1) as no statistically significant 

waning was found. To consider a monthly delayed coverage from recommendation we 

used monthly uptake data from US 309 as Australian one was not available. 

4.3.2 Model 

To obtain a monthly waning function for each year (𝑊𝑦(𝑡))), firstly we calculated the 

weighted average for each strain, using 33% for A(H3N2), 19% for B and 0% for 
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A(H1N1). Results of the annual weighted average between strains is showed in Table 1. 

The 2007 was a severe A(H3N2) season, for which we did not have data for the 

proportion of each strain, so for this year we assumed the same waning as in another 

severe A(H3N2) season, 2012. The systematic review 300 showed  waning effectiveness  

after 4-6 months following vaccination, therefore, we attributed the waning percentage 

found to the middle point of the interval (at 5 months following vaccination). We had 

the value of the waning function, 𝑊𝑦(𝑡), for month t=1 (𝑊𝑦(1) = 0% maximum 

effectiveness in the first month following vaccination) and t=5 (last column of table 1) 

following vaccination for each year. We used a linear decline over months from 

vaccination and obtained the waning function by month for each year 𝑊𝑦(𝑡), with 

y=2007,2008,2010 to 2016 and t=1,…,12.   

To get a time dependent vaccine effectiveness (VEy(t)), where t is months from 

vaccination), from the available yearly estimates (VEy), we applied the waning 

functions to each yearly effectiveness as follows: 

 

(1)              𝑉𝐸𝑦(𝑡) = 𝑉𝐸𝑦 ∗ (1 −𝑊𝑦(𝑡))                  with y=2007,2008,2010 to 2016 

and t=1,…,12. 

 

We then used vaccine coverage and effectiveness to get the proportion of prevented 

cases from vaccination for each year as  

 

(2)            𝑃𝑦(𝑇𝑟) = 𝑉𝐶𝑦(𝑇𝑟) ∗ 𝑉𝐸𝑦(𝑡). 
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Where Tr is the month of vaccination recommendation. To obtain a new incidence 

series (notification data) 𝑁′𝑦(𝑡) from the available notification data 𝑁𝑦(𝑡), to have 

comparator epidemic data without any vaccination effect (baseline scenario), we used 

the estimates proportion of prevented cases from vaccination to remove the vaccination 

effect as: 

 

(3)           𝑁E𝑦(𝑡) = 𝑁𝑦(𝑡)/(1 − 𝑃𝑦(𝑇𝑟))                  with y=2007,2008,2010 to 2016 

and t=1,…,12. 

 

Due to the luck of Australian estimates for coverage by month, to compute the new 

notification series, we assumed in the base case scenario that people would get 

vaccinated by April, which is the standard timing for Australia’s vaccine 

recommendation. However, a different coverage assumption is explored in the 

sensitivity analysis.  

Finally, we used this base case scenario without vaccination effect to add the effect of 

vaccination for the 6 different vaccination scenarios (where the vaccine induce 

immunity is achieved in March, April, May, June, July, or August) as follows  

 

(4)           𝑁EE𝑦(𝑡) = 𝑁E𝑦(𝑡) ∗ (1 − 𝑃𝑦(𝑇𝑟′)), 

 

where the vaccine effectiveness is adjusted for a monthly shift in time (t’) for each 

month from March to August as 
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(5)          𝑃𝑦(𝑇𝑟) = 𝑉𝐶𝑦(𝑇𝑟) ∗ 𝑉𝐸𝑦(𝑡′)           where t’=t+d and d depends on the 

number of months we delay the vaccine uptake. 

 

Table 4.1: Percentage of waning vaccine effectiveness between first month and 5th 

month following vaccination, weighted for each year between the proportion of 

each circulating strain (table shows number of cases and proportion for each 

strain and year).  

Year 

A(H1N1) 

(0%) 

A(H3N2) 

(33%) 

B 

(19%) 

weighted waning 

(%_y) 

2007 
   

28.67% 
 

2008 1329 (15%) 2578(29%) 4899 (56%) 20.23% 
 

     
2010 11173 (84%) 815 (6%) 1304 (10%) 3.89% 

2011 15246 (57%) 4305 (16%) 7249 (27%) 10.44% 

2012 1334 (3%) 32041 (73%) 10394 (24%) 28.67% 

2013 12322 (45%) 5038 (18%) 10200 (37%) 13.06% 

2014 32140 (48%) 26255 (40%) 7940 (12%) 15.36% 

2015 10135 (10%) 28881 (29%) 60212 (61%) 21.13% 

2016 28640 (32%) 50904 (55%) 9594 (13%) 20.89% 

 

We show results for 6 different vaccination scenarios: vaccination induced immunity 

being achieved in March, April, May, June, July, or August; and results are shown as 

the number of prevented notified cases.  Results are shown as time to achieve vaccine 

effectiveness, given that seroconversion and immunity occurs on average 2-3 weeks 

after vaccination, depending on recipient age.  
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4.3.3 Sensitivity analysis 

We conducted a sensitivity analysis on monthly waning percentage of vaccination 

effectiveness and decreasing coverage, to test the possible trade-off between reduced 

waning and reduced vaccine coverage. To test the results sensitivity to monthly 

percentage of VE waning, we kept coverage constant in each scenario and halved the 

waning. To test the results in the case of changing coverage, we decreased it by 5% and 

2% monthly respectively for 65+ and <65, while delaying vaccination. Those two 

values were chosen based on the coverage value changing over years, due to the lack of 

estimates we chose reasonably possible values and did a sensitivity analysis to find the 

threshold values for coverage drop, that when crossed, resulted in a negative impact in 

delaying vaccination uptake. We compered the number of prevented cases in each 

scenario with the assumption of 75% and 30% coverage in March, 70% and 28% in 

April, and so on until 50% and 20% coverage in August, respectively for 65+ and <65 

age group. Furthermore, previous results are showed for an ideal situation in which we 

assumed that the proportion of the population vaccinated every year gets the vaccination 

in a month window following recommendation. This assumption was made to show the 

net impact of vaccine waning effectiveness and decreasing vaccination coverage in an 

ideal situation. However, we did a sensitivity analysis to explore a more realistic 

scenario in order to include the delay between the recommendation timing of 

vaccination and the actual vaccination uptake timing. In this scenario, the estimated 

annual coverage in each age-group is reached at the end of the season, with a monthly 

distribution of new vaccinated cohorts coming in every month from the vaccine 

recommendation uptake. In absence of Australian monthly coverage data for influenza 

vaccination, we used US seasonal coverage distribution from September to August 

estimated in 2017-2018 season for the age groups 18-64 and 65+ 309, adapted to the 
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Australian season from March to February (Table 4.2). In this scenario, we used the 

estimates of annual vaccine coverage by months Tr from vaccine recommendation 

(𝑉𝐶𝑦(𝑇𝑟)) and the obtained monthly vaccine effectiveness (𝑉𝐸𝑦(𝑡)), by time 𝑡 from 

vaccination to obtain the proportion of prevented cases by vaccination in each month 

from the start of vaccine recommendation as:  

 

(2)          𝑃𝑦(𝑇𝑟) = ∑ 𝑉𝐶𝑦(𝑇𝑟 − 𝑖) ∗ 𝑉𝐸𝑦(𝑖 + 1)FG8.
*1) 						𝑤𝑖𝑡ℎ	𝑖 = 1…11; 

 

Where the yearly prevented cases can be expressed as the sum of monthly prevented 

cases as 

 

(2a)        	𝑃𝑦 = ∑ 𝑃𝑦(𝑇𝑟).7
FG1.  

 

Or can be expressed as the sum of each new monthly vaccinated cohort from the 

recommendation month as  

 

(2b)        𝑃𝑦 = ∑ [𝑉𝐶𝑦(𝑇𝑟) ∗ ∑ 𝑉𝐸𝑦(𝑡).78(FG8.)
$1. ].7

FG1.  

 

We showed results for an averaged influenza notification series and vaccination 

effectiveness waning (averaged over the 9 years data). 
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Table 4.2: Percentages of monthly increasing cumulative coverage and incremental 

monthly coverage of the total proportion of the estimated vaccinated population 

for each year at the end of the season.     

US monthly 

season from 

vaccine 

availability 

Australian season 

adaptation from 

vaccine availability 

<65 cumulative 

(incremental) 

proportion of total 

coverage 

65+ cumulative 

(incremental) 

proportion of total 

coverage 

𝑉𝐶𝑦(𝑇𝑟) 

September March 19% (19%) 22.3% (22.3%) 

October April 56.3% (34.3%) 63.6% (41.3%) 

November May 75.6% (19.3%) 81.9% (18.3%) 

December June 83% (7.4%) 87.7% (5.8%) 

January July 90.1% (7.1%) 93.3% (5.6%) 

February August 95.9% (5.8%) 96% (2.7%) 

March September 97.7% (1.8%) 98% (2%) 

April October 99% (1.3%) 99% (1%) 

May November 100% (1%) 100% (1%) 

June December 100% (0%) 100% (0%) 

July January 100% (0%) 100% (0%) 

August February 100% (0%) 100% (0%) 

 

 

4.4 Results 

During the period between 2007 to 2016 (excluding the pandemic influenza season in 

2009), the annual influenza season took place between July and October, with peaks 

around mid-August.   

Defining the start season as the month in which the number of influenza notification 

contributed >5% of the total influenza cases for that season, there were only two early 
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seasons (2011 and 2012) which started in the first month of winter (June), and two late 

season which peaked in the first month of spring (September), 2008 and 2010 (Figure 

1); however, the peak did not occur earlier than August in any year.  

 

 

Figure 4.1: Percentages of the annual total notification number by month for each 

year, NNDSS 1. 

 

Vaccine effectiveness changes depending on vaccine match each year as well as vaccine 

waning depending on circulating strains (Figure 4.2). Figure 4.2 shows that 2007 had 

the fastest decline in time from vaccination due to A(H3N2) being the predominant 

strain. In years where the predominant strain was A(H1N1), such as 2010, 2014 or 

2016, vaccine effectiveness declined less over time from vaccination.  
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Figure 4.2.: Vaccine effectiveness waning over time from vaccination for each year 

from linear interpolation of the values at month 1 and 5. 

 

Figure 4.3 shows the average cases without any vaccination (blue line) and for all the 

other scenarios with vaccination delivered in each month from March to August.  Figure 

4.4 shows the results as number of prevented cases for each vaccination timing scenario, 

with more cases prevented with later vaccination. As showed in Figure 4.3, delaying 

vaccination will fail to prevent cases early in the season, however it will be more 

effective in preventing cases closer to the peak. The difference between cases without 

intervention (blue line in Figure 4.3) and cases with vaccination by month of the season 

is listed in Table 4.3, while the total number of prevented cases for the entire season 

(TOT in the table) is shown by age-group in Figure 4.4.   
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Figure 4.3: Average notification of cases without any vaccination (blue line) and 

for all the other scenarios with vaccination effectiveness achieved in each month 

from March to August. 

 

Due to higher coverage in the 65+, this age group has higher prevention of influenza. 

Table 4.2 shows number of cases prevented by month for each vaccination scenario for 

the total population. The highest number of cases prevented is if vaccination starts to be 

effective in June and July, which makes May/June the optimal month for vaccination, 

considering 2-3 weeks for vaccine response. Figure 4.4 shows the number and 

percentage of prevented cases in each age group, and the total population.   
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Figure 4.4: Number and % of prevented cases by age group (<65 and 65+) and 

total, by varying month of vaccination from March to August. 

 

Table 4.3: Prevented cases each month for an average Australian season within 

each vaccination scenarios, for total population. 

Month 

of 

initial 

vaccine 

protecti

on 

Prevented cases by month from January to December for an 

average season for the total population (where average number of 

total cases without vaccination is 50899) 

Total 

cases 

preve

nted 
1 2 3 4 5 6 7 8 9 10 11 12 

March 0 0 189 219 231 432 1127 2459 1545 401 159 105 6867 

April 0 0 0 233 248 468 1231 2694 1695 440 176 117 7302 
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4.4.1 Sensitivity analysis 

Figure 4.5 shows the prevented cases if delayed vaccination results in decreasing 

coverage. If coverage decreases 5% and 2% each month respectively for the age groups 

65+ and <65 years, earlier vaccination is favoured.  

 

 

Figure 4.5.: Number and % of prevented cases by age group (<65 and 65+) and 

total, by varying month of vaccination from March to August, with decreasing 

coverage by 5% and 2% each month starting in April with a baseline of 75% and 

30% coverage respectively for 65+ and <65 age group in March. 

May 0 0 0 0 264 505 1335 2929 1845 480 192 128 7678 

June 0 0 0 0 0 541

` 

1439 3164 1995 519 209 140 8006 

July 0 0 0 0 0 0 1543 3399 2145 558 226 151 8021 

August 0 0 0 0 0 0 0 3633 2295 597 242 162 6930 
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Furthermore, when considering a time gap between vaccination recommendation and 

uptake with the inclusion of a monthly incremental coverage from the recommended 

month, we found that earlier recommendation for vaccine uptake is more effective in 

preventing influenza cases (Figure 4.6).   

 

 

Figure 4.6:  Number and % of prevented cases by age group (<65 and 65+) and 

total, by varying month of vaccination recommendation from March to August, 

with monthly distributed coverage in 9 months’ time-window. 

 

4.5 Discussion 

Under assumptions of waning immunity, varying the time of vaccination affects the 

prevented fraction of influenza, but reasonable population protection is achieved at all 

time points. We found that delayed vaccination may be more optimal than early 

vaccination, if vaccination coverage remains constant. The average notification peak in 

Australia is in August, with early or late variation from this peak occurring 

occasionally. As such, a person vaccinated in March is facing a period of 5-6 months 
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between vaccination and peak of influenza circulation. We found that vaccination 

protection starting to be effective in June and July will prevent the highest number of 

cases, however considering that it requires about 2 to 3 weeks for immunological 

response to the vaccine, May is the optimal time to get vaccinated in Australia, which is 

2-3 months later than the usual recommended time for vaccination and 2 months before 

the seasonal peak. However, if delaying vaccination results in missed vaccinations and 

decrease coverage, delaying vaccination could have a net negative impact. Furthermore, 

if a time- gap is considered between vaccination recommendation and uptake, earlier 

recommendation is more effective.  

Importantly, we did not find a large difference in cases prevented between months of 

vaccination and if coverage drops by 5% for the 65+ and 2% for the <65 per months, 

earlier vaccination prevents more cases. A recommendation to delay vaccination should 

not be taken lightly, as this may reduce vaccine coverage, and may the vaccine uptake 

be delayed from the recommendation month. In addition, for individuals at high risk of 

complications of influenza, if delay increases the risk of missing or forgetting 

vaccination altogether, it is preferable to get vaccinated as soon as feasible.  

Waning varies by strain of influenza, with the least waning observed with A(H1N1). 

During a predominant A(H1N1) season 300, there is unlikely to be any benefit to 

delaying vaccination. The benefits of delaying would be increased for predominant 

A(H3N2) seasons, which demonstrates the most waning 1.  However, it is unlikely to be 

practical to make decisions on timing during an unfolding season, based on the 

predominant strain.   

There are some limitations to this study. While the results are particularly sensitive to 

the monthly waning, it should be noted that the evidence around waning is not 
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extensive, subject to uncertainty and with inconsistent results across time from 

vaccination, age and influenza strain. Most studies which have examined waning found 

decreased effectiveness after 3-6 months from vaccination 286,296,300, however the 

amount of waning found was more than 36% in Europe 296 and less than 20% in 

Australia and UK 286. In the US, one study found that risk of influenza increased 12% 

for every two weeks since vaccination 294, whilst another found only a small reduction 

in vaccine effectiveness starting from 6 months from vaccination 303. Furthermore, we 

assumed a linear dependency between vaccine effectiveness and time from vaccination, 

however the relationship between the two is unknown.   

We used annual coverage data for each age group, but it would have been more accurate 

if Australian monthly coverage was used, however these data are not available in 

Australia.  VE data used in the model is based largely on the performance of standard 

trivalent inactivated influenza vaccines (TIVs) which were the predominant vaccines 

used till 2015. From 2016 quadrivalent influenza vaccines (QIVs) replaced TIVs 310 in 

Australia, which have better vaccine effectiveness. Furthermore, results are shown for 

an average between 9 seasons and an individual influenza season can vary considerably 

in strain prevalence.  Furthermore, from 2018 high dose and adjuvanted TIV were 

registered and funded for 65+ instead of standard TIV, which improves protection 

against influenza in older people 311.  

This study has several strengths. We estimated the waning function specifically for each 

year based on the proportion of each strain circulating over 9 years, so that we could 

estimate an averaged waning effect. We analysed two age groups have different 

coverage separately. There are no previous studies that have modelled timing of 

vaccination but a study that looked at vaccine waning 293 found that delayed vaccination 

achieved higher protection during the season.  
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Finally, although this study suggests that administering influenza vaccine closer to the 

peak of the season may give higher overall protection for the entire season, influenza 

seasons can vary considerable in length, start and peak time, which makes it difficult to 

estimate the exact time to be vaccinated. The percentage of prevented cases between 

vaccination scenarios varies only of 2.27% between the lowest and the highest effective 

month, which suggests careful consideration of risk and benefit of delaying vaccination. 

To implement a flexible, responsive vaccination timing policy would require excellent 

and highly sensitive early season influenza surveillance and predictive tools to forecast 

the predominant strain and severity of a given season and most importantly it will 

require an effort to keep high coverage rates if the time window for vaccine uptake is 

shortened. This area needs further investigation, and research is required on 

intraseasonal VE waning for QIVs and high dose TIVs using age specific and monthly 

coverage data, to inform any potential changes to current vaccine recommendations.  

In conclusion this study found that, delaying vaccine uptake to May/June, when 

considering vaccine effectiveness waning, will prevent more influenza cases, however if 

coverage decreases earlier uptake is more effective. Furthermore, vaccine uptake not 

essentially corresponds with vaccine recommendation, indeed if a time gap is 

considered between the two, delaying the recommendation month for vaccination can 

have a negative impact on the number of cases prevented. 
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Chapter five 

The effectiveness of full and partial 

travel bans against COVID-19 

spread in Australia for travellers 

from China during and after the 

epidemic peak in China 
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5.1 Chapter abstract 

Australia implemented a travel ban on China on February 1st, 2020, while COVID-19 

was largely localised to China. We modelled three scenarios to test the impact of travel 

bans on epidemic control. Scenario one was no ban, scenarios two and three were the 

current ban followed by a full or partial lifting (allow over 100,000 university students 

to enter Australia, but not tourists) from the 8th of March 2020.  

We used disease incidence data from China and air travel passenger movements 

between China and Australia during and after the epidemic peak in China, derived from 

incoming passenger arrival cards.  We used the estimated incidence of disease in China, 

using data on expected proportion of under-ascertainment of cases, and an age specific 

deterministic model to model the epidemic in each scenario.  

The modelled epidemic with the full ban fitted the observed incidence of cases well, 

predicting 57 cases on March 6th in Australia, compared to 66 observed on this date, 

however we did not account for imported cases from other countries.  The modelled 

impact without a travel ban results in more than 2000 cases and about 400 deaths, if the 

epidemic remained localised to China and no importations from other countries 

occurred. The full travel ban reduced cases by about 86%, while the impact of a partial 

lifting of the ban is minimal, and may be a policy option.   

Travel restrictions were highly effective for containing the COVID-19 epidemic in 

Australia during the epidemic peak in China and averted a much larger epidemic at a 

time when COVID-19 was largely localised to China. This research demonstrates the 

effectiveness of travel bans applied to countries with high disease incidence. This 

research can inform decisions on placing or lifting travel bans as a control measure for 

the COVID-19 epidemic. 
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5.2 Introduction 

In response to the epidemic of COVID-19 102, Australia implemented a travel ban from 

China on February 1st 2020, adding Iran and then South Korea and Italy to the ban on 

February 29th, March 5th  and 10th respectively.  In addition, Australians evacuated from 

Wuhan and from the Diamond Princess cruise ship were quarantined for two weeks in 

dedicated quarantine facilities. The ban on travel from China has been periodically 

reviewed, with lifting of restrictions announced on February 23rd for high school 

students, who number less than 800.  In contrast, over 120000 university students are 

unable to enter Australia to commence or resume their studies, and a booming tourism 

industry has ceased. 

Non-pharmaceutical interventions  measures like social distancing and quarantine are 

effective public health tools to control epidemic diseases 312, and Australia successfully 

delayed the introduction of the 1918 influenza A H1N1 pandemic by 1 year and reduced 

the total mortality compared to other countries 313. However, evidence on the 

effectiveness of travel bans in containing the global spread of emerging infectious 

diseases is still limited 314 and they are not sustainable indefinitely. Therefore, a careful 

risk analysis needs to be done comparing the health and economic consequences 

implementing travel bans for the control of COVID-19 for alternative scenarios of 

increasing and decreasing disease incidence. The epidemic in China peaked on February 

5th and has declined since 315. The risk of importation of COVID-19 cases, firstly 

documented by the Bluedot group in Canada 316,317, through travel from an affected 

country is proportional to the volume of travel from that country and their prevalence of 

infection at that time point.   
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We aimed to estimate the impact of the implementation of the travel ban on China from 

February 1st, 2020, on the epidemic trajectory in Australia, as well as the impact of 

lifting the ban completely or partially from the 8 of March, when disease incidence was 

waning in China. 

 

5.3 Methods 

Three scenarios were considered.   

1. No travel ban – the epidemic curve if the travel ban was never placed, 

2. Complete travel ban from February 1st to March 8th, followed by complete 

lifting ban,   

3. Complete travel ban from February 1st to March 8th, followed by partial lifting 

ban (allowing university students, but not tourists, to enter the country).  

5.3.1 Estimation of infected cases coming into Australia from China 

The evacuations from Wuhan and the Diamond Princess Cruise ship to Australia are not 

considered in this model, which only examines regular air travel between China and 

Australia. In order to estimate the effectiveness of the travel ban that has been 

implemented in Australia for travellers from China, we did not consider bans to other 

countries. We assumed that the chance of cases coming into Australia from China 

depends on the number of cases in China and the number of travellers to Australia. To 

estimate the number of people infected that are predicted to enter Australia every two 

weeks from 20/01 to April, we utilised 2019 air travel passenger movements between 

China and Australia, derived from incoming passenger arrival cards, with data 

aggregated monthly and published by the Australia Bureau of  Statistics (ABS) 318.  
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ABS incoming passenger card statistics are disaggregated based on permanent resident 

or citizen returning, permanent migration, short term stay and long-term arrivals. Long 

term arrivals are defined as > 1 year. For the purpose of this analysis air movements of 

passengers between China and Australia were derived from 2019 data. A baseline level 

of entries into Australia from China was calculated from the total number of entries over 

the April – Jun 2019 time period and was assumed to represent the baseline arrivals for 

the purpose of tourism and other business. The seasonal excess of travellers was then 

calculated by deducting this baseline from the January-March 2019 data. The seasonal 

excess arrivals were assumed to represent the arrival of international students starting 

the 2019 study year, which begins in February to March each year. Where travel bans 

were instituted in this analysis, or lifted, it was assumed that international students 

unable to enter Australia would return to Australia following the lifting of the ban, 60% 

in the rest of March and the remaining 40% over the month of April. However, tourists 

not able to travel during a travel ban were not assumed to enter Australia at a later date. 

Tourism activity was assumed to recover to baseline levels immediately after the lifting 

of a travel ban. We assumed that after lifting the ban, all the students that could not get 

in during ban will enter in addition to the new ones, however tourists that did not enter 

Australia for the ban are not assumed to enter when the ban is lifted. Once the ban is 

lifted, partially or not, we consider the situation to be normal again, due to not having 

enough information to base different future assumptions on. It is possible that after 

lifting of the ban, travel will be reduced from past baseline numbers, which would 

reduce the risk of importations even more. The daily number of travellers from China to 

Australia in each month and for each scenario is showed in Table S2 of the 

supplementary material. 
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To then calculate the probable number of those that could be infected we used an 

epidemiological dataset of confirmed cases of COVID-19 in China collected from 

WHO situation reports 319 and available in our supplementary materials (Table S1). The 

dataset includes all confirmed cases in China reported from 31/12/2019 to 23/02/2020.  

We then assumed that notified cases reflect only 10% of the real new infections per day, 

due to under-reporting, mild cases and asymptomatic infections. This assumption is 

based on data from Japan 320, which estimated that only 9.2% of cases in China were 

notified or detected. This estimate is based on testing of all evacuees from Wuhan to 

Japan and the documented cases in China at the time 320. Furthermore, it has been 

showed that a high proportion of infected people will have very mild symptoms 321 

which are unlikely to be reported. We then estimated the possible true epidemic curve. 

In order to project the future incidence cases in China we used a Poisson regression 

model to fit data from the 5th (start of the incidence declining) to 23rd of February and 

estimated the decreasing rate per day (z) as: 

 

𝐺(𝑡) = 𝐺) ∗ 𝑒𝑥𝑝(𝑧𝑡). 

 

Where G(t) is the number of new infected at time t and G0 is the initial value at time t=0 

(Incidence at day 5 of February). Once the decreasing rate z was estimated and the 

incidence forecasted from 23 of February onwards, we then calculated the number of 

infected people coming from China every two weeks period, 𝐴*(𝑡, 𝑡 + 14), as:  

 

𝐴*(𝑡, 𝑡 + 14) =
∑ H($),-(.
,%(.

(
∗ 𝑇(𝑡, 𝑡 + 14). 



116 
 

Where N is the total population of China and 𝑇(𝑡, 𝑡 + 14) is the number of people 

travelling from China to Australia in every two weeks period. When calculating the 

prevalence of infection in China, we started from two weeks before the period travelling 

in order to include the people that could be infected and in a latent state. In scenarios 2 

and 3, we assumed a linear declining distribution in time of travel for university 

students waiting to enter the country after lifting of the travel ban.  A full and partial 

lifting of the ban was examined. In the partial ban, over 150,000 university students can 

enter Australia, but the just over 80,000 expected tourists not. 

5.3.2 Epidemic curve in Australia from cases imported from China 

The cases of COVID-19 occurring over time in Australia due to imported cases from 

China were estimated for each scenario.  We used an age specific deterministic model, 

with 8 mutually exclusive compartments: susceptible (S), Latent traced (Et), Latent 

untraced (Eu), Infectious (I), Isolated (Q), Recovered (R) and dead (D).  Each of those 

compartments is divided in 18 age stratified groups each of 5 years duration, ranging 

from 0 to 84 years old plus an additional age group of 85+ years. The entire Australian 

population was considered susceptible. The duration of each model run is 400 days. The 

initial infected cohort is assumed to be generated from cases arriving from China by air. 

After arrival of an infected case, it is assumed that, if and when they become 

symptomatic, they are isolated, and a designated portion of their contacts will also be 

quarantined. Cases transition between epidemiological compartments in accordance 

with transition rates determined by their duration of stay in each compartment. Model 

parameters are shown in Table 5.1. Further details of the model (diagram and 

differential equations) are described in the supplementary material. Based on growing 

evidence of viral loads in asymptomatic cases 132,322–325, we considered the latent period 

to be equally infectious as the symptomatic period, however, due to the different length 
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of the two epidemiological states, our assumption results in 41.6 % of the transmissions 

occurring in the pre-symptomatic state, which is also supported from a recent viral 

shedding study 326. The proportion of asymptomatic infections was assumed to be 

34.6% based on testing of passengers aboard the Diamond Princess cruise ship 327,328, 

however we tested in sensitivity analyses the value of 17.9% and 41.6%, which are the 

range of values estimated for this parameter 329. The model uses an optimistic 

assumption that 80% of contacts are identified and quarantined, and 90% of 

symptomatic cases are isolated after 5 days 330. Studies show a long, mild prodrome of 

several days before people feel unwell enough to seek medical attention, which is also 

considered in the model 330. We conducted a sensitivity analysis on the proportion of 

asymptomatic people, R0 and the case detection rate in China. The results are showed in 

the supplementary material.  

 

Table 5.1: Parameters used in the model. 

Parameter Value Source 

Basic reproduction 

number  

2.2, sensitivity analyses as 

1.8 and 3 

102 

Infectious period 12.2 days of which 5.2 

asymptomatic and 7 

symptomatic 

102 

Time to isolation once 

symptomatic 

5 days 330 

Effectiveness of home 

quarantine  

50% reduction in the R0 331 
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Duration of home 

quarantine 

14 days Australian 

recommendation 

Duration of hospital 

isolation 

20 days  

Proportion of 

asymptomatic or very mild 

infectious 

34.6% (17.9% and 41.6% 

used in sensitivity 

analyses) 

327–329 

Proportion of contacts 

identified for home 

quarantine 

80% 252 

Chinese detection rate 10%, with sensitivity 

analyses as 30% and 50% 

320 

Proportion of symptomatic 

people that get isolated 

after 5 days  

90% 252 

Age-specific case fatality 

rate (%) for the 18 age 

groups 

0, 0, 0.2, 0.2, 0.2, 0.2, 0.2, 

0.2, 0.4, 0.4, 1.3, 1.3, 3.6, 

3.6, 8, 8, 14.8, 14.8 

332 

 

 

5.4 Results 

Figure 5.1 shows the notified and estimated epidemic in China from the 31 December 

2019 to the 23 of February.  
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Figure 5.1: The estimated true epidemic curve (blue) compared to the reported 

epidemic curve in China (red).  

 

Figure 5.2 shows the modelled epidemic curve fitting the incidence data from 5 to 23 of 

February and then forecasted until the 4 of April, which is the time we expect the 

incidence decreasing to almost zero should the current trend in China continue. 
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Figure 5.2: Estimated Incidence data in China (blue) and model fit to the data and 

forecasting future daily incidence (red). 

 

We found that following the peak on February 5th and decline of the epidemic in China, 

the probability that an infected traveller arriving from China under the partial ban 

scenario (allowing university students only) is low. The complete removal of travel 

restrictions on 8th of March results in an estimated arrival of 5 cases in the first two 

weeks and 1 in the following two weeks. However, if we compare a 5 week ban 

scenario (scenario 2) with the scenario without a travel ban (scenario 1), we estimate 

that 32, 43 and 36 infected coming every two weeks from the 26 of January would have 

been averted. Due to a surge of students coming in the first two weeks following the 

lifting of the ban in the second scenario, an additional 2 more infected are estimated to 

enter from 8 to 21 of March (Table 5.2).   
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Table 5.2: Imported cases in Australia from China under no, partial and full travel 

bans per each two weeks period considering disease in China only. 

Time travelling Infected 

entering 

Australia 

without ban 

(scenario 1) 

Infected entering 

Australia with ban 

from 1 February to 

7 of March 

followed by full 

lifting of ban 

(scenario 2) 

Infected entering 

Australia with 

following a ban 

from 1 February to 

7 of March 

followed by partial 

lifting of ban 

(scenario 3) 

26 January to 8 

February 

39 7 7 

9 to 22 February 43 0 0 

23 February to 7 March 36 0 0 

8 to 21 March 3 5 0 

22 March to 4 April 1 1 0 

 

 

In Figure 5.3 we show the epidemic curve without and with the ban implemented for 5 

weeks followed by a full lifting (scenario 1 and 2) and we show a large impact on 

averting an epidemic in Australia. In both cases, the model reproduces the 15 notified 

imported cases reported in Australia between the 20 of January and 8 of February. The 

modelled epidemic in scenario 2, with the full ban, predicts 57 cases in Australia by the 

6th of March. The notified cases by 6th of March were 66, however we did not account 

for imported cases from other countries. 
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Figure 5.3: Daily incidence, cumulative number of cases and the cumulative 

number of deaths from the 20 of January onward for 400 days with and without a 

travel ban. 

 

In the epidemic curve for scenario 2, when travel resumes there will be a small surge in 

cases followed by a decrease and the epidemic can be controlled, with a total of less 

than 300 cases and about 8 deaths. If the ban was never in place (scenario 1), the 

epidemic would continue for more than a year resulting in more than 2000 cases and 

about 400 deaths, in a scenario which considers only localised disease in China.    

In each scenario tested, the implementation of the travel ban still reduces the total cases 

and deaths by about 85%, however in the case of R0 being 3, the travel ban will only 

delay the epidemic curve pushing the peak about 50 days in time (Figure 5.5). The final 

number of cases and deaths is most sensitive to the R0 assumption, while it is similarly 

affected by changing the case detection rate (CDR) in China or the proportion of 

asymptomatic people. Indeed increasing the proportion of asymptomatic people by 2.3 

times (from 17.9% to 41.6%), the number of cases increase by 4 times (from a total of 
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124 to 491 cases with ban on or 975 to over 4000 in the scenario of no ban), while 

increasing the CDR about 66% (from 30% to 50%) results in 31% decrease in number 

of cases (from 106 to 76 and from 737 to 461 in the case of travel ban on and off 

respectively), see Figure 5.6 and Figure 5.7. 

 

5.5 Discussion 

We estimated that the travel ban implemented by Australia on 1 of February, close to 

the peak of the epidemic in China, has been very effective, reducing the number of 

cases and deaths from COVID-19 by about 87%. Studies have been published on 

effectiveness of domestic and international travel restrictions on COVID-19 333–335. 

However, this study is the first one to show the effectiveness of travel bans in Australia 

and can inform a phased approach of partial lifting of bans when cases in the source 

country decline over the course of the pandemic. This allows monitoring of the ongoing 

situation in China, which may yet see a second wave of the epidemic. The risk of 

having a person travelling to Australia already infected from China depends on the 

volume of travel and the infection prevalence in China at that time as well as individual 

host factors. We used a deterministic compartmental model, so could not consider 

singular host infectivity and susceptibility, but we acknowledge that these are additional 

important parameters which could influence the results and would require an agent-

based modelling approach to be tested.  

When calculating the number of students and tourists arriving from China, we have 

assumed that the seasonal excess must largely be attributed to the seasonal movement of 

international students who we estimate represent the large part of the excess movements 
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at this time, which was the most feasible way to account for the normal business and 

general tourist movements. However, the effect of lunar new year on non-student travel 

is a limitation on this approach. 

Our estimate of the true epidemic curve is supported by other studies 320,321,336, and 

projected case numbers would change with any change in this estimate. Even if the true 

number of cases in China is 10 or 100 times that reported, only a fraction of the entire 

population of China has been infected, which leaves a possibility of a subsequent wave 

of the epidemic. Indeed the fraction of remining susceptibles is still too high to stop 

transmissions, for an R0 equal to 2.2, about 55% of the population is required to be 

immune to achieve herd immunity 337. If cases increase in China, the model can provide 

estimates of risk based on daily new case numbers.  

The pandemic has since surged globally, with new epicentres in Europe and the United 

States.  We do not consider cases coming in from other countries – however, this study 

illustrates the principle of travel bans and public health impact on epidemic control 

using China as a case study during a period when the epidemic was largely localised to 

China. A further limitation is the uncertainty of parameters used, particularly the 

proportion of asymptomatic cases. Whilst we did not use age weighted assumptions of 

asymptomatic infection, younger people are more likely to be asymptomatic 329, which 

would have the effect of increasing undetected transmissions. We have used a 

conservative estimate, but if the rate is higher than 40%, the outcomes would be worse.  

While it has been showed that distancing measures are highly effective 312,338 a 

systematic review looking at the effectiveness of travel restrictions 339, shows that 

international travel restriction are effective in delaying an epidemic but may not contain 

it. We also assumed a very optimistic scenario of 80% of contacts being identified, 
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which may not occur with high case numbers, if a high proportion of asymptomatic 

transmission is occurring, or if self-quarantine is ineffective.  In this study we assumed 

voluntary home quarantine, which is showed to be about 50% effective in R0 reduction 

331, however there could be an increased risk of intra-household transmission infected 

people to contacts 340, which is not considered in this model.  

It has been showed that there could be different transmissions rates per different settings 

or events, such as super dispersion in a mass gathering 341. As the model used is a 

deterministic compartmental model, we could not include different networking or 

environments. A further limitation of this study is not taking into account diverse 

transmissions events like super-spreading and lower transmissions. However, the age 

specific transmission rates allowed us to take into consideration age, which includes 

heterogeneity in social mixing. 

We showed that the ban implemented for travellers from China, when the epidemic was 

almost at its peak in China, substantially delayed the spread into Australia. There was 

subsequently evidence of community transmission in Australia and many more cases 

imported from other countries, but this study provide evidence to support the new travel 

bans that have been implemented on Italy, Iran and South Korea, in order to delay the 

epidemic. The model predicted 57 cases by March 6th in Australia, which is slightly less 

than the notified number of 66 on that date, which suggests the model assumptions were 

reasonable, given we did not account for cases coming in from other countries. 

Community transmission in Australia in early March is likely linked to imported cases 

from China, given the fairly long incubation period 324 and less than 3 incubation 

periods since the first evacuation of Australians from Wuhan on February 3rd. The 

model fit to observed data was good, also suggesting the epidemic is still possible to 

contain, if adequate resources are available for thorough contact tracing. 
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This analysis is a first insight into the effectiveness of travel restrictions for COVID-19 

outbreak, supports the effectiveness of the Australian response, informs gradual lifting 

of the bans or placing of new bans on other countries, and could inform other countries 

in reducing the burden of importations and resulting domestic transmission of COVID-

19. 

 

5.6 Supplementary materials 

5.6.1 Data 

 

Table 5.3: Notified reported cases from China between 31 December 2019 and 23 

February 2020 315. 

Date Cases Date Cases Date Cases Date Cases 

31 Dec 19 27 14 Jan 20 0 28 Jan 20 1796 11 Feb 20 2484 

1 Jan 20 0 15 Jan 20 1 29 Jan 20 1460 12 Feb 20 2022 

2 Jan 20 0 16 Jan 20 0 30 Jan 20 1739 13 Feb 20 1820 

3 Jan 20 17 17 Jan 20 4 31 Jan 20 1984 14 Feb 20 1998 

4 Jan 20 0 18 Jan 20 59 1 Feb 20 2101 15 Feb 20 1506 

5 Jan 20 0 19 Jan 20 77 2 Feb 20 3314 16 Feb 20 1091 

6 Jan 20 15 20 Jan 20 199 3 Feb 20 2838 17 Feb 20 2051 

7 Jan 20 0 21 Jan 20 110 4 Feb 20 3241 18 Feb 20 1891 

8 Jan 20 0 22 Jan 20 110 5 Feb 20 3925 19 Feb 20 1752 

9 Jan 20 0 23 Jan 20 461 6 Feb 20 3722 20 Feb 20 399 
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10 Jan 20 0 24 Jan 20 369 7 Feb 20 3151 21 Feb 20 894 

11 Jan 20 0 25 Jan 20 557 8 Feb 20 3401 22 Feb 20 397 

12 Jan 20 0 26 Jan 20 828 9 Feb 20 2657 23 Feb 20 650 

13 Jan 20 1 27 Jan 20 756 10 Feb 20 3073   

 

 

Table 5.4: Daily travellers coming from China in Australia by months and 

scenarios 318 . 

Scenario1: Baseline Data (derived from 2019 air arrival data) 

 Total (arrivals/day) 

International 

Students 

(arrivals/day) 

Tourists and others 

(arrivals/day) 

Jan 20 4606 1686 2920 

Feb 20 7368 4135 3233 

Mar 20 4013 1092 2920 

Apr 20 3207 0 3207 

May 20 3055 0 3055 

Jun 20 2690 0 2690 

 

Scenario2: Travel Ban duration 01 February – 07 March 2020, then complete lift of 

travel ban with 60% of the students that didn’t come during the ban coming in March 

and 40% in April 

 

Total (arrivals/day) 

International 

Students 

(arrivals/day) 

Tourists and others 

(arrivals/day) 
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Jan 20 4606 1686 2920 

1 Feb-7 March  0 0 0 

8-31 Mar 20 7201 4281 2920 

Apr 20 4908 1701 3207 

May 20 3055 0 3055 

Jun 20 2690 0 2690 

 

Scenario3: Travel Ban duration 01 February – 07 March 2020, then partial lift of 

travel ban (international students only) 

 

Total (arrivals/day) 

International 

Students 

(arrivals/day) 

Tourists and others 

(arrivals/day) 

Jan 20 4606 1686 2920 

1 Feb-7 March 0 0 0 

8-31 Mar 20 4281 4281 0 

Apr 20 1701 1701 0 

May 20 0 0 0 

Jun 20 0 0 0 

 

5.6.2 Mathematical model 

The model presented here is a deterministic compartmental disease transmission model 

built using Matlab 2019. It is an expended SEIR system of ordinary differential 

equations, where the population (the initial susceptible) is divided in 18 age groups 

(i=1,…,18). The differential equations move the population through diseases 

epidemiological stages, as susceptible (S), latent untraced (Eu), infectious (I) and 
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recovered (R) or death (D), and public health response stages, as latent traced (Et) or 

isolated (Q).  

We used the following differential equations to simulate the epidemic spread of 

COVID-19 in Australia since 20 of January 2020: 

 

𝑑𝑆*/𝑑𝑡 = −𝜆* ∗ 𝑆* 

𝑑𝐸*D/𝑑𝑡 = (1 − 𝜌) ∗ 𝜆* ∗ 𝑆* + 𝐴* − 𝐸*D/𝑑. 

𝑑𝐸*$/𝑑𝑡 = 𝜌 ∗ 𝜆* ∗ 𝑆* − 𝐸*$/𝑑. 

𝑑𝐼*/𝑑𝑡 = 𝐸*D/𝑑. + 𝑔	 ∗ 𝐸*$/𝑑. − 𝜃 ∗ 𝐼*/𝑑I. − (1 − 𝜃) ∗ 𝐼*/𝑑7 

𝑑𝑄*/𝑑𝑡 = (1 − 𝑔) 	∗ 𝐸*$/𝑑. + 𝜃 ∗ 𝐼*/𝑑I. − µ* ∗ 𝑄*/𝑑7 − (1 − µ*) ∗ 𝑄*/𝑞7 

𝑑𝑅*/𝑑𝑡 = (1 − µ*) ∗ (1 − 𝜃) 	∗ 𝐼*/𝑑7 + (1 − µ*) ∗ 𝑄*/𝑞7 

𝑑𝐷*/𝑑𝑡 = µ* ∗ (1 − 𝜃) 	∗ 𝐼*/𝑑7 + µ* ∗ 𝑄*/𝑑7 

 

A* represents the number of people infected coming from China per day, while the age 

specific force of infection is described as  

  	

𝜆* =T
𝛽. ∗ 𝑐*,0 ∗ (𝐼0 + 𝐸0D)

𝑁 +T
𝛽7 ∗ 𝑐*,0 ∗ 𝐸0$

𝑁

./

01.

./

01.
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Where 𝛽. =
#)

"(J"+
 for symptomatic and untraced contacts, 𝛽7 =

+(
7

 for latent traced and 

home quarantined (50% reduction in R0), 𝑐*,0 is the age-specific contact matrix adapted 

from 342, with i and j representing the 18 age groups, and N is the total population. The 

following table shows all the parameters used and their value. 

 

Table 5.5: Model parameters used and their values. 

Parameter Symbol Value Source 

Basic reproduction 

number  

R0 2.2 sensitivity 

analyses as 1.8 and 3 

102 

Infectious period 𝑑. + 𝑑7 12.2 days of which 

5.2 asymptomatic 

and 7 symptomatic 

102 

Time to get isolated 

once symptomatic 

𝑑I. 5 days 330 

Effectiveness of 

home quarantine  

R0/2 50% reduction in the 

R0 

331 

Duration of hospital 

isolation 

𝑞7 20 days  

Proportion of 

asymptomatic or 

very mild infectious 

𝑔 34.6% (17.9%% and 

41.6% used in 

sensitivity analyses) 

 327–329 

Proportion of 

contacts identified 

for home quarantine 

𝜌 80% 252 

Proportion of 

symptomatic people 

𝜃 90% 252 
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that get isolated after 

5 days  

China detection rate CDR 10%, sensitivity 

analyses as 30% and 

50% 

320 

 

Age-specific case 

fatality rate (%) for 

the 18 age groups 

µ* 0, 0, 0.2, 0.2, 0.2, 

0.2, 0.2, 0.2, 0.4, 0.4, 

1.3, 1.3, 3.6, 3.6, 8, 

8, 14.8, 14.8 

332 

 

 

5.6.3 Results from sensitivity analyses on R0, the asymptomatic rate (g) and the 

Chinese detection rate (CDR) 

 

 

Figure 5.4.: From left to right, incidence cumulative cases and deaths with R0=1.8 

over days from 20/01/2020 with and without the implementation of the travel ban. 
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Figure 5.5.: From left to right, incidence cumulative cases and deaths with R0=3 

over days from 20/01/2020 with and without the implementation of the travel ban. 

 

 

 

Figure 5.6.: From left to right, incidence cumulative cases and deaths varying the 

Chinese detection rate as 30% and 50% of the total cases over days from 

20/01/2020 with and without the implementation of the travel ban. 
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Figure 5.7.: From left to right, incidence cumulative cases and deaths with R0=1.8 

over days from 20/01/2020. 
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Chapter six 

Discussion and conclusions 
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6.1 Thesis overview  

The research I conducted, all of which has been peer reviewed and published 64,169,173,174 

(see box 1), shows the scope of mathematical modelling for informing control of 

epidemic infectious diseases.  This body of research used deterministic compartmental 

models and other mathematical tools to estimate the magnitude of an outbreak, examine 

waning immunity, forecast epidemic curves and test the effectiveness of various 

pharmaceutical and non-pharmaceutical interventions in the effort to contain outbreaks 

of emerging, existing or re-emerging infectious diseases. This thesis highlights the 

complexity of incorporating population characteristics like age-distribution, 

heterogeneity for population immunity levels, age-specific contacts patterns and other 

unique population and host characteristics to build realistic models and inform policy 

making for outbreak prevention and control. Furthermore, this work demonstrates the 

value of modelling in public health control of a range of epidemic infectious diseases. 

This work has resulted in 4 publications on peer review journal, and it has been 

accepted and presented in 3 international medicine conferences in Australia. Chapter 

one provides an introduction to the thesis and is divided into two parts, part A is an 

overview of the pathogens considered (current, emerging and future) and why they 

represent a threat to population health, while in part B the principles of the methodology 

used in this thesis is described. 
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In Chapter two, the results from three complex SEIR models that I developed to 

simulate a vaccination 

response to a re-emergent 

smallpox bioterrorist 

outbreak were presented. 

Each model simulates a 

different distribution of the 

vaccine to the population: 

mass, ring, and targeted 

vaccination.   I estimated the 

most appropriate vaccination 

strategies for epidemic 

control in reducing morbidity 

and mortality in a re-

emergent smallpox scenario 

in Sydney, with a limited 

number of vaccine stockpile. 

In a setting like Sydney, the 

results highlight the 

importance of taking into 

consideration the increasing 

proportion of “at risk” 

medically 

immunosuppressed 

populations in modern 

1. Costantino V., Kunasekaran M., MacIntyre C. 

R. Modelling of optimal vaccination strategies 

in response to a bioterrorism associated 

smallpox outbreak. Hum. Vaccines Immunother. 

1–9 (2020). 

https://www.tandfonline.com/doi/full/10.1080/2

1645515.2020.1800324 

2. Costantino V., Trent M. J., Sullivan J. S., 

Kunasekaran M. P., Gray R., MacIntyre R. 

Serological immunity to smallpox in New South 

Wales, Australia. Viruses 12, (2020). 2020 May; 

12(5): 554.               

https://www.mdpi.com/1999-4915/12/5/554 

3. Costantino V., Trent M., MacIntyre C. R. 

Modelling of optimal timing for influenza 

vaccination as a function of intraseasonal 

waning of immunity and vaccine coverage. 

Vaccine 37, 6768–6775 (2019). 

https://www.sciencedirect.com/science/article/pi

i/S0264410X19311454 

4. Costantino V., Heslop D. J., MacIntyre C. R. 

The effectiveness of full and partial travel bans 

against COVID-19 spread in Australia for 

travellers from China during and after the 

epidemic peak in China. J. Travel Med. 27, 

(2020). May 22: taaa081. 

https://academic.oup.com/jtm/article/27/5/taaa0

81/5842100?login=true 

 

BOX 1: Publications from the thesis 
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society. We showed that the time to commencing the response is critical and highly 

influential on the impact of the outbreak containment, while contact tracing and case 

finding are very influential in epidemic control. Population structure is quite different 

from low/middle income countries like in India, which is a setting I have previously co-

authored a publication on most effective control for re-emergent smallpox. 343  In a 

setting like Sydney, using contact tracing and ring vaccination will result in better 

epidemic control with a smaller number of doses, which is important because the 

smallpox vaccine stockpile could be limited in the initial stages of an outbreak. 

However, in the case of not being able to trace and vaccinate a high percentage of 

contacts, mass vaccination with at least 125,000 doses delivered per day could prevent 

more deaths. This work has informed policy making in NSW regarding the human 

resources and vaccine supply needed to contain a re-emergent smallpox outbreak in a 

population where the previous vaccination induced immunity is likely to be very low or 

zero, and also has many lessons for COVID-19 vaccination. Vaccination programs 

against smallpox using the vaccinia virus vaccine ceased with the eradication of 

smallpox but unlike many other countries, Australia did not use mass vaccinations. The 

results of this study are consistent with other modelling studies that look at vaccination 

strategies for a smallpox outbreak 190,192,194–198, however this study considers 

heterogeneous mixing patterns, residual immunity from previous vaccination and 

population immunosuppression when estimating deaths and the number of doses of non-

replicating vaccine needed, which is novel.  

In Chapter 3, the focus is on estimating the level of protection in NSW, Australia, 

against smallpox infection, from previous smallpox vaccination. Serosurveys of 

antibodies to vaccinia are not available in Australia, so residual immunity cannot easily 

be measured.  I was able to gain access to a rare dataset of vaccinia antibody titres level 
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from regular plasmapheresis donors at the Australian Red Cross Blood Service 

(ARCBS) collected in 2003, which was used to estimate the proportion of Australians in 

NSW with still detectable serological immunity to smallpox. The required testing is not 

routine, so to collect such data now would be difficult.  Using these data, to estimate 

current levels of immunity to smallpox infection and the waning rates of immunity, the 

decline in geometric mean titres (GMT) over time was projected using two values for 

the antibody levels estimated on the basis of different times since vaccination, 

comparing this dataset to reported antibody level following vaccination 249. Titre levels 

in donor samples were determined by the plaque reduction assay. The results of this 

study showed that residual immunity to smallpox in NSW from previous vaccination is 

minimal and the population would be highly susceptible. Vaccine immunity wanes with 

time, however, before this study, there was no estimate of the decreasing rate of 

immunity in time, and these results have important implications for preparedness 

planning and outbreak control with a limited vaccine stockpile. 

Continuing on the theme of waning immunity, there is increasing evidence of seasonal 

vaccine effectiveness against influenza waning within a single season. 286,293–299 In 

chapter 4, monthly age-specific laboratory confirmed notifications data from 2007 to 

2016 in Australia and monthly coverage data from US were adapted for Australia to 

estimate the most effective month to get vaccinated, for an average Australian influenza 

season. Prior to this work, the effect of changing vaccine time uptake from March to 

August in Australia, at population level on the total number of cases prevented, had not 

been fully investigated. Furthermore, in this chapter we determined the effect of reduced 

vaccine coverage associated with delayed vaccination uptake and explored the impact of 

delaying vaccine recommendation when considering a time gap between the current 

recommendation for vaccination in March or April, and uptake if vaccination is delayed 
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to later months. Waning functions for strain specific vaccine effectiveness were 

estimated for the first time and then combined for each year accounting for the 

proportion of each influenza strain circulating for that year. The average notification 

peak in Australia is in August, with only occasional early or late variations from this 

peak month. As such, getting vaccinated as soon the vaccine is ready, as recommended 

in Australia, will put 5 to 6 months between vaccine uptake and influenza transmission 

peak. This research found that May is the optimal time to get vaccinated in Australia, 

which is 2-3 months later than the usual recommended time for vaccination and 2 

months before the seasonal peak. However, this chapter highlights the increased 

importance of keeping high vaccination coverage and shows that if delaying vaccination 

results in missed vaccinations and decrease coverage, delaying vaccination could have a 

net negative impact. This study improves on previous work by estimating the waning 

function specifically for each year based on the proportion of each strain circulating 

over the past 9 years, so that we could estimate an averaged waning effect. We also 

analysed two separate age groups that have different vaccine coverages in our model. 

In Chapter 5, an extended SEIR model was used to reproduce the outbreak of the novel 

coronavirus COVID-19 in Australia. The Australian government implemented a travel 

ban on China on February 1st, 2020, while COVID-19 was largely localised to China, in 

an effort to control the epidemic. Three scenarios were modelled to test the impact of 

international travel bans on epidemic control. Scenario one was no ban, scenarios two 

and three were the travel ban followed by a partial lifting (allow over 100,000 university 

students to enter Australia, but not tourists) and a full lifting, respectively, from the 8th 

of March 2020. The risk of having a person travelling to Australia already infected from 

China depends on the volume of travel and the infection prevalence in China at that 

time as well as individual host factors. The incidence of disease in China was estimated 
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using data on expected proportion of under-ascertainment of cases, while an age 

specific deterministic model was constructed to model the epidemic in each scenario. 

This chapter found that the full travel ban reduced cases by about 86% (while the 

impact of a partial lifting of the ban would be minimal) and may be a policy option. The 

impact of travel restrictions on COVID-19 remains controversial, and this is one of the 

few studies that shows an impact and clarifies that the context matters – travel bans can 

be highly effective if implemented before there is substantial community transmission 

within the country issuing the ban. The work remains topical for informing re-opening 

of Australian borders and can be used to inform the use of travel bubbles between low 

incidence countries.  A previously published systematic review on the effectiveness of 

travel restrictions in containing influenza transmissions showed that overall they have 

only limited effectiveness in the prevention of influenza spread, particularly in those 

high transmissibility scenarios in which R0 is at least 1.9 339. However, this research 

demonstrates the effectiveness of travel bans applied to countries with high disease 

incidence while informing and supporting the decision to place or lift travel bans as a 

control measure for the COVID-19 epidemic. Furthermore, the model can provide 

estimates of risk for new imported cases from a specific country, based on daily new 

case numbers in that country. The results in this chapter highlight the importance of 

using mathematical modelling to forecast epidemic curves, estimate parameters, 

challenge assumptions based on previous infections, and most importantly, how they 

can be constantly adapted to new outbreak challenges and inform policy in real time.  
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6.2 Limitations 

The effectiveness of modelling studies in informing outbreaks response policies, and 

value of the methods used in this thesis have been demonstrated. However, several 

limitations remain. As highlighted in this thesis, the biggest challenge when using 

mathematical models to understand and predict infectious disease epidemiology, is the 

availability of high-quality data to inform parameter estimation. When precise estimates 

are unavailable or parameters are uncertain, the sensitivity analyses we conducted in 

this thesis reveal the importance of parameters and the potential for biased estimates, 

which limit the quality of the results.   

In Chapter 2 the main limitation was the unavailability of data regarding smallpox 

transmission in a contemporary population. The pharmaceutical interventions available, 

last generation vaccine and antivirals drugs have never been used to control a smallpox 

outbreak, therefore, there are no data on their effectiveness in this context. These cause 

uncertainty regarding how effective public health measures will be in managing a 

bioterror attack with variola virus. Furthermore, in this study we considered a closed 

population of a similar size to the population of Sydney, however the spread of 

smallpox in Sydney increases the risk that infected individuals will seed outbreaks in 

other parts of NSW and Australia, further increasing the eventual burden as well as the 

supply of vaccines needed to deal with the situation. This means our results 

underestimate the full impact of smallpox spread in NSW and Australia. The limitation 

of data availability is widely discussed in Chapter three as well, where a small 

population sample size and only a single cross-sectional snapshot of seroprotection are 

used to estimate the residual immunity to smallpox from previous vaccination. 

Furthermore, the blood sample are from blood donors, which likely are people with 
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better health status and therefore it could be not very representative of the population. 

These were the only available data, and vaccinia serology is no longer routinely 

performed in laboratories. However, as results from this population sample analyses 

show no residual immunity from previous vaccination, the results are easily extendable 

to the wider population. In addition, with the eradication of smallpox in 1980, it may be 

impossible to definitively establish immunological correlates of protection against the 

disease in humans. Although humoral immunity is protective against orthopoxvirus 

infections, cell-mediated immunity and immunological memory likely also play roles, 

which are not quantified by antibody levels. The only available titre cut-off values for 

seroconversion, were reported during the period of endemic smallpox circulation, which 

may not be relevant to the contemporary population 63. While, due to the lack of data on 

vaccination status and time since vaccination of the participants, the estimated 

decreasing rate of the antibody level over time since vaccination is based on several 

assumptions. Thus, our estimate of the proportion of Australians that are seropositive 

against vaccinia may not accurately reflect the proportion that are clinically protected 

against smallpox. These limitations highlight the possibility that the level of immunity 

to smallpox infection in the NSW population could have been underestimated, and 

together with the lack of including post exposure treatments effect, when modelling 

number of deaths following a smallpox re-emergent outbreak, could have overestimated 

the number of deaths in NSW following a bioterror attack.    

In Chapter four, the influenza notification and coverage data, vaccine effectiveness 

estimation and vaccine effectiveness waning function over time are used to estimate the 

best time to get vaccinated for an average influenza season in Australia. Firstly, there is 

an extensive uncertainty in all those parameters used. Monthly vaccine coverage data 

were not available for Australia, therefore we used data from the USA assuming a 
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similar pattern of vaccine uptake as in Australia. Furthermore, we showed the results are 

particularly sensitive to the monthly waning rates which are informed by limited data, 

subject to uncertainty and with inconsistent results across time from vaccination, age 

and influenza strain. VE data used in the model is based largely on the performance of 

standard trivalent inactivated influenza vaccines (TIVs) which were the predominant 

vaccines used till 2015, before the quadrivalent influenza vaccines (QIVs) replaced it in 

Australia. Secondly, the relationship between vaccine effectiveness/coverage and the 

percentages of cases prevented is assumed to be linear and therefore it may fail to 

incorporate factors like herd immunity, indirect protection or super spreaders events 

which could result in overestimate or underestimate the prevented cases for each 

particular year considered. Thirdly, results are shown for all of Australia, however this 

country is very large with several different climatic zones, which suggests the need for 

regionally focused policy instead of national. These limitations highlight the necessity 

of exploring the QIVs effectiveness behaviour over time following vaccination, while 

further increase studies on immunity development following vaccination for different 

age groups and explore different methodologies to reproduce the non-linearity between 

vaccine effectiveness and number of prevented cases.  

In Chapter five, we described a mathematical model for the new COVID-19 disease 

incorporating travel data. At the start of the pandemic, there was a high level of 

uncertainty for all the disease parameters, particularly regarding infectiousness and 

proportion of asymptomatic transmission. Whilst extensive uncertainty surrounded the 

effectiveness of non-pharmaceutical interventions in reducing R0. At the time of this 

study, it was estimated that cases notification in China were around only 10% of the real 

number of daily new cases, and as the number of imported cases is directly proportional 

to this number, the overestimation of cases incidence in China together with lack of 
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consideration of local control measures in Australia and China (like symptomatic 

screening at airports), could result in an overestimation of cases incidence in Australia 

due to imported cases from China. While, as the model starts from February 2020, 

imported cases that could have come into Australia before this date are not considered 

when projecting the epidemic curves, therefore this could result in an underestimation 

of incidence cases in Australia. Since the publication of this chapter, there have been 

further data produced and analysed, however the results published in this thesis are still 

based on the latest parameters range estimated and therefore still valid.  

There are also several limitations regarding the overall methodology we used.  The 

types of models used in Chapter two and four are deterministic compartmental SEIR 

models, which involve constant transition rates between compartments. The advantage 

of these models is their simplicity and ability to quickly generate results by using 

ordinary differential equations which are backed by advanced theory of dynamical 

systems and well-developed and readily available numerical methods. The disadvantage 

is that their imposed structure leads to a lack of incorporate some inherent randomness 

344, like time dependent infectivity or the immune and behavioural aspects of the 

population in heterogeneous contacts as well as clinical aspects of epidemics. They also 

cannot estimate the impact of individual level behaviour, as an agent-based model 

could. Furthermore, deterministic models assume that the rates/duration of a person in 

each epidemiologic compartment is exponentially distributed.   As described in Chapter 

1, there are more advanced modelling approaches that can overcome these limitations 

such as stochastic or agent-based models.  However, the application of such models is 

necessarily restricted by the availability of sufficiently detailed networking and spatial 

metadata. To incorporate a more realistic description of a disease spreading into the 

population, in Chapter two and five we incorporated heterogeneity to the immunity 
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level of the population splitting it into healthy, mild and severe immunocompromised 

populations, with different susceptibility. While in Chapter five parameters, such as the 

infectivity, are made time dependent by dividing the infectious compartment into many 

sub compartments with different infectivity levels.  

Generally, more advanced types of models are used to closely reproduce the reality, 

losing in simplicity and reproducibility in real time use. Indeed, finding a realistic 

deterministic model with an explicit spatial-networking structure remains a challenge, 

however, the age specific transmission and contact rates, used in this thesis, allowed us 

to take into consideration age and heterogeneity in social mixing. 

 

6.3 Implications and recommendations 

This research highlights the value of mathematical modelling for understanding the 

spread of ongoing, current pandemic and future infectious diseases, and the impact of 

control measures. This thesis has expanded the knowledge of outbreak response 

effectiveness within ageing populations, provided information to policy makers about 

the increased effectiveness of outbreak responses and pandemic control, and highlighted 

important gaps for the development of models for public policy, specifically the need 

for more interdisciplinary collaborations, open access to population datasets, and 

standardized methods. As the host population age, immunity, interactions, living 

conditions and behavior deeply determine the way infectious diseases spread, this 

research shows the importance of continually updating results to observe the 

effectiveness of an outbreak response and to inform policy and recommendations in 

near real-time. Furthermore, as bigger and more complex data sets become available, 
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this thesis has demonstrated the necessity of using mathematical models and statistic 

methods to forecast epidemics in different scenarios, testing outbreak response 

effectiveness and to inform policy makers on future surveillance, outbreak prevention 

and control planning. This includes rapid response and control strategies, both 

pharmaceutical and non-pharmaceutical, and the prioritization to protect targeted 

groups. Examples of application of similar methods informing policy making and 

shaping outbreak response in real time can be seen in regard to the current COVID-19 

pandemic 345. Indeed mathematical modelling has provided estimations of R0, 

quantified the potential disease severity, and informed the potential number of  hospitals 

and ICU beds needed 346. Early projections of international spread influenced travel 

restrictions and border closures, modelling various effectiveness of non-pharmaceutical 

interventions have informed policy for the ongoing response and modelling different 

vaccination strategies is currently helping to inform the roll-out of vaccines and the 

potential impact of the emergence of new variants 166.  

Previously, during the influenza pandemic in 2009, mathematical modelling helped 

WHO and decision makers inform national outbreak responses 347, as well as support 

decisions about vaccination strategies 348–350. During the large Ebola outbreak in West 

Africa, mathematical models estimated the effectiveness of various non-pharmaceutical 

interventions 351,352, as well as helped with the design of ring vaccination trials 353,354. 

Modelling studies have also shown how beneficial  a test and treat strategy, known as 

treatment as prevention, would be for HIV elimination 355,356. 

The results in this thesis also highlight how important it is to use well estimated 

parameters while incorporating approaches to reduce biased outcomes. The estimation 

of epidemiological parameters is completely dependent on the quality of the data used. 

This thesis has highlighted the value of publicly available and well annotated data. 
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Although, the quality of data for infectious diseases is constantly improving, there are 

still many biases present due to the collection methods used and  the nature of outbreak 

data 357. 

Based on the challenges encountered during the research conducted for this thesis, and 

the points raised in this conclusion chapter, I propose the following recommendations to 

enhance the accuracy, transparency, and quality of mathematical modelling results for 

informing public health responses and improving the effectiveness of the framework 

proposed in the introduction chapter, in particular point a and b: 

1. Improve surveillance systems for data collection linked with host information. 

This will allow for better estimates of age-specific epidemiological parameters, 

as well as enable the inclusion of host behavioural dynamics into models to 

produce a more accurate representation of reality. This information could 

provide greater insights into potential associations between host characteristics 

and risk of infection. Increased seroprevalence data collection and analysis, 

specifically for eradicated or non-endemic diseases, would also enable models to 

better inform preparedness responses to re-emergent viruses. This is particularly 

the case for smallpox infection. Lastly, all data collected should be publicly 

available as much as possible, to speed up research when results are needed 

quickly during an emergent outbreak. 

2. Standardised and transparent modelling practices are required to understand the 

precision of modelling forecasts and estimations. The constantly increasing use 

of mathematical modelling, to inform policies, demands a standardization of 

methods used to easily compare results in different scenarios. This will facilitate 

policy makers in applying mathematical modelling results. A good example is 
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the UK Scientific Pandemic Influenza Group on Modelling (SPI-M) 358, which 

brings together modelling experts from many different academic institutions. 

3. Standardization of modelling practises can also be achieved by organizing 

collaborations, training courses or setting up guidelines to establish common 

standards for the use of modelling software and reporting of results, and these 

events can furthermore increase communication and collaboration between 

modelers. This will accelerate the production of impactful results in emergency 

situations, like outbreak and pandemic responses.  The Australian COVID-19 

Modelling Initiative (AusCMI) 359 is an example of such a collaboration, which 

does not have a government remit as SPI-M does, but allows different modelling 

groups to collaborate, compare models and discuss uncertainties. During my 

thesis I have had the opportunity to attend meetings of Aus-CMI, which has 

been beneficial. 

4. Because modelling is becoming more complex to include human behaviours and 

population characteristics and culture, there is a need for more interdisciplinary 

collaboration. This could include sociology and psychology fields. 

Interdisciplinary collaboration will facilitate the inclusion of accurate data on 

population behaviour and risk profiles and will enable more host specific results 

of epidemic dynamics, and consequently better targeted outbreak responses. 

5. Modelling results need to be constantly updated to include population and host 

evolution and requires input from medical experts who understand the 

complexities of immunology and infection.  

As the availability of more comprehensive data will increase, the ongoing development 

of more complex methods will enhance our understanding of the intricate disease 



149 
 

transmission dynamics. However, for the successful implementation and application of 

impactful models, adherence to the provided recommendations above is required. Doing 

so will increase our knowledge of disease transmission dynamics, which is needed for a 

better outbreak preparedness response.  

This thesis provides updates on outbreak responses for diseases of concern. It highlights 

several research gaps for using mathematical tools to inform policy makers and 

outbreak response. We provide insights to increase accuracy using simple models. 

Finally, recommendations for more standardized accurate results, to reduce the burden 

of infectious diseases globally, are provided.  In addition to peer reviewed publications, 

my work has also been covered in the media. In addition, the models I developed for 

smallpox and COVID-19 were used to generate several other research papers, which are 

listed in the” List of publications” section of this thesis. 

This research informed the Australian government for preparedness and vaccine 

stockpile in the scenario of re-emergent smallpox outbreak. Supported the timing of 

seasonal influenza vaccine uptake recommendations for an Australian season over the 

knowledge of decreasing vaccine efficacy. Finally, it has also been the first research to 

estimate the effectiveness of international travel boarder closures to control the ongoing 

COVID-19 pandemic, and these results have been cited in over 64 international articles.   
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