
A Decision Support System for Solving Job-Shop Scheduling
Problems using Genetic Al-gorithms

Author:
Hasan, S. M. Kamrul; Sarker, Ruhul; Essam, Daryl

Publication details:
Asia-Pacific Symposium on Intelligent & Evolutionary Systems
pp. 71-79
9780646506715 (ISBN)

Event details:
The 12th Asia-Pacific Symposium on Intelligent & Evolutionary Systems (IES’08)
Melbourne, Australia

Publication Date:
2008

DOI:
https://doi.org/10.26190/unsworks/544

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/39970 in https://
unsworks.unsw.edu.au on 2024-04-23

http://dx.doi.org/https://doi.org/10.26190/unsworks/544
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/39970
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au


 
 

A Decision Support System for Solving Job-Shop Scheduling Problems Using  
Genetic Algorithms 

 
 

S. M. Kamrul Hasan, Ruhul Sarker and Daryl Essam 
 

School of Information Technology and Electrical Engineering 
University of New South Wales at the Australian Defence Force Academy 

Northcott Drive, Canberra ACT 2600, Australia 
Email: {kamrul, r.sarker, d.essam}@adfa.edu.au 

 
 

 
Abstract: The primary objective of this research is to solve 
the job-shop scheduling problems by minimizing the 
makespan. In this paper, we first developed a genetic algo-
rithm (GA) for solving JSSPs, and then improved the algo-
rithm by integrating it with three priority rules. The perform-
ance of the developed algorithm was tested by solving 40 
benchmark problems and comparing their results with that of 
a number of well-known algorithms. For convenience of im-
plementation, we developed a decision support system (DSS). 
In the DSS, we built a graphical user interface (GUI) for user 
friendly data inputs, model choices, and output generation. 
An overview of the DSS and the analysis of experimental 
results are provided. 
 
Keywords: Job-shop scheduling, genetic algorithm, decision 
support system, priority rule, makespan, 
 
1. Introduction 
 
The job-shop scheduling problem (JSSP) is one of the well 
known practical planning problems in the area of manufactur-
ing and production planning. A classical JSSP is a combina-
tion of N jobs and M machines. Each job is composed of a set 
of operations that has to be processed, on a set of known ma-
chines, and where each operation has a known processing 
time. A schedule is a complete set of operations, required by 
a job, to be performed on different machines, in a given order. 
In addition, the process may need to satisfy other constraints 
such as (i) no more than one operation of any job can be exe-
cuted simultaneously and (ii) no machine can process more 
than one operation at the same time. The widely used objec-
tives considered in JSSPs are the minimization of makespan, 
the minimization of tardiness, and the maximization of 
throughput. Makespan is the total time between the starting 
of the first operation and the ending of the last operation. In 
this research, the objective considered is the makespan mini-
misation as this is more practical than other objectives used 
in solving JSSPs [1-7]. 

The JSSP is commonly known as one of the most difficult 
NP-complete problems [8] and is also well-known for its 
practical applications in many manufacturing industries. Over 
the last few decades, many algorithms have been developed 
to solve JSSPs. However, no single algorithm is suitable for 

solving all kinds of JSSP with both a reasonably good solu-
tion and within a reasonable computational effort. Thus, there 
is scope to analyze the difficulties of JSSPs as well as to de-
sign improved algorithms that may be able to solve them ef-
fectively. 

Over the last few decades, a large amount of research has 
been reported that aim to solve JSSP by using Genetic Algo-
rithms (GAs) and hybrid GAs [3, 5, 9-12]. The earliest appli-
cation of GAs for solving JSSPs was reported in the mid-80s 
by Lawrence [13]. In recent times, it is a common practice to 
improve the performance of GA by incorporating different 
search and heuristic techniques, and this approach is readily 
applied to solving the JSSPs. For example, the hybrid meth-
ods proposed by Shigenobu et al. [14], Park et al. [15], Della 
Croce et al. [10] and Ombuki and Ventresca [11].  

Although the development of efficient algorithms for solv-
ing any complex problem is very important, an appropriate 
implementation process of these algorithms is equally impor-
tant. As the user and planner of job-shop scheduling may not 
be expert on optimization, computer programming and ge-
netic algorithms, the development of a decision support sys-
tem (DSS) would help in implementing the algorithm without 
understanding (or going through) the complex methodology 
involved.  

DSS is a computer-based interactive system that supports 
decision makers utilizing data and models. It solves problems 
with various degrees of structures and focuses on the effec-
tiveness rather than the efficiency of the decision process [16]. 
The computer programs need to be interactive with options to 
change all the parameters. Also, it needs to carry out all the 
detailed information about scheduling. For problems like 
JSSPs, a Gantt chart is preferable to represent the solutions 
graphically [17]. 

Numerous works have appeared on the development of 
DSS for different versions of scheduling problems, especially 
industrial scheduling problems or JSSPs. In the early 1980s, 
Viviers [17] developed a DSS to solve JSSPs. As well as 
their interactive user interface, they closely focused on the 
management issues related to decision making, such as those 
of: accepting or rejecting orders, subcontracting, increasing 
capacity or workload, breaking down the jobs, assigning jobs 
to artesans, assigning due-date and reassigning the jobs if 
necessary. In their model based management system, their 
objectives were to minimize the work-in-progress, as well as 
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reducing the lead time. Moreover, improving customer satis-
faction by attaining due-dates was considered. More recently, 
Speranza and Werlee [18] worked to link the fields of DSS 
and Operations Research (OR), and discussed how DSS can 
take advantage of the methodology of OR. Hence they con-
sequently focused on scheduling problems, as one of the most 
challenging applications where both DSS and OR can be ap-
plied successfully. The authors raised certain issues to justify 
the effectiveness of DSS over simplified models, such as: 
dynamic decision making, which may change depending on 
the particular situation, the inability to impose the entire 
knowledge of a decision maker in the models, the presence of 
unusual circumstances like political issues, the knowledge of 
users over the problems and the preparation of complex data. 
These issues are common in real life problems while they are 
hard to include in the models. In their models, they consid-
ered flexibility for users, including; reassigning due date and 
operation priorities, resetting total number of products to be 
produced, and moving an operation to a particular machine. 
They have reported that the model is capable of adjusting 
overlapping conditions and prohibits invalid machine selec-
tion. Also recently,  McKay and Buzacott [19] and McKay 
and Wiers [20] developed a computerized system for solving 
scheduling problems, more precisely: JSSPs and timetabling. 
The first work may not be treated as DSS due to the absence 
of some necessary DSS components such as data base man-
agement. The authors implemented an interactive computer 
based interface for solving JSSPs. In their later work, they 
emphasized the decision making functionalities, such as start 
of day routine and special periods (like Friday, last day of the 
month etc.) for timetabling, and categorized their system as a 
DSS. Petrovic et al. [21] developed a decision support tool 
for solving JSSPs that used a fuzzy-genetic model. Their 
main emphasis was also on model based management. They 
considered multi-objective GA as a model for problem solv-
ing. Our main focus is also on the problem solving method-
ology and its relationship with the intractability of the DSS. 
At the current stage, we considered benchmark problems, 
rather than real-life industrial problems, to better judge the 
system performance. Silva et al. [22] developed a DSS for 
use in the mould industry, for their production planning. 
They mainly combined a system model, data model, and 
MAPP (Mould: Assistant Production Planner) to form the 
system. Data coming from the client are processed and stored 
in a DBMS, which is used by the application server. A web 
based client module is used to interface with the system. In 
the work of Kumar and Rajotia [23], they have integrated the 
process plan generator, DBMS and the scheduler with the 
DSS. The job-scheduling operations are performed by the 
scheduler, where the process plan generator organizes differ-
ent tools for generating an appropriate machine setup. DSS 
can more generally be applied on numerous applications, 
including in scheduling, as may be found in the survey of 
Eom and Lee [16] and [24].  

In this research, we first develop a traditional genetic algo-
rithm (TGA) for solving JSSPs which includes only the basic 
components of an evolutionary algorithm. In this GA, each 
individual represents a particular schedule and the individuals 
are represented by a sequence of binary numbers which is 
commonly known as a chromosome. The chromosomes 

evolve in every generation by changing the arrangement of 
the binary bits. After reproduction, each and every infeasible 
individual is repaired to be feasible. This can also be termed 
as a genotype representation. On the other hand, the pheno-
type representation of the problem is a matrix of m×n integer 
numbers, where each row represents the sequence of jobs for 
a given machine. We mostly focused on the phenotype repre-
sentations to analyze the schedules. The binary genotype is 
effective for the simple crossover and mutation techniques. 

We then improve the TGA solutions by incorporating 
three priority rules, namely: partial reordering (PR), gap re-
duction (GR) and restricted swapping (RS). The details of 
these priority rules are discussed in a later section and also in 
[25, 26]. To test the performance of our proposed algorithms, 
we have solved 40 benchmark problems originally presented 
in Lawrence [27]. Our algorithm is able to obtain the exact 
optimal solutions for 27 out of 40 test problems. The overall 
performance of our algorithm is better than many of the key 
JSSP algorithms appearing in the literature. 

After successful implementation of the algorithms, we de-
velop a graphical user interface (GUI), as a part of the deci-
sion support system to give the user better flexibility in 
choosing parameters, in selecting appropriate algorithms, and 
in generating the desired outputs. We incorporate the decision 
making facilities for better management facilities. The output 
has the option to visualize the schedule in Gantt chart form. 
Regarding the algorithmic viewpoint, the current version of 
our algorithms is a modified but improved version from our 
earlier publications. The earlier version of these algorithms 
with experimental results on fewer test problems can be 
found in Hasan et al. [25, 26, 28]. 

The paper is organized as follows. After the introduction, 
the problem definition is presented in Section 2. Section 3 
discusses the chromosome representation for JSSPs, and how 
to handle infeasibility in JSSPs. Section 4 introduces new 
priority rules for improving the performance of traditional 
GA. Section 5 presents the development of the decision sup-
port system including GUI.  Section 6 presents the develop-
ment of our proposed algorithms and implementation aspects. 
Section 7 provides both experimental results and parameter 
analysis. Finally, the conclusions and future research direc-
tions are presented. 
 
2. Definition of a Standard JSSP 
 
The standard job-shop scheduling problem makes the follow-
ing assumptions: 
− Each job consists of a finite number of operations. 
− The processing time for each operation using a particular 

machine is defined. 
− There is a pre-defined sequence of operations that has to 

be maintained to complete each job. 
− Delivery times of the products are undefined. 
− There is no setup or tardiness cost. 
− A machine can process only one job at a time. 
− Each job is performed on each machine only once. 
− No machine can deal with more than one type of task. 
− The system cannot be interrupted until each operation of 

each job is finished. 
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− No machine can halt a job and start another job before 
finishing the previous one. 

− Each and every machine has full efficiency. 
The objective of the problem is the minimization of the total 
time taken to complete each and every operation, while satis-
fying the machining constraints and required operational se-
quence of each job. In this research, we develop three differ-
ent algorithms for solving JSSPs. These algorithms are 
briefly discussed in the next three sections. 
 
3. Job-Shop Scheduling with GA 
 
As indicated earlier, we consider the minimization of 
makespan as the objective of JSSPs. According to the prob-
lem definition, the sequence of machine use (this is also the 
sequence of operations as any one machine is capable of per-
forming only one type of operation) by each job is given. In 
this case, if we know either the starting or finishing time of 
each operation, we can calculate the makespan for each job 
and hence generate the whole schedule. In JSSPs, the main 
problem is to find the sequence of jobs to be operated on each 
machine that minimizes the overall makespan. The chromo-
some representation is an important issue in solving JSSPs 
using GAs. 

In solving JSSPs using GAs, the chromosome of each in-
dividual usually comprises the schedule. Chromosomes can 
be represented by binary, integer or real numbers. Some 
popular representations for solving JSSPs are: operation 
based, job based, preference-list based, priority-rule based, 
and job pair-relationship based representations [29]. We se-
lect the job pair-relationship based representation for the 
genotype, as in [3-5, 30], due to the flexibility of applying 
genetic operators to it. In this representation, a chromosome 
is symbolized by a binary string, where each bit stands for the 
order of a job pair (u,v) for a particular machine m. This 
means that for an individual p, the job u must precede the job 
v in machine m. The job having the maximum number of 1s 
is the highest priority job for that machine. The binary string 
acts as the genotype of individuals. It is possible to construct 
a phenotype which is the job sequence for each machine. The 
binary representation is helpful if the conventional crossover 
and mutation techniques are used. We use the binary repre-
sentation for the flexibility of applying simple reproduction 
operators. We also use the constructed phenotype as the 
chromosome on which to apply priority rules. 

In this algorithm, we perform simple two-point crossover 
and bit flip mutation. The crossover points are selected ran-
domly. After performing crossover and mutation, we map the 
phenotype directly from the binary string i.e. the chromo-
some. As the reproduction operations are applied on a ran-
dom basis, it does not ensure feasibility. This is why we ap-
ply two repairing techniques: local and global harmonization, 
in order to make the infeasible solutions into feasible solu-
tions. Local harmonization is used during construction of the 
phenotype (i.e. the sequence of operations for each machine) 
from the binary genotype. From a chromosome of length l, m 
tables are formed. The technique was also fused in [3, 5, 31]. 

Global harmonization is a repairing technique applied di-
rectly on the phenotype for migrating infeasible solutions into 
feasible solutions. For an m×n job-shop scheduling problem, 

there will be (n!)m possible solutions. Only a small percentage 
of these solutions are feasible. The solutions mapped from 
the chromosome do not guarantee feasibility. Global har-
monization swaps between the operations to reach the nearest 
feasible solution. 

Suppose job j3 specifies its first, second and third opera-
tions are to be processed on machines m3, m2 and m1 respec-
tively, and the job j1 specifies its first, second and third opera-
tions on machines m1, m3 and m2 respectively. Further assume 
that an individual solution (or chromosome) indicates that j3 
is scheduled on machine m1 first as its first operation, fol-
lowed by job j1. Such a schedule is infeasible as it violates the 
defined sequence of operations for job j3. In this case, the 
swapping of places between job j1 and job j3 on machine m1, 
would allow job j1 to have its first operation on m1 as re-
quired, and it may provide an opportunity for job j3 to visit m3 
and m2 before visiting m1 as per its order. Usually, the proc-
ess identifies the violations sequentially and performs the 
swap one by one until the entire schedule is feasible. In this 
case, there is a possibility that some swaps performed earlier 
in the process are required to swap back to their original posi-
tion to make the entire schedule feasible. This technique is 
useful not only for the binary representations, but also for the 
job-based or operation based representation. A detailed ex-
planation of the local and global harmonization techniques is 
given in our earlier publications [25, 26]. 

In our proposed algorithm, we consider multiple repairs to 
narrow down the deadlock frequency. As soon as a deadlock 
occurs, the algorithm identifies at most one operation from 
each job that can be scheduled immediately. Starting from the 
first operation, the algorithm identifies the corresponding 
machine of the operation and swaps the tasks in that machine 
so that at least the selected task disallows deadlock for the 
next time. For n jobs, the risk of getting into deadlock will be 
removed for at least n operations.  

After performing global harmonization, we obtain a popu-
lation of feasible solutions. We then calculate the makespan 
of all the feasible individuals and rank them based on their 
fitness values. We then apply genetic operators to generate 
the next population. We continue this process until it satisfies 
the stopping criteria. 
 
4. Priority Rules for GAs 
 
As reported in the literature, different priority rules are im-
posed in conjunction with GAs to improve the JSSP solution. 
Dorndorf and Pesch [12] proposed twelve different priority 
rules for achieving better solutions for JSSPs. However they 
suggested choosing only one of these rules while evaluating 
the chromosome. In this section, we introduce three new pri-
ority rules. We propose using these rules on selected indi-
viduals after the fitness evaluation. The action of the rules 
will be accepted if and only if it improves the solution. As the 
improvement is passed to the chromosomes, which can be 
transferred to the offspring, it follows Lamarckian type learn-
ing [32]. These priority rules can be used as lo-
cal/neighborhood search heuristics in conjunction with the 
GAs to improve the quality of solutions generated by GAs. 
The rules are briefly discussed below. 
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4.1. Partial Reordering (PR) 
 
In the first rule, we identify the machine (mk) which is the 
deciding factor for the makespan in phenotype p and the last 
job (jk) that is to be processed by the machine mk. The ma-
chine mk can be termed as the bottleneck machine in the 
chromosome under consideration. Then we find the machine 
(say m′) required by the first operation of job jk. The re-
ordering rule then suggests that the first operation of job jk 
must be the first task on machine m′ if it is not already sched-
uled. 
  
4.2. Gap Reduction (GR) 
 
After each generation, the generated phenotype usually 
leaves some gaps between the jobs. Sometimes, these gaps 
are necessary to satisfy the precedence constraints. However, 
in some cases, a gap could be removed or reduced by placing 
in it a job from the right side of the gap. For a given machine, 
this is like swapping between a gap from the left and a job 
from the right of a schedule. In addition, a gap may be re-
moved or reduced by simply moving a job to its adjacent gap 
at the left. This process would help to develop a compact 
schedule from the left and continuing up to the last job for 
each machine.  
 
4.3. Restricted Swapping (RS) 
 
For a given machine, the restricted swapping rule allows 
swapping between adjacent jobs if and only if the resulting 
schedule is feasible. This process is carried out only for the 
job which takes the longest time for completion. 

Suppose job j′ takes the longest time for completion as the 
phenotype p. The algorithm starts from the last operation of j′ 
in p and checks with the immediate predecessor operation 
whether these two are swappable or not. The necessary con-
ditions for swapping are: none of the operations can start be-
fore the finishing time of the immediate predecessor opera-
tion of that corresponding job, and both operations have to be 
finished before starting the immediate successive operations 
of the corresponding jobs. More explanation of these rules 
with necessary figures are available in our previous publica-
tions [25, 26]. 
 
5. Development of the DSS 
 
According to the definition, it is a simple job-shop scheduling 
problem that follows the problem definition mentioned in 
section 2. We have developed a standard decision support 
system to evaluate the management decisions and to execute 
the appropriate algorithm to solve  simple JSSPs. Standard 
DSSs contain three basic subsystems: data management, 
model management and dialog management [33]. These three 
components usually interact between each other. This interac-
tion consists of sharing resources, exchanging information 
and messages, passing feedback etc. Moreover, the whole 
management system interacts with the user interface (UI) to 
process the input and simulate the output. The flow diagram 
is presented in Fig. 1. 
 

5.1. Data Base Management Subsystem (DBMS) 
 
The DBMS is mainly the input processing subsystem. The 
major tasks of this subsystem are to reshape and simplify the 
incoming data. It handles 
− the problem description i.e. sequence of operations and 

corresponding execution time 
− reproduction parameters i.e. crossover and mutation prob-

abilities, along with other selection parameters 
− stopping criteria i.e. maximum allowable number of gen-

erations, particular delivery time or specific makespan to 
stop the iterative process. 

 

 
The purposes of incoming data are elaborated in section 5.4.2. 
The DGMS shares the processed inputs with the model man-
agement to execute a selected model successfully. It also 
handles further requests of input data by any other units. On 
the other hand, it is connected to UI through DGMS, in terms 
of acquiring the inputs from the interactive user interface. 
Users load necessary data by using the UI which is finally 
captured by the DBMS. 
 
5.2. Model Base Management Subsystem (MBMS) 
 
MBMS deals with the different kinds of algorithms which 
can be treated as models. We have developed four different 
algorithms, which act as four different models. The MBMS 
controls the operations of those models. Moreover, it facili-
tates the models by ensuring appropriate support from other 
units.  

It also keeps the process input data from the DBMS. The 
models use this data to execute themselves and to generate 

Model Base 
Management 

Job-Shop 
Problem 

Solver Pa-
rameters 

User  
Interface 

Data Base 
Management 

Dialog Base 
Management 

Traditional GA 

GA with PR 

GA with GR 

GA with GR & RS 

Input Output 

Fig. 1. Flow diagram of the decision support system. 
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the expected outputs. The MBMS needs the support of the UI 
to choose any particular model. Thus the user/manager has 
the access to select any particular model. In a sense, this unit 
is fully controllable from the UI. 
 
5.3. Dialog Management Subsystem (DGMS) 
 
The dialog component of a DSS is the hardware and software 
that provides the service of connectivity, between the user 
interface and other management systems. It also accommo-
dates the user with a variety of input devices and stores in-
put/output data. Sometimes the UI is also treated as a part of 
the DGMS [34]. According to Fig. 1, the UI is virtually con-
nected to all three management subsystems, as it is directly 
linked and controlled by the DGMS. It handles the accessibil-
ity of the dialogs in the user interface, and maintains the input 
and output data flows between the UI and the other subsys-
tems. 
 
5.4. User Interface (GUI) 
 
The UI is the main graphical component to control the inter-
action between the DSS and the end user or manager. It 
communicates directly with the DGMS and exchanges input 
and output data.  
 

 

 
As we implemented three different rules and developed three 
different algorithms using those, we also considered the op-
tion to select any of the algorithms and traditional GA as well. 
For better convenience, we used an option to select the algo-
rithm parameters from an initialization file. 

Fig. 1. represents the flow diagram of the complete system. 
The decision support system takes the input data in three dif-
ferent classes, through the help of the DGMS and then passes 
it to the DBMS. The DGMS finally process the output and 
gives feedback to the user/manager. The output is generated 
in the form of values, as well as a Gantt chart. 

 

5.4.1 Home 
 
This option is for getting the simplified input parameters di-
rectly from the configuration file. All of the necessary algo-
rithm parameters can be stored in files using a specific input 
format for the purposes of quickly selecting parameters. This 
tab contains two input buttons. The CONFIG button loads 
*.ini files to initialize the algorithm parameters, while the 
Inputs button loads the input files in *.txt format for opera-
tional sequences etc. The parameters can be reset to the de-
fault values using the RESET button. 
 
5.4.2 Input 
 
This option allows users to choose the input parameters, in-
cluding the algorithm and stopping criteria, interactively from 
the interface itself. More precisely, it gives a clear graphical 
view of each and every component of the algorithms.  
 

 

 
The manual input allows a user to insert all of the parameters 
of the algorithms manually where smaller amounts of data 
have been used. This is helpful in the case of small scale 
problems. Selecting manual input enables the edit box to 
specify the total number of machines and jobs. On the other 
hand, the input data can be loaded from a file, which is much 
more convenient for large problems. As we initially imple-
mented a traditional GA, and then later applied the priority 
rules, we kept the option for all four of the algorithms, in-
cluding TGA. The two main parameters are the size of popu-
lation and total number of generations. The value of the num-
ber of generations is the default stopping criteria in any criti-
cal circumstances.  

The stopping criterion is essential for better management. 
As it allows a manager to specify the criteria to stop the itera-
tive process. The program may stop after a certain number of 
generations, or after a particular period of time, or after 
achieving a specific makespan. In the case of makespan, if it 
is not achieved within the maximum number of generations, 

Fig. 3. Graphical user interface of the advanced input in 
the decision support system. 

Fig. 2. Graphical user interface of the simple input op-
tions in the decision support system. 
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the program stops. This is to avoid infinitely approaching 
towards an infeasible makespan. There is also an option to 
insert the reproduction parameters i.e. crossover and mutation 
probability, while the elitism technique is to keep the best 
solution of every generation unchanged in the next generation. 
Adding elitism ensures the continuation of the best solution 
in every following generation. 

 
5.4.3 Output 
 
The simplified output screen shows the necessary information 
to measure the quality of the solutions, as well as a graphical 
view of the best solution in the form of a Gantt chart. The 
computational results contain: the best makespan found, 
which the solution with the minimum completion time is; the 
average makespan of all the solutions; and the worst fitness, 
in the scale of unit time. Moreover, it also includes: the stan-
dard deviation of all the solutions, total execution time to 
reach to the current solution, total number of fitness evalua-
tions, and the cumulative idle time between each consecutive 
operation. 
 

 

 
In the Gantt chart, each color represents the operations of a 
particular job which is mentioned in the legend. The chart 
contains M rows, where M is the total number of machines. 
Each row contains N different operations represented by N 
colors, where N is the total number of jobs. Empty spaces 
between each pair of operations are the idle time for that par-
ticular machine. The Gantt chart is the best and most effec-
tive way to visualize the schedules in the time domain. 
 
6. Implementation of Genetic Algorithms 
 
First, we implemented a simple GA for solving JSSPs. Each 
individual is represented by a binary chromosome. We use 
the job-pair relationship based representation as of Nakano 
and Yamada [3] and Paredis et al. [35]. We use simple two 
point crossover and bit flip mutation as reproduction opera-

tors. We carried out a set of experiments with different cross-
over and mutation rates to analyze the performance of the 
algorithm. After the successful implementation of the GA, we 
implemented three versions of GAs by introducing the prior-
ity rules, as discussed in the last section, as follows: 

 GA-PR: Partial re-ordering rule with GA 
 GA-GR: Gap reduction rule with GA and 
 GA-GR-RS: Gap reduction and restricted swapping 

rule with GA 
In all versions of GA, if selected, we apply elitism in each 
generation to preserve the best solution found so far, and also 
to inherit the elite individuals more than the rest [36, 37]. In 
performing the crossover operation, we use the tournament 
selection that chooses one individual from the elite class of 
the individuals (i.e. the top 15%) and two individuals from 
the rest. This selection then plays a tournament between the 
last two and performs crossover between the winner and the 
elite individual. We rank the individuals on the basis of their 
fitness value. A high selection pressure on the better indi-
viduals may contribute to premature convergence. In particu-
lar, we consider the situation where 50% or more of the elite 
class are the same solution. In this case, their offspring will 
be quite similar after some generations. To counter this, when 
this occurs, a higher mutation rate will be used to help to di-
versify the population. We varied the crossover and mutation 
rate and made several experiments. Based on the result, the 
optimum rate found was 0.45 for crossover and 0.35 for mu-
tation. Detailed results and analysis is listed in the next sec-
tion. We set the population size to 2500 and the number of 
generations to 1000. Note that JSSPs usually require a high 
population size. For example, [38] used a population size of 
5000 even for 10×10 problems. In our approach, when cho-
sen, GR is applied to every individual. On the other hand, we 
apply PR and RS to only 5% of randomly selected individu-
als in every generation. To test the performance of our pro-
posed algorithms, we have solved the 40 benchmark prob-
lems designed by Lawrence [27] and have compared our re-
sults with several existing algorithms. The problems range 
from 10×5 to 30×10 where n×m represents n jobs and m ma-
chines. 
 
7. Result and Analysis for GAs 
 
The results for the benchmark problems were obtained by 
executing the algorithms on a personal computer. Each prob-
lem was run 30 times and the simplified results are tabulated 
in Table 1. 
 
Table 1. Comparing Our Four Algorithms 
 

No. of 
Problems Algorithm Optimal 

Found 
ARD 
(%) 

SDRD 
(%) 

Fitness Eval.
(103) 

      

TGA 15 3.591 4.165 664.90 
PR-GA 16 3.503 4.192 660.86 
GR-GA 23 1.360 2.250 356.41 

40 
(la01–la40)

GR-RS-GA 27 0.968 1.656 388.58 
  

 
To analyze the individual contribution of the priority rules, 
we experiment on a sample of five problems (la21-la25) with 
the same set of parameters in the same computing environ-

Fig. 4. Graphical user interface of the output in the deci-
sion support system. 
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ment. For these problems, the individual percentage im-
provements of PR, GR and RS over GA after 100, 250 and 
1000 generations was recorded. Although all three priority 
rules have a positive effect, GR’s contribution is significantly 
higher than the other two rules and is consistent over many 
generations. 

The table compares the performance of the four algorithms 
we implemented [GA, GA-PR, GA-GR, and GA-GR-RS] in 
terms of the % average relative deviation (ARD) from the 
best result published in the literature, the standard deviation 
of % relative deviation (SDRD), and the average number of 
fitness evaluations required. From Table 1, it is clear that the 
performance of the GAs with priority rules are better than the 
traditional GA, and GA-GR is better than both GA-PR and 
TGA. The addition of RS to GA-GR, which is known as GA-
GR-RS, has clearly enhanced the performance of the algo-
rithm. Out of the 40 test problems, both GA-GR and GA-GR-
RS obtained exact optimal solutions for 23 problems. In addi-
tion, GA-GR-RS obtained optimal solutions for another 4 
problems and substantially improved solutions for 10 other 
problems. In general, these two algorithms converged quickly, 
which can be seen from the average number of fitness evalua-
tions. 

Interestingly, in the case of GR, the average rate of im-
provement gradually decreases as the generation number in-
creases (8.92% after 100 generations and 6.31% after 1000 
generations). The reason for this, is that GR starts with a set 
of high quality initial solutions. Alternatively PR and RS 
have no significant effect on the solutions after the first 
evaluation, but GR gives 18.17% more improved solutions 
compared to GA. This is measured by the average improve-
ment of the best makespan after the first evaluation without 
applying any other genetic operators. 

To observe the contribution more closely, we recorded the 
improvement due to the individual rule in every generation in 
the first 100 generations. It was observed that GR consis-
tently outperformed the other two rules. PR is effective only 
for the bottleneck jobs, whereas GR was applied to all indi-
viduals. The process of GR eventually makes most of the 
changes performed by PR over some (or many) generations. 
We identified a number of individuals where PR could make 
a positive contribution. We applied GR on those individuals 
to compare their relative contribution. For the five problems 
we considered over 1000 generations, we observed that GR 
made a 9.13% higher improvement than PR. It must be noted 
here that GR is able to make all the changes which PR does. 
That means PR cannot make an extra contribution over GR. 
As a result, the inclusion of PR with GR does not help to im-
prove the performance of the algorithm. That is why we do 
not present other possible variants of GAs, such as GA-PR-
RS and GA-GR-RS-PR. 

Both PR and RS were applied to only 5% of the individu-
als. The role of RS is mainly to increase the diversity. A 
higher rate of PR and RS does not provide significant bene-
fits either in terms of quality of solution or computational 
time. We experimented with varying the rate of PR and RS 
individually, for five selected problems, from 5% to 25%. We 
observed that the increase of the rate of applying PR and RS 

does not improve the quality of the solutions. Moreover, it 
takes extra time to converge. 

 
Table 2. Comparing the Algorithms Based on Average Rela-
tive Deviations and Standard Deviation of Average Relative 
Deviations 
 

Author Algorithm ARD(%) SDRD(%)
    

Our Proposed GR-RS-GA 0.97 1.66 
Aarts et al. GLS1 4.00 4.09 
Aarts et al. GLS2 2.05 2.53 
Dorndorf & Pesche PGA 1.75 2.20 
Dorndorf & Pesche SBGA (40) 1.25 1.72 
Binato et al. - 1.87 2.78 
Adams et al SB I 3.67 3.98 

    

 
We have compared the performance of our best algorithm 
GA-GR-RS with other published algorithms based on the 
average of relative deviation (ARD) and the standard devia-
tion of the relative deviations (SDRD) as presented in Table 2. 
Our GA-GR-RS clearly outperformed all the algorithms 
compared in the table. 
 
8. Conclusion 
 
Although JSSP is a very old and popular problem, there is 
still no algorithm that can assure the optimal solution for all 
test problems, specifically for larger problems in the literature. 
However, GAs are gaining popularity due to their effective-
ness of solving optimization problems within a reasonable 
time period. In this paper, we have presented genetic algo-
rithm based approaches to solve job-shop scheduling prob-
lems. After developing a traditional GA with different kinds 
of operations, we have designed and implemented three prior-
ity rules and three versions of genetic algorithms. All three 
genetic algorithms provided superior results than the tradi-
tional GA for JSSPs. We have solved 40 benchmark prob-
lems and have compared results with well-known algorithms 
appearing in the literature. Our genetic algorithm GA-GR-RS 
clearly outperforms all the algorithms considered in this pa-
per. We have shown the ability to integrate the algorithms 
with the decision support system. The interactive presentation 
and decision making ability of the system gives more effec-
tiveness to the work. Regarding the results, we have also pro-
vided a sensitivity analysis of parameters and have also ex-
perimented with different parameters and algorithms for ana-
lyzing their contributions. Although our algorithm is per-
forming well, we feel that the algorithm requires further work 
to ensure consistent performance for a wide range of practical 
JSSPs. Moreover, it also needs the flexibility of adding new 
jobs and adjusting due dates which forward the work few 
more steps towards practical JSSPs. We intend to extend our 
research by introducing constraints such as, machine break-
down, dynamic job arrival, machine addition and removal, 
and due date restrictions, which will also be included in the 
DSS. Moreover, we would also like to test the performance 
of our algorithm on large scale problems. However, the new 
genetic algorithm is a significant contribution to the research 
of solving JSSPs. 
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