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ABSTRACT

Accurately capturing the dependence between risks, if it exists, is an increasingly relevant

topic of actuarial research. In recent years, several authors have started to relax the

traditional ‘independence assumption’, in a variety of actuarial settings. While it is known

that ‘mutual independence’ between random variables is not equivalent to their ‘pairwise

independence’, this thesis aims to provide a better understanding of the materiality of this

difference. The distinction between mutual and pairwise independence matters because,

in practice, dependence is often assessed via pairs only, e.g., through correlation matrices,

rank-based measures of association, scatterplot matrices, heat-maps, etc. Using such

pairwise methods, it is possible to miss some forms of dependence. In this thesis, we

explore how material the difference between pairwise and mutual independence is, and

from several angles.

We provide relevant background and motivation for this thesis in Chapter 1, then conduct

a literature review in Chapter 2.

In Chapter 3, we focus on visualising the difference between pairwise and mutual indepen-

dence. To do so, we propose a series of theoretical examples (some of them new) where

random variables are pairwise independent but (mutually) dependent, in short, PIBD. We

then develop new visualisation tools and use them to illustrate what PIBD variables can

look like. We showcase that the dependence involved is possibly very strong. We also use

our visualisation tools to identify subtle forms of dependence, which would otherwise be

hard to detect.

In Chapter 4, we review common dependence models (such has elliptical distributions
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and Archimedean copulas) used in actuarial science and show that they do not allow

for the possibility of PIBD data. We also investigate concrete consequences of the ‘non-

equivalence’ between pairwise and mutual independence. We establish that many results

which hold for mutually independent variables do not hold under sole pairwise indepen-

dent. Those include results about finite sums of random variables, extreme value theory

and bootstrap methods. This part thus illustrates what can potentially ‘go wrong’ if one

assumes mutual independence where only pairwise independence holds.

Lastly, in Chapters 5 and 6, we investigate the question of what happens for PIBD variables

‘in the limit’, i.e., when the sample size goes to infinity. We want to see if the ‘problems’

caused by dependence vanish for sufficiently large samples. This is a broad question, and

we concentrate on the important classical Central Limit Theorem (CLT), for which we find

that the answer is largely negative. In particular, we construct new sequences of PIBD

variables (with arbitrary margins) for which a CLT does not hold. We derive explicitly

the asymptotic distribution of the standardised mean of our sequences, which allows us

to illustrate the extent of the ‘failure’ of a CLT for PIBD variables. We also propose a

general methodology to construct dependent K-tuplewise independent (K an arbitrary

integer) sequences of random variables with arbitrary margins. In the case K = 3, we use

this methodology to derive explicit examples of triplewise independent sequences for which

no CLT hold. Those results illustrate that mutual independence is a crucial assumption

within CLTs, and that having larger samples is not always a viable solution to the problem

of non-independent data.
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INTRODUCTION
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1.1 Context

As individuals, we face constant uncertainties, big and small. An unexpected death can

cripple a whole family’s financial situation. A lifetime of savings can be wiped out in a

single weather event. Years of future earnings can be compromised by an accident or a

debilitating illness.

To diminish such uncertainty, many of us are willing to pay someone else to cover some of

the risks we face. This possibility of a risk transfer is at the core of insurance companies’

business model. Indeed, provided they can reliably make money out of it, insurers are

happy to bear (at least some of) those risks, in exchange for a premium. Although they

will lose money on some insurance policies, on the aggregate, they can expect to make a

profit thanks to diversification benefits generated from pooling many small risks together.

The unpredictability we dislike can turn into a profit for them.

It is often said that the Law of Large Numbers (LLN) offers a mathematical foundation for

the insurance business (Smith and Kane, 1994; Dhaene et al., 2002b; Feng and Shimizu,

2016). As Feng and Shimizu (2016) put it

One of the most fundamental principles for the insurance business is the pooling

of funds from a large number of policyholders to pay for losses that a few

policyholders incur. The mathematics behind such a business model is the law

of large numbers which dictates that actual average loss would be close to the

theoretical mean of loss with a large pool of homogeneous and independent

risks.

A keyword in the above is ‘independent’; if risks are somehow dependent, there is no

guarantee that the LLN would apply and diversification is compromised. The words

‘dependent’ and ‘independent’ have here their usual probabilistic meanings. We recall

formal definitions in Section 2.2.1, but an intuitive definition of independence is given as

(Resnick, 1999):

the easily envisioned property that the occurrence or non-occurrence of an

event has no effect on our estimate of the probability that an independent

event will or will not occur.

Hence conversely, when we speak of dependent risks, we mean that knowledge about one

(or more) gives some knowledge about one (or more) other risk(s).
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This thesis aims to contribute to the ongoing conversation around ‘dependence’ and ‘in-

dependence’ in actuarial science (which has been very active in recent years, to say the

least). In particular, we will focus on the distinction between ‘pairwise’ and ‘mutual’ inde-

pendence, which we feel is too easily overlooked. We provide much more detail in Section

1.5, but note, for example, that the ubiquitous correlation coefficient (the most common

dependence measure) is by its very nature a bivariate coefficient. Since pairwise indepen-

dence does not imply mutual independence, if one relies solely on correlation (or on any

bivariate measure of dependence), one may fail to detect some forms of dependence. This

can potentially have material consequences, which we will explore all along this thesis.
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1.2 Diversification benefit: a definition

In the previous section, we have used the term ‘diversification benefit’ somewhat loosely,

to mean a reduction in the overall risk a company faces and which stems from “detaining

many different risks, with various probabilities of occurrence and a low probability of

happening simultaneously” (Busse et al., 2014).

A more formal definition (often used in Enterprise Risk Management) is as follows. Let

X := (X1, X2, . . . , Xd) be a collection of random variables which represent losses (e.g.,

from d business segments of an insurance company) and let ‘CR’ stand for Capital Re-

quired. We have a ‘diversification benefit’ (DB) whenever the total Capital Required is

less than the sum of the ‘standalone’ Capitals, CR(Xi). We then define the DB as (see,

e.g. Dacorogna, 2018, Eq.8):

DB(X) = 100%−
CR(

∑d
i=1Xi)∑d

i=1 CR(Xi)
, (1.2.1)

where the CRs are typically computed as risk measures (VaR, TVaR, or other). Clearly, in

this context the diversification benefit is function of the dependence between the losses Xi,

because the distribution of the random variable
∑d

i=1Xi is function of such dependence.

Of course, certain risks insurance companies face are ‘undiversifiable’ (also known as sys-

tematic risks). For example, if those risks are extremely positively dependent (comono-

tonic), then increasing their number in a portfolio does not bring any substantial diversi-

fication. In Equation (1.2.1), this would correspond to the case

CR

(
d∑
i=1

Xi

)
≈

d∑
i=1

CR(Xi).

A possible example of this would be flood insurance for properties in the same flood-prone

geographic location. A single flood would then trigger claims for a very large number of

insurance policies, all at once. Hence, holding more of such insurance policies would bring

very little diversification to an insurer, if any.

That said, in this thesis we will focus on the case where risks are (at least to some extent),

diversifiable. For such risks, the dependence between them (if any) will impact the extent

of the diversification. This is illustrated in the next section, where we give examples of

possible dependencies between insurance risks (taken from the literature).
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1.3 A few tales of dependence

In the fields of probability and statistics, questions of ‘independence and dependence’ are

not new, and have given rise to a large literature (especially in the second half of the 20th

century). For instance, a classical paper by Kruskal (1958) poses the question “What is

meant by the degree of association or dependence between two random variables with a

joint distribution?”, and investigates at length three common rank-based measures of asso-

ciation (namely quadrant association, Kendall’s tau and Spearman’s rho). Other seminal

articles include Rényi (1959) who proposed seven axioms that a ‘good’ bivariate measure

of dependence should possess, and Lehmann (1966) who provided several (increasingly

stronger) definitions of “positive dependence”.

It is also worth noting that the 1960’s was a productive period in multivariate modelling,

with many authors deriving multivariate extensions of common probability distributions.

Some influential articles proposed, for example, extensions of the Exponential distribution

(Gumbel, 1960; Freund, 1961; Marshall and Olkin, 1966, 1967; Block and Basu, 1974), the

Pareto distribution (Mardia, 1962) and the Burr distribution (Takahasi, 1965). This period

also saw great innovations in the non-parametric estimation of multivariate distributions,

see e.g., Loftsgaarden and Quesenberry (1965) and Cacoullos (1965).

In the same broad field of multivariate modelling, another seminal piece of work is of course

the famous Sklar’s theorem (Sklar, 1959), which showed that the dependence within any

multivariate distribution function with continuous margins is characterised by a unique

copula (a distribution function with Uniform[0, 1] margins). Copulas have since become

a very popular tool in dependence modelling, in a variety of fields (for a review of copula

concepts, see Section 2.2.2).

In the actuarial literature, though, dependence has more recently become a central research

topic. To quote the influential work of Embrechts et al. (2002),

Although insurance has traditionally been built on the assumption of inde-

pendence and the law of large numbers has governed the determination of

premiums, the increasing complexity of insurance and reinsurance products

has led recently to increased actuarial interest in the modelling of dependent

risks.

When we speak of dependent risks, this can be envisioned at many levels of granularity.
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For instance, it could be that different individuals are related in a way which makes the

claims they each generate dependent. For instance, from Cossette et al. (2002):

Consider a group life insurance or a group health insurance contract issued to

a company for a section of its employees working in a mine, on a steel plant,

in a paper mill, etc. In these cases, a single event (e.g., explosion, breakdown)

influences the risks of the entire portfolio. The risks are therefore statistically

dependent.

We can think of many other such situations. For instance, within a couple, “[i]t has long

been documented that the death of the spouse adversely impacts the surviving spouse,

accelerating the death of the latter” (Lu, 2017). That is, there is dependence between the

future lifetimes of the individuals in a couple. Hence, any insurance payments contingent

on those lifetimes (e.g., through life insurance or annuity contracts) would be dependent.

Another example is in workers’ compensation insurance, where there will likely be a link

between medical costs, and ‘daily allowance costs’ (see, e.g. Avanzi et al., 2011).

Home insurance is another obvious example, where geographical proximity of properties

can create a strong dependence, since “homes may share a common exposure to disasters

(e.g., windstorm, hurricane, fire, earthquake) that may lead to possible catastrophic finan-

cial damage” (Valdez, 2014). As another example, some find reasons to believe there is

dependence between individual frequencies and severities of claims, for instance Garrido

et al. (2016) argue that “claim counts and amounts are often negatively associated in col-

lision automobile insurance because drivers who file several claims per year are typically

involved in minor accidents”.

In addition to the individual level, dependence can also be envisioned at a higher (or

more aggregate) ‘macro’ level. For instance in property insurance, the total daily (or

weekly, or monthly) claims experienced in a given region (e.g., a state) could be related

to the total claims experienced in a neighbouring region, because big storms can sweep

both regions almost at the same time. This dependence can be exacerbated by worldwide

weather cycles such as El Niño Southern Oscillation (ENSO). Indeed, and as noted by

Boudreault et al. (2014), “[m]any authors have reported that ENSO is known to have an

important influence on hurricane frequency and intensity in the Atlantic Ocean”. Here,

we are considering the total amount of claims in a region (which stem from many policies

sold) to be dependent of another aggregated amount, that of a neighbouring region.

When speaking of dependence at the aggregate level, we can also imagine that whole
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business segments selling different types of insurance (e.g., motor and home) might be

dependent. For instance, catastrophic events can trigger several types of claims at once.

Bürgi et al. (2008) describe an extreme example of this:

The collapse of the World Trade Center towers on September 11 2001 has

shown in a dramatic way how insurance products of lines of business, which

had thought to be independent until then, can be triggered at once. The

scenario of both towers collapsing had been assumed to be impossible [...]

Several surrounding buildings have also collapsed or suffered severe damages.

Insurance-wise, several property policies were triggered. Next to the damage

to the buildings, there was a large amount of business interruption claims, and

several life policies were triggered, while cars parked under the towers were

also destroyed and triggered motor policies.

Another obvious example of a single catastrophic event inducing unexpected dependence

between insurance business segments is that of the Covid-19 pandemic. As Richter and

Wilson (2020) note,

While high correlation in life and health insurance potentially covered losses

is a defining feature of pandemic risk, the Covid-19 crisis has highlighted the

accumulation potential also with respect to financial market losses and to prop-

erty and casualty losses (in particular non-property damage business interrup-

tion and event cancelation). Combined with legal uncertainty and issues with

imprecise wording this has caused an unpleasant “surprise” for the industry.

The realisation that independence is an untenable assumption in many insurance settings

has given rise to a vast body of actuarial research, tackling a variety of insurance problems,

e.g., claims count processes (e.g. Denuit et al., 2002; Pfeifer and Nešlehová, 2004; Avanzi

et al., 2016a), dependence between severity and frequency in compound models (e.g. Peters

et al., 2009; Hernández-Bastida et al., 2009; Czado et al., 2012; Garrido et al., 2016), claims

reserving (e.g. Shi and Frees, 2011; De Jong, 2012; Merz et al., 2013; Abdallah et al., 2015;

Avanzi et al., 2016b,d), credibility theory (e.g. Frees and Wang, 2005; Englund et al., 2008;

Wen et al., 2009), ruin theory (e.g. Müller and Pflug, 2001; Bregman and Klüppelberg,

2005; Eling and Toplek, 2009; Albrecher et al., 2011), only to name a few.

This literature will be discussed in more detail in Chapter 2. For now, we proceed to

a small digression on the famous correlation coefficient which (albeit often criticised) is

still widely used as a measure of dependence. For instance, from Taylor (2018), “it is
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correlation that is commonly used in practice as a measure of dependence for the purpose

of risk margin estimation”.

Remark 1.1. Some of the examples above revealed dependence ‘in space’. Another im-

portant form of dependence (which can potentially affect the diversification benefits of an

insurer) is dependence ‘in time’. For example, when considering a risk which evolves

through time (e.g., the number of insurance claims stemming from a specific contract, or a

portfolio of contracts), past experience often contains information about future experience.

Furthermore, and as noted by Bermúdez et al. (2018) “the behaviour of a driver is likely to

change after they have made a claim and, therefore, some kind of time dependence should

be found in a panel count dataset.”

Another instance of time dependence is when the time elapsed since the last event influences

the severity of the next event. For example, Boudreault et al. (2006) note that “in an

earthquake risk context, one can expect that the longer is the time between two events

the larger will be the claim amount for the next catastrophe” (because, perhaps, more

structures will have been built in the intervening time and hence the potential for damage

will be greater).

Many other factors can induce time dependence in claim processes, for example seasonality

(Avanzi et al., 2016c) and inflation (Landriault et al., 2014b). In general, we have that

knowledge about the number (and/or size) of claims in a given time period provides some

information about the number (and/or size) of claims in a future time period. While time

dependence is a broad and important topic, we note that it will not be the main focus of

this thesis.

8



1.4 A note on Pearson’s correlation

In a conversation about dependence, it is hard not to mention the notion of correlation.

Recall that for two random variablesX and Y with finite means µX , µY and finite variances

σ2
X , σ

2
Y , Pearson’s correlation is given by

ρX,Y =
E[(X − µX)(Y − µY )]

σXσY
.

This correlation coefficient ρ is broadly used in risk management practice. It is, for in-

stance, an important element in the determination of solvency capital requirements, as

set by many regulatory frameworks around the world (see Section 2.3.2 for more details).

Many authors (e.g. Embrechts et al., 2002; Danıelsson, 2002; Pukthuanthong and Roll,

2009; Bartram and Wang, 2015) have pointed out potential pitfalls of using correlation

as a measure of dependence in finance and insurance. Here we want to briefly summarise

some of those pitfalls. This will also set the scene for us to introduce the central theme of

this thesis, in the next section.

One important flaw of correlation is that it detects only linear dependence. As the follow-

ing example shows, two random variables can be strongly dependent, yet have a correlation

of zero.

Example 1.1. Let two random variables (X,Y ) be defined such that

X ∼ Exp(1)

Y |X ∼ Normal(µ = 1, σ = X).

Then, we have that E[X] = E[Y ] = 1 and Var[X] = 1,Var[Y ] = 2. More importantly, we

have that

ρX,Y = 0,

even though X and Y are dependent. Ther scatterplot of a (rank-transformed) sample of

size n = 5,000 generated from this example is displayed on Figure 1.1. We can see a clear

‘C-shape’ pattern in the data, indicating dependence. Furthermore, if we interpret X and

Y as ‘risks’ we can calculate the ‘capital required’ to cover the total ‘loss’ X + Y using

a risk measure. If we use the Value-at-Risk VaR99.5% (for example), under independence
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between X and Y we would have

VaR99.5%(X + Y ) = 8.351.

However, here the real VaR is in fact

VaR99.5%(X + Y ) = 10.405.

Also, the ‘standalone’ capitals required to cover X and Y are

VaR99.5%(X) = 5.298, VaR99.5%(Y ) = 6.607.

Recalling (1.2.1), we then have a diversification benefit (under independence) of

1− 8.351

5.298 + 6.607
= 29.9%,

while the real diversification benefit is only

1− 10.405

5.298 + 6.607
= 12.6%.

That is to say, independence entails a much larger diversification benefit (more than dou-

ble) than the diversification benefit under this dependence structure (even though the cor-

relation is zero).
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Figure 1.1: Sample of Y versus X generated under Example 1.1 (rank-transformed obser-
vations)

This example showcases that ‘independence’ and ‘zero-correlation’ are very different things.

Other shortcomings of correlation include the fact it is not invariant to monotone trans-

formations of the risks, it is defined only for risks with finite variance, and the range of its

possible values depends on the marginal distributions of the risks (Embrechts et al., 2002).

When estimated from data, correlation is also “very sensitive to the presence of outliers”

(Abdullah, 1990). This is because its influence function is unbounded, and hence one

single ‘unusual’ data point has the potential to dominate its value (Wilcox, 2011, chap. 9).

Lastly, we note that correlation is, after all, just a number. Hence, it cannot (in general)

provide the full dependence picture. The same correlation can imply very different de-

pendencies; Matejka and Fitzmaurice (2017) provide interesting examples of this, some of

which we reproduce on Figure 1.2 (using the R package datasauRus). Here, all thirteen

bivariate datasets (X vs Y ) have almost the same correlation (always between −0.07 and

−0.06), as well as almost the same means and variances for X and Y . However, all those

datasets look very different. In particular, one looks like a dinosaur.
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Figure 1.2: Thirteen datasets, all with (almost) the same Pearson’s correlation

The bottom line here is that correlation is an imperfect measure of bivariate dependence.

This is well known in the actuarial community. In the next section, we will see that even

if one models perfectly the dependence between pairs of random variables, one can fail to

capture all the dependence which exists in a set of more than two random variables.

Remark 1.2. When discussing the limitations of correlation, one often makes the point

that correlations can be ‘spurious’ or that ‘correlation is not causation’. This is indeed true:
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to observe that two random variables X and Y have a strong correlation says nothing about

whether X causes Y , or Y causes X, or whether another phenomenon influences both (such

that the result is a linear trend between X and Y but with no direct causation). The website

tylervigen.com/spurious-correlations collates interesting (and funny!) examples of this.

This point also holds about dependence more generally (not just correlation): we cannot

infer from the fact that two variables are dependent (even strongly) that one causes the

other. To give an actuarial example (which we take from Lu, 2017), it has been documented

that the future lifetimes of two spouses are positively correlated. But can we conclude from

this that the death of one spouse ‘causes’ an increased mortality for the other spouse,

perhaps because of “psychological shock, and the subsequent change of the life style after

the loss of the spouse” (Lu, 2017)? Or, is the dependence explained simply by the fact that

two spouses usually share common risk factors (e.g., lifestyle, wealth)? It takes careful

analysis to answer this question, and Lu (2017) finds evidence of both effects. Though this

distinction between ‘dependence’ and ‘causation’ is important, it will not be a focus of this

thesis. In speaking of ‘dependence’, we will intend any pattern between random variables

(not necessarily causal ones).
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1.5 Pairwise independence versus mutual independence

Upon realising that correlation can be inadequate to capture pairwise dependence, one

might think sufficient to ‘improve’ correlation. One may want, for example, to use a

robust measure of bivariate dependence such as Kendall’s tau. Or, one could turn to

a more sophisticated measure of dependence (capable of capturing complex non-linear

dependencies), such as distance-correlation (Székely et al., 2007), Maximal Information

Coefficient (Reshef et al., 2011), generalised R-squared (Wang et al., 2017) or Hellinger

correlation (Geenens and Lafaye de Micheaux, 2022), only to name a few. This could be

appropriate, but it could also be insufficient. Indeed, a fact about dependence which is

less studied (but crucial to this thesis) is that

Even a perfect characterisation of pairwise dependence can be insufficient to

paint the full multivariate dependence picture.

For example, a vector of three random variables X1, X2, X3, can have all its pairs (X1, X2),

(X1, X3) and (X2, X3) be bivariate Gaussian, while the triplet (X1, X2, X3) is not Gaussian

(see an explicit example in Loisel, 2009). But in particular, the focus of this will be the

additional fact that

A series of risks can be perfectly Pairwise Independent But still Depen-

dent (PIBD).

Hence, being confident that every pair of risks in a portfolio is independent still does not

guarantee their mutual independence (see Section 2.2 for formal definitions of pairwise ver-

sus mutual independence). Said otherwise, mutual independence of a sequence of random

variables {Xj , j ≥ 1} is a stricter condition than their pairwise independence:

i. mutual independence of {Xj , j ≥ 1} =⇒ pairwise independence of {Xj , j ≥ 1}

ii. pairwise independence of {Xj , j ≥ 1} 6=⇒ mutual independence of {Xj , j ≥ 1}.

This is problematic, because independence is usually assessed by pairs, e.g., through cor-

relation matrices (which are still vastly used for risk aggregation, see, e.g., Taylor, 2018),

rank-based measures of association, scatterplot matrices (Hofert and Oldford, 2018), heat-

maps, pair-copula constructions, etc. While this ‘non-equivalence’ of pairwise indepen-

dence and mutual independence is known in the probability literature (see, e.g., Derriennic

and K lopotowski, 2000; Nelsen and Ubeda-Flores, 2012), we believe it has been largely
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overlooked in the actuarial literature, and its consequences are not well known. This

thesis is an effort towards filling this gap. Along it, we will see that the distinction be-

tween pairwise and mutual independence can be stark, and we will cover many situations

where things can ‘go wrong’ in typical insurance settings if only pairwise (but not mutual)

independence holds.

We note that this phenomena of PIBD variables is interesting in part because it goes

against the usual ways in which we think of dependence. For example, in models of times

series or spatial data, it is usually observations close to one another that are the most

dependent (and dependence diminishes for observations further apart). In contrast, with

PIBD data, consecutive observations (pairs) are independent, while larger groups may

exhibit dependence.

As a teaser for the rest of this thesis, we present here two toy examples which illustrate

the difference between ‘pairwise’ and ‘mutual’ independence.

Example 1.2. Consider a classical formulation of the ‘Individual Risk Model’ (see, e.g.,

Klugman et al., 2012, Section 9.8), where n insurance policies can each produce, or not,

a claim. The risk Xk (for the kth policy, k = 1, . . . , n) is usually written as

Xk =


Bk if Ik = 1

0 if Ik = 0,

where each Ik is a Bernoulli random variable, equal to 1 if a claim occurs for policy k,

and where Bk is a strictly positive random variable which represents the claim amount

for policy k (given a claim occurs). Typically, the Bk’s are assumed independent of each

other, and also independent of the Ik’s, which themselves are independent of each other.

For our toy example, consider the case n = 3, Bk ∼Exp(λ) and Ik ∼Bernoulli(1/2),

k = 1, 2, 3. Under the (typical) assumption that X1, X2, X3 are mutually independent, the

distribution of the aggregate amount of claims

S = X1 +X2 +X3,
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is straightforward to derive. Indeed, we have that

I1 + I2 + I3 =



0 with probability 1/8

1 with probability 3/8

2 with probability 3/8

3 with probability 1/8,

and consequently, S is a mixture of the constant 0, an Exp(λ), a Gamma(2, λ) and a

Gamma(3, λ), with weights 1/8, 3/8, 3/8, 1/8, respectively.

Now assume that we change just one ‘detail’. We still let the Bk’s be independent, and

independent of the Ik’s. We also let I1, I2, I3 be independent by pairs (meaning that P[Ij =

1, Ik = 1] = 1/4, j 6= k), but not mutually independent. Following a classical example from

Bernštĕın (1927), this will be the case if, for instance,

P[I1 = 1, I2 = 1, I3 = 1] = 1/4

P[I1 = 1, I2 = 0, I3 = 0] = 1/4

P[I1 = 0, I2 = 1, I3 = 0] = 1/4

P[I1 = 0, I2 = 0, I3 = 1] = 1/4.

(1.5.1)

In that case, the distribution of S is significantly different from that under mutual inde-

pendence of the I’s. Indeed, since here we have

I1 + I2 + I3 =


1 with probability 3/4

3 with probability 1/4,

S would be a mixture of an Exp(λ) and a Gamma(3, λ), with weights 3/4 and 1/4, re-

spectively. As illustrated on Figure 1.3, the PDF and CDF of S in both scenarios is very

different. Most notably, the fundamental nature of S has changed. Indeed, in the fully

independent case, S has a mixed distribution with P[S = 0] = 1/8, while in the pairwise

independent case S is fully continuous.
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Figure 1.3: PDF (left) and CDF (right) of S as defined in Example 1.2. In the ‘mutual
independence’ case, S is a mixed random variable, so an additional mass of 1/8 is shown
on the PDF plot.

Our second example is taken from Romano and Siegel (1986, Ex. 2.12) and features three

standard Normal random variables which are PIBD.

Example 1.3. Consider a triplet (X,Y, Z) of random variables constructed as follows:

X,Y,W
i.i.d.∼ N(0, 1)

Z = |W | sign(X · Y ),

where

sign(t) =


1 if t > 0

0 if t = 0

−1 if t < 0.

This construction yields that Z is also a standard Normal random variable. Furthermore,

the triplet (X,Y, Z) is pairwise independent, i.e., all pairs of random variables (X,Y ),

(X,Z) and (Y,Z) are independent. However, those three variables are not mutually inde-

pendent. There are many ways to see this, but one that is visually striking is to look at

the distribution of the sum

S = X + Y + Z.

If one were to conclude (falsely) that because the variables are pairwise independent they are
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also mutually independent, then one would expect S to be a Normal random variable (with

mean 0 and variance 3). However this is ‘very false’, as shown on Figure 1.4 where we plot

the density function and cumulative distribution function (CDF) of S (obtained through

simulations) against that of a Normal(µ = 0, σ2 = 3). We note that the distribution of

S is rather unusual. Indeed, it is asymmetrical (with a high peak followed by a smaller

‘bump’) and hence very far from a Normal.
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Figure 1.4: Density and CDF of S against that of a Normal(µ = 0, σ2 = 3)

Examples 1.2 and 1.3 are toy examples, involving only three random variables (or ‘risks’),

and one might think that such ‘odd behaviour’ would not happen for a larger pool of

risks. This intuition is however challenged by the fact Central Limit Theorems (CLTs)

(and many other results involving large numbers of random variables) can also be violated

under pairwise independence (the particular topic of CLTs will be treated in great detail

in Chapters 5 and 6). That is to say, the unusual behaviour seen in those examples is not

caused by the small sample size. Rather, it is caused by the fundamental difference be-

tween pairwise and mutual independence, and we will explore such difference furthermore

throughout this thesis.
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1.6 Statement of contributions

In previous sections, we have seen that accurately capturing the (possible) dependence

between risks (in a variety of different contexts) is an increasingly relevant area of actuarial

research. We have also reviewed some important flaws of the famous correlation coefficient

(which has been, and still is, broadly used in risk models). Moreover, we established

that the independence of all pairs of random variables in a set does not guarantee their

mutual independence. This means that many typical dependence models which rely on the

characterisation of dependence via pairs can potentially miss some forms of dependence.

We have abbreviated as ‘PIBD’ the phrase ‘pairwise independent but still dependent’, and

we will frequently use this abbreviation throughout the remainder of this thesis.

We now briefly summarise the main contributions this thesis makes, by chapter.

- Chapter 3. We provide new tools to visualise dependence, which are especially suited

to PIBD data. We also present many theoretical examples (some of them new) of

PIBD random variables and use our visualisation tools to better understand them.

- Chapter 4. We prove that many common dependence models do not allow for PIBD

observations, and we show that many results routinely used in actuarial studies and

relying on the independence assumption are not valid under sole pairwise indepen-

dence. Those proofs are, to our knowledge, new.

- Chapter 5. We construct a new sequence of pairwise independent random variables

(with arbitrary margins) for which a CLT does not hold. We also derive explicitly the

distribution of the standardised mean of that sequence. This allows us to illustrate

the extent of the ‘failure’ of a CLT for PIBD variables. We conduct an analysis of

a parameter (which we call ‘r’) arising in the asymptotic distribution of the sample

mean of our sequence. This analysis shows that r is a measure of tail-heaviness. We

note some of the content of Chapter 5 has been published, see Avanzi et al. (2021).

- Chapter 6. We propose a general methodology to construct dependent K-tuplewise

independent (K ≥ 2 an integer) sequences of random variables with arbitrary mar-

gins. For the case K = 3, we use this methodology to derive new explicit examples

of triplewise independent sequences for which no CLT hold. We note the content of

this chapter has been published, see Boglioni Beaulieu et al. (2021).

To give further motivation for this thesis (and before arriving at our original contributions),
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we will survey in Chapter 2 some important areas within actuarial research where the

modelling and characterisation of dependence is essential. We will also review existing

results around the difference between pairwise and mutual independence.
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CHAPTER 2

CHALLENGING THE

INDEPENDENCE ASSUMPTION:

LITERATURE REVIEW
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2.1 Overview

It is traditionally assumed in many actuarial models that risks are mutually independent

of each other. However, and as motivated earlier in Chapter 1, in the last few decades

many streams of actuarial literature have emerged from the realisation that independence

is not always an appropriate assumption. It has also been recognised that dependencies

between risks can take many complex forms and that pairwise correlations are not always

sufficient to capture such dependencies. It is difficult to give an exhaustive summary of all

those streams of literature, but in this section we will give an overview of some important

ones. More precisely:

• In Section 2.2, we provide essential definitions about independence and dependence.

• In Section 2.3, we review the topic of risk aggregation for the purpose of setting

insurance companies’ capital requirements (we especially review the dependence as-

sumptions underlying such aggregation methods). This is also a topic we will revisit

in Section 4.2.2.

• In Section 2.4, we review important models and settings of actuarial science where

independence has traditionally been assumed, along with recent efforts made to relax

this assumption.

This literature review serves a number of purposes:

• To highlight that the concern around possible dependence is at the forefront of

many new developments in actuarial science, and in a large breadth of different

applications.

• To show that the way dependence is modelled is very varied and increasingly sophis-

ticated.

• To highlight that it is often the case that the models used do not allow for the

possibility of PIBD. I.e., within those models, independence by pairs is equivalent

to mutual independence (which is not true in general).

In Section 2.5 we review some literature on the difference between pairwise and mutual

independence (which is the central theme of this thesis), also highlighting gaps and where

this thesis makes original contributions. Lastly, we briefly cover the topic of ‘independence

tests’ in Section 2.6 and 2.A.
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2.2 Definitions

The literature review (and the rest of this thesis) will make use of some concepts we prefer

to define now in a separate section. The reader could skip this section and refer back to

it if/when necessary.

2.2.1 Independence

We start by stating a few classical definitions about ‘independence’, since this is such a

fundamental concept for this thesis. Those can be found in most probability textbooks.

We use Resnick (1999) as our main reference.

We first note that the independence of random variables is typically defined via the inde-

pendence of their generated σ-fields, which is itself defined by the independence of events

in those σ-fields. Hence, we start by recalling the definition of independent events.

Definition 2.1 (Resnick (1999), Definition 4.1.2). Let (Ω,F ,P) be a probability space.

The events A1, . . . , An ∈ F , (n ≥ 2) are independent if

P

(⋂
i∈I

Ai

)
=
∏
i∈I

P(Ai), for all finite I ⊂ {1, . . . , n}.

In words, the probability of an intersection of independent events is equal to the product of

all events’ probabilities. Next, we use this definition to define the independence of classes.

If Ω is a sample space, we call a class of Ω any collection of subsets of Ω. Said otherwise,

a class is any collection of events in Ω. Obviously, any σ-field of Ω is then a class of Ω.

Definition 2.2 (Resnick (1999), Definition 4.1.3). Let (Ω,F ,P) be a probability space,

and let Ci ⊂ F , i = 1, . . . , n be classes of Ω. The classes Ci are independent if for any

choice of A1, . . . , An, with Ai ∈ Ci, i = 1, . . . , n, we have that the events A1, . . . , An are

independent (in the sense of Definition 2.1).

Definition 2.2 defines the independence of a finite number of classes, and is next extended

to the case of an infinitely large number of classes.

Definition 2.3 (Resnick (1999), Definition 4.1.4). Let T be an arbitrary (possibly infinitely

large) index set. The classes Ct, t ∈ T are independent if for each finite I, I ⊂ T , {Ct, t ∈

I} is independent (in the sense of Definition 2.2).
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We next turn to the (mutual) independence of random variables. If X is a real-valued

random variable defined on a probability space (Ω,F ,P), we denote by σ(X) ⊂ F the

σ-field generated by X, i.e.,

σ(X) = {[ω ∈ Ω : X(ω) ∈ A], A ∈ B(R)},

where B(R) denotes the Borel σ-field. Of course, σ(X) is a class of Ω, and we are ready

to state the definition of (mutually) independent random variables.

Definition 2.4 (adapted from Resnick (1999), Definition 4.2.1). Let {Xt, t ∈ T} be a

collection of random variables defined on a probability space (Ω,F ,P), where T is an

index set (possibly infinitely large). Those random variables are mutually independent if

{σ(Xt), t ∈ T} are independent σ-fields (in the sense of Definition 2.3).

Definition 2.4 is somehow technical, and we next state a theorem which gives an alternative

(and arguably more intuitive) characterisation of independent random variables, in terms

of their cumulative distribution functions.

Theorem 2.1 (Resnick (1999), Theorem 4.2.1). A collection of random variables {Xt, t ∈

T} indexed by a set T , is mutually independent if and only if for all finite J ⊂ T ,

FJ(xt, t ∈ J) =
∏
t∈J

P[Xt ≤ xt], ∀xt ∈ R,

where FJ denotes the joint distribution function of the random variables {Xt, t ∈ J}.

In words, a finite collection of random variable is mutually independent if its joint distri-

bution function is equal to the product of its marginals’ distribution functions. An infinite

collection of random variables is mutually independent if any finite subset of variables in

this collection is made of (mutually) independent variables.

In the case of discrete random variables, their mutual independence can also be charac-

terised via their probability mass functions, as we state in the next theorem.

Theorem 2.2 (Resnick (1999), Corollary 4.2.2). Let X1, . . . , Xk be discrete random vari-

ables with a countable range R. They are mutually independent if and only if

P[Xi = xi, i = 1, . . . , k] =
k∏
i=1

P[Xi = xi],

for all xi ∈ R, i = 1, . . . , k.
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Finally, we define the notion of ‘pairwise independence’ (Definition 2.5), which is a weaker

condition than ‘mutual independence’. In words, pairwise independence simply means

that all pairs of variables in a collection are independent.

Definition 2.5. Let {Xt, t ∈ T} be a collection of random variables defined on a probability

space (Ω,F ,P), where T is an index set (possibly infinitely large). Those random variables

are pairwise independent if any two of them are independent, i.e., if for any t1 ∈ T , t2 ∈ T ,

t1 6= t2, σ(Xt1) and σ(Xt2) are independent σ-fields.

Note that in the literature, ‘mutual independence’ is often called just ‘independence’. Since

our purpose is to highlight the difference between ‘pairwise’ and ‘mutual’ independence,

here we have used (and will keep using) the term ‘mutual independence’.

2.2.2 Copulas

Copulas have become a very popular tool in dependence modelling, and they will be

mentioned often in this thesis. Hence, we find useful to place here a few fundamental

definitions and theorems about copulas. We take them from McNeil et al. (2015, Chapter

7).

Definition 2.6 (Copula). A d-dimensional copula is a cumulative distribution function on

[0, 1]d with standard uniform marginal distributions. We often denote such a distribution

function C(u) = C(u1, . . . , ud).

The famous Sklar’s Theorem shows that any multivariate CDF ‘contains’ a copula, and

also that multivariate CDFs with specific margins can be constructed from any given

copula.

Theorem 2.3 (Sklar’s Theorem). Let F be a joint distribution function with margins

F1, . . . , Fd. Then, there exists a copula C : [0, 1]d → [0, 1] such that, for all x1, . . . , xd in

R̄ = [−∞,∞],

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). (2.2.1)

If the margins are continuous, then C is unique; otherwise C is uniquely determined on

RanF1×RanF2×. . .×RanFd, where RanFi = Fi(R̄) denotes the range of Fi. Conversely,

if C is a copula and F1, . . . , Fd are univariate distribution functions, then the function F

defined in (2.2.1) is a joint distribution function with margins F1, . . . , Fd.

For a random vector X with continuous margins, it then makes sense to speak of ‘the’
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copula of X (since it is unique), see the next definition.

Definition 2.7 (Copula of F ). If a random vector X has joint CDF, F , with con-

tinuous marginal distributions F1, . . . , Fd, then the copula of F (or X) is the CDF of

(F1(X1), . . . , Fd(Xd)).

An important concept in actuarial science is that of ‘comonotonicity’, as it corresponds to

perfect positive dependence, see Dhaene et al. (2002b) and Dhaene et al. (2002a) for two

classical articles on the topic. A copula-based definition of comonotonicity is as follows

(again taken from McNeil et al., 2015).

Definition 2.8 (Comonotonicity). The random variables X1, . . . , Xd are said to be comono-

tonic if they admit as copula de Fréchet upper bound, i.e., the copula

C(u1, . . . , ud) = min(u1, . . . , ud).

The following proposition makes clearer why comonotonicty corresponds to perfect positive

dependence.

Proposition 2.1. Random variables X1, . . . , Xd are comonotonic if and only if

(X1, . . . , Xd)
d
= (v1(Z), . . . , vd(Z))

for some random variable Z and increasing functions v1, . . . , vd.

Hence, if the variables X1, . . . , Xd represent ‘risks’, comonotonicity means that “there is

a single source of risk and the comonotonic variables move deterministically in lockstep

with that risk” (McNeil et al., 2015, p. 236).

For two random variables X1, X2, we can also define a concept of ‘perfect negative depen-

dence’, called ‘countermonotonicity’, as formalised in the next definition.

Definition 2.9 (Countermonotonicity). Two random variables X1 and X2 are counter-

monotonic if they have as copula the Fréchet lower bound, i.e., the copula

C(u1, u2) = max(u1 + u2 − 1, 0).

Again, we can better see why this corresponds to perfect negative dependence with an

alternative characterisation, given in the next proposition.
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Proposition 2.2. Random variables X1 and X2 are countermonotonic if and only if

(X1, X2)
d
= (v1(Z), v2(Z))

for some random variable Z with v1 increasing and v2 decreasing, or vice versa.

That is to say, Z is the unique source of randomness (or ‘risk’), and since X1 increases

with Z and X2 decreases with Z (or vice versa), X1 and X2 always move in opposite

directions. Lastly, note that this concept of countermonotonicity does not generalise to

more than two random variables.

2.2.3 Characteristic functions

The characteristic function of a random variable (or random vector) is a mathematical

tool which will be especially useful for us in Chapters 5 and 6, see the next two definitions.

Definition 2.10. Given a random variable X, its characteristic function is defined as

ϕX(t) = E[exp(itX)] = E[cos(tX)] + iE[sin(tX)], t ∈ R,

where i =
√
−1 is the imaginary number.

If X is rather a random vector, its characteristic function is defined in an analogous way

(using the inner product between vectors).

Definition 2.11. Given a random vector X := (X1, . . . , Xd)
′ of size d, its characteristic

function is defined as

ϕX(t) = E[exp
(
it′X

)
] = E[cos

(
it′X

)
] + iE[sin

(
it′X

)
], t = (t1, . . . , td)

′ ∈ Rd,

where t′X represent the usual inner product between vectors t and X, i.e., t′X =
∑d

j=1 tjXj.
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2.3 Impact of dependence assumptions on Capital Required

Setting dependence (or independence) assumptions between risks is a crucial step in the

establishment of regulatory capital requirements for insurance companies. This section

reviews this important topic, where we will discuss relevant regulatory rules, as well as

recent actuarial literature.

2.3.1 Problem formulation

In most jurisdictions, regulators require insurance companies to hold certain minimal levels

of capital. As described in Tang and Valdez (2009):

From the insurer’s perspective, the purpose of capital is to provide a financial

cushion for adverse situations when its insurance losses exceed or asset returns

fall below the levels expected. This cushion further enhances the insurer’s

ability to continue paying claims and in most instances, to continue writing

new business even under unfavorable financial circumstances.

To formulate this mathematically, assume X := (X1, . . . , Xd) are d random variables

which represent the potential losses an insurance company will incur over a fixed period

of time, for d different risk categories (e.g., losses for different lines of business or different

subsidiaries of the company). The total capital required at the company level is often set

to be a risk measure ρ(·) on

S = X1 + · · ·+Xd, (2.3.1)

the aggregated loss. For an overview of this topic, one can review Dhaene et al. (2005)

or McNeil et al. (2015, Chapter 8) and references therein. We note that, since the Xi are

potential losses, bigger values of Xi equate to worse results.

The function ρ(·) is often a translation invariant risk measure ρ(·) computed on S. It

maps a random risk S to a real number that represents the ‘riskiness’ of S. Many choices

of risk measures are possible (see Dhaene et al., 2006, for a good review of the most

common risk measures). The Value-at-Risk (VaR) is the most used in the insurance

sector (Abbasi and Guillen, 2013; Bernard and Vanduffel, 2015), and it is also common in

the banking/financial sector (Ziegel, 2016). The Value-at-Risk at level α (VaRα) is simply
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the α-quantile of the distribution (call it FS) of the risk S, i.e.,

VaRα(S) = inf{t ∈ R : FS(t) ≥ α}. (2.3.2)

Remark 2.1. For insurance applications where S in an aggregate loss (hence a larger

S is worse) VaR would be evaluated for values of α close to 1. For instance, Solvency

II prescribes the use of α = 0.995 (EIOPA, 2014). Then, Value-at-Risk has a simple

interpretation: it is the amount of capital needed to have a probability of at least 99.5%

that losses will not exceed capital (in a given year).

Remark 2.2. Another very common risk measure is the Tail Value-at-Risk (TVaR), which

we define later, see Equation (2.3.6). A good discussion on some advantages of TVaR can

be found in Emmer et al. (2015).

It is obvious that any dependence between the X’s in (2.3.1) will affect the distribution

of S, and hence the Capital Required ρ(S). However, it is usually difficult to specify a

complete model for the distribution of X1, . . . , Xd (including both the marginals of the

X’s and the dependence between them), such that we can extract the distribution of S

precisely. Therefore, simplified risk-aggregation rules are often used instead.

Arguably the most used rule to compute the Capital Required as function of d ‘individual’

Capitals Required, call them CR(Xi), is the so-called ‘standard formula’ (otherwise known

as the correlation adjusted summation formula see, e.g., McNeil et al., 2015, p. 300). This

formula reads

CR

(
d∑
i=1

Xi

)
=

√√√√ d∑
i=1

d∑
j=1

ρij CR(Xi) CR(Xj). (2.3.3)

Where ρij usually denotes the correlation between risks Xi, Xj (i, j = 1, . . . , d). This

formula is convenient because, as long as not all correlations are equal to 1, it automat-

ically induces a diversification benefit (in the sense of Equation 1.2.1). Furthermore, it

results in a diversification benefit which is function only of the standalone capitals and

the correlations between the risks.

However, in most cases formula (2.3.3) is only an approximation of the ‘real’ risk measure

ρ(S). Indeed, from Proposition 8.29 in McNeil et al. (2015), we know that this formula

gives the correct ‘global’ risk measure of S =
∑d

i=1Xi only if the joint distribution of such

risks is elliptical. But this ‘ellipticity’ assumption is quite strong, and questionable for
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insurance and finance applications. This opinion is shared by many authors, e.g. McNeil

et al. (2015, p.301): “[clearly] the elliptical assumption is unlikely to hold in practice”,

Embrechts et al. (2014): “[u]nfortunately, and this in particular in moments of stress, the

world of finance may be highly non-elliptical”, or Scherer and Stahl (2021): “the class of

elliptical distributions is not compatible with the skewed distribution of typical insurance

risks such as NatCat and credit default, to name but a few. In this respect, the class

of elliptical distributions is not compatible with the empirical and epistemic (contextual)

knowledge about insurance risks”.

Hence, there is no guarantee that Equation (2.3.3) would yield a ‘correct’ required cap-

ital. Nonetheless, this formula is used in many regulatory frameworks (which, perhaps,

contributes to its popularity). We next review some of those regulatory frameworks.

Remark 2.3. The standard formula (2.3.3) has another obvious flaw (which, given the

topic of this thesis, is of special interest to us), in that it cannot distinguish between

pairwise and mutual independence. Indeed, if the risks X1, . . . , Xn are all pairwise inde-

pendent, then ρij = 0 for all i 6= j. Hence, we would have that in both the cases of mutual

and pairwise independence, the formula would set the CR as

CR =

√√√√ d∑
i=1

CR(Xi).

Remark 2.4. It seems that, in practice, building correlation matrices between risk cate-

gories often relies on ‘informed guesswork’ (see, e.g. Avanzi et al., 2018). For example,

Avanzi et al. (2016c) mention that in the establishment of risk margins, the Australian

industry “frequently relies” on correlations matrices found in Bateup and Reed (2001) or

Collings and White (2001), which are “based largely on the judgement of a small number

of actuaries”.

2.3.2 Regulatory frameworks

The importance of dependence between large categories or risks is recognised by regulators

of the insurance industry around the world, e.g., EIOPA (European Insurance and Oc-

cupational Pensions Authority) in the European Union or APRA (Australian Prudential

Regulation Authority) in Australia. Indeed, under many existing legislations, insurance

companies must assume some level of dependence between business segments and/or risk

categories in the calculation of their capital requirements, usually via an aggregation rule
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of the type given by the ‘standard formula’ (2.3.3).

For example, in Australia the general insurance prudential standard on ‘Capital Adequacy:

Internal Model-based Method’ (GPS113, 2019) states:

In combining components of risk, the model must make appropriate allowance

for correlation between risks, particularly correlations in the tail of distribu-

tions. A regulated institution wishing to incorporate diversification assump-

tions in respect of operational risk must demonstrate an adequate process for

estimating dependencies (particularly for extreme losses) and must apply con-

servatism in its assumptions that is commensurate with the uncertainty of

those assumptions.

Furthermore, the general insurance prudential standard on ‘Capital Adequacy’, (GPS110,

2019) gives an explicit formula for the ‘aggregation benefit’ between asset risk and insur-

ance risk, which is

Aggregation benefit = A+ I −
√
A2 + I2 + 2× correlation×A× I (2.3.4)

where A is the total capital required to cover ‘asset risk’, (broadly speaking the combi-

nation of market and credit risk) and I is the total capital required to cover insurance

risk. The correlation assumed here between A and I is set to be 20% “for all insurers

except lenders mortgage insurers” and “50 per cent for lenders mortgage insurers”. This

formula is analogue to formula (2.3.3), only it applies to just two broad categories of risks.

The implied assumption made is however the same, that correlation aptly characterises

dependence between risks, at least in the sense that it determines what the diversification

benefit should be.

To give another example, Canadian regulation on “Canadian property and casualty in-

surance companies that are not mortgage insurance companies”, established by the Office

of the Superintendent of Financial Institutions (OSFI) justifies a ‘diversification credit’ in

the following manner (OSFI, 2019):

Because losses arising across some risk categories are not perfectly correlated

with each other, a company is not likely to incur the maximum possible loss at

a given level of confidence from each type of risk simultaneously. Consequently,

an explicit credit for diversification is permitted between the sum of credit and

market risk requirements[.]
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This diversification formula is exactly the same as in the Australian regulation, but with

a correlation set at 50%.

Another prominent example is Solvency II (the regulatory framework of the insurance

business in the European Union), which explicitly uses the standard formula (Bølviken

and Guillen, 2017). In a report by the European Insurance and Occupational Pension

Authority (EIOPA, 2014) about the main assumptions of Solvency II, we read:

The underlying assumptions for the correlations in the standard formula can

be summarised as follows:

• The dependence between risks can be fully captured by using a linear

correlation coefficient approach.

• Due to imperfections that are identified with this aggregation formula

(e.g., cases of tail dependencies and skewed distributions) the correlation

parameters are chosen in such a way as to achieve the best approximation

of the 99.5% VaR for the overall (aggregated) capital requirement.

Hence, we can see that Solvency II recognises the limits of blindly using the standard

formula. Within Solvency II, there is also the possibility for insurance companies to deviate

substantially from the standard formula and instead use an ‘internal model’ (see Eling

and Jung, 2020, for a discussion), which nonetheless must be approved by the regulator.

We note that this possibility of internal models opens the door to more ‘sophisticated’

dependence modelling (some common dependence models for a fixed number of risks are

reviewed in Section 2.4.1).

That said, one needs to be careful, as picking the ‘wrong’ dependence assumption can have

a substantial impact on the Capital Required of an insurance company. Tang and Valdez

(2009) provide a detailed simulation study on the sensitivity of capital requirements to the

choice of copula, and conclude that “the choice of copula has a dramatic effect on both

the capital requirement and diversification benefit for a multi-line insurer”.

Moreover, it can be difficult to choose and/or fit a specific multivariate model for X.

As Bernard et al. (2014) argue: “there are computational and convergence issues with

statistical inference of multidimensional data, and the choice of multivariate distributions

is quite limited compared to the modeling of marginal distributions”. Instead, many

authors have derived worst-case bounds on risk measures on S in (2.3.1) when only partial

dependence information is known. This topic of research is commonly referred to as ‘risk
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aggregation under dependence uncertainty’, and we review it in some detail in the next

section.

2.3.3 Risk aggregation under dependence uncertainty

A recent stream of literature is interested in finding lower and upper bounds for risk

measures (especially for Value-at-Risk) on a sum of dependent risks S = X1 + · · · + Xd

when the marginals of the X’s (and/or their dependence structure) are not fully known.

Deriving such bounds is a “natural way to measure model uncertainty” (Puccetti et al.,

2017), since they indicate the range of possible values for the risk measure when only

partial information about the risks (and their dependence) is known. Embrechts et al.

(2013) proposed what they called the Rearrangement Algorithm (RA) to approximate

bounds on VaRα(S) when the marginal distributions of the risks are known but their

dependence structure is totally unspecified. Bernard et al. (2017a) note that

So far, numerical experiments have shown that the RA presents very good

accuracy. However, the gap between upper and lower VaR bounds is wide, a

feature that can only be explained by the nonuse of dependence information.

This means we might obtain an upper bound on the VaR which is very high, making it

unrealistic for a company to hold as much capital. That said, it may be overly pessimistic

to assume nothing at all is known about the dependence structure of the risks. Hence,

some authors have suggested to incorporate some information about dependence in the

derivation of bounds for the VaR. For example, Bernard et al. (2017a) derive bounds in

the case the variance of S is known to be below a certain level s2. Defining the upper

VaR, i.e.,

VaR+
α (S) = sup{t ∈ R : FS(t) ≤ α}, (2.3.5)

as well as the Tail Value at Risk (another popular risk measure):

TVaRα(S) =
1

1− α

∫ 1

α
VaR+

u (S)du, (2.3.6)

and finally the Left Tail Value at risk,

LTVaRα(S) =
1

α

∫ α

0
VaRu(S)du, (2.3.7)
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their main result (Theorem 5) is that for α ∈ (0, 1), Xi ∼ Fi (i = 1, 2, . . . , d) if Var[S] ≤ s2

then

max

(
µ− s

√
1− α
α

,A

)
≤ VaRα(S) ≤ min

(
µ+ s

√
α

1− α
,B

)
. (2.3.8)

(where µ = E[S], A =
∑d

i=1 LTVaRα(Xi) and B =
∑d

i=1 TVaRα(Xi)). Here, perfect

knowledge of all the marginal distributions Fi, i = 1, . . . , d is assumed. Unsurprisingly,

we see that as the bound s2 on the total variance decreases (indicating we have more

information about the dependence) the bounds on the VaR become tighter.

Remark 2.5. We note here that, if the risks X1, . . . , Xd are assumed to be pairwise

independent (and with known margins), then the variance of S is known exactly. Hence,

the results in Bernard et al. (2017a) can be used indirectly to obtain (some) bounds on the

VaR of S for the case where the risks are PIBD (though these bounds would not be sharp).

Many other articles investigated the question of deriving bounds on risk measures in a

variety of setting where partial dependence information is included. Bernard and Vanduffel

(2015) argue that in practice one often fits a multivariate model to a sample collected from

the d risks, but that this model cannot be ‘trusted’ on the whole sample space Rd. Hence,

they propose to split Rd into two (disjoint) subsets: the ‘trusted’ region (the one for which

we assume the multivariate model is correct) and the ‘untrusted’ region (the one for which

we are not sure the multivariate model is correct). These authors obtain new lower and

upper bounds on the Value-at-Risk in this setting.

Bernard et al. (2016) investigate what happens if we do not have perfect knowledge of the

marginals, but instead we have knowledge about the first few moments of the aggregated

risk S. They argue that “in practice, loss statistics may only be available at the portfolio

level, or may not be rich enough to derive the marginal distributions of the risks involved”.

Then, they derive upper and lower bounds on the VaR (as well as TVaR), for the case

where we either know with precision the first few moments of S and for the case where we

have upper bounds on these moments.

Puccetti et al. (2016) provide an upper bound on the VaR of S when marginals are fixed

and partial dependence information is known, in the form of positive dependence on a

subset of the domain of the distribution function of the joint risk portfolio. Puccetti et al.

(2017) derive lower and upper bounds on the VaR of S when marginals are known and

independence is assumed between some subgroups of the risks X1, . . . , Xd.
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Bernard et al. (2017b) provide risk bounds on S for both the VaR and for convex risk

measures (e.g., TVaR), in the case where risks X1, . . . , Xd follow a partially specified factor

model. Lux and Papapantoleon (2019) derived bounds on the VaR of S when marginals are

known, along with some ‘extreme value information’ (i.e., the distribution of the minima

and maxima of some subsets of the risks X1, . . . , Xd is assumed known), as well as with

information on the copula of X := (X1, . . . , Xd), which is assumed known only on a subset

of its domain (or lying in the vicinity of a reference copula). Bernard et al. (2020) derive

bounds for the VaR, TVaR and Range Value-at-Risk (RVaR, see Section 2 of Fissler and

Ziegel, 2021, for a definition) of S when S is known to be unimodal, and the mean and

variance of S are also known. Chen et al. (2022) obtain bounds on the Value-at-Risk of a

sum S = X1 + X2 for two random risks X1, X2 which have known marginals, and when

in addition it is known that X1 ≤ X2 (almost surely).

This growing body of literature illustrates the importance of dependence information in

capital requirement calculations (and how various assumptions can have a large impact on

such requirements). To our knowledge, in this area of the literature, no results specifically

on pairwise independence have been obtained. Pairwise independence is perhaps reason-

able in certain contexts (or at least, more reasonable than mutual independence, since it is

a weaker requirement), and we will come back to this question in Section 4.2.2. For now,

we review a few more actuarial models and settings where (in)dependence assumptions

play a crucial role.
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2.4 Actuarial models where independence is often assumed

In this section, we present important models and settings in actuarial science where it has

traditionally been assumed that independence holds between certain risks. We also review

some recent attempts made to relax this assumption. We stress that the list we present is

not exhaustive, and serves to showcase the importance of (in)dependence assumptions in

actuarial science, in general (rather than be a comprehensive summary).

2.4.1 The individual risk model

The deterministic sum of n random risks within an insurance portfolio, expressed in its

most general form as

S =
n∑
i=1

Xi, (2.4.1)

(where i ∈ {1, . . . , n} represent different insurance contracts) is often referred to as the

‘Individual Risk Model’ (IRM) (see, e.g., Klugman et al., 2012, Definition 9.2). Here

Xi, i = 1, . . . , n is the total loss for contract i, and S is the total loss for the entire

insurance portfolio. It is traditionally assumed that the X’s are mutually independent

(though not necessarily identically distributed). This independence assumption (along

with knowledge of the marginal distributions) then allows one to compute the distribution

of S, and hence other quantities of interest such as the Value-at-Risk of S.

Remark 2.1. We note here that such a deterministic sum (2.4.1) has the same form

as the random sum discussed in Section 2.3. However, the IRM usually refers to the

aggregation of individual risks (at a portfolio level), not of large categories of risk as in the

previous section. What we discuss here is then the possible dependence between risks at

a much more granular level, with ‘n’ in (2.4.1) potentially very large. Another difference

with the literature cited previously in Section 2.3.3, is that here we present papers which

make use of some specific dependence models (as opposed to only using partial dependence

information).

Discussing sums of random variables (as in 2.4.1) in an insurance context, Dhaene et al.

(2002b) note that “[t]he assumption of mutual independence between the components

of the sum is very convenient from a computational point of view, but sometimes not

realistic.” Aiming at producing more realistic models, a large literature has emerged

36



where various assumptions are made about the dependence between the X’s in (2.4.1). In

this literature, the behaviour of S (particularly in its tails) is also frequently studied. We

give here a few important examples.

Bäuerle and Müller (1998) propose a model where each risk Xi is an (increasing) function

g(V,Gν , Zi) of three quantities: V is a global risk (affecting all risks), Gν is a class-specific

risk (which affects only a subset of the risks) and Zi is an individual risk.

As seen in Example 1.2, the IRM is sometimes expressed with the random variables

X1, . . . , Xn in (2.4.1) further decomposed as

Xk = IkBk, k ∈ {1, . . . , n} (2.4.2)

where each Ik is a Bernoulli random variable (equal to 1 if a claim occurs for policy

k), and where Bk is a random variable which represents the claim amount for policy k

(given a claim occurs). Again, the customary assumption is that the random variables

I1, . . . , In, B1, . . . , Bn are mutually independent, though some authors have introduced

dependence between the X’s via dependence between the I’s. For example, in a model

by Cossette et al. (2002), a single event can trigger claims for many, or even all, risks. In

another model, they introduce dependence between the I’s via copulas. Specifically, they

use the Cook-Johnson and Gumbel copulas.

Wüthrich (2003) sets the Xi in (2.4.1) to be dependent via an Archimedean copula (also

assuming they share the same continuous distribution), and then studies the tail behaviour

of the sum S. The use of Archimedean copulas is motivated as follows:

Archimedean copulas are interesting in practice because they are very easy to

construct, but still we obtain a rich family of dependence structures. Usually

they have only one parameter which is a great advantage when one needs to

estimate parameters from data.

Those results were extended by Alink et al. (2004) (who gave more explicit expressions for

the asymptotic VaR of the sum S), as well as Embrechts et al. (2009). Alink et al. (2005)

also assumed an Archimedean copula for X := (X1, . . . , Xn) and obtained expressions for

the asymptotic TVaR of S. More results in this same setting (IRM under an Archimedean

copula) were provided by Chen et al. (2012). Note that, given their importance, we will

discuss Archimedean copulas in more detail in Section 4.3.2 (and, in particular, we will

see that they do not allow for PIBD random variables).
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Barbe et al. (2006) extended the results of Wüthrich (2003) and Alink et al. (2004) beyond

the case where X has a Archimedean copula. In their setting, each Xk is regularly varying

with index −β < 0, i.e.,

lim
t→∞

P[Xk > xt]

P[Xk > t]
=

1

xβ
, x > 0,

with the vector X := (X1, . . . , Xn) also multivariate regularly varying of index −β <

0 (see Resnick, 2004, Theorem 1, for different characterisations of multivariate regular

variation). Some of the results in Barbe et al. (2006) were further extended by Kortschak

and Albrecher (2009) to the case of non-identically distributed X’s dependent via an

extreme value copula.

Furman and Landsman (2005) derive explicit expressions for the TVaR of S, in the specific

scenario where X has a multivariate Gamma distribution (see their Definition 1 for a

definition of the multivariate Gamma). Those results were later extended by Furman and

Landsman (2008) to the case where X has a multivariate Tweedie distribution.

Many other results of this sort have been derived, whereX is assumed dependent according

to specific models, for example a Farlie-Gumbel-Morgenstern copula (Cossette et al., 2013),

Sarmanov distribution (Hashorva and Ratovomirija, 2015), multivariate Pareto (Sarabia

et al., 2016), phase-type distribution (Furman et al., 2021) or yet again Archimedean

copula (Sarabia et al., 2018; Cossette et al., 2018).

Remark 2.6. Part of the appeal of Archimedean copulas is that they can usually be de-

fined in any dimension, which is essential when modelling dependence between the risks

of an insurance portfolio. We also note that Archimedean copulas always induce an ex-

changeable dependence structure. That is, for variables having an Archimedean copula, the

dependence between any subset of those variables (taken in any order) is identical. While

‘exchangeability’ is a less restrictive (hence, more realistic) alternative to mutual indepen-

dence, it is still quite limiting in the types of dependence it allows. A flexible and popular

alternative for building multivariate copulas (possibly in high dimension) is the so-called

pair-copula construction (see, e.g,. Aas et al., 2009), which we will review in Section 4.3.3.

We note that we are not aware of any actuarial papers discussing the possibility of PIBD

sums of random variables (nor did we find papers discussing this possibility in other fields,

outside probability and statistics). This will be a topic we will treat in Sections 4.2.1 and

4.2.2, where we will see that such sums can behave much differently than under mutual

independence (this point was already illustrated in the Introduction, recall Examples 1.2

and 1.3). We will also see in Chapters 5 and 6 that, in the limit, sums of PIBD variables
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are not necessarily Gaussian (as they would be under mutual independence via Central

Limit Theorems).

2.4.2 The collective risk model

The so-called ‘Collective Risk Model’ (CRM) also plays an important role in loss modelling.

It is a model for “the amount paid on all claims occurring in a fixed time period on a defined

set of insurance contracts” (Klugman et al., 2012, p. 138). The total amount paid (or

‘aggregate losses’) incurred by an insurer is expressed as

S =

N∑
i=1

Xi, (2.4.3)

where N is the (random) number of claims incurred, and for i ∈ {1, . . . , N}, Xi is the ith

claim payment amount. Traditionally, it was assumed under this model that:

• Conditionally on N , the random variables X1, . . . XN are mutually independent (and

identically distributed).

• The (common) distribution of those X’s does not depend on N .

• The distribution of N does not depend on the values of the X’s.

Those are traditional assumptions. However, often motivated by empirical findings, many

authors have recently proposed to relax those assumptions in various ways.

Czado et al. (2012) introduce dependence by using a bivariate Gaussian copula between

the joint distribution of the claim count N and an individual claim size X. Krämer et al.

(2013) extend this work by allowing the use of bivariate copulas other than the Gaussian.

Vernic et al. (2022) recently proposed to use a bivariate Sarmanov distribution (see, e.g.,

Ting Lee, 1996, for details on the Sarmanov distribution) to model the dependence between

N and the average claim amount X̄.

Another approach to introduce dependence in the CRM is to use the claim count N as a

covariate when modelling the claim sizes X1, . . . , XN . For instance, Frees et al. (2011) use

a mixed linear regression model where log(X) (for X a claim size) depends linearly on N

(conditional on N being non-zero). A more general model is proposed in Garrido et al.

(2016) who introduce dependence between N and the X’s through a Generalised Linear

Model (GLM) where N is one of the covariates which affects the expectation of X̄, i.e.,

E[X̄|N, x] = g−1(xβ + θN),
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where g is a link function and x = (x1, . . . , xp) are a set of covariates.

Others have proposed alternative modelling of dependence between frequency and severity,

and this seems to be an active area of research, see Cossette et al. (2019), Lee and Shi

(2019) Jeong and Valdez (2020), Oh et al. (2021) for some recent developments. Lastly,

for results of the type discussed in Section 2.3.3 (i.e., risk aggregation under dependence

uncertainty), but under the framework of the CRM, see Liu and Wang (2017).

2.4.3 Ruin theory

Ruin theory is an important topic of actuarial research. The foundational model within

this field is the Cramér–Lundberg model (see, e.g., Schmidli, 2017, Section 5.1), which

expresses the surplus of an insurance portfolio at time t, call it R(t), as

R(t) = u+ ct−
N(t)∑
k=1

Xk, (2.4.4)

where u is the initial surplus, c is the (constant) premium rate, and N(t) is a Poisson

process (with constant rate λ) which denotes the number of insurance claims in the interval

(0, t]. The claim sizes {Xk, k ≥ 1} are i.i.d. positive random variables, also independent

of the process N(t). We note that the compound sum in (2.4.4) resembles the CRM in

(2.4.3), only now it is a stochastic process. We also note that the more general case where

N(t) is any renewal process (not necessarily Poisson) is called the Sparre Andersen model.

Within model (2.4.4), a quantity of interest is the probability of ruin, defined as

ψ(u) = P[R(t) < 0 for some t > 0]. (2.4.5)

Yet again, many authors have remarked that, in this context, “the independence assump-

tion can be too restrictive in practical applications and it is natural to look for explicit

formulas for ψ(u) and related quantities in the presence of dependence among the risks”

(Albrecher et al., 2011). We give here a few examples of such developments.

Albrecher and Boxma (2004) introduce dependence by letting the distribution of the time

between two claim occurrences depend on the previous claim size. More precisely, they

let ‘thresholds’ {Tk, k ≥ 1} be i.i.d. random variables (also independent of the claims

Xk), and then if a claim Xk is larger than threshold Tk “the time until the next claim is

exponentially distributed with rate λ1, otherwise it is exponentially distributed with rate

λ2”. That is to say, the rate of claim arrivals can dependent on the size of a previous claim.
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The authors then derive exact formulas for the ruin probability (2.4.5) in this setting.

Many other authors proposed models with dependence between interclaim arrival times

and claim sizes. For example, Boudreault et al. (2006) let the distribution of a claim X

depend on the time elapsed since the last claim occurred (call this time W ), as follows:

fX|W (x) = e−βW f1(x) + (1− e−βW )f2(x),

where f1, f2 are two arbitrary density functions. This can be understood as follows. If

we expect that, for example, a longer elapsed time until the next claim is more likely to

generate a larger next claim, we could choose f2 to be ‘riskier’ (e.g., with a heavier tail)

than f1.

Albrecher and Teugels (2006) introduce more general dependence between interclaim ar-

rival time and the subsequent claim size. Indeed, they model such dependence with an

arbitrary copula (and also in the more general case where the process N(t) in (2.4.4) is

a renewal process). They obtain asymptotic results for both finite-time and infinite-time

probabilities or ruin.

We note here that such type of dependence (between interclaim time and claim size) is

by nature bivariate. A different type of dependence (possibly of a multivariate nature), is

that of dependence between claim sizes. For example, Albrecher et al. (2011) formulate a

model where the claims sizes {Xk, k ≥ 1} are dependent as follows: for each n,

P[X1 > x1, . . . , Xn > xn|Θ = θ] =
n∏
k=1

e−θxk , (2.4.6)

where Θ is itself random. That is to say, given Θ = θ, the Xk’s are conditionally in-

dependent and distributed as Exponential(θ). Of course, unconditionally they are not

independent.

Remark 2.7. We note that models such as (2.4.6) are often called ‘mixture’ models. They

are part of a much broader class of models called ‘latent variable models’, which are a

classical approach to induce dependence between random variables (see, e.g., Bartholomew

et al., 2011, for a general reference on this topic).

Albrecher et al. (2011) show that the above model (2.4.6) has a dependence structure

equivalent to an Archimedean survival copula (see their Proposition 2.1). For this general

class of models, the probability of ruin ψ(u) can then be obtained explicitly. In a similar
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fashion, they also propose to let the intensity λ of the Poisson process N(t) be random.

This then makes the arrival times of the claims (rather than their amounts) dependent.

The idea of using ‘mixtures’ to introduce dependence in the Cramér–Lundberg model (or

variations of it) can be found in many other papers, see for example Constantinescu et al.

(2011) and Dutang et al. (2013), who also apply this idea to discrete-time versions of

model (2.4.4). Constantinescu et al. (2019) also introduced dependence between claim

amounts via mixing, but within the ‘compound binomial risk model’, which is a discrete-

time approximation of model (2.4.4), see, e.g., Gerber (1988).

We stress again that this review is not exhaustive, and many more authors have devel-

oped ruin theory models under some form of dependence between claim sizes and/or claim

arrival times, see, for example, Badescu et al. (2009), Cheung et al. (2010), Ignatov and

Kaishev (2012), Willmot and Woo (2012), Zhang et al. (2012), Woo and Cheung (2013),

Chadjiconstantinidis and Vrontos (2014), Heilpern (2014), Landriault et al. (2014a), Cos-

sette et al. (2015), Cheung and Woo (2016), Constantinescu et al. (2016), Avram et al.

(2016), Eryilmaz and Gebizlioglu (2017), Cheung et al. (2018), Bladt et al. (2019).

Our bottom line is that myriads authors have worked on relaxing the independence as-

sumption traditionally made in ruin theory, and in many different ways.

Remark 2.8. We note here that the ‘mixture’ approach to dependence modelling is cer-

tainly not unique to applications to ruin theory, and is a very common approach to depen-

dence modelling, in general. For example,...

2.4.4 Life insurance models

The models presented in the previous three sections (2.4.1-2.4.3) are most typically used

in general insurance. In this section, we survey articles treating dependence in the context

of life insurance. Within a portfolio of life insurance contracts, it is often assumed that

lives are independent. Or at least, this is a routine assumption one encounters in actuarial

textbooks when life insurance contracts issued on multiple lives are introduced (see, e.g.,

Gerber, 1997, Section 8.2).

This can be reasonable on some level, because people who are not related, and sampled

from a large population, would be exposed to different mortality risks. However, and as

noted by Denuit et al. (2001):

Standard actuarial theory of multiple life insurance traditionally postulates

42



independence for the remaining lifetimes in order to evaluate the amount of

premium relating to an insurance contract involving multiple lives. Never-

theless, this hypothesis obviously relies on computational convenience rather

than realism. A fine example of possible dependence among insured persons is

certainly a contract issued to a married couple.

This question of the dependence between the future lifetimes of spouses (or in general,

between two given lifetimes) is only one example of possible dependence between lives.

Though, it is an important one which has been studied extensively in the actuarial liter-

ature. The dependence modelling approaches used for this purpose are also very varied.

They include, for example, ‘extreme dependence’ via Fréchet-Hoeffding bounds (Denuit

and Cornet, 1999; Denuit et al., 2001), Markov models (Denuit and Cornet, 1999; Denuit

et al., 2001; Spreeuw and Wang, 2008), semi-Markov models (Ji et al., 2011), correlation

(Ribas et al., 2003), copulas (Frees et al., 1996; Carriere, 2000; Denuit et al., 2001; E. She-

myakin and Youn, 2006; Spreeuw, 2006; Luciano et al., 2008, 2016), bivariate Weibull

models and a semi-parametric model (Sanders and Melenberg, 2016), mixed proportional

hazards model with treatment effects (Lu, 2017) and extended Marshall–Olkin models

(Gobbi et al., 2019). Henshaw et al. (2020) also proposed to model the joint mortality

within a couple as a non-mean-reverting Cox-Ingersoll-Ross stochastic process.

Since those papers are concerned with the joint survival of two lives, the dependence im-

plied is by nature bivariate. Because this thesis is concerned with multivariate dependence

(and especially, the possibility of dependence being present even if independence by pairs

holds), we do not review those models specifically. Instead, we present in some more detail

a few multivariate models of lifetime dependencies.

Indeed, some authors have introduced models to better understand and capture the (pos-

sible) dependence between more than two lives. Motivation for this can be found, for

example, in Alai et al. (2016a), who argue

The study of lifetime dependence is highly important in actuarial science. A

positive pattern of dependence may range from exposure to similar risk-factors

among a small group of individuals (say, a couple) all the way to systematic

mortality improvements experienced by a population, and hence, the link with

longevity risk is noteworthy.

A good example of this might be workers’ compensation for members of a team (or multiple

teams) of workers in a mine. The workers are then exposed to a common risk which affects
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the health and lifetime of all of them.

For the general case of n dependent lives, Dhaene and Goovaerts (1997) studied the impact

of dependence between lives for a simplified life insurance portfolio. In their setting, each

risk X1, . . . , Xn has a (possibly different) two-point distribution, i.e., for i = 1, . . . , n,

P[Xi = 0] = pi, P[Xi = αi] = 1− pi,

where αi > 0. This represents a situation where a benefit of αi is paid if the ith person

dies during a reference period (and nothing is paid otherwise). The authors then show

that, in this setting, the type of dependence “if a person dies then all persons with lower

survival probabilities will die too” yields the riskiest portfolio (in the sense that it yields

the largest possible stop-loss premiums).

Milevsky et al. (2006) provide a simple ‘pedagogical’ example of the effect of dependence

on life insurance products. In their setting, they assume the individuals of a population

have a random probability of survival p, where p has a two-point distribution. This is

in contrast with the usual assumption that p is a deterministic quantity, and it induces

a dependence between the lives involved. Indeed, in this setting the Bernoulli variables

representing the survival of the individuals are not mutually independent. The authors

then use this example to illustrate the breakdown of the LLN for a portfolio of insurance

policies. That is: contrary to the independent case, the standard deviation of the average

insurance payment does not go to zero as the number of policies increases (hence, the

diversification benefit is compromised).

A stream of literature has also proposed specific parametric models for the joint distribu-

tion of lifetimes. For example, Alai et al. (2013) use a multivariate gamma distribution for

this purpose. They also propose estimators for the parameters of their model (which work

with possible truncation of the observed data) and assess the impact of such dependence

on the valuation of a portfolio of annuities. In their model, individuals are pooled into M

pools (each pool is made of individuals sharing common risk factors). Ti,j then denotes

the survival time of individual i ∈ {1, . . . , N} in pool j ∈ {1, . . . ,M}. The model for the

individual lifetimes is then:

Ti,j = Y0,j + Yi,j , (2.4.7)

where
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• the Y0,j follow a gamma distribution with common shape parameter γ0 and rate

parameter αj specific to pool j ∈ {1, . . . ,M}.

• the Yi,j follow a gamma distribution with shape parameter γj and rate parameter

αj , for i ∈ {1, . . . , N} and j ∈ {1, . . . ,M}.

• the Yi,j are mutually independent for i ∈ {0, . . . , N} and j ∈ {1, . . . ,M}.

We can see that Y0,j induces a systematic dependence between all lives within pool j.

However, within this model, any two lives from different pools are independent. Alai

et al. (2016b) offer a generalisation of the previous model, where instead of a multivariate

gamma distribution, a multivariate Tweedie distribution is proposed (which allows for

more flexibility). The general form of their model is given as in (2.4.7), but with all

random variables involved distributed as the more general Tweedie (rather than gamma)

distribution. They also develop parameter estimation procedures for the Tweedie model.

Alai et al. (2015) extended such estimation procedure to the case of censored observations.

Alternatively, Alai et al. (2016a) proposed to use a ‘multivariate Pareto’ distribution to

model dependent lifetimes. We note that many multivariate extensions of the Pareto

distribution have been proposed in the literature, going back at least to Mardia (1962).

The version used in Alai et al. (2016a) is simple, in that it only features two parameters

(α > 0 and σ > 0). Its joint survival function (call it F̄ ) is also given by a simple expression.

Indeed, for X = (X1, . . . , Xn) a multivariate Pareto, and x = (x1, . . . , xn) ∈ [0,∞)n, we

have

F̄X(x) =

(
1 +

∑n
i=1 xi
σ

)−α
.

Aside the fact that, in this model, risks are identically distributed, an important restriction

is that the same parameter α influences both the shape of marginal distributions and the

strength of the dependence. Indeed, reducing α both increases the correlation between

any two risks (Xj , Xk), and makes individual risks heavier-tailed.

In closing, we note that none of the multivariate models presented in this section allow

for the possibility of PIBD random variables. Said otherwise, within those models, if all

variables are pairwise independent, then they are automatically mutually independent. It

remains to be seen, however, exactly ‘how close’ those two types of independence (pairwise

and mutual) are. This will be the topic of Section 2.5, where we review some results around

this question. This will also help motivate the work done in the rest of this thesis.
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2.4.5 Dependence in other actuarial problems

The issue of dependent risks extends much beyond the settings we covered here. In closing

this section, we mention briefly two more actuarial areas where a surge of innovations

around dependence considerations recently emerged.

The first one is ‘loss reserving’, i.e., the problem for a general insurer to estimate its

total liabilities from future claims (claims yet to be paid, but arising from current or

old policies). Here, some authors aim at incorporating dependence ‘within triangles’ (i.e.,

dependence within cells of a single triangle) but also ‘across triangles’ (for different business

segments). The literature on this topic is fairly new and appears to still be growing, see,

e.g., Shi and Frees (2011), Merz et al. (2013), Happ and Wuthrich (2013), Abdallah et al.

(2015), Abdallah et al. (2016), Côté et al. (2016), Avanzi et al. (2016b), Hahn (2017),

Badounas and Pitselis (2020), Nieto-Barajas and Targino (2021), Araiza Iturria et al.

(2021) for recent developments.

Another area of research where the inclusion of dependence seems increasingly relevant is

‘optimal reinsurance’. By reinsurance, we mean the practice by which insurance companies

sometimes transfer a part of their risks to a reinsurer (in exchange for a premium). Finding

an ‘optimal’ reinsurance strategy, i.e., one that optimises a certain criterion (expected util-

ity of net profits, probability of ruin, etc.) is then an important topic of actuarial research

(see for example the book by Albrecher et al., 2017, for a general reference). As stated by

Guerra and de Moura (2021), “[i]n most research on optimal reinsurance, independence

is assumed. Indeed, for many years dependence has not been considered in research on

optimal risk transfer, possibly due to its complexity.” Papers investigating this question

under some dependence assumptions between risks are, for example, de Lourdes Centeno

(2005), Cai and Wei (2012), Cheung et al. (2014), Zhang et al. (2015), Yuen et al. (2015),

Ming et al. (2016), Liang and Yuen (2016), Bi et al. (2016), Han et al. (2019), Guerra and

de Moura (2021).
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2.5 Difference between pairwise and mutual independence

It has long been known that pairwise independence among random variables is a nec-

essary but not sufficient condition for them to be mutually independent. The earliest

counterexample can be attributed to Bernštĕın (1927), followed by a few other authors,

see, e.g., Geisser and Mantel (1962); Pierce and Dykstra (1969); Joffe (1974); Bretagnolle

and K lopotowski (1995); Derriennic and K lopotowski (2000). That said, we could only

find a few papers discussing explicitly ‘how close’ pairwise and mutual independence are,

and we present here some of their findings.

Mroz et al. (2021) investigate the flexibility of the so-called ‘simplifying assumption’ in

pair-copula constructions (also called ‘vine copulas’, see Section 4.3.3 for details). While

this is not the main topic of their paper, they provide a result on the ‘distance’ between a

specific 3-dimensional pairwise independent copula, call it C, and the mutual independence

copula (in dimension 3), call it Π3. This distance is found to be

d∞(C,Π3) = 1/8, (2.5.1)

where d∞ is the metric defined by

d∞(C1, C2) := max
u∈[0,1]n

|C1(u)− C2(u)|,

for two n-dimensional copulas C1, C2. As a point of reference, the distance between the

comonotonic copula in dimension 3 (call it M3) and Π3 is

d∞(M3,Π3) =
2

3
√

3
≈ 0.385. (2.5.2)

(This is straightforward to show: we note that for any u = (u1, u2, u3) ∈ [0, 1]3,

|M3(u)−Π3(u)| ≤ min(u1, u2, u3)−min(u1, u2, u3)3,

so we only need to maximise u− u3 for u ∈ [0, 1], which by trivial calculations yields the

result).

Equation (2.5.1) hence indicates that there can be a significant difference between pairwise

and mutual independence, but of course it is a specific result (i.e., obtained for a specific

copula, and using a specific metric).
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Nelsen and Ubeda-Flores (2012) provide more general results. Consider three pairwise

independent continuous random variables X1, X2, X3 with copula C. Then, for any u =

(u1, u2, u3) ∈ [0, 1]3, we have

S3(u) ≤ C(u) ≤ T3(u), (2.5.3)

where

S3(u) = max(u3(u1 + u2 − 1), u2(u1 + u3 − 1), u1(u2 + u3 − 1), 0),

T3(u) = min(u1u2, u2u3, u1u3, (1− u1)(1− u2)(1− u3) + u1u2u3).

Here, S3 and T3 are quasi-copulas (see, e.g., Rodŕıguez-Lallena and Úbeda-Flores, 2009, for

a definition of quasi-copulas) which improve the usual Fréchet-Hoeffding bounds. Indeed,

denote by Mn and Wn (superscripts denote dimension) the usual upper and lower bounds

(respectively) on a copula. That is, for any n-dimensional copula C and any u ∈ [0, 1]n,

Wn(u) ≤ C(u) ≤Mn(u).

Then, because for all u

W 3(u) ≤ S3(u), and T3(u) ≤M3(u),

we see that (2.5.3) constitutes a tightening of the Fréchet-Hoeffding bounds. Nelsen and

Ubeda-Flores (2012) then propose a measure to judge how significant this tightening is.

Let Q be a quasi-copula. Define

ξn(Q) =

∫
[0,1]n Q(u)du−

∫
[0,1]nW

n(u)du∫
[0,1]nM

n(u)du−
∫

[0,1]nW
n(u)du

,

so that ξn “measures how far a given n-quasi-copula Q is from Wn”. Then, because

ξ3(T3)− ξ3(S3) = 9/50,

(which is significantly smaller than ξn(Mn)−ξn(Wn) = 1), we see that, based on this met-

ric ξn, the bounds in (2.5.3) are substantially tighter than the Fréchet-Hoeffding bounds.

For the more general n-variate case, Nelsen and Ubeda-Flores (2012) present the following

result. Let X1, . . . , Xn be continuous pairwise independent random variables with copula
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C. Let Πn(u) := u1 × · · · × un be the (mutual) independence copula. Then,∫
[0,1]n |C(u)−Πn(u)|du∫

[0,1]nM
n(u)du−

∫
[0,1]nW

n(u)du
(2.5.4)

goes to 0 as n→∞. To quote directly from the authors, this means that “the normalised

L1-distance between the copula C of a vector X of pairwise independent random variables

and the copula Πn of the corresponding vector of mutually independent random variables

approaches 0 as the dimension increases”.

From this, it would seem that, as n increases, pairwise and mutual independence get more

and more similar. However, we note from (2.5.4) that the distances between C and Πn

diminishes only relative to the maximal possible distance betwen two copulas, i.e., the

denominator in (2.5.4). Using such a criteria, we also have that the distance between the

mutual independence copula Πn and Wn gets to 0 for large n. This is easy to see, as∫
[0,1]n |Π

n(u)−Wn(u)|du∫
[0,1]nM

n(u)du−
∫

[0,1]nW
n(u)du

= ξn(Πn) =
(n+ 1)!− 2n

(n!− 1)2n
, (2.5.5)

where the last equality comes directly from Nelsen and Ubeda-Flores (2012). We then

conclude that (2.5.5) converges to 0 as n → ∞. But of course, from this we cannot

conclude that, for large n, Πn and Wn are essentially the same (especially since Wn is not

even a copula, only a quasi-copula).

Likewise, the convergence of (2.5.4) to 0 is insufficient to conclude whether in a specific

context the difference between pairwise and mutual independence would be material. In

fact, many asymptotic results valid under mutual independence do not hold under pairwise

independence. A prominent example is the classical Central Limit Theorem which, in gen-

eral, does not hold for PIBD sequences. Specific examples of this can be found in Romano

and Siegel (1986, Example 5.45), Bradley (1989), Janson (1988) or Cuesta and Matrán

(1991). This will also be the topic of Chapters 5 and 6, where a more detailed literature

review on CLTs under pairwise independence (as well as new results) is provided. The

novelty in our results is that we build new sequences of pairwise independent (Chapter 5)

and triplewise independent (Chapter 6) random variables with arbitrary marginal distri-

bution, yet a known asymptotic distribution for the standardised mean of those sequences

(seen to be non-Gaussian, and heavier-tailed than a Gaussian).
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2.6 Independence tests

Lastly, we should mention that one can check ‘formally’ for dependence in a dataset via

statistical tests of independence. Developing such tests is an active topic of research in

statistics, and one we thought relevant to mention here, albeit briefly.

The problem of testing the independence between two random variables (or vectors) is not

new, and has been widely researched in the literature (for reviews, see Josse and Holmes,

2016; Tjøstheim et al., 2022). However, even powerful tests of bivariate independence

can fail to detect the types of dependence we are concerned about in this thesis (since,

for PIBD variables, there is simply no dependence to be found if only pairs of variables

are considered). To test the independence of more than two random variables at a time,

a few tests have also been proposed, e.g., Fan et al. (2017), Pfister et al. (2018), Jin

and Matteson (2018), Chakraborty and Zhang (2019) or Böttcher et al. (2019). For the

interested reader, we place in Appendix 2.A a description of some of those tests. Here, we

simply provide a general description of the statistical problem at hand.

Consider d random variables X := (X1, . . . , Xd), defined on a common probability space

(Ω,F ,P). We want a procedure to test the null hypothesis

H0 : X1, . . . , Xd are mutually independent, (2.6.1)

against the alternative

H1 : X1, . . . , Xd are not mutually independent.

We denote by X̃ := (X̃1, . . . , X̃d) a random vector with mutually independent components

and such that for every j ∈ {1, . . . , d}, X̃j
d
= Xj . That is to say, under H0, X̃ and X

have the same distribution. To test H0, many existing statistical tests rely on measuring

a certain notion of ‘distance’ between the distribution of X (call it PX) and that of X̃

(call it PX̃). That is, those tests are based on a statistical functional of the form

T (PX) = dist
(
PX ,PX̃

)
, (2.6.2)

where dist(·, ·) is some notion of distance between two multivariate distributions. Provided

that dist
(
PX ,PX̃

)
= 0 if and only if PX = PX̃ , we have that T (PX) = 0 characterises
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the mutual independence of X. Many choices of functional T are possible, and for at least

two reasons:

1. Many functions uniquely characterise the distribution PX of a random vector: its

characteristic function, its distribution function, its density function (provided it

exists), etc.

2. Many notions of ‘distance’ between two functions can be chosen.

In practice, the distribution of X is unknown, and hence the quantity T is unknowable.

From an observed i.i.d. sample of size n,

X1 = (X11, . . . , X1d), . . . ,Xn = (Xn1, . . . , Xnd), (2.6.3)

one can approximate the distributions PX and PX̃ with some empirical counterparts (call

those P̂X and P̂X̃) and obtain an empirical version of T , denote it

T̂n(X1, . . . ,Xn) = dist
(
P̂X , P̂X̃

)
.

For a predetermined level α, if T̂n exceeds itsH0 (1−α) quantile, then mutual independence

is rejected. Many different approaches to this problem are possible (e.g., different functions

characterising PX , different distances in (2.6.2), different estimators of P̂X , etc.), and hence

several different tests have been proposed in recent years, some of which are described in

Appendix 2.A.

Remark 2.9. We are not aware of any large study assessing which multivariate inde-

pendence tests perform better under specific dependence scenarios. Hence, we think it is

not obvious which test one should choose, in practice, to detect dependence for pairwise

independent variables. We also note that statistical tests, upon rejection of independence,

do not tell a story about the shape of the dependence. In this regard, adequate visualisa-

tion of the data can help. This partly motivates the next chapter of this thesis, where we

will develop not statistical tests, but visualisation tools to detect, visually, dependence in a

dataset. Those visualisation tools will be especially relevant to the case of PIBD variables.

Remark 2.10. Some statistical tests can be used to detect dependence not only between

random variables, but between random vectors, see e.g., Beran et al. (2007); Heller et al.

(2012); Fan et al. (2017); Bilodeau and Nangue (2017); Jin and Matteson (2018); Shi

et al. (2022).
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To simplify matters, let us consider the case of two vectors, X ∈ Rp and Y ∈ Rq. That is,

X is p-dimensional and Y is q-dimensional, for p, q two positive integers, and we could

write them as

X = (X1, . . . , Xp), Y = (Y1, . . . , Yq).

Testing the independence between two (or more) random vector is relevant when one is not

concerned about dependence within the components of the vectors, but rather about possible

dependence between vectors.

As a possible actuarial application, consider the Collective Risk Model (described in Section

2.4.2), where the aggregate risk is a sum of a random number N of individual ‘severities’

X1, . . . , XN . As mentioned in Section 2.4.2, the traditional assumption of independence

between N and the severities {X1, X2, . . .} is not always realistic. Such an assumption

could be checked with a statistical test of independence, testing whether the variable N

and the vector X := (X1, . . . , XN ) are dependent. We note, however, that this situation

presents an additional complexity: the size N of the vector X is not deterministic. Hence,

it is not clear whether usual tests apply here, or if a new test should be developed. This

question is left for future research.
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2.7 Summary of literature review

Along this chapter, we have seen that understanding the possible dependence between

risks is a central issue of actuarial research, and in a variety of settings. In Section 2.3,

we saw that it is common for insurance companies to establish capital requirements by

aggregating ‘standalone capitals’ (e.g., from different risk categories or business segments).

This is commonly done via the so-called ‘standard formula’ (2.3.3), which makes explicit

use of the correlations between the risks. This formula is also prescribed under regulatory

frameworks. A prominent example is Solvency II, which however also allows insurance

companies to use ‘internal models’ instead of the standard approach. This opens the door

to more ‘sophisticated’ dependence modelling.

Motivated by the fact it can be hard to fit multivariate dependence models to data, a body

of literature investigates ‘risk aggregation under dependence uncertainty’. That is, it tries

to establish how large (or small) a risk measures ρ(S) can get, for S = X1 + · · · + Xn a

sum of risks, when only partial dependence information is known. This was reviewed in

Section 2.3.3.

In Section 2.4, we reviewed some important models in actuarial science where independence

assumptions are traditionally made. We also saw that a large body of literature has

developed with the aim to relax such independence assumptions. In particular, we reviewed

the Individual Risk Model, the Collective Risk model, as well as Ruin Theory and Life

Insurance problems, and saw that the approaches developed to model dependence are

numerous and varied.

The fact that dependence modelling has become such an important topic in actuarial

research, along with the fact that little seems to be known about ‘how close’ pairwise and

mutual independence are (a question surveyed in Section 2.5) gives motivation for the

rest of this thesis. In the next chapter, we give many more examples of PIBD random

variables and develop visualisation tools to better ‘see’ this type of dependence. In Chapter

4, we investigate specific situations relevant to actuarial science where there is a material

difference between pairwise and mutual independence. In Chapters 5, we then investigate

more precisely the case of ‘Central Limit Theorems’ under pairwise independence. In

particular, we provide new instances of infinite sequences of PIBD random variables which

do not have an asymptotic Gaussian mean. In Chapter 6, we present extensions of those

results to ‘triplewise independent’ variables, and also derive a general methodology to build
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sequences of ‘K-tuplewise independent’ random variables (for arbitrary integer K ≥ 2).

This general methodology allows others to derive more examples, perhaps suiting other

purposes.
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2.A Some multivariate independence tests

In this section, we review a few recent multivariate independence tests, i.e., statistical tests

for the null hypothesis as given by (2.6.1). In what follows, we let FX(·) be the joint CDF

of X := (X1, . . . , Xd), while Fj(·) denotes the marginal CDF of Xj , for j ∈ {1, . . . , d}. For

t′ := (t1, . . . , td)
′ ∈ Rd we also denote by ϕX(t) and ϕX̃(t) the characteristic functions of

X and X̃, respectively, i.e.,

ϕX(t) = E
[
exp(it′X)

]
and ϕX̃(t) =

d∏
j=1

E [exp(itjXj)] . (2.A.1)

The Euclidean norm of a vector of real values t ∈ Rd is denoted by |t|d. For a complex

number z ∈ C, we denote its squared modulus as |z|2. Recall that |z|2 = zz̄ for z̄ the

complex conjugate of z.

Genest and Rémillard (2004) use the empirical copula process to design their tests, which

yields ‘simple’ test statistics using only the ranks of the collected sample. Those test

statistics are given by

TA,n =
1

n

n∑
i=1

n∑
k=1

n∏
j∈A

{
2n+ 1

6n
+
Rij(Rij − 1)

2n(n+ 1)
+
Rkj(Rkj − 1)

2n(n+ 1)
−

max(Rij , Rkj)

n+ 1

}
,

(2.A.2)

where Rij denotes the rank of Xij among X1j , X2j , . . . , Xnj , i.e., if Xij is the smallest

among those observations, than Rij = 1 and so on. Here A denotes any subset of the total

d variables. Therefore (2.A.2) actually defines 2d − d− 1 statistics, which can be used for

‘individual’ tests of independence, i.e., tests of independence among any particular subset

of the d variables. For instance, the test statistic T{1,2,3},n can be used to test if X1, X2

and X3 are independent. Genest and Rémillard (2004) also propose a way to combine the

p-values of all those statistics, which yields a more powerful test of mutual independence

among all the d variables.

Ghoudi et al. (2001) proposed an independence test defined for continuous random vari-

ables. This test was generalised to random vectors (with possibly discrete components) by

Beran et al. (2007). Those tests use the cumulative distribution function (CDF) as their

main ingredient, and are based on the following characterisation of mutual independence.

Let Id = {A ⊂ {1, . . . , d} : |A| > 1} where |A| is the cardinality of set A. For t ∈ Rd and
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for any A ∈ Id, define

µA(t) =
∑
B⊂A

(−1)|A\B|FX(tB)
∏

j∈A\B

Fj(tj), (2.A.3)

where a null product
∏
∅ = 1 and where the vector tB = (t

(1)
B , . . . , t

(d)
B ) ∈ Rd is defined as

t
(j)
B =


tj , if j ∈ B

∞, otherwise.

Mutual independence between X1, . . . , Xd then holds if and only if µA(t) = 0 for all t ∈ Rd

and all A ∈ Id. Because knowledge of all µA(t) implies knowledge of the distribution PX ,

one can use the functions µA to measure a ‘departure from independence’ in the style of

(2.6.2). Call Vn,A(t) an appropriate empirical version of (2.A.3). Ghoudi et al. (2001)

propose a statistic of the Cramér-von Mises type

Tn,A =

∫
V 2
n,A(t)dFn(t),

which aggregates the ‘evidence against H0’ over all possible values of t (but only for the

variables Xj ’s with j ∈ A). Because for some sets A ∈ Id it may be that µA(t) = 0 even

if H0 is false, a test of mutual independence must consider all sets A at the same time.

Ghoudi et al. (2001) propose global statistics of the form

∑
A

Tn,A or max
A
{Tn,A} ,

while Beran et al. (2007) combine the p-values from individual tests (one for each set A)

in the manner of Fisher (see, e.g. Elston, 1991).

Fan et al. (2017), Bilodeau and Nangue (2017), as well as Jin and Matteson (2018) use a

definition of T in (2.6.2) based on characteristic functions, i.e.,

T (PX) =

∫
Rd

∣∣ϕX(t)− ϕX̃(t)
∣∣2w(t)dt, (2.A.4)

where w(t) is a certain weight function (for which the integral exists). Fan et al. (2017,

Section 5) suggest five choices of weight function, all of the form:

w(t) =
d∏
j=1

v(tj),
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for v a non-negative, continuous and symmetric function (i.e., v(t) = v(−t) for all t ∈ R).

Jin and Matteson (2018) suggest a different weight function (implemented in the R package

EDMeasure), defined as

w(t) =
(
Kd |t|d+1

d

)−1
,

where Kd = π(d+1)/2/Γ[(d + 1)/2)] and Γ is the gamma function. The derivation of

appropriate empirical versions of T (PX) in (2.A.4) (and corresponding approximation of

its null distribution in order to compute p-values) is not straightforward and details are

deferred to the original paper.

Pfister et al. (2018) propose a multivariate independence test based on a functional they

call the d-variable Hilbert-Schmidt independence criterion (dHSIC), which conforms to

the general form (2.6.2). It is a generalisation of the bivariate (d = 2) independence

test proposed in (Gretton et al., 2007), and is based on the mean embedding of probability

distributions into reproducing kernel Hilbert spaces (RKHSs). In order to present this test,

it is necessary to first outline the theory of RKHSs. We largely follow the presentation in

Pfister et al. (2018) (with perhaps small changes in notation for consistency). We start

with the definition of a positive semidefinite kernel1.

Definition 2.12. Given a set X , a function k : X × X → R is a positive semidefinite

kernel if for any set of points (x1, . . . , xn) ∈ X n the n×n matrix whose entry (i, j) equals

k(xi, xj) is positive semidefinite, i.e., if

n∑
i=1

n∑
j=1

cicjk(xi, xj) ≥ 0,

for any c1, . . . , cn ∈ R.

Denote by F(X ) the space of functions from X to R. A RKHS on X is a subclass of

F(X ), which, in particular, is a Hilbert space (i.e., a complete vector space equipped with

an inner product, see, e.g., Kreyszig, 1978, Chapter 3) with some useful properties for the

purpose of independence testing. We next define RKHSs.

Definition 2.13. Let X be a set and let H ⊆ F(X ) be a Hilbert space with inner product

denoted by 〈f, g〉H for f, g ∈ H. Then, H is called a RKHS if there is a kernel k on X

satisfying:

a. ∀x ∈ X : k(x, ·) ∈ H, and

1We use the term positive semidefinite kernel to stick to the convention in Pfister et al. (2018), but
several authors would use the term positive definite kernel instead.
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b. ∀ f ∈ H, ∀x ∈ X : 〈f, k(x, ·)〉H = f(x). This is often called the ‘reproducing

property’, and we call k a reproducing kernel of H.

Importantly, a RKHS uniquely determines a positive semidefinite kernel k, and vice versa

(see Muandet et al., 2016, Theorem 2.5).

The dHSIC test is based on embedding multivariate probability functions (‘complicated

objects’) into a RKHS (which consists of ‘simpler objects’). This is useful because, once

we are in a RKHS, computations are easier. For instance, via the reproducing property

the computation of an inner product reduces to a simple function evaluation. Denoting

M(X ) := {µ|µ is a finite Borel measure on X},

we next define a mean embedding function (which can be applied to any Borel measure).

Definition 2.14. Let X be a separable metric space, k a continuous bounded positive

semidefinite kernel and H the RKHS with reproducing kernel k. The mean embedding

(associated with k) Π :M(X )→ H is a function defined as

Π(µ) :=

∫
X
k(x, ·)µ(dx). (2.A.5)

Remark 2.2. In the general case where X is any separable metric space, the integral in

(2.A.5) should be interpreted as a Bochner integral. However, for our purposes we can see

it as the usual Lebesgue integral on a set X ⊆ R.

Remark 2.3. Π(µ) is a function in the space H, hence it can be seen as a ‘simpler’ object

than a probability measure (and also, arguably, easier to estimate).

We next want to embed the probability distributions PX and PX̃ into an appropriate

RKHS and, in that space, check if the embedded elements are equal, as in (2.6.2). We

consider the following setting.

For j ∈ (1, . . . , d), Xj : Ω → X j where X j is a separable metric space (in our case, think

simply of R). Further, let X = X 1 × · · · ×Xj be the product space. For j ∈ (1, . . . , d),

let kj : X j × X j → R be continuous, bounded and positive semidefinite kernels. Denote

by Hj their corresponding RKHS. Define H = H1 ⊗ · · · ⊗ Hd as the projective tensor

product of the RKHSs Hj ’s and k = k1 ⊗ · · · ⊗ kd as the tensor product of the kernels

kj ’s (for details on tensor products see Berlinet and Thomas-Agnan, 2004, Section 4.6).

Further, assume that k is characteristic (see Muandet et al., 2016, Definition 3.2). Then,
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let Π : M(X ) → H be the mean embedding function associated with kernel k as in

(2.A.5).

In this setting, we then have that H is a RKHS with reproducing kernel k, and that Π is

injective. We can now define the dHSIC statistical functional

dHSIC(PX) := ||Π(PX̃)−Π(PX)||2H, (2.A.6)

where || · ||H is the norm induced by the inner product on the space H. Equation (2.A.6)

is then seen to be a distance between PX and PX̃ after they have been embedded in the

RKHS H. Importantly, since Π is injective we have (Pfister et al., 2018, Proposition 1):

dHSIC(PX) = 0 ⇐⇒ PX = PX̃ .

An empirical version of dHSIC (and associated independence test) is then developed in

Pfister et al. (2018), and we refer the reader to that paper for the details (see Section 2.3

and Section 3). We note that three options are proposed to conduct the test and derive

p-values: ‘permutation’, ‘bootstrap’ and ‘Gamma approximation’, and the former is the

default option in the R package dHSIC.

Remark 2.4. The dHSIC independence test (and, in general, methods based on RKHSs)

is very general, as it is defined for random elements taking values in separable metric

spaces X (which are generalizations of the usual Euclidean spaces). In this thesis we deal

with real random variables, so it does not hurt to see sets X as simply R. However,

one should keep in mind that an important strength of kernel methods is that they apply

more generally to any structured data, which also explains their popularity in machine

learning. As an example, Gretton et al. (2007) apply the bivarite version of dHSIC to test

the independence between English texts and their French translation.
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CHAPTER 3

UNDERSTANDING PIBD VARIABLES

WITH EXAMPLES AND NEW

VISUALISATION TOOLS
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3.1 Introduction

The notion that random variables can be pairwise independent but still dependent (PIBD)

is somewhat abstract. It is often mentioned as a comment in probability textbooks, with

perhaps a toy example to prove the point, but not discussed further. Given the ubiquitous

importance of dependence (or independence) assumptions in actuarial science, the broad

goal of this chapter is to make this notion more concrete. In particular, we want to

illustrate as best as we can what PIBD data may look like. We do this following two main

steps:

1. we provide a series of theoretical examples (with accompanying visualisations) where

three random variables are PIBD. This serves to illustrate what types of dependence

patterns are possible if pairs of observations are independent. In particular, we will

see that many different patterns are possible, and that the underlying dependence

can possibly be very strong. This is done in Section 3.2;

2. we develop visualisation tools to better ‘see’ this possible type of dependence in our

data. This is done in Section 3.3, where we also apply such tools to synthetic data

stemming from the examples of Section 3.2.

Remark 3.1. In the subsequent Chapters 4, 5 and 6 of this thesis, we will provide more

theoretical results about the difference between mutual and ‘pairwise only’ independence.

That said, we thought important, as a first step, to establish what this type of dependence

can look like (especially since we have not encountered such visualisation elsewhere in the

literature we surveyed).
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3.2 Examples of PIBD random variables

From a technical definition of ‘pairwise independence’ like Definition 2.5, it can be dif-

ficult to grasp what PIBD data can look like. In this section, we address this issue by

presenting a series of PIBD examples (with visualisations). We focus on the case of three

Uniform[0, 1] random variables (U1, U2, U3), a sample of which can be represented on a

3D scatterplot. The use of Uniforms is a natural choice, as it is widely recognised that

the study of dependence should be divorced from the specific margins of the random vari-

ables involved. Furthermore, we know that a sample from three mutually independent

Uniform[0, 1] random variables should fill the [0, 1]3 cube uniformly. This provides an easy

benchmark to visually detect dependence: any significant deviation from a ‘constant den-

sity of points’ indicates some form of dependence. We also note that the use of Uniforms

is done without loss of generality, since a continuous random variable X can always be

transformed to a Uniform via the probability integral transform, i.e.,

F (X) ∼ Uniform(0, 1)

where F (·) is the CDF of X.

In Section 3.2.1, we present our ‘main examples’, while in Section 3.2.2 we establish that

an infinity of new examples can be obtained by simply mixing existing ones.

3.2.1 Main examples

Example 3.1. Our first example is taken from Driscoll (1978). Let U1 and U2 be inde-

pendent Uniform[0, 1] r.v.s, and let

U3 = (U1 + U2) mod 1 =


U1 + U2 if U1 + U2 < 1

U1 + U2 − 1 if U1 + U2 ≥ 1.

(3.2.1)

Then, U3 is also a Uniform[0, 1]. Furthermore, U1 is independent of U3, and U2 is inde-

pendent of U3. Scatterplots based on n = 2,000 observations confirm this pairwise indepen-

dence; see Figure 3.1. However, the triplet of variables (U1, U2, U3) is strongly dependent:

knowing two of them is sufficient to deduce the third precisely. This dependence can be

seen clearly on Figure 3.2, which displays the same sample, but on a 3D scatterplot. We

notice an extreme form of dependence: all points lie on a subset of null volume, i.e., on
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two parallel planes.

In addition to the 3D scatterplot, we provide a 2D scatterplot of U1 versus U2 (see Figure

3.6) where the value of U3 is represented by a colour (whose scale is on the right of the

figure). Likewise, we present on Figure 3.3 a 2D scatterplot of U1 versus U3 (with U2

represented as a colour). We omit to present U2 versus U3, since the pattern is identical

to that of U1 versus U3.
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Figure 3.1: 2D scatterplots (U3 vs U1 on the left, U3 vs U2 on the right) of a sample
generated from (3.2.1)

Figure 3.2: 3D scatterplots of a sample (U1, U2, U3) generated from (3.2.1)
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Figure 3.3: 2D scatterplot (U1 vs U2) of a sample generated from (3.2.1). The colour of
each sample point represents the value of the third variable (U3).
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Figure 3.4: 2D scatterplot (U1 vs U3) of a sample generated from (3.2.1). The colour of
each sample point represents the value of the third variable (U2).

Example 3.2. In a second example, consider three Bernoulli(1/2) r.v.s I1, I2, I3 defined

as in our Example 1.2 from the Introduction; see Equation (1.5.1). Further, let V1, V2, V3

be three mutually independent Uniform[0,1] r.v.s. Then, create three new r.v.s U1, U2, U3

as

U1 :=
I1 + V1

2
, U2 :=

I2 + V2

2
, U3 :=

I3 + V3

2
. (3.2.2)

This yields that U1, U2, U3 are themselves Uniform[0, 1], and still pairwise independent

(but not mutually independent). We first visualise the dependence between U1, U2, U3 on
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Figure 3.5 which features a 3D scatterplot of a sample of size n = 2,000 generated from

(3.2.2). As in the previous example, we also provide a 2D scatterplot of U1 versus U2

(see Figure 3.6) where the value of U3 is represented by a colour (whose scale is on the

right of the figure). This highlights the pattern in the data: values of U3 bigger than their

mean (1/2) occur exclusively in the first and third quadrant. We note that this type of

dependence is perhaps possible in some real-life situations, as it corresponds to a scenario

where a variable tends to be high when two other variables concord (i.e., are either high

together, or low together). Lastly, we note that an equivalent formulation of this example

(expressed in terms of joint density) is found in Nelsen (1996, Example 6).

Figure 3.5: 3D scatterplots of a sample (U1, U2, U3) generated from (3.2.2)

65



U1

U
2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.6: 2D scatterplot (U1 vs U2) of a sample generated from (3.2.2). The colour of
each sample point represents the value of the third variable (U3).

Example 3.3. In a third example, we let points (U1, U2, U3) be uniformly distributed on the

four faces of a tetrahedron whose vertices are (1,0,0), (0,1,0), (0,0,1), (1,1,1). One way to

obtain this pattern is to independently generate U1 ∼ Uniform[0, 1] and U2 ∼ Uniform[0, 1].

Then,

• with 50% probability, let

U3 =


U1 + U2 − 1 if U1 + U2 ≥ 1,

1− (U1 + U2) if U1 + U2 < 1.

(3.2.3)

• with 50% probability, let

U3 =


1− (U1 − U2) if U1 − U2 ≥ 0,

1 + (U1 − U2) if U1 − U2 < 0.

(3.2.4)

It is then not hard to show that U3 will be a Uniform[0,1] and that the triplet (U1, U2, U3)

will be pairwise independent (for a proof see Proposition 3.2 in Appendix 3.A). However,

much in the spirit of the previous examples, there is a strong dependence between those

variables, since all points occupy only a fraction of the available space, as illustrated on

Figures 3.7 (3D view) and 3.8 (2D view). We note that the idea of creating three PIBD

variables by uniformly placing them on a tetrahedron was mentioned in Nelsen (1996,

Example 1), though a proof of pairwise independence was not provided.
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Figure 3.7: 3D scatterplot of a sample (U1, U2, U3) generated from Example 3.3
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Figure 3.8: 2D scatterplot (U1 vs U2) of a sample generated from Example 3.3. The colour
of each sample point represents the value of the third variable (U3).

Example 3.4. A modification of an example from Janson (1988) yields another example of

PIBD variables. As before, we let U1 and U2 be two independent U [0, 1] random variables.
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Then, we define U3 as

U3 = F

(
cos (2π(U1 + U2)) + 1

2

)
,

where F (·) is the CDF of a Beta(α = 1/2, β = 1/2) random variable. This yields that U3

is also a U[0, 1] and that the triplet (U1, U2, U3) is PIBD (for a proof, see Proposition 3.3

in Appendix 3.A). Yet again, although pairwise independent, those variables (U1, U2, U3)

are strongly dependent: as seen on Figure 3.9, all points of a sample generated from

this example sit on a tri-dimensional ‘W’. Figures 3.10 and 3.11 further provide the 2D

scatterplots of the generated sample (as before, the third variable is represented as a colour).

Figure 3.9: 3D scatterplot of a sample (U1, U2, U3) generated from Example 3.4
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Figure 3.10: 2D scatterplot (U1 vs U2) of a sample generated from Example (3.4). The
colour of each sample point represents the value of the third variable (U3).
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Figure 3.11: 2D scatterplot (U1 vs U3) of a sample generated from Example (3.4). The
colour of each sample point represents the value of the third variable (U2).

Example 3.5. Durante et al. (2014) provide explicitly a tridimensional copula that is

PIBD, which we use as a fifth example. This copula C is given by

C(u1, u2, u3) = u1u2u3 (1 + α(1− u1)(1− u2)(1− u3)) , (3.2.5)

where α ∈ [−1, 1], α 6= 0. Let U1, U2, U3 be three U[0, 1] random variable with copula C.

The dependence between those variables is quite ‘mild’ (at least compared to that featured

in Examples 3.1 to 3.4). To see this, consider the copula density associated with copula
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C(u1, u2, u3), i.e.

c(u1, u2, u3) =
∂C(u1, u2, u3)

∂u1u2u3
= 1 + α(1− 2u1)(1− 2u2)(1− 2u3),

from which we have that

1− |α| ≤ c(u1, u2, u3) ≤ 1 + |α|. (3.2.6)

Then, from (3.2.6), there are no regions of the cube [0, 1]3 where the concentration of

points is ‘drastically’ higher than what it would be under mutual independence (recall the

independence copula density is c⊥(u1, u2, u3) = 1 for all (u1, u2, u3) ∈ [0, 1]3). Likewise,

there are no regions of positive volume where the density c(u1, u2, u3) is 0, and therefore all

regions of the [0, 1]3 are ‘possible’ (unlike in Examples 3.1 to 3.4). As a specific example,

consider the case α = 1. Then, for values (u1, u2, u3) ≈ (0, 0, 0), c(u1, u2, u3) ≈ 2, and

hence the region of the unit cube around the (0, 0, 0) corner has a higher density than under

mutual independence. On the other hand, for values (u1, u2, u3) ≈ (1, 1, 1), c(u1, u2, u3) ≈

0, hence the region around the corner (1, 1, 1) has fewer points than expected under mutual

independence.

To try and ‘see’ what this dependence looks like, we generate a sample of n = 2,000

observations from copula C, with α = 1 (details on the generation procedure can be found

in Appendix 3.B). On Figure 3.12, the 3D scatterplot of this sample is presented, while

Figure 3.13 shows the corresponding 2D scatterplot (U1 versus U2, with U3 as a colour).

The dependence pattern is subtle, and quite difficult to see. By looking closely we may note

that certain corners of the unit cube have a smaller concentration of points than other

corners. However, this dependence is far weaker than in previous examples, and barely

visible on both Figures 3.12 and 3.13. That is to say, pairwise independent observations

may be dependent in a subtle way which is hard to detect. In Section 3.3, we will develop

new visualisation tools which allow to see much more clearly such subtle dependence.
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Figure 3.12: Sample generated from the PIBD copula (3.2.5), with α = 1
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Figure 3.13: 2D scatterplot of random variables U1 vs. U2 generated according to Example
3.5 with α = 1. The colour of each sample point represents the value of the third variable
(U3).
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3.2.2 Mixtures of pairwise independent random variables

Examples 3.1, 3.2, 3.3, 3.4 and 3.5 are only specific instances of PIBD variables. One could

call Examples 3.1, 3.2, 3.3 and 3.4 ‘extreme’, but this is precisely our point: pairwise inde-

pendence need not be ‘close’ to mutual independence. One could think that those are just a

few ‘pathological’ cases, among infinitely many possible dependence structures, and hence

that it is unlikely, in practice, to encounter pairwise independent but dependent data.

We do not think this is so. Indeed, by mixing any ‘pairwise independent but dependent’

structures, one obtains a new dependence structure which is again pairwise independent

(but not mutually independent). Since there are infinitely many of such possible mixtures,

there are infinitely many ‘pairwise but not mutually independent’ dependence structures.

Those are not all ‘extreme’ or ‘pathological’, and some are very close (and can be made

arbitrarily close to) mutual independence. This argument is formalised in Proposition 3.1.

Proposition 3.1. Let F1, . . . , Fd be univariate CDFs, with d ≥ 2. For ` = 1, 2, . . . ,m, let

G`(x1, . . . , xd) be d-variate CDFs whose marginal CDFs are F1, . . . , Fd, and whose com-

ponents are pairwise independent. Further, let H be any mixture of those m distributions,

i.e.,

H(x1, . . . , xd) =
m∑
`=1

a`G`(x1, . . . , xd),

with
∑m

`=1 a` = 1 and 0 < a` for all ` = 1, . . . ,m. Then, H is also a distribution function

whose components are pairwise independent.

Proof. Let (X1, . . . , Xd) be a vector of random variables with distribution H, and pick

any two variables Xi, Xj , i 6= j from this vector. For any ` = 1, . . . ,m, denote by G`,ij

the bivariate distribution function of the ith and jth components of G`. Let x1 ∈ R and

x2 ∈ R. We have

P[Xi ≤ x1, Xj ≤ x2] =

m∑
`=1

a`G`,ij(x1, x2)

=

m∑
`=1

a`FXi(x1)FXj (x2)

= FXi(x1)FXj (x2).

Since the choice of the pair (Xi, Xj) was arbitrary, the proof is complete.

The fact that Proposition 3.1 applies to mixtures of G`’s (` = 1, . . . ,m) whose margins

72



are identical (across different `’s) is not a restriction to our argument. Indeed, what

characterises the dependence of any random vector is its copula (see Sklar’s Theorem 2.3),

and Proposition 3.1 applies to copulas (as stated in the following Corollary).

Corollary 3.1. Let a copula C(u1, . . . , ud) be created by mixing any number (say m) of

other copulas (call them C1, . . . , Cm) whose components are pairwise independent. That

is,

C(u1, . . . , ud) =

m∑
`=1

a`C`(u1, . . . , ud),

with
∑m

`=1 a` = 1, 0 < a` for all ` = 1, . . . ,m. Then, copula C is also pairwise independent.

Proof. Copulas are multivariate CDFs whose marginal components are all Uniform[0,1].

Hence, Proposition 3.1 applies to copulas.

Remark 3.2. In Proposition 3.1, a case of special interest is that of a mixture between

mutual independence and any pairwise independent (but dependent) structure. This au-

tomatically yields another pairwise independent (but dependent) structure. Because the

weight given to the mutually independent part of such a mixture can be made arbitrarily

close to 1, one can create a dependence structure that is arbitrarily close to mutual inde-

pendence. In other words, pairwise independent random variables can be dependent in a

very subtle way, making such dependence hard to detect.

Example 3.6. Using the idea from this section, we generate a sample of size n = 2,000

under a mixture of two dependence structures (in the sense of Proposition 3.1), where the

‘weights’ are:

• 90% on the dependence structure of Example 3.1

• 10% on mutual independence.

We obtain a sample as displayed on Figure 3.14 (3D scatterplot) and 3.15 (2D scatterplot

of U1 versus U2). We could see this as having injected some ‘noise’ to what is otherwise

a very strong relationship between three variables.
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Figure 3.14: 3D scatterplots of a sample (U1, U2, U3) generated from (3.6)
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Figure 3.15: 2D scatterplot (U1 vs U2) of a sample generated from (3.6). The colour of
each sample point represents the value of the third variable (U3).
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3.3 Dependence visualisation tools

In this section, we develop dependence visualisation tools which are especially well suited

to detect dependence between variables that are pairwise independent. We focus on visu-

alising dependence between three random variables (Sections 3.3.1 and 3.3.2), but we also

introduce a tool to visualise dependence between four variables (Section 3.3.3).

We note that the existing literature on dependence visualisation is primarily devoted to

visualising dependence between two numerical random variables, call them generically X

and Y , with joint distribution F . For a random sample (X1, Y1), . . . , (Xn, Yn) stemming

from F , the simplest and most used method to visualise if the variables X and Y are

independent is the scatterplot. Another common method is to plot the contours of the

(estimated) copula density of (X,Y ), see Chapter 3 in Czado (2019) or Section 3 in Yan

(2007) for examples. Note that the estimation of copula densities is a non-trivial task, see

Charpentier et al. (2007) for a review of different approaches. Another visualisation tool

for bivariate dependence is the heatmap, where on a two-dimensional grid a colour-code is

used to highlight the ‘concentration’ of points in specific areas. Though, with a heatmap,

one must make a choice of what exactly the colour represents. Typically, it represents the

copula itself or copula density, but other suggestions have been made in the literature,

e.g. the ‘local correlation’ (Tjøstheim and Hufthammer, 2013) or the ‘quantile dependence

function’, which is a “normalized difference between the underlying copula C(u, v) and the

independence copula Π(u, v) = uv” (Ćmiel and Ledwina, 2020).

Of course, such visualisation tools are of no use for PIBD data, since by definition for such

data there is no dependence to be seen when considering only two variables at a time.

The visualisation of dependence between three or more variables is a harder task, and fewer

visualisation tools are available for that purpose. A relatively straightforward method is

to use 3D contour plots of the copula density, as done for example in Killiches et al. (2017).

We believe the methods we develop in Sections 3.3.1 and 3.3.2 are an alternative to contour

plots (advantages of our method are discussed in Remark 3.4). Another visual method to

detect dependence in dimension three (or more) is the multivariate version of the ‘Kendall

plot’ (see Section 6 of Genest and Boies, 2003). This tool adapts the concept of a QQ plot

to the detection of dependence, though the authors themselves highlighted that their tool

is not well suited to visualise dependence in the case of PIBD data. Another approach to

visualise the dependence between three variables is to plot a bivariate dependence measure
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between two of them (e.g., Kendall’s tau), as function of the value taken by the third one

(see Gijbels et al., 2011). Of course, such visualisation is impacted by which bivariate

measure is chosen.

Lastly, we want to mention that there is a well established literature on the problem of

visualising the effects of predictor variables on a response variable in ‘black box’ learning

models. For this purpose, a popular tool is the so-called ‘partial dependence plot’ (PDP)

due to Friedman (2001), which plots the (average) change in the the predicted outcome

of a learning model when one (or perhaps two) predictor(s) changes. This method was

extended by Goldstein et al. (2015) to what they call ‘individual conditional expectation

plots’ (showing multiple individual paths rather than the ‘average’ one, which may reveal

dependence patterns a PDP cannot). While those methods provide a way to visualise

the dependence between a predicted response and one (or two) predictors, it is of an

‘explanatory’ nature in a context where an appropriate model has already been fit to the

data. In this section, our purpose is different, as we are interested in visualising the ‘pure

dependence’, before any predictive model has been fit to data. Hence, we would qualify

our tools as ‘exploratory’ in nature.

3.3.1 2D visualisation

For the purpose of visualising dependence between two or more numerical variables, it is

standard to display the data on a [0,1] scale, as it makes it easier to spot any dependence

pattern. It is well known that, for a continuous random variable X with CDF FX(·),

FX(X) has a Uniform[0,1] distribution. Hence, for two random variables X1, X2 (with

CDFs F1, F2, respectively), if it was possible one would want to display a sample of the

pair

F1(X1), F2(X2)

on a scatterplot. In practice with real data, we do not know the margins F1, F2. However,

they can be approximated by their empirical counterparts, F̂j . The empirical CDF is

typically computed as (see, e.g., Gibbons and Chakraborti, 2003, p.37):

F̂j(t) =
1

n

n∑
i=1

1{Xij≤t}, (3.3.1)
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where X1j , . . . , Xnj is a random sample from variable Xj (and 1A denotes the indicator

function on the set A). We then have that, for any Xk having distribution Fj ,

F̂j(Xk) (3.3.2)

has an approximately Uniform[0, 1] distribution. It is only approximately Uniform[0, 1],

because, strictly speaking, the distribution of F̂j(Xk) is discrete (it is often called a pseudo

uniform distribution).

Now, if some variables in a dataset are pairwise independent, standard 2D scatterplots

are of no use to reveal potential dependence patterns between them (as was the case, for

example, on Figure 3.1). This is also true of more sophisticated 2D visualisation tools like

those relying on the ‘local Gaussian correlation’ (Tjøstheim and Hufthammer, 2013) or

the ‘quantile dependence function’ (Ćmiel and Ledwina, 2020). This is because, between

any two of PIBD variables, there is simply no dependence to see.

However, and as seen already in the examples of the previous section, a simple idea to

detect possible dependence between three variables using a 2D scatterplot is to add a third

variable to the plot, represented as a colour (recall Figures 3.3, 3.4, 3.6, 3.8, 3.10, 3.11, 3.13,

3.15). Indeed, if any particular colour appears more (or less) frequently in certain areas of

the 2D plot (compared to how the colours would appear if they were determined by pure

chance), then some dependence is present. This is because under mutual independence we

expect the colours to be completely randomly spread on the [0, 1]2 range of the plot.

To go a bit further, when investigating the possible dependence between three variables,

we propose to present the data on a 3× 3 matrix of plots, where:

• on the upper part of the 3× 3 matrix, we display the three colour-coded 2D scatter-

plots of: F̂1(X1) versus F̂2(X2), F̂1(X1) versus F̂3(X3) and F̂2(X2) versus F̂3(X3).

• On the lower part of the matrix, we display the same plots but in black-and-white,

so that any ‘purely pairwise’ pattern can be spotted, if any.

• On the diagonal of the matrix, we display the histograms of the three variables. This

provides information on the marginal distributions of the variables. This information

would otherwise be lost, since we transformed the data to pseudo uniforms to create

the scatterplots.

We present on Figure 3.16 this idea applied to a sample of size n = 2,000 stemming from
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the dependence structure of Example 3.1, only now with variables having non-uniform

margins. This means that the data presented on the scatterplots has been transformed

via Equation 3.3.2. We do the same for a sample stemming from the dependence structure

of Example 3.2 and present the result on Figure 3.17. In both cases, we notice at a glance

the strong dependence patterns on the scatterplots of the upper part of the matrix. We

also see that the dependence structure of Example 3.2 is such that the variables are

exchangeable within this structure. In Example 3.1, they are not.
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Figure 3.16: 2D scatterplots of a sample of (F̂1(X1), F̂2(X2), F̂3(X3)) generated from Ex-
ample 3.1 but with non-uniform margins (histograms of every variable are shown on the
diagonal). On the coloured scatterplots, the third variable is represented as a colour, with
convention 0 = blue, 1 = red.
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Figure 3.17: 2D scatterplots of a sample of (F̂1(X1), F̂2(X2), F̂3(X3)) generated from Ex-
ample 3.2 but with non-uniform margins (histograms of every variable are shown on the
diagonal). On the coloured scatterplots, the third variable is represented as a colour, with
convention 0 = blue, 1 = red.

3.3.2 3D visualisation

To detect multivariate dependence, scatterplots in 2D have their limits. For example, on

Figure 3.13 it was quite hard to distinguish a clear dependence pattern, even though the

data was generated under a ‘non independent’ copula (see 3.2.5).

Hence, for data which appears pairwise independent (or close to), we also propose to

use colour-coded 3D scatterplots. This can help assess whether some ‘triplewise depen-

dence’ is present. For this purpose, assume a sample of size n stems from a random
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vector with uniform margins, call it U := (U1, U2, U3) ∼ C(u1, u2, u3), where C(·, ·, ·) is

a three-dimensional copula. Note that non-uniform continuous variables can always be

transformed to pseudo uniforms via Equation (3.3.2).

To visualise the type of dependence associated with copula C(·, ·, ·), we can display this

data as n points on a 3D scatterplot, as we have done in Section 3.2 (recall Figures 3.2,

3.5, 3.7, 3.9 and 3.12). This can be enough to spot a strong dependence pattern. However,

for more subtle forms of dependence (such as that of Example 3.5), simple 3D scatterplots

might not be enough to detect a pattern.

Hence, to better visualise possible dependence, we propose in this section to colour each

point of a 3D scatterplot according to how ‘concentrated’ other points are around it.

For instance, low density points could be ‘blue’, average density points could be ‘grey’

and high-density points could be ‘red’. A significant departure from a ‘constant and

average concentration’ (every point is grey) would then be spotted easily, indicating some

dependence. That said, quantitatively, it is not obvious how this colour-code should be

designed. The purpose of the next sections is to develop an original methodology to do

this.

3.3.2.1 Concentration index and colour-coding

For any point u := (u1, u2, u3) ∈ [0, 1]3, we must choose a ‘concentration index’ h(u) and

then map it to a series of colours. What we call h(u) is a quantitative measure of how

concentrated the points are around u. This concentration index will take:

a minimum value: h(·) = a

a baseline value: h(·) = b

a maximum value: h(·) = c.

(3.3.3)

Note that what we call the ‘baseline value’ is the one which corresponds to the mutual

independence case. Next, any scale of colours (e.g., blue-to-grey-to-red) can be represented

by numerical values in the interval [0, 1], such that:

• colour1 (e.g., ‘blue’) has numerical value ‘0’. A point u with the smallest possible

concentration (h(u) = a) would have this colour.

• colour2 (e.g., ‘grey’) has numerical value ‘1/2’. A point u with a concentration

corresponding to mutual independence (h(u) = b) would have this colour.

• colour3 (e.g., ‘red’) has numerical value ‘1’. A point u with the largest possible
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concentration (h(u) = c) would have this colour.

One may want to simply let the ‘concentration index’ h(u) be the copula density ∂3C(u1,u2,u3)
∂u1∂u2∂u3

.

However, this is impractical for at least three reasons:

• The copula density does not always exist at every point.

• Even if the copula density exists everywhere, it is not universally bounded (so we

cannot choose a universal constant c).

• The copula density is hard to estimate empirically (especially past the bivariate

case), because the bounded support [0, 1]3 causes boundary bias problems, see, e.g.,

Geenens et al. (2017).

Hence, in what follows we instead let h(u) be the probability a random point U ∼ C is

close to u. By being ‘close’, we mean the probability an observation U ∼ C is inside a

ball of radius r centered at u. Denoting a closed ball of center u and radius r by B[u, r],

we define

h∗(u, r) := P[U ∈ B[u; r]] = P[|U − u| ≤ r], (3.3.4)

where | · | denotes Euclidean distance. How to choose r (and how ‘small’ it should be) is

a delicate matter, discussed in the next section (Section 3.3.2.3).

Importantly, in the case where C is the independence copula, we want our index to be

constant for all u ∈ [0, 1]3. Hence, h∗(u, r) as defined in (3.3.4) cannot be used ‘as is’ and

needs to be adjusted. This is because for a point u close to one or multiple faces of the

unit cube, the small ball B[u, r] will be partly outside the unit cube.

Denote by B∗[u, r] the intersection of a ball B[u, r] with the unit cube [0, 1]3 and by

V ∗(u, r) its volume. Let v = 4πr3

3 be the volume of a ball of radius r and further define

δ(u, r) =
V ∗(u, r)

v
, (3.3.5)

i.e., δ(u, r) is the proportion (volume-wise) of the ball of radius r centered at u which is

comprised within the unit cube [0, 1]3. Note that deriving closed-formed equations for the

value of δ(u, r) (for any u ∈ [0, 1]3 and any r < 1/2) is not a trivial task, but has been

done in Freireich et al. (2010). Next, we define our ‘adjusted’ index, call it h(u, r), as

h(u, r) =
h∗(u, r)

δ(u, r)
, (3.3.6)
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and it is then the case that h(u, r) = v is constant under the independence copula (for

any u). We then let b in (3.3.3) be

b = v.

Now, contrary to the copula density, the (adjusted) probability h(u, r) is always defined,

and bounded. Note that the lower bound ‘0’ is strict, i.e., it would be possible that, for

some copula C and some point u, h(u, r) = 0. Hence, in (3.3.3), it is reasonable to set

a = 0.

For the upper bound ‘c’, we let

c = 2r/
√

3. (3.3.7)

Indeed, this is the maximum value of h∗(u, r) under the comonotonic copula. Because the

comonotonic copula represents the situation of “perfectly positively dependent” variables

(McNeil et al., 2015, p.226), we believe it is natural to use it as the benchmark for the

‘maximal concentration’.

Remark 3.3. We think it is the case that c = 2r/
√

3 is in fact the supremum of h∗(u, r)

over the set of all possible 3-copulas. That is, we conjecture that for any r < 1/2,

sup
C∈C3
u∈[0,1]3

P[|U − u| ≤ r] = 2r/
√

3,

where C3 is the set of all 3-copulas. Even though we were unable to prove this statement,

our methodology does not crucially depend on it. Indeed, in the hypothetical case of a point

with higher concentration h(u, r) than that under the comonotonic copula, our methodology

would simply assign the ‘maximum colour’ to that point. Furthermore, we note that an

‘elementary bound’ is simply 2r, since

P[|U − u| ≤ r] ≤ P[|U1 − u1| ≤ r] ≤ 2r,

which is not too far from our proposed ‘tighter bound’ c = 2r/
√

3.

Lastly, we need to assign colours to values of h. Assume a scale of colours with numerical
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values y ∈ [0, 1]. We need a function f which maps h to y, and such that

f(a) = 0

f(b) = 1/2

f(c) = 1.

(3.3.8)

A straightforward choice is the power function:

f(h) =

(
h− a
c− a

)β
, (3.3.9)

where, to satisfy (3.3.8), we set

β = − log(2)

log
(
b−a
c−a

) .
Note that for a = 0, b = v and c = 2r/

√
3, we obtain

β = − log(2)

log(2πr2/
√

3)
.

Remark 3.4. We note that our approach for visualising 3D dependence is an alternative

to using 3D contour surfaces, as done for instance in Killiches et al. (2017). In this pa-

per, the authors visualise the dependence between three variables by displaying the contour

surfaces of the corresponding trivariate density (but where all univariate marginals are

set to standard Gaussians). The authors state that “[t]his is done because on the uni-

form scale copula densities would be difficult to interpret and hardly comparable with each

other”. That may be true, but this presents the downside that such plots do not display

‘pure dependence’, but also the effect of the Gaussian margins (which can complicate in-

terpretation). In comparison, our method completely removes the effect of the marginals

when examining dependence.

3.3.2.2 Empirical estimation of h(·, ·)

The next step is to estimate h∗(u, r), and hence h(u, r), empirically. To that end, assume

a sample

U1, . . . , Un,

where Ui := (Ui1, Ui2, Ui3) for i = 1, . . . , n, has been obtained from the three-dimensional

copula C. For any point Uj , a ‘rough’ estimator of h∗(Uj , r), call it ĥ∗(Uj , r), is simply
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the empirical proportion of points Ui’s falling within the ball B[Uj , r], i.e.

ĥ∗(Uj , r) =

∑n
i=1,i 6=j 1Ui∈B[Uj ,r]

n− 1
, (3.3.10)

where 1A is the indicator function on the set A. Then, the ‘adjusted’ estimator is given

simply by:

ĥ(Uj , r) =
ĥ∗(Uj , r)

δ(Uj , r)
,

where δ(·, ·) is the adjustment defined previously in (3.3.5). However, this estimator is not

very smooth, and therefore we introduce a smoother version. For any given point, we let

this smoother estimator be a weighted average of the values of ĥ(·, ·) for points around it

(i.e., within a radius r of it), where the weights are inversely proportional to the distances

from that point. That is, let Uj be an arbitrary point in the sample, and let nj be the

number of points within a radius r of Uj (including the point Uj itself, so that nj ≥ 1).

Then, call

h1, . . . , hnj

the values of ĥ(·, ·) for those points, when ordered from closest to farthest from Uj (so

that h1 = ĥ(Uj , r)). Further, denote the Euclidean distances between Uj and those points

(still ordered from closest to farthest) by

d1 = 0, d2, . . . , dnj .

We define weights as the inverse of those distances, i.e.

wk = 1/dk,

with the exception that

w1 =


1
d2

if nj ≥ 2

1 otherwise

(that is, to avoid an infinite weight assigned to the point j itself, we assign to it the same

weight as that of its closest neighbour). Then, we define our final estimate of h(Uj , r) as:

h̃(Uj , r) =

∑nj
k=1wkhk∑nj
k=1wk

. (3.3.11)

Remark 3.5. Such an ‘inverse-distance weighting’ method is often used for interpolating
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spatial data in geostatistics, see, e.g., Webster and Oliver (2007, Section 3.1.4), although

here we are not interpolating, but simply computing a weighted average.

3.3.2.3 Choice of the radius r

The next step is to choose the radius r in (3.3.4). In theory, if the copula C was known,

we could pick r arbitrarily small. However, since in practice we must estimate h(·, ·)

empirically, r is constrained by how much data is available (and we henceforth denote it

rn, for n the sample size). It seems reasonable that we should choose rn such that:

1. rn is decreasing in n. This will produce a colour-coding which becomes more ‘precise’

as n increases (i.e., reflecting the concentration of points closer and closer to any

point u).

2. nr3
n is increasing in n. This way, the expected number of points inside any small

ball B[·, rn] will increase as the sample size increases (making the estimator h̃(·, ·)

less variable as the sample size increases).

The above two requirements still leave a lot of leeway to choose rn, since for any 0 < q < 1

and some constant γ > 0,

r3
n =

γ

nq

satisfies them both. In what follows, we propose a scheme to calibrate rn, which is moti-

vated by two heuristic criteria:

1. It seems natural to calibrate rn under the ‘null assumption’:

H0 : C is the independence copula,

because this is the assumption we want to ‘reject’ (if it is false).

2. Since we are primarily interested in data visualisation, we want to choose rn such

that, under H0, the colour-coding of data points (as described in Section 3.3.2.1)

yields ‘mostly colourless’ points (this is because, under H0, we expect a constant

concentration of points everywhere).

Recall that every colour on our scale is represented by a numerical value in the interval

[0, 1], and that we have mapped the concentration index h(·, ·) to those colors via the

function

f(h) =

(
h− a
c− a

)β
,
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see (3.3.8) and (3.3.9). Under H0 (independence), the target value of f(h̃(u, r)) is 1/2 for

any point u and any r. Hence, to achieve the second goal above, we propose to use the

mean squared error

MSE(f(h̃)) = E

[(
f(h̃)− 1

2

)2
]

(3.3.12)

as a criteria to judge how good the estimator f(h̃) is (as a function of r). As is well known,

the MSE of an estimator is equal to its variance plus the square of its bias. Here, it is

important to minimise both the bias (we want the ‘average colour’ to be 1/2) and the

variance (from one point to the next, we do not want too much variation in the colours).

Minimising the MSE in (3.3.12), the rn we obtain tends to be quite large (around r = 0.25,

even for large n). However, the shape of the MSE as function of n tends to be always

similar (regardless of n), and as displayed on Figure 3.18 (for the case n = 500, and

based on 3,000 simulations). That is, the MSE drops quickly at first, but soon the rate of

decrease slows down substantially. In this example (for n = 500), while the minimum is

attained around r ≈ 0.27, the benefit of increasing r past r ≈ 0.20 is not very significant.

Through simulations ran for n = 200 up to n = 3,000 (detailed in Appendix 3.C), we have

found that setting:

r = 0.61n−0.18, (3.3.13)

gives a satisfying compromise between having a low MSE and having a rn which decreases

as n increases. In the next section, we showcase our colour-coding methodology (including

the choice of rn with formula 3.3.13) on the various examples of Section 3.2.
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Figure 3.18: MSE of f(h̃) as function of r, for n = 500

3.3.2.4 Examples using the estimator h̃(·, ·)

Here we apply the estimator (3.3.11) to samples of size n = 1,000 stemming from the

various examples of Section 3.2. In accordance with (3.3.13), we use a radius r = 0.176.

As explained in Section 3.3.2.1, every value h̃(·, ·) is mapped to a number between 0 and

1 via the function f(·) in (3.3.9). Every number is then assigned a colour, and we use a

colour code such that

• 0 = blue

• 1/2 = whitesmoke

• 1 = red.

Hence, if all points U1, . . . Un of the sample are pale (either grayish, slightly blue or slightly

red), this corresponds to the independence copula. In addition to the choice of the three

colours above, we must also choose the three constants a, b, c as in (3.3.3). As explained

in Section 3.3.2.1, a natural choice is to set

a = 0, b = 3πr3/4, c = 2r/
√

3.

We call this choice the ‘absolute’ colour scale, because the constants a, b, c are then inde-

pendent of the specific sample at hand. However, if one wishes to highlight more sharply

zones of higher than average concentration (lots of red points) or lower than average

87



concentration (lots of blue points), one can also set

a = min
1≤j≤n

h̃(Uj , r), b = 3πr3/4, c = max
1≤j≤n

h̃(Uj , r)

(provided that a < b < c). We call this the ‘relative’ colour scale. Note it will always

yield that a point is of the brightest red possible, and another one is of the brightest blue

possible.

On Figure 3.19 is the ‘mutual independence’ case, where colours appear fairly randomly,

and are quite pale (as expected). Of course, random variations still create some areas of

more or less dense points, hence the points are not totally colourless.

On Figure 3.20 (absolute scale) and then Figure 3.21 (relative scale) is a sample from

Example 3.2. We see that most points are red, which is expected since in this example

only half of the unit cube is occupied by points (which are otherwise uniformly distributed).

Figure 3.19: Mutually independent sample of U1, U2, U3 ∼ Uniform[0,1]
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Figure 3.20: Sample from Example 3.2, absolute scale

Figure 3.21: Sample from Example 3.2, relative scale
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On Figure 3.22, 3.23 and 3.24 are samples from Examples 3.1, 3.3 and 3.4, respectively

(all on the absolute scale). Here again we note mostly red points due to the high density

of points in those examples. We do not present plots on the ‘relative scale’, since the

dependence is already very obvious using the absolute scale.

Figure 3.22: Sample from Example 3.1, absolute scale
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Figure 3.23: Sample from Example 3.3, absolute scale

Figure 3.24: Sample from Example 3.4, absolute scale
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For a sample from Example 3.5, the dependence is more subtle. On the ‘absolute scale’

(see Figure 3.25), we get some idea that some corners have a higher concentration of

points than others. To see this a bit more clearly, we present on Figure 3.26 the same plot

but where only the ‘above average’ density points are coloured. Lastly, on the ‘relative

scale’ the dependence become more apparent, see Figure 3.27. Here, it is clearer that some

corners of the unit cube have a higher concentration, while others have lower concentration

of points. Though, as we have said before, this is a much weaker type of dependence than

previous examples.

Figure 3.25: Sample from Example 3.5, absolute scale
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Figure 3.26: Sample from Example 3.5, blue removed

Figure 3.27: Sample from Example 3.5, relative scale
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3.3.2.5 Alternative method using a ‘fixed grid’

Lastly, we present an alternative method of visualising dependence between three random

variables. Instead of having one ‘coloured sphere’ per data point, we can place spheres at

regular intervals on a (g×g×g) grid. Everything else is then the same: the colours of those

spheres represent the concentration of points around them, via the estimation method of

Section 3.3.2.2. This is especially helpful for large sample sizes, where displaying every

point on a regular 3D scatterplot can yield cluttered figures. Here, we find that smaller

values of ‘r’ yield better results. In the examples below, for samples of size 5,000 we used

r = 0.103, which comes from Equation 3.C.1 (see Appendix 3.C for details on how this

value was derived). In addition, here we also make the size of a sphere centered at Ui

proportional to the value of the estimated h̃(Ui, r). This way, areas of low density are

easier to identify.

In what follows, we use grids of size 8 × 8 × 8. Figure 3.28 displays the results for a

mutually independent sample. This methods work better for more ‘extreme’ types of

dependence, and we present on Figures 3.29, 3.30 and 3.31 the results for samples coming

from Examples 3.1, 3.2 and 3.3, respectively.

Figure 3.28: Mutually independent sample of U1, U2, U3 ∼ Uniform[0,1], fixed grid method
and absolute scale
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Figure 3.29: Sample from Example 3.1, fixed grid method and absolute scale

Figure 3.30: Sample from Example 3.2, fixed grid method and absolute scale
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Figure 3.31: Sample from Example 3.3, fixed grid method and absolute scale

3.3.3 4D visualisation

Although this chapter is concerned mainly with the distinction between mutual and pair-

wise independence, one should note that we can also define a more general notion of

‘K-tuplewise independence’, for an arbitrary integer K ≥ 2. We say a random sequence

{Xj , j ≥ 1} is K-tuplewise independent if for every choice of K distinct integers j1, . . . , jK ,

the random variables Xj1 , . . . , XjK are mutually independent. Pairwise independence is

then simply the case K = 2. Let us give a specific example for K = 3, i.e., ‘triplewise

independence’.

Example 3.7. Let M1,M2,M3,M4 be mutually independent Bernoulli(1/2) random vari-

ables. Define

X1 = 1{M1=M3},

X2 = 1{M1=M4},

X3 = 1{M2=M3},

X4 = 1{M2=M4}.
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Then, X1, X2, X3, X4 are triplewise independent, but not mutually independent (the proof

of this is not hard, and we omit it because this example is a special case of the more

general sequences we will introduce in Chapter 6, Section 6.2). Further, X1, X2, X3, X4

are all Bernoulli(1/2) random variables, and we can easily create from them four new

variables with Uniform[0,1] margins (call them U1, U2, U3, U4) which are still triplewise

independent (but not mutually independent). Indeed, simply set

Ui =


Uniform

[
0, 1

2

]
if Xi = 0

Uniform
[

1
2 , 1
]

if Xi = 1,

(3.3.14)

for i = 1, 2, 3, 4.

We then wish to visualise the dependence between the variables U1, U2, U3, U4 from Ex-

ample 3.7. Of course, to do so we can generate a sample from those variables, but any

‘monochrome’ 3D scatterplot (say of U1 vs. U2 vs. U3) would not show any dependence

pattern (since those variables are, by construction, triplewise independent).

However, on such a scatterplot we can colour-code the fourth variable (say U4), and then

check for any pattern of colours (which would indicate some dependence). This is totally

analogous to the approach we used in Section 3.3.1 to detect triplewise dependence on a

2D scatterplot (for pairwise independent variables). Note that, contrary to the previous

Section 3.3.2, here the colour of a point does not represent the concentration of points

around it. Rather, it simply represents the value of the fourth variable.

Figure 3.32 illustrates such a 3D scatterplot for a random sample (of size 3,000) generated

from Example 3.7, with the fourth variable U4 colour-coded such that:

• U4 = 0 =⇒ blue

• U4 = 1/2 =⇒ white

• U4 = 1 =⇒ red.

On Figure 3.32 we note a strong pattern: ‘blue points’ only appear in four out of eight

‘sub-cubes’, while ‘red points’ only appear in the other four ‘sub-cubes’.
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Figure 3.32: Scatterplot of a sample of U1, U2, U3 from Example 3.7, where U4 is repre-
sented by a colour on a blue-to-white-to-red scale
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3.4 Conclusion

In this chapter, our goal was to visualise what dependence under ‘pairwise independence’

can look like. Of course, this type of dependence is not ‘one specific thing’. Hence, to ask

the question ‘what does PIBD data look like’ is a bit like asking ‘what does dependent

data look like’; it is not possible to give an exhaustive list of all possible cases. Nonetheless,

we have provided in this chapter many possible examples, and we saw that this type of

dependence can, at least in principle, be very strong. We also saw that by using the simple

idea of ‘mixing’, we can create an infinite number (and continuum) of such dependence

structures (where the dependence can be more or less subtle).

In addition, we provided original visualisation tools to better ‘see’ this dependence. Those

tools can be used to explore datasets and detect possibly ‘subtle’ forms of dependence.

In particular, we developed a colour-coding methodology to highlight which areas of a

3D scatterplot have a higher (or lower) concentration of points (where the benchmark is

a constant concentration, as under mutual independence). We saw this can help detect

forms of dependence otherwise hard to see, as that of Example 3.5.

After ‘seeing’ that there can be a significant difference between mutual and pairwise in-

dependence, we are interested to find how ‘material’ this difference can be, especially in

common actuarial settings. Is it ‘mostly okay’ to assume independence in a situation where

only pairwise independence holds? Or do common tools and theorems which rely on the

independence assumption fail badly for PIBD variables? We investigate this question in

the next chapters.
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3.A Proofs

Proposition 3.2. Let U1, U2, U3 be random variables defined as in Example 3.3. Then,

U3 ∼Uniform[0, 1], and the triplet (U1, U2, U3) is pairwise independent.

Proof. Let u1, u3 ∈ [0, 1]. Assuming that U3 is generated under (3.2.3), by conditioning

we obtain:

P[U1 ≤ u1, U3 ≤ u3] =
1

2
(P[U1 ≤ u1, U3 ≤ u3|U1 + U2 ≥ 1] + P[U1 ≤ u1, U3 ≤ u3|U1 + U2 < 1])

= P[U1 ≤ u1, U1 + U2 − 1 ≤ u3, U1 + U2 ≥ 1]

+ P[U1 ≤ u1, 1− (U1 + U2) ≤ u3, U1 + U2 < 1]

= P[U1 ≤ u1, 1− U1 ≤ U2 ≤ 1 + u3 − U1]

+ P[U1 ≤ u1, 1− u3 − U1 ≤ U2 < 1− U1]

=


u2

1/2 if u1 ≤ u3

u1u3 − u2
3/2 if u1 > u3

+


u1u3 if u1 ≤ 1− u3

u3 − u2
3/2− (1− u1)2/2 if u1 > 1− u3.

Likewise, assuming that U3 is generated under (3.2.4),

P[U1 ≤ u1, U3 ≤ u3] =
1

2
(P[U1 ≤ u1, U3 ≤ u3|U1 ≥ U2] + P[U1 ≤ u1, U3 ≤ u3|U1 < U2])

= P[U1 ≤ u1, 1− U1 + U2 ≤ u3, U1 ≥ U2]

+ P[U1 ≤ u1, 1 + U1 − U2 ≤ u3, U1 < U2]

= P[U1 ≤ u1, U2 ≤ u3 − 1 + U1]

+ P[U1 ≤ u1, 1− u3 + U1 ≤ U2]

=


0 if u1 ≤ 1− u3

(u1 + u3 − 1)2/2 if u1 > 1− u3

+


u2

3/2− (u3 − u1)2/2 if u1 ≤ u3

u2
3/2 if u1 > u3.

Then, by conditioning on whether U3 is generated from (3.2.3) or (3.2.4) (each option

having a 50% probability), we get:

2P[U1 ≤ u1, U3 ≤ u3] =


u2

1/2 + u2
3/2− (u3 − u1)2/2 if u1 ≤ u3

u1u3 − u2
3/2 + u2

3/2 if u1 > u3
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+


u1u3 if u1 ≤ 1− u3

u3 − u2
3/2− (1− u1)2/2 + (u1 + u3 − 1)2/2 if u1 > 1− u3

=


u1u3 if u1 ≤ u3

u1u3 if u1 > u3

+


u1u3 if u1 ≤ 1− u3

u1u3 if u1 > 1− u3

= 2u1u3.

This shows that U3 is a Uniform[0, 1] and that U1 and U3 are independent. Noting that U1

and U2 are interchangeable in this example, we have that U2 and U3 are also independent.

Proposition 3.3. Let U1, U2, U3 be random variables defined as in Example 3.4. Then,

a. U3 has a Uniform[0, 1] distribution.

b. The triplet (U1, U2, U3) is pairwise independent.

Proof. a. First, note that

cos (2π(U1 + U2)) = cos (2π(U1 + U2) mod 2π) .

Now, from Example 3.1 we know that (U1+U2) mod 1 has a Uniform[0,1] distribution.

It follows that the random variable

U := 2π(U1 + U2) mod 2π

has a Uniform[0, 2π] distribution. Simple calculations1 then yield that the density

function f(·) of cos(U) is given by

f(x) =
1

π
√

1− x2
for− 1 < x < 1.

This yields that the random variable (cos(U) + 1)/2 has a density function given by:

2 · f(2u− 1) =
u−1/2(1− u)−1/2

π
for 0 < u < 1,

which corresponds to the density of a Beta(α = 1/2, β = 1/2) random variable.

1See details here: https://stats.stackexchange.com/questions/309400/pdf-of-cosine-of-a-uniform-
random-variable.
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b. It suffices to show that U1 and U3 are independent (because U1 and U2 are inter-

changeable in the construction). The proof relies largely on a result from Janson

(1988): if Z1 and Z2 are two independent complex-valued random variables, both

uniformly distributed on the unit circle, then the sequence defined as

Xj = Zj−1
1 Z2, j = 1, 2, . . .

is pairwise independent. In particular, we note that Z2 is independent of Z1Z2.

Since Z1 and Z2 are interchangeable in this construction, we also have that Z1 is

independent of Z1Z2. We remark that setting

Z1 := exp(2πiU1), Z2 := exp(2πiU2),

(where i is the unit imaginary number) makes Z1 and Z2 uniformly distributed on

the unit circle. It is then the case that Z1 is independent of

Z3 := Z1Z2 = exp(2πi(U1 + U2)).

It follows that the angle of Z1 (in its polar coordinates representation), which is

simply 2πU1, is independent of the real part of Z3, which is <(Z3) = cos(2π(U1+U2)).

By noting that U3 is a (Borel-measurable) function of <(Z3), U1 is also independent

of U3. This completes the proof.
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3.B Generating variables from Example 3.5

In this short section, we explain how to generate a triplet (U1, U2, U3) as in Example 3.5.

We first need the conditional copula CU3|U1,U2
(u1, u2, u3), which is given by

CU3|U1,U2
(u1, u2, u3) =

∂2C(u1, u2, u3)

∂u1∂u2
= u3 (1 + α(1− 2u1)(1− 2u2)(1− u3)) .

For given (u1, u2), CU3|U1,U2
(u1, u2, u3) is a continuous univariate CDF, and we can find

its inverse, call it C−1(t|u1, u2). Simple calculations yield

C−1(t|u1, u2) =
1 + a(u1, u2)−

√
(1 + a(u1, u2))2 − 4a(u1, u2)t

2a(u1, u2)
,

where a(u1, u2) = α(1− 2u1)(1− 2u2). Then, to generate Uniform[0, 1] random variables

having copula C, one need only apply a two-steps protocol (see, e.g., Cherubini et al.,

2004, Section 6.3).

1. Simulate three mutually independent Uniform[0, 1] random variables, call them U1, U2

and T .

2. Set U3 = C−1(T |U1, U2).

This results in (U1, U2, U3) having copula C.
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3.C Calibrating the size of r

For sample sizes n = 200, 300, 400, 500, 1000 we simulated 2,000 samples of mutually

independent Uniform[0,1] random variables (U1, U2, U3). In addition, for sample sizes

n = 2000, 3000, we simulated 1,000 mutually independent samples. Then, we applied to

each sample the methodology described in Sections 3.3.2.1 and 3.3.2.2, and for various val-

ues of the radius r. We then computed the MSE in (3.3.12) (for a given n, averaged over

all samples of size n), as function of r. The curves obtained (of MSE versus r, displayed

on Figures 3.33 to 3.39) all have a similar shape: the MSE decreases with r, sharply at

first and then less sharply.

Note that our goal is not only to minimise the MSE, but also to pick a rn that decreases

as n increases. Hence, heuristically, we want to pick a rn which is ‘not too big’, but ‘big

enough’ such that the improvement in MSE, if we were to increase r even more, would

not be substantial. Of course, what ‘substantial’ means is arbitrary. We find that using

the following rule:

1% Rule: ‘fix r such that increasing r by a further 0.002 generates a decrease

in MSE of ∼ 1%.’

yields a rn that decreases smoothly as n increases, and following a power function (rn = θnp

for some constants θ, p), see Figure 3.40. The fit to a power function is also very good

(with a R2 of 0.9916). Rounded to two decimal places, we have, as expressed before in

(3.3.13):

r = 0.61n−0.18.

While this rule is arbitrary, one can change it to, for example, a ‘2% Rule’, yielding

smaller rn. Doing so, we obtain another curve that decreases smoothly as a power function,

also depicted on Figure 3.40 (R2 = 0.997), and whose equation is:

r = 0.69n−0.22. (3.C.1)
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Figure 3.33: MSE of f(h̃) as function of r, for n = 200
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Figure 3.34: MSE of f(h̃) as function of r, for n = 300
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Figure 3.35: MSE of f(h̃) as function of r, for n = 400
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Figure 3.36: MSE of f(h̃) as function of r, for n = 500
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Figure 3.37: MSE of f(h̃) as function of r, for n = 1,000
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Figure 3.38: MSE of f(h̃) as function of r, for n = 2,000
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Figure 3.39: MSE of f(h̃) as function of r, for n = 3,000

Figure 3.40: r as a function of n when using the ‘1%’ and ‘2%’ rules
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CHAPTER 4

WHAT CAN ‘GO WRONG’ UNDER

PAIRWISE INDEPENDENCE
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4.1 Introduction

In Chapter 2, we saw that independence is a very important assumption in many actuarial

settings (and also one that many authors, in recognition that dependence does appear in

real data, have started to relax by using increasingly sophisticated dependence models).

Whenever mutual independence is assumed (in a model or theorem) it is relevant to know

whether pairwise independence is ‘enough’ for the model or theorem to be valid. This

is because pairwise independence is easier to justify, as it is a less stringent requirement

(compared to mutual independence). It can also be sufficient for some fundamental re-

sults to hold. For example, even if it is almost always stated for mutually independent

random variables, the strong Law of Large Numbers is in fact valid under sole pairwise

independence (see, e.g., Etemadi, 1981).

That said, we saw in Chapter 3 that pairwise independent variables can still be strongly

dependent. Hence, it is certainly not obvious that any given result assuming mutual

independence would hold for PIBD variables. In Section 4.2, we review many results (im-

portant in actuarial science) valid under mutual independence and which ‘fail’ for PIBD

variables. This serves to highlight that there is a substantial difference between ‘mutual’

and ‘pairwise’ independence. This difference matters, since modellers often stop their

dependence checks at the pairwise level (perhaps because of the historical dominance of

Gaussian-based models, for which zero-correlation of all pairs implies mutual indepen-

dence). In Section 4.3, we establish that many dependence models (not only the multi-

variate Gaussian) popular in actuarial science cannot capture this difference, because they

do not allow for the possibility of PIBD variables. That is, within those models, pairwise

independence implies mutual independence (which of course is not true in general).
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4.2 Important results which do not hold for PIBD variables

In Chapter 3, we provided examples which show, visually, that pairwise independence can

be starkly different from mutual independence. Here, we present some ‘consequences’ of

that difference. That is, we give examples of what can ‘go wrong’ if one assumes mutual

independence where only pairwise independence holds. This question is very broad, so

it is hard to cover it theoretically in an exhaustive way. Hence, we concentrate on a

few situations that are relevant to the actuarial field (with no pretence that our list is

exhaustive).

4.2.1 Sums of random variables

For a series of risks X1, . . . , Xn (whose marginal distributions are known) an important

problem in actuarial science is that of understanding the behaviour of their sum

S = X1 + · · ·+Xn, (4.2.1)

and under various assumptions on the dependence between risks. If the dependence struc-

ture between the X’s is fully known, then the distribution of S can be derived (either

analytically or numerically). If we only have partial information on the dependence, then

there is uncertainty about the distribution of S (this is a topic we surveyed in some detail

in Sections 2.3.3).

Under mutual independence, one can often deduce the distribution of the sum S in (4.2.1)

as that of a ‘simple’ distribution. For instance, the sum of independent Normal r.v.s is

again Normal, the sum of independent Exponential r.v.s is Gamma, the sum of independent

Poisson r.v.s is again Poisson, etc. Those commonly used results need not hold under

pairwise independence, as the following Example 4.1 demonstrates.

Example 4.1. Let m ≥ 3 be an integer and let M1, . . . ,Mm be a sequence of i.i.d. r.v.s

with Bernoulli(1/2) distribution. For all pairs (Mi,Mj), 1 ≤ i < j ≤ m, define a r.v. Di,j

as

Di,j =

 1, if Mi = Mj ,

0, otherwise.

The Di,j are then also Bernoulli(1/2). For convenience, we refer to these n =
(
m
2

)
random
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variables D1,2, D1,3, . . . , D1,m, D2,3, D2,4, . . . , Dm−1,m simply as

D1, . . . , Dn.

From the sequence D1, . . . , Dn, we can construct a pairwise independent sequence X1, . . . , Xn

with an arbitrary distribution F . The only restriction imposed on F is that, for a random

variable W ∼ F , the median of W (call it w̃) must be such that

P[W ≤ w̃] = P[W > w̃] = 1/2.

Define U and V to be the truncated versions of W ∼ F , respectively from above its median

and from below its median:

U
d
= W | {W ≤ w̃}, V

d
= W | {W > w̃},

Then, consider n independent copies of U , and independently n independent copies of V :

U1, . . . , Un,
i.i.d.∼ FU , V1, . . . , Vn

i.i.d.∼ FV .

Finally, for k = 1, . . . , n, construct

Xk =

Uk, if Dk = 0,

Vk, if Dk = 1.

By conditioning on Dk, one can check that Xk ∼ F . It is also the case that the X’s are

pairwise independent, but not mutually independent (we defer the proof of this to Chapter

5, where this construction is made more general).

For illustration purposes, let us now fix F to be Poisson(log(2)), which satisfies the re-

striction

P[X ≤ w̃] = P[X ≤ 0] = 1/2,

and let us focus on the behaviour of

S = X1 + · · ·+Xn.
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For any given m, we can derive the probability mass function (PMF) of S as

pS(s) =
log(2)s(1/2)m

s!

m∑
k=0

1{p(k)≤s}

(
m

k

) p(k)∑
j=0

(
p(k)

j

)
(−1)j (p(k)− j)s , s = 0, 1, . . . ,

(4.2.2)

where p(k) = (2k2 +m2 − 2km−m)/2.

Remark 4.1. The sequence defined in Example 4.1 appears somewhat ‘complicated’, but

we note it is not easy to build PIBD sequences of large size (especially with arbitrary

marginal distribution). This sequence will also be used (and made more general) in Chapter

5, see Section 5.2. Example 4.1 is an opportunity to first introduce this sequence to the

reader in a simpler form (which, for now, suffices to make our points).

Now, if the Xk’s from Example 4.1 were mutually independent, then the sum S would be

distributed as a Poisson(n log(2)). But pS(s) in (4.2.2) is never equal to the PMF of a

Poisson distribution, and regardless of the m chosen. This is easy to see if one notes, for

example, that for any m,

pS(0) = 0,

which of course is not the case for a Poisson. But just how different from a Poisson is

this S? We illustrate this on Figure 4.1, for various choices of sample size n. We see a

marked difference between the two distributions (and in particular, the support of both

distributions is different).
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Figure 4.1: pS(s) as in (4.2.2), compared to the PMF of a Poisson(n log(2)), for n = 3
(top), n = 10 (middle), n = 21 (bottom)

Remark 4.2. In Example 4.1, one could ask what happens if we let ‘n’ increase even

more. Would the distribution be closer to a Normal for a large sample size? We expect

this under mutual independence, but it is not the case here. We will see in Chapter 5 that

the standardised mean of that sequence does not converge to a Normal as the sample size

increases. As a teaser, for Zn the standardised version of S, i.e.,

Zn :=
S − E[X]n√
nVar[X]

,

we will show that Zn converges in distribution to a random variable Z which can be written

as

Z :=
√

1− ln(2)W +
√

ln(2)χ, (4.2.3)
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where W is a standard Normal, χ is a standardised χ2(1), and W is independent of χ. We

present on Figure 4.2 the density (left) and CDF (right) of Z, with the standard Normal

density and CDF for reference. We see that Z is right-skewed (and with a heavier right

tail).
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Figure 4.2: Density (left) and CDF (right) of the distribution of Z as defined in (4.2.3),
compared to that of a N(0,1)

Example 4.1 (and Remark 4.2) show that a sum of PIBD variables can behave very differ-

ently than what is expected under mutual independence, the main differences being the

asymmetry of the distribution of S. For PIBD variables, it is also possible for the sum S to

become more heavy-tailed (at least, in the sense that the kurtosis increases), as the sample

size increases (which is the opposite of what one expects under mutual independence).

This is highlighted in the following example (which is a generalisation of Example 3.1).

Example 4.2. Let ξ and η be two independent Uniform[0,1] random variables. For j =

1, . . . , n, let

Uj = (η + jξ) mod 1.

Then, all random variables U1, . . . , Un are uniformly distributed U[0,1), and pairwise inde-

pendent. This example stems from Example 6 in Janson (1988), though in their example

the Uj have a U(-1/2, 1/2] distribution. To avoid any ambiguity, we provide a short proof

that those variables are pairwise independent (see Proposition 4.3 in in Appendix 4.A).
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Furthermore, the kurtosis of the sum

Sn = U1 + · · ·+ Un (4.2.4)

appears to increase linearly with n. A proof of this has remained elusive, but via simulations

it appears undeniable: for values n = 10k (k = 1, 2, 3, 4, 5) we generated 3 × 106 samples

and then computed from those the empirical kurtosis of Sn. The results are displayed

on Figure 4.3 (presented on a log-log scale). Here, increasing the sample size n has the

opposite effect one would expect: it increases the kurtosis of the sum Sn. Because the

kurtosis is often used as a measure of tail-heaviness, and more tail-heavy distributions are

usually considered ‘riskier’ (e.g., when they model losses of an insurance portfolio) this

result is rather surprising: increasing the size of a portfolio of PIBD risks can make the

portfolio riskier (in the sense that it is more leptokurtic).
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Figure 4.3: Empirical kurtosis of the sum Sn in (4.2.4), for increasing values of n

4.2.2 Risk measures on aggregate losses

As seen in Section 2.3.1, one key reason why the behaviour of a sum

S = X1 + · · ·+Xn, (4.2.5)

for X1, . . . , Xn as series of ‘risks’ (typically, potential losses) is so important in actuarial

science is that the capital required (CR) of an insurance company is often determined as

a risk measure ρ(·) computed on S. The function ρ(·) is often a translation-invariant risk
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measure ρ(·) such as the Value-at-Risk (VaR) or the Tail-Value-at-Risk (TVaR) computed

on S. Alternatively, the required capital can be set to be the mean adjusted version of

ρ(·), i.e.,

CR := ρ(S − E[S]) = ρ(S)− E[S], (4.2.6)

which we then interpret as the capital needed to cover unexpected losses. Of course, the

assumed dependence between the risks X1, . . . , Xn influences such a required capital, since

it influences the distribution of S.

In this section, we investigate how the CR given by (4.2.6) can vary depending on whether

the risks X1, . . . , Xn are mutually independent, as compared to only pairwise independent.

To this end, we use the examples presented in Section 3.2. We will limit our analysis to

the case n = 3, and to the risk measures ‘VaR’ and ‘TVaR’ (which are arguably the most

commonly used in insurance).

We assume that the X’s are identically distributed and we compute the two risk measures

(for various levels) of the sum

S = X1 +X2 +X3,

and for different dependence structures, i.e., those given by Examples 3.1, 3.2, 3.3, 3.4 and

3.5 (setting the parameter α = 1 and then α = −1). We also vary the margins of the Xj ’s

so that they are either

• Uniform,

• Normal,

• Exponential,

• Log-normal.

To make the comparison between different margins ‘fair’, we fix their parameters such

that we always have E[Xj ] = 1 and Var[Xj ] = 1, for all margins. Since the distribution

of S is unknown (under the various PIBD examples), we use Monte Carlo simulations

(with number of repetitions B = 107) to compute the VaR and TVaR of S under the

different dependence structures. That is, we simulate a large number of times (B = 107)

the variables

X1, X2, X3,

under our various dependence scenarios. From those B simulations, we obtain a sample
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of size B of the variable S = X1 +X2 +X3, from which we estimate empirically both the

VaR and TVaR of S1. We then compute the ratio:

CR under a given PIBD example

CR under mutual independence
. (4.2.7)

We report the results in Tables 4.1 (VaR) and 4.2 (TVaR). Note those are estimated

values (rounded to two decimal places) and the width of a 95% bootstrap confidence

interval around them is, at most, ±0.005.

From the results about the VaR, we extract the following findings:

• The VaR for PIBD variables can differ considerably from that under mutual inde-

pendence: the lowest ratio observed is 47% and the highest is 124% (both attained

for Example 3.2 and Uniform margins).

• There is no general trend about which way the VaR moves towards: for differ-

ent dependence structures (and/or different levels), the VaR is sometimes greater,

sometimes smaller than under mutual independence. This is not too surprising, since

‘pairwise independence’ is not something specific (as seen before, it allows for many

different dependencies).

• Within a given example (i.e., a given dependence structure), the ratio (4.2.7) varies

substantially across different choices of margins. This is also not too surprising,

since the quantiles of S are highly impacted by the marginal distribution chosen (not

only the dependence). On first thought, it may seem surprising that the heavier-

tailed Log-normal distribution does not produce the most ‘extreme’ discrepancies

(quite the opposite: the ratios furthest from 1 are obtained for the short-tailed

Uniform and Normal margins). However, we note that a heavier tailed distribution

produces larger high quantiles under both dependence and independence. Hence, if

both the numerator and denominator of (4.2.7) increase, their ratio can decrease.

Said otherwise, when margins have a bigger impact on the VaR, the impact of the

dependence can be comparatively less pronounced.

• We find interesting that Example 3.5 (which featured a much more ‘subtle’ form

of dependence compared to the other examples) produces ratios that can still be

substantially different from 1. This means that fairly subtle dependence (at least,

1We note this way to compute the VaR and TVaR is rather ‘brute force’. This is sufficient for our
purposes, though it would also be possible to derive the theoretical distribution of S under each scenario,
and hence obtain the exact values of the risk measures.
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dependence which is hard to detect with the naked eye, recall Figures 3.12 and 3.13)

can still have a sizeable impact on Capital Required.

For the results about TVaR (Table 4.2), the same general observations hold, though the

ratios are generally less drastically far from 1: the lowest ratio is 78% (attained for Example

3.4 and Uniform margins) and the highest is 117% (attained for Example 3.3 and Uniform

and Normal margins).

Marginal Level Ex. 3.1 Ex. 3.2 Ex. 3.3 Ex. 3.4
Ex. 3.5
(α = 1)

Ex.3.5
(α = −1)

Uniform

70% 0.97 0.47 0.85 1.16 1.06 0.92
90% 0.92 1.24 1.17 0.71 0.95 1.06
95% 1.04 1.17 1.18 0.66 0.94 1.07
99% 1.10 1.07 1.15 0.97 0.93 1.05
99.5% 1.09 1.05 1.12 1.01 0.93 1.04

Normal

70% 0.95 0.72 0.94 1.11 1.05 0.94
90% 0.96 1.16 1.10 0.81 0.97 1.03
95% 0.99 1.14 1.12 0.81 0.95 1.05
99% 1.07 1.10 1.15 0.94 0.93 1.05
99.5% 1.09 1.08 1.16 0.99 0.93 1.05

Exponential

70% 0.91 0.75 0.76 1.05 1.09 0.91
90% 0.97 1.05 1.00 0.93 1.00 1.00
95% 0.99 1.06 1.04 0.94 0.98 1.02
99% 1.03 1.06 1.09 0.98 0.97 1.03
99.5% 1.05 1.06 1.11 0.99 0.96 1.03

Log-normal

70% 0.91 0.76 0.76 1.05 1.10 0.90
90% 0.98 1.03 0.99 0.95 1.00 1.00
95% 0.99 1.04 1.02 0.96 0.99 1.01
99% 1.02 1.03 1.05 0.99 0.98 1.02
99.5% 1.02 1.02 1.05 1.00 0.98 1.01

Table 4.1: Ratios of Capital Required (using VaR) under different PIBD structures (com-
pared to the mutual independence case)
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Marginal Level Ex. 3.1 Ex. 3.2 Ex. 3.3 Ex. 3.4
Ex. 3.5
(α = 1)

Ex.3.5
(α = −1)

Uniform

70% 0.97 1.13 1.12 0.83 0.97 1.03
90% 1.04 1.15 1.17 0.78 0.94 1.06
95% 1.08 1.10 1.16 0.87 0.93 1.05
99% 1.09 1.05 1.12 1.01 0.93 1.04
99.5% 1.08 1.04 1.10 1.03 0.94 1.03

Normal

70% 0.98 1.09 1.09 0.88 0.98 1.02
90% 1.01 1.13 1.13 0.86 0.95 1.05
95% 1.04 1.11 1.14 0.90 0.94 1.05
99% 1.10 1.08 1.16 1.00 0.93 1.05
99.5% 1.11 1.07 1.17 1.03 0.93 1.05

Exponential

70% 0.98 1.02 1.00 0.95 1.00 1.00
90% 1.01 1.06 1.06 0.96 0.98 1.02
95% 1.03 1.06 1.08 0.97 0.97 1.03
99% 1.06 1.06 1.12 1.00 0.96 1.04
99.5% 1.08 1.06 1.14 1.02 0.96 1.04

Log-normal

70% 0.99 1.01 1.00 0.97 1.00 1.00
90% 1.00 1.03 1.03 0.98 0.99 1.01
95% 1.01 1.03 1.04 0.98 0.99 1.01
99% 1.03 1.02 1.05 1.00 0.99 1.02
99.5% 1.03 1.02 1.05 1.01 0.99 1.01

Table 4.2: Ratios of Capital Required (using TVaR) under different PIBD structures
(compared to the mutual independence case)

An alternative way to assess the impact of different dependence scenarios on Capital

Required is by computing the Diversification Benefit (‘DB’, recall Equation 1.2.1), i.e.,

DB(X) = 100%−
CR(

∑d
i=1Xi)∑d

i=1 CR(Xi)
,

under those different dependence scenarios. For both VaR (Table 4.3) and TVaR (Table

4.4), we report the DB in each of our dependence scenarios. In both tables, the column

labelled ‘Ind.’ corresponds to mutual independence. Note those results are based on the

same Monte Carlo simulations we performed to obtain the values in Tables 4.1 and 4.2.

We observe that the Diversification Benefit under PIBD is sometimes smaller and some-

times larger than under mutual independence. This is in line with the previous results from

Tables 4.1 and 4.2, where we established that VaR and TVaR under PIBD are sometimes

smaller and sometimes larger than under mutual independence.

Here, we simply note that the difference between the DB under mutual independence and

pairwise independence can be significant. For example, for the VaR results (Table 4.3),

looking at the results for Log-normal margins at level 70%, while under independence the
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DB is −45% (meaning that pooling risks increases Capital Required), for the dependence

of Example 3.2, it is substantially higher, at −10%. However, for Example 3.5 (α = 1),

the DB is even more negative, at −58%.

Looking at the TVaR results (Table 4.4), the largest differences (in absolute value) are

observed for Uniform margins. Indeed, at the level 90%, under independence the DB

is 36%. It is substantially higher for Example 3.4, at 50%, and substantially lower for

Example 3.2, at 25%.

Marginal Level Ind. Ex.3.1 Ex.3.2 Ex.3.3 Ex.3.4
Ex.3.5
(α = 1)

Ex.3.5
(α = −1)

Uniform

70% 54% 56% 78% 61% 47% 51% 58%
90% 45% 50% 32% 36% 61% 48% 42%
95% 38% 36% 28% 27% 59% 42% 34%
99% 25% 17% 19% 14% 27% 30% 21%
99.5% 20% 12% 16% 10% 19% 25% 17%

Normal

70% 42% 45% 58% 46% 36% 39% 46%
90% 42% 45% 33% 37% 53% 44% 40%
95% 42% 43% 34% 35% 53% 45% 39%
99% 42% 38% 37% 34% 46% 46% 39%
99.5% 42% 37% 37% 33% 43% 46% 39%

Expon.

70% -1% 9% 25% 23% -6% -10% 9%
90% 41% 42% 38% 41% 45% 41% 41%
95% 45% 45% 42% 43% 48% 46% 44%
99% 50% 48% 47% 45% 51% 52% 49%
99.5% 51% 49% 49% 46% 52% 53% 50%

Log-norm

70% -45% -31% -10% -10% -52% -58% -30%
90% 34% 35% 32% 34% 37% 34% 34%
95% 40% 40% 38% 39% 42% 41% 39%
99% 48% 47% 46% 45% 48% 48% 47%
99.5% 50% 49% 49% 47% 50% 51% 49%

Table 4.3: Diversification Benefit (using VaR) under different dependence scenarios
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Marginal Level Ind. Ex.3.1 Ex.3.2 Ex.3.3 Ex.3.4
Ex.3.5
(α = 1)

Ex.3.5
(α = −1)

Uniform

70% 44% 46% 37% 37% 53% 46% 42%
90% 36% 33% 26% 25% 50% 40% 32%
95% 30% 24% 23% 19% 39% 35% 26%
99% 19% 12% 15% 9% 18% 24% 16%
99.5% 15% 8% 12% 7% 13% 20% 13%

Normal

70% 42% 43% 37% 37% 49% 44% 41%
90% 42% 41% 35% 35% 50% 45% 39%
95% 42% 40% 36% 34% 48% 46% 39%
99% 42% 37% 38% 33% 42% 46% 39%
99.5% 42% 36% 38% 33% 41% 47% 39%

Expon.

70% 41% 42% 40% 41% 44% 41% 41%
90% 47% 46% 44% 44% 49% 48% 46%
95% 49% 47% 46% 45% 50% 50% 47%
99% 52% 49% 49% 46% 52% 54% 50%
99.5% 53% 49% 50% 47% 52% 55% 51%

Log-norm

70% 37% 38% 37% 38% 39% 37% 38%
90% 44% 43% 42% 42% 45% 44% 43%
95% 46% 46% 45% 44% 47% 47% 46%
99% 51% 50% 50% 49% 51% 52% 50%
99.5% 53% 51% 52% 50% 52% 53% 52%

Table 4.4: Diversification Benefit (using TVaR) under different dependence scenarios

Remark 4.3. Of course, the ‘pairwise independence scenarios’ chosen here are not the

only ones possible, and we cannot infer that other PIBD structures would generate sim-

ilar results. Another limitation of our analysis is that we investigated only the case of

three risks, X1, X2, X3. Nonetheless, this section serves to highlight that there can be

an important difference between the required capital (and diversification benefit) under an

assumption of mutual independence, compared to an assumption of pairwise independence.

4.2.3 Extreme value theory

As Embrechts et al. (1999) put it, “extreme value theory plays an important methodolog-

ical role within risk management for insurance, reinsurance, and finance”. Many classical

results in this theory rely on the mutual independence between a series of risks, and we re-

call here what is arguably the most central result of classical extreme value theory (EVT),

namely the Fisher-Tippett Theorem (see, e.g., Embrechts et al., 1997, Theorem 3.2.3).

We then give an example to illustrate this theorem does not hold for merely pairwise

independent variables.

Theorem 4.1. Let {Xn} be a sequence of i.i.d. random variables, and denote their max-

imum by Mn := max(X1, . . . , Xn). If there exists norming constants cn > 0, dn ∈ R and
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some non-degenerate distribution function H such that

c−1
n (Mn − dn)

d−→ H, (4.2.8)

then H belongs to the type of one of the following three distribution functions:

• Fréchet:

Φα(x) =


0, x ≤ 0

exp[−x−α], x > 0

α > 0,

• Weibull:

Ψα(x) =


exp[−(−x)α)], x ≤ 0

1, x > 0

α > 0,

• Gumbel:

Λ(x) = exp[−e−x], x ∈ R.

We can see this theorem as an analogue of a CLT for standardised maximum (as opposed

to standardised sums). We now provide a counterexample to the theorem in the case of

PIBD r.v.s. This example is interesting because:

• the standardised maximum appears to converge to a distribution which is not what

is ‘predicted’ by the theorem (for i.i.d. variables).

• the expected value of the standardised maximum appears to go to −∞ as n increases.

We note that the sequence in this example comes from Janson (1988, see Remark 2), but

our application to EVT is original.

Example 4.3. Let ξ, η be independent Uniform[0,1] random variables, and define a se-

quence of random variables {Xj , j ≥ 1} as

Xj =
cos (2π(η + jξ)) + 1

2
, j = 1, 2, . . .

We then have that the random variables {Xj , j ≥ 1} are pairwise independent (though not

mutually independent).

We note that the random variables {Xj , j ≥ 1} in Example 4.3 are identically distributed

with Beta(a = 1/2, b = 1/2) distribution. This follows directly from the proof of part a) of
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Proposition 3.3, together with the proof of Proposition 4.3. Then, if we set the constants

c−1
n =

(
2n

π

)2

, dn = 1

(which are the values required for convergence under mutual independence, see Proposition

4.4 in Appendix 4.A), we have that

Hn := c−1
n (Mn − dn)

appears to converge to a non-degenerate distribution which is not the Weibull(α = 1/2),

i.e., the distribution ‘predicted’ by the Fisher-Tippett Theorem for Beta distributed i.i.d.

random variables. We say ‘appears’ because we unfortunately do not have a proof of this

statement, but our simulation results are, we believe, convincing. They are presented

on Figure 4.4, which displays the histogram and empirical CDF of − log(−Hn) for n =

100,000 (and based on 3 × 106 simulated samples), compared to those of − log(−W ) for

W ∼ Weibull(1/2). We used the log transformation for better visualisation, since the

distribution of Hn itself is extremely heavy-tailed. We notice that the distribution of

Hn is not degenerate, and markedly different from the Weibull; especially, it has a much

heavier left tail.

Furthermore, the first moment of Hn appears to decrease linearly as n increase, and hence

it appears to tend to −∞ for n → ∞. This is illustrated on Figure 4.5, which shows the

empirical means of Hn, for n varying from n = 10 to n = 100,000 (results are presented

on a log-log scale).

Remark 4.4. It is not paradoxical that Hn appears to converge to a fixed distribution,

while E[Hn] goes to −∞. This is certainly theoretically possible. For example, for F (x) a

non-degenerate CDF (with finite expectation) and Fn (n = 1, 2, . . .) a sequence of CDFs

defined as:

Fn(x) =
n− 1

n
F (x) +

1

n
1[n2,∞)(x),

(i.e., Fn is a mixture of F and the constant n2), we have that Fn(·) converges pointwise

to F (·), but the expectation of a random variable X ∼ Fn goes to infinity for n→∞.
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Figure 4.4: Density (left) and CDF (right) of − log(−Hn) as compared to those ‘predicted’
by the Fisher-Tippett Theorem (red line), for n = 100,000
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Figure 4.5: Empirical mean of Hn (log-transformed) for increasing values of n

4.2.4 Bootstrap

The bootstrap is a powerful statistical technique which can be used to estimate distribu-

tions, standard errors and confidence intervals for quantities of interest within a model,

but without resorting to strong distributional assumptions (for a classical reference on

the bootstrap, see Efron and Tibshirani, 1994). Bootstrapping has been used in actuarial

science for many purposes, including prediction errors in claims reserving (England and

Verrall, 1999), obtaining the predictive distribution of outstanding loss liabilities within

the chain-ladder model (Peters et al., 2010) or measuring uncertainty of mortality projec-

tions (D’Amato et al., 2012).
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A crucial assumption of the bootstrap is that observations within a collected sample are

mutually independent. In this section, we showcase that the bootstrap can fail drastically if

a sample is only pairwise independent. For illustrative purposes, we consider the following

simple problem.

Problem 4.1.

Let X := (X1, . . . , Xn) be discrete data, with Xj ∈ {0, 1, . . .} for j = 1, . . . , n. We want

to estimate

q := P[Xj = 0],

and obtain a confidence interval for q2. The point estimator of q is given by

q̂ =
# of 0’s in X

n
, (4.2.9)

but this is of course just a number. For simplicity, assume we want to derive a one-sided

confidence interval of the form:

[L, 1].

We can use the bootstrap to obtain such a confidence interval, i.e., we can apply the

following procedure.

Procedure 4.1.

i. We fix the level of our confidence interval to 1 − α. Here, we use α = 10% (this is

arbitrary).

ii. For i = 1, 2, . . . , B (B a ‘large number’, henceforth set to B = 5000) we generate

bootstrapped samples of X (of the same original size n). Call them X∗1 , . . . ,X
∗
B.

iii. For each of these bootstrapped samples we compute a new estimator of q, i.e.,

q̂∗i =
# of 0’s in X∗i

n
, i = 1, 2, . . . , B.

iv. This yields a bootstrapped sample of the statistic of interest, q̂. The bootstrap

2An actuarial example fitting this setting could be if the Xj ’s represent the remaining whole years
of life for individuals in an insurance portfolio (all with similar mortality). Then, q would represent the
probability a given individual dies within the next year.
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confidence interval (BCI) for q, at level α, is then given simply by setting

L = F̂−1
q∗ (α),

where F̂−1
q∗ (α) is the empirical α-quantile of the bootstrapped values q̂∗1, . . . , q̂

∗
B.

We follow the above procedure under two different data-generating processes, namely:

1. The Xj ’s are i.i.d. Poisson(log(2)).

2. The Xj ’s are generated as in Example 4.1, hence they are Poisson(log(2)) and PIBD.

Results for Scenario 1: Here, the bootstrap is supposed to work (since the i.i.d. as-

sumption is verified), and we quickly check that it is the case.

We first let n = 45. Figure 4.6 shows the histogram of one bootstrapped sample q̂∗1, . . . , q̂
∗
B.

For this specific simulation, the bootstrapped confidence interval does contain the true

value q = 1/2. We also note that the empirical bootstrap distribution looks approximately

Normal (which is expected).
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Figure 4.6: Histogram of a bootstrapped sample of empirical proportions q̂∗ from a i.i.d.
Poisson(log(2)), with sample size n = 45

Figure 4.6 alone does not tell us much, as it represents only one simulation. A different

sample would have yielded a different BCI interval. Hence, we repeat the procedure 10,000

times, and we count the number of times the ‘true’ value q = 1/2 falls outside the BCI.

We obtain a proportion of

α̂ = 0.118.

This is relatively close to the expected level α = 0.1. If we repeat the same procedure for
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a larger sample size n = 990, we obtain

α̂ = 0.095,

which is closer to the theoretical level, indicating that the bootstrap improves as the

sample size increases (which is expected).

Results for Scenario 2: Before repeating the bootstrap simulations for a PIBD sample,

let us first look at what the ‘true’ distribution of q̂ looks like in that case. We generate

10,000 samples of size n = 45 (for PIBD variables as in Example 4.1) and compute q̂ for

each of them, as to obtain a sample

q̂1, . . . , q̂10000.

The histogram of those 10,000 values is presented on Figure 4.7. We see that the distri-

bution of q̂ is odd, and radically different than in the i.i.d. case. It is highly skewed to the

left, and only a few values are allowed.
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Figure 4.7: Histogram of empirical proportions q̂, obtained from PIBD Poisson(log(2))
variables (sample size n = 45)

Next, we follow the bootstrap procedure, again with n = 45. For a given PIBD sample,

we obtain the bootstrapped sample q̂∗1, . . . , q̂
∗
B, whose histogram is shown on Figure 4.8.
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Figure 4.8: Histogram of bootstrapped empirical proportions q̂∗, obtained from PIBD
Poisson(log(2)) variables (sample of size n = 45)

Perhaps unsurprisingly, Figure 4.8 reveals that the bootstrap procedure is incapable of

reproducing the ‘real’ distribution of q̂ displayed on Figure 4.7. We note that the true

value of q is contained in the BCI. This, again, does not tell us much since a different

original sample would have yielded different results. We repeat the bootstrap procedure

10,000 times, and we record the proportion of times the true value 1/2 is outside the BCI.

This gives us the empirical level of the BCI. We obtain the value

α̂ = 0.00.

This is totally ‘off’, as we expect a proportion around 0.10. A sample size of n = 45 is

relatively small, hence we repeat the procedure for n = 990. We obtain again an empirical

level of 0.00. This means that the (bootstrapped) distribution of q̂∗ is unable to reproduce

the ‘true’ distribution of q̂, and hence the BCI we obtain are meaningless.

Remark 4.5. It is not surprising that the bootstrap fails here, as what causes the ‘odd’

distribution of q̂ shown on Figure 4.7 is the dependence that exists between the observations,

which is not reproduced when bootstrapping the sample. Indeed, even if every pair (Xi, Xj)

of observations is independent, many triplets (Xi, Xj , Xk) are strongly dependent. When

randomly re-sampling the observations, those triplets are not reproduced in the bootstrapped

samples, hence the ‘pattern of dependence’ is broken and the bootstrapped distribution

obtained for q̂ is totally different from its true distribution.

In closing this section, we note that many other important theorems and techniques which

rely on mutual independence do not hold under sole pairwise independence (the list we

have presented here is far from exhaustive). For instance, in Appendix 4.B, we provide
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an additional example which shows that the Zero-One Law of Kolmogorov, as well as the

Law of the Iterated Logarithm, can ‘fail’ for a sequence of PIBD random variables.
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4.3 Popular dependence models which do not allow for PIBD

variables

In the previous section, we established that there is a material difference between pairwise

and mutual independence, in the sense that many results and techniques which rely on

mutual independence are not valid under sole pairwise independence. In this section,

we show that this difference is not captured by some of the most common dependence

models used in actuarial science. That is, we show that those models do not allow for the

possibility of PIBD variables. Said otherwise, within those models, pairwise independence

implies mutual independence.

4.3.1 Elliptical distributions

We first recall the definition of elliptical distributions (the most common examples of

which are the multivariate Normal and multivariate t distributions) which form a “class of

distributions that has increased in popularity, both in finance and insurance” (Xiao and

Valdez, 2015). A classical reference on spherical and elliptical distributions is Fang et al.

(1990). In our treatment, we use the notation and definitions found in McNeil et al. (2015,

Section 6.3). To define elliptical distributions, we must first define spherical distributions.

Definition 4.1. A random vector X := (X1, . . . , Xd)
′ has a spherical distribution if, for

every orthogonal map U ∈ Rd×d (i.e., maps such that UU ′ = U ′U = Id, where Id is the

identity matrix),

UX
d
= X,

where ‘
d
=’ denotes ‘equality in distribution’. An important result about spherical distri-

butions is given in the next theorem (see McNeil et al., 2015, Theorem 6.18).

Theorem 4.2. A random vector X has a spherical distribution if and only if there exists

a function ψ of a scalar variable such that, for all t ∈ Rd,

ϕX(t) = E
[
exp(it′X)

]
= ψ(t′t)

The function ψ is called the characteristic generator of the spherical distribution, and

we use the notation X ∼ Sd(ψ). We can now introduce the definition of an elliptical

distribution.
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Definition 4.2. A random vector X := (X1, . . . , Xd)
′ has an elliptical distribution if

X
d
= µ+AY ,

where Y ∼ Sk(ψ), A ∈ Rd×k is a matrix of constants, and µ ∈ Rd is a vector of constants.

We can now state our result (which we believe, in such generality, is new).

Proposition 4.1. Let X := (X1, . . . , Xd)
′ be a random vector having an elliptical distri-

bution. If all pairs of variables (Xj , Xk), j 6= k of this vector are independent, then the

variables X1, . . . , Xd are mutually independent.

Proof. Let X = µ + AY be the representation of X as an affine transformation of a

spherical random vector Y (in the sense of Definition 4.2). The characteristic function of

X can be written as

ϕX(t) = exp(it′µ)ψ(t′Σt), (4.3.1)

where t ∈ Rd, Σ = AA′ and ψ is the generator of Y (McNeil et al., 2015, p. 200).

Therefore, we have, for any j, k ∈ {1, . . . , d}, j 6= k,

ϕXj (tj) = exp(itjµj)ψ(t2jσjj),

ϕXj ,Xk(tj , tk) = exp(itjµj) exp(itkµk)ψ(t2jσjj + t2kσkk + 2tjtkσjk),

where tj , tk ∈ R and σa,b denotes the element in the ath row and bth column of Σ. Because

we are under the assumption of pairwise independence, we must also have that, for any

tj , tk ∈ R,

ϕXj ,Xk(tj , tk) = exp(itjµj)ψ(t2jσjj) exp(itkµk)ψ(t2kσkk),

and hence that

ψ(t2jσjj)ψ(t2kσkk) = ψ(t2jσjj + t2kσkk + 2tjtkσjk). (4.3.2)

Equation (4.3.2) is true for all tj , tk ∈ R. Hence, if we let tj be arbitrary and then set

tk = −2tjσjk/σkk =⇒ t2kσkk = −2tjtkσjk,
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it follows that

ψ(t2jσjj)ψ(t2kσkk) = ψ(t2jσjj) =⇒ ψ(t2kσkk) = 1.

Then, using t2k = 4t2jσ
2
jk/σ

2
kk, we have

ψ(4t2jσ
2
jk/σkk) = 1. (4.3.3)

Since (4.3.3) is valid for all tj ∈ R, we deduce that σjk = 0 (note that ψ cannot be a

constant function as this does not yield a valid characteristic function). In fact, since the

choices of j, k were arbitrary, it also follows that σjk = 0 for all j, k such that j 6= k. Next,

from 4.3.2 we have that

ψ(t2jσjj)ψ(t2kσkk) = ψ(t2jσjj + t2kσkk),

and the only continuous function with this property is the power function3, i.e.,

ψ(x) = ax,

for some constants a ∈ R (ψ is continuous since it is a characteristic function). But then

it follows that

ϕX(t) = exp(it′µ)ψ(t′t) =
d∏
`=1

exp(it`µ`)ψ(t2`σ``) =
d∏
`=1

ϕX`(t`), (4.3.4)

which implies the mutual independence of all the X’s.

4.3.2 Archimedean Copulas

Another very common class of dependence models is that of Archimedean copulas, “which

enjoy considerable popularity in a number of practical applications” (McNeil and Nešlehová,

2009). In particular, we saw in Section 2.4.1 that many authors have used such copulas

to model the dependence between risks within the Individual Risk Model.

We first recall the definition of Archimedean copulas, as stated for instance in McNeil and

3See for example on MathStackExchange: https://math.stackexchange.com/questions/1548249
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Nešlehová (2009, see Definition 2.2).

Definition 4.3. A nonincreasing and continuous function ψ : [0,∞) → [0, 1] which

satisfies the conditions ψ(0) = 1 and limx→∞ ψ(x) = 0 and is strictly decreasing on

[0, inf{x : ψ(x) = 0}) is called an Archimedean generator. A d-dimensional copula C

is called Archimedean if it permits the representation

C(u1, . . . , ud) = ψ
(
ψ−1(u1) + · · ·+ ψ−1(ud)

)
, u1, . . . , ud ∈ [0, 1]

for some Archimedean generator ψ and its inverse ψ−1 : (0, 1]→ [0,∞) where, by conven-

tion, ψ(∞) = 0 and ψ−1(0) = inf{u : ψ(u) = 0}.

Now, it is also the case that, for Archimedean copulas, pairwise independence of all compo-

nents implies their mutual independence. This is formalised in the following proposition.

Proposition 4.2. Let U := (U1, . . . , Ud) be a random vector of uniforms with Archimedean

copula C. If this copula is such that pairs (Uj , Uk), j 6= k are independent, then this copula

is the independence copula C(u1, . . . , ud) = u1 × · · · × ud.

Proof. First, pairwise independence implies that

ψ
(
ψ−1(u1) + ψ−1(u2)

)
= u1 · u2, for all u1, u2 ∈ [0, 1]. (4.3.5)

Then, note that while for any u ∈ [0, 1],

ψ(ψ−1(u)) = u, (4.3.6)

for the ‘other way around’ we have

ψ−1(ψ(x)) = min{x, ψ−1(0)}, for x ∈ [0,∞). (4.3.7)

Now, let (u1, u2, u3) ∈ [0, 1]3, and note that, necessarily, u2u3 ∈ [0, 1]. From (4.3.5) and

(4.3.7) we get

ψ−1 (u1u2u3) = ψ−1
(
ψ
(
ψ−1(u1) + ψ−1(u2u3)

))
= min{ψ−1(u1) + ψ−1(u2u3), ψ−1(0)}

= min
{
ψ−1(u1) + min{ψ−1(u2) + ψ−1(u3), ψ−1(0)}, ψ−1(0)

}
= min

{
ψ−1(u1) + ψ−1(u2) + ψ−1(u3), ψ−1(0)

}
.
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By repeating the argument, we obtain that

ψ−1 (u1 × · · · × ud) = min
{
ψ−1(u1) + · · ·+ ψ−1(ud), ψ

−1(0)
}
.

Next, using (4.3.6) we have

u1 × · · · × ud = ψ
(
min

{
ψ−1(u1) + · · ·+ ψ−1(ud), ψ

−1(0)
})

=


ψ
(
ψ−1(0)

)
= 0 if ψ−1(u1) + · · ·+ ψ−1(ud) ≥ ψ−1(0)

ψ
(
ψ−1(u1) + · · ·+ ψ−1(ud)

)
otherwise.

Because u1×· · ·×ud = 0 if and only if there is a k ∈ {1, . . . , d} such that uk = 0, we have

u1 × · · · × ud =


0 if uk = 0 for some k ∈ {1, . . . , d},

C(u1, . . . , ud) otherwise.

This concludes the proof, since of course C(u1, . . . , uk−1, 0, uk+1, . . . , ud) = 0.

Remark 4.6. It is also the case that Archimedean survival copulas are such that pair-

wise independence of all components implies mutual independence. Indeed, let U :=

(U1, . . . , Ud) be a random vector of uniforms with Archimedean survival copula Ĉ, meaning

that

P[U1 > u1, . . . , Ud > ud] = Ĉ(1− u1, . . . , 1− ud)

= ψ
(
ψ−1(1− u1) + · · ·+ ψ−1(1− ud)

)
,

for some Archimedean generator ψ (in the sense of Definition 4.3). Then, rerunning

the proof of Proposition 4.2 (with C replaced by Ĉ and each uk replaced by 1 − uk, for

k = 1, . . . , d) yields the result.

4.3.3 Pair-copula constructions under the ‘simplifying assumption’

Pair-copula constructions (PCCs), also known as ‘vine copulas’, have recently gained

widespread popularity to model complex and/or high dimensional dependence, and in

a variety of fields. Two seminal papers developing PCCs are Bedford and Cooke (2002)

and Aas et al. (2009). As summarised by Aas (2016):

A PCC is a multivariate copula that is constructed from a set of bivariate ones,
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so-called pair-copulae. More specifically, the copula density is decomposed

into a product of pair-copula densities. All of these bivariate copulae may be

selected completely freely as the resulting structure is guaranteed to be a valid

copula. Hence, PCCs are highly flexible and able to characterise a wide range

of complex dependencies.

We give a simple example of a PCC in three dimensions (as given in Acar et al., 2012, see

their Introduction).

Example 4.4. Let U1, U2, U3 be three Uniform[0,1] random variables. Assuming their

joint density (which is a copula density) exists, it can be decomposed as

c(u1, u2, u3) = c12(u1, u2)c23(u2, u3)c13|2(u1|2, u3|2;u2), (4.3.8)

where:

- uk ∈ [0, 1] for k = 1, 2, 3

- c12 is the copula density of the pair (U1, U2), and c23 the copula density of the pair

(U2, U3)

- c13|2 is the conditional copula density of the pair (U1, U3), given U2 = u2

- uk|2 = P[Uk ≤ uk|U2 = u2] for k = 1, 3.

We note that a decomposition such as (4.3.8) is not unique, as we could have also chosen

U1 or U3 as the ‘conditioning variable’.

While in principle any copula density (when it exists) can be expressed as that of a PCC

(including, for instance, the ‘unusual’ dependence from Examples 3.2 and 3.5 in Chapter 3),

in practice the so-called simplifying assumption is often made. This assumption states

“that the copulas corresponding to conditional distributions are constant irrespective of

the values of variables that they are conditioned on” (Stöber et al., 2013). In (4.3.8),

this would correspond to the conditional copula density c13|2 not depending on the third

argument u2, which we then write

c13|2(·, ·;u2) = c13|2(·, ·).

The appropriateness of this simplifying assumption has been the subject of much debate,

see, e.g., Haff et al. (2010), Acar et al. (2012), Killiches et al. (2017), Spanhel and Kurz
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(2019), or Mroz et al. (2021) for discussions. Here, we do not not weight in on this question.

We simply remark that this ‘simplifying assumption’ restricts the possible dependence

structures allowed by PCCs. In particular, under this assumption PCCs do not allow the

possibility of PIBD variables. This is easy to see via Example 4.4. Indeed, if the variables

U1, U2, U3 are pairwise independent, then (4.3.8) becomes

c(u1, u2, u3) = c13|2(u1|2, u3|2) = c13(u1, u2) = 1,

i.e., U1, U2, U3 are mutually independent.

Remark 4.7. The fact that under the ‘simplifying assumption’ pairwise independence

implies mutual independence is not only true for three-variate copulas (as in Example

4.4). It is true more generally for any so-called ‘regular’ PCC, and we note that regular

PCCs are a very general form of PCC, of which the common ‘canonical’ and ‘D-vines’

PCC are special cases (see, e.g., Aas et al., 2009, Section 2.1).

To see this, we note that all ‘building blocks’ of a regular PCC are bivariate conditional

copulas. That is, for U := (U1, . . . , Ud) a vector of random uniforms, the general form of

the copula density of U for any regular PCC is given as (see Czado, 2010, Equation 9):

c(u1, . . . , ud) =

d−1∏
i=1

∏
e∈Ei

cj(e),k(e)|D(e)

(
uj(e)|D(e), uk(e)|D(e)

)
(4.3.9)

where

- u := (u1, . . . , ud) ∈ [0, 1]d,

- E1, E2, Ed−1 are the sets of edges in the ‘tree’ making up the PCC (see more details

in Section 2.2 of Czado, 2010),

- j(e), k(e) ∈ {1, 2, . . . , d},

- D(e) ⊂ {1, . . . , d},

- cj(e),k(e)|D(e) is the bivariate copula density of Uj(e), Uk(e) given UD(e) = uD(e), where

UD(e) is the sub random vector of U containing variables with indices D(e), and

uD(e) is the subvector of u containing variables with indices D(e),

- uj(e)|D(e) = P
[
Uj(e) ≤ uj(e)|UD(e) = uD(e)

]
.

While the conditioning in any copula cj(e),k(e)|D(e) can be done on a large number of vari-

ables (i.e., the sets D(e) can contain many variables), the simplifying assumption (that
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any bivariate conditional copula does not dependent on variables in the set D(e)) implies

that

cj(e),k(e)|D(e) = cj(e),k(e) = 1

for pairwise independent variables. Hence, in that case the copula density in (4.3.9) reduces

to

c(u1, . . . , ud) = 1,

i.e., the mutual independence copula.

Remark 4.8. In writing this section, our intention was not to discredit the models we

have mentioned. Rather, we wanted to point out a ‘potential limitation’ of those models

which we believe has not been highlighted before. To use such models is to implicitly assume

that pairwise independence is equivalent to mutual independence. We are not saying this is

always problematic. However, and as we have seen, there are potential dangers in assuming

such an equivalence.
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4.4 Conclusion

We have seen in this chapter that pairwise independence can be a poor substitute to mutual

independence. Indeed, we saw that many results commonly used in actuarial science are

not valid for merely ‘pairwise independent’ observations (i.e., full ‘mutual independence’ is

required for them to hold). Some of those included results about the distribution of sums

of random variables (see Section 4.2.1 and 4.2.2), the Fisher-Tippett theorem from extreme

value theory (Section 4.2.3) and the bootstrap technique (Section 4.2.4). Of course, our

list is far from exhaustive (see Appendix 4.B for an additional example of PIBD variables

for which important theorems ‘fail’). On the other hand, we saw that many popular

dependence models do not allow for the possibility of PIBD variables (Section 4.3). That

is to say, within those models pairwise independence implies mutual independence (which

can be seen as a limitation of those models).

We note that, in this chapter and the previous, we have dealt with finite numbers of

random variables X1, . . . , Xn, and we did not establish asymptotic results for n→∞. As

a next step, it is interesting to wonder what can happen for infinitely large sequences of

PIBD random variables. Is it the case that the impact of the dependence gets weaker for

a large enough sample size? As can been intuited already from Examples 4.2 and 4.3, we

will see that the answer is largely negative. While the current chapter gave an overview

of many different topics, the next two chapters will investigate more generally the case of

Central Limit Theorems (CLTs) for PIBD variables. We will see that a PIBD sequence

need not verify a CLT, and in particular the novelty in our results will be to provide

sequences with arbitrary marginal distributions, and for which we will obtain explicitly

the (non-Normal) asymptotic distribution of the standardised sample mean.
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4.A Proofs

Proposition 4.3. Let {Xj , 1 ≤ j ≤ d} be random variables defined as in Example 4.2.

Then, all Xj’s are pairwise independent and identically distributed with Uniform[0, 1)

distribution.

Proof. From Janson (1988, see Remark 2), we know that random variables defined a

Yj := exp(2πi(η + jξ)) for j = 1, 2, . . .

have a uniform distribution on the (complex) unit circle, and are pairwise independent.

It follows that the angles (often called ‘arguments’) of any of those Yj (in their polar

coordinates representation), which are simply given by

2π(η + jξ) mod 2π,

are uniformly distributed on [0, 2π), and also pairwise independent. Hence, we must have

that

Xj = (η + jξ) mod 1

are uniformly distributed on [0,1), and pairwise independent.

Proposition 4.4. Let {Xj , j ≥ 1} be i.i.d. Beta(a = 1/2, b = 1/2) random variables, and

let Mn := max(X1, . . . , Xn). With norming constants

c−1
n =

(
2n

π

)2

, dn = 1,

we have that c−1
n (Mn − dn)

d→ Ψ1/2, i.e., a Weibull(α = 1/2).

Proof. Call F̄ (x) the survival function of a Beta(a = 1/2, b = 1/2) random variable. From

Example 3.3.17 in Embrechts et al. (1997), we have that F̄ (1 − 1/x) is regularly varying

(with index −b = −1/2), and also that

F̄ (1− 1/x) ∼ Γ(a+ b)

Γ(a)Γ(b+ 1)
(1− x)b =

2

π
(1− x)1/2,

for x ↑ 1. Hence, by Example 3.3.16 in Embrechts et al. (1997), F ∈ MDA(Ψ1/2), and the
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result holds with norming constants

cn = (n · 2/π)−2, dn = 1.
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4.B Other theorems which ‘fail’ for PIBD variables

We present an additional example (taken from Cuesta and Matrán, 1991) which shows

that the Zero-One Law of Kolmogorov and the Law of Iterated Logarithms (two central

results of probability theory) also ‘fail’ for PIBD random variables.

Example 4.5. Let p be a prime number and let P := {0, 1, . . . , p − 1}. Let Y0 and

{Zn·p, n = 0, 1, . . .} be mutually independent random variables with uniform distribution

on the set P. Define

Z0+k = Z0 ⊕ k · Y0, k = 0, 1 . . . , p− 1,

Zn·p+k = Zn·p ⊕ k · Y0, k = 0, 1 . . . , p− 1, n = 1, 2, . . . ,

where ⊕ means ‘addition modulo p’. The sequence {Z0, Z1, . . .} hence defined is then

pairwise independent4, and it does not satisfy the ZOL (nor the Law of Iterated Logarithms,

nor a CLT).

We next recall the ZOL, for which we first need the definition of a tail-σ-field.

Definition 4.4 (Resnick (1999), p.107). Given {Xj , j ≥ 1} a sequence of random vari-

ables, let

Fn := σ(Xn+1, Xn+2, . . .), n = 1, 2, . . . .

The tail-σ field of {Xj , j ≥ 1}, denoted T , is the σ-field defined as

T :=

∞⋂
n=1

Fn.

From Definition 4.4, we see that the events contained in T are those that do not depend

on any finite number of random variables in the sequence {Xj}. Rather, they depend on

the ‘tail’ of the sequence. For instance, let Ω be the sample space on which the X’s are

defined, and let Sn = X1 + · · ·+Xn. The event

{
ω ∈ Ω : lim

n→∞

Sn(ω)

n
= 0

}

belongs to T . We now state the Kolmogorov Zero-One Law, as Theorem 4.1.

4Note that the sequence {Z0, Z1, . . .} is not stationary, and that Cuesta and Matrán (1991) define a
further pairwise independent sequence which is stationary. However, the sequence {Z0, Z1, . . .} is sufficient
for our purposes and we stick to it for simplicity.
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Theorem 4.1 (Resnick (1999), Theorem 4.5.3). Let {Xj , j ≥ 1} be a sequence of inde-

pendent random variables, with tail-σ-field T . Then, for any A ∈ T , P[A] = 0 or 1.

In Theorem 4.1, the assumption of mutual independence cannot be lessened to pairwise

independence, and Example 4.5 provides a good illustration of this. Indeed, for this

sequence {Zj , j ≥ 0} consider the event

A := {Zn·p = Zn·p+1 i.o.},

where ‘i.o.’ stands for infinitely often. Then, A is in the tail-σ-field of {Zj , j ≥ 0}. Next,

note that, conditionally on the event {Y0 6= 0}, we have

Zn·p 6= Zn·p+1, ∀n,

so that P[A|Y0 6= 0] = 0. On the other hand, conditionally on the event {Y0 = 0},

Zn·p = Zn·p+1, ∀n,

so that P[A|Y0 = 0] = 1. Unconditionally, we then have that P[A] = P[Y0 = 0] = 1/p. This

probability being neither 0 nor 1, the pairwise independent sequence {Zj , j ≥ 0} does not

respect the ZOL.

Remark 4.9. This failure of the ZOL for a pairwise independent sequence provides useful

insight on the difference between mutual and pairwise independence. Indeed, consider first

what the ZOL says about a sequence of mutually independent random variables. It tells us

that any event relating to the tail of that sequence is either improbable (it has a probability

of 0) or certain (it has a probability of 1). This is a strong statement. For instance,

in the infinite coin-tossing of a fair coin (with independent trials), we are certain that

the frequency of ‘Heads’ will converge to 1/2. We are also certain that a sequence of

‘heads only’ has a probability of 0, and that any specific pattern of finite length such has

‘Heads-Tails-Head’ will appear infinitely often. Etc.

On the other hand, for a sequence which is only pairwise independent, we have no such

guarantees. Indeed, a given tail event can have a probability strictly between 0 and 1,

meaning that this event ‘might or might not happen’. Hence, in a sense, we know far less

about that sequence than we know about a mutually independent sequence.

Next, we recall as Theorem 4.2 the ‘classical’ version of the LIL (noting that many varia-
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tions exist, see Gut (2013, Chapter 8) for an overview).

Theorem 4.2 (Gut (2013), Chapter 8, Theorem 1.2). Let {Xj , j ≥ 1} be i.i.d. random

variables with mean 0 and finite variance σ2, and set Sn =
∑n

k=1Xk, n ≥ 1. Then

lim sup
n→∞

Sn

σ
√

2n log logn
= +1 a.s.,

while

lim inf
n→∞

Sn

σ
√

2n log logn
= −1 a.s.

Remark 4.10. This theorem sits ‘in between’ the Law of Large Numbers (LLN) and the

Central Limit Theorem (CLT). Indeed, consider the Strong LLN, which states that

X̄n =
Sn
n

a.s.−→ 0,

where ‘
a.s.−→’ denotes almost sure convergence. Qualitatively, this means that the denom-

inator n grows to be ‘very large’ compared to the numerator Sn, in that, for large n, it

‘flattens out’ all the random variations in Sn. On the other hand, the CLT says that if we

use the much smaller denominator
√
n, we obtain

Sn√
n

d−→ N(0, σ2).

In words, it means
√
n is ‘small enough’ so that Sn/

√
n does not get ‘flattened out’ and

stays a non-degenerate random variable, which ‘visits infinity’ infinitely often. Indeed, as

a consequence of the CLT and of Kolmogorov’s Zero-One Law (see Theorem 4.1), we have

that, almost surely,

lim sup
n→∞

Sn√
n

= +∞ and lim inf
n→∞

Sn√
n

= −∞.

Hence, the LIL provides a ‘balance’ between the LLN and the CLT, since the denominator

σ
√

2n log log n is small enough so that Sn/(σ
√

2n log log n) still fluctuates around 0, but

big enough so that, almost surely, it stays between two fixed bounds −1 and +1.

Now, the LIL is not necessarily valid for PIBD random variables. To see this, from the

sequence {Zj , j ≥ 0} in Example 4.5, define a new sequence {Xj , j ≥ 0} as its zero-mean
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version, i.e.,

Xj = Zj −
p− 1

2
, for j = 0, 1, . . .

Then, consider the sequence Z0, Z1, . . . but conditionally on the event {Y0 = 0}. This

sequence can be written as

Z0, . . . , Z0︸ ︷︷ ︸
p times

, Zp, . . . , Zp︸ ︷︷ ︸
p times

, Z2p, . . . , Z2p︸ ︷︷ ︸
p times

, . . .

that is to say, the same random variables is repeated p times in the sequence. Therefore,

we have, for n = k · p (with k an integer),

Sn =
n∑
j=1

Xj
d
= p

k∑
j=1

Zj ,

from which it follows that

Sn
σ
√
n

d−→ N(0, p),

where σ2 denotes the variance of X0, X1, . . .. From there, it is not hard to show that,

conditionally on the event {Y0 = 0},

lim sup
n→∞

Sn

σ
√

2n log log n
=
√
p a.s.,

lim inf
n→∞

Sn

σ
√

2n log logn
= −√p a.s..

(4.B.1)

Since the event {Y0 = 0} has positive probability (for any p), Equation (4.B.1) is also

valid unconditionally, and hence the LIL is not verified.
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CHAPTER 5

A FAILURE OF CENTRAL LIMIT

THEOREMS FOR PIBD RANDOM

VARIABLES
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5.1 Introduction

In Chapter 3, we saw through many examples (and accompanying visualisations) that

pairwise independent variables can still be strongly dependent. Then, in Chapter 4, we

reviewed many results relying on mutual independence which do not hold under sole pair-

wise independence. In this chapter, we cover in greater detail one such result, i.e., the

classical CLT (which is one of the most fundamental results in statistics). This theorem

states that the standardised sample mean of a sequence of n mutually independent and

identically distributed random variables with finite second moment converges in distribu-

tion to a standard Gaussian as n goes to infinity. For practitioners of statistics, knowing

the distribution of a sample mean is crucially important to, for instance, build confi-

dence intervals and conduct statistical tests. Consequently, the classical CLT is also very

important in actuarial science. As Dhaene et al. (2002b) explain,

[i]nsurance is based on the fact that by increasing the number of insured risks,

which are assumed to be mutually independent and identically distributed,

the average risk gets more and more predictable because of the Law of Large

Numbers. This is because a loss on one policy might be compensated by more

favorable results on others. The other well-known fundamental law of statistics,

the Central Limit Theorem, states that under the assumption of mutual inde-

pendence, the aggregate claims of the portfolio will be approximately normally

distributed, provided the number of insured risks is large enough. Assuming

independence is very convenient since the mathematics for dependent risks are

less tractable, and also because, in general, the statistics gathered by the in-

surer only give information about the marginal distributions of the risks, not

about their joint distribution, i.e., the way these risks are interrelated.

As we have illustrated before, mutual independence is a strong assumption and it is rele-

vant to understand what happens when it is not met. In this Chapter, we highlight just

how crucial this assumption is to the classical CLT. We do so by constructing explicitly

a sequence of pairwise independent and identically distributed (p.i.i.d.) random variables

(r.v.s) whose common margin F can be chosen arbitrarily (under very mild conditions)

and for which the (standardised) sample mean is not asymptotically Gaussian. We give a

closed-form expression for the limiting distribution of this sample mean. It is, to the best

of our knowledge, the first example of this kind for which the asymptotic distribution of
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the sample mean is explicitly given, and known to be skewed and heavier tailed than a

Gaussian distribution, for any choice of margin. Our sequence thus illustrates nicely why

mutual independence is such a crucial assumption for the (classical) CLT to hold. It also

allows us to quantify how far away from the Gaussian distribution one can get under the

less restrictive assumption of pairwise independence.

‘A’ CLT for a sequence {Xj , j ≥ 1} of r.v.s. is a result establishing the convergence in dis-

tribution, under some conditions, of a normalised sum (
∑n

j=1Xj −an)/bn to the standard

Gaussian distribution. The established terminology is to refer (somewhat abusively) to

‘the’ CLT when the Xj ’s are independent, even though various sets of more or less restric-

tive conditions on {Xj , j ≥ 1} exist under which ‘a’ CLT holds. Moreover, most textbooks

in mathematical statistics or introductory statistics only focus on the case of independent

variables, even if we know (at least since Hoeffding (1948)) that a CLT can possibly hold

for dependent variables. As Stoyanov (2013) puts it in his book: counterexamples can

serve to “demonstrate the range of validity of the CLT and examine the importance of

the conditions under which the CLT holds”. He and others (e.g., Bagui et al. (2013)) give

several counterexamples to CLTs for independent Xj ’s. But, surprisingly, counterexam-

ples for dependent sequences are scarce in the literature. This lack of counterexamples

might explain the commonly held belief—and often unverified assumption—among users

of statistics that a large sample size is sufficient to ensure approximate normality of the

sample mean, even though it is not. In many fields where applied statistics are used,

articles typically discuss what the right sample size should be in order to confidently use

‘the’ CLT, but those articles do not also address the fundamental issue of mutual indepen-

dence as a crucial assumption; examples can be found in biology (Fay and Gerow, 2013),

medicine (Altman and Bland, 1995; Ghasemi and Zahediasl, 2012; Cundill and Alexander,

2015), psychology (Anderson, 2010), engineering (Huberts et al., 2018), or economics (Kre-

sojević and Gajić, 2019). In fact, after an extensive search, we have not found any article

published in those fields that contains an explicit discussion of this crucial independence

assumption.

Now, recall that the classical (or basic) CLT is stated for a sequence {Xj , j ≥ 1} of i.i.d.

random variables with mean µ and standard deviation 0 < σ <∞ as follows:

Sn :=

∑n
j=1Xj − µn
σ
√
n

d−→ Z, as n→∞, (5.1.1)

where the random variable Z has a standard Gaussian distribution, noted thereafter
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N(0, 1), and ‘
d−→’ denotes convergence in distribution. The first ‘i’ in the acronym i.i.d.

stands for ‘independent’, which itself stands for ‘mutually independent’, while the last ‘i.d.’

stands for identically distributed.

As we have seen through several examples in this thesis, pairwise independence among

random variables is a necessary but not sufficient condition for them to be mutually inde-

pendent. However, from examples of ‘finite size’ alone it can be hard to understand how

bad of a substitute to mutual independence pairwise independence is. One way to study

this question is to consider those fundamental (asymptotic) theorems of mathematical

statistics that rely on the former assumption; do they ‘fail’ under the weaker assumption

of pairwise independence? A definite answer to that question is beyond the scope of this

work, as it depends on which theorem is considered. As we noted before, the Law of

Large Numbers, even if almost always stated for mutually independent r.v.s, does hold

under pairwise independence. The same goes for the second Borel-Cantelli lemma, usually

stated for mutually independent events but valid for pairwise independent events as well;

see Erdős and Rényi (1959). The CLT (for i.d. r.v.s), however, does ‘fail’ under pairwise

independence. Since it is arguably the most crucial result in all of statistics, and since

pairwise independence and uncorrelatedness are concepts vastly used by practitioners, we

will focus on this case from now on.

Révész and Wschebor (1965) were the first to provide a pairwise independent sequence

for which Sn does not converge in distribution to a N(0, 1). For their sequence, which

is binary (i.e., two-state), Sn converges to a standardised χ2
1 distribution. Romano and

Siegel (1986, Example 5.45) provide a two-state, and Bradley (1989) a three-state, pairwise

independent sequence for which Sn converges in probability to 0. Janson (1988) provides

a broader class of pairwise independent counterexamples, most defined with Xj ’s having

a continuous margin and for which Sn converges in probability to 0. The author also

constructs a pairwise independent sequence of N(0, 1) r.v.s for which Sn converges to the

random variable S = R·Z, withR a r.v. whose distribution can be arbitrarily chosen among

those with support [0, 1], and Z a N(0, 1) r.v. independent of R. The r.v. S can be seen as

‘better behaved’ than a N(0, 1), in the sense that it is symmetric with a variance smaller

than 1 (regardless of the choice of R). Cuesta and Matrán (1991, Section 2.3) construct

a sequence {Xj , j ≥ 1} of r.v.s taking values uniformly on the integers {0, 1, . . . , p − 1},

with p a prime number, for which Sn is ‘worse behaved’ than a N(0, 1). Indeed, their Sn

converges in distribution to a mixture (with weights (p−1)/p and 1/p respectively) of the

constant 0 and of a centered Gaussian r.v. with variance p. This distribution is symmetric
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but it has heavier tails than that of a N(0, 1).

Other authors go beyond pairwise independence and study CLTs under ‘K-tuplewise inde-

pendence’, for K ≥ 3. A random sequence {Xj , j ≥ 1} is said to be K-tuplewise indepen-

dent if for every choice of K distinct integers j1, . . . , jK , the random variables Xj1 , . . . , XjK

are mutually independent. Kantorovitz (2007) provides an example of a triplewise inde-

pendent two-state sequence for which Sn converges to a ‘misbehaved’ distribution —that

of Z1 ·Z2, where Z1 and Z2 are independent N(0, 1). Pruss (1998) presents a sequence of

K-tuplewise independent random variables {Xj , j ≥ 1} taking values in {−1, 1} for which

the asymptotic distribution of Sn is never Gaussian, for whichever choice of K. Bradley

and Pruss (2009) extend this construction to a strictly stationary sequence of K-tuplewise

independent r.v.s whose margin is uniform on the interval [−
√

3,
√

3]. Weakley (2013)

further extends this construction by allowing the Xj ’s to have any symmetrical distribu-

tion (with finite variance). Takeuchi (2019) showed that even if K grows linearly with the

sample size n, a CLT need not be valid.

In the body of research discussed above, a non-degenerate and explicit limiting distribution

for Sn is obtained only for very specific choices of margin for the Xj ’s. In this paper,

we allow this margin to be almost any non-degenerate distribution, yet we still obtain

explicitly the limiting distribution of Sn. This distribution depends on the choice of the

margin, but it is always skewed and heavier tailed than a Gaussian. By the generality of

our construction (the class of marginals allowed is very broad), and the fact we explicitly

find the asymptotic distribution of the standardised mean, this work raises new awareness

on the dangers of using a CLT on a sample that is only pairwise independent.

The rest of this chapter is organised as follows. In Section 5.2, we construct our pairwise

independent sequence {Xj , j ≥ 1}. In Section 5.3, we derive explicitly the asymptotic

distribution of the standardised mean of that sequence. In Section 5.4, we study key

properties of such a distribution. In Section 5.5, we analyse a parameter which arises

naturally in the asymptotic distribution of the sample mean of our sequence, and explain

how this parameter reflects the tail-heaviness of the marginal distribution of the sequence.

In Section 5.6, we conclude.
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5.2 Construction of the Gaussian-Chi-squared pairwise in-

dependent sequence

In this section, we build a sequence {Xj , j ≥ 1} of p.i.i.d. (but not mutually independent)

r.v.s for which a CLT does not hold. We show in Section 5.4 that the asymptotic distribu-

tion of the (standardised) sample mean of this sequence can be conveniently written as that

of the sum of a Gaussian r.v. and of an independent scaled Chi-squared r.v. Importantly,

the r.v.s forming this sequence have a common (but arbitrary) marginal distribution F

satisfying the following condition:

Condition 5.1. For any r.v. W ∼ F , the variance Var(W ) is finite and there exists a

Borel set A for which P(W ∈ A) = `−1, for some integer ` ≥ 2, and E[W |W ∈ A] 6=

E[W |W ∈ Ac].

As long as the variance is finite, the restriction on F includes all distributions with an ab-

solutely continuous part on some interval. It also includes almost all discrete distributions

with at least one weight of the form `−1; see Remark 5.2. Also, note that, for a given F ,

many choices for A (with possibly different values of `) could be available, depending on F .

Note that we will explain in Remark 5.1 why our construction requires the existence of

such a set A (with P(W ∈ A) = `−1). For specific examples of distributions satisfying

Condition 5.1, see Example 5.1 and all examples of Section 5.B.

We begin our construction of th, see Example e sequence {Xj , j ≥ 1} by letting F be a

distribution satisfying Condition 5.1. For a r.v. W ∼ F , let A be any Borel set such that

P(W ∈ A) = `−1, for some integer ` ≥ 2. (5.2.1)

Then, for an integer m ≥ 2, let M1, . . . ,Mm be a sequence of i.i.d. r.v.s with discrete

distribution on the set {1, 2, . . . , `} and defined on a common probability space (Ω,F ,P).

For i = 1, 2, . . . , `, let

pi := P(Mj = i) = `−1, for j = 1, 2, . . . ,m, (5.2.2)

i.e., the M ’s are discrete uniforms on the set {1, . . . , `}. For all pairs (Mi,Mj), 1 ≤ i <
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j ≤ m, define a r.v. Di,j as

Di,j =

 1, if Mi = Mj ,

0, otherwise.
(5.2.3)

The Di,j are p.i.i.d (but not mutually independent) with P(Di,j = 1) = `−1; see Re-

mark 5.1. For convenience, we refer to these n =
(
m
2

)
random variables

D1,2, D1,3, . . . , D1,m, D2,3, D2,4, . . . , Dm−1,m

simply as

D1, . . . , Dn, (5.2.4)

where for 1 ≤ i < j ≤ m, Dk(i,j) := Di,j with k(i, j) = [i(2m − 1) − i2]/2 + j −m. Note

that when ` = 2 and p1 = p2 = 1/2, the Mj ’s are (shifted) Bernoulli(1/2) r.v.s, and

the sequence (5.2.4) is equivalent to a pairwise independent sequence first mentioned in

Geisser and Mantel (1962) and for which we already know that a CLT does not hold, see

Révész and Wschebor (1965).

From the sequence D1, . . . , Dn, we now construct a new pairwise independent sequence

X1, . . . , Xn such that Xk ∼ F for all k = 1, . . . , n. Define U and V to be the truncated

versions of W , respectively off and on the set A:

U
d
= W | {W ∈ Ac}, V

d
= W | {W ∈ A}, (5.2.5)

and denote

µU := E[U ], µV := E[V ]. (5.2.6)

Then, consider n independent copies of U , and independently n independent copies of V :

U1, . . . , Un,
i.i.d.∼ FU , V1, . . . , Vn

i.i.d.∼ FV , (5.2.7)

both defined on the probability space (Ω,F ,P). Finally, for ω ∈ Ω and for k = 1, . . . , n,

construct

Xk(ω) =

Uk(ω), if Dk(ω) = 0,

Vk(ω), if Dk(ω) = 1.
(5.2.8)

151



By conditioning on Dk, one can check that

FXk(x) = (1− `−1)FUk(x) + `−1FVk(x) = F (x). (5.2.9)

In the next section, we will derive the asymptotic distribution of the sample mean of those

X’s, and see that it is not Gaussian.

The fact we do not have a CLT for the sequence in (5.2.4) can be explained heuristically

as follows. Within the sequence D1, . . . , Dn, there can be a ‘very high’ proportion of 1’s.

This occurs if the sequence M1, . . . ,Mm contains a large proportion of equal variables.

However, by definition of Di,j , in order to have a very large proportion of 0’s among

the D’s, one would require a large proportion of pairs (Mi,Mj), 1 ≤ i < j ≤ m, to be

such that Mi 6= Mj . This is impossible, since all the possible pairs are used to form the

sequence of D’s. This very asymmetrical situation makes the asymptotic distribution of

the standardised sample mean of the D’s highly skewed to the right.

Remark 5.1. In Condition 5.1, the restriction P(W ∈ A) = `−1 for some integer ` may

seem arbitrary. Likewise, in (5.2.2) the choice pi = `−1 for i = 1, . . . , ` may also seem

arbitrary. We establish here that none of these choices are arbitrary. Indeed, assume first

that the only restriction on p1, p2, . . . , p` ∈ (0, 1) is that

(1) : p1 + p2 + · · ·+ p` = 1,

(2) : p2
1 + p2

2 + · · ·+ p2
` = w,

(3) : p3
1 + p3

2 + · · ·+ p3
` = w2,

(5.2.10)

for some w ∈ (0, 1). Condition (1) is necessary for the distribution (5.2.2) to be well-

defined, and conditions (2) and (3) are rewritings of

P(Di,j = 1) = w, 1 ≤ i < j ≤ m, (5.2.11)

and

P(Di,j = 1, Dj,k = 1) = P(Di,j = 1)P(Dj,k = 1), 1 ≤ i < j < k ≤ m, (5.2.12)

which are sufficient to guarantee that the D’s are identically distributed and pairwise in-

dependent. Now, the solution pi = `−1 to (5.2.10) is unique. Indeed, by squaring condi-
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tion (2) in (5.2.10) then applying the Cauchy-Schwarz inequality, one gets

w2 =
(∑̀
i=1

p
3/2
i p

1/2
i

)2
≤
∑̀
i=1

p3
i

∑̀
i=1

pi =
∑̀
i=1

p3
i (5.2.13)

where the last equality comes from condition (1) in (5.2.10). Then, condition (3) requires

that we have the equality in (5.2.13), and this happens if and only if p
3/2
i = λp

1/2
i for all

i ∈ {1, . . . , `} and for some λ ∈ R. In turn, this implies pi = λ = `−1 because of (1) and

since pi > 0, which then implies w = `−1 by (2). This reasoning shows that we cannot

extend our method to an arbitrary P(W ∈ A) ∈ (0, 1) in (5.2.1).

Remark 5.2. There is no easy characterisation of all discrete distributions with finite

variance such that P(W ∈ A) = `−1 for some Borel set A and some integer ` ≥ 2,

but for which the last part of Condition 5.1 is not satisfied. However, the proportion of

such distributions can be expected to be very small. As a simple but convincing example,

consider the set of discrete distributions on three values −∞ < x < y < z < ∞ with

weights px, py, pz ∈ (0, 1). The variance is finite and say one of the three p’s has the form

`−1 for some integer `. The only way that E[W |A] = E[W |Ac] is satisfied is by having

A contain y and only y so that we must have py = `−1, px = p and pz = (1 − p − `−1)

for some parameter p ∈ (0, 1), and xpx + zpz = y (1 − `−1). In other words, once `

is fixed, there is only freedom in the choice of x, z and p. If we remove the restriction

E[W |A] = E[W |Ac] (i.e., xpx+zpz = y (1−`−1)), it gives us at least one more dimension of

freedom in the selection of x, y, z, px, py, pz. Hence, in this case, the proportion is actually

‘ 0’. An analogous argument can be made for other discrete distributions of this kind. The

restriction E[W |A] = E[W |Ac] will always remove a dimension of freedom in the choice of

the range of values or the weights.

Remark 5.3. In our construction, because the sample size is n = m(m − 1)/2, it can

only take specific values (n = 1, 3, 6, 10, . . .). We do not think this is a limitation, as it

is easy to build a similar sequence of arbitrary size with the same properties (pairwise

independence, arbitrariness of the margins, non-Gaussian asymptotic distribution for the

mean). More details are given in Appendix 5.A.
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5.3 Main result

We now state our main result.

Theorem 5.1. Let X1, . . . , Xn be random variables defined as in (5.2.8) and denote their

mean and variance by µ and σ2, respectively. Then,

(a) X1, . . . , Xn are pairwise independent;

(b) As m→∞ (and hence as n→∞), the standardised sample mean Sn :=
(∑n

k=1Xk−

µn
)
/σ
√
n converges in distribution to a random variable

S :=
√

1− r2Z + r χ, (5.3.1)

where Z ∼ N(0, 1), χ is independently distributed as a standardised χ2
`−1 and r :=√

`−1(1− `−1)(µV − µU )/σ with µU , µV defined in (5.2.6).

Remark 5.4. Interestingly, since a standardised chi-squared distribution converges to a

standard Gaussian as its degree of freedom tends to infinity, we see that S
d−→ N(0, 1) as

`→∞.

Remark 5.5. When removing the restriction E[W |A] 6= E[W |Ac] in Condition 5.1, the

case r = 0 (i.e., µU = µV ) is possible, so our construction also provides a new instance

of a pairwise independent (but not mutually independent) sequence for which a CLT does

hold.

Proof of Theorem 5.1. Proving (a) is straightforward. Simple calculations show that

D1, . . . , Dn are pairwise independent; recall (5.2.12). Now, for any k, k′ ∈ {1, 2, . . . , n}

with k 6= k′, the r.v.s

Dk, Uk, Vk, Dk′ , Uk′ , Vk′

are mutually independent and one can writeXk = g(Dk, Uk, Vk) andXk′ = g(Dk′ , Uk′ , Vk′),

for g a Borel-measurable function. Since Xk and Xk′ are integrable, the result follows from

Pollard (2002, Section 4.1, Corollary 2).

The proof of (b) is more involved. We prove (5.3.1) by obtaining the limit of the charac-

teristic function of Sn, and then by invoking Lévy’s continuity theorem. Namely, we show
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that, for all t ∈ R,

ϕSn(t) −→
m→∞

ϕ√1−r2Z(t) · ϕr χ(t)

= exp

(
−1

2
(1− r2)t2 − itr

√
(`− 1)/2

)(
1− itr

√
2/(`− 1)

)−(`−1)/2
. (5.3.2)

First, let us define by Ni = Ni(m) the number of Mj ’s equal to i (i = 1, 2, . . . , `) within the

sample {Mj ; j = 1, . . . ,m}. Then, N := (N1, . . . , N`) ∼ Multinomial(m, (`−1, . . . , `−1)).

Importantly, ifN is known, then the number p(N) of 1’s in the sequence {Dj , j = 1, . . . , n}

can be deduced as

p(N) =
`−1∑
i=1

(
Ni

2

)
1{Ni≥2} +

(
m−

∑`−1
i=1 Ni

2

)
1{m−

∑`−1
i=1 Ni≥2}

=
`−1∑
i=1

Ni(Ni − 1)

2
+

(m−
∑`−1

i=1 Ni)(m−
∑`−1

i=1 Ni − 1)

2

=
1

2

`−1∑
i=1

N2
i +

1

2

`−1∑
i=1

`−1∑
i′=1

NiNi′ −m
`−1∑
i=1

Ni +
m(m− 1)

2

=
1

2

`−1∑
i=1

(Ni −m`−1)2 +
1

2

`−1∑
i=1

`−1∑
i′=1

(Ni −m`−1)(Ni′ −m`−1)− `(`− 1)

2
m2`−2 +

m(m− 1)

2

=
m`−1

2

`−1∑
i=1

`−1∑
i′=1

( 1

`−1
1{i=i′} +

1

`−1

)(Ni −m`−1
)

√
m

(
Ni′ −m`−1

)
√
m

− m

2
(1− `−1) + n`−1,

(5.3.3)

where 1B denotes the indicator function on the set B. The covariances of a

Multinomial(m, (p1, p2, . . . , p`))

distribution are well known to be mΣ where Σi,i′ = pi1{i=i′} − pipi′ , for 1 ≤ i, i′ ≤ `− 1,

and it is also known that (Σ−1)i,i′ = p−1
i 1{i=i′} + p−1

` , 1 ≤ i, i′ ≤ ` − 1; see (Tanabe and

Sagae, 1992, eq.21). Therefore, with pi = `−1 for all i, we see from (5.3.3) that

p(N)− n`−1√
n`−1(1− `−1)

=

√
m

m− 1

∑`−1
i=1

∑`−1
i′=1(Σ−1)i,i′

(Ni−m`−1)√
m

(Ni′−m`−1)√
m√

2(`− 1)
−
√
`− 1

2


d−→ ξ − (`− 1)√

2(`− 1)
, where ξ ∼ χ2

`−1. (5.3.4)

Now, let

Ũk :=
σU
σ
· Uk − µU

σU
and Ṽk :=

σV
σ
· Vk − µV

σV
, (5.3.5)
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then we can write

Sn =
1√
n

(
r

(
p(N)− n`−1

)√
`−1(1− `−1)

+

n∑
k=1
Dk=0

Ũk +

n∑
k=1
Dk=1

Ṽk

)
, (5.3.6)

since, from (5.2.9), we know that

µ = (1− `−1)µU + `−1µV . (5.3.7)

With the notation tn := t/
√
n, the mutual independence between the Uk’s, the Vk’s and

M := {Mj}mj=1 yields, for all t ∈ R,

E
[

exp(itSn)|M
]

= exp

(
itr

(p(N)− n`−1)√
n`−1(1− `−1)

)
n∏
k=1
Dk=0

E[exp(itnŨk)|M ]
n∏
k=1
Dk=1

E[exp(itnṼk)|M ]

= exp

(
itr

(p(N)− n`−1)√
n`−1(1− `−1)

)
[ϕ
Ũ

(tn)]n(1−`−1)[ϕ
Ṽ

(tn)]n`
−1

[
ϕ
Ṽ

(tn)

ϕ
Ũ

(tn)

]p(N)−n`−1

= exp

(
itr

(p(N)− n`−1)√
n`−1(1− `−1)

)
· [ϕ

Ũ
(tn)]n(1−`−1)[ϕ

Ṽ
(tn)]n`

−1

·

 [ϕ
Ṽ

(tn)]n · exp
(

1
2 ·

σ2
V
σ2 t

2
)

[ϕ
Ũ

(tn)]n · exp
(

1
2 ·

σ2
U
σ2 t2

)

p(N)−n`−1

n

·

exp
(
−1

2 ·
σ2
V
σ2 t

2
)

exp
(
−1

2 ·
σ2
U
σ2 t2

)

p(N)−n`−1

n

.

(5.3.8)

(The reader should note that, for n large enough, the manipulations of exponents in the

second and third equality above are valid because the highest powers of the complex

numbers involved have their principal argument converging to 0. This stems from the

fact that 0 ≤ p(N) ≤ n, and the quantities [ϕ
Ũ

(tn)]n and [ϕ
Ṽ

(tn)]n both converge to real

exponentials as n → ∞, by the classical CLT.) We now evaluate the four terms on the

right-hand side of (5.3.8). For the first term in (5.3.8), the continuous mapping theorem

and (5.3.4) yield

exp

(
itr

(p(N)− n`−1)√
n`−1(1− `−1)

)
d−→ exp

(
itr
ξ − (`− 1)√

2(`− 1)

)
, as m→∞. (5.3.9)
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For the second term in (5.3.8), the classical CLT yields

[ϕ
Ũ

(tn)]n(1−`−1)[ϕ
Ṽ

(tn)]n`
−1 −→

m→∞
exp

(
−1

2
· (1− `−1)

σ2
U

σ2
t2
)

exp

(
−1

2
· `−1σ

2
V

σ2
t2
)

= exp

(
−1

2
(1− r2)t2

)
,

(5.3.10)

where in the last equality we used that, from (5.2.9), we have

σ2 = E[X2]− µ2 = (1− `−1)σ2
U + `−1σ2

V + `−1(1− `−1)(µU − µV )2. (5.3.11)

For the third term in (5.3.8), the quantity inside the bracket converges to 1 by the classical

CLT. Hence, the elementary bound

| exp(z)−1| ≤ |z|+
∞∑
j=2

|z|j

2
≤ |z|+ |z|2

2(1− |z|)
≤ 1 + `−1

2`−1
|z|, for all |z| ≤ 1−`−1, (5.3.12)

and the fact that
∣∣p(N)−n`−1

n

∣∣ ≤ 1− `−1 yield, as m→∞,

∣∣∣∣∣∣∣∣
 [ϕ

Ṽ
(tn)]n · exp

(
1
2 ·

σ2
V
σ2 t

2
)

[ϕ
Ũ

(tn)]n · exp
(

1
2 ·

σ2
U
σ2 t2

)

p(N)−n`−1

n

− 1

∣∣∣∣∣∣∣∣ ≤
1− `−2

2`−1

∣∣∣∣∣∣Log

 [ϕ
Ṽ

(tn)]n · exp
(

1
2 ·

σ2
V
σ2 t

2
)

[ϕ
Ũ

(tn)]n · exp
(

1
2 ·

σ2
U
σ2 t2

)
∣∣∣∣∣∣

−→ 0.

(5.3.13)

For the fourth term in (5.3.8), the continuous mapping theorem and p(N)−n`−1

n
P−→ 0

(recall (5.3.4)) yield

exp
(
−1

2 ·
σ2
V
σ2 t

2
)

exp
(
−1

2 ·
σ2
U
σ2 t2

)

p(N)−n`−1

n

P−→ 1, as m→∞. (5.3.14)

By combining (5.3.9), (5.3.10), (5.3.13) and (5.3.14), Slutsky’s theorem implies, for all

t ∈ R,

E
[

exp(itSn)|M
] d−→ exp

(
itr
ξ − (`− 1)√

2(`− 1)

)
exp

(
−1

2
(1− r2)t2

)
, as m→∞. (5.3.15)

Since the sequence {|E[exp(itSn)|M ]|}m∈N is uniformly integrable (it is bounded by 1),
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Theorem 25.12 in Billingsley (1995) shows that we also have the mean convergence

E
[
E
[

exp(itSn)|M
]]
−→ E

[
exp

(
itr
ξ − (`− 1)√

2(`− 1)

)]
exp

(
−1

2
(1− r2)t2

)
, as m→∞,

(5.3.16)

which proves (5.3.2). The conclusion follows.
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5.4 Properties of S

Recall that F denotes the marginal distribution of the r.v.s X1, . . . , Xn in (5.2.8). Theorem

5.1 states that Sn, the standardised sample mean of these r.v.s, converges in distribution

to a r.v. S whose characteristic function is given by (5.3.2). When the choice ` ≥ 2 is

fixed, the distribution of S has only one parameter, r, defined as

r =

√
`−1(1− `−1)(µV − µU )

σ
=

µV − µ
σ
√
`− 1

, (5.4.1)

where the second equality stems from (5.3.7). Hence, r depends on the margin F (through

the quantitiesA, µU , µV and σ). The behavior of S with respect to F (via r) is now studied.

From (5.3.11), we see that

r2 = 1−
(1− `−1)σ2

U + `−1σ2
V

σ2
, and thus 0 ≤ r2 ≤ 1. (5.4.2)

Example 5.1 (and several other examples in the Appendix 5.B) show how the critical points

r2 = 0, 1 can be achieved or approached when F is discrete or absolutely continuous. See

also Appendix A.4 for R computing codes to generate observations from these examples.

(Note that these examples could serve as scenarios of dependence to compare, via Monte-

Carlo simulations, various tests of independence; see, e.g., Hušková and Meintanis (2008).)

Example 5.1 (r arbitrarily close to 0 when F is absolutely continuous). Let ` = 2,

A = [1,∞) and let W ∼ f where f is the density of a Log-normal(0, β) distribution. Note

that median(W ) = 1, E[W ] = exp(β/2), and Var[W ] = [exp(β)− 1] exp(β). Furthermore,

µV =

∫ ∞
1

2xf(x)dx =

√
2

πβ

∫ ∞
1

exp

(
−(log x)2

2β

)
dx = exp(β/2)

[
1 + Erf

(√
β/2

)]
,

(5.4.3)

where the integral on the second line was solved with Mathematica. Hence, from (5.4.1),

r =
µV − E[W ]√

Var[W ]
=

exp(β/2)Erf
(√

β/2
)√

[exp(β)− 1] exp(β)
=

Erf
(√

β/2
)√

exp(β)− 1
, (5.4.4)

and it is straightforward to see that r → 0 as β →∞.

Next, recall that the characteristic function on the right-hand side of (5.3.2) is that of

S =
√

1− r2Z + r χ, (5.4.5)
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where the r.v.s Z ∼ N(0, 1) and χ ∼ [χ2
`−1 − (` − 1)]/

√
2(`− 1) are independent. This

makes it clear that, when ` ≥ 2 is fixed, r completely determines the shape of S; the closer

r gets to 0, the closer the distribution of S is to a standard Gaussian, while the closer r

gets to ±1, the closer the distribution of S is to a standardised ±χ2
`−1. This shift from a

Gaussian distribution towards a χ2
`−1 distribution is represented graphically in Figure 5.1

(where ` = 2 and r varies). On the other hand, regardless of r, if ` increases then S gets

closer to a N(0, 1), as illustrated in Figure 5.2 (where r = 0.9 and ` varies). These figures

illustrate clearly that pairwise independence might be a very poor substitute to mutual

independence as an assumption in CLTs.
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Figure 5.1: Density (left) and CDF (right) of S for fixed ` = 2 and varying
r (r = 0.6, 0.8, 0.95), compared to those of a N(0, 1). This illustrates that
CLTs can ‘fail’ substantially under pairwise independence.
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Figure 5.2: Density (left) and CDF (right) of S for fixed r = 0.9 and varying
` (` = 3, 6, 15), compared to those of a N(0, 1). This illustrates that S
converges to a N(0, 1) as ` grows.
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In terms of moments, simple calculations with Mathematica yield that

E[S] = 0, E[S2] = 1, E[S3] =

√
8

`− 1
r3 and E[S4] = 3 +

12

`− 1
r4, (5.4.6)

so that upper bounds on the skewness and kurtosis of S are
√

8/(`− 1) and 3+12/(`−1),

respectively. The limiting r.v. S can therefore be much more skewed and heavy-tailed

than the standard Gaussian distribution, which is also confirmed by Figure 5.1.

Lastly, let us comment on the r parameter, and explain why a r close to 1 yields a

more ‘drastic’ departure from normality. First, recall that a CLT does not apply to the

sequence of pairwise independent r.v.s D1, . . . , Dn given in (5.2.4) because the proportion

of 1’s in that sequence can be very large, whereas the proportion of 0’s can never be

large. Consequently, the distribution of the asymptotic sample mean of this sequence is

asymmetrical (skewed to the right). When we ‘assign’ an arbitrary margin to the D’s

in order to create our sequence {Xj , j ≥ 1}, we can attenuate (to a certain degree) this

asymmetry. Consider for example the case ` = 2 and A = [w̃,∞), where w̃ denotes the

median of an absolutely continuous distribution F . In this case, the X’s, as opposed to

the D’s, take a continuous range of values, and hence X’s ‘above the median’ can be quite

close to their mean (whereas the D’s are all either ‘much bigger’ or ‘much smaller’ than

their mean). The parameter r = (µV − µ)/σ measures to what extent this ‘attenuation of

asymmetry’ happens. Indeed, if r is close to 0, the X’s observations above the median are

not too far away from the mean (on average). This implies that, even if the proportion

of observations above the median is huge, it will not overly boost the overall mean of the

sample, and the distribution of this mean will not be overly asymmetrical.

To give a concrete example (again with ` = 2, A = [w̃,∞)), let X ∼ Log-normal(α, β). In

that case, simple calculations (see Example 5.1 for details) yield

r =
Erf
(√

β/2
)√

exp(β)− 1
,

a decreasing function of β. On the other hand, it is well known that the kurtosis of X is

an increasing function of β. So, increasing β makes X heavier tailed, while giving a lower

value of r. Hence, at least for the Log-normal, a heavier tail implies a less drastic failure

of the CLT for the sequence X1, . . . , Xn.

Interestingly, we find that the same pattern (low r implies tail-heaviness) is true for a

number of common distributions. In the next section, we explain this trend in more detail,
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and compare r to other possible measures of tail-heaviness. We note this next Section 5.5

is a small digression away from the main topic of this thesis (pairwise independence).

Nonetheless, we find relevant to investigate the link between r and tail-heaviness, as tail-

heaviness is an important topic in actuarial science.
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5.5 The r coefficient as a measure of tail-heaviness

5.5.1 Overview

The concept of tail-heaviness is ubiquitous in actuarial science. Many insurance loss data

are found to be tail-heavy (see, e.g. Resnick, 2007; Ibragimov and Prokhorov, 2017), and

“accurately fitting the tail” is of great importance in risk modelling (Ahn et al., 2012).

For definitions and relevant literature review on tail-heaviness, see Appendix 5.D.

In this section, we study a special case of the parameter r (recall 5.4.1), obtained if in

Condition 5.1 we assume the distribution F from is continuous, with choices

` = 2, A = (median(F ),∞).

In that case, we have:

r =
µV − µ
σ

(and this is the definition of ‘r’ we assume for the whole of Section 5.5). We argue this r is a

possible measure of tail-heaviness, and we investigate its behaviour. Because it is bounded

(i.e., 0 < r < 1), has an easy interpretation and exists for all finite-variance continuous

distributions, we think it is an interesting alternative to the traditional kurtosis coefficient

κ (which, albeit commonly used as a measure of tail-heaviness, has many shortcomings).

We note that this section is a small ‘detour’, away from the main topic of this thesis, but

we thought interesting to understand better what this r represents, especially given its

apparent link to tail-heaviness.

In Section 5.5.2, we give a few alternative definitions of r and explain why it is a possible

measure of tail-heaviness. In Section 5.5.3, we survey where r has appeared in the literature

before. In Section 5.5.4 we list the value of r for many common distributions (as function

of the parameters of those distributions), and in Section 5.5.5 we compare r to other

measures of tail-heaviness, also commenting on the results.

Throughout, we consider only continuous random variables. For X a continuous random

variable, we let µX ,mX and σX denote respectively the mean, median and standard

deviation of X (provided they exist).
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5.5.2 Interpreting r as a measure of tail-heaviness

Let X be a continuous random variable with (finite) variance σ2
X , mean µX and median

mX . We first note that r can be expressed in many ways. As seen before, we have

r =
E[X|X > mX ]− µX

σX
. (5.5.1)

But also, because µX = (E[X|X > mX ] + E[X|X ≤ mX ])/2, we have

r =
E[X|X > mX ]− E[X|X ≤ mX ]

2σX
.

Furthermore, noting that

E [|X −mX |] =
1

2
E [X −mX |X > mX ] +

1

2
E [−(X −mX)|X ≤ mX ]

=
E [X|X > mX ]− E [X|X ≤ mX ]

2

= rσX ,

we can write r as

r =
E [|X −mX |]

σX
, (5.5.2)

where the numerator E [|X −mX |] is called the average absolute deviation from the median

(MAAD). Expressed as in (5.5.2), r is then seen to be the ratio of two different measures of

spread: one which is ‘more robust’ (MAAD) and one which is ‘less robust’ (the standard

deviation). Note that, in the actuarial literature, it has been suggested that MAAD

“is better suited to determine the safety loading for insurance premiums than standard

deviation” (Denneberg, 1990).

Because MAAD is more robust, we expect distributions with heavy tails (loosely speak-

ing, distributions having some significant probability of extreme values) to have a much

bigger standard deviation than MAAD, and hence to have a low r. For reference, note

that the Uniform, Normal and Exponential distributions have values for r of (approx-

imately): 0.866, 0.798 and 0.693, respectively. For distributions like the Log-normal,

Gamma, Weibull, Pareto and Fréchet, r can be made arbitrarily close to 0 by varying the

shape parameter; see Table 5.1 in Section 5.5.4 for values of r corresponding to common

distributions.
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We note that r has some convenient properties:

• It is a ratio whose numerator is always smaller than its denominator, hence 0 < r < 1.

This eases its interpretation (e.g., r = 0.5 means that the standard deviation of X

is twice as large as its MAAD).

• It is defined for random variables with finite variance (hence, it is defined more

generally than the kurtosis coefficient).

• It is invariant to shifting and scaling, see Proposition 5.1.

Proposition 5.1. Let X be a continuous random variable with finite variance, and let

Z = aX + b, for a > 0 and b ∈ R. Denote rX and rZ the r coefficients corresponding to

X and Z, respectively. Then, rX = rZ .

Proof. First, we note that

µZ = aµX + b, mZ = amX + b, σZ = aσX .

We also have that

E[Z|Z > mZ ] = E[Z − b|Z > amX + b] + b

= aE[X|X > mX ] + b.

Hence, using (5.5.1),

rZ =
aE[X|X > mX ] + b− µZ

σZ
=

E[X|X > mX ]− µX
σX

= rX .

Using Proposition 5.1, we can better interpret what r represents and how it relates to

tail-heaviness. As before, let X be a continuous random variable with finite variance, and

Z = (X − µX)/σX its standardised version. Then,

rX = rZ = E[Z|Z > mZ ].

That is, for any continuous random variable X (with standardised version Z), r is simply

the mean of Z given it exceeds its median. If Z is very heavy tailed, it implies mass

‘far away’ from the center of the distribution. But to ‘compensate’ the large mass away
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from the center (while keeping a zero-mean and unit-variance) there must also be a large

concentration of mass around the center of the distribution (close to the median). Hence,

the mean of values above the median, i.e., r, is small. As a specific (but representative)

illustration of this phenomenon, consider the following example.

Example 5.2. Let X ∼ Log-normal(µ, β), and let Z = (X − µX)/σX . In this case, we

have

r =
Erf
(√

β/2
)√

exp(β)− 1

(see Appendix 5.C for details), where Erf() is the error function. It is well known that the

tail-heaviness of X increases if β increases, while r is a decreasing function of β (hence, a

smaller r corresponds to a heavier-tailed X). To illustrate this, consider Figure 5.3, which

displays the density of Z for different values of β (and hence for different values of r). For

r = 0.75, the distribution is not too far from a standard Normal (although with a positive

skew). As β gets bigger, mass is pushed to the right tail. But in order for the mean to stay

at 0 and the variance to stay at 1, this also means that more mass must accumulate close

to the median. Hence, the mean of observations above the median, i.e., r, gets smaller.
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Figure 5.3: Density of the standardised Log-normal distribution for r = 0.75 (top), r = 0.6
(center), r = 0.4 (bottom)
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5.5.3 r in the existing literature

For any continuous distribution Fθ, where θ is a set of parameters, r can be derived

and expressed as a function of θ. As such — a theoretical quantity which depends on a

distribution’s parameters — we have not encountered r in the literature. This is perhaps

surprising, given how simple a measure it is.

However, as an empirical quantity, an equivalent of r has been suggested before. In

particular, we are not the first to notice that an empirical r (or a function of it) provides

information about the tail-heaviness of a distribution. Indeed, a few statistical tests have

been proposed, where an empirical version of r is used to assess the goodness-of-fit to

certain distributions (in particular, the Normal distribution).

Hogg (1972) used this approach. To test if a sample X1, . . . , Xn, comes from the Normal

distribution, he proposed the test statistic

s∑n
i=1 |Xi −m|/n

, (5.5.3)

where s is the sample standard deviation, and m the sample median. Equation (5.5.3)

is easily seen to be an empirical version of 1/r. Hogg (1972) proposed this statistic to

reject normality specifically in the case where the alternative hypothesis is the heavier-

tailed Laplace distribution. Smith (1975) later found that this statistic is a good choice,

more generally, to detect tails that are heavier than that of the Normal distribution (and

especially in the case of a small sample size). Gel et al. (2007) also used the statistic (5.5.3)

as the basis for a new test of normality, and conducted a power analysis. These authors

concluded that their test had improved power “when the data come from distributions that

are at least as heavy-tailed as a double-exponential or the t-distribution with 3 degrees

of freedom”. In another paper, Gel and Gastwirth (2008) proposed an adaptation of the

classical Jarque-Bera test of normality, where MAAD was used (instead of the standard

deviation). Lastly, González-Estrada and Villaseñor (2016) used (5.5.3) as well, but to

test the goodness-of-fit to the Laplace distribution.

From those papers, it is clear that an empirical r has been recognised already to be a

valid way to test if a distribution has heavier tails than a Normal. However, none of those

papers defined a ‘population version’ of their test statistic. Here, we suggest that r is a

meaningful theoretical measure of tail-heaviness. As it appears r has not been computed

for known distributions, in the next section we derive it for many distributions commonly
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used in actuarial science. This yields simple expressions, which are seen to be function

of the shape parameter of the distributions involved. This also allows us to compare r to

other measures of tail-heaviness, see Section 5.5.5.

5.5.4 Values of r for common distributions

In this section, we present the value of the r coefficient (5.5.2) for many commonly used

distributions (as a function of the parameters of those distribution). Table 5.1 reports the

values, and we defer the derivations to Appendix 5.C. As we can see, r only depends on

the shape parameter of those distributions (if there is a shape parameter).

Distribution Support Density f(x) r

Uniform(a, b) x ∈ [a, b] 1
b−a

√
3

2

Normal(µ, σ2) x ∈ R
1

σ
√

2π
e−

1
2(x−µσ )

2
√

2
π

Exponential(λ) x ∈ [0,∞) λe−λx log(2)

Student(ν) x ∈ R Γ( ν+1
2 )

√
νπ Γ( ν2 )

(
1 + x2

ν

)− ν+1
2

2
√

ν−2
π

Γ( ν+1
2 )

Γ( ν2 )(ν−1)
, ν > 2

Log-normal(µ, β) x ∈ (0,∞) 1
x
√

2πβ
exp

(
− (log x−µ)2

2β

) Erf
(√

β/2
)

√
eβ−1

Pareto (α, λ) x ∈ [0,∞)
α

λ

[
1 +

x

λ

]−(α+1) √
α(α− 2)

(
2

1
α − 1

)
, α > 2

Gamma(α, β) x ∈ [0,∞) βα

Γ(α)x
α−1e−βx 2(mX)αe−mX

Γ(α)
√
α

Weibull(λ, k) x ∈ [0,∞) k
λ

(
x
λ

)k−1
e−(x/λ)k 2Γ(1+1/k,log(2))−Γ(1+1/k)√

Γ(1+2/k)−(Γ(1+1/k))2

Fréchet(α) x ∈ (0,∞) x−1−αe−x
−α Γ(1−1/α)−2Γ(1−1/α,log(2))√

Γ(1−2/α)−(Γ(1−1/α))2
, α > 2

Table 5.1: Values of the r coefficient for common distributions

Note that in Table 5.1, for the Gamma, mX represents the median of a random variable

X ∼ Gamma(α, β = 1), and it does not have a closed-form expression.

5.5.5 Comparisons to other measures of tail-heaviness

In this section, we compare the coefficient r with two other measures of tail-heaviness. In

particular, we assess whether r ‘agrees’ with those measures for distributions commonly

used in actuarial science. For illustration purposes, in what follows we compare

r∗ = 1− r,
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to the other measures. We use r∗ instead of r to ease interpretation: a bigger r∗ will mean

a heavier tail. We compare r∗ to the very common kurtosis coefficient κ but also to a

more robust measure proposed by Brys et al. (2006), denoted RQW (with specific choice

q = 0.875, see (5.D.3) in Appendix 5.D for details).

For all distributions considered (Log-normal, Weibull, Gamma, Pareto, Fréchet, Student),

the three measures depend only on one parameter, call it generically θ. This facilitates

comparisons: for two measures (e.g., r∗ and κ) we can plot the pair (r∗(θ), κ(θ)) for a large

range of values of θ. We can do this for all distributions, and then compare the curves

obtained. If for two distributions the curves are similar, then it means the two measures

assess similarly the tail-heaviness of those distributions.

A first (perhaps unsurprising) observation to make is that the kurtosis κ ‘disagrees’

strongly with the robust measure RQW, as seen on Figure 5.4. We see that, for a fixed

value of RQW, the value of the kurtosis varies wildly across distributions. In particular,

the Log-normal has a much higher kurtosis than the other two. Those large discrepancies

are not surprising, since κ is moment-based, while RQW is quantile-based.

On Figure 5.5 we display κ against r∗. Here as well, κ disagrees with r∗, although to a

lesser extent. Indeed, while the kurtosis of the log-Normal is again much higher (for fixed

r∗) than it is for the other two distributions, it is not completely ‘off the chart’ as we saw

on Figure 5.4. Note that in Figures 5.4 to 5.5, we did not show the Pareto, Fréchet and

Student distributions since their kurtosis is not defined for a large subset of the parameters

used in the comparisons.
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Figure 5.4: Log(kurtosis) against RQW(q = 0.875) for common distributions
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Figure 5.5: Log(kurtosis) against r∗ for common distributions

We next now compare r∗ to RQW (Figure 5.6), for six distributions. Figure 5.6 reveals

that for low or moderate tail-heaviness (r∗ ≤ 0.4), RQW agrees with r∗ for all distributions

except the Student (but it should be noted that the Student is the only symmetric distri-

bution considered). For the Pareto and the Fréchet, r∗ and RQW agree to a large extent

(although RQW never gets to its maximal level, which would be achieved for values of

those distributions’ parameters for which r∗ is not defined). Interestingly, for the Gamma

distribution, we see that RQW reaches its maximum when r∗ ≈ 0.8, meaning that there is

a large range of possible parameter values where RQW is not able to capture the increase

in tail-heaviness (having already reached its maximum).
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Figure 5.6: RQW(q = 0.875) against r∗ for common distributions
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Overall, r∗ always increases when the other two measures increase. Hence, it is clear that

r∗ does measure tail-heaviness, in some way, though it ‘disagrees’ to varying degrees with

the other measures. We can perhaps see r∗ as a ‘middle ground’ between on one side the

kurtosis κ (which is moment-based) and on the other side RQW (which is quantile-based).
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5.6 Conclusion

We constructed a pairwise independent sequence of identically distributed r.v.s {Xj , j ≥ 1}

having any distribution that satisfies Condition 5.1, and for which no CLT holds. We

obtained the asymptotic distribution of the standardised sample mean Sn of our sequence,

and found it to be always ‘worse behaved’ than a Gaussian. Furthermore, the extent

of this departure from normality depends on the initial common margin of the Xj ’s.

Said otherwise, the same dependence structure yields fairly different behaviours in the

asymptotic mean (depending on which margin is chosen). This is in contradiction with

any CLT under which, regardless of the margin, Sn always converges to a Gaussian.

A corollary of our main result is that there exists a sequence of pairwise independent Gaus-

sian r.v.s (and hence uncorrelated) for which the limiting distribution of Sn is substantially

‘worse behaved’ than a Gaussian, being asymmetric and heavier tailed. To our knowledge,

no other such example exists in the literature. Given the widespread use of CLTs, even

in standard parametric statistical techniques such as tests and confidence intervals for

means and variances (see, e.g., Coeurjolly et al., 2009), this constitutes a serious warning

to practitioners of statistics who may think that, to invoke ‘the’ CLT, all one needs is

for the original random variables {Xj , j ≥ 1} to be approximately Gaussian or to have a

large enough sample size. Mutual independence is a crucial assumption that should not

be forgotten, nor misunderstood.

Lastly, we analysed in some detail the meaning of ‘r’, a parameter which arises in the

asymptotic distribution of the sample mean of our sequence (see 5.3.1). In the special case

of a continuous distribution F (and choices ` = 2 and A = (median(F ),∞) in Condition

5.1), we saw that r is a measure of the tail-heaviness of F .

In closing this chapter, we note that some authors have studied CLTs under K-tuplewise

independence (for K > 2); see, e.g., Pruss (1998); Bradley and Pruss (2009); Bradley

(2010); Weakley (2013); Takeuchi (2019). We find interesting to generalise our construction

in that direction, and this will be the topic of the next chapter. For the case K = 3

(‘triplewise independence’), we will provide two distinct sequences for which a CLT does

not hold. Our methodology can also be used to build K-tuplewise independent sequences

(for arbitrary K), though for K ≥ 4, a CLT appears to always hold in our construction.
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5.A Remark on the ‘non-arbitrariness’ of the sample size n

In our construction of the sequence X1, . . . , Xn (see 5.2.8), the sample size n can only take

a specific set of values (call this set N∗), i.e.,

N∗ =

∞⋃
k=2

{
k(k − 1)

2

}
= {1, 3, 6, 10, 15, . . .}. (5.A.1)

While one could see this as a ‘limitation’, we do not think it is, because one can easily

build a sample of arbitrary size n which preserves the main properties of our example, i.e.,

• it is pairwise independent

• it has arbitrary margins

• its standardised mean has an asymptotic non-Normal distribution with characteristic

function given by (5.3.2).

To build such a sample is simple. Let n ∈ N be arbitrary, and define n1(n) to be the

biggest integer such that n1(n) ≤ n and n1(n) ∈ N∗. Likewise, define n2(n) = n− n1(n).

To ease notation, let us denote n1(n) and n2(n) by simply n1 and n2. It is straightforward

that

lim
n→∞

n1

n
= 1.

Then, for any n we can define a sample X1, X2, . . . , Xn1 exactly as in Section 5.2. Fur-

thermore, we can define another sample Xn1+1, . . . , Xn, independent of the first one, and

where all X’s are i.i.d.1 The resulting ‘total’ sample of size n, i.e.,

X1, X2, . . . , Xn1 , Xn1+1, . . . , Xn

is then pairwise independent. Furthermore, consider the standardised mean of this sample,

i.e.,

Sn =
1

σ
√
n

 n∑
j=1

Xj − µn

 ,

1In the case that n = n1, this sample is empty.
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and rewrite it as

Sn =
1

σ
√
n

 n1∑
j=1

Xj +

n∑
j=n1+1

Xj − µ(n1 + n2)



=

n1∑
j=1

Xj − µn1

σ
√
n1 + n2

+

n∑
j=n1+1

Xj − µn2

σ
√
n

=

∑n1
j=1Xj − µn1

σ
√
n1

√
1 + n2

n1

+

∑n
j=n1+1Xj − µn2

σ
√
n

. (5.A.2)

Since
√

1 + n2
n1

converges to 1, the first sum in (5.A.2) converges in distribution to a ran-

dom variable with characteristic function given by (5.3.2). This is because the sample

X1, . . . , Xn1 is defined exactly as the original sample described in Section 5.2. Further-

more, the second sum in (5.A.2) converges in distribution to 0. Indeed, for any n, the

expectation of that sum is 0, while its variance is given by n2/n, which converges to 0.

By Slutsy’s theorem, we then have that Sn converges in distribution to a random variable

with characteristic function given by (5.3.2).
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5.B Additional examples

We provide additional examples of distributions F (discrete or absolutely continuous) and

their associated r parameter. Those examples serve to showcase the range of possible

values for r, and in particular we provide examples such that r = 0 or r2 = 1.

Example 5.3 (r = 0 when F is discrete). For any integer ` ≥ 2, take

A = {−1, 1}, P(W = −1) = P(W = 1) = `−1

2 and P(W = −2) = P(W = 2) = 1−`−1

2 ,

(5.B.1)

since it implies µU = µV = 0.

Example 5.4 (r = 0 when F is absolutely continuous). For any integer ` ≥ 2, take

A = [−`−1, `−1] and W ∼ Uniform[−1, 1], (5.B.2)

since again it implies µU = µV = 0.

Example 5.5 (r2 = 1 when F is discrete). Let ` ≥ 2 be any integer. To get r = 1, take

A = {1}, P(W = 1) = `−1 and P(W = −1) = 1− `−1, (5.B.3)

since this means σU = σV = 0 and µV > µU . By symmetry, taking Ac = {1} instead

yields r = −1.

Example 5.6 (r arbitrarily close to 1 when F is absolutely continuous). Let f1 be the

density function of a N(−`−1, σ2), f2 the density function of a N(1− `−1, σ2), and f their

mixture: f(x) = (1 − `−1)f1(x) + `−1f2(x). Then, for W ∼ f , we have E[W ] = 0 and

Var[W ] = E[W 2] = σ2 + `−1(1 − `−1). Assuming that 0 < σ ≤ 1
2`
−1, a straightforward

Gaussian tail estimate on f1 shows that there exists w` ∈ (−`−1, 1− `−1) such that P(W ∈

[w`,∞)) = `−1. If we take A = [w`,∞), then we have

µV = `

∫ ∞
w`

x ((1− `−1)f1(x) + `−1f2(x)) dx

= (`− 1)

∫ ∞
w`

(x+ `−1

σ
− `−1

σ

) 1√
2π

exp

(
−1

2

(x+ `−1

σ

)2
)

dx

+

∫ ∞
w`

(x− (1− `−1)

σ
+

1− `−1

σ

) 1√
2π

exp

(
−1

2

(x− (1− `−1)

σ

)2
)

dx

= (`− 1)
σ√
2π

exp

(
−1

2

(w` + `−1

σ

)2
)
− (1− `−1)Ψ

(w` + `−1

σ

)
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+
σ√
2π

exp

(
−1

2

(w` − (1− `−1)

σ

)2
)

+ (1− `−1)Ψ
(w` − (1− `−1)

σ

)
, (5.B.4)

where Ψ(z) is the survival function of the standard Gaussian. Therefore, from (5.4.1), we

have r → 1 as σ → 0:

r =
µV − E[W ]√
Var(W )

√
`− 1

−→
σ→0

0− 0 + 0 + (1− `−1)− 0√
02 + `−1(1− `−1)

√
`− 1

= 1. (5.B.5)

Example 5.7 (F is a N(µ, σ2)). Let ` = 2, choose A = [µ,∞) and let Z be a N(0, 1) r.v.

Then,

µV = µ+ σ E[Z|Z > 0] = µ+ σ E[|Z|] = µ+ σ

√
2

π
. (5.B.6)

It follows that r =
√

2/π ≈ 0.8 (irrespective of µ and σ). Note that this corresponds to

the purple dotted curve on Figure 5.1. Hence this case provides a nice illustration of how

‘badly’ the CLT can fail for pairwise independent Gaussian variables.
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5.C Derivations of r for common distributions

In this section, we derive the value of r as given in (5.5.1), for all distributions presented

in Table 5.1.

Uniform(a, b)

Let X ∼ Uniform(−
√

3,
√

3). Then, µX = mX = 0, σX = 1, so that r = E[X|X > 0] =
√

3
2 .

Normal(µ, σ2)

Let X ∼ Normal(0, 1), so that r = E[X|X > 0]. We note that the random variable

|X| d= X|X > 0,

has a half-normal distribution, whose mean is known to be
√

2/π.

Exponential(λ)

Let X ∼ Exponential(λ). Then, µX = 1/λ, mX = log(2)/λ and σX = 1/λ. Hence,

r =
E[X|X > log(2)/λ]− 1/λ

1/λ
= log(2).

Student(ν) for ν > 2

Let X ∼ Student(ν). Then, µX = mX = 0 and σ2
X = ν/(ν−2). We note that the random

variable

|X| d= X|X > 0,

has a folded-t distribution, whose mean is

E [|X|] = 2

√
ν

π

Γ(ν+1
2 )

Γ(ν2 ) (ν − 1)
,

see Psarakis and Panaretoes (1990, Theorem 3.1). Hence,

r =
E [|X|]√
ν/(ν − 2)

= 2

√
ν − 2

π

Γ
(
ν+1

2

)
Γ
(
ν
2

)
(ν − 1)

.

Log-normal(µ, β)

If Y ∼ Log-normal(µ, β), then for any a > 0, aY ∼ Log-normal(µ+ log(a), β). Because of

Proposition 5.1, this means that the parameter µ does not affect the value of r. Hence,

to ease calculations (and without loss of generality) we let X ∼ Log-normal(0, β). This

178

https://mathworld.wolfram.com/Half-NormalDistribution.html


corresponds exactly to Example 5.1, from which we have

r =
Erf
(√

β/2
)

√
eβ − 1

.

Pareto(α, λ) for α > 2

Let X ∼ Pareto(α, λ). Then,

E[X|X > mX ] =

∫ ∞
mX

2xfX(x)dx

=
2α

λ

∫ ∞
mX

x
(

1 +
x

λ

)−(α+1)
dx.

Noting that mX = λ
(
21/α − 1

)
and with the change of variable y = x/λ we obtain:

E[X|X > mX ] = 2αλ

∫ ∞
21/α−1

y (1 + y)−(α+1) dy

= αλ

(
21/α

α− 1
− 1

α

)
,

where the last equality was obtained using Mathematica. Therefore, we have

r =
E[X|X > mX ]− µX

σX

=
αλ
(

21/α

α−1 −
1
α

)
− λ

α−1√
λ2α

(α−1)2(α−2)

=

(
α21/α − (α− 1)− 1

α− 1

)
(α− 1)

√
α− 2

α

=
√
α(α− 2)

(
21/α − 1

)
.

Gamma(α, β)

Since β is a rate parameter (hence it does not affect the value of r), we can without loss of

generality let X ∼ Gamma(α, 1). As before, we denote mX the median of X (specifically

for β = 1). Note that unfortunately there is no closed-form expression for mX . We have

E[X|X > mX ] =

∫ ∞
mX

2xfX(x)dx

=
2

Γ(α)

∫ ∞
mX

xαe−xdx

=
2Γ(α+ 1,mX)

Γ(α)
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Using the property of the incomplete gamma function: Γ(α + 1, x) = αΓ(α, x) + xαe−x,

we simplify this to

E[X|X > mX ] =
2 (αΓ(α,mX) + (mX)αe−mX )

Γ(α)
,

and noting that the survival function S(x) of a Gamma(α, 1) is given by Γ(α, x)/Γ(α),

this further simplifies to

E[X|X > mX ] = α+
2(mX)αe−mX

Γ(α)
.

Lastly, since µX = α, σX =
√
α, we get

r =
2(mX)αe−mX

Γ(α)
√
α

.

Weibull(λ, k)

Let X ∼ Weibull(λ, k). Then,

E[X|X > mX ] =

∫ ∞
mX

2xfX(x)dx

=
2k

λk

∫ ∞
mX

xke−(x/λ)kdx.

Noting that mX = λ log(2)1/k and with the change of variable y = x/λ we obtain:

E[X|X > mX ] = 2kλ

∫ ∞
log(2)1/k

yke−y
k
dy

= 2λΓ

(
1 +

1

k
, log(2)

)
,

where the last equality was obtained through Mathematica. Therefore, we have

r =
E[X|X > mX ]− µX

σX

=
2λΓ

(
1 + 1

k , log(2)
)
− λΓ(1 + 1

k )√
λ2
[
Γ
(
1 + 2

k

)
−
(
Γ
(
1 + 1

k

))2]
=

2Γ
(
1 + 1

k , log(2)
)
− Γ(1 + 1

k )√
Γ
(
1 + 2

k

)
−
(
Γ
(
1 + 1

k

))2 .

Fréchet(α) for α > 2
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Let X ∼ Fréchet(α). Then,

E[X|X > mX ] =

∫ ∞
mX

2xfX(x)dx

= 2α

∫ ∞
mX

x−αe−x
−α
dx

= 2Γ

(
1− 1

a

)
− 2Γ

(
1− 1

a
, log(2)

)
,

where the last equality was obtained through Mathematica (using the fact that mX =

log(2)−1/α). Therefore,

r =
E[X|X > mX ]− µX

σX

=
Γ
(
1− 1

α

)
− 2Γ

(
1− 1

α , log(2)
)√

Γ
(
1− 2

α

)
−
(
Γ
(
1− 1

α

))2 .
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5.D Tail-heaviness: definitions and literature review

In this appendix, we review the question what is a heavy-tailed distribution? On a quali-

tative level, Resnick (2007) explains: “heavy tails are characteristic of phenomena where

the probability of a huge value is relatively big”. Of course, what ‘huge’ and ‘relatively

big’ mean is subjective (and context dependent). While definitions and terminologies vary,

the most common technical definition of what it means for a distribution F to be (right-)

heavy-tailed is as follows (see, e.g. Foss et al., 2013, Definition 2.2).

Definition 5.1. A distribution F is defined to be (right-) heavy-tailed if and only if

∫
R
eλxF (dx) =∞ for all λ > 0. (5.D.1)

By Theorem 2.6 in Foss et al. (2013), we have the following equivalent characterisation,

which is perhaps easier to interpret. It utilises the survival function F (x) := P[X > x] of

a random variable X ∼ F .

Theorem 5.2. A distribution F is (right-) heavy-tailed if and only if:

lim sup
x→∞

F (x)eλx =∞ for all λ > 0.

Hence, clearly, tail-heaviness has to do with what happens ‘far away’ in the tail. If a

distribution F is such that its survival function decreases more slowly than an exponential

function, then it is heavy-tailed (and ‘huge values’ will have ‘relatively big’ probabilities,

as the heuristic definition puts it). To sharpen this interpretation, let us also recall the

closely related notion of a ‘long-tailed’ distribution. We give the definition as in Foss et al.

(2013, Definition 2.21).

Definition 5.2. A distribution F on R is called long-tailed if F (x) > 0 for all x and, for

any fixed y > 0,
F (x+ y)

F (x)
→ 1 as x→∞.

Qualitatively, a random variable X is long-tailed if, given that X exceeds a certain high

threshold x, the probability it exceeds any higher threshold is large (and tends to 1 for x

very large). We note that every long-tailed distribution is heavy-tailed (but the converse

is not true).
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Definitions 5.1 and 5.2 provide a binary categorisation of tail-heaviness (either a distri-

bution is heavy-tailed or it is not), but other categorisations and definitions are possible

(see Rojo, 2013, for a review). In particular, a categorisation arising from Extreme Value

Theory relies on the notion of maximum domain of attraction (see the following definition,

taken from Embrechts et al., 1997, Definition 3.3.1).

Definition 5.3. Let X1, . . . , Xn be i.i.d non-degenerate random variables with common

distribution F , and denote Mn = max(X1, . . . , Xn) their maximum. If there exists con-

stants cn > 0, dn ∈ R and a non-degenerate distribution H such that

Mn − dn
cn

d−→ H,

then we say that F belongs to the maximum domain of attraction of H.

From the Fisher-Tippett Theorem (stated previously, see Theorem 4.1) we know the H

in Definition 5.3 can only be of three types: Weibull, Gumbel or Fréchet. Then, from

this framework, a distribution F can be said to be light-tailed, medium-tailed or long-

tailed if it belongs to the maximum domain of attraction of the Weibull, Gumbel or

Fréchet, respectively (Rojo, 2013). Note that, according to this classification, the Normal,

Exponential and Log-normal are all classified as medium-tailed (see Embrechts et al., 1997,

Section 3.3.3), which does not agree with the common idea that a Log-normal is much

heavier-tailed than a Normal.

One could say that attributing distributions to a discrete number of categories (e.g., light,

medium or heavy-tailed) cannot provide the full picture. For instance, using Definition 5.1

yields that the Pareto, Burr, Cauchy, Log-normal and Weibull (with shape parameter α <

1) are all heavy-tailed. But can we declare one to be the heavier tailed, and based on what

criteria? Furthermore, within a specific family, (e.g., Log-normal), common knowledge

has it that changing some parameter(s) will alter the tail-heaviness. For example, for a

Log-normal(µ, β), increasing β increases tail-heaviness. We then want to quantitatively

measure tail-heaviness, and many options are available in the literature (though it seems

none make consensus).

The most common measure is probably the kurtosis coefficient, which we denote κ. For

any random variable X with finite fourth moment, mean µ and variance σ2, κ is defined

as

κ = E

[(
X − µ
σ

)4
]
.

183



However, the kurtosis κ has many shortcomings. As Brys et al. (2006) put it:

The kurtosis coefficient is often regarded as a measure of the tail-heaviness

of a distribution relative to that of the normal distribution. However, it also

measures the peakedness of a distribution, hence there is no agreement on

what kurtosis really estimates. Another disadvantage of the kurtosis is that its

interpretation and consequently its use is restricted to symmetric distributions.

Moreover, the kurtosis coefficient is very sensitive to outliers in the data.

Several alternative measures of tail-heaviness have been proposed. Geary (1936) intro-

duced a measure defined for a random variable X with mean µ and standard deviation

σ <∞. Denoting τ = E[|X − µ|], this measure is given by τ/σ. Bonett and Seier (2002)

proposed a modification of this measure ω through the transformation

ω = 13.29 (log(σ)− log(τ))

(where the constant 13.29 is chosen so that ω is approximately 3 for a Normal distribution).

Bonett and Seier (2002) note that the advantage of their ω is that it can increase without

bounds as a distribution gets more heavy-tailed. They report the values of this ω for many

symmetric distributions and use their ω as the basis for a normality test. Hogg (1972)

proposed a measure of tail-heaviness defined as

Q =
U0.05 − L0.05

U0.50 − L0.50
,

where Uα, and Lα are the means of the upper and lower ‘100α percent’ tails, respectively.

Moors (1988) provided a robust measure of tail-heaviness. For a continuous X ∼ F , their

measure is defined as:

T =
(E7 − E5) + (E3 − E1)

E6 − E2
, (5.D.2)

where the Ei are the ‘octiles’ of distribution F , i.e., they satisfy

F (Ei) = i/8, i = 1, . . . , 8.

Like kurtosis, this T is not bounded. Furthermore, because it is entirely based on quantiles,

it always exists (i.e., it does not require existence assumption on any moments).

Brys et al. (2006) proposed two other robust measures of (right-) tail-heaviness which
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always exist (i.e., they do not require finite moments assumptions). Considering again a

continuous distribution F with quantile function F−1, the first measure is given by

RQWF (q) =
F−1((1 + q)/2) + F−1(1− q/2)− 2F−1(3/4)

F−1((1 + q)/2)− F−1(1− q/2)
, (5.D.3)

where 1/2 < q < 1. The authors suggest the use of q = 3/4 or q = 7/8 to “retain a

reasonable amount of robustness”. We note that −1 ≤ RQWF (q) ≤ 1. A value close

to 1 is associated with a heavy right tail, since in that case the term F−1((1 + q)/2) (a

high quantile) dominates all the others. Their second measure of (right-) tail-heaviness is

a modification of the medcouple (Brys et al., 2004). Call mF the median of distribution

F . Let X1 be sampled from F1, where F1 is a version of F truncated below the median.

Likewise, let X2 be sampled from F2, a version of F truncated above the median. Then,

the medcouple of F , denoted MC(F ) is defined as

MC(F ) = median

[
(X2 −mF )− (mF −X1)

X2 −X1

]
,

and is a measure of skewness. Then, for X ∼ F , we obtain a measure of right tail-heaviness

of F by computing the medcouple of the random variable X|X > mF .
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CHAPTER 6

CENTRAL LIMIT THEOREMS UNDER

K-TUPLEWISE INDEPENDENCE
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6.1 Introduction

Thus far in this thesis, we have been mostly concerned with the materiality of the difference

between ‘pairwise’ and ‘mutual’ independence. In general, one can also define a notion

of ‘K-tuplewise independence’ (K ≥ 2). Indeed, we say a sequence of random variables

X1, X2, X3, . . . is ‘K-tuplewise independent’ if Xi1 , Xi2 , . . . , XiK are mutually independent

whenever (i1, i2, . . . , iK) is a K-tuple of distinct positive integers (see, e.g., Pruss, 1998).

Note the case K = 2 corresponds to ‘pairwise independence’. While mutual independence

implies K-tuplewise independence (for any K), the converse is not true. That is, for

any integer K ≥ 2, we can always build a sequence of K-tuplewise independent, but still

dependent, random variables.

In this chapter, we extend many of the ideas presented in the previous Chapter 5 to the

case of ‘triplewise independent’ (K = 3) random variables. In particular, we present a

general methodology to construct triplewise independent sequences of random variables

having a common but arbitrary marginal distribution F (satisfying very mild conditions).

We then investigate under which conditions such sequences satisfy a CLT, and give many

specific examples.

While several examples of PIBD variables can be found in the literature (see Section

5.1 for a review), examples of K-tuplewise independent variables which are not mutually

independent (forK ≥ 3) are more scarce. This may explain why we still have an incomplete

understanding of which fundamental theorems of mathematical statistics ‘fail’ under the

weaker assumption of triplewise (or in general K-tuplewise) independence (and to what

extent). This also provides motivation for this chapter.

We know from the literature that the classical CLT, arguably one of the most important

results in all of statistics, need not be valid under K-tuplewise independence. Few authors

have studied this question. Pruss (1998) showed that, for any integer K, one can build

a sequence of K-tuplewise independent r.v.s for which no CLT holds. Bradley and Pruss

(2009) further showed that even if such a sequence is strictly stationary, a CLT need not

hold. Weakley (2013) extended this work by allowing the r.v.s in the sequence to have any

symmetrical distribution (with finite variance). Takeuchi (2019) showed that K growing

linearly with the sample size n is not even sufficient for a CLT to hold. In those examples,

however, the asymptotic distribution of the sample mean Sn is not given explicitly, hence

we cannot judge to what extent it departs from normality.
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Kantorovitz (2007) does provide an example of a triplewise independent sequence for

which Sn converges to a ‘misbehaved’ distribution —that of Z1 ·Z2, where Z1 and Z2 are

independent N(0, 1) — but this is achieved for a very specific choice of margin, namely

the Bernoulli distribution.

In Section 6.2, we present a methodology, borrowing elements from graph theory, to con-

struct new sequences of triplewise independent and identically distributed (noted thereafter

t.i.i.d.) r.v.s whose common marginal distribution F can be chosen arbitrarily (under very

mild conditions). In Section 6.3, we provide a necessary and sufficient condition for a CLT

to hold for such sequences.

In Section 6.4, we provide what we believe to be the first two examples of triplewise

independent sequences with arbitrary margins for which the asymptotic distribution of the

standardised sample mean is explicitly known and non-Gaussian. Those two distributions

depend on the choice of the margin F and have heavier tails than a Gaussian. This allows

us to assess how far away from the Gaussian distribution one can get under sole triplewise

independence. This work thus highlights why mutual independence is so fundamental for

the classical CLT to hold.

Lastly, in Section 6.5, we explain how our methodology can easily be extended to create

new K-tuplewise independent sequences (which are not mutually independent) for any

integer K. While such sequences are interesting in themselves, it appears that for K ≥ 4

they do verify a CLT, and we explain heuristically why this is the case. Despite not being

the focus of this thesis, we note that these sequences could prove useful to benchmark

the performance of multivariate independence tests, many of which have been proposed

in recent years, see, e.g., Fan et al. (2017); Jin and Matteson (2018); Yao et al. (2018);

Böttcher et al. (2019); Chakraborty and Zhang (2019); Genest et al. (2019); Drton et al.

(2020).
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6.2 Construction of triplewise independent sequences

In this section, we present a general methodology to construct sequences {Xj , j ≥ 1} of

t.i.i.d. r.v.s having a common (but arbitrary) marginal distribution F . The distribution

F is not completely arbitrary, and must satisfy the following technical condition:

Condition 6.1. F has finite variance and for any r.v. W ∼ F , there exists a Borel set A

with P(W ∈ A) = `−1, where ` ≥ 2 is an integer.

(Although this condition may appear surprising, it is needed for our construction to hold,

and we explain in Remark 6.2 why it cannot be relaxed). We begin our construction of the

sequence {Xj , j ≥ 1} by letting F be a distribution satisfying Condition 6.1, with mean

and variance denoted by µ and σ2, respectively. For a r.v. W ∼ F , let A be any Borel set

such that

P(W ∈ A) = `−1, for some integer ` ≥ 2. (6.2.1)

Our construction relies on a sequence of simple graphs {Gm,m ≥ 1} with two properties

(for a review of some graph theory concepts, see Section 6.B):

1. The girth of Gm is 4 (or larger), for all m;

2. The number of edges of Gm grows to infinity as m→∞.

Aside from these properties, the sequence {Gm,m ≥ 1} is left unspecified, making our

construction very general. As a concrete example, consider a complete bipartite graph

composed of two sets of m vertices, where every vertex from one set is linked by an edge

to every vertex in the second set; see Figure 6.1 with m = 4 for an illustration. Such graphs

are often denoted by Km,m, see, e.g, Diestel (2005, p.17). Note we use them to make our

construction more ‘concrete’ to the reader, but they are only one possible example of

graphs Gm satisfying the two conditions above. Our general construction is as follows.

Let v(m) be the number of vertices of Gm and let M1, . . . ,Mv(m) be a sequence of i.i.d.

discrete uniforms on the set {1, 2, . . . , `}, defined on a common probability space (Ω,F ,P).

Precisely, for i = 1, 2, . . . , `, let

pi := P(M1 = i) = `−1. (6.2.2)

Assign the uniform r.v.s M1, . . . ,Mv(m) to the v(m) vertices of the graph (the order does
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M1

M2

M3

M4

M5

M6

M7

M8

Figure 6.1: Graph K4,4 with uniform r.v.s Mj , 1 ≤ j ≤ 8, defined in (6.2.2) assigned to
the vertices. The vertices on the left (colored in blue) belong to one set while the vertices
on the right (colored in red) belong to another set.

not matter). Then, for every pair (i, j), 1 ≤ i < j ≤ v(m) such that an edge connects Mi

and Mj , define a r.v. Di,j as

Di,j =


1, if Mi = Mj ,

0, otherwise.

(6.2.3)

Let n be the total number of edges (in the specific example of complete bipartite graphs

Km,m from Figure 6.1, n = m2). For convenience, we relabel the n random variables in

the sequence {Di,j} simply as

D1, . . . , Dn. (6.2.4)

Importantly, the sequence D1, . . . , Dn is triplewise independent (see Remark 6.1). How-

ever, the variables Dk have a specific distribution, i.e., they are Bernoulli, with

P[Dk = 1] = `−1.

From those Dk variables, we now construct a much more general triplewise independent

sequence X1, . . . , Xn, where Xk ∼ F , for all k = 1, . . . , n. The general idea is to let every

Xk be a mixture of two distributions as follows: for W ∼ F ,

• if Dk = 1, then Xk has the distribution of {W |W ∈ A};

• if Dk = 0, then Xk has the distribution of {W |W ∈ Ac}.

Since, by construction, P(W ∈ A) = `−1, this yields that the marginal distribution of Xk

is F .
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More formally, define U and V , with cumulative distribution functions FU and FV respec-

tively, to be the truncated versions of W ∼ F , respectively off and on the set A:

U
d
= W |{W ∈ Ac}, V

d
= W |{W ∈ A}, (6.2.5)

and denote

µU := E[U ], σ2
U := Var[U ], µV := E[V ], σ2

V := Var[V ]. (6.2.6)

Then, consider n independent copies of U , and independently, n independent copies of V :

U1, U2, . . . , Un
i.i.d.∼ FU , V1, V2, . . . , Vn

i.i.d.∼ FV , (6.2.7)

both defined on the probability space (Ω,F ,P). Finally, for ω ∈ Ω and for all k = 1, . . . , n,

construct

Xk(ω) =


Uk(ω), if Dk(ω) = 0,

Vk(ω), if Dk(ω) = 1.

(6.2.8)

By conditioning on Dk, it is easy to verify that

FXk(x) = (1− `−1)FUk(x) + `−1FVk(x) = F (x). (6.2.9)

Lastly, it is not hard to see that X1, . . . , Xn is triplewise independent. Indeed, for any

given k, k′, k′′ ∈ {1, 2, . . . , n} with k, k′, k′′ all different, the r.v.s Dk, Uk, Vk, Dk′ , Uk′ ,

Vk′ , Dk′′ , Uk′′ , Vk′′ are mutually independent and one can write Xk = g(Dk, Uk, Vk),

Xk′ = g(Dk′ , Uk′ , Vk′) and Xk′′ = g(Dk′′ , Uk′′ , Vk′′) for g a Borel-measurable function.

Since Xk, Xk′ and Xk′′ are integrable, the result follows from the triplewise independence

analogue of Corollary 2 in Pollard (2002, Section 4.1).

Remark 6.1. For the sequence D1, . . . , Dn defined in (6.2.4) to be t.i.i.d., the following

restrictions on p1, p2, . . . , p` ∈ (0, 1) must be satisfied:

(1) : p1 + p2 + · · ·+ p` = 1,

(2) : p2
1 + p2

2 + · · ·+ p2
` = w,

(3) : p3
1 + p3

2 + · · ·+ p3
` = w2,

(4) : p4
1 + p4

2 + · · ·+ p4
` = w3.

(6.2.10)
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for some w ∈ (0, 1). Now, it is straightforward that letting pi = `−1 for i = 1, . . . , ` (as we

have done in our construction) satisfies (6.2.10).

To be more specific, condition (1) is necessary for the distribution in (6.2.2) to be well-

defined, and conditions (2), (3) and (4) are rewritings of

P(Dv1,v2 = 1) = w, (6.2.11)

P(Dv1,v2 = 1, Dv2,v3 = 1) = P(Dv1,v2 = 1)P(Dv2,v3 = 1), (6.2.12)

P(Dv1,v2 = 1, Dv2,v3 = 1, Dv3,v4 = 1) = P(Dv1,v2 = 1)P(Dv2,v3 = 1)P(Dv3,v4 = 1),

(6.2.13)

∀ (v1, v2), (v2, v3), (v3, v4) ∈ Edges(Gm).

(Indeed, the edges on the path v1v2 . . . vk all have the value 1 if and only if all the cor-

responding values on the vertices, Mv1 ,Mv2 , . . . ,Mvk , are equal. With ` possible choices for

each vertex, this event has probability P(Dvj−1,vj = 1 ∀j ∈ {2, 3, . . . , k}) =
∑`

i=1

∏k
j=1 P(Mj =

i) =
∑`

i=1 p
k
i ∀k ∈ N.) Lastly, conditions (6.2.11), (6.2.12) and (6.2.13) are sufficient to

guarantee that the D’s are identically distributed and triplewise independent.

Remark 6.2. In Condition 6.1, the restriction P(W ∈ A) = `−1 for some integer ` may

seem arbitrary. Likewise, in (6.2.2) the choice pi = `−1 for i = 1, . . . , ` may also seem

arbitrary. We establish here that none of these choices are arbitrary, simply because the

solution

pi = `−1

to (6.2.10) is unique. Indeed, by squaring condition (2) in (6.2.10) then applying the

Cauchy-Schwarz inequality, one gets

w2 =
(∑̀
i=1

p
3/2
i p

1/2
i

)2
≤
∑̀
i=1

p3
i

∑̀
i=1

pi =
∑̀
i=1

p3
i (6.2.14)

where the last equality comes from condition (1) in (6.2.10). Then, condition (3) requires

that we have the equality in (6.2.14), and this happens if and only if p3/2

i = λp1/2

i for all

i ∈ {1, . . . , `} and for some λ ∈ R. In turn, this implies pi = λ = `−1 because of (1) and

since pi > 0, which then implies w = `−1 by (2). This unique solution also satisfies (4).

This reasoning shows that we cannot extend our method to an arbitrary P(W ∈ A) ∈ (0, 1)

in (6.2.1).
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6.3 Main result

In the previous section, we constructed a triplewise independent sequence of random vari-

ables {Xk, 1 ≤ k ≤ n} with an arbitrary common margin F . Because the construction

relies on an unspecified sequence of graphs {Gm,m ≥ 1}, the ‘dependence structure’ of

this sequence is only partially specified, and the asymptotic distribution of its standard-

ised mean (call it Sn) depends on which specific graphs {Gm,m ≥ 1} are used. In this

section, we state our main result, which links the asymptotic distribution of Sn to the

specific graphs Gm chosen. The result holds for any growing sequence of simple graphs

{Gm,m ≥ 1} of girth at least 4 (as defined previously). Note that specific examples are

given in the next section, two for which the standardised mean Sn is asymptotically not

Gaussian (and two for which it is Gaussian).

To state our result, we first recall that

• for a fixed m, n is the number of edges in the graph Gm (n is also the number of

variables in the sequence X1, . . . , Xn);

• the variables {Xk, 1 ≤ k ≤ n} have finite mean µ, finite variance σ2, and a common

arbitrary margin F such that for some Borel set A and an integer ` ≥ 2,

P(Xk ∈ A) = `−1;

• the sequence X1, . . . , Xn is constructed from a sequence D1, . . . , Dn of Bernoulli(`−1)

random variables, see (6.2.3) and (6.2.4).

Lastly, to state our result we need to define a new quantity, Ξn, as being the number of

1’s in the sequence {Dk, 1 ≤ k ≤ n}. We also let ξn be its standardised version, i.e.,

Ξn =

n∑
k=1

Dk, ξn =
Ξn − n`−1√
n`−1(1− `−1)

. (6.3.1)

Note the distribution of ξn depends on which graphs {Gm,m ≥ 1} are chosen for the

construction. We are now ready to present our main result.

Theorem 6.1. Let X1, . . . , Xn be random variables defined as in (6.2.8), and ξn be as

defined in (6.3.1). Provided that there exists a r.v. Y such that

ξn
d−→ Y, as m→∞ (and thus as n→∞), (6.3.2)
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then the standardised sample mean Sn :=
(∑n

k=1Xk − nµ
)
/σ
√
n converges in law to the

random variable

S(`) :=
√

1− r2Z + r Y, (6.3.3)

where Z ∼ N(0, 1) and r :=

√
`−1(1−`−1)(µV −µU )

σ .

Remark 6.3. If r 6= 0 and ξn is asymptotically non-Gaussian (this happens for certain

graphs {Gm,m ≥ 1}, see the next section for examples), then Sn is asymptotically non-

Gaussian. Note that the restriction r 6= 0 is not stringent, as it includes all distributions F

(in Condition 6.1) with a non-atomic part. Indeed, if W ∼ F has a non-atomic part, then

W has a non-atomic part on either (E[W ],∞) or (−∞,E[W ]). Without loss of generality,

assume that the non-atomic part is on (E[W ],∞), then we can find an integer ` ≥ 2 and

a Borel set A0 such that P(W ∈ A) = `−1 with A = (E[W ],∞)∩A0. By construction, this

yields

E[W |W ∈ A] > E[W ] = E[W1A]+E[W1Ac ] = E[W |W ∈ A] `−1 +E[W |W ∈ Ac] (1− `−1),

(6.3.4)

so that E[W |W ∈ A] > E[W |W ∈ Ac]. The restriction r 6= 0 also includes almost all

discrete distributions with at least one weight of the form `−1; see Remark 5.2 in the

previous chapter for a formal argument. Also, note that, depending on F , many choices

for A (with possibly different values of `) could be available.

Remark 6.4. If the margin F satisfies Condition 6.1, and if r = 0 (i.e., µU = µV ) or

ξn is asymptotically Gaussian, then our construction provides new triplewise independent

(but not mutually independent) sequences which do satisfy a CLT (regardless of which

graphs {Gm,m ≥ 1} are used).

Proof of Theorem 6.1. We prove (6.3.3) by obtaining the limit of the characteristic func-

tion of Sn, and then by invoking Lévy’s continuity theorem. Namely, we show that, for

all t ∈ R,

ϕSn(t)
m→∞−→ ϕ√1−r2Z(t) · ϕrY (t). (6.3.5)

Recall the notation defined in (6.2.6) and let

Ũk :=
σU
σ
· Uk − µU

σU
and Ṽk :=

σV
σ
· Vk − µV

σV
, (6.3.6)
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then we can write

Sn =

∑n
k=1Xk − nµ
σ
√
n

=

∑n
k=1
Dk=0

Uk +
∑n

k=1
Dk=1

Vk − nµ

σ
√
n

=
1√
n

(
(n− Ξn)µU + ΞnµV − nµ

σ
+

n∑
k=1
Dk=0

Uk − µU
σ

+
n∑
k=1
Dk=1

Vk − µV
σ

)

=
1√
n

(
(µV − µU )

σ

[
Ξn − n

(µ− µU )

µV − µU

]
+

n∑
k=1
Dk=0

Ũk +

n∑
k=1
Dk=1

Ṽk

)

=
1√
n

(
r

(
Ξn − n`−1

)√
`−1(1− `−1)

+
n∑
k=1
Dk=0

Ũk +
n∑
k=1
Dk=1

Ṽk

)
,

(6.3.7)

since Ξn = #{k : Dk = 1}, and we know that, from (6.2.9),

µ− µU
µV − µU

=
[(1− `−1)µU + `−1µV ]− µU

µV − µU
= `−1. (6.3.8)

With the notation tn := t/
√
n, the mutual independence between the Uk’s, the Vk’s and

M := {Mj}v(m)
j=1 yields, for all t ∈ R,

E
[
eitSn |M

]
= e

itr
(Ξn−n`−1)√
n`−1(1−`−1)

n∏
k=1
Dk=0

E[eitnŨk |M ]
n∏
k=1
Dk=1

E[eitnṼk |M ]

= eitr ξn [ϕ
Ũ

(tn)]n(1−`−1)[ϕ
Ṽ

(tn)]n`
−1

[
ϕ
Ṽ

(tn)

ϕ
Ũ

(tn)

]Ξn−n`−1

= eitr ξn · [ϕ
Ũ

(tn)]n(1−`−1)[ϕ
Ṽ

(tn)]n`
−1

·

 [ϕ
Ṽ

(tn)]n · e
1
2
·σ

2
V
σ2 t

2

[ϕ
Ũ

(tn)]n · e
1
2
·
σ2
U
σ2 t

2


Ξn−n`−1

n

·

e− 1
2
·σ

2
V
σ2 t

2

e−
1
2
·
σ2
U
σ2 t

2


Ξn−n`−1

n

. (6.3.9)

(The reader should note that, for n large enough, the manipulations of exponents in the

second and third equality above are valid because the highest powers of the complex

numbers involved have their principal argument converging to 0. This stems from the fact

that Ξn ≤ n, and the quantities [ϕ
Ṽ

(tn)]n and [ϕ
Ṽ

(tn)]n both converge to real exponentials

as n→∞, by the CLT.) We now evaluate the four factors on the right-hand side of (6.3.9).

For the first factor in (6.3.9), the continuous mapping theorem and (6.3.2) yield

eitr ξn d−→ eitrY , as m→∞. (6.3.10)

195



For the second factor in (6.3.9), the classical CLT yields

[ϕ
Ũ

(tn)]n(1−`−1)[ϕ
Ṽ

(tn)]n`
−1 m→∞−→ exp

(
− 1

2
· (1− `−1)

σ2
U

σ2
t2
)

exp
(
− 1

2
· `−1σ

2
V

σ2
t2
)

= e−
1
2

(1−r2)t2 ,

(6.3.11)

where in the last equality we used the fact that, from (6.2.9),

σ2 = E[X2]− µ2 = (1− `−1)σ2
U + `−1σ2

V + `−1(1− `−1)(µU − µV )2. (6.3.12)

For the third factor in (6.3.9), the quantity inside the bracket converges to 1 by the CLT.

Hence, the elementary bound

|ez − 1| ≤ |z|+
∞∑
j=2

|z|j

2
≤ |z|+ |z|2

2(1− |z|)
≤ 1 + `−1

2`−1
|z|, for all |z| ≤ 1− `−1, (6.3.13)

and the fact that
∣∣Ξn−n`−1

n

∣∣ ≤ 1− `−1 yield, as m→∞,

∣∣∣∣∣∣∣∣∣
 [ϕ

Ṽ
(tn)]n · e

1
2
·σ

2
V
σ2 t

2

[ϕ
Ũ

(tn)]n · e
1
2
·
σ2
U
σ2 t

2


Ξn−n`−1

n

− 1

∣∣∣∣∣∣∣∣∣
a.s.
≤ 1− `−2

2`−1

∣∣∣∣∣∣∣Log

 [ϕ
Ṽ

(tn)]n · e
1
2
·σ

2
V
σ2 t

2

[ϕ
Ũ

(tn)]n · e
1
2
·
σ2
U
σ2 t

2


∣∣∣∣∣∣∣ −→ 0.

(6.3.14)

For the fourth factor in (6.3.9), we note that Ξn−n`−1

n
P−→ 0 (because of the Law of Large

Numbers for pairwise independent r.v.s). Then, by the continuous mapping theorem,

e− 1
2
·σ

2
V
σ2 t

2

e−
1
2
·
σ2
U
σ2 t

2


Ξn−n`−1

n

P−→ 1, as m→∞. (6.3.15)

By combining (6.3.10), (6.3.11), (6.3.14) and (6.3.15), Slutsky’s lemma implies, for all

t ∈ R,

E
[
eitSn |M

] d−→ eitrY e−
1
2

(1−r2)t2 , as m→∞. (6.3.16)

Since the sequence {|E[eitSn |M ]|}m∈N is uniformly integrable (it is bounded by 1), Theo-

rem 25.12 in (Billingsley, 1995) shows that we also have the mean convergence

E
[
E
[
eitSn |M

]]
−→ E

[
eitrY

]
e−

1
2

(1−r2)t2 , as m→∞, (6.3.17)

which proves (6.3.5). The conclusion follows.
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6.4 Examples

In Theorem 6.1, whether the standardised sample mean Sn is asymptotically Gaussian

depends on the ‘connectivity’ of the chosen graphs {Gm,m ≥ 1}. In particular, it appears

that having graphs of bounded diameter is a necessary (albeit not sufficient) condition

for Sn to be asymptotically non-Gaussian. To make this point explicit, we present two

specific examples for which we obtain the (non-Gaussian) asymptotic distribution of ξn

(via Theorem 6.1, this also provides the asymptotic distribution of Sn). We then present

two more examples where the limiting distribution is Gaussian.

6.4.1 First example

Theorem 6.2. Let {Gm,m ≥ 1} be the sequence of bipartite graphs {Km,m}m≥1 described

above Figure 6.1, and consider the construction from Section 6.2 where i.i.d. discrete uni-

forms M1, . . . ,M2m are assigned to the vertices of Gm. That is, M1, . . . ,Mm are assigned

to the m vertices of set 1, and Mm+1, . . . ,M2m to the m vertices of set 2. Then,

ξn
d−→ ξ√

`− 1
, as m→∞ (and thus as n→∞), (6.4.1)

where ξ ∼ VG(` − 1, 0, 1, 0), and VG denotes the variance-gamma distribution (see Defi-

nition 6.1).

Remark 6.5. Because a standardised VG(`−1, 0, 1, 0) distribution converges to a standard

Gaussian as ` tends to infinity, we see that, in Theorem 6.1, S(`) d−→ N(0, 1) as `→∞.

Proof. First, note that v(m) = 2m and n = m2. Define, for i ∈ {1, 2, . . . , `},

N
(1)
i = N

(1)
i (m), the number of Mj ’s equal to i within the sample {Mj}mj=1,

N
(2)
i = N

(2)
i (m), the number of Mj ’s equal to i within the sample {Mj}2mj=m+1.

Then, N (j) := (N
(j)
1 , . . . , N

(j)
` ) ∼ Multinomial(m, (`−1, . . . , `−1)) for j ∈ {1, 2}, and N (1)

and N (2) are independent. Importantly, if N (1) and N (2) are known, then the number

of 1’s in the sequence {Dk, 1 ≤ k ≤ n}, denoted by Ξn throughout, can be deduced from

simple calculations as

Ξn =
∑̀
i=1

N
(1)
i N

(2)
i =

`−1∑
i=1

N
(1)
i N

(2)
i +

(
m−

`−1∑
i=1

N
(1)
i

)(
m−

`−1∑
i′=1

N
(2)
i′
)
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=

`−1∑
i=1

N
(1)
i N

(2)
i +

`−1∑
i=1

`−1∑
i′=1

N
(1)
i N

(2)
i′ −m

`−1∑
i=1

N
(1)
i −m

`−1∑
i′=1

N
(2)
i′ +m2

=
`−1∑
i=1

(N
(1)
i −m`

−1)(N
(2)
i −m`

−1) +
`−1∑
i=1

`−1∑
i′=1

(N
(1)
i −m`

−1)(N
(2)
i′ −m`

−1)

+m`−1
`−1∑
i=1

N
(1)
i +m`−1

`−1∑
i=1

N
(2)
i + (`− 1)m`−1

`−1∑
i=1

N
(1)
i + (`− 1)m`−1

`−1∑
i=1

N
(2)
i

−m
`−1∑
i=1

N
(1)
i −m

`−1∑
i=1

N
(2)
i − (`− 1)m2`−2 − (`− 1)2m2`−2 +m2

=

`−1∑
i=1

(N
(1)
i −m`

−1)(N
(2)
i −m`

−1) +

`−1∑
i=1

`−1∑
i′=1

(N
(1)
i −m`

−1)(N
(2)
i′ −m`

−1) +m2`−1

= m`−1
`−1∑
i=1

`−1∑
i′=1

( 1

`−1
1{i=i′} +

1

`−1

)(N
(1)
i −m`−1)√

m

(N
(2)
i −m`−1)√

m
+m2`−1, (6.4.2)

where 1B denotes the indicator function on the set B. It is well known that the covariance

matrix for the first ` − 1 components of a Multinomial(m, (p1, p2, . . . , p`)) vector is mΣ

where Σi,i′ = pi1{i=i′} − pipi′ , for 1 ≤ i, i′ ≤ ` − 1, and also that (Σ−1)i,i′ = p−1
i 1{i=i′} +

p−1
` , 1 ≤ i, i′ ≤ ` − 1, see Tanabe and Sagae (1992, eq.21). If Σ = LL> is the Cholesky

decomposition of Σ when pi = `−1 for all i, and Y1 := (N
(1)
i − m`−1)`−1

i=1 and Y2 :=

(N
(2)
i −m`−1)`−1

i=1 , then we have

Ξn −m2`−1 = m`−1Y >1 (mΣ)−1Y2

= m`−1(m−1/2L−1Y1)>(m−1/2L−1Y2).
(6.4.3)

By the classical multivariate CLT and Definition 6.1 in Appendix 6.A, we get the result.

Next, we illustrate what the asymptotic distribution of Sn (the standardised sample mean)

looks like in this example. By Theorem 6.1, Sn converges in law to a r.v.

S(`) d
=
√

1− r2Z + r
ξ√
`− 1

, (6.4.4)

where the r.v.s Z ∼ N(0, 1) and ξ ∼ VG(`−1, 0, 1, 0) (see Definition 6.1 in Appendix 6.A)

are independent.

For a fixed ` ≥ 2, the distribution of S(`) has only one parameter, r (defined in Theo-

rem 6.1), which depends on the margin F (through the quantities A, µU , µV and σ). Note

that 0 ≤ r2 ≤ 1, and that the critical points r2 = 0, 1 are reachable for certain choices of

F (for specific examples, see Example 5.1 and Appendix 5.B from Chapter 5).

198



Hence, when ` ≥ 2 is fixed, r completely determines the shape of S(`); r close to 0 means

that S(`) is close to a standard Gaussian, while r close to ±1 means that S(`) is close to

a standardised VG(` − 1, 0, 1, 0). Figure 6.2 (where ` = 2 and r varies) illustrates this

shift from a Gaussian distribution towards a VG(`− 1, 0, 1, 0) distribution. On the other

hand, regardless of r, if ` increases then S(`) gets closer to a N(0, 1). This is illustrated

in Figure 6.3 (where r = 0.99 and ` varies). It is clear from these figures that triplewise

independence can be a very poor substitute to mutual independence as an assumption in

the classical CLT.

Figure 6.2: Density (left) and CDF (right) of S(`) for fixed ` = 2 and varying r (r =
0.6, 0.8, 0.99), compared to those of a N(0, 1). This illustrates that the CLT can ‘fail’
substantially under triplewise independence.

Figure 6.3: Density (left) and CDF (right) of S(`) for fixed r = 0.99 and varying ` (` =
2, 4, 6), compared to those of a N(0, 1). This illustrates that S(`) converges to a N(0, 1)
as ` grows.
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Lastly, the first moments of S(`) (obtained with simple calculations in Mathematica) are

E[S(`)] = 0, E[(S(`))2] = 1, E[(S(`))3] = 0 and E[(S(`))4] =
6r4

`− 1
+ 3. (6.4.5)

Thus, an upper bound on the kurtosis of S(`) is 6/(`−1)+3, which implies that the limiting

r.v. S(`) can be substantially more heavy-tailed than the standard Gaussian distribution

(which is also seen in Figure 6.2).

6.4.2 Second example

Consider the sequence of graphs {Gm,m ≥ 1} as displayed in Figure 6.4 for m = 6, where

M0,M1,M2, . . . ,Mm+1 is a sequence of i.i.d. Bernoulli(1/2) r.v.s assigned to the vertices.

For each m, the graph Gm has v(m) = m + 2 vertices and n = 2m edges. Every vertex

in the set {M1,M2, . . . ,Mm} (in the middle) is linked by an edge to the adjacent vertices

M0 (on the left) and Mm+1 (on the right). This sequence of graphs yields Theorem 6.3.

M0 M7M1

M2

M3

M4

M5

M6

Figure 6.4: Illustration of the graph G6 in our second example.

Theorem 6.3. Let {Gm,m ≥ 1} be the sequence of graphs described above and consider

the construction from Section 6.2 where Condition 6.1 is satisfied with ` = 2. Then,

ξn
d−→
√

2I · Z, as m→∞ (and thus as n→∞), (6.4.6)

where the random variables I ∼ Bernoulli(1/2) and Z ∼ N(0, 1) are independent.

Proof. If I ∼ Bernoulli(1/2) and B ∼ Binomial(m, 1/2) are independent r.v.s, then Ξn

satisfies

Ξn
d
= I · 2B + (1− I) ·m. (6.4.7)

Indeed, if the Bernoulli r.v.sM0 andMm+1 are equal (this is represented by I = 1 in (6.4.7),
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which has probability 1/2), then for every vertex M1,M2, . . . ,Mm in the middle, the sum of

the 1’s on the two adjacent edges will be 2 with probability 1/2 and 0 with probability 1/2.

By the independence of the Bernoulli r.v.s M1,M2, . . . ,Mm, we can thus represent the

sum of the “m sums of 1’s” that we just described by 2B where B ∼ Binomial(m, 1/2).

Similarly, if the Bernoulli r.v.s M0 and Mm+1 are not equal (this is represented by I = 0 in

(6.4.7), which has probability 1/2), then for every vertex M1,M2, . . . ,Mm in the middle,

the sum of the 1’s on the two adjacent edges will always be 1 (either the left edge is 1

and the right edge is 0, or vice-versa, depending on whether (M0 = 1,Mm+1 = 0) or

(M0 = 0,Mm+1 = 1)). Since there are m vertices in the middle when I = 0, the total sum

of the 1’s on the edges is always m. By combining the cases I = 1 and I = 0, we get the

representation (6.4.7).

Lastly, here E[Ξn] = m and Var(Ξn) = m
2 so that, by Lévy’s continuity theorem,

ξn =
Ξn −m√

m
2

=
√

2I · B −m/2√
m
4

d−→
√

2I · Z, where Z ∼ N(0, 1). (6.4.8)

This ends the proof.

Remark 6.6. By Theorem 6.1, Sn converges in law to a random variable:

S :=
√

1− r2Z1 + r
√

2IZ2, (6.4.9)

where the random variables Z1, Z2 ∼ N(0, 1) and I ∼ Bernoulli(1/2) are all independent,

and r := µV −µU
2σ . Simple calculations then yield

E[S] = 0, E[S2] = 1, E[S3] = 0 and E[S4] = 3(1 + r4), (6.4.10)

so that S in (6.4.9) is always heavier tailed than a standard Gaussian r.v. (provided r 6= 0,

which is not a stringent requirement as seen in Remark 6.3).

6.4.3 Third example

In our construction, a CLT can hold. As a ‘positive example’, we consider here the sequence

of m-hypercube graphs, which have v(m) = 2m vertices and n = m2m−1 edges. Despite

being ‘highly connected’, these graphs do induce a Gaussian limit for {Sn, n ≥ 1}.

Theorem 6.4. Let {Gm,m ≥ 1} be the sequence of m-hypercube graphs and consider the

construction from Section 6.2 where Condition 6.1 is satisfied with ` = 2. Then, ξn is
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asymptotically Gaussian as m→∞ (and thus as n→∞).

Proof. First, note that each vertex of Gm can be represented by a binary vector of m

components. To be clear here, the hypercube graphs are all embedded in the same infinite

dimensional hypercube graph, and the same goes for the Bernoulli r.v.s M1,M2, . . . ,M2m

assigned to the vertices. By definition of the m-hypercube graph, (i, j) is an edge if and

only if i and j differ by only one binary component, which we write i ∼ j for short. In

particular, we write i ∼d j if i and j differ only in the d-th binary component, where

1 ≤ d ≤ m. With Ξn and Di,j defined as in (6.2.4) and (6.2.3), respectively, it will be

useful here to work instead with the zero-mean r.v.s, Ξ̃n and D̃i,j , defined as

Ξ̃m = 2 Ξn − n =
∑
i∼j

D̃i,j , and D̃i,j = 2Di,j − 1 =


1, if Mi = Mj ,

−1, otherwise.

(6.4.11)

We will prove below that Ξ̃m is asymptotically Gaussian, which implies that ξn is as well.

We have the following decomposition:

Ξ̃m =
m∑
d=1

Ξ̃(d)
m , where Ξ̃(d)

m :=
∑
i∼dj

D̃i,j . (6.4.12)

Let Gd = σ(D̃i,j : i ∼d j), and let Fm := σ(∪md=1Gd) be the smallest σ-algebra containing

the sets of all the Gd’s, for 1 ≤ d ≤ m. Then, F = {Fm,m ∈ N0} is a filtration, where we

define F0 := {∅,Ω}. We have the following preliminary result (we complete the proof of

Theorem 6.4 right after).

Lemma 6.1. If Ξ̃0 := 0, then for every m ∈ N0, the process {Ξ̃k/
√

Var(Ξ̃m)}0≤k≤m is a

zero-mean and bounded F-martingale with differences Ξ̃
(d)
m /

√
Var(Ξ̃m), 1 ≤ d ≤ m.

Proof of Lemma 6.1. The process {Ξ̃m,m ∈ N0} is trivially F-adapted and integrable. To

conclude that it is a F-martingale, it is sufficient to show that

E[Ξ̃(k)
m |Fk−1] = 0, for all 1 ≤ k ≤ m. (6.4.13)

By symmetry of the construction, the case k = 1 is trivial (i.e., E[Ξ̃
(1)
m ] = 0). Therefore,

assume that k ≥ 2. Consider any instance ω ∈ Ω for the values of the Bernoulli r.v.s

on the vertices of the m-hypercube such that
∑k−1

d=1 Ξ̃
(d)
m (ω) = s and Ξ̃

(k)
m (ω) = t, where

s, t are any specific integer values. For every such instance ω, there exists a ‘conjugate’
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instance ω where
∑k−1

d=1 Ξ̃
(d)
m (ω) = s and Ξ̃

(k)
m (ω) = −t. Indeed, take the configuration ω,

then for every vertex that has its kth binary component equal to 1, flip the result of the

Bernoulli r.v. (0 under ω becomes 1 under ω, and 1 under ω becomes 0 under ω). Since the

Bernoulli r.v.s on the vertices are i.i.d., and the values 0 and 1 are equiprobable, note that

P({ω}|Fk−1)(u) = P({ω}|Fk−1)(u) for all u ∈ Ω such that
∑k−1

d=1 Ξ̃
(d)
m (u) = s. Therefore,

for any summand of the form Ξ̃
(k)
m (ω)·P({ω}|Fk−1)(u) in the calculation of E[Ξ̃

(k)
m |Fk−1](u),

it will always be cancelled by Ξ̃
(k)
m (ω) · P({ω}|Fk−1)(u). Since we assumed nothing on s,

we must conclude that E[Ξ̃
(k)
m |Fk−1] = 0.

Aside from Lemma 6.1, we also have the following three properties related to the incre-

ments of the process
{

Ξ̃k/

√
Var(Ξ̃m)

}
0≤k≤m:

(a) max1≤d≤m
Ξ̃

(d)
m√

Var(Ξ̃m)

P−→ 0. Indeed, by a union bound and Markov’s inequality with

exponent 4, we have, for any ε > 0,

P

(
max

1≤d≤m

∣∣∣∣ Ξ̃
(d)
m√

Var(Ξ̃m)

∣∣∣∣ > ε

)
≤ m · P

(∣∣∣∣ Ξ̃
(1)
m√

Var(Ξ̃m)

∣∣∣∣ > ε

)

≤ m ·
E
[
(Ξ̃

(1)
m )4

]
ε4m2

(
E
[
(Ξ̃

(1)
m )2

])2 ≤ C

ε4m

m→∞−→ 0,

where C > 0 is a universal constant.

(b) By the weak Law of Large Numbers for weakly correlated r.v.s with finite variance,

and the fact that Var(Ξ̃m) = mVar(Ξ̃
(d)
m ) = mE[(Ξ̃

(d)
m )2] for all 1 ≤ d ≤ m, we have

m∑
d=1

(Ξ̃
(d)
m )2

Var(Ξ̃m)
=

1

m

m∑
d=1

(Ξ̃
(d)
m )2

E[(Ξ̃
(d)
m )2]

P−→ 1, as m→∞.

(c) E
[

max1≤d≤m
(Ξ̃

(d)
m )2

Var(Ξ̃m)

]
is bounded in m. Indeed,

E
[

max
1≤d≤m

(Ξ̃
(d)
m )2

Var(Ξ̃m)

]
≤

E
[∑m

d=1(Ξ̃
(d)
m )2

]
Var(Ξ̃m)

=
Var(Ξ̃m)

Var(Ξ̃m)
= 1 <∞.

By Lemma 6.1, (a), (b), (c), and the CLT for martingale arrays (Hall and Heyde, 1980,

Theorem 3.2), we conclude that

Ξ̃m√
Var(Ξ̃m)

d−→ N(0, 1), as m→∞.1 (6.4.14)

1Approximately four days after we came up with this proof, Yuval Peres provided an interesting and
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This ends the proof of Theorem 6.4.

6.4.4 Fourth example

Figure 6.5 shows a graph which can easily be made arbitrarily large (displayed here for

m = 6). We have the following theorem, which provides another ‘positive example’ where

a CLT is verified.

Theorem 6.5. Consider the construction from Section 6.2 where Condition 6.1 is satisfied

with ` = 2. Let the graphs Gm be defined as described in the caption of Figure 6.5. Then,

ξn is asymptotically Gaussian.

M0 M13

M1 M7

M2 M8

M3 M9

M4 M10

M5 M11

M6 M12

Figure 6.5: Illustration for m = 6 of the general construction where the vertex M0 (on the
bottom left) is linked by an edge to M2m+1 (on the bottom right), every vertex in the set
{M1,M2, . . . ,Mm} (on the top left) is linked by an edge to the vertex M0 (on the bottom
left), every vertex in the set {Mm+1,Mm+2, . . . ,M2m} (on the top right) is linked by an
edge to the vertex M2m+1 (on the bottom right), and Mi (on the top left) is linked by an
edge to Mm+i (on the top right) for all 1 ≤ i ≤ m.

Proof. If I ∼ Bernoulli(1/2) and B ∼ Binomial(m, 1/4) are independent r.v.s, then the

number of 1’s on the edges satisfies

Ξn
d
= I · (1 +m+ 2B) + (1− I) · 2(m−B). (6.4.15)

Indeed, if the Bernoulli r.v.s M0 and M2m+1 are equal in Figure 6.5 (this is represented by

I = 1 in (6.4.15), which has probability 1/2), then for each of the m 4-cycles in the graph,

the sum of the 1’s on the left, top and right edges will be 3 with probability 1/4 and 1 with

probability 3/4. By the independence of the Bernoulli r.v.s on the top-left and top-right

corners of the 4-cycles, we can thus represent the sum of the “m sums of 1’s” that we just

completely different proof of (6.4.14) (not using martingales) in the following MathStackExchange post:
https://math.stackexchange.com/questions/3993902/central-limit-theorem-for-dependent-bernoulli-
random-variables-on-the-edges-of-a.
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described by m+2B where B ∼ Binomial(m, 1/4). We get 1+m+2B by including the ‘1’

for the bottom edge (M0,M2m+1), which we only count once since this edge is common to

all the 4-cycles. Similarly, if the Bernoulli r.v.s M0 and M2m+1 are not equal in Figure 6.5

(this is represented by I = 0 in (6.4.15), which has probability 1/2), then for each of the

m 4-cycles in the graph, the sum of the 1’s on the left, top and right edges will be 2 with

probability 3/4 and 0 with probability 1/4. By the independence of the Bernoulli r.v.s on

the top-left and top-right corners of the 4-cycles, we can thus represent the sum of the “m

sums of 1’s” that we just described by 2(m − B) since m − B ∼ Binomial(m, 3/4). By

combining the cases I = 1 and I = 0, we get the representation (6.4.15).

Easy calculations then yield

E[Ξn] =
3m

2
+

1

2
and Var(Ξn) =

3m

4
+

1

4
. (6.4.16)

Hence, by Lévy’s continuity theorem,

ξn =
Ξn −

(
3m
2 + 1

2

)√
3m
4 + 1

4

=
(2I − 1) · 2(B − m

4 ) + (I − 1
2)√

3m
4 + 1

4

d−→ (2I − 1) ·W d
= Z, (6.4.17)

where W,Z ∼ N(0, 1).
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6.5 The general case K ≥ 4

One can easily adapt the methodology presented in this paper to build new sequences of

K-tuplewise independent random variables (with an arbitrary margin F ). Indeed, all one

needs to do is find a growing sequence of simple graphs of girth K + 1 ≥ 5 and then,

as before, put i.i.d. discrete uniforms on the vertices and assign 1’s to edges for which

the r.v.s on the adjacent vertices are equal. A girth of K + 1 guarantees K-tuplewise

independence of the sequences hence created. An arbitrary margin F can be obtained as

before by defining sequences {Uj , j ≥ 1} and {Vj , j ≥ 1} as in (6.2.7), and then creating

the final sequence {Xj , j ≥ 1} as in (6.2.8).

Whether or not sequences created this way will satisfy a CLT is a different (and difficult)

question. In Balbuena (2008), the author constructs explicitly an infinite collection of

simple connected regular graphs of girth 6 and diameter 3, which we denote by Gq, where

the index q runs over the possible prime powers. These graphs are obtained as the incidence

graphs of projective planes of order q = k− 1. For any given prime power q, the graph Gq

is (q + 1)-regular and has 2 · (q2 + q + 1) vertices. In particular, it is a (k, 6)-cage because

the number of vertices achieves the Moore (lower) bound, see, e.g., Biggs (1993, Chapter

23). This extremely uncommon sequence of graphs would be the perfect candidate for our

construction to display a limiting non-Gaussian law for the normalised sum Sn. Indeed, in

addition to having a minimal number of vertices, these graphs Gq also have a constant (and

finite) diameter, which means that we do not have strong mixing of the binary random

variables Dj assigned to the edges (strong mixing is the most common assumption for a

CLT with dependent random variables, see, e.g., Rosenblatt (1956)). However, even in this

context where the edges’ dependence is, in a sense, maximised (because of the constant

diameter and the minimal number of vertices), our simulations show that we cannot reject

the hypothesis of a Gaussian limit for S. We applied the following normality tests with

q = 26 (which corresponds to a sample of size n = (q+ 1)(q2 + q+ 1) = 270,465) and 5,000

samples:

test Shapiro-Wilk Anderson-Darling Pearson chi-square

test statistic 0.9997 0.2993 67.9360
p-value 0.7148 0.5846 0.7602

For the interested reader, the code is provided in Appendix A.5.

Remark 6.7. There seems to be a link between the fact that examples of asymptotic non-
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normality of {Sn, n ≥ 1} exist for K ≤ 3 (girth g ≤ 4) but not for K ≥ 4 (girth g ≥ 5),

and the fact that there exists growing sequences of regular graphs Gm of girth g ≤ 4 where

lim inf
m→∞

degree(Gm)

# of vertices of Gm
> 0, (6.5.1)

(the lim infn→∞ here is certainly a measure of the connectivity of the graphs Gm’s), whereas

we always have

lim
m→∞

degree(Gm)

# of vertices of Gm
= 0,

for regular graphs of girth g ≥ 5, see, e.g., Biggs (1993, Proposition 23.1). This dichotomy

in the statistics context (and its link to graph theory) seems to be a completely new and

promising observation.

Remark 6.8. In contrast to the sequence of graphs in our first example (Section 6.4.1),

the sequence of hypercube graphs in our third example (Section 6.4.3) do not satisfy (6.5.1).

The property (6.5.1) in a sense measures the connectivity of the graphs, and therefore the

level of dependence between the r.v.s Di,j assigned to the edges in our construction. Since

(6.5.1) cannot be satisfied for K ≥ 4 when the underlying graphs are regular, the third

example reinforces our intuition that, for K ≥ 4, the sequence {ξn, n ≥ 1} (and thus Sn)

will always converge to a Gaussian random variable.

207



6.6 Conclusion

In this chapter, we provided a simple way to construct new sequences of dependent triple-

wise independent (identically distributed) r.v.s {Xj , j ≥ 1} having any distribution that

satisfies Condition 6.1. Of course, such sequences (which are scarce in the current litera-

ture) are then also necessarily pairwise independent.

Our construction relies on using graphs of girth 4 (or more) and growing number of edges.

We obtained an expression for the asymptotic distribution of the standardised sample

mean Sn of those sequences, and saw that this distribution depends on the specific graph

used (see Theorem 6.1). We then provided four different examples (different graphs)

as special cases of our construction. For two of those examples, we showed that the

limiting distribution of Sn is not Gaussian (while it is for the other two examples). In

addition to the specific graph used, the extent to which the distribution of Sn departs

from normality (when it does) also depends on the common margin of the Xj ’s (as was

the case in the construction of the previous chapter). Those results add to the current

literature on ‘counterexamples to the CLT’ and highlight why mutual independence is a

crucial assumption we should not neglect.

We also noted that our methodology can be used to construct K-tuplewise independent

sequences for arbitrary K, though it appears that for K ≥ 4 such sequences are bound

to satisfy a CLT. That said, such sequences are of independent interest. Indeed, they

would prove useful to assess the performance of multivariate independence tests, many

of which have been proposed in recent years. Lastly, the dichotomy that seems to exist

between K ≤ 3 and K ≥ 4 for K-tuplewise independent sequences (constructed using our

methodology) and its link to the dichotomy for the degree of regular graphs of girth g ≤ 4

and g ≥ 5 (see Remark 6.7) remains an interesting avenue to explore in the future.
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6.A The variance-gamma distribution

Definition 6.1. The variance-gamma distribution with parameters α > 0, θ ∈ R, s > 0,

c ∈ R has the density function

f(x) :=
1

s
√
πΓ(α/2)

e
θ
α2 (x−c)

(
|x− c|

2
√
θ2 + s2

)α−1
2

Kα−1
2

(√
θ2 + s2

s2
|x− c|

)
, x ∈ R, (6.A.1)

where Kν is the modified Bessel function of the second kind of order ν. If a certain random

variable X has this distribution, then we write X ∼ VG(α, θ, s2, c).

We have the following result, which is a consequence (for example) of Theorem 1 in (Gaunt,

2019).

Lemma 6.2. Let W1,W2, . . . ,Wn
i.i.d.∼ N(0, s2) and Z1, Z2, . . . , Zn

i.i.d.∼ N(0, s2) be two

independent sequences, then Qn :=
∑n

i=1WiZi ∼ VG(n, 0, s2, 0), following Definition 6.1,

and the density function of Qn is given by

fQn(x) =
1

s2
√
πΓ(n/2)

(
|x|
2s2

)n−1
2

Kn−1
2

(
|x|
s2

)
, x ∈ R. (6.A.2)

It is easy to verify that the characteristic function of Qn is given by

ϕQn(t) = (1 + s4t2)−n/2, t ∈ R, (6.A.3)

and the expectation and variance are given by

E[Qn] = 0 and Var[Qn] = ns4. (6.A.4)
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6.B Graph theory concepts

In this section, we summarise some fundamental concepts of graphs and graph theory.

The following definitions are taken from Wilson (1996).

Definition 6.2 (Simple graph). A simple graph, denoted generically as G, consists of

a non-empty finite set V (G) of elements called vertices, and a finite set E(G) of distinct

unordered pairs of distinct elements of V (G), called edges. An edge {v1, v2} is said to

join the vertices v1 and v2, and is often abbreviated v1v2. In a simple graph, at most one

edge joins any given pair of vertices.

Definition 6.3 (Adjacent and incident vertices). We say that two vertices v1 and v2 of a

graph G are adjacent if there is an edge v1v2 joining them. We say the vertices v1 and

v2 are incident with such an edge.

Definition 6.4 (Adjacent edges). Two distinct edges of a graph G are adjacent if they

have a vertex in common.

Definition 6.5 (Degree). The degree of a vertex v of G is the number of edges incident

with v (said otherwise, it is the number of edges having that vertex v as an end-point).

Definition 6.6 (Regular graph). A graph in which each vertex has the same degree is

called a regular graph. If each vertex has degree r, we say the graph is regular of

degree r.

Definition 6.7 (Walks, trails and paths). Given a graph G, a walk in G is a finite

sequence of edges of the form {v0v1, v1v2, . . . , vm−1vm}, in which any two consecutive edges

are adjacent or identical. A walk in which all the edges are distinct is called a trail. If,

in addition, the vertices v0, v1, . . . , vm of the trail are distinct (except, possibly, v0 = vm),

then the trail is called a path.

Definition 6.8 (Cycle). A path {v0v1, v1v2, . . . , vm−1vm} containing at least one edge and

for which v0 = vm is called a cycle.

Definition 6.9 (Length). The number of edges in a walk (or trail, or path) is called its

length.

Definition 6.10 (Girth). The girth of a graph is the length of its shortest cycle.

The next three definitions are taken from https://mathworld.wolfram.com.
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Definition 6.11 (Graph distance). The distance d(v1, v2) between two vertices v1 and

v2 of a finite graph is the minimum length of the paths connecting them.

Definition 6.12 (Graph diameter). The diameter of a graph is the length maxu,v d(u, v)

of the “longest shortest path” between any two graph vertices (u, v), where d(u, v) is a

graph distance.

Definition 6.13 (Cage). A (r, g)-cage graph is a r-regular graph of girth g having the

minimum possible number of vertices.
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CHAPTER 7

CONCLUSION
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7.1 Summary

Numerous actuarial models rely on the assumption that some random variables within

them are mutually independent. However, and as we covered in Chapter 1 (especially in

Section 1.3), in reality, many insurance risks are dependent. This is true at the ‘micro’

level (e.g., the remaining lifetimes of people forming a couple can be dependent), and also

at the ‘macro’ level (e.g., aggregate insurance losses from whole business segments can

be dependent). Hence, in recent years many efforts have been made in the literature to

relax the ‘independence assumption’, in a variety of actuarial settings. This is a topic we

surveyed in Chapter 2. We also noted that, in practice, the most common way modellers

assess, visualise and model dependence is via pairs of variables. That said, we know that

pairwise independence of a collection of random variables does not imply their mutual

independence. It is not clear, however, how materially different pairwise and mutual

independence are, nor how much this difference matters in actuarial applications. It was

the main goal of this thesis to learn more about this difference, and we proceeded in a few

different steps.

In Chapter 3, we were concerned with visualising the types of dependence that are possible

under pairwise independence (noting this is not something we have seen elsewhere in the

literature we surveyed). In Section 3.2, we provided several theoretical examples of PIBD

variables, some taken from the literature (Examples 3.1, 3.2, 3.5), and some new ones

(Examples 3.3, 3.4, 3.6). Using those examples, we showcased with simple 3D scatterplots

that many different types of dependence (sometimes weak, sometimes strong) are possible

under pairwise independence. In Section 3.3, we developed new visualisation tools that

can be used to help identify this type of dependence. We saw that by simply adding a

third variable as a colour on a 2D scatterplot, dependence patterns otherwise impossible

to see can suddenly ‘appear’ (see, e.g., Figures 3.16 and 3.17). Furthermore, we developed

a colour-coding methodology which helps highlight areas of a 3D scatterplot that have

a higher (or lower) concentration of points than under mutual independence (we also

calibrated our method with simulations, using a MSE criteria). This 3D visualisation tool

was especially useful to detect weaker forms of dependence, as that from Example 3.5 (see

Figures 3.25, 3.26 and 3.27).

In Chapter 4, we showed that many results useful in actuarial science and relying on

mutual independence can fail severely under sole pairwise independence. In Section 4.2.1,
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we covered results about sums of random variables. We saw that the behaviour of S =

X1 + · · · + Xn under pairwise independence of the X’s can be substantially different

to its behaviour under mutual independence of the X’s. For example, we saw that for

PIBD variables, the kurtosis of S can increase as n increases (see Example 4.2), which is

the opposite of what we expect under mutual independence. As the sum S can behave

differently under pairwise independence (compared to mutual independence), so can risk

measures computed on S. This is a topic we covered in Section 4.2.2 (for the risk measures

VaR and TVaR). We saw that under different dependence structures (and/or different

levels), the VaR is sometimes greater, sometimes smaller under pairwise independence,

compared to mutual independence. In Section 4.2.3, we presented a ‘counterexample’

to the Fisher-Tippett theorem for PIBD variables. We saw that, under sole pairwise

independence, this important theorem is not necessarily verified. In Section 4.2.4, we

detailed how the bootstrap method can fail, drastically, for PIBD variables. In Section

4.3, we proved that many popular dependence models do not allow for the possibility of

PIBD variables (in particular, elliptical distributions and Archimedean copulas). To our

knowledge, those proofs are new. Overall, the findings of Chapter 4 shed some new light on

the potential dangers of assuming mutual independence when only pairwise independence

holds.

Being interested in what happens ‘in the limit’ (when the sample size n grows to infinity),

we then covered in more detail the question of the classical CLT under pairwise indepen-

dence. A fundamental result of statistics, this theorem is also crucial to actuarial science

(for instance, within the Individual Risk Model, the distribution of aggregated claims is

frequently approximated by a Normal, and this is done via a CLT). In Chapter 5, we

constructed a new sequence of PIBD identically distributed random variables {Xj , j ≥ 1}

with an arbitrary distribution (satisfying mild conditions), and for which no CLT holds.

We obtained explicitly the asymptotic distribution of the standardised mean Sn of this

sequence. We found that the extent of the departure from normality depends on the initial

common margin of the Xj ’s. This observation may appear counter-intuitive, since under

mutual independence, regardless of the margins, Sn always converges to a Normal. The

main construction from Chapter 5 also lead us to conduct an analysis of a parameter

(‘r’) which arises in the asymptotic distribution of the sample mean of our sequence. We

explained that r is an interesting measure of tail-heaviness, and we derived its value for

several distributions used in actuarial science. We saw that r depends on the shape param-

eter of those distributions. We also compared r to two other measures of tail-heaviness,
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and saw that it roughly ‘agrees’ with a measure proposed by Brys et al. (2006).

Lastly, in Chapter 6 we proposed a methodology to construct triplewise independent se-

quences of random variables (again with an arbitrary marginal distribution that can be

chosen under mild conditions), noting such sequences are scarce in the literature. Us-

ing this methodology, we proposed four specific triplewise independent sequences, two for

which a CLT does not hold, and two for which a CLT does hold. Our methodology being

very general, it would allow others to create additional sequences (those proposed here are

only some possible examples). Our method can also be used more generally to create new

dependent K-tuplewise independent sequences (for an arbitrary K ≥ 2). We believe such

sequences are of independent interest. In fact, we believe many results obtained in this

thesis constitute useful groundwork for future research. Especially, those results could be

helpful to benchmark the performance of multivariate independence tests (many of which

have been proposed in recent years, see Section 2.6 and 2.A). This possible future work is

briefly outlined in the next section.
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7.2 Possible future work

To detect dependence in a dataset, visualisation is useful but also has its limits. For exam-

ple, the three PIBD variables of Example 3.5 displayed a rather weak form of dependence,

which was hard to detect on conventional 2D or 3D scatterplots (though our colour-coding

method highlighting areas of higher density helped in this regard). Because of Proposi-

tion 3.1, we also know that a PIBD structure ‘mixed’ with mutual independence yields a

new PIBD structure, one for which the dependence is potentially very subtle. Further-

more, even when some dependence is observed, it can be difficult from visualisation alone

to judge whether this dependence is statistically significant. And past three (or perhaps

four) random variables, it becomes hard to visualise the multivariate dependence that

links them (if any).

To answer more formally (and systematically) the question of whether some random vari-

ables X1, . . . , Xd are dependent (and in the general case of d variables, for d possibly

large), statistical tests can be used (a topic we reviewed in Section 2.6). But which test

should one use in practice? This question is not trivial, as one can expect that different

tests have different strengths (i.e., a given test might be better at detecting certain types

of dependence). For example, some tests might be better at detecting dependence for vari-

ables that are pairwise (or, more generally, K-tuplewise) independent. To help compare

different tests, we think the results from this thesis can be useful, and we explain here

how so.

Note that in a comparative analysis of different tests, one usually uses simulations to esti-

mate the power (see Definition 7.1 below) of a test, under different dependence scenarios.

Definition 7.1 (Power). The power of a hypothesis test under H1 is the probability that

this test rejects the null hypothesis H0 when the alternative hypothesis H1 is true.

The power of a given test can be estimated as follows. We can generate B (for B a large

number) samples X1, . . . ,Xn (as in 2.6.3) under a specific dependence structure, and for

each sample perform the hypothesis test (where H0 is mutual independence, see 2.6.1).

The proportion of times H0 is rejected (out of those B trials) is then an estimate of the

power of the test. Of course, the power will depend on which H1 is true (i.e., on the joint

distribution of X). We have not encountered a systematic review and power study of

multivariate independence tests in the literature.
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Now, an important motivation for developing multivariate independence tests (perhaps the

main motivation) is the possibility of PIBD data. Indeed, if data is pairwise dependent,

then bivariate tests (e.g., Székely et al. (2007), Heller et al. (2012)) should suffice, at least

in principle, to detect the dependence.

Their ability to detect dependence for pairwise (or, in general, K-tuplewise) independent

variables being an important feature of multivariate independence tests, we think impor-

tant to know which tests perform best at this specific task. To help answer this question,

the results from this thesis can be useful in many ways, which we outline below. We leave

the implementation for future work.

• For the case of three random variables (d = 3, in 2.6.1), we presented many PIBD

examples, featuring a diverse range of dependence structures (see the five examples

from Section 3.2). Furthermore, via Proposition 3.1, we provided a simple way to

‘weaken’ the dependence in those examples (also preserving pairwise independence).

This can be useful when comparing tests. Because all those examples feature contin-

uous Uniform[0, 1] margins, it is easy to modify them to obtain any margins (without

altering the dependence). This is relevant, since the performance of independence

tests can be affected by the choice of margins (this has been observed before, see,

e.g. Genest and Rémillard (2004, Section 5), Boglioni Beaulieu (2016, Chapter 3)),

which is something we want to be able to assess.

• More generally, for d an arbitrary number of variables, we also provided many dif-

ferent PIBD examples. Examples 4.2, 4.3 and 4.5 were taken from the existing

literature, while in Chapter 5 we built a new arbitrarily large sequence (again with

arbitrary margins) of PIBD variables, see (5.2.8). All those examples can be used as

different dependence scenarios (different H1) when comparing different tests. Again,

the fact that our sequences have arbitrary margins would allow to assess if the per-

formance of a test is affected by the margins used.

• In Chapter 6, we provided a general methodology to build new examples of K-

tuplewise independent (but dependent) random variables, for arbitary K ≥ 2. In-

deed, and as noted in Section 6.5, what matters is the girth of the graph on which the

construction relies (a girth of K + 1 guarantees K-tuplewise independence). There-

fore, our methodology can be used to generate any number of different examples.

In particular, in our methodology, there are two obvious ways to alter the type and

strength of the dependence:
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– by altering the girth of the graph (heuristically, the larger the girth, the weaker

the dependence);

– by choosing graphs that are more or less ‘connected’ (heuristically, the less

connected a graph is, the weaker the dependence).

Again, and importantly, the marginal distribution in those examples can be chosen

arbitrarily (under mild conditions, see Condition 6.1).

• Lastly, we note it is perhaps the case that a test performing well for pairwise inde-

pendent data would not perform well for triplewise independent (or more generally,

K-tuplewise independent data, K > 2). It would then be interesting to assess the

power of different tests, as function of both K and the sample size n.

Remark 7.1. In closing, we remark that many tests are capable of testing the indepen-

dence between two random vectors, see, e.g., Székely et al. (2007); Gretton et al. (2007);

Heller et al. (2012); Zhu et al. (2017). That is, those procedure test the independence be-

tween a random vector X ∈ Rp and another random vector Y ∈ Rq (p, q positive integers).

In principle, one can use those procedures to test for mutual independence between d > 2

variables (i.e., H0 in 2.6.1). For instance, and as pointed out in Pfister et al. (2018), H0

in (2.6.1) is true if and only if for every k ∈ {2, . . . , d},

Xk := Xk is independent of Yk := (X1, . . . , Xk−1). (7.2.1)

Hence, H0 could in effect be tested via d−1 bivariate tests (i.e., for k ∈ {2, . . . , d}, test the

independence of Xk and Yk). This obviously creates an additional computational burden

(performing d−1 tests instead of just one), but it also relies on an arbitrary choice. Indeed,

in (7.2.1), Xk and Yk could be defined differently (i.e., the d random variables could be

split differently between the two vectors Xk,Yk). In addition, when combining several tests

into one, one must apply a Bonferroni correction in order to maintain the overall level of

the test. Such a correction can be overly conservative and reduce statistical power of the

test (see, e.g., Nakagawa, 2004, for a discussion of this issue).
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Science 10 (1), 87–117.

Avanzi, B., Taylor, G., Vu, P. A., Wong, B., 2016b. Stochastic loss reserving with de-

pendence: A flexible multivariate Tweedie approach. Insurance: Mathematics and Eco-

nomics 71, 63–78.

Avanzi, B., Taylor, G., Wong, B., 2016c. Correlations between insurance lines of business:

An illusion or a real phenomenon? Some methodological considerations. Astin Bulletin

46 (2), 225–263.

Avanzi, B., Taylor, G., Wong, B., 2018. Common shock models for claim arrays. Astin

Bulletin 48 (3), 1109–1136.

Avanzi, B., Wong, B., Yang, X., 2016d. A micro-level claim count model with overdisper-

sion and reporting delays. Insurance: Mathematics and Economics 71 (3), 1–14.

Avram, F., Badescu, A., Pistorius, M. R., Rabehasaina, L., 2016. On a class of dependent

Sparre Andersen risk models and a bailout application. Insurance: Mathematics and

Economics 71, 27–39.

Badescu, A. L., Cheung, E. C., Landriault, D., 2009. Dependent risk models with bivariate

phase-type distributions. Journal of Applied Probability 46 (1), 113–131.

Badounas, I., Pitselis, G., 2020. Loss reserving estimation with correlated run-off triangles

in a quantile longitudinal model. Risks 8 (1), 14.

Bagui, S. C., Bhaumik, D. K., Mehra, K. L., 2013. A few counter examples useful in

teaching central limit theorems. The American Statistician 67 (1), 49–56.

Balbuena, C., 2008. Incidence matrices of projective planes and of some regular bipartite

graphs of girth 6 with few vertices. SIAM J. Discrete Math. 22 (4), 1351–1363.

Barbe, P., Fougeres, A.-L., Genest, C., 2006. On the tail behavior of sums of dependent

risks. Astin Bulletin 36 (02), 361–373.

Bartholomew, D. J., Knott, M., Moustaki, I., 2011. Latent variable models and factor

analysis: A unified approach, 3rd Edition. John Wiley & Sons.

221



Bartram, S. M., Wang, Y.-H., 2015. European financial market dependence: An industry

analysis. Journal of Banking & Finance 59, 146–163.

Bateup, R., Reed, I., 2001. Research and data analysis relevant to the development of

standards and guidelines on liability valuation for general insurance. Tech. rep., Towers

Perrin: The Institute of Actuaries of Australia and Tilinghast.
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Ćmiel, B., Ledwina, T., 2020. Validation of association. Insurance: Mathematics and

Economics 91, 55–67.

Coeurjolly, J.-F., Drouilhet, R., Lafaye de Micheaux, P., Robineau, J.-F., 2009. asympTest:

A simple R package for classical parametric statistical tests and confidence intervals in

large samples. The R Journal 1 (2), 26–30.

Collings, S., White, G., 2001. APRA risk margin analysis. In: Institute of Actuaries of

Australia XIIIth General Insurance Seminar, Trowbridge Consulting.

Constantinescu, C., Dai, S., Ni, W., Palmowski, Z., 2016. Ruin probabilities with depen-

dence on the number of claims within a fixed time window. Risks 4 (2), 17.

Constantinescu, C., Hashorva, E., Ji, L., 2011. Archimedean copulas in finite and infinite

225



dimensions—with application to ruin problems. Insurance: Mathematics and Economics

49 (3), 487–495.

Constantinescu, C. D., Kozubowski, T. J., Qian, H. H., 2019. Probability of ruin in discrete

insurance risk model with dependent Pareto claims. Dependence Modeling 7 (1), 215–

233.

Cossette, H., Côté, M.-P., Marceau, E., Moutanabbir, K., 2013. Multivariate distribution

defined with Farlie–Gumbel–Morgenstern copula and mixed Erlang marginals: Aggre-

gation and capital allocation. Insurance: Mathematics and Economics 52 (3), 560–572.
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Peters, G. W., Wüthrich, M. V., Shevchenko, P. V., 2010. Chain ladder method: Bayesian

bootstrap versus classical bootstrap. Insurance: Mathematics and Economics 47 (1),

36–51.
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APPENDIX A

COMPUTING CODES

Computing codes (in the R language) which produced the results from this thesis are

available on GitHub, at https://github.com/gboglioni/PhD thesis.

For reference, we also include them in this Appendix, presenting them chapter by chapter.
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A.1 Codes for Chapter 1

Below is the R code producing the results from Example 1.1:

# 0− c o r r e l a t i o n , but VaR(X + Y) d i f f e r e n t to VaR(X. i nd + Y. i nd )

s e t . s eed (1 )

n <− 5000

X <− rexp ( n )

Y <− rnorm (n , 1 , X)

X . i ndep <− rexp ( n )

# Save s c a t t e r p l o t o f X v e r s u s Y

pdf ( f i l e = ”0 c o r r e l s c a t t e r . pdf ” , width = 7 , h e i g h t = 7)

par (mar=c ( 5 , 5 , 1 , 1 ) )

p l o t ( rank (X)/ ( n+1) , rank (Y)/ ( n+1) , cex = 0 . 5 , cex . a x i s = 1.25 , cex . l a b = 1 . 5 )

dev . o f f ( )

# The o r e t i c a l v a l u e s ,

# ( numbers ob t a i n ed from c a l c u l a t i o n s i n Mathematica )

VaR .X <− qexp ( 0 . 9 95 )

VaR .Y <− 6 .607

VaR . sum . i ndep <− 8 .351

VaR . sum . dep <− 10 .405

sum . VaR <− VaR .X + VaR .Y

# D i v e r s i f i c a t i o n under i ndependence

1 − VaR . sum . i ndep /sum . VaR

# D i v e r s i f i c a t i o n under dependence

1 − VaR . sum . dep/sum . VaR

Below is the R code producing the scatterplots from Figure 1.2:

# Gene r a t i ng the p l o t s o f the ” datasauRus ” da t a s e t

# Load packages

l i b r a r y ( ’ datasauRus ’ )

l i b r a r y ( ’ d p l y r ’ )

l i b r a r y ( ’ ggp l o t 2 ’ )

# Genera te s c a t t e r p l o t s ( and save them )

pdf ( f i l e = ” data sauRusP lo t s . pdf ” , width = 7 , h e i g h t = 9)

ggp l o t ( da t a s au r u s dozen , ae s ( x=x , y=y , c o l o u r=da t a s e t ))+

geom po i n t ()+

coord f i x e d ( r a t i o =0.6)+

theme ( l egend . p o s i t i o n = ”none”)+

f a c e t wrap (˜ da ta s e t , nco l=3)

dev . o f f ( )
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# Check the summary s t a t i s t i c s ( they a r e v e r y s i m i l a r )

da t a s au r u s dozen %>%

group by ( d a t a s e t ) %>%

summarize (

mean x = mean ( x ) ,

mean y = mean ( y ) ,

s t d dev x = sd ( x ) ,

s t d dev y = sd ( y ) ,

c o r r x y = cor ( x , y )

)

Below is the R code producing Figure 1.3:

# I n d i v i d u a l R i sk Model w i th t h r e e PIBD v a r i a b l e s

# Load packages

l i b r a r y ( ggp l o t 2 )

l i b r a r y ( g r i d E x t r a )

# Set ” r a t e ” o f the E xpon e n t i a l s

l <− 1

# Independent ca se

df <− f u n c t i o n ( x ){

r e t u r n (3∗dgamma( x , shape=1, r a t e=l )/8 + 3∗dgamma( x , shape=2, r a t e=l )/8

+ dgamma( x , shape=3, r a t e=l )/8)}

cd f <− f u n c t i o n ( x ){

r e t u r n (1/8∗pbinom ( x+1 ,1 ,1) + 3∗pgamma( x , shape=1, r a t e=l )/8

+3∗pgamma( x , shape=2, r a t e=l )/8 + pgamma( x , shape=3, r a t e=l )/8)}

# PIBD case

df . p <− f u n c t i o n ( x ){3∗dgamma( x , shape=1, r a t e=l )/4 + dgamma( x , shape=3, r a t e=l )/4}

cd f . p <− f u n c t i o n ( x ){3∗pgamma( x , shape=1, r a t e=l )/4 + pgamma( x , shape=3, r a t e=l )/4}

x <− seq ( 0 . 0 1 , 7 . 5 , by = 0 .01 )

pdf . x <− df ( x )

cd f . x <− cd f ( x )

pdf . p . x <− df . p ( x )

cd f . p . x <− cd f . p ( x )

#CDF compar i son

df <− data . frame ( x , pdf . x , cd f . x , pdf . p . x , cd f . p . x )

#PDF compar i son

mp=data . frame ( x=c ( 0 ) , y=c ( 0 ) , vx=c ( 0 ) , vy=c (1/ 8) )

df . p l o t <− ggp l o t ()+

geom l i n e ( data=df , ae s ( x , y=pdf . x , c o l o u r=” da r kb l u e ” ) , s i z e =1.25)+

geom l i n e ( data=df , ae s ( x , y=pdf . p . x , c o l o u r=” red ” ) , s i z e =1.25)+

geom segment ( data=mp, mapping=aes ( x=x , y=y , xend=vx , yend=vy ) ,

s i z e =1.5 , c o l o r=”#F8766D”)+ geom po i n t ()+

geom po i n t ( aes ( x=0, y=1/ 8) , s i z e = 3 , c o l o u r=”#F8766D”)+
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l a b s ( y= ” f ( x ) ” , x = ”x” ) + theme grey ( base s i z e = 16)+

theme ( l egend . p o s i t i o n = ”none”)+ theme ( l egend . t i t l e = element b l ank ( ) )

#CDF

cd f . p l o t <− ggp l o t ()+

geom l i n e ( data=df , ae s ( x , y=cd f . x , c o l o u r=” da r kb l u e ” ) , s i z e =1.25)+

geom l i n e ( data=df , ae s ( x , y=cd f . p . x , c o l o u r=” red ” ) , s i z e =1.25)+

geom po i n t ()+

geom po i n t ( aes ( x=0, y=1/ 8) , s i z e = 3 , c o l o u r=”#F8766D”)+

geom po i n t ( aes ( x=0, y=0) , s i z e = 3 , c o l o u r=”#00BFC4”)+

s c a l e c o l o r d i s c r e t e ( l a b e l s = c ( ”mutual i ndep . ” , ”PIBD”))+

l a b s ( y= ”F( x ) ” , x = ”x” ) + theme grey ( base s i z e = 16)+

theme ( l egend . p o s i t i o n = c ( 0 . 7 5 , 0 . 1 ) ) + theme ( l egend . t i t l e = element b l ank ( ) )

# Put two p l o t s s i d e by s i d e

g r i d . a r r ange ( df . p lot , c d f . p lot , nco l=2)

Below is the R code producing Figure 1.4:

# Example o f t h r e e N(0 , 1 ) PIBD with X+Y+Z NOT a N(0 , 3 )

# Set seed

s e t . s eed (1 )

#Sample s i z e

n <− 1000000

#Genera te a sample o f (X,Y, Z)

X <− rnorm ( n )

Y <− rnorm ( n )

W <− rnorm ( n )

Z <− abs (W)∗ s i g n (X∗Y)

#Sum of the PIBD Normals

S <− X + Y + Z

# Plo t ( and save ) d e n s i t y and CDF ( with , as compar ison , t ho s e o f a N(0 , s q r t ( 3 ) ) )

pdf ( f i l e = ” d e n s i t y CDF S romano . pdf ” , w idth = 14 , h e i g h t = 7)

par (mfrow=c ( 1 , 2 ) )

par (mar=c ( 3 , 5 , 1 , 1 ) )

# Dens i t y

my . d <− den s i t y (S)

p l o t (my . d , lwd= 4 , co l = ’ brown3 ’ , cex . a x i s = 1 .5 , cex . l a b = 1 .75 , main = ”” ,

x l a b = ”” , bty=”n” )

curve (dnorm ( x , 0 , s q r t ( 3 ) ) , co l=” b l a ck ” , l t y = 1 , lwd=2, add=TRUE)

# CDF (we take a s ub s e t o f ” on l y ” 100000 p o i n t s )

p l o t ( e cd f (S [ 1 : 1 0 0 0 0 0 ] ) , co l=’ brown3 ’ , lwd=4, x l a b =”” ,
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y l a b = ”CDF” , cex . a x i s = 1 .5 , cex . l a b = 1 .75 , main = ”” , co l . 01 l i n e = NULL)

curve (pnorm ( x , 0 , s q r t (3 ) ) , lwd=2,add=TRUE)

l egend ( ” bo t tomr i gh t ” , NULL , nco l=1, cex = 1 .75 , l egend=c ( ”S” , ”N(0 , 3) ” ) ,

co l=c ( ”brown3” , ” b l a c k ” ) , l t y = c ( 1 , 1 ) , lwd = c ( 4 , 2 ) )

dev . o f f ( )
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A.2 Codes for Chapter 3

Below is the R code defining a function, generate.PI, which allows to generate PIBD data

according to all examples from Section 3.2.

# Funct i on to s imu l a t e PIBD v a r i a b l e s (U1 , U2 , U3) under v a r i o u s examples

# Arguments o f f u n c t i o n ’ g en e r a t e . PI ’

# n : Sample s i z e

# type : Key word f o r the name o f the example

# a lpha : Parameter ( used i n some examples on l y )

gen e r a t e . PI <− f u n c t i o n (n , type = ’ indep ’ , a l pha=1){

# Two independen t samples o f U(0 , 1 )

U1 <− r u n i f (n , 0 , 1)

U2 <− r u n i f (n , 0 , 1)

# when ”mix ing ” a PIBD s t r u c t u r e w i th mutual independence ,

# ”n . dep” i s the number o f o b s e r v a t i o n s stemming from the dependent s t r u c t u r e

i f ( type == ’ b e r n s t e i n ’ | | t ype == ’ t r i a n g l e s ’ ){

n . dep <− rbinom (1 , n , a l pha )

}

# mutual i ndependence

i f ( type == ’ indep ’ ){

U3 <− r u n i f (n , 0 , 1)

}

# Examples 3 . 1 and 3 .6

i f ( type == ’ t r i a n g l e s ’ ){

U3 <− c ( (U1 [ 1 : n . dep ]+U2 [ 1 : n . dep ] )%%1 , r u n i f (n−n . dep ) )

}

# Example 3 . 2

i f ( type == ’ b e r n s t e i n ’ ){

X <− rbinom ( n . dep , 1 , 1/2)

Y <− rbinom ( n . dep , 1 , 1/2)

Z <− −abs (X−Y)+1

U1 <− c ( (X+r u n i f ( n . dep ) ) /2 , r u n i f (n−n . dep ) )

U2 <− c ( (Y+r u n i f ( n . dep ) ) /2 , r u n i f (n−n . dep ) )

U3 <− c ( (Z+r u n i f ( n . dep ) ) /2 , r u n i f (n−n . dep ) )

}

# Example 3 . 3

i f ( type == ’ t e t r a ’ ){

n1 <− rbinom (1 , n , 1/2)

U3 <− rep (NA, n )
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f o r ( i i n 1 : n1 ){

i f e l s e (U1 [ i ]+U2 [ i ] >= 1 , U3 [ i ]<− U1 [ i ]+U2 [ i ]−1 , U3 [ i ] <− 1−(U1 [ i ]+U2 [ i ] ) )

}

f o r ( i i n ( n1+1):n ){

i f e l s e (U1 [ i ]−U2 [ i ] >= 0 , U3 [ i ]<− 1 − (U1 [ i ]−U2 [ i ] ) , U3 [ i ] <− 1+(U1 [ i ]−U2 [ i ] ) )

}

}

# Example 3 . 4

i f ( type == ’ c o s i n e ’ ){

U3 <− pbeta ( ( cos (2∗ p i ∗ (U1+U2))+1)/2 , 1/2 , 1/2)

}

# Example 3 . 5

i f ( type == ’ copu l a ’ ){

Tval <− r u n i f ( n )

a <− a lpha ∗(1−2∗U1)∗(1−2∗U2)

U3 <− (1+a − s q r t ((1+a)ˆ2−4∗a∗Tval ) ) / (2∗a )

}

# Example 3 . 7

i f ( type == ’ be rn s t e i n4D ’ ){

M1 <− rmult inom (n , 1 , rep (1/ a lpha , a l pha ) )

M2 <− rmult inom (n , 1 , rep (1/ a lpha , a l pha ) )

M3 <− rmult inom (n , 1 , rep (1/ a lpha , a l pha ) )

M4 <− rmult inom (n , 1 , rep (1/ a lpha , a l pha ) )

X1 <− app ly (M1 == M3, 2 , prod )

X2 <− app ly (M1 == M4, 2 , prod )

X3 <− app ly (M2 == M3, 2 , prod )

X4 <− app ly (M2 == M4, 2 , prod )

U1 <− X1 ∗ r u n i f (n , ( a lpha −1)/ a lpha , 1 ) + i f e l s e (X1==0 ,1 ,0)∗ r u n i f (n , 0 , ( a lpha −1)/ a lpha )

U2 <− X2 ∗ r u n i f (n , ( a lpha −1)/ a lpha , 1 ) + i f e l s e (X2==0 ,1 ,0)∗ r u n i f (n , 0 , ( a lpha −1)/ a lpha )

U3 <− X3 ∗ r u n i f (n , ( a lpha −1)/ a lpha , 1 ) + i f e l s e (X3==0 ,1 ,0)∗ r u n i f (n , 0 , ( a lpha −1)/ a lpha )

U4 <− X4 ∗ r u n i f (n , ( a lpha −1)/ a lpha , 1 ) + i f e l s e (X4==0 ,1 ,0)∗ r u n i f (n , 0 , ( a lpha −1)/ a lpha )

data <− as . data . frame ( cb ind (U1 , U2 , U3 , U4 ) )

}

# Return data . f rame

i f ( type != ’ b e rn s t e i n4D ’ ){

data <− as . data . frame ( cb ind (U1 , U2 , U3 ) )

}

r e t u r n ( data )

}

Below are all the R functions, needed to generate the Figures from Chapter 3. The main

function is called p.i.figures, but it uses several other functions we define first.

# Load needed package

l i b r a r y ( ’ p d i s t ’ )
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# Func t i on s to f i n d f r a c t i o n o f volume o f a b a l l s i t t i n g OUTSIDE the [ 0 , 1 ] ˆ 3 ” cube”

# (when the b a l l e x t end s o u t s i d e the cube i n e i t h e r 1 , 2 or 3 d i r e c t i o n s )

# The arguments d1 , d2 , d3 a r e as d e f i n e d i n the a r t i c l e by F r e i r e i c h e t a l . (2010)

f . f a c e <− f u n c t i o n (d , r ){

dr <− d/ r

r e t u r n ( (3 ∗dr ˆ2 − dr ˆ3)/4)

}

f . edge <− f u n c t i o n ( d1 , d2 , r ){

a <− 1−d1/ r

b <− 1−d2/ r

x2 <− 1 − aˆ2 − bˆ2

i f ( x2 <= 0){

r e t u r n (0)}

e l s e {

x <− s q r t ( x2 )

r e t u r n ( (2 ∗a∗b∗x−(3∗a−a ˆ3)∗atan ( x/b)−(3∗b−bˆ3)∗atan ( x/a)+2∗atan ( x∗a/b )

+2∗atan ( x∗b/a ) ) / (4∗ p i ) )

}

}

f . c o r n e r <− f u n c t i o n ( d1 , d2 , d3 , r ){

a <− 1−d1/ r

b <− 1−d2/ r

c <− 1−d3/ r

i f ( ( aˆ2+bˆ2+c ˆ2) >= 1){

r e t u r n (0)}

e l s e {

A <− s q r t (1−aˆ2−c ˆ2)

B <− s q r t (1−bˆ2−c ˆ2)

r e t u r n ( f . edge ( d1 , d2 , r )/2 −

(6∗a∗b∗c−2∗a∗A∗c−2∗b∗B∗c−(3∗b−bˆ3)∗atan ( c/B)−(3∗a−a ˆ3)∗atan ( c/A)+

(3∗c−c ˆ3)∗ ( atan (A/a)−atan ( b/B))+2∗ ( atan ( c∗a/A)+atan ( c∗b/B) ) ) / (8∗ p i ) )

}

}

# Func t i on s f o r the f r a c t i o n o f volume o f the b a l l compr i s ed i n s i d e the ” cube”

# ( d i f f e r e n t f u n c t i o n s app ly , depend ing on i n how many d i r e c t i o n s (1 ,2 or 3)

# the b a l l e x t end s o u t s i d e the cube )

v . 1 i n t e r <− f u n c t i o n (d , r ){

1−( f . f a c e ( d=d , r=r ) )

}

v . 2 i n t e r <− f u n c t i o n ( d1 , d2 , r ){

1−( f . f a c e ( d=d1 , r=r ) + f . f a c e ( d=d2 , r=r ) − f . edge ( d1=d1 , d2=d2 , r=r ) )

}
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v . 3 i n t e r <− f u n c t i o n ( d1 , d2 , d3 , r ){

1−( f . f a c e ( d1 , r )+ f . f a c e ( d2 , r )+ f . f a c e ( d3 , r )

−f . edge ( d1 , d2 , r )− f . edge ( d1 , d3 , r )− f . edge ( d2 , d3 , r )

+f . c o r n e r ( d1 , d2 , d3 , r ) )

}

# Funct i on ’ v . s t a r ’ r e t u r n s the p r o p o r t i o n ( volume w i s e ) o f a B a l l [ p , r ]

# which i s i n s i d e the u n i t cube [ 0 , 1 ] ˆ 3

# Arguments o f f u n c t i o n ’ v . s t a r ’ :

# p : Vecto r o f c o o r d i n a t e s ( x , y , z ) o f the po i n t at the c e n t e r o f the b a l l

# r : Rad ius o f the Ba l l

v . s t a r <− f u n c t i o n (p , r ){

p1 <− p [ 1 ]

p2 <− p [ 2 ]

p3 <− p [ 3 ]

p pm r <− c ( p1−r , p1+r , p2−r , p2+r , p3−r , p3+r )

# Count i n how many d i r e c t i o n s does the Ba l l [ p , r ] f a l l s o u t s i d e [ 0 , 1 ] ˆ 3

count <− sum ( p pm r < 0) + sum ( p pm r > 1)

# Di s t an c e s from p to edges o f [ 0 , 1 ] ˆ 3

# ( f o r the d i r e c t i o n s f o r which the Ba l l [ p , r ] e x t end s o u t s i d e [ 0 , 1 ] ˆ 3 )

bounds <− c ( p [ p < r ] , 1 − p [ p + r > 1 ] )

# (d i s ( d1 , d2 , d3 ) w i th d1 , d2 , d3 c o r r e s p ond i n g to F r e i r e i c h e t a l . ( 2010) )

d <− r − bounds

i f ( count == 0){

d e l t a <− 1

}

# Case the Ba l l [ p , r ] e x t end s o u t s i d e [ 0 , 1 ] ˆ 3 i n one d i r e c t i o n

i f ( count == 1){

d e l t a <− v . 1 i n t e r ( d=d [ 1 ] , r )

}

# Case the Ba l l [ p , r ] e x t end s o u t s i d e [ 0 , 1 ] ˆ 3 i n two d i r e c t i o n s

i f ( count == 2){

d e l t a <− v . 2 i n t e r ( d1=d [ 1 ] , d2=d [ 2 ] , r )

}

# Case the Ba l l [ p , r ] e x t end s o u t s i d e [ 0 , 1 ] ˆ 3 i n t h r e e d i r e c t i o n s

i f ( count == 3){

d e l t a <− v . 3 i n t e r ( d1=d [ 1 ] , d2=d [ 2 ] , d3=d [ 3 ] , r )

}

i f ( count > 3){

p r i n t ( ” E r r o r : ’ count ’ cannot be >3” )

}

#Return r e s u l t

r e t u r n ( d e l t a )

}
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# Funct i on to c r e a t e a 3D g r i d i n [ 0 , 1 ] ˆ 3

c r ea te . g r i d <− f u n c t i o n ( g=10){

U1 <− NULL

U2 <− NULL

f o r ( i i n 1 : g ){

U1 <− c (U1 , rep ( i , g ˆ2) )

U2 <− c (U2 , rep ( i , g ) )

}

U3 <− rep ( 1 : g , g ˆ2)

r e t u r n ( cb ind (U1 , U2 , U3)/ ( g+1))

}

# Funct i on tha t f i n d s the ’ c o n c e n t r a t i o n index ’ h ( ) f o r a l l p o i n t s o f a d a t a s e t

# ( data assumed i n [ 0 , 1 ] ˆ 3 )

# Arguments :

# data : ( nx3 ) mat r i x c o n t a i n i n g the data

# rad : r a d i u s o f the sma l l b a l l s around each po i n t

# s c a l e d : TRUE to have 0−to−1 s c a l i n g on a RELATIVE b a s i s

# ( i . e . f u l l c o l o u r p a l e t t e i s used )

# r e t u r n . h : TRUE to r e t u r n the v a l u e o f ’ h ’ , o t h e rw i s e r e t u r n s ’ f ( h ) ’

# g r i d . method : TRUE to use ” f i x e d g r i d ” method

# g : S i z e o f g r i d , i f ” f i x e d g r i d ” method i s used

p t s . c o n c e n t r a t i o n <− f u n c t i o n ( data , rad , s c a l e d=F , r e t u r n . h = F ,

g r i d . method = F , g=10){

# Sample s i z e

n <− l eng th ( data [ , 1 ] )

# I n i t i a l ( not smoothed ) c o n c e n t r a t i o n

d i s t a n c e s <− as . matr i x ( d i s t ( data , upper = TRUE) )

# Count number o f p o i n t s w i t h i n r a d i u s ” rad ” o f any po i n t

hp <− ( rowSums ( d i s t a n c e s <= rad )−1)/ (n−1) #”−1” e x c l u d e s the po i n t i t s e l f

hp <− hp / app ly ( data , 1 , v . s t a r , r = rad )

# Gr id ( g∗g∗g )

g r i d <− c r ea te . g r i d ( g=g )

# Values tha t depend on whether we use the ’ f i x e d g r i d ’ method or not

i f ( g r i d . method ){

# Number o f b a l l s i s the number o f p o i n t s o f the g r i d , gˆ3

n . b a l l s <− gˆ3

# Di s t an c e s between each po i n t o f the g r i d and each po i n t o f the sample

g r i d . d i s t <− as . matr i x ( p d i s t (X = gr id , Y = data ) )

} e l s e {

n . b a l l s <− n

g r i d . d i s t <− d i s t a n c e s

}

# Find the f i n a l e s t ima t e s o f ”h”
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# ( each po in t ’ s v a l u e i s a we ighted ave rage o f i t s n e a r e s t n e i ghbou r s )

f i n a l . hp <− rep (NA, n . b a l l s )

f o r ( i i n 1 : n . b a l l s ){

c l o s e s t . pt <− g r i d . d i s t [ i , ] <= rad

d i s t <− g r i d . d i s t [ i , ] [ c l o s e s t . pt ]

# I f t h e r e a r e ZERO po i n t s i n the b a l l , hp shou ld j u s t be 0

i f ( l eng th ( d i s t ) == 0){ f i n a l . hp [ i ] <− 0}

# I f t h e r e i s on l y ONE po i n t i n the b a l l , hp shou ld be tha t o f t h i s p o i n t

i f ( l eng th ( d i s t ) == 1){ f i n a l . hp [ i ] <− hp [ c l o s e s t . pt ]}

# I f t h e r e a r e at l e a s t TWO po i n t s

i f ( l eng th ( d i s t ) > 1){

# I f one po i n t i s EXACTLY the c e n t e r o f the b a l l ,

# we g i v e i t a ” d i s t a n c e ” equa l to the d i s t a n c e wi th THE c l o s e s t ne i ghbou r

i f (min ( d i s t )==0){ d i s t [ which .min ( d i s t ) ] <− s o r t ( d i s t ) [ −1 ] [ 1 ]}

# Weights a r e s imp l y the r e v e r s e o f the d i s t a n c e s

weights <− 1/ d i s t

# Compute f i n a l v a l u e : a we ighted ave rage o f a l l p o i n t s i n s i d e the b a l l

f i n a l . hp [ i ] <− sum ( hp [ c l o s e s t . pt ] ∗ weights / sum ( weights ) )

}

}

# Parameter s f o r s c a l i n g to a c o l o r s c a l e (0− to −1)

v = 4∗ p i ∗ rad ˆ3/3

# Case where we want the e n t i r e c o l o r p a l e t t e to be used ( i . e . ’ r e l a t i v e ’ s c a l e )

i f ( s c a l e d ){

a <− min ( f i n a l . hp )

c <− max( f i n a l . hp )

i f ( a > v ){

p r i n t ( ”Warning : ’ a ’ i s b i g g e r than ’ v ’ . Rep l a c i ng ’ v ’ by ( a+c )/2” )

v <− ( a+c )/2

}

i f ( c < v ){

p r i n t ( ” E r r o r : ’ c ’ must be l a r g e r than ’ v ’ . ” )

}

# Case where the c o l o r p a l e t t e i s a b s o l u t e ( not r e l a t i v e to the g i v en sample )

} e l s e {

a <− 0

c <− 2 ∗ rad / s q r t (3 )

}

beta <− −l og (2 ) / log ( ( v−a )/ ( c−a ) )

# Put the p o i n t s on a 0−to−1 s c a l e

pt . s c a l e d <− ( ( f i n a l . hp−a )/ ( c−a ) )ˆ beta

# Cap v a l u e s at ’1 ’

i nd <− pt . s c a l e d > 1

pt . s c a l e d [ i nd ] <− 1

# Return r e s u l t s

i f e l s e ( r e t u r n . h , r e t u r n ( f i n a l . hp ) , r e t u r n ( pt . s c a l e d ) )

}
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# Funct i on tha t a s s i g n s a range o f c o l o r s to a range o f v a l u e s

# Va lues must be between 0 and 1

myColorRamp <− f u n c t i o n ( co l o r s , v a l u e s ) {

x <− colorRamp ( c o l o r s ) ( v a l u e s )

rgb ( x [ , 1 ] , x [ , 2 ] , x [ , 3 ] , maxColorValue = 255)

}

# Funct i on ’ s c a t t e r 2D . p lu s ’ c r e a t e s s c a t t e r p l o t s o f two v a r i a b l e s ,

# where a t h i r d v a r i a b l e i s r e p r e s e n t e d by a c o l o u r

s c a t t e r 2D . p l u s <− f u n c t i o n ( x , y , z , l egend = TRUE,

my . c o l o r s = c ( ”magenta” , ” wh i t e ” , ” c o r n f l ow e r b l u e ” ) ,

X . l a b = ”X” , Y . l a b = ”Y” , nb . l e v e l s = 50 ,

pt . s i z e =3, l a b . s i z e =1){

Rx <− d i f f ( range ( x ) )

Ry <− d i f f ( range ( y ) )

l e v e l p l o t ( z ˜ x + y , c o l o r k e y = legend , pane l = pane l . l e v e l p l o t . po in t s ,

co l . r e g i o n s = co lo rRampPa l e t t e (my . c o l o r s ) ( nb . l e v e l s ) ,

x l a b= l i s t ( l a b e l = X. lab , cex=l ab . s i z e ) ,

y l a b= l i s t ( l a b e l = Y. lab , cex=l ab . s i z e ) , cex = pt . s i z e ,

co l = ” b l a ck ” , pch = 21 , x l im = c (min ( x )−0.05∗Rx , max( x )+0.05∗Rx ) ,

y l im = c (min ( y )−0.05∗Ry , max( y )+0.05∗Ry ) )

}

We now include the main function p.i.figures().

#################################################################################

# Author : Gu i l l aume Bog l i o n i Beau l i e u

# De s c r i p t i o n : Func t i on to g en e r a t e the data and 3D F i g u r e s o f PIBD examples

# Las t update : 06/09/2022

#################################################################################

# L i b r a r i e s

l i b r a r y ( ’ r g l ’ )

l i b r a r y ( ’ l a t t i c e E x t r a ’ )

l i b r a r y ( ’ g r i d E x t r a ’ )

l i b r a r y ( ’ g r i d ’ )

l i b r a r y ( ’ ggp l o t 2 ’ )

# Load e x t e r n a l f u n c t i o n s

source ( ”3D v i s u a l i s a t i o n f u n c t i o n s .R” )

source ( ” g en e r a t e PI .R” )

# Arguments o f f u n c t i o n ’ p . i . f i g u r e s ’

# seed : Seed f o r s im u l a t i o n s

# type : I d e n t i f i e r o f the type o f dependence

# n : Sample s i z e

# my . c o l : Co lou r s c a l e o f the p o i n t s on the s c a t t e r p l o t

# a lpha : Parameter used i n c e r t a i n examples

# ( ’ t r i a n g l e s ’ , ’ b e r n s t e i n ’ , ’ be rn s te in4D ’ and ’ copu la ’ )
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# pt . s i z e : S i z e o f the p o i n t s on the p l o t s

# p l o t . t ype : Type v i s u a l i s a t i o n : ’2D. b lack ’ , ’ 2D. co l ou r ’ , ’2D. matr ix ’ , ’ 3D’

# va r . i nd : For p l o t . t ype = ’2D, b lack ’ , ’2D. co l ou r ’ o r ’3D. matr ix ’ ,

# o rd e r o f appearance o f the v a r i a b l e s on the s c a t t e r p l o t s

# emp . c o l o r s : TRUE to have emp i r i c a l e s t ima t i o n o f p o i n t c o n c e n t r a t i o n

# on 3D s c a t t e r p l o t s

# s c a l e . c o l : TRUE f o r a RELATIVE c o l o r s c a l e

# ( i . e . f u l l c o l o r p a l e t t e o f ’my . co l ’ i s used )

# rad : Rad ius o f b a l l s i n emp i r i c a l e s t ima t i o n o f p o i n t s c o n c e n t r a t i o n

# g r i d . method : TRUE i f we want the 3D c o l o r cod ing u s i n g a f i x e d g r i d

# g : I n t e g e r f o r the s i z e o f the g r i d

# ad j u s t . p t s . s i z e : TRUE to have the s i z e o f p o i n t s p r o p o r t i o n a l

# to the c o n c e n t r a t i o n around them

# type . 3 d : Type o f p o i n t s : ’ p ’ i s f o r po i n t s , ’ s ’ i s f o r 3D sph e r e s

# l egend : For 2D co l o u r e d s c a t t e r p l o t s , s hou l d a l e g end be d i s p l a y e d

# marg ins : I f ”TRUE” , then s imu l a t e d data w i l l have ma r g i n a l s g i v en by

# arguments mar1 , mar2 , mar3 ( s p e c i f y i n g q u a n t i l e f u n c t i o n s )

p . i . f i g u r e s <− f u n c t i o n ( seed=1, type = ’ b e r n s t e i n ’ , n = 1000 ,

my . co l = c ( ” b l u e ” , ” wh i t e ” , ” red ” ) , a l pha = 1 ,

pt . s i z e = 5 , p l o t . t ype = ’ 2D ’ , var . i nd = c ( 1 , 2 , 3 ) ,

emp . c o l o r s = F , s c a l e . co l = F , rad=1/10 , g r i d . method=F ,

g=8, a d j u s t . p t s . s i z e=F , type . 3 d = ’ p ’ , l egend=T,

marg ins=F , mar1 = qnorm , mar2 = qexp , mar3 = qlnorm ){

# Set seed f o r random data g e n e r a t i o n

s e t . s eed ( seed )

# Genera te data ( a c co r d i n g to ’ type ’ )

data <− gen e r a t e . PI (n , type , a l pha )

# At f i r s t , we s e t the ” c o l o r s ” o f p o i n t s to be a s i n g l e c o l o r

c o l o r <− my . co l [ 1 ]

# Co lo r f o r the ’4D example ’ ( Example 3 . 7 )

i f ( type == ’ be rn s t e i n4D ’ ){

c o l o r <− myColorRamp (my . co l , data$U4)

}

# Update marg ins

i f ( marg ins ){

data <− as . data . frame (

cb ind (X1=mar1 ( data [ , 1 ] ) , X2=mar2 ( data [ , 2 ] ) , X3=mar3 ( data [ , 3 ] ) )

)

}

# Emp i r i c a l e s t ima t i o n o f ’ h ’ f o r a l l p o i n t s

# ( ’ h ’ c a l c u l a t e d wi th f u n c t i o n ’ p t s . c on c en t r a t i o n ’ )

i f (emp . c o l o r s ){

# Option to have 3D p l o t s where p o i n t s va r y i n s i z e ( based on ’h ’ v a l u e s )
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i f ( a d j u s t . p t s . s i z e ){

# Values o f the c o n c e n t r a t i o n i ndex

h . v a l u e s <− p t s . c o n c e n t r a t i o n ( data , rad , s c a l e d=s c a l e . co l ,

g r i d . method=g r i d . method , g=g , r e t u r n . h = T)

# Values on the [ 0 , 1 ] s c a l e ( f o r c o l o r cod ing )

f . v a l u e s <− p t s . c o n c e n t r a t i o n ( data , rad , s c a l e d=s c a l e . co l ,

g r i d . method=g r i d . method , g=g )

# For the g r i d method , the ’ data ’ needs to be the data p o i n t s o f the g r i d

i f ( g r i d . method ){ data <− as . data . frame ( c r ea te . g r i d ( g=g ) )}

n . b a l l s <− l eng th ( data [ , 1 ] )

data <− cb ind ( data , h . v a l u e s , f . v a l u e s )

# Create ” f a c t o r s ” f o r the s i z e o f the p o i n t s

# ( wi th max va l u e the max o f ”h . v a l u e s ” i n the sample )

s i z e <− as . numeric ( cut ( c ( h . v a l u e s , 0 , max( h . v a l u e s ) ) , 100))

d a t a L i s t <− s p l i t ( data , s i z e [−c ( n . b a l l s +1,n . b a l l s +2)])

# Find c o l o r s f o r the d i f f e r e n t ’ s i z e ’ f a c t o r s

# (we take the ave rage c o l o u r o f p o i n t s hav ing the same ’ s i z e ’ )

c o l o r s <− rep (NA, l eng th ( d a t a L i s t ) )

f o r ( i i n seq a long ( d a t a L i s t ) ){

c o l o r s [ i ] <− myColorRamp ( c o l o r s=my . co l , mean ( d a t a L i s t [ [ i ] ] $ f . v a l u e s ) )

}

} e l s e {

c o l o r <− myColorRamp ( c o l o r s=my . co l ,

v a l u e s=pt s . c o n c e n t r a t i o n ( data , rad , s c a l e d=s c a l e . co l ,

g r i d . method=g r i d . method , g=g ) )

}

}

# Plo t 2D s c a t t e r p l o t

i f ( p l o t . t ype==’ 2D. b l a c k ’ ){

par (mfrow=c ( 1 , 2 ) )

par (mar = c (5 , 4 . 5 , 1 . 5 , 1 . 5 ) )

p l o t ( data [ , var . i nd [ 1 ] ] , data [ , var . i nd [ 3 ] ] , cex=pt . s i z e , pch = 20 ,

x l a b = colnames ( data ) [ var . i nd [ 1 ] ] ,

y l a b =colnames ( data ) [ var . i nd [ 3 ] ] , cex . a x i s = 1.25 , cex . l a b = 1 . 75 )

p l o t ( data [ , var . i nd [ 2 ] ] , data [ , var . i nd [ 3 ] ] , cex=pt . s i z e , pch = 20 ,

x l a b = colnames ( data ) [ var . i nd [ 2 ] ] ,

y l a b =colnames ( data ) [ var . i nd [ 3 ] ] , cex . a x i s = 1.25 , cex . l a b = 1 . 75 )

}

i f ( p l o t . t ype==’ 2D. c o l o u r ’ ){

r e t u r n ( s c a t t e r 2D . p l u s ( data [ , var . i nd [ 1 ] ] , data [ , var . i nd [ 2 ] ] ,

data [ , var . i nd [ 3 ] ] , my . c o l o r s = my . co l ,

l a b . s i z e =1.75 , pt . s i z e=pt . s i z e ,

X . l a b = colnames ( data ) [ var . i nd [ 1 ] ] ,

Y . l a b =colnames ( data ) [ var . i nd [ 2 ] ] ) )

}

# Plo t mat r i x o f 2D s c a t t e r p l o t
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i f ( p l o t . t ype==’ 2D. mat r i x ’ ){

# Transform data to the ECDF

e cd f . data <− app ly ( data , 2 , rank )/n

p12 <− s c a t t e r 2D . p l u s ( e cd f . data [ , var . i nd [ 1 ] ] , e cd f . data [ , var . i nd [ 2 ] ] ,

e cd f . data [ , var . i nd [ 3 ] ] , pt . s i z e = pt . s i z e , my . c o l o r=my . co l ,

l egend=legend , X . l a b = bquote ( hat (F)∗” ( ”∗ . ( colnames ( data ) [ var . i nd [ 1 ] ] ) ∗” ) ” ) ,

Y . l a b = bquote ( hat (F)∗” ( ”∗ . ( colnames ( data ) [ var . i nd [ 2 ] ] ) ∗” ) ” ) )

p13 <− s c a t t e r 2D . p l u s ( e cd f . data [ , var . i nd [ 1 ] ] , e cd f . data [ , var . i nd [ 3 ] ] ,

e cd f . data [ , var . i nd [ 2 ] ] , pt . s i z e = pt . s i z e , my . c o l o r=my . co l ,

l egend=legend , X . l a b = bquote ( hat (F)∗” ( ”∗ . ( colnames ( data ) [ var . i nd [ 1 ] ] ) ∗” ) ” ) ,

Y . l a b = bquote ( hat (F)∗” ( ”∗ . ( colnames ( data ) [ var . i nd [ 3 ] ] ) ∗” ) ” ) )

p23 <− s c a t t e r 2D . p l u s ( e cd f . data [ , var . i nd [ 2 ] ] , e cd f . data [ , var . i nd [ 3 ] ] ,

e cd f . data [ , var . i nd [ 1 ] ] , pt . s i z e = pt . s i z e , my . c o l o r=my . co l ,

l egend=legend , X . l a b = bquote ( hat (F)∗” ( ”∗ . ( colnames ( data ) [ var . i nd [ 2 ] ] ) ∗” ) ” ) ,

Y . l a b = bquote ( hat (F)∗” ( ”∗ . ( colnames ( data ) [ var . i nd [ 3 ] ] ) ∗” ) ” ) )

p11 <− ggp l o t ( data , ae s ( x=data [ , var . i nd [ 1 ] ] ) ) + geom h i s tog ram ( aes ( y =. . den s i t y . . ) ,

c o l o u r=” b l a ck ” , f i l l =” l i g h t b l u e ” , b i nw id th=2∗IQR ( data [ , var . i nd [ 1 ] ] ) /nˆ(1/3))+

l a b s ( x = colnames ( data ) [ var . i nd [ 1 ] ] , y = ”” ) + theme c l a s s i c ( )

p22 <− ggp l o t ( data , ae s ( x=data [ , var . i nd [ 2 ] ] ) ) + geom h i s tog ram ( aes ( y =. . den s i t y . . ) ,

c o l o u r=” b l a ck ” , f i l l =” l i g h t b l u e ” , b i nw id th=2∗IQR ( data [ , var . i nd [ 2 ] ] ) /nˆ(1/3))+

l a b s ( x = colnames ( data ) [ var . i nd [ 2 ] ] , y = ”” ) + theme c l a s s i c ( )

p33 <− ggp l o t ( data , ae s ( x=data [ , var . i nd [ 3 ] ] ) ) + geom h i s tog ram ( aes ( y =. . den s i t y . . ) ,

c o l o u r=” b l a ck ” , f i l l =” l i g h t b l u e ” , b i nw id th=2∗IQR ( data [ , var . i nd [ 3 ] ] ) /nˆ(1/3))+

l a b s ( x = colnames ( data ) [ var . i nd [ 3 ] ] , y = ”” ) + theme c l a s s i c ( )

p21 <− s c a t t e r 2D . p l u s ( e cd f . data [ , var . i nd [ 1 ] ] , e cd f . data [ , var . i nd [ 2 ] ] ,

e cd f . data [ , var . i nd [ 3 ] ] , pt . s i z e = pt . s i z e /2 ,

X . l a b = bquote ( hat (F)∗” ( ”∗ . ( colnames ( data ) [ var . i nd [ 1 ] ] ) ∗” ) ” ) ,

Y . l a b = bquote ( hat (F)∗” ( ”∗ . ( colnames ( data ) [ var . i nd [ 2 ] ] ) ∗” ) ” ) ,

my . c o l o r s = ” b l a ck ” , l egend = F)

p31 <− s c a t t e r 2D . p l u s ( e cd f . data [ , var . i nd [ 1 ] ] , e cd f . data [ , var . i nd [ 3 ] ] ,

e cd f . data [ , var . i nd [ 2 ] ] , pt . s i z e = pt . s i z e /2 ,

X . l a b = bquote ( hat (F)∗” ( ”∗ . ( colnames ( data ) [ var . i nd [ 1 ] ] ) ∗” ) ” ) ,

Y . l a b = bquote ( hat (F)∗” ( ”∗ . ( colnames ( data ) [ var . i nd [ 3 ] ] ) ∗” ) ” ) ,

my . c o l o r s = ” b l a ck ” , l egend = F)

p32 <− s c a t t e r 2D . p l u s ( e cd f . data [ , var . i nd [ 2 ] ] , e cd f . data [ , var . i nd [ 3 ] ] ,

e cd f . data [ , var . i nd [ 1 ] ] , pt . s i z e = pt . s i z e /2 ,

X . l a b = bquote ( hat (F)∗” ( ”∗ . ( colnames ( data ) [ var . i nd [ 2 ] ] ) ∗” ) ” ) ,

Y . l a b = bquote ( hat (F)∗” ( ”∗ . ( colnames ( data ) [ var . i nd [ 3 ] ] ) ∗” ) ” ) ,

my . c o l o r s = ” b l a ck ” , l egend = F)

p r i n t ( g r i d . a r r ange ( p11 , p12 , p13 , p21 , p22 , p23 , p31 , p32 , p33 , nco l=3, nrow = 3))

}

# Plo t 3D s c a t t e r p l o t
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i f ( p l o t . t ype==’ 3D ’ ){

# Option where we a l t e r the s i z e o f each po i n t

i f ( a d j u s t . p t s . s i z e ){

# Create p l o t ( p o i n t s a r e added i n a second s t ep )

with ( data , p l o t 3d (NULL , NULL , NULL ,

colnames ( data ) [ 1 ] , y l a b = colnames ( data ) [ 2 ] ,

z l a b = colnames ( data ) [ 3 ] , co l=’ wh i t e ’ , s i z e =0))

par3d ( windowRect = 50 + c (0 , 0 , 500 , 500)) # ad j u s t s i z e o f window

# Use s e p a r a t e c a l l s o f p o i n t s 3d ( ) to p l o t p o i n t s o f each s i z e

f o r ( i i n seq a long ( d a t a L i s t ) ){

i f ( type . 3 d == ’p ’ ){ with ( d a t a L i s t [ [ i ] ] , p o i n t s 3d (U1 , U2 , U3 , co l=c o l o r s [ i ] ,

s i z e=pt . s i z e ∗n∗mean ( d a t a L i s t [ [ i ] ] $h . v a l u e s ) ) )}

i f ( type . 3 d == ’ s ’ ){ with ( d a t a L i s t [ [ i ] ] , s phe r e s 3d (U1 , U2 , U3 , co l=c o l o r s [ i ] ,

r a d i u s=pt . s i z e ∗n∗mean ( d a t a L i s t [ [ i ] ] $h . v a l u e s )/ 500))}

}

} e l s e {

i f ( g r i d . method ){

data <− c r ea te . g r i d ( g=g )

}

open3d ( )

p l o t 3d ( data [ , 1 ] , data [ , 2 ] , data [ , 3 ] , co l=co l o r , s i z e=pt . s i z e , t ype=type . 3 d ,

x l a b=colnames ( data ) [ 1 ] , y l a b=colnames ( data ) [ 2 ] , z l a b=colnames ( data ) [ 3 ] )

par3d ( windowRect = 50 + c (0 , 0 , 500 , 500)) # ad j u s t s i z e o f window

} # End ’ e l s e ’ f o r a d j u s t . p t s . s i z e

} # End ’ e l s e ’ f o r 3D s c a t t e r p l o t

} # End f u n c t i o n

Below is the R code producing the results from Section 3.C. Note this code uses function

pts.concentration defined previously.

# Load e x t e r n a l f u n c t i o n s

source ( ”3D v i s u a l i s a t i o n f u n c t i o n s .R” )

# Set path to where r e s u l t s (MSE v a l u e s and graphs ) shou l d be saved

graphs . d i r e c t <− ”C : /Use r s / z z z z z z z z /Dropbox/Apps/Ove r l e a f /PhD The s i s / code3 ”

mse . d i r e c t <− ”C : /Use r s / z z z z z z z z /Dropbox/Apps/Ove r l e a f /PhD The s i s / code3 ”

# Funct i on tha t runs s im u l a t i o n s

# Arguments :

# n . s im : number o f samples g ene r a t ed

# my . n : sample s i z e

# r1 , r2 : pa ramete r s f o r the max and min v a l u e s o f the r a d i u s ’ r ’

# spa c i n g : i n t e r v a l l e n g t h between d i f f e r e n t v a l u e s o f ’ r ’

t un i ng . s im <− f u n c t i o n ( n . s im=100 , my . n=200 , r1 =0.1 , r2 =0.2 , s p a c i n g =0.002){

s e t . s eed (1 )
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r <− seq ( from = r1 , to = r2 , by = spac i ng )

l <− l eng th ( r )

# Matr i x to c on t a i n MSE:

# rows r e p r e s e n t d i f f e r e n t samples , columns r e p r e s e n t d i f f e r e n t r ’ s

MSE <− matr i x (NA, nrow=n . sim , nco l=l )

f o r ( k i n 1 : n . s im ){

X <− r u n i f (my . n , 0 , 1)

Y <− r u n i f (my . n , 0 , 1)

Z <− r u n i f (my . n , 0 , 1)

my . data <− as . data . frame ( cb ind (X,Y, Z ) )

# For d i f f e r e n t v a l u e o f ’ r ’ , e s t ima t e f ( h ) at e v e r y po i n t i n the sample

# Then compute the MSE

f o r ( j i n 1 : l ){

f h <− p t s . c o n c e n t r a t i o n (my . data , rad=r [ j ] , r e t u r n . h = F)

MSE[ k , j ] <− s q r t (mean ( ( fh − 1/ 2 )ˆ2 ) )

}

}

# Mean MSE ( f o r e v e r y r , ave raged a c r o s s a l l s imu l a t e d samples )

mse <− app ly (MSE, 2 , mean )

r e s u l t s <− cb ind ( r , mse , c (NA, 100∗ (mse [−1] − mse[− l ] ) /mse[− l ] ) )

# Save r e s u l t s

wr i t e . csv ( r e s u l t s ,

f i l e = paste (mse . d i r e c t , ”/” , ”nsim” , n . sim , ”n” , my . n , ” . c s v ” , sep=”” ) )

# P lo t s o f MSE v e r s u s ’ r ’

pdf ( paste ( g raphs . d i r e c t , ”/” , ”nsim” , n . sim , ”n” , my . n , ” . pdf ” , sep = ”” ) ,

width = 12 , h e i g h t = 10)

par (mfrow=c ( 1 , 1 ) )

par (mar = c (5 , 5 , 2 , 2 ) )

p l o t ( r , r e s u l t s [ , 2 ] , t ype = ’ l ’ , l t y = 1 , lwd = 3 , co l=’ brown3 ’ , x l a b=” r ” ,

y l a b=”MSE” , cex . l a b = 2 , cex . a x i s = 2)

dev . o f f ( )

r e t u r n ( l i s t ( r e s u l t s , r [ which .min ( r e s u l t s [ , 2 ] ) ] , which .min ( r e s u l t s [ , 2 ] ) ) )

}

# Launch s im u l a t i o n s ( t a k e s many hour s )

t un i ng . s im (n . s im=2000 , my . n = 200 , r1 =0.15 , r2 =.35)

tun i ng . s im (n . s im=2000 , my . n = 300 , r1 =0.10 , r2 =.30)

tun i ng . s im (n . s im=2000 , my . n = 400 , r1 =0.10 , r2 =.30)

tun i ng . s im (n . s im=2000 , my . n = 500 , r1 =0.10 , r2 =.40)

tun i ng . s im (n . s im=2000 , my . n = 1000 , r1 =0.07 , r2 =.25)

tun i ng . s im (n . s im=1000 , my . n = 2000 , r1 =0.05 , r2 =.23)

tun i ng . s im (n . s im=1000 , my . n = 3000 , r1 =0.05 , r2 =.23)
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A.3 Codes for Chapter 4

Below is the R code producing Figures 4.1 and 4.2.

# The o r e t i c a l PMF o f the sum S = X 1 + . . . X n

p o i s . S <− f u n c t i o n ( s ,m){

p . s <− 0

f o r ( k i n 0 :m){

p . k <− (2∗kˆ2+mˆ2−2∗m∗k−m)/2

j <− 0 : p . k

p a r t i a l . sum <− choose (m, k )∗ i f e l s e ( p . k<=s , 1 , 0 ) ∗sum((−1)ˆ j ∗ ( p . k−j )ˆ s∗choose ( p . k , j ) )

p . s = p . s + p a r t i a l . sum

}

r e t u r n ( l og (2)ˆ s/ f a c t o r i a l ( s )∗ (1/2)ˆm∗p . s )

}

# Funct i on to p l o t the PMF o f S , compared to tha t o f a Po i s ( n∗ l o g ( 2 ) )

p l o t . p o i s <−f u n c t i o n (m=3, max=mˆ2 , l egend=F , co l .2= ’ brown3 ’ , co l .1= ’ da rkgo l d en rod1 ’ ){

domain <− 0 :max

probs <− s app l y ( domain , p o i s . S , m = m)

probs . p o i s <− s app l y ( domain , dpois , lambda = (mˆ2−m)/2∗ l og ( 2 ) )

p l o t ( domain , probs , t ype=”h” , lwd = 4 , co l= co l . 1 , x l a b=” s ” , y l a b=”p ( s ) ” ,

cex . l a b =1.5 , cex . a x i s =1.5)

po i n t s ( domain , probs , co l=co l . 1 , cex = 1 . 5 , pch = 19)

po i n t s ( domain , p robs . po i s , co l=co l . 2 , cex = 2 . 5 , pch=18)

a b l i n e ( h=0, co l=’ b l a ck ’ )

i f ( l egend ){ l egend ( ” t o p r i g h t ” , NULL , nco l = 1 , cex = 2 , l egend=c ( ”S” , ” Po i s son ” ) ,

co l=c ( co l . 1 , co l . 2 ) , lwd = c ( 4 , 0 ) , l t y = c ( 1 , 0 ) , pch = c ( 19 , 18 ) ,

pt . cex = c ( 3 , 3 . 5 ) ) }

}

# Create ( and save ) t h r e e p l o t s ( f o r d i f f e r e n t sample s i z e s )

pdf ( f i l e = ” po i s s o n pmf . pdf ” , width = 8 , h e i g h t = 11)

par (mfrow=c ( 3 , 1 ) )

par (mar=c ( 3 , 6 , 1 , 1 ) )

p l o t . p o i s (m=3, 7)

p l o t . p o i s (m=5, 18)

p l o t . p o i s (m=7, 34 , l egend=T)

dev . o f f ( )

# Dens i t y and CDF o f the s t a n d a r d i s e d sample mean ( i f sample s i z e goes to i n f i n i t y )

f . s <− f u n c t i o n ( s ){

s <− s + r ∗ s q r t ( ( e l l −1)/2)

k = ( e l l −1)/2

th e t a = r ∗ s q r t (2/ ( e l l −1))

b <− (2∗(1− r ˆ2) )

I . S <− f u n c t i o n ( x ){ x ˆ( k−1)∗exp ( x∗ (2∗ s/b − 1/ t h e t a ) − xˆ2/b )}

r e t u r n ( exp(− s ˆ2/b )/ ( s q r t ( p i ∗b )∗gamma( k )∗ t h e t a ˆk )

261



∗ i n t e g r a t e ( I . S , l ower = 0 , upper = In f , abs . t o l = 10ˆ(−20))$ v a l u e )

}

F . S <− f u n c t i o n ( s ){

s <− s + r ∗ s q r t ( ( e l l −1)/2)

k = ( e l l −1)/2

th e t a = r ∗ s q r t (2/ ( e l l −1))

I . S <− f u n c t i o n ( x ){ x ˆ( k−1)∗exp(−x/ t h e t a )∗pnorm ( ( s−x )/ s q r t (1− r ˆ2))}

1/ (gamma( k )∗ t h e t a ˆk )∗ i n t e g r a t e ( I . S , l ower=0, upper = In f , abs . t o l =10ˆ(−20))$ v a l u e

}

sd <− 5

x <− matr i x ( seq (−2∗ sd/3 , sd , by = 0 .005 ) , nco l = 1)

r <− s q r t ( l og ( 2 ) )

e l l <− 2

hx . r08 <− app ly ( x , 1 , f . s )

hxCDF . r08 <− app ly ( x , 1 , F . S )

# Plo t d e n s i t y and CDF, a l s o compared to a N(0 , 1 )

pdf ( f i l e = ” po i s s o n CLT . pdf ” , width = 16 , h e i g h t = 8)

par (mfrow=c ( 1 , 2 ) )

par (mar=c ( 3 , 6 , 1 , 1 ) )

#Dens i t y

p l o t ( x , hx . r08 , t ype=” l ” , l t y =1, co l = ”brown3” , lwd = 4 , x l a b=”” ,

y l a b=”Dens i t y ” , cex . l a b = 1 . 5 , cex . a x i s = 1 .25 )

curve (dnorm ( x , 0 , 1 ) , co l=” b l a ck ” , l t y = 1 , lwd=2, add=TRUE)

#CDF

p l o t ( x , hxCDF . r08 , type=” l ” , l t y =1, co l = ”brown3” , lwd = 4 , x l a b=”” ,

y l a b=”CDF” , cex . l a b = 1 . 5 , cex . a x i s = 1 .25 )

curve (pnorm ( x , 0 , 1 ) , co l=” b l a ck ” , l t y = 1 , lwd=2, add=TRUE)

l egend ( ” bo t tomr i gh t ” , NULL , nco l = 1 , cex = 1 . 5 , l egend=c ( ”Z” , ”N(0 , 1 ) ” ) ,

co l=c ( ”brown3” , ” b l a c k ” ) , l t y = c (1 , 1 ) , lwd = c ( 7 , 3 ) )

dev . o f f ( )

Below is the R code producing the results from Example 4.2.

# Load packages

l i b r a r y ( ’moments ’ )

# Funct i on to g en e r a t e the PIBD sample

p i i d . seq <− f u n c t i o n (m=10){

e <− r u n i f (1 )

e ta <− r u n i f (1 )

Z <− rep (NA, m)

f o r ( j i n 1 :m){Z [ j ] <− ( e ta + j ∗e )%%1}

r e t u r n (Z)

}

# Funct i on to g en e r a t e samples o f S , f o r v a r i o u s c h o i c e s o f sample s i z e s ’ n ’

samples . o f . S <− f u n c t i o n ( n = c (10 , 100 , 1000 , 10000) , B = 10000){
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s e t . s eed (1 )

# Matr i x to c on t a i n a l l samples o f S

# ( rows r e p r e s e n t samples : from one row to the next , ’ n ’ i n c r e a s e s )

S <− matr i x (NA, nrow = l eng th ( n ) , nco l = B)

ku r t <− rep (NA, l eng th ( n ) )

f o r ( i i n 1 : l eng th ( n ) ){ # f o r a l l rows

f o r ( j i n 1 :B){ # f o r a l l columns w i t h i n tha t row

U <− p i i d . seq ( n [ i ] )

S [ i , j ] <− sum (U)

}

ku r t [ i ] <− k u r t o s i s (S [ i , ] )

}

p l o t ( l og ( n ) , l og ( ku r t ) , t ype=”b” , l t y =1, co l = ”brown3” , lwd = 6 ,

x l a b=” l og ( n ) ” , y l a b=” l og ( k u r t o s i s ) ” , cex . l a b = 1 . 5 , cex . a x i s = 1 .25 )

r e t u r n ( summary ( lm ( ku r t ˜ n ) ) )

}

# Launch f u n c t i o n and save p l o t

# ( warn ing : r unn ing t ime i s many hour s )

pdf ( f i l e = ” i n c r e a s i n g k u r t o s i s . pdf ” , w idth = 14 , h e i g h t = 8)

par (mar=c ( 5 , 5 , 1 , 1 ) )

samples . o f . S ( n = c (10 , 100 , 1000 , 10000 , 100000) , B = 3000000)

dev . o f f ( )

Below is the R code producing all simulation results from Section 4.2.2. Note this code

uses function generate.PI, as defined already in Section A.2.

# Source needed f u n c t i o n

source ( ’ g en e r a t e PI .R ’ )

# Funct i on to f i n d the emp i r i c a l TVaR o f a sample (” data ”)

emp .TVaR <− f u n c t i o n ( data , a l pha = c ( 0 . 7 5 , 0 . 9 5 ) ) {

l <− l eng th ( a l pha )

TVAR <− rep (NA, l )

VAR <− qu an t i l e ( data , a l pha )

f o r ( i i n 1 : l ){TVAR[ i ] <− mean ( data [ data > VAR[ i ] ] ) }

r e t u r n (TVAR)

}

# Funct i on ’VaR .TVaR . S ’ e s t ima t e s VaR , TVaR o f X1+X2+X3 ( f o r many PIBD examples )

# Arguments o f t h i s f u n c t i o n a r e :

# B Number o f s imu l a t e d samples

# a lpha : Vector o f l e v e l s ( f o r which VaR and TVaR a r e computed )

# dep . type : Name o f the dependence example ( as d e f i n e d i n f u n c t i o n ’ g en e r a t e . PI ’ )

# param : Value o f the paramete r w i t h i n the example ( i f one i s needed )

# r e l a t i v e : TRUE to d i v i d e a l l v a l u e s by t h e i r c o r r e s p ond i n g v a l u e s

# under mutual i ndependence

# seed : seed o f the random gen e r a t i o n
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VaR .TVaR . S <− f u n c t i o n (B=200000 , a l pha = c ( 0 . 7 0 , 0 . 90 , 0 . 95 , 0 . 99 , 0 . 9 95 ) ,

dep . type = ’ indep ’ , param=1, r e l a t i v e=T, seed=1){

# Set seed

s e t . s eed ( seed )

# Data wi th un i fo rm marg ins

Udata <− as . matr i x ( g en e r a t e . PI ( n = B, type = dep . type , a l pha = param ) )

# Transform the data to d i f f e r e n t marg ins ( a lways such tha t E [X]=1 , Var [X]=1)

U. data <− qun i f ( Udata , min = 1− s q r t ( 3 ) , max = 1+ s q r t ( 3 ) )

N. data <− qnorm ( Udata , mean = 1 , sd = 1)

G. data <− qgamma( Udata , shape = 1 , r a t e = 1)

LN . data <− qlnorm ( Udata , −l og (2 ) /2 , s q r t ( l og ( 2 ) ) )

# Get samples o f ”S” , f o r a l l marg ins

S . p i i d .U <− app ly (U. data , MARGIN = 1 , sum )

S . p i i d .N <− app ly (N. data , MARGIN = 1 , sum )

S . p i i d .G <− app ly (G . data , MARGIN = 1 , sum )

S . p i i d . LN <− app ly (LN . data , MARGIN = 1 , sum )

# VaR

VaR .1 <− qu an t i l e (S . p i i d .U, a lpha )−3

VaR . 2 <− qu an t i l e (S . p i i d .N, a lpha )−3

VaR . 3 <− qu an t i l e (S . p i i d .G, a lpha )−3

VaR . 4 <− qu an t i l e (S . p i i d . LN , a lpha )−3

#TVaR

TVaR.1 <− emp .TVaR(S . p i i d .U, a lpha )−3

TVaR. 2 <− emp .TVaR(S . p i i d .N, a lpha )−3

TVaR. 3 <− emp .TVaR(S . p i i d .G, a lpha )−3

TVaR. 4 <− emp .TVaR(S . p i i d . LN , a lpha )−3

r e s u l t <− c (VaR . 1 , VaR . 2 , VaR . 3 , VaR . 4 , TVaR . 1 , TVaR . 2 , TVaR . 3 , TVaR . 4 )

i f e l s e ( r e l a t i v e , r e t u r n ( round ( r e s u l t /VaR .TVaR . S(B, r e l a t i v e=F , seed =2) ,2)) ,

r e t u r n ( r e s u l t ) )

}

# Run the f u n c t i o n f o r a l l examples

# ( warn ing : r unn ing t ime i s many hour s )

VaR .TVaR . S(B=10ˆ7 , dep . type = ’ t r i a n g l e s ’ )

VaR .TVaR . S(B=10ˆ7 , dep . type = ’ b e r n s t e i n ’ )

VaR .TVaR . S(B=10ˆ7 , dep . type = ’ t e t r a ’ )

VaR .TVaR . S(B=10ˆ7 , dep . type = ’ c o s i n e ’ )

VaR .TVaR . S(B=10ˆ7 , dep . type = ’ copu l a ’ , param = 1)

VaR .TVaR . S(B=10ˆ7 , dep . type = ’ copu l a ’ , param = −1)

Below is the R code producing the results from Example 4.3.

# Genera te a random sample as i n the sequence i n Janson1988 ( from Remark 2)
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j a n son . seq <− f u n c t i o n ( n=10){

e <− r u n i f (1 )

e ta <− r u n i f (1 )

Z <− rep (NA, n )

f o r ( j i n 1 : n ){

Z [ j ] <− ( cos (2∗ p i ∗ ( e ta+j ∗e ))+1)/2

}

r e t u r n (Z)

}

# Find d i s t r i b u t i o n o f the s t a n d a r d i s e d maxima i n the Janson1988 sequence

# We do t h i s i n a f un c t i o n , which r e t u r n s the h i s tog ram and ECDF o f − l o g (−M) ,

# ( compared to the ’ p r e d i c t i o n ’ from the F i s h e r−Tippe t t THM)

# We use the l o g s c a l e , because the d i s t r i b u t i o n i t s e l f i s v e r y heavy−t a i l e d

# Arguments o f f u n c t i o n ’EVT. compar ison ’

# n Vector o f sample s i z e s

# B: Number o f s im u l a t i o n s ( i . e . number o f samples g ene r a t ed )

# low/up : Lower and upper l i m i t s f o r the h i s tog ram

# seed : Seed to r ep roduce s imu l a t i o n r e s u l t s

# br : Number o f b r eak s f o r the h i s tog ram

# compare : TRUE f o r a compar i son o f the CDF f o r two sample s i z e s

# ( the l a s t two v a l u e s o f v e c t o r n a r e used )

# p l o t . means : TRUE to p l o t − l o g (−mean (H. n ) ) as f u n c t i o n o f l o g ( n )

EVT. compar i son <− f u n c t i o n ( n=c (10 ,1000 ,10000) , B=50000 , low = −15, up=15,

seed=1, br =200 , compare=F , p l o t . means=T){

s e t . s eed ( seed )

# Number o f d i f f e r e n t sample s i z e s

n . n <− l eng th ( n )

# Matr i x to c on t a i n the samples

M <− matr i x (NA, nrow = B, nco l = n . n )

# Gene r a t i on o f the samples ( o f maxima )

# ( d i f f e r e n t rows r e p r e s e n t d i f f e r e n t samples )

# ( d i f f e r e n t columns r e p r e s e n t d i f f e r e n t sample s i z e s )

f o r ( i i n 1 :B){

U <− j a n son . seq ( t a i l ( n , 1 ) )

f o r ( j i n 1 : n . n ){

M[ i , j ] <− (max(U [ 1 : n [ j ] ] ) −1)∗ (2∗n [ j ] / p i )ˆ2

}

}

# Log t r a n s f o rma t i o n

logH <− −l og (−M)

# Mean o f M. n ( f o r a l l sample s i z e s )

mean <− app ly (M, 2 , mean )

# P l o t t i n g ( and s a v i n g p l o t ) log−t r an s f o rmed mean o f M. n v e r s u s sample s i z e
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i f ( p l o t . means ){

pdf ( f i l e = paste ( ” ev t mean B” , B, ”n” , n [ n . n ] , ” . pdf ” , sep=”” ) ,

width = 14 , h e i g h t = 8)

par (mfrow=c ( 1 , 1 ) )

par (mar=c ( 5 , 5 , 1 , 1 ) )

p l o t ( l og ( n ) , −l og (−mean ) , t ype=”b” , l t y =1, co l = ”brown3” , lwd = 6 ,

x l a b=” l og ( n ) ” , y l a b=bquote(− l og (−E(H[ n ] ) ) ) , cex . l a b = 1 . 5 , cex . a x i s =1.25)

dev . o f f ( )

}

# P lo t s o f emp i r i c a l d i s t r i b u t i o n ( h i s tog ram & ECDF)

# ( vs . what i s ’ p r e d i c t e d ’ by F i s h e r−Tippet )

pdf ( f i l e = paste ( ” ev t d f B” , B, ”n” , n [ n . n ] , ” . pdf ” , sep=”” ) , width=16, h e i g h t=8)

par (mfrow=c ( 1 , 2 ) )

par (mar=c ( 3 , 5 , 1 , 1 ) )

h i s t ( logH [ , n . n ] , x l im = c ( low , up ) , b r eak s = br , prob=T,

cex . l a b = 1 . 5 , cex . a x i s =1.25 , main = ”” , x l a b=”” )

curve ( 0 . 5 ∗exp(−exp(−x/ 2) ) ∗exp(−x/ 2) , lwd = 2 , n = 500 ,

co l = ”brown3” , add = TRUE) # Dens i t y o f −Log(−Weibu l l (1/ 2) )

p l o t ( e cd f ( logH [ , n . n ] ) , cex . l a b = 1 . 5 , cex . a x i s =1.25 , do . po i n t s = F ,

co l . 01 l i n e = NULL , x l im = c ( low , up ) , main = ”” , y l a b=”CDF” , x l a b=”” )

i f ( compare ){

p l o t ( e cd f ( logH [ , n . n−1]) , do . po i n t s = F , add = T, co l = ’ da r kb l u e ’ , l t y = 2 ,

x l im = c ( low , up ) , main = ”” , y l a b=”CDF” , x l a b=”” )

}

e l s e {

curve ( exp(−exp(−x/ 2 ) ) , lwd = 2 , n = 500 ,

co l = ”brown3” , add = TRUE) # Dens i t y o f −Log(−Weibu l l (1/ 2) )

l egend ( ” bo t tomr i gh t ” , NULL , nco l = 1 , cex = 1 . 5 , l egend=c ( ”F−T THM” ) ,

co l=c ( ”brown3” ) , l t y = 1 , lwd = 3)

}

dev . o f f ( )

}

# ( warn ing : r unn ing t ime i s many hour s )

EVT. compar i son ( n=10ˆ(1 :5) , B=3000000 , seed=1)

Below is the R code producing all results from Section 4.2.4. Note this code uses function

piid.generator, which is defined first (and is necessary to generate random samples from

Example 4.1).

# Gene ra to r o f p a i r w i s e i ndependen t o b s e r v a t i o n s

p i i d . g e n e r a t o r <− f u n c t i o n (m = 3 , randF = rnorm ,

indA = f u n c t i o n ( x ) i f e l s e ( x <= 0 , FALSE , TRUE) ,

e l l = 2) {

# Check tha t the v a l u e o f ’ e l l ’ p r o v i d ed i s c ohe r en t

# with the f u n c t i o n ’ indA ’ p r o v i d ed
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# This check i s v a l i d on l y f o r moderate v a l u e s o f ’ e l l ’

i f ( round (1 / mean ( indA ( randF (10 ˆ 5 ) ) ) ) != e l l )

warning ( ” I s ’ e l l ’ c o n s i s t e n t w i th your A?” )

# Sample s i z e

n <− choose (m, 2)

# Genera te the ’ i n i t i a l ’ mu l t i n om i a l sample o f s i z e m

M <− rmult inom (m, 1 , rep (1 / e l l , e l l ) )

# Find a l l p o s s i b l e p a i r s out o f the m mu l t i n om i a l s

# Use tho s e p a i r s to c r e a t e the ’ n ’ D’ s i n Eq . ( 2 . 4 )

combin <− combn ( 1 :m, 2)

D <− app ly (M[ , combin [ 1 , ] ] == M[ , combin [ 2 , ] ] , 2 , a l l )

D <− as . i n t e g e r (D)

# Compute the number o f 1 ’ s among the D’ s

pN <− sum (D)

# Genera te pN r . v . s w i th d i s t r i b u t i o n F r e s t r i c t e d to A

# and ( n − pN) r . v . s w i th d i s t r i b u t i o n F r e s t r i c t e d to Aˆc

nU <− 0

nV <− 0

U <− rep (NA, n − pN)

V <− rep (NA, pN)

wh i l e ( ( nU < n − pN) | (nV < pN) ) {

W <− randF (1 )

indAW <− indA (W)

i f ( indAW & (nV < pN) ) {

nV <− nV + 1

V[ nV ] <− W

} e l s e i f ( ( indAW == 0) & (nU < n − pN) ) {

nU <− nU + 1

U[ nU ] <− W

}

}

# Return the r e s u l t i n g random gene r a t ed v a r i a b l e s

X <− rep (NA, n )

X[ which (D == 0 ) ] <− U

X[ which (D == 1 ) ] <− V

r e t u r n (X)

}

# Source f u n c t i o n ’ p i i d . g ene r a to r ’ ( which a l l ow s to g en e r a t e PIBD v a r i a b l e s )

source ( ’ p i i d −g en e r a t o r .R ’ )

# Func t i on s needed f o r the g e n e r a t i o n o f PIBD Po i s son ( l o g ( 2 ) )

randF <− f u n c t i o n (m) r p o i s (m, l og ( 2 ) )

indA <− f u n c t i o n ( x ) i f e l s e ( x >= 1 , TRUE, FALSE)
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# Histogram f o r the emp i r i c a l d i s t r i b u t i o n o f q . hat f o r the PIBD sequence

m <− 10 # Con t r o l s the sample s i z e : sample s i z e = m(m−1)/2

B <− 10000 # Number o f samples

q <− rep (NA, B)

s e t . s eed (1 )

f o r ( i i n 1 :B){

sample <− p i i d . g e n e r a t o r ( randF = randF , indA = indA , e l l = 2L , m = m)

q [ i ] <− sum ( sample == 0)/ l ength ( sample )

}

# Plo t h i s tog ram

pdf ( f i l e = ” p i i d po i s s o n q d i s t . pdf ” , width = 14 , h e i g h t = 8)

par (mar=c ( 5 , 5 , 1 , 1 ) )

h i s t (q , p r o b a b i l i t y = T, b r eak s = 20 , main = ’ ’ , x l a b = bquote ( hat (q ) ) ,

cex . l a b = 1 .75 , cex . a x i s = 1 .5 , co l = ’ l i g h t g r e e n ’ )

a b l i n e ( v = 1/2 , co l = ’ b l a ck ’ , lwd = 4 , l t y = 2)

l egend ( ” t o p l e f t ” , NULL , nco l = 1 , cex = 2 , l egend=c ( ” t r u e q” ) ,

co l=c ( ” b l a c k ” ) , lwd = 4 , l t y = c ( 2 ) )

dev . o f f ( )

# Funct i on ’ boot . p i i d ’ p roduces boo t s t r apped re−samples o f a d a t a s e t ( ’ data ’ )

# I t computes a s t a t i s t i c (% o f 0 ’ s ) from the boo t s t r a p samples and c r e a t e s a CI

# I t a l s o checks whether the v a l u e ( q=0.5) i s i n s i d e the boo t s t r a p CI

# Arguments o f f u n c t i o n ’ boot . p i i d ’ :

# m: For s imu l a t e d data , c o n t r o l s the sample s i z e n , w i th n = m(m−1)/2

# B: Number o f boo t s t r apped samples

# data : O r i g i n a l sample o f data to use

# ( i f u n s p e c i f i e d , a random mutua l l y i ndependen t sample i s g ene r a t ed )

# h i s t o : TRUE to p l o t a h i s tog ram o f the boo t s t r apped s t a t i s t i c s

# br : Number o f ’ b in s ’ f o r the h i s t og r ams

# a lpha : L e v e l f o r the c on f i d e n c e i n t e r v a l

boot . p i i d <− f u n c t i o n (m = 3 , B = 500 , data = ’ ’ ,

h i s t o = F , br=30, a lpha = 0 .10 ){

# For u n s p e c i f i e d ’ data ’ , g en e r a t e a random sample o f i ndependen t Po i s ( l o g ( 2 ) )

i f ( l eng th ( data )==1){data <− r p o i s (m∗ (m−1)/2 , l og ( 2 ) )}

# Sample s i z e o f boo t s t r apped samples

boot . s i z e=l eng th ( data )

# Matr i x o f boo t s t r apped samples ( c o l = ob s e r v a t i o n s , row = boo t s t r a p r e p l i c a t e s )

S <− matr i x (NA, nco l = boot . s i z e , nrow = B)

f o r ( i i n 1 :B){

S [ i , ] <− sample ( data , r e p l a c e = T, s i z e = boot . s i z e )

}

# Boots t rapped r e p l i c a t e s o f the s t a t i s t i c
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q <− rep (NA, B) # i n i t i a t e v e c t o r o f boo t s t r apped s t a t i s t i c s

f o r ( i i n 1 :B){

q [ i ] = sum (S [ i , ] == 0)/boot . s i z e

}

# I n d i c a t o r equa l to 1 i f the r e a l v a l u e i s o u t s i d e the boo t s t r a p CI (L , 1)

i nd <− i f e l s e (1/2 < qu an t i l e (q , a l pha ) , 1 ,0)

# Histogram o f the boo t s t r apped s t a t i s t i c ’ q ’

i f ( h i s t o == T){

par (mar=c ( 5 , 5 , 1 , 1 ) )

h i s t (q , p r o b a b i l i t y = T, b r eak s = br , main = ’ ’ , x l a b = bquote ( hat (q ) ) ,

cex . l a b = 1 .75 , cex . a x i s = 1 .5 , co l = ’ l i g h t g r e e n ’ )

a b l i n e ( v = qu an t i l e (q , a l pha ) , co l = ’ brown3 ’ , lwd = 4)

a b l i n e ( v = 1/2 , co l = ’ b l a ck ’ , lwd = 4 , l t y = 2)

l egend ( ” t o p r i g h t ” , NULL , nco l = 1 , cex = 2 , l egend=c ( ”L” , ” t r u e q” ) ,

co l=c ( ”brown3” , ” b l a c k ” ) , lwd = 4 , l t y = c ( 1 , 2 ) )

}

r e t u r n ( i nd )

} # End f u n c t i o n

# Ca l l f u n c t i o n ’ boot . p i i d ’ to ob t a i n the h i s tog ram o f one boo t s t r apped sample

# ( and save the p l o t )

# I ID sample

pdf ( f i l e = ” boo t s t r a pC I i i d . pdf ” , width = 14 , h e i g h t = 8)

s e t . s eed (1 )

boot . p i i d (m=10, B = 5000 , h i s t o=T)

dev . o f f ( )

# PIBD sample

pdf ( f i l e = ” boo t s t r a pC I p i i d . pdf ” , width = 14 , h e i g h t = 8)

s e t . s eed (1 )

boot . p i i d ( data = p i i d . g e n e r a t o r ( randF = randF , indA = indA , e l l = 2L , m = 10) ,

B = 5000 , h i s t o = T)

dev . o f f ( )

# Funct i on tha t c a l l s ’ boot . p i i d ’ a l a r g e number o f t imes

# ( to e s t ima t e the emp i r i c a l l e v e l o f the BCI )

boot . l e v e l <− f u n c t i o n ( nb . t r i a l s =10000 , B=5000 , m=3, i ndep=TRUE, seed=1){

s e t . s eed ( seed )

count<−0

f o r ( i i n 1 : nb . t r i a l s ){

i f ( i ndep ){ sample <− r p o i s (m∗ (m−1)/2 , lambda = l og ( 2 ) )} #i i d

e l s e {

sample <− p i i d . g e n e r a t o r ( randF = randF , indA = indA , e l l = 2L , m = m) #PIBD

}

count <− count + boot . p i i d (m = m, B = B, data = sample , a l pha = 0 . 1 )

}

count/nb . t r i a l s

269



}

# Launch s im u l a t i o n s

# ( warn ing : t a k e s a few hour s )

# I ID case

boot . l e v e l ( nb=10000 , B=5000 , m=10)

boot . l e v e l ( nb=10000 , B=5000 , m=45)

# PIBD case

boot . l e v e l ( nb=10000 , B=5000 , m=10, i ndep=F)

boot . l e v e l ( nb=10000 , B=5000 , m=45, i ndep=F)
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A.4 Codes for Chapter 5

Below is the R code producing Figures 5.1 and 5.2.

# Dens i t y and CDF o f S ( f o r d i f f e n t v a l u e s o f r and \ e l l )

# They a r e found v i a the c o n v o l u t i o n :

# S = Normal (0 , 1− r ˆ2) + Gamma( shape = ( e l l −1)/2 , s c a l e = r ∗ s q r t (2/ ( e l l −1)) )

# − r ∗ s q r t ( ( e l l −1)/2)

f . s <− f u n c t i o n ( s ){

s <− s + r ∗ s q r t ( ( e l l −1)/2)

k = ( e l l −1)/2

th e t a = r ∗ s q r t (2/ ( e l l −1))

b <− (2∗(1− r ˆ2) )

I . S <− f u n c t i o n ( x ){ x ˆ( k−1)∗exp ( x∗ (2∗ s/b − 1/ t h e t a ) − xˆ2/b )}

r e t u r n ( exp(− s ˆ2/b )/ ( s q r t ( p i ∗b )∗gamma( k )∗ t h e t a ˆk )

∗ i n t e g r a t e ( I . S , l ower=0, upper=In f , abs . t o l =10ˆ(−20))$ v a l u e )

}

F . S <− f u n c t i o n ( s ){

s <− s + r ∗ s q r t ( ( e l l −1)/2)

k = ( e l l −1)/2

th e t a = r ∗ s q r t (2/ ( e l l −1))

I . S <− f u n c t i o n ( x ){ x ˆ( k−1)∗exp(−x/ t h e t a )∗pnorm ( ( s−x )/ s q r t (1− r ˆ2))}

1/ (gamma( k )∗ t h e t a ˆk ) ∗ i n t e g r a t e ( I . S , l ower=0, upper=In f , abs . t o l =10ˆ(−20))$ v a l u e

}

# Plo t d f and CDF f o r many v a l u e s o f ’ r ’ o r many v a l u e s o f ’ e l l ’

par (mfrow=c ( 1 , 2 ) )

par (mar=c ( 3 , 6 , 1 , 1 ) )

sd <− 5

x <− matr i x ( seq (−2∗ sd/3 , sd , by = 0 .005 ) , nco l = 1)

# Crea t i n g f i g u r e s : e i t h e r f i x ’ r ’ and change ’ e l l ’ , o r the o th e r way around

#r <− . 95

r <− . 9

e l l <− 3

hx . r095 <− app ly ( x , 1 , f . s )

hxCDF . r095 <− app ly ( x , 1 , F . S )

#r <− . 8

e l l <− 6

hx . r08 <− app ly ( x , 1 , f . s )

hxCDF . r08 <− app ly ( x , 1 , F . S )

#r <− . 6

e l l <− 15

hx . r06 <− app ly ( x , 1 , f . s )

hxCDF . r06 <− app ly ( x , 1 , F . S )

#Dens i t y
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p l o t ( x , hx . r095 , type=” l ” , l t y =1, co l = ” darko range ” , lwd = 4 , x l a b=”” ,

y l a b=”Dens i t y ” , cex . l a b = 2 .25 , cex . a x i s = 2)

l i n e s ( x , hx . r08 , t ype=” l ” , l t y =3, co l = ” b l u e v i o l e t ” , lwd = 5)

l i n e s ( x , hx . r06 , t ype=” l ” , l t y =6, co l = ” c o r n f l ow e r b l u e ” , lwd = 4)

curve (dnorm ( x , 0 , 1 ) , co l=” b l a ck ” , l t y = 1 , lwd=2, add=TRUE)

#CDF

p l o t ( x , hxCDF . r095 , type=” l ” , l t y =1, co l = ” darko range ” , lwd = 4 , x l a b=”” ,

y l a b=”CDF” , cex . l a b = 2 .25 , cex . a x i s = 2)

l i n e s ( x , hxCDF . r08 , type=” l ” , l t y =3, co l = ” b l u e v i o l e t ” , lwd = 5)

l i n e s ( x , hxCDF . r06 , type=” l ” , l t y =6, co l = ” c o r n f l ow e r b l u e ” , lwd = 4)

curve (pnorm ( x , 0 , 1 ) , co l=” b l a ck ” , l t y = 1 , lwd=2, add=TRUE)

l egend ( ” bo t tomr i gh t ” , NULL , nco l = 1 , cex = 2 ,

l egend=c ( ” l = 3” , ” l = 6” , ” l = 15” , ”N(0 , 1 ) ” ) ,

co l=c ( ” da rko range ” , ” b l u e v i o l e t ” , ” c o r n f l ow e r b l u e ” , ” b l a c k ” ) ,

l t y = c ( 1 , 3 , 6 , 1 ) , lwd = c ( 7 , 7 , 7 , 3 ) )

We present below R codes that allow one to generate pseudorandom samples from all our

pairwise independent examples (i.e., Example 5.1 and the additional examples of Section

5.B). The main function for the random generation is called piid.generator, and was de-

fined already in Section A.3. The first argument of this function m determines the sample

size n through n = m(m− 1)/2. Its other arguments randF, indA and ell all depend on

the specific example considered. We provide below those arguments for all our examples.

# Sp e c i f i c v a l u e s o f randF , indA and e l l f o r a l l examples

# Example 5 . 1

randF <− f u n c t i o n (m, beta ) r lnorm (m, 0 , beta )

indA <− f u n c t i o n ( x ) i f e l s e ( x >= 1 , TRUE, FALSE)

p i i d . g e n e r a t o r ( randF = f u n c t i o n (m) randF (m, beta = 2) , indA = indA , e l l = 2L)

# Example 5 . 3

r . ex6 <− f u n c t i o n ( rand , e l l ) {

i f ( rand < 1 / (2 ∗ e l l ) ) {

r e s <− −1L

} e l s e i f ( rand < 1 / e l l ) {

r e s <− 1L

} e l s e i f ( rand < 1 / (2 ∗ e l l ) + 1 / 2) {

r e s <− −2L

} e l s e {

r e s <− 2L

}

r e t u r n ( r e s )

}

randF <− f u n c t i o n (m, e l l ) s app l y ( r u n i f (m) , FUN = r . ex6 , e l l = e l l )

indA <− f u n c t i o n ( x ) i f e l s e ( ( x == 1L) | ( x == −1L ) , TRUE, FALSE)
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p i i d . g e n e r a t o r ( randF = f u n c t i o n (m) randF (m, e l l = 2L ) , indA = indA , e l l = 2L)

# Example 5 . 4

randF <− f u n c t i o n (m) r u n i f (m, −1, 1)

indA <− f u n c t i o n ( x , e l l ) i f e l s e ( ( x >= −1 / e l l ) & ( x <= 1 / e l l ) , TRUE, FALSE)

p i i d . g e n e r a t o r ( randF = randF , indA = f u n c t i o n ( x ) indA ( x , e l l = 2L ) , e l l = 2L)

# Example 5 . 5

randF <− f u n c t i o n (m, e l l ) as . i n t e g e r (2 ∗ rbinom (m, 1 , 1 / e l l ) − 1)

indA <− f u n c t i o n ( x ) i f e l s e ( x == 1L , TRUE, FALSE)

p i i d . g e n e r a t o r ( randF = f u n c t i o n (m) randF (m, e l l = 10L ) , indA = indA , e l l = 10L)

# Example 5 . 6

F <− f u n c t i o n ( x , e l l , s igma ) sum ( c (1 − 1 / e l l , 1 / e l l ) ∗

pnorm ( x , mean = c(−1 / e l l , 1 − 1 / e l l ) ,

sd = c ( sigma , s igma ) ) )

F inv <− f u n c t i o n (p , e l l , s igma = 1/ (4∗ e l l ) ){

G = f u n c t i o n ( x ) F( x , e l l , s igma ) − p

r e t u r n ( un i r oo t (G, c (−100 ,100))$ r o o t )

}

r . ex9 <− f u n c t i o n ( rand , e l l , s igma ) {

i f ( rand < 1 / e l l ) {

r e s <− rnorm (1 , 1 − 1 / e l l , s igma )

} e l s e {

r e s <− rnorm (1 , −1 / e l l , s igma )

}

r e t u r n ( r e s )

}

randF <− f u n c t i o n (m, e l l , s igma = 1/ (4∗ e l l ) )

s app l y ( r u n i f (m) , FUN = r . ex9 , e l l = e l l , s igma = sigma )

indA <− f u n c t i o n ( x , e l l , s igma = 1/ (4∗ e l l ) )

i f e l s e ( x >= Finv (1 − 1 / e l l , e l l = e l l , s igma = sigma ) , TRUE, FALSE)

p i i d . g e n e r a t o r ( randF = f u n c t i o n (m) randF (m, e l l = 3L ) ,

indA = f u n c t i o n ( x ) indA ( x , e l l = 3L ) , e l l = 3L)

# Example 5 . 7

randF <− f u n c t i o n (m, mu, s igma ) rnorm (m, mu, s igma )

indA <− f u n c t i o n ( x , mu) i f e l s e ( x >= mu, TRUE, FALSE)

p i i d . g e n e r a t o r ( randF = f u n c t i o n (m) randF (m, mu = 2 , s igma = 1) ,

indA = f u n c t i o n ( x ) indA ( x , mu = 2) , e l l = 2L)

Below is the R code producing Figure 5.3.

# Plo t a s h i f t e d Log−norm with d i f f e r e n t v a l u e s o f s igma

# ( s t a n d a r d i s e d to have mean 0 , sd 1)

# This h i g h l i g h t s what i t means f o r ’ r ’ to be c l o s e to 0 or c l o s e to 1

Er f <− f u n c t i o n ( x ){2 ∗ pnorm ( x ∗ s q r t ( 2 ) ) − 1}

# Find r paramete r ( as f u n c t i o n o f s igma )

r . lnorm <− f u n c t i o n ( s i g ){ Er f ( s i g / s q r t ( 2 ) ) / s q r t ( exp ( s i g ˆ2)−1)}

med . lnorm <− f u n c t i o n ( s i g ){ ( exp ( s i g ˆ2)−1)ˆ(−1/2) ∗ ( exp(− s i g ˆ2/2)−1)}
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# Funct i on to graph den s i t y , as f u n c t i o n o f ’ s i g ’

graph . logN <− f u n c t i o n ( s i g = s q r t ( 0 . 1480239) , l egend = T){

# ’mu’ paramete r o f the Log−normal ( as f u n c t i o n o f ’ s i g ’ ) ( such tha t Var [X]=1)

mu <− (− s i g ˆ2 −l og ( exp ( s i g ˆ2)−1))/2

# EX ( a l s o f u n c t i o n o f ’ s i g ’ ) , such tha t (X − EX) has mean 0 and un i t v a r i a n c e

EX <− s q r t (1/ ( exp ( s i g ˆ2)−1))

# median

med <− exp (mu) − EX

r <− r . lnorm ( s i g )

# because we d e a l w i th a s t anda rd d i s t r i b u t i o n , mu V = r

mu V <− r

x <− seq (−2 , 2 . 5 , by = 0.002 )

df <− dlnorm ( x+EX, meanlog = mu, s d l o g = s i g )

cd f <− plnorm ( x+EX, meanlog = mu, s d l o g = s i g )

par (mar = c (2 , 5 , 2 , 1 ) )

p l o t ( x , df , t ype = ” l ” , co l=”brown3” , lwd=3,

main = paste ( ” r =” , round ( r , 3 ) ) , y l im = c(−max( df )/15 , max( df ) ) ,

x l a b=”” , y l a b=”Dens i t y ” , cex . l a b = 2 .25 , cex . a x i s = 2)

# l i n e s at the median and mean

a b l i n e ( v = med , lwd = 2 , co l = ’ da rkgo l d en rod1 ’ )

a b l i n e ( v = 0 , l t y = 3 , lwd = 2)

a b l i n e ( h=0)

ps <− matr i x ( c (0 , 0 , mu V, 0) , nco l = 2 , byrow = T)

po i n t s ( ps , co l=c ( ” s t e e l b l u e 4 ” ) , pch=c ( ” | ” ) , cex =1.7)

t e x t ( ps , co l=c ( ” s t e e l b l u e 4 ” ) , l a b e l s= c ( ”” , ” r ” ) , ad j = c ( . 25 , − . 6 ) , cex = 2 . 5 )

arrows ( x0 = 0 , y0 = 0 , x1 = mu V, y1 = 0 , l eng th = 0 .2 , code = 2 , lwd = 3 ,

co l = ’ s t e e l b l u e 4 ’ )

i f e l s e ( legend , l egend ( ” t o p r i g h t ” , NULL , nco l = 1 ,

cex = 1 .75 , l egend=c ( ”median” , ”mean” ) ,

co l = c ( ” da rkgo l d en rod1 ” , ” b l a c k ” ) , l t y = c ( 1 , 3 ) , lwd = 5) , ”” )

}

par (mfrow=c ( 3 , 1 ) )

graph . logN ( s i g = s q r t ( 0 . 1480239 ) )

graph . logN ( s i g = s q r t ( 0 . 6733226) , l egend = F)

graph . logN ( s i g = s q r t ( 1 . 596642 ) , l egend = F)

Below is the R code producing Figures 5.4, 5.5 and 5.6.

# Ana l y s i n g the ” r ” paramete r as measure o f t a i l −h e a v i n e s s f o r common d i s t r i b u t i o n s

# The a n a l y s i s i s done f o r r ∗ ( i . e . 1− r ) so tha t l a r g e r r ∗ imp ly h e a v i e r− t a i l

# Log Normal (mu, s ) ( s i s l i k e s igma ˆ2)

# min r : 1− s q r t (2/ p i ) = 0.2022

# max r : 1
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e r f <− f u n c t i o n ( x ){2 ∗ pnorm ( x ∗ s q r t ( 2 ) ) − 1}

r . logN <− f u n c t i o n ( s ){1− e r f ( s q r t ( s/ 2) ) / s q r t ( exp ( s )−1)}

r . logN . i n v <− f u n c t i o n ( r ){ un i r oo t ( f u n c t i o n ( x ){ r . logN ( x ) − r } , l ower = 0.00001 ,

upper=100)$ r o o t }

k . logN <− f u n c t i o n ( s ){ exp (4∗ s ) + 2∗exp (3∗ s ) + 3∗exp (2∗ s ) − 6 +3}

k . logN . i n v <− f u n c t i o n ( k ){ un i r oo t ( f u n c t i o n ( x ){ k . logN ( x ) − k } , l ower = 0.0001 ,

upper=100)$ r o o t }

RQW. logN <− f u n c t i o n ( s , q=7/ 8){ ( qlnorm (0.5+q/2 , s d l o g=s q r t ( s ) )

+qlnorm(1−q/2 , s d l o g=s q r t ( s ) )

−2∗qlnorm (3/4 , s d l o g=s q r t ( s ) ) ) / ( qlnorm (0.5+q/2 ,

s d l o g=s q r t ( s ))−qlnorm(1−q/2 , s d l o g=s q r t ( s ) ) )}

RQW. logN . i n v <− f u n c t i o n ( k ){ un i r oo t ( f u n c t i o n ( x ){RQW. logN ( x ) − k } ,

l ower = 0.0001 , upper=1000)$ r o o t }

# Gamma with shape paramete r a

# min r : 1− s q r t (2/ p i ) = 0.2030 ( seems to have nume r i c a l p rob lems to e v a l u a t e at l owe r r )

# max r : 1

r .Gam <− f u n c t i o n ( a ){

mx <− qgamma(1/2 , shape = a , r a t e = 1)

1−2∗mxˆa∗exp(−mx)/ (gamma( a )∗ s q r t ( a ) )

}

r .Gam. i n v <− f u n c t i o n ( r ){ un i r oo t ( f u n c t i o n ( x ){ r .Gam( x ) − r } ,

l ower = .0001 , upper=130)$ r o o t }

k .Gam <− f u n c t i o n ( a ){6/a + 3}

k .Gam. i n v <− f u n c t i o n ( k ){ un i r oo t ( f u n c t i o n ( x ){ k .Gam( x ) − k } ,

l ower = .0001 , upper=130)$ r o o t }

RQW.Gam <− f u n c t i o n ( a , q=7/ 8){ (qgamma(0.5+q/2 , shape=a)+qgamma(1−q/2 , shape=a )

−2∗qgamma(3/4 , shape=a ) ) / (qgamma(0.5+q/2 , shape=a )

−qgamma(1−q/2 , shape=a ) )}

RQW.Gam. i n v <− f u n c t i o n ( r ){ un i r oo t ( f u n c t i o n ( x ){RQW.Gam( x ) − r } ,

l ower = .001 , upper=500)$ r o o t }

# Weibu l l w i th shape paramete r k

# min r : 0 .191 ( rough l y , n ume r i c a l l y )

# max r : 1

r . Wei <− f u n c t i o n ( k ){1−(2∗ igamma(1+1/k , l og ( 2 ) ) − gamma(1+1/k ) ) / s q r t (gamma(1+2/k )

− gamma(1+1/k )ˆ2)}

r . Wei . i n v <− f u n c t i o n ( r ){ un i r oo t ( f u n c t i o n ( x ){ r . Wei ( x ) − r } , l ower = 0.05 , upper=2.9)$ r o o t }

G1 <− f u n c t i o n ( k ){gamma(1+1/k )}

G2 <− f u n c t i o n ( k ){gamma(1+2/k )}

G3 <− f u n c t i o n ( k ){gamma(1+3/k )}

G4 <− f u n c t i o n ( k ){gamma(1+4/k )}

k . Wei <− f u n c t i o n ( k){(−6∗G1( k)ˆ4+12∗G1( k )ˆ2∗G2( k)−3∗G2( k)ˆ2−4∗G1( k )∗G3( k )

+G4( k ) ) / (G2( k)−G1( k )ˆ2)ˆ2 + 3}

k . Wei . i n v <− f u n c t i o n ( k ){ un i r oo t ( f u n c t i o n ( x ){ k . Wei ( x ) − k } , l ower = 0.05 , upper=2.9)$ r o o t }

RQW.Wei <− f u n c t i o n ( k , q=7/ 8){ ( qwe i bu l l (0.5+q/2 , shape=k)+qwe i bu l l (1−q/2 , shape=k )

−2∗ qwe i bu l l (3/4 , shape=k ) ) / ( qwe i bu l l (0.5+q/2 , shape=k )

−qwe i bu l l (1−q/2 , shape=k ) )}

RQW.Wei . i n v <− f u n c t i o n ( r ){ un i r oo t ( f u n c t i o n ( x ){RQW.Wei ( x ) − r } , l ower = 0.05 ,
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upper=2.9)$ r o o t }

# Freche t

# min r : 0 .2453 ( rough l y , n ume r i c a l l y )

# max r : 1

# ( k u r t o s i s does not e x i s t f o r r > 0 .4013)

igamma <− f u n c t i o n ( a , x ){gamma( a ) ∗ (1 − pgamma( x , a , 1 ) ) }

r . Fre <− f u n c t i o n ( a){1−(gamma(1−1/a ) −

2∗ igamma(1−1/a , l og ( 2 ) ) ) / s q r t (gamma(1−2/a)−gamma(1−1/a )ˆ2)}

r . Fre . i n v <− f u n c t i o n ( r ){ un i r oo t ( f u n c t i o n ( x ){ r . Fre ( x ) − r } , l ower = 2.0001 ,

upper=10000)$ r o o t }

k . Fre <− f u n c t i o n ( a ){ (gamma(1−4/a)−4∗gamma(1−3/a )∗gamma(1−1/a )

+3∗gamma(1−2/a )ˆ2) / (gamma(1−2/a)−gamma(1−1/a )ˆ2)ˆ2−6 +3}

k . Fre . i n v <− f u n c t i o n ( k ){ un i r oo t ( f u n c t i o n ( x ){ k . Fre ( x ) − k } , l ower = 4.0001 ,

upper=1000)$ r o o t }

q f r e c h e t <− f u n c t i o n (q , a ){ l og (1/q)ˆ{−1/a}}

RQW. Fre <− f u n c t i o n ( a , q=7/ 8){ ( q f r e c h e t (0.5+q/2 , a)+ q f r e c h e t (1−q/2 , a )

−2∗ q f r e c h e t (3/4 , a ) ) / ( q f r e c h e t (0.5+q/2 , a )

−q f r e c h e t (1−q/2 , a ) )}

RQW. Fre . i n v <− f u n c t i o n ( rqw ){ un i r oo t ( f u n c t i o n ( x ){RQW. Fre ( x ) − rqw } , l ower = 0 .2 ,

upper=1000)$ r o o t }

# Find a i n Pare to ( a , lambda ) ( a>2)

# min r : 1− l o g (2 ) = 0.3069

# max r : 1

# ( Ku r t o s i s does not e x i s t pa s t r > 0 .4648)

r . Par <− f u n c t i o n ( a){1− s q r t ( a∗ ( a−2))∗ (2ˆ(1 /a)−1) }

r . Par . i n v <− f u n c t i o n ( r ){ un i r oo t ( f u n c t i o n ( x ){ r . Par ( x ) − r } , l ower = 2.00001 ,

upper=10000)$ r o o t }

k . Par <− f u n c t i o n ( a ){6∗ ( aˆ3+aˆ2−6∗a−2)/ ( a∗ ( a−3)∗ ( a−4)) +3}

k . Par . i n v <− f u n c t i o n ( k ){ un i r oo t ( f u n c t i o n ( x ){ k . Par ( x ) − k } , l ower = 4.00001 ,

upper=10000)$ r o o t }

qpa r e to <− f u n c t i o n (q , a ){(1−q)ˆ(−1/a)−1}

RQW. Par <− f u n c t i o n ( a , q=7/ 8){ ( qpa r e to (0.5+q/2 , a)+qpa re to (1−q/2 , a )

−2∗ qpa r e to (3/4 , a ) ) / ( qpa r e to (0.5+q/2 , a )

−qpa r e to (1−q/2 , a ) )}

RQW. Par . i n v <− f u n c t i o n ( r ){ un i r oo t ( f u n c t i o n ( x ){RQW. Par ( x ) − r } , l ower = .1 ,

upper=1000)$ r o o t }

# Student ( v ) ( v > 2)

# min r : 1− s q r t (2/ p i ) = 0.2028 ( seems to have nume r i c a l p rob lems to e v a l u a t e at l owe r r )

# max r : 1

# ( Ku r t o s i s does not e x i s t pa s t r > 0 .2928)

r . t <− f u n c t i o n ( v){1−2∗ s q r t ( ( v−2)/ p i )∗gamma ( ( v+1)/2)/ ( ( v−1)∗gamma( v/ 2))}

r . t . i n v <− f u n c t i o n ( r ){ un i r oo t ( f u n c t i o n ( x ){ r . t ( x ) − r } , l ower = 2.00001 ,

upper=340)$ r o o t }

# Exces s Ku r t o s i s

k . t <− f u n c t i o n ( v ){6/ ( v−4) +3}

k . t . i n v <− f u n c t i o n ( k ){ un i r oo t ( f u n c t i o n ( x ){ k . t ( x ) − k } , l ower = 4.00001 ,

276



upper=340)$ r o o t }

RQW. t <− f u n c t i o n ( v , q=7/ 8){ ( qt (0.5+q/2 , df=v)+qt (1−q/2 , df=v )

−2∗qt (3/4 , df=v ) ) / ( qt (0.5+q/2 , df=v)−qt (1−q/2 , df=v ))}

RQW. t . i n v <− f u n c t i o n ( r ){ un i r oo t ( f u n c t i o n ( x ){RQW. t ( x ) − r } , l ower = 0.05 ,

upper=340)$ r o o t }

# Sequence o f v a l u e s o f Ku r t o s i s (NOT ex c e s s k u r t o s i s )

n <− 1000

range . k u r t <− seq ( from = 10 , to = 300 , l eng th . out=n )

# Sequence o f v a l u e s o f r

r . end <− 0 .95

# maximal r ange s f o r a l l d i s t r i b u t i o n s

range . Fre <− seq ( from=0.2453 , to = r . end , l eng th . out=n )

range . LogN <− seq ( from=0.2022 , to = r . end , l eng th . out=n )

range .Gam <− seq ( from=0.2030 , to = r . end , l eng th . out=n )

range . Wei <− seq ( from=0.191 , to = r . end , l eng th . out=n )

range . t <− seq ( from=0.2028 , to = r . end , l eng th . out=n )

range . Par <− seq ( from=0.3069 , to = r . end , l eng th . out=n )

# ad d i t i o n a l r ange s such tha t the k u r t o s i s e x i s t s

range . 2 . Fre <− seq ( from=0.2453 , to = 0 .4013 , l eng th . out=n )

range . 2 . t <− seq ( from=0.2028 , to = 0 .2928 , l eng th . out=n )

range . 2 . Par <− seq ( from=0.3069 , to = 0 .4648 , l eng th . out=n )

# range o f RQW

range .RQW <− seq ( from=0.3 , to = .995 , l eng th . out=n )

# Co l o r s to be used f o r p l o t s

my . co l = c ( ”brown3” , ” c o r n f l ow e r b l u e ” , ” b l u e v i o l e t ” , ” da rkgo l d en rod1 ” , ” da rkg r e en ” ,

” p ink ” )

# I n i t i a l i s e s equence s o f pa ramete r s and k u r t o s i s

logN . para <− rep (NA, n )

k . logN . vec <− rep (NA, n )

RQW. logN . vec <− rep (NA, n )

Wei . para <− rep (NA, n )

k . Wei . vec <− rep (NA, n )

RQW.Wei . vec <− rep (NA, n )

Gam. para <− rep (NA, n )

k .Gam. vec <− rep (NA, n )

RQW.Gam. vec <− rep (NA, n )

t . para <− rep (NA, n )

k . t . vec <− rep (NA, n )

RQW. t . vec <− rep (NA, n )
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Par . para <− rep (NA, n )

k . Par . vec <− rep (NA, n )

RQW. Par . vec <− rep (NA, n )

Fre . para <− rep (NA, n )

k . Fre . vec <− rep (NA, n )

RQW. Fre . vec <− rep (NA, n )

# Find i ng the ”k : k u r t o s i s ” c o r r e s p ond i n g to s p e c i f i c v a l u e s o f ”RQW”

f o r ( i i n 1 : n ){

logN . para [ i ] <− RQW. logN . i n v ( range .RQW[ i ] )

k . logN . vec [ i ] <− k . logN ( logN . para [ i ] )

Wei . para [ i ] <− RQW.Wei . i n v ( range .RQW[ i ] )

k . Wei . vec [ i ] <− k . Wei (Wei . para [ i ] )

Gam. para [ i ] <− RQW.Gam. i n v ( range .RQW[ i ] )

k .Gam. vec [ i ] <− k .Gam(Gam. para [ i ] )

}

# P lo t s : k u r t o s i s v e r s u s RQW ( l og s c a l e )

pdf ( f i l e = ”k . vs .RQW0875 . pdf ” , width = 8 , h e i g h t = 6)

y . range <− c (min ( l og ( k . logN . vec ) , l og ( k . Wei . vec ) , l og ( k .Gam. vec ) ) ,

max( l og ( k . logN . vec ) , l og ( k . Wei . vec ) , l og ( k .Gam. vec ) ) )

par (mar = c (5 , 5 , 2 , 1 ) )

p l o t ( range .RQW, l og ( k . logN . vec ) , t ype = ’ l ’ , lwd=3, y l im = y . range ,

l t y = 1 , co l=my . co l [ 1 ] , x l a b=”RQW” , y l a b=” l og ( k u r t o s i s ) ” , cex . l a b = 1 . 5 ,

cex . a x i s = 1 .25 )

l i n e s ( range .RQW, l og ( k . Wei . vec ) , lwd = 3 , l t y =2, co l=my . co l [ 2 ] )

l i n e s ( range .RQW, l og ( k .Gam. vec ) , lwd = 3 , l t y =3, co l=my . co l [ 3 ] )

l egend ( ’ t o p l e f t ’ , nco l=1, l egend=c ( ”LogN” , ”We ibu l l ” , ”Gamma” ) , co l=my . co l [ 1 : 3 ] ,

l t y = 1 : 3 , lwd = 5 , cex = 1 . 5 )

# Sav ing p l o t

dev . o f f ( )

# Find i ng the ”k : k u r t o s i s ” c o r r e s p ond i n g to s p e c i f i c v a l u e s o f ” r ∗”

f o r ( i i n 1 : n ){

logN . para [ i ] <− r . logN . i n v ( range . LogN [ i ] )

k . logN . vec [ i ] <− k . logN ( logN . para [ i ] )

Wei . para [ i ] <− r . Wei . i n v ( range . Wei [ i ] )

k . Wei . vec [ i ] <− k . Wei (Wei . para [ i ] )

Gam. para [ i ] <− r .Gam. i n v ( range .Gam[ i ] )

k .Gam. vec [ i ] <− k .Gam(Gam. para [ i ] )

Par . para [ i ] <− r . Par . i n v ( range . 2 . Par [ i ] )

k . Par . vec [ i ] <− k . Par ( Par . para [ i ] )
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Fre . para [ i ] <− r . Fre . i n v ( range . 2 . Fre [ i ] )

k . Fre . vec [ i ] <− k . Fre ( Fre . para [ i ] )

t . para [ i ] <− r . t . i n v ( range . 2 . t [ i ] )

k . t . vec [ i ] <− k . t ( t . para [ i ] )

}

# P lo t s : k u r t o s i s v e r s u s r ( l o g s c a l e )

pdf ( f i l e = ”k . vs . r . pd f ” , width = 8 , h e i g h t = 6)

y . range <− c (min ( l og ( k . logN . vec ) , l og ( k . Wei . vec ) , l og ( k .Gam. vec ) , l og ( k . Par . vec ) ,

l og ( k . Fre . vec ) ) ,

max( l og ( k . logN . vec ) , l og ( k . Wei . vec ) , l og ( k .Gam. vec ) , l og ( k . Par . vec ) ,

l og ( k . Fre . vec ) ) )

par (mar = c (5 , 5 , 2 , 1 ) )

p l o t ( range . LogN , l og ( k . logN . vec ) , t ype = ’ l ’ , lwd=3, y l im = y . range ,

l t y = 1 , co l=my . co l [ 1 ] , x l a b=” r ∗” , y l a b=” l og ( k u r t o s i s ) ” , cex . l a b = 1 . 5 ,

cex . a x i s = 1 .25 )

l i n e s ( range . Wei , l og ( k . Wei . vec ) , lwd = 3 , l t y =2, co l=my . co l [ 2 ] )

l i n e s ( range .Gam, l og ( k .Gam. vec ) , lwd = 3 , l t y =3, co l=my . co l [ 3 ] )

l egend ( ’ t o p l e f t ’ , nco l=1, l egend=c ( ”LogN” , ”We ibu l l ” , ”Gamma” ) , co l=my . co l [ 1 : 5 ] ,

l t y = 1 : 5 , lwd = 5 , cex = 1 . 5 )

# Sav ing p l o t

dev . o f f ( )

# Find i ng the ”RQW” co r r e s p ond i n g to s p e c i f i c v a l u e s o f ” r ∗”

f o r ( i i n 1 : n ){

logN . para [ i ] <− r . logN . i n v ( range . LogN [ i ] )

RQW. logN . vec [ i ] <− RQW. logN ( logN . para [ i ] )

Wei . para [ i ] <− r . Wei . i n v ( range . Wei [ i ] )

RQW.Wei . vec [ i ] <− RQW.Wei (Wei . para [ i ] )

Gam. para [ i ] <− r .Gam. i n v ( range .Gam[ i ] )

RQW.Gam. vec [ i ] <− RQW.Gam(Gam. para [ i ] )

Par . para [ i ] <− r . Par . i n v ( range . Par [ i ] )

RQW. Par . vec [ i ] <− RQW. Par ( Par . para [ i ] )

Fre . para [ i ] <− r . Fre . i n v ( range . Fre [ i ] )

RQW. Fre . vec [ i ] <− RQW. Fre ( Fre . para [ i ] )

t . para [ i ] <− r . t . i n v ( range . t [ i ] )

RQW. t . vec [ i ] <− RQW. t ( t . para [ i ] )

}

# P lo t s : RQW ve r s u s r
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pdf ( f i l e = ”RQW. vs . r . pd f ” , width = 8 , h e i g h t = 6)

y . range <− c ( 0 . 0 , 1 )

par (mar = c (5 , 5 , 2 , 1 ) )

p l o t ( range . LogN , (RQW. logN . vec ) , t ype = ’ l ’ , lwd=3, y l im = y . range ,

l t y = 1 , co l=my . co l [ 1 ] , x l a b=” r ∗” , y l a b=”RQW” , cex . l a b = 1 . 5 , cex . a x i s = 1 .25 )

l i n e s ( range . Wei , (RQW.Wei . vec ) , lwd = 3 , l t y =2, co l=my . co l [ 2 ] )

l i n e s ( range .Gam, (RQW.Gam. vec ) , lwd = 3 , l t y =3, co l=my . co l [ 3 ] )

l i n e s ( range . Par , (RQW. Par . vec ) , lwd = 3 , l t y =4, co l=my . co l [ 4 ] )

l i n e s ( range . Fre , (RQW. Fre . vec ) , lwd = 3 , l t y =5, co l=my . co l [ 5 ] )

l i n e s ( range . t , RQW. t . vec , lwd = 3 , l t y =6, co l=my . co l [ 6 ] )

l egend ( ’ t o p l e f t ’ , nco l=1,

l egend=c ( ”LogN” , ”We ibu l l ” , ”Gamma” , ” Pareto ” , ” F r e che t ” , ” Student ” ) ,

co l=my . co l [ 1 : 6 ] , l t y = 1 : 6 , lwd = 5 , cex = 1 . 5 )

# Sav ing p l o t

dev . o f f ( )
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A.5 Codes for Chapter 6

Below is the R code producing Figures 6.2 and 6.3.

# den s i t y f u n c t i o n f o r the VG(n , 0 , 1 , 0) d i s t r i b u t i o n

den s i t y VG <− f u n c t i o n ( x , n ) {

r e t u r n (1 / ( s q r t ( p i ) ∗ gamma( n / 2) ) ∗ ( abs ( x ) / 2) ˆ ( ( n − 1) / 2) ∗

besse lK ( abs ( x ) , ( n − 1) / 2) )

}

# den s i t y o f the c o n v o l u t i o n i n the main theorem

f . s <− f u n c t i o n ( s ) {

c o n v o l u t i o n den s i t y <− f u n c t i o n ( y ) {dnorm ( y / s q r t (1 − r ˆ 2 ) ) / s q r t (1 − r ˆ 2)∗

den s i t y VG( ( s − y ) / ( r / s q r t ( e l l − 1 ) ) , e l l − 1) / ( r / s q r t ( e l l − 1))}

r e t u r n ( i n t e g r a t e ( c o n v o l u t i o n dens i t y , l ower = −I n f , upper = s ,

abs . t o l = 10 ˆ (−20))$ v a l u e +

i n t e g r a t e ( c o n v o l u t i o n dens i t y , l ower = s , upper = In f ,

abs . t o l = 10 ˆ (−20))$ v a l u e )

}

# cd f o f the c o n v o l u t i o n i n the main theorem

F . S <− f u n c t i o n ( s ) {

c o n v o l u t i o n cd f <− f u n c t i o n ( y ) {pnorm ( y / s q r t (1 − r ˆ 2 ) ) ∗

den s i t y VG( ( s − y ) / ( r / s q r t ( e l l − 1 ) ) , e l l − 1) / ( r / s q r t ( e l l − 1))}

r e t u r n ( i n t e g r a t e ( c o n v o l u t i o n cdf , l ower = −I n f , upper = s ,

abs . t o l = 10 ˆ (−20))$ v a l u e +

i n t e g r a t e ( c o n v o l u t i o n cdf , l ower = s , upper = In f ,

abs . t o l = 10 ˆ (−20))$ v a l u e )

}

# Plo t d f and CDF f o r many v a l u e s o f ’ r ’ o r many v a l u e s o f ’ e l l ’

par (mfrow = c (1 , 2 ) )

par (mar = c (3 , 6 , 1 , 1 ) )

x <− matr i x ( seq (−3 , 3 , by = 0 .005 ) , nco l = 1)

# To c r e a t e F i g u r e s : e i t h e r f i x r and change ’ e l l ’ , o r the o th e r way around

r <− 0 .99

e l l <− 2

hx . r099 <− app ly ( x , 1 , f . s )

hxCDF . r099 <− app ly ( x , 1 , F . S )

#r <− 0 .8

e l l <− 4

hx . r08 <− app ly ( x , 1 , f . s )

hxCDF . r08 <− app ly ( x , 1 , F . S )

#r <− 0 .6
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e l l <− 6

hx . r06 <− app ly ( x , 1 , f . s )

hxCDF . r06 <− app ly ( x , 1 , F . S )

#Dens i t y

p l o t ( x , hx . r099 , type = ” l ” , l t y = 1 , co l = ” darko range ” , lwd = 4 ,

x l a b=”” , y l a b=”Dens i t y ” , cex . l a b = 2 .25 , cex . a x i s = 2)

l i n e s ( x , hx . r08 , t ype = ” l ” , l t y = 3 , co l = ” b l u e v i o l e t ” , lwd = 5)

l i n e s ( x , hx . r06 , t ype = ” l ” , l t y = 6 , co l = ” c o r n f l ow e r b l u e ” , lwd = 4)

curve (dnorm ( x , 0 , 1 ) , co l=” b l a ck ” , l t y = 1 , lwd=2, add=TRUE)

#CDF

p l o t ( x , hxCDF . r099 , type = ” l ” , l t y = 1 , co l = ” darko range ” , lwd = 4 ,

x l a b=”” , y l a b=”CDF” , cex . l a b = 2 .25 , cex . a x i s = 2)

l i n e s ( x , hxCDF . r08 , type = ” l ” , l t y = 3 , co l = ” b l u e v i o l e t ” , lwd = 5)

l i n e s ( x , hxCDF . r06 , type = ” l ” , l t y = 6 , co l = ” c o r n f l ow e r b l u e ” , lwd = 4)

curve (pnorm ( x , 0 , 1 ) , co l=” b l a ck ” , l t y = 1 , lwd=2, add=TRUE)

l egend ( ” bo t tomr i gh t ” , NULL , nco l = 1 , cex = 1 . 1 ,

l egend=c ( ” r = 0 .99 ” , ” r = 0 .8 ” , ” r = 0 .6 ” , ”N(0 , 1 ) ” ) ,

co l=c ( ” da rko range ” , ” b l u e v i o l e t ” , ” c o r n f l ow e r b l u e ” , ” b l a c k ” ) ,

l t y = c ( 1 , 3 , 6 , 1 ) , lwd = c ( 4 , 5 , 4 , 2 ) )

Below is the R codes which produced the simulations results of Section 6.5.

###########################################

## In c i d e n c e mat r i x o f p r o j e c t i v e p l a n e s ##

###########################################

r e q u i r e ( n o r t e s t ) # f o r the Anderson−Da r l i n g and Pearson t e s t s a t the end

## the graph i s b i p a r t i t e , ( q+1)− r e g u l a r , has g i r t h 6 , d i amete r 3

## and 2∗ ( qˆ2 + q + 1) v e r t i c e s

## (q must be a pr ime power )

## Sigma mat r i x

s igma <− f u n c t i o n (u , q ) {

r e s <− ( u ∗ (matr i x ( rep ( 0 : ( q − 1) , q ) , nrow = q )

+ t (matr i x ( rep ( 0 : ( q − 1) , q ) , nrow = q ) ) ) ) %% q

re tu rn ( r e p l a c e ( r e s , r e s == 0 , q ) )

}

## Po s i t i o n mat r i x o f A

pm <− f u n c t i o n (A, q ) {

r e s <− matr i x ( as . i n t e g e r (A == 1) , nrow = q )

f o r ( i i n 2 : q ) {

r e s <− cb ind ( r e s , matr i x ( as . i n t e g e r (A == i ) , nrow = q ) )

}

r e t u r n ( r e s )
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}

## Po s i t i o n mat r i x o f a f am i l y F

pmf <− f u n c t i o n (q ) {

r e s <− pm( sigma (1 , q ) , q )

f o r ( i i n 2 : ( q − 1) ) {

r e s <− r b i nd ( r e s , pm( sigma ( i , q ) , q ) )

}

r e t u r n ( r e s )

}

## In c i d e n c e mat r i x o f the b i p a r t i t e graph

i n c mat <− f u n c t i o n (q ) {

r e s 1 <− r b i nd ( pmf (q ) , do . c a l l ( cbind , r e p l i c a t e (q , d iag (q ) , s i m p l i f y=FALSE ) ) ,

pm(matr i x ( rep ( 1 : q , q ) , nrow = q ) , q ) , rep (0 , q ˆ 2) )

r e s 2 <− r b i nd ( t (pm(matr i x ( rep ( 1 : ( q + 1) , q ) , nrow = q ) , q + 1) ) , rep (1 , q + 1))

r e t u r n ( cb ind ( re s1 , r e s 2 ) )

}

## Adjacency mat r i x

ad j mat <− f u n c t i o n (q ) {

n <− q ˆ 2 + q + 1

zz <− matr i x (0 , nrow = n , nco l = n)

im <− i n c mat (q )

r e t u r n ( r b i nd ( cb ind ( zz , im ) , cb ind ( t ( im ) , zz ) ) )

}

## Computation o f the s t a n d a r d i z e d r v Z

s tand rand <− f u n c t i o n (q ) {

n v e r t <− 2 ∗ (q ˆ 2 + q + 1) ## number o f v e r t i c e s i n the graph

n edges <− n v e r t ∗ (q + 1) / 2 ## number o f edges i n the graph

vec <− rbinom ( n ve r t , 1 , 1 / 2)

mat <− matr i x ( rep ( vec , n v e r t ) , n v e r t )

r e s <− 1 − ( (mat + t (mat ) ) %% 2)

x <− r e s ∗ ad j mat (q ) ## gen e r a t e s r v s on the edges

r e t u r n ( ( sum ( x ) / 2 − n edges / 2) / s q r t ( n edges / 4) )

}

## Monte−Car l o h i s tog ram

q <− 2 ˆ 6

sim <− 5000

z <− rep (0 , s im )

f o r ( i i n 1 : s im ) {
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z [ i ] <− s tand rand (q )

}

h i s t ( z )

qqnorm ( z , pch = 1 , frame = FALSE)

qq l i n e ( z , co l = ” s t e e l b l u e ” , lwd = 2)

s h a p i r o . t e s t ( z )

ad . t e s t ( z )

pea r son . t e s t ( z )
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